Ir al contenido

Documat


Turing Instability of Periodic Solutions for a General Degn–Harrison Model with Cross-Diffusion

  • Gaihui Guo [1] ; Wangrui Li [1] ; Yanfei Du [1] ; Sajad Jafari [2]
    1. [1] Shaanxi University of Science and Technology

      Shaanxi University of Science and Technology

      China

    2. [2] Amirkabir University of Technology

      Amirkabir University of Technology

      Irán

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • A general Degn–Harrison model with cross-diffusion is investigated under Neumann boundary conditions. How the cross-diffusion destabilizes the stable periodic solutions originating from the unique positive equilibrium is fully investigated. By the implicit function theorem and Floquet theory, we propose some conditions on crossdiffusion coefficients, under which these stable periodic solutions become unstable.

      The destabilization gives rise to the development of new irregular spatiotemporal patterns. We also show some numerical simulations to further support the theoretical analysis results.

  • Referencias bibliográficas
    • 1. Degn, H., Harrisson, D.: Theory of oscillations of respiration rate in continuous culture of Klebsiella aerogenes. J. Theor. Biol. 22(2),...
    • 2. Peng, R., Yi, F., Zhao, X.: Spatiotemporal patterns in a reaction-diffusion model with the Degn–Harrison reaction scheme. J. Differ. Equ....
    • 3. Fairen, V., Velarde, M.: Time-periodic oscillations in a model for the respiratory process of a bacterial culture. J. Math. Biol. 8, 147–157...
    • 4. Lengyel, I., Epstein, I.: Modeling of turing structures in the chloriteiodidemalonic acidstarch reaction system. Science 251(4994), 650–652...
    • 5. Lengyel, I., Epstein, I.: A chemical approach to designing Turing patterns in reaction-diffusion systems. Proc. Natl. Acad. Sci. 89(9),...
    • 6. Dong, Y., Li, S., Zhang, S.: Hopf bifurcation in a reaction-diffusion model with Degn–Harrison reaction scheme. Nonlinear Anal. Real World...
    • 7. Li, S., Wu, J., Dong, Y.: Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme. J. Differ. Equ. 259(5),...
    • 8. Yan, X., Chen, J., Zhang, C.: Dynamics analysis of a chemical reaction-diffusion model subject to Degn-Harrison reaction scheme. Nonlinear...
    • 9. Lisena, B.: Some global results for the Degn-Harrison system with diffusion. Mediterr. J. Math. 14, 1–14 (2017)
    • 10. Abbad, A., Bendoukha, S., Abdelmalek, S.: On the local and global asymptotic stability of the Degn– Harrison reaction-diffusion model....
    • 11. Zhou, J.: Pattern formation in a general Degn-Harrison reaction model. Bull. Korean Math. Soc. 54(2), 655–666 (2017)
    • 12. Chen, M., Wu, R., Liu, B., et al.: Turing–Turing and Turing-Hopf bifurcations in a general diffusive Brusselator model. ZAMM-J. Appl....
    • 13. Lou, Y., Ni, W.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131(1), 79–131 (1996)
    • 14. Li, L., Zhen, J., Sun, G.: Spatial pattern of an epidemic model with cross-diffusion. Chin. Phys. Lett. 25(9), 3500 (2008)
    • 15. Guo, G., Qin, Q., Pang, D., et al.: Positive steady-state solutions for a vegetation-water model with saturated water absorption. Commun....
    • 16. Guo, G., Zhao, S., Pang, D., et al.: Stability and cross-diffusion-driven instability for a water-vegetation model with the infiltration...
    • 17. Guo, G., Wang, J.: Pattern formation and qualitative analysis for a vegetation-water model with diffusion. Nonlinear Anal. Real World...
    • 18. Guo, G., Zhao, S., Wang, J., et al.: Positive steady-state solutions for a water-vegetation model with the infiltration feedback effect....
    • 19. Wang, F., Yang, R.: Dynamics of a delayed reaction-diffusion predator-prey model with nonlocal competition and double Allee effect in...
    • 20. Zhu, F., Yang, R.: Bifurcation in a modified Leslie-Gower model with nonlocal competition and fear effect. Discr. Continuous Dyn. Syst....
    • 21. Guo, G., You, J., Ahmed-Abbakar, K.: Pattern dynamics in a water-vegetation model with cross diffusion and nonlocal delay. Math. Methods...
    • 22. Zhi, S., Su, Y., Niu, H., et al.: Threshold dynamics of a waterborne pathogen model with seasonality in a polluted environment. Acta Math...
    • 23. Guo, G., You, J., Wei, M., et al.: Pattern formation for a charge transfer model with cross-diffusion. J. Math. Anal. Appl. 538(1), 128334...
    • 24. Wang, F., Yang, R., Zhang, X.: Turing patterns in a predator-prey model with double Allee effect. Math. Comput. Simul. 220, 170–191 (2024)
    • 25. Guo, G., Wang, J., Zhao, S., et al.: Interactions of cross-diffusion and nonlocal delay induce spatial vegetation patterning in semi-arid...
    • 26. You, J., Guo, G.: Pattern formation for a reversible biochemical reaction model with cross-diffusion and Michalis saturation. J. Math....
    • 27. Yi, F.: Turing instability of the periodic solutions for reaction-diffusion systems with cross-diffusion and the patch model with cross-diffusion-like...
    • 28. Liu, H., Ge, B., Shen, J.: Dynamics of periodic solutions in the reaction-diffusion glycolysis model: Mathematical mechanisms of Turing...
    • 29. Ju, X., Yang, Y.: Turing instability of the periodic solution for a generalized diffusive Maginu model. Comput. Appl. Math. 41(6), 290...
    • 30. Wang, P., Gao, Y.: Turing instability of the periodic solutions for the diffusive Sel’kov model with saturation effect. Nonlinear Anal....
    • 31. Liu, H., Yuan, W., Ge, B., et al.: Cross-diffusion induced Turing instability of Hopf bifurcating periodic solutions in the reaction-diffusion...
    • 32. Liu, H., Ge, B.: Turing instability of periodic solutions for the Gierer-Meinhardt model with crossdiffusion. Chaos Solitons Fractals...
    • 33. Guo, G., You, J., Du, X., et al.: Dynamics for a charge transfer model with cross-diffusion: turing instability of periodic solutions....
    • 34. Guo, G., Wei, T., Jia, F., et al.: Turing instability of periodic solutions for a general Brusselator model with cross-diffusion. J. Math....
    • 35. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and applications of Hopf bifurcation. CUP Archive, (1981)
    • 36. Maginu, K.: Stability of spatially homogeneous periodic solutions of reaction-diffusion equations. J. Differ. Equ. 31(1), 130–138 (1979)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno