Ir al contenido

Documat


Analytical Soliton Solutions to a (2 + 1)-Dimensional Variable Coefficients Graphene Sheets Equation Using the Application of Lie Symmetry Approach: Bifurcation Theory, Sensitivity Analysis and Chaotic Behavior

  • Sachin Kumar [1] ; Setu Rani [1] ; Nikita Mann [1]
    1. [1] University of Delhi

      University of Delhi

      India

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The prime objective of this paper is to investigate the variable coefficients (2+1)- dimensional graphene sheets (vcGS) equation, which characterizes the thermophoric wave motion of wrinkles in graphene sheets. Wide-ranging applications of this equation are found across various domains, including 2D optics, nanophotonics, and nanoelectronics. Two distinct methods, namely the Lie symmetry approach and generalized exponential differential rational function (GEDRF), are employed to explore new solitary waves within the considered equation. The initial approach involves transforming the vcGS equation into a set of nonlinear ordinary differential equations using the Lie group transformation technique. Subsequently, the resulting ordinary differential equations are analytically solved to get the invariant solutions of the governing equation. The second approach utilizes a generalized exponential differential rational function (GEDRF) method to convert the variable coefficients graphene sheets equation directly into an ordinary differential equation. A range of solutions, including hyperbolic functions, trigonometric functions, and more general solutions expressed in terms of arbitrary functions and constants, is obtained. By appropriately assigning values to free parameters, the dynamic wave structures of certain analytical solutions are illustrated through two-dimensional, three-dimensional, and contour graphics. A variety of phenomena, such as single solitons, doubly solitons, multi-solitons, and lump solitons, as well as patterns resembling petals and peakons, are depicted. Subsequently, the bifurcations, sensitivity, and chaos dynamics of the discussed equation are examined. The dynamic behavior of the system is exhaustively analyzed through phase portraits and thorough bifurcation analysis. To further assess the stability of solutions, a sensitivity analysis of the dynamic model is performed using the RungeKutta method via MATLAB. The outcomes of this study enhance the understanding of nonlinear dynamics in various fields, including mathematical physics and fluid dynamics. The findings of this study are expected to be highly useful across a range of scientific disciplines and advanced research contexts.

  • Referencias bibliográficas
    • 1. Wang, K.-J., Li, S.: Novel complexiton solutions to the new extended (3 + 1)-dimensional Boiti-LeonManna-Pempinelli equation for incompressible...
    • 2. Liu, Y., Manafian, J., Singh, G., et al.: Analytical investigations of propagation of ultra-broad nonparaxial pulses in a birefringent...
    • 3. Fang, Y., Feng, Y., Xu, M., Zhang, L.: Gradient recovery based finite element methods for the twodimensional quad-curl problem. Appl. Math....
    • 4. Wang, K.J.: Resonant multiple wave, periodic wave and interaction solutions of the new extended (3+1)-dimensional Boiti-Leon-Manna-Pempinelli...
    • 5. Seadawy, A.R., Alsaedi, B.A.: Variational principle and optical soliton solutions for some types of nonlinear Schrödinger dynamical systems....
    • 6. Kumar, M., Srivastava, S.: Dynamics of the breather and solitary waves in plasma using the generalized variable coefficient Gardner equation....
    • 7. Seadawy, A.R.: Stability analysis solutions for nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a...
    • 8. Zhu, C., Idris, S.A., Abdalla, M.E.M., Rezapour, S., Shateyi, S., Gunay, B.: Analytical study of nonlinear models using a modified Schrödinger’s...
    • 9. Xie, J., Xie, Z., Xu, H., Li, Z., Shi, W., Ren, J., Shi, H.: Resonance and attraction domain analysis of asymmetric duffing systems with...
    • 10. Kai, Y., Yin, Z.: On the Gaussian traveling wave solution to a special kind of Schrödinger equation with logarithmic nonlinearity. Mod....
    • 11. Gaber, A.A., Aljohani, A.F., Ebaid, A., Machado, J.T.: The generalized Kudryashov method for nonlinear space-time fractional partial differential...
    • 12. Ma, W.-X., Lee, J.-H.: A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation. Chaos,...
    • 13. Elboree, M.K.: The Jacobi elliptic function method and its application for two component BKP hierarchy equations. Comput. Math. Appl....
    • 14. Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the Homotopy analysis method....
    • 15. Ali, N.H., Mohammed, S.A., Manafian, J.: New explicit soliton and other solutions of the Vander Waals model through the ESHGEEM and the...
    • 16. Wazwaz, A.-M.: Higher dimensional integrable Vakhnenko-Parkes equation: multiple soliton solutions. Int. J. Numer. Methods Heat Fluid...
    • 17. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear...
    • 18. Belousov, N.: Bäcklund Transformation for the Nonlinear Schrödinger Equation. J. Math. Sci. 264, 203–214 (2022)
    • 19. Seadawy, A.R., Ali, A., Bekir, A.: Novel solitary waves solutions of the extended cubic (3+1)- dimensional Schrödinger equation via...
    • 20. Cheemaa, N., Seadawy, A.R., Chen, S.: More general families of exact solitary wave solutions of the nonlinear Schrödinger equation with...
    • 21. Zhang, R., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations...
    • 22. Xie, G., Fu, B., Li, H., Du, W., Zhong, Y., Wang, L., Geng, H., Zhang, J., Si, L.: A gradient-enhanced physics-informed neural networks...
    • 23. Wang, K.-J., Shi, F., Li, S., Li, G., Xu, P.: Resonant Y-type soliton, interaction wave and other wave solutions to the (3+1)-dimensional...
    • 24. Wang, K.-J., Shi, F., Li, S., Xu, P.: Dynamics of resonant soliton, novel hybrid interaction, complex N-soliton and the abundant wave...
    • 25. Manafian, J.: Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tan(φ(ξ )/2)-expansion method. Optik...
    • 26. He, Y., Kai, Y.: Wave structures, modulation instability analysis and chaotic behaviors to Kudryashov’s equation with third-order dispersion....
    • 27. Mohan, B., Kumar, S.: Generalization and analytic exploration of soliton solutions for nonlinear evolution equations via a novel symbolic...
    • 28. Mohan, B., Kumar, S.: Painlevé analysis, restricted bright-dark N-solitons, and N-rogue waves of a (4+1)-dimensional variable-coefficient...
    • 29. Chen, C., Jiang, Y.L.: Simplest equation method for some time-fractional partial differential equations with conformable derivative. Comput....
    • 30. Seadawy, A.R., Alsaedi, B.A.: Variational principle for generalized unstable and modify unstable nonlinear Schrödinger dynamical equations...
    • 31. Seadawy, A.R., Alsaedi, B.A.: Dynamical stricture of optical soliton solutions and variational principle of nonlinear Schrödinger equation...
    • 32. Kumar, S., Ma, W.-X., Dhiman, S.K., Chauhan, A.: Lie group analysis with the optimal system, generalized invariant solutions, and an enormous...
    • 33. Kumar, S., Rani, S.: Invariance analysis, optimal system, closed-form solutions and dynamical wave structures of a (2+1)-dimensional...
    • 34. Hosseini, K., Alizadeh, F., Hinçal, E., Baleanu, D., Osman, M.S., Wazwaz, A.M.: Resonant multi-wave, positive multi-complexiton, nonclassical...
    • 35. Kumar, M., Manju, K.: Closed form invariant solutions of (2+1)-dimensional extended shallow water wave equation via Lie approach....
    • 36. Kumar,M., Tanwar, D.V.: Lie symmetries and invariant solutions of (2+1)-dimensional breaking soliton equation. Pramana 94, 1–10 (2020)
    • 37. Kumar, S., Dhiman, S.K.: Analyzing specific waves and various dynamics of multi-peakons in (3+1)- dimensional p-type equation using...
    • 38. Zhao, Z., He, L., Wazwaz, A.-M.: Dynamics of lump chains for the BKP equation describing propagation of nonlinear waves. Chin. Phys. B...
    • 39. Wang, Y., Zhao, Z., Zhang, Y.: Numerical calculation of N-periodic wave solutions of the negative-order Korteweg-de Vries equations. EPL...
    • 40. Fan, Y., Shen, N.H., et al.: Graphene plasmonics: a platform for 2D optics. Adv. Opt. Mater. 7, 1800537 (2019)
    • 41. Cui, L., Wang, J., Sun, M.: Graphene plasmon for optoelectronics. Rev. Phys. 6, 100054 (2021)
    • 42. Usman, M., Hussain, A., Zaman, F.D.: Invariance analysis of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported...
    • 43. Abdel-Gawad, H.I., Abdel-Rashied, H.M., Tantawy, M., Ibrahim, G.H.: Multi-geometric structures of thermophoretic waves transmission in...
    • 44. El-Shiekh, R.M., Gaballah, M.: Bilinear form and n-soliton thermophoric waves for the variable coefficients (2+1)-dimensional graphene...
    • 45. Gaballah, M., El-Shiekh, R.M.: Bäcklund transformation, similarity reduction and new solutions for the (2+1)-dimensional graphene...
    • 46. Olver, P.J.: Applications of Lie groups to differential equations. Springer, New York (1993)
    • 47. Bluman, G.W., Cole, J.D.: Similarity methods for differential equations. Springer, New York (1974)
    • 48. Wang, K.-J., Wang, G.-D., Shi, F., Liu, X.-L., Zhu, H.-W.: Variational principle, Hamiltonian, bifurcation analysis, chaotic behaviors...
    • 49. Rani, S., Kumar, S., Kumar, R.: Dynamical study of newly created analytical solutions, bifurcation analysis, and chaotic nature of the...
    • 50. Hosseini, K., Alizadeh, F., Sadri, K., et al.: Lie vector fields, conservation laws, bifurcation analysis, and Jacobi elliptic solutions...
    • 51. Alizadeh, F., Hosseini, K., Sirisubtawee, S., et al.: Classical and nonclassical Lie symmetries, bifurcation analysis, and Jacobi elliptic...
    • 52. Perko, L.: Differential equations and dynamical systems, texts in applied mathematics, vol. 7, 3rd edn., Springer-Verlag, New York (2001)
    • 53. Liang, Y.H., Wang, K.J.: Bifurcation analysis, chaotic phenomena, variational principle, Hamiltonian, solitary and periodic wave solutions...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno