Matching Methods for Observational Studies Derived from Large Administrative Databases
Ruoqi Yu, Jeffrey H. Silber, Paul R. Rosenbaum
págs. 338-355
Comment: Matching Methods for Observational Studies Derived from Large Administrative Databases
Fredrik Sävje
págs. 356-360
Comment: Matching Methods for Observational Studies Derived from Large Administrative Databases
Mark M. Fredrickson, Josh Errickson, Ben B. Hansen
págs. 361-366
Commentary on Yu et al.: Opportunities and Challenges for Matching Methods in Large Databases
Elizabeth A. Stuart, Benjamin Ackerman
págs. 367-370
Rejoinder: Matching Methods for Observational Studies Derived from Large Administrative Databases
Ruoqi Yu, Jeffrey H. Silber, Paul R. Rosenbaum
págs. 371-374
Linear Mixed Models with Endogenous Covariates: Modeling Sequential Treatment Effects with Application to a Mobile Health Study
Tianchen Qian, Predrag Klasnja, Susan A. Murphy
págs. 375-390
Comment: Clarifying Endogeneous Data Structures and Consequent Modelling Choices Using Causal Graphs
Erica E. M. Moodie, David A. Stephens
págs. 391-393
págs. 394-395
Hunyong Cho, Joshua P. Zitovsky, Xinyi Li, Minxin Lu, Kushal Shah, John Sperger, Matthew C. B. Tsilimigras, Michael R. Kosorok
págs. 396-399
Tianchen Qian, Predrag Klasnja, Susan A. Murphy
págs. 400-403
págs. 404-426
Comment: Invariance, Causality and Robustness
Vanessa Didelez
págs. 427-429
págs. 430-433
págs. 434-436
Outcome-Wide Longitudinal Designs for Causal Inference: A New Template for Empirical Studies
Tyler J. VanderWeele, Maya B. Mathur, Ying Chen
págs. 437-466
Comment: On the Potential for Misuse of Outcome-Wide Study Designs, and Ways to Prevent It
Stijn Vansteelandt, Oliver Dukes
págs. 467-471
Comment: Outcome-Wide Individualized Treatment Strategies
Ashkan Ertefaie, Brent A. Johnson
págs. 472-475
págs. 476-478
Rejoinder: The Future of Outcome-Wide Studies
Tyler J. VanderWeele, Maya B. Mathur, Ying Chen
págs. 479-483
A Nonparametric Super-Efficient Estimator of the Average Treatment Effect
David Benkeser, Weixian Cai, Mark J. van der Laan
págs. 484-495
Comment: Increasing Real World Usage of Targeted Minimum Loss-Based Estimators
Mireille E. Schnitzer
págs. 496-498
Comment: Automated Analyses: Because We Can, Does It Mean We Should?
Susan M. Shortreed, Erica E. M. Moodie
págs. 499-502
págs. 503-510
Rejoinder: A Nonparametric Superefficient Estimator of the Average Treatment Effect
David Benkeser, Weixian Cai, Mark J. van der Laan
págs. 511-517
Lin Liu, Rajarshi Mukherjee, James M. Robins
págs. 518-539
Edward H. Kennedy, Sivaraman Balakrishnan, Larry Wasserman
págs. 540-544
Lin Liu, Rajarshi Mukherjee, James M. Robins
págs. 545-554
© 2008-2024 Fundación Dialnet · Todos los derechos reservados