Ir al contenido

Documat


Order continuous seminorms and weak compactness in Orlicz spaces

  • Autores: Marian Nowak
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 44, Fasc. 1-3, 1993, págs. 217-236
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Let $L^\varphi$ be an Orlicz space defined by a Young function $\varphi$ over a $\sigma$-finite measure space, and let $\varphi^\ast$ denote the complementary function in the sense of Young. We give a characterization of the Mackey topology $\tau (L^\ast, L^{\varphi^\ast} )$ in terms of some family of norms defined by some regular Young functions. Next, we describe order continuous (= absolutely continuous) Riesz seminorms on $L^\varphi$, and obtain a criterion for relative $\sigma(L^\varphi, L^{\varphi^\ast} )$-compactness in $L^\varphi$. As an application we get a representation of $L^\varphi$ as the union of some family of other Orlicz spaces. Finally, we apply the above results to the theory of Lebesgue spaces.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno