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10.1.2 Resonancias dinámicamente generadas . . . . . . . . . 137

10.2 Formalismo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.2.1 El formalismo de hidden gauge . . . . . . . . . . . . . 140
10.2.2 Formalismo para la interacción VV . . . . . . . . . . . 141
10.2.3 Lagrangianos de la interacción mesón-barión . . . . . . 144
10.2.4 Convolución de la función loop . . . . . . . . . . . . . 147
10.2.5 Polos y acoplamientos . . . . . . . . . . . . . . . . . . 148

10.3 Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A Spin degeneracy of V B considering the V B → V B transition157

B Matrix elements of the ~σ ~ǫ operator 163

C Expression of the Box diagram integral 165

D Coefficients of the Baryon octet - pseudoscalar mesons inter-
action 167

E Coefficients of the box integral 171

F Evaluation the vertices 177

Bibliography 183



VIII CONTENTS



Agradecimientos
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estaba. A Manolo por todo lo que me ha enseñado de matemáticas o de
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dos para ponerlos a todos aqúı, por haber sido el lugar donde poder evadirme
de mis problemas y ser gente maravillosa con la que poder practicar y tomarse
una cervecita para reponerse después de haberse pasado la tarde haciendo
“kokyus”.



Agradecimientos XI

Mucha gente ha pasado por mi vida durante estos años, pero nadie ha
sido tan importante como Laura. A ella quiero agradecerle todo lo que ha
hecho por mı́ durante este tiempo, lo que me ha apoyado y escuchado, y por
haber sido mi mejor amiga. También a su familia, a sus padres Lola y Toni, y
a sus hermanos, Silvia y Toni, por haber sido durante estos años mi segunda
familia y sentirme como uno más. Gracias.

Esta tesis no es solo mı́a. Cada uno ha puesto una pequeña parte en esta
tesis, por ello quiero agradeceros todo el apoyo y el cariño que me habéis
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Chapter 1
Introduction

In the mid 50s a copious number of particles were found, with no other means
of classification than the conservation of some laboriously deduced quantum
numbers, so strange at the time that even inspired the name of strangeness
in one of the cases. However, in 1961 Gell-Mann proposed a theory [1, 2]
that classified baryons and mesons in octets and decuplets of the SU(3) group
depending on their isospin and hypercharge. This led to the prediction of
the quarks due to the SU(3) flavour symmetry that underlies this theory.

The quark model was very successful, it gave a natural explanation of why
there was one octet of baryons with JP = 1/2+ and a decuplet of JP = 3/2+.
It predicted new particles like the Ω− with S=-3, discovered in 1965 [3], and
allowed to make estimations of masses and magnetic moments of hadrons.
Furthermore the quantum number of colour was predicted due to the need
of antisymmetry of the ∆++ with JP = 3/2+ wave-function. But some
hadrons were found (like N∗(1440)(JP = 1/2+) [4], N∗(1535)(JP = 1/2−)
or Λ(1405)(JP = 1/2−)) that did not fit in octets and decuplets and were
assumed to be excited states of other hadrons. The most natural explanation
for the excited states was to assume that the constituent quarks were excited
to different discrete levels of a strongly attractive potential acting on the
quarks. This has been the main line of approach to these hadronic excited
states [5, 6, 7]. Yet, it is curious to observe, by looking at the masses of
the first baryon excited states, that the quark excitation energies are of the
order of 500 MeV. Then one can wonder why are not one or several pions
created, before a quark is excited, since it is energetically more favorable.
There could be an answer, since in some cases the dynamics would not lead
to sufficient attraction to bind these systems. But maybe in some cases the
conditions are such that bound states or resonances might emerge from the
addition of one or more mesons to the ground state hadrons. To answer this

1
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Figure 1.1: The Eightfold Way for baryons.

question one needs to address the dynamics of the interaction of the hadrons
in a reliable way, and big steps have been given in this direction.

1.1 Effective Lagrangians and Chiral Pertur-

bation Theory

The idea of Weinberg [8] to describe the low energy Hadron Physic using effec-
tive Lagrangians which contain the basic symmetries of QCD has been very
fruitful. Including the chiral symmetry contained in the QCD Lagrangian
in the effective Lagrangians has led to chiral Lagrangians, which have been
systematically studied in Ref. [9]. With these Lagrangians many problems
in hadron physics has been studied using perturbative techniques leading
to chiral Perturbation Theory (χPT) which has had an undeniable success.
However χPT has its limitations, like any theory. In the case of the ππ inter-
action the perturbative series expansion has its limits in the first singularity,
which is the pole corresponding to the σ resonance about 500 MeV of en-
ergy. The next step was to combine the information of chiral Lagrangians
with the unitarity in coupled channels [10, 11], obtaining a nonperturbative
formalism which allows to extend the information contained in the chiral
Lagrangians to higher energies, know as Chiral unitary theory, o unitarized
chiral perturbation theory, UχPT.

One of the more amazing results of the UχPT theory, is the dynamical
generation of resonances, which means that starting with the interaction of
meson-meson in coupled channels and using unitary techniques, one obtain
the meson-meson collision amplitudes where eventually poles appear that
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correspond to bound states or resonances. In this way one can obtain several
scalar mesons as σ, f0(980), a0(980), etc. in the mesonic channel, and also
baryonic resonances with JP = 1/2−, as N∗(1535), or two Λ(1405) [12].
Those states are understood as composite states of meson-meson or meson-
baryon, in the same way that the deuteron is a bound state of proton-neutron
and not a bag with six uncorrelated quarks. These results break with the
simple scheme that mesons are composed of q̄q and baryons by qqq. This
theory gives good results for collision amplitudes between mesons and meson-
baryon, and also lets one calculate properties of the resonances, like partial
decay widths, magnetic moments, helicity amplitudes, and also allows one to
face production processes of theses particles successfully.

Recently the interaction of vectors mesons among themselves and with
baryons has also been studied. The interaction of vectors is described by
another theory, the hidden gauge of Bando et ál. [13], which includes chiral
symmetry and leads to the same chiral Lagrangian for the meson-meson
interaction, including vector mesons in addition.

1.2 Dynamically generated resonances

The use of chiral Lagrangians in combination with unitary techniques in
coupled channels of mesons and baryons has been a very convenient scheme
to study the nature of many hadron resonances. The analysis of meson
baryon scattering amplitudes shows poles in the second Riemann sheet which
are identified with existing baryon resonances. In this way the interaction
of the octet of pseudoscalar mesons with the octet of stable baryons has
lead to JP = 1/2− resonances which fit quite well the spectrum of the
known low lying resonances with these quantum numbers, as we can see
in Refs. [14, 15, 16, 17, 18, 19, 20, 21, 22]. Similarly, the interaction of the
octet of pseudoscalar mesons with the decuplet of baryons also leads to many
resonances that can be identified with existing ones of JP = 3/2− [23, 24].
Sometimes a new resonance is predicted, as in the case of the Λ(1405), where
all the chiral approaches find two poles close by, rather than one, a fact that
finds experimental support in the analyses of Refs. [25, 26]1. The nature
of the resonances is admittedly more complex than just a molecule of pseu-
doscalar and baryon, but the success of this picture in reproducing many
experimental data on decay and production of the resonances provides sup-
port to claim very large components of this character for the resonance wave
function.

1In the next edition of the Particle Data Group, the two Λ(1405) states will be officially
included.
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Much work has been done using pseudoscalar mesons as building blocks,
but the consideration of vectors instead of pseudoscalars is only beginning
to be exploited. In the baryon sector the interaction of the ρ∆ has been
recently addressed in Ref. [27], where three degenerate N∗ states around
1800 MeV and three degenerate ∆ states around 1900 MeV, with JP =
1/2−, 3/2−, 5/2−, are found. This work has been recently extended to the
SU(3) space of vectors and baryons of the decuplet in Ref. [28] and of the
octet in Ref. [29]. The underlying theory for this study is the hidden gauge
formalism of Refs. [30, 13, 31], which deals with the interaction of vector
mesons and pseudoscalars in a way respecting chiral dynamics, providing
the interaction of pseudoscalars among themselves, with vector mesons, and
vector mesons among themselves. It also offers a perspective on the chiral
Lagrangians as limiting cases at low energies of vector exchange diagrams
occurring in the theory. In a more recent work, looking for poles in the πN
scattering amplitudes, the ρN channel is also included in Ref. [32] and a
resonance around 1700 MeV is dynamically generated, having the strongest
coupling to this later channel.

In the meson sector, the interaction of ρρ within this formalism has
been addressed in Ref. [33], where it has been shown to lead to the dy-
namical generation of the f2(1270) and f0(1370) meson resonances, with a
branching ratio for the sensitive γγ decay channel in good agreement with
experiment as in done in Ref. [34]. This work has been extended to the
SU(3) space in Ref. [35] where, in addition to these two resonances, the
f ′
2(1525), f0(1710) and other resonances are generated, including the predic-
tion of an h1 resonance around 1800 MeV for which experimental evidence
has been found recently in Ref. [36] from an analysis of the BES experiment
on J/Ψ → γK∗0K̄∗0 [37].



Chapter 2
Formalism

Quantum chromodynamics (QCD) is the theory that underlies the strong in-
teraction describing the interaction between quarks and gluons. This theory
is well understood and studied at high energies and has been tested many
times experimentally. However at low energies QCD shows a feature called
“confinement” that makes that in nature only “colour singlets”, also called
hadrons, exist such as protons, neutrons, pions, etc. Unfortunately, pertur-
bative methods of QCD cannot be applied at this regime, but big steps in
nonperturvative approaches as lattice have been given in the last decade.

Nevertheless effective theories are one of the most powerful tools in the
study of hadron physics at low energies. The SU(3) symmetry contained in
the QCD Lagrangian, can be extended to the low lying pseudoscalar mesonic
states (π, k, η). This extension is understood under the chiral symmetry
of the light quarks (u, d, s) which is spontaneously broken leading to the
Goldstone bosons and the development of a theory called Chiral Perturbation
Theory (χPT ) (See Refs. [38, 39] for further details).

The most general, chirally invariant, effective Lagrangian density with
the minimal number of derivatives reads

Leff =
f 2

4
Tr
(
∂µU∂

µU †) (2.1)

where f ≈ 93 MeV is a free parameter which later on will be related to the
pion decay and

U(x) = ei
√
2φ(x)/f (2.2)

First of all, the Lagrangian is invariant under the global SU(3)L × SU(3)R

5
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transformations

U → RUL† (2.3)

∂µU → R∂µUL
† (2.4)

U † → LU †R† (2.5)

∂µU
† → L∂µU

†R† (2.6)

So,

Leff → f 2

4
Tr
(
R∂µUL

†L∂µU †R†) (2.7)

=
f 2

4
Tr
(
R†R∂µU∂

µU †) = Leff (2.8)

In the U(x) contained in the Lagrangian of Eq. (2.1), φ(x) is related with
the mesons fields and the Gell-Mann matrices as

φ(x) =
8∑

a=1

1√
2
λaφa(x) =




φ3 +
1√
3
φ8 φ1 − iφ2 φ4 − iφ5

φ1 + iφ2 −φ3 +
1√
3
φ8 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 − 2√
3
φ8


 (2.9)

The coupling of the pseudoscalar meson to the baryon octet of SU(3) is given
by

LBBP =
F

2
〈B̄γµγ5[uµ, B]〉+ D

2
〈B̄γµγ5 {uµ, B}〉 (2.10)

where F = 0.51 and D = 0.75, and the B is a matrix contains the fields of
the baryon octet

B =




1√
2
Σ0 +

1√
6
Λ Σ+ p

Σ− − 1√
2
Σ0 +

1√
6
Λ n

Ξ− Ξ0 − 2√
6
Λ




(2.11)

At lowest order in the pseudoscalar meson field

uµ = −
√
2

f
∂µP (2.12)

where for the case of the octet of pseudoscalar meson, the P matrix is

P =




π0√
2
+ η8√

3
π+ K+

π− − π0√
2
+ η8√

3
K0

K− K̄0 − 2√
3
η8


 (2.13)
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which allows to rewrite the Lagrangian of Eq. (2.10) as

LBBP = −
√
2

f

D + F

2
〈B̄γµγ5∂µPB〉 −

√
2

f

D − F

2
〈B̄γµγ5B∂µP 〉 (2.14)

For a particular case of a pseudoscalar meson P coupling to two baryons
B1 and B2, the previous Lagrangian can be written in terms of an effective
vertex as

−itB1B2P =

{
α
(D + F )

2f
+ β

(D − F )

2f

}
~σ~k (2.15)

where ~k is the incoming momentum of the meson in the BBP vertex. The
coefficients α and β can be found in Appendix D.

2.1 The hidden gauge formalism

The hidden gauge formalism [30, 13, 31, 40] includes the interaction of vec-
tor mesons, photons and pseudoscalar mesons. Under this formalism, the
Lagrangian is given by

L = L(2) + LIII (2.16)

L(2) =
1

4
f 2〈DµUD

µU † + χU † + χ†U〉 (2.17)

LIII = −1

4
〈VµνV µν〉+ 1

2
M2

V 〈
[
Vµ −

i

g
Γµ

]2
〉 (2.18)

with the covariant derivative defined as

DµU = ∂µU − ieQAµU + ieUQAµ, (2.19)

where Vµ, Aµ are the vector and photon fields and Q is the charge matrix,
Q = diag(2,−1,−1)/3. χ stands for the mass matrix. In Eq. (2.18), Vµ is
the SU(3) matrix for the nonet of vector mesons

Vµ =




ρ0√
2
+ ω√

2
ρ+ K∗+

ρ− − ρ0√
2
+ ω√

2
K∗0

K∗− K̄∗0 φ




µ

(2.20)

and g is the coupling of the theory g = MV

2f
with MV the vector mass. The

interaction of vectors with the photons and pseudoscalars is accounted for
by means of Γµ

Γµ =
1

2

[
u† (∂µ − ieQAµ) u+ u (∂µ − ieQAµ) u

†] (2.21)
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where the field u is defined as

u2 = U = ei
√
2φ/f (2.22)

The magnitude Vµν for the vector mesons is given by

Vµν = ∂µVν − ∂νVµ − ig [Vµ, Vν ] (2.23)

and the second term in the Lagrangian of Eq. (2.18) is given by

[
Vµ −

i

g
Γµ

]2
=

(
Vµ −

e

g
QAµ −

1

g

1

2f 2
φeQAµφ+

1

g

1

4f 2
φ2eQAµ

+
1

g

1

4f 2
eQAµφ

2 − i

g

1

4f 2
[φ, ∂µφ]

)2

(2.24)

One can obtain from the previous Lagrangian the following interaction terms
involving pseudoscalar mesons, vector mesons and photons.

LV γ = −M2
V

e

g
Aµ〈V µQ〉 (2.25)

LV γPP = e
M2

V

4gf 2
Aµ〈V µ(Qφ2 + φ2Q− 2φQφ)〉 (2.26)

LV PP = −i M
2
V

4gf 2
〈V µ[φ, ∂µφ]〉 (2.27)

LγPP = ieAµ〈Q[φ, ∂µφ]〉 (2.28)

L̃PPPP = − 1

8f 2
〈[φ, ∂µφ]2〉. (2.29)

The diagrams of these vertices are represented individually in Fig. 2.1.

2.2 Formalism for VV interaction

From the Lagrangian of Eq. (2.18) one can get the interaction of vector
mesons among themselves as

LV = −1

4
〈VµνV µν〉 (2.30)

where the symbol 〈〉 stands for the trace in the SU(3) space and the term
Vµν is given in Eq. (2.23)

Vµν = ∂µVν − ∂νVµ − ig [Vµ, Vν ] (2.31)
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V

γ

(a) LV γ

V

P P

γ

(b) LV γPP

PP

V

(c) LV PP

PP

γ

(d) LγPP

P

P P

P

(e) L̃PPPP

Figure 2.1: Interaction diagrams involving pseudoscalar mesons, vector
mesons and photons from the Lagrangian of Eq. (2.16).
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The Lagrangian gives two contact terms of four and three vector mesons,

L(4V ) =
g2

2
〈VµVνV µV ν − VνVµV

µV ν〉 (2.32)

L(3V ) = ig〈(V µ∂νVµ − ∂νVµV
µ)V ν〉 (2.33)

We are interested on the three vector vertex of Fig. 2.2 since it will be used
in the vector meson - baryon interaction. The interaction of vector mesons

VV

V

Figure 2.2: Three vector vertex of the Lagrangian of Eq. (2.39).

with the baryon octet is introduced in the same way than the pseudoscalar
mesons through the following Lagrangian

LBBV = g
(
〈B̄γµ[V µ, B]〉+ 〈B̄γµB〉〈V µ〉

)
(2.34)

where B is the SU(3) matrix of the baryon octet given in Eq. (2.11). The
diagram of this vertex is shown in Fig. 2.3. Furthermore, the interaction

BB

V

Figure 2.3: Baryon of the octet - vector meson vertex of the Lagrangian of
Eq. (2.34).

of vector meson with baryon of the decuplet has been also studied. The
Lagrangian for baryon of the decuplet - vector meson interaction is given in
Ref. [41] by

L = −iT̄ µDνγ
νTµ (2.35)
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where T µabc is the spin decuplet field, with a, b, c the SU(3) indices, given by

T 111 = ∆++, T 112 = 1√
3
∆+, T 122 = 1√

3
∆0, T 222 = ∆−,

T 113 = 1√
3
Σ∗+, T 123 = 1√

6
Σ∗0, T 223 = 1√

3
Σ∗−,

T 133 = 6 1√
3
Ξ∗0, T 233 = 1√

3
Ξ∗−, T 333 = 1√

3
Ω−

(2.36)
The covariant derivative Dν is given by

DνT µabc = ∂νT µabc + (Γν)daT
µ
dbc + (Γν)dbT

µ
adc + (Γν)dcT

µ
abd (2.37)

where Γν is the vector current

Γν = − 1

4f 2
(V µ∂νVµ − ∂νVµV

µ) (2.38)

2.3 Lagrangians of the meson-baryon inter-

action

One of the most relevant studies done in this work is the vector meson -
baryon interaction where a vector meson is exchanged providing the corre-
sponding potential. For the interaction of the vectors among themselves we
have the three vector Lagrangian

L(3V )
III = ig〈(∂µVν − ∂νVµ)V

µV ν〉 , (2.39)

where Vµ is the SU(3) matrix for the nonet of the ρ given in Eq. (2.20) and
g = MV

2f
, with f=93 MeV. The Lagrangian of Eq. (2.39) can be rewritten in

a more convenient way as follows

L(3V )
III = ig〈V ν∂µVνV

µ − ∂νVµV
µV ν〉

= ig〈V µ∂νVµV
ν − ∂νVµV

µV ν〉
= ig〈(V µ∂νVµ − ∂νVµV

µ)V ν〉 (2.40)

In the same way, the coupling of the vectors to pseudoscalar mesons is given
by the Lagrangian of Eq. (2.27)

LV PP = −ig〈[P, ∂νP ]V ν〉 , (2.41)

where here P is the SU(3) matrix of the pseudoscalar mesons of Eq. (2.13).
The Lagrangian for the coupling of the vector to the baryon is given in
Eq. (2.42) by

LBBV = g
(
〈B̄γµ[V µ, B]〉+ 〈B̄γµB〉〈V µ〉

)
, (2.42)
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B2B1

V1 V2

V

V1 V2

B1 B2

(a) (b)

Figure 2.4: Vector meson-baryon interaction: (a) with vector meson exchange
(b) contact term.

where B is now the SU(3) matrix of the baryon octet of Eq. (2.11). The
interaction has been studied for the baryon octet in Ref. [29] and for baryon
decuplet in Ref. [28]. As shown in Ref. [29], the leading term of the V B →
V B interaction involves the three vector vertex of Eq. (2.39), with one vector
meson exchanged, and the coupling of this exchanged vector to the baryon,
given by Eq. (2.42). In both works, the vector meson exchange diagram
of Fig. 2.4(a) becomes the contact term of Fig. 2.4(b) neglecting the three
momentum versus the mass of the vector meson exchanged. The potential
provided by this term, keeping the dominant γ0 term in Eq. (2.42), is given
by

Vij = −Cij
1

4f 2

(
k0 + k′0

)
~ǫ~ǫ ′ (2.43)

where k0, k′0 are the energies of the incoming and outgoing vector mesons.
The result of Eq. (2.43), with the ~ǫ~ǫ ′ factor for the polarization of the vector
mesons, stems from considering the three momentum of the external vectors
small with respect to the mass of the vector mesons. The explicit factor-
ization of the spin term in the potential produces a degeneracy in the spin
of the states found when this potential is used. This is studied in detail in
Appendix A. The Cij coefficients for the vector meson - octet baryon for all
the states of isospin and strangeness can be found in Appendix A of Ref. [29],
where the subindices i and j correspond to the different channels. The V
matrix is the potential of the terms shown in Fig. 2.5, where the successive
diagrams can be expressed as

T = V + V GV + V GV GV + . . . (2.44)

that can be written as
T = V + V GT (2.45)

This expression can be resumed as the standard form of the Bethe-Salpeter
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= + + + . . .

Figure 2.5: First diagrams involved in Bethe-Salpeter equation.

equation given by
T = [1− V G]−1 V (2.46)

where G is the loop function of a vector meson and a baryon which is cal-
culated in dimensional regularization, as shown in Refs. [18, 42], and given
by

G = i2M

∫
d4q

(2π)4
1

(P − q)2 −M2 + iǫ

1

q2 −m2 + iǫ

=
2M

16π2

{
a(µ) + ln

M2

µ2
+
m2 −M2 + s

2s
ln
m2

M2
+

+
q√
s

[
ln(s− (M2 −m2) + 2q

√
s) + ln(s+ (M2 −m2) + 2q

√
s)

− ln(−s+ (M2 −m2) + 2q
√
s)− ln(−s− (M2 −m2) + 2q

√
s)
]}

(2.47)

with µ a regularization scale and a(µ) the subtraction constant, depending
on the channel. There exists a relationship between both parameters µ and
α given explicitly by

α′(µ′) = α(µ) + log(
µ′2

µ2
) (2.48)

This relationship has been studied in detail in Ref. [18], where the authors
found, fitting the pole of the Λ(1405), that with a regularization scale of
µ =630 MeV, the natural value for the subtraction constant α was -2. Using
these values, one can choose a value for µ and then work only with the
subtraction constant, since there is an unambiguous relationship. In the
literature, authors use different regularization scales, emphasizing the need
of been able to compare results.

Commonly, the subtraction constant a(µ) is fitted to get the position of a
pole or to reproduce an amplitude. Sometimes, reproducing the data requires
fitting a parameter for each channel and other times one global subtraction
constant for all channels is enough

We call Eq. (2.46) the onshell factorized Bethe-Salpeter equation (BS),
although other forms can be seen in the literature. Eq. (2.46) sums the terms
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of the Lippmann-Schwinger equation or ladder terms, but using relativistic
kinematics, and in the integral implicit in the V GT term of the BS equation,
the V and the T are factorized on shell outside the integral. This is fully
justified using the N/D method and dispersion relations as seen in Refs. [43,
18]. This approach neglects in principle the left hand cut in the dispersion
relation, although given its weak energy dependence in the physical region
of our interest, it is very accurately taken into account by means of the
subtraction constant a(µ) in Eq. (2.47), which is a parameter fitted to the
data.

2.4 Convolution of the loop function

In the cases where the iteration of the Bethe-Salpeter equation includes parti-
cles that have relatively large widths, as the ρ, K∗ meson or ∆, a convolution
of the loop function G with the mass distribution is needed. The loop func-
tion with the convolution for the case of the ρ meson would be

G̃(s) =
1

N

∫ (mρ+2Γρ)2

(mρ−2Γρ)2
dm̃2

(
− 1

π

)
Im

1

m̃2 −m2
ρ + im̃Γ(m̃)

G(s, m̃2,M2
B)

(2.49)
where G̃ is normalized with

N =

∫ (mρ+2Γρ)2

(mρ−2Γρ)2
dm̃2

(
− 1

π

)
Im

1

m̃2 −m2
ρ + im̃Γ(m̃)

(2.50)

Considering the width of the ρ, Γρ=149.4 MeV, the Γ(m̃) function is energy
dependent and is given in Ref. [35] as

Γ̃(m̃) = Γρ
q3off
q3on

θ(m̃−m1 −m2) (2.51)

with m1 = m2 = mπ for the ρ using

qoff =
λ1/2(m̃2,m2

π,m
2
π)

2m̃
, qon =

λ1/2(m2
ρ,m

2
π,m

2
π)

2mρ

(2.52)

where λ is the Källen function and Γρ is the nominal width of the ρ. We
can see in Fig. 2.6 the effects of the convolution of the G function, where
the threshold is softened. This can remove some undesirable effects, as cusp
in the T matrix, and provide width to the resonances. Nevertheless, the
convolution of the G function can, in some cases, make poles disappear.
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Figure 2.6: G function for ρN with α = −2.0 and µ = 630 MeV: Left) G
function without convolution. Right) G function with the mass convolution
of the ρ with Γρ = 149.4 MeV.

For the case of the ∆ we can proceed similarly. However, the integral over
the mass is different since now we integrate with the baryonic propagator.

G̃(s) =
1

N

∫ M∆+2Γ∆

M∆−2Γ∆

dM̃

(
− 1

π

)
Im

1

M̃ −M∆ + iΓ(M̃)
2

G(s,m2, M̃2) (2.53)

where G̃ is normalized with

N =

∫ M∆+2Γ∆

M∆−2Γ∆

dM̃

(
− 1

π

)
Im

1

M̃ −M∆ + iΓ(M̃)
2

(2.54)

where for the width of the ∆ we take Γ∆=120.0 MeV, and the Γ function as
defined in Eq. (2.51).

2.5 Poles and couplings

Once the scattering matrix is evaluated, some peaks appear that can be
associated to states. Next step is to find the poles associated to those peaks,
in order to obtain the couplings of these states to the different channels. The
method used is to search for poles in the second Riemann sheet, changing the
momentum ~q to −~q in the analytical formula of the G function when Re(

√
s)

is over the threshold of the corresponding channel. Using this method one
can find poles, as (MR + iΓ/2), where the real part corresponds to the mass
of the resonance and the imaginary part is half of the width of this state (the
complex conjugate pole at (MR − iΓ/2) also appear).

One of the most powerful method when evaluating the couplings, is to
calculate the residue using the residue theorem of the T matrix in a path of
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radius r around the pole.

∫ 2π

0

T (z(θ))ireiθdθ = 2πiRes(T ) = 2πig2 (2.55)

where z = z0 + reiθ, and z0 = MR + iΓ/2. So, the coupling gi for a given
channel i can be evaluated with

g2i =
r

2π

∫ 2π

0

Tii(z(θ))e
iθdθ (2.56)

The coupling does not depend on the value of the radius r, but usually it
is taken around 1 MeV. However one needs to be careful with poles close to
a threshold, as in the case of X(3872), since if the integral path cross the
threshold, one will obtain a wrong value for the coupling.

Somehow, the convolution of the G function eventually can make the
pole disappear in channels with the ρ meson. In this case one can study
the amplitude in the real axis using that near the peak the T matrix will be
about

Tij =
gigj√

s−MR + iΓ/2
(2.57)

whereMR is the position of the maximum and Γ the width at half-maximum.
The constants gi and gj are the couplings of the resonances to the channels
i, j. Then one can take the diagonal channel and obtain

|gi|2 =
Γ

2

√
|Tii|2 (2.58)

where the coupling gi has an arbitrary phase. With one coupling determined,
we can obtain the other ones from the Tij matrices using Eq. (2.57), given
by

gj = gi
Tij(
√

(s) =MR)

Tii(
√
(s) =MR)

. (2.59)

Once we obtain the couplings of the resonances for each channel, we can
calculate the partial decay widths using the equation

Γi =
1

2π

MB

MR

pi|gi|2 (2.60)

In the case of decay channels involving ρ or K∗, resonances that are under
their threshold can still get decay width. In these cases the momentum used
in the previous equation would be imaginary. Experimentally the decay of
the resonance is observed because the width of the vector is big enough to
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allow the decay, although the resonance is under the threshold. In order to
generate this effect in our calculation of the partial decay width, we make
the convolution of the momentum with the mass of the vector mesons. In
the case of the ρ one has

p̃ =
1

N

∫ (mρ+2Γρ)2

(mρ−2Γρ)2
dm̃2

(
− 1

π

)
Im

1

m̃2 −m2
ρ + im̃Γ(m̃)

λ1/2(M2
R, m̃

2,M2
N)

2MR

θ(MR − m̃ρ −MN) (2.61)

Here N is the same normalization as used in Eq. (2.50).
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Chapter 3
Radiative decay of S=1/2 resonances

3.1 Introduction

In a recent paper [27], the ρ∆ interaction was studied within the local hid-
den gauge formalism for the interaction of vector mesons. The results of
the interaction gave a natural interpretation for the ∆(1930)(5/2−) as a ρ∆
bound state, which otherwise is extremely problematic in quark models since
it involves a 3~ω excitation and appears with much higher mass. At the
same time two states with JP = 1/2−, 3/2− were obtained, degenerate with
the 5/2−, which could be accommodated with two known ∆ states in that
energy range. Also, three degenerate N∗ states with 1/2−, 3/2−, 5/2− were
obtained, which were more difficult to identify with known resonances since
that sector is not so well established. The work of Ref. [27] was extended to
the SU(3) sector in Ref. [28] to account for the interaction of vectors of the
octet with baryons of the decuplet. In this case ten resonances, all of them
also degenerate in the three spin states, were obtained, many of which could
be identified with existing resonances, while there were predictions for a few
more. At the same time in Ref. [28] the poles and residues at the poles of
the resonances were evaluated, providing the coupling of the resonances to
the different vector-baryon of the decuplet components.

One of the straightforward tests of these theoretical predictions is the
radiative decay of these resonances into photon and the member of the baryon
octet or decuplet to which it couples. Radiative decay of resonances into γN
is one of the observables traditionally calculated in hadronic models. Work
in quark models on this issue is abundant [44, 45, 46, 47, 48, 49, 5, 50, 51, 52,
53, 54, 55, 56, 57, 58]. For resonances which appear as dynamically generated
in chiral unitary theories there is also much work done on the radiative decay
into γN [16, 59, 60, 61, 62]. Experimental work in this topic is also of current

19
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interest [63, 64, 65].
In this chapter we address the novel aspect of radiative decay into a pho-

ton and a baryon of the decuplet of the ∆, since the underlying dynamics
of the resonances that we study provides this as the dominant mode of ra-
diative decay into photon baryon. This is so, because the underlying theory
of the studies of Refs. [27, 28] is the local hidden gauge formalism for the
interaction of vector mesons developed in Refs. [30, 13, 31, 40], which has
the peculiar feature, inherent to vector meson dominance, that the photons
couple to the hadrons through the conversion into a vector meson. In this
case a photon in the final state comes from either a ρ0, ω, φ. Thus, the
radiative decay of the resonances into γB is readily obtained from the the-
ory by taking the terms with ρ0B, ωB, φB in the final state and coupling
the γ to any of the final ρ0, ω, φ vector mesons. This procedure was used
in Ref. [34] and provided good results for the radiative decay into γγ of the
f0(1370) and f2(1270) mesons which were dynamically generated from the ρρ
interaction within the same framework of Ref. [33]. This latter work was also
extended to the interaction of vectors with themselves within SU(3), where
many other states are obtained which can be also associated with known res-
onances [35]. The radiative decay of the latter resonances into γγ or a γ and
a vector has been studied in Ref. [66], with good agreement with experiment
when available. Given the success of the theory in its predictions and the
good results obtained for the γγ decay of the f0(1370), f2(1270) and f

′
2(1525)

mesons, the theoretical framework stands on good foot and the predictions
made should be solid enough to constitute a test of the theory by contrasting
with experimental data.

The extension of the work of Refs. [27, 28] to the interaction of vector
mesons with baryons of the octet of the proton has also been successful [29]
and nine resonances, degenerated in spin-parity 1/2− and 3/2−, appear dy-
namically generated in the approach, many of which can be naturally asso-
ciated to know resonances in the PDG [67]. We study the radiative decay
of these resonances into a photon and a baryon of the octet. In this case we
can also evaluate helicity amplitudes and compare them with experimental
results when available.

The experimental situation in that region of energies is still poor. The
PDG [67] quotes many radiative decays of N∗ resonances, and of the A1/2,
A3/2 helicity amplitudes for decay of resonances into γN , with N either proton
or neutron. However, there are no data to our knowledge for radiative decay
into γB, with B a baryon of the decuplet. The reason for it might be the
difficulty in the measurement, or the lack of motivation, since there are also
no theoretical works devoted to the subject. With the present study we hope
to reverse the situation offering a clear motivation for these experiments since
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they bear close connection with the nature invoked for these resonances, very
different to the ordinary three quark structure of the baryons.

The numbers obtained for the radiative widths are well within measurable
range, of the order of 1 MeV, and the predictions are interesting, with striking
differences of one order of magnitude between decay widths for different
charges of the same resonance.

In the next two Sections we present the framework for the evaluation of
amplitudes of radiative decay. In Section 3.4 we show the results obtained
for the different resonances generated with the baryon decuplet. Section
3.5 introduces the equations for the baryon octet, which are used to obtain
results for the decay width of the resonances dynamically generated with a
vector and the baryon octet. In Section 3.6 we present the results for the
helicity amplitudes of some resonances used in the previous section, and in
Section 3.7 we finish with some conclusions.

3.2 Framework

In Refs. [27, 28], the s-wave scattering amplitudes for vector-decuplet baryon
V B → V ′B′ are given by

tV B→V ′B′ = t ~ǫ · ~ǫ ′δms,m′

s
, (3.1)

where ~ǫ, ~ǫ ′ refer to the initial and final vector polarization and the matrix
is diagonal in the third component of the baryons of the decuplet. The
transition is diagonal in spin of the baryon and spin of the vector, and as a
consequence in the total spin. To make this property more explicit, we write
the states of total spin as

|S,M〉 =
∑

ms

C (3/2, 1, S;ms,M −ms,M) |3/2,ms〉|~ǫM−ms〉 (3.2)

and

〈S,M | =
∑

m′

s

C (3/2, 1, S;m′
s,M −m′

s,M) 〈3/2,m′
s|〈~ǫ ∗M−m′

s
|, (3.3)

where C (3/2, 1, S;ms,M −ms,M) are the Clebsch-Gordan coefficients and
ǫµ the polarization vectors in spherical basis in the Coulomb Gauge and with
the photon in the z direction

~ǫ+ = − 1√
2
(~ǫ1 + i~ǫ2) , ~ǫ− =

1√
2
(~ǫ1 − i~ǫ2) , ~ǫ0 = ~ǫ3. (3.4)
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We can write Eq. (3.1) in terms of the projectors |S,M〉〈S,M | as

tV B→V ′B′ = t 〈~ǫ′|〈3/2,m′
s|
∑

S,M

|S,M〉〈S,M |3/2,ms〉|~ǫ 〉. (3.5)

Since the Clebsch-Gordan coefficients satisfy the normalization condition

∑

S

C (3/2, 1, S;ms,M −ms) C (3/2, 1, S;m′
s,M

′ −m′
s) = δms,m′

s
δM,M ′ ,

(3.6)
we have then

∑

S,M

|S,M〉〈S,M | =
∑

M

∑

ms

|3/2,ms〉〈3/2,ms| |~ǫM−ms 〉〈~ǫ∗M−ms | (3.7)

=
∑

M ′

∑

ms

|3/2,ms〉〈3/2,ms| |~ǫM ′ 〉〈~ǫ∗M ′ | ≡ 1.

We can depict the contribution of a specific resonant state of spin S to the
amplitude described by means of Fig. 3.1. Then the amplitude for the tran-

Figure 3.1: Diagram contributing to the vector-baryon interaction via the
exchange of a resonance.

sition of the resonance to a final vector-baryon state is depicted by means
of Fig. 3.2. As shown is Refs. [27, 28], the V B → V ′B′ scattering ampli-
tudes develop poles corresponding to resonances and a resonant amplitude is
written as Eq. (3.1) with t given by

tij =
gigj√

s−M + iΓ/2
(3.8)

with gi and gj the couplings to the initial and final states. Accordingly, the
amplitude for the transition from the resonance to a final state of vector-
baryon is given by

tSM→V ′B′ = gi〈~ǫ|〈3/2,ms|S,M〉
= giC(3/2, 1, S;ms,M −ms,M)〈~ǫ |~ǫM−ms〉. (3.9)



3.2. FRAMEWORK 23

Figure 3.2: Diagram on the decay of the resonance in a decuplet baryon and
a vector meson.

The generalization of Eq. (3.9) for the octet is rather obvious, the spin 3/2
becomes now 1/2 and then we have

tSM→V ′B′ = giC(1/2, 1, S;ms,M −ms,M)〈~ǫ |~ǫM−ms〉. (3.10)

and the equations which determine the radiative decay width will be identical
with this trivial change.

When calculating the decay width of the resonance into V B we will sum
|t|2 over the vector and baryon polarization, and average over the resonance
polarization M . Thus, we have

1

2S + 1

∑

M, ms, ~ǫ

|tSM→V ′B′ |2 (3.11)

= |gi|2
1

2S + 1

∑

M, ms, ~ǫ

C(3/2, 1, S;ms,M −ms,M)2〈~ǫ∗M−ms |~ǫ 〉〈~ǫ |~ǫM−ms〉

= |gi|2
1

2S + 1

∑

M ′

∑

ms

2S + 1

3
C(3/2, S, 1;ms,−ms −M ′,−M ′)2〈~ǫ∗M ′ |~ǫM ′〉

= |gi|2
1

3

∑

M ′

δM ′M ′

= |gi|2,

where in the first step we have permuted the two last spins in the Clebsch-
Gordan coefficients and in the second we applied their orthogonality condi-
tion.

We observe that the normalization of the amplitudes is done in a way
such that the sum and average of |t|2 is simply the modulus squared of the
coupling of the resonance to the final state. The width of the resonance for
decay into V B is given in the Mandl and Shaw normalization (See Ref. [68])
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by

Γ =
MB

2πMR

q |gi|2, (3.12)

where q is the momentum of the vector in the resonance rest frame and MB,
MR the masses of the baryon and the resonance respectively. We should note
already that later on when the vector polarizations are substituted by the
photon polarizations in the sum over M ′ in Eq. (3.11) we will get a factor
two rather than three, because we only have two transverse polarizations,
and then Eq. (3.12) must be multiplied by the factor 2/3.

3.3 Radiative decay

Next we study the radiative decay into Bγ of the resonances dynamically
generated in Ref. [28] with B a baryon of the decuplet. Recalling the results
of Ref. [28] we obtained there ten resonances dynamically generated, each
of them degenerated in three states of spin, 1/2−, 3/2−, 5/2−. As we have
discussed in the former section, the radiative width will not depend on the
spin of the resonance, but only on the coupling, which is the same for all three
spin states due to the degeneracy. This would be of course an interesting
experimental test of the nature of these resonances. In order to proceed

Figure 3.3: Diagram on the radiative decay of the resonance in a baryon and
a photon.

further, we use the same formalism of the hidden gauge local symmetry for
the vector mesons of Refs. [30, 13, 31, 40]. The peculiarity of this theory
concerning photons is that they couple to hadrons by converting first into a
vector meson, ρ0, ω or φ. Diagrammatically this is depicted in Fig. 3.3. This
idea has already been applied with success to obtain the radiative decay of the
f2(1270), f0(1370), f

′
2(1525) and f0(1710) resonances into γγ in Refs. [34, 66].

In Ref. [34] the question of gauge invariance was addressed and it was shown
that the theory fulfills it. In Ref. [69], it is also proved in the case of radiative
decay of axial vector resonances.
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The amplitude of Fig. 3.3 requires the γV conversion Lagrangian, which
comes from Refs. [30, 13, 31] and is given by the Lagrangian of Eq. (2.25)
(see Ref. [69] for practical details)

LV γ = −M2
V

e

g
Aµ〈V µQ〉 (3.13)

with Aµ the photon field, Vµ the SU(3) matrix of vector fields

Vµ ≡




1√
2
ρ0 + 1√

2
ω ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0

K∗− K̄∗0 φ




µ

, (3.14)

and Q the charge matrix

Q ≡




2/3 0 0
0 −1/3 0
0 0 −1/3


 . (3.15)

In Eq. (3.13), MV is the vector meson mass, for which we take an average
value MV = 800 MeV, e the electron charge, e2 = 4πα, and as usual,

g =
MV

2f
; f = 93 MeV.

The sum over polarizations in the intermediate vector meson for a fixed final
photon polarization, in the product of the R → BV transition amplitude of
Eq. (3.9) and the V γ Lagrangian of Eq. (3.13) converts the polarization vector
of the vector meson of the R → BV amplitude into the photon polarization
of the R → Bγ amplitude, and leads to the equation

−itγVDV = − iM2
V

e

g

i

−M2
V

Fj (3.16)

with

Fj =





1√
2

for ρ0,
1

3
√
2

for ω,

−1
3

for φ.

(3.17)

and DV the vector propagator for p2 = 0. Thus, finally our amplitude
for the R → Bγ transition, omitting the spin matrix element of Eq. (3.9),
C(3/2, 1, S;ms,M −ms,M)〈~ǫ |~ǫM−ms〉, is given by

tγ = − e

g

∑

j=ρ0, ω, φ

gjFj. (3.18)



26 CHAPTER 3. RADIATIVE DECAY OF S=1/2 RESONANCES

As discussed in the former section, the radiative decay width will then be
given by

Γγ =
1

2π

2

3

MB

MR

q |tγ|2. (3.19)

The couplings gj for different resonance and V B with V = ρ0, ω, φ and
B different baryon of the decuplet can be found in Ref. [28] and we use
them here for the evaluation of Γγ. The factor 2

3
in Eq. (3.19) additional

to Eq. (3.12) appears because now we have only two photon polarizations
and the sum over M ′ in Eq. (3.11) gives 2 instead of 3 for the case of vector
mesons.

3.4 Radiative decays into γ and baryon decu-

plet

The couplings of the resonances to the different V B channels are given in
Ref. [28] in the isospin basis. For the case of ωB and φB, there is no change
to be done, but for the case of ρB, one must project over the ρ0B component.
Since this depends on the charge of the resonance R, the radiative decays
will depend on this charge, as we will see. We recall that in our phase
convention |ρ+〉 = −|1, 1〉 of isospin. The information on the resonances and
their couplings to different baryons of the decuplet and vector mesons ρ, ω,
φ for different channels is listed in Table 3.1.

3.4.1 S = 0, I = 1/2 channel

A resonance is obtained at zR = 1850 + i5MeV which couples to ∆ρ. We
have in this case

|∆ρ, 1
2
,
1

2
〉 =

√
1

2
|∆++ρ−〉 −

√
1

3
|∆+ρ0〉 −

√
1

6
|∆0ρ+〉 (3.20)

and

|∆ρ, 1
2
,−1

2
〉 =

√
1

6
|∆+ρ−〉 −

√
1

3
|∆0ρ0〉 −

√
1

2
|∆−ρ+〉. (3.21)

The coupling of the resonance to ρ0 is obtained multiplying the coupling
of Table 3.1 by the corresponding Clebsch-Gordan coefficient for ∆ρ0 of
Eqs. (3.20, 3.21). Then, by means of Eqs. (3.18, 3.19), one obtains the
decay width. In this case since the ∆ρ0 component is the same for I3 = 1/2
and I3 = −1/2, one obtains the same radiative width for the two channels,
which is Γ = 0.722 MeV.
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S, I Channel

zR = 1850 + i5

0, 1/2 ∆ρ 4.9 + i0.1

zR = 1972 + i49

0, 3/2 ∆ρ 5.0 + i0.2

∆ω −0.1 + i0.2

∆φ 0.2− i0.4

zR = 2052 + i10

-1, 0 Σρ 4.2 + i0.1

zR = 1987 + i1 zR = 2145 + i58 zR = 2383 + i73

-1,1 Σρ 1.4 + i0.0 −4.3− i0.7 0.4 + i1.1

Σω 1.4 + i0.0 1.3− i0.4 −1.4− i0.4

Σφ −2.1− i0.0 −1.9 + i0.6 2.1 + i0.6

zR = 2214 + i4 zR = 2305 + i66 zR = 2522 + i38

-2, 1/2 Ξρ 1.8− i0.1 −3.5− i1.7 0.2 + i1.0

Ξω 1.7 + i0.1 2.0− i0.7 −0.6− i0.3

Ξφ −2.5− i0.1 −3.0 + i1.0 0.9 + i0.4

zR = 2449 + i7

-3, 0 Ωω 1.6− i0.2

Ωφ −2.4 + i0.3

Table 3.1: The couplings gi of the resonances obtained dynamically to the ρ,
ω and φ with the baryon decuplet channels of Ref. [28].
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3.4.2 S = 0, I = 3/2 channel

One resonance is obtained at zR = 1972+ i49 MeV which couples to ∆ρ, ∆ω
and ∆φ. The isospin states for ∆ρ can be written as

|∆ρ, 3
2
,
3

2
〉 =

√
3

5
|∆++ρ0〉 +

√
2

5
|∆+ρ+〉, (3.22)

|∆ρ, 3
2
,
1

2
〉 =

√
2

5
|∆++ρ−〉 +

√
1

15
|∆+ρ0〉 +

√
8

15
|∆0ρ+〉, (3.23)

|∆ρ, 3
2
,−1

2
〉 =

√
8

15
|∆+ρ−〉 −

√
1

15
|∆0ρ0〉 +

√
2

5
|∆−ρ+〉, (3.24)

|∆ρ, 3
2
,−3

2
〉 =

√
2

5
|∆0ρ−〉 −

√
3

5
|∆−ρ0〉. (3.25)

Since all the Clebsch-Gordan coefficients to ∆ρ0 are now different, we obtain
different radiative decay width for each charge of the state. The results are
Γ = 1.402 MeV for I3 = 3/2, Γ = 0.143 MeV for I3 = 1/2, Γ = 0.203 MeV
for I3 = −1/2 and Γ = 1.582 MeV for I3 = −3/2. It is quite interesting
to see that there is an order of magnitude difference between I = 3/2 and
I = 1/2, and this is a clear prediction that could be tested experimentally.

3.4.3 S = −1, I = 0 channel

We get a resonance at zR = 2052 + i10 MeV, which couples to Σ∗ρ. In this
case

|Σ∗ρ, 0, 0〉 =

√
1

3
|Σ∗+ρ−〉 −

√
1

3
|Σ∗0ρ0〉 −

√
1

3
|Σ∗−ρ+〉, (3.26)

and the radiative decay obtained is Γ = 0.583 MeV.

3.4.4 S = −1, I = 1 channel

Here we find three resonances at zR = 1987 + i1 MeV, 2145 + i58 MeV and
2383 + i73 MeV, which couple to Σ∗ρ, Σ∗ω and Σ∗φ. The relevant isospin
states are

|Σ∗ρ, 1, 1〉 =

√
1

2
|Σ∗+ρ0〉 +

√
1

2
|Σ∗0ρ+〉, (3.27)

|Σ∗ρ, 1, 0〉 =

√
1

2
|Σ∗+ρ−〉 +

√
1

2
|Σ∗−ρ+〉, (3.28)

|Σ∗ρ, 1,−1〉 =

√
1

2
|Σ∗0ρ−〉 −

√
1

2
|Σ∗−ρ0〉. (3.29)
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The results obtained in this case are summarized in Table 3.2.

I3 (1987) (2145) (2383)

1 0.561 0.399 0.182

0 0.199 0.206 0.277

−1 0.020 2.029 0.537

Table 3.2: The radiative decay widths in units of MeV for the S = −1, I = 1
resonances with different isospin projection I3.

3.4.5 S = −2, I = 1/2 channel

Here we also find three states at zR = 2214 + i4 MeV, 2305 + i66 MeV and
2522 + i38 MeV, which couple to Ξ∗ρ, Ξ∗ω and Ξ∗φ. The isospin states for
Ξ∗ρ are written as

|Ξ∗ρ,
1

2
,
1

2
〉 =

√
2

3
|Ξ∗−ρ+〉 +

√
1

3
|Ξ∗0ρ0〉, (3.30)

|Ξ∗ρ,
1

2
,−1

2
〉 = −

√
1

3
|Ξ∗−ρ0〉 +

√
2

3
|Ξ∗0ρ−〉. (3.31)

The radiative decay widths in this case are shown in Table 3.3.

I3 (2214) (2305) (2522)

1/2 0.815 0.320 0.044

−1/2 0.054 1.902 0.165

Table 3.3: The radiative decay widths in units of MeV for the S = −2, I =
1/2 resonances with the different isospin projection I3.

3.4.6 S = −3, I = 0 channel

Here we have only one state at zR = 2449+i7 MeV, which couples to Ωω and
Ωφ. The radiative decay width obtained in this case is Γ = 0.330 MeV. As
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one can see, there is a large variation in the radiative width of the different
states, which should constitute a good test for the model when these widths
are measured. In Table 3.4 we summarize all the results obtained making an
association of our states to some resonances found in the PDG [67].

3.5 Radiative decays into γ and baryon octet

The couplings of the resonances to the different V B channels are given in
Ref. [29] in the isospin basis. For the case of ωB and φB, there is no change
to be done, but for the case of ρB, one must project over the ρ0B component.
Since this depends on the charge of the resonance R, the radiative decays
will depend on this charge, as we will see. We recall that in our phase
convention |ρ+〉 = −|1, 1〉 of isospin. The information on the resonances and
their couplings to different baryons of octet and vector mesons ρ, ω, φ for
different channels is listed in Table 3.5. We detail the results below and
compile them in Table 3.6.

3.5.1 S = 0, I = 1/2 channel

Two resonances are obtained at zR = 1696 MeV and zR = 1977 + i53 MeV
which couple to ρN , ωN and φN . We have in this case

|ρN, 1
2
,
1

2
〉 = −

√
1

3
|ρ0p〉 −

√
2

3
|ρ+n〉 (3.32)

|ρN, 1
2
,−1

2
〉 =

√
1

3
|ρ0n〉 −

√
2

3
|ρ−p〉 (3.33)

The coupling of the resonance to ρ0 is obtained multiplying the coupling
of Table 3.5 by the corresponding Clebsch-Gordan coefficient for ρ0N of
Eqs. (3.32, 3.33). Then, by means of Eqs. (3.18, 3.19), one obtains the
decay width.

3.5.2 S = −1, I = 0 channel

We get three resonances at zR = 1784 + i4 MeV, zR = 1906 + i70 MeV and
zR = 2158 + i13 MeV respectively, which couple to ρΣ, ωΛ and φΛ. In this
case

|ρΣ, 0, 0〉 =

√
1

3
|ρ−Σ+〉 −

√
1

3
|ρ0Σ0〉 −

√
1

3
|ρ+Σ−〉. (3.34)
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S, I Theory PDG data Predicted width (KeV) for I3

pole position name JP −3/2 −1 −1/2 0 1/2 1 3/2

(MeV)

0, 1/2 1850 + i5 N(2090) 1/2− 722 722

N(2080) 3/2−

0, 3/2 1972 + i49 ∆(1900) 1/2− 1582 203 143 1402

∆(1940) 3/2−

∆(1930) 5/2−

−1, 0 2052 + i10 Λ(2000) ?? 583

−1, 1 1987 + i1 Σ(1940) 3/2− 20 199 561

Σ(2000) 1/2−

2145 + i58 Σ(2250) ?? 2029 206 399

2383 + i73 Σ(2455) ?? 537 277 182

−2, 1/2 2214 + i4 Ξ(2250) ?? 54 815

2305 + i66 Ξ(2370) ?? 1902 320

2522 + i38 Ξ(2500) ?? 165 44

−3, 1 2449 + i7 Ω(2470) ?? 330

Table 3.4: The predicted radiative decay widths of the ten dynamically gen-
erated resonances for different isospin projection I3. Their possible PDG
counterparts are also listed. Note that the Σ(2000) could be the spin parter
of the Σ(1940), in which case the radiative decay widths would be those of
the Σ(1940).
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S, I Channel

zR = 1696 zR = 1977 + i53

0, 1/2 ρN 3.2 + i0 −0.3− i0.5

ωN 0.1 + i0 −1.1− i0.4

φN −0.2 + i0 1.5 + i0.6

zR = 1784 + i4 zR = 1906 + i70 zR = 2158 + i13

-1, 0 ωΛ 1.4 + i0.03 0.4 + i0.2 −0.3− i0.2

ρΣ −1.5 + i0.03 3.1 + i0.7 0.01− i0.08

φΛ −1.9− i0.04 −0.6− i0.3 0.5 + i0.3

zR = 1830 + i40 zR = 1987 + i240

-1,1 ρΛ −1.6 + i0.2 −0.3 + i0.9

ρΣ −1.6 + i0.07 2.6 + i0.0

ωΣ −0.9 + i0.1 −0.2 + i0.5

φΣ 1.2− i0.2 0.2− i0.7

zR = 2039 + i67 zR = 2082 + i31

-2, 1/2 ρΞ 2.4 + i0.7 0.4 + i0.3

ωΞ 0.6− i0.08 1.1 + i0.3

φΞ −0.8 + i0.1 −1.6− i0.4

Table 3.5: The couplings gi of the resonances obtained dynamically to the ρ,
ω and φ with the baryon octet channels of Ref. [29].
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3.5.3 S = −1, I = 1 channel

Here we find two resonances at 1830+ i40 MeV and 1987+ i240 MeV, which
couple to ρΛ, ρΣ, ωΣ and φΣ. The relevant isospin states are

|ρΣ, 1, 1〉 = −
√

1

2
|ρ0Σ+〉 −

√
1

2
|ρ+Σ0〉, (3.35)

|ρΣ, 1, 0〉 = −
√

1

2
|ρ+Σ−〉 −

√
1

2
|ρ−Σ+〉, (3.36)

|ρΣ, 1,−1〉 = −
√

1

2
|ρ−Σ0〉 +

√
1

2
|ρ0Σ−〉. (3.37)

3.5.4 S = −2, I = 1/2 channel

Here we also find two states at zR = 2039 + i67 MeV and 2082 + i31 MeV,
which couple to ρΞ, ωΞ and φΞ. The isospin states for ρΞ are written as

|ρΞ, 1
2
,
1

2
〉 = −

√
2

3
|ρ+Ξ−〉 −

√
1

3
|ρ0Ξ0〉, (3.38)

|ρΞ, 1
2
,−1

2
〉 =

√
1

3
|ρ0Ξ−〉 −

√
2

3
|ρ−Ξ0〉. (3.39)

In Table 3.6 we summarize all the results obtained, making an association of
our states to some resonances found in the PDG[67]. As one can see, there is
a large variation in the radiative width of the different states, which should
constitute a good test for the model. For the case of the vector-baryon octet
states which decay into γ and a baryon of the octet, it is customary to express
the experimental information in terms of helicity amplitudes A1/2 and A3/2.
We evaluate these amplitudes in next section to facilitate the comparison
with experiment.

3.6 Helicity amplitudes

Recalling Eq. (3.10) for the dynamically generated states from a vector and
a baryon of the octet, we have the two cases JP = 1/2− and JP = 3/2−.
The helicity amplitudes with the choice of polarization vectors of Eq. (3.4),
which imply the use of the Coulomb Gauge with the photon momentum in
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S, I Theory PDG data Predicted width KeV for I3

pole position name JP −1 −1/2 0 1/2 1

(MeV)

0, 1/2 1696 N(1650) 1/2− 334 253

N(1700) 3/2−

1977 + i53 N(2080) 3/2− 196 79

N(2090) 1/2−

−1, 0 1784 + i4 Λ(1690) 3/2− 65 (166)

Λ(1800) 1/2−

1907 + i70 Λ(2000) ?? 321 (21)

2158 + i13 0 (17)

−1, 1 1830 + i40 Σ(1750) 1/2− 363 69 (240) 7

1987 + i240 Σ(1940) 3/2− 307 27 (90) 426

Σ(2000) 1/2−

−2, 1/2 2039 + i67 Ξ(1950) ?? 400 89

2082 + i31 Ξ(2120) ?? 212 84

Table 3.6: The predicted radiative decay widths of the nine dynamically
generated resonances for different isospin projection I3. Their possible PDG
counterparts are also listed. The values in the bracket for I3 = 0 denote
widths for the radiative decay into Λγ, while the values outside the bracket
denote widths for Σγ.
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the z direction, are defined as

AN
∗

1/2 =

√
2πα

k

1

e

〈
N∗, Jz = 1/2|ǫ(+)

µ Jµ|N, Jz = −1/2
〉

(3.40)

AN
∗

3/2 =

√
2πα

k

1

e

〈
N∗, Jz = 3/2|ǫ(+)

µ Jµ|N, Jz = 1/2
〉

(3.41)

where α = 1/137, k is the CM photon momentum and e2 = 4πα. To
accommodate these amplitudes to our Eq. (3.10) we rewrite them taking

ǫ
(+)
µ Jµ = −~ǫ (+) ~J , as

A
J=1/2
1/2 = −tγ

1√
2k

C(1/2, 1, 1/2;ms,M −ms,M)〈~ǫM−ms |~ǫ∗〉∗ (3.42)

where tγ is given by Eq. (3.18), with ms = −1/2, ~ǫ = ~ǫ (+), which fixes
M −ms = 1, and similarly for the other amplitudes. Hence, we obtain

A
J=1/2
1/2 = −tγ 1√

2k
C(1/2, 1, 1/2;−1/2, 1, 1/2) =

1√
2k

√
2

3
tγ (3.43)

A
J=3/2
1/2 = −tγ 1√

2k
C(1/2, 1, 3/2;−1/2, 1, 1/2) = − 1√

2k

√
1

3
tγ (3.44)

A
J=3/2
3/2 = −tγ 1√

2k
C(1/2, 1, 3/2; 1/2, 1, 1/2) = − 1√

2k
tγ (3.45)

The ordinary formula to get the radiative decay width in terms of A1/2 and
A3/2 is given in the PDG [67] as

Γγ =
k2

π

2MB

(2JR + 1)MR

[
(A1/2)

2 + (A3/2)
2
]

(3.46)

One can see that using in Eq. (3.46), the values of the helicity amplitudes
obtained in Eqs. (3.43, 3.44, 3.45) one obtains the same result of Eq. (3.19)
for both spins of the resonances.

It is interesting to note that the values of A1/2 for J = 1/2, 3/2 and A3/2

for J = 3/2 are all related by the simple relations of Eqs. (3.43, 3.44, 3.45) for

these dynamically generated states, and the ratio of 1/
√
3 between A

J=3/2
1/2

and A
J=3/2
3/2 is something that could be contrasted with experiment. We

compile in Table 3.7 all the results obtained for the resonances that are
likely to be associated to states in the PDG for which there are data. The
theoretical errors have been obtained by assuming 10% uncertainty in the
largest coupling of the resonance to the different channels and 15% in the
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PDG data Helicity amplitudes10−3(GeV−1/2)

name JP Decay Theory Exp.[67] Exp.[70] Exp.[71] Th.[55] Th.[72] Th.[73]

PDG Barbour Devenish

N(1650) 1/2− Ap1/2 64± 7 53± 16 5 46 54

An1/2 −74± 7−15± 4 −16 −58 −35

N(1700) 3/2− Ap1/2 −46± 5−18± 13−33± 21 −13 −3 −33

Ap3/2 −79± 9 −2± 24−14± 25 −10 15 18

An1/2 52± 5 0± 50 50± 42 16 14 −3

An3/2 91± 9 −3± 44 35± 30 −42 −23 −30

N(2080) 3/2− Ap1/2 21± 5−20± 8 26± 52

Ap3/2 36± 8 17± 11 128± 57

An1/2 29± 5 7± 13 53± 83

An3/2 50± 8−53± 34 100± 141

N(2090) 1/2− Ap1/2 −30± 6

An1/2 −41± 6

Table 3.7: Comparison with experiments and other theoretical works.

other ones. This is only a rough estimate and the uncertainties can easily be
double this amount.

We should comment on the signs of the helicity amplitudes. For us they
are determined by means of Eqs. (3.43, 3.44, 3.45) in terms of tγ given in
Eq. (3.18). We should mention that the gj couplings appearing there are
all determined with their relative sign, but one of them has an arbitrary
sign. Thus we have an arbitrary sign in the helicity amplitudes, but the
relative sign between the A

J=3/2
1/2 and A

J=3/2
3/2 is well determined. Within

our convention of SU(3) phases also the n and p helicity amplitudes are
correlated.

Experimentally the phases of the helicity amplitudes are a subject of
convention since there is one phase arbitrary in the non diagonal transition of
baryon states. In practice when dealing with physical processes to determine
the helicity amplitudes, one has a strong vertex and an electromagnetic one,
like γN → N∗ and N∗ → Nπ [74, 75, 76, 77] and one could determine the
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sign of the product of these two vertices of some resonances with respect to
other ones, with some global phase undetermined. Theoretically one could
do a similar thing, but this would require to study the transition amplitude
of the V N resonances to πN . This problem is addressed in the present thesis
in chapter 4. In view of this, we have chosen two phases to compare with
experiment, the one of Ap1/2 for N(1700) and that of Ap1/2 for N(2080). The
choice has been made to agree with the experiments of Barbour and Devenish
respectively.

By looking at Table 3.7 we can see that the agreement with the data of
Ap1/2 for the PDG average of N∗(1650) is good. For the case of An1/2 the
results obtained are larger than experiment but the sign is good. In the case
of the N∗(1700), Ap1/2 can be considered qualitatively fine within theoretical

and experimental errors, Ap3/2 seems to be larger than experiment but one

can see that individual measurements, as the one of Barbour [70] diverge
appreciably from the PDG average values. Similarly An1/2 would be compat-
ible with experiment within errors and An3/2 seems also a bit larger, but not
qualitatively too off account taken of the large experimental uncertainties.
This last magnitude is very relevant since the predictions of the dynamically
generated model have opposite sign to all the quark model calculations men-
tioned in the table. Since a global sign in these non diagonal transitions
can always appear in different models, more relevant than the absolute sign
is the relative one to An1/2 which is the same in our case and opposite in

Ref. [55, 72]. In Ref. [73] one has the same signs but there is one order of
magnitude difference between the two helicity amplitudes, while in our model
the ratio is

√
3. It is clear that precise measurements of these magnitudes

are very useful to discriminate among models and help us understand better
the structure of these resonances.

The case of the N∗(2080) and N∗(2090) is more unclear. The agreement
with the PDG average does not seem too good, although the uncertainties
are very large, but we find it more appropriate to compare with the results of
a single experiment. For this purpose we also show the experimental results
of Devenish [71] for the resonances to show that individual measurements
are very different from the PDG averages. The agreement with signs of all
amplitudes is now good (recall that one theoretical sign is chosen to agree)
and also the sizes are similar, account taken of the large experimental un-
certainties. Since under the umbrella of the N∗(2080) and N∗(2090) there
are apparently different states compiled, it would be possible that the av-
erages of the PDG were not done for different measurements on the same
state but for measurements on different states. The experimental situation
is hence unclear but the results obtained here should be a motivation for
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further reanalysis.
A different way to make the comparison with experiment is to take the

relationship of Eqs. (3.43, 3.44, 3.45), tied to the nature of these resonances
as dynamically generated from the vector baryon interaction, and extract
the only independent amplitude, tγ, from the experimental data, hence com-
paring tγ directly. We have done this and take the data of Barbour and
Devenish, for the N∗(1700) and N∗(2080) respectively, to guarantee that
they come from the same state. The results are found in Table 3.8. We ob-
serve consistency in the sizes and signs (only one sign is chosen theoretically
for one amplitude of each resonance), although the experimental errors are
still very large. Needless to say that improvements on these measurements
would be most welcome.

PDG data tγ 10−3 (A
3/2
1/2/A

1/2
1/2)

name JP Decay Theory Exp.[70] Exp.[71]

Barbour Devenish

N(1650) 1/2− Ap1/2 85± 9

An

1/2 −98± 10

N(1700) 3/2− Ap1/2 85± 9 60± 38

Ap3/2 85± 9 15± 26

An

1/2 −98± 10 −94± 79

An

3/2 −98± 10 −35± 32

N(2080) 3/2− Ap1/2 −45± 10 −57± 116

Ap3/2 −45± 10 −164± 73

An

1/2 −62± 10 −119± 186

An

3/2 −62± 10 −129± 182

N(2090) 1/2− Ap1/2 −45± 10

An

1/2 −62± 10

Table 3.8: Comparison of tγ obtained from the theoretical and experimental
helicity amplitudes. The numbers in bold characters refer to neutron and
the normal ones to the proton.
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3.7 Conclusions

In this chapter we have studied the radiative decay into γB, with B a baryon
of the octet and decuplet of SU(3), of the dynamically generated resonances
obtained within the framework of the local hidden gauge mechanism for
vector interactions. The framework is particularly rewarding for the study of
such observable, since the photon in the final state appears coupling directly
to the vector V = ρ0, ω, φ in the R → BV amplitudes which are studied
in previous works. The rates obtained are large and the radiative widths
are of the order of 1 MeV. On the other hand, one of the appealing features
of the results is the large difference, of about one order of magnitude, that
one finds between the widths for different charge states of the same particle.
Although, such differences are also found in quark models, the precise values
are tied to details of the theory, concretely the coupling of the resonances
to V B, which sometimes produce large interferences between the different
contributions of the three vector mesons to which the photon couples. As a
consequence, the radiative decay widths that we have evaluated bear much
information on the nature of those resonances, which should justify efforts
for a systematic measurement of these observables.

We have studied the decay into γ-baryon octet and γ-baryon decuplet of
the states dynamically generated from the vector-baryon octet and vector-
baryon decuplet interaction. In the first case one can define the helicity
amplitude A1/2 and A3/2 for the n and p type states of the N∗, which makes
the comparison with data more useful. We have found good agreement with
data in some cases and rough in others, but we have warned about the large
experimental uncertainties and the possibility that the PDG averages are
done over different states. Perhaps the most practical way to test the nature
of the resonances that we have discussed would be to check experimentally
the relationships of Eqs. (3.43, 3.44, 3.45) which relate the spin 1/2 and 3/2
helicity amplitudes for the approximately degenerated spin partners, as we
have done. What stands clear from the work and the discussion is that these
observables are very useful to help us understand better the nature of the
resonances discussed here. Further experimental work is most desirable. The
results of this Chapter are published in Ref. [78].
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Chapter 4
The box diagram

4.1 Introduction

The approach to QCD at low energies using effective Lagrangians [8] has
proved very valuable. In particular the implementation of chiral symme-
try [79, 80] has been a guiding principle to construct effective Lagrangians
which account for the basic symmetries of the strong interaction and take
the observable hadrons, mesons and baryons, as basic fields in those La-
grangians. Along this line, the use of chiral Lagrangians in combination with
unitary techniques in coupled channels of mesons and baryons has been a very
fruitful scheme to study the nature of many hadron resonances. It allows,
among many other, to evaluate meson baryon scattering amplitudes, which
sometimes show poles in the second Riemann sheet which are identified with
existing baryon resonances. They are dynamically generated resonances. In
this way the interaction of the octet of pseudoscalar mesons with the octet
of stable baryons has lead to JP = 1/2− resonances which fit quite well
the spectrum of the known low lying resonances with these quantum num-
bers [14, 15, 16, 17, 18, 19, 20, 21, 22]. Similarly, the interaction of the octet
of pseudoscalar mesons with the decuplet of baryons also leads to many res-
onances that can be identified with existing ones of JP = 3/2− [23, 24]. One
interesting case is the one of the Λ(1405), where all the chiral approaches find
two poles close by, which have found experimental support in the analysis of
Refs. [25, 26].

Much work has been done using pseudoscalar mesons as building blocks,
but the consideration of vectors instead of pseudoscalars is also receiving
much attention lately. In the baryon sector the interaction of the ρ∆ has
been recently addressed in Ref. [27], where three degenerate N∗ states around
1800 MeV and three degenerate ∆ states around 1900 MeV, with JP =

41
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1/2−, 3/2−, 5/2−, are found. This work has been recently extended to the
SU(3) space of vectors and baryons of the decuplet in Ref. [28]. The underly-
ing theory for this study is the local hidden gauge formalism [30, 13, 31, 40],
which deals with the interaction of vector mesons and pseudoscalars in a
way respecting chiral dynamics, providing the interaction of pseudoscalars
among themselves, with vector mesons, and vector mesons among them-
selves. The theory provides the chiral Lagrangians as limiting cases at low
energies through vector exchange diagrams.

In the same line, the interaction of vector mesons with the octet of baryons
has been addressed in Ref. [29], where also many states are dynamically
generated which can be associated to known resonances. A few other states
remain as predictions or are difficult to associate to the known states which
show a large dispersion from different experiments. More recently, work along
this line has been done in Ref. [81], and the concrete issue of the mixing of
the pseudoscalar-baryon and vector-baryon channels, that we tackle here in
the strangeness S=0 sector, has been addressed in Ref. [82] for S=-1.

The next natural step in this direction is to put the pseudoscalar-baryon
and vector-baryon states on the same footing and two works have been al-
ready done in this direction, the first one using a SU(6) scheme that in-
vokes spin-isospin symmetry [83]. The transition from vector-baryon to
pseudoscalar-baryon is implemented in this latter approach through the im-
plicit exchange of an axial vector in the t-channel. Such a term is not present
in the local hidden gauge approach, where instead, the exchange of pseu-
doscalar mesons coming from the vector-pseudoscalar-pseudoscalar vertex is
responsible for the transition. The second work [82] investigates the mixing
in the strangeness S=-1 sector, using a contact pseudoscalar-vector-baryon
term obtained by gauging a theory with pseudoscalars and baryons. In the
present work we stick to the standard local hidden gauge formalism in the
unitary gauge and study the mixing in a systematic way in order to see
modifications to the resonances obtained in the work of Ref. [29] when the
pseudoscalar-baryon channels are allowed to couple to the main building
blocks of vector-baryon.

The idea has already been used in Ref. [32], in the study of πN scattering
at intermediate energies, where the ρN channel is also included and a reso-
nance is dynamically generated around 1700 MeV, which has the strongest
coupling to the ρN channel.

The introduction of the pseudoscalar-baryon channels has as a main ef-
fect the widening of the resonances found in Ref. [29] and, except in some
very particular case, has a negligible effect on the mass of the resonances.
The consideration of the pseudoscalar-baryon channels also allows us to de-
termine the partial decay width of the resonance into these channels and,
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by comparing with the PDG [67] offers new elements to judge on the most
appropriate association of the resonances found in Ref. [29] to the known
resonances.

4.2 Formalism

The part of the Lagrangian of the local hidden gauge approach that pro-
vides the interaction between vectors and is needed for the study of the
vector-baryon interaction of Ref. [29], is the three vector Lagrangian shown
in Eq. (2.33)

L(3V )
III = ig〈(∂µVν − ∂νVµ)V

µV ν〉 , (4.1)

where Vµ is the SU(3) matrix for the nonet of the ρ

Vµ =




ρ0√
2
+ ω√

2
ρ+ K∗+

ρ− − ρ0√
2
+ ω√

2
K∗0

K∗− K̄∗0 φ




µ

, (4.2)

and g = MV

2f
, with f=93 MeV. In the same way, the coupling of the vectors

to pseudoscalar mesons is given by Lagrangian of Eq. (2.41)

LV PP = −ig〈[P, ∂νP ]V ν〉 , (4.3)

where here P is the SU(3) matrix of the pseudoscalar mesons,

P =




π0√
2
+ η8√

6
π+ K+

π− − π0√
2
+ η8√

6
K0

K− K̄0 − 2√
6
η8


 . (4.4)

As shown in Refs. [28, 29] the main source of vector-baryon interaction comes
from the exchange of a vector meson in the t-channel between the vector and
the baryon. This involves the L(3V )

III Lagrangian of Eq. (4.1) and a Lagrangian
for the coupling of the vector to the baryon, given in Eq. (2.34) by

LBBV = g
(
〈B̄γµ[V µ, B]〉+ 〈B̄γµB〉〈V µ〉

)
, (4.5)

where B is the SU(3) matrix of the baryon octet

B =




1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ


 . (4.6)
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For the transitions V B → PB we need the VPP Lagrangian of Eq. (4.3) and
one of the two pseudoscalar mesons is exchanged between the external VP
and the baryon. The coupling of the pseudoscalar to the baryon for the two
SU(3) octet is given in the Lagrangian of Eq. (2.10) by

LBBP =
F

2
〈B̄γµγ5[uµ, B]〉+ D

2
〈B̄γµγ5 {uµ, B}〉 (4.7)

where F = 0.51, D = 0.75 [84] and at lowest order in the pseudoscalar field

uµ = −
√
2

f
∂µP , (4.8)

which allows to rewrite the Lagrangian of Eq. (4.7) as

LBBP = −
√
2

f

D + F

2
〈B̄γµγ5∂µPB〉 −

√
2

f

D − F

2
〈B̄γµγ5B∂µP 〉 . (4.9)

Taking the SU(3) trace for a particular case of two baryons, the previous
Lagrangian can be written in terms of an effective vertex as

−itBBP =

{
α
(D + F )

2f
+ β

(D − F )

2f

}
~σ~k (4.10)

where ~k is the incoming momentum of the meson in the BBP vertex. The
coefficients α and β, can be found in Appendix D. As shown in Ref. [29], the

Figure 4.1: Diagram of the V B → V B interaction mediated by a vector
meson.

leading term of the V B → V B interaction is given by the diagram of Fig. 4.1
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which involves the three vector vertex of Eq. (4.1), with one vector meson
exchanged, and the coupling of this exchanged vector to the baryon, given
by Eq. (4.5). The potential provided by this term, keeping the dominant γ0

term in Eq. (4.5), is given by

Vij = −Cij
1

4f 2

(
k0 + k′0

)
~ǫ~ǫ ′ (4.11)

where k0, k′0 are the energies of the incoming and outgoing vector mesons.
The result of Eq. (4.11) with the ~ǫ~ǫ ′ factor for the polarization of the vector
mesons stems from considering the three momentum of the external vectors
small with respect to the mass of the vector mesons [29]. The Cij coefficients
can be found in Appendix A of Ref. [29], where the subindex i and j corre-
spond to the different channels for all the states of isospin and strangeness.

However, it is more convenient to work with a relativistic potential as
seen in Ref. [42], which is given by

Vij = −Cij
1

4f 2

(
2
√
s−MBi

−MBj

)(MBi
+ EBi

2MBi

)1/2(MBj
+ EBj

2MBj

)1/2

(4.12)
where MBi

, MBj
are the masses of the initial or final baryons respectively,

and EBi
, EBj

their on shell energy.
This potential has been used as the input of the Bethe-Salpeter equation

to study the scattering matrix,

T = [1− V G]−1 V (4.13)

where G is the loop function of a vector meson and a baryon which is calcu-
lated in dimensional regularization, as shown in Refs. [18, 42], and is given
by

G = i2M

∫
d4q

(2π)4
1

(P − q)2 −M2 + iǫ

1

q2 −m2 + iǫ

=
2M

16π2

{
a(µ) + ln

M2

µ2
+
m2 −M2 + s

2s
ln
m2

M2
+

+
q√
s

[
ln(s− (M2 −m2) + 2q

√
s) + ln(s+ (M2 −m2) + 2q

√
s)

− ln(−s+ (M2 −m2) + 2q
√
s)− ln(−s− (M2 −m2) + 2q

√
s)
]}

(4.14)

where µ=630 MeV is a regularization scale and a(µ) a subtraction constant
with a value of -2 in Ref. [29], which is considered a natural size in Ref. [18].



46 CHAPTER 4. THE BOX DIAGRAM

In the cases where the iteration of the Bethe-Salpeter equation includes
the ρ or K∗ mesons, which have a relatively large widths, a convolution of the
loop function G with the mass distribution of these vector mesons is needed.
So the loop function with the convolution would be

G̃(s) =
1

N

∫ (mi+2Γi)
2

(mi−2Γi)2
dm̃2

(
− 1

π

)
Im

1

m̃2 −m2 + im̃Γ(m̃)
G(s, m̃2, M̃2

B)

(4.15)
where G̃ is normalized with

N =

∫ (mi+2Γi)
2

(mi−2Γi)2
dm̃2

(
− 1

π

)
Im

1

m̃2 −m2
i + im̃Γ(m̃)

(4.16)

considering the masses mi and the widths of the vectors Γi (i = ρ, K∗)
Γρ=149.4 MeV and ΓK∗=50.5 MeV. The Γ(m̃) function is energy dependent
and is given in Ref. [35] as

Γ̃(m̃) = Γi
q3off
q3on

θ(m̃−m1 −m2) (4.17)

with m1 = m2 = mπ for the ρ using that

qoff =
λ(m̃2,m2

π,m
2
π)

2m̃
, qon =

λ(m2
ρ,m

2
π,m

2
π)

2mρ

(4.18)

or m1 = mπ and m2 = mK for the K∗ using

qoff =
λ(m̃2,m2

K ,m
2
π)

2m̃
, qon =

λ(m2
K∗ ,m2

K ,m
2
π)

2mK∗

, (4.19)

where λ is the Källen function and Γi is the nominal width of the ρ or the K∗.
Without these convolutions, the peaks that we find in the scattering matrix
in the channels where the ρ or the K∗ are involved, have a zero width or are
very narrow. But when the loop function G is replaced by the convolution
function G̃ using the correspondent mass distribution, those peaks acquire a
substantial width.

The ~ǫ~ǫ ′ factor involving the polarization of the vector mesons factorizes
in all the iterations of the potential implicit in the Bethe-Salpeter equations,
as a consequence of which there will be a degeneracy in the spin, 1/2−, 3/2−,
for the resonances found for each isospin and strangeness.

Once the scattering matrix is evaluated some peaks appear that can be
associated to states. Next step is to find the poles associated to those peaks,
in order to obtain the couplings of the different channels to those states. The
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method used is to search poles in the second Riemann sheet, changing the
momentum ~q to −~q in the analytical formula of the G function when Re(

√
s)

is over the threshold of the corresponding channel. Using this method one
can find poles, as (MR + iΓ/2), where the real part correspond to the mass
of the resonance and the imaginary part is half of the width of this state.
However the convolution of the G function eventually can make the pole
disappear in channels with the ρ or the K∗ mesons. In this case one can
study the amplitude in the real axis using that near the peak the T matrix
will be as

Tij =
gigj√

s−MR + iΓ/2
(4.20)

whereMR is the position of the maximum and Γ the width at half-maximum.
The couplings gi and gj are related to the channels which couple to this
resonance. Then one can take the diagonal channel where the coupling is
largest and obtain

|gi|2 =
Γ

2

√
|Tii|2 (4.21)

where the coupling gi has an arbitrary phase. With one coupling determined,
we can obtain the other ones from the Tij matrices using Eq. (4.20), given
by

gj = gi
Tij(
√
(s) =MR)

Tii(
√
(s) =MR)

. (4.22)

This procedure has been used to calculate all the couplings of all the states
of the vector-baryon interaction in Ref. [29], so we shall use this method in
order to calculate our results in the present work.

Using this formalism, nine resonances are found in Ref. [29], which are as-
sociated to known states of the PDG [67], through the isospin and strangeness
and the pole position. However, the widths obtained with this approach are
smaller than the experimental ones. This result leads us to think that there
should be some other mechanisms which contribute to the vector meson -
baryon interaction potential. Since vector mesons and baryons couple to
pseudoscalar mesons, there can be diagrams where the interaction is medi-
ated by pseudoscalar mesons. The next section is devoted to study such
mechanisms.

4.3 The box diagram

In addition to the driving term in the V B → V B potential of Eq. (4.12)
there are other terms involving the exchange of pseudoscalar mesons that
also contribute to this interaction. The idea is that an external vector meson
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Figure 4.2: Diagram of the V B → V B interaction mediated by a pseu-
doscalar meson-baryon loop.

decays into two pseudoscalar mesons, through the Lagrangian of Eq. (4.3),
and one of the pseudoscalar mesons is exchanged and absorbed by the baryon.
Then a pseudoscalar-baryon state propagates in the intermediate state and
the inverse procedure occurs in a second vertex, giving rise to a V B again.
The mechanism is depicted in Fig. 4.2 in terms of a Feynman diagram, which
gives a contribution to the V B → V B potential given by

−itBox =

∫
d4q

(2π)4
ig CV1(~pV1 − ~q − ~q) · ~ǫ1

=
i

q2 −m2
1 + iǫ

ig CV2(~pV1 − ~q − ~pB1
− ~q + ~pB2

) · ~ǫ2
i

(pV1 − q)2 −m2
2 + iǫ

i

(pB1
+ q − pB2

)2 −m2
3 + iǫ

i

(pB1
+ q)0 − EB(~pB1

+ ~q) + iǫ
~σ · ~q ~σ · (− ~pB1

− ~q + ~pB2
)

{α1(D + F ) + β1(D − F )} 1

2f

{α2(D + F ) + β2(D − F )} 1

2f
(4.23)
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where q is the loop four-momentum, ~pVi and ~pBi
are the momenta of the

external vector mesons and baryons and mi are the masses of the three
pseudoscalar mesons of the loop. The coefficients of the VPP vertex CVi
are obtained from Eq. (4.3) and the coefficients for the couplings of the
pseudoscalars to the baryons, αi and βi are shown in Tables D.1 and D.2 of
Appendix D.

In other to calculate this integral, we perform analytically the integration
over the q0 component of the four-momentum of the loop. This leads to
a residue, which is simplified by eliminating the fallacious poles with no
determined position in the complex plane ((x − x0 + iǫ − iǫ′)−1), and the
result is given in Appendix C.

Consistently with the approximation in Ref. [29] of neglecting the three
momentum of the external vectors, we take here the same prescription and
set these momenta to zero. The integral simplifies since we can substitute

〈m′|~σ · ~q ~σ · ~q |m〉 =
〈
m′|~q 2|m

〉
= ~q 2δm′m (4.24)

and

qiqj →
1

3
~q 2δij (4.25)

The most generic expression for the diagram of Fig. 4.2, is given by

VBox = −g2CV1CV2
2f 2

{
a(D + F )2 + b(D − F )2 + c(D + F )(D − F )

}
~ǫ1~ǫ2

1

2π2

4

3

∫
d|~q ||~q |6

(
Λ2

Λ2 + |~q|2
)2

Num

Den
(4.26)

where we have introduced the usual form factor accompanying the Yukawa
vertex with Λ=1 GeV. The coefficients a, b and c, depend on each state,
channel and particles involved in the box diagram, and can be found in
Tables of Appendix E. The numerator and denominator (Num and Den) of
Eq. (4.26) are given in Appendix C.

We found that for the channels with strangeness it was sufficient to con-
sider only the diagonal terms of the Box diagram, but for the channels
with S=0, the consideration of the non-diagonal terms made changes in the
K∗Λ → K∗Λ amplitude that recommended its explicit consideration. Hence
in the case of S=0, the non-diagonal terms are evaluated for the most relevant
channels, ρN , K∗Λ and K∗Σ.

This V B → V B potential modifies the original potential, with only the
vector meson exchange, giving a new potential including both interactions.

Ṽ = V + VBox (4.27)
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where V (tree level) and VBox are given by Eq. (4.12) and Eq. (4.26) respec-
tively. In Fig. 4.3 we can see a comparison of the real and imaginary parts
of the tree level potential and the box potential for the ρN diagonal term.
The same figure (right panel) shows the box contribution for the different
diagonal terms of all channels that couple to S = 0, I = 1/2.

The results show that the box potential has a small real part, which is
near zero close to the threshold, and an important imaginary part in contrast
with the null imaginary part of the tree level potential. It is clear that the
total potential will contribute to the scattering matrix generating a widening
of the resonances. Using this new potential, we can introduce it in the Bethe-
Salpeter equation and recalculate the scattering matrix for all the states and
channels. Although there is a Lagrangian which involves the coupling of the

Figure 4.3: Left) Comparison between the tree-level (TL) and the box dia-
gram (Box) potential: (Top) Real part and (Bottom) Imaginary part. Right)
Comparison of the box diagram potential between the different channels of
the state I=1/2 and S=0: (Top) Real part and (Bottom) Imaginary part.

pseudoscalar mesons connecting the baryon octet and baryon decuplet, in
the present work we have neglected the diagrams with a decuplet baryon as
an intermediate state since the results of the box integral for these cases are
less than 10% of those for the octet baryon in the intermediate state.

One can see qualitatively why this box diagram gives a small contribution
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to the real part. For this exercise we select the ρ+n→ π+n vertex, together
with the ρ+n → ρ+n. The π0 exchange diagram in the first case provides a
transition amplitude

tρ+n→π+n ≈ 2
√
2√
3

~q 2

q02 − ~q 2 −m2
π

g
D + F

2f
(4.28)

while the ρ+n→ ρ+n gives

tρ+n→ρ+n ≈ 2mρ

4f 2
(4.29)

and we chose q0, ~q in the π exchange corresponding to the πN on shell sit-
uation for

√
s ≈ 1650 MeV. We find the ρ+n → ρ+n vertex about 4 times

bigger than the ρ+n → π+n one. Yet, one must consider that to get a con-
tribution to ρ+n → ρ+n, the ρ+n → π+n terms must be iterated in the
box (and multiplied by G(π, n)) and this further reduces the contribution of
the box diagram to the real part of the V N → V N amplitude. The accu-
rate numerical results can be seen in Fig. 4.3, corroborating the qualitative
explanation.

4.4 Contact terms VPBB for the box dia-

grams

Figure 4.4: Diagram of the V B → PB vertex: (a) meson exchange (b)
contact term.

As we are following the local hidden gauge, there are some other diagrams
requested by the gauge invariance of the theory in the presence of baryons.
Hence, in addition to the diagram of Fig.4.4 (a), we have to add the diagram
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of Fig.4.4 (b). This has been known for long and has been taken into account
in the literature under the denomination of vertex corrections [85, 86, 87, 88,
89, 90, 82]. This diagram of Fig.4.4 (b) corresponds to a contact term of
VPBB and as seen in Ref. [89], the correspondence between the meson in
flight term (Fig.4.4 (a)) and the contact term (Fig.4.4 (b)) is given by:

Meson in flight:

−itcon = CV g~ǫ
(
~PV1 + ~q + ~q

) 1

(PV1 + q)2 −m2

{α (D + F ) + β (D − F )} 1

2f
~σ(~PV1 + ~q) (4.30)

Contact term:

−itcon = CV g {α (D + F ) + β (D − F )} 1

2f
~σ~ǫ (4.31)

Using this vertex, one has to rewrite Eq. (4.23), to calculate the diagrams of
Fig. 4.5. First of all, we should relabel the momenta of the the box diagram
in a more convenient way,

−itBox =

∫
d4q

(2π)4
igCV1(−~PV1 − ~q − ~q)~ǫ1igCV2(−~q − ~PV2 − ~q)~ǫ2

i

(PV1 + q)2 −m2
1

i

q2 −m2

i

(PV1 − q)2 −m2
3

i

(P 0
B1

+ P 0
V1

+ q0)− EB1
(~q) + iǫ

MB1

EB1
(q)

~σ(~PV1 + ~q)~σ(−~PV2 − ~q)

{α1(D + F ) + β1(D − F )} {α2(D + F ) + β2(D − F )} 1

4f 2

(4.32)

While the (a) diagram of Fig. 4.5 gives an equal contribution to spin 1/2
and 3/2, the diagrams of Figs. 4.5 (b), (c) and (d) only contribute to spin
1/2. This is because the operator ~σ~ǫ only couples to spin 1/2. This is done
explicitly in Appendix B, where we show that the matrix element of ~σ~ǫ is√
3 δJ,1/2. Intuitively we can see that only J=1/2 is allowed by looking at

the intermediate PB state, necessarily in s-wave because of the ~σ~ǫ coupling,
hence the total spin J is the spin carried by the nucleon, J=1/2. Using the
vertex of Eq. (4.31) in the expression of the Box given by Eq. (4.32), we can
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Figure 4.5: Diagrams of the vector-baryon interaction mediated by pseu-
doscalars channels.

evaluate the diagram (b) of Fig. 4.5, and obtain

−itCPBox =
1

2f
gCV1 {α1(D + F ) + β1(D − F )}

1

2f
gCV2 {α2(D + F ) + β2(D − F )}

∫
d3q

(2π)3
~q 2 MB1

EB1
(q)

1

ω2(q)

1

ω3(q)

1

P 0
V2

+ ω2(q) + ω3(q)

1

P 0
V2

− ω2(q)− ω3(q) + iǫ

1

P 0
B1

+ P 0
V1

− ω2(q)− EB1
(q) + iǫ

1

P 0
B1

+ P 0
V1

− P 0
V2
(q)− ω3(q)− EB1

(q) + iǫ

(
Λ2

Λ2 + ~q 2

)2

{
(ω2(q) + ω3(q))(P

0
B1

− ω2(q)− EB1
(q)− ω3(q) + P 0

V1
)

−ω3(q)P
0
V2

}
(4.33)

In the same way, for the evaluation of the diagram (c) in Fig. 4.5, we substi-
tute the term of the outgoing vector by the contact term. Hence the result
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is the same as in Eq. (4.33) changing ω3 → ω1 and P 0
V2

→ P 0
V1
, and one gets

−itPCBox =
1

2f
gCV1 {α1(D + F ) + β1(D − F )}

1

2f
gCV2 {α2(D + F ) + β2(D − F )}

∫
d3q

(2π)3
~q 2 MB1

EB1
(q)

1

ω2(q)

1

ω1(q)

1

P 0
V1

+ ω2(q) + ω1(q)

1

P 0
V1

− ω2(q)− ω1(q) + iǫ

1

P 0
B1

+ P 0
V2

− ω2(q)− EB1
(q) + iǫ

1

P 0
B1

+ P 0
V2

− P 0
V1

− ω1(q)− EB1
(q) + iǫ

(
Λ2

Λ2 + ~q 2

)2
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(ω2(q) + ω1(q))(P

0
B1

− ω2(q)− EB1
(q)− ω1(q) + P 0

V2
)

−ω1(q)P
0
V1

}
(4.34)

Finally, the last diagram has two contact terms, as shown in Fig.4.5 (d),
and the expression of the t-matrix in this case is given by

−itCCBox =
1

2f
gCV1 {α1(D + F ) + β1(D − F )}

1

2f
gCV2 {α2(D + F ) + β2(D − F )}

3

∫
d3q

(2π)3
MB1

EB1
(q)

1

2ω2(q)

1

P 0
B1

+ P 0
V1

− ω2(q)− EB1
(q) + iǫ

(
Λ2

Λ2 + ~q 2

)2

(4.35)

These diagrams should be included in the potential in order to evaluate
the scattering matrix.

Ṽ = V + VBox + (V CP
Box + V PC

Box + V CC
Box)δJ,1/2 (4.36)

The presence of the terms V CP
Box, V

PC
Box and V CC

Box breaks the degeneracy in
total spin J, that one has with the terms V and VBox.

One finds that the contact term, or Kroll-Ruderman in the nomenclature
of Ref. [82], is more important than the pseudoscalar exchange, around 1.5-
2.5 times bigger depending on the cases, and has opposite sign. In Ref. [82]
only this term was used but not the pseudoscalar exchange term. As a
consequence, the corrections due to the VB and PB mixing only affect the
J=1/2 case in the work of Ref. [82]. As we find here, the corrections from
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the mixing due to the pseudoscalar exchange term in J=3/2 are relatively
small, justifying its neglect in Ref. [82]. On the other hand for J=1/2, only
the contact term is used in Ref. [82] and the destructive interference with
the pseudoscalar exchange term is missed. This could justify why the effects
due to the mixing in the scattering amplitudes of PB found in Ref. [82] are
bigger than those found here for the VB case.

There are other possible couplings in the approach, like the consideration
of the tensor coupling for the VBB vertex used in Ref. [81], which was found
to have minor effects in the present context in Ref. [91]. Other couplings
concerning vectors have also been exploited, like using the anomalous cou-
pling of VVP. This was done in Ref. [27] and found to provide negligible
corrections in the problem of ∆ρ interaction. One exception where this term
turned out to be relatively important was in the study of the η′N interac-
tion and its mixing with the VB channels. Indeed, the consideration of the
anomalous η′K∗K̄∗ in Ref. [92] was found relatively relevant, but only be-
cause the η′PV normal coupling of Eq. (4.3) is zero when the η′ is considered
as a SU(3) singlet in a first approximation.

4.5 Results

The use of the Bethe-Salpeter equation, generates the following scattering
matrices for the different states, shown in Figs. 4.6, 4.7, 4.8 and 4.9. We
present the results of |Tii|2 as a function of

√
s. We consider interesting the

comparison of the scattering matrix obtained using only the potential of the
vector interaction, and the new results of the Bethe-Salpeter equation with
the combined potential. In all the figures, we present both results, the first
one as a dashed line and the last one with a solid line. The most striking
feature in all the figures when including the intermediate PB states is, as
expected, an increase in the width of the resonances. However, in some cases
we also observe a shift of the peak for J=1/2 of some resonances. This is the
case for the resonances seen for JP = 1/2− in the ρN and K∗Λ channels in
Fig. 4.6.

In Fig. 4.6 we see two peaks for the state of S = 0 and I = 1/2, one around
1700 MeV, in channels ρN andK∗Λ, and another peak near 1980 MeV, which
appears in all the channels except for ρN . We can see that the mixing of
the PB channels affects differently the two spins, JP = 1/2− and 3/2−, as
a consequence of the extra mechanisms contributing to the JP = 1/2− case
discussed in the previous section. The effect of the box diagram on the
JP = 3/2− sector is small, however the PB-VB mixing mechanism are more
important in the JP = 1/2− sector. The most important feature is a shift
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Figure 4.6: |T |2 for the S=0, I=1/2 states. Dashed lines correspond to tree
level only and solid lines are calculated including the box diagram potential.
Vertical dashed lines indicate the channel threshold.

of the peak around 1700 MeV, which appears now around 1650 MeV. This
breaking of the degeneracy is most welcome since this allows us to associate
the 1/2− peak found at 1650 MeV with the N∗(1650)(1/2−) while the peak
for 3/2− at 1700 MeV can be naturally associated to the N∗(1700)(3/2−).
We shall discuss the other peak in the next section. Fig. 4.7 shows the results
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Figure 4.7: |T |2 for the S=-1, I=0 states. Dashed lines correspond to tree
level only and solid lines are calculated including the box diagram potential.
Vertical dashed lines indicate the channel threshold.

for S = −1, with I = 0. The left column corresponds to JP = 1/2− and
the right column to JP = 3/2−. We can find three peaks for these quantum
numbers. The first one around 1780 MeV appears in the channels K̄∗N , ωΛ,
ρΣ and φΛ, but not for the channel K∗Ξ. The second peak appears only in
the ρΣ channel around 1900 MeV. The third peak is near 2150 MeV, an is
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only visible in the K∗Ξ channel. Once again we see the different effects of
the PB-VB mixing in JP = 1/2− and 3/2−. The effects are again small in
JP = 3/2− but they are sizable for JP = 1/2−. Indeed, the peak around
1780 MeV is shifted to lower energies and becomes considerably broader.
This fact is also most welcome since it provides an explanation on why the
width of the 1/2− state is bigger than the corresponding state with 3/2−,
which is supported by experiment, although the masses of the particles in
this high energy region are not well determined. We will come to this issue
in the next section. We also observe that the second peak around 1900 MeV
is shifted to lower energies and widened for JP = 1/2−. The third peak is
also widened for 1/2− but there is not much change in its position.

Fig. 4.8 contains the results of |T |2 for the quantum numbers S=-1, I=1.
The first peak appears in 1830 MeV for the channels K̄∗N , ρΛ, ρΣ, ωΣ, φΣ,
but not for K∗Ξ. With the only consideration of the vector-baryon channel
there was a smooth peak around 2000 MeV, visible in the ρΣ and K∗Ξ
channels. What we observe here is that the introduction of the pseudoscalar-
baryon channels removes the peak in the ρΣ channel and shifts it to a larger
energies around 2180 MeV in the K∗Ξ one. Once again we see a stronger
widening of the first peak for JP = 1/2− and a slight shift to lower energies
with respect to the peak for JP = 3/2−.

In Fig. 4.9 we include the results of S=-2, I=1/2. The results show two
peaks very close to each other, one around 2040 MeV and the other one
close to 2080 MeV. After the introduction of the PB-VB mixing we observe
different features in JP = 1/2− and 3/2−. Indeed, the two peaks are still
visible for JP = 3/2− in the K̄∗Λ channels, but they separate in the other
channels, where only one of them appears in each case. The higher energy
resonance shows up in the K̄∗Σ, ωΞ and φΞ channels, and the lower energy
resonance shows up only in the ρΞ channel. For JP = 1/2− the broadening
due to the PB-VB mixing removes the two peaks in the K̄∗Λ channel and
only a broad bump remains, while the two resonances are still visible in the
same channels discussed above but the resonances become wider. In the K̄∗Σ
channel the first peak is also a bit shifted to lower energies.

Using the results of the poles found in this work, we proceed to evaluate
the couplings of the different channels to the resonances studied. Those
couplings can be found in Tables 4.1 and 4.2, for the resonances found in
the scattering matrix. These couplings give us an idea of which are the most
important building blocks in each resonance.
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Couplings for JP = 1/2−

S I
0 1/2 1690+i24* 1976+i59
Channels gi |gi| gi |gi|
ρN 3.1-i1.0 3.2 -0.4-i0.4 0.6
ωN 0.1-i0.2 0.2 -1.0-i0.4 1.1
φN -0.1+i0.3 0.3 1.5+i0.4 1.5
K∗Λ 1.8-i1.3 2.2 2.1-i1.1 2.4
K∗Σ -0.4-i0.3 0.5 4.0+i0.0 4.0

S I
-1 0 1776+i39 1906+i34* 2163+i37
Channels gi |gi| gi |gi| gi |gi|
K̄∗N 3.7-i1.3 4.0 0.1 +i0.3 0.3 0.1 +i0.4 0.4
ωΛ 1.5-i0.1 1.5 0.4 +i0.2 0.4 -0.3 -i0.2 0.3
ρΣ -1.3-i0.2 1.3 3.6 -i0.9 3.7 0.0 -i0.1 0.1
φΛ -2.0-i0.2 2.0 -0.5 -i0.5 0.7 0.4 +i0.2 0.4
K∗Ξ 0.2-i0.0 0.2 0.3 +i0.2 0.4 3.4 -i0.5 3.5

S I
-1 1 1829* 2116*
Channels gi |gi| gi |gi|
K̄∗N 2.8 +i0.0 2.8 -0.2 +i 0.2 0.3
ρΛ -2.4 +i0.2 2.4 -0.3 +i 0.4 0.5
ρΣ -2.2 +i0.1 2.2 2.5 +i 0.0 2.5
ωΣ -1.3 +i0.1 1.3 -0.2 +i 0.2 0.3
K∗Ξ 0.2 +i0.1 0.2 2.1 -i 0.2 2.1
φΣ 1.8 -i0.2 1.8 0.2 -i 0.3 0.4

S I
-2 1/2 2047+i19* 2084*
Channels gi |gi| gi |gi|
K̄∗Λ -1.0-i0.2 1.0 -0.1-i0.4 0.5
K̄∗Σ -1.3+i0.2 1.3 2.9+i0.0 2.9
ρΞ 2.9-i0.1 2.9 0.0+i0.8 0.8
ωΞ 0.4-i0.3 0.5 1.5+i0.3 1.6
φΞ -0.6+i0.4 0.7 -2.1-i0.4 2.1

Table 4.1: Couplings constants for the different channels of the resonances
found with JP = 1/2−.
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Couplings for JP = 3/2−

S I
0 1/2 1703+i4* 1979 +i56
Channels gi |gi| gi |gi|
ρN 2.1-i0.3 2.1 -0.4-i0.5 0.6
ωN 0.1-i0.1 0.1 -1.1-i0.4 1.2
φN -0.1+i0.1 0.1 1.5+i0.5 1.6
K∗Λ 1.5-i0.3 1.5 2.1-i1.0 2.4
K∗Σ -0.4-i0.0 0.4 4.0+i0.1 4.0

S I
-1 0 1786+i11 1916+i13* 2161+i17
Channels gi |gi| gi |gi| gi |gi|
K̄∗N 3.4-i0.3 3.4 0.1 +i0.3 0.4 0.2+i0.3 0.4
ωΛ 1.4-i0.0 1.4 0.5 +i0.2 0.5 -0.3-i0.2 0.4
ρΣ -1.3-i0.0 1.3 3.3 -i0.3 3.3 0.0-i0.1 0.1
φΛ -1.9-i0.0 1.9 -0.7 -i0.3 0.7 0.5+i0.2 0.5
K∗Ξ 0.2-i0.0 0.2 0.4 +i0.1 0.4 3.4-i0.5 3.4

S I
-1 1 1839* 2081*
Channels gi |gi| gi |gi|
K̄∗N 2.4 +i0.0 2.4 -0.2 -i 0.5 0.5
ρΛ -2.0 +i0.2 2.0 -0.4 +i 0.7 0.8
ρΣ -1.9 +i0.1 1.9 3.2 +i 0.0 3.2
ωΣ -1.1 +i0.1 1.1 -0.2 +i 0.4 0.4
K∗Ξ 0.2 +i0.1 0.2 2.7 -i 0.4 2.7
φΣ 1.5 -i0.2 1.5 0.3 -i 0.5 0.6

S I
-2 1/2 2044+i12* 2082+i5*
Channels gi |gi| gi |gi|
K̄∗Λ -1.0-i0.2 1.1 -0.3-i0.2 0.4
K̄∗Σ -1.3-i0.1 1.3 1.6-i0.4 1.7
ρΞ 2.9-i0.1 2.9 0.5+i0.1 0.6
ωΞ 0.4-i0.3 0.5 1.1-i0.1 1.1
φΞ -0.6+i0.4 0.7 -1.4-i0.2 1.5

Table 4.2: Couplings constants for the different channels of the resonances
found with JP = 3/2−.
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Figure 4.8: |T |2 for the S=-1, I=1 states. Dashed lines correspond to tree
level only and solid lines are calculated including the box diagram potential.
Vertical dashed lines indicate the channel threshold.

4.6 Comparison to data

In Tables 4.4 and 4.5 we show a summary of the results obtained and the
tentative association to known states of the PDG [67]. In Table 4.4 we show
the states for JP = 1/2− and in Table 4.5 for JP = 3/2−. For comparison,
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Figure 4.9: |T |2 for the S=-2, I=1/2 states. Dashed lines correspond to tree
level only and solid lines are calculated including the box diagram potential.
Vertical dashed lines indicate the channel threshold.

the results of Ref. [29] without the mixing are displayed in Table 4.3.

For S=0, I=1/2 we find a state around 1658 MeV with JP = 1/2−. With
fixed ρ mass the peak has a pole associated but with a small imaginary part.
Yet, the consideration of the convolution the ρ mass and the pseudoscalar-
baryon channels widens the structure considerably becoming an approximate
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I, S Theory PDG data

pole real axis

position mass width name JP status mass width

1/2, 0 — 1696 92 N(1650) 1/2− ⋆ ⋆ ⋆⋆ 1645-1670 145-185

N(1700) 3/2− ⋆ ⋆ ⋆ 1650-1750 50-150

1977 + i53 1972 64 N(2080) 3/2− ⋆⋆ ≈ 2080 180-450

N(2090) 1/2− ⋆ ≈ 2090 100-400

0,−1 1784 + i4 1783 9 Λ(1690) 3/2− ⋆ ⋆ ⋆⋆ 1685-1695 50-70

Λ(1800) 1/2− ⋆ ⋆ ⋆ 1720-1850 200-400

1907 + i70 1900 54 Λ(2000) ?? ⋆ ≈ 2000 73-240

2158 + i13 2158 23

1,−1 — 1830 42 Σ(1750) 1/2− ⋆ ⋆ ⋆ 1730-1800 60-160

— 1987 240 Σ(1940) 3/2− ⋆ ⋆ ⋆ 1900-1950 150-300

Σ(2000) 1/2− ⋆ ≈ 2000 100-450

1/2,−2 2039 + i67 2039 64 Ξ(1950) ?? ⋆ ⋆ ⋆ 1950± 15 60± 20

2083 + i31 2077 29 Ξ(2120) ?? ⋆ ≈ 2120 25

Table 4.3: The properties of the 9 dynamically generated resonances and
their possible PDG counterparts.

Breit-Wigner structure with a width of about 98 MeV. This width is com-
patible with the values of the N∗(1650) (1/2−) to which the peak obtained
would be associated. A similar behavior is seen for 3/2− and we find a state
at 1705 MeV which can be associated to the N∗(1700) (3/2−). In the case of
the second peak, the mass found is around 1975 MeV both for 1/2− and 3/2−,
a bit smaller than the nominal experimental masses of the N∗(2080) (3/2−)
and N∗(2090) (1/2−) resonances cataloged in the PDG [67]. However, we
should note that the masses associated in the PDG are averages done there,
but there is a large dispersion of the data for the masses and our calculated
results fit well within the experimental masses. The width is also compatible
with the experimental results within the large experimental range.
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S, I Theory PDG data

pole position real axis

MR + iΓ/2 mass width name JP status mass width

0, 1/2 1690 + i24∗ 1658 98 N(1650) 1/2− ⋆ ⋆ ⋆⋆ 1645-1670 145-185

1979 + i67 1973 85 N(2090) 1/2− ⋆ ≈ 2090 100-400

−1, 0 1776 + i39 1747 94 Λ(1800) 1/2− ⋆ ⋆ ⋆ 1720-1850 200-400

1906 + i34∗ 1890 93 Λ(2000) ?? ⋆ ≈ 2000 73-240

2163 + i37 2149 61

−1, 1 − 1829 84 Σ(1750) 1/2− ⋆ ⋆ ⋆ 1730-1800 60-160

− 2116 200-240 Σ(2000) 1/2− ⋆ ≈ 2000 100-450

−2, 1/2 2047 + i19∗ 2039 70 Ξ(1950) ?? ⋆ ⋆ ⋆ 1950± 15 60± 20

− 2084 53 Ξ(2120) ?? ⋆ ≈ 2120 25

Table 4.4: The properties of the nine dynamically generated resonances and
their possible PDG counterparts for JP = 1/2−. The numbers with asterisk
in the imaginary part of the pole position are obtained without the convolu-
tion for the vector mass distribution of the ρ and K∗.

In the case of S=-1 and I=0, we found three peaks. A resonance found
at 1786 MeV for 3/2− could be associated to Λ(1690) with JP = 3/2− and
the one at 1747 MeV with 1/2− could be associated to the Λ(1800) with
JP = 1/2−. Once again, there is a large variation for the masses in the
different experiments reported in the PDG under the umbrella of the Λ(1800)
and the mass that we obtain fits well within these values. For the case of the
Λ(1690) the dispersion of the masses is much smaller, with the values around
1690 MeV, smaller than our calculated result. The relatively small width of
40 MeV that we obtain is compatible to the experimental widths. For the
case of the Λ(1800) there is a large variation of the widths, with values as low
as 40 or 100 MeV. We also found a state at 1890 MeV for 1/2− and another
at 1914 MeV for 3/2− and widths 93 MeV and 59 MeV respectively. They
could be associated to the Λ(2000) which has an unknown spin in the PDG,
but the mass and the width calculated are compatible with this state. A
third state is found with a mass around 2150 MeV. More concretely, there is
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S, I Theory PDG data

pole position real axis

MR + iΓ/2 mass width name JP status mass width

0, 1/2 1703 + i4∗ 1705 103 N(1700) 3/2− ⋆ ⋆ ⋆ 1650-1750 50-150

1979 + i56 1975 72 N(2080) 3/2− ⋆⋆ ≈ 2080 180-450

−1, 0 1786 + i11 1785 19 Λ(1690) 3/2− ⋆ ⋆ ⋆⋆ 1685-1695 50-70

1916 + i13∗ 1914 59 Λ(2000) ?? ⋆ ≈ 2000 73-240

2161 + i17 2158 29

−1, 1 − 1839 58 Σ(1940) 3/2− ⋆ ⋆ ⋆ 1900-1950 150-300

− 2081 270

−2, 1/2 2044 + i12∗ 2040 53 Ξ(1950) ?? ⋆ ⋆ ⋆ 1950± 15 60± 20

2082 + i5∗ 2082 32 Ξ(2120) ?? ⋆ ≈ 2120 25

Table 4.5: The properties of the nine dynamically generated resonances and
their possible PDG counterparts for JP = 3/2−. The numbers with asterisk
in the imaginary part of the pole position are obtained without the convolu-
tion for the vector mass distribution of the ρ and K∗.

the JP = 1/2− at 2149 MeV and width 61 MeV and the JP = 3/2− partner
at 2158 MeV with a smaller width of 29 MeV. We do not find counterparts
in the PDG, so these are predictions of the theory.

For S=-1 and I=1, we find two peaks. The first peak for 1/2− with mass
1829 MeV and width 84 MeV can be associated to the Σ(1750) (1/2−) and
its partner of 3/2− at 1839 and width 58 MeV can be associated to the
Σ(1940) (3/2−). The widths are in good agreement with the experimental
results considering the dispersion of data for experiments collected under the
same umbrella of this resonance. The second peak has a mass of 2116 MeV
and a width of about 200 MeV, and the only state that could correspond to
this resonance is Σ(2000) (1/2−) which has an experimental width compatible
with that result.

As one can see in Table 4.3, the width provided in Ref. [29] for this
state is bigger (240 MeV) than the one reported here. This is a surprise
since we should expect an increase of the width from the inclusion of the PB
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decay channels. This is the only case where this happens. However, one can
understand the reason. In both cases the width is obtained from a visual
inspection of |T |2 in the real axis. However, no background determination is
done, so this should be taken only as a rough estimate. Indeed, in Fig. 4.8,
channelK∗Ξ in left panel, the shape obtained in both cases does not resemble
a Breit-Wigner and the association of a width to it has been qualitative. In
view of that, we have now put a width of 200-240 MeV which is compatible
with the one quoted in Ref. [29] if a similar error band would have been taken
in Ref. [29].

Finally, for the case of S=-2 and I=1/2 we found two peaks. For this case
it is not clear to which states one can associate them since in this region the
states cataloged in the PDG have no determined spin, but the states Ξ(1950)
and Ξ(2120) could be associated to those peaks. Both the masses and the
widths for both states are compatible with the theoretical results. We should
also note that an experimental search devoted to the S=-2 sector is being
conducted at Jefferson Lab [93, 94].

4.7 Conclusions

The interaction of vector mesons with the baryon octet using the hidden
gauge formalism, produces nine resonances dynamically generated, degen-
erate in JP = 1/2−, 3/2−, which can be associated to states of the PDG.
However the results show that the theoretical widths are significantly smaller
than the experimental ones. So, one could think that there is something else
involved in the vector meson - baryon octet interaction. Since, pseudoscalar
mesons couple both, to vectors and baryons, one can think that it is possible
that the interaction is mediated not only by a vector exchange but also by a
pseudoscalar exchange.

We found a mechanism, the box diagram involving V → PP in two
vertices, which is common to JP = 1/2− and 3/2− and gives the same con-
tribution in both cases. In addition to this mechanism, there are other ones
involving a contact term (vertex correction of the Kroll-Ruderman type)
which only contribute for JP = 1/2−, thus breaking the original degeneracy
between these states. The box diagram gives a relatively small contribution,
but the terms involving the contact term are more important, producing a
widening of the resonance and some times a small shift to smaller energies.
In particular we found very rewarding that this splitting leads to a good phe-
nomenological result in the case of the N∗(1650)(1/2−) and N∗(1700)(3/2−),
which are well reproduced both for the masses and widths. The tendency
to have a bigger width in the state of 1/2− than in the partner with 3/2−
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is also observed in the low lying resonances. For higher mass resonances we
noted the difficulty to establish a clean correspondence with particles in the
PDG given the large fluctuation of results between different experiments.

The study of the scattering matrix reveals that in fact the widths of the
resonances found with this new potential, are bigger than the original ones,
and are in a better agreement with the experimental results found in the
PDG. Also the couplings are studied, and although the real and imaginary
parts are somewhat different from the original ones, the moduli remain very
similar for most of the cases.

The formalism done here could be extended to the complementary prob-
lem of studying the effect of the vector baryon channels in the resonances
which are largely made of pseudoscalar-baryon channels. The interplay of
pseudoscalar-baryon, vector-baryon and γ-baryon channels is emerging also
as a new experimental line in different reactions, like the photoproduction of
K∗Λ close to threshold and KΛ photoproduction close to the K∗Λ thresh-
old [95]. The formalism developed here should be very useful to tackle theo-
retically these works.



68 CHAPTER 4. THE BOX DIAGRAM



Chapter 5
N∗ resonances with JP = 3/2−

5.1 Introduction

The resonance D13(1520)(3/2
−) is catalogued as a four star resonance in the

PDG [67]. The D13(1700)(3/2
−) is also catalogued as a three star resonance

and has been advocated by many groups, the latest ones [96, 97, 98]. How-
ever, the D13(1700)(3/2

−) is not “seen” in the GWU analysis of Ref. [99] nor
in former analyses of this group [100]. In a recent unified Chew-Mandelstam
SAID analysis of pion photoproduction data the resonance is not needed
again [101, 102], and it is also not included in the MAID analysis of photopro-
duction data [103, 104, 105] where only four star resonances are considered,
but it is one of the resonances included in the analysis of the Bonn-Gatchina
group [98] and shows more clearly in the analysis of the (γ, π0π0) data in
Refs. [106, 107]. One common conclusion from Refs. [96, 106] is the strong
coupling of the D13(1700)(3/2

−) state to the π∆ (d-wave) channel, some-
thing not intuitive nor expected from ordinary quark models. We should
note that, as discussed in Ref. [108] there could be some reason to miss some
resonances in the analysis if the resonances are too wide (Γ >500 MeV) or
they posses a small ratio (BR< 4%) to the channel under consideration.

In view of the current discussion about these two resonances, and partic-
ularly the doubts casted on the existence of the D13(1700)(3/2

−), we have
done a different analysis, purely theoretical, although paying attention to
known data on the D13 channel. The work consist on taking four coupled
channels, also considered in Refs. [96, 100, 99], the ρN (s-wave), πN (d-wave),
π∆ (s-wave) and π∆ (d-wave). We look in the region of

√
s = 1500 − 1750

MeV and take the interaction between these channels from the local hidden
gauge Lagrangians [30, 13, 31, 40], then solve the Bethe Salpeter equation
in coupled channels and from this fully unitary approach we find two res-

69
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onances dynamically generated by the interaction of these channels, which
are naturally associated to the N∗(1520)(3/2−) and N∗(1700)(3/2−) reso-
nances. The freedom of the theory in the choice of subtraction constants to
regularize the loops is used to fit the data on the πN (d-wave) amplitude.
The study provides the poles and the residues of the resonances and their
coupling to the different channels, widths and partial decay widths. A fair
agreement is obtained with phenomenology and the two resonances appear as
poles in the complex plane. In particular a relatively strong coupling of the
N∗(1700)(3/2−) to the π∆ (d-wave) suggested in Refs. [96, 106] is confirmed.

The results that we find are also illustrative on why some analyses do
not find a compelling need for the N∗(1700)(3/2−) resonance and we clarify
the situation by comparing the amplitudes obtained in this case with the ππ
amplitude in the scalar-isoscalar sector, where the f0(500) and f0(980) reso-
nances appear. The presence of a first resonance with a width that makes it
overlap with a second one with the same quantum numbers has consequences
on the second resonance and in the amplitude with these quantum numbers,
producing a zero of the πN or ππ amplitudes, respectively, in the vicinity of
the second resonance, which makes its coupling to these channels very weak
and makes difficult the identification of the N∗(1700)(3/2−) resonance in the
πN channel.

5.2 Formalism

In a nonrelativistic approximation that we follow, Eq. (2.10) provides a vertex

−itπ0pp =
F +D

2fπ
~σ · ~q (5.1)

where ~q is the incoming momentum of the π0, and other charge combinations
are trivially derived using isospin symmetry. In practice one substitutes
(F + D)/2fπ by fπNN/mπ where fπNN = 0.935, empirically determined.
Similarly for the πN∆ transition we take

−itπ+p∆++ = (−)
fπN∆

mπ

~S · ~q (5.2)

where the minus sign stems from the phase convention |π+〉 = −|1, 1〉 of

isospin, with an empirically value of fπN∆ = 2.23. The operator ~S+ is the
transition spin operator from spin 1/2 to 3/2 normalized such that

〈
3/2M |S+

ν |1/2m
〉
= C(1/2, 1, 3/2;m, ν,M) (5.3)

with S+
ν written in spherical basis and C(1/2, 1, 3/2;m, ν,M) the Clebsch-

Gordan coefficient.
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(a) ρN(s) → ρN(s) (b) π∆(s) → π∆(s) (c) ρN(s) → πN(d)

(d) ρN(s) → π∆(s, d) (e) ρN(s) → π∆(s)

Figure 5.1: Diagrams of the channels involved in the calculation for N∗(1520)
and N∗(1700).

5.3 Theoretical Approach

As we have commented in the first section, the channels involved in our study
are the ρN (s-wave), πN (d-wave), π∆ (s-wave) and π∆ (d-wave) all of them
in isospin I = 1/2. In order to develop our calculation, we need the diagrams
of the elastic interaction and the transitions diagrams as well. In Fig. 5.1 we
show those diagrams. The evaluation of the diagrams shown in Fig. 5.1 leads
us to the following vertices for the transitions (See Appendix F for details)

tρN(s)→ρN(s) = − 2

4f 2

(
k0ρ + k′0ρ

)
(5.4)

tπ∆(s)→π∆(s) = − 5

4f 2

(
k0π + k′0π

)
(5.5)

tρN(s)→π∆(s) = g
2√
3

fπN∆

mπ

{ 2
3
~q 2

(PV + q)2 −m2
π

+ 1

}
(5.6)
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tρN(s)→π∆(d) = g
2√
3

fπN∆

mπ

{ 2
3
~q 2

(PV + q)2 −m2
π

}
(5.7)

tρN(s)→πN(d) = g(−2
√
6)
fπNN
mπ

{ 2
3
~q 2

(PV + q)2 −m2
π

}
(5.8)

where we take fπNN = 0.935 and fπN∆ = 2.23, k0ρ and k0π are the energies of
the ρ and the π in the center of mass.

The term of Fig. 5.1(e) is the Kroll-Ruderman term which appears in the
ρN → π∆(s) transition. It has the type

−itKR = g
√
2
fπN∆

mπ

√
2

3
~S+ · ~σ (5.9)

and only involves L = 0, providing the term 1 in the bracket of Eq. (5.6).
In order to include the L = 2 transitions, we use the same procedure

as used in Ref. [109] where the unknown potentials are introduced with a
parameter γ and the momenta of the L=2 transition. In our case those
channels are π∆(d) → π∆(d), π∆(d) → πN(d), πN(d) → πN(d). With the
purpose of working with more suitable parameters γij, we normalized them
with the pion mass as following.

tπ∆(d)→π∆(d) = −γ33
m5
π

q43 (5.10)

tπ∆(d)→πN(d) = −γ34
m5
π

q23q
2
4 (5.11)

tπN(d)→πN(d) = −γ44
m5
π

q44 (5.12)

where qi are the momenta of each channel. With this notation γij have no
dimensions and are of the order of 0.01. Note that the L=2 transition leads
us to introduce a q4 term, which at high energies have a very fast grow. To
control this divergence we introduce the Blatt-Weisskopf barrier-penetration
factors (See Ref. [110]). In the case of L = 2, we have a substitution as

q2 → x2√
9 + 3x2 + x4

(5.13)

here x = Rq where R = 0.25 fm.
We decided to introduce this factor normalized at the energy of 1700

MeV. Let us call xi0 = Rqi0 with qi0 the momentum for a channel i at 1700
MeV. We introduce a factor Bi defined as

Bi =

√
9 + 3xi20 + xi40√
9 + 3x2i + x4i

(5.14)
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So, the potential will be now

tπ∆(d)→π∆(d) = −γ33
m5
π

q43B
2
3 (5.15)

tπ∆(d)→πN(d) = −γ34
m5
π

q23q
2
4B3B4 (5.16)

tπN(d)→πN(d) = −γ44
m5
π

q44B
2
4 (5.17)

Using this notation we obtain a more convenient framework for the fit.

5.4 Fitting the data

In order to determine the unknown parameters γij we make a fit of the D13

partial wave amplitude of πN scattering extracted from experimental data
in Ref. [99]. In our case we fit both the real and imaginary parts in an
energy range of 1400 to 1800 MeV using the gradient fit method of χ2. In
the fit we have not only the parameters of the transition with L=2, but
also the subtraction constants αi of the loop function. We know that with
a regularization scale of µ = 630, the subtraction constant have a natural
size of -2 for an s-wave, but as shown in Ref. [109] their fit gives subtraction
constants for the d-wave larger than in the case of s-wave amplitudes.

For the analysis of the experimental data we need to normalize the am-
plitude using Eq. (7) of Ref. [109] which relates our amplitude with the
experimental one,

T̃ij(
√
s) = −

√
Miqi
4π

√
s

√
Mjqj
4π

√
s
Tij(

√
s) (5.18)

whereM and q are the baryon mass an the on-shell momentum of the specific
channel.

In Fig. 5.2 we can see the result of the fit, and in Table 5.1 we show the
parameters obtained in the fit. For the estimation of the theoretical errors
we follow the criteria of Ref. [109] where the authors modify the value of the
parameters until the χ2 increases eight units (which is the procedure to get
a 68% confidence level in the case of seven parameters).

In order to give an idea of the quality of the fit and the stability of the
results with variations of the parameters we plot in Fig. 5.2 and 5.3 the
results obtained increasing or decreasing απ∆(s) and απN(d), respectively, in
ǫ(απ∆(s)) and ǫ(απ∆(s)), where ǫ is the error of the parameters that we can
see in Table 5.1. As we can see, the fits obtained are still fair.
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Figure 5.2: (Solid) Fit to the data of πN (d-wave) of Ref. [99]. (Dashed)
Same set of parameters with a variation of απ∆(s) of its theoretical error.

Figure 5.3: (Solid) Fit to the data of πN (d-wave) of Ref. [99]. (Dashed)
Same set of parameters with a variation of απN(d) of its theoretical error.
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αρN(s) απ∆(s) απ∆(d) απN(d) γ33 γ34 γ44

-1.61 -2.2 -4.4 -4.5 0.040 -0.0189 0.0053

0.03 0.2 0.3 0.2 0.002 0.0006 0.0003

Table 5.1: Results of the parameters obtained with the fit. The first row are
the parameters and the second row their errors.

5.5 Results

Using the potentials for the transitions shown in the previous section, we con-
struct the scattering t-matrix using the Bethe-Salpeter equation, explained
in Eq. (2.46) and the paragraphs that followed. The results for |T |2 are shown
in Fig. 5.4 for each diagonal transition. We also include the results of the
real and imaginary parts of the t-matrix of the diagonal channels in Fig. 5.5.
In the analysis of the t-matrix we found two poles that can be associated

to the resonances N∗(1520) and N∗(1700) respectively. The poles are found
in the second Riemann sheet as explained in section II, and the couplings
are obtained through the residues of the poles. These results are compiled in
Table 5.2. Using the couplings and Eq. (2.60) one can determine the partial
decay widths of the states to each channel. In Table 5.3 we compile the
results for the pole positions and the partial decay widths as a function of
the α parameters discussed in the former section. As one can see, the results
are rather stable. In Tables 5.4 and 5.5 we show these results for the central
values, and compare them with the experimental results of the PDG [67]. As
the PDG average has big uncertainties, we consider appropriate to include
also some single results of the experiments and analysis [96, 111, 112, 107].

As we can see in Table 5.2, the N∗(1520) couples mostly to the channel
ρN , which is closed for the nominal mass of the ρ, but although the mass of
the resonance is under the ρN threshold, using Eq. (2.61) we can generate
a momentum giving a small partial decay width. In comparison with the
experiments, the decay width of ρN to N∗(1520) is smaller but of the same
order of magnitude. Note that in experimental analyses one evaluates this
rate subtracting the other ones from the total width. In either method the
uncertainties for this closed channel are necessarily large. In the case of
N∗(1700) the coupling of ρN is smaller but, as we are closer to the threshold,
the decay width is of the same order of magnitude as for the N∗(1520). The
result for the decay to ρN is in a good agreement with experiment considering
the experimental uncertainties.
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Figure 5.4: Results for the |T |2 matrix of JP = 3/2−.

Figure 5.5: Results of real (solid) and imaginary (dashed) parts of T for the
diagonal channels.
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N∗(1520)D13 N∗(1700)D13

Pole 1467+i83 1665+i78

Channel gi |gi| gi |gi|
ρN(s) 6.18-1.63i 6.39 1.49+0.42i 1.55

π∆(s) 0.88+0.76i 1.14 -0.39+0.12i 0.41

π∆(d) -0.75-0.14i 0.77 0.50-0.50i 0.70

πN(d) -1.51-0.51i 1.60 -0.09-0.94i 0.94

Table 5.2: Couplings of the resonances for each channel.

The π∆ (s-wave) channel has small couplings for N∗(1700) but, as we
are over the threshold, the phase space is big enough to generate a moderate
decay width. The results of the branching ratios are in a fair agreement
with the experiments within the large uncertainties. For this case the PDG
average has a very wide range, but the individual results are more precise.
There is a large disagreement with the result of Ref. [98] but it is much closer
to the one of Ref. [107] by the same group.

The π∆ (d-wave) channel has the lowest coupling to N∗(1520) but, since
it has a large momentum, the partial decay width is bigger than for the ρN
channel. The branching ratio for N∗(1520) agrees with experimental results,
but in the case of N∗(1700), although the result is compatible with some
experimental branching ratios, these results are very different and in some
cases have large errors.

Finally, for the channel πN (d-wave), since we fit the amplitude to the
data, the result of the branching ratio of N∗(1520) is in a very good agree-
ment with the experimental values. On the other hand, we get a branching
ratio of the N∗(1700) for the decay into π∆ (d-wave) which is in line with
experimental determinations but about twice as large as the PDG average.
Yet, an inspection to Table 5.5 indicates that the dispersion of experimen-
tal data for the N∗(1700) is quite large, for what further attention to this
resonance should be most welcome.

It is interesting to compare the present results with those of the Jülich
group [32, 114]. In those works the authors also consider ρN , πN and π∆
channels, in s or d-waves when allowed for JP = 3/2−, I = 1/2. The dy-
namics used in those works in similar to the one used here up to details
concerning a contact ρN term, present in Ref. [114] (see Figs. 2 and 3), the
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N∗(1520)D13

απ∆(s) Pole ΓρN(s) Γπ∆(s) Γπ∆(d) ΓπN(d)

-2.0 (1467.76,85.18) 4.96 19.85 7.88 62.90

-2.2 (1467.45,83.06) 5.09 18.37 8.25 65.38

-2.4 (1466.12,77.99) 5.47 14.36 9.09 71.18

απN(d) Pole ΓρN(s) Γπ∆(s) Γπ∆(d) ΓπN(d)

-4.3 (1472.40,86.88) 5.58 17.55 7.83 66.68

-4.5 (1467.45,83.06) 5.09 18.37 8.25 65.38

-4.7 (1462.78,79.49) 4.61 19.16 8.63 64.00

N∗(1700)D13

απ∆(s) Pole ΓρN(s) Γπ∆(s) Γπ∆(d) ΓπN(d)

-2.0 (1665.75,77.69) 7.97 4.79 13.28 28.26

-2.2 (1665.53,77.83) 8.02 4.51 13.36 28.54

-2.4 (1665.00,78.30) 8.06 3.64 13.28 28.78

απN(d) Pole ΓρN(s) Γπ∆(s) Γπ∆(d) ΓπN(d)

-4.3 (1663.37,78.19) 8.20 4.78 13.26 30.33

-4.5 (1665.53,77.83) 8.02 4.51 13.36 28.54

-4.7 (1667.52,77.40) 7.85 4.26 13.43 26.88

Table 5.3: Comparison of the pole position and partial decay widths varying
the values of απ∆(s) and απN(d) in their error range.
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N∗(1520)D13

Briet-Wigner Branching ratio (Γi/Γ(%))

Pole Mass Γ ρN(s) π∆(s) π∆(d) πN(d)

(MeV) (MeV)

This work (1467,83) 5.09 18.37 8.25 65.38

PDG[67] (1510,55) 1515-1525 100-125 15-25 10-20 10-15 55-65

Manley92[96] 1524±4 124±8 21±4 5±3 15±4 59±3

Manley12[113] (1501,56) 1512.6±0.5 117±1 20.9±0.7 9.3±0.7 6.3±0.5 62.7±0.5

Cutkosky79[111] (1510,57) 1525±15 125±25 58±3

Vrana00[112] (1504,56) 1518±3 125±4 9±1 15±2 11±2 63±2

Toma08[107] (1509,57) 1520±10 125±15 13±5 12±4 14±5 58±8

Anisovich12[98] (1507,56) 1517±3 114±4 19±4 9±2 62±3

Ardnt06[99] (1515,57) 1514.5±0.2 103.6±0.4 63.2±0.1

Table 5.4: Results of the partial decay widths for the N∗(1520) resonance.
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N∗(1700)D13

Briet-Wigner Branching ratio (Γi/Γ(%))

Pole Mass Γ ρN(s) π∆(s) π∆(d) πN(d)

(MeV) (MeV)

This work (1665,78) 8.02 4.51 13.36 28.54

PDG [67] (1700,75) 1650-1750 100-250 <35 10-90 <20 12±5

Manley92 [96] 1737±44 249±218 13±17 5±10 80±19 1±2

Manley12 [113] (1662,55) 1665±3 56±8 38±6 31±9 3±2 2.8±0.5

Cutkosky79 [111] (1660,38) 1670±25 80±40 11±5

Vrana00 [112] (1704,78) 1736±33 175±133 7±1 11±1 79±56 4±1

Toma08 [107] (1710,78) 1740±20 180±30 20±15 10±5 20±11 8+8
−4

Anisovich12 [98] (1770,210) 1790±40 390±140 72±23 ≤10 12±5

Table 5.5: Results of the partial decay widths for the N∗(1700) resonance.
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Kroll-Ruderman term for ρN → π∆(s) not considered in Refs. [32, 114] and
the use of form factors in those works while we use dimensional regulariza-
tion. In all cases we adhere to the dynamics of local hidden gauge approach.
One novelty in our work is that the N∗(1520) is dynamically generated in
our approach, while in Refs. [32, 114] is an input resonance. The N∗(1520)
was obtained as a dynamically generated state in Ref. [28] using coupled
channels and input from chiral Lagrangians. In the present case we have
taken only the main π∆(s) channel, but it is well known that effects of other
channels can be incorporated by small changes in the subtraction constants
of dimensional regularization, which in the present problem we have left as
free parameters.

The other novelty is the N∗(1700) that we also obtain as dynamically
generated with our input. It is interesting to remark that in the work of
Refs. [32, 114], with the input of non pole terms there was also a state around
1700 MeV which was dynamically generated and a pole could be seen in the
third Riemann sheet defined there. However, when the pole terms were
added, the pole in the amplitude faded away in that approach. In our work
the pole appears around 1665 MeV together with the one for the N∗(1520).
The unitarization of the driving terms in all the channels that we consider,
including the transition between all of them, generates in our case the two
poles and their interference is responsible for the vanishing amplitude of
πN(d) around 1700 MeV, which is consistent with the experiment. However,
physical traces experimentally identifiable as a peak, remain in the π∆(d)
channel as one can see in Fig.5.4, hence, the more intuitive picture of a peak
in a cross section is also seen here but only in the πN(d) channel. Actually
in Refs. [96, 110], the most characteristic feature attributed to the N∗(1700)
was its large coupling to πN(d).

We should also mention that there are other works that mix pseudoscalars
and vectors [81, 82, 115] and others that also include decuplet of baryons [83],
this latter one invoking SU(6) spin-isospin symmetry. In our approach we
have followed strictly the local hidden gauge formalism that has proved to
be very successful in a variety of processes (see recent review of Ref. [116]).

5.6 Conclusions

We have done a theoretical study for the meson-baryon scattering in the
region of

√
s = 1400 − 1800 MeV with JP = 3/2−. We considered the

standard coupled channels used in the most complete experimental analyses,
ρN (s-wave), π∆ (s-wave), π∆ (d-wave) and πN (d-wave). The interaction of
these channels was taken from the local hidden gauge approach and the loops
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were regularized using dimensional regularization with subtraction constant
of natural size. These constants were varied within a moderate range to
obtain a good fit to the πN (d-wave) data. After this, the rest are predictions
of the theory.

The first important theoretical finding is that the model obtained, after
fitting exclusively the πN (d-wave) extracted from data, produces two poles:
one around 1480 MeV that we associate to the N∗(1520)(3/2−) and another
around 1670 MeV that we associate to the N∗(1700)(3/2−). It is worth
noting that the presence of the two poles is rather solid, since they remain by
making changes in the parameters that do not spoil massively the agreement
with the πN (d-wave) experimental data. This is an interesting aspect to
mention, because, undoubtedly, the analysis of data done in Refs. [99, 100,
101] correlates more experimental information than just this amplitude. Yet,
what we are finding is that constrains from unitarity, analyticity and chiral
dynamics in coupled channels, together with the information of the πN D13

amplitude induced from experiment, had as a consequence the appearance
of the two poles.

With the model obtained we determined partial decay widths to all the
channels. We found an excellent agreement with experiments for the data
on the N∗(1520)(3/2−) and rough to fair for the N∗(1700)(3/2−). Yet, we
noticed the large dispersions of experimental data for the N∗(1700)(3/2−).
The study done here gives a boost to the existence of the N∗(1700) which
has been questioned in some recent experimental analyses. In view of this
extra support for the N∗(1700) and the large dispersion of the data, further
experimental studies concentrating in this energy region for the quantum
numbers (3/2−) of this resonance should be encouraged.



Chapter 6
N∗ resonances with JP = 1/2−

6.1 Introduction

Partial wave analyses of πN data [99, 101] have provided us with much data
on amplitudes, cross sections and resonance properties. It has also been the
subject of intense theoretical investigations (see Refs. [117, 118] for recent
updates on the subject). The introduction of the chiral unitary techniques
to study these reactions in Ref. [14] resulted in surprising news that the
N∗(1535) resonance was dynamically generated from the interaction of me-
son baryon, with a price to pay: coupled channels had to be introduced.
Some of the channels were closed at certain energies, like the KΛ and KΣ in
the region of the N∗(1535), but they were shown to play a major role in the
generation of this resonance, to the point of suggesting in Ref. [14] that the
N∗(1535) could qualify as a quasibound state of KΛ and KΣ. Work on this
issue followed in Ref. [119], corroborating the main findings of Ref. [14], and
posteriorly in Refs. [21, 23, 19, 120]. In the chiral unitary approach the loops
of the Bethe-Salpeter equation must be regularized, and this is done with
cut offs or using dimensional regularization. The cut off, or equivalently the
subtraction constants in dimensional regularization in the different channels
should be of “natural size”, as discussed in Ref. [18], if one wishes to claim
that the resonances have been generated dynamically from the interaction.
However, this is not the case of the N∗(1535), where different cut offs in
Ref. [14], or different subtraction constants in Ref. [119] for different chan-
nels must be used. This is unlike the case of the Λ(1405), where an unique
cut off in all channels leads to a good reproduction of the data [17, 18, 20, 12].
This fact was interpreted in Ref. [120] as a manifestation of the nature of the
two resonances, where the Λ(1405) would be largely dynamically generated,
while the N∗(1535) would contain a nonnegligible component of a genuine

83



84 CHAPTER 6. N∗ RESONANCES WITH JP = 1/2−

state, formed with dynamics different than pseudoscalar meson interaction.
One might think of remnants of an original seed of three constituent quarks,
but this is not necessarily the case. It could also be due to the missing of
important channels different than pseudoscalar-baryon. Actually this has
been a source of investigation recently, where the mixing of pseudoscalar-
baryon and vector-baryon channels has lead to interesting results and some
surprises. In Ref. [121] the vector-baryon interaction was studied using the
method developed in Ref. [29] but mixing also pseudoscalar-baryon compo-
nents. It was found that that the mixing produced a shift of some of the
resonance positions of Ref. [29] and produced some increase in the width.
Similar results have been obtained recently in Refs. [81, 82, 115]. One of the
interesting outcomes of this line of research was to see that the consideration
of the πN(d-wave), ρN , π∆(s and d waves) in the sector of spin-parity 3/2−

with chiral dynamics led to a good reproduction of the πN data in d-waves
and to the generation of the N∗(1520) and N∗(1700) resonances [122]. In
the present work we want to extend the results of Ref. [122] to the sector
of 1/2−, with the aim to see if the mixture of the pseudoscalar-baryon and
vector-baryon channels can remove the pathology observed by the need of
different subtraction constants in different channels. We will show that this
is the case and then we shall be able to conclude that the missing compo-
nents of the wave function in the N∗(1535) noted in Ref. [120] are due to
vector-baryon and additional π∆ states that we shall also mix in the present
coupled channel approach.

6.2 Formalism

The most important coupled channels of N∗(1535) and N∗(1650) are πN ,
ηN , KΛ, KΣ, ρN and π∆ (d-wave). Some of the matrix elements of the
interaction between these channels have been well studied as the PB → PB
transition mediated by a vector meson exchange addressed in Ref. [119]. The
diagram involved in this transition is show in Fig. 2.4 and the potential of
this transition is given by

Vij = −Cij
1

4f 2

(
k0 + k′0

)
(6.1)

The PB transition coefficients are taken from Ref. [119]. However, since those
coefficients are in charge basis we need to convert them to isospin basis, as
show in Table 6.1. Similarly, the ρN → ρN transition has been studied in
Chapter 4 and the coefficients are given in Appendix A of Ref. [29].
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πN ηN kΛ kΣ

πN 2 0 3
2

−1
2

ηN 0 −3
2
−3

2

KΛ 0 0

KΣ 2

Table 6.1: Coefficients of PB transition with I = 1/2

The transition to V B → PB is implemented following the formalism de-
scribed in Chapter 5, where the interaction is mediated by a pseudoscalar me-
son as shown in Fig. 5.1(c). Furthermore we also include the Kroll-Ruderman
term shown in Fig. 5.1(e). The evaluation of the diagrams shown in Fig. 5.1
leads us to the following vertices for the transitions (See Appendix F for
details)

tρN(s)→πN(s) = −2
√
6g
D + F

2f

{ 2
3
~q 2
πN

(PV + qπN)
2 −m2

π

+ 1

}
(6.2)

tρN(s)→ηN(s) = 0 (6.3)

tρN(s)→KΛ(s) = −1

2

√
6g
D + 3F

2f

{ 2
3
~q 2
KΛ

(PV + qKΛ)
2 −m2

K

+ 1

}
(6.4)

tρN(s)→KΣ(s) = −1

2

√
6g
D − F

2f

{ 2
3
~q 2
KΣ

(PV + qKΣ)
2 −m2

K

+ 1

}
(6.5)

(6.6)

where we take F = 0.51 and D = 0.75, an qi is the momentum of the
pseudoscalar meson in the center of mass. The factor 1 that appears in-
side the braces corresponds to the Kroll-Ruderman vertex. In comparison
with the results of Ref. [123], where the authors only take into account the
Kroll-Rudermann term, we obtain the same coefficients for the PB → V B
transition.

Moreover we find interesting to include the contribution to the s-wave
from the s− and u−channels containing the nucleon propagator, shown in
Fig. 6.1, given by

tπN→N→πN = (Eπ)
2

(
D + F

2f

)2(
3√

s+MN

− 1√
s− 2Eπ +MN

)
(6.7)
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Figure 6.1: Diagrams of s− and u−channels exchange with the nucleon prop-
agator.

tηN→N→ηN = (Eη)
2

(
1√
3

D − 3F

2f

)2(
1√

s+MN

+
1√

s− 2Eη +MN

)

(6.8)
This is easily obtained by separating the relativistic nucleon propagator into
positive and negative energy components

/p+m

p2 −m2
=

M

E(~p )

∑

r

{
ur(~p )ūr(~p )

p0 − E(~p ) + iǫ
+
vr(−~p )v̄r(−~p )
p0 + E(~p )− iǫ

}
(6.9)

Then the positive energy part contributes to p-wave and the negative energy
part to s-wave. We should note that these terms, as well as a possible isoscalar
seagull contribution [124, 125] give a very small contribution.

On the other hand we have the transition of ρN → π∆(d) that has
been already studied in Chapter 5. The diagram of this transition is given in
Fig. 5.1(d) and the evaluation of this diagram gives the transition of Eq. (5.7)
given by

tρN(s)→π∆(d) = g
2√
3

fπN∆

mπ

{ 2
3
~q 2

(PV + q)2 −m2
π

}
(6.10)

Here we do not have the 1 factor from the Kroll-Ruderman term since this
transition only involves L = 2.

As done in Chapter 5 the transitions involving L = 2 are introduced with
a parameter γ. This is done for the diagonal transition π∆(d) → π∆(d) and
for the transition channel that we consider relevant π∆(d) → πN(s).

tπ∆(d)→π∆(d) = − γ0
m5
π

q4π∆ (6.11)

tπ∆(d)→πN(s) = − γ1
m3
π

q2π∆ (6.12)

The parameters are normalized with the corresponding power of the pion
mass to be dimensionless. Both are parametrized, but since the π∆(d) →
π∆(d) transition are both d-wave channels, the potential has four momenta
while the transition π∆(d) → πN(s) is a transition from s-wave to d-wave
has only two momenta. As done before, the divergence of the momenta is
controlled with the Blatt-Weisskopf barrier-penetration factors of Eq. (5.14).
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µ[MeV] aNπ aNη aΛK aΣK aNρ a∆π γ0 γ1

MB -1.203 -2.208 -1.985 -0.528 -0.493 -1.379 0.595 1.47

630 -2.001 -3.006 -3.128 -1.799 -1.291 -2.720 0.595 1.47

Table 6.2: Parameters obtained with the fit. The first row are the parameters
with a regularization scale µ that corresponds to the mass of the baryon of
each channel. Second row is the same results but with the natural regular-
ization scale µ = 630 MeV. The parameters γi are not changed.

6.3 Fitting the data

We have some unknown parameters in our theory that we need to determine
fitting the data. First we have the subtraction constant for each channel
which, are expected to be around −2 with a regularization scale of µ = 630
MeV. We have also two undetermined parameters in the potential γ0 and
γ1 corresponding to the transition of π∆(d) → π∆(d) and π∆(d) → πN .
We perform a fit of the S11 partial wave amplitude of the πN scattering
data extracted from experimental data of Ref. [126]. We need to normalize
the amplitude of the T-matrix using Eq. (7) of Ref. [109], which relates our
amplitude with the experimental one by

T̃ij(
√
s) = −

√
Miqi
4π

√
s

√
Mjqj
4π

√
s
Tij(

√
s) (6.13)

where M is the mass of the baryon for the specific channel and q is the on-
shell momentum. In Fig. 6.2 we show the fit of both the real and imaginary
parts of the T̃ for the diagonal channel of πN .

In Table 6.2 we show the results obtained with the fit. As we commented
before, we have used a regularization scale different for each channel, corre-
sponding to the mass of the baryon of that channel. We consider interesting
to show also the subtraction constant with a regularization scale of µ = 630
MeV, using Eq. (2.48), in order to compare them with other results found
in the bibliography. It is interesting to see that the introduction of the ρN
and π∆ channels has had an important qualitative effect in the subtraction
constants, which now are all negative and of the same order of magnitude,
while in Ref. [119] some of the subtraction constants were even positive.
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Figure 6.2: Fit to the data extracted from Ref. [126]. We show the real part
(circles) and imaginary part (cross) of the data and the result of our fit of
T̃πN for real (solid) and imaginary (dashed) parts.

6.4 Results

Using the parameters determined with the fit, we evaluate the T matrix
using the Bethe-Salpeter equation and show in Fig. 6.3 the result of |T |2
for all the diagonal channels. Analysing the T matrix, using the method
explained in detail in Chapter 2, we found two poles that can be associated
to the resonances N∗(1535) and N∗(1650). This is a remarkable novelty,
since in Ref. [119] the N∗(1535) appears but not the N∗(1650). The poles
are used to calculate the couplings of all channels to each resonances. These
results are compiled in Table 6.3. With the couplings one can determine the
decay width and branching ratio to each channel of both resonances. The
results of the branching ratios for the resonances N∗(1535) and N∗(1650) are
shown in Tables 6.4 and 6.5 respectively. In the Tables we show the position
of the poles and the branching ratios for each channel found in this work.
We compare them with the experimental results of the PDG [67], and as the
PDG average has big uncertainties we also compare them with single results
of the experiments and analysis [111, 98, 112, 107].

Looking at Table 6.3 we see that the channel the ρN channel has the
strongest coupling to N∗(1535) but the resonance is below the threshold,
however due to the width of the ρ we can generate enough phase space using
Eq. (2.61) and obtain a small width, but in a very good agreement with
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Figure 6.3: Results of the |T |2 matrix for the diagonal channels.
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N∗(1535) N∗(1650)

Channel gi |gi| giGi gi |gi| giGi

Nπ 1.03 +i 0.21 1.05 - 6.68 -i 24.29 1.37 +i 0.54 1.47 2.52 -i 36.51

Nη 1.40 +i 0.78 1.60 -30.50 -i 29.20 1.08 -i 0.60 1.24 -33.89 -i 2.51

ΛK 1.71 +i 0.48 1.78 -38.06 -i 14.50 0.10 -i 0.68 0.69 - 9.96 +i 17.67

ΣK 1.70 +i 1.24 2.10 1.58 -i 2.77 3.21 -i 1.34 3.47 -28.75 -i 13.14

Nρ 2.96 +i 0.11 2.96 17.71 -i 2.61 0.94 +i 1.51 1.78 7.83 -i 2.25

∆π 0.31 -i 0.04 0.31 - 8.17 -i 3.20 0.31 +i 0.03 0.31 - 6.03 -i 6.72

Table 6.3: Couplings of the different channels to each resonance

the experimental results. The KΣ channel has a coupling as big as the ρN
but as the resonance is below the threshold it has not phase space to decay.
Similarly the coupling to channelKΛ is big but again there is not phase space
for decay. On the other hand the π∆ channel has a very small coupling but
around 200 MeV of phase space, so this gives it a small branching ratio
which agrees with the experimental values. The other channels πN and ηN
have smaller couplings but since they have much momentum to decay they
have big branching ratios in good agreement with the experimental results.
Concerning the width of the N∗(1535) in Table 6.4 we should note that,
although the theoretical width obtained from the pole in the complex plane
is smaller than the experimental one, the apparent width from ImT̃πN in the
real axis, seen in Fig. 6.2, is much closer to the experiment.

For the case of N∗(1650) the KΣ channel has now the biggest coupling
to this resonance, but as the resonance is below the threshold it has no
phase space for decay. The same as before happens to the ρN channel,
the small momentum generated with the mass convolution of the ρ gives a
small width but in fair agreement with the experimental value. Although the
channels πN , ηN and π∆ have smaller couplings, due to the huge phase space
that they have, the branching ratios are quite big, which is in a very good
agreement with the experimental results of PDG, but with single experiments
as well. Now, the KΛ channel is open and the value found for the branching
ratio is in good agreement with the only experimental value available of
Ref. [98].

We consider interesting to include in Table 6.3 the value of the wave
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N∗(1535) JP = 1/2−

Theory PDG Cutkosky Anisovich Vrana Thoma

[111] [98] [112] [107]

Re(Pole) 1508.1 1490 – 1530 1510 ± 50 1501 ± 4 1525 1508 +
−

10
30

2Im(Pole) 90.3 90 – 250 260 ± 80 134 ± 11 102 165 ± 15

Channel Branching Ratio [Γi/Γ(%)]

Nπ(1077) 58.6 35 – 55 50 ± 10 54 ± 5 35 ± 8 37 ± 9

Nη(1487) 37.0 42 ± 10 33 ± 5 51 ± 5 40 ± 10

ΛK(1609) 0.0 -

ΣK(1683) 0.0 -

Nρ(1714) 1.0 2 ± 1 2 ± 1

∆π(1370) 3.3 0 – 4 2.5 ± 1.5 1 ± 1 23 ± 8

Table 6.4: Results for the pole position and branching ratios for the different
channels of N∗(1535) JP = 1/2− and comparison with experimental results.
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function in coordinate space at the origin, defined in Ref. [127] as

(2π)3/2 ψ(~0) = giGi(zR) (6.14)

where the G function is evaluated in the pole. This magnitude represents
the wave function at the origin for s-wave channels. For d-wave channels the
wave function goes as r2 at the origin and vanishes. The magnitude gG then
represents the relative strength of the channel for coupling of the resonance
to external sources [128]. The results show information about how relevant is
each channel for the resonances. The first surprise is to see that, although the
KΣ channel has the second biggest coupling, the value of the wave function
at the origin reveals that this channel is not relevant in the N∗(1535). We
also see that the most important channels are the ηN and πN , as one can
expect of the experimental results of the branching rations. Moreover theKΛ
channel has an important contribution but since it is under the threshold this
fact is not noticeable experimentally. For the N∗(1650) case the πN channel
is now the most important but ηN channel is very important as well. However
we can see that now the KΣ has a very important contribution since the pole
is very close to the KΣ threshold. The KΛ has a moderate relevance and
this is in agreement with the experimental results for the width. The ρN and
π∆ channels have a small relative contribution and this is in good agreement
with experimental values.

6.5 Conclusions

We have studied the meson-baryon interaction with JP = 1/2− including
the coupled channels considered in the experimental analysis, πN , ηN , KΛ,
KΣ, ρN and π∆ (d-wave). We have studied the interaction using the hidden
gauge formalism, where the interaction is mediated by the exchange of vector
mesons. Other extensions of this formalism involving pseudoscalar and vector
mesons are also used as explained in the text. The loops are regularized
using dimensional regularization with subtraction constants for each channel.
These constants are treated as free parameters and fitted to reproduce the
experimental data of the S11 πN scattering data extracted from Ref. [126].

Two poles are found and the couplings for each channel, as well as the
wave function at the origin, are calculated. These couplings are used to
obtain the branching ratios of all channels to both resonances. The results
are then compared with several experimental values and there is a good
agreement for most of them. It must be noted that the consideration of the
ρN and π∆ channels has had an important qualitative change with respect
to the work of Ref. [119] where only the pseudoscalar-baryon octet channels



6.5. CONCLUSIONS 93

N∗(1650) JP = 1/2−

Theory PDG Cutkosky Anisovich Vrana Thoma

[111] [98] [112] [107]

Re(Pole) 1672.3 1640 – 1670 1640 ± 20 1647 ± 6 1663 1645 ± 15

2Im(Pole) 158.2 100 – 170 150 ± 30 103 ± 8 240 187 ± 20

Channel Branching Ratio [Γi/Γ(%)]

Nπ 58.9 50 – 90 65 ± 10 51 ± 4 74 ± 2 70 ± 15

Nη 27.6 5 – 15 18 ± 4 6 ± 1 15 ± 6

ΛK 5.7 - 10 ± 5

ΣK 0.0 -

Nρ 5.6 1 ± 1 1 ± 1

∆π 2.2 0 – 25 19 ± 9 2 ± 1 10 ± 5

Table 6.5: Results for the pole position and branching ratios for the different
channels of N∗(1650) JP = 1/2− and comparison with experimental results.
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were considered. The first one is that now we are able to generate both
the N∗(1535) and the N∗(1650) resonances, while in Ref. [119] only the
N∗(1535) appeared. The second one is that now the subtraction constants
are all negative and of natural size. From the perspective of Ref. [120] we
can say that the conclusion in Ref. [120] that the N∗(1535) had an important
component of a genuine state in the wave function, can be translated now
by stating that the missing components can be filled up by the ρN and π∆
channels that we have found here.



Chapter 7
Limits to the Fixed Center
Approximation to Faddeev equations:
the case of the φ(2170).

7.1 Introduction

The Faddeev equations to address the interaction of three body systems [129]
are very simple conceptually and formally, yet very difficult to solve exactly.
Most of the work done with Faddeev equations involve approximations, like
the use of separable potentials and energy independent kernels. The Alt-
Grassberger-Sandras (AGS) approach [130] follows this line and is widely
used. Recently, studies of three hadron systems, two mesons and one baryon
[131, 132], or three mesons [133] have been done by means of a different
approach to the Faddeev equations which relies upon the on shell two body
scattering matrices. The method involves approximations of a different kind,
derived from the observation that the ratio of the diagrams involving four
and three interactions are similar to the ratios of diagrams with three and
two interactions. It was shown in Refs. [131, 132] that the low lying 1/2+

excited baryons, except the RoperN∗(1440) which is certainly a very complex
object, stemmed from the interaction of two pseudoscalar mesons and one
baryon. Similarly, the study of the φKK̄ system in Ref. [133] showed that
the resonance X(2175) was naturally described in terms of those components
with the KK̄ pair forming mostly an f0(980) state.

The discovery of the X(2175) at BABAR [134, 135] with mass MX =
2175 ± 10 ± 15 MeV and width ΓX = 58 ± 16 ± 20 MeV [134] in the
e+e− → φ(1020) f0(980) reaction, was followed by its observation at BES
in J/Ψ → η φ(1020) f0(980) decay with MX = 2186 ± 10 ± 6 MeV and
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ΓX = 65 ± 23 ± 17 MeV [136]. The Belle Collaboration has performed the
most precise measurements up to now of the reactions e+e− → φ(1020)π+π−

and e+e− → φ(1020)f0(980) finding MX = 2079 ± 13+79
−28 MeV and ΓX =

192± 23+25
−61 MeV [137]. The width obtained is larger than in previous mea-

surements but the errors are larger. A combined fit to both BABAR and Belle
data on e+e− → φ(1020)π+π− and e+e− → φ(1020)f0(980) has been done in
Ref. [138], with the results of MX = 2171+0.59

−0.49 MeV and ΓX = 164+69
−80 MeV.

The X(2175) has been renamed in the Particle Data Book (PDG) [67] as the
φ(2170) and we shall use this nomenclature from here on.

The φ(2170) is one of the states recently found which does not stand a
clean comparison with predictions of conventional quark model states [139].
Much theoretical activity has been developed around the φ(2170) resonance,
suggesting it to be a tetraquark [140, 141, 142], or the lightest hybrid ss̄g
state [143]. Other works point out at the difficulties encountered trying to
interpret the state in terms of already known structures [144, 145, 146].

One appealing idea to interpret this resonance was given in Ref. [133]. The
fact that the resonance is seen in its decay into φ and f0(980) suggest that
the state could be a strongly bound system of φKK̄, since in chiral unitary
theories the f0(980) appears as a resonance of the ππ and KK̄ channels,
mostly theKK̄ one [11, 147, 148, 149]. In Ref. [133] the Faddeev equations for
the φKK̄, φππ system were used and the resulting structure was a resonant
state of that system with energy and width inside the range given by the
experimental ones and where the KK̄ pair was strongly correlated around
the f0(980). The Faddeev equations used for this problem relied upon the
chiral unitary two body amplitudes evaluated on shell, once it was proved
that the unphysical off shell part of the amplitudes cancel exactly with the
explicit three body terms provided by the same chiral Lagrangians [131, 132]1.

In view of the technical difficulties to solve the full Faddeev equations
one might resort to use a different approximation to these equations, and
one of them which is technically very easy is the Fixed Center Approxima-
tion (FCA). The basic idea is that one has collisions of one particle against
a bound cluster of two other particles, which is not much altered by the in-
teraction with the third particle. The FCA has been used in many problems
[150, 151, 152, 153, 154, 155, 156, 157, 158, 159] and is accepted as an accu-
rate tool in the study of bound systems, when the particle interacting with
the cluster is lighter than the others and the cluster is relatively strongly
bound. Yet, in some cases where the interacting particle is heavier than the

1This holds in the SU(3) limit. In Ref. [131] it was mentioned that it holds for low
momentum transfers, but in Ref. [132] it was shown that actually this condition is unnec-
essary.
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constituents of the cluster one can still get a qualitative picture from the
FCA. This is indeed the case for the NKK̄ bound system, with the KK̄
making the cluster, which was studied in Ref. [160] and results in qualitative
agreement with those of Faddeev equations of Ref. [161] were found. Thus,
there is no universal rule and for this purpose it is worth to study other
systems and other conditions to better understand the limits of the FCA.

More recently, FCA has been also used to study the interaction of systems
with several ρ mesons [162] or of one K∗ and several ρ mesons [163], and in
the study of the KK̄N [160], the K̄NN [164] and the πρ∆ systems [165],
where the last two particles make the cluster. In the case of the KK̄N
state one is fortunate to be able to compare with the full Faddeev results
of Ref. [161, 166], as well as with the variational calculations of Ref. [167],
and the results of the FCA prove to be rather accurate. Similarly the K̄NN
system has been studied with the FCA and chiral dynamics and the results
are remarkably similar to those obtained in Ref. [168] with a variational
calculation, or those of Ref. [169] with Faddeev equations when a kernel
incorporating the energy dependence of chiral dynamics is used. In view of
this success, it is also important to recall the limits to its application and
we do this in the present paper by choosing a particular case, the φKK̄
system, for which results with the full Faddeev equations are available from
Ref. [133].

Recently, a different technical approach has been proposed in Ref. [170]
to study the φKK̄ system, leading to the φ(2170), and further work along
these lines has been done in Ref. [171], hinting at a possible resonant state
of the φa0(980), for which no trace was found using the Faddeev equations
in Ref. [133]. We shall discuss this work here and the problems encountered
in that approach.

7.2 Fixed center approximation formalism to

the φf0(980) scattering

By analogy to Refs. [150, 151, 152, 153] we shall study the scattering of a φ
with a molecular state of KK̄. The φ scatters and rescatters with the K, K̄
of the f0(980) molecule and theK, K̄ states are kept unchanged in their wave
function of the bound state. Diagrammatically we have the series of terms
depicted in Fig. 7.1. Symbolically these terms can be summed by means of
two partition functions T1 (for φK) and T2 (for φK̄), where T1 sums all the
diagrams where the φ interacts first with the K and T2 those where the φ
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Figure 7.1: Diagrammatic representation of the fixed center approximation
to the Faddeev equations.

interacts first with the K̄. The FCA equations are

T1 = t1 + t1GT2

T2 = t2 + t2GT1 (7.1)

T = T1 + T2

where T is the total φf0(980) T -matrix, G is the propagator for the φ between
the K, K̄ components of the f0 (see Eq. (7.14) later on) and t1, t2 stand for
the φK and φK̄ two body t-matrices. In order to see the precise meaning and
normalizations entering Eq. (7.1) we follow closely the approach of Ref. [162].
The formalism is easier here since φK and φK̄ have the same amplitude and
there is only one isospin state I = 1/2. We follow Eqs. (19) to (39) of
Ref. [162] substituting the f2(ρρ) by the f0(980)(KK̄) and the external ρ+

by the φ (see also the approach for the K∗ multirho states in Ref. [163]). The
S matrix for single scattering, first diagram of Fig. 7.1, is given by

S(1) = −it1Ff0
(~k − ~k′

2

) 1

V2

1√
2ωp1

1√
2ωp′1

1√
2ωk

1√
2ωk′

(2π)4 δ(k +Kf0 − k′ −K ′
f0
), (7.2)

where V stands for the volume of a box where we normalize to unity our
plane wave states, ωp1 , ωp′1 , are the energies of the initial and final kaon of
the f0 and ωk, ωk′ the initial and final energy of the φ. The symbols k, k′,
Kf0 , K

′
f0

stand for the four momenta of the initial, final φ and initial, final

f0. In Eq. (7.2), Ff0

(
~k−~k′
2

)
is the form factor of the f0(980) as a bound state

of KK̄.
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The double scattering term of Fig. 7.1 gives rise to an S matrix

S(2) = −i(2π)4δ(k +Kf0 − k′ −K ′
f0
)
1

V2

1√
2ωk

1√
2ωk′

1√
2ωp1

1√
2ωp′1

× 1√
2ωp2

1√
2ωp′2

∫
d3q

(2π)3
Ff0

(
~q −

~k + ~k′

2

)
1

q02 − ~q 2 −m2
φ + iǫ

t1t2.

(7.3)

where q0 = (s+m2
φ −M2

f0
)/(2

√
s) is the φ energy in the φf0 center of mass

frame, and ωp2 , ωp′2 , are the energies of the initial and final antikaon.

For scattering at low energies ~k, ~k′ will be zero and the form factor in
the single scattering can be ignored, while the one entering Eq. (7.3) can
be replaced by Ff0(q). The evaluation of this form factor is rendered very
easy, and practical for the developments that follow, by using the approach
of Ref. [127] where a potential in S-wave of the type

V = vθ(Λ− q)θ(Λ− q′) (7.4)

is used in momentum space to obtain a certain bound state (the f0 for in-
stance). In Eq. (7.4) v is a momentum independent function (although it can
depend on the energy), and Λ a cut off in the modulus of the momenta q, q′.
Following Ref. [11] we take 1 GeV for it. As shown in Ref. [127], the Quan-
tum Mechanical problem with this potential leads to the same scattering
matrix obtained in the chiral unitary approach using the on shell factoriza-
tion [11, 17, 18]2.

By following Ref. [127] we find the relative wave function of KK̄ in mo-
mentum space

〈~p |ψ〉 = v
θ(Λ− p)

E − ωK(~p1)− ωK(~p2)

∫

k<Λ

d3k〈~k|ψ〉, (7.5)

which is given in coordinate space by

〈~x|ψ〉 =
∫

d3p

(2π)3/2
ei~p ~x〈~p |ψ〉. (7.6)

The form factor of the bound KK̄ state is then given by

Ff0(q) =
1

N

∫

p<Λ
|~p−~q |<Λ

d3p
1

Mf0 − 2ωK(~p )

1

Mf0 − 2ωK(~p− ~q )
, (7.7)

2In Ref. [127] a non relativistic Quantum Mechanical formulation is done but its rela-
tivistic extension with the same kernel of Eq. (7.4) to match the field theoretical treatment
of the chiral unitary approach is straightforward.
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where the normalization factor N is

N =

∫

p<Λ

d3p
1

(Mf0 − 2ωK(~p ))
2 . (7.8)

We will have to face a small technical detail since the field normalization
factors in Eqs. (7.2) and (7.3), (2ωi)

−1/2, are different, and also different
than those appearing in the φf0 scattering problem in the Mandl and Shaw
normalization that we follow [68], which are

S = −iTφf0(s)
1

V2

1√
2ωk

1√
2ωk′

1√
2ωf0

1√
2ωf0′

(2π)4 δ(k +Kf0 − k′0 −K ′
f0
)

(7.9)

Taking this into account, Eqs. (7.1) can be reformulated, in the absence of
the form factor in the single scattering, as

T (K)(s) =
Mf0

mK

tφK(s
′) +

Mf0

mK

tφK(s
′)G̃0T

(K̄)

T (K̄)(s) =
Mf0

mK

tφK̄(s
′) +

Mf0

mK

tφK̄(s
′)G̃0T

(K) (7.10)

Tφf0 = T (K) + T (K̄), T (K) = T (K̄) (7.11)

such that

Tφf0 = 2
Mf0

mK

tφK(s
′)

1

1− Mf0

mK
tφK(s′)G̃0

(7.12)

Technically, one should have the ratio of energies instead of that of the masses
in Eqs. (7.10), but the ratios are nearly the same and we keep this form, as
in Ref. [162], for the FCA equations.

In the case of the form factor in the single scattering term (the form factor
is always present in the rescattering terms in G̃0) we find

Tφf0 = 2
Mf0

mK

tφK(s
′)

[
Ff0

(~k − ~k′

2

)
− 1 +

1

1− Mf0

mK
tφK(s′)G̃0

]
(7.13)

with

G̃0 ≡
1

2Mf0

∫
d3q

(2π)3
Ff0

(
~q −

~k + ~k′

2

) 1

q02 − ~q 2 −m2
φ + iǫ

. (7.14)

and

s′ = s′φK = (k + p1)

= (k + p1 + p2 − p2)
2 = s+m2

K − 2
√
sp02

= m2
φ +m2

K +
1

2
(s−m2

φ −m2
f0
) (7.15)
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in the φf0 center of mass frame where s = (k + p1 + p2)
2, p02 = ECM

f0
/2.

7.3 Field theoretical calculation

In order to make a connection with Refs. [170, 171], let us follow their ap-
proach and evaluate the diagram of Fig. 7.2.

K̄

f0

f0

φ

φ

(P )

(p)

(P − p+ q)
(~k′)

(~k)

(P − p)

K

K

Figure 7.2: Loop diagram considered to evaluate the amplitude in Refs. [170,
171].

To facilitate comparison with the results obtained in Ref. [127] we use non
relativistic propagators for the particles. The extension of both formalism to
the relativistic case is straightforward but unnecessary for the result that we
shall obtain. The amplitude stemming from the diagram of Fig. 7.2 is

−iT (FT ) = (−ig)2
∫

d4p

(2π)
(−it̃φK)

i

p0 − ωK̄(~p ) + iǫ

i

P 0 − p0 − ωK(~p ) + iǫ

× i

P 0 − p0 + q0 − ωK(~P − ~p+ ~q ) + iǫ
(7.16)

conveniently regularized, for instance with a cut off, where q = k − k′ and
g is the coupling of the state f0 to the KK̄ channel (g2 is the residue of
the KK̄ → KK̄ amplitude at the pole of the f0 resonance, see Ref. [127]
for details). The amplitude t̃φK in Eq. (7.16) has a different normalization
than the tφK used in the rest of the paper to connect with the formalism

of Ref. [162]. If we take ~P = 0 (the f0 momentum) and ~q = 0, the former
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equation can be written as

T (FT ) = −ig2t̃φK
∂

∂P 0

∫
d4p

(2π)

1

p0 − ωK̄(~p ) + iǫ

1

P 0 − p0 − ωK(~p ) + iǫ

= −g2t̃φK
∂

∂P 0
G(P 0, KK̄) (7.17)

where G is the KK̄ propagator or the loop function for KK̄ intermediate
states. By using the result of Ref. [127], assuming V of Eq. (7.4) independent
of energy (see Eq. (41) of that work, P 0 ≡ E)

g2 = −
(
dG(E)

dE

)−1

E=Ef0

(7.18)

we obtain the remarkable result for ~q = 0

T (FT ) = t̃φK (7.19)

which is nothing but the expression of the impulse approximation. The loop
of Fig. 7.2 in field theory implements the impulse approximation used in
more conventional approaches.

There is still more to it. Let us perform the p0 integration in the center
of mass frame of φf0. We have

T (FT ) = t̃φKg
2

∫
d3p

1

P 0 − ωK̄(~p )− ωK(~P − ~p ) + iǫ
1

P 0 − ωK̄(~p )− ωK(~P − ~p+ ~q ) + iǫ
(7.20)

where g2, according to Eq. (7.18), is the inverse of the
∫
d3p integral of

Eq. (7.20) for ~q = 0. Eq. (7.20) resembles much Eq. (7.7) that provides the
form factor of the f0. One can prove that this corresponds to Eq. (7.7) using

~q → ~q ′ =
~k−~k ′

2
, as obtained in Eq. (7.2), by adding to P 0 in the second factor

of Eq. (7.20) the recoil energy of the final f0, ~q
2/2mf0 . This equivalence

is proved in detail in section IV of Ref. [128]. A different derivation of the
same results can be seen in Ref. [172] (see also Ref. [173] for a relativistic
formulation).

After this discussion about the meaning of the field theoretical approach
of Refs. [170, 171], the FCA goes beyond the impulse approximation by
taking into account rescattering of the φ with the K and K̄ of the f0. The
rescattering is done zigzagging from oneK to the K̄ and viceversa. Successive
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Figure 7.3: Diagrammatic representation of one of the terms of the Faddeev
equations in which the f0 is excited in the intermediate state: a) Typical
Faddeev diagram; b) Diagrammatic representation of a) in terms of a field
theoretical Feynman diagram.

scatterings of the φ on the same particle are forbidden since this leads to
diagrams already accounted in the φK (φK̄) scattering matrix and, thus,
one would be double counting. In Refs. [170, 171] one is not considering the
series implicit in the FCA except for the first term. However, another series
of terms is considered as we shall explain in the next section.

7.4 Beyond the FCA: excitation of the f0 in

intermediate states

The FCA does not allow for f0 excitation in the intermediate propagation of
the φf0 states. Since for the φ(2170) one has about 170 MeV of excitation
with respect to the φf0 at rest, it looks very unlikely that the f0 is not
excited in the intermediate states. An intuitive view can be also obtained
by recalling that the φ has bigger mass than the K and in its collision with
the f0 it could easily break this lighter system. To find the explicit answer
one resorts to the Faddeev equations and looks for terms where the f0 can
be broken in intermediate states. We must have in mind that when one has
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multiple scattering in the FCA, the KK̄ interaction is never used explicitly.
Yet, it is implicitly taken into account by using the wave function of the KK̄
system. Hence, in the second diagram of Fig. 7.1, the φ collides with the
K, leaving its wave function unchanged, then it propagates and collides with
the K̄, leaving it also in its original state. This mechanism corresponds to
a diagram of the Faddeev expansion with two interactions of the φ in which
the initial and final KK̄ states do not have the possibility of being excited
in the intermediate state. We can go one step ahead in the Faddeev series
of diagrams and see if the KK̄ interaction, in connection with the double
scattering of the φ with the K and the K̄, can lead to a break up of the KK̄
system once there is sufficient energy for this excitation. This is depicted in
the diagram shown in Fig. 7.3.

The S matrix for the diagram of Fig. 7.3 is given by

S(3) =
1√
2ωk

1√
2ωk′

1√
2ωp1

1√
2ωp′1

1√
2ωp2

1√
2ωp′2

∫
d4x1

∫
d4x2

∫
d4x3

×
∫

d4q

(2π)4

∫
d4q′

(2π)4

∫
d4p

(2π)4
(−itφK(s′))(−itKK̄(s′′))(−itφK(s′))

× ieiq(x1−x2)

q2 −m2
K + iǫ

ieiq
′(x2−x3)

q ′2 −m2
K + iǫ

ieip(x1−x3)

p2 −m2
φ + iǫ

eik
′0x03 eip

′0
1x

0
3 eip

′0
2x

0
2

× e−ik
0x01 e−ip

0
1x

0
1 e−ip

0
2x

0
2

1√
V
e−i

~k′~x3ϕ1(x3)ϕ2(x2)
1√
V
ei
~k~x1ϕ1(x1)ϕ2(x2)

(7.21)

where

s′′ = (q + p2)
2 = (k + p1 − p+ p2)

2 = (k + P − p)2

= s−m2
φ − 2

√
s ωφ(~p ) (7.22)

with P the momentum of the f0. By performing the x01, x
0
2, x

0
3, p

0, q ′0, p ′0

integrations, making the change of variables

~x1 − ~x2 = ~r ~x3 − ~x2 = ~r ′ (7.23)

1

2
(~x1 + ~x2) = ~R

1

2
(~x3 + ~x2) = ~R +

~r ′

2
− ~r

2
(7.24)

and using that

ϕ1(~x1)ϕ2(~x2) =
1√
V
ei
~P (

~x1+~x2
2

)ϕ(~r ) =
1√
V
ei
~P ~Rϕ(~r ) (7.25)

ϕ∗
1(~x3)ϕ

∗
2(~x2) =

1√
V
e−i

~P (
~x3+~x2

2
)ϕ∗(~r ) =

1√
V
e−i

~P ′ ~Re−i
~P ′ ~r

′

2 ei
~P ′ ~r

2ϕ∗(~r ′) (7.26)
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we can perform the d3xi integrals and the three
∫
d3q,

∫
d3q ′,

∫
d3p integrals

of Eq. (7.21) and we obtain

−it(3) = −i
∫

d3q ′

(2π)3

∫
d3p

(2π)3
tφK(s

′)tKK̄(s
′′)tφK(s

′)
1

2ωK(~q )

1

2ωK(~q ′)

× 1

2ωφ(~p )

1

k0 + p01 − ωφ(~p )− ωK(~q ) + iǫ

1

k ′0 + p ′0
1 − ωφ(~p )− ωK(~q ′) + iǫ

× ϕ̃
(
~p+ ~q −

~P ′

2
−
~k + ~k ′

2

)
ϕ̃
(
~p+ ~q ′ −

~P ′

2
−
~k + ~k ′

2
+
~k − ~k ′

2

)

(7.27)

As we can see, the amplitude tKK̄(s
′′) has appeared with argument s ′′,

which depends on the integration variables, as shown in Eq. (7.22). In
Eq. (7.26) we have used the complex conjugate of the wave function for
formal reasons, although they are real here. For the general case of wave
functions and form factors where the system is unbound see section IV of
Ref. [128].

The amplitude obtained in Eq. (7.27) can be compared directly to the
double scattering term of Eq. (7.3),

−it(2) = −itφK(s′)2Mf0G̃0tφK(s
′) (7.28)

The factor [tφK(s
′)]2 is the same in both equations and we can remove it for

the purpose of comparison of the two amplitudes.

7.5 Results

In the calculations we have taken tφK from the work of Ref. [174], where the t
matrix is obtained in the chiral unitary approach with the φK and its coupled
channels. We show in Fig. 7.4 the results for the squared φf0 amplitude,
|Tφf0 |2, obtained with Eq. (7.12), which omits the form factor in the impulse

approximation term, and neglecting the (~k + ~k′)/2 in the argument of the
form factor in the G̃0 function. We can see that the |Tφf0 |2 goes down when
approaching the threshold of φf0 and then rises again. We find no sign that
there should be a peak around 2170 MeV. On the other hand, the form factor
is here very important since ~k is quite large, of the order of 420 MeV/c for√
s = 2170 MeV. In the next step we take into account the form factor but

project the amplitude over S-wave by integrating over
∫
dΩ(k̂′) the form

factor, both in the single scattering term and in G̃0. The results can be seen
in Fig. 7.5. We see that the net effect of the form factor has been a drastic
reduction of |Tφf0 |2 beyond the threshold. Below the threshold we have taken
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~k = ~k′ = 0 as usually done in these calculations. This is based on the fact
that, even if the φKK̄ system were bound, there is a distribution of real
momenta in the wave function, but the momenta are small. One can take
a different approach and extrapolate the formula of the form factor below
threshold introducing purely imaginary φ momenta. While one can debate
which approach is more physical, it is irrelevant in the present case where we
look at the behavior above threshold.

Once again we can see that there is no trace of a peak around
√
s = 2170

MeV when we include the form factor. This is in contrast with the clear
peak seen for the |Tφf0 |2 with the full Faddeev equations, as seen in Fig.1
of Ref. [133]. After this is done, we proceed to evaluate the contribution
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Figure 7.4: Amplitude squared for the φf0(980) interaction without including
the form factor Ff0 .

from the diagram of Fig. 7.3. In Fig. 7.6 (up) we compare the contribution
of this diagram, which now allows for f0 excitation, with the FCA double
scattering. In Fig. 7.6 (down) we show the ratio of the two body term of
the FCA to the three body diagram of Fig. 7.3. We should note that for the
case of the two body FCA we have two possibilities, when one starts the φ
interaction from the K or from the K̄, but in the case of Fig. 7.3 we have
four possibilities, where the φ interacts at the beginning and at the end with
either the K or the K̄. The relative factor of two in the three body amplitude
is incorporated in the figure.

What one can see in Fig. 7.6 is that the three body diagram of Fig. 7.3
with intermediate f0 excitation is of the same size around

√
s = 2170 MeV

than the double scattering term of the FCA, which has no intermediate f0
excitation. We can see in the figure, comparing real and imaginary parts, that
the two mechanisms have amplitudes with opposite signs for the real parts in
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Figure 7.5: Amplitude squared for the φf0(980) interaction including the
form factor Ff0 .

the region of interest to us. Their simultaneous consideration would change
drastically the results obtained from the double scattering contribution of
the FCA alone. Yet, when one evaluates the Faddeev integral equations one
does not know how much contribution one obtains from such mechanism and
this is an information that the present work has provided for the case of the
φf0 interaction, which should serve as reference for other possible cases where
there is also plenty of excitation energy available. Note that the fact that in
intermediate states of the multiple scattering the KK̄ system is excited does
not invalidate that we call this state a φf0 system, since asymptotically in
the scattering we have indeed φf0 in that picture. This is the same as we
would have in the π elastic scattering with a nucleus in the ∆ region where
in intermediate states nucleons can be excited to ∆ states.

At low energies close to threshold, and more clearly below it, the two body
FCA amplitude dominates over the excitation term. A more appropriate
approach in that region would consist of using a complete set of KK̄ states
which contained the bound KK̄ state and their orthogonal states in the
continuum, instead of the basis of plane waves used here. Since the plane
waves still have an overlap to the bound wave function, it is logical to think
that the use of that alternative basis would give a smaller contribution for
the excited states, emphasizing more the role of the ground state of the f0,
accounted by the FCA. This numerical finding is in the line with analytical
studies of πd and K̄d which show that the contribution of the diagram of
Fig. 7.3 should vanish at threshold in the limit of mK → ∞ [175, 158]. At
higher energies, where many states can be excited, the use of the set of plane
waves for the wave functions becomes progressively more accurate, making
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Figure 7.6: Comparison of the amplitudes t(2) and t(3) . (Up) The solid and
dotted line correspond to the real and imaginary part, respectively, of the t(2)

amplitude, while the dashed and dash-dotted line are the real and imaginary
part, respectively, of the t(3) amplitude, both divided by tφK(s

′)tφK(s
′), in

units of MeV. (Down) Ratio of the modulus of the amplitudes t(2) and t(3).
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our results more realistic in the region of 170 MeV excitation.

It is interesting to note that in Refs. [170, 171] the term discussed here
of Fig. 7.3 is formally taken into account even if the formalism looks quite
different3. It is also iterated with multiple steps that have the f0 φ in the
intermediate states. Yet, the formalism of Refs. [170, 171] requires to reg-
ularize a loop function for the f0 φ propagator, for which one has no input
from the derivation of the Kφ and KK̄ amplitudes. Thus, one introduces
unknown elements at this point, essentially the subtraction constant of a
dispersion relation, which is treated as a free parameter in Refs. [170, 171]4.
Furthermore the Kφ interaction, which in the present work is taken from the
chiral unitary approach of Ref. [174], is considered in terms of an extra free
parameter in Ref. [170], which is adjusted to the data of φ(2170) production.
At this point it is important to note that the use of the fitted φK in Ref. [170]
results in a |Tφf0 |2 value at

√
s ≈ 2170 MeV about two orders of magnitude

bigger than if the φK amplitude provided by the chiral unitary approach of
Ref. [174] was used, which is corroborated by the authors of Ref. [170]. The
approach is thus quite different from the Faddeev approach, where the result
is fixed before hand from the elementary Kφ and KK̄ scattering amplitudes.
Since two free parameters are used in Refs. [170], the approach can provide
a fit to the data but it is not a predictive scheme for the present problem.

7.6 Conclusions

The fixed center approximation to the Faddeev equations, when two particles
are clustered into a bound system, has been often used and proved to be a
good approximations in the low energy regime, close to threshold of the con-
stituent particles or below. One particular feature of this approximation is
that the cluster of the two particles is not excited in the intermediate states,
which can be a good approximation if there is no energy available to excite
it. One could hope that it could still be a good approximation if one goes
above the threshold, and as usual one does not know the answer until one
has checked it. This is what we have done in this work and we have chosen
the case of a problem of current interest, the case of the φ(2170) particle
as a resonant state of the φ and f0(980) states. In this case the φ f0(980)

3We are indebted to J. A. Oller and L. Alvarez Ruso for clarifying this point to us.
4One might argue that the Faddeev equations of Refs. [131, 132, 133] also need of an

extra regularization factor for the genuine Faddeev loops. In Refs. [131, 132, 133] a cut off
of around 1 GeV was used, but only for the purpose of showing the independence of the
results with respect to this parameter, since those loops contain three propagators and are
convergent without the need of extra cutoffs.
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system appears with 170 MeV of excitation, so a priory it looks unlikely that
the f0 would not be excited in intermediate states. Yet, it is worth seeing
what happens in detail. What we find is that the FCA does not lead to any
structure in the region of the φ(2170), nor close by, unlike by solving the
Faddeev equations. On the other hand we determined the contribution of
Faddeev diagrams where the f0 is allowed to be excited in the intermediate
states, with terms that involve explicitly the KK̄ interaction between two
φK or φK̄ collisions. What we found is that this new mechanism is of the
same order of magnitude as the φK double scattering from the FCA series.
Furthermore, we also find that the terms have a strong destructive interfer-
ence. In view of this, any reliable approach to the problem should take this
feature into account. One might think of improving the FCA to include these
inelastic excitations, but the problem becomes very involved with the higher
iterations and ultimately turns out into a problem far more complicated than
the use of the Faddeev equations from the beginning. Hence, from the prac-
tical point of view it does not pay to try to simplify the Faddeev equations
in favor of a modified FCA once there is a large excitation energy.

The main message from this work is, hence, a warning not to use the FCA
for unbound systems, particularly when the scattering particle has a bigger
mass than the constituents of the cluster. It also served to show that for
bound energies the FCA is a more realistic approach. Finally, the detailed
calculation performed here and comparison to the approach of Refs. [170, 171]
served to show that those work incorporate some of the relevant mechanisms
of the Faddeev equations, but having to rely on fitting parameters, unlike
the Faddev approach, does not lead to a predictive tool for these three body
systems. The results of this Chapter are published in Ref. [176].



Chapter 8
Strategies for an accurate
determination of the X(3872) energy
from QCD lattice simulations

8.1 Introduction

The X(3872) state, observed for the first time by Belle [177], has been found
in many other experiments and is the paradigm of the charmonium states of
non-conventional nature (see Refs. [178, 179] for recent reviews on the issue).
Although for some time the quantum numbers were not well determined and
both, the JPC = 1++ and 2−+ states were candidates, theoretical papers
showed a preference for the 1++ state [180, 181, 182, 183, 184], which has
been recently confirmed by the LHCb [185].

The search for this state in lattice QCD simulations has also run par-
allel and several works have been devoted to this task [186, 187, 188, 189],
finding one state close to the experimental one. Yet, it was too difficult to
unambiguously determine whether one had a bound state or simply DD̄∗

scattering states which appear at around the same energy. An important
step forward has been given very recently in Ref. [190], where a bound state
is obtained in a dynamical Nf = 2 lattice simulation with 11 ± 7 MeV be-
low the DD̄∗ threshold and quantum numbers 1++. Improvements on this
can be done in the future using larger boxes and smaller pion masses. The
work of Ref. [190] makes use of the technique proposed in Ref. [191], where
the presence of a bound state comes accompanied by a sign change of the
scattering length with respect to an attractive potential which does not bind.
This observation is useful and has also been applied in Ref. [192].

111
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The purpose of the present paper is to find a strategy to determine accu-
rately the binding energy of the X(3872) in lattice QCD simulations. A pre-
cise determination, with an energy about 0.2 MeV below the D0D̄∗0 thresh-
old, requires to differentiate between the u and d quark masses in order to
account for the 7 MeV difference between the neutral and charged compo-
nents of the wave function [193, 127]. The small binding of the state with
respect to the D0D̄∗0 threshold, much smaller than the difference of masses
between theD0D̄∗0 andD+D∗− components, makes this consideration imper-
ative in order to get a precise value of the binding energy and unambiguously
determine the bound state character of the X(3872). In fact, when this is
done, energy levels can be associated to either D0D̄∗0 or D+D̄∗−.

The strategy used here follows closely the work of Ref. [194] using coupled
channels, where the energy levels related to the scalar mesons were investi-
gated. It studies the levels of two-meson interaction in a finite box and
tackles the inverse problem of deriving phase shifts from pseudolattice data
using Lüscher formalism [195] and different strategies. The case of bound
states is studied along similar lines in Ref. [196], where the combination of
Lüscher formalism and methods related to those used in Refs. [197, 198] allow
a precise determination of binding energies of hidden charm states. Thus, in
order to have an accurate measurement of the binding energy of the X(3872),
we present a method using different number of levels, different box sizes and
determine the precision required for the lattice energies.

8.2 The X(3872) in the continuum limit

In this section we discuss briefly the dynamical generation of the X(3872)
in the continuum limit. All the details are in Refs. [183, 193, 199]. The
pseudoscalar - vector interaction can be studied through the hidden gauge
Lagrangian [30, 13], which contains interaction between vectors and with
pseudoscalar mesons,

LIII = −1

4
〈VµνV µν〉+ 1

2
M2

V 〈[Vµ −
i

g
Γµ]〉 (8.1)

where Vµν = ∂µVν − ∂νVµ − ig[Vµ, Vν ], and g = MV

2f
. The model is based on

vector-meson exchange, see Fig. 8.1. From the above equation, the lower and
upper vertices needed to evaluate the amplitude of the diagram depicted in
Fig. 8.1 are obtained using the terms

LPPV = −ig〈V µ[P, ∂µP ]〉, L3V = ig〈(V µ∂νVµ − ∂νVµV
µ)V ν〉 , (8.2)

where Vµ, P are the matrices of the 16-plet of vector, pseudoscalar mesons [193].
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Figure 8.1: Point-like pseudoscalar - vector interaction.

In fact, the combination of both terms in Eq. (8.2), for s-wave, when the mo-
menta q2 exchanged in the propagator of the vector meson exchanged can be
neglected against −M2

V , leads to a point-like interaction, and is equivalent
to using the Lagrangian,

LPPV V = − 1

4f 2
Tr (JµJ µ) . (8.3)

with Jµ = (∂µP )P−P∂µP and Jµ = (∂µVν)Vν−Vν∂µVν , see Refs. [174, 193].
In Ref. [193], the currents in Eq. (8.3) are separated for heavy and light
vector-meson-exchange, introducing the breaking parameters,

γ =

(
m8∗

m3∗

)2

=
m2
L

m2
H

ψ =

(
m8∗

m1∗

)2

=
m2
L

m2
J/ψ

,

withm8∗ = mL = 800 MeV,m3∗ = mH = 2050 MeV andm1∗ = mJ/ψ = 3097
MeV. This gives, γ = 0.14 and ψ = 0.07. Because of the smallness of the
breaking parameters, the light and heavy sector are almost disconnected, and
the transition potential between those is very small. Also, for light mesons,
f = fπ = 93 MeV, and for heavy ones, f = fD = 165 MeV, is used. Thus,
the amplitude of the process V1(k)P1(p) → V2(k

′)P2(p
′), is given by

Vij(s, t, u) =
ξij

4fifj
(s− u)~ǫ · ~ǫ ′ (8.4)

with s−u = (k+k′)(p+p′), which must be projected in s-wave [193, 174], and
i, j refer to the particle channels. Working in the charge basis, we have the
channels 1√

2
(K̄∗−K+−c.c.), 1√

2
(K̄∗0K0−c.c.), 1√

2
(D∗+D−−c.c.), 1√

2
(D∗0D̄0−

c.c.) and 1√
2
(D∗+

s D−
s − c.c.), and the matrix ξ can be written in this basis as

ξ =




−3 −3 0 −γ γ
−3 −3 −γ 0 γ
0 −γ −(1 + ψ) −1 −1
−γ 0 −1 −(1 + ψ) −1
γ γ −1 −1 −(1 + ψ)




. (8.5)
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Eq. (8.4) is the input of the Bethe Salpether equation,

T = (I − V G)−1V ~ǫ · ~ǫ ′ . (8.6)

Here G a diagonal matrix of the two-meson loop function for each channel.
Usually it is evaluated with dimensional regularization and depends on the
parameter α [193] (µ is a scale mass, fixed a priori)

G = GDR(
√
s) =

1

16π2

{
α(µ) + ln

m2
1

µ2
+
m2

2 −m2
1 + s

2s
ln
m2

2

m2
1

+

+
q√
s

[
ln(s− (m2

2 −m2
1) + 2q

√
s) + ln(s+ (m2

2 −m2
1) + 2q

√
s)

− ln(−s+ (m2
2 −m2

1) + 2q
√
s)− ln(−s− (m2

2 −m2
1) + 2q

√
s)
]}

(8.7)

One can also evaluate the G function with a cuttoff,

G = Gco(P0 =
√
s) =

∫

q<qmax

d3q

(2π)3
ω1 + ω2

2ω1ω2

1

(P 0)2 − (ω1 + ω2)2 + iǫ
(8.8)

The calculation in Ref. [193] is redone to get a binding energy more
realistic at 0.2 MeV with respect to the channel D∗0D̄0 − c.c. [199], where
the masses of the mesons are taken from the PDG [67]. The free parameter,
α, is fixed for the light channels, αL = −0.8 [193, 174], but the pole position
of the X(3872) is not sensitive to that, since its mass is far away from these
thresholds. For the heavy channels, the value αH = −1.265 is needed for such
binding energy (µ is taken equal to 1500 MeV in all channels). In Table 8.1, a
summary of the pole position and couplings of the resonance to each channel
is given.

The Weinberg compositeness condition [200] can be generalized for dy-
namically generated resonances from several channels [127],

−
∑

i

g2i
∂G

∂s
= 1 , (8.9)

being s = P 2
0 , the squared of the initial energy in the center-of-mass frame,

and |gi|, the couplings in Table 8.1. Each term in Eq. (8.9) gives the prob-
ability of finding the i channel in the wave function, which are 0.86 for
D∗0D̄0−c.c, 0.124 for D∗+D−−c.c and 0.016 for D∗+

s D−
s −c.c. However, this

is different from the wave function at the origin (2π)3/2ψ(0)i = giGi, which
usually enters the evaluation of observables and are nearly equal [127].
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√
s0 = (3871.6− i0.001) MeV

Channel |gi| [MeV]

1√
2
(K∗−K+ − c.c) 53

1√
2
(K̄∗0K0 − c.c) 49

1√
2
(D∗+D− − c.c) 3638

1√
2
(D∗0D̄0 − c.c) 3663

1√
2
(D∗+

s D−
s − c.c) 3395

Table 8.1: Couplings of the pole at
√
s0 MeV to the channel i.

8.3 Formalism in finite volume

We follow the formalism used Ref. [194] where the infinite volume amplitude
T is replaced by the amplitude T̃ in a finite box of size L and G(P 0) in
Eqs. (8.7) and (8.8) is replaced by the finite volume loop function denoted
with G̃, given by the discrete sum over eigenstates of the box

G̃(P 0) =
1

L3

∑

~qi

I(P 0, ~qi) (8.10)

with

I(P 0, ~qi) =
ω1(~qi) + ω2(~qi)

2ω1(~qi)ω2(~qi)

1

(P 0)2 − (ω1(~qi) + ω2(~qi))2
(8.11)

where ωi =
√
m2
i + |~qi|2 is the energy and the momentum ~q is quantized as

~qi =
2π

L
~ni (8.12)

corresponding to the periodic boundary conditions. Here the vector ~n, de-
notes the three dimension vector of all integers (Z3). This form produces a
degeneracy for the set of three integer numbers which has the same modulus.
And we can write the modulus of the momentum as

|~qi| =
2π

L

√
mi (8.13)

where mi stands for the natural numbers (N), and the multiplicity of the
degeneracy is conveniently introduced in Eq. (8.10). The sum over the mo-
menta is done until a qmax, so the three dimension sum over ~ni in Eq. (8.10)
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becomes a one dimension sum over mi to an nmax in a symmetric box

nmax =
qmaxL

2π
(8.14)

When the dimensional regularization is used in the infinite volume case, as
in section II, there is no trace of qmax (α is related to qmax). Thus the
equivalent formalism in finite volume should also be made independent of
qmax and related to α. This is done in Ref. [201] with the result

G̃ = GDR + lim
qmax→∞

(
1

L3

∑

q<qmax

I(P 0, ~q )−
∫

q<qmax

d3q

(2π3)
I(P 0, ~q )

)

≡ GDR + lim
qmax→∞

δG (8.15)

where δG ≡ G̃−Gco, and Gco is given explicitly by the formula of Eq. (8.16)
[148]. Here I(P 0, ~q ) is the factor given in Eq. (8.11)

Gco =
1

32π2


−∆

s
log

M2
1

M2
2

+
ν

s



log

s−∆+ ν
√
1 +

M2
1

q2max

−s+∆+ ν
√
1 +

M2
1

q2max

+log
s+∆+ ν

√
1 +

M2
2

q2max

−s−∆+ ν
√
1 +

M2
2

q2max

+ 2
∆

s
log

1 +
√
1 +

M2
1

q2max

1 +
√
1 +

M2
2

q2max





−2log

[(
1 +

√

1 +
M2

1

q2max

)(
1 +

√

1 +
M2

1

q2max

)]
+ log

M2
1M

2
2

q4max

]

(8.16)

where ∆ =M2
2 −M2

1 and ν =
√
[s− (M1 +M2)2] [s− (M1 −M2)2].

In Fig. 8.2 we show that δG converges as qmax → ∞. In practice, one
can take an average for different values between qmax =1500-2500 MeV and
one sees that it reproduces fairly well the limit of qmax → ∞. In the present
case we use fD = 160 MeV in the potential V . We have used fD = 160
MeV here instead of the fD = 165 MeV of Ref. [183], which provides a fair
average of the present values, fD and fDs , from lattice QCD calculations
[202, 203, 204, 205, 206, 207, 208]. The use of fD or fDs in the calculations
instead of simply fπ is not clearly justified. From the perspective of heavy
quark spin symmetry, (HQSS), and the local hidden gauge approach [30, 13],
the dominant terms go with the exchange of light vectors [209], so the use of
fπ would be more appropriated. However this uncertainty is not a problem
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Figure 8.2: Representation of δG = G̃ − G for D+D∗− in function of qmax
for

√
s = 3850 MeV. The thick line represents the average of δG for different

values of qmax between 1500 and 2500 MeV.

since in the calculation one finally tunes the subtraction constant αH to
obtain the experimental binding, and the change in the value of fπ for fD
and fDs is compensated by small changes in αH as shown in Refs. [210, 211]1.

The Bethe-Salpeter equation in finite volume, can be written as,

T̃ = (I − V G̃)−1V (8.17)

or

T̃−1 = V −1 − G̃ (8.18)

The energy levels in the box in the presence of interaction V correspond to
the condition

det(I − V G̃) = 0. (8.19)

In a single channel, Eq. (8.19) leads to poles in the T̃ amplitude when V −1 =
G̃. In Fig. 8.3 we show this result for one channel, where one can see the
asymptotes corresponding to the energies in the free case. As a consequence,
an infinite number of poles are predicted for a particular size of the box.
Furthermore, for one channel, we can write the amplitude in infinite volume

1This issue has been recently clarified in Ref. [212], where the use of the impulse
approximation at the quark level, with the heavy quarks acting as spectators, leads to the
Weinberg-Tomozawa interaction that we have obtained here using fπ.
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Figure 8.3: G̃(solid) and V −1(dashed) energy dependence of D+D∗− for
Lmπ = 2.0. Black dots correspond to energies (E ≡ P 0) where V −1 = G̃.
Vertical dotted lines are the free energies in the box for D+D∗−.

T for the energy levels (Ei) as

T = (G̃(Ei)−G(Ei))
−1. (8.20)

These energies have a dependence on L as shown in Fig. 8.4, where the
energies are determined for the two first levels corresponding to the channels
D+D∗− and D0D̄∗0. In Fig. 8.4, the two first free energy levels are also shown
with dotted lines. It is interesting to note that at L = 2 fm (corresponding
to Lmπ = 1.4, in our scale, with mπ the physical mass of the pion.) where
the lattice simulation has been done in Ref. [190]2, the difference of energies
between the two levels in our case is 137 MeV while it is about 161 MeV in
Ref. [190]. This is an important down shift of about 60 MeV with respect
to the difference of the free levels of 194 MeV. This indicates that both
approaches have an attractive interaction with, remarkably, about the same
strength. The down shift is also seen in the individual level, as we can see in
the Fig. 8.4. Furthermore, the values of our energies for the D0D̄∗0 channel
at Lmπ = 1.4 for the two lowest levels in the D0D̄∗0 state are about 3860
MeV and 3997 MeV. These also compare very well with the values for the
first two levels of Ref. [190], (3853± 8) MeV and (4014± 11) MeV.

2Note that in Ref. [190] a value of mπ of 266 MeV is used, hence comparison should
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Figure 8.4: L dependence of the energies of the poles for the two first levels
of a single channel. Dotted lines correspond to the free energies. The value
of mπ in the scale is that of the free pion mass.

8.4 Two channel case

In the previous section we have shown the results for the single channels,
D+D∗− or D0D̄∗0, scattering in a finite box. Next step is to combine the
two channels. In the work of Ref. [183] (see also Refs. [193, 199]), a pole at√
s = 3871.6 MeV is obtained using a subtraction constant of αH = −1.265,

with a binding energy of 0.2 MeV with respect to the neutral channel. When
we address the inverse problem in the next section, for the sake of simplicity,
we take only two channels, D+D∗− and D0D̄∗0, reevaluating the coupled
channel calculation explained in section II (see Table 8.1). Then, a new
value αH = −1.153 is needed in order to get the same position of the pole.
The novelty of this study is the inclusion of two channels in the finite box,
where the energies are found using the condition of Eq. (8.19). As one can
see in Fig. 8.5, we have now two curves for each level, when for a single
channel we had only one trajectory. This feature is understood looking into
Fig. 8.5, where the free energies for the channels D+D∗− and D0D̄∗0 (dotted
lines) correspond to the position of the asymptotic lines of Fig. 8.3 for each
L. New asymptotes appear with respect to Fig. 8.3, corresponding to the
free energies of the D0D̄∗0 channel. Since the determinant of Eq. (8.19) has
a zero between two asymptotes, the number of bound states in the box is
now doubled. It is interesting to note, by looking at Figs. 8.4 and 8.5, that
the nondiagonal transition potential between the D+D∗− and D0D̄∗0 has
a repulsive effect among the levels, which are now more separated than in
Fig. 8.4.

be done using the same L not Lmπ, to avoid confusion.
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Figure 8.5: L dependence of the energies of the poles for the two first levels
of D+D∗− and D0D̄∗0. Dotted lines correspond to the free energies.

8.5 The inverse problem

Once we have determined the dependence of poles of T̃ with L using the
potential for the DD∗, we want now to study the inverse problem. The
idea is that QCD lattice data can be used to determine bound states of the
DD̄∗ system. For this purpose we assume that the lattice data are some
discrete points on the energy trajectories obtained by us. Starting with a set
of synthetic data of energy and L, we wish to determine the potential which
generates them. Thus, simulating Lattice data, we evaluate the potential,
and furthermore, by means of Eq. (8.6) we determine the pole position of
the X(3872) in infinite volume with this potential. This study is very useful
since we can estimate the uncertainties in the pole depending on the errors
of the lattice data.

Thus, we generate a set of data for several values of L and a fixed value
of the subtraction constant α = −1.153. In this case we generate 5 points in
a range of Lmπ = [1.5, 3.5] and take 4 levels, this corresponds to n=0 and
1 in the momentum for both channels D+D∗− and D0D̄∗0. In addition, we
simulate uncertainties in the obtained data, moving randomly by 1 MeV the
centroid of the energies, then we assign an error of 2 MeV to these data. In
Fig. 8.6 we show the simulated set of data.

The second step is to choose the potential. We have chosen a potential
with linear dependence in

√
s. This is given by

Vi = ai + bi

(√
s−

√
sth
)

(8.21)

where
√
sth = mD0 + mD̄0∗ is the energy of the first threshold, and i=1,
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Figure 8.6: Fit to the data. Dots with error bar are the synthetic data
generated as explained in the text. Solid lines show the results obtained
using the potential fitted to the synthetic data.

2 and 3 are the indices for each channel (i=1 for D+D∗−, i=2 for D0D̄∗0

and i=3 for the nondiagonal potential). Therefore, there are six parameters
to determine in the potential. With all these ingredients, we do the fit,
evaluating those values of the parameters in Eq. (8.21) that minimize the χ2

function. In Fig. 8.6 we show the result of this fit together with the error
band, which is obtained in the standard method [194] varying randomly the
parameters of the potential in a moderate range (10% change) and choosing
the set of parameters that satisfy the condition χ2 ≤ χ2

min + 1. With these
sets of parameters we determine the binding energy of the system with its
dispersion from the pole of T = (V −1 −GDR)−1. In both T̃ and T we need a
value of α to determinate G̃ or GDR. The interesting thing that we observe
is that the results for the binding energy are essentially independent of the
choice of α. Changes in α revert on changes of V that compensate for it. We
made choices of αH between -1.2 and -2.2.

8.6 Results

In the previous section we have commented our aim to determine the binding
energy of the system with its uncertainty depending on the set of data chosen
in the analysis. We choose several sets of data from Fig. 8.6, varying also
their assumed errors, and show the results obtained for the energy of the
bound state in Table 8.2. We have fitted the first two levels (n=0 and 1)
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Figure 8.7: Contour plot for the χ2 representing χ2 ≤ χ2
min + 1. Each area

correspond to a pair of parameters {ai, bi} for the same potential. Points
correspond to values of the parameters in the χ2 minimum. (Circle and grey
area are for a1 and b1, Square and diagonal lined area are for a2 and b2 and
Diamond and vertical lined area are for a3 and b3.)

for both channels D+D∗− and D0D̄∗0 which gives four branches (B) in the
data. The first option is taking only the first level with n=0, so we have
only two branches, which is more realistic for Lattice results. With this
choice we also consider several options of the number of points (P) on Lmπ.
Then we take 5 points (Lmπ=1.5, 2.0, 2.5, 3.0 and 3.5) in one case and
3 points in another one (Lmπ=1.5, 2.5 and 3.5). The last option that we
consider is a modification of the error bars of the energies (∆E) and the
variation in the position of the centroid (∆C). We choose a first set of high
precision with ∆E=2 MeV and ∆C=1 MeV and a second, less accurate,
set with ∆E=5 MeV and ∆E=2 MeV. We have done the fits for different
possible combinations of these variations in the data set up. The results
of the fits are shown in Table 8.2, where the first four columns determine
the chosen set up of the synthetic data. The next columns are the fitted
parameters, value of χ2 and pole position. The energy values in the “Pole”
column correspond to the pole positions of the T matrix using the GDR loop
function of Eq. (8.7) together with the parametrized potential of Eq. (8.21).
To test the stability of the pole with the parameters, we vary randomly the
parameters by 10%. If the new χ2 calculated with those parameters is less
than the χ2 obtained in the fit plus one, we determine the pole position,
otherwise it will be discarded. We iterate several times until we get 20 or 30
values of the pole positions. Then, we calculate the mean value of those pole
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Data Parameters Results

B P ∆E ∆C a1 a2 a3 b1 b2 b3 χ2 Pole Mean Pole σ

4 5 2 1 -140.18 -112.08 -132.81 -0.310 0.074 0.012 2.32 3871.51 3871.49 0.07

4 5 5 2 -140.18 -112.08 -132.81 -0.310 0.074 0.012 0.79 3871.51 3871.25 0.38

4 3 2 1 -133.01 -131.92 -124.60 -0.242 0.048 -0.075 1.02 3871.44 3871.49 0.18

4 3 5 2 -120.09 -98.19 -150.94 -0.377 -0.075 0.102 0.28 3871.41 3871.15 0.49

2 5 2 1 -176.08 -154.11 -89.26 9.92 7.01 -8.72 0.259 3871.70 3871.47 0.30

2 5 5 2 -158.49 -152.15 -103.23 4.56 6.58 -6.74 0.982 3871.34 3871.30 0.43

2 3 2 1 -132.74 -176.62 -105.53 3.23 0.84 -3.36 0.074 3870.51 3870.48 0.61

2 3 5 2 -226.57 -194.51 -32.74 31.81 13.28 -18.89 0.942 3869.49 3870.37 1.06

Table 8.2: All possible set up changing number of branches (B), number of
points (P ), energy error bar (∆E) and centroid of the energies (∆C) and
their set of parameters fitted. The columns denoted as Results are the χ2

obtained in the fit, the pole is determined with the parameters, and the mean
pole and the dispersion are calculated as explained in the text. The results
are for α = −1.25. As noted in the text, the use of different values of α
change the potential but not the binding energy. Note that we quote values
of total χ2 not the reduced one, which is always much smaller than 1.
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positions and their dispersion.
The results are in the line with what one should expect: fewer branches,

fewer points or bigger errors reverts into a higher dispersion in the binding
energy. Since it is difficult for Lattice simulations to calculate higher levels,
we have also done the test for the first level of energies for both channels, and
in all cases the dispersion of the pole is higher than in the case where two
levels are taken into account. Since the experimental errors in the binding
of the X(3872) are of the order of 0.20 MeV, the exercise done is telling the
level of precision demanded for the Lattice data if the experimental precision
is to be matched.

So far we have assumed that theX(3872) is a dynamically generated state.
This is a rather generalized assumption in hadronic physics as discussed in
the Introduction, but it is also substantiated by the work of Ref. [190]. Indeed
in this paper the use of an interpolator operator of cc̄ alone does not show
the X(3872) but the explicit consideration of DD̄∗ together with cc̄ shows
clearly the signal for it.

If we wished to show that the X(3872) is dynamically generated we could
repeat the procedure done in Section IV of Ref. [201]. We do not wish to
repeat that here, since our concern is to see strategies to analyse lattice
data leading to the precise determination of the binding of the X(3872).
However we still find interesting the following exercise. Let us assume that
the X(3872) was a state largely genuine, like the ρ meson (See Refs. [43, 213,
214]). We can generate it with the Bethe Salpeter equation using a potential
containing a CDD pole [215] of the type

V = VM +
g2CDD

s− sCDD
(8.22)

As an exercise we shall assume this potential to be same for the diagonal
D+D∗−, D0D̄∗0 and the transition from D+D∗− → D0D̄∗0. To ensure a
dominance of the genuine component we take VM to be about 1/10 of the
one needed to generate dynamically the state X(3872),

√
sCDD to be 20 MeV

above the D0D̄∗0 threshold and then we find gCDD = 4620 MeV, which is
adjusted to get the binding of the X(3872) at 3871.6 MeV. Then we get the
levels of Fig. 8.8. As one can see, the two lower levels have not changed
appreciably with respect to Fig. 8.5, but the two upper ones have somewhat
changed at small values of L. Nevertheless, the changes found in the two
lower levels are sufficient to provide some information on the nature of the
state. Indeed, we next repeat the inverse problem, but analysing the results
in Fig. 8.8 as “pseudodata” in terms of the potential of Eq. (8.21), since a
priori we do not know the structure of the potential of Eq. (8.22). We take
only the two lowest levels as in the lower part of Table 8.2, and the case of
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Figure 8.8: L dependence of the energies of the poles for the two first levels of
D+D∗− and D0D̄∗0 using the CDD pole potential. Dotted lines correspond
to the free energies.

B = 2, P = 5, ∆E = 2, ∆C = 1. With a fit to these data we obtain now a
mean pole at 3871.2 MeV and σ = 0.4 MeV. Furthermore, we obtain a set of
coefficients of Eq. (8.21) with larger bi as compared to those of the analysis of
Fig. 8.6. It is then interesting to note that even if our potential in the inverse
problem does not explicitly have a CDD pole, a stronger energy dependence
with large bi leads to

−
2∑

i=1

g2i
∂Gi

∂s
= 1− Z = 0.51 (8.23)

indicating that the state has a large genuine component Z ≃ 0.5. In spite
of not using the form of the potential of Eq. (8.22) that generated the levels
of Fig. 8.8, we still find Z quite different from zero, and very close to the
value that we get from the sum rule in the infinite volumen case using the
potential of Eq. (8.22), Z = 0.63. These values are in contrast with the case
studied before where X(3872) was generated by the potential of Ref. [183],
where we obtain

−
2∑

i=1

g2i
∂Gi

∂s
= 1− Z = 0.97 (8.24)

Therefore, the possible lattice data would be able even to tell the nature
of the generated states by the present inverse problem. It is also worth
noting that in our analysis we have not considered channels like J/ψω which
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Figure 8.9: Mechanism for the transition from DD̄∗ to J/ψω.

certainly couple to the DD̄∗ state. Indeed, within the local hidden gauge
approach, that allows to extrapolate results of chiral dynamics to the heavy
quark sector, we have a mechanism that connects these states, as show in
Fig. 8.9. The diagram of Fig. 8.9 has a standard three vector vertex and a
V V P (upper one) which requires an anomalous coupling that involves three
momenta and furthermore requires the exchange of a heavy vector, with the
subsequence reduction of the strength in the vector exchange, because of the
large D∗ mass. All these factors make this term subdominant in the large
heavy quark mass, mQ, counting when using heavy quark spin symmetry.
As shown in Ref. [209] this term would vanish in the mQ → ∞ limit and is
very small in practice. This justifies the neglect of this channel in the study
that we have done. It is quite interesting to see that in the work of Ref. [190]
considering or not the J/ψω channel does not practically change the results
concerning the X(3872), from where the authors conclude that “the J/ψω is
not significantly coupled to the rest of the system”.

To finalize, we would like to make an exercise of potential value to lattice
QCD practitioners. Most likely, electromagnetic effects would be neglected
in some lattice QCD simulations, eventually increasing the gap between the
D+D∗− and D0D̄∗0 masses. To estimate the effects of that approximation
on the binding energy of the X(3872) we have done the following exercises:

1. We increase mD+ and mD∗− by one MeV each. Then we find that the
energy of the X(3872) changes from 3871.6 MeV to 3871.7 MeV. As
one can see, the change in the energy, ∆E = 0.1 MeV, has been much
smaller than the change in the D+D∗− mass of 2 MeV. This somehow
indicates the larger weight of theD0D̄∗0 state in the mass of the system.

2. Similarly we decrease the mass of the D0 and D̄∗0 by one MeV each.
Then we find an energy for the X(3872) of 3869.8 MeV. This is a
decrease for the energy of 1.8 MeV, nearly the 2 MeV change of the
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D0D̄∗0 mass. Once again, this is telling us that the D0D̄∗0 state is
mostly responsible for the mass of the X(3872).

8.7 Conclusions

We have studied the X(3872) state using the coupled channels D+D∗− and
D0D̄∗0 in a finite box. This is done for a small binding energy. In the
direct problem, we have reproduced the energy dependence with the size of
the box L in the two channel case. We obtain two energy curves for each
level corresponding to the neutral and charged channels. On the other hand,
we have addressed the inverse problem, obtaining the potential from the
simulated lattice data with the aim of using it to evaluate the pole position
in the infinite box case. The fit of the different setups give us an idea of what
one should expect when analysing Lattice data. First one needs that the fit
should be good enough, that is, a chi square function should be sufficiently
small, in order to reproduce the small binding energies. In addition, we have
observed that in order to get a good precision in the binding energy, one does
not need to extract the lattice data with very small errors. Indeed, even with
errors in the data points of 5 MeV, one can obtain the binding energy with
1 MeV (or even smaller value) precision. However, by looking at rows two
and three of Table 8.2 it also becomes clear that very high precision in the
binding energy requires small errors in the Lattice data. As seen in Fig. 8.6,
this is necessary to distinguish between the levels of D+D∗− and D0D̄∗0 at
large L. From a practical point of view, knowing that it is difficult to get
four levels in actual Lattice calculations, it is rewarding to see that with only
two levels one can get quite an accurate value for the binding, provided the
levels are evaluated at several values of L with enough precision. We also
showed that having precise data even allowed us to obtain information on the
dynamically generated nature of the X(3872) state. We hope that this work
gives a reference in the study of Lattice QCD for best strategies in order to
obtain optimum values of the binding of the X(3872) state. The results of
this Chapter are published in Ref. [216].
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Chapter 9
Conclusions

During this Thesis we have used Chiral Perturbation Theory and its exten-
sions with the Hidden Gauge Formalism to face many problems in hadron
physics. Mainly, we have studied the meson-baryon interaction to describe
hadronic resonances and their properties, such as mass, width, partial decay
widths, radiative decay and helicity amplitudes. The study of the vector
meson - baryon interaction has been extended mixing pseudoscalar mesons
with vector mesons in an approach that allows a better understanding of
the nature of those hadronic states. We have used this formalism to calcu-
late the transition diagrams to obtain the amplitudes in coupled channels
that are included in the V potential matrix. Then we have used the Bethe-
Salpeter equation to calculate the unitarized T-matrix using the G function,
dimensional regularized with a subtraction constant. We look for poles in the
complex plane changing to the second Riemann sheet and then we calculate
the couplings for each channel that are determined as the residues of the
poles. This procedure has been used to study N∗ states with JP = 1/2− and
3/2− with much success, and we have shown that the mixing of the interac-
tion of pseudoscalar meson - baryon with vector meson has been crucial when
one tries to reproduce the experimental widths and branching ratios. Other
problems involving meson - meson interaction with the few body approach
or the finite volume have also been studied. We detail in the following the
conclusions of the work done in this Thesis:

• Radiative decay. We have studied the radiative decay of JP = 1/2−

and 3/2− dynamically generated resonances obtained with the hidden
gauge formalism for the interaction of vector mesons with baryons of
the octet and the decuplet of SU(3). The framework used takes into
account that the photon couples to the resonance converting first into
a vector meson ρ0, ω or φ. Using this mechanism we have calculated
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the radiative decay widths of these resonances to γB with B a baryon
of the octet or the decuplet. We have obtained the decay widths of
each third component of isospin I3 for all the possible combinations
of strangeness and isospin. The values of the decay widths are of the
order of 1 MeV and one of the relevant features of the results is the
large difference, of about one order of magnitude, between the widths of
the different charge states of the same resonance. This result is a very
useful information which should constitute a good test for the model.
We have also calculated the helicity amplitudes of the N∗ resonances
previously studied. One can define the helicity amplitude A1/2 and
A3/2 for the n and p, which makes the comparison with experimental
data easier. Moreover we can now separate spin JP = 1/2− and 3/2−

for the resonances which is useful in order to compare with data. It is
interesting to note that the equations for the helicity amplitudes predict
a ratio between A

J=3/2
1/2 and A

J=3/2
3/2 of 1/

√
3, which is something that

could be contrasted with experiment. We have done this and the results
are in good agreement with data in some cases where comparison can
be done.

• The box diagram. In this work we have studied the vector meson
with baryon octet interaction using the hidden gauge formalism which
produces nine dynamically generated resonances, degenerate for the
quantum numbers JP = 1/2− and 3/2−. However, the results for the
widths found in this study are significantly smaller that the experimen-
tal values. This lead us to think that there could be another mechanism
involved in the generation of those resonances that has not been taken
into account. Since pseudoscalar mesons couple both to vector mesons
and baryons, one can think that pseudoscalar mesons can play a role
as intermediate states. This mechanism has been taken into account
with a box diagram where a pseudoscalar meson and a baryon are the
intermediate states. The idea is that the external vector meson decays
into two pseudoscalar mesons, and one of them is exchanged and ab-
sorbed by the external baryon, so we have an intermediate state which
propagates. Then the inverse mechanism occurs and we have again
a vector meson and a baryon as final state. The integral of this box
diagram is evaluated for each of the possible intermediate states for
all the channels. Another important piece for the box is not only the
meson exchange but also the Kroll-Ruderman vertex. Moreover this
mechanism has an important consequence: since the Kroll-Ruderman
term only contributes for JP = 1/2−, it allows to break the original
degeneracy.
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The addition of the box diagram to the potential produces a rewarding
effect, widening the resonances and in some cases producing a small
shift of the position of the peak. This is particularly clear in the the
S = 0 sector where the N∗(1650)(1/2−) and the N∗(1700)(3/2−) de-
generacy is broken and the masses and the widths for both states are
well reproduced. In the other sectors the widths are also bigger and in
better agreement with the results of the PDG than the original ones.
The new couplings found, although they are somewhat different from
the original ones, the moduli remain very similar for most of the cases.

• N∗ resonances with JP = 3/2−. The N∗(1520)(3/2−) is catalogued
as a four-star resonance in the PDG and the N∗(1700)(3/2−) is cata-
logued as a three-star resonance, however, this later state is not found
in some recent analysis but it is included in others. In view of this
apparent disagreement we have studied the D13 partial wave ampli-
tude of πN scattering extracted from experimental data in order to
find out the existence or not of the N∗(1700). We have studied the
mixing of pseudoscalar mesons - baryon interaction with vector mesons
- baryon interaction with JP = 3/2− including the coupled channels
ρN (s-wave), πN (d-wave), π∆ (s-wave) and π∆ (d-wave). The nov-
elty of this work is that using the transition of the box, where the
pseudoscalar meson - baryon was the intermediate state, we can evalu-
ate the transition of V B → PB, beyond the consideration of only the
Kroll-Ruderman term as done in other works.
We have fitted the real and the imaginary parts of the T-matrix to
the D13 partial wave amplitude of πN scattering data in the region of√
s = 1400 − −1800 MeV, taking as free parameters the subtraction

constants for each channel and three parameters of the d-wave transi-
tions. All the subtraction constants obtained are of natural size. The
first important result is that, if we want to reproduce the data, two
poles appear and it is worth noting that the presence of two poles is
rather solid, since moderate changes in the parameters do not spoil the
results of the poles. We have also determined the partial decay widths
to all channels and have found an excellent agreement for the branching
ratios of N∗(1520) and a fair agreement for N∗(1700).

• N∗ resonances with JP = 1/2−. We have extended the previous
study to the JP = 1/2− sector, including other meson-baryon chan-
nels as ηN , KΛ and KΣ. Some other works trying to describe the
N∗(1535)(1/2−) as a dynamically generated resonance using coupled
channels involving pseudoscalar mesons - baryon interaction found that
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some of the subtraction constants were quite different from the “natural
size” and in some cases even positive. Moreover the N∗(1650) state was
not found using this former formalism. In this work we have included
channels of vector meson - baryon interaction and the π∆ (d-wave)
channel which provide the missing elements that allow to get a more
realistic picture.
We have used the πN , ηN , KΛ, KΣ, ρN and π∆ (d-wave) in coupled
channels to fit the experimental data of the S11 πN scattering. The
subtraction constant obtained from the fit are now all negative and of
natural size. Moreover the consideration of the ρN and π∆ channels
has an important qualitative change, now we are able to generate both
the N∗(1535) and the N∗(1650) resonances which is an important suc-
cess of the mixing of pseudoscalar and vector mesons. We can conclude
that the important component of a genuine state in the wave function
of the N∗(1535) claimed in other works, can be translated now by stat-
ing that the missing components can be filled up by the ρN and π∆
channels that we have found here.

• Limits to the Fixed Center Approximation. The fixed center ap-
proximation to the Faddeev equations is a good approximation when
two particles are clustered in a bound system and a third particle leads
also to binding with the components of the cluster. This approxima-
tion is valid when the two bound particles of the cluster are not excited
in an intermediate state, which is most likely when there is no energy
available to excite it. This will happen if the state is bound with re-
spect to the mass of the three particles. The case of our study is the
φ(2170) particle as a resonant state of the φ and f0(980) states. In this
case the φ f0(980) system has 170 MeV of excitation, so there is plenty
of energy to excite the f0 in intermediate states. Our analysis does
not lead to any peak structure around the φ(2170). Moreover we have
determined the contribution of the Faddeev diagram that involves the
KK̄ interaction with the collision of φK or φK̄, and which is respon-
sible for the failure of the FCA. We have found that this mechanism
is of the same order of magnitude as the φK double scattering from
the FCA series. Furthermore, those two mechanisms have amplitudes
with opposite signs and their simultaneous consideration would change
drastically the results obtained from the double scattering contribution
of the FCA alone. In view of this, any approach to this problem should
take into account this fact. However, if one tries to improve the FCA
including these inelastic excitations, one would face a problem involv-
ing higher iterations which would become a more complicated problem
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than the use of Faddeev equations from the beginning.

• Binding energy of X(3872). We have approached the problem of
accurately determining the binding energy of the X(3872) in the finite
volume. The X(3872) is a resonance dynamically generated with the
coupled channels D+D∗− and D0D̄∗0 with a binding energy close to
the D0D̄∗0 threshold. We have studied the DD∗ system in the finite
box using the hidden gauge formalism in SU(4) for the interaction of
the components and then we have studied the scattering amplitude in
a finite volume, finding discrete energy levels depending on the size of
the box L. The first relevant finding is that we obtain a splitting of
the energy levels depending on the size of the box, in contrast to what
happens when one considers a single channel system. This is under-
stood by looking at the G̃ function were the free energies appear as
asymptotes, so with two channels new asymptotes show up, and as we
get an energy level between two adjacent asymptotes, new levels will
appear.
After that, we have studied the inverse problem. We generate pseudo-
data emulating the data that would be provided by lattice practitioners.
Then we fit the data with a generic energy dependent potential and we
get the binding energy which provides the fitted potential. The study
consists in seeing the uncertainty of the binding energy depending on
the number of points obtained with different box sizes, errors of the
energy levels, number of levels, etc. The conclusions extracted of the
analysis show that even with errors in the data points of 5 MeV, one
can get a binding energy with a precision of 1 MeV, which is very re-
warding. Moreover we have observed that with only the first level of
the box, that is two trajectories, one can get a good precision when-
ever enough points for different size of the box L are provided. The
idea has been to shed light to produce optimal strategies for a precise
determination of the binding energy in future lattice analyses. Finally
we have studied the nature of the X(3872) state as a dynamically gen-
erated resonance and show that such information can be obtained from
Lattice data.
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Chapter 10
Resumen en español

10.1 Introducción

A mediados de los años 50 se encontraron un gran número de part́ıculas, sin
otro tipo de clasificación que unos números cuánticos complicadamente de-
ducidos de una forma tan extraña que por aquel entonces inspiraron el nom-
bre de uno de ellos. Sin embargo, en 1961 Gell-Mann propuso un teoŕıa [1, 2]
que clasificaba los bariones y mesones en octetes y decupletes dependiendo
de su isospin e hipercarga. Esto llevó a la predicción de los quarks debido a
la simetŕıa SU(3) de sabor que subyace en esta teoŕıa.

El modelo de quark tuvo mucho éxito ya que daba una explicación natural
a por qué hab́ıa un octete de bariones con JP = 1/2+ y un decuplete con JP =
3/2+. También predijo nuevas part́ıculas como la Ω− con S=-3, descubierta
en 1965 [3] y permitió hacer estimaciones de masas y momentos magnéticos
de los hadrones. Por otra parte, se predijo el número cuántico del color debido
a la necesidad de antisimetŕıa de la función de onda de la ∆++ con JP =
3/2+. Sin embargo se encontraron algunos hadrones como la N∗(1440)(JP =
1/2+)[4], N∗(1535)(JP = 1/2−) o Λ(1405)(JP = 1/2−) que parećıan no
encajar en los octetes y decupletes, y por ello se supuso que eran estados
excitados de los hadrones.

La explicación más intuitiva para los estados excitados era suponer que
los quarks constituyentes eran excitados a un nivel diferente de un fuerte
potencial atractivo que actuaba sobre los quarks. Esta fue la linea de estudio
de estos estados hadrónicos excitados [5, 6, 7]. Aun aśı, era curioso observar
mirando la masa de los primeros bariones excitados, que las enerǵıas de
excitación de los quarks eran del orden de 500 MeV. Por ello nos podŕıamos
preguntar por qué no se creaban varios piones en vez que un quark fuera
excitado, ya que energéticamente era más favorable. Deb́ıa de haber alguna
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respuesta, ya que en algunos casos la dinámica del sistema no teńıa atracción
suficiente como para ligar estos estados. Pero quizás en algunos casos las
condiciones eran tales que estados ligados o resonancias podŕıan aparecer al
añadir uno o más mesones al estado hadrónico fundamental. Para responder a
esta pregunta se necesitaba abordar la dinámica de la interacción de hadrones
de una forma correcta, y muchos pasos se dieron en esa dirección.

10.1.1 Lagrangianos efectivos y Teoŕıa de Perturba-
ciones Quiral

La idea de Weinberg [8] de describir la f́ısica hadrónica a bajas enerǵıas us-
ando Lagrangianos quirales que contienen las simetŕıas básicas de QCD ha
sido muy fruct́ıfera. La introducción de la simetŕıa quiral, contenida en QCD,
en los Lagrangianos efectivos condujo a los Lagrangianos Quirales, que han
sido estudiados en detalle en la Ref. [9]. Con estos Lagrangianos se han estu-
diado muchos problemas de la f́ısica hadrónica usando técnicas perturbativas
que dio lugar a la Teoŕıa de Perturbaciones Quiral (χPT) la cual ha tenido
un éxito innegable. Sin embargo, χPT tiene sus limitaciones, como toda
otra teoŕıa. En el caso de la interacción ππ la expansión en serie perturba-
tiva tiene su ĺımite en la primera singularidad, la cual corresponde al polo
de la resonancia σ, alrededor de los 500 MeV de enerǵıa. El siguiente paso
fue combinar la información de los Lagrangianos Quirales con la unitariedad
de los canales acoplados [10, 11]. Se obtiene aśı un formalismo no pertur-
bativo que permite extender la información contenida en los Lagrangianos
Quirales a enerǵıas más altas, conocido como Teoŕıa Unitaria Quiral o Teoŕıa
de Perturbaciones Quiral Unitarizada, UχPT.

Uno de los resultados más espectaculares de UχPT, es la generación
dinámica de resonancias, lo cual significa que empezando con la interacción
mesón-mesón en canales acoplados y usando técnicas unitarias, se obtienen
las amplitudes de colisión mesón-mesón en las cuales pueden aparecer polos
que correspondes a estados ligados o resonancias. De este modo se pueden
obtener diversos mesones escalares como σ, f0(980), a0(980), etc. en los
canales mesónicos, y también resonancias bariónicas con JP = 1/2−, como
la N∗(1535), o dos polos para la Λ(1405) [12]. Se entiende que estos esta-
dos son estados compuestos por mesón-mesón o mesón-barión, de la misma
manera que el deuterón es un estado compuesto de protón-neutrón y no un
grupo de seis quarks descorrelacionados. Estos resultados rompen con el es-
quema de que los mesones están compuestos por qq̄ y los bariones por qqq.
Esta teoŕıa produce buenos resultados para las amplitudes de colisión en-
tre mesones y para mesón-barión, y también permite calcular propiedades
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de las resonancias, como anchuras parciales de desintegración, momentos
magnéticos, amplitudes de helicidad, y además permite abordar procesos de
producción de esas part́ıculas satisfactoriamente.

Recientemente la interacción entre vectores y de vectores con bariones está
siendo estudiada. La interacción de vectores está descrita por otra teoŕıa, el
hidden gauge de Bando et al. [13], la cual incluye la simetŕıa quiral y conduce
al mismo Lagrangiano Quiral para la interacción mesón-mesón incluyendo
además los mesones vectoriales.

10.1.2 Resonancias dinámicamente generadas

El uso de los Lagrangianos Quirales en combinación con técnicas unitarias en
canales de mesones y bariones ha sido un esquema muy conveniente para el
estudio de la naturaleza de muchas resonancias hadrónicas. El análisis de las
amplitudes de dispersión mesón-barión contienen polos en la segunda hoja
de Riemann que se identifican con resonancias bariónicas. De este modo la
interacción del octete de mesones pseudoescalares con el octete de bariones
ha llevado a las resonancias con JP = 1/2− las cuales encajan bastante bien
con el espectro conocido de resonancias con esos números cuánticos, como se
puede ver en las Refs. [14, 15, 16, 17, 18, 19, 20, 21, 22]. De forma similar,
la interacción del octete de mesones pseudoescalares con el decuplete de bar-
iones también ha llevado a muchas resonancias que pueden ser identificadas
con las ya existentes con JP = 3/2− [23, 24]. De vez en cuando se predice
una nueva resonancia, como en el caso de la Λ(1405), donde el análisis quiral
encuentra dos polos cerca uno del otro, en vez de solo uno, hecho que ha hal-
lado apoyo experimental en los análisis de las Refs. [25, 26]. La naturaleza
de las resonancias es más compleja que solo una molécula de un mesón pseu-
doescalar y un barión, pero el éxito de esta visión al reproducir tantos datos
experimentales de desintegración y producción de resonancias, proporciona
un soporte para reivindicar que en la función de onda de la resonancia existe
una gran componente de esta ı́ndole.

Se ha realizado mucho trabajo usando mesones pseudoescalares como blo-
ques fundamentales, pero el considerar mesones vectoriales en vez de mesones
pseudoescalares está solo empezado a ser explotado. En el sector bariónico
la interacción de ρ∆ ha sido recientemente abordada en la Ref. [27], donde
se han encontrado tres estados degenerados N∗ entorno a los 1800 MeV y
tres estados degenerados ∆ sobre los 1900 MeV con JP = 1/2−, 3/2−, 5/2−.
Este trabajo ha sido recientemente extendido al espacio SU(3) de vectores
con bariones del decuplete en la Ref. [28] y con bariones del octete en la
Ref. [29]. La teoŕıa que subyace en este estudio es el formalismo de hidden
gauge de las Refs. [30, 13, 31], el cual trata la interacción de los mesones vec-
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toriales y pseudoescalares respetando la dinámica quiral, proporcionando la
interacción de mesones pseudoescalares entre ellos, con mesones vectoriales
y de los mesones vectoriales entre ellos mismos. En un trabajo reciente en la
Ref. [32], el análisis de polos en las amplitudes de dispersión de πN , también
incluye el canal ρN y genera dinámicamente una resonancia en torno a los
1700 MeV, la cual tiene un fuerte acoplamiento a este último canal.

En el sector mesónico, con este formalismo la interacción ρρ se ha llevado
a cabo en la Ref. [33], donde se ha llegado a la generación dinámica de las res-
onancias mesónicas f2(1270) y f0(1370), con una anchura de desintegración
al canal γγ en concordancia con el experimento realizado en la Ref. [34].

10.2 Formalismo

La Cromodinámica Cuántica (QCD) es la teoŕıa que subyace bajo la inter-
acción fuerte y describe la interacción entre quarks y gluones. Esta teoŕıa
esta bien entendida y estudiada a altas enerǵıas y ha sido probada muchas
veces experimentalmente. QCD presenta una propiedad denominada “con-
finamiento” que hace que en la naturaleza solo existan “singletes de color”,
también llamados hadrones tales como protones, neutrones, piones, etc. Los
quarks individuales están confinados en los hadrones y no pueden escapar.
Hay otra propiedad de QCD, “libertad asintótica” que dice que a altas trans-
ferencias de momento los quarks se comportan como libres y los cálculos
perturbativos de QCD son posibles. Sin embargo a bajas enerǵıas la “run-
ning coupling constant”, o constante efectiva de la teoŕıa, crece rápidamente.
Desafortunadamente, los métodos perturbativos de QCD no pueden ser apli-
cados en este régimen, pero por otro lado, en la última década se han hecho
grandes avances en estudios no-perturbativos como Lattice o reglas de suma
de QCD.

No obstante, las teoŕıas efectivas son una de las herramientas más útiles
en el estudio de f́ısica hadrónica a bajas enerǵıas. La simetŕıa de SU(3)
contenida en el Lagrangiano de QCD, puede ser extendida a los estados
mesónicos de más baja enerǵıa (π, k, η). Esto es entendido bajo la simetŕıa
quiral de los quarks ligeros (u, d, s) la cual está rota espontáneamente lo que
lleva a los bosones de Goldstone y al desarrollo de una teoŕıa llamada Teoŕıa
Quiral Perturbativa (χPT ) (Ver las Refs. [38, 39] para más detalles).

La densidad Lagrangiana efectiva más general, que es invariante bajo
transformaciones quirales, con el mı́nimo número de derivadas viene dada
por

Leff =
f 2

4
Tr
(
∂µU∂

µU †) (10.1)
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donde f ≈ 93 MeV es un parámetro libre el cual más adelante estará rela-
cionado con la constante de desintegración del pión y

U(x) = ei
√
2φ(x)/f (10.2)

Primero podemos comprobar que el Lagrangiano es invariante bajo la trans-
formación global SU(3)L × SU(3)R

U → RUL† (10.3)

∂µU → R∂µUL
† (10.4)

U † → LU †R† (10.5)

∂µU
† → L∂µU

†R† (10.6)

Aśı pues,

Leff → f 2

4
Tr
(
R∂µUL

†L∂µU †R†) (10.7)

=
f 2

4
Tr
(
R†R∂µU∂

µU †) = Leff (10.8)

En U(x) del Lagrangiano de la Eq. (10.1), φ(x) está relacionada con el campo
de los mesones y las matrices de Gell-Mann mediante

φ(x) =
8∑

a=1

1√
2
λaφa(x) =




φ3 +
1√
3
φ8 φ1 − iφ2 φ4 − iφ5

φ1 + iφ2 −φ3 +
1√
3
φ8 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 − 2√
3
φ8


 (10.9)

que en términos de los campos de mesones es

P =




π0√
2
+ η8√

3
π+ K+

π− − π0√
2
+ η8√

3
K0

K− K̄0 − 2√
3
η8


 (10.10)

El acoplamiento de los mesones pseudoescalares al octete de bariones de
SU(3) viene dado por

LBBP =
F

2
〈B̄γµγ5[uµ, B]〉+ D

2
〈B̄γµγ5 {uµ, B}〉 (10.11)

donde F = 0.51 y D = 0.75, y B es una matriz que contiene los campos del
octete de bariones

B =




1√
2
Σ0 +

1√
6
Λ Σ+ p

Σ− − 1√
2
Σ0 +

1√
6
Λ n

Ξ− Ξ0 − 2√
6
Λ




(10.12)
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Al orden más bajo en el campo de mesones pseudoescalares

uµ = −
√
2

f
∂µP (10.13)

donde para el caso del octete de mesones pseudoescalares, la matriz P está
dad por φ de la Eq. (10.10), lo cual nos permite reescribir el Lagrangiano de
la Eq. (10.11) como

LBBP = −
√
2

f

D + F

2
〈B̄γµγ5∂µPB〉 −

√
2

f

D − F

2
〈B̄γµγ5B∂µP 〉 (10.14)

Para un caso particular de un mesón pseudoescalar P , el cual se acopla a dos
bariones B1 y B2, el Lagrangiano anterior se puede escribir en términos de
un vértice efectivo como

−itB1B2P =

{
α
(D + F )

2f
+ β

(D − F )

2f

}
~σ~k (10.15)

donde ~k es el momento entrante del mesón en el vérticeBBP . Los coeficientes
α y β pueden encontrarse en el Apéndice D.

10.2.1 El formalismo de hidden gauge

El formalismo de hidden gauge [30, 13, 31, 40] incluye la interacción de
mesones vectoriales, fotones y mesones pseudoescalares. El Lagrangiano de
este formalismo viene dado por

L = L(2) + LIII (10.16)

L(2) =
1

4
f 2〈DµUD

µU † + χU † + χ†U〉 (10.17)

LIII = −1

4
〈VµνV µν〉+ 1

2
M2

V 〈
[
Vµ −

i

g
Γµ

]2
〉 (10.18)

donde la derivada covariante está definida como

DµU = ∂µU − ieQAµU + ieUQAµ, (10.19)

donde Vµ, Aµ son los campos de vectores y fotones y Q es la matriz de
carga, Q = diag(2,−1,−1)/3. χ corresponde a la matriz de masas. En la
Eq. (10.18), Vµ es la matriz SU(3) para el nonete de mesones vectoriales

Vµ =




ρ0√
2
+ ω√

2
ρ+ K∗+

ρ− − ρ0√
2
+ ω√

2
K∗0

K∗− K̄∗0 φ




µ

(10.20)
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y g es el acoplamiento de la teoŕıa g = MV

2f
con MV la masa del vector. La

interacción de los vectores con los fotones y los pseudoescalares se tiene en
cuenta por medio de Γµ

Γµ =
1

2

[
u† (∂µ − ieQAµ) u+ u (∂µ − ieQAµ) u

†] (10.21)

donde el campo u está definido como

u2 = U = ei
√
2φ/f (10.22)

La magnitud Vµν para los mesones vectoriales viene dada por

Vµν = ∂µVν − ∂νVµ − ig [Vµ, Vν ] (10.23)

y el segundo término en el Lagrangiano de la Eq. (10.18) viene dado por

[
Vµ −

i

g
Γµ

]2
=

(
Vµ −

e

g
QAµ −

1

g

1

2f 2
φeQAµφ+

1

g

1

4f 2
φ2eQAµ

+
1

g

1

4f 2
eQAµφ

2 − i

g

1

4f 2
[φ, ∂µφ]

)2

(10.24)

Del Lagrangiano anterior se pueden obtener los siguientes términos de inter-
acción entre mesones pseudoescalares, mesones vectoriales y fotones.

LV γ = −M2
V

e

g
Aµ〈V µQ〉 (10.25)

LV γPP = e
M2

V

4gf 2
Aµ〈V µ(Qφ2 + φ2Q− 2φQφ)〉 (10.26)

LV PP = −i M
2
V

4gf 2
〈V µ[φ, ∂µφ]〉 (10.27)

LγPP = ieAµ〈Q[φ, ∂µφ]〉 (10.28)

L̃PPPP = − 1

8f 2
〈[φ, ∂µφ]2〉. (10.29)

Los diagramas de estos vértices están representados individualmente en la
Fig. 10.1.

10.2.2 Formalismo para la interacción VV

Partiendo del Lagrangiano de la Eq. (10.18) se puede obtener la interacción
entre mesones vectoriales como

LV = −1

4
〈VµνV µν〉 (10.30)
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V

γ

(a) LV γ

V

P P

γ

(b) LV γPP

PP

V

(c) LV PP

PP

γ

(d) LγPP

P

P P

P

(e) L̃PPPP

Figure 10.1: Diagramas de interacción que involucran mesones pseu-
doescalares, mesones vectoriales y fotones del Lagrangiano de la Eq. (10.16).
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VV

V

Figure 10.2: Vértice de tres vectores del Lagrangiano de la Eq. (10.39).

BB

V

Figure 10.3: Vértice del mesón vectorial con el octete de bariones del La-
grangiano de la Eq. (10.34).

el śımbolo 〈〉 se refiere a la traza en el espacio de SU(3) donde el término Vµν
viene dado en la Eq. (10.23)

Vµν = ∂µVν − ∂νVµ − ig [Vµ, Vν ] (10.31)

Este Lagrangiano genera dos términos de contacto, uno de tres y otro de
cuatro mesones vectoriales

L(4V ) =
g2

2
〈VµVνV µV ν − VνVµV

µV ν〉 (10.32)

L(3V ) = ig〈(V µ∂νVµ − ∂νVµV
µ)V ν〉 (10.33)

Estamos interesados en el vértice de tres vectores de la Fig. 10.2 ya que será
usado en la interacción mesón vectorial - barión. La interacción de mesones
vectoriales con el octete de bariones se introduce de la misma manera que
con los mesones pseudoescalares, usando el siguiente Lagrangiano

LBBV = g
(
〈B̄γµ[V µ, B]〉+ 〈B̄γµB〉〈V µ〉

)
(10.34)

donde B es la matriz SU(3) del octete de bariones dada en la Eq. (10.12). El
diagrama de este vértice se muestra en la Fig. 10.3. Además, la interacción
de los mesones vectoriales con el decuplete de bariones ha sido estudiada
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usando el Lagrangiano para la interacción de los mesones vectoriales con el
decuplete de bariones, dado en la Ref. [41] por

L = −iT̄ µDνγ
νTµ (10.35)

donde T µabc son los campos de spin del decuplete, siendo a, b, c los ı́ndices
SU(3), tales que

T 111 = ∆++, T 112 = 1√
3
∆+, T 122 = 1√

3
∆0, T 222 = ∆−,

T 113 = 1√
3
Σ∗+, T 123 = 1√

6
Σ∗0, T 223 = 1√

3
Σ∗−,

T 133 = 6 1√
3
Ξ∗0, T 233 = 1√

3
Ξ∗−, T 333 = 1√

3
Ω−

(10.36)
La derivada convariante Dν es

DνT µabc = ∂νT µabc + (Γν)daT
µ
dbc + (Γν)dbT

µ
adc + (Γν)dcT

µ
abd (10.37)

donde Γν es la corriente vectorial

Γν = − 1

4f 2
(V µ∂νVµ − ∂νVµV

µ) (10.38)

10.2.3 Lagrangianos de la interacción mesón-barión

Uno de los estudios más relevantes realizados en este trabajo, es la inter-
acción de los mesones vectoriales con los bariones cuando se intercambia un
mesón vectorial. Para la interacción entre mesones vectoriales, tenemos el
Lagrangiano de tres vectores

L(3V )
III = ig〈(∂µVν − ∂νVµ)V

µV ν〉 , (10.39)

donde Vµ es la matriz SU(3) del nonete de ρ dado por la Eq. (10.20) y g = MV

2f
,

con f=93 MeV. El Lagrangiano de la Eq. (10.39) puede ser reescrito de una
forma más conveniente de la siguiente forma

L(3V )
III = ig〈V ν∂µVνV

µ − ∂νVµV
µV ν〉

= ig〈V µ∂νVµV
ν − ∂νVµV

µV ν〉
= ig〈(V µ∂νVµ − ∂νVµV

µ)V ν〉 (10.40)

De la misma manera, el acoplamiento de los vectores a los pseudoescalares
viene dado por el Lagrangiano de la Eq. (10.27)

LV PP = −ig〈[P, ∂νP ]V ν〉 , (10.41)
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B2B1

V1 V2

V

V1 V2

B1 B2

(a) (b)

Figure 10.4: Interación mesón vectorial-barión: (a) mediante el intercambio
de un mesón vectorial (b) término de contacto.

donde aqúı P es la matriz SU(3) de los mesones pseudoescalares de la
Eq. (10.10). El Lagrangiano para el acoplamiento de los mesones vectori-
ales a los bariones viene dado en la Eq. (10.34) donde B es la matriz SU(3)
del octete de bariones de la Eq. (10.12). Esta interacción se ha estudiado
para el caso del octete de bariones en la Ref. [29] y para el caso del decuplete
de bariones en la Ref. [28]. Como se muestra en la Ref. [29], el término dom-
inante para la interacción V B → V B involucra el vértice de tres vectores de
la Eq. (10.39), donde uno de los vectores se intercambia, y el acoplamiento
del vector intercambiado al barión viene dado en la Eq. (10.34). En ambos
trabajos, el diagrama de intercambio del mesón vectorial de la Fig. 10.4(a) se
convierte en el término de contacto de la Fig. 10.4(b) despreciando el trimo-
mento frente a la masa del mesón vectorial que se intercambia. Manteniendo
el término dominante γ0 en la Eq. (10.34) el potencial dado por este término
es

Vij = −Cij
1

4f 2

(
k0 + k′0

)
~ǫ~ǫ ′ (10.42)

donde k0, k′0 son las enerǵıas de los mesones vectoriales entrante y saliente
respectivamente. El resultado de la Eq. (10.42), con el factor ~ǫ~ǫ ′ para la
polarización de los mesones vectoriales, se obtiene al considerar el trimomento
de los vectores externos pequeño con respecto a la masa de los mesones
vectoriales. La factorización expĺıcita del término de spin en el potencial,
produce una degeneración del spin de los estados que se encuentran cuando
se usa este potencial. Este hecho esta estudiado en detalle en el Apéndice
A. Los coeficientes Cij del potencial mesón vectorial - barión del octete para
todos los estados de isospin y extrañeza, se pueden encontrar en el Apéndice
A de la Ref. [29], donde los sub́ındices i y j corresponden a los diferentes
canales. La matriz V es el potencial de los términos que se muestran en la
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= + + + . . .

Figure 10.5: Primeros diagramas involucrados en la ecuación de Bethe-
Salpeter.

Fig. 10.5, donde los diagramas sucesivos se pueden expresar como

T = V + V GV + V GV GV + . . . (10.43)

que puede ser reescrito como

T = V + V GT (10.44)

Esta expresión se puede expresar en la forma estándar de la ecuación de
Bethe-Salpeter dada por

T = [1− V G]−1 V (10.45)

donde G es la función loop de un mesón vectorial y un barión, la cual esta
calculada con regulación dimensional, como se muestra en las Refs. [18, 42],
y viene dada por

G = i2M

∫
d4q

(2π)4
1

(P − q)2 −M2 + iǫ

1

q2 −m2 + iǫ

=
2M

16π2

{
a(µ) + ln

M2

µ2
+
m2 −M2 + s

2s
ln
m2

M2
+

+
q√
s

[
ln(s− (M2 −m2) + 2q

√
s) + ln(s+ (M2 −m2) + 2q

√
s)

− ln(−s+ (M2 −m2) + 2q
√
s)− ln(−s− (M2 −m2) + 2q

√
s)
]}

(10.46)

con µ una escala de regularización y a(µ) la constante de substracción, que
depende del canal. Existe una relación entre estos dos parámetros µ y α la
cuál viene dada expĺıcitamente por

α′(µ′) = α(µ) + log(
µ′2

µ2
) (10.47)

Esta relación se ha estudiado en detalle en la Ref. [18], donde, ajustando el
polo de la Λ(1405), los autores encuentran que con una escala de regular-
ización de µ =630 MeV, el valor natural para la constante de substracción α
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es -2. Usando estos valores, se puede fijar un valor para µ y después trabajar
solo con la constante de substracción, ya que existe una relación ineqúıvoca.
En la literatura, diversos autores usan diferentes escalas de regularización,
lo que hace necesario el ser capaz de comparar resultados mediante esta
relación.

Comúnmente, la constante de substracción α se ajusta para obtener la
posición del polo o para reproducir una amplitud. A veces, para reproducir
los datos se necesita una constante de substracción diferente para cada canal,
pero en otros casos, un constante de substracción global es suficiente.

La Eq. (10.45) es la llamada ecuación factorizada on shell Bethe-Salpeter
(BS), a pesar de que se puede encontrar con otros nombres en la literatura.
La Eq. (10.45) suma los términos de la ecuación de Lippmann-Schwinger
o términos escalera, pero usando cinemática relativista, y en la integral
impĺıcita del término V GT de la ecuación Bethe-Salpeter, los términos V
y T están factorizados fuera de la integral. Esto está justificado usando el
método N/D y las relaciones de dispersión usadas en las Refs. [43, 18].

10.2.4 Convolución de la función loop

En los casos en los que la iteración de la ecuación Bethe-Salpeter involucra
part́ıculas que tienen una anchura considerablemente grande, como la ρ, el
mesón K∗ o la ∆, es necesario hacer una convolución de la función loop
respecto a la distribución de masa. La función loop con la convolución para
el caso del mesón ρ es

G̃(s) =
1

Nρ

∫ (mρ+2Γρ)2

(mρ−2Γρ)2
dm̃2

(
− 1

π

)
Im

1

m̃2 −m2
ρ + im̃Γ(m̃)

G(s, m̃2,M2
B)

(10.48)
donde G̃ está normalizada con

Nρ =

∫ (mρ+2Γρ)2

(mρ−2Γρ)2
dm̃2

(
− 1

π

)
Im

1

m̃2 −m2
ρ + im̃Γ(m̃)

(10.49)

Considerando que la anchura de la ρ es Γρ=149.4 MeV, la función Γ(m̃)
depende de la enerǵıa y viene dada en la Ref. [35] como

Γ̃(m̃) = Γρ
q3off
q3on

θ(m̃−m1 −m2) (10.50)

con m1 = m2 = mπ para la ρ usando que

qoff =
λ1/2(m̃2,m2

π,m
2
π)

2m̃
, qon =

λ1/2(m2
ρ,m

2
π,m

2
π)

2mρ

(10.51)
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Figure 10.6: Función G para ρN con α = −2.0 y µ = 630 MeV: Izquierda)
Función G sin convolución. Derecha) Función G con convolución de la ρ con
Γρ = 149.4 MeV.

donde λ es la función de Källen y Γρ es la anchura de la ρ. Podemos ver en
la Fig. 10.6 los efectos de la convolución de la función G, en la que se aprecia
que el umbral se ha suavizado. Esto puede eliminar efectos indeseables como
picos en la matriz T , además de generar anchura en las resonancias. Sin
embargo, en algunos casos la convolución de la función G puede hacer que
los polos desaparezcan.

Para el caso de la ∆ podemos proceder de forma similar. Sin embargo,
la integral de la masa es diferente ya que ahora integramos un propagador
bariónico.

G̃(s) =
1

N∆

∫ M∆+2Γ∆

M∆−2Γ∆

dM̃

(
− 1

π

)
Im

1

M̃ −M∆ + iΓ(M̃)
2

G(s,m2, M̃2)

(10.52)
donde G̃ está normalizada con

N∆ =

∫ M∆+2Γ∆

M∆−2Γ∆

dM̃

(
− 1

π

)
Im

1

M̃ −M∆ + iΓ(M̃)
2

(10.53)

donde para la anchura de la ∆ tomamos Γ∆=120.0 MeV, y la función Γ está
definida como en la Eq. (10.50).

10.2.5 Polos y acoplamientos

Una vez se ha evaluado la matriz T , aparecen picos que pueden ser asociados
a estados. El siguiente paso es encontrar los polos que generan esos picos con
el fin de obtener los acoplamientos de estos estados a los diferentes canales. El
método empleado es buscar polos en la segunda hoja de Riemann cambiando
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el momento ~q a−~q en la fórmula anaĺıtica de la funciónG cuandoRe(
√
s) está

por encima del umbral para el canal correspondiente. Usando este método
se pueden encontrar polos de la forma (MR + iΓ/2), donde la parte real
corresponde a la masa de la resonancia y la parte imaginaria es la mitad de
la anchura de este estado.

Uno de los métodos más poderosos cuando se evalúan acoplamientos, es
calcular el residuo usando el teorema del residuo en la matriz T en un camino
de radio r alrededor del polo

∫ 2π

0

T (z(θ))ireiθdθ = 2πiRes(T ) = 2πig2 (10.54)

donde z = z0 + reiθ, y z0 =MR+ iΓ/2. Aśı pues, el acoplamiento gi para un
determinado canal i puede ser evaluado con

g2i =
r

2π

∫ 2π

0

Tii(z(θ))e
iθdθ (10.55)

El acoplamiento no depende del valor del radio r, pero generalmente se toma
un valor de 1 MeV. Sin embargo hace falta ser cuidadoso con los polos cer-
canos al umbral, como en el caso de la X(3872), ya que si la integral de
camino cruza el umbral, se obtendrá un valor erróneo para el acoplamiento.

En algunos casos, la convolución de la función G puede hacer que el polo
desaparezca en canales con el mesón ρ. En este caso se puede estudiar la
amplitud en el eje real usando que cerca del pico, la matriz T será de la
forma

Tij =
gigj√

s−MR + iΓ/2
(10.56)

donde MR es la posición del máximo y Γ la anchura. Las constantes gi y gj
son los acoplamientos de la resonancia a los canales i, j. Se puede tomar el
canal diagonal y obtener que

|gi|2 =
Γ

2

√
|Tii|2 (10.57)

donde el acoplamiento gi tiene una fase arbitraria. Con un acoplamiento
determinado, se pueden obtener los otros a partir de los elementos de matriz
Tij usando la Eq. (10.56), mediante

gj = gi
Tij(
√
(s) =MR)

Tii(
√
(s) =MR)

. (10.58)

Una vez hemos obtenido los acoplamientos de la resonancia a cada canal,
podemos calcular las anchuras parciales de desintegración utilizando la ecuación

Γi =
1

2π

MB

MR

pi|gi|2 (10.59)
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En el caso de una desintegración donde un mesón ρ o K∗ esté involucrado, in-
cluso resonancias que estén por debajo del umbral pueden tener una anchura
de desintegración. En estos casos, el momento que se usa en la ecuación an-
terior seŕıa imaginario. Experimentalmente se observa la desintegración de
la resonancia a estos canales debido a que la anchura del mesón vectorial es
suficientemente grande como para permitir la desintegración, a pesar de que
la resonancia se encuentre por debajo del umbral. Con el fin de generar este
efecto en nuestro cálculo de la anchura parcial de desintegración, hacemos la
convolución del momento con la masa del mesón vectorial. Para el caso de
la ρ tendŕıamos que

p̃ =
1

Nρ

∫ (mρ+2Γρ)2

(mρ−2Γρ)2
dm̃2

(
− 1

π

)
Im

1

m̃2 −m2
ρ + im̃Γ(m̃)

λ1/2(M2
R, m̃

2,M2
N)

2MR

θ(MR − m̃ρ −MN) (10.60)

Donde Nρ es la misma normalización usada en la Eq. (10.49).

10.3 Conclusiones

Durante esta Tesis, hemos usado la Teoŕıa Quiral de Perturbaciones y sus
extensiones con el formalismo Hidden Gauge para abordar varios proble-
mas de la f́ısica hadrónica. Principalmente, hemos estudiado la interacción
mesón-barión para describir resonancias hadrónicas y sus propiedades, como
masa, anchura, anchuras parciales de desintegración, desintegración radia-
tiva y amplitudes de helicidad. Se ha extendido el estudio de la interacción
mesón vectorial - barión mezclando mesones pseudoescalares con mesones
vectoriales con un enfoque que permite entender mejor la naturaleza de esos
estados hadrónicos. Hemos usado este formalismo para calcular los diagra-
mas de transición y aśı obtener las amplitudes en canales acoplados usados en
la matriz potencial V . Luego hemos usado la ecuación Bethe-Salpeter para
calcular la matriz unitarizada T usando la función G, regularizada dimen-
sionalmente con una constante de substracción. A continuación buscamos
polos en el plano complejo cambiando a la segunda hoja de Riemann y para
después calcular los acoplamientos a cada canal que son obtenidos mediante
el residuo de los polos. Este procedimiento se ha empleado para estudiar los
estados N∗ con JP = 1/2− y 3/2− con mucho éxito, y hemos mostrado que
la mezcla de la interacción de mesones pseudoescalares - barión con mesones
vectoriales es crucial cuando se intenta reproducir las anchuras experimen-
tales. Se han estudiado otros casos de la interacción mesón - mesón como
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interacción de varios cuerpos o volumen finito. Detallamos en los siguientes
apartados las conclusiones del trabajo realizado en esta Tesis:

• Desintegración radiativa. Hemos estudiado la desintegración ra-
diativa de las resonancias dinámicamente generadas con JP = 1/2− y
3/2− obtenidas con el formalismo hidden gauge para la interacción de
los mesones vectoriales con bariones del octete y del decuplete de SU(3).
El formalismo tiene en cuenta que el fotón se acopla a las resonancias
convirtiéndose primero en un mesón vectorial ρ0, ω or φ. Usando este
mecanismo hemos calculado las anchuras de desintegración radiativa
de esas resonancias a γB donde B es un barión del octete o del decu-
plete. Hemos obtenido las anchuras de desintegración para cada tercera
componente de isospin I3 y para todas las posibles combinaciones de
extrañeza e isospin. Los valores de las anchuras de desintegración son
del orden de 1 MeV y uno de los resultados más relevantes es la gran
diferencia, de hasta un orden de magnitud, entre anchuras con difer-
entes estados de carga para una misma resonancia. Este resultado da
una información muy valiosa lo cual constituye una buena prueba para
el modelo.
También hemos calculado las amplitudes de helicidad para las resonan-
cias N∗ anteriormente estudiadas. Se puede definir las amplitudes de
helicidad A1/2 y A3/2 para n y p, lo cual hace más fácil la comparación
con los datos experimentales. Además ahora podemos separar los spines
JP = 1/2− y 3/2− para las resonancias lo que es útil para comparar con
los datos. Es interesante notar que las ecuaciones para las amplitudes
de helicidad predicen una relación entre A

J=3/2
1/2 y A

J=3/2
3/2 de 1/

√
3, que

es algo que puede ser contrastado con el experimento. Hemos hecho
esto y los resultados están de acuerdo con los datos en los casos en los
que la comparación puede hacerse.

• El diagrama de caja. En este trabajo hemos estudiado la interacción
de los mesones vectoriales con el octete de bariones usando el formal-
ismo hidden gauge, el cual genera nueve resonancias dinámicamente
generadas, que están degeneradas en los números cuánticos JP = 1/2−

y 3/2−. Sin embargo, los resultados para las anchuras encontrados en
ese estudio, eran significativamente menores que los valores experimen-
tales. Esto nos llevó a pensar que podŕıa haber otro mecanismo involu-
crado en la generación de esas resonancias que no hab́ıa sido tenido en
cuenta. Ya que los mesones pseudoescalares se acoplan a los mesones
vectoriales y a los bariones, se podŕıa pensar que los mesones pseu-
doescalares juegan un papel como estados intermedio. Este mecanismo
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se llevo a cabo con un diagrama de caja donde un mesón pseudoescalar y
un barión eran los estados intermedios. La idea es que un mesón vecto-
rial externo, se desintegra en dos mesones pseudoescalares y uno de ellos
es intercambiado y absorbido por el barión externo, aśı pues tenemos
un estado intermedio que se propaga. Después ocurre el mecanismo
inverso para finalmente tener el mesón vectorial y el barión en el es-
tado final. Hemos evaluado la integral para este diagrama de caja para
todos los posibles estados intermedios y para todos los canales. Otra
pieza importante para la caja, a parte del intercambio de un mesón,
es el vértice de Kroll-Ruderman. Además este mecanismo tiene un
consecuencia importante: dado que el término de Kroll-Ruderman solo
contribuye a JP = 1/2−, es posible romper la degeneración original.
El añadir el diagrama de caja al potencial produce un efecto beneficioso,
ya que hace más anchas las resonancias y en algunos casos produce un
pequeño desplazamiento del pico. Este hecho es particularmente visi-
ble en el sector con S = 0 donde la degeneración de la N∗(1650)(1/2−)
y de la N∗(1700)(3/2−) se rompe y las masas y las anchuras para los
dos estados son correctamente determinados. En otros sectores, las
anchuras son también mayores y con una mejor concordancia con los
datos experimentales del PDG que los resultados originales. Los nuevos
acoplamientos calculados, a pesar de ser un poco diferentes a los orig-
inales, en modulo permanecen muy similares para la mayoŕıa de los
casos.

• Resonancias N∗ con JP = 3/2−. La N∗(1520)(3/2−) está catalogada
como una resonancia de cuatro estrellas en el PDG y la N∗(1700)(3/2−)
está catalogada como una resonancia de tres estrellas, sin embargo esta
resonancia no se encuentra en algunos análisis recientes, pero si se en-
cuentra en otros. A la vista de esta aparente contradicción, hemos
estudiado la amplitud en ondas parciales D13 de la dispersión πN ex-
tráıda de datos experimentales con el fin de averiguar si la N∗(1700)
existe o no. Hemos estudiado la mezcla de la interacción de mesones
pseudoescalares - barión con la interacción de mesones vectoriales -
barión con JP = 3/2− incluyendo los canales ρN (onda s), πN (onda
d), π∆ (onda s) y π∆ (onda d). La novedad de este trabajo es que us-
ando la transición del diagrama de caja, donde un mesón pseudoescalar
y un barión era el estado intermedio, podemos calcular la transición
V B → PB, más allá de solo considerar el término Kroll-Ruderman
como ha sido hecho en otros trabajos.
Hemos ajustado las partes real e imaginaria de la matriz T a la am-
plitud en ondas parciales D13 de la dispersión πN en la región de
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√
s = 1400 − −1800 MeV, tomando como parámetros libres las con-

stantes de substracción para cada canal y tres parámetros de las tran-
siciones en onda d. Todas las constantes de substracción obtenidas son
de la escala natural. El primer resultado importante es que si quere-
mos reproducir los datos, dos polos aparecen y merece la pena destacar
que la presencia de los dos polos es bastante sólida, ya que cambios
moderados en los parámetros no estropean los resultados de los polos.
También hemos determinado las anchuras parciales de desintegración
para todos los canales y hemos encontrado unos resultados en excelente
concordancia con los resultados experimentales de la N∗(1520) y de la
N∗(1700).

• Resonancias N∗ con JP = 1/2−. Hemos extendido el estudio ante-
rior al sector de JP = 1/2−, incluyendo otros canales mesón-barión
como ηN , KΛ y KΣ. Algunos trabajos que intentan describir la
N∗(1535)(1/2−) como una resonancia dinámicamente generada usando
canales acoplados en la interacción mesón pseudoescalar-barión encuen-
tran que algunas de las constantes de substracción son bastante difer-
entes a la escala natural y en algunos casos incluso positivas. Además
el estado N∗(1650) no se encontraba usando ese formalismo. En este
trabajo hemos incluido los canales de interacción de mesón vectorial -
barión y el canal π∆ (onda d) los cuales proporcionan las piezas que
faltaban para obtener un formalismo más realista.
Hemos usado los canales acoplados πN , ηN , KΛ, KΣ, ρN y π∆ (onda
d) para ajustar los datos experimentales S11 de la dispersión πN . Las
constantes de substracción obtenidas con el ajuste ahora son todas neg-
ativas y de la escala natural. Además el haber incluido los canales ρN
y π∆ tiene una consecuencia importante ya que ahora podemos generar
ambas resonancias, laN∗(1535) y laN∗(1650) lo cual es un éxito impor-
tante de la mezcla de mesones pseudoescalares y vectoriales. Podemos
concluir que la componente de la función de onda de un estado genuino
de la N∗(1535) que era apoyada por otros trabajos, puede ser traducida
en que hab́ıan componentes que faltaban, como los canales ρN y π∆.

• Ĺımites de la Aproximación de Fixed Center. La aproximación
de Fixed Center a las ecuaciones de Faddeev es una buena aproxi-
mación cuando dos de las part́ıculas están ligadas en un cluster y no
son excitadas en un estado intermedio, lo cual es común cuando no
hay enerǵıa disponible para excitarlo. Esto ocurrirá si el estado esta
ligado con respecto a la masa de las tres part́ıculas. El caso que estu-
diamos es el de la φ(2170) como un estado resonante de la φ y de la
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f0(980). En este caso el sistema φ f0(980) tiene 170 MeV de excitación
aśı que hay enerǵıa suficiente para excitar el f0(980) en un estado in-
termedio. Nuestro análisis no produce ningun pico para la φ(2170).
Además hemos determinado la contribución del diagrama de Faddeev
que involucra la interacción de KK̄ con una colisión de φK o φK̄, lo
que es responsable del fracaso de la aproximación de fixed center para
este caso. Hemos encontrado que este mecanismo es del mismo or-
den de magnitud que la doble interacción de φK en la serie de FCA.
Además estos dos mecanismos tienen amplitudes con signo opuesto y el
considerarlas simultáneamente podŕıa cambiar drásticamente los resul-
tados obtenidos únicamente de la contribución de doble interacción de
FCA. A la vista de este resultado, cualquier análisis de este problema
debe tener en cuenta este hecho. Sin embargo, si se intenta mejorar
el FCA incluyendo estas excitaciones inelásticas, nos encontraŕıamos
con un problema que involucraŕıa más iteraciones convirtiéndose en un
problema más complicado que si se usaran las ecuaciones de Faddeev
desde un principio.

• Enerǵıa de enlace de la X(3872). Hemos abordado el problema
de determinar con precisión la enerǵıa de enlace de la X(3872) en el
volumen finito. La X(3872) es una resonancia dinámicamente gen-
erada en los canales acoplados D+D∗− y D0D̄∗0 con una enerǵıa de
enlace cercana al umbral de D0D̄∗0. Hemos estudiado el sistema DD∗

en volumen finito usando el formalismo hidden gauge en SU(4) para
la interacción de sus componentes y hemos estudiado la amplitud de
interacción a volumen finito, encontrando unos niveles de enerǵıa dis-
cretos que dependen del tamaño del volumen de la caja L. El primer
resultado relevante es que obtenemos un desdoblamiento de los niveles
de enerǵıa dependiendo del tamaño de la caja, en contraste con lo que
ocurre cuando se usa solo un único canal. Esto se entiende mirando a la
función G̃ donde las enerǵıas libres aparecen como aśıntotas, aśı que si
tenemos dos canales, aparecen nuevas aśıntotas, y como encontramos
un nivel de enerǵıa entre dos aśıntotas adyacentes, aparecen nuevos
niveles de enerǵıa.
Después de esto hemos estudiado el problema inverso. Hemos gener-
ado pseudodatos que emulan los datos que seŕıa obtenidos por estudios
realizados con Lattice. A continuación ajustamos estos datos con un
potencial genérico que depende de la enerǵıa y obtenemos la enerǵıa de
enlace que genera el potencial ajustado a los datos. El estudio consiste
en ver la incertidumbre con la que se determina la enerǵıa de enlace
dependiendo del número de puntos del tamaño de la caja, los errores en
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los niveles de enerǵıa, número de niveles, etc. La conclusión que se ex-
trae de este análisis es que incluso con errores en los datos de 5 MeV, se
puede obtener la enerǵıa de enlace con una precisión inferior a 1 MeV.
Además hemos observado que incluso únicamente usando el primer
nivel de la caja, se puede tener buena precisión cuando se dispone de
suficientes puntos diferentes para el tamaño de la caja L. El objetivo
ha sido dar una idea de las estrategias óptimas para determinar con
precisión la enerǵıa de enlace en futuros análisis de Lattice. Final-
mente hemos estudiado la naturaleza de la X(3872) como un estado
dinámicamente generado y hemos mostrado diversas informaciones al
respecto que pueden obtenerse de los datos de Lattice.
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Appendix A
Spin degeneracy of V B considering the
V B → V B transition

Let us evaluate the transition operator of the vector meson-octet baryon
with a pseudoscalar meson-octet baryon as an intermediate state. We want
to evaluate both J = 1/2 and 3/2. The initial VB state should be

|JM〉 =
∑

m

C (1/2, 1, J ;m,M −m,M) |1/2m〉 |~ǫM−m〉 (A.1)

where

~ǫµ =





− 1√
2
(~ǫ1 + i~ǫ2)

~ǫ3
1√
2
(~ǫ1 − i~ǫ2)

µ = 1, 0, − 1 (A.2)

V1 V2

P

B2BB1

Figure A.1: Vector meson-octet baryon interaction with pseudoscalar meson
as intermediate state.
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158 APPENDIX A. SPIN DEGENERACY OF V B TRANSITION

We are going to use the text book of Rose “Elementary Theory of Angular
Momentum”[217]. The operator in the baryon sector will be

~σ · ~q ~ǫ · ~q (A.3)

That is
~ǫ · ~q → ~ǫM−m · ~q → qM−m (A.4)

In Rose (4.3.5) we can find a relation of the momentum with the spherical
harmonics given by

qM−m =

(
4π

3

)1/2

qY1,M−m (q̂) (A.5)

And for the spinor operator we have

~σ~q =
∑

µ

(−1)µσµq−µ =
∑

µ

(−1)µσµY1,−µ (q̂)

(
4π

3

)1/2

q (A.6)

Let |1/2,m′〉 be the spin state of the intermediate B. Using the Wigner-
Eckart theorem we have

〈1/2m′|σµ|1/2m〉 = C (1/2, 1, 1/2;m,µ,m′) 〈||σµ||〉 (A.7)

= C (1/2, 1, 1/2;m,µ,m′)
√
3 (A.8)

where we have used Rose (5.2) 〈||σµ||〉 = 2
[
1
2
(1
2
+ 2)

]1/2
=

√
3. Now we have,

using Rose (4.32),

Y1,−µ (q̂)Y1,M−m =
∑

L

[
3 · 3

4π(2L+ 1)

]1/2
C (1, 1, L; 0, 0, 0)

C (1, 1, L;−µ,M −m,M −m− µ)

YL,M−m−µ (q̂) (A.9)

Recall C (j1, j2, j3; 0, 0, 0) = 0 unless j1 + j2 + j3 =even (Rose (3.22)). In this
case L = 0 and 2 for parity reasons. This has to be so because

qiqj →
1

3
~q 2δij +

(
qiqj −

1

3
~q 2δij

)
(A.10)

Now we have
∑

m

C (1/2, 1, J ;m,M −m,M) C (1/2, 1, 1/2;m,µ,m′)

C (1, 1, L;−µ,M −m,M −m− µ) (A.11)
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then m+ µ = m′ ⇒ µ = m′ −m. So
∑

m

C (1/2, 1, J ;m,M −m,M) C (1/2, 1, 1/2;m,m′ −m,m′)

C (1, 1, L;m−m′,M −m,M −m′) (A.12)

We would use Rose (6.5a) to convert this sum into one Racah coefficient and
another Clebsch-Gordan coefficient. Rose (6.5a) tells

∑

µ2

C (j1, j2, j
′;µ1, µ2) C (j′, j3, j;µ1 + µ2, µ3) C (j2, j3, j

′′;µ2, µ3)

= Rj′′j′C (j1, j
′′, j;µ1, µ2 + µ3) (A.13)

where µ2 + µ3 must be kept fixed. This tells us that we should put the term
C (1/2, 1, J ;m,M −m,M) in third place, µ2 ≡ m and µ3 ≡ M − m, then
µ2 + µ3 ≡M fixed. We need to reorder, using Rose (3.17b),

C (1/2, 1, 1/2;m,m′ −m,m′) → (−1)1/2−m
(
2

3

)1/2

C (1/2, 1/2, 1;m′,−m)

(A.14)
then using Rose (3.16a)

= (−1)1/2−m
(
2

3

)1/2

(−1)1/2+1/2−1C (1/2, 1/2, 1;−m′,m) (A.15)

finally we get that j1 = 1/2, j2 = 1/2, j3 = 1, j = 1, j′′ = J and µ1 = −m′.

∑

m

C (1/2, 1/2, 1;−m′,m) C (1, 1, L;m−m′,M −m)

C (1/2, 1, J ;m,M −m) (−1)1/2−m
(
2

3

)1/2

(−1)m
′−m

(
4π

3

)

q2
√
3

3

[4π(2L+ 1)]1/2
C (1, 1, L; 0, 0, 0) YL,M−m′(q̂)

= (−1)1/2−m
′

(
2

3

)1/2(
4π

3

)
q2
√
3

3

[4π(2L+ 1)]1/2

RJ,1C (1/2, J, L;−m′,M) C (1, 1, L; 0, 0, 0) YL,M−m′(q̂) (A.16)

Using Rose (3.16c)

C (1/2, J, L;−m′,M) = (−1)1/2+m
′

(
2L+ 1

2J + 1

)1/2

C (1/2, L, J ;−m′,m′ −M)

(A.17)
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and then with Rose (3.16a)

= (−1)1/2+m
′

(
2L+ 1

2J + 1

)1/2

(−1)1/2+L−JC (1/2, L, J ;m′,M −m′) (A.18)

then

RJ,1 = [(2J + 1)(3)]W (1/2, 1/2, L, 1; 1, J)
(6.10b) = [(2J + 1)(3)] (−1)1+J−1/2−1W (1, 1/2, L, J ; 1/2, 1) (A.19)

Altogether we get

(−1)1+Lq2
√
6
√
4πW (1, 1/2, L, J ; 1/2, 1)C (1, 1, L; 0, 0, 0)

YL,M−m′(q̂)C (1/2, L, J ;m′,M −m′) (A.20)

Thus

if J = 1/2, L = 0, 1 ⇒ but only L = 0

if J = 3/2, L = 1, 2 ⇒ but only L = 2

Now let us consider the box diagram of Fig. A.1. So we will have.

∑

m′

∫
d3q C (1/2, L, J ;m′,M −m′) C (1/2, L′, J ′;m′,M ′ −m′)

YL,M−m′(q̂)Y ∗
L′,M ′−m′(q̂) (A.21)

As expected ∫
dΩYL,M−m′(q̂)Y ∗

L′,M ′−m′ = δL,L′δM,M ′ (A.22)

and so

∑

m′

C (1/2, L, J ;m′,M −m′) C (1/2, L, J ′;m′,M −m′) = δJ,J ′ (A.23)

We can thus omit the coefficients of YL,M−m′ and the Clebsch-Gordan but
since we have to integrate over

∫
d3q later, we should put the factor 1

4π
.

Hence, the box will give us

1

4π

∫
d36q44πC (1/2, 1, L; 0, 0, 0)2W (1, 1/2, L, J ; 1/2, 1)2

=

∫
d3q46C (1/2, 1, L; 0, 0, 0)2W (1, 1/2, L, J ; 1/2, 1)2 (A.24)
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We need only two cases

J = 1/2, L = 0

J = 1/2, L = 2

(A.25)

We get the Racah coefficients from Table I.3 of the appendix of Rose. For
the case of J = 1/2 and L = 0, using Eqs. (6.10a) and (6.10b) of Rose

W (1, 1/2, 0, 1/2; 1/2, 1) = phase W (1, 1/2, 1, 1/2; 1/2, 0)

= phase W (1, 1, 1/2, 1/2; 0, 1/2)

= phase
δ1,1δ1/2,1/2
(3 · 2)1/2 (A.26)

where the phase does not play a role since one needs W 2 at the end, and for
the Clebsch-Gordan coefficient

C (1, 1, 0; 0, 0, 0) = − 1√
3

(A.27)

all together ∫
d3q46

(
− 1√

3

)2(
1√
6

)2

=

∫
d3q4

1

3
(A.28)

In the case of J = 1/2 and L = 2,

W (1, 1/2, 2, 3/2; 1/2, 1) = phase

[
(1
2
+ 3

2
+ 1

2
)(1

2
+ 3

2
− 1 + 1)

(2 · 3 · 4 · 5)

]1/2

= phase

[
5 · 2

(2 · 3 · 4 · 5)

]1/2
= phase

1√
12

W (1, 1/2, 2, 3/2; 1/2, 1)2 =
1

12
(A.29)

and for the Clebsch-Gordan coefficient

C (1, 1, 2; 0, 0, 0) =

√
2

3
(A.30)

all together

∫
d3q46

(√
2

3

)2(
1√
12

)2

=

∫
d3q46

2

3

1

12
=

∫
d3q4

1

3
(A.31)
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The degeneracy is not broken, which was easy to see in retrospective. Indeed
we had

ǫiqiǫ
′
jqjqlσlqmσm

σlσm ≡ δlm + iεlmsσs → ǫiqiǫ
′
jqj(δlm + iεlmsσs)qmql

ǫiǫ
′
jqiqj~q

2

1

3
~ǫ~ǫ ′~q 2~q 2 (A.32)

which is independent of spin, so we get the same result for J = 1/2 and 3/2.



Appendix B
Matrix elements of the ~σ ~ǫ operator

Let us evaluate the matrix element

〈1/2m′|~σ ~ǫ |JM〉 (B.1)

where

|JM >=
∑

m

C(1/2, 1, J ;m,M −m,M)|1/2,m > |~ǫM−m > (B.2)

and, as usual,

~ǫµ =





− 1√
2
(~ǫ1 + i~ǫ2)

~ǫ3
1√
2
(~ǫ1 − i~ǫ2)

µ = 1, 0, − 1 (B.3)

Hence the matrix element can be written as

〈1/2m′|~σ ~ǫ |JM〉 =
∑

m

C(1/2, 1, J ;m,M −m,M) 〈1/2m′|~σ~ǫM−m|1/2,m〉

=
∑

m

C(1/2, 1, J ;m,M −m,M) 〈1/2m′|σM−m|1/2,m〉

(B.4)

Using the Wigner-Eckart theorem one obtains

〈1/2m′|σM−m|1/2,m〉 =
√
3 C(1/2, 1, 1/2;m,M −m,m′) (B.5)

from where we get that m′ ≡ M . Substituting this result in Eq. (B.4) we
obtain
∑

m

C(1/2, 1, J ;m,M −m,M)
√
3 C(1/2, 1, 1/2;m,M −m,M) =

√
3 δJ,1/2

(B.6)
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Hence, only J = 1/2 contributes and m′ =M , and thus

〈1/2m′|~σ ~ǫ |JM〉 =
√
3 δJ,1/2δm′,M (B.7)



Appendix C
Expression of the Box diagram integral

The integral of the box diagram of Eq. (4.26) contains a function which
comes from the propagator of the three mesons and the baryon of the loop.
This expression can be simplified in order to cancel the fallacious poles which
appear when one integrates the zero component of the four-momentum using
Cauchy’s Theorem. The sum of the residues terms leads to a long expression
that is given below.

Den = (−2ω1 + iǫ)(−P 0
V − ω1 − ω2 + iǫ)(α− ω3 − ω1 + iǫ)

(β − ω1 + iǫ)(P 0
V − ω2 − ω1 + iǫ)(−2ω2 + iǫ)

(P 0
V + α− ω2 − ω3 + iǫ)(β + P 0

V − ω2 + iǫ)(−α− ω3 − ω1 + iǫ)

(−2ω3 + iǫ)(−α− P 0
V − ω3 − ω2 + iǫ)(β − α− ω3 + iǫ) (C.1)

where

ωi =
√
|~q |2 +m2

i , α = P 0
B1

− P 0
B2
, β = P 0

B1
− EB(~q ),

and

P 0
Bi

=
s+M2

Bi
−M2

Vi

2
√
s

, P 0
Vi
=
s+M2

Vi
−M2

Mi

2
√
s

, EB(~q ) =
√
|~q |2 +M2

B.
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Num = P 0
V
3
ω2(ω

2
1 + ω3(α− β + ω3) + ω1(−β + 2ω3))

−P 0
V
2
ω2((−2α− β + ω2)ω3(α− β + ω3) + ω2

1(−β + ω2 + 2ω3)

+ω1(β
2 − 2(α + β)ω3 + 2ω2

3 + ω2(−β + 2ω3)))

−P 0
V ω2(ω

4
1 + ω3

1(−β + 2ω2 + 2ω3)

+ω3(α− β + ω3)(−(α(α + 2β))

+ω2
2 + ω2

3 + 2ω2(α + ω3)) + ω1(4ω2ω3(α− β + ω3)

+2ω3(α + ω3)(α− β + ω3) + ω2
2(−β + 2ω3))

+ω2
1(ω

2
2 + 2ω3(α− β + ω3) + ω2(−2β + 4ω3)))

+(ω1 + ω2)((−β + ω2)ω3(α− β + ω3)(−α2 + ω2
2 + 2ω2ω3 + ω2

3)

+ω3
1(ω

2
2 + ω3(α− β + ω3) + ω2(−β + 2ω3))

+ω2
1(−β + ω2 + 2ω3)(ω

2
2

+ω3(α− β + ω3) + ω2(−β + 2ω3)) + ω1(ω
3
2(−β + 2ω3)

+ω2ω3(−2α2 − αβ + 3β2 + 2αω3 − 7βω3 + 4ω2
3)

+ω2
2(β

2 + (α− 5β)ω3 + 5ω2
3)

+ω3(α
2(−α + β)− (α2 + 2αβ − 2β2)ω3 + (α− 3β)ω2

3 + ω3
3)))

(C.2)



Appendix D
Coefficients of the Baryon octet -
pseudoscalar mesons interaction

The coefficients of the BBP interaction, α and β, are related to the BBP
vertex of Eq. (4.10)

−itBBP =

{
α
(D + F )

2fπ
+ β

(D − F )

2fπ

}
~σ~k (D.1)

and are given in Tables D.1 and D.2.
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Coefficients α for (D + F )/2f

η8 n̄ n p̄ p Σ̄− Σ− Σ̄+ Σ+ Σ̄0 Σ0 Λ̄ Λ Ξ̄0 Ξ0 Ξ̄− Ξ−

1√
3

1√
3

1√
3

1√
3

1√
3

− 1√
3

− 2√
3

− 2√
3

π0 n̄ n p̄ p Σ̄− Σ− Σ̄+ Σ+ Σ̄0 Λ Λ̄ Σ0

−1 1 −1 1 1√
3

1√
3

π− n̄ p Σ̄0 Σ+ Σ̄− Σ0 Λ̄ Σ+ Σ̄− Λ
√
2 −1 1 1√

3
1√
3

π+ p̄ n Σ̄+ Σ0 Σ̄0 Σ− Λ̄ Σ− Σ̄+ Λ
√
2 −1 1 1√

3
1√
3

K− Λ̄ p Ξ̄0 Σ+ Ξ̄− Σ0 Ξ̄− Λ

− 2√
3

√
2 1 1√

3

K+ p̄ Λ Σ̄+ Ξ0 Σ̄0 Ξ− Λ̄ Ξ−

− 2√
3

√
2 1 1√

3

K̄0 Λ̄ n Ξ̄− Σ− Ξ̄0 Σ0 Ξ̄0 Λ

− 2√
3

√
2 −1 1√

3

K0 n̄ Λ Σ̄− Ξ− Σ̄0 Ξ0 Λ̄ Ξ0

− 2√
3

√
2 −1 1√

3

Table D.1: Coefficients α for the BBP vertex.
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Coefficients β for (D − F )/2f

η8 n̄ n p̄ p Σ̄− Σ− Σ̄+ Σ+ Σ̄0 Σ0 Λ̄ Λ Ξ̄− Ξ− Ξ̄0 Ξ0

− 2√
3

− 2√
3

1√
3

1√
3

1√
3

− 1√
3

1√
3

1√
3

π0 Σ̄− Σ− Σ̄+ Σ+ Σ̄0 Λ Λ̄ Σ0 Ξ̄− Ξ− Ξ̄0 Ξ0

1 −1 1√
3

1√
3

1 −1

π− Σ̄− Σ0 Σ̄0 Σ+ Σ̄− Λ Λ̄ Σ+ Ξ̄− Ξ0

−1 1 1√
3

1√
3

√
2

π+ Σ̄0 Σ− Σ̄+ Σ0 Σ̄+ Λ Λ̄ Σ− Ξ̄0 Ξ−

−1 1 1√
3

1√
3

√
2

K− Λ̄ p Σ̄0 p Σ̄− n Ξ̄− Λ

1√
3

1
√
2 − 2√

3

K+ p̄ Λ p̄ Σ0 n̄ Σ− Λ̄ Ξ−

1√
3

1
√
2 − 2√

3

K̄0 Λ̄ n Σ̄0 n Σ̄+ p Ξ̄0 Λ

1√
3

−1
√
2 − 2√

3

K0 n̄ Λ n̄ Σ0 p̄ Σ+ Λ̄ Ξ0

1√
3

−1
√
2 − 2√

3

Table D.2: Coefficients β for the BBP vertex.
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Appendix E
Coefficients of the box integral

The box diagram generates an integral that we have analytically calculated
in the general case in Eq. (4.26). The expression has four coefficients (a, b,
c and CV1CV2) which depend on each channel and particles involved in the
loop, the baryon B and the three pseudoscalar mesons (B1, B2 and B3). The
Tables E.1, E.2, E.3 and E.4, contain those coefficients for each quantum
number, channel and loop.

171



172 APPENDIX E. COEFFICIENTS OF THE BOX INTEGRAL

Coefficients for state S = 0, I = 1/2

Channel Box (D + F )2 (D − F )2 (D + F )(D − F ) CV1
CV2

BP1P2P3 a b c

ρN Nπππ 1 0 0 4

3

ΣKKK 0 1

4
0 1

ΛKKK 1 1

4
-1 1

ωN ΣKKK 0 1 0 3

4

ΛKKK 1 1

4
-1 1

3

φN ΣKKK 0 1 0 3

2

ΛKKK 1 1

4
-1 2

3

K∗Λ NKπK 1 1

4
-1 1

ΣπKπ 1 1 2 1

4

NηKη 1 1 2 1

4

NKηK 1 1

4
-1 1

K∗Σ NKπK 0 1 0 1

ΣπKπ 1 1 -2 11

12

ΣηKη 1 1 2 1

4

ΛηKη 1 1 2 1

18

ΣπKη 1 -1 0 - 1
3

ΣηKπ 1 -1 0 1

3

Non-diagonal terms

Channel Box (D + F )2 (D − F )2 (D + F )(D − F ) CV1
CV2

BP1P2P3 a b c

ρN → K∗Λ ΛKKη 2 -1 1 1

4

ΣKKπ 0 1 1 - 1
4

NππK 2 0 -1 1

ρN → K∗Σ ΛKKπ 2 -1 1 1

4

ΣKKη 0 1 1 - 1
4

ΣKKπ 0 -1 1 - 1
2

NππK 0 0 1 5

3

K∗Λ → K∗Σ ΣπKη 1 1 2 1

4

ΣπKπ 1 -1 0 1

3

ΛηKπ 1 1 2 - 1
4

NKπK 0 -1 2 5

12

NKηK 0 -1 2 - 1
4

Table E.1: Coefficients of the Box Integral for the S=0, I=1/2 states.
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Coefficients for state S = −1, I = 0

Channel Box (D + F )2 (D − F )2 (D + F )(D − F ) CV1
CV2

BP1P2P3 a b c

K̄∗N ΣKπK 0 1 0 3

2

NπKπ 1 0 0 1

ΛKηK 1 1

4
-1 2

NηKη 1

4
1 -1 2

ωΛ ΞKKK 1

4
1 -1 2

3

NKKK 1 1

4
-1 2

3

ρΣ Σπππ 1 1 -2 10

3

ΞKKK 1 0 0 5

6

NKKK 0 1 0 5

6

φΛ ΞKKK 1

4
1 -1 4

3

NKKK 1 1

4
-1 4

3

K∗Ξ ΣKπK 1 0 0 1

ΞπKπ 0 1 0 5

4

ΛKπK 1

4
1 -1 1

3

ΞηKη 1 1

4
0 1

ΣKηK 1 0 0 3

2

ΞπKη 0 1 -2 1

2

ΞηKπ 0 1 2 1

2

Table E.2: Coefficients of the Box Integral for the S=-1, I=0 states.
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Coefficients for state S = −1, I = 1

Channel Box (D + F )2 (D − F )2 (D + F )(D − F ) CV1
CV2

BP1P2P3 a b c

K̄∗N ΣKπK 0 1 0 1

ΛKπK 1 1

4
-1 2

3

NπKπ 1 0 0 1

2

ΣKηK 0 1 0 3

2

ρΛ Σπππ 1 1 2 2

3

ΞKKK 1

4
1 -1 2

3

NKKK 1 1

4
-1 2

3

ρΣ Σπππ 1 1 -2 1

Λπππ 1 1 2 2

3

ΞKKK 1 0 0 1

NKKK 0 1 0 1

ωΣ ΞKKK 1 0 0 1

2

NKKK 0 1 0 1

2

K∗Ξ ΣKπK 1 0 0 1

2

ΞπKπ 0 1 0 5

4

ΛKπK 1

4
1 -1 1

ΞηKη 1 1

4
0 1

ΛKηK 1

4
1 -1 2

ΞπKη 0 -1 2 1

2

ΞηKπ 0 -1 -2 1

2

φΣ ΞKKK 1 0 0 1

NKKK 0 1 0 1

Table E.3: Coefficients of the Box Integral for the S=-1, I=1 states.
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Coefficients for state S = −2, I = 1/2

Channel Box (D + F )2 (D − F )2 (D + F )(D − F ) CV1
CV2

BP1P2P3 a b c

K̄∗Λ ΞKπK 1

4
1 -1 1

ΣπKπ 1 1 2 1

4

ΞKηK 1

4
1 -1 1

ΛηKη 1 1 2 1

4

K̄∗Σ ΞKπK 1 0 0 11

12

ΣπKπ 1 1 -2 1

ΛπKπ 1 1 2 1

12

ΞKηK 1 0 0 1

4

ΣηKη 1 1 2 1

4

ΣπKη 1 -1 0 − 1

3

ΣηKπ 1 -1 0 − 1

3

ρΞ Ξπππ 0 1 0 4

ΛKKK 1

4
1 -1 1

ΣKKK 1 0 0 1

12

ωΞ ΛKKK 1

4
1 -1 1

3

ΣKKK 1 0 0 1

4

φΣ ΛKKK 1

4
1 -1 2

3

ΣKKK 1 0 0 1

2

Table E.4: Coefficients of the Box Integral for the S=-2, I=1/2 states.
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Appendix F
Evaluation the vertices

The diagonal transition for π∆ (s-wave) and ρN (s-wave) are taken from
Refs. [28] and [29] respectively. So we need to evaluate the transition poten-
tial of Fig. F.1. When constructing the Kroll-Ruderman term, we shall get
the contact term of the type of ~S+~ǫ. We must evaluate this matrix element

〈
3/2M ′|~S+~ǫ |JM

〉
(F.1)

where
|JM〉 =

∑

m

C (1/2, 1, J ;m,M −m,M) |1/2m〉 |~ǫM−m〉 (F.2)

As ~ǫ is part of |JM〉, we get that in the spherical basis

~S+~ǫM−m ≡ S+
M−m (F.3)

then the matrix element becomes
〈
3/2M ′|S+

M−m|1/2m
〉
≡ C (1, 1/2, 3/2;M −m,m,M ′)

〈
||S+||

〉
(F.4)

Figure F.1: Diagram of the transition ρN → π∆ (s-wave).
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where the reduced matrix element is chosen to be 1 by construction, and
from the Clebsch-Gordan coefficient we get a δMM ′ . Finally we get that
∑

m

C (1/2, 1, J ;m,M −m) C (1/2, 1, 3/2;m,M −m) δMM ′ = δMM ′δ3/2J

(F.5)
Hence, for spin 3/2 of ρN this operator is unity 1. Getting the Kroll-
Ruderman term, we must substitute

~ǫ
(
~PV + 2~q

) 1

(PV + q)2 −m2
π

~S+
(
~PV + ~q

)
→ ~S+~ǫ (F.6)

We need to write the states of isospin basis in charge basis, with our sign
convention ρ+ ≡ − |1, 1〉.

|ρN, I = 1/2, 1/2〉 = −
√

2

3
|ρ+n

〉
− 1√

3
|ρ0p

〉

|ρN, I = 3/2, 1/2〉 = −
√

1

3
|ρ+n

〉
+

√
2

3
|ρ0p

〉

|π∆, I = 1/2, 1/2〉 =

√
1

2
|π−∆++

〉
−
√

1

3
|π0∆+

〉
−
√

1

6
|π+∆0

〉

|π∆, I = 3/2, 1/2〉 = −
√

2

5
|π−∆++

〉
−
√

1

15
|π0∆+

〉
−
√

8

15
|π+∆0

〉

(F.7)

For the transition ρN → π∆ (s-wave) we have the vertices of Fig. F.2. To
evaluate those vertices we need both Lagrangians, one for the VPP vertex
and the other one for the lower πN∆ vertex. The first diagram has a vertex

tρ+π+π0 = −L = g
√
2
(
~PV + ~q + ~q

)
~ǫ (F.8)

The other coefficients of the diagrams for the different charge combinations
are indicated in Fig. F.2. The lower vertex has an isospin coefficient for
πN∆, giving a transition vertex for the first diagram

−itπ0n∆0 =
fπN∆

mπ

~S+
(
~PV + ~q

)√2

3
(F.9)

The other isospin coefficients of the lower vertices are shown in Fig. F.2.
Combining the two vertices and the pion propagator, we get the transition
potential of the first diagram.

−itρ+n→π+∆0 = −ig
√
2 2~q ~ǫ

i

(PV + q)2 −m2
π

fπN∆

mπ

~S+~q

√
2

3
(F.10)
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As mentioned before, we need to add the Kroll-Ruderman term as ~S+~ǫ,

−itρ+n→π+∆0(KR) = g
√
2
fπN∆

mπ

√
2

3
~S+~ǫ (F.11)

So in the s-wave for a π-exchange we can sum the momenta products as

2~q · ~ǫ ~S+ · ~q = 2qiǫiS
+
j qj → ǫiS

+
j

2

3
~q 2δij =

2

3
~q 2~S+ · ~ǫ (F.12)

And we have shown for J = 3/2 that ~S+ · ~ǫ = 1 The sum of the pion
propagator and the Kroll-Ruderman for the first diagram gives us

−itρ+n→π+∆0 = g
√
2

√
2

3

fπN∆

mπ

( 2
3
~q 2

(PV + q)2 −m2
π

+ 1

)
(F.13)

Hence putting all the coefficients of the Clebsch-Gordan and the correspond-
ing vertex factor we get

〈π∆, I = 1/2, 1/2| − it|ρN, I = 1/2, 1/2〉 =

〈
√

1

2
π−∆++ −

√
1

3
π0∆+ −

√
1

6
π+∆0| − it|

√
2

3
ρ+n− 1√

3
ρ0p〉 =

(
1√
2

1√
3

√
2(−1)− 1√

3

√
2

3
(−
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2)(− 1√

3
)− 1√

6

√
2

3

√
2

√
2

3

− 1√
6

1√
3
(−

√
2)

1√
3

)
=

2√
3

(F.14)

(F.15)

The isospin factor is 2√
3
, so finally all together

−itρN(s)→π∆(s) = g
2√
3

fπN∆

mπ

( 2
3
~q 2

(PV + q)2 −m2
π

+ 1

)
(F.16)

We need also to evaluate the s-wave and d-wave mixing, ρN is in L = 0
but π∆ can be in L = 0 and L = 2 since there is enough momentum for
N∗(1520) and N∗(1700). With ρN below threshold there is no need to worry
about L = 2 for ρN . We want to work with ρN(s), π∆(s) and π∆(d), for
this we shall also include the ρN → πN(d) transition.

Let us evaluate the transition ρN(s) → ρN(s) through an intermediate
state π∆ as shown in Fig F.3(a). Let us take the third component of spin
1/2 and 1 for N and ρ respectively, to get M = 3/2 since the result does not
depend on the third component. With this choice, both polarizations ~ǫ and
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Figure F.2: Diagram of the transition ρN → π∆ (s-wave).

~ǫ ′ will be the same and we have neglected the momentum ~k. The terms of
the four vertices are

~ǫ · 2~q ~S · ~q ~ǫ · 2~q ~S+ · ~q (F.17)

We can put together the polarization terms and the isospin transition oper-
ators and use

~S · ~q ~S+ · ~q = Siqj S
+
j qj = (

2

3
δij −

i

3
εijkσk)qiqj =

2

3
~q 2 (F.18)

For the polarization terms we have in the loop integral

4~ǫ · ~q ~ǫ · ~q = 4ǫiqi ǫjqj =
4

3
δij~q

2ǫiǫj =
4

3
~q 2~ǫ · ~ǫ = 4

3
~q 2 (F.19)

as ~ǫ · ~ǫ = 1. Now, all together we have

4

3
~q 22

3
~q 2 (F.20)

including both L = 0 and L = 2 contributions. For s-wave we got 2
3
~q 2 for

one pion exchange (See Eq. (F.12)) so, the box equivalent operator with only
s-wave will be

2

3

2

3
~q 2~q 2 =

4

9
~q 4 (F.21)
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Figure F.3: Box diagrams for the L = 2 transition: (a) ρN → π∆ and (b)
ρN → πN .

subtracting this from the total transition (Eq. (F.20)) we get the d-wave
transition in the box

8

9
~q 4 − 4

9
~q 4 =

4

9
~q 4 (F.22)

So finally we obtain that for the d-wave transition of one pion exchange the
contribution is 2

3
~q 2, the same one as for the s-wave transition. All the other

terms are the same but without the Kroll-Ruderman factor which only comes
in L = 0. Thus,

−itρN(s)→π∆(d) = g
2√
3

fπN∆

mπ

( 2
3
~q 2

(PV + q)2 −m2
π

)
(F.23)

In the case of ρN → πN (d-wave) transition, the s-wave for 3/2 does not
exist, so whatever comes out will be d-wave. We use the same procedure as
for π∆, we chose the third component of spin to be 3/2. The diagram is
shown in Fig F.3(b) and the operators of the vertices are

~ǫ · 2~q ~σ · ~q ~ǫ · 2~q ~σ · ~q (F.24)

In the same way

~σ · ~q ~σ · ~q = σiqj σjqj = (δij − iεijkσk)qiqj = ~q 2 (F.25)

and for the polarization we have the same result as Eq. (F.19). So we get

4

3
~q 2~q 2 =

2√
3
~q 2 2√

3
~q 2 (F.26)

The result for each vertex in the ρN → πN (d-wave) is 2√
3
~q 2.
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Figure F.4: Diagram of the transition ρN → πN (d-wave).

Hence the ~ǫ · 2~q ~σ · ~q operator in one pion exchange can be replaced by

2√
3
~q 2fπNN

mπ

(F.27)

which replaces the equivalent contribution 2
3
~q 2 fπN∆

mπ
that we had for the ρN →

π∆ (d-wave) transition. Next we must do the isospin combination and the
charge factors for each vertex as shown in Fig. F.4.

|ρN, I = 1/2, 1/2〉 = −
√

2

3
|ρ+n

〉
− 1√

3
|ρ0p

〉
(F.28)

|πN, I = 1/2, 1/2〉 = −
√

2

3
|π+n

〉
− 1√

3
|π0p

〉
(F.29)

Looking at the diagrams, the isospin factor for the transition ρN → πN
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(d-wave) will be

〈ρN, I = 1/2, 1/2|T |πN, I = 1/2, 1/2〉 = (F.30)

2
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2
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1

3
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1

3
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= (F.31)
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√
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Finally we have

−itρN(s)→πN(d) = g(−2
√
6)
fπNN
mπ

( 2
3
~q 2

(PV + q)2 −m2
π

)
(F.33)
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