Ir al contenido

Documat


Dynamical Analysis of the Newell–Whitehead System

  • Qi Meng [1] ; Yulin Zhao [1]
    1. [1] Sun Yat-sen Universit
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper is concerned with the dynamical behavior of a three-dimensional ordinary differential system, which is reduced from the Newell–Whitehead partial differential equations. We focus on the pitchfork bifurcation, Bogdanov–Takens bifurcation of equilibrium, and a brief discussion on the triple-zero bifurcation. The dynamics near nonhyperbolic equilibrium can be reduced to the study of the dynamics of the corresponding normal form restricted to the associated center manifold. The results show that the Newell–Whitehead system has complex dynamical behaviors and bifurcation phenomena under appropriate parameter perturbations, such as heteroclinic orbit, symmetric “figure-eight” homoclinic orbits, and three limit cycles enclosing two equilibria, etc. Furthermore, it is shown that the Bogdanov–Takens bifurcation of equilibria can be either of homoclinic or heteroclinic type, and the transition between these two types occurs by means of a triple-zero singularity. It implies that the Newell–Whitehead partial differential equations have periodic wave, solitary wave or kink wave solutions for some parameter values.

  • Referencias bibliográficas
    • 1. Algaba, A., Merino, M., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: Some results on Chua’s equation near a triple-zero linear degeneracy....
    • 2. Arioli, G., Koch, H.: Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation. Nonlinear Anal. 113, 51–70...
    • 3. Bogdanov, R.I.: Bifurcations of a limit cycle of a certain family of vector fields on the plane. Sel. Math. Sov. 1, 373–388 (1981)
    • 4. Bogdanov, R.I.: Versal deformation of a singular point of a vector field on the plane in the case of zero eigenvalues. Funkcional. Anal....
    • 5. Chow, S.N., Li, C., Wang, D.: Normal forms and bifurcation of planar vector fields. Cambridge University Press (1994)
    • 6. Cui, W., Zhao, Y.: Bifurcation analysis of FitzHugh-Nagumo system with traveling wave solution. Preprint (2024)
    • 7. Deng, B.: The existence of infinitely many traveling front and back waves in the FitzHugh-Nagumo equations. SIAM J. Math. Anal. 22, 1631–1650...
    • 8. Dumortier, F., Ibáñez, S.: Nilpotent singularities in generic 4-parameter families of 3-dimensional vector fields. J. Differ. Equ. 127,...
    • 9. Dumortier, F., Ibáñez, S., Kokubu, H.: New aspects in the unfolding of the nilpotent singularity of codimension three. Dyn. Syst. 16, 63–95...
    • 10. Euzébio, R.D., Llibre, J., Valls, C.: Zero-Hopf bifurcation in the FitzHugh-Nagumo system. Math. Methods Appl. Sci. 38, 4289–4299 (2015)....
    • 11. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937). https:// doi.org/10.1111/j.1469-1809.1937.tb02153.x
    • 12. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961). https://doi.org/10.1016/s0006-3495(61)86902-6
    • 13. Flores, G.: Stability analysis for the slow traveling pulse of the FitzHugh-Nagumo system. SIAM J. Math. Anal. 22, 392–399 (1991). https://doi.org/10.1137/0522025
    • 14. Freire, E., Gamero, E., Rodriguez-Luis, A.J., Algaba, A.: A note on the triple-zero linear degeneracy: normal forms, dynamical and bifurcation...
    • 15. Gamero, E., Freire, E., Rodríguez-Luis, A.J., Ponce, E., Algaba, A.: Hypernormal form calculation for triple-zero degeneracies. Bull....
    • 16. Han, M.: Periodic solutions and bifurcation theory of dynamical systems. Science Press (2002)
    • 17. Han, M.: On the Uniqueness of limit cycles in codimension two bifurcations. J. Non. Model. Anal. 6, 514–525 (2024)
    • 18. Han, M., Ke, A.: On symmetry property of center manifolds of differential systems. J. Appl. Anal. Comput. 15, 1–8 (2025)
    • 19. Han, M., Llibre, J., Yang, J.: On uniqueness of limit cycles in general bogdanov-takens bifurcation. Int. J. Bifurc. Chaos 28, 1850115...
    • 20. Han, M., Luo, D., Zhu, D.: Uniqueness of limit cycles bifurcating from a singular closed orbit (II). Acta Mech. Sin. (Beijing) 35, 541–548...
    • 21. Han, M., Luo, D., Zhu, D.: Uniqueness of limit cycles bifurcating from a singular closed orbit (III). Acta Mech. Sin. (Beijing) 35, 673–684...
    • 22. Han, M., Yu, P.: Normal forms. Melnikov functions and bifurcations of limit cycles. In: Applied Mathematical Sciences (2012)
    • 23. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve....
    • 24. Hupkes, H.J., Sandstede, B.: Stability of pulse solutions for the discrete FitzHugh-Nagumo system. Trans. Amer. Math. Soc. 365, 251–301...
    • 25. Khorozov, E.I.: Versal deformations of equivariant vector fields in the case of symmetry of order 2 and 3. Trans. Petrovsk. Semin. 5,...
    • 26. Kolmogorov, A., Petrovskii, I., Piskunov, N.: A study of the equation of diffusion with increase in the quantity of matter, and its application...
    • 27. Kuznetsov, Y. A.: Elements of applied bifurcation theory. Applied Mathematical Sciences (2004)
    • 28. Lam, K., Lou, Y.: Introduction to reaction-diffusion equations. Springer, Cham (2022)
    • 29. Li, J., Dai, H.: On the study of singular nonlinear traveling wave equations: dynamical system approach. Science Press (2007)
    • 30. Liu, W., Vleck, E.V.: Turning points and traveling waves in FitzHugh-Nagumo type equations. J. Differ. Equ. 225, 381–410 (2006). https://doi.org/10.1016/j.jde.2005.10.006
    • 31. Vidal, C., Llibre, J.: Periodic solutions of a periodic FitzHugh-Nagumo system. Int. J. Bifurc. Chaos 25(6), 1550180 (2015). https://doi.org/10.1142/S0218127415501801
    • 32. Llibre, J., Tian, Y.: Dynamics of the FitzHugh-Nagumo system having invariant algebraic surfaces. Z. Angew. Math. Phys. 72, 15 (2021)....
    • 33. Llibre, J., Valls, C.: Analytic first integrals of the FitzHugh-Nagumo systems. Z. Angew. Math. Phys. 60, 237–245 (2009). https://doi.org/10.1007/S00033-007-7087-6
    • 34. Llibre, J., Valls, C.: Liouvillian integrability of the FitzHugh-Nagumo systems. J. Geom. Phys. 60, 1974–1983 (2010). https://doi.org/10.1016/j.geomphys.2010.08.005
    • 35. Luo, D., Han, M., Zhu, D.: Uniqueness of limit cycles bifurcating from a singular closed orbit (I). Acta Mech. Sin. (Beijing) 35, 407–417...
    • 36. Medve’, M.: On a codimension three bifurcation. Casopis Pˇ ˇ est. Mat. 109, 3–26 (1984)
    • 37. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Pro. IRE 50, 2061–2070 (1962). https://doi.org/10.1109/JRPROC.1962.288235
    • 38. Takens, F.: Singularities of vector fields. Publ. Math. I.H.E.S. 43, 47–100 (1974). https://doi.org/10. 1007/BF02684366
    • 39. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952)
    • 40. Valls, C.: On the global dynamics of the Newell-Whitehead system. J. Nonlinear Math. Phys. 26, 569–578 (2019). https://doi.org/10.1080/14029251.2019.1640466
    • 41. Wang, S.: Hopf bifurcation of traveling wave solution of FitzHugh-Nagumo system. M.S. thesis, Shanghai Jiao Tong University (2010)
    • 42. Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. Springer, Cham (2003)
    • 43. Zhang, L., Yu, J.: Invariant algebraic surfaces of the FitzHugh-Nagumo system. J. Math. Anal. Appl. 483, 123097 (2020). https://doi.org/10.1016/J.JMAA.2019.04.009
    • 44. Zhang, L., Yu, J., Zhang, X.: Global dynamical behavior of FitzHugh-Nagumo systems with invariant algebraic surfaces. Qual. Theory Dyn....
    • 45. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative theory of differential equations. American Mathematical Society, Providence (1992)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno