Ir al contenido

Documat


A review of bias and fairness in artificial intelligence

  • González-Sendino, Rubén [1] ; Serrano, Emilio [1] Árbol académico ; Bajo, Javier [1] Árbol académico ; Novais, Paulo [2] Árbol académico
    1. [1] Universidad Politécnica de Madrid

      Universidad Politécnica de Madrid

      Madrid, España

    2. [2] Universidade do Minho

      Universidade do Minho

      Braga (São José de São Lázaro), Portugal

  • Localización: IJIMAI, ISSN-e 1989-1660, Vol. 9, Nº. 1, 2024, págs. 5-17
  • Idioma: inglés
  • DOI: 10.9781/ijimai.2023.11.001
  • Enlaces
  • Resumen
    • Automating decision systems has led to hidden biases in the use of artificial intelligence (AI). Consequently, explaining these decisions and identifying responsibilities has become a challenge. As a result, a new field of research on algorithmic fairness has emerged. In this area, detecting biases and mitigating them is essential to ensure fair and discrimination-free decisions. This paper contributes with: (1) a categorization of biases and how these are associated with different phases of an AI model’s development (including the data-generation phase); (2) a revision of fairness metrics to audit the data and AI models trained with them (considering agnostic models when focusing on fairness); and, (3) a novel taxonomy of the procedures to mitigate biases in the different phases of an AI model’s development (pre-processing, training, and post-processing) with the addition of transversal actions that help to produce fairer models.

  • Referencias bibliográficas
    • R. Kennedy, “The ethical implications of lawtech,” in Responsible AI and Analytics for an Ethical and Inclusive Digitized Society, 2021, pp....
    • S. Camaréna, “Engaging with artificial intelligence (ai) with a bottom- up approach for the purpose of sustainability: Victorian farmers market association,...
    • S. Strauß, “Deep automation bias: How to tackle a wicked problem of ai?,” Big Data and Cognitive Computing, vol. 5, no. 2, 2021, doi: 10.3390/ bdcc5020018.
    • A. Nadeem, O. Marjanovic, B. Abedin, “Gender bias in ai: Implications for managerial practices,” in Responsible AI and Analytics for an Ethical and...
    • S. Parsheera, “A gendered perspective on artificial intelligence,” in 2018 International Telecommunication Union Kaleidoscope: Machine Learning for...
    • T. K. Gilbert, Y. Mintz, “Epistemic therapy for bias in automated decision- making,” in Proceedings of the 2019 Conference on AI, Ethics,...
    • D. A. da Silva, H. D. B. Louro, G. S. Goncalves, J. C. Marques, L. A. V. Dias, A. M. da Cunha, P. M. Tasinaffo, “Could a conversational ai...
    • C. Zhao, C. Li, J. Li, F. Chen, “Fair meta-learning for few-shot classification,” in 2020 IEEE International Conference on Knowledge Graph, Online,...
    • R. S. Baker, A. Hawn, “Algorithmic bias in education,” International Journal of Artificial Intelligence in Education, pp. 1052–1092, 12 2021,...
    • R. R. Fletcher, A. Nakeshimana, O. Olubeko, “Addressing fairness, bias, and appropriate use of artificial intelligence and machine learning in...
    • M. Loi, A. Ferrario, E. Viganò, “Transparency as design publicity: explaining and justifying inscrutable algorithms,” Ethics and Information Technology,...
    • E. Ntoutsi, P. Fafalios, U. Gadiraju, V. Iosifidis, W. Nejdl, M. E. Vidal, S. Ruggieri, F. Turini, S. Papadopoulos, E. Krasanakis, I. Kompatsiaris, K....
    • D. Pessach, E. Shmueli, “Improving fairness of artificial intelligence algorithms in privileged- group selection bias data settings,” Expert...
    • D. Pessach, E. Shmueli, “A review on fairness in machine learning,” Association for Computing Machinery: Computing Surveys, vol. 55, feb 2022,...
    • N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, “A survey on bias and fairness in machine learning,” Association for Computing Machinery:...
    • S. Khenissi, B. Mariem, O. Nasraoui, “Theoretical modeling of the iterative properties of user discovery in a collaborative filtering recommender system,”...
    • A. Peña, I. Serna, A. Morales, J. Fiérrez, “Faircvtest demo: Understanding bias in multimodal learning with a testbed in fair automatic recruitment,” in...
    • J. L. Davis, A. Williams, M. W. Yang, “Algorithmic reparation,” Big Data and Society, vol. 8, 2021, doi: 10.1177/20539517211044808.
    • A. M. Antoniadi, Y. Du, Y. Guendouz, L. Wei, C. Mazo, B. A. Becker, C. Mooney, “Current challenges and future opportunities for xai in machine learning-...
    • K. Sokol, “Fairness, accountability and transparency in artificial intelligence: A case study of logical predictive models,” in Proceedings...
    • K. Gade, S. C. Geyik, K. Kenthapadi, V. Mithal, A. Taly, “Explainable AI in industry: practical challenges and lessons learned: implications...
    • A. Stevens, P. Deruyck, Z. V. Veldhoven, J. Vanthienen, “Explainability and fairness in machine learning: Improve fair end-to-end lending for...
    • R. Bellamy, K. Dey, M. Hind, S. Hoffman, S. Houde, K. Kannan, P. Lohia, J. Martino, S. Mehta, A. Mojsilovic, S. Nagar, K. Natesan Ramamurthy, J....
    • L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. A. Specter, L. Kagal, “Explaining explanations: An overview of interpretability of machine learning,”...
    • E. Mutlu, O. O. Garibay, “A quantum leap for fairness: Quantum bayesian approach for fair decision making,” in Human-Computer Interaction...
    • J. Stoyanovich, B. Howe, S. Abiteboul, G. Miklau, A. Sahuguet, G. Weikum, “Fides: Towards a platform for responsible data science,” in Proceedings of...
    • C. Addis, M. Kutar, “AI management an exploratory survey of the influence of GDPR and FAT principles,” in 2019 IEEE SmartWorld, Ubiquitous...
    • A. B. Arrieta, N. Díaz-Rodríguez, J. D. Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, Herrera,...
    • V. Bhargava, M. Couceiro, A. Napoli, “Limeout: An ensemble approach to improve process fairness,” in European Conference on Machine Learning and...
    • S. Wachter, B. Mittelstadt, C. Russell, “Why fairness cannot be automated: Bridging the gap between eu non-discrimination law and ai,” Computer Law...
    • S. Abbasi-Sureshjani, R. Raumanns, B. E. J. Michels, Schouten, V. Cheplygina, “Risk of training diagnostic algorithms on data with demographic...
    • M. DeCamp, C. Lindvall, “Latent bias and the implementation of artificial intelligence in medicine,” Journal of the American Medical Informatics Association,...
    • Y. Zheng, S. Wang, J. Zhao, “Equality of opportunity in travel behavior prediction with deep neural networks and discrete choice models,” Transportation...
    • V. V. Vesselinov, B. S. Alexandrov, D. O’Malley, “Nonnegative tensor factorization for contaminant source identification,” Journal of Contaminant...
    • O. J. Akintande, “Algorithm fairness through data inclusion, participation, and reciprocity,” in Database Systems for Advanced Applications,...
    • S. Park, H. Ko, “Machine learning and law and economics: A preliminary overview,” Asian Journal of Law and Economics, vol. 11, 8 2020, doi: 10.1515/ajle-2020-0034.
    • F. Marcinkowski, K. Kieslich, C. Starke, M. Lünich, “Implications of AI (un-)fairness in higher education admissions: the effects of perceived...
    • D. Solans, F. Fabbri, C. Calsamiglia, C. Castillo, F. Bonchi, “Comparing equity and effectiveness of different algorithms in an application...
    • S. Hajian, F. Bonchi, C. Castillo, “Algorithmic bias: From discrimination discovery to fairness- aware data mining,” in Proceedings of the...
    • C. M. Madla, F. K. H. Gavins, H. A. Merchant, M. Orlu, S. Murdan, A. W. Basit, “Let’s talk about sex: Differences in drug therapy in males...
    • G. Currie, K. E. Hawk, “Ethical and legal challenges of artificial intelligence in nuclear medicine,” Seminars in Nuclear Medicine, vol. 51, pp....
    • G. Starke, E. D. Clercq, B. S. Elger, “Towards a pragmatist dealing with algorithmic bias in medical machine learning,” Medicine, Health Care...
    • A. M. Fejerskov, “Algorithmic bias and the (false) promise of numbers,” Global Policy, vol. 12, pp. 101– 103, 7 2021, doi: 10.1111/1758-5899.12915.
    • C. Panigutti, A. Perotti, A. Panisson, P. Bajardi, D. Pedreschi, “Fairlens: Auditing black-box clinical decision support systems,” Information Processing...
    • S. Kino, Y.-T. Hsu, K. Shiba, Y.-S. Chien, C. Mita, I. Kawachi, A. Daoud, “A scoping review on the use of machine learning in research on social...
    • N. Norori, Q. Hu, F. M. Aellen, F. D. Faraci, A. Tzovara, “Addressing bias in big data and ai for health care: A call for open science,” Patterns,...
    • L. Xu, “The dilemma and countermeasures of ai in educational application,” Pervasive Health: Pervasive Computing Technologies for Healthcare,...
    • W. Holmes, K. Porayska-Pomsta, K. Holstein, E. Sutherland, T. Baker, S. B. Shum, O. C. Santos, M. T. Rodrigo, M. Cukurova, I. I. Bittencourt, K....
    • A. Peña, I. Serna, A. Morales, J. Fierrez, “Faircvtest demo: Understanding bias in multimodal learning with a testbed in fair automatic recruitment,” 2020...
    • A. Ortega, J. Fierrez, A. Morales, Z. Wang, M. de la Cruz, C. L. Alonso, T. Ribeiro, “Symbolic ai for xai: Evaluating lfit inductive programming...
    • S. K. Misra, S. Das, S. Gupta, S. K. Sharma, “Public policy and regulatory challenges of artificial intelligence (ai),” Advances in Information...
    • S. Pundhir, U. Ghose, V. Kumari, “Legitann: Neural network model with unbiased robustness,” in Proceedings of International Conference on Communication...
    • S. Sharma, A. H. Gee, D. Paydarfar, J. Ghosh, “Fair- n: Fair and robust neural networks for structured data,” in Proceedings of the 2021 Conference...
    • J. Kang, H. Tong, “Fair graph mining,” in The 30th International Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia,...
    • J. Bobadilla, R. Lara-Cabrera, Á. González- Prieto, F. Ortega, “DeepFair: Deep learning for improving fairness in recommender systems,” International...
    • N. Martinez-Martin, Z. Luo, A. Kaushal, E. Adeli, A. Haque, S. S. Kelly, S. Wieten, M. K. Cho, D. Magnus, L. Fei-Fei, K. Schulman, A. Milstein, “Ethical...
    • S. K. Kane, A. Guo, M. R. Morris, “Sense and accessibility: Understanding people with physical disabilities’ experiences with sensing systems,”...
    • A. Paviglianiti, E. Pasero, “VITAL-ECG: a de-bias algorithm embedded in a gender-immune device,” in 2020 IEEE International Workshop on Metrology...
    • R. Mark, “Ethics of public use of ai and big data: The case of amsterdam’s crowdedness project,” The ORBIT Journal, vol. 2, no. 2, pp. 1–33,...
    • C. E. Kontokosta, B. Hong, “Bias in smart city governance: How socio- spatial disparities in 311 complaint behavior impact the fairness of...
    • V. D. Badal, C. Nebeker, K. Shinkawa, Y. Yamada, K. E. Rentscher, H.- C. Kim, E. E. Lee, “Do words matter? detecting social isolation and loneliness...
    • B. Richardson, D. Prioleau, K. Alikhademi, J. E. Gilbert, “Public accountability: Understanding sentiments towards artificial intelligence across...
    • D. Muralidhar, “Examining religion bias in AI text generators,” in Conference on AI, Ethics, and Society, Virtual Event, USA, May 19-21, 2021, 2021,...
    • A. J. Larrazabal, N. Nieto, V. Peterson, D. H. Milone, E. Ferrante, “Gender imbalance in medical imaging datasets produces biased classifiers...
    • E. Puyol-Antón, B. Ruijsink, S. K. Piechnik, S. Neubauer, S. E. Petersen, R. Razavi, A. P. King, “Fairness in cardiac mr image analysis: An...
    • A. Rajabi, O. O. Garibay, “Towards fairness in ai: Addressing bias in data using gans,” in Human- Computer Interaction (HCI) International...
    • Y. Zhang, J. Sang, “Towards accuracy-fairness paradox: Adversarial example-based data augmentation for visual debiasing,” in Proceedings of...
    • A. K. Singh, A. Blanco-Justicia, J. Domingo-Ferrer, D. Sánchez, D. Rebollo- Monedero, “Fair detection of poisoning attacks in federated learning,” in...
    • C. Fan, M. Esparza, J. Dargin, F. Wu, B. Oztekin, A. Mostafavi, “Spatial biases in crowdsourced data: Social media content attention concentrates...
    • R. Chiong, Z. Fan, Z. Hu, F. Chiong, “Using an improved relative error support vector machine for body fat prediction,” Computer Methods and...
    • W. Lee, H. Ko, J. Byun, T. Yoon, J. Lee, “Fair clustering with fair correspondence distribution,” Information Sciences, vol. 581, pp. 155–178, 2021,...
    • W. Zhang, A. Bifet, X. Zhang, J. C. Weiss, W. Nejdl, “Farf: A fair and adaptive random forests classifier,” in Advances in Knowledge Discovery and...
    • C. G. Harris, “Mitigating cognitive biases in machine learning algorithms for decision making,” in Companion Proceedings of the Web Conference 2020,...
    • M. A. U. Alam, “Ai-fairness towards activity recognition of older adults,” Pervasive Health: Pervasive Computing Technologies for Healthcare,...
    • Y. Zhang, A. Ramesh, “Learning fairness-aware relational structures,” Frontiers in Artificial Intelligence and Applications, vol. 325, pp....
    • S. Ahmed, S. A. Athyaab, S. A. Muqtadeer, “Attenuation of human bias in artificial intelligence: An exploratory approach,” in 2021 6th International Conference...
    • Y. Hou, H. Hong, Z. Sun, D. Xu, Z. Zeng, “The control method of twin delayed deep deterministic policy gradient with rebirth mechanism to multi-dof...
    • K. Xivuri, H. Twinomurinzi, “A systematic review of fairness in artificial intelligence algorithms,” in Responsible AI and Analytics for an...
    • S. Sharma, Y. Zhang, J. M. Ríos Aliaga, D. Bouneffouf, V. Muthusamy, K. R. Varshney, “Data augmentation for discrimination prevention and bias...
    • A. Pandey, A. Caliskan, “Disparate impact of artificial intelligence bias in ridehailing economy’s price discrimination algorithms,” in Conference on...
    • S. Udeshi, P. Arora, S. Chattopadhyay, “Automated directed fairness testing,” in Proceedings of the 33rd International Conference on Automated Software...
    • N. V. Berkel, J. Goncalves, D. Hettiachchi, S. Wijenayake, R. M. Kelly, V. Kostakos, “Crowdsourcing perceptions of fair predictors for machine learning:...
    • W. Fleisher, “What’s fair about individual fairness?,” in Proceedings of the 2021 Conference on AI, Ethics, and Society, New York, NY, USA,...
    • O. Aka, K. Burke, A. Bauerle, C. Greer, M. Mitchell, “Measuring model biases in the absence of ground truth,” in Proceedings of the 2021 Conference...
    • S. Verma, J. Rubin, “Fairness definitions explained,” in Proceedings of the International Workshop on Software Fairness, New York, NY, USA,...
    • D. Fan, Y. Wu, X. Li, “On the fairness of swarm learning in skin lesion classification,” Clinical Image-Based Procedures, Distributed and Collaborative...
    • T. Speicher, H. Heidari, N. Grgic-Hlaca, K. P. Gummadi, A. Singla, A. Weller, M. B. Zafar, “A unified approach to quantifying algorithmic unfairness,”...
    • L. Liang, D. E. Acuna, “Artificial mental phenomena: Psychophysics as a framework to detect perception biases in ai models,” Proceedings of...
    • P. Saleiro, B. Kuester, A. Stevens, A. Anisfeld, L. Hinkson, J. London, R. Ghani, “Aequitas: A bias and fairness audit toolkit,” CoRR, vol. abs/1811.05577,...
    • H. J. P. Weerts, M. Dudík, R. Edgar, A. Jalali, R. Lutz, M. Madaio, “Fairlearn: Assessing and improving fairness of AI systems,” Computing...
    • J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viégas, J. Wilson, “The what-if tool: Interactive probing of machine learning models,”...
    • C. Wilson, A. Ghosh, S. Jiang, A. Mislove, L. Baker, J. Szary, K. Trindel, F. Polli, “Building and auditing fair algorithms: A case study...
    • A. Pérez-Suay, V. Laparra, G. Mateo-García, J. Muñoz- Marí, L. Gómez- Chova, G. Camps-Valls, “Fair kernel learning,” in Machine Learning and...
    • P. Smith, K. Ricanek, “Mitigating algorithmic bias: Evolving an augmentation policy that is non-biasing,” in 2020 IEEE Winter Applications of...
    • M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, S. Venkatasubramanian, “Certifying and removing disparate impact,” in Proceedings...
    • I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, “Generative adversarial networks,” Advances...
    • B. H. Zhang, B. Lemoine, M. Mitchell, “Mitigating unwanted biases with adversarial learning,” in Proceedings of the 2018 Conference on AI, Ethics,...
    • C. Weber, “Engineering bias in ai,” IEEE Pulse, vol. 10, pp. 15–17, 1 2019, doi: 10.1109/MPULS.2018.2885857.
    • N. T. Lee, “Detecting racial bias in algorithms and machine learning,” Journal of Information, Communication and Ethics in Society, vol. 16,...
    • N. McDonald, S. Pan, “Intersectional ai: A study of how information science students think about ethics and their impact,” Proceedings of...
    • P. K. Bharti, T. Ghosal, M. Agrawal, A. Ekbal, “How confident was your reviewer? estimating reviewer confidence from peer review texts,” in...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno