Ir al contenido

Documat


On Multi Order Nonlinear Langevin Type of FDE Subject to Multi-Point Boundary Conditions

  • Amel Berhail [2] ; Jehad Alzabut [3] ; Mohammad Esmael Samei [1]
    1. [1] Bu-Ali Sina University

      Bu-Ali Sina University

      Irán

    2. [2] University, Guelma
    3. [3] Prince Sultan University, OST˙IM Technical University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This research paper is about studying complicated equations called multi-order nonlinear fractional Langevin differential equations. These equations are analyzed when they have specific conditions at multiple points. The paper uses two mathematical tools, the Banach contraction principle and Schaefer’s fixed point theorem, to show that there is only one solution for the given equation. Moreover, we thoroughly study and analyze the stability of the solutions. To help understand the ideas we talked about, we will give related examples.

  • Referencias bibliográficas
    • 1. Diethelm, K., Ford, N.J.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics. Springer, Berlin (2010)
    • 2. Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2002)
    • 3. Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Fractional calculus in the Mellin setting and Hadamardtype fractional integrals. J. Math. Anal....
    • 4. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Aplication of Fractional Differential Equations. Lecture Notes in Mathematics. Elsevier,...
    • 5. Wang, X., Berhail, A., Tabouche, N., Matar, M.M., Samei, M.E., Kaabar, A.K.M., Yue, X.G.: A novel investigation of non-periodic snap BVP...
    • 6. Rezapour, S., Mohammadi, H., Samei, M.E.: SEIR epidemic model for COVID-19 transmission by Caputo derivative of fractional order. Adv....
    • 7. Alzabut, J., Selvam, G.M., El-Nabulsi, R.A., Vignesh, D., Samei, M.E.: Asymptotic stability of nonlinear discrete fractional pantograph...
    • 8. Belhadji, B., Alzabut, J., Samei, M.E., Fatima, N.: On the global behaviour of solutions for a delayed viscoelastic type petrovesky wave...
    • 9. Ahmad, B., Matar, M.M., EL-Salmy, O.M.: Existence of solutions and ulam stability for Caputo type sequential fractional differential equations...
    • 10. Patle, P.R., Gabeleh, M., Rakoˇcevi´c, V., Samei, M.E.: New best proximity point (pair) theorems via MNC and application to the existence...
    • 11. Samei, M.E., Baleanu, D., Rezapour, S.: An increasing variables singular system of fractional qdifferential equations via numerical calculations....
    • 12. Matar, M.M., Ahmad, M., Zada, A., Etemad, S., Rezapour, S.: On the existence and stability of two positive solutions of a hybrid differential...
    • 13. Alzabut, J., Mohammadaliee, B., Samei, M.E.: Solutions of two fractional q-integro-differential equations under sum boundary value conditions...
    • 14. Mutlu, A., Özkan, K., Gürdal, U.: Coupled fixed point theorems on bipolar metric spaces. European J. Pure Appl. Math. 10(4), 655–667 (2017)....
    • 15. Boutiara, A., Kaabar, M.K.A., Siri, Z., Samei, M.E., Yue, X.G.: Investigation of a generalized proportional langevin and Sturm-Liouville...
    • 16. Thabet, S.T.M., Dhakne, M.B., Salman, M.A., Gubran, R.: Generalized fractional Sturm-Liouville and Langevin equations involving Caputo...
    • 17. Baitiche, Z., Derbazi, C., Alzabut, J., Samei, M.E., Kaabar, M.K.A., Siri, Z.: Monotone iterative method for Langevin equation in terms...
    • 18. Ahmad, B., Nieto, J.J., Alsaedi, A., El-Shahed, M.: A study of nonlinear Langevin equation involving two fractional orders in different...
    • 19. Adjabi, Y., Samei, M.E., Matar, M.M., Alzabut, J.: Langevin differential equation in frame of ordinary and Hadamard fractional derivatives...
    • 20. Ahmad, B., Alsaedi, A., Salem, S.: On a nonlocal integral boundary value problem of nonlinear Langevin equation with different fractional...
    • 21. Berhail, A., Tabouche, N., Matar, M., Alzabut, J.: Boundary value problem defined by system of generalized Sturm-Liouville and Langevin-Hadamard...
    • 22. Boutiara, A., Matar, M.M., Alzabut, J., Samei, M.E., Khan, H.: Investigation of ABC coupled langevin fractional differential equations...
    • 23. Sudsutad, W., Ntouyas, S.K., Tariboon, J.J.: Systems of fractional Langevin equations of RiemannLiouville and Hadamard types. Adv. Differ....
    • 24. Zhou, H., Alzabut, J., Yang, L.: On fractional Langevin differential equations with anti-periodic boundary conditions. The European Phys....
    • 25. Li, B., Sun, S., Sun, Y.: Existence of solutions for fractional Langevin equation with infinite-point boundary conditions. J. Appl. Math....
    • 26. Xie, L., Zhou, J., Deng, H., He, Y.: Existence and stability of solution for multi-order nonlinear fractional differential equations....
    • 27. Hammad, H.A., Rashwan, R.A., Nafea, A., Samei, M.E., Noeiaghdam, S.: Stability analysis for a tripled system of fractional pantograph...
    • 28. Boutiara, A., Kaabar, M.K.A., Samei, M.E.: A study on fractional hybrid Sturm-Liouville and Langevin differential equations and inclusions...
    • 29. Zhou, Z., Qiao, Y.: Solutions for a class of fractional Langevin equations with integral and antiperiodic boundary conditions. Boundary...
    • 30. Jian Ping, S., Ya Hong, Z.: Multiplicity of positive solutions of a class of nonlinear fractional differential equations. Comput. Math....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno