Ir al contenido

Documat


Cofiniteness of local cohomology modules and subcategories of modules

  • Takahashi, Ryo [1] ; Wakasugi, Naoki [1]
    1. [1] Nagoya University

      Nagoya University

      Naka-ku, Japón

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 1, 2025, págs. 1-10
  • Idioma: inglés
  • DOI: 10.1007/s13348-023-00416-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let R be a commutative noetherian ring and I an ideal of R. Assume that for all integers i the local cohomology module {\text {H}}_I^i(R) is I-cofinite. Suppose that R_\mathfrak {p} is a regular local ring for all prime ideals \mathfrak {p} that do not contain I. In this paper, we prove that if the I-cofinite modules form an abelian category, then for all finitely generated R-modules M and all integers i, the local cohomology module {\text {H}}_I^i(M) is I-cofinite.

  • Referencias bibliográficas
    • Aghapournahr, M., Bahmanpour, K.: Cofiniteness of general local cohomology modules for small dimensions. Bull. Korean Math. Soc. 53(5), 1341–1352...
    • Avramov, L.L., Iyengar, S.B., Lipman, J.: Reflexivity and rigidity for complexes, I, Commutative rings. Algebra Number Theory 4(1), 47–86...
    • Bahmanpour, K.: Cohomological dimension, cofiniteness and Abelian categories of cofinite modules. J. Algebra 484, 168–197 (2017)
    • Bahmanpour, K.: On a question of Hartshorne. Collect. Math. 72(3), 527–568 (2021)
    • Bahmanpour, K., Naghipour, R.: Associated primes of local cohomology modules and Matlis duality. J. Algebra 320(6), 2632–2641 (2008)
    • Brodmann, M. P., Sharp, R. Y.: Local cohomology: an algebraic introduction with geometric applications, Cambridge Stud. Adv. Math. vol. 60,...
    • Buan, A.B., Marsh, R.J.: A category of wide subcategories. Int. Math. Res. Not. IMRN 2021(13), 10278–10338 (2021)
    • Christensen, L.W., Foxby, H.-B., Frankild, A.: Restricted homological dimensions and Cohen–Macaulayness. J. Algebra 251(1), 479–502 (2002)
    • Enomoto, H.: Monobrick, a uniform approach to torsion-free classes and wide subcategories. Adv. Math. 393, 108113 (2021)
    • Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2) (French), Augmenté d’un exposé...
    • Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9, 145–164 (1970)
    • Herschend, M., Jørgensen, P., Vaso, L.: Wide subcategories of d-cluster tilting subcategories. Trans. Am. Math. Soc. 373(4), 2281–2309 (2020)
    • Hovey, M.: Classifying subcategories of modules. Trans. Am. Math. Soc. 353(8), 3181–3191 (2001)
    • Krause, H.: Thick subcategories of modules over commutative Noetherian rings (with an appendix by Srikanth Iyengar). Math. Ann. 340(4), 733–747...
    • Marks, F., Šťovíček, J.: Torsion classes, wide subcategories and localisations. Bull. Lond. Math. Soc. 49(3), 405–416 (2017)
    • Matsui, H., Nam, T.T., Takahashi, R., Tri, N.M., Yen, D.N.: Cohomological dimensions of specialization-closed subsets and subcategories of...
    • Matsui, H., Takahashi, R.: Filtrations in module categories, derived categories, and prime spectra. Int. Math. Res. Not. IMRN 2022(5), 3457–3492...
    • Takahashi, R.: Reconstruction from Koszul homology and applications to module and derived categories. Pacific J. Math. 268(1), 231–248 (2014)
    • Takahashi, R.: Dominant local rings and subcategory classification. Int. Math. Res. Not. IMRN 2023(9), 7259–7318 (2023)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno