Ir al contenido

Documat


Note on the Metric Entropy for Multivalued Maps

  • Jan Andres [1] ; Pavel Ludvík [1]
    1. [1] Palacký University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The first goal of this note is to highlight several discrepancies in the proofs of the recent paper by Vivas and Sirvent (Discrete Contin Dyn Syst Ser B 27(11):6589–6604, 2022. https://doi.org/10.3934/dcdsb.2022010). The results in question, which relate metric and topological entropies for multivalued maps and can be referred to as “half variational principles” for multivalued maps, are pioneering in this field. Our second goal is to provide revised statements accompanied by correct proofs. By employing the concept of h+ entropy for multivalued maps, developed in our earlier papers, we were able to partially strengthen the results of Vivas and Sirvent and establish the “full variational principle” for a special subclass of multivalued lower semicontinuous maps with convex compact values on a compact subset of a Banach space. However, our approach requires two rather restrictive additional assumptions, which were also used by Vivas and Sirvent in another related context.

  • Referencias bibliográficas
    • 1. Balibrea, F.: On the origin and development of some notions of entropy. Topol. Algebra Appl. 3(1), 57–74 (2015). https://doi.org/10.1515/taa-2015-0006
    • 2. Balibrea, F.: On problems of topological dynamics in non-autonomous discrete systems. Appl. Math. Nonlinear Sci. 1(2), 391–403 (2016)....
    • 3. Balibrea, F.: On notions of entropy in physics and mathematics. In: George, T. (eds.) Research Trends and Challenges in Physical Science,...
    • 4. Downarowicz, T.: Positive topological entropy implies chaos DC2. Proc. Am. Math. Soc. 142(1), 137–149 (2014). https://doi.org/10.1090/S0002-9939-2013-11717-X
    • 5. Freeden, W. (ed.): Frontiers in entropy across the disciplines—panorama of entropy: theory, computation, and applications. In: Contemporary...
    • 6. Katok, A.: Fifty years of entropy in dynamics: 1958–2007. J. Mod. Dyn. 1(4), 545–596 (2007). https:// doi.org/10.3934/jmd.2007.1.545
    • 7. Alvin, L., Kelly, J.P.: Topological entropy of Markov set-valued functions. Ergod. Theory Dyn. Syst. 41(2), 321–337 (2021). https://doi.org/10.1017/etds.2019.61
    • 8. Andres, J.: Chaos for multivalued maps and induced hyperspace maps. Chaos, Solitons & Fractals 138, 109898 (2020). https://doi.org/10.1016/j.chaos.2020.109898
    • 9. Andres, J., Ludvík, P.: Topological entropy of multivalued maps in topological spaces and hyperspaces. Chaos, Solitons & Fractals 160,...
    • 10. Andres, J., Ludvík, P.: Parametric topological entropy of families of multivalued maps in topological spaces and induced hyperspace maps....
    • 11. Andres, J., Ludvík, P.: Parametric topological entropy on orbits of arbitrary multivalued maps in compact Hausdorff spaces. J. Math. Anal....
    • 12. Carrasco-Olivera, D., Metzger Alvan, R., Morales Rojas, C.A.: Topological entropy for set-valued maps. Discrete Contin. Dyn. Syst. Ser....
    • 13. Cordeiro, W., Pacífico, M.J.: Continuum-wise expansiveness and specification for set-valued functions and topological entropy. Proc. Am....
    • 14. Erceg, G., Kennedy, J.: Topological entropy on closed sets in [0, 1] 2. Topol. Appl. 246, 106–136 (2018). https://doi.org/10.1016/j.topol.2018.06.015
    • 15. Kelly, J.P., Tennant, T.: Topological entropy of set-valued functions. Houston J. Math. 43(1), 263–282 (2017)
    • 16. Raines, B.E., Tennant, T.: The specification property on a set-valued map and its inverse limit. Houston J. Math. 44(2), 665–677 (2018)
    • 17. Wang, X., Zhang, Y., Zhu, Y.: On various entropies of set-valued maps. J. Math. Anal. Appl. 524(2), 127097 (2023). https://doi.org/10.1016/j.jmaa.2023.127097
    • 18. Carrasco-Olivera, D., Metzger, R., Morales, C.A.: Optimal control (Russian), Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz.,...
    • 19. Li, X., Li, Z., Zhang, Y.: Thermodynamic formalism for correspondences. https://doi.org/10.48550/ arXiv.2311.09397 (2024)
    • 20. Vivas, K.J., Sirvent, V.F.: Metric entropy for set-valued maps. Discrete Contin. Dyn. Syst. Ser. B27(11), 6589–6604 (2022). https://doi.org/10.3934/dcdsb.2022010
    • 21. Dinaburg, E.I.: A connection between various entropy characterizations of dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat. 35, 324–366...
    • 22. Goodman, T.N.T.: Relating topological entropy and measure entropy. Bull. Lond. Math. Soc. 3, 176– 180 (1971). https://doi.org/10.1112/blms/3.2.176
    • 23. Misiurewicz, M.: Horseshoes for mappings of the interval. Bull. Acad. Polon. Sci. Sér. Sci. Math. 27(2), 167–169 (1979)
    • 24. Goodwyn, L.W.: Topological entropy bounds measure-theoretic entropy. Proc. Am. Math. Soc. 23, 679–688 (1969). https://doi.org/10.2307/2036610
    • 25. Goodwyn, L.W.: Comparing topological entropy with measure-theoretic entropy. Am. J. Math. 94, 366–388 (1972). https://doi.org/10.2307/2374626
    • 26. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965). https://doi.org/10.2307/1994177
    • 27. Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971). https://doi.org/10.2307/1995565
    • 28. Andres, J., Górniewicz, L.: Topological fixed point principles for boundary value problems, Topological Fixed Point Theory and Its Applications,...
    • 29. Hu, S., Papageorgiou, N.S.: Handbook of multivalued analysis, vol. I,Mathematics and its Applications, vol. 419, pp. xvi+964 (1997)....
    • 30. Malkin, M.: On continuity of entropy of discontinuous mappings of the interval. Sel. Math. Sov. 8(2), 131–139 (1989)
    • 31. Appell, J., De Pascale, E., Thái, N.H., Zabre˘ıko, P.P.: Multi-valued superpositions. Dissertationes Math. (Rozprawy Mat.) 345, 97 (1995)
    • 32. Andres, J., Fišer, J.: Metric and topological multivalued fractals. Int. J. Bifur. Chaos Appl. Sci. Eng. 14(4), 1277–1289 (2004). https://doi.org/10.1142/S021812740400979X
    • 33. Tarafdar, E., Watson, P., Yuan, X.Z.: Poincare’s recurrence theorems for set-valued dynamical systems. Appl. Math. Lett. 10(6), 37–44...
    • 34. Walters, P.: An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79, pp. ix+250. Springer, New York (1982)
    • 35. Komorníková, M., Komorník, J.: Entropy for noninvariant measures. Math. Slov. 32(4), 337–342 (1982)
    • 36. Fryszkowski, A.: Fixed Point Theory for Decomposable Sets, Topological Fixed Point Theory and Its Applications, vol. 2, pp. xii+209....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno