Ir al contenido

Documat


Dynamical Properties of a Chemostat Model with Log-Normal Ornstein–Uhlenbeck Process and Distributed Delay

  • Autores: Miaomiao Gao, Daqing Jiang
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper centers on a chemostat model with distributed delay, where the maximal growth rate of microorganisms adheres to the log-normal Ornstein–Uhlenbeck process. Our analysis relies on the linear chain technique. We first show the existence and uniqueness of the global positive solution. Subsequently, via constructing appropriate Lyapunov functions, we determine sufficient condition for the existence of stationary distribution. From a biological point of view, the existence of stationary distribution suggests that the microorganisms have the ability to survive over an extended period.

      Furthermore, for the case of weak kernel and strong kernel, we derive the exact expression of local probability density function through matrix transformation respectively.

      In addition, the condition for extinction of the microorganisms is given. Theoretical analysis underscores that the dynamics of the model under consideration are governed by two pivotal parameters Rs 0 and Re 0, which are interconnected with R0 of corresponding deterministic system. Finally, several numerical examples are provided to corroborate the theoretical analysis results and illustrate the impact of main parameters on the dynamics.

  • Referencias bibliográficas
    • 1. Smith, H.L., Waltman, P.: The theory of the chemostat: dynamics of microbial competition. Cambridge University Press, Cambridge (1995)
    • 2. Kuang, Y.: Limit cycles in a chemostat-related model. SIAM J. Appl. Math. 49(6), 1759–1767 (1989)
    • 3. Li, B.T., Kuang, Y.: Simple food chain in a chemostat with distinct removal rates. J. Math. Anal. Appl. 242(1), 75–92 (2000)
    • 4. Wang, F., Pang, G., Lu, Z.: Analysis of a Beddington-DeAngelis food chain chemostat with periodically varying dilution rate. Chaos Solitons...
    • 5. Sari, T.: Competitive exclusion for chemostat equations with variable yields. Acta Appl. Math. 123(1), 201–219 (2013)
    • 6. Smith, H.L., Thieme, H.R.: Chemostats and epidemics: competition for nutrients/hosts. Math. Biosci. Eng. 10(5–6), 1635–1650 (2013)
    • 7. Ali, E., Asif, M., Ajbar, A.H.: Study of chaotic behavior in predator-prey interactions in a chemostat. Ecol. Model. 259, 10–15 (2013)
    • 8. Zitouni, N.E.H., Dellal, M., Lakrib, M.: Substrate inhibition can produce coexistence and limit cycles in the chemostat model with allelopathy....
    • 9. Dellal, M., Bar, B., Lakrib, M.: A competition model in the chemostat with allelopathy and substrate inhibition. Discrete Contin. Dyn....
    • 10. Yuan, H.R., Meng, X.Z., Alzahrani, A.K., Zhang, T.H.: Stochastic analysis and optimal control of a donation game system with non-uniform...
    • 11. Lv, X.J., Meng, X.Z., Wang, X.Z.: Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation....
    • 12. Gaebler, H.J., Eberl, H.J.: Thermodynamic inhibition in chemostat models with an application to bioreduction of uranium. Bull. Math. Biol....
    • 13. Meadows, T., Weedermann, M., Wolkowicz, G.S.K.: Global analysis of a simplified model of anaerobic digestion and a new result for the...
    • 14. Bayen, T., Rapaport, A., Tani, F.Z.: Improvement of performances of the chemostat used for continuous biological water treatment with...
    • 15. Imhof, L., Walcher, S.: Exclusion and persistence in deterministic and stochastic chemostat models. J. Differ. Equ. 217(1), 26–53 (2005)
    • 16. Qi, H.K., Meng, X.Z., Hayat, T., Hobiny, A.: Stationary distribution of a stochastic predator-prey model with hunting cooperation. Appl....
    • 17. Li, Y.J., Qi, H.K., Chang, Z.B., Meng, X.Z.: Dynamical analysis of nonautonomous trophic cascade chemostat model with regime switching...
    • 18. Wang, L., Jiang, D.Q.: Ergodic property of the chemostat: a stochastic model under regime switching and with general response function....
    • 19. Gao, M.M., Jiang, D.Q., Hayat, T., Alsaedi, A.: Stationary distribution and extinction for a food chain chemostat model with random perturbation....
    • 20. Xu, C.Q., Yuan, S.L., Zhang, T.H.: Competitive exclusion in a general multi-species chemostat model with stochastic perturbations. Bull....
    • 21. Sun, S.L., Zhang, X.L.: A stochastic chemostat model with an inhibitor and noise independent of population sizes. Physica A. 492, 1763–1781...
    • 22. Gao, M.M., Jiang, D.Q., Wen, X.D.: Long-time behavior and density function of a stochastic chemostat model with degenerate diffusion....
    • 23. Xu, C.Q., Yuan, S.L., Zhang, T.H.: Average break-even concentration in a simple chemostat model with telegraph noise. Nonlinear Anal....
    • 24. Zhang, X.F., Ruan, R.: A stochastic chemostat model with mean-reverting Ornstein–Uhlenbeck process and Monod-Haldane response function....
    • 25. Zhang, X.F.: A stochastic non-autonomous chemostat model with mean-reverting Ornstein–Uhlenbeck process on the washout rate. J. Dyn. Differ....
    • 26. Sun, M.J., Dong, Q.L., Wu, J.: Asymptotic behavior of a Lotka-Volterra food chain stochastic model in the chemostat. Stoch. Anal. Appl....
    • 27. Gao, M.M., Jiang, D.Q., Hayat, T.: The threshold of a chemostat model with single-species growth on two nutrients under telegraph noise....
    • 28. Allen, E.: Environmental variability and mean-reverting processes. Discrete Contin. Dyn. Syst. Ser. B. 21(7), 2073–2089 (2016)
    • 29. Caraballo, T., Garrido-Atienza, M.J., Lopez-de-la-Cruz, J.: Dynamics of some chemostat models with multiplicative noise. Commun. Pur....
    • 30. Caraballo, T., Garrido-Atienza, M.J., Lopez-de-la-Cruz, J., Rapaport, A.: Modeling and analysis of random and stochastic input flows in...
    • 31. Ayoubi, T., Bao, H.B.: Persistence and extinction in stochastic delay Logistic equation by incorporating Ornstein–Uhlenbeck process. Appl....
    • 32. Wang, W.M., Cai, Y.L., Dong, Z.Q., et al.: A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process....
    • 33. Gao, M.M., Jiang, D.Q., Ding, J.Y.: Dynamics of a chemostat model with Ornstein–Uhlenbeck process and general response function. Chaos...
    • 34. Jang, S.R.-J., Allen, E.J.: Deterministic and stochastic nutrient-phytoplankton-zooplankton models with periodic toxin producing phytoplankton....
    • 35. Wang, H.L., Zuo, W.J., Jiang, D.Q.: Dynamical analysis of a stochastic epidemic HBV model with log-normal Ornstein–Uhlenbeck process and...
    • 36. Liu, Q., Jiang, D.Q.: Analysis of a stochastic within-host model of dengue infection with immune response and Ornstein–Uhlenbeck process....
    • 37. Yuan, S.L., Zhang, W.G., Han, M.A.: Global asymptotic behavior in chemostat-type competition models with delay. Nonlinear Anal. Real World...
    • 38. Liu, S.Q., Wang, X.X., Wang, L., Song, H.T.: Competitive exclusion in delayed chemostat models with differential removal rates. SIAM J....
    • 39. Wang, L., Jiang, D.Q.: Asymptotic properties of a stochastic chemostat including species death rate. Math. Meth. Appl. Sci. 41(1), 438–456...
    • 40. Wang, L., Wolkowicz, G.S.K.: A delayed chemostat model with general nonmonotone response functions and differential removal rates. J....
    • 41. Smith, H.L., Thieme, H.R.: Persistence of bacteria and phages in a chemostat. J. Math. Biol. 64, 951–979 (2012)
    • 42. Caraballo, T., Han, X.Y., Kloeden, P.E.: Nonautonomous chemostats with variable delays. SIAM J. Math. Anal. 47(3), 2178–2199 (2015)
    • 43. Li, B.T., Wolkowicz, G.S.K., Kuang, Y.: Global asymptotic behavior of a chemostat model with two perfectly complementary resources and...
    • 44. Wolkowicz, G.S.K., Xia, H.X., Ruan, S.G.: Competition in the chemostat: a distributed delay model and its global asymptotic behavior....
    • 45. Tian, B.D., Zhong, S.M., Chen, N., Liu, X.Q.: Impulsive control strategy for a chemostat model with nutrient recycling and distributed...
    • 46. Gao, M.M., Jiang, D.Q.: Stationary distribution of a chemostat model with distributed delay and stochastic perturbations. Appl. Math....
    • 47. Chen, L.S., Meng, X.Z., Jiao, J.J.: Biological dynamics. Science Press, Beijing (1993)
    • 48. Wolkowicz, G.S.K., Xia, H.X., Wu, J.H.: Global dynamics of a chemostat competition model with distributed delay. J. Math. Biol. 38, 285–316...
    • 49. Ma, Z.E., Zhou, Y.C., Li, C.Z.: Qualitative and stability methods for ordinary differential equations, 2nd edn. Science Press, Beijing...
    • 50. Mao, X., Yuan, C.: Stochastic differential equations with Markovian switching. Imperial College Press, London (2006)
    • 51. Du, N.H., Yin, G.: Conditions for permanence and ergodicity of certain stochastic predator-prey models. J. Appl. Prob. 53, 187–202 (2016)
    • 52. Gao, M.M., Jiang, D.Q., Ding, J.Y.: Dynamical behavior of a nutrient-plankton model with Ornstein– Uhlenbeck process and nutrient recycling....
    • 53. Ji, C., Jiang, D., Shi, N.: Multigroup SIR epidemic model with stochastic perturbation. Physica A. 390, 1747–1762 (2011)
    • 54. Oksendal, B.: Stochastic differential equations: an introduction with applications. Springer-Verlag, Heidelberg, New York (2000)
    • 55. Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. Academic Press, New York (1979)
    • 56. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno