Ir al contenido

Documat


Spaces of Lipschitz and Hölder functions and their applications

  • Autores: Nigel J. Kalton Árbol académico
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 55, Fasc. 2, 2004, págs. 171-218
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study the structure of Lipschitz and Hölder-type spaces and their preduals on general metric spaces, and give applications to the uniform structure of Banach spaces. In particular we resolve a problem of Weaver who asks whether if $M$ is a compact metric space and $0 < \alpha < 1$, it is always true the space of Hölder continuous functions of class $\alpha$ is isomorphic to $\ell_\infty$. We show that, on the contrary, if $M$ is a compact convex subset of a Hilbert space this isomorphism holds if and only if $M$ is finite-dimensional. We also study the (related) problem of when a quotient map $Q:Y\rightarrow X$ between two Banach spaces admits a section which is uniformly continuous on the unit ball of $X$.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno