
Universidad de Oviedo
Programa de Do ctorado

en Matemáticas yEstadística

Comparison of alternatives und er
uncertainty and imprecision

Tesis Do ctoral

Ignacio Montes Gutiérr ez



Conte nts

Agradecimientos xv

Resumen xvii

Abstract xix

1 Intro duction 1

2 Basic concepts 9

2.1 Stochastic orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Stochastic dominance . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Statistical preference. . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Imprecise probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Coherent lower previsions . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Conditional lower previsions. . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Non-additivemeasures. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.4 Random sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Intuitionistic fuzzy sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Comparisonofalternativesunder uncertainty 43

3.1 Properties of the statistical preference . . . . . . . . . . . . . . . . . . . . 44

xi



xii Contents

3.1.1 Basic properties and intuitive interpretation of the statistical pref-
erence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.2 Characterizationsof statisticalpreference . . . . . . . . . . . . . . 52

3.2 Relationship b etween sto chastic dominance and statistical preference.. . 77

3.2.1 Independent random variables . . . . . . . . . . . . . . . . . . . . 78

3.2.2 Continuouscomonotonicand countermonotonicrandom
variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.3 Discretecomonotonic andcountermonotonicrandom variableswith
finite supp orts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.4 Random variables coupled by an Archimedean copula . . . . . . . 86

3.2.5 Other relationships b etween sto chastic dominance and statistical
preference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2.6 Exampleson theusualdistributions . . . . . . . . . . . . . . . . . 93

3.3 Comparison of n variables by means of the statistical preferenc e. . . . . . 102

3.3.1 generalisationof thestatisticalpreference . . . . . . . . . . . . . . 104

3.3.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.3.3 Stochastic dominance Vs general statistical preference. . . . . . . 111

3.3.4 General statistical preference Vsnth degree sto chastic dominance. 127

3.4 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.4.1 Comparison of fitness values. . . . . . . . . . . . . . . . . . . . . . 129

3.4.2 General statistical preference as a tool for linguistic decision making141

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4 Comparisonofalternativesunder uncertaintyandimprecision 147

4.1 generalisationof thebinaryrelations . . . . . . . . . . . . . . . . . . . . . 148

4.1.1 Imprecise stochastic dominance. . . . . . . . . . . . . . . . . . . . 157

4.1.2 Imprecise statisticalpreference . . . . . . . . . . . . . . . . . . . . 193

4.2 Modelling imprecision in decision making problems . . . . . . . . . . . . . 202



Contents xiii

4.2.1 Imprecision ontheutilities . . . . . . . . . . . . . . . . . . . . . . 202

4.2.2 Imprecision onthebeliefs . . . . . . . . . . . . . . . . . . . . . . . 206

4.3 Modelling the joint distribution. . . . . . . . . . . . . . . . . . . . . . . . 209

4.3.1 Bivari ate distribution with im precision. . . . . . . . . . . . . . . . 210

4.3.2 Imprecise copulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

4.3.3 The role of imprecise copulas in the imprecise orders . . . . . . . . 237

4.4 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

4.4.1 Comparison of Lorenzcurves . . . . . . . . . . . . . . . . . . . . . 243

4.4.2 Comparison of cancersurvival rates . . . . . . . . . . . . . . . . . 247

4.4.3 Multiattribute decisionmaking. . . . . . . . . . . . . . . . . . . . 249

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

5 Comparisonofalternativesunder imprecision 257

5.1 Measuresof comparisonofIF-sets . . . . . . . . . . . . . . . . . . . . . . 258

5.1.1 Comparisonof IF-sets . . . . . . . . . . . . . . . . . . . . . . . . . 267

5.1.2 Properties of the IF-divergences. . . . . . . . . . . . . . . . . . . . 273

5.1.3 ExamplesofIF-divergencesandIF-dissimilarities. . . . . . . . . . 279

5.1.4 Local IF-divergences . . . . . . . . . . . . . . . . . . . . . . . . . . 290

5.1.5 IF-divergences Vs Divergences.. . . . . . . . . . . . . . . . . . . . 314

5.2 Connecting IVF-sets and imprecise probabilities. . . . . . . . . . . . . . . 330

5.2.1 Probabilistic information of IVF-sets. . . . . . . . . . . . . . . . . 331

5.2.2 Connection withotherapproaches . . . . . . . . . . . . . . . . . . 346

5.3 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

5.3.1 Application topatternrecognition . . . . . . . . . . . . . . . . . . 350

5.3.2 Application todecisionmaking. . . . . . . . . . . . . . . . . . . . 352

5.3.3 Using IF-divergences to extend sto chastic dominance.. . . . . . . 358

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362



xiv Contents

Conclusiones y traba jo futuro 363

Concluding remarks 369

A App endix: Basic Results 377

List of symb ols 385

Alphab etic index 390

List of Figures 392

List of Tables 395

Bibliography 397



Agradecimientos

Estamemoria abarca el traba jo realizado desde que en Julio de 2009 finalicé la licen-
ciatura en Matemáticas. Por aquel entonces recibí el ap oyo de varios miembros del
Departamento de Estadística e Investigación Op erativa y Didáctica de la Matemática
para realizar una tesis do ctoral. De entreellos, deb o destacar los consejos que siempre
me dieron losProfesores Pedro Gily Santos Domínguez.

La oportunidad de comenzar este traba jo me surgió cuando Susana Montes se
puso en contacto conmigo para ofrecerme la p osibilidad de adentrarme en el apasio-
nante mundo de la investigación, y es de justicia calific ar este momento como uno de los
más imp ortantes de to da mivida. Desde entonc es me encuentro en elmejor ambiente
posible de traba jo, arropado en todo momento por los miembros del proyecto UNIMODE:
Susana Díaz, Davide Martinetti,Enrique Miranda y la propia Susana Montes.

Es de justicia nombrar de manera esp ecial a mis directores Susana Montes y Enrique
Miranda (y aunque no figure comodirectora, también a Susana Díaz). Este traba jo ha
sido p osible grac ias a ellos, a su dedicación, a su paciencia, a su pasión p or las m atemáti-
cas, asusganasde hacerlascosasbien. Po dría rellenar muchas páginas explicando lo
agradecido que les estoy y lo afortunado que me siento p or pertenecer a este maravi-
lloso grupo de traba jo, pero sinceramente mis palabras nunca llegarían a reflejar mis
sentimientos.

A lo largo de estos años ha habido muchas p ersonas a las que les deb o mis agradec i-
mientos, comenzando p or mis compañe ros de carrera y los miembros del Departamento
de Estadística e Investigación Op erativa y Didáctica de la Matemática. Al personal
de la UCE, yen particular a Tania y Patri, por su incondicional ap oyo y su sincera
amistad. A Gert de Co oman y to do su equip o, ya PaoloVicig y Renato Pelessoni
deb o agradecerles su amabilidad durante las estancias que realicé en las Universidades
de Gante y de Trieste.A los miembros de la comunidad científica nac ional e internacional
por su amabilidad y buenos consejos.Y en definitiva, a to dos aquellos que de una u otra
manera han colaborado o ap ortado en mi formación.

Por otra parte, este traba jo no habría sido p osible sin la financiación, a través de una

xv



Beca deFormación deProfesorado Universitario, del Ministerio deEducación, así comoa
la Ayuda recibida por parte del Vicerrectorado de Investigación y Campus de Excelencia
de la Universidad de Oviedo que me p ermitió realizar una estancia de investigación en
la Univers idad de Trieste.

Y por supuesto, darles lasgraciasa mi familia y a Almudena .. . simplemente por
to do.



Resumen

En much as situaciones de la vida real es necesario comparar alternativas.Además , es ha-
bitual que estas alternativas estén definidas ba jo falta de información.En esta memoria
se consideran dos tip os de falta de información:incertidumbre e imprecisión. La incer-
tidumbre se refiere a situaciones en las cuales los posibles resultados del exp erimento
son cono cidos y se pueden describir completamente,pero el resultado del mismo no es
cono cido;mientras que en las situaciones ba jo imprecisión, se cono ce elresultado del
exp erimento, p ero no es p osible describirlo con precisión.Portanto, laincertidumbrese
mo delará mediante la Teoría de la Probabilidad, mientras que la imprecisión será mo de-
ladamediante la Teoría de los Conjuntos Intuicionísticos. Además, cuandoambasfaltas
de información aparezcansimultáneamente, se utilizará la Teorí a de las Probabilidades
Imprecisas.

Cuando las alternativas a comparar estén definidas ba jo incertidumbre, éstas se
mo delarán mediante variables aleatorias.Por tanto, para compararlas se rá necesario uti-
lizar un orden esto cástico. En esta memoriase consideran dosórdenes: la dominancia
esto cástica y la preferencia estadística.El primero de ellos es uno de los méto dos más
utilizados en la literatura, mientras que el segundo es el méto do óptimo de comparación
de variables cualitativas. Para estos méto dos se han estudiado varias propiedades.En
particular, si bien es cono cido que la dominancia esto cástica está relacionada con la com-
paración de las esp eranzas de determinadas trasformaciones de las variables,se prueba
que la preferencia estadística está más ligada a otro parámetro de lo calización, la me-
diana. Además, se han encontrado situaciones ba jo las cuales la dominancia estocástica
está relacionada conla preferencia estadística. Estos dos órdenes esto cásticos han sido
definidos para comp arar variables aleatorias p or pares.Por esta razón se ha definido una
extensióndelapreferencia estadísticaparalacomparaciónsimultáneade másde dos
variables y se han e studiado varias prop iedades.

Cuando las alte rnativas están defin idas en un marco de incertidumbre e imprecisión,
cada una de ellas se mo delará mediante un conjunto de variables aleatorias.Dado que
los órdenes esto cásticos comparan variables aleatorias, es necesario realizar su extensión
para la comparación de conjuntos de variables.Cuando el orden esto cástico utilizado es
la dominancia esto cástica o la preferencia estadística, la comparación de los conjuntos de

xvii



xviii Resumen

variables aleatoriasestá claramente relacionadaconla comparación de elementos propios
de la teoría de las probabilidades imprecisas, como pueden ser las p-b oxes.Gracias al
mo delo generalque desarrollaremos, se po drán estudiar en particular dos situaciones
habituales en los problemas de la teoría de la decisión: la comparación de variab les
aleatorias bajo utilidades o ba jo creencias imprecisas.El primer problema se mo delará
mediante conjuntos aleatorios, y por lo tanto su comparación se realizará a través de
sus conjuntos de selecc iones medibles.El segundo problema será mo delado mediante
un conjunto de probabilidades. Cuando lasdistribuciones marginalesde las variables
están definidas ba jo imprecisión, la distribución conjunta no se puede obtener mediante
el Teorema de Sklar. Por ello, resulta nec esario investigar una versión imprecisa de este
resultado, que tendrá imp ortantes aplicaciones en los órdenes estocásticos bivariantes
definidos ba jo imprecisión.

Si las alternativas se definen ba jo imprecisión, pero no bajo incertidumbre, éstas se
mo delarán mediante conjuntos intuicionísticos. Para su comparación se intro duce una
teoría matemática de comparación de este tipo de conjuntos, dando esp ecial relevancia al
concepto de IF-dive rge ncia.Estas medidas de comparación de conjuntos intu icionísticos
p oseen numerosas aplicaciones,comopuedenseren el recono cimiento de patrones o la
teoría de la decisión. Los conjuntos intuicionísticos p ermiten grados de p e rte nenciay
de no pertenencia, y por ello resultan un buen mo delo bip olar. Dado quelasproba-
bilidades imprecisas también son utilizadas en el contexto de la información bip olar, se
estudiaránlas conexiones entre ambas teorías.Estosresultados mostrarántenerintere-
santes aplicaciones,y en particular permitirán extender la dominancia esto cástica para
la comparación de más de dos p-b oxes.



Abstract

In real life situations it is common todeal with thecomparison of alternatives. The
alternatives to b e compare d are sometimes defined under some lack of information.Two
lacks of information are considered: uncertainty and imprecis ion. Un certainty refers to
situations in which the p os sible results of the exp eriment are precisely describ ed,but
the exact result of the exp eriment is unknown; imprecision refers to situations in which
the result of the exp eriment is known but it cannot be precisely describ ed. In this
work, uncertainty is mo delled by means of Probability Theory, imprecision is mo delled
by means of IF-set Theory, and th e Theory of Imprecise Probabilities is used when b oth
lacksof information holdtogether.

Alternatives under uncertainty are mo delled by means of random variables. Thus,
a sto chastic order is needed for their comparison.In this work two particular sto chastic
orders are considered: sto chastic dominance and statistical preference. Theformer is
one of the most usual metho ds used in the literature and the latter is the most adequate
metho d for comparing qualitative variables. Some prop erties about such metho ds are
investigated. In particular, although sto chastic dominance is related to the exp ectation of
some transformation of the random variables, statistical preference is re lated to a different
lo cation parameter:the median. In addition, some conditions, related to the copul a that
links the random variables, under which sto chastic dominance and statistical preference
are related aregiven. Both sto chastic orders are defined for the pairwise comparison of
random variables. Thus, anextensionofstatisticalpreferenceforthecomparisonofmore
than two random variables is defined, and its main prop erties are studied.

When the alternatives are defined under uncertainty and imprec ision, eachone is
represented by aset of random variables. Forcomparing them, sto chastic orders are
extended for the comparison of sets of random variables instead of single ones.When the
sto chastic order is either stochastic dominance or statistical preference, the comparison
of sets of random variables can b e related to the comparison of elements of th e imprecise
probability theory, like p-b oxes.Two particular instances of comparison ofsets of random
variables, common in de cision making problems, are studied:the comparisonofrandom
variables with imprecision on the utilitie s or in the b eliefs. The former situationis
mo delled by random sets, and thentheir setsof measu rable selections are compared,
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xx Abstract

and the second is mo delled by a set of probabilities. When thereis imprecision inthe
marginal distributions of the random variables, the joint distribution cannot be obtained
from Sklar’s Theorem. Forthisreason, animpreciseversionofSklar’sTheoremisgiven,
and its applications to bivariate sto chastic orders under imprecision are showed.

Alternatives defined under imprecis ion, but not under uncertainty, are mo deled
by mean s of IF-sets. Fortheir comparisonamathematical theory of comparison of
IF-sets is given, fo cusing on a particular typ e of measure c al led IF-divergences.This
measure has several applications, likeforinstanceinpatternrecognition or decision
making. IF-sets are used to mo delbip olar information b ecause they allow memb ership
and non-memb ership degrees.Since imprecise probabilities also allow to model bip olarity,
a connection between both theories is established.Asanapplicationofthis connection,
an extension of sto chastic dominance for the comparison of more than two p-b oxes is
showed.



1 Intro duction

The mathematical mo deling of real life experiments can be rendered difficult by the pres-
ence of two typ es of lack of information: uncertainty andimprecision. We sp eak ab out
uncertainty when the variables involved in the exp eriment are precisely described but we
cannot predict beforehand the outcome of the exp eriment. This lackof informationis
usually mo delled by means of Probability Theory.Ontheotherhand, imprecisionrefers
to situations in which the result of the exp eriment is known but it cannot be precisely
describ ed.One possible mo del for this situation is given by Fuzzy Set Theory or any of
its extensions, such as the Theory of Intuitionisti c Fuzzy Sets or the Theory of Interval-
Valued Fuzzy Sets. Of course, there are also situations in which both uncertainty and
imprecision app ear together. In such cas es,we can either combine probability theory
and fuzzy sets, or consider th e Theory of Imprecise Probabilities.

Fuzzy sets were introduced by Zadeh ([214]) as a more flexible mo del than crisp
sets, whichisparticularly useful when dealing with linguistic information. Afuzzy set
assigns a value to eachelement on the universe, called memb ership degree,which is
interpreted as the degree in which the element fulfills the characteristic describ ed by the
set. Of course, crisp setsare particularcases of fuzzy sets, sinceeveryelement either
b elongs (i.e., has membership degree 1) or does not (memb ership degree equals 0) to the
set. Since their intro duction, fuzzy sets have become a very p opular research topic, and
nowadays severalinternational journals, conferences and so cieties are devoted to them.
For a complete study on fuzzy sets, weremitthereadertosome usual references like
([71, 101]).

In 1983, Atannasov ([4]) prop osed a generalization of fuzzy sets,called the theory
of Intuitionistic FuzzySets (IF-sets, for short). Inthe subsequentyearshecontinued
developing his idea ([5, 7]), and now it has become a commonly accepted generalization
of fuzzy sets. While fuzzy sets give a degree of memb ership of every element to the set,
an IF-set assigns b oth a degree of memb ership and a degree of non-memb ership of any
element to the set, with the natural restriction of that their sum must not exceed 1.
EveryIF-sethas adegree ofindeterminacy oruncertainty, that is, one minus the sum
of the degrees of memb ership and non-memb ership.In th is sense we can see that every
fuzzy set is in particular an IF-set, since the non-memb ership degree of the fuzzy set is

1



2 Chapter 1. Intro duction

one minus its memb ership degree:the indeterminacy degree of a fuzzy set equals zero.
For this reason IF-sets have become a very useful to ol in order to mo del situations in
which human answers are present: yes, noor does not apply, like forexamplehuman
votes ([8]). Onthe otherhand, Zadeh also prop osed severalgeneralizations of fuzzy
sets ([216]). In particular, he intro duced interval-valued fuzzy sets (IVF-sets, for short):
when the memb ership degree of an element to the set cannot be precisely determined, it
assigns an interval that contains the real memb ership degree.Although IF-setsand IVF-
sets diffe r on the interpretation, theyareformally equivalent (see[30]). These theories
have b een applie d to different areas, like decisionmaking([194]), logic programming
([9, 10]), medical diagnosis ([48]), patternrecognition([92]) andinterestingtheoretical
developments are still being made (see for example [68, 97, 120]).

The second pillar of this dissertation is the theory of ImpreciseProbabilities. Im-
precise Probability is a generic term that refers to all mathematical mo dels that serve as
an alternative and a generalization to probability mo dels in cases of imprecise knowledge.
It includes possibility measures ([217]), Cho quet capacities ([39]), b elief functions ([187])
or coherent lowerprevisions ([205]), amongothers. One mo del that will be of particular
interest for us is thatof p-b oxes. A p-b ox ([75]) is determined by an ordered pair of
functions called lower and upp er distribution functions, and it is given by all the distri-
bution functions b ound ed b etween them.Troffaes et al. ([198, 201]) have investigated
the connection between p-b oxes and coherent lower probabilities ([205]). In particular,
they found conditions under which a p-b ox defines a coherent lower probability.In some
recent pap ers ([64, 65, 199, 200]),the authors have explored the connection between p-
boxes and other usual mo dels included in the theory of imprecise probabilities, such as
possibilities, belief functions or clouds ([168]), among others.

This memory deals with the comparison ofalternativesunder lackofinformation.
As we mentioned before, we shall consider the comparison under uncertainty, imprecision
or both. Onthe one hand, alternatives under uncertainty are mo delled by means of
random variables. Random variables are one to ol of the probability theory that provide
aformal background to mo del non-deterministic situations, that is, situations where
randomness is present.The comparison of random variables is a long standing problem
that has b een tackled from many p oints of view (se e among others [18, 90, 98, 106, 188,
192, 210]). Its practical interes t is clear since many real life pro cesses are mo delled by
random variables. The pro cedures of comparison are referred to as sto chastic orders.
Indeed, sto chastic ordering is a very popular topic within Economics ([11, 109]), Finance
([110, 173]), So cialWelfare ([77]), Agriculture ([95]), Soft Computing ([ 180, 183]) or
Op erational Research ([171]), among others.

One classical way of pairwise ordering random variables is sto chastic dominance
([108, 208]), a ge neralization of the expected utility mo del. First degree sto chastic
dominance, that seems to b e the most widely used metho d, orde rs random variables
by comparing their cumulative distribution functions (or their survival functions). Its
main drawback is that it imp oses a very strong condition to get an order, so many pairs
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of random variables are deemed incomparable.Because of thi s fact, a second definition,
called second degree sto chastic dominance is also used, sp ecially in Economics ([98, 139]).
Although less restrictive, it still do es not establish a complete order b etween random vari-
ables. In fact, we can weaken progressively the notion of sto chastic dominance, and talk
of sto chastic dominance ofn-th order.

One interesting alternative sto chastic order is statistical preference, particularly
when comparing qualitative random variables, taking into account the results by Dub ois
et al. ([67]). Although it was intro duced by De Schuymer et al. ([55, 57]), it is possible
to find similar metho ds in the literature (see [25, 26, 210]).The notionofstatistical pref-
erence is based on a probabilistic relation, also called recipro cal relation ([21]), that mea-
sures the degree of preference of one random variable over th e other one.Furthermore,
since statistical preference dep ends on the joint distribution of the random variables, it
dep ends on the copula ([166]) that links them.Recall thatfrom Sklar’s Theorem([189])
it is known that for any two random variables the re exists a function, called copula, that
allows to express the joint cumulative distributionfunction interms of the marginals.
Then, statistical preference dep ends on such copula.The main drawback of this meth od
is its lack of tran sitivity. Some authors have been investigating which kind of transiti-
vity prop erties are satisfied by statistical preference,and in particular they fo cused on
cycle-transitivity (see [14, 15, 16, 49, 54, 56, 58, 121, 122] ).

When the alternatives to b e compared are define d under b oth uncertainty and im-
precision, the problemofcomparingsets ofrandomvariables arises. Here we un derstand
the set of random variables from an epistemi c p oint of view: we assume that the set
of random variables contains th e true random variable, but such random variable is un-
known ([73]). This situation is not uncommon in decision making under unce rtainty,
where there is vague or conflicting information ab out the probabilities or the utilities
asso ciated to the different alternatives. Wemay thinkforinstance of conflicts among
the opinions of several exp erts,limits orerrors inthe observational pro cess,or simply
partial or total ignorance ab out the pro cess underlying the alternatives. In any of such
cases,the elicitation of an unique probability/utility mo del foreach of thealternatives
may b e difficult and its us e, questionable.

Indeed, one of the solutions that have b een prop osed for situations like this is to
consider arobust approach, bymeans of a set ofprobabilities and utilities. Theuse of
this approachtocomparetwoalternatives isformallyequivalenttothe comparison of
two sets of alternatives, those asso ciated to each p ossible probability-utility pair.Hence,
it becomes useful to consider comparison metho ds that allow us to deal with sets of
alternatives in stead of single ones.

Howe ver, the way to compare of sets of alternatives is no longer immediate:we may
compare all possibilities within each of the sets, or alsoselect someparticular elements
of each set, totakeintoaccount phenomena of risk avers ion,for instance. This gives
rise to a numb er of possibilities. Moreover, even in the simpler case where we cho ose
one alternative from eachset, we muststill decidewhich criterion we shall consider to
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determine the preferred one. There is quite an extensive literature onhowto deal with
imprecise b eliefs and utilities when our choice is made by means of an exp ected utility
mo del ([12, 165, 178, 186]). However, theproblem has almost remained unexplored
for other choice functions. For thisreason, we shall extend sto chastic orders for the
comparison of sets of random variables, and we shall see that the prop osed extension is
connected to the imprecise probabilitytheory.

The last situation to be studied is the comparison of alternatives under imprecision
but without uncertainty. Inthis casethe alternativeswill be describ ed by means of
IF-sets. Within fuzzy set th eory, several typ es of measures of comparison have been
defined, withthe goal of quantifying howdifferenttwo fuzzy sets are. The more usual
measuresof comparison are dissimilarities ([119]), dissimilitudes ([ 44]) and divergences
([159]). Other au thors, like Bouchon-Meunie r et al. ([27]), defi ned a generalaxiomatic
frameworkforthe comparisonoffuzzysets, thatincludetheaforementionedmeasuresas
particular cases. Montes ([159]) made a complete study of the divergences as a measure
ofcomparison of fuzzy sets.In particular, she intro duced a particular kind of divergences,
called lo cal divergences, that have proven to be very useful.

Distances between fuzzy sets are also imp ortant for many practical applications.
For instance, Bhandari et al. ([22]) prop osed a divergence measure for fuzzy sets in-
spired by the notion of divergence b etween two probability distribu tions, andused this
fuzzy divergence measure in theframework of image segmentation. Seve ralother at-
tempts within the same field have been considered ([23, 34, 74]).For instance , the fuzzy
divergence measure of Fan and Xie is based (unlike the prop osalof Bhandari and Pal)
on the exp onential entropy of Pal and Pal ([175]); the same spirit is followed in [34].

However, in the framework of IF-sets only the notion of distance as well as several
examples of IF-dissimilarities have been given (see for example [36, 37, 85, 89, 92, 111, 113,
114, 138, 193]). Nevertheless, theneedforaformalmathematicaltheoryofcomparison
of IF-sets still persists.

Furthermore, IF-sets are a very use ful to ol to represent bip olar information: the
membership and non-memb ership degree of every element to the set. Since bip olar
mo dels are also being studied within the framework of imprecise probabilities (see for
instance [64, 65, 72, 73]), it b ecome s natural to investigate the connection b etween b oth
approaches to the mo deling of bip olar information.

The rest of theworkisorganized asfollows. Chapter 2 intro duces the basic notions
that will be necessary along the work. Inthe first partwedeal with sto chastic orders,
fo cusing on sto chastic dominance,thatisbased onthecomparisonof the cumulative
distribution functions of the random variables, and statistic al preference,thatis based
ona probabilisticrelation andmakesuseof the joint distribution. In order toexpress
this joint distribution as a function of the marginals, we need to intro duce some notions
of the theory of copulas. Then, we make a brief intro duction to the theory of imprecise
probabilities. On thefirstpart wedefine coherentlowerprevisionsand werecall the
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basic res ults we shall use later on.Then, we fo cus on particular cases of coherent lower
probabilities: n-monotone capacities, belief functions, possibility measures and clouds.
We also defi ne random sets and show their connections with imprecise probability theory.
Finally, we make an overview of IF-se ts theory.First, weexplainthesemanticdifferences
b etween IF-sets and IVF-sets and show that b oth theories are formally equivalent.Then,
we intro duce the basic operations between these sets.

In Chapter 3 we investigate the comparison of alternatives under uncertainty, th at
will be mo delled by means of random variables. Although some sto chastic orders like
sto chastic dominance have already been widely explored in the literature, this is not the
case for statistical preference. Forthis reason, wedevoteSection 3.1 toinvestigatethe
main prop erties of this relation, and we compare them to the ones of sto chastic dominance
([149, 154]). While sto chastic dominance has a well-known characterization in terms of
the comparison of the exp ectations of adequate transformations of the random variables,
there is not acharacterization of statistical preference. For this aim, we investigatea
p ossible characterization in terms of expectations ([150, 153]) and in terms of a different
lo cation parameter: the median([148,163]).

Although statistical preference and sto chastic dominance are not related in general,
in Section 3.2 we lo ok for conditions under which first degree sto chastic dominance implies
statistical preference ([150]).Obviously, since statistical preference dep ends on the copula
that links the variables, these conditions arerelated to suchcopula. Furthermore, we
findthat insome of the usual probabilitydistributions, like Bernoulli, uniform, normal,
etc, b oth sto chastic dominance and statistical preference are equivalent for indep endent
random variables ([151]).

Wehave alreadymentioned thelack of transitivityof statistical preference,which
renders it unsuitable for comparing more than two random variables. Inorder to over-
come this problem, we intro duce in Section 3.3 an extension of statistical preference that
preserves its philosophyand allows the comparisonof more than two random variables
([140, 142]). We explorethis new notion and give several prop erties that relate it to
the classical notionof statisticalpreference. In order to illustrate the app licability of our
results, Section3.4.1 putsforward two different applications. We first use both sto chastic
dominance and statistical preference to compare fitness values asso ciated to the output
ofgenetic fuzzy systems([143, 152,162]), and thenwe use thegeneralization ofstatistical
preferenceon a decision-making problem with linguistic variables.

In Chapter 4 we consider the comparison of alternatives under both uncertainty
and imprecision. As we have already mentioned, in that case we mo del the alternatives
by means of sets of random variables instead of single ones.Westart in Section 4.1 by
extending binary relations thatareused to thecomparison of random variables to the
comparison of sets of random variable s.This gives rise to six possible ways of comparing
sets of random variables. In particular, we fo cus on the case where such binary relation
is either sto chastic dominance or statistical preference. We shall seethat the use of
sto chastic dominance as binary relation is clearly connected to the comparison of the p-
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b oxes associated with the sets of random variables ([134, 155, 157]).Weshall considertwo
particular case s in Section 4.2: thecomparison oftworandom variables withimprecise
utilities and the comparison of two random variables with imprecise b eliefs ([156]). The
former is mo delled by means of random sets, and their comparison is madebymeans
of their asso ciated sets of measurable selections.In the latter, the imprecise beliefs are
mo delled by means of a set of probabilities in the initial space,instead ofa singleone.
In this situation we can also define a set of random variables for each alternative. Then,
both situations are particular cases of the more general situation studied in Section 4.1.

When there is imprecision ab out the probability of the initial space, the joint distri-
bution of the random variables is also imprecise ly determined.Because ofthis, itseems
reasonable to investigate how thebivariate distribution, andin particular the bivariate
cumulative distribution function, can be determined. We shall investigate the prop er-
ties of bivariate p-b oxes and how they can define a coherent lower probability ([135]).
One particular instance where the joint distribution naturally arises is whe n dealing with
copulas. Recall thatcopulasallow todeterminethejointdistributionfunctionin terms
of the marginals. However, when themarginal distribution functions are imprecisely
describ ed by means of p-b oxes, it is unclear how to determine the joint distribution, and
bivariate p-b oxes prove to b e a usefulto ol. In particularweshow that, by considering
an imprecise version of copulas it is possible to extend Sklar’s Theorem to an imprecise
framework ([176]).

Section 4.4shows several applicationsof theresults from Chapter 4. One possible
application is thecomparison ofLorenz Curves ([3, 11]), thatrepresentthe inequalities
within countries/regions. Usingour results, it is possible to compare sets of regions by
means of sto chastic dominance.Furthermore, imprecise sto chastic dominance also allows
to compare survival rates of different cancer group ed by sites.We conclude the ch apter
showing another application in dec ision making.

InChapter 5 we investigate how to compare alternatives underimprecision. The
alternatives are mo delled by means of IF-sets, and we prop ose metho ds for comparing
IF-sets. In Section5.1 we recall the comparison measures that can be found in the
literature: IF-dissimilaritiesand distances for IF-sets. We also intro duce IF-divergences
and IF-dissimilitudes ([141]). We investigate the relationsh ips among these measures and
we justify that our preference for IF-divergences in that they imp ose stronger conditions,
avoiding thus counterintuitive examples ([145, 161]). We also tryto define a general
measure ofcomparison of IF-sets as done by Bouchon-Meunier etal.([27]) for fuzzy sets.
This allows us to define a general function that contains IF-di ssimilarities, IF-divergences
anddistances asparticular cases([158]). Then we introduce a particular typ e of IF-
divergences, that are those that satisfy a lo cal prop erty.We investigate their prop erties
and give several examples ([147]). We conclude the se ction studying the connection
b etween IF-divergences and divergences for fuzzy sets.In particular, weshowhow we
candefine IF-divergencesfromdivergencesfor fuzzy sets and, conversely,howto build
divergences for fuzzysetsfrom IF-divergences([146]).
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Since both imprecise probabilities and IF-sets are used to mo del bip olarity, we
investigate in Section 5.2 the connection b etween both approaches. Weestablish that
when IF-sets are defined in a probability space, they can be interpreted as random sets,
and this allows to connect them with impreci se probabilities, since it is p ossible to define
acredal set and a lower and upp er probability. Weinvestigateunderwhich conditions
the probabilistic information enc o ded by the credal set is the same than the one of the
set of measurable selections.We also inve stigate the relationship b etween our approach
and otherworksin the literature, like the one of Grzegorzewski and Mrowka ([86]).

Weconclude the chapter showing several applications of the results. Onthe one
hand we show how IF-divergences can be applied to decision making and pattern recog-
nition. On the other hand, we explain how the connection b etwe en IF-sets and imprecise
probabilities allows us to prop ose a generalization of sto chastic dominance to the com-
parison of more than two p-b oxes, and we illustrate our metho d comparing at the same
time sets of Lorenz Curves.

We conclude this dissertation with some final remarks and adiscussion of the most
imp ortant future lines of research.
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2 Basic concepts

In this chapter, we intro duce the main notions that shall be employed in the rest of the
work. We start by p roviding th e definition of binary relations as comparison metho ds
for random variables. Later, weconsidertheparticularcaseswherethebinaryrelationis
either sto chastic dominance or statistical preference, which are the two main sto chastic
orders we shall consider here.

Afterwards we make a brief intro duction to Imprecise Probability theory, that shall
b e useful when we want to compare sets of random variables.Toconclude thechapter,
we recall the notion of intuitionistic fuzzy sets, that we shall use mo del situations where
sets cannot be precisely describ ed.

2.1 Stochastic orders

Stochastic orders are metho ds that determine a (total or partial) order on any given set of
random quantities. Although several methods have b een prop osed in the last years (see
for instance [139, 188]), here we shall fo cus on two particular cases:sto chastic dominance
and statistical preference. The former is p ossibly the most widespread metho d in the
literature, andthe latter isparticularly useful whencomparing qualitative variables,
taking into account the axiomatization established by Dub ois et al. ([67]).

Throughout, randomvariablesare denotedby X , Y , Z , .. ., or X 1,X 2, . .., and their
asso ciated cumulative distribution functions are denoted FX , FY , FZ , .. ., or FX 1 ,F X 2 ,
. .., resp ectively.We shall also assume that the random variables to be compared are
definedon thesameprobability space.

Given two random variables X and Y definedfromthe probability space (Ω, A , P)
to an ordered space (Ω, A ) (which in most situations will be the set of real numb ers),
abinary relation is usedto comparethe variables. Then, X Y means that X is at
leastas preferable as Y . This corresp onds to a weak preference relation; from it a strict
preference relation, indifference and also incomparable relation can also be defined:

9
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Definition 2.1Considertwo randomvariables X and Y and a binary relation used
to compare them.

• X is strictlypreferred to Y with respectto , and isdenotedby X Y , if X Y
but Y X .

• X and Y areindifferent with respect to , and itis denotedby X ≡ Y , if X Y
and Y X .

• X and Y areincomparablewith respect to , andit is denotedby X ∼ Y, if X Y
and Y X .

Then, if D denotes a setof random variables, accordingto [179], (D, , ≡ , ∼) formsa
preference structure. Inparticular, iftherelation is complete, that is, if there is not
incomparabilitybetween the random variables, then(D, , ≡ ) forms apreference structure
without incomparable elements.

One instance of binary relation is the comparis on of the exp ectations of the random
variables, so that X Y if and only if E( X) ≥ E(Y) . This is also anexampleof a
non-complete relation, because the comparison cannot be made when the exp ectation of
the variable do es not exist.

In the remainder of this section we intro duce the definitions and notations that
we shall use in the following chapters. Sp ecifically,we consi der the case in which the
binary relation is either sto chastic dominance or statistical preference. With res p ect to
the first one, we recall the main typ es of sto chastic dominance and some of its most
imp ortant prop erties, suchasits characterizationbymeansof the comparison of the
adequate exp ectations.Then, weprovideanoverviewonstatisticalpreference: we rec all
its definition and we also discuss briefly its main advantages as a sto chastic order.

2.1.1 Stochastic dominance

Sto chastic dominance is one ofthe most used metho ds for the pairwise comparison of
randomvariables we can find in the literature. Besides to the usual economic interpre-
tation (see [110]), this notion has also b ee n applied in other frameworks such as Finance
([109]), So cialWelfare ([11]), Agriculture ([95]) or Op erations Research ([171]), among
others. We next recall its definition and basic notions related to th em, and also its main
prop erties.

Stochastic dominance is a metho d based on the comparison of the cumulative dis-
tribution functions of therandomvariables.

Definition 2.2Let X and Y betworeal-valuedrandom variables, and let FX and FY
denote their respective cumu lative distribution functions. X sto chastically dominatesY
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by the first degree, or simply stochastical ly dominates, when no confusion is possible,
and it is denoted by X FSD Y , if it holds that

FX (t ) = P (X ≤ t) ≤ P(Y ≤ t) =F Y (t) for every t ∈ R. (2.1)

One of the most imp ortant drawbacks of this definition is that (first degree) stochastic
dominance is anon-complete relation, that is, it is possible to find random variables
X and Y such that neither X FSD Y nor Y FSD X , as we can see in the following
example.

Example 2.3Consider tworandom variables X and Y such that X follows a Bernoul li
distribution with parameter 0.6 and Y takes a fixed valuec ∈ (0, 0. 6)with probability 1.
Then, there is not first degree st ochastic dominance between them:

FX (0) = 0.4 > 0 =F Y (0) but FX (c) = 0. 4 < 1 =F Y (c ).

According to Definition 2.1, from thispreference relationwecan alsodefine the strict
sto chastic dominance,theindifference and, aswe havejustseen, the incomparability
relations:

• X sto chastically dominatesY strictly, anddenote itby X FSD Y , if and onlyif
FX ≤ FY andthere issome t ∈ [0 , 1]such that FX (t ) <F Y (t) .

• X and Y are stochastical ly indifferent, and denote it by FX ≡ FSD FY , if and only
if they have the s ame distribution (usually de noted byX

d
=Y ).

• X and Y are stochastical ly incomparable,anddenoteit by X ∼ Y , if there are t1

and t2 such that FX (t 1) >F Y (t 2) and FY (t 2) >F X (t 2).

Remark 2.4Here we have chosen the notat ion FSD becauseitis themostfrequent in
the literature. However, (firstdegree)stochasticdominancehasalsobeendenoted by 1,
as in [55], or by ≥ st , as in[188]. In that case, the authors used the name sto chastic
order instead of first degree stochastic dominance.

As we see from its definition, (first degree) sto chastic dominance only focuses on the
marginal cumulative distribution functions, and its interpretation is the followin g: if
X FSD Y , then FX (t) ≤ FY (t) for any t , or equivalentl y, P(X > t) ≥ P(Y > t)
for any t . That is, we imp ose that at every p oint the probability of X to be greater
than such point is greater than the probability of Y to be greater than the same point.
Thus, X assigns greater probabilityto greater values. Figure 2.1 showsitsgraphical
interpretation. Here,we canseehow FX is always below or at the same level than FY .
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Figure 2.1: Example of first degree sto chastic dominance:X FSD Y

From an economic point of view, the interpretation is that the decision between
the two ran dom variables is rational, in the sens e that for any threshold of profit the
probability of going ab ove this threshold is greater with the preferred variable ([110]).

The main draw back of this de finition is that the inequality in Equation (2.1) is
quite restrictive. Thereare many pairs ofcumulative distributionfunctions that donot
satisfy this inequality in any sense and therefore, the asso ciated random variables cannot
b e ordered.This is the reason why we can consider other (weaker) degrees of sto chastic
dominance. Let us now intro duce the second degree sto chastic dominance.

Definition 2.5Let X and Y be two real-valu ed random variables whose cumulative dis-
tribution functions are given by FX and FY , respectively. X sto chastically dominatesY
by the second degree , and it is denoted byX SSD Y , if it holds that:

t

−∞
FX ( x)d(x) ≤

t

−∞
FY (y )d(y) for every t ∈ R. (2.2)

Asin Definition2.2, wecan alsointroduce the strict second degree stochastic dominance
( SSD), the indifference( ≡ SSD ) and the incomparable( ∼SSD) relat ions.

Note that, similar to Example 2.3, we can als o see that incomparability is p ossible when
dealing with second degree sto chastic dominance.

Example 2.6Consider thesame randomvariables ofExample 2.3.For thesevariables,
the functions G2

X and G2
Y are definedby:

G2
X (t )=






0 if t< 0.

0.4t if t ∈ [0, 1).
t − 0.6 if t ≥ 1.

G2
Y (t )=

0 if t< c.

t − c if t ≥ c.

Then, X and Y are not ordered by means of thesecond degree stochastic dominance
since:

G2
X

c

2
= 0.2 c>0=G 2

Y
c

2
but G2

X (1) = 0. 4 <1 − c =G 2
Y (1),
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since c < 0.6.

Remark 2.7Other authors (see for example [188]) call this method concave order, and
they denote it by ≥ cv . It isalso sometimes denoted by 2 ([55]).

Aswecan seein Figure2.2, when X SSD Y , for any fixed t , the area belowFX until t is
lower than the are below FY until t . This means that the X gathers moreaccumulated
probability at greater points than Y .

Figure 2.2: Example of second degree sto chastic dominance:X SSD Y .

From an economic point of view, second degree sto chastic dominance means that
the decision maker prefers the alternative th at provides a bigger profit but also with less
risk. That is,itisa rationalitycriterionunder riskaversion (see[110]).

Similarly to Definitions 2.2 and 2.5, sto chastic dominance can b e defined for every
degreen by relaxing the conditions in Equations (2.1) and (2.2).

Definition 2.8Let X and Y be tworeal-valued randomvariables with cumulative dis-
tribution functions FX and FY , respectively. X sto chastically dominatesY by the n-th
degree , forn ≥ 2, and it is denoted by X nSD Y , if it holds that:

Gn
X (t )=

t

−∞
Gn − 1

X ( x)d(x) ≤
t

−∞
Gn − 1

Y (y )d(y ) =G
n
Y (t) ∀t ∈ R, (2.3)

whereG1
X =F X and G1

Y =F Y . Inparticular, thisdefinitionbecomestheseconddegree
stochastic dominance whenn=2 .

Again, following th e notation of Definition 2.1, we can intro duce the strict n-th degree
sto chastic dominance( nSD ), the indifference( ≡ nSD ) and the incomparability( ∼nSD )
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relations. Then, if D denotes a set of random variables,(D, nSD , ≡ nSD , ∼nSD ) formsa
preferencestructure for any n ≥ 1.

Clearly, first degree sto chastic dominance imposes a stronger condition than second
degree sto chastic dominance, as we can see from Equations (2.1) and (2.2).Moreover, if
we compare Equations (2.1) and (2.3) we deduce that first degree sto chastic dominance
isstronger than the n-th degree sto chastic dominance for everyn. Inde ed,it is known
that the n-th degree sto chastic dominance is stronger than the m-th degree sto chastic
dominance for any n<m :

X nSD Y ⇒ X ≥ mSD Y for every n< m, (2.4)

while the converse do es not hold in general.

Remark 2.9Stochasticdominanceis a reflexiveand transitiverelation. However, since
two different randomvariables mayinduce thesame distribution, it is notantisymmetric.
Moreover, as we have already noted, it is not complete because it al lows incomparability.

One of the most important prop erties of sto chastic dominance is its characterization by
means of the exp ectation. Sp ecifically,each of the typ es of sto chastic dominance we
have introduced can be characterized by the comparison of the exp ectations of adequate
transformations ofthe variables considered.

Theorem 2.10 ([109, 139])Let X and Y be two random variables. Forfirst and sec-
ond degree stochastic dominance it holds that:

• X FSD Y ifand onlyif E [u( X )]≥ E [u(Y )] for every increasing function u: R →

R.

• X SSD Y if and only if E [u(X )] ≥ E [u( Y )]for every increasing and concave
function u: R → R.

Afunction u: R → R is cal ledn-monotone ([39]) if it is n-differentiable and for any
m ≤ n and it fulfil ls (− 1)m+1 u(m) ≥ 0. Then, if Un denotes theset of n-monotone
functions, the fol lowing generalequivalence holds:

X nSD Y ⇔ E [u( X )]≥ E [u (Y )]for every u ∈U n . (2.5)

In fact, from the pro of of Theorem 2.10, it can be derived that:

X nSD Y ⇔ E [u( X )]≥ E [u (Y )]for any u ∈U ∗
n , (2.6)

where U∗
n denotethe setof n-monotone and b ounded functionsu: R → R.

Equation (2.4) can also be derived from this result, since everyn-monotone function
is also m-monotone for any m ≤ n.
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Remark 2.11The characterization of the seconddegree stochastic dominance, based
on the comparison of the mean of the concave and increasing functions, explains the
nomenclature concave order mentioned in Remark 2.7.

To conclude this paragraph, we list some interesting prop erties of first degree sto chastic
dominance that shall b e useful in the next chap ter.

Prop osition 2.12 ([139, Theorem 1.2.13])If X and Y arereal-valued random vari-
ables such thatX FSD Y and ϕ: R → R is a increasing function, thenϕ(X) FSD ϕ(Y) .

Prop osition 2.13 ([139, Theorem 1.2.17])Let { X i ,Y i : i = 1, .. .,n } be indepen-
dent and real-valued random variables. If X i FSD Yi for i = 1, ... ,n , then X 1 + .. .+
X n FSD Y1 + .. . +Y n .

Prop osition 2.14 ([139, Theorem 1.2.14])Given the randomvariables X,X 1,X 2,

. . ., Y,Y1,Y2,. . . such thatX n
L

−→ X and Yn
L

−→ Y , if X n FSD Yn for every n, where
L

−→ denotes the convergence in distribution, thenX FSD Y .

As a consequence of the previous result, first degree sto chastic dominance is preserved
by four kinds of converge: distribution, probability, mth -mean and almost sure.

For a more complete study on sto chastic orders, we refer to [62, 109, 139, 188, 192].

2.1.2 Statistical preference

In the previous subsection we have mentioned that sto chastic dominance is a pairwise
comparison metho d that has been used in severalareas,always withsuccessful results.
Howe ver,this metho d also presents some drawbacks: on theone hand, it isa non-
complete crisp relation. This means that it is p ossible to find pairs of random variables
such that n-th degree stochastic dominance do es not order them for anyn. Furthermore,
sto chastic dominance do es not allow to establish degrees ofpreference. In fact, there
are only three possibilities: either one randomvariableis preferred tothe other, or they
are indifferent or incomparable. in addition, it is a metho d with a high computational
cost, since the n-th degree sto chastic dominance requires the computation of 2(n − 1)
integrals.

These drawbacks madeDe Schuymer et al. ([55, 57]) introduce a new metho d for
the pairwise comparison of the rand om variables, based on a probabilistic relation.

Definition 2.15 ([21])Givena set ofalternatives D, a probabilistic or recipro cal rela-
tion Q is amap Q: D× D→ [0 , 1]such that Q(a, b) + Q(b, a) =1 for any alternatives
a,b ∈D .
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In our framework, thesetofalternatives D is considered to be made by random variables
defined on the same probabili ty s pace(Ω, P (Ω) , P) to an orde red space(Ω, A ). The
probabilistic relation over D isdefined (see[55,Equation 3])by:

Q(X , Y ) = P (X > Y )+
1
2

P (X = Y ), (2.7)

where (X , Y) ∈ D×D and P denotesthejointprobabilityofthe bidimensionalrandom
vector (X , Y). Clearly, Q is aprobabilistic relation: it takes valuesin [0 , 1]and Q( X , Y )+
Q(Y , X ) =1:

Q(X, Y ) + Q(Y , X) = P (X > Y )+
1
2

P (X = Y )+
1
2

P (X = Y )+ P (Y > X) = 1.

The ab ove definition measures the preference degree of a random variableX over another
random variable Y , in the sense that the greater the value of Q(X , Y), the stronger the
preference of X over Y . Hence, thecloserthe value Q(X , Y) is to 1, the greater we
consider X with resp ect to Y ; the closer Q( X , Y) isto 0, the greater we con siderY to
X ; and if Q(X , Y) is around 0.5, b oth alternatives are conside red indifferent.This fact
can be seen in Figure 2.3.

Y X X Y

X ∼ Y

✛ ✲

0 10.5

Figure 2.3: Interpretation of the recipro cal relation Q.

Statisticalpreferenceis defined from theprobabilisticrelation Q of Equation (2.7)
and it is the formal interpretation of thatrelation.

Definition 2.16 ([55, 57])Let X and Y be tworandom variables. Itis said that:

• X is statisticallypreferred to Y , and it is denoted by X SP Y , if Q( X , Y)≥ 1
2 .

Also, according to Definition 2.1:

• X and Y are statistically indifferent, and it is denoted byX ≡ SP Y, if Q( X , Y )= 1
2 .

• X is strictlystatisticallypreferred to Y , and we denote it X SP Y , if Q( X , Y )>
1
2 .
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Note that statistical preference does not al low incomparability, so(D, SP , ≡ SP) consti-
tutes apreference structure without incomparable elements.

Remark 2.17Statistical preference is a reflexive and complete relation.However, itis
neither antisymmetric not transitive, as we shall see in Section 3.3.

It is possible to give a geometrical interpretation to the concept of statistical preference.
As wecan see in Figure 2.4, given two continuous and indep endent random variables,
X SP Y if and only if the volume enclosed under the joint density func tion in the half-
space{ (x, y) | x >y } is larger than the volume enclosed in the half-space{ (x, y) | x <y } .

Figure 2.4: Geometrical interpretation of the statistical preference: X SP Y .

Note that X SP Y means that X outp erforms Y with a probability at least
0.5. Hence, statistical preference provides an order between the random variables anda
preference degree.This is il lustrated in the following example.

Example 2.18Considertworandom variables X,Y such that X follows a Bernoul li
distribution B(p) with parameter p ∈ (0 , 1)and Y fol lows a uniform distribution U(0 , 1)
in the interval (0, 1). It isimmediate that:

Q(X , Y ) = P (X > Y ) = P (X = 1) = p.

Therefore, whenp ≥ 1
2 , X is statistical ly preferred to Y with degree of preferencep, and

the greater the value of p, the most preferred X is to Y .
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One imp ortant remark is that statistical preference fordegenerate random variablesis
equivalent to the order b etween real numb ers,and in that case the prefere nce degree is
always 0, 1or 1

2 .

Remark 2.19Considertwo random variables X and Y . The former takes the value
cX with probability 1 and the secondtakes thevalue cY with probability 1. Assume that
cX >c Y :

P (X >Y)=P (X =c X ) =1 ⇒ Q( X , Y ) =1 and X SP Y.

On the other hand, if cX =c Y , it holds that:

P (X = Y ) = P(X =c X ,Y =c Y ) =1 ⇒ Q(X , Y )=
1
2

and X ≡ SP Y.

Then, it holds that:

X SP Y ⇔ cX >c Y and X ≡ SP Y ⇔ cX =c Y .

A first, but also trivial result ab out statistical preference is the following.

Lemma 2.20Given tworandom variables X and Y , it holds that:

X SP Y ⇔ Q(X , Y) ≥ Q(Y , X) ⇔ P(X ≥ Y) ≥ P(Y ≥ X)
⇔ P(X > Y) ≥ P (Y > X).

Pro of: By definition, X SP Y if andonly if Q(X , Y) ≥ 1
2 . Since Q is aprobabilistic

relation, Q(X, Y ) + Q(Y , X) =1 . Then:

Q(X , Y) ≥ 1
2

⇔ Q( X , Y)≥
1
2

(Q(X, Y ) + Q(Y , X)) ⇔ Q(X , Y) ≥ Q(Y , X ).

Letus now prove the remaining equivalences.

X SP Y ⇔ Q(X , Y) ≥ Q( Y , X)
⇔ P (X > Y)+ 1

2 P (X = Y) ≥ P( Y > X)+ 1
2 P (X = Y)

⇔ P (X > Y) ≥ P (Y > X).

Moreover:
X SP Y ⇔ P (X > Y) ≥ P(Y > X)

⇔ P (X > Y) + P (X = Y) ≥ P( Y > X) + P (X = Y)
⇔ P(X ≥ Y) ≥ P(Y ≥ X).

Similar equivalences can b e proved for the strict statistical preference:

X SP Y ⇔ Q(X , Y ) > Q(Y , X) ⇔ P(X ≥ Y) > P(Y ≥ X)
⇔ P (X > Y ) > P (Y > X).
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Remark 2.21One context wherestatistical preference appears natural ly is that of deci-
sion making with qualitative random variables. Duboiset al. showed in [67] that given
two random variables X, Y: Ω → Ω , where (Ω, Ω ) isanordered qualitativescale,
then, givenanumber of rationalit y axioms over our decision rule, the choice bet ween
X and Y must be made by means of the likely dominance rule, which say s that X is
preferred to Y if andonly if [X Ω Y] [Y Ω X] ,where:

[X Ω Y]= { ω ∈ Ω : X (ω) Ω Y (ω)} and
[Y Ω X]= { ω ∈ Ω : Y (ω) Ω X (ω)} ,

where is a binary relationon subsets of Ω. Oneof the most interesting cases is that
where is determinedby a probability measure P, so A B ⇔ P (A) ≥ P (B) . Then,
using Lemma 2.20, X is preferredto Y if andonly if X SP Y .

We conclude that, accordingtothe axioms consideredin [67], statistical preference
is the optimalmethod for comparing qualitative random variables defined on a probability
space.

Remark 2.22A related notion to statist ical preference is that of probability dominance
considered in [210]: X is said to dominate Y with probability β ≥ 0.5, and it is denoted
by XβY , if P(X > Y) ≥ β. Thisdefinitionhasan important drawback with respect
to statistical preference, whichisthat incomparability ispossiblefor every β ≥ 0.5. For
instance, thisis the case of random variables X and Y satisfying P (X = Y ) > 0.5 .

In [2], X is cal led preferred toY in the precedence order whenP(X ≥ Y) ≥ 1
2 . The

drawback of this notion is that indifference is possible althoughP (X >Y )> P (Y > X) ,
for instance when P( X = Y) ≥ 1

2 .

From Lemma 2.20 we know that X SP Y if andonly if P(X > Y) ≥ P( Y > X) .
When this inequality holds some authors say that X is preferredto Y inthe precedence
order (see [25, 26, 112]). Hence, thisprovides an equivalent formulation of statistical
preference. We havepreferredto usethelatterbecauseitprovidesdegreesofpreference
between the alternatives by means of the probabilistic relationQ. Note that otherauthors
consider a difference definition of precedence order ([2,25, 26, 112, 210])which is not
equivalent ingeneral, as we have seenin the previous remark.

A probabilistic or recipro cal relation can also be seen as a fuzzy relation.For thisreason,
statistical preference can be interpreted as a defuzzyfication of the relation Q:

X SP Y ⇔ (X , Y) ∈ Q 1
2
,

where Q 1
2 denotes the 1

2 -cut of Q:

Q 1
2 = (X , Y) ∈ D×D : Q(X , Y) ≥ 1

2
.
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Another connection with fuzzy set theory can be made if we consider that the information
contained in the probabilistic relation can be also presented by means of a fuzzy relation.
This was initially prop osed in [16, 57] and latter analyzed in detail in [122]; rece ntly,
a generalization has been presented in [163]. There, from any probabilistic re lation Q
defined on aset D, h( Q), with h: [0 , 1]→ [0 , 1], is a fuzzy weak preference relationif
and only if h 1

2 =1 .

The previous resultwas proven forany probabilisticrelation Q, but whenweare
comparing random variables by means of the re lationQ defined on Equation (2.7), h( Q)
is an order-preserving fuzzy weak preference relation if and only if h(0) =0 , h( 1

2 ) =1
and h is increasing in [0 , 1].

The initial h prop osed in [57] was h(x) = min(1, 2x) but, of course, an infinite
family of functions may be considered. Asanexample, wewillobtaintheexpressionof
the weak preference relationR inthat initialcase:

R (X , Y )=
1 if P(X > Y) ≥ P (Y > X),
1 + P( X > Y) − P(Y > X) otherwise.

Example 2.23Letusconsider therandomvariable X uniformlydistributedinthe in-
terval (4, 6), and let Y1, Y2, Y3 and Y4 bethe uniformly distributed randomvariables
in the intervals (7, 9), (5, 7), (3 , 5)and (0 , 2), respectively. If we assume themtobe
independent, it holds that:

Q(X ,Y1) =0 ⇒ R( X ,Y1) = 0.

Q(X ,Y2)= 1
8 ⇒ R(X ,Y2)= 1

4 .

Q(X ,Y3)= 7
8 ⇒ R(X ,Y3) = 1.

Q(X ,Y4) =1 ⇒ R( X ,Y4) = 1.

We can notice the different scales used byQ and R.

Thus, weconclude that R can be seen as a “greater than or equal to” relation, but the
meaning of Q is totally diffe rent. In fact, the interpretation of the value of the fuzzy
relation R is: the closerthevalueto0, theweaker thepreferenceof X over Y .

We have already mentioned some advantages of statistical preference over sto chastic
dominance: on the one han d, statistical preference allows the p ossibility of establishing
preference degrees between the alternatives; on the otherhand statistical preference
determines a total relationship between the random variables, while we can find pairs of
random variables which are incomparable under the n-th degree sto chastic dominance.
Another advantage is that it takes into account the p ossible dep endence between the
random variables since it is based on the joint distribution, while sto chastic dominance
only uses marginal distributions.
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In this sense, recall that given n indep endent real-valued random variables X 1,
. .., X n , with cumulative distribution functions FX 1 , .. ., FX n , resp ectively,the joint
cumulative distribution function, de noted by F , is the pro duct of the marginals:

F(x 1, . . . ,xn ) =F X 1 (x 1) · ... · FX n (x n ),

for any x1, . . . ,xn ∈ R. In general, thejointcumulativedistribution function canbe
expressed by:

F(x 1, . . . ,xn ) = C(F X 1 (x 1), . . . ,FX n (x n ))

for any x1, . . . ,xn ∈ R, where C isa function calledcopula.

Definition 2.24 ([166])A n-dimensional copula is a function C : [0 , 1]n → [0 , 1]sat-
isfying the fol lowing properties:

• For every (x 1, . . . ,xn ) ∈ [0, 1]n , C(x 1, . . . ,xn ) =0 if x i =0 for somei ∈{ 1, .. . ,n} .

• For every (x 1, . . . ,xn ) ∈ [0, 1]n , C(x 1, . . . ,xn ) =x i if x j =1 for every j=i .

• For every x= (x 1, . . . ,xn ), y = (y 1, . . . ,yn ) ∈ [0 , 1]n :

VC ([x, y]) ≥ 0,

where:

VC ([x, y])=
n

i=1 ci ∈{ a i ,bi }

sgn(c1, . . . ,cn )C (c1, . . . ,cn ),

where the function sgn is definedby:

sgn(c1, . . . ,cn )=
1 if ci =a i for aneven numberof i ’s.
− 1 if ci =a i for anodd numberof i ’s.

In particular, a 2-dimensional copula (a copula, for sh ort) is a functionC : [0, 1]× [0 , 1]→
[0 , 1]satisfying C ( x, 0) = C (0 , x) =0and C(x,1) = C(1, x) =x for every x ∈ [0 , 1]and

C (x1,y 1) + C(x 2,y 2) ≥ C(x 1,y 2) + C(x 2,y 1)

for every (x 1,x 2,y 1,y 2) ∈ [0, 1]4 such that x1 ≤ x2 and y1 ≤ y2.

The most imp ortant examples of copulas are the following:

• The pro duct copula π: π(x1, . . . ,xn )=
n
i=1 x i .

• The minimum op erator M : M(x 1, . . . ,xn ) = min { x1, . . . ,xn } .

• The Łukasiewicz op eratorW , for n=2 : W(x 1,x 2) = max { 0,x 1 +x 2 − 1} .
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Since the Łukasiewicz op erator is associative, it can only be defined asan-ary op erator:
W(x 1, . . . ,xn ) = max { 0,x 1 + .. . +x n − (n − 1)} . However, it is a copula only for n=2 .
One imp ortant and well-known result concerning copula is that every n-dimensional
copula is b ounded by the Łukasiewicz and the minimum op erator:

W(x 1, . . . ,xn ) ≤ C(x 1, . . . ,xn ) ≤ M(x 1, . . . ,xn ) for every (x 1, . . . ,xn ) ∈ [0 , 1]n . (2.8)

This inequality is known as the Fréchet-Ho effding inequality. For thisreason, theŁuka-
siewicz and the minimum op erators are also called the lower and upper Fréchet-Hoeffding
bounds ([79]).

Recall that, although W is nota copulafor n>2 , it can be approximated bya
copula on each point:

Prop osition 2.25 ([62, 166])For any (x 1, . . . ,xn ) ∈ [0 , 1]n there isa n-dimensional
copula C such that C(x 1, . . . ,xn ) = W(x 1, . . . ,xn ).

In particular, when n=2 , W is a copula and the pre vious result b ecomes trivial.

A particular typ e of copulas are the Archimedean copulas.

Definition 2.26 ([166])A n-dimensional copula C isArchimedean if there existsa
function ϕ : [0 , 1]→ [0,∞ ], cal led generator ofC, strictly decreasing, satisfying that − ϕ
is n-monotone, ϕ(1) =0 and:

C(x 1, . . . ,xn ) =ϕ
− 1](ϕ(x 1) + . . . + ϕ(x n )), (2.9)

for every (x 1, . . . ,xn ) ∈ [0, 1]n , where ϕ− 1] denotes thepseudo-inverse of ϕ, and it is
defined by:

ϕ− 1](t )=
ϕ− 1(t) if 0 ≤ t ≤ ϕ(0).
0 if ϕ(0) <t ≤∞ .

The main Archimedean copulas are the pro duct, whose generator is ϕπ(t )= − logt ,
and the Łukasiewicz op erator for n=2 , whose generatoris ϕW (t) =1 − t . The most
imp ortant non-Archimedean copula is the minimum op erator.

Archimedean copulas can also be divided into two groups: strict and nilp otent
Archimedean copulas. An Archimedean copulais calledstrictif its generator, ϕ , sat-
isfies ϕ(0)= ∞ . In suchcase, the pseudo inverse becomes the inverse,and therefore
Equation (2.9) becomes:

C (x1, . . . ,xn ) =ϕ
− 1(ϕ (x1) + .. . + ϕ(x n )). (2.10)

An Archimedean copula isnilpotent if ϕ(0)< ∞ . The most imp ortant examples of strict
and nilp otent copulas are the pro duct and the Łukasiewicz op erator, resp ectively.

One of the most imp ortant traits of copulas is the famous Sklar’s theorem.
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Theorem 2.27 ([189])Let X 1, . . . ,Xn be n random variables, and let FX 1 , . .., FX n

denotetheir respective cumulative distribution functions. If F denotesthe jointcumula-
tive distribution function, then there exists a copula C such that

F (x1, . . . ,xn ) = C(F X 1 (x 1), . . . ,FX n (x n )) for every (x 1, . . . ,xn ) ∈ R
n .

When thecopula is Archimedean, last expressionbecomes:

F(x 1, . . . ,xn ) =ϕ
− 1](ϕ(F X 1 (x 1)) + .. . + ϕ(F X n (x n ))).

Obviously, a pair of random variables is coupled by the pro duct if and only if they are in-
dep endent.Moreover, random variables coupled by the minimum op erator (resp ectively,
by the Łukasiewicz op erator) are called comonotonic (resp ectively,countermonotonic).
These two cases are very imp ortant in the theory of copulas, and forthis reasonwe
will study in detail the prop erties of statistical preference and sto chastic dominance for
them. In fact, from the Fréchet-Ho effding b ounds of Equation (2.8), an interpretation of
comonotonic and countermonotonic random variables can be given.In orderto seethis,
recall that asubset S of R

2
isincreasing ifandonlyif foreach (x, y) ∈ R

2 either:

1. for all (u, v) in S, u ≤ x implies v ≤ y; or

2. for all (u, v) in S, v ≤ y implies u ≤ x.

Similarly, asubset S of R
2

isdecreasing ifandonlyif foreach (x, y) ∈ R
2 either:

1. for all (u, v) in S, u ≤ x implies v ≥ y; or

2. for all (u, v) in S, v ≤ y implies u ≥ x.

Using this notation , the following result is presented in [166, Theorem 2.5.4] and proved
in [124].

Prop osition 2.28Let X and Y be two real-valuedrandom variables. X and Y are
comonotonic if and only ifthe supportof the joint distribution function isa increasing
subset ofR

2
, and X and Y are countermonot onic if and only if the support of the joint

distribution function is a decreasing subset of R
2
.

When X and Y arecontinuous, wesaythat Y is almostsurely anincreasing functionof
X if and only if X and Y arecomonotonic, and Y is almost surelya decreasingfunction
of X if and onl y if they are countermonotonic.
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2.2 Imprecise probabilities

Next, we discuss briefly imprecise probability models. Thisis thegeneric termused
to refer to all mathematical mo dels that serve as an alternative and a generalization
of probability mo dels to situations where our knowledge if vague or scarce. It includes
p ossibility measures ([217]), Choquet capacities ([39]), b elief functions ([187]) or coherent
lower previsions ([205]), among other mo dels.

2.2.1 Coherent lowerprevisions

We b egin by intro ducing the main concepts of the theory of coherent lower previsions.
Consider a p ossibility spaceΩ. A gambleisa real-valued functional defined on Ω. We
shall denote by L (Ω) the setof all gambles on Ω, while L + (Ω) denotes the set of positive
gambles on Ω. Given asubset A of Ω, the indicator func tion of A is the gamble that
takes the value 1 on the ele ments ofA and 0 elsewhe re.We shalldenote this gamble by
I A , or by A when no confusion is possible.

A lower prevision isa functional P definedon a setof gambles K⊆L (Ω). Givena
gamble f , P (f) is understood to represent a sub ject’s supremum acceptable buying price
for f , in the sense that for any ε>0 the transaction f − P (f ) +ε is acceptable to him.

Using this interpretation, we can derive the notion of coherence.

Definition2.29 ([205, Section 2.5])Considerthe lowerprevision P: K→ R, where
K ⊆P (Ω). It avoidssureloss if for any natural number n and any f 1, . . . ,fn ∈K it
holds that:

sup
ω∈Ω

n

k=1
[f k (ω) − P(f k )] ≥ 0.

Also, P iscoherent iffor anynatural numbersn and m and f 0,f 1, . . . ,fn ∈K , it holds
that:

sup
ω∈Ω

n

i=1
[f k (ω) − P(f k )] − m[f 0(ω) − P(f 0)] ≥ 0.

The interpretation of this notion is that the acceptablebuying prices encompassed by
{ P (f ): f ∈L (Ω)} are consistent with each other, in thesense defined in[205, Se c-
tion 2.5]. From any lower p revis ionP it is p ossible to define a set of probabilities, also
called credal set, by:

M (P )= { P finitely additive probabilities :P ≥ P} .

The following result relates coherence and avoiding sure loss to the cre dal setM (P) . It
is usually called the Envelope Theorem.
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Theorem 2.30 ([205, Section 3.3.3])Let P bea lowerprobabilitydefinedon a setof
gamblesK, and let M (P) denote its associated credalset. Then:

P avoidssure loss ⇔M (P )= ∅

and
P is coherent ⇔ P (f )= inf

P ∈M (P)
P (f ).

By conjugacy, an op erator P definedona set of gambles K is called upper prevision.
For any f ∈K , P (f) is understood to represent the sub ject’s infimum acceptable selling
price for f , in thesensethatforany ε>0 the transaction P (f ) +ε − f is acceptable
to him. An upp er prevision avoids sure loss (respectively, is coherent) if and only if
P (f )= − P( − f) , where P is a lower prevision that avoids sure loss (resp ectively, that is
coherent).

When the domain K of the lower and upp er previsions is formed by subsets of Ω,
P and P are called lower and upper probabilities, resp ectively.

Next prop osition shows several prop erties of coherent lower and upp er probabilities.

Prop osition 2.31 ([205, Section 2.4.7])Let P be a lowerprobability and letP denote
its conjugate upper probability. The fol lowing statements hold for anyA,B ⊆ Ω:

A ∩ B= ∅⇒ P(A ∪ B) ≥ P (A ) + P (B ). (2.11)
A ∩ B= ∅⇒ P(A ∪ B) ≥ P (A ) + P (B ). (2.12)

P (A) + P(B) ≤ P(A ∪ B) + P(A ∩ B). (2.13)
P(A ∪ B) + P(A ∩ B) ≥ P (A ) + P (B ). (2.14)
P(A ∪ B) + P(A ∩ B) ≥ P (A ) + P (B ). (2.15)

Given a coherent lower previsionP with domain K , we may be interested in extendingP
toa more general domain K ⊇K . This can be made by means of the natural extension.

Definition2.32 ([205, Section 3.1])Let P bea coherentlower previsionon K, and
consider K ⊇K . Then, forany f ∈K , the natural extension of P is definedby:

E(f )= inf
P ∈M ( P)

P (f ).

The natural ext ension is the least committal, that is the most imprecise, coherent exten-
sion of P .

One instance where coherent lower previsions app ear is when dealing with p-b oxes.
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Definition 2.33 ([75])A probability box, or p-box for short, (F , F) is the set ofcumu-
lative distribution functions bounded between two finitely additive distribution functions
F and F such that F ≤ F . We shall refer to P as the lower distribu tion function and to
F as the upp er distribution function of the p-box.

Note that F,F need not be cumulative distribution functions, and as such they need
not belong to the set (F , F); they are only required to be finitely additive distribution
functions. In particular, if we cons ider a setF of distributionfunctions, its asso ciated
lower and upper distributionfunctions aregivenby

F (x) := inf
F ∈F F (x ), F (x ) := sup

F ∈F
F (x ). (2.16)

Prop osition 2.34Givenaset ofcumulativedistribution functions F , its lower bound
F is alsoa cumulativedistribution function, while F is a finitely additivecumulative
distribution function.

P-b oxes have been connected to info-gap theory ([76]), randomsets ([103, 172]), and
possibility measures ([17, 51, 198]).

Given a p-b ox(F , F) on Ω, it induces a lower probability P (F ,F) onthe set

K = { Ax ,X c
x :x ∈ Ω} ,

where Ax = { x ∈ Ω :x ≤ x} ,by:

P (F ,F) (A x ) = F (x) and P (F ,F) (A c
x ) =1 − F (x ). (2.17)

If F =F =F , P (F ,F) is usually denoted by PF . The following result is state d in [209]
and proved in [198, 201].

Theorem2.35 ([198,Section3],[201,Theorem 3.59])Considertwo maps F and
F from Ω to [0 , 1]and let P (F ,F) : K→ [0 , 1]be the lower probability they induce by

meansof Equation (2.17). The fol lowing statements are equivalent:

• P (F ,F) is a coherent lowerprobability.

• F,F are distributionfunctions and F ≤ F .

• PF and PF are coherentand F ≤ F .

In particular, if F =F =F , then PF is coherent if and only if F is a distribution
function.
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A particular case appears when defining coherent lower previsions in pro duct spaces
Ω1 × Ω2. If P is a coherentlower prevision taking values onL (Ω1 × Ω2), we can consider
its marginals P 1 or P 2 as coherent lower previsions on L (Ω1) or L (Ω2), resp ectively,
defined by:

P 1(f ) = P (f) and P 2(f ) = P (f)

for any gamble f on Ω1 × Ω2. The y will arise when trying to define coherent lower
previsions from bivariate p-b oxes.

In this work, we shall use imprecise probability mo dels b ecause we shall be interested
in the comparison of sets of alternatives, each with its asso ciated probability distribution;
we obtain thus a set P of probability measures. This set can be summarized by means
of its lower and upper envelop es, which are given by:

P(A) := inf
P ∈P P (A ), P (A ) := sup

P ∈P
P (A ), (2.18)

and which are coherent lower and upp er probabilities.

2.2.2 Conditional lower previsions

Consider two random variablesX and Y taking values in two spacesΩ1 and Ω2 and let
P be a coherent lower prevision taking values on L (Ω1 × Ω2). Wedefine a conditional
lower prevision P( ·| Y) as a function with two argume nts. For any y ∈ Ω2, P( ·| y) is
real functional on theset L (Ω1 × Ω2), whileforany gamble f on Ω1 × Ω2, P(f | y) is
the lower prevision of f , conditional on Ω2 =y . P(f | Y) is then the gamble on Ω1 that
assumes the valueP(f | y) in y. Similar considerations can be made forP( ·| X) .

Definition 2.36The conditional lower prevision P( ·| Y) is cal led separately coherent
if for all y ∈ Ω2, λ ≥ 0 and f,g ∈L (Ω1 × Ω2) it satisfies the fol lowing conditions:

SC1 P(f | y) ≥ inf x ∈Ω f (x, y) .
SC2 P(λf | y) = λP (f | y).
SC3 P (f +g | y) ≥ P(f | y) + P(g | y).

It is known that from separate coherence the fol lowing properties hold (see [205,
Theorems 6.2.4 and 6.2.6]):

P(g | y) = P (g( ·, y) | y) and P (fg | Y ) = fP (g | Y),

for all y ∈ Ω2, all positive gamblesf on Ω2 and all gamblesg on Ω1 × Ω2.

We now inve stigate separate coherence and coherence together.For any gamble f on
L (Ω1 × Ω2), we define:

G(f | y) =I { y } [f − P(f | Y)] =I { y } [f( ·, y) − P (f( ·, y) | y)]
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and

G(f | Y) =f − P(f | Y) =f − P(f | Y)=
y∈Ω

I { y } [f( ·, y) − P (f( ·, y) | y)].

Definition 2.37Let P( ·| Y) and P( ·| X) be two separately coherent conditionallower
previsions. They are called weakly coherent if and only if for all f 1,f 2 ∈L (Ω1 × Ω2), all
x ∈ Ω1,y ∈ Ω2 and g ∈L (Ω1 × Ω2), there are some

B1 ⊆ suppΩ1 (f 2) ∪ suppΩ2 (f 1) ∪ ({ x}× Ω2)
B2 ⊆ suppΩ1 (f 2) ∪ suppΩ2 (f 1) ∪ (Ω1 ×{ y} )

such that:
sup

z∈B 1
[G(f 1 | Y) + G(f 2 | X) − G(g | x)] (z) ≥ 0

and
sup

z∈B 2
[G(f 1 | Y ) + G(f 2 | X) − G(g | y)] (z) ≥ 0,

where
suppΩ1 (f )= {{ x}× Ω2,x ∈ Ω1 | f(x, ·) =0 }

and
suppΩ2 (f )= { Ω1 ×{ y} ,y ∈ Ω2 | f( ·, y) =0 } .

We say that P( · | Y) and P( · | X) are coherent if for all f 1,f 2 ∈L (Ω1 × Ω2), all
x ∈ Ω1,y ∈ Ω2 and all g ∈L (Ω1 × Ω2) it holds that:

supz∈Ω1 × Ω2 [G(f 1 | Y) + G(f 2 | X) − G(g | x)] (z) ≥ 0.
supz∈Ω1 × Ω2 [G(f 1 | Y) + G(f 2 | X) − G(g | y)] (z) ≥ 0.

Several res ults can b e found in the literature relating coherence and weak coherence.

Theorem 2.38 ([137, Theorem 1])Let P( · | X) and P( · | Y) be separately coher-
ent conditional lower previsions. Theyareweaklycoherent if and only if there is some
coherent lower previsionP on L (Ω1 × Ω2) such that

P (G(f | X)) ≥ 0 and P (G(f | x)) =0 for any f ∈L (Ω2),x ∈ Ω2,
P (G(g | Y)) ≥ 0 and P (G(g | y)) =0 for any g ∈L (Ω1),y ∈ Ω1.

The followingresult isknownasthe ReductionTheorem.

Theorem 2.39 ([205, Theorem 7.1.5])Let P( · | X) and P( · | Y) be separately co-
herent conditional lower previsions defined onL (Ω1 × Ω2), and let P bea coherent lower
prevision on L (Ω1 × Ω2). Then P, P( ·| X) and P( ·| Y) are coherent if and only if the
fol lowing two conditions holds:

1. P , P( ·| X) and P( ·| Y) are weakly coherent.

2. P( ·| X) and P( ·| Y) are coherent.
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2.2.3 Non-additive measures

One imp ortant example of coherent lower previsions are the n-monotone ones, which
were first intro duced by Choquet in [39].

Definition 2.40 ([39])Acoherent lower prevision P on L (Ω) is cal ledn-monotone if
and only if:

P
p

i=1

f i ≥
∅=I ⊆{ 1,...,p }

(− 1)
| I |+1 P

i ∈I

f i

for all 2 ≤ p ≤ n and all f 1, . . . ,fp in L (Ω), where ∨ denotes the point-wisemaximum
and ∧ the point-wise minimum.

In part icu lar, a coherent lower probabilityP: P (Ω) → [0 , 1]is n-monotone when

P
p

i=1

A i ≥
∅=I ⊆{ 1,...,p }

(− 1)
| I |+1 P

i ∈I

A i

for all 2 ≤ p ≤ n and all subsetsA1, . . . ,Ap of Ω.

Acoherent lower prevision on L (Ω), that is n-monotone for all n ∈ N, is called completely
monotone, and its restriction to events is a belief function.Therestriction toeventsof the
conjugate upp er prevision is called plausibility function.Belief and plausibility fun ctions
are usually denotedby bel and pl.

Another typ e of non-additive measure are possibility measures.

Definition 2.41 ([70])A possibility measure on [0,1] is a supremum preserving set
function Π: P ([0, 1]) → [0 , 1]. Itis characterised byits restrictionto events π, which is
cal led its p ossibility distribution. The conjugate function N of a possibility measure is
cal led a necessity measure:

N (A ) =1 − Π(A c).

Because of their computational simplicity, p ossibi lity measures are widely applied in
many fie lds, including data analysis ([196]), diagnosis ([33]), case d-based reasoning ([91])
and psychology ([177]).

Let us see how to apply our extension sto chastic dominance to the comparison of
p ossibility measures; another approach to preference modeling with p ossibility measures
is discuss ed in [19, 115].

The connection between p ossibility measures and p-b oxes was already explored in
[199], and it was proven that almost any possibility measure can be seen as the natural
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extension of a corresponding p-b ox.However, the definition of this p-b ox implies defining
some particularorder on our referential space,wh ich could b e different to the one we
already have there (for instance if the possibility measure is defined on [0,1] it may seem
counterintuitiveto consideranythingdifferentfromthe natural order), and m ore over
two different p ossibility measures may pro duce two different orders on the same space,
making it im p ossible to compare them.

Instead, we shall consider a possibility measure Π on Ω = [0, 1], its asso ciated set
of probability measures:

M (Π) := { P probability : P (A) ≤ Π( A) ∀A} , (2.19)

and the corresp onding set of distribution functionsF . Let (F , F) b e its asso ciatedp-b ox.

Since any possibility measure on [0,1] can be obtained as the upp er probability
of a random set ([84]), and moreover in that case ([131]) the upp er probability of the
random set is the maximum of the probability distributions of the measurable selections,
we deduce that thep-b ox asso ciated toF is determined by the following lower and upp er
distribution functions:

F(x) = sup
P ≤ Π

P ([0, x]) = Π([0, x]) = sup
y≤ x

π( y) (2.20)

F(x) = inf
P ≤ Π

P ([0, x]) =1 − Π((x, 1]) =1 − sup
y>x

π (y ).

Note however, that these lower and up p er distribution functions need not b elong toF : if
for instance we consider the p ossibility measure asso ciated to the p ossibility distribution
π =I (0 .5,1] , we obtain F =π , whichis notright-continuous, and consequentlycannot
belong to the set F of distribution functions asso ciated to M (Π) .

Another interesting typ e of non-additivity measures, that includes possibility mea-
sures as aparticular case are clouds. Following Neumaier ([168]), a cloud is a pairof
functions [δ, π], where π, δ : [0, 1]→ [0 , 1]satisfy:

• δ ≤ π.

• There exists x ∈ [0, 1]such that π (x ) =0.

• There exists y ∈ [0, 1]such that δ (y ) =1.

δ and π are called the lower and upper distributions of the cloud, resp ectively.

Any cloud [δ, π]has an asso ciated set of probabilitiesP[δ,π] , that is the set of proba-
bilities P satisfying:

P( { x ∈ [0, 1]| δ (x)≥ α} ) ≤ 1 − α ≤ P( { x ∈ [0 , 1]| π (x ) >α} ).
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Since bothπ and 1− δ are possibility distributions we can consider their asso ciated credal
setsPπ and P1− δ, given by

Pπ := { P probability : P (A) ≤ Π( A) ∀A ∈ β[0,1] } ,

where Π denotes the p ossibility measure asso ciated to the possibility distributionπ, and
similarly for P1− δ. From [65], it holds that P[δ,π] = P1− δ ∩P π.

2.2.4 Random sets

One context where completel y monotone lower previsions arise naturally is that of mea-
surable multi-valued mappings, or randomsets ([59,96]).

Definition 2.42Let (Ω, A , P) be aprobability space, (Ω, A ) ameasurable space,and
Γ :Ω →P (Ω) a non-empty multi-valued mapping. It is cal led random set when

Γ
∗
(A )= { ω ∈ Ω : Γ(ω) ∩ A= ∅} ∈A

for any A ∈A .

One instance of random sets are random intervals, that are those satisfying that Γ(ω) is
an interval for any ω ∈ Ω.

If Γ mo dels the imprecise knowledge ab out a random variableX , Γ(ω) represents
that the “true” value of X (ω) belongs to Γ(ω). Then, all we know ab out X isthat itis
oneof themeasurable selections of Ω:

S(Γ)= { U :Ω → Ω random variable : U (ω)∈ Γ(ω) ∀ω ∈ Ω} . (2.21)

This interpretation of multi-valued mappings as a mo del for the imprecise knowledge of
a random variable is not new, and can b e traced back to Krus e and Meyer ([104]).The
epistemic interpretation contrasts withthe ontic interpretation which issometimes given
to random sets as naturally impreci se quantities ([73]).

Random sets generate upp er and lower probabilities.

Definition 2.43 ([59])Let (Ω, A , P) be a probability space,(Ω, A ) a measurable space
and Γ :Ω →P (Ω) arandom set. Then its upper and lower probabilities are the functions
P ∗,P ∗ : A→ [0, 1] given by:

P∗
(A ) = P( { ω : Γ(ω) ∩ A= ∅}) and P∗(A ) = P( { ω: ∅= Γ(ω) ⊆ A} ) (2.22)

for any A ∈A . These upperand lowerprobabilities are,in particular, a plausibility and
a belief function, respectively. Furthermore,they define thecredal set M (P ∗

Γ ) given by:

M (P
∗
Γ )= { P probability :P ∗Γ (A) ≤ P (A) ≤ P ∗

Γ (A) ∀A ∈ A} . (2.23)
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The upp er and lower probabilities of a random set are in particular coherent lower and
upp er probabilities, and constitute the lower and upp er bounds of the probabilities in-
duced bythemeasurable selections:

P∗(A) ≤ PX (A) ≤ P ∗
(A) for every X ∈ S(Γ). (2.24)

Therefore, their asso ciated cumulative distribution functions provide lower and upp er
b ounds of the lower and upper distribution functions asso ciated toS(Γ) . The inequalities
of Equation (2.24) can b e strict [130, Example 1]; howeve r, under fairly general conditions

P ∗
(A ) = max P (Γ)( A) and P∗(A ) = min P (Γ)( A) for every A ∈A , (2.25)

whereP (Γ)( A )= { PX (A ) :X ∈ S(Γ) } . Inparticular, if Γ takes values on the measurable
space([0, 1],β[0 ,1]), wh ereβ[0 ,1] denotes theBorel σ-field, Equation (2.25) hol ds under
any of the following cond itions ([130]):

• Ifthe class { Γ(ω ) :ω ∈ Ω} is countable.

• If Γ(ω) is closed for everyω ∈ Ω.

• If Γ(ω) is op en for everyω ∈ Ω.

However, thetwo setsarenot equivalentingeneral, and M (P ∗
Γ ) can only b e see n as an

outer approxim ation. There are nonetheless situations in which both sets coincide.First,
let us intro duce the following definition.

Definition 2.44Consider twofunctions A, B :Ω → R. They are cal led strictly comono-
tone if ( A(ω)− A(ω )) ≥ 0 if and only if (B (ω)− B(ω )) ≥ 0 for any ω,ω ∈ Ω.

A similar but less restrictive notionisthe one of comonotone functions: A and B are
called comonotone if( A(ω)− A(ω ))(B (ω)− B (ω )) ≥ 0 for any ω,ω ∈ Ω. Note that both
notions are not equivalentin general. Infact, two increasingandcomonotonefunctions
A and B arestrictly comonotoneif andonly if A (ω ) = A(ω) if and only if B (ω ) = B (ω),
and two comonotone functions A and B with A=0 ≤ B are strictly comonotone if and
only if B is constant.

Next,welist some situationsin which the sets P ∗(Γ) and M (P ∗
Γ ) coincide.

Prop osition 2.45 ([129])Let (Ω, A , P) beaprobabilityspace and consider the random
closed interval Γ := [A, B] : Ω →P (R). Let P (Γ), M (P∗

Γ ) denote the sets of proba-
bility measures induced by the selections and those dominated by the upper probability,
respectively.Then:

1. P ∗
Γ (C ) = max{ Q(C ) :Q ∈ P(Γ) }∀ C ∈ βR.
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2. M(P ∗
Γ ) = C onv (P (Γ)), and if (Ω, A , P) is non-atomic then M(P ∗

Γ ) = P(Γ) .

3. When (Ω, A , P) = ([0, 1],β [0,1] ,λ [0 ,1]), the equality M(P ∗
Γ ) = P(Γ) holds under any

of the fol lowing conditions:

(a) The variables A, B : [0,1] → R are increasing.

(b) A=0 ≤ B .

(c) A,B are strictlycomonotone.

For a complete study on the conditions under which the lower and upp er probabilities
are attained or the conditions under whichthe sets P (Γ) and M (P∗) coincide, we refer
to [125].

Theorem 2.46 ([130, Theorem 14])Let (Ω, A , P) be aprobability space. Consider
the measurable space([0, 1],β[0 ,1]) and let Γ:Ω →P ([0, 1]) be arandom set. If P ∗(A )=
max P (Γ)( A) for all A ∈A , then for any bounded random variable f : [0, 1] → R:

(C) fdP
∗

= sup
U ∈S (Γ)

fdP U , (C) fdP ∗ = inf
U ∈S (Γ)

fdP U ,

and consequently:

( C) fdP
∗

= sup(A) (f ◦ Γ)dP, (C) fdP
∗

= inf (A) (f ◦ Γ)dP,

where(C) fdP
∗ denotesthe Choquet integraloff with respectto P ∗, and (A) (f ◦ Γ)dP

denotes the Aumann int egralof f ◦ Γ with respect to P, given by:

(A) (f ◦ Γ)dP= fdP U :U ∈ S(Γ) . (2.26)

The upp er probability induced by a random set is always completely alternating and
lower continuous [169].Undersomeadditionalconditions, itisinparticularmaxitiveor
a possibility measure:

Prop osition 2.47 ([128, Corollary 5.4])Let (Ω, A , P) be a probability spaceand con-
sider the random closedinterval Γ:Ω →P (R). The fol lowing are equivalent:

(a) P ∗
Γ is a possibility measure.

(b) P ∗
Γ is maxitive.

(c) Thereexists some N ⊆ Ω null such that for every ω1,ω2 ∈ Ω \ N , either Γ(ω1) ⊆

Γ(ω2) or Γ(ω2) ⊆ Γ(ω1).

See also [50] forrelated results when Ω = [0, 1].
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2.3 Intuitionisticfuzzy sets

Fuzzy sets were intro duced by Zadeh ([214]) as a suitable mo del for situations where
crispsets didnotconvey appropriately theavailableinformation. However, there are
also situations were a more general mo del than fuzzy sets is deemed adequate.

A fuzzy set A assigns to every point on the universe a numb er in[0 , 1]that measures
the degree in which this point is compatible with the characteristic describ ed byA . Thus,
if A(ω) denotes the memb ership degree ofω to A, 1− A( ω)stands for th e degree in which
ω do es not belong toA. However, two problems can arise in this situation:

1. 1 − A( ω) could include at the same time b oth the degree of non-memb ership and
the degree of uncertainty orindeterminacy.

2. The membership degree could not be precisely describ ed.

Considerthe following example for the former case:

Example 2.48Let A be the setA= “objects possessing some characteristic”.Thus, A( ω)
stands for the degree inwith ω is inaccord with thegiven characteristic, and 1− A( ω) is
the degreein which ω is not. However, ω couldbe partly indifferentto thecharacteristic.
To deal with this situation, we candenoteby µA (ω ) = A(ω) the membership degree of
ω in A, and let us define by νA (ω) the degree in which ω does not belong A. Such
sets, wherea membershipandnon-membershipdegreeis associatedwithany element,
are cal led (Atanassov) Intuitionistic Fuzzy Sets (in short, IF-sets). Agood exampleof
these situations isvoting, since human voters can be groupedin three classes: vote for,
vote against or abstain ([195]).

In order to illustrate second scenario, consider the following example:

Example 2.49We are study ing some element with melting temperature is m and va-
porization temperat ure is v (obviously, m ≤ v). For example, for water m=0 oC and
v =100 oC. If the element is in a liquid state, we knowthat itstemperatureis greater
than m, because otherwise itwould be solid, and smal ler than v, because otherwise it
would be in gaseous state.Then, although we cannot state the exact temperat ure of the
element, we can say for sure that it belongs to the interval [m, v].

If A(ω) denotes the (non-precisely known) memb ership degree ofω to A , we can
consider an interval [lA (ω ),uA (ω )]that represents that the exact memb ership degree of
ω to A belongs to such interval.These sets, where any element has an asso ciated interval
that bounds of the memb ership degree of the element to the set, are called Interval Valued
Fuzzy Sets (IVF-sets, forshort).
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In this section we intro duce the definition and main prop erties of b oth IF-sets and
IVF-sets, andweseehowthe usual op erations b etween crisp sets can b e generalized
into this context. In particular, we show that b oth kind of sets are formally equivalent
although, as we have already mentioned, their philosophy is different.

Let us begin with the formal definition of an intuitionistic fuzzy set.

Definition 2.50 ([4])Let Ω be auniverse. An intuitionisticfuzzyset is defined by:

A= { (ω ,µA (ω ),νA (ω ))| ω ∈ Ω} ,

whereµA and νA are functions:

µA ,ν A :Ω → [0 , 1]

satisfying µA (ω ) +ν A (ω) ≤ 1. The function πA (ω ) =1 − µA (ω) − νA (ω) is cal led the
hesitation index and it expresses the lack of know ledge on the membership ofω to A.

We shalldenote the set of all IF-sets on Ω by IF Ss(Ω) .

When A is afuzzy set, its complementaryis given by Ac =1 − A . That is,
the memb ership degree ofevery element to the complementary of A is one minus the
memb ership degree toA . Then, everyfuzzy set isin particularan IF-set wherethe
hesitation index equals zero. If F S(Ω) denotes all fuzzy sets on Ω, F S(Ω) ⊂ IF Ss(Ω) .
For prop er IF-sets, ifµA and νA denote the memb ership and non-memb ership functions,
the complementary of A is defined by:

Ac = { ( ω ,νA (ω ),µA (ω ))| ω ∈ Ω} .

Recall that, since the emptyset ∅ is the set with no elem ents, it can b e also seen as an
IF-set give n by:

∅= { (ω , 0, 1)| ω ∈ Ω} .

Similarly, full p ossi bility spaceΩ is the set that includes all the elements, and the re fore
it can be seen as an IF-set given by:

Ω= { (ω , 1, 0)| ω ∈ Ω} .

Definition 2.51 ([6])An intervalvaluedfuzzyset is defined by:

A= { [lA (ω ),uA (ω )] :ω ∈ Ω} ,

where0 ≤ lA ≤ uA (ω) ≤ 1. When lA (ω ) =u A (ω) for any ω ∈ Ω, A becomesa fuzzy set
with membership function lA .
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If [lA (ω ),uA (ω )] represents that the exact membership degree ofω to A belongs to
this interval, the int erval [1− uA (ω ),1− lA (ω )]tel ls us that the exact membership degree
of ω to Ac belongs tosuch interval. Then, Ac is definedby:

Ac = { [1 − uA (ω ),1− lA (ω )] :ω ∈ Ω} .

Moreover, the empty set is defined bythe interval [0 , 0]for any ω ∈ Ω, and the total set
is defined by the interval [1 , 1]for any ω ∈ Ω.

IF-sets and IVF-sets are formallyequivalent. Onthe one hand, given anIF-set A with
membership and non-memb ership functionsµA and νA , it defined an IVF-set by:

{ [µA (ω ),1− νA (ω )] :ω ∈ Ω} .

On the other hand, given an IVF-set with lower and upp er bounds lA and uA , it defines
an IF-set by:

{ (ω ,lA (ω ),1− uA (ω )) :ω ∈ Ω} .

For this reason, although the remainder ofthissectionis written in terms of IF-sets, it
could b e analogously b e formulated in te rm s of IVF-sets.

Let us see how to extend the usual definitions b etween fuzzy sets, like intersections,
unions or differences, towards IF-sets. Similarly to th e fuzzy case, unions andintersec-
tions of IF-sets are defined by means of t-conorms and t-norms. Recall that a t-norm
is a commutative, monotonic and asso ciative binary operator from [0 , 1]× [0 , 1]to [0, 1]
with neutral element 1, while a t-conorm satisfies the same prop erties than a t-norm but
its ne utral element is 0. From a t-norm T it is possible to define a t-conorm ST , called
the dual t-conorm,by:

ST (x, y) =1 − T(1 − x,1 − y) for any (x, y) ∈ [0, 1]2.

See [99] foracompletestudy on t-norms.

Definition 2.52 ([63])Let A and B be twoIF-sets given by:

A= { ( ω ,µA (ω ),νA (ω) | ω ∈ Ω} .
B= { (ω ,µB (ω ),νB (ω) | ω ∈ Ω} .

Let T bea t-norm and ST its dual t-conorm.

• The T-intersection of A and B is theIF-set A ∩T B defined by:

A ∩T B= { ( ω , T (µA (ω ),µB (ω )) ,ST (νA (ω ),νB (ω ))) | ω ∈ Ω} .

• The ST -union of A and B is theIF-set A ∪ST B given by:

A ∪ST B= { (ω ,ST (µA (ω ),µB (ω )), T (νA (ω ),νB (ω ))) | ω ∈ Ω} .
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Recall that we shall use the minimum, TN , andthe maximum, ST M , inorder tomake
intersections and unions, resp ectively,since they are th e most usual op erators used in
the literature. Inthatcase, the T -intersection and the ST -union become:

A ∩T M B= { ( ω ,TM (µA (ω ),µB (ω )) ,ST M (νA (ω ),νB (ω ))) | ω ∈ Ω}

= { ( ω , min(µA (ω ),µB (ω )), max(νA (ω ),νB (ω ))) | ω ∈ Ω} .
A ∪ST M B= { ( ω ,ST M (µA (ω ),µB (ω )) ,TM (νA (ω ),νB (ω ))) | ω ∈ Ω}

= { ( ω , max(µA (ω ),µB (ω )), min(νA (ω ),νB (ω ))) | ω ∈ Ω} .

For simplicity,we shall denote the T -intersection and the ST by ∩ and ∪.

We next define a binary relationship of inclusion between IF-sets.

Definition 2.53Let A and B be twoIF-sets. A is contained in B , and it is denoted by
A ⊆ B , if

µA (ω) ≤ µB (ω) and νA (ω) ≥ νB (ω) for any ω ∈ Ω.

Example 2.54Let us considera possibility space Ω representing aset of three cities:
city 1, city 2 and cit y 3. Let P be a polit ician, and let us consider the IF-sets:

A= “P is a good politician”.
B= “P is honest”.
C= “P is close to the people”.

Since A, B and C areIF-sets, each cityhas a degreeofagreementwith feature A,
B and C, and a degreeof disagreement. In Figure 2.5 wecan seethe membership and
non-membership functions of these IF-sets.

Now, inorder to compute the intersectionof the IF-sets A and B ,

A ∩ B= “P is a good politician and honest” .

we must compute the value ofµA ∩B and

µA ∩B (city i) =min(µ A (city i) ,µB (city i)) =µ B (city i), for i = 1, 2, 3.
νA ∩B (city i) = max(ν A (city i) ,νB (city i)) =ν B (city i), for i = 1, 2, 3.

Thus, A ∩ B =B . It holds since B ⊆ A, in the sense that µB ≤ µA and νB ≥ νA , and
its interpretation would be that P is less honest than a good politician.

Now, let us computethe IF-set “P is honest or closeto the people”, that is, the
IF-set B ∪ C. We obtain that:

µB∪C (city i) = max(µ B (city i),µ C (city i))=
µB (city i) for i = 1, 3.
µC (city i) for i= 2.

νB∩C (city i) = min(ν B (city i) ,νC (city i))=
νB (city i) for i = 1, 3.
νC (city i) for i= 2.
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Figure 2.5: Examples of the memb ership and non-memb ership functions of the IF-sets
that express the P is a go od p olitician( ∗), Pishonest( ◦ ) and P is close to the p eople
(♦ ).

Then, the IF-set B ∪ C can be expressed in the fol lowing way:

B ∪ C= { (city 1,µ B (city 1),ν B (city 1)),
(city 2,µ C (city 2),ν C (city 2)),( city 3,µ B (city 3) ,νB (city 3))} .

Let us conclude this part by defining the difference op erator b etween IF-sets.According
to [27], a difference between fuzzy sets, or fuzzy difference, is a map− : F S(Ω)× F S(Ω) →

F S(Ω) such that for everypair of fuzzysets A and B it satisfies the following prop erties:

If A ⊆ B, then A − B= ∅.
If A ⊆ A, then A − B ⊆ A − B.

Some examples offuzzy differences are the following:

A − B (ω ) = max{ 0, A(ω)− B (ω)} ,

A − B (ω )=
A( ω) if B (ω ) = 0,

0 otherwise,

for any ω ∈ Ω.

Similarly, we can extend the defi nition of difference for IF-sets.
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Definition 2.55An operator − : IF Ss(Ω) × IF Ss(Ω) → IF Ss(Ω) isa difference be-
tween IF-set s (IF-difference, in short) if it satisfies properties D1 and D2.

D1 If A ⊆ B , then A − B= ∅.
D2 If A ⊆ A , then A − B ⊆ A − B .

Any function D satisfying D1 and D2 is a difference op erator. Nevertheless,there are
other interesting prop erties that IF-differences may satisfy:

D3 (A ∩ C) − (B ∩ C) ⊆ A − B .
D4 (A ∪ C) − (B ∪ C) ⊆ A − B .
D5 A − B= ∅⇒ A ⊆ B .

Letus give an example of IF-difference that alsofulfills D3, D4 andD5.

Example 2.56Consider thefunction − : IF Ss(Ω) × IF Ss(Ω) → IF Ss(Ω) given by:

A − B= { ( ω ,µA − B (ω ),νA − B (ω ))| ω ∈ Ω} ,

where

µA − B (ω ) = max(0,µA (ω) − µB (ω ));

νA − B (ω )=
1 − µA − B (ω) if νA (ω ) >ν B (ω );
min(1 +ν A (ω) − νB (ω ),1− µA − B (ω )) if νA (ω) ≤ νB (ω ).

Let us provethat this funct ion satisfies properties D1 and D2, i.e., that it is an IF-
difference.

D1: Let us take A ⊆ B . Then µA ≤ µB and νA ≥ νB .

µA − B (ω ) = max(0,µA (ω) − µB (ω )) = 0.
νA − B (ω ) =1 − µA − B (ω ) = 1, becauseνA ≥ νB .

As aconsequence,A − B= ∅.

D2: Consider A ⊆ A , that is, µA ≤ µA and νA ≥ νA , and let us prove that
A − B ⊆ A − B . Thus, forany ω in Ω we have that:

µA − B (ω ) = max(0,µA (ω) − µB (ω ))≤ max(0 ,µA (ω) − µB (ω )) =µ A − B (ω ).

νA − B (ω )=
1 − µA − B (ω) if νA (ω ) >ν B (ω ).
min(1 − µA − B (ω ), 1 +νA (ω) − νB (ω )) if νA (ω) ≤ νB (ω ).

νB − A (ω) ≤ 1 − µA − B (ω) if νA (ω ) >ν B (ω ).
min(1 − µA − B (ω ), 1 +νA (ω) − νB (ω )) if νA (ω) ≤ νB (ω ).

νB − A (ω) ≤ νA − B (ω ).

This shows that − is an IF-difference. Letus see thatit also satisfiesproperties D3, D4
and D5.
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D3: Let ustake into account that the IF-sets A ∩ C and B ∩ C are givenby:

A ∩ C= { (ω , min(µA (ω ),µC (ω )), max(νA (ω ),νC (ω ))) | ω ∈ Ω}
B ∩ C= { (ω , min(µB (ω ),µC ( ω )), max(νB (ω ),νC (ω ))) | ω ∈ Ω} .

For short, we will denote by D the IF-set D=A ∩ C − B ∩ C. Onone hand, we are
going to prove that µA − B ≥ µD :

µA − B (ω ) = max(0,µA (ω) − µB (ω )).
µD (ω ) = max(0, min(µA (ω ),µC (ω ))− min(µ B (ω ),µC (ω ))).

Applying thefirst part ofLemma A.1 of Appendix A, we deducethat µA − B ≥ µD .

Now, let usprovethat νA − B ≤ νD . Therearetwopossibilities, either νA (ω ) >ν B (ω)
or νA (ω) ≤ νB (ω). Assume that νA (ω ) >ν B (ω). In such a case, max(νA (ω ),νC (ω ))≥

max(νB (ω ),νC (ω )), and νA − B (ω ) =1 − µA − B (ω), and consequently:

νD (ω ) =1 − µD (ω) ≥ 1 − µA − B (ω ) =ν A − B (ω ).

Assume now that νA (ω) ≤ νB (ω). Then itholds that

max(νA (ω ),νC (ω ))≤ max(νB (ω ),νC (ω )).

By thesecond part of Lemma A.1of AppendixA,

νB (ω) − νA (ω) ≥ max(νB (ω ),νC (ω ))− max(νA (ω ),νC (ω )),

whence

νD (ω ) = min(1 + max(νA (ω ),νC (ω ))− max(νB (ω ),νC (ω )) ,1− µD (ω ))
≥ min(1 +ν A (ω) − νB (ω ),1− µA − B (ω )) =ν A − B (ω ).

Thus we conclude thatνA − B ≤ νD , and therefore (A ∩ C) − (B ∩ C) ⊆ A − B .

D4: Consider three IF-sets A,B and C. The IF-sets A ∪C and B ∪C aregiven by:

A ∪ C = max(µ A ,µ C ), min(νA ,ν C ).
B ∪ C = max(µ B ,µ C ), min(νB ,ν C ).

Let us denote byD the IF-set D= (A ∪C) − (B ∪C) , and let us provethat µA − B ≥ µD .
This is equivalent to

max(0,µ A (ω) − µB (ω ))≥ max(0, max(µA (ω ),µC (ω ))− max(µB (ω ),µC (ω ))),

for every ω ∈ Ω, and thisinequality holdsbecauseof the first part of Lemma A.1 of
Appendix A.

Let us provethat νD ≥ νA − B . Toseethis, considerthetwopossiblecases: νA (ω )>
νB (ω) and νA (ω) ≤ νB (ω). Assu me thatνA (ω ) >ν B (ω), whichmeans that νA − B (ω )=
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1− µA − B (ω). Now, νA (ω ) >ν B (ω) implies that min(νA (ω ),νC (ω ))≥ min(νB (ω ),νC (ω )),
and therefore:

νD (ω ) =1 − µD (ω) ≥ 1 − µA − B (ω ) =ν A − B (ω ).
Assume now that νA (ω) ≤ νB (ω),whence

min(νA (ω ),νC (ω ))≤ min(νB (ω ),νC (ω )).

Applying thesecond partof Lemma A.1 of AppendixA, we knowthat

νB (ω) − νA (ω) ≥ min(νB (ω ),νC (ω ))− min(νA (ω ),νC ( ω )).

Then, we deduce that:

νD (ω ) = min(1 + min(νA (ω ),νC (ω ))− min(νB (ω ),νC ( ω )) ,1− µD (ω ))
≥ min(1 +ν A (ω) − νB (ω ),1− µA (ω )) =ν A − B (ω ).

Thus, νD ≥ νA − B , and therefore (A ∪ C) − (B ∪ C) ⊆ A − B .

D5: Let us consider A and B such that A − B= ∅. Then, µA − B (ω ) =0 and
νA − B (ω ) =1 for every ω ∈ Ω, whence

0 =µ A − B (ω ) = max(0,µA (ω) − µB (ω ))⇒ µA (ω) ≤ µB (ω ).

1 =ν A − B (ω )=
1 if νA (ω ) >ν B (ω ).
1 +ν A (ω) − νB (ω) if νA (ω) ≤ νB (ω ).

Therefore, µA (ω) ≤ µB (ω) and νA (ω) ≥ νB (ω), and as a consequenceA ⊆ B .
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3 Comparison of alternatives underun-
certainty

This memory is devoted to the comparison of alternatives under some lack of informa-
tion. If this lack of information is given by uncertainty ab out the consequences of the
alternatives, these are usually mo delled by means of random variables.Thus, sto chastic
orders emerge asan essential to ol, sincetheyallowthecomparison of random quanti-
ties. As we mentionedinthe previous chapter, one of the most imp ortant sto chastic
orders in the literature is that of sto chastic dominance, in any of its degrees. Sto chastic
dominance has b ee n widely investigated (see [98, 108, 109, 110, 173], among others) and
it has been applied in many different areas ([11, 77, 95, 109, 171, 180]). However, the
other sto chastic order we have intro duced, statistic al preference, has been studied in
([14, 15, 16, 49, 54, 55, 56, 57, 58]) but not as widely as sto chastic dominance.For this
reason, the first ste p of this chapter is to make a thorough study of statistical preference.
First of all, we investigate its basic prop erties as a sto chastic order,andthen we study
its relationship with sto chastic dominance. In this sense, we shall firstly lo ok for condi-
tions that guarantee that first degree sto chastic dominance implies statistical preference.
Then, we shall show that in general there is not an implication relationship between
statistical preference and the n-th degree sto chastic dominance. We als o provide sev-
eral examples of the b ehaviour of statistical preference,and also sto chastic dominance,
in some of the most usual distributions, likeforinstance Bernoulli, exp onentialor, of
course, the normal distribution.

Both sto chastic dominance and statistical preference are stochastic orders that were
intro duced for the pairwise comparison of random variables.Infact, statisticalpreference
presents adisadvantage thatis itslack of transitivity, as was pointed out by several
authors([14, 15, 16, 49,54,56, 58,121, 122]). Toillustratethisfact, wegiveanexample.
Then, in order to have an sto chastic order that allows for the simultaneous comparison
of more than two random variables, we present a generalisation of statistic al preference,
andstudy some of its prop erties. In particular, we shall see its connections with the
metho ds established for pairwise comparisons.

It is obvious that sto chastic orders are powerful to ols for comparing uncertain quan-

43
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tities. For this reason, and in order to illus trate our results, we conclude the chapter by
mentioning two possible applications. On the onehand, we investigate both sto chas-
tic dominance and statistical preference as metho ds for the comparison of fitness values
([180, 183]), and on the other hand we illustrate the usefuln ess of b oth statistical pref-
erence and its generalisation for the comparison of more than two random variablesin
multicriteria decision making problems with linguistic lab els ([123]).

3.1 Properties of the statistical preference

This section is devoted to the study of the main prop erties of statistical preference. In
particular, weshall try tofindacharacterization of this notion: ona firststep, a similar
one to that of sto chastic dominance presented in Theorem 2.10;afterwards, we explain
that statistical preference seems to be closer to another lo cation parameter, the median.

3.1.1 Basic prop erties and intuitive interpretation of the statis-
tical preference

We start this subsection with some basic prop erties ab out the b ehaviour of the statistical
preference.

Lemma 3.1Let X and Y be tworandom variables. Thenit holds that

X SP Y ⇒ P(X < Y) ≤ 1
2

.

In part icu lar, the converse implication holds for random variables withP(X = Y) =0 .

Pro of: It holdsthat Q(X , Y ) = P (X > Y )+
1
2

P (X = Y) ≥ 1
2

. Then:

P(X < Y ) =1 − P( X > Y) − P( X = Y) ≤ 1
2

− 1
2

P (X = Y) ≤ 1
2

.

If P(X = Y) =0 ,then:

Q(X , Y ) = P (X > Y ) =1 − P (Y > X) ≥ 1
2

,

since we assumeP(X < Y) ≤ 1
2 . Thus, X SP Y .

Remark 3.2Note thatthe converse implicationof theprevious resultdoes nothold in
general. Asa counterexample, itisenoughtoconsidertheindependentrandomvariables
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defined by:
X 0 2
PX 0.8 0.2

Y 0 1
PY 0.7 0.3

On the one hand, it holds that:

P (X < Y) = P (X = 0, Y = 1) = P (X = 0)P(Y = 1) = 0.8 · 0. 3 = 0.24<
1
2

,

and also

P (X = Y) = P (X = 0, Y = 0) = P (X = 0)P(Y = 0) = 0.7 · 0.8 = 0.56.

However, P (X > Y) = P (X = 2) = 0.2 . Thus:

Q(X , Y ) = P (X > Y )+
1
2

P (X = Y ) = 0. 2+
1
2

· 0. 56 = 0. 48<
1
2

.

Now we present a result that shows how tran slations and dilations or contractions affect
to the b ehavi ou r of statistical preference for real-valued random variables.

Prop osition 3.3Let X , Y and Z be three real-valued random variables defined on the
same probability space and letλ=0 and µ be two realnumbers. It holdsthat

1. X SP Y ⇔ X +Z SP Y +Z .

2. λX SP µY ⇔
X SP

µ
λ Y if λ> 0.

µ
λ Y SP X if λ< 0.

Pro of:

1. Itholds that

Q( X , Y ) = P (X > Y )+
1
2

P (X = Y)

= P (X + Z > Y + Z)+
1
2

P (X +Z = Y + Z) = Q(X + Z, Y + Z).

Then, Q(X , Y) ≥ 1
2 ifand onlyif Q(X + Z, Y +Z) ≥ 1

2 .

2. Let us develop the exp re ssion ofQ(λX , µY) :

Q(λX , µY )=
PX> µ

λ Y +P X=
µ
λ Y =Q X,

µ
λ Y if λ> 0.

P X< µ
λ Y +P X=

µ
λ Y =Q

µ
λ Y,X if λ< 0.

Then, the result direct follows from the expres sion of Q(λX , µY) .
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Some new equivalences can be deduced from the previous ones.

Corollary 3.4 Let X and Y bea pair ofreal-valuedrandomvariables, λ and µ two real
numbers andα aconstant. Then it holds that

1. λX SP µ ⇔






X SP
µ
λ , if λ> 0,

µ
λ SP X, if λ< 0,

0 ≥ µ, if λ= 0.

2. X SP Y ⇔ 1 − Y SP 1 − X .

3. X SP Y ⇔ X − Y SP 0.

4. X+Y SP Y ⇔ X SP 0.

5. X SP X+α ⇔ α ≤ 0.

6. X SP αX ⇔ 0 SP X, if α> 1,
X SP 0, if α< 1.

Pro of: In point1, the case of λ >0 and λ <0 directly follow from item 2 of the
previous prop osition. If λ =0 , applying Remark2.19, the comparison of degenerate
random variables is equivalent to the comparison of real numb ers, and then, it is obvious
that λX SP µ ⇔ 0 ≥ µ.

Point 2 follows from the previous prop osition: X SP Y if andonly if X − 1 SP
Y − 1, and from the second item this is equivalent to 1 − Y SP 1 − X .

Points 3, 4 and 5 are immediate from the firs t p oint of Prop osition 3.3 and Re-
mark 2.19 in the case of 3. Considerthe lastone. Applying our previous prop osition,

X SP αX ⇔ (1 − α)X SP 0.

By the second item of Prop osition 3.3,

(1 − α)X SP 0 ⇔ 0 SP X, if α> 1,
X SP 0, if α< 1.

Let us compare the b ehaviour of statistical preference and sto chastic dominance with
resp ect these basic prop erties.Ontheone hand, Prop osition 2.13 assures that X 1 +
. .. +X n FSD Y1 + .. . +Y n when the variables are indep endent andX i FSD Yi . First
statement of Prop osition 3.3 assures that X SP Y ⇔ X+Z SP Y+Z , and the
indep endence condition is not imposed. However, it is not possible to give a result as
general as Prop osition 2.13 for statistical preference.For instance, cons ider the universe
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Ω= { ω1,ω2,ω3,ω4} , with a discreteuniformdistribution, and thefollowing random
variables:

ω1 ω2 ω3 ω4
X 1 − 2 1 − 2 1
X 2 1 − 2 − 2 1
Y 0 0 0 0

X 1 +X 2 − 1 − 1 − 4 2
Y +Y 0 0 0 0

It holds that X 1 ≡ SP Y and X 2 ≡ SP Y . However,Q(X 1 +X 2,Y +Y )= 1
4 , and therefore

X 1 +X 2 SP Y +Y .

First item of Corollary 3.4 trivially holds for sto chastic dominance. The second
itemalso holds since:

F1− X (t ) =1 − P (X <1 − t) and F1− Y (t ) =1 − P( Y <1 − t),

and then F1− Y (t) ≤ F1− X (t) if and only if P(X <1 − t) ≤ P(Y <1 − t) . Note that
P(X ≤ t) ≤ P(Y ≤ t) for any t if andonly if P( X < t) ≤ P( Y < t) for any t : on the
one hand, assume thatP(X ≤ t) ≤ P(Y ≤ t) for any t . Then:

P(X < t ) = limn →∞
P X ≤ t − 1

n
≤ limn →∞

P Y ≤ t − 1
n =P (Y <t ).

On the other hand, if P(X < t) ≤ P( Y < t) for any t , it holds that:

P(X ≤ t )= limn →∞
P X<t +

1
n

≤ limn →∞
P Y<t +

1
n =P (Y ≤ t ).

We conclude that X FSD Y if and only if 1 − Y FSD 1 − X . However, sto chastic
dominance do es not satisfy the third item of Corollary 3.4. For instance, if X and
Y are two indep endent and equally distributed random variables following a Bernoulli
distribution of param eter 1

2 , it holds that:

X − Y − 1 0 1
PX − Y

1
4

1
2

1
4

Then, X − Y is notcomparable with the degenerate variable in0 for first degree sto chastic
dominance, but X FSD Y .

Furthermore, the fourth ite m of the previous corollary do es not hold, either: it
suffices to consider the universeΩ= { ω1,ω2,ω3} with discrete uniform distribution, and
the random variablesdefined by:

ω1 ω2 ω3
X 0 1 2
Y 2 1 0

X − Y − 2 0 2
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Then, X ≡ FSD Y , but X − Y and 0 are not comparable with resp ect to sto chastic
dominance. Nevertheless,first degree stochastic dominance do es satisfy the fifth and
sixth prop erties of Corollary 3.4.

Remark 3.5Usingthethirditem of the previous corol lary, we knowthat X SP Y
if and only if X − Y SP 0. This al lowed Couso and Sánchez [46] to prove asimple
characterization of statistical preference for real-valued random variables:

X SP Y ⇔ X − Y SP 0 ⇔ E [u(X − Y )] ≥ 0 (3.1)

for the function u: R → R defined byu=I (0, ∞ ) − I (−∞ ,0) .

Theorem 2.10 showed that X FSD Y if and only if the exp ectation of u(X) is greater
than the exp ectation ofu( Y) for any increasingfunction u. In particular, Proposition 2.12
assures that, when X FSD Y and ϕ is aincreasing function, ϕ(X) FSD ϕ( Y). In the
case of statistic al preference, wecancheckthatitis invariant bystrictlyincreasing
transformations ofthe randomvariables aswell.

Prop osition 3.6Let X and Y be tworandom variables. Itholds that:

X SP Y ⇔ h( X) SP h( Y)

for any strictly order preserving function h:Ω → Ω .

Pro of: On the one hand, if h( X) SP h( Y) for any strictly order prese rving function
h, by considering the identityfunctionweobtain that X SP Y .

Onthe otherhand, notethat:
{ ω : h(X (ω )) > h(Y (ω ))} = { ω : X (ω ) > Y (ω)} ,

and consequently P (X > Y) = P (h(X) > h(Y )) . Similarly, P (X = Y ) = P (h(X )=
h(Y )) and P(Y >X) = P (h(Y) > h(X )) . Then Q( X , Y) = Q(h(X ), h(Y )) . We
conclude that X SP Y ⇔ h(X) SP h(Y) .

Howe ver,although first degree sto chastic dominance is invariant under increasing
transformations, for statistical preference the previous result do es not hold for order
preservingfunctions thatarenotstrictly order preserving. For instance, consider the
following indep endent random variables:

X 0 2
PX

1
2

1
2

Y 1
PY 1

Then, the probabili stic relation takes the value Q(X , Y )= 1
2 . Considerthe increasing,

but not strictly increasing,function h: R → R given by:

h( t)=
t if t ∈ (−∞ ,0] ∪ (2, ∞ ).
2 otherwise.
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Then, h(X) and h(Y) are given by:

h( X) 0 2
Ph (X)

1
2

1
2

h(Y) 2
Ph( Y) 1

Thus, Q(h( X ), h( Y ))= 1
4 , and then the previous result do es not hold.

The last basic prop erty we are going to study is if statistical preference is preserved
by differentkinds of convergence.

Remark 3.7Let { X n } n and { Yn } n be twosequences of randomvariables and letX and
Y other two random variables, al l of them defined on the same probability space.It holds
that:

X n
L

−→ X

Yn
L

−→ Y
X n SP Yn ∀n





=⇒ X SP Y,

X n
P

−→ X

Yn
P

−→ Y
X n SP Yn ∀n





=⇒ X SP Y,

X n
m − p
−→ X

Yn
m − p
−→ Y

X n SP Yn ∀n





=⇒ X SP Y,

X n
a.s.
−→ X

Yn
a.s.
−→ Y

X n SP Yn ∀n





=⇒ X SP Y,

where
L

−→,
P

−→,
m − p
−→ and

a.s.
−→ denote the convergence of random variables in distribution,

probability, mth -mean and almost sure, respectively.

It suffices to consider the same counterexample for all the cases:considerthe uni-
verse Ω= { ω1,ω2,ω3,ω4} and the probability P such that P( { ω1} ) = P( { ω3} )= 2

5 and
P( { ω2} ) =P( { ω4} )= 1

10 . Let X , X n , Y and Yn be therandom variablesdefined by:

ω1 ω2 ω3 ω4
X ,X n 0 0 1 1

Y 0 1 1 1
Yn

− 1
n 1 1 1

Yn converges toY almost surely, and consequentlyalso convergesin probability andin
distribution. Furthermore, italso convergesin mth mean, since:

E[( |Yn − Y |)m ]=
2
5

1
n

m
n →∞
−→ 0.
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Also, X n converges toX for thefour kinds of convergence.Furthermore, X n SP Yn

since:

Q(X n ,Yn ) = P(X n >Y n )+
1
2

P (Xn =Y n )

= P( { ω1} )+
1
2

P( { ω3,ω4} )=
2
5

+
1
2

1
2

=
13
20

> 1
2

.

However, X SP Y, since:

Q( X , Y ) = P (X > Y )+
1
2

P (X = Y )=
1
2

P( { ω1,ω3,ω4} )=
9
20

< 1
2

.

Thus, we can see that, although sto chastic dominance is preserved by the four kind
of convergence (see Prop. 2.14), statisticalpreference isnot.

Now we shall trytoclarify themeaning of statistical preference by means of a
gambling examp le.

Example 3.8Suppose wehave tworandom variables X and Y defined overthe same
probability space such thatX SP Y , i.e., such that Q(X , Y )> 1

2 . Consider the fol lowing
game: weobtain a pairof randomvaluesof X and Y simultaneously. Forexample, if X
and Y mo del the results of the dice, we would roll them simultaneously; otherwise, they
can b e simu late d by a computer.Player 1 bets 1 euro on Y totake a valuegreater than
X . Ifthis holds, Player 1 wins 1 euro, he loses1 euro if the value of X is greater, and
he do es not lose anything if the values are equal.

Denote by Z i therandom variable“rewardof Player 1 in the i -th iteration of the
game”. Thenit holds that

Z i =





1, if Y >X
0, if Y =X
− 1, if Y <X

Then, applying the hypothesisP (X > Y)+ 1
2 P (X = Y)> 1

2 , it holds that

P(X > Y )>
1
2

(1 − P( X = Y ))=
1
2

(P (X > Y ) + P (Y > X))

⇒ P (X > Y) > P (Y > X),

or equivalently, q>p , if weconsiderthenotation p = P(X < Y) and q = P(X > Y) .
Thus

E(Z i ) = P( Y > X) − P (Y < X) =p − q < 0.

{ Z1,Z 2, ...} is an infinite sequence of independent and identical ly distributed random
variables. Applyingthe large lawof big numbers,

Zn =
Z1 + .. . +Z n

n
p

→ p − q,
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or equ ivalently,
∀ε >0, limn →∞

P |Zn − (p − q)| >ε =0. (3.2)

Denote the accu mulated reward of Player1 after n iterations of thegameby Sn . It holds
that Sn =Z 1 +... +Z n . Then, Player 1 wins the game after n iterations if Sn >0 .
Then, taking ε=q − p inEquation (3.2), Player 1 wins the game after n iterations with
probability:

P (Sn > 0) = P(Z 1 + ... +Z n > 0) = P(Z n >0)
= P(Z n − (p − q) >q − p) ≤ P( |Z n − (p − q)| >q − p)
= P( |Z n − (p − q)| > ε).

Then it holds that:

limn →∞ P(Sn >0) ≤ limn →∞ P( |Z n − (p − q)| > ε) = 0.

We have proven that the probability of the event:“Player 1 wins after n iterations ofthe
game” goes to0 when n goes to∞ .

An immediate consequence is the next prop osition:

Prop osition 3.9Let X and Y betwo randomvariables suchthat X SP Y . Consider
the experiment that consists of drawing a random sample (X 1,Y1), .. ., (X n ,Yn ) of X
and Y , and let

Bn ≡ “In the first n iterations, atleast half of the times thevalue
obtained byX is greater than orequal to the value obtained byY”.

Then,

limn →∞ P(B n ) = 1.

Then we can say that if we consider the gam e consis ting ofobtaining arandom
value of X and a random valueof Y and we rep eat it a large enough numb er of times,
if X SP Y , we will obtain that morethan halfof the timesthevariable X will takea
value greater than thevalueobtained by Y . However, this do es not guarantee that the
mean value obtained by the variable X isgreater thanthemean valueobtained bythe
variable Y .

Let us consider a new example:

Example 3.10 ([57])Let usconsider the game consisting of rol ling two special dice,
denoted A and B, whose results areassumedto beindependent. Their facesdo not show
the classicalvalues but the fol lowing numbers:
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DICEA

1
3 4 15 16

17

DICEB

2
10 11 12 13

14

In eachiteration, thedice with the greatest numberwins.

In this case the probabilistic relation Q of Equation (2.7) takes thevalue:

Q(A, B) = P( A > B)+
1
2

P (A = B) = P (A > B) = P (A ∈{ 3,4} ,B ∈{ 2} )

+ P(A ∈{ 15 , 16, 17} ,B ∈{ 2, 10, 11 , 12, 13 , 14} )=
5
9

.

Thus, A SP B and applyingthe previousresult, if werepeat the game indefinitely, it
holds that the probability ofwinning, bettingon A, at least half of the times tends to 1.

However, if we calculate t he expected valu e of every dice, we obtain that

E (A )=
1
6

(1 +3 +4 + 15 + 16+ 17)=
28
3

,

E (B )=
1
6

(2+ 10 + 11+ 12 + 13+ 14)=
31
3

.

Then, by the crit erium of the highest expected reward,dice B shouldbe preferred. The
sameapplies ifwe consider the criterion of stochastic dominance. However, ifourgoal
is to win the majorityof times then we should choosedice A.

3.1.2 Characterizations ofstatistical preference

In Subsection 2.1.1 we have seen that sto chastic dominance can be characterised by
means of the direct comparisonof the exp ectation of adequate transformations of the
random variables (see Theorem 2.10). Inthissubsection we shall give characterisa-
tions forstatistical preference. For this aim, we distinguish different cas es:we startby
considering indep endent random variables,thenweconsider comonotonicandcounter-
monotonic random variables and we conclude with random variab les coupled by means
of an Archimedean copula. Finally, weshowanalternativecharacterizationofstatistical
preference in terms of the me dian.Recall that in the rest of this sec tion, we will consider
real-valued random variables.
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Indep endent random variables

We start by considering indep endent random variables.In ordertocharacterisestatistical
preference for them, we ne ed this previous res ult.

Lemma 3.11Considertwo independentreal-valued randomvariables X and Y whose
associated cumulative distribution functions are FX and FY , respectively. Then:

P(X ≥ Y) = E[F Y (X )], (3.3)

where E[h(X )] stands for the expectation of the function h with respect to the variable
X , this is, E [h(X )]= h(x )dFX (x) .

Pro of: Inordertoprovethisresult, weconsider[24, Theorem20.3]: given two random
vectors X and Y defined on R

j and R
k , and whosedistribution functionsare FX and

FY , resp ectively, it holds that:

P (( X , Y)∈ B)=
R

j
P((x, Y) ∈ B)dF X (x ), B ∈ R

j +k . (3.4)

Inthis case, consider j =k =1 and B= { (x, y ) :x ≥ y} . Then:

P (( X , Y)∈ B) = P(X ≥ Y) and
P (( x, Y)∈ B) = P(Y ≤ x) =F Y (x ).

Then, if weput these values into Equation(3.4), weobtainthat P(X ≥ Y) = E[F Y (X )].

We can now establish the fol lowing result.

Theorem 3.12Let X and Y be two independent real-valued random variables defined on
the same probability space.Let FX and FY denotetheir respective cumulative distribution
functions. If X is a random variable identically distributed to X andindependent of X
and Y , it holds that X SP Y if andonly if:

E [FY (X )] − E[F X (X )] ≥ 1
2

(P (X = Y) − P(X = X )). (3.5)

Pro of: It holdsthat X SP Y if and only if P(Y > X)+
1
2

P (X = Y) ≤ 1
2

. On
the other hand let us recall (see for example[24, Exercise 21.9(d)]) that E(F X (X ))=
1
2

+
1
2

P (X = X) . Then, usingalsoEquation (3.3):

P (Y > X) =1 − P(Y ≤ X) =1 − E[F Y (X )]

=
1
2

+ E[F X (X )] − 1
2

P (X = X) − E[F Y (X )].
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Whereas,X SP Y ifand onlyif

1
2

+ E(F X (X )) − 1
2

P (X = X) − E[F Y (X )]+
1
2

P (X = Y) ≤ 1
2

,

or equivalently,

E[F Y (X )] − E[F X (X )] ≥ 1
2

(P (X = Y) − P (X = X )).

Theorem 3.12 generalises the result established in [54, Equation12] for continuous
and indep endent random variables.For this particular case, Equation (3.5) can be sim-
plified. The reason is that for continuous and indep endent random variablesX,X and
Y the probabilities P( X = Y) and P(X = X) equals zero, and then th e second part of
Equation (3.5) is simplified.

Corollary 3.13Let X and Y betwo real-valued independent and continuous random
variables with cumulative distribution functions FX and FY , respectively. Then:

X SP Y ⇔ E[F Y (X )] ≥ E[F X (X )].

If we are dealing with discrete and indep endent real-valued random variables, Equa-
tion (3.5) can also be re-written. Before showing how, let us give the followin g lemma:

Lemma 3.14Let { pn } n ∈N bea sequenceof positivereal numbers such that n pn =1 .
Then it holds that:

1=
n

p2
n +2

n<m

pn pm .

Pro of: Theresultis a directconsequence of:

1=
n

pn =
n

pn

2

=
n

p2
n +2

n<m

pn pm .

Prop osition 3.15Let X and Y betwo real-valueddiscreteand independent random
variables. If SX denotes thesupport of X , then X SP Y holds ifand only if

E [FY (X
−

) − FX (X
−

)] ≥ 1
2 x ∈SX

P (X = x )( P ( Y = x) − P (X = x )),

where FX (t − ) and FY (t − ) denote the left handside limit of the cumulative distribution
functions FX and FY evaluated in t. That is:

FX (t
−

) = P(X < t) and FY (t
−

) = P( Y < t).
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Pro of: Applyingthedefinition oftheprobabilistic relation Q:

Q(X , Y ) = P (X > Y )+ 1
2 P (X = Y)

=
x ∈SX

P (X = x)P (Y < x)+
1
2 x ∈SX

P (X = x) P (Y = x)

=
x ∈SX

P (X = x)F Y (x
−

)+
1
2 x ∈SX

P (X = x) P (Y = x).

Thus, Q(X , Y) ≥ 1
2 if and on ly if:

x ∈SX

P (X = x)F Y (x
−

) ≥ 1
2

1 −
x ∈SX

P (X = x)P (Y = x) .

Applying Lemma 3.14, the right hand side of th e previous inequality b ecomes:

1
2




x ∈SX

P( X = x) 2 +2
x 1 ,x 2 ∈SX ,x 1 <x 2

P( X =x 1)P (X =x 2)

−
x ∈SX

P (X = x) P (Y = x) =
1
2 x ∈SX

P( X = x) 2

+2
x ∈SX

P (X = x)F X (x
−

) −
x ∈SX

P (X = x)P (Y = x)

= E[F X (X − )]+
1
2 x ∈SX

P (X = x )( P (X = x) − P (Y = x)) .

Then, it holdsthat Q(X , Y) ≥ 1
2 if and on ly if

E [FY (X
−

) − FX (X
−

)] ≥ 1
2 x ∈SX

P ( X = x)( P (X = x) − P (Y = x)).

Theorem 3.12 allows to characterise statistical preference b etween indep endent ran-
dom variables. However, we have already said that statistical preference is a metho d that
considers thejoint distributionof the random variables. Forthisreason, weareinterested
not only in independent random variables but also in dep endent ones.Next, we fo cus on
comonotonic and countermonotonic random variables, that corresp ond to the extreme
cases of joint distribution functions according to the Fréchet-Ho effding bounds given in
Equation (2.8).

Continuouscomonotonic and countermonotonicrandomvariables

Let us consider two continuous random variables whose cumulative distribution functions
are FX and FY , resp ectively,and f X and f Y denote their resp ective density functions.
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First of all, let us conside r the case in whichX and Y are comonotonic. Then, thejoint
cumulative distribution function of X and Y is:

FX,Y (x, y ) = m in(FX (x ),FY (y )), for every x,y ∈ R.

The value ofthe relation Q(X , Y) has already been studied by De Meyer et al.

Prop osition 3.16 ([54, Prop.7])Let X and Y betwo real-valuedcomonotonicand
continuous random variables. Theprobabilistic relation Q( X , Y) has the fol lowing ex-
pression:

Q( X , Y )=
x:F X ( x)<F Y (x)

f X (x )dx+
1
2 x:F X (x )=F Y (x)

f X (x )dx. (3.6)

In fact, it holds that:

P (X >Y )=
x:F X ( x)<F Y (x)

f X (x )dx and

P (X = Y )=
x:F X ( x)=F Y (x)

f X (x )dx.

Therefore, we obtainthat X SP Y if and only if Equation (3.6) takes avalue grater
than or equal to 1

2 . However, byLemma 2.20we knowthat X SP Y if and only if
Q(X , Y) ≥ Q(Y , X). Thes e are given by:

Q( X , Y )=
x:F X (x) <F Y (x)

f X (x )dx+
1
2 x:F X (x )=F Y (x)

f X dx.

Q( Y , X )=
x:F Y (x )<F X (x)

f Y (x )dx+
1
2 x:F Y ( x)=F X (x)

f Y (x )dx

=1 −
x:F X (x )<F Y (x)

f Y (x )dx − 1
2 x:F Y ( x)=F X (x)

f Y (x )dx.

Hence, we obtain the fol lowing:

Corollary 3.17Let X and Y be tworeal-valued comonotonic and continuousrandom
variables, whereFX and FY denote theirrespective cumulative distribution functionsand
f X and f Y denote theirrespective densityfunctions. Then, X SP Y if andonly if:

x:F X (x ) <F Y (x)
(f X (x ) +f Y (x ))dx+

1
2 x:F X (x )=F Y (x)

(f X (x ) +f Y (x ))dx ≥ 1.

Assume now that X and Y are continuous and countermonotonic real-valued ran-
dom variables. Inthat case,thejointcumulative distributionfunctionis givenby:

FX,Y (x, y) = max(F X (x ) +F Y (y) − 1, 0), for x,y ∈ R.

As in the case of comonotonic random variables, De Meye r et al.alsofound theexpression
of Q( X , Y).
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Prop osition 3.18 ([54, Prop.7])Let X and Y be two real-valued countermonotonic
and cont inuous random variables.The probabilisticrelation Q(X , Y) is given by:

Q( X , Y ) =FY (u), (3.7)

whereu is one point that fulfil ls FX (u ) +F Y (u) =1 .

Therefore, using Equation (3.7) it is p ossible to state the following prop osition.

Prop osition 3.19Let X and Y betworeal-valuedcountermonotonicand continuous
random variables. If FX and FY denote theirrespectivecumulative distribution functions,
the fol lowing equivalence holds:

X SP Y ⇔ FY (u) ≥ FX (u),

whereu is apoint such that FX (u) +F Y (u) =1 .

Pro of: By definition, X SP Y if an d only if Q(X , Y) ≥ 1
2 . However, using Equa-

tion (3.7), Q(X , Y) ≥ 1
2 isequivalent to FY (u) ≥ 1

2 . But, since u satisfiesFX (u) +FY (u)=
1, FY (u) ≥ 1

2 if and on ly if FY (u) ≥ FX (u) .

Discrete comonotonic and countermonotonic random variables with finite
supp orts

In theprevious paragraph we considered continuous comonotonicand countermonotonic
random variables, and we characterised statistic al prefere nce for them. Now, we also
consider real-valued random variables coupled by the minimum or Łukasiewicz op erators,
but we assume them to be discrete with finite supp orts. Forthese variables, De Meyer
et al. also found the expres sion of the probabilistic relationQ.

Prop osition 3.20 ([54, Prop. 2])Let X and Y betworeal-valued comonotonic and
discrete random variables with finite supports. Then, theirsupports, denotedby SX and
SY , respectively, can be expressed by:

SX = { x1, . . . ,xn } and SY = { y1, . . . ,yn }

such that x1 ≤ ... ≤ xn and y1 ≤ ... ≤ yn , and such that

P(X =x i ) = P(Y =y i ) = P( X =x i ,Y =y i ), for i = 1, .. .,n.

Furthermore, the probabilistic relation takes the value:

Q(X , Y )=
n

i=1
P (X =x i )δM

i , (3.8)
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where

δi
M =






1 if x i >y i .
1
2 if x i =y i .

0 if x i <y i .

The following example illustrates thisresult.

Example 3.21([54, Example 3])Consider thecomonotonic random variablesX and
Y defined by:

X 1 3 4
PX 0. 15 0.4 0.45

Y 2 3 5
PY 0.35 0.35 0.3

De Schuymer et al. provedthat theirsupports, SX and SY , respectively, can be expressed
by:

SX = { x1,x 2,x 3,x 4,x 5} = { 1 , 3, 3, 4,4} and SY = { y1,y 2,y 3,y 4,y 5} = { 2 , 2, 3, 3,5} ,

and theirprobabilities canbe expressed by:

X x1 x2 x3 x4 x5
PX 0.15 0.2 0.2 0. 15 0.3

Y y1 y2 y3 y4 y5
PY 0.15 0.2 0.2 0. 15 0.3

Using thenotation of the previous result, itholds that:

δM
1 =0 becausex1 <y 1, δM

4 =1 becausex4 >y 4.

δM
2 =1 becausex2 >y 2, δM

5 =0 becausex5 <y 5.

δM
3 =0.5 becausex3 =y 3.

Then:

Q(X , Y )=
5

i=1

δM
i P (X =x i ) = P(X =x 2)+

1
2

P (X =x 3) + P(X =x 4)

= 0. 2+
1
2

0.2 + 0 .15 = 0.45.

Under the previous conditions, it is possible to define the probability space(Ω∗, P (Ω∗),P 1),
where Ω∗ = { ω1, . . . ,ωn } and

P1({ ωi } ) = P( X =x i ), for any i = 1, ...,n.

We canalso define the random variables X ∗ and Y ∗ by:

X ∗
(ωi ) =x i and Y ∗

(ωi ) =y i for any i = 1, .. .,n.

Then, the randomvariables X ∗ and Y ∗ areequallydistributed than X and Y , resp ec-
tively. This will be a very imp ortant fact for results in Section 3.2. Nextlemma proves
that Q( X , Y ) = Q(X∗,Y ∗).
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Lemma 3.22Under theprevious conditions,it holds that Q(X , Y ) = Q(X ∗,Y ∗).

Pro of: Letuscompute thevalue of P ∗(X ∗ >Y ∗) and P∗(X ∗ =Y
∗):

P1(X ∗ >Y ∗) =P 1({ ωi :X ∗(ωi ) =x i >y i =Y
∗(ωi )} )

=
n

i=1

P1({ ωi } )I x i >y i =
n

i=1
P( X =x i )I x i >y i .

P1(X ∗ =Y
∗) =P 1({ ωi :X ∗(ωi ) =x i =y i =Y

∗(ωi )} )

=
n

i=1

P1({ ωi } )I x i =y i =
n

i=1
P (X =x i )I x i =y i .

Then:
Q(X ∗,Y ∗) =P

∗(X ∗ >Y ∗)+ 1
2 P ∗(X ∗ =Y

∗)

=
n

i=1
P( X =x i )I x i >y i +

1
2

n

i=1
P( X =x i )I x i =y i

=
n

i=1
P( X =x i )δM

i = Q( X , Y ).

Example 3.23Letuscontinue withExample3.21. Wehave tworandomvariables X
and Y andwehave seenthat their supportscan be expressed by SX = { x1, . . . ,x5} =
{ 1, 3, 3, 4,4} and SY = { y1, . . . ,y5} = { 2 , 2, 3, 3,5} , respectively. Their probability distri-
butions are given by:

X x1 x2 x3 x4 x5
PX 0. 15 0.2 0.2 0.15 0.3

Y y1 y2 y3 y4 y5
PY 0.15 0.2 0.2 0.15 0.3

Now, wecandefinethe possibilityspace Ω∗ = { ω1, . . . ,ω5} , the probability P1 such that
P1(ωi ) = P( X =x i ) and the random variables X ∗ and Y ∗ by:

X ∗
(ωi ) =x i and Y ∗

(ωi ) =y i for any i = 1, .. .,5.

Now, taking into account that:

x1 = 1< 2 =y 1 ⇒ δM
1 =0 and X ∗(ω1) <Y

∗(ω1),
x2 = 3> 2 =y 2 ⇒ δM

2 =1 and X ∗(ω2) >Y
∗(ω2),

x3 =3 =y 3 ⇒ δM
3 = 1

2 and X ∗(ω3) =Y
∗(ω3),

x4 = 4> 3 =y 4 ⇒ δM
4 =1 and X ∗(ω4) >Y

∗(ω4),
x5 = 4< 5 =y 5 ⇒ δM

5 =0 and X ∗(ω5) <Y
∗(ω5),

it is possible to comput e the value of the probabilistic relationQ(X ∗,Y ∗):

Q(X ∗,Y ∗) =P 1(X
∗ >Y ∗

)+
1
2

P1(X
∗

=Y
∗
)

=P 1({ ω2,ω4} )+
1
2

P1({ ω3} ) = 0 .2 + 0 .15+
1
2

0.2 = 0.45<
1
2

,
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henceY ∗
SP Y ∗. Furthermore, in Example3.21we obtained that Q(X , Y ) = 0.45, and

therefore, by the previouslemma, it holdsthat Q(X , Y ) = Q(X ∗,Y ∗) = 0. 45.

Remark 3.24Taking the previous comments into account, we shall assume without
loss of generality that any two discrete andcomonotonic random variables X and Y
with finite supports are defined in a probabilit y space (Ω, P (Ω) , P), where Ω is finite,
Ω= { ω1, . . . ,ωn } , and X(ω i ) =x i , Y(ωi ) =y i , such that x i ≤ x i+1 and yi ≤ yi+1 for
any i = 1, .. . ,n − 1. Moreover:

P(X =x i ,Y =y i ) = P(X =x i ) = P(Y =y i ) for i = 1, ...,n.

Furthermore, Q(X , Y) is givenby Equation (3.8).

Next result givesa characterization ofstatistical preference in terms of the supp orts of
X and Y , and also intermsof theprobability measureinthe initial space. Its pro of is
trivial and there fore omitted.

Prop osition 3.25Considertworeal-valuedcomonotonicanddiscreterandom variables
X and Y with finitesupports. Accordingto the previousremark, we can assumethem
to be defined on (Ω, P (Ω) , P),where Ω= { ω1, . . . ,ωn } ,by X(ω i ) =x i and Y(ωi ) =y i ,
wherex i ≤ x i+1 and yi ≤ yi+1 for any i = 1, ...,n − 1. Then, X SP Y if andonly if:

i:x i >y i

P (X =x i ) ≥
i:x i <y i

P (X =x i ),

or equivalent ly, by Lemma 3.22, if and only if:

i:x i >y i

P( { ωi } ) ≥
i:x i <y i

P( { ωi } ).

Now, we fo cus on countermonotonic random variables.Forthem, DeMeyeretal. proved
the follow ing result:

Prop osition 3.26 ([54, Prop. 4])Let X and Y bereal-valuedcomonotonicand dis-
crete random variables withfinite supports. Then, theirsupports canbeexpressedby
SX = { x1, . . . ,xn } and SY = { y1, . . . ,yn } , respectively,such that x1 ≤ ... ≤ xn and
y1 ≤ ... ≤ yn , and such that:

P (X =x i ) = P(Y =y n − i+1 ) = P( X =x i ,Y =y i )

for any i = 1, .. . ,n . Undertheseconditions, theprobabilisticrelation Q(X , Y) takes the
value:

Q(X , Y )=
n

i=1
P( X =x i )δL

i , (3.9)
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where

δL
i =






1 if x i >y n − i+1 .
1
2 if x i =y n − i+1 .

0 if x i <y n − i+1 .

To illustrate this result, consider the followingexample.

Example 3.27([54, Example 5])Consider the random variablesX and Y of Exam-
ple3.21, but now assume them to becountermonotonic. Their supportscanbeexpressed
by SX = { x1,x 2,x 3,x 4,x 5} = { 1 , 3, 3, 4,4} and SY = { y1,y 2,y 3,y 4,y 5} = { 2, 3, 3, 5,5} .
Furthermore, the probability distributions of X and Y can be expressedby:

X x1 x2 x3 x4 x5
PX 0.15 0.15 0.25 0.1 0.35

Y y1 y2 y3 y4 y5
PY 0.35 0.1 0. 25 0. 15 0. 15

Using thenotation of the previous result,it holds that:

δL
1 =0 becausex1 <y 5, δL

4 =1 becausex4 >y 4.

δL
2 =0 becausex2 <y 4, δL

5 =1 becausex5 >y 5.

δL
3 =0.5 becausex3 =y 3.

Then:

Q( X , Y )=
5

i=1

δL
i P(X =x i )=

1
2

P (X =x 3) + P( X =x 4) + P(X =x 5)

=
1
2

0. 25 + 0 .1 + 0 .35 = 0.575.

Under the ab ove conditions, and similarly to the case of comonotonic random variables,
it is p ossible to define a probability space(Ω∗, P (Ω∗),P 2),where Ω∗ = { ω1, . . . ,ωn } and
the probability is given by:

P2({ ωi } ) = P( X =x i ) for every i = 1, ...,n.

Furthermore, we can also define th e random variablesX ∗ and Y ∗ by:

X ∗
(ωi ) =x i and Y ∗

(ωi ) =y n − i+1 for any i = 1, ...,n.

Note that thevariables X and X ∗, and also Y and Y ∗, are equally distributed. Further-
more, next lemma shows that Q( X , Y ) = Q(X∗,Y ∗).

Lemma 3.28Inthe conditions of the previous comments, consideringthe probability
space(Ω∗, P (Ω∗),P 2) and the random variables X ∗ and Y ∗, it holds that Q( X , Y )=
Q(X ∗,Y ∗).
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Pro of: Letuscompute thevalue of P2(X ∗ >Y ∗) and P2(X ∗ =Y
∗):

P2(X ∗ >Y ∗) =P 2({ ωi :X ∗(ωi ) =x i >y n − i+1 =Y
∗(ωi )} )

=
n

i=1

P2({ ωi } )I x i >y n − i+1 =
n

i=1
P (X =x i )I x i >y n − i+1 .

P2(X ∗ =Y
∗) =P 2({ ωi :X ∗(ωi ) =x i =y n − i+1 =Y

∗(ωi )} )

=
n

i=1

P2({ ωi } )I x i =y n − i+1 =
n

i=1
P (X =x i )I x i =y n − i+1 .

Then:

Q(X ∗,Y ∗) =P 2(X ∗ >Y ∗)+ 1
2 P2(X ∗ =Y

∗)

=
n

i=1
P (X =x i )I x i >y n − i+1 +

1
2

n

i=1
P (X =x i )I x i =y n − i+1

=
n

i=1
P (X =x i )δL

i = Q( X , Y ).

Next example helps to un derstand how to build the probability space and the ran-
dom variables.

Example 3.29Consideragain Example3.27. The supports ofthe randomvariables X
and Y can beexpressed bySX = { x1, . . . ,x5} = { 1 , 3, 3, 4,4} and SY = { y1, . . . ,y5} =
{ 2 , 3, 3, 5,5} , respectively. Their probabilit y distributions are given by:

X x1 x2 x3 x4 x5
PX 0.15 0.15 0.25 0.1 0.35

Y y1 y2 y3 y4 y5
PY 0.35 0.1 0.25 0.15 0.15

Now, we can define the possibility spaceΩ∗ = { ω1, . . . ,ω5} , the probability P ∗ satisfying
that P∗({ ωi } ) = P(X =x i ) for i = 1, .. .,5 and the random variables X ∗ and Y ∗ by:

X ∗
(ωi ) =x i and Y ∗

(ωi ) =y 6− i for any i = 1, .. .,5.

Taking into account that:

x1 = 1< 5 =y 5 ⇒ δL
1 =0 and X ∗(ω1) <Y

∗(ω1),
x2 = 3< 5 =y 4 ⇒ δL

2 =0 and X ∗(ω2) <Y
∗(ω2),

x3 =3 =y 3 ⇒ δL
3 = 1

2 and X ∗(ω3) =Y
∗(ω3),

x4 = 4> 3 =y 2 ⇒ δL
4 =1 and X ∗(ω4) >Y

∗(ω4),
x5 = 4> 2 =y 1 ⇒ δL

5 =1 and X ∗(ω5) >Y
∗(ω5),
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it is possible to comput e the value of the probabilistic relationQ(X ∗,Y ∗):

Q(X ∗,Y ∗) =P
∗
(X

∗ >Y ∗
)+

1
2

P∗
(X

∗
=Y

∗
)

=
1
2

P ∗
({ ω3} ) +P

∗
({ ω4,ω5} )=

1
2

0. 25 + 0 .1 + 0 .35 = 0. 575>
1
2

,

whenceY ∗
SP Y ∗. Moreover, from Example 3.27 Q( X , Y ) = 0.575, and therefore, as

we have seen in the previous lemma,Q( X , Y ) = Q(X∗,Y ∗) = 0.575.

Remark 3.30Usingthepreviousresultwe canassume,withoutlossof generality, that
any two countermonotonic real-valued random variablesX and Y are definedon a prob-
ability space (Ω, P (Ω) , P),where Ω= { ω1, . . . ,ωn } ,by X(ω i ) =x i and Y(ωi ) =y n − i+1
such that x i ≤ x i+1 and yi ≥ yi+1 for i = 1, .. .,n , and satisfying that

P (X =x i ,Y =y i ) = P( X =x i ) = P( Y =y n − i +1 ) for i = 1, .. .,n.

Now, assumingthe conditionsofthe previousremark, weprovethatthere is, at most,
one elementωi such that X(ω i ) = Y (ωi ).

Lemma 3.31In theconditions of theprevious remark,if there exists l>0 such that

X(ω k ) = .. . = X (ω k +l ) = Y (ωk ) = .. . = Y (ω k+l ),
min( |X(ω k− 1) − X(ω k +l +1 )|, |Y(ωk− 1) − Y (ωk +l +1 )|) >0,

for somek, then it is possible to define a probability space(Ω∗, P (Ω∗),P 3) and two random
variables X ∗ and Y ∗ such that:

• Q(X ∗,Y ∗) = Q( X , Y).

• Thereare not ω,ω ∈ Ω∗ such that

X ∗
(ω ) =X

∗
(ω ) =Y

∗
(ω ) =Y

∗
(ω ).

• X ∗ and Y ∗ fol low the same distribution than X and Y , respectively.

Pro of: Define Ω∗ = { ω∗
1 , . . . ,ω∗

n − l } and let P3 be the probability given by:

P3({ ω∗
i } ) = P( { ωi } ) for any i = 1, ... ,k − 1.

P3({ ω∗
k } ) = P( { ωk } ) + .. . + P( { ωk +l } ).

P3({ ω∗
i } ) = P( { ωi+1 } ) for any i = k + l + 1, .. .,n − 1.

Considerthe random variables X ∗ and Y ∗ given by:

X ∗(ω∗
i ) = X(ω i ) and Y ∗(ω∗

i ) = Y(ω i ) for any i = 1, .. .,k − 1.
X ∗(ω∗

k ) = X(ω k ) and Y ∗(ω∗
k ) = Y (ωk ).

X ∗(ω∗
i ) = X(ω i+1 ) and Y ∗(ω∗

i ) = Y(ω i+1 ) for any i = k + l + 1, .. .,n − 1.
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They satisfy that:
X ∗(ω∗

i ) <Y
∗(ω∗

i ) for any i = 1, ... ,k − 1.
X ∗(ω∗

k ) =Y
∗(ω∗

k ).
X ∗(ω∗

i ) >Y
∗(ω∗

i ) for any i = k + l + 1, .. .,n − 1.

Then, since
ω∗

k /∈{ ω∗ ∈ Ω∗ :X ∗(ω∗) >Y
∗(ω∗)} and

ωk , . . . ,ωk +l /∈{ ω ∈ Ω : X (ω ) > Y (ω)} ,

it holds that:

ω∗
i ∈{ X ∗ >Y ∗}⇔ ωi ∈{ X >Y } , for i = 1, .. .,k − 1.

Furthermore, ω∗
i − 1 /∈{ X ∗ >Y ∗} and ωi /∈{ X >Y } for i = 1, .. .,k − 1. Then, we

conclude that:
P3(X ∗ >Y ∗) =P 3({ ω∗ ∈ Ω

∗
:X

∗
(ω

∗
) >Y

∗
(ω

∗
)} )

=
i:X ∗(ω∗

i )>Y ∗(ω∗
i )

P3({ ω∗
i } )=

i: X (ω i )>Y (ω i )
P( { ωi } ) = P(X > Y ).

Furthermore, since X ∗(ω∗
k ) =Y

∗(ω∗
k ) and P3({ ω∗

k } ) = P( { ωk , . . . ,ωk +l } ), it hol ds that:

P3(X ∗ =Y
∗) =P 3({ ω∗ ∈ Ω∗ :X ∗(ω∗) =Y

∗(ω∗)} )
=

i:X ∗(ω∗
i )=Y ∗(ω∗

i )

P3({ ω∗
i } ) =P 3({ ω∗

k } )

= P( { ωk } ) + .. . + P( { ωk+l } )=
i: X (ω i )=Y (ω i )

P( { ωi } ) = P( X = Y ).

Then, Q(X ∗,Y ∗) = Q( X , Y).

Moreover, by construction therearenot ω,ω ∈ Ω∗, ω =ω ,such that

X ∗
(ω ) =X

∗
(ω ) =Y

∗
(ω ) =Y

∗
(ω ).

Finally, it is obvi ou s that X ∗ and X , and also Y ∗ and Y , are equally distributed, since
they take the samevalues withthe same probabilities.

Remark 3.32Takinginto account the previous result and Remark 3.30, we conclude
that given twodiscrete countermonotonic random variables X and Y with finit e sup-
ports, we canassume, without loss ofgenerality, that their supports are given by SX =
{ x1, . . . ,xn } and SY = { y1, . . . ,yn } , where x i ≤ x i+1 and yi ≤ yi+1 for i = 1, .. .,n − 1,
and that they are defined in aprobability space(Ω, P (Ω) , P),where Ω= { ω1, . . . ,ωn } ,by
X (ωi ) =x i and Y(ωi ) =y n − i +1 . Furthermore:

P (X =x i ,Y =y i ) = P( X =x i ) = P( Y =y n − i +1 ) for any i = 1, .. .,n.

Under these conditions, Q(X , Y) is givenby Equation (3.9). Furthermore, using the
previous lemma we can also assume thatmax{| X (ωi ) − X(ω i+1 |, |Y(ω i ) − Y (ωi+1 )|} >0
for any i = 1, .. . ,n − 1.
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Theseresultsallow ustocharacterisestatisticalpreference fordiscretecountermonotonic
random variables with finite supp orts.

Prop osition 3.33Let X nd Y be tworeal-valued discreteand countermonotonic random
variables with finite supports, that can be expressedas in thepreviousremark. Then, it
is possible to characteriseX SP Y in the fol lowing way:

• If thereexists k such that X(ω k ) = Y (ωk ),then X SP Y if andonly if:

P (X =x 1) + .. . + P (X =x k − 1) ≤ P(X =x k +1 ) + .. . + P (X =x n ),

or equivalently, if and onlyif:

P( { ω1} ) + .. . + P( { ωk− 1} ) ≤ P( { ωk+1 } ) + .. . + P( { ωn } ).

• If X(ω i ) = Y(ω i ) for any i = 1, .. .,n , denote by k =min { i: X(ω i ) < Y(ω i )} .
Then X SP Y if andonly if:

P (X =x 1) + .. . + P (X =x k ) ≤ P(X =x k +1 ) + .. . + P (X =x n ),

or equivalently, if and onlyif:

P( { ω1} ) + .. . + P( { ωk } ) ≤ P( { ωk+1 } ) + .. . + P( { ωn } ).

Pro of: Assume thatthereis k such that X(ω k ) = Y(ω k ). Then, X(ω i ) > Y(ω i ) for
any i<k and X(ω i ) < Y (ωi ) for any i>k . Then:

Q(X , Y ) = P( { ωk+1 , . . . ,ωn } )+
1
2

P( { ωk } ) and

Q(Y , X ) = P({ ω1, . . . ,ωk− 1} )+
1
2

P( { ωk } ).

Then, Q( X , Y)≥ 1
2 ifandonly if:

P( { ωk+1 , . . . ,ωn } ) ≥ P( { ω1, . . . ,ωk− 1} ).

Furthermore,the previous expression is equivalent to:

P (X =x k+1 ) + .. . + P (X =x n ) ≥ P(X =x 1) + .. . + P (X =x k− 1).

Now, assume that X(ω i ) = Y(ω i ) for any i = 1, .. .,n . Then, denote by k the ele ment
k =max { i : X(ω i ) < Y(ω i )} . The n, X(ω i ) > Y(ω i ) for any i = k + 1, .. .,n and
X (ωi ) < Y (ωi ) for any i = 1, .. .,k . Then:

Q( X , Y ) = P({ ωk+1 , . . . ,ωn } ) and Q(Y , X ) = P({ ω1, . . . ,ωk } ).
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Then, Q(X , Y) ≥ 1
2 if and on ly if:

P( { ωk+1 , . . . ,ωn } ) ≥ P( { ω1, . . . ,ωk } ).

This expression is equivale nt to:

P (X =x k +1 ) + .. . + P (X =x n ) ≥ P(X =x 1) + .. . + P (X =x k ).

Random variables coup led by a strict Archimedean copula

Consider twocontinuous real-valued randomvariables X and Y with cumulative distri-
bution functions FX and FY , resp ectively.Letus denote their density functions by f X

and f Y , resp ectively.We shall assume the existence ofa strictArchimedean copula C,
generated by the twice differentiablegenerator ϕ , such that

FX,Y (x, y) =ϕ
− 1] (ϕ(F X (x )) + ϕ(F Y (y ))), for every x,y ∈ R.

Note that since C isstrict, then ϕ(0)= ∞ . Inthatcase, wehavealreadymentionedin
Equation (2.10) that the pseudo-inverse becomes the inverse,andthen thejointcumu-
lative dis trib ution function is given by:

FX,Y (x, y) =ϕ
− 1(ϕ (FX (x)) + ϕ(F Y (y ))), for every x,y ∈ R.

Now, we are going to ob tain the joint density function for(X , Y). Forthisaim, wederive
FX,Y with resp ect to x and y:

∂F X,Y

∂x (x, y)=
∂ϕ − 1 (ϕ(F X (x))+ ϕ(F Y (y )))

∂x (x, y)

=ϕ
− 1 (ϕ(F X (x)) + ϕ(F Y (y ))) ϕ (FX (x ))f X (x ).

∂2FX,Y

∂ x∂y (x, y) =ϕ
− 1 (ϕ (FX (x)) + ϕ(F Y (y )))ϕ (F X (x ))ϕ (F Y (y ))fX (x )fY (y ).

Then, the function f X,Y defined by:

f X,Y (x, y) =ϕ
− 1 (ϕ(F X (x )) + ϕ (FY (y )))ϕ (F X (x ))ϕ (F Y (y ))fX (x )fY (y ), (3.10)

isa density functionof (X , Y). Let uscheckthat f X,Y (x, y) ≥ 0 for every x,y ∈ R:

• f X ,f Y ≥ 0 because they are density functions.

• By Definition2.26, − ϕ is 2-monotone. Then, (− 1)2(− ϕ) = − ϕ ≥ 0, that implies
ϕ ≤ 0. Then, ϕ(F X (x ))ϕ (F Y (y )) ≥ 0.
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• Since− ϕ is 2-monotone,(− 1)3(− ϕ) ≥ 0, and then ϕ ≥ 0. Also, itisknownthat,
for a func tion g, g− 1 (x ) = g (g− 1(x)) − 1. Then:

ϕ− 1 (x )=
1

ϕ (ϕ − 1(x ))
,

and sinceϕ ≤ 0, it hol ds that ϕ− 1 (x) ≤ 0. Then:

ϕ− 1 (x )= − ϕ (ϕ − 1(x )) ϕ− 1

ϕ(ϕ − 1(x ))
.

The denominator is positive because it is squared.Furthermore, ϕ ispositive, but
ϕ− 1 is negative,but whenmultiplying for (− 1) it b ecomes p ositive.

Then, f is the pro duct of p ositive elements, and thereforef is positive. Now, letussee
that the area below f X,Y is 1:

R R
f X,Y (x, y)dy dx=

R
ϕ− 1 (ϕ(F X (x )) + ϕ (FY (y )))

∞

−∞
ϕ(F X (x ))f X (x )dx

=
R

ϕ− 1 (ϕ(F X (x )))ϕ (F X ( x))f X (x )dx

=ϕ
− 1(ϕ(F X (x )))

∞

−∞
=F X (x)

∞

−∞
=1.

Using the expressi on of the joint density function in Equation (3.10) we can prove the
following characterizationof the statistical preference.

Theorem 3.34Let X and Y be two real-valuedcontinuous random variables, and let
FX and FY denotetheirrespective cumulativedistribution functions, and f X and f Y are
their respective density functions. If theyare coupled bya strictArchimedean copula C
generated by the twice differentiable functionϕ,then X SP Y if andonly if:

E ϕ− 1 (ϕ (FX (X )) + ϕ(F Y (X ))) − ϕ− 1 (2ϕ(F X (X ))) ϕ(F X (X )) ≥ 0. (3.11)

Pro of: Firstofall, notethat (X , Y) is acontinuous random vector withdensity function
f X,Y . Then, P(X = Y) =0 , and therefore Q(X , Y ) = P (X > Y) and Q(Y , X ) = P (Y>
X) .

Denote by A the set A= { (x, y) | x >y } . Then,

P(X > Y )=
A

f X,Y (x, y)dy dx.
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Thus,

P (X >Y )=
A

f X,Y (x, y)dy dx=
∞

−∞

x

−∞
f X,Y (x, y )dy dx

=
∞

−∞
ϕ− 1(ϕ (FX ( x)) + ϕ(F Y (y )))

x

−∞ ϕ(F X (x ))f X (x )dx

=
∞

−∞
ϕ− 1 (ϕ(F X (x )) + ϕ (FY (x )))ϕ (F X (x ))f X (x )dx.

Furthermore,it holds that
∞

−∞
ϕ− 1 (2ϕ(F X (x )))ϕ (F X (x ))f X (x )dx

=
1
2

ϕ− 1(2 ϕ(FX (X )))
∞

−∞
=

1
2

(ϕ
− 1(0) − ϕ− 1(∞ ))=

1
2

.

Therefore, Q( X , Y ) = P (X > Y) ≥ 1
2 ifand onlyif

E ϕ− 1 (ϕ(F X (X )) + ϕ(F Y (X )))ϕ (F X (X ))

=
∞

−∞
ϕ− 1 (ϕ(F X (x )) + ϕ(F Y (x )))ϕ (F X (x ))f X (x )dx

≥ 1
2 =

∞

−∞
ϕ− 1 (2 ϕ(FX (x )))ϕ (F X (x ))f X (x )dx

=E ϕ− 1 (2ϕ (FX (X )))ϕ (F X (X )) .

Hence, this inequality is equ ivalent to

E ϕ− 1 (ϕ(F X (X )) + ϕ(F Y (X ))) − ϕ− 1 (2ϕ (FX (X ))) ϕ(F X (X )) ≥ 0.

This result holds in particular when the random variables are indep endent, that is,
when the copula that links the variables is the pro duct. We have seen in Section 2.1.2
that the pro duct is a strict Archimedean copula with generator ϕ(t )= − logt . In this
case:

ϕ (t )=
− 1
t

, ϕ− 1(t ) =e
− t and ϕ− 1 = − et .

By replacing the se values in Equation (3.11), we obtain that:

ϕ− 1 (ϕ (FX (X )) + ϕ(F Y (X ))) − ϕ− 1 (2ϕ(F X (X )))

= − exp{ logF X (X ) + logF Y (X) } +exp { 2logF X (X) }

=F Y (X )FX (X) − FX (X) 2.



3.1. Prop erties of the statistical preference 69

Then, Equation (3.11) becomes:

E(F Y (X )FX (X) − FX (X) 2)
1

FX (X)
= E[F Y (X) − FX (X )] ≥ 0.

Thus, weconclude thatforcontinuousrandomvariables X and Y , X SP Y if andonly
if E[F Y (X) − FX (X )] ≥ 0. This result has already been obtained in Corollary 3.13.

Random variables coupled by a nilp otent Archimedean copula

Let us study now the case where the copula that links the real-valued random variabl es
is a nilp otent Archimedean copula generated by a twice differentiable generator.In such
case, as we saw in Equati on (2.9) the joint distribution function of X and Y isgiven by:

FX,Y (x, y)=
ϕ− 1(ϕ(F X (x)) + ϕ(F Y (y ))) if ϕ(F X (x )) + ϕ(F Y (y )) ∈ [0 , ϕ(0)).
0 otherwise.

Recall that thi s function cannot b e derived in the p oints (x, y) such that ϕ(F X (x ))+
ϕ(F Y (y )) = ϕ(0) . However, thevalue of

∂ 2 FX,Y
∂x∂y (x, y) can be computed for the points

(x, y) fulfilling ϕ(F X (x )) + ϕ (FY (y )) ∈ [0 , ϕ(0)). In fact, the value of this fun ction is:

∂2FX,Y

∂ x∂y (x, y) =ϕ
− 1 (ϕ (FX (x)) + ϕ(F Y (y )))ϕ (F X (x ))ϕ (F Y (y ))fX (x )fY (y ).

Inthis way,the function f X,Y defined by:

f X,Y (x, y)=
∂ 2 FX ,Y

∂ x∂y (x, y) if ϕ(F X (x)) + ϕ(F Y (y )) ∈ [0, ϕ(0)),
0 otherwise,

is ajoint density function of X and Y : on theonehand, f X,Y is a positive function:

f X ,f Y ≥ 0
ϕ ≤ 0 ⇒ ϕ (F X (x ))ϕ (F Y (y )) ≥ 0
ϕ− 1 ≥ 0





⇒ f X,Y ≥ 0,

since it is the pro duct of positive functions. On theotherhand,it holdsthat

R R
f X,Y (x, y )dy dx = 1.

In order to prove the last equality, we intro duce the following notation:

yx =inf { y | ϕ(F X (x )) + ϕ(F Y (y )) ∈ [0 , ϕ(0))} , for every x ∈ R.
sX =inf { x | FX (x ) >0 } .
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Therefore,

{ (x, y) | x >s X ,y >y x } = { (x, y) | ϕ(F X (x )) + ϕ (FY (y )) < ϕ(0) } .

This implies that:

R R
f X,Y (x, y)dy dx

=
∞

sX

∞

yx

ϕ− 1 (ϕ(F X (x )) + ϕ(F Y (y )))ϕ (F X (x ))ϕ (F Y (y ))fX (x )fY (y )dy dx

=
∞

sX

ϕ− 1 (ϕ(F X (x)) + ϕ(F Y (y )))
∞

yx
ϕ(F X (x ))f X (x )dx

=
∞

sX

ϕ− 1 (ϕ(F X (x )))ϕ (F X (x ))f X (x )dx

=ϕ
− 1(ϕ(F X (x )))

∞

sX
=F X (x)

∞

sX
=1 − FX (sX ) = 1.

We conclude that f X,Y is a jointdensityfunctionof X and Y . Let us intro duce the
following notation:

¯x = inf{ x | yx <x } . (3.12)

Using the function f X,Y andthe previousnotation, we canprove thefollowingchar-
acterization of the statistical preference for random variables coupled by a nilp otent
Archimedean copula.

Theorem 3.35Let X and Y betworeal-valuedcontinuousrandomvariables coupledby
anilpotent Archimedean copulawhosegenerator ϕ is twice differentiable and ϕ is not
the zero function. X SP Y if andonly if

∞

¯x
ϕ− 1 (ϕ (FX (x)) + ϕ(F Y (x )))ϕ (F X ( x ))fX (x )dx ≥

∞

x
ϕ− 1 (2 ϕ(FX (x )))ϕ (F X (x ))f X (x )dx.

Pro of: FromTheorem 3.34, (X , Y) is a continuous randomvector with joint density
functions f X,Y . Then, P(X = Y) =0 , and consequently Q(X , Y ) = P (X > Y) and
Q(Y , X ) = P (Y > X) .
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Letus compute the value of Q( X , Y ) = P (X > Y) .

P (X > Y )=
∞

−∞

x

−∞
f X,Y (x, y )dy dx

=
∞

¯x

x

yx

ϕ− 1 (ϕ(F X (x)) + ϕ(F Y (y )))ϕ (F X (x ))ϕ (F Y (y ))fX (x )fY (y)dy dx

=
∞

¯x
ϕ− 1 (ϕ(F X (x)) + ϕ(F Y (y )))

x

yx
ϕ(F X (x ))f X (x )dx

=
∞

¯x
ϕ− 1 (ϕ(F X (x)) + ϕ(F Y (x))) ϕ (F X (x ))f X (x )dx.

Furthermore, if we denote by x the point

x = inf { x | 2ϕ(F X (x )) ≤ ϕ(0) } , (3.13)

it holds that:
∞

x
ϕ− 1 (2 ϕ(FX (x )))ϕ (F X ( x))f X (x )dx=

1
2

ϕ− 1(2ϕ(F X (x )))
∞

x
=

1
2

.

For this reason, asX SP Y ifand onlyif Q(X , Y) ≥ 1
2 , then X SP Y if and onl y if

∞

¯x
ϕ− 1 (ϕ(F X (x )) + ϕ (FY (x )))ϕ (F X (x ))f X (x )dx ≥

1
2

=
∞

x
ϕ− 1 (2ϕ(F X (x )))ϕ (F X (x ))f X (x )dx.

Remark 3.36Thepreviousremarkdoesnot generalise Proposition 3.19, wherea char-
acterization of statistical preference for continuou s and countermonotonic random vari-
ables. The reason is that, althou gh the Łukasiewicz operator is an Archimedean copula,
its generator is ϕ(t ) =1 − t, and ϕ (t ) =0 . Hence, thiscopula does not satisfy the
restriction of the previous theorem, which therefore it is not applicable.

Characterization of the statistical preference by means of the median

In this section we shall investigate the relationship b etween statistical preferen ce and the
well-know notion of median ofa randomvariable. F irs t of all let us show an example to
clarify the con nection.

Example 3.37Consider againthe random variables ofExample 2.3. Itiseasy tocheck
that Q( X , Y ) = 0.6, and thereforeX SP Y . The intuition here isthat in order toobtain
Q(X , Y ) = 0.6c must be a value greater than 0 and smal ler than 1; however, the exact
value of c ∈ (0, 0. 6)is not relevant at al l.
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Thus, in thediscrete case, statistical preference orders the values of the support of
X and Y , and once they are ordered, the exact value of each point does not matter:only
itsrelative position andits probability are important. This idea is similar to that used in
the definition of the median.

The first approach to connect statistical pre ference and the median is to compare the
medians of the variables X and Y . Recall that a point t is a median of the random
variable X if:

P(X ≥ t) ≥ 0.5 and P(X ≤ t) ≥ 0. 5, (3.14)

and we denote by Me( X) the set ofmediansof the randomvariable X .

Following theprevious example, weconjecture thatifthemedian of X is greater
than the median of Y then X should be statistically preferred to Y , and theconverse
implicationshould also hold. However, this property do es not hold in general.

Remark 3.38Let X and Y betworeal-valuedrandom variablesdefinedon thesame
probability space. Thenthere isnot ageneral relationship betweenX SP Y and the
fol lowing statements:

1. me( X) ≥ me( Y), for all me( X) ∈ Me( X) and me( Y) ∈ Me(Y) .

2. me( X) ≤ me( Y), for all me( X) ∈ Me( X) and me( Y) ∈ Me(Y) .

Itis enough to consider theindependent random variables X and Y definedin Table3.1.

X − 2 0 2
PX 0.4 0.2 0.4

Y − 3 1
PY 0.4 0.6

Table 3.1: Definition ofrandomvariables X and Y .

Both X and Y haveonlyonemedian, andtheyequal to: me(X ) = 0 < me( Y ) =1 ,
but X SP Y becauseQ( X , Y ) = 0.64.

Since both statistical preferenceandthe comparison of medians are complete rela-
tions, the same counterexample al lows to show thatme( X) ≥ me( Y) does notguaran-
tee that X SP Y . Notice that me( Y) ≥ me( X). However, Q(Y , X ) = 0.36, so that
Y SP X .

In order to prove that X SP Y and me( X) ≤ me( Y) are not related in general,
it is enough to define X as theconstant random variable on 1 and Y as theconstant
random variable on 0. In this case it is obviou s thatX and Y haveonly onemedian and
me( X ) > me( Y)and Q(X , Y ) =1 .
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We see thus th at statistical preference cannot b e reduced to the comparison of the
medians of X,Y . Intere stingly, there is a connection between statistical preference and
the median of X − Y , aswe shallprove inTheorem3.40. Letus presenta preliminary
result.

Prop osition 3.39Let X and Y be tworeal-valued randomvariables defined on the same
probability space.Then

X SP Y ⇔ FX − Y (0) ≤ FY − X (0),

where FX − Y (respectively, FY − X ) denotes the cumulative distribution function of the
random variable X − Y (respectively,Y − X ).

Pro of: By Lemma2.20, X SP Y ifandonly if P(X > Y) ≥ P(Y > X) ,but:

P (X − Y >0) ≥ P(Y − X > 0) ⇔ 1 − FX − Y (0) ≥ 1 − FY − X (0) ⇔ FX − Y (0) ≤ FY − X (0).

Then, X SP Y and FX − Y (0) ≤ FY − X (0) are equivalent.

Therefore, in order to che ck statistical preference it suffices to evaluate the cumu-
lative distribution functions of X − Y and Y − X on 0. Inparticular, if P(X = Y) =0 ,
itsuffices to evaluateoneof thecumulative distributionfunctions, FX − Y on 0, since in
this case,

Q( X , Y ) =1 − FX − Y (0)

and X SP Y ifand onlyif FX − Y (0) ≤ 1
2 . This equivalence holds in particu lar when the

random variablesform a continuous random vector.

We next prove the connection b etwe en statistical preferen ce and the median of
X − Y .

Theorem 3.40Let X and Y betwo real-valuedrandom variablesdefinedonthe same
probability space.

1. sup Me(X − Y) >0 ⇒ X SP Y ⇒ sup Me(X − Y) ≥ 0.

2. X SP Y ⇒ Me(X − Y) ⊆ [0,∞ ).

3. The converse implication does not hold, alt hough

inf Me(X − Y) >0 ⇒ X SP Y.

4. If P( X = Y) =0 ,then

X SP Y ⇔ inf Me(X − Y) > 0.

But even when P(X = Y) =0 , 0 ∈ Me(X − Y) is not equivalent to Q( X , Y )= 1
2 .
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Pro of:

1. Assume that sup Me(X − Y) >0 . Then, there isa median me (X − Y) >0 . It
holds that:

P(X > Y) ≥ P(X − Y ≥ me(X − Y)) ≥ 1
2

P(X < Y) ≤ P(X − Y < me(X − Y)) ≤ 1
2

⇒ Q( X , Y)≥ Q( Y , X ),

and then X SP Y . Assume that X SP Y . Then P(X ≥ Y) ≥ P(X ≤ Y) . This
implies that P(X − Y ≥ 0) ≥ Q(X , Y) ≥ 1

2 , and thereforethere existsa median
me (X − Y) ≥ 0,and therefore sup Me(X − Y) ≥ me (X − Y) ≥ 0.

2. By definition, X SP Y if Q(X , Y )> 1
2 .

Now, assumeme(X − Y) <0 for amedian of X − Y , then:

1
2

≥ P ((X − Y ) > me(X − Y)) ≥ P((X − Y) ≥ 0) ≥ P (X > Y)+
1
2

P (X = Y ).

A contradiction arises becauseQ(X , Y )> 1
2 .

3. We first prove th e implication. Supp ose thatme(X − Y ) >0 for any me(X − Y) ∈

Me(X − Y) . In sucha case:

1
2

≥ P((X − Y ) < me(X − Y )) ≥ P(X − Y ≤ 0) =1 − P(X > Y ).

Hence, P(X > Y) ≥ 1
2 and then X SP Y . Now, assume that Q(X , Y )= 1

2 . In
that case, P(X ≥ Y) = P(Y ≥ X) ≥ 1

2 , and then:

P(X − Y ≥ 0) = P(Y − X ≥ 0) ≥ 1
2

,

whence0 ∈ Me(X − Y) , that contradicts the initial hyp othesis.
Next, we give anexample where X − Y has only on e median and equals0, and
Q( X , Y )< 1

2 . Itis enoughto considerthe randomvariables X and Y whose joint
mass function is defined on Table 3.2.

X/Y 0 1 2
0 0.1 0 0.4
1 0 0.4 0
2 0 0 0.1

Table 3.2: Definition ofrandomvariables X and Y .

Forthese variables itholds that Me(X − Y)= { 0} but Y SP X , since

Q(X , Y )=
1
2

P ((X , Y ) = (0, 0), (1, 1), (2, 2))=
1
2

0. 6 = 0.3<
1
2

.
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4. Assume that P(X = Y) =0 and letus prove the equivalence. Onthe onehand,
assume that X SP Y . Bytheseconditem ofthisTheorem, weknowthat every
median of X − Y is positive. Assumenow that 0 is a median of X − Y . Then:

1
2

≥ P(X − Y > 0) = P (X > Y ) = Q(X , Y ).

Then, Q(X , Y) ≤ 1
2 , a contradiction. Assumethat, although 0 is not a medianof

X − Y , it is the infimum ofthe medians. Insuch a case, there is a point t∗
>0

such that any point in (0,t
∗] is amedian of X − Y . Then, for any 0< ε<t

∗ it
holds that:

P(X − Y ≥ ε) ≥ 1
2

and P(X − Y ≤ ε) ≥ 1
2

.

Then, P(X − Y ≥ 0) ≥ P(X − Y ≥ ε) ≥ 1
2 and:

P(X − Y ≤ 0) =F X − Y (0) = lim
ε→ 0

FX − Y (ε ) = lim
ε→ 0

P(X − Y ≤ ε) ≥ 1
2

.

This means that 0 is also a median, and we havealreadyseenthatthis isnot
possible. Weconclude that inf Me(X − Y) >0 .
On the other hand, we have se en in the third item that when inf Me(X − Y) >0 ,
X SP Y .

Finally, letussee that if 0 is a medi an ofX − Y , even when P( X = Y) =0 , this is not
equivalent to Q(X , Y )= 1

2 . Consider Ω= { ω1,ω2} , theprobabilitymeasuregiven by
P( { ωi } )= 1

2 for i = 1,2 , and the rand om variablesX and Y such that X(ω 1) = X(ω 2)=
0, Y(ω1)= − 1 and Y(ω2) =1 . Then, − 1 is the only medianof X − Y , and also − 1 is
the only median of Y − X , but Q(X , Y )= 1

2 and then X ≡ SP Y . Onthe otherhand,
consider the spaceΩ= { ω1,ω2} , P( { ω1} )= 3

4 andthe randomvariables definedby:

ω1 ω2
X 0 1
Y 0 0

X − Y 0 1

Then, 0 isa median of X − Y ; however,Q( X , Y )= 5
8 .

This theorem establishes a relationship between statistical preference and the me-
dian of the diffe re nce of the random variables.Theparticularcasein which P(X = Y)=
0 is very useful because in that case statistical preference is characterised by the median.
Next, we aregoingtoconsider two random variables X and Y , and we are going to show
how to mo dify the variables with the aim of avoiding the case P( X = Y) >0 .

Lemma 3.41Let X,Y betwo real-valueddiscrete random variables, withoutpoints of
accumulationontheir supports, defined on the same probabilityspace suchthat P(X=
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Y ) >0 . Assume thattheir supports SX and SY can beexpressedby SX = { xn } n and
SY = { ym } m such that xn ≤ xn+1 and ym ≤ ym+1 for any n,m . In thiscaseit ispossible
to build another random variable X fulfil ling:

1. Q(X , Y ) = Q(X , Y) and

2. P( X =Y | X = x) =0 ⇒ P(X = x) = P (X = x) .

Pro of: We shallusethe followingnotation:

P(X =x n ,Y =y m ) =p n,m for any n, m.

Since P(X = Y) >0 , there exists xn ∈ SX and ym ∈ SY such that xn =y m and
pn,m >0 . Then, forany (x n ,y m ) in this situationwe consider x (1)

n ,x (2)
n such that:

max{ xn − 1,y m − 1} <x (1)
n <x n =y m <x (2)

n <min { xn+1 ,y m+1 } ,

where xn − 1 and xn+1 (resp ectively,ym − 1,y m+1 ) denote the preceding and subsequent
points of xn in SX (resp ectively,of ym in SY ), existing b ecaus e since b othSX and SY

have no accumulation points. Let us use the follow ing notation:

Sa
X = { xn ∈ SX : P(X =x n ,Y =x n ) =0 } .

Sb
X = { xn ∈ SX : P(X =x n ,Y =x n ) >0 } .

Then, SX =S
a
X ∪ Sb

X . Wedefine therandomvariable X whose supp ort is given by:

SX = { xn ∈ Sa
X } ∪{ x (1)

n ,x (2)
n :x n ∈ Sb

X } .

The joint probability of X and Y is give n by:

P(X =x n ,Y =y m ) =p n,m if xn ∈ Sa
X .

P(X =x (1)
n ,Y =y m ) = P(X =x (2)

n ,Y =y m )=
1
2

pn,m if xn ∈ Sb
X .
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By definition, P(X = Y) =0 . Then:

Q(X , Y ) = P (X > Y )=
x ∈SX

P (X >Y | X =x)

=
x n ∈Sa

X

P (X >Y | X =x n )+
x n ∈Sb

X

P (X >Y | X =x (1)
n )

+ P( X >Y | X =x
(2)
n )

=
x n ∈Sa

X

P (X >Y | X =x n )+
x n ∈Sb

X

1
2

P (X >Y | X =x n )

+ 1
2

x n ∈Sb
X

P( X >Y | X =x n ) + P(X =x n ,Y =x n )

=
x n ∈Sa

X

P (X >Y | X =x n )+
x n ∈Sb

X

P (X >Y | X =x n )

+ 1
2 P (X =x n ,Y =x n )

=
x n ∈SX

P (X >Y | X =x n )+
1
2 x n ∈Sa

X

P (X =x n ,Y =x n )

= P( X > Y )+ 1
2 P (X = Y ) = Q( X , Y ).

This lemma allows us to establish the fol lowing theorem.

Theorem 3.42Let X and Y be two real-valued discrete randomvariables on the same
probability space, whose supports have no accumulation points and such that P(X=
Y ) >0 . Then X SP Y ifandonly ifitispossibletofind a randomvariable X in the
conditions of Lemma 3.41such that inf Me(X − Y) >0 .

Pro of: Applyingthepreviouslemma itispossibleto buildanotherrandomvariable
X such that Q(X , Y ) = Q(X, Y) , P( X = Y) =0 , and if P(X =Y | X = x) =0 , then
P (X = x) = P (X = x) .

Therefore, as P(X = Y) =0 , by Theorem3.40itholdsthat X SP Y if and only
if inf Me(X − Y) ≥ 0. But since Q(X , Y ) = Q(X, Y) , it holds that X SP Y if andonly
if inf Me(X − Y) ≥ 0.

3.2 Relationship between stochastic dominance and sta-
tistical prefe rence

In this section we shall study the relationships b etween first degree sto chastic dominance
and statistical preference for real-valued random variab les.



78 Chapter 3. Comparison ofalternativesunder uncertainty

We recall once more that sto chastic dominance only uses the marginal distributions
of the variables compared. Aswe have seeninSubsection 2.1.2, everyjoint cumulative
distribution function is the copula of the marginalcumulative distribution functions. For
this reason, as we have already done in the previous subsection, we fo cus on different situ-
ations: indep endent, comonotonic and countermonotonic random variables, and random
variables coupled by an Archimedean copu la.

Before starting with the main res ults, wearegoing toshow thatingeneral, first
degree sto chastic dominance do es not imply statistical preference.

Example 3.43Considertherandom variables X and Y whose joint mass probability
function is given by:

X \ Y 0 1 2
0 0.2 0.15 0
1 0 0.2 0.15
2 0.2 0 0.1

Then, the marginal cumulative distribu tion functions of X and Y are defined by:

t <0 t ∈ [0 , 1) t ∈ [1 , 2) t ≥ 2
FX (t) 0 0. 35 0.7 1
FY (t) 0 0.4 0. 75 1

It fol lows that X FSD Y since FX ≤ FY . However, X SP Y since:

Q(X , Y ) = P (X > Y )+
1
2

P (X = Y)

= P (X = 2,Y = 0)+
1
2

P(X = 0,Y = 0) +P(X = 1,Y = 1)

+ P (X = 2,Y = 2) = 0.2+
1
2

(0.2 + 0 .2 + 0 . 1) = 0 .45.

Thus, X FSD Y does notimply X SP Y .

Furthermore, since X FSD Y implies X nSD Y for any n ≥ 2, the pre vious example
also shows that X nSD Y do es not imply X SP Y for any n ≥ 2.

In the following subsections, we will find sufficient conditions for the implication
X FSD ⇒ X SP Y .

3.2.1 Independent random variables

We start by proving that first degree sto chastic dominance implies statistical prefer-
ence for indep endent random variables. Forthis aim, takeintoaccount that, when
X FSD Y , Theorem (2.10) assures thatE [u( X )]≥ E [u(Y )] for any increasing function
u. In particul ar, if we consider u=F Y , which is an incre asing function, it holdsthat
E [FY (X )] ≥ E[F Y (Y )]. This will b e an interesting fact in order to prove the next res ult.
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Theorem 3.44Let X and Y be tworeal-valuedindependent randomvariables. Then
X FSD Y implies X SP Y .

Pro of: UsingLemma2.20, itsufficesto provethat

P (X ≥ Y) ≥ P(Y ≥ X).

SinceX and Y are indep endent, by Lemma 3.11 it is equivalent to prove that:

E[F Y (X )] ≥ E[F X (Y )].

Moreove r,since X FSD Y , FX ≤ FY , and therefore E[F X (Y )] ≤ E[F Y (Y )]. Thus, it
suffices to prove that

E[F Y (X )] ≥ E[F Y (Y )],

and this inequality holds because X FSD Y and then E [u( X )]≥ E [u( Y )]for every
increasing function u.

With a similar pro of it is p ossible to establish that the implication holds even when
one of the variablesstrictly dominates the other one. Let us intro duce a preliminary
lemma.

Lemma 3.45Let X and Y betwoindependentreal-valuedrandomvariables such that
X FSD Y . Then, if P(Y = t) =0 for any t such that FX (t ) <F Y (t) , thereexists an
interval [a, b]such that P(Y ∈ [a, b]) >0 and FX (t ) <F Y (t) for any t ∈ [a, b].

Pro of: Let t0 be a point such that FX (t 0) <F Y (t 0). Since both FX and FY are
right-continuous,

lim
ε→ 0

FY (t 0 + ε) =F Y (t 0) >F X (t 0) = lim
ε→ 0

FX (t 0 + ε).

Then, there is ε>0 such that:

FX (t 0 +ε) ≤ FX (t 0)+
FY (t 0) − FX (t 0)

2
<F Y (t 0).

Considering δ=
F Y (t 0 )− FX (t 0 )

2 >0 , then FY (t) − FX (t) ≥ δ >0 for any t ∈ [t0,t 0 +ε] .
We have thus proven that there e xis ts an interval[a, b]such that FY (t) − FX (t) ≥ δ >0
for t ∈ [a, b]. Now, withoutlossofgenerality, wecanassumethat FY (a − ε) <F Y (a) for
any ε>0 (otherwise, since FY is right-continuous, take the point a∗ = inf (t :F Y (t )=
FY (a ))). Then, since P( Y = a) =0 , there exists ε>0 such that FY (t) − FX (t) ≥ δ >0
for any t ∈ [a − ε, b]. Furthermore:

P(Y ∈ [a − ε, b])≥ P(Y ∈ [a − ε, a]) ≥ P(Y ∈ (a − ε, a]) =F Y (a) − FY (a − ε) > 0,

and this completes the pro of.
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The following result had already been established in [14, Prop osition 15.3.5].How-
ever, the authors only gave a pro of for continuous random variables.Here, weprovidea
pro of for any pair of random variables X and Y .

Prop osition 3.46Let X and Y betwo real-valued independentrandomvariables.Then,
X FSD Y implies X SP Y .

Pro of: We have provenin Theorem 3.44 that E[F Y (X )] ≥ E[F Y (Y )] when X FSD Y .
Then, if weprovethat E[F X (Y )] < E [FY (Y )] we would obtain that:

P (X ≥ Y) = E[F Y (X )] ≥ E[F Y (Y )] > E[F X (Y )] = P (Y ≥ X),

and consequentlyX SP Y .

Let us provethat if X FSD Y , then E[F X (Y )] < E[F Y (Y )]. By hyp othesis,
FX (t) ≤ FY (t) for every t , and there is t0 such that FX (t 0) <F Y (t 0).

Let us consider two cases.Onthe onehand, let usassume that P( Y =t 0) >0 . In
such acase:

E[F X (Y )]= FX dFY =
R\{ t 0 }

FX dFY +
{ t 0 }

FX dFY

≤
R\{ t 0 }

FY dFY +P (Y =t 0)FX (t 0)

Onthe other hand, ass ume that there is not t0 satisfying both FX (t 0) <F Y (t 0) and
P(Y =t 0) >0 . Applying the previouslemma, there isan interval [a, b] such that
FY (t) − FX (t) ≥ δ >0 and P(Y ∈ [a, b]) >0 . Then:

E[F X (Y )]= FX dFY =
R\ [ a,a+ε]

FX dFY +
[a,a+ε]

FX dFY

≤
R\ [ a,a+ε]

FY dFY +
[a,a+ε]

(FY − δ) dFY

= FY dFY − δP (Y ∈ [a, a + ε]) < E [FY (Y )].

A similar result was provenin [210] forprobability dominance (see Remark 2.22);
nevertheless, that result was only valid for continuous random variables.

3.2.2 Continuous comonotonic andcountermonotonic random
variables

Let X and Y be two random variables with resp ective cumulative distribution functions
FX and FY , and resp ective density functionsf X and f Y .
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First of all, let us study the relationship between first degree sto chastic dominance
and statistical preference for comonotonic rand om variables.

Theorem 3.47Let X and Y betwo real-valuedcomonotonicand continuousrandom
variables. If X FSD Y , then X SP Y .

Pro of: InCorollary3.17wehave seenthat X SP Y ifandonly if

x :FX (x )<F Y (x)
(f X (x ) +f Y (x ))dx+

1
2 x:F X ( x)=F Y (x)

(f X (x ) +f Y (x ))dx ≥ 1.

However, by hyp othesisFX (x) ≤ FY (x) for any x ∈ R. Then, { x :F X (x) ≤ FY (x) } = R,
and therefore:

x:F X (x ) <F Y (x)
(f X (x ) +f Y (x ))dx+

1
2 x:F X (x )=F Y (x)

(f X (x ) +f Y (x ))dx

=
x:F X (x) ≤ F Y (x)

(f X (x ) +f Y (x ))dx − 1
2 x:F X ( x)=F Y (x)

(f X (x) +f Y (x ))dx

=
R

(f X (x ) +f Y (x ))dx − 1
2 x:F X (x )=F Y (x)

(f X (x ) +f Y (x ))dx

≥
R

(f X (x ) +f Y (x ))dx − 1 =2 − 1 = 1.

Thus, X isstatistically preferredto Y .

Prop osition 3.46 assures that for independent random variables,whenfirst degree
sto chastic dominance holds in the strict sense, statistical preference is also strict.As we
shall see,this also holdsfor continuous and comonotonicreal-valuedrandom variables.
in order to establish this, we give firs t the following lemma.

Lemma 3.48Let X and Y betwocontinuous real-valuedrandom variables. Then, if
X FSD Y , there exists an interval [a, b]such that FX (t ) <F Y (t) for any t ∈ [a, b]and
P (X ∈ [a, b]) >0 .

Pro of: From the proof of Lemma 3.45 we deduce that there is an interval [a, b] such
that FY (t) − FX (t) ≥ δ >0 for any t ∈ [a, b]. SinceFX iscontinuous, thereis ε>0 such
that FX (a − ε) <F X (a) and FY (t) − FX (t) ≥ δ

2 >0 for any t ∈ [a − ε, b]. Then:

P (X ∈ [a − ε, b])≥ P(X ∈ [a − ε, a]) ≥ FX (a) − FX (a − ε) > 0.

Prop osition 3.49Let X and Y be two real-valued comonotonic and continuous random
variables. If X FSD Y , then X SP Y .
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Pro of: Ontheonehand, since X FSD Y , then X FSD Y , and consequentlyX SP Y .
According to theprevious lemma, there is aninterval[a, b]such that FY (t) − FX (t) ≥ δ >0
for any t ∈ [a, b] and P(X ∈ [a, b]) >0 . By Lemma 2.20, X SP Y is equivalentto
P (X > Y ) > P(Y > X) , and from Prop osition 3.16 this is equivalent to:

x:F X (x )<F Y (x)
f X ( x)d x>

x:F Y (x )<F X (x)
f Y (x )dx.

Now, take into acc ount that the second part of the previous equation equals 0, since
{ x :F Y (x ) <F X (x) } = ∅. In addition:

x:F X (x) <F Y (x)
f X (x )dx ≥

[a,b]
f X (x )dx = P (X ∈ [a, b]) > 0.

Thus, we conclude that X SP Y .

When the rand om variables are countermonotonic, the relationship between the
(non-strict) first degree sto chastic dominance and the (non-strict) statistical preference
also holds.

Theorem 3.50Let X and Y betwo real-valuedcountermonotonicand continuousran-
dom variables. If X FSD Y , then X SP Y .

Pro of: In Proposition 3.19 we have seen that X SP Y ifand onlyif FY (u) ≥ FX (u) ,
where u is one point such that FY (u ) +F X (u) =1 . However, sinceX FSD Y , it holds
that FX (x) ≤ FY (x) for every x ∈ R. In particular,italsoholds that FX (u) ≤ FY (u) .

Although it seems intuitive that the same relationship holds with resp ect to the
strict preferences, th is is not the case for countermonotonic continuous random variables.
Tosee this, itsuffices toconsider thecountermonotonic randomvariables X and Y whose
cumulative distribution functions of X and Y aredefined by:

FX (t )=






0 if t< 0.
t if t ∈ [0 , 1].
1 if t> 1.

(3.15)

FY (t )=






0 if t< − 0 .1.
1
2 t + 0 .05 if t ∈ [− 0. 1, 0.1).
t if t ∈ [0 .1, 1].
1 if t> 1.

(3.16)

Since FX (t ) =F Y (t) for any t /∈ (− 0.1 , 0.1)and FX (t ) <F Y (t) for t ∈ (− 0. 1, 0.1), it
holds that X FSD Y , but X ≡ SP Y , since FX (u) +F Y (u) =1 for u= 1

2 and:

Q( X , Y ) =FY (u) =F Y (0 . 5)=
1
2

.

Q( Y , X ) =FX (u) =F X (0 .5)=
1
2

.
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3.2.3 Discrete comonotonic and countermonotonic random vari-
ables with finite supp orts

Letus now assume that X and Y arediscretereal-valuedrandomvariableswith finite
supp ort. Then, when these randomvariablesare comonotonic, we obtainthe following
result:

Theorem 3.51If X and Y aretworeal-valued comonotonic and discreterandomvari-
ables with finite supports, then X FSD Y ⇒ X SP Y .

Pro of: Using Remark3.24, we can assume w.l.o.g. that X and Y are definedin
(Ω, P (Ω) , P ),where Ω= { ω1, . . . ,ωn } , by X(ω i ) =x i and Y(ωi ) =y i , where x i ≤ x i+1

and yi ≤ yi+1 for any i = 1, .. .,n − 1,and also:

P(X =x i ,Y =y i ) = P(X =x i ) = P( Y =y i ) for any i = 1, .. .,n.

Moreover, using Prop osition 3.25,X SP Y ifandonly if

i:x i >y i

P( X =x i ) ≥
i:x i <y i

P (X =x i ).

Let us show that { i :x i <y i } = ∅ when X FSD Y . Assumethatthere exists k such
that X(ω k ) =x k <y k =Y (ω k ). Then:

FX (x k ) = P(X ≤ X(x k )) ≥ P( { ω1, . . . ,ωk } ).
FY (x k ) = P(Y ≤ X(x k )) ≤ P( { ω1, . . . ,ωk− 1} ),

where last ine quality holds since ωk /∈{ Y ≤ X(x k )} becauseY(ωk ) > X(ω k ). Now,
sinceX FSD Y , it holds that FX (x k ) ≤ FY (x k ):

P( { ω1, . . . ,ωk } ) ≤ FX (x k ) ≤ FY (x k ) ≤ P( { ω1, . . . ,ωk − 1} ).

This implies that P( { ωk } ) = P( { X =x k } ) =0 , but acontradiction arises since
P( { ωk } ) >0 . Then, weconclude that { i :x i >y i } = ∅,and consequently:

i:x i >y i

P( X =x i ) ≥ 0=
i:x i <y i

P( X =x i ).

Thus, X SP Y .

Now, it only remains to see that, as for continuous random variables, strict sto chas-
tic dominance implies strict statistical preference.

Prop osition 3.52Let X and Y be two real-valued discrete andcountermonotonic ran-
dom variables with finite supports. Then, X FSD Y implies X SP Y .
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Pro of: Itisobvious that X FSD Y implies X FSD Y , andthen, applying theprevious
theorem, X SP Y because{ i :x i <y i } = ∅. Then, inordertoprovethat X SP Y it
isenough to see that { i :x i >y i } = ∅, that is, there is some k such that xk >y k .

SinceX FSD Y , there is some k such that FX (yk ) <F Y (yk ). Assume ex-absurdo
that { i :x i >y i } = ∅, so x i =y i for any i = 1, .. .,n . Since x i =y i and P( X =x i )=
P(Y =y i ) = P( Y =x i ), X and Y are equallydistributed, and then X ≡ FSD Y , a
contradiction.

Finally, let usconsiderdiscretecountermonotonicrandomvariableswith finitesup-
ports, andletussee that, in that case, first degree sto chastic dominance also implies
statistical preference.

Theorem 3.53Let X and Y be two real-valueddiscrete and countermonotonic random
variables with finite supports. Then, X FSD Y implies X SP Y .

Pro of: From remark3.32, withoutloss of generality wecanassume that X and Y are
defined on (Ω, P (Ω) , P), where Ω= { ω1, . . . ,ωn } , by X(ω i ) =x i and Y(ωi ) =y n − i +1 ,
where x i ≤ x i+1 and yi ≤ yi+1 for any i = 1, ... ,n − 1,and also:

P (X =x i ,Y =y i ) = P(X =x i ) = P( Y =y n − i +1 ) for any i = 1, .. .,n.

Furthermore,we can also assume that

max(|X(ω i ) − X(ω i+1 )|, |Y(ωi ) − Y (ωi+1 )|) >0 for any i = 1, .. .,n − 1;

and that there exists, atmost, one element k such that X(ω k ) = Y (ωk ).

Inorder to prove that X FSD Y ⇒ X SP Y we considertwo cases:

• Assume X(ω i ) = Y(ω i ) for any i = 1, .. .,n and denote k =max { i : X(ω i )<
Y (ωi )} . Then, by Prop osition 3.33,X SP Y if and onl y if:

P( { ω1} ) + .. . + P( { ωk } ) ≤ P( { ωk+1 } ) + .. . + P( { ωn } ).

SinceX FSD Y , FX ≤ FY . Then, taking ε= Y(ω k )− X(ω k )
2 >0 , it hold s that:

FX (X (ωk )) = P (X ≤ X(ω k )) ≥ P( { ω1, . . . ,ωk } ).
FY (X (ωk )) ≤ FY (Y (ωk ) − ε) = P(Y ≤ Y (ωk ) − ε} ) ≤ P( { ωk+1 , . . . ,ωn } ).

• Assume th at there is (an unique) k such that X(ω k ) = Y (ωk ). Then:

FX (X (ωk− 1)) = P (X ≤ X (ω k− 1)).
FY (X (ωk− 1)) = P (Y ≤ Y (ωk− 1)).
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Since X(ω k− 1) < Y(ω k− 1), ωk− 1 /∈{ Y ≤ X(ω k− 1)} , and thisimpliesthat { Y ≤

X(ω k− 1)} ⊆{ ωk ,ωk+1 , . . . ,ωn } . Furthermore, { X ≤ X(ω k− 1)} ⊇{ ω1, . . . ,ωk− 1} ,
and then

FX (X (ωk− 1)) ≥ P( { ω1} ) + .. . + P( { ωk− 1} ).
We consider two cases:

– Assume that Y(ωk ) = X(ω k− 1). Then X(ω k ) = Y(ω k ) = X(ω k− 1), and this
implies that ωk ∈{ X ≤ X(ω k− 1)} . Then:

FX (X (ωk− 1)) ≥ P( { ω1} ) + .. . + P( { ωk− 1} ) + P( { ωk } ).
FY (Y (ωk− 1)) = P( { ωk } ) + P( { ωk +1 } ) + .. . + P( { ωn } ).

Using that X FSD Y ,

P( { ω1} ) + .. . + P( { ωk − 1} ) ≥ P( { ωk+1 } ) + .. . + P( { ωn } ).

Applying Prop osition 3.33, X SP Y .
– Ontheotherhand, if Y(ωk ) ≤ X(ω k − 1), then it holds that { Y ≤ X(ω k− 1)}⊆

{ ωk+1 , . . . ,ωn } . Henc e:

FY (X (ωk− 1)) = P (Y ≤ X(ω k− 1)) ≤ P( { ωk+1 } ) + .. . + P( { ωn } )

and, sinceFX ≤ FY becauseX FSD Y , it hold s that:

P( { ωk+1 } ) + .. . + P( { ωn } ) ≥ P(Y ≤ X(ω k − 1)) =F Y (X (ωk− 1))
≥ FX (X (ωk− 1)) = P (Y ≤ X(ω 1))
≥ P( { ωk+1 } ) + .. . + P( { ωk− 1} ).

By Prop osition 3.33, X SP Y .

Unsurprisingly, strict first degree sto chastic dominance do es not imply strict statis-
tical preference, aswe can seeinthe following example:

Example 3.54Consider thecountermonotonic randomvariables X and Y defined by:

X ,Y 0 1 2
PX 0 0.2 0.8
PY 0.1 0.1 0.8

For these variables, X FSD Y . From Remark3.32we canassume that X and Y are
defined in the probability space(Ω, P (Ω) , P),where Ω= { ω1, . . . ,ω5} , and such that:

P( { ωi } ) 0.2 0.6 0.1 0.1
Ω ω1 ω2 ω3 ω4
X 1 2 2 2
Y 2 2 1 0

Then, Q(X , Y ) = 0.5, and we conclude that X ≡ SP Y .
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3.2.4 Randomvariables coupledby an Archimedean copula

Inthis subsection we consider two continuous random variablesX and Y , with resp ective
cumulative distribution functions FX , FY and with resp ective density functions f X and
f Y . Weassume thattherandom variables arecoupled byan Archimedeancopula C,
generated by the twice differentiablefunction ϕ .

First of all, we conside r the case of a strict Archimedean copula. In that case, we
also obtain that first degree sto chastic dominance implies that statistical preference.

Theorem 3.55Let X and Y betworeal-valuedcontinuousrandomvariables coupledby
a strict Archimedean copula C generatedby the twice differentiablefunction ϕ . Then,
X FSD Y implies X SP Y .

Pro of: From Theorem3.34, X SP Y ifand onlyif:

E ϕ− 1 (ϕ(F X (X )) + ϕ(F Y (X ))) − ϕ− 1 (2ϕ (FX (X ))) ϕ(F X (X )) ≥ 0,

or equivalently, if
∞

−∞
ϕ− 1 (ϕ(F X (x )) + ϕ(F Y (x )))ϕ (F X ( x))f X (x )dx

≥
∞

−∞
ϕ− 1 (2 ϕ(FX (x )))ϕ (F X ( x))f X (x )dx.

This inequality holds because

X FSD Y ⇒ FX (x) ≤ FY (x)
⇒ ϕ(F X (x )) ≥ ϕ(F Y (x )) (ϕ is decreasin g)
⇒ 2ϕ(F X (x )) ≥ ϕ(F X (x)) + ϕ(F X (x ))

⇒
ϕ− 1 (2ϕ(F X (x ))) ≥

ϕ− 1 (ϕ(F X (x)) + ϕ(F X (x )))
( ϕ− 1 is increasing)

⇒ ϕ− 1 (2ϕ(F X (x )))ϕ (F X (x ))f X ≤

ϕ− 1 (ϕ(F X (x)) + ϕ(F X (x )))ϕ (F X (x ))f X (x)
(ϕ ≤ 0.)

Therefore, X isstatistically preferredto Y .

Remark 3.56Whenapplyingthepreviousresulttotheproductcopula, weobtainthat
forcontinuous and independent random variables, X FSD Y ⇒ X SP Y . This isnot
new for us, sinceTheorem3.44states thatthisrelationholds, not onlyforcontinuous,
but anykind of independent random variables.

Letus nowinvestigate if such relationship alsoholds forthe strict preference. For this
aim, weconsiderthis preliminarylemma.
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Lemma 3.57Let X and Y betwo continuousrandomvariablessuch that X FSD Y .
Then, thereexists aninterval [a, b]such that FX (t ) <F Y (t) for any t ∈ [a, b], and also
P (X ∈ [a, b]) >0 and

ϕ− 1 (ϕ(F X (t )) + ϕ(F Y (t)))ϕ (F X (t )) − ϕ− 1 (2 ϕ(FX (t )))ϕ (F X (t )) ≥ δ >0

for any t ∈ [a, b].

Pro of: We have proven in Lemma 3.48 that there exists an interval [a, b] such that
FY (t) − FX (t) ≥ δ >0 for any t ∈ [a, b] and P(X ∈ [a, b]) >0 . Then, there isa
subinterval [a1,b1] of [a, b]where FX isstrictly increasing.

Now, following thesame steps thanin Theorem 3.55we obtainthat:

FX (t ) <F Y (t) for any t ∈ [a, b]⇒
ϕ− 1 (ϕ(F X (t)) + ϕ(F Y (t )))ϕ (F X (t))>
ϕ− 1 (2ϕ(F X (t )))ϕ (F X (t)) for any t ∈ [a1,b1].

Consider t ∈ [a1,b1] and let

ε =ϕ
− 1 (ϕ(F X (t)) + ϕ(F Y (t))) ϕ (F X (t )) − ϕ− 1 (2 ϕ(FX (t )))ϕ (F X (t )) > 0.

Then,there is a subinterval [a2,b2] of [a1,b1] such that

ϕ− 1 (ϕ(F X (t)) + ϕ(F Y (t )))ϕ (F X (t)) − ϕ− 1 (2ϕ (FX (t))) ϕ (F X (t )) ≥
ε

2
>0.

Furthermore, sinceFX is strictlyincreasing in [a, b], itis alsostrictly increasingin [a2,b2],
and then P(X ∈ [a2,b2]) >0 .

Prop osition 3.58Considertwo real-valued continuous random variablesX and Y cou-
pled by a strict Archimedean copula C generated by ϕ. Then, X FSD Y implies
X SP Y .

Pro of: We haveto provethat:
∞

−∞
ϕ− 1 (ϕ(F X (x)) + ϕ(F Y (x )))ϕ (F X (x ))f X (x )dx

>
∞

−∞
ϕ− 1 (2ϕ (FX (x )))ϕ (F X (x ))f X (x )dx.

SinceX and Y arecontinuous, if X FSD Y , then X FSD Y , and consequentlyX SP Y
by Theorem 3.55. Taking into account the previous lem ma, there exists an interval[a, b]
such that P(X ∈ [a, b]) >0 and:

ϕ− 1 (ϕ(F X (t)) + ϕ(F Y (t )))ϕ (F X (t )) − ϕ− 1 (2ϕ(F X (t )))ϕ (F X (t)) ≥ δ >0
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for any t ∈ [a, b]. Then:
∞

−∞
ϕ− 1 (ϕ(F X (x )) + ϕ(F Y (x )))ϕ (F X ( x))f X (x )dx

≥
R− [ a,b]

ϕ− 1 (2 ϕ(FX (x )))ϕ (F X (x ))f X (x )dx

+
[a,b]

ϕ− 1 (ϕ(F X (x )) + ϕ(F Y (x )))ϕ (F X ( x))f X (x )dx

>
[a,b]

ϕ− 1 (2ϕ (FX (x )))ϕ (F X (x ))f X (x )dx

+
[a,b]

ϕ− 1 (2ϕ (FX (x )))ϕ (F X (x ))f X (x )dx+
[a,b]

ε

2
f X (x )dx

=
∞

−∞
ϕ− 1 (2ϕ (FX (x )))ϕ (F X (x ))f X (x )dx+

ε

2
P (X ∈ [a, b])

>
∞

−∞
ϕ− 1 (2ϕ (FX (x )))ϕ (F X (x ))f X (x )dx.

Consequently,X SP Y .

Remark 3.59As wehavealreadymentioned, intheparticularcase wherethestrict
Archimedean copula is theproduct, the relation X FSD Y ⇒ X SP Y was already
studied in Proposition 3.46. Suchresult statestherelationnot onlyforcontinuous, but
for every kind of independent random variables.

It only remains to study the case of nilp otent copulas. Inorder todothis, we are
going tosee the following lemma that assures that, overthe assumption of X FSD Y ,
the points ¯xand x, defined on Equations (3.12) and (3.13), resp ectively, satisfȳ x≤ x.

Lemma 3.60Let X and Y be two real-valued continuous random variables cou pled bya
nilpotent Archimedean copulaC generated byϕ. If X FSD Y , then it holds that ¯x≤ x.

Pro of: First of all, recall that:

x = inf { x | 2ϕ(F X (x )) ≤ ϕ(0) } ,
¯x = inf{ x :y x <x } and
yx =inf { y | ϕ(F X (x)) + ϕ(F Y (y )) ∈ [0 , ϕ(0))} for any x ∈ R.

Assume that x< ¯x . Then there exists a point t∗ such that x<t ∗
< ¯x and yt ∗ >t ∗.

Moreover, from the hyp othesisX FSD Y , it holds that

FX (t) ≤ FY (t) ⇒ ϕ(F X (t)) ≥ ϕ(F Y (t )) ∀t ∈ R.



3.2. Relationshipbetween SDandSP 89

As x<t ∗, we know that 2ϕ(F X (t ∗)) < ϕ(0) . Therefore, wehavethat:

ϕ(F X (t
∗
)) + ϕ(F Y (t

∗
)) ≤ 2ϕ(F X (t

∗
)) < ϕ(0).

Then,
yt ∗ =inf { y | ϕ(F X (t

∗
)) + ϕ(F Y (y )) < ϕ(0) }≤ t∗.

Therefore, yt ∗ >t ∗ ≥ yt ∗ , a contradiction. Weconclude that x ≥ ¯x.

Using this lemma we can prove that first degree sto chastic dominance also implies
statistical preference for continuous random variables coupled by a nilp otent Archimedean
copula.

Theorem 3.61If X and Y are two real-valued continuous random variables cou pled
by anilpotent Archimedean copula whose generatorϕ is twice differentiable suchthat
ϕ =0 ,then X FSD Y ⇒ X SP Y .

Pro of: From Lemma3.60, ¯x≤ x. Furthermore, FX (x) ≤ FY (x) for every x ∈ R. Then,
for every x ≥ x:

X FSD Y ⇒ FX (x) ≤ FY (x)
⇒ ϕ(F X (x )) ≥ ϕ(F Y (x )) (ϕ is decreasing)
⇒ 2ϕ(F X (x )) ≥ ϕ(F X (x)) + ϕ(F X (x))

⇒ ϕ− 1 (2 ϕ(FX (x ))) ≥

ϕ− 1 (ϕ(F X (x )) + ϕ(F X (x )))
( ϕ− 1 is increasing)

⇒ ϕ− 1 (2 ϕ(FX (x )))ϕ (F X (x ))f X ≤

ϕ− 1 (ϕ(F X (x )) + ϕ(F X (x )))ϕ (F X (x ))f X (x)
(ϕ ≤ 0.)

Therefore:
∞

¯x
ϕ− 1 (ϕ (FX (x)) + ϕ(F Y (x )))ϕ (F X (x ))f X (x )dx

≥
∞

x
ϕ− 1 (ϕ (FX (x)) + ϕ(F Y (x )))ϕ (F X (x ))f X (x )dx

≥
∞

x
ϕ− 1 (2 ϕ(FX (x )))ϕ (F X (x ))f X (x )dx

≥
∞

x
ϕ− 1 (2 ϕ(FX (x )))ϕ (F X (x ))f X (x )dx.

Applying Theorem 3.35, we dedu ce thatX SP Y .

Remark 3.62Note that this result is not applicable to the Łukasiewicz copula, since
its generator is ϕW (t) =1 − t, and then ϕ (t ) =0 . However, wehave alreadyseen
inTheorem 3.50that firstdegree stochastic dominance implies statistical preference for
continuous and countermonotonic random variables.



90 Chapter 3. Comparison ofalternativesunder uncertainty

As in the countermonotonic case, the relationship between the strict preferences
do es not hold.Toseethis, considertwocontinuousrandomvariables X and Y whose cu-
mulative distribution functions are defined in Equations (3.15) and(3.16). If weconsider
the generator ϕ(t ) = 2(1 −

√
t) ,such that ϕ(0) =2 ,there is not (x, y) in the set:

{ (x, y ) : ϕ(FX (x )) + ϕ(F Y (y )) ∈ [0 , ϕ(0))}⇒ FX (t ) =F Y (t ),

such that either x ≤ 0.1 or y ≤ 0.1. Thus, whe neverf X,Y >0 , f X,Y is symmetric. Th en,
if (t, t) satisfiesϕ(F X (t)) + ϕ(F Y (t )) ∈ [0 , ϕ(0)),then FX (t ) =F Y (t) . Conseque ntly:

P(X > Y )=
∞

−∞

x

−∞
f X,Y (x, y)dy dx=

∞

−∞

x

−∞
f X,Y (y , x)dy dx = P (Y > X ).

and we concludeX and Y arestatistically indifferent.

3.2.5 Other relationships b etween sto chastic dominance and sta-
tistical preference

Intheprevious subsectionwe have seen several conditions under whichX FSD Y implies
X SP Y . Now, we analyze if there are other relationships between first andn-th degree
sto chastic dominance and statistical preference.

We start by proving that statistical preference do es not imply neither first nor n-th
degree sto chastic dominance for anyn ≥ 2.

Remark 3.63Thereexist random variables X and Y such that:

1. X SP Y but X nSD Y , for every n ≥ 1.

2. X nSD Y but X SP Y , for every n ≥ 2.

3. X FSD Y but X SP Y .

4. X FSD Y , X nSD Y for any n ≥ 2 but X FSD Y .

In Example 3.43 we gave two randomvariables suchthat Y SP X but X FSD Y .
Then, X nSD Y for any n ≥ 1 and therefore Y nSD X for any n ≥ 1. Thus, this is
an example where thefirst and thirditems hold.

Consider next random variablesX and Y such thatX fol lows a uniform distribution
in the interval (10, 11) and Y has the fol lowing density function:

f Y (x )=






1
25 if 0 < x < 10,
3
5 if 11 < x <12,

0 otherwise.
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For these random variables it holds that:

Q(X , Y ) = P (X > Y ) = P (Y < 10)=
2
5

< 1
2

,

and therefore Y SP X . However, ontheonehand, itistrivial that neither Y FSD X
nor X FSD Y . Moreover, X nSD Y for every n ≥ 2:

G2
X (t)=






0 if t < 10.
(t − 10) 2

2 if t ∈ [10, 11).
t − 10 .5 if t ≥ 11.

G2
Y (t)=






0 if t< 0.
t 2

50 if t ∈ [0 , 10).
2
5 t − 2 if t ∈ [10, 11).
1

10 (343− 62 t + 3t2) if t ∈ [11, 12).
t − 8.9 if t ≥ 12.

The graphs of these funct ions can be seen in Figure 3.1.

Figure 3.1: Graphics of the fu nctionsG2
X and G2

Y .

Then, X SSD Y , and applying Equation (2.4), X nSD Y for every n ≥ 2.

We have thus an example whereY SP X and X nSD Y for every n ≥ 2.

Letus see bymeans of an examplethat X SP Y and X nSD Y donot guarantee
X FSD Y . Tosee that, it isenough to consider theindependent randomvariables X
and Y defined by:

X 1 5
PX

1
2

1
2

Y 0 10
PY

9
10

1
10
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For these variables it holds that:

Q(X , Y ) = P (X > Y )+
1
2

P (X = Y) = P (X > Y) = P (Y = 0)=
9
10

> 1
2

.

Thus X SP Y . Furthermore, sincethe cumulative distributionfunctions are:

FX (t)=






0 if t< 1,
1
2 if t ∈ [1, 5),
1 if t ≥ 5.

FY (t )=






0 if t< 0,
9
10 if t ∈ [0 , 10),
1 if t ≥ 10,

the functions G2
X and G2

Y are:

G2
X (t)=






0 if t< 1,
1
2 (t − 1) if t ∈ [1, 5),
t − 3 if t ≥ 5,

G2
Y (t )=






0 if t< 0,
9

10 t if t ∈ [0 , 10),
t − 1 if t ≥ 10.

If we lookat their graphical representations inFigure 3.2, we canseethat X SSD Y .
However,

FX (5) = 1>
9
10

=F Y (5),

whenceX cannot stochastical ly dominateY by firstdegree, i.e., X FSD Y .

Figure 3.2: Graphicsofthe functions G2
X and G2

Y .

Our next Theorem summarises the main results of this paragraph.

Theorem 3.64Let X and Y betwo randomvariables. X FSD Y implies X SP Y
under any of the fol lowing conditions:

• X and Y are independent.
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• X and Y arecontinuous and comonotonicrandom variables.

• X and Y arecontinuous and countermonotonicrandom variables.

• X and Y arediscrete and comonotonicrandom variableswith finite supports.

• X and Y arediscreteand countermonotonicrandomvariableswith finitesupports.

• X and Y arecontinuous random variablescoupled byan Archimedean copula.

The relationships between sto chastic dominance and statistical preference under the con-
ditions of the previous result are summarisedinFigure 3.3.

Figure 3.3: General relationship b etween sto chastic dominance and statistical preference.

3.2.6 Exampleson the usualdistributions

In this subsection we shall study the conditions we must to imp ose on the parameters
of some of the most imp ortant parametric distributions in order to obtain statistical
preference and sto chastic dominance for indep endent random variables. We shall see
that for some of them, sto chastic dominance and statistical preference are equivalent.
Some results in this sense have already been established in [56].

Discrete distributions under indep endence:Bern oulli

In the case of discrete distributions, we shall consider the Bernoulli distribution with
parameter p ∈ (0 , 1), denoted by B(p), that takes thevalue 1 withprobability p and the
value 0with probability 1 − p.

Prop osition 3.65Let X and Y betwoindependentrandomvariableswith distributions
X ≡B (p1) and Y ≡B (p2). Then:
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• Q( X , Y )= 1
2 (p1 − p2 +1) , and

• X is statistical ly preferred to Y if andonly if p1 ≥ p2.

Pro of: Letuscompute theexpressionof theprobabilisticrelation Q(X , Y):

Q( X , Y ) = P (X > Y )+ 1
2 P (X = Y)

= P (X = 1,Y = 0)+ 1
2 P (X = 0,Y = 0) +P(X = 1,Y = 1)

=p 1(1 − p2)+ 1
2 ((1 − p1)(1 − p2) +p 1p2)= 1

2 (p1 − p2 + 1).

Then it holdsthat:

X SP Y ⇔ Q(X , Y) ≥ 1
2

⇔ 1
2

(p1 − p2 +1) ≥ 1
2

⇔ p1 ≥ p2.

Thus, a neces sary and sufficient condition forX SP Y is that p1 ≥ p2, or equiv-
alently, E[ X] ≥ E[ Y]. In fact, it is immediate that this condition is also nec essary and
sufficient for X FSD Y . Thus, first degree sto chastic dominance is a complete relation
for Bernoullidistributions; as a consequence, thesame applies to n-th degree sto chastic
dominance, and therefore they are equivalent metho ds. Thisallowsusto establishthe
following corollary.

Corollary 3.66Let X and Y be two independent random variables with Bernoul li dis-
tribution. Then:

X FSD Y ⇔ X nSD Y for any n ≥ 2 ⇔ X SP Y ⇔ E[X] ≥ E[ Y ].

Continuous distributions under indep endence

Next, we consider some of the most imp ortant families of continuous distributions: ex-
ponencial, beta, Paretoand uniform. In addition, due to the im p ortance of the normal
distribution, we devote thenext paragraphtoits study; inthatcase we shall consider
other p ossibilities in addition to indep endent random variables.

Remark 3.67Although the betadistribution dependson two parameters, p, q >0 , in
this work we shall consider the particular cases whereone of the parameters equals 1,
as in [56]. The general case in which both parametersare greater than1 is muchmore
complex, since the expression of the probabilistic relation is very difficult to obtain.

Analogously, the Pareto distribution depends on two parameters,a, b, and the den-
sity function is given by

f (x )=
aba

xa+1 , x> b.

As in [56] we will focus on the caseb=1 .
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Before starting, we recall in Table 3.3the density functionsand theparameters of the
distributionswestudy alongthis subsection.

Distribution Density function Parameters

Exp onential λe− λx ,x ∈ (0, ∞ ) λ>0

Uniform 1
b− a ,x ∈ (a, b) a,b ∈ R, a <b

Pareto λx − (λ +1) ,x ∈ (1, ∞ ) λ>0

Beta Γ(p+q)
Γ( p)Γ(q) xp− 1(1 − x) q− 1,x ∈ (0 , 1) p, q >0

Table 3.3: Characteristic s of the continuous distributions to b e studied.

Prop osition 3.68Let X and Y betwoindependentrandomvariableswith exponential
distributions, X ≡ E xp(λ1) and Y ≡ Exp(λ 2),respectively. Then:

• Q( X , Y )=
λ2

λ1 +λ 2
and

• X is statistical ly preferred to Y if andonly if λ1 ≤ λ2.

Pro of: We firstprove that Q(X , Y )=
λ2

λ1 +λ 2
.

Q(X , Y ) = P (X > Y )=
∞

0
λ1e− λ 1 x dx

x

0
λ2e− λ 2 y

dy=
∞

0
λ1e− λ 1 x (1 − e− λ 2 x )dx

=
∞

0
λ1e− λ 1 x dx −

∞

0
λ1e− (λ 1 +λ 2 )x dx =1 −

λ1

λ1 +λ 2
=

λ2

λ1 +λ 2
.

Thus,
X SP Y ⇔ Q( X , Y)≥

1
2

⇔
λ2

λ1 +λ 2
≥ 1

2
⇔ λ2 ≥ λ1.

Remark 3.69Thevalue of the probabilist ic relation Q for independent and exponen-
tial ly distributed random variables was already studied in [56, Section 6.2.1]. However,
insuch reference theauthors made a mistake duringthe computations and found an
incorrect expression forthe probabilisticrelation.

As with Bernoulli distributed random variables, statistical preference and sto chastic
dominance are equivalent prop erties for exponential distributions. In thiscase, also
first degree sto chastic dominance, and therefore then-degree sto chastic dominance, are
complete relations, and the can be reduced to the comparison of the exp ectations.



96 Chapter 3. Comparison ofalternativesunder uncertainty

Corollary 3.70Let X and Y be twoindependent random variables with exponential
distribution. Then,

X FSD Y ⇔ X nSD Y for any n ≥ 2 ⇔ X SP Y ⇔ E[X] ≥ E[ Y ].

Next we fo cus on uniform distributions.

Prop osition 3.71Let X and Y betwo independent random variables with uniform
distributions, U (a, b)and U (c, d)respectively.

1. If (a, b)⊆ (c, d) then:

• Q( X , Y )= 2b− c− d
2(b− a) and

• X SP Y if andonly if a+b ≥ c+d .

2. If c ≤ a <d ≤ b, X is always statistical ly preferred toY , and its degree of preference

is Q(X , Y ) =1 − (d − a) 2

2(b− a)(d − c) .

Pro of:

1. Supp ose thata ≤ c <d ≤ b. Then,

Q(X , Y ) = P (X > Y )=
b

d

1
b− adx+

d

c

x

c

1
b− a

1
d − c

dy dx

= b− d
b− a +

d

c

1
b− a

x − c
d − cdx=

b− d
b− a +

(d − c)2

2(d − c)(b− a)
=

2b− c − d

2(b− a)
.

Then, X SP Y ifand onlyif:

2b− c − d

2(b− a)
≥ 1

2
⇔ b+a ≥ c+ d.

If c ≤ a <b ≤ d, we can similarly se e that

Q(X , Y )=
b+a − 2c
2(d − c)

.

Thus, Q(X , Y) ≥ 1
2 if and on ly if a+b ≥ c+d .

2. If c ≤ a<d ≤ b, it is easy to prove that X FSD Y , and therefore X SP Y . Let
us now compute the preferencedegree:

P(Y > X)=
d

a

y

a

dx dy
(b − a)(d − c)

=
d

a

y − a

(b − a)(d − c)
dy=

(d − a)2

2(b− a)(d − c)
.

Then, Q( X , Y ) =1 − Q(Y , X ) =1 − P( Y > X) =1 − (d − a) 2

2(b− a)(d − c) .
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Remark 3.72The valueof the probabilistic relation Q for the uniform distribution was
already studied in [56]. However, theauthorsonlyfocusedonuniformdistributionwith
afixed amplitude of the support, andthe onlyparameterwasthestartingpoint of the
support. Thisis a particularcaseincludedinthelast result, andin that case, as we
have seen,the random variable with the greatest minimum of the support stochastical ly
dominates the other one, and consequently it is also statistical ly preferred.

For uniform distributions, first degree sto chastic dominance and statisticalprefer-
ence are not equivalent in general. In fact, first degree sto chastic dominance do es not
hold when the first case of the pro of of the previous prop osition holds.Nevertheless, we
can establish thefollowing:

Corollary 3.73Let X and Y betwo independentrandom variableswith uniformdistri-
bution. It holdsthat:

X FSD Y ⇒ X SP Y ⇔ E[ X] ≥ E[Y ].

We next fo cus on the family of Pareto distribution.

Prop osition 3.74Let X and Y be twoindependent randomvariables with Paretodis-
tributions, X ≡P a(λ 1) and Y ≡P a (λ 2),respectively. Then:

• Q( X , Y )= λ 2
λ 1 +λ 2

and

• X is statistical ly preferred to Y if andonly if λ2 ≥ λ1.

Pro of: First of all, le t us determine the expression of Q:

Q( X , Y ) = P (X > Y )=
∞

1

x

1
λ1x− λ 1 − 1λ2y− λ 2 − 1dy dx

=
∞

1
λ1x− λ 1 − 1 1 − x− λ 2 dx =1 −

λ1

λ1 +λ 2
.

Then,
X SP Y ⇔ 1 −

λ1
λ1 +λ 2

≥ 1
2

⇔ λ2 ≥ λ1.

As for exp onential and Bernoulli distributions, the equivalence b etwee n first degree
sto chastic dominance and statistical preference holds for Pareto distributions. In fact,
when the exp ectation of the random variables exists, first degree sto chastic dominance
is equivalent to the comparison of the exp ectations.Hence , it is a complete relation, and
then n-th degree sto chastic dominance is also complete and equivalent to first degree
sto chastic dominance.
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Corollary 3.75Let X and Y be two independent random variables wit h Pareto distri-
butions. Then:

X FSD Y ⇔ X nSD Y for any n ≥ 2 ⇔ X SP Y.

Furthermore, if the parameter of X and Y aregreaterthan 1, their expectation exist s,
and in that case:

X FSD Y ⇔ X nSD Y for any n ≥ 2 ⇔ X SP Y ⇔ E[X] ≥ E[ Y ].

Concerning the b eta distribution, we recall that its density function is given by

f (x )=
Γ(p+q)

Γ(p )Γ( q) xp− 1(1 − x) q− 1 if 0< x< 1,

0 otherwise.
(3.17)

Howe ver, the results we investigate in this section fix the value of one of the parameters
to 1. We startbyfixing q=1 . Weobtain thefollowing:

Prop osition 3.76Let X and Y betwoindependent randomvariables withbeta distri-
butions, X ≡ β(p1, 1) and Y ≡ β(p2, 1),respectively. Then:

• Q( X , Y )=
p1

p1 +p 2
and

• X SP Y if andonly if p1 ≥ p2.

Pro of: We firstcomputethe expressionofthe relation Q.

Q( X , Y ) = P (X > Y )=
1

0

x

0
p1xp1 − 1p2yp2 − 1dy dx=

1

0
p1xp1 − 1xp2 dx=

p1

p1 +p 2
.

Then it holdsthat
X SP Y ⇔

p1

p1 +p 2
≥ 1

2
⇔ p1 ≥ p2.

Taking into account that the exp ectation of a beta distribution with parameter
q =1 is

p
p+1 , the equivalence between statistical preferenc e and the comparison of the

exp ectations is clear. Furthermore, take intoaccount thatthe cumulativedistribution
function asso ciated with a b eta distribution with parameter q=1 is given by:

F (x )=






0 if x ≤ 0.
xp if 0< x< 1.

1 if x ≥ 1.
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Then, it is clear that sto chastic dominance between two variables of this typ e can be
reduced to verifying which of the parameters p is greater. Finally, itis easytocheck
that this is equivalent to take the variable with greater exp ectation. Thus, inthis case
sto chastic dominance, statistical preference and the comparison of exp ectations are also
equivalent.

Corollary 3.77Let X and Y be two independent randomvariables with beta distribu-
tions with second paramet er equalto 1. Then,

X FSD Y ⇔ X nSD Y for any n ≥ 2 ⇔ X SP Y ⇔ E[X] ≥ E[Y ].

Finally, we consider b eta distributions with p=1 .

Prop osition 3.78Let X and Y betwoindependentrandomvariableswith distributions
X ≡ β(1,q1) and Y ≡ β (1 ,q2), respectively. Then:

• Q( X , Y )=
q2

q1 +q 2
and

• X SP Y if andonly if q2 ≥ q1.

Pro of: In order to prove the result, note that X ≡ β (1 , q)⇔ 1 − X ≡ β (q , 1):

F1− X (t ) = P (1 − X ≤ t) =1 − FX (1 − t) =1 − [1 − (1 − (1 − t)) q] =t
q.

Then, taking into account Prop osition 3.3,X SP Y ⇔ 1− Y SP 1− X and Q( X , Y )=
Q(1 − Y,1 − X)=

q2
q1 +q 2 , and using Prop osition 3.76, statistical preference is equivalent

to q2 ≥ q1.

As in the previous case, since the exp ectation of a b eta distribution with parameter
p =1 is 1

1+q , the equivalence b etween sto chastic dominance and statisticalpreference
also holds for beta distributions.

Corollary 3.79Let X and Y be two independent randomvariables with beta distribu-
tions withfirst parameter equal to 1. Then,

X FSD Y ⇔ X nSD Y for any n ≥ 2 ⇔ X SP Y ⇔ E[X] ≥ E[Y ].

The normal distribution

We now study normally distributed random variables. Inthiscasewe will not only
consider indep endent variables.Thus, we b egin with the comparison of one-dime nsional
distributions and then we shall consider the case of the comparison of the comp onents
of a bidime nsional random vector normally distributed.
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Prop osition 3.80Let X and Y be two independent and normal ly distributed random
variables, N(µ 1,σ 1) and N(µ 2,σ 2), respectively. Then, X will be statistical ly preferred
to Y if andonly if µ1 ≥ µ2.

Pro of: The relation Q takes the value (s ee [56, Section 7]):

Q(X , Y ) =F N (0 ,1)
µ1 − µ2

σ2
1 +σ 2

2
.

Then:

X SP Y ⇔ Q( X , Y)≥
1
2

⇔ FN(0,1)
µ1 − µ2

σ2
1 +σ 2

2

≥ 1
2

⇔
µ1 − µ2

σ2
1 +σ 2

2

≥ 0 ⇔ µ1 ≥ µ2.

Given two normally distributed ran dom variablesX ∼ N(µ 1,σ 1) and Y ∼ N(µ 2,σ 2),
it holds that X FSD Y if and only if they are identically distributed, µ1 =µ 2 and
σ1 =σ 2, (see [139]).Then, statistical preference is not equivalent to first degree sto chas-
tic dominance fornormal randomvariables.

For indep endent normal distributions, the variance of the variables are not im-
portant when studying statistical preferenc e.For this reason, statistical preference is
equivalent to the criterium of maximum mean in the comp aris on of normal random vari-
ables:

Corollary 3.81Consider two independent random variables X and Y normal ly dis-
tributed. Itholds that:

X FSD Y ⇒ X SP Y ⇔ E[X] ≥ E[ Y ].

Letus now consider abidimensionalrandom vector with normal distribution:
X 1
X 2

≡ N
µ1
µ2

,
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2
. (3.18)

Now, our aim is to compare the comp onentsX 1 and X 2 ofthis randomvector. We obtain
the following result:

Theorem 3.82Considerthe random vector
X 1
X 2

normally distributed as in Equa-

tion (3.18). Then,it holds that:

• Q(X 1,X 2) =F N(0,1)
µ 1 − µ 2√

σ2
1 +σ 2

2 − 2ρσ 1 σ2
.
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• X 1 SP X 2 ⇔ µ1 ≥ µ2.

Pro of: Applyingthe usual prop erties of the normal distributions, thedistribution of
X 1 − X 2 is:

X 1 − X 2 =(1 − 1)
X 1
X 2

≡ N (1 − 1)
µ1
µ2

,(1 − 1)
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

1
− 1

= N(µ 1 − µ2,σ 2
1 +σ 2

2 − 2ρσ1σ2),

where the second parameter is consider to be the variance instead of the standard devi-
ation. Then:

P(X 1 >X 2) = P(X 1 − X 2 > 0) =P N(0,1)>
µ 2 − µ 1√

σ2
1 +σ 2

2 − 2ρσ1 σ2

=P N(0, 1)<
µ 1 − µ 2√

σ2
1 +σ 2

2 − 2ρσ1 σ2
=F N (0 ,1)

µ 1 − µ 2√
σ2

1 +σ 2
2 − 2ρσ1 σ2

.

Thus, X 1 SP X 2 if and on ly if FN (0 ,1)
µ 1 − µ 2√

σ2
1 +σ 2

2 − 2ρσ1 σ2
≥ 1

2 .

This result is more general than Prop osition 3.80, which corresp onds to the case
ρ =0 . Moreover, in that case statistic al preference is also equivalent to the comparison of
the exp ectations.However, theadvantageofobtaining a degreeof preference isobvious.
In fact, we haveto recall the influence of the correlation co efficient ρ in the value of
the preference degree: although the preference between X 1 and X 2 is only basedon
the comparison of the exp ectations( X 1 SP X 2 ⇔ µ1 ≥ µ2), the valueof ρ plays
an imp ortant role for the preference degree. For instance, the greater the correlati on
co efficient,the greater thepreference degree Q(X , Y). For thisreason, thegreater the
correlation co efficient, the stronger the preference ofX over Y .

In Table 3.4 we have summarised the res ults that we have obtained in this subsec-
tion.

As a summary, we have seen that for the some of usual distributions in indep endent
random variables, statistical preference is equivalent to the comparison of its exp ec-
tations, andin several cases,sto chastic dominance and statistical preference are also
equivalent. Let usrecall that, in particular, for thedistributionswehavestudiedthat
b elongs to the exponential family of distribu tions, sto chastic dominance and statistical
preference are equivalent. We can conjecture that for indep endent random variables
whose distribution b elong to the exp onential family of distributions, statistical prefer-
ence and sto chastic dominance are equivalent, and are also equivalent to the comparison
of the exp ectations.

Nevertheless, at this p oint, this is just a c on jecture b ecause it has not b een proved
yet.
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Distributions Q(X 1 ,X 2) Condition

X i ≡ B(p i ), i = 1,2 1
2 p1 − p2 +1 p1 ≥ p2

X i ≡ E xp (λi ), i = 1,2
λ 2

λ 1 +λ 2
λ 2 ≥ λ 1

X 1 ≡ U(a, b) , X 2 ≡ U (c, d)

a ≤ c ≤ d<b 2b− c− d
2(b − a) a+b ≥ c+d

c <a <b ≤ d a+b − 2c
2(d − c) a+b ≥ c+d

c ≤ a<d ≤ b 1 − (d − a) 2

2(d − c)(b − a) Always

Pa (λ i ), i = 1,2
λ 2

λ 1 +λ 2
λ 2 ≥ λ 1

β(p i , 1), i = 1,2
p1

p1 +p 2
p1 ≥ p2

β(1,q i ), i = 1,2
q2

q1 +q 2
q2 ≥ q1

N(µ i ,σ i ), i = 1,2 FN(0,1)
µ 1 − µ 2

σ 2
1 +σ 2

2

µ1 ≥ µ2

Table 3.4: Characterizations of statistical preference b etween indep endent random vari-
ables included inthesame familyofdistributions.

Although during this paragraph we have assumed indep endence for non-normally
distributed variables, there are other cas es of interest. For instance, in [32] the case of
comonotonic and countermonotonicrandom variablesare studied. In particular, Prop o-
sition 3.65, thatassuresthat

X SP Y ⇔ X nSD Y ⇔ E[X] ≥ E[ Y] for any n ≥ 1

for indep endent random variables with Bernoulli distributi on, could be easily extended
to Bernoulli distributed random variables, taking into account the possible dep endence
relationship between them.

3.3 Comparison ofn variables by means of the statis-
tical pr eference

So far, we haveinvestigated several prop erties of sto chastic dominance and statistical
preference as pairwise comparison metho ds. However, anatural question arises: can
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we employ those metho ds for the comparison of more than two variables? On the one
hand, stochastic dominance was defined as a pairwise comparison metho d, based on the
direct comparison of the cumulative distribu tion functions, ortheir iterative integrals.
As we already mentioned, sto chastic dominance allows for incomparability. Thu s, if
incomparability can happ en when comparing two distribution functions, it should be
more frequ ent when comparing more than two. Then, stochastic dominance do es not
seem to be a go od alternative for the comparison of more than two variables.

On the other hand, statistical preference has an imp ortant drawback: its lackof
transitivity. The ideaofstatistical preference is to cons iderX preferred to Y when it
provides greater utility the ma jority of times. As such, it is close to the rule of ma jority
in voting systems; takingintoaccountCondorcet’sparadox(see[40]) itisnotdifficult
tosee that statistical preference is nottransitive. WhenDe Schuymer etal. ([55, 57])
intro duced this notion, they provided an example to illustrate this fact; another one can
b e found in [67, Example 3].

Example 3.83([57, Section 1])As in Example 3.10, consider the fol lowing dice:

A= { 1, 3, 4, 15 , 16, 17} ,

B= { 2, 10 , 11 , 12, 13 , 14} , (3.19)

and also the dice
C= { 5, 6, 7, 8, 9, 18} ,

where by dice we mean a discrete and uniformly distribut ed random variable.We consider
the game consisting on rol ling the three dice simultaneously, so that the dice whose number
isgreater wins the game.Thus, A, B and C canbe seenas independent randomvariables.

If we compute the probabilistic relation Q for these dices we obtain the fol lowing
results:

Q(A, B)= 5
9 ⇒ A SP B.

Q(B , C )= 25
36 ⇒ B SP C.

Q(C , A)= 7
12 ⇒ C SP A.

Hence, diceA is statistical ly preferred to dice B , dice B is statistical ly preferred to dice
C but dice C is statistical ly preferred to dice A, that is, there is a cycle, aswe cansee
in Figure 3.4.

This fact is known as the cycle-transitivity problem, and it has already been studied
by some authors, likeDe Shuymer et al. ([14, 15, 16, 49, 54, 56, 57, 58]) and Martine tti
et al. ([122]).

This shows that statistical preference could not be adequate when we want to com-
pare more than two random variables, precise ly b ecause it is based on pairwise compar-
isons.
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Figure 3.4: Probabilisticrelationforthe threedices.

Since b oth sto chastic dominance and statistical preference do not seem to b e ade-
quate metho ds for the comparison of more than two variables, our aim in this section is
to provide ageneralisation of the statistical preference for the comparison of n random
variables, based ona extension of the probabili stic relation defined in Equation (2.7).
After intro ducing the main definition, we shall investigate its prop erties, its possible
characterizationsanditsconnectionwiththe“usual” statisticalpreference, aswellasits
possible relationships with sto chastic dominance.

3.3.1 generalisation of the statistical preference

First of all we are goingto analyze the case of three random variables, as in the dice
example, and later weshall generalise our definition to the case of n random variables.

Let us consider three random variables denoted by X , Y and Z defined onthe
probability sp ace(Ω, A , P). We can decomp oseΩ in the following way:

Ω= { X > max( Y , Z)} ∪{ Y > max( X , Z)} ∪{ Z > max( X , Y)}

∪{ X =Y >Z } ∪{ X = Z >Y }∪{ Y =Z >X } ∪{ X =Y =Z } (3.20)

Obviously, { X > max( Y , Z)} denotes the subset ofΩ formed by the elementsω ∈ Ω
satisfying X (ω ) > max(Y (ω ), Z (ω )), andsimilarlyfor theothers. In what remains we
will use the short wayin order to simplify the notation.

This is a decomp osition ofΩ into pairwise disjointsubsets, i.e., a partitionof Ω. As
aconsequence,

1 = P (X > max(Y , Z )) + P (Y > max( X , Z )) + P (Z > max(X , Y )) + P (X = Y > Z)
+ P (X = Z > Y ) + P (Y = Z > X) + P (X = Y = Z). (3.21)
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Since our goal is to define the degree in which X is preferredto Y and Z , we can
define Q2(X, [Y , Z ])by the followingequation:

Q2(X, [Y , Z ]) = P (X > max(Y , Z ))
+ 1

2 P (X =Y > Z) +P (X =Z >Y) + 1
3 P (X = Y = Z).

This generalises Equation(2.7). Furthermore, ifweconsider Q2(Y , [X, Z ])and Q2(Z , [X , Y ]),
given by:

Q2(Y , [X, Z ]) = P (Y > max(X, Z ))+
1
2

P (X =Y > Z) +P (Y =Z > X)

+
1
3

P (X = Y = Z);

Q2(Z , [X , Y ]) = P (Z > max(X, Y ))+
1
2

P (X =Z >Y )+ P (Y =Z > X)

+
1
3

P (X = Y = Z);

usingthe partition of Ω showed in Equation (3.20) and Equation (3.21), it can be shown
that:

Q2(X, [Y , Z ]) +Q2(Y , [X , Z ]) +Q2(Z , [X , Y ]) = 1.

In this sense, followingtheideaof DeSchuymeretal. ([55, 57]), X can b e cons idered
preferred to Y and Z if

Q2(X, [Y , Z ])≥ max{ Q2(Y , [X , Z ]),Q2(Z, [X , Y ])} .

Moreover, X ispreferred to Y and Z with degree Q2(X, [Y , Z ]).

More generally, wecan consider a set of alternatives D formed bysome random
variables defined on the same probability space.Then,wecanconsider themap:

Qn : D×D n → [0, 1],

defined by:
Qn (X , [X1, . . . ,Xn ])= Prob{ X > max(X 1, . . . ,Xn )}

+
1
2

n

i=1
Prob{ X =X i > max(X j :j =i) }

+
1
3 1≤ i<j ≤ n

Prob{ X =X i =X j > max(X k : k = i, j) }

+ .. .+
1

n +1
Prob{ X =X 1 = .. . =X n } .

Equivalently, the relation Qn can b e expresse d by:

Qn (X , [X1, . . . ,Xn ])=

k = 0, .. .,n
1 ≤ i 1 < .. . <i k ≤ n

1
k +1

P (X =X i 1 = .. . =X i k > max
j=i 1 ,...,i k

(X j )), (3.22)
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where { i 1, . . . ,ik } denotes any ordered subset of k-elements of { 1, .. . ,n} . Note that
thisformulaisthe generalisationof theprobabilistic relation definedon Equation (2.7),
since for n=1 weobtain the expression of such probabilistic relation. We can interpret
the value of Qn (X , [X1, . . . ,Xn ]) asthe degree in which X is pre ferred to X 1, . . . ,Xn .
Consequently,th e greater the value of Qn (X , [X1, . . . ,Xn ]) the stronger the preference
of X over X 1, . . . ,Xn . The relation Qn allows to define the concept of general statis tical
preference.

Definition 3.84Let X,X 1, . . . ,Xn ben+1 random variables.X is statistical ly preferred
to X 1, . . . ,Xn , and it is denoted by X SP [X 1, . . . ,Xn ],if

Qn (X , [X1, . . . ,Xn ]) ≥ max
i=1,...,n

Qn (X i , [X, { X j :j =i } ]). (3.23)

As it was the case for statistical preference, this general isation uses the joint distribution
of the variables, and thus takes into account the sto chastic dep endencies b etween them.
Moreover, the relation Qn providesa degree of preference of arandom variable with
resp ect to the others,and through thiswe can establish which is the preferred random
variable, the second preferred random variable, etc.Forinstance, if Qn (X i , [X, { X j :j=
i } ]) ≥ Qn (X j , [X, { X j :j =i } ]) for every i>j andEquation(3.23)holds, then X is the
preferred random variable, X 1 isthesecondpreferredrandom variableand, in general,
X i is the i+1 preferred random variable, with their resp ective degrees of preference.

Example 3.85Ifwe consider thedicesdefinedonEquation (3.19)andapply thegeneral
statistical preference to find the preferred dice, we obtain the fol lowing preference degrees:
Q2(X , [Y , Z ]) = 0.4167; Q2(Y , [X , Z ]) = 0.3472; and Q2(Z , [X , Y ]) = 0.2361. Thus, X is
the preferred dice with degree 0.4167;Y isthe second preferreddice withdegree0.3472;
and Z is theless preferreddice withdegree 0.2361.

3.3.2 Basic properties

In this subsection we investigate some basic prop erties of the general statistical pref-
erence. The first partis devotedto the study of the relationships b etween pairw ise
statistical preference and generalpreference. Similarly, we alsoestablisha connection
betweenQ(· , ·) and Qn (· ,[ ·]). Finally, we generalise Prop osition 3.39 and Theorem 3.40,
where we showed the connection b etwee n statistical preference and the median,for the
general statistical preferenceand establish a characterization of thisnotion.

Consider random variablesX,X 1, . . . ,Xn . In ourfirst resultwe prove thatgeneral
statistical preference sometimesoffers a different preferred random variable than pair-
wise statistical p refe rence.This is because general statistical prefe re nce uses the joint
distribution of all the variable s,while pairwisestatistical preference only takes into ac-
count their bivariate distributions, and consequently it do es not use all the available
information.
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Prop osition 3.86Let X,X 1, . . . ,Xn ben+1 random variables. Itholds that:

• There are X,X 1, . . . ,Xn random variables su ch that X SP X i for every i =
1, .. . ,n and X j SP [X ,X i :i = j] for some j ∈{ 1, .. . ,n} .

• There are X,X 1, . . . ,Xn random variables su ch that X i SP X for every i =
1, .. . ,n and X SP [X 1, . . . ,Xn ].

Pro of: Letus considerthe firststatement. To see that the implication do es not hold
in general, considern=2 and the indep endent random variablesX,X 1 and X 2 defined
by:

X 3 5
PX 0.5 0.5

X 1 0 5
PX 1 0.5 0.5

X 2 2 6
PX 2 0. 51 0. 49

For these variables it holds that Q(X ,X 1) = 0.625 and Q(X ,X 2) = 0. 51 , and conse-
quently X SP X 1 and X SP X 2. However,

Q2(X , [X1,X 2]) = 0. 31875.
Q2(X 1, [X ,X 2]) = 0. 19125.
Q2(X 2, [X ,X 1]) = 0. 49.

Thus, X 2 SP [X ,X 1].

Consider now the second statement. Consider n =2 and the indep endent dices
X ,X 1 and X 2 defined by:

X= { 1, 2, 4, 6, 17, 18} .
X 1 = { 3, 7, 9, 12 , 14, 16} .
X 2 = { 5, 8, 10 , 11, 13 , 15} .

It holds that X 1 SP X and X 2 SP X , since Q( X ,X1)= 7
18 and Q(X ,X 2)= 13

36 .
However,ifwe computethe relation Q2(·,[ ·]) we obtain thefollowing:

Q2(X , [X1,X 2])= 73
216 .

Q2(X 1, [X ,X 2])= 72
216 .

Q2(X 2, [X ,X 1])= 71
216 .

Consequently,X SP [X 1,X 2].

Next we prove that Qn (X , [X1, . . . ,Xn ]) is always lower than or equal toQ(X ,X i ).

Prop osition 3.87Let usconsider therandom variables X,X 1, . . . ,Xn . It holds that:

Qn (X , [X1, . . . ,Xn ]) ≤ Q(X ,X i ) for every i = 1, .. .,n.

Consequently, if Qn (X , [X1, . . . ,Xn ]) ≥ 1
2 , then X SP [X 1, . . . ,Xn ] and X SP X i for

every i = 1, .. .,n .
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Pro of: Recall that Q(X ,X i ) = P( X >X i )+ 1
2 P (X =X i ). It holdsthat:

{ X >X i }⊇
k = 0, .. .,n − 1

i 1 , . . . ,i k =i

X=X i 1 = .. . =X i k > max
j=i,i 1 ,...,i k

(X i ,X j ) .

Moreover, the previous sets arepairwise disjoint, and consequently:

P (X >X i ) ≥
k = 0, .. .,n − 1

i 1 , . . . ,i k =i

P X=X i 1 = .. . =X i k > max
j=i,i 1 ,...,i k

(X i ,X j ) .

Similarly:

{ X =X i }⊇
k = 0, .. .,n − 1

i 1 , . . . ,i k =i

X=X i =X i 1 = .. . =X i k > max
j=i,i 1 ,...,i k

(X j ) .

Since these setsare pairwise disjoint,

P(X =X i ) ≥
k = 0, .. .,n − 1

i 1 , . . . ,i k =i

P X=X i =X i 1 = .. . =X i k > max
j=i 1 ,...,i k

(X j ) .

Consequently, we obtain that:

Q(X ,X i ) = P( X >X i )+ 1
2 P (X =X i ) ≥

k = 0, .. .,n − 1
i 1 , . . . ,i k =i

P (X =X i 1 = .. . =X i k > max
j=i,i 1 ,...,i k

(X i ,X j ))+

1
2

k = 0, .. .,n − 1
i 1 , . . . ,i k =i

P(X =X i =X i 1 = .. . =X i k > max
j=i 1 ,...,i k

(X j )) ≥

k = 0, .. .,n
i 1 , . . . ,i k ∈{ 1, . . . ,n }

1
k +1

P (X =X i 1 = .. . =X i k > max
j=i 1 ,...,i k

(X j ))=

Qn (X , [X1, . . . ,Xn ]).

We conclude that Q( X ,Xi ) ≥ Qn (X , [X1, . . . ,Xn ]). Conse quently, if

Qn (X , [X1, . . . ,Xn ]) ≥ 1
2

then X SP [X 1, . . . ,Xn ] and X SP X i for every i = 1, ... ,n .

Next we establish the connection between the probabilistic relation Q(· , ·) and
Qn (· ,[ ·]).
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Prop osition 3.88Let X , X 1, .. ., X n be n+1 random variables defined on thesame
probability space.It holdsthat

Qn (X , [X1, . . . ,Xn ]) − Q(X , max(X1, . . . ,Xn ))=
n

k=2

1
k +1

− 1
2

1 ≤ i 1 < .. . <i k ≤ n
i j =i l ∀j =l

P (X =X i 1 = .. . =X i k > max
l=i 1 ,...,i k

(X l )).

Pro of: Consider the expression ofQ(X , max(X1, . . . ,Xn )) :

Q( X , max(X1, . . . ,Xn )) = P ( X > max(X 1, . . . ,Xn ))+

1
2

n

k=1 1 ≤ i 1 < .. . <i k ≤ n
i j =i l ∀j =l

P (X =X i 1 = .. . =X i k > max
l=i 1 ,...,i k

(X l )) .

Using Equation (3.22), Qn (X , [X1, . . . ,Xn ]) can b e express ed by:

Qn (X , [X1, . . . ,Xn ]) = P (X > max(X 1, . . . ,Xn ))+
n

k=1

1
k +1

1 ≤ i 1 < .. . <i k ≤ n
i j =i l ∀j =l

P (X =X i 1 = .. . =X i k > max
l=i 1 ,...,i k

(X l )).

The result follows simply by making the difference b etween both expressions.

From this result we deduce that

Qn (X , [X1, . . . ,Xn ]) ≤ Q(X , max(X1, . . . ,Xn )). (3.24)

Then, if X SP [X 1, . . . ,Xn ] holds with degree Qn (X , [X1, . . . ,Xn ]) ≥ 1
2 , we obtain

X SP max(X 1, . . . ,Xn ).

Moreover,there are situations where the inequality of Equation (3.24) b ecomes an
equality. To see this, let us intro duce the following notation:

X − i = { X j :j =i } .

Corollary 3.89Under the conditions of the previous proposition, if for every k ∈
{ 1, .. . ,n} and for every 1 ≤ i 1 < .. . <i k it holdsthat

P(X =X i 1 = .. . =X i k > max(X j :j =i 1, . . . ,ik )) = 0, (3.25)

then
Qn (X , [X1, . . . ,Xn ]) = Q(X , max(X 1, . . . ,Xn )).
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Furthermore, if forevery k ∈{ 1, .. . ,n} and for every 1 ≤ i 1 < .. . <i k ≤ n it holds that

P (X i 1 = .. . =X i k > max( X ,X j :j =i 1, . . . ,ik )) = 0, (3.26)

then
Qn (X i , [X ,X − i ]) = Q(X i , max( X ,X− i )),

for every i = 1, ...,n .

In particular, the previous result holdswhen the random variables satisfy, P(X =X i )=
P(X =X j ) =0 for every i=j , as is for instance the c as e with discrete random variables
with pairwise disjoint supp orts.

Finally, let us generalise Theorem 3.40 and to provide a characterization of general
statistical preference. For this aim we consider random variab lesX,X 1, . . . ,Xn satisfy-
ing Equations (3.25)and (3.26)forevery k ∈{ 0, .. . ,n} and every1 ≤ 1i < .. . <i k ≤ n.
Although this restriction will be imp osed also in Theorems 3.91, 3.95 and Lemma 3.94, it
is not to o restrictive. In fact, it is satisfied by discrete random variables with pairwise dis-
joint supp orts or absolutely continuous random vectors (X ,X 1, . . . ,Xn ). Consequently,
we can understandit as atechnical condition.

Theorem 3.90Let X , X 1, .. ., X n be n+1 real-valued random variables defined on
the same probability satisfying Equations (3.25)and (3.26). Then, X SP [X 1, . . . ,Xn ]
holds if and only if

FX − max(X 1 ,...,X n ) (0) ≤ FX i − max(X,X − i ) (0) for every i = 1, ...,n.

Pro of: The probabilistic relation Q( X , Y)can byexpressedby:

Q(X , Y ) =1 − FX − Y (0)+
1
2

P (X = Y ).

Thus, using this expression and applying Corollary 3.89 it holds that:

Qn (X , [X1, . . . ,Xn ]) = Q( X , max(X1, . . . ,Xn )) =1 − FX − max(X 1 ,...,X n ) (0)

+
1
2

P (X = max(X 1, . . . ,Xn )) =1 − FX − max(X 1 ,...,X n ) (0).

Similarly, we can compute the value of Qn (X i , [X ,X − i ]):

Qn (X i , [X ,X − i ]) =1 − FX i − max(X,X − i ) (0).

Therefore, X SP [X 1, . . . ,Xn ] ifand only if:

1 − FX − max(X 1 ,...,X n ) (0) ≥ 1 − FX i − max(X,X − i ) (0),
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or equivalently,
FX − max(X 1 ,...,X n ) (0) ≤ FX i − max(X,X − i ) (0)

for every i = 1, .. .,n .

Thus, given randomvariablesX,X 1, . . . ,Xn inthe conditionsofthe previousresult,
to find the preferred one bycomputingthe values of Qn (·,[ ·]) is equivalent to comparing
the values of FX − max(X 1 ,...,X n ) (0) and FX i − max(X,X − i ) (0) for i = 1, .. .,n .

3.3.3 Stochastic dominance Vs general statistical preference

In Section 3.2 we saw that in a numb er of cases first degree stochastic dominance implies
statistical preference for real-valuedrandom variables.Nowwe investigatethe connection
between sto chastic dominance and general statistical preference.Again, weshallconsider
different cases: ontheone hand, indep endent and comonotonic random variables, for
which we shall obtain an equivalent expression for Qn (·,[ ·]). On th e other hand, we
shall conside r random variables coupled by Archimedean copulas.Recall that we omit
countermonotonic random variables since,as we already said, the Łukasiewicz op erator
is not acopula for n ≥ 2. Finally, we also investigate the relationships between the nth

degree sto chastic dominance and general statistical preference.

Indep endent and comonotonic random variables

Let us begin our study with the case of indep endent real-valued random variables. In
this case, by generalizing Theorem 3.44, we deduce that first degree sto chastic dominance
implies general statistical preference.

Theorem 3.91Let usconsider X , X 1, .. ., X n independentreal-valued random vari-
ables satisfying Equations (3.25) and (3.26). Then, if X FSD X i for i = 1, .. .,n ,
implies X SP [X 1, . . . ,Xn ].

Pro of: Since we are under the hyp otheses of Corollary 3.89, we deduce that:

Qn (X , [X1, . . . ,Xn ]) = Q(X , max(X 1, . . . ,Xn )) and
Qn (X i , [X ,X − i ]) = Q(X i , max( X ,X− i )),

for every i = 1, .. .,n . Therefore, X SP [X 1, . . . ,Xn ] if and on ly if:

P(X ≥ max(X 1, . . . ,Xn )) ≥ P(X i ≥ max( X ,X− i )), i = 1, ...,n.

Note that, since X , X 1, .. ., X n are indep endent, we also have that:

• X and max(X 1, . . . ,Xn ) are indep endent.
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• X i and max( X ,X− i ) are indep endent.

Now, we have toremark that, if U1 and U2 are two indep endent random variables
with res p ective cumulative distribution func tionsFU1 and FU2 , Lemma 3.11 assures that
P{ U1 ≥ U2} = E[F U2 (U1)].

Applying this result, we deducethat:

P (X ≥ max(X 1, . . . ,Xn )) = E (F max(X 1 ,...,X n ) (X )) = E(F X 1 (X ) . . .FX n (X )).

Similarly,

P(X i ≥ max( X ,X− i )) = E (Fmax(X,X − i ) (X i ))
= E[F X (X i ) j=i FX j (X i )] ≤ E[

n
j=1 FX j (X i )],

where last inequality holds since FX ≤ FX i . Finally, since X FSD X i , Equation (2.6)
assures that E [h(X )] ≥ E [h(X i )] for any increasing function h. In particular, we may
considerthe increasing function

h(t )=
n

j=1

FX j (t ).

Therefore,

P(X ≥ max(X 1, . . . ,Xn )) = E (FX 1 (X ) . . .FX n (X ))
≥ E[

n
j=1 FX j (X i )] ≥ P(X i ≥ max( X ,X− i )),

or equivalently,
Q(X , max(X1, . . . ,Xn )) ≥ Q(X i , max( X ,X− i )).

We conclude that X SP [X 1, . . . ,Xn ].

Now we shall see that, as with statistical preference for indep endent random vari-
ables, strict first degree sto chastic dominance also implies strict general statistical pref-
erence.For this aim, we need to establish the following lemm a.

Lemma 3.92Consider n+1 independent real-valuedrandom variables X,X 1, . . . ,Xn

satisfying Equations (3.25) and (3.26) suchthat X FSD X i for i = 1, ... ,n . The
fol lowing statements hold:

1. There is t∗ such that FX (t ∗) <F X i (t
∗) and FX j (t

∗) >0 for any j=i .

2. If P(X i = t) =0 for any t satisfying the first point, thenthereexists aninterval
[a, b], and ε>0 such that:

n

j=1

FX j (t) − FX (t) −
j=i

FX j (t) ≥ ε >0,

and P(X j ∈ [a, b]) >0 .
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Pro of: Letusprovethe firststatement. Ex-absurdo, assumethatforany t such that
FX (t ) <F X i (t) , there exist j 1, . . . ,jk such that FX j 1 (t ) =F X j k (t ) = 0 <F X j (t) for any
j =j 1, . . . ,jk , and therefore FX (t) =0 . Sincethecumulativedistribution functions
are right-continuous, there is t∗ such that 0 =F X (t) <F X i (t) for any t <t ∗ and
0 <F X (t ∗) ≤ FX j (t

∗) for any j = 1, .. .,n . Then:

P (X =t
∗
) > 0, P(X j 1 =t

∗
) > 0, .. ., P(X j k =t

∗
) > 0.

Hence:

P (X =X j 1 = .. . =X j k >X j :j =j 1, . . . ,jk ) ≥

P(X =X j 1 = .. . =X j k =t
∗ >X j :j =j 1, . . . ,jk ) > 0,

and this contradicts Equation (3.25). We conclude thatthere exists atleast t∗ such that
FX (t ∗) <F X i (t

∗) and FX j (t
∗) >0 for any j =i .

Let us now check the second statement. Let t∗ be a point such that FX (t ∗)<
FX i (t

∗) and FX j (t
∗) >0 for any j =i . Following the samesteps as inLemma 3.45

we can prove that the existence of an interval [a, b] including t∗ and δ >0 such that
FX i (t) − FX (t) ≥ δ >0 for any t ∈ [a, b] and P(X i ∈ [a, b]) >0 . Furthermore, since
by hyp othesisP(X i = t) =0 for any t ∈ [a, b], FX i should be strictly increasing ina
subinterval [a1,b1] of [a, b].

Now, consider a point t0 in theinterval [a1,b1]. Since allthe FX j , for j = 1, ... ,n ,
and FX are right-continuous:

lim ε→ 0
n
j=1 FX j (t 0 + ε)=

n
j=1 FX j (t 0) >F X (t 0) j=i FX j (t 0)

=lim ε→ 0 FX (t 0 +ε) j=i FX j (t 0 + ε).

Then, there is ε>0 , and can we assumeε ≤ b1 − t0, such that:

FX (t 0 +ε) j=i FX j (t 0 +ε) ≤ FX (t 0) j=i FX j (t 0)+
n
j=1 F X j (t 0 )− FX (t 0 ) j=i FX j (t 0 )

2
<

n
j=1 FX j (t 0).

Taking δ =
n
j=1 FX j (t 0 )− F X (t 0 ) j=i F X j (t 0 )

2 >0 , then:
n

j=1

FX j (t) − FX (t)
j=i

FX j (t) ≥ δ >0

for any t ∈ [t0,t 0 +ε] . Moreover, sinceFX i isstrictlyincreasing in [a, b], it isalso strictly
increasing in [t0,t 0 +ε] , and th ereforeP(X i ∈ [t0,t 0 + ε]) >0 .

Prop osition 3.93Let X,X 1, . . . ,Xn ben+1 independent real-valued random variables
satisfying Equations (3.25)and (3.26). Then, if X FSD X i for any i = 1, ... ,n it holds
that X SP [X 1, . . . ,Xn ].
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Pro of: SinceX FSD X i implies X FSD X i , we know that X SP [X 1, . . . ,Xn ]. Tak-
ing into account the previous result, it sufficesto prove that E[F X (X i ) j=i FX j (X i )]<
E[

n
j=1 FX j (X i )] for i = 1, .. .,n , since this implies that:

Qn (X , [X1, . . . ,Xn ]) ≥ Qn (X i , [X ,X − i ]) for i = 1, .. .,n.

Using the previous lemma, wecan assumethereis t0 such that FX (t 0) <F X i (t 0) and
FX j (t 0) >0 for any j =i .

Consider two cases:

• Assume that P(X i =t 0) >0 . Then:

E



FX (X i )

j=i

FX j (X i )


 = FX (X i )
j=i

FX j dFX i

=
R\{ t 0 }

FX (X i )
j=i

FX j dFX i +
{ t 0 }

FX (X i )
j=i

FX j dFX i

≤
R\{ t 0 }

n

j=1

FX j dFX i +P (X i =t 0)FX (X i )(t 0)
j=i

FX j (t 0)

<
R\{ t 0 }

n

j=1

FX j dFX i +P (X i =t 0)
n

j=1

FX j (t 0)

=
R\{ t 0 }

n

j=1

FX j dFX i +
{ t 0 }

n

j=1

FX j dFX i

=E




n

j=1

FX j (X i )


.

• Assume nowthat thereisnot t0 satisfyingthe conditionsand suchthat P(X i =
t0) =0 . Bythe previouslemma,there isaninterval [a, b]and ε>0 such that

n

j=1

FX j (t) − FX (t)
j=i

FX j (t) ≥ ε >0
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for any t ∈ [a, b]and P(X i ∈ [a, b]) >0 . Then:

E


FX (X i )
j=i

FX j (X i )


= FX (X i )
j=i

FX j dFX i

=
R\ [ a,b]

FX (X i )
j=i

FX j dFX i +
[a,b]

FX (X i )
j=i

FX j dFX i

≤
R\ [ a,b]

n

j=1

FX j dFX i +
[a,b]





n

j=1

FX j − ε


 dFX i

=
n

j=1

FX j dFX i + εP (X i ∈ [a, b] <E




n

j=1

FX j (X i )


.

We have seen thatX FSD X i for any i = 1, .. .,n , implies that X SP [X 1, . . . ,Xn ]
when the rand om variables are indep endent.Sincegeneralstatisticalpreference isbased
on the joint distribution, and as a consequence takes into account the p ossible sto chastic
dep endencies between the variables, we are going to study a numb er of cases where the
variables are not indep endent. In the remainder of this subsection we shall fo cus on
comonotonic random variables.

In Equation (3.6) of Prop osition 3.16 we saw that the probabilistic relationQ( X , Y)
for two continu ous and comonotonic random variables is given by:

Q(X , Y )=
x:F X (x )<F Y (x)

f X (x )dx+
1
2 x:F X (x )=F Y (x)

f X (x )dx,

where f X denotesthe densityfunction of X .

In a similar manner, we canextendthis expressionto thefunctional Qn (· ,[ ·]). In
order to do this, we must first intro duce the notion of Dirac-delta functional. Let us
consider the function Ha : R → [0 , 1]given by:

H a(x )=
0 if x< a.

1 if x ≥ a.

The Dirac-delta functional δa (see [66]) asso ciated toH a is anapplication that satisfies:

• δa(t ) =0 for every t=a and

•
R

δa (t )dt =1 .

Insucha case, it holds that:

H a(x )=
x

−∞
δa(t)d(t) for every x ∈ R. (3.27)
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This functional is not a real-valued function because it do es not take a real value ina. It
playstheroleofthe densityfunctionforaprobability distributionthattakes thevalue
a with probability 1, and we shall use it in the pro of of the following lemma.

Lemma 3.94Let X,X 1, . . . ,Xn beabsolutely continuousand comonotonicreal-valued
randomvariables satisfying Equation (3.25). Then

Qn (X , [X1, . . . ,Xn ])=
x:F X ( x) <F X 1 (x ),...,F X n (x)

f X (x )d(x ).

Pro of: ByCorollary3.89,it holdsthat:

Qn (X , [X1, . . . ,Xn ]) = P ( X > max(X 1, . . . ,Xn )).

Since the random variable s are comonotonic, their joint distribution function F is given
by:

F (x,x 1, . . . ,xn ) = m in(F X (x ),FX 1 (x 1), . . . ,FX n (x n ))

for everyx,x 1, . . . ,xn ∈ R. Let us compute the d istribution function ofmax(X 1, . . . ,Xn )
and X , denoted by F ∗:

F ∗(x, y) = P (X ≤ x, max(X 1, . . . ,Xn ) ≤ y)
= P(X ≤ x,X 1, ≤ y, . . . ,Xn ≤ y) = F (x, y, . . . , y).

Thus, this distribution function can be expressed by:

F ∗(x, y ) = F (x, y , . . . , y ) = m in(FX (x ),FX 1 (y ), . . . ,FX n (y ))

=
FX (x) if FX (x) ≤ min(F X 1 (y ), . . . ,FX n (y )).
min(F X 1 (y ), . . . ,FX n (y )) if FX (x ) > min(F X 1 (y ), . . . ,FX n (y )).

Equivalently,

F ∗
(x, y)=

FX (x) if y ≥ h− 1] (FX (x )),
min(F X 1 (y ), . . . ,FX n (y )) if y<h − 1] (FX (x )),

where h− 1] denotesthe pseudo-inverse ofthefunction h given by:

h(y ) = min(F X 1 (y ), . . . ,FX n (y )) for every y ∈ R.

Note thatthepseudo-inverse is well-defined since h is anincreasing function. Now,
∂F ∗

∂x (x, y) =0 for every (x, y) satisfying y<h − 1](FX (x )). Moreover, ifwerestrict tothe
points (x, y) such that y ≥ h− 1](FX (x )), we obtain that:

∂F ∗

∂x (x, y) =f X (x ).
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Thus, if we assum e that:

∂F ∗

∂x (x, y)=
0 if y<h − 1](FX (x )),
f X (x) if y ≥ h− 1](FX (x )),

then:
∂2F ∗

∂ x∂y (x, y) =f X (x )δ y − h− 1](FX (x )) .

As this distribution plays the role of the density function of max(X 1, . . . ,Xn ) and X ,
using Equation (3.27) we can compute the value of Qn (X , [X1, . . . ,Xn ]):

Qn (X , [X1, . . . ,Xn ]) = P ( X > max(X 1, . . . ,Xn ))

=
R R

f X (x )δ y − h− 1] (FX (x )) I x>y (y )dy dx

=
R R

f X (x )δ y − h− 1] (FX (x )) limn I { x − y≥ 1/n } ( y )d y dx

=
R

limn

x − 1/n

−∞
f X (x )δ y − h− 1](FX (x )) dy dx

=
R

limn f X (x )I{ x − 1/n ≥ h − 1] (F X (x )) } (x )dy dx

=
R

f X (x )I{ x>h − 1] (F X (x )) } (x )dy dx

=
{ F X (x )<F X 1 (x ),...,F X n (x) }

f X (x )dx,

where the last equality holds applyingtheTheorem of Monotone Convergence.

Theorem 3.95Let X,X 1, . . . ,Xn be n+1absolutely continuousand comonotonic real-
valuedrandomvariablessatisfyingEquations (3.25) and (3.26). If X FSD X i for i=
1, .. . ,n, then X SP [X 1, . . . ,Xn ]. Moreover, inthat case Qn (X , [X1, . . . ,Xn ]) =1 .

Pro of: Since X FSD X i for every i = 1, .. .,n , then FX (x) ≤ FX i (x) for every x ∈ R
and i = 1, .. .,n . Applying thepreviouslemma weobtainthat:

Qn (X i , [X ,X − i ])=
{ FX i (x )<,F X (x ) ,FX j ( x):j =i }

f X i (x )dx = 0.

Thus, Qn (X , [X1, . . . ,Xn ]) >Q n (X i , [X ,X − i ]) =0 for every i = 1, ... ,n . Since

Qn (X , [X1, . . . ,Xn ])+
n

i=1

Qn (X i , [X ,X − i ]) = 1,



118 Chapte r 3. Comparison ofalternativesunder uncertainty

it holds that:
Qn (X , [X1, . . . ,Xn ]) = 1.

Then, X SP [X 1, . . . ,Xn ].

Letus now investigatethe case inwhich therandom variables X , X 1,. . .,X n are
comonotonic and discrete with finite supp orts. When n=1 , DeMeyer etal. proved
(see Prop osition 3.20) that the supp orts of the variables can be expressed by SX =
{ x1, . . . ,xm } and SX 1 = { x (1)

1 ,. .. ,x (1)
m } such that

P (X =x i ,X 1 =x
(1)
i )= P (X =x i ) = P(X 1 =x

(1)
i ) for any i = 1, .. .,m.

We are going to prove the a similar expression can be found whenn ≥ 2.

Lemma 3.96Let X,X 1, . . . ,Xn be n+1 discrete and countermonotonic real-valued
random variables with finite supports. Then, their su pports can be expressed by

SX = { x1, . . . ,xm } , SX 1 = { x (1)
1 ,. .. ,x (1)

m } , .. ., SX n = { x (n)
1 ,. .. ,x (n)

m } , (3.28)

and

P (X =x i ,X 1 =x
(1)
i ,. .. ,X n =x

( n)
i )=P (X =x i ) = .. . = P (X n =x

( n)
i ), (3.29)

for any i = 1, .. . ,n .

Pro of: We applyinduction on n. First of all, when n =1 , this lemma becomes
Prop osition 3.20. Assum e then that the result holds for n − 1. Consider thevariables
X ,X 1, . . . ,Xn . Apply the induction hyp othesis on X,X 1, . . . ,Xn − 1. Then, the supp orts
of these variables can be expressed as in Equation (3.28), and they also satisfy Equa-
tion (3.29). Now, apply Prop osition 3.20 to X (with the new supp ort) and X n . Then,
if in this pro cess we duplicate an elementx i , we also duplicate the elementsx (j)

i for any
j = 1, .. .,n − 1, and weadapt the probabilities in order to obtain the equalities:

P(X =x i ) = P(X n =x
(1)
i )= .. . = P (X n =x

(n)
i ).

Finally, let us provethat

P(X =x i ,X 1 =x
(1)
i ,. .. ,X n =x

( n)
i )=P (X =x i ).

For this aim, note that

FX (x j ) = P(X =x 1) +. .. +P (X =x j ) = P(X i =x
(i)
1 )+ .. .+ P (X i =x

( i)
j )=F X i (x

(i)
j )

for any j = 1, .. . ,m and i = 1, .. .,n . Then:

FX,X 1 ,...,X n (x i 0 ,x (1)
i 1

,. .. ,x (n)
i n )= min(F X (x i 0 ),F X 1 (x (1)

i 1 ), .. .,F X n (x ( n)
i n ))

=min(F X (x i 0 ),F X (x (1)
i 1 ), .. .,F X (x (n)

i n ))
=F X (min k=0,...,n (x i k )).
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In particular, when i 0 =i 1 = . .. ,i n , the previous expression becomes:

FX,X 1 ,...,X n (x i ,x
(1)
i ,. .. ,x (n)

i )=F X (x i ).

Now, consider(x i 0 ,x (1)
i 1

,. .. ,x (n)
i n ), and assume that there arek,l such that i k =i l . Since

in the pro of of Prop osition 3.20 (see [54, Prop osition 2]) it is showed that P(X k =
x (k)

i k
,X l =x

(l)
i l )=0 , we deduce that:

P(X =x i 0 ,X 1 =x
(1)
i 1

,. .. ,X n =x
( n)
i n ) ≤ P(X k =x

(k)
i k

,X l =x
( l)
i l )= 0.

Consequently:

P (X =x i ,X i =x
(1)
i , .. . ,X i =x

(n)
i )= F (x i ,x

(1)
i , .. . ,x (n)

i ) − F(x i − 1,x (1)
i − 1, . . . ,x(n)

i − 1).
=F X (x i ) − FX (x i − 1) = P(X =x i ).

Nextresult givesanexpression oftheprobabilisticrelation, generalizingEquation (3.8).

Prop osition 3.97Consider n+1 discrete and comonotonic real-valued random variables
X , X 1, .. ., X n withfinite supports. Applyingthepreviouslemma, wecanassumethat
the supports are expressed as in Equat ion (3.28) satisfying Equation (3.29).Then:

Qn (X , [X1, . . . ,Xn ])=
n

i=1
P (X =x i )δi ,

where

δi =






0, if x i >x (1)
i ,. .. ,x (n)

i .
1
2 , if x i =x

(j)
i >x ( k)

i , for any k= j.
1
3 , if x i =x

(j 1 )
i =x

(j 2 )
i >x (k)

i , for any k=j 1,j 2.

. ..
1
n , if x i =x

(1)
i = .. . =x

( n)
i .

Pro of: Taking intoaccount Equation(3.29),itholds that:

P(X >X 1, . . . ,Xn )=
m

i 0 =1

. ..
m

i n =1
P( X =x i 0 ,X 1 =x

(1)
i 1

, .. . ,X n =x
(n)
i n )I x i 0 >x (1)

i 1
,...,x (n)

i n

=
m

i=1
P (X =x i ,X 1 =x

(1)
i ,. .. ,X n =x

(n)
i )I x i >x (1)

i ,...,x (n)
i

.
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Similarly:

P (X =X l 1 = .. . =X l k >X j :j =l 1, . . . ,lk )

=
m

i 0 =1

. ..
m

i n =1
P (X =x i 0 ,X 1 =x

(1)
i 1

,. .. ,X n =x
(n)
i n )I A

=
m

i=1
P (X =x i ,X 1 =x

(1)
i , .. . ,X n =x

( n)
i )I B ,

where A and B aredefined by:

A= { x i 0 =x
(l 1 )
i l 1

= .. . =x
(l k )
i l k

>x (j)
i j :j =l 1, . . . ,lk } and

B= { x i =x
(l 1 )
i = .. . =x

(l k )
i >x ( j)

i :j =l 1, . . . ,lk } .

Then:
Qn (X , [X1, . . . ,Xn ])=

k = 0, .. .,n
1 ≤ i 1 < .. . <i k ≤ n

1
k +1

P (X =X i 1 = .. . =X i k > max
j=i 1 ,...,i k

(X j ))

=
m

i=1

n

i=1
P (X =x i )δi .

Remark 3.98InthisresultwehavenotimposedEquations (3.25)and (3.26), andthus,
it is applicable for all discrete comonotonic random variables with finite supports.

Using this lemma, wecan provethatwhentherandomvariablesarecomonotonicand
discrete with finite supp orts, first degree sto chastic dominance also implies general sta-
tistical preference.

Theorem 3.99Let X,X 1, . . . ,Xn be n+1 discrete comonotonic real-valued random
variables with finite supports. Then X FSD X i for i = 1, .. .,n implies X SP

[X 1, . . . ,Xn ].

Pro of: Using the previous lemma, the supports ofX,X 1,. . ., X n can b e expresse d as in
Equation(3.28) satisfying Equation (3.29). If X FSD X i , we have seen in the pro of of
Theorem 3.51 that { i :x i <x (j)

i } = ∅ for j = 1, .. .,n . Using the previous prop osition:
Qn (X i , [X ,X − i ])

=
k = 0, .. .,n − 1

1 ≤ i 1 < .. . <i k ≤ n

1
k +1

P (X i =X =X i 1 = .. . =X i k > max
j=i,i 1 ,...,i k − 1

(X j ))

≤
k = 0, .. .,n

1 ≤ i 1 < .. . <i k ≤ n

1
k +1

P (X =X i 1 = .. . =X i k > max
j=i 1 ,...,i k

(X j )) = Q( X , Y ),
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and this forany i = 1, .. .,n . Then, X SP [X 1, . . . ,Xn ].

Finally, let us prove that when X is strictly preferredto any X i with resp ect to
first degree sto chastic dominance, it is also preferred to[X 1, . . . ,Xn ] with resp ect to the
general statistical preference.

Prop osition 3.100Let X,X 1, . . . ,Xn be n+1 discrete comonotonic real-valued ran-
domvariables withfinite supports. Then X FSD X i for i = 1, .. .,n implies X SP

[X 1, . . . ,Xn ].

Pro of: Let usprovethat Qn (X , [X1, . . . ,Xn ]) >Q n (X i , [X ,X − i]) for i = 1, .. .,n .
From the pro of of the previous result, it suffices to prove that there arek and l such that

xk =x
(j 1 )
k = .. . =x

(j l )
k >x (i)

k ,x (j)
k , such that j = i,j 1, . . . ,jl .

SinceX FSD X i , there is x ( i)
k such that FX (x (i)

k )<F X i (x
(i)
k ). Furthermore:

FX i (x
(i)
k )= P (X i =x

( i)
1 )+ . . .+ P (X i =x

( i)
k ) = P( X =x 1) +. . .+ P (X =x k ) =F X (x k ).

Then, xk >x (i)
k . Then, thereis l such that

xk =x
(j 1 )
k = .. . =x

(j l )
k >x (i)

k ,x (j)
k , such that j = i,j 1, . . . ,jl ,

and thi s proves that Qn (X , [X1, . . . ,Xn ]) >Q n (X i , [X ,X − i]) , for i = 1, ... ,n . Hence
X SP [X 1, . . . ,Xn ].

Random variables coup led by Archimedean copulas

Consider n+1 absolutely continuous random variables X,X 1, . . . ,Xn coupled byan
Archimedean copula C with generator ϕ . Inthat case, Equation(2.9)implies thatthe
joint dis trib ution function, F , is given by:

F(x,x 1, . . . ,xn ) =ϕ
− 1] ϕ(F X (x )) + ϕ (FX 1 (x 1)) + . . . + ϕ(F X n (x n )).

Letus try to differentiate thisfunction.

∂F
∂x (x,x 1, . . . ,xn )=

ϕ− 1] ϕ(F X (x )) + ϕ(F X 1 (x 1) + .. . + ϕ(F X n (x n ))) ϕ(F X (x ))f X (x ).

Note that ϕ− 1] (t) equals ϕ− 1 (t) whenevert ∈ [0 , ϕ(0)),and ϕ− 1] (t) =0 other-
wise. If we continue differentiating with resp ect to x1, . . . ,xn , we obtainthefollowing
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expression:
∂ 2 F

∂ x∂x 1 (x,x 1, . . . ,xn ) =ϕ
− 1] ϕ(F X (x )) + ϕ(F X 1 (x 1) + . . . + ϕ(F X n (x n ))

· ϕ(F X (x ))ϕ (F X 1 (x1))f X (x )fX 1 (x 1).
. ..

∂ n+1 F
∂ x∂x 1 ...∂x n (x,x 1, . . . ,xn ) =ϕ

− 1] (n +1)
ϕ(F X (x )) + ϕ(F X 1 (x1) + . ..

+ϕ(F X n (x n )) ϕ(F X (x ))
n
i=1 ϕ (F X i (x i ))f X i (x i )f X (x ).

Thus, fun ction f(x,x 1, . . . ,xn ) = ∂ n+1 F
∂ x∂x 1 ...∂x n (x,x 1, . . . ,xn ) is the density function of

X ,X 1, . . . ,Xn wheneverf =0 , sinceitis the n+1 derivative of F , and the n+1 integral
overR

n+1 equals 1. In ad dition, f becomes the density function of Equation (3.10).Note
that f =0 when ϕ− 1] (n +1)

(t ) >0 for some t ∈ R. Moreover, if f is thejoint density,
P(X =X i ) = P(X i =X j ) =0 for every i,j (i =j ). Consequently, for su ch variables it
holds that:

Qn (X , [X1, . . . ,Xn ]) =P (X > max(X 1, . . . ,Xn ))
= P(X ≥ max(X 1, . . . ,Xn )) = Q( X , max(X1, . . . ,Xn )).

Using the joint density function f , we can prove the following result.

Theorem 3.101Let X , X 1, .. ., X n be n+1 absolutely continuous random variables

coupled by anArchimedean copula C generated by ϕ, that satisfies ϕ− 1] (n +1)
=0 .

Then, if X FSD X i for every i = 1, .. . ,n , then X SP [X 1, . . . ,Xn ].

Pro of: We knowthat X SP [X 1, . . . ,Xn ] if and onlyif

P (X ≥ max(X 1, . . . ,Xn )) ≥ P(X i ≥ max( X ,X− i )),

for every i = 1, ...,n . Let uscompute P(X ≥ max(X 1, . . . ,Xn )) .

P(X ≥ max(X 1, . . . ,Xn ))=
R

x

−∞
...

x

−∞
f (x,x 1, . . . ,xn )dx n .. . dx1dx

=
R

ϕ− 1] ϕ(F X (x ))+
n

k=1
ϕ(F X k (x )) ϕ(F X (x ))f X (x )dx.

If we consider

u=ϕ
− 1] ϕ(F X (x )) + ϕ (FX 1 (x )) + . . . + ϕ(FX n (x ))) ,

dv =ϕ (F X ( x ))fX (x )dx,

and we make a change of variable, we obtainthefollowing expression:

P (X ≥ max(X 1, . . . ,Xn ))=

1 −
R

ϕ− 1] ϕ(F X (x )) + ϕ(F X 1 (x)) + . . . + ϕ(F X n (x ))) ϕ(F X (x ))

· ϕ(F X (x ))f X (x )+
n

i=1
ϕ (F X i (x ))f X i (x) dx.



3.3. Comparison of n variables by means of the statistical prefere nce 123

Now, since X FSD X i , then FX ≤ FX i , and consequently, asϕ(F X (x )) ≥ ϕ(F X i (x )) (ϕ
is decreasing),ϕ isnegative and ϕ− 1 ispositive, itholdsthat:

P(X ≥ max(X 1, . . . ,Xn )) ≥

1 −
R

ϕ− 1] ϕ(F X (x )) + ϕ (FX 1 (x )) + . . . + ϕ(FX n (x ))) ϕ(F X i (x ))

· ϕ(F X (x ))f X (x )+
n

i=1
ϕ (F X i (x ))f X i (x) dx.

Following the same lines we can also find the expression ofP(X i ≥ max( X ,X− i )) :

P(X i ≥ max( X ,X− i ))=

1 −
R

ϕ− 1] ϕ(F X (x )) + ϕ (FX 1 (x )) + . . . + ϕ(FX n (x ))) ϕ(F X i (x ))

· ϕ(F X (x ))f X (x )+
n

i=1
ϕ (F X i (x ))f X i (x) dx.

We conclude that:

P(X ≥ max(X 1, . . . ,Xn )) ≥ P(X i ≥ max( X ,X− i )),

and consequentlyX SP [X 1, . . . ,Xn ].

Finally, let us s ee that when the Archime dean copula is strict, strict statistical first
degree sto chastic dominance also implies strict statistical preference.

Prop osition 3.102Let X , X 1, .. ., X n ben+1 absolutelycontinuous random variables

coupled by an st rict Archimedean copulaC generated byϕ, that satisfies ϕ− 1] (n +1)
=0 .

Then, if X FSD X i for every i = 1, .. . ,n , then X SP [X 1, . . . ,Xn ].

Pro of: ByLemma3.48, since X FSD X i , there is an interval [a, b]such that FX (t )<
FX i (t) for any t ∈ [a, b]and P(X i ∈ [a, b]) >0 . Furthermore, we canassumethat FX i is
strictly increasing in such interval (otherwise it suffices to consider asubinterval of [a, b]
where this function is strictly increasing).

We have seen in the previous pro of that

P(X ≥ max(X 1, . . . ,Xn ))=

1 −
R

ϕ− 1] ϕ(F X (x )) + ϕ (FX 1 (x )) + . . . + ϕ(FX n (x ))) ϕ(F X (x ))

· ϕ(F X (x ))f X (x )+
n

i=1
ϕ (F X i (x ))f X i (x) dx
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and
P(X i ≥ max( X ,X− i ))=

1 −
R

ϕ− 1] ϕ(F X (x )) + ϕ (FX 1 (x )) + . . . + ϕ(FX n (x ))) ϕ(F X i (x ))

· ϕ(F X (x ))f X (x)+
n

i=1
ϕ (F X i (x ))f X i (x) dx.

Then, inorder to prove that Qn (X , [X1, . . . ,Xn ]) >Q n (X i , [X ,X − i ]), it suffic es to prove
that:

1 −
R

ϕ− 1] ϕ(F X (x)) + ϕ(F X 1 (x )) + . . . + ϕ(FX n (x ))) ϕ(F X (x ))

· ϕ(F X (x ))f X (x )+
n

i=1
ϕ (F X i (x ))f X i (x) dx

>1 −
R

ϕ− 1] ϕ(F X (x )) + ϕ(F X 1 (x )) + . . . + ϕ(FX n (x ))) ϕ(F X i (x ))

· ϕ(F X (x ))f X (x)+
n

i=1
ϕ (F X i (x ))f X i (x) dx,

or equivalently:

R
ϕ− 1] ϕ(F X (x)) + ϕ(F X 1 (x )) + . . . + ϕ(FX n (x ))) ϕ(F X (x ))

· ϕ(F X (x ))f X (x)+
n

i=1
ϕ (F X i (x ))f X i (x) dx

<
R

ϕ− 1] ϕ(F X (x )) + ϕ(F X 1 (x )) + . . . + ϕ(FX n (x ))) ϕ(F X i (x ))

· ϕ(F X (x ))f X (x )+
n

i=1
ϕ (F X i (x ))f X i (x) dx.

By the pro of of the previous theorem, we know that:

R
ϕ− 1] ϕ(F X (x ))+

n

k=1
ϕ(F X k (x )) ϕ(F X (x )) ϕ(F X (x ))f X (x )dx ≤

R
ϕ− 1] ϕ(F X (x ))+

n

k=1
ϕ(F X k (x )) ϕ(F X (x )) ϕ(F X i (x ))f X i (x )dx

and

R
ϕ− 1] ϕ(F X (x ))+

n

k=1
ϕ(F X k (x )) ϕ(F X j (x )) ϕ (FX (x ))f X j (x )dx ≤

R
ϕ− 1] ϕ(F X (x ))+

n

k=1
ϕ(F X k (x )) ϕ(F X j (x)) ϕ(F X i (x ))f X j (x )dx.
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Now, let us see th at for j =i , the previous inequality is strict. For any t ∈ [a, b]:

FX i (t ) <F X (t)
ϕ decr.=⇒ ϕ(F X i (t)) > ϕ(F X (t ))

ϕ <0
=⇒ ϕ(F X i (t ))ϕ(F X i (t)) < ϕ (F X (t ))ϕ(F X (t))
(ϕ

− 1 ) <0
=⇒ ϕ− 1] ϕ(F X (x ))+

n

k=1
ϕ(F X k (x )) ϕ(F X i (t ))ϕ(F X i (t ))>

ϕ− 1] ϕ(F X (x ))+
n

k=1
ϕ(F X k (x )) ϕ(F X (t ))ϕ(F X (t )).

Then, there is ε>0 and [a1,b1] ⊆ [a, b]such that

ϕ− 1] ϕ(F X (x ))+
n

k=1
ϕ(F X k (x )) ϕ(F X i ( t))ϕ(F X i (t ))−

ϕ− 1] ϕ(F X (x ))+
n

k=1
ϕ(F X k (x )) ϕ(F X (t ))ϕ(F X (t )) ≥ ε >0

for any t ∈ [a1,b1]. The n:

R
ϕ− 1] ϕ(F X (x ))+

n

k=1
ϕ(F X k (x )) ϕ(F X i (x)) ϕ(F X i (x ))f X i (x )dx=

R\ [a1 ,b1 ]
ϕ− 1] ϕ(F X (x))+

n

k=1
ϕ(F X k (x)) ϕ(F X i (x )) ϕ(F X i (x ))f X i (x )dx

+
[a1 ,b1 ]

ϕ− 1] ϕ(F X (x ))+
n

k=1
ϕ(F X k (x )) ϕ(F X i (x )) ϕ(F X i (x ))f X i (x )dx

≥
R

ϕ− 1] ϕ(F X (x ))+
n

k=1
ϕ(F X k (x )) ϕ(F X i (x )) ϕ(F X (x ))f X i (x )dx+

[a1 ,b1 ]
εf X i (x )dx=

R
ϕ− 1] ϕ(F X (x ))+

n

k=1
ϕ(F X k (x )) ϕ(F X i (x )) ϕ(F X (x ))f X i (x)dx+

εP (X i ∈ [a1,b1])>

R
ϕ− 1] ϕ(F X (x ))+

n

k=1
ϕ(F X k (x )) ϕ(F X i (x )) ϕ(F X (x ))f X i (x )dx.

Therefore, Qn (X , [X1, . . . ,Xn ]) >Q n (X i , [X ,X − i ]), an d then we can conclude that
X SP [X 1, . . . ,Xn ].

We have see n severalsituations where X FSD X i ∀i = 1, .. .,n implies X SP

[X 1, . . . ,Xn ]. However, this implication do es not hold in general, as we cansee in the
following example.
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Example 3.103We have seen in Example3.43 two random variables X and Y such
that X FSD Y and Y SP X . These random variableswere defined by:

X/Y 0 1 2
0 0.2 0.15 0
1 0 0.2 0.15
2 0.2 0 0.1

It holds that Q(X , Y ) = 0.45 . Let us modify this example to show that if there isa
random variable X that stochastical ly dominates any other random variables, it may not
be the preferred with respect to the general statistical preference. Consider X 1, . . . ,Xn

equal ly distributed such that they take a fixed value c<0 with probability 1. Since X
and Y greater than X 1, . . . ,Xn with probabilityone, X FSD X i for i = 1, .. .,n , and it
holds that:

Qn+1 (X , [Y ,X1, . . . ,Xn ]) = P (X > max( Y ,X 1, . . . ,Xn ))
+ 1

2 P ( X = Y > max(X 1, . . . ,Xn ))
= P( X > Y )+ 1

2 P (X = Y ) = Q(X , Y ) = 0.45.

Similarly, Qn+1 (Y , [X,X 1, . . . ,Xn ]) = Q(Y , X ) = 0.55 . Therefore, X FSD Y, X FSD
X i for i = 1, .. . ,n but X SP [Y ,X1, . . . ,Xn ].

To conclude this section we are going to se e that if we relax the conditions of Theo-
rems 3.91, 3.95, 3.99 or 3.101, then statistical preference do es not hold in general. In
particular, we replace the hyp othesisX FSD X i by X SP X i for some i , and we prove
that X isnot necessarilythepreferred variable.

Example 3.104Considertheabsolutely continuousrandomvariables X , X 1, .. ., X n ,
whose density functions are givenby:

f X (t) =I (2,3)
f X 1 (t ) = 0 .6· I (1 ,2)(t) + 0.4 · I (3, 4) ( t).
f X 2 (t ) =I (2, 3)
f X i (t ) =I (0 ,1) for any i = 3, .. .,n.

It holds that X SP X i for every i = 1, .. .,n and X FSD X i for every i = 2, .. .,n , but
X FSD X 1. Moreover,

Qn (X 1, [X ,X − 1]) = P (X 1 ∈ (3, 4)) = 0.4.
Qn (X , [X1, . . . ,Xn ]) = Q(X 2, [X ,X − 2]).
Qn (X i , [X ,X − i ]) =0 for any i = 3, .. .,n.

Since thesum of these values is 1:

Qn (X , [X1, . . . ,Xn ]) = Q(X 2, [X ,X − 2])=
1
2

(1 − Qn (X 1, [X ,X − i ])) = 0.3,

and thereforeX 1 is not thepreferred randomvariable with respect to the general statistical
preference.
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Thus, Theorems 3.91, 3.95, 3.99 and 3.101 cannot be extended to any general situations.

3.3.4 Generalstatisticalpreference Vsnth degree sto chastic dom-
inance

In the previous section we established conditions for first degree sto chastic dominance to
imply general statistical preferenc e. Next we shall investigate the possible relationships
between the mth degree sto chastic dominance and the general statistical preference.

Consider random variablesX,X 1, . . . ,Xn andassume that X ≥ mSD X i (m ≥ 2)for
every i = 1, .. .,n . We shall study ifunder those conditions X SP [X 1, . . . ,Xn ]. To see
thatthis isnot necessarily thecase, consider theabsolutely continuous randomvariables
whose density functions are gi ven by:

f X (t) =I (5,6) (t ).
f X 1 (t ) = 0 .4· I (0 ,1)(t) + 0.6 · I (6 ,7) (t).
f X i (t ) =I (− 1, 0)(t) for every i = 2, ...,n.

Then X ≥ mSD X i for every i = 1, .. .,n . In fact, X FSD X i for every i = 2, .. .,n .
However,X isnot statisticallypreferredto [X 1, . . . ,Xn ]:

Qn (X , [X1, . . . ,Xn ]) = P (X > max(X 1, . . . ,Xn )) = P (X 1 ∈ (0 , 1)) = 0 . 4.
Qn (X 1, [X ,X j : j = 1]) = P(X 1 > max( X ,X j :j = 1)) =P(X 1 ∈ (6, 7)) = 0.6.
Qn (X i , [X ,X j : j = i]) =0 for any i = 2, .. .,n.

Note that due tothe definition of the density functions, the valuesof the relation Qn are
indep endent of the p ossible dep endence among the random variables.Thus, weconclude
that, for m ≥ 2:

X ≥ mSD X i for every i = 1, .. .,n do es not imply X SP [X 1, . . . ,Xn ].

Assume on the other hand that X SP [X 1, . . . ,Xn ] and let us investigate whether if
X ≥ mSD X i for some m ≥ 1. To see thatthis is not thecase, cons ider the absolutely
continuou s random variables with density functions

f X (t ) = 0 .4· I (0 ,1) (t ) + 0 .6· I (2 ,3)(t ).
f X i (t) =I (1,2) (t) for every i = 1, ...,n.

X SP [X 1, . . . ,Xn ], because:

Qn (X , [X1, . . . ,Xn ]) = P (X > max(X 1, . . . ,Xn )) = P (X ∈ (2, 3)) = 0.6.

However,X do es not sto chastically dominateX i by the mth degreefor any m ≥ 1, since
FX (t ) >F X i (t) for every t ∈ (0 , 1), and consequently Gm

X (t ) >G
m
X i (t) for every m ≥ 2

and t ∈ (0, 1).
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We conclude that X SP [X 1, . . . ,Xn ] do es not imply that exists m ≥ 1 such that
X ≥ mSD X i for every i = 1, .. .,n . This generalises Remark3.63, where we sawthat
there is not a general relationship between the nth degree sto chastic dominance and the
pairwise statistical preference.

Remark 3.105Let us note that if X , X 1, .. ., X n are n+1 random variablessuch
that X SP max(X 1, . . . ,Xn ) (respectively,X ≥ mSD max(X 1, . . . ,Xn )), then X SP X i

(respectively,X ≥ mSD X i ) for every i = 1, .. . ,n .

To conclude this section, we presentthis result:

Prop osition 3.106Given n+1 real-valuedrandom variables X,X 1, . . . ,Xn , X SP

max(X 1, . . . ,Xn ) implies that X SP [X 1, . . . ,Xn ].

Pro of: SinceX SP max(X 1, . . . ,Xn ), it holdsthat

Q(X , max(X1, . . . ,Xn ) ≥ Q(max(X 1, . . . ,Xn ), X ).

Inparticular, by Lemma 2.20, we know that

P (X > max(X 1, . . . ,Xn )) ≥ P (max(X1, . . . ,Xn ) > X),

since:
P(X > max(X 1, . . . ,Xn )) ≥ P(max(X 1, . . . ,Xn ) > X)

=
k= 1, .. .,n

1 ≤ i 1 < .. . <i k ≤ n
i =i 1 , . . . ,i k

P(X i =X i 1 = .. . =X i k >X, max
j=i 1 ,...,i k

(X j ))

≥
k= 1, .. .,n

1 ≤ i 1 < .. . <i k ≤ n
i =i 1 , . . . ,i k

1
k +1

P (X i =X i 1 = .. . =X i k >X, max
j=i 1 ,...,i k

(X j )).

Then:
Qn (X , [X1, . . . ,Xn ])=

k = 0, .. .,n
1 ≤ i 1 < .. . <i k ≤ n

1
k +1

P (X =X i 1 = .. . =X i k > max
j=i 1 ,...,i k

(X j )) ≥

k = 1, .. .,n
1 ≤ i 1 < .. . <i k ≤ n

i =i 1 , . . . ,i k

1
k +1

P (X i =X i 1 = .. . =X i k >X, max
j=i 1 ,...,i k

(X j ))+

k = 1, .. .,n
1 ≤ i 1 < .. . <i k ≤ n

i =i 1 , . . . ,i k

1
k +1

P (X i =X i 1 = .. . =X i k >X, max
j=i 1 ,...,i k

(X j ))

=Q n (X i , [X ,X − i ]).
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Figure3.5 summarises some of the results of this section. Missin g arrows mean
that an implication do es not hold in general, arrows with reference s m eans that such
implication holdsin the conditions of such references, andarrowwithout reference means
that such implication always holds.

X SP max { X 1 , . . . ,X n } X FSD max { X 1 , . . . ,X n } X mSD max { X 1 , . . . ,X n }

X SP X i

i = 1, .. .,n

X FSD X i

i = 1, .. .,n

X mSD X i

i = 1, .. .,n

X SP [X 1 , . . . ,X n ]

✛ ✲

❄ ❄

✲✛

❄

❄

✟✟✟✟✟✟✟✟✟✟✙

Thm.

3.64

Thm. 3.64

Thm. 3.91
3.95,3.99,3.101

Figure 3.5: Relationships among firstand nth degree sto chastic dominance,statistical
preferenceand the generalstatistical preference.

3.4 Applications

In this section we present two possible applications of sto chastic orders. Onthe one
hand, we apply sto chastic dominance and statistical preference for the comparison of
fitness values, and on the other hand, we use the general statistical preference in decision
makingproblems with linguistic variables.

3.4.1 Comparison of fitness values

Genetic algorithms are a p owerful to ol to p erform tasks such as generation of fuzzy rule
bases, optimization of fuzzy rule bases, generation of memb ership functions, and tuning
of memb ership functions (see [41]).All these tasks can be considered as optimization or
search pro cesses.A geneticalgorithmgeneratesoradaptsa fuzzysystem, whichiscalled
Genetic Fuzzy Systems (GFS, forshort) [42]. The use of GFS has been widely accepted,
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since these algorithms are robust and can search efficiently large solution spaces (s ee
[213]).

Althoughinthis contextthelinguisticgranulesor informationarerepresentedby
fuzzy sets, the input dataand the output results are usually crisp[87]. However,some
recent pap ers (see [180,181, 182, 183])have dealt with fuzzy-valued data to learn and
evaluate GFS. In that app roach the function that quantifies the optimality of a solution
in the gene tic algorithm, that is, the fitness function, is fuzzy-valued. In particular, in
[183], it has been considered that the fitness values are unknown, and that interval valued
information is available. The computed fitness value is used by the gen etic algorithm
mo dule to pro duce the next p opulation of individuals.Inthis context some kindof order
between two fitness values is necessary if we want to determine whether one individual
precedes the other. Since the information ab out the fitness values is imprecise and is
given by means of intervals, a pro cedure for comparing two intervals is required.Initially,
these pro cedures were based on estimating and comparing two probabilities [183].In this
section we con sider statistical preference as a more flexible to ol for the comparison of
intervals.

Thus, in this section we study of these concepts in connection with the comparison
of two inte rvals, that represent imprecise information ab out the fitness values of two
Knowledge Bases.In particular, we shall make no assumptions ab out the joint distribu-
tion of the two fitness values and shall use then th e uniform distribution. Thisis notan
artificial requirement, and it has been considered in many situation as a consequence of
lack of information(see, for instance, [183,197]). Whenthisdistributionisconsidered, we
obtain the sp ecific expression of the asso ciated probabilistic and fuzzy relations.We also
consider the situation where we have some additional information ab out the distribution
of the fitness, that we mo del that by means of b eta distributions.For these two cases , we
consider three p ossible situations b etwee n the intervals:indep endence,comonotonicity
and countermonotonicity.

Usual comparison metho ds

Let us consider two fitn ess valuesθ1 and θ2 oftwoKBs, thatis, themeansquarederrors
of these two KBs onthetrainingset. In manysituations, θ1 and θ2 areunknown, butwe
have some imprecise information ab out them,that we mo del by means of two intervals
that include them. The se intervals can b e obtained by means of a fuzzy generalisation of
the mean squared errors (for a moredetailed explanation, see Sections4 and 5 in [183])
and they will be denoted by FMSE1 and FMSE2, resp ectively.Thecomparison ofthis
two intervals is needed in order to cho ose the predecessor and the successor.

Let us intro duce the usual metho ds that can be found in the literature for the
comparison of such intervals. We shall prop ose statistical preferen ce as an alternative
metho d and investigate the relationships b etween all the p ossibilities.
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Let us start with the strong dominance that was considered in [116].Inthatcase, if
these two intervals are disjoint, then wehave notany problem todetermine the preferred
interval andtherefore the decision is trivial. Theproblemarises whentheintersectionis
non-empty,since theintervals are incomparable.

Definition 3.107Considerthe fitness θ1 and θ2 withassociated intervalsFMSE 1 =
[a1,b1] and FMSE2 =[a 2,b2],respectively. It holdsthat:

• If b2 <a 1, then θ1 ispreferred to θ2 with respect to the strong dominance, denoted
by θ1 sd θ2.

• If b1 <a 2, then θ2 ispreferred to θ1 with respect to the strong dominance, denoted
by θ2 sd θ1.

• Otherwise, θ1 and θ2 are incomparable.

This metho d is to o restrictive, since it can be used only in very particular cases. An
attempt to solve this problem is to use the first degree sto chastic dominance, that intro-
duces prior knowledge ab out the probability distribution of the fitness.

In particular, if we assume thatthe fitness follows a uniform distribution (as in
[197]), then:

θ1 FSD θ2 ⇔ a1 ≥ a2 and b1 ≥ b2,

with at least one of the inequalities strict. In parti cular, if θ1 strong dominates θ2, then
θ1 FSD θ2 regardlesson thedistributionofthe fitness.

Nevertheless, first degree sto chastic dominance, as we have already noticed during
this memory, do es not solve all the problems of strong domi nance,since, for instance,
incomparability is also allowed.

Another metho d, called method of the probabilistic prior, was prop osed in [183].As
first degree sto chastic dominance, it is based on a prior knowledge ab out the probability
distribution of the fitness, P(θ1,θ2).

Definition 3.108Considerthe fitness θ1 and θ2 withassociated intervalsFMSE 1 =
[a1,b1] and FMSE2 =[a 2,b2]. Then, θ1 is considered tobe preferred toθ2 withrespect to
the probabilistic prior, and is denoted by θ1 pp θ2, if and only if

P(θ1 >θ 1)
P(θ1 ≤ θ2)

>1. (3.30)

If P { θ1 ≤ θ2} =0 , the ration inEquation (3.30) is notdefined, bu t it is assumed that
θ1 pp θ2.
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Remark 3.109Recall that fromEquation (3.30)wederive that θ1 pp θ2 if and only
if:

P(θ1 >θ 1) > P(θ 1 ≤ θ2).

Thus, theprobability prioris equivalent to the probability dominance, with thestrict
version, considered in Remark 2.22, with β = 0.5 .

Even though these metho ds allow to compare a wider class of random intervals than the
strong dominance, as we said in Remark 2.22 they have an imp ortant drawback: they
allow for incomparability. Inparticular, whenever P(θ1 =θ 2) ≥ 0.5, θ1 and θ2 would be
incomparable.

Then, it seems natural to consider statistical preference as a metho d for the compar-
ison of fitness for two main re asons:avoid incomparability and gradu ate the preference.
Also, aswe alreadycommentedin Subsection2.1.2, the probabilistic rel ation Q can be
transformed into afuzzy relation.

Let us study some relationships amongstrongdominance, first degree sto chastic
dominance, probabilistic priorandstatistical preference.

Prop osition 3.110Given twofitness θ1 and θ2 with associat ed intervals FMSE1 =
[a1,b1] and FMSE2 =[a 2,b2], it holds that:

• θ1 sd θ2 implies θ1 FSD θ2.

• θ1 sd θ2 implies θ1 pp θ2.

• θ1 pp θ2 implies θ1 SP θ2.

• If θ1 and θ2 are independent,θ1 FSD θ2 implies θ1 pp θ2.

Pro of:

• The pro of of the first item is based on the fact that θ1 sd θ2 implies

min FMSE1 =a 1 >b 2 max FMSE2,

and consequentlyθ1 FSD θ2 regardlesson thedistributionsof FMSE i , i = 1,2 .

• If θ1 sd θ2, then { (θ1,θ2) :θ 1 ≤ θ2} = ∅,and consequently θ1 pp θ2.

• If θ1 pp θ2, then P(θ1 >θ 2) > P(θ 1 ≤ θ2), that implies Q(X, Y ) > Q(Y , X) .
Howe ver,since Q is a probabilisticrelation, this meansthat Q(X , Y )> 1

2 , and
thus θ1 SP θ2.
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• If the intervals are indep endent, then P(θ1 =θ 2) =0 , and consequentlyθ1 pp θ2

ifand only if
P(θ1 >θ 2) > P(θ 1 <θ 2).

Thus, b oth the probabilis tic prior and statis tical preference are equivalent in this
context. Thus, if θ1 FSD θ2, applying Theorem 3.64, θ1 SP θ2, and conse quently
the preference with resp ect to the probabilistic prior metho d also hold.

Thus there is a relationship b etween the probabilistic prior and the sto chastic order when
the intervals are indep endent.However, such relationship do es not hold for comonotonic
and countermonotonic intervals , as we show next:

Example 3.111Consider θ1 distributed inthe interval [1 , 2]and θ2 distributed inthe
interval [0 , 2]. We consider thatFMSE 1 fol lows an uniform distribution and the distri-
bution of FMSE 2 is definedby the densityfunction:

f (x )=






1
11 if 0 < x < 1. 1,

1 if 1. 1 < x < 2,

0 otherwise.

Thus, θ1 FSD θ2. Assume that bothintervals arecomonotonic. UsingEquation (3.6)
we can computeP(θ1 =θ 2):

P(θ1 =θ 2)=
[1.1 ,2]

f X (x )dx = 0.9.

Thus, both intervals areincomparable withrespect tothe probabilistic prior.

Assume now that they are countermonotonic. Using Equation (3.7)we obtainthat

Q(θ1,θ2) =F Y (1.5) = 0. 5.

Thus, θ1 SP θ2, and consequently, using Proposition 3.110,θ1 pp θ2.

Table 3.6summarises the generalrelationships wehave seen during this section.

θ1 sd θ2

θ1 FSD θ2

θ1 pp θ2 θ1 SP θ2✲ ✲

✻
◗

◗ ◗ ◗
◗ ◗◗s

Indep endence

Figure 3.6: Summary of the relationships b etween strong dominance, first degree sto chas-
tic dominance, probabilistic prior and statistical preference given in Prop osition 3.110.
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Expressionofthe probabilistic relation for the comparison of fitness values

In this section we will apply statistical p re ference to the comparis on of fitness values.

Uniform case Letusconsideragainanuniformdistribution, thatis, nopriorinforma-
tion ab out the distribution over the observed interval, as in [197], and let us search for an
expression of theprobabilisticrelation Q so as tocharacterise the statistical preference.

Thus, FMSE1 =[a 1,b1] and FMSE2 =[a 2,b2] will denote now two intervals where
we know the fitness θ1 and θ2 of two KBsare included. Let us assume a uniform distri-
bution on each of them. We will consider again three possible ways to obtain the joint
distribution: an assumption of independence, that is, b eing coupled by the pro duct, and
the extreme cases where they are coupled by the minimum or the Łu kasiewicz copulas.In
these three cases we wi ll obtain the condition on the parameters to assure the statistical
preference of the interval FMSE1 tothe interval FMSE 2. Todo that, the expressionof
the probabilistic relation will be an essential part of the pro of.

First of all, recall the result the comparison of indep endent uniform distributions
was already studied in Prop osition 3.71: if FMSE 1 =[a 1,b1] and FMSE2 =[a 2,b2] be
two uniformly distributed intervals which represent the information we have ab out the
fitness θ1 and θ2 of two KBs, andthe joint distributionis obtainedby meansof the
pro duct copula, then the probabilistic relation Q(θ1,θ2) takes the followingvalue:

Q(θ1,θ2)=






1 − (b1 − a2 ) 2

2(b1 − a1 )(b 2 − a2 ) if a1 ≤ a2 <b 1 ≤ b2.

1 − (b2 − a1 ) 2

2(b1 − a1 )(b 2 − a2 ) if a2 ≤ a1 <b 2 ≤ b1.

2b1 − a2 − b2
2(b1 − a1 ) if a1 ≤ a2 <b 2 ≤ b1.

b1 +a 1 − 2a2
2(b2 − a2 ) if a2 ≤ a1 <b 1 ≤ b2.

These are theconditionsunder which θ1 SP θ2:






Always if a1 ≤ a2 <b 1 ≤ b2.

Never if a2 ≤ a1 <b 2 ≤ b1.

a1 +b 1 ≥ b2 +a 2 if a1 ≤ a2 <b 2 ≤ b1

or a2 ≤ a1 <b 1 ≤ b2.

Let us now study th e comonotonic case.

Prop osition 3.112Let FMSE 1 =[a 1,b1] and FMSE2 =[a 2,b2] be two uniformly dis-
tributedintervalsrepresenting the availableinformation onthe different fitness θ1 and θ2
of two KBs. If the joint distribution is obtained by means of the minimum copula, the
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probabilistic relation Q(θ1,θ2) takes the fol lowing value:

Q(θ1,θ2)=






0 if a1 ≤ a2 <b 1 ≤ b2.
b1 − b2

b1 +a 2 − a1 − b2
if a1 ≤ a2 <b 2 <b 1.

a1 − a2
b2 − a2 − b1 +a 1

if a2 <a 1 <b 1 ≤ b2.

1 if a2 <a 1 <b 2 ≤ b1.

Thus, θ1 SP θ2 if andonly if:






Never if a1 ≤ a2 <b 1 ≤ b2.

Always if a2 <a 1 <b 2 ≤ b1.

a1 +b 1 >a 2 +b 2 otherwise.

Then, the condition is equivalent to have a greater expectation.

Pro of: The expression of the probabilistic relation can b e ob tained using Equation (3.6),
and taking into account that P(θ1 =θ 2) =0 , since the asso ciated cumulative distribution
coincide at most in one point.

First and second scenarios of the are trivial. In thethird scenario, if a1 ≤ a2 <
b2 ≤ b1 itholds that:

θ1 SP θ2 ⇔
b1 − b2

b1 +a 2 − a1 − b2
> 1

2
⇔ a1 +b 1 >a 2 +b 2.

The condition for a2 ≤ a1 <b 1 ≤ b2 can b e sim ilarly obtained.

Finally, letus studythecountermonotonic case.

Prop osition 3.113Let FMSE 1 =[a 1,b1] and FMSE2 =[a 2,b2] be twouniformly dis-
tributed intervals whichrepresentthe information we have about the fitness θ1 and θ2 of
two KBs. Ifthejoint distributionis obtainedbymeans oftheŁukasiewiczcopula, then
the probabilistic relation is given by:

Q(θ1,θ2)=
b1 − a2

b2 − a2 +b 1 − a1
.

In addition, θ1 SP θ2 if andonly if:






Never if a1 ≤ a2 <b 1 ≤ b2.

a1 +b 1 ≥ a2 +b 2 if a1 ≤ a2 <b 2 <b 1.

a1 +b 1 ≥ a2 +b 2 if a2 <a 1 <b 1 ≤ b2.

Always if a2 <a 1 <b 2 ≤ b1.
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Pro of: Theexpressionoftheprobabilisticrelationcan be obtainedusingEquation(3.7),
and taking into account that the point u such that Fθ1 (u) +F θ2 (u) =1 equals: u=

b2 b1 − a1 a2
b2 − a2 +b 1 − a1 .

The first and fourth sce narios of the second part are easy, sincethere theyare
ordered by means of the sto chastic order. In the first sc enario it holds that Fθ1 (u)>
Fθ2 (u) ,and consequently

Q(θ1,θ2) < Q(θ 2,θ1),

and then θ1 SP θ2. Similarly,weobtainthatin thefourthscenario θ1 SP θ2.

Forthe second and third scenarios, it isenoughtocompare deexpressionof the
probabilistic relation with 1

2 .

Beta case We now assume that more information about the fitness values may be
available. If it is know that some value s of the interval are more feasible than others, the
uniform distribution is not a go od model any more. Ifweassume that thecloser we are
to one extreme of the interval the more feasible the values are, beta distributions become
more appropriate to mo del the fitness values.As we made in Subsection 3.2.6, we fo cus
on this situation: b eta distributions su ch that one of the parameters is1.

As we already said, the density of a beta distribution β(p, q) is given by Equa-
tion (3.17). However, it is possible to define a beta distribution on every interval [a, b]
(it is denoted by β(p, q, a, b). The asso ciated density function is:

f (x )=
Γ(p + q)
Γ(p)Γ(q)

(x − a)p− 1(b − a)q− 1

(b − a)p+q − 1 ,

for any x ∈ [a, b], and zero othe rw ise.Next, we will fo cus on two particular cases. In
the first one we wi ll assume that the closer the value is toai , the more feasible the value
is. In the sec ond case,we will assume the opp osite:that thecloser thevalue isto bi ,
the more feasible the value is. In terms of density functions, these two cases corresp ond
to strictly decreasing and strictly increasing density functions. We will consider the
intervals FMSE i follows a dis tri bution β(p, 1,ai ,bi ), for i = 1,2 , where p will be an
integer greater than 1. Indep endently of wherethe weight of the distribution is, we
shall consider three possibilities concerning the relationship b etween the fitness values:
indep endence,comonotonicityand countermonotonicity. If intervals satisfy oneof the
following c on ditions:

a1 ≤ a2 <b 1 ≤ b2 or a2 ≤ a1 <b 2 ≤ b1,

we have seen in the previous section that, since they are ordered with resp ect to the
sto chastic order,the stu dy of the statistical preference b ecomes trivial. Forthis reason
we will assume the intervals to satisfy the condition a1 ≤ a2 <b 2 ≤ b1 (the case
a2 ≤ a1 <b 1 ≤ b2 can be solved by symmetry).
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Prop osition 3.114Letus considerthedifferent fitnessvalues θ1 and θ2 with associated
intervals FMSE i ≡ [ai ,bi ] fol lowing a distribution β(p, 1,ai ,b i ),where a1 ≤ a2 <b 2 ≤ b1.
Then:

QP (θ1,θ2) =p

p− 1

k=0

p − 1
k

(a2 − a1)p− k− 1(b2 − a2)k− 1

(b1 − a1)p(p + k + 1)
+

b2 − a1

b1 − a1

p

−
a2 − a1

b1 − a1

p

,

QM (θ1,θ2) =1 − t ∗− a1
b1 − a1

p
,

QL (θ1,θ2)= z∗− a2
b2 − a2

p
,

wheret∗ = a1 b2 − a2 b1
b2 − a2 − b1 +a 1

and z∗ is thepoint in [a2,b2] such that

z∗ − a1

b1 − a1

p

+
z∗ − a2

b2 − a2

p

=1,

and QP , QM and QL denotes the probabilistic relationwhen the random variables are
coupled by the product,the minimum and the Łukasiewicz operators, respectively.

Pro of: Let usbegin bycomputing theexpression of QP (θ1,θ2). Sincethey areinde-
pendent and continuous,P(θ1 =θ 2) =0 . Then:

QP (θ1,θ2) = P(θ 1 >θ 2) = P(θ 1 ∈ [b2,b1]) + P (b2 >θ 1 >θ 2).

Letus compute each oneof the previous probabilities:

P(θ1 ∈ [b2,b1])=
b2

a2

p(x − a1)p− 1

(b1 − a1)p dx=
b2 − a1

b1 − a1

p

−
a2 − a1

b1 − a1

p

.

P(b2 >θ 1 >θ 2)=
b2

a2

x

a2

p2 (x − a1)p− 1

(b1 − a1)p
(y − a2)p− 1

(b2 − a2)p dy dx

=
b2

a2

p(x − a1)p− 1

(b1 − a1)p

x − a2

b2 − a2

p

dx.

Taking z= x − a2
b2 − a2 , the previous expression becomes:

P (b2 >θ 1 >θ 2) =p
1

0

(b2 − a2)z +a 2 − a1
p− 1

(b1 − a1)p zp dz
b2 − a2

=p
1

0

zp

(b2 − a2)(b1 − a1)p

p− 1

k=0

p − 1
k ((b2 − a2)z) k (a2 − a1)p− 1− k dz

=
p

(b1 − a1 )p

p− 1

k=0

p − 1
k

(a2 − a1)p− k− 1(b2 − a2)k− 1

p + k +1
.
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Making the sum ofthetwo probabilities, we obtain the value of Q(θ1,θ2).

Next, assume that θ1 and θ2 are comonotonic. Since { x: Fθ1 (x ) =F θ2 (x) } = ∅,
applying Equation (3.6) we deduce that

QM (θ1,θ2)=
x:F θ1 (x )<F θ2 (x)

p(x − a1)p− 1

(b1 − a1)p dx.

Moreover, { x :F θ1 (x) <F θ2 (x) } = (t ∗,b1], where t∗ is the point satisfying:

Fθ1 (t ∗) =F θ2 (t ∗) ⇔ t ∗− a1
b1 − a1

p

= t ∗− a2
b2 − a2

p

⇔ t∗(b2 − a2) − a1(b2 − a2) =t
∗(b1 − a1) − a2(b1 − a1)

⇔ t∗ = a1 b2 − a2 b1
b2 − a2 − b1 +a 1

.

Then:
QM (θ1,θ2)=

b1

t ∗
p(x − a1)p− 1

(b1 − a1)p dx =1 −
t∗ − a1

b1 − a1

p

.

Finally, assume that θ1 and θ2 are countermonotonic. By Equation (3.7),

QL (θ1,θ2) =F θ2 (z
∗
)=

z∗ − a2

b1 − a1

p

,

where z∗ satisfies that:

Fθ1 (z
∗
) +F θ2 (z

∗
) =1 ⇔

z∗ − a1

b1 − a1

p

+
z∗ − a2

b2 − a2

p

=1.

Prop osition 3.115Letus considerthedifferent fitnessvalues θ1 and θ2 with associated
intervals FMSE1 =[a 1,b1] and FMSE2 =[a 2,b2] fol lowing the distribution β(1, q,ai ,bi ),
wherea1 ≤ a2 <b 2 ≤ b1. Then

QP (θ1,θ2) =q

q− 1

k=0

q − 1
k

(b1 − b2)k (b2 − a2)q− k− 2

(b1 − a1)q(q + k + 1)
+

b1 − a2

b1 − a1

q

,

QM (θ1,θ2) =1 − b1 − t ∗

b1 − a1

q
,

QL (θ1,θ2) =1 − b1 − z∗

b1 − a1

p
,

wheret∗ = a1 b2 − b1 a2
b2 − a2 − b1 +a 1

and z∗ is thepoint in [a2,b2] such that

(b1 − x) q

(b1 − a1)q− 1 +
(b2 − x) q

(b2 − a2)q− 1 =1,

and QP , QM and QL denotes theprobabilisticrelation when the randomvariables are
coupled by the product, the minimum and the Łukasiewicz operators, respectively.
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Pro of: We begin by computing the expression of QP (θ1,θ2). Again, sincethey are
indep endent and continuous,P(θ1 =θ 2) =0 ,and then:

QP (θ1,θ2) = P(θ 1 >θ 2) = P(θ 1 ∈ [b2,b1]) + P (b2 >θ 1 >θ 2).

Letus compute each onethe the previous probabilities:

P(θ1 ∈ [b2,b1])=
b1

b2

q(b1 − x) q− 1

(b1 − a1)q dx=
b1 − b2

b1 − a1

q

.

P(b2 >θ 1 >θ 2)=
b2

a2

x

a2

q2 (b1 − x) q− 1

(b1 − a1)q
(b2 − y)q− 1

(b2 − a2)q dy dx

=
b2

a2

q(b1 − x) q− 1

(b1 − a1)q 1 −
b2 − x
b2 − a2

dx

=
b2

a2

q(b1 − x) q− 1

(b1 − a1)q dx −
b2

a2

q(b1 − x) q− 1

(b1 − a1)q

b2 − x
b2 − a2

q

dx

= b1 − a2
b1 − a1

− b1 − b2
b1 − a1

−
b2

a2

q(b1 − x) q− 1

(b1 − a1)q

b2 − x
b2 − a2

q

dx.

Taking z= b2 − x
b2 − a2 , the last integral becomes:

P(b2 >θ 1 >θ 2)=
1

0
qzq (b1 − b2 + z(b2 − a2))q− 1

(b1 − a1)q
dz

b2 − a2

=q
1

0

zq

(b2 − a2)(b1 − a1)q

q− 1

k=0

q − 1
k ((b1 − b2)z) k (b2 − a2)q− k− 1dz

=q

q− 1

k=0

q − 1
k

(b1 − b2)k (b2 − a2)q− k− 2

(b1 − a1)q(q + k + 1)
1

q +k +1
.

Making the sum ofthethree terms,we obtain the expression of QP (θ1,θ2).

Consider now the fitness to be comonotonic.Then, since{ x :F θ1 (x ) =F θ2 (x) } = ∅,
the expression of the probabilistic relation given in Eq.(3.6) becomes:

QM (θ1,θ2)=
x:F θ1 (x ) <F θ2 (x)

q(b1 − x) q− 1

(b1 − a1)q dx.

Then, { x :F θ1 (x ) <F θ2 (x) } = (t ∗,b1],where:

Fθ1 (t
∗
) =F θ2 (t

∗
) ⇔ 1 −

b1 − t∗

b1 − a1

q

=1 −
b2 − t∗

b2 − a2

q

⇔
b1 − t∗

b1 − a1
=

b2 − t∗

b2 − a2
⇔ t∗

=
a1b2 − b1a2

b2 − a2 − b1 +a 1
.
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Then:
QM (θ1,θ2)=

b1

t ∗
q(b1 − x) q− 1

(b1 − a1)q dx=
b1 − x
b1 − a1

q

.

Finally, assume that θ1 and θ2 are countermonotonic. Then, QL (θ1,θ2) =F θ2 (z∗), where
z∗ satisfies:

Fθ1 (z
∗
) +F θ2 (z

∗
) =1 ⇔ 1 −

b1 − x
b1 − a1

q

+1 −
b2 − x
b2 − a2

q

=1

⇔
b1 − x
b1 − a1

q

+
b2 − x
b2 − a2

q

=1.

Remark 3.116In order to prove the previous result it is not possible to fol low the
procedu re of Proposition 3.78.There, we used the fol lowing property:

X ≡ β(p, 1) ⇔ 1 − X ≡ β (1 , p).

Then, since Q( X , Y ) = Q(1 − Y,1 − X) (see Proposit ion 3.3), the case of q =1 was
solved using the casep=1 . In thecase ofgeneral beta distributions, it holds that:

X ≡ β(p, 1, a, b)⇔ (b − a) − X ≡ β (1, p, a, b).

The problem isthat Q(X , Y ) = Q((b2 − a2) − Y, (b1 − a1) − X) , andthereforethis kind
of procedure is not possible.

Remark 3.117Note that for beta distribution it is not possible to obtain a simpler
characterization of the statistical preference like the one foruniform distributions.

To conclude this section, let us present anexample where we show how the values of the
probabilistic relation changewhen we vary thevalue of p.

Example 3.118Considerthe fitnessvalues θ1 and θ2 withassociatedvalues FMSE 1 =
[a1,b1] and FMSE2 =[a 2,b2], where a1 ≤ a2 <b 2 ≤ b1, and let assume they fol low the
beta distribution β(p, 1,ai ,bi ). Consider a1 = 1,b 1 = 4,a 2 =2 and b2 =3 . Table 3.5
shows thevalues of theprobabilistic relation whenp moves from 1 to 5, whereit is possible
to see that θ1 and θ2 areequivalent when p=1 , but θ1 ispreferred to θ2 when p ≥ 2.
Moreover,the greater the value of p, the stronger the preference ofθ1 over θ2.

Consider now different values of the intervals: a1 = 0.7,b 1 = 1.4 ,a 2 =0.8 and
b2 =1.2 . In this case, alt hough[a2,b2] ⊆ [a1,b1] as inthe previousexample, the difference
betweenb1 and b2 isgreater than a1 and a2. The results aresummarisedin Table 3.6.
There, wecan seethat inthe threecases, θ1 SP θ2 for any p ≥ 1. Furthermore, the
greater the value ofp, thestrongerthe preferenceof θ1 over θ2. InFigure3.7 we cansee
how thevalues of Qvary we changethe value of the parameter p from 1 to 10.
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p QP QM QL

1 0.5 0.5 0.5
2 0.6853 0.75 0.64
3 0.7945 0.875 0.7436
4 0.8644 0.9375 0.8208
5 0.9101 0.9688 0.8766

Table 3.5: Degrees of preference for the different values of the param eterp for FMSE1 =
[1, 4]and FMSE2 = [2, 3].

p QP QM QL

1 0.5715 0.6667 0.5455
2 0.7076 0.8889 0.64
3 0.7936 0.9630 0.7192
4 0.8533 0.9877 0.7852
5 0.8955 0.9959 0.8384

Table 3.6: Degrees of preference for the different values of the param eterp for FMSE1 =
[0. 7, 1.4]and FMSE2 = [0.8 , 1.2].

3.4.2 Generalstatisticalpreference as a to olfor linguis tic deci-
sion making

As we have seen, general statistical preference was intro duced as a method that allows for
the comparison of more than two random variables.Asan illustrationofthe utilityof this
metho d we can consider a decision making problem with linguistic utilities. We consider
the example of pro duct management given in [123, Section 8]:acompanyseeks toplan
its pro duction strategy for the next year, and they consider six p ossible alternatives:

• A1 : Create a new pro duct for very high-income customers.

• A2 : Create a new pro duct for high-income customers.

• A3 : Create a new pro duct for medium-income customers.

• A4 : Create a new pro duct for low-income customers.

• A5 : Create a new pro duct suitable for all customers.

• A6 : Do not create a new pro duct.

Due to the large uncertainty, the three exp erts of the company are not able to draw the
information ab out the impact of each alternative in a numerical way, and for this reason
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Figure 3.7: Values of the probabilistic relation for differentvalues of p. The ab ove
picture corresp onds to intervals[a1,b1] = [1 , 4]and [a2,b2] = [2, 3], and the picture below
corresp onds to intervals[a1,b1] = [0.7 , 1.4]and [a2,b2] = [0 .8, 1.2].

theyexpress theutilitybased onaseven linguistic scale S= { s1, . . . ,s7} ,where:

s1 : None s5 : High
s2 : Very low s6 : Very high
s3 : Low s7 : Perfect
s4 : Medium

Note that the three exp erts have not the same influence in the company, and itsim-
portance is given by the weight vector (0.2, 0. 4, 0. 4). Moreover, sinc e the decision of
each exp ert depends on the economic situation of the following ye ar, sixscenarios are
considered:

N1 : Very bad N4 : Regular-Go od
N2 : Bad N5 : Go od
N3 : Regular-Bad N6 : Very go od

The exp erts assume the following weighting vector for these scenarios:

W = (0.1, 0 .1, 0. 1, 0. 2, 0.2, 0.3).

Finally, the preferences of each exp ert are given in Tables 3.7, 3.8 and 3.9.

Although in [123] this problem was solved by means of a particular typ e of aggre-
gation op erators, we prop ose to use the general statistical preference.For any exp ertei ,
i = 1,2,3 , we can compute the preference degree of the alte rnativeA j over theothers
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N1 N2 N3 N4 N5 N6
A1 s2 s1 s4 s6 s7 s5
A2 s1 s3 s5 s5 s6 s6
A3 s3 s4 s4 s4 s4 s7
A4 s2 s5 s6 s4 s2 s5
A5 s1 s3 s4 s5 s6 s6
A6 s6 s5 s5 s4 s2 s2

Table 3.7: Linguistic payoff matrix-Exp ert 1.

N1 N2 N3 N4 N5 N6
A1 s3 s1 s3 s5 s6 s6
A2 s1 s3 s4 s5 s6 s6
A3 s3 s4 s5 s4 s3 s7
A4 s3 s4 s5 s4 s2 s4
A5 s2 s3 s4 s6 s6 s6
A6 s7 s6 s4 s3 s2 s2

Table 3.8: Linguistic payoff matrix-Exp ert 2.

N1 N2 N3 N4 N5 N6
A1 s1 s2 s3 s5 s7 s6
A2 s2 s3 s4 s4 s5 s6
A3 s3 s4 s6 s4 s3 s7
A4 s2 s4 s6 s4 s2 s4
A5 s1 s3 s4 s5 s6 s6
A6 s6 s6 s5 s3 s2 s3

Table 3.9: Linguistic payoff matrix-Exp ert 3.
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A− j , and we obtain the following values:

Q(A 1, [A− 1] | e1) = P(N 4) + P(N 5) = 0.4.

Q(A 2, [A− 2] | e1) = 0.

Q(A 3, [A− 3] | e1) = P(N 6) = 0. 3.

Q(A 4, [A− 4] | e1)= 1
2 P (N2) + P(N 3) = 0.15.

Q(A 5, [A− 5] | e1) = 0.

Q(A 6, [A− 6] | e1) = P(N 1)+ 1
2 P (N2) = 0.15.

Q(A 1, [A− 1] | e2)= 1
3 P (N5) = 0 .0667.

Q(A 2, [A− 2] | e2)= 1
3 P (N5) = 0 .0667.

Q(A 3, [A− 3] | e2)= 1
2 P (N3) + P(N 6) = 0.35.

Q(A 4, [A− 4] | e2)= 1
2 P (N3) = 0 .05.

Q(A 5, [A− 5] | e2) = P(N 4)+ 1
3 P (N5) = 0.2667.

Q(A 6, [A− 6] | e2) = P(N 1) + P(N 2) = 0.2.

Q(A 1, [A− 1] | e3)= 1
2 P (N4) + P(N 5) = 0.3.

Q(A 2, [A− 2] | e3) = 0.

Q(A 3, [A− 3] | e3)= 1
2 P (N3) + P(N 6) = 0.35.

Q(A 4, [A− 4] | e3)= 1
2 P (N3) = 0 .05.

Q(A 5, [A− 5] | e3)= 1
2 P (N4) = 0 .1.

Q(A 6, [A− 6] | e3) = P(N 1) + P(N 2) = 0.2.

Now, since the imp ortance of each exp ert is given by the weighting vector(0. 2, 0. 4, 0.4),
we can obtain the preferenc e degree of each alternative:

Q(A 1, [A− 1]) = Q(A 1, [A− 1] | e1)0 .2 + Q(A1, [A− 1] | e2)0.4
+ Q(A 1, [A− 1] | e3)0.4 = 0.4 · 0. 2 + 0 .0667· 0. 4 + 0 .3· 0.4 = 0.22667.

And similarly:

Q(A 2, [A− 2]) = 0. 0667· 0.4 = 0.02667.
Q(A 3, [A− 3]) = 0.3 · 0. 2 + 0 .35· 0.4 + 0 .35· 0 .4 = 0. 34.
Q(A 4, [A− 4]) = 0. 15· 0.2 + 0 .05· 0.4 + 0 .05· 0.4 = 0.07.
Q(A 5, [A− 5]) = 0. 2667· 0.4 + 0 .1· 0.4 = 0.14667.
Q(A 6, [A− 6]) = 0. 15· 0.2 + 0.2 · 0.4 + 0 .2· 0.4 = 0.19.

Thus, general statistical preference givesA3 as thepreferredalternative: A3 SP [A− 3];
A1 isthe secondpreferredalternative, A6 the third, A5 the fourth, A4 the fifth and
finally A2 isthe lesspreferred alternative. Conse quently,creating a new pro duct for
medium-income customers seems to be the best option, while the worst alternative is
creating a new pro duct for high-income customers.
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3.5 Conclusions

Sto chastic orders are to ols that allow us to compare random quantities, so they b ecome
particularly useful in decision problem s under uncertainty. One of the most imp or-
tant sto chastic orders that can be found in the literature is sto chastic dominance. This
metho d, based onthe comparison of the cumulative distribution functions, has been
widely studied in the literature, and it has b een ap plied in many different areas. One
alternative sto chastic order is statistical preference, which has remained unexplored fora
long time. For th is reason, we have dedicated the first part of this chapter to the investi-
gation of the prop erties of statistical preference as a stochastic order.Inparticular, while
sto chastic dominance is close to the exp ectation, we have seen that statistical preference
is related to another lo cation parameter: the median. This showed that both sto chastic
orders have adifferent philosophy under their definition.

Interestingly, there are situations where b oth sto chastic orders give rise to the same
conclusions. For instance, we have found conditions under which first degree sto chastic
dominance implies statistical preference. These situations included, for example, inde-
pendent random variables or continuous comonotonic/countermonotonic random vari-
ables, among others. Although the two metho ds are not equivalent in general, we have
proved that the coincide when comparing indep endent random variables whose distribu-
tions are Bernoulli, exp onential, uniform, Pareto, b eta and normal.

Both metho ds have been devised for the pairwise comparison of random variables,
and may be unsuitable when more than two random variables must be compared simul-
taneously. For this reason, we have intro duced a new stochastic order,that generalises
statistical preference and preserves its underlying philosophy, that allows us to comp are
more than two random variable s at the same time. We have also investigated its main
prop erties and its connection with the usual sto chastic orders.

Sto chastic orders app ears in many different real-life problems.Forthis reason, the
last part of this chapter was devoted to present a numb er of applications that show the
relevance of our res ults.On the one hand, we have seen that b oth sto chastic dominance
and statistical preference could be an interesting alternative to the comparison of fitness
values, andon the other hand we have applied the general statistical preference toa
multicriteria decision making with linguistic lab els.

From the results we have showed in this chapter new op en problems arise. For
instance, we have given some conditions under which first degree sto chastic dominance
implies statistical preference, and we have seen that this relation do es not hold in general.
Thus, anaturalquestion arises: is it p ossible to characteris e the situations in which first
degree sto chastic dominance implies statistical preference?

Moreover, we have also seen that both sto chastic dominance and statistic prefer-
ence coincide for the comparison of indep endent random variables whose distribution is
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Bernoulli, exp onential,normal, .. . In fact, b oth metho ds reduce to the comparison of
the exp ectation of the variables. We conjecture that for indep endent random variables
whose distribution belongs to the exp onential family of distributions, both sto chastic
dominance and statistical preference coincide and are equivalent to the comparison of
the exp ectation. Although this is an op en question that has not been answered yet, a
first approach, basedon simulations, has already be done by Casero ([32]). We have
intro duced the general statistical preference as a sto chastic order for the comparison
of more than two random variables simultaneously. Although we have investigated its
main prop erties, a different approach could be given to this notion. In fact, the gen eral
statistical preference could be seen as a fuzzy choice function ([81]) on a set of random
variables, since it gives degrees of preferenc e of a random variable over a set a random
variables. Then, the investigation of the prop erties of the general statis tical preference
as a fuz zy choice function could b e an interesting line of research.



4 Comparison of alternatives underun-
certainty and imprecision

In the previous chapte r we have dealt with the comparison of alternatives under un-
certainty. When these alternatives are mo delled by means of random variables, the
comparison must be performed using sto chastic orders. However, there are situations
in which it is not p ossible or adequate to mo del the exp eriments by means of a single
random variable, due to the presence of imprecision in the exp eriment. Inother words,
we fo cus now in situations where the alternatives are defined under uncertainty but also
under imprecision. In such cases,we shall compare sets of random variables instead of
single ones; more generally, we shall compare imprecise probability mo dels. For this
reason, this chapter is devoted to the extension of the pairwise metho ds studied in the
previous chapter to the comparison of imprecise probability mo dels.

As we have already mentioned, imprec ise probabilities ([205]) is a generic term that
refers to all mathematical mo dels that serve as an alternative and a generalisation to
probability m o dels in case of imprecise knowl edge.In this resp ect, sto chastic dominance
was connected to imprecise probabilities by Deno eux ([61]), who generalised this notion
to the comparison of b elie f functions ([187]). He proposed four extensions of sto chastic
dominance based on the orders between real intervals given in [78]. One step forward
was made by Aiche and Dub ois ([1]), by using sto chastic dominance to compare random
intervals stemming from rankings b etween real intervals, in a similar manner as Deno eux,
and also in thecomparison of fuzzy random variables ([105]).

Onthe other hand, the comparison of sets of random variables app ears naturally
in decision making under imprecision. Inthis sense, the us ualutility order hasalready
been extended in several ways to the comparison of sets of random variables: interval
dominance ([219]), maximax ([184])andmaximin criteria([82]), and E-admissibility
([107]). See a surveyon thistopicin([202]).

With resp ect to statistical prefe re nce,Couso and Sánchez ([46]) prop osed it asa
metho d for comparing sets of desirable gambles (see [205, Sec. 2.2.4] for further informa-
tion). Also, Couso and Dub ois ([43]) prop osed a common formulation for b oth statistical
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preference and sto chastic dominance to the comparison of imprecise probability mo dels,
and they studied its formulation in terms of exp ected utility.

Our aim he re is to consider a more general situation:we start from a binary relation,
that may b e sto chastic dominance, statistical preference or any other, as in Section 2.1,
and extend itto thecomparison of sets of random variables. We shall consider six
possible extensions of the binary relation, andwe shall study the connections between
them. Afterwards, we consider the particular cases when the binary relation is sto chastic
dominance or statistical preferen ce.As weshallsee, ourapproachismoregeneralthan
that of Deno eux,sincethe comparisonof belief func tions arises a particular case. On
the other hand, ou r approach differs from the one of [43, 46] b ecause they considered
the comparison of sets of desirable gamble s instead of sets of random variables, and the
underlying philosophy oftheir approach is slightly different to ours.

After the se general considerations, we shall fo cus on two scenarios that can be
emb edded into the comparison of sets of random variables: thecomparison of two al-
ternatives with imprecision either in the utilities or in the beliefs. Theformer will be
formulated by means of random sets, and their comparison will be made by means of the
asso ciated sets of measurable selections.In the latter, we shall ass ume that there is a set
of probability measures mo delling the real probability measure of the probability space.

Since there c ou ld b e imprecision on the initial probability, we devote the next sec-
tion to the mo delling of the joint distribution in an imprecise framework. Forthis aim,
we shall investigate how the bivariate distribution can be expressed when there is impre-
cision in the initial probability. Then, we investigate bivariate p-b oxes, and in particular
how sets of bivariate distribution functions can define a bivariate p-b ox, andwe study
if it is p ossibl e to formulate an imprecise version of the famous Sklar’s Theorem (see
Theorem 2.27).

We conclude the chapter with several appli cations. First of all, we use im pre-
cise sto chastic dominance to compare sets of Lorenz Curves and cancer survivalrates.
Secondly,we usea multi criteria decision making problem to illustrate how imprecise
sto chastic orders can be applied in a context of imprecision either in the utilities or in
the beliefs.

4.1 generalisationof thebinary relations tothe com-
parison of sets of random variables

In the following, we prop ose a number of metho ds for comparing pairs of sets of variables
which are based on p erforming pairwise comparisons of elements within thes e sets.First
we shall give our definitions for the case where the comparisons of th e elements are made
by means of abinary relation, as we did at the beginning of Section 2.1, and laterwe
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shall apply them to the particular cases where this binary relation consists of sto chastic
dominanceor statistical preference.

We shall consider a probability space(Ω, A , P) and an ordered utility scale Ω , that
in some situations will b e consid ered as numerical.We shall also conside r sets of random
variables, defined fromthe probability space to Ω , that will be denoted by X , Y, Z , . ...

We begin with the extension of a binary relation to the comparison of sets of random
variables.

Definition 4.1Let be a binary relation betweenrandom variables defined froma
probability space (Ω, A , P) to an ordered utility scale Ω . Given twosetsof random
variables X and Y, we say that:

1. X 1 Y if andonly if forevery X ∈X , Y ∈Y it holdsthat X Y .

2. X 2 Y if andonly if thereis some X ∈X such that X Y for every Y ∈Y .

3. X 3 Y if andonly if forevery Y ∈Y there issome X ∈X such that X Y .

4. X 4 Y if andonly if thereare X ∈X ,Y ∈Y such that X Y .

5. X 5 Y if andonly if thereis some Y ∈Y such that X Y for every X ∈X .

6. X 6 Y if andonly if forevery X ∈X there is Y ∈Y such that X Y .

Remark 4.2As wedid inDefinition 2.1, from any of these definitions we can infer
immediately arelation of strict preference( i ) and the indifference( ≡ i ):

X i Y ⇔X i Y and Y i X ,
X≡ i Y ⇔X i Y and Y i X ,

for any i = 1, .. .,6 . Moreover, wesaythat X and Y are incomparablewithrespectto i

when X i Y and Y i X .

The conditions in this definition can be given the following interpretation. 1 means
that any alternative in X is -preferredto anyalternative in Y , and as such it is related
to the idea of interval dominance from decision making with sets of probabilities [219].
Conditions 2 and 3 mean that the “b est” alternative in X is -better than the “best”
alternative in Y . The difference b etween th em lies in whether there is a maximal element
in X in theorderdetermined by . Thesetwoconditionsare relatedtothe Γ-maximax
criteria considered in [184]. Ontheother hand, conditions 5 and 6 mean that the
“worst” alternative in X is -preferredto the“worst” alternative in Y , and arerelated
to the Γ-maximin criteria in [20, 82]. Again, the difference between them lies in whether
there is a minimum element in Y with resp ect to the order determined by or not.
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Finally, 4 is a weakenedversion of 1, in thesense thatit onlyrequiresthatsome
alternative in X is -preferred tosome otheralternativein Y , instead of requiring it for
any pair in X , Y .

Taking this interpretation into account, it is not difficult to establish the followi ng
relationships b etween the definitions.

Prop osition 4.3The fol lowing implications hold:

• 1⇒ 2⇒ 3⇒ 4.

• 1⇒ 5⇒ 6⇒ 4.

Pro of: ( 1⇒ 2): If X Y for every X ∈X , Y ∈Y , in particular given any X ∈X

it holds that X Y for every Y ∈Y .

( 2⇒ 3): If there exists X ∈X such that X Y for every Y ∈Y , the condition
in 3 is satisfied with resp ect toX for every Y ∈Y .

( 3⇒ 4): Iffor every Y ∈Y there exists X Y ∈X such that X Y Y , we havea
pair (X Y ,Y) ∈X ×Y such that X Y Y .

( 1⇒ 5): If X Y for every X ∈X and Y ∈Y , in particular given any Y ∈Y it
holds that X Y for every X ∈X .

( 5⇒ 6): If there is someY ∈Y such that X Y for every X ∈X , in particul ar,
for every X ∈X itholds that X Y .

( 6⇒ 4): If for every X ∈X there exists YX ∈Y such that X YX , we havea
pair (X ,YX ) ∈X ×Y such that X YX .

The previous impli cations are depicted in Figure 4.1. Oth er relationships b etween
the six definitions do not hold in general, as we can see in the following example.

Example 4.4Considera probability space withonly oneelement ω, and let δx denote
the random variable satisfy ingδx (ω ) =x . Consideralsothe binaryrelation such that:

X Y ⇔ X (ω) ≥ Y (ω ). (4.1)

If we take X = { δ1,δ3} and Y = { δ2} , it fol lows that δ3 δ2 δ1, whence,applying
Definition 4.1, we have that:

X 2 Y, X 3 Y, X≡ 4 Y, Y 5 X , Y 6 X

and X and Y areincomparablewith respectto thefirst extension. From thiswe deduce
that:
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Figure 4.1: Relationships among the diffe rent extensions of the binary relation for the
comparison of setsof random variables.

• 2⇒ , 1, 5, 6 and therefore 3⇒ , 1, 5, 6.

• 4⇒ , 1, 2, 3, 5, 6.

• 5⇒ , 1, 2, 3 and therefore 6⇒ , 1, 2, 3.

Next, given X = Y = { δx : x ∈ (0, 1)} , we have that X≡ 3 Y and X≡ 6 Y, because
δx ≡ δx for all x ∈ (0 , 1). However, X and Y areincomparablewith respect tosecond
andfifth definitions, because there are not x1,x 2 ∈ (0 , 1)for which δx 1 δr and δr δx 2

for all r ∈ (0, 1). Hence:

• 3⇒ 2.

• 6⇒ 5.

Remark 4.5 Insomecases, itmaybe interesting tocombinesomeof thesedefinitions,
for instance to consider X preferred to Y when it ispreferred according to definitions 2
and 5. Takinginto account theimplications depictedin Proposition 4.3, the combina-
tions thatproduce newconditions arethose where we take onecondition out of { 2, 3}
together with one out of { 5, 6} .

If we combine for instance 2 with 5, we can introduce the extension, denoted by

2,5 , and defined by:
X 2,5 Y ⇔X 2 Y and X 5 Y.

Then, 2,5 requires that X hasa -bestcasescenario which isbetterthan anysituation
in Y and that Y hasa -worstcase whichisworse thanany situationin X . This turns
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out to be an intermediate condition bet ween 1 and each of 2 and 5, anditcan be
derivedfrom the previousexample that itis not equivalentto any of them.

The implications in Prop osition 4.3 can also be seen easily in the case where X and Y

are finite sets, X = { X 1, . . . ,Xn } and Y = { Y1, . . . ,Ym } . Then ifwedenote by M the
n × m matrix where

M i,j =
1 if X i Yj

0 otherwise,

the ab ove definitions are characterised in the following way:

•X 1 Y⇔ M =1 n,m .

•X 2 Y ⇔∃ i ∈{ 1 , . . . ,n} such that M i, · =1 1,m .

•X 3 Y⇔ j ∈{ 1, .. . ,m} such that M ·,j =0 n,1 .

•X 4 Y⇔ M =0 n,m .

•X 5 Y ⇔∃ j ∈{ 1, .. . ,m} such that M ·,j =1 n,1 .

•X 6 Y⇔ i ∈{ 1, .. . ,n} such that M i, · =0 1,m .

Observe that, aswe havealready seen, forany binaryrelation , its extensions 2 and
3 (resp ectively 5 and 6) are quite related: b oth compare the b est (resp ectively,

the worst) alternatives withineach set X , Y. Since the difference between them lies on
whether there is a maximal (resp ectively, minimal) element within each of these sets or
not, we can easily give a necess ary and sufficient condition for the equivalences 2⇔ 3

and 5⇔ 6.

Prop osition 4.6Let be a binaryrelation on the set of random variables that is re-
flexive and transitive.

(a) Given aset X of random variables, X 3 Y ⇒X 2 Y foranyset of variables Y
if and only if X hasa maximumelement under .

(b) Given a set Y of random variables, X 6 Y ⇒X 5 Y foranyset of variables X
if and only if Y has a minimumelementunder .

Pro of:

(a) Assume that X has a maximumelement X such that X X for every X ∈X .
If X 3 Y , then for every Y ∈Y there is someX Y ∈X such that X Y Y . Since
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is transitive, wededuce that X X Y Y , and then X Y for every Y ∈Y ,
and as aconsequenceX 2 Y .
Conve rs ely,if X do es not have a maximum element,we can take Y = X and we
would have X≡ 3 Y because is reflexive; however, X and Y are incomparable
with resp ect to 2 becauseX do es not have a maximum element.

(b) Similarly, if Y hasa minimum element Y , it holds that Y Y for any Y ∈Y . If
X 6 Y, then for every X ∈X there exists YX ∈Y such that X YX , and since

is transitive we obtain that X Y for every X ∈X , whenceX 5 Y .
Conve rs ely,if Y do es not have a minimum element, wecan take X = Y and we
would have X≡ 6 Y because is reflexive; however, X and Y are incomparable
with resp ect to 5 becauseY do es not have a minimum element.

Under some conditions, we can also give a simpler characterisation of the ab ove prop er-
ties:

Prop osition 4.7Let bea binaryrelationbetweenrandomvariables, andassumethat
it satisfies the Pareto Dominanc e condition:

X (ω) ≥ Y (ω) ∀ω ⇒ X Y. (4.2)

Considertwo sets of random variablesX , Y. Ifthe randomvariables min X , maxX exist
and belong toX and min Y, max Y exist andbelong to Y, then:

(a) X 1 Y⇔ min X max Y.

(b) X 2 Y ⇔X 3 Y⇔ max X max Y.

(c) X 4 Y⇔ max X min Y.

(d) X 5 Y ⇔X 6 Y⇔ min X min Y.

Pro of: Note thatwhenboth X , Y includea maximum anda minimumrandom variable,
Equation (4.2) implie s that for every X ∈X ,Y ∈Y ,

min X Y ⇒ X Y ⇒ max X Y

and
X max Y⇒ X Y ⇒ X min Y.

Then:

(a) Since min X max Y , it isobviousthat X 1 Y . Ontheother hand, using
the pre vious equations, if every X ∈X and Y ∈Y satisfy X Y , then also
min X≥ max Y .
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(c) Since max X min Y, and max X ∈X and min Y ∈Y , then X 4 Y. On the
other hand, using the previous e quations,if X Y for some X ∈X ,Y ∈Y , also
max X min Y .

(b,d) Using the previousequations, X has a maximumelement and Y has a min imum
element under . By Prop osition 4.6, X 3 Y ⇔X 2 Y and X 6 Y ⇔X 5
Y . The remaining equivalence can b e estab lished in an analogous manner to the
previous cases.

Remark 4.8AccordingtoRemark4.5, underthe conditions ofthepreviousresult, itis
immediate that X 2,5 Y if andonly if max X max Y and min X min Y.

Next we investigate which prop erties of the binary relation hold ontothe extensions
1, . . ., 6. Obviously, since all these definitions become inthe caseof sin gle tons,

if is notreflexive (resp., antisymmetric, transitive), neither are i , for i = 1, .. .,6 .
Converse ly, we can establish the following result.

Prop osition 4.9Let bea binaryrelationonrandomvariables, andlet i , i = 1, .. .,6
be its extensions to sets of random variables, given by Definition 4.1.

(a) If is reflexive,soare 3, 4 and 6.

(b) If is antisymmetric,so is 1.

(c) If is transitive,so are i for i = 1, 2, 3, 5,6.

Pro of: Firstofall, if is reflexive, X ≡ X for anyrandom variable X , and applying
Definition 4.1 we de duce thatX i X for any i = 3, 4,6 and any set of random variables
X .

Secondly,assume that is antisymmetric andthat two sets of random variables
X , Y satisfy X 1 Y and Y 1 X . Then, X Y and Y X for everyX ∈X and Y ∈Y ,
and by the antisymmetry prop erty of , wededuce that X =Y for every X ∈X ,Y ∈Y .
But this can only be if X = { Z } = Y forsome randomvariable Z . As a consequence,

1 is antisymmetric.

Finally, assume that istransitive, andletusshowthatsoare i for i = 1, 2, 3, 5,6.
Considerthree setsof random variables X , Y, Z :

1. If X 1 Y and Y 1 Z then X Y and Y Z for every X ∈X ,Y ∈Y ,Z ∈Z .
Applying the transitivity of , we dedu ce thatX Z for every X ∈X ,Z ∈Z ,
and as aconsequenceX 1 Z .
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2. If X 2 Y and Y 2 Z , there is X ∈X such that X Y for every Y ∈Y and
there is Y ∗ ∈Y such that Y ∗ Z for every Z ∈Z . In particular, X Y ∗ Z for
every Z ∈Z , whence, by the trans itivity of , X 2 Z .

3. If X 3 Y and Y 3 Z , for every Y ∈Y thereis some X Y ∈X such that X Y Y ,
and for every Z ∈Z there is YZ ∈Y such that YZ Z . As a consequence,for
every Z ∈Z itholds that X YZ Z , and th ereforeX 3 Z .

The pro of of the transitivity of 5 and 6 holdsbyanalogyto thatof 2 and 3,
resp ectively.

Our next example shows that reflexivity an d antisymmetry do not hold for defini-
tions different than the ones of s tate ments (a) and (b).Toshow thatthe fourthextension
is not transitive in general, even whenthe binaryrelationis, werefer toExample4.18,
where we shall show that the fourth extension is not tran sitive when considering the
binary relation to be the first degree stochastic dominance.

Example 4.10Consider theuniverse Ω= { ω} and, as we made inExample 4.4, de-
note by δx therandomvariable suchthat δx (ω ) =x , andthebinary relationdefinedin
Equation (4.1). Considerthe set ofrandom variables X defined byX = { δx :x ∈ (0, 1)} .
Then, although is reflexive, X is incomparable wit h itself with respect to 1, 2 and

5. Now,consider the setsof random variables X and Y defined by:

X = { δx :x ∈ [0 , 1]} and Y = { δx :x ∈ [0 , 1]\{ 0.5}} .

Then, X≡ i Y for any i = 2,3, 4, 5,6 , but X = Y, while is an antisymmetricrelation.

Another interesting prop erty in a binary relation is that of completeness, which means
thatgiven anytwoelements, either oneis preferredtothe otherorthey are indifferent,
but theyare never incomparable. From Prop osition 4.3, it follows that the incomparable
pairs with resp ect to an extension i are also incomparable with resp ect to the stronger
extensions. The following resultshowsthat if is a complete relation, then itsweakest
extensions (namely, 3, 4 and 6) also induce complete binary relations:

Prop osition 4.11Considera binary relation betweenrandomvariables, andlet i ,
for i = 1, .. .,6 , be its extensions to sets of random variables given by Definition 4.1. If

is complete, then so are 3, 4 and 6.

Pro of: Let X , Y be two sets of random variables, and assumethat X 3 Y . Then
there is some Y ∈Y such that X Y for all X ∈X . But since is acomplete
relation, this meansthat Y X for all X ∈X . As a consequence,Y 2 X , and applying
Prop osition 4.3 we deduce thatY 3 X . Hence , the binary relation 3 is complete.
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1 2 3 4 5 6

Reflexive • • •

Antisymmetric •

Transitive • • • • •

Complete • • •

Table 4.1: Summary of the prop erties of the binary relation that hold onto their
extensions 1, . . ., 6.

Onthe otherhand, if X 4 Y , we deduce from Prop osition 4.3 that also X 3 Y ,
whence the ab ove reasoning implies that Y 3 X and again from Prop osition 4.3 we
deduce that Y 4 X .

The pro of that 6 alsoinduces a completerelation isanalogous.

Letus now give an example where we see that the completenessof the binary
relationship do es not imply the completeness of the extensions 1, 2, 5.

Example 4.12Consideragain Example4.10, andtake thesets of random variables
X = Y = { δx :x ∈ (0 , 1)} and the binary relation definedinEquation (4.1). Although

is complete, X and Y are incomparable with respectto 1, 2 and 5.

Table 4.1 summarises the properties we have investigated in Prop ositions 4.9 and 4.11.

Remark 4.13Althoughin this report we shall focus on the particular application of
Definition4.1 to the relation associated with stochastic dominance or statisticalpref-
erence, there are other cases of interest. Perhapsthemost important oneis thatwhere
the comparison between pairs of random variables is made by means of their expected
utility:

X Y ⇔ E(X) ≥ E(Y );
it is not difficult to see that Definition 4.1 gives rise to some wel l-known generalisations
of expectedutility thatare formulatedinterms of lowerandupper expectations. Consider
two sets X , Y andassume thatthe expectationsof all their elements exist. Then with
respect to definition 1 it holdsthat:

X 1 Y⇔ E( X )= inf
X ∈X E(X) ≥ sup

Y ∈Y
E(Y ) = E( Y),

which relates this notion tothe concept of intervaldominance considered in [219].

If we now consider definition 3, it holds that

X 3 Y⇒ E( X )= sup
X ∈X

E(X) ≥ sup
Y ∈Y

E(Y ) = E( Y).
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Thus, definition 3 is stronger than the maximaxcriterium [184], whichis based on
comparing the best possibilities in our sets of alternat ives. Similarly, if we consider
definition 6 it holdsthat:

X 6 Y⇒ E( X )= inf
X ∈X E( X) ≥ inf

Y ∈Y E( Y ) = E( Y).

Thus, definition 6 isstrongerthanthe maximin criterium[82], whichcompares the
worst possibilities within the sets of alternatives.

Final ly, definition 4 implies that

X 4 Y⇒ E( X )= sup
X ∈X

E( X) ≥ inf
Y ∈Y E( Y ) = E( Y),

so if X is 4-preferred to Y then it is also preferred with respect to the criterion of
E-admissibility from [107]. See [43, 202]for relatedcomments.

4.1.1 Imprecise sto chastic dominance

Inthis subsection, weexplore insome detailthe casewherethebinaryrelation is the
one asso ciated with the notion of first degree sto chastic dominance we have intro duced
inDefinition2.2, i.e., the relation is defined by FSD . We call this extension impre cise
sto chastic dominance.We shall assume that the utility space Ω is [0 , 1], although the
results can be immediately extended to any bounded interval of real numb ers. Since
sto chastic dominance is based on the comparison of cumulative distribution functions
asso ciated with the random variables, we shall employ the notationFX FSD FY instead
of X FSD Y . For the same reason, along this subs ection we will consider sets of
cumulative distribution functions FX and FY insteadofsetsofrandom variables X and
Y .

Remark 4.14Fromnow on, we shall say that aset of distribution functions FX is
(F SD i )-preferred or that it (F SD i )-stochastical ly dominates another set of distribution
functions FY whenFX FSD i FY . We wil l also use the notation FSD i ,j when both FSD i

and FSD j hold.

An illustration of the six extensions of Definition 4.1 when considering sto chastic dom-
inance isgiven in Figure4.2, where we compare the set of distribution functions re pre-
sented by a continuous line(that weshall call continuous distributions inthis paragraph)
with the set of distribution functions represented by a dotte d line (that we shall call
dotted distributions). Ontheone hand, in the left picture the set of continuous dis-
tributions (FSD1)-sto chastically dominates the set of dotted distributions. In theright
picture, there is a continuous distribution that dominates all dotted distributions, and
a dotted distribution whichis dominated by all continuous distributions. T his means
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thatthe set of continuous distributions sto chastically dominates the set of dotted dis-
tributions with resp ect to the second to sixth definitions. Sincethere isalsoadotted
distribution that is dominated by a continuous distribution, we deduce that the set of
continuous distributions and the set of dotted distributions are equivalent with resp ect
to the fourth definition. Noticethat the binaryrelationship considered inExample 4.4

Figure 4.2: Examples of several definitions of imprecise sto chastic dominance.

is equivalent to first degree sto chastic dominance when the initial spaceΩ only has one
element. Then, such example shows that the converse implications of Prop osition 4.3 do
not hold in general when considering the binary relation to be the first degree sto chastic
dominance.

Now, we investigate which prop erties hold when considering the strict imprecise
sto chastic dominance.

Prop osition 4.15Consider the extensions of stochastic dominance given in Defini-
tion 4.1. Itholds that:

•F X FSD 2 FY ⇒F X FSD 3 FY .

•F X FSD 5 FY ⇒F X FSD 6 FY .

Pro of: Webegin proving that FSD 2 implies FSD 3 . Observe that FX FSD 2 FY is
equivalent to:

(I) FX FSD 2 FY ⇒∃ F ∗
1 ∈F X such that F ∗

1 ≤ F2 for all F2 ∈F Y .
(I I) FY FSD 2 FX ⇒∀ F2 ∈F Y , ∃F1 ∈F X such that F2 ≤ F1.

It follows from (I) and Prop osition 4.3 that FX FSD 3 FY . We only have to prove that
FY FSD 3 FX , or equivalently, that there is F1 ∈F X such that F2 ≤ F1 for any F2 ∈F Y .
If F ∗

1 satisfies this prop erty, the pro of is finished. If not, there issome F ∗
2 ∈F Y such

that F ∗
2 ≤ F ∗

1 , wh enceF ∗
1 =F

∗
2 . Applying (I I) , thereexists some F1 ∈F X such that

F ∗
1 ≤ F1, which meansthat F1(t) <F

∗
1 (t) for some t . As a consequence,F1(t ) <F 2(t)

for any F2 ∈F Y , whenceFY FSD 3 FX . Hence,FX FSD 3 FY .
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Let us now prove that FSD 5 ⇒ FSD 6 . Similarly to the previous cas e,FX FSD 5 FY

is equivalent to:

(I) FX FSD 5 FY ⇒∃ F ∗
2 ∈F Y such that F1 ≤ F ∗

2 for all F1 ∈F X .
( I I) FY FSD 5 FX ⇒∀ F1 ∈F X , ∃F2 ∈F Y such that F2 ≤ F1.

It follows from (I) and Prop osition 4.3 that FX FSD 6 FY . We only haveto prove that
FY FSD 6 FX , or equivalently, that there is F2 ∈F Y such that F2 ≤ F1 for any F1 ∈F X .
If F ∗

2 satisfies this prop erty, the pro of is finished. If not, there exists F ∗
1 ∈F X such

that F ∗
2 ≤ F ∗

1 , and applying (I) we deduce that F ∗
1 =F

∗
2 ∈F X . Applying (I I) we

deducethat there is some F2 ∈F Y such that F2 ≤ F ∗
1 , whence there is somet such that

F2(t ) >F
∗
1 (t ) =F

∗
2 (t) ≥ F1(t) for every F1 ∈F X . Hence,F2 ≤ F1 for any F1 ∈F X and

the prop erty holds.

Furthermore, next example sh ows that there are no other relationships b etween the
strict extensions of sto chastic dominance.

Example 4.16Considerthe sameconditionsof Example4.4: Ω= { ω} , δx isthe ran-
dom variable given by δx (ω ) =x and isgivenbyEquation (4.1),thatisequivalentto

FSD in thiscase.

Take the setsX = { δ1} and Y = { δ0,δ1} . It holdsthat:

X FSD 1 Y and X FSD 6 Y,

but X≡ FSD 2 Y and X≡ FSD 4 Y. Then, FSD 1 ⇒ FSD 2 and FSD 6 ⇒ FSD 4 .

If we consider thesets X = { δ0,δ1} and Y = { δ0} , it holds that:

X FSD 1 Y and X FSD 3 Y,

but X≡ FSD 5 Y and X≡ FSD 4 Y. Then, FSD 1 ⇒ FSD 5 and FSD 3 ⇒ FSD 4 .

With res p ect to the other results, since FSD is refl exi ve and transitive,we canapply
Prop osition 4.6 and characterise the equivalences between FSD 2 and FSD 3 , and also
between FSD 5 and FSD 6 by means of the existence of a maximum and a min imum value
in the sets FX , FY wewant tocompare. Moreover, we can deduce from Prop osition 4.9
andExamples4.10 and4.12 that FSD i isreflexive for i = 3, 4,6 and transitive for
i = 1, 2, 3, 5,6. On the othe r hand, since two different random variables may induce the
same distribution func tion, FSD is notantisymmetric. Nevertheles s,if we are deal ing
with sets of cumulative distribution fun ctions instead of sets of random variables, FSD

b ecomes antisymmetric.Next example shows that (F SD4) is not tran sitive in general.

Remark 4.17Through this subsection we shall present severalexamples showing that
the propositions established cannot be improved, in the sense that the missing implicat ions
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do not hold in general. Some of these examples wil l consider distribution functions associ-
ated with probability measures with finite supports.Tofixnotation, given a= (a 1, . . . ,an )
such that a1 + .. . +a n =1 , and t= (t 1, . . . ,tn ) with t1 ≤ ... ≤ tn , the function Fa,t

corresponds to the cumulative distribution function of the probability measurePa,t satis-
fying Pa,t ({ t i } ) =a i for i = 1, .. .,n . Indeed, the only continu ous distribution function
we shal l consider is the identityF =id , defined byF (x ) = id(x ) =x for any x ∈ [0 , 1].

Example 4.18Consider the three sets of cumulative distribution functionsFX , FY and
FZ defined by:

FX = { F(0. 5,0.5) ,(0 ,1) } , FZ = { F } , FY = FX ∪F Z .

Since both sets FX and FZ areincluded in FY , Proposition 4.29later onassures that
FX ≡ FSD 4 FY and FY ≡ FSD 4 FZ . However, FX and FZ arenot comparable, since the
distribution functions F(0.5,0 .5), (0,1) and F arenotcomparablewithrespecttofirst degree
stochastic dominance.

Since FSD also complies with Pareto dominanc e (Equ ation (4.2)), we deduce from
Prop osition 4.7 that when the sets FX and FY to compare have b oth a maximum and
aminimum element, we can easilycharacterise the conditions FSD i , i = 1, .. .,6 by
comparing thes e maximum and minimum elements only. Finally, note that, as weal-
ready mention ed in Example 2.3, FSD isnot a completerelation, andasa consequence,
Prop osition 4.11 is not applicable in this context.

As we re marked in Section 2.2.1,p-b oxes are one modelwithin the theory of im-
precise probabilities. Sto chastic dominance between sets of probabilities or cumulative
distribution functions can be studied by means of a p-b ox representation.Given anyset
of cumulative distribution functions F , it induces a p-b ox (F , F), aswesaw inEqua-
tion (2.16):

F(x):= inf
F ∈F F (x ), F (x ) := sup

F ∈F
F (x ).

Our next result relates the imprecise sto chastic dominance for sets of cumulative distri-
bution functions to their asso ciated p-b ox representation.

Prop osition 4.19Let FX and FY be two set s of cumulative distribution functions, and
denote by (F X ,F X ) and (F Y ,F Y ) the p-boxes theyinduce bymeans ofEquation (2.16).
Then the fol lowing statements hold:

1. FX FSD 1 FY ⇔ F X FSD F Y .

2. FX FSD 2 FY ⇒ F X FSD F Y .

3. FX FSD 3 FY ⇒ F X FSD F Y .
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4. FX FSD 4 FY ⇒ F X FSD F Y .

5. FX FSD 5 FY ⇒ F X FSD F Y .

6. FX FSD 6 FY ⇒ F X FSD F Y .

Pro of:

(1) Note that FX FSD 1 FY ifand only if F1 ≤ F2 for every F1 ∈F X ,F 2 ∈F Y , and
this is equivalent to F X =sup F1 ∈F X F1 ≤ inf F 2 ∈F Y F2 =F Y .

(3) By hyp othesis, for every F2 ∈F Y thereis some F1 ∈F X such that F1 ≤ F2. Asa
consequence,F X ≤ F2 ∀F2 ∈F 2 ⇒ F X ≤ inf F 2 ∈F Y F2 =F Y .

(4) Ifthere are F1 ∈F X and F2 ∈F Y such that F1 ≤ F2, then F X ≤ F1 ≤ F2 ≤ F Y .

(6) Iffor every F1 ∈F X thereis some F2 ∈F Y such that F1 ≤ F2, then it holds that
F X =sup F1 ∈F X F1 ≤ supF2 ∈F Y F2 =F Y .

(2,5) Thesecond (resp. fifth) statement follows from the third (resp., sixth) and Prop o-
sition 4.3.

Nextexampleshows thatthe converse implications inthesecondto sixthstatementsdo
nothold in general.

Example 4.20Take FX = { F(0 .3,0.7) ,(0 ,1) ,F (0. 2,0.8) ,(0 .2,0.3) } , FY = { F } . They are in-
comparableunder any ofthe definitions but F X ≤ F Y =F =F Y ≤ F X , from which we
deducethat the converse implications in Proposition 4.19 donot hold.

As we mentioned after Definition 4.1, the differe nce b etween(F SD2) and (F SD3) lies on
whetherthe set ofdistribution functions FX has a “b est case”, i.e., a smallest distribution
function; similarly, the difference between (F SD5) and (F SD6) lies on whether FY

has agreatest distribution function. Takingthis intoaccount, we can easilyadapt the
conditions of Prop osition 4.6 towards imprecise sto chastic dominance:

Prop osition 4.21Let FX and FY be twosets of cumulativedistribution functions.

1. F X ∈F X ⇒F X FSD 2 FY ⇔F X FSD 3 FY .

2. F Y ∈F Y ⇒F X FSD 5 FY ⇔F X FSD 6 FY .

Pro of: To see the firststatement, use that by Prop osition 4.3 FX FSD 2 FY implies
FX FSD 3 FY . Moreover, FX FSD 3 FY if and only if for every F2 ∈F Y there is
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F1 ∈F X such that F1 ≤ F2. In particular, since F X ≤ F1 for every F1 ∈F X , it holds
that F X ≤ F2 for every F2 ∈F Y , and consequently, asF X ∈F X , that FX FSD 2 FY .

The pro of of the second statement is analogous.

When b oth the lower and upp er distributions b elong to the corresp onding p-box,
they can b e used to characterise the pre ferences b etween them.In that case, the sto chas-
tic dominance b etween two sets of cumulative distribution functions can b e characte rised
by means of the relationships of sto chastic dominance between their lower and upper dis-
tribution functions.

Corollary 4.22Let FX , FY betwosets of cumulative distribution functions, and let
(F X ,F X ) and (F Y ,F Y ) be their associated p-boxes.If F X ,F X ∈F X and F Y ,F Y ∈F Y ,
then

1. FX FSD 1 FY ⇔ F X ≤ F Y .

2. FX FSD 2 FY ⇔F X FSD 3 FY ⇔ F X ≤ F Y .

3. FX FSD 4 FY ⇔ F X ≤ F Y .

4. FX FSD 5 FY ⇔F X FSD 6 FY ⇔ F X ≤ F Y .

Pro of: The first item has already b een showed in Prop osition 4.19.The equivalences
between(F SD2) − (F SD3) and (F SD5) − (F SD6) are given by Prop osition 4.21.Also,
the directimplications of second, third and fourth items are given by Prop osition 4.19.
Let us prove the converse implic ations:

• If F Y ≥ F X ∈F X , there is some F1 ∈F X such that F1 ≤ F2 for all F2 ∈F Y , and
as a consequenceFX FSD 2 FY .

• If F X ≤ F Y , thenthere exist F1 ∈F X and F2 ∈F Y such that F1 ≤ F2, whence
FX FSD 4 FY .

• If F X ≤ F Y , then since F Y ∈F Y thenthere issome F2 ∈F Y such that F1 ≤ F2

for every F1 ∈F X , becauseFX ≤ F X for any FX ∈F X .

In Section 2.1.1 we established a characterisation of sto chastic dominance in terms of
exp ectations:Theorem2.10assures thatgiventworandomvariables X and Y , X FSD Y
ifand only if E (u( X ))≥ E (u( Y ))for every increasingfunction u. When we com pare sets
of random variables, we must replace these exp ectations by lower and upp er exp ectations.
Foranygiven set of distribution functions F and any increasing function u : [0, 1]→ R,
we shall denoteE F (u) := inf F ∈F EPF (u) and E F (u) := sup F ∈F EPF (u) .
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Theorem 4.23Letus consider twosetsof cumulativedistributionfunctions FX and FY ,
and let U be the set of all increasing functions u : [0 , 1]→ R. The fol lowing statements
hold:

1. FX FSD 1 FY ⇔ E F X (u) ≥ E F Y (u) for every u ∈U .

2. FX FSD 2 FY ⇒ E F X (u) ≥ E F Y (u) for every u ∈U .

3. FX FSD 3 FY ⇒ E F X (u) ≥ E F Y (u) for every u ∈U .

4. FX FSD 4 FY ⇒ E F X (u) ≥ E F Y (u) for every u ∈U .

5. FX FSD 5 FY ⇒ E F X (u) ≥ E F Y (u) for every u ∈U .

6. FX FSD 6 FY ⇒ E F X (u) ≥ E F Y (u) for every u ∈U .

Pro of:

1. Firstof all, FX FSD 1 FY if and only ifforevery F1 ∈F X and F2 ∈F Y F1 FSD F2.
This is equivalent to EP1 (u) ≥ EP2 (u) , for every u ∈U , and every F1 ∈F X and
F2 ∈F Y , where Pi is the probability asso ciated with Fi , for i = 1,2 , andthis in
turn is equivalent to

E F X (u) = inf { EPF (u) | F ∈F X }≥ sup{ EPF (u) | F ∈F Y } =E F Y (u)

for every u ∈U .

3. If FX FSD 3 FY , the n for every F2 ∈F Y there is F1 ∈F X such that F1 ≤ F2.
Equivalently, for every F2 ∈F Y there is F1 ∈F X such that EP1 (u) ≥ EP2 (u) for
every u ∈U . Then given u ∈U and F2 ∈F Y ,

EP2 (u) ≤ sup{ EPF (u) | F ∈F X } =E F X (u),

and consequently

E F Y (u ) = s up{ EPF (u) | F ∈F Y }≤ E F X (u).

2. The second statement follows from the third one and from Prop osition 4.3.

4. Let us assum e that FX FSD 4 FY . The n, bydefinition there are F1 ∈F X and
F2 ∈F Y such that F1 ≤ F2, or equivalently, EP1 (u) ≥ EP2 (u) for every u ∈ U. We
deduce that

E F X (u) = sup{ EPF (u) | F ∈F X }≥ EP1 (u)
≥ EP2 (u) ≥ inf { EPF (u) | F ∈F Y } =E F Y (u).
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6. If FX FSD 6 FY , the n for every F1 ∈F X there is F2 ∈F Y such that F1 ≤ F2.
Equivalently, for every F1 ∈F X , EP1 (u) ≥ EP2 (u) for someF2 ∈F Y andfor every
u ∈U . Thus, forevery F1 ∈F X and u ∈U ,

EP1 (u) ≥ inf { EPF (u) | F ∈F Y } ,

and consequently

E F X (u) = inf { EPF (u) | F ∈F X }≥ inf { EPF (u) | F ∈F Y } =E F Y (u).

5. Finally, the fifth statement follows from the sixth and from Prop osition 4.3.

Remark 4.24If we considerthe extension of stochastic dominance FSD 3,6 , that is,
FX FSD 3 ,6 FY if andonly if FX FSD 3 FY and FX FSD 6 FY , it holds that:

FX FSD 3,6 FY ⇒
F X FSD F Y and F X FSD F Y .

E F X (u) ≥ E F Y (u) and E F X (u) ≥ E F Y (u) ∀u ∈U .
(4.3)

With asimilar notation, wecan consider FSD 2,5 , and it holds that FX FSD 2,5 FY
implies FX FSD 3,6 FY . Then, from theprevious resultswe deducethat FX FSD 2,5 FY

also impliesthe results ofEquation (4.3).

Taking into account Equation (2.6), the ab ove implications hold in particular when we
replace the set U by the subset U∗ of increasing and bounded functions u : [0, 1] → R.
This will be useful when comparing random sets bymeans of sto chastic dominance in
Section 4.2.1.

Remark 4.25Theorem 4.23shows thattheextensions of first degree stochastic domi-
nancetosets ofalternatives arerelatedto the comparison of thelower and upper expecta-
tions they induce. Taking this idea int o account, we may introduce alternative definitions
by consideringa convex combination of these lower and upper expectations, in a similar
way tothe Hurwicz criterion [96]:

FX FSD H FY ⇔ λE F X (u) + (1 − λ)E F X (u) ≥ λE F Y (u) + (1 − λ)E F Y (u),

for all u ∈U , where λ ∈ [0 , 1]plays the roleof a pessimistic index. It isnotdifficult to
see that

FX FSD 1 FY ⇒F X FSD 2,5 FY ⇒F X FSD 3 ,6 FY ⇒F X FSD H FY

and that the converses donot hold.

When the b ounds of the p-b oxes b elong the sets of distribution functions, the implications
on Theorem 4.23 b ecome equivalenc es.
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Corollary 4.26Let FX and FY betwosets ofcumulativedistributionfunctions, and let
(F X ,F X ) and (F Y ,F Y ) be theirassociated p-boxes.If F X ,F X ∈F X and F Y ,F Y ∈F Y ,
then:

1. FX FSD 1 FY ⇔ E F X (u) ≥ E F Y (u) for every u ∈U .

2. FX FSD 2 FY ⇔F X FSD 3 FY ⇔ E F X (u) ≥ E F Y (u) for every u ∈U .

3. FX FSD 4 FY ⇔ E F X (u) ≥ E F Y (u) for every u ∈U .

4. FX FSD 5 FY ⇔F X FSD 6 FY ⇔ E F X (u) ≥ E F Y (u) for every u ∈U .

Pro of: The proof is based on the factthat, since F X ,F X ∈F X and F Y ,F Y ∈F Y ,
then:

E F X (u) =E F X (u ), E F X (u) =E F X (u),
E F Y (u) =E F Y (u), E F Y (u) =E F Y (u).

Then, applying Corollary 4.22, the implications directly hold.

It is also possible to consider then-th degree sto chastic dominance, forn ≥ 2 as the
binary relation in Definition4.1. Inthatcase, weshalldenoteby nSD i or by (nSD i ) its
extensions. With thisrelation, we can also state similar re sults to the ones established
for first degree sto chastic dominance. For instan ce, the followin g statements hold for
imprecisen-th degree sto chastic dominance:

•F X nSD 2 FY ⇒F X nSD 3 FY (the pro of is analogous to that of Prop osition 4.15).

•F X nSD 5 FY ⇒F X nSD 6 FY (the pro of is analogous to that of Prop osition 4.15).

•F X nSD i FY ⇒F X mSD i FY for any n<m (see Equation (2.4)).

In addition, theconnection of thecomparison of setsof cumulativedistribution functions
with the asso ciated p-boxes (Proposition 4.19) or with the asso ciated lower and upp er
exp ectations (Theorem 4.23) can also be stated for the imprecisen-th degree sto chastic
dominance as follows:

Prop osition 4.27Let FX and FY be two set s of cumulative distribution functions, and
denote by(F X ,F X ) and (F Y ,F Y ) the associated p-boxes.Denot e byU∗

n the set ofbounded
and increasing functions u: R → R that are n-monotone. Thenit holds that:

•F X nSD 1 FY holds ifand only if F X nSD 1 F Y , and this is equivalent to

E F X (u) ≥ E F Y (u)

for every u ∈U ∗
n .
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•F X nSD 2 FY implies:

F X nSD 2 F Y and E F X (u) ≥ E F Y (u) for every u ∈U ∗
n .

•F X nSD 3 FY implies:

F X nSD 3 F Y and E F X (u) ≥ E F Y (u) for every u ∈U ∗
n .

•F X nSD 4 FY implies:

F X FSD 4 F Y and E F X (u) ≥ E F Y (u) for every u ∈U ∗
n .

•F X nSD 5 FY implies:

F X nSD 5 F Y and E F X (u) ≥ E F Y (u) for every u ∈U ∗
n .

•F X nSD 6 FY implies:

F X nSD 6 F Y and E F X (u) ≥ E F Y (u) for every u ∈U ∗
n .

Furthermore, the converse implications hold whenF X ,F X ∈F X and F Y ,F Y ∈F Y .

We omit the proof b ecause it is analogous to the one of Prop osition 4.19, Theorem 4.23
andCorollaries 4.22 and 4.26.

In the remainder of the subsection we shall investigate several prop erties of imprecise
sto chastic dominance.However, from now on we shall fo cus on the first degree stochastic
dominance for two main reasons: onthe onehand, it is the most common sto chastic
dominance in the literature and, on the other hand, as we have just seen, the results for
first degree can be easily extended forn-th degree sto chastic dominance.

Connection with previous approaches

A first approach tothe extension of the sto chastic dominance towards an imprecise
framework was made by Deno eux in [61].

He considered two random variablesU and V such that P(U ≤ V) =1 . They can
b e equivalently represented as a random interval [U, V], which in turn induces a belief
and a plausibility function, as we saw in Definition 2.43:

bel (A) = P ([U, V] ⊆ A) and pl(A) = P ([U, V] ∩ A= ∅)

for every element A in the Borelsigma-algebra βR. Thus, for every x ∈ R:

bel ((−∞ ,x]) =F V (x) and pl ((−∞ ,x]) =F U (x ).
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The asso ciated set of probability measuresP compatible with bel and pl is give n by:

P = { P probability : bel (A)≤ P (A) ≤ pl (A) for every A ∈ βR} .

Deno eux considered two random closed intervals[U, V] and [U ,V] . One possible way
of comparing them is to compare their asso ciated sets of probabilities:

P = { P probability : bel (A)≤ P (A) ≤ pl (A) for every A ∈ βR} .
P = { P probability : bel (A) ≤ P (A) ≤ pl (A) for every A ∈ βR} .

Based onthe usual ordering b etwee n realintervals (see [78]), Denoeux prop osed the
following notions:

•P P⇔ pl ((x, ∞ )) ≤ bel ((x,∞ )) for every x ∈ R.

•P P⇔ pl (( x,∞ )) ≤ pl ((x,∞ )) for every x ∈ R.

•P P⇔ bel (( x,∞ )) ≤ bel ((x,∞ )) for every x ∈ R.

•P P⇔ bel (( x,∞ )) ≤ pl ((x,∞ )) for every x ∈ R.

It turns out that the above notions can be characterised in terms of the sto chastic dom-
inance b etween the lower and upp er limits of the random intervals:

Prop osition 4.28 ([61])Let (U, V) and (U ,V) be two pairs of random variables sat-
isfying P(U ≤ V) = P(U ≤ V )=1 , and let P and P their associated sets of probability
measures.The fol lowing equivalences hold:

•P P⇔ U FSD V .

•P P⇔ U FSD U .

•P P⇔ V FSD V .

•P P⇔ V FSD U .

Note that the ab ove definitions can be represented in an equivalent way by means
of p-b oxes:if we conside r the set of distribution functions induced by P , we obtain

{ F :F V ≤ F ≤ FU } ,

i.e., the p-b ox determined by FV and FU . Similarly, the set P induces the p-b ox
(FV ,F U ), and Deno eux’s definitions are equivalent to comparing the lower and up-
p er distribution functions of these p-b oxes, as we can see from Prop osition 4.28. Note
moreover thatthe same result holds if we considerfinitelyadditive probability measures
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instead of σ-additive ones, b ecause b oth of them determine the same p-b ox and the lower
and upp er distribution functions are included in both cases.

There is a clear connection b etween the scenario prop osed by Deno eux and our pro-
posal. Let [U, V] and [U ,V] b e two random closed intervals, whose asso ciated belief and
plausibility functions determine the setsofprobability measures P, P andthe setsofcu-
mulative distribution functions F and F . Applying Prop osition 4.28 and Corollary 4.22,
we obtain the following equivalences:

•F FSD 1 F⇔ FU (t) ≤ FV (t) for every t ∈ R ⇔P P .

•F FSD 2 F ⇔F FSD 3 F⇔ FV (t) ≤ FV (t) for every t ∈ R ⇔P P .

•F FSD 4 F⇔ FV (t) ≤ FU (t) for every t ∈ R ⇔P P .

•F FSD 5 F ⇔F FSD 6 F⇔ FU (t) ≤ FU (t) for every t ∈ R ⇔P P .

Hence,condition gives rise to (F SD2) (when P has a smallest distribution function)
and (F SD3) (when it do es not have it); similarly, condition pro duces(F SD5) (if P

has a greatest distributionfunction) and (F SD6) (otherwise).

This also shows that our prop osal is more general in the sense that it can be applied
to arbitrary sets of probability measures, and not only those asso ciated with a random
closed interval. Ontheotherhand, ourworkismorerestrictiveinthesensethatweare
assuming that our referential space is [0,1], instead of the real line. Aswe mentioned
at the beginning of the section, our results are imm ediately extendable to distribution
functions taking values in any closedinterval [a, b], where a<b are real numb ers.The
restriction to b ounded intervals is made so that the lower envelop e of a set of cumulative
distribution functions is a finitely additive distribution function, which may not be the
case if we consider the whole real line as our referential space. Onesolution tothis
problem is to add to our space a smallest and a greatest value0Ω ,1 Ω , so that we always
have F(0 Ω) =0 and F(1 Ω) =1 .

Increasing imprecision

Next we study the behaviour of the differentnotions of sto chastic dominance for sets
of distributions when we use them to compare two sets of distribution functions, one
of which is more imprecis e than the other. This may be useful in some situations: for
instance, p-b oxes can be seen as confidence bands [38,174], which mo delour imprecise
information ab out a distribution function taking into account a given sample and a fixed
confidence level. Thenifweapplytwodifferentconfidence levelsto thesamedata, we
obtain two con fidence bands, one included in the other, and we may study which of the
two is preferred according to the different criteria we have prop osed. In thissense, we
may also study our preferences b etween a set of portfolios,that we representbymeans
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of a set of distribution functions, and a greater set, where we include more distribution
functions, but where also the asso ciated risk may increase.

Wearegoing toconsider two different situations: thefirstone iswhenourinfor-
mation is given by a set of distribution fu nctions. Hence, weconsidertwosets FX ⊆F Y

and investigate our preferences b etween them:

Prop osition 4.29Let us consider two set s of cumulative distribution functionsFX and
FY such that FX ⊆F Y . It holdsthat:

1. If FX hasonly onedistributionfunction, then all thepossibilities arevalid for
( F SD1). Otherwise, if FX is formedby more than one distributionfunction, FX
and FY are incomparable withrespect to (F SD1).

2. With respectto (F SD2), . . . , (F SD6), thepossible scenariosare summarisedin the
fol lowing table:

FSD 2 FSD 3 FSD 4 FSD 5 FSD 6
FX FSD i FY • •
FY FSD i FX • •
FX ≡ FSD i FY • • • • •

FX , FY incomparable • •

Pro of: Let us prove that the p ossibilities ruled out in the statement of the prop osition
cannot happ en:

1. Onthe onehand, if FX has morethanone cumulative distribution function, we
deduce that FX is in comparable with i tself with resp ect to (F SD1), andasa
consequence it is also incomparable with resp ect to the greater setFY .

2. SinceFX ⊆F Y , for anyF1 ∈F X there existsF2 ∈F Y such that F1 =F 2. Hence, we
always haveFY FSD 3 FX and FX FSD 6 FY . Thus, weobtainthat FX FSD 3 FY ,
FY FSD 6 FX , and b oth sets cannot be incomparable with resp ect to(F SD3) and
( F SD6). Moreover, using Prop osition 4.3 FX FSD 2 FY and FY FSD 5 FX are
not possible. Thisalsoshows that FX ≡ FSD 4 FY , because anyF ∈F X ⊆F Y is
equivalent to itself.

Next example shows that all the other scenarios are indeed possible.

Example 4.30 • Let ussee that FX FSD i FY is possible for i = 1, 5,6 . For this
aim, take FX = { F } and FY = { F ,F1,0 } . Then, it holds that FX FSD i FY for
i = 1,5,6 and FX ≡ FSD i FY for i = 2,3 .
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• Letus checkthat FY FSD i FX , is possible for i = 1, 2,3 . Consider FX = { F } and
FY = { F ,F1,1 } . Then, it holds that FY FSD i FX for i = 1, 2,3 and FX ≡ FSD i FY
for i = 5,6 .

• Now, letusseethat FX ≡ FSD i FY , is possible for i = 1, ...,6 . Forthisaim, take
FX = FY = { F } . Then, FX ≡ FSD 1 FY and by Proposition 4.3, FX ≡ FSD i FY for
any i = 2, ...,6 .

• To seethatincomparabilityispossiblefor i = 1, 2,5 , let FX = FY = { F ,F1,0 .5} .
Then FX and FY are (F SD i ) incomparable for i = 1, 2,5 ,since F and F1,0.5 are
incomparable.

Remark 4.31A particular case of the above result would be when we compare a set of
distribution functions FX with itself, i.e., when FY = FX . In that case, FX ≡ FSD i FX
for i = 3, 4,6 , as we have seen in Proposition 4.9. Withrespect to (F SD1), (F SD2) and
(F SD5), wemay haveeither incomparability orindifference: to seethat wemay have
incomparability, consider FX = FY = { F ,F1,0.5 } ; for indifference take FX = FY = { F } .

The second scenario corresp onds to the case where our information ab out the set of
distribution functions is given by means of a p-b ox.A more imprecise p-b ox corresp onds
to the case where either the lower distribution function is smaller, the upp er distribution
function is greater, or both. We begin by considering the latter case.

Prop osition 4.32Letus considertwo setsofcumulative distributionfunctions FX and
FY , and let (F X ,F X ) and (F Y ,F Y ) denote their associated p-boxes.Assume that F Y <
F X <F X <F Y . Then the possible scenarios ofstochastic dominance are summarised
in the fol lowing table:

FSD 1 FSD 2 FSD 3 FSD 4 FSD 5 FSD 6
FX FSD i FY • • •
FY FSD i FX • • •
FX ≡ FSD i FY •

FX , FY incomparable • • • • • •

Pro of: Using Proposition 4.3, weknow that FX FSD 1 FY ifand onlyif F X ≤ F Y ,
which isincompatible with theassumptions. Similarly, wecansee that FY FSD 1 FX

andas aconsequence they are incomparable.

On the other hand, if FX FSD i FY , for i = 2,3 , using Prop osition 4.19 it holds
that F X ≤ F Y , a contradiction with the hyp othesis.

Similarly, if FY FSD i FX , for i = 5,6 , we deduce from Prop osition 4.19 that
F Y ≤ F X , again a contradiction.
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Next example shows that the scenarios included in the table are p oss ible.

Example 4.33 • Letusseethat for (F SD i ), i = 2, .. .,6 , FX and FY can be in-
comparable.For thisaim weconsider FX = { F ,F ∗} ,where F ∗ =max { F ,F1,0.7 } ,
and FY = { F1,0.5 ,F { (0. 5,0.5) ,(0 ,1)} } . It is easy to check that bot h sets of cumulative
distribution functionsare incomparable, since every distribution functionon FX is
incomparable with every distribution function on FY .

• Let usnow consider

FX = { F ,F ∗} and FY = { F(0.5 ,0.5) ,(0, 0.5) ,F (0 .5,0.5) ,(0 .5,1) } .

Then FY FSD i FX for i = 2,3 and FX FSD i FY for i = 5,6 . As a consequence,
both sets are indifferent with respect to Definition (F SD4).

• Final ly, it only remains to see that we may have strict preference under Definition
( F SD4). On theone hand, ifwe considerthe sets

FX = { F ,F ∗} and FY = { F1, 0.5,F (0.5 ,0.5),(0, 1) ,F (0.5 ,0.5) ,(0,0 .5) } ,

it holds that FX FSD 4 FY . In theother hand, ifwe consider

FY = { F1,0.5 ,F (0 .5,0.5) ,(0 ,1) ,F (0 .5,0.5) ,(0 .5,1) } ,

we obtain that FY FSD 4 FX .

Although the inclusion FX ⊆F Y implies that F Y ≤ F X ≤ F X ≤ F Y , wemay have
F Y <F X <F X <F Y even if FX and FY aredisjoint, forinstancewhentheselowerand
upp er distribution functions are σ-additive and we take the sets FX = { F X ,F X } and
FY = { F Y ,F Y } . For this reason in Prop osition 4.29 we cannot haveFX FSD 4 FY nor
FY FSD 4 FX and under the conditions of Prop osition 4.32 we can.

Prop osition 4.34Undertheaboveconditions, ifinaddition F X ,F X belong toFX and
F Y ,F Y belong toFY , the possible scenarios are:

F SD1 FSD 2 FSD 3 FSD 4 FSD 5 FSD 6
F1 FSD i F 2 • •
F2 FSD i F 1 • •
F1 ≡ FSD i F 2 •

F 1, F2 incomparable •

Pro of:

• It isobvious that FX and FY are incomparable with resp ect to Definition(F SD1).
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• It holds that F Y <F X ≤ F1 for any F1 ∈F X , and then FY FSD 2 FX . More-
over, using Corollary4.22 (F SD2) and (F SD3) are equivalent, and consequently
FY FSD 3 FX .

• We knowthat F Y <F X , then FY FSD 4 FX , and moreover F X <F Y , and then
FX FSD 4 FY . Using both inequalities we obtain that FX ≡ FSD 4 FY .

• Itholds that F1 ≤ F X <F Y for any F1 ∈F X , and then FX FSD 5 FY . Further-
more, using Corollary4.22, (F SD5) and (F SD6) are equivalent, andconsequently
FX FSD 6 FY .

In partic ular, the ab ove result is applicable whenFX =(F X ,F X ) and FY =(F Y ,F Y ),
with F X ,F X ∈F X and F Y ,F Y ∈F Y .

To conclude this part, we consider the case where only one of the bounds becomes
more imprecise in the second p-b ox.

Prop osition 4.35Letus considertwo setsofcumulative distributionfunctions FX and
FY , and let (F X ,F X ) and (F Y ,F Y ) denote their associated p-boxes.

a) Let usassume that F Y <F X <F X =F Y . Then thepossible scenariosare:

F SD1 FSD 2 FSD 3 FSD 4 FSD 5 FSD 6
F X FSD i F Y • • •
F Y FSD i F X • • • • •
F X ≡ FSD i F Y • • •

F X , F Y incomparable • • • • • •

b) Let usassume that F Y =F X <F X <F Y . Then thepossible situationsare:

F SD1 FSD 2 FSD 3 FSD 4 FSD 5 FSD 6
F X FSD i F Y • • • • •
F Y FSD i F X • • •
F X ≡ FSD i F Y • • •

F X , F Y incomparable • • • • • •

Pro of:

a) Let us first show that incomparability is the only situation possible according to
Definition (F SD1). As proven in Prop osition 4.19, FX FSD 1 FY if and only if
F X ≤ F Y . But this inequality is not compatible with the hyp othesis. For thesame
reason, the converse ine quality,F Y ≤ F X is not possible either.
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With resp ect to (F SD2), (F SD3), note thatif F Y <F X ,

∃x0 ∈ [0 , 1]such that F Y (x0)= inf
F2 ∈F Y

F2(x 0) <F X (x 0)

whence there existsF ∗
2 ∈F Y such that F ∗

2 (x 0) <F X (x 0) ≤ F1(x 0) for all F1 ∈F X .
Thus, F1 ≤ F ∗

2 for any F1 ∈F X and FX FSD 3 FY . Applying Prop osition 4.19,
FX FSD 2 FY .

b) The pro of concerning Definition (F SD1) is analogous to the onein a).
Concerning (F SD5), (F SD6), note thatsince F X <F Y ,

∃x0 ∈ [0 , 1]such that F Y (x0)= sup
F2 ∈F Y

F2(x 0) >F X (x 0),

whence there isF ∗
2 ∈F Y such that F ∗

2 (x 0) >F X (x 0) ≥ F1(x 0) for all F1 ∈F X , then
F1 ≥ F ∗

2 for any F1 ∈F X and FY FSD 6 FX . It also follows from Prop osition 4.19
that FY FSD 5 FX .

Next we give examples showingthat when the lower distribution function is smaller
in the second p-box and the upp er distribution functions coincide, all the p ossibiliti es
not ruled out in the first table of the previous prop osition can arise. Similar examples
can be constructed for the case whereF X =F Y and F X <F Y .

Example 4.36 • We beginbyshowing that FX and FY canbe incomparable under
any definition (F SD i ) for i = 2, .. .,6 . Letus consider thesets:

FX = { F(0 .5− 1
n ,0 .5, 1

n ),(0,0.5 ,1) | n ≥ 3} and FY = { F1,0.5 ,F (0 .5,0 .5),(0 ,1) } .

For all F1 ∈F X and F2 ∈F Y it holdsthat F2 FSD F1 and F1 FSD F2. Then,
FX and FY are incomparable according to(F SD4), and thereforealso accordingto
( F SDi ) for i = 2, 3,5,6 .

• To seethat FX , FY can beindifferent accordingto (F SD4), (F SD5) or (F SD6),
take:

FX = { F1,0 .5,F (0.5, 0.5),(0,0 .5) } and FY = { F(0 .5,0. 5),(0 ,0.5) ,F 1,1 } .

SinceF X =F Y =F (0 .5,0. 5),(0 ,0.5) belongsto bothsets, theyverifythat FX FSD 5 FY
and also FY FSD 5 FX . Therefore, FX ≡ FSD 5 FY . As a consequ ence, they are also
indifferent according to (F SD6) and (F SD4).

• Nextwe showthat itis alsopossible that FX FSD i FY for i = 5,6 . Letus consider

FX = { F(1 − 1
n , 1

n ), (0,1) :n ≥ 3} and FY = { F1,0 ,F 1,1 } .

They verify that FX FSD 5 FY since F(1 − 1
n , 1

n ) ,(0, 1) FSD F1,0 for all n; but
FY FSD 5 FX sincethere isnot F ∈F X such that F1,0 FSD F . We conclude
that FX FSD 5 FY , and applying Proposition 4.15 also FX FSD 6 FY .



174 Chapter 4. Comparisonofalternatives underuncertainty andimprecision

• To see thatwe may alsohave FY FSD i FX for i = 5,6 , take:

FX = { F1,0 ,F (0 .75,0.25),(0 ,1) } and FY = { F(1 − 1
n , 1

n ) ,(0 ,1) :n ≥ 3} .

Then FY FSD 5 FX becauseF(1 − 1
n , 1

n ),(0 ,1) FSD F1,0 for every n, but they are not
indifferent with respect to (F SD5). Hence, FY FSD 5 FX andapplying Proposi-
tion 4.15 also FY FSD 6 FX .

• Let usgive next anexample where FX FSD 4 FY . Consider

FX = { F(0. 6,0.4) ,(0 .5,1) ,F (0 .5− 1
n ,0 .5, 1

n ),(0,0.5, 1) :n ≥ 3} and
FY = { F1,0.5 ,F (0 .5,0 .5),(0 ,1) } .

Then, FX FSD 4 FY since F(0.6,0 .4), (0.5 ,1) FSD F1,0.5 but FY FSD 4 FX since

F1,0.5 (0. 5) >F (0 .5− 1
n ,0.5, 1

n ),(0,0.5 ,1) (0. 5)for all n ≥ 3

and F1,0.5 (0 .5) >F (0.6 ,0.4),(0. 5,1) (0. 5). Also

F(0.5, 0.5) ,(0,1) (0) >F (0 .5− 1
n ,0 .5, 1

n ),(0,0.5, 1) (0) for all n ≥ 3

and F(0. 5,0.5) ,(0 ,1) (0) >F (0.6, 0.4),(0.5 ,1) (0).

• We concludeby showingthat itmay alsohappen that FY FSD i FX for i = 2, 3,4 .
Let us consider

FX = { F(0.5 − 1
n ,0.5, 1

n ), (0,0.5,1) :n ≥ 3} and
FY = { F1,0.5 ,F (0 .5,0.5) ,(0 ,1) ,F (0 .5,0.5) ,(0 .5,1) } .

It holds that

F(0.5 ,0.5) ,(0. 5,1) FSD F(0.5 − 1
n ,0.5, 1

n ) ,(0,0 .5,1) for all n ≥ 3,

whenceFY FSD i FX for i = 2, 3,4 . On theother hand,

F(0 .5− 1
n ,0.5, 1

n ),(0,0.5 ,1) (0) >F (0.5 ,0.5) ,(0.5 ,1) (0)

and
F(0 .5− 1

n ,0. 5, 1
n ) ,(0 ,0.5,1) (0 .5) >F (0. 5,0.5) ,(0 .5,1) (0 .5),

whenceFX FSD i FY for i = 2, 3,4 .

Sets of distribution functions asso ciated with the same p-b ox

Next we investigate the relationships between the preferences on two sets of distributions
functions asso ciated with the same p-box. Weconsiderthecase of non-trivial p-b oxes
(that is, those where the lower and the upp er distribution functions are different), since
otherwiseweobviously obtain indifference.
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Prop osition 4.37Let us consider two set s of cumulative distribution functionsFX and
FY such that F X =F Y , F X =F Y and F X <F X . Then:

1. FX and FY are incomparable withrespect to FSD 1.

2. With respect to(F SD i ), i = 2, .. .,6 , we mayhave incomparability, strictstochastic
dominance or indifference betweenFX and FY .

Pro of: By Prop osition 4.19, FX FSD 1 FY if andonly if F X ≤ F Y , which in this case
holds if and only if F X =F X , a contradiction with our hyp otheses.

With resp ect to conditions (F SD2), . . . , (F SD6), it iseasy tofind examplesof
indifference by taking FX = FY including the lower and upp er distribution functions.
Nextexample showsthat we mayalso have strict dominance or incomparability.

Example 4.38Inthese exampleswe are goingto showthat, giventwo setsofcumulative
distribution functions FX and FY associatedwiththesamep-box, then therecanbestrict
dominance or incomparability (that they may also be indifferent has already been showed
in Proposition 4.37).

• Let usconsider

FX = { F(0.5 ,0.5) ,(0,0 .5) ,F (0. 5,0.5) ,(0 .5,1) } and FY = { F1,0.5 ,F (0 .5,0.5) ,(0 ,1) } .

Then, itholds that FX FSD i FY for i = 2,3 and FY FSD i FX for i = 5,6 . By
reversing the roles of FX and FY , we obtainanexampleof FX and FY inducing
the same p-box and withFX FSD i FY for i = 5,6 and FY FSD i FX for i = 2,3 .

• To see theincomparability, take

FX = { F1,0.5 ,F (0.5 ,0.5),(0, 1) } and
FY = { F( 1

n ,0. 5,0.5− 1
n ),(0,0.5 ,1) ,F (0.5 − 1

n ,0.5, 1
n ) ,(0, 0.5,1) :n ≥ 3} .

It is easy tocheck thatboth sets are incomparable with respect to(F SD4), and then
they are also incomparable with respect to(F SD i ) for i = 1, ... ,6 .

• Final ly, if we consider FX = { F1,0.5 ,F (0 .5,0. 5),(0 ,1) } and

FY = { F( 1
n ,0.5,0 .5− 1

n ) ,(0,0 .5,1) ,F (0 .5− 1
n ,0 .5, 1

n ),(0,0.5 ,1) :n ≥ 3,F (0.5, 0.5), (0.5 ,1) } .

We have that F(0.5 ,0.5) ,(0. 5,1) FSD F1,0 .5, while noneof the distribution functions
in FX isdominated bya distribution functionin FY . Thus, FY FSD 4 FX . Again,
reversing the roles of FX and FY we seethat we can also haveFY FSD 4 FX .

When the lower and upp er distribution functions belong to our set of distributions, we
deducethe following result.
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Corollary 4.39Let us consider two sets of cumulative distribution fu nctionsFX and FY
such that F X =F Y , F X =F Y , F X <F X and F X ,F X ∈F X ∩F Y . Then FX ≡ FSD i FY
for i = 2, .. . ,6 , and they are incomparable with respect to(F SD1).

Pro of: The result follows immediately from Proposition 4.37 and Corollary 4.22.

Next we investigate the case whe re we compare these two sets of distribution func-
tions with a third one, and determine if they pro duce the same preferences:

Prop osition 4.40Letus consider FX , F ∗
X and FY three sets of cumulative distribution

functions such that F X =F
∗
X and F

∗

X =F X . In thatcase:

1. FX FSD 1 FY ⇔F ∗
X FSD 1 FY , and FY FSD 1 FX ⇔F Y FSD 1 F ∗

X .

2. With respect to definitions (F SD2), . . . , (F SD6), if we assume that FX FSD i FY ,
then the possible scenarios for the relationship betweenF ∗

X and FY are summarised
by the fol lowing table:

FSD 2 FSD 3 FSD 4 FSD 5 FSD 6
F ∗

X FSD i FY • • • • •
FY FSD i F ∗

X • • •
F ∗

X ≡ FSD i FY • • • •
F ∗

X , FY incomparable • • • •

Pro of: Concerning definition (F SD1), Prop osition 4.19 assures thatFX FSD 1 FY if
and only if F

∗

X =F X ≤ F Y , and using th e same result this is equivalent toF ∗
X FSD 1 FY .

The same result shows that FY FSD 1 FX if and only if F Y ≤ F X =F
∗
X , andthis is

again equivalent to FY FSD F ∗
X .

Let us provethat FX FSD 2 FY and FY FSD 2 F ∗
X are incompatible. If FX FSD 2 FY ,

then FY FSD 2 FX . Thi s means that for everyF2 ∈F Y there exist F1 ∈F X and x0 such
that F1(x 0) <F 2(x 0). As a consequence,

inf
F ∗

1 ∈F ∗
X

F ∗
1 (x 0) =F

∗
X (x 0) =F X (x 0) ≤ F1(x 0) <F 2(x 0),

whence for every F2 ∈F X there is some F ∗
1 ∈F ∗

X such that F ∗
1 (x 0) <F 2(x 0), and

consequentlyF2 ≤ F ∗
1 . This meansthat FY FSD 2 F ∗

X , and therefore we cannothave
FY FSD 2 F ∗

X .

Let us show next that FX FSD 5 FY implies that F ∗
X FSD 5 FY . If FX FSD 5 FY ,

there is F2 ∈F Y such that F1 ≤ F2 for every F1 ∈F X . Whence,F X ≤ F2, and there fore
F

∗

X ≤ F2, which implies that also F ∗
1 ≤ F2 for every F ∗

1 ∈F ∗
X . Hence,F ∗

X FSD 5 FY .

Next example shows that the other scenarios are p oss ible.
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Example 4.41Let us consider setsof cumulative distribution functions FX , F ∗
X and FY

that satisfies F X =F
∗
X and F X =F

∗

X , and we are going to see that the scenarios given
in Proposition 4.40 are possible.

• It isobvious that we canfind some exampleswhere FX FSD i FY for i = 2, ... ,6
and FX FSD i FY . To see it , it is enough to consider FX = F ∗

X .

• Let us show that FX FSD 3 FY and FY FSD 3 F ∗
X can hold simultaneously. Con-

sider the sets:

FX = { F(0.5,0 .5), (0,0. 5) ,F (0.5 ,0.5),(0. 5,1) } ,
F ∗

X = { F1,0.5 ,F (0 .5,0.5) ,(0 ,1) } ,
FY = { F(0.75,0.25),(0 .5,1) ,F (0 .25,0.25,0.5) ,(0,0 .5,1) } .

It holds that F X =F
∗
X and F X =F

∗

X . Moreoverit holds that FX FSD 3 FY since

F(0.5,0 .5), (0.5, 1) FSD F(0 .75,0.25),(0 .5,1) ,F (0.25,0 .25,0 .5), (0,0. 5,1) ,

but for F(0.5,0 .5), (0.5 ,1) thereis nodistributionfunction in FY smal ler than or equal
to F(0 .5,0. 5),(0 .5,1) . Similarly, FY FSD 3 F ∗

X , since

F(0 .75,0 .25),(0.5 ,1) FSD F1,0.5 and
F(0 .25,0 .25,0 .5),(0 ,0.5 ,1) FSD F(0.5 ,0.5) ,(0, 1) .

However, F1,0.5 ,F (0.5 ,0.5),(0 ,1) FSD F(0 .25,0.25,0.5) ,(0, 0.5,1) .

• We now provethat the samecan happenwith Definition (F SD6). Let usconsider

FY = { F(0.25,0.75),(0 ,0.5) ,F (0 .5,0 .25,0 .25),(0,0 .5,1) } .

Thenit holds that F ∗
X FSD 6 FY and FY FSD 6 FX . To check that F ∗

X FSD 6 FY
it suffices to see that:

F1, 0.5 FSD F(0 .25,0.75),(0 ,0.5) and that
F(0 .5,0 .5),(0 ,1) FSD F(0. 5,0.25,0.25),(0 ,0.5 ,1) ,

but F(0 .25,0 .75),(0,0 .5) FSD F1,0.5 ,F (0. 5,0.5) ,(0 ,1) . Tocheck that FY FSD 6 FX it
suffices to see that

F(0.25,0.75),(0 ,0.5) ,F (0 .5,0 .25,0 .25),(0,0 .5,1) FSD F(0. 5,0.5) ,(0 ,0.5)

but F(0 .5,0. 5),(0 ,0.5) is not stochastical ly dominated by none of the distribution inFY .

• Next weprove thatitis possiblethat FX FSD 4 FY and FY FSD 4 F ∗
X . For this

aim, we consider:

FX = { F(0.25,0.25, 0.5),(0,0 .5,1) ,F 1, 0.5,F (0.5 ,0.5),(0, 1) } ,

FY = { F(0.25,0.5,0 .25),(0, 0.5,1) ,F (0.4,0 .2,0.4),(0,0.5, 1) } and

F ∗
X = { F(0 .25,0.75),(0 ,0.5) ,F 1, 0.5,F (0.5 ,0.5),(0, 1) } .
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It holds that F X =F
∗
X and F X =F

∗

X . Also

F(0.25, 0.25, 0.5),(0,0 .5,1) FSD F(0. 25,0. 5,0.25),(0,0.5 ,1) ,

but no distribution in FY isdominatedbya distributionfunction in FX . Whence
FX FSD 4 FY . On theother hand,

F(0 .25,0.5,0 .25),(0,0 .5,1) FSD F(0 .25,0 .75), (0,0 .5), but
F(0 .25,0.75),(0 ,0.5) FSD F(0 .25,0. 5,0.25),(0 ,0.5 ,1) ,F (0.4 ,0.2, 0.4),(0,0 .5,1)
F1,0.5 FSD F(0.25,0.5 ,0.25),(0 ,0.5,1) ,F (0.4, 0.2,0 .4),(0,0.5 ,1) ,
F(0.5, 0.5) ,(0,1) FSD F(0 .25, 0.5,0. 25), (0,0. 5,1),F (0 .4,0.2 ,0.4) ,(0 ,0.5,1) ,

so FY FSD 4 F ∗
X .

• Let usnowshow that FX may strictlydominate FY while F ∗
X and FY are indifferent

when we consider definition (F SD i ) for i = 3, 4,6 . For thisaimconsider FX , FY
associated with the samep-box and such that FX FSD i FY for i = 3, .. .,6 , as in
Example 4.38, and let F ∗

X = FY .

• To seethat F ∗
X ≡ FSD 5 FY and FX FSD 5 FY , it is enough to consider thesets

FX = { F1,0.5 ,F (0 .5,0.5) ,(0 ,1) } , FY = { F(0. 5,0.5) ,(0 ,0.5) ,F (0 .5,0. 5),(0 .5,1) } and F ∗
X = FY .

• For FX FSD i FY while F ∗
X , FY are (F SD i ) incomparable for i = 2, 3,4 ,take

FX = { F(0 .5,0. 5),(0 .5,1) ,F (0.5,0 .5), (0,0. 5) } ,
FY = { F } , and
F ∗

X = { F1, 0.5,F (0.5 ,0.5),(0, 1) } .

• For FX FSD 6 FY while F ∗
X , FY are (F SD6) incomparable, take

FX = { F( 1
n ,1− 2

n , 1
n ) ,(0,0 .5,1) ,F ( 1

2 − 1
n , 2

n , 1
2 − 1

n ), (0,0. 5,1) | n ≥ 3} ,

F ∗
X = { F1,0 .5,F (0.5,0 .5), (0,1) } ,

FY = { F(0 .5− 1
n ,0 .5, 1

n ),(0,0.5, 1) ,F | n ≥ 3} .

Remark 4.42Notethat, undertheconditionsofthepreviousproposition, ifweassume
in addition that F X ,F X ∈F X ∩F ∗

X and that F Y ,F Y ∈F Y , then we deduce from Corol-
lary 4.22 that FX FSD i FY ⇔F ∗

X FSD i FY , for i = 1, ... ,6 .

σ-additive VS finitely additive distribution functions

Although in this work we are fo cusing on sets of distribution functions associated with
σ-additive probability measures, it is not uncommon to encounter situations where our
impreciseinformation isgivenbymeans ofsets of finitely additive probabilities: this is
the case of the mo dels of coherent lower and upper previsions in [205], and in particular
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of almost all mo dels of non-additive measures considered in the literature [126];in this
sense the y are easier to handle than sets ofσ-additive probability measures, which do
not have an easy characterisation in terms of their lower and upp er envelopes, as showed
in [102].

A finitely additive probability measure induces a finitely additive distribu tion func-
tion, and conversely, any finitely additive distribution function can be induced bya
finitely additive probability measure [133]. As a consequence, given a p-b ox(F , F), the
set of finitely additive probabilities compatible with this p-b ox induces the class of finitely
additive dis tribution functions

F := { F finitelyadditive distributionfunction :F ≤ F ≤ F } . (4.4)

In particu lar, b oth F,F belong to F . Takingthisintoaccount, ifwedefineconditions
of sto chastic dominance analogous to those in Definition 4.1 for sets of finitely addi-
tive distribution fu nctions, it is not difficult to es tablish a characterisation similar to
Corollary 4.22.

Lemma 4.43Let FX , FY betwo sets offinitely additivedistributionfunctions with as-
sociated p-boxes(F X ,F X ), (F Y ,F Y ). AssumeF X ,F X ∈F X and F Y ,F Y ∈F Y .

1. FX FSD 1 FY ⇔ F X ≤ F Y .

2. FX FSD 2 FY ⇔F X FSD 3 FY ⇔ F X ≤ F Y .

3. FX FSD 4 FY ⇔ F X ≤ F Y .

4. FX FSD 5 FY ⇔F X FSD 6 FY ⇔ F X ≤ F Y .

Pro of: The proof is analogous to the one for Corollary 4.22.

We deduce in particular that under the ab ove conditions definitions (F SD2) and
(F SD3) are equivalent, and the same applies to (F SD5) and (F SD6). Note that, al-
though in this result we are using that the lower and upp er distribution functions of the
p-b ox b elong to the asso ciated set of finitely additive distribution functions, this isnot
necessary for the first statement.

In this section, we are going to investigate the relationship b etween the res ults we
have obtained for sets ofσ-additive probability measures and those we would obtain for
finitely additive ones. Let PX , PY be two sets of σ-additive probability measures, and
let FX , FY be their asso ciated sets of distribution functions. Thesesets ofdistribution
functions determine p-b oxes (F X ,F X ), (F Y ,F Y ). Let FX , FY be two sets of finitely
additive distribution functions asso ciated with the p-b oxes(F X ,F X ), (F Y ,F X ).

When the lower and upp er distribution functions of the asso ciated p-b ox b elong
toour set of cumulative distribution functions, we can easily show that the sto chastic
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dominance holds under the same conditions re gardle ss of whether we work with finitely
or σ-additive probabil ity measures:

Corollary 4.44Let us consider two sets of cumulative distribution fu nctionsFX and FY
with associated p-boxes(F X ,F X ), (F Y ,F Y ), and let FX , FY bethesets offinitelyadditive
distribution functions associated with these p-boxes.If F X ,F X ∈F X and F Y ,F Y ∈F Y ,
it holds that:

FX FSD i FY ⇔F X FSD i FY ,

for i = 1, .. .,6 .

Pro of: The result is an immediate conse quence of Corollary 4.22 and Lemma 4.43.

However, when the lower and the upp er distribution functions induced by FX and
FY do not belong to these sets, the equivalence no longe r holds. Wecan nonetheless
establish the followingresult:

Prop osition 4.45Letus considertwo setsofcumulative distributionfunctions FX and
FY , and two sets of finite distribution functions FX and FY such that FX , FX induce the
same p-box(F X ,F X ) and FY , FY induce thesame p-box (F Y ,F Y ). Then:

1. FX FSD 1 FY ⇔F X FSD 1 FY .

2. The relationship FX FSD i FY does not have any implicationin general on the
relationship betweenFX and FY with respectto (F SD i ),for i = 2,3, 4, 5,6 .

Pro of:

1. From Prop osition 4.19, we know thatFX FSD 1 FY ⇔ F X ≤ F Y . The same pro of
allows to show the equivalence with FX FSD 1 FY .

2. If we apply Prop osition 4.40 withFY = FY , we see that all we need to prove is that
FX FSD i FY is compatiblewith FY FSD i FX for i = 2,5 ,with FX ≡ FSD i FY for
i =2 and with FX , FY incomparable with resp ect to(F SD5).

Next we give examples of all the possibilities in the previous result.

Example 4.46Let us show that, given two sets FX , FX , with (F X ,F X ) = (F X ,F X ),
and FY , FY , with (F Y ,F Y ) = (F Y ,F Y ), anumber ofpreferencescenarios arepossible
(the other possible scenarios have already been established in the proof ).
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We begin by showing that wemayhave FX FSD 2 FY and FY FSD 2 FX . To see
this, consider FX , FY defined by:

FX = { F(0 .5,0 .5),(0 ,0.5) ,F (0.5, 0.5),(0.5 ,1) } and
FY = { F1,0.5 ,F (0.5 ,0.5),(0, 1) } .

They are associatedwith the same p-box and satisfy FX FSD 2 FY . Wealso consider
FX = FY , FY = FX . Asimilarreasoningshowsthatwemay have FX FSD 5 FY while
FY FSD 5 FY .

Next, weshow that we may have FX FSD 2 FY and FX ≡ FSD 2 FY . Let

FX = FX = FY = { F(0 .5,0.5)(0 ,0.5) ,F (0 .5,0. 5),(0 .5,1) } and
FY = { F1,0 .5,F (0.5, 0.5) ,(0,1) } .

It can be easily seen that FX FSD 2 FY and that FX , FY inducethe same p-box. Since
F(0 .5,0 .5),(0 .5,1) ∈F X ∩F Y satisfies that F(0.5 ,0.5) ,(0. 5,1) ≤ F(0.5 ,0.5) ,(0, 0.5) , we deduce that
FX ≡ FSD 2 FY .

To conclude, wegive anexamplewhere FX FSD 5 FY while FX , FY are incompa-
rable wit h respect to(F SD5). Consider the sets cumulative distribution functions

FX = FX = { F( 1
n ,1− 2

n , 1
n ),(0,0.5 ,1) | n ≥ 3} ,

FY = { F(0. 5,0.5) ,(0 ,0.5) ,F (0.5,0. 5),(0 .5,1) } and
FY = { F1,0.5 ,F (0.5,0 .5),(0 ,1) } .

Then FX FSD 5 FY becauseF( 1
n ,1− 2

n , 1
n ),(0,0. 5,1) ≤ F(0.5,0 .5),(0,0. 5) for every n ≥ 3. On

the other hand, FX and FY are incomparable with respectto (F SD5).

It is known that any finitely additive cumulative distribution function F can be ap-
proximated bya σ-additive cumulative distribution function F ∗: its right-continuous
approximation, given by

F ∗
(x ) = infy>x F (y) ∀x <1, F ∗

(1) = 1. (4.5)

Hence, toany setF of finitely additive cumulative distribution functions we can asso ciate
aset F ∗ of σ-additive cumulative distribution functions, defi ned by F ∗ := { F ∗ :F ∈F} ,
and where F ∗ is given byEquation (4.5). However, both sets do not mo del the same
preferences, as wecan see from the followingresult:

Prop osition 4.47Let F be a set of finitely additive cu mulative distribution functions,
and let F ∗ bethe setof their σ-additive approximations. Therelationships between F
and F ∗ are summarised in the fol lowing table:
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F SD1 FSD 2 FSD 3 FSD 4 FSD 5 FSD 6
F FSD i F ∗ • • • • • •
F ∗

FSD i F
F≡ FSD i F ∗ • • • • • •

F , F ∗ incomparable • • •

Pro of: FromEquation (4.5), F ≤ F ∗ for any F ∈F , whenceF FSD i F ∗, for i = 3, 4,6 .
We deduce from Prop osition 4.3 that we cannot haveF ∗

FSD i F for i = 1, .. .,6 .

Next example shows that the remaining scenarios are p os sible.

Example 4.48If F1 isa σ-additive distribution function and we take F = { F1} , we
obtain F ∗ = F = { F1} ,and F ∗ ≡ FSD i F for i = 1, .. .,6 .

On the other hand, if F1 =I (0. 5,1] and F = { F1} , we obtainthat F ∗
1 =I [0.5 ,1],

whenceF1 <F ∗
1 and asa consequenceF FSD i F ∗ for i = 1, .. .,6 .

Final ly, if F = { I [x, 1] :x ∈ (0, 1)} , we obt ain that F ∗ = F and F is incomparable
with itself with respectto conditions (F SD i ) for i = 1, 2,5 .

Convergence of p-b oxes

It is well-known that a distribution functi on can b e seen as the limit of the empirical
distribution function that we derive from a sample, as we increase th e sample size.Some-
thing similar app lies when we consider a set of distribution functions: it wasprovenin
[136] that any p-box on the unit interval is the limit of a sequence of p-b oxes (F n ,F n )n

that are discrete, in the sense that for every n both F n and F n have a finite numb er of
discontinuity points.

If for two given p-b oxes (F X ,F X ), (F Y ,F Y ) we consider resp ective approximating
sequences(F X,n ,F X,n )n , (FY,n ,F Y,n )n , in the sense that

limn F X,n =F X , limn F X,n =F X , limn F Y,n =F Y , limn F Y,n =F Y ,

we wonder if it is p ossible to say something ab out the preferences b etween(F X ,F X ) and
(F Y ,F Y ) by comparing for each n the discrete p-b oxes(F X,n ,F X,n ) and (F Y,n ,F Y,n ).
This is what we set out to do in this section.Weshallbe evenmore general, byconsidering
sets of distribution functions whose asso ciated p-boxes converge to some limit.

Prop osition 4.49Let (FX,n )n ,( FY ,n)n be twosequencesof setsofdistributionfunctions
andlet us denotetheir associated sequences of p-boxes by(F X,n ,F X,n ) and (F Y,n ,F Y,n )
for n ∈ N. Let FX , FY betwosets of cumulativedistribution functions withassociated
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p-boxes(F X ,F X ) and (F Y ,F Y ). Letus assume that:

F X,n
n

−→ F X F X,n
n

−→ F X
F Y,n

n
−→ F Y F Y,n

n
−→ F Y

and that F X ,F X ∈F X and F Y ,F Y ∈F Y . Then, FX,n FSD i FY ,n ∀n, implies that
FX FSD i FY , for i = 1, .. .,6 .

Pro of: The result immediately follows from Propositions 4.3 and 4.19 and Corol-
lary 4.22.

It follows from the pro of ab ove that the assumption that the upp er and lower
distribution functions b elong to the corresp onding sets of distribution is not necessary for
the implication with resp ect to (F SD1); however, it is nece ssary for the other definitions,
as we cansee in the next example.

Example 4.50Let us consider the fol lowing sets of cumulative distribution functions:

FX = { F1,0 .5,F (0.5,0 .5), (0,1) } .
FX,n = { F(0 .5,0 .5),(0 ,0.5) ,F (0.5, 0.5),(0.5 ,1) } .
FY = FY ,n = { F } .

FX and FY areincomparablewithrespect to (F SD4), and consequently withrespect to
(F SD i ),for i = 1, .. .,6 . However, FX,n FSD i FY,n for i = 2, 3,4 and FY ,n FSD i FX,n
for i = 4, 5,6 .

Sto chastic dominance between p ossibility measures

So far, we have explored the extension of the notion of sto chastic dominance towards sets
of probability measu re s, and we have showed that in some cases it is equivalent to compare
the p-b oxes they determine.In this section, we are going to use sto chastic dominance to
compare p ossibility measures asso ciated with continuous distribution functions. Recall
that, from Definition2.41, a possibility measure Π is a supremum preserving function
Π: P ([0, 1]) → [0 , 1], andit ischaracterised byits restrictionto events π, called possibility
distribution. Given two possibility measuresΠ1 and Π2, we can consider their asso ciated
credal sets, given by Equation(2.19):

M (Π1) := { P probability : P (A) ≤ Π1(A) ∀A} , and
M (Π2) := { P probability : P (A) ≤ Π2(A) ∀A} .

From these credal sets, we can also consider their asso ciated sets of distribution functions
and their associated p-b oxes, given in Equation (2.20) by

F 1(x ) = supy≤ x π1(y ), F 1(x) =1 − supy>x π1(y ),
F 2(x ) = supy≤ x π2(y ), F 2(x) =1 − supy>x π2(y ).
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When considering p ossibility measures asso ciated with continuous distribution functions,
b oth the lower and the upper distribution functions belong to the set of distribution
functions asso ciated with the possibility measures:

Lemma 4.51Let Π be a possibility measure associated wit h a continuous possibility dis-
tribution on [0,1]. Then, thereexistprobabilitymeasures P1,P 2 ∈M (Π) whose associated
distribution functions are FP1 = F,F P2 =F .

Pro of: Letus considerthe probability space ([0, 1],β[0,1] ,λ [0,1] ), where β[0,1] denotes
the Borel σ-field and λ [0 ,1] the Leb esgue measure,and let Γ: [0 , 1]→P ([0, 1]) be the
random set given by Γ(α )= { x: π (x) ≥ α} =π

− 1([α , 1]). Then it was proved in [84]
that Π is the upp er probability of Γ.

Let us consider the mappings U1,U 2 : [0, 1] → [0, 1] given by U1(α) = min Γ(α) ,
U2(α) = max Γ(α) . Since weareassumingthat π is acontinuous mapping, the set
π− 1([α , 1]) = Γ(α) hasa maximum and aminimum valuefor every α ∈ [0 , 1], soU1,U 2 are
well-defined. It alsofollows that U1,U 2 aremeasurable mappings, andas a consequence
the probability meas ures they inducePU1 ,P U2 belong to the set M (Π) . Their asso ciated
distribution functions are:

FU1 (x) =P U1 ([0, x]) =λ [0,1] (U
− 1
1 ([0,x])) =λ [0 ,1]({ α : min Γ(α) ≤ x} )

=λ [0 ,1]({ α: ∃y ≤ x : π (y)≥ α} ) =λ [0,1] ({ α : Π[0, x] ≥ α} )
= Π([0, x]) = F (x ),

where the fifth equality followsfromthe continuityof λ [0,1] , and similarly

FU2 (x ) =P U2 ([0, x]) =λ [0 ,1](U
− 1
2 ([0, x])) =λ [0 ,1]({ α : max Γ( α) ≤ x} )

=λ [0 ,1]({ α : π(y ) <α ∀y >x } ) =λ [0 ,1]({ α : Π(x, 1] ≤ α} )
=1 − Π((x, 1]) = F (x),

again using the continuity ofλ [0,1] . Hence,F,F belong to the set of distribution functions
induced by M (Π) .

As a consequence,if we consider two possibility measures Π1,Π 2 with continuous
possibility distributions π1,π2, the lower and upper distribution functions of their resp ec-
tive p-b oxes b elong to the setsF 1, F 2. Hence, we can apply Prop osition 4.21 and conclude
that F 1 FSD 2 F2 ⇔F 1 FSD 3 F 2 and F1 FSD 5 F 2 ⇔F 1 FSD 6 F2. Moreover, wecan
use Corollary 4.22 and conclude that:

F1 FSD 1 F 2 ⇔ F 1 ≤ F 2
F1 FSD 2 F 2 ⇔ F 1 ≤ F 2

F1 FSD 4 F 2 ⇔ F 1 ≤ F 2

F1 FSD 5 F 2 ⇔ F 1 ≤ F 2.

The following prop osition gives a sufficient condition for each of these relationships.
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Prop osition 4.52Let F1, F 2 bethesets of distribution functions associated with the
possibility measuresΠ1,Π 2.

1. Π1 ≤ N2 ⇒F 1 FSD 1 F 2.

2. Π2 ≤ Π1 ⇒F 1 FSD 2 F2, F 1 FSD 3 F 2

3. M (Π1) ∩M (Π2)= ∅ ⇒F 1 FSD 4 F 2.

4. N2 ≤ N1 ⇒F 1 FSD 5 F2, F 1 FSD 6 F2.

Pro of:

1. Note that F 1 ≤ F 2 if and only if supy≤ x π1(y) ≤ 1 − supy>x π2(y) for every x,
or, equivalently, if and onlyif Π1([0, x]) ≤ 1 − Π2(( x, 1]) =N 2([0, x]) for every x.
Then, if Π1(A) ≤ N2(A) for any A, in particu lar the inequality holds for the sets
[0 , x],and therefore F 1 ≤ F 2.

2. Similarly, F 1 ≤ F 2 if and only if 1 − supy≤ x π1(y) ≤ 1 − supy >x π2(y) for every
x, or, equivalently, if and only if Π2(( x, 1]) ≤ Π1(( x, 1]) for every x. Then, if
Π2(A) ≤ Π1(A) for any A , in particular the inequality holds for the sets (x, 1], and
therefore F 1 ≤ F 2.

3. For the fourth condition of sto chastic dominance, note that F 1 ≤ F 2 ifand only
if 1 − supy>x π1(y) ≤ supy≤ x π2(y) for every x, or, equivalently, if and only if
1 ≤ Π1(( x, 1]) +Π 2([0 , x]) for every x. As a consequence,ifthere is a probability
P ∈M (Π1) ∩M (Π2),

1 = P ((x, 1]) + P ([0, x]) ≤ Π1((x, 1]) +Π 2([0, x]),

whenceF1 FSD 4 F2.

4. Finally, note that F 1 ≤ F 2 if and only if supy≤ x π1(y) ≤ supy≤ x π2(y) for every x,
or, equivalently, if and onlyif Π1([0, x]) ≤ Π2([0, x]) for every x. Hence, if Π1 ≤ Π2

(or, equivalently, if N2 ≤ N1) we have that F1 FSD 5 F 2 and F 1 FSD 6 F2.

However, none of the ab ove conditions is necessary, as we show in the next example.

Example 4.53 1. First of al l, let usseethat FX FSD 1 FY ⇒ ΠX ≤ NY . For this
aim, let πX ,πY be givenby

πX (x )=
0 if x ≤ 0.5
2x − 1 otherwise,

and πY (x)=
1 if x ≤ 0.5
2 − 2x otherwise.
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Then for every x ∈ [0 , 1]it holds that ΠX ([0, x]) +ΠY (( x, 1])≤ 1: this holds trivial ly
for x ≤ 0.5 because in that caseΠX ([0, x]) =0 . For x > 0.5 , we have that

ΠX ([0, x]) +Π Y (( x, 1]) = 2x − 1+2 − 2x = 1.

Hence,FX FSD 1 FY . However:

ΠX ([0.5, 1]) = 1 >N Y ([0.5 , 1]) =1 − ΠY ([0, 0. 5)) =1 − 1 = 0,

so the converse of the first implication does not hold.

2. Now, weare goingto see that FX FSD 2 ,FSD 3 FY ⇒ ΠY ≤ ΠX . Consider the
possibility distributions πX ,πY given by

πX (x) = x, πY (x ) =1 ∀x.

Then ΠY ((x, 1]) = 1 =Π X ((x, 1]) for all x, whenceFX FSD 2 FY . However,
ΠX ([0, 0.5]) = 0.5 < 1 =Π Y ([0, 0. 5]),so ΠY ΠX .

3. Now we are going to seethat FX FSD 4 FY ⇒M (ΠX ) ∩M (ΠY )= ∅. Let πX ,πY
be given by

πX (x )=
4x − 3 if x ≥ 0.75
0 otherwise.

and πY (x )=
1 − 4x if x ≤ 0.25
0 otherwise.

Then for every x ∈ [0 , 1]it holds that

ΠX ((x, 1]) +Π Y ([0, x]) ≥ ΠY ([0, x]) = 1,

whenceFX FSD 4 FY . However, any probability P in M (ΠX ) ∩M (ΠY ) should
satisfy

P([0, 0.5]) ≤ ΠX ([0, 0. 5]) = 0, P((0.5, 1]) ≤ ΠY ((0.5 , 1]) = 0.

Hence,M (ΠX ) ∩M (ΠY )= ∅.

4. Final ly, weare goingtoseethat FX FSD 5 ,FSD 6 FY ⇒ ΠX ≤ ΠY . Consider the
possibility distributions πX ,πY given by

πX (x ) = 1, πY (x ) =1 − x, ∀x.

Then it holds that ΠX ([0 , x]) ≤ ΠY ([0, x]) ∀x, whenceFX FSD 5 FY . However,
ΠX ([0.5 , 1]) = 1 > 0.5 =Π Y ([0. 5, 1]),so ΠX ΠY .

An op en problem from this section would be to apply the notion of stochastic dominance
to compare p ossibil ity measures whose distributions are not necessarily continuous.
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P-b oxes where one of the b ounds is trivial

To conclude this section we investigate the case of p-b oxes where one of the bounds
is trivial. The se have b een related to p ossibility and maxitive measures in [199],and
consequently they are in some sense re lated to the previous paragraph.We shall show
that when the lower distribution function is trivial, then the sec ond and third conditions,
which are based on the comparison of this bound, always pro duce indifference.

Prop osition 4.54Let us consider the p-boxes FX =(F X ,F X ) and FY =(F Y ,F Y ).
Let us assume that F X =F Y =I { 1} , F X =F X and F Y =F Y . Thenthe possible
relationships betweenFX and FY are:

F SD1 FSD 2 FSD 3 FSD 4 FSD 5 FSD 6
FX FSD i FY • •
FY FSD i FX • •
FX ≡ FSD i FY • • • • •

FX , FY incomparable • • •

Pro of:

• Using Prop osition 4.19 we know that FX FSD 1 FY ⇔ F X ≤ F Y . However, this
cannot happ en sinceF Y =I { 1} and the p-b oxes are not trivial.Consequently, both
sets are incomparable with resp ect to(F SD1).

• Since F X =F Y ∈F X ∩F Y , wededucefromCorollary4.22 that FX ≡ FSD 2 FY .
Applying Prop osition 4.3, we deduce that FX ≡ FSD 3 FY and FX ≡ FSD 4 FY .

• On the other hand, it is easy to see that anything can happen for definitions(F SD5)
and (F SD6), since these dep end on the upp er cumulative distribution functions of
the p-b oxes.

Similarly, when the upp er distribution function is trivial, thenthe fifth and sixth
conditions, which are based on the comparison of these bounds, always pro duce indiffer-
ence.

Prop osition 4.55Let usconsider the p-boxesFX =(F X ,F X ) and FY =(F Y ,F Y ). Let
us assume thatF X =F Y =1 , F X <F X and F Y <F Y . Thenthe possible relationships
betweenFX and FY are:

FSD 1 FSD 2 FSD 3 FSD 4 FSD 5 FSD 6
FX FSD i FY • •
FY FSD i FX • •
FX ≡ FSD i FY • • • • •

FX , FY incomparable • • •
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Pro of: This proof is analogous to the previous one.

This case is related to the previous paragraph devoted to p ossib ility measures:
when the lower distribution function is trivial, the prob ability measures determined by
the p-b ox are those dominated by the possibility measure that has F as a p oss ibility
distribution; however, a similar result do es not hold for the case of (F , 1) in general,
because we needF to b e right-c ontinuous.

0-1-valued p-b oxes

Let us now fo cus on0-1-valued p-b oxes, by which we mean p-b oxes where both the lower
and up p er cumulative distribution functions F,F are 0-1-valued. As we shall see,the
notions of sto chastic dominance will be related to the orderings between the intervals of
the real lin e determined by these0-1-valued distribution functions. 0-1-valued p-b oxes
have also b een related to p oss ibility measures in [199].

Givena 0-1-valued distribution function F , we denote

xF =inf { x | F (x ) =1 } .

Note that this infimum is a minimum when we consider distribution functions asso ciated
with σ-additive probability measures, but not necessarily for those asso ciated with finitely
additive p robabi lity measures.

Using this notation and Prop osition 4.19, wecancharacterise the comparisonof
sets of 0–1 valued distributionfunctions:

Prop osition 4.56Let FX and FY be two sets of cumulative distribut ion functions, with
associated p-boxes(F X ,F X ), (F Y ,F Y ).

a) If F X , F X , F Y and F Y are 0-1-valued functions, then

1. FX FSD 1 FY ⇔ xF X
≥ xF Y

.

2. FX FSD 2 FY ⇒ xF X
≥ xF Y

.

3. FX FSD 3 FY ⇒ xF X
≥ xF Y

.

4. FX FSD 4 FY ⇒ xF X
≥ xF Y

.

5. FX FSD 5 FY ⇒ xF X
≥ xF Y

.

6. FX FSD 6 FY ⇒ xF X
≥ xF Y

.

Moreover, if F X ,F X ∈F X and F Y ,F Y ∈F Y , the converses also hold.

b) Ifin particular FX and FY are two sets of 0-1 cumulative distribution functions it
also holds that
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2. xF X
>x F Y

⇔F X FSD 2 FY ⇒F X FSD 2 FY .

3. xF X
>x F Y

⇔F X FSD 3 FY ⇒F X FSD 3 FY .

4. xF X
>x F Y

⇒F X FSD 4 FY .

5. xF X
>x F Y

⇔F X FSD 5 FY ⇒F X FSD 5 FY .

6. xF X
>x F Y

⇔F X FSD 6 FY ⇒F X FSD 6 FY .

Pro of: In order to prove the first item of this result it is enough to consider Propo-
sition 4.19, andto note that, if F and G are two0-1 finitely additivedistribution
functions then F ≤ G implies that xF ≥ xG . In particular, if G is a cumulative
distribution function, F ≤ G if and only if xF ≥ xG , from whichwe deduce that
xF X

≥ xF Y
⇒F X FSD 1 FY .

Moreover, if F X ,F X ∈F X and F Y ,F Y ∈F Y , these arecumulative distribution
functions, andwecanuse that F ≤ G if andonly if xF ≥ xG . Applying Corollary4.22
we deducethat in that case the converse implications also hold.

Let us consider the second part. Onthe one hand,itisobviousthat FX FSD i FY

implies FX FSD i FY for i = 2, 3, 5,6. Let us check the other implicati on s.

2. If xF X
>x F Y , ∃x0 such that xF X

>x 0 >x F Y . Then, since x0 >x F Y , F Y (x 0) =1
and therefore F2(x 0) =1 ∀F2 ∈F Y . Since xF X

>x 0, F X (x 0) =0 and as we
are considering only 0 − 1 valued cumulative distribution functions, there issome
F1 ∈F X such that F1(x 0) =0 . Thus,

∃F1 ∈F X such that F1 FSD F2 ∀F2 ∈F Y .

Then, FX FSD 2 FY and FY FSD 2 FX . On the otherhand, if FX FSD 2 FY ,
Prop osition 4.19 implies that F X FSD F Y , and moreover the preference must be
strict (otherwise both sets would be indifferent). Then, xF X

>x F Y .

3. On the one hand, the direct implication follows from the previous item and Prop o-
sition 4.15. Ontheotherhand, if FX FSD 3 FY , by Prop osition 4.19 we know that
F X FSD F Y , andthe preferenceisinfact strict(otherwisethe sets FX and FY

would be indifferent). Then, following the sam e steps than in the previous item we
conclude that xF X

>x F Y .

4. If xF X
>x F Y , ∃x0 such that xF X

>x 0 >x F Y . Then, F Y (x 0) =1 , and since all the
cumulative distribution function are 0-1 valued, ∃F2 ∈F Y such that F2(x 0) =1 .
On the other hand, F X (x0) =0 , and since all thecumulative distribution functions
are 0-1 valued, thereis some F1 ∈F X such that F1(x 0) =0 . Hence,F1 ≤ F2 and
therefore FX FSD 4 FY .
In this case, the preference may be non-strict.Forinstance, if FX = FY = { F1,F 2}

such that xF 1 =0 and xF 2 =1 ,then xF X = 1> 0 =x F Y but FX ≡ FSD 4 FY .
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5. If xF X
>x F Y , there issome x0 such that xF X

>x 0 >x F Y . Hence,F Y (x 0) =1 .
Since all the cumulative distribution functionsare 0 − 1 valued, ∃F2 ∈F Y such
that F2(x0) =1 . On the otherhand, F X (x 0) =0 , whence F1(x 0) =0 for all
F1 ∈F X . Hence, F1 FSD F2 for all F1 ∈F X . We conclude that FX FSD 5 FY

but FY FSD 5 FX .
Onthe otherhand, when FX FSD 5 FY Prop osition 4.19 impliesF X FSD F Y , and
the preference must b e strict b ecause otherwiseFX and FY would b e in different.
Then, xF X

>x F Y .

6. Onthe onehand, if xF X
>x F Y , the result follow s from the previous item and

Prop osition 4.15.Ontheotherhand, when FX FSD 6 FY , Prop osition 4.19 assures
that F X FSD F Y , and the preference must b e strict b ec au se otherwiseFX and
FY would b e indi fferent. Then, aswe sawintheprevious item, it holds that
xF X

>x F Y .

Nextexample showsthat the converse implicationsmay not hold in general.

Example 4.57We begin byconsideringthe firstitem. Consider the fol lowing sets of
distribution functions:

FX = { F1,0.5 − 1
n :n >3 } and FY = { F1, 0.5} .

It holds that F X =F Y =F Y =F 1,0 .5, and then xF X =x F Y =0.5 , but FX FSD i FY for
i = 2,3,4 .

Similarly, we can consider the fol lowing sets:

FX = { F1,0 .5+ 1
n :n >3 } and FY = { F1,0.5 } .

It holds that F X =F Y =F 1,0.5 and consequentlyxF X =x F Y =0.5 but FX FSD i FY for
i = 5,6 .

We move next to the second item.It isenoughto considera0-1 valueddistribution
function F1 andthe sets FX = FY = { F1} . Bothsets are indifferent for Definition
(F SD i ) for i = 1, .. .,6 , but no strict inequality hold.

Next we are going to compare the preferences between two sets of 0-1 valued distribution
functions and their convex hull. Consider SX ,S Y ⊆ [0 , 1], and let us define the sets:

FSX = { F 0–1 c.d.f. | xF ∈ SX } .
FSY = { F 0–1 c.d.f. | xF ∈ SY } .

Since we are working with σ-additive cumulative distribution functions, FSX and FSY

arerelated to thedegenerateprobability measureson elements of SX ,S Y , resp ectively.
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We shall also consider theirconvex hulls FX := conv( FSX ), FY := conv( FSY ). These are
the sets of cumulative distribution functions with finite supp orts that are included in SX

and SY , resp ectively.

Now, given any set F ofcumulativedistributionfunctionsand itsconvexhull F c,
the p-b oxes(F , F) and (F c,F c) asso ciated withF , F c, coincide:

F =F c F=F c. (4.6)

Thus, FX and FSX determine the same p-b ox, and the same applies toFY and FSY . We
begin with an immediate lemma, whose pro of is trivial and therefore omitted.

Lemma 4.58Consider S ⊆ [0 , 1]and FS = { F 0-1 c.d.f. | xF ∈ S} . Let x = infS
and x = supS and let F,F be the lower and upper distribu tion functions associated with
F . Then

F=I [x,1] and F=
I [ x,1] if x ∈ S,

I ( x, 1] otherwise.

Moreover, if x ∈ S, then F ∈F , and if x ∈ S, then F ∈F .

Note that when F =I ( x,1] , this is a finite, but not cumulative, distribution function, and
as a con sequence it cannot b elong toFS .

Prop osition 4.59Let SX and SY be twosubsets of [0, 1]. Then:

1. FX FSD 1 FY ⇔F SX FSD 1 FSY ⇔ infS X ≥ supSY .

If in addition both infS X and supSX belong toSX , and also infS Y and supSY belong to
SY , then also:

2. FX FSD 2 FY ⇔F SX FSD 2 FSY ⇔ maxSX ≥ maxSY . Moreover,
maxSX > maxS Y ⇔F SX FSD 2 FSY and
maxSX = maxS Y ⇔F SX ≡ FSD 2 FSY .

3. FX FSD 3 FY ⇔F SX FSD 3 FSY ⇔ maxSX ≥ maxSY . Moreover,
maxSX > maxS Y ⇔F SX FSD 3 FSY and
maxSX = maxS Y ⇔F SX ≡ FSD 3 FSY .

4. FX FSD 4 FY ⇔F SX FSD 4 FSY ⇔ maxSX ≥ minS Y . Moreover,
maxSX > minS Y ⇔F SX FSD 4 FSY and
maxSX = minS Y ⇔F SX ≡ FSD 4 FSY .

5. FX FSD 5 FY ⇔F SX FSD 5 FSY ⇔ minS X ≥ minS Y . Moreover,
minS X > minS Y ⇔F SX FSD 5 FSY and
minS X = minS Y ⇔F SX ≡ FSD 5 FSY .
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6. FX FSD 6 FY ⇔F SX FSD 6 FSY ⇔ minS X ≥ minS Y . Moreover,
minS X > minS Y ⇔F SX FSD 6 FSY and
minS X = minS Y ⇔F SX ≡ FSD 6 FSY .

Pro of: The first statement follows from Prop osition 4.19 and Equation (4.6), taking
alsointo account that, from Lemma 4.58, F X ≤ F Y ifand onlyif infS X ≥ supSY .

To provethe otherstatements, notefirst ofall that if the infima andsuprema of
SX and SY are incl uded in the set, it follows from Lemma 4.58 that F X ,F X ∈F SX and
F Y ,F Y ∈F SY , and applying Corollary 4.22 together with Equation (4.6) we deduce that

FX FSD i FY ⇔F SX FSD i FSY ∀i = 2, ...,6.

On the other hand, it follows from Lemma 4.58 thatinthose cases

F X =I [maxS X ,1] , F Y =I [maxS Y ,1] , F X =I [minS X ,1] , F Y =I [minS Y ,1] .

The second and th ird equivalences in each statement follow then from Corollary 4.22.

Asa consequenceof this result, weobtain the following corollary.

Corollary 4.60If SX and SY areclosed subsets of[0 , 1], then:

1. FSX FSD 1 FSY ⇔ minS X ≥ maxSY .

2. FSX FSD 2 FSY ⇔ maxSX ≥ maxSY .

3. FSX FSD 3 FSY ⇔ maxSX ≥ maxSY .

4. FSX FSD 4 FSY ⇔ maxSX ≥ minS Y .

5. FSX FSD 5 FSY ⇔ minS X ≥ minS Y .

6. FSX FSD 6 FSX ⇔ minS X ≥ minS Y .

Hence, inthat case(F SD2) is equivalent to(F SD3) and (F SD5) is equivalent to(F SD6).

It is easy to see that Prop osition 4.59 and Corollary 4.60 also hold when we considerFX

and FY given by

FX = { F c.d.f. | PF (SX ) =1 } and FY = { F c.d.f. | PF (SY ) =1 } .
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4.1.2 Imprecise statisticalpreference

In Section 4.1.1 we considered the particular case in which the binary relation is sto chastic
dominance. Now we fo cus on the case where the binary relation is that of s tati stical
preference, givenin Definition 2.16. Hence, we shall assume that the utility space Ω is
an ordered set, which ne ed not b e numeric al.

Remark 4.61Analogously to the case of stochastic dominance, we shal l denote bySP i ,
i = 1, .. .,6 the conditions obtainedby using statistical preference asthe binary relation in
Definition 4.1. We shal l also say thatX is (SPi ) preferred or (SPi ) statistical ly preferred
to Y when X SP i Y. Furthermore, thenotation X SP i ,j Y means that X SP i Y and
X SP j Y. Notethat inSection4.1.1weusedinterchangeablythenotation X FSD i Y
and FX FSD i FY , since stochastic dominance isbased on the directcomparison of the
cumulative distribution functions. Now, we shall only employ the notation X SP i Y,
because statisticalpreferenceis based on the joint distribution of the random variables,
and the marginal distributions do not keep all the information about it.

When the binary relation is sto chastic dominance, we saw in Prop osition 4.15 that there
are some general relationships between its strict extensions. Inthe case of statistic al
preference,the relationships showed in Prop osition 4.15 do not hold in general, as we
cansee fromthe following example:

Example 4.62Considerthe universe Ω= { ω1,ω2,ω3} and let P bethediscrete uniform
distribution on Ω. Considerthe setsof random variables X = { X 1,X 2,X 3} and Y =
{ X 2,X 4} , where the randomvariables are defined by:

ω1 ω2 ω3
X 1 0 2 4
X 2 4 0 2
X 3 2 4 0
X 4 3 2 1

For these sets, since X 1 SP X 2 and X 1 ≡ SP X 4, then X SP2 Y. Moreover, since
X 2 SP X 1 and X 4 SP X 2, we have that Y SP2 X , hence X SP2 Y.

However, X SP3 Y: since X 1 ≡ SP X 4, X 2 ≡ SP X 2 and X 4 SP X 3, it holds that
Y SP3 X . Hence,X≡ SP3 Y.

With asimilar example it could be proved that X SP5 Y and X≡ SP6 Y are
compatible st at ement s.

Note that SP is reflexive and comple te,but it is ne ither antisymmetric nor transitive.
Hence, Prop osition 4.6 do es not apply in this case; indeed, we can use statistical prefer-
ence to show that Prop osition 4.6 cannot be extended to non transitive relationships.
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Example 4.63Considerthe random variables A, B,C from Example3.83 such that
A SP B SP C SP A, and let X = { A,B } , Y = { A,C } . Then since A SP A
and B SP C, we deducethat X SP3 Y; since A SP B and C SP A, we see that
X SP2 Y; however, X has a maximumelement,because A SP B .

On the other hand, since statistical preference complies with Pareto dominance we deduce
from Prop osition 4.7 that the different conditions can be reduced to the comparison of the
maximum andminimum elements of X , Y, when these maximum and minimum elements
exist. Finally, we deduce from Prop ositions 4.9 and 4.11 that conditionsSP3 , SP4 , SP6

induce a reflexive and comple te relationship.

We can also use statistical preference to show that Prop osition 4.11 cannot be
extended to the relations 1, 2 nor 5: take thesets X = Y = { A, B,C } , where the
variables A, B,C satisfy A SP B SP C SP A as in Example 3.83; then the set X

has neither a maximum nor a minimu m element, whence it is incomparable with itself
with resp ect to SP2 and SP5 . Applying Prop osition 4.3, we deduce that X , Y are also
incomparable with resp ect to SP1 .

Weshowedin Theorem 4.23 thatthe generalisationsof sto chastic dominance to-
wards sets of variables are related to lower and upp er exp ectations.Next, weestablisha
similar resultforthe generalisationsof statisticalpreference. RecallthatinTheorem 3.40
we proved that:

sup Me(X − Y) >0 ⇒ X SP Y ⇒ sup Me(X − Y) ≥ 0. (4.7)

Taking into thisresult, we shall establish a generalisation in terms of lower and upp er
medians, andfor thisweshall requireour utility space Ω to be the reals. Let usconsider
two sets ofalternativesX , Y with valueson Ω , and let us intro duce the following notation:

Me(X −Y )= { Me(X − Y): X ∈X ,Y ∈Y} .
Me(X −Y ) = inf Me( X −Y ).
Me(X −Y ) = sup Me(X −Y ),

where we recall that the median of a random variable with resp ect to a probability
measureis given by Equation (3.14).

Prop osition 4.64Let X , Y betwosets of random variables defined on a probability
space(Ω, A , P) and taking values on R.

1. Me(X −Y ) >0 ⇒X SP1 Y⇒ Me(X −Y ) ≥ 0.

2. ∃X ∈X such that Me({ X }−Y ) >0 ⇒X SP2 Y⇒∃ X ∈X such that Me({ X }−
Y) ≥ 0.

3. Me(X −{ Y } ) >0 ∀Y ∈Y ⇒X SP3 Y⇒ Me(X −{ Y } ) ≥ 0 ∀Y ∈Y .
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4. Me(X −Y ) >0 ⇒X SP4 Y⇒ Me(X −Y ) ≥ 0.

5. ∃Y ∈Y such that Me(X −{ Y } ) >0 ⇒X SP5 Y⇒∃ Y ∈Y such that Me(X−
{ Y } ) ≥ 0.

6. Me({ X } −Y ) >0 ∀X ∈X ⇒X SP6 Y⇒ Me({ X } −Y ) ≥ 0 ∀X ∈X .

Pro of: Recalloncemore thatfromEquation(4.7) giventworandomvariables X,Y ,

Me(X − Y) >0 ⇒ X SP Y ⇒ Me(X − Y) ≥ 0.

SP1 : If Me(X −Y ) >0 , in particu lar Me(X −Y ) >0 , and th enMe(X − Y) >0
for every X ∈X and Y ∈Y . Applying Equation(4.7), X SP Y for every X ∈X and
Y ∈Y , and consequentlyX SP1 Y. Moreover,

X SP1 Y⇒ X SP Y for every X ∈X ,Y ∈Y
⇒ sup Me(X − Y) ≥ 0 for every X ∈X ,Y ∈Y⇒ Me(X −Y ) ≥ 0.

SP2 : If there is some X ∈X such that Me({ X } −Y ) >0 , then Me(X − Y) >0
for every Y ∈Y . Applying Equation(4.7), wededuce that X SP Y for every Y ∈Y ,
and therefore X SP2 Y .

On the other hand,

X SP2 Y⇒ there is someX ∈X such that X SP Y for every Y ∈Y
⇒ sup Me(X − Y) ≥ 0 for every Y ∈Y⇒ Me({ X } −Y ) ≥ 0.

SP3 : Consider Y ∈Y . If Me(X −{ Y } ) >0 , then there is some X ∈X such that
Me(X − Y) >0 . Hence, for every Y ∈Y there is X ∈X such that X SP Y , and
consequentlyX SP3 Y. Moreover,

X SP3 Y⇒ for every Y ∈Y there is X ∈X such that X SP Y
⇒ for every Y ∈Y there is X ∈X such that sup Me(X − Y) ≥ 0
⇒ for every Y ∈Y itholds that Me(X −{ Y } ) ≥ 0.

SP4 : If Me(X −Y ) >0 , there are X ∈X and Y ∈Y such that Me(X − Y) >0 ,
and consequentlyX SP Y . Thus, X SP4 Y . On theotherhand,

X SP4 Y⇒ there are X ∈X ,Y ∈Y such that X SP Y
⇒ there are X ∈X ,Y ∈Y such that sup Me(X − Y) ≥ 0 ⇒ Me(X −Y ) ≥ 0.

SP5 : Assume that the re exists someY ∈Y such that Me(X −{ Y } ) >0 . Then
Me(X − Y) >0 for every X ∈X , andapplying (4.7) weconcludethatthereis Y ∈Y



196 Chapter 4. Comparisonofalternatives underuncertainty andimprecision

such that X SP Y for every X ∈X , and consequentlyX SP5 Y . On theotherhand,

X SP5 Y⇒ there is Y ∈Y such that X SP Y for every Y ∈Y
⇒ there is Y ∈Y such that sup Me(X − Y) ≥ 0 for every X ∈X
⇒ there is Y ∈Y such that Me(X −{ Y } ) ≥ 0.

SP6 : Finally, if Me({ X } −Y ) >0 for every X ∈X , then forevery X ∈X there
is some Y ∈Y such that Me(X − Y) >0 , wh ence (4.7) implies that X SP Y . We
conclude that X SP6 Y . Moreover,

X SP6 Y⇒ for every X ∈X there is Y ∈Y such that X SP Y
⇒ for every X ∈X there is Y ∈Y such that sup Me(X − Y) ≥ 0
⇒ for every X ∈X , Me({ X } −Y ) ≥ 0.

Taking into account the prop erties of the median, we conclude from this result that
statistical preference may be seen as a more robust alternative to sto chastic dominance
or exp ected utility in the presence of outliers.

As we made in Section 4.1.1 with imprecise sto chastic dominance, now weshall
investigate some of the prop erties of the imprecise statistical preference.

Increasing imprecision

We first study the behavior of conditions SP i , i = 1, .. .,6 , whenweenlarge thesets
X , Y of alternatives we want to compare. This may corresp ond to an increase in the
imprecision of our mo dels. Not surpris ingly, if the more restrictive condition SP1 is
satisfied on the large sets, then it is automatically s ati sfied on the smaller ones; while for
the least restrictive one SP4 we have the opp osite implication.

Prop osition 4.65Let X , Y, X and Y befour setsof randomvariablessatisfying X ⊆X
and Y ⊆Y . Then

X SP1 Y⇒X SP1 Y and X SP4 Y⇒X SP4 Y.

Pro of: Itis clearthat X SP1 Y⇒X SP1 Y , since if X SP Y for every X ∈X and
Y ∈Y , the inequality holds in particular for every X ∈X and Y ∈Y .

On the other hand, X SP4 Y implies the existenc e ofX ∈X and Y ∈Y satisfying
X SP Y , and then the inclusions X ⊆X and Y ⊆Y imply that X SP4 Y .

Similar implications cannot be established for SP i , for i = 2, 3, 5,6, as the following
example shows:
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Example 4.66Consider theuniverse Ω= { ω} and let δx denotetherandom variable
satisfying δx (ω ) =x .

Let us prove that X SP i Y and Y SP i X is possiblefor i = 2, 3, 5,6:

• Consider X = { δ0} , X = { δ0,δ2} and Y = Y = { δ1} . It holdsthat Y SP i X for

i = 1, .. .,6 while X SP i Y for i = 2,3 ,since δ2 SP δ1.

• Now, given X = { δ2} , X = { δ0,δ2} and Y = Y = { δ1} , itholds that X SP i Y for

i = 1, .. .,6 while Y SP i X for i = 5,6 ,since δ1 SP δ0.

Note that these examples also show that the implications of the previous proposition are
not equivalences in general.

One particular case when wemay enlargeour sets of alternatives is when we consider
convex combinations (note that for this we shall again to assume that the utility space
Ω is equalto R). This may be of interest for instance if we want to compare random sets
by means of their measurable selections, as weshall do in Section 4.2.1, and wemove
from a purely atomic toa non-atomic initial probability space. We shall consider two
possibilities, for a given set of alternatives D : its convex hull

C onv(D)= U=
n

i=1

λ i X i :λ i > 0,X i ∈D∀ i,
n

i=1

λ i =1 ,

and also the se t of alternatives whose utilities b elong to the range of utilities determined
by A :

C onv(D)= { U r.v. | U (ω)∈ C onv({ U(ω) :U ∈D} )} ; (4.8)

note that D⊆ C onv(D) ⊆ C onv(D). Then Prop osition 4.65 allows to immediately
deduce the following:

Corollary 4.67Consider twosets of alternatives X , Y.

(a) C onv(X ) SP1 C onv(Y) ⇒ C onv(X ) SP1 C onv(Y) ⇒X SP1 Y.

(b) C onv(X ) SP4 C onv(Y) ⇒X SP4 Y⇒ C onv(X ) SP4 C onv(Y).

To see that we cannot establish similar implications with resp ect to SP i , i = 2,3, 5,6 ,
take the following example:
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Example 4.68Consider Ω= { ω1,ω2,ω3} with P( { ωi } )= 1
3 for every i = 1,2,3 . Let

us consider the sets ofvariables X = { X 1,X 2} and Y = { Y } given by:

ω1 ω2 ω3
X 1 0 3 0
X 2 3 0 0
Y 1 1 1

Then since Q(X 1, Y) =Q(X 2, Y) = 1
3 , it fol lows that Y SP i X for i = 1, .. .,6 .

However, C onv(X ) SP i C onv(Y), for i = 2,3 , C onv(X ) ≡ SP4 C onv(Y) and they are
incomparable with respect to SP1 .

On the other hand, if we consider instead the sets X = { X 1,X 2} and Y = { Y } ,
where

ω1 ω2 ω3
X 1 0 3 3
X 2 3 0 3
Y 2 2 2

it holds that X SP i Y for i = 1, .. .,6 . However, C onv(Y) SP i C onv(X ),for i = 5,6 .

Thesamesets ofvariables show that there isno additional implication if weconsider
the convex hul ls determined by Equation (4.8) instead.

Connection with aggregation functions

Since the binary relation asso ciated with statistical preference is complete, we deduce
from Prop osition 4.11 that the relations SP3 , SP4 , SP6 alsoinduce a completerelation.
Such relations are interesting because they mean that we can always express a preference
between two sets of alternatives X , Y . One way of deriving acomplete relation when
we make multiple comparisons is to establis h a degree of prefe rence for every pairwise
comparison, andtoaggregatethesedegreesof preference intoajointone. This is possible
by me an s of an aggregation func tion.

Let X = { X 1, . . . ,Xn } and Y = { Y1, . . . ,Ym } b e two fini te sets of random variables
taking valu es on an ordered utility spaceΩ , and let us compute the statistic al preference
Q(X i ,Y j ) for every pair of vari ab lesX i ∈X ,Y j ∈Y by means of Equation(2.7). The set
of all these preferences is an instance of profile of preference [80], and can be represented
by me an s of the matrix

QX ,Y :=




Q(X 1,Y1) Q(X 1,Y2) ... Q(X 1,Ym )
...

...
. . .

...
Q(X n ,Y1) Q(X n ,Y2) ... Q(X n ,Ym )




(4.9)
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Note that the profil e of preferences ofY over X , QY ,X , corresp onds to one minus the
transp osed matrix ofQX ,Y , i.e., 1− Q

t
X ,Y . Weshall showthat conditions SP1 , . . ., SP6

can b e expressed by means of an aggregation function over the profil e of preference:

Definition 4.69 ([31, 80])An aggregationfunction is a mapping defined by

G: ∪s∈N[0, 1]s → [0, 1],

that it componentwise increasing and satisfies the boundary conditions G(0 , . . . , 0) =0
and G(1, .. .,1) =1 .

The matrix QX ,Y representing the profile of preferences betweenX and Y can be equiv-
alently represented by meansof a vector on [0 , 1]nm usingthe lexicographicorder:

zX ,Y = (Q(X 1,Y1), Q(X 1,Y2), . . . , Q(X1,Ym ), Q(X 2,Y1), . . . , Q(Xn ,Ym )).

Taking this into account, given an aggregation function G: ∪s∈N[0 , 1]s → [0 , 1], we shall
denote by G(QX ,Y ) the image of the vector zX ,Y bymeansofthis aggregationfunction.

Definition 4.70Given twofinite sets of random variables X and Y, X = { X 1, . . . ,Xn }
and Y = { Y1, . . . ,Ym } , and anaggregationfunction G, we saythat X is G-statistically
preferred to Y, and denote it by X SPG Y, if

G(QX ,Y ) := G(z X ,Y ) ≥ 1
2

. (4.10)

We refer to [31] for a review of aggregation functions.Some imp ortant properties are the
following:

Definition 4.71 ([31])An aggregationfunction G: ∪s∈N[0 , 1]s → [0 , 1]is cal led:

• Symmetric if itis invariant underpermutations.

• Monotone if G(r 1, . . . ,rs) ≥ G(r 1, . . . ,rs) wheneverr i ≥ r i for every i = 1, .. . ,s .

• Idemp otent if G(r, ... , r) =r .

We shallcall anaggregation function G: ∪s∈N[0, 1]s → [0, 1]self-dual if

G(r 1, . . . ,rs) =1 − G(1 − r 1, . . . ,1− r s)

for every (r 1, . . . ,rs) ∈ [0 , 1]s and for every s ∈ N.

All these prop erties are interesting when aggregating the profile of preferences into
ajoint one: symmetry impliesthatall the elements in the profile are given the same
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weight; idemp otency means that if all the preference degrees equalr , the final preference
degree should also equalr ; monotonicity assures that if we increase all the values in the
profile of preferences , the final valu e should also increase;and self-dualitypreserves the
idea behind the notion of probabilistic relation in De finition 2.7, since fora self-dual
aggregation function G, G(Q

t
X ,Y ) + G( QY ,X ) =1 . If in addition G is symmetric, we

obtain that G(QX ,Y ) + G( QY ,X ) =1 .

This last prop erty means that, when G is a self-dual and symmetric aggregation
function, Equation (4. 10) is equivalent to G(QX ,Y ) ≥ G(QY ,X ).

The relations SP i , for i = 1, .. .,6 , can all expressed by means of an aggregation
function, as we summarise in the following prop osition. Its pro of is immediate and
therefore omitted.

Prop osition 4.72Let X = { X 1, . . . ,Xn } , Y = { Y1, . . . ,Ym } be two finite sets of random
variables taking values onan ordered space Ω . Thenfor any i = 1, ... ,6 X SP i Y if
and only if it is Gi -statistical ly preferred to Y, where the aggregationfunctions Gi are
given by:

G1(QX ,Y ) := min
i,j

Q(X i ,Y j ).

G2(QX ,Y ) := max
i=1,...,n

min
j=1,...,m

Q(X i ,Y j ).

G3(QX ,Y ) := min
j=1,...,m

max
i=1 ,...,n

Q(X i ,Y j ).

G4(QX ,Y ) := max
i,j

Q(X i ,Y j ).

G5(QX ,Y ) := max
j=1,...,m

min
i=1 ,...,n

Q(X i ,Y j ).

G6(QX ,Y ) := min
i=1,...,n

max
j=1,...,m

Q(X i ,Y j ).

It is not difficult to see that all the aggregationfunctions Gi ab ove are monotonic and
comply with the boundary conditions Gi (0 , . . . , 0) =0 and Gi (1, .. .,1) =1 . On the
other hand, only G1 and G4 are symmetric, and none of the m is self-dual.

We can also use these aggregation functions to deduce the relationships between the
different conditions established in Prop osition 4.3 in the case of statistical preference:it
suffices to takeinto account that G1 ≤ G2 ≤ G3 ≤ G4 and G1 ≤ G5 ≤ G6 ≤ G4.

Remark 4.73Proposition4.72 helpsto verify eachof theconditions SP i , i = 1, .. .,6
by looking at the profileof preferences QX ,Y given byEquation (4.9):

•X SP1 Y if and only if all elements in the mat rix are greater than or equalto 1
2 .
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•X SP2 Y if and only if there is a row whose elements are al l greater than or equal
to 1

2 .

•X SP3 Y if andonlyif ineachcolumnthere isatleastone element greater than
or equal to 1

2 .

•X SP4 Y if andonly if thereis an elementgreater thanor equal to 1
2 .

•X SP5 Y if and only if there is a column whose elements are all greater than or
equalto 1

2 .

•X SP6 Y if and only if ineach rowthere is at least one element greaterthan or
equalto 1

2 .

See the comments after Proposition 4.3 for a related idea.

The ab ove remarks suggest that other preference relationships may be defined by means
of other aggregation functions G, and this would allow us to take all the elements of the
profile of preferences into account, instead of fo cusing on the b est or worst scenarios only.
Next, we explore briefly one of these possibilities: the arithmetic mean Gmean , given by

Gmean : ∪s∈N[0, 1]s → [0 , 1]

(r 1, . . . ,rs) →
r 1 + ··· +r s

s
.

This is a symmetric, monotone, idemp otent and self-dual aggregation function. For
clarity, when X is Gmean -statistically preferred to Y we shall denote it X SPmean Y .
The connection between SPmean and SP i , i = 1, ...,6 is aconsequence of the following
result:

Prop osition 4.74Giventwo finitesets ofrandom variables X and Y, X = { X 1, . . . ,Xn }
and Y = { Y1, . . . ,Ym } , anda monotone and idempotent aggregationfunction G,

X SP1 Y⇒X SPG Y⇒X SP4 Y.

Pro of: On the one hand, assume thatX SP1 Y . Then, Q(X , Y) ≥ 1
2 for every X ∈X

and Y ∈Y . Since G is monotone and idemp otent, G(QX ,Y ) ≥ G 1
2 , . . ., 1

2 = 1
2 , and

consequentlyX SPG Y .

On the oth er hand, ass ume ex-absurdo thatG(QX ,Y ) ≥ 1
2 and that X SP4 Y, so

that Q( X , Y )< 1
2 for every X ∈X and Y ∈Y . Then G(QX ,Y ) ≤ maxi,j Q(X i ,Y j )< 1

2 ,
acontradiction. Hence,X SP4 Y .

Inparticular, wesee that SPmean is an intermediate notion between SP1 and SP4 .
To see that it is notrelated to SP i for i = 2, 3, 5,6, consider the following exam ple:
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Example 4.75Consider Ω= { ω1,ω2} (P( { ωi } ) = 1/2 ), and thesets ofrandomvari-
ablesX = { X 1,X 2,X 3} and Y = { Y } defined by:

ω1 ω2
X 1 0 2
X 2 0 0
X 3 2 2
Y 1 1

Then,

QX ,Y :=




1
2
0
1



 and QY ,X := 1
2 1 0

whence Remark 4.73 implies thatX SP i Y, for i = 2,3 ,and Y SP i X , for i = 5,6 . On
the other hand,

Q(X 1,Y ) + Q(X 2,Y ) + Q(X 3, Y)
3

=
1
2

,

and consequentlyX≡ SPmean Y. Hence, X SPmean Y X SP i Y for i = 5,6 , and
Y SPmean X Y SP i X for i = 2,3 . By comparing Z 1 = { X 2,Y } and Z 2 = { X 3,Y }
with X , we can see that: Z 1 ≡ SP5 ,6 X SPmean Z 1 and Z 2 ≡ SP2,3 X≺ SPmean Z 2. Then,
there are not general relationships between SPmean and SP i for i = 2, 3, 5,6.

4.2 Modelling imprecision in decision making problems

In this section, we shall show how the ab ove results can be applied in two different
scenarios where imprecisi on enters a de cision problem:the case where we have imprecise
information ab out the utilities of the diffe rent alternatives, and that wherewehave
imprecise b eliefs ab out the states of nature.

4.2.1 Imprecision on the utilities

Let us start with the first case. Consider a decision problem where we must cho ose
between two alternatives X and Y whose resp ective utilities dep end on the valuesω of
the states of nature. Assume that we have precise information ab out the probabilities
of these state s of nature,so that X and Y can be seen as random variables defined on
aprobability space (Ω, A , P). If we have imprecise knowledge ab out the utilities X (ω)
asso ciated with the different states of nature, one p ossible mo del would be to associate
to any ω ∈ Ω aset Γ(ω) that is su re to include the ‘true’ utility X (ω). By doing this,
we obtain a multi-valued mapping Γ:Ω →P (Ω) , and all we know ab out X is that itis
one of th e measurable selections ofΩ, that were defined in Equation (2.21) by:

S(Γ)= { U :Ω → Ω r.v. : U (ω)∈ Γ(ω) for every ω ∈ Ω} . (4.11)
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In this pap er, we shall consider only multi-valued mappings satisfying the measurability
condition:

Γ
∗
(A ) := { ω ∈ Ω : Γ(ω) ∩ A= ∅} ∈A for any A ∈A .

Aswesaw in Definition2.42,these multi-valued mappings are called random sets.

Our comparison of two alternatives with imp recise utilities results thus in the com-
parison of two random sets Γ1,Γ 2, that we shall make by means of their resp ective sets
of measurable selectionsS(Γ 1), S (Γ2) determined by Equation (2.21). Forsimplicity, we
shall use the notation Γ1 Γ2 instead of S(Γ 1) S(Γ 2) when no confusion is possible.

Let us begin by studying the comparison of random sets bymeans of sto chastic
dominance.

Prop osition 4.76Let (Ω, A , P) be a probabilityspace, (Ω, P (Ω )) a measurable space,
with Ω a finite su bset ofR, and ΓX ,Γ Y betworandom sets. The fol lowing equivalences
hold:

(a) ΓX FSD 1 ΓY ⇔ minΓ X FSD maxΓ Y .

(b) ΓX FSD 2 ΓY ⇔ ΓX FSD 3 ΓY ⇔ maxΓ X FSD maxΓ Y .

(c) ΓX FSD 4 ΓY ⇔ maxΓ X FSD minΓ Y .

(d) ΓX FSD 5 ΓY ⇔ ΓX FSD 6 ΓY ⇔ minΓ X FSD minΓ Y .

Pro of: The result follows from Proposition 4.19, taki ng into account that givena
random set Γ taking values on a finite space, the lower distribution function asso ciated
with its set S(Γ) of measurable sele ctions is induced bymaxΓ and its upp er distribution
function is inducedby minΓ .

Moreover, wecancharacterise the conditions FSD i , i = 1, .. .,6 even for random
sets that take values on infinite spaces. To seehow thiscomes out, we shall consider
the upp er and lower probabilities induced by the random set. Recall that, from Equa-
tion(2.22),they are defined by:

P∗(A ) = P( { ω : Γ(ω) ∩ A= ∅}) and
P∗(A ) = P( { ω: ∅= Γ(ω) ⊆ A} )

for any A ∈A . As we have already see n in Equation (2.24), the upp er and lower
probabilities of a random set constitute upp er and lower bounds of the probabilities
inducedby the measurable selections:

P∗(A) ≤ PU (A) ≤ P ∗
(A) ∀U ∈ S (Γ),

and in particular their asso ciated cumulative distributions provide lower and upp er
b ounds of the lower and upp er distribution functions asso ciated withS(Γ) .
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We have seen in Theorem 2.46 thatwhen P ∗(A) is attainedbythe probabilities
induced by the measurable selections for any eleme ntA ∈A , thesupremumand infimum
of the integrals of a gamble with resp ect to the measurable selections can be expressed
by means of the Cho quet integral of the gamble with resp ect toP∗ and P∗. This result
allows to characterise the imprecise sto chastic dominance b etween random sets by means
of the comparison of Cho quet or Aumann integrals. Recall that we have denoted by U∗

the set of increasing and bounded functions u : [0, 1]→ R.

Prop osition 4.77Let (Ω, A , P) be a probability space. Considerthe measurable space
([0, 1],β[0 ,1]) and let ΓX ,Γ Y :Ω →P ([0, 1]) betwo randomsets. If for all A ∈ β[0,1] it
holds that P∗

X (A ) = m ax P (Γ X )(A) and P ∗
Y (A ) = max P (Γ Y )( A), the fol lowing equiva-

lences hold:

1. ΓX FSD 1 ΓY ⇔ (C) udPX ∗ ≥ (C) udP∗
Y for every u ∈U ∗.

2. ΓX FSD 2 ΓY ⇒ (C) udP∗
X ≥ (C) udP∗

Y for every u ∈U ∗.

3. ΓX FSD 3 ΓY ⇒ (C) udP∗
X ≥ (C) udP∗

X for every u ∈U ∗.

4. ΓX FSD 4 ΓY ⇒ (C) udP∗
X ≥ (C) udPX ∗ for every u ∈U ∗.

5. ΓX FSD 5 ΓY ⇒ (C) udPX ∗ ≥ (C) udPX ∗ for every u ∈U ∗.

6. ΓX FSD 6 ΓY ⇒ (C) udPX ∗ ≥ (C) udPY ∗ for every u ∈U ∗.

Pro of: Consider u ∈U ∗. We deduce from Theorem 2.46 that, under the hyp otheses of
the prop osition,

(C) udP∗
X = sup

U ∈S (ΓX )
udPU =E S(Γ X ) (u) and

(C) udPX ∗ = inf
U ∈S (ΓX )

udPU =E S(Γ X ) (u)

and similarly:

(C) udP∗
Y = sup

U ∈S (ΓY )
udPU =E S(Γ Y ) (u) and

( C) udPY ∗ = inf
U ∈S (ΓY )

udPU =E S(Γ Y ) (u)

The result followsthen applyingTheorem4.23.
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Let us discu ss next the comparison of random sets by means of statistical preference.
When the utility space Ω is finite, we obtain a result related to Prop osition 4.76:

Prop osition 4.78Let (Ω, A , P) be a probabilityspace, (Ω, P (Ω )) a measurable space,
with Ω finite, and ΓX ,Γ Y be tworandom sets. The fol lowing equivalences hold:

(a) ΓX SP1 ΓY ⇔ minΓ X SP maxΓ Y .

(b) ΓX SP2 ΓY ⇔ ΓX SP3 ΓY ⇔ maxΓ X SP maxΓ Y .

(c) ΓX SP4 ΓY ⇔ maxΓ X SP minΓ Y .

(d) ΓX SP5 ΓY ⇔ ΓX SP6 ΓY ⇔ minΓ X SP minΓ Y .

Pro of: The result follows from Proposition 4.7, takingintoaccountthat statistical
preference satisfies the monotonic ity condition of Equation (4.2) and that ifΓ is arandom
set taking values on a finite space, the n the mappingsmin Γ,maxΓ belong to S(Γ) .

In particular, we deduce that we can fo cus on the minimum and maximum measur-
able selections in order to characterise these exte nsions of statistical prefere nce.

Corollary 4.79Let (Ω, A , P) be aprobability space, Ω a finitespace andconsider two
random setsΓX ,Γ Y :Ω →P (Ω) . Then forevery i = 1, ...,6 :

ΓX SP i ΓY ⇔{ minΓ X , maxΓ X } SP i { minΓ Y , maxΓY } . (4.12)

These two results are interesting b ecause random sets takin g values on finite spaces are
quite common in practice; they have been studied in detail in [59, 127], and oneof
their most interesting prop erties is that they constitute equivalent mo dels to b elief and
plausibility functions [170].

Note that the equivalence in Equation (4.12) do es not hold for the relation SPmean

definedin Section 4.1.2.

Example 4.80Consider theprobability space (Ω, A , P) whereΩ= { ω1,ω2} , A = P (Ω)
and P isaprobabilityuniformlydistributed on Ω, and let ΓX betherandomset given
by ΓX (ω1)= { 0 ,1} ,Γ X (ω2)= { 0 , 2, 3,4} , and let ΓY be single-valued random set given
by ΓY (ω1)= { 1} =Γ Y (ω2). Then minΓ X isthe constantrandomvariable on 0, while
maxΓ X is given by maxΓ X (ω1) = 1,maxΓ X (ω2) =4 . Hence, if wecompare the set
{ minΓ X , maxΓX } with ΓY by meansof SPmean we obtain

Q(minΓ X ,Γ Y ) + Q(maxΓ X ,Γ Y )
2

=
0 + 0 .75

2
=0.375
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and thus ΓY SPmean { minΓ X , maxΓX } . Ontheotherhand, thesetofselectionsof ΓX
is given by (where aselection X is identified with the vect or (U (ω1), U (ω2)) ):

S(Γ X )= { (0 , 0), (0 , 2), (0, 3), (0 , 4), (1 , 0), (1 , 2), (1 , 3), (1 , 4)} ,

from which we deduce thatΓX SPmean ΓY .

4.2.2 Imprecision on the beliefs

We next consider the case where we want to cho ose b etween two random variablesX and
Y defined from Ω to Ω , and there is some uncertainty ab out the probability distribution
P ofthe differentstates ofnature ω ∈ Ω, that we mo del by means of a setP of probability
distributions on Ω. Then we may asso ciate with X aset X of random variables, that
corresp ond to the transformations ofX underanyoftheprobabilitydistributions in P ;
and similarly for Y . Weend upthuswith two sets X , Y of random variables, and we
should establish metho ds to determine which of these two sets is preferable.

One particular cas e where this situation may arise is in the context of missing data
[218]. Wemaydividethevariablesdeterminingthe statesofnatureintwogroups: one
for which we have precise information, that we mo del by means of a probability measure
P over thedifferent states, and another ab out which are completely ignorant, knowing
onlywhichare the different states, but nothing more. Then we may get to the cl assical
scenario byfixing the value of the variables in this second group: for each ofthese values
the alternatives may be seen as random variables, usingthe probabilitymeasure P to
determine the probabilities of the different reward s. Hence, bydoing thiswewould
transform the two alternatives X and Y into twosets of alternatives X , Y, considering
all the possible values of the variables in the second group.

Inthis situation, we may compare the sets X , Y by means of th e generalisations of
statistical preference or sto chastic dominance we have discussed in Section 4.1; however,
we argue that other notion s may make more sense in this context. This is because
conditions 1, . . ., 6 arebased onconsideringa particularpair (X 1,Y1) in X ×Y and
on comparing X 1 with Y1 by means of the binary relation . However, any X 1 in X

corresp onds to a particular choice of aprobability measure P ∈P , andsimilarly for
any Y1 ∈Y ; and if we use an e pistemic interpre tation ofour uncertainty under which
only one P ∈P is the ‘true’ mo del,it makes nosense to compare X 1 and Y1 based on
adifferent distribution. This isparticularlyclearin casewewanttoapply statistical
preference,whichisbased oncomparing P(X > Y) with P( Y > X) , where P is the
initial probability measure.

To make this explicit, in this section we may denote oursets of alternatives by
X := { (X , P ): P ∈P} and Y := { (Y , P ): P ∈P} , meaning that our utilitiesare
precise (and are determinedby the variables X and Y , resp ectively),while our beliefs
are imprecise and are mo delled by the set P . Toavoid confusions, we will now write
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X P Y toexpress that X is preferred to Y whenweconsidertheprobability measure
P in the initial probability space. Then we can establish the following definitions:

Definition 4.81Let be a binary relationon random variables. Wesay that:

•X is strongly P preferred to Y, anddenote it X P
s Y, when X P Y for every

P ∈P ;

•X is weakly P preferred, anddenote it X P
w Y, to Y when X P Y for some

P ∈P .

Obviously, th e strong preference implies the weak one.Tosee thattheyare notequiva-
lent, consider the follow ing simple example:

Example 4.82Let be the binary relation associated with statistical preference and
consider the variablesX,Y that represent theresults ofthe dices A and B , respectively,
in Example 3.83. If weconsider the uniform distribution P1 in all the dieoutcomes, we
obtain Q(X , Y )= 5

9 , so that X P1
SP Y ; if we take instead the uniform distribution P2

on { 1, 2,3} , then Q( X , Y )= 1
9 , and asa consequenceY P2

SP X . Hence, X is weakly
{ P1,P 2} statistical ly preferred toY , but not strongly so.

With resp ect to the notions established in Section 4.1, it is not difficult to establish the
following res ult. Its pro of is immediate, and therefore omitted.

Prop osition 4.83Let X , Y be the setsof alternatives consideredabove, and let bea
binary relation. Then

X 1 Y ⇒X P
s Y⇒X P

w Y⇒X 4 Y.

To see that the converse implicationsdo not hold, consider the followingexample:

Example 4.84Consider Ω= { ω1,ω2,ω3} , the set of probabilities

P := { P :P (ω 1) > P(ω 2), P (ω2) ∈ [0, 0. 2]}

and the alternatives X,Y given by

ω1 ω2 ω3
X 1 0 1
Y 0 1 1

If weconsider thesets X = { (X , P ) :P ∈P} and Y = { ( Y , P ) :P∈P} andwe compare
them by means of stochastic dominance, itis clearthat X P

s Y; however, itdoes not



208 Chapter 4. Comparisonofalternatives underuncertainty andimprecision

hold that X FSD 1 Y: ifwe consider P1 := (0. 3, 0. 2, 0. 5)and P2 := (0. 1, 0, 0.9), it holds
that (Y ,P2) FSD (X ,P1).

Moreover, inthis examplewe also havethat X is strictlyweakly P-preferred to Y
while X≡ FSD 4 Y.

Remark 4.85If the binary relation we start with is complete, sois the weak P-
preference. In that case, we obtainthat X P

w Y implies that X P
s Y, because if

X P
w Y we musthave that (X , P) (Y , P) for every P ∈P .

Moreover, when X≡ P
w Y, we may have strict preference, indifference or incompa-

rability with respect to strong P-preference.

In what follows, we study in somedetail the noti on s of we ak and strong preference for
particular choicesofthe binary relation . If corresponds to expected utility, s trong
preference ofX over Y means that X is preferred to Y with resp ect to all the probability
measuresP in P , and then it is related to the idea of maximality [205]; on the other hand,
weak preference means thatX is preferredto Y (i.e., itis the optimalalternative) with
resp ect to some of the elements ofP ; this idea is c los e to the criterion ofE -admissibility
[107]. See alsoRemark4.13and [43,Section3.2].

When is the binary relation associated with stochastic dominance, we obtain the
following.

Prop osition 4.86Consider a set P of probability measureson Ω, and let X,Y be two
real-valued random variables on Ω. Let usdefine the sets FX := { F P

X : P ∈P} and
FY := { F P

Y :P ∈P} .

1. F X ≤ F Y ⇒X is strongly P-preferred to Y with respect to stochasticdominance.

2. X is weakly P-preferred to Y with respect to stochasticdominance ⇒ F X ≤ F Y .

Pro of: Assume that F X ≤ F Y . Then, forany P ∈P itholds that:

F P
X ≤ F X ≤ F Y ≤ F P

Y .

Then, X is strongly P -preferred to Y with resp ect to first degree sto chastic dominance.

Now, assume thatX is weakly P -preferred to Y with resp ect to first degree stochas-
tic dominance. Then the re exists P ∈P such that F P

X ≤ F P
Y . Then, in particular,

X FSD 4 Y , and by Prop osition 4.19 we deduce thatF X ≤ F Y .

Note that this result could also b e derived from Prop ositions 4.19 and 4.83.

Finally, when corresponds to statistical pre ference,we canapply Remark4.85,
because is a complete relation. In addition, we can establish the fol lowing result:
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Prop osition 4.87Consider a set P of probability measures, and let P,P denote its
lowerandupperenvelopes, givenbyEquation (2.18). Let X,Y be two real-valued random
variables on Ω, and let u=I (0 ,+ ∞ ) − I (−∞ ,0) .

1. X is strongly P statistical ly preferred toY ⇔ P (u (X − Y)) ≥ 0.

2. X is weaklyP statistical ly preferred toY ⇒ P (u(X − Y )) ≥ 0. The converseholds
if P = M (P) .

Pro of: The result follows simply by considering that if X,Y are random variableson
aprobability space (Ω, A , P), then, by applying Equation (3.1), X P

SP Y if andonly if
P (u(X − Y)) ≥ 0, where wealsouse P to denote the expectation op erator asso ciated
with the probability measure P .

To see that the converse of the se cond statement holds whenP = M ( P), note that
the upp er envelopeP of P is a coherentlowerprevision. From[205, Section3.3.3], given
the bounded random variable u(X − Y) there exists aprobability P in M ( P) such that
P (u(X − Y )) = P (u(X − Y)) .

The ab ove result can be related to the lower median, as in [46, 148]. For th is, let
usdefine thelower median of X − Y bythe credalset M ( P) by

M e(X − Y) := inf { Me P (X − Y) :P ∈M (P) } ,

anditsupper median by

M e(X − Y) := sup { Me P (X − Y) :P ∈M (P) } ,

whereMeP (X − Y) denotes the medianof X − Y when P isthe probabilityoftheinitial
space.

Then, we deduce from Prop osition 4.64 that

M e(X − Y) >0 ⇒ X
M (P)
SP,s Y ⇒ M e(X − Y) ≥ 0,

and that
M e(X − Y) >0 ⇒ X

M (P)
SP,w Y ⇒ M e(X − Y) ≥ 0.

Arelated resultwas established in [46, Prop osition 4], by me ans of a slightly d ifferent
definition of median. See also Prop osition 4.64,and [83, 164] forapproaches based on
the expected utility mo del.

4.3 Modelling the jointdistribution in an imprecise
framework

Statistical preference is an sto chastic order that depends on the joint distribution of
the random variables. This joint distribution function can be determined, according
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to Sklar’s Theorem (Theorem 2.27), fromthemarginals bymeansof acopula. In the
imprecise context we are dealing with in this chapter, there may be imprecision either
in the marginal distribution functions or in the copulathat links themarginals. In the
former case, we can mo del the lack of information by means of p-b oxes, and in the second
one the sh ould consider a set of p oss ible copulas.In both situations we shall obtaina
set of bivariatedistribution functions.

In order to determine the mathematical mo del for this situation, we shall consider
two steps: ontheone hand, we shall study how to mo del sets of bivariate distribution
functions, since the lower and upp er bounds are not, in general, distribution functions.To
deal with th is problem, we shall extend the notion of p-b ox when considering bivariate
distribution functions, and we will investigate under which conditions such bivariate
p-b ox can define a coherent lower probability. Then, we shall consider two marginal
imprecise distribution functions and we will try to build from them a joint distribution.
In this context, the mainresultis toextend Sklar’s Theorem toan imprecise framework;
we shall also study the application of these results can be applied into bivariate sto chastic
orders.

4.3.1 Bivariate distributionwith imprecision

Bivariate p-b oxes

Let Ω1,Ω 2 be two totally ordered spaces.Asin[198], weassumewithoutlossofgenerality
that b oth have a maximum element, that we denote resp ectively by x∗,y ∗. Note that
this is trivial in the case offinitespaces.

We start by intro ducing standardized functions and bivariate distribution functions.

Definition 4.88Consider two ordered spacesΩ1,Ω 2. Amap F: Ω1 × Ω2 → [0, 1] is
cal led standardized when it is component-wise increasing andF(x ∗,y ∗) =1 . It is cal led
a distributionfunction when moreover it satisfies the rectangleinequality:

(RI): F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1) ≥ 0

for every x1,x 2 ∈ Ω1 and y1,y 2 ∈ Ω2 such that x1 ≤ x2 and y1 ≤ y2.

Here, and inwhat follows, we shall makean assumptionof logical independence, meaning
that we consider all values in the pro duct spaceΩ1 × Ω2 to be possible.

The rectangle inequality is equivalent to monotonicity in the univariate case, so
in that case a distribution function is simply an increasing and normalized function
F: X→ [0 , 1]. Moreover, a lower envelop e of univariate distribution functions is again
a distribution function, by Prop osition 2.34. Unfortunately, the situation isnot as clear
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cut in the bivariate case: the envelop es of a set of distribution functions are standardized
maps, but not necessarilydistribution functions.

Prop osition 4.89Let Ω1 and Ω2 betwoordered spacesandF beafamily of distribution
functions F :Ω 1 × Ω2 → [0 , 1]. Theirlower and upperenvelopes F, F :Ω 1 × Ω2 → [0 , 1],
given by

F (x, y) = inf
F ∈F F (x, y) and F (x, y) = sup

F ∈F
F (x, y)

for every x ∈ Ω1,y ∈ Ω2, are standardized maps.

Pro of: It suffices totake into account thatthe monotonicity andnormalization prop-
erties are preserved by lower and upper envelop es.

To see that these envelop es are not necessarily distribution functions, consider the
following example:

Example 4.90Take Ω1 =Ω 2 = { a, b,c} , with a< b <c and let F1,F 2 be thedistribu-
tion functions determined by the fol lowing joint probability measures:

X 1,Y1 a b c
a 0.1 0.1 0
b 0.4 0.1 0
c 0 0 0.3

X 2,Y2 a b c
a 0.4 0 0.2
b 0.1 0 0
c 0.1 0 0.2

Then F1 and F2 are givenby:

(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
F1 0.1 0.2 0.2 0.5 0.7 0.7 0.5 0.7 1
F2 0.4 0.4 0.6 0.5 0.5 0.7 0.6 0.6 1

and their lower and upper envelopes are given by:

(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
F 0.1 0.2 0.2 0.5 0.5 0.7 0.5 0.6 1
F 0.4 0.4 0.6 0.5 0.7 0.7 0.6 0.7 1

Then

F (b,b) +F(a,a) − F(a, b) − F (b, a) = 0.5 + 0.1− 0.2− 0. 5= − 0.1 <0

and
F (b,c) +F(a,b) − F(a, c) − F (b, b) = 0.7 + 0.4− 0.6− 0.7= − 0. 2 < 0.

As aconsequence, neitherF nor F are distributionfunctions.

Taking this result into account, we give the following de finition:
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Definition 4.91Consider twoordered spacesΩ1,Ω 2, and let F, F :Ω 1 × Ω2 → [0, 1]be
two standardized fu nctions satisfyingF (x, y) ≤ F (x, y) for every x ∈ Ω1,y ∈ Ω2. Then
the pair (F , F) is cal led a bivariate p-box.

Prop osition 4.89 shows that bivariate p-boxes can be obtained in particular by means ofa
set of distribution functions, taking lower and upp er envelop es.However, notallbivariate
p-b oxes are of this type:if we consider forinstance a mapF =F that isstandardized but
not adistribution function, then there is no bivariate distribution function between F
and F , and as a consequence these cannot be obtained as envelop es of a set of distribution
functions. Ournextparagraph will deep en into this matter, by meansof the notion of
coherence oflower probabilities. In particular, we shall investi gate how Theorem 2.35
could b e extended to bivariate p-b oxes.

Lower probabilities and p-b oxes

In order to define a lower probability from a bivariate p-b ox, let us now intro ducea
notation similar totheoneof Section2.2.1.

Consider two ordered spacesΩ1,Ω 2, and let (F , F) be a bivariate p-b ox onΩ1 × Ω2.
Denote

A (x,y) := { ( x , y) ∈ Ω1 × Ω2 :x ≤ x,y ≤ y} ,

and let us define

K1 := { A (x,y) :x ∈ Ω1,y ∈ Ω2} and K2 := { Ac
(x,y) :x ∈ Ω1,y ∈ Ω2} .

The maps F and F can b e used to de fine the lower probabilities P F : K1 → R and
P F : K2 → R by:

P F (A (x,y) ) = F (x, y) and P F (A c
(x,y) ) =1 − F (x, y). (4.13)

Define now K := K1 ∪K 2; note that A (x ∗,y ∗) =Ω 1 × Ω2, where x∗,y ∗ are the maximum
of Ω1 and Ω2, resp ectively.Thus, both Ω1 × Ω2 and ∅belong to K .

Definition 4.92The lowerprobabilityinduced by (F , F) is the mapP (F ,F) : K→ [0, 1]
given by:

P (F ,F) (A ( x,y) ) = F (x, y), P (F ,F) (A c
(x,y) ) =1 − F (x, y) (4.14)

for every x ∈ Ω1,y ∈ Ω2.

Note that P (F ,F) (Ω1 × Ω2) =1 and P (F ,F) (∅) =0 becauseF and F are standardized.

In this section, we are going to study which prop erties of the lower probability
P (F ,F) can b e characterised in te rm s ofthe lower and upp er distribution functions F

and F .
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Avoiding sure lossWe begin with the property of avoiding sure loss. Recallthat, as
we saw in Definition 2.29, a lower prob ab ility P with domain K⊆P (Ω1 × Ω2) avoids
sure loss if and only if there is a finitely additive probability P: P (Ω1 × Ω2) → [0 , 1]
that dominates P onits domain. This is a consequence of [205, Corollary3.2.3 and
Theorem 3.3.3].

Prop osition 4.93The lowerprobability P (F ,F) inducedby the bivariatep-box (F , F) by

meansofEquation (4.14) avoidssurelossifand onlyifthereisa distributionfunction
F :Ω 1 × Ω2 → [0 , 1]satisfying F ≤ F ≤ F .

Pro of: We begin withthe direct implication. Assume that P (F ,F) avoids sureloss.
Then, there exists afinitelyadditive probability P: P (Ω1 × Ω2) → [0 , 1]such that
P (A) ≥ P (F ,F) (A) for every A ∈K . Let usdefinethe map FP : Ω1 × Ω2 → [0, 1] by
FP (x, y) = P(A (x,y) ). Then FP is a distribution function that is b ou nded b etween F

and F :

• Consider x1,x 2 ∈ Ω1 and y1,y 2 ∈ Ω2 such that x1 ≤ x2,y 1 ≤ y2. Then:

FP (x 1,y 1) = P(A (x 1 ,y 1 ) ) ≤ P(A (x 2 ,y 2 ) ) =F P (x 2,y 2)

becauseP is monotone.

• FP (x ∗,y ∗) = P(A (x ∗,y ∗) ) = P(Ω 1 × Ω2) =1 .

• Consider x1,x 2 ∈ Ω1 and y1,y 2 ∈ Ω2 such that x1 ≤ x2,y 1 ≤ y2. Then itholds
that

FP (x 1,y 1) +F P (x 2,y 2) − FP (x1,y 2) − FP (x 2,y 1)
= P(A (x 1 ,y 1 ) ) + P(A (x 2 ,y 2 ) ) − P(A (x 1 ,y 2 ) ) − P(A (x 2 ,y 1 ) )
= P( { (x, y) ∈ Ω1 × Ω2 :x 1 <x ≤ x2,y 1 <y ≤ y2} ) ≥ 0.

• For every x ∈ Ω1,y ∈ Ω2,

FP (x, y) = P(A (x,y) ) ≥ P (F ,F) (A (x,y) ) = F (x, y),

and on the other hand,

FP (x, y) = P(A (x,y) ) =1 − P(A c
(x,y) )

≤ 1 − P (F ,F) (A c
(x,y) ) =1 − (1 − F (x, y)) = F (x, y).

Converse ly, assume thatF :Ω 1 × Ω2 → [0 , 1]is a distribution function that lies between
F and F , and let us define the fin itely additive probability PF onthe fieldgenerated by
K bymeans of

PF ({ (x, y) ∈ Ω1 × Ω2 :x 1 <x ≤ x2,y 1 <y ≤ y2} )
=F P (x 1,y 1) +F P (x 2,y 2) − FP (x 1,y 2) − FP (x 2,y 1) ≥ 0. (4.15)
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Then it followsthat PF (A ( x,y) ) = F (x, y) ≥ F (x, y) =P (F ,F) (A ( x,y) ) and moreover
PF (A c

(x,y) ) =1 − F (x, y) ≥ 1 − F (x, y) =P (F ,F) (A c
(x,y) ).

Since any finitely additive probability on afield of events has afinitely additive
extension to P (Ω1 × Ω2), we deduce that there is a fin itely additive probability that
dominates P (F,F) , and as a consequence th is lower probability avoids sure loss.

This result allows us to fo cus on the lower and upp er distributions of the p-b ox, that
shall simplify search for for necessary and sufficient conditions.Weshall say that (F , F)
avoids sure loss when thelowerprobability P (F ,F) itinduces bymeansofEquation(4.14)
do es.Ournext resultgives a necessarycondition:

Prop osition 4.94If (F , F) avoidssure loss, thenfor every x1,x 2 ∈ Ω1 and y1,y 2 ∈ Ω2
such that x1 ≤ x2 and y1 ≤ y2 it holdsthat

(I − RI0 ): F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1) ≥ 0.

Pro of: Assume that (F , F) avoids sure loss.By Prop osition 4.93, there is a distribution
function F bounded by F,F . Given x1,x 2 ∈ Ω1 and y1,y 2 ∈ Ω2 such that x1 ≤ x2 and
y1 ≤ y2, it foll ows from (RI) that

0 ≤ F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1)
≤ F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1),

where the second inequality foll ows fromF ≤ F ≤ F .

Let us show that thi s necessary condition is not sufficient in general:

Example 4.95Consider Ω1 =Ω 2 = { a, b,c} , with a <b <c and let F and F be given
by:

(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
F 0 0.65 0.7 0.2 0.8 0.8 0.35 0.9 1
F 0.1 0.7 0.7 0. 25 0.8 0.8 0.4 0.9 1

It is immediate to check that bot h maps are standardized and that together they satisfy
(I-RI0). However, (F ,F) does not avoid sure loss: fromProposition4.93, itsufficesto
show that there isno distribution function F bounded byF (x, y) and F (x, y) for every
x,y ∈{ a, b,c} . To see that this is indeed the case, note thatany distribution function
F ∈ (F , F) should satisfy

F (a, c) = 0.7, F (b, b) = 0.8, F (b, c) = 0.8, F (c, b) = 0.9 and F(c, c) = 1.

By (RI) to (x1,y 1) = (a, b) and (x 2,y 2) = (b, c) , we deducethat F(a, b) = 0.7 , and then
applying againthe rectangle inequality we deducethat

F (b, b) + F (a, a)− F (a, b)− F ( b, a) = 0. 8 + F (a, a)− 0.7− F(b, a) ≥ 0
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if and only if F (a,a) + 0.1 ≥ F (b, a),whence F(a, a) = 0.1 and F (b, a) = 0.2. If wenow
apply (RI) to (x 1,y 1) = (b, a) and (x 2,y 2) = (c, b), we deduce that

F (c, b) + F (b, a)− F(b, b)− F (c, a) = 0.9 + 0.2− 0.8− F(c, a) ≥ 0

if and only if F (c, a)≤ 0.3. Butonthe other handwe musthave F(c, a) ≥ F ( c, a) = 0. 35,
acontradiction. Hence, (F , F) does notavoid sure loss.

However, (I-RI0) is a neces sary and sufficient condition when b oth Ω1,Ω 2 are binary
spaces.

Prop osition 4.96Assumethat both Ω1 = { x1,x 2} and Ω2 = { y1,y 2} are binary spaces
such that x1 ≤ x2 and y1 ≤ y2, and let (F , F) be a bivariate p-box onΩ1 × Ω2. Then the
fol lowing are equivalent:

1. (F ,F) avoids sure loss.

2. F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1) ≥ 0 for all x1,x 2 ∈ Ω1,y 1,y 2 ∈ Ω2.

3. F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1) ≥ 0 for all x1,x 2 ∈ Ω1,y 1,y 2 ∈ Ω2.

Pro of: The first statement implies the second from Proposition 4.94. To see thatthe
second implies thethird note that, sinceF and F are standardizedmaps, it holds that
F(x 2,y 2) = F(x 2,y 2) =1 .

Tosee thatthe third statement impliesthe first, letus consider F :Ω 1 × Ω2 → [0 , 1]
given by

F(x 1,y 1) = F(x 1,y 1)
F(x 1,y 2) = max { F (x1,y 1), F (x1,y 2)}

F(x 2,y 1) = max { F (x1,y 1), F (x2,y 1)}

F(x 2,y 2) = 1.

By construction, F is a standardized map and it is bounded by F,F . To se e that it
indeed is a distribution func tion, notethat if either F(x 1,y 2) or F(x 2,y 1) is equal to
F(x 1,y 1) = F(x 1,y 1), then it follows from the monotonicity of F,F that

F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1) ≥ 0;

and if F(x 1,y 2) = F(x 1,y 2) and F(x 2,y 1) = F(x 2,y 1), then

F (x2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1)
= F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1) ≥ 0.
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Coherence Let us turn now to coherence, where we shall see that Theorem 2.35 does
not extend immediately to the bivariate cas e. We begin by establishing a result related
to Prop osition 4.93:

Prop osition 4.97The lowerprobability P (F ,F) inducedby the bivariatep-box (F , F) is

coherentif and only if F and F are t he lower and the upper envelopes of the set

{ F :Ω 1 × Ω2 → [0, 1] distribution function :F ≤ F ≤ F } ,

respectively.

Pro of: We b egin with the direct implication. If P (F ,F) iscoherent, thenforany x ∈ Ω1

and y ∈ Ω2 there issomeprobability P ≥ P (F ,F) such that P(A (x,y) ) =P (F ,F) (A ( x,y) ).
Consider the function FP :Ω 1 × Ω2 → [0 , 1]defined by FP (x ,y ) = P(A (x ,y) ) for every
(x ,y) ∈ Ω1 × Ω2. Reasoning as in the pro of of Prop osition 4.93, we deduce thatFP is
a distribution function that belongs to (F , F). Moreover, by con struction:

FP (x, y) = P (A ( x,y) ) =P (F ,F) (A (x,y) ) = F (x, y).

Similarly, thereexists some P ≥ P (F ,F) such that

P(A c
(x,y) ) =P (F ,F) (A c

(x,y) ).

Let FP :Ω 1× Ω2 → [0 , 1]be given byFP (x ,y )=P (A (x ,y) ) for every(x ,y) ∈ Ω1× Ω2.
Reasoning as in the pro of of Prop osition 4.93, wededuce that FP is a dis trib ution
function that belongs to (F , F). Moreover, by con struction:

1 − FP (x, y) =1 − P(A (x,y) ) = P(A c
(x,y) ) =P (F ,F) (A c

(x,y) ) =1 − F (x, y),

whenceFP (x, y) = F (x,y) .

Convers ely,fix (x, y) ∈ Ω1 × Ω2 and let F1,F 2 be distribution functions in (F , F)
such that F1(x,y) = F (x, y) and F2(x, y) = F (x,y) . Let P1,P 2 be the finitely additive
probabilities they induce in K by meansof Equation (4.15). The n it follows from the
pro of of Prop osition 4.93 thatP1,P 2 dominate P (F,F) , and moreover

P1(A ( x,y) ) =F 1(x, y) = F (x, y) =P (F ,F) (A x,y ) and
P2(A c

(x,y) ) =1 − P2(A ( x,y) ) =1 − F2(x, y) =1 − F (x, y) =P (F ,F) (A c
x,y )

Since P1,P 2 have finitelyadditive extensionsto P (Ω1 × Ω2), we deducefromthis that
P (F ,F) is coherent.

We shall call the bivariate p-b ox (F , F) coherent when its asso ciated lower prob-
ability is. One interestingdifferencewiththeunivariatecaseisthat F,F need notbe
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distribution functions for (F , F) to be coherent (although if F,F are distributionfunc-
tions then trivially (F , F) is coherent by Prop osition 4.97).This can b e seen for instance
with Example 4.90, where the lower envelop e ofaset of distribution functions (which
determines the lower distributionfunction of a coherent p-b ox) is not a distribution
function itself.

Out next result uses prop erties (2.11)–(2.15) of coherent lower probabilities to ob-
tain four imprecise-versions of the rectangle inequality that, as we shall see, will play an
imp ortant role.

Prop osition 4.98Let (F , F) be abivariate p-box on Ω1 × Ω2. Ifitiscoherent, thenthe
fol lowing conditions hold for every x1,x 2 ∈ Ω1 and y1,y 2 ∈ Ω2 such that x1 ≤ x2 and
y1 ≤ y2:

(I − RI1 ): F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1) ≥ 0.

(I − RI2 ): F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1) ≥ 0.

(I − RI3 ): F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1) ≥ 0.

(I − RI4 ): F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1) ≥ 0.

Pro of: Consider (x1,y 1) and (x 2,y 2) in Ω1 × Ω2 such that x1 ≤ x2 and y1 ≤ y2. Let
P (F ,F) b e the lower probability induc ed by (F , F) by means of Equation (4.14). It is
coherent by Prop osition 4.97.

Then, by Equations(2.11) and (2.13), it holds that:

P(A (x 2 ,y 2 ) ) ≥ P(A (x 1 ,y 2 ) ∪ A (x 2 ,y 1 ) ) + P(A (x 2 ,y 2 ) \ (A (x 1 ,y 2 ) ∪ A (x 2 ,y 1 ) ))
≥ P(A (x 1 ,y 2 ) ) + P(A (x 2 ,y 1 ) ) − P(A (x 1 ,y 2 ) ∩ A (x 2 ,y 1 ) )
+ P(A (x 2 ,y 2 ) \ (A (x 1 ,y 2 ) ∪ A (x 2 ,y 1 ) )).

Thus:

P(A (x 2 ,y 2 ) ) − P(A (x 1 ,y 2 ) ) − P(A (x 2 ,y 1 ) ) + P(A (x 1 ,y 2 ) ∩ A (x 2 ,y 1 ) )
≥ P(A (x 2 ,y 2 ) \ (A (x 1 ,y 2 ) ∪ A (x 2 ,y 1 ) )) ≥ 0.

If we write the previous equation in terms of the maps F,F , we obtain that:

F(x 2,y 2) − F(x 1,y 2) − F(x 2,y 1) + F(x 1,y 1) ≥ 0.

On the otherhand,applyingEquations (2.12)and(2.14)

P(A (x 2 ,y 2 ) ) ≥ P(A (x 1 ,y 2 ) ∪ A (x 2 ,y 1 ) ) + P(A (x 2 ,y 2 ) \ (A (x 1 ,y 2 ) ∪ A (x 2 ,y 1 ) ))
≥ P(A (x 1 ,y 2 ) ) + P(A (x 2 ,y 1 ) ) − P(A (x 1 ,y 2 ) ∩ A (x 2 ,y 1 ) )
+ P(A (x 2 ,y 2 ) \ (A (x 1 ,y 2 ) ∪ A (x 2 ,y 1 ) )).
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Then:

P (A(x 2 ,y 2 ) ) + P(A (x 1 ,y 2 ) ∩ A (x 2 ,y 1 ) ) − P(A (x 1 ,y 2 ) ) − P(A (x 2 ,y 1 ) )
≥ P(A (x 2 ,y 2 ) \ (A (x 1 ,y 2 ) ∪ A (x 2 ,y 1 ) )) ≥ 0.

In terms of F,F , this means that

F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1) ≥ 0.

Analogously, byEquation (2.12)

P(A (x 2 ,y 2 ) ) ≥ P(A (x 1 ,y 2 ) ∪ A (x 2 ,y 1 ) ) + P(A (x 2 ,y 2 ) \ (A (x 1 ,y 2 ) ∪ A (x 2 ,y 1 ) ))

and, from Equation (2.15), this is gre ate r than or equal to b oth

P (A (x 2 ,y 2 ) \ (A (x 1 ,y 2 ) ∪ A (x 2 ,y 1 ) )) + P (A (x 1 ,y 2 ) ) + P(A (x 2 ,y 1 ) ) − P(A (x 1 ,y 2 ) ∩ A (x 2 ,y 1 ) )

and

P (A(x 2 ,y 2 ) \ (A (x 1 ,y 2 ) ∪ A (x 2 ,y 1 ) )) + P (A (x 1 ,y 2 ) ) + P(A (x 2 ,y 1 ) ) − P(A (x 1 ,y 2 ) ∩ A (x 2 ,y 1 ) ).

Then:

0 ≤ P(A (x 2 ,y 2 ) \ (A (x 1 ,y 2 ) ∪ A (x 2 ,y 1 ) ))

≤ P(A (x 2 ,y 2 ) ) − P(A (x 1 ,y 2 ) ) − P(A (x 2 ,y 1 ) ) + P(A (x 1 ,y 2 ) ∩ A (x 2 ,y 1 ) ).
P (A(x 2 ,y 2 ) ) − P(A (x 1 ,y 2 ) ) − P(A (x 2 ,y 1 ) ) + P(A (x 1 ,y 2 ) ∩ A (x 2 ,y 1 ) ).

In terms of F,F , this means that:

F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1) ≥ 0.
F(x 2,y 2) + F(x 1,y 1) − F(x 1,y 2) − F(x 2,y 1) ≥ 0.

None of these conditions is sufficient for coherence,as we can seein the following
examples.

Example 4.99Let us show an example where both F and F satisfy (I-RI1), (I-RI2)
and (I-RI4), but not (I-RI3), and thelower prevision P is not coherent. For thisaim
consider three realnumbersa< b<c and the functions F and F defined by:

(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
F 0 0.3 0. 45 0.3 0.6 0. 75 0.45 0.8 1
F 0 0.3 0.5 0.3 0.6 0. 85 0.5 0. 85 1

Both F and F are standardizedmaps. In addition, F isa distributionfunction, andcon-
sequentlyF and F satisfy(I-RI1)and (I-RI2). Itcan be checked that(I-RI4)is alsosat-
isfied. Assume that their lowerprobability P (F ,F) is coherent. Then, byProposition4.97
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theremust bea distribution function F betweenF,F such that F (b,c) = F (b, c) = 0.85.
However, this implies that

F (c, c) + F ( b, b)− F(b, c) − F(c, b) = 1 + 0.6 − 0.85− F(c, b) ≥ 0 ⇒ F(c, b) ≤ 0.75.

But on the other hand we must have F (c, b)≥ F (c, b) = 0.8; this is a contradiction.

Similarly, ifwe define F ∗ and F
∗

by F ∗
(x, y) = F (y , x) and F

∗
(x, y) = F (y , x), we

obtainan examplewhere(I-RI1), (I-RI2)and(I-RI3) aresatisfied butthep-box (F , F)
is not coherent.

Example 4.100Let usgive next anexample where F and F satisfy conditions(I-RI2)
and (I-RI3) and (I-RI4), but not (I-RI1), and the bivariate p-box (F , F) is not coherent.
For this aim consider three real numbersa< b <c and the functions F and F defined
by:

(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
F 0 0.3 0.4 0.3 0.6 0.6 0.5 0.8 1
F 0 0.3 0.4 0.3 0.6 0.7 0.5 0.8 1

Both F and F are standardizedfunctions. Theyalsosatisfyconditions(I-RI2)and, since
F is a cumulative distribution function, alsoconditions (I-RI3) and (I-RI4). Assume that
(F , F) is coherent. Then, there mustbe a distributionfunction F such that F(b, c)=
F(b, c) = 0.6. Then:

F(b, c) + F(a, b) − F(b, b) − F ( a, c) = 0. 6 + 0 .3− 0.6− 0.4= − 0. 1 < 0,

acontradiction.

Example 4.101Final ly, let usgive an example where F and F satisfy(I-RI1) and
(I-RI3) and (I-RI4), but not condition (I-RI2), and the bivariat e p-box (F , F) is not
coherent. Asinthe previous examples, consider three real numbers a< b<c and the
functions F and F defined by:

(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
F 0 0.3 0.4 0.3 0.5 0.7 0.5 0.8 1
F 0.1 0.3 0.4 0.3 0.5 0.7 0.5 0.8 1

Thesefunctionscan be easilyproven to satisfy (I-RI1), (I-RI3)and (I-RI4). However,
they donot satisfy (I-RI2) since:

F (b, b) + F (a, a)− F (a, b)− F ( b, a) = 0. 5 +0− 0.3− 0. 3= − 0. 1 < 0.

Then, P (F ,F) is notcoherent.

Next we establish the most imp ortant result in this section: a characteri sation of the
coherence of a bivariate p-b ox in the case when one of the variables is binary.
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Prop osition 4.102Assume that Ω2 = { y1,y 2} is abinary space and Ω1 = { x1, . . . ,xn }
is finite, and let (F , F) be abivariate p-box on Ω1 × Ω2.

1. If F,F satisfy (I-RI1)and (I-RI2), then

F =min { F distribution function :F ≤ F ≤ F } .

2. If F,F satisfy (I-RI3)and (I-RI4), then

F =max { F distribution function :F ≤ F ≤ F } .

3. As a consequence,(F , F) is coherent⇔ F,F satisfyconditions (I-RI1)to(I-RI4).

Pro of: Firstofall, letuscheckthatif F and F satisfy(I-RI2), thenthereisa cumulative
distribution function F2 such that F ≤ F2 and F2(x i ,y 1) = F(x i ,y 1) for any i = 1, ... ,n .
For this aim we definethe function F2 by:

F2(x i ,y 1) = F(x i ,y 1) for i = 1, .. . , n,
F2(x 1,y 2) = F(x 1,y 2), and
F2(x i ,y 2) = F(x i ,y 2) − min(0,∆

R i − 1
F ), for i = 2, .. .,n, where

∆
R i − 1
F = F(x i ,y 2) + F(x i − 1,y 1) − F(x i ,y 1) − F2(x i − 1,y 2).

On the one hand, by definition F2(x i ,y 1) = F(x i ,y 1) for i = 1, .. .,n . On the other
hand, let usprovethat F ≤ F2 ≤ F , F2(x n ,y 2) =1 , F2 is monotoneand ∆

R i − 1
F 2

≥ 0,
where:

∆
R i − 1
F2 =F 2(x i ,y 2) +F 2(x i − 1,y 1) − F2(x i ,y 1) − F2(x i − 1,y 2),

for i = 2, .. .,n . In su ch a case,F2 would be a distribution function bounded by F and
F .

1. F2 ≥ F :

It triviallyholds since − min(0,∆
R i − 1
F ) ≥ 0.

2. F2 ≤ F :
For either i=1 or j =1 , F2(x i ,y j ) = F(x i ,y j ) ≤ F(x i ,y j ). When i,j ≥ 2, and
(i, j ) = (n, 2) ,it holds that:

F (xi ,y 2) ≥ F2(x i ,y 2) ⇔ F(x i ,y 2) − F(x i ,y 2) + min(∆
R i − 1
F ,0) ≥ 0

This is obvious when ∆
R i − 1
F ≥ 0. Otherwise, wehavetoprovethat

F(x i ,y 2) − F(x i ,y 2) +∆
R i − 1
F ≥ 0.
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Thisinequalityholdsif and onlyif:

0 ≤ F(x i ,y 2) − F(x i ,y 2) + F(x i ,y 2) − F(x i ,y 1) − F2(x i − 1,y 2) + F(x i − 1,y 1)
= F(x i ,y 2) − F(x i ,y 1) − F2(x i − 1,y 2) + F(x i − 1,y 1).

Then, we shall prove that

F(x i ,y 2) − F(x i ,y 1) − F2(x k ,y 2) + F(x k ,y 1) ≥ 0 (4.16)

for any k = 1, .. . ,i − 1 by indu ction on k.

(a) k=1 : Equation (4.16) becomes:

F (xi ,y 2) − F(x i ,y 1) − F(x 1,y 2) + F(x 1,y 1) ≥ 0,

andit holdsfor (I-RI2).

(b) Assume thatEquation (4.16)holds for k − 1. Then, for k =1 Equation (4.16)
becomes:

F(x i ,y 2) − F(x i ,y 1) − F(x k ,y 2) + min(∆
R k − 1
F , 0) + F(x k ,y 1) ≥ 0,

and this is positive when ∆
R k − 1
F ≥ 0 by (I-RI2). Otherwise, it becomes:

F(x i ,y 2) − F(x i ,y 1) − F(x k ,y 2) + F(x k ,y 2) − F(x k ,y 1)
− F2(x k− 1,y 2) + F(x k − 1,y 1) + F(x k ,y 1)
= F(x i ,y 2) − F(x i ,y 1) − F2(x k− 1,y 2) + F(x k− 1,y 1) ≥ 0,

sinceEquation (4.16) holds for k − 1.

3. F2(xn ,y 2) =1 :

In fact:

F2(x n ,y 2) =1 ⇔ F(x n ,y 2) − min(∆
R n − 1
F ,0) =1 − min(∆

R n − 1
F ,0) =1

⇔ ∆
R n − 1
F ≥ 0

⇔ F(x n ,y 2) − F(x n ,y 1) − F2(x n − 1,y 2) + F(x n − 1,y 1)
= F(x n ,y 2) − F(x n ,y 1) − F2(x n − 1,y 2) + F(x n − 1,y 1) ≥ 0,

which follows from the pro of by induction of Equation (4.16) by putting i=n and
k =n − 1.

4. F2 is monotone:

(a) On theone hand, F2(x i ,y 1) = F(x i ,y 1) ≤ F(x i+1 ,y 1) =F 2(x i ,y 1) for any
i = 1, .. .,n − 1.
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(b) F2(x i ,y 2) ≥ F2(x i − 1,y 2):

F2(x i ,y 2) = F(x i ,y 2) − min(∆
R i − 1
F ,0)

= max(F (x i ,y 2) − ∆
R i − 1
F ,F (x i ,y 2))

=max(F 2(x i − 1,y 2) + F(x i ,y 1) − F(x i − 1,y 1), F (xi ,y 2))
≥ F2(x i − 1,y 2) + F(x i ,y 1) − F(x i − 1,y 1) ≥ F2(x i − 1,y 2),

by the monotonicityof F .
(c) F2(x i ,y 2) ≥ F2(x i ,y 1) = F(x i ,y 1) since

F2(x i ,y 2) ≥ F(x i ,y 2) ≥ F(x i ,y 1).

5. ∆
R i − 1
F 2

≥ 0 for i = 1, .. .,n :
It holds that:

∆
R i − 1
F 2 =F 2(x i ,y 2) − F(x i ,y 1) − F2(x i − 1,y 2) + F(x i − 1,y 1)

= F(x i ,y 2) + max( − ∆
R i − 1
F ,0) − F(x i ,y 1) − F2(x i − 1,y 2) + F(x i − 1,y 1)

=max( − ∆
R i − 1
F ,0) +∆

R i − 1
F = max(0,∆

R i − 1
F ) ≥ 0.

Now, considerthe function F1 defined by:

F1(x i ,y 2) = F(x i ,y 2) for i = 1, ...,n,
F1(x i ,y 1) = F(x i ,y 1) − min(∆

R i
F , 0), where

∆
R i
F = F(x i+1 ,y 2) − F1(x i+1 ,y 1) − F(x i ,y 2) + F(x i ,y 1),

for i=n − 1, . . . ,1. If F and F satisfy (I-RI1), with a similar pro of as the one for F2, we
can prove that F1 is a dis tribution function b ounded by F and F and, byits definition,
F1(x i ,y 2) = F(x i ,y 2) for i = 1, .. . ,n . Then, taking into account F1 and F2, it holds
that:

F= min { F distribution functions :F ≤ F ≤ F } .

Finally, considerthe functions F3 and F4, defined by:

F3(x i ,y 2) = F(x i ,y 2) for i = 1, ...,n,
F3(x 1,y 1) = F(x 1,y 1), and
F3(x i ,y 1) = F(x i ,y 1) + min(∆

R i − 1

F ,0), where
∆

R i − 1

F = F(x i ,y 2) +F 3(x i − 1,y 1) − F(x i − 1,y 2) − F(x i ,y 1)

for i = 2, .. . ,n , and:

F4(x i ,y 1) = F(x i ,y 1) for i = 1, .. .,n,
F4(x n ,y 2) = F(x n ,y 2), and
F4(x i ,y 1) = F(x i ,y 1) + min(∆

R i

F , 0), where
∆

R i

F = F(x i+1 ,y 2) + F(x i ,y 1) − F4(x i ,y 2) − F(x i − 1,y 1)
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for i=n − 1, . . . ,1. With a similar pro of as the one for F2, we can check that when F
and F satisfy (I-RI3) (resp ectively (I-RI4)) F3 (resp ectivelyF4) is a dis tri bution function
bounded byF and F such that F3(x i ,y 2) = F(x i ,y 2) (resp ectivelyF4(x i ,y 1) = F(x i ,y 1))
for i = 1, .. .,n . Then, this impliesthatwhen F and F satisfyconditions (I-RI3)and
(I-RI4) it hold s that:

F =max { F distribution functions :F ≤ F ≤ F } .

Putting the functions F1, F2, F3 and F4 together, wededucethatwhen F and F satisfy
(I-RI1) to (I-RI4), (F , F) is a coherent bivariate p-b ox; the convers e implication holds
by Prop osition 4.98.

As a consequence, we ded uce that conditions (I-RI1)–(I-RI4) are also equivalent to
the coherence of(F , F) when both variablesΩ1,Ω 2 are binary. Infact, weconjecturethat
conditions (I-RI1)–(I-RI4) are also equivalent to the coherence of (F , F) in the general
case.

To conclude this section, we investigate if the third statement in Theore m 2.35 can
b e used to characterise coherence in the bivariate case.Let F,F be standardized maps
on Ω1 × Ω2, and let P F : K1 → R and PF : K2 → R b e the lower probabilities asso ciated
with them by Equation (4.13).

Prop osition 4.103Let (F , F) be abivariate p-box and let P F ,P F be thelower previ-
sions they induce on K1, K2, respectively. Then:

(a) P F ,P F always avoidsure loss.

(b) P F is coherent ⇔ P (F ,1) is coherent.

(c) P F is coherent ⇔ P (I (x ∗,y ∗) ,F) is coherent.

(d) P (F,F) coherent⇒ P F ,P F coherent.

Pro of:

(a) Tosee that PF and P F always avoid sure loss, it suffice s to take into account that
the constant map on1 is adistribution function that dominates F and that I (x ∗,y ∗)

is a distribution function that is dominated by F .

(b) The lower probability PF is coherent if and only if for every (x, y) ∈ Ω1 × Ω2

there is a distribution function F ≥ F such that F (x, y) = F (x, y) . The condition
F ≥ F is equivalent to F ≤ F ≤ 1, andon theotherhand theconstantmapon
1 is triviallya distribution function. We deduce from Prop osition 4.97 thatP (F ,1)
is coherent if and only if F is the lower envelop e of the distribution functions in
( F , 1), and asa consequence wehave theequivalence.
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(c) The lowerprobability P F is coherent if and only if for every (x, y) ∈ Ω1 × Ω2

there is a distribu tion function F ≤ F such that F (x, y) = F (x, y) . The condition
F ≤ F is equivalent to I (x ∗,y ∗) ≤ F ≤ F , and on the other hand the map I (x ∗,y ∗) is
trivially a distribution func tion. We deduce from Prop osition 4.97 thatP (I (x ∗,y ∗) ,F)

is coherentifand onlyif F is the upp er envelop e of the distribution functions in
(I (x ∗,y ∗) , F) , and asa consequence wehave theequivalence.

(d) This statement follows from the previous two and from Prop osition 4.97, taking
into account that the set of distribution functions (F , F) is the intersection of the
sets (F , 1) and (I (x ∗,y ∗) , F) .

To see that the converse in the fourth statement do es not hold, consider the following
example.

Example 4.104Considernow thefunctions F and F of Example 4.100. To seethat
(F , 1) is coherent, it suffices to take into account that F isthe lowerenvelopeof the
distribution functions F1,F 2 given by:

(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
F1 0 0.3 0.4 0.3 0.6 0.7 0.5 0.8 1
F2 0.1 0.4 0.4 0.3 0.6 0.6 0.5 0.8 1

while the constant map on 1 is trivial ly a distribution function.

Similarly, since bothI (c,c) and F aredistributionfunctions, wededucethat (I (c,c) , F)
is also coherent. However,we saw inExample 4.100 that (F , F) are not coherent.

This shows that one of the equivalences in Theorem 2.35 do es not extend to the bivariate
case. Moreover, wecanseefromthisexamplethatthecoherenceof P F do es not imply
that F is a dis tribution function: we havethat F (a,b) + F (b, c) < F (a,c) + F (b,b). Ina
similar way (using for instance Example 4.99) we can see that the coherence ofP F do es
not imply that F is a distribution function.

Another consequence is that whenever (I-RI1)–(I-RI4) characterise the coherence of
(F , F) (as is for instance the case in Prop osition 4.102), it holds thatPF is coherentfor
anya standardized function F , because they hold trivially whenever F isthe indicator
function I (x ∗,y ∗) . Ontheother hand, P F may not be coherent:considerΩ1 =Ω 2 = { 0 ,1}
and F given by:

(0 , 0) (0, 1) (1, 0) (1, 1)
F 0 0.6 0.6 1

Then there is no distribution function F ≥ F satisfying F(0, 0) = F(0, 0) =0 , because
then

F (1,1) +F(0,0) =1 < 1.2 ≤ F(0, 1) + F(1, 0).
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2-monotonicity In the univariate case, the lowerprobability P (F ,F) asso ciated with
a p-b ox is completely monotone [198]. Aswesawin Definition 2.40, this means, in
particular, that for everypair of events A,B in its domain it holds th at

P (F ,F) (A ∪ B) +P (F ,F) (A ∩ B) ≥ P (F ,F) (A ) +P (F ,F) (B ),

provided also A ∪ B and A ∩ B belong to the domain. 2-monotone capaciti es have b een
studied in detail in [53, 204], among others. They satisfy the prop erty of comonotone
additivity, which is of interest in economy ([35, 203]).

Inthe univariatecase, wecan assume withoutlossof generalitythatthe domainof
the lower probability induced by the p-b ox is a lattice (see [198] for more details), and
this al lows us to apply the results from [53]. This is not the case for bivariate p-b oxes:
the domain K of P (F ,F) isnot a lattice, soifwewanttouse theresults in[53]weneed
to take the natural extension of P (F ,F) . By the Envelop e Theorem (Theorem 2.30) and
Prop osition 4.97, this natural extension is the lower envelope of the set

{ PF :F distribution function ,F ≤ F ≤ F } ,

where PF is the finitely additive probability asso ciated with the distribution function F
by means of Equation (4.15).

However, and as the following example shows, in the bivariate case it could b e th at
the lower probability asso ciated with the p-b ox (F , F) is coherent but not 2-monotone,
even if both F ,F aredistribution functions:

Example 4.105Consider Ω1 =Ω 2 = { 0 ,1} , and let F, F: Ω1 × Ω2 → [0 , 1]be the
standardized maps given by:

(0 , 0) (0, 1) (1, 0) (1, 1)
F 0 0 0.5 1
F 0. 25 0 .25 0.5 1

Then, both F , F are dist ribution functions, because

F (1 , 1) + F (0 , 0)− F (0 , 1)− F (1 , 0) = 0;
F (1 , 1) + F (0 , 0)− F (0 , 1)− F (1 , 0) = 0 .25 > 0;

and the other comparisons are trivial.

Now, in theparticular caseof binaryspaces thecorrespondencebetween distribution
functionsand finitelyadditive probabilities inEquation (4.15)meansthat anydistribution
function F on Ω1 × Ω2 determines uniquelya probabilitymass functionon P (Ω1) ×P (Ω2)
by:

PF ({ (0, 0)} ) = F (0 , 0).
PF ({ (0, 1)} ) = F (0 , 1)− F (0 , 0).
PF ({ (1, 0)} ) = F (1 , 0)− F (0 , 0).
PF ({ (1, 1)} ) =1 − PF ({ (0 , 1)} ) − PF ({ (1 , 0)} ) − PF ({ (0 , 0)} )

= F (1 , 1)− F (0 , 1)− F (1 , 0) + F (0 , 0)≥ 0.
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Let F be theset of distributionfunctions that liebetween F and F , and let us define

M F := { PF :F ∈F} .

Then P (F ,F) isthe lower envelope of M F on K andsoisits natural extension E . Let
us show that E is not 2-monotone.

Since F (1, 0) = 0.5, F (0, 1) = 0.25 and F (1 , 1) =1 , any map F bounded between
F and F will satisfy F (1, 0) + F (0 , 1)≤ F (0 , 0) + F (1 , 1), so it will be a distribution
function as soon as it is monotone. Inother words, F = { F monotone :F ≤ F ≤ F } .

Denote a= { (0 , 0)} , b= { (0, 1)} , c= { (1 , 0)} , d= { (1 , 1)} and take A= { a,c}
and B= { c,d} . Anymonotone map F bounded by F,F induces themass function
(P (a ), P (b), P (c) , P ( d)), where:

P(a) ∈ [0, 0.25], P (a ) + P (b)∈ [0 , 0.25],
P (a) + P (c) = 0.5, P (a) + P (b) + P (c) + P (d) = 1.

Then:

M F = { (PF (a),P F (b ),PF (c) ,PF (d)) :F ∈ (F , F)}

= { (λ,ν − λ, 0.5− λ, 0.5− ν + λ) :ν ∈ [0 , 0.25],λ∈ [0 , ν]} ,

and as a consequence:

• E (A ) = E( { a,c} ) = 0.5 .

• E (B) =min { P (c) + P (d) : P ∈M F } = 0.75 , consideringthemass function
P = (0.25 , 0, 0.25 , 0.5).

• E(A ∪B ) = min { P (a) +P (c) +P (d) :P ∈M F } = 0.75, with P = (0, 0.25, 0.5, 0.25).

• E(A ∩ B) = min { P (c): P ∈M F } = 0. 25, considering the massfunction P=
(0.25 , 0, 0. 25 , 0 .5).

This means that E(A ∪B) + E(A ∩B) < E (A) + E (B) and therefore the lower probability
induced by the p-box(F , F) is not 2-monotone.

Interestingly, in thisexamplethe lowerprobability E do es not coincide with the lower en-
velop e ofmin{ PF ,P F } : these are asso ciated with the mass functionsPF = (0, 0, 0.5, 0.5)
and PF = (0.25, 0, 0 .25 , 0 .5), so

min{ PF (A ∪ B) ,PF (A ∪ B) } = 1 > 0.75 = E (A ∪ B).

This means that even if the p-b ox is determined by the distribution functions F,F , the
same do es not apply to its associated lower probability.
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On the other hand, when the bivariate p-b ox determinesa 2-monotone lower prob-
ability, it is not to o difficult to show that F isindeed a distributionfunction. Note he re
the difference with the case where we onlyrequire that thelower probability is coherent,
discussed inSection 4.3.1.

Prop osition 4.106 ([185, Lemma 6])Assume thatthe natural extensionof the lower
probability P (F ,F) inducedby the bivariate p-box(F , F) byEquation (4.14) is 2-monotone.
Then F isa distribution function.

However, the standardizedmap F of the p-b ox determined bya 2-monotone lower prob-
ability is not necessarily a distribution function.

Example 4.107Considertheupperprobability definedby P (A ) = min((1 + δ )P (A ), 1)
for every A ∈P (Ω1 × Ω2), where δ>0 ,

K ⊇{ A (x,y) :x ∈ Ω1,y ∈ Ω2} ,

and P isaprobability measure. Thiscorrespondsto Pari-mutuel model (see [205, Sec-
tion2.9.3]) andit is known that P is 2-alternating. Considerthe random variables X
and Y defined on Ω1 =Ω 2 = { a, b,c} , where a < b <c , probability P and value of
δ = 0. 25:

X \ Y a b c
a 0.1 0 0.15
b 0.2 0.2 0.05
c 0. 15 0.1 0.05

Joint probability distribution

X \ Y a b c
a 0.1 0.1 0.25
b 0.3 0.5 0.7
c 0. 45 0. 75 1

Joint distribution function

In this situation, F is nota precisecumulative distribution function:

F (3 , 3) + F (2 , 2)− F(3, 2) − F (2, 3) = 1 + 0.625− 0.9375− 0. 875 < 0.

Remark 4.108One interesting case is that when the bivariate p-box is precise, that is,
when the standardized mapsF,F coincide. In thatcase, weobviously havethat (F , F)
avoids sure loss if and only if it is coherent, and if and only if F =F is a bivariate
distribution function. When Ω1 and Ω2 are finite, it fol lows from Equation (4.15) that
this distribution function has aunique extension tothe power set of Ω1 × Ω2; this means
that in that case thelower probability associated with (F , F) is linear.

Notehowever, thata distributionfunction doesnot determineuniquely itsassociated
finitely additive probability, not eveninthe univariatecase; thisis a problemthat has
been explored indetail in [133].
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4.3.2 Imprecise copulas

One particular case where bivariate p-b oxes can arise is inthe combination of two
marginal p-b oxes.In thissection, we shall explore thiscase in detail, by studyingthe
prop erties of a numb er of bivariate p-b oxes with given marginals:themost conservative
one, that shall b e obtained by means of the Fré chet b ounds and the notion of natural
extension, and also the one corresp onding to mo dela notion of indep endence. In both
cases,we shall see that the bivariate mo del can be derived by means of an appropriate
extension of thenotion of copula.

Related results can be found in [198, Section 7], with one fundamental difference:in
[198], the authors assume the existence of a total preorder on the pro duct spaceΩ1 × Ω2

that is compatible with the orders in Ω1,Ω 2; while here we shall only consider the partial
order given by

(x 1,y 1) ≤ (x 2,y 2) ⇔ x1 ≤ x2 and y1 ≤ y2.

Animprecise version of Sklar’s theorem

Taking into account our previous results, we see that the combination of themarginal
p-b oxes into a bivariate one is related to the combination of marginal lower probabilities
into ajoint one. This is a problem that has b een studie d in detail under some conditions
of indep endence [52].

Rememb er that Sklar’s Theorem (see Theorem 2.27) stated that given two random
variables X and Y with asso ciated cumulative distribution functions FX and FY , there
exists acopula C such thatthe jointdistribution function, named F , can be expressed
by:

F (x, y) = C(F X (x ),FY (y )) for any x, y.

Moreover, the copulais uniqueon Rang (FX ) × Rang (FY ). Conversely,any transfor-
mation of marginal distribution functionsby means of a copula pro duces a bivariate
distribution function.

Next, we intro duce the notion of imprecise copula. It isa simple generalisation of
precise copulas; the m ain difference lies in the rectangle inequality that has b ee n replaced
by its four imprecise extens ions of (I-RI1)–(I-RI4).

Definition 4.109Apair offunctions C,C : [0, 1] × [0 , 1]→ [0 , 1]is cal led an imprecise
copula if:

• Both C and C arecomponent-wise increasing.

• C ≤ C.
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• C (0 , u) = C (0, u) = 0 = C ( v , 0) = C ( v , 0)∀u,v ∈ [0 , 1].

• C (1 , u) = C (1, u) =u and C (v , 1) = C (v , 1) =v∀u ∈ S2,v ∈ S1.

• C and C satisfy the fol lowing conditions for any x1,x 2,y 1,y 2 ∈ [0 , 1]such that
x1 ≤ x2 and y1 ≤ y2:

(I − CRI1 ): C(x 1,y 1) + C(x 2,y 2) ≥ C(x 1,y 2) + C(x 2,y 1).

(I − CRI2 ): C(x 1,y 1) + C(x 2,y 2) ≥ C(x 1,y 2) + C(x 2,y 1).

(I − CRI3 ): C(x 1,y 1) + C(x 2,y 2) ≥ C(x 1,y 2) + C(x 2,y 1).
(I − CRI4 ): C(x 1,y 1) + C(x 2,y 2) ≥ C(x 1,y 2) + C(x 2,y 1).

C and C shall be named the lower and the upp er copulas, respectively.

Note that monotonicity and condition C ≤ C may not be imp osed in the definition of
imprecise copula: ontheone hand, C ≤ C can b e derived from conditions (I -C RI1) to
(I-CRI4): for any x,y ∈ [0 , 1], (I-CRI1) assures that

C (x, y) + C (x, y)≥ C (x, y) + C (x, y),

that is equivalent to C (x, y) ≥ C(x, y) . Furthermore, taking 0 ≤ x and y1 ≤ y2 and
applying (I-CRI1) we obtain that C is increasing in the second comp onent. Similarly,
using conditions (I-CRI1) to (I-CRI4) we obtain that both C and C are increasingin
each comp onent.

As next result shows, one way of obtainingimprecise copulas is by taking the
infimum and supremum of sets of copulas, or just simplybyconsidering twoordered
copulas.

Prop osition 4.110Let C be a non-empty set ofcopulas. Take C and C defined by:

C (x, y) = inf
C ∈C C (x, y) and C (x, y) = sup

C ∈C
C(x, y)

for any (x, y) . Then, (C , C) forms an imprecise copula. Moreover, if C1 and C2 are two
copulas such thatC1 ≤ C2, then (C1,C 2) also forms an imprecise copula.

Pro of: Consider C a non-empty se t of copulas, and letC and C denote theirinfimum
and supremum. Sinc e any copula is in particular a bivariate cumulative distribution
function, (C , C) forms a bivariate p-b ox. Hence,C and C satisfy C ≤ C, monotonicity,
the b oundary conditions and (I-CRI1) to (I-CRI 4).

In particular, if we consider two copulasC1 and C2 such that C1 ≤ C2, the previous
result applies, b eingC1 and C2 the infimum and supremum, resp ectively.
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Let us see to which extent Sklar’s theorem also holds inan imprecise framework.
For this aim, we start by considering marginal imprecise distributions, describ ed by
(univariate) p-b oxes, and we use imprecise copulas to obtain a bivariate p-b ox that
generates a coherentlower probability.

Prop osition 4.111Let (F X ,F X ) and (F Y ,F Y ) be two marginal p-boxes on respective
spacesΩ1,Ω 2, and let C be a setof copulas. Define the bivariatep-box (F , F) by:

F (x, y) = inf
C ∈C C(F X (x ),F Y (y )) and F (x, y) = sup

C ∈C
C(F X (x ),F Y (y )) (4.17)

for any (x, y) , and let P be itsassociated lowerprobability byEquation (4.14). Then, P
is a coherent lower probability. Moreover,

F (x, y) = C (F X (x ),F Y (y )) and F (x, y) = C (F X (x ),F Y (y )),

whereC (x, y) = inf C ∈C C(x, y) and C(x, y) = sup C ∈C C(x, y) .

Pro of: Given C ∈C , F1 ∈ (F X ,F X ) and F2 ∈ (F Y ,F Y ), the bivariatedistribution
function C(F 1,F 2) is bounded by F,F . Applying Prop osition 4.93, wededuce that P
avoids sure loss.Letus nowcheckthat itisalso coherent. Fix (x, y) in Ω1 × Ω2. Since
the marginal p-b oxes(F X ,F X ), (F Y ,F Y ) are coh erent,there are F1 ∈ (F X ,F X ) and
F2 ∈ (F Y ,F Y ) such that F1(x ) =F X (x) and F2(y ) =F Y (y) . As a consequence,

F (x, y) = inf
C ∈C C(F X (x ) ,FY (y )) = inf

C ∈C C(F 1(x ),F2( y )),

and since C(F 1,F 2) ∈ (F , F) for every C ∈C , it then follows from monotonicity that F
is the lower envelop e of the set { F distribution function : F ≤ F ≤ F } . Similarly, we
can also prove that

F =sup { F distribution function :F ≤ F ≤ F } .

Applying now Prop osition 4.97, we deduce that P is coherent.

In particular, when the information ab out the marginal distribution is precise, and
it is given bythe distribution functions FX and FY , the bivariate p-b ox in the above
prop osition is given by

F (x, y) = inf
C ∈C C(F X (x ),FY (y )) and F (x, y) = sup

C ∈C
C(F X ( x) ,FY (y ))

for any (x, y) ∈ Ω1 × Ω2.

Remark 4.112Thisresult generalises [167, Theorem 2.4], wherethe authors only fo-
cused on the functionsF and F , showing that

F (x, y) = C(F X (x ),FY (y )) and F (x, y) = C (FX (x ) ,FY (y )).
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Proposition 4.111 establishesmoreoverthe coherence of the jointlower probability, and
itis moregeneral than [167, Theorem 2.4] since weare assuming the existenceof impre-
cision in the marginal distribution, that we model by means of p-boxes.

Using these results, wecangivetheform of the credal set M (P) (that is, theset of
dominating probabilities) asso ciated with the lower probability P . Note that, in the
sequel,we can assume that the probabilities in M (P) are defined on a suitable set of
events, larger than the domainof P . Hence, the domains of P and of th e probabilities
in M (P) do not ne cessarily coincide.

Corollary 4.113UndertheassumptionsofProposition4.111, thecredal set M (P) of
the lower probability P is givenby:

{ P probability | C(F X (x ),F Y (y )) ≤ FP (x, y) ≤ C(F X (x ),F Y (y )) ∀x,y } .

Pro of: By Proposition 4.97, we know that P is coherent if andonly if F and F are the
lower and the upp er envelop es of the set

{ F distribution function | F ≤ F ≤ F } .

From this, the thesis follows simply by replacing the lower and upp er distribution func-
tions bytheirexpressions in terms of C and C.

Next, weinvestigatewhether thesecondpart ofSklar’s theorem alsoholds, meaning
whether any bivariate p-b ox can be obtained as the combination of its marginals by
means ofan imprecise copula. A partial result in this sense has b een es tablished in [185,
Theorem 9]. The next example shows that this result cannot be generalised to arbitrary
p-b oxes.

Example 4.114Consider Ω1 = { x1,x 2,x 3} ,Ω 2 = { y1,y 2} with x1 <x 2 <x 3,y 1 <y 2
and let P1,P 2 be theprobability measuresassociated withthe mass functions:

(x 1,y 1) (x 2,y 1) (x 1,y 2) (x 2,y 2) (x 3,y 1) (x 3,y 2)
P1 0.2 0 0.3 0 0 0.5
P2 0.1 0.2 0.5 0.1 0 0.1

Let P =min { P1,P 2} . Thenits associated p-box satisfies F(x 1) = F(x 2) = 0.5 and
F(y 1) = 0.2 while F(x 1,y 1) = 0.1 < F(x 2,y 1) = 0.2 . Hence, thereis nofunction C
such that F(x 1,y 1) = C(F (x 1), F (y1)) = C( F (x 2), F (y1)) = F (x 2,y 1). Consequently,
the lower distribution in the bivariatep-box cannot beexpressed as afunction of its
marginals.
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Obviously, when both F,F are bivariate distribution functions , we can express them as
a function of their marginals b ecause of Sklar’s theorem; the exam ple shows that this is
no longer possible when they are simply standardized functions.

Nexttheorem summarises the results ofthisparagraph.

Theorem 4.115(Imprecise version of Sklar’s Theorem)Consider a set of copu-
las C and twomarginal p-boxes(F X ,F X ).The functions F and F defined by

F (x, y) = inf C ∈C C(F X (x ),F Y (y )) and

F (x, y) = supC ∈C C(F X (x ),F Y (y ))

form abivariate p-box whose marginals are (F X ,F X ) and (F Y ,F Y ). Furthermore, the
lower probability associated wit h this bivariate p-box is coherent.

However, given a bivariatep-box (F X ,F X ) and (F Y ,F Y ), theremay not be an
imprecise copula(C , C) that generates(F , F) fromitsmarginals, evenwhenits associated
lower probability is coherent.

Natural extension and indep endent pro ducts

In this section we consider two particular combinations of the marginal p-b oxes into the
bivariate one. First of all, we consider the case where there is no information ab out the
copula that links themarginal distribution functions.

Lemma 4.116Considerthe univariate p-boxes (F X ,F X ) and (F Y ,F Y ), and let P be
the lowerprevision defined on

A ∗
= { A ( x,y ∗) ,A

c
(x,y ∗) ,A (x ∗,y) ,A c

(x ∗,y) : x,y ∈ R} (4.18)

by

P(A (x,y ∗) ) =F X (x) P(A c
(x,y ∗) ) =1 − F X (x ). (4.19)

P (A(x ∗,y) ) =F Y (y) P(A c
(x ∗,y) ) =1 − F Y (y ).

Then:

1. P is a coherent lowerprobability.

2. M (P )= M (CL ,C M ),where M (CL ,C M ) is given by

{ P prob. | FP (x, y) ∈ [CL (F X (x ),F Y (y )) ,CM (F X (x ) ,FY (y ))]} .
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Pro of: Let CP denote the pro duct copula, and letPCP be the coherent lower probability
on K that results from Prop osition 4.111, taking C = { CP } . Then P coincides with PCP

in A ∗, and consequentlyP is coherent.

On the other hand, let us check the equality between the credal sets M (P) and
M (CL ,C M ) (note that both sets are trivially non-empty).

• Let P be a probability in M (CL ,C M ), and let FP be its asso ciated distribution
function. Th en it holds that:

FP (x,y
∗) ∈ [CL (F X (x ), 1),CM (F X (x ), 1)] = [F X (x ) ,FX (x )].

FP (x ∗
, y) ∈ [CL (1,F Y (y )),CM (1 ,FY (y ))] = [F Y (y ),F Y (y )].

Thus, the marginal distribution functions of FP belong to the p-b oxes (F X ,F X )
and (F Y ,F Y ). As a consequence,P ∈M (P) .

• Convers ely,let P be a probability on M (P) , and let FP b e its asso ciated distri-
bution function. Then, Sklar’s Theorem assures that there is a (prec ise) copulaC
such that FP (x, y) = C(F P (x,y

∗),F P (x ∗
, y)) for every (x, y) ∈ Ω1 × Ω2. Hence,

CL (F X (x ),F Y (y ))≤ CL (FP (x,y
∗),F P (x∗

, y)) ≤ C(F P (x,y
∗),F P (x ∗

, y))
≤ C(F X (x ),F Y (y )) ≤ CM (F X ( x) ,FY (y )),

taking into account that any copula lies between CL and CM . We conclu de that
P ∈M (CL ,C M ) and as a consequence both sets coincide.

From this result we can immediately derive the expression of the natural extension
[205] of two marginal p-b oxes,that is theleast-committal (i.e., the mostimprecise)
coherent lower probabilitythatextends P toa larger domain.

Prop osition 4.117Let (F X ,F X ) and (F Y ,F Y ) be two univariate p-boxes. Let P be
the lower prevision defined on the set A ∗

given by Equation (4.18)by means of Equa-
tion (4.19). Then, thenatural extension E of P to K is givenby

E(A (x,y) ) =C L (F X (x ) ,FY (y )) and E(A c
(x,y) ) =1 − CM (F X (x ),F Y (y )).

The bivariate p-box (F , F) associated withE is givenby:

F(x, y) =C L (F X (x ),F Y (y )) and F (x, y) =C M (F X (x ),F Y (y )).

Pro of: On the onehand, thelower prevision P iscoherentfromtheprevious lemma,
and in addition its asso ciated credal set isM (P )= M (CL ,C M ). The natural extension
of P tothe set K is given by:

E (A(x,y) ) = inf P ∈M (P) FP (x, y) = inf P ∈M (C L ,C M ) FP (x, y) =C L (F X (x ),F Y ( y )).
E (Ac

(x,y) ) = inf P ∈M (P) (1 − P(A (x,y) )) =1 − supP ∈M (P ) FP (x, y)
=1 − supP ∈M (C L ,C M ) FP (x, y) =1 − CM (F X (x ),F Y (y )).
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The second partis an immediateconsequenceof thefirst.

Recall that Prop osition 4.110 assures that every pair of copulasC1 and C2 satisfying
C1 ≤ C2 (in particular CL and CM ) forms an imprecise copula (C1,C 2).

Until now, wehavestudied howtobuildthe joint p-b ox (F ,F) fromtwo given
marginals (F X ,F X ), (F Y ,F Y ), when we have no information ab out the interaction b e-
twe en the underlying variablesX and Y : we have argued that we should us e in that case
the natural extension of the asso ciated coherent lower probabilities, which corresp onds to
combining the compatible univariate distribution functions by means of all the possible
copulas, and then considering the lower envelop e.

Next, we consider another case of interest: that where the variables X and Y are
assumed to be indep endent. Consider marginal p-b oxes(F X ,F X ), (F Y ,F Y ), and let
P X ,P Y the coherent lower probabilities theyinduce by meansof Equation (2.17). We
shall also use this notation to refer to their natu ral extensions, so that

P X := min { P :P (A x ) ∈ [F X (x ),F X (x )] ∀x ∈ Ω1} and
P Y := min { P :P (A y ) ∈ [F Y (y ),F Y (y )] ∀y ∈ Ω2} .

Under imprecise information, there is more than one way to mo del the notion ofinde-
pendence;see [47] for a survey on this top ic. Because of this, thereismore thanone
manner in which we can say th at a coherent lower prevision P on the pro duct space is
an independent pro duct of its marginalsP X ,P Y . Thi s was studied in some detail in [52].
Inthe remainder of this paragraph, we shall follow that pap er into assuming that the
spacesΩ and Ω are finite. We recall thus the following definition s.

Definition 4.118Let P be acoherent lower prevision on L (Ω1 × Ω2) with marginals
P X ,P Y . Wesay that P is an indep endent pro duct when it is coherent with the condi-
tional lower previsions PX (·|Ω2),P Y (·|Ω1) derived fromPX ,P Y by epistemic irrelevance,
meaning that

P X (f |y) :=P X (f( ·, y)) and PY (f |x ) :=P Y (f (x, ·)) ∀f ∈L (Ω1 × Ω2),x ∈ Ω1,y ∈ Ω2.

One example of indep endent pro duct is the strong product, given by

PX P Y := inf { PX × PY :P X ≥ P X ,P Y ≥ P Y } .

This is the joint mo del satisfying the notion of strong independence.However, it is not the
only independent pro duct, norisitthe smallestone. In fact, the smallest indep endent
pro duct of the marginal coherent lower previsions PX ,P Y istheirindependent natural
extension, whichis given by

(P X ⊗ P Y )( f)
=sup { µ :f − µ ≥ g − P X (g|Ω2) +h − PY (h|Ω1) for some g,h ∈L (Ω1 × Ω2)}
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for every gamble f on Ω1 × Ω2.

One way of building indep endent pro ducts is by means of the following condition:

Definition 4.119A coherent lower previsionP on L (Ω1 × Ω2) is cal led factorising when

P (f g) = P (f P (g)) ∀f ∈L + (Ω1),g ∈L (Ω2)

and
P (f g) = P (g P (f ))∀f ∈L (Ω1),g ∈L + (Ω2).

Both the indep endent natural extension and the strong product are factorising. Indeed,
it can be proven [52, Theorem 28] that any factorisingP is an indep endent pro duct of its
marginals, but the converse is not true.Underfactorisation, itisnotdifficulttoestablish
the follow ing result.

Prop osition 4.120Let (F X ,F X ), (F Y ,F Y ) be marginal p-boxes, and let P X ,P Y be
their associated coherent lower previsions. Let P bea factorising coherent lower pre-
vision on L (Ω1 × Ω2) with these marginals. Then itinduces the bivariate p-box (F , F)
given by

F (x, y) =F X (x) · F Y (y) and F (x, y) =F X (x) · F Y (y ).

Pro of: Itsufficesto takeinto accountthat,if P isfactorising, then

P(A ( x,y) ) = P(I A (x,y ∗) · I A (x ∗,y) ) = P(A (x,y ∗) ) · P(A (x ∗,y) ) =F X (x) · F Y (y ),

and similarly using conjugacy we deducethat

P(A (x,y) ) = P(A ( x,y ∗) · A (x ∗,y) ) = P(A (x,y ∗) ) · P(A (x ∗,y) ) =F X (x) · F Y (y ),

taking into account in the application of the factorisation condition that both gambles
A (x,y ∗) ,A (x ∗,y) are positive, and recallingalsothat x∗,y ∗ denotethe maxima of Ω,Ω ,
resp ectively.

Fromthis, itis easyto deduce thatthe p-b ox(F , F) induced by afactorising P is
the lower envelop e of the set of bivariate distribution functions

{ F : F (x, y) =F X (x) · FY (y) for FX ∈ (F X ,F X ),F Y ∈ (F Y ,F Y )} .

Inother words, the bivariate p-b ox can b e obtained by applying the imprecise version of
Sklar’s theorem (Prop osition 4.111) with the pro duct copula.

In particular, this also holds for other (stronger) con ditions than factorisation also
discussed in [52], such as the Kuznetsov prop erty.

Note also that in our defin ition of the marginal coherent lower previsionsP X ,P Y we
have considered the natural extensions of their res tric tions to cumulative sets; however,
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the result still holds if we consider any other coherent extens ion, since in our use of the
factorisationcondition onlythe valuesin A (x,y ∗) ,A (x ∗,y) matter. We conclu de then that,
even if the indep endent natural extension and the strong pro duct do not coincide in
general [205, Section 9.3.4], they agree with resp ect to their asso ciated bivariate p-b ox.

Interestingly, not all indep endent products induce the samep-b ox determined by
the copula of the pro duct:

Example 4.121Consider Ω1 =Ω 2 = { 0,1} and let F X =F Y be the marginal distri-
bution fu nctions given by F X (0) =F Y (0) = 0.5 , F X (1) =F Y (1) =1 . They inducethe
marginal coherent lower previsionsP X ,P Y given by

PX (f ) = min { f (0), 0.5f (0) + 0 .5 f (1)} and P Y (g ) = min{ g (0), 0.5g (0) + 0.5g (1)}

for every f ∈L (Ω1),g ∈L (Ω2). Theirstrong product isgiven by:

P X P Y := min { (0.25, 0. 25 , 0 .25 , 0.25), (0.5 , 0, 0.5 , 0), (0.5, 0 .5, 0, 0), (1, 0, 0, 0)} , (4.20)

wherein theabove equationa vector (a, b,c, d) is used to denote the vector of probabilities
{ ( P (0, 0), P (0, 1), P (1, 0), P (1, 1))} . Let P be thecoherent lowerprevision givenby

P := min { (0.375, 0 .125, 0. 375, 0.125) , (0. 375, 0 .375, 0. 125, 0.125) , (1, 0, 0, 0)} .

Then the marginals of P are also PX ,P Y . Moreover, weseefromEquation (4.20)that
P dominates P X PY , and this al lows us to deduce thatP is weaklycoherent with both
P X (·|Ω2),P Y (·|Ω1): given a gamblef on Ω1 × Ω2,

P (G (f|Ω2)) ≥ (P X P Y )(G(f |Ω2)) ≥ 0,

whence in particular P (G(f |y)) = P (G(fI y |Ω2)) ≥ 0 for every y ∈ Ω2. And since P Y is
the marginal of P , it fol lows that we must haveP (G(f |y)) =0 : ifit were P (G(f |y)) >0
then we would define the gambleg by g(x ,y ) = f (x , y) and

0 = P(g − P X (g ))≥
y ∈Ω2

P (G(g|y )) >0,

acontradiction. Similarly, P (G(f |Ω1)) ≥ 0 and P (G(f |x)) =0 for every x ∈ Ω1.
Applying [137, Theorem 1], we conclu de thatP,P X (·|Ω1),P Y (·|Ω1) are weaklycoherent,
and sinceP X (·|Ω2),P Y (·|Ω1) are coherentbecausethey are jointly coherent withP X P Y ,
we deduce from the reduction theorem [205,Theorem 7.1.5] that P,P X (·|Ω2),P Y (·|Ω1)
are coherent. Thus, P is an independent product. Itsassociated distribution functionis
given by

F (0, 0) = 0.375, F (0, 1) = 0 .5,F (1, 0) = 0. 5,F(1, 1) = 1.

This differs from the bivariate distribution function F induced byP X P Y , which is the
product of its marginalsand which satisfiestherefore F (0, 0) = 0. 25.
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4.3.3 The roleof imprecise copulas in the imprecise orders

Next we study how imprecise copulas can be used to express the relationship between
imprecise sto chastic dominance and statistical preference, that arise by using FSD and

SP as the binary relation in Section 4.1. Afterwards, we shall stu dy the role of
imprecise copulas with resp ect to imprecise bivariate sto chastic orders.

Univariate orders

We have seen in Section 3.2 that, although first degree sto chastic dominance do es not
imply statistical preference ingeneral (seeExample3.43), thereare situations inwhich
the imp lication holds (see Theorem 3.64), in termsof themarginal distributions of the
variables and thecopula that determines their joint distribution.

Given two random variables X and Y , let usdenote by CX,Y the setof copulas
that make sto chastic dominance imply statistical preference.Since the latter dep ends on
the joint distribution of the random variables, it may be that X is preferred to Y when
theirjointdistributionis determined byacopula C1 and Y ispreferred to X whenit is
determined by different copula C2.

In the imprecise framework, it is p ossible to establ ish the following conn ection
b etween the imprecise sto chastic dominance and statistical preference.We shallassume
that we have imprecise information ab out the marginal distributions (that we mo del by
means of p-b oxes) and by the copula that links the marginal distributionsinto a joint
(that we mo del by means of a set of copulas), in a manner similar to Prop osition 4.111:

Prop osition 4.122Considera coherent lowerprevision P definedon thespaceproduct
X ×Y of two finite spacesthat is factorising. Denote by (F ,F) its associated bivari-
atep-box, that fromProposition 4.120 isbuilt fromthemarginal p-boxes(F X ,F X ) and
(F Y ,F Y ) using the product copula. Then,it holds that:

(F X ,F X ) FSD i (F Y ,F Y ) ⇒X SP i Y

for any i = 1, .. .,6 ,where X (respectivelyY) denotes the set of random variables whose
cumulative distribution function belongs to (F X ,F X ) ((F Y ,F Y ), respectively).

Pro of: We know from Prop osition 4.120 that (F , F) is built by applying the pro duct
copula to their marginal p-b oxes.

• i=1 : Weknowthat forany FX ∈ (F X ,F X ) and FY ∈ (F Y ,F Y ), FX FSD FY .
Since they are coupled by the pro duct copula, Theorem 3.44 impliesPF X SP PF Y .
Thus, X SP1 Y .
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• i =2 : We know that there is F ∗
X ∈ (F X ,F X ) such that F ∗

X FSD FY for any
FY ∈ (F Y ,F Y ). Since they are coupled by the pro duct copula, Theorem 3.44
implies PF ∗

X SP PF Y for any FY ∈ (F Y ,F Y ). Then, X SP2 Y .

• i=3 : Weknow thatforany FY ∈ (F Y ,F Y ) there is FX ∈ (F X ,F X ) such that
FX FSD FY . Then, for any PF Y , thereisa PF X such that FX FSD FY , and
consequently, the pro duct copula links them, and by Theorem 3.44,PF X SP PF Y .

• i =4 : We know that there are FX ∈ (F X ,F X ) and FY ∈ (F Y ,F Y ) such that
FX FSD FY . Then, considerPF X and PF Y . Since they are coupled by the pro duct
copula,Theorem 3.44 implies PF X SP PF Y .

• The pro of of casesi=5 and i=6 are similar to the one of casesi=2 and i=3 .

Remark 4.123Although we maythink thatthe previousresult also holds when webuild
the joint bivariate p-box from the marginal p-boxes by means of a set of copulasC ⊆CX,Y ,
inthemanner ofProposition4.111, sucharesult doesnotseemto holdingeneral. The
reason is that, as soonasone ofthe marginal p-boxes is imprecise (i.e., if its lower and
the upper bounds do not coincide), we canfind a distribution function inside the p-box
associated with aneither continuousnor discrete randomvariable, and then, taking into
accountTheorem3.64, we cannotassurethe implication FSD ⇒ SP unlesswe assume
independence between the two p-boxes.

Bivariate orders

As we saw in Equation (2.6), univariate sto chastic dominance can be expressed in terms
of the comparison of exp ectations. It is also well-known that sto chastic dominance can
b e expressed by means ofthe comparison of the survival distribution functions: given
two random variablesX and Y , their dis tribution functions are given by FX and FY , and
let FX (t) = P (X > t) and FY =P (Y > t) denote their asso ciated survival distribution
functions. Then, it holds that:

FX (t ) = P (X ≤ t) ≤ P(Y ≤ t) =F Y (t) ⇔ FX (t) =1 − FX (t) ≥ 1 − FY (t ) =F Y .
(4.21)

Indeed, according to Equation(2.5), we have thefollowing characterisationsfor first
degree sto chastic dominance:

X FSD Y ⇔ FX (t) ≤ FY (t) for any t
⇔ E [u(X )] ≥ E [u( Y )]for any increasing u
⇔ FX (t) ≥ FY (t) for any t.

In the bivariate cas e, the survival distribution functions are not related to the distribution
functionsas inEquation(4.21), since P(X >t 1,Y >t 2) =1 − P (X ≤ t1,Y ≤ t2). Then,
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these three conditions are not equivalent, and they generate three different sto chastic
orders:

Definition 4.124Let (X 1,X 2) and (Y1,Y2) be tworandom vectors with bivariate dis-
tribution functions FX 1 ,X 2 and FY1 ,Y2 . We say that:

• (X 1,X 2) sto chastically dominates(Y1,Y2), and denote it (X 1,X 2) FSD (Y1,Y2),
if E [u(X1,X 2)] ≥ E [u(Y1,Y2)] for any increasing u: R

2 → R.

• (X 1,X 2) is preferred to(Y1,Y2) with resp ect to the upp er orthant order, and denote
it (X 1,X 2) uo (Y1,Y2),if FX 1 ,X 2 (t) ≥ FY 1 ,Y 2 (t) for any t ∈ R

2.

• (X 1,X 2) is preferred to(Y1,Y2) with res p ect to the lower orthant order, and denote
it (X 1,X 2) lo (Y1,Y2),if FX 1 ,X 2 (t) ≤ FY 1 ,Y 2 (t) for any t ∈ R

2.

These three orders are equivalent in the univariate case,but not in th e bivariate. Next
theorem describ e the relationships between these three orders:

Theorem 4.125 ([139, Theorem 3.3.2])If X FSD Y , then X lo Y and X uo Y .
In addition, there is no implication between the lower and the upperorthant orders.

In Remark 4.127 we will give an example where the lower and the upp er orthant orders
are not equivalent.

Since any copulaC is inparticular a bivariate distributionfunction on [0 , 1]× [0 , 1],
the previous orders can also b e ap plied to the comparison of copulas.Takingthis into
account, we can establis h the following result, that links the comparison of bivariate
p-b oxes with the comparison of their asso ciated marginal p-b oxes.

Prop osition 4.126Let (F X 1 ,F X 1 ), (F X 2 ,F X 2 ), (F Y 1 ,F Y 1 ) be univariate p-boxes and

(F Y 2 ,F Y 2 ) and the set of copulasCX and CY . Let (F X ,F X ) and (F Y ,F Y ) be the bivariate
p-boxes given by:

(F X ,F X ) := { C(F X 1 ,F X 2 ) :C ∈C X ,F X 1 ∈ (F X 1 ,F X 1 ),F X 2 ∈ (F X 2 ,F X 2 )}

(F Y ,F Y ) := { C(F Y 1 ,F Y 2 ) :C ∈C Y ,F Y 1 ∈ (F Y 1
,F Y 1 ),F Y 2 ∈ (F Y 2

,F Y 2 )} .

Then, it holds that:

(F X 1 ,F X 1 ) FSD i (F Y 1 ,F Y 1 )
(F X 2 ,F X 2 ) FSD i (F Y 2 ,F Y 2 )

CX lo i CY





⇒ (F X ,F X ) lo i (F Y ,F Y )

for i = 1, .. .,6 .
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Pro of:

(i = 1) We knowthat:

∀FX 1 ∈ (F X 1 ,F X 1 ),F Y 1 ∈ (F Y 1 ,F Y 1 ),F X 1 ≤ FY 1 .
∀FX 2 ∈ (F X 2 ,F X 2 ),F Y 2 ∈ (F Y 2 ,F Y 2 ),F X 2 ≤ FY 2 .
∀CX ∈C X ,C Y ∈C Y ,C X ≤ CY .

Consider FX ∈ (F X ,F X ) and FY ∈ (F Y ,F Y ). They can b e expres sed in the
following way: FX (x, y) =C X (FX 1 (x ),FX 2 (y )) and FY (x, y) =C Y (FY 1 (x ) ,FY 2 (y )).
Then:

FX (x, y) =C X (FX 1 (x ),FX 2 (y )) ≤ CX (FY 1 (x ),FY 2 (y ))
≤ CY (FY 1 (x ),FY 2 (y )) =F Y (x, y ).

(i = 2) We know th at:

∃F ∗
X 1

∈ (F X 1 ,F X 1 ) such that F ∗
X 1

≤ FY 1 ∀FY 1 ∈ (F Y 1 ,F Y 1 ).
∃F ∗

X 2
∈ (F X 2

,F X 2 ) such that F ∗
X 2

≤ FY 2 ∀FY 2 ∈ (F Y 2
,F Y 2 ).

∃C∗
X ∈C X such that C∗

X ≤ CY ∀CY ∈C Y .

Consider FX (x, y) :=C
∗
X (F ∗

X 1 (x) ,F ∗
X 2 (y )), and letusseethat FX ≤ FY for any

FY (x, y) =C Y (FY 1 (x ),FY 2 (y )):

FX (x, y) =C
∗
X (F ∗

X 1 (x ),F ∗
X 2 (y )) ≤ C∗

X (FY 1 (x ),FX 2 (y ))
≤ CY (FY 1 (x ),FX 2 (y )) =F Y (x, y ).

(i =3 ) We know th at:

∀FY 1 ∈ (F Y 1 ,F Y 1 ), ∃FX 1 ∈ (F X 1 ,F X 1 ) such that FX 1 ≤ FY 1 .
∀FY 2 ∈ (F Y 2 ,F Y 2 ), ∃FX 2 ∈ (F X 2 ,F X 2 ) such that FX 2 ≤ FY 2 .
∀CY ∈C Y ∃CX ∈C X such that CX ≤ CY .

Consider FY (x, y) =C Y (FY 1 (x ) ,FY 2 (y )), andlet us check thatthere is FX such
that FX ≤ FY . We define FX (x, y) =C X (FX 1 (x) ,FX 2 (y )) such that CX ≤ CY ,
FX 1 ≤ FY 1 and FX 2 ≤ FY 2 . Then:

FX (x, y) =C X (FX 1 (x ),FX 2 (y )) ≤ CX (FY 1 (x ),FY 2 (y ))
≤ CY (FY 1 (x ),FY 2 (y )) =F Y (x, y).

(i =4 ) Weknow that:

∃F ∗
X 1

∈ (F X 1 ,F X 1 ),F ∗
Y 1

∈ (F Y 1 ,F Y 1 ) such that F ∗
X 1

≤ F ∗
Y 1

.
∃F ∗

X 2
∈ (F X 2

,F X 2 ),F ∗
Y 2

∈ (F Y 2
,F Y 2 ) such that F ∗

X 2
≤ F ∗

Y 2
.

∃C∗
X ∈C X ,C ∗

Y ∈C Y such that CX ≤ CY .



4.3. Mo delling the joint distribution 241

Consider FX (x, y) =C
∗
X (F ∗

X 1 (x ),F ∗
X 2 (y )) and FY (x, y) =C

∗
Y (F ∗

Y 1 (x ),F ∗
Y 2 (y )). It

holds that FX ≤ FY :
FX (x, y) =C

∗
X (F ∗

X 1 (x ) ,F∗
X 2 (y )) ≤ C∗

X (F ∗
Y 1 (x) ,F ∗

Y 2 (y ))
≤ C∗

Y (F ∗
Y 1 (x) ,F ∗

Y 2 (y )) =F Y (x, y ).

(i = 5, i =6 ) The pro of of thes e two cases is analogous to that of i =2 and i =3 ,
resp ectively.

Remark 4.127Note that under the hypotheses of Proposition 4.126 we do not neces-
sarily have that (F X ,F X ) uo i (F Y ,F Y ). To see this, consider the fol lowing probability
mass functions (see [139, Example 3.3.3]):

X 2\ X 1 0 1 2
0 0 0 1

8
1 1

4
1
4 0

2 1
4

1
8 0

Y2\ Y1 0 1 2
0 1

4
1
4 0

1 0 1
8

1
8

2 1
4 0 0

Then, (X 1,X 2) lo (Y1,Y2) since FX 1 ,X 2 ≤ FY 1 ,Y 2 . However, (X 1,X 2) uo (Y1,Y2),
since:

FX (1 , 0) = P (X1 > 1,X 2 > 0) =0<
1
8

= P(Y 1 > 1,Y 2 > 0) =F Y (1 , 0).

Thisexample also shows that under the assumptions of Proposition 4.126 it does not
necessarily hold that (X 1,X 2) FSD (Y1,Y2); otherwise, we woulddeduce fromTheo-
rem 4.125 that (X 1,X 2) uo (Y1,Y2), a contradiction with the example above.

A result similar to Prop osition 4.126 can be established when we consider the upp er
instead of thelower orthantorder:

Prop osition 4.128Let (F X 1 ,F X 1 ), (F X 2 ,F X 2 ), (F Y 1 ,F Y 1 ) be univariate p-boxes and

(F Y 2 ,F Y 2 ) and the set of copulasCX and CY . Let (F X ,F X ) and (F Y ,F Y ) be the bivariate
p-boxes given by:

(F X ,F X ) := { C(F X 1 ,F X 2 ) :C ∈C X ,F X 1 ∈ (F X 1
,F X 1 ),F X 2 ∈ (F X 2

,F X 2 )}

(F Y ,F Y ) := { C(F Y 1 ,F Y 2 ) :C ∈C Y ,F Y 1 ∈ (F Y 1 ,F Y 1 ),F Y 2 ∈ (F Y 2 ,F Y 2 )} .

Then, it holds that:

(F X 1 , F X 1 ) FSD i (F Y 1 , F Y 1 )
(F X 2 ,F X 2 ) FSD i (F Y 2 ,F Y 2 )

CX uo i CY





⇒ (F X ,F X ) uo i (F Y ,F Y ),

for i = 1, .. .,6 .

The pro of of thisresult is analogous tothe one of Prop osition 4.126, and therefore
omitted.
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Natural extension and indep endent pro duct

To conclude this section, we consider the particular cases where the bivariate p-b oxes are
made by means of the natural extension or a factorising pro duct.

By Prop osition 4.117, the natural extension of two marginal p-b oxes(F X ,F X ) and
(F Y ,F Y ) is given by:

F(x, y) =C L (F X (x ),F Y (y )) and F (x, y) =C M (F X (x ),F Y (y )). (4.22)

This allows us to prove the following result:

Corollary 4.129Considermarginal p-boxes(F X 1 ,F X 1 ), (F X 2 ,F X 2 ) and (F Y 1 ,F Y 1 ) and

(F Y 2
,F Y 2 ). Let (F X ,F X ) (respectively, (F Y ,F Y ))denote the natural extension of the

p-boxes(F X 1
,F X 1 ) and (F X 2

,F X 2 ) (respectively,(F Y 1
,F Y 1 ), (F Y 2

,F Y 2 ))by means of
Equation (4.22). Then:

(F X 1 ,F X 1 ) FSD i (F Y 1 ,F Y 1 )
(F X 2

,F X 2 ) FSD i (F Y 2
,F Y 2 )

⇒ (F X ,F X ) lo i (F Y ,F Y )

for i = 2, .. . ,6 .

Pro of: The result follows immediately from Proposition 4.126.

To see that the result do es not hold for lo i , consider the following example.

Example 4.130For j = 1,2 , let F X j =F X j =F Y j =F Y j be the distribution fu nction
associated with auniformdistribution on [0 , 1], and let us denote it byF . Then, trivial ly:

(F X j
,F X j ) FSD 1 (F Y j

,F Y j ) for j = 1, 2.

To see that (F X ,F X ) lo 1 (F Y ,F Y ), itsufficestonote that CM (F , F) ∈ (F X ,F X ) and
CL (F , F) ∈ (F Y ,F Y ), and:

CM (F (0 .5) , F (0.5)) =CM (0.5, 0. 5) = 0. 5 > 0 =CL (0.5, 0. 5) =CL (F (0.5) , F (0 .5)).

We also saw in Prop osition 4.120 that the bivariate p-b ox associated with a factorising
coherent lower probability is obtained applying the pro duct copula to the two marginal
p-b oxes.This fact allows us to simplify Prop ositions 4.126 and 4.128:

Corollary 4.131Considertwo factorisingcoherent lowerprobabilities P X and P Y de-
fined on X×Y , where bothsetsare finite. Denote by (F X ,F X ) and (F Y ,F Y ) their
associated bivariate p-boxes,that from Proposition 4.120 can be obtained byapplying
the product copula to their respective marginal distributionsrepresented by the p-boxes



4.4. Applications 243

(F X 1 ,F X 1 ), (F X 2 ,F X 2 ) and (F Y 1 ,F Y 1 ) and (F Y 2 ,F Y 2 ), respectively. Then, it holds
that:

(F X 1 ,F X 1 ) FSD i (F Y 1 ,F Y 1 )
(F X 2 ,F X 2 ) FSD i (F Y 2 ,F Y 2 )

⇒ (F X ,F X ) lo i (F Y ,F Y )
(F X ,F X ) uo i (F Y ,F Y ).

Pro of: We have seen in Prop osition 4.120 that the bivariate p-b ox asso ciated witha
factorising coherent lower probability is made by considering the pro duct copula applied
to the marginal p-b oxes. Then, this result is a partic ular case of Prop ositions 4.126
and 4.128.

4.4 Applications

To conclude the chapter, we give some p ossible applications of the extension of sto chastic
orders to an im precise framework.We start with two possible applications of imprecise
sto chastic dominance: the comparisonof Lorenz Curves and that of cancer survival
rates. Lorenz Curves are a well-known economic to ol that measure how the wealth of
a population is distributed. Sinc e Lorenz Curves can b e seen as distribution functions,
we can compare them by means of sto chastic dominance.Furthermore, insome cases
the economical analysis is made forgeographical regionsthat comprise several countries,
like for example Nordic countries, Southern Europ e, American, .. . Then, wecan use
the imprecise sto chastic dominance to compare the sets of Lorenz Curves asso ciated
with thes e groups of countries. On the othe r hand, some kind of cancer sites c an also
by grou p ed into Digestive,Respiratory, Repro ductive or Other. Then, it is p oss ible to
compare the su rvival rates of the group of cancer by comparing their asso ciated set of
mortality rates, that can be expressed as distribution functions. Then, alsotheimprecise
sto chastic dominance could be applied.

Afterwards, we fo cus on a Multi-Criteria Decision Making problem, whereit is
p ossible to find imprecision in the utilities or in the b eliefs. This allows us to illus trate
how both the imprecise sto chastic dominance and statistical preference can be used,as
well as the strong and weak dominance intro duced in Section 4.2.2.

4.4.1 Comparison ofLorenz curves

Aswe mentioned in Section 2.1.1, the notion of sto chastic dominance has been applied
in many different contexts. One of the most interesting is in the field of so cial welfare
[3, 117, 190], for comparing Lorenz curves. They are a graphical representation of the
cumulative distributionfunctionof the wealth: the elements of the population are ordered
according to it, and the curve shows, for the bottom x% elements, what percentage y% of



244 Chapter 4. Comparisonofalternatives underuncertainty andimprecision

Country-year 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1
Australia-1994 5.9 12.01 17.2 23.57 41.32
Canada-2000 7.2 12.73 17.18 22.95 39.94
China-2005 5.73 9.8 14.66 22 47.81

Finland-2000 9.62 14.07 17.47 22.14 36.7
FYR Macedonia-2000 9.02 13.45 17.49 22.61 37.43

Greece-2000 6.74 11.89 16.84 23.04 41.49
India-2005 8.08 11.27 14.94 20.37 45.34
Japan-1993 10.58 14.21 17.58 21.98 35.65

Maldives-2004 6.51 10.88 15.71 22.66 44.24
Norway-2000 9.59 13.96 17.24 21.98 37.23
Sweden-2000 9.12 13.98 17.57 22.7 36.63

USA-2000 5.44 10.68 15.66 22.4 45.82

Table 4.2: Quintiles of the Lorenz Curves ass o ciated with different countries.

the total wealth they have. Hence, the Lorenz curve can be used as a measure of equality:
the closest the curve is to the straight line, the more equal the asso ciated society is.

Ifwe havethe Lorenzcurves oftwo differentcountries, we can compare them by
means of sto chastic dominance:if one of them is domi nated by the other, the closest
to the straight line will be asso ciated with a more equal so ciety,and will therefore be
considered preferable. Inthis section, we are going to use our extensions of sto chastic
dominance to compare sets of Lorenz curves asso ciated with countries in different areas
of the world. We shall consider the Lorenz curves asso ciated with the qui ntiles of the
empirical distribution functions. Table4.2 providesthe wealthineachofthequintiles
(Source data: World Bankdatabase. http://timetric.c om/datas et/worldbank):

To make the comparison by means of the extensions of sto chastic dominance clearer,
we are going to consider the cumulative distribution from the richest to the po orest group:
in this way, we will always obtain a curve which is ab ove the straight line, and it will
comply with our idea of considering preferable the smalle st distribution function. If we
applythis to thedata in Table 4.2,weobtain the dataofTable4.3.

We are going to group thesecountriesby continents/regions:

• Group 1: China, Japan,India.

• Group 2: Finland, Norway,Sweden.

• Group 3: Canada, USA.

• Group 4: FYR Macedonia, Greece.
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Country-year F(0.2) F(0.4) F(0.6) F(0.8) F(1)
Australia-1994 41.32 64.89 82.09 94.1 100
Canada-2000 39.94 62.89 80.07 92.8 100
China-2005 47.81 69.81 84.47 94.27 100

Finland-2000 36.7 58.84 76.31 90.38 100
FYR Macedonia-2000 37.43 60.04 77.53 90.98 100

Greece-2000 41. 49 64.53 81.37 93.26 100
India-2005 45.34 65.71 80.65 91.92 100
Japan-1993 35.65 57.63 75.21 89.42 100

Maldives-2004 44.24 66.9 82.61 93.49 100
Norway-2000 37.23 59.21 76.45 90.41 100
Sweden-2000 36.63 59.33 76.9 90.88 100

USA-2000 45.82 68.22 83.88 94.56 100

Table 4.3: Cumulative distribution functions asso ciated with the Lorenz Curves of the
countries.

Group1 Group2 Group3 Group4 Group5
Group1 ≡ FSD 2,5 FSD 2 FSD 2 FSD 2 FSD 2

Group2 FSD 5 ≡ FSD 3 ,6 FSD 1 FSD 1 FSD 1

Group3 ≡ FSD 4 ≡ FSD 2,5 FSD 2 FSD 2

Group4 FSD 5 FSD 5 ≡ FSD 3 ,6 FSD 3,6

Group5 FSD 5 FSD 5 ≡ FSD 3,6

Table 4.4: Result of the comparison of the regions by means of the imprecise sto chastic
dominance.

• Group 5: Australia, Maldives.

The relationships b etween thes e groups are summarised in Table 4.4.

This means for instance that the set of distribution functions in the first group
strictly dominates the second group according to definition (F SD2), while thesecond
group strictly dominates the first group according to definition (F SD5). This is because
the b est country in the first group (Japan) sto chastically dominates all the countries
in the second group, but the worst (China) is sto chastically dominated by all countries
in the second group. This, together with Prop osition 4.3, implies that thefirst group
strictly dominates the second accordingto (F SD3), is strictly dominated by the second
according to (F SD6), thatthey areindifferentaccording to (F SD4) and incomparable
according to (F SD1).

Similar considerations hold for the other pairwise comparisons.Forinstance, group
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4strictly dominatesgroup 5accordingto (F SD3), (F SD6), but it do es not dominate
it according to (F SD2), (F SD5). This also shows thatconditions (F SD2) and (F SD3)
are not equivalent (and similarly for (F SD5) and (F SD6)).

The cells where we have left a blank space mean th at no dominance relationship
is satisfied: for instance, group 3 do es not dominate group 2 according to any of the
definitions.

Since all the groupshave more than one element, they will not satisfy (F SD1)
when comparing th em to themselves.It follows from Remark 4.31 that they are always
indifferent to themselves according to(F SD3), (F SD4) and (F SD6); theyare indifferent
to themselves according to(F SD2) when they have a best-case-scenario (as it is the case
for groups 1 and 3), and indifferent acc ordi ng to(F SD5) when they have a worst-case
scenario (as it is the case again for groups 1 and 3), and incomparable acc ord ing to these
definitions in theother cases.

Note that we can also use the ab ove data to illustrate some of the results in this
pap er: for instance, we saw in Remark 4.9 that condition (F SD2) is tran sitive, and in
the table ab ove we see that group 1 is preferred to group 3 according to (F SD2) and
group3 is preferred to group4 according to (F SD2): this allows ustoinfer immediately
that group 1 ispreferred togroup 4according to this condition. The comparisonof the
first two groups is an instance of Prop osition 4.32, b ecause the p-b ox induced by the first
group is strictly more imprecise (i.e ., it has a smaller lower cumulative distribution and
a greater upp er cumulative distribution function) than that of the second group.

Remark 4.132In economy, the Gini Index is a wel l-known inequality measure that
express how the incomes of a populationare shared. It takes values between0 and1,
where a Gini Index of 0means perfect equality for theincomes of the people, whilea
Gini Indez of 1express a total inequality in the incomes. Thus, thegreater theGini
Index is,the more inequality the incomesof a populationare.

The Gini Index isquite relatedto Lorenzcurves: given a LorenzCurve F , that
express the distribution function of the wealth of a population (a country, a region,. .. ),
its associated Gini index is defined by:

G =2
100

0
(x − F (x ))dx.

Thus, the closer the Lorenz curve is to the straight y=x , the smal ler the Gini index is.

In the imprecise framework, if we are working with a p-box that represent s the Lorenz
curve, we can compute the lower and the upper Gini Indexes, that area lowerand an
upper boundof the GiniIndex, simplyby consideringthe Gini indexes of theupper and
the lowerbounds of the p-box. Then, foranyp-box (F ,F) representing Lorenz curveF
we obtain aGini index given inaninterval form: [G, G], where G is the Gini index
associated withF and G is the Gini index associated with F . Then, inordertocompare
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the Gini intervals associated with two imprecise Lorenz curves, it is possible to consider
the usual orderings for real intervals (see for instance [69, 78]).

4.4.2 Comparison ofcancer survival rates

According to [28], long-term cancer survival rates have substantially improved in the past
decades.However, there are still some kinds of cancer whose survi val rates could clearly
b e improved.Here, we use the survi val rates of different cancer sites given in [28].These
can be group ed in Digestive, Respiratory, Repro ductive and Other, and we shall compare
the survival rates of these typ es applying imprecise sto chastic dominance.

Table 4.5showsthesurvivalrates of different cancer sites (see [28]).

Note that it is possible to transform the survival rates of Table 4.5 into cumulative
distribution functions. In thiscase, we assum e the distribution functions to b e defined
in the interval [0,100], and we imp ose the condition F(100) =1 , that means that the
survivalrate after 100years ofthe cancer diagnostic is zero. The resu lts are showed in
Table 4.6.

These cancer sites can be group ed as follows:

DigestivesColon (C), Rec tum (R), Oral cavity and pharynx(OCP), Stomach (S),
Oesophagus(O), Liver and intrahepaticbileduct (LIBD), Pancreas (P).

RespiratoryLarynx (L), Lung and bronchus (LB).

Repro ductiveProstate (Pr), Testis (T), Breast (B), Cervix uteri (CU), Corpus uteri
and uterus (CUU), Ovary (Ov).

Other Melanomas (M), Urinary bladder (UB), Kidney and renal pelvis (KRP), Brain
and other nervous system (BNS), Thyroid (Th), Ho dgkin’s disease (HD), Non-
Ho dgkin lymphomas (NHL), Leukaemias (L).

Let us compare these kinds of cancer by means of the imprecise sto chastic dominance.
Note that in this case, give n two distribution functions F1 and F2 thatrepresent the
mortality rates of two cancer sites, F1 FSD F2 meansthatthe cancer F1 isless deadly
than th e cancerF2, or equivalently, that the cancer F1 has a greater survivalrate than
the cancer F2.

First of all, note that Pancreas (P) is the worst cancer with resp ect to sto chastic
dominance, sinceF <F P for anyother distribution function F . This impliesthat Diges-
tive is FSD 5 dominated by the other three groups, and then, from a p essimistic point of
view, digestive cancersarethe worst. Furthermore, ProstateandThyroidcancersareless
deadly than any of the digestive cancers, and then both Repro ductive and Other groups
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Relative survivalrate,%
1year 4years 7years 10 years

Cancer site
Colon 80.7 65.6 60.5 58.2
Rectum 86.3 68.2 61.2 57.9
Oral cavity and pharynx 82.9 63.0 56.1 50.2
Stomach 49.0 27.0 22.9 20.8
Oesophagus 43.4 17.9 13.8 11.8
Liver and intrahepaticbile duct 34.5 15.2 11.0 9.2
Pancreas 23.0 6.2 4.5 3.8
Larynx 85.9 66.3 57.0 49.6
Lung and bronchus 41.2 17.5 13.0 10.5
Prostate* 99.6 98.6 97.9 97.0
Testis* 97.8 95.7 95.4 95.0
Breast** 97.5 90.4 85.8 82.6
Cervix uteri** 88.0 72.3 68.3 66.1
Corpus uteri anduterus** 92.4 83.9 81.5 80.3
Ovary** 74.9 48.5 38.8 35.0
Melanomas 97.3 92.2 90.3 89.5
Urinary bladder 90.1 80.9 76.4 72.7
Kidney and renal pelvis 80.8 69.3 63.8 59.4
Brain and othe r nervous system 56.4 35.1 30.6 27.9
Thyroid 97.6 96.9 96.3 95.9
Ho dgkin’s disease 92.4 85.8 82.2 79.6
Non-Ho dgkin lymphomas 77.2 65.1 59.0 54.3
Leukae mias 70.2 55.0 48.3 43.8

Table 4.5: Estimationof relativesurvivalratesby cancersite. The ratesarederivedfrom
SEER 1973-98 database,all ethnic groups, both sexes (except (*), only formale, and
(**) for female). [191].

FSD 2 dominates Digestive. However,Digestiveand Respiratoryare incomparablewith
resp ect to(F SD2) and (F SD3), and they are equivalent with resp ect to (F SD4),since
FP >F LB >F C . Also Digestive is(F SD4) equivalent to Repro ductive and Other groups,
sinceFP >F Ov >F C and FP >F BNS >F C .

Since Lung and Brounch cancer has a greater mortality than any Repro ductive
cancer, Respiratory is FSD 5 dominated by Repro ductive group. Furthermore , they are
not comparable with resp ect to (F SD2) and indifferent with resp ect to (F SD4) since
FL <F Ov <F LL .

Finally, since Brain and other nervous system cancer is sto chastically dominated
by any Reproductive cancer, Repro ductive FSD 5 dominatesOther group, andthey are
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Cumulative distribution functions
F(1) F(4) F(7) F(10)

Cancer site
Colon 0.193 0.344 0.395 0.418
Rectum 0.137 0.318 0.388 0.421
Oral cavity and pharynx 0.171 0.370 0.439 0.498
Stomach 0.510 0.730 0.771 0.792
Oesophagus 0.566 0.821 0.862 0.882
Liver an d intrahepatic bile duct 0.655 0.846 0.890 0.908
Pancreas 0.770 0.938 0.955 0.962
Larynx 0.141 0.337 0.430 0.504
Lung and bronchus 0.588 0.825 0.870 0.895
Prostate 0.004 0.014 0.021 0.030
Testis 0.022 0.043 0.046 0.050
Breast 0.025 0.096 0.142 0.174
Cervix uteri 0.120 0.277 0.317 0.339
Corpus uteri anduterus 0.076 0.161 0.185 0.197
Ovary 0.251 0.515 0.612 0.650
Melanomas 0.027 0.078 0.097 0.105
Urinary bladder 0.099 0.191 0.236 0.273
Kidney and renal pelvis 0.192 0.307 0.362 0.406
Brain and othe r nervous system 0.436 0.649 0.694 0.721
Thyroid 0.024 0.031 0.037 0.041
Ho dgkin’s disease 0.076 0.142 0.178 0.204
Non-Ho dgkin lymphomas 0.228 0.349 0.410 0.457
Leukaemias 0.298 0.450 0.517 0.562

Table 4.6: Estimation ofrelativemortalityratesby cancersite.

equivalent with resp ect to (F SD4) sinceFM <F CU <F BNS .

The results aredepicted in Table 4.7.

Thus, according to our results, Digestive cancer seems to be the group with a greater
mortality rate, while Repro ductive cancer seems to b e the least deadly.

4.4.3 Multiattributedecision making

In this section, we shall illustrate the extension of statistical preference to acontext
of im precision by means of an application to decision making. We shall consider two
different scenarios: on the one hand, we sh allcompare two alternatives in acontext of
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Digestive Respiratory Repro ductive Other
Digestive ≡ FSD 5 ≡ FSD 4 ≡ FSD 4 ≡ FSD 4

Respiratory FSD 5 ≡ FSD 2,5 ≡ FSD 4

Repro ductive FSD 2,5 FSD 5 ≡ FSD 5 FSD 5

Other FSD 2,5 FSD 2 ≡ FSD 4 ≡ FSD 2 ,5

Table 4.7: Result of the comparis on of the different groups of cancer by means of the
imprecise sto chastic dominance.

imprecise information ab out their utilities or probabilities, bymeans of the results in
Sections 4.2.1 and 4.2.2; onthe other hand, we shall consider the comparison of two
sets ofalternatives, by meansofthe techniques establishedin Section4.1. Our runn ing
example throughout thissection is basedon [118,Section 4].

A decision problem with uncertain beliefs

Consider a decision problem where we must cho ose b etweenn alternatives a1, . . . ,an ,
whose rewards dep end on the values of the states of nature,θ1, . . . ,θm , which hold with
certain probabilities P(θ1), . . . , P (θm ).

Let us start by assuming that there is uncertainty ab out these probabilities, that
we mo del by means of a set of probability measuresP . Then, weshallcompare anytwo
alternatives by means of the concepts of weak and strongP -preference we have considered
in Section 4.2.2.

Example 4.133Acompanymustchoose where toinvestitsmoney. The alternatives
are: a1-a computer company; a2-a car company; a3-a fast food company. The rewards
associated with the investment depend on anattribute c1: “economic evolution”, which
may take the valuesθ1-“very good”, θ2-“good”, θ3-“normal” or θ4-“bad”. The probabilities
of each of thesestatesare expressedbymeans of an interval. The rewardsassociated
with anycombination (alternative, state)are expressed in a linguistic scale, withvalues
S= { s0,s 1,s 2,s 3,s 4,s 5,s 6} (very poor, poor, slightly poor, normal, slightly good, good,
very good). The available information is summarised in the fol lowing table:

θ1 θ2 θ3 θ4

[0 .1, 0 .4] [0.2 , 0.7] [0.3, 0.4] [0.1 , 0.4]
a1 s4 s3 s3 s2
a2 s5 s4 s4 s2
a3 s2 s3 s5 s4
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Hence, the setP of probability measures forour beliefsis given by

P = { (p1,p 2,p 3,p 4) :p 1 +p 2 +p 3 +p 4 =1,
p1 ∈ [0 .1, 0 .4] ,p2 ∈ [0 .2, 0 .7] ,p3 ∈ [0.3, 0. 4],p4 ∈ [0.1, 0. 4]} .

Since the rewards are expressedin a qualitative scale, weare going to comparethe different
alternatives by means of statistical preference.We obtainthat:

Q(a1,a 2)= 1
2 p4 ∈ [0. 05 , 0 .2].

Q(a1,a 3) =p 1 + 1
2 p2 ∈ [0 .2, 0 .5].

Q(a2,a 3) =p 1 +p 2 ∈ [0. 3, 0. 6].

We deduce that, using statisticalpreference as ou r basic binary relation:

• a2
P
s a1 and a2

P
w a1.

• a3
P
s a1 and a3 ≡ P

w a1.

• a2 ≡ P
w a3 and theyare incomparablewith respect to strong P-preference.

Consequently,wit h respect to the strong preference,the carcompanyis preferred tothe
computer company, whilethe carandthe fast food company are incomparable. With
respect to weak preference,thecarcompanyisalsopreferredtothe computer company,
while thefast food company is indifferent to the car and thecomputer companies.

A decision problem with uncertainrewards

Assume next that we have precise information ab out the probabilities of the different
states of nature but that we have imprecise information ab out the utilities asso ciated
with the different rewards. Let us mo del this case by means of arandom set, as we
discussed in Section 4.2.1.

Example 4.133 (Cont)Assumethatthe probability ofthedifferentstates ofnatureis
given by:

P(θ1) = 0.2 P(θ2) = 0.25 P(θ3) = 0.3 P(θ4) = 0 .25,

but that we cannot determine precisely the consequences associated with each combination
(alternative, state). We model the available information by means of aset of possible
consequences, that we summarise in the fol lowing table:

θ1 θ2 θ3 θ4

0.2 0.25 0.3 0.25
a1 [s4,s 5] { s3} [s2,s 3] { s2}
a2 { s5} [s3,s 4] [s3,s 5] [s2,s 4]
a3 { s2} [s3] [s3,s 5] [s3,s 4]
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Since again we have qualitat ive rewards,we shall use statistical preference to compare
the different alternatives. Taking into account that the utility space is finite, we deduce
from Proposition 4.78 that the comparison of the random set s associated with each of the
alternatives reduces to the comparison of their maximaand minima measurable selections.
Moreover,since the utilityspace is finite, SP2 ⇔ SP3 and SP5 ⇔ SP6 .

Let us compare alternativesa1,a 2:

Q(mina 1, maxa2) = 0.
Q(mina 1, mina2) = 0 .25.
Q(maxa 1, maxa2) = 0.1.
Q(maxa 1, mina2) = 0 .5.

Using Proposition 4.78, we conclude that a2 SP i a1 for i = 1, 2, 3, 5,6 and a1 ≡ SP4 a2.

With respect to alternatives a1 and a3, we obtain that:

Q(mina 1, maxa3) = 0.325
Q(mina 1, mina3) = 0 .325.
Q(maxa 1, maxa3) = 0. 325.
Q(maxa 1, mina3) = 0.475.

UsingProposition 4.78, we concludethat a3 SP i a1 for i=4 andasa consequence also
for i = 1,2, 3, 5,6 .

Final ly, if we compare alternatives a2 and a3, we obtain that:

Q(mina 2, maxa3) = 0.325
Q(mina 2, mina3) = 0 .475.
Q(maxa 2, maxa3) = 0. 725.
Q(maxa 2, mina3) = 1.

UsingProposition 4.78, weconclude that a2 SP i a3 for i = 2,3 , a3 SP i a2 for i = 5,6 ,
a2 ≡ SP4 a3 and they areincomparable with respect to SP1 . Hence, inthiscasethechoice
betweena2 and a3 woulddependonourattitudetowardsrisk, which woulddetermineif
wefocus onthe best ortheworst-casescenarios. Consequently, boththecarandthefast
foodcompaniesarepreferred tothecomputer one. However, thepreferencebetweenthe
car and fast foodcompanies dependson the chosencriteria.

A decision problem between sets of alternatives

Assume now that we have precise b eliefs and utilities but the choice must be made
between sets of alternatives instead of pairs. Inthatcase, weshallapplytheconditions
andresults from Section 4.1.
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Example 4.133 (Cont)Assumenow thatwe mayinvest ourmoney inanother com-
pany a4 in the telecommunications area, and that the choice must be made bet ween two
portfolios: one –that we shal l denoteX –made by alternativesa1,a 2, and another –denoted
by Y–made bya3,a 4. Assu me that the rewards associated with each alternative are given
by the fol lowing table:

θ1 θ2 θ3 θ4

0.2 0.25 0.3 0.25
a1 75 60 55 50
a2 80 65 55 40
a3 60 55 50 55
a4 80 55 40 65

where the utilities are now expressed ina [0, 100]scale.

If we compare these alternatives by means of stochast ic dominance, we obtain that
a1 FSD a3, a2 FSD a4 and any otherpair (ai ,a j ) with i ∈{ 1,2} ,j ∈{ 3,4} are
incomparablewithrespectto stochastic dominance. Hence,X FSD i Y for i = 3, 4,6 and
they are incomparable wit h respect to FSD i for i = 1, 2,5 .

Note that this example is an instance where FSD 2 is not equivalent to FSD 3 and
FSD 5 isnotequivalent to FSD 6 , because there is neither a maximum nor a minimum

in thesets of distribution functions associated with X , Y.

On theother hand, if we compare any two alternativesby means of statistical pref-
erence, we obtain the fol lowing profile of preferences:

QX ,Y := 0.75 0. 55
0.75 0. 65

.

Using Remark 4.73, we obtain that X SP1 Y, and as a consequenceX SP i Y for
i = 2, .. .,6 and alsoX SPmean Y. Hence, fromthepointofviewofstatisticalpreference
the first portfolio should be preferred to the second.

4.5 Conclusions

In this chapter we have considered the comparison of alternatives unde r b oth uncertainty
and imprecision. AsinChapter 3, alternatives defined under unc ertainty have b een
mo delled by means of random variables, while the imprecision ab out the random variables
has been mo delled with sets of random variables, or in a more general situation, imprecise
probability mo dels.

Wehave extended binary relations tothe comparison of setsof random variables
instead of pairs of them. Forthis aim, we considered six possible generalisations.We
have seen that the interpretation of each extension is related to the extensions of exp ected
utility within imprecise probabilities.
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We have mainly fo cused on two stochastic orders in this rep ort: sto chastic domi-
nance and s tatis tical preference.When we consider the binary relation to be first degree
sto chastic dominance,its extensionsare related tothe comparison of the p-b oxes as-
so ciated with the sets of random variables to compare. Also, accordingtothe usual
characterisation of stochastic dominance in terms of the comparison of the exp ectation
of the increasing tran sform ation s of the random variables,wecan also relateimprecise
sto chastic dominance to the comparison of the upp er or lower expectations of the in-
creasing transformation of the sets of random variables. We have als o seen that our
approach to extend sto chastic dominance to the comparison of sets of random variables
includes Deno eux approach ([61]) as a particular case, and we have also applied sto chastic
dominance to the comparison of possibility measures.

The extension of statistical preference has been connected to the comparison of
the lower and upp er medians of some set of random variables. Wehaveseen that,
when the sets of random variables to compare are finite, their comparison can be made
by means of the pointwise comparison of therandom variables by means of statistical
preference, aggregating them with an aggregation func tion, and we have showed that the
six extensions of statis ti cal preference can b e expressed in terms of aggregation functions.

We have also investi gated two situations which can b e considered as particular
cases of th e comparison of sets of random variables.Ontheonehand, weconsideredtwo
randomvariables with imprecisionontheutilities. That is, imprecise knowledge ab out
the value of X (ω) and Y (ω). To mo del this imprecision, wehave consideredrandom
setsΓX and ΓY , with the interpretation that the real value of X (ω) (resp ectively,Y (ω))
belongs to ΓX (ω) (resp ectivelyΓY (ω)). Then, weknowthattherandomvariables X,Y
to be compared belong to the set of measurable selections of the random sets.Thus, the
comparison of the random variables with imprecise utilities is made by the comparison
of the random sets, which in fact can be made by means of the comparison of their
asso ciated sets of measurable selections.

Onthe other hand, we have also c on sidered two random variables defined ina
probability space whose probability is imprecisely describ ed. We mo delled this lack of
information by means of acredal set. Then the random variables dep end on the exact
probability of the initial space. To deal with this imprecision we have intro duced two
new definitions: strong and weakpreference.

We have seen that some binary relations, such as statistical preference, dep end on
the joint distribution of the random variables. In thisframeworkSklar’s Theoremis
a powerful to ol that allows to build the joint distribution function from the marginals.
Howe ver, there could b e imprecision eithe r in the marginal distributions, for example by
considering p-b oxes instead ofdistribution functions, or in thecopula thatlinks these
marginals. For this reason we have develop ed a mathematicalmo delthat allows us to
deal with this problem. In the first step, we sh owed that the infimum and supremum of
sets of bivariate distribution functions are not bivariate distribution functions in general,
b ecause it may not satisfy the rectangle inequality. Wehave studiedthis problemby
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means of imprecise probabilities, extending the notionof p-b ox to the bivariate case.
Then, the infimum and supremum of bivariate dis trib ution functions determine a coherent
lower probability that satisfi es some imprecise version of the rectangle inequalities.

On the other han d we have considered the case where the lack of information lies in
the copula that lin ks the marginals. For this problem, we have extende d copulas to the
imprecise framework, and we haveprovenanimprecise versionoftheSklar’sTheorem.
Finally, we have seen how bivariate p-b oxes and this imprecise version of the Sklar’s
Theorem could be applied to one and two-dimensional sto chastic orders.

Since in the real life it is common to encounter situations in which the information
is imprecisely describ ed,theresults ofthischapterhaveseveral applications. We have
showed how imprecise sto chastic dominance can be applied in the comparison of Lorenz
Curves and cancer survival rates, andillustrated theusefulnessof imprecisestatistical
preference for multicriteria decision making problems under un certainty.
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5 Comparison of alternatives underim-
precision

Chapter 3 wasdevoted tothe comparison of alternatives in a decision proble m under
acontext of uncertainty, where these alternatives were mo delled by means of random
variables. In C hapter 4 we added imprecisi on to the original problem, and we studied
the comparison of sets of random variables. In thischapterwe shall assume that the
alternatives are defined under imprecision but withoutuncertainty. In thiscasewe need
not use probability theory, as the outcomes of the differe nt alternative will b e constant.
However, the imprecision makes crisp sets not to an adequate mo del of the available
information. Because of this, we shall use amore flexibletheorythanthe oneofcrisp
sets: thatoffuzzysetsoranyofitsextensions, suchasthetheoryofIF-setsorIVF-sets.

While for the comparison of random variables or sets of rand om variables we use
sto chastic orders, and some to ols of the imprecise probability theory, for the comparison
of IF-sets orIVF-sets we shall use some measures of comparison of these kinds of sets.

In the framework of fuzzy set theory, we can find in the literature se veral measures
of comparison between fuzzy sets. The more us ual measures of comparison are dis-
similarities ([119]), dissimilitudes ([44]) and di vergences ([159]),inaddition to classical
distances. Otherauthors, likeBouchon-Meunier([27])triedtodefinea generalmeasure
of comparison between fuzzy sets,that includethe citedmeasures asparticular cases.
The last attempt was made by C ou so et al.([45]) where someusual axioms requiredby
the measures of comparison of fuz zy sets are collected and analyzed.

Montes ([159])made a completestudy of divergencesas comparisonmeasures of
fuzzy sets.She intro duced a particular kind of divergences, the so-called lo cal divergences,
which have been proved to be very useful.

Howe ver,in theframeworkofIF-sets, inthe literaturewecanonly finddistances
for IF-se ts and a lot of examples of IF-dissimil arities (see for example [36, 37, 85, 89,
92, 111, 113, 114, 138, 193, 212]), butthere isnota thoroughmathematical theory of
comparison of IF-sets.

257
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For this re ason, the first part of this chapter is devoted to the generalization of the
comparison measuresfrom fuzzysets to IF-sets. Note thateven thoughin thispart we
shall deal with IF-sets, our commentsin Section 2.3 guarantee that all ourresults remain
valid for IVF-sets.

Afterwards, we shall investigate the relationship b etwe en IF-sets and imprecise
probabilities. Inthis secondpart, we shall interpret IF-sets as IVF-sets, because this
allows for aclearer connection to imprecise probability. Thus, we shall assume that the
IVF-set is defined on a probability space, and that it may be thus interpreted as a random
set. Then, we shall investigate its main prop erties.

The results we present in thischapter have several applications. On the one hand,
the measures of comparison of IF -sets have b een used in severalfields, suchas pattern
recognition ([92, 93, 94, 113, 114]) or decisi on making ([194, 211]), among others. On
the other hand, the connection between IVF-sets and imprecise probabilities will be very
useful when producing a graded version of sto chastic dominance, and they shall allow us
to prop ose a generalization of stochastic dominance that allow the comparison of more
than two sets of cumulative distributi on functions.

5.1 Measuresof comparisonof IF-sets

In this section we are going to intro duce some comparison measures for IF-sets. We
begin by recalling the most common comparison measures for IF-sets: distances and
dissimilarities.

Definition 5.1Amap d : IF Ss(Ω) × IF Ss(Ω) → R is a distance betweenIF-sets if it
satisfies the fol lowing properties:

Positivity: d(A, B) ≥ 0 for every A,B ∈ IF Ss(Ω) .
Identity of indiscernibles: d(A, B) =0 if and only if A=B .

Symmetry: d(A, B) = d(B, A) for every A and B in IF Ss(Ω) .
Triangle inequality: d(A, C) ≤ d (A, B) + d(B , C) for every A, B,C ∈ IF Ss(Ω) .

Definition 5.2Amap D: IF Ss(Ω) × IF Ss(Ω) → R is adissimilarity for IF-sets
(IF-dissimilarity, for short) if it satisfies the fol lowing axioms:

IF-Diss.1: D(A,A) =0 for every A ∈ IF Ss(Ω) .
IF-Diss.2: D(A, B) = D(B, A) for every A,B ∈ IF Ss(Ω) .
IF-Diss.3: For every A, B,C ∈ IF Ss(Ω) such that A ⊆ B ⊆ C

it holds that D(A, C) ≥ max(D(A, B ), D(B , C )).
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Remark 5.3Someauthors (see forinstance[93,113,211]) replace axiomIF-Diss.1by
astronger condition:

IF-Diss.1: D(A, B) =0 ⇔ A= B.

Thus, an IF-dissimilaritythatsatisfies IF-Diss.1is more restrictivethanIF-dissi-
milarities. Here, we shall restrict ourselves tothe usual definition of IF-dissimilarity
because it is more common in the literature.

There are seve ralexamples of dissimilarities in the literature, as we shall see in Sec-
tion 5.1.3. However, since its definition is not to o restrictive, it is possible to definea
counterintuitive meas ure of comparison for which axioms IF-Diss.1, IF-Diss.2 andIF-
Diss.3 hold. In order to overcome this problem, we prop ose a measure of comparison of
IF-sets called IF-divergence that satisfies the following natural prop erties:

• The divergence between two IF-sets is positive.

• The divergence between an IF-set and itself must be zero.

• The divergence between two IF-sets A and B is thesame than thedivergence
betweenB and A . That is, it must be a symmetric function.

• The “more similar” two IF-sets are, the smaller is the divergence between them.

This is formally defined as foll ows.

Definition 5.4Let us consider a function D IFS : IF Ss(Ω) × IF Ss(Ω) → R. It isa
divergence for IF-sets (IF-divergence for short) when it satisfies the fol lowing axioms:

IF-Diss.1: D IFS (A, A) =0 for every A ∈ IF Ss(Ω) .
IF-Diss.2: D IFS (A, B) =D IFS (B , A) for every A,B ∈ IF Ss(Ω) .
IF-Div.3: D IFS (A ∩ C,B ∩ C) ≤ D IFS (A, B) , for every A, B,C ∈ IF Ss(Ω) .
IF-Div.4: D IFS (A ∪ C,B ∪ C) ≤ D IFS (A, B) , for every A, B,C ∈ IF Ss(Ω) .

Note that IF-divergences are morerestrictive thanIF-dissimilarities. In orde r to prove
this, let usfirst give a preliminary result.

Lemma 5.5Let D IFS beanIF-divergence, and let A, B , C and D be IF-setssuch that
A ⊆ C ⊆ D ⊆ B . Then D IFS (A, B) ≥ D IFS (C , D).

Pro of: Note that, if N and M are two IF-sets such that N ⊆ M , then N ∪ M =M
and N ∩ M =N . Then, itholdsthat:

C ⊆ D ⇒ C ∩ D = C, D ⊆ B ⇒ B ∩ D = D,
A ⊆ C ⇒ C ∪ A = C, C ⊆ B ⇒ B ∪ C =B.
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Using axioms IF-Div.3 and IF-Div.4weobtain that:
D IFS (C , D) =D IFS (C ∩ D,B ∩ D) ≤ D IFS (C , B)

=D IFS (A ∪ C,B ∪ C) ≤ D IFS (A, B ).

We conclude that D IFS (C , D) ≤ D IFS (A, B) .

Using this le mma we can prove now that every IF-divergence is also an IF-dissimilarity.

Prop osition 5.6Every IF-divergence is anIF-dissimilarity.

Pro of: Let D IFS be an IF-divergence, and let us check that it is also an IF-dissimilarity.
For this, it suffices to prove that it satisfies axiom IF-Diss .3, because first and second
axioms of IF-divergences and IF-dissimilarities coin cide.Let A , B and C be three IF-sets
such that A ⊆ B ⊆ C. Then, takingintoaccountthat A ⊆ A ⊆ B ⊆ C, and applying the
previous lemma, D IFS (A, C) ≥ D IFS (A, B) . Ontheotherhand, since A ⊆ B ⊆ C ⊆ C,
the previous lemma also implies that D IFS (A, C) ≥ D IFS (B , C).

Hence,D IFS satisfies axiom Diss.3 and, consequently, it is a dissi milarity.

We have seen that every IF-divergence is also an IF-dis similarity. In Example 5.8
we will see that the converse do es not hold in general.

In the fuzzy framework Cou so et al. ([44]) intro duced a measure of comparison
called dissimilitude. It can be generalized to the comparison of IF-sets in the following
way.

Definition 5.7Amap D : IF Ss(Ω) × IF Ss(Ω) → R is anIF-dissimilitude if it satisfies
the fol lowing properties:

IF-Diss.1: D IFS (A, A) =0 for every A ∈ IF Ss(Ω) .
IF-Diss.2: D IFS (A, B) =D IFS (B , A) for every A,B ∈ IF Ss(Ω) .
IF-Diss.3: If A, B,C ∈ IF Ss(Ω) satisfies A ⊆ B ⊆ C, then

D IFS (A, C) ≥ max(D IFS (A, B ),D IFS (B , C )).
IF-Div.4: D IFS (A ∪ C,B ∪ C) ≤ D IFS (A, B) , for everyA, B,C ∈ IF Ss(Ω) .

This measure of comparison is stronger than IF-dissimilarities, butless restrictive than
IF-divergences. Moreover, theconverseimplicationsdonotholdingeneral. Let usgive
an example of an IF-dissim ilitude that is not an IF-divergence and an example of an
IF-dissimilarity that isnotan IF-dissimilitude.

Example 5.8First of all, we are going to build a dissimilarity that is not a dissimilitude.

Let us consider the function D : IF Ss(Ω) × IF Ss(Ω) → [0 , 1]defined on a finite Ω
by:

D(A, B)= | max
ω∈Ω

(max(0,µ B (ω) − µA (ω )))− max
ω∈Ω

(max(0,µ A (ω) − µB (ω )))|.
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Let us see that D is anIF-dissimilarity:

IF-Diss.1: D(A, A) =0 ,since µB (ω) − µA (ω ) =0 for any ω ∈ Ω.

IF-Diss.2: Obviously, D (A, B) = D (B , A) .

IF-Diss.3: Let A, B and C be threeIF-sets such that A ⊆ B ⊆ C. Then, since
µA (ω) ≤ µB (ω) ≤ µC (ω), it holds that:

D(A, B )= | maxω∈Ω µB (ω) − µA (ω)|,
D(B , C)= | maxω∈Ω µC (ω) − µB (ω)|,
D(A, C )= | maxω∈Ω µC (ω) − µA (ω)|.

Moreover,
µC (ω) − µA (ω) ≥ max(µC (ω) − µB (ω ),µB (ω) − µA ( ω )),

and therefore:
D(A, C) ≥ max(D(A, B ), D(B , C )).

Thus, D satisfiesaxiom IF-Diss.3and thereforeit isan IF-dissimilarity. Let usshow
that D is not a dissimilitude, orequivalently, that there areIF-sets A,B and C such that
D(A ∪ C,B ∪ C) > D(A, B) . Tosee this, let usconsider Ω= { ω1,ω2} and define the
IF-sets A and B by:

A= { (ω1, 0 .5, 0) , (ω2, 0, 0)} , B= { (ω1, 0 , 0) , (ω2, 0.6 , 0)} ,
C= { (ω1, 0.5 , 0), (ω2, 0.2 , 0)} .

It holds that:
A ∪ C= { (ω1, 0. 5, 0), (ω2, 0.2, 0)} .
B ∪ C= { (ω1, 0.5 , 0), (ω2, 0. 6, 0)} .

Then:
D(A, B)= |0.5− 0.6| = 0.1 ≥ 0. 4= |0.2− 0.6| = D(A ∪ C,B ∪ C).

Hence, D does not fulfill Div.4, andtherefore it is neither an IF-dissimilitude nor an
IF-divergence.

Example 5.9Let usgive anIF-dissimilitude thatis notan IF-divergence. Consider the
function D defined by:

D(A, B )=
1 if A= ∅or B= ∅, but A= B.

0 otherwise.

Let ussee that this function is adissimilitude:

IF-Diss.1: D(A, A) =0 by definition.

IF-Diss.2: D is symmetricby definition.
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IF-Diss.3: Let A, B and C be three IF-sets suchthat A ⊆ B ⊆ C. Then,

µA (ω) ≤ µB (ω) ≤ µC (ω) and νA (ω) ≥ νB (ω) ≥ νC (ω)

for every ω ∈ Ω.

There are two cases:on the onehand, if D(A, C) =1 ,then

D(A, C ) =1 ≥ max( D ( A, B ) , D ( B , C )).

On theother hand, A= ∅and C= ∅or A =C . SinceA ⊆ B ⊆ C, in the first caseB= ∅
and in the second oneB =A =C . In all cases,D (A, C ) = D(A, B) = D (B , C ) =0 .

Div.4: Let us show that D(A ∪ C,B ∪ C) ≤ D (A, B) for every IF -setsA,B and C.
This inequality holds if D (A, B) =1 . Otherwise, if D(A, B) =0 then A= ∅and B= ∅
or A=B . Since A ⊆ A ∪ C and B ⊆ B ∪ C, in the first case we deduce that A ∪ C= ∅
and B ∪ C= ∅ andwe concludethat D(A ∪ C,B ∪ C) = D(A, B) =0 . Inthe second
case,D(A ∪ C,B ∪ C) = D(A ∪ C,A ∪ C) = 0 = D(A, B) .

Thus, D is an IF-dissimilitude, but it is not an IF-divergence since it does not fulfill
axiom Div.3: if we considerthe IF-sets A,B and C defined by

A= { (ω0, 0, 1), (ω ,µA (ω ),νA (ω ))| ω =ω 0} ;
B= { (ω ,µB (ω ),νB (ω ))| ω ∈ Ω} ;
C= { (ω0, 1, 0), (ω , 0, 1)| ω =ω 0} ;

where µB (ω ) >0 for every ω ∈ Ω and µA (ω ) =µ B (ω) for every ω =ω 0, for a fixed
element ω0 of Ω; then, A ∩ C= ∅but B ∩ C= ∅, and therefore:

D (A ∩ C,B ∩ C) = 1 > 0 = D(A, B ).

Hence, D is anIF-dissimilitude that isnot an IF-divergence.

Wehave already studied the relationships among IF-dissimilarities, IF-divergences and
IF-dissimilitudes, andwe have also mentioned somecounterexamples related to the dis-
tance. In fact, that there is not a general relationship b etwee n the notion of distance for
IF-sets and thesethreemeasures ofcomparison. Toshowthat, westartwithanexample
of an IF -distance that is not an IF-dissimilarity.

Example 5.10Let usconsider thefunction D defined by:

D(A, B )=






0 if A= B,
1
2 if A − B= ∅or B − A= ∅and µA ∩B (ω ) = 0.3 ∀ω ∈ Ω,

1 otherwise,

wherethe IF-difference is theone of Example 2.56. Let us see that this fu nction isa
distance for IF-sets.
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Positivity: By definition, D(A, B) ≥ 0 for every A,B ∈ IF Ss(Ω) .

Identity of indiscernibles: By definition, D(A, B) =0 if and only if A=B .

Symmetry: D is alsosymmetric by definition.

Triangular inequality: Let us see that D (A, C) ≤ D (A, B) + D (B , C) holds forany
A, B,C ∈ IF Ss(Ω) . On the onehand, if D(A, C) =0 , the inequality trivial ly holds.
If D(A, B)= 1

2 , wecan assume, without lossof generality, that A − C= ∅, and then,
A =C . This impliesthat either A=B or B=C , and consequently eitherD(A, B) ≥ 1

2
or D(B , C) ≥ 1

2 . Therefore the inequality holds. Final ly, if D(A, C) =1 and we assume
that thetriangleinequality does not hold, thenwithoutloss of generalitywe can assume
that D(A, B) =0 . In that case, A=B , and therefore D(A, C) = D(B, C) =1 , a
contradiction arises. Weconclude that thetriangle inequality holds.

Thus, D is a distancefor IF-sets. However, itisnotanIF-dissimilarity, sincewe
can find IF-sets A,B and C, with A ⊆ B ⊆ C, such that D(A, C) < D(A,B) : let us
consider Ω= { ω} and the IF-sets A, B and C defined by:

A= { ( ω , 0 .2, 0 .4)} , B= { (ω , 0.3, 0.2)} , C= { ( ω , 0 .4, 0)} .

It is obvious that A ⊆ B ⊆ C. Moreover,it holds that:

D (A, C ) =1 and D(B , C ) = 0.5.

We conclude thatD is notan IF-dissimilarity.

We have seen that I F-distances are not IF-dissimi laritie s in general.Thus, th ey cannot
be, in general, IF-divergencesor IF-dissimilitudes, since in that case they would be in
particular IF-dissimilarities. We next show that the converse implications do not hold
either.

Example 5.11Letus giveanexample ofanIF-divergencethat isnot a distancebetween
IF-sets. Considerthe function D defined by:

D (A, B ) = max
ω∈Ω

(max(0,µ A (ω) − µB (ω )))2 +max
ω∈Ω

(max(0 ,µA (ω) − µB (ω )))2.

IF-Div.1: It isobvious that D(A, A) =0 .

IF-Div.2: By definition, D is alsosymmetric.

IF-Div.3: Let us provethat D(A, B) ≥ D(A ∩C,B ∩C) for any A, B,C . Using the
first part of Lemma A.1 in Appendix A, forany ω it holdsthat:

max(0,µ A (ω) − µB (ω ))≥ max(0, min(µA (ω ),µC (ω ))− min(µ B (ω ),µC (ω ))).
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It trivially fol lows that D (A, B) ≥ D(A ∩ C,B ∩ C) .

IF-Div.4: Similarly, let us prove that D (A, B) ≥ D(A ∪ C,B ∪ C) for any A, B,C .
Taking intoaccount againthe first part of Example A.1 inLemma A, any ω satisfies the
fol lowing:

max(0,µ A (ω) − µB (ω ))≥ max(0, max(µA (ω ),µC (ω ))− max(µB (ω ),µC (ω ))).

This implies that D (A, B) ≥ D(A ∪ C,B ∪ C) .

We conclude thatD is anIF-divergence. However, itdoesnotsatisfythetriangular
inequality, because for the IF-setsA, B and C of Ω= { ω} , defined by:

A= { ( ω , 0, 1)} , B= { (ω , 0.4, 0)} and C= { ( ω , 0.5, 0)} ,

it holds that:
D(A, C) = 0.25 ≤ 0. 16 + 0 .01 = D (A, B ) + D ( B , C ).

Thus, D does notsatisfy the triangularinequality.

Since themeasure defined inthis example isan IF-divergence, it is alsoan IF-dissimilarity
and an IF-dissimilitude. Then, wecanseethatnoneofthesemeasuressatisfy, ingeneral,
the prop erties that define a distance.

Let us show next that an IF-dissimilitude and a dis tance is not necessarily an IF-
divergence.

Example 5.12Let usconsider themap

D : IF Ss(Ω) × IF Ss(Ω) → R

defined by:

D (A, B )=






0 if A= B.

1 if A=B and either µA (ω ) =0 ∀ω ∈ Ω or µB (ω ) =0 ∀ω ∈ Ω.

0.5 otherwise.

First of al l, let us prove that D is a distancefor IF-sets.

Positivity: By definition, D (A, B) ≥ 0 for every A,B ∈ IF Ss(Ω) .

Identity of indiscernibles: By definition, D(A, B) =0 if and only if A=B .

Triangular inequality: Let us consider A, B,C ∈ IF Ss(Ω) , and let us prove that
D(A, C) ≤ D(A, B) + D(B, C) . If D(A, C) =0 , obviouslythe inequality holds. If
D(A, C ) = 0.5 ,then A=C , and therefore eitherA=B , and consequentlyD (A, B) ≥ 0.5
or B =C , and consequentlyD(B , C) ≥ 0.5. Then, D(A, B) + D(B , C) ≥ 0.5 = D(A, C) .
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Otherwise, D (A, C) =1 . In sucha case, A=C and wecan assume that µA (ω ) =0 for
everyω ∈ Ω. Then, if A=B , D (A, B) =1 , and if A=B , then D( B , C) = D(A, C) =1 .
We conclude thus that the triangularinequality holds.

Let us now prove that D is alsoan IF-dissimilitude:

IF-Diss.1: We have already seen thatD (A, A) =0 .

IF-Diss.2: Obviously, D is symmetric.

IF-Diss.3: Consider A, B,C ∈ IF Ss(Ω) such that A ⊆ B ⊆ C, and let us prove
that D (A, C) ≥ max(D(A, B ), D(B , C )). Note that if D(A, C) =0 , then A= B =C ,
andthereforethe inequality holds. Moreover, if D(A, C) =1 then the inequality also
holds becausemax(D(A, B ), D(B , C ))≤ 1. Final ly, assume thatD(A, C) = 0.5 . In such
acase A=C , and thereforeeither A=B or B =C , and there is ω ∈ Ω such that
µC (ω) ≥ µA (ω ) >0 . Then, as µC (ω) ≥ µB (ω) ≥ µA (ω), D( A, B ), D( B , C)≤ 0.5. Thus,
axiom IF-Diss.3 holds.

IF-Div.4: Let us now consider three IF-sets A, B and C, and let us prove that
D(A ∪ C,B ∪ C) ≤ D(A, B) . First of al l, if D(A, B) =1 , then theprevious inequality
trivial ly holds, since D isbounded by1. Moreover, if D(A, B) =0 then A=B , and
consequently applying IF-Diss.1 D(A ∪ C,B ∪ C) = D(A ∪ C,A ∪ C) =0 . Final ly,
assume thatD(A, B) = 0.5 . In suchacase, A=B andthere exist ω1,ω2 ∈ Ω such that
µA (ω1) >0 and µB (ω2) >0 . Letus note that:

µA ∪C (ω ) = max(µA (ω ),µC (ω ))≥ µA (ω) and
µB ∪C (ω ) = max(µB (ω ),µC (ω ))≥ µB (ω ).

Consequently,µA ∪C (ω1) ≥ µA (ω1) >0 and µB ∪C (ω2) ≥ µB (ω2) >0 . Thenit holdsthat
D(A ∪ C,B ∪ C) ≤ 0.5 = D(A, B) .

Thus, D is a distance andan IF-dissimilitude. Let us show that it isnot an IF-
divergence.Consider Ω= { ω1,ω2} and the IF-sets A, B and C defined by:

A= { (ω1, 1, 0), (ω2, 0, 0)} .
B= { (ω1, 1, 0) , (ω2, 1, 0)} .
C= { (ω1, 0, 0), (ω2, 1, 0)} .

Then:
A ∩ C= { (ω1, 0, 0) , (ω2, 0, 0)} .
B ∩ C= { (ω1, 0, 0), (ω2, 1, 0)} .

Then, D ( A, B ) = 0.5and D(A ∩ C,B ∩ C) =1 , and therefore

D (A ∩ C,B ∩ C) > D (A, B ),

acontradiction with IF-Div.3. Thus D cannot be anIF-divergence.
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To conclude this part, itonly remainsto showthat if D isan IF-dissimilarityanda
distance, it isnot necessarily an IF-dissimilitude.

Example 5.13Consider themap

D : IF Ss(Ω) × IF Ss(Ω) → R

defined by:

D(A, B)=






0 if A= B.

1 if A=B and either A=Ω or B =Ω.

0.5 otherwise.

Let us prove that D is a distancefor IF-sets.

Positivity, the identity of indiscernibles and symmetry trivial ly hold. Letus prove
that the triangular inequality is also satisfied. Let A, B and D bethreeIF-sets, andlet
us see thatD(A, C) ≤ D(A, B) + D( B , C) .

• If D(A, C) =0 , the inequality trivial ly holds.

• If D(A, C) = 0.5 , then A =C , and thereforeeither A =B or B =C , and
consequentlyD(A, B) + D( B , C) ≥ 0. 5 = D ( A, C).

• Final ly, if D(A, C) =1 , we can assume,without lossof generality, that A=Ω .
Then, if B=A , D( B , C) =1 , and therefore D (A, C) = 1 = D (A, B) + D (B , C) .
Otherwise, if B=A , then D(A, B) =1 , and therefore

D(A, C ) =1 ≤ D(A, B) + D( B , C ).

Thus, D is a distancefor IF-sets.

Let us now prove that it is also an IF-dissimilarity. Onthe onehand, prop-
erties IF-Diss.1 and IF-Diss.2 are trivial ly satisfied. Let us see that IF-Diss.3 also
holds. Consider threeIF-sets A, B,C satisfying A ⊆ B ⊆ C, and let us prove that
D(A, C) ≥ max(D(A, B ), D(B , C )).

• If D(A, C) =1 ,obviously D(A, C) ≥ max(D(A, B ), D(B , C )).

• If D(A, C) = 0.5 , then A=C andthere is ω ∈ Ω such that µA (ω) ≤ µB (ω) ≤
µC (ω ) <1 . Then, max(D(A, B ), D(B , C ))≤ 0.5 = D(A, C) .

• Final ly, if D (A, C) =0 , A= B =C holds, andthen D(A, B) = D( B , C) =0 .
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Thus, D is a dist ance for IF-sets and an IF-dissimilarity. However, it is not an IF-
dissimilitude, forit does not satisfy axiom IF-Div.4: tosee this, consider the universe
Ω= { ω1,ω2} , and the IF-sets

A= { (ω1, 1 , 0) , (ω2, 0, 0)} and B= { (ω1, 0, 0), (ω2, 1, 0)} .

It holds that D(A, B) = 0.5 . However, if we consider C =B , then A ∪ C =Ω , and
therefore:

D(A ∪ C,B ∪ C ) = D (Ω , B ) = 1.

Then, D(A ∪ C,B ∪ C) > D(A, B) , and therefore axiomIF-Div.4is notsatisfied. This
shows thatD is notan IF-divergence.

Figure 5.1 summarizes the relationships between the different metho ds for compar-
ing IF-sets.

Figure 5.1: Relationships among IF-divergences, I F-d issimilitudes, IF-dissimilarities and
distances for IF-sets.

5.1.1 Theoretical approach to the comparisonofIF-sets

Bouchon-Meunier et al. ([27]) prop osed a generalmeasure ofcomparisonforfuzzy sets
that generates some particular measures depending on the conditions imp osed to sucha
general measure.

Following this ideas, in thissection wedefine a general measure of comparison
b etween IF-sets that, dep ending on the imp osed prop erties,generateseither distances,
or IF-dissimilarities orIF-divergences.

For this , let us consider a functionD : IF Ss(Ω) × IF Ss(Ω) → R, and assume that
there is ageneratorfunction GD :

GD : IF Ss(Ω) × IF Ss(Ω) × IF Ss(Ω) → R
+ (5.1)
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such that D can b e expresse d by:

D(A, B ) =G D (A ∩ B,B − A,A − B),

where − is a difference op erator for IF-sets, according to Definition 2.55, that fulfills D3,
D4 and D5.

We shall see that dep ending on the conditions imp osed onGD , we can obtain that
D is either an IF-dissimilarity, an IF-divergence or a distan ce for IF-sets.

We begin by determining which conditions must be imp osed on GD in order to
obtain a di stance for IF-sets.

Prop osition 5.14Considerthe function D: IF Ss(Ω) × IF Ss(Ω) → R that can be
expressedasinEquation (5.1) bymeansof a generator GD : IF Ss(Ω) × IF Ss(Ω) ×

I F Ss(Ω) → R
+ . If thefunction GD satisfies theproperties:

S-Dist.1: GD (A, B, C) =0 if and only if B =C= ∅;
S-Dist.2: GD (A, B, C) =G D (A, C, B) for every A, B,C ∈ IF Ss(Ω) ;
S-Dist.3: For every A, B,C ∈ IF Ss(Ω) ,

GD (A ∩ C,C − A,A − C) ≤ GD (A ∩ B,B − A,A − B)
+G D (B ∩ C,C − B,B − C) ;

then D is a distancefor IF-sets.

Pro of: Let us prove that D satisfiesthe axiomsofIF-distances.

Positivity: it trivially follow s from the p ositivity of GD . Toshow theidentity of
indiscernibles, let A and B be two IF-sets. Then, by prop erty S-Dist.1:

D(A, B ) =G D (A ∩ B,B − A,A − B) =0 ⇔ B − A =A − B= ∅,

and by prop erties D1 and D5 this is equivalent to A=B .

Symmetry: Let A and B be two IF-sets. Using S-Dist.2,wehavethat:

D (A, B ) =G D (A ∩ B,B − A,A − B)
=G D (A ∩ B,A − B,B − A) = D(B , A).

Triangular inequality: Let A , B and C b e three IF-sets.By S-Dist.3, itholds that:

D(A, C ) =G D (A ∩ C,C − A,A − C)
≤ GD (A ∩ B,B − A,A − B) +G D (B ∩ C,C − B,B − C)
= D(A, B) + D( B , C ).

Letus now consider IF-dissimilarities. Wehaveproven thefollowingresult:
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Prop osition 5.15Let D be amap D : IF Ss(Ω) × IF Ss(Ω) → R
+ that canbeexpressed

asinEquation (5.1) bymeansofthe generator GD , where GD : IF Ss(Ω) × IF Ss(Ω) ×

I F Ss(Ω) → R
+ . Then, D is anIF-dissimilarity if GD satisfies the fol lowing properties:

S-Diss.1: GD (A, ∅, ∅) =0 for every A ∈ IF Ss(Ω) .
S-Dist.2: GD (A, B, C) =G D (A, C, B) for every A, B,C ∈ IF Ss(Ω) .
S-Diss.3: GD (A, B, ∅) is increasing in B .
S-Diss.4: GD (A, B, ∅) is decreasing inA.

Pro of: Letus provethat D isan IF-dissimilarity.

IF-Diss.1: Let A be an IF-set. By D1 and S-Diss .1 it holds that

D (A, A) =G D (A ∩ A,A − A,A − A) =G D (A, ∅, ∅)= 0.

IF-Diss.2: Let A and B be two IF-sets. Then, byS-Dist.2, D is symmetric:

D(A, B ) =G D (A ∩ B,B − A,A − B)
=G D (A ∩ B,A − B,B − A) = D(B , A).

IF-Diss.3: Let A, B and C b e three I F-s ets such thatA ⊆ B ⊆ C, and let us prove
that D (A, C) ≥ max(D(A, B ), D(B , C )). Firstof all, letus compute D(A, C ), D(A, B)
and D(B , C).

D(A, C) =G D (A ∩ C,C − A,A − C) =G D (A,C − A, ∅).
D (A, B ) =G D (A ∩ B,B − A,A − B) =G D (A,B − A, ∅).
D (B , C ) =GD (B ∩ C,C − B,B − C) =G D (B ,C − B, ∅).

Ononehand, letus provethat D(A, C) ≥ D(A, B) . ByD2, itholdsthat B − A ⊆ C − A ,
and therefore, byS-Diss.3:

D (A, C ) =G D (A,C − A, ∅) ≥ GD (A,B − A, ∅) = D (A, B ).

Let us prove next that D (A, C) ≥ D(B , C). ByD4it holdsthat C − B ⊆ C − A , and
therefore:

D(A, C) =G D (A,C − A, ∅)
S− D iss.4

≥ GD (B ,C − A, ∅)
S− D iss.3

≥ GD (B ,C − B, ∅) = D(B , C ).

Thus, we conclude that D isan IF-dissimilarity.

ConcerningIF-divergences, we haveestablished thefollowing:

Prop osition 5.16Let D be a map D : IF Ss(Ω) × IF Ss(Ω) → R generated byGD as
in Equation (5.1), where GD : IF Ss(Ω) × IF Ss(Ω) × IF Ss(Ω) → R

+ . Then, D is an
IF-divergence if GD satisfies the fol lowing properties:
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S-Diss.1: GD (A, ∅, ∅) =0 for every A,B ∈ IF Ss(Ω) .
S-Dist.2: GD (A, B, C) =G D (A, C, B) for every A, B,C ∈ IF Ss(Ω) .
S-Div.3: GD (A, B, C) is increasing in B and C.
S-Div.4: GD (A, B, C) is independent of A.

Note that axiom S-Div.4 is a very strongcondition. We require it because IF-divergences
fo cus on the difference b etween the IF-sets instead of the intersection.

Pro of: Let us prove that D isan IF-divergence.

First andsecond axiomsof IF-divergences and IF-dissimilarities coincide. Further-
more, as we proved in Prop osition 5.15, they follow from S-Diss.1 and S-Dist.2.

IF-Div.3: Let A, B and C be three IF-sets. Since the IF-difference op erator fulfills
D3, then (A ∩ C) − (B ∩ C) ⊆ A − B and (B ∩ C) − (A ∩ C) ⊆ B − A . Therefore, by
S-Div.3 and S-Div.4:

D(A ∩ C,B ∩ C)
=G D (A ∩ B ∩ C, (B ∩ C) − (A ∩ C), (A ∩ C) − (B ∩ C))
=G D (A ∩ B, (B ∩ C) − (A ∩ C) , (A∩ C) − (B ∩ C))
≤ GD (A ∩ B,B − A,A − B) = D(A, B ).

IF-Div.4: Consider the IF-sets A , B and C. Asinthe previousaxiom, applying
prop erty D4 of the IF-difference − , we obtainthat (A ∪ C) − (B ∪ C) ⊆ A − B and
(B ∪ C) − (A ∪ C) ⊆ B − A . As a consequence,

D(A ∪ C,B ∪ C)
=G D ((A ∪ C) ∩ (B ∪ C), (B ∪ C) − (A ∪ C) , (A∪ C) − (B ∪ C))
S− Div .4

= GD (A ∩ B, (B ∪ C) − (A ∪ C), (A ∪ C) − (B ∪ C))
S− D iv .3

≤ GD (A ∩ B,B − A,A − B) = D(A, B ).

We conclude that D isan IF-divergence.

Inorder to findsufficient conditionsover GD so as to build an IF-d issimilitude D ,
we need D tosatisfy axiomsIF-Diss.1, IF-Diss.2, IF-Diss.3and IF-Div.4. Aswe have
already mention ed, axioms IF-Diss.1 and IF-Diss.2 are implied by conditions:

S-Diss.1: GD (A, ∅, ∅) for every A,B ∈ IF Ss(Ω) .
S-Dist.2: GD (A, B, C) =G D (A, C, B) for every A,B ∈ IF Ss(Ω) .

In order to prove condition IF-Div.4, in Prop osition 5.16 we required the following:

S-Div.3: GD (A, B, C) is increasing in B and C.
S-Div.4: GD (A, B, C) is indep endent ofA .

Moreover, itis trivial that these conditions implyS-Diss.3 and S-Diss.4, that also
follow from axiom IF-Diss.3. Therefore, the conditions that need to be imp osed on GD
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in order to obtain an IF-dissimilitude are the same that we have imp osed in order to
obtain an IF -divergence.

Letusgive an example of a function GD thatgeneratesan IF-dissimilaritybutnot
an IF-divergenc e.

Example 5.17Consider thefunction GD : IF Ss(Ω) × IF Ss(Ω) × IF Ss(Ω) → R
+

defined, for every A, B,C ∈ IF Ss(Ω) , by:

GD (A, B, C)= | max
ω∈Ω

µB (ω) − max
ω∈Ω

µC (ω)|.

This function generates an IF-dissimilarity because it satisfies properties S-Diss. i , with
i = 1, 3,4 and S-Dist.2.

S-Diss.1: By definition, GD (A, ∅, ∅) =0 , since µ∅(ω ) =0 for every ω ∈ Ω.

S-Dist.2: GD is symmetric with respect its second and third component s:

GD (A, B, C)= | maxω∈Ω µB (ω) − maxω∈Ω µC (ω)|
= | maxω∈Ω µC (ω) − maxω∈Ω µB (ω)| =G D (A, C, B ).

S-Diss.3: Let A,B and B be threeIF-sets such thatB ⊆ B . Then, µB (ω) ≤ µB (ω)
for every ω ∈ Ω. Then itholds that:

GD (A, B, ∅) =max
ω∈Ω

µB (ω) ≤ max
ω∈Ω

µB (ω ) =G D (A, B, ∅).

Thus, GD (A, B, ∅) is increasing in B .

S-Diss.4: It is obvious thatGD doesnot dependon itsfirst component, and therefore,
it is in particular decreasing on A.

Hence, GD satisfiesthe conditions of Proposition 5.15, and therefore themap D
defined by:

D (A, B) =G D (A ∩ B,B − A,A − B), for every A,B ∈ IF Ss(Ω)

is an IF-dissimilarity. However, ingeneral GD doesnotsatisfy S-Div.4. Toseethis, it
is enough to consider the IF-difference of Example 2.56. In that case, the function GD
generatesthe IF-dissimilarity of Example 5.8, which was showed not to satisfy condition
IF-Div.4. Then, D isneitheranIF-dissimilitudenoran IF-divergence. This implies
that GD does not fulfill S-Div.4, because otherwiseD would bean IF-divergence.

Let us see next an example of afunction GD that generates an IF-divergence th at is not
adistance for IF-sets.
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Example 5.18Consider the function GD : IF Ss(Ω) × IF Ss(Ω) × IF Ss(Ω) → R
+

defined by:
GD (A, B,C) = max

ω∈Ω
µB (ω)

2
+ max

ω∈Ω
µC (ω)

2,

for every A, B,C ∈ IF Ss(Ω) . This function generates an IF-divergence, since it trivial ly
satisfies the conditions in Proposition 5.16. However, it does not generat e a distance
for IF-sets. Tosee it, consider theIF-differencedefined in Example 2.56. Then, the
IF-divergence that generatesGD with this IF-differencecoincides with the one given in
Example 5.11, where weproved that it was not adistance for IF-sets.

Finally, letus give an exampleof a fun ction GD that generatesa distance forfuzzy
setsthat is notan IF-dissimilarity, andthereforeit isneitheran IF-divergencenoran
IF-dissimilitude.

Example 5.19Consider thefunction

GD : IF Ss(Ω) × IF Ss(Ω) × IF Ss(Ω) → R
+

by:

GD (A, B, C)=






0 if B =C= ∅,

0.5 if B= ∅or C= ∅and µA ( ω ) = 0.3for all ω ∈ Ω,

1 otherwise.

Let us prove that GD satisfies conditionsof Proposition5.14.

S-Dist.1: By definition, GD (A, B, C) =0 if and only if B =C= ∅.

S-Dist.2: Obviously, GD (A, B, C) =G D (A, C, B) for every A, B,C ∈ IF Ss(Ω) .

S-Dist.3: Let us consider A, B,C ∈ IF Ss(Ω) , and we want to prove that

GD (A ∩ C,C − A,A − C) ≤ GD (A ∩ B,B − A,A − B) +G D (C ∩ B,B − C,C − B).

• If GD (A ∩ C,C − A,A − C) =0 , then the inequality trivial ly holds.

• Let us nowassume that GD (A ∩ C,C − A,A − C ) = 0.5. Thus, either A − C= ∅
or C − A= ∅ and µA ∩C (ω ) = 0.3 for every ω ∈ Ω. Let us note t hat, as A=C ,
either A=B or B=C . Equivalently, either GD (A ∩ B,B − A,A − B) ≥ 0.5 or
GD (C ∩ B,B − C,C − B) ≥ 0.5. Then, inthis casethe inequality alsoholds.

• Final ly, consider the case whereGD (A ∩ C,C − A,A − C) =1 . Then, A − C= ∅
or C − A= ∅and µA ∩C (ω ) = 0.3 for some ω ∈ Ω. If A=B , then:

GD (A ∩ B,B − A,A − B) =0 and
GD (C ∩ B,B − C,C − B) =G D (C ∩ A,A − C,C − A) = 1.
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The samehappens when B =C . Otherwise, if A =B and B =C , then both
GD (C ∩B,B − C,C − B) and GD (A ∩B,B − A,A − B) aregreater or equal to 0.5,
and its sum equals 1.

Therefore, GD generatesa distance forIF-sets. Toshow that it generates neither an
IF-dissimilaritynor an IF-divergence, itis enoughto considertheIF-differenceof Ex-
ample2.56, becauseinthat casethefunction GD generatesthe distance ofExamples5.10,
wherewe showed that such function is neither an IF-dissimilarity nor an IF-divergence.

We have see n sufficient conditions forGD to generatedistances, IF-dissimi laritie s and
IF-divergences. However,such conditions are not necess ary,and we c an not assure that
every distance , IF-dissimilarity or IF-divergence can b e generated in this way.

Aswe haveseen, IF-divergencesare morerestrictive thanIF-dissimilaritiesand IF-
dissimilitudes. Thus, IF-divergencesavoidsomecounterintuitivemeasuresofcomparison
ofIF-sets, sincethe strongertheconditions, themore“robust” themeasureis. Because
of this, we think it is preferable to work with IF-divergences, and we shall fo cus on them
in the remainder of this chapter.

5.1.2 Properties of the IF-divergences

We have prop osed an axiomatic definition of divergence measures for intuitionistic fuzzy
sets, which are particular cas es of dissimi larity and dissimilitude measures. Next, we
study their prop erties in more detail. We begin by noting that a desirable prop erty fora
measure of the difference between IF-sets is positivity.Although it has not b een imp osed
in the definition, it can be easily derived from axioms IF-Diss.1 and IF-Div.3:

Lemma 5.20If D : IF Ss(Ω) × IF Ss(Ω) → R satisfiesIF-Diss.1 and IF-Div.3, thenit
is posit ive.

Pro of: Consider two IF-sets A and B .From IF-Div.3, for every C ∈ IF Ss(Ω) it holds
that:

D(A, B) ≥ D(A ∩ C,B ∩ C).
If we take C= ∅, then:

D(A, B) ≥ D(A ∩∅,B ∩∅) = D( ∅, ∅)= 0,

by IF-Diss .1. Thus, D is a positive function.

Now we investigate an interesting prop erty of IF-divergences.

Prop osition 5.21Given anIF-divergence D IFS , it fulfil ls that:

D IFS (A ∩ B, B) =D IFS (A,A ∪ B),
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and this value is lower than or equal to D IFS (A, B) and D IFS (A ∩ B,A ∪ B) , that is:

D IFS (A ∩ B, B) =D IFS (A,A ∪ B) ≤ min{ D IFS (A, B) ,D IFS (A ∩ B,A ∪ B) } .

However, there is no fixed relationship betweenD IFS (A ∩ B,A ∪ B) and D IFS (A, B) .

Pro of: By thedefinitions of union and intersection of intuitionistic fuzzy sets, we have
that (A ∪ B) ∩ B =B and (A ∩ B) ∪ A =A . Applying axiomsIF-Div.3andIF-Div.4,
we obtain that

D IFS (A ∩ B, B) =D IFS (A ∩ B, (A ∪ B) ∩ B) ≤ D IFS (A,A ∪ B)
=D IFS ((A ∩ B) ∪ A,B ∪ A) ≤ D IFS (A ∩ B, B).

Thus, D IFS (A ∩ B, B) =D IFS (A,A ∪ B) .

On the other hand, B ∩ B =B , whence

D IFS (A ∩ B, B) =D IFS (A ∩ B,B ∩ B) ≤ D IFS (A, B) by Axiom IF-Div.3 .

Finally, since A ∩ B ⊆ A ⊆ A ∪ B , by Lemma 5.5 we have that

D IFS (A,A ∪ B) ≤ D IFS (A ∩ B,A ∪ B).

In order to prove that there is no dominance relationship between D IFS (A ∩ B,A ∪ B)
and D IFS (A, B) , let usconsider the universe Ω= { ω} and the IF-sets:

A= { (ω , 0.2, 0.6)}
B= { (ω , 0 .3, 0.7)}

⇒ A ∩ B= { (ω , 0.2, 0.7)}
A ∪ B= { (ω , 0.3, 0.6)}

Consider the IF-divergencesD L and l I FS defined by:
DL (A, B)= 1

4 (|(µA (ω) − νA (ω ))− (µB (ω) − νB (ω ))| + |µA (ω) − µB (ω)|
+ |νA (ω) − νB (ω)|).

l IFS (A, B)= 1
2 |µA (ω) − µB (ω)| + |νA (ω) − νB (ω)| + |πA (ω) − πB (ω)|.

As we shall see in Section 5.1.3, they corresp ond to the Hong and Kim IF-divergence and
the Hamming distance, resp ectively.Then:

l I FS (A, B) = 0.2 and
l I FS (A ∩ B,A ∪ B ) = 0. 1.
DL (A, B)= 0.2

4 and
DL (A ∩ B,A ∪ B)= 0.2+0.1+0.1

4 = 0.4
4 .

Thus:

l I FS (A, B) >l I FS (A ∩ B,A ∪ B) and D L (A, B) <D L (A ∩ B,A ∪ B)

and therefore, there is not fixed relationship between these two quantities.

Next, we shall study under which conditions axioms IF-Div.3 and IF-Div.4 are
equivalent. But before tackling this problem, we give an example showing that they are
not equivalent in gen eral.
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Example 5.22Consider thefunction D : IF Ss(Ω) × IF Ss(Ω) → R given by

D(A, B )=
ω∈Ω

h(µA (ω ),µB (ω )), for every A,B ∈ I F S s(Ω),

whereh is defined by

h(x, y)=
0 if x= y.

1 − xy if x= y.

We shal l prove in Example 5.53 of Section 5.1.5 thatD satisfies IF-Diss.1, IF-Diss.2and
IF-Div.4. However, itisnot anIF-divergence. For instance, if we considera universe
Ω= { ω1, . . . ,ωn } , and the IF-sets defined by:

A= { ( ω , 0.2, 0.8)| ω ∈ Ω} .
B= { (ω , 0.8, 0.2)| ω ∈ Ω} .
C= { (ω , 0 .5, 0.5)| ω ∈ Ω}

it holds that:

D (A ∩ C,B ∩ C) = D(A, C)=
ω∈Ω

(1 − 0.2 · 0.5)=
ω∈Ω

0 .9 = 0. 9n.

D IF (A, B)=
ω∈Ω

(1 − 0.2 · 0.8)=
ω∈Ω

0.84 = 0.84 n.

Thus, D(A ∩C,B ∩C ) = 0.9n > 0 .84 n = D (A, B), andthereforeIF-Div.3 isnotsatisfied.

Hence, wehaveanexample of a function that satisfies IF-Div.4but it does not
satisfy IF-Div.3. Nextwearegoing toshowbymeansofan examplethatIF-Div.3does
not imply IF-Div.4 either. Consider thefunction D : IF Ss(Ω) × IF Ss(Ω) → R given by:

D(A, B )=
ω∈Ω

h(µA (ω ),µB (ω )) for every A,B ∈ F S (Ω),

whereh: R
2 → R is defined by:

h(x, y)=
0 if x= y.
xy if x= y.

We shall also see in Example 5.53 of Section 5.1.5 that thisfunction satisfies IF-Diss.1,
IF-Diss.2 andIF-Div.3, but it is notan IF-divergence: consider Ω= { ω1, . . . ,ωn } , and
the IF-sets of the previous example. Then, itholds that

D(A ∪ C,B ∪ C) = D (C , B)=
ω∈Ω

0.8 · 0. 5=
ω∈Ω

0.4 = 0.4 n.

D(A, B )=
ω∈Ω

0.2 · 0.8=
ω∈Ω

0. 16 = 0. 16n.

We can conclu de that axiom IF-Div.4 is not satisfied since

D (A ∪ C,B ∪ C ) = 0 .4 n > 0.16n = D (A, B ).
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Therefore, axioms IF-Div.3 andIF-Div.4 are not relatedin general. We sh all see however,
that under som e additional conditions they become equivalent. Letus consider the
following natural prop erty:

IF-Div.5: D IFS (A, B) =D IFS (A c,B c) for every A,B ∈ IF Ss(Ω) .

Inthe following sectionwe shall see some examples of IF-divergences satisfying this
prop erty. To see, however, that notall IF-divergences satisfy IF -Div.5, take Ω= { ω}

and the function definedby:

D IFS (A, B)= |µA (ω) − µB (ω)| + |νA (ω) − νB (ω)|2. (5.2)

We shall prove in Example 5.54 of Section 5.1.5 that this function is an IF-divergence.
However, it do es not satisfy IF-Div.5. To see that, consider the IF -s ets

A= { ( ω , 0 .6, 0 .4)} and B= { ( ω , 0 .5, 0 .1)} .

It holds that:

D IFS ( A, B ) = 0. 1 + 0 .09 = 0.19 = 0. 31 = 0. 3 + 0 .01 =DIFS (A c,B c).

Our ne xt result shows that, when IF -Div.5 is satisfied, then axioms IF-Div.3 and IF-Div.4
are equivalent.

Prop osition 5.23If D is a function D: IF Ss(Ω) × IF Ss(Ω) → R satisfying the
property IF-Div.5, then it satisfies IF-Div.3 if and only if it satisfies IF-Div.4.

Pro of: First of all let us show that, since D(A, B) = D(A c,B c) by IF -Div.5, it also
holds that:

D(A ∪ C,B ∪ C ) = D ((A ∪ C) c
, (B ∪ C) c) = D(A c ∩ Cc,B c ∩ Cc).

Assume that D satisfies IF-Div.3:

D (A ∩ C,B ∩ C) ≤ D (A, B) for every A,B ∈ I F S s(Ω).

Then it alsosatisfies IF-Div.4:

D (A ∪ C,B ∪ C) = D(A c ∩ Cc,B c ∩ Cc) ≤ D(A c,B c) = D(A, B ).

Similarly, assume that D satisfiesIF-Div.4, thatis,

D (A ∪ C,B ∪ C) ≤ D (A, B) for every A,B ∈ I F S s(Ω).

Then, it also satisfiesaxiom IF-Div.3:

D (A ∩ C,B ∩ C) = D(A c ∪ Cc,B c ∪ Cc) ≤ D(A c,B c) = D(A, B ).

Now, we will obtain a general expression of IF-divergences by comparing the memb ership
and non-memb ership functions of the IF-sets by means of a t-conorm.
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Prop osition 5.24Consider a finite set Ω. If S and S∗ aretwot-conorms, thefunction
D IFS defined by:

D IFS (A, B) =S ω∈Ω(S
∗
(|µA (ω) − µB (ω)|, |νA (ω) − νB (ω)|))

for every A,B ∈ IF Ss(Ω) , is an IF-divergence. Moreover, it satisfiesIF-Div.5.

Pro of: Letus provethat D IFS fulfillsaxioms IF-Diss.1toIF-Div.4.

IF-Diss.1: Let A be an IF-set. Obviously, D IFS (A, A) =0 :

D IFS (A, A) =S ω∈Ω(S
∗
(0, 0)) = S (0 , . . . , 0) = 0.

IF-Diss.2: Let A and B be two IF-sets. It holdsthat:

D IFS (A, B) =S ω∈Ω(S∗(|µA (ω) − µB (ω)|, |νA (ω) − νB (ω)|))
=S ω∈Ω(S∗(|µB (ω) − µA (ω)|, |νB (ω) − νA (ω)|)) =D IFS (B , A).

IF-Div.3: Let A , B and C three IF-sets. Wehaveto provethat

D IFS (A, B) ≥ D IFS (A ∩ C,B ∩ C).

Applying the first part of Lemma A.1 of App endix A, we have that

|µA (ω) − µB (ω)| ≥| min(µ A (ω ),µC (ω ))− min(µ B (ω ),µC (ω ))| = |µA ∩C (ω) − µB ∪C (ω)|.
|νA (ω) − νB (ω)| ≥| max(νA (ω ),νC (ω ))− max(νB (ω ),νC (ω ))| = |νA ∩C (ω) − νB∪C (ω)|.

Since everyt-conorm is increasing, it holds that:

D IFS (A, B) =S ω∈Ω(S∗(|µA (ω) − µB (ω)|, |νA (ω) − νB (ω)|))
≥ Sω∈Ω(S∗(|µA ∩C (ω) − µB ∩C (ω)|, |νA ∩C (ω) − νB ∩C (ω)|))
=D IFS (A ∩ C,B ∩ C).

IF-Div.4: Considerthree IF-sets A , B and C. Using thefirstpart ofLemmaA.1 of
App endix A, we see that:

|µA (ω) − µB (ω)| ≥| max(µA (ω ),µC (ω ))− max(µB (ω ),µC (ω ))|
= |µA ∪C (ω) − µB ∪C (ω)|.

|νA (ω) − νB (ω)| ≥| min(νA (ω ),νC (ω ))− min(νB (ω ),νC (ω ))|
= |νA ∪C (ω) − νB∪C (ω)|.

Since t-conorms are increasing op erators,

D IFS (A, B) =S ω∈Ω(S∗(|µA (ω) − µB (ω)|, |νA (ω) − νB (ω)|))
≥ Sω∈Ω(S∗(|µA ∪C (ω) − µB ∪C (ω)|, |νA ∪C (ω) − νB ∪C (ω)|))
=D IFS (A ∪ C,B ∪ C).
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Thus, D IFS is anIF-divergence. Now, wearegoingtoprovethatitalsosatisfiesIF-Div.5.
Using that every t-conorm is symmetric, we de duce that:

D IFS (A, B) =S ω∈Ω(S∗(|µA (ω) − µB (ω)|, |νA (ω) − νB (ω)|))
=S ω∈Ω(S∗(|νA (ω) − νB (ω)|, |µA (ω) − µB (ω)|)) =D IFS (A c,B c).

Therefore D IFS (A, B) =D IFS (A c,B c) for every A,B ∈ IF Ss(Ω) .

One of the con ditions we required on IF-divergences was that “the more similar two
IF-sets are, the lower the divergence is between them”. Inthe following resultwe are
going to see that, if the non-memb ership functions of A and B are thesame thanthe
ones of C and D , resp ectively,or the memb ership functions of C and D are th e same,
then the IF-divergence between A and B is gre ate r than the IF-divergence b etweenC
and D .

Prop osition 5.25Let A and B betwo IF-sets. Let usconsidertheIF-sets CA and DB
given by:

CA = { (ω , µ(ω),νA (ω ))| ω ∈ Ω} ,
DB = { (ω , µ(ω),νB (ω ))| ω ∈ Ω} ,

whereµ:Ω → [0 , 1]is amap such that µ( ω ) +νA (ω) ≤ 1 and µ(ω ) +νB (ω) ≤ 1 for every
ω ∈ Ω. If D is anIF-divergence, then D (A, B) ≥ D(C A ,D B ).

Pro of: Letusdefine thefollowing IF-set:

N= { ( ω , min(µA (ω ), µ(ω )), 0)| ω ∈ Ω} .

Then,
A ∩ N= { ( ω , min(µA (ω ), µ(ω )),νA (ω ))| ω ∈ Ω} .
B ∩ N= { (ω , min(µB (ω ), µ( ω ),µA (ω )),νB (ω ))| ω ∈ Ω} .

Applying IF-Div.3 we obtain that D(A, B) ≥ D(A ∩ N,B ∩ N) . Consider now another
IF-set, defined by:

M= { (ω , µ(ω ), max(νA (ω ),νB (ω ))) | ω ∈ Ω} .

We obtain that:

(A ∩ N) ∪ M= { (ω , max(µ(ω ), min(µA (ω ), µ(ω ))),νA (ω ))| ω ∈ Ω}

= { (ω , µ(ω),νA (ω ))| ω ∈ Ω} =C A .
(B ∩ N) ∪ M= { (ω , max(µ(ω ), min(µB (ω ), µ(ω ),µA (ω ))),νB (ω ))| ω ∈ Ω}

= { (ω , µ(ω),νB (ω ))| ω ∈ Ω} =D B .

Applying IF-Div.4,

D(A, B) ≥ D(A ∩ N,B ∩ N) ≥ D ((A ∩ N) ∪ M, (B ∩ N) ∪ M) = D(C A ,D B ).

Analogously, we can obtain a similar result by exchanging the memb ership and the
non-memb ership functions.
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Prop osition 5.26Let A and B betwo IF-sets. Let usconsidertheIF-sets CA and DB
given by:

C= { (ω ,µA (ω ), ν (ω))| ω ∈ Ω} and D= { ( ω ,µB (ω ), ν (ω ))| ω ∈ Ω} ,

whereν :Ω → [0 , 1]is a map such thatµA (ω ) + ν (ω)≤ 1 and µB (ω ) + ν (ω)≤ 1 for every
ω ∈ Ω. If D IFS is anIF-divergence, then D IFS (A, B) ≥ D IFS (CA ,D B ).

We conclude this section with a prop erty that assures that some transformations of
IF-divergences are also IF-divergences.

Prop osition 5.27If D isan IF-divergence and φ: R → R is an increasing function
with φ(0) =0 , then D φ defined by:

D φ
IFS (A, B) = φ(D IFS (A, B )) for every A,B ∈ I F S s(Ω),

is also an IF-divergence. Moreover, if D IFS satisfiesaxiomIF-Div.5, thensodoes D φ
IFS .

Pro of: Let D IFS be an IF-divergence and φ an increasing function with φ(0) =0 .
ConditionIF-Diss.1 follows from φ(0) =0 and conditions IF-Div.3 andIF-Div.4 follow
from themonotonicity of φ, and IF-Div.2 and IF-Div.5 are trivially fulfilled by definition.

5.1.3 Examples of IF-divergences and IF-dissimilarities

This subsectionis devoted to the study of some of the most imp ortant examples of
IF-divergences and dissimilarities. Sp ecifically,we shall investigate whether the most
prominent examples of dissimilarities that can be found in the literature are particular
cases of IF-divergence.Furthermore, we shall also study if they satisfy other prop erties,
such as axiom IF-Div.5, or if they are dissimilitude s.

Dissimilarities that also are IF-divergences

Inthis section we are going to present an overview of the dissimilarities thatare also
IF-divergences.From nowon, Ω denotes a finite universe with n elements.

Hamming and normalized Hamming distanceOne of the most important com-
parison measures for IF-sets are th e Hamming distance ([193]), defined by:

l IFS (A, B)=
1
2 ω∈Ω

(|µA (ω) − µB (ω)| + |νA (ω) − νB (ω)| + |πA (ω) − πB (ω)|),
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and the normalized Hamming distance by:

lnIFS (A, B)=
1
n

l IFS (A, B), for every A,B ∈ I F S s(Ω).

These functions are known to be dissimilarities. Letusprovethat theyare also IF-
divergences. In orderto do this, we shall first of all prove that the Hamming distance
is an IF-divergence; this, together with Prop osition 5.27, we allowus to conclude that
the normalized Hamming distance is also an IF-divergence, because it is an increasing
transformation (by meansof φ(x )= x

n ) of the Hamming distance. Inorderto provethat
the Hamming distance is an IF-divergence, we shall begin by showing that it satisfies
axiom IF-Div.5. Let us note that

πA (ω ) =1 − µA (ω) − νA (ω ) =1 − νA c (ω) − µA c (ω ) =πA c (ω)

for every ω ∈ Ω and A ∈ IF Ss(Ω) . Then:

l IFS (A c,B c)=
ω∈Ω

(|νA (ω) − νB (ω)| + |µA (ω) − µB (ω)| + |πA c (ω) − πB c (ω)|)

=
ω∈Ω

(|µA (ω) − µB (ω)| + |νA (ω) − νB (ω)| + |πA (ω) − πB (ω)|) =l IFS (A, B).

By Prop osition 5.23, axioms IF-Div.3 and IF-Div.4 are equivalent. Moreover, axiomsIF-
Diss.1 and IF-Diss .2 are satisfied sincel IFS is an IF-dissim ilarity (see for instance [92]).
Hence, inorderto provethat l IFS is anIF-divergence itsuffices to checkthat it fulfills
either IF-Div.3 or IF-Div.4. Let us show thelatter. Let A, B and C be three IF-sets;
using Lemma A.2 of App endix A, we know that for everyω ∈ Ω, the following inequality
holds:

|µA (ω) − µB (ω)| + |νA (ω) − νB (ω)| + |πA (ω) − πB (ω)|≥
| max(µA (ω ),µC (ω ))− max(µB (ω ),µC (ω ))|+
| min(νA (ω ),νC (ω ))− min(νB (ω ),νC (ω ))|+
| max(µA (ω ),µC (ω )) + min(νA (ω ),νC (ω ))−
max(µB (ω ),µC (ω ))− min(νB (ω ),νC (ω ))|.

Then:

l IFS (A, B)=
ω∈Ω

|µA (ω) − µB (ω)| + |νA (ω) − νB (ω)| + |πA (ω) − πB (ω)|

≥
ω∈Ω

| max(µA (ω ),µC (ω ))− max(µB (ω ),µC (ω ))|

+ | min(νA (ω ),νC (ω ))− min(νB (ω ),νC (ω ))|
+ | max(µA (ω ),µC (ω ))− min(νA (ω ),νC (ω ))
+max(µ B (ω ),µC (ω ))− min(νB (ω ),νC (ω ))| =l IFS (A ∪ C,B ∪ C).

Thus, l IFS (A, B) ≥ l IFS (A ∪ C,B ∪ C) .

In otherwords, we have proven that l IFS satisfiesaxiomIF-Div.4, andthereforeit
also satisfies IF-Div.3. Hence, l IFS isan IF-divergence,andasaconsequencesois lnIFS .
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Moreover, sinc e they are IF-divergences,we deduce that theyare also dissimilitudes.
In summary, the Hamming and the normalized Hamming di stances are examples of
dissimilarities, IF -divergences, dissimilitudes and distances.

Hausdorff dissimilarityAnother very imp ortant dissimilarity b etween IF-sets is based
on the Hausdorff distance (see forexample [85]). It isdefinedby:

dH (A, B)=
ω∈Ω

max(|µA (ω) − µB (ω)|, |νA (ω) − νB (ω)|).

As the Hamming distance, the Hausdorff dissimilarity satisfies axiom IF-Div.5, because

dH (A c,B c)=
ω∈Ω

max(|νA (ω) − νB (ω)|, |µA (ω) − µB (ω)|) =d H (A, B ).

Applying Prop 5.23, we deduce that axioms IF-Div.3 and IF-Div.4 areequivalent. Note
that axioms IF-Diss.1 and IF-Diss.2 are satisfied by dH sinceit is a IF-dissimilarity.
Hence, inorder toprovethat dH isan IF-divergence, itsuffices toprovethat either
IF-Div.3 or IF-Div.4 hold.

Let us prove that axiom IF-Div.4 is satisfied by dH . Consider threeIF-sets A,B
and C. Then, theIF-sets A ∪ C and B ∪ C aregiven by:

A ∪ C= { (ω , max(µA (ω ),µC (ω )), min(νA (ω ),νC (ω ))) | ω ∈ Ω} .
B ∪ C= { (ω , max(µB (ω ),µC ( ω )) , min(νB (ω ),νC (ω ))) | ω ∈ Ω} .

By the second part of Lemma A.1 of App endix A, it holds that:

| max(µA (ω ),µC (ω ))− max(µB (ω ),µC (ω ))| ≤| µA (ω) − µB (ω)|.
| min(νA (ω ),νC (ω ))− min(νB (ω ),νC (ω ))| ≤| νA (ω) − νB (ω)|.

Then,
|µA ∪C (ω) − µB∪C (ω)| ≤| µA (ω) − µB (ω)| and
|νA ∪C (ω) − νB ∪C (ω)| ≤| νA (ω) − νB (ω)|.

From these inequalities itfollows that:

max(|µA ∪C (ω) − µB ∪C (ω)|, |νA ∪C (ω) − νB∪C (ω)|)
≤ max(|µA (ω) − µB (ω)|, |νA (ω) − νB (ω)|).

This inequality has been proved for every ω in Ω, and consequently:

dH (A ∪ C,B ∪ C)=
ω∈Ω

max(|µA ∪C (ω) − µB ∪C (ω)|, |νA ∪C (ω) − νB ∪C (ω)|)

≤
ω∈Ω

max(|µA (ω) − µB (ω)|, |νA (ω) − νB (ω)|) =d H (A, B).
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Thus, the Hausdorff IF-dissimilarity isanIF-divergence, and consequently it isalsoa
dissimilitude.

Note that it is also possible to define the normalized Hausdorff dissimilarity, denoted
by dnH , by:

dnH (A, B)=
1
n

dH (A, B ), for every A,B ∈ I F S s(Ω).

It holds that dnH (A, B) = φ(d H (A, B)) , whe reφ( x)= 1
n x. Aswe alreadysaid, this

function φ is increasingand φ(0) =0 . Therefore, using Prop osition 5.27, we deduce that
dnH isalso anIF-divergencethat fulfillsaxiomIF-Div.5.

We conclude that dH and dnH are distances,IF-dissimilarities, IF-divergenc es and
IF-dissimilitudes at the same time.

Hong &Kim dissimilarities Hong and Kim proposed two dissimilarity measures in
[89]. They aredefinedby:

DC (A, B)= 1
2n

ω∈Ω
(|µA (ω) − µB (ω)| + |νA (ω) − νB (ω)|) and

DL (A, B)= 1
4n

ω∈Ω

|SA (ω) − SB (ω)| +
ω∈Ω

|µA (ω) − µB (ω)| + |νA (ω) − νB (ω)| ,

where SA (ω ) =µ A (ω) − νA (ω) and SB (ω ) =µ B (ω) − νB (ω).

Recall that DL can be equivalently expressed by:

DL (A, B)=
1

4n ω∈Ω

|(µA (ω)− µB (ω ))− (νA (ω)− νB (ω ))|+ |µA (ω)− µB (ω)|+ |νA (ω)− νB (ω)|

for every A,B ∈ IF Ss(Ω) .

Inorder to prove that DC satisfies IF -Div.3, we shall use part b) of Lemma A.1:

|µA (ω) − µB (ω)| + |νA (ω) − νB (ω)|≥
| max(µA (ω ),µC (ω ))− max(µB (ω ),µC (ω ))|+ | min(νA (ω ),νC (ω ))− min(νB (ω ),νC (ω ))|.

Using this fact, IF-Div.3 trivially follow s, and IF-Div.4 can b e similarly proved.

Let us see that DL is alsoanIF-divergence. For this, it suffic es to take into account
that, from Lemma A.3, for every ω ∈ Ω it holds that:

|µA (ω) − µB (ω) − νA (ω ) +νB (ω)| + |µA (ω) − µB (ω)| +ν A (ω) − νB (ω)|
≥| max(µA (ω ),µC (ω ))− max(µB (ω ),µC (ω ))
− min(νA (ω ),νC (ω )) + min(νB (ω ),νC (ω ))
+ | max(µA (ω ),µC (ω ))− max(µB (ω ),µC (ω ))|
+ | min(νA (ω ),νC (ω ))− min(νB (ω ),νC (ω ))|.
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By taking the sum on Ω on every part of th e inequality, and multip lying each term by
1

4n , we obtain that:
D L (A, B) ≥ DL (A ∪ C,B ∪ C).

Thus, DL satisfies axiom IF-Div.4, and there fore also IF-Div.3 sinceDL satisfies theprop-
erty IF-Div.5. We conclude that both DC and DL areIF-dissimilarities, IF-divergences
and IF-dissimilitude s.

Li et al. dissimilarity Another dissimilarity measure for IF-sets was prop osed by Li
et al. ([113]):

DO (A, B)=
1√
2n ω∈Ω

(µA (ω) − µB (ω ))2 +(ν A (ω) − νB (ω ))2
1
2

.

This dissimilarity also satisfies IF-Div. 5, sinceDO (A c,B c) =D O (A, B) . Then, by Prop o-
sition 5.23, in order to prove that DO isanIF-divergence itisenoughtoprovethatit
satisfies IF-Div.4. Letus consider A , B and C three IF-sets. Bythe secondpart of
Lemma A.1 in App endix A, we know that:

| max(µA (ω ),µC (ω ))− max(µB (ω ),µC (ω ))| ≤| µA (ω) − µB (ω)| and
| min(νA (ω ),νC (ω ))− min(νB (ω ),νC (ω ))| ≤| νA (ω) − νB (ω)|,

or, equivalently,

|µA ∪C (ω) − µB ∪C (ω)| ≤| µA (ω) − µB (ω)| and
|νA ∪C (ω) − νB ∪C (ω)| ≤| νA (ω) − νB (ω)|.

Then it holdsthat:

|µA ∪C (ω) − µB ∪C (ω)|2 + |νA ∪C (ω) − νB ∪C (ω)|2

≤| µA (ω) − µB (ω)|2 + |νA (ω) − νB (ω)|2,

whence

DO (A ∪ C,B ∪ C)= 1√
2n

ω∈Ω

|µA ∪C (ω) − µB ∪C (ω)|2 + |νA ∪C (ω) − νB ∪C (ω)|2
1
2

DO (A ∪ C,B ∪ C) ≤ 1√
2n

ω∈Ω

|µA (ω) − µB (ω)|2 + |νA (ω) − νB (ω)|2
1
2

=D O (A, B ).

Thus, DO satisfies axiom IF-Div.4 and therefore it is an IF-Divergence , and in particular
an IF-dissimilitude.
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Mitchell dissimilarity Mitchell ([138]) proposed a dissimilarity defined by:

DHB (A, B)=
1

2 p
√

n
ω∈Ω

|µA (ω) − µB (ω)|p
1
p +

ω∈Ω

|νA (ω) − νB (ω)|p
1
p ,

for some p ≥ 1. This dissimilarityobviously satisfies IF-Div.5. Thus, inorder toprove
that DHB isanIF-divergenceit isenoughtoprove IF-Div.4, sinceIF-Diss.1andIF-Diss.2
are satisfied for everydissimilarity. Consider A , B and C. Applying again thesecond
part of Lemma A.1 from App endix A we deduce that:

|µA ∪C (ω) − µB ∪C (ω)| ≤| µA (ω) − µB (ω)| and
|νA ∪C (ω) − νB∪C (ω)| ≤| νA (ω) − νB (ω)|.

Moreover, the inequalities holds if we rais e every term to the p ower ofp, whence

DHB (A, B)=
1

2 p
√

n
ω∈Ω

|µA ∪C (ω) − µB ∪C (ω)|p
1
p +

ω∈Ω

|νA ∪C (ω) − νB ∪C (ω)|p
1
p

DHB (A, B) ≤ 1
2 p

√
n

ω∈Ω

|µA (ω) − µB (ω)|p
1
p +

ω∈Ω

|νA (ω) − νB (ω)|p
1
p

DHB (A, B) =D HB (A, B).

Thus, axiomIF-Div.4 holds, and therefore DHB isan IF-divergence, andin particulara
dissimilitude.

Liang & Shi dissimilaritiesLiangand Shi([114]) definedthe dissimilarities D p
e and

D p
h , for some p ≥ 1,by

D p
e(A, B)=

1
2 p

√
n

ω∈Ω

|µA (ω) − µB (ω)| + |νA (ω) − νB (ω)|
p

1
p

,

D p
h(A, B)=

1
p
√

3n ω∈Ω
(η1(ω ) +η2(ω ) +η3(ω ))p

1
p

,

where
η1(ω )= 1

2 (|µA (ω) − µB (ω)| + |νA (ω) − νB (ω)|).
η2(ω )= 1

2 |µA (ω) − νA (ω) − µB (ω ) +νB (ω)|.

η3(ω ) = max(lA (ω ),lB (ω ))− min(l A (ω ),lB (ω )).
lA (ω )= 1

2 (1 − νA (ω) − µA (ω )).
lB (ω )= 1

2 (1 − νB (ω) − µB (ω )).

Note that D p
h can b e express ed in a equivalent way as

D p
h (A, B)=

1
2

p
√

3n ω∈Ω
(|µA (ω) − µB (ω)| + |νA (ω) − νB (ω)|

D p
h (A, B)+ |(µA (ω) − µB (ω ))− (νA (ω) − νB (ω ))|

D p
h (A, B)+ |(µA (ω ) +νA (ω ))− (µB (ω ) +νB (ω ))|)p

1
p

.
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As i n the previou s examples, b othD p
e and D p

h satisfy IF-Div. 5, and therefore it suffices
to prove that both functions satisfy IF-Div.4 to prove that they are IF-divergences. Let
us first fo cus onD p

e , and let us consider A , B and C three IF-sets. Applyingagain the
second part of Lemma A.1 in App endix A we know that:

|µA ∪C (ω) − µB∪C (ω)| ≤| µA (ω) − µB (ω)| and
|νA ∪C (ω) − νB ∪C (ω)| ≤| νA (ω) − νB (ω)|.

If we sum both inequalities we obtain

|µA ∪C (ω) − µB ∪C (ω)| + |νA ∪C (ω) − νB ∪C (ω)| ≤| µA (ω) − µB (ω)| + |νA (ω) − νB (ω)|,

and since this inequality also holds when we raise every comp onent to the power ofp,

D p
e (A ∪ C,B ∪ C)=

1
2 p

√
n

ω∈Ω
(|µA ∪C (ω) − µB ∪C (ω)| + |νA ∪C (ω) − νB ∪C (ω)|)p

1
p

≤ 1
2 p

√
n

ω∈Ω
(|µA (ω) − µB (ω)| + |νA (ω) − νB (ω)|)p

1
p

=D
p
e (A, B ).

Thus, D p
e satisfiesIF-Div.4, and, takingintoaccountthatitsatisfiesIF-Div.5, alsoaxiom

IF-Div.3. Hence, it is a di ssimilarity, and consequently, a dissimilitude.

Consider nowD p
h . Using Lemma A.4 in App endix A, we know that, for everyω ∈ Ω,

|µA (ω) − µB (ω)| + |νA (ω) − νB (ω)|+
|µA (ω) − µB (ω) − νA (ω ) +νB (ω)|+
|µA (ω ) +νA (ω) − µB (ω) − νB (ω)|≥

|µA ∪C (ω) − µB ∪C (ω)| + |νA ∪C (ω) − νB ∪C (ω)|+
|µA ∪C (ω) − µB ∪C (ω) − νA ∪C (ω ) +νB ∪C (ω)|+
|µA ∪C (ω ) +νA ∪C (ω) − µB ∪C (ω) − νB ∪C (ω)|.

Making the su mmation over everyω in Ω in each part of the inequality and multiplying
by 1

2
p√

3n , we obtain that D p
h (A, B) ≥ D p

h (A ∪ C,B ∪ C) .

Thus, both D p
e and D p

h areIF-dissimilarities, IF-divergencesand IF-dissimilitudes.

Hung &Yang dissimilarities Hung and Yang proposed some new dissimilarities in
[92], two of which are based on the Hausdorff dissimilarity. As we shall see, itis easyto
check that both are also IF-divergences.These dissimilarities are de fined by:

D 1
HY (A, B) =d nH (A, B).

D 2
HY (A, B) =1 −

e− dnH (A,B) − e− 1

1 − e− 1 .

D 3
HY (A, B) =1 − 1 − dnH (A, B)

1 +d nH (A, B)
.
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We have already proven that the Hausdorff dis similarity is an IF-divergence that satisfies
the prop erty IF-Div.5. Consider the fun ctionsφ2 and φ3 defined by:

φ2(x ) =1 −
e− x − e− 1

1 − e− 1 and φ3(x ) =1 − 1 − x

1 +x
.

Thesefunctions are increasing and satisfyφ2(0) =φ 3(0) =0 . Applying Prop osition 5.27
we conclude that

dφ2
H (A, B) =φ 2(dnH (A, B)) =D 2

HY (A, B) and
dφ3

H (A, B) =φ 3(dnH (A, B)) =D 3
HY (A, B)

are IF-divergences that satisfy prop erty IF-Div.5. Thus, they are also IF-dissimilitu des.

On the other hand, Hung and Yang also prop osed the IF-dissimilarity given by

Dpk2 (A, B)=
1
2

max
ω∈Ω

(|µA (ω) − µB (ω)|)+ max
ω∈Ω

(|νA (ω) − νB (ω)|).

This measure satisfies IF-Div.5, whence, applying Prop osition 5.23, it is enough to prove
that, indeed, D pk2 satisfies IF-Div.4. Ifwe consider A , B and C threeIF-sets, weknow
from the second part of Lemma A.1 in App endix A that:

|µA (ω) − µB (ω)| ≥| max(µA (ω ),µC (ω ))− max(µB (ω ),µC (ω ))|.
|νA (ω) − νB (ω)| ≥| min(νA (ω ),νC (ω ))− min(νB (ω ),νC (ω ))|.

Thus,

max
ω∈Ω

|µA (ω) − µB (ω)|≥ max
ω∈Ω

| max(µA (ω ),µC (ω ))− max(µB (ω ),µC (ω ))|.

max
ω∈Ω

|νA (ω) − νB (ω)|≥ max
ω∈Ω

| min(νA (ω ),νC (ω ))− min(νB (ω ),νC (ω ))|.

Then, Dpk2 (A, B) ≥ Dpk2 (A ∪ C,B ∪ C) . Weconclude that D pk2 is another exam ple of
IF-dissimilarity that isalsoan IF-divergence and IF-dissimilitude.

Dissimilarities that are not IF-divergences

Let us now provide some examp les of dissimilarities,very frequently used in th e litera-
ture, that are not IF-divergen ces. Weshall alsogive some examplesshowingthat these
comparison measures are, in some cases,counterintuitive.

Euclidean and normalizedEuclidean distanceTogether with the H am ming and
Hausdorff distances, one of the most imp ortant comparison measures is the Euclidean
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distance (seefor example.nThis distance is used to define a dissimilarity between IF-sets
and its normalizationasfollows ([85]):

qIFS (A, B)=
1
2 ω∈Ω

(µA (ω) − µB (ω ))2 +(ν A (ω) − νB (ω ))2 +(π A (ω) − πB (ω ))2
1
2
.

qnIFS (A, B)= 1
n qIFS (A, B).

These dissimilarities fu lfill axiom IF-Div.5, since πA (ω ) =π A c (ω) and πB (ω ) =π B c (ω)
for every A,B ∈ IF Ss(Ω) . However, they are not IF-divergenc es, sincethey do not
satisfy axioms IF-Div.3nor IF-Div.4. To seea counterexample, consider Ω= { ω} and
the follow ing IF-sets:

A= { (ω , 0 .12, 0.68)} , B= { (ω , 0.29, 0.59)} , C= { (ω , 0.11, 0.36)} .

The IF-sets A ∪ C and B ∪ C aregiven by:
A ∪ C= { (ω , 0.12, 0.36)} and B ∪ C= { (ω , 0.29, 0.36)} .

It holds that qIFS (A ∪ C,B ∪ C) >q IFS (A, B) :

qIFS (A ∪ C,B ∪ C)= 1
2 (0 .172 +0 + 0.17 2)

0.5
= 0.17.

qIFS (A, B)= 1
2 (0 .172 + 0.092 + 0 .082)

0.5
=0.1473.

Moreove r, sinceqIFS do es not satisfy IF-Div.4, axiom IF-Div.3 cannot hold either b ecause
they are equivalent under IF-Div.5. Therefore, qIFS is neither an IF-divergence nora
dissimilitude. The sameexample shows that qnIFS is notan IF-divergence, since for
n =1 we have that qIFS =q nIFS .

Liang &Shi dissimilarity Wehaveseen previously someIF-dissimilarities pro-
posed by Liang and Shi that are alsoIF-divergences. They also prop osed another IF-
dissimilarity measure,that is defined by:

D p
s (A, B)=

1
p
√

n
ω∈Ω

(ϕ s1(ω ) +ϕ s2(ω ))p
1
p

,

where p ≥ 1 and
ϕs1(ω )= 1

2 |mA1 (ω) − mB1 (ω)|.

ϕs2(ω )= 1
2 |mA2 (ω) − mB2 (ω)|.

mA1 (ω )= 1
2 (µA (ω ) +mA (ω )).

mA2 (ω )= 1
2 (mA (ω ) +1 − νA (ω )).

mB1 (ω )= 1
2 (µB (ω ) +m B (ω )).

mB2 (ω )= 1
2 (mB (ω ) +1 − νB (ω )).

mA (ω )= 1
2 (µA (ω ) +1 − νA (ω )).

mB (ω )= 1
2 (µB (ω ) +1 − νB (ω )).
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Note that D p
s can also be expressed by:

D p
s (A, B)=

1
p
√

n
ω∈Ω

1
8

(|3(µA (ω) − µB (ω ))− (νA (ω) − νB (ω ))|

+ |(µA (ω) − µB (ω ))− 3(νA (ω) − νB (ω ))|)
1
p

.

Thus, thisdissimilaritysatisfies axiomIF-Div.5. However, neitherIF-Div.3norIF-Div.4
are satisfied. To see this, consi derΩ= { ω} and the IF-sets

A= { (ω , 0.25, 0.25)} and B= { (ω , 0.6, 0.35)} .

For the se IF-sets it holds that D p
s (A, B) = 0.125 . Furthermore, if we consider the IF-set

C defined by:
C= { ( ω , 0 .2, 0 .2)} ,

it holds that
A ∪ C= { (ω , 0.25, 0.2)} and B ∪ C= { (ω , 0.6, 0.2)} ,

whence,
D p

s (A ∪ C,B ∪ C ) = 0. 175 > 0.125 = D ( A, B ).

Consequently,D p
s isneither anIF-divergence, noranIF-dissimilitude.

Chen dissimilarity Chen ([36, 37]) defined an IF-dissimilarity measure by:

DC (A, B)=
1

2n ω∈Ω

|SA (ω) − SB (ω)|,

where SA (ω ) =µ A (ω) − νA (ω) and SB (ω ) =µ B (ω) − νB (ω).

This diss imilarity also satisfies axiom IF-Div.5, b ecause:

DC (A c,B c)= 1
2n

ω∈Ω

|SA c (ω) − SB c (ω)|

= 1
2n

ω∈Ω

|µA (ω) − µB (ω) − νA (ω ) +νB (ω)|

= 1
2n

ω∈Ω

|SA (ω) − SB (ω)| = D (A, B ).

By Prop osition 5.23 axioms IF-Div.3 and IF-Div.4 are equivalent. Letussee anexample
where axiom IF-Div.4 isviolated. Cons iderΩ= { ω} and the IF-sets:

A= { (ω , 0.25, 0.75)} and B= { (ω , 0, 0.5)} .

It holds that DC (A, B) =0 . If weconsider C= { (ω , 0.2, 0.6)} ,it holds that:

A ∪ C= { ω , 0.25, 0 .6} and B ∪ C= { ω , 0 .2, 0.5} ,
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whence
DC (A ∪ C,B ∪ C) = 0.025 > 0 =D C (A, B).

Thus, DC isneither anIF-divergence noradissimilitude.

In [89], Hong provided an exam ple that showed that this IF-dissimilarity is a coun-
terintuitive measureofcomparison offuzzy sets. Themainreason isthat:

µA (ω) − νA (ω ) =µ B (ω) − νB (ω) ∀ω ∈ Ω ⇒ DC (A, B) = 0.

Infact, if weconsider theIF-sets A and B defined by:

A= { ( ω , 0, 0)| ω ∈ Ω} and B= { ( ω , 0.5, 0.5)| ω ∈ Ω} ;

we obtain DC (A, B) =0 . However, these IF-sets do not seem to b e ve ry similar.

Dengfenf& Chuntian dissimilarity Dengfenf and Chuntian ([111]) prop osed the
following IF -dis similarity:

DDC (A, B)=
1

p
√

n
ω∈Ω

|1
2

(µA (ω) − µB (ω) − νA (ω ) +νB (ω ))|p ,

for some p ≥ 1. Again, itobviously holdsthat D(A c,B c) = D(A, B) , that is, DDC

satisfies IF-Div.5, and therefore, by Prop osition 5.23, axioms IF-Div.3 and IF-Div.4 are
equivalent. Furthermore, wh enp=1 , DDC b ecomes Chen dissim ilarity multiplied by
aconstant. Thus, inorderto obtainacounterexample, it suffices to consider th e same
than in thepreviousparagraph.

Hung &Yang dissimilarities Previously wehave seensome examples of IF-dissi-
milarities prop osed by Hung and Yang that are also IF-divergences. Herewe givesome
examples of IF-dissimilarities prop osed by them which are not IF-divergences.Th ey are
given by:

Dω1(A, B) =1 − 1
n

ω∈Ω

min(µ A (ω ),µB (ω )) + min(νA (ω ),νB (ω ))
max(µA (ω ),µB (ω )) + max(νA (ω ),νB (ω ))

.

D pk1 (A, B) =1 − ω∈Ω
min(µ A (ω ),µB (ω )) + min(νA (ω ),νB (ω ))

ω∈Ω
max(µA (ω ),µB (ω )) + max(νA (ω ),νB (ω ))

.

D pk3 (A, B)=
ω∈Ω

|µA (ω) − µB (ω)| + |νA (ω) − νB (ω)|

ω∈Ω

|µA (ω ) +µB (ω)| + |νA (ω ) +νB (ω)|
.
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These dissimilarities satisfy axiom IF-Div.5, and therefore, using Prop osition 5.23, b oth
axioms IF-Div.3 and IF-Div.4 b ec ome equivalent.However, none ofthem satisfiesthese
axioms. Let usgiveacounterexamplefor Dω1: consider anuniverse Ω= { ω} and the
IF-sets:

A= { (ω , 0.75, 0.19)} and B= { (ω , 0.48, 0 .23)} .

For these IF-sets,Dω1( A, B ) = 0. 32. If wenowconsider theIF-set C= { (ω , 0.25, 0 .06)} ,
then A ∪ C and B ∪ C aregiven by:

A ∪ C= { (ω , 0.75, 0.06)} and B ∪ C= { (ω , 0.48, 0 .06)} .

Hence,
Dω1(A ∪ C,B ∪ C) ≥ 0. 333 > 0.32 = D (A, B ).

The same exampleshowsthat D pk1 do es not satisfy IF-Div.4, since for n= 1D pk1 and
Dω1 arethe samefunction.

Let us prove now that Dω3 do es not satisfy IF-Div.4 neither.Forthis, take Ω= { ω}

definethe following IF-sets:

A= { (ω , 0.24, 0.28)} , B= { (ω , 0.66, 0.29)} , C= { (ω , 0.02, 0.15)} .

Then, it holdsthat:

Dpk3 ( A, B ) = 0.29 < 0. 35 =Dpk3 (A ∪ C,B ∪ C).

Thus, noneof these IF-dissimilaritymeasures areIF-divergencesor IF-dissimilitudes.

In Table 5.1 we have summarizedthe results we have presented in this section.
There, we can see which axioms satisfy every one of the example s ofIF-dissimilarities
we have studied. We canremarkthat all these examples satisfy the prop erty IF-Div.5,
and then IF-Div.3 and IF-Div.4 areequivalent. Recall that all the measures we have
studied satisfy prop erty IF-Div.5, and then IF-divergences and IF-dissimilitudes become
equivalent.

5.1.4 Local IF-divergences

In this section we are going to study a sp ecial typ e of IF-divergences called the lo cal
IF-divergences.They are an imp ortant family of IF-divergences because of the interesting
prop erties they satisfy.

Let us consider auniverse Ω= { ω1, . . . ,ωn } and an IF-divergence D IFS defined on
I F Ss(Ω)× IF Ss(Ω) . FromIF-Div.4, weknowthat D(A ∪C,B ∪C) ≤ D(A, B) for every
C ∈ IF Ss(Ω) . In particular,given C= { ωi } , wecanexpress itequivalently by

C= { (ωi , 1, 0) , (ωj , 0, 1)| j =i } .
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Name Notation IF-Diss.1&2 IF-Div.3&4 IF-Div.5 IF-diss IF-div

Hamming l IFS OK OK OK Yes Yes
Normalized
Hamming

l nIFS OK OK OK Yes Yes

Hausdorff dH OK OK OK Yes Yes
Normalized
Hausdorff

dnH OK OK OK Yes Yes

Normalized
Eucliden

qIFS OK FAIL OK Yes No

Hong and
Kim (I)

D C OK OK OK Yes Yes

Hong and
Kim (I I)

D L OK OK OK Yes Yes

Li et al. D O OK OK OK Yes Yes

Mitchell D HB OK OK OK Yes Yes
Liang and

Shi (I)
D p

e OK OK OK Yes Yes

Liang and
Shi (I I)

D p
h OK OK OK Yes Yes

Liang and
Shi (I I I)

D p
s OK FAIL OK Yes No

Chen D C OK FAIL OK Yes No
Dengfeng

and Chuntian
D DC OK FAIL OK Yes No

Hung and
Yang (I)

D 1
HY OK OK OK Yes Yes

Hung and
Yang (I I)

D 2
HY OK OK OK Yes Yes

Hung and
Yang (I I I)

D 3
HY OK OK OK Yes Yes

Hung and
Yang (IV)

D ω1 OK FAIL OK Yes No

Hung and
Yang (V)

D pk1 OK FAIL OK Yes No

Hung and
Yang (VI)

D pk2 OK OK OK Yes Yes

Hung and
Yang (VI I I)

D pk3 OK FAIL OK Yes No

Table 5.1: Behaviour of well-know n dissimilarities and IF-divergences.
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Then, the IF-sets A ∪{ ωi } and B ∪{ ωi } are given by:

A ∪{ ωi } = { (ωi , 1, 0), (ωj ,µ A (ωj ),ν A (ωj )) | j =i } .
B ∪{ ωi } = { (ωi , 1, 0) , (ωj ,µ B (ωj ),ν B (ωj )) | j =i } .

Applying axiom IF-Div.4 to these IF-sets, we obtain the following inequality:

D IFS (A ∪{ ωi } ,B ∪{ ωi } ) =D IFS (A, B).

Hence, the only differenc e b etweenD IFS (A ∪ C,B ∪ C) and D IFS (A, B) is on the i-th
element. However, such a function may not exist. When it do es, the IF-divergence will
b e called local.

Definition 5.28Let D IFS be anIF-divergence. It is cal led local (or it is said to sat isfy
the local property) when for every A,B ∈ IF Ss(Ω) and every ω ∈ Ω it holds that:

D IFS (A, B) − D IFS (A ∪{ ω} ,B ∪{ ω} ) =h IFS (µA (ω ),νA (ω ),µB (ω ),νB (ω )). (5.3)

In order to characterize lo cal IF-divergences we are going to see the next Theorem.

Theorem 5.29Amap D IFS : IF Ss(Ω) × IF Ss(Ω) → R on afinite universe Ω=
{ ω1, . . . ,ωn } is a localIF-divergenceif and only ifthereisa function hIFS : T 2 → R such
that for every A,B ∈ IF Ss(Ω) :

D IFS (A, B)=
n

i=1

hIFS (µA (ωi ),ν A (ωi ),µ B (ωi ),ν B (ωi )), (5.4)

where T denotes theset T = { (t, z) ∈ [0 , 1]2 | t+z ≤ 1} and hIFS fulfil ls the following
properties:

IF-loc.1 hIFS (x, y, x, y) =0 for every (x, y) ∈T .
IF-loc.2 hIFS (x 1,x 2,y 1,y 2) =h IFS (y1,y 2,x 1,x 2) for every

(x 1,x 2), (y1,y 2) ∈T .
IF-loc.3 If (x 1,x 2), (y1,y 2) ∈T , z ∈ [0 , 1]and x1 ≤ z ≤ y1, it holds that:

hIFS (x1,x 2,y 1,y 2) ≥ hIFS (x1,x 2, z,y2).
Moreover, if (x 2, z), (y2, z) ∈T it holdsthat

hIFS (x1,x 2,y 1,y 2) ≥ hIFS (z ,x2,y 1,y 2).
IF-loc.4 If (x 1,x 2), (y1,y 2) ∈T , z ∈ [0 , 1]and x2 ≤ z ≤ y2, it holds that:

hIFS (x1,x 2,y 1,y 2) ≥ hIFS (x1,x 2,y 1, z).
Moreover, if (x 1, z), (y1, z) ∈T it holdsthat:
hIFS (x 1,x 2,y 1,y 2) ≥ hIFS (x 1, z,y1,y 2).

IF-loc.5 If (x 1,x 2), (y1,y 2) ∈T and z ∈ [0 , 1], then:
hIFS (z ,x2, z,y2) ≤ hIFS (x 1,x 2,y 1,y 2) if (x2, z) , (y2, z) ∈T and
hIFS (x 1, z,y1, z) ≤ hIFS (x 1,x 2,y 1,y 2) if (x1, z) , (y1, z) ∈T .
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Pro of: Assume firstof all that D IFS is a lo cal IF-divergence and let us prove that
D IFS (A, B) can b e expresse d as in Equation (5.4) for every A,B ∈ IF Ss(Ω) , where
hIFS satisfies the properties IF-lo c.1 to IF-lo c.6. In orderto prove that, we will apply
recursively Equation (5.3):

D IFS (A, B) =D IFS (A ∪{ ω1} ,B ∪{ ω1} )
+h IFS (µA (ω1),ν A (ω1),µ B (ω1),ν B (ω1))
=D IFS (A ∪{ ω1} ∪{ ω2} ,B ∪{ ω1} ∪{ ω2} )

+
2

i=1

hIFS (µA (ωi ),ν A (ωi ),µ B (ωi ),ν B (ωi ))

= ...

=D IFS (Ω , Ω)+
n

i=1

hIFS (µA (ωi ),ν A (ωi ),µ B (ωi ),ν B (ωi )).

Moreover, fromaxiomIF-Diss.1weknow that D IFS (Ω , Ω) =0 , and the re foreD IFS can
b e expressed by:

D IFS (A, B)=
n

i=1

hIFS (µA (ωi ),ν A (ωi ),µ B (ωi ),ν B (ωi )).

This shows that D IFS can be expressed as in Equation (5.4).

Let us prove next that hIFS fulfills prop erties IF-lo c.1 to IF-lo c.5:

IF-lo c.1: Takex,y ∈T , and let us prove that hIFS (x, y, x, y) =0 . Define theIF-set
A by µA (ωi ) =x and νA (ωi ) =y , for every i = 1, .. .,n . Note that A is in fact an
IF-set since µA (ωi ) +ν A (ωi ) = x+y ≤ 1 for every i = 1, .. .,n . Applying IF-diss.1,
D IFS (A, A) =0 , and therefore, sinceD IFS (A, A) can be expressed as in Equation (5.4),
it holds that:

0=D IFS (A, A)=
n

i=1

hIFS (µA (ωi ),ν A (ωi ),µ A (ωi ),ν A (ωi ))

=
n

i=1

hIFS (x, y, x, y) =n · hIFS (x, y, x, y).

Then, it must holdthat hIFS (x, y, x, y) =0 .

IF-lo c.2: Let (x 1,x 2), (y1,y 2) be two elements in T . Consi der the IF-sets A and
B defined by: µA (ωi ) =x 1, νA (ωi ) =x 2, µB (ωi ) =y 1 and νB (ωi ) =y 2. Using axiom
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IF-diss.2 and Equation(5.4) we obtain the following:

n · hIFS (x 1,x 2,y 1,y 2)=
n

i=1

hIFS (µA (ωi ),ν A (ωi ),µ B (ωi ),ν B (ωi ))

=D IFS (A, B) =D IFS (B , A)

=
n

i=1

hIFS (µB (ωi ),ν B (ωi ),µ A (ωi ),ν A (ωi ))

=nh IFS (y1,y 2,x 1,x 2).

Thus, hIFS (x 1,x 2,y 1,y 2) =h IFS (y1,y 2,x 1,x 2).

IF-lo c.3: Consider (x 1,x 2), (y1,y 2) ∈T and z ∈ [0 , 1]such that x1 ≤ z ≤ y1, and
let us definethe IF-sets A and B by: µA (ωi ) =x 1, νA (ωi ) =x 2, µB (ωi ) =y 1 and
νB (ωi ) =y 2, for every i = 1, .. .,n . We have to consider two cases:

• Onone handweare goingtoprovethat

hIFS (x 1,x 2,y 1,y 2) ≥ hIFS (x 1,x 2, z,y2).

To see this, consider the IF-set C defined by µC (ωi ) =z and νC (ωi ) =0 for
i = 1, .. .,n . Then theIF-sets A ∩ C and B ∩ C aregiven by:

A ∩ C =A.
B ∩ C= { (ωi ,µ C (ωi ),ν B (ωi )) | i = 1, .. .,n } .

ByaxiomIF-Div.3, we see that D IFS (A, B) ≥ D IFS (A ∩C,B ∩C) =D IFS (A,B ∩C) ,
and then Equation (5.4) implies th at:

n · hIFS (x 1,x 2,y 1,y 2) =D IFS (A, B) ≥ D IFS (A ∩ C,B ∩ C)
=n · hIFS (x 1,x 2, z,y2).

Hence,hIFS (x 1,x 2,y 1,y 2) ≥ hIFS (x 1,x 2, z,y2).
• Letus provenowthat,when (x 2, z), (y2, z) ∈T , it holds that

hIFS (x 1,x 2,y 1,y 2) ≥ hIFS (z ,x2,y 1,y 2). Con sider the IF-setC defined byµC (ωi ) =z
and νC (ωi ) = max(x 2,y 2), for i = 1, .. .,n . Note that C is an IF-set because
µC (ωi ) +ν C (ωi ) = max(x 2 + z,y 2 +z) ≤ 1,for i = 1, ... ,n . Using axiom IF-Div.4,
we deduce that D IFS (A, B) ≥ D IFS (A ∪ C,B ∪ C) . Moreover, the IF-sets A ∪ C
and B ∪ C aregiven by:

A ∪ C= { (ωi ,µ C (ωi ),ν A (ωi ) | i = 1, .. .,n } .
B ∪ C =B.

Then, D IFS (A, B) ≥ D IFS (A ∪ C, B) . This, together with Equation (5.4), implies
that:

n · hIFS (x1,x 2,y 1,y 2) =D IFS (A, B) ≥ D IFS (A ∪ C,B ∪ C) =n · hIFS (z ,x2,y 1,y 2).

Hence,hIFS (x 1,x 2,y 1,y 2) ≥ hIFS (z ,x2,y 1,y 2).
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IF-lo c.4: The proof is similar to that of IF-lo c.3. Consider (x 1,x 2) and (y1,y 2) in
T , and let z be a point in [0, 1]such that x2 ≤ z ≤ y2. Define theIF-sets A and B by:

A= { (ω ,x1,x 2) | ω ∈ Ω} and B= { ( ω ,y1,y 2) | ω ∈ Ω} .

If we consider the IF -s etC given by:

C= { (ω , 0, z)| ω ∈ Ω} ,

then, the IF-sets A ∪ C and B ∪ C aregiven by:

A ∪ C =A and B ∪ C= { ( ω ,y1, z)} .

Applying axiomIF-Div.4 wededuce that

D IFS (A, B) ≥ D IFS (A ∪ C,B ∪ C) =D IFS (A,B ∪ C),

and using now Equation(5.4), weobtain:

n · hIFS (x 1,x 2,y 1,y 2) =D IFS (A, B) ≥ D IFS (A ∪ C,B ∪ C) =n · hIFS (x 1,x 2,y 1, z).

Moreover, if (x 1, z), (y1, z) ∈T , we consider the set

C= { ( ω , max(x1,y 1), z) | ω ∈ Ω} .

Since(x 1, z), (y1, z) ∈T , C isan IF-set. Moreover, A ∩ C and B ∩ C aregiven by:

A ∩ C= { ( ω ,x1, z) | ω ∈ Ω} and B ∩ C =B.

Using axiom IF-D iv.3, we deduce that

D IFS (A, B) ≥ D IFS (A ∩ C ,B ∩ C )=D IFS (A ∩ C , B),

and applying Equation (5.4),

n · hIFS (x 1,x 2,y 1,y 2) =D IFS (A, B) ≥ D IFS (A ∩ C ,B ∩ C )=n · hIFS (x 1, z,y1,y 2).

Hence,hIFS (x 1,x 2,y 1,y 2) ≥ hIFS (x 1, z,y1,y 2).

IF-lo c.5: Let us consider(x 1,x 2), (y1,y 2) ∈T and z ∈ [0 , 1].

If we ass ume that(x 2, z), (y2, z) ∈T , then max(x2,y 2) +z ≤ 1; we considerthe
IF-sets A , B , C and D given by:

A= { (ω ,x1,x 2) | ω ∈ Ω} , B= { ( ω ,y1,y 2) | ω ∈ Ω} .
C= { ( ω , z ,x2) | ω ∈ Ω} , D= { (ω , z ,y2) | ω ∈ Ω} .

From Prop osition 5.25, weknow that D IFS (A, B) ≥ D IFS (C , D), and applyingEqua-
tion (5.4) we deduce that

n · hIFS (x 1,x 2,y 1,y 2) =D IFS (A, B) ≥ D IFS (C , D ) =n · hIFS (z ,x2, z,y2).
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Thus, hIFS (x 1,x 2,y 1,y 2) ≥ hIFS (z ,x2, z,y2).

If we assume now that (x1, z), (y1, z) ∈T , itholds that max(x1,y 1) +z ≤ 1; we
consider the IF-sets:

A= { ( ω ,x1,x 2) | ω ∈ Ω} , B= { ( ω ,y1,y 2) | ω ∈ Ω} .
C= { ( ω ,x1, z) | ω ∈ Ω} , D= { (ω ,y1, z) | ω ∈ Ω} .

Applying Corollary 5.26, D IFS (A, B) ≥ D IFS (C , D). Using Equation(5.4),we obtain:

n · hIFS (x 1,x 2,y 1,y 2) =D IFS (A, B) ≥ D IFS (C , D ) =n · hIFS (x 1, z,y1, z).

Thus, hIFS (x 1,x 2,y 1,y 2) ≥ hIFS (x 1, z,y1, z).

Summarizing, if D IFS is a lo cal IF-divergence, thenD IFS (A, B) can b e expre ssed as
in Equation (5.4) wherethefunction hIFS satisfies IF-lo c.1 to IF-loc.5.

Let usprove the converse: that if afunction D IFS is defined byEquation (5.4),
where hIFS fulfills prop erties IF-loc.1 to IF-lo c.5, then D IFS is a lo cal IF-divergence.

Firstof all, let usprovethat D IFS isanIF-divergence, i.e., thatitsatisfiesaxioms
IF-Diss.1, IF-Diss.2, IF-Div.3 andIF-Div.4.

IF-Diss.1: Let A be an IF-set. Then, D IFS (A, A) =0 because

D IFS (A, A)=
n

i=1

hIFS (µA (ωi ),ν A (ωi ),µ A (ωi ),ν A (ωi )) = 0,

since IF-lo c.1 implies that hIFS (x, y, x, y) =0 for every (x, y) ∈T , and in particular
(µA (ωi ),ν A (ωi )) ∈T .

IF-Diss.2: Let A,B be IF-sets, an d let us prove that D IFS (A, B) =D IFS (B , A).
By IF-lo c.2, hIFS (x 1,x 2,y 1,y 2) =h IFS (y1,y 2,x 1,x 2) for every (x 1,x 2), (y1,y 2) ∈T , as
(µA (ωi ),ν A (ωi )), (µB (ωi ),ν B (ωi )) ∈T , whence

D IFS (A, B) =D IFS (B , A).

IF-Div.3 &IF-Div.4: Consider three IF-sets A,B and C, and let us show that
D IFS (A, B) ≥ max(D IFS (A ∪ C,B ∪ C) ,D IFS (A ∩ C,B ∩ C)) . Consider the following
partition of Ω:

P1 = { ω ∈ Ω | max(µA (ω ),µB (ω ))≤ µC (ω)} .
P2 = { ω ∈ Ω | µA (ω) ≤ µC (ω ) <µ B (ω)} .
P3 = { ω ∈ Ω | µB (ω) ≤ µC (ω ) <µ A (ω)} .
P4 = { ω ∈ Ω | µC (ω ) < min(µA (ω ),µB (ω ))} .
Q1 = { ω ∈ Ω | max(νA (ω ),νB (ω ))≤ νC (ω)} .
Q2 = { ω ∈ Ω | νA (ω) ≤ νC (ω ) <ν B (ω)} .
Q3 = { ω ∈ Ω | νB (ω) ≤ νC (ω ) <ν A (ω)} .
Q4 = { ω ∈ Ω | νC (ω ) < min(νA (ω ),νB (ω ))} .
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Thus, Ω=
4

i=1

4

j=1
(Pi ∩ Qj ). Weare goingtoprovethat, for every i,j ∈{ 1, . . . ,4} , if

ω ∈ Pi ∩ Qj then both:

hIFS (µA ∪C (ω ),νA ∪C (ω ),µB ∪C (ω ),νB ∪C ) and
hIFS (µA ∩C (ω ),νA ∩C (ω ),µB ∩C (ω ),νB ∩C )

are smaller than
hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω )).

1. ω ∈ P1 ∩ Q1; by hyp othesis, we have that:

max(µA (ω ),µB (ω ))≤ µC (ω) and max(νA (ω ),νB (ω ))≤ νC (ω ),

whence
µA ∪C (ω ) =µ C (ω ), νA ∪C (ω ) =ν A (ω ),
µA ∩C (ω ) =µ A (ω ), νA ∩C (ω ) =ν C (ω ),
µB ∪C (ω ) =µ C (ω ), νB∪C (ω ) =ν B (ω ),
µB ∩C (ω ) =µ B (ω ), νB∩C (ω ) =ν C (ω ).

Moreover, property IF-lo c.5 can be applied since

max(νA (ω ),νB (ω )) +µ C (ω) ≤ νC (ω ) +µC (ω) ≤ 1,

whence(νA (ω ),µC (ω )), (νB (ω ),µC (ω ))∈T and therefore

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
≥ hIFS (µC (ω ),νA (ω ),µC (ω ),νB (ω ))
=h IFS (µA ∪C (ω ),νA ∪C (ω ),µB ∪C (ω ),νB ∪C ( ω )).

Similarly,
hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))

≥ hIFS (µA (ω ),νC (ω ),µB (ω ),νC (ω ))
=h IFS (µA ∩C (ω ),νA ∩C (ω ),µB ∩C (ω ),νB ∩C ( ω )).

Let us remark that, in the rest of the proof, axioms IF-lo c.3, IF-loc.4 and IF-lo c.5
are applicable b ecause the previous hyp otheses are satisfied.

2. ω ∈ P1 ∩ Q2; by hyp othesis it holds that:

µA (ω ),µB (ω) ≤ µC (ω) and νA (ω) ≤ νC (ω ) <ν B (ω ),

whence
µA ∪C (ω ) =µ C (ω ), νA ∪C (ω ) =ν A (ω ),
µA ∩C (ω ) =µ A (ω ), νA ∩C (ω ) =ν C (ω ),
µB ∪C (ω ) =µ C (ω ), νB∪C (ω ) =ν C (ω ),
µB ∩C (ω ) =µ B (ω ), νB∩C (ω ) =ν B (ω ),
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As a consequence, by IF-loc.4 and IF-lo c.5:

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
≥ hIFS (µA (ω ),νA (ω ),µB (ω ),νC (ω ))
≥ hIFS (µC (ω ),νA (ω ),µC (ω ),νC (ω ))
=h IFS (µA ∪C (ω ),νA ∪C (ω ),µB ∪C (ω ),νB ∪C ( ω )).

Similarly, by IF-lo c.4:

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
≥ hIFS (µA (ω ),νC (ω ),µB (ω ),νB (ω ))
=h IFS (µA ∩C (ω ),νA ∩C (ω ),µB ∩C (ω ),νB ∩C (ω )).

3. ω ∈ P1 ∩ Q3; this case is immediate from case 2, if we exchange the roles ofA and
B .

4. ω ∈ P1 ∩ Q4; then we know that:

µA (ω ),µB (ω) ≤ µC (ω ), and νC (ω ) <ν A (ω ),νB (ω ).

Then, it holdsthat A ∪ C =B ∪ C =C , A ∩ C =A and B ∩ C =B , whence

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω )) =h IFS (µA ∩C (ω ),νA ∩C (ω ),µB ∩C (ω ),νB ∩C ( ω )).

Moreover,

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))≥ 0 =h IFS (µC (ω ),νC (ω ),µC (ω ),νC (ω ))
=h IFS (µA ∪C (ω ),νA ∪C (ω ),µB ∪C (ω ),νB ∪C (ω )).

5. ω ∈ P2 ∩ Q1; in that case we know that:

µA (ω) ≤ µC (ω ) <µ B (ω) and νA (ω ),νB (ω) ≤ νC (ω ),

whence
µA ∪C (ω ) =µ C (ω ), νA ∪C (ω ) =ν A (ω ),
µA ∩C (ω ) =µ A (ω ), νA ∩C (ω ) =ν C (ω ),
µB ∪C (ω ) =µ B (ω ), νB ∪C (ω ) =ν B (ω ),
µB ∩C (ω ) =µ C (ω ), νB ∩C (ω ) =ν C (ω ).

Thus, by IF-lo c.3,

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
≥ hIFS (µC (ω ),νA (ω ),µB (ω ),νB (ω ))
=h IFS (µA ∪C (ω ),νA ∪C (ω ),µB ∪C (ω ),νB ∪C (ω )).

Similarly, by IF-lo c.1 and IF-lo c.3,

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
≥ 0 =h IFS (µC (ω ),νC (ω ),µC (ω ),νC (ω ))
≥ hIFS (µA (ω ),νC (ω ),µC (ω ),νC (ω ))
=h IFS (µA ∩C (ω ),νA ∩C (ω ),µB ∩C (ω ),νB ∩C (ω )).
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6. ω ∈ P2 ∩ Q2; we know that:

µA (ω) ≤ µC (ω ) <µ B (ω) and νA (ω) ≤ νC (ω ) <ν B (ω ).

Then
µA ∪C (ω ) =µ C (ω ), νA ∪C (ω ) =ν A (ω ),
µA ∩C (ω ) =µ A (ω ), νA ∩C (ω ) =ν C (ω ),
µB ∪C (ω ) =µ B (ω ), νB∪C (ω ) =ν C (ω ),
µB ∩C (ω ) =µ C (ω ), νB∩C (ω ) =ν B (ω ),

and therefore, by IF-loc.3 and IF-lo c.4,

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
≥ hIFS (µA (ω ),νA (ω ),µB (ω ),νC (ω ))
≥ hIFS (µC (ω ),νA (ω ),µB (ω ),νC (ω ))
=h IFS (µA ∪C (ω ),νA ∪C (ω ),µB ∪C (ω ),νB ∪C (ω )).

As a consequence,

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
≥ hIFS (µA (ω ),νC (ω ),µB (ω ),νB (ω ))
≥ hIFS (µA (ω ),νC (ω ),µC (ω ),νB (ω ))
=h IFS (µA ∩C (ω ),νA ∩C (ω ),µB ∩C (ω ),νB ∩C (ω )).

7. ω ∈ P2 ∩ Q3; we know that:

µA (ω) ≤ µC (ω ) <µ B (ω) and νB (ω) ≤ νC (ω ) <ν A (ω ).

Thus,
µA ∪C (ω ) =µ C (ω ), νA ∪C (ω ) =ν C (ω ),
µA ∩C (ω ) =µ A (ω ), νA ∩C (ω ) =ν A (ω ),
µB ∪C (ω ) =µ B (ω ), νB∪C (ω ) =ν B (ω ),
µB ∩C (ω ) =µ C (ω ), νB∩C (ω ) =ν C (ω)

whence, applying IF-loc.3 and IF-lo c.4,

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
≥ hIFS (µA (ω ),νC (ω ),µB (ω ),νB (ω ))
≥ hIFS (µC (ω ),νC (ω ),µB (ω ),νB (ω ))
=h IFS (µA ∪C (ω ),νA ∪C (ω ),µB ∪C (ω ),νB ∪C (ω )),

and as aconsequence

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
≥ hIFS (µA (ω ),νA (ω ),µC (ω ),νB (ω ))
≥ hIFS (µA (ω ),νA (ω ),µC (ω ),νC (ω ))
=h IFS (µA ∩C (ω ),νA ∩C (ω ),µB ∩C (ω ),νB ∩C (ω )).
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8. ω ∈ P2 ∩ Q4; it holds that:

µA (ω) ≤ µC (ω ) <µ B (ω) and νC (ω) ≤ νA (ω ),νB (ω ),

whence
µA ∪C (ω ) =µ C (ω ), νA ∪C (ω ) =ν C (ω ),
µA ∩C (ω ) =µ A (ω ), νA ∩C (ω ) =ν A (ω ),
µB ∪C (ω ) =µ B (ω ), νB ∪C (ω ) =ν C (ω ),
µB ∩C (ω ) =µ C (ω ), νB ∩C (ω ) =ν B (ω ).

and thus, by IF-lo c.3,

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
0 =h IFS (µC (ω ),νC (ω ),µC (ω ),νC (ω ))
≥ hIFS (µC (ω ),νC (ω ),µB (ω ),νC (ω ))
=h IFS (µA ∪C (ω ),νA ∪C (ω ),µB ∪C (ω ),νB ∪C (ω )).

In addition,

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
≥ hIFS (µA (ω ),νA (ω ),µC (ω ),νB (ω ))
=h IFS (µA ∩C (ω ),νA ∩C (ω ),µB ∩C (ω ),νB ∩C (ω )).

9. ω ∈ P3 ∩ Qi ; this case is immediate if we exchange the roles ofA and B and apply
the case whenω ∈ P2 ∩ Qi .

10. ω ∈ P4 ∩ Q1; in such case

µC (ω ) <µ A (ω ),µB (ω) and νA (ω ),νB (ω) ≤ νC (ω ).

We have that:
µA ∪C (ω ) =µ A (ω ), νA ∪C (ω ) =ν A (ω ),
µA ∩C (ω ) =µ C (ω ), νA ∩C (ω ) =ν C (ω ),
µB ∪C (ω ) =µ B (ω ), νB ∪C (ω ) =ν B (ω ),
µB ∩C (ω ) =µ C (ω ), νB ∩C (ω ) =ν C (ω ),

whence

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω )) =h IFS (µA ∪C (ω ),νA ∪C (ω ),µB ∪C (ω ),νB ∪C ( ω )),

and moreover, by IF-lo c.1,

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
=0 ≥ hIFS (µC (ω ),νC (ω ),µC (ω ),νC (ω ))
=h IFS (µA ∩C (ω ),νA ∩C (ω ),µB ∩C (ω ),νB ∩C (ω )).
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11. ω ∈ P4 ∩ Q2; in such case we know that

µC (ω ) <µ A (ω ),µB (ω) and νA (ω) ≤ νC (ω ) <ν B (ω ).

It holds that
µA ∪C (ω ) =µ A (ω ), νA ∪C (ω ) =ν A (ω ),
µA ∩C (ω ) =µ C (ω ), νA ∩C (ω ) =ν C (ω ),
µB ∪C (ω ) =µ B (ω ), νB∪C (ω ) =ν C (ω ),
µB ∩C (ω ) =µ C (ω ), νB∩C (ω ) =ν B (ω ),

whence, applying IF-lo c.4,

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
≥ hIFS (µA (ω ),νA (ω ),µB (ω ),νC (ω ))
=h IFS (µA ∪C (ω ),νA ∪C (ω ),µB ∪C (ω ),νB ∪C (ω )).

Moreover, applying IF-lo c.1 and IF-loc.4,

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
=0 ≥ hIFS (µC (ω ),νC (ω ),µC (ω ),νC (ω ))
≥ hIFS (µC (ω ),νC (ω ),µC (ω ),νB (ω ))
=h IFS (µA ∩C (ω ),νA ∩C (ω ),µB ∩C (ω ),νB ∩C (ω )).

12. ω ∈ P4 ∩ Q3; this follows from the previous case by exchanging the roles ofA and
B .

13. ω ∈ P4 ∩ Q4; we know that

µC (ω ) <µ A (ω ),µB (ω) and νC (ω ) <ν A (ω ),νB (ω)

whence
µA ∪C (ω ) =µ A (ω ), νA ∪C (ω ) =ν C (ω ),
µA ∩C (ω ) =µ C (ω ), νA ∩C (ω ) =ν A (ω ),
µB ∪C (ω ) =µ B (ω ), νB∪C (ω ) =ν C (ω ),
µB ∩C (ω ) =µ C (ω ), νB∩C (ω ) =ν B (ω ),

and thus by IF-lo c.5

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))
≥ hIFS (µA (ω ),νC (ω ),µB (ω ),νC (ω ))
=h IFS (µA ∩C (ω ),νA ∩C (ω ),µB ∩C (ω ),νB ∩C (ω )).

Moreover:
hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))

≥ hIFS (µC (ω ),νA (ω ),µC (ω ),νB (ω ))
=h IFS (µA ∩C (ω ),νA ∩C (ω ),µB ∩C (ω ),νB ∩C (ω )).
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Hence, sinceΩ=
4

i=1

4

j=1

Pi ∩ Qj , we conclude that for all ω ∈ Ω it holds that:

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))≥
maxh IFS (µA ∪C (ω ),νA ∪C (ω ),µB ∪C (ω ),νB ∪C (ω )),
hIFS (µA ∩C (ω ),νA ∩C (ω ),µB ∩C (ω ),νB ∩C (ω )).

Thus, D IFS satisfies both IF-Div.3 and IF-Div.4, and therefore it is an IF-divergence. It
only remains to show that D IFS is lo cal.Butthisholdstrivially, takingintoaccountthat

D IFS (A, B) − D IFS (A ∪{ ωj } ,B ∪{ ωj } )

=
n

i=1

hIFS (µA (ωi ),ν A (ωi ),µ B (ωi ),ν B (ωi ))

−
i=j

hIFS (µA (ωi ),ν A (ωi ),µ B (ωi ),ν B (ωi )) − hIFS (1, 1, 0, 0)

=h IFS (µA (ωj ),ν A (ωj ),µ B (ωj ),ν B (ωj )).

We conclude that D IFS is a lo cal IF-divergence.

Properties of lo cal IF-divergences

In this section we are going to study some prop erties of lo cal IF-divergences. In some
cases, the lo cal prop erty will allows us to obtain interesting and useful prop erties.

We b egin by studying under which conditions a lo cal divergence satisfies IF-Div.5.

Prop osition 5.30Let D IFS be a local IF-divergence which associated functionhIFS . It
satisfies IF-Div.5if and only if for every

(x 1,x 2), (y1,y 2) ∈T = { (x, y) ∈ [0, 1]2 | x+y ≤ 1}

it holds that
hIFS (x 1,x 2,y 1,y 2) =h IFS (x 2,x 1,y 2,y 1).

Pro of: Assume that D IFS satisfiesaxiomIF-Div.5, i.e., thatforevery A,B ∈ IF Ss(Ω) ,
D IFS (A, B) =D IFS (A c,B c). Consider (x 1,x 2), (y1,y 2) ∈T , and defi ne the IF-setsA and
B by:

A= { (ω ,x1,x 2) | ω ∈ Ω} and B= { (ω ,y1,y 2) | ω ∈ Ω} .

By IF-Div.5,it holdsthat D IFS (A, B) =D IFS (A c,B c). Using Equation(5.4),

n · hIFS (x 1,x 2,y 1,y 2) =D IFS (A, B) =D IFS (A c,B c) =n · hIFS (x 2,x 1,y 2,y 1).

Thus, hIFS (x 1,x 2,y 1,y 2) =h IFS (x 2,x 1,y 2,y 1).
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Converse ly,assume that hIFS (x 1,x 2,y 1,y 2) =h IFS (x 2,x 1,y 2,y 1) for everytwo ele-
ments (x1,x 2), (y1,y 2) ∈T . Let A and B be two IF-sets. Then, forevery i = 1, .. . ,n it
holds that:

hIFS (µA (ωi ),ν A (ωi ),µ B (ωi ),ν B (ωi )) =h IFS (νA (ωi ),µ A (ωi ),ν B (ωi ),µ B (ωi ))

and therefore D IFS (A, B) =D IFS (A c,B c).

Next we give a le mma that shall b e useful later.

Lemma 5.31If D IFS is a local IF-divergence, then for every i = 1, .. .,n it holds that

D IFS (A ∪{ ωi } ,B ∪{ ωi } ) =D IFS (A ∩{ ωi }
c,B ∩{ ωi }

c).

Pro of: Considerthe IF-sets A ∩{ ωi } c and B ∩{ ωi } c. Note that

(A ∩{ ωi } c) ∪{ ωi } = (A ∪{ ωi } ) ∩ ({ ωi } c ∪{ ωi } ) =A ∪{ ωi } .
(B ∩{ ωi } c) ∪{ ωi } = (B ∪{ ωi } ) ∩ ({ ωi } c ∪{ ωi } ) =B ∪{ ωi } .

SinceD IFS is a lo cal IF-divergence,

D IFS A ∩{ ωi } c,B ∩{ ωi } c − D IFS (A ∩{ ωi } c) ∪{ ωi } , (B ∩{ ωi } c) ∪{ ωi }

=D IFS (A ∩{ ωi } c,B ∩{ ωi } c) − D IFS (A ∪{ ωi } ,B ∪{ ωi } )
=h IFS (µA ∩{ ωi } c (ωi ),ν A ∩{ ωi } c (ωi ),µ B ∩{ ωi } c (ωi ),ν B ∩{ ωi } c (ωi ))
=h IFS (0 , 1, 0, 1) = 0,

using that
µA ∩{ ωi } c (ωi ) = min(µ A (ωi ), 0) = 0,
νA ∩{ ωi } c (ωi ) = m ax(νA (ωi ), 1) = 1,
µB ∩{ ωi } c (ωi ) = min(µ B (ωi ), 0) = 0,
νB ∩{ ωi } c (ωi ) = max(µ B (ωi ), 1) = 1.

Using this lemma, we can establish the following prop osition.

Prop osition 5.32An IF-divergence D IFS is local if and only if there is afunction h
such that

D IFS (A, B) − D IFS (A ∩{ ωi }
c,B ∩{ ωi }

c) = h (µ A (ωi ),ν A (ωi ),µ B (ωi ),ν B (ωi ))

for every A,B ∈ IF Ss(Ω) .

Pro of: It is immediate from the previous lemma.

Let us give another characterization of lo cal IF-divergences.
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Prop osition 5.33An IF-divergence D IFS is local if and only if for every X ∈P (Ω) it
holds that:

D IFS (A, B) =D IFS (A ∩ X,B ∩ X) +D IFS (A ∩ X c,B ∩ X c),

for every A,B ∈ IF Ss(Ω) .

Pro of: Assume that D IFS is a lo cal IF-divergence, and let us considerA,B ∈ IF Ss(Ω)
and X ∈P (Ω).

SinceA= (A ∩ X) ∪ (A ∩ X c) and B =(B ∩ X) ∪ (B ∩ X c),it holds that

D IFS (A, B) =D IFS ((A ∩ X) ∪ (A ∩ X c), (B ∩ X) ∪ (B ∩ X c)).

Taking into account that D IFS is lo cal, we deduce that:

D IFS (A, B)=
n

i=1

hIFS (µ (A ∩X) ∪(A ∩X c ) (ωi ),ν (A ∩X) ∪(A ∩X c ) (ωi ),

µ(B ∩X) ∪(B ∩X c ) (ωi ),ν (B ∩X) ∪(B ∩X c ) (ωi )).

Moreover, by splitting the sum b etwe en the elements onX and X c,

D IFS (A, B)=
ω∈X

hIFS (µ (A ∩X) ∪(A ∩X c ) (ω ),ν(A ∩X) ∪(A ∩X c ) (ω ),

µ(B ∩X) ∪(B ∩X c ) (ω ),ν(B ∩X) ∪(B ∩X c ) (ω ))
+

ω∈X c

hIFS (µ (A ∩X) ∪(A ∩X c ) (ω ),ν(A ∩X) ∪(A ∩X c ) (ω ),

µ(B ∩X) ∪(B ∩X c ) (ω ),ν(B ∩X) ∪(B ∩X c ) (ω )).

Furthermore:

ω ∈ X ⇒






µ(A ∩X) ∪(A ∩X c ) (ω ) = max(µA ∩X (ω ),µA ∩X c (ω ))
µ(A ∩X) ∪(A ∩X c ) (ω ) = max(µA ∩X (ω ), 0) =µA ∩X (ω ).
ν(A ∩X) ∪(A ∩X c ) (ω ) = min(νA ∩X (ω ),νA ∩X c (ω ))
ν(A ∩X) ∪(A ∩X c ) (ω ) = m in(νA ∩X (ω ), 1) =νA ∩X (ω ).

ω ∈ X c ⇒






µ(A ∩X) ∪(A ∩X c ) (ω ) = max(µA ∩X (ω ),µA ∩X c (ω ))
µ(A ∩X) ∪(A ∩X c ) (ω ) = max(0,µA ∩X c (ω )) =µ A ∩X c (ω ).
ν(A ∩X) ∪(A ∩X c ) (ω ) = min(νA ∩X (ω ),νA ∩X c (ω ))
ν(A ∩X) ∪(A ∩X c ) (ω ) = min(1,ν A ∩X c (ω )) =ν A ∩X c (ω ).

Similarly,

ω ∈ X ⇒
µ(B ∩X) ∪(B ∩X c ) (ω ) =µ B ∩X (ω ).
ν(B ∩X) ∪(B ∩X c ) (ω ) =ν B ∩X (ω ).

ω ∈ X c ⇒
µ(B ∩X) ∪(B ∩X c ) (ω ) =µ B ∩X c (ω ).
ν(B ∩X) ∪(B ∩X c ) (ω ) =ν B ∩X c (ω ).
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Thus, the expressionof D IFS (A, B) becomes

D IFS (A, B)=
ω∈X

hIFS (µA ∩X (ω ),νA ∩X (ω ),µB∩X (ω ),νB ∩X (ω ))

+
ω∈X c

hIFS (µA ∩X c (ω ),νA ∩X c (ω ),µB ∩X c (ω ),νB ∩X c (ω )).

Taking into account that

D IFS (A ∩ X,B ∩ X)=
ω∈Ω

hIFS (µA ∩X (ω ),νA ∩X (ω ),µB ∩X (ω ),νB ∩X (ω ))

=
ω∈X

hIFS (µA ∩X (ω ),νA ∩X (ω ),µB ∩X (ω ),νB ∩X (ω ))

+
ω∈X c

hIFS (µA ∩X (ω ),νA ∩X (ω ),µB ∩X (ω ),νB ∩X (ω ))

=
ω∈X

hIFS (µA ∩X (ω ),νA ∩X (ω ),µB ∩X (ω ),νB ∩X ( ω )),

D IFS (A ∩ X c,B ∩ X c)=
ω∈Ω

hIFS (µA ∩X c (ω ),νA ∩X c (ω ),µB ∩X c (ω ),νB ∩X c (ω ))

=
ω∈X

hIFS (µA ∩X c (ω ),νA ∩X c (ω ),µB ∩X c (ω ),νB ∩X c (ω ))

+
ω∈X c

hIFS (µA ∩X c (ω ),νA ∩X c (ω ),µB ∩X c (ω ),νB ∩X c (ω ))

=
ω∈X c

hIFS (µA ∩X c (ω ),νA ∩X c (ω ),µB ∩X c (ω ),νB ∩X c (ω )),

we conclude that

D IFS (A, B) =D IFS (A ∩ X,B ∩ X) +D IFS (A ∩ X c,B ∩ X c).

Convers ely, assume thatD IFS (A, B) =D IFS (A ∩ X,B ∩ X) +D IFS (A ∩ X c,B ∩ X c) for
every A,B ∈ IF Ss(Ω) and X ⊆ Ω. Applying this prop erty to the crisp set X= { ω1} ,

D IFS (A, B) =D IFS (A ∩{ ω1} ,B ∩{ ω1} ) +D IFS (A ∩{ ω2, . . . ,ωn } ,B ∩{ ω2, . . . ,ωn } )
=D IFS (A 1,B 1) +D IFS (A ∩{ ω2, . . . ,ωn } ,B ∩{ ω2, . . . ,ωn } ),

where the IF-sets A1 and B1 aredefined by

A1 = { (ω1,µ A (ω1),ν A (ω1)), (ωi , 0, 1)| i =1 } ,
B1 = { (ω1,µ B (ω1),ν B (ω1)) , (ωi , 0, 1)| i=1 } .

Now, apply the hyp othesis to the crisp set X= { ω2} andthe IF-sets A ∩{ ω2, . . . ,ωn }

and B ∩{ ω2, . . . ,ωn } .

D IFS (A ∩{ ω2, . . . ,ωn } ,B ∩{ ω2, . . . ,ωn } =D IFS (A ∩{ ω2} ,B ∩{ ω2} )
+D IFS (A ∩{ ω3, . . . ,ωn } ,B ∩{ ω3, . . . ,ωn } )
=D IFS (A 2,B 2)
+D IFS (A ∩{ ω3, . . . ,ωn } ,B ∩{ ω3, . . . ,ωn } ),
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where
A2 = { (ω2,µ A (ω2),ν A (ω2)) , (ωi , 0, 1)| i =2 } ,
B2 = { (ω2,µ B (ω2),ν B (ω2)) , (ωi , 0, 1)| i =2 } .

If we rep eat the process,for any j ∈{ 1, . . . ,n− 1} , given X= { ωj } and the IF-sets
A ∩{ ωj , . . . ,ωn } and B ∩{ ωj , . . . ,ωn } , it hol ds that:

D IFS (A ∩{ ωj , . . . ,ωn } ,B ∩{ ωj , . . . ,ωn }

=D IFS (A ∩{ ωj } ,B ∩{ ωj } ) +D IFS (A ∩{ ωj+1 , . . . ,ωn } ,B ∩{ ωj+1 , . . . ,ωn } )
=D IFS (A j ,B j ) +D IFS (A ∩{ ωj+1 , . . . ,ωn } ,B ∩{ ωj+1 , . . . ,ωn } ),

where
A j = { (ωj ,µ A (ωj ),ν A (ωj )) , (ωi , 0, 1)| i =j } ,
B j = { (ωj ,µ B (ωj ),ν B (ωj )) , (ωi , 0, 1)| i =j } .

Then, D IFS (A, B) can b e express ed by

D IFS (A, B) =D IFS (A 1,B 1) +D IFS (A ∩{ ω2, . . . ,ωn } ,B ∩{ ω2, . . . ,ωn } )
=D IFS (A 1,B 1) +D IFS (A 2,B 2)
+D IFS (A ∩{ ω3, . . . ,ωn } ,B ∩{ ω3, . . . ,ωn } )

= .. .=
n

i=1

D IFS (A i ,B i ).

Now, consider the difference betweenD IFS (A, B) and D IFS (A ∩{ ωi } ,B ∩{ ωi } ):

D IFS (A ∪{ ωi } ,B ∪{ ωi } ) − D IFS (A, B) =D IFS (A i ∪{ ωi } ,B i ∪{ ωi } ) − D IFS (A i ,B i ).

This difference only dep ends onµA (ωi ),ν A (ωi ) and µB (ωi ),ν B (ωi ), so taking into account
Definition 5.28 weconclude that D IFS is a lo cal IF-divergence.

A particular caseofinterest isthe comparisonofan IF-setandits complementary.
In this sense, it seemsuseful to measure how imprecise an IF-set is. We conside r the
following partial order b etwee n IF-sets: given twoIF-sets A and B , we saythat A
is sharp er than B , and denote it A ≪ B , when |µA (ω) − 0.5| ≥| µB (ω) − 0.5| and
|νA (ω) − 0.5| ≥| νB (ω) − 0.5| for every ω ∈ Ω.

Using this partial order we can establish the following interesting prop erty.

Prop osition 5.34If D IFS is alocal IF-divergence and A ≪ B , then it holds that
D IFS (A,A

c) ≥ D IFS (B ,B
c).

Pro of: Assume that A ≪ B , and let us consider the crisp sets X and Y defined by

X= { ω ∈ Ω | µA (ω) ≤ 0.5 and νA (ω) ≥ 0.5} .
Y= { ω ∈ Ω | µB (ω) ≤ νB (ω)} .
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Applying Prop osition 5.33,

D IFS (A,A
c) =D IFS (A ∩ X,A c ∩ X) +D IFS (A ∩ X c,A c ∩ X c)

and if we use the same prop osition withD IFS (A ∩X,A c ∩X) and D IFS (A ∩X c,A c ∩X c),
we obtai n that

D IFS (A ∩ X,A c ∩ X) =D IFS (A ∩ X ∩ Y,A c ∩ X ∩ Y)
+D IFS (A ∩ X ∩ Y c,A c ∩ X ∩ Y c),

D IFS (A ∩ X c,A c ∩ X c) =D IFS (A ∩ X c ∩ Y,A c ∩ X c ∩ Y)
+D IFS (A ∩ X c ∩ Y c,A c ∩ X c ∩ Y c).

Hence,
D IFS (A,A

c) =D IFS (A ∩ X ∩ Y,A c ∩ X ∩ Y)
+D IFS (A ∩ X ∩ Y c,A c ∩ X ∩ Y c)
+D IFS (A ∩ X c ∩ Y,A c ∩ X c ∩ Y)
+D IFS (A ∩ X c ∩ Y c,A c ∩ X c ∩ Y c).

Letus studyeachof the summandsin the right-hand-sideseparately. For the firstone,
we have that

µA ∩X ∩Y (ω )=
µA (ω) if µA (ω) ≤ 0.5 ≤ νA (ω) and µB (ω) ≤ νB (ω ),
0 otherwise,

νA ∩X ∩Y (ω )=
νA (ω) if µA (ω) ≤ 0.5 ≤ νA (ω) and µB (ω) ≤ νB (ω ),
1 otherwise.

Howe ver, ifω ∈ X ∩ Y , taking into account that A ≪ B , it holds that

µA (ω) ≤ µB (ω) ≤ 0.5 ≤ νB (ω) ≤ νA (ω)

and therefore,
A ∩ X ∩ Y ⊆ B ⊆ B c ∩ X ∩ Y ⊆ Ac ∩ X ∩ Y.

Now, applying Lemma 5.5 we obtainthat

D IFS (A ∩ X ∩ Y,A c ∩ X ∩ Y) ≥ D IFS (B ∩ X ∩ Y,B c ∩ X ∩ Y ).

Letus considernext the second term

µA ∩X ∩Y c (ω )=
µA (ω) if µA (ω) ≤ 0.5 ≤ νA (ω) and νB (ω) ≤ µB (ω ),
0 otherwise,

νA ∩X c ∩Y (ω )=
νA (ω) if µA (ω) ≤ 0.5 ≤ νA (ω) and νB (ω) ≤ µB (ω ),
1 otherwise,

However, if ω ∈ X ∩ Y c, since A ≪ B itholds that

µA (ω) ≤ νB (ω) ≤ 0.5 ≤ µB (ω) ≤ νA (ω)
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whence
A ∩ X ∩ Y c ⊆ B c ∩ X ∩ Y c ⊆ B ∩ X ∩ Y c ⊆ Ac ∩ X ∩ Y c

and if we applyLemma 5.5 we obtain that

D IFS (A ∩ X ∩ Y c,A c ∩ X ∩ Y c) ≥ D IFS (B ∩ X ∩ Y c,B c ∩ X ∩ Y c).

Considernext the third summand

µA ∩X c ∩Y (ω )=
µA (ω) if νA (ω) ≤ 0.5 ≤ µA (ω) and µB (ω) ≤ νB (ω ),
0 otherwise,

νA ∩X c ∩Y (ω )=
νA (ω) if νA (ω) ≤ 0.5 ≤ µA (ω) and µB (ω) ≤ νB (ω ),
1 otherwise.

If ω ∈ X c ∩ Y , since A ≪ B , it holds that

νA (ω) ≤ µB (ω) ≤ 0.5 ≤ νB (ω) ≤ µA (ω)

whence
Ac ∩ X c ∩ Y ⊆ B ∩ X c ∩ Y ⊆ B c ∩ X c ∩ Y ⊆ A ∩ X c ∩ Y.

Applying Lemma 5.5,we obtain that

D IFS (A ∩ X c ∩ Y,A c ∩ X c ∩ Y) ≥ D IFS (B ∩ X c ∩ Y,B c ∩ X c ∩ Y)

Finally, consider the fourthterm:

µA ∩X c ∩Y c (ω )=
µA (ω) if νA (ω) ≤ 0.5 ≤ µA (ω) and νB (ω) ≤ µB (ω ),
0 otherwise,

νA ∩X c ∩Y c (ω )=
νA (ω) if νA (ω) ≤ 0.5 ≤ µA (ω) and νB (ω) ≤ µB (ω ),
1 otherwise.

If ω ∈ X c ∩ Y c, taking into account that A ≪ B , it hold s that:

νA (ω) ≤ νB (ω) ≤ 0.5 ≤ µB (ω) ≤ µA (ω ).

Then, usin g Lemma 5.5 we obtain that

D IFS (A ∩ X c ∩ Y c,A c ∩ X c ∩ Y c) ≥ D IFS (B ∩ X c ∩ Y c,B c ∩ X c ∩ Y c)

and therefore
D IFS (A,A

c) =D IFS (A ∩ X ∩ Y,A c ∩ X ∩ Y)
+D IFS (A ∩ X ∩ Y c,A c ∩ X ∩ Y c)
+D IFS (A ∩ X c ∩ Y,A c ∩ X c ∩ Y)
+D IFS (A ∩ X c ∩ Y c,A c ∩ X c ∩ Y c)
≥ D IFS (B ∩ X ∩ Y,B c ∩ X ∩ Y)
+D IFS (B ∩ X ∩ Y c,B c ∩ X ∩ Y c)
+D IFS (B ∩ X c ∩ Y,B c ∩ X c ∩ Y)
+D IFS (B ∩ X c ∩ Y c,B c ∩ X c ∩ Y c) =D IFS (B ,B

c).
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This completes the pro of.

The ab ove result implies that the lower the fuzziness, the greater the divergence
between an IF-set and its complementary. Moreover, the divergenc e is maximum when
the IF-set iscrisp.

Prop osition 5.35If V and Z are twocrisp sets and D IFS is a local IF-divergence,

D IFS (V ,V
c) =D IFS (Z ,Z

c).

In addition, if A,B ∈ IF Ss(Ω) , then D IFS (A, B) ≤ D IFS (Z ,Z
c).

Pro of: Note that, by IF-lo c.2 of Theorem 5.29 hIFS (1, 0, 0, 1) =h IFS (0 , 1, 1, 0), and
therefore

D IFS (V ,V
c) =n · hIFS (1 , 0, 0, 1) =DIFS (Z ,Z

c).

Now, taking intoaccountthat hIFS (1, 0, 0, 1)≥ hIFS (x 1,x 2,y 1,y 2), since by IF-lo c.3 and
IF-lo c.4:

hIFS (1 , 0 , 0, 1)≥ hIFS (x 1, 0, 0, 1)≥ hIFS (x 1,x 2, 0, 1)
≥ hIFS (x 1,x 2, 0,y2) ≥ hIFS (x 1,x 2,y 1,y 2),

we have that

D IFS (A, B)=
n

i=1

hIFS (µA (ωi ),ν A (ωi ),µ B (ωi ),ν B (ωi ))

≤
n

i=1

hIFS (1 , 0, 0, 1) =DIFS (Z ,Z
c).

We have seen that every IF-divergence is also an IF-dissimilarity, and therefore it satisfies
that D IFS (A, C) ≥ max(D IFS (A, B) ,D IFS (B , C )) for every IF-sets A , B and C such
that A ⊆ B ⊆ C. In the following proposition we obtain a similar result for lo cal
IF-divergences withless restrictive conditions.

Prop osition 5.36Let D IFS be a localIF-divergence. Iffor every ω ∈ Ω either

µA (ω) ≤ µB (ω) ≤ µC (ω) and νA (ω) ≥ νB (ω) ≥ νC (ω ),

or

µA (ω) ≥ µB (ω) ≥ µC (ω) and νA (ω) ≤ νB (ω) ≤ νC (ω ),

then D IFS (A, C) ≥ max(D IFS (A, B ),D IFS (B , C )).

Pro of: Since the IF-divergence is local we can apply properties IF-lo c.3 and IF-lo c.4,
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and we obtain the following:

D IFS (A, C)=
n

i=1

hIFS (µA (ωi ),ν A (ωi ),µ C (ωi ),ν C (ωi ))

≥ max
n

i=1

hIFS (µA (ωi ),ν A (ωi ),µ B (ωi ),ν B (ωi )),
n

i=1

hIFS (µB (ωi ),ν B (ωi ),µ C (ωi ),ν C (ωi ))

=max(D IFS (A, B),D IFS ( B , C )).

In Prop osition 5.27 we proved that, if D IFS is an IF-divergence, then D φ
IFS is also an

IF-divergence, where D φ
IFS (A, B) = φ(D IFS (A, B)) and φ is a increasing function such

that φ(0) =0 . In particular, if D IFS is a lo cal IF-divergence, D φ
IFS is lo cal if and only

if φ is linear. Next we derive a similar method to build lo cal IF-divergences from lo cal
IF-divergences.

Prop osition 5.37Let D IFS be a local IF-divergence, and let φ: [0,∞ ) → [0,∞ ) bea
increasing function such that φ(0) =0 . Then, thefunction D IFS,φ , defined by

D IFS ,φ(A, B)=
n

i=1

φh IFS (µA (ωi ),ν A (ωi ),µ B (ωi ),ν B (ωi )),

is alocal IF-divergence.

Pro of: Immediate using the prop erties ofφ and taking into account that hIFS satisfies
the prop erties IF-lo c.1 to IF-loc.5.

To conclude this section, we relate lo cal IF-divergences and real distances.

Prop osition 5.38Consider a distance d: R × R → R satisfying

max(d(x, y ), d(y , z ))≤ d(x, z)

for x< y <z . Then, foreveryincreasingfunction φ: [0, ∞ ) × [0,∞ ) → [0,∞ ) such that
φ(0, 0) =0 , the function D IFS : IF Ss(Ω) × IF Ss(Ω) → R defined by:

D IFS (A, B)=
n

i=1
φ(d (µA (ωi ),µ B (ωi )) , d(νA (ωi ),ν B (ωi )))

is alocal IF-divergence.

Pro of: UsingTheorem5.42, itsufficesto provethat thefunction

hIFS (x 1,x 2,y 1,y 2) = φ (d(x1,y 1), d(x2,y 2))
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satisfies the prop erties IF-lo c.1 to IF-lo c.5.

IF-lo c.1: Consider(x, y) ∈T = { (x, y) ∈ [0 , 1]2 | x+y ≤ 1} . Sinced is a distance,
d(x, x) = d( y , y ) =0,and therefore

hIFS (x, y, x, y) = φ(d(x, x), d(y , y )) = φ(0, 0) = 0.

IF-lo c.2: Take(x 1,x 2) and (y1,y 2) in T . Sinced is a distance, d(x1,y 1) = d(y 1,x 1)
and d(x2,y 2) = d(y 2,x 2),whence

hIFS (x1,x 2,y 1,y 2) = φ(d (x1,y 1), d(x2,y 2)) = φ( d(y1,x 1), d(y2,x 2)) =h IFS (y1,y 2,x 1,x 2).

IF-lo c.3: Consider (x 1,x 2), (y1,y 2) ∈T and z ∈ [0, 1] such that x1 ≤ z ≤ y1.
Applying the hyp othesis on d,

d(x1,y 1) ≥ max( d (x1, z ), d( z ,y1))

whence

hIFS (x 1,x 2,y 1,y 2) = φ (d(x1,y 1), d(x2,y 2)) ≥ φ(d (x1, z) , d(x2,y 2)) =h IFS (x 1,x 2, z,y2).

Moreover, if (x 2, z), (y2, z) ∈T , then max(x2,y 2) +z ≤ 1 and it holds that:

hIFS (x 1,x 2,y 1,y 2) = φ(d (x1,y 1), d(x2,y 2)) ≥ φ(d(z ,y1), d(x2,y 2)) =h IFS (z ,x2,y 1,y 2).

IF-lo c.4: Let (x 1,x 2), (y1,y 2) ∈T and z ∈ [0 , 1]such that x2 ≤ z ≤ y2. Applying
the hyp othesis ond,

d(x2,y 2) ≥ max(d(x2, z), d(z ,y2)).

Sinceφ is increasing in each comp onent:

hIFS (x 1,x 2,y 1,y 2) = φ(d(x 1,y 1), d(x2,y 2)) ≥ φ(d (x1,y 1), d(x2, z)) =h IFS (x 1,x 2,y 1, z).

Moreover, if (x 1, z), (y1, z) ∈T , it hold s that max(x1,y 1) +z ≤ 1 and then:

hIFS (x 1,x 2,y 1,y 2) = φ( d(x1,y 1), d(x2,y 2)) ≥ φ( d(x1,y 1), d( z ,y2)) =h IFS (x 1, z,y1,y 2).

IF-lo c.5: Finally, consider(x 1,x 2), (y1,y 2) ∈T and z ∈ [0 , 1]. Applying our hyp oth-
esis ond, it hold s that:

d(z , z) =0 ≤ min(d(x 1,y 1), d(x2,y 2)).

Then, if (x 2, z) , (y2, z) ∈T , it holds that max(x2,y 2) +z ≤ 1, and since φ is increasing
in each comp onent, it follows that

hIFS (z ,x2, z,y2) = φ(d(z , z ), d(x2,y 2)) ≤ φ(d(x1,y 1), d(x2,y 2)) =h IFS (x 1,x 2,y 1,y 2).
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Moreover, if (x 1, z) , (x2, z) ∈T , then max(x1,y 1) +z ≤ 1, and since φ is increasing in
each comp onent, it holds that:

hIFS (x 1, z,y1, z) = φ( d(x1,y 1), d(z , z))≤ φ(d (x1,y 1), d(x2,y 2)) =h IFS (x 1,x 2,y 1,y 2).

Thus, hIFS satisfies properties IF-lo c.1 to IF-lo c.5.ApplyingTheorem 5.29,weconclude
that D IFS is a lo cal IF-divergence.

Letus seean example ofan application of this result.

Example 5.39Considerthe distance d defined byd(x, y)= |x − y|, and the increasing
function φ( x, y)= x+y

2n , that satisfies φ(0, 0) =0 . Then, wecandefine thefunction
D IFS : IF Ss(Ω) × IF Ss(Ω) → R defined by

D IFS (A, B)=
n

i=1
φ d(µ A (ωi ),µ B (ωi )) , d(νA (ωi ),ν B (ωi )

for every A,B ∈ IF Ss(Ω) is an IF-divergence. Infact, ifweinputthevaluesof φ and
d, D IFS becomes

D IFS (A, B)=
n

i=1

|µA (ωi ) − µB (ωi )| + |νA (ωi ) − νB (ωi )|,

i.e., we obtain Hong andKim IF-divergence DC (see 5.1.3).

Examples of lo cal IF-divergences

In this section we are going to study which of the examples of IF-dive rgen ces ofSec-
tion 5.1.3 are in particular lo cal IF-divergences.

Let us b egin with the Hamming distance (see Section 5.1.3).Itis definedby:

l IFS (A, B)=
n

i=1

|µA (ωi ) − µB (ωi )| + |νA (ωi ) − νB (ωi )| + |πA (ωi ) − πB (ωi )|.

Consider two IF-setsA and B , and an elementωi ∈ Ω. Wehave toseethatthe difference
l IFS (A, B) − l IFS (A ∪{ ωi } ,B ∪{ ωi } ) only dep ends onµA (ωi ),µ B (ωi ),ν A (ωi ) and νB (ωi ).
Note that, since µA ∪{ ωi } (ωi ) =µ B ∪{ ωi } (ωi ) =1 and νA ∪{ ωi } (ωi ) =ν B∪{ ωi } (ωi ) =0 ,
l IFS (A ∪{ ωi } ,B ∪{ ωi } ) takes the followingvalue:

l IFS (A ∪{ ωi } ,B ∪{ ωi } )=

j=i

|µA (ωj ) − µB (ωj )| + |νA (ωj ) − νB (ωj )| + |πA (ωj ) − πB (ωj )|
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whence
l IFS (A, B) − l IFS (A ∪{ ωi } ,B ∪{ ωi } )=

|µA (ωi ) − µB (ωi )| + |νA (ωi ) − νB (ωi )| + |πA (ωi ) − πB (ωi )| =
hIFS (µA (ωi ),ν A (ωi ),µ B (ωi ),ν B (ωi )).

Thus, l IFS is a lo cal IF-divergence whose asso ciated functionhIFS is give n by:
hIFS (x 1,x 2,y 1,y 2)= |x1 − y1| + |x2 − y2| + |x1 +x 2 − y1 − y2|.

Moreover, the normalized Hamming distance, defi ned by lnIFS (A, B) = 1
n l IFS (A, B) ,

is also a lo cal IF-divergence. Thereason isthat lnIFS (A, B) = φ(l IFS (A, B )), where
φ(x )= x

n , and we have already mentioned that in that case lnIFS is lo cal if and only if φ
is linear.

Let us next study the Hausdorff distance for IF-sets (see Section 5.1.3), which is
given by:

dH (A, B)=
n

i=1
max(|µA (ωi ) − µB (ωi )|, |νA (ωi ),ν B (ωi )|).

Consider ωi ∈ Ω, and let A and B b e two IF -sets.As we have done in the previous case,
dH (A ∪{ ωi } ,B ∪{ ωi } ) is given by

dH (A ∪{ ωi } ,B ∪{ ωi } )=
j=i

max(|µA (ωj ) − µB (ωj )|, |νA (ωj ),ν B (ωj )|),

taking into accountthat A ∪{ ωi } and B ∪{ ωi } are given by:
A ∪{ ωi } = { (ωj ,µ A (ωj ),ν A (ωj )) , (ωi , 1, 0)| j =i } .
B ∪{ ωi } = { (ωj ,µ B (ωj ),ν B (ωj )) , (ωi , 1, 0)| j =i } .

Hence,dH (A, B) − dH (A ∪{ ωi } ,B ∪{ ωi } ) isgiven by
dH (A, B) − dH (A ∪{ ωi } ,B ∪{ ωi } ) =max( |µA (ωi ) − µB (ωi )|, |νA (ωi ) − νB (ωi )|).

Therefore, the Hamming distance for IF-sets is a lo cal IF-divergence, whose asso ciated
function hdH isgiven by

hdH (x 1,x 2,y 1,y 2) = max( |x1 − y1|, |x2 − y2|).

The same appliesto the normalized Hausdorffdistance, since it isa linear transformation
of the Hau sdorff distance.

Considernow the IF-divergences defined by Hong and Kim, DC and D L (see Sec-
tion 5.1.3), given by

DC (A, B)=
1

2n

n

i=1

|µA (ωi ) − µB (ωi )| + |νA (ωi ) − νB (ωi )|.

DL (A, B)=
1

4n

n

i=1

|µA (ωi ) − µB (ωi ) − νA (ωi ) +ν B (ωi )|

+ |µA (ωi ) − µB (ωi )| + |νA (ωi ) − νB (ωi )|.
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Let us see that b oth IF-divergences are lo cal. Considertwo IF-sets A and B and an
elementωi ∈ Ω, and let us compute DC (A ∪{ ωi } ,B ∪{ ωi } ) and DL (A ∪{ ωi } ,B ∪{ ωi } ).

DC (A ∪{ ωi } ,B ∪{ ωi } )=
1

2n
j=i

|µA (ωj ) − µB (ωj )| + |νA (ωj ) − νB (ωj )|.

DL (A ∪{ ωi } ,B ∪{ ωi } )=
1

4n
j=i

|µA (ωj ) − µB (ωj ) − νA (ωj ) +ν B (ωj )|

+ |µA (ωj ) − µB (ωj )| + |νA (ωj ) − νB (ωj )|.

Then,

DC (A, B) − DC (A ∪{ ωi } ,B ∪{ ωi } )= |µA (ωi ) − µB (ωi )| + |νA (ωi ) − νB (ωi )|.
DL (A, B) − D L (A ∪{ ωi } ,B ∪{ ωi } )

= |µA (ωj ) − µB (ωj ) − νA (ωj ) +ν B (ωj )|
+ |µA (ωj ) − µB (ωj )| + |νA (ωj ) − νB (ωj )|.

Thus, both IF-divergences are local, and their resp ective functionshD C and hD L are:

hD C (x 1,x 2,y 1,y 2)= |x1 − y1| + |x2 − y2|.
hD L (x 1,x 2,y 1,y 2)= |x1 − y1 − x2 +y 2| + |x1 − y1| + |x2 − y2|.

Insummary, HammingandHausdorff distancesandthe IF-divergencesofHong andKim
are lo cal IF-divergences.It can be checked that the other examples of IF-divergences are
not lo cal.

5.1.5 IF-divergences Vs Divergences

Some of the studies presented until now in this chapter are inspired in the concept of
fuzzy divergence intro duced by Montes et al.([160]).

Definition 5.40 ([160])Let Ω bean universe. Amap D : F S(Ω) × F S(Ω) → R isa
divergence if it satisfies the fol lowing conditions:

Div.1: D(A,A) =0 for every A ∈ F S(Ω).
Div.2: D(A, B) = D(B, A) for every A,B ∈ F S(Ω).
Div.3: D(A ∩ C,B ∩ C) ≤ D(A, B) , for every A, B,C ∈ F S(Ω).
Div.4: D(A ∪ C,B ∪ C) ≤ D(A, B) , for every A, B,C ∈ F S(Ω).

Montes et all ([160]) also investigated the local prop erty for fuzzy divergences.

Definition5.41 ([160, Def. 3.2])A divergence measure defined ona finite universe
is alocal divergence, or it is said to fulfill the local property, if for every A,B ∈ F S(Ω)
and every ω ∈ Ω we have that:

D(A, B) − D(A ∪{ ω} ,B ∪{ ω} ) = h(A( ω ) , B ( ω )),
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Lo cal fuzzy divergences were characterized as follows.

Theorem 5.42 ([160, Prop. 3.4])Amap D: F S(Ω) × F S(Ω) → R defined ona
finite universe Ω= { ω1, . . . ,ωn } is alocal divergence if and only if there is a function
h : [0, 1]× [0 , 1]→ R such that

D(A, B )=
n

i=1
h( A(ωi ), B(ωi )),

and

loc.1: h(x, y) = h(y, x) , for every (x, y) ∈ [0, 1]2.
loc.2: h(x,x) =0 for every x ∈ [0 , 1].
loc.3: h(x, z) ≥ max(h( x, y ), h( y , z )), for every x, y,z ∈ [0 , 1]

such that x< y <z .

In this section we are going to study the relationship b etween dive rgen ces and IF-
divergences.We shall provide some metho ds to derive IF-divergences from divergences
and vice versa. Moreover, we shall investigate under which conditions the prop erty of
b eing lo cal is preserved under these transformations.

From IF-divergences tofuzzy divergences

Consider an IF-divergenceD IFS : IF Ss(Ω) × IF Ss(Ω) → R definedon a finite universe
Ω= { ω1, . . . ,ωn } . Recall that every fuzzy set A is in particularan IF-set, whose mem-
bership and non-memb ership functions are µA (ωi ) = A(ω i ) and νA (ωi ) =1 − A(ωi ),
resp ectively.Hence, if A and B are two fuzz y sets, we can compute its divergen ceD as:

D(A, B ) =D IFS (A, B ).

Prop osition 5.43If D IFS isanIF-divergence, themap D : F S(Ω) × F S(Ω) → R given
by

D(A, B) =D IFS (A, B)

is a divergence for fuzzy sets.Moreover, if D IFS satisfies axiom IF-D iv.5, thenD satisfies
axiom Div.5, and if D IFS islocal, then so is D .

Pro of: Let us prove that D is a divergence, i.e., that it satisfie s axioms Diss.1 to Div.4.

Diss.1: Let A be a fuzzy set. Then:

D(A, A) =D IFS (A, A) = 0.
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Diss.2: Let A and B be two fuzzy sets. Sincetheyare in particular IF-sets,
D IFS (A, B) =D IFS (B , A), and therefore:

D (A, B ) =D IFS (A, B) =D IFS (B , A) = D(B , A).

Div.3: Let A , B and C be fuzzy sets. Again, since theyare inparticular IF-sets, it
holds that D IFS (A ∩ C,B ∩ C) ≤ D IFS (A, B) . Then:

D (A ∩ C,B ∩ C) =D IFS (A ∩ C,B ∩ C) ≤ D IFS (A, B) = D(A, B ).

Div.4:Similarly to Div.3, consider fuzzy sets A , B and C. Since they are in partic-
ular IF-sets, theysatisfy D IFS (A ∪ C,B ∪ C) ≤ D IFS (A, B) ,whence

D (A ∪ C,B ∪ C) =D IFS (A ∪ C,B ∪ C) ≤ D IFS (A, B) = D(A, B ).

Thus, D isa divergenceforfuzzy sets. Assume nowthat D IFS satisfiesIF-Div.5, i.e.,

D IFS (A, B) =D IFS (A c,B c) for every A,B ∈ I F S s(Ω).

Then, in particular, D satisfiesaxiom Div.5

D(A, B ) =D IFS (A, B) =D IFS (A c,B c) = D(A c,B c),

for every A,B ∈ F S(Ω). Assu me now thatD IFS is a lo cal IF-divergence.Then:

D(A, B) − D(A ∪{ ω} ,B ∪{ ω} ) =D IFS (A, B) − D IFS (A ∪{ ω} ,B ∪{ ω} )
= h(A(ω ),1 − A(ω ), B (ω ),1− B (ω )) = h(A(ω ), B (ω )),

where h( x, y ) = h(x,1 − x, y,1 − y). Consequently,D is a lo cal divergence between fuzzy
sets.

Remark 5.44The function D definedin the previousproposition isin facta composi-
tion of some functions:

D : F S(Ω) × F S(Ω)
i

→ IF Ss(Ω) × IF Ss(Ω)
D IFS−→ R

wherei(A, B) stands for the inclusion of F S(Ω) × F S(Ω) on IF Ss(Ω) × IF Ss(Ω) .

Remark 5.45IfwelookattheproofofProposition5.43, weseethat, inordertoprove
that D satisfiesaxiom Div. i , for i ∈{ 1,2} it is enough for D IFS tosatisfy axiomIF-
Diss.i . Moreover, if D IFS satisfies axiomIF-Div. j , for j ∈{ 3,4} , then D also satisfies
axiom Div. j . In fact, if for instance D IFS is notan IF-divergence, but it satisfiesIF-
Diss.1, IF-Diss.2 andIF-Div.3, we cannot assurethat D is a divergence. However, we
know that D satisfies axiomsDiv.1, IF-Div.2 andIF-Div.3.
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The ab ove method of deriving divergences from IF-divergences seems to be natural.Let
us show how it can be used in a few examples.

Example 5.46Consider the Hamming distance for IF-set s that we have already studied
in Sect ion 5.1.3, given by:

l IFS (A, B)=
1
2

n

i=1
(|µA (ωi ) − µB (ωi )| + |νA (ωi ) − νB (ωi )| + |πA (ωi ) − πB (ωi )|).

If we considerA and B twofuzzy sets, thedivergenceD defined in the previous proposition
is:

D1(A, B)=
n

i=1

|A(ωi ) − B(ωi )|.

Recall that the function:

lFS (A, B)=
n

i=1

|A(ωi ) − B(ωi )|, ∀A,B ∈ F S(Ω)

is known as the Hamming distance for fuzzy sets. Then, from the Hamming distance
for IF-sets we obtain the Hamming distance for fuzzysets. Moreover, if we consider
the normalized Hamming distance for IF-sets, wealso obtain the normalizedHamming
distance, defined bylnFS (A, B)= 1

n lFS , for fuzzy sets.

Consider now the Hausdorff dist ance (see Section 5.1.3) for IF-sets:

dH (A, B)=
n

i=1
max(|µA (ωi ) − µB (ωi )|, |νA (ωi ) − νB (ωi )|).

Given two fuzzy sets A and B , if we apply Proposition 5.43 we obtain the Hamming
distance for fuzzy sets:

D2(A, B) =d H (A, B)=
n

i=1
max(|A (ωi ) − B(ωi )|, |(1 − A(ωi )) − (1 − B(ω i )) |)

=
n

i=1

|A (ωi ) − B(ω i )| =l FS (A, B ).

Moreover, if we consider the normalized Hausdorff dist ance, we obtainthe normalized
Hamming dist ance:

D3(A, B) =d nH (A, B)=
1
n

n

i=1
max(|A(ωi ) − B(ω i )|, |(1 − A(ωi )) − (1 − B(ωi )) |)

=
1
n

n

i=1

|A(ωi ) − B(ω i )| =l nFS (A, B ).
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Thus, both the Hamming distance andthe Hausdorffdistance forIF-sets producethe
same divergence for fuzzy sets:the Hamming dist ance for fuzzy sets.

However, if we consider the IF-divergences of Hong and Kim (see Section 5.1.3),
defined by:

DC (A, B)=
1

2n

n

i=1
(|µA (ωi ) − µB (ωi )| + |νA (ωi ) − νB (ωi )|);

D L (A, B)=
1

4n

n

i=1

|(µA (ωi ) − µB (ωi )) − (νA (ωi ) − νB (ωi )) |

+ |µA (ωi ) − µB (ωi )| + |νA (ωi ) − νB (ωi )|;

and we apply Proposition 5.43 we obtainalso the normalizedHamming distance:

D 4(A, B) =D C (A, B)=
1

2n

n

i=1
(|A (ωi ) − B(ω i )| + |(1 − A(ωi )) − (1 − B(ω i )) |

=
1
n

n

i=1

|A(ωi ) − B(ω i )| =l nFS (A, B ).

D 5(A, B) =D L (A, B)=
1

4n

n

i=1

|( A(ωi ) − B(ω i )) − (1 − A(ωi ) − 1 + B(ω i )) |

+ |A(ωi ) − B(ω i )| + |1 − A(ωi ) − 1 + B(ω i )|

=
1
n

n

i=1

|A(ωi ) − B(ω i )| =l nFS (A, B ).

Thus, bothHammingandHausdorffdistances for IF-setsproducetheHamming distance
for fuzzy sets, andthe normalizedHamming andHausdorff distances, and Hongand
Kim dissimilarit ies for IF-sets produce the normalized Hamming distance for fuzzy sets.
Consequently,all theseIF-divergencescan be seen as generalizations of the Hamming
distance forfuzzy sets to the comparisonof IF-sets.

Example 5.47Letus nowconsider theIF-divergencedefined byLi etal. (seepage 283
of Section 5.1.3):

DO (A, B)=
1√
2n

n

i=1
(µA (ωi ) − µB (ωi ))2 +(ν A (ωi ) − νB (ωi ))2

1
2
.

If we use Proposition 5.43 in order to build a divergencefor fuzzy sets from DO , we
obtain the normalized Euclidean distance for fuzzy sets:

D(A, B ) =D O (A, B)=
1√
2n

n

i=1
(A (ωi ) − B(ωi ))2 +(1 − A(ωi ) − 1 + B(ω i ))2

1
2

=
1√
n

n

i=1
(A (ωi ) − B(ωi ))2

1
2

=
√

2qnFS (A, B).
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Thus, both thenormalizedEuclideandistanceforIF-sets and Lietal. IF-divergence are
generalizations of the normalized Euclideandistance forfuzzy sets.Note however thatthe
normalizedEuclidean distance is not an IF-divergence (see Section 5.1.3), even though
Li et al.’s dissimilarity is.

Example 5.48Consider now the IF-divergence defined by Mitchell(see Section 5.1.3):

DHB (A, B)=
1

2 p
√

n

n

i=1

|µA (ωi ) − µB (ωi )|p
1
p +

n

i=1

|νA (ωi ) − νB (ωi )|p
1
p .

Applying Proposition 5.43, we obtain the fol lowing divergence for fuzzy sets:

D 1(A, B) =D HB (A, B)=
1

2 p
√

n

n

i=1

|A (ωi ) − B(ω i )|p
1
p

+
n

i=1

|(1 − A(ωi )) − (1 − B(ω i )) |p 1− p
=

1
p
√

n

n

i=1

|A(ωi ) − B(ω i )|p
1
p

.

If we now consider the IF-Divergence D p
e of Liang and Shi (see Section 5.1.3), defined

by:

D p
e(A, B)=

1
2 p

√
n

n

i=1

|µA (ωi ) − µB (ωi )| + |νA (ωi ) − νB (ωi )|
p

1
p

and apply Proposition 5.43, we obtain the fol lowing divergence:

D2(A, B) =D
p
e (A, B)

D2(A, B)=
1

2 p
√

n

n

i=1

|A (ωi ) − B(ω i )| + |(1 − A(ωi )) − (1 − B(ω i )) |
p

1
p

D2(A, B)=
1

p
√

n

n

i=1

|A(ωi ) − B(ωi )|p
1
p

.

Note that D 1(A, B) =D 2(A, B) . Thus, both DHB and D p
e producethesame divergence

between fuzzy sets,and thereforebothof them can be seen as a generalization of the
divergenceD1.

Although the method prop osed in Prop osition 5.43 seems to be very natural, there is
another possible, alb eit less intuitive, way of deriving divergences from IF-d ivergences,
thatwe detail next.

Prop osition 5.49The function D : F S(Ω) × F S(Ω) → R defined by

D(A, B ) =D IFS (A, B ),
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whereD IFS isan IF-divergence,is a divergencefor fuzzysets, where A and B are given
by:

A= { (ω , A(ω), 0)| ω ∈ Ω}∈ I F S s(Ω).
B= { (ω , B (ω), 0)| ω ∈ Ω}∈ I F S s(Ω).

However, althoughD IFS satisfies IF-Div.5, D may notsatisfy Div.5.

Pro of: Letussee that D satisfiesthe divergenceaxioms.

Diss.1: Let A b e a fuzzy se t.Then A= { (ω , A(ω ), 0)| ω ∈ Ω} , and therefore, as
D IFS isan IF-divergence,

D(A,A) =D IFS (A, A) = 0.

Diss.2: Let A and B be two fuzzy sets. Then

D(A, B ) =D IFS (A, B) =D IFS (B , A) = D(B , A),

becauseD IFS is symmetric.

Div.3: Consider A, B,C ∈ IF Ss(Ω) . Since D IFS is anIF-divergence, D IFS (A ∩
C ,B ∩ C) ≤ D IFS (A, B) . Moreover,

A ∩ C= { ( ω , min(µA (ω ),µC ( ω )) , 0)| ω ∈ Ω} =A ∩ C.

B ∩ C= { (ω , min(µB (ω ),µC (ω )), 0)| ω ∈ Ω} =B ∩ C,

whence

D(A ∩ C,B ∩ C) =D IFS (A ∩ C,B ∩ C)
=D IFS (A ∩ C,B ∩ C) ≤ D IFS (A, B) = D( A, B ).

Div.4: The pro of is similar to the previous one. Consider three fuzzy setsA , B and
C. We know that D IFS (A ∪ C,B ∪ C) ≤ D IFS (A, B) . Moreover,

A ∪ C= { (ω , max(µA (ω ),µC (ω )), 0)| ω ∈ Ω} =A ∪ C.

B ∪ C= { (ω , max(µB (ω ),µC ( ω )) , 0)| ω ∈ Ω} =B ∪ C.

Then, axiom Div.4 is satisfied, because:

D(A ∪ C,B ∪ C) =D IFS (A ∪ C,B ∪ C)
=D IFS (A ∪ C,B ∪ C) ≤ D IFS (A, B) = D(A, B ).

Hence,D is a divergence for fu zzy sets.As sume now thatD IFS satisfiesaxiom IF-Div.5
and let us show thatin that case D may notsatisfy Div.5. Considera singleton universe
Ω= { ω} ,and the function D IFS : IF Ss(Ω) × IF Ss(Ω) → R defined by

D IFS (A, B)= | max(µA (ω) − 0.5, 0)− max(µB (ω) − 0.5 , 0)|
+ | max(νA (ω) − 0.5 , 0)− max(νB (ω) − 0.5 , 0)|.
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Letus see that D IFS isan IF-divergence.

IF-Diss.1: Let A be an IF-set. Trivially

| max(µA (ω) − 0.5 , 0)− max(µA (ω) − 0.5 , 0)| =0 and
| max(νA (ω) − 0. 5, 0)− max(νA (ω) − 0.5 , 0)| = 0,

and therefore D IFS (A, A) =0 .

IF-Diss.2: Let A and B be two IF-sets. Then it follows from the definition that
D IFS (A, B) =D IFS (B , A).

IF-Div.3: Let A , B and C be three IF-sets. Wemust prove the following inequality:

| max(µA (ω) − 0. 5, 0)− max(µB (ω) − 0.5 , 0)|+
| max(νA (ω) − 0.5, 0)− max(νB (ω) − 0.5, 0)|≥

| max(µA ∩C (ω) − 0. 5, 0)− max(µB ∩C (ω) − 0.5 , 0)|+
| max(νA ∩C (ω) − 0.5 , 0)− max(νB ∩C (ω) − 0.5, 0)|.

This follows from Lemma A.5 in App endix A.

IF-Div.4: Similarly, if A , B and C are three IF -sets, condition IF-Div.4 holds if and
only if:

| max(µA (ω) − 0. 5, 0)− max(µB (ω) − 0.5 , 0)|+
| max(νA (ω) − 0.5, 0)− max(νB (ω) − 0.5, 0)|≥

| max(µA ∪C (ω) − 0. 5, 0)− max(µB ∪C (ω) − 0.5 , 0)|+
| max(νA ∪C (ω) − 0.5 , 0)− max(νB ∪C (ω) − 0.5, 0)|,

and this follows from Lemma A.5 in App endix A.

Hence,D IFS is anIF-divergence. Moreover, it also trivially satisfies axiom IF -Div.5.

Consider the divergence derived in this prop osition:

D(A, B ) =D IFS ({ ( ω , A (ω ),0} , { (ω , B (ω ),0} )= | max( A( ω)− 0.5 , 0)− max( B ( ω)− 0.5 , 0)|.

Although D IFS satisfies IF-Div.5, D do es not fulfill Div.5: ifwe considerthefuzzysets
A and B given by

A= { ( ω , 0 .3)}⇒ Ac = { (ω , 0.7)} , and
B= { (ω , 0.4)}⇒ B c = { (ω , 0.6)}

then it holds that D(A, B) = 0 = 0.1 = D(A c,B c).

Although this second metho d for deriving divergences from IF-divergences is also
valid, for us the first one seems to be more natural; besides,we have sh own that some
of the most important examples of divergences can be obtained applying this metho d to
the corresp onding IF-divergences.
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From fuzzy divergencestoIF-divergences

Consider now adivergence D: F S(Ω) × F S(Ω) → R b etween fuzzy sets defi ne ona
finite space Ω= { ω1, . . . ,ωn } , and let us studyhow toderivean IF-divergence from it.
Consider two IF-sets A and B . Each of them can be decomp osed into two fuzzy sets as
follows:

A= { (ωi ,µ A (ωi ),ν A (ωi ) | i = 1, .. .,n }∈ IF Ss(Ω)

⇒
A1 = { (ωi ,µ A (ωi ) | i = 1, .. .,n }∈ F S(Ω) ⊆ I F S s(Ω).
A2 = { (ωi ,ν A (ωi )) | i = 1, ... ,n }∈ F S(Ω) ⊆ I F S s(Ω).

B= { (ωi ,µ B (ωi ),ν B (ωi ) | i = 1, .. .,n }∈ IF Ss(Ω)

⇒
B1 = { (ωi ,µ B (ωi ) | i = 1, ... ,n }∈ F S(Ω) ⊆ I F S s(Ω).
B2 = { (ωi ,ν B (ωi )) | i = 1, ... ,n }∈ F S(Ω) ⊆ I F S s(Ω).

Using the divergence D we can measure the divergence between the pairs of fuzzy sets
(A 1,B 1) and (A 2,B 2). In other words, we have the divergence between the memb ership
degrees and the non-memb ership degrees; in order to compute the divergence b etweenA
and B itonlyremains tocombine thesetwodivergences.

Theorem 5.50Let D beadivergencefor fuzzysets, andlet f :[0, ∞ ) × [0,∞ ) → [0,∞ )
be a mapping satisfying the fol lowing two properties:

f1: f (0,0) =0 ;
f2: f( ·,t) and f(t, ·) are increasing for every t ∈ [0,∞ );

then, the function D IFS : IF Ss(Ω) × IF Ss(Ω) → R defined by

D IFS (A, B) = f (D (A 1,B 1), D(A 2,B 2)), for every A,B ∈ I F S s(Ω),

is an IF-divergence. Moreover, if D is a local divergence,then D IFS isalso a local IF-
divergence if f has theform: f (x, y) = αx + βy , for some α,β ≥ 0.

Final ly, if f issymmetric then D IFS fulfil ls axiom IF-Div.5 (regardless of whether
D satisfiesor not axiom Div.5), and if f is not symmetric, then although D satisfies
Div.5, D IFS may notsatisfy IF-Div.5.

Pro of: We beginbyshowingthat D IFS isan IF-divergence.

IF-Diss.1: Let A be an IF-set. Applying the definiti on of D IFS we obtainthat:

D IFS (A, A) = f (D (A 1,A 1), D(A 2,A 2)) = f (0 , 0)
f1
= 0.

IF-Diss.2: Let A,B be IF-sets, and let us prove that D IFS (A, B) =D IFS (B , A).

D IFS (A, B) = f (D (A 1,B 1), D(A 2,B 2))
= f (D (B 1,A 1), D(B 2,A 2)) =D IFS (B , A).
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IF-Div.3: Consider the IF-sets A , B and C, and let us prove that D IFS (A ∩ C,B ∩

C) ≤ D IFS (A, B) . Let usnotethe following:

A ∩ C= { (ω ,µA ∩C (ω ),νA ∩C (ω) | ω ∈ Ω}

= { (ω , min(µA (ω ),µC (ω )), max(νA (ω ),νC (ω ))) | ω ∈ Ω}

⇒ (A ∩ C) 1 = { ( ω , min(µA (ω ),µC (ω ))) | ω ∈ Ω}∈ F S (Ω).
(A ∩ C) 2 = { ( ω , max(νA (ω ),νC (ω ))) | ω ∈ Ω}∈ F S (Ω).

Similarly, we als o obtain that

(B ∩ C) 1 = { (ω , min(µB (ω ),µC (ω ))) | ω ∈ Ω}∈ F S (Ω).
(B ∩ C) 2 = { (ω , max(νB (ω ),νC (ω ))) | ω ∈ Ω}∈ F S (Ω).

SinceD isa divergenceforfuzzy sets,applyingDiv.3weobtainthat:

D (A ∩ C1,B ∩ C1) = D((A ∩ C) 1, (B ∩ C) 1) ≤ D(A 1,B 1),

where C1 =µ C , and ap plying Div.4,

D (A ∪ C2,B ∪ C2) = D ((A ∩ C) 2, (B ∩ C) 2) ≤ D(A 2,B 2),

where C2 =ν C . From these prop erties,D IFS (A ∩ C,B ∩ C) ≤ D IFS (A, B)

D IFS (A ∩ C,B ∩ C ) = f (D ((A ∩ C) 1, (B ∩ C) 1), D ((A ∪ C) 2, (B ∪ C) 2))
≤ f (D (A1,B 1), D(A 2,B 2)) =D IFS (A, B).

IF-Div.4: Letus prove that D IFS (A ∪C,B ∪C) ≤ D IFS (A, B) for every IF-setsA,B
and C, similarly to the previous point. We havethat

A ∪ C1 = { (ω , max(µA (ω ),µC (ω ))) | ω ∈ Ω}∈ F S (Ω),
A ∪ C2 = { (ω , min(νA (ω ),νC (ω ))) | ω ∈ Ω}∈ F S (Ω),
B ∪ C1 = { (ω , max(µB (ω ),µC (ω ))) | ω ∈ Ω}∈ F S (Ω),
B ∪ C2 = { (ω , min(νB (ω ),νC (ω ))) | ω ∈ Ω}∈ F S (Ω).

Applying Div.4,
D(A ∪ C1,B ∪ C1) ≤ D(A 1,B 1),

and Div.3 imp lies that:

D(A ∪ C2,B ∪ C2) ≤ D(A 2,B 2).

Using these two inequalitie s, we can prove thatD IFS (A ∪ C,B ∪ C) ≤ D IFS (A, B)

D IFS (A ∪ C,B ∪ C ) = f (D (A ∪ C1,B ∪ C1), D(A ∪ C2,B ∪ C2))
≤ f (D (A1,B 1), D(A 2,B 2)) =D IFS (A, B).
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Hence,D IFS isan IF-divergence. Assumenow that f issymmetric, i.e., f (x, y) = f (y , x)
for every (x, y) ∈ [0 , 1]2, then it is immediate that D IFS satisfiesaxiomIF-Div.5, thatis,
D IFS (A, B) =D IFS (A c,B c) for every A,B ∈ IF Ss(Ω) , since:

D IFS (A, B ) = f (D (A 1,B 1), D(A 2,B 2)) = f (D (A 2,B 2), D(A 1,B 1)) =D IFS (A c,B c).

Howe ver,assume that f is not symmetric, and le t us give an example of divergence
D that fulfills axiomDiv.5, such that D IFS do es not satisfies IF-Div.5. Consider the
normalized Hamming divergence for fuzz y sets:

lFS (A, B)=
1
n

n

i=1

|A (ωi ) − B(ωi )|,

and let f be given by: f(x, y) = αx + βy , where α=β , for example α=1 and β =0 .
Then:

D IFS (A, B)=
1
n

n

i=1
(α |µA (ωi ) − µB (ωi )| +β |νA (ωi ) − νB (ωi )|)

is an IF-divergence. Obviously D satisfies axiomDiv.5, but D IFS do es not satisfy IF-
Div.5; to se e this, it suffices to consider th e IF-sets

A= { (ω , 0.6, 0.2)| ω ∈ Ω} and B= { (ω , 0 .5, 0.4)| ω ∈ Ω} .

Then it holdsthat

D IFS (A, B)= 1
n

n

i=1
(α · 0.1 +β · 0. 2) =α · 0. 1 +β · 0.2 = 0. 1.

D IFS (A c,B c)= 1
n

n

i=1
(α · 0.2 +β · 0. 1) =α · 0. 2 +β · 0.1 = 0. 2.

and therefore D IFS (A, B) =D IFS (A c,B c).

Assume now that D is a lo cal divergence, i.e., that there is a function h,such that

lo c.1: h(x, y) = h(y, x) ,for every (x, y) ∈ [0 , 1]2;
lo c.2: h(x,x) =0 for every x ∈ [0, 1];
lo c.3: h(x, z) ≥ max(h(x, y ), h( y , z )), for every x, y,z ∈ [0, 1]

such that x< y <z ;

for which D can b e expresse d by:

D (A, B )=
n

i=1
h(A (ωi ), B(ωi )).

Then, D IFS is given by

D IFS (A, B) =f

n

i=1
h(µA (ωi ),µ B (ωi )),

n

i=1
h(νA (ωi ),ν B (ωi )) .
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Let us see that if f is linearthen D IFS is a lo cal IF-divergence.In such a case,D IFS has
the followi ng form:

D IFS (A, B)=
n

i=1

α · h(µA (ωi ),µ B (ωi )) +β · h(νA (ωi ),ν B (ωi )),

and if we define h by:

h(x 1,y 1,x 2,y 2) =α · h(x 1,x 2) +β · h(y1,y 2)

then if suffices to showthat h satisfies prop erties (i)-(iv) to deduce that D IFS is a lo cal
IF-divergence. Letussee thatthisis indeedthecase:

IF-lo c.1: Consider(x, y) ∈ [0 , 1]2. By hyp othesis it holds that h(x, x) = h(y,y) =0 ,
and then:

h(x, y, x, y) = αh(x, x) + βh(y, y) = 0.

IF-lo c.2: Consider (x 1,x 2) and (y1,y 2) in T . Then h(x 1,y 1) = h(y 1,x 1) and
h(x 2,y 2) = h(y 2,x 2), whence

h(x 1,x 2,y 1,y 2) = αh(x 1,y 1) + βh(x 2,y 2)
= αh(y 1,x 1) + βh(y 2,x 2) = h(y 1,y 2,x 1,x 2).

IF-lo c.3: Take now(x 1,x 2), (y1,y 2) ∈T and z ∈ [0 , 1]such that x1 ≤ z ≤ y1. Then,
lo c.3 implies that:

h(x 1,y 1) ≥ max( h (x1, z), h(z ,y1)),

whence

h(x 1,x 2,y 1,y 2) =α · h(x 1,y 1) +β · h(x 2,y 2) ≥ α · max(h(x 1, z ), h( z ,y1)) +β · h(x 2,y 2)
=max(h(x 1,x 2, z,y2) , h( z ,x2,y 1,y 2)).

In particular, h(x 1,x 2,y 1,y 2) ≥ h(x 1,x 2, z,y2) and, if (x 2, z), (y2, z) ∈T , then max(x2 +
z ,y2 +z) ≤ 1 and h(x 1,x 2,y 1,y 2) ≥ h(z ,x2,y 1,y 2).

IF-lo c.4: Consider (x 1,x 2), (y1,y 2) ∈T and z ∈ [0, 1] such that x2 ≤ z ≤ y2.
Applying prop erty lo c.3 we see that

h(x 2,y 2) ≥ max(h(x 2, z ), h( z ,y2))

and therefore

h(x 1,x 2,y 1,y 2) = α h(x1,y 1) + βh(x 2,y 2) ≥ αh(x 1,y 1) + β max(h(x 2, z ), h( z ,y2))
= max(h(x 1,x 2,y 1, z ), h(x1, z,y1,y 2)).
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IF-lo c.5: Consider (x 1,x 2), (y1,y 2) ∈T and z ∈ [0 , 1]. By lo c.1, we knowthat
h(z , z) =0 . Then:

h(z ,x2, z,y2) = αh(z , z) + β h(x2,y 2) = β h(x 2,y 2)
≤ αh(x 1,y 1) + βh(x 2,y 2) = h(x 1,x 2,y 1,y 2).

h(x 1, z,y1, z) = αh(x 1,y 1) + β h(z , z) = αh(x 1,y 1)
≤ αh(x 1,y 1) + βh(x 2,y 2) = h(x 1,x 2,y 1,y 2).

Thus, D IFS is a lo cal divergence.

Remark 5.51In a similar way, it ispossible to prove that, if D 1 and D 2 are two
divergences for fuzzy sets,and if f : [0, ∞ ) × [0,∞ ) → [0,∞ ) is an increasing function
with f(0, 0) =0 , then the function D IFS : IF Ss(Ω) × IF Ss(Ω) → R defined by:

D IFS (A, B) = f (D 1(µA ,µ B ),D 2(νA ,ν B ))

for every A,B ∈ IF Ss(Ω) , is an IF-divergence.

If in particular we conside r the function f(x, y) =x we obtain the following result.

Corollary 5.52Let D be amap D : F S(Ω) × F S(Ω) → R, and consider thefunction
f :[0, ∞ )× [0,∞ ) → [0,∞ ) given byf(x, y) =x . Define D IFS : IF Ss(Ω) × IF S s(Ω) → R
by:

D IFS (A, B) = f (D (A 1,B 1), D(A 2,B 2)), for every A,B ∈ I F S s(Ω).
Then, if D satisfies axiom Div.i ( i ∈{ 1 ,2} ), then D IFS satisfies axiom IF-Diss.i ,and if
D satisfies axiomDiv. j ( j ∈{ 3,4} ), D IFS satisfies axiom IF-v. j . Inparticular, if D is
a divergence for fuzzysets, then D IFS is anIF-divergence. Moreover, if D islocal, then
D IFS isalso a local IF-divergence. However, D IFS may not satisfy the property IF-D iv.5
even if D satisfies Div.5.

Pro of:

• Letus assumethat D satisfies Dis s.1.Then, D IFS satisfies IF-Diss .1 since:

D IFS (A, A) = D (A 1,A 1) = 0.

• Letus assumethat D satisfies Dis s.2.Then, D IFS isalso symmetricsince:

D IFS (A, B) = D(A 1,B 1) = D(B 1,A 1) =D IFS (B , A).

• Let us assu me that D satisfies Div.3, and letus see that D IFS (A ∩ C,B ∩ C) ≤
D IFS (A, B) for every IF-sets A, B and C.

D IFS (A ∩ C,B ∩ C) = D(A ∩ C1,B ∩ C1) ≤ D(A 1,B 1) =D IFS (A, B).
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• Finally, assume that D satisfies Div.4. Then also D IFS satisfies axiom IF-Div.4,
since for everyA, B and C itholds that:

D IFS (A ∪ C,B ∪ C) = D(A ∪ C1,B ∪ C1) ≤ D(A 1,B 1) =D IFS (A, B).

Thus, if D is adivergence for fuzzy sets, then D IFS is also an IF -divergence.Moreover,
taking into account theprevious theoremandthat f isa linearfunction, if D is a lo cal
divergence,then D IFS is also a lo cal IF-divergence. Furthermore, wehaveseen inthat
result that asufficient condition for D IFS tosatisfy IF-Div.5 isthat f issymmetric, which
is not the case for f(x, y) =x . Then, wecannot assure D IFS tosatisfy IF-Div.5.

Using the previous resultswecan give some examples of IF-divergences.

Example 5.53Consider thefunction D : F S(Ω) × F S(Ω) → R defined by:

D(A, B )=
ω∈Ω

h(A(ω ), B (ω )),

whereh: R
2 → R is given by:

h(x, y)=
0 if x= y.

1 − xy if x= y.

Montes proved that thisfunctionsatisfies Div.1, Div.2 and Div.3(see[159]). Then, if
we apply Theorem 5.50with the function f (x, y) =x , we conclude that the function D1
satisfies IF-Div.1, IF-Div.2 and IF-Div.3.

Similarly, we can consider the function

h(x, y)=
0 if x= y,
xy if x= y,

and D : F S(Ω) × F S(Ω) → R defined by:

D(A, B )=
ω∈Ω

h(A( ω ) , B ( ω )).

Montes et al. ([159]) provedthat D satisfies Div.1, Div.2and Div.4. Then, applying
Theorem 5.50 with the funct ion f(x, y) =x , we conclude that the function D2 they
generate sat isfies IF-Diss.1, IF-Diss.2 and IF-Div.4.

These two functions D1 and D2 were usedin Example 5.22, and there we have
proved that they are not IF-divergences.
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Example 5.54In Equation (5.2), we considereda function D : F S(Ω) × F S(Ω) → R
defined on the spaceΩ= { ω} by:

D (A, B ) =D IFS (A, B)= |µA (ω) − µB (ω)| + |νA (ω) − νB (ω)|2.

The Hamming distance for fuzzy sets, lFS , is knownto bea divergencefor fuzzy sets.
Then, applying Theorem 5.50 to this divergence and the fu nction f(x, y) = x+y 2,
we obtainthe function of Equation (5.2), and therefore weconcludethat it is anIF-
divergence.

Assume nowthatwe havean IF-divergence D IFS . Using Theorem5.50wecanbuilda
divergenceD forfuzzy sets. On the othe r hand, Prop osition 5.43 allows us to derive
another IF-divergence D ∗

IFS . We next investigate under which conditions thes e two IF-
divergences coincide.

Remark 5.55Letus consider D IFS an IF-divergence. Let D bethe divergencedeter-
mined by Proposition 5.43:

D (A, B ) =D IFS (A, B), for every A,B ∈ F S (Ω).

and let D ∗
IFS be theIF-divergence derived from D by meansof Theorem5.50:

D ∗
IFS (A, B) = f (D (A 1,B 1), D(A 2,B 2)), for every A,B ∈ I F S s(Ω).

Then, D IFS =D
∗
IFS if andonly if forevery A,B ∈ IF Ss(Ω) it holds that:

D IFS (A, B) = f (D IFS (A 1,B 1),D IFS (A 2,B 2)).

Similarly, let D be a divergence for fuzzy sets.Using Theorem5.50 we canbuild anIF-
divergenceD IFS , and applying Prop osition 5.43, from D IFS we canderive a divergence
D ∗. Again, wewanttodetermine ifwerecoverourinitial divergence.

Theorem 5.56Let D beadivergenceforfuzzysets, andlet D IFS be theIF-divergence
derived from D by meansof Theorem5.50, given by

D IFS (A, B ) = f (D (A 1,B 1), D(A 2,B 2)) ∀A,B ∈ I F S s(Ω).

Let D ∗ be thedivergence derived fromD IFS by meansof Proposition5.43:

D ∗
(A, B) =D IFS (A, B ), for every A,B ∈ F S (Ω).

Then, D=D
∗ if andonly if f(x, y) =x for every (x, y) ∈ [0 , 1]2.
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Pro of: Letuscompute theexpressionof D ∗:

D ∗
(A, B) =D IFS (A, B ) = f (D (A, B ), D (Ac,B c))),

for every A,B ∈ F S(Ω). Thus, D (A, B) =D
∗(A, B) for every A,B ∈ F S(Ω) if and only

if:
D(A, B) = f (D(A,B), D(A c,B c)),

and this is equivalentto f(x, y) =x for every (x, y) ∈ [0 , 1]2.

Let us see how Remark 5.55 and Theorem 5.56 apply to the Hammin g distance for
fuzzy sets andtheIF-divergence ofHongand Kim.

Example 5.57Let usconsider the Hamming distance forfuzzy sets:

lFS (A, B)=
n

i=1

|A(ωi ) − B(ωi )|, for every A,B ∈ F S (Ω).

Applying Theorem 5.50, we can build an IF-divergence from lFS :

D IFS (A, B) =f

n

i=1

|µA (ωi ) − µB (ωi )|,
n

i=1

|νA (ωi ) − νB (ωi )| ,

andusingProposition5.43, wecanderive from D IFS another divergenceD for fuzzy sets:

D (A, B ) =f

n

i=1

|A(ωi ) − B(ωi )|, |A(ωi ) − B(ωi )| .

Then, D(A, B) =l FS (A, B) if and only if f(x, x) =x . In particular D and lFS are the
same divergence iff (x, y)= x+y

2 .

Consider now the IF-divergenceDC defined byHong and Kimin Section5.1.3:

DC (A, B)=
1
2

n

i=1

|µA (ωi ) − µB (ωi )| + |νA (ωi ) − νB (ωi )|.

Using Proposition 5.43 we can build a divergence forfuzzy sets:

D(A, B ) =D IFS (A, B)=
n

i=1

|A(ωi ) − B(ωi )| =l FS (A, B ).

If we now apply Theorem 5.50, we can build other IF-divergence given by:

D IFS (A, B) = f (D (A 1,B 1), D(A 2,B 2))

=f

n

i=1

|µA (ωi ) − µB (ωi )|,
n

i=1

|νA (ωi ) − νB (ωi )| .

Thus, we conclude that D IFS (A, B) =D C (A, B) if and only if f(x, y)= x+y
2 .
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Corollary 5.58Let D be a divergence forfuzzy sets. Then, thediagram:

D D IFSs

5.57

❦ 5.50
commutes if and only if f (x, y) =x and

D IFS (A, B) = D (A 1,B 1), for every A,B ∈ I F S s(Ω).

Pro of: Ontheone hand, fromTheorem5.56weknow that f(x, y) =x . Moreover,
from Remark 5.55 the following equation must hold:

D IFS (A, B) = f (D IFS (A 1,B 1),D IFS (A 2,B 2)) =D IFS (A 1,B 1)
= f (D (A 1,B 1), D(A 2,B 2)) = D(A 1,B 1).

Thus, for every A,B ∈ IF Ss(Ω) it mu st hold that:
D IFS (A, B) = D (A 1,B 1).

5.2 Connecting IVF-sets andimprecise probabilities

This section is devoted to investigate the relationship between IF-sets and Imprecise
Probabilities. In fuzzysettheory, it iswellknown([217])thatthere existsaconnection
b etween fuzzy sets and p ossibility measures.Infact, given a normalizedfuzzyset µA , it
defines a p ossibility distribution with asso ciated p ossibility measureΠ defined by:

Π(B ) = sup
x ∈B

µA (x ).

Convers ely,given a possibility measure Π with asso ciated p ossibility distribution π, it
defines a fuzzy set with memb ership functionπ.

In this section, we shall assume first of all that the IVF -s ets are defined ona
probability space. Thus, any IVF-set definesa random set, andthen the probabilistic
information of the IVF-set can b e su mmarized by means of the set of distributi ons of
the measurable selections. Inthis framework, we investigate in wh ich situations the
probabilistic information can be equivalently represented by the set of probabilities that
dominate the lower probability induc ed by the random interval, and the conditions under
which the upp er probability induced by the random interval is a p ossibility measure.

Afterwards, we shall investigate other p ossib le relationships b etween IVF-sets and
imprecise probabilities. For instance, we shall se e that the definition of probability for
IVF-set given byGrzegorzewski and Mrowka ([86]) becomes a particular case in our
theory. We also investigate how a one-to-one relation could be defined between IVF-sets,
p-b oxes and clouds.
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5.2.1 Probabilistic information of IVF-sets

In this section we shall assume that IVF-se ts are defined on a probability space. Then,
they define random sets. We investigate how the probabilistic information ofa IVF-set
can be summarized by means of Imprecise Probabilities.

Since formally IVF-sets and IF-setsare equivalent, aswe sawin Section2.3, we
shall denote IVF-sets by:

{ [µA (ω ),1− νA (ω )] :ω ∈ Ω} ,

where µA and νA refer the membership and non-memb ership degree ofthe asso ciated
IF-set.

IVFS as random intervals

As we mentioned in Section 2.3, an IVF-set can be regarded as a mo del for the imprecise
knowledge ab out the membership function of a fuzzy setA , in the sense that for everyω in
the possibility spaceΩ, its memb ership degree b elongs to the interval[µA (ω ),1− νA (ω )].
Hence, we canequivalently represent theIVF-set I A by meansof a multi-valued mapping
ΓA :Ω →P ([0 , 1]),where

ΓA (ω ) := [µA (ω ),1− νA (ω )]. (5.5)

If the intuitionistic fuzzy set isdefined on aprobability space (Ω, A , P), then theprob-
abilistic information enco ded by the multi-valued mapping ΓA can be summarized by
means of its lower and upp er probabilitiesP∗Γ A ,P ∗

Γ A . Recallthat, fromEquation(2.22),
for any subsetB inthe Borel σ-field β[0,1] , its lower and upp er probabilities are given by

P∗Γ A (B ) := P( { ω :Γ A (ω) ⊆ B } )

and
P ∗

Γ A (B ) := P( { ω :Γ A (ω) ∩ B= ∅}).

We need to make two clarifications here: the firstone isthatthe imagesof themulti-
valued mapping ΓA are non-empty, as a consequence ofthe restriction µA ≤ 1 − νA in
the definition of IVF-sets; thesecond isthat, in order to b e able to define the lower
and upp er probabilities P∗Γ A ,P ∗

Γ A , the multi-valued mapping ΓA needs to be strongly
measurable ([88]), which in this cas e ([129]) means that the mappings

µA ,ν A :Ω → [0 , 1]

must be A− β[0 ,1]− measurable.
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If we assume that the ‘true’ memb ership function imprecisely sp ecified by means
of the IVF-set is A− β[0 ,1]− measurable, the n it must b elong to the set of measurable
selections ofΓA (seeEquation (2.21)):

S(Γ A ) := { φ :Ω → [0 , 1]measurable: φ( ω)∈ [µA (ω ),1− νA (ω )]∀ω ∈ Ω} ,

and as a consequence the probability measure it induces will belong to the set

P(Γ A ) := { Pφ :φ ∈ S(Γ A )} .

Any probability measure in P(Γ A ) is bounded by the upp er probability P ∗
Γ A , andasa

consequence the setP(Γ A ) isincluded inthe set M(P ∗
Γ A ) of probability measures that

are dominated by P ∗
Γ A . As we have seen in Section 2.2.4, both sets are not equivalent

in general; however, Prop osition 2.45 shows severalsituationsin which theycoincide.
Taking this result into account, we can establish the following conditions forthe equality
between the credal sets generated by an IVF-set.

Corollary 5.59Considerthe initial space([0, 1],β[0 ,1],λ [0 ,1]) and ΓA : [0, 1]→P ([0, 1])
defined as in Equation (5.5). Then, the equality M(P ∗

Γ A ) = P(Γ A ) holdsunder anyof
the fol lowing conditions:

(a) The membershipfunction µA is increasing and the non-membershipfunction νA is
decreasing.

(b) µA (ω ) =0 for any ω ∈ Ω.

(c) For any ω,ω ∈ Ω, either ΓA (ω) ≤ ΓA (ω) or ΓA (ω) ≥ ΓA (ω) , where [a1,b1] ≤

[a2,b2] if a1 ≤ a2 and b1 ≤ b2.

The previous conditions can b e interpreted as follow s:

(a) Thegreater thevalue of ω, the more evidence supp orts thatω belongs to A.

(b) There is no evidence supp orting that the elements b elong to setA .

(c) The intervals asso ciated with the elements are ordered. In particular, this holds
whenthe hesitationis constant.

Pro of:

(a) Condition (3a) of Prop osition 2.45 assures thatM(P ∗
Γ A ) and P(Γ A ) coincide when-

ever the bounds of the random interval are increasing. Inthe particularcaseof
IVF-set, this means that both µA and 1 − νA areincreasing, orequivalently, that
µA isincreasing and νA is decreasing.
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(b) Condition (3b) of Prop osition 2.45 assures that M(P ∗
Γ A ) and P(Γ A ) coincide if the

lower bound of the interval equals 0. In the caseof IVF-sets, thismeans that
µA =0 .

(c) Condition (3c) of Prop osition 2.45 assures that M(P ∗
Γ A ) and P(Γ A ) coincide ifthe

bounds of the interval are strictly comonotone. In the case of IVF-sets, the bounds
of the interval, µA and 1 − νA , are comonotone if an d only if ΓA (ω) ≥ ΓA (ω) or
ΓA (ω) ≤ ΓA (ω) for any ω,ω : assume that µA and 1 − νA are comonotone,then
µA (ω) ≥ µA (ω) if and only if 1 − νA (ω) ≥ 1 − νA (ω) for every ω,ω . Thus:

– If µA (ω ) >µ A (ω) ,then 1 − νA (ω ) >1 − νA (ω) , so

ΓA (ω ) = [µA (ω ),1− νA (ω )] > [µA (ω ),1 − νA (ω )] =Γ A (ω ).

– If µA (ω ) <µ A (ω) ,then 1 − νA (ω ) <1 − νA (ω) , so

ΓA (ω ) = [µA (ω ),1− νA (ω )] < [µA (ω ),1 − νA (ω )] =Γ A (ω ).

Onthe otherhand, assumethat either ΓA (ω) ≥ ΓA (ω) or ΓA (ω) ≤ ΓA (ω) for any
ω ,ω. Then:

ΓA (ω) ≥ ΓA (ω) ⇒ µA (ω) ≥ µA (ω) and 1 − νA (ω) ≥ 1 − νA (ω)
ΓA (ω) ≤ ΓA (ω) ⇒ µA (ω) ≤ µA (ω) and 1 − νA (ω) ≤ 1 − νA (ω)

and from this we dedu ce that µA and 1 − νA are comonotone.

On theother hand, [129, Example 3.3] shows that the equality P (Γ) = M(P ∗
Γ ) do es not

necessarily hold forall the randomclosed intervals, even whenthe initial probability space
is non-atomic: it suffices to cons ider(Ω, A , P ) = ([0 , 1],β[0 ,1],λ [0 ,1]) and Γ : [0 , 1]→P (R)
given by

Γ(ω ) =[ − ω , ω]∀ω ∈ [0 , 1].

It is easy to adapttheexampleto our context and deduce thatthere are intuitionistic
fuzzy sets where the information ab out the memb ership function is not completely de-
termined by the upp er probability P ∗

Γ A : itwould suffice to take ΓA : [0, 1] →P ([0, 1])
given by

ΓA (ω ) = 0.5 −
ω

2
,0.5+

ω

2
∀ω ∈ [0 , 1], (5.6)

that is, to consider the IVF-set such that the memb ership and non-memb ership functions
of its asso ciated IF-set coincide and take the value1− ω

2 .

We have seen in Prop osition 2.47 that the upp er probability asso ciated witha
random set is a p oss ibility measure if and only if the images of Γ arenested except for
anull subset. In the particular case of the random closed intervals asso ciated with an
IVF-set,wededuce the following:
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Corollary 5.60Let ΓA :Ω →P ([0, 1]) be the random set defined in the probability space
(Ω, A , P) by Equation (5.5). Then, P ∗

Γ is possibility measure ifand onlyif there exists
someN ⊆ Ω null such that µA and νA are comonotoneon Ω\ N .

Pro of: Assume that ΓA is a possibility measure. Then, by Prop osition 2.47, the re is
anull set N such that ΓA (ω1) ⊆ ΓA (ω2) or ΓA (ω2) ⊆ ΓA (ω1) for any ω1,ω2 ∈ Ω\ N .
Consider ω1,ω2 ∈ Ω\ N , it holds that:

ΓA (ω1) ⊆ ΓA (ω2) ⇒ [µA (ω1),1 − νA (ω1)] ⊆ [µA (ω2),1 − νA (ω2)]
⇒ µA (ω1) ≥ µA (ω2) and 1 − νA (ω1) ≤ 1 − νA (ω2)
⇒ µA (ω1) ≥ µA (ω2) and νA (ω1) ≥ νA (ω2)

ΓA (ω2) ⊆ ΓA (ω1) ⇒ [µA (ω2),1 − νA (ω2)] ⊆ [µA (ω1),1 − νA (ω1)]
⇒ µA (ω2) ≥ µA (ω1) and 1 − νA (ω2) ≤ 1 − νA (ω1)
⇒ µA (ω2) ≥ µA (ω1) and νA (ω2) ≥ νA (ω1).

Then, µA and νA arecomonotone on Ω\ N .

Conversely, as sume thatµA and νA arecomonotone on Ω\ N .

If µA (ω1) ≤ µA (ω2) ⇒ νA (ω1) ≤ νA (ω2)
⇒ [µA (ω1),1 − νA (ω1)] ⊆ [µA (ω2),1 − νA (ω2)] ⇒ ΓA (ω2) ⊆ ΓA (ω1).

If µA (ω2) ≤ µA (ω1) ⇒ νA (ω2) ≤ νA (ω1)
⇒ [µA (ω2),1 − νA (ω2)] ⊆ [µA (ω1),1 − νA (ω1)] ⇒ ΓA (ω1) ⊆ ΓA (ω2).

P-b ox induced by a IVF-set

The lower and upp er probabilities P∗Γ A ,P ∗
Γ A summarize the probabilistic information

ab out the probability distribution of the memb ership function of th e IVF-set A. If in
particular we want to summarise the information ab out the distribution function of this
variable, we must use the lower and upp er distribution functions:

F A ,F A :Ω → [0 , 1],

where
F A (x ) :=P ∗Γ A ([0, x]) = P( { ω :1 − νA (ω) ≤ x} ) =P νA ([1 − x, 1]) (5.7)

and
F A (x ) :=P

∗
Γ A ([0 , x]) = P( { ω :µ A (ω) ≤ x} ) =P µ A ([0, x]). (5.8)

When Ω is an ordered space(for instance if Ω = [0, 1]), the lower and upp er distribution
functions F A ,F A can be used to determinea p-b ox. In that case, we shall refer to
(F A ,F A ) asthe p-box on Ω associated with the intuitionistic fuzzy set A .
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The lower and upp er distribution functions also determine a set of probability mea-
sures:

M(F A ,F A ) := { Q :β [0 ,1] → [0 , 1] :FA (x) ≤ FQ (x) ≤ F A (x) ∀x ∈ [0, 1]} ,

where FQ is the distribution function asso ciated with the probability measure Q. It is
immediate to see that the set M(F A ,F A ) includes M(P ∗

Γ A ). However, the two sets do
not coincide in general, and as a consequence the use of the lower and upp er distribution
functions may pro duce a loss of information, as we can see in the following example.

Example 5.61ConsidertherandomsetofEquation (5.6), definedon ([0, 1] ,β[0,1] ,λ [0,1] )
by ΓA (ω ) = 0.5 − ω

2 , 0. 5+ ω
2 . Using Equation (2.23), we already know that the credal

set M(P ∗
Γ A ) is given by:

M (P
∗
Γ A )= { P probability | P∗Γ A (B) ≤ P (B) ≤ P ∗

Γ A (B) for any B } .

Let us now compute theform of theset M(F A ,F A ):

F A (x ) =P ∗Γ A ([0 , x]) = P( { ω ∈ [0, 1] : Γ( ω)⊆ [0 , x]} )
= P( ω ∈ [0, 1] : Γ(ω) = 0.5 − ω

2 , 0. 5+ ω
2 ⊆ [0 , x] )

= P( { ω ∈ [0 , 1] :ω∈ [− 1, 2x− 1]} )
= P( { ω ∈ [0 , 1] :ω∈ [0 , 2x− 1]} )

=
0 if x ≤ 1

2 .

2x − 1 otherwise.
F A (x ) =P

∗
Γ A ([0 , x]) = P( { ω ∈ [0, 1] : Γ( ω)∩ [0 , x]= ∅})

= P( ω ∈ [0 , 1]: 0.5− ω
2 ,0.5+ ω

2 ∩ [0 , x]= ∅ )

=
2x if x ≤ 1

2 .

1 otherwise.

Thus, the set M(F A ,F A ) is formed by the probabilities whose associated cumulative
distribution function is boundedby F A and F A .

Consider now t he probabilit y distribution associated with the cumulative distribution
function F defined by:

F (x )=






F A (x) if x ≤ 1
4 .

1
2 if x ∈ 1

4 , 3
4 .

F A (x) if x> 3
4 .

Its associated probability, PF , belongs to M(F A ,F A ). Now, let us check that PF does
not belong to M(P ∗

Γ A ). For this aim,note that:

P∗Γ A
1
4 , 3

4 =P ω ∈ [0, 1] : Γ( ω)⊆ 1
4 , 3

4

=P ω ∈ [0 , 1]: 0.5− ω
2 , 0.5+ ω

2 ⊆ 1
4 , 3

4

=P ω ∈ [0 , 1] :ω∈ 0, 1
2 = 1

2 .
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This means that every probabilityP in M(P ∗
Γ A ) must hold that P 1

4 , 3
4 ≥ 1

2 . However,
PF

1
4 , 3

4 =0 , and consequentlyPF /∈ M(P ∗
Γ A ).

We conclude thatM(F A ,F A ) ⊃ M(P ∗
Γ A ).

Nevertheless, there are non-trivial situations in which both sets coincide.

Example 5.62Consider the initial space([0, 1],β[0,1] ,λ [0,1] ) andtherandom set ΓA
defined from the IF-set I A by:

ΓA (ω )=
{ ω} if ω ∈ 0, 1

4 ∪ 3
4 , 1.

1
4 , 3

4 otherwise.

Thus, themembership and non-membership functions are given by:

µA (ω )=
ω if ω ∈ 0, 1

4 ∪ 3
4 ,1

1
4 otherwise,

and

νA (ω )=
1 − ω if ω ∈ 0, 1

4 ∪ 3
4 , 1.

1
4 otherwise.

Then, the lower and upper cdfs F A and F A are givenby:

F A (x )=






x if x ∈ 0, 1
4 ,

1
4 if x ∈ 1

4 , 3
4 ,

x if x ∈ 3
4 , 1,

and F A (x )=






x if x ∈ 0, 1
4 .

3
4 if x ∈ 1

4 , 3
4 .

x if x ∈ 3
4 , 1.

We know that M(F A ,F A ) ⊇ M(P ∗
Γ A ). Let us now see that for every probability P

such that F A ≤ FP ≤ F A , P ∈ M(P ∗
Γ A ). Let P beone suchprobability, and let FP

denote its associated cumulative distribution function. Considernow themeasurable map

U (ω) :=F
− 1]
P (ω),where F

− 1]
P denotesthe pseudo-inverseof thecumulative distribution

function FP . It trivial ly holds that U ∈ S(Γ A ), and consequentlyPU ∈ P(Γ A ) ⊆ M(P ∗
Γ A ).

On theotherhand, since F
− 1]
P (ω) ≤ x if and only if ω ∈ [0 ,FP (x )], FU and FP coincide:

FU (x ) = P( { ω ∈ [0 , 1]| U (ω)≤ x} ) = P( { ω ∈ [0 , 1]| F
− 1]
P (ω) ≤ x} )

= P( { ω ∈ [0 , 1]| ω ≤ FP (x) } ) = P([0,F P (x )]) =F P (x ).

Thus, P =P U , and consequentlyP ∈ P(Γ A ) ⊆ M(P ∗
Γ A ).

The following result gives a sufficient condition for the equality betweenM(F A ,F A )
and M(P ∗

Γ A ):
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Prop osition 5.63If the initial space is ([0, 1] ,β[0 ,1],λ [0 ,1]) and the random int erval is an

IVF-setasinEquation (5.5), where µA (x ) =0 for every x, then M(F A ,F A ) = M(P ∗
Γ A ).

Pro of: Assume thereis a probability P ∈ M(F A ,F A ) such that for some measurable
B it satisfies P (B )/∈ [P∗Γ A (B ),P ∗

Γ A (B )]. We consider two cas es:0 ∈ B and 0/∈ B .

0/∈ B : When 0/∈ B , it holds that P∗Γ A (B ) =0 :

P∗Γ A (B ) = P( { ω | Γ(ω) ⊆ B } ) =P( { ω | [0,µ A (ω )]⊆ B } )= 0,

since 0 ∈ ΓA (ω)\ B for any ω. Then, itholds that P (B ) >P
∗
Γ A (B) . In addition,

P ∗
Γ A (B) =1 − P∗Γ A (B c), and consequently P∗Γ A (B c) must be strictly positive

(otherwise P (B ) >P
∗
Γ A (B ) =1 and a contradiction arises). Thus, thereexistsan

interval [0 , x]⊆ B c. Let ε= sup { x : [0, x] ⊆ B c} , and considertwo cases:

• Assume that ε= max { x : [0, x] ⊆ B c} . Then , since(ε, 1] ⊇ B , it holds that:

P (B) ≤ P ((ε, 1]) =1 − FP (ε ),

and consequently:

1 − FP (ε) ≥ P (B ) >P
∗
Γ A (B ) =1 − P∗Γ A (B c).

But:

PΓ A ∗(B c) = P( { ω | ΓA (ω) ⊆ B c} ) =P( { ω | ΓA (ω) ⊆ [0 , ε]} ) =F A (ε ).

Thus:

1 − FP (ε) >1 − P∗Γ A (B c) =1 − F A (ε) ⇒ F A (ε ) > F (ε ),

and a contradiction arises sinceP/∈ M(F A ,F A ).
• Assume that ε= max { x : [0, x] ⊆ B x } . Then:

P∗Γ A (B c) = P( { ω | ΓA (ω) ⊆ B c} ) =P( { ω | ΓA (ω) ⊆ [0, ε)} ) =P ∗Γ A ([0 , ε)).

Moreover:
[0, ε) ⊆ B c ⇒ [ε, 1] ⊇ B ⇒ P([ε, 1]) ≥ P (B ).

Thus, it holds that

P([ε, 1]) ≥ P (B ) >1 − P∗Γ A ([0, ε)) =P
∗
Γ A ([ε, 1]).

However, note that FP (t) ≥ F A (t ) =F 1− νA (t) for any t ,and:

P([ε, 1]) =1 − FP (t
−

) ≤ 1 − F A (t
−

) =P
∗
Γ A ([ε, 1]),

a contradic tion.
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0 ∈ B : Notethat, since 0 ∈ B , P ∗
Γ A (B ) =1 :

P ∗
Γ A (B ) = P( { ω | Γ(ω) ∩ B= ∅}) ≥ P( { ω | Γ(ω) ∩{ 0} = ∅}) = 1.

Then P (B) <P ∗Γ A (B) . Since P∗Γ A (B) >0 , there exists [0, x] ⊆ B . Define
ε = sup { x : [0, x] ⊆ B } and consider two cases:

• Assume that ε = max { x: [0, x] ⊆ B } . Then, P (B) ≥ P([0, ε]) =F P (ε) .
However:

P∗Γ A (B ) = P( { ω | ΓA (ω) ⊆ B } ) = P( { ω | ΓA (ω) ⊆ [0 , ε]} )
=F A (ε) ≤ FP (ε) ≤ P (B ),

a contradic tion, b ecause we had assumed thatP∗Γ A (B) > P (B) .
• Assume that ε= max { x : [0, x] ⊆ B } . Then P (B) ≥ P([0, ε)) . Moreover,

P∗Γ A (B ) = P( { ω | ΓA(ω) ⊆ B } ) =P( { ω | ΓA(ω) ⊆ [0 , ε)} )
=F A (ε− ) =F 1− νA (ε− ) ≤ FP (ε− ) = P([0, ε)) ≤ P (B ).

This contradictstheassumption of PΓ A ∗(B ) > P (B) .

Another suffic ient condition for the equality b etween M(P ∗
Γ A ) and M(F A ,F A ) is the

strict comonotonicity between µA and 1 − νA , that, as we have seen in Corollary 5.59, is
equivalent to the exis tence of a total order b etween the intervals[µA (ω ),1− νA (ω )].

Prop osition 5.64If the initial space is ([0,1],β [0 ,1],λ [0 ,1]) and the random interval is
givenbyanIF-setasinEquation (5.5), where ΓA (ω) ≤ ΓA (ω) or ΓA (ω) ≥ ΓA (ω) for
any ω,ω ∈ Ω, then M(F A ,F A ) = M(P ∗

Γ A ).

Pro of: In [129, Theorem 4.5] it is proven that when therandom interval is defined on
([0, 1],β[0 ,1],λ [0 ,1]) and its bounds are strictly comonotone, then it is p ossibl e to define
the random interval Γ : [0, 1]→P ([0, 1]) by:

Γ(ω) := [U (ω), V (ω)],

where U and V denote th e quantile functions of the lower and upp er bounds of ΓA ,
resp ectively, that are defined by:

U(ω) = inf { x ∈ R :ω ≤ F (x)} and V (ω ) = inf{ x ∈ R :ω ≤ F (x)} .

This random interval satisfies P ∗
Γ =P

∗
Γ A , and consequently M(P ∗

Γ ) = M(P ∗
Γ A ) and

M (F ,F ) = M (F A ,F A ). Then, in ordertoprove theequality M(P ∗
Γ A ) = M(F A ,F A ) it

is sufficient to establish the equality between M(P ∗
Γ ) = M(F , F) .

Consider now a probability P ∈ M(F , F) , and define W asthe quantilefunction of
FP . SinceF ≤ FP ≤ F , W (ω) is bounded byU (ω)and V (ω) for any ω ∈ [0 , 1]. Then, W
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is a measurable selection ofΓ, an d its induce probability PW belongs toP(Γ) . Moreover,
sinceP (Γ) = M(P ∗

Γ ), PW also belongs toM(P ∗
Γ ).

Thus, M(P ∗
Γ ) = M(F , F) , and therefore M(P ∗

Γ A ) = M(F A ,F A ).

One particular situation where the previous result holds is when µA is strictly
increasing,νA isstrictly decreasingand µA (ω ) =µ A (ω) if and only if νA (ω ) =ν A (ω) .

Finally, we are going to see that the equality between b oth credal se ts also holds
when the b ounds of the interval are inc reasing.

Prop osition 5.65If the initial space is ([0 , 1],β[0 ,1],λ [0 ,1]) and the random interval is
given by an IF-set asin Equation (5.5), where µA is increasingand νA is decreasing,
then M(F A ,F A ) = M(P ∗

Γ A ).

Pro of: Let P be a probability in M(F A ,F A ), andweare going tosee thatthere is
ameasurable selection V such that PV =P , and therefore M(F A ,F A ) ⊆ P(Γ A ) ⊆

M(P ∗
Γ A ). Since µA is increasing, there is a countable numb er of elements ω ∈ (0 , 1)

such that µA (ω ) > sup ω <ω µA (ω) . Denote thi s set by N , and consider the fu nction
V : [0, 1] → R defined by:

V (ω )=
inf { y :ω ≤ P(( −∞ , y])} if ω ∈ (0 , 1)\ N.

µA (ω) otherwise.

Following the same steps than in [129, Prop osition 4.1], this functionV can be proved to
b e a measurable selection ofΓA such that PV =P . Then, we conclude thatM(F A ,F A ) ⊆

P(Γ A ) ⊆ M(P ∗
Γ A ), and then we conc lude that b oth credal s ets coincide.

These results allow us state a numb er of sufficient conditions for the equality b etween
the three sets of probabilities P(Γ A ), M (P∗

Γ A ) and M(F A ,F A ).

Corollary 5.66Considerthe initialspace is ([0, 1] ,β[0, 1],λ [0, 1]) and the random interval
ΓA givenbyanIVF-setas inEquation (5.5). Then, theequalities P(Γ A ) = M(P ∗

Γ A )=
M(F A ,F A ) hold if one of the fol lowing conditions is satisfied:

• µA isincreasing and νA is decreasing.

• µA (ω ) =0 for any ω ∈ [0 , 1].

• µA and 1 − νA are strictly comonotone, or equivalently, if ΓA (ω) ≤ ΓA (ω) or
ΓA (ω) ≤ ΓA (ω) for any ω,ω ∈ [0 , 1].

We have seen sufficient conditions under which the p-b ox defined from the random inter-
val ΓA contains the same information than the set of me asurable selections.Conversely,
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there are situations inwhich, given a p-b ox, it is possible to define a random interval
ΓA whose asso ciated p-b ox coincides with the previous one,and that the probabil istic
information given by the p-b ox is the same that the information given by the set of
measurable sele ctions.

Prop osition 5.67Consider a p-box(F , F) defined on [0, 1]such that bothF and F are
right-continuous. Then it ispossibleto define arandom interval Γ: [0, 1] →P ([0, 1])
whose associated p-box is(F , F). In addition, if eit her F and F are strictlycomonotone
or F (x ) =1 , then the random interval Γ satisfies P (Γ) = M(F , F) .

Pro of: Proposition 2.45 assures that P (Γ) = M(P ∗
Γ A ). Given the p-b ox (F , F),define

the random interval ΓA (ω ) = [U (ω ), V (ω)], wh ereU and V are thequantilefunctionsof
F and F , resp ectively.Then, the p-b ox asso ciated withΓA is given by:

F A (t) =F V (t ) = P( { ω ∈ [0 , 1]| V (ω)≤ t} ) = F (t ).
F A (t) =F U (t) = P( { ω ∈ [0 , 1]| U (ω)≤ t} ) = F (t ).

SinceF and F are right-continuous, U and V are random variables because their cumu-
lative distribution functions are right-continuous. Assume nowthat F and F are strictly
comonotone. Then, U and V are also strictly comonotone, and following Prop osition 5.64,
the credal set P(Γ A ) coincideswith the credal set M( F , F).

Assume that F (x) =1 . Then, U =0 almost surely. Applying Prop osition 5.63,
P(Γ A ) = M(F , F) .

In Corollary 5.60 we have seen that the upp er probability induced by the random
set ΓA definedfrom anIF-set I A is a possibility measure if and only if µA and νA are
strictly comonotone on the complementary ofa null set. In[199], thefollowingresultis
proved:

Prop osition 5.68 ([199, Corollary 17])Assume that Ω/ is order completeand let
(F , F) be a p-box. Let P (F ,F) denotethe lowerprobabilityassociatedwith (F , F) by

meansof Equation (2.17). Then the natural extension of P (F ,F) is a possibilitymeasure
if and only if either

(L1) F is 0–1valued,

(L2) F (x ) = F (x− ) for all x ∈ Ω that have no immediate predecessor, and

(L3) { x ∈ Ω ∪{ 0−} : F (x ) =1 } has aminimum, where 0− isaminimumelement on
Ω,

or
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(U1) F is 0–1valued,

(U2) F (x ) = F (x+ ) for all x ∈ Ω that have no immediate successor, and

(U3) { x ∈ Ω ∪{ 0−} : F (x ) =0 } has amaximum.

In ourcontext, whentheinitialspaceis [0, 1], no element in such interval has immediate
predecessor or successor.Assume now that the p-b ox(F A ,F A ) definedfrom the random
interval ΓA as in Equations (5.7) and (5.8) is a p ossibi lity measure.Note that since F A
and F A are right-continuous, (U 2) becomes trivial. On theonehand, assume that F A
is 0–1 valued. Then, there exists t∗ such that F (t) =1 for any t ≥ t∗ and F (t ) =0 for
any t<t ∗, and by (L3) it is left-continuous. Equivalently:

F(t) = P( { ω ∈ [0 , 1]| ΓA (ω) ⊆ [0 , t]} ) =1 for any t ≥ t∗.
F(t) = P( { ω ∈ [0 , 1]| ΓA (ω) ⊆ [0 , t]} ) =0 for any t<t ∗.

Then, 1 − νA (ω ) =t
∗ for every ω ∈ [0 , 1]\ N for some nul l setN on β[0 ,1]. Onthe other

hand, assume that F A is0–1 valued. Then, there exists t∗ such that F (t ) =1 for any
t >t ∗ and F (t ) =0 for any t ≤ t∗, and by (U 2) it is right-continuous. Equivalently:

F (t) = P( { ω ∈ [0 , 1]| ΓA (ω) ∩ [0 , t]= ∅}) =1 for any t ≥ t∗.

F (t) = P( { ω ∈ [0 , 1]| ΓA (ω) ∩ [0 , t]= ∅}) =0 for any t<t ∗.

Thus, µA (ω ) =t
∗ for every ω ∈ [0 , 1]\ N forsome nullset N on β[0 ,1]. Wededuce that:

Prop osition 5.69Consider theinitial space ([0,1],β [0 ,1],λ [0 ,1]) and the random interval

ΓA defined fromthe IVF-set I A . Consider thep-box (F A ,F A ) definedin Equations (5.7)
and (5.8). If (F A ,F A ) defines a possibility measure, then there is a null set N on β[0 ,1]
and t∗ such that either 1 − νA (ω ) =t

∗ for any ω ∈ [0 , 1]\ N or µA (ω ) =t
∗ for any

ω ∈ [0 , 1]\ N . In sucha case, P(Γ A ) = M(P ∗
Γ A ) = M(F A ,F A ).

A non-measurable ap proach

The previous developments assumethat theintuitionistic fuzzy setis definedon aprob-
ability space and that the functions µA ,ν A are measurable with resp ect to theσ-field we
have on thisspace and the Borelσ-field on [0 , 1]. Although thisisa standardassumption
when considering the probabilities asso ciated with fuzzy events,itis arguablydone for
mathematical convenience only.In this section , we present an alternative approach where
wegetrid of themeasurabilityassumptions by meansof finitelyadditiveprobabilities.
This allows us to make a clearer li nk withp-b oxes, by means of Walley’s notion of natural
extension intro duced in Definition 2.32.

Consider thus aintuitionistic fuzzy set A defined on aspace Ω. If thissetis deter-
mined by thefunctions µA ,ν A , we can represent it by means of the multi-valued mapping
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ΓA :Ω → [0 , 1]given by ΓA (ω ) = [µA (ω ),1− νA (ω )]. Note thatwearenot assumingany-
more thatthis multi-valuedmapping is strongly measurable, and now ourinformation
ab out the “true” memb ership function would be given by the set of functions

{ φ :Ω → [0, 1] :µA (ω) ≤ φ(ω) ≤ 1 − νA (ω)} .

Now, if wedo notassume themeasurabilityof µA ,ν A and considerthen thefield P (Ω) of
all events in the initial space, we may not be able to mo del our uncertainty by means of
a σ-additive probability measure. However, we can do so by means of a finitely additive
probability measure P ormoregenerallybymeans of an imprecise probability mo del
[205]. Moreover, the notions of lower and upp er probabilities can be generalized to that
case [132].Iffor instance we consider a finitely additive probability P on P (Ω), then by
an analogous re as oning to that in Section 5.2.1 we obtain that

Pφ(C) ∈ [PΓ ∗A (C ),P
∗
Γ A (C )] ∀C ⊆ [0 , 1],

where P ∗
Γ A is the completely alternating upp er probability given by

P ∗
Γ A (C ) = P( { ω :Γ A (ω) ∩ C= ∅})

and its conjugate P∗Γ A isthe completelymonotonelowerprobabilitygivenby

P∗Γ A (C ) = P( { ω: ∅=Γ A (ω) ⊆ C} )

for every C ⊆ [0 , 1]. Then the information ab out Pφ is given by the set of finitely additive
probabilities dominated by P ∗

Γ A , and we do not need to make the distinction between
P(Γ A ) and M(P ∗

Γ A ) as in Section 5.2.1.

The asso ciated p-b ox is given now by the set of finitely additive distribution func-
tions (that is, monotone and normalized) that lie between F A and F A , where again
F A ,F A are given by Equations (5.7) and (5.8), resp ectively.

This set is equivalent to the set of asso ciated finitely additive probability measures
that can be determined by natural extension.Th is can b e determined in the following way
([198]): if we denoteby H thefield of subsetsof [0 , 1]generated by thesets { [0, x] , ( x, 1):
x ∈ [0 , 1]} ,then any set B ∈H isof theform

B := [0,x 1] ∪ (x 2,x 3] ∪ .. . (x2n ,x 2n +1 ]

or
B := (x 1,x 2] ∪ .. . (x2n ,x 2n +1 ]

for some n ∈ N,x 1 <x 2 < ··· <x n ∈ [0 , 1]. It holdsthat

E F ,F ([0,x 1] ∪ (x 2,x 3] ∪ .. . (xn , 1]) =F A (x 1)+
n

i=1
max{ 0 ,FA (x 2i +1 ) − F A (x 2i )}
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and
E F ,F ((x 1,x 2] ∪ .. . (x2n ,x 2n +1 ])=

n

i=0
max{ 0,F A (x 2i +1 ) − F A (x 2i )} (5.9)

and if we consider any C ⊆ [0 , 1], then

E F ,F (C )= sup
B ⊆ C ,B ∈H

E F ,F (B ).

The upp er probability P ∗
Γ A isdetermined by P∗Γ A using conjugacy.

It can be easily seen that P∗Γ A and the natural extension of the p-b oxE F ,F do not
coincide in general, even in sets ofthe form (x 1,x 2]:

Example 5.70Consider the random interval of Example 5.61. Wealready knowthat
P∗Γ A

1
4 , 3

4 = 1
2 . Similarly, itcanbe provedthat P∗Γ A

1
4 , 3

4 = 1
2 . Now, letus use

Equation (5.9)to compute E F ,F
1
4 , 3

4 :

E F ,F
1
4

, 3
4

=max 0,F A
3
4

− F A
1
4

=max 0,
1
2

− 1
2

=0.

We conclude that, in general, P∗Γ A and E F ,F donot coincideevenin setsof the form

(x 1,x 2].

Our next example shows that P∗Γ A and E F ,F do not coincide neither when the bounds
of the random interval are increasing.

Example 5.71Consider therandom interval defined by:

ΓA (ω )=






[ω , 2ω] if ω ∈ 0, 1
3 .

1
3 , 2

3 if ω ∈ 1
3 , 2

3 .

[2ω− 1, ω] otherwise.

The bou nds of its associated p-box are defined by:

F A (x )=
1
2 x if x ∈ 0, 2

3 .

x otherwise.

F A (x )=
x if x ∈ 0, 1

3 .
1
2 x+ 1

2 otherwise.

Then, P∗Γ A
1
3 , 2

3 = 1
3 . However,it holds that:

E F A ,F A

1
3

, 2
3

=F A
2
3

− F A
1
2

=
2
3

− 2
3

=0.
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Furthermore:

E F A ,F A

1
3

, 2
3

= sup
B ⊆ [ 1

3 , 2
3 ],B ∈H

E F A ,F A (B) ≤ E F A ,F A

1
3

, 2
3

=0.

Thus, the natural extension is less informative than the original lower probability.

Next we show that the lower probability and the natural extension defined of the p-b ox
coincide whenµA =0 .

Prop osition 5.72Consider theinitial space ([0, 1] ,β[0 ,1],λ [0 ,1]) and the random interval
defined from an IF-set A with µA =0 . Then, E F A ,F A =P ∗Γ A .

Pro of: We know that µA =0 implies that F A =1 . Let us prove the equality between
thenatural extension and thelower probability followingseveral steps:

1. Let B be a set on H . Wehaveseveral cases:

• Assume that B = [0, x] . Then:

P∗Γ A ([0, x]) = P( { ω : Γ(ω) ⊆ [0 , x]} ) =F A (x ).
E F A ,F A ([0, x]) =F A (x ).

• Assume now that B = [0 ,x 1) ∪ [x2,x 3) ∪ ... ∪ [x2k ,x 2k +1 ], with x1 <x 2 <
. .. <x n . Then:

P∗Γ A (B ) = P( { ω :Γ A (ω) ⊆ B } ) = P( { ω :Γ A (ω) ⊆ [0 ,x1]} ) =F A (x 1).

E F A ,F A (B ) =F A (x1)+
n

i=1
max{ 0 ,FA (x 2i +1 ) − F A (x 2i )}

=F A (x1)+
n

i=1
max{ 0 ,FA (x 2i +1 ) − 1} =F A (x 1).

• Finally, assumethat B =(x 1,x 2]∪. .. ∪(x 2n ,x 2n +1 ], with x1 <x 2 < .. . <x n .
Then:

P∗Γ A (B ) = P( { ω :Γ A (ω ) = [0,1 − νA (ω )]⊆ B } )= 0.

E F A ,F A (B )=
n

i=1
max{ 0,F A (x 2i +1 ) − F A (x 2i )}

=
n

i=1
max{ 0,F A (x 2i +1 ) − 1} = 0.

Then, E F A ,F A and P∗Γ A coincidefor elementsin H .

2. Consider C ⊆ [0 , 1]. Denote by x∗ =sup { x : [0, x] ⊆ C} . Wehaveseveral cases:
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• Assume that { x : [0 , x] ⊆ C} = ∅, that meansthat 0/∈ C. Then, 0/∈ B for
every B ∈H , and then E F A ,F A (B ) =0 . Thus,we concludethat

E F A ,F A (C )= sup
B ⊆ C ,B ∈H

(B ) = 0.

Furthermore, since 0/∈ C, P∗Γ A (C ) =0 .
• Now, assumethat x∗ =max { x : [0, x] ⊆ C} , that meansthat 0 ∈ C and there

is x∗ such that [0,x
∗] ⊆ C but [0,x

∗ +ε] ⊆ C for any ε>0 . Then:

P∗Γ A (C ) = P( { ω :Γ A (ω) ⊆ C} ) =P( { ω :Γ A (ω) ⊆ [0,x
∗]} ) =F A (x ∗).

E F A ,F A ([0,x
∗]) =F A (x∗).

Furthermore,as in theprevious case:

E F A ,F A ([0,x
∗
]) =E F A ,F A (B)

for any B such that [0 ,x
∗] ⊆ B , and consequently

E F A ,F A (C ) =E F A ,F A ([0 ,x
∗
]) =F A (x

∗
).

• Finally, assumethat x∗ isasupremum, notamaximum, thatis: [0 ,x
∗) ⊆ C

but x∗ /∈ C. Then:

P∗Γ A (C ) = P( { ω :Γ A (ω) ⊆ [0 ,x
∗)} ) = lim ε→ 0 P( { ω :1 − νA (ω) ≤ x∗ − ε} )

=lim ε→ 0 F A (x ∗ − ε) = lim ε→ 0 P∗Γ A ([0,x
∗ − ε])

=lim ε→ 0 E F A ,F A ([0,x
∗ − ε])

=sup B ⊆ [0,x ∗),B ∈H E F A ,F A (B ) =E F A ,F A ([0,x
∗)).

In addition, every B ∈H such that [0,x
∗) ⊆ B satisfies that E F A ,F A (B )=

E F A ,F A ([0,x
∗)) . Then, thelowerprobabilityandthenaturalextensioncoin-

cide.

Wecouldthink thatthe lowerprobabilityand thenatural extension of the asso ciated
p-b ox also coincide when the b ounds of the ran dom interval are strictly comonotone
functions. However, we can find examples where such equality do es not hold.

Example 5.73Consider therandom interval ΓA defined on ([0, 1],β[0,1] ,λ [0,1] ) by:

ΓA (ω )=






1
2 − ω,1 − ω if ω ∈ 0, 1

4 .
1
4 , 3

4 if ω ∈ 1
4 , 3

4 .

ω− 1
2 ,ω if ω ∈ 3

4 , 1.
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Since µA (ω ) = (1 − νA (ω ))− 1
2 , we see that µA and 1 − νA are strictly comonotone. Its

associated p-box is defined by:

F A (t )=






0 if t ∈ 0, 1
4 ,

2t if t ∈ 1
4 , 1

2 ,

1 if t ∈ 1
2 , 1,

and F A (t )=
0 if t ∈ 0, 3

4 .

2t − 1 if t ∈ 3
4 , 1.

Let us computeP∗Γ A and E F A ,F A
for theset 1

4 , 7
8 :

P∗Γ A
1
4 , 7

8 =P ω:Γ A (ω) ⊆ 1
4 , 7

8 = 1
4 .

E F A ,F A
1
4 , 7

8 =max 0,F A
1
4 − F A

7
8 = 1

4 .

Thus, they coincide. However, we aregoingto checkthat theydonot agreeonthe set
1
4 , 7

8 .

P∗Γ A
1
4

, 7
8

=P ω:Γ A (ω) ⊆ 1
4

, 7
8

=
3
4

.

By definition, E F A ,F A
1
4 , 7

8 =sup B ⊆ [ 1
4 , 7

8 ],B ∈H E F A ,F A (B) . But

E F A ,F A (B) ≤ E F A ,F A

1
4

, 7
8

=
1
4

for any B ⊆ 1
4 , 7

8 in H . Thus,

P∗Γ A
1
4

, 7
8

>E F A ,F A

1
4

, 7
8

.

5.2.2 Connection with other approaches

We now investigate the connection between the framework we have presented and other
theories that can b e found in the li teratu re. For thisaim, wefirst investigate the con-
nection with the approach of Grzegorzewski and Mrowka ([86]) and then we establisha
one-to-one relationship between IVF-sets, p-b oxes and clouds.

Probabilities asso ciated with IF-Sets

One of the most imp ortant works on the connection b etween IF-sets and imprecise prob-
abilities is the work carried out in [86] on the probabilities of IF-sets. Given a probability
space(Ω, A , P), the probability asso ciated with an IF-set A is a numb er of the interval

Ω
µA dP,

Ω
1 − νA dP. (5.10)
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Using this definition, in [86] a linkisestablished with probabilitytheory by considering
the appropriate op erators in the spaces of real intervals andof intuitionisticfuzzy sets.
Note that in this work it is assum ed that we have a structure of probability space on Ω
and that moreover the functions µA ,ν A are measurable, as we have done in Section 5.2.1.

Remark 5.74This definit ion generalises an earlier definition by Zadeh [215] for fuzzy
events. He defined the probability of a fu zzy eventµA by:

P(µ A )=
Ω

µA dP = E [µ A ].

Although Zadeh proved that thisdefinitionsatisfiestheaxioms ofKolmogorovwhencon-
sidering the minimum operator for making intersections, it was provedin [144] that this
doesnothappenforany t-norm(see[100]fora complete review ont-norms). In fact , it
wasproved thatevery strict and continuous t-norm made Zadeh’s probability tosatisfy
Kolmogorov axioms, while the Łukasiewicz operator is the only nilpotent andcontinuous
t-norm that satisfies these axioms.

If we consider the random interval asso ciated with the intuitionistic fuzzy setA in Equa-
tion (5.5), we can see that the interval in Equation (5.10) corresp onds simply to the set
of exp ectations of the measurable selections ofΓA : itfollowsfrom[130, Theorem14]that
if we consider themapping id : [0, 1] → [0, 1], then the Aumann integral [13] of (id ◦ ΓA ),
defined on Equation (2.26), satisfies th at

inf (A) (id ◦ ΓA )dP , sup(A) (id ◦ ΓA )dP = (C) iddP
∗
Γ A , (C) iddP∗Γ A ,

where (C) is used to denote the Cho quet integral [39, 60] with respect to the non-additive
measuresP∗Γ A ,P ∗

Γ A , resp ectively.Since on the other hand it is im mediate to see that

sup(A) (id ◦ ΓA )dP= (1 − νA )dP

and
inf (A) (id ◦ ΓA )dP= µA dP,

we deduce that the probabilistic information ab out the intuitionistic fuzzy set A can be
determined in particular by the lower and upp er probabilities of its associated random
interval. Notemoreover thatthe Aumannintegral of a random set is not convex in
general, and it is only guarante ed to b e so when the probability space(Ω, A , P) is non-
atomic.

A one-to-one relationship b etween p-b oxes and IFS

In Section 5.2.1, we saw that the corresp ondence between interval-valued fuzzy sets and
p-b oxes on [0,1] is many-to-one, in the sense that many different IFS determine the same
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lower and upp er distribution functions. In this section, we cons ider a subset of the class of
IFS for which a bijection can b e established with the set of p-b oxes.In contradistinction
to our work in Section 5.2.1, the p-b ox we shall establish here shall be established in the
possibility space Ω, that we shall conside r here to b e the unit interval.

Denote by IF ∗([0, 1]) the set:

IF ∗
([0, 1])= { A ∈ IF Ss(Ω) | µA increasing and νA decreasing} .

Denote alsoF ([0, 1]) the set of all p-b oxes on [0,1], and let us define the correspondences:

f 1 : F ([0, 1]) −→ IF ∗([0 , 1])
( F , F) → A (F ,F) = (x, F (x),1 − F (x ))

f 2 : IF ∗([0, 1]) −→F ([0, 1])
A → (µA ,1 − νA )

We can se e that every IFSA has an asso ciated p-b ox:(µA ,1 − νA ). The interpretation
here would be that (µA ,1 − νA ) mo dels the imprecise information ab out the distribution
function asso ciated with the setA , instead of ab out the memb ership function, as we did
in Section 5.2.1.

The following prop erties follow immediately, and therefore their pro of is omitted:

Prop osition 5.75Let f 1,f 2 be thetwo correspondences betweenF ([0, 1]) and IF ∗([0, 1])
considered above.Then:

(a) f 1,f 2 arebijective, and f 1 =f
− 1
2 .

(b) f 1(( F , F ))∈ Γ ⇔ F =F .

(c) f 2(A ) = (F , F) ⇔ A ∈ F S(Ω).

Another prop erty assures that there exists a relationship b etween applicationf 1 and the
sto chastic order(F SD2,5 ):

(F 1,F 1) FSD 2,5 (F 2,F 2) ⇔ f 1((F 1,F 1)) ⊆ f 1((F 2,F 2)).

A one-to-one relationship between clouds and IFS

A similar corresp ondence can be made b etween intuitionistic fuzzy sets and clouds.Recall
thata cloud isapair offunctions δ,π such that δ ≤ π andthere are x,y ∈ [0, 1] such
that δ (x ) =0 and π(y ) =1 . Let usdenoteby IF ∗ the followingset:

IF ∗ = { A ∈ IF Ss(Ω) | µA (x ) =0 and νA (y ) =0 for some x,y ∈ [0, 1]} .
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Then, if we denoteby C l([0, 1]) the set ofall theclouds on[0,1], the following functions
can be defined:

g1 : Cl([0, 1]) −→ IF ∗([0, 1])
(δ, π) → A (δ,π) = (x, δ (x),1 − π (x ))

g2 : IF ∗([0, 1]) −→ Cl([0, 1])
A → (µA ,1 − νA )

Acloud (δ, π) iscalled thin ([168]), when δ=π ; in that case, its asso ciated IVF-sets by
g1 becomes (x, δ,1 − δ) ∈ F S(Ω), that is, a fuzzy set.

This is consistent in the sense that, given a possibility distribution π, it hasan
asso ciated fuzzy setsµ( x) := π (x). Thus, thisisamoregeneralapproachthatcontains
the relationship b etween fuzzy sets and p ossibility distribution as a partic ular case.

Another particular typ e of clouds are the fuzzy clouds, for which δ =0 . In sucha
case the asso ciated IFS is(x, 0,1 − π) .

Some immediate prop erties of the ab ove corresp ondences are the following:

Prop osition 5.76Let g1,g2 be the correspondences bet weenCl([0, 1]) and IF ∗([0, 1])
considered above.The fol lowing conditions hold:

(a) g1((δ, π)) ∈ F S(Ω) ⇔ δ =π ⇔ (δ, π) is athin cloud.

(b) g2(A ) = (δ, δ) ⇔ A ∈ F S(Ω).

(c) g1,g2 arebijective, and g1 =g
− 1
2 .

The ab ove corresp ondence is related to the connection b etween clouds and imprecise
probabilities established in [65], where the credal set asso ciated with a cloud(δ, π) is the
set of probability measures on Ω satisfying M (( π ,1− δ))= M ( π)∩M (1 − δ), where
M (π) (resp ectivelyM (1 − δ))is the credal set asso ciated with the p ossibility measure
π (resp ectively1 − δ).

5.3 Applications

In the previous sections we have presented a theoretical study of comparison measures
for intuitionistic fuzzy sets, fo cusing in the study of IF-divergences,andwe havealso
investigate d the connection b etween IVF-sets and imprecise probabilities.

Now we shall present some p ossible applications of the theories we have develop ed.
On one hand, we will see how IF-divergences can b e applied in multiple attribu te decision
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making ([ 211]), and we will outline some examples of application in pattern recognition
([92, 93, 114]). Ontheother hand, we shall see how the connection between IVF-sets
and imprecise probabilities allows us to extend sto chastic dominance to the comparison
more than two sets ofcumulative distributionfunctions.

5.3.1 Application to pattern recognition

One interesting are a of application of comparison meas ures b etween IF-sets is in pattern
recognition ([92, 93, 114]). Let us conside r a universeΩ= { ω1, . . . ,ωn } , and assume the
patterns A1, . . . ,Am , that are represented by IF-sets. The n:

A j = { (ωi ,µ A j (ωi ),ν A j (ωi ) | i = 1, ... ,n } , for j = 1, .. .,m.

If B is a sampl e that is also represented by an IF-set, and we want to classify it into one
of the patterns, we can measure the differenc e b etweenB and A i :

D IFS (A 1, B), . . . ,DIFS (A m , B),

where D IFS can be an IF-divergence or an IF-dissimilarity. Finally, we asso ciateB to
the patte rn A j whenever D IFS (A j , B)= min

i=1,...,m
(D IFS (A i , B)) , i.e., we classify B into

thepattern from whichit differs theleast.

Example 5.77([114, Section 4])Consider a possibility space with three element s,
Ω= { ω1,ω2,ω3} , and the fol lowing three patterns:

A1 = { (ω1, 0 .1, 0 .1) , (ω2, 0 .5, 0 .4) , (ω3, 0.1, 0.9)} .
A2 = { (ω1, 0 .5 , 0.5), (ω2, 0.7 , 0.3), (ω3, 0, 0.8)} .
A3 = { (ω1, 0.7 , 0.2), (ω2, 0.1 , 0.8), (ω3, 0.4 , 0.4)} .

Assume that a sample B= { (ω1, 0 .4, 0 .4) , (ω2, 0 .6, 0 .2) , (ω3, 0, 0.8)} is given, and letus
considerthe Hamming and the Hausdorff distances for IF-sets. We obtain the fol lowing
results.

l IFS (A 1, B) = 1, l IFS (A 2, B ) = 0. 4, l IFS (A 3, B ) = 1.3,
dH (A 1, B ) = 0 .6, dH (A 2, B ) = 0. 2, dH (A 3, B ) = 1 .3.

Thus, both distances classifyB into thepattern A2, because

l IFS (A 2, B) ≤ l IFS (A 1, B) ,lIFS (A 3, B).
dH (A 2, B) ≤ dH (A 1, B),d H (A 3, B).

In the frame work of pattern recognition it is usually assumed that every p oint ui in the
universehas the same weight, that is, α i = 1

n for i = 1, .. .,n . However, it is p oss ible
that the weight vector α= (α 1, . . . ,αn ) is not cons tant, that is, α i ≥ 0 for i = 1, .. .,n
and α1 + .. . +α n =1 .
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ω1 ω2 ω3 ω4 ω5 ω6
µC1 (ωi ) 0.739 0.033 0.188 0.492 0.020 0.739
νC1 (ωi ) 0.125 0.818 0.626 0.358 0.628 0.125
µC2 (ωi ) 0.124 0.030 0.048 0.136 0.019 0.393
νC2 (ωi ) 0.665 0.825 0.800 0.648 0.823 0.653
µC3 (ωi ) 0.449 0.662 1.000 1.000 1.000 1.000
νC3 (ωi ) 0.387 0.298 0.000 0.000 0.000 0.000
µC4 (ωi ) 0.280 0.521 0.470 0.295 0.188 0.735
νC4 (ωi ) 0.715 0.368 0.423 0.658 0.806 0.118
µC5 (ωi ) 0.326 1.000 0.182 0.156 0.049 0.675
νC5 (ωi ) 0.452 0.000 0.725 0.765 0.896 0.263
µB (ωi ) 0.629 0.524 0.210 0.218 0.069 0.658
νB (ωi ) 0.303 0.356 0.689 0.753 0.876 0.256

Table 5.2: Six kindsofmaterialsare representedbyIF-sets.

To deal with this situation, we prop ose the following metho d. Let usconsidera
lo cal IF-divergenceD IFS , and for every point ui let us compute the follow ing:

D IFS (A j , B) − D IFS (A j ∪{ ωi } ,B ∪{ ωi } ) =h IFS (µA j (ωi ),ν A j (ωi ),µ B (ωi ),ν B (ωi )).

Then, for every j ∈{ 1, .. . ,m} we have that

d(A j , B)=
n

i=1

ωi (D IFS (A j , B) − D IFS (A j ∪{ ωi } ,B ∪{ ωi } ))

=
n

i=1

α i hIFS (µA j (ωi ),ν A j (ωi ),µ B (ωi ),ν B (ωi )).

Then, we classify the sampleB intothe pattern A j if

d(A j , B)= min
i=1,...,m

(d(A i , B )).

Example 5.78 ([206, Example 4.2])Consider five kinds of mineral fields, each of
themfeatured by the content of six minerals andcontaining one kind of typical hybrid
mineral. The five kinds of typical hybrid mineral are represented by IF-setsC1, C2, C3,
C4 and C5 in Ω= { ω1, . . . ,ω6} ,respectively. Assume that we are given anot her kind of
hybrid mineral B , and that we want to classify it intoone of the aforementioned min-
eral fields. Assume that the IF-sets Ci and B aredefined in Table 5.2, and that our
experts have established the fol lowing weight vector onΩ: α= 1

4 , 1
4 , 1

8 , 1
8 , 1

8 , 1
8 . Let us

use our method to classify B . Ifwe consider the Hamming distance forIF-sets as local
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IF-divergence, we obtain that:

ω1 ω2 ω3 ω4 ω5 ω6

l IFS (C1, B) − l IFS (C1 ∪{ ωi } ,B ∪{ ωi } ) 0. 178 0.491 0.085 0. 395 0.297 0. 131
l IFS (C2, B) − l IFS (C2 ∪{ ωi } ,B ∪{ ωi } ) 0. 505 0.494 0.162 0. 187 0.103 0. 397
l IFS (C3, B) − l IFS (C3 ∪{ ωi } ,B ∪{ ωi } ) 0. 180 0.138 0.790 0. 782 0.931 0. 342
l IFS (C4, B) − l IFS (C4 ∪{ ωi } ,B ∪{ ωi } ) 0. 412 0.012 0.266 0. 095 0.119 0. 138
l IFS (C5, B) − l IFS (C5 ∪{ ωi } ,B ∪{ ωi } ) 0. 303 0.476 0.036 0. 062 0.020 0. 024

whence

d(C1, B)= 1
4 0. 178+ 1

4 0.491+ 1
8 0. 085+ 1

8 0.395+ 1
8 0. 297+ 1

8 0.131 = 0.2808.

d(C2, B)= 1
4 0. 505+ 1

4 0.494+ 1
8 0. 162+ 1

8 0.187+ 1
8 0. 103+ 1

8 0.397 = 0.3559.

d(C3, B)= 1
4 0. 180+ 1

4 0.138+ 1
8 0. 790+ 1

8 0.782+ 1
8 0. 931+ 1

8 0.342 = 0.4351.

d(C4, B)= 1
4 0. 412+ 1

4 0.012+ 1
8 0. 266+ 1

8 0.095+ 1
8 0. 119+ 1

8 0.138 = 0.1833.

d(C5, B)= 1
4 0. 303+ 1

4 0.476+ 1
8 0. 036+ 1

8 0.062+ 1
8 0. 020+ 1

8 0.024 = 0.2125.

Thus, we classify B into thehybrid mineral C4.

If werepeat the process withlocal IF-divergencedH , we obtain the fol lowing:

ω1 ω2 ω3 ω4 ω5 ω6

dH (C1, B) − dH (C1 ∪{ ωi } ,B ∪{ ωi } ) 0.178 0. 491 0.063 0. 395 0.248 0.131
dH (C2, B) − dH (C2 ∪{ ωi } ,B ∪{ ωi } ) 0.505 0. 494 0.162 0. 105 0.053 0.397
dH (C3, B) − dH (C3 ∪{ ωi } ,B ∪{ ωi } ) 0.180 0. 138 0.790 0. 782 0.931 0.342
dH (C4, B) − dH (C4 ∪{ ωi } ,B ∪{ ωi } ) 0.412 0. 012 0.266 0. 095 0.119 0.138
dH (C5, B) − dH (C5 ∪{ ωi } ,B ∪{ ωi } ) 0.303 0. 476 0.036 0. 062 0.020 0.017

Then:

d(C1, B)= 1
4 0. 178+ 1

4 0.491+ 1
8 0. 063+ 1

8 0.395+ 1
8 0. 248+ 1

8 0.131 = 0.2719.

d(C2, B)= 1
4 0. 505+ 1

4 0.494+ 1
8 0. 162+ 1

8 0.105+ 1
8 0. 053+ 1

8 0.397 = 0.3394.

d(C3, B)= 1
4 0. 180+ 1

4 0.138+ 1
8 0. 790+ 1

8 0.782+ 1
8 0. 931+ 1

8 0.342 = 0.4351.

d(C4, B)= 1
4 0. 412+ 1

4 0.012+ 1
8 0. 266+ 1

8 0.095+ 1
8 0. 119+ 1

8 0.138 = 0.1833.

d(C5, B)= 1
4 0. 303+ 1

4 0.476+ 1
8 0. 036+ 1

8 0.062+ 1
8 0. 020+ 1

8 0.017 = 0.2116,

and we conclude that wealso should classifyB into thehybrid mineral C4.

5.3.2 Application todecision making

In [211], Xushowedhowmeasures of similarityforIF-sets(and, consequently,also IF-
dissimilarities) can be applied within multiple attribute decision making. Letus overview
the main asp ects of this application.
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We use the following notation: let A= { A1, . . . ,Am } denote a set ofm alternatives,
let C= { C1, . . . ,Cn } be a set of attributes and let α= { α1, . . . ,αn } be its asso ciated
weight vector(i.e., it holdsthat α i ≥ 0 for every i = 1, .. .,n and that α1 +. . .+α n =1 ).

Every alternative A i can be represented by means of an IF-set:

A i = { (C j ,µ A i (Cj ),ν A i (Cj ) | j = 1, ... ,n } .

Thus, µA i (Cj ) and νA i (C j ) stand for the degree in which alternative A i agrees and do es
not agree with characteristic Cj , resp ectively.

Xu ([211]) defined the IF-sets A+ and A− inthe followingway:

A+ = { (Cj ,µ A + (Cj ),ν A + (Cj )) | j = 1, ... ,n } and
A− = { (C j ,µ A − (C j ),ν A − (C j )) | j = 1, .. .,n } ,

where

µA + (Cj )= max
i=1,...,m

(µA i (Cj )), νA + (Cj )= min
i=1,...,m

(νA i (Cj )), (5.11)

µA − (Cj )= min
i=1,...,m

(µA i (Cj )), νA − (Cj )= max
i=1 ,...,m

(νA i (Cj )), (5.12)

that is, A+ =
m
i=1 A i and A− =

m
i=1 A i .

These IF-sets can b e interpreted as the “optimal” andthe “least optimal” alterna-
tives. Therefore, the preferredalternative in A would the one that is simultaneously
more similar to A+ andmore differentto A− .

In order to measure how different is A i to both A+ and A− , Xu consideredsome
different functions, such as:

D(A + ,A i )=
n

j=1

α j |µA + (Cj ) − µA i (C j )|β + |νA + (Cj ) − νA i (C j )|β

+ |πA + (Cj ) − πA i (Cj )|β
1
β

and

D (A
− ,A i )=

n

j=1

α j |µA − (Cj ) − µA i (C j )|β + |νA − (Cj ) − νA i (C j )|β

+ |πA + (Cj ) − πA i (Cj )|β
1
β

.

Besides, Xu considerthequotient:

di =
D(A + ,A i )

D (A+ ,A i ) + D(A − ,A i )
.
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Then, the greaterthe value di , the better the alternative A i .

Next we prop ose a mo dification of the ab ove method.Let us consider a lo cal IF-
divergenceD IFS , so th at for every pair of IF-setsA and B , D IFS (A, B) can be expressed
by:

D IFS (A, B)=
n

i=1

hIFS (µA (Ci ),ν A (C i ),µ B (Ci ),ν B (Ci )).

We consider the IF-set A i , that represents the i -th alternative, and for every j ∈
{ 1 , . . . ,n} we compute the followin g:

D IFS (A + ,A i ) − D IFS (A + ∪{ Cj } ,A i ∪{ Cj } ) =h IFS (µA + (Cj ),ν A + (Cj ),µ A i (Cj ),ν A i (Cj )).

This quantity me asures how differentA+ and A i are with resp ect to elementCj . Then,
we can compute the difference betweenA i and A+ :

d(A i ,A + )=
n

j=1

α j hIFS (µA + (Cj ),ν A + (Cj ),µ A i (Cj ),ν A i (Cj )).

In thi s wayd(A i ,A + ) measures how much difference there is betweenA i and theoptimal
set A+ .

Similarly, we can compute the di fference b etweenA i and A− :

d(A i ,A
−

)=
n

j=1

α j hIFS (µA − (Cj ),ν A − (Cj ),µ A i (C j ),ν A i (Cj )).

Thus, d(A i ,A − ) measureshow much differentis A i fromthe leastoptimal A− .

Therefore, if we consider a map f :[0, ∞ ) × [0,∞ ) → [0,∞ ) that is dec reasing in
the first comp onent and increasing on the second one,we obtainthe followingvalue ai

for alternative A i :
ai = f (d(A i ,A + ), d(A i ,A

−
)).

Thus, thegreaterthe valueof ai , the more preferred is the alternative A i .

We can see that we can cho ose the functionf dep ending on the part we are more
interested in: the difference betweenA i andthe optimum A+ or the difference between
A i andthe leastoptimum A− . The followingexamples illustratethisfact.

Example 5.79 ([211, Section 4])A cityis planning to builda library, and thecity
commissioner has to determine the air-conditioning system to be instal led in the library.
The builder offers the commissionerfive feasible alternativesA i , which might be adapted
to the physical structure of the library. Suppose that three attributesC1 (economic), C2
(functional) and C3 (operational) are taken into consideration in the instal lation problem,
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and that the weight vectorof the attributes Cj is α = (0.3, 0.5, 0.2). Assume moreover
that the characteristics of the alternatives A i are represented by the fol lowing IF-sets:

A1 = { (C1, 0.2 , 0.4), (C2, 0.7 , 0.1), (C3, 0.6, 0. 3)} ,
A2 = { (C1, 0.4 , 0.2), (C2, 0. 5, 0.2), (C3, 0.8, 0. 1)} ,
A3 = { (C1, 0.5 , 0.4), (C2, 0. 6, 0. 2), (C3, 0. 9, 0)} ,
A4 = { (C1, 0.3 , 0.5), (C2, 0. 8, 0. 1), (C3, 0 .7, 0. 2)} ,
A5 = { (C1, 0. 8, 0.2), (C2, 0. 7, 0), (C3, 0.1 , 0.6))} .

For these IF-sets, the correspondingA+ and A− aregiven by:

A+ = { (C1, 0. 8, 0.2), (C2, 0 .8, 0) , (C3, 0.9 , 0)} .
A− = { (C1, 0. 2, 0.5), (C2, 0.5, 0. 2), (C3, 0 .1, 0. 6)} .

Then, if we consider the Hamming distance for IF-sets (see Subsect ion 5.1.3), we obtain
the fol lowing:

C1 C2 C3

l IFS (A 1,A + ) − l IFS (A 1 ∪{ Cj } ,A + ∪{ Cj } ) 1.2 0.2 0.6
l IFS (A 1,A − ) − l IFS (A 1 ∪{ Cj } ,A − ∪{ Cj } ) 0.2 0.4 1
l IFS (A 2,A + ) − l IFS (A 2 ∪{ Cj } ,A + ∪{ Cj } ) 0.8 0.6 0.2
l IFS (A 2,A + ) − l IFS (A 2 ∪{ Cj } ,A + ∪{ Cj } ) 0.6 0 1.4
l IFS (A 3,A + ) − l IFS (A 3 ∪{ Cj } ,A + ∪{ Cj } ) 0.6 0.4 0
l IFS (A 3,A + ) − l IFS (A 3 ∪{ Cj } ,A + ∪{ Cj } ) 0.6 0.2 1.6
l IFS (A 4,A + ) − l IFS (A 4 ∪{ Cj } ,A + ∪{ Cj } ) 1 0.2 0.4
l IFS (A 4,A + ) − l IFS (A 4 ∪{ Cj } ,A + ∪{ Cj } ) 0.2 0.6 1.2
l IFS (A 5,A + ) − l IFS (A 5 ∪{ Cj } ,A + ∪{ Cj } ) 0 0.2 1.6
l IFS (A 5,A + ) − l IFS (A 5 ∪{ Cj } ,A + ∪{ Cj } ) 1.2 0.4 0

Thus:
d(A1,A + ) = 0.3 · 1.2 + 0 .5· 0. 2 + 0 .2· 0.6 = 0 .58.
d(A1,A − ) = 0.3 · 0. 2 + 0 .5· 0. 4 + 0 .2· 1 = 0 .46.
d(A2,A + ) = 0.3 · 0.8 + 0 .5· 0. 6 + 0 .2· 0.2 = 0 .58.
d(A2,A − ) = 0.3 · 0. 6 + 0 .5· 0 + 0.2 · 1.4 = 0 .46.
d(A3,A + ) = 0.3 · 0.6 + 0 .5· 0.4 + 0 .2· 0 = 0.38.
d(A3,A − ) = 0.3 · 0. 6 + 0 .5· 0. 2 + 0 .2· 1.6 = 0. 6.
d(A4,A + ) = 0.3 · 1 + 0.5 · 0.2 + 0 .2· 0 .4 = 0.48.
d(A4,A − ) = 0.3 · 0. 2 + 0 .5· 0. 6 + 0 .2· 1.2 = 0. 6.
d(A5,A + ) = 0.3 · 0 + 0.5 · 0.2 + 0 .2· 1 .6 = 0.42.
d(A5,A − ) = 0.3 · 1. 2 + 0 .5· 0. 4 + 0 .2· 0 = 0 .56.

Assume that we want to choose the alternative that is, at the same time, more similar to
A+ andlesssimilar totheworstcase A− . Insuchacase wecanconsiderthefunction f
given byf (x, y)= 1

2
1
x +y . We cansee that thisfunction take intoaccount the difference
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betweenA i and A+ and betweenA i and A− . We obtain the fol lowing results:

a1 = f (d(A 1,A + ), d(A1,A − ))= 1
2

1
0.58 + 0.46 = 1.09.

a2 = f (d(A 2,A + ), d(A2,A − ))= 1
2

1
0.58 + 0.46 = 1.09.

a3 = f (d(A 3,A + ), d(A3,A − ))= 1
2

1
0.38 + 0.6 = 1. 62.

a4 = f (d(A 4,A + ), d(A4,A + ))= 1
2

1
0.48 + 0.6 = 1.34.

a5 = f (d(A 5,A + ), d(A5,A + ))= 1
2

1
0.42 + 0 .56 = 1.47.

Assume nextthat we decide to choose the alternativethat is moresimilar to the optimum
A+ , regard less the difference fromA− . In that case, wemayconsider f(x, y)= 1

x . This
functiononly dependsin thedifference between A i andthe optimum A+ . We obtain the
fol lowing result:

a1 = f (d(A 1,A + ), d(A1,A − ))=
1

d(A1,A + )
=

1
0. 58

.

a2 = f (d(A 2,A + ), d(A2,A − ))=
1

d(A2,A + )
=

1
0. 58

.

a3 = f (d(A 3,A + ), d(A3,A − ))=
1

d(A3,A + )
=

1
0. 38

.

a4 = f (d(A 4,A + ), d(A4,A + ))=
1

d(A4,A + )
=

1
0.48

.

a5 = f (d (A 5,A + ), d(A5,A + ))=
1

d(A5,A + )
=

1
0.42

.

Thus, A3 A5 A4 A1 ∼ A2, and as a consequence the best alternative isA3.

Final ly, assume we are interested in the alternative that differs more from the worst
alternative A− . In sucha situationwe shouldconsider f (x, y) =y . This functiononly
depends on the differencebetweenA i and A− . We obtain the fol lowing results:

a1 = f (d (A 1,A + ), d(A1,A − )) = d(A 1,A − ) = 0. 46.
a2 = f (d (A 2,A + ), d(A2,A − )) = d(A 2,A − ) = 0. 46.
a3 = f (d (A 3,A + ), d(A3,A − )) = d(A 3,A − ) = 0. 6.
a4 = f (d (A 4,A + ), d(A4,A + )) = d(A 4,A − ) = 0. 6.
a5 = f (d (A 5,A + ), d(A5,A + )) = d(A 5,A − ) = 0.56.

Thus, A3 ∼ A4 A5 A1 ∼ A2. We concludethat in thiscase A3 and A4 are the
preferred alternatives.

Example 5.80Considerthepreviousexample, butnowwiththeHausdorffdistancefor
IF-sets (see Section 5.1.3). Usingthe same IVF-sets, we obtain that:
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C1 C2 C3

dH (A 1,A + ) − dH (A 1 ∪{ Cj } ,A + ∪{ Cj } ) 0.6 0.1 0.3
dH (A 1,A − ) − dH (A 1 ∪{ Cj } ,A − ∪{ Cj } ) 0.3 0.2 0.5
dH (A 2,A + ) − dH (A 2 ∪{ Cj } ,A + ∪{ Cj } ) 0.4 0.3 0.1
dH (A 2,A − ) − dH (A 2 ∪{ Cj } ,A + ∪{ Cj } ) 0.3 0 0.7
dH (A 3,A + ) − dH (A 3 ∪{ Cj } ,A + ∪{ Cj } ) 0.3 0.2 0
dH (A 3,A − ) − dH (A 3 ∪{ Cj } ,A + ∪{ Cj } ) 0.3 0.1 0.8
dH (A 4,A + ) − dH (A 4 ∪{ Cj } ,A + ∪{ Cj } ) 0.5 0.1 0.2
dH (A 4,A − ) − dH (A 4 ∪{ Cj } ,A + ∪{ Cj } ) 0.3 0.3 0.6
dH (A 5,A + ) − dH (A 5 ∪{ Cj } ,A + ∪{ Cj } ) 0 0.1 0.8
dH (A 5,A − ) − dH (A 5 ∪{ Cj } ,A + ∪{ Cj } ) 0.6 0.2 0

Then:

d(A1,A + ) = 0.3 · 0. 6 + 0 .5· 0.1 + 0.2 · 0 .3 = 0. 29.
d(A1,A − ) = 0.3 · 0.3 + 0.5 · 0.2 + 0 .3· 0 .5 = 0.34.
d(A2,A + ) = 0.3 · 0. 4 + 0 .5· 0. 3 + 0 .3· 0.1 = 0. 3.
d(A2,A − ) = 0.3 · 0.3 + 0.5 · 0 + 0.3 · 0 .7 = 0. 3.
d(A3,A + ) = 0.3 · 0. 3 + 0 .5· 0. 2 + 0 .3· 0 = 0 .19.
d(A3,A − ) = 0.3 · 0. 3 + 0 .5· 0.1 + 0.3 · 0 .8 = 0. 38.
d(A4,A + ) = 0.3 · 0. 5 + 0 .5· 0. 1 + 0 .3· 0.2 = 0.26.
d(A4,A − ) = 0.3 · 0. 3 + 0 .5· 0.3 + 0.3 · 0 .6 = 0. 42.
d(A5,A + ) = 0.3 · 0 + 0.5 · 0.1 + 0 .3· 0.8 = 0.29.
d(A5,A − ) = 0.3 · 0. 6 + 0 .5· 0.2 + 0.3 · 0 = 0.28.

As before, we first look for the alternative that is, at the same time, more similar to the
optimum A+ andless similarto theleast optimum A− . For thisaim wecan consider the
function f(x, y)= 1

2
1
x +y . It holdsthat:

a1 = f (d(A 1,A + ), d(A1,A − ))= 1
2

1
0.29 + 0.34 = 3.79.

a2 = f (d(A 2,A + ), d(A2,A − ))= 1
2

1
0.3 + 0.3 = 3.63.

a3 = f (d(A 3,A + ), d(A3,A − ))= 1
2

1
0.19 + 0.38 = 5.64.

a4 = f (d(A 4,A + ), d(A4,A + ))= 1
2

1
0.26 + 0.42 = 4.27.

a5 = f (d(A 5,A + ), d(A5,A + ))= 1
2

1
0.29 + 0.28 = 3.72.

Then A3 A4 A1 A5 A2, and therefore A3 is thepreferred alternative.

Next, we seek for the alternative that is more similar to the optimal A+ . Apossible
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function f for thisscenario is f(x, y)= 1
x . In su ch a case:

a1 = f (d(A 1,A + ), d(A1,A − ))=
1

d(A1,A + )
=

1
0. 29

.

a2 = f (d(A 2,A + ), d(A2,A − ))=
1

d(A2,A + )
=

1
0.3

.

a3 = f (d(A 3,A + ), d(A3,A − ))=
1

d(A3,A + )
=

1
0. 19

.

a4 = f (d(A 4,A + ), d(A4,A + ))=
1

d(A4,A + )
=

1
0.26

.

a5 = f (d (A 5,A + ), d(A5,A + ))=
1

d(A5,A + )
=

1
0.29

.

Then, it holds that A3 A4 A1 ∼ A5 A2, and therefore alternative A3 is the
preferred one.

Final ly, if we look for the alternative that differs more from the worst possibility
A− , we can choosef (x, y) =y . In thatcase,

a1 = f (d (A 1,A + ), d(A1,A − )) = d(A 1,A − ) = 0. 34.
a2 = f (d (A 2,A + ), d(A2,A − )) = d(A 2,A − ) = 0. 3.
a3 = f (d (A 3,A + ), d(A3,A − )) = d(A 3,A − ) = 0. 38.
a4 = f (d (A 4,A + ), d(A4,A + )) = d(A 4,A − ) = 0.42.
a5 = f (d (A 5,A + ), d(A5,A + )) = d(A 5,A − ) = 0.28.

We conclude thatA4 A3 A1 A2 A5, whenceA4 is thebest alternative.

5.3.3 Using IF-divergences to extend stochastic dominance

Consider now th e problem of comparing more than two random variables.In Section 3.3
we mentioned that both sto chastic dominance and statistical preference are metho ds for
the pairwise comparison of random variables, and we prop osed a generalization of statis-
tical preference for comparing more than tworandom variables, based onan extension
of the probabilisticrelation definedin Equation (2.7). Now, basedontheIF-divergences
and due to the connection between IF-sets and imprecise probabilities we have investi-
gated in Section 5.2, we prop ose a metho d that allows us to comparen p-b oxes in order
to obtain an order between them.

In orderto do this, consider n p-b oxes(F 1,F 1), .. ., (F n ,F n ). For each p-b ox
(F i ,F i ), define therandom interval Γ i by Γ i (ω ) = [Ui (ω ),Vi (ω )], where Ui and Vi are
the quanti le functions of F i and F i , resp ectively.Then, for each p-b ox(F i ,F i ) we have
an asso ciated random interval that we can understand as a random interval defined from
an IF-set A i . Thus, we can apply the method describ ed in Section 5.3.2 to obtain the
p-box closer to the “optimal” p-b ox, that is the one asso ciated withA+ , and more distant
to the “less optimal” p-b ox, that is the one asso ciated withA− .
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Remark 5.81During thissection we haveinvestigated measuresof comparisondefined
on finite spaces, according to the usu alframework. However, all the measures we have
studied canbe extended to anyspace, non-necessarily finite. Forinstance, whendealing
with local IF-divergences, they couldbedefinedfrom [a, b] to R by using the Lebesgue
measureλ [a,b] in [a, b]:

D IFS (A, B)=
[a,b]

hIFS (µA (ω ),νA (ω ),µB (ω ),νB (ω ))dλ[a,b] .

In order to illustrate this metho d, we prop ose a numericalexample based on the com-
parison of sets of Lorenz Curves as we made in Section 4.4.1.

Numerical example:comparisonofLorenz curves

In Section 4.4.1 we considered the Lorenz curves asso ciated with several countries.Such
data wasillustratedin Table 4.2, andTable4.3 showedthecumulativedistribution
functions asso ciated with each Lorenz curve. Recall that we group ed the countries by
continents/regionsin the followingway:

• Group 1: China, Japan,India.

• Group 2: Finland, Norway,Sweden.

• Group 3: Canada, USA.

• Group 4: FYR Macedonia, Greece.

• Group 5: Australia, Maldives.

Next table shows the p-boxes asso ciated with these groups.
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Group F(0.2) F(0.4) F(0.6) F(0.8) F(1)
Group-1 F 1 47.81 69.81 84.47 94.27 100

F 1 35.65 57.63 75.21 89.42 100

Group-2 F 2 37.23 59.33 76.9 90.88 100
F 2 36.63 58.84 76.31 90.38 100

Group-3 F 3 45.82 68.22 83.88 94.56 100
F 3 39.94 62.89 80.07 92.8 100

Group-4 F 4 41.49 64.53 81.37 93.26 100
F 4 37.43 60.04 77.53 90.98 100

Group-5 F 5 49.24 66.9 82.61 94.1 100
F 5 41.32 64.89 82.09 93.49 100

Assume now that we are interestedin comparing all the groupsof countries together.
Then, followingthe stepsof Section5.3.2, denoteby A i theIF-set definedby µA i =F

− 1]
i

and 1 − νA i =F
− 1]
i , that is, the IF-set defined by the quantil e functions of (F i ,F i ).

These IF-se ts are given by:

µA 1 (t )=






0 if t= 0.

0 .2 if t ∈ (0, 47. 81].
0.4 if t ∈ (47. 81, 69. 81].
0.6 if t ∈ (69. 81, 84. 47].
0.8 if t ∈ (84. 47, 94. 27].
1 if t ∈ (94. 27, 100].

1 − νA 1 (t )=






0 if t= 0.

0 .2 if t ∈ (0, 35. 64].
0 .4 if t ∈ (35. 64, 57. 63].
0 .6 if t ∈ (57. 63, 75. 21].
0 .8 if t ∈ (75. 21, 89. 42].
1 if t ∈ (89. 42, 100].

µA 2 (t )=






0 if t= 0.

0 .2 if t ∈ (0, 37. 23].
0.4 if t ∈ (37. 23, 59. 33].
0.6 if t ∈ (59.33, 76.9].
0 .8 if t ∈ (76.9, 90 .88].
1 if t ∈ (90. 88, 100].

1 − νA 2 (t )=






0 if t= 0.

0 .2 if t ∈ (0, 36.63].
0 .4 if t ∈ (36. 63, 58. 84].
0 .6 if t ∈ (58. 84, 76. 31].
0 .8 if t ∈ (76. 31, 90. 38].
1 if t ∈ (90. 38, 100].

µA 3 (t )=






0 if t= 0.

0 .2 if t ∈ (0, 45.82].
0 .4 if t ∈ (45. 82, 68. 22].
0 .6 if t ∈ (68. 22, 83. 88].
0 .8 if t ∈ (83. 88, 94. 56].
1 if t ∈ (94. 56, 100].

1 − νA 3 (t )=






0 if t= 0.

0 .2 if t ∈ (0, 39.94].
0 .4 if t ∈ (39. 94, 62. 89].
0 .6 if t ∈ (62. 89, 80. 07].
0 .8 if t ∈ (80.07, 92.8].
1 if t ∈ (92. 8 , 100].
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µA 4 (t)=






0 if t= 0.

0.2 if t ∈ (0, 41. 49].
0.4 if t ∈ (41. 49, 64. 53].
0.6 if t ∈ (64. 53, 81. 37].
0.8 if t ∈ (81. 37, 93. 26].
1 if t ∈ (93. 26, 100].

1 − νA 4 (t )=






0 if t= 0.

0.2 if t ∈ (0, 37. 43].
0.4 if t ∈ (37. 43, 60. 04].
0.6 if t ∈ (60. 04, 77. 53].
0.8 if t ∈ (77. 53, 90. 98].
1 if t ∈ (90. 98, 100].

µA 5 (t)=






0 if t= 0.

0.2 if t ∈ (0, 49. 24].
0.4 if t ∈ (49. 24, 66. 9].
0.6 if t ∈ (66. 9, 82. 61].
0.8 if t ∈ (82. 61, 94. 1].
1 if t ∈ (94. 1, 100].

1 − νA 5 (t )=






0 if t= 0.

0 .2 if t ∈ (0, 41.32].
0 .4 if t ∈ (41. 32, 64. 89].
0 .6 if t ∈ (64. 89, 82. 09].
0 .8 if t ∈ (82. 09, 93. 49].
1 if t ∈ (93. 49, 100].

Consider now the IF-sets A+ and A− defined in Equations(5.11) and (5.12), that are
defined by µA + =µ A 2 , 1 − νA + =1 − νA 1 , 1 − νA − =1 − νA 5 and:

µA − =






0 if t= 0.

0.2 if t ∈ (0, 49 .24].
0.4 if t ∈ (49.24, 69.81].
0.6 if t ∈ (69.81, 84.47].
0.8 if t ∈ (84.47, 94.56].
1 if t ∈ (94.56, 100].

Now, we consider two ofthe most usualmeasures of comparisonof IF-divergences we can
find in the literature, the Hausdorffandthe Hammingdistances that, as we have said
in Section 5.1.3, are also lo cal IF-divergences.Recall that they are defined, resp ectively,
by:

dH (A, B)=
100

0
max{| µA (ω) − µB (ω)|, |νA (ω) − νB (ω)|} dω.

l IFS (A, B)=
1
2

100

0
|µA (ω) − µB (ω)| + |νA (ω) − νB (ω)| + |πA (ω) − πB (ω)|dω.

We represent theresultson thenexttable.

l IFS (A i ,A + ) l IFS (A i ,A − ) dH (A i ,A + ) dH (A i ,A − )
A1 6.404 2.561 6.404 5.122
A2 0.852 4.773 0.852 7.414
A3 4.594 1.169 6.916 5.974
A4 2.439 3.324 5.052 6.386
A5 5.448 0.523 6.99 1.046
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Now, we consider thre e different functions:

f 1(x, y) = y, f 2(x, y)= − x and f 3(x, y) =y − x.

f 1 only fo cus in the closest IF-set to the least optimal alternative; f 2 only fo cus in
the closest IF-set tothe most optimal alte rn ative,while f 3 fo cus in the IF-set that is
both closer to the most optimal alternative andless closer IF-set tothe leastoptimal
alternative. We obtainthefollowing results:

l IFS f 1 f 2 f 3
A1 2.561 − 6.404 − 3.843
A2 4.773 − 0.852 3.921
A3 1.169 − 4.594 − 3.425
A4 3.324 − 2.439 0.885
A5 0.523 − 5.448 − 4.925

dH f 1 f 2 f 3
A1 5122 − 6404 1282
A2 7414 − 0852 6562
A3 5974 − 6916 − 0 942
A4 6386 − 5052 1334
A5 1046 − 6 99 − 5 944

In the three cases, and with both IF-divergences, the preferred group is the second, that
is, thegroup ofNordic countries. Theworstalternative, exceptfortheIF-divergence l IFS

and the function f 2, is the group A5, that is the group of o ceanic countries. This means
that the group of countries that has a b ette r wealth distribution is the group of Nordic
countries, while thegreaterwealthinequalities are, in the most cases, in the group of
oceanic countries.

5.4 Conclusions

The comparison of fuzzy sets is a topic that has been widely investigated, an several
pap ers with mathematical theories can be found in the literature. However, when we
move towards IF-sets th e efforts are somewhat scattered, and there is not an axiomatic
approach to the comparisonof this kind ofsets.

For this reason we have develop ed a mathematical theory of the comparison of
IF-sets. In particular, we have fo cused on IF-divergences,which are more restrictive
measures than IF-dissi milarities. In particular, IF-divergences with the lo cal prop erty,
named lo calIF-divergences,played an imp ortant role. As was exp ected,a c on nection
between divergences for fuzzy sets and IF-divergences can be established,and we have
found the conditions under which the lo cal prop erty, among other interesting prop erties,
are preserved when we move from IF-divergences to divergences,and conversely, from
divergences to IF-divergenc es.We also showed that these measures can be applied in
pattern recognition and decision making, showing several examples.

On the other hand, we have investigated the connection between IVF-sets and
Imprecise Probabilities. In this sense, we assumed thatthe IVF-set is defined ona
probability space, and then it can be interpreted as a random interval. Then, we have
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investigated the probabilistic information enco ded by the random interval or its mea-
surable selections,and we found conditions under whichthis probabilistic information
coincides with the probabilistic information given by its asso ciated set of probabiliti es
dominated by the upp er probability. We als o investigated the connection b etween our
approach and other ones that can be found in the literature. Inparticular, thedefinition
ofprobability forIF-sets given by Grzegorzewski and Mrowka iscontained as a particular
case of ourtheory.

The connection between IVF-sets and Imprecise Probabilities has allowed us to
extend sto chastic dominance to the comparison of more than two p-b oxes simultaneously,
determining also a completerelationship (i.e., avoiding incomparability). This metho d,
that dep ends on the chosen IF-divergence,gives us a ranking of the p-b oxes. We have
illustrated its behaviour continuing with the example of Section 4.4.1 in which we compare
sets of Lorenz Curves.

For future research, some op en problems arise in the topic of comparison of IF-sets.
On the one hand, it is p ossible to investigate under which conditions IF-divergences, and
in particular lo cal IF-divergences, can define an entropy for IF-sets ([29]). Onthe other
hand, as could be seen in the applications of IF-divergence, it is interesting to intro duce
weights in the elements of theuniverse. In this situation it would be interesting to define
lo cal IF-divergence with weights, and trying to find an analogous result to Theorem 5.29
to characterize them. Furthermore, we could investigate if it is possible to define lo cality
with an op erator different than the sum; a t-conormfor instance. Moreover, ouraimis
to extend the lo cal prop erty to general universes,non-necessarily finite. With resp ect
to the connection between IF-sets, IVF-sets andImprecise Probabilities, we pretendto
continue studying IF-sets and IVF-sets as bip olar mo dels for representing positive and
negative information ([72, 73]).
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Conclusiones y traba jo futuro

Alo largo de esta memoriaseha tratado el problema de lacomparación dealternati-
vas ba jo ciertos tipos de falta de información: incertidumbre e imprecisión. La incer-
tidumbre se refiere a situaciones en las que los p osibles resultados del exp erimento están
perfectamente descritos,pero el resultado del mismo es descono cido.Porotra parte, la
imprecisión se refiere a situ aciones en las que elresultado del experimento es cono cido
p ero no es posible describirlo con precisión.Las herramientas utilizadas para mo delar la
incertidumbre y la imprecisión han sido la Teoría de las Probabilidades y la Teoría de los
Conjuntos Intuicionísticos, resp ectivamente, mientras que la Teoría de las Probabilidades
Imprecisas se ha utilizado para mo delar ambas faltas de información simultáneas.

Cuando las alternativas a comparar están definid as b a jo incertidumbre, éstas se han
mo delado mediante variables aleatorias,que son habitualme nte comparadas mediante
órdenes esto cásticos.Enestamemoriasehanconsiderado, principalmente, dosdeestos
órdenes: la dominancia esto cástica y la preferencia estadística.El primerode ellos es el
orden esto cástico más habitual en la literatura, y ha sido utilizado en diferentes ámbitos
con destacables resultados.Por otra parte, la preferencia estadística es elméto do más
adecuado para c omparar variables cu ali tativas.

A pesar de que la dominancia esto cástica es un méto do que ha sido investigado
p or varios autores, la preferencia estadística no ha sido estudiada con tanta profundidad.
Ésta es la raz ón p or la cualhemos estudiado sus propiedades como orden esto cásticos.
Uno de los resultados más destacados en este estudio es la relación de este méto do con la
mediana. Estodemuestra que, mientras que la dominancia esto cástica está relacionada
con la media, la preferencia estadística es más cercana a otro parámetro de lo calización.

También hemos investigado la relación entre la dominancia esto cástica y la preferen-
cia estadística, y hemos encontrado condiciones ba jo las cuales la dominancia estocástica
de primer orden implica la preferencia estadístic a. Dadoque lapreferencia estadística
dep ende de la distribución conjunta de las variables y, p or tanto, de la cópula que las liga,
dichas condicionesestán tambiénrelacionadas con la cópula. El Teorema 3.64 resume
estas condiciones:variables aleatorias indep endientes, variables aleatorias continuas liga-
das p or una cópula Arquimediana o variables aleatorias o bien continuas o bien discretas
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con sop ortes finitos que son comonótonas o contramonótonas.Además, hemos compro-
bado qu e esta relación no se cumple en general. Por tanto, demanera natural surge
la siguiente cuestión: ¿es p osible caracterizar las cópulas qu e hacen que la dominancia
esto cástica de primer orden implique la preferencia estadística?

Cuando las variables a comparar p erten ecen a la misma familia paramétrica de dis-
tribuciones, como por ejemplo Bernoulli, exp onencial, uniforme, Pareto, beta o normal,
hemos visto que la dominancia esto cástica y la preferencia estadística coinciden, yde
hecho, amb os méto dos se reducen a la comparación de sus esp eranzas.Por esta razón
es posible plantearse la siguiente conjetura: cuandolas variables a compararsiguen la
misma distribución perteneciente a la familia exp onencial de distribuciones, tanto la
dominancia esto cástica como la preferencia estadística se reducen a la comparación de
esp eranzas y son,por tanto, equivalentes. Aunque éste es un problemaabierto, una
primera aproximación basadaensimulaciones seha realizadoen[32].

La dominancia esto cástica y la preferencia estadística son méto dos de comparación
de variables aleatorias por pares.Esto hace que en ocasiones no sean méto dos adecuados
para comparar más de dos variables simu ltáneamente.De he cho, la preferencia estadística
es una relación no transitiva, y por lo tanto puede pro ducir resultados ilógicos. Ésta es
la razón que nos ha llevado a definiruna generalización de la preferencia estadística
para la comparación demás de dos variablessimultáneamente. Siguie ndo la misma
aproximación que en el cas o de la preferencia estadística,nuestra generalización da un
grado de preferencia a cada una de las variables de manera que to dos los grados sumen
uno. Por lo tanto, la variable preferida será aque lla con el mayor grado de preferen-
cia. Para este méto do hemos estudiado su conexión con los órdenes esto cásticos p or
pares. En particular, hemos visto que las mismas condic iones del Teorema 3.64 p ermiten
asegurar que siuna de las variables domina esto cásticamente de primer grado alresto,
entonces ésta es también preferida a to das las demás utilizando nuestra generalización
dela preferencia estadística.

A la preferencia estadística general le po demos dar la siguiente interpretación:dado
un conjunto de alternativas (en este cas o variables aleatorias) tenemos que elegir entre
la preferida, y po demos asignar a cada variable un grado de preferencia. Este grado
de preferencia puede entenderse como cuánto de preferida es cada alternativa sob re el
resto. Estohace quelapreferenciaestadísticageneral se pueda ver como una func ión
de ele cción difusa ([81,207]). Un punto abierto sería por tanto estudiar la preferencia
estadística general como unafunción de elección difusa.

Hay situaciones en las cuales las alternativas a comparar están definidas tanto ba jo
incertidumbre como ba jo imprecisión.En talescasos, lasvariablesaleatoriasno recogen
to das la información. En esta situación hemos mo delado las alternativas mediante con-
juntos de variables aleatorias con una interpretación episté mica:cada conjuntocontiene
la variable ale atoria original, que es descono cida.De cara a compararestos conjuntos
de alternativas, hemos tenido que extender los órdenes esto cásticos para la comparación
de conjuntosde variables aleatorias. Esta extensión da lugar a seis posibles méto dos de
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ordenación de conjuntos de variable s aleatorias.Una vez investigadas estas extensione s,
nos hemos centrado en los casos en los que el orden esto cástico utilizado es o bien la do-
minancia esto cástica o bien la preferencia estadística, y hemos llamado a sus extensiones
dominancia esto cástica imprecisa y preferencia estadística imprecisa.La Prop osición 4.19
yel Corolario 4.22 muestran que la dominancia esto cástica imprecisa está relacionada
con la comparación de las p-b oxes aso ciadas a los conjuntos de variables aleatorias por
medio de la dominancia esto cástica.Estos resultados también nos p erm iten ver el estu-
dio realizado por Deno eux ([61]) como un caso particular de nuestro estudio. Deno eux
consideró dos medidas de creencia, y sus medidas de plausibilidad aso ciadas, y utilizó la
dominancia esto cástica para compararlas.Sinembargo, dadoquelasmedidasdecreencia
y plausibilidad definen conjuntos de probabilidades, es p osible compararlas mediante la
dominancia esto cástica imprecisa.

Lo mismo ocurre con p osibilidades:una medida de p osibil idad define un conjunto
de probabilidades, y p or lo tanto es posible utilizar la dominancia esto cástica imprecisa
para compararlas.En la Prop osición 4.52 hemos dado una caracterización de la dominan-
cia esto cástica imprecisa para medidas de p osibilidad con distribuciones de p osibilidad
continu as.Aquí surge un nuevo problema abie rto:en casode quelas distribucionesde
p osibilidad aso ciadas a las distribuciones de p osibilidad no sean continuas, ¿se cumple la
misma caracterización de la Prop osición 4.52?

Dos situaciones habituales dentro de la Teoría de la Decisión se pueden mo delar
mediante la comparación de conjuntos de variables aleatorias. Por una parte, he mos
considerado la comparación de dos variables aleatorias con imprecisión en las utilidades.
Esta falta de información ha sido mo delada con conjuntos aleatorios. La in formación
probabilística de un conjunto aleatorio se recoge en sus selecc iones medibles.Portanto, la
comparación de conjuntos aleatorios se realiza mediante la comparación de sus con juntos
de se lecciones medibles.Por otraparte, hemos consideradolacomparación devariables
aleatorias definidas sobreun espacioprobabilístico donde la probabilidadno está definida
de manera precisa. Enesta situación, en vez de hab er una única probabilidad, hemos
consideradoun conjunto de probabilidades.De esta manera también es posible definir dos
conjuntos de variables aleatorias que recogen la información disp onible.Para estasdos
situaciones hemos investigado en particular las propiedades de la dominancia esto cástica
imprecisa yla preferencia estadística imprecisa, estudiando sus conexiones con la Teoría
de las Probabilidades Imprecisas.

La preferencia estadística es un orden esto cástico que está basado en la distribu-
ción conjunta de las variables aleatorias.ElTeorema de Sklarasegura quela función de
distribución conjuntade dos variablesse puede expresara través de las marginalesme-
diante el uso de la cópula adecuada.Ahorabien, dados dos variable aleatoriasdefinidas
en un espacio de probabilidad descrito de manera im precisa, el Teoremade Sklar no
permite construir la distribución conjunta. Para tratar este problema, hemos investigado
las p-b oxes bivariantes y su conexión con las probabilidades inferiores coherentes. En
particular, hemos visto que las funciones de distribución inferior y superior aso ciadas
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a un conjunto de funciones de distribución bivariantesno sonen general funciones de
distribución bivariantes, puesto que no cumpl en la desigualdad de los rectángulos.Sin
embargo, hemos visto que p ermiten defi nir una probabilidad inferior coherente, y a partir
de resultados conocidos, las funciones de distribución inferior y sup erior cumplen cuatro
desigualdades,llamadas (I-RI1), (I-RI2), (I-RI3) y (I-RI4), que puede n verse como las
versiones imprecisas dela desigualdad de los rectángulos.La Prop osición 4.102 asegura
que dos funciones de distribuci ón bivariantes, normalizadas y ordenadas define n una
probabilidadinferiorcoherentecuandounadelasfuncionesde distribución estádefinida
sobre un espacio binario. Como traba jo futuro, deseamos estudiarsi esta propiedadse
cumple para funciones de distribución definidas sobre to do tip o de espacios,no necesa-
riamente binarios.

El estudio de las p-b oxes bivariantes nos han permitido demostrar una versión
imprecisa del Teorema de Sklar. Ennuestroestudiohemos asumidoque partimosde
dos distribuciones margi nales imprecisas,definidas mediante p-b oxes,yde unconjunto
de cópulas. En esta situación es p osible definir una p-b ox bivariante que defina a su
vez una probabilidad inferior coherente. Además, hemosvisto queel recípro co no se
cumple en general, puesto que una p-b ox bivariante que define una probabilidad inferior
coherente no puede ser expresada, en general, a través de las p-b oxes marginales.Hemos
comprobado que esta versión imprecisa del Te orema de Sklar es muy útil cuando hay que
utilizar órdenes estocásticos ba jo imprecisión.

La extensión de los órdenes esto cásticos para la comparación de conjuntos de va-
riables aleatorias tiene varias aplicaciones. Ademásdelasaplicacioneshabituales de
los órdenes esto cásticos en la Teoría de la Decisión,hemos visto que también pueden
ser aplicados a la comparación de Curvas de Lorenz aso ciadas a distintos grup os de
países o regiones.Estos conjuntos de Curvas de Lorenz han sido comparados mediante
la dominancia esto cástica imprecisa.Un estudio si milar se ha realizado para comparar
tasas de sup ervivencia aso ciadas a distintos tip os cáncer, estudiando qué tip o de cáncer
tiene peor diagnóstico.

Las alternativas definidas ba jo imprecisión, sin incertidumbre, se han mo delado me-
diante conjuntos intuicionísticos (IF-sets). IF-sets son un tip o de conjuntos que sirven
para modelar información bip olar: considera los grados de p ertenencia y no pertenen-
cia. Varios e je mplos de medidas de comparación de IF-sets se pueden encontrar en
la literatura. Sin embargo, hasta este momento no se había desarrollado una teoría
matemática. Por esta razón hemos considerados diferentes tip os de medidas de com-
paración, IF-disimilaridades, IF-divergencias, IF-disimilitudes y distancias, y las hemos
estudiado de sde un punto de vis ta teórico.Por una parte hemos estudiado las relaciones
existentes entre estas medidas, y hemos definido una medida general de comparación de
IF-sets quecontiene alas otras medidas como casos particulares. Posteriorme nte nos
hemos centrado en el estudiode las IF-divergencias, estudiando sus propiedades más in-
teresantes. Enparticular, hemosconsideradounaclasedeIF-divergenciasquesatisface
una condición de lo calidad.Tambiénhemos vistoquéconexión existeentre lasdivergen-
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cias para conjuntos difusos y lasIF-divergencias. Por último, se han explicado posibles
aplicaciones de las IF-divergencias en el recono cimiento de patrones y en la Teoría de la
Decisión.

Pasamos a comentar algunos problemas ab iertos relacionados con las IF-divergencias.
Por una parte, encaso dequeloselementosdel es pacio inicialtengan unos pesos aso-
ciados, parece p osible extender las IF-divergencias lo cales considerando los pesos.Por
otra parte, las IF-divergencias se po drían estudiar como entropías para IF-sets.Además,
creemos que es p osible extender la propiedad de lo calidad para universos no finitos,o
incluso dar una defición de lo calidad basada en un op erador diferente de la suma, como
p o dría ser una t-conorma.

En las últimas fechas varios investigadoreshan centradosu atención encómolas
probabilidades imprecisas pueden mo delar la información bip olar.Dadoque losIF-sets
también son utilizados en este mismocontexto, hemos establecidounaconexión entre
ambas teorías. Para ello, hemos consideradoIF-sets definidos enun espacioprobabilís-
tico, ysi entendemos losIF-sets comoconjuntosintervalo-valorados, pueden servistos
como conjuntos aleatorios.Enestasituación, lainformaciónprobabilísticaestárecogida
en el conjunto de selecciones medibles.Hemos visto condiciones ba jo las cuales esta in-
formación coincide con la información probabilística dada p or el conjunto credal aso ciado
al conjunto aleatorio. Además, hemos vis to que aproximaciones que ya se encontraban
en la literatura se pueden ver como casos particulares de nue stro estudio.

La conexión entre los IF-sets y las probabilidades imprecisas nos han p ermitido
extender la dominancia esto cástica para la comparación de más de dos p-b oxes al mismo
tiemp o. Como traba jo futuro, p ensamos que este estudio p o dría ser com pletado.En
particular, se p o dría estudiar la relac ión delpro cedimiento que hemos explicado con el
usode la habitual distancia de Kolmogoroventre funciones dedistribución. Sin embargo,
creemos que éste puede verse como un cas o particular de nuestro estudio.
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Conclusions and further research

This memoryhas dealtwith theproblem of comparing alternatives underlack ofinfor-
mation. This lack of information can b e of different kin ds, andherewe haveassumed
that it corresp onds to either uncertainty or imprecision. Uncertainty refers to situations
where the p ossible results of the exp eriment are precisely describ ed, but the exact result
is unknown; onthe otherhand, imprecisionrefers to situationsin which theresult ofthe
exp eriment is known but it cannot be precisely describ ed.In order to mo del uncertainty
and imprecision we have us ed Probability Theory and Intuitionistic Fuzzy Set Theory,
resp ectively; when b oth these features app ear together in the decision problem, we have
usedthe Theoryof Imprecise Probabilities.

When the alternatives are sub ject to uncertainty in the outcomes, wewe have
mo delled them as random variables, and have used sto chastic orders so as to makea
comparison between them. We have fo cused mainly in two different sto chastic orders:
sto chastic dominance and statistical preference. The form er is one of the most wide ly
used sto chastic orders we can find in the literature and the latter is of particular interest
when comparing qu alitative variables. Indeed, although sto chastic dominance is a well-
known metho d th at has b een widely investigated by several authors, statistical preference
remained partly unexplored. Forthisreasonwehave studiedseveral prop erties of this
sto chastic order.Possibly the most imp ortant one is its characterization in terms of the
median, that serves us to compare it as a robust alternative to sto chastic dominance,
which is related to another lo cation parameter: the mean.

We have also investigated the relationship b etween sto chastic dominance and sta-
tistical preference,and we have found conditions under which (first degree) sto chastic
dominance implies statistical preference.Since statistical preference dep ends on the cop-
ula that lin ks the variables into a joint distribution, theconditions wehaveobtained
are al so related to the copula. Theorem 3.64 summ arizes such conditions: indep en-
dent random variables, continuousrandom variables coupled by an Archimedean copula
and either continuous or discrete random variables with finite supp orts that are either
comonotonic or countermonotonic. In addition, wehavealsoshowed thattheimplica-
tion b etween these two sto chastic orders do es not hold in general.Thus, the first op en
question naturally arises: it is possible to characterize the set of copulas that makes first
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degree sto chastic dominance to imply statistical preference?

When the random variables to be compared belong to the same parametric family
of distributions, like forinstance Bernoulli, exp onential,uniform, Pareto, beta or nor-
mal, we have seen that b oth sto chastic dominance and statistical preference coincide,
and in fact, they are equivalent to compare the exp ectations of the random variables.
This makes us to conjecture that when comparing two random variables that belong to
the same parametric family of distribution within the exp onential family, then sto chas-
tic dominance and statis tical preference reduce to the comparison of the exp ectations.
Although this problem is still op en, a first ap proach,based onsimulations, has already
b e done in [32].

Sto chastic dominance and statistical preference are pairwise metho ds of compari-
son of random variables. In this resp ect, they were not defined to compare more than
two variables simultaneously. In fact, statistical preference is not atransitive relation,
and therefore it may pro duce nonsensical results. For this reason we have gen eral ized
statistical preference to the comparison of more than two random variables at th e same
time. Withsimilarunderlyingideas tothoseof statistical preference,our generaliza-
tion assigns apreference degree to any of the random variables, and the sum of these
preference degrees is one.Then, the preferred randomvariableis theone with greater
preference de gree.Forthisnew approachwehave investigated itsconnectionto the
usual statistical preference and sto chastic dominance. In fact, the sameconditions of
Theorem 3.64 that guarantee that sto chastic dominance implies statistical preference
also ass ures that if there is a random variable that pairwise dominates all the others with
resp ect to sto chastic dominance,then such random variable will be the preferred one
with resp ect to our generalization of statistical preference.

A future line of research appears asso ciated with this general statistical preference.
Given aset of alternatives (inthis case, random variables)out of which we have to
cho ose the preferred one, wecanassign a degree of preference, that weunderstand
as the strength of the preference of eachalternativeover the other. Then, the general
statistical preference can b e seen as a fuzzy choice function de fined on a set of alternatives
([81, 207]). Thus, it may be interesting to investigate the prop erties of the general
statistical preference inthe frameworkof fuzzy choice functions.

Onthe other hand, there are situation in which the alternatives to be compared
are defined, notonlyunder uncertainty, butalso under imprecision. In such cases,
randomvariables do notcollect allthe available information. Thus, we have mo delled the
alternatives by me ans of sets of random variables with an epistemic interpretation:each
set contains thereal unknownrandom variable. Inordertocomparethesesets, weneedto
extend sto chastic orders to this general framework.In orde r to do this, we have considered
any binary relation defined for the comparisonofsingle random variablesand wehave
extended it for the comparison of sets of random variables. We have thus cons idered
six p ossib le ways of ordering se ts of random variables.Afterinvestigating somegeneral
prop erties of these extensions,we have fo cused in the cases in which binary relation is
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either sto chastic dominance or statistical preference. We have called the ir extensions
imprecise sto chastic dominance and imprecise statistical pre ference. Prop osition 4.19
and Corollary 4.22 showed that the former is clearly connected to the comparison of
the b ounds of the asso ciated p-boxes by means of sto chastic dominance.These results
also help ed to show that the approach given by Deno eux ([61]) is a particular case
of our more general frame work. Deno eux considered two b elieffunctions, and their
resp ective plausibility functions, and used sto chastic dominance to compare them.Since
each b eliefand plausibility function can be represented as a set of probabilities, and
therefore imprecise sto chastic dominance can b e applied; we have seen that our definitions
b ecome the ones given by Denoeux for this particular case.

The same happ ens with p ossibilities:each possibility defines a set of probabilities,
and therefore the imprecise sto chastic dominance can be used to compare them.Prop osi-
tion 4.52 showed a characterization of the imprecise sto chastic dominance for p ossibility
measures with continuous p ossibility di stribution. Thus, an op en problem is to inves-
tigate if such characterization also holds for possibility measures with non-continuous
possibility distributions.

We have explored two situations that are usually pre sent in decision making and
that can be mo delled by means of the comparison of sets of random variables. On the
one hand, we haveconsidered thecomparisonof two random variables with imprec i-
sion on the utilities. We have mo delled this imprecision with random sets. Since under
our epistemic interpretation the setof measurable selections ofa random set enco des
its probabilistic information, the comparison of random sets must be made by means of
the comparison of their asso ciated credal sets.Onthe otherhand, wecan alsocompare
random variables defined on a probability space with a non-prec isely determined prob-
ability; in thatcase, wehavetoconsidera setofprobabilities insteada singleone. In
this situation we can also consider two se ts of random variables that summarise all the
available information. For these two particular situations we have explored the prop erties
of imprecise sto chastic dominance and statisticalpreference,and weheaveinvestigated
their connection to imprecise probabilities.

We know that statistical preference is a sto chastic order that is based on the joint
distribution of the random variables. BySklar’s Theorem, this jointdistribution is
determined combining the marginals by means ofa copula. However, given tworandom
variables defined in a probability space with imprecise b eliefs, Sklar’s Theorem do es not
allow to define the jointdistribution. Inordertosolvethisproblem, wehaveinvestigated
bivariate p-b oxes and how they can define a coherent lower probability. In particular,
we have seen that the lower and upp er distributions associated with a set of bi variate
distribution functions are notin general bivariate distribution functions b ecause th ey
violatethe rectangle inequality. However, we have seen that they define a coherent lower
probability and they satisfy four inequalities , named (I-RI1), (I-RI2), (I-RI3) and (I-RI4),
that can b e seen as the im precise versions of the rectangle inequality.We have seen in
Prop osition 4.102 that given two ordered normalized bivariate distribution functions that
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satisfy them, they definea coherent lower probability if oneof the normalizedfunctions
is defined on a binary spac e.An op en problem for future research is to investigate if this
prop erty also holds for normalized functions defined on any space.

The study of bivariate p-b oxes have allowed to define an imprecise version of Sklar’s
Theorem. We have assumed thatwehavetwo imprecisemarginal distributions, thatwe
mo delby means of p-b oxes,and we havea set of possible copulas that link them. In
this situation it is possible to define a bivariate p-b ox that defines a coherent lower
probability. However, the second part of the Sklar’s Theorem do es not hold, becausea
bivariate p-b ox that defines a coherent lower probability cannot be expressed, in general,
by means of the marginal p-b oxes.We have also seen how this imprec ise version is very
useful when dealing with bivariate sto chastic orders with imprecision.

The extension of sto chastic orders to the comparison of sets of random variables we
have prop osed has several applications.Besides the usual application of sto chastic orders
in decision making, we have seen that they can b e also applie d to the comparison of the
inequality indices between groups of countries. Inthis work, wehave consideredthe
Lorenzcurveof each country, that measures theinequalityofsuchcountry, andwehave
group ed them by geographicalareas. Then, we havecompared these groups ofLorenz
curves using the imprecise sto chastic dominance.Wehave made a similar approachto
the comparison of cancer survival rates, grouping thembycancer sites, an d we have
analyzed which cancer site hasaworst prognosis.

Alternatives defined un der imprecision, without uncertainty, have been mo delled
by means of IF-sets. IF-sets are bip olar mo dels that allow to define memb ership and
non-memb ership degrees.Several examples of measures of comparison of IF-sets had
been prop osed in the literature. However, amathematical theory had not been devel-
op ed.For thisreasonwehaveconsidered differentkinds ofmeasures, IF-dissimilarities,
IF-divergences, IF-diss imilitudes and distances, and we have inves ti gated them froma
theoretical p oint of vi ew.First of all, we have seen the relationships between these mea-
sures, andwe have defined a general measureof comparison ofIF-sets thatcontainsthem
as particular cases.Then, we have fo cused on IF-divergences and we have investigated its
main prop erties. Inparticular, wehaveconsideredoneinstanceofIF-divergences, those
that satisfy a lo cal prop erty. We have also seen the conne ction b etween IF-divergences
and divergences for fuzzy se ts.We have also showed how IF-divergences can be applied
within pattern recognition anddecision making.

There are several op en problems related to this study of IF-divergences. On the
one hand, it would b e interesting to define lo cal IF-divergences that take into account
aweight function on the the elements of th e initial spac e. On theother hand, IF-
divergences could b e studied as entrop ies for IF-sets. Furthermore, it is possible to
extend the lo cal prop erty to spaces non-necessarily finite, and also to define the lo cal
prop erty by means of an op erator different than the sum, like t-conorms, for instance.

Currently, several authors have b een inve stigating how imprecise probabilities can
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be used to mo delbip olar information. Since IF-sets are alsouseful in this context, we
have establishe d a connection b etween b oth theories.We have assumed that IF-setsare
defined in a probability space; if we understand them as IVF-sets, theycan thenbe
seen as randomsets. In thatcase, their probabilistic information can be enco ded by
the set of measurable selecti on s.Wehaveseen conditions underwhichsuch information
coincides with the probabilistic information given the credal set asso ciated to the random
set. Furthermore, we have seen h ow previous approaches made for defining a probabil ity
measure on IF-sets can be emb edded into our approach.

The connection between IF-sets and imprecise probabilities has allowed us to extend
sto chastic dominance to the comparison of more than two p-b oxes simultaneously.For
future research, we think that this prop osal could be studied more thoroughly. For
instance, a similar extension of sto chastic dominance may b e made by using the usual
Kolmogorov distance between cumulative distribution functions. It would b e intere sting
to determine if this becomes a particular case of our more general framework.
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A App endix:Basic Results

In this App endix we prove some results that we have used throughout this rep ort.

Lemma A.1 Let a,b and c be three realnu mbers in[0 , 1]. Then

a) max{ 0 , min{ a,c}− min{ b,c}}≤ max{ 0,a − b} and
max{ 0 , max{ a,c}− max{ b,c}}≤ max{ 0 ,a− b} .

b) max(| max{ a,c}− max{ b,c}| , | min{ a,c}− min{ b,c}| ) ≤| a − b|.

Pro of: We distinguis h the following cases,dep ending on the minimum and the maxi-
mum of { a,c} and { b,c} :

1. Assume that min{ a,c} =a and min{ b,c} =b , and consequently max{ a,c} =
max{ b,c} =c . Then:

a) max{ 0, min{ a,c}− min{ b,c}} = max { 0,a − b} .
max{ 0, max{ a,c}− max{ b,c}} =0 ≤ max{ 0,a − b} .

b) | max{ a,c}− max{ b,c}| = |c − c| =0 ≤| a − b|.
| min{ a,c}− min{ b,c}| = |a − b|.

2. Assume next that min{ a,c} =a and min{ b,c} =c , and therefore max{ a,c} =c
and max{ b,c} =b . Note that, since min{ a,c} =a , then a ≤ c, and therefore
a − c ≤ 0. Moreover,italso holdsthat c ≤ b,and consequently a ≤ c ≤ b. Hence:

a) max{ 0 , min{ a,c}− min{ b,c}} = max { 0,a − c} =0
max{ 0 , min{ a,c}− min{ b,c}}≤ max{ 0,a − b} .
max{ 0 , max{ a,c}− max{ b,c}} = max { 0 ,c− b} =0
max{ 0 , max{ a,c}− max{ b,c}}≤ max{ 0 ,c− b} .

b) | max{ a,c}− max{ b,c}| = |c − b| ≤| a − b|.
| min{ a,c}− min{ b,c}| = |a − c| ≤| a − b|.
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3. Thirdly, assumethat min{ a,c} =c and min{ b,c} =b , whence
max{ a,c} =a and max{ b,c} =c . In such a case, c ≤ a and b ≤ c, and therefore
b ≤ c ≤ a,that implies c − b ≤ a − b and a − c ≤ a − b. Hence:

a) max{ 0, min{ a,c}− min{ b,c}} = max { 0 ,c− b}

max{ 0, min{ a,c}− min{ b,c}}≤ max{ 0,a − b} .
max{ 0, max{ a,c}− max{ b,c}} = max { 0,a − c}

max{ 0, max{ a,c}− max{ b,c}}≤ max{ 0,a − b} .
b) | max{ a,c}− max{ b,c}| = |a − c| ≤| a − b|.

| min{ a,c}− min{ b,c}| = |c − b| ≤| a − b|.

4. Finally, ass ume thatmin{ a,c} =min { b,c} =c , and consequently max{ a,c} =a
and max{ b,c} =b . Then:

a) max{ 0, min{ a,c}− min{ b,c}} =0 ≤ max{ 0 ,a− b} .
max{ 0, max{ a,c}− max{ b,c}} = max { 0,a − b} .

b) | max{ a,c}− max{ b,c}| = |a − b|.
| min{ a,c}− min{ b,c}| = |c − c| =0 ≤| a − b|.

Lemma A.2 If (a1,a 2), (b1,b2) and (c1,c2) are elementson T = { (x, y) ∈ [0 , 1]2 |

x +y ≤ 1} , it holds that:

α= |a1 − b1| + |a2 − b2| + |a1 +a 2 − b1 − b2|
≥| max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}|

+ | max{ a1,c1} +min { a2,c2}− max{ b1,c1}− min{ b2,c2}| =β.

Pro of: Let us consid er the following p ossibilities:

1. a1,b1 ≤ c1 and a2,b2 ≤ c2. Then:

β= |c1 − c1| + |a2 − b2| + |c1 +a 2 − c1 − b2| =2 |a2 − b2|
≤| a2 − b2| + |a1 − b1| + |a1 +a 2 − b1 − b2| = α.

2. a1,b1 ≤ c1 and c2 ≤ a2,b2. Then itholdsthat:

β= |c1 − c1| + |c2 − c2| + |c1 +c 2 − c1 − c2| =0 ≤ α.

3. a1,b1 ≤ c1 and b2 ≤ c2 ≤ a2:

β= |c1 − c1| + |c2 − b2| + |c1 +c 2 − c1 − b2| =2 |c2 − b2|
≤ 2|a2 − b2|≤ α.

4. c1 ≤ a1,b1 and c2 ≤ a2,b2:

β= |a1 − b1| + |c2 − c2| + |a1 +c 2 − b1 − c2| =2 |a1 − b1|
≤| a1 − b1| + |a2 − b2| + |a1 +a 2 − b1 − b2| =α.
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5. c1 ≤ a1,b1 and b2 ≤ c2 ≤ a2.

β= |a1 − b1| + |c2 − b2| + |a1 +c 2 − b1 − b2|

=
|b1 − a1| +(c 2 − b2) + (a 1 − b1) − (b2 − c2) if a1 − b1 ≥ b2 − c2

|b1 − a1| +(c 2 − b2) + (b2 − c2) − (a1 − b1) if a1 − b1 <b 2 − c2

=
|b1 − a1| +(a 1 − b1) + 2(c2 − b2) if a1 − b1 ≥ b2 − c2

2|b1 − a1| if a1 − b1 <b 2 − c2

≤
|b1 − a1| +(a 1 − b1) + (c 2 − b2) + (a 2 − b2) if a1 − b1 ≥ b2 − c2

|a1 − b1| + |a2 − b2| + |a1 +a 2 − b1 − b2| if a1 − b1 <b 2 − c2

≤
|b1 − a1| +(a 1 − b1) + (a 2 − b2) + (a 2 − b2) if a1 − b1 ≥ b2 − c2

|a1 − b1| + |a2 − b2| + |a1 +a 2 − b1 − b2| if a1 − b1 <b 2 − c2
≤ α.

6. b1 ≤ c1 ≤ a1 and b2 ≤ c2 ≤ a2.

β= |a1 − c1| + |c2 − b2| + |a1 +c 2 − c1 − b2|

=(a 1 − c1) + (c 2 − b2) + (a 1 − c1) + (c 2 − b2)
=2(a 1 − c1) + 2(c2 − b2) ≤ 2(a1 − b1) + 2(a2 − b2) ≤ α.

7. b1 ≤ c1 ≤ a1 and a2 ≤ c2 ≤ b2.

β= |a1 − c1| + |a2 − c2| + |a1 +a 2 − c1 − c2|

=
(a1 − c1) + (c 2 − a2) + (a 1 − c1) + (a 2 − c2) if a1 − c1 ≥ c2 − a2

(a1 − c1) + (c 2 − a2) − (a1 − c1) − (a2 − c2) if a1 − c1 <c 2 − a2

=
2(a1 − c1) ≤ 2(a1 − b1) if a1 − c1 ≥ c2 − a2

2(c2 − a2) ≤ 2(b2 − a2) if a1 − c1 <c 2 − a2

≤ 2(a1 − b1) if a1 − c1 ≥ c2 − a2

2(b2 − a2) if a1 − c1 <c 2 − a2
≤ α.

Inthe remainingcases, it isenough to exchange therolesof (a1,b1), (a2,b2) and to apply
the previous cases.

Lemma A.3 If (a1,a 2), (b1,b2) and (c1,c2) are elementson T = { (x, y) ∈ [0 , 1]2 |

x +y ≤ 1} , then it holds that:

|a1 − b1 − a2 +b 2| + |a1 − b1| + |a2 − b2|≥
| max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}| +
| max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}| .

Pro of: Let us consider some cases.
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1. a1,b1 ≤ c1 and a2,b2 ≤ c2.

| max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}|

+ | max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}|

= |c1 − c1 − a2 +b 2| + |c1 − c1| + |a2 − b2| =2 |b2 − a2|
≤| a1 − b1 − a2 +b 2| + |a1 − b1| + |a2 − b2|.

2. a1,b1 ≤ c1 and c2 ≤ a2,b2.

| max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}|

+ | max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}|

= |c1 − c1 − c2 +c 2| + |c1 − c1| + |c2 − c2| =0
≤| a1 − b1 − a2 +b 2| + |a1 − b1| + |a2 − b2|.

3. a1,b1 ≤ c1 and b2 ≤ c2 ≤ a2.

| max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}|

+ | max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}|

= |c1 − c1 − c2 +b 2| + |c1 − c1| + |c2 − b2| =2 |c2 − b2|
≤| a1 − b1 − a2 +b 2| + |a1 − b1| + |a2 − b2|.

4. a1,b1 ≤ c1 and a2 ≤ c2 ≤ b2. It suffices to exch an ge the roles of(a1,a 2) and (b1,b2)
and to ap ply the previous case.

5. c1 ≤ a1,b1 and a2,b2 ≤ c2. Take (a2,a 1) and (b2,b1) and apply case 2.

6. c1 ≤ a1,b1 and c2 ≤ a2,b2.

| max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}|

+ | max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}|

= |a1 − b1 − c2 +c 2| + |a1 − b1| + |c2 − c2| =2 |a1 − b1|

= |a1 − b1 − a2 +b 2| + |a1 − b1| + |a2 − b2|.

7. c1 ≤ a1,b1 and b2 ≤ c2 ≤ a2.

| max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}|

+ | max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}|

= |a1 − b1 − c2 +b 2| + |a1 − b1| + |c2 − b2|

=
(a1 − b1) − (c2 − b2)+ |a1 − b1| +(c 2 − b2) if a1 − b1 ≥ c2 − b2

2(c2 − b2) − (a1 − b1)+ |a1 − b1| if a1 − b1 ≤ c2 − b2

≤ 2|a1 − b1| if a1 − b1 ≥ c2 − b2

(a2 − b2) − (a1 − b1)+ |a1 − b1| + |a2 − b2| if a1 − b1 ≤ c2 − b2

= |a1 − b1| + |a2 − b2| + |a1 − b1 − a2 +b 2|.
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8. c1 ≤ a1,b1 and a2 ≤ c2 ≤ b2. It suffices to exchange (a1,a 2) and (b1,b2) and to
apply the previouscase.

9. b1 ≤ c1 ≤ a1 and a2,b2 ≤ c2. It is enough to consid er (a2,a 1) and (b1,b2) and to
apply case 3.

10. b1 ≤ c1 ≤ a1 and c2 ≤ a2,b2. Itsuffices toconsider (a2,a 1) and (b1,b2) and to
apply case 7.

11. b1 ≤ c1 ≤ a1 and b2 ≤ c2 ≤ a2.

| max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}|

+ | max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}|

= |a1 − c1 − c2 +b 2| + |a1 − c1| + |c2 − b2|

=
2(a1 − c1) + (c 2 − b2) − (c2 − b2) if a1 − c1 ≥ c2 − b2

(a1 − c1) + 2(c2 − b2) − (a1 − c1) if a1 − c1 ≤ c2 − b2

≤ 2(a1 − b1) if a1 − c1 ≥ c2 − b2

2(a2 − b2) if a1 − c1 ≤ c2 − b2

= |a1 − b1| + |a2 − b2| + |a1 − b1 − a2 +b 2|.

12. b1 ≤ c1 ≤ a1 and a2 ≤ c2 ≤ b2.

| max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}|

+ | max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}|

= |a1 − c1 − a2 +c 2| + |a1 − c1| + |a2 − c2|

=2(a 1 − c1) + 2(c2 − a2)
≤ 2(a1 − b1) + 2(b2 − a2)
= |a1 − b1| + |a2 − b2| + |a1 − b1 − a2 +b 2|.

13. a1 ≤ c1 ≤ b1. Itisenough toconsider (a2,a 1) and (b2,b1) andto applythe previous
cases.

Lemma A.4 If (a1,a 2), (b1,b2) and (c1,c2) are elementson T = { (x, y) ∈ [0 , 1]2 |

x +y ≤ 1} ,then:

|a1 − b1| + |a2 − b2| + |a1 − b1 − a2 +b 2| + |a1 +a 2 − b1 − b2|≥
| max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}| +
| max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}| +
| max{ a1,c1}− max{ b1,c1} +min { a2,c2}− min{ b2,c2}| .

Pro of: Throughout this proof we will use the fact that |x +y |+ |x − y| = max { 2|x|,2 |y|} .
Let us consider the following possibilities.
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1. a1,b1 ≤ c1 and a2,b2 ≤ c2.

| max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}|

+ | max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}|

+ | max{ a1,c1}− max{ b1,c1} +min { a2,c2}− min{ b2,c2}|

= |c1 − c1| + |a2 − b2| + |c1 − c1 − a2 +b 2| + |c1 − c1 +a 2 − b2|

=3 |a2 − b2| ≤| a2 − b2| + |a2 − b2 − a1 +b 1| + |a2 − b2 +a 1 − b1|
≤| a1 − b1| + |a2 − b2| + |a2 − b2 − a1 +b 1| + |a2 − b2 +a 1 − b1|.

2. a1,b1 ≤ c1 and c2 ≤ a2,b2.

| max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}|

+ | max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}|

+ | max{ a1,c1}− max{ b1,c1} +min { a2,c2}− min{ b2,c2}|

= |c1 − c1| + |c2 − c2| + |c1 − c1 − c2 +c 2| + |c1 − c1 +c 2 − c2|

=0 ≤| a1 − b1| + |a2 − b2| + |a2 − b2 − a1 +b 1| + |a2 − b2 +a 1 − b1|.

3. a1,b1 ≤ c1 and b2 ≤ c2 ≤ a2.

| max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}|

+ | max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}|

+ | max{ a1,c1}− max{ b1,c1} +min { a2,c2}− min{ b2,c2}|

= |c1 − c1| + |c2 − b2| + |c1 − c1 − c2 +b 2| + |c1 − c1 +c 2 − b2|

=3 |c2 − b2|≤ 3|a2 − b2|

= |a2 − b2| + |a2 − b2 − a1 +b 1| + |a2 − b2 +a 1 − b1|
≤| a1 − b1| + |a2 − b2| + |a2 − b2 − a1 +b 1| + |a2 − b2 +a 1 − b1|.

4. a1,b1 ≤ c1 and a2 ≤ c2 ≤ a2. It suffi ces to exchange the roles of (a1,a 2) and
(b1,b2).

5. c1 ≤ a1,b1 and a2,b2 ≤ c2. It suffices toconsider (a2,a 1) and (b2,b1) and to apply
case 2.

6. c1 ≤ a1,b1 and c2 ≤ a2,b2.

| max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}|

+ | max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}|

+ | max{ a1,c1}− max{ b1,c1} +min { a2,c2}− min{ b2,c2}|

= |a1 − b1| + |c2 − c2| + |a1 − b1 +c 2 − c2| + |a1 − b1 − c2 +c 2|

=3 |a1 − b1| ≤| a1 − b1| + |a2 − b2 − a1 +b 1| + |a2 − b2 +a 1 − b1|
≤| a1 − b1| + |a2 − b2| + |a2 − b2 − a1 +b 1| + |a2 − b2 +a 1 − b1|.
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7. c1 ≤ a1,b1 and b2 ≤ c2 ≤ a2.
| max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}|

+ | max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}|

+ | max{ a1,c1}− max{ b1,c1} +min { a2,c2}− min{ b2,c2}|

= |a1 − b1| + |c2 − b2| + |a1 − b1 − c2 +b 2| + |a1 − b1 +c 2 − b2|

= |a1 − b1| + |c2 − b2| + 2max( |a1 − b1|, |c2 − b2|)
≤| a1 − b1| + |a2 − b2| + 2max( |a1 − b1|, |a2 − b2|)
≤| a1 − b1| + |a2 − b2| + |a2 − b2 − a1 +b 1| + |a2 − b2 +a 1 − b1|.

8. c1 ≤ a1,b1 and a2 ≤ c2 ≤ a2. It sufficesto exchange the roles of(a1,a 2) and (b1,b2)
and to applythe previouscase.

9. b1 ≤ c1 ≤ a1 and a2,b2 ≤ c2. It is enough to consid er (a2,a 1) and (b2,b1) and to
apply case 3.

10. b1 ≤ c1 ≤ a1 and c2 ≤ a2,b2. Consid er(a2,a 1) and (b2,b1) and to app ly case 7.

11. b1 ≤ c1 ≤ a1 and b2 ≤ c2 ≤ a2.
| max{ a1,c1}− max{ b1,c1}| + | min{ a2,c2}− min{ b2,c2}|

+ | max{ a1,c1}− max{ b1,c1}− min{ a2,c2} +min { b2,c2}|

+ | max{ a1,c1}− max{ b1,c1} +min { a2,c2}− min{ b2,c2}|

= |a1 − c1| + |c2 − b2| + |a1 − c1 − c2 +b 2| + |a1 − c1 +c 2 − b2|

= |a1 − c1| + |c2 − b2| + 2max( |a1 − c1|, |c2 − b2|)
≤| a1 − b1| + |a2 − b2| + 2max( |a1 − b1|, |a2 − b2|)
= |a1 − b1| + |a2 − b2| + |a2 − b2 − a1 +b 1| + |a2 − b2 +a 1 − b1|.

12. b1 ≤ c1 ≤ a1 and a2 ≤ c2 ≤ b2. It suffices to exchange the roles of (a1,a 2) and
(b1,b2) and to appl y the previous case.

13. a1 ≤ c1 ≤ b1. Itsuffices to exchange (a1,a 2) and (b1,b2) and to apply the previous
cases.

Lemma A.5 If (a1,a 2), (b1,b2) and (c1,c2) are three elements inT = { (x, y) ∈ [0 , 1]2 |

x +y ≤ 1} ,then:

| max{ a1 − 0. 5,0}− max{ b1 − 0.5 ,0}| +
| max{ a2 − 0.5,0}− max{ b2 − 0.5 ,0}|≥

| max{ max{ a1,c1}− 0.5,0}− max{ max{ b1,c1}− 0.5 ,0}| +
| max{ min{ a2,c2}− 0. 5,0}− max{ min{ b2,c2}− 0.5, 0)|.

Pro of: In order to prove this result, we are going to prove the following inequalities:
| max{ a − 0.5 ,0}− max{ b− 0. 5,0}|≥

| max{ max{ a,c}− 0.5 ,0}− max{ max{ b,c}− 0.5,0}| ,
| max{ a − 0. 5,0}− max{ b− 0. 5,0}|≥

| max{ min{ a,c}− 0.5 ,0}− max{ min{ b,c}− 0. 5,0}| ,
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for every a, b,c∈ [0 , 1]. Let usconsiderseveralcases.

1. a ≤ b ≤ c.

| max{ max{ a,c}− 0.5,0}− max{ max{ b,c}− 0. 5,0}|
= | max{ c − 0.5 ,0}− max{ c − 0.5 ,0}|
=0 ≤| max{ a − 0.5,0}− max{ b− 0.5,0}| .

| max(min{ a,c}− 0.5,0}− max{ min{ b,c}− 0. 5,0}|
= | max{ a − 0.5 ,0} +max { b− 0.5 ,0}| .

2. a ≤ c ≤ b. This impliesthat b− 0.5 ≥ c − 0.5 ≥ a − 0.5, and therefore max{ b−

0. 5,0}≥ max{ c − 0.5 ,0}≥ max{ a − 0.5,0} .

| max{ max{ a,c}− 0. 5,0}− max{ max{ b,c}− 0.5 ,0}|
= | max{ c − 0.5,0}− max{ b− 0.5,0}|
≤| max{ a − 0. 5,0}− max{ b− 0. 5,0}|

| max{ min{ a,c}− 0. 5,0}− max{ min{ b,c}− 0.5,0}|

= | max{ a − 0. 5,0}− max{ c − 0. 5,0}|
≤| max{ a − 0.5,0}− max{ b− 0.5,0}| .

3. b ≤ a ≤ c.

| max{ max{ a,c}− 0.5,0}− max{ max{ b,c}− 0. 5,0}|
= | max{ c − 0.5 ,0}− max{ c − 0.5 ,0}|
=0 ≤| max{ a − 0. 5,0}− max{ b− 0.5,0}| .

| max{ min{ a,c}− 0. 5,0}− max{ min{ b,c}− 0.5 ,0}|
= | max{ a − 0.5 ,0}− max{ b− 0.5 ,0}| .

4. b ≤ c ≤ a. Then a − 0.5 ≥ c − 0.5 ≥ b− 0.5, and cons equ entlymax{ a − 0. 5,0}≥
max{ c − 0 .5 ,0}≥ max{ b− 0.5 ,0} .

| max{ max{ a,c}− 0.5 ,0}− max{ max{ b,c}− 0.5,0}|

= | max{ a − 0.5 ,0}− max{ c − 0.5 ,0}|
≤| max{ a − 0.5 ,0}− max{ b− 0. 5,0}| .

| max{ min{ a,c}− 0.5 ,0}− max{ min{ b,c}− 0. 5,0}|
= | max{ c − 0. 5,0}− max{ b− 0.5,0}|
≤| max{ a − 0. 5,0}− max{ b− 0. 5,0}| .

5. c ≤ a ≤ b.

| max{ max{ a,c}− 0. 5,0}− max{ max{ b,c}− 0.5 ,0}|
= | max{ a − 0. 5,0}− max{ b− 0.5,0}| .

| max{ min{ a,c}− 0. 5,0}− max{ min{ b,c}− 0.5,0}|

= | max{ c − 0.5 ,0}− max{ c − 0.5,0}|

=0 ≤| max{ a − 0. 5,0}− max{ b− 0. 5,0}| .
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6. c ≤ b ≤ a.

| max{ max{ a,c}− 0. 5,0}− max{ max{ b,c}− 0. 5,0}|
= | max{ a − 0.5,0}− max{ b− 0.5,0}| .

| max{ min{ a,c}− 0. 5,0}− max{ min{ b,c}− 0.5 ,0}|
= | max{ c − 0.5 ,0}− max{ c − 0.5 ,0}|
=0 ≤| max{ a − 0.5,0}− max{ b− 0.5,0}| .

Thus, for every (a1,a 2), (b1,b2), (c1,c2) ∈T itholds that:

| max{ a1 − 0. 5,0}− max{ b1 − 0.5,0}| +
| max{ a2 − 0. 5,0}− max{ b2 − 0.5,0}|≥

| max{ max{ a1,c1}− 0.5,0}− max{ max{ b1,c1}− 0.5 ,0}| +
| max{ a2 − 0.5,0}− max{ b2 − 0. 5,0}|≥
| max{ max{ a1,c1}− 0.5,0}− max{ max{ b1,c1}− 0.5 ,0}| +
| max{ min{ a2,c2}− 0.5,0}− max{ min{ b2,c2}− 0.5,0}| .
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[120] D.Martinetti, V.Jani š, and S. Montes. Cuts of intuitionistic fuzzy sets resp ecting
fuzzy connectives. Information Sciences , 232:267–275, 2013.

[121] D.Martinetti, I.Montes, andS.Díaz. Transitivityofthefuzzyandtheprobabilistic
relations asso ciated to a set of random variables.InP.Burrillo, H.Bustince, B.De
Baets, and J. Fo dor,editors, Proceedings of EUROFUSE 2009 Conference,pages
21–26, 2009.

[122] D. Martinetti, I. Montes, S. Díaz, and S. Monte s. Astudy of the transitivityof the
probabilistic and fuzzy relation. Fuzzy Sets and Sy stems, 184:156–170, 2011.

[123] J. M. Merigó and A. M. Gil-Lafuente. Induced 2-tuple linguisticgeneralized aggre-
gation op erators and their application in decision-making. Information Sciences,
236:1–16, 2013.

[124] P. Mikusiński, H. Sherwo ok, and M.D. Taylor. The Fréchet bounds revisited. Real
Anal Exchange, 17:759–764,1991-92.

[125] E. Miranda. Análisis de la información probabilística de los conjuntos aleat orios.
PhD thesis, University of Oviedo, 2003. In Spanish.

[126] E. Miranda. Asurvey of the theory of coherent lower previsions. International
Journal of Approximate Reasoning , 48(2):628–658, 2008.

[127] E. Miranda, I. Couso, and P. Gil. Upp er probabilities and selectors of random
sets. InP.Grzegorzewski, O.Hryniewicz, andM.A.Gil, editors, Soft methods in
probability, statistics and data analysis, pages 126–133. Physica-Verlag, Heidelb erg,
2002.



406 Bibliography

[128] E. Miranda, I. Couso, and P. Gil. A random set characteriz ation of possibility
measures.Information Sciences , 168:51–75, 2004.

[129] E. Miranda, I. Couso, and P. Gil. Random intervals as a mo del for imprec ise
information. Fuzzy Sets and Syst ems, 154:386–412, 2005.

[130] E.Miranda, I.Couso, andP.Gil. Approximations of upp er and lower probabilities
by me as urable selections.Information Sciences , 180:1407–1417, 2010.

[131] E. Miran da, I. Couso, and P.Gil. Upp er probabilities attainable by distributions
of measurable selections.Information Sciences , 180(8):107–1417, 2010.

[132] E. Miranda, G. de Co oman,and I. Cous o. Lower previs ion s induced by multi-
valued mappings. Journal of Statistical Planning and Inference, 133(1):173–197,
2005.

[133] E. Miranda, G. de Co oman, and E. Quaegheb eur. Fini tely additive extensions
of distribution functions and moment sequences: The coherent lower prevision
approach. International Journal of Approximate Reasoning, 48(1):132–155, 2008.

[134] E. Miranda and I. Montes. Imprecise preferences by means of probability boxes.
InProceedings of 4th ERCIM,page 63, 2011.

[135] E. Miranda, I. Montes, R. Pelessoni, and P. Vicig. Bivariate p-b oxes. In Proceedings
of 8th ISIPTA, 2013.

[136] E.Miranda, M.Troffaes, andS.Destercke. Generalised p-b oxes on totally ordered
spaces. In D. Dub ois, M. Lubiano, H. Prade, M. Gil, P. Grzegiorzewski, and
O. Hryniewicz, editors, Soft Methods for Hand ling Variability and Imprecision,
pages 235–242. Springe r, 2008.

[137] E. Mirandaand M. Zaffalon. Coherence graphs.Artificial Intel ligence, 173(1):104–
144, 2009.

[138] H. B. Mitchell. On the dengfeng–chuntian similarity measure and its application
to pattern re cognition. Pattern Recognition Letters,24:3101–3104,2003.

[139] A. Mülle r and D. Stoyan. Comparison Methodsfor Stochastic Models and Risks.
Wiley, 2002.

[140] I. Montes. Some general comments ab out statistical preference.InProceedings of
I TUIM Conference, 2010.

[141] I. Montes. Divergences for intuition istic fuzzy sets. InProceedings of II TUIM
Conference, 2011.

[142] I. Montes. Comparisonofmore thantwo random variables by meansof the statis-
tical preference. In Proceedings of XXXIII SEIO Conference , 2012.



Bibliography 407

[143] I. Montes, S. Díaz, and S. Montes. Comparison of imprecise fitness values mo delled
by b eta di stributions. pages 489–494, 2010.cited By (since 1996)0.

[144] I.Montes, J.Hernández, D.Martinetti, andS.Montes. Characterizationofcontin-
uous t-normscompatible withzadeh’s probability of fuzzy events. Fuzzy Setsand
Systems, 228:29–43, 2013.
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[146] I.Montes, V.Jani š, and S.Montes. Onthe study of some measuresof comparison
of if-sets. I n Proceedings of XVI ESTYLF Conference , 2011.
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