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Abstract

In recent years, an explosive increase of graph-formatted data has been made publicly

available. Embedded within this data there is private information about users who appear

in it. Therefore, data owners must respect the privacy of users before releasing datasets

to third parties. In this scenario, anonymization processes become an important concern.

However, anonymization processes usually introduce some kind of noise in the anony-

mous data, altering the data and also their results on graph mining processes. Generally,

the higher the privacy, the larger the noise. Thus, data utility is an important factor to

consider in anonymization processes. The necessary trade-off between data privacy and

data utility can be reached by using measures and metrics to lead the anonymization

process to minimize the information loss, and therefore, to maximize the data utility.

In this thesis we will focus on graph-based privacy-preserving methods, targeting on

medium and large networks. Our work will be focused on two main topics: firstly, privacy-

preserving methods will be developed for graph-formatted data. We will consider different

approaches, from obfuscation to k-anonymity methods. Secondly, the anonymous data

utility will be the other key-point in our work, since it is critical to release useful anony-

mous data. Roughly, we want to achieve results on the anonymous data as close as

possible to the ones performed on the original data. These two topics are closely related,

and a trade-off between them is necessary to obtain useful anonymous data.

Keywords: Privacy, k-Anonymity, Randomization, Graphs, Social networks, Data

utility, Information loss.
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Chapter 1

Introduction

This first chapter introduces the motivation of our work in Section 1.1, followed by our

objectives in Section 1.2. Next, our contributions are presented in Section 1.3, and finally

Section 1.4 sketchs the structure of this thesis.

1.1 Motivation

In recent years, an explosive increase of network data has been made publicly available.

Embedded within this data there is private information about users who appear in it.

Therefore, data owners must respect the privacy of users before releasing datasets to

third parties. In this scenario, anonymization processes become an important concern.

Among others, the study of Ferri et al. [34] reveals that though some user groups are less

concerned by data owners sharing data about them, up to 90% of members in others groups

disagree with this principle. Backstrom et al. [4] point out that the simple technique of

anonymizing networks by removing the identities of the vertices before publishing the

actual network does not always guarantee privacy. They show that there exist adversaries

that can infer the identity of the vertices by solving a set of restricted graph isomorphism

problems. Some approaches and methods have been imported from anonymization on

structured or relational data, but the peculiarities of anonymizing network data avoid

these methods to work directly on graph-formatted data. In addition, divide-and-conquer

methods do not apply to anonymization of network data due to the fact that registers are

not separable, since removing or adding vertices and edges may affect other vertices and

edges as well as the properties of the network [94].

In order to overcome this issue, methods that add noise to the original data have

2
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been developed to hinder the re-identification processes. But the noise introduced by

the anonymization steps may also affect the data, reducing its utility for subsequent

data mining processes. Usually, the larger the data modification, the harder the re-

identification but also the less the data utility. Therefore, it is necessary to preserve the

integrity of the data (in the sense of retaining the information that we want to mine)

to ensure that the data mining step is not altered by the anonymization step. Among

different measures, for the anonymization step to be considered any useful and thus valid,

the analysis performed on the perturbed data should produce results as close as possible

to the ones the original data would have led to.

Information loss measures check the quantity of harm inflected to the original data by

the anonymization process, that is, it measures the amount of original information that

has been lost during the masking process. Information loss measures can be considered

for general or specific purposes. Considering an example of a social network, generic

information loss would mean that graph properties such as centrality or spectral mea-

sures are preserved in the anonymous data. Specific information loss measures refer to

a particular data analysis. For instance, clusters of nodes (i.e. users) are considered in

case of clustering-specific information loss measures. On the other hand, re-identification

(also known as disclosure risk) evaluates the privacy of the respondents against possible

malicious uses that attackers could do with the released information. Normally, these

measures are computed in several scenarios where the attacker has partial knowledge of

the original data. A trade-off between data privacy and data utility must be reached, and

this will be our main purpose of this thesis.

1.2 Objectives

In this work we will focus in two main topics. Firstly, we will focus our work on data

utility and information loss. It is an important concern to provide high quality data in

privacy-preserving processes. Secondly, we will also aim on privacy-preserving methods.

Considering different methodologies and strategies, we want to provide strong privacy

methods for medium and large networks. We detail our objectives as the following ones:

• Analyse the information loss measures in order to provide a framework to quantify

data utility and information loss occurred during the anonymization process.

• Provide a clear set of measures and metrics to estimate the data utility on real graph-

mining processes (for instance, on clustering and community detection processes).
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• Develop new methods and algorithms to achieve privacy on medium and large net-

works. These methods have to provide the necessary privacy level while keeping

the data utility as close as possible to the original data. The necessary trade-off

between data privacy and data utility is one of our main scopes.

1.3 Contributions

This work contributes in two independent but related lines of research. As we have men-

tioned previously, one refers to the data utility and information loss. Our contributions

on this area are the following ones:

• We study different generic information loss measures for graphs comparing such

measures to the clustering-specific ones. We want to evaluate whether the generic

information loss measures are indicative of the usefulness of the data for subsequent

data mining processes. The study and comparison is performed in Chapter 5 and it

was presented in [8a].

• We provide two metrics designed to reduce the information loss and improve the

data utility on anonymization processes in Chapter 6.

– The first one, shown in Section 6.2, quantifies the edge’s relevance and can

help us to preserve the most important edges in the graph. This metric leads

an edge modification process to remove the less important edges, keeping the

basic network structural and spectral properties. The results were presented

in [5a].

– The second one is based on the idea of coreness-preserving edge modification.

Instead of modifying any edge at random, we propose only do it when it does

not change the core numbers of both its endpoints and by extension the whole

core number sequence of a graph. By doing so, we preserve better the underly-

ing graph structure, retaining more data utility. This work is shown in Section

6.3 and it was presented in [10a].

The other line of research concerns methods and algorithms for privacy-preserving on

graph-formatted data. Our contributions here are the following ones:
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• We introduce a random-based algorithm, which uses the concept of neighbourhood

centrality to obfuscate the graph structure and lead the process to a lower informa-

tion loss and better data utility. This is described in Chapter 7 and the results of

this work were presented in [6a].

• Different methods for privacy-preserving based on k-anonymity are proposed in

Chapter 8.

– The first one is an evolutionary algorithm which creates a k-degree anonymous

version of the original graph. Section 8.2 provides the details of this algorithm,

which was presented in [1a] and [3a].

– The second algorithm is presented in Section 8.3. It uses the univariate micro-

aggregation concept to achieve k-degree anonymity on large, undirected and

unlabelled graphs. It was presented in [4a]. An extension of the algorithm was

presented in [9a]. In this work we use the concept of neighbourhood centrality

to reduce the information loss and improve the data utility on anonymous data.

– Finally, in Section 8.4 we introduce a comparison among some k-degree anony-

mous algorithms. This work was presented in [7a].

1.4 Document layout

This thesis is organized in three parts. The first one covers the preliminary concepts.

Chapter 2 describes some basic graph theory, measures and metrics for graphs, concepts

related to graph degeneracy, edge modification or perturbation, and the summary of the

datasets used in this work. An state of the art is summarized in Chapter 3, where we

review the most important privacy breaches, the methods developed to assure the privacy

in different scenarios, and some basic attacks as well as models to quantify the disclosure

risk on anonymous data.

The second part focuses on data utility. In Chapter 4 we define the framework for

computing the information loss on anonymization processes. We consider the generic

information loss measures but also the clustering-specific ones. Next, in Chapter 5 we

study the correlation between the generic and the clustering-specific information loss

measures. Lastly, two measures for reducing the information loss and improving the data

utility are proposed in Chapter 6.
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Then, the third part of this thesis stresses on methods and algorithms for privacy-

preserving on networks. A random-based algorithm is introduced in Chapter 7. Nonethe-

less, an important part of our work is related to k-anonymity methods. In Chapter 8 we

present two different approaches, one based on evolutionary algorithms and the other

based on univariate micro-aggregation, to achieve the k-anonymity model on graph-

formatted data. We also compare and summarize our methods with other well-know

methods, demonstrating that our methods improve the others in terms of data utility and

information loss.

Finally, we present the conclusions and our future research in Chapter 9.
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Part I

Preliminary concepts
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Chapter 2

Graph theory

This chapter introduces the basic concepts from graph theory used in the rest of the

work. In Section 2.1 we define the basic types of graphs and their main features, as well

as the notation used in the thesis. Next, in Section 2.2 we introduce the structural and

spectral graph metrics used in our experiments. Concepts related to graph degeneracy

are discussed in Section 2.3 and edge modification or perturbation methods are detailed

in Section 2.4. Lastly, Section 2.5 presents the datasets used in our tests and their main

properties.

2.1 Graph’s basic and notation

A graph is a pair G = (V,E) where V = {v1, v2, . . . , vn} is the set of vertices (also called

nodes) and E = {e1, e2, . . . , em} is the set of links (also called edges or arcs), where

ei = (vi, vj) : vi, vj ∈ V . An undirected link {vi, vj} ∈ E connects vi to vj and vice

versa. They are called edges and the graph is undirected. On the contrary, a directed

link (vi, vj) ∈ A connects vi to vj but not vice versa. They are called arcs and the graph

G = (V,A) is directed (also called digraph). We define n = |V | to denote the number of

vertices and m = |E| to denote the number of edges or m = |A| to denote the number of

arcs. Finally, an edge or arc connecting the same vertex, i.e, {vi, vi} or (vi, vi), is called

loop.

The set of 1-neighbourhood of vertex vi is denoted as Γ(vi) = {vj : {vi, vj} ∈ E} for

undirected networks. On directed networks we use Γ(vi)
−1 = {vj : (vj, vi) ∈ A} to define

the set of predecessor vertices and Γ(vi) = {vj : (vi, vj) ∈ A} for the set of successor

vertices. In the context of undirected networks, we can define the degree of a vertex vi

10
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Symbol Meaning

G = (V,E) Undirected graph

V = {v1, v2, . . . , vn} Set of vertices

n = |V | The number of vertices

E = {e1, e2, . . . , vm} The set of edges (undirected links)

{vi, vj} An edge (undirected link connecting vi to vj and vice versa)

G = (V,A) Directed graph (digraph)

A = {a1, a2, . . . , am} The set of arcs (directed links)

(vi, vj) An arc (directed link connecting vi to vj , but not vice versa)

m = |E| or m = |A| The number of edges or arcs

deg(vi) Degree value of node vi

degin(vi) and degout(vi) In-degree and out-degree values of vertex vi

deg(G) Average degree of graph G

degmax(G) Maximum degree of graph G

Γ(vi) and Γ−1(vi) Set of successor and predecessor vertices to vertex vi

d(vi, vj) Distance from vertex vi to vj

G̃ = (Ṽ , Ẽ) or G̃ = (Ṽ , Ã) Perturbed undirected or directed graph

Table 2.1: Summary of the basic notation.

in a graph G as the number of adjacent nodes (or edges), denoted by degG(vi) or simply

deg(vi) in the case of the whole graph (and not a subgraph). Note that deg(vi) = |Γ(vi)|
when loops are not allowed. On directed networks, the in-degree of vertex vi is the

number of its predecessors and it is denoted by degin(vi) = |Γ(vi)
−1|, while the out-degree

is the number of direct successors and it is denoted by degout(vi) = |Γ(vi)|. Moreover,

we denote the average degree of the network as deg(G) = 2m
n

and the maximum degree

as degmax(G) = max(deg(vi)) : vi ∈ V . We also use d(vi, vj) to denote the length of the

shortest path from vi to vj, meaning the number of edges (or arcs) along the path. A

briefly survey of notation can be found in Table 2.1.

A bipartite (or k-partite) network is a special graph where there are two types (or k

types) of entities, and an association only exists between two entities of different types.

They are defined as G = (V,W,E) where V and W are the sets of two types of vertices

and E is the set of edges E ⊆ V ×W . A multi-entity network (also called hyper-graph)

allows relations between more than two vertices. It is denoted by G(V, I, E), where I is

the entity set, each entity i ∈ I is an interaction between/among a subset of entities in

V , and E is the set of hyper-edges: for v ∈ V and i ∈ I, an edge {v, i} ∈ E represents

vertex v participates in interaction i. A multi-graph is a graph where repeated edges or



12 Graph theory

arcs are allowed. Finally, a pseudo-graph is a multi-graph with loops. Furthermore, all

types of graph can contain labels or weights in the edges or in the vertices. They are

called edge-labelled or edge-weighted graphs and vertex-labelled or vertex-weighted graphs.

We define a simple graph as an undirected and unlabelled graph without loops. We use

G = (V,E) and G̃ = (Ṽ , Ẽ) to indicate the original and a perturbed graph, respectively.

2.2 Measures and metrics

In our experiments we use several graph measures based on structural and spectral prop-

erties. In the rest of this section we review these measures. Vertex metrics evaluate each

vertex independently, giving a score for each vertex, while network metrics evaluate the

graph in its whole through a global score.

2.2.1 Vertex metrics

Vertex betweenness centrality (CB) measures the fraction of shortest paths that go through

each vertex. This measure indicates the centrality of a vertex based on the flow between

other vertices in the network. A vertex with a high value indicates that this vertex is

part of many shortest paths in the network, which will be a key vertex in the network

structure. Formally, we define the betweenness centrality of vi as:

CB(vi) =
1

n2

n∑
s,t=1
s 6=t

gist
gst

(2.1)

where gist is the number of shortest paths from vs to vt that pass through vi, and gst is

the total number of shortest paths from vs to vt.

The second centrality measure is closeness centrality (CC), which is described as the

inverse of the average distance to all accessible vertices. Closeness is an inverse measure

of centrality in which a larger value indicates a less central vertex, while a smaller value

indicates a more central vertex. We define the closeness centrality of vi as:

CC(vi) =
n∑n

j=1 d(vi, vj)
(2.2)

And the last centrality measure is degree centrality (CD), which evaluates the centrality

of each vertex associated with its degree, i.e, the fraction of vertices connected to it. A
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higher value indicates greater centrality in the graph. The degree centrality of node vi is

defined in Equation 2.3.

CD(vi) =
deg(vi)

m
(2.3)

Clustering coefficient (C) is a measure widely used in the literature. The clustering

of each vertex is the fraction of possible triangles that exist. For each node the clustering

coefficient is defined by:

C(vi) =
2tri(vi)

deg(vi)(deg(vi)− 1)
(2.4)

where tri(vi) is the number of triangles surrounding vertex vi.

Sub-graph centrality (SC) is used to quantify the centrality of vertex vi based on the

sub-graphs. Formally:

SC(vi) =
∞∑
k=0

P k
i

k!
(2.5)

where P k
i is the number of paths from vi to vi with length k.

2.2.2 Network metrics

Average distance (dist) (also known as average path length) is defined as the average of the

distances between each pair of vertices in the graph. It measures the minimum average

number of edges between any pair of vertices. Formally, it is defined as:

dist(G) =

∑n
i,j=1 d(vi, vj)(

n
2

) (2.6)

Diameter (D) is defined as the largest minimum distance between two vertices in the

graph, as Equation 2.7 shows.

D(G) = max(d(vi, vj)) ∀i 6= j (2.7)

Clustering coefficient (C) of a graph is the average clustering coefficient computed for

all of its vertices, as defined in Equation 2.8.

C(G) =
1

n

n∑
i=1

C(vi) (2.8)
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where C(vi) is the clustering coefficient for vi.

Harmonic mean of the shortest distance (h) is an evaluation of connectivity, similar

to the average distance or average path length. The inverse of the harmonic mean of the

shortest distance is also known as the global efficiency, and it is computed by Equation

2.9.

h(G) =

 1

n(n− 1)

n∑
i,j=1
i 6=j

1

d(vi, vj)


−1

(2.9)

Modularity (Q) indicates the goodness of the community structure. It is defined as

the fraction of all edges that lie within communities minus the expected value of the same

quantity in a network in which the vertices have the same degree, but edges are placed

at random without regard for the communities.

Transitivity (T ) is one type of clustering coefficient, which measures and characterizes

the presence of local loops near a vertex. It measures the percentage of paths of length

2 which are also triangles. Possible triangles are identified by the number of triads (two

edges with a shared node), as we can see in Equation 2.10.

T (G) =
3× (number of triangles)

(number of triads)
(2.10)

Sub-graph centrality (SC) is computed as the average score of sub-graph centrality in

each vertex of the graph. Formally:

SC(G) =
1

n

n∑
i=1

SC(vi) =
1

n

n∑
i=1

∞∑
k=0

P k
i

k!
(2.11)

2.2.3 Spectral measures

We also use two important eigenvalues of the graph spectrum, which are closely related

to many network characteristics [88]. The first one is the largest eigenvalue (λ1) of the

adjacency matrix A, where λi are the eigenvalues of A and λ1 ≥ λ2 ≥ . . . ≥ λn. The max-

imum degree, chromatic number, clique number, and extend of branching in a connected

graph are all related to λ1. The spectral decomposition of A is:

A =
n∑
i=1

λieie
T
i (2.12)
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where ei is the eigenvector corresponding to λi eigenvalue.

The second one is the second smallest eigenvalue (µ2) of the Laplacian matrix L, where

µi are the eigenvalues of L and 0 = µ1 ≤ µ2 ≤ . . . ≤ µm ≤ m. The eigenvalues of L encode

information about the tree structure of G. µ2 is an important eigenvalue of the Laplacian

matrix and can be used to show how good the communities separate, with smaller values

corresponding to better community structures. The Laplacian matrix is defined as:

L = D − A (2.13)

where Dn×n is a diagonal matrix with row-sums of A along the diagonal, and 0’s elsewhere.

2.2.4 Other metrics

The number of nodes, edges and average degree are not considered as parameters to assess

anonymization process, since most of the anonymization methods analysed in this work

keep these values constant.

2.3 Graph degeneracy

The concept of degeneracy for a graph was first introduced by Seidman in [75] along with

a description of its use as a graph decomposition technique.

Let k be an integer. A subgraph Hk = (V ′, E ′), induced by the subset of vertices

V ′ ⊆ V (and a fortiori by the subset of edges E ′ ⊆ E), is called a k-core if and only

if ∀vi ∈ V ′, degHk
(vi) ≥ k and Hk is the maximal subgraph with this property, i.e, it

cannot be augmented without losing this property. In other words, the k-core of a graph

corresponds to the maximal connected subgraph whose vertices are at least of degree k

within the subgraph.

From the k-core, we can then define the notion of k-shell, which corresponds to the

subgraph induced by the set of vertices that belong to the k-core but not the (k+ 1)-core

[17], denoted by Sk such that Sk = {vi ∈ G, vi ∈ Hk ∧ vi /∈ Hk+1}.
The core number of a vertex vi is the highest order of a core that contains this vertex,

denoted by core(vi). It is also referred as the shell index since the k-shell is exactly the

part of the k-core that will not survive in the (k+1)-core. We claim that it represents the

true degree of a node as opposed to its apparent degree. Basically, its value corresponds

to how cohesive one’s neighbourhood is and is a measure of user engagement in a network



16 Graph theory

[63]. Indeed, to belong to a k-core, a node needs at least k neighbours also meeting the

same requirements, thus forming a community of “close” nodes. Again, in the case of

a social network, the core number of a node would correspond to the number of close

friends the user has, his inner circle that would collapse if he were to leave (through the

cascading effect implied by the k-core condition – see the impact of the removal of node

D in the 3-shell of Figure 2.1 for instance).

Goltsev et al. in [39] defined the k-corona as the subgraph induced by the set of vertices

from the k-shell with exactly k neighbours, denoted by Ck hereinafter. Nodes from the k-

shell with more than k neighbours belong to Sk \ Ck. We introduce the notion of effective

degree as the degree of a node vi in the last core it belongs to, denoted by degeff (vi)

such that ∀vi ∈ Sk, degeff (vi) = degHk
(vi). It follows that Ck = {vi ∈ Sk, core(vi) =

degeff (vi)}.
We define the coreness (also known as core number sequence or shell index sequence)

as the sequence of each vertex core number by analogy with the degree sequence – this is

the terminology also adopted by the igraph library1.

The core of maximum order is called the main core and its core number is denoted by

core(G), which is also referred as the degeneracy of the graph. The set of all the k-cores

of a graph (from the 0-core to the main core) forms the so-called k-core decomposition of

the graph. Similarly, we can define the k-shell decomposition as the set of all k-shells.

Figure 2.1 illustrates the decomposition of a given graph G of 34 vertices and 36 edges

into disjoints shells and nested cores of order 0, 1, 2 and 3. Colour indicates the shell a

vertex belongs to: white for the 0-shell, light gray for the 1-shell, dark gray for the 2-shell

and black for the 3-shell (main core). In this example, core(A) = degeff (A) = deg(A) = 0,

core(B) = 1, degeff (B) = deg(B) = 2, core(D) = degeff (D) = 3, deg(D) = 6 and

core(G) = 3.

From all the concepts defined so far, we can derive the following properties:

∀vi ∈ G, core(vi) ≤ degeff (vi) ≤ deg(vi) (2.14)

∀k, Ck ⊆ Sk ⊆ Hk (2.15)

∀i 6= j, Si ∩ Sj = ∅ (2.16)

1http://igraph.org/python/doc/igraph.GraphBase-class.html

http://igraph.org/python/doc/igraph.GraphBase-class.html#coreness
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Figure 2.1: Illustration of a graph G and its decomposition in k-shells.

∀j > i, Hj ⊆ Hi (2.17)

Equation 2.14 relates the true, effective and apparent degrees. We also note in par-

ticular that neither the shells nor the cores need to form a single connected component

(e.g., in Figure 2.1, the 2-shell in dark gray is composed of four disconnected components

and the 2-core of only two).

Algorithms and complexity

The brute force approach for computing the coreness of a graph follows immediately from

the procedural definition. Each k-core, from the 0-core to the kmax-core, can be obtained

by iteratively removing all the nodes of degree less than k. Basically, for a given k, while

there are nodes that can be removed because they have less than k neighbours then do

so and re-check their neighbours (re-checking up to O(m) nodes overall). This leads to

an algorithm with complexity O(kmaxn+m) in time and O(n) space.

Thanks to Batagelj and Zaveršnik in [6], the core number sequence of an unweighted

graph can be more efficiently computed in linear time (O(n + m)) and space (O(n)). It

immediately follows that the effective degree sequence can also be computed in linear time

since for each node, when computing the degree, you only need to consider edges with

nodes of equal or higher core number.
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vi vj

vk vp

(a) Edge add/del

vi vj

vp

(b) Edge rotation

vi vj

vk vp

(c) Edge switch

Figure 2.2: Basic operations for edge modification.

2.4 Edge modification or perturbation methods

As we will see in Chapter 3, several privacy-preserving methods are based on edge modi-

fications (i.e. adding/removing edges) such as randomization and k-anonymity methods.

We define three basic edge modification processes to change the network’s structure by

adding and/or removing edges. These methods are the most basic ones, and they can

be combined in order to create complex combinations. We are interested in them since

they allow us to model, in a general and conceptual way, most of the privacy-preserving

methods based on edge-modification processes. In the following lines we will introduce

these basic methods, also called perturbation methods, due to the fact that they can model

the perturbation introduced in anonymous data during the anonymization process.

There exist three basic edge modifications illustrated in Figure 2.2. Dashed lines

represent existing edges to be deleted and solid lines the edges to be added. Node color

indicates whether a node changes its degree (dark grey) or not (light grey) after the edge

modification has been carried out. These are:

• Edge add/del is the most generic edge modification. It simply consists of deleting

an existing edge {vi, vj} ∈ E and adding a new one {vk, vp} 6∈ E. Figure 2.2a

illustrates this operation. It is usually referred as Random add/del or Rand add/del

when edges are added and deleted at random considering the entire edge set, without

restrictions or constraints. Same applies for all three edge modifications.

• Edge rotation occurs between three nodes vi, vj, vp ∈ V such that {vi, vj} ∈ E and

{vi, vp} 6∈ E. It is defined as deleting edge {vi, vj} and creating a new edge {vi, vp}
as Figure 2.2b illustrates. Note that edge switch would have been more appropriate

but it had already been defined in the relevant literature in the context of a “double

switch”.
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• Edge switch occurs between four nodes vi, vj, vk, vp ∈ V where {vi, vj}, {vk, vp} ∈ E
and {vi, vp}, {vk, vj} 6∈ E. It is defined as deleting edges {vi, vj} and {vk, vp} and

adding new edges {vi, vp} and {vk, vj} as Figure 2.2c illustrates.

As aforementioned, most of the anonymization methods rely on one (or more) of

these basic edge modification operations. It is true that some of them do not apply

edge modification over the entire edge set but this behavior is specific and different for

each anonymization method. We believe that this covers the basic behavior of edge-

modification-based methods for graph anonymization, even though each method has its

specific peculiarities.

For all perturbation methods, the number of nodes and edges remain the same but

the degree distribution changes for Edge add/del and Edge rotation while not for Edge

switch. Clearly, Edge add/del is the most general concept and all other perturbations can

be modelled as a particular case of it: Edge rotation is a sub case of Edge add/del and

Edge switch a sub case of Edge rotation.

All random-based anonymization methods are based on the concept of Edge add/del.

For example, the Random Perturbation algorithm [48], Spctr Add/Del [88] and Rand

Add/Del-B [87] use this concept to anonymize graphs. Most k-anonymity methods can

be also modeled through the Edge add/del concept [47, 94, 97]. Edge rotation is a

specification of Edge add/del and a generalization of Edge switch: at every edge rotation,

one node keeps its degree and the others change theirs. The UMGA algorithm [18] applies

this concept to anonymize the graph according to the k-degree anonymity concept. Other

methods are related to Edge switch: for instance, Rand Switch and Spctr Switch [88]

apply this concept to anonymize a graph. Additionally, Liu and Terzi in [59] also apply

this concept to the graph’s reconstruction step of their algorithm for k-degree anonymity.

2.5 Datasets

Several real data sets are used in our experiments. Although all these sets are undirected

and unlabelled, we have selected them because they have different graph properties. They

are the following ones:

• Zachary’s karate club [91] is a small social graph widely used in clustering and

community detection. It shows the relationship among 34 members of a karate

club.
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Network |V | |E| deg dist D k

Zachary’s karate club 34 78 4.588 2.408 5 1

Polbooks 105 441 8.40 3.078 7 1

American college football 115 613 10.661 2.508 4 1

Jazz musicians 198 2,742 27.697 2.235 6 1

Flickr 954 9,742 20.423 2.776 4 1

URV email 1,133 5,451 9.622 3.606 8 1

Polblogs 1,222 16,714 27.31 2.737 8 1

GrQc 5,242 14,484 5.53 6.048 17 1

Caida 26,475 53,381 4.032 3.875 17 1

Amazon 403,394 2,443,408 6.057 6.427 25 1

Yahoo! 1,878,736 4,079,161 2.171 7.423 26 1

Table 2.2: Networks used in our experiments and their basic properties.

• US politics book data (polbooks) [52] is a network of books about US politics pub-

lished around the 2004 presidential election and sold by the on-line bookseller Ama-

zon. Edges between books represent frequent co-purchasing of books by the same

buyers.

• American college football [37] is a graph of American football games among Division

IA colleges during regular season Fall 2000.

• Jazz musicians [38] is a collaboration graph of jazz musicians and their relationship.

• Flickr is a sub-graph collected from Flickr OSN. This data has been obtained from

[50], where a sampling process has been performed over original data provided by

[66]. Nodes represent the users and edges the relationship among them. Although

relations are directional in this network, we have eliminated the direction of the

edges to get an undirected graph.

• URV email [41] is the email communication network at the University Rovira i

Virgili in Tarragona (Spain). Nodes are users and each edge represents that at least

one email has been sent.

• Political blogosphere data (polblogs) [1] compiles the data on the links among US

political blogs.

• GrQc collaboration network [57] is from the e-print arXiv and covers scientific col-

laborations between authors papers submitted to General Relativity and Quantum
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Cosmology category.

• Caida [56] is an undirected network of autonomous systems of the Internet connected

with each other from the CAIDA project, collected in 2007.

• Amazon [55] is the network of items on Amazon that have been mentioned by Ama-

zon’s “People who bought X also bought Y” function. If a product vi is frequently

co-purchased with product vj, the network contains an edge from vi to vj.

• Yahoo! Instant Messenger friends connectivity graph (version 1.0) [86] contains a

non-random sample of the Yahoo! Messenger friends network from 2003. An edge

between two users indicates that at least one user is a contact of the other (the

direction of the contact relationship is ignored, producing an undirected graph).

Table 2.2 shows a summary of the datasets’ main features, including the number of

nodes (|V |), number of edges (|E|), average degree (deg), average distance (dist), diameter

(D) and default k-degree anonymity value.



Chapter 3

Privacy and risk assessment

This chapter introduces the privacy-preserving (or anonymization) scenario and problem

definition on networks in Section 3.1. Next, in Section 3.2 we present the main privacy

breaches and then we review the state of the art of privacy-preserving techniques, in

Section 3.3. Lastly, we finish this chapter in Section 3.4 discussing the re-identification

and risk assessment methods.

3.1 Problem definition

Currently, large amounts of data are being collected on social and other kinds of networks,

which often contain personal and private information of users and individuals. Although

basic processes are performed on data anonymization, such as removing names or other

key identifiers, remaining information can still be sensitive, and useful for an attacker to

re-identify users and individuals. To solve this problem, methods which introduce noise

to the original data have been developed in order to hinder the subsequent processes

of re-identification. A natural strategy for protecting sensitive information is to replace

identifying attributes with synthetic identifiers. We refer to this procedure as simple or

näıve anonymization. This common practice attempts to protect sensitive information by

breaking the association between the real-world identity and the sensitive data.

Figure 3.1a shows a toy example of a social network, where each vertex represents

an individual and each edge indicates the friendship relation between them. Figure 3.1b

presents the same graph after a näıve anonymization process, where vertex identifiers have

been removed and the graph structure remains the same. One can think users’ privacy

is secure, but an attacker can break the privacy and re-identify a user on the anonymous

22
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Figure 3.1: Näıve anonymization of a toy network, where G is the original graph, G̃ is
the näıve anonymous version and G̃Dan is Dan’s 1-neighbourhood.

graph. For instance, if an attacker knows that Dan has four friends and two of them are

friends themselves, then he can construct the 1-neighbourhood of Dan, depicted in Figure

3.1c. From this sub-graph, the attacker can uniquely re-identify user Dan on anonymous

graph. Consequently, user’s privacy has been broken by the attacker.

Two types of attacks have been proposed which show that identity disclosure would

occur when it is possible to identify a sub-graph in the released graph in which all the

vertex identities are known [4]. In the active attack an adversary creates k accounts

and links them randomly, then he creates a particular pattern of links to a set of m

other users that he is interested to monitor. The goal is to learn whether two of the

monitored vertices have links between them. When the data is released, the adversary

can efficiently identify the sub-graph of vertices corresponding to his k accounts with

high probability. With as few a k = O(log(n)) accounts, an adversary can recover the

links between as many as m = O(log2(n)) vertices in an arbitrary graph of size n. The

passive attack works in a similar manner. It assumes that the exact time point of the

released data snapshot is known, and that there are k colluding users who have a record

of what their links were at that time point. Other attacks on naively anonymized network

data have been developed, which can re-identify vertices, disclose edges between vertices,

or expose properties of vertices (e.g., vertex features). These attacks include: matching

attacks, which use external knowledge of vertex features [59] [97] [94]; injection attacks,

which alter the network prior to publication [4]; and auxiliary network attacks, which

use publicly available networks as an external information source [69]. To solve these

problems, methods which introduce noise to the original data have been developed in

order to hinder the subsequent processes of re-identification.
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3.2 Privacy breaches

Zhou and Pei [94] noticed that to define the problem of privacy preservation in publishing

social network data, we need to formulate the following issues: firstly, we need to identify

the sensitive information to be preserved. Secondly, we need to model the background

knowledge that an adversary may use to attack the privacy. And thirdly, we need to

specify the usage of the published social network data so that an anonymization method

can try to retain the utility as much as possible while the privacy information is fully

preserved.

Regarding to the privacy information to be preserved, three main categories of privacy

breaches are pointed out in social networks:

1. Identity disclosure occurs when the identity of an individual who is associated with

a vertex is revealed.

2. Link disclosure occurs when the sensitive relationship between two individuals is

disclosed.

3. Attribute disclosure which seeks not necessarily to identify a vertex, but to reveal

sensitive labels of the vertex. The sensitive data associated with each vertex is

compromised.

Identity disclosure and link disclosure apply on all types of networks. However, at-

tribute disclosure only applies on vertex-labelled networks. In addition, link disclosure

can be considered a special type of attribute disclosure, since edges can be seen as a vertex

attributes. Identity disclosure often leads to attribute disclosure. Identity disclosure oc-

curs when an individual is identified within a dataset, whereas attribute disclosure occurs

when sensitive information that an individual wished to keep private is identified. In this

thesis, we will focus on identity disclosure.

3.3 Privacy-preserving methods

From a high level view, there are three general families of methods for achieving network

data privacy. The first family encompasses “graph modification” approaches. These

methods first transform the data by edge or vertex modifications (adding and/or deleting)

and then release the perturbed data. The data is thus made available for unconstrained

analysis.
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The second family encompasses “generalization” or “clustering-based” approaches.

These methods can be essentially regarded as grouping vertices and edges into partitions

called super-vertices and super-edges. The details about individuals can be hidden prop-

erly, but the graph may be shrunk considerably after anonymization, which may not be

desirable for analysing local structures. The generalized graph, which contains the link

structures among partitions as well as the aggregate description of each partition, can still

be used to study macro-properties of the original graph. Even if it holds the properties

of the original graph, it does not have the same granularity. More so than with other

anonymization algorithms, the generalization method decreases the utility of the anony-

mous graph in many cases, while increasing anonymity. Hay et al. [47] applied structural

generalization approaches using the size of a partition to ensure node anonymity. Zheleva

and Getoor [93] focus on the problem of preserving the privacy of sensitive relationships

in graph data, i.e, link disclosure. Nerggiz and Clifton [70] presented a methodical ap-

proach to evaluate clustering-based k-anonymity algorithms using different metrics and

attempting to improve precision by ignoring restrictions on generalisation approaches.

Campan and Truta [15] [16] worked on undirected networks with labelled-vertices and

unlabelled-edges. The authors developed a new method, called SaNGreeA, designed to

anonymize structural information. It clusters vertices into multiple groups and then, a

label for each partition is assigned with summary information (for instance, the number

of nodes in the partition). Then, Ford et al. [35] presented a new algorithm, based on

SaNGreeA, to enforce p-sensitive k-anonymity on social network data based on a greedy

clustering approach. He et al. [49] utilized a similar anonymization method that parti-

tions the network in a manner that preserves as much of the structure of the original social

network as possible. Cormode et al. [25] studied the anonymization problem on bipartite

networks, focusing on the pharmacy example (customers buy products). The association

between two nodes (e.g., who bought what products) is considered to be private and needs

to be protected while properties of some entities (e.g., product information or customer

information) are public. Other interesting works can be found in [49, 8, 77, 76].

Finally, the third family encompasses “privacy-aware computation” methods, which

do not release data, but only the output of an analysis computation. The released output

is such that it is very difficult to infer from it any information about an individual input

datum. For instance, differential privacy [28] is a well-known privacy-aware computation

approach. Differential privacy imposes a guarantee on the data release mechanism rather

than on the data itself. It emphasizes that the structure of allowable queries on a statistical

database must be designed such that a malicious attacker with the ability to query the
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database, but without direct access to the full database, cannot determine the unique

characteristics of a specific individual. Hence, the goal is to provide statistical information

about the data while preserving the privacy of users. Dwork in [29] uses differential

privacy to prevent the de-anonymization of social network users while allowing for useful

information via queries to the database. McSherry and Mironov [64] apply differential

privacy methods to network recommendation systems. Mironov et al. [65] show that the

computational power of an adversary should be considered when designing differential

privacy systems since this allows for a bounding mechanism that results in systems more

appropriate to real-world attacker resources. Other interesting works can be found in

[32, 45, 44] and interesting differential privacy summaries in [46, 30, 31].

Some interesting privacy-preserving surveys, including concepts, methods and algo-

rithms from all these three families we have commented above, can be found in [67, 46,

96, 27].

In this thesis we will focus on graph modification approaches, since they allow us

to release the entire network for unconstrained analysis, providing the widest range of

applications for data mining and knowledge extraction. Graph modification approaches

anonymize a graph by modifying (adding and/or deleting) edges or vertices in the graph.

These modifications can be made at randomly, and we will refer to them as randomization,

random perturbation or obfuscation methods, or in order to fulfil some desired constraints,

and we will call them constrained perturbation methods.

3.3.1 Random perturbation

These methods are based on adding random noise in original data. They have been well

investigated for structured or relational data. Naturally, edge randomization can also be

considered as an additive-noise perturbation. Notice that the randomization approaches

protect against re-identification in a probabilistic manner.

Naturally, graph randomization techniques can be applied removing some true edges

and/or adding some false edges. Two natural edge-based graph perturbation strategies

are: firstly, Rand add/del method randomly adds one edge followed by deleting another

edge. This strategy preserves the number of edges in the original graph. Secondly, Rand

switch method randomly switches a pair of existing edges {vi, vj} and {vk, vp} to {vi, vp}
and {vk, vj}, where {vi, vp} and {vk, vj} do not exist in the original graph. This strategy

preserves the degree of each vertex and the number of edges.

Hay et al. [48] proposed a method, called Random perturbation, to anonymize un-
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labelled graphs based on randomly removing p edges and then randomly adding p fake

edges. The set of vertices does not change and the number of edges is preserved in the

anonymous graph. Ying and Wu [88] studied how different randomization methods (based

on Rand add/del and Rand switch) affect the privacy of the relationship between vertices.

The authors also developed two algorithms specifically designed to preserve spectral char-

acteristics of the original graph, called Spctr Add/Del and Spctr Switch. An interesting

comparison between a randomization and a constrained-based method, in terms of identity

and link disclosure, is presented by Ying et al. [87]. In addition, the authors developed a

variation of Random perturbation method, called Blockwise Random Add/Delete strategy

(or simply Rand Add/Del-B). This method divides the graph into blocks according to the

degree sequence and implements modifications (by adding and removing edges) on the

vertices at high risk of re-identification, not at random over the entire set of vertices.

More recently, Bonchi et al. [11, 12] offered a new information-theoretic perspective

on the level of anonymity obtained by random methods. The authors make an essential

distinction between image and pre-image anonymity and propose a more accurate quantifi-

cation, based on entropy, of the anonymity level that is provided by the perturbed graph.

They stated that the anonymity level quantified by means of entropy is always greater

or equal than the one based on a-posteriori belief probabilities. In addition, the authors

introduced a new random-based method, called Sparsification, which randomly removes

edges, without adding new ones. Their method is compared on three large datasets, show-

ing that randomization techniques for identity obfuscation may achieve meaningful levels

of anonymity while still preserving features of the original graph. The extended version

of the work in [12] also studied the resilience of obfuscation by random sparsification to

adversarial attacks that are based on link prediction. Finally, the authors showed how the

randomization method may be applied in a distributed setting, where the network data is

distributed among several non-trusting sites, and explain why randomization is far more

suitable for such settings than other existing approaches.

A new interesting anonymization approach is presented by Boldi et al. [10] and it

is based on injecting uncertainty in social graphs and publishing the resulting uncertain

graphs. While existing approaches obfuscate graph data by adding or removing edges

entirely, they proposed to use a perturbation that adds or removes edges partially. From

a probabilistic perspective, adding a non-existing edge {vi, vj} corresponds to changing

its probability p({vi, vj}) from 0 to 1, while removing an existing edge corresponds to

changing its probability from 1 to 0. In their method, instead of considering only binary

edge probabilities, they allow probabilities to take any value in range [0,1]. Therefore,
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each edge is associated to an specific probability in the uncertain graph.

Other approaches are based on generating new random graphs that share some de-

sired properties with the original ones, and releasing one of this new synthetic graphs.

For instance, these methods consider the degree sequence of the vertices or other struc-

tural graph characteristics like transitivity or average distance between pairs of vertices

as important features which the anonymization process must keep as equal as possible on

anonymous graphs. Usually, these methods define Gd,S as the space of networks which:

(1) keep the degree sequence d and (2) preserve some properties S within a limited range.

Therefore, Gd,S contains all graphs which satisfy both properties. For example, an algo-

rithm is proposed for generating synthetic graphs in Gd,S with equal probability in [89]

and a method that generates a graph with high probability to keep properties close to the

original ones in [42].

3.3.2 Constrained perturbation

Another widely adopted strategy of graph modification approaches consists on edge ad-

dition and deletion to meet some desired constraints. Probably, the k-anonymity is the

most well-known model in this group. Even though, other models and extensions have

been developed.

k-anonymity

The k-anonymity model was introduced in [74, 81] for the privacy preservation on struc-

tured or relational data. Formally, the k-anonymity model is defined as: letRT (A1, . . . , An)

be a table and QIRT be the quasi-identifier associated with it. RT is said to satisfy k-

anonymity if and only if each sequence of values in RT [QIRT ] appears with at least k

occurrences in RT [QIRT ]. The k-anonymity model indicates that an attacker can not

distinguish between different k records although he manages to find a group of quasi-

identifiers. Therefore, the attacker can not re-identify an individual with a probability

greater than 1
k
.

Some concepts can be used as quasi-identifiers to apply k-anonymity on graph format-

ted data. A widely option is to use the vertex degree as a quasi-identifier. Accordingly,

we assume that the attacker knows the degree of some target vertices. If the attacker

identifies a single vertex with the same degree in the anonymous graph, then he has

re-identified this vertex. That is, deg(vi) 6= deg(vj) ∀j 6= i. These methods are called

k-degree anonymity, and they are based on modifying the graph structure (by adding and
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removing edges) to ensure that all vertices satisfy k-anonymity for their degree. In other

words, the main objective is that all vertices have at least k− 1 other vertices sharing the

same degree. Liu and Terzi [59] developed a method that adds and removes edges from

the original graph G = (V,E) in order to construct a new anonymous graph G̃ = (Ṽ , Ẽ)

which is k-degree anonymous, V = Ṽ and E ∩ Ẽ ≈ E.

Instead of using a vertex degree, Zhou and Pei [94] consider the 1-neighbourhood

sub-graph of the objective vertices as a quasi-identifier. For a vertex vi ∈ V , vi is k-

anonymous in G if there are at least k − 1 other vertices v1, . . . , vk−1 ∈ V such that

Γ(vi),Γ(v1), . . . ,Γ(vk−1) are isomorphic. Then, G is called k-neighbourhood anonymous if

every vertex is k-anonymous considering the 1-neighbourhood. They proposed a greedy

method to generalize vertices labels and add fake edges to achieve k-neighbourhood

anonymity. The authors consider the network as a vertex-labelled graph G = (V,E, L,L),

where V is the vertex set, E ⊆ V × V is the edge set, L is the label set and L is the

labelling function L : V → L which assigns labels to vertices. The main objective is to

create an anonymous network G̃ which is k-anonymous, V = Ṽ , E = E ∪ Ẽ, and G̃ can

be used to accurately answer aggregate network queries. More recently, an extended and

reviewed version of the paper was presented in [95], demonstrating that the neighbour-

hood anonymity for vertex-labelled graphs is NP-hard. However, Tripathy and Panda

[82] noted that their algorithm could not handle the situations in which an adversary

has knowledge about vertices in the second or higher hops of a vertex, in addition to

its immediate neighbours. To handle this problem, they proposed a modification to the

algorithm to handle such situations.

Other authors modelled more complex adversary knowledge and used them as quasi-

identifiers. For instance, Hay et al. [47] proposed a method named k-candidate anonymity.

In this method, a vertex vi is k-candidate anonymous with respect to question Q if there

are at least k−1 other vertices in the graph with the same answer. Formally, |candQ(vi)| ≥
k where candQ(vi) = {vj ∈ V : Q(vi) = Q(vj)}. A graph is k-candidate anonymous with

respect to question Q if all of its vertices are k-candidate with respect to question Q.

Zhou et al. [97] and Zhou and Pei [95] consider all structural information about a target

vertex as quasi-identifier and propose a new model called k-automorphism to anonymize

a network and ensure privacy against this attack. They define a k-automorphic graph

as follows: (a) if there exist k − 1 automorphic functions Fa(a = 1, . . . , k − 1) in G, and

(b) for each vertex vi in G, Fa1(vi) 6= Fa2(1 ≤ a1 6= a2 ≤ k − 1), then G is called a

k-automorphic graph. The key point is determining the automorphic functions. In their

work, the authors proposed three methods to develop these functions: graph partitioning,
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block alignment and edge copy. K-Match algorithm (KM) was developed from these three

methods and allows us to generate k-automorphic graphs from the original network.

Chester et al. [20, 21] permit modifications to the vertex set, rather than only to

the edge set, and this offers some differences with respect to the utility of the released

anonymous graph. The authors only created new edges between fake and real vertices or

between fakes vertices. They studied both vertex-labelled and unlabelled graphs. Under

the constraint of minimum vertex additions, they show that on vertex-labelled graphs, the

problem is NP-complete. For unlabelled graphs, they give a near-linear O(nk) algorithm.

Stokes and Torra [79] developed methods based on matrix decomposition using the first

p eigenvalues of the adjacency matrix or the first p values of the diagonal of the singular

value decomposition of the adjacency matrix. A second set of methods use concepts

related to graph partitioning. The authors presented two methods for k-anonymity using

the Manhattan distance and the 2-path similarity for computing the clusters which group

vertices into partitions of k or more elements.

Singh and Zhan presented in [78] a measure, called topological anonymity, to quantify

the level of obscurity in the structure of a connected network based on vertex degree and

clustering coefficient, and they proved that scale-free networks are more resilient to pri-

vacy breaches. Related to this work, Nagle et al. in [68] proposed a local anonymization

algorithm based on k-degree anonymity that focuses on obscuring structurally important

vertices that are not well anonymized, thereby reducing the cost of the overall anonymiza-

tion procedure.

Lu et al. in [60] proposed a greedy algorithm, called Fast k-degree anonymization

(FKDA), that anonymizes the original graph by simultaneously adding edges to the orig-

inal graph and anonymizing its degree sequence. Their algorithm is based on Liu and

Terzi’s work in [59] and it tries to avoid testing the realizability of the degree sequence,

which is a time consuming operation. The authors tested their algorithm and compared

to Liu and Terzi’s one.

The methods we have presented above works with simple and undirected graphs, but

other types of graph are also considered in the literature. Bipartite graphs allows us to

represent rich interactions between users on a social network. A rich-interaction graph

is defined as G = (V, I, E) where V is the set of users, I is the set of interactions and

E ⊆ V × I. All vertices adjacent to specific is ∈ I shares an interaction, i.e, for vj ∈ V :

(vj, is) ∈ E all vertices interact on the same is. Lan et al. [53] presented an algorithm

to meet k-anonymity through automorphism on bipartite networks, called BKM (Bigraph

k-automorphism match). They discuss information loss, of both descriptive and structural
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data, through quasi-identifier generalisations using two measures for both data, namely

Normalised Generalised Information Loss (NGIL) and Normalised Structure Information

Loss (NSIL) respectively. Wu et al. [85] considered the privacy preserving publication

against sensitive edges identification attacks in social networks, which are expressed using

bipartite graphs. Three principles against sensitive edge identification based on security-

grouping theory [76] were presented: positive one-way (c1,c2)-security algorithm, negative

one-way (c1,c2)-security algorithm and two-way (c1,c2)-security algorithm. Based on these

principles, a clustering bipartite algorithm divides the simple anonymous bipartite graph

into n blocks, and then clusters the blocks into m groups which includes at least k blocks,

and form the morphic graph with an objective function of the minimum anonymous cost

(computed by the difference between original an anonymous vertices and edges).

Edge-labelled networks present specific challenges in terms of privacy and risk disclo-

sure. Kapron et al. [51] used edge addition to achieve anonymization on social networks

modelled as an edge-labelled graph, where the aim is to make a pre-specified subset of

vertices k-label sequence anonymous with the minimum number of edge additions. Here,

the label sequence of a vertex is the sequence of labels of edges incident to it. Additionally,

Das et al. [26] considered edge weight anonymization in social graphs. Their approach

builds a linear programming (LP) model which preserves properties of the graph that

are expressible as linear functions of the edge weights. Such properties are related to

many graph-theoretic algorithms (shortest paths, k-nearest neighbours, minimum span-

ning tree and others). LP solvers can then be used to find solutions to the resulting

model where the computed solution constitutes the weights in the anonymized network.

k-anonymity model is applied to edge weight, so an adversary can not identify an edge

with a probability greater than 1
k

based on edge weight knowledge.

Beyond k-anonymity

Other models that extend the concept of k-anonymity were proposed. For instance, Feder

et al. [33] called a graph (k, `)-anonymous if for every vertex in the graph there exist at

least k other vertices that share at least ` of its neighbours. Given k and ` they defined two

variants of the graph-anonymization problem that ask for the minimum number of edge

additions to be made so that the resulting graph is (k, `)-anonymous. The authors showed

that for certain values of k and ` the problem is polynomial-time solvable, while for others

it is NP-hard. Their algorithm solves optimally the weak (2, 1)-anonymization problem

in linear time and the strong (2, 1)-anonymization problem can be solved in polynomial
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time. The complexity of minimally obtaining weak and strong (k, 1)-anonymous graphs

remains open for k = 3, 4, 5, 6 while is NP-hard for (k, 1)-anonymization problem when

k > 6.

Stokes and Torra in [80] defined a generalisation of k-anonymity (for both regular and

non-regular graphs) by introducing n-confusion as a concept to anonymise a database ta-

ble. They also redefined a (k,`)-anonymous graph and presented various k-anonymization

algorithms.

Finally, some authors proposed to anonymize only a subset of vertices, instead of

all vertex set. The method is called k-subset anonymity. The goal is to anonymize a

given subset of nodes, while adding the fewest possible number of edges. Formally, the

k-degree-subset anonymity problem is defined as given an input graph G = (V,E) and

an anonymizing subset X ⊆ V , produce an output graph G̃ = (V,E ∪ Ẽ) such that X

is k-degree-anonymous and |Ẽ| is minimized. Chester et al. [19] introduced the concept

of k-subset-degree anonymity as a generalization of the notion of k-degree-anonimity.

Additionally, they presented an algorithm for k-subset-degree anonymity which is based on

using the degree constrained sub-graph satisfaction problem. The output of the algorithm

is an anonymous version of G where enough edges have been added to ensure that all the

vertices in X have the same degree as at least k − 1 others.

Attribute disclosure

These aforementioned works all protect against identity disclosure. Regarding attribute

disclosure, Machanavajjhala et al. [62] introduced for tabular data the notion of `-

diversity, wherein each k-anonymous equivalence class requires ` different values for each

sensitive attribute. In this way, `-diversity looks to not only protect identity disclosure,

but was also the first attempt to protect against attribute disclosure. Zhou and Pei

[95] adapt the work of Machanavajjhala et al. by defining `-diversity for graphs. They

proposed a method to achieve the `-diversity on edge-labelled networks.

However, even l-diversity can experience privacy breaches under the skewness attack

or similarity attack [58]. To address the shortcomings of `-diversity, Li et al. [58]

introduced t-closeness, which requires that the distribution of attribute values within

each k-anonymous equivalence class needs to be close to that of the attribute’s distri-

bution throughout the entire table. Chester et al. [22] demonstrated that for general,

vertex-labelled graphs, the vertex label sequence-based anonymization, and consequently

t-closeness, is NP-complete.
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More recently, Chester and Srivastava [23] argued that t-closeness cannot be clearly

applied to social networks. They proposed a notion of data anonymization called α-

proximity that protects against attribute disclosure attacks, and provide an algorithm

that modifies a vertex-labelled graph by adding new fake edges, so as to ensure it is

α-proximal.

Complexity

Kapron et al. [51] analysed privacy issues for arbitrary and bipartite graphs. For arbitrary

graphs, they show NP-hardness and use this result to prove NP-hardness for neighbour-

hood anonymity, i-hop anonymity, and k-symmetry anonymity. For bipartite graphs,

they show that k-degree anonymity of unlabelled bipartite graphs is in P for all k ≥ 2.

Moreover, the authors show that k-label sequence anonymity, a label sequence containing

all the labels of the edges adjacent to it, is in P for k = 2 but it is NP-hard for k ≥ 3 for

labelled bipartite graphs.

Chester et al. [22] studied the complexity of anonymizing different kind of networks

(labelled, unlabelled and bipartite). For general, edge-labelled graphs, label sequence

subset anonymization (and thus table graph anonymization, k-neighbourhood anonymity,

i-hop anonymity, and k-symmetry) are NP-complete for k ≥ 3. For bipartite, edge-

labelled graphs, label sequence subset anonymization is in P for k = 2 and is NP-complete

for k ≥ 3. For bipartite, unlabelled graphs, degree-based subset anonymization is in P

for all values of k. And for general, vertex-labelled graphs, the authors show that vertex

label sequence-based anonymization, and consequently t-closeness, is NP-complete.

3.4 Re-identification and risk assessment

Re-identification and risk assessment are important tasks to evaluate the quality of the

anonymous data. Determining the knowledge of the adversary is the main problem. Thus,

considering a variety of knowledges of the adversary, different methods for assessing the

re-identification and risk assessment have been developed.

3.4.1 Re-identification

In cryptanalysis, the authors distinguish between two basic types of attacks, and also it

may be an interesting basic classification for network social attacks, although it is also

valid for other types of networks:
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• Active attacks: an adversary actively tries to affect the data to make it easier

to decipher or decode. In the case of anonymized social networks, an adversary

in an active attack tries to compromise privacy by strategically creating new user

accounts and links before the anonymized network is released, so that these new

vertices and edges will then be present in the anonymized version.

• Passive attacks: an adversary simply observes data as it is presented. In the case

of anonymized social networks, passive attacks are carried out by individuals who

try to learn the identities of vertices only after the anonymized network has been

released.

Backstrom et al. [4] presented both active and passive attacks to anonymized social

networks. The first one is walk-based attack, in which an adversary chooses an arbitrary

set of users whose privacy it wishes to violate, creates a small number of new user ac-

counts with edges to these targeted users, and creates a pattern of links among the new

accounts with the goal of making it stand out in the anonymized graph structure. The

adversary then efficiently finds these new accounts together with the targeted users in the

anonymized network that is released. At a theoretical level, the creation of O(
√
log(n))

nodes by the attacker in a network with n vertices can begin compromising the privacy of

arbitrary targeted vertices, with high probability for any network. The recovery algorithm

uses a search over short walks in anonymized network. They find that on a network with

4.4 million vertices, the creation of 7 nodes by an attacker (with degrees comparable to

those of typical nodes in the network) can compromise the privacy of roughly 2,400 edge

relations on average. The second one is cut-based attack, in which users of the system do

not create any new vertices or edges, they simply try to find themselves in the released

network, and from this to discover the existence of edges among users to whom they are

linked. In the same network with 4.4 million of vertices, the authors find that for the

vast majority of users, it is possible for them to exchange structural information with

a small coalition of their friends, and subsequently uniquely identify the sub-graph on

this coalition in the ambient network. Using this, the coalition can then compromise the

privacy of edges among pairs of neighbouring nodes.

Ying and Wu [90] designed an attack based on the probability of an edge exists and the

similitude between pairs of vertices on anonymous graph. The attack is modelled using

matrix operations: Ã = A + E where Ã and A are the adjacency matrix of anonymous

and original graphs, and E is the perturbation matrix, where each position represents:
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eij =


1 edge (i, j) is created

−1 edge (i, j) is deleted

0 others

In structured or relation data, some methods allow an attacker to reconstruct the

original matrix (A) from the anonymized matrix (Ã) and some a priori knowledge about

the perturbation method applied. Some authors are working to apply these methods to

network data, but up to now, the results have not been good enough.

Ying and Wu [90] investigated how well the edge randomization approach via addi-

tion/deletion can protect privacy of sensitive links. The authors have conducted theo-

retical analysis and empirical evaluations to show that vertex proximity measures can

be exploited by attackers to enhance the posterior belief and prediction accuracy of the

existence of sensitive links among vertices with high similarity values.

Even fulfilling some privacy models, an attacker can succeed on acquiring private

information. For instance, a privacy leakage can occur on a k-degree anonymous network

and user’s privacy information can be revealed to an attacker. For example, we suppose

an adversary who wants to know if there is a relation (edge) between users (vertices) v1

and v2. The k-degree anonymity model does not allow an attacker to uniquely re-identify

each vertex. Instead, he will obtain two sets VG1 where vi ∈ VG1 ⇔ deg(vi) = deg(v1)

and VG2 where vi ∈ VG2 ⇔ deg(vi) = deg(v2). If there are edges between each vertex on

VG1 and each vertex on VG2, an adversary can infer, with absolutely confidence, that a

relation exists between vertices v1 and v2, although he is not able to re-identify each user

in group VG1 and VG2. So, even fulfilling the k-degree anonymity model a link disclosure

can occur.

3.4.2 Risk assessment: vertex refinement queries

Hay et al. [48, 47] proposed three models of adversary knowledge: vertex refinement

queries, sub-graph knowledge queries and hub fingerprint centrality. In this work we will

focus on vertex refinement queries.

Vertex refinement queries are used to model the knowledge of the adversary and also

to analyse the network in terms of k-anonymity. This class of queries, with increasing

attack power, models the local neighbourhood structure of a vertex in the network. The

weakest knowledge query, H0(vj), simply returns the label of the vertex vj. The queries
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Fred

Alice

Dave

Greg

Bob

Ed

Harry

Carol

Vertex ID H0 H1 H2

Alice ε 1 {4}
Bob ε 4 {1, 1, 4, 4}
Carol ε 1 {4}
Dave ε 4 {2, 4, 4, 4}
Ed ε 4 {2, 4, 4, 4}
Fred ε 2 {4, 4}
Greg ε 4 {2, 2, 4, 4}
Harry ε 2 {4, 4}

Figure 3.2: Vertex refinement queries example (taken from [48]).

are successively more descriptive: H1(vj) returns the degree of vj, H2(vj) returns the

list of each neighbours’ degree, and so on. The queries can be defined iteratively, where

Hi(vj) returns the multi-set of values which are the result of evaluating Hi−1 on the set

of vertices adjacent to vj, as shown in Equation 3.1.

Hi(vj) = {Hi−1(v1),Hi−1(v2), . . . ,Hi−1(vm)} (3.1)

where v1, v2, . . . , vm are the vertices adjacent to vj.

An equivalence relation on vertices is defined for each query Hi in the natural way.

Formally, two vertices vi and vj in a graph are equivalent relative toHi, denoted vi ≡Hi
vj,

if and only if Hi(vi) = Hi(vj). Then, for an attacker with knowledge that can be modelled

as a query Hi, all equivalent vertices to Hi are indistinguishable. Formally if vi, vj ∈ V
and vi ≡Hi

vj, then candHi
(vi) = candHi

(vj).

A candidate set candHi
for a query Hi is a set of all vertices with the same value of

Hi. Thereby, the cardinality of a candidate set for Hi is the number of indistinguishable

vertices under Hi. Note that if the cardinality of the smallest candidate set under H1 is

k, the probability of re-identification is 1
k
. Hence, the k-degree anonymity value is k.

candH1 = {vj ∈ V : H1(vi) = H1(vj)} (3.2)

Example 3.1 Figure 3.2 presents a toy example network and its values of H0, H1 and

H2. As we can see, query H0 answers with label ε to any vertex, indicating that the network

has no vertex labels. Query H1 indicates the number of adjacent vertices, i.e., the degree,

and finally query H2 answers with the set of adjacent vertices. In the example, Bob, Dave,

Ed and Greg are equivalent relative to ≡H1, while only Dave ≡H2 Ed. Therefore, if an
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adversary has knowledge which can be modelled as Hi, all vertices equivalent relative to

Hi are indistinguishable for him.

However, the main problem of this approach is that it can not consider adversary’s

partial information. That is, using this approach an adversary with partial knowledge

of the adjacent vertices to a target vertex can not be modelled. Sub-graph knowledge

queries has been developed to overcome this limitation.
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Chapter 4

Data utility

This chapter introduces data utility and information loss related concepts. After an in-

troduction in Section 4.1, we will proceed to discuss the generic information loss measures

in Section 4.2. And lastly, Section 4.3 proposes the specific information loss measures,

specifically the clustering-based information loss measures.

4.1 Related work

Usually, authors use some measures from graph theory and compare the values obtained

by the original and the anonymous data in order to quantify the noise introduced by the

anonymization process. When we quantify the information loss as described above, we

talk about generic information loss measures. It is important to emphasize that these

generic information loss measures only evaluate structural and spectral changes between

original and anonymous data. That is, these measures do not evaluate the data mining

processes on anonymous data, and as such, they are general or application-independent.

The analysis of specific and application-dependent quality measures is an open problem.

Several authors have been defining and using information loss measures to evaluate

the perturbation on anonymous released data, and here we will review some of them. Hay

et al. [48] utilized five structural properties from graph theory for quantifying network’s

structure. For each node, the authors evaluate closeness centrality, betweenness centrality

and path length distribution (computed from the shortest path between each pair of

nodes). For the graph as a whole, they evaluate the degree distribution and the diameter.

The objective is to keep these five measures as close as possible to their original values,

assuming that it involves little distortion in the anonymous data. Then, Ying and Wu

40
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[88] and Ying et al. [87] used both real space and spectrum based characteristics to

study how the graph is affected by randomization methods. The authors focused on four

real space characteristics of the graph and on two important eigenvalues of the graph

spectrum. The real space characteristics are: the harmonic mean of the shortest distance,

the modularity, the transitivity, and the sub-graph centrality. Since graph spectrum has

close relations with many graph characteristics and can provide global measures for some

network properties, the authors also considered the following two spectral characteristics:

the largest eigenvalue of the adjacency matrix and the second smallest eigenvalue of the

Laplacian matrix.

Alternatively, Zou et al. [97] defined a simple method for evaluating information loss

on graph privacy-preserving data publishing, which computes the difference between the

original and the anonymous edge set, Cost(G, G̃) = (E ∪ Ẽ) − (E ∩ Ẽ). Liu and Terzi

[59] used the clustering coefficient and average path length for the same purpose. Hay

et al. [47] examined five properties commonly measured and reported on network data:

degree (distribution of the degrees of all nodes in the graph), path length (distribution of

the lengths of the shortest paths between randomly sampled pairs of nodes), clustering

coefficient, network resilience (the number of nodes in the largest connected component

of the graph when nodes are removed in degree decreasing order) and infectiousness

(measured by calculating the proportion of nodes infected by a hypothetical disease,

which is simulated by first infecting a randomly chosen node and then transmitting the

disease to each neighbour with the specified infection rate).

Truta et al. [83] studied an existing anonymization approach with respect to how it

preserves the structural content of the initial social network; specifically, they studied how

various graph metrics (centrality measures, radius, diameter, etc.) change between the

initial and the anonymous social network, using SaNGreeA, a clustering-based algorithm.

Later, Alufaisan and Campan in [2] investigated how well two anonymization methods

preserve the importance of nodes in the network, where node importance is expressed by

centrality measures. The authors chose a graph-modification approach and a clustering-

based approach in their comparison. The clustering-based algorithm is de-anonymized

using uniform and scale-free models.

The above measures are all generic and application-independent. In Section 4.2 we

describe the generic information loss measures used in this thesis, and we also describe

our framework for computing these measures.

There are existing studies that work on graphs trying to maximize some specific task-

oriented utility. Budi et al. [13] defined the kb-anonymity model, which combines privacy-
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preserving using the k-anonymity model and specific task of behaviour-preserving test and

debugging data. Lucia et al. [61] improved the model to avoid the probing attack for

evolving programs. Both papers considered the anonymization of paths in a program

code, which can be represented as a graph, and use a specific utility measurement, which

is test coverage. The aim is to ensure that the replaced data exhibits the same kind of

program behaviour shown by the original data so that the replaced data may still be

useful for the purposes of testing and debugging.

The analysis of specific and application-dependent information loss measures is still an

open problem. In Section 4.3 we define our proposal for evaluating the clustering-specific

information loss measures.

4.2 Generic information loss measures

We will use different generic measures to quantify network’s structure in the rest of this

thesis. These generic measures are used to compare both the original and the anonymous

data to assess the noise introduced in the perturbed data by the anonymization process.

These generic measures evaluate some key graph’s properties. They evaluate the graph

structure, so they are general or, in other words, application-independent. Information

loss was defined by the discrepancy between the results obtained between the original and

the anonymous data.

The network measures evaluate the entire network as a unique score. We compute the

error on these metrics as follows:

εm(G, G̃) = |m(G)−m(G̃)| (4.1)

where m is one of the network characteristic metrics, G is the original graph and G̃ is the

perturbed one.

On the contrary, the vertex measures evaluate all vertices in the graph, and give us

a score value for each vertex. To assess the perturbation introduced in the graph by the

anonymization process, we compute the vector of differences for each vertex between the

original and the anonymous graph. Then, we compute the root mean square (RMS ) to

obtain a single value for the whole graph. We calculate the difference of these measures
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as follows:

εm(G, G̃) =

√√√√ 1

n

n∑
i=1

(m(vi)−m(ṽi))
2 (4.2)

where m(vi) is the value of the metric m for the vertex vi of G and m(ṽi) the value of

m for the vertex vi of G̃. In our experiments we use Equation 4.2 to compute a value

representing the error induced in the whole graph by the anonymization process in the

vertex-based measures.

Moreover, we define the divergence on core number sequence (or coreness) between

two graphs using Equation 4.3.

Cor(G, G̃) =
1

n

n∑
i=1

Ci (4.3)

where Ci = 1 if core(vi) = core(ṽi) and 0 otherwise.

And finally, we also propose the edge intersection (EI) as a measure for anonymization

cost, which is defined as the percentage of original edges which are also in the anonymous

graph. Formally:

EI(G, G̃) =
|E ∩ Ẽ|

max(|E|, |Ẽ|)
(4.4)

Although it is a very simple measure, it is useful to quantify the information loss

during privacy-preserving data publishing processes.

4.3 Specific information loss measures

We define the specific information loss measures as a task-specific measure for quantifying

the data utility and the information loss associated to a data publishing process. In this

thesis, we focus on clustering-specific processes, since it is an important application for

social and healthcare networks. We want to analyse the utility of the perturbed data by

evaluating it on different clustering processes. Like generic graph measures, we compare

the results obtained both by the original and the perturbed data in order to quantify the

level of noise introduced in the perturbed data. This measure is specific and application-

dependent, but it is necessary to test the perturbed data in real graph-mining processes.

We consider the following approach to measure the clustering assessment for a par-
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Figure 4.1: Framework for evaluating the clustering-specific information loss measure.

ticular perturbation and clustering method: (1) apply the perturbation method p to the

original data G and obtain G̃; (2) apply a particular clustering method c to G and obtain

clusters c(G) and apply the same method to G̃ to obtain c(G̃); (3) compare the clusters

c(G) to c(G̃), as shown in Figure 4.1. In relation to information loss, it is clear that the

more similar c(G̃) is to c(G), the less information loss. Thus, clustering specific informa-

tion loss measures should evaluate the divergence between both sets of clusters c(G) and

c(G̃).

Ideally, results should be the same. That is, the same number of sets with the same

elements in each set. In this case, we can say that the anonymization process has not

affected the clustering process. When the sets do not match, we should be able to calculate

a measure of divergence.

For this purpose, we use the precision index [14]. Assuming we know the true com-

munities of a graph, the precision index can be directly used to evaluate the similarity

between two cluster assignments. Given a graph of n nodes and q true communities, we

assign to nodes the same labels ltc(·) as the community they belong to. In our case, the

true communities are the ones assigned on the original dataset (i.e. c(G)) since we want

to obtain communities as close as the ones we would get on non-anonymized data – we

are not interested in the ground truth communities. Assuming the perturbed graph has

been divided into clusters (i.e. c(G̃)), then for every cluster, we examine all the nodes

within it and assign to them as predicted label lpc(·) the most frequent true label in that

cluster (basically the mode). Then, the precision index can be defined as follows:

precision index(G, G̃) =
1

n

∑
v∈G

1ltc(v)=lpc(v) (4.5)

where 1 is the indicator function such that 1x=y equals 1 if x = y and 0 otherwise. Note

that the precision index is a value in the range [0,1], which takes the value 0 when there is
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no overlap between the sets and the value 1 when the overlap between the sets is complete.

4.3.1 Clustering methods

Six clustering algorithms are used in our experiments to evaluate the perturbation meth-

ods. They have been referred as “particular clustering methods c” in the previous section.

Thus, they are used in this work to evaluate the create the clusters on original and anony-

mous data in order to quantify the clustering-specific information loss. All of them are

unsupervised algorithms for graph formatted data based on different concepts and devel-

oped for different applications and scopes. An extended revision and comparison of them,

among others, can be found in [54, 92]. The selected clustering algorithms are:

• Markov Cluster Algorithm (MCL) was developed by S. Van Dongen [84]. The

algorithm is based on the simulation of flow in graphs and it is widely used in bioin-

formatics. It starts by computing an integer power of the diffusion matrix (usually

the square), which yields the probability matrix of a random walk after a specific

number of steps. This step is called expansion. Next, it computes the probability

of the walker to be trapped within a community. This step is called inflation. The

expansion and inflation steps are iterated until it obtains a disconnected tree, where

its components are the communities. The inflation parameter controls the granular-

ity of the result sets, and its value is adjusted according to the data of each graph.

Its complexity can be lowered to O(nk2) if, after each inflation steps, only the k

largest elements of the resulting matrix are kept, whereas the others are set to zero.

• Algorithm of Girvan and Newman (Girvan-Newman or GN ) [71] is an important

community detection algorithm in graphs. It is a hierarchical divisive algorithm,

in which edges are iteratively removed based on the value of their betweenness

centrality. The algorithm has a complexity O(n3) on a sparse graph.

• Fast greedy modularity optimization (Fastgreedy) by Clauset, Newman and Moore

[24] is a hierarchical agglomeration algorithm for detecting community structure.

Starting from a set of isolated nodes, the edges of the original graph are iteratively

added to produce the largest possible increase of the modularity at each step. Its

running time on a sparse graph is O(n log2 n).

• Walktrap [72] by Pons and Latapy tries to find densely connected sub-graphs, also

called communities in a graph via random walks. The idea is that short random
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walks tend to stay in the same community. They proposed a measure of similarities

between nodes based on random walks to capture the community structure in a

graph. It runs in time O(mn2) and space O(n2) in the worst case.

• Infomap by Rosvall and Bergstrom [73] use the problem of optimally compressing

the information on the structure of the graph to find the best cluster structure.

This is achieved by compressing the information of a dynamic process taking place

on the graph, namely a random walk. The optimal compression is achieved by

optimizing a quality function. Such optimization can be carried out rather quickly

with a combination of greedy search and simulated annealing.

• Multilevel by Blondel et al. [9] is a multi-step technique based on a local optimization

of Newman-Girvan modularity in the neighbourhood of each node. After a partition

is identified in this way, communities are replaced by super-nodes, yielding a smaller

weighted network. The procedure is then iterated, until modularity does not increase

any further. The computational complexity is essentially linear in the number of

edges of the graph.

MCL, Walktrap and Infomap are based on the random walk concept, while Girvan-

Newman and Fastgreedy are based on hierarchical edge betweenness, and Multilevel is

based on modularity concept. Although some algorithms permit overlapping among dif-

ferent clusters, we have not allowed such overlapping in our experiments by setting the

parameter to zero. This is because setting overlapping to zero simplifies the method which

evaluates the similarity between results.
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Chapter 5

Correlating generic and specific

information loss measures

Information loss measures have been defined to evaluate the noise introduced in the

anonymized data. Generic information loss measures ignore the intended anonymized

data use. When data has to be released to third-parties, and there is no control on what

kind of analyses users could do, these measures are the standard ones. In this chapter we

study different generic information loss measures for graphs, comparing such measures to

the clustering-specific ones. After a short introduction in Section 5.1, our experimental

framework is presented in Section 5.2. Then, in Section 5.3 we discuss the results to

evaluate whether the generic information loss measures are indicative of the usefulness of

the data for subsequent data mining processes, and lastly, in Section 5.4 we go into the

conclusions.

5.1 Introduction

The anonymization processes should allow the analysis performed into the anonymous

data lead to results as equal as possible to the ones obtained when applying the same

analysis to the original data. Nevertheless, data modification is in contradiction with data

utility. The larger data modification, the less data utility. Thus, a good anonymization

method hinders the re-identification process while causing minimal distortion in the data.

Several measures have been designed to evaluate the goodness of the anonymization

methods. Generic information loss measures evaluate in what extent the analysis on

anonymous data differs from the original data. Each measure focuses on a particular

48
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property of the data. We assume that if these metrics show little variation between original

and anonymous data, then the subsequent data mining processes will also show little

variation between original and anonymous data. However, the behaviour of anonymous

data in the subsequent data mining processes may not coincide with the expected results.

Since evaluating the distortion introduced in the graph is not enough, it is necessary

to assess the noise introduced in the subsequent data mining processes. No analysis

has been made to evaluate whether these measures are suitable to accommodate the

information loss when data are used to specific purposes. In our work we consider the

case of clustering-specific processes.

In this chapter we study different generic information loss measures for graphs, com-

paring such measures to the clustering-specific ones. We want to evaluate whether the

generic information loss measures are indicative of the usefulness of the data for subse-

quent data mining processes.

5.2 Experimental framework

As we have stated before, some authors evaluate their anonymization methods comparing

the results of generic measures between original and anonymous data. They assume that

small distortion on these measures involves little distortion on anonymous data utility.

Our objective is to evaluate the correlation between generic information loss (GIL) mea-

sures and specific information loss (SIL) measures based on clustering processes. Hence,

if the GIL indicates that there is little perturbation on anonymous data, then the clus-

tering results on the anonymous data must be close to the results on the original data.

Otherwise, the GIL measures used in graph assessment are not representative of real data

utility.

To conduct this experiment, we have to test as much anonymization methods as we can.

Nevertheless, as we have seen in Section 3.3, there are several anonymization methods

and it is hard to analyse all of them. Even so, all graph modification approaches are

based on edge modification and can be modelled as an additive-noise perturbation. So,

we can model the generic behaviour of these methods through basic edge modification or

perturbation. We have defined the basic edge modification or perturbation methods on

Section 2.4.

Our experimental framework is shown in Figure 5.1. We have chosen five graph for-

matted datasets (Zachary’s karate club, Jazz musicians, Flickr and URV email), three



50 Correlating generic and specific information loss measures
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Figure 5.1: Experimental framework for testing the correlation between generic and spe-
cific information loss measures.

edge perturbation methods, several generic information loss measures and six graph clus-

tering algorithms. The process is as follows: (1) we apply random noise to graph datasets

(network’s details are shown in Section 2.5) using edge perturbation methods (Section

2.4). Then, (2) we evaluate original and perturbed data using GIL measures for quantify-

ing network structure (Section 4.2). Next, (3) we apply the clustering processes (Section

4.3.1) both on original and on perturbed data and we use clustering-based specific mea-

sures (Section 4.3) to evaluate the results. Lastly, (4) we compare the GIL and SIL results

to analyse whether GIL measures are useful to predict the clustering real data utility. If

the degree of similarity between them are close, the GIL measures provide correct infor-

mation about data utility. Otherwise, these measures do not provide correct information

about the utility of the anonymous data for clustering.

For each method and dataset, we considered 10 independent executions with a pertur-

bation percentage ranging from 1% to 25% of the total number of edges, increasing the

perturbation percentage by 1% at each step. We compute perturbation percentage using

the edge difference (ED), which is defined as the percentage of original edges that are not

present in the perturbed graph, as shown in Equation 5.1.

ED(G, G̃) = 1− |E ∩ Ẽ|
max(|E|, |Ẽ|)

(5.1)
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Parameter Value

Perturbation range From 1% to 25%

Execs 20

MCL Inflation 1.8

Table 5.1: Parameters for information loss measures correlation framework.

5.3 Experimental results

To compare the generic and the clustering-specific measures, we have computed these

measures for pairs of graphs (G, G̃) using some particular perturbation method p. That

is G̃ = p(G).

In this section, we show the results of our experiments. For each dataset (G) we apply

the three perturbation methods, and then, we assess graph measures on the perturbed

data. Next, we apply clustering algorithms and compare the original and the perturbed

results using the precision index, our cluster-based measure (details can be found in

Section 4.3). We refer to specific information loss measure as a result of precision index

applied to specific clustering algorithm on original and anonymous data. In other words,

we refer to specific information loss measure as a value of precision index(c(G), c(G̃)),

where c is one of our clustering methods and G̃ = p(G) for a particular perturbation

method p. From now on, we will use the name of the clustering algorithm to refer to its

precision index computed as we have mentioned above.

Perturbation methods have been applied with a percentage of noise. It has been

added iteratively with a 1% of the number of edges at each step. The goal is that we

can see how the structural properties of the graph evolve. Note that the 0% perturbation

values are the original graph results. The values showed by all measures and metrics

are averaged values computed from independent executions. In our framework, we have

used the Pearson correlation to compute the linear dependence between all measures and

metrics, where the ρ-values refer to the observed significance level of a hypothesis test

with the null hypothesis that correlation is equal to 0.

Parameters used in our experiments are detailed in Table 5.1. “Perturbation range”

specifies the percentage of noise introduced, “execs” is the number of independent exe-

cutions for every experiment and “MCL inflation” parameter controls the granularity of

the resulting clusters on Markov Cluster Algorithm (MCL). Others clustering methods

are used with default values.

In our experiments we want to address the following questions:
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Pearson dist D CB CC CD EI C T λ1 µ2

r 0.846 0.150 0.957 0.902 0.992 0.999 0.974 0.948 0.247 0.097

ρ-value 0 0.007 0 0 0 0 0 0 0 0.006

Table 5.2: Pearson self-correlation value (r) and its associated ρ-value of generic informa-
tion loss (GIL) measures.

• Do the generic information loss measures and precision index behave in similar way

independently of the dataset? In Section 5.3.1 we analyse whether the GIL and

SIL measures present similar behaviour over different datasets, i.e, they behave in

similar way independently of the specific characteristics of the dataset.

• Are the generic information loss measures correlated with clustering-specific mea-

sures? In Section 5.3.2 we compare the GIL versus SIL measures in order to describe

the correlation among them.

• What are the effects of various data perturbation strategies? In Section 5.3.3 we

comment the correlation’s results based on the three perturbation methods pre-

sented on Section 2.4.

• What are the differences between measures when various graph datasets are consid-

ered? In Section 5.3.4 we discuss the correlation’s results for each specific dataset

in order to analyse the differences among them.

5.3.1 Analysing measures

Before comparing the generic information loss measures with the precision index, we

analyse all measures in order to evaluate whether each measure behaves in similar way

to itself on different datasets. If a measure presents a high self-correlation, then it will

conduct in a similar way independently of the data where it is applied. Therefore, we

analyse the self-correlation of all generic and clustering-specific measures. Self-correlation

is measured by comparing the results of specific measure over each dataset to all others.

Then, we calculated the Pearson correlation on the resulting set.

Most of the GIL measures show strong self-correlation over all datasets used in our

experiments. As we can see in Table 5.2, average distance (dist), betweenness centrality

(CB), closeness centrality (CC), degree centrality (CD), edge intersection (EI), clustering

(C), and transitivity (T ) present self-correlation values higher than 0.84 with ρ-values

equal to 0, which implies statistical significance. These results confirm that the measures



5.3. Experimental results 53

Pearson MCL Infomap Multilevel Girvan-Newman Fastgreedy Walktrap

r 0.287 0.626 0.777 0.828 0.782 0.656

ρ-value 0 0 0 0 0 0

Table 5.3: Pearson self-correlation value (r) and its associated ρ-value of precision index.

evolve in a similar way over all datasets, i.e., the behaviour of the measures is similar inde-

pendently of the dataset in which they are applied. Diameter (D), the largest eigenvalue

of the adjacency matrix (λ1) and the second smallest eigenvalue of the Laplacian matrix

(µ2) present weak and very weak self-correlation values. It denotes that their behaviour is

clearly subordinate to the dataset. It is interesting to underline that diameter cannot be

computed on Flickr and URV Email datasets because the perturbation methods generate

some isolated nodes, so the number of connected components is greater than one and the

diameter of the dataset cannot be computed. Furthermore, on Football dataset the diam-

eter keeps the same value on all perturbed data. That is because Football dataset does

not follow the power-law on degree distribution. All nodes have a degree value between 7

and 12, and it is improbable to increase or decrease the diameter value by random edge

perturbation. Therefore, the behaviour of the diameter on a perturbation process is very

dependent of the dataset.

The precision index values are presented in Table 5.3. As we have mentioned, we

use the name of the clustering algorithm to refer to its specific information loss mea-

sure computed as precision index(c(G), c(G̃)), where c is one of our clustering methods

and G̃ = p(G) for a particular perturbation method p. Most of them show strong self-

correlation values and all of them are statistically significant. Multilevel, Girvan-Newman

and Fastgreedy achieve self-correlation values greater than 0.77, while Infomap and Walk-

trap achieve values close to 0.6, and MCL presents weak self-correlation with a value of

0.28.

5.3.2 Comparing generic and clustering-specific measures

Pearson correlation values for all generic information loss and clustering-specific measures

are shown in Table 5.4. These values are computed using all datasets and all perturbation

methods. The ρ-values for each correlation are showed within brackets and the last column

and row show the average values for each row and column (µ).

The first and the second generic information loss measures which we have analysed

are average distance (dist) and diameter (D). Both measures are related to paths and



54 Correlating generic and specific information loss measures

cannot be calculated for graphs with two or more connected components. Thus, both

measures cannot be computed on few perturbed graphs because isolated nodes have ap-

peared during perturbation process. The Pearson correlation index for average distance

and the precision for all clustering methods is 0.732. As we can see in Table 5.4, average

distance achieves strong correlation values with all clustering methods, except with MCL,

where the achieved value is quite lower than others and indicates a moderate correlation

between average distance and the precision values of MCL clustering. As we can see,

ρ-values are 0 for all experiments, demonstrating that results are statistically significant.

On the contrary, diameter does not present correlation since its ρ-values are greater than

0.05 on three experiments, and no statistical significance can be assigned to its correlation

value. In addition, the correlation value is 0.128, which is very low.

Two of the three centrality measures show similar behaviour and achieve strong cor-

relation values. The correlation index is 0.753 for betweenness centrality (CB), 0.848 for

closeness centrality (CC) and 0.422 for degree centrality (CD). Therefore, betweenness and

closeness centrality are strong correlated to clustering-based measures. Betweenness and

closeness centrality achieve correlation values higher than 0.831 for Multilevel, Girvan-

Newman and Fastgreedy clustering algorithm. Clearly, the Girvan-Newman algorithm

are related to betweenness centrality since it uses the edge betweenness values to discover

the clusters, and the edge betweenness and the node betweenness are related. Multilevel

and Fastgreedy use the concept of modularity, which is also related to node centrality.

The other centrality measure, degree centrality (CD), presents different behaviour and a

moderate correlation value of 0.422. Our perturbation methods introduce different noise

on degree centrality measure: Edge add/del modify the degree of four nodes, Edge rota-

tion modify the degree of only two nodes and Edge switch does not modify the degree of

any node. Thus, Edge switch keeps the same values for this measure but introduce noise

on anonymous data and perturb the precision values with all clustering methods. Similar

situation is presented on Edge rotation. Clearly, degree centrality is not a suitable mea-

sure to analyse the noise introduced by perturbation methods using both Edge rotation

or Edge switch.

Edge intersection (EI) is a simple measure which is strong correlated to clustering-

based measures. Additionally, clustering coefficient (C) and transitivity (T ) are also

strong correlated to clustering-based measures. These measures show strong correlation

to the precision results of Infomap, Multilevel, Girvan-Newman, Fastgreedy and Walktrap.

As the measures we have seen in the previous paragraph, these ones show lower correlation

to the precision results of MCL. The mean correlation indexes are 0.785, 0.814 and 0.743
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Pearson MCL Infomap Multilevel Girvan-Newman Fastgreedy Walktrap µ

dist 0.580 0.716 0.807 0.785 0.747 0.755 0.732

D 0.201 0.101 * 0.098 * 0.134 0.218 0.014 * 0.128

CB 0.559 0.687 0.854 0.865 0.831 0.724 0.753

CC 0.667 0.833 0.903 0.909 0.874 0.899 0.848

CD 0.296 0.380 0.416 0.504 0.481 0.457 0.422

EI 0.581 0.820 0.861 0.887 0.814 0.748 0.785

C 0.614 0.833 0.889 0.909 0.836 0.802 0.814

T 0.557 0.763 0.840 0.840 0.770 0.690 0.743

λ1 0.191 0.482 0.509 0.546 0.529 0.397 0.442

µ2 0.086 * 0.152 0.131 0.154 0.135 0.040 * 0.116

µ 0.433 0.577 0.631 0.653 0.624 0.553 NA

Table 5.4: The Pearson correlation values (r) between clustering precision value and
generic information loss measures and its average values µ. An asterisk indicates ρ-values
≥ 0.05, i.e, results not statistically significant.

for edge intersection, clustering coefficient and transitivity.

Next, we will analyse the spectrum-based generic information loss measures. These

are the largest eigenvalue of the adjacency matrix (λ1) and the second smallest eigenvalue

of the Laplacian matrix (µ2). The largest eigenvalue of the adjacency matrix presents

moderate correlation, achieving a value of 0.442. The second eigenvalue of the Laplacian

matrix does not get good results on any clustering-based measures, achieving an averaged

value of 0.116. Furthermore, the ρ-values demonstrate the results are not statistically

significant.

Finally, it is important to underline that the precision index on clustering measures

achieves moderate correlation, with values from 0.624 to 0.653, on Multilevel, Girvan-

Newman and Fastgreedy algorithms. Infomap and Walktrap achieve lower correlation

values, but still moderate correlation. MCL presents the worst results of all clustering

algorithms with a correlation value of 0.433.

Aggregating some generic measures

In the previous paragraphs we have compared the correlation between each individual

generic information loss measure and the precision index. Here, we consider an overall

assessment between a group of some GIL measures and the precision index. This exper-

iment tries to illustrate which group of one or more GIL measures are the best ones to

explain the clustering-based measures.
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Num. GIL measures r-square σ

1 CC 0.725 0.146

2 CB + CC 0.742 0.150

3 CB + CC + EI 0.765 0.155

4 D + CB + CC + EI 0.777 0.127

5 dist + D + CB + CC + EI 0.787 0.117

Table 5.5: Results of multivariate regression analysis between clustering precision value
and some generic information loss measures.

Let us consider the r-square from a multivariate regression analysis, where the depen-

dent variable is the precision index and the independent variable is a set of one or more

GIL measures. The r-square value is indicative of the aggregate correlation between a

set of the GIL measures and the precision values. We compute the regression analysis

between all combinations from 1 to 5 GIL measures and the precision index. The result

for only one measure is perfectly consistent with Pearson correlation analysis, which has

been explained previously, where closeness centrality achieves the best result, as we can

see in Table 5.5. The first column indicates the number of GIL measures considered,

the second one the GIL measures set which achieves the best result, the third column

the r-square value, and the last one the standard deviation (σ). The best combination

of two GIL measures is betweenness and closeness centrality, with a r-square value of

0.742 and standard deviation of 0.15. For three GIL measures, the best combination is

the betweenness centrality, closeness centrality and edge intersection. All GIL measures

have obtained high individual correlation values, therefore these results are predictable.

Nevertheless, when we consider the best combination of four GIL measures, the diame-

ter appears, which has obtained very low individual correlation values. It is interesting

because diameter can help us to predict the clustering-specific perturbation in combina-

tion with other GIL measures, but it can be useless when we consider only the diameter.

Finally, average distance is added to the group when considering a combination of five

measures. The r-square value is 0.787. It is relevant to note that if more measures are

considered, higher r-square values are obtained. Thus, the r-square difference between

2 and 5 measures is close to 0.04, which implies a little gain and also a considerable in-

crement of computational and time cost. The problem and its peculiarities are the key

points to determine the best combination (one or more) of GIL measures to predict the

clustering-specific ones.
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Pearson Edge add/del Edge rotation Edge swap

µ 0.670 0.698 0.705

σ 0.206 0.208 0.211

Table 5.6: Pearson correlation averaged values (µ) and standard deviation (σ) for each
perturbation method.

5.3.3 Comparing perturbation methods

Next, we will briefly analyse the results based on perturbation methods. Edge add/del

is the most general edge modification. It adds and deletes edges at random over entire

nodes set. Therefore, an edge is created in every step and another is deleted, changing the

degree of four nodes (two nodes decrease their degree while two others increase theirs).

Hence, the degree sequence and all related measures suffer high perturbation when Edge

add/del is applied. Edge rotation is a sub-set of Edge add/del. It modifies an edge

keeping one node and changing the other. Thus, two nodes change their degree in every

step (one node decreases its and another increases its). Therefore, the degree sequence

and related measures suffer quite less perturbation than Edge add/del. Finally, Edge

switch exchanges two edges between four nodes, but none of them modify their degree.

Accordingly, the degree sequence and related measures do not modify their values, which

means that these measures do not transmit the noise introduced on data.

The degree centrality (CD) measure evaluates the centrality of each node associated

with its degree. Edge switch does not change the node’s degree, so it does not introduce

perturbation on this measure. But the precision index for all clustering methods on all

datasets show that Edge switch introduces perturbation on data. Therefore, this measure

is not correlated with clustering results and it is not a suitable measure to evaluate the

noise introduced in the perturbed data.

Table 5.6 presents average results and standard deviation for each perturbation method.

For each method we compute the correlation between all generic and specific information

loss measures over all datasets, and then we calculate the averaged value and the stan-

dard deviation for all values which are statistically significant (i.e, ρ-value < 0.05). It is

interesting to note that Pearson correlation values obtained by Edge switch are higher,

on almost all cases, than Edge rotation and Edge add/del. The average value is 0.705 for

Edge switch, while Edge rotation gets a value of 0.698 and Edge add/del a value of 0.670.

The standard deviation is similar in all methods.
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Pearson Karate Football Jazz Flickr URV Email

µ 0.716 0.796 0.717 0.780 0.729

σ 0.247 0.119 0.170 0.184 0.163

Table 5.7: Pearson correlation averaged values (µ) and standard deviation (σ) for each
dataset.

5.3.4 Comparing datasets

In this section, we will summarise the results based on datasets. Table 5.7 presents

the Pearson correlation averaged values and standard deviation for each dataset used in

our experiments. For each dataset we compute the correlation between all generic and

clustering-based information loss measures over all perturbation methods, and then we

calculate the averaged value and the standard deviation for all values which are statisti-

cally significant (i.e, ρ-value < 0.05). We can see important differences between datasets.

For instance, correlation values between generic information loss measures and precision

index on American college football (Football) achieve the highest correlation value and the

lowest standard deviation value, while on Zachary’s karate club (Karate) the value keeps

quite low and the standard deviation value rises. As we have commented, Football dataset

is a collaboration network representing American football games among colleges during

regular season. Hence, it does not follow the power-law on degree sequence. The minimum

degree value is 7 and the maximum is 12. Therefore, the connectivity is homogeneous in

this graph since there is no hubs and all vertices are highly connected to others. Probably,

this graph is more robust to noise than other graphs and the perturbation methods do

not cause abruptly disruption on perturbed data.

5.4 Conclusions

Firstly, we have analysed the behaviour of the generic information loss measures and pre-

cision index over different datasets. As we have seen, some measures behave in similar

way independently of the data where they are applied. Only diameter, the largest eigen-

value of the adjacency matrix and the second smallest eigenvalue of the Laplacian matrix

present weak self-correlation values, indicating that their behaviour is dependent on the

data where they are applied.

Secondly, we have compared the generic information loss measures and the precision

index. Our experiments are based on correlation between each generic information loss
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measure and precision index computed for each clustering algorithm. The tests showed

strong correlation between some generic information loss measures and the clustering-

based ones. Some of those discussed are the average distance, betweenness centrality,

closeness centrality, edge intersection, clustering coefficient and transitivity. Degree cen-

trality and the largest eigenvalue of the adjacency matrix present moderate correlation

values. As we have mentioned, these measures are clearly subordinate to the perturbation

method applied, and therefore the correlation is lower than other measures. Finally, some

generic information loss measures, like diameter and the second smallest eigenvalue of

the Laplacian matrix, show weak correlation values with the clustering-specific ones. In

addition, some experiments related with these measures are not statistically significant.

Thirdly, we have demonstrated that considering two or more generic information loss

measures helps us to get a higher correlation value. Even so, the gain is not great and

the complexity rises when considering two or more generic measures.

Fourthly, we have exposed that the perturbation method affects the correlation be-

tween generic and cluster-specific information loss measures. As we have seen, datasets

perturbed by Edge switch show higher correlation between generic and specific informa-

tion loss measures than the datasets perturbed by Edge add/del or Edge rotation.

Finally, we have discussed the effect of the datasets on correlation between generic

and clustering-specific information loss measures. We have seen substantial differences

between datasets in our experimental framework. The degree distribution and the con-

nectivity of the graph affect the robustness of the network and how the perturbation alters

the graph’s structure.

Certainly, the purpose of the data should be taken into account during the anonymiza-

tion process. Each dataset has its own properties which should be analysed to choose

the best anonymization method. If different datasets are generated according to each

problem-specific environment, then it is necessary to analyse the background knowledge

an attacker can infer from different anonymized datasets.



Chapter 6

Improving data utility on edge

modification processes

In this chapter we focus on data utility and information loss on edge modification pro-

cesses. After a brief introduction in Section 6.1, we propose two methods for improving

data utility and reducing the information loss: the first one, presented in Section 6.2, is

based on edge centrality score, and the second one is based on the core number sequence

and it is shown is Section 6.3.

6.1 Introduction

Data mining relies on a great set of tools and techniques to mine the vast amount of data

that is available today in order to extract useful and relevant patterns and gain insights on

somebody’s records. However, these data often contain personal and private information

about users and individuals. In order to overcome this issue, methods that add noise

to the original data have been developed to hinder the re-identification processes. But

the noise introduced by the anonymization steps may also affect the data, reducing its

utility for subsequent data mining processes. Usually, the larger the data modification,

the harder the re-identification but also the less the data utility. Therefore, it is necessary

to preserve the integrity of the data (in the sense of retaining the information that we

want to mine) to ensure that the data mining step is not altered by the anonymization

step. Among other things, for the anonymization step to be considered any useful and

thus valid, the analysis performed on the obfuscated data should produce results as close

as possible to the ones the original data would have led to and this is how we evaluated our

60
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experiments. Considering the example of a social network, this would mean that graph

properties such as centrality measures and clusters of nodes (i.e, users) are preserved in

the anonymous data. A trade-off between data privacy and data utility must be reached

and it is in this spirit that we developed our proposed edge modification techniques.

Edge modification techniques are widely used in network’s anonymization. Neverthe-

less, none of these works consider the edge’s relevance. Edge’s relevance can help us to

decide which edges can be removed or modified and which ones must be preserved. If

we want to preserve the network properties, such as average distance, diameter, node

centrality and more, we have to find the most relevant edges and preserve them from

removing or modifying processes. This can lead anonymization methods to a better data

utility and less information loss.

6.2 Edge Neighbourhood Centrality

In this section we use different metrics for edge’s relevance in order to analyse the effect

of edge deletion on graph structure. We work with simple, undirected and unlabelled

networks. We want to introduce a new metric for edge’s relevance which can help us to

preserve the most important edges on network, and leads an edge modification process

to remove the less important edges, keeping the basic network structural and spectral

properties.

6.2.1 Metrics for Edge’s Relevance

We consider the following metrics for quantifying edge’s relevance: Edge betweenness

(EB), Link salience (LS) and Edge neighbourhood centrality (NC).

Edge betweenness (EB) is defined as the number of the shortest paths that go through

an edge in a network [37]. An edge with a high edge betweenness score represents a bridge-

like connector between two parts of a network, and the removal of which may affect the

communication between many pairs of nodes through the shortest paths between them.

The edge betweenness of edge {vi, vj} is defined by:

EB{vi,vj} =
1

n2

n∑
s,t=1
s 6=t

g
{i,j}
st

gst
(6.1)

where g
{i,j}
st is the number of shortest paths from node vs to vt that pass through edge
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{vi, vj}, and gst is the total number of shortest paths from node vs to vt.

Link salience (LS) [40] is defined as a linear superposition of all shortest path trees

(SPTs). It quantifies the fraction of SPTs each link participates in. The salience of an

edge {vi, vj} is computed as follows:

LS{vi,vj} =
1

n

n∑
k=1

Tij(vk) (6.2)

where T (vk) is the shortest path tree (SPT) rooted at node vk. T (vk) can be represented

as a matrix with elements:

Tij(vk) =

1 if
∑n

l=1 σij(vl, vk) > 0

0 otherwise
(6.3)

where σij(vl, vk) is equal to 1 if edge {vi, vj} is on the shortest path from vk to vl, and

otherwise is equal to 0. Despite the apparent similarity between edge betweenness and link

salience, both quantities capture very different qualities of edges. Salience is insensitive

to a position of an edge, acting as a uniform filter.

Calculating both metrics above of all the vertices on a network involves calculating

the shortest paths between all pairs of vertices. This takes O(n3) time with the Floyd-

Warshall algorithm. On a sparse network, Johnson’s algorithm may be more efficient,

taking O(n2log(n) + nm) time. So, both metrics are not useful for large networks, since

every time we remove an edge we must re-calculate all edges’ values. Therefore, we present

a new simple metric for quantifying edge relevance, called edge neighbourhood centrality.

Edge neighbourhood centrality (NC) of an edge {i, j} is defined as the fraction of

nodes which are neighbours of vi or vj, but not of vi and vj simultaneously. The edge

neighbourhood centrality is computed as follows:

NC{vi,vj} =
|Γ(vi) ∪ Γ(vj)| − |Γ(vi) ∩ Γ(vj)|

2× degmax(G)
(6.4)

where Γ(vi) is the 1-neighbourhood of node vi. Note that this metric can be computed on

O(m) using the adjacency matrix representation of the network. An edge with high score

is a bridge-like for neighbourhood nodes. All measures presented above are in range [0,1].
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6.2.2 Experimental Results

Our experiments use edge betweenness (EB), link salience (LS) and edge neighbourhood

centrality (NC) to evaluate all edges on each network. For each edge metric, we evaluate all

edges. One by one, we remove each edge from the graph and then we compute the error

introduced in the graph by comparing some network characteristic metrics on original

and on modified graphs. Four different data sets are used in our experiments: Zachary’s

Karate Club, American College Football, Jazz Musicians and C.Elegans. We analyse

the following structural and spectral metrics in order to quantify the noise introduced

by edge deletion. Structural metrics are related to topological characteristics whereas

spectral metrics are based on spectral characteristics.

In this section we analyse the correlation based on Pearson correlation coefficient

between each edge metrics and all network characteristic metrics. A high correlation

points out that removing edges with high score based on edge metric produces larger noise

on perturbed graphs, while removing edges with low score produces fewer noise. On the

contrary, a low correlation value suggests that removing edges with high or low score does

not imply introducing more or less noise on perturbed data. We discuss in the next three

sections the three edge metrics: edge betweenness, link salience, and edge neighbourhood

centrality. Results on the four networks described are reported, and Figure 6.1 displays

the results for the Karate network, which is the one that can be better visualized because

it is the smallest dataset.

6.2.2.1 Edge Betweenness

Here we use the edge betweenness (EB) as a measure to quantify edge’s relevance. As we

can see on Table 6.1, average distance shows very high correlation for Karate and Football

networks and high correlation for Jazz and CElegans. Correlation values between EB and

diameter are low because diameter is much more stable than EB. Figure 6.1a shows EB

score for each edge (solid red line) and the error on diameter (dashed blue line) introduced

by this each removal on Karate network. Only twice the diameter has been modified,

nevertheless it was when high-scored edges were deleted from the graph.

Node betweenness presents very high correlation values, obtaining an average value of

0.97. In Figure 6.1b we can see EB and node betweenness values. Clearly, EB is closely

related to node betweenness centrality. On the other hand, closeness centrality presents

lower values than node betweenness, except on Football network.

Results for transitivity, λ1 and µ2 are quite different. Pearson correlation values are
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Metric Karate Football Jazz CElegans Average

Average Distance 0.83 0.93 0.79 0.73 0.82

Diameter 0.44 0.25 0.32 0.20 0.30

Node Betweenness 0.94 0.99 0.98 0.96 0.97

Closeness 0.44 0.95 0.37 0.25 0.50

Transitivity -0.10 0.57 0.28 0.22 0.29

λ1 0.26 -0.04 -0.11 0.42 0.21

µ2 0.61 0.09 0.07 0.08 0.21

Average 0.52 0.55 0.42 0.41 0.47

Table 6.1: Pearson correlation values between EB and network characteristic metrics.

low or very low on all datasets, except for transitivity on Football and λ1 on Karate

network. For instance, correlation value between EB and transitivity is -0.10 on Karate,

which means that there is not relation between EB and transitivity. That is, removing

edges with low EB score may introduce higher noise on network than removing edges with

high EB score. This is because important EB-based edges are local bridges, so removing

them we do not destroy any triangle, while low EB-based score edges are part of a triangle,

so removing them we decrease the transitivity measure of the all involved nodes on this

triangle.

6.2.2.2 Link Salience

The second measure for edge’s relevance is link salience (LS). A small set of nodes are

scored with high salience value, LS ≈ 1. These nodes form the skeleton of the network

whereas the others have low salience values, configuring a bi-modal distribution [40].

Table 6.2 presents the correlation values between LS and network characteristic met-

rics. Average distance shows good correlation values, but lower than the ones showed

above. Once again, correlation values between LS and diameter presents low score. Node

betweenness achieves high score, but lower than EB correlation on all networks. However,

closeness gets a good score, even better than correlation with EB.

Like for the above metric, the correlation between LS and transitivity, λ1 and µ2 are

not clear. For instance, the correlation value between LS and transitivity is 0.17 on Karate,

meaning that there is not relation between EB and transitivity, as shown in Figure 6.1c.

They score very low values, suggesting that using salience as an edge’s relevance does not

guarantee better data utility and lower information loss. Figure 6.1d also exemplifies it.

The correlation values between salience and the structural and spectral analysed met-
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(a) Edge betweenness (EB) and diameter values.

0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

EB Error on CB

(b) EB and node betweenness centrality values.
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(c) Link salience (LS) and transitivity values.
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(d) LS and µ2 values.
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(e) Edge neighbourhood centrality (NC) and average
distance values.
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(f) NC and closeness centrality values.

Figure 6.1: Pairs of edge relevance metrics and network characteristics metrics on Karate
network.
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Metric Karate Football Jazz CElegans Average

Average Distance 0.61 0.80 0.82 0.79 0.75

Diameter 0.20 0.10 0.13 0.22 0.16

Node betweenness 0.67 0.86 0.84 0.56 0.73

Closeness 0.45 0.86 0.53 0.33 0.54

Transitivity 0.17 0.53 0.36 0.32 0.34

λ1 -0.10 -0.08 -0.17 0.01 0.09

µ2 0.48 0.04 0.09 0.04 0.16

Average 0.38 0.47 0.42 0.32 0.40

Table 6.2: Pearson correlation values between LS and network characteristic metrics.

Metric Karate Football Jazz CElegans Average

Average Distance 0.55 0.63 0.18 0.52 0.47

Diameter 0.24 0.07 0.03 -0.03 0.09

Node betweenness 0.75 0.78 0.36 0.46 0.59

Closeness 0.33 0.69 0.01 0.06 0.27

Transitivity -0.06 0.51 -0.09 0.09 0.19

λ1 0.41 -0.05 0.43 0.52 0.35

µ2 0.48 0.21 0.35 0.19 0.31

Average 0.40 0.42 0.21 0.27 0.32

Table 6.3: Pearson correlation values between NC and network characteristic metrics.

rics is lower, in general, than the ones obtained between EB and the same metrics.

6.2.2.3 Edge neighbourhood centrality

Finally, we test our new simple metric for quantifying edge’s relevance. As we can see

on Table 6.3, average distance presents a moderate correlation on all networks, except

Football where the correlation is not clear. Figure 6.1e illustrates values for NC and

average diameter on Karate network. Neither diameter shows correlation with NC.

Once again, node betweenness keep on moderate scores on all networks, expect Foot-

ball. Closeness and transitivity do not achieve good results on Karate, Jazz nor CElegans,

but they achieve quite better scores on Football network. Figure 6.1f depicts values of

NC and closeness. Finally, λ1 and µ2 present irregular values, showing weak correlation

on some networks.
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6.2.3 Conclusions

Average distance is a metric related to path lengths. Edge betweenness, as we have seen,

is the edge metric which has the strongest correlation with average distance, scoring the

highest correlation values for this metric. Hence, removing important edge-betweenness-

based edges affects it in a significant way.

Also we have seen that diameter is a stable metric with respect to network pertur-

bation. So, it is difficult to correlate any of our edge’s relevance metrics with diameter,

although we have seen on Figure 6.1a that diameter perturbation occurs when an impor-

tant edge is removed from the network. It suggests that both EB and NC identify an

important local bridge, and removing it produces and increment on several shortest paths

along the graph.

Node betweenness and closeness are widely used for clustering and community de-

tection algorithms, so edge-modification-based anonymization algorithms must consider

which edges remove or modify in order to reduce information loss and preserve data util-

ity for clustering purposes. All metrics get a good correlation values, but the best one is

EB. Clearly, EB and node betweenness are closely correlated. Some edges with high EB

score are local bridges. So, removing them we introduce a high noise on node betweenness

and closeness metrics. On the other hand, transitivity is not affected by removing local

bridges and probably this measure is affected by removing edges which participate on

many triangles (that is, edges with low value of EB, LS and NC).

Finally, both spectral measures (λ1 and µ2) do not have high correlation with any

edge’s relevance metric. The best one is NC, which achieves moderate scores on all

networks. But, using EB and LS the results are not clear. The noise introduced are

not correlated with the score of these edge metrics. The eigenvalues of the adjacency

matrix encode information about the cycles of a network as well as its diameter [88].

The maximum degree, chromatic number, clique number, and extend of branching in a

connected network are all related to λ1, while the eigenvalues of L encode information

about the tree-structure of the network.

Edge betweenness has been proved as the best edge’s relevance metric. The values of

correlation are larger than others on several cases, showing that removing or modifying

edges with high values of edge betweenness introduce large noise on important structural

and spectral metric. Nevertheless, it is based on shortest path between all pair of nodes

and it implies a high computational cost. Therefore, it is not a good metric for medium or

large networks. Link salience, although is a good metric for visualizing and understanding
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network structure (skeleton), does not achieve the same results as edge betweenness.

Despite it gets good results for structural metrics, it fails to achieve good results on

spectral metrics. Finally, we have proposed a new simple metric for edge’s relevance.

Edge neighbourhood centrality shows quite good results on all structural and spectral

metrics. The results are not as good as the ones achieved with edge betweenness, but

the complexity much lower for this metric than others. Therefore, it is a good metric to

estimate edge’s relevance on medium or large networks.

Although some differences among them, these measures are able to identify the most

important edges, which may not be removed or modified, and the least important ones,

which can be removed or modified. Edge’s relevance can help edge-modification-based

anonymization processes to achieve better results, raising data utility and reducing infor-

mation loss. So, incorporating edge’s relevance on edge modification processes can lead

us to produce a more useful anonymized networks.

6.3 Core Number Sequence

In this section, we explored the idea of coreness-preserving edge modification. Basically,

instead of modifying any edge at random, we only do it when it does not change the core

numbers of both its endpoints and by extension the whole core number sequence of a

graph. By doing so, we preserve better the underlying graph structure, retaining more

data utility than in the random case but we still alter the node degrees, hindering the

re-identification process and thus maintaining a certain level of privacy.

6.3.1 Our approach

In this section, we present our approach that preserves the coreness of a graph while

anonymizing it. The preliminary concepts upon which our work is built are: the notion of

apparent degree, degeneracy (see Section 2.3) and edge modification (details are presented

in Section 2.4).

As we have stated before, we define the coreness (also known as core number sequence

or shell index sequence) as the sequence of each vertex core number by analogy with

the degree sequence. Hence, a coreness-preserving graph modification approach means a

technique that alters the graph (by adding and/or deleting edges) without changing the

core number of any node.
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Apparent degree

Here, we considered undirected and unweighted edges, which represent relationships be-

tween entities that are bidirectional and independent of their strength (e.g. being friend

on Facebook but not following someone on Twitter). Hereinafter, we will refer to the de-

gree of a node as the apparent degree because it represents the total number of neighbors

a node has in a network but is usually an overestimation of the number of true relations.

In the case of a social network, not all of someone’s connections are truly his friends but

sometimes just acquaintances.

Idea and brute force algorithm

Our idea came from the observation that there is some space left between the two extremal

edge modification techniques that are Rand add/del and Rand switch. The former ensures

privacy by randomly modifying the structure of the graph at the cost of rapidly increasing

the information loss while the latter maintains the apparent degree of every node to

preserve some data utility, allowing an attacker to quickly re-identify nodes, starting from

those of unique degree (unchanged k-anonymity between the original and the perturbed

networks).

Preserving the coreness of the graph seems like a good trade-off. Instead of maintaining

the apparent degree, we allow for some slack as Equation 2.14 suggests, increasing the level

of randomization (privacy), but in the meantime preserving the true degree of every node

that supposedly holds the information to mine (utility). Indeed, graph degeneracy has

been used for community detection [36] and the core number has been shown to be a

more robust version of the apparent degree [7] and directly correlated with betweenness

centrality [3]. Again, in the case of a social network, it seems legitimate to add/remove

random relations as long as it preserves the community a node belongs to. Removing

“satellite connections” while preserving “close friends” seems like an intuitive way to

achieve our goal and empirical results on various networks support our claim.

The most straightforward way to apply our idea would be to randomly select an edge

to add/delete, perform the operation and re-compute the coreness of the graph to check

for any difference. Even though there exists an optimal linear algorithm for degeneracy, it

seems too expensive to do it for each edge modification, especially since the core number

sequence should only change locally around the edge if anything. We present in the next

subsections the algorithms we developed to perform faster edge modifications.
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3-shell

4-core

Figure 6.2: Illustration of coreness-preserving edge deletion. Green dashed edges can be
safely removed while red solid ones cannot without altering the coreness.

Coreness-preserving edge modification

Let e = {vi, vj} be an undirected edge between vertices vi and vj. In the case of edge

deletion, e ∈ E and in the case of edge addition, e /∈ E. The goal is to check whether we

can add/delete the edge to/from the graph without changing its core number sequence.

Moreover, because the edge modification directly impacts vi and vj, it is sufficient to check

whether the edge modification preserves the core numbers of vi and vj. Indeed, it is not

possible for the coreness to change without core(vi) or core(vj) changing.

Since the graph is undirected, for any edge, we can choose vi and vj such that

core(vi) ≤ core(vj). In the next subsections, we consider core(vi) = k and we will refer

to the k-shell that vi belongs to as the lower shell (Sk). It is also the k-shell vj belongs

to if and only if core(vi) = core(vj), otherwise we will refer to the other subgraph as the

upper core. In both cases (add/delete), it is important to note that if core(vi) < core(vj)

then we only need to check whether the edge modification preserves core(vi). Indeed, by

the time we reach the upper core (in the basic algorithm), the edge will not exist since

node vi will have been removed and thus it will have no incidence on core(vj).

Coreness-preserving edge deletion

The intuitive idea is quite simple: an edge can be removed if none of its two endpoints

belong to the k-corona of the lower shell.

For the node(s) in the lower shell, deleting an edge means decreasing their effective

degree by one. Thus, for a node to remain in its k-shell after losing one connection, it

needs at least k + 1 neighbours in the first place – in other words, it cannot belong to

the k-corona. In the case where core(vi) < core(vj), we only need to check that vi /∈ Ck
while in the case where core(vi) = core(vj), we need to check that both vi and vj do not
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belong to the k-corona of their common k-shell. In any case, assuming the coreness and

the effective degree sequence have been pre-computed, the check can be done in constant

time and if the edge were to be removed, we would only need to decrease the effective

degree of the node(s) from the lower shell.

Figure 6.2 illustrates this procedure. We drew a couple of points from the 3-shell (S3)
and 4-core (H4) of a graph. White nodes belong to C3, gray nodes to S3 \ C3 and black

nodes to H4. Solid lines indicate edges, black ones with nodes not displayed for space

constraints. The green dashed edges can be safely removed (but not both of them, the

check being only valid for one edge) because none of their endpoints belong to the k-

corona of the lower shell (here the 3-shell). The red solid edges cannot be deleted because

at least one of the two endpoints belong to the 3-corona.

Coreness-preserving edge addition

Checking whether an edge can be added to a graph without changing its core number

sequence appears to be less trivial than for deleting one. Nevertheless, we came up with an

efficient alternative to the brute force approach mentioned above. Instead of recomputing

the core number for every node in the graph, we are trying to estimate as fast as possible

if the core number of vi will remain unchanged after adding the new edge – in other words,

if vi will move from Sk to Hk+1 or not.

The algorithm is as follows. First, we add the new edge to the graph and we update

the effective degree(s). Then, we traverse the lower shell (Sk) starting from node vi. For

vi to be in Hk+1, it needs at least k + 1 neighbours also in Hk+1. There are four kinds

of neighbours: (a) nodes with a lower core number, (b) nodes with an equal core number

and in the k-corona (Ck), (c) nodes with an equal core number and not in Ck and (d) nodes

with a higher core number. Neighbours of type (a) and (b) cannot be by definition in

Hk+1. Neighbours of type (c) could be in Hk+1 thanks to the new added edge. Neighbours

of type (d) are by definition in Hk+1. So, for a given node vi, its effective degree in Hk+1

is lower-bounded by the number of neighbours of type (d) and upper-bounded by the

number of neighbours of type (c) and (d). The goal of the algorithm is to estimate as fast

as possible this effective degree to see if it is greater than k or not.

From the bounds, it follows that if the lower bound is strictly greater than k then

the node is definitely in Hk+1 and thus the edge cannot be added (otherwise vi would

move up to the next core) – this happens when a node has already k connections with

nodes in Hk+1. Conversely, if the upper bound is strictly less than k + 1 then the node
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Figure 6.3: Illustration of coreness-preserving edge addition. Green solid edges can be
safely added, while red dashed edges cannot without altering the coreness.

is definitely not in Hk+1 and thus the edge can be safely added. In-between, we need to

visit the neighbours of type (c) and apply on them the same procedure. It all comes down

to the nodes from Sk \ Ck: even though they had enough neighbours to be in Hk+1, these

neighbours were not connected enough to be in Hk+1 but the new added edge could make

the difference. This leads to a recursive definition of the problem, i.e. depth-first-search

(DFS) traversal of Sk \ Ck. Then, whenever we visit a node that cannot move to the next

core, we back propagate this information to lower the estimate on the degree we have for

its parent. If at any point the degree estimate for the source node vi drops below k + 1

then we know the edge can be safely added. Otherwise, we keep visiting new neighbours

of type (c) until we run out. At that point, we have basically found at least k + 1 nodes

of type (c) ready to move up altogether in Hk+1, thus preventing the edge addition.

Even in the case of core(vi) = core(vj), we only need to do the traversal once, from vi,

since vj will be visited anyway. It is not possible for vi to move to the next core without vj

and vice-versa since the new added edge has to survive in the next core. Hence, contrary

to edge deletion, we only need to run the check on vi.

In the worst case scenario (corresponding to a very tight k-shell), we may need to visit

all the nodes in Sk \ Ck so we have an overall complexity of O(m) time and O(n) space.

But in practice, we only visit the nodes from Sk \Ck that have at least k+1 neighbours in

Sk\Ck∪Hk+1, reducing very rapidly the number of candidates as observed experimentally.

Moreover, we implemented a breadth-first-search (BFS) traversal to take advantage of the

back propagation as soon as possible to prune nodes that cannot move to Hk+1 anyway.

Figure 6.3 illustrates this procedure using the same set up as Figure 6.2. The green

solid edges can be safely added while the red dashed edges cannot. We note that we

cannot assert whether an edge can be added just by checking if its endpoint(s) belong
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to the k-corona (like v1 or v3) or not (v2). It appears to depend on the structure of the

neighbourhood, hence the proposed algorithm.

Note that at the cost of some privacy (false negatives for edge addition), it is possible

to limit the depth of the BFS traversal and cap the number of visited vertices. We did

not need it in our experiments but for some applications where speed matters or for some

particular graph structures with tight giant cores, it might help and ensure constant time

edge addition.

Coreness-preserving edge rotation

We can easily combine the two previous approaches to check for coreness-preserving edge

rotation. Considering three nodes like in Figure 2.2b, we only need to check that edge

(vi, vj) can be safely deleted and edge (vi, vp) added. This has as effect the modification

of the apparent degrees of vj and vp as wanted while not changing any core number.

Additional remarks

Next, we introduce a couple of additional remarks on our proposed approach.

• Two kinds of slack: Given an edge to be added/deleted, for the endpoint in the upper

core, this modification has no impact on its core number. Therefore, the bigger the

gap between its apparent degree and its true degree, the more slack for perturbation

it has since it possesses many “satellite connections”. For the endpoint(s) in the

lower shell, the apparent degree has already been reduced to its effective degree

and therefore the slack for perturbation is between its effective degree and its true

degree. The bigger the gap, the easier the edge deletion but the harder the edge

addition.

• Tight vs. relaxed k-shell: Edge addition and edge deletion have opposite goals that

translate into opposite favourable k-shells (by favourable, we mean k-shells where

the likelihood that the edge modification can be safely performed is high). Indeed,

the edge deletion is more likely to be possible if the k-corona is small compared

to the k-shell while it is generally the opposite for edge addition. A sparse k-shell

means that most effective degrees are close to the shell index so it is less likely that

by adding a new edge, there are enough connected nodes to move to the next core

but in the meantime, deleting one edge might be hard. Conversely, a dense k-shell

is less favourable for edge addition and the algorithm would probably take longer
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(more neighbours of type (c)). This is the reason why we suggest alternating edge

additions and deletions when performing the anonymization to help maintaining the

k-shells neither too tight nor too relaxed.

• Nodes from the 0-shell: Similarly to Rand switch, our method cannot add edges to

nodes from the 0-shell since they would immediately move to the 1-shell. We see

two options to deal with this particularity: (a) artificially allow them to move to

the 1-shell under the assumption that the impact on the data utility is limited or

(b) consider that an attacker cannot learn anything from a node without neighbours

(except if S0 is a singleton, in which case he can re-identify the node but this one

only). In our experiments, we considered the second option.

6.3.2 Experiments

In this section, we present the experimental set up and the empirical results of our work.

Our framework generates perturbed (i.e. anonymized) networks from the original one by

applying our proposed method, coreness-preserving edge modification denoted by “Crnss

Add/Del” following Ying and Wu’s terminology in [88] and the two baselines “Rand

Add/Del” and “Rand Switch”. For each method, we considered 10 independent executions

with a anonymization ranging from 0% to 25% of the total number of edges. We quantified

the noise introduced on the perturbed data using some generic information loss measures

and clustering-specific information loss.

We used 5 standard real networks to test our approach: Zachary’s karate club, Jazz,

URV email, Polblogs and Caida (see Section 2.5 for further details).

Generic graph properties

In order to quantify the noise introduced in the data, we used several structural and spec-

tral graph properties. Some structural measures evaluate the graph in its whole through

a global score: average distance (dist), diameter (D), harmonic mean of the shortest

distance (h), sub-graph centrality (SC) and transitivity (T ). Other metrics evaluate the

graph locally (at the node-level): betweenness centrality (CB) and closeness centrality

(CC). Additionally, we used two spectral measures that are closely related to many graph

properties [88]. These are the largest eigenvalue of the adjacency matrix A (λ1) and the

second smallest eigenvalue of the Laplacian matrix L (µ2).

Variations in the generic graph properties are a good way to assess the information
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loss but they are just a proxy to the changes in data utility we actually want to measure.

What we are truly interest in is, given a data mining task we want to perform on the

graph, quantify the disparity in the results when performing the task on the anonymized

dataset. Clustering is one of standard tasks and we chose the extracted clusters as the

data utility researchers could be interested in.

Clustering-specific measures

We ran 4 graph clustering algorithms to evaluate the edge modifications techniques using

the implementations from the igraph library. All of them are unsupervised algorithms

based on different concepts and developed for different applications and scopes. An ex-

tended revision and comparison of them can be found in [54, 92]. The selected clustering

algorithms are: Fastgreedy, Walktrap, Infomap and Multilevel (details can be found in

Section 4.3.1). Walktrap (WT) and Infomap (IM) are based on the random walk concept

while Fastgreedy (FG) is based on hierarchical edge betweenness and Multilevel (ML) on

graph modularity. Although some algorithms permit overlapping among different clus-

ters, we did not allow it in our experiments by setting the corresponding parameter to

zero, mainly for ease of evaluation.

Method dist D h SC T CB CC λ1 µ2

K
a
ra
te Crnss Add/Del 0.069 0.681 0.024 7.238 0.042 0.039 0.036 0.296 0.216

Rand Add/Del 0.048 0.331 0.012 6.812 0.031 0.030 0.053 0.280 0.058

Rand Switch 0.120 0.596 0.047 1.648 0.019 0.022 0.037 0.119 0.184

J
a
zz

Crnss Add/Del 0.100 0.300 0.053 7.367 0.096 0.007 0.028 1.035 0.061

Rand Add/Del 0.188 1.927 0.095 9.933 0.111 0.008 0.045 2.862 1.856

Rand Switch 0.127 0.504 0.067 5.441 0.105 0.006 0.032 0.654 0.056

U
R
V

em
a
il Crnss Add/Del 0.083 0.073 0.068 6.495 0.047 0.126 0.017 1.429 0.050

Rand Add/Del 0.099 0.508 0.042 6.776 0.038 0.128 0.147 1.873 0.317

Rand Switch 0.114 0.165 0.094 3.549 0.044 0.088 0.012 0.512 0.003

P
o
lb
lo
g
s

Crnss Add/Del 0.045 0.750 0.039 1.055 0.043 0.101 0.162 2.856 0.276

Rand Add/Del 0.116 2.319 0.071 1.119 0.040 0.144 0.110 8.002 0.429

Rand Switch 0.088 0.846 0.064 0.476 0.033 0.089 0.038 0.518 0.062

C
a
id
a Crnss Add/Del 0.055 2.491 0.051 - 0.139 0.009 0.184 27.836 0.007

Rand Add/Del 0.022 3.973 0.145 - 0.034 0.010 0.238 20.139 0.553

Rand Switch 0.066 0.827 0.040 - 0.006 0.019 0.216 32.738 0.006

Table 6.4: Average error for Crnss Add/Del, Rand Add/Del and Rand Switch edge mod-
ification processes on 9 generic information loss measures.
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Figure 6.4: Average distance (Jazz ) and precision index (Karate) values for an anonymiza-
tion varying from 0% to 25%.

Results

We present in Table 6.4 the average errors over 10 independent runs and 25 levels of

anonymization for Crnss Add/Del, Rand Add/Del and Rand Switch for all the information

loss measures aforementioned. Note that for the biggest network Caida, some results

(indicated by -) could not be computed in a reasonable time for reasons unrelated to our

approach but due to the measure in itself. For instance, SC relies on all the paths starting

and ending at each vertex, which can be very expensive to compute for large networks.

Bold values indicate the method that achieves the best result (i.e. lowest information

loss) on each measure and dataset (i.e. per cell).

Our edge modification method that preserves the coreness (Crnss Add/Del) performs

better than the others methods on generic measures related to graphs paths, i.e. average

distance (dist), diameter (D), harmonic mean of the shortest distance (h) and closeness

centrality (CC). For instance, Figure 6.4a illustrates in more details the results for average

distance. The 0% perturbation point in the upper left corner represents the value of this

metric on the original graph. Thus, values close to this point indicate low noise on

perturbed data. As we can see, Crnss Add/Del remains closer to the original value than

the others methods obtaining the lowest average error value (0.1). Nevertheless, our

approach does not yield the best results on betweenness centrality (CB) but still close to

Rand Switch.

Subgraph centrality (SC) and transitivity (T ) are measures related to centrality and
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Method IM ML FG WT

K
a
ra
te Crnss Add/Del 0.172 0.156 0.249 0.247

Rand Add/Del 0.236 0.186 0.287 0.327

Rand Switch 0.284 0.213 0.267 0.323

J
a
zz

Crnss Add/Del 0.086 0.089 0.042 0.089

Rand Add/Del 0.131 0.118 0.081 0.113

Rand Switch 0.101 0.099 0.057 0.074
U
R
V

em
a
il Crnss Add/Del 0.210 0.348 0.347 0.287

Rand Add/Del 0.313 0.426 0.402 0.533

Rand Switch 0.251 0.373 0.347 0.281

P
o
lb
lo
g
s

Crnss Add/Del 0.070 0.464 0.024 0.023

Rand Add/Del 0.226 0.418 0.194 0.227

Rand Switch 0.123 0.401 0.046 0.066

C
a
id
a Crnss Add/Del 0.115 0.239 0.276 0.225

Rand Add/Del 0.217 0.316 0.343 0.723

Rand Switch 0.128 0.241 0.277 0.221

Table 6.5: Average error for Crnss Add/Del, Rand Add/Del and Rand Switch edge mod-
ification processes on 4 clustering-specific information loss measures.

triads in a network. Clearly, our method does not lead to the best results but still close

to Rand Add/del in most cases. Rand Switch gets the best results on these two measures,

getting a significant advantage specifically in subgraph centrality, probably because it

maintains the node degrees. The last two generic measures are the spectral ones. Edge

Switch performs better on the largest eigenvalue of the adjacency matrix (λ1) and the

second smallest eigenvalue of the Laplacian matrix (µ2), achieving significant differences

on λ1.

Table 6.5 presents the error on precision index computed using the four clustering

algorithms described in Section 4.2. Bold values indicate the method that achieves the best

result (i.e. lowest information loss) on each measure and dataset (i.e. per cell). It is crucial

to consider the results on real graph mining processes since the main goal of the anonymous

data is to provide valuable information to researchers and others third-parties in order to

understand the structure and the behavior of real networks. Hence, we have considered

clustering as an important graph mining task that can be useful to quantify the data utility

loss in our experimental framework. The coreness-preserving approach outperforms the

others in all datasets and clustering methods. For instance, it is interesting to note that,

although our approach does not get good results on generic measures for the Karate

dataset, it achieves the best results on all clustering methods as Figure 6.4b illustrates for

the Infomap method. As we can see, Crnss Add/Del outperforms the others methods and

gets precision index values greater than 0.8 up to 20% of anonymization. Therefore, even

if the generic measures could indicate that Rand Switch introduce less noise on perturbed
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data, the clustering processes show the opposite, demonstrating that our method preserve

better the data utility and reduce the information loss.

6.3.3 Conclusions

In this section, we have proposed a novel edge modification technique for graph anonymiza-

tion. By preserving the core number sequence of a graph, its coreness, our method achieves

a better trade-off between data utility and data privacy than existing edge modification

operations. In particular, it outperforms Edge add/del in terms of data utility and Edge

switch in terms of data privacy as empirical results have shown, be it on generic graph

properties or real applications such as clustering. Moreover, its straightforward adap-

tation to existing algorithms for constrained graph anonymization shows good promises

of reusability, not only in privacy. For instance, future works might involve the use of

the developed algorithms for updating the coreness in evolving networks through local

updates.
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Chapter 7

Random-based methods

In this chapter we devise a simple and efficient algorithm for randomization on networks.

Our algorithm considers the edge’s relevance, preserving the most important edges of the

network in order to improve the data utility and reduce the information loss on anonymous

graphs. After a short introduction in Section 7.1, we devise our random-based algorithm

in Section 7.2. Then, Section 7.3 presents the results and the re-identification and risk

assessment in Section 7.4. Lastly, the conclusions are discussed in Section 7.5.

7.1 Randomization using Edge Neighbourhood Cen-

trality

In this section, we will present the Rand-NC 1 (short for Randomization using Edge Neigh-

bourhood Centrality) algorithm, which is designed to achieve random-based privacy on

undirected and unlabelled networks. The algorithm performs modifications to the origi-

nal network G = (V,E) only in edge set (E). Thus, the vertex set (V ) remains the same

during randomization process.

Our approach is a probabilistic random-based method which considers edge relevance

in order to achieve less information loss, and consequently better data utility on anony-

mous graphs. Our probability distribution is computed according to a relevance value

assigned to each edge. This relevance value is computed by a simple metric, called edge

neighbourhood centrality (details in Section 6.2), which evaluates the 1-neighbourhood

information flow through an edge.

1Source code available at: http://deic.uab.cat/~jcasas/

82

http://deic.uab.cat/~jcasas/
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7.2 Rand-NC algorithm

Our randomization algorithm runs in a two-step approach: the first step removes w < m

(usually w << m, where m = |E|) edges from the original edge set (E). The process starts

by computing the edge neighbourhood centrality (NC) score for each edge {i, j} ∈ E using

Equation 6.4. Then, it calculates the probability of each edge to be removed as follows:

p({i, j}) =
1

NC2
{i,j}

(7.1)

According to the power-law property of scale-free real networks [5], notice that there

are few edges with high NC values. Hence, we are interested on preserving these edges,

since they are bridge-like connectors and are critical for the structure and the information

flow on the network. Consequently, the probability of removing these edges during the

anonymization process is low, in accordance with Equation 7.1.

In a second step we add w fake edges {i, j} 6∈ E. Let the set of all possible fake edges

be the complement of the original graph, which has the same vertex set but whose edge

set consists of the edges not present in G.

Let Gc = (V,Ec) be the complement of the graph G = (V,E). We select a random set

of m = |E| edges using a uniform probability distribution from Ec, and create a subset

Es ⊆ Ec with |Es| = m. Notice that usually |Ec| >> |E| because of the sparse property

of real networks, and therefore we only need to consider a subset of m elements. Next,

we compute the NC-score for each edge {i, j} ∈ Es by adding it to E and computing the

score in G using Equation 6.4.

Note that this process considers the score of each edge independently, and possible

dependencies between NC-scores of different edges will not be considered. The NC-score

for an edge {i, j} will be modified if for some vu ∈ V an edge {i, u} or {u, j} is added

or deleted, since this implies that the 1-neighbourhood of the vertices vi or vj will be

changed. Even so, we do not recompute the NC-values after an edge is added or removed

due to the computational complexity. As we stated before, one of our goals is keep a low

complexity to enable our approach to work with medium or large networks.

Finally, we randomly select w edges from Es, according to the probability distribution

computed by Equation 7.1, and then we add them to the edge set in order to obtain the

anonymous version of edge set (Ẽ), which fulfils |E| = |Ẽ| and |E| − |E ∩ Ẽ| = w.

For instance, we can see empirical data about Polbooks network (see Section 2.5 for

network’s details) in Figure 7.1. Firstly, the NC-score and its probability value on G
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Figure 7.1: Empirical results of NC-score for each edge and its probability computed by
Equation 7.1 on Polbooks network.

are shown in Figure 7.1a. As we can see, edges with high NC-score are assigned to low

probability values by Equation 7.1, and vice versa. Secondly, the same values for the

complement graph Gc are shown in Figure 7.1b. Note that |Ec| >> |E|. In a similar way,

edges with low NC-score present higher probability to be added to G̃ during randomization

process than the ones with high NC-score.

7.3 Empirical Results

In this section we will present the results of our randomization method and, in addition,

we will compare our method with two basic and relevant methods for randomization on

networks. The selected methods are: Random Perturbation (in short, RP) and Random

Switch (RS). In subsequent sections, we will analyse these methods and ours, and we will

compare the empirical results on different real networks. Our experimental framework

considers 10 independent executions of the randomization methods with a perturbation

range between 0% and 25% of total number of edges, i.e, 0 ≤ p ≤ 25. Note that 0%

perturbation represents the original network. The parameters are the same for all methods

and they achieve similar privacy levels, since they apply the same concept to preserve the

graph’s privacy. Therefore, the evaluation of the results allows us to compare anonymous

data in terms of data utility and information loss. Three different real networks are used

in our experiments: Zachary’s karate club (Karate), US politics book data (Polbooks) and
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Karate D h SC T Cor CB CC λ1 µ2

NC 0.296 0.010 3.091e 0.028 0.392 0.025 0.047 0.090 0.050

RP 0.331 0.012 6.812 0.031 0.349 0.030 0.053 0.280 0.058

RS 0.596 0.047 1.648 0.019 0.069 0.022 0.037 0.119 0.184

Polbooks D h SC(×102) T Cor CB CC λ1 µ2

NC 1.550 0.181 6.887 0.063 0.338 0.019 0.055 0.208 0.366

RP 1.719 0.201 12.555 0.075 0.340 0.020 0.061 0.583 0.580

RS 1.888 0.239 8.564 0.082 0.110 0.019 0.070 0.109 0.500

URV email D h SC(×105) T Cor CB CC λ1 µ2

NC 0.388 0.037 3.696 0.033 0.582 0.001 0.175 0.580 0.320

RP 0.508 0.042 6.776 0.038 0.578 0.001 0.147 1.873 0.317

RS 0.165 0.094 3.549 0.044 0.211 0.001 0.012 0.512 0.003

Table 7.1: Results for Rand-NC (NC), Random Perturbation (RP) and Random Switch
(RS) algorithms.

URV email (networks’ details are provided in Section 2.5).

Results are displayed in Table 7.1. Each cell indicates the error value for the cor-

responding measure and algorithm. For each dataset and algorithm, we compare the

results obtained on D, h, SC, T , Cor, CB, CC , λ1 and µ2. Bold cells indicate the al-

gorithm that achieves the best result (i.e, lowest information loss) for each measure and

dataset. The lower the value, the better the algorithm. Although deviation is undesirable,

it is inevitable due to the edge modification process.

The first tested network is Zachary’s karate club. As shown in Table 7.1, our algorithm

achieves the best results on D, h, λ1 and µ2. For instance, we can deepen on the behaviour

of λ1 error in Figure 7.2a. Perturbation parameter p varies along the horizontal axis from

0% to 25%. The p = 0 value represents the value of this metric on the original graph.

Thus, values close to this point indicate low noise on perturbed data. As we can see,

Rand-NC remains closer to the original value than the others algorithms. Random Switch

achieves the best results on SC and Cor. Furthermore, it also gets the best results on T ,

CB and CC , but they are quite similar on all randomization methods, suggesting that all

of them introduce similar noise on these measures, as we can see in Figure 7.2b.

The second dataset, Polbooks, is a small collaboration network. The results of the

comparability are very encouraging. Rand-NC outperforms on all measures, except on

Cor and λ1, where Random Switch achieves lower error values. For instance, we can see

the average error of the closeness centrality in Figure 7.2c, which behaves in a similar way

for the three tested algorithms. The Cor measure, shown in Figure 7.2d, is based on the
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Figure 7.2: Examples of the error evolution computed on our experimental framework.

k-core decomposition and is closely related to the degree of the vertices. Consequently,

it is not surprising that Random Switch gets the best results, since this method does not

change the vertices’ degree, keeping the degree sequence equal to the original one.

Finally, the last dataset is URV email communication network. The best results on D,

SC, Cor, CC , λ1 and µ2 are achieved by Random Switch method. Even so, our algorithm
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Figure 7.3: Candidate set size (CandH1) evaluation on our three tested networks.

gets good results on λ1 and SC, where its values are close the ones by Random Switch.

Figure 7.2e presents the sub-graph centrality details. In addition, Rand-NC achieves the

best results on h and T , as shown in Figure 7.2f.

7.4 Re-identification and risk assessment

Assuming that the randomization method and the number of fake edges w are public, the

adversary must consider the set of possible worlds implied by G̃ and w. Informally, the

set of possible worlds consists of all graphs that could result in G̃ under w perturbations.

Using Ec to refer to all edges not present in E, the set of possible worlds of G̃ under w

perturbations, denoted by Ww(Ẽ) is computed by:

Ww(Ẽ) =

(|E|
w

)(|Ec|
w

)
(7.2)

Therefore, and according to Hay et al. [48], the candidate set of a target vertex vi

includes all vertices vj ∈ G̃ such that vj is a candidate in some possible world. We

compute the candidate set of the target vertex vi based on vertex refinement queries of

level 1 (H1) (see Section 3.4.2 for further details) as shown in Equation 7.3.

CandH1(vi) = {vj : deg−(vj) ≤ deg(vi) ≤ deg+(vj)} (7.3)

where deg−(vj) = round(deg(vj)(1 − w
m

)) is the minimum expected degree of vj and

deg+ = round(deg(vj)(1 + w
m

)) is the maximum expected degree after uniformly random

edge deletion/addition process.

Using this re-identification model based on vertex degree, we observe that Random

Switch method does not change the vertex degree during the randomization process.
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Consequently, this method does not improve the privacy under an adversary’s knowledge

based on the degree value of some target vertices. Contrary, both Rand-NC and Random

Perturbation methods modify the degree sequence and hinder the re-identification process

according to this adversary knowledge model. Figure 7.3 shows the CandH1 evolution on

Rand-NC and Random Perturbation methods. Note that both methods achieve the same

candidate set, since they apply the same number of edge modifications in our experiments.

Perturbation varies along the horizontal axis from 0% (original graph) to 25%. The trend

lines show the percentage of vertices whose equivalent candidate set size falls into each

of the following groups: [1] (black), [2,4], [5,10], [11,20], [21, ∞] (white). As we can see,

candidate set sizes shrink while perturbation increases in all datasets. The number of

nodes at high risk of re-identification (the black area) decreases quickly. Nevertheless,

well-protected vertices present different behaviour on our tested network. For instance,

Zachary’s karate club (Figure 7.3a) does not achieve a significant increment on well-

protected vertices due to the fact that it is a small network with only 34 vertices and,

therefore, a candidate set size of [21, ∞] is probably too strict. Finally, notice that

the probability computed in Equation 7.3 corresponds to an uniformly random process,

which is exactly what the method Random Perturbation proposes. A slightly difference

occurs on Rand-NC, but we omit the experimental results due to the very small difference

between them.

7.5 Conclusions

In this chapter we have presented a new algorithm for randomization on networks, which

is based on edge set modification according to edge’s relevance. Instead of modifying one

of the possible edges at random, this method considers the edge’s relevance and preserves

the most important edges in the network. Our method achieves a better trade-off between

data utility and data privacy than other methods. In particular, it outperforms Random

Perturbation in terms of data utility and Random Switch in terms of data privacy as

empirical results have shown.

We have presented some experimental results on real networks. Even though our algo-

rithm does not perform better than Random Switch in some specific metrics and networks,

the privacy level achieved by our method is clearly higher than the one achieved by Ran-

dom Switch. In addition, Rand-NC gets the best results on several metrics. Therefore,

we have demonstrated that our algorithm is better, in terms of data utility and privacy,
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than the two well-known Random Perturbation and Random Switch algorithms.



Chapter 8

k-Anonymity methods

In this chapter we will focus on k-anonymous methods, specifically on k-degree anonymous

methods for undirected networks. We will start by discussing preliminary concepts in

Section 8.1. Next, we will present our two algorithms for k-degree anonymity on networks.

The first one is based on evolutionary algorithms (Section 8.2), and the second one is based

on univariate micro-aggregation (Section 8.3). Then, in Section 8.4 we will compare our

methods with other well-known k-degree anonymous methods in terms of data utility and

information loss. Finally, we will discuss the conclusions on Section 8.5.

8.1 k-degree anonymity model

We use d to define the degree sequence of G, where d = {d1, d2, . . . , dn} is a vector of

length n and di is the degree of vertex vi ∈ V . We refer to the ordered degree sequence

as a monotonic non-decreasing sequence of the vertex degrees, that is di ≤ dj ∀i < j.

The degree sequence is an interesting tool since the concept of k-degree anonymity for

a network can be directly mapped to its degree sequence, as Liu and Terzi showed in [59]

and we recall in the following definitions:

Definition 1 A vector of integers V is k-anonymous if every distinct value vi ∈ V appears

at least k times.

Definition 2 A network G = (V,E) is k-degree anonymous if the degree sequence of G

is k-anonymous.

Regarding to the degree sequence, notice that:

90
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• The number of elements determines the number of vertices. Thus, this value cannot

be altered.

• Each di ∈ d must be an integer in the range [0, n− 1], since each di is the degree of

vertex vi.

• The total number of edges is half the sum of the degree sequence, i.e,
∑n

i=1 di = 2m,

since each edge is counted twice in the degree sequence. Therefore,
∑n

i=1 di =

0 mod 2.

We define the distance between two integer vectors as follows:

∆(d̃, d) =
n∑
i=0

|d̃i − di| (8.1)

∆ can be used as a measure of information loss of a protected graph G̃ with degree

sequence d̃ with respect to the original graph with degree sequence d. In this case, the

lower the value of ∆ obtained, the lower the information loss of the anonymous graph G̃.

8.2 Evolutionary Algorithm for Graph Anonymiza-

tion

In this section we will present our first approach for graph anonymization, called Evolu-

tionary Algorithm for Graph Anonymization (EAGA)1, which is based on evolutionary

algorithms and focused on creating k-degree anonymous graphs.

8.2.1 The EAGA algorithm

A high-level description of our proposal allows us to structure our anonymization algo-

rithm in two steps, similar to the approach by Liu and Terzi [59]:

1. In the first step, from the original degree sequence of G = (V,E), d = {d1, · · · , dn},
we construct a new sequence d̃ which is k-degree anonymous and minimize the

distance ∆ from the original sequence computed by Equation 8.1.

2. In the second step, we construct a graph G̃ = (Ṽ , Ẽ) where Ṽ = V , Ẽ ∩E ≈ E and

the degree sequence is equal to d̃.

1Source code available at: http://deic.uab.cat/~jcasas/

http://deic.uab.cat/~jcasas/
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The process of creating the k-anonymous degree sequence determines the anonymiza-

tion level and the distance from the original degree sequence. An optimal sequence has

to provide the requested k-anonymity level and has to minimize the distance from the

original degree sequence. This last condition is decisive for data utility and information

loss.

Step I: Obtaining the k-degree anonymous sequence

Our proposal uses evolutionary algorithms to generate the k-degree anonymous sequence.

Algorithm 1 details the steps to generate an anonymous degree sequence.

Algorithm 1 Algorithm pseudo-code for generating k-degree anonymous sequence.

Require: Original degree sequence (d) and the k-anonymity value (k).

Ensure: k-degree anonymous sequence (d̃).
INITIALIZE population⇐ d
k actual⇐ GET K population
while k actual < k do

MUTATE population
EVALUATE new candidates
population⇐ SELECT individuals
k actual⇐ GET K individuals

end while
d̃⇐ SELECT best candidate
return d̃

As we have shown in Algorithm 1, population is initialized from original degree se-

quence. Next, the sentences in the while loop are the generation step. Here we apply the

basic mutation process (MUTATE function in Algorithm 1) which adds one to an element

of the sequence and subtracts one to another element of the sequence. This operation

represents edge rotation, which is one of the most basic edge modifications on a graph.

For instance, if an edge {vi, vj} is modified by replacing one node, one can obtain {vi, vp}.
This edge modification is represented on the degree sequence as a subtraction on node

vj (because it decreases its degree) and a addition on node vp (because it increases its

degree). It is important to note that our algorithm does not use crossover since this op-

eration systematically breaches the rule that preserves the number of edges of the graph,

generating invalid candidates. We consider the performance of the algorithm would be

affected by the inclusion of this type of evolution, and improvements would not occur in

time or quality of the solution found.
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When candidate generation is done, we evaluate the candidates in order to find the

best one. The score of each candidate is determined by the fitness function (EVALU-

ATE function in Algorithm 1). This function assigns different score punctuation whether

each individual fulfils the desired k or not. Individuals who do not meet the desired

k-anonymity value are scored in range [0,1] considering two parameters:

• The number of vertices which do not fulfil the k-anonymity.

• The dispersion level, computed as the average distance from all nodes to the mean

degree value.

On the contrary, individuals who fulfil the desired privacy level are scored in range

[1,2] considering only one parameter:

• The distance from the original sequence. The target is to minimize this value, as

we described in Equation 8.1.

Finally, the candidate selection uses the steady-state model. According to it, the

worst candidates of the actual generation are replaced by the best candidates of the new

generation.

Step II: Modifying the original graph

The result of the first step is a k-degree anonymous sequence. Then, in the second step we

apply the necessary modifications to original graph in order to obtain the k-anonymous

one. The anonymized k-degree sequence informs the degree for each node on anonymized

graph. Therefore, the difference between original and anonymized degree sequence points

to vertices which have to increase or decrease their degree. Hence, we have to add or

remove edges to/from these vertices.

As we can see in Algorithm 2, this step begins computing the difference vector, δ =

d̃ − d, which allows us to easily detect which vertices have to increase or decrease their

degree. The algorithm removes incident edges to vertices which have to decrease their

degree, while it adds new edges to vertices which have to increase their degree. We apply

these modifications removing the edge {vi, vj} ∈ E, where vj belongs to vertices which

have to decrease their degree, and adding a new edge {vi, vp}, where vp belongs to vertices

which have to increase their degree.
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Algorithm 2 Algorithm pseudo-code for modifying the original network.

Require: Original graph G = (V,E), original degree sequence d and the k-degree anony-

mous sequence d̃.
Ensure: The graph G̃ = (V, Ẽ) where the degree sequence is d̃ and Ẽ ∩ E ≈ E.

G̃ = (V, Ẽ)⇐ G̃0 = (V, Ẽ)

ddif = d− d̃
Vdel = {vi ∈ V : ddif (i) < 0}
Vadd = {vi ∈ V : ddif (i) > 0}
while Vdel 6= ∅ and Vadd 6= ∅ do
Ẽ = Ẽ \ {vi, vj} where {vi, vj} ∈ E and vj ∈ Vdel
Vdel = Vdel \ vj
Ẽ = Ẽ ∪ {vi, vp} where {vi, vp} 6∈ E and vp ∈ Vadd
Vadd = Vadd \ vp

end while
return G̃

8.2.2 Experimental results

For each dataset, we analyse the evolution of the degree histogram, comparing the his-

togram on anonymous and original graphs. We use edge intersection (EI) to quantify the

number of edges which were on the original graph and still are on the anonymous one.

Clearly, the higher the value, the less the perturbation. In addition, we use betweenness

(CB), closeness (CC) and degree (CD) centrality measures (See 4.2 for details) to quantify

the noise introduced in the anonymous data.

Lastly, we want to evaluate how the vertex set evolves during the process of anonymiza-

tion. In order to do this, we use the vertex refinement queries (see Section 3.4.2 for further

details). We use the candH1 to analyse the evolution of vertices, in terms of k-degree

anonymity, during the anonymization process. Results are shown in Figure 8.1. The

first row contains the degree histogram of original (grey) and anonymous (red) graphs.

The second one contains the edge intersection as a function of k (horizontal axis). The

following row presents the root mean square (RMS) of the three used centrality measures

(i.e, betweenness, closeness and degree centrality) and finally, the fourth row shows the

k-degree analysis performed by CandH1 .

The first dataset is a small social network with 34 nodes, 78 edges and a k-degree

anonymity value equal to 1. EAGA algorithm anonymizes it to k values equal to 2, 3,

4 and 5. Figure 8.1a shows the original and k = 4 anonymous degree histogram. As we

can see, the degree histogram of original graph follows the power-law (total number of
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Figure 8.1: EAGA experimental results for Zachary’s karate club, American football
college and Jazz musicians networks.

nodes exponentially decrease when degree value grows). Edge intersection is shown in

Figure 8.1d. An anonymous graph with k = 2 the algorithm achieves an edge intersection

value of 94.87%, while this value descends to 79.49% when k-anonymity value is equal
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to 5. Figure 8.1g shows the RMS on the three centrality measures. Clearly, we want to

keep these values close to zero, since the lower the values, the less noise introduced on

anonymous data. Though, the error increases as the k value grows. Finally, we show the

evolution of CandH1 as an extension to k-degree anonymity value in Figure 8.1j, since

this information allows us to see how vertices evolve in terms of re-identification during

the anonymization process. The black area shows the percentage of vertices which can be

directly re-identified (i.e, vertices with a unique degree value), the dark grey area shows

the percentage of vertices with high risk of re-identification (i.e, groups between 2 and 4

vertices with the same degree value), the light grey area shows percentage of vertices with

moderate risk of re-identification (i.e, groups between 5 and 10 vertices with the same

degree value) and, finally, the white area shows percentage of vertices with low or very low

risk of re-identification (i.e, groups of more than 11 vertices with the same degree value).

The number of vertices which can be directly re-identified (black area) descends to zero

when k achieves a value of 2, while the number of vertices in high risk of re-identification

(dark grey area) does not fall to zero until k = 5. When k is equal to 5, all vertices are

in moderate risk of re-identification.

The second dataset is a collaboration network with 115 nodes, 613 edges and a value

of k = 1. EAGA algorithm anonymizes it to a k values in range 11-19, 23, 24 and 25. The

degree histogram has experienced just a few number of modifications in order to achieve a

k-anonymity value of 19, as we can see in Figure 8.1b. Accordingly, this particular graph

structure only needs a few edge modifications to achieve a great k-anonymity value. It

is important to note that more than 93% of edges remain the same in all anonymous

graphs (96.25% in graph with k = 19 and 93.64% in graph with k = 25), as Figure

8.1e shows. Centrality measures (Figure 8.1h) show irregular perturbation on anonymous

graphs. Finally, CandH1 is shown in Figure 8.1k and it presents an important decrease

on groups with direct, high and moderate re-identification risk until a zero value has been

reached when the k-anonymity value is equal to 11. From this k value on, all nodes are

well-protected.

The third and the last dataset is a collaboration network with 198 nodes, 2,742 edges

and a k-degree anonymity value equal to 1. This graph presents an average degree quite

higher than others, close to 27 edges/vertex. The degree histogram in Figure 8.1c reveals

the existence of two outlier vertices (usually called hubs), with degree values of 96 and 100.

It is important to underline that these two nodes are in danger of direct re-identification,

but at the same time, and due to their important centrality role, they are key vertices

for the graph structure. EAGA algorithm anonymizes the graph to a k values equal to
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2, 3, 4 and 5. The perturbation on anonymous data is higher than the previous datasets,

since the problem of the outlier values. It will be necessary to modify the two hubs of

the graph in order to get k ≥ 3 values and, therefore, those hubs will lose their centrality

and produce high perturbation on anonymous data, reducing significantly the data utility.

The anonymized graph with k = 2 presents a high percentage of edge intersection, but it

falls to 61% for a k = 5, as we can see in Figure 8.1f. Figure 8.1i presents the error of

the centrality measures, which indicates that small perturbations have been introduced

on the anonymous graph, specifically on betweenness centrality. Finally, the CandH1 is

presented in Figure 8.1l and shows a reduction of nodes in directly and high risk of re-

identification. The k = 5 anonymous dataset presents the 90% of its vertices in moderate

risk of re-identification, while only the 10% is well-protected.

8.3 Univariate Micro-aggregation for Graph Anonymiza-

tion

In this section, we present our second approach to k-degree anonymity, which is called

Univariate Micro-aggregation for Graph Anonymization (UMGA)2 algorithm. It is de-

signed to achieve k-degree anonymity on large, undirected and unlabelled networks. The

algorithm performs modifications to the original network G = (V,E) only on edge set

(E). Hence, the vertex set (V ) does not change during anonymization process.

8.3.1 The UMGA algorithm

Like in the algorithm described in Section 8.2, this one is based on a two-step approach:

1. Degree Sequence’s Anonymization. We construct a k-degree anonymous sequence

d̃ = {d̃1, . . . , d̃n} from the degree sequence d = {d1, . . . , dn} of the original network

G = (V,E) using Definition 1. In addition, we use the function ∆ from Equation

8.1 to reduce the distance between the anonymous sequence and the original one.

2. Graph modification. We build a new graph G̃ = (V, Ẽ) where its degree sequence is

equal to d̃ by using basic edge modification operations. These operations allow us

to modify the network’s structure according to the anonymous degree sequence (d̃).

By Definition 2, the anonymous graph G̃ will be k-degree anonymous.

2Source code available at: http://deic.uab.cat/~jcasas/

http://deic.uab.cat/~jcasas/
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8.3.1.1 Degree Sequence’s Anonymization

The objective of this first step is to anonymize the degree sequence of the original network

(d), constructing a k-anonymous degree sequence (d̃). Using Definition 1 we have to

modify the values of d in order to create groups of k or more elements. Our method uses

the optimal univariate micro-aggregation [43] to achieve the best group distribution and

then it computes the values for each group that minimize the distance ∆ from the original

degree sequence.

Without loss of generality, we assume d to be an ordered degree sequence of the original

network. Otherwise, we apply a permutation f to the sequence to reorder the elements.

Let k be an integer such that 1 ≤ k < n which is the k-degree anonymity value. Typically,

k is much smaller than n. In order to apply the optimal univariate micro-aggregation,

and according to Hansen and Mukherjee [43], we construct a new directed network Hk,n

and get the optimal partition which is exactly the set of groups that corresponds to the

arcs of the shortest path from vertex 0 to vertex n on this network. We denote by g the

optimal partition, where g has n
k
≤ p ≤ n

2k−1 groups and each of them (gj) has between k

and 2k − 1 items. Obviously, each di ∈ d belongs to a specific group gj.

Next, we compute the matrix of differences, Mp×2, using each group of the partition.

The first column contains the sum of differences between each element of the group and

the arithmetic mean of all degrees that belong to the group, using floor function to round

the mean value. The second column is computed in the same way, but using de ceiling

function instead. Conceptually, M contains the number of degrees in the first column,

which we should decrease in this group to fulfil k-degree anonymity. These values are

always zero or positive. The second column contains the number of degrees which we

should increase in this group to reach k-degree anonymity. These values are always

negative or zero. Formally, for j = {1, . . . , p} each element mji is computed as:

mj1 =
∑
di∈gj

(
di −

⌊
〈gj〉

⌋)
(8.2)

mj2 =
∑
di∈gj

(
di −

⌈
〈gj〉

⌉)
(8.3)

where 〈gj〉 is the average value of di ∈ gj.
A group with zero values on both columns should not apply any modification on its

items because it is already k-anonymous.
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Example 1 A group g1 = {2, 2, 2} generates [0, 0] as the first row of M . So the items of

the group g1 do not need to modify their values. However, a group g2 = {3, 4, 4} generates

the row [2,−1]. Thus, there are two possibilities to anonymize the group: decrease the

values of the second and third items to 3 or increase the value of the first item to 4.

Now we have to compute a solution, that is a p-sequence values where each mj ∈
{mj1,mj2}. The closer |∑p

j=1mj| to 0, the better the solution. This research is a complex

operation with cost O(2q) where q is the number of groups with mj 6= 0. Because of the

power law on real networks, q is typically much smaller than p, but still too high for large

networks.

For that reason, we propose two methods in order to achieve the best combination on

reasonable time:

The Exhaustive Method

The first approximation is based on exhaustive search. This method selects the values

mj1 or mj2 for j = {1, . . . , p} so that the minimum value of |∑p
j=1mj| is achieved. To

do this selection, all possible combinations are considered unless a solution is found with∑p
j=1mj = 0.

The Greedy Method

We define an iterative method and in each step values for mj are selected according to a

probability distribution based on the size of values mj1 and mj2. The lower the value is,

the more probability to be chosen. More specifically,

p(mj = mj1) = 1−
( mj1

mj1 +mj2

)
(8.4)

p(mj = mj2) = 1−
( mj2

mj1 +mj2

)
(8.5)

Iterations are finished when a solution is found with
∑p

j=1mj = 0 or when we have a

fixed number of iterations without any improvement in the function
∑p

j=1mj.

Once exhaustive or greedy methods have finished, we have a k-degree anonymous

sequence (d̃) which minimizes the distance computed by Equation 8.1. However, notice

that in case we start the process with a non-ordered degree sequence, we should apply

here the inverse transform f−1 to obtain the correct degree sequence.
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vi vj

vp

(a) Edge rotation

vi vj

vk vp

(b) Edge removal

vi vj

(c) Edge addition

Figure 8.2: Basic operations for network modification with vertex invariability. Dashed
lines represent deleted edges while solid lines are the added ones.

8.3.1.2 Graph modification

In the second step, changes are made on the original network in order to convert it to a

k-degree anonymous graph. By Definition 2, a graph is k-degree anonymous if its degree

sequence is k-anonymous. Therefore, we have to change its degree sequence from the

original one (d) to the anonymous one (d̃) which we computed in the step above. We have

to modify the edge set to meet the k-anonymous degree sequence.

In order to modify the edge set of a given network, we define three basic operations:

• Edge rotation between three vertices can be defined as follows: if vi, vj, vp ∈ V ,

{vi, vp} ∈ E and {vj, vp} 6∈ E, we can delete {vi, vp} and create {vj, vp}. Figure

8.2a shows this basic operation. Such modification can be translated in the degree

sequence as d̃i = di − 1 and d̃j = dj + 1, where d̃ is the degree sequence after the

basic operation. Notice that the number of edges in the graph remains the same,

vi decreases its degree by one, vj increases its degree by one and vp keeps the same

degree.

• Edge removal is defined as follows: we select four vertices vi, vj, vk, vp ∈ V where

{vi, vk} ∈ E, {vj, vp} ∈ E and {vk, vp} 6∈ E. We delete edges {vi, vk} and {vj, vp},
and create a new edge {vk, vp}, as shown in Figure 8.2b. Note that d̃i = di − 1,

d̃j = dj − 1, d̃k = dk and d̃p = dp.

• Finally, we define Edge addition as simply selecting two vertices vi, vj ∈ V where

{vi, vj} 6∈ E and creates it. Note that d̃i = di + 1 and d̃j = dj + 1. It is depicted in

Figure 8.2c.

The vector d̃ − d indicates which vertices have to modify their degree. In fact, d̃ −
d indicates precisely which vertices must increase or decrease their degree to fulfil the
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desired k-degree anonymity. The changes on original edges are performed using the basic

operations depicted in Figure 8.2.

The graph modification step starts by obtaining the vector of changes between the

k-degree anonymous sequence and the original one, δ = d̃ − d. Vector δ allows to easily

detect which vertices have to reduce or increase their degree. From δ, we create the list

of vertices which must decrease their degree, δ− = {vi : δi < 0} and the list of vertices

which must increase their degree, δ+ = {vi : δi > 0}.
Let σ(d) be the sum of each element in d, σ(d) =

∑n
i=1 di, and let σ(d̃) be the sum

of each element in d̃, σ(d̃) =
∑n

i=1 d̃i. Then, if σ(d) = σ(d̃), it implies that there are the

same number of edges in the original and in the anonymous graphs, and therefore, we

do not need to increase or decrease the total number of edges and we only need to apply

edge rotation modifications. Otherwise, we have to increase or decrease the total number

of edges in order to reach the k-anonymous sequence.

If σ(d̃) < σ(d), we need to decrease |σ(d)−σ(d̃)
2
| edges from the graph, as we have shown

on Figure 8.2b. In order to decrease by 1 the total number of edges from the graph, we

choose vi, vj ∈ δ− and find other two vertices vk, vp where {vi, vk} ∈ E and {vj, vp} ∈ E.

Then we delete these two edges and create a new one {vk, vp}. On the other hand, if

σ(d̃) > σ(d), we need to increase |σ(d̃)−σ(d)
2
| edges to the graph, as we have seen on Figure

8.2c. To increase by 1 the total number of edges, we select vi, vj ∈ δ+ where {vi, vj} 6∈ E
and create it. Lastly, we have to modify the degree of some vertices, until σ(d̃) = σ(d) = 0.

This modification is done using edge rotation, Figure 8.2a. For each vj ∈ δ− and vp ∈ δ+,

we find another vertex vi where {vi, vj} ∈ E. We delete this edge and create a new one

{vi, vp}.
We suggest two approaches to select the auxiliary edges needed for graph modification

process.

Random edge selection

We can simply select at random the auxiliary edges, that is, {vi, vk} and {vj, vp} for

edge removal and {vi, vj} for edge rotation. Obviously, this is the fastest way to select

the needed auxiliary edges, but some important edges can be removed or new bridge-like

edges can be created by this random approach, affecting considerably the local or global

structure of the resulting network.
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Neighbourhood centrality edge selection

Alternatively, we can select the auxiliary edges by considering the relevance of each edge.

Using this approach, we can remove or create new edges with low relevance, which leads

the process to a low information loss results. For instance, if we remove edges with

low value of edge betweenness, we will preserve the network information flow on the

resulting network, since we preserve the most important edges using a measure related

to information flow. Therefore, identifying a relevant measure is important for reducing

the information loss. In addition, we have to choose a measure with a low complexity,

since we will compute it many times. For instance, the measure commented above is not

a good choice because calculating edge betweenness on all edges on a network involves

calculating the shortest paths between all pairs of vertices. This takes O(n3) time with

the Floyd-Warshall algorithm. On a sparse network, Johnson’s algorithm may be more

efficient, taking O(n2log(n) + nm) time. Hence, edge betweenness is not useful for large

networks, since every time we remove an edge we must re-calculate all edges’ values.

We proposed a measure called Edge neighbourhood centrality (NC) (see Section 6.2 for

details) for quantifying the edge’s relevance on large networks. We have demonstrated

that edge neighbourhood centrality identifies the most important edges on a network with

low complexity, and therefore, this measure is able to work on medium or large networks.

8.3.1.3 Complexity

The first step, degree sequence anonymization, can be divided into two phases: the first

one computes the optimal partition in a polynomial time, O(max(nlog(n), k2n)) as the

authors [43] stated. The second one computes the p-sequence values, which represents

the k-anonymous degree sequence (d̃). The problem is NP for the exhaustive method

(O(2q) where q is the number of groups with mj 6= 0), but using the greedy approach

we can get a quasi-optimal solution in polynomial time (O(wq) where w is the number

of fixed iterations. For example, if we explore w = log2(2
q) = q, then the complexity is

polynomial O(q2)). So, the problem of degree sequence anonymization is a P -problem

and can be resolved in polynomial time for a quasi-optimal solution.

The second step, graph modification, can be implemented by random edge selection or

neighbourhood centrality edge selection. As we have seen, each single edge operation can

be computed in linear time, and therefore random edge selection also can be computed in

linear time. Neighbourhood centrality edge selection involves evaluating all, or at least,

a fraction of all possible combinations to preserve the most important edges. For each
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Figure 8.3: Neighbourhood centrality values of tested networks.

vertex vi and vj, we can generate several possible candidates:

• Edge rotation: Given vi and vj we select all vp ∈ Γ(vi). Usually, we will find deg(G)

candidates for vp or degmax(G) candidates when vi is a hub or a vertex with a high

degree. Hence, we have to check deg(G) or degmax(G) possible combinations for

each pair of vertices. It is important to note that, because of the power-law on real

networks, the vertices with the highest degree do not usually meet the k-anonymity

and they need to be modified.

• Edge removal: Given vi and vj we can select vk ∈ Γ(vi) and vp ∈ Γ(vj) as candidates.

In average, there are deg(G) possible vertices for vk and vp, and degmax(G) in the

worst case. For every pair, we have to check whether edge {vk, vp} 6∈ E. Therefore,

we have to check deg(G)2 possible combinations in the average case, but it should

be degmax(G)2 in the worst case, when vi and vj are hubs-like or vertices with a

high degree value.

• Edge addition: Given vi and vj we only need to check whether edge {vi, vj} 6∈ E.

Only one possible combination for every pair of vertices is found here.

The complexity of edge evaluation process is NP. Accordingly, we need to use an

heuristic to reduce the complexity of evaluating all possible combinations for each basic

edge operation. Figure 8.3 shows the neighbourhood centrality values of tested networks

(see Table 2.2 for network details). The horizontal axis shows the edges while the vertical

one presents the neighbourhood centrality value. As we can see, neighbourhood centrality

values are distributed like a power-law, where most edges have low score values and

only few edges have a high score. Figures 8.3b and 8.3c show clearly this phenomenon.

Therefore, we focus on preserving the edges with high score of neighbourhood centrality.
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According to the distribution observed on real networks, we do not have to evaluate

all possible combinations, we only need to evaluate a few of them to preserve the most

important edges. Evaluating only the log2 of the total possible combinations we will

find, with a very high probability, an edge with low NC score value and we will reduce

the complexity of edge selection. The complexity reduction is very important to deal

with large networks and so is our algorithm, as we will demonstrate on Section 8.3.3.

Summarizing, the problem of graph modification is a P -problem for random edge selection

and NP for neighbourhood centrality edge selection, but it can be resolved in polynomial

time by computing the log2 of all possible combinations.

8.3.2 Information loss and data utility

In this section we will compare the result of anonymizing several networks using UMGA

algorithm with random edge selection (UMGA-R) and neighbourhood centrality edge

selection (UMGA-NC). We apply both algorithms on the same data with the same pa-

rameters and compare the results in terms of information loss and data utility. We use

several structural and spectral measures in order to quantify the information loss from

distinct perspectives or network’s characteristics. It is important to note that the privacy

level is the same for all algorithms, as we compare results with the same k value.

Results are disclosed in Table 8.1. For each dataset and algorithm, we vary k from 1

to 10 (k = 1 corresponds to original dataset) and compare the results obtained on λ1, µ2,

dist, h, Q, T and SC. The last column correspond to the average error 〈E〉. Each row

indicates the scored value for the corresponding measure and algorithm, and each column

corresponds to an experiment with a different k-anonymity value. Each characteristic is

reported twice, corresponding to UMGA-R (indicated by R) and UMGA-NC (indicated

by NC). Bold rows indicate the algorithm that achieves the best results (i.e., lowest

information loss) for each measure. Perfect performance in a row would be indicated by

achieving exactly the same score as in the original network (the k = 1 column). Although

deviation is undesirable, it is inevitable due to the edge modification processes.

The first tested network, Polbooks, is a small collaboration network. The results of

the comparability are very encouraging. UMGA-NC outperforms on all measures, except

on µ2 where the values are close to UMGA-R and the average error 〈E〉 is almost equal,

as shown in Table 8.1. Polblog is the second tested network. UMGA-R and UMGA-NC

obtain similar values. Finally, GrQc is larger than other networks (in terms of number of

vertices), so results for this network are evaluated on k in range [1,50] instead of [1,10].
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Polbooks k=1 2 3 4 5 6 7 8 9 10 〈E〉

λ1
R

11.93
12.11 12.00 12.17 11.82 11.84 12.18 12.25 12.25 11.89 0.163

NC 12.09 11.97 11.85 11.85 11.95 12.09 12.08 12.08 11.86 0.090

µ2
R

0.324
0.359 0.428 0.497 0.330 0.398 0.653 0.593 0.593 0.495 0.143

NC 0.360 0.451 0.453 0.453 0.383 0.599 0.524 0.524 0.640 0.147

dist
R

3.079
2.928 2.826 2.770 3.029 2.861 2.647 2.694 2.694 2.795 0.247

NC 2.987 2.883 2.896 2.896 2.988 2.765 2.856 2.856 2.762 0.182

h
R

2.450
2.392 2.343 2.314 2.428 2.356 2.252 2.276 2.276 2.326 0.109

NC 2.416 2.371 2.379 2.379 2.418 2.312 2.350 2.350 2.312 0.077

Q
R

0.402
0.400 0.396 0.388 0.398 0.389 0.377 0.379 0.379 0.394 0.012

NC 0.400 0.393 0.396 0.396 0.401 0.386 0.386 0.386 0.385 0.009

T
R

0.348
0.350 0.330 0.316 0.330 0.325 0.298 0.304 0.304 0.313 0.027

NC 0.350 0.342 0.339 0.339 0.347 0.326 0.322 0.322 0.324 0.013

SC(×103) R
2.524

2.779 2.189 2.372 2.145 1.933 2.132 2.336 2.336 1.976 0.303

NC 2.774 2.358 2.224 2.224 2.338 2.363 2.389 2.389 2.110 0.204

Polblogs k=1 2 3 4 5 6 7 8 9 10 〈E〉

λ1
R

74.08
73.88 73.78 73.95 73.93 73.67 73.70 73.82 73.74 73.63 0.260

NC 73.93 73.81 73.92 73.95 73.74 73.80 73.75 73.63 73.61 0.256

µ2
R

0.168
0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.000

NC 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.000

dist
R

2.738
2.724 2.721 2.739 2.737 2.730 2.731 2.730 2.732 2.728 0.007

NC 2.733 2.729 2.725 2.724 2.724 2.732 2.726 2.731 2.727 0.009

h
R

2.506
2.496 2.494 2.507 2.505 2.500 2.501 2.501 2.502 2.500 0.005

NC 2.501 2.499 2.496 2.496 2.496 2.502 2.498 2.502 2.499 0.006

Q
R

0.405
0.403 0.403 0.405 0.405 0.403 0.403 0.403 0.403 0.402 0.001

NC 0.404 0.403 0.403 0.403 0.403 0.403 0.402 0.403 0.402 0.002

T
R

0.226
0.224 0.223 0.225 0.224 0.223 0.223 0.224 0.223 0.223 0.002

NC 0.224 0.224 0.224 0.224 0.223 0.225 0.224 0.223 0.224 0.001

SC(×1029) R
1.218

1.003 0.905 1.069 1.054 0.806 0.832 0.939 0.872 0.782 0.270

NC 1.052 0.932 1.040 1.068 0.871 0.921 0.875 0.776 0.765 0.266

GrQc k=1 5 10 15 20 25 30 35 40 50 〈E〉

λ1
R

45.61
45.12 44.77 43.99 43.23 43.28 41.89 42.01 41.76 41.62 2.450

NC 45.37 45.28 44.78 44.14 44.49 43.02 43.72 43.55 43.05 1.353

µ2(×10−14)
R

-1.26
-3.98 -2.37 -4.09 -3.33 -2.67 -3.55 -2.00 -1.91 -4.40 1.966

NC -3.06 -2.71 -1.95 -2.01 -4.34 -1.57 -2.35 -2.76 -2.48 1.300

dist
R

6.049
6.002 5.942 5.918 5.862 5.861 5.864 5.892 5.816 5.915 0.150

NC 6.026 6.009 5.955 5.948 5.922 5.904 5.935 5.876 5.897 0.102

h
R

8.863
8.784 8.696 8.650 8.568 8.571 8.571 8.607 8.597 8.639 0.229

NC 8.821 8.794 8.718 8.702 8.664 8.641 8.682 8.589 8.626 0.162

T
R

0.630
0.622 0.612 0.603 0.588 0.585 0.579 0.571 0.560 0.548 0.044

NC 0.625 0.617 0.611 0.588 0.595 0.589 0.589 0.578 0.584 0.033

SC(×1016) R
1.235

0.754 0.530 0.244 0.114 0.120 0.030 0.034 0.027 0.023 0.951

NC 0.971 0.882 0.538 0.283 0.402 0.093 0.187 0.158 0.096 0.776

Table 8.1: Data utility and information loss results for UMGA-R (R) and UMGA-NC
(NC) algorithms.

In addition, Q is not evaluated since this network does not have community labels. On

GrQc the UMGA-NC achieves the best results on all metrics, reducing considerably the

information loss and raising the data utility.
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Figure 8.4: Degree histogram for tested networks (grey horizontal lines indicate the k
values used in our experiments).

8.3.3 Results for large networks

After information loss and data utility analysis, we want to test our algorithm with large

networks. We have tested our algorithm with three real and large networks. All these

networks are undirected and unlabelled. All tests are made on a 4 CPU Intel Xeon X3430

at 2.40GHz with 32GB RAM running Debian GNU/Linux.

We use the vertex refinement queries to model the knowledge of the adversary and to

analyse the network in terms of k-anonymity (see Section 3.4.2 for more details). Table

8.2 shows the candidate set (candH1) for the original networks. It shows interesting

information about how re-identification risk is distributed over all vertices of the graph.

Caida network has 70 re-identificable vertices, i.e, vertices with a unique degree’s value,

and 217 vertices in high risk of re-identification, i.e, vertices with candidate set size

between 2 and 10. Amazon has 90 re-identificable vertices and 535 vertices in high risk of

re-identification, and Yahoo! has 73 re-identificable vertices and 331 vertices in high risk

of re-identification. Degree anonymity data is strictly related to the degree histogram.

Figure 8.4 shows the log-log scale degree histogram, where our test networks show a

characteristic power-law distribution for real networks. Degree values (horizontal axis)

with a frequency (vertical axis) less than 10 are the ones on high risk of re-identification.

We can see that Caida network has a sparse vertex distribution in this area. So, it will

be harder to anonymize than other networks. In this context, harder means that we must

modify more edges (in percentage) than on other networks.

Table 8.3 shows the results of our experiments. We apply the UMGA algorithm,

using exhaustive and greedy search methods with random edge selection (UMGA-E-

R and UMGA-G-R) and neighbourhood centrality edge selection (UMGA-E-NC and

UMGA-G-NC), to the three selected networks. We test our algorithm for values of
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Network [1,1] [2,10] [11,20] [21,50] [51,100]

Caida 70 217 119 294 295

(0.264%) (0.819%) (0.449%) (1.110%) (1.114%)

Amazon 90 535 435 711 1,165

(0.022%) (0.132%) (0.107%) (0.176%) (0.288%)

Yahoo! 73 331 196 381 705

(0.003%) (0.018%) (0.010%) (0.020%) (0.037%)

Table 8.2: Candidate set size of H1 (candH1) for original tested networks.

General Exhaustive Method Greedy Method

Network k 2q ed %mod R time NC time ed %mod R time NC time

Caida 10 224 0 6.06% 0:00:06 0:00:36 0 6.06% 0:00:06 0:00:34

20 221 0 11.65% 0:00:07 0:01:05 0 11.65% 0:00:07 0:01:05

50 213 -9 18.43% 0:00:08 0:01:45 -9 18.43% 0:00:08 0:01:45

100 29 -9 25.81% 0:00:10 0:01:48 41 25.85% 0:00:10 0:01:46

Amazon 10 254 0 0.16% 0:14:16 0:22:47 0 0.16% 0:11:54 0:19:47

20 250 0 0.26% 2:57:37 3:07:58 0 0.26% 0:11:55 0:22:25

50 232 0 0.39% 0:12:07 0:33:07 0 0.39% 0:12:07 0:31:17

100 230 -1 0.53% 2:11:47 2:42:48 -1 0.53% 0:13:57 0:53:37

Yahoo! 10 238 0 0.05% 1:34:34 1:52:25 0 0.05% 1:31:40 1:50:24

20 228 0 0.07% 2:19:21 2:46:47 0 0.07% 1:31:57 1:59:34

50 219 0 0.13% 1:33:09 2:22:59 0 0.13% 1:32:12 2:20:54

100 216 0 0.18% 1:34:27 2:46:33 0 0.18% 1:34:32 2:47:58

Table 8.3: UMGA’s parameters and execution time results for large tested networks.

k = {10, 20, 50, 100} on each network and computes the number of possible combinations

(2q) in order to provide an approximation of the complexity. For each method we show

the difference between the original edge set and the anonymous one (ed = |E| − |Ẽ|),
the percentage of modified edges (%mod = 1 − |E∩Ẽ|

|E∪Ẽ|
), and the computation time for

UMGA-R (R time) and UMGA-NC (NC time).

Caida is a quite sparse network. More than 49% of their vertices have a degree between

1 and 10, 21.71% between 11 and 100, 18.66% between 101 and 1,000 and 10.26% have a

degree greater than 1,000. The maximum degree is 2,628. Because of this, it is necessary

to modify more than 6% of the edges in order to get a k = 10. This percentage grows,

so does the value of k. For a k = 50 and k = 100 the algorithm needs to modify the

size of the edge set removing 9 edges and adding new 41 edges. It is about 0.018% of

total edges, so we believe that the noise introduced in the graph is minimum, specially

using UMGA-NC as we demonstrated on Section 8.3.2. We can see similar times and
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results for exhaustive and greedy methods, but UMGA-R consumes much less time than

UMGA-NC. The number of possible combinations is small and the exhaustive method

can deal with it.

Amazon is a network larger than Caida, so we can see greater differences between

exhaustive and greedy methods. The complexity rises to 254 when k = 10. Notice that

smaller k-values imply bigger complexity since more group of vertices (gj) are possible,

and therefore, more possible combinations. When k = 100 there is no solution with∑p
j=1mj = 0, so the exhaustive method explores all the possible combinations. In this

case it is 230 and it can be done with relative small amount of time. For other values of k,

there is a solution equal to 0, so the exhaustive method does not explore all combinations.

Indeed, it explores less than 0.1% in all cases. However, the greedy method finds the same

results on all experiments and it spends much less time. The time used by UMGA-NC

is only two or three times larger than the one used by UMGA-R, much less than the

difference on Caida network.

Yahoo! network is the largest test network, but it is less sparse than others. 99.21%

of the vertices have a degree between 1 and 100, 0.75% between 101 and 1,000, and only

0.03% have a degree greater than 1,000. Vertices with a degree value less than 100 are

well protected and they are more than 99%. These characteristics imply that k-degree

anonymous networks from k = 10 to k = 100 can be achieved with less than 0.20% of

modifications on edge set. Hence, the utility of the anonymous graphs will be almost

intact. Of course, UMGA-NC consumes more time than UMGA-R, but time is reduced

to less than double.

Notice that UMGA-NC spends more time in all experiments, but the time does not

grow exponentially with the network because of the heuristic approach applied. On the

contrary, we can see that neighbourhood centrality edge selection can deal with large

networks, improving the data utility with reasonable time consuming.

8.4 Comparing k-degree anonymous algorithms

In this section we will compare our algorithms to two other well-known k-degree anony-

mous algorithms. We have selected two relevant k-degree anonymous methods, and in

subsequent sections, we will analyse these methods and compare the empirical results to

ours on real networks. The selected algorithms are:

1. A dynamic programming algorithm: Liu and Terzi defined the concept of k-degree
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anonymity and presented their method in [59].

2. Vertex addition method : Chester et al. propounded an algorithm based on vertices

and edges addition in [21].

All methods achieve the same privacy level, since they presuppose the same adversary

knowledge and apply the same concept to preserve the network’s privacy. Therefore, the

evaluation of the results allows us to compare anonymous data in terms of data utility

and information loss.

8.4.1 A dynamic programming algorithm

Liu and Terzi [59] developed a method based on adding and removing edges from the

original graph G = (V,E) in order to construct a new graph G̃ = (Ṽ , Ẽ), which fulfil k-

degree anonymity model and the vertex set remains the same, i.e, V = Ṽ . Their approach

is two-step based: in the first step the degree anonymization problem is considered, and

in the second step the graph construction problem is dealt.

Degree anonymization

Given the degree sequence d of the original input graph G = (V,E), the algorithm outputs

a k-anonymous degree sequence (d̃) such that the degree-anonymization cost ∆ computed

by Equation 8.1 is minimized. The authors proposed three approximation techniques

to solve the degree anonymization problem. They first gave a dynamic-programming

algorithm (DP) that solves the degree anonymization problem optimally in time O(n2).

Then, they showed how to modify it to achieve linear-time complexity. Finally, they also

gave a greedy algorithm that runs in time O(nk).

Graph construction

The authors presented two approaches to resolve the graph construction problem. The

first approach considers the following problem: Given the original graph G = (V,E)

and the desired k-anonymous degree sequence d̃ (output by the the previous step), they

construct a k-degree anonymous graph G̃ = (V, Ẽ) with Ẽ ∩ E = E and degree sequence

equal to d̃. Notice that the problem definition implies that only edge addition operations

are allowed. The algorithm for solving this problem was called SuperGraph. It takes as

inputs the original graph G and the desired k-degree anonymous sequence d̃, operates on
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Figure 8.5: Valid switch operation among vertices vi, vj, vk and vp (dashed lines represent
deleted edges while solid lines are the added ones).

the sequence of additional degrees d̃− d and outputs a super-graph of the original graph,

if such graph exists.

The requirement that Ẽ ∩ E = E may be too strict to satisfy is some cases. Thus,

the second approach considers a relaxed requirement where Ẽ ∩ E ≈ E, which means

that most of the edges of the original graph appear in the degree-anonymous graph as

well, but not necessarily all of them. The authors called this version of the problem

the “Relaxed Graph Construction” problem. The ConstructGraph algorithm with input

d̃, outputs a simple graph G̃0 = (V, Ẽ0) with degree sequence exactly d̃, if such graph

exists. Although G̃0 is k-degree anonymous, its structure may be quite different from the

original graph G = (V,E). The GreedySwap algorithm inputs G̃0 and G, and transforms

G̃0 into G̃ = (V, Ẽ) with degree sequence equal to d̃ and Ẽ ∩ E ≈ E using greedy

heuristic techniques. At every step i, the graph G̃i−1 = (V, Ẽi−1) is transformed into

G̃i = (V, Ẽi) such that the degree sequences are equal and |Ẽi ∩ E| > |Ẽi−1 ∩ E|. The

transformation is made using valid switch operations, which are defined by four vertices

vi, vj, vk and vp of G̃i = (V, Ẽi) such that {vi, vk} and {vj, vp} ∈ Ẽi, and {vi, vj} and

{vk, vp} /∈ Ẽi or {vi, vp} and {vj, vk} /∈ Ẽi. A valid switch operation transforms G̃i

to G̃i+1 by updating the edges Ẽi+1 ← Ẽi \ {{vi, vk}, {vj, vp}} ∪ {{vi, vj}, {vk, vp}} or

Ẽi+1 ← Ẽi \ {{vi, vk}, {vj, vp}} ∪ {{vi, vp}, {vj, vk}}, as we depicted in Figure 8.5.

8.4.2 Vertex addition method

Chester et al. [21, 20] focused on creating a k-degree anonymous graph G̃ = (V ∪Ṽ , E∪Ẽ)

from the original one G = (V,E). In G̃, the authors require that all the original vertices

(V ) are k-degree anonymous. They also require that the new vertices are concealed as well

so that they cannot be readily identified and removed from the graph in order to recover

G, i.e, V ∪ Ṽ is k-degree-anonymous in G̃. They seek to minimise |Ṽ |, while maintaining

the constraint that E ⊆ Ṽ × (V ∪ Ṽ ).
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Their method introduces fake vertices into the network and links them to each other

and to real vertices in order to achieve the desired k-anonymity value. The authors

introduced an O(kn) k-degree anonymization algorithm for unlabelled graphs based on

dynamic programming and prove that, on any arbitrary graph, the minimisation of |Ṽ |
is optimal within an additive factor of k. For a special class of graphs that is likely to

include social networks, the algorithm is optimal within 1 for reasonable values of k.

At a high level, the algorithm proceeds in three stages. First, the authors designed

a recursion to group the vertices of V by target degree (the degree they will have in

G̃). The recursion establishes a grouping such that the max deficiency, a parameter in

determining with how many vertices V must be augmented, is minimised. A dynamic

programming with cost O(nk) is used to evaluate the recursion. The second stage is to

determine precisely how many vertices with which we wish to augment V in order to

guarantee that they can k-anonymize all of G̃. This number is a function of k and max

deficiency. Finally, the algorithm introduces a particular means of adding new edges, each

of which has at least one endpoint in G̃, with the objective of satisfying all the target

degrees established during the recursion stage and k-anonymizing the new vertices added

during the second stage. A critical property of this approach is that the edges are added

in such a manner as to guarantee tractability of the problem of k-anonymizing the new

vertices, a problem which may be hard in the general case.

8.4.3 Experimental Results

Here we will compare the result of anonymizing processes using our k-degree anonymous

algorithms and the two methods presented above. We apply all algorithms on the same

data with the same parameters and compare the results in terms of information loss and

data utility. We use several structural and spectral measures in order to quantify the

information loss from distinct perspectives or network’s characteristics. It is important

to note that the privacy level is the same for all algorithms, as we compare results with

the same k value. UMGA algorithm is applied using the neighbourhood centrality edge

selection.

Results are displayed in Table 8.4. Each row indicates the scored value for the cor-

responding measure and algorithm, and each column corresponds to an experiment with

a different k-anonymity value. For each dataset and algorithm, we vary k from 1 to 10

(k = 1 correspond to original dataset) and compare the results obtained on λ1, µ2, h,

Q, T and SC. The last column correspond to the average error 〈E〉. Each characteris-
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Polbooks k=1 2 3 4 5 6 7 8 9 10 〈E〉

λ1

EAGA

11.93

12.04 12.01 12.04 11.95 12.05 12.01 11.72 10.84 11.45 0.230

UMGA 12.09 11.97 11.85 11.85 11.95 12.09 12.08 12.08 11.86 0.090

L&T 12.00 12.05 12.11 12.22 12.30 12.31 12.64 12.72 12.85 0.383

µ2

EAGA

0.324

0.372 0.477 0.496 0.516 0.515 0.600 0.595 0.578 0.321 0.156

UMGA 0.360 0.451 0.453 0.453 0.383 0.599 0.524 0.524 0.640 0.147

L&T 0.430 0.450 0.600 0.600 0.790 0.630 0.650 0.970 0.880 0.312

h

EAGA

2.450

2.378 2.324 2.346 2.297 2.314 2.294 2.282 2.308 2.421 0.109

UMGA 2.416 2.371 2.379 2.379 2.418 2.312 2.350 2.350 2.312 0.077

L&T 2.350 2.320 2.280 2.280 2.230 2.270 2.260 2.200 2.190 0.167

Q

EAGA

0.402

0.399 0.387 0.387 0.383 0.387 0.379 0.379 0.387 0.389 0.014

UMGA 0.400 0.393 0.396 0.396 0.401 0.386 0.386 0.386 0.385 0.009

L&T 0.390 0.390 0.380 0.380 0.360 0.370 0.370 0.340 0.350 0.027

T

EAGA

0.348

0.343 0.330 0.324 0.281 0.300 0.288 0.283 0.245 0.299 0.044

UMGA 0.350 0.342 0.339 0.339 0.347 0.326 0.322 0.322 0.324 0.013

L&T 0.330 0.330 0.320 0.330 0.300 0.310 0.320 0.290 0.300 0.023

SC
EAGA

2.524

2.624 2.333 2.293 1.751 2.001 1.967 1.415 0.653 1.534 0.634

UMGA 2.774 2.358 2.224 2.224 2.338 2.363 2.389 2.389 2.110 0.204

(×103) L&T 2.480 2.560 2.530 2.760 2.440 2.680 3.600 3.580 4.120 0.431

Polblogs k=1 2 3 4 5 6 7 8 9 10 〈E〉

λ1

EAGA

74.08

73.13 70.26 55.61 53.09 49.33 46.89 44.44 42.88 44.08 18.703

UMGA 73.93 73.81 73.92 73.95 73.74 73.80 73.75 73.63 73.61 0.256

L&T 74.89 74.50 75.16 75.10 76.32 75.82 76.67 77.42 78.42 1.758

µ2

EAGA

0.168

0.168 0.168 0.692 0.674 0.748 0.754 0.690 0.858 0.757 0.517

UMGA 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.000

L&T 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.000

h

EAGA

2.506

2.677 2.623 2.596 2.592 2.588 2.595 2.565 2.572 2.575 0.071

UMGA 2.501 2.499 2.496 2.496 2.496 2.502 2.498 2.502 2.499 0.006

L&T 2.500 2.484 2.494 2.475 2.469 2.461 2.462 2.486 2.458 0.026

Chester 2.506 2.486 2.476 2.476 2.456 2.456 2.446 2.436 2.426 0.039

Q

EAGA

0.405

0.404 0.404 0.402 0.395 0.399 0.401 0.392 0.400 0.397 0.005

UMGA 0.404 0.403 0.403 0.403 0.403 0.403 0.402 0.403 0.402 0.002

L&T 0.402 0.401 0.401 0.396 0.394 0.395 0.389 0.387 0.385 0.010

T

EAGA

0.226

0.224 0.219 0.148 0.130 0.110 0.104 0.086 0.078 0.082 0.085

UMGA 0.224 0.224 0.224 0.224 0.223 0.225 0.224 0.223 0.224 0.001

L&T 0.225 0.223 0.224 0.221 0.222 0.220 0.219 0.221 0.221 0.004

Chester 0.219 0.215 0.207 0.205 0.200 0.226 0.190 0.185 0.183 0.020

SC
EAGA

1.218

0.472 0.027 0.011 0.003 0.001 0.001 0.009 0.001 0.001 1.044

UMGA 1.052 0.932 1.040 1.068 0.871 0.921 0.875 0.776 0.765 0.266

(×1029)
L&T 2.730 1.870 3.610 3.400 1.450 6.940 6.250 4.460 4.040 2.386

Chester 1.300 1.410 2.160 2.880 2.660 5.550 5.370 11.000 8.250 2.969

Table 8.4: Results for EAGA, UMGA, Liu and Terzi (L&T) and Chester et al. (Chester)
algorithms.

tic is reported from two to four times, corresponding to EAGA, UMGA, Liu and Terzi

(indicated by L&T) and Chester et al. (indicated by Chester) algorithms. Bold rows

indicate the algorithm that achieves the best results (i.e, lowest information loss) for each

measure. Values of Liu and Terzi algorithm are taken from Ying et al. [87] and values

of Chester et al. algorithm are taken from [21]. Unfortunately, values for all measures

and algorithms are not available. Perfect performance in a row would be indicated by

achieving exactly the same score as in the original network (the k = 1 column). Although
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deviation is undesirable, it is inevitable due to the edge or vertex modification process.

The first tested network, Polbooks, is a small collaboration network. We present

values for EAGA, UMGA and Liu and Terzi algorithms. As shown in Table 8.4, UMGA

algorithm introduces less noise on all measures. It outperforms on all measures, producing

half of the average error in some measures, for instance, λ1 or SC. EAGA algorithm

achieves the second best results on λ1, µ2, h and Q, while Liu and Terzi algorithm carry

out on T and SC.

Polblog is the second tested network, which is considerably larger than the first one.

Values for Chester et al. algorithm are presented for h, T and SC (other values are not

available from Chester et al. [21]). Like in the previous test, UMGA algorithm gets the

best values on all measures, except on µ2 where Liu and Terzi algorithm achieves the same

value. For instance, the average error is 0.006 for UMGA on h, while it rises to 0.026

for Liu and Terzi algorithm, 0.039 for Chester et al. approach, and 0.071 for EAGA.

Similar results appear on λ1, T and SC. Liu and Terzi algorithm obtains the second

best results on λ1, h and T , while EAGA does on Q and SC. Chester et al. approach

by vertex addition gets values close to others algorithms, though the predictable level of

information loss is slightly larger than the ones obtained by UMGA and Liu and Terzi

algorithms. Despite the fact that EAGA gets good results on some metrics, the average

error outbursts in many others. For example, results on λ1 and µ2 are larger than others,

pointing out a considerable spectral noise introduced by the anonymization process.

8.5 Conclusion

In this chapter we have proposed two algorithms for graph anonymization, both based on

edge modification approach in order to fulfil the k-degree anonymity model.

The first algorithm, called Evolutionary Algorithm for Graph Anonymization (EAGA),

is based on evolutionary algorithms to anonymize the degree sequence. The target of

the evolutionary algorithm is to achieve a k-degree anonymous sequence and minimize

the distance between the anonymous degree sequence and the original one, in order to

preserve the data utility. The second step applies iterative Edge rotation to the original

graph until the degree sequence is equal to the k-degree anonymous one. The results are

favourable and indicate that the algorithm is able to provide anonymous graphs with a

value of k-anonymity greater than the original one, and also keep a low perturbation level

on anonymous data.
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The second algorithm, called Univariate Micro-aggregation for Graph Anonymization

(UMGA), is based on the modification of the degree sequence using univariate micro-

aggregation technique. This process obtains an anonymous degree sequence which is

k-degree anonymous and minimizes the distance from the original one. Then we use the

three basic operations to translate the modifications made on anonymous degree sequence

to graph’s edge set.

In addition, we have proposed a method to preserve the most important edges on the

network. Instead of modifying one of the possible edges at random, this method considers

the edge’s relevance and preserves the most important edges in the network. We have

demonstrated that using this method we can clearly improve the data utility, reducing

the information loss on anonymized data.

Furthermore, we have shown that UMGA algorithm is able to anonymize large net-

works. We have used three different real networks to test our algorithm based on the

exhaustive and greedy methods. Both methods show good results on all networks, but

the greedy method spends less time to get similar (in much cases, the same) results. In

addition, the greedy method remains much more stable over time than the exhaustive

one. The tests proved that our algorithm can anonymize large real networks based on

k-degree anonymity concept.

Finally, four relevant methods of k-degree anonymity have been surveyed and com-

pared. They are the algorithm by Liu and Terzi in [59], the method based on vertex ad-

dition instead of only changing the edge set by Chester et al. in [21], and our approaches

using evolutionary algorithms (EAGA) and univariate micro-aggregation (UMGA). We

have also probed that our algorithm based on univariate micro-aggregation is better,

in terms of information loss and data utility, than the two other well-known k-degree

anonymous algorithms.



8.5. Conclusion 115



Part IV

Conclusions

116





Chapter 9

Conclusions and further research

Several approaches to deal with data privacy in graph-formatted data have been proposed

in the preceding chapters. In this last chapter we start by reviewing some conclusions

to wrap up all the results obtained in Section 9.1, and finally we introduce some future

research lines in Section 9.2.

9.1 Conclusions

In this thesis we have covered the fields of user’s privacy-preserving in social networks and

the utility and quality of the released data. As we have stated before, a trade-off between

both fields is a critical point to achieve good anonymization methods for the subsequent

graph mining processes.

Part of this thesis has focused on data utility and information loss. Firstly, in Chapter

5, we have studied the relation between the generic information loss measures and the

clustering-specific ones, in order to evaluate whether the generic information loss mea-

sures are indicative of the usefulness of the data for subsequent data mining processes.

We have found strong correlation between some generic information loss measures (av-

erage distance, betweenness centrality, closeness centrality, edge intersection, clustering

coefficient and transitivity) and the precision index over the results of several clustering

algorithms, demonstrating that these measures are able to predict the perturbation intro-

duced in anonymous data. Furthermore, we have exposed that the perturbation method

affects the correlation between generic and cluster-specific information loss measures. In

addition, we have proved that the peculiarities of the graph structure and the perturba-

tion method affect the quality of the released data and the relation between the generic
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and the specific information loss measures.

Secondly, two measures to reduce the information loss on graph modification processes

have been presented in Chapter 6. The first one, Edge neighbourhood centrality, is based

on information flow throw 1-neighbourhood of a specific edge in the graph. The second

one is based on the core number sequence (also called coreness) and it preserves better

the underlying graph structure, retaining more data utility. By an extensive experimental

set up, we have demonstrated that both methods are able to preserve the most important

edges in the network, keeping the basic structural and spectral properties close to the

original ones. Both methods can be applied to any graph modification method, leading

the process to a better data utility.

The other important topic of this thesis has been privacy-preserving methods. In

Chapter 7 we have presented our random-based algorithm, which utilizes the concept of

Edge neighbourhood centrality to drive the edge modification process to better preserve

the most important edges in the graph, achieving lower information loss and higher data

utility on the released data. Our method obtains a better trade-off between data utility

and data privacy than other methods. In particular, it outperforms Random Perturbation

in terms of data utility and Random Switch in terms of data privacy as empirical results

showed.

Finally, two different approaches for k-degree anonymity on graphs have been de-

veloped in Chapter 8. First, an algorithm based on evolutionary computing has been

presented and tested on different small and medium real networks. Although this method

allow us to fulfil the desired privacy level, it presents two main drawbacks: the information

loss is quite large in some graph structural properties and it is not fast enough to work

with large networks. Therefore, a second algorithm has been presented, which uses the

univariate micro-aggregation to anonymize the degree sequence and reduce the distance

from the original one. This method is quasi-optimal and it results in lower information

loss and better data utility. Additionally, it is much more faster and efficient, being able

to anonymize large networks of millions of nodes and edges, as we have demonstrated in

our experiments. Furthermore, we have also applied the concept of Edge neighbourhood

centrality to this algorithm, producing an improvement in the quality and utility of the

anonymous data, though it increases a little the time complexity of the algorithm. We

have finalized this chapter with a comparison among our algorithms and two other well-

know state of the art approaches, proving that our algorithm improves the others in terms

of data utility.
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9.2 Further research

In all topics described in this dissertation there are some open research lines for future

work. In this section we briefly discuss some of them.

Referring to data utility, our analysis for correlation between measures and metrics

can be extended to other graph’s types, including for instance, directed networks. In

many cases, authors deal with directed networks by simply removing their arcs directions

and converting them to undirected networks. Although this approximation is simple and

effective, it clearly destroys critical information inside the network. Thus, extending our

experimental framework to work with directed networks can help us to better understand

the behaviour of non-symmetrical relationships among users in a social network, like for

instance, directed relations on Twitter.

In this text we have claimed that preserving the coreness of the network leads the edge

modification process to a lower information loss. However, it is not clear the effects of

preserving the coreness in terms of re-identification. A rigorous risk assessment analysis

has to be performed to evaluate and quantify the knowledge an adversary can extract

from the released network.

Lastly, regarding to privacy-preserving methods, it is obvious that our methods can

be extended to work with richer graphs. As we have stated, undirected and unlabelled

graphs are the simplest ones, but we need powerful methods to deal with different kinds of

networks to avoid removing interesting information, i.e, the direction of the arcs, vertices’

or edges’ labels, etc. However, it is not trivial to modify our methods to work with richer

graphs. As we have seen reviewing the state of the art, several problems with rich graphs

are NP-hard, thus developing efficient heuristic methods is still an open but also hard

problem.
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