Ir al contenido

Documat


On the convergence of semiiterative methods to the Drazin inverse solution of linear equations in Banach spaces

  • Autores: Nieves Castro González Árbol académico
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 46, Fasc. 3, 1995 (Ejemplar dedicado a: Professor Paul Dubreil (In memoriam )), págs. 303-314
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We consider general semiiterative methods (\textbf{SIMs}) to find approximate solutions of singular linear equations of the type $x = Tx + c$, where $T$ is a bounded linear operator on a complex Banach space $X$ such that its resolvent has a pole of order $\nu_1$ at the point 1. Necessary and sufficient conditions for the convergence of \textbf{SIMs} to a solution of $x = Tx + c$, where $c$ belongs to the subspace range $\mathcal{R}(I - T)^{\nu_1}$ , are established. If $c\notin\mathcal{R}(I - T)^{\nu_1}$ sufficient conditions for the convergence to the Drazin inverse solution are described. For the class of normal operators in a Hilbert space, we analyze the convergence to the minimal norm solution and to the least squares minimal norm solution.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno