Ir al contenido

Documat


On the Space of Iterated Function Systems and Their Topological Stability

  • Alexander Arbieto [1] ; Alexandre Trilles [2]
    1. [1] Universidade Federal do Rio de Janeiro

      Universidade Federal do Rio de Janeiro

      Brasil

    2. [2] Jagiellonian University

      Jagiellonian University

      Kraków, Polonia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study iterated function systems with compact parameter space (IFS for short).

      We show that the space of IFS with phase space X is the hyperspace of the space of continuous maps from X to itself, which allows us to use the Hausdorff metric to define topological stability for IFS. We then prove that the concordant shadowing property is a necessary condition for topological stability and it is a sufficient condition if the IFS is expansive. Additionally, we provide an example to show that the concordant shadowing property is genuinely different from the traditional notion that, in our setting, becomes too weak.

  • Referencias bibliográficas
    • 1. Aoki, N., Hiraide, K.: Topological Theory of Dynamical Systems: Recent Advances. North-Holland mathematical library 52. North-Holland (1994)
    • 2. Arbieto, A., Junqueira, A., Santiago, B.: On weakly hyperbolic iterated function systems. Bull. Braz. Math. Soc. New Ser. 48(1), 111–140...
    • 3. Arbieto, A., Rojas, C.A.M.: Topological stability from Gromov-Hausdorff viewpoint. Discrete & Contin. Dyn. Syst.- A 37, 3531 (2017)
    • 4. Backes, L., Dragiˇcevi´c, D.: Shadowing for nonautonomous dynamics. Adv. Nonlinear Stud. 19(2), 425–436 (2019)
    • 5. Backes, L., Dragiˇcevi´c, D.: Shadowing for infinite dimensional dynamics and exponential trichotomies. Proc. Royal Soc. Edinburgh: Sect....
    • 6. Barnsley, M.: Fractals Everywhere, 2nd edn. Academic Press (1993)
    • 7. Chen, Liang, Li, Shi Hai: Shadowing property for inverse limit spaces. Proc. Amer. Math. Soc. 115(2), 573–580 (1992)
    • 8. Chu, H.Y., Ku, S.H., Van Nguyen, S.H.: Topological stability for functional dynamics. J. Math. Anal. Appl. 531(1, Part 1), 127815 (2024)
    • 9. Falconer, K.: Fractal geometry. John Wiley & Sons, Inc., Hoboken, NJ (2003). Mathematical foundations and applications
    • 10. Gl˘avan, V., Gu¸tu, V.: Shadowing in parameterized IFS. Fixed Point Theory 7(2), 263–274 (2006)
    • 11. Gl˘avan, V., Gu¸tu, V.: Shadowing in affine iterated function systems. Fixed Point Theory 10(2), 229–243 (2009)
    • 12. Hiraide, K.: Expansive homeomorphisms with the pseudo-orbit tracing property on compact surfaces. J. Math. Soc. Jpn. 40(1), 123–137 (1988)
    • 13. Hiraide, K.: Positively expansive maps and growth of fundamental groups. Proc. Amer. Math. Soc. 104(3), 934–941 (1988)
    • 14. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)
    • 15. Kato, H.: Continuum-wise expansive homeomorphisms. Canad. J. Math. 45(3), 576–598 (1993)
    • 16. Lewellen, G.B.: Self-similarity. Rocky Mountain J. Math. 23(3), 1023–1040 (1993)
    • 17. Lewowicz, J.: Expansive homeomorphisms of surfaces. Bol. Soc. Brasil. Mat. (N.S.) 20(1), 113–133 (1989)
    • 18. Melo, I.: On P-weakly hyperbolic iterated function systems. Bull. Braz. Math. Soc. (N.S.) 48(4), 717–732 (2017)
    • 19. Mendivil, F.: A generalization of ifs with probabilities to infinitely many maps. Rocky Mountain J. Math. 28(3), 1043–1051 (1998)
    • 20. Pilyugin, SYu.: Shadowing near an invariant set. Springer, Berlin (1999)
    • 21. Rezaei, F., Fatehi Nia, M.: Shadowing relations with structural and topological stability in iterated function systems (2016). arXiv:1612.05963...
    • 22. Sakai, K.: Shadowing property and transversality condition. In: Dynamical systems and chaos, Vol. 1 (Hachioji, 1994), pages 233–238. World...
    • 23. Smale, S.: Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817 (1967)
    • 24. Thakkar, D., Das, R.: Topological stability of a sequence of maps on a compact metric space. Bull. Math. Sci. 4(1), 99–111 (2014)
    • 25. Wen, L.: Differentiable Dynamical Systems: An Introduction to Structural Stability and Hyperbolicity. Graduate Studies in Mathematics....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno