Ir al contenido

Documat


Dulac’s Theorem Revisited

  • Melvin Yeung [1]
    1. [1] University of Hasselt

      University of Hasselt

      Arrondissement Hasselt, Bélgica

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Dulac’s theorem states that the number of limit cycles of any given polynomial vector field on the plane is finite. After compactifying the phase plane to a sphere and some well known arguments one only has to prove that limit cycles cannot accumulate onto elementary graphics which we will call polycycles. Dulac in his proof unfortunately made an unproved statement by inferring the triviality of the return map of a polycycle from the triviality of its asymptotic expansion. Ilyashenko in (Russ Math Surv 40(6):1–49, 1985. https://doi.org/10.1070/rm1985v040n06abeh003701) produced a clever counter example, clearly showing why Dulac’s arguments failed and additionally he showed that Dulac’s theorem is valid for hyperbolic polycycles, i.e. polycycles with only hyperbolic equilibria. It is a corner stone that has been completely understood. Afterwards Ilyashenko published his own full proof of Dulac’s theorem in Ilyashenko (in: Translations of mathematical monographs, American Mathematical Society, Providence, 1991). We provide evidence that the approach of Ilyashenko (1991) to the proof of Dulac’s theorem has a gap. Although the asymptotics of Ilyashenko (1991) capture far more than the asymptotics of Dulac, we prove that the arguments for why the asymptotics in Ilyashenko (1991) are not themselves oscillatory is insufficient. We give an explicit counterexample and we draw confines to which Ilyashenko’s result may be restricted in order to keep the validity.

  • Referencias bibliográficas
    • 1. Dulac, H.: Sur les cycles limites. Bull. Soc. Math. Fr. 51, 45–188 (1923). https://doi.org/10.24033/ bsmf.1031
    • 2. Il’yashenko, Y.S.: Centennial history of hilbert’s 16th problem. Bull. Am. Math. Soc. 39, 301–354 (2002). https://doi.org/10.1090/S0273-0979-02-00946-1
    • 3. Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. In: Texts in Applied Mathematics. Springer, New York (2003)....
    • 4. Ilyashenko, Y.S., Yakovenko, S.: Lectures on analytic differential equations. In: Graduate Studies in Mathematics. American Mathematical...
    • 5. Dumortier, F.: Singularities of vector fields on the plane. J. Differ. Equ. 23(1), 53–106 (1977). https:// doi.org/10.1016/0022-0396(77)90136-X
    • 6. Dumortier, F., Roussarie, R., Sotomayor, J.: Bifurcations of cuspidal loops. Nonlinearity 10(6), 1369– 1408 (1997). https://doi.org/10.1088/0951-7715/10/6/001
    • 7. Il’yashenko, Y.S.: Dulac’s memoir “on limit cycles" and related problems of the local theory of differential equations. Russ. Math....
    • 8. Ilyashenko, Y.S.: Finiteness Theorems for Limit Cycles. In: Translations of Mathematical Monographs, vol. 94. American Mathematical Society,...
    • 9. Ecalle, J.: Introduction aux Fonctions Analysables et Preuve Constructive de la Conjecture de Dulac. Actualités mathématiques. Hermann,...
    • 10. Aschenbrenner, M., Dries, L., Hoeven, J.: Asymptotic Differential Algebra and Model Theory of Transseries. Ann. of Math. Stud., vol. 195....
    • 11. Galal, Z., Kaiser, T., Speissegger, P.: Ilyashenko algebras based on transserial asymptotic expansions. Adv. Math. 367, 107095 (2020)....
    • 12. Kaiser, T., Rolin, J.-P., Speissegger, P.: Transition maps at non-resonant hyperbolic singularities are o-minimal. J. Reine Angew. Math....
    • 13. Ilyashenko, Y.S. (ed.): Nonlinear Stokes Phenomena. Advances in Soviet Mathematics 14. American Mathematical Society, Providence (1993)
    • 14. Martinet, J., Ramis, J.: Problèmes de modules pour des équations différentielles non linéaires du premier ordre. Publications Mathématiques...
    • 15. Il’yashenko, Y.S.: Separatrix lunes of analytic vector fields of the plane. Mosc. Univ. Math. Bull. 41(4), 28–35 (1986)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno