Ir al contenido

Documat


Coexistence of Stability and Chaos in a Class of Difference Equations with Two Delays

  • Wei Liang [1] ; Yongjun Zhang [1] ; Xuanxuan Zhang [1]
    1. [1] Henan Polytechnic University

      Henan Polytechnic University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Stability and chaos of a class of difference equations with two arbitrary delays are considered in this paper. Asymptotic stability of the fixed point of the equation is obtained.

      Meanwhile, three criteria of both Devaney chaos and Li–Yorke chaos are established and rigorous proofs of the chaos are presented. To further verify the correctness and feasibility of the theoretical results, three examples are provided. One is about asymptotic stability, and the others are related to chaos, moreover, their dynamical behavior and trend of the largest Lyapunov exponents (LE) are provided, and the positivity of LE confirms the existence of chaos.

  • Referencias bibliográficas
    • 1. Chen, G., Lai, D.: Feedback control of Lyapunov exponents for discrete-time dynamical systems. Int. J. Bifur. Chaos 6, 1341–1349 (1996)
    • 2. Chen, G., Lai, D.: Feedback anticontrol of discrete chaos. Int. J. Bifur. Chaos 8, 1585–1590 (1998)
    • 3. Shi, Y., Chen, G.: Chaos of discrete dynamical systems in complete metric spaces. Chaos Soliton Fractional 22, 555–571 (2004)
    • 4. Shi, Y., Chen, G.: Discrete chaos in Banach spaces. Sci. China Ser. A 48, 222–238 (2005)
    • 5. Dai, X., Tang, X.: Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics. J. Diff. Equ. 263, 5521–5553...
    • 6. Wang, Y., Chen, E., Zhou, X.: Mean Li-Yorke chaos for random dynamical systems. J. Diff. Equ. 267, 2239–2360 (2019)
    • 7. Liu, X., Ma, L.: Chaotic vibration, bifurcation, stabilization and synchronization control for fractional discrete-time systems. Appl....
    • 8. Glendinning, P., Simpson, D.: Chaos in the border-collision normal form: A computer-assisted proof using induced maps and invariant expanding...
    • 9. Tan, F.: Random dynamical systems with positive entropy imply second type of distributional chaos. J. Diff. Equ. 328, 133–156 (2022)
    • 10. Wu, X., Zhu, P.: Devaney chaos and Li-Yorke sensitivity for product systems. Studia Sci. Math. Hungarica 49, 538–548 (2012)
    • 11. Akhmet, M., Fen, M.: Replication of chaos. Commun. Nonlinear Sci. Num. Simul. 18, 2626–2666 (2013)
    • 12. Falniowski, F., Kulczycki, M., Kwietniak, D., et al.: Two results on entropy, chaos, and independence in symbolic dynamics. Discrete Cont....
    • 13. Shirazi, F., Hakimi, E., Hosseini, A., et al.: Li-Yorke and Devaney chaotic uniform dynamical systems amongst weighted shifts. Topol....
    • 14. Lakshmanan, M., Senthilkumar, D.: Dynamics of Nonlinear Time Delay Systems. Springer, Berlin Heidelberg (2011)
    • 15. Roy, S., Chowdhury, S., Kundu, S., et al.: Time delays shape the eco-evolutionary dynamics of cooperation. Sci. Rep. 13, 14331 (2023)
    • 16. Sedaghat, H.: Nonlinear Difference Equations: Theory with Applications to Social Science Models. Springer, Netherlands (2003)
    • 17. Chen, W., Cheng, J., Wu, X., et al.: Numerical Solutions of Differential Equations. Fudan University Press, Shanghai (2014)
    • 18. Xia, X.: Time Series Analysis. China Renmin University Press, Beijing (2015)
    • 19. Moivre, A.: Miscellanea Analytica de Seriebus et Quadraturis. Excudebant J. Tonson & J. Watts (1730)
    • 20. Kocic, V., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic (1993)
    • 21. Li, S., Zhang, W.: Bifurcations in a second-order difference equation from macroeconomics. J. Diff. Equ. Appl. 14, 91–104 (2008)
    • 22. Dai, B., Zhang, N.: Stability and global attractivity for a class of nonlinear delay difference equations. Discrete Dyn. Nat. Soc. 3,...
    • 23. Yang, C.: Boundary Value Problem for Third-order Difference Equations. South China Normal University (2004)
    • 24. Huang, M., Shen, J.: Second order neutral difference equations with continuous variables. J. Nat. Sci. Hunan Normal Univ. 3, (2005)
    • 25. Masoller, C., Zanette, D.: Anticipated synchronization in coupled chaotic maps with delays. Phys. A 300, 359–366 (2001)
    • 26. Stevic., S.: Periodic character of a class of difference equation. J. Diff. Equ. Appl. 10, 615–619 (2004)
    • 27. Mishra, A., Kingston, S., Hens, C., et al.: Routes to extreme events in dynamical systems: dynamical and statistical characteristics....
    • 28. Chowdhury, S., Ray, A., Mishra, A., et al.: Extreme events in globally coupled chaotic maps. J. Phys. Complex. 2, 035021 (2021)
    • 29. Chowdhury, S., Rakshit, S., Hens, C.: Interlayer antisynchronization in degree-biased duplex networks. Phys. Rev. E 107, 034313 (2023)
    • 30. Chowdhury, S., Anwar, M., Ghosh, D.: Cluster formation due to repulsive spanning trees in attractively coupled networks. Phys. Rev. E...
    • 31. Alboszta, J., Mi¸eKisz, J.: Stability of evolutionarily stable strategies in discrete replicator dynamics with time delay. J. Theor. Biol....
    • 32. Chowdhury, S., Ghosh, D.: Hidden attractors: a new chaotic system without equilibria. Eur. Phys. J. Special Top. 229, 1299–1308 (2020)
    • 33. Lepri, S., Giacomelli, G., Politi, A., et al.: High-dimensional chaos in delayed dynamical systems. Phys. D 70, 235–249 (1993)
    • 34. Huang, Y., Zou, X.: Co-existence of chaos and stable periodic orbits in a simple discrete neural network. J. Nonlinear Sci. 15, 291–303...
    • 35. Chen, Y., Huang, Y., Zou, X.: Chaotic invariant sets of a delayed discrete neural network of two non-identical neurons. Sci. China Math....
    • 36. Li, Z.: Anticontrol of chaos for a class of delay difference equations based on heteroclinic cycles connecting repellers. Abstr. Appl....
    • 37. Li, Z., Liu, S., Li, W., et al.: Chaotification for a class of delay difference equations based on snap-back repellers. Math. Probl. Eng.,...
    • 38. Liang, W., Lv, X.: Li-Yorke chaos in a class of controlled delay difference equations. Chaos Soliton Fractional 157, 111942 (2022)
    • 39. Shi, Y., Yu, P., Chen, G.: Chaotification of discrete dynamical systems in Banach spaces. Int. J. Bifur. Chaos 16, 2615–2636 (2006)
    • 40. Devaney, R.: An Introduction to Chaotic Dynamical systems. Addison-Wesley (1989)
    • 41. Huang, W., Ye, X.: Devaney’s chaos or 2-scattering implies Li-Yorke chaos. Topol. Appl. 117, 259–272 (2002)
    • 42. Zeidler, E.: Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems. Springer, New York (1986)
    • 43. Wolf, A., Swift, J., Swinney, H., Vastano, J.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno