Let $p = (p_k)^\infty_{k =0}$ be a sequence with $p_k > 0$ for all $k$. We consider the space $bv(p) = \{x\in\omega : \sum^\infty_{k=0}\vert x_k - x_{k-1}\vert^{p_k} < \infty\}$, study its $\beta$-dual and characterize some matrix transformations on $bv(p)$ which yield the results in [16] and [13] as special cases.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados