Ir al contenido

Documat


Properties of triangular partitions and their generalizations

  • Autores: Alejandro B. Galván
  • Localización: Reports@SCM: an electronic journal of the Societat Catalana de Matemàtiques, ISSN-e 2385-4227, Vol. 9, Nº. 1, 2024, págs. 31-40
  • Idioma: inglés
  • Enlaces
  • Resumen
    • català

      Una partició entera es diu triangular si el seu diagrama de Ferrers es pot separar del seu complement (com a subconjunt de N2) amb una línia recta. Aquest article es basa en alguns desenvolupaments recents sobre el tema per derivar noves propietats enumeratives, geomètriques i algorísmiques d’aquests objectes. La investigació s’estén després a generalitzacions en dimensions superiors, anomenades particions piramidals, i a particions convexes i còncaves, definides com particions amb un diagrama de Ferrers que pot ser separat del seu complement per una corba convexa o còncava.

    • English

      An integer partition is said to be triangular if its Ferrers diagram can be separated from its complement (as a subset of N2) by a straight line. This article builds on some recent developments on the topic in order to derive new enumerative, geometric and algorithmic properties of these objects. The research is then extended to higher-dimensional generalizations, called pyramidal partitions, and to convex and concave partitions, defined as partitions whose Ferrers diagram can be separated from its complement by a convex or concave curve.

  • Referencias bibliográficas
    • F. Bergeron, M. Mazin, Combinatorics of triangular partitions, Enumer. Comb. Appl. 3(1) (2023), Paper no. S2R1, 20 pp.
    • J. Blasiak, M. Haiman, J. Morse, A. Pun, G.H. Seelinger, A shuffle theorem for paths under any line, Forum Math. Pi 11 (2023), Paper no. e5,...
    • M. Boshernitzan, A.S. Fraenkel, Nonhomogeneous spectra of numbers, Discrete Math. 34(3) (1981), 325–327.
    • A.M. Bruckstein, The self-similarity of digital straight lines, in: [1990] Proceedings. 10th International Conference on Pattern Recognition,...
    • S. Corteel, G. R´emond, G. Schaeffer, H. Thomas, The number of plane corner cuts, Adv. in Appl. Math. 23(1) (1999), 49–53.
    • S. Elizalde, A.B. Galv´an, Code available at https://math.dartmouth.edu/~sergi/tp.
    • S. Elizalde, A.B. Galv´an, Triangular partitions: enumeration, structure, and generation, Preprint (2023). arXiv:2312.16353.
    • E.P. Lipatov, A classification of binary collections and properties of homogeneity classes (Russian), Problemy Kibernet. 39 (1982), 67–84.
    • M. Lothaire, Sturmian Words, in: Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications 90, Cambridge University...
    • OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences (OEIS) (2023), published electronically at http://oeis.org.
    • S. Onn, B. Sturmfels, Cutting corners, Adv. in Appl. Math. 23(1) (1999), 29–48.
    • V. Pilaud, Personal communication (2023).
    • U. Wagner, On the number of corner cuts, Adv. in Appl. Math. 29(2) (2002), 152–161.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno