Naka-ku, Japón
Let R be a commutative noetherian ring and I an ideal of R. Assume that for all integers i the local cohomology module {\text {H}}_I^i(R) is I-cofinite. Suppose that R_\mathfrak {p} is a regular local ring for all prime ideals \mathfrak {p} that do not contain I. In this paper, we prove that if the I-cofinite modules form an abelian category, then for all finitely generated R-modules M and all integers i, the local cohomology module {\text {H}}_I^i(M) is I-cofinite.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados