Ir al contenido

Documat


Some New Hardy-Type Inequalities with Negative Parameters on Time Scales

  • Martin Bohner [2] ; Irena Jadlovská [1] ; Ahmed I. Saied [3]
    1. [1] Technical University of Košice

      Technical University of Košice

      Eslovaquia

    2. [2] Missouri S&T
    3. [3] Slovak Academy of Sciences, Benha University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we present new Hardy-type inequalities with negative parameters on a time scale T. The adopted approach draws upon the use of a reversed Hölder dynamic inequality, a chain rule, and the integration by parts rule on time scales. In the continuous case, our results contain integral inequalities due to Benaissa and Budak, while in the discrete case, the obtained inequalities are essentially new. Additionally, we demonstrate the applicability of our results in the quantum case.

  • Referencias bibliográficas
    • 1. Agarwal, R., O’Regan, D., Saker, S.: Dynamic inequalities on time scales. Springer, Cham (2014)
    • 2. Agarwal, R.P., Bohner, M., Saker, S.: Dynamic Littlewood-type inequalities. Proc. Amer. Math. Soc. 143(2), 667–677 (2015)
    • 3. Agarwal, R.P., O’Regan, D., Saker, S.H.: Hardy type inequalities on time scales. Springer, Cham (2016)
    • 4. Ahmed, A.M., Saied, A.I., Ali, M., Zakarya, M., Rezk, H.M.: Generalized dynamic inequalities of Copson type on time scales. Symmetry 16(3),...
    • 5. Aly, E.S., Madani, Y.A., Gassem, F., Saied, A.I., Rezk, H.M., Mohammed, W.W.: Some dynamic hardy-type inequalities with negative parameters...
    • 6. Benaissa, B.: Some inequalities on time scales similar to reverse Hardy’s inequality. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan., 26(551),...
    • 7. Benaissa, B., Budak, H.: On Hardy-type integral inequalities with negative parameter. Turkish J. Inequ. 5(2), 42–47 (2021)
    • 8. Benaissa, B., Sarikaya, M.Z.: Generalization of some Hardy-type integral inequality with negative parameter. Bull. Transilv. Univ. Bra¸sov...
    • 9. Bohner, M., Nosheen, A., Peˇcari´c, J., Younus, A.: Some dynamic Hardy-type inequalities with general kernel. J. Math. Inequal. 8(1), 185–199...
    • 10. Bohner, M., Peterson, A.: Dynamic equations on time scales. Birkhäuser Boston Inc, Boston, MA (2001). (An introduction with applications)
    • 11. Bohner, M.J., Osman, M.M., Saker, S.H.: General higher-order dynamic Opial inequalities with applications. Dynam. Systems Appl. 26(1),...
    • 12. Briot, S., Khalil, W.: Dynamics of parallel robots. Mechanisms and Machine Science, vol. 35. Springer, Cham (2015). (From rigid bodies...
    • 13. Hardy, G.H.: Note on a theorem of Hilbert. Math. Z. 6(3–4), 314–317 (1920)
    • 14. Hardy, G.H.: Notes on some points in the integral calculus (LXIV). Messenger of Math. 57, 12–16 (1928)
    • 15. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988)....
    • 16. Hasan, W.M., El-Owaidy, H.M., El-Deeb, A.A., Rezk, H.M.: A generalization of some integral inequalities similar to hardy inequality on...
    • 17. Hilger, S.: Analysis on measure chains–a unified approach to continuous and discrete calculus. Results Math. 18(1–2), 18–56 (1990)
    • 18. Littlewood, J.E., Hardy, G.H.: Elementary theorems concerning power series with positive coefficients and moment constants of positive...
    • 19. B. Opic and A. Kufner. Hardy-type inequalities. 1990
    • 20. Rezk, H.M., Valdés, J.E.N., Ali, M., Saied, A.I., Zakarya, M.: Delta calculus on time scale formulas that are similar to hilbert-type...
    • 21. Saker, S.H., Alzabut, J., Saied, A.I., O’Regan, D.: New characterizations of weights on dynamic inequalities involving a Hardy operator....
    • 22. Saker, S.H., Saied, A.I., Anderson, D.R.: Some new characterizations of weights in dynamic inequalities involving monotonic functions....
    • 23. Saker, S.H., Saied, A.I., Krni´c, M.: Some new weighted dynamic inequalities for monotone functions involving kernels. Mediterr. J. Math....
    • 24. Sroysang, B.: More on some Hardy type integral inequalities. J. Math. Inequal. 8(3), 497–501 (2014)
    • 25. Yang, B.: On a new Hardy-type integral inequality. Int. Math. Forum 2(65–68), 3317–3322 (2007)
    • 26. Yang, B., Rassias, M.T.: On Hilbert-type and Hardy-type integral inequalities and applications. Springer, Cham (2019)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno