Ir al contenido

Documat


Analysis of Nonlinear Impulsive Adjoint Integro-Dynamic Equations on Time Scale

  • Syed Omar Shah [1] ; Sanket Tikare [4] ; Rizwan Rizwan [2] ; Usman Riaz [3]
    1. [1] Zhejiang Normal University

      Zhejiang Normal University

      China

    2. [2] Renmin University of China

      Renmin University of China

      China

    3. [3] Qurtuba University of Science and Information Technology

      Qurtuba University of Science and Information Technology

      Pakistán

    4. [4] Ramniranjan Jhunjhunwala College
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This article is devoted to the investigation of the existence and uniqueness of solutions and Ulam-type stability of nonlinear impulsive Hammerstein integro-dynamic, nonlinear impulsive mixed integro-dynamic, and nonlinear impulsive Volterra Fredholm Hammerstein integro-dynamic adjoint equations on finite time scale intervals. Primary tools utilized to verify the existence and uniqueness of solutions for the discussed models are the Banach contraction principle and the Picard operator. Furthermore, Ulam-type stabilities are obtained by an extended integral impulsive inequality on time scales. To address the challenges in achieving the desired outcomes, certain assumptions are introduced. To demonstrate the practical applications of the obtained results, illustrative examples are presented.

  • Referencias bibliográficas
    • 1. Agarwal, R.P., Awan, A.S., ÓRegan, D., Younus, A.: Linear impulsive Volterra integro-dynamic system on time scales. Adv. Differ. Equ. 2014(6),...
    • 2. András, S., Mészáros, A.R.: Ulam-Hyers stability of dynamic equations on time scales via Picard operators. Appl. Math. Comput. 219(9),...
    • 3. Anusha, C., Ravichandran, C., Nisar, K.S., Alsaeed, S.,Munjam, S.R.: Periodic boundary value problem for the dynamical system with neutral...
    • 4. Bainov, D.D., Simenov, P.S.: Systems with Impulse Effect Stability Theory and Applications. Ellis Horwood Limited, Chichester (1989)
    • 5. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston, Mass (2001)
    • 6. Bohner, M., Peterson, A.: Advances in Dynamics Equations on Time Scales. Birkhäuser, Boston, Mass (2003)
    • 7. Bohner, M., Scindia, P.S., Tikare, S.: Qualitative results for nonlinear integro-dynamic equations via integral inequalities. Qual. Theory...
    • 8. Bohner, M., Tikare, S.: Ulam stability of first-order nonlinear dynamic equations. Sarajevo J. Math. 18(1), 83–96 (2022)
    • 9. Bohner, M., Tikare, S., Santos, I.L.D.D.: First-order nonlinear dynamic initial value problems. Int. J. Dyn. Syst. Differ. Equ. 11(3–4),...
    • 10. Bohner, M., Tunç, O.: Qualitative analysis of integro-differential equations with variable retardation. Discrete Contin. Dyn. Syst. B...
    • 11. Bohner, M., Tunç, O., Korkmaz, E.: On the fundamental qualitative properties of integro-delay differential equations. Commun. Nonlinear...
    • 12. Dachunha, J.J.: Stability for time varying linear dynamic systems on time scales. J. Comput. Appl. Math. 176(2), 381–410 (2005)
    • 13. Hamza, A., Oraby, K.M.: Stability of abstract dynamic equations on time scales. Adv. Differ. Equ. 2012(143), 1–15 (2012)
    • 14. Hilger, S.: Analysis on measure chains-A unified approach to continuous and discrete calculus. Result Math. 18, 18–56 (1990)
    • 15. Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27(4), 222–224 (1941)
    • 16. Jung, S.-M.: Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 17(10), 1135–1140 (2004)
    • 17. Jung, S.-M.: Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, vol. 48. Springer, NewYork (2011)
    • 18. Khan, N., Ahmad, Z., Shah, J., Murtaza, S., Albalwi, M.D., Ahmad, H., Baili, J., Yao, S.-W.: Dynamics of chaotic system based on circuit...
    • 19. Kumar, V., Debbouche, A., Nieto, J.J.: Existence, stability and controllability results for a class of switched evolution system with...
    • 20. Kumar, V., Djemai, M.: Existence, stability and controllability of piecewise impulsive dynamic systems on arbitrary time domain. Appl....
    • 21. Li, Y., Shen, Y.: Hyers-Ulam stability of linear differential equations of second order. Appl. Math. Lett. 23(3), 306–309 (2010)
    • 22. Li, T., Zada, A.: Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded...
    • 23. Lupulescu, V., Zada, A.: Linear impulsive dynamic systems on time scales. Electron. J. Qual. Theory Differ. Equ. 11, 1–30 (2010)
    • 24. Makhlouf, A.B., Boucenna, D., Hammami, M.A.: Existence and stability results for generalized fractional differential equations. Acta Math....
    • 25. Makhlouf, A.B., Hammami, M.A.: A nonlinear inequality and application to global asymptotic stability of perturbed systems. Math. Methods...
    • 26. Malik, M., Kumar, B.: Controllability results for singular switched system on time scales. J. Control. Decis. 11(2), 180–189 (2023)
    • 27. Morsy, A., Anusha, C., Nisar, K.S., Ravichandran, C.: Results on generalized neutral fractional impulsive dynamic equation over time scales...
    • 28. Morsy, A., Nisar, K.S., Ravichandran, C., Anusha, C.: Sequential fractional order neutral functional integro differential equations on...
    • 29. Nisar, K.S., Anusha, C., Ravichandran, C.: A non-linear fractional neutral dynamic equations: existence and stability results on time...
    • 30. Pervaiz, B., Zada, A., Etemad, S., Rezapour, S.: An analysis on the controllability and stability to some fractional delay dynamical systems...
    • 31. Pervaiz, B., Zada, A., Popa, I., Moussa, S.B., El-Gawad, H.H.A.: Analysis of fractional integro causal evolution impulsive systems on...
    • 32. Pötzsche, C., Siegmund, S., Wirth, F.: A spectral characterization of exponential stability for linear time-invariant systems on time...
    • 33. Qiu, Y.-C., Zada, A., Tang, S., Li, T.: Existence of nonoscillatory solutions to nonlinear third-order neutral dynamic equations on time...
    • 34. Rassias, T.M.: On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 72(2), 297–300 (1978)
    • 35. Rizwan, R., Zada, A.: Nonlinear impulsive Langevin equation with mixed derivatives. Math. Methods Appl. Sci. 43(1), 427–442 (2020)
    • 36. Scindia, P., Tikare, S., El-Deeb, A.A.: Ulam stability of first-order nonlinear impulsive dynamic equations. Bound. Value Probl. 2023(86),...
    • 37. Shah, S.O., Rizwan, R., Rehman, S., Xia, Y.: Stability and controllability analysis of non-linear Volterra Fredholm Hammerstein impulsive...
    • 38. Shah, S.O., Tikare, S., Osman, M.: Ulam type stability results of nonlinear impulsive Volterra-Fredholm integro-dynamic adjoint equations...
    • 39. Shah, S.O., Tunç, C., Rizwan, R., Zada, A., Khan, Q.U., Ullah, I., Ullah, I.: Bielecki-Ulam’s types stability analysis of Hammerstein...
    • 40. Shah, S.O., Zada, A.: Existence, uniqueness and stability of solution to mixed integral dynamic systems with instantaneous and noninstantaneous...
    • 41. Slyn’ko, V.I., Tunç, O., Bivziuk, V.O.: Application of commutator calculus to the study of linear impulsive systems. Syst. Control Lett....
    • 42. Tikare, S., Tisdell, C.C.: Nonlinear dynamic equations on time scales with impulses and nonlocal conditions. J. Class. Anal. 16(2), 125–140...
    • 43. Tunç, O.: On the behaviors of solutions of systems of non-linear differential equations with multiple constant delays. Rev. Real Acad....
    • 44. Tunç, C., Tunç, O.: On behaviours of functional Volterra integro-differential equations with multiple time lags. J. Taibah Univ. Sci....
    • 45. Ulam, S.M.: A Collection of the Mathematical Problems. Interscience Publishers, New York-London (1960)
    • 46. Ulam, S.M.: Problem in Modern Mathematics, Science Editions. Wiley, New York (1964)
    • 47. Wang, J.R., Feˇckan, M., Tian, Y.: Stability analysis for a general class of non-instantaneous impulsive differential equations. Mediterr....
    • 48. Wang, J.R., Feˇckan, M., Zhou, Y.: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395(1), 258–264...
    • 49. Wang, J.R., Feˇckan, M., Zhou, Y.: On the stability of first order impulsive evolution equations. Opuscula Math. 34(3), 639–657 (2014)
    • 50. Wang, J.R., Zada, A., Waheed, H.: Stability analysis of a coupled system of nonlinear implicit fractional anti-periodic boundary value...
    • 51. Wang, J.R., Zhang, Y.: A class of nonlinear differential equations with fractional integrable impulses. Commun. Nonlinear Sci. Numer....
    • 52. Younus, A., O’Regan, D., Yasmin, N., Mirza, S.: Stability criteria for nonlinear Volterra integrodynamic systems. Appl. Math. Inf. Sci....
    • 53. Zada, A., Ali, S., Li, T.: Analysis of a new class of impulsive implicit sequential fractional differential equations. Int. J. Nonlinear...
    • 54. Zada, A., Pervaiz, B., Subramanian, M., Popa, I.: Finite time stability for nonsingular impulsive first order delay differential systems....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno