Ir al contenido

Documat


Disjoint hypercyclic and supercyclic composition operators on discrete weighted Banach spaces

  • Xu, Zhiyuan [1] ; Wang, Ya [2] ; Zhou, Zehua [1]
    1. [1] Tianjin University

      Tianjin University

      China

    2. [2] Tianjin University of Finance and Economics

      Tianjin University of Finance and Economics

      China

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 1, 2025, págs. 35-49
  • Idioma: inglés
  • DOI: 10.1007/s13348-023-00418-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, we characterize the disjoint hypercyclic and disjoint supercyclic composition operators on the little weighted Banach space L^0_\mu (T) defined on an unbounded, locally finite metric space T with a distinguished element. We give an explanation of the conditions which are needed and list some examples simultaneously.

  • Referencias bibliográficas
    • Allen, R.F., Colonna, F., Easley, G.R.: Composition operators on the Lipschitz space of a tree. Mediterr. J. Math. 11, 97–108 (2014)
    • Allen, R.F., Colonna, F., Martínez-Avendaño, R.A., Pons, M.A.: Hypercyclicity of composition operators on discrete weighted Banach spaces....
    • Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009)
    • Bernal-González, L.: Disjoint hypercyclic operators. Stud. Math. 182, 113–131 (2007)
    • Bernal-González, L., Montes-Rodríguez, A.: Universal functions for composition operators. Complex Var. Theory Appl. 27, 47–56 (1995)
    • Bès, J., Martin, Ö., Sanders, R.: Weighted shifts and disjoint hypercyclicity. J. Oper. Theory 72, 15–40 (2014)
    • Bès, J., Peris, A.: Disjointness in hypercyclicity. J. Math. Anal. Appl. 336, 297–315 (2007)
    • Bonet, J., Kalmes, T., Peris, A.: Dynamics of shift operators on non-metrizable sequence spaces. Rev. Mat. Iberoam. 37, 2373–2397 (2021)
    • Cowen, C.C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)
    • Furstenberg, H.: Disjointness in ergodic theory, minimal sets and a problem in Diophantine approximation. Math. Syst. Theory 1, 1–49 (1967)
    • Grosse-Erdmann, K.-G.: Hypercyclic and chaotic weighted shifts. Stud. Math. 139, 47–68 (2000)
    • Grosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Springer, London (2011)
    • Hilden, H.M., Wallen, L.J.: Some cyclic and non-cyclic vectors of certain operators. Indiana Univ. Math. J. 23, 557–565 (1974)
    • Kalmes, T.: Dynamics of weighted composition operators on function spaces defined by local properties. Stud. Math. 249, 259–301 (2019)
    • Liang, Y., Zhou, Z.: Disjoint supercyclic powers of weighted shifts on weighted sequence spaces. Turk. J. Math. 38, 1007–1022 (2014)
    • Liang, Y., Zhou, Z.: Hypercyclic composition operators on the little Bloch space and the Besov spaces. Indag. Math. (N.S.) 29, 986–996 (2018)
    • Martin, Ö., Sanders, R.: Disjoint supercyclic weighted shifts. Integr. Eqn. Oper. Theory 85, 191–220 (2016)
    • Miralles, A., Wolf, E.: Hypercyclic composition operators on H-spaces. Math. Nachr. 286, 34–41 (2013)
    • Muthukumar, P., Ponnusamy, S.: Composition operators on the discrete analogue of generalized Hardy space on homogenous trees. Bull. Malays....
    • Rolewicz, S.: On orbits of elements. Stud. Math. 32, 17–22 (1969)
    • Salas, H.N.: Hypercyclic weighted shifts. Trans. Am. Math. Soc. 347, 993–1004 (1995)
    • Salas, H.N.: Supercyclicity and weighted shifts. Stud. Math. 135, 55–74 (1999)
    • Wang, Y., Zhou, Z.: Disjoint hypercyclic powers of weighted pseudo-shifts. Bull. Malays. Math. Sci. Soc. 42, 1937–1956 (2019)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno