Ir al contenido

Documat


Blow-Up Behaviors of Minimizers for the H˙ c-Critical Fourth-Order Nonlinear Schrödinger Equation with the Mixed Dispersions

  • Yichun Mo [1] ; Abdoulaye Ali Youssouf [2] ; Binhua Feng [2]
    1. [1] Lanzhou Jiaotong University

      Lanzhou Jiaotong University

      China

    2. [2] Northwest Normal University

      Northwest Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider blow-up behaviors of constraint minimizers for the H˙ γc - critical fourth-order nonlinear Schrödinger equation with the mixed dispersions iψt − 2ψ + μψ + |ψ| pψ = 0.

      This equation arises in describing the propagation of intense laser beams in a bulk medium with Kerr nonlinearity. This paper seems to be the first time to present and study the minimizing problem:

      m1(c) := inf E(u), u ∈ H˙ γc ∩ H˙ 2 and uH˙ γc = c , where γc := N 2 − 4 p is the critical Sobolev exponent and E(u) = 1 2 u2 L2 + μ 2 ∇u2 L2 − 1 p + 2 up+2 L p+2 .

      Minimizers of this problem exist only if c < QH˙ γc , where Q is a solution of equation 2Q + (−)γc Q − |Q|pQ = 0. We then give a detailed description of blow-up behavior of minimizers as c QH˙ γc

  • Referencias bibliográficas
    • 1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)
    • 2. Bergh, J., Löfstöm, J.: Interpolation Spaces. Springer, New York (1976)
    • 3. Bonheure, D., Casteras, J.-B., Gou, T., Jeanjean, L.: Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the...
    • 4. Bonheure, D., Casteras, J.-B., Gou, T., Jeanjean, L.: Strong instability of ground states to a fourth order Schrödinger equation. Int....
    • 5. Boussaïd, N., Fernández, A.J., Jeanjean, L.: Some remarks on a minimization problem associated to a fourth order nonlinear Scrhödinger...
    • 6. Cao, L., Feng, B., Mo, Y.: Orbital stability of standing waves for the Sobolev critical Schrödinger equation with inverse-power potential....
    • 7. Deng, Y., Guo, Y., Lu, L.: On the collapse and concentration of Bose–Einstein condensates with inhomogeneous attractive interactions. Calc....
    • 8. Dinh, V.D.: On blowup solutions to the focusing intercritical nonlinear fourth-order Schrödinger equation. J. Dyn. Differ. Equ. 31, 1793–1823...
    • 9. Dinh, V.D.: Existence, non-existence and blow-up behavior of minimizers for the mass-critical fractional nonlinear Schrödinger equations...
    • 10. Du, M., Tian, L., Wang, J., Zhang, F.: Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping...
    • 11. Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear Klein–Gordon equation. Math. Z. 189, 487–505 (1985)
    • 12. Guo, Y., Seiringer, R.: On the mass concentration for Bose–Einstein condenstates with attractive interactions. Lett. Math. Phys. 104,...
    • 13. Guo, Y., Zeng, X., Zhou, H.: Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials....
    • 14. Guo, Y., Wang, Z., Zeng, X., Zhou, H.: Properties of ground states of attractive Gross–Pitaevskii equations with multi-well potentials....
    • 15. He, Q., Long, W.: The concentration of solutions to a fractional Schrödinger equation. Z. Angew. Math. Phys. 67, 19 (2016)
    • 16. Jeanjean, L., Jendrej, J., Le, T.T., Visciglia, N.: Orbital stability of ground states for a Sobolev critical Schrödinger equation. J....
    • 17. Karpman, V.I.: Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear Schrödinger-type equations. Phys....
    • 18. Karpman, V.I., Shagalov, A.G.: Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion. Physica...
    • 19. Luo, T., Zheng, S., Zhu, S.: The existence and stability of normalized solutions for a bi-harmonic nonlinear Schrödinger equation with...
    • 20. Mao, A., Wang, W.: Signed and sign-changing solutions of bi-nonlocal fourth order elliptic problem. J. Math. Phys. 60, 051513 (2019)
    • 21. Phan, T.V.: Blow-up profile of Bose–Einstein condensate with singular potentials. J. Math. Phys. 58, 072301 (2017)
    • 22. Segata, J.: Well-posedness and existence of standing waves for the fourth-order nonlinear Schrödinger type equation. Discrete Contin....
    • 23. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)
    • 24. Wang, Q., Zhao, D.: Existence and mass concentration of 2D attractive Bose-Einstein condensates with periodic potentials. J. Differ. Equ....
    • 25. Yang, J., Yang, J.: Existence and mass concentration of pseudo-relativistic Hartree equation. J. Math. Phys. 58, 081501 (2017)
    • 26. Zhu, S., Zhang, J., Yang, H.: Biharmonic nonlinear Schrödinger equation and the profile decomposition. Nonlinear Anal. 74, 6244–6255 (2011)
    • 27. Zhu, S., Zhang, J., Yang, H.: Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrödinger equation. Dyn. PDE...
    • 28. Zhu, X., Wang, C.: Mass concentration behavior of attractive Bose–Einstein condensates with sinusoidal potential in a circular region....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno