Ir al contenido

Documat


Lie Subalgebras, Solutions and Conserved Vectors of a Nonlinear Geophysical Korteweg de Vries Equation in Ocean Physics and Nonlinear Mechanics with Power Law

  • Autores: Oke Davies Adeyemo
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Ocean physics describes the way the ocean surface layer interacts with the atmosphere and extends to the transmission of energy from ocean waves and tides to the seafloor.

      Hence, for the first time, this article explores the analytical study of a generalized geophysical Korteweg-de Vries equation found in ocean physics with power-law nonlinearity. The model is analyzed using the Lie group theory that ensures mapping of the existing solutions to other solutions. Initially, the calculation of the associated Lie algebra for the model is carried out in a systematic manner, after which one parameter transformation group for the algebra is derived. Besides, a one-dimensional optimal system of subalgebra is derived in a procedural manner. Sequel to this, the subalgebras and combination of the achieved symmetries are invoked in the reduction process, culminating in generating nonlinear ordinary differential equations associated with the model under study. In consequence, analytic soliton solutions, including nontopological soliton solutions and general periodic function solutions of note, in the structure ofWeierstrass elliptic and Jacobi elliptic functions are obtained for the model.

      One of the interesting results also includes an implicit hypergeometric function solution. Additionally, numerical simulations are utilized to develop a basic understanding of the physical phenomena described by the model in ocean physics. Ultimately, conserved vectors are determined for the model by applying Ibragimov’s theorem together with Noether’s theorem.

  • Referencias bibliográficas
    • 1. Gao, X.Y.: In the shallow water: Auto-Bäcklund, hetero-Bäcklund and scaling transformations via a (2+1)-dimensional generalized Broer-Kaup...
    • 2. Gao, X.Y.: Auto-Bäcklund transformation with the solitons and similarity reductions for a generalized nonlinear shallow water wave equation....
    • 3. Gao, X.Y.: Two-layer-liquid and lattice considerations through a (3+1)-dimensional generalized YuToda-Sasa-Fukuyama system. Appl. Math....
    • 4. Gao, X.Y.: Oceanic shallow-water investigations on a generalized Whitham-Broer-Kaup-BoussinesqKupershmidt system. Phys. Fluids 35, 127106...
    • 5. Gao, X.Y.: Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2+ 1)-dimensional...
    • 6. Gao, X.Y., Guo, Y.J., Shan, W.R.: Theoretical investigations on a variable-coefficient generalized forced-perturbed Korteweg-de Vries-Burgers...
    • 7. Adeyemo, O.D., Khalique, C.M., Gasimov, Y.S., Villecco, F.: Variational and non-variational approaches with Lie algebra of a generalized...
    • 8. Adeyemo, O.D., Motsepa, T., Khalique, C.M.: A study of the generalized nonlinear advection-diffusion equation arising in engineering sciences....
    • 9. Khalique, C.M., Adeyemo, O.D.: A study of (3+1)-dimensional generalized Korteweg-de VriesZakharov–Kuznetsov equation via Lie symmetry...
    • 10. Du, X.X., Tian, B., Qu, Q.X., Yuan, Y.Q., Zhao, X.H.: Lie group analysis, solitons, self-adjointness and conservation laws of the modified...
    • 11. Zhang, C.R., Tian, B., Qu, Q.X., Liu, L., Tian, H.Y.: Vector bright solitons and their interactions of the couple Fokas–Lenells system...
    • 12. Gao, X.Y., Guo, Y.J., Shan, W.R.: Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq–Burgers...
    • 13. Adeyemo, O.D., Khalique, C.M.: Lie group theory, stability analysis with dispersion property, new soliton solutions and conserved quantities...
    • 14. Adeyemo, O.D., Khalique, C.M.: Shock waves, periodic, topological kink and singular soliton solutions of a new generalized two dimensional...
    • 15. Adeyemo, O.D., Khalique, C.M.: An optimal system of Lie subalgebras and group-invariant solutions with conserved currents of a (3+1)-D...
    • 16. Al Khawajaa, U., Eleuchb, H., Bahloulid, H.: Analytical analysis of soliton propagation in microcavity wires. Results Phys. 12, 471–474...
    • 17. Adeyemo, O.D., Zhang, L., Khalique, C.M.: Bifurcation theory, Lie group-invariant solutions of subalgebras and conservation laws of a...
    • 18. Wazwaz, A.M.: Exact soliton and kink solutions for new (3+1)-dimensional nonlinear modified equations of wave propagation. Open Eng....
    • 19. Adeyemo, O.D., Zhang, L., Khalique, C.M.: Optimal solutions of Lie subalgebra, dynamical system, travelling wave solutions and conserved...
    • 20. Ablowitz, M.J., Clarkson, P.A.: Solitons. Cambridge University Press, Cambridge, UK, Nonlinear Evolution Equations and Inverse Scattering...
    • 21. Adeyemo, O.D.: Applications of cnoidal and snoidal wave solutions via an optimal system of subalgebras for a generalized extended (2+1)-D...
    • 22. Raut, S., Ma, W.X., Barman, R., Roy, S.: A non-autonomous Gardner equation and its integrability: solitons, positons and breathers. Chaos...
    • 23. Raut, S., Mondal, K.K., Chatterjee, P., Roy, S.: Dust ion acoustic bi-soliton, soliton, and shock waves in unmagnetized plasma with Kaniadakis-distributed...
    • 24. Shah, S.A.A., Hussain, E., Ma, W.X., Li, Z., Ragab, A.E.: Qualitative analysis and new variety of solitons profiles for the (1+ 1)-dimensional...
    • 25. Hossain, M.N., Miah, M.M., Ganie, A.H., Osman, M.S., Ma, W.X.: Discovering new abundant optical solutions for the resonant nonlinear Schrödinger...
    • 26. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York, USA (1982)
    • 27. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer-Verlag, Berlin, Germany (1993)
    • 28. Kumar, S., Dhiman, S.K.: Exploring cone-shaped solitons, breather, and lump-forms solutions using the Lie symmetry method and unified...
    • 29. Kumar, S., Kaur, L., Niwas, M.: Some exact invariant solutions and dynamical structures of multiple solitons for the (2+1)-dimensional...
    • 30. Kumar, S., Dhiman, S.K., Chauhan, A.: Analysis of Lie invariance, analytical solutions, conservation laws, and a variety of wave profiles...
    • 31. Dhiman, S.K., Kumar, S., Kharbanda, H.: An extended (3+1)-dimensional Jimbo–Miwa equation: Symmetry reductions, invariant solutions...
    • 32. Niwas, M., Kumar, S., Kharbanda, H.: Symmetry analysis, closed-form invariant solutions and dynamical wave structures of the generalized...
    • 33. Khalique, C.M., Adeyemo, O.D., Monashane, M.S.: Exact solutions, wave dynamics and conservation laws of a generalized geophysical Korteweg...
    • 34. Kudryashov, N.A., Loguinova, N.B.: Extended simplest equation method for nonlinear differential equations. Appl. Math. Comput. 205, 396–402...
    • 35. Vitanov, N.K.: Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class...
    • 36. Chen, Y., Yan, Z.: New exact solutions of (2+1)-dimensional Gardner equation via the new sine-Gordon equation expansion method. Chaos...
    • 37. Li, L., Duan, C., Yu, F.: An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de...
    • 38. Wang, M., Li, X., Zhang, J.: The (G /G)− expansion method and travelling wave solutions for linear evolution equations in mathematical...
    • 39. Feng, L., Tian, S., Zhang, T., Zhou, J.: Lie symmetries, conservation laws and analytical solutions for two-component integrable equations,...
    • 40. Zhang, Y., Ye, R., Ma, W.X.: Binary Darboux transformation and soliton solutions for the coupled complex modified Korteweg-de Vries equations....
    • 41. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property and a partial differential equations with an essential singularity. Phys. Lett....
    • 42. Zhang, L., Khalique, C.M.: Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs. Discrete...
    • 43. Chun, C., Sakthivel, R.: Homotopy perturbation technique for solving two point boundary value problems-comparison with other methods....
    • 44. Darvishi, M.T., Najafi, M.: A modification of extended homoclinic test approach to solve the (3+1)- dimensional potential-YTSF equation....
    • 45. Wazwaz, A.M.: Traveling wave solution to (2+1)-dimensional nonlinear evolution equations. J. Nat. Sci. Math. 1, 1–13 (2007)
    • 46. Wazwaz, A.M.: Partial Differential Equations. CRC Press, Boca Raton, Florida, USA (2002)
    • 47. Zhou, Y., Wang, M., Wang, Y.: Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 308, 31–36...
    • 48. Gu, C.H.: Soliton Theory and Its Application. Zhejiang Science and Technology Press, Zhejiang, China (1990)
    • 49. Salas, A.H., Gomez, C.A.: Application of the Cole-Hopf transformation for finding exact solutions to several forms of the seventh-order...
    • 50. Zeng, X., Wang, D.S.: A generalized extended rational expansion method and its application to (1+1)- dimensional dispersive long wave...
    • 51. Date, M., Jimbo, M., Kashiwara, M., Miwa, T.: Operator apporach of the Kadomtsev–Petviashvili equation - Transformation groups for soliton...
    • 52. Kuo, C.K., Ma, W.X.: An effective approach to constructing novel KP-like equations. Waves Random Complex Media 32, 629–640 (2020)
    • 53. Ma, W.X., Fan, E.: Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl. 61, 950–959 (2011)
    • 54. Wazwaz, A.M.: Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation. Commun. Nonlinear Sci. Numer. Simul. 17,...
    • 55. Ma, W.X.: Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015)
    • 56. Zhao, Z., Han, B.: Lump solutions of a (3+1)-dimensional B-type KP equation and its dimensionally reduced equations. Anal. Math. Phys....
    • 57. Khalique, C.M., Adeyemo, O.D., Mohapi, I.: Exact solutions and conservation laws of a new fourthorder nonlinear (3+1)-dimensional...
    • 58. Wazwaz, A.M.: New sets of solitary wave solutions to the KdV, mKdV, and the generalized KdV equations. Commun. Nonlinear Sci. Numer. Simulat....
    • 59. Yan, Z.: New binary travelling-wave periodic solutions for the modified KdV equation. Phys. Lett. A 372, 969–977 (2008)
    • 60. Wazwaz, A.M.: Kinks and solitons solutions for the generalized KdV equation with two power nonlinearities. Appl. Math. Comput. 183, 1181–1189...
    • 61. Hosseini, K., Baleanu, D., Hincal, E., Manukure, S., Salahshour, S., Kaymakamzade, B.: Painlevé analysis and kink-type solitary waves...
    • 62. Karunakar, P., Chakraverty, S.: Effect of Coriolis constant on geophysical Korteweg-de Vries equation. J. Ocean Eng. Sci. 4, 113–121 (2019)
    • 63. Rizvi, S.T.R., Seadawy, A.R., Ashraf, F., Younis, M., Iqbal, H., Baleanu, D.: Lump and Interaction solutions of a geophysical Korteweg-de...
    • 64. Alharbi, A.R., Almatrafi, M.B.: Exact solitary wave and numerical solutions for geophysical KdV equation. J. King Saud Univ. Sci. 34,...
    • 65. Jhangeer, A., Jamal, T., Hussain, M.Z., Imran, M.: A Lie symmetry approach to travelling wave solutions, bifurcation, chaos and sensitivity...
    • 66. Hu, X., Li, Y., Chen, Y.: A direct algorithm of one-dimensional optimal system for the group invariant solutions. J. Math. Phys. 56, 053504...
    • 67. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1972)
    • 68. Kudryashov, N.A.: Analytical theory of nonlinear differential equations. Institute of Computer Investigations, Moskow-Igevsk (2004)
    • 69. Kudryashov, N.A.: First integrals and general solution of the Fokas–Lenells equation. Optik 195, 163135 (2019)
    • 70. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, New York, NY, USA (2007)
    • 71. Akhiezer, N.I.: Elements of The Theory of Elliptic Functions. American Mathematical Soc, Providence, Rhode Island, USA (1990)
    • 72. https://library.fiveable.me/key-terms/metamaterials-and-photonic-crystals/bright-soliton. [Accessed on 16 October 2024]
    • 73. https://typeset.io/questions/physical-meaning-of-a-bright-and-dark-soliton-in-a-one-oswwy0woie. [Accessed on 16 October 2024]
    • 74. Gandzha, I.S., Sedletsky, Y.V.: Bright and dark solitons on the surface of finite-depth fluid below the modulation instability threshold....
    • 75. Li, W., Hu, J., Hahman, M.U., Haq, N.U.: Complex behavior and soliton solutions of the Resonance Nonlinear Schrödinger equation with modified...
    • 76. https://courses.lumenlearning.com/calculus1/chapter/applications-of-hyperbolic-functions/. [Accessed on 14 October 2024]
    • 77. Weisstein, E.W.: CRC Concise Encyclopedia of Mathematics. CRC Press, Boca Raton, Florida (2002)
    • 78. Khalique, C.M., Adeyemo, O.D.: Closed-form solutions and conserved vectors of a generalized (3+1)- dimensional breaking soliton equation...
    • 79. Ibragimov, N.H.: A new conservation theorem. J. Math. Anal. Appl. 333, 311–328 (2007)
    • 80. Sarlet, W.: Comment on ‘conservation laws of higher order nonlinear PDEs and the variational conservation laws in the class with mixed...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno