Ir al contenido

Documat


On infinitely smooth almost-wavelets with compact support

  • Autores: M. Berkolaiko, S. Ya. Novikov
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 44, Fasc. 1-3, 1993, págs. 41-46
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In 1985 Y. Meyer has constructed the infinitely smooth function $\psi(t), t\in\mathbb{R}$, with compact spectrum such that the system of functions $2^{\frac{j}{2}}\psi(2^jt-k), j,k\in\mathbb{Z}$, forms an orthonormal basis for $L_2(\mathbb{R})$ [1]. Now such systems are called wavelets. There are known wavelets with exponential decay on infinity [2,3,4] and wavelets with compact support [5]. But these functions have finite smoothness. It is known that there does not exist infinitely differentiable compactly supported wavelets


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno