Universidad de Oviedo<br>Programa de Do ctorado<br>en Matemáticas yEstadística

# Comparison of alternatives und uncertainty and imprecision 

Tesis Do ctoral

## Conte nts

Agradecimientos ..... xV
Resumen ..... xvii
Abstract ..... xix
1 Intro duction ..... 1
2 Basic concepts ..... 9
2.1 Stochastic orders ..... 9
2.1.1 Stochastic dominance ..... 10
2.1.2 Statistical preference. ..... 15
2.2 Imprecise probabilities ..... 24
2.2.1 Coherent lower previsions ..... 24
2.2.2 Conditional lower previsions ..... 27
2.2.3 Non-additivemeasures. ..... 29
2.2.4 Random sets ..... 31
2.3 Intuitionistic fuzzy sets. ..... 34
3 Comparisonofalternativesunder uncertainty ..... 43
3.1 Properties of the statistical preference ..... 44
3.1.1 Basic properties and intuitive interpretation of the statistical pref- erence ..... 44
3.1.2 Characterizationsof statisticalpreference ..... 52
3.2 Relationship b etween sto chastic dominance and statistical preference. ..... 77
3.2.1 Independent random variables ..... 78
3.2.2 Continuouscomonotonicand countermonotonicrandom variables. ..... 80
3.2.3 Discretecomonotonic andcountermonotonicrandom variableswith finite supp orts ..... 83
3.2.4 Random variables coupled by an Archimedean copula ..... 86
3.2.5 Other relationships $b$ etween sto chastic dominance and statistical preference. ..... 90
3.2.6 Exampleson theusualdistributions ..... 93
3.3 Comparison of $n$ variables by means of the statistical preferenc e. ..... 102
3.3.1 generalisationof thestatisticalpreference ..... 104
3.3.2 Basic properties ..... 106
3.3.3 Stochastic dominance Vs general statistical preference ..... 111
3.3.4 General statistical preference $\mathrm{Vs}_{\mathrm{s}} n^{\text {th }}$ degree sto chastic dominance ..... 127
3.4 Applications ..... 129
3.4.1 Comparison of fitness values ..... 129
3.4.2 General statistical preference as a tool for linguistic decision making14
3.5 Conclusions ..... 145
4 Comparisonofalternativesunder uncertaintyandimprecision ..... 147
4.1 generalisationof thebinaryrelations ..... 148
4.1.1 Imprecise stochastic dominance ..... 157
4.1.2 Imprecise statisticalpreference ..... 193
4.2 Modelling imprecision in decision making problems ..... 202
4.2.1 Imprecision ontheutilities ..... 202
4.2.2 Imprecision onthebeliefs ..... 206
4.3 Modelling the joint distribution. ..... 209
4.3.1 Bivari ate distribution with im precision. ..... 210
4.3.2 Imprecise copulas. ..... 228
4.3.3 The role of imprecise copulas in the imprecise orders ..... 237
4.4 Applications. ..... 243
4.4.1 Comparison of Lorenzcurves ..... 243
4.4.2 Comparison of cancersurvival rates ..... 247
4.4.3 Multiattribute decisionmaking. ..... 249
4.5 Conclusions ..... 253
5 Comparisonofalternativesunder imprecision ..... 257
5.1 Measuresof comparisonofIF-sets ..... 258
5.1.1 Comparisonof IF-sets ..... 267
5.1.2 Properties of the IF-divergences. ..... 273
5.1.3 ExamplesofIF-divergencesandIF-dissimilarities. ..... 279
5.1.4 Local IF-divergences ..... 290
5.1.5 IF-divergences Vs Divergences. ..... 314
5.2 Connecting IVF-sets and imprecise probabilities. ..... 330
5.2.1 Probabilistic information of IVF-sets. ..... 331
5.2.2 Connection withotherapproaches ..... 346
5.3 Applications. ..... 349
5.3.1 Application topatternrecognition ..... 350
5.3.2 Application todecisionmaking. ..... 352
5.3.3 Using IF-divergences to extend sto chastic dominance. ..... 358
5.4 Conclusions ..... 362
Conclusiones y traba jo futuro ..... 363
Concluding remarks ..... 369
A App endix: Basic Results ..... 377
List of symb ols ..... 385
Alphab etic index ..... 390
List of Figures ..... 392
List of Tables ..... 395
Bibliography ..... 397

## Agradecimientos

Estamemoria abarca el traba jo realizado desde que en Julio de 2009 finalicé la licenciatura en Matemáticas. Por aquel entonces recibí el ap oyo de varios miembros del Departamento de Estadística e Investigación Op erativa y Didáctica de la Matemática para realizar una tesis do ctoral. De entreellos, deb o destacar los consejos que siempre me dieron losProfesores Pedro Gily Santos Domínguez.

La oportunidad de comenzar este traba jo me surgió cuando Susana Montes se puso en contacto conmigo para ofrecerme la p osibilidad de adentrarme en el apasionante mundo de la investigación, y es de justicia calific ar este momento como uno de los más imp ortantes de to da mivida. Desde entonc es me encuentro en ethejor ambiente posible de traba jo, arropado en todo momento por los miembros del proyecto UNIMODE: Susana Díaz, Davide Martinetti,Enrique Miranda y la propia Susana Montes.

Es de justicia nombrar de manera esp ecial a mis directores Susana Montes y Enrique Miranda (y aunque no figure comodirectora, también a Susana Díaz). Este traba jo ha sido $p$ osible grac ias a ellos, a su dedicación, a su paciencia, a su pasión $p$ or las $m$ atemáticas, asusganasde hacerlascosasbien. Po dría rellenar muchas páginas explicando lo agradecido que les estoy y lo afortunado que me siento $p$ or pertenecer a este maravilloso grupo de traba jo, pero sinceramente mis palabras nunca llegarían a reflejar mis sentimientos.

A lo largo de estos años ha habido muchas personas a las que les deb o mis agradec imientos, comenzando $p$ or mis compañe ros de carrera y los miembros del Departamento de Estadística e Investigación Op erativa y Didáctica de la Matemática. Al personal de la UCE, yen particular a Tania y Patri, por su incondicional ap oyo y su sincera amistad. A Gert de Co oman y to do su equip o, ya PaoloVicig y Renato Pelessoni deb o agradecerles su amabilidad durante las estancias que realicé en las Universidades de Gante y de Trieste.A los miembros de la comunidad científica nac ional e internacional por su amabilidad y buenos consejos.Y en definitiva, a to dos aquellos que de una u otra manera han colaborado o ap ortado en mi formación.

Por otra parte, este traba jo no habría sido p osible sin la financiación, a través de una

Beca deFormación deProfesorado Universitario, del Ministerio deEducación, así comoa la Ayuda recibida por parte del Vicerrectorado de Investigación y Campus de Excelencia de la Universidad de Oviedo que me p ermitió realizar una estancia de investigación en la Univers idad de Trieste.

Y por supuesto, darles lasgraciasa mi familia y a Almudena .. . simplemente por to do.

## Resumen

En much as situaciones de la vida real es necesario comparar alternativademás, es habitual que estas alternativas estén definidas ba jo falta de información. En esta memoria se consideran dos tip os de falta de información:incertidumbre e imprecisión. La incertidumbre se refiere a situaciones en las cuales los posibles resultados del exp erimento son cono cidos y se pueden describir completamentepero el resultado del mismo no es cono cido;mientras que en las situaciones ba jo imprecisión, se cono ce eresultado del exp erimento, p ero no es p osible describirlo con precisiófortanto, laincertidumbrese mo delará mediante la Teoría de la Probabilidad, mientras que la imprecisión será mo deladamediante la Teoría de los Conjuntos Intuicionísticos. Además, cuandoambasfaltas de información aparezcansimultáneamente, se utilizará la Teorí a de las Probabilidades Imprecisas.

Cuando las alternativas a comparar estén definidas ba jo incertidumbre, éstas se mo delarán mediante variables aleatoriasPor tanto, para compararlas se rá necesario utilizar un orden esto cástico. En esta memoriase consideran dosórdenes: la dominancia esto cástica y la preferencia estadística.El primero de ellos es uno de los méto dos más utilizados en la literatura, mientras que el segundo es el méto do óptimo de comparación de variables cualitativas. Para estos méto dos se han estudiado varias propiedadesEn particular, si bien es cono cido que la dominancia esto cástica está relacionada con la comparación de las esp eranzas de determinadas trasformaciones de las variablese prueba que la preferencia estadística está más ligada a otro parámetro de lo calización, la mediana. Además, se han encontrado situaciones ba jo las cuales la dominancia estocástica está relacionada conla preferencia estadística. Estos dos órdenes esto cásticos han sido definidos para comp arar variables aleatorias p or pareBor esta razón se ha definido una extensióndelapreferencia estadísticaparalacomparaciónsimultáneade másde dos variables y se han e studiado varias prop iedades.

Cuando las alte rnativas están defin idas en un marco de incertidumbre e imprecisión, cada una de ellas se mo delará mediante un conjunto de variables aleatorias.Dado que los órdenes esto cásticos comparan variables aleatorias, es necesario realizar su extensión para la comparación de conjuntos de variables.Cuando el orden esto cástico utilizado es la dominancia esto cástica o la preferencia estadística, la comparación de los conjuntos de
variables aleatoriasestá claramente relacionadaconla comparación de elementos propios de la teoría de las probabilidades imprecisas, como pueden ser las p-b oxes.Gracias al mo delo generalque desarrollaremos, se po drán estudiar en particular dos situaciones habituales en los problemas de la teoría de la decisión: la comparación de variab les aleatorias bajo utilidades o ba jo creencias imprecisas. El primer problema se mo delará mediante conjuntos aleatorios, y por lo tanto su comparación se realizará a través de sus conjuntos de selecc iones medibles.El segundo problema será mo delado mediante un conjunto de probabilidades. Cuando lasdistribuciones marginalesde las variables están definidas ba jo imprecisión, la distribución conjunta no se puede obtener mediante el Teorema de Sklar. Por ello, resulta nec esario investigar una versión imprecisa de este resultado, que tendrá imp ortantes aplicaciones en los órdenes estocásticos bivariantes definidos ba jo imprecisión.

Si las alternativas se definen ba jo imprecisión, pero no bajo incertidumbre, éstas se mo delarán mediante conjuntos intuicionísticos. Para su comparación se intro duce una teoría matemática de comparación de este tipo de conjuntos, dando esp ecial relevancia al concepto de IF-dive rge nciÆstas medidas de comparación de conjuntos intu icionísticos p oseen numerosas aplicacionesomopuedenseren el recono cimiento de patrones o la teoría de la decisión. Los conjuntos intuicionísticos $p$ ermiten grados de p e rte nenciay de no pertenencia, y por ello resultan un buen mo delo bip olar. Dado quelasprobabilidades imprecisas también son utilizadas en el contexto de la información bip olar, se estudiaránlas conexiones entre ambas teorías. Estosresultados mostrarántenerinteresantes aplicaciones,y en particular permitirán extender la dominancia esto cástica para la comparación de más de dos p-b oxes.

## Abstract

In real life situations it is common todeal with thecomparison of alternatives. The alternatives to b e compare d are sometimes defined under some lack of informationwo lacks of information are considered: uncertainty and imprecis ion. Un certainty refers to situations in which the $p$ os sible results of the exp eriment are precisely describ ed,but the exact result of the exp eriment is unknown; imprecision refers to situations in which the result of the exp eriment is known but it cannot be precisely describ ed. In this work, uncertainty is mo delled by means of Probability Theory, imprecision is mo delled by means of IF-set Theory, and the Theory of Imprecise Probabilities is used when b oth lacksof information holdtogether.

Alternatives under uncertainty are mo delled by means of random variables. Thus, a sto chastic order is needed for their comparison.In this work two particular sto chastic orders are considered: sto chastic dominance and statistical preference. Theformer is one of the most usual metho ds used in the literature and the latter is the most adequate metho d for comparing qualitative variables. Some prop erties about such metho ds are investigated. In particular, although sto chastic dominance is related to the exp ectation of some transformation of the random variables, statistical preference is re lated to a different lo cation parameter:the median. In addition, some conditions, related to the copul a that links the random variables, under which sto chastic dominance and statistical preference are related aregiven. Both sto chastic orders are defined for the pairwise comparison of random variables. Thus, anextensionofstatisticalpreferenceforthecomparisonofmore than two random variables is defined, and its main prop erties are studied.

When the alternatives are defined under uncertainty and imprec ision, eachone is represented by aset of random variables. Forcomparing them, sto chastic orders are extended for the comparison of sets of random variables instead of single onels/hen the sto chastic order is either stochastic dominance or statistical preference, the comparison of sets of random variables can $b$ e related to the comparison of elements of the imprecise probability theory, like p-b oxes. Two particular instances of comparison ofsets of random variables, common in de cision making problems, are studiedthe comparisonofrandom variables with imprecision on the utilitie $s$ or in the $b$ eliefs. The former situationis mo delled by random sets, and thentheir setsof measu rable selections are compared,
and the second is mo delled by a set of probabilities. When thereis imprecision inthe marginal distributions of the random variables, the joint distribution cannot be obtained from Sklar's Theorem. Forthisreason, animpreciseversionofSklar'sTheoremisgiven, and its applications to bivariate sto chastic orders under imprecision are showed.

Alternatives defined under imprecis ion, but not under uncertainty, are mo deled by mean s of IF-sets. Fortheir comparisonamathematical theory of comparison of IF-sets is given, fo cusing on a particular typ e of measure c al led IF-divergences.This measure has several applications, likeforinstanceinpatternrecognition or decision making. IF-sets are used to mo delbip olar information b ecause they allow memb ership and non-memb ership degree§ince imprecise probabilities also allow to model bip olarity, a connection between both theories is established.Asanapplicationofthis connection, an extension of sto chastic dominance for the comparison of more than two p-b oxes is showed.

## 1 Intro duction

The mathematical mo deling of real life experiments can be rendered difficult by the presence of two typ es of lack of information: uncertainty andimprecision. We sp eak ab out uncertainty when the variables involved in the exp eriment are precisely described but we cannot predict beforehand the outcome of the exp eriment. This lackof informationis usually mo delled by means of Probability Theory. Ontheotherhand, imprecisionrefers to situations in which the result of the exp eriment is known but it cannot be precisely describ ed.One possible mo del for this situation is given by Fuzzy Set Theory or any of its extensions, such as the Theory of Intuitionisti c Fuzzy Sets or the Theory of IntervalValued Fuzzy Sets. Of course, there are also situations in which both uncertainty and imprecision app ear together. In such cas es,we can either combine probability theory and fuzzy sets, or consider the Theory of Imprecise Probabilities.

Fuzzy sets were introduced by Zadeh ([214]) as a more flexible mo del than crisp sets, whichisparticularly useful when dealing with linguistic information. Afuzzy set assigns a value to eachelement on the universe, called memb ership degree, which is interpreted as the degree in which the element fulfills the characteristic describ ed by the set. Of course, crisp setsare particularcases of fuzzy sets, sinceeveryelement either b elongs (i.e., has membership degree 1 ) or does not (memb ership degree equals 0 ) to the set. Since their intro duction, fuzzy sets have become a very p opular research topic, and nowadays severainternational journals, conferences and so cieties are devoted to them. For a complete study on fuzzy sets, weremitthereadertosome usual references like ([71, 101]).

In 1983, Atannasov ([4]) prop osed a generalization of fuzzy sets,called the theory of Intuitionistic FuzzySets (IF-sets, for short). Inthe subsequentyearshecontinued developing his idea ( $[5,7]$ ), and now it has become a commonly accepted generalization of fuzzy sets. While fuzzy sets give a degree of memb ership of every element to the set, an IF-set assigns b oth a degree of memb ership and a degree of non-memb ership of any element to the set, with the natural restriction of that their sum must not exceed 1. EveryIF-sethas adegree ofindeterminacy oruncertainty, that is, one minus the sum of the degrees of memb ership and non-memb ershibn th is sense we can see that every fuzzy set is in particular an IF-set, since the non-memb ership degree of the fuzzy set is
one minus its memb ership degree:the indeterminacy degree of a fuzzy set equals zero. For this reason IF-sets have become a very useful to ol in order to mo del situations in which human answers are present: yes, noor does not apply, like forexamplehuman votes ([8]). Onthe otherhand, Zadeh also prop osed severalgeneralizations of fuzzy sets ([216]). In particular, he intro duced interval-valued fuzzy sets (IVF-sets, for short): when the memb ership degree of an element to the set cannot be precisely determined, it assigns an interval that contains the real memb ership degreAlthough IF-setsand IVFsets diffe $r$ on the interpretation, theyareformally equivalent (see[30]). These theories have b een applie d to different areas, like decisionmaking([194]), logic programming ([9, 10]), medical diagnosis ([48]), patternrecognition([92]) andinterestingtheoretical developments are still being made (see for example [68, 97, 120]).

The second pillar of this dissertation is the theory of ImpreciseProbabilities. Imprecise Probability is a generic term that refers to all mathematical mo dels that serve as an alternative and a generalization to probability mo dels in cases of imprecise knowledge. It includes possibility measures ([217]), Cho quet capacities ([39]), b elief functions ([187]) or coherent lowerprevisions ([205]), amongothers. One mo del that will be of particular interest for us is thatof p-b oxes. A p-b ox ([75]) is determined by an ordered pair of functions called lower and upp er distribution functions, and it is given by all the distribution functions b ound ed b etween them.Troffaes et al. ([198, 201]) have investigated the connection between p-b oxes and coherent lower probabilities ([205]). In particular, they found conditions under which a p-b ox defines a coherent lower probabilityJn some recent pap ers ([64, 65, 199, 200])the authors have explored the connection between pboxes and other usual mo dels included in the theory of imprecise probabilities, such as possibilities, belief functions or clouds ([168]), among others.

This memory deals with the comparison ofalternativesunder lackofinformation. As we mentioned before, we shall consider the comparison under uncertainty, imprecision or both. Onthe one hand, alternatives under uncertainty are mo delled by means of random variables. Random variables are one to ol of the probability theory that provide aformal background to mo del non-deterministic situations, that is, situations where randomness is present. The comparison of random variables is a long standing problem that has $b$ een tackled from many $p$ oints of view (se e among others [18, 90, 98, 106, 188, $192,210]$ ). Its practical interes $t$ is clear since many real life pro cesses are mo delled by random variables. The pro cedures of comparison are referred to as sto chastic orders. Indeed, sto chastic ordering is a very popular topic within Economics ([11, 109]), Finance ([110, 173]), So cialWelfare ([77]), Agriculture ([95]), Soft Computing ([ 180, 183]) or Op erational Research ([171]), among others.

One classical way of pairwise ordering random variables is sto chastic dominance ( $[108,208]$ ), a ge neralization of the expected utility mo del. First degree sto chastic dominance, that seems to $b$ e the most widely used metho $d$, orde rs random variables by comparing their cumulative distribution functions (or their survival functions). Its main drawback is that it imp oses a very strong condition to get an order, so many pairs
of random variables are deemed incomparable.Because of thi s fact, a second definition, called second degree sto chastic dominance is also used, sp ecially in Economics ([98, 139]). Although less restrictive, it still do es not establish a complete order b etween random variables. In fact, we can weaken progressively the notion of sto chastic dominance, and talk of sto chastic dominance of-th order.

One interesting alternative sto chastic order is statistical preference, particularly when comparing qualitative random variables, taking into account the results by Dub ois et al. ([67]). Although it was intro duced by De Schuymer et al. ([55, 57]), it is possible to find similar metho ds in the literature (see [25, 26, 210]). The notionofstatistical preference is based on a probabilistic relation, also called recipro cal relation ([21]), that measures the degree of preference of one random variable over th e other oneFurthermore, since statistical preference dep ends on the joint distribution of the random variables, it dep ends on the copula ([166]) that links them. Recall thatfrom Sklar's Theorem([189]) it is known that for any two random variables the re exists a function, called copula, that allows to express the joint cumulative distributionfunction interms of the marginals. Then, statistical preference dep ends on such copulaThe main drawback of this meth od is its lack of tran sitivity. Some authors have been investigating which kind of transitivity prop erties are satisfied by statistical preference, and in particular they fo cused on cycle-transitivity (see [14, 15, 16, 49, 54, 56, 58, 121, 122] ).

When the alternatives to $b$ e compared are define $d$ under $b$ oth uncertainty and imprecision, the problemofcomparingsets ofrandomvariables arises. Here we un derstand the set of random variables from an epistemi c p oint of view: we assume that the set of random variables contains the true random variable, but such random variable is unknown ([73]). This situation is not uncommon in decision making under unce rtainty, where there is vague or conflicting information ab out the probabilities or the utilities asso ciated to the different alternatives. Wemay thinkforinstance of conflicts among the opinions of several exp erts,limits orerrors inthe observational pro cessor simply partial or total ignorance ab out the pro cess underlying the alternatives. In any of such cases,the elicitation of an unique probability/utility mo del foreach of thealternatives may $b$ e difficult and its us e, questionable.

Indeed, one of the solutions that have b een prop osed for situations like this is to consider arobust approach, bymeans of a set ofprobabilities and utilities. Theuse of this approachtocomparetwoalternatives isformallyequivalenttothe comparison of two sets of alternatives, those asso ciated to each p ossible probability-utility pairlHence, it becomes useful to consider comparison metho ds that allow us to deal with sets of alternatives in stead of single ones.

Howe ver, the way to compare of sets of alternatives is no longer immediatere may compare all possibilities within each of the sets, or alsoselect someparticular elements of each set, totakeintoaccount phenomena of risk avers ion, for instance. This gives rise to a numb er of possibilities. Moreover, even in the simpler case where we cho ose one alternative from eachset, we muststill decidewhich criterion we shall consider to
determine the preferred one. There is quite an extensive literature onhowto deal with imprecise $b$ eliefs and utilities when our choice is made by means of an exp ected utility mo del([12, 165, 178, 186]). However, theproblem has almost remained unexplored for other choice functions. For thisreason, we shall extend sto chastic orders for the comparison of sets of random variables, and we shall see that the prop osed extension is connected to the imprecise probabilitytheory.

The last situation to be studied is the comparison of alternatives under imprecision but without uncertainty. Inthis casethe alternativeswill be describ ed by means of IF-sets. Within fuzzy set th eory, several typ es of measures of comparison have been defined, withthe goal of quantifying howdifferenttwo fuzzy sets are. The more usual measuresof comparison are dissimilarities ([119]), dissimilitudes ([ 44]) and divergences ([159]). Other au thors, like Bouchon-Meunie r et al. ([27]), defi ned a generalaxiomatic frameworkforthe comparisonoffuzzysets, thatincludetheaforementionedmeasuresas particular cases. Montes ([159]) made a complete study of the divergences as a measure ofcomparison of fuzzy sets. In particular, she intro duced a particular kind of divergences, called lo cal divergences, that have proven to be very useful.

Distances between fuzzy sets are also imp ortant for many practical applications. For instance, Bhandari et al. ([22]) prop osed a divergence measure for fuzzy sets inspired by the notion of divergence $b$ etween two probability distribu tions, andused this fuzzy divergence measure in theframework of image segmentation. Seve ralother attempts within the same field have been considered ([23, 34, 74]).For instance , the fuzzy divergence measure of Fan and Xie is based (unlike the prop osalof Bhandari and Pal) on the exp onential entropy of Pal and Pal ([175]); the same spirit is followed in [34].

However, in the framework of IF-sets only the notion of distance as well as several examples of IF-dissimilarities have been given (see for example [36, 37, 85, 89, 92, 111, 113, 114, 138, 193]). Nevertheless, theneedforaformalmathematicaltheoryofcomparison of IF-sets still persists.

Furthermore, IF-sets are a very use ful to ol to represent bip olar information: the membership and non-memb ership degree of every element to the set. Since bip olar mo dels are also being studied within the framework of imprecise probabilities (see for instance $[64,65,72,73]$ ), it $b$ ecome s natural to investigate the connection $b$ etween $b$ oth approaches to the mo deling of bip olar information.

The rest of theworkisorganized asfollows. Chapter 2 intro duces the basic notions that will be necessary along the work. Inthe first partwedeal with sto chastic orders, fo cusing on sto chastic dominancethatisbased onthecomparisonof the cumulative distribution functions of the random variables, and statistic al preference, thatis based ona probabilisticrelation andmakesuseof the joint distribution. In order toexpress this joint distribution as a function of the marginals, we need to intro duce some notions of the theory of copulas. Then, we make a brief intro duction to the theory of imprecise probabilities. On thefirstpart wedefine coherentlowerprevisionsand werecall the
basic res ults we shall use later on.Then, we fo cus on particular cases of coherent lower probabilities: $n$-monotone capacities, belief functions, possibility measures and clouds. We also defi ne random sets and show their connections with imprecise probability theory. Finally, we make an overview of IF-se ts theoryFirst, weexplainthesemanticdifferences b etween IF-sets and IVF-sets and show that b oth theories are formally equivalenthen, we intro duce the basic operations between these sets.

In Chapter 3 we investigate the comparison of alternatives under uncertainty, th at will be mo delled by means of random variables. Although some sto chastic orders like sto chastic dominance have already been widely explored in the literature, this is not the case for statistical preference. Forthis reason, wedevoteSection 3.1 toinvestigatethe main prop erties of this relation, and we compare them to the ones of sto chastic dominance ( $[149,154])$. While sto chastic dominance has a well-known characterization in terms of the comparison of the exp ectations of adequate transformations of the random variables, there is not acharacterization of statistical preference. For this aim, we investigatea p ossible characterization in terms of expectations ( $[150,153]$ ) and in terms of a different lo cation parameter: the median([148,163]).

Although statistical preference and sto chastic dominance are not related in general, in Section 3.2 we lo ok for conditions under which first degree sto chastic dominance implies statistical preference ([150]). Obviously, since statistical preference dep ends on the copula that links the variables, these conditions arerelated to suchcopula. Furthermore, we findthat insome of the usual probabilitydistributions, like Bernoulli, uniform, normal, etc, b oth sto chastic dominance and statistical preference are equivalent for indep endent random variables ([151]).

Wehave alreadymentioned thelack of transitivityof statistical preference, which renders it unsuitable for comparing more than two random variables. Inorder to overcome this problem, we intro duce in Section 3.3 an extension of statistical preference that preserves its philosophyand allows the comparisonof more than two random variables ( $[140,142]$ ). We explorethis new notion and give several prop erties that relate it to the classical notionof statisticalpreference. In order to illustrate the app licability of our results, Section3.4.1 putsforward two different applications. We first use both sto chastic dominance and statistical preference to compare fitness values asso ciated to the output ofgenetic fuzzy systems([143, 152,162]), and thenwe use thegeneralization ofstatistical preferenceon a decision-making problem with linguistic variables.

In Chapter 4 we consider the comparison of alternatives under both uncertainty and imprecision. As we have already mentioned, in that case we mo del the alternatives by means of sets of random variables instead of single ones.Westart in Section 4.1 by extending binary relations thatareused to thecomparison of random variables to the comparison of sets of random variable sThis gives rise to six possible ways of comparing sets of random variables. In particular, we fo cus on the case where such binary relation is either sto chastic dominance or statistical preference. We shall seethat the use of sto chastic dominance as binary relation is clearly connected to the comparison of the p-
b oxes associated with the sets of random variables ([134, 155, 157] ${ }^{2}$ eshall considertwo particular case $s$ in Section 4.2: thecomparison oftworandom variables withimprecise utilities and the comparison of two random variables with imprecise b eliefs ([156]). The former is mo delled by means of random sets, and their comparison is madebymeans of their asso ciated sets of measurable selectionsln the latter, the imprecise beliefs are mo delled by means of a set of probabilities in the initial space, instead ofa singleone. In this situation we can also define a set of random variables for each alternative. Then, both situations are particular cases of the more general situation studied in Section 4.1.

When there is imprecision ab out the probability of the initial space, the joint distribution of the random variables is also imprecise ly determined. Because ofthis, itseems reasonable to investigate how thebivariate distribution, andin particular the bivariate cumulative distribution function, can be determined. We shall investigate the prop erties of bivariate p-b oxes and how they can define a coherent lower probability ([135]). One particular instance where the joint distribution naturally arises is whe $n$ dealing with copulas. Recall thatcopulasallow todeterminethejointdistributionfunctionin terms of the marginals. However, when themarginal distribution functions are imprecisely describ ed by means of $p-b$ oxes, it is unclear how to determine the joint distribution, and bivariate $p$-b oxes prove to b e a usefuto ol. In particularweshow that, by considering an imprecise version of copulas it is possible to extend Sklar's Theorem to an imprecise framework ([176]).

Section 4.4shows several applicationsof theresults from Chapter 4. One possible application is thecomparison ofLorenz Curves ( $[3,11]$ ), thatrepresentthe inequalities within countries/regions. Usingour results, it is possible to compare sets of regions by means of sto chastic dominanc\&...urthermore, imprecise sto chastic dominance also allows to compare survival rates of different cancer group ed by sites. We conclude the ch apter showing another application in dec ision making.

InChapter 5 we investigate how to compare alternatives underimprecision. The alternatives are mo delled by means of IF-sets, and we prop ose metho ds for comparing IF-sets. In Section5.1 we recall the comparison measures that can be found in the literature: IF-dissimilaritiesand distances for IF-sets. We also intro duce IF-divergences and IF-dissimilitudes ([141]). We investigate the relationsh ips among these measures and we justify that our preference for IF-divergences in that they imp ose stronger conditions, avoiding thus counterintuitive examples ([145, 161]). We also tryto define a general measure ofcomparison of IF-sets as done by Bouchon-Meunier etal.([27]) for fuzzy sets. This allows us to define a general function that contains IF-di ssimilarities, IF-divergences anddistances asparticular cases([158]). Then we introduce a particular typ e of IFdivergences, that are those that satisfy a lo cal prop erty. We investigate their prop erties and give several examples ([147]). We conclude the se ction studying the connection b etween IF-divergences and divergences for fuzzy setsIn particular, weshowhow we candefine IF-divergencesfromdivergencesfor fuzzy sets and, conversely, howto build divergences for fuzzysetsfrom IF-divergences([146]).

Since both imprecise probabilities and IF-sets are used to mo del bip olarity, we investigate in Section 5.2 the connection b etween both approaches. Weestablish that when IF-sets are defined in a probability space, they can be interpreted as random sets, and this allows to connect them with impreci se probabilities, since it is possible to define acredal set and a lower and upp er probability. Weinvestigateunderwhich conditions the probabilistic information enc o ded by the credal set is the same than the one of the set of measurable selections.We also inve stigate the relationship b etween our approach and otherworksin the literature, like the one of Grzegorzewski and Mrowka ([86]).

Weconclude the chapter showing several applications of the results. Onthe one hand we show how IF-divergences can be applied to decision making and pattern recognition. On the other hand, we explain how the connection b etwe en IF-sets and imprecise probabilities allows us to prop ose a generalization of sto chastic dominance to the comparison of more than two p-b oxes, and we illustrate our metho d comparing at the same time sets of Lorenz Curves.

We conclude this dissertation with some final remarks and adiscussion of the most imp ortant future lines of research.

## 2 Basic concepts

In this chapter, we intro duce the main notions that shall be employed in the rest of the work. We start by $p$ roviding the definition of binary relations as comparison metho ds for random variables. Later, weconsidertheparticularcaseswherethebinaryrelationis either sto chastic dominance or statistical preference, which are the two main sto chastic orders we shall consider here.

Afterwards we make a brief intro duction to Imprecise Probability theory, that shall b e useful when we want to compare sets of random variables.Toconclude thechapter, we recall the notion of intuitionistic fuzzy sets, that we shall use mo del situations where sets cannot be precisely describ ed.

### 2.1 Stochastic orders

Stochastic orders are metho ds that determine a (total or partial) order on any given set of random quantities. Although several methods have b een prop osed in the last years (see for instance [139, 188]), here we shall fo cus on two particular case\$o chastic dominance and statistical preference. The former is $p$ ossibly the most widespread metho $d$ in the literature, andthe latter isparticularly useful whencomparing qualitative variables, taking into account the axiomatization established by Dub ois et al. ([67]).

Throughout, randomvariablesare denotedby $X, Y, Z, \ldots$, or $X_{1}, X_{2}, \ldots$, and their asso ciated cumulative distribution functions are denoted $F_{X}, F_{Y}, F_{Z}, \ldots$, or $F_{X_{1}}, F_{X_{2}}$, ..., resp ectively. We shall also assume that the random variables to be compared are definedon thesameprobability space.

Given two random variables $X$ and $Y$ definedfromthe probability space $(\Omega, A, P)$ to an ordered space ( $\Omega, A$ ) (which in most situations will be the set of real numb ers), abinary relation is usedto comparethe variables. Then, $X \quad Y$ means that $X$ is at leastas preferable as $Y$. This corresp onds to a weak preference relation; from it a strict preference relation, indifference and also incomparable relation can also be defined:

Definition 2.1 Considertwo randomvariables $X$ and $Y$ and a binary relation used to compare them.

- $X$ is strictlypreferred to $Y$ with respectto , and isdenotedby $X \quad Y$, if $X \quad Y$ but $Y \quad X$.
- $X$ and $Y$ areindifferent with respect to , and itis denotedby $X \equiv Y$, if $X \quad Y$ and $Y \quad X$.
- $X$ and $Y$ areincomparablewith respect to , andit is denotedby $X \quad Y$, if $X \quad Y$ and $Y \quad X$.

Then, if $D$ denotes a setof random variables, accordingto [179], ( $D$, ,, , ) formsa preference structure. Inparticular, iftherelation is complete, that is, if there is not incomparabilitybetween the random variables, themD , , 引) forms apreference structure without incomparable elements.

One instance of binary relation is the comparis on of the exp ectations of the random variables, so that $X \quad Y$ if and only if $E(X) \geq E(Y)$. This is also anexampleof a non-complete relation, because the comparison cannot be made when the exp ectation of the variable do es not exist.

In the remainder of this section we intro duce the definitions and notations that we shall use in the following chapters. Sp ecifically,we consi der the case in which the binary relation is either sto chastic dominance or statistical preference. With res $p$ ect to the first one, we recall the main typ es of sto chastic dominance and some ofits most imp ortant prop erties, suchasits characterizationbymeansof the comparison of the adequate exp ectations.Then, weprovideanoverviewonstatisticalpreference: we rec all its definition and we also discuss briefly its main advantages as a sto chastic order.

### 2.1.1 Stochastic dominance

Sto chastic dominance is one ofthe most used metho ds for the pairwise comparison of randomvariables we can find in the literature. Besides to the usual economic interpretation (see [110]), this notion has also b ee n applied in other frameworks such as Finance ([109]), So cialWelfare ([11]), Agriculture ([95]) or Op erations Research ([171]), among others. We next recall its definition and basic notions related to th em, and also its main prop erties.

Stochastic dominance is a metho d based on the comparison of the cumulative distribution functions of therandomvariables.

Definition 2.2Let $X$ and $Y$ betworeal-valuedrandom variables, and let $F_{X}$ and $F_{Y}$ denote their respective cumu lative distribution functions. $X$ sto chastically dominates $Y$
by the first degree, or simply stochastical ly dominates, when no confusion is possible, and it is denoted by $X$ fsD $Y$, if it holds that

$$
\begin{equation*}
F_{X}(t)=P(X \leq t) \leq P(Y \leq t)=F \quad Y(t) \text { for every } t \quad \mathrm{R} . \tag{2.1}
\end{equation*}
$$

One of the most imp ortant drawbacks of this definition is that (first degree) stochastic dominance is anon-complete relation, that is, it is possible to find random variables $X$ and $Y$ such that neither $X \quad$ fSD $Y$ nor $Y$ fSD $X$, as we can see in the following example.

Example 2.3Consider tworandom variables $X$ and $Y$ such that $X$ follows a Bernoul li distribution with parameter 0.6 and $Y$ takes a fixed valuec (0,0.6)with probability 1. Then, there is not first degree st ochastic dominance between them:

$$
F_{X}(0)=0.4>0=F \quad Y(0) \text { but } F_{X}(c)=0.4<1=F Y(c) .
$$

According to Definition 2.1, from thispreference relationwecan alsodefine the strict sto chastic dominance,theindifference and, aswe havejustseen, the incomparability relations:

- $X$ sto chastically dominates $Y$ strictly, anddenote itby $X$ fsD $Y$, if and onlyif $F_{X} \leq F_{Y}$ andthere issome $t \quad[0,1]$ such that $F_{X}(t)<F_{Y}(t)$.
- $X$ and $Y$ are stochastical ly indifferent, and denote it by $F_{X} \equiv_{\text {FSD }} F_{Y}$, if and only if they have the s ame distribution (usually de noted by $X \stackrel{d}{=} Y$ ).
- $X$ and $Y$ are stochastical ly incomparableanddenoteit by $X \quad Y$, if there are $t_{1}$ and $t_{2}$ such that $F_{X}\left(t_{1}\right)>F_{Y}\left(t_{2}\right)$ and $F_{Y}\left(t_{2}\right)>F_{x}\left(t_{2}\right)$.

Remark 2.4 Here we have chosen the notat ion ${ }_{\text {FSD }}$ becauseitis themostfrequent in the literature. However, (firstdegree)stochasticdominancehasalsobeendenoted by ${ }_{1}$, as in [55], or by $\geq_{\text {st }}$, as in[188]. In that case, the authors used the name sto chastic order instead of first degree stochastic dominance.

As we see from its definition, (first degree) sto chastic dominance only focuses on the marginal cumulative distribution functions, and its interpretation is the followin g : if $X \quad$ FSD $Y$, then $F_{X}(t) \leq F_{Y}(t)$ for any $t$, or equivalentl $y, P(X>t) \geq P(Y>t)$ for any $t$. That is, we imp ose that at every p oint the probability of $X$ to be greater than such point is greater than the probability of $Y$ to be greater than the same point. Thus, $X$ assigns greater probabilityto greater values. Figure 2.1 showsitsgraphical interpretation. Here, we canseehow $F_{X}$ is always below or at the same level than $F_{Y}$.


Figure 2.1: Example of first degree sto chastic dominance $X$ FSD $Y$

From an economic point of view, the interpretation is that the decision between the two ran dom variables is rational, in the sens e that for any threshold of profit the probability of going ab ove this threshold is greater with the preferred variable ([110]).

The main draw back of this de finition is that the inequality in Equation (2.1) is quite restrictive. Thereare many pairs ofcumulative distributionfunctions that donot satisfy this inequality in any sense and therefore, the asso ciated random variables cannot b e ordered.This is the reason why we can consider other (weaker) degrees of sto chastic dominance. Let us now intro duce the second degree sto chastic dominance.

Definition 2.5Let $X$ and $Y$ be two real-valu ed random variables whose cumulative distribution functions are given by $F_{X}$ and $F_{Y}$, respectively. $X$ sto chastically dominates $Y$ by the second degree, and it is denoted by $X$ ssd $Y$, if it holds that:

$$
\begin{equation*}
{ }_{-\infty}^{t} F_{X}(x) \mathrm{d}(x) \leq{ }_{-\infty}^{t} F_{Y}(y) \mathrm{d}(y) \text { for every } t \quad \mathrm{R} \text {. } \tag{2.2}
\end{equation*}
$$

Asin Definition2.2, wecan alsointroduce the strict second degree stochastic dominance ( ssD ), the indifference ( $\equiv_{\mathrm{ssD}}$ ) and the incomparable( ssD ) relat ions.

Note that, similar to Example 2.3, we can als o see that incomparability is p ossible when dealing with second degree sto chastic dominance.

Example 2.6Consider thesame randomvariables ofExample 2.3.For thesevariables, the functions $G_{X}^{2}$ and $G_{Y}^{2}$ are definedby:

$$
G_{X}^{2}(t)=\begin{array}{ll}
0 & \text { if } t<0 . \\
0.4 t & \text { if } t \quad[0,1) . \\
\square t-0.6 & \text { if } t \geq 1 .
\end{array} \quad G_{Y}^{2}(t)=\begin{array}{ll}
0 & \text { if } t<c . \\
t-c & \text { if } t \geq c .
\end{array}
$$

Then, $X$ and $Y$ are not ordered by means of thesecond degree stochastic dominance since:

$$
G_{X}^{2} \quad \frac{c}{2}=0.2 c>0=G \quad \frac{2}{Y} \quad \frac{c}{2} \quad \text { but } G_{X}^{2}(1)=0.4<1-c=G_{Y}^{2}(1)
$$

since $_{c}<0.6$.

Remark 2.7 Other authors (see for example [188]) call this method concave order, and they denote it by $\geq_{c v}$. It isalso sometimes denoted by ${ }_{2}$ ([55]).

Aswecan seein Figure2.2, when $X$ ssd $Y$, for any fixed $t$, the area below $F_{X}$ until $t$ is lower than the are below $F_{Y}$ until $t$. This means that the $X$ gathers moreaccumulated probability at greater points than $Y$.


Figure 2.2: Example of second degree sto chastic dominance $\quad$ ssd $Y$.

From an economic point of view, second degree sto chastic dominance means that the decision maker prefers the alternative th at provides a bigger profit but also with less risk. That is,itisa rationalitycriterionunder riskaversion (see[110]).

Similarly to Definitions 2.2 and 2.5, sto chastic dominance can b e defined for every degree $n$ by relaxing the conditions in Equations (2.1) and (2.2).

Definition 2.8 Let $X$ and $Y$ be tworeal-valued randomvariables with cumulative distribution functions $F_{X}$ and $F_{Y}$, respectively. $X$ sto chastically dominates $Y$ by the $n$-th degree, form $\geq 2$, and it is denoted by $X$ nsD $Y$, if it holds that:

$$
\begin{equation*}
G_{X}^{n}(t)=G_{-\infty}^{n-1}(x) \mathrm{d}(x) \leq G_{-\infty}^{n-1}(y) \mathrm{d}(y)=G_{Y}^{n}(t) \quad t \quad \mathrm{R}^{\prime}, \tag{2.3}
\end{equation*}
$$

where $G_{X}^{1}=F \times$ and $G_{Y}^{1}=F$. Inparticular, thisdefinitionbecomestheseconddegree stochastic dominance when $n_{n=2}$.

Again, following the notation of Definition 2.1, we can intro duce the strict $n$-th degree sto chastic dominance( $n S D)$, the indifference $\left(\equiv_{n S D}\right)$ and the incomparability( nSD)
relations. Then, if $D$ denotes a set of random variables, $\left(D,{ }_{n S D}, \equiv_{n S D}, \quad n S D\right)$ formsa preferencestructure for any $n \geq 1$.

Clearly, first degree sto chastic dominance imposes a stronger condition than second degree sto chastic dominance, as we can see from Equations (2.1) and (2.2Yoreover, if we compare Equations (2.1) and (2.3) we deduce that first degree sto chastic dominance isstronger than the $n$-th degree sto chastic dominance for everyn. Inde ed,it is known that the $n$-th degree sto chastic dominance is stronger than the $m$-th degree sto chastic dominance for any $n<m$ :

$$
\begin{equation*}
X \quad{ }_{\mathrm{nSD}} Y \quad X \geq_{\mathrm{mSD}} Y \text { for every } n<m \tag{2.4}
\end{equation*}
$$

while the converse do es not hold in general.
Remark 2.9 Stochasticdominanceis a reflexiveand transitiverelation. However, since two different randomvariables mayinduce thesame distribution, it is notantisymmetric. Moreover, as we have already noted, it is not complete because it al lows incomparability.

One of the most important prop erties of sto chastic dominance is its characterization by means of the exp ectation. Sp ecifically,each of the typ es of sto chastic dominance we have introduced can be characterized by the comparison of the exp ectations of adequate transformations ofthe variables considered.

Theorem 2.10 ([109, 139]fet $X$ and $Y$ be two random variables. Forfirst and second degree stochastic dominance it holds that:

- $X \quad$ FSD $Y$ ifand onlyif $E[u(X)] \geqslant E[u(Y)]$ for every increasing function $u: R \rightarrow$ R.
- $X$ ssd $Y$ if and only if $E[u(X)] \geq E[u(Y)]$ for every increasing and concave function $u: R \rightarrow R$.

Afunction $u: R \rightarrow R$ is cal ledn-monotone ([39]) if it is $n$-differentiable and for any $m \leq n$ and it fulfil Is $(-1)^{m+1} u^{(m)} \geq 0$. Then, if $U_{n}$ denotes theset of n-monotone functions, the fol lowing generalequivalence holds:

$$
\begin{equation*}
X \quad \text { nsD } Y \quad E[u(X)] \geq E[u(Y)] \text { for every } u \quad U_{n} . \tag{2.5}
\end{equation*}
$$

In fact, from the pro of of Theorem 2.10, it can be derived that:

$$
\begin{equation*}
X \quad \text { nsD } Y \quad E[u(X)] \geq E[u(Y)] \text { for any } u \quad U_{n}, \tag{2.6}
\end{equation*}
$$

where $U_{n}$ denotethe setof $n$-monotone and $b$ ounded functionsu: $R \rightarrow R$.
Equation (2.4) can also be derived from this result, since every-monotone function is also $m$-monotone for any $m \leq n$.

Remark 2.11The characterization of the seconddegree stochastic dominance, based on the comparison of the mean of the concave and increasing functions, explains the nomenclature concave order mentioned in Remark 2.7.

To conclude this paragraph, we list some interesting prop erties of first degree sto chastic dominance that shall be useful in the next chap ter.
 ables such that $\quad$ FSD $Y$ and $\phi: R \rightarrow R$ is a increasing function, then $\phi(X) \quad$ FSD $\phi(Y)$.

Prop osition 2.13 ([139, Theorem 1.2.1ł\}) $\left\{X_{i}, Y_{i}: i=1, . ., n\right\}$ be independent and real-valued random variables. If $X_{i}$ FSD $Y_{i}$ for $i=1, \ldots, n$, then $X_{1}+\ldots+$ $X_{n} \quad$ FSD $Y_{1}+\ldots+Y n$.

Prop osition 2.14 ([139, Theorem 1.2.14juen the randomvariables $X, X_{1}{ }_{1}, X_{2}$, $\ldots, Y, Y_{1}, Y_{2}, \ldots$ such that $X_{n} \xrightarrow{L} X$ and $Y_{n} \xrightarrow{L} Y$, if $X_{n} \quad$ FSD $Y_{n}$ for every $n$, where $\xrightarrow{L} \rightarrow$ denotes the convergence in distribution, then $X \quad$ FSD $Y$.

As a consequence of the previous result, first degree sto chastic dominance is preserved by four kinds of converge: distribution, probability, $m^{\text {th }}$-mean and almost sure.

For a more complete study on sto chastic orders, we refer to [62, 109, 139, 188, 192].

### 2.1.2 Statistical preference

In the previous subsection we have mentioned that sto chastic dominance is a pairwise comparison metho d that has been used in severalareas, always withsuccessful results. Howe ver,this metho d also presents some drawbacks: on theone hand, it isa noncomplete crisp relation. This means that it is $p$ ossible to find pairs of random variables such that $n$-th degree stochastic dominance do es not order them for anhy. Furthermore, sto chastic dominance do es not allow to establish degrees ofpreference. In fact, there are only three possibilities: either one randomvariableis preferred tothe other, or they are indifferent or incomparable. in addition, it is a metho $d$ with a high computational cost, since the $n$-th degree sto chastic dominance requires the computation of $2\left(n^{-1} 1\right)$ integrals.

These drawbacks madeDe Schuymer et al. $([55,57])$ introduce a new metho d for the pairwise comparison of the rand om variables, based on a probabilistic relation.

Definition 2.15 ([21])Givena set ofalternatives $D$, a probabilistic or recipro cal relation $Q$ is amap $Q: D \times D \rightarrow \quad[0,1]$ such that $Q(a, b)+Q(b, a)=1$ for any alternatives $a, b \quad D$.

In our framework, thesetofalternatives $D$ is considered to be made by random variables defined on the same probabili ty s pace $(\Omega, P(\Omega), P)$ to an orde red space $(\Omega, A)$. The probabilistic relation over $D$ isdefined (see[55,Equation 3])by:

$$
\begin{equation*}
Q(X, Y)=P(X>Y)+\frac{1}{2} P(X=Y) \tag{2.7}
\end{equation*}
$$

where $(X, Y) \quad D \times D \quad$ and $P$ denotesthejointprobabilityofthe bidimensionalrandom vector $(X, Y)$. Clearly, $Q$ is aprobabilistic relation: it takes valuesin [0, 1] and $Q(X, Y)+$ $Q(Y, X)=1:$

$$
Q(X, Y)+Q(Y, X)=P(X>Y)+\frac{1}{2} P(X=Y)+\frac{1}{2} P(X=Y)+P(Y>X)=1
$$

The ab ove definition measures the preference degree of a random variaбl@ver another random variable $Y$, in the sense that the greater the value of $Q(X, Y)$, the stronger the preference of $X$ over $Y$. Hence, thecloserthe value $Q(X, Y)$ is to 1 , the greater we consider $X$ with resp ect to $Y$; the closer $Q(X, Y)$ isto 0 , the greater we con sider $Y$ to $X$; and if $Q(X, Y)$ is around 0.5 , b oth alternatives are conside red indifferent. This fact can be seen in Figure 2.3.


Figure 2.3: Interpretation of the recipro cal relation $Q$.

Statisticalpreferenceis defined from theprobabilisticrelation
$Q$ of Equation (2.7) and it is the formal interpretation of thatrelation.

Definition $2.16([55, \mathbf{5 7}])$ et $X$ and $Y$ be tworandom variables. Itis said that:

- $X$ is statisticallypreferred to $Y$, and it is denoted by $X$ sp $Y$, if $Q(X, Y) \geq{ }_{2}^{1}$.

Also, according to Definition 2.1:

- $X$ and $Y$ are statistically indifferent, and it is denoted by $X \equiv_{\text {sP }} Y$, if $Q(X, Y)=\frac{1}{2}$.
- $X_{1}$ is strictlystatisticallypreferred to $Y$, and we denote it $X \quad$ sp $Y$, if $Q(X, Y)>$ $\frac{1}{2}$.

Note that statistical preference does not al low incomparability, sqD, $\left.\mathrm{sp}^{\mathrm{sp}}, \equiv \mathrm{sp}\right)$ constitutes apreference structure without incomparable elements.

Remark 2.17Statistical preference is a reflexive and complete relation. However, itis neither antisymmetric not transitive, as we shall see in Section 3.3.

It is possible to give a geometrical interpretation to the concept of statistical preference. As wecan see in Figure 2.4, given two continuous and indep endent random variables, $X \quad$ sp $Y$ if and only if the volume enclosed under the joint density func tion in the halfspace $\{(x, y) \mid x>y\}$ is larger than the volume enclosed in the half-spade $(x, y) \mid x<y\}$.


Figure 2.4: Geometrical interpretation of the statistical preference: $X$ sp $Y$.

Note that $X \quad$ sp $Y$ means that $X$ outp erforms $Y$ with a probability at least 0.5 . Hence, statistical preference provides an order between the random variables anda preference degree.This is il lustrated in the following example.

Example 2.18Considertworandom variables $X, Y$ such that $X$ follows a Bernoul li distribution $B_{(p)}$ with parameter $p(0,1)$ and $Y$ fol lows a uniform distribution $U_{(0,1)}$ in the interval $(0,1)$. It isimmediate that:

$$
Q(X, Y)=P(X>Y)=P(X=1)=p .
$$

Therefore, when $p \geq \frac{1}{2}, X$ is statistical ly preferred to $Y$ with degree of preferenc $\oplus$, and the greater the value ofp, the most preferred $X$ is to $Y$.

One imp ortant remark is that statistical preference fordegenerate random variablesis equivalent to the order $b$ etween real numb ersand in that case the prefere nce degree is always 0,1 or $\frac{1}{2}$.

Remark 2.19Considertwo random variables $X$ and $Y$. The former takes the value $c_{X}$ with probability 1 and the secondtakes thevalue $c_{Y}$ with probability 1. Assume that $c_{X}>c_{Y}$ :

$$
P(X>Y)=P(X=c \quad x)=1 \quad Q(X, Y)=1 \text { and } X \quad \text { sp } Y
$$

On the other hand, if $c_{X}=c_{Y}$, it holds that:

$$
P(X=Y)=P(X=c \quad x, Y=c \quad y)=1 \quad Q(X, Y)=\frac{1}{2} \text { and } X \equiv \mathrm{sP} Y
$$

Then, it holds that:

$$
X \quad \text { sp } Y \quad c_{X}>c_{Y} \text { and } X \equiv \equiv_{s P} Y \quad c_{X}=c \quad Y
$$

A first, but also trivial result ab out statistical preference is the following.
Lemma 2.20Given tworandom variables $X$ and $Y$, it holds that:

$$
\begin{array}{ll}
X \quad \mathrm{sp} Y \quad Q(X, Y) \geq Q(Y, X) \quad & P(X \geq Y) \geq P(Y \geq X) \\
& P(X>Y) \geq P(Y>X) .
\end{array}
$$

Pro of By definition, $X \quad$ sp $Y$ if andonly if $Q(X, Y) \geq{ }_{2}^{1}$. Since $Q$ is aprobabilistic relation, $Q(X, Y)+Q(Y, X)=1$. Then:

$$
Q(X, Y) \geq \frac{1}{2} \quad Q(X, Y) \geq \frac{1}{2}(Q(X, Y)+Q(Y, X)) \quad Q(X, Y) \geq Q(Y, X)
$$

Letus now prove the remaining equivalences.

$$
\begin{aligned}
X \quad \text { sp } Y \quad & Q(X, Y) \geq Q(Y, X) \\
& P(X>Y)+{ }_{2}^{1} P(X=Y) \geq P(Y>X)+\quad{ }_{2}^{1} P(X=Y) \\
& P(X>Y) \geq P(Y>X) .
\end{aligned}
$$

Moreover:

$$
\begin{aligned}
X \quad \text { sp } Y \quad & P(X>Y) \geq P(Y>X) \\
& P(X>Y)+P(X=Y) \geq P(Y>X)+P(X=Y) \\
& P(X \geq Y) \geq P(Y \geq X) .
\end{aligned}
$$

Similar equivalences can be proved for the strict statistical preference:

$$
\begin{aligned}
X \quad \text { sp } Y \quad & Q(X, Y)>Q(Y, X) \quad P(X \geq Y)>P(Y \geq X) \\
& P(X>Y)>P(Y>X) .
\end{aligned}
$$

Remark 2.21 One context wherestatistical preference appears natural ly is that of decision making with qualitative random variables. Duboiset al. showed in [67] that given two random variables $X, Y: \Omega \rightarrow \Omega$, where $(\Omega, \quad \Omega)$ isanordered qualitativescale, then, givenanumber of rationalit $y$ axioms over our decision rule, the choice bet ween $X$ and $Y$ must be made by means of the likely dominance rule, which say s that $X$ is preferred to $Y$ if andonly if $\left[\begin{array}{lll}X & \Omega & Y\end{array}\right] \quad\left[\begin{array}{lll}Y & \Omega & X\end{array}\right]$,where:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
X & \Omega & Y
\end{array}\right]=\left\{\begin{array}{llll}
\{\omega & \Omega: X(\omega) & \Omega & Y(\omega)
\end{array}\right\} \text { and }} \\
& {\left[\begin{array}{lll}
Y & \Omega & X
\end{array}\right]=\{\omega}
\end{aligned}
$$

where is a binary relationon subsets of $\Omega$. Oneof the most interesting cases is that where is determinedby a probability measure $P$, so $A \quad B \quad P(A) \geq P(B)$. Then, using Lemma 2.20, $X$ is preferredto $Y$ if andonly if $X \quad$ sp $Y$.

We conclude that, accordingtothe axioms consideredin [67], statistical preference is the optimalmethod for comparing qualitative random variables defined on a probability space.

Remark 2.22A related notion to statist ical preference is that of probability dominance considered in [210]: $X$ is said to dominate $Y$ with probability $\beta \geq 0.5$, and it is denoted by $X \beta Y$, if $P(X>Y) \geq \beta$. Thisdefinitionhasan important drawback with respect to statistical preference, whichisthat incomparability ispossiblefor every $\beta \geq 0.5$. For instance, thisis the case of random variables $X$ and $Y$ satisfying $P(X=Y)>0.5$.

In [2], $X$ is cal led preferred toY in the precedence order whel्P $(X \geq Y) \geq \frac{1}{2}$. The drawback of this notion is that indifference is possible although $P(X>Y)>P(Y>X)$, for instance when $P(X=Y) \geq \frac{1}{2}$.

From Lemma 2.20 we know that $X \quad$ sp $Y$ if andonly if $P(X>Y) \geq P(Y>X)$. When this inequality holds some authors say that $X$ is preferredto $Y$ inthe precedence order (see [25, 26, 112]). Hence, thisprovides an equivalent formulation of statistical preference. We havepreferredto usethelatterbecauseitprovidesdegreesofpreference between the alternatives by means of the probabilistic relatioQ. Note that otherauthors consider a difference definition of precedence order ([2,25, 26, 112, 210])which is not equivalent ingeneral, as we have seenin the previous remark.

A probabilistic or recipro cal relation can also be seen as a fuzzy relatiorFor thisreason, statistical preference can be interpreted as a defuzzyfication of the relation $Q$ :

$$
X \quad \text { sp } Y \quad(X, Y) \quad Q_{\frac{1}{2}},
$$

where $Q_{\frac{1}{2}}$ denotes the $\frac{1}{2}$-cut of $Q$ :

$$
Q_{\frac{1}{2}}=(X, Y) \quad D \times D \quad: Q(X, Y) \geq \frac{1}{2} .
$$

Another connection with fuzzy set theory can be made if we consider that the information contained in the probabilistic relation can be also presented by means of a fuzzy relation. This was initially prop osed in [16, 57] and latter analyzed in detail in [122]; rece ntly, a generalization has been presented in [163]. There, from any probabilistic re lation $Q$ defined on aset $D, h(Q)$, with $h:[0,1] \rightarrow[0,1$,$] is a fuzzy weak preference relationif$ and only if $h \stackrel{1}{2}=1$.

The previous resultwas proven forany probabilisticrelation $\quad Q$, but whenweare comparing random variables by means of the re latior defined on Equation (2.7), $h(Q)$ is an order-preserving fuzzy weak preference relation if and only if $h(0)=0, h\binom{1}{2}=1$ and $h$ is increasing in [0, 1.]

The initial $h$ prop osed in [57] was $h(x)=\min (1,2 x)$ but, of course, an infinite family of functions may be considered. Asanexample, wewillobtaintheexpressionof the weak preference relation $R$ inthat initialcase:

$$
R(X, Y)=\begin{array}{ll}
1 & \text { if } P(X>Y) \geq P(Y>X) \\
1+P(X>Y)-P(Y>X) & \text { otherwise }
\end{array}
$$

Example 2.23Letusconsider therandomvariable $\quad X$ uniformlydistributedinthe interval $(4,6)$, and let $Y_{1}, Y_{2}, Y_{3}$ and $Y_{4}$ bethe uniformly distributed randomvariables in the intervals $(7,9),(5,7),(3,5)$ and $(0,2)$ respectively. If we assume themtobe independent, it holds that:

$$
\begin{array}{ll}
Q\left(X, Y_{1}\right)=0 & R\left(X, Y_{1}\right)=0 \\
Q\left(X, Y_{2}\right)=8 & 8_{8} \\
Q\left(X, Y_{2}\right)=\frac{1}{4} \\
Q\left(X, Y_{3}\right)=8 & R\left(X, Y_{3}\right)=1 \\
Q\left(X, Y_{4}\right)=1 & R\left(X, Y_{4}\right)=1
\end{array}
$$

We can notice the different scales used byQ and $R$.

Thus, weconclude that $R$ can be seen as a "greater than or equal to" relation, but the meaning of $Q$ is totally diffe rent. In fact, the interpretation of the value of the fuzzy relation $R$ is: the closerthevalueto0, theweaker thepreferenceof $X$ over $Y$.

We have already mentioned some advantages of statistical preference over sto chastic dominance: on the one han $d$, statistical preference allows the p ossibility of establishing preference degrees between the alternatives; on the otherhand statistical preference determines a total relationship between the random variables, while we can find pairs of random variables which are incomparable under the $n$-th degree sto chastic dominance. Another advantage is that it takes into account the p ossible dep endence between the random variables since it is based on the joint distribution, while sto chastic dominance only uses marginal distributions.

In this sense, recall that given $n$ indep endent real-valued random variables $X_{1}$, $\ldots, X_{n}$, with cumulative distribution functions $F_{X_{1}}, \ldots, F_{X_{n}}$, resp ectively,the joint cumulative distribution function, de noted by $F$, is the pro duct of the marginals:

$$
F\left(x_{1}, \ldots, x_{n}\right)=F \quad x_{1}\left(x_{1}\right) \quad \ldots \quad F_{x_{n}}\left(x_{n}\right),
$$

for any $x_{1}, \ldots, x_{n} \quad \mathrm{R}$. In general, thejointcumulativedistribution function canbe expressed by:

$$
F\left(x_{1}, \ldots, x_{n}\right)=C\left(F x_{1}\left(x_{1}\right), \ldots, F x_{n}\left(x_{n}\right)\right)
$$

for any $X_{1}, \ldots, x_{1} \quad \mathrm{R}$, where $C$ isa function calledcopula.
Definition $2.24([166])^{4}$ n-dimensional copula is a function $C:[0,1] \rightarrow[0,1]$ satistying the fol lowing properties:

- For every $\left(x_{1}, \ldots, x_{n}\right)[0,1]^{\eta}, C\left(x_{1}, \ldots, x_{n}\right)=0$ if $x_{i}=0$ for somei $\{1, \ldots, n\}$.
- For every $\left(x_{1}, \ldots, x_{i}\right) \quad[0,1]^{p}, C\left(x_{1}, \ldots, x_{n}\right)=x$ if $x_{j}=1$ for every $j=i$

$V_{C}([x, y]) \geq 0$,
where:

$$
V_{C}([x, y])=\operatorname{lic}_{i=1}^{c_{i}\left\{a_{i}, b_{i}\right\}} \operatorname{sgn}\left(c_{1}, \ldots, G_{i}\right) C\left(c_{1}, \ldots, G_{G}\right),
$$

where the function sgn is definedby:

$$
\operatorname{sgn}(a, \ldots, \bar{G})=\begin{array}{ll}
1 & \text { if } c_{i}=a i \text { for aneven numberof } i \text { 's. } \\
-1 & \text { if } c_{i}=a \text { i for anodd numberof } i
\end{array}
$$

In particular, a 2-dimensional copula (a copula, for sh ort) is a functionc : $[0,1]^{\times}[0,1] \rightarrow$ $[0,1$ ]atisfying $C(x, 0)=C(0, x)=0$ and $C(x, 1)=C(1, x)=x \quad$ for every $x \quad[0,1]$ and

$$
C\left(x_{1}, y_{1}\right)+C\left(x_{2}, y_{2}\right) \geq C\left(x_{1}, y_{2}\right)+C\left(x_{2}, y_{1}\right)
$$

for every $\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \quad[0,1]^{4}$ such that $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$.
The most imp ortant examples of copulas are the following:

- The pro duct copula $\pi: \pi\left(x_{1}, \ldots, x_{i}\right)={ }_{i=1}^{n} x_{i}$.
- The minimum op erator $M$ : $M\left(x_{1}, \ldots, x_{n}\right)=\min \left\{x_{1}, \ldots, x_{n}\right\}$.
- The Łukasiewicz op erator $W$, for $n=2: W\left(x_{1}, x_{2}\right)=\max \left\{0, x_{1}+x_{2}-1\right\}$.

Since the Łukasiewicz op erator is associative, it can only be defined asta-ary op erator: $W\left(x_{1}, \ldots, x_{n}\right)=\max \left\{0, x_{1}+\ldots+x_{n}-\left(n^{-1}\right)\right\}$. However, it is a copula only for $n=2$. One imp ortant and well-known result concerning copula is that every $n$-dimensional copula is b ounded by the $Ł u k a s i e w i c z$ and the minimum op erator:

$$
\begin{equation*}
W\left(x_{1}, \ldots, x_{n}\right) \leq C\left(x_{1}, \ldots, x_{n}\right) \leq M\left(x_{1}, \ldots, x_{n}\right) \text { for every }\left(x_{1}, \ldots, x_{n}\right) \quad[0,1] . \tag{2.8}
\end{equation*}
$$

This inequality is known as the Fréchet-Ho effding inequality. For thisreason, theŁukasiewicz and the minimum op erators are also called the lower and upper Fréchet-Hoeffding bounds ([79]).

Recall that, although $W$ is nota copulafor $n>2$, it can be approximated bya copula on each point:

Prop osition $2.25\left(\left[62,166 \mathbf{W F}^{\text {pr }}\right.\right.$ any $\left(x_{1}, \ldots, x_{n}\right) \quad[0,1]$ there isa $n$-dimensional copula $C$ such that $C\left(x_{1}, \ldots, x_{n}\right)=W\left(x_{1}, \ldots, x_{n}\right)$.

In particular, when $n=2, W$ is a copula and the pre vious result b ecomes trivial.
A particular typ e of copulas are the Archimedean copulas.
Definition 2.26 ([166] $)^{A} n$-dimensional copula $C$ isArchimedean if there existsa function $\phi:[0,1] \rightarrow[0, \infty]$, cal led generator ofC, strictly decreasing, satisfying that $-\phi$ is $n$-monotone, $\phi(1)=0$ and:

$$
\begin{equation*}
C\left(x_{1}, \ldots, x_{n}\right)=\phi^{-1]}\left(\phi\left(x_{1}\right)+\ldots+\phi\left(x_{n}\right)\right) \tag{2.9}
\end{equation*}
$$

for every $\left(x_{1}, \ldots, x_{n}\right) \quad[0,1]^{\eta}$, where $\phi^{-1]}$ denotes thepseudo-inverse of $\phi$, and it is defined by:

$$
\phi^{-1]}(t)=\begin{array}{ll}
\phi^{-1}(t) & \text { if } 0 \leq t \leq \phi(0) \\
0 & \text { if } \phi(0)<t \leq \infty
\end{array}
$$

The main Archimedean copulas are the pro duct, whose generator is $\phi_{\pi}(t)=-\log t$, and the Łukasiewicz op erator for $n=2$, whose generatoris $\phi_{\mathrm{W}}(t)=1-t$. The most imp ortant non-Archimedean copula is the minimum op erator.

Archimedean copulas can also be divided into two groups: strict and nilp otent Archimedean copulas. An Archimedean copulais calledstrictif its generator, $\phi$, satisfies $\phi(0)=\infty$. In suchcase, the pseudo inverse becomes the inverse, and therefore Equation (2.9) becomes:

$$
\begin{equation*}
C\left(x_{1}, \ldots, x_{n}\right)=\phi^{-1}\left(\phi\left(x_{1}\right)+\ldots+\phi\left(x_{n}\right)\right) . \tag{2.10}
\end{equation*}
$$

An Archimedean copula isnilpotent if $\phi(0)<\infty$. The most imp ortant examples of strict and nilp otent copulas are the pro duct and the Łukasiewicz op erator, resp ectively.

One of the most imp ortant traits of copulas is the famous Sklar's theorem.

Theorem 2.27 ([189]) et $X_{1}, \ldots, X_{n}$ be $n$ random variables, and let $F_{X_{1}}, \ldots, F_{X_{n}}$ denotetheir respective cumulative distribution functions. If $F$ denotesthe jointcumulative distribution function, then there exists a copula $C$ such that

$$
F\left(x_{1}, \ldots, x_{n}\right)=C\left(F x_{1}\left(x_{1}\right), \ldots, F x_{n}\left(x_{n}\right)\right) \text { for every }\left(x_{1}, \ldots, x_{n}\right) \quad R^{n} .
$$

When thecopula is Archimedean, last expressionbecomes:

$$
F\left(x_{1}, \ldots, x_{n}\right)=\phi^{-1]}\left(\phi\left(F x_{1}\left(x_{1}\right)\right)+\ldots+\phi\left(F x_{n}\left(x_{n}\right)\right)\right) .
$$

Obviously, a pair of random variables is coupled by the pro duct if and only if they are indep endent.Moreover, random variables coupled by the minimum op erator (resp ectively, by the Łukasiewicz op erator) are called comonotonic (resp ectively,countermonotonic). These two cases are very imp ortant in the theory of copulas, and forthis reasonwe will study in detail the prop erties of statistical preference and sto chastic dominance for them. In fact, from the Fréchet-Ho effding b ounds of Equation (2.8), an interpretation of comonotonic and countermonotonic random variables can be given.In orderto seethis, recall that asubset $S$ of $\bar{R}^{2}$ isincreasing ifandonlyif foreach $\quad(x, y) \quad \mathrm{R}^{2}$ either:

1. for all $(u, v)$ in $S, u \leq x$ implies $v \leq y$; or
2. for all $(u, v)$ in $S, v \leq y$ implies $u \leq x$.

Similarly, asubset $S$ of $\overline{\mathrm{R}}^{2}$ isdecreasing ifandonlyif foreach $\quad(x, y) \quad \mathrm{R}^{2}$ either:

1. for all $(u, v)$ in $S, u \leq x$ implies $v \geq y$; or
2. for all $(u, v)$ in $S, v \leq y$ implies $u \geq x$.

Using this notation , the following result is presented in [166, Theorem 2.5.4] and proved in [124].

Prop osition 2.28et $X$ and $Y$ be two real-valuedrandom variables. $X$ and $Y$ are comonotonic if and only ifthe supportof the joint distribution function isa increasing subset of $\bar{R}^{2}$, and $X$ and $Y$ are countermonot onic if and only if the support of the joint distribution function is a decreasing subset of $\bar{R}^{2}$.

When $X$ and $Y$ arecontinuous, wesaythat $Y$ is almostsurely anincreasing functionof $X$ if and only if $X$ and $Y$ arecomonotonic, and $Y$ is almost surelya decreasingfunction of $X$ if and onl $y$ if they are countermonotonic.

### 2.2 Imprecise probabilities

Next, we discuss briefly imprecise probability models. Thisis thegeneric termused to refer to all mathematical mo dels that serve as an alternative and a generalization of probability mo dels to situations where our knowledge if vague or scarce. It includes p ossibility measures ([217]), Choquet capacities ([39]), b elief functions ([187]) or coherent lower previsions ([205]), among other mo dels.

### 2.2.1 Coherent lowerprevisions

We $b$ egin by intro ducing the main concepts of the theory of coherent lower previsions. Consider a p ossibility space $\Omega$. A gambleisa real-valued functional defined on $\Omega$. We shall denote by $L(\Omega)$ the setof all gambles on $\Omega$, while $L^{+}(\Omega)$ denotes the set of positive gambles on $\Omega$. Given asubset $A$ of $\Omega$, the indicator func tion of $A$ is the gamble that takes the value 1 on the ele ments oA and 0 elsewhe reWe shalldenote this gamble by $I_{\mathrm{A}}$, or by $A$ when no confusion is possible.

A lower prevision isa functional $P$ definedon a setof gambles $K L(\Omega)$. Givena gamble $f, P(f)$ is understood to represent a sub ject's supremum acceptable buying price for $f$, in the sense that for any $\varepsilon>0$ the transaction $f-P(f)+\varepsilon$ is acceptable to him.

Using this interpretation, we can derive the notion of coherence.
Definition2.29 ([205, Section 2.5]Fonsiderthe lowerprevision $P: K \rightarrow \quad R$, where $K P(\Omega)$. It avoidssureloss if for any natural number $n$ and any $f_{1}, \ldots, f_{n} \quad K$ it holds that:

$$
\sup _{\omega}{ }_{\Omega=1}^{n}[f k(\omega)-P(f k)] \geq 0 .
$$

Also, $P$ iscoherent iffor anynatural numbersn and $m$ and $f_{0}, f_{1}, \ldots, f_{n} K$, it holds that:

$$
\sup _{\omega}[f k(\omega)-P(f k)]-m[f 0(\omega)-P(f 0)] \geq 0 .
$$

The interpretation of this notion is that the acceptablebuying prices encompassed by $\{P(f): \quad f \quad L(\Omega)\}$ are consistent with each other, in thesense defined in[205, Se ction 2.5]. From any lower $p$ revis ior $P$ it is $p$ ossible to define a set of probabilities, also called credal set, by:

$$
M(P)=\{P \text { finitely additive probabilities }: P \geq P\}
$$

The following result relates coherence and avoiding sure loss to the cre dal set $(P)$. It is usually called the Envelope Theorem.

Theorem 2.30 ([205, Section 3.3.3'ft $P$ bea lowerprobabilitydefinedon a setof gamblesK, and let $M(P)$ denote its associated credabet. Then:

$$
P \text { avoidssure loss } \quad M(P)=
$$

and

$$
P \text { is coherent } \quad P(f)={ }_{P} \inf _{(P)} P(f) \text {. }
$$

By conjugacy, an op erator $\bar{P}$ definedona set of gambles $K$ is called upper prevision. For any $f \quad K, P(f)$ is understood to represent the sub ject's infimum acceptable selling price for $f$, in thesensethatforany $\quad \varepsilon>0$ the transaction $P(f)+\varepsilon-f$ is acceptable to him. An upp er prevision avoids sure loss (respectively, is coherent) if and only if $P(f)=-P(-f)$, where $P$ is a lower prevision that avoids sure loss (resp ectively, that is coherent).

When the domain $K$ of the lower and upp er previsions is formed by subsets of $\Omega$, $P$ and $P$ are called lower and upper probabilities, resp ectively.

Next prop osition shows several prop erties of coherent lower and upp er probabilities.
Prop osition 2.31 ([205, Section 2.4.女£) $P$ be a lowerprobability and let $\bar{P}$ denote its conjugate upper probability. The fol lowing statements hold for any $A, B \quad \Omega$ :

$$
\begin{align*}
& A \cap B=\quad \underline{P}(A \quad B) \geq P(A)+\underline{P}(B) .  \tag{2.11}\\
& A \cap B=\quad P\left(\begin{array}{ll}
A & B
\end{array}\right) \geq P(A)+P(B) .  \tag{2.12}\\
& P(A)+P(B) \leq P(A \quad B)+P(A \cap B) .  \tag{2.13}\\
& \underline{P}(A \quad B)+\underline{P}(A \cap B) \geq \underline{P}(A)+P(B) \text {. }  \tag{2.14}\\
& \bar{P}(A \cap B)+\bar{P}(A \cap B) \geq \bar{P}(A)+P(B) . \tag{2.15}
\end{align*}
$$

Given a coherent lower prevision $P$ with domain $K$, we may be interested in extending $P$ toa more general domain $K \quad K$. This can be made by means of the natural extension.

Definition2.32 ([205, Section 3.1] ${ }^{2}$ et $P$ bea coherentlower previsionon $K$, and consider $K K$. Then, forany $f \quad K$, the natural extension of $P$ is definedby:

$$
E(f)={ }_{P} \inf _{(P)} P(f) .
$$

The natural ext ension is the least committal, that is the most imprecise, coherent extension of $E$.

One instance where coherent lower previsions app ear is when dealing with p-b oxes.

Definition 2.33 ([75]AA probability box, or p-box for short, $(F, \bar{F})$ is the set ofcumulative distribution functions bounded between two finitely additive distribution functions $\underline{E}$ and $F$ such that $E \leq F$. We shall refer to $P$ as the lower distribu tion function and to $F$ as the upp er distribution function of the p-box.

Note that $E, \bar{F}$ need not be cumulative distribution functions, and as such they need not belong to the set $(F, F)$; they are only required to be finitely additive distribution functions. In particular, if we cons ider a set $F$ of distributionfunctions, its asso ciated lower and upper distributionfunctions aregivenby

$$
\begin{equation*}
F(x):=\inf _{F} F(x), \quad \bar{F}(x):=\sup _{F} F(x) \tag{2.16}
\end{equation*}
$$

Prop osition 2.34ivenaset ofcumulativedistribution functions $F$, its lower bound $E$ is alsoa cumulativedistribution function, while $F$ is a finitely additivecumulative distribution function.

P-b oxes have been connected to info-gap theory ([76]), randomsets ([103, 172]), and possibility measures ([17, 51, 198]).

Given a p-b ox $(F, \bar{F})$ on $\Omega$, it induces a lower probability $P_{(F, \bar{F})}$ onthe set

$$
K=\left\{A_{x}, X_{x}^{c}: x \quad \Omega\right\},
$$

where $A_{x}=\{x \quad \Omega: x \leq x\}$,by:

$$
\begin{equation*}
P_{(E, \bar{F})}(A x)=F(x) \text { and } P_{(E, \bar{F})}\left(A_{x}^{c}\right)=1-\bar{F}(x) \tag{2.17}
\end{equation*}
$$

If $F=F=\overline{=} F \quad, P_{(F, \bar{F})}$ is usually denoted by $P_{F}$. The following result is state d in [209] and proved in [198, 201].

Theorem2.35 ([198,Section3],[201,Theorem 3.59])Fonsidertwo maps $E$ and $F$ from $\Omega$ to $[0,1]$ and let $\sum_{(E, \bar{F})}: K \rightarrow \quad[0,1]$ be the lower probability they induce by meansof Equation (2.17). The fol lowing statements are equivalent:

- $\sum_{(F, F)}$ is a coherent lowerprobability.
- $E, \bar{F}$ are distributionfunctions and $E \leq \bar{F}$.
- $P_{E}$ and $P_{\bar{F}}$ are coherentand $E \leq \bar{F}$.

In particular, if $F=F=\bar{F}$, then $P_{F}$ is coherent if and only if $F$ is a distribution function.

A particular case appears when defining coherent lower previsions in pro duct spaces $\Omega_{1} \times \Omega_{2}$. If $P$ is a coherentlower prevision taking values on $L\left(\Omega_{1} \times \Omega_{2}\right)$, we can consider its marginals $P_{1}$ or $P_{2}$ as coherent lower previsions on $L\left(\Omega_{1}\right)$ or $L\left(\Omega_{2}\right)$, resp ectively, defined by:

$$
P_{1}(f)=P(f) \quad \text { and } P_{2}(f)=P(f)
$$

for any gamble $f$ on $\Omega_{1} \times \Omega_{2}$. The y will arise when trying to define coherent lower previsions from bivariate p-b oxes.

In this work, we shall use imprecise probability mo dels b ecause we shall be interested in the comparison of sets of alternatives, each with its asso ciated probability distribution; we obtain thus a set $P$ of probability measures. This set can be summarized by means of its lower and upper envelop es, which are given by:

$$
\begin{equation*}
P(A):=\inf _{P} P(A), \bar{P}(A):=\sup _{P} P(A), \tag{2.18}
\end{equation*}
$$

and which are coherent lower and upp er probabilities.

### 2.2.2 Conditional lower previsions

Consider two random variables $X$ and $Y$ taking values in two spaces $\Omega_{1}$ and $\Omega_{2}$ and let $P$ be a coherent lower prevision taking values on $L\left(\Omega_{1} \times \Omega_{2}\right)$. Wedefine a conditional lower prevision $P(\mid Y)$ as a function with two argume nts. For any $y \Omega_{2}, P(\mid y)$ is real functional on theset $L\left(\Omega_{1} \times \Omega_{2}\right)$, whileforany gamble $f$ on $\Omega_{1} \times \Omega_{2}, P(f \mid y)$ is the lower prevision of $f$, conditional on $\Omega_{2}=y . P(f \mid Y)$ is then the gamble on $\Omega_{1}$ that assumes the value $P(f \mid y)$ in $y$. Similar considerations can be made for $P(X)$.

Definition 2.36The conditional lower prevision $P(\mid Y)$ is cal led separately coherent if for all $y \quad \Omega_{2}, \lambda \geq 0$ and $f, g \quad L\left(\Omega_{1} \times \Omega_{2}\right)$ it satisfies the fol lowing conditions:
SC1 $P(f \mid y) \geq \inf _{x \Omega} f(x, y)$.
SC2 $P(\lambda f \mid y)=\lambda P(f \mid y)$.
SC3 $P(f+g \mid y) \geq P(f \mid y)+P(g \mid y)$.
It is known that from separate coherence the fol lowing properties hold (see [205, Theorems 6.2.4 and 6.2.6]):

$$
P(g \mid y)=P(g(, y) \mid y) \text { and } P(f g \mid Y)=f P(g \mid Y)
$$

for all $y \quad \Omega_{2}$, all positive gamblesf on $\Omega_{2}$ and all gamblesg on $\Omega_{1} \times \Omega_{2}$.
We now inve stigate separate coherence and coherence togetherFor any gamble $f$ on $L\left(\Omega_{1} \times \Omega_{2}\right)$, we define:

$$
G(f \mid y)=l \quad\{y\}[f-P(f \mid Y)]=l \quad\{y\}\left[f(, y)^{-P}(f(, y) \mid y)\right]
$$

and

$$
G(f \mid Y)=f-P(f \mid Y)=f \quad-P(f \mid Y)=I_{y \Omega} I_{\{y\}}[f(, y)-P(f(, y) \mid y)] .
$$

Definition 2.37Let $P(Y)$ and $P(X)$ be two separately coherent conditionalower previsions. They are called weakly coherent if and only if for all $f_{1}, f_{2} L\left(\Omega_{1} \times \Omega_{2}\right)$, all $x \quad \Omega_{1}, y \quad \Omega_{2}$ and $g L\left(\Omega_{1} \times \Omega_{2}\right)$, there are some

$$
\begin{array}{llll}
B_{1} & \operatorname{supp}_{2_{1}}\left(f_{2}\right) & \operatorname{supp}_{2_{2}}\left(f_{1}\right) & \left(\{x\} \times \Omega_{2}\right) \\
B_{2} & \operatorname{supp}_{\Omega_{1}}\left(f_{2}\right) & \operatorname{supp}_{22}\left(f_{1}\right) & \left(\Omega_{1} \times\{y\}\right)
\end{array}
$$

such that:

$$
\sup _{z}\left[G\left(f_{1} \mid Y\right)+G\left(f_{2} \mid X\right)-G(g \mid x)\right](z) \geq 0
$$

and

$$
\sup _{z}\left[G\left(f_{1} \mid Y\right)+G\left(f_{2} \mid X\right)-G(g \mid y)\right](z) \geq 0
$$

where

$$
\operatorname{supp}_{\Omega_{1}}(f)=\left\{\{x\} \times \quad \Omega_{2}, x \quad \Omega_{1} \mid f(x, \quad)=0\right\}
$$

and

$$
\operatorname{supp}_{\Omega_{22}}(f)=\left\{\Omega_{1} \times\{y\}, y \quad \Omega_{2} \mid f(, y)=0\right\}
$$

We say that $P(\mid Y)$ and $P(\mid X)$ are coherent if for all $f_{1}, f_{2} L\left(\Omega_{1} \times \Omega_{2}\right)$, all $x \quad \Omega_{1}, y \quad \Omega_{2}$ and all $g L\left(\Omega_{1} \times \Omega_{2}\right)$ it holds that:

$$
\begin{aligned}
& \sup _{z} \Omega_{1} \times \Omega_{2}\left[G\left(f_{1} \mid Y\right)+G\left(f_{2} \mid X\right)-G(g \mid x)\right](z) \geq 0 \\
& \sup _{z} \Omega_{1} \times \Omega_{2}\left[G\left(f_{1} \mid Y\right)+G\left(f_{2} \mid X\right)-G(g \mid y)\right](z) \geq 0
\end{aligned}
$$

Several res ults can be found in the literature relating coherence and weak coherence.
Theorem 2.38 ([137, Theorem 1])et $P(\mid X)$ and $P(\mid Y)$ be separately coherent conditional lower previsions. Theyareweaklycoherent if and only if there is some coherent lower prevision $P$ on $L\left(\Omega_{1} \times \Omega_{2}\right)$ such that

$$
\begin{aligned}
& P(G(f \mid X)) \geq 0 \text { and } P(G(f \mid x))=0 \quad \text { for any } f \quad L\left(\Omega_{2}\right), x \quad \Omega_{2} \\
& P(G(g \mid Y)) \geq 0 \text { and } P(G(g \mid y))=0 \quad \text { for any } g \quad L\left(\Omega_{1}\right), y \quad \Omega_{1} .
\end{aligned}
$$

The followingresult isknownasthe ReductionTheorem.
Theorem 2.39 ([205, Theorem 7.1.54) $P(P \mid X)$ and $P(\mid Y)$ be separately coherent conditional lower previsions defined onL $\left(\Omega_{1} \times \Omega_{2}\right)$, and let $P$ bea coherent lower prevision on $L\left(\Omega_{1} \times \Omega_{2}\right)$. Then $P, P(\mid X)$ and $P(\mid Y)$ are coherent if and only if the fol lowing two conditions holds:

1. $P, P(\mid X)$ and $P(Y)$ are weakly coherent.
2. $P(\mid X)$ and $P(Y)$ are coherent.

### 2.2.3 Non-additive measures

One imp ortant example of coherent lower previsions are the $n_{\text {-monotone ones, which }}$ were first intro duced by Choquet in [39].

Definition 2.40 ([39])Acoherent lower prevision $P$ on $L(\Omega)$ is cal ledn-monotone if and only if:

$$
\mathbb{E}_{i=1} f_{i} \geq{ }_{=1\{1, \ldots, p\}}(-1)^{|/|+1} \mathbb{E}_{i} f_{i}
$$

for all $2 \leq p \leq n$ and all $f_{1}, \ldots, f_{p}$ in $L(\Omega)$, where denotes the point-wisemaximum and the point-wise minimum.

In part icu lar, a coherent lower probabilityp: $P(\Omega) \rightarrow[0,1]$ j n-monotone when

$$
P{ }_{i=1}^{p} A_{i} \geq{ }_{=1}\{1, \ldots, p\}^{(-1)^{|/|+1} P}{ }_{i} A_{i}
$$

for all $2 \leq p \leq n$ and all subsets $A_{1}, \ldots, A_{0}$ of $\Omega$.

Acoherent lower prevision on $L(\Omega)$, that is $n$-monotone for all $n \quad \mathrm{~N}$, is called completely monotone, and its restriction to events is a belief function.Therestriction toeventsof the conjugate upp er prevision is called plausibility function. Belief and plausibility fun ctions are usually denotedby $b e l$ and pl .

Another typ e of non-additive measure are possibility measures.

Definition 2.41 ([70])A possibility measure on $[0,1]$ is a supremum preserving set function $\Pi: P([0,1]) \rightarrow[0,1]$ Itis characterised byits restrictionto events $\pi$, which is cal led its p ossibility distribution. The conjugate function $N$ of a possibility measure is cal led a necessity measure:

$$
N(A)=1-\Pi\left(A^{c}\right)
$$

Because of their computational simplicity, $p$ ossibi lity measures are widely applied in many fie Ids, including data analysis ([196]), diagnosis ([33]), case d-based reasoning ([91]) and psychology ([177]).

Let us see how to apply our extension sto chastic dominance to the comparison of p ossibility measures; another approach to preference modeling with p ossibility measures is discuss ed in [19, 115].

The connection between p ossibility measures and p-b oxes was already explored in [199], and it was proven that almost any possibility measure can be seen as the natural
extension of a corresponding $p-b$ oxHowever, the definition of this $p-b$ ox implies defining some particularorder on our referential space, wh ich could $b$ e different to the one we already have there (for instance if the possibility measure is defined on [ 0,1 ] it may seem counterintuitiveto consideranythingdifferentfromthe natural order), and m ore over two different $p$ ossibility measures may pro duce two different orders on the same space, making it im p ossible to compare them.

Instead, we shall consider a possibility measure $\Pi$ on $\Omega=[0,1]$, its asso ciated set of probability measures:

$$
\begin{equation*}
M(\Pi):=\{P \text { probability }: P(A) \leq \Pi(A) \quad A\} \tag{2.19}
\end{equation*}
$$

and the corresp onding set of distribution functions $F^{F}$. Let $(F, F)$ b e its asso ciatelerb ox.
Since any possibility measure on $[0,1]$ can be obtained as the upp er probability of a random set ([84]), and moreover in that case ([131]) the upp er probability of the random set is the maximum of the probability distributions of the measurable selections, we deduce that the $p$-b ox asso ciated $t 5$ is determined by the following lower and upp er distribution functions:

$$
\begin{align*}
& \bar{F}(x)=\sup _{P \leq \Pi} P([0, x])=\Pi([0, x])=\sup _{y \leq x} \pi(y)  \tag{2.20}\\
& F(x)=\inf _{\leq \Pi} P([0, x])=1-\Pi((x, 1])=1-\sup _{y>x} \pi(y) .
\end{align*}
$$

Note however, that these lower and up per distribution functions need not $b$ elong Fo: if for instance we consider the $p$ ossibility measure asso ciated to the $p$ ossibility distribution $\pi=l \quad(0.5,1]$, we obtain $F=\pi$, whichis notright-continuous, and consequentlycannot belong to the set $F$ of distribution functions asso ciated to $M$ ( $\Pi$ ).

Another interesting typ e of non-additivity measures, that includes possibility measures as aparticular case are clouds. Following Neumaier ([168]), a cloud is a pairof functions $[\delta, \pi]$ where $\pi, \delta:[0,1] \rightarrow[0,1]$ satisfy:

- $\delta \leq \pi$.
- There exists $x \quad[0,1]$ such that $\pi(x)=0$.
- There exists $y \quad[0,1]$ such that $\delta(y)=1$.
$\delta$ and $\pi$ are called the lower and upper distributions of the cloud, resp ectively.
Any cloud $[\delta, \pi]$ has an asso ciated set of probabilitie $S_{[\delta, \pi]}$, that is the set of probabilities $P$ satisfying:

$$
P(\{x \quad[0,1] \mid \delta(x) \geq \alpha\}) \leq 1-\alpha \leq P(\{x \quad[0,1] \pi(x)>\alpha\})
$$

Since both $\pi$ and $1^{-\delta}$ are possibility distributions we can consider their asso ciated credal sets $P_{\pi}$ and $P_{1-\delta}$, given by

$$
P_{\pi}:=\left\{P \text { probability }: P(A) \leq \Pi(A) \quad A \quad \beta_{[0,1]}\right\}
$$

where $\Pi$ denotes the $p$ ossibility measure asso ciated to the possibility distributiont, and similarly for $P_{1^{-\delta}}$. From [65], it holds that $P_{[\delta, \pi]}=P_{1^{-\delta}} \cap P_{\pi}$.

### 2.2.4 Random sets

One context where completel y monotone lower previsions arise naturally is that of measurable multi-valued mappings, or randomsets ([59,96]).

Definition 2.42Let $(\Omega, A, P)$ be aprobability space, $(\Omega, A)$ ameasurable space, and $\Gamma: \Omega \rightarrow P(\Omega)$ a non-empty multi-valued mapping. It is cal led random set when

$$
\Gamma(A)=\{\omega \quad \Omega: \Gamma(\omega) \cap A=\quad\} A
$$

for any $A$.

One instance of random sets are random intervals, that are those satisfying that $\Gamma(\omega)$ is an interval for any $\omega \Omega$.

If $\Gamma$ mo dels the imprecise knowledge ab out a random variable $X, \Gamma(\omega)$ represents that the "true" value of $X(\omega)$ belongs to $\Gamma(\omega)$. Then, all we know ab out $X$ isthat itis oneof themeasurable selections of $\Omega$ :

$$
\begin{equation*}
S(\Gamma)=\{U: \Omega \rightarrow \Omega \text { random variable : } U(\omega) \Gamma(\omega) \omega \Omega\} . \tag{2.21}
\end{equation*}
$$

This interpretation of multi-valued mappings as a mo del for the imprecise knowledge of a random variable is not new, and can b e traced back to Krus e and Meyer ([104]).The epistemic interpretation contrasts withthe ontic interpretation which issometimes given to random sets as naturally impreci se quantities ([73]).

Random sets generate upp er and lower probabilities.
Definition 2.43 ([59]) Let $(\Omega, A, P)$ be a probability space $(\Omega, A)$ a measurable space and $\Gamma: \Omega \rightarrow P(\Omega)$ arandom set. Then its upper and lower probabilities are the functions $P, P: A \rightarrow \quad[0,1]$ given by:

$$
\begin{equation*}
P(A)=P(\{\omega: \Gamma(\omega) \cap A=\quad\}) \text { and } P(A)=P(\{\omega:=\Gamma(\omega) \quad A\}) \tag{2.22}
\end{equation*}
$$

for any $A$ A. These upperand lowerprobabilities are,in particular, a plausibility and a belief function, respectively. Furthermore,they define thecredal set $M\left(P_{\Gamma}\right)$ given by:

$$
\begin{equation*}
M\left(P_{\Gamma}\right)=\left\{P \text { probability }: P\left\ulcorner(A) \leq P(A) \leq P_{\Gamma}(A) \quad A \quad A\right\}\right. \tag{2.23}
\end{equation*}
$$

The upp er and lower probabilities of a random set are in particular coherent lower and upp er probabilities, and constitute the lower and upp er bounds of the probabilities induced bythemeasurable selections:

$$
\begin{equation*}
P(A) \leq P_{X}(A) \leq P(A) \text { for every } X \quad S(\Gamma) \tag{2.24}
\end{equation*}
$$

Therefore, their asso ciated cumulative distribution functions provide lower and upp er b ounds of the lower and upper distribution functions asso ciated $\bar{\delta}(\Gamma)$. The inequalities of Equation (2.24) can be strict [130, Example 1]; howeve $r$, under fairly general conditions

$$
\begin{equation*}
P(A)=\max P(\Gamma)(A) \text { and } P(A)=\min P(\Gamma)(A) \text { for every } A \quad A \tag{2.25}
\end{equation*}
$$

where ${ }^{P}(\Gamma)(A)=\left\{P_{X}(A): X \quad S(\Gamma)\right\}$. Inparticular, if $\Gamma$ takes values on the measurable space $\left([0,1], \beta_{[0,1]}\right)$, wh ere $\beta_{[0,1]}$ denotes theBorel $\sigma_{\text {-field, Equation (2.25) hol ds under }}$ any of the following cond itions ([130]):

- Ifthe class $\{\Gamma(\omega): \omega \quad \Omega\}$ is countable.
- If $\Gamma(\omega)$ is closed for every $\omega$.
- If $\Gamma(\omega)$ is op en for every $\omega \quad \Omega$.

However, thetwo setsarenot equivalentingeneral, and $\quad M\left(P_{\Gamma}\right)$ can only b e see n as an outer approxim ation. There are nonetheless situations in which both sets coincideFirst, let us intro duce the following definition.

Definition 2.44Consider twofunctions $A, B: \Omega \rightarrow \mathrm{R}^{2}$. They are cal led strictly comonotone if $\left(A(\omega)^{-} A(\omega)\right) \geq 0$ if and only if $\left(B(\omega)^{-} B(\omega)\right) \geq 0$ for any $\omega, \omega \quad \Omega$.

A similar but less restrictive notionisthe one of comonotone functions: $A$ and $B$ are called comonotone $\operatorname{if}\left(A(\omega)^{-} A(\omega)\right)\left(B(\omega)^{-} B(\omega)\right) \geq 0$ for any $\omega, \omega \quad \Omega$. Note that both notions are not equivalentin general. Infact, two increasingandcomonotonefunctions $A$ and $B$ arestrictly comonotoneif andonly if $A(\omega)=A(\omega)$ if and only if $B(\omega)=B(\omega)$, and two comonotone functions $A$ and $B$ with $A=0 \leq B$ are strictly comonotone if and only if $B$ is constant.

Next, welist some situationsin which the sets $P(\Gamma)$ and $M\left(P_{\Gamma}\right)$ coincide.
Prop osition 2.45 ([129])et $(\Omega, A, P)$ beaprobabilityspace and consider the random closed interval $\Gamma:=[A, B]: \Omega \rightarrow P(R)$. Let $P(\Gamma), M\left(P_{\Gamma}\right)$ denote the sets of probability measures induced by the selections and those dominated by the upper probability, respectively. Then:

$$
\text { 1. } P_{\Gamma}(C)=\max \{Q(C): Q \quad P(\Gamma)\} \quad C \quad \beta_{\mathrm{R}} \text {. }
$$

2. $M\left(P_{\Gamma}\right)=\overline{C o n v(P(\Gamma)}$, and if $(\Omega, A, P)$ is non-atomic then $M\left(P_{\Gamma}\right)=\overline{P(\Gamma)}$.
3. When $(\Omega, A, P)=\left([0,1], \beta_{[0,1]}, \lambda_{[0,1]}\right)$, the equality $M\left(P_{\Gamma}\right)=P(\Gamma)$ holds under any of the fol lowing conditions:
(a) The variables $A, B:[0,1] \rightarrow \mathrm{R}$ are increasing.
(b) $A=0 \leq B$.
(c) $A, B$ are strictlycomonotone.

For a complete study on the conditions under which the lower and upp er probabilities are attained or the conditions under whichthe sets $P(\Gamma)$ and $M(P)$ coincide, we refer to [125].

Theorem 2.46 ([130, Theorem 14]et $(\Omega, A, P)$ be aprobability space. Consider the measurable spac $\left.\{0,1], \beta_{[0,1]}\right)$ and let $\Gamma: \Omega \rightarrow P([0,1])$ be arandom set. If $P(A)=$ $\max ^{P}(\Gamma)(A)$ for all $A A$, then for any bounded random variable $f:[0,1] \rightarrow \mathrm{R}^{\text {: }}$

$$
\text { (C) } f \mathrm{~d} P=\sup _{U} \mathrm{~S}_{(\Gamma)} f \mathrm{~d} P u, \quad \text { (C) } \quad f \mathrm{~d} P=\inf _{S(\Gamma)} f \mathrm{~d} P u
$$

and consequently:

$$
\text { (C) } f \mathrm{~d} P=\sup (A) \quad(f \circ \Gamma) \mathrm{d} P, \quad(C) \quad f \mathrm{~d} P \quad=\inf (A) \quad(f \circ \Gamma) \mathrm{d} P
$$

where $(C) \quad f \mathrm{~d} P$ denotesthe Choquet integraloff with respectto $P$, and $(A) \quad\left(f^{\circ} \Gamma\right) \mathrm{d} P$ denotes the Aumann int egrabf $f \circ \Gamma$ with respect to $P$, given by:

$$
\begin{equation*}
\text { (A) } \quad(f \circ \Gamma) \mathrm{d} P=\quad f \mathrm{~d} P \cup: U \quad S(\Gamma) . \tag{2.26}
\end{equation*}
$$

The upp er probability induced by a random set is always completely alternating and lower continuous [169]. Undersomeadditionalconditions, itisinparticularmaxitiveor a possibility measure:

Prop osition 2.47 ([128, Corollary $5.4 \nmid 9 t(\Omega, A, P)$ be a probability spaceand consider the random closedinterval $\Gamma: \Omega \rightarrow P(\mathrm{R})$. The fol lowing are equivalent:
(a) $P_{\Gamma}$ is a possibility measure.
(b) $P_{\Gamma}$ is maxitive.
(c) Thereexists some $N \quad \Omega$ null such that for every $\omega_{1}, \omega_{2} \quad \Omega \mid N$, either $\Gamma\left(\omega_{1}\right)$ $\Gamma\left(\omega_{2}\right)$ or $\Gamma\left(\omega_{2}\right) \quad \Gamma\left(\omega_{1}\right)$.

See also [50] forrelated results when $\Omega=[0,1]$.

### 2.3 Intuitionisticfuzzy sets

Fuzzy sets were intro duced by Zadeh ([214]) as a suitable mo del for situations where crispsets didnotconvey appropriately theavailableinformation. However, there are also situations were a more general mo del than fuzzy sets is deemed adequate.

A fuzzy $\operatorname{set} A$ assigns to every point on the universe a numb er [ 0,1 \}hat measures the degree in which this point is compatible with the characteristic describ ed bf. Thus, if $A(\omega)$ denotes the memb ership degree brto $A, 1^{-} A(\omega)$ stands for the degree in which $\omega$ do es not belong to $A$. However, two problems can arise in this situation:

1. $1^{-} A(\omega)$ could include at the same time $b$ oth the degree of non-memb ership and the degree of uncertainty orindeterminacy.
2. The membership degree could not be precisely describ ed.

Considerthe following example for the former case:
Example 2.48Let $A$ be the setA="objects possessing some characteristicT.hus, $A(\omega)$ stands for the degree inwith $\omega$ is inaccord with thegiven characteristic, and $1^{-A} A(\omega)$ is the degreein which $\omega$ is not. However, $\omega$ couldbe partly indifferentto thecharacteristic. To deal with this situation, we candenoteby $\mu_{\mathrm{A}}(\omega)=A(\omega)$ the membership degree of $\omega$ in $A$, and let us define by $v_{\mathrm{A}}(\omega)$ the degree in which $\omega$ does not belong $A$. Such sets, wherea membershipandnon-membershipdegreeis associatedwithany element, are cal led (Atanassov) Intuitionistic Fuzzy Sets (in short, IF-sets). Agood exampleof these situations isvoting, since human voters can be groupedin three classes: vote for, vote against or abstain ([195]).

In order to illustrate second scenario, consider the following example:

Example 2.49We are study ing some element with melting temperature is $m$ and vaporization temperat ure is $v$ (obviously, $m \leq v$ ). For example, for water $m=0{ }^{\circ} \mathrm{C}$ and $v=100{ }^{\circ} \mathrm{C}$. If the element is in a liquid state, we knowthat itstemperatureis greater than $m$, because otherwise itwould be solid, and smal ler than $v$, because otherwise it would be in gaseous state. Then, although we cannot state the exact temperat ure of the element, we can say for sure that it belongs to the interval $[m, v]$.

If $A(\omega)$ denotes the (non-precisely known) memb ership degree of $\omega$ to $A$, we can consider an interval [IA $(\omega)$, uA ( $\omega$ )]that represents that the exact memb ership degree of $\omega$ to $A$ belongs to such interval. These sets, where any element has an asso ciated interval that bounds of the memb ership degree of the element to the set, are called Interval Valued Fuzzy Sets (IVF-sets, forshort).

In this section we intro duce the definition and main prop erties of $b$ oth IF-sets and IVF-sets, andweseehowthe usual op erations b etween crisp sets can b e generalized into this context. In particular, we show that b oth kind of sets are formally equivalent although, as we have already mentioned, their philosophy is different.

Let us begin with the formal definition of an intuitionistic fuzzy set.

Definition $2.50([4])^{L e t} \Omega$ be auniverse. An intuitionisticfuzzyset is defined by:

$$
A=\left\{\left(\omega, \mu \mathrm{A}(\omega), v_{A}(\omega)\right) \mid \omega \Omega\right\}
$$

where $\mu_{\mathrm{A}}$ and $v_{\mathrm{A}}$ are functions:

$$
\mu_{\mathrm{A}}, v_{\mathrm{A}}: \Omega \rightarrow[0,1]
$$

satisfying $\mu_{\mathrm{A}}(\omega)+v_{\mathrm{A}}(\omega) \leq 1$. The function $\pi_{\mathrm{A}}(\omega)=1-\mu_{\mathrm{A}}(\omega)-v_{\mathrm{A}}(\omega)$ is cal led the hesitation index and it expresses the lack of know ledge on the membership of to $A$.

We shalldenote the set of all IF-sets on $\Omega$ by IF $\operatorname{Ss}(\Omega)$.
When $A$ is afuzzy set, its complementaryis given by $A^{c}=1-A$. That is, the memb ership degree ofevery element to the complementary of $A$ is one minus the memb ership degree to $A$. Then, everyfuzzy set isin particularan IF-set wherethe hesitation index equals zero. If $F S(\Omega)$ denotes all fuzzy sets on $\Omega, F S(\Omega) \quad$ IF $\operatorname{Ss}(\Omega)$. For prop er IF-sets, if $\mu_{\mathrm{A}}$ and $v_{\mathrm{A}}$ denote the memb ership and non-memb ership functions, the complementary of $A$ is defined by:

$$
A^{c}=\{(\omega, \ldots(\omega), \mu \mathrm{A}(\omega)) \mid \omega \quad \Omega\} .
$$

Recall that, since the emptyset is the set with no elem ents, it can be also seen as an IF-set give n by:

$$
=\{(\omega, 0,1) \omega \quad \Omega\} .
$$

Similarly, full p ossi bility space $\Omega$ is the set that includes all the elements, and the re fore it can be seen as an IF-set given by:

$$
\Omega=\{(\omega, 1,0) \omega \quad \Omega\}
$$

Definition 2.51 ([6])An intervalvaluedfuzzyset is defined by:

$$
A=\left\{\left[I_{\mathrm{A}}(\omega), U \mathrm{~A}(\omega)\right]: \omega \quad \Omega\right\},
$$

where $_{0} \leq I_{\mathrm{A}} \leq u_{\mathrm{A}}(\omega) \leq 1$. When $I_{\mathrm{A}}(\omega)=u \mathrm{~A}(\omega)$ for any $\omega \quad \Omega$, A becomesa fuzzy set with membership function $I_{\mathrm{A}}$.

If $\left[I_{\mathrm{A}}(\omega), u_{\mathrm{A}}(\omega)\right] r e p r e s e n t s$ that the exact membership degree o $\omega$ to $A$ belongs to this interval, the int erval $\left[1-u_{\mathrm{A}}(\omega), 1-I_{\mathrm{A}}(\omega)\right]$ tel Is us that the exact membership degree of $\omega$ to $A^{c}$ belongs tosuch interval. Then, $A^{c}$ is definedby:

$$
A^{c}=\left\{\left[1-u_{\mathrm{A}}(\omega), 1-I_{\mathrm{A}}(\omega)\right]: \omega \quad \Omega\right\}
$$

Moreover, the empty set is defined bythe interval [0, ofor any $\omega \quad \Omega$, and the total set is defined by the interval $[1,1$ for any $\omega \quad \Omega$.

IF-sets and IVF-sets are formallyequivalent. Onthe one hand, given anIF-set $A$ with membership and non-memb ership function $\$ \ell_{\mathrm{A}}$ and $V_{\mathrm{A}}$, it defined an IVF-set by:

$$
\left\{\left[\mu_{\mathrm{A}}(\omega), 1-v_{\mathrm{A}}(\omega)\right]: \omega \quad \Omega\right\}
$$

On the other hand, given an IVF-set with lower and upp er bounds $I_{\mathrm{A}}$ and $u_{\mathrm{A}}$, it defines an IF-set by:

$$
\left\{\left(\omega, \mathrm{l}_{\mathrm{A}}(\omega), 1-u_{\mathrm{A}}(\omega)\right): \omega \quad \Omega\right\}
$$

For this reason, although the remainder ofthissectionis written in terms of IF-sets, it could $b$ e analogously $b$ e formulated in te rm s of IVF-sets.

Let us see how to extend the usual definitions b etween fuzzy sets, like intersections, unions or differences, towards IF-sets. Similarly to the fuzzy case, unions andintersections of IF-sets are defined by means of $t$-conorms and $t$-norms. Recall that a t-norm is a commutative, monotonic and asso ciative binary operator from [0, 1火 $[0,1] \mathrm{to}[0,1]$ with neutral element 1 , while a t-conorm satisfies the same prop erties than a t-norm but its ne utral element is 0 . From a $t$-norm $T$ it is possible to define a t-conorm $\mathrm{S}_{\mathrm{T}}$, called the dual t-conorm,by:

$$
S_{T}(x, y)=1-T(1-x, 1-y) \text { for any }(x, y) \quad[0,1\}^{\}} .
$$

See [99] foracompletestudy on t-norms.
Definition 2.52 ([63])-et $A$ and $B$ be twolF-sets given by:

$$
\left.\begin{array}{l}
A=\left\{\left(\omega, \mu \mathrm{AA}(\omega), v_{A}(\omega) \mid \omega\right.\right. \\
B=\left\{\left(\omega, \mu \mathrm{B}(\omega), v_{B}(\omega) \mid \omega\right.\right. \\
B=
\end{array}\right\} .
$$

Let $T$ bea $t$-norm and $S_{T}$ its dual $t$-conorm.

- The T-intersection of $A$ and $B$ is thelF-set $A \cap_{\mathrm{T}} B$ defined by:

$$
A \cap_{\mathrm{T}} B=\left\{\left(\omega, T\left(\nsim(\omega), \mu_{\mathrm{B}}(\omega)\right), \mathcal{S}\left(v_{\mathrm{A}}(\omega), V_{\mathrm{B}}(\omega)\right)\right) \mid \omega \quad \Omega\right\}
$$

- The $\mathrm{S}_{\mathrm{T}}$-union of $A$ and $B$ is thelF-set $A \mathrm{~s}_{\mathrm{T}} B$ given by:

$$
A \quad \mathrm{~S}_{\mathrm{T}} B=\left\{\left(\omega, \mathrm{ST}\left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega)\right), T\left(\mathrm{kx}^{\left.\left.\left.(\omega), \mathrm{VB}^{( }(\omega)\right)\right) \mid \omega \quad \Omega\right\} . ~}\right.\right.\right.
$$

Recall that we shall use the minimum, $T_{N}$, andthe maximum, $S_{T M}$, inorder tomake intersections and unions, resp ectively,since they are th e most usual op erators used in the literature. Inthatcase, the $T$-intersection and the $\mathrm{S}_{\mathrm{T}}$-union become:

$$
\begin{aligned}
& A \cap_{T_{M}} B=\left\{\left(\omega, \overline{\text { Wh }}\left(\mu_{\mathrm{A}}(\omega), \mu_{B}(\omega)\right), \boldsymbol{S}_{\mathrm{M}}\left(\nu_{\mathrm{A}}(\omega), \nu_{B}(\omega)\right)\right) \mid \omega \quad \Omega\right\} \\
& =\left\{\left(\omega, \min \left(\mu(\omega), \mu_{B}(\omega)\right), \max \left(\mathbb{K}(\omega), V_{B}(\omega)\right)\right) \mid \omega \Omega\right\} \text {. } \\
& A \quad \mathrm{~S}_{\mathrm{m}_{\mathrm{M}}} B=\left\{\left(\omega, \mathrm{S}_{\mathrm{M}}\left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega)\right), \mathrm{K}_{\mathrm{M}}\left(\mathrm{VA}_{\mathrm{A}}(\omega), \nu_{B}(\omega)\right)\right) \mid \omega \quad \Omega\right\} \\
& =\left\{\left(\omega, \max \left(\mu_{\mu}(\omega), \mu_{\mathrm{B}}(\omega)\right), \min \left(\text { IA }^{( }(\omega), V_{B}(\omega)\right)\right) \mid \omega \Omega\right\} .
\end{aligned}
$$

For simplicity, we shall denote the $T$-intersection and the $S_{T}$ by $\cap$ and
We next define a binary relationship of inclusion between IF-sets.
Definition 2.53Let $A$ and $B$ be twolF-sets. $A$ is contained in $B$, and it is denoted by $A \quad B$, if

$$
\mu_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{B}}(\omega) \text { and } v_{\mathrm{A}}(\omega) \geq v_{\mathrm{B}}(\omega) \text { for any } \omega \quad \Omega
$$

Example 2.54Let us considera possibility space $\Omega$ representing aset of three cities: city 1, city 2 and cit y 3. Let $P$ be a polit ician, and let us consider the IF-sets:
$A=$ " $P$ is a good politician".
$B=$ " $P$ is honest".
$C=$ " $P$ is close to the people".
Since $A, B$ and $C$ arelF-sets, each cityhas a degreeofagreementwith feature $A$, $B$ and $C$, and a degreeof disagreement. In Figure 2.5 wecan seethe membership and non-membership functions of these IF-sets.

Now, inorder to compute the intersectionof the IF-sets $A$ and $B$,

$$
A \cap B=\text { " } P \text { is a good politician and honest". }
$$

we must compute the value of $\mu_{\mathrm{A} \cap_{\mathrm{B}}}$ and

$$
\begin{aligned}
& \mu_{\mathrm{A} \cap \mathrm{~B}}(\text { city } i)=\min \left(\mu \mathrm{A}(\text { city } i), \mu_{\mathrm{B}}(\text { city } i)\right)=\mu \quad \mathrm{B}(\text { city } i), \text { for } i=1,2,3 . \\
& v_{\mathrm{A} \cap \mathrm{~B}}(\text { city } i)=\max \left(v_{\mathrm{A}}(\text { city } i), v_{\mathrm{B}}(\text { city } i)\right)=v \quad \mathrm{~B}(\text { city } i), \text { for } i=1,2,3 .
\end{aligned}
$$

Thus, $A \cap_{B=B}$. It holds since $B \quad A$, in the sense that $\mu_{B} \leq \mu_{\mathrm{A}}$ and $v_{\mathrm{B}} \geq v_{\mathrm{A}}$, and its interpretation would be that $P$ is less honest than a good politician.

Now, let us computethe IF-set "P is honest or closeto the people", that is, the IF-set B C. We obtain that:

$$
\begin{aligned}
& \mu_{\mathrm{B}} \mathrm{c}(\text { city } i)=\max \left(\mu_{\mathrm{B}}(\text { city } i), \mu_{\mathrm{c}}(\text { city } i)\right)=\quad \begin{array}{l}
\mu_{\mathrm{B}}(\text { city } i) \text { for } i=1,3 . \\
\mu_{\mathrm{C}}(\text { city } i) \text { for } i=2
\end{array} \\
& v_{\mathrm{B} \cap \mathrm{C}}(\text { city } i)=\min \left(v_{\mathrm{B}}(\text { city } i), v \mathrm{C}(\text { city } i)\right)=\quad v_{\mathrm{B}}(\text { city } i) \text { for } i=1,3 . \\
& v_{\mathrm{C}} \text { (city } i \text { ) for } i=2 \text {. }
\end{aligned}
$$



Figure 2.5: Examples of the memb ership and non-memb ership functions of the IF-sets that express the $P$ is a go od $p$ olitician( ), Pishonest $\left({ }^{\circ}\right)$ and $P$ is close to the $p$ eople ( ${ }^{*}$ ).

Then, the IF-set B can be expressed in the fol lowing way:
$B \quad C=\left\{\left(\right.\right.$ city $1, \mu_{\mathrm{B}}($ city 1$), \nu_{\mathrm{B}}($ city 1$\left.)\right)$,
(city $2, \mu_{\mathrm{C}}($ city 2$), \nu_{\mathrm{C}}($ city 2$\left.)\right),\left(\right.$ city $3, \mu_{\mathrm{B}}($ city 3$), \nu_{\mathrm{B}}($ city 3$\left.\left.)\right)\right\}$.
Let us conclude this part by defining the difference op erator b etween IF-setsAccording to [27], a difference between fuzzy sets, or fuzzy difference, is a mapF $S(\Omega)^{\times} F S(\Omega) \rightarrow$ $F S(\Omega)$ such that for everypair of fuzzysets $A$ and $B$ it satisfies the following prop erties:

$$
\begin{array}{lll}
\text { If } A & B, & \text { then } A-B= \\
\text { If } A & A, & \text { then } A-B
\end{array} \quad A-B .
$$

Some examples offuzzy differences are the following:

$$
\begin{aligned}
& A-B(\omega)=\max \left(0, A(\omega)-B(\omega)^{\}},\right. \\
& A-B(\omega)=\begin{array}{ll}
A(\omega) & \text { if } B(\omega)=0, \\
0 & \text { otherwise },
\end{array}
\end{aligned}
$$

for any $\omega \quad \Omega$.
Similarly, we can extend the defi nition of difference for IF-sets.

Definition 2.55An operator - : IF Ss $(\Omega) \times \operatorname{IF} \operatorname{Ss}(\Omega) \rightarrow$ IF $S s(\Omega)$ isa difference between IF-set s (IF-difference, in short) if it satisfies properties D1 and D2.

| $D 1$ | If $A$ | $B$, then $A-B=$ |
| :--- | :--- | :--- |
| $D 2$ | If $A$ | $A$, then $A-B$ |$\quad A-B$.

Any function $D$ satisfying D1 and D2 is a difference op erator. Nevertheless, there are other interesting prop erties that IF-differences may satisfy:


Letus give an example of IF-difference that alsofulfills D3, D4 andD5.
Example 2.56Consider thefunction $-: \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IF} \operatorname{Ss}(\Omega) \rightarrow$ IF Ss $(\Omega)$ given by:

$$
A-B=\{(\omega, \mid A-B(\omega), V A-B(\omega)) \mid \omega \quad \Omega\}
$$

where

$$
\begin{array}{ll}
\mu_{\mathrm{A}-\mathrm{B}}(\omega)= & \max \left(0, \mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right) ; \\
v_{\mathrm{A}}-\mathrm{B}(\omega)= & \begin{array}{ll}
1-\mu_{\mathrm{A}}-\mathrm{B}(\omega) & \text { if } v_{\mathrm{A}}(\omega)>v_{\mathrm{B}}(\omega) ; \\
\min \left(1+v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega), 1-\mu_{\mathrm{A}}-\mathrm{B}(\omega)\right) & \text { if } v_{\mathrm{A}}(\omega) \leq v_{\mathrm{B}}(\omega) .
\end{array}
\end{array}
$$

Let us provethat this funct ion satisfies properties D1 and D2, i.e., that it is an IFdifference.

## D1: Let us take $A \quad B$. Then $\mu_{\mathrm{A}} \leq \mu_{\mathrm{B}}$ and $v_{\mathrm{A}} \geq v_{\mathrm{B}}$.

$$
\begin{aligned}
& \mu_{\mathrm{A}-\mathrm{B}}(\omega)=\max \left(0, \mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right)=0 . \\
& v_{\mathrm{A}}-\mathrm{B}(\omega)=1-\mu_{\mathrm{A}}-\mathrm{B}(\omega)=1, \operatorname{because}_{\mathrm{A}} \geq v_{\mathrm{B}} .
\end{aligned}
$$

As aconsequence, $A-B=$.
D2: Consider $A \quad A$, that is, $\mu_{\mathrm{A}} \leq \mu_{\mathrm{A}}$ and $v_{\mathrm{A}} \geq v_{\mathrm{A}}$, and let us prove that $A-B \quad A-B$. Thus, forany $\omega$ in $\Omega$ we have that:

$$
\begin{array}{rlr}
\mu_{\mathrm{A}}-\mathrm{B}(\omega) & =\max \left(0, \mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right) \leq \max \left(0, \mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right)=\mu_{\mathrm{A}}-\mathrm{B}(\omega) . \\
v_{\mathrm{A}}-\mathrm{B}(\omega) & =\begin{array}{ll}
1-\mu_{\mathrm{A}}-\mathrm{B}(\omega) & \\
& \min \left(1-v_{\mathrm{A}}(\omega)>v_{\mathrm{B}}(\omega) .\right. \\
& \left.\leq 1-\mu_{\mathrm{A}}-\mathrm{B}(\omega), 1+v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right) \\
& \text { if } v_{\mathrm{A}}(\omega) \leq v_{\mathrm{B}}(\omega) . \\
& \text { if } v_{\mathrm{A}}(\omega)>v_{\mathrm{B}}(\omega) . \\
& \leq{\min \left(1-\mu_{\mathrm{A}}-\mathrm{B}(\omega), 1+v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right)} \text { if } v_{\mathrm{A}}(\omega) \leq v_{\mathrm{B}}(\omega) .
\end{array}
\end{array}
$$

This shows that - is an IF-difference. Letus see thatit also satisfiesproperties D3, D4 and D5.

D3: Let ustake into account that the IF-sets $A \cap C$ and $B \cap C$ are givenby:

$$
\left.\begin{array}{l}
A \cap C=\{(\omega, \min (\mu \mathrm{A}(\omega), \mu \mathrm{C}(\omega)), \max (\notin(\omega), \mathrm{vC}(\omega))) \mid \omega \\
B \cap C=\{(\omega, \min (\mu \mathbb{B}(\omega), \mu \mathrm{C}(\omega)), \max (\mathbb{B}(\omega), \mathrm{vC}(\omega))) \mid \omega
\end{array}\right\} .
$$

For short, we will denote by $D$ the IF-set $D=A \cap C-B \cap C$. Onone hand, we are going to prove that $\mu_{\mathrm{A}-\mathrm{B}} \geq \mu_{\mathrm{D}}$ :

$$
\begin{aligned}
& \mu_{\mathrm{A}-\mathrm{B}}(\omega)=\max \left(0, \mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right)^{-} \\
& \mu_{\mathrm{D}}(\omega)=\max \left(0, \min \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega)\right)^{-} \min \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{C}}(\omega)\right)\right) .
\end{aligned}
$$

Applying thefirst part of Lemma A. 1 of Appendix $A$, we deducethat $\quad \mu_{A-\mathrm{B}} \geq \mu_{\mathrm{D}}$.
Now, let usprovethat $v_{A-B} \leq v_{D}$. Therearetwopossibilities, either $v_{A}(\omega)>v_{\mathrm{B}}(\omega)$ or $v_{\mathrm{A}}(\omega) \leq v_{\mathrm{B}}(\omega)$. Assume that $v_{\mathrm{A}}(\omega)>v_{\mathrm{B}}(\omega)$. In such a case, $\max \left(v_{\mathrm{A}}(\omega), v(\omega)\right) \geq$ $\max \left(v_{\mathrm{B}}(\omega), v(\omega)\right)$ and $v_{\mathrm{A}}-\mathrm{B}(\omega)=1-\mu_{\mathrm{A}}-\mathrm{B}(\omega)$, and consequently:

$$
\nu_{\mathrm{D}}(\omega)=1-\mu_{\mathrm{D}}(\omega) \geq 1-\mu_{\mathrm{A}}-\mathrm{B}(\omega)=v_{\mathrm{A}}-\mathrm{B}(\omega) .
$$

Assume now that $v_{\mathrm{A}}(\omega) \leq v_{\mathrm{B}}(\omega)$. Then itholds that

$$
\max \left(v_{A}(\omega), v c(\omega)\right) \leq \max \left(v_{B}(\omega), v c(\omega)\right) .
$$

By thesecond part of Lemma A.1of AppendixA,

$$
v_{\mathrm{B}}(\omega)-v_{\mathrm{A}}(\omega) \geq \max \left(v_{\mathrm{B}}(\omega), v c(\omega)\right)^{-} \max \left(v_{\mathrm{A}}(\omega), v(\omega)\right),
$$

whence

$$
\begin{aligned}
v_{\mathrm{D}}(\omega) & =\min \left(1+\max (v a A(\omega), v(\omega))^{-} \max (v \mathrm{~B}(\omega), v c(\omega)), 1^{-} \mu_{\mathrm{D}}(\omega)\right) \\
& \geq \min \left(1+v_{\mathrm{A}}(\omega)^{-} v_{\mathrm{B}}(\omega), 1^{-} \mu_{A^{-}}(\omega)\right)=v_{A}-\mathrm{B}(\omega) .
\end{aligned}
$$

Thus we conclude that $v_{A-B} \leq v_{D}$, and therefore $(A \cap C)^{-}(B \cap C) \quad A-B$.
D4: Consider three IF-sets $A, B$ and $C$. The IF-sets $A \quad C$ and $B \quad C$ aregiven by:

$$
\begin{array}{ll}
A & C=\max \left(\mu_{\mathrm{A}}, \mu_{\mathrm{C}}\right), \min \left(V_{\mathrm{A}}, V_{\mathrm{C}}\right) \\
B & C=\max \left(\mu_{\mathrm{B}}, \mu_{\mathrm{C}}\right), \min \left(V_{\mathrm{B}}, V_{\mathrm{C}}\right)
\end{array}
$$

Let us denote by $D$ the IF-set $D=\left(\begin{array}{ll}A & C\end{array}\right)^{-}\left(\begin{array}{ll}B & C\end{array}\right)$, and let us provethat $\mu_{A_{-B}} \geq \mu_{D}$. This is equivalent to

$$
\max \left(0, \mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right)^{\geq} \max \left(0, \max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega)\right)^{-} \max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{C}}(\omega)\right)\right)
$$

for every $\omega \quad \Omega$, and thisinequality holdsbecauseof the first part of Lemma A. 1 of Appendix $A$.

Let us provethat $v_{D} \geq v_{A-B}$. Toseethis, considerthetwopossiblecases: $v_{\mathrm{A}}(\omega)>$ $v_{\mathrm{B}}(\omega)$ and $v_{\mathrm{A}}(\omega) \leq v_{\mathrm{B}}(\omega)$. Assu me thatv $\mathrm{v}_{\mathrm{A}}(\omega)>\mathrm{v}_{\mathrm{B}}(\omega)$, whichmeans that $v_{\mathrm{A}}-\mathrm{B}(\omega)=$
$1-\mu_{\mathrm{A}}-\mathrm{B}(\omega)$. Now, $v_{\mathrm{A}}(\omega)>V_{\mathrm{B}}(\omega)$ implies that $\min \left(v_{\mathrm{A}}(\omega), v(\omega)\right) \geq \min \left(v_{\mathrm{B}}(\omega), v(\omega)\right)$ and therefore:

$$
\nu_{\mathrm{D}}(\omega)=1-\mu_{\mathrm{D}}(\omega) \geq 1-\mu_{\mathrm{A}}-\mathrm{B}(\omega)=\nu_{\mathrm{A}}-\mathrm{B}(\omega) .
$$

Assume now that $v_{\mathrm{A}}(\omega) \leq \nu_{\mathrm{B}}(\omega)$, whence

$$
\min \left(v_{A}(\omega), v c(\omega)\right) \leq \min \left(v_{B}(\omega), v(\omega)\right) .
$$

Applying thesecond partof Lemma A. 1 of AppendixA, we knowthat

$$
v_{\mathrm{B}}(\omega)^{-} v_{\mathrm{A}}(\omega) \geq \min \left(v_{\mathrm{B}}(\omega), v c(\omega)\right)^{-} \min \left(v_{\mathrm{A}}(\omega), v(\omega)\right) .
$$

Then, we deduce that:

$$
\begin{gathered}
v_{\mathrm{D}}(\omega)=\min \left(1+\min \left(v_{\mathrm{A}}(\omega), v_{c}(\omega)\right)^{-} \min \left(v_{\mathrm{B}}(\omega), v(\omega)\right), \uparrow \mu_{\mathrm{D}}(\omega)\right) \\
\geq \min \left(1+v_{\mathrm{A}}(\omega)^{-} v_{\mathrm{B}}(\omega), 1^{-} \mu_{\mathrm{A}}(\omega)\right)=v_{\mathrm{A}}-\mathrm{B}(\omega) . \\
\text { Thus, } v_{\mathrm{D}} \geq v_{\mathrm{A}-\mathrm{B}}, \text { and therefore }\left(\begin{array}{ll}
\mathrm{A} & C
\end{array}\right)^{-\left(\begin{array}{ll}
B & C
\end{array}\right) A-B .}
\end{gathered}
$$

D5: Let us consider $A$ and $B$ such that $A-B=$. Then, $\mu_{A-B}(\omega)=0$ and $v_{\mathrm{A}} \mathrm{B}_{\mathrm{B}}(\omega)=1$ for every $\omega \quad \Omega$, whence

$$
\begin{array}{ll}
0=\mu \mathrm{A}-\mathrm{B}(\omega)=\max \left(0, \mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right) \quad \mu_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{B}}(\omega) . \\
1=v_{\mathrm{A}}-\mathrm{B}(\omega)=\begin{array}{ll}
1 & \text { if } v_{\mathrm{A}}(\omega)>v_{\mathrm{B}}(\omega) . \\
1+v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega) & \text { if } v_{\mathrm{A}}(\omega) \leq v_{\mathrm{B}}(\omega) .
\end{array}
\end{array}
$$

Therefore, $\mu_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{B}}(\omega)$ and $v_{\mathrm{A}}(\omega) \geq v_{\mathrm{B}}(\omega)$, and as a consequenceA $\quad B$.

# 3 Comparison of alternatives underuncertainty 

This memory is devoted to the comparison of alternatives under some lack of information. If this lack of information is given by uncertainty ab out the consequences of the alternatives, these are usually mo delled by means of random variablesThus, sto chastic orders emerge asan essential to ol, sincetheyallowthecomparison of random quantities. As we mentionedinthe previous chapter, one of the most imp ortant sto chastic orders in the literature is that of sto chastic dominance, in any of its degrees. Sto chastic dominance has b ee $n$ widely investigated (see [98, 108, 109, 110, 173], among others) and it has been applied in many different areas ([11, 77, 95, 109, 171, 180]). However, the other sto chastic order we have intro duced, statistic al preference, has been studied in ( $[14,15,16,49,54,55,56,57,58]$ ) but not as widely as sto chastic dominance.For this reason, the first ste $p$ of this chapter is to make a thorough study of statistical preference. First of all, we investigate its basic prop erties as a sto chastic orderandthen we study its relationship with sto chastic dominance. In this sense, we shall firstly lo ok for conditions that guarantee that first degree sto chastic dominance implies statistical preference. Then, we shall show that in general there is not an implication relationship between statistical preference and the $n$-th degree sto chastic dominance. We als o provide several examples of the b ehaviour of statistical preference, and also sto chastic dominance, in some of the most usual distributions, likeforinstance Bernoulli, exp onentialor, of course, the normal distribution.

Both sto chastic dominance and statistical preference are stochastic orders that were intro duced for the pairwise comparison of random variablesnfact, statisticalpreference presents adisadvantage thatis itslack of transitivity, as was pointed out by several authors([14, 15, 16, 49,54,56, 58,121, 122]). Toillustratethisfact, wegiveanexample. Then, in order to have an sto chastic order that allows for the simultaneous comparison of more than two random variables, we present a generalisation of statistic al preference, andstudy some of its prop erties. In particular, we shall see its connections with the metho ds established for pairwise comparisons.

It is obvious that sto chastic orders are powerful to ols for comparing uncertain quan-
tities. For this reason, and in order to illus trate our results, we conclude the chapter by mentioning two possible applications. On the onehand, we investigate both sto chastic dominance and statistical preference as metho ds for the comparison of fitness values ( $[180,183]$ ), and on the other hand we illustrate the usefuln ess of $b$ oth statistical preference and its generalisation for the comparison of more than two random variablesin multicriteria decision making problems with linguistic lab els ([123]).

### 3.1 Properties of the statistical preference

This section is devoted to the study of the main prop erties of statistical preference. In particular, weshall try tofindacharacterization of this notion: ona firststep, a similar one to that of sto chastic dominance presented in Theorem 2.10;afterwards, we explain that statistical preference seems to be closer to another lo cation parameter, the median.

### 3.1.1 Basic prop erties and intuitive interpretation of the statistical preference

We start this subsection with some basic prop erties ab out the $b$ ehaviour of the statistical preference.

Lemma 3.1 Let $X$ and $Y$ be tworandom variables. Thenit holds that

$$
X \quad \operatorname{sp} Y \quad P(X<Y) \leq \frac{1}{2} .
$$

In part icu lar, the converse implication holds for random variables with $P(X=Y)=0$
Pro of It holdsthat $Q(X, Y)=P(X>Y)+\frac{1}{2} P(X=Y) \geq \frac{1}{2}$. Then:

$$
P(X<Y)=1-P(X>Y)-P(X=Y) \leq \frac{1}{2}-\frac{1}{2} P(X=Y) \leq \frac{1}{2} .
$$

If $P(X=Y)=0 \quad$,then:

$$
Q(X, Y)=P(X>Y)=1-P(Y>X) \geq \frac{1}{2},
$$

since we assume $P(X<Y) \leq \frac{1}{2}$. Thus, $X$ sp $Y$.
Remark 3.2 Note thatthe converse implicationof theprevious resultdoes nothold in general. Asa counterexample, itisenoughtoconsidertheindependentrandomvariables
defined by:

| $X$ | 0 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{\mathrm{X}}$ | 0.8 | 0.2 |$\quad$| $P_{\mathrm{Y}}$ | 0.7 |
| :--- | :--- |

On the one hand, it holds that:

$$
P(X<Y)=P(X=0, Y=1)=P(X=0) P(Y=1)=0.8 \quad 0.3=0.24<\frac{1}{2},
$$

and also

$$
P(X=Y)=P(X=0, Y=0)=P(X=0) P(Y=0)=0.7 \quad 0.8=0.56 .
$$

However, $P(X>Y)=P(X=2)=0.2$. Thus:

$$
Q(X, Y)=P(X>Y)+\frac{1}{2} P(X=Y)=0.2+\frac{1}{2} \quad 0.56=0.48<\frac{1}{2} .
$$

Now we present a result that shows how tran slations and dilations or contractions affect to the $b$ ehavi ou $r$ of statistical preference for real-valued random variables.

Prop osition 3.3 et $X, Y$ and $Z$ be three real-valued random variables defined on the same probability space and let $=0$ and $\mu$ be two realnumbers. It holdsthat

1. $X$ sp $Y \quad X+Z$ sp $Y+Z$.
2. $\lambda X \quad \mathrm{sp} \mu Y$

$$
x \quad \text { sp }{ }_{\lambda}^{\mu} Y \text { if } \lambda>0 \text {. }
$$

$$
{ }_{\lambda}^{\mu} Y \quad \text { sp } X \text { if } \lambda<0 \text {. }
$$

## Pro of

1. Itholds that

$$
\begin{aligned}
Q(X, Y) & =P(X>Y)+\frac{1}{2} P(X=Y) \\
& =P(X+Z>Y+Z)+\quad \frac{1}{2} P(X+Z=Y+Z)=Q(X+Z, Y+Z) .
\end{aligned}
$$

Then, $Q(X, Y) \geq \frac{1}{2}$ ifand onlyif $Q(X+Z, Y+Z) \geq \frac{1}{2}$.
2. Let us develop the exp re ssion $₫ \oplus(\lambda X, \mu Y)$ :

$$
Q(\lambda X, \mu Y)=\begin{array}{lllll}
P X> & \frac{\mu}{\lambda} Y+P X= & \frac{\mu}{\lambda} Y=Q X, & \frac{\mu}{\lambda} Y & \text { if } \lambda>0 . \\
P X< & \frac{\mu}{\lambda} Y+P X= & \frac{\mu}{\lambda} Y=Q & \frac{\mu}{\lambda} Y, X & \text { if } \lambda<0 .
\end{array}
$$

Then, the result direct follows from the expres sion of $Q(\lambda X, \mu Y)$.

Some new equivalences can be deduced from the previous ones.

Corollary 3.4 Let $X$ and $Y$ bea pair ofreal-valuedrandomvariables, $\lambda$ and $\mu$ two real numbers and $\alpha$ aconstant. Then it holds that

2. $X$ sp $Y$ 1- $Y$ sp 1- $X$.
3. $X$ sp $Y \quad X-Y$ sp 0 .
4. $X+Y$ sp $Y \quad X$ sp 0 .
5. $X$ sp $X+\alpha \quad \alpha \leq 0$.
6. $X \quad$ sp $\alpha X \quad \begin{array}{lll}0 & \text { sp } X, & \text { if } \alpha>1, \\ & X & \text { sp } 0, \\ \text { if } \alpha<1 .\end{array}$

Pro of In point1, the case of $\lambda>0$ and $\lambda<0$ directly follow from item 2 of the previous prop osition. If $\lambda=0$, applying Remark2.19, the comparison of degenerate random variables is equivalent to the comparison of real numb ers, and then, it is obvious that $\lambda X \quad$ sp $\mu \quad 0 \geq \mu$.

Point 2 follows from the previous prop osition: $X \quad$ sp $Y$ if andonly if $X-1$ sp $Y-1$, and from the second item this is equivalent to $1-Y$ sp $1-X$.

Points 3, 4 and 5 are immediate from the firs $t p$ oint of Prop osition 3.3 and $\mathrm{Re}-$ mark 2.19 in the case of 3 . Considerthe lastone. Applying our previous prop osition,

$$
X \quad \text { sp } \alpha X \quad(1-\alpha) X \quad \text { sp } 0
$$

By the second item of Prop osition 3.3,

$$
\begin{array}{lllll}
(1-\alpha) X & \text { sp } 0 & 0 & \text { sp } X, & \text { if } \alpha>1, \\
\text { sp } 0 & \text { if } \alpha<1
\end{array}
$$

Let us compare the b ehaviour of statistical preference and sto chastic dominance with resp ect these basic prop erties. Ontheone hand, Prop osition 2.13 assures that $X_{1}+$ $\ldots+X n \quad$ FSD $Y_{1}+\ldots+Y n$ when the variables are indep endent and $X_{i}$ fSD $Y_{i}$. First statement of Prop osition 3.3 assures that $X \quad$ sp $Y \quad X+Z \quad$ sp $Y+Z$, and the indep endence condition is not imposed. However, it is not possible to give a result as general as Prop osition 2.13 for statistical preferenceFor instance, cons ider the universe
$\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$, with a discreteuniformdistribution, and thefollowing random variables:

|  | $\omega_{4}$ | $\omega_{3}$ | $\omega_{3}$ | $\omega_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $X_{1}$ | -2 | 1 | -2 | 1 |
| $X_{2}$ | 1 | -2 | -2 | 1 |
| $Y$ | 0 | 0 | 0 | 0 |
| $X_{1}+X$ | 2 | -1 | -1 | -4 |
| $Y+Y$ | 0 | 0 | 0 | 0 |

It holds that $X_{1} \equiv{ }_{\mathrm{sP}} Y$ and $X_{2} \equiv \mathrm{sP} Y$. However, $Q\left(X_{1}+X \quad 2, Y+Y\right)=\quad{ }_{4}^{1}$, and therefore $X_{1}+X_{2}$ sp $Y+Y$.

First item of Corollary 3.4 trivially holds for sto chastic dominance. The second itemalso holds since:

$$
F_{1-x}(t)=1-P(X<1-t) \text { and } F_{1-Y}(t)=1-P(Y<1-t),
$$

and then $F_{1-y}(t) \leq F_{1-x}(t)$ if and only if $P(X<1-t) \leq P(Y<1-t)$. Note that $P(X \leq t) \leq P(Y \leq t)$ for any $t$ if andonly if $P(X<t) \leq P(Y<t)$ for any $t$ : on the one hand, assume that $P(X \leq t) \leq P(Y \leq t)$ for any $t$. Then:

$$
P(X<t)=\lim _{n \rightarrow \infty} P \quad X \leq t-\frac{1}{n} \leq \lim _{n \rightarrow \infty} P \quad Y \leq t-\frac{1}{n} \quad=P(Y<t) .
$$

On the other hand, if $P(X<t) \leq P(Y<t)$ for any $t$, it holds that:

$$
P(X \leq t)=\lim _{n \rightarrow \infty} P \quad X<t+\frac{1}{n} \leq \lim _{n \rightarrow \infty} P \quad Y<t \quad+\frac{1}{n}=P(Y \leq t)
$$

We conclude that $X \quad$ FSD $Y$ if and only if $1-Y$ FSD 1-X. However, sto chastic dominance do es not satisfy the third item of Corollary 3.4. For instance, if $X$ and $Y$ are two indep endent and equally distributed random variables following a Bernoulli distribution of param eter ${ }_{2}^{1}$, it holds that:

$$
\begin{array}{c|ccc}
X-Y & -1 & 0 & 1 \\
\hline P_{X-Y} & \frac{1}{4} & \frac{1}{2} & 4 \\
4
\end{array}
$$

Then, $X-Y$ is notcomparable with the degenerate variable in0 for first degree sto chastic dominance, but $X$ fsD $Y$.

Furthermore, the fourth ite $m$ of the previous corollary do es not hold, either: it suffices to consider the universe $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ with discrete uniform distribution, and the random variablesdefined by:

|  | $\omega_{1}$ | $\omega_{2}$ | $\omega_{3}$ |
| :---: | :---: | :---: | :---: |
| $X$ | 0 | 1 | 2 |
| $Y$ | 2 | 1 | 0 |
| $X-Y$ | -2 | 0 | 2 |

Then, $X \equiv_{\text {FSD }} Y$, but $X-Y$ and 0 are not comparable with resp ect to sto chastic dominance. Nevertheless, first degree stochastic dominance do es satisfy the fifth and sixth prop erties of Corollary 3.4.

Remark 3.5 Usingthethirditem of the previous corol lary, we knowthat $X \quad$ sp $Y$ if and only if $X-Y$ sp 0 . This al lowed Couso and Sánchez [46] to prove asimple characterization of statistical preference for real-valued random variables:

$$
\begin{equation*}
X \quad \text { sp } Y \quad X-Y \quad \text { sp } 0 \quad E[u(X-Y)] \geq 0 \tag{3.1}
\end{equation*}
$$

for the function $u: R \rightarrow R$ defined by $u=I_{(0, \infty)} I_{(-\infty, 0)}$.
Theorem 2.10 showed that $X \quad$ FSD $Y$ if and only if the exp ectation of $u(X)$ is greater than the exp ectation ofu( $Y$ ) for any increasingfunction $U$. In particular, Proposition 2.12 assures that, when $X$ FSD $Y$ and $\phi$ is aincreasing function, $\phi(X)$ FSD $\phi(Y)$. In the case of statistic al preference, wecancheckthatitis invariant bystrictlyincreasing transformations ofthe randomvariables aswell.

Prop osition 3.6et $X$ and $Y$ be tworandom variables. Itholds that:

$$
X \quad \text { sp } Y \quad h(X) \quad \text { sp } h(Y)
$$

for any strictly order preserving function $h: \Omega \rightarrow \Omega$.
Pro of On the one hand, if $h(X)$ sp $h(Y)$ for any strictly order prese rving function $h$, by considering the identityfunctionweobtain that $\quad X \quad$ sp $Y$.

Onthe otherhand, notethat:

$$
\{\omega: h(X(\omega))>h(Y(\omega)\}=\{\omega: X(\omega)>Y(\omega\})
$$

and consequently $P(X>Y)=P(h(X)>h(Y))$. Similarly, $P(X=Y)=P(h(X)=$ $h(Y))$ and $P(Y>X)=P(h(Y)>h(X))$. Then $Q(X, Y)=Q(h(X), h(Y))$. We conclude that $X \quad$ sp $Y \quad h(X) \quad$ sp $h(Y)$.

Howe ver,although first degree sto chastic dominance is invariant under increasing transformations, for statistical preference the previous result do es not hold for order preservingfunctions thatarenotstrictly order preserving. For instance, consider the following indep endent random variables:

$$
\begin{array}{l|ll}
X & 0 & 2 \\
\hline P_{X} & 1 & 1 \\
2 & 1
\end{array} \quad \quad \begin{aligned}
& Y \\
& P_{Y}
\end{aligned}
$$

Then, the probabili stic relation takes the value $Q(X, Y)={ }_{2}^{1}$. Considerthe increasing, but not strictly increasing, function $h: \mathrm{R} \rightarrow \mathrm{R}$ given by:

$$
h(t)=\begin{array}{llr}
t & \text { if } t \quad(-\infty, 0] \quad(2, \infty) . \\
2 & \text { otherwise } .
\end{array}
$$

Then, $h(X)$ and $h(Y)$ are given by:


Thus, $Q(h(X), h(Y))=\frac{1}{4}$, and then the previous result do es not hold.
The last basic prop erty we are going to study is if statistical preference is preserved by differentkinds of convergence.

Remark 3.7 Let $\left\{X_{n}\right\}_{n}$ and $\left\{Y_{n}\right\}_{n}$ be twosequences of randomvariables and leX and $Y$ other two random variables, al I of them defined on the same probability spac\#t.holds that:

where $-\stackrel{L}{\rightarrow}, \xrightarrow{P}, \xrightarrow{m-p}$ and $\xrightarrow{\text { a.s. }}$ denote the convergence of random variables in distribution, probability, $m^{\text {th }}$-mean and almost sure, respectively.

It suffices to consider the same counterexample for all the cases:considerthe universe $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ and the probability $P$ such that $P\left(\left\{\omega_{1}\right\}\right)=P\left(\left\{\omega_{3}\right\}\right)=\frac{2}{5}$ and $P\left(\left\{\omega_{2}\right\}\right)=P\left(\left\{\omega_{4}\right\}\right)=\frac{1}{10}$. Let $X, X_{n}, Y$ and $Y_{n}$ be therandom variablesdefined by:

|  | $\omega_{1}$ | $\omega_{3}$ | $\omega_{3}$ | $\omega_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $X, X_{n}$ | 0 | 0 | 1 | 1 |
| $Y$ | 0 | 1 | 1 | 1 |
| $Y_{n}$ | $\frac{-1}{n}$ | 1 | 1 | 1 |

$Y_{n}$ converges to $Y$ almost surely, and consequentlyalso convergesin probability andin distribution. Furthermore, italso convergesin $m^{\text {th }}$ mean, since:

$$
E\left[\left(\left|Y_{n}-Y\right|\right)^{m}\right]=\frac{\underline{2}}{5} \frac{1}{n}^{m} \xrightarrow{n \rightarrow \infty} 0 .
$$

Also, $X_{n}$ converges to $X$ for thefour kinds of convergence. Furthermore, $X_{n} \quad$ sp $Y_{n}$ since:

$$
\begin{aligned}
Q\left(X_{n}, Y_{n}\right) & =P\left(X_{n}>Y_{n}\right)+\frac{1}{2} P\left(X_{n}=Y n\right) \\
& =P\left(\left\{\omega_{1}\right\}\right)+\frac{1}{2} P\left(\left\{\omega_{3}, \omega_{4}\right\}\right)=\frac{2}{5}+\frac{11}{2} 2=\frac{13}{20}>\frac{1}{2} .
\end{aligned}
$$

However, $X$ sp $Y$, since:

$$
Q(X, Y)=P(X>Y)+\frac{1}{2} P(X=Y)=\frac{1}{2} P\left(\left\{\omega_{1}, \omega_{3}, \omega_{4}\right\}\right)=\frac{9}{20}<\frac{1}{2}
$$

Thus, we can see that, although sto chastic dominance is preserved by the four kind of convergence (see Prop. 2.14), statisticalpreference isnot.

Now we shall trytoclarify themeaning of statistical preference by means of a gambling examp le.

Example 3.8Suppose wehave tworandom variables $X$ and $Y$ defined overthe same probability space such thaK sp $Y$, i.e., such that $Q(X, Y)>{ }_{2}^{1}$. Consider the fol lowing game: weobtain a pairof randomvaluesof $X$ and $Y$ simultaneously. Forexample, if $X$ and $Y$ mo del the results of the dice, we would roll them simultaneously; otherwise, they can b e simu late d by a computeP.layer 1 bets 1 euro on $Y$ totake a valuegreater than $X$. Ifthis holds, Player 1 wins 1 euro, he loses 1 euro if the value of $X$ is greater, and he do es not lose anything if the values are equal.

Denote by $Z_{i}$ therandom variable"rewardof Player 1 in the $i$-th iteration of the game". Thenit holds that

$$
Z_{i}=\begin{array}{ll}
\square 1, & \text { if } Y>X \\
\square, & \text { if } Y=X \\
\square-1, & \text { if } Y<X
\end{array}
$$

Then, applying the hypothesisp $(X>Y)+\quad{ }_{2}^{1} P(X=Y)>\quad{ }_{2}^{1}$, it holds that

$$
\begin{aligned}
P(X>Y)>\quad & \frac{1}{2}(1-P(X=Y))=\frac{1}{2}(P(X>Y)+P(Y>X)) \\
& P(X>Y)>P(Y>X),
\end{aligned}
$$

or equivalently, $q>p$, if weconsiderthenotation $\quad p=P(X<Y) \quad$ and $q=P(X>Y)$. Thus

$$
E(Z i)=P(Y>X) \quad-P(Y<X)=p \quad-q<0 .
$$

$\left\{Z_{1}, Z_{2}, \ldots\right\}$ is an infinite sequence of independent and identical ly distributed random variables. Applyingthe large lawof big numbers,

$$
\overline{Z_{n}}=\frac{Z_{1}+\ldots+Z n}{n} \xrightarrow[\rightarrow]{p} p-q
$$

or equ ivalently,

$$
\begin{equation*}
\varepsilon>0, \lim _{n \rightarrow \infty} P\left|\overline{Z_{n}}-\left(p^{-} q\right)\right|>\varepsilon=0 . \tag{3.2}
\end{equation*}
$$

Denote the accu mulated reward of Playet after $n$ iterations of thegameby $S_{n}$. It holds that $S_{n}=Z_{1}+\ldots+Z \quad n$. Then, Player 1 wins the game after $n$ iterations if $S_{n}>0$. Then, taking $\varepsilon=q-p$ inEquation (3.2), Player 1 wins the game aftern iterations with probability:

$$
\begin{aligned}
P\left(S_{n}>0\right) & =P\left(Z_{-1}+\ldots+Z n>0\right)=P\left(Z_{n}{ }_{n}>0\right) \\
& =P\left(Z_{n}-\left(p^{-} q\right)>q-p\right) \leq P\left(\left|Z_{n}-(p-q)\right|>q-p\right) \\
& =P\left(\mid Z_{n}-\left(p^{-q)} \mid>\varepsilon\right) .\right.
\end{aligned}
$$

Then it holds that:

$$
\lim _{n \rightarrow \infty} P\left(S_{n}>0\right) \leq \lim _{n \rightarrow \infty} P\left(\mid \bar{Z}_{n}-\left(p^{-q)} \mid>\varepsilon\right)=0\right.
$$

We have proven that the probability of the event: "Player 1 wins after $n$ iterations ofthe game" goes to 0 when $n$ goes to $\infty$.

An immediate consequence is the next prop osition:

Prop osition 3.get $X$ and $Y$ betwo randomvariables suchthat $X \quad$ sp $Y$. Consider the experiment that consists of drawing a random sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ of $X$ and $Y$, and let

$$
\begin{aligned}
B_{n} \equiv & \text { "In the first } n \text { iterations, atleast half of the times thevalue } \\
& \text { obtained by } X \text { is greater than orequal to the value obtained by } Y \text { ". }
\end{aligned}
$$

Then,

$$
\lim _{n \rightarrow \infty} P(B n)=1 \text {. }
$$

Then we can say that if we consider the gam e consis ting ofobtaining arandom value of $X$ and a random valueof $Y$ and we rep eat it a large enough numb er of times, if $X \quad$ sp $Y$, we will obtain that morethan halfof the timesthevariable $\quad X$ will takea value greater than thevalueobtained by $Y$. However, this do es not guarantee that the mean value obtained by the variable $X$ isgreater thanthemean valueobtained bythe variable $Y$.

Let us consider a new example:

Example 3.10 ([57])-et usconsider the game consisting of rol ling two special dice, denoted $A$ and $B$, whose results areassumedto beindependent. Their facesdo not show the classicalvalues but the fol lowing numbers:


In eachiteration, thedice with the greatest numberwins.
In this case the probabilistic relation $Q$ of Equation (2.7) takes thevalue:

$$
\begin{aligned}
Q(A, B) & =P(A>B)+\quad \frac{1}{2} P(A=B)=P(A>B)=P(A \quad\{3,4\}, B \quad\{2\}) \\
& +P\left(A \quad\{15,16,17 B \quad\{2,10,11,12,13\})=4 \frac{5}{9}\right.
\end{aligned}
$$

Thus, $A$ sp $B$ and applyingthe previousresult, if werepeat the game indefinitely, it holds that the probability ofwinning, bettingon $\quad A$, at least half of the times tends to 1 .

However, if we calculate $t$ he expected valu e of every dice, we obtain that

$$
\begin{aligned}
& E(A)=\frac{1}{6}(1+3+4+15+16+17)=\frac{28}{3} \\
& E(B)=\frac{1}{6}(2+10+11+12+13+14)=\frac{31}{3}
\end{aligned}
$$

Then, by the crit erium of the highest expected rewarddice $B$ shouldbe preferred. The sameapplies ifwe consider the criterion of stochastic dominance. However, ifourgoal is to win the majorityof times then we should choosedice $A$.

### 3.1.2 Characterizations ofstatistical preference

In Subsection 2.1.1 we have seen that sto chastic dominance can be characterised by means of the direct comparisonof the exp ectation of adequate transformations of the random variables (see Theorem 2.10). Inthissubsection we shall give characterisations forstatistical preference. For this aim, we distinguish different cas es:we startby considering indep endent random variables,thenweconsider comonotonicandcountermonotonic random variables and we conclude with random variab les coupled by means of an Archimedean copula. Finally, weshowanalternativecharacterizationofstatistical preference in terms of the me dianRecall that in the rest of this sec tion, we will consider real-valued random variables.

## Indep endent random variables

We start by considering indep endent random variable\$n ordertocharacterisestatistical preference for them, we ne ed this previous res ult.

Lemma 3.11Considertwo independentreal-valued randomvariables $X$ and $Y$ whose associated cumulative distribution functions are $F_{X}$ and $F_{Y}$, respectively. Then:

$$
\begin{equation*}
P(X \geq Y)=E[F Y(X)] \tag{3.3}
\end{equation*}
$$

where $E[h(X)]$ stands for the expectation of the function $h$ with respect to the variable $X$, this is, $E[h(X)]=\quad h(x) \mathrm{d} F x(x)$.

Pro of Inordertoprovethisresult, weconsider[24, Theorem20.3]: given two random vectors $X$ and $Y$ defined on $R^{j}$ and $R^{k}$, and whosedistribution functionsare $F_{X}$ and $F_{Y}$, resp ectively, it holds that:

$$
\begin{equation*}
P((X, Y) \quad B)=\quad{ }_{\mathrm{R}^{j}} P((x, Y) \quad B) \mathrm{d} F x(x), \quad B \quad \mathrm{R}^{j+k} \tag{3.4}
\end{equation*}
$$

Inthis case, consider $j=k=1 \quad$ and $B=\{(x, y): x \geq y\}$. Then:

$$
\begin{aligned}
& P((X, Y) \quad B)=P(X \geq Y) \text { and } \\
& P((x, Y) \quad B)=P(Y \leq X)=F \quad Y(x) .
\end{aligned}
$$

Then, if weput these values into Equation(3.4), weobtainthat $\quad P(X \geq Y)=E[F Y(X)]$.

We can now establish the fol lowing result.
Theorem 3.12Let $X$ and $Y$ be two independent real-valued random variables defined on the same probability spaceLet $F_{X}$ and $F_{Y}$ denotetheir respective cumulative distribution functions. If $X$ is a random variable identically distributed to $X$ andindependent of $X$ and $Y$, it holds that $X$ sp $Y$ if andonly if:

$$
\begin{equation*}
E\left[F_{Y}(X)\right]-E[F X(X)] \geq \frac{1}{2}(P(X=Y)-P(X=X)) . \tag{3.5}
\end{equation*}
$$

Pro of It holdsthat $X \quad$ sp $Y$ if and only if $P(Y>X)+\quad \frac{1}{2} P(X=Y) \leq \frac{1}{2}$. On the other hand let us recall (see for example[24, Exercise 21.9(d)]) that $E(F \times(X))=$ $\frac{1}{2}+\frac{1}{2} P(X=X)$. Then, usingalsoEquation (3.3):

$$
\begin{aligned}
P(Y>X)= & -P(Y \leq X)=1-E[F Y(X)] \\
& =\frac{1}{2}+E[F \times(X)]-\frac{1}{2} P(X=X)-E\left[F_{Y}(X)\right] .
\end{aligned}
$$

Whereas, $X \quad$ sp $Y$ ifand onlyif

$$
\frac{1}{2}+E(F \times(X))-\frac{1}{2} P(X=X)-E[F Y(X)]+\frac{1}{2} P(X=Y) \leq \frac{1}{2}
$$

or equivalently,

$$
E\left[F_{Y}(X)\right]-E[F X(X)] \geq \frac{1}{2}(P(X=Y)-P(X=X))
$$

Theorem 3.12 generalises the result established in [54, Equation12] for continuous and indep endent random variables.For this particular case, Equation (3.5) can be simplified. The reason is that for continuous and indep endent random variables $X, X$ and $Y$ the probabilities $P(X=Y)$ and $P(X=X)$ equals zero, and then the second part of Equation (3.5) is simplified.

Corollary 3.13 Let $X$ and $Y$ betwo real-valued independent and continuous random variables with cumulative distribution functions $F_{X}$ and $F_{Y}$, respectively. Then:

$$
X \quad \text { sp } Y \quad E\left[F_{Y}(X)\right] \geq E[F X(X)]
$$

If we are dealing with discrete and indep endent real-valued random variables, Equation (3.5) can also be re-written. Before showing how, let us give the followin g lemma:

Lemma 3.14Let $\left\{p_{n}\right\}_{n}{ }_{N}$ bea sequenceof positivereal numbers such that ${ }_{n} p_{n}=1$. Then it holds that:

$$
1={ }_{n} p_{n}^{2}+2_{n<m} p_{n} p_{m} .
$$

Pro of Theresultis a directconsequence of:
2

$$
1=p_{n}=p_{n} p_{n} p_{n}^{2}+2 p_{n<m} p_{n} p_{m}
$$

Prop osition 3.15et $X$ and $Y$ betwo real-valueddiscreteand independent random variables. If $S_{X}$ denotes thesupport of $X$, then $X$ sp $Y$ holds ifand only if

$$
E\left[F_{Y}\left(X^{-}\right)-F_{X}\left(X^{-}\right)\right] \geq \frac{1}{2_{x} s_{X}} \quad P(X=x)(P(Y=x)-P(X=x))
$$

where $F_{X}\left(t^{-}\right)$and $F_{Y}\left(t^{-}\right)$denote the left handside limit of the cumulative distribution functions $F_{X}$ and $F_{Y}$ evaluated in $t$. That is:

$$
F_{X}\left(t^{-}\right)=P(X<t) \quad \text { and } F_{Y}\left(t^{-}\right)=P(Y<t) .
$$

Pro of Applyingthedefinition oftheprobabilistic relation $\quad Q$ :

$$
\begin{aligned}
Q(X, Y) & =P(X>Y)+{ }_{2}^{1} P(X=Y) \\
& =x s_{X} P(X=x) P(Y<x)+\frac{1}{2} \quad P(X=x) P(Y=x) \\
& =x s_{X} P(X=x) F Y\left(x^{-}\right)+\frac{1}{2_{x} s_{X}} P(X=x) P(Y=x) .
\end{aligned}
$$

Thus, $Q(X, Y) \geq \frac{1}{2}$ if and on ly if:

$$
{ }_{x s_{x}} P(X=x) F y\left(x^{-}\right) \geq \frac{1}{2} 1_{x s_{x}} P(X=x) P(Y=x)
$$

Applying Lemma 3.14, the right hand side of the previous inequality becomes:

$$
\begin{aligned}
& 2_{x s_{x}} P(X=x)^{2}+2 \underset{x_{1}, x_{2}}{ } s_{x, x_{1}<x_{2}} P\left(\begin{array}{ll}
X=x & 1
\end{array}\right) P\left(\begin{array}{ll}
X=x & 2
\end{array}\right) \\
& -_{x s_{x}} P(X=x) P(Y=x)=\frac{1}{2} \underset{x s_{x}}{ } P(X=x)^{2} \\
& +\operatorname{las}_{x} P(X=x) F \times\left(x^{-}\right)^{-} \underset{x s_{x}}{ } P(X=x) P(Y=x) \\
& =E\left[F x\left(X^{-}\right)\right]+\frac{1}{2} \quad{ }_{x s_{x}} P(X=x)(P(X=x)-P(Y=x)) \text {. }
\end{aligned}
$$

Then, it holdsthat $Q(X, Y) \geq \frac{1}{2}$ if and on ly if

$$
E\left[F_{Y}\left(X^{-}\right)-F_{X}\left(X^{-}\right)\right] \geq \frac{1}{2_{x} s_{X}} P(X=x)(P(X=x)-P(Y=x))
$$

Theorem 3.12 allows to characterise statistical preference b etween indep endent random variables. However, we have already said that statistical preference is a metho d that considers thejoint distributionof the random variables. Forthisreason, weareinterested not only in independent random variables but also in dep endent onesNext, we fo cus on comonotonic and countermonotonic random variables, that corresp ond to the extreme cases of joint distribution functions according to the Fréchet-Ho effding bounds given in Equation (2.8).

## Continuouscomonotonic and countermonotonicrandomvariables

Let us consider two continuous random variables whose cumulative distribution functions are $F_{X}$ and $F_{Y}$, resp ectively,and $f_{X}$ and $f_{Y}$ denote their resp ective density functions.

First of all, let us conside $r$ the case in which $X$ and $Y$ are comonotonic. Then, thejoint cumulative distribution function of $X$ and $Y$ is:

$$
F_{X, Y}(x, y)=\mathrm{m} \operatorname{in}\left(F_{X}(x), F_{Y}(y)\right), \text { for every } x, y \quad R .
$$

The value ofthe relation $Q(X, Y)$ has already been studied by De Meyer et al.
Prop osition 3.16 ([54, Prop.7]jet $X$ and $Y$ betwo real-valuedcomonotonicand continuous random variables. Theprobabilistic relation $Q(X, Y)$ has the fol lowing expression:

$$
\begin{equation*}
Q(X, Y)=f_{x: F \times(x)<F_{Y(x)}} f_{X}(x) \mathrm{d} x+\frac{1}{2} \quad x: F_{x(x)=F_{Y}(x)} f_{X}(x) \mathrm{d} x \tag{3.6}
\end{equation*}
$$

In fact, it holds that:

$$
\begin{array}{ll}
P(X>Y)= & x: F_{X(x)<F_{Y}(x)} f_{X}(x) \mathrm{d} x \text { and } \\
P(X=Y)= & x: F_{X(x)=F_{Y(x)}} f_{X}(x) \mathrm{d} x .
\end{array}
$$

Therefore, we obtainthat $X \quad$ sp $Y$ if and only if Equation (3.6) takes avalue grater than or equal to $\frac{1}{2}$. However, byLemma 2.20we knowthat $X \quad$ sp $Y$ if and only if $Q(X, Y) \geq Q(Y, X)$. Thes e are given by:

$$
\begin{aligned}
& Q(X, Y)={ }_{x: F_{X(X)<F_{Y(x)}}} f_{X}(x) \mathrm{d} x+\frac{1}{2} \underset{x: F_{X}(x)=F_{Y(x)}}{ } f_{X} \mathrm{~d} x . \\
& Q(Y, X)=f_{x: F_{Y(x)<F x(x)}} f_{Y}(x) \mathrm{d} x+\frac{1}{2} \underset{x: F_{Y(x)=F_{x}(x)}}{ } f_{Y}(x) \mathrm{d} x
\end{aligned}
$$

Hence, we obtain the fol lowing:
Corollary 3.17 Let $X$ and $Y$ be tworeal-valued comonotonic and continuousrandom variables, where $F_{X}$ and $F_{Y}$ denote theirrespective cumulative distribution functionsand $f_{\mathrm{X}}$ and $f_{\mathrm{Y}}$ denote theirrespective densityfunctions. Then, $X \quad{ }_{\mathrm{sp}} Y$ if andonly if:

$$
x: F X(x)<F_{Y(x)}\left(f X(x)+f_{Y(x))} \mathrm{d} x+\frac{1}{2} \quad x: F_{X(x)=F Y(x)}\left(f X(x)+f Y^{\prime}(x)\right) \mathrm{d} x \geq 1 .\right.
$$

Assume now that $X$ and $Y$ are continuous and countermonotonic real-valued random variables. Inthat case,thejointcumulative distributionfunctionis givenby:

$$
F_{X, Y}(x, y)=\max \left(F x(x)+F_{Y}(y)-1,0\right), \text { for } x, y \quad R .
$$

As in the case of comonotonic random variables, De Meye $r$ et allsofound theexpression of $Q(X, Y)$.

Prop osition 3.18 ([54, Prop.7]et $X$ and $Y$ be two real-valued countermonotonic and cont inuous random variables.The probabilisticrelation $Q(X, Y)$ is given by:

$$
\begin{equation*}
Q(X, Y)=F_{Y}(u) \tag{3.7}
\end{equation*}
$$

where $u$ is one point that fulfil Is $F_{X}(u)+F_{Y}(u)=1$.

Therefore, using Equation (3.7) it is $p$ ossible to state the following prop osition.
Prop osition 3.19et $X$ and $Y$ betworeal-valuedcountermonotonicand continuous random variables. If $F_{X}$ and $F_{Y}$ denote theirrespectivecumulative distribution functions, the fol lowing equivalence holds:

$$
X \quad \text { sp } Y \quad F_{Y(u)} \geq F_{X}(u),
$$

where $u$ is apoint such that $F_{X}(u)+F_{Y}(u)=1$.
Pro of By definition, $X \quad$ sp $Y$ if an d only if $Q(X, Y) \geq{ }_{2}^{1}$. However, using Equation (3.7), $Q(X, Y) \geq \frac{1}{2}$ isequivalent to $F_{Y}(u) \geq \frac{1}{2}$. But, since $u$ satisfies $F_{X}(u)+F_{Y}(u)=$ 1, $F_{Y}(u) \geq \frac{1}{2}$ if and on ly if $F_{Y}(u) \geq F_{X}(u)$.

## Discrete comonotonic and countermonotonic random variables with finite supp orts

In theprevious paragraph we considered continuous comonotonicand countermonotonic random variables, and we characterised statistic al prefere nce for them. Now, we also consider real-valued random variables coupled by the minimum or Łukasiewicz op erators, but we assume them to be discrete with finite supp orts. Forthese variables, De Meyer et al. also found the expres sion of the probabilistic relation $Q$.

Prop osition 3.20 ([54, Prop. 2] ${ }^{e t} X$ and $Y$ betworeal-valued comonotonic and discrete random variables with finite supports. Then, theirsupports, denotedby $S_{X}$ and $S_{Y}$, respectively, can be expressed by:

$$
S_{X}=\left\{x_{1}, \ldots, x_{n}\right\} \text { and } S_{Y}=\left\{y_{1}, \ldots, y_{h}\right\}
$$

such that $x_{1} \leq \ldots \leq x_{n}$ and $y_{1} \leq \ldots \leq y_{n}$, and such that

$$
P(X=x \quad i)=P(Y=y \quad i)=P(X=x \quad i, Y=y \quad i), \text { for } i=1, \ldots, n .
$$

Furthermore, the probabilistic relation takes the value:

$$
\begin{equation*}
Q(X, Y)={ }_{i=1}^{n} P(X=x \quad i) \delta_{i}^{M}, \tag{3.8}
\end{equation*}
$$

where

$$
\delta_{M}^{\prime}=\begin{array}{ll}
\square_{1} & \text { if } x_{i}>y_{i} . \\
2 & \text { if } x_{i}=y_{i} . \\
\text { 臬 } 0 & \text { if } x_{i}<y_{i} .
\end{array}
$$

The following example illustrates thisresult.
Example 3.21([54, Example 3])Consider thecomonotonic random variables $X$ and $Y$ defined by:

| $X$ | 1 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| $P_{\mathrm{x}}$ | 0.15 | 0.4 | 0.45 |


| $Y$ | 2 | 3 | 5 |
| :---: | :---: | :---: | :---: |
| $P_{Y}$ | 0.35 | 0.35 | 0.3 |

De Schuymer et al. provedthat theirsupports, $S_{X}$ and $S_{Y}$, respectively, can be expressed by:

$$
S_{X}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}=\left\{1,3,3,4,44 \text { and } S_{Y}=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}=\{2,2,3,3,5\right.
$$ and theirprobabilities canbe expressed by:



Using thenotation of the previous result, itholds that:

$$
\begin{aligned}
& \delta_{1}^{M}=0 \quad \text { because }_{1}<y_{1}, \quad \delta_{4}^{M}=1 \quad \text { because }_{4}>y_{4} . \\
& \delta_{2}^{M}=1 \quad \text { becaus }_{2}>y_{2}, \quad \quad \delta_{5}^{M}=0 \quad \text { because }_{5}<y_{5} . \\
& \delta_{3}^{M}=0.5 \text { because }_{3}=y \text {. }
\end{aligned}
$$

Then:

$$
\begin{aligned}
Q(X, Y) & ={ }_{i=1}^{5} \delta_{i}^{M} P\left(\begin{array}{ll}
X=x & i
\end{array}\right)=P\left(\begin{array}{ll}
X=x & 2
\end{array}\right)+\frac{1}{2} P\left(\begin{array}{ll}
X=x & 3
\end{array}\right)+P\left(\begin{array}{ll}
X=x & 4
\end{array}\right) \\
& =0.2+\frac{1}{2} 0.2+0.15=0.45 .
\end{aligned}
$$

Under the previous conditions, it is possible to define the probability spađ $\left.{ }_{2}, P(\Omega), P_{1}\right)$, where $\Omega=\left\{\omega_{1}, \ldots, \omega_{\theta}\right\}$ and

$$
P_{1}(\{\omega\})=P\left(\begin{array}{ll}
X=x & i
\end{array}\right) \text {, for any } i=1, \ldots, n .
$$

We canalso define the random variables $X$ and $Y$ by:

$$
X\left(\omega^{i}\right)=x \text { i and } Y\left(\omega^{i}\right)=y \text { i for any } i=1, \ldots, n .
$$

Then, the randomvariables $X$ and $Y$ areequallydistributed than $X$ and $Y$, resp ectively. This will be a very imp ortant fact for results in Section 3.2. Nextlemma proves that $Q(X, Y)=Q(X, Y)$.

Lemma 3.22Under theprevious conditions, it holds that $Q(X, Y)=Q(X, Y)$.
Pro of Letuscompute thevalue of $P(X>Y)$ and $P\left(\begin{array}{l}X=Y\end{array}\right)$ :

$$
\begin{aligned}
& P_{1}\left(\begin{array}{ll}
X & >Y
\end{array}\right)=P_{n}^{1}\left(\left\{\omega: X \quad(\omega \dot{\sim})=x \quad \begin{array}{ll}
i>y_{n} i=Y & (\omega i)\}
\end{array}\right)\right. \\
& =P_{1}(\{\omega\})\left|x_{i}>y_{i}=P(X=x \quad i)\right| x_{i}>y_{i} . \\
& P_{1}(X=Y \quad)=\begin{array}{r}
i=1 \\
n_{n}
\end{array}\left(\left\{\omega: X \quad\left(\omega^{j}\right)=x \quad \begin{array}{l}
i=1 \\
i=y \\
=y
\end{array} \quad i=Y \quad\left(\omega^{j}\right)\right\}\right) \\
& =P_{i=1}(\{\omega\})\left|x_{i}=y i={ }_{i=1} P(X=x \quad i)\right| x_{i}=y i .
\end{aligned}
$$

Then:

$$
\begin{aligned}
Q(X, Y) & =P_{n}(X>Y)+{ }_{2}^{1} P(X \underset{n}{=}) \\
& ={ }_{\substack{i=1 \\
n}} P(X=x \quad i) \left\lvert\, x_{i}>y_{i}+\frac{1}{2} P(X=x \quad i) / x_{i=1}=y i\right. \\
& ={ }_{i=1} P(X=x \quad i) \delta_{i}^{M}=Q(X, Y) .
\end{aligned}
$$

Example 3.23Letuscontinue withExample3.21. Wehave tworandomvariables $X$ and $Y$ andwehave seenthat their supportscan be expressed by $S_{X}=\left\{x_{1}, \ldots, x_{5}\right\}=$ $\left\{1,3,3,4,4\right.$ and $S_{Y}=\left\{y_{1}, \ldots, y_{5}\right\}=\{2,2,3,3,5$ respectively. Their probability distributions are given by:

$$
\begin{array}{c|cccccc|ccccc}
X & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\hline P_{\mathrm{X}} & 0.15 & 0.2 & 0.2 & 0.15 & 0.3
\end{array} \quad \begin{gathered}
Y \\
P_{\mathrm{Y}}
\end{gathered} y_{1} 0.15
$$

Now, wecandefinethe possibilityspace $\Omega=\left\{\omega_{1}, \ldots, \omega_{\}}\right\}$, the probability $P_{1}$ such that $P_{1}(\omega i)=P\left(\begin{array}{ll}X=x & i\end{array}\right)$ and the random variables $X$ and $Y$ by:

$$
X\left(\omega^{*}\right)=x \text { i and } Y\left(\omega^{*}\right)=y \text { i for any } i=1, \ldots, 5 .
$$

Now, taking into account that:

$$
\begin{array}{lllll}
x_{1}=1<2=y & 1 & \delta_{1}^{M}=0 \quad \text { and } X & \left(\omega_{1}\right)<Y & \left(\omega_{1}\right), \\
x_{2}=3>2=y & 2 & \delta_{2}^{M}=1 \quad \text { and } X & \left(\omega_{2}\right)>Y & \left(\omega_{2}\right), \\
x_{3}=3=y & \delta_{3}^{M}=\frac{1}{2} & \text { and } X \quad\left(\omega_{3}\right)=Y & \left(\omega_{3}\right), \\
x_{4}=4>3=y & 4 & \delta_{4}^{M}=1 \quad \text { and } X & \left(\omega_{4}\right)>Y & \left(\omega_{4}\right), \\
x_{5}=4<5=y & 5 & \delta_{5}^{M}=0 & \text { and } X & \left(\omega_{5}\right)<Y
\end{array}\left(\omega_{5}\right), ~ \$
$$

it is possible to comput e the value of the probabilistic relation $Q(X, Y)$ :

$$
\begin{aligned}
Q(X, Y) & =P_{1}(X>Y)+\frac{1}{2} P_{1}(X=Y) \\
& =P_{1}\left(\left\{\omega_{2}, \omega_{4}\right\}\right)+\frac{1}{2} P_{1}\left(\left\{\omega_{3}\right\}\right)=0.2+0.15+\frac{1}{2} 0.2=0.45<\frac{1}{2}
\end{aligned}
$$

hence $Y$ sp $Y$. Furthermore, in Example3.21we obtained that $Q(X, Y)=0.45$ and therefore, by the previouslemma, it holdsthat $Q(X, Y)=Q(X, Y)=0.45$

Remark 3.24Taking the previous comments into account, we shall assume without loss of generality that any two discrete andcomonotonic random variables $X$ and $Y$ with finite supports are defined in a probabilit y space $(\Omega, P(\Omega), P)$ where $\Omega$ is finite, $\Omega=\left\{\omega_{1}, \ldots, \omega_{\mathrm{a}}\right\}$, and $X\left(\omega_{i}\right)=x i, Y\left(\omega_{i}\right)=y i$, such that $x_{i} \leq x_{i+1}$ and $y_{i} \leq y_{i+1}$ for any $i=1, . . ., n-1$. Moreover:

$$
P(X=x \quad i, Y=y \quad i)=P(X=x \quad i)=P(Y=y \quad i) \text { for } i=1, \ldots, n .
$$

Furthermore, $Q(X, Y)$ is givenby Equation (3.8).

Next result givesa characterization ofstatistical preference in terms of the supp orts of $X$ and $Y$, and also intermsof theprobability measureinthe initial space. Its pro of is trivial and there fore omitted.

Prop osition 3.25onsidertworeal-valuedcomonotonicanddiscreterandom variables $X$ and $Y$ with finitesupports. Accordingto the previousremark, we can assumethem to be defined on $(\Omega, P(\Omega), P)$ where $\Omega=\left\{\omega_{1}, \ldots, \omega_{a}\right\}$, by $X\left(\omega_{i}\right)=x$ i and $Y\left(\omega_{i}\right)=y$ i, where $_{i} \leq x_{i+1}$ and $y_{i} \leq y_{i+1}$ for any $i=1, \ldots, n-1$. Then, $X \quad$ sp $Y$ if andonly if:

$$
\underset{i: x_{i}>y_{i}}{ } P(X=x \quad i) \geq{ }_{i: x_{i}<y_{i}} P(X=x \quad i),
$$

or equivalent ly, by Lemma 3.22, if and only if:

$$
\underset{i: x_{i}>y_{i}}{ } P(\{\omega\}) \geq{ }_{i: x_{i}<y_{i}} P(\{\omega\}) .
$$

Now, we fo cus on countermonotonic random variable§.orthem, DeMeyeretal. proved the follow ing result:

Prop osition 3.26 ([54, Prop. 4] et $X$ and $Y$ bereal-valuedcomonotonicand discrete random variables withfinite supports. Then, theirsupports canbeexpressedby $S_{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $S_{Y}=\left\{y_{1}, \ldots, y_{h}\right\}$, respectively, such that $x_{1} \leq \ldots \leq x_{n}$ and $y_{1} \leq \ldots \leq y_{n}$, and such that:

$$
P(X=x \quad i)=P\left(\begin{array}{ll}
Y=y & n-i+1
\end{array}\right)=P\left(\begin{array}{ll}
X=x & i, Y=y
\end{array} \quad i\right)
$$

for any $i=1, \ldots, n$. Undertheseconditions, theprobabilisticrelation $Q(X, Y)$ takes the value:

$$
\begin{equation*}
Q(X, Y)={ }_{i=1} P(X=x \quad i) \delta_{i}^{L} \tag{3.9}
\end{equation*}
$$

where

$$
\delta_{i}^{L}=\begin{aligned}
\square_{1} & \text { if } x_{i}>y_{n-i+1} . \\
\exists_{1} & \text { if } x_{i}=y_{n-i+1} . \\
\exists 0 & \text { if } x_{i}<y_{n-i+1} .
\end{aligned}
$$

To illustrate this result, consider the followingexample.
Example 3.27([54, Example 5]) Consider the random variables $X$ and $Y$ of Example3.21, but now assume them to becountermonotonic. Their supportscanbeexpressed by $S_{X}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}=\left\{1,3,3,4,4\right.$ and $S_{Y}=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}=\{2,3,3,5,5$. Furthermore, the probability distributions of $X$ and $Y$ can be expressedby:


Using thenotation of the previous result, it holds that:

$$
\begin{array}{ll}
\delta_{1}^{L}=0 \text { becaus } \alpha_{1}<y_{5}, & \delta_{4}^{L}=1 \quad{\text { becaus } \alpha_{4}>y_{4} .}^{\delta_{2}^{L}=0 \text { becaus } \alpha_{2}<y_{4},} \\
\delta_{5}^{L}=1 \text { becaus } \Theta_{5}>y_{5} . \\
\delta_{3}^{L}=0.5{\text { becaus } \alpha_{3}=y ~}^{L} . &
\end{array}
$$

Then:

$$
\left.\begin{array}{rl}
Q(X, Y) & { }_{i=1}^{5} \delta_{i}^{L} P(X=x \quad i
\end{array}\right)=\frac{1}{2} P\left(\begin{array}{ll}
X=x & 3
\end{array}\right)+P\left(\begin{array}{ll}
X=x & 4
\end{array}\right)+P\left(\begin{array}{ll}
X=x & 5
\end{array}\right), \begin{array}{ll} 
\\
& =\frac{1}{2} 0.25+0.1+0.35=0.575 .
\end{array}
$$

Under the ab ove conditions, and similarly to the case of comonotonic random variables, it is $p$ ossible to define a probability $\operatorname{space}\left(\Omega, P(\Omega), P_{2}\right)$, where $\Omega=\left\{\omega_{1}, \ldots, \omega_{1}\right\}$ and the probability is given by:

$$
\left.P_{2}(\{\omega\}\}\right)=P\left(\begin{array}{ll}
X=x & i
\end{array}\right) \text { for every } i=1, \ldots, n
$$

Furthermore, we can also define th e random variablest and $Y$ by:

$$
X \quad(\omega i)=x \quad i \text { and } Y(\omega i)=y n-i+1 \text { for any } i=1, \ldots, n
$$

Note that thevariables $X$ and $X$, and also $Y$ and $Y$, are equally distributed. Furthermore, next lemma shows that $Q(X, Y)=Q(X, Y)$.

Lemma 3.28Inthe conditions of the previous comments, consideringthe probability $\operatorname{space}\left(\Omega, P(\Omega), P_{2}\right)$ and the random variables $X$ and $Y$, it holds that $Q(X, Y)=$ $Q(X, Y)$.

Pro of Letuscompute thevalue of $P_{2}(X>Y)$ and $P_{2}(X=Y)$ :

$$
\begin{aligned}
& P_{2}(X \quad>Y \quad)=P_{n}^{2}\left(\left\{\omega: X \quad\left(\omega^{\prime}\right)=x \quad i>y_{n-i+1}^{n}=Y \quad\left(\omega^{\prime}\right)\right\}\right) \\
& =P_{i=1}(\{\omega\})\left|x_{i}>y_{n-i+1}={ }_{i=1} P\left(X=x^{i}\right)\right| x_{i}>y_{n-i+1} . \\
& P_{2}(X=Y)=P_{n}^{2}\left(\left\{\omega: X \quad\left(\omega^{\prime}\right)=x \quad i=y \underset{n}{n-i+1}=Y \quad\left(\omega^{\prime}\right)\right\}\right) \\
& =P_{i=1}(\{\omega\})\left|x_{i=y n-i+1}={ }_{i=1} P\left(X=x^{i}\right)\right| x_{i=y n-i+1} .
\end{aligned}
$$

Then:

$$
\begin{aligned}
& Q(X, Y)=P_{n}^{2}(X>Y)+{ }_{2}^{1} P_{2}(X=Y)_{n}
\end{aligned}
$$

$$
\begin{aligned}
& ={ }_{i=1} P(X=x \quad i) \delta_{i}^{d}=Q(X, Y) \text {. }
\end{aligned}
$$

Next example helps to un derstand how to build the probability space and the random variables.

Example 3.29Consideragain Example3.27. The supports ofthe randomvariables $x$ and $Y$ can beexpressed by $S_{X}=\left\{x_{1}, \ldots, x_{5}\right\}=\left\{1,3,3,4,4\right.$ and $S_{Y}=\left\{y_{1}, \ldots, y_{5}\right\}=$ $\{2,3,3,5,5$ respectively. Their probabilit y distributions are given by:


Now, we can define the possibility spacen $=\left\{\omega_{1}, \ldots, c_{\}}\right\}$, the probability $P$ satisfying that $P(\{\omega\})=P(X=x \quad$ i) for $i=1, \ldots, 5$ and the random variables $X$ and $Y$ by:

$$
X(\omega i)=x ; \text { and } Y(\omega i)=y 6^{-i} \text { for any } i=1, \ldots, 5 .
$$

Taking into account that:

$$
\begin{array}{lllll}
x_{1}=1<5=y & 5 & \delta_{1}^{L}=0 & \text { and } X\left(\omega_{1}\right)<Y & \left(\omega_{1}\right), \\
x_{2}=3<5=y & 4 & \delta_{2}^{L}=0 & \text { and } X\left(\omega_{2}\right)<Y & \left(\omega_{2}\right), \\
x_{3}=3=y & 3 & \delta_{3}^{L}=L_{2}^{1} & \text { and } X\left(\omega_{3}\right)=Y & \left(\omega_{3}\right), \\
x_{4}=4>3=y & 2 & \delta_{4}^{L}=1 & \text { and } X\left(\omega_{4}\right)>Y & \left(\omega_{4}\right), \\
x_{5}=4>2=y & 1 & \delta_{5}^{L}=1 & \text { and } X & \left(\omega_{5}\right)>Y
\end{array}\left(\omega_{5}\right),
$$

it is possible to comput e the value of the probabilistic relation $Q(X, Y)$ :

$$
\begin{aligned}
Q(X, Y) & =P(X>Y)+\frac{1}{2} P(X=Y) \\
& =\frac{1}{2} P\left(\left\{\omega_{3}\right\}\right)+P \quad\left(\left\{\omega_{4}, \omega_{5}\right\}\right)=\frac{1}{2} 0.25+0.1+0.35=0.575 \frac{1}{2},
\end{aligned}
$$

whence $Y$ sp $Y$. Moreover, from Example $3.27 Q(X, Y)=0.575$ and therefore, as we have seen in the previous lemma, $Q(X, Y)=Q(X, Y)=0.575$.

Remark 3.30Usingthepreviousresultwe canassume, withoutlossof generality, that any two countermonotonic real-valued random variables $X$ and $Y$ are definedon a probability space $(\Omega, P(\Omega), P)$ where $\Omega=\left\{\omega_{1}, \ldots, \omega_{\mathrm{a}}\right\}$, by $X\left(\omega_{i}\right)=x$ i and $Y\left(\omega_{i}\right)=y \quad n-i+1$ such that $x_{i} \leq x_{i+1}$ and $y_{i} \geq y_{i+1}$ for $i=1, \ldots, n$, and satisfying that

$$
P(X=x \quad i, Y=y \quad i)=P\left(\begin{array}{ll}
X=x & i
\end{array}\right)=P(Y=y \quad n-i+1) \text { for } i=1, \ldots, n .
$$

Now, assumingthe conditionsofthe previousremark, weprovethatthere is, at most, one element $\omega$ such that $X(\omega i)=Y(\omega i)$.

Lemma 3.31In theconditions of theprevious remark, if there exists $\quad 1>0$ such that

$$
\begin{aligned}
& X(\omega k)=\ldots=X(\omega k+1)=Y(\omega k)=\ldots=Y(\omega k+1), \\
& \min (|X(\omega k-1)-X(\omega k+1+1)|,|Y(\omega k-1)-Y(\omega k+1+1)|)>0,
\end{aligned}
$$

for somek, then it is possible to define a probability $\operatorname{spaq}_{e_{2}}, P_{\left.(\Omega), P_{3}\right)}$ and two random variables $X$ and $Y$ such that:

- $Q(X, Y)=Q(X, Y)$.
- Thereare not $\omega, \omega \quad \Omega$ such that

$$
X \quad(\omega)=X \quad(\omega)=Y \quad(\omega)=Y \quad(\omega)
$$

- $X$ and $Y$ fol low the same distribution than $X$ and $Y$, respectively.

Pro of Define $\Omega=\left\{\omega_{1}, \ldots, \omega_{1}-\mid\right\}$ and let $P_{3}$ be the probability given by:

$$
\begin{aligned}
& P_{3}\left(\left\{\omega_{i}\right\}\right)=P\left(\left\{\omega_{3}\right\}\right) \text { for any } i=1, \ldots, k-1 . \\
& P_{3}\left(\left\{\omega_{k}\right\}\right)=P\left(\left\{\omega_{k}\right\}\right)+\ldots+P\left(\left\{\omega_{k+1}\right\}\right) . \\
& P_{3}\left(\left\{\omega_{i}\right\}\right)=P\left(\left\{\omega_{i+1}\right\}\right) \text { for any } i=k+l+1, \ldots ., n-1 .
\end{aligned}
$$

Considerthe random variables $X$ and $Y$ given by:

```
\(X\left(\omega_{i}\right)=X(\omega i)\) and \(Y\left(\omega_{i}\right)=Y(\omega i)\) for any \(i=1, \ldots, k-1\).
\(X \quad\left(\omega_{k}\right)=X(\omega k)\) and \(Y\left(\omega_{k}\right)=Y\left(\omega_{k}\right)\).
\(X\left(\omega_{i}\right)=X\left(\omega_{i+1}\right)\) and \(Y\left(\omega_{i}\right)=Y\left(\omega_{i+1}\right)\) for any \(i=k+l+1, \ldots, n-1\).
```

They satisfy that:

$$
\begin{array}{lll}
X & \left(\omega_{i}\right)<Y & \left(\omega_{i}\right) \text { for any } i=1, \ldots, k-1 . \\
X & \left(\omega_{k}\right)=Y & \left(\omega_{k}\right) . \\
X & \left(\omega_{i}\right)>Y & \left(\omega_{i}\right) \text { for any } i=k+l+1, \ldots, n-1 .
\end{array}
$$

Then, since

$$
\begin{aligned}
& \omega_{k} /\{\omega \quad \Omega: X \quad(\omega)>Y \quad(\omega)\} \text { and } \\
& \omega_{k}, \ldots, \varphi_{k+1} /\{\omega \quad \Omega: X(\omega)>Y(\omega)
\end{aligned}
$$

it holds that:

$$
\omega_{1}\{X>Y\} \quad \omega \quad\{X>Y\} \text {, for } i=1, \ldots, k-1 \text {. }
$$

Furthermore, $\omega_{i-1} /\{X>Y \quad\}$ and $\omega_{i} /\{X>Y\}$ for $i=1, \ldots, k-1$. Then, we conclude that:

$$
\begin{aligned}
& P_{3}(X>Y \quad)=P_{3}\left(\begin{array}{llll}
\{\omega & \Omega: X \quad(\omega)>Y & (\omega)\}) \\
& = & P_{3: X}\left(\omega_{i}\right)>Y & \left(\omega_{i}\right)
\end{array} \quad P\left(\left\{\omega_{i}\right\}\right)=\right. \\
& i: X(\omega i)>Y(\omega i)
\end{aligned}
$$

Furthermore, since $X \quad\left(\omega_{k}\right)=Y \quad\left(\omega_{k}\right)$ and $P_{3}\left(\left\{\omega_{k}\right\}\right)=P\left(\left\{\omega_{k}, \ldots, \omega_{k+1}\right\}\right)$, it hol ds that:

$$
\begin{aligned}
& P_{3}(X \quad=Y \quad)=P_{3}(\{\omega \quad \Omega: X \quad(\omega)=Y \quad(\omega)\}) \\
& =\quad P_{3}\left(\left\{\omega_{i}\right\}\right)=P_{3}\left(\left\{\omega_{k}\right\}\right) \\
& \text { i:X } \quad\left(\omega_{i}\right)=Y \quad\left(\omega_{i}\right) \\
& =P\left(\left\{\omega_{k}\right\}\right)+\ldots+P\left(\left\{\omega_{k+1}\right\}\right)=\quad P(\{\omega\})=P(X=Y) \text {. }
\end{aligned}
$$

Then, $Q(X, Y)=Q(X, Y)$.
Moreover, by construction therearenot $\omega, \omega \quad \Omega, \omega=\omega \quad$,such that

$$
X \quad(\omega)=X \quad(\omega)=Y \quad(\omega)=Y \quad(\omega)
$$

Finally, it is obvi ou s that $X$ and $X$, and also $Y$ and $Y$, are equally distributed, since they take the samevalues withthe same probabilities.

Remark 3.32Takinginto account the previous result and Remark 3.30, we conclude that given twodiscrete countermonotonic random variables $X$ and $Y$ with finit e supports, we canassume, without loss ofgenerality, that their supports are given by $S_{X}=$ $\left\{x_{1}, \ldots, x_{n}\right\}$ and $S_{Y}=\left\{y_{1}, \ldots, y\right\}$, where $x_{i} \leq x_{i+1}$ and $y_{i} \leq y_{i+1}$ for $i=1, \ldots, n-1$, and that they are defined in aprobability $\operatorname{space}(\Omega, P(\Omega), P)$ where $\Omega=\left\{\omega_{1}, \ldots, \omega_{A}\right\}$, by $X(\omega)=x$ i and $Y\left(\omega_{i}\right)=y n-i+1$. Furthermore:

$$
P(X=x \quad i, Y=y \quad i)=P\left(\begin{array}{ll}
X=x & i
\end{array}\right)=P(Y=y \quad n-i+1) \text { for any } i=1, \ldots, n .
$$

Under these conditions, $Q(X, Y)$ is givenby Equation (3.9). Furthermore, using the previous lemma we can also assume thatnax\{|X( $\omega)^{-X\left(\omega_{i+1}\left|,\left|Y\left(\omega_{i}\right)-Y(\omega+1)\right|\right\}>0\right.}$ for any $i=1, . . ., n-1$.

Theseresultsallow ustocharacterisestatisticalpreference fordiscretecountermonotonic random variables with finite supp orts.

Prop osition 3.3ket $X$ nd $Y$ be tworeal-valued discreteand countermonotonic random variables with finite supports, that can be expressedas in thepreviousremark. Then, it is possible to characterise $X$ sp $Y$ in the fol lowing way:

- If thereexists $k$ such that $X(\omega k)=Y(\omega k)$, then $X \quad$ sp $Y$ if andonly if:

$$
P\left(\begin{array}{ll}
X=x & 1
\end{array}\right)+\ldots+P\left(\begin{array}{ll}
X=x & k-1
\end{array}\right) \leq P(X=x \quad k+1)+\ldots+P\left(\begin{array}{ll}
X=x & n
\end{array}\right),
$$

or equivalently, if and onlyif:

$$
P\left(\left\{\omega_{1}\right\}\right)+\ldots .+P\left(\left\{\omega_{k-1}\right\}\right) \leq P\left(\left\{\omega_{k+1}\right\}\right)+\ldots .+P\left(\left\{\omega_{n}\right\}\right) .
$$

- If $X(\omega i)=Y(\omega$ i) for any $i=1, \ldots, n$, denote by $k=\min \quad\{i: \quad X(\omega i)<Y(\omega i)\}$. Then $X$ sp $Y$ if andonly if:

$$
P\left(\begin{array}{ll}
X=x & 1
\end{array}\right)+\ldots+P\left(\begin{array}{ll}
X=x & k
\end{array}\right) \leq P\left(\begin{array}{ll}
X=x & k+1
\end{array}\right)+\ldots+P\left(\begin{array}{ll}
X=x & n
\end{array}\right),
$$

or equivalently, if and onlyif:

$$
P\left(\left\{\omega_{1}\right\}\right)+\ldots .+P\left(\left\{\omega_{k}\right\}\right) \leq P\left(\left\{\omega_{k+1}\right\}\right)+\ldots .+P\left(\left\{\omega_{n}\right\}\right) .
$$

Pro of Assume thatthereis $k$ such that $X(\omega k)=Y(\omega k)$. Then, $X\left(\omega^{i}\right)>Y(\omega i)$ for any $i<k$ and $X\left(\omega^{i}\right)<Y\left(\omega^{i}\right)$ for any $i>k$. Then:

$$
\begin{aligned}
& Q(X, Y)=P\left(\left\{\omega_{k+1}, \ldots, \omega_{d}\right\}\right)+\frac{1}{2} P\left(\left\{\omega_{k}\right\}\right) \text { and } \\
& Q(Y, X)=P\left(\left\{\omega_{1}, \ldots, \omega_{R}-1\right\}\right)+\frac{1}{2} P\left(\left\{\omega_{k}\right\}\right) .
\end{aligned}
$$

Then, $Q(X, Y) \geq \frac{1}{2}$ ifandonly if:

$$
P\left(\left\{\omega_{k+1}, \ldots, \omega_{d}\right\}\right) \geq P\left(\left\{\omega_{1}, \ldots, \omega_{k}-1\right\}\right) .
$$

Furthermore,the previous expression is equivalent to:

$$
P\left(\begin{array}{ll}
X=x & k+1
\end{array}\right)+\ldots+P\left(\begin{array}{ll}
X=x & n
\end{array}\right) \geq P\left(\begin{array}{ll}
X=x & 1
\end{array}\right)+\ldots+P\left(\begin{array}{ll}
X=x & k-1
\end{array}\right) .
$$

Now, assume that $X\left(\omega_{i}\right)=Y\left(\omega^{i}\right)$ for any $i=1, \ldots, n$. Then, denote by $k$ the ele ment $k=\max \{i: X(\omega i)<Y(\omega i)\}$. The $n, X(\omega i)>Y(\omega i)$ for any $i=k+1, \ldots, n$ and $X(\omega)<Y\left(\omega_{i}\right)$ for any $i=1, \ldots, k$. Then:

$$
Q(X, Y)=P\left(\left\{\omega_{k+1}, \ldots, \omega_{Q}\right\}\right) \text { and } Q(Y, X)=P\left(\left\{\omega_{1}, \ldots, \omega_{k}\right\}\right) .
$$

Then, $Q(X, Y) \geq{ }_{2}^{1}$ if and on ly if:

$$
P\left(\left\{\omega_{k+1}, \ldots, \omega_{k}\right\}\right) \geq P\left(\left\{\omega_{1}, \ldots, \omega_{k}\right\}\right)
$$

This expression is equivale nt to:

$$
P(X=x \quad k+1)+\ldots+P\left(\begin{array}{ll}
X=x & n
\end{array}\right) \geq P\left(\begin{array}{ll}
X=x & 1
\end{array}\right)+\ldots+P\left(\begin{array}{ll}
X=x & k
\end{array}\right) .
$$

## Random variables coup led by a strict Archimedean copula

Consider twocontinuous real-valued randomvariables $X$ and $Y$ with cumulative distribution functions $F_{X}$ and $F_{Y}$, resp ectively. Letus denote their density functions by $f_{X}$ and $f_{Y}$, resp ectively. We shall assume the existence ofa strictArchimedean copula $C$, generated by the twice differentiablegenerator $\phi$, such that

$$
F_{X, Y}(x, y)=\phi^{-1]}\left(\phi(F x(x))+\phi\left(F_{Y}(y)\right)\right), \text { for every } x, y \quad \mathrm{R}
$$

Note that since $C$ isstrict, then $\phi(0)=\infty$. Inthatcase, wehavealreadymentionedin Equation (2.10) that the pseudo-inverse becomes the inverse, andthen thejointcumulative dis trib ution function is given by:

$$
F_{X, Y}(x, y)=\phi^{-1}\left(\phi\left(F_{X}(x)\right)+\phi\left(F_{Y}(y)\right)\right) \text {, for every } x, y
$$

Now, we are going to ob tain the joint density function for $(X, Y)$. Forthisaim, wederive $F_{X, Y}$ with resp ect to $x$ and $y$ :

$$
\begin{aligned}
\frac{\partial F_{X, Y}}{\partial x}(x, y) & =\frac{\partial \phi^{-1}\left(\phi\left(F_{X}(x)\right)+\phi\left(F_{Y}(y)\right)\right)}{\partial x}(x, y) \\
& =\phi{ }^{-1}\left(\phi\left(F_{X}(x)\right)+\phi\left(F_{Y}(y)\right)\right) \phi\left(F_{X}(x)\right) f_{X}(x) . \\
\frac{\partial^{2} F_{X, Y}}{\partial x \partial y}(x, y) & =\phi{ }^{-1} \quad\left(\phi\left(F_{X}(x)\right)+\phi\left(F_{Y}(y)\right)\right) \phi\left(F_{X}(x)\right) \phi\left(F_{Y}(y)\right) f_{X}(x) f_{Y}(y) .
\end{aligned}
$$

Then, the function $f_{X, Y}$ defined by:

$$
\begin{equation*}
f_{X, Y}(x, y)=\phi \quad \quad^{-1} \quad\left(\phi(F X(x))+\phi\left(F_{Y}(y)\right)\right) \phi\left(F_{X}(x)\right) \phi\left(F_{Y}(y)\right) f_{X}(x) f_{Y}(y), \tag{3.10}
\end{equation*}
$$

isa density functionof $(X, Y)$. Let uscheckthat $f_{X, Y}(x, y) \geq 0$ for every $X, y \quad R$ :

- $f_{X}, f_{Y} \geq 0$ because they are density functions.
- By Definition2.26, $-\phi$ is 2-monotone. Then, $(-1)^{2}(-\phi)=-\phi \geq 0$, that implies $\phi \leq 0$. Then, $\phi(F \times(x)) \phi\left(F_{Y}(y)\right) \geq 0$.
- Since ${ }^{-\phi}$ is 2 -monotone, $(-1)^{3}(-\phi) \geq 0$, and then $\phi \geq 0$. Also, itisknownthat, for a func tion $g, g^{-1}(x)=g\left(g^{-1}(x)\right)^{-1}$. Then:

$$
\phi^{-1} \quad(x)=\frac{1}{\phi\left(\phi^{-1}(x)\right)}
$$

and since $\phi \leq 0$, it hol ds that $\phi^{-1}(x) \leq 0$. Then:

$$
\phi^{-1} \quad(x)=-\frac{\phi\left(\phi^{-1}(x)\right) \phi^{-1}}{\phi\left(\phi^{-1}(x)\right)} .
$$

The denominator is positive because it is squared.Furthermore, $\phi$ ispositive, but $\phi^{-1}$ is negative, but whenmultiplying for $(-1)$ it $b$ ecomes $p$ ositive.

Then, $f$ is the pro duct of $p$ ositive elements, and therefore $f$ is positive. Now, letussee that the area below $f_{X, Y}$ is 1 :

$$
\begin{aligned}
f_{\mathrm{X}, \mathrm{Y}}(x, y) \mathrm{d} y \mathrm{~d} x & =\mathrm{R}_{\mathrm{R}} \phi^{-1}\left(\phi(F \times(x))+\phi\left(F_{Y}(y)\right)\right)_{-\infty}^{\infty} \phi(F \times(x)) f_{\mathrm{X}}(x) \mathrm{d} x \\
& =\mathrm{R}^{\mathrm{R}} \phi^{-1}(\phi(F \times(x))) \phi(F \times(x)) f_{\mathrm{X}}(x) \mathrm{d} x \\
& =\phi^{-1}(\phi(F \times(x)))_{-\infty}^{\infty}=F \times(x)_{-\infty}^{\infty}=1 .
\end{aligned}
$$

Using the expressi on of the joint density function in Equation (3.10) we can prove the following characterizationof the statistical preference.

Theorem 3.34Let $X$ and $Y$ be two real-valuedcontinuous random variables, and let $F_{X}$ and $F_{Y}$ denotetheirrespective cumulativedistribution functions, and $f_{X}$ and $f_{Y}$ are their respective density functions. If theyare coupled bya strictArchimedean copula $C$ generated by the twice differentiable function $\phi$, then $X \quad$ sp $Y$ if andonly if:

$$
\begin{equation*}
E \quad \phi^{-1}\left(\phi\left(F_{X}(X)\right)+\phi\left(F_{Y}(X)\right)\right)^{-} \phi^{-1} \quad(2 \phi(F X(X))) \quad \phi(F \times(X)) \geq 0 \tag{3.11}
\end{equation*}
$$

Pro of Firstofall, notethat $(X, Y)$ is acontinuous random vector withdensity function $f_{X, Y}$. Then, $P(X=Y)=0 \quad$, and therefore $Q(X, Y)=P(X>Y)$ and $Q(Y, X)=P(Y>$ $X)$.

Denote by $A$ the set $A=\{(x, y) \mid x>y\}$. Then,

$$
P(X>Y)=\quad f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x .
$$

Thus,

$$
\begin{aligned}
P(X>Y)= & f_{A} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x={ }_{-\infty}^{\infty} \quad{ }_{-\infty}^{x} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& ={ }_{-\infty}^{\infty} \phi^{-1}(\phi(F X(x))+\phi(F Y(y)))_{-\infty}^{x} \quad \phi(F \times(x)) f_{X}(x) \mathrm{d} x \\
& ={ }_{-\infty}^{\infty} \phi^{-1}\left(\phi(F \times(x))+\phi\left(F_{Y}(x)\right)\right) \phi(F X(x)) f_{X}(x) \mathrm{d} x .
\end{aligned}
$$

Furthermore, it holds that
$\infty$

$$
\begin{aligned}
\phi^{-1}(2 \phi(F \times(x))) \phi & (F x(x)) f \times(x) \mathrm{d} x \\
& =\frac{1}{2} \phi^{-1}(2 \phi(F x(X))){ }_{-\infty}^{\infty}=\frac{1}{2}\left(\phi^{-1}(0)-\phi^{-1}(\infty)\right)=\frac{1}{2} .
\end{aligned}
$$

Therefore, $Q(X, Y)=P(X>Y) \geq \frac{1}{2}$ ifand onlyif

$$
\begin{aligned}
E \quad \phi^{-1} & \left(\phi_{\infty}(F x(X))+\phi(F Y(X))\right) \phi(F \times(X)) \\
= & { }_{-\infty} \phi^{-1}(\phi(F \times(x))+\phi(F Y(x))) \phi(F \times(x)) f \times(x) \mathrm{d} x \\
\geq & { }_{2}^{1}={ }_{-\infty}^{\infty} \phi^{-1}(2 \phi(F x(x))) \phi(F \times x(x)) f \times(x) \mathrm{d} x \\
= & E \phi^{-1}(2 \phi(F X(X))) \phi(F \times(X)) .
\end{aligned}
$$

Hence, this inequality is equ ivalent to

$$
E \quad \phi^{-1}(\phi(F \times(X))+\phi(F Y(X)))-\phi^{-1} \quad(2 \phi(F X(X))) \quad \phi(F \times(X)) \geq 0
$$

This result holds in particular when the random variables are indep endent, that is, when the copula that links the variables is the pro duct. We have seen in Section 2.1.2 that the pro duct is a strict Archimedean copula with generator $\phi(t)=-\log t$. In this case:

$$
\phi(t)=\frac{-1}{t}, \phi^{-1}(t)=e^{-t} \text { and } \phi^{-1}=-e^{t}
$$

By replacing the se values in Equation (3.11), we obtain that:

$$
\begin{aligned}
\phi^{-1} & \left(\phi\left(F_{X}(X)\right)+\phi\left(F_{Y}(X)\right)\right)-\phi^{-1}\left(2 \phi\left(F_{X}(X)\right)\right) \\
& =-\exp \left\{\log F_{x}(X)+\log F_{Y}(X)\right\}+\exp \left\{2 \log F_{x}(X)\right\} \\
& =F_{Y}(X) F_{X}(X)-F_{X}(X)^{2} .
\end{aligned}
$$

Then, Equation (3.11) becomes:

$$
E\left(F_{Y}(X) F_{X}(X)-F_{X}(X)^{2}\right) \frac{1}{F_{X}(X)}=E\left[F_{Y}(X)-F_{X}(X)\right] \geq 0
$$

Thus, weconclude thatforcontinuousrandomvariables $X$ and $Y, X \quad$ sp $Y$ if andonly if $E\left[F_{Y}(X)-F_{X}(X)\right] \geq 0$. This result has already been obtained in Corollary 3.13.

## Random variables coupled by a nilp otent Archimedean copula

Let us study now the case where the copula that links the real-valued random variabl es is a nilp otent Archimedean copula generated by a twice differentiable generatorln such case, as we saw in Equati on (2.9) the joint distribution function of $X$ and $Y$ isgiven by:

$$
F_{X, Y}(x, y)=\begin{array}{ll}
\phi^{-1}(\phi(F \times(x))+\phi(F Y(y))) & \text { if } \phi(F \times(x))+\phi\left(F_{Y}(y)\right) \quad[0, \phi(0)) . \\
0 & \text { otherwise } .
\end{array}
$$

Recall that thi s function cannot $b$ e derived in the p oints $(x, y)$ such that $\phi\left(F_{x}(x)\right)+$ $\phi\left(F_{Y}(y)\right)=\phi(0)$. However, thevalue of $\frac{\partial^{2} F_{X, Y}}{\partial x \partial y}(x, y)$ can be computed for the points $(x, y)$ fulfilling $\phi\left(F_{X}(x)\right)+\phi\left(F_{Y}(y)\right) \quad[0, \phi(0))$ In fact, the value of this fun ction is:

$$
\frac{\partial^{2} F_{X, Y}}{\partial x \partial y}(x, y)=\phi^{-1} \quad\left(\phi\left(F_{X}(x)\right)+\phi\left(F_{Y}(y)\right)\right) \phi\left(F_{X}(x)\right) \phi\left(F_{Y}(y)\right) f_{X}(x) f_{Y}(y) .
$$

Inthis way, the function $\quad f_{X, Y}$ defined by:

$$
f_{X, Y}(x, y)=\begin{array}{ll}
\frac{\partial^{2} F_{X, Y}}{\partial x \partial y}(x, y) & \text { if } \phi\left(F_{X}(x)\right)+\phi\left(F_{Y}(y)\right) \quad[0, \phi(0)), \\
0 & \text { otherwise },
\end{array}
$$

is ajoint density function of $X$ and $Y$ : on theonehand, $f_{X, Y}$ is a positive function:

$$
\begin{array}{ll}
f_{X}, f_{Y} \geq 0 \\
\phi \leq 0 \\
\phi \leq(F X(x)) \phi\left(F_{Y}(y)\right) \geq 0 \\
\phi^{-1} \geq 0 & \square \\
\square & f_{X, Y} \geq 0,
\end{array}
$$

since it is the pro duct of positive functions. On theotherhand, it holdsthat

$$
\mathrm{R}_{\mathrm{R}} \quad f_{\mathrm{X}, \mathrm{Y}}(x, y) \mathrm{d} y \mathrm{~d} x=1
$$

In order to prove the last equality, we intro duce the following notation:

$$
\begin{aligned}
& y_{x}=\inf \left\{y \mid \phi\left(F_{x}(x)\right)+\phi\left(F_{Y}(y)\right) \quad[0, \phi(0)\}^{\}}, \text {for every } x \quad \mathrm{R} .\right. \\
& s_{X}=\inf \left\{x \mid F_{X}(x)>0\right\} .
\end{aligned}
$$

Therefore,

$$
\left\{(x, y) \mid x>S_{x}, y>y \quad x\right\}=\left\{(x, y) \mid \phi(F x(x))+\phi\left(F_{Y}(y)\right)<\phi(0)\right\}
$$

This implies that:

$$
\begin{aligned}
& f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& \mathrm{R} \mathrm{R} \quad \infty \quad \infty \\
& =\operatorname{s}_{\substack{s_{X} \\
\infty}} y^{-1}\left(\phi\left(F_{X}(x)\right)+\phi\left(F_{Y}(y)\right)\right) \phi\left(F_{X}(x)\right) \phi\left(F_{Y}(y)\right) f_{X}(x) f_{Y}(y) \mathrm{d} y \mathrm{~d} x \\
& =\operatorname{s}_{\substack{\infty \\
\infty}}^{\infty} \phi^{-1}\left(\phi(F x(x))+\phi\left(F_{Y}(y)\right)\right)_{y_{x}}^{\infty} \phi(F \times(x)) f \times(x) \mathrm{d} x \\
& =s_{s_{x}} \phi^{-1}(\phi(F x(x))) \phi(F x(x)) f \times(x) \mathrm{d} x \\
& =\phi^{s_{X}}(\phi(F x(x))){ }_{s_{X}}^{\infty}=F \times(x){ }_{s_{X}}^{\infty}=1-F_{X}\left(s_{x}\right)=1 \text {. }
\end{aligned}
$$

We conclude that $f_{X, Y}$ is a jointdensityfunctionof $\quad X$ and $Y$. Let us intro duce the following notation:

$$
\begin{equation*}
{ }^{-} x=\inf \left\{x \mid y_{x}<x\right\} \tag{3.12}
\end{equation*}
$$

Using the function $f_{X, Y}$ andthe previousnotation, we canprove thefollowingcharacterization of the statistical preference for random variables coupled by a nilp otent Archimedean copula.

Theorem 3.35Let $X$ and $Y$ betworeal-valuedcontinuousrandomvariables coupledby anilpotent Archimedean copulawhosegenerator $\phi$ is twice differentiable and $\phi$ is not the zero function. $X$ sp $Y$ if andonly if

$$
\begin{aligned}
& \infty \\
& \phi^{-1}\left(\phi\left(F_{X}(x)\right)+\phi\left(F_{y}(x)\right)\right) \phi\left(F_{X}(x)\right) \mathcal{F}_{x}(x) \mathrm{d} x \geq \\
& \phi^{-1}(2 \phi(F \mathrm{X}(x))) \phi(F \mathrm{X}(x)) f \times(x) \mathrm{d} x .
\end{aligned}
$$

Pro of FromTheorem 3.34, $(X, Y)$ is a continuous randomvector with joint density functions $f_{X, Y}$. Then, $P(X=Y)=0$, and consequently $Q(X, Y)=P(X>Y) \quad$ and $Q(Y, X)=P(Y>X)$.

Letus compute the value of $Q(X, Y)=P(X>Y)$.

$$
\begin{aligned}
& P(X>Y)=\int_{-\infty} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& \infty x^{-\infty}{ }^{-\infty}
\end{aligned}
$$

$$
\begin{aligned}
& ={ }_{-x}^{\infty} \phi^{-1}\left(\phi(F x(x))+\phi\left(F_{Y}(y)\right)\right)_{y_{x}}^{x} \phi(F x(x)) f x(x) \mathrm{d} x \\
& ={ }_{-x} \phi^{-1}(\phi(F x(x))+\phi(F y(x))) \phi(F x(x)) f x(x) \mathrm{d} x \text {. }
\end{aligned}
$$

Furthermore, if we denote by $x$ the point

$$
\begin{equation*}
x=\inf \{x \mid 2 \phi(F x(x)) \leq \phi(0)\}, \tag{3.13}
\end{equation*}
$$

it holds that:

$$
{ }_{x}^{\infty} \quad \phi^{-1}\left(2 \phi\left(F_{x}(x)\right)\right) \phi(F \times(x)) f_{X}(x) \mathrm{d} x=\frac{1}{2} \phi^{-1}\left(2 \phi\left(F_{x}(x)\right)\right)_{x}^{\infty}=\frac{1}{2} .
$$

For this reason, as $X \quad$ sp $Y$ ifand onlyif $Q(X, Y) \geq{ }_{2}^{2}$, then $X \quad$ sp $Y$ if and onl $y$ if

$$
\begin{aligned}
-_{x}^{\infty} \phi^{-1} & (\phi(F \times(x))+\phi(F y(x))) \phi(F x(x)) f \times(x) \mathrm{d} x \geq \\
\frac{1}{2} & ={ }_{x}^{\infty} \phi^{-1}(2 \phi(F \times(x))) \phi(F \times(x)) f \times(x) \mathrm{d} x .
\end{aligned}
$$

Remark 3.36Thepreviousremarkdoesnot generalise Proposition 3.19, wherea characterization of statistical preference for continuou s and countermonotonic random variables. The reason is that, althou gh the $Ł u k a s i e w i c z ~ o p e r a t o r ~ i s ~ a n ~ A r c h i m e d e a n ~ c o p u l a, ~$ its generator is $\phi(t)=1-t$, and $\phi(t)=0$. Hence, thiscopula does not satisfy the restriction of the previous theorem, which therefore it is not applicable.

## Characterization of the statistical preference by means of the median

In this section we shall investigate the relationship b etween statistical preferen ce and the well-know notion of median ofa randomvariable. $F$ irs $t$ of all let us show an example to clarify the con nection.

Example 3.37Consider againthe random variables ofExample 2.3. Itiseasy tocheck that $Q(X, Y)=0.6$ and therefore $X \quad$ sp $Y$. The intuition here isthat in order toobtain $Q(X, Y)=0.6 c$ must be a value greater than 0 and smal ler than 1; however, the exact value of $c \quad(0,0.6)^{\text {is }}$ not relevant at al $I$.

Thus, in thediscrete case, statistical preference orders the values of the support of $X$ and $Y$, and once they are ordered, the exact value of each point does not matteronly itsrelative position andits probability are important. This idea is similar to that used in the definition of the median.

The first approach to connect statistical pre ference and the median is to compare the medians of the variables $X$ and $Y$. Recall that a point $t$ is a median of the random variable $X$ if:

$$
\begin{equation*}
P(X \geq t) \geq 0.5 \text { and } P(X \leq t) \geq 0.5 \tag{3.14}
\end{equation*}
$$

and we denote by $\operatorname{Me}(X)$ the set ofmediansof the randomvariable $X$.
Following theprevious example, weconjecture thatifthemedian of $X$ is greater than the median of $Y$ then $X$ should be statistically preferred to $Y$, and theconverse implicationshould also hold. However, this property do es not hold in general.

Remark 3.38Let $X$ and $Y$ betworeal-valuedrandom variablesdefinedon thesame probability space. Thenthere isnot ageneral relationship between $X$ sp $Y$ and the fol lowing statements:

1. $\operatorname{me}(X) \geq \operatorname{me}(Y)$ for all $\operatorname{me}(X) \quad \operatorname{Me}(X)$ and $\operatorname{me}(Y) \quad \operatorname{Me}(Y)$.
2. $\operatorname{me}(X) \leq \operatorname{me}(Y)$ for all $\operatorname{me}(X) \quad \operatorname{Me}(X)$ and $\operatorname{me}(Y) \quad \operatorname{Me}(Y)$.

Itis enough to consider theindependent random variables $X$ and $Y$ definedin Table3.1.

| $X$ | -2 | 0 | 2 |
| :---: | :---: | :---: | :---: |
| $P_{X}$ | 0.4 | 0.2 | 0.4 |$\quad$| $Y$ | -3 | 1 |
| :---: | :---: | :---: |
| $P_{Y}$ | 0.4 | 0.6 |

Table 3.1: Definition ofrandomvariables $X$ and $Y$.

Both $X$ and $Y$ haveonlyonemedian, andtheyequal to: $\operatorname{me}(X)=0<\operatorname{me}(Y)=1$, but $X \quad$ sp $Y$ becauseq $(X, Y)=0.64$

Since both statistical preferenceandthe comparison of medians are complete relations, the same counterexample al lows to show thatme $(X) \geq$ me $(Y)$ does notguarantee that $X$ sp $Y$. Notice that $\operatorname{me}(Y) \geq \operatorname{me}(X)$. However, $Q(Y, X)=0.36$, so that $Y$ sp $X$.

In order to prove that $X \quad$ sp $Y$ and me $(X) \leq m e(Y)$ are not related in general, it is enough to define $X$ as theconstant random variable on 1 and $Y$ as theconstant random variable on 0 . In this case it is obviou s that $X$ and $Y$ haveonly onemedian and $\operatorname{me}(X)>\operatorname{me}(Y)$ and $Q(X, Y)=1$.

We see thus th at statistical preference cannot be reduced to the comparison of the medians of $X, Y$. Intere stingly, there is a connection between statistical preference and the median of $X-Y$, aswe shallprove inTheorem3.40. Letus presenta preliminary result.

Prop osition 3.39et $X$ and $Y$ be tworeal-valued randomvariables defined on the same probability space. Then

$$
X \quad \text { sp } Y \quad F_{X-Y(0)} \leq F_{Y-x(0)},
$$

where $F_{X-Y}$ (respectively, $F_{Y-x}$ ) denotes the cumulative distribution function of the random variable $X-Y$ (respectively, $Y-X$ ).

Pro of By Lemma2.20, $X \quad$ sp $Y$ ifandonly if $P(X>Y) \geq P(Y>X)$,but:
$P(X-Y>0) \geq P(Y-X>0) \quad 1-F_{X-Y}(0) \geq 1-F_{Y-X}(0) \quad F_{X-Y}(0) \leq F_{Y-X}(0)$.
Then, $X \quad$ sp $Y$ and $F_{X-Y(0)} \leq F_{Y-X}(0)$ are equivalent.
Therefore, in order to che ck statistical preference it suffices to evaluate the cumulative distribution functions of $X-Y$ and $Y-X$ on 0 . Inparticular, if $P(X=Y)=0$, itsuffices to evaluateoneof thecumulative distributionfunctions, $\quad F_{X}-Y$ on 0 , since in this case,

$$
Q(X, Y)=1-F_{X-Y}(0)
$$

and $X \quad$ sp $Y$ ifand onlyif $\quad F_{X-Y}(0) \leq \frac{1}{2}$. This equivalence holds in particu lar when the random variablesform a continuous random vector.

We next prove the connection b etwe en statistical preferen ce and the median of $X-Y$.

Theorem 3.40Let $X$ and $Y$ betwo real-valuedrandom variablesdefinedonthe same probability space.

1. $\sup \operatorname{Me}\left(X^{-} Y\right)>0 \quad X \quad$ sp $Y \quad$ sup $\operatorname{Me}\left(X^{-} Y\right) \geq 0$.
2. $X$ sp $Y \quad \operatorname{Me}(X-Y) \quad[0, \infty)$.
3. The converse implication does not hold, alt hough

$$
\inf \operatorname{Me}(X-Y)>0 \quad X \quad \text { sp } Y
$$

4. If $P(X=Y)=0$, then

$$
X \quad \text { sp } Y \quad \inf \operatorname{Me}(X-Y)>0
$$

But even when $P(X=Y)=0 \quad, 0 \quad \mathrm{Me}(X-Y)$ is not equivalent to $Q(X, Y)=\frac{1}{2}$.

## Pro of

1. Assume that $\sup \operatorname{Me}(X-Y)>0$. Then, there isa median $m e(X-Y)>0$. It holds that:

$$
\begin{aligned}
& P(X>Y) \geq P(X-Y \geq \operatorname{me}(X-Y)) \geq \frac{1}{2} \\
& P(X<Y) \leq P(X-Y<\operatorname{me}(X-Y)) \leq \frac{1}{2}
\end{aligned} \quad Q(X, Y) \geq Q(Y, X)
$$

and then $X \quad$ sp $Y$. Assume that $X \quad$ sp $Y_{\text {i }}$. Then $P(X \geq Y) \geq P(X \leq Y)$. This implies that $P(X-Y \geq 0) \geq Q(X, Y) \geq \frac{1}{2}$, and thereforethere existsa median $m e\left(X^{-} Y\right) \geq 0$, and therefore $\sup \operatorname{Me}\left(X^{-} Y\right) \geq m e\left(X^{-} Y\right) \geq 0$.
2. By definition, $X$ sp $Y$ if $Q(X, Y)>\stackrel{1}{2}$.

Now, assumeme $(X-Y)<0$ for amedian of $X-Y$, then:

$$
\frac{1}{2} \geq P((X-Y)>\operatorname{me}(X-Y)) \geq P((X-Y) \geq 0) \geq P(X>Y)+\frac{1}{2} P(X=Y) .
$$

A contradiction arises because $Q(X, Y)>\stackrel{1}{2}$.
3. We first prove the implication. Supp ose thatme $\left(X^{-} Y\right)>0$ for any me $(X-Y)$ $\operatorname{Me}(X-Y)$. In sucha case:

$$
\frac{1}{2} \geq P((X-Y)<\operatorname{me}(X-Y)) \geq P(X-Y \leq 0)=1-P(X>Y)
$$

Hence, $P(X>Y) \geq \frac{1}{2}$ and then $X$ sp $Y$. Now, assume that $Q(X, Y)=\frac{1}{2}$. In that case, $P(X \geq Y)=P(Y \geq X) \geq \frac{1}{2}$, and then:

$$
P(X-Y \geq 0)=P(Y-X \geq 0) \geq \frac{1}{2}
$$

whence $0 \quad \operatorname{Me}(X-Y)$, that contradicts the initial hyp othesis.
Next, we give anexample where $X-Y$ has only on e median and equals 0 , and $Q(X, Y)<\frac{1}{2}$. Itis enoughto considerthe randomvariables $X$ and $Y$ whose joint mass function is defined on Table 3.2.

| $X / Y$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | 0.1 | 0 | 0.4 |
| 1 | 0 | 0.4 | 0 |
| 2 | 0 | 0 | 0.1 |

Table 3.2: Definition ofrandomvariables $X$ and $Y$.

Forthese variables itholds that $\operatorname{Me}(X-Y)=\{0\}$ but $Y$ sp $X$, since

$$
Q(X, Y)=\frac{1}{2} P((X, Y)=(0,0),(1,1),(2,2))=\frac{1}{2} 0.6=0.3<\frac{1}{2}
$$

4. Assume that $P(X=Y)=0$ and letus prove the equivalence. Onthe onehand, assume that $X$ sp $Y$. Bytheseconditem ofthisTheorem, weknowthat every median of $X-Y$ is positive. Assumenow that 0 is a median of $X-Y$. Then:

$$
\begin{aligned}
& 1 \\
& 2
\end{aligned} \geq P(X-Y>0)=P(X>Y)=Q(X, Y)
$$

Then, $Q(X, Y) \leq \frac{1}{2}$, a contradiction. Assumethat, although 0 is not a medianof $X-Y$, it is the infimum ofthe medians. Insuch a case, there is a point $t>0$ such that any point in $(0, t]$ is amedian of $X-Y$. Then, for any $0<\varepsilon<t$ it holds that:

$$
P(X-Y \geq \varepsilon) \geq \frac{1}{2} \text { and } P(X-Y \leq \varepsilon) \geq \frac{1}{2}
$$

Then, $P(X-Y \geq 0) \geq P(X-Y \geq \varepsilon) \geq \frac{1}{2}$ and:

$$
P(X-Y \leq 0)=F X-Y(0)=\lim _{\varepsilon \rightarrow 0} F_{X-Y}(\varepsilon)=\lim _{\varepsilon \rightarrow 0} P(X-Y \leq \varepsilon) \geq \frac{1}{2}
$$

This means that 0 is also a median, and we havealreadyseenthatthis isnot possible. Weconclude that inf $\operatorname{Me}(X-Y)>0$.
On the other hand, we have se en in the third item that when $\inf \operatorname{Me}(X-Y)>0$, $X$ sp $Y$.

Finally, letussee that if 0 is a medi an of $X-Y$, even when $P(X=Y)=0$, this is not equivalent to $Q(X, Y)=\frac{1}{2}$. Consider $\Omega=\left\{\omega_{1}, \omega_{2}\right\}$, theprobabilitymeasuregiven by $P(\{\omega\})={ }_{2}^{1}$ for $i=1,2$, and the rand om variables $X$ and $Y$ such that $X\left(\omega_{1}\right)=X\left(\omega_{2}\right)=$ $0, Y\left(\omega_{1}\right)=-1$ and $Y\left(\omega_{2}\right)=1$. Then, -1 is the only medianof $X-Y$, and also -1 is the only median of $Y-X$, but $Q(X, Y)=\frac{1}{2}$ and then $X \equiv \mathrm{sP} Y$. Onthe otherhand, consider the space $\Omega=\left\{\omega_{1}, \omega_{2}\right\}, P\left(\left\{\omega_{1}\right\}\right)={ }_{4}^{3}$ andthe randomvariables definedby:

|  | $\omega_{1}$ | $\omega_{2}$ |
| ---: | ---: | ---: |
| $X$ | 0 | 1 |
| $Y$ | 0 | 0 |
| $X-Y$ | 0 | 1 |

Then, 0 isa median of $X-Y$; however, $Q(X, Y)={ }_{8}^{5}$.
This theorem establishes a relationship between statistical preference and the median of the diffe re nce of the random variables.heparticularcasein which $P(X=Y)=$ 0 is very useful because in that case statistical preference is characterised by the median. Next, we aregoingtoconsider two random variables $X$ and $Y$, and we are going to show how to mo dify the variables with the aim of avoiding the case $P(X=Y)>0$

Lemma 3.41Let $X, Y$ betwo real-valueddiscrete random variables, withoutpoints of accumulationontheir supports, defined on the same probabilityspace suchthat $P(X=$
$Y)>0$. Assume thattheir supports $S_{X}$ and $S_{Y}$ can beexpressedby $S_{X}=\left\{x_{n}\right\}_{n}$ and $S_{Y}=\left\{y_{m}\right\}_{m}$ such that $x_{n} \leq x_{n+1}$ and $y_{m} \leq y_{m+1}$ for any $n, m$. In thiscaseit ispossible to build another random variable $X$ fulfil ling:

1. $Q(X, Y)=Q(X, Y)$ and
2. $P(X=Y \quad \mid X=x)=0 \quad P(X=x)=P(X=x) \quad$.

Pro of We shallusethe followingnotation:

$$
P(X=x \quad n, Y=y \quad m)=p n, m \text { for any } n, m .
$$

Since $P(X=Y)>0$, there exists $x_{n} \quad S_{X}$ and $y_{m} \quad S_{Y}$ such that $x_{n}=y m$ and $p_{n, m}>0$. Then, forany $\left(x_{n}, y_{m}\right)$ in this situationwe consider $x_{n}^{(1)}, x_{n}^{(2)}$ such that:

$$
\max \left\{x_{n-1}, y_{m-1}\right\}<x \stackrel{1}{n}_{(1)}^{\infty}<x n=y m<x{ }_{n}^{(2)}<\min \left\{x_{n+1}, y_{m+1}\right\}
$$

where $x_{n-1}$ and $x_{n+1}$ (resp ectively $y_{m-1}, y_{m+1}$ ) denote the preceding and subsequent points of $x_{n}$ in $S_{X}$ (resp ectively,of $y_{m}$ in $S_{Y}$ ), existing b ecaus e since b ot $\bar{\Phi}_{X}$ and $S_{Y}$ have no accumulation points. Let us use the follow ing notation:

$$
\left.\begin{array}{l}
S_{X}^{a}=\left\{\begin{array}{llll}
x_{n} & S_{X}: P(X=x & n, Y=x & n
\end{array}\right)=0
\end{array}\right\} .
$$

Then, $S_{X}=S{ }_{x}^{a} \quad S_{X}^{b}$. Wedefine therandomvariable $X$ whose supp ort is given by:

$$
S_{x}=\left\{\begin{array}{ll}
x_{n} & \left.S_{x}^{a}\right\}
\end{array}\left\{x_{n}^{(1)}, x_{n}^{(2)}: x n \quad S_{x}^{b}\right\}\right.
$$

The joint probability of $X$ and $Y$ is give n by:

$$
\begin{aligned}
& \left.P(X=X \quad n, Y=y \quad m)=p \begin{array}{lll}
n, m & \text { if } X_{n} \quad S_{X}^{a} . \\
P(X=X & n_{n}^{(1)}, Y=y & m
\end{array}\right)=P\left(\begin{array}{lll}
X=X & n_{n}^{(2)}, Y=y & m
\end{array}\right)=\frac{1}{2} p_{n, m} \quad \text { if } X_{n} \quad S_{X}^{b} .
\end{aligned}
$$

By definition, $P(X=Y)=0$. Then:

$$
\begin{aligned}
& Q(X, Y)=P(X>Y)=\quad P(X>Y \quad \mid X=x)
\end{aligned}
$$

$$
\begin{aligned}
& +P\left(X>Y \quad \mid X=x \quad{ }^{(2)}\right) \\
& =x_{x_{n} S_{X}^{a}} P(X>Y \mid X=x \quad n)+{ }_{x_{n} S_{X}^{b}}^{\frac{1}{2}} P\left(\begin{array}{lll}
X>Y & \mid X=x & n
\end{array}\right) \\
& +{ }_{2}^{1} \quad P(X>Y \quad \mid X=x \quad n)+P\left(\begin{array}{lll}
X=x & n, Y=x & n
\end{array}\right) \\
& x_{n} S_{x}^{b} \\
& =x_{x_{n} S_{X}^{a}} P\left(\begin{array}{llll}
X>Y & \mid X=x & n
\end{array}\right)+{ }_{x_{n} s_{x}^{b}} P\left(\begin{array}{lll}
X>Y & \mid X=x & n
\end{array}\right) \\
& +{ }_{2}^{1} P(X=X \quad n, Y=X \quad n) \\
& =x_{x_{n} \quad s_{X}} P(X>Y \mid X=x \quad n)+\frac{1}{2_{x_{n}} s_{X}^{a}} \quad P\left(\begin{array}{llll}
X=X & n, Y=x & n
\end{array}\right) \\
& =P(X>Y)+{ }_{2}^{1} P(X=Y)=Q(X, Y) \text {. }
\end{aligned}
$$

This lemma allows us to establish the fol lowing theorem.

Theorem 3.42Let $X$ and $Y$ be two real-valued discrete randomvariables on the same probability space, whose supports have no accumulation points and such that $P(X=$ $Y$ ) $>0$. Then $X \quad$ sp $Y$ ifandonly ifitispossibletofind a randomvariable $X$ in the conditions of Lemma 3.41such that $\inf \operatorname{Me}(X-Y)>0$.

Pro of Applyingthepreviouslemma itispossibleto buildanotherrandomvariable $X$ such that $Q(X, Y)=Q(X, Y), P(X=Y)=0$, and if $P(X=Y \quad \mid X=x)=0$, then $P(X=x)=P(X=x)$

Therefore, as $P(X=Y)=0$, by Theorem3.40itholdsthat $X \quad$ sp $Y$ if and only if inf $\operatorname{Me}(X-Y) \geq 0$. But since $Q(X, Y)=Q(X, Y)$, it holds that $X \quad$ sp $Y$ if andonly if $\inf \operatorname{Me}(X-Y) \geq 0$.

### 3.2 Relationship between stochastic dominance and st tistical prefe rence

In this section we shall study the relationships b etween first degree sto chastic dominance and statistical preference for real-valued random variab les.

We recall once more that sto chastic dominance only uses the marginal distributions of the variables compared. Aswe have seeninSubsection 2.1.2, everyjoint cumulative distribution function is the copula of the marginalcumulative distribution functions. For this reason, as we have already done in the previous subsection, we fo cus on different situations: indep endent, comonotonic and countermonotonic random variables, and random variables coupled by an Archimedean copu la.

Before starting with the main res ults, wearegoing toshow thatingeneral, first degree sto chastic dominance do es not imply statistical preference.

Example 3.43Considertherandom variables $X$ and $Y$ whose joint mass probability function is given by:

| $X \mid Y$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | 0.2 | 0.15 | 0 |
| 1 | 0 | 0.2 | 0.15 |
| 2 | 0.2 | 0 | 0.1 |

Then, the marginal cumulative distribu tion functions of $X$ and $Y$ are defined by:

|  | $t<0$ | $t$ | $[0,1)$ | $t$ | $[1,2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $t \geq 2$ |  |  |  |  |  |
| $F_{X}(t)$ | 0 | 0.35 | 0.7 | 1 |  |
| $F_{Y}(t)$ | 0 | 0.4 | 0.75 | 1 |  |

It fol lows that $X \quad$ FSD $Y$ since $F_{X} \leq F_{Y}$. However, $X$ sp $Y$ since:

$$
\begin{aligned}
Q(X, Y) & =P(X>Y)+\frac{1}{2} P(X=Y) \\
& =P(X=2, Y=0)+\quad 1 \quad P(X=0, Y=0)+P(X=1, Y=1) \\
& +P(X=2, Y=2) \quad=0.2+\frac{1}{2}(0.2+0.2+0.1)=0.45
\end{aligned}
$$

Thus, $X \quad$ fsd $Y$ does notimply $X$ sp $Y$.
Furthermore, since $X \quad$ fSD $Y$ implies $X$ nsD $Y$ for any $n \geq 2$, the pre vious example also shows that $X$ nsd $Y$ do es not imply $X \quad$ sp $Y$ for any $n \geq 2$.

In the following subsections, we will find sufficient conditions for the implication $X$ fsD $X$ sp $Y$.

### 3.2.1 Independent random variables

We start by proving that first degree sto chastic dominance implies statistical preference for indep endent random variables. Forthis aim, takeintoaccount that, when $X \quad$ fsD $Y$, Theorem (2.10) assures that $E[u(X)] \geq E[u(Y)]$ for any increasing function $u$. In particul ar, if we consider $u=F \quad y$, which is an incre asing function, it holdsthat $E\left[F_{Y}(X)\right] \geq E\left[F_{Y}(Y)\right]$. This will be an interesting fact in order to prove the next res ult.

Theorem 3.44Let $X$ and $Y$ be tworeal-valuedindependent randomvariables. Then $X$ fsd $Y$ implies $X$ sp $Y$.

Pro of UsingLemma2.20, itsufficesto provethat

$$
P(X \geq Y) \geq P(Y \geq X) .
$$

Since $X$ and $Y$ are indep endent, by Lemma 3.11 it is equivalent to prove that:

$$
E[F Y(X)] \geq E[F \times(Y)] .
$$

Moreove r, since $X$ fsD $Y, F_{X} \leq F_{Y}$, and therefore $E[F X(Y)] \leq E\left[F_{Y}(Y)\right]$. Thus, it suffices to prove that

$$
E\left[F_{Y}(X)\right] \geq E\left[F_{Y}(Y)\right],
$$

and this inequality holds because $X \quad$ FSD $Y$ and then $E[u(X)] \geq E[u(Y)]$ for every increasing function $u$.

With a similar pro of it is p ossible to establish that the implication holds even when one of the variablesstrictly dominates the other one. Let us intro duce a preliminary lemma.

Lemma 3.45Let $X$ and $Y$ betwoindependentreal-valuedrandomvariables such that $X \quad$ FSD $Y$. Then, if $P(Y=t)=0$ for any $t$ such that $F_{X}(t)<F_{Y}(t)$, thereexists an interval $[a, b]$ Such that $P(Y \quad[a, b])>0$ and $F_{X}(t)<F_{Y}(t)$ for any $t \quad[a, b]$

Pro of Let $t_{0}$ be a point such that $F_{X}\left(t_{0}\right)<F \quad Y\left(t_{0}\right)$. Since both $F_{X}$ and $F_{Y}$ are right-continuous,

$$
\lim _{\varepsilon \rightarrow 0} F_{Y}\left(t_{0}+\varepsilon\right)=F \quad Y\left(t_{0}\right)>F \times\left(t_{0}\right)=\lim _{\varepsilon \in \rightarrow_{0}} F_{X}\left(t_{0}+\varepsilon\right) .
$$

Then, there is $\varepsilon>0$ such that:

$$
F_{X}\left(t_{0}+\varepsilon\right) \leq F_{X}\left(t_{0}\right)+\frac{F_{Y}\left(t_{0}\right)-F_{X}\left(t_{0}\right)}{2}<F_{Y\left(t_{0}\right)} .
$$

Considering $\delta=\frac{F_{Y}(t)-F_{X}(t 0)}{2}>0$, then $F_{Y}(t)-F_{X}(t) \geq \delta>0$ for any $t\left[t_{0}, t_{0}+\varepsilon\right]$. We have thus proven that there e xis ts an interva[a, $b]$ such that $F_{Y}(t)-F_{X}(t) \geq \delta>0$ for $t \quad[a, b]$ Now, withoutlossofgenerality, wecanassumethat $\quad F_{Y}(a-\varepsilon)<F \quad Y(a)$ for any $\varepsilon>0$ (otherwise, since $F_{Y}$ is right-continuous, take the point $a=\inf (t: F \quad Y(t)=$ $\left.F_{Y}(a)\right)$ ). Then, since $P(Y=a)=0$, there exists $\varepsilon>0$ such that $F_{Y}(t)-F_{X}(t) \geq \delta>0$ for any $t \quad[a-\varepsilon, b]$ Furthermore:

$$
P(Y \quad[a-\varepsilon, b]) \geq P(Y \quad[a-\varepsilon, a]) \geq P(Y \quad(a-\varepsilon, a])=F_{Y}(a)-F_{Y}(a-\varepsilon)>0,
$$

and this completes the pro of.

The following result had already been established in [14, Prop osition 15.3.5].However, the authors only gave a pro of for continuous random variablesHere, weprovidea pro of for any pair of random variables $X$ and $Y$.

Prop osition 3.46et $X$ and $Y$ betwo real-valued independentrandomvariables. Then, $X$ fsd $Y$ implies $X$ sp $Y$.

Pro of We have provenin Theorem 3.44 that $E\left[F_{Y}(X)\right] \geq E\left[F_{Y}(Y)\right]$ when $X \quad$ FSD $Y$. Then, if weprovethat $E\left[F_{X}(Y)\right]<E\left[F_{Y}(Y)\right]$ we would obtain that:

$$
P(X \geq Y)=E[F \quad Y(X)] \geq E[F Y(Y)]>E[F \times(Y)]=P(Y \geq X),
$$

and consequently $X$ sp $Y$.
Let us provethat if $\quad X$ FSD $Y$, then $E\left[F_{X}(Y)\right]<E[F Y(Y)]$. By hyp othesis, $F_{X}(t) \leq F_{Y}(t)$ for every $t$, and there is $t_{0}$ such that $F_{X}\left(t_{0}\right)<F_{Y}\left(t_{0}\right)$.

Let us consider two cases. Onthe onehand, let usassume that $P(Y=t \quad 0)>0$. In such acase:

$$
\begin{aligned}
E[F \times(Y)] & =\quad F_{X} \mathrm{~d} F_{Y}=\underset{\left.\mathrm{R}^{\backslash\{ } t_{0}\right\}}{ } F_{X X} \mathrm{~d} F_{Y}+\underset{\left\{t_{0}\right\}}{ } F_{X \mathrm{~d} F_{Y}} \\
& \leq{ }_{\mathrm{R}^{\left\{\left\{t_{0}\right\}\right.}} F_{Y \mathrm{~d}} F_{Y}+P(Y=t \quad 0) F_{X}\left(t_{0}\right)
\end{aligned}
$$

Onthe other hand, ass ume that there is not $t_{0}$ satisfying both $F_{X}\left(t_{0}\right)<F \quad Y\left(t_{0}\right)$ and $P(Y=t \quad 0)>0$. Applying the previouslemma, there isan interval $[a, b]$ such that $F_{Y}(t)-F_{X}(t) \geq \delta>0$ and $P(Y \quad[a, b])>0$. Then:

$$
\begin{aligned}
E[F \times(Y)] & =\quad F_{X} \mathrm{~d} F_{Y}=\underset{R^{\prime}[a, a+\varepsilon]}{ } F_{X} \mathrm{~d} F_{Y}+\underset{[a, a+\varepsilon]}{ } F_{X} \mathrm{~d} F_{Y} \\
& \leq \underset{R^{\backslash}[a, a+\varepsilon]}{ } F_{Y \mathrm{~d}} F_{Y}+\underset{[a, a+\varepsilon]}{ }\left(F_{Y}-\delta\right) \mathrm{d} F_{Y} \\
& =F_{Y \mathrm{~d} F_{Y}-\delta P(Y \quad[a, a+\varepsilon])<E\left[F_{Y}(Y)\right] .} .
\end{aligned}
$$

A similar result was provenin [210] forprobability dominance (see Remark 2.22); nevertheless, that result was only valid for continuous random variables.

### 3.2.2 Continuous comonotonic andcountermonotonic random variables

Let $X$ and $Y$ be two random variables with resp ective cumulative distribution functions $F_{X}$ and $F_{Y}$, and resp ective density functions $f_{X}$ and $f_{Y}$.

First of all, let us study the relationship between first degree sto chastic dominance and statistical preference for comonotonic rand om variables.

Theorem 3.47Let $X$ and $Y$ betwo real-valuedcomonotonicand continuousrandom variables. If $X$ fsd $Y$, then $X \quad$ sp $Y$.

Pro of InCorollary3.17wehave seenthat $X \quad$ sp $Y$ ifandonly if

$$
x: F_{X}(x)<F_{Y(x)}\left(f x(x)+f_{Y(x))} \mathrm{d} x+\frac{1}{2} \quad x: F_{x}(x)=F_{Y(x)}(f X(x)+f y(x)) \mathrm{d} x \geq 1\right.
$$

However, by hyp othesi $F_{X}(x) \leq F_{Y}(x)$ for any $x \quad \mathrm{R}$. Then, $\left\{x: F x(x) \leq F_{Y}(x)\right\}=\mathrm{R}$, and therefore:

$$
\begin{aligned}
& ={ }_{x: F X(x) \leq F_{Y(x)}}\left(f_{X}(x)+f_{Y(x))} \mathrm{d} x-\frac{1}{2} \quad x: F_{X(x)=F_{Y(x)}}\left(f_{X}(x)+f_{Y(x))} \mathrm{d} x\right.\right. \\
& ={ }_{\mathrm{R}}\left(f_{X}(x)+f_{Y}(x)\right) \mathrm{d} x-\frac{1}{2} \quad x: F_{X}(x)=F_{Y(x)}\left(f X(x)+f_{Y}(x)\right) \mathrm{d} x \\
& \geq{ }_{\mathrm{R}}(f \mathrm{x}(x)+f \mathrm{Y}(x)) \mathrm{d} x-1=2-1=1 .
\end{aligned}
$$

Thus, $X$ isstatistically preferredto $Y$.
Prop osition 3.46 assures that for independent random variables, whenfirst degree sto chastic dominance holds in the strict sense, statistical preference is also strictAs we shall see, this also holdsfor continuous and comonotonicreal-valuedrandom variables. in order to establish this, we give firs $t$ the following lemma.

Lemma 3.48Let $X$ and $Y$ betwocontinuous real-valuedrandom variables. Then, if $X_{\text {FSD }} Y$, there exists an interval $[a, b]$ such that $F_{X}(t)<F_{Y}(t)$ for any $t \quad[a, b]$ and $P(X \quad[a, b])>0$.

Pro of From the proof of Lemma 3.45 we deduce that there is an interval $[a, b]$ such that $F_{Y}(t)-F_{X}(t) \geq \delta>0$ for any $t \quad[a, b]$ Since $F_{X}$ iscontinuous, thereis $\varepsilon>0$ such that $F_{X}(a-\varepsilon)<F \times(a)$ and $F_{Y}(t)-F_{X}(t) \geq{ }_{2}^{\delta}>0$ for any $t \quad[a-\varepsilon, b]$ Then:

$$
P(X \quad[a-\varepsilon, b]) \geq P(X \quad[a-\varepsilon, a]) \geq F_{X(a)}-F_{X}(a-\varepsilon)>0
$$

Prop osition 3.49et $X$ and $Y$ be two real-valued comonotonic and continuous random variables. If $X$ fsd $Y$, then $X$ sp $Y$.

Pro of Ontheonehand，since $X$ fsD $Y$ ，then $X$ fsD $Y$ ，and consequently $X$ sp $Y$ ． According to theprevious lemma，there is aninterval［a，b］such that $F_{Y}(t)-F_{X}(t) \geq \delta>0$ for any $t \quad[a, b]$ and $P(X \quad[a, b])>0$ ．By Lemma 2．20，$X \quad$ sp $Y$ is equivalentto $P(X>Y)>P(Y>X) \quad$ ，and from Prop osition 3.16 this is equivalent to：

$$
x: F_{x(x)<F_{Y}(x)} f_{X}(x) \mathrm{d} x>{ }_{x: F_{Y}(x)<F x(x)} f_{Y}(x) \mathrm{d} x .
$$

Now，take into acc ount that the second part of the previous equation equals 0 ，since $\left\{x: F_{Y}(x)<F x(x)\right\}=$ ．In addition：

Thus，we conclude that $X$ sp $Y$ ．
When the rand om variables are countermonotonic，the relationship between the （non－strict）first degree sto chastic dominance and the（non－strict）statistical preference also holds．

Theorem 3．50 Let $X$ and $Y$ betwo real－valuedcountermonotonicand continuousran－ dom variables．If $X$ fsd $Y$ ，then $X$ sp $Y$ ．

Pro of In Proposition 3.19 we have seen that $X \quad$ sp $Y$ ifand onlyif $\quad F_{Y}(u) \geq F_{X}(u)$ ， where $u$ is one point such that $F_{Y}(u)+F \times(u)=1$ ．However，since $X$ FSD $Y$ ，it holds that $F_{X(x)} \leq F_{Y}(x)$ for every $X \quad \mathrm{R}$ ．In particular，italsoholds that $\quad F_{X}(u) \leq F_{Y}(u)$ ．

Although it seems intuitive that the same relationship holds with resp ect to the strict preferences，th is is not the case for countermonotonic continuous random variables． Tosee this，itsuffices toconsider thecountermonotonic randomvariables $X$ and $Y$ whose cumulative distribution functions of $X$ and $Y$ aredefined by：

$$
\begin{align*}
& F_{X}(t)=\begin{array}{ll}
\square_{0} & \text { if } t<0 . \\
t & \text { if } t \quad[0,1] .
\end{array}  \tag{3.15}\\
& \text { 目1 if } t>1 \text {. } \\
& F_{Y}(t)=\begin{array}{lll}
\square 0 & \text { if } t<-0.1 . \\
\text { 眘 }_{2}^{1} t+0.05 & \text { if } t & {[-0.1,0.1) .} \\
t^{t} & \text { if } t \quad[0.1,1] . \\
\text { 首 } 1^{2} & \text { if } t>1 .
\end{array} \tag{3.16}
\end{align*}
$$

Since $F_{X}(t)=F_{Y}(t)$ for any $t /(-0.1,0.1)$ and $F_{X}(t)<F_{Y}(t)$ for $t \quad(-0.1,0.1$ ，it holds that $X \quad$ FSD $Y$ ，but $X \equiv{ }_{\mathrm{SP}} Y$ ，since $F_{X}(u)+F Y(u)=1$ for $u=\frac{1}{2}$ and：

$$
\begin{aligned}
& Q(X, Y)=F_{Y}(u)=F \quad Y(0.5)=\frac{1}{2} \\
& Q(Y, X)=F_{X}(u)=F \times(0.5)=\frac{1}{2}
\end{aligned}
$$

### 3.2.3 Discrete comonotonic and countermonotonic random variables with finite supp orts

Letus now assume that $X$ and $Y$ arediscretereal-valuedrandomvariableswith finite supp ort. Then, when these randomvariablesare comonotonic, we obtainthe following result:

Theorem 3.51If $X$ and $Y$ aretworeal-valued comonotonic and discreterandomvariables with finite supports, then $X \quad$ fsd $Y \quad X \quad$ sp $Y$.

Pro of Using Remark3.24, we can assume w.l.o.g. that $X$ and $Y$ are definedin $(\Omega, P(\Omega), P)$, where $\Omega=\left\{\omega_{1}, \ldots, \omega_{\alpha}\right\}$, by $X\left(\omega_{i}\right)=x i$ and $Y\left(\omega_{i}\right)=y$, where $x_{i} \leq x_{i+1}$ and $y_{i} \leq y_{i+1}$ for any $i=1, \ldots, n-1$, and also:

$$
P(X=x \quad i, Y=y \quad i)=P(X=x \quad i)=P(Y=y \quad i) \text { for any } i=1, \ldots, n .
$$

Moreover, using Prop osition 3.25, $X$ sp $Y$ ifandonly if

$$
P(X=x \quad i) \geq i_{i: x_{i}<y_{i}>y_{i}} P(X=x \quad i) .
$$

Let us show that $\{i: x \quad i<y i\}=$ when $X \quad$ FSD $Y$. Assumethatthere exists $k$ such that $X(\omega k)=x \quad k<y k=Y(\omega k)$. Then:

$$
\begin{aligned}
& F_{X}(x k)=P(X \leq X(x k)) \geq P\left(\left\{\omega_{1}, \ldots, G_{R}\right\}\right) . \\
& F_{Y}(x k)=P(Y \leq X(x k)) \leq P\left(\left\{\omega_{1}, \ldots, G_{R}-1\right\}\right),
\end{aligned}
$$

where last ine quality holds since $\omega_{k} /\left\{Y \leq X\left(x_{k}\right)\right\}$ because $Y(\omega k)>X(\omega k)$. Now, since $X$ FSD $Y$, it holds that $F_{X(x k)} \leq F_{Y(x k)}$ :

$$
P\left(\left\{\omega_{1}, \ldots, C_{R}\right\}\right) \leq F_{X}(x k) \leq F_{Y}(x k) \leq P\left(\left\{\omega_{1}, \ldots, C_{R}-1\right\}\right) .
$$

This implies that $P\left(\left\{\omega_{k}\right\}\right)=P(\{X=x \quad k\})=0$, but acontradiction arises since $P\left(\left\{\omega_{k}\right\}\right)>0$. Then, weconclude that $\{i: x i>y i\}=$, and consequently:

$$
\underset{i: x i>y i}{ } P(X=x \quad i) \geq 0=\underset{i: x i<y_{i}}{ } P(X=x \quad i) \text {. }
$$

Thus, $X$ sp $Y$.
Now, it only remains to see that, as for continuous random variables, strict sto chastic dominance implies strict statistical preference.

Prop osition 3.52et $X$ and $Y$ be two real-valued discrete andcountermonotonic random variables with finite supports. Then, $X$ fsd $Y$ implies $X \quad$ sp $Y$.

Pro of Itisobvious that $X$ fSD $Y$ implies $X$ fsD $Y$, andthen, applying theprevious theorem, $X \quad$ sp $Y$ because $\left\{i: x_{i}<y_{i}\right\}=$. Then, inordertoprovethat $X$ sp $Y$ it isenough to see that $\left\{i: x_{i}>y_{i}\right\}=$, that is, there is some $k$ such that $x_{k}>y_{k}$.

Since $X$ fSD $Y$, there is some $k$ such that $F_{X}\left(y_{k}\right)<F_{Y}\left(y_{k}\right)$. Assume ex-absurdo that $\left\{i: x_{i}>y{ }_{i}\right\}=$, so $x_{i}=y$ i for any $i=1, \ldots, n$. Since $x_{i}=y$ i and $P(X=x \quad i)=$ $P\left(\begin{array}{ll}Y=y & i\end{array}\right)=P\left(\begin{array}{ll}Y=x & i\end{array}\right), X$ and $Y$ are equallydistributed, and then $X \equiv$ FSD $Y$, a contradiction.

Finally, let usconsiderdiscretecountermonotonicrandomvariableswith finitesupports, andletussee that, in that case, first degree sto chastic dominance also implies statistical preference.

Theorem 3.53Let $X$ and $Y$ be two real-valueddiscrete and countermonotonic random variables with finite supports. Then, $X \quad$ fsd $Y$ implies $X \quad$ sp $Y$.

Pro of From remark3.32, withoutloss of generality wecanassume that $X$ and $Y$ are defined on $(\Omega, P(\Omega), P)$, where $\Omega=\left\{\omega_{1}, \ldots, \omega_{1}\right\}$, by $X\left(\omega_{i}\right)=x \quad i$ and $Y\left(\omega_{i}\right)=y{ }_{n-i+1}$, where $x_{i} \leq x_{i+1}$ and $y_{i} \leq y_{i+1}$ for any $i=1, \ldots, n-1$,and also:

$$
P(X=x \quad i, Y=y \quad i)=P(X=x \quad i)=P(Y=y \quad n-i+1) \text { for any } i=1, \ldots, n .
$$

Furthermore, we can also assume that

$$
\max \left(\left|X\left(\omega_{i}\right)-X\left(\omega_{i+1}\right)\right|,\left|Y\left(\omega_{i}\right)-Y\left(\omega_{+1}\right)\right|\right)>0 \text { for any } i=1, \ldots, n-1 \text {; }
$$

and that there exists, atmost, one element $k$ such that $X(\omega k)=Y(\omega k)$.
Inorder to prove that $X \quad$ fsD $Y \quad X \quad$ sp $Y$ we considertwo cases:

- Assume $X(\omega i)=Y(\omega \quad i)$ for any $i=1, \ldots, n \quad$ and denote $k=\max \quad\{i: X(\omega i)<$ $Y(\omega)\}$. Then, by Prop osition 3.33, $X$ sp $Y$ if and onl y if:

$$
P\left(\left\{\omega_{1}\right\}\right)+\ldots .+P\left(\left\{\omega_{k}\right\}\right) \leq P\left(\left\{\omega_{k+1}\right\}\right)+\ldots .+P\left(\left\{\omega_{n}\right\}\right) .
$$

Since $X$ FSD $Y, F_{X} \leq F_{Y}$. Then, taking $\varepsilon=\frac{Y(\omega k)-X(\omega k)}{2}>0$, it hold s that:

$$
\begin{aligned}
& F_{X}(X(\omega k))=P(X \leq X(\omega k)) \geq P\left(\left\{\omega_{1}, \ldots, \omega_{R}\right\}\right) . \\
& F_{Y}(X(\omega k)) \leq F_{Y}\left(Y\left(\omega_{k}\right)^{-\varepsilon} \varepsilon\right)=P\left(Y \leq Y(\omega k)^{-\varepsilon} \varepsilon\right) \leq P\left(\left\{\omega_{k+1}, \ldots, \omega_{k}\right\}\right) .
\end{aligned}
$$

- Assume th at there is (an unique) $k$ such that $X(\omega k)=Y(\omega k)$. Then:

$$
\begin{aligned}
& F_{X}(X(\omega k-1))=P(X \leq X(\omega k-1)) . \\
& F_{Y}(X(\omega k-1))=P(Y \leq Y(\omega k-1)) .
\end{aligned}
$$

Since $X\left(\omega{ }^{k-1}\right)<Y(\omega k-1), \omega_{k-1} /\{Y \leq X(\omega k-1)\}$, and thisimpliesthat $\{Y \leq$ $X(\omega k-1)\}\left\{\omega_{k}, \omega_{k+1}, \ldots, C_{k}\right\}$. Furthermore, $\{X \leq X(\omega k-1)\}\left\{\omega_{1}, \ldots, C_{k}-1\right\}$, and then

$$
F_{X}(X(\omega k-1)) \geq P\left(\left\{\omega_{1}\right\}\right)+\ldots+P\left(\left\{\omega_{k-1}\right\}\right) .
$$

We consider two cases:

- Assume that $Y(\omega k)=X\left(\omega k^{-1}\right)$. Then $X(\omega k)=Y(\omega k)=X\left(\omega k^{-1}\right)$, and this implies that $\omega_{k}\{X \leq X(\omega k-1)\}$. Then:

$$
\begin{aligned}
& F_{X}\left(X\left(\omega_{k}-1\right)\right) \geq P\left(\left\{\omega_{1}\right\}\right)+\ldots+P\left(\left\{\omega_{k-1}\right\}\right)+P\left(\left\{\omega_{k}\right\}\right) . \\
& F_{Y}\left(Y\left(\omega_{k}-1\right)\right)=P\left(\left\{\omega_{k}\right\}\right)+P\left(\left\{\omega_{k+1}\right\}\right)+\ldots+P\left(\left\{\omega_{n}\right\}\right) .
\end{aligned}
$$

Using that $X$ fsd $Y$,

$$
P\left(\left\{\omega_{1}\right\}\right)+\ldots+P\left(\left\{\omega_{k-1}\right\}\right) \geq P\left(\left\{\omega_{k+1}\right\}\right)+\ldots .+P\left(\left\{\omega_{n}\right\}\right) .
$$

Applying Prop osition 3.33, $X$ sp $Y$.

- Ontheotherhand, if $Y(\omega k) \leq X(\omega k-1)$, then it holds that $\{Y \leq X(\omega k-1)\}$ $\left\{\omega_{k+1}, \ldots, c_{d}\right\}$. Henc e:

$$
F_{Y}\left(X\left(\omega_{k}-1\right)\right)=P(Y \leq X(\omega k-1)) \leq P\left(\left\{\omega_{k+1}\right\}\right)+\ldots+P\left(\left\{\omega_{n}\right\}\right)
$$

and, since $F_{X} \leq F_{Y}$ because $X$ fSD $Y$, it hold s that:

$$
\begin{aligned}
P\left(\left\{\omega_{k+1}\right\}\right)+\ldots+P\left(\left\{\omega_{n}\right\}\right) & \geq P(Y \leq X(\omega k-1))=F Y\left(X\left(\omega_{k}-1\right)\right) \\
& \geq F_{X}\left(X\left(\omega_{k}-1\right)\right)=P\left(Y \leq X\left(\omega_{1}\right)\right) \\
& \geq P\left(\left\{\omega_{k+1}\right\}\right)+\ldots .+P\left(\left\{\omega_{k-1}\right\}\right) .
\end{aligned}
$$

By Prop osition 3.33, $X$ sp $Y$.

Unsurprisingly, strict first degree sto chastic dominance do es not imply strict statistical preference, aswe can seeinthe following example:

Example 3.54Consider thecountermonotonic randomvariables $X$ and $Y$ defined by:

| $X, Y$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $P_{X}$ | 0 | 0.2 | 0.8 |
| $P_{Y}$ | 0.1 | 0.1 | 0.8 |

For these variables, $X \quad$ fsd $Y$. From Remark3.32we canassume that $X$ and $Y$ are defined in the probability $\operatorname{space}(\Omega, P(\Omega), P)$ where $\Omega=\left\{\omega_{1}, \ldots, \omega_{\}}\right\}$, and such that:

| $P(\{\omega\})$ | 0.2 | 0.6 | 0.1 | 0.1 |
| :---: | :---: | :---: | :---: | :---: |
| $\Omega$ | $\omega_{1}$ | $\omega_{2}$ | $\omega_{3}$ | $\omega_{4}$ |
| $X$ | 1 | 2 | 2 | 2 |
| $Y$ | 2 | 2 | 1 | 0 |

Then, $Q(X, Y)=0.5$, and we conclude that $X \equiv \mathrm{sp} Y$.

### 3.2.4 Randomvariables coupledby an Archimedean copula

Inthis subsection we consider two continuous random variablesk and $Y$, with resp ective cumulative distribution functions $F_{X}, F_{Y}$ and with resp ective density functions $f_{X}$ and $f_{Y}$. Weassume thattherandom variables arecoupled byan Archimedeancopula $C$, generated by the twice differentiablefunction $\phi$.

First of all, we conside $r$ the case of a strict Archimedean copula. In that case, we also obtain that first degree sto chastic dominance implies that statistical preference.

Theorem 3.55Let $X$ and $Y$ betworeal-valuedcontinuousrandomvariables coupledby a strict Archimedean copula $C$ generatedby the twice differentiablefunction $\phi$. Then, $X$ fsd $Y$ implies $X$ sp $Y$.

Pro of From Theorem3.34, $X$ sp $Y$ ifand onlyif:

$$
E \quad \phi^{-1}\left(\phi\left(F_{X}(X)\right)+\phi\left(F_{Y}(X)\right)\right)-\phi^{-1} \quad\left(2 \phi\left(F_{X}(X)\right)\right) \quad \phi\left(F_{X}(X)\right) \geq 0,
$$

or equivalently, if
$\infty$
${ }_{-\infty}^{\infty} \phi^{-1}\left(\phi\left(F_{X}(x)\right)+\phi\left(F_{Y}(x)\right)\right) \phi\left(F_{X}(x)\right) f \times(x) \mathrm{d} x$

$$
\geq \quad_{-\infty} \phi^{-1}(2 \phi(F x(x))) \phi(F x(x)) f \times(x) \mathrm{d} x
$$

This inequality holds because

$$
\begin{array}{ll}
X \quad \text { FSD } Y \quad \begin{array}{l}
F_{X}(x) \leq F_{Y}(x) \\
\phi(F \times(x)) \geq \phi\left(F_{Y}(x)\right) \\
2 \phi(F \times(x)) \geq \phi(F \times(x))+\phi(F \times(x))
\end{array} \\
\qquad \begin{array}{ll}
\phi^{-1} & (2 \phi(F \times(x))) \geq \\
\phi^{-1} & (\phi(F \times(x))+\phi(F \times(x))) \\
\phi^{-1} & (2 \phi(F \times(x))) \phi(F \times(x))) f \times \\
\phi^{-1} & \left.(\phi(F \times(x))+\phi(F \times(x))) \phi\left(F^{-1}(x)\right) f_{x}(x) \quad \text { is increasing }\right)
\end{array} \\
& (\phi \leq 0 .)
\end{array}
$$

Therefore, $X$ isstatistically preferredto $Y$.
Remark 3.56Whenapplyingthepreviousresulttotheproductcopula, weobtainthat forcontinuous and independent random variables, $X \quad$ fsD $Y \quad X \quad$ sp $Y$. This isnot new for us, sinceTheorem3.44states thatthisrelationholds, not onlyforcontinuous, but anykind of independent random variables.

Letus nowinvestigate if such relationship alsoholds forthe strict preference. For this aim, weconsiderthis preliminarylemma.

Lemma 3.57Let $X$ and $Y$ betwo continuousrandomvariablessuch that $X \quad$ FSD $Y$. Then, thereexists aninterval $[a, b]$ such that $F_{X}(t)<F_{Y}(t)$ for any $t \quad[a, b]$ and also $P(X \quad[a, b])>0$ and

$$
\phi^{-1} \quad(\phi(F x(t))+\phi(F y(t))) \phi(F x(t))^{-} \phi^{-1} \quad(2 \phi(F x(t))) \phi(F x(t)) \geq \delta>0
$$

for any $t \quad[a, b]$
Pro of We have proven in Lemma 3.48 that there exists an interval $[a, b]$ such that $F_{Y}(t)-F_{X}(t) \geq \delta>0 \quad$ for any $t \quad[a, b]$ and $P(X \quad[a, b])>0$. Then, there isa subinterval $\left[a_{1}, b_{1}\right]$ of $[a, b]$ where $F_{X}$ isstrictly increasing.

Now, following thesame steps thanin Theorem 3.55we obtainthat:

$$
\begin{array}{ll}
F_{X}(t)<F_{Y}(t) & \text { for any } t \quad[a, b] \\
& \phi^{-1} \\
& \left(\phi(F \times(t))+\phi\left(F_{Y}(t)\right)\right) \phi\left(F_{x}(t)\right)> \\
\phi^{-1} & (2 \phi(F \times(t))) \phi\left(F_{x}(t)\right) \text { for any } t \quad\left[a_{1}, b_{1}\right] .
\end{array}
$$

Considert $\quad\left[a_{1}, b_{1}\right]$ and let

$$
\varepsilon=\phi \quad{ }^{-1}\left(\phi(F x(t))+\phi\left(F_{Y}(t)\right)\right) \phi(F x(t))^{-} \phi^{-1} \quad(2 \phi(F X(t))) \phi(F x(t))>0 .
$$

Then,there is a subinterval $\left[a_{2}, b_{2}\right]$ of $\left[a_{1}, b_{1}\right]$ such that

$$
\phi^{-1}\left(\phi(F \times(t))+\phi\left(F_{Y}(t)\right)\right) \phi(F \times(t))-\phi^{-1}(2 \phi(F x(t))) \phi(F \times(t)) \geq \frac{\varepsilon}{2}>0
$$

Furthermore, since $F_{X}$ is strictlyincreasing in $[a, b]$ itis alsostrictly increasingin $\quad\left[a_{2}, b_{2}\right]$ and then $P\left(X \quad\left[a_{2}, b_{2}\right]\right)>0$.

Prop osition 3.58onsidertwo real-valued continuous random variablesX and $Y$ coupled by a strict Archimedean copula $C$ generated by $\phi$. Then, $X \quad$ FSD $Y$ implies $X$ sp $Y$.

Pro of We haveto provethat:

$$
\begin{aligned}
\phi_{-\infty}^{-1}(\phi(F \times(x))+\phi(F Y(x))) \phi & (F \times(x)) f \times(x) \mathrm{d} x \\
& >{ }_{-\infty}^{\infty} \phi^{-1}\left(2 \phi\left(F_{X}(x)\right)\right) \phi(F x(x)) f \times(x) \mathrm{d} x .
\end{aligned}
$$

Since $X$ and $Y$ arecontinuous, if $X \quad$ fsd $Y$, then $X \quad$ fsD $Y$, and consequently $X \quad$ sp $Y$ by Theorem 3.55. Taking into account the previous lem ma, there exists an interval[a, $b$ ] such that $P(X \quad[a, b])>0$ and:

$$
\phi^{-1} \quad(\phi(F \times(t))+\phi(F Y(t))) \phi(F \times(t))^{-} \phi^{-1} \quad(2 \phi(F \times(t))) \phi(F \times(t)) \geq \delta>0
$$

for any $t \quad[a, b]$ Then:

$$
\begin{aligned}
& \infty \\
& \phi^{-1} \quad\left(\phi\left(F_{X}(x)\right)+\phi\left(F_{Y}(x)\right)\right) \phi(F X(x)) f \times(x) \mathrm{d} x \\
& \geq{ }_{\mathrm{R}^{-}[a, b]} \phi^{-1}(2 \phi(F \mathrm{x}(x))) \phi(F \mathrm{x}(\mathrm{x})) f \mathrm{fx}(\mathrm{x}) \mathrm{d} \mathrm{~d} \\
& +\underset{[a, b]}{ } \phi^{-1}\left(\phi(F \times(x))+\phi\left(F_{Y}(x)\right)\right) \phi(F X(x)) f_{X}(x) \mathrm{d} x \\
& >\quad \phi^{-1}(2 \phi(F x(x))) \phi(F x(x)) f x(x) \mathrm{d} x \\
& +\underset{\substack{[a, b] \\
\infty}}{ } \phi^{-1}(2 \phi(F x(x))) \phi(F \times(x)) f \times(x) \mathrm{d} x+\underset{[a, b]}{ }{ }^{\frac{\varepsilon}{2}} f_{X}(x) \mathrm{d} x \\
& =\underset{\substack{-\infty \\
\infty}}{ } \phi^{-1} \\
& >\quad_{-\infty} \phi^{-1}\left(2 \phi\left(F_{x}(x)\right)\right) \phi(F x(x)) f x(x) \mathrm{d} x .
\end{aligned}
$$

Consequently, $X$ sp $Y$.

Remark 3.59As wehavealreadymentioned, intheparticularcase wherethestrict Archimedean copula is theproduct, the relation $X$ FSD $Y \quad X \quad$ sp $Y$ was already studied in Proposition 3.46. Suchresult statestherelationnot onlyforcontinuous, but for every kind of independent random variables.

It only remains to study the case of nilp otent copulas. Inorder todothis, we are going tosee the following lemma that assures that, overthe assumption of $X \quad$ FSD $Y$, the points ${ }^{-}$xand $x$, defined on Equations (3.12) and (3.13), resp ectively, satisfy ${ }^{-} x \leq x$.

Lemma 3.60 Let $X$ and $Y$ be two real-valued continuous random variables cou pled bya nilpotent Archimedean copulaC generated byф. If $X \quad$ FSD $Y$, then it holds that ${ }^{-} x \leq x$.

Pro of First of all, recall that:

```
\(x=\inf \{x \mid 2 \phi(F x(x)) \leq \phi(0)\}\),
\(-x=\inf \{x: y x<x\}\) and
\(y_{x}=\inf \{y \mid \phi(F x(x))+\phi(F y(y)) \quad[0, \phi(0)\}\) for any \(x \quad \mathrm{R}\).
```

Assume that $x<^{-} x$. Then there exists a point $t$ such that $x<t<{ }^{-} x$ and $y_{t}>t$ Moreover, from the hyp othesis $X$ fsD $Y$, it holds that

$$
F_{X}(t) \leq F_{Y}(t) \quad \phi\left(F_{X}(t)\right) \geq \phi\left(F_{Y}(t)\right) \quad t \quad \mathrm{R}
$$

As $x<t$, we know that $2 \phi(F x(t))<\phi(0)$. Therefore, wehavethat:

$$
\phi(F \times(t))+\phi(F Y(t)) \leq 2 \phi(F \times(t))<\phi(0) .
$$

Then,

$$
y_{t}=\inf \{y \mid \phi(F \times(t))+\phi(F Y(y))<\phi(0)\} \leq t .
$$

Therefore, $y_{t}>t \geq y_{t}$, a contradiction. Weconclude that $x \geq{ }^{-} x$
Using this lemma we can prove that first degree sto chastic dominance also implies statistical preference for continuous random variables coupled by a nilp otent Archimedean copula.

Theorem 3.61/f $X$ and $Y$ are two real-valued continuous random variables cou pled by anilpotent Archimedean copula whose generator $\phi$ is twice differentiable suchthat $\phi=0$,then $X \quad$ fsd $Y \quad X \quad$ sp $Y$.

Pro of From Lemma3.60, ${ }^{-} \leq x$. Furthermore, $F_{X}(x) \leq F_{Y}(x)$ for every $x \quad \mathrm{R}$. Then, for every $x \geq x$ :
$X$ fsd $Y$

$$
\begin{aligned}
& F_{X}(x) \leq F_{Y}(x) \\
& \phi\left(F_{X}(x)\right) \geq \phi\left(F_{Y}(x)\right) \\
& 2 \phi\left(F_{X}(x)\right) \geq \phi\left(F_{X}(x)\right)+\phi\left(F_{x}(x)\right) \\
& \phi^{-1} \quad\left(2 \phi\left(F_{X}(x)\right)\right) \geq \\
& \phi^{-1} \\
& \\
& \phi^{-1} \\
& \phi^{-1} \\
& \\
& \\
& \left.\left(\phi\left(F_{x}(x)\right)+\phi\left(F_{X}\left(F_{X}(x)\right)\right) \phi\left(F_{X}(x)\right)\right)\right)+\quad\left(\phi^{-1} \quad \text { is increasing }\right) \\
&
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& \infty \\
& { }_{-} \quad \phi^{-1} \quad\left(\phi\left(F_{x}(x)\right)+\phi\left(F{ }_{y}(x)\right)\right) \phi(F x(x)) f \times(x) \mathrm{d} x \\
& \geq \quad \phi^{-1}\left(\phi\left(F_{X}(x)\right)+\phi(F Y(x))\right) \phi\left(F_{X}(x)\right) f X(x) \mathrm{d} x \\
& { }^{x}{ }_{\infty} \\
& \geq \quad \phi^{-1}\left(2 \phi\left(F_{x}(x)\right)\right) \phi(F x(x)) f x(x) \mathrm{d} x \\
& { }^{x}{ }_{\infty} \\
& \geq \quad \phi^{-1}\left(2 \phi\left(F_{X}(x)\right)\right) \phi\left(F_{X}(x)\right) f \times(x) \mathrm{d} x .
\end{aligned}
$$

Applying Theorem 3.35, we dedu ce that $X$ sp $Y$.

Remark 3.62Note that this result is not applicable to the $Ł u k a s i e w i c z ~ c o p u l a, ~ s i n c e ~$ its generator is $\phi_{\mathrm{W}}(t)=1 \quad-t$, and then $\phi(t)=0$. However, wehave alreadyseen inTheorem 3.50that firstdegree stochastic dominance implies statistical preference for continuous and countermonotonic random variables.

As in the countermonotonic case, the relationship between the strict preferences do es not hold.Toseethis, considertwocontinuousrandomvariables $X$ and $Y$ whose cumulative distribution functions are defined in Equations (3.15) and(3.16). If weconsider the generator $\phi(t)=2(1-t)$, such that $\phi(0)=2$,there is not $(x, y)$ in the set:

$$
\left\{(x, y): \phi\left(F_{X}(x)\right)+\phi\left(F_{Y}(y)\right) \quad[0, \phi(0)\}^{\}} \quad F_{X}(t)=F_{Y}(t),\right.
$$

such that either $x \leq 0.1$ or $y \leq 0.1$. Thus, whe neve $f_{X, Y}>0, f_{X, Y}$ is symmetric. Th en, if $(t, t)$ satisfies $\phi\left(F_{X}(t)\right)+\phi\left(F_{Y}(t)\right) \quad[0, \phi(0))$ then $F_{X}(t)=F_{Y}(t)$. Conseque ntly:

$$
P(X>Y)=\quad \quad_{-\infty} \quad f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x=\operatorname{-i}_{-\infty} f_{X, Y}(y, x) \mathrm{d} y \mathrm{~d} x=P(Y>X) .
$$

and we conclude $X$ and $Y$ arestatistically indifferent.

### 3.2.5 Other relationships $b$ etween sto chastic dominance and statistical preference

Intheprevious subsectionwe have seen several conditions under which FSD $Y$ implies $X \quad$ sp $Y$. Now, we analyze if there are other relationships between first and $h$-th degree sto chastic dominance and statistical preference.

We start by proving that statistical preference do es not imply neither first nor $n$-th degree sto chastic dominance for any $\geq 2$.

Remark 3.63 Thereexist random variables $X$ and $Y$ such that:

1. $X$ sp $Y$ but $X$ nsd $Y$, for every $n \geq 1$.
2. $X$ nsd $Y$ but $X$ sp $Y$, for every $n \geq 2$.
3. $X$ fsd $Y$ but $X$ sp $Y$.
4. $X$ fsd $Y, X$ nsd $Y$ for any $n \geq 2$ but $X$ fsd $Y$.

In Example 3.43 we gave two randomvariables suchthat $\quad Y \quad$ sp $X$ but $X \quad$ FSD $Y$. Then, $X$ nsd $Y$ for any $n \geq 1$ and therefore $Y$ nsD $X$ for any $n \geq 1$. Thus, this is an example where thefirst and thirditems hold.

Consider next random variablesX and $Y$ such that $X$ fol lows a uniform distribution in the interval $(10,11)$ and $Y$ has the fol lowing density function:

$$
f_{Y}(x)=\begin{array}{ll}
\square \frac{1}{\square}{ }^{25} & \text { if } 0<x<10 \\
5^{25} & \text { if } 11<x<12, \\
\text { 臬0 } & \text { otherwise. }
\end{array}
$$

For these random variables it holds that:

$$
Q(X, Y)=P(X>Y)=P(Y<10)=\quad \frac{2}{5}<\frac{1}{2},
$$

and therefore $Y$ sp $X$. However, ontheonehand, itistrivial that neither $Y$ fsd $X$ nor $X$ fsd $Y$. Moreover, $X$ nsd $Y$ for every $n \geq 2$ :

$$
\begin{aligned}
& G_{\mathrm{x}}^{2}(t)=\begin{array}{ll}
\square_{0} & \text { if } t<10 . \\
\frac{l_{(t-10)^{2}}^{2}}{2} & \text { if } t \quad[10,11) .
\end{array}
\end{aligned}
$$

The graphs of these funct ions can be seen in Figure 3.1.


Figure 3.1: Graphics of the fu nctions $G_{X}^{2}$ and $G_{Y}^{2}$.

Then, $X \quad$ ssd $Y$, and applying Equation (2.4), $X \quad$ nsd $Y$ for every $n \geq 2$. We have thus an example where $Y$ sp $X$ and $X$ nsd $Y$ for every $n \geq 2$. Letus see bymeans of an examplethat $X$ sp $Y$ and $X$ nsd $Y$ donot guarantee $X \quad$ FSD $Y$. Tosee that, it isenough to consider theindependent randomvariables $X$ and $Y$ defined by:


For these variables it holds that：

$$
Q(X, Y)=P(X>Y)+\frac{1}{2} P(X=Y)=P(X>Y)=P(Y=0)=\quad \frac{9}{10}>\frac{1}{2}
$$

Thus $X \quad$ sp $Y$ ．Furthermore，sincethe cumulative distributionfunctions are：

$$
F_{X}(t)=\begin{array}{ll}
\square_{0} & \text { if } t<1, \\
⿴_{1} & \text { if } t \quad[1,5), \\
2 & F_{Y}(t)= \\
\text { 臬1 } t \geq 5 . & ⿴_{0} \\
\frac{9}{10} & \text { if } t \quad[0,10), \\
\mathrm{Z}_{1} & \text { if } t \geq 10,
\end{array}
$$

the functions $G_{X}^{2}$ and $G_{Y}^{2}$ are：

If we lookat their graphical representations inFigure 3．2，we canseethat $X \quad$ ssd $Y$ ． However，

$$
F_{X}(5)=1>\quad \frac{9}{10}=F_{Y}(5),
$$

whenceX cannot stochastical ly dominateY by firstdegree，i．e．，$X \quad$ fsd $Y$ ．


Figure 3．2：Graphicsofthe functions $G_{X}^{2}$ and $G_{Y}^{2}$ ．

Our next Theorem summarises the main results of this paragraph．
Theorem 3．64Let $X$ and $Y$ betwo randomvariables．$X \quad$ fsD $Y$ implies $X \quad$ sp $Y$ under any of the fol lowing conditions：
－$X$ and $Y$ are independent．

- $X$ and $Y$ arecontinuous and comonotonicrandom variables.
- $X$ and $Y$ arecontinuous and countermonotonicrandom variables.
- $X$ and $Y$ arediscrete and comonotonicrandom variableswith finite supports.
- $X$ and $Y$ arediscreteand countermonotonicrandomvariableswith finitesupports.
- $X$ and $Y$ arecontinuous random variablescoupled byan Archimedean copula.

The relationships between sto chastic dominance and statistical preference under the conditions of the previous result are summarisedinFigure 3.3.


Figure 3.3: General relationship b etween sto chastic dominance and statistical preference.

### 3.2.6 Exampleson the usualdistributions

In this subsection we shall study the conditions we must to imp ose on the parameters of some of the most imp ortant parametric distributions in order to obtain statistical preference and sto chastic dominance for indep endent random variables. We shall see that for some of them, sto chastic dominance and statistical preference are equivalent. Some results in this sense have already been established in [56].

## Discrete distributions under indep endenBern oulli

In the case of discrete distributions, we shall consider the Bernoulli distribution with parameter $p \quad(0,1)$ denoted by $B(p)$, that takes thevalue 1 withprobability $\quad p$ and the value 0 with probability $1^{-p}$.

Prop osition 3.65et $X$ and $Y$ betwoindependentrandomvariableswith distributions $X \equiv B\left(p_{1}\right)$ and $Y \equiv B\left(p_{2}\right)$. Then:

- $Q(X, Y)={ }_{2}^{1}\left(p_{1}-p_{2}+1\right)$, and
- $X$ is statistical ly preferred to $Y$ if andonly if $p_{1} \geq p_{2}$.

Pro of Letuscompute theexpressionof theprobabilisticrelation $\quad Q(X, Y)$ :

$$
\begin{aligned}
Q(X, Y) & =P(X>Y)+{ }_{2}^{1} P(X=Y) \\
& =P(X=1, Y=0)+\quad \frac{1}{2} P(X=0, Y=0)+P(X=1, Y=1) \\
& =p_{1}\left(1-p_{2}\right)+{ }_{2}^{1}\left(\left(1-p_{1}\right)\left(1-p_{2}\right)+p{ }_{1} p_{2}\right)={ }_{2}^{1}\left(p_{1}-p_{2}+1\right) .
\end{aligned}
$$

Then it holdsthat:

$$
X \quad \text { sp } Y \quad Q(X, Y) \geq \frac{1}{2} \quad \frac{1}{2}\left(p_{1}-p_{2}+1\right) \geq \frac{1}{2} \quad p_{1} \geq p_{2}
$$

Thus, a neces sary and sufficient condition for $X$ sP $Y$ is that $p_{1} \geq p_{2}$, or equivalently, $E[X] \geq E[Y]$. In fact, it is immediate that this condition is also nec essary and sufficient for $X \quad$ FSD $Y$. Thus, first degree sto chastic dominance is a complete relation for Bernoullidistributions; as a consequence, thesame applies to $n$-th degree sto chastic dominance, and therefore they are equivalent metho ds. Thisallowsusto establishthe following corollary.

Corollary 3.66 Let $X$ and $Y$ be two independent random variables with Bernoul li distribution. Then:

$$
X \quad \text { fSD } Y \quad X \quad \text { nSD } Y \text { for any } n \geq 2 \quad X \quad \text { sP } Y \quad E[X] \geq E[Y] .
$$

## Continuous distributions under indep endence

Next, we consider some of the most imp ortant families of continuous distributions: exponencial, beta, Paretoand uniform. In addition, due to the im p ortance of the normal distribution, we devote thenext paragraphtoits study; inthatcase we shall consider other $p$ ossibilities in addition to indep endent random variables.

Remark 3.67Although the betadistribution dependson two parameters, $p, q>0$, in this work we shall consider the particular cases whereone of the parameters equals 1, as in [56]. The general case in which both parametersare greater than1 is muchmore complex, since the expression of the probabilistic relation is very difficult to obtain.

Analogously, the Pareto distribution depends on two parameters,a, b, and the density function is given by

$$
f(x)=\frac{a b^{a}}{x^{a+1}}, \quad x>b
$$

As in [56] we will focus on the caseb=1.

Before starting, we recall in Table 3.3the density functionsand theparameters of the distributionswestudy alongthis subsection.

| Distribution | Density function | Parameters |
| :--- | :--- | :--- |
| Exp onential | $\lambda e^{-\lambda x}, x \quad(0, \infty)$ | $\lambda>0$ |
| Uniform | $\frac{1}{b-a}, x \quad(a, b)$ | $a, b \quad \mathrm{R}^{,}, a<b$ |
| Pareto | $\lambda x^{-(\lambda+1)}, x \quad(1, \infty)$ | $\lambda>0$ |
| Beta | $\Gamma(p+q) x^{p-1}(1-x)^{q-1}, x$ | $(0,1) \quad p, q>0$ |

Table 3.3: Characteristic s of the continuous distributions to $b$ e studied.

Prop osition 3.6\&et $X$ and $Y$ betwoindependentrandomvariableswith exponential distributions, $X \equiv E x p\left(\lambda_{1}\right)$ and $Y \equiv \operatorname{Exp}\left(\lambda_{2}\right)$,respectively. Then:

- $Q(X, Y)=\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}$ and
- $X$ is statistical ly preferred to $Y$ if andonly if $\lambda_{1} \leq \lambda_{2}$.

Pro of We firstprove that $Q(X, Y)=\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}$.

$$
\begin{aligned}
Q(X, Y) & =P(X>Y)={ }_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} x} d x{ }_{0}^{x} \lambda_{2} e^{-\lambda_{2} y} d y={ }_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} x}\left(1-e^{-\lambda_{2} x}\right) d x \\
& ={ }_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} x} d x-{ }_{0}^{\infty} \lambda_{1} e^{-\left(\lambda_{1}+\lambda_{2}\right) x} d x=1-\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}=\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} .
\end{aligned}
$$

Thus,

$$
X \quad \text { sp } Y \quad Q(X, Y) \geq \frac{1}{2} \quad \frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} \geq \frac{1}{2} \quad \lambda_{2} \geq \lambda_{1}
$$

Remark 3.69 Thevalue of the probabilist ic relation $Q$ for independent and exponential ly distributed random variables was already studied in [56, Section 6.2.1]. However, insuch reference theauthors made a mistake duringthe computations and found an incorrect expression forthe probabilisticrelation.

As with Bernoulli distributed random variables, statistical preference and sto chastic dominance are equivalent prop erties for exponential distributions. In thiscase, also first degree sto chastic dominance, and therefore the ${ }^{7}$-degree sto chastic dominance, are complete relations, and the can be reduced to the comparison of the exp ectations.
$\qquad$

Corollary 3.70 Let $X$ and $Y$ be twoindependent random variables with exponential distribution. Then,

$$
X \quad \text { FSD } Y \quad X \quad \text { nSD } Y \text { for any } n \geq 2 \quad X \quad \text { sp } Y \quad E[X] \geq E[Y] .
$$

Next we fo cus on uniform distributions.
Prop osition 3.71et $X$ and $Y$ betwo independent random variables with uniform distributions, $U(a, b)$ and $U(c, d)$ respectively.

1. If $(a, b) \quad(c, d)$ then:

- $Q(X, Y)=\frac{2 b^{-c-d}}{2\left(b^{-}-a\right)}$ and
- $X$ sp $Y$ if andonly if $a+b \geq c+d$.

2. If $c \leq a<d \leq b, X$ is always statistical ly preferred tơ, and its degree of preference is $Q(X, Y)=1-\frac{\left(d^{-}-\right)^{2}}{2\left(b^{-} a\right)\left(d^{-c}\right)}$.

## Pro of

1. Supp ose thata $\leq c<d \leq b$. Then,

$$
\begin{aligned}
Q(X, Y) & =P(X>Y)={ }^{b} \frac{1}{b-a} d x+\quad d \quad x \frac{1}{d} \frac{1}{b-a} d y d x \\
& =\frac{b-d}{b-a}+{ }_{c}^{d-c} \frac{1}{b-a} \frac{x-c}{d-c} d x=\frac{b-d}{b-a}+\frac{\left(d^{-} c\right)^{2}}{2\left(d^{-} c\right)\left(b^{-} a\right)}=\frac{2 b^{-}-c-d}{2\left(b^{-} a\right)}
\end{aligned}
$$

Then, $X \quad$ sp $Y$ ifand onlyif:

$$
\frac{2 b^{-c}-d}{2\left(b^{-} a\right)} \geq \frac{1}{2} \quad b+a \geq c+d
$$

If $c \leq a<b \leq d$, we can similarly se e that

$$
Q(X, Y)=\frac{b+a-2 c}{2(d-c)}
$$

Thus, $Q(X, Y) \geq \frac{1}{2}$ if and on ly if $a+b \geq c+d$.
2. If $c \leq a<d \leq b$, it is easy to prove that $X$ fsD $Y$, and therefore $X \quad$ sp $Y$. Let us now compute the preferencedegree:

$$
P(Y>X)=\quad \begin{gathered}
d \\
a \quad a \quad d x d y \\
\left(b^{-} a\right)\left(d^{-} c\right)
\end{gathered} \quad \begin{gathered}
d \quad y-a \\
a \\
\left(b^{-} a\right)\left(d^{-} c\right) \\
d y
\end{gathered}=\frac{\left(d^{-} a\right)^{2}}{2\left(b^{-} a\right)\left(d^{-} c\right)} .
$$

Then, $Q(X, Y)=1-Q(Y, X)=1-P(Y>X)=1-\frac{(d-a)^{2}}{2\left(b^{-} a\right)(d-c)}$.

Remark 3.72The valueof the probabilistic relation $Q$ for the uniform distribution was already studied in [56]. However, theauthorsonlyfocusedonuniformdistributionwith afixed amplitude of the support, andthe onlyparameterwasthestartingpoint of the support. Thisis a particularcaseincludedinthelast result, andin that case, as we have seen, the random variable with the greatest minimum of the support stochastical ly dominates the other one, and consequently it is also statistical ly preferred.

For uniform distributions, first degree sto chastic dominance and statisticalpreference are not equivalent in general. In fact, first degree sto chastic dominance do es not hold when the first case of the pro of of the previous prop osition holds.Nevertheless, we can establish thefollowing:

Corollary 3.73Let $X$ and $Y$ betwo independentrandom variableswith uniformdistribution. It holdsthat:

$$
X \quad \text { FSD } Y \quad X \quad \text { SP } Y \quad E[X] \geq E[Y]
$$

We next fo cus on the family of Pareto distribution.
Prop osition 3.74et $X$ and $Y$ be twoindependent randomvariables with Paretodistributions, $X \equiv P_{a\left(\lambda_{1}\right)}$ and $Y \equiv P_{a\left(\lambda_{2}\right)}$,respectively. Then:

- $Q(X, Y)=\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}$ and
- $X$ is statistical ly preferred to $Y$ if andonly if $\lambda_{2} \geq \lambda_{1}$.

Pro of First of all, le $t$ us determine the expression of $Q$ :

Then,

$$
X \quad \text { sP } Y \quad 1-\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} \geq \frac{1}{2} \quad \lambda_{2} \geq \lambda_{1}
$$

As for exp onential and Bernoulli distributions, the equivalence $b$ etwee $n$ first degree sto chastic dominance and statistical preference holds for Pareto distributions. In fact, when the exp ectation of the random variables exists, first degree sto chastic dominance is equivalent to the comparison of the exp ectationsHence, it is a complete relation, and then $n$-th degree sto chastic dominance is also complete and equivalent to first degree sto chastic dominance.

Corollary 3.75 Let $X$ and $Y$ be two independent random variables wit $h$ Pareto distributions. Then:

$$
X \quad \text { FSD } Y \quad X \quad \text { nsD } Y \text { for any } n \geq 2 \quad X \quad \text { sP } Y
$$

Furthermore, if the parameter of $X$ and $Y$ aregreaterthan 1, their expectation exist $s$, and in that case:

$$
X \quad \text { fSD } Y \quad X \quad \text { nSD } Y \text { for any } n \geq 2 \quad X \quad \text { sP } Y \quad E[X] \geq E[Y] .
$$

Concerning the $b$ eta distribution, we recall that its density function is given by

$$
f(x)=\begin{array}{ll}
\frac{\Gamma(p+q)}{\Gamma(p) \Gamma(q)} x^{p^{-1}}(1-x)^{q-1} & \text { if } 0<x<1  \tag{3.17}\\
0 & \text { otherwise }
\end{array}
$$

Howe ver, the results we investigate in this section fix the value of one of the parameters to 1 . We startbyfixing $q=1$. Weobtain thefollowing:

Prop osition 3.76et $X$ and $Y$ betwoindependent randomvariables withbeta distributions, $X \equiv \beta\left(p_{1}, 1\right)$ and $Y \equiv \beta\left(p_{2}, 1\right)$,respectively. Then:

- $Q(X, Y)=\frac{p_{1}}{p_{1}+p_{2}}$ and
- $X \quad$ sp $Y$ if andonly if $p_{1} \geq p_{2}$.

Pro of We firstcomputethe expressionofthe relation $Q$.

$$
Q(X, Y)=P(X>Y)=\int_{0}^{1} \int_{0}^{x} p_{1} x^{p_{1}-1} p_{2} y^{p_{2}-1} d y d x={ }_{0}^{1} p_{1} x^{p_{1}-1} x^{p_{2}} d x=\frac{p_{1}}{p_{1}+p_{2}} .
$$

Then it holdsthat

$$
X \quad \text { sP } Y \quad \frac{p_{1}}{p_{1}+p_{2}} \geq \frac{1}{2} \quad p_{1} \geq p_{2}
$$

Taking into account that the exp ectation of a beta distribution with parameter $q=1$ is $\frac{p}{p+1}$, the equivalence between statistical preferenc e and the comparison of the exp ectations is clear. Furthermore, take intoaccount thatthe cumulativedistribution function asso ciated with a b eta distribution with parameter $q=1$ is given by:

$$
F(x)=\begin{array}{ll}
\square_{0} & \text { if } x \leq 0 \\
\underbrace{p}_{x} & \text { if } 0<x<1 \\
\text { 目1 } & \text { if } x \geq 1
\end{array}
$$

Then, it is clear that sto chastic dominance between two variables of this typ e can be reduced to verifying which of the parameters $p$ is greater. Finally, itis easytocheck that this is equivalent to take the variable with greater exp ectation. Thus, inthis case sto chastic dominance, statistical preference and the comparison of exp ectations are also equivalent.

Corollary 3.77 Let $X$ and $Y$ be two independent randomvariables with beta distributions with second paramet er equatb 1. Then,

$$
X \quad \text { FSD } Y \quad X \quad \text { nSD } Y \text { for any } n \geq 2 \quad X \quad \text { sp } Y \quad E[X] \geq E[Y] .
$$

Finally, we consider b eta distributions with $p=1$.
Prop osition 3.78et $X$ and $Y$ betwoindependentrandomvariableswith distributions $X \equiv \beta\left(1, q_{1}\right)$ and $Y \equiv \beta(1, q)$, respectively. Then:

- $Q(X, Y)=\frac{q_{2}}{q_{1}+q_{2}}$ and
- $X$ sp $Y$ if andonly if $q_{2} \geq q_{1}$.

Pro of In order to prove the result, note that $X \equiv \beta(1, q) \quad 1-X \equiv \beta(q, 1)$

$$
F_{1-}-x(t)=P(1-X \leq t)=1-F_{X}(1-t)=1-\left[1-(1-(1-t))^{q}\right]=t^{q} .
$$

Then, taking into account Prop osition 3.3, $X \quad$ sp $Y \quad 1^{-Y} \quad$ sp $1^{-X}$ and $Q(X, Y)=$ $Q(1-Y, 1-X)=\frac{q_{2}}{q_{1}+q_{2}}$, and using Prop osition 3.76, statistical preference is equivalent to $q_{2} \geq q_{1}$.

As in the previous case, since the exp ectation of $a b$ eta distribution with parameter $p=1$ is $\frac{1}{1+q}$, the equivalence b etween sto chastic dominance and statisticapreference also holds for beta distributions.

Corollary 3.79Let $X$ and $Y$ be two independent randomvariables with beta distributions withfirst parameter equal to 1. Then,

$$
X \quad \text { FSD } Y \quad X \quad \text { nSD } Y \text { for any } n \geq 2 \quad X \quad \text { sP } Y \quad E[X] \geq E[Y] .
$$

## The normal distribution

We now study normally distributed random variables. Inthiscasewe will not only consider indep endent variables.Thus, we b egin with the comparison of one-dime nsional distributions and then we shall consider the case of the comparison of the comp onents of a bidime nsional random vector normally distributed.

Prop osition 3.8@et $X$ and $Y$ be two independent and normal ly distributed random variables, $N\left(\mu_{1}, \sigma_{1}\right)$ and $N\left(\mu_{2}, \sigma_{2}\right)$, respectively. Then, $X$ will be statistical ly preferred to $Y$ if andonly if $\mu_{1} \geq \mu_{2}$.

Pro of The relation $Q$ takes the value (s ee [56, Section 7]):

$$
Q(X, Y)=F_{N(0,1)} \frac{\mu_{1}-\mu_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}
$$

Then:

$$
X \quad \mathrm{sp} Y \quad Q(X, Y) \geq \frac{1}{2} \quad F_{N(0,1)} \quad \frac{\mu_{1}-\mu_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \geq \frac{1}{2} \quad \frac{\mu_{1}-\mu_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \geq 0 \quad \mu_{1} \geq \mu_{2}
$$

Given two normally distributed ran dom variables $X \quad N\left(\mu_{1}, \sigma_{1}\right)$ and $Y \quad N\left(\mu_{2}, \sigma_{2}\right)$, it holds that $X \quad$ FSD $Y$ if and only if they are identically distributed, $\mu_{1}=\mu 2$ and $\sigma_{1}=\sigma_{2}$, (see [139]). Then, statistical preference is not equivalent to first degree sto chastic dominance fornormal randomvariables.

For indep endent normal distributions, the variance of the variables are not important when studying statistical preferenc e.For this reason, statistical preference is equivalent to the criterium of maximum mean in the comp aris on of normal random variables:

Corollary 3.81 Consider two independent random variables $X$ and $Y$ normal ly distributed. Itholds that:

$$
X \quad \text { FSD } Y \quad X \quad \text { SP } Y \quad E[X] \geq E[Y] .
$$

Letus now consider abidimensionalrandom vector with normal distribution:

$$
\begin{align*}
& X_{1}  \tag{3.18}\\
& X_{2}
\end{aligned} \equiv N \quad \begin{aligned}
& \mu_{1} \\
& \mu_{2}
\end{align*} \quad, \quad \begin{array}{cc}
\sigma_{1}^{2} & \sigma_{1} \sigma_{2} \rho \\
\sigma_{1} \sigma_{2} \rho & \sigma_{2}^{2}
\end{array}
$$

Now, our aim is to compare the comp onent $\$_{1}$ and $X_{2}$ ofthis randomvector. We obtain the following result:

Theorem 3.82Considerthe random vector $\begin{aligned} & X_{1} \\ & X_{2}\end{aligned}$ normally distributed as in Equation (3.18). Then,it holds that:

- $Q\left(X_{1}, X_{2}\right)=F_{N(0,1)}$

$$
\forall \frac{\mu_{1}-\mu_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}} .
$$

$$
\text { - } X_{1} \quad \text { sp } X_{2} \quad \mu_{1} \geq \mu_{2}
$$

Pro of Applyingthe usual prop erties of the normal distributions, thedistribution of $X_{1}-X_{2}$ is:

$$
\begin{aligned}
& =N\left(\mu_{1}-\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}\right) \text {, }
\end{aligned}
$$

where the second parameter is consider to be the variance instead of the standard deviation. Then:

$$
\begin{aligned}
& P\left(X_{1}>X_{2}\right)=P\left(X_{1}-X_{2}>0\right)=P \quad N(0,1)>\quad \forall \frac{\mu_{2}-\mu_{1}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}} \\
& =P \quad N(0,1)<\quad \forall \frac{\mu_{1}-\mu_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}} \quad=F_{N(0,1)} \quad \forall \frac{\mu_{1}-\mu_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}} .
\end{aligned}
$$

Thus, $X_{1} \quad$ sp $X_{2}$ if and on ly if $F_{N(0,1)} \quad \forall \frac{\mu_{1}-\mu_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}} \quad \geq \frac{1}{2}$.
This result is more general than Prop osition 3.80, which corresp onds to the case $\rho=0$. Moreover, in that case statistic al preference is also equivalent to the comparison of the exp ectations.However, theadvantageofobtaining a degreeof preference isobvious. In fact, we haveto recall the influence of the correlation co efficient $\rho$ in the value of the preference degree: although the preference between $X_{1}$ and $X_{2}$ is only basedon the comparison of the exp ectations $\left(\begin{array}{llll}X_{1} & \text { sp } & X_{2} & \left.\mu_{1} \geq \mu_{2}\right) \text {, the valueof } \rho \text { plays }\end{array}\right.$ an imp ortant role for the preference degree. For instance, the greater the correlati on co efficient,the greater thepreference degree $Q(X, Y)$. For thisreason, thegreater the correlation co efficient, the stronger the preference of over $Y$.

In Table 3.4 we have summarised the res ults that we have obtained in this subsection.

As a summary, we have seen that for the some of usual distributions in indep endent random variables, statistical preference is equivalent to the comparison of its exp ectations, andin several cases, sto chastic dominance and statistical preference are also equivalent. Let usrecall that, in particular, for thedistributionswehavestudiedthat b elongs to the exponential family of distribu tions, sto chastic dominance and statistical preference are equivalent. We can conjecture that for indep endent random variables whose distribution $b$ elong to the exp onential family of distributions, statistical preference and sto chastic dominance are equivalent, and are also equivalent to the comparison of the exp ectations.

Nevertheless, at this $p$ oint, this is just a c on jecture b ecause it has not b een proved yet.

| Distributions | $Q\left(X_{1}, X_{2}\right)$ | Condition |
| :---: | :---: | :---: |
| $X_{i} \equiv B(p i), i=1,2$ | ${ }_{2}^{1} p_{1}-p_{2}+1$ | $p_{1} \geq p_{2}$ |
| $X_{i} \equiv E x p\left(\lambda^{\prime}\right), i=1,2$ | $\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}$ | $\lambda_{2} \geq \lambda_{1}$ |
| $\begin{aligned} & X_{1} \equiv U(a, b), X_{2} \equiv U(c, d) \\ & a \leq c \leq d<b \\ & c<a<b \leq d \\ & c \leq a<d \leq b \end{aligned}$ | $\begin{aligned} & 2 b^{-c-d} \\ & 2\left(b^{-} a\right) \\ & \frac{a+b-2 c}{2\left(d^{-}-c\right)} \\ & 1-\frac{\left(d^{-}-a\right)^{2}}{2\left(d^{-} c\right)\left(b^{-}-a\right)} \end{aligned}$ | $\begin{aligned} & a+b \geq c+d \\ & a+b \geq c+d \end{aligned}$ <br> Always |
| $P_{a}(\lambda i), i=1,2$ | $\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}$ | $\lambda_{2} \geq \lambda_{1}$ |
| $\beta(p i, 1), i=1,2$ | $\frac{p_{1}}{p_{1}+p_{2}}$ | $p_{1} \geq p_{2}$ |
| $\beta(1, q i), i=1,2$ | $\frac{q_{2}}{q_{1}+q_{2}}$ | $q_{2} \geq q_{1}$ |
| $N\left(\mu i, \sigma_{i}\right), i=1,2$ | $F_{N(0,1)} \quad \frac{\mu_{1}-\mu_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}$ | $\mu_{1} \geq \mu_{2}$ |

Table 3.4: Characterizations of statistical preference $b$ etween indep endent random variables included inthesame familyofdistributions.

Although during this paragraph we have assumed indep endence for non-normally distributed variables, there are other cas es of interest. For instance, in [32] the case of comonotonic and countermonotonicrandom variablesare studied. In particular, Prop osition 3.65, thatassuresthat

$$
X \quad \text { sp } Y \quad X \quad \text { nsd } Y \quad E[X] \geq E[Y] \text { for any } n \geq 1
$$

for indep endent random variables with Bernoulli distributi on, could be easily extended to Bernoulli distributed random variables, taking into account the possible dep endence relationship between them.

### 3.3 Comparison of variables by means of the statistical pr eference

So far, we haveinvestigated several prop erties of sto chastic dominance and statistical preference as pairwise comparison metho ds. However, anatural question arises: can
we employ those metho ds for the comparison of more than two variables? On the one hand, stochastic dominance was defined as a pairwise comparison metho d, based on the direct comparison of the cumulative distribu tion functions, ortheir iterative integrals. As we already mentioned, sto chastic dominance allows for incomparability. Thu s, if incomparability can happ en when comparing two distribution functions, it should be more frequ ent when comparing more than two. Then, stochastic dominance do es not seem to be a go od alternative for the comparison of more than two variables.

On the other hand, statistical preference has an imp ortant drawback: its lackof transitivity. The ideaofstatistical preference is to cons ider $X$ preferred to $Y$ when it provides greater utility the ma jority of times. As such, it is close to the rule of ma jority in voting systems; takingintoaccountCondorcet'sparadox(see[40]) itisnotdifficult tosee that statistical preference is nottransitive. WhenDe Schuymer etal. ([55, 57]) intro duced this notion, they provided an example to illustrate this fact; another one can b e found in [67, Example 3].

Example 3.83([57, Section 1] As in Example 3.10, consider the fol lowing dice:

$$
\begin{align*}
& A=\{1,3,4,15,16,\} \not\} \\
& B=\{2,10,11,12,13\}, 14 \tag{3.19}
\end{align*}
$$

and also the dice

$$
C=\{5,6,7,8,9, \uparrow 8
$$

where by dice we mean a discrete and uniformly distribut ed random variablele consider the game consisting on rol ling the three dice simultaneously, so that the dice whose number isgreater wins the game. Thus, $A, B$ and $C$ canbe seenas independent randomvariables.

If we compute the probabilistic relation $Q$ for these dices we obtain the fol lowing results:

Hence, dice $A$ is statistical ly preferred to dice $B$, dice $B$ is statistical ly preferred to dice $C$ but dice $C$ is statistical ly preferred to dice $A$, that is, there is a cycle, aswe cansee in Figure 3.4.

This fact is known as the cycle-transitivity problem, and it has already been studied by some authors, likeDe Shuymer et al. ([14, 15, 16, 49, 54, 56, 57, 58]) and Martine tti et al. ([122]).

This shows that statistical preference could not be adequate when we want to compare more than two random variables, precise ly b ecause it is based on pairwise comparisons.


Figure 3.4: Probabilisticrelationforthe threedices.

Since $b$ oth sto chastic dominance and statistical preference do not seem to $b$ e adequate metho ds for the comparison of more than two variables, our aim in this section is to provide ageneralisation of the statistical preference for the comparison of $n$ random variables, based ona extension of the probabili stic relation defined in Equation (2.7). After intro ducing the main definition, we shall investigate its prop erties, its possible characterizationsanditsconnectionwiththe"usual" statisticalpreference, aswellasits possible relationships with sto chastic dominance.

### 3.3.1 generalisation of the statistical preference

First of all we are goingto analyze the case of three random variables, as in the dice example, and later weshall generalise our definition to the case of $n$ random variables.

Let us consider three random variables denoted by $X, Y$ and $Z$ defined onthe probability sp ace $(\Omega, A, P)$. We can decomp os $\Omega$ in the following way:

$$
\begin{align*}
\Omega= & \{X>\max (Y, Z)\} \quad\{Y>\max (X, Z)\} \quad\{Z>\max (X, Y)\} \\
& \{X=Y>Z \quad\}\{X=Z>Y \quad\}\{\quad Y=Z>X \quad\}\{X=Y=Z \tag{3.20}
\end{align*}
$$

Obviously, $\{X>\max (Y, Z)\}$ denotes the subset of $\Omega$ formed by the elements $\omega \quad \Omega$ satisfying $X(\omega)>\max (Y(\omega), Z(\omega$,$) andsimilarlyfor theothers. In what remains we$ will use the short wayin order to simplify the notation.

This is a decomp osition o $\Omega$ into pairwise disjointsubsets, i.e., a partitionof $\Omega$. As aconsequence,

$$
\begin{align*}
1 & =P(X>\max (Y, Z))+P(Y>\max (X, Z))+P(Z>\max (X, Y))+P(X=Y>Z) \\
& +P(X=Z>Y)+P(Y=Z>X)+P(X=Y=Z) . \tag{3.21}
\end{align*}
$$

Since our goal is to define the degree in which $X$ is preferredto $Y$ and $Z$, we can define $Q_{2}(X,[Y, Z])$ by the followingequation:

$$
\begin{aligned}
Q_{2}(X,[Y, Z]) & =P(X>\max (Y, Z)) \\
& +{ }_{2}^{1} P(X=Y>Z)+P(X=Z>Y) \quad
\end{aligned} \quad+{ }_{3}^{1} P(X=Y=Z) .
$$

This generalises Equation(2.7). Furthermore, ifweconsider $Q_{2}\left(Y,[X, Z]\right.$ and $Q_{2}(Z,[X, Y])$ given by:

$$
\begin{aligned}
Q_{2}(Y,[X, Z]) & =P(Y>\max (X, Z))+\frac{1}{2} P(X=Y>Z)+P(Y=Z>X) \\
& +\frac{1}{3} P(X=Y=Z) ; \\
Q_{2}(Z,[X, Y]) & =P(Z>\max (X, Y))+\frac{1}{2} P(X=Z>Y)+P(Y=Z>X) \\
& +\frac{1}{3} P(X=Y=Z) ;
\end{aligned}
$$

usingthe partition of $\Omega$ showed in Equation (3.20) and Equation (3.21), it can be shown that:

$$
Q_{2}(X,[Y, Z])+Q_{2}(Y,[X, Z])+Q_{2}(Z,[X, Y])=1
$$

In this sense, followingtheideaof DeSchuymeretal. $\quad([55,57]), X$ can be cons idered preferred to $Y$ and $Z$ if

$$
Q_{2}(X,[Y, Z]) \geq \max \left\{Q_{2}(Y,[X, Z]), Q(Z,[X, Y]\}\right.
$$

Moreover, $X$ ispreferred to $Y$ and $Z$ with degree $Q_{2}(X,[Y, Z])$
More generally, wecan consider a set of alternatives $D$ formed bysome random variables defined on the same probability space. Then, wecanconsider themap:

$$
Q_{n}: D \times D^{n} \rightarrow[0,1]
$$

defined by:

$$
\begin{aligned}
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)= & \operatorname{Prob}\left\{X>\max \left(X \quad 1, \ldots, X_{n}\right)\right\} \\
& +\frac{1}{2}_{i=1}^{n} \operatorname{Prob}\{X=X \quad i>\max (X j: j=i) \quad\} \\
& +\frac{1}{3}{ }_{1 \leq i<j \leq n} \operatorname{Prob}\{X=X \quad i=X \quad j>\max (X \quad k: k=i, j)\} \\
& +\ldots+\frac{1}{n+1} \operatorname{Prob}\left\{\begin{array}{lll}
\left.X=X \quad 1=\ldots=\begin{array}{ll}
X & n
\end{array}\right\} .
\end{array} .\left\{\begin{array}{lll}
X &
\end{array}\right\}\right.
\end{aligned}
$$

Equivalently, the relation $Q_{n}$ can be expresse $d$ by:

$$
\begin{align*}
& Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)= \\
& \underbrace{}_{\substack{k=0, \ldots, n \\
1 \leq i_{1}<\ldots<i}} \quad \frac{1}{k+1} P\left(X=X \quad i_{1}=\ldots=X \quad i_{k}>\max _{j=i} \max _{1, \ldots, i_{k}}(X j)\right), \tag{3.22}
\end{align*}
$$

where $\left\{i_{1}, \ldots, i k\right\}$ denotes any ordered subset of $k$-elements of $\{1, \ldots, n\}$. Note that thisformulaisthe generalisationof theprobabilistic relation definedon Equation (2.7), since for $n=1$ weobtain the expression of such probabilistic relation. We can interpret the value of $Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)$ asthe degree in which $X$ is pre ferred to $X_{1}, \ldots, X_{n}$. Consequently, th e greater the value of $Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)$ the stronger the preference of $X$ over $X_{1}, \ldots, X_{n}$. The relation $Q_{n}$ allows to define the concept of general statis tical preference.

Definition 3.84Let $X, X_{1}, \ldots, X_{n}$ be $n+1$ random variables. $X$ is statistical ly preferred to $X_{1}, \ldots, X_{n}$, and it is denoted by $X$ sp $\left[X_{1}, \ldots, X_{n}\right]$,if

$$
\begin{equation*}
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right) \geq \max _{i=1, \ldots, n} Q_{n}\left(X i,\left[X,\left\{X_{j}: j=i \quad\right\}\right]\right) \tag{3.23}
\end{equation*}
$$

As it was the case for statistical preference, this general isation uses the joint distribution of the variables, and thus takes into account the sto chastic dep endencies $b$ etween them. Moreover, the relation $Q_{n}$ providesa degree of preference of arandom variable with resp ect to the others, and through thiswe can establish which is the preferred random variable, the second preferred random variable, etcForinstance, if $Q_{n}\left(X i,\left[X,\left\{X_{j}: j=\right.\right.\right.$ $i\}]) \geq Q_{n}\left(X j,\left[X,\left\{X_{j}: j=i \quad\right\}\right]\right.$ ) for every $i>j \quad$ andEquation(3.23)holds, then $X$ is the preferred random variable, $X_{1}$ isthesecondpreferredrandom variableand, in general, $X_{i}$ is the $i+1$ preferred random variable, with their resp ective degrees of preference.

Example 3.85Ifwe consider thedicesdefinedonEquation (3.19)andapply thegeneral statistical preference to find the preferred dice, we obtain the fol lowing preference degrees: $Q_{2}(X,[Y, Z])=0.4167 Q_{2}(Y,[X, Z])=0.347,2$ and $Q_{2}(Z,[X, Y])=0.236 .1$ Thus, $X$ is the preferred dice with degree $0.4167 ; Y$ isthe second preferreddice withdegree0.3472; and $Z$ is theless preferreddice withdegree 0.2361.

### 3.3.2 Basic properties

In this subsection we investigate some basic prop erties of the general statistical preference. The first partis devotedto the study of the relationships b etween pairw ise statistical preference and generalpreference. Similarly, we alsoestablisha connection between $Q($,$) and Q_{n}(,[])$. Finally, we generalise Prop osition 3.39 and Theorem 3.40, where we showed the connection $b$ etwee $n$ statistical preference and the mediafior the general statistical preferenceand establish a characterization of thisnotion.

Consider random variables $X, X_{1}, \ldots, X_{n}$. In ourfirst resultwe prove thatgeneral statistical preference sometimesoffers a different preferred random variable than pairwise statistical prefe rence.This is because general statistical prefe re nce uses the joint distribution of all the variable s, while pairwisestatistical preference only takes into account their bivariate distributions, and consequently it do es not use all the available information.

Prop osition 3.86et $X, X_{1}, \ldots, X_{n}$ be $n+1$ random variables. Itholds that:

- There are $X, X_{1}, \ldots, X_{n}$ random variables su ch that $X \quad$ sp $X_{i}$ for every $i=$ $1, \ldots, n$ and $X_{j}$ sp $\left[X, X_{i}: i=j\right]$ for some $j\{1, \ldots, n\}$.
- There are $X, X_{1}, \ldots, X_{n}$ random variables su ch that $X_{i}$ sp $X$ for every $i=$ $1, \ldots, n$ and $X$ sp $\left[X_{1}, \ldots, X_{n}\right]$.

Pro of Letus considerthe firststatement. To see that the implication do es not hold in general, considern=2 and the indep endent random variables $X, X_{1}$ and $X_{2}$ defined by:

| $X$ | 3 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{\mathrm{X}}$ | 0.5 | 0.5 |$\quad$| $X_{1}$ | 0 | 5 |
| :--- | :--- | :--- | :--- | :--- |
| $P_{\mathrm{x}_{1}}$ | 0.5 | 0.5 |$\quad$| $X_{2}$ | 2 |
| :--- | :--- |
| $P_{\mathrm{x}_{2}}$ | 0.51 |
| 0.49 |  |

For these variables it holds that $Q\left(X_{1} X_{1}\right)=0.625$ and $Q\left(X, X_{2}\right)=0.51$, and consequently $X \quad$ sp $X_{1}$ and $X \quad$ sp $X_{2}$. However,

$$
\begin{aligned}
& Q_{2}\left(X,\left[X_{1}, X_{2}\right]\right)=0.31875 . \\
& Q_{2}\left(X_{1},\left[X, X_{2}\right]\right)=0.19125 . \\
& Q_{2}\left(X_{2},\left[X, X_{1}\right]\right)=0.49 .
\end{aligned}
$$

Thus, $X_{2}$ sp $\left[X, X_{1}\right]$.
Consider now the second statement. Consider $n=2$ and the indep endent dices $X, X_{1}$ and $X_{2}$ defined by:

$$
\begin{aligned}
& x=\{1,2,4,6,17, \lambda 8 \\
& x_{1}=\{3,7,9,12,14,416 \\
& x_{2}=\{5,8,10,11,13\} .15
\end{aligned}
$$

It holds that $X_{1} \quad$ sp $X$ and $X_{2} \quad$ sp $X$, since $Q\left(X, X_{1}\right)=\frac{7}{18}$ and $Q\left(X, X_{2}\right)=\quad{ }_{36}^{13}$. However, ifwe computethe relation $Q_{2}(,[])$ we obtain thefollowing:

$$
\begin{aligned}
& Q_{2}\left(X,\left[X_{1}, X_{2}\right]\right)=\frac{73}{216} . \\
& Q_{2}\left(X_{1},\left[X, X_{2}\right]\right)=\frac{72}{216} . \\
& Q_{2}\left(X_{2},\left[X, X_{1}\right]\right)=\frac{71}{216} .
\end{aligned}
$$

Consequently, $X$ sp $\left[X_{1}, X_{2}\right]$.
Next we prove that $Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)$ is always lower than or equal to $Q\left(X, X_{i}\right)$.
Prop osition 3.8tet usconsider therandom variables $X_{,} X_{1}, \ldots, X_{n}$. It holds that:

$$
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right) \leq Q(X, X i) \text { for every } i=1, \ldots, n .
$$

Consequently, if $Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right) \geq \frac{1}{2}$, then $X \quad$ sp $\left[X_{1}, \ldots, X_{n}\right]$ and $X \quad$ sp $X_{i}$ for every $i=1, .$. ,n .

Pro of Recall that $Q(X, X i)=P(X>X \quad i)+{ }_{2}^{1} P\left(\begin{array}{ll}X=X & i\end{array}\right)$. It holdsthat:

$$
\left\{\begin{array}{ll}
X>X & i
\end{array}\right\} \underset{\substack{k=0, \ldots, n \\
i_{1}, \ldots, i_{k}=i}}{ } X=X \quad i_{1}=\ldots=X \quad i_{k}>\max _{j=i, i} \max _{1, \ldots, i_{k}}\left(X_{i}, X_{j}\right)
$$

Moreover, the previous sets arepairwise disjoint, and consequently:

$$
P\left(\begin{array}{ll}
X>X \quad i
\end{array}\right) \geq \underset{\substack{k=0, \ldots, n \\
i_{1}, \ldots, i_{k}=i}}{ } P \quad X=X \quad i_{1}=\ldots=X \quad i_{k}>\max _{j=i, i, i_{1, \ldots, i_{k}}}\left(X_{i}, X_{j}\right) .
$$

Similarly:

$$
\left\{\begin{array}{ll}
X=X & i
\end{array}\right\} \underset{\substack{k=0, \ldots, n \\
i_{1}, \ldots, i_{k}=i}}{ } X=X \quad i=X \quad i_{1}=\ldots=X \quad i_{k}>\max _{j=i, i} \max _{1, \ldots, i_{k}}(X j) \text {. }
$$

Since these setsare pairwise disjoint,

Consequently, we obtain that:

$$
\begin{aligned}
& Q(X, X i)=P(X>X \quad i)+{ }_{2}^{1} P(X=X \quad i) \geq \\
& P\left(X=X \quad i_{1}=\ldots=X \quad i_{k}>\max _{j=i, i} \max _{1, \ldots, i_{k}}\left(X i, X_{j}\right)\right)+ \\
& \begin{array}{c}
k=0, \ldots, n \\
i_{1}, \ldots, i_{k}=i
\end{array} \\
& \stackrel{1}{2}_{\substack{1 \\
k=0, \ldots, n \\
i_{1}, \ldots, i_{k}=i}} P\left(X=X \quad i=X \quad i_{1}=\ldots=X \quad i_{k}>\max _{j=i}\left(X_{1}, \ldots, I_{k}\right)\right) \geq \\
& \frac{1}{k+1} P\left(X=X \quad i_{1}=\ldots=X \quad i_{k}>\max _{j=i} \max _{1, \ldots, i_{k}}(X j)\right)= \\
& \begin{array}{c}
k=0, \ldots, n \\
i_{1}, \ldots, i_{k} \quad\left\{{ }_{1}, \ldots, n\right\}
\end{array} \\
& Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right) .
\end{aligned}
$$

We conclude that $Q\left(X, X_{i}\right) \geq Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)$. Conse quently, if

$$
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right) \geq \frac{1}{2}
$$

then $X \quad$ sp $\left[X_{1}, \ldots, X_{n}\right]$ and $X \quad$ sp $X_{i}$ for every $i=1, \ldots, n$.
Next we establish the connection between the probabilistic relation $Q($,$) and$ $Q_{n(, ~[~]) . ~}^{\text {. }}$

Prop osition 3.88et $X, X_{1}, \ldots ., X_{n}$ be $n+1$ random variables defined on thesame probability space. It holdsthat

$$
\begin{aligned}
& Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)-Q\left(X, \max \left(X_{1}, \ldots, X_{n}\right)\right)= \\
& \quad \frac{1}{k+1}-\frac{1}{2} \quad \underbrace{1 \leq i_{1}<\ldots<i}_{k=2} \begin{array}{l}
i_{j}=i, j \leq n
\end{array} \\
& P\left(X=X \quad i_{1}=\ldots=X \quad i_{k}>\max _{l=i} \max _{1}, \ldots, l_{k}(X I)\right) .
\end{aligned}
$$

Pro of Consider the expression of $Q\left(X, \max \left(X_{1}, \ldots, X_{n}\right)\right)$ :

$$
\begin{aligned}
& Q\left(X, \max \left(X_{1}, \ldots, X_{n}\right)\right)=P\left(X>\max \left(X_{1}, \ldots, X_{n}\right)\right)+
\end{aligned}
$$

Using Equation (3.22), $Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)$ can be express ed by:

$$
\begin{aligned}
& Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)=P\left(X>\max \left(X \quad 1, \ldots, X_{n}\right)\right)+ \\
& \\
& { }_{k=1} \frac{1}{k+1} \quad \begin{array}{l}
1 \leq i_{1}<\ldots<i \\
i_{j}=i, i \\
k
\end{array} k_{j=1} \leq n\left(X=X \quad i_{1}=\ldots=X \quad i_{k}>\max _{l=i} i_{1, \ldots, i_{k}}(X 1)\right) .
\end{aligned}
$$

The result follows simply by making the difference b etween both expressions.
From this result we deduce that

$$
\begin{equation*}
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right) \leq Q\left(X, \max \left(X_{1}, \ldots, X_{n}\right)\right) \tag{3.24}
\end{equation*}
$$

Then, if $X$ sp $\left[X_{1}, \ldots, X_{n}\right]$ holds with degree $Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right) \geq \frac{1}{2}$, we obtain $X \quad \mathrm{sp} \max \left(X_{1}, \ldots, X_{n}\right)$.

Moreover,there are situations where the inequality of Equation (3.24) b ecomes an equality. To see this, let us intro duce the following notation:

$$
X_{-i}=\left\{X_{j}: j=i \quad\right\} .
$$

Corollary 3.89Under the conditions of the previous proposition, if for every $k$ $\{1, \ldots, n\}$ and for every $1 \leq i_{1}<\ldots .<i$ k it holdsthat

$$
\begin{equation*}
P\left(X=X \quad i_{1}=\ldots .=X \quad i_{k}>\max (X j: j=i \quad 1, \ldots, \dot{k})\right)=0 \tag{3.25}
\end{equation*}
$$

then

$$
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)=Q\left(X, \max \left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Furthermore, if forevery $k\{1, \ldots, n\}$ and for every $1 \leq i_{1}<\ldots .<i k \leq n$ it holds that

$$
\begin{equation*}
P\left(X_{i_{1}}=\ldots=X \quad i_{k}>\max \left(X, X_{j}: j=i \quad 1, \ldots, \dot{k}\right)\right)=0 \tag{3.26}
\end{equation*}
$$

then

$$
Q_{n}(X i,[X, X-i])=Q(X i, \max (X, X-i))
$$

for every $i=1, \ldots, n$.

In particular, the previous result holdswhen the random variables satisfy, $P\left(\begin{array}{ll}X=X \quad & i)= \\ =\end{array}\right.$ $P(X=X \quad j)=0$ for every $i=j$, as is for instance the c as e with discrete random variables with pairwise disjoint supp orts.

Finally, let us generalise Theorem 3.40 and to provide a characterization of general statistical preference. For this aim we consider random variab les $X, X \quad{ }_{1}, \ldots, X_{n}$ satisfying Equations (3.25)and (3.26)forevery $k\{0, \ldots, n\}$ and every $1 \leq 1_{i}<\ldots .<i \quad k \leq n$. Although this restriction will be imp osed also in Theorems 3.91, 3.95 and Lemma 3.94, it is not to o restrictive. In fact, it is satisfied by discrete random variables with pairwise disjoint supp orts or absolutely continuous random vectors $\left(X, X_{1}, \ldots, X_{n}\right)$. Consequently, we can understandit as atechnical condition.

Theorem 3.90Let $X, X_{1}, \ldots, X_{n}$ be $n+1$ real-valued random variables defined on the same probability satisfying Equations (3.25)and (3.26). Then, $X$ sp $\left[X_{1}, \ldots, X_{n}\right]$ holds if and only if

$$
F_{X-\max \left(X_{1}, \ldots, X_{n}\right)}(0) \leq F_{X_{i}-\max (X, X-i)}(0) \text { for every } i=1, \ldots, n .
$$

Pro of The probabilistic relation $Q(X, Y)$ can byexpressedby:

$$
Q(X, Y)=1-F_{X-Y}(0)+\frac{1}{2} P(X=Y)
$$

Thus, using this expression and applying Corollary 3.89 it holds that:

$$
\begin{aligned}
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right) & =Q\left(X, \max \left(X_{1}, \ldots, X_{n}\right)\right)=1-F_{X-\max \left(X_{1}, \ldots, X_{n}\right)}(0) \\
& +\frac{1}{2} P\left(X=\max \left(X_{1}, \ldots, X_{n}\right)\right)=1-F_{X-\max \left(X_{1}, \ldots, X_{n}\right)}(0)
\end{aligned}
$$

Similarly, we can compute the value of $Q_{n}(X i,[X, X-i])$ :

$$
Q_{n}(X i,[X, X-i])=1-F_{X_{i}-\max (X, X-i)}(0) .
$$

Therefore, $X$ sp $\left[X_{1}, \ldots, X_{n}\right]$ ifand only if:

$$
1-F_{X-\max \left(X_{1, \ldots}, \ldots, X_{n}\right)}(0) \geq 1-F_{X_{i}-\max (X, X-i)}(0)
$$

or equivalently,

$$
F_{X-\max \left(X_{1}, \ldots, X_{n}\right)}(0) \leq F_{X_{i}-\max (X, X-i)}(0)
$$

for every $i=1, . . ., n$.
Thus, given randomvariables $X, X_{1}, \ldots, X_{n}$ inthe conditionsofthe previousresult, to find the preferred one bycomputingthe values of $Q_{n}(,[])$ is equivalent to comparing the values of $F_{X-\max \left(X_{1}, \ldots, X_{n}\right)}(0)$ and $F_{\mathrm{X}^{i}-\max (\mathrm{X}, \mathrm{X}-i)}(0)$ for $i=1, \ldots, n$.

### 3.3.3 Stochastic dominance Vs general statistical preference

In Section 3.2 we saw that in a numb er of cases first degree stochastic dominance implies statistical preference for real-valuedrandom variables.Nowwe investigatethe connection between sto chastic dominance and general statistical preferendain, weshallconsider different cases: ontheone hand, indep endent and comonotonic random variables, for which we shall obtain an equivalent expression for $Q_{n}(,[])$. On the other hand, we shall conside $r$ random variables coupled by Archimedean copulas.Recall that we omit countermonotonic random variables since, as we already said, the Łukasiewicz op erator is not acopula for $n \geq 2$. Finally, we also investigate the relationships between the $n^{\text {th }}$ degree sto chastic dominance and general statistical preference.

## Indep endent and comonotonic random variables

Let us begin our study with the case of indep endent real-valued random variables. In this case, by generalizing Theorem 3.44, we deduce that first degree sto chastic dominance implies general statistical preference.

Theorem 3.91Let usconsider $X, X_{1}, . . ., X_{n}$ independentreal-valued random variables satisfying Equations (3.25) and (3.26). Then, if $X$ FSD $X_{i}$ for $i=1, \ldots, n$, implies $X$ sp $\left[X_{1}, \ldots, X_{n}\right]$.

Pro of Since we are under the hyp otheses of Corollary 3.89, we deduce that:

$$
\begin{aligned}
& Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)=Q\left(X, \max \left(X_{1}, \ldots, X_{n}\right)\right) \text { and } \\
& Q_{n}(X i,[X, X-i])=Q(X i, \max (X, X-i)),
\end{aligned}
$$

for every $i=1, \ldots, n$. Therefore, $X \quad$ sp $\left[X_{1}, \ldots, X_{n}\right]$ if and on ly if:

$$
P\left(X \geq \max \left(X_{1}, \ldots, X_{n}\right)\right) \geq P\left(X_{i} \geq \max (X, X-i)\right), \quad i=1, \ldots, n .
$$

Note that, since $X, X_{1}, \ldots, X_{n}$ are indep endent, we also have that:

- $X$ and $\max \left(X_{1}, \ldots, X_{n}\right)$ are indep endent.
- $X_{i}$ and $\max (X, X-i)$ are indep endent.

Now, we have toremark that, if $U_{1}$ and $U_{2}$ are two indep endent random variables with res $p$ ective cumulative distribution func tion $\mathcal{F} U_{1}$ and $F U_{2}$, Lemma 3.11 assures that $P\left\{U_{1} \geq U_{2}\right\}=E\left[F U_{2}\left(U_{1}\right)\right]$.

Applying this result, we deducethat:

$$
P\left(X \geq \max \left(X_{1}, \ldots, X_{n}\right)\right)=E\left(F_{\max \left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)}(X)\right)=E\left(F \mathrm{x}_{1}(X) \ldots F_{\mathrm{x}_{\mathrm{n}}}(X)\right) .
$$

Similarly,

$$
\begin{aligned}
P(X i \geq \max (X, X-i)) & =E\left(F_{\max (X, X-i)}\left(X_{i}\right)\right) \\
& =E\left[F \times(X i) \quad j=i F_{X_{j}}(X i)\right] \leq E\left[{ }_{j=1}^{n} F_{X_{j}}(X i)\right],
\end{aligned}
$$

where last inequality holds since $F_{X} \leq F_{X_{i}}$. Finally, since $X \quad$ FSD $X_{i}$, Equation (2.6) assures that $E[h(X)] \geq E[h(X i)]$ for any increasing function $h$. In particular, we may considerthe increasing function

$$
h(t)={ }_{j=1}^{n} F_{X_{j}}(t) .
$$

Therefore,

$$
\begin{aligned}
& P\left(X \geq \max \left(X_{1}, \ldots, X_{n}\right)\right)=E\left(F_{X_{1}}(X) \ldots F X_{n}(X)\right) \\
& \geq E\left[\sum_{j=1}^{n} F_{X_{j}}(X i)\right] \geq P(X i \geq \max (X, X-i)),
\end{aligned}
$$

or equivalently,

$$
Q\left(X, \max \left(X_{1}, \ldots, X_{n}\right)\right) \geq Q\left(X_{i}, \max (X, X-i)\right)
$$

We conclude that $X$ sp $\left[X_{1}, \ldots, X_{n}\right]$.
Now we shall see that, as with statistical preference for indep endent random variables, strict first degree sto chastic dominance also implies strict general statistical preference. For this aim, we need to establish the following lemm a.

Lemma 3.92Consider $n+1$ independent real-valuedrandom variables $X, X_{1}, \ldots, X_{n}$ satisfying Equations (3.25) and (3.26) suchthat $\quad X \quad$ FSD $\quad X_{i}$ for $i=1, \ldots, n$. The fol lowing statements hold:

1. There is $t$ such that $F_{X}(t)<F \quad X_{i}(t)$ and $F_{X_{j}}(t)>0$ for any $j=i$.
2. If $P\left(X_{i}=t\right)=0$ for any $t$ satisfying the first point, thenthereexists aninterval $[a, b]$ and $\varepsilon>0$ such that:

$$
{ }_{j=1} F_{X_{\mathrm{j}}}(t)-F_{\mathrm{X}}(t)-{ }_{j=i} F_{\mathrm{X}_{\mathrm{j}}}(t) \geq \varepsilon>0,
$$

and $P\left(X_{j} \quad[a, b]\right)>0$.

Pro of Letusprovethe firststatement. Ex-absurdo, assumethatforany $t$ such that $F_{\mathrm{X}}(t)<F \mathrm{x}_{\mathrm{i}}(t)$, there exist $j_{1}, \ldots, j_{k}$ such that $F_{\mathrm{X}_{\mathrm{j}_{1}}}(t)=F \quad \mathrm{x}_{\mathrm{j}_{\mathrm{k}}}(t)=0<F \quad \mathrm{x}_{\mathrm{j}}(t)$ for any $j=j 1, \ldots, j k$, and therefore $F_{X}(t)=0$. Sincethecumulativedistribution functions are right-continuous, there is $t$ such that $0=F \times(t)<F x_{i}(t)$ for any $t<t$ and $0<F \times(t) \leq F_{\mathrm{X}_{\mathrm{j}}}(t)$ for any $j=1, \ldots, n$. Then:

$$
P(X=t \quad)>0, \quad P\left(X j_{1}=t \quad\right)>0, \quad . ., \quad P\left(X_{j_{k}}=t \quad\right)>0 .
$$

Hence:

$$
\begin{aligned}
P\left(X=X \quad j_{1}=\ldots=X \quad j_{k}>X \quad j: j=j\right. & \left.1, \ldots, j_{k}\right) \geq \\
P(X=X & \left.j_{1}=\ldots=X \quad j_{k}=t \quad>X \quad j: j=j \quad 1, \ldots, j_{k}\right)>0,
\end{aligned}
$$

and this contradicts Equation (3.25). We conclude thatthere exists atleast $t$ such that $F_{\mathrm{X}}(t)<F \mathrm{X}_{\mathrm{i}}(t)$ and $F_{\mathrm{X}_{\mathrm{j}}}(t)>0$ for any $j=i$.

Let us now check the second statement. Let $t$ be a point such that $F_{\mathrm{X}}(t)<$ $F_{X_{i}}(t)$ and $F_{X_{j}}(t)>0$ for any $j=i$. Following the samesteps as inLemma 3.45 we can prove that the existence of an interval $[a, b]$ including $t$ and $\delta>0$ such that $F_{X_{i}(t)}-F_{X}(t) \geq \delta>0$ for any $t \quad[a, b]$ and $P(X i \quad[a, b])>0$. Furthermore, since by hyp othesis $P\left(X_{i}=t\right)=0 \quad$ for any $t \quad[a, b] F_{X_{i}}$ should be strictly increasing ina subinterval $\left[a_{1}, b_{1}\right.$ ] of $[a, b]$

Now, consider a point $t_{0}$ in theinterval [a1, $b_{1}$. Since allthe $F_{X_{j}}$, for $j=1, \ldots, n$, and $F_{X}$ are right-continuous:

$$
\begin{aligned}
& \lim \varepsilon \rightarrow 0{ }_{j=1}^{n} F_{\mathrm{X}_{\mathrm{j}}}\left(t_{0}+\varepsilon\right)={ }_{j=1}^{n} F_{\mathrm{X}_{\mathrm{j}}}\left(t_{0}\right)>F \times\left(t_{0}\right){ }_{j=i} \quad F_{\mathrm{X}_{\mathrm{j}}}\left(t_{0}\right) \\
& =\lim _{\varepsilon \rightarrow 0} F_{X}\left(t_{0}+\varepsilon\right) \quad j=i F_{X_{j}}\left(t_{0}+\varepsilon\right) .
\end{aligned}
$$

Then, there is $\varepsilon>0$, and can we assume $\varepsilon \leq b_{1}-t_{0}$, such that:

$$
\begin{aligned}
F_{X}\left(t_{0}+\varepsilon\right) \quad j=i & F_{X_{j}}\left(t_{0}+\varepsilon\right)
\end{aligned}
$$

Taking $\delta=\frac{n_{i=1}^{n} F_{X_{j}}\left(t_{0}\right)-F_{X}\left(t_{0}\right)}{2} \quad{ }_{j=i} F_{X_{j}}\left(t_{0}\right)>0$, then:

$$
F_{X_{\mathrm{X}}}(t)-F_{\mathrm{X}(t)} \quad F_{\mathrm{X}_{\mathrm{j}}(t)} \geq \delta>0
$$

for any $t \quad\left[t_{0}, t_{0}+\varepsilon\right]$. Moreover, since $F_{X_{i}}$ isstrictlyincreasing in $\quad[a, b]$ it isalso strictly increasing in $\left[t_{0}, t_{0}+\varepsilon\right]$, and th erefore $P\left(X_{i} \quad\left[t_{0}, t_{0}+\varepsilon\right]\right)>0$.

Prop osition 3.93et $X, X_{1}, \ldots, X_{n}$ ben+1 independent real-valued random variables satisfying Equations (3.25)and (3.26). Then, if $X \quad$ FSD $X_{i}$ for any $i=1, \ldots, n$ it holds that $X$ sp $\left[X_{1}, \ldots, X_{n}\right]$.

Pro of Since $X \quad$ fSD $X_{i}$ implies $X \quad$ fsD $X_{i}$, we know that $X \quad$ sp $\left[X_{1}, \ldots, X_{n}\right]$. Taking into account the previous result, it sufficesto prove that $E\left[F \times\left(X_{i}\right) \quad{ }_{j=i} F_{X_{j}}\left(X_{i}\right)\right]<$ $E\left[{ }_{j=1}^{n} F_{X_{j}}\left(X_{i}\right)\right]$ for $i=1, \ldots, n$, since this implies that:

$$
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right) \geq Q_{n}(X i,[X, X-i]) \text { for } i=1, \ldots, n .
$$

Using the previous lemma, wecan assumethereis $t_{0}$ such that $F_{X}\left(t_{0}\right)<F \quad X_{i}\left(t_{0}\right)$ and $F_{X_{j}}\left(t_{0}\right)>0$ for any $j=i$.

Consider two cases:

- Assume that $P\left(\begin{array}{ll} & i=t \\ 0\end{array}\right)>0$. Then:

$$
\begin{aligned}
& E_{\square}^{\square} F_{X(X i)} F_{X_{j}(X i)_{\square}}=F_{X(X i)}^{j=i} F_{X_{j}} \mathrm{~d} F_{X_{i}} \\
& =\underset{\mathrm{R}^{\\
left\{t_{0}\right\}}}{ } F_{\mathrm{X}}\left(X_{i}\right) \underset{j=i}{ } F_{X_{\mathrm{j}}} \mathrm{~d} F_{X_{i}}+\underset{\left\{t_{0}\right\}}{ } F_{X}\left(X_{i}\right) \underset{j=i}{ } F_{X_{j}} \mathrm{~d} F X_{i}
\end{aligned}
$$

$$
\begin{aligned}
& <\mathrm{R}^{\left\{\left\{t_{0}\right\}\right.}{ }_{j=1}^{n} \underset{n}{ } F_{X_{j}} \mathrm{~d} F \mathrm{X}_{\mathrm{i}}+P(X i=t 0){ }_{j=1} F_{\mathrm{X}_{\mathrm{j}}}\left(t_{0}\right) \\
& =R^{\left\{\left\{t_{0}\right\}\right.}{ }_{j=1} F_{X_{j}} \mathrm{~d} F_{X_{i}}+{\underset{\left\{t_{0}\right\}}{ }{ }_{j=1} F_{X_{j}} \mathrm{~d} F X_{X_{i}}} \\
& =E \square_{j=1} F_{X_{j}}\left(X^{i}\right)_{\square}
\end{aligned}
$$

- Assume nowthat thereisnot $t_{0}$ satisfyingthe conditionsand suchthat $P\left(X_{i}=\right.$ $\left.t_{0}\right)=0$. Bythe previouslemma,there isaninterval $[a, b]$ and $\varepsilon>0$ such that

$$
F_{j=1} F_{X_{j}}(t)-F_{X}(t) \underset{j=i}{ } F_{X_{j}}(t) \geq \varepsilon>0
$$



We have seen that fsd $X_{i}$ for any $i=1, \ldots, n$, implies that $X \quad$ sp $\left[X_{1}, \ldots, X_{n}\right]$ when the rand om variables are indep endenSincegeneralstatisticalpreference isbased on the joint distribution, and as a consequence takes into account the p ossible sto chastic dep endencies between the variables, we are going to study a numb er of cases where the variables are not indep endent. In the remainder of this subsection we shall fo cus on comonotonic random variables.

In Equation (3.6) of Prop osition 3.16 we saw that the probabilistic relation $Q(X, Y)$ for two continu ous and comonotonic random variables is given by:

$$
Q(X, Y)=f_{x: F_{X}(x)<F_{Y}(x)} f_{X}(x) \mathrm{d} x+\frac{1}{2} \quad f_{X: F_{X}(x)=F_{Y}(x)}(x) \mathrm{d} x,
$$

where $f_{\mathrm{X}}$ denotesthe densityfunction of $X$.
In a similar manner, we canextendthis expressionto thefunctional $Q_{n(~, ~[~]) . ~ I n ~}^{n}$ order to do this, we must first intro duce the notion of Dirac-delta functional. Let us consider the function $H_{a}: \mathrm{R} \rightarrow[0,1$ given by:

$$
H_{a}(x)=\begin{array}{ll}
0 & \text { if } x<a . \\
1 & \text { if } x \geq a .
\end{array}
$$

The Dirac-delta functional $\delta_{a}$ (see [66]) asso ciated th $a$ is anapplication that satisfies:

- $\delta_{a}(t)=0$ for every $t=a$ and
- $\quad \delta_{a}(t) \mathrm{d} t=1$

R
Insucha case, it holds that:

$$
\begin{equation*}
H_{a}(x)={ }_{-\infty}^{x} \delta_{a}(t) \mathrm{d}(t) \text { for every } x \quad \mathrm{R} \text {. } \tag{3.27}
\end{equation*}
$$

This functional is not a real-valued function because it do es not take a real value iria. It playstheroleofthe densityfunctionforaprobability distributionthattakes thevalue a with probability 1 , and we shall use it in the pro of of the following lemma.

Lemma 3.94Let $X, X_{1}, \ldots, X_{n}$ beabsolutely continuousand comonotonicreal-valued randomvariables satisfying Equation (3.25). Then

$$
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)=\quad{ }_{x: F \times(x)<F x_{1}(x), \ldots, F x_{n}(x)} f_{X}(x) \mathrm{d}(x) .
$$

Pro of ByCorollary3.89, it holdsthat:

$$
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)=P\left(X>\max \left(X_{1}, \ldots, X_{n}\right)\right) .
$$

Since the random variable s are comonotonic, their joint distribution function $F$ is given by:

$$
F\left(x, x_{1}, \ldots, x_{n}\right)=m \operatorname{in}\left(F x(x), F x_{1}\left(x_{1}\right), \ldots, F x_{n}(x n)\right)
$$

for every $X_{,} X_{1}, \ldots, x_{n} \quad \mathrm{R}$. Let us compute the d istribution function of $\max \left(X_{1}, \ldots, X_{n}\right)$ and $X$, denoted by $F$ :

$$
\begin{aligned}
F(x, y) & =P\left(X \leq x, \max \left(X_{1}, \ldots, X_{n}\right) \leq y\right) \\
& =P\left(X \leq x, X_{1}, \leq y, \ldots, X_{n} \leq y\right)=F(x, y, \ldots, y) .
\end{aligned}
$$

Thus, this distribution function can be expressed by:

$$
\begin{array}{rlrl}
F(x, y)= & \left.F(x, y, \ldots, y)=m \operatorname{in}(\mathbb{X X}), F_{X_{1}}(y), \ldots, \mathbb{X}_{n}(y)\right) \\
& \text { if } F_{X}(x) \leq \min \left(F_{X_{1}}(y), \ldots, \mathbb{X}_{n}(y)\right) . \\
& F_{X}(x) & \min \left(F_{X_{1}}(y), \ldots, \mathbb{X}_{n}(y)\right) & \text { if } F_{X}(x)>\min \left(F_{x_{1}}(y), \ldots, \mathbb{X}_{n}(y)\right) .
\end{array}
$$

Equivalently,

$$
F(x, y)=\begin{array}{ll}
F_{X}(x) & \text { if } y \geq h^{-1]}\left(F_{x}(x)\right), \\
\min \left(F_{x_{1}}(y), \ldots, \mathbb{x}_{n}(y)\right) & \text { if } y<h^{-1]}\left(F_{x}(x)\right),
\end{array}
$$

where $h^{-1]}$ denotesthe pseudo-inverse ofthefunction $h$ given by:

$$
h(y)=\min \left(F x_{1}(y), \ldots, \mathbb{x}_{n}(y)\right) \text { for every } y \quad R
$$

Note thatthepseudo-inverse is well-defined since $\quad h$ is anincreasing function. Now, $\frac{\partial F}{\partial x}(x, y)=0$ for every $(x, y)$ satisfying $y<h{ }^{-1]}(F x(x))$. Moreover, ifwerestrict tothe points $(x, y)$ such that $y \geq h^{-1]}\left(F_{X}(x)\right)$, we obtain that:

$$
\frac{\partial F}{\partial x}(x, y)=f x(x)
$$

Thus, if we assum e that:

$$
\frac{\partial F}{\partial x}(x, y)=\begin{array}{ll}
0 & \text { if } y<h^{-1]}\left(F_{x}(x)\right) \\
f_{x}(x) & \text { if } y \geq h^{-1]}(F x(x))
\end{array}
$$

then:

$$
\frac{\partial^{2} F}{\partial x \partial y}(x, y)=f x(x) \delta y-h^{-1]}(F x(x))
$$

As this distribution plays the role of the density function of $\max \left(X_{1}, \ldots, X_{n}\right)$ and $X$, using Equation (3.27) we can compute the value of $Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)$ :

$$
\begin{aligned}
& Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)=P\left(X>\max \left(X_{1}, \ldots, X_{n}\right)\right) \\
& ={ }_{\mathrm{R} \mathrm{R}^{\mathrm{X}}} f_{\mathrm{X}}(x) \delta y-h^{-1]}\left(F_{x}(x)\right) I_{x>y}(y) \mathrm{d} y \mathrm{~d} x \\
& ={\underset{R}{R} \underset{x-1 / n}{ } f_{X}(x) \delta y-h^{-1]}(F X(x)) \lim _{n} I_{\{x-y \geq 1 / n\}}(y) \mathrm{d} y \mathrm{~d} x} \\
& =\lim _{\mathrm{R}}{ }_{-\infty} f_{\mathrm{X}}(x) \delta y-h^{-1]}(F x(x)) \mathrm{d} y \mathrm{~d} x \\
& =\lim _{\mathrm{R}} f_{\mathrm{X}}(x)\left\{\left\{x-1 / n \geq h^{-1]}\left(F_{x}(x)\right)\right\}(x) \mathrm{d} y \mathrm{~d} x\right. \\
& \left.=f_{\mathrm{R}} f_{\mathrm{X}}(x) l_{\{x>h}{ }^{-1]}(F x(x))\right\}(x) \mathrm{d} y \mathrm{~d} x \\
& =F_{\left\{F_{X}(x)<F_{X_{1}}(x), \ldots, F_{x_{n}(x)}\right\}} f_{X}(x) \mathrm{d} x \text {, }
\end{aligned}
$$

where the last equality holds applyingtheTheorem of Monotone Convergence.

Theorem 3.95Let $X, X_{1}, \ldots, X_{n}$ be $n+1$ absolutely continuousand comonotonic realvaluedrandomvariablessatisfyingEquations (3.25) and (3.26). If $X \quad$ FSD $X_{i}$ for $i=$ $1, \ldots, n$, then $X \quad$ sp $\left[X_{1}, \ldots, X_{n}\right]$. Moreover, inthat case $Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)=1$.

Pro of Since $X \quad$ FSD $X_{i}$ for every $i=1, \ldots, n$, then $F_{X}(x) \leq F_{X_{i}}(x)$ for every $x \quad \mathrm{R}$ and $i=1, \ldots, n$. Applying thepreviouslemma weobtainthat:

$$
Q_{n}(X i,[X, X-i])=\quad\left\{F_{\left.x_{i}(x)<, F \times(x), F x_{j}(x): j=i\right\}} f_{X_{i}}(x) \mathrm{d} x=0\right.
$$

Thus, $Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)>Q n(X i,[X, X-i])=0$ for every $i=1, \ldots, n$. Since

$$
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)+Q_{i=1} \quad Q_{n}(X i,[X, X-i])=1
$$

it holds that:

$$
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)=1
$$

Then, $X \quad$ sp $\left[X_{1}, \ldots, X_{n}\right]$.
Letus now investigatethe case inwhich therandom variables $X, X_{1, \ldots}, X_{n}$ are comonotonic and discrete with finite supp orts. When $n=1$, DeMeyer etal. proved (see Prop osition 3.20) that the supp orts of the variables can be expressed by $S_{X}=$ $\left\{x_{1}, \ldots, x_{m}\right\}$ and $S_{X_{1}}=\left\{x_{1}^{(1)}, \ldots, x_{m}^{(1)}\right\}$ such that

$$
P\left(X=x \quad i, X_{1}=x{ }_{i}^{(1)}\right)=P\left(\begin{array}{ll}
X=x & i
\end{array}\right)=P\left(\begin{array}{ll}
X & 1=x \\
i
\end{array}\right) \text { for any } i=1, \ldots, m .
$$

We are going to prove the a similar expression can be found when $n \geq 2$.
Lemma 3.96Let $X, X_{1}, \ldots, X_{n}$ be $n+1$ discrete and countermonotonic real-valued random variables with finite supports. Then, their su pports can be expressed by

$$
\begin{equation*}
S_{X}=\left\{x_{1}, \ldots, x_{m}\right\}, S_{X_{1}}=\left\{x_{1}^{(1)}, \ldots, x_{m}^{(1)}\right\}, \ldots . S_{X_{n}}=\left\{x_{1}^{(n)}, \ldots, x_{m}^{(n)}\right\} \tag{3.28}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(X=x \quad i, X_{1}=x i^{(1)}, \ldots, X_{n=x} i^{(n)}\right)=P(X=x \quad i)=\ldots=P\left(X n=x i^{(n)}\right), \tag{3.29}
\end{equation*}
$$

for any $i=1, \ldots, n$.
Pro of We applyinduction on $n$. First of all, when $n=1$, this lemma becomes Prop osition 3.20. Assum e then that the result holds for $n-1$. Consider thevariables $X, X_{1}, \ldots, X_{n}$. Apply the induction hyp othesis on $X, X_{1}, \ldots, X_{n-1}$. Then, the supp orts of these variables can be expressed as in Equation (3.28), and they also satisfy Equation (3.29). Now, apply Prop osition 3.20 to $X$ (with the new supp ort) and $X_{n}$. Then, if in this pro cess we duplicate an element $x_{i}$, we also duplicate the elements $x_{i}^{(j)}$ for any $j=1, \ldots, n-1$, and weadapt the probabilities in order to obtain the equalities:

$$
P(X=x \quad i)=P\left(X \quad n=x i_{i}^{(1)}\right)=\ldots=P\left(\begin{array}{ll}
X \quad n=x & (n)
\end{array}\right) .
$$

Finally, let us provethat

$$
P\left(X=x \quad i, X_{1}=x i_{i}^{(1)}, \ldots, X_{n=x} i_{i}^{(n)}\right)=P(X=x \quad i) .
$$

For this aim, note that
$F_{X}(x j)=P\left(\begin{array}{ll}X=x & 1\end{array}\right)+\ldots+P\left(\begin{array}{ll}X=x & j\end{array}\right)=P\left(\begin{array}{ll}X i=x & (i) \\ 1\end{array}\right)+\ldots+P\left(\begin{array}{ll}X & i=x_{j}^{(i)}\end{array}\right)=F \quad x_{i}\left(x_{j}^{(i)}\right)$
for any $j=1, \ldots, m$ and $i=1, \ldots, n$. Then:

$$
\begin{aligned}
F_{\mathrm{X}, \mathrm{X}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\left(x i_{0}, x_{i_{1}}^{(1)}, \ldots, x_{i_{n}}^{(n)}\right)}= & \min \left(F \times\left(x i_{0}\right), F x_{1}\left(x_{1}^{(1)}\right), \ldots, F x_{\mathrm{n}}\left(x_{i_{n}}^{(n)}\right)\right) \\
& =\min \left(F \times\left(x i_{0}\right), F \times\left(x i_{1}^{(1)}\right), \ldots, F \times\left(x_{i_{n}}^{(n)}\right)\right) \\
& =F \times\left(\min k=0, \ldots, n\left(x i_{k}\right)\right) .
\end{aligned}
$$

In particular, when $i_{0}=i \quad 1=\ldots, i n$, the previous expression becomes:

$$
F_{X, X_{1}, \ldots, X_{n}}\left(x_{i}, x_{i}^{(1)}, \ldots, x_{i}^{(n)}\right)=F \times\left(x^{i}\right) .
$$

Now, consider $\left(x i_{0}, x_{i_{1}}^{(1)}, \ldots, x i_{i_{n}}^{(n)}\right)$, and assume that there are $k, l$ such that $i_{k}=i$ I. Since in the pro of of Prop osition 3.20 (see [54, Prop osition 2]) it is showed that $P\left(X_{k}=\right.$ $\left.x_{i_{k}}^{(k)}, X_{I}=x{ }_{i_{l}}^{(l)}\right)=0$, we deduce that:

$$
P\left(X=x \quad i_{0}, X_{1}=x{ }_{i_{1}}^{(1)}, \ldots, X_{n}=x{ }_{i_{n}}^{(n)}\right) \leq P\left(X k=x{ }_{i_{k}}^{(k)}, X_{I}=x \quad{ }_{i}^{(l)} i_{l}\right)=0 .
$$

Consequently:

$$
\begin{aligned}
P\left(X=x i, X_{i}=x i_{i}^{(1)}, \ldots, X_{i}=x i_{i}^{(n)}\right) & =F\left(x_{i}, x_{i}^{(1)}, \ldots, x_{i}^{(n)}\right)-F\left(x_{i-1}, x_{i-1}^{(1)}, \ldots, x_{-}^{(n)}{ }_{1}\right) . \\
& \left.=F x\left(x_{i}\right)-F_{X\left(x^{i-1}\right)}\right)=P(X=x \quad i) .
\end{aligned}
$$

Nextresult givesanexpression oftheprobabilisticrelation, generalizingEquation (3.8).

Prop osition 3.9 fronsider $n+1$ discrete and comonotonic real-valued random variables $X, X_{1}, \ldots, X_{n}$ withfinite supports. Applyingthepreviouslemma, wecanassumethat the supports are expressed as in Equat ion (3.28) satisfying Equation (3.29).Then:

$$
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)={ }_{i=1}^{n} P(X=x \quad i) \delta i
$$

where

$$
\begin{aligned}
& \text { 1, if } x_{i}=x i_{i}^{(1)}=\ldots .=x i_{i}^{(n)} \text {. }
\end{aligned}
$$

Pro of Taking intoaccount Equation(3.29), itholds that:

$$
\begin{aligned}
& ={ }_{i=1} P\left(X=x \quad i, X_{1}=x i_{i}^{(1)}, \ldots, X_{n}=x i_{i}^{(n)}\right) I_{x_{i}>x} i^{(1)}, \ldots, X_{i}^{(n)} .
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
& P\left(X=X \quad I_{1}=\ldots . .=X_{m}{ }_{m}>X_{j}: j=l_{1} \quad \ldots, k\right) \\
& =\underbrace{}_{\substack{i_{0}=1 \\
m}} \cdots\left(X=x i_{i_{n}=1}, X_{1}=x{\left.\stackrel{(1)}{i_{1}}, \ldots, X_{n}=x{\stackrel{(n)}{i_{n}}}_{(1)}\right) / A}_{A}\right. \\
& ={ }_{i=1} P\left(X=x \quad i, X_{1}=x i_{i}^{(1)}, \ldots, X_{n}=x i^{(n)}\right) / \text { в, }
\end{aligned}
$$

where $A$ and $B$ aredefined by:

$$
\begin{aligned}
& A=\left\{x_{i_{0}}=x \stackrel{\left(l_{1}\right)}{i_{1}}=\ldots=x \stackrel{(l k)}{\left.i_{1}\right)}>x x_{i j}^{(j)}: j=1 \quad 1, \ldots, k\right\} \text { and } \\
& B=\left\{x_{i}=x i_{i}^{\left(l_{1}\right)}=\ldots=x i_{(1 k)}^{\left({ }^{k}\right)}>x{ }_{i}^{(j)}: j=/ \quad 1, \ldots, k\right\} \text {. }
\end{aligned}
$$

Then:

$$
\begin{aligned}
& Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)= \\
& \frac{1}{k+1} P\left(X=X \quad i_{1}=\ldots=X \quad i_{k}>\max _{j=i} \max _{1, \ldots, i_{k}}(X j)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\quad P(X=x \quad i) \delta i \text {. }
\end{aligned}
$$

Remark 3.98InthisresultwehavenotimposedEquations (3.25)and (3.26), andthus, it is applicable for all discrete comonotonic random variables with finite supports.

Using this lemma, wecan provethatwhentherandomvariablesarecomonotonicand discrete with finite supp orts, first degree sto chastic dominance also implies general statistical preference.

Theorem 3.99Let $X, X_{1}, \ldots, X_{n}$ be $n+1$ discrete comonotonic real-valued random variables with finite supports. Then $X$ FSD $X_{i}$ for $i=1, \ldots, n$ implies $X$ SP $\left[X_{1}, \ldots, X_{n}\right]$.

Pro of Using the previous lemma, the supports of $X, X_{1, \ldots} \ldots, X_{n}$ can be expresse d as in Equation(3.28) satisfying Equation (3.29). If $X$ fSD $X_{i}$, we have seen in the pro of of Theorem 3.51 that $\left\{i: x i<x_{i}^{(j)}\right\}=$ for $j=1, \ldots, n$. Using the previous prop osition:

$$
\begin{aligned}
& Q_{n}(X i,[X, X-i])
\end{aligned}
$$

$$
\begin{aligned}
& 1 \leq i_{1}<\ldots<i \quad k \leq n \\
& \leq \sum_{k=0, \ldots, n} \frac{1}{k+1} P\left(X=X \quad i_{1}=\ldots=X \quad i_{k}>\max _{j=i}, \ldots, i_{k}(X j)\right)=Q(X, Y) \text {, } \\
& 1 \leq i_{1}<\ldots .<i \quad k \leq n
\end{aligned}
$$

and this forany $i=1, \ldots, n$. Then, $X \quad$ sp $\left[X_{1}, \ldots, X_{n}\right]$.
Finally, let us prove that when $X$ is strictly preferredto any $X_{i}$ with resp ect to first degree sto chastic dominance, it is also preferred $\mathrm{t} \phi X_{1}, \ldots, X_{n}$ ] with resp ect to the general statistical preference.

Prop osition 3.10 ${ }^{\text {et }} X, X_{1}, \ldots, X_{n}$ be $n+1$ discrete comonotonic real-valued randomvariables withfinite supports. Then $X \quad$ FSD $X_{i}$ for $i=1, \ldots, n \quad i m p l i e s ~ X \quad$ sp $\left[X_{1}, \ldots, X_{n}\right]$.

Pro of Let usprovethat $Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)>Q \quad n\left(X_{i},\left[X, X^{-} i\right]\right)$ for $i=1, \ldots, n$. From the pro of of the previous result, it suffices to prove that there arek and $/$ such that

Since $X \quad$ FSD $X_{i}$, there is $x_{k}^{(i)}$ such that $F_{X}\left(x_{k}^{(i)}\right)<F x_{i}\left(x_{k}^{(i)}\right)$. Furthermore:
$F_{X_{i}}\left(x_{k}^{(i)}\right)=P\left(\begin{array}{ll}X & i=x \\ 1\end{array}\right)+\ldots+P\left(X i=x{ }_{k}^{(i)}\right)=P\left(\begin{array}{ll}X=x & 1\end{array}\right)+\ldots+P\left(\begin{array}{ll}X=x & k\end{array}\right)=F x(x k)$.
Then, $x_{k}>x_{k}^{(i)}$. Then, thereis $I$ such that
and thi s proves that $Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)>Q \quad n\left(X i,\left[X, X^{-} i\right]\right)$, for $i=1, \ldots, n$. Hence $X \quad \mathrm{sp}\left[X_{1}, \ldots, X_{n}\right]$.

## Random variables coup led by Archimedean copulas

Consider $n+1$ absolutely continuous random variables $X, X_{1}, \ldots, X_{n}$ coupled byan Archimedean copula $C$ with generator $\phi$. Inthat case, Equation(2.9)implies thatthe joint dis trib ution function, $F$, is given by:

$$
F\left(x_{,} x_{1}, \ldots, x_{n}\right)=\phi^{-1]} \phi(F x(x))+\phi\left(F x_{1}\left(x_{1}\right)\right)+\ldots+\phi\left(F x_{n}\left(x_{n}\right)\right)
$$

Letus try to differentiate thisfunction.

$$
\begin{aligned}
\frac{\partial F}{\partial x}\left(x_{1} x_{1}, \ldots, x_{n}\right)= \\
\phi^{-1]} \quad \phi(F x(x))+\phi\left(F x_{1}\left(x_{1}\right)+\ldots+\phi\left(F x_{n}\left(x_{n}\right)\right)\right) \quad \phi(F \times(x)) f \times(x) .
\end{aligned}
$$

Note that $\phi^{-1]}(t)$ equals $\phi^{-1}(t)$ whenevert $[0, \phi(0))$ and $\phi^{-1]}(t)=0$ otherwise. If we continue differentiating with resp ect to $x_{1}, \ldots, x_{n}$, we obtainthefollowing
expression:

$$
\begin{aligned}
& \frac{\partial^{2} F}{\partial x x_{1}}\left(x, x_{1}, \ldots, x_{n}\right)=\phi \quad{ }^{-11} \quad \phi(F x(x))+\phi\left(F x_{1}\left(x_{1}\right)+\ldots+\phi\left(F x_{n}\left(x_{n}\right)\right)\right. \\
& \phi(F x(x)) \phi\left(F x_{1}\left(x_{1}\right)\right) f \times(x) f x_{1}\left(x_{1}\right) . \\
& \frac{\partial^{n+1} F}{\partial x \partial x_{1} \ldots \partial x_{n}}\left(x_{1} x_{1}, \ldots, x_{n}\right)=\phi^{-1]^{(n+1)}} \quad \phi(F x(x))+\phi\left(F x_{1}\left(x_{1}\right)+\ldots\right. \\
& +\phi\left(F x_{n}\left(x_{n}\right)\right) \phi(F x(x)){ }_{i=1}^{n} \phi\left(F x_{i}\left(x_{i}\right)\right) f x_{i}\left(x_{i}\right) f x(x) .
\end{aligned}
$$

Thus, fun ction $f\left(x, x_{1}, \ldots, x_{n}\right)=\frac{\partial{ }^{n+1} F}{\partial x \partial x_{1} \ldots \partial x_{n}}\left(x_{,} x_{1}, \ldots, x_{n}\right)$ is the density function of $X, X_{1}, \ldots, X_{n}$ wheneverf $=0$, sinceitis the $n+1$ derivative of $F$, and the $n+1$ integral over $\mathrm{R}^{n+1}$ equals 1.In ad dition, $f$ becomes the density function of Equation (3.10).Note that $f=0$ when $\phi^{-1]}{ }^{(n+1)}(t)>0$ for some $t \quad \mathrm{R}$. Moreover, if $f$ is thejoint density, $P\left(\begin{array}{ll}X=X & i\end{array}\right)=P\left(\begin{array}{ll}X_{i} & =X \\ j\end{array}\right)=0$ for every $i, j \quad(i=j)$. Consequently, for su ch variables it holds that:

$$
\begin{aligned}
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right) & =P\left(X>\max \left(X 1, \ldots, X_{n}\right)\right) \\
& =P\left(X \geq \max \left(X_{1}, \ldots, X_{n}\right)\right)=Q\left(X, \max \left(X_{1}, \ldots, X_{n}\right)\right) .
\end{aligned}
$$

Using the joint density function $f$, we can prove the following result.
Theorem 3.101Let $X, X_{1}, \ldots, X_{n}$ be $n+1$ absolutely continuous random variables coupled by anArchimedean copula $C$ generated by $\phi$, that satisfies $\phi^{-1](n+1)}=0$. Then, if $X \quad$ fsd $X_{i}$ for every $i=1, \ldots, n$, then $X \quad$ sp $\left[X_{1}, \ldots, X_{n}\right]$.

Pro of We knowthat $X$ sp $\left[X_{1}, \ldots, X_{n}\right]$ if and onlyif

$$
P\left(X \geq \max \left(X_{1}, \ldots, X_{n}\right)\right) \geq P\left(X_{i} \geq \max (X, X-i)\right),
$$

for every $i=1, \ldots, n$. Let uscompute $P\left(X \geq \max \left(X_{1}, \ldots, X_{n}\right)\right)$.

$$
\begin{aligned}
& P\left(X \geq \max \left(X_{1}, \ldots, X_{n}\right)\right)=\mathrm{R}^{-\infty} \quad{ }_{-\infty} \underset{-\infty}{ } f\left(x, x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{n} \ldots \mathrm{~d} x_{1} \mathrm{~d} x \\
& ={ }_{\mathrm{R}} \phi^{-1]} \phi(F x(x))+{ }_{k=1} \phi\left(F x_{k}(x)\right) \phi(F \times(x)) f \times(x) d x .
\end{aligned}
$$

If we consider

$$
\begin{aligned}
& \left.u=\phi \text { - }^{-1]} \quad \phi(F x(x))+\phi\left(F x_{1}(x)\right)+\ldots+\phi\left(F x_{n}(x)\right)\right), \\
& \mathrm{d} v=\phi(F \quad x(x))) x_{x}(x) \mathrm{d} x,
\end{aligned}
$$

and we make a change of variable, we obtainthefollowing expression:

$$
\begin{aligned}
& P\left(X \geq \max \left(X_{1}, \ldots, X_{n}\right)\right)= \\
& \left.1^{-} \quad \phi^{-1]} \quad \phi(F x(x))+\phi\left(F x_{1}(x)\right)+\ldots+\phi\left(F x_{n}(x)\right)\right) \phi(F x(x)) \\
& \phi(F \times(x)) f \times(x)+{ }_{i=1} \phi\left(F x_{i}(x)\right) f x_{i}(x) \mathrm{d} x .
\end{aligned}
$$

Now, since $X \quad$ FSD $X_{i}$, then $F_{X} \leq F_{X_{i}}$, and consequently, as $\phi\left(F_{X}(x)\right) \geq \phi\left(F_{X_{i}}(x)\right)(\phi$ is decreasing), $\phi$ isnegative and $\phi^{-1}$ ispositive, itholdsthat:

$$
\begin{aligned}
& P\left(X \geq \max \left(X_{1}, \ldots, X_{n}\right)\right) \geq \\
& \left.1 \text { - } \quad \phi^{-1]} \quad \phi(F x(x))+\phi\left(F x_{1}(x)\right)+\ldots+\phi\left(F x_{n}(x)\right)\right) \phi\left(F x_{i}(x)\right) \\
& \phi(F x(x)) f \times(x)+{ }_{i=1} \phi\left(F x_{i}(x)\right) f x_{i}(x) d x .
\end{aligned}
$$

Following the same lines we can also find the expression oP $(X i \geq \max (X, X-i))$ :

$$
\begin{aligned}
& P\left(X_{i} \geq \max (X, X-i)\right)= \\
& \left.1^{-} \quad \phi^{-1]} \quad \phi(F x(x))+\phi\left(F \mathrm{x}_{1}(x)\right)+\ldots+\phi\left(F \mathrm{X}_{\mathrm{n}}(x)\right)\right) \phi\left(F \mathrm{X}_{\mathrm{i}}(x)\right) \\
& \text { R } \\
& \phi(F \times(x)) f \times(x)+{ }_{i=1} \phi\left(F x_{i}(x)\right) f x_{i}(x) d x .
\end{aligned}
$$

We conclude that:

$$
P\left(X \geq \max \left(X_{1}, \ldots, X_{n}\right)\right) \geq P(X i \geq \max (X, X-i)),
$$

and consequently $X$ sp $\left[X_{1}, \ldots, X_{n}\right]$.
Finally, let us s ee that when the Archime dean copula is strict, strict statistical first degree sto chastic dominance also implies strict statistical preference.

Prop osition 3.102et $X, X_{1}, \ldots, X_{n}$ be $n+1$ absolutelycontinuous random variables coupled by an st rict Archimedean copula generated by $\phi$, that satisfies ${\phi^{-1]}}^{(n+1)}=0$. Then, if $X \quad$ FSD $X_{i}$ for every $i=1, \ldots, n$, then $X \quad$ sp $\left[X_{1}, \ldots, X_{n}\right]$.

Pro of ByLemma3.48, since $X \quad$ FSD $X_{i}$, there is an interval $[a, b]$ such that $F_{X}(t)<$ $F_{X_{i}}(t)$ for any $t \quad[a, b]$ and $P\left(X_{i} \quad[a, b]\right)>0$. Furthermore, we canassumethat $F_{X_{i}}$ is strictly increasing in such interval (otherwise it suffices to consider asubinterval of $[a, b]$ where this function is strictly increasing).

We have seen in the previous pro of that

$$
\begin{aligned}
& P\left(X \geq \max \left(X_{1}, \ldots, X_{n}\right)\right)= \\
& \left.1_{\mathrm{R}} \boldsymbol{\phi}^{-1]} \quad \phi(F x(x))+\phi\left(F x_{1}(x)\right)+\ldots+\phi\left(F x_{n}(x)\right)\right) \phi(F x(x)) \\
& \phi(F \times(x)) f \times(x)+\quad \phi\left(F x_{i}(x)\right) f x_{i}(x) \mathrm{d} x
\end{aligned}
$$

and

$$
\begin{aligned}
& P(X i \geq \max (X, X-i))= \\
& \left.1^{-}{ }_{\mathrm{R}} \quad \phi^{-1]} \quad \phi\left(F x_{n}(x)\right)+\phi\left(F \mathrm{x}_{1}(x)\right)+\ldots+\phi\left(F \mathrm{X}_{\mathrm{n}}(x)\right)\right) \phi\left(F \mathrm{X}_{\mathrm{i}}(\mathrm{X})\right) \\
& \phi(F \times(x)) f \times(x)+{ }_{i=1} \phi\left(F x_{i}(x)\right) f x_{i}(x) \mathrm{d} x .
\end{aligned}
$$

Then, inorder to prove that $Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)>Q n(X i,[X, X-i])$, it suffic es to prove that:

$$
\begin{aligned}
& \left.1_{\mathrm{R}}{ }^{\phi^{-1]}} \quad \phi(F \mathrm{x}(x))+\phi\left(F \mathrm{x}_{1}(x)\right)+\ldots+\phi\left(\mathrm{F}_{\mathrm{n}}(x)\right)\right) \phi(F \mathrm{x}(\mathrm{x})) \\
& \phi(F \times(x)) f \times(x)+{ }_{i=1} \phi\left(F x_{i}(x)\right) f x_{i}(x) \mathrm{d} x \\
& >1-\underset{\mathrm{R}}{ } \phi^{-1]} \underset{n}{\left.\phi(F x(x))+\phi\left(F x_{1}(x)\right)+\ldots+\phi\left(F x_{n}(x)\right)\right) \phi\left(F x_{i}(x)\right)} \\
& \phi(F \times(x)) f \times(x)+{ }_{i=1} \phi\left(F x_{i}(x)\right) f x_{i}(x) \mathrm{d} x,
\end{aligned}
$$

or equivalently:

$$
\begin{aligned}
& \left.{ }_{\mathrm{R}} \phi^{-1]} \quad \phi(F x(x))+\phi\left(F x_{1}(x)\right)+\ldots+\phi\left(F \mathrm{x}_{\mathrm{n}}(x)\right)\right) \phi(F x(x)) \\
& \phi(F \times(x)) f \times(x)+{ }_{i=1} \phi\left(F x_{i}(x)\right) f x_{i}(x) d x \\
& \left.<{ }_{\mathrm{R}} \begin{array}{c}
\phi^{-1]}
\end{array} \quad \phi(F x(x))+\phi\left(F x_{1}(x)\right)+\ldots+\phi\left(F x_{n}(x)\right)\right) \phi\left(F x_{i}(x)\right) \\
& \phi(F \times(x)) f \times(x)+{ }_{i=1} \phi\left(F x_{i}(x)\right) f x_{i}(x) \mathrm{d} x .
\end{aligned}
$$

By the pro of of the previous theorem, we know that:

$$
\begin{aligned}
& \phi^{-1]} \phi(F x(x))+{ }_{k=1} \phi\left(F x_{k}(x)\right) \phi(F x(x)) \phi(F x(x)) f x(x) \mathrm{d} x \leq
\end{aligned}
$$

and

$$
\begin{aligned}
\phi^{-1]} \quad \phi(F x(x))+ & \phi\left(F x_{k}(x)\right) \phi\left(F x_{\mathrm{j}}(x)\right) \phi(F x(x)) f x_{\mathrm{j}}(x) \mathrm{d} x \leq \\
\mathrm{R}^{\phi^{-1]}} & \phi(F x(x))+{ }_{k=1}^{n} \phi\left(F \mathrm{x}_{\mathrm{k}}(x)\right) \phi\left(F x_{\mathrm{j}}(x)\right) \phi\left(F \mathrm{x}_{\mathrm{i}}(x)\right) f \mathrm{x}_{\mathrm{j}}(x) \mathrm{d} x .
\end{aligned}
$$

Now, let us see th at for $j=i \quad$, the previous inequality is strict. For any $t \quad[a, b]$

$$
\begin{aligned}
& F_{\mathrm{Xi}_{\mathrm{i}}}(t)<F \times(t) \stackrel{\phi}{=} \stackrel{\text { decr. }}{=} \phi\left(F \mathrm{X}_{\mathrm{i}}(t)\right)>\phi(F \times(t)) \\
& \stackrel{\phi<0}{=} \phi\left(F x_{i}(t)\right) \phi\left(F x_{i}(t)\right)<\phi(F \underset{n}{x}(t)) \phi(F \times(t)) \\
& \stackrel{\left(\phi{ }^{-1}\right)<0}{=} \quad \phi^{-1]} \quad \phi(F \times(x))+{ }_{k=1} \phi\left(F X_{k}(x)\right) \phi\left(F x_{i}(t)\right) \phi\left(F X_{i}(t)\right)> \\
& \phi^{-1]} \quad \phi(F x(x))+{ }_{k=1} \phi\left(F X_{k}(x)\right) \phi(F x(t)) \phi(F x(t)) .
\end{aligned}
$$

Then, there is $\varepsilon>0 \quad$ and $\left[a_{1}, b_{1}\right] \quad[a, b]$ such that

$$
\begin{aligned}
& \phi^{-1]} \quad \phi(F x(x)){ }^{1}{ }_{k=1} \phi\left(F X_{k}(x)\right) \phi\left(F x_{i}(t)\right) \phi\left(F_{X_{i}}(t)\right)^{-} \\
& \phi^{-1]} \quad \phi(F \times(x))+{ }_{k=1}^{n} \phi\left(F_{x_{k}}(x)\right) \phi(F \times(t)) \phi\left(F_{x}(t)\right) \geq \varepsilon>0
\end{aligned}
$$

for any $t \quad\left[a_{1}, b_{1}\right]$. The n :


Therefore, $Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)>Q n(X i,[X, X-i])$, an d then we can conclude that $X \quad \operatorname{sp}\left[X_{1}, \ldots, X_{n}\right]$.

We have see n severabituations where $X \quad$ fsd $X_{i} i=1, \ldots, n \quad$ implies $X \quad$ sp $\left[X_{1}, \ldots, X_{n}\right]$. However, this implication do es not hold in general, as we cansee in the following example.

Example 3.103We have seen in Example3.43 two random variables $X$ and $Y$ such that $X \quad$ fsD $Y$ and $Y$ sp $X$. These random variableswere defined by:

| $X / Y$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | 0.2 | 0.15 | 0 |
| 1 | 0 | 0.2 | 0.15 |
| 2 | 0.2 | 0 | 0.1 |

It holds that $Q(X, Y)=0.45$. Let us modify this example to show that if there isa random variable $X$ that stochastical ly dominates any other random variables, it may not be the preferred with respect to the general statistical preference. Consider $X_{1}, \ldots, X_{n}$ equal ly distributed such that they take a fixed value $c<0$ with probability 1. Since $X$ and $Y$ greater than $X_{1}, \ldots, X_{n}$ with probabilityone, $X \quad$ FSD $X_{i}$ for $i=1, \ldots, n$, and it holds that:

$$
\begin{aligned}
Q_{n+1}\left(X,\left[Y, X_{1}, \ldots, X_{n}\right]\right) & =P\left(X>\max \left(Y, X_{1}, \ldots, X_{n}\right)\right) \\
& +{ }_{2}^{1} P\left(X=Y>\max \left(X 1, \ldots, X_{n}\right)\right) \\
& =P(X>Y)+{ }_{2}^{1} P(X=Y)=Q(X, Y)=0.45
\end{aligned}
$$

Similarly, $Q_{n+1}\left(Y,\left[X, X_{1}, \ldots, X_{n}\right]\right)=Q(Y, X)=0.55$. Therefore, $X \quad$ FSD $Y, X \quad$ FSD $X_{i}$ for $i=1, \ldots, n$ but $X$ sp $\left[Y, X_{1}, \ldots, X_{n}\right]$.

To conclude this section we are going to se e that if we relax the conditions of Theorems 3.91, 3.95, 3.99 or 3.101, then statistical preference do es not hold in general. In particular, we replace the hyp othesis $X \quad$ FSD $X_{i}$ by $X \quad$ sp $X_{i}$ for some $i$, and we prove that $X$ isnot necessarilythepreferred variable.

Example 3.104Considertheabsolutely continuousrandomvariables $X, X_{1}, \ldots, X_{n}$, whose density functions are givenby:

$$
\begin{aligned}
& f_{\mathrm{X}}(t)=I \quad(2,3) \\
& f_{\mathrm{X}_{1}}(t)=0.6 I_{(1,2)}(t)+0.4 \quad I_{(3,4)}(t) . \\
& f_{\mathrm{X}_{2}}(t)=I \quad(2,3) \\
& f_{\mathrm{Xi}_{\mathrm{i}}}(t)=I_{(0,1)} \text { for any } i=3, \ldots ., n .
\end{aligned}
$$

It holds that $X \quad$ sp $X_{i}$ for every $i=1, \ldots, n \quad$ and $X \quad$ FSD $X_{i}$ for every $i=2, \ldots, n$, but $X$ fsd $X_{1}$. Moreover,

$$
\begin{aligned}
& Q_{n}\left(X_{1},[X, X-1]\right)=P\left(X_{1} \quad(3,4)\right)=0.4 \\
& Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)=Q(X 2,[X, X-2]) . \\
& Q_{n}(X i,[X, X-i])=0 \quad \text { for any } i=3, \ldots, n .
\end{aligned}
$$

Since thesum of these values is 1 :

$$
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)=Q\left(X_{2},[X, X-2]\right)=\frac{1}{2}\left(1-Q_{n}\left(X_{1},[X, X-i]\right)\right)=0.3
$$

and therefore $X_{1}$ is not thepreferred randomvariable with respect to the general statistical preference.

Thus, Theorems 3.91, 3.95, 3.99 and 3.101 cannot be extended to any general situations.

### 3.3.4 Generalstatisticalpreferencersdegree sto chastic dominance

In the previous section we established conditions for first degree sto chastic dominance to imply general statistical preferenc e. Next we shall investigate the possible relationships between the $m^{\text {th }}$ degree sto chastic dominance and the general statistical preference.

Consider random variables $X, X_{1}, \ldots, X_{n}$ andassume that $X \geq_{\mathrm{msD}} X_{i}(m \geq 2)$ for every $i=1, \ldots, n$. We shall study ifunder those conditions $X \quad \mathrm{sp}\left[X_{1}, \ldots, X_{n}\right]$. To see thatthis isnot necessarily thecase, consider theabsolutely continuous randomvariables whose density functions are gi ven by:

$$
\begin{aligned}
& f_{\mathrm{X}( }(t)=I \quad(5,6)(t) . \\
& f_{\mathrm{X}_{1}}(t)=0.4 I_{(0,1)}(t)+0.6 \quad I_{(6,7)}(t) \\
& f_{\mathrm{X}_{\mathrm{i}}}(t)=I \quad(-1,0)(t) \text { for every } i=2, \ldots, n .
\end{aligned}
$$

Then $X \geq_{m s D} X_{i}$ for every $i=1, \ldots, n$. In fact, $X \quad$ FSD $X_{i}$ for every $i=2, \ldots, n$. However, $X$ isnot statisticallypreferredto $\left[X_{1}, \ldots, X_{n}\right]$ :

$$
\begin{aligned}
& Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)=P\left(X>\max \left(X \quad 1, \ldots, X_{n}\right)\right)=P\left(X_{1} \quad(0,1)\right)=0.4 . \\
& Q_{n}\left(X_{1},\left[X, X_{j}: j=1\right]\right)=P(X \quad 1>\max (X, X j: j=1))=P(X \quad 1 \quad(6,7))=0.6 . \\
& Q_{n}\left(X_{i},[X, X j: j=i]\right)=0 \quad \text { for } \operatorname{any} i=2, \ldots, n .
\end{aligned}
$$

Note that due tothe definition of the density functions, the valuesof the relation $Q_{n}$ are indep endent of the p ossible dep endence among the random variablilsus, weconclude that, for $m \geq 2$ :

$$
X \geq_{\mathrm{mSD}} X_{i} \text { for every } i=1, \ldots, n \text { do es not imply } X \quad \text { sp }\left[X_{1}, \ldots, X_{n}\right] .
$$

Assume on the other hand that $X \quad$ sp $\left[X_{1}, \ldots, X_{n}\right]$ and let us investigate whether if $X \geq_{\mathrm{mSD}} X_{i}$ for some $m \geq 1$. To see thatthis is not thecase, cons ider the absolutely continuou s random variables with density functions

$$
\begin{aligned}
& f_{\mathrm{X}}(t)=0.4 I_{(0,1)}(t)+0.6 I_{(2,3)}(t) \\
& f_{\mathrm{X}_{\mathrm{i}}}(t)=I_{(1,2)}(t) \text { for every } i=1, \ldots, n .
\end{aligned}
$$

$X$ sp $\left[X_{1}, \ldots, X_{n}\right]$, because:

$$
Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)=P\left(X>\max \left(X \quad 1, \ldots, X_{n}\right)\right)=P(X \quad(2,3))=0.6
$$

However, $X$ do es not sto chastically dominate ${ }_{i}$ by the $m^{\text {th }}$ degreefor any $m \geq 1$, since $F_{\mathrm{X}}(t)>F \mathrm{X}_{\mathrm{i}}(t)$ for every $t \quad(0,1$,$) and consequently G_{\mathrm{X}}^{m}(t)>G{ }_{\mathrm{X}}^{\mathrm{X}}(t)$ for every $m \geq 2$ and $t \quad(0,1)$.

We conclude that $X$ sp $\left[X_{1}, \ldots, X_{n}\right]$ do es not imply that exists $m \geq 1$ such that $X \geq_{\mathrm{mSD}} X_{i}$ for every $i=1, \ldots, n$. This generalises Remark3.63, where we sawthat there is not a general relationship between the $n^{\text {th }}$ degree sto chastic dominance and the pairwise statistical preference.

Remark 3.105Let us note that if $X, X_{1}, \ldots ., X_{n}$ are $n+1$ random variablessuch that $X \quad \mathrm{sp} \max \left(X_{1}, \ldots, X_{n}\right)\left(\right.$ respectively, $X \geq_{\operatorname{msD}} \max \left(X_{1}, \ldots, X_{n}\right)$ ), then $X \quad{ }_{\mathrm{sp}} X_{i}$ (respectively, $X \geq_{m s D} X_{i}$ ) for every $i=1, \ldots, n$.

To conclude this section, we presentthis result:
Prop osition 3.10Given $n+1$ real-valuedrandom variables $X, X_{1}, \ldots, X_{n}, X \quad$ SP $\max \left(X_{1}, \ldots, X_{n}\right)$ implies that $X \quad$ sp $\left[X_{1}, \ldots, X_{n}\right]$.

Pro of Since $X$ sp $\max \left(X_{1}, \ldots, X_{n}\right)$, it holdsthat

$$
Q\left(X, \max \left(X_{1}, \ldots, X_{n}\right) \geq Q\left(\max \left(X_{1}, \ldots, X_{n}\right), X\right)\right.
$$

Inparticular, by Lemma 2.20, we know that

$$
P\left(X>\max \left(X_{1}, \ldots, X_{n}\right)\right) \geq P\left(\max \left(X_{1}, \ldots, X_{n}\right)>X\right)
$$

since:

$$
\begin{aligned}
& P\left(X>\max \left(X_{1}, \ldots, X_{n}\right)\right) \geq P\left(\max \left(X_{1}, \ldots, X_{n}\right)>X\right) \\
& =\quad P\left(X i=X \quad i_{1}=\ldots=X \quad i_{k}>X,\right. \\
& \left.\max _{j=i} \operatorname{lax}_{1, \ldots, I_{k}}\left(X_{j}\right)\right) \\
& \begin{array}{l}
k=1, \ldots, n \\
1 \leq i_{1}<\ldots .<i \quad k \leq n
\end{array} \\
& i=i \quad 1, \ldots, i_{k} \\
& \geq \max _{\substack{k=1, \ldots, n \\
1 \leq i i_{1}<\ldots,<i, k \leq n \\
i=i \quad i_{1}, \ldots, i_{k}}} \frac{1}{k+1} P\left(X i=X \quad i_{1}=\ldots=X \quad i_{k}>X, \max _{j=i}(X j)\right) \text {. }
\end{aligned}
$$

Then:

$$
\begin{aligned}
& Q_{n}\left(X,\left[X_{1}, \ldots, X_{n}\right]\right)= \\
& \frac{1}{k+1} P\left(X=X \quad i_{1}=\ldots=X \quad i_{k}>\max _{j=i}, \ldots, i_{k}\left(X_{j}\right)\right) \geq \\
& 1 \leq \begin{array}{l}
k=0, \ldots, n \\
i_{1}<\ldots<i
\end{array}{ }_{k} \leq n \\
& \frac{1}{k+1} P\left(X i=X \quad i_{1}=\ldots=X \quad i_{k}>X, \max _{j=i} 1_{1, \ldots, i_{k}}(X j)\right)+ \\
& \begin{array}{l}
k=1, \ldots, n \\
1 \leq i_{1}<\ldots<i
\end{array} k_{n} \leq n \\
& { }_{i=i}, \ldots, \ldots, i_{k}^{k} \\
& \frac{1}{k+1} P\left(X i=X \quad i_{1}=\ldots=X \quad i_{k}>X, \max _{j=i, \ldots, I_{k}}(X j)\right) \\
& \underset{\substack{k=1, \ldots, n \\
1 \leq i_{1}<\ldots<i}}{ } \quad k \leq n \\
& i=i \quad 1, \ldots, i_{k} \\
& =Q n(X i,[X, X-i]) \text {. }
\end{aligned}
$$

Figure3.5 summarises some of the results of this section. Missin $g$ arrows mean that an implication do es not hold in general, arrows with reference s m eans that such implication holdsin the conditions of such references, andarrowwithout reference means that such implication always holds.


Figure 3.5: Relationships among firstand $n^{t h}$ degree sto chastic dominancestatistical preferenceand the generalstatistical preference.

### 3.4 Applications

In this section we present two possible applications of sto chastic orders. Onthe one hand, we apply sto chastic dominance and statistical preference for the comparison of fitness values, and on the other hand, we use the general statistical preference in decision makingproblems with linguistic variables.

### 3.4.1 Comparison of fitness values

Genetic algorithms are a $p$ owerful to ol to $p$ erform tasks such as generation of fuzzy rule bases, optimization of fuzzy rule bases, generation of memb ership functions, and tuning of memb ership functions (see [41])All these tasks can be considered as optimization or search pro cesses geneticalgorithmgeneratesoradaptsa fuzzysystem, whichiscalled Genetic Fuzzy Systems (GFS, forshort) [42]. The use of GFS has been widely accepted,
since these algorithms are robust and can search efficiently large solution spaces (s ee [213]).

Althoughinthis contextthelinguisticgranulesor informationarerepresentedby fuzzy sets, the input dataand the output results are usually crisp[87]. However, some recent pap ers (see [180,181, 182, 183])have dealt with fuzzy-valued data to learn and evaluate GFS. In that app roach the function that quantifies the optimality of a solution in the gene tic algorithm, that is, the fitness function, is fuzzy-valued. In particular, in [183], it has been considered that the fitness values are unknown, and that interval valued information is available. The computed fitness value is used by the gen etic algorithm mo dule to pro duce the next $p$ opulation of individualsInthis context some kindof order between two fitness values is necessary if we want to determine whether one individual precedes the other. Since the information ab out the fitness values is imprecise and is given by means of intervals, a pro cedure for comparing two intervals is requirebhitially, these pro cedures were based on estimating and comparing two probabilities [18B].this section we con sider statistical preference as a more flexible to ol for the comparison of intervals.

Thus, in this section we study of these concepts in connection with the comparison of two inte rvals, that represent imprecise information ab out the fitness values of two Knowledge Bases.In particular, we shall make no assumptions ab out the joint distribution of the two fitness values and shall use then the uniform distribution. Thisis notan artificial requirement, and it has been considered in many situation as a consequence of lack of information(see, for instance, [183,197]). Whenthisdistributionisconsidered, we obtain the sp ecific expression of the asso ciated probabilistic and fuzzy relationßVe also consider the situation where we have some additional information ab out the distribution of the fitness, that we mo del that by means of $b$ eta distributionsFor these two cases, we consider three $p$ ossible situations $b$ etwee $n$ the intervalsindep endencecomonotonicity and countermonotonicity.

## Usual comparison metho ds

Let us consider two fitn ess value $\theta_{1}$ and $\theta_{2}$ oftwoKBs, thatis, themeansquarederrors of these two KBs onthetrainingset. In manysituations, $\theta_{1}$ and $\theta_{2}$ areunknown, butwe have some imprecise information ab out them, that we mo del by means of two intervals that include them. The se intervals can be obtained by means of a fuzzy generalisation of the mean squared errors (for a moredetailed explanation, see Sections4 and 5 in [183]) and they will be denoted by FMSE $_{1}$ and FMSE $_{2}$, resp ectively. Thecomparison ofthis two intervals is needed in order to cho ose the predecessor and the successor.

Let us intro duce the usual metho ds that can be found in the literature for the comparison of such intervals. We shall prop ose statistical preferen ce as an alternative metho $d$ and investigate the relationships $b$ etween all the $p$ ossibilities.

Let us start with the strong dominance that was considered in [116]. Inthatcase, if these two intervals are disjoint, then wehave notany problem todetermine the preferred interval andtherefore the decision is trivial. Theproblemarises whentheintersectionis non-empty,since theintervals are incomparable.

Definition 3.107Considerthe fitness $\theta_{1}$ and $\theta_{2}$ withassociated intervalsFMSE ${ }_{1}=$ $\left[a_{1}, b_{1}\right]$ and $F M S E_{2}=\left[\begin{array}{ll}2 & b_{2}\end{array}\right]$, respectively. It holdsthat:

- If $b_{2}<a{ }_{1}$, then $\theta_{1}$ ispreferred to $\theta_{2}$ with respect to the strong dominance, denoted by $\theta_{1}$ sd $\theta_{2}$.
- If $b_{1}<a a_{2}$, then $\theta_{2}$ ispreferred to $\theta_{1}$ with respect to the strong dominance, denoted by $\theta_{2}$ sd $\theta_{1}$.
- Otherwise, $\theta_{1}$ and $\theta_{2}$ are incomparable.

This metho $d$ is to o restrictive, since it can be used only in very particular cases. An attempt to solve this problem is to use the first degree sto chastic dominance, that introduces prior knowledge ab out the probability distribution of the fitness.

In particular, if we assume thatthe fitness follows a uniform distribution (as in [197]), then:

$$
\theta_{1} \quad \text { FSD } \theta_{2} \quad a_{1} \geq a_{2} \text { and } b_{1} \geq b_{2}
$$

with at least one of the inequalities strict. In parti cular, if $\theta_{1}$ strong dominates $\theta_{2}$, then $\theta_{1}$ FSD $\theta_{2}$ regardlesson thedistributionofthe fitness.

Nevertheless, first degree sto chastic dominance, as we have already noticed during this memory, do es not solve all the problems of strong domi nance,since, for instance, incomparability is also allowed.

Another metho d, called method of the probabilistic prior, was prop osed in [183As first degree sto chastic dominance, it is based on a prior knowledge ab out the probability distribution of the fitness, $P\left(\theta_{1}, \theta_{2}\right)$.

Definition 3.108Considerthe fitness $\theta_{1}$ and $\theta_{2}$ withassociated intervalsFMSE ${ }_{1}=$ [ $\left.a_{1}, b_{1}\right]$ and $F M S E_{2}=\left[a_{2}, b_{2}\right]$. Then, $\theta_{1}$ is considered tobe preferred to $\theta_{2}$ withrespect to the probabilistic prior, and is denoted by $\theta_{1} \quad$ pp $\theta_{2}$, if and only if

$$
\begin{equation*}
\frac{P\left(\theta_{1}>\theta_{1}\right)}{P\left(\theta_{1} \leq \theta_{2}\right)}>1 \tag{3.30}
\end{equation*}
$$

If $P\left\{\theta_{1} \leq \theta_{2}\right\}=0$, the ration inEquation (3.30) is notdefined, bu $t$ it is assumed that $\theta_{1}$ pp $\theta_{2}$.

Remark 3.109Recall that fromEquation (3.30)wederive that $\quad \theta_{1} \quad$ pp $\theta_{2}$ if and only if:

$$
P\left(\theta_{1}>\theta_{1}\right)>P\left(\theta_{1} \leq \theta_{2}\right) .
$$

Thus, theprobability prioris equivalent to the probability dominance, with thestrict version, considered in Remark 2.22, with $\beta=0.5$.

Even though these metho ds allow to compare a wider class of random intervals than the strong dominance, as we said in Remark 2.22 they have an imp ortant drawback: they allow for incomparability. Inparticular, whenever $P\left(\theta_{1}=\theta_{2}\right) \geq 0.5, \theta_{1}$ and $\theta_{2}$ would be incomparable.

Then, it seems natural to consider statistical preference as a metho $d$ for the comparison of fitness for two main re asons:avoid incomparability and gradu ate the preference. Also, aswe alreadycommentedin Subsection2.1.2, the probabilistic rel ation $Q$ can be transformed into afuzzy relation.

Let us study some relationships amongstrongdominance, first degree sto chastic dominance, probabilistic priorandstatistical preference.

Prop osition 3.116iven twofitness $\theta_{1}$ and $\theta_{2}$ with associat ed intervals $F M S E_{1}=$ [ $\left.a_{1}, b_{1}\right]$ and $F M S E_{2}=\left[\begin{array}{l}2 \\ 2\end{array}, b_{2}\right]$, it holds that:

- $\theta_{1}$ sd $\theta_{2}$ implies $\theta_{1}$ FSD $\theta_{2}$.
- $\theta_{1}$ sd $\theta_{2}$ implies $\theta_{1}$ pp $\theta_{2}$.
- $\theta_{1}$ pp $\theta_{2}$ implies $\theta_{1}$ sp $\theta_{2}$.
- If $\theta_{1}$ and $\theta_{2}$ are independent, $\theta_{1}$ fSD $\theta_{2}$ implies $\theta_{1}$ pp $\theta_{2}$.


## Pro of

- The pro of of the first item is based on the fact that $\theta_{1}$ sd $\theta_{2}$ implies

$$
\min \mathrm{FMSE}_{1}=a_{1}>b_{2} \max \mathrm{FMSE}_{2},
$$

and consequently $\theta_{1} \quad$ FSD $\theta_{2}$ regardlesson thedistributionsof FMSE $\quad i, i=1,2$.

- If $\theta_{1}$ sd $\theta_{2}$, then $\left\{\left(\theta_{1}, \theta_{2}\right): \theta_{1} \leq \theta_{2}\right\}=$,and consequently $\theta_{1}$ pp $\theta_{2}$.
- If $\theta_{1}$ pp $\theta_{2}$, then $P\left(\theta_{1}>\theta_{2}\right)>P\left(\theta_{1} \leq \theta_{2}\right)$, that implies $Q(X, Y)>Q(Y, X)$. Howe ver, since $Q$ is a probabilisticrelation, this meansthat $Q(X, Y)>{ }_{2}^{1}$, and thus $\theta_{1}$ sp $\theta_{2}$.
- If the intervals are indep endent, then $P\left(\theta_{1}=\theta_{2}\right)=0$, and consequently $\theta_{1} \quad$ pp $\theta_{2}$ ifand only if

$$
P\left(\theta_{1}>\theta_{2}\right)>P\left(\theta_{1}<\theta_{2}\right) .
$$

Thus, $b$ oth the probabilis tic prior and statis tical preference are equivalent in this context. Thus, if $\theta_{1}$ FSD $\theta_{2}$, applying Theorem $3.64, \theta_{1} \mathrm{sp} \theta_{2}$, and conse quently the preference with resp ect to the probabilistic prior metho $d$ also hold.

Thus there is a relationship b etween the probabilistic prior and the sto chastic order when the intervals are indep endent.However, such relationship do es not hold for comonotonic and countermonotonic intervals, as we show next:

Example 3.111Consider $\theta_{1}$ distributed inthe interval [1, 2]and $\theta_{2}$ distributed inthe interval $[0,2]$ We consider thatFMSE ${ }_{1}$ fol lows an uniform distribution and the distribution of $F M S E_{2}$ is definedby the densityfunction:

$$
f(x)=\begin{array}{ll}
\square \square_{1}^{1} & \text { if } 0<x<1.1, \\
\text { 自 } 11.1<x<2, \\
\text { 目0 } & \text { otherwise. }
\end{array}
$$

Thus, $\theta_{1} \quad$ FSD $\theta_{2}$. Assume that bothintervals arecomonotonic. UsingEquation (3.6) we can computep $\left(\theta_{1}=\theta_{2}\right)$ :

$$
P\left(\theta_{1}=\theta_{2}\right)=\quad f_{[1.1,2]}(x) \mathrm{d} x=0.9
$$

Thus, both intervals areincomparable withrespect tothe probabilistic prior.
Assume now that they are countermonotonic. Using Equation (3.7)we obtainthat

$$
Q\left(\theta_{1}, \theta_{2}\right)=F Y(1.5)=0.5 .
$$

Thus, $\theta_{1}$ sp $\theta_{2}$, and consequently, using Proposition 3.110, $\theta_{1}$ pp $\theta_{2}$.



Figure 3.6: Summary of the relationships $b$ etween strong dominance, first degree sto chastic dominance, probabilistic prior and statistical preference given in Prop osition 3.110.

## Expressionofthe probabilistic relation for the comparison of fitness values

In this section we will apply statistical p re ference to the comparis on of fitness values.

Uniform case Letusconsideragainanuniformdistribution, thatis, nopriorinformation ab out the distribution over the observed interval, as in [197], and let us search for an expression of theprobabilisticrelation $Q$ so as tocharacterise the statistical preference.

Thus, FMSE $_{1}=\left[\begin{array}{ll}a & 1, b_{1}\end{array}\right]$ and $\mathrm{FMSE}_{2}=\left[\begin{array}{ll}\left.a_{2}, b_{2}\right]\end{array}\right]$ will denote now two intervals where we know the fitness $\theta_{1}$ and $\theta_{2}$ of two KBsare included. Let us assume a uniform distribution on each of them. We will consider again three possible ways to obtain the joint distribution: an assumption of independence, that is, $b$ eing coupled by the pro duct, and the extreme cases where they are coupled by the minimum or the Łu kasiewicz copullas. these three cases we will obtain the condition on the parameters to assure the statistical preference of the interval $\mathrm{FMSE}_{1}$ tothe interval FMSE 2. Todo that, the expressionof the probabilistic relation will be an essential part of the pro of.

First of all, recall the result the comparison of indep endent uniform distributions
 two uniformly distributed intervals which represent the information we have ab out the fitness $\theta_{1}$ and $\theta_{2}$ of two KBs , andthe joint distributionis obtainedby meansof the pro duct copula, then the probabilistic relation $Q\left(\theta_{1}, \theta_{2}\right)$ takes the followingvalue:

These are theconditionsunder which $\theta_{1}$ sp $\theta_{2}$ :

| $\square$ Always | if $a_{1} \leq a_{2}<b_{1} \leq b_{2}$ |
| :--- | :--- |
| 自Never | if $a_{2} \leq a_{1}<b_{2} \leq b_{1}$. |
| 首 $^{a_{1}+b_{1} \geq b_{2}+a_{2}}$ | if $a_{1} \leq a_{2}<b_{2} \leq b_{1}$ |
|  | or $a_{2} \leq a_{1}<b{ }_{1} \leq b_{2}$. |

Let us now study the comonotonic case.
Prop osition 3.112et $F M S E_{1}=\left[\begin{array}{ll}a & 1, b_{1}\end{array}\right]$ and $F M S E_{2}=\left[\begin{array}{ll}a_{2} & \left., b_{2}\right]\end{array}\right]$ be two uniformly distributedintervalsrepresenting the availableinformation onthe different fitness $\quad \theta_{1}$ and $\theta_{2}$ of two KBs. If the joint distribution is obtained by means of the minimum copula, the
probabilistic relation $Q\left(\theta_{1}, \theta_{2}\right)$ takes the fol lowing value：


Thus，$\theta_{1}$ sp $\theta_{2}$ if andonly if：

| $\square$ Never | if $a_{1} \leq a_{2}<b_{1} \leq b_{2}$. |
| :--- | :--- |
| $\exists_{\text {Always }}$ | if $a_{2}<a_{1}<b_{2} \leq b_{1}$. |
| 自 $a_{1}+b_{1}>a_{2}+b_{2}$ | otherwise． |

Then，the condition is equivalent to have a greater expectation．

Pro of The expression of the probabilistic relation can $b$ e ob tained using Equation（3．6）， and taking into account that $P\left(\theta_{1}=\theta_{2}\right)=0$ ，since the asso ciated cumulative distribution coincide at most in one point．

First and second scenarios of the are trivial．In thethird scenario，if $a_{1} \leq a_{2}<$ $b_{2} \leq b_{1}$ itholds that：

$$
\theta_{1} \quad \text { sp } \theta_{2} \quad \frac{b_{1}-b_{2}}{b_{1}+a_{2}-a_{1}-b_{2}}>\frac{1}{2} \quad a_{1}+b_{1}>a_{2}+b_{2}
$$

The condition for $a_{2} \leq a_{1}<b_{1} \leq b_{2}$ can b e sim ilarly obtained．
Finally，letus studythecountermonotonic case．
 tributed intervals whichrepresentthe information we have about the fitness $\theta_{1}$ and $\theta_{2}$ of two KBs．Ifthejoint distributionis obtainedbymeans oftheŁukasiewiczcopula，then the probabilistic relation is given by：

$$
Q\left(\theta_{1}, \theta_{2}\right)=\frac{b_{1}-a_{2}}{b_{2}-a_{2}+b_{1}-a_{1}}
$$

In addition，$\theta_{1}$ sp $\theta_{2}$ if andonly if：

| $\square$ Never | if $a_{1} \leq a_{2}<b_{1} \leq b_{2}$. |
| :--- | :--- |
| 首 $a_{1}+b_{1} \geq a_{2}+b_{2}$ | if $a_{1} \leq a_{2}<b_{2}<b b_{1}$. |
| 自 $a_{1}+b_{1} \geq a_{2}+b_{2}$ | if $a_{2}<a_{1}<b{ }_{1} \leq b_{2}$. |
| Always | if $a_{2}<a_{1}<b_{2} \leq b_{1}$. |

Pro of Theexpressionoftheprobabilisticrelationcan be obtainedusingEquation(3.7), and taking into account that the point $u$ such that $F_{\theta_{1}}(u)+F \quad \theta_{2}(u)=1 \quad$ equals: $u=$ $\frac{b_{2} b_{1}-a_{1} a_{2}}{b_{2}-a_{2}+b_{1}-a_{1}}$.

The first and fourth sce narios of the second part are easy, sincethere theyare ordered by means of the sto chastic order. In the first sc enario it holds that $F_{\theta_{1}}(u)>$ $F_{\theta_{2}}(u)$, and consequently

$$
Q\left(\theta_{1}, \theta_{2}\right)<Q\left(\theta_{2}, \theta_{1}\right)
$$

and then $\theta_{1} \quad \mathrm{sp} \theta_{2}$. Similarly, weobtainthatin thefourthscenario $\quad \begin{array}{llll} & \theta_{1} & \mathrm{sp} & \theta_{2} .\end{array}$
Forthe second and third scenarios, it isenoughtocompare deexpressionof probabilistic relation with $\quad \stackrel{1}{2}$.

Beta case We now assume that more information about the fitness values may be available. If it is know that some value s of the interval are more feasible than others, the uniform distribution is not a go od model any more. Ifweassume that thecloser we are to one extreme of the interval the more feasible the values are, beta distributions become more appropriate to mo del the fitness values.As we made in Subsection 3.2.6, we fo cus on this situation: b eta distributions su ch that one of the parameters is1.

As we already said, the density of a beta distribution $\beta(p, q)$ is given by Equation (3.17). However, it is possible to define a beta distribution on every interval $[a, b]$ (it is denoted by $\beta(p, q, a, b$.) The asso ciated density function is:

$$
f(x)=\frac{\Gamma(p+q)}{\Gamma(p) \Gamma(q)} \frac{(x-a)^{p-1}\left(b^{-} a\right)^{q-1}}{\left(b^{-} a\right)^{p+q-1}}
$$

for any $x \quad[a, b]$ and zero othe rw ise.Next, we will fo cus on two particular cases. In the first one we will assume that the closer the value is to $a_{i}$, the more feasible the value is. In the sec ond case,we will assume the opp osite:that thecloser thevalue isto $b_{i}$, the more feasible the value is. In terms of density functions, these two cases corresp ond to strictly decreasing and strictly increasing density functions. We will consider the intervals FMSE $i$ follows a dis tri bution $\beta\left(p, 1, a^{i}, b_{i}\right)$, for $i=1,2$, where $p$ will be an integer greater than 1. Indep endently of wherethe weight of the distribution is, we shall consider three possibilities concerning the relationship b etween the fitness values: indep endencecomonotonicityand countermonotonicity. If intervals satisfy oneof the following c on ditions:

$$
a_{1} \leq a_{2}<b b_{1} \leq b_{2} \text { or } a_{2} \leq a_{1}<b_{2} \leq b_{1}
$$

we have seen in the previous section that, since they are ordered with resp ect to the sto chastic order,the stu dy of the statistical preference b ecomes trivial. Forthis reason we will assume the intervals to satisfy the condition $a_{1} \leq a_{2}<b b_{2} \leq b_{1}$ (the case $a_{2} \leq a_{1}<b_{1} \leq b_{2}$ can be solved by symmetry).

Prop osition 3.114etus considerthedifferent fitnessvalues $\theta_{1}$ and $\theta_{2}$ with associated intervals $F M S E_{i} \equiv\left[a^{i}, b_{i}\right]$ fol lowing a distribution $\beta\left(p, 1, a_{i}, b_{i}\right)$, where $a_{1} \leq a_{2}<b_{2} \leq b_{1}$. Then:

$$
\begin{aligned}
& Q^{P}\left(\theta_{1}, \theta_{2}\right)=p{ }_{k=0}^{p-1} p^{p-1} \frac{\left(a_{2}-a_{1}\right)^{p-k-1}\left(b_{2}-a_{2}\right)^{k-1}}{\left(b_{1}-a_{1}\right)^{p}(p+k+1)}+\frac{b_{2}-a_{1}}{b_{1}-a_{1}}-\frac{a_{2}-a_{1}}{b_{1}-a_{1}} \\
& Q^{M}\left(\theta_{1}, \theta_{2}\right)=1-{\frac{t-a_{1}}{b_{1}-a_{1}}}_{p}^{p}, \\
& Q^{L}\left(\theta_{1}, \theta_{2}\right)={\underset{b}{2}-a_{2}}_{b_{2}-a_{2}}^{p},
\end{aligned}
$$

wheret $=\frac{a_{1} b_{2}-a_{2} b_{1}}{b_{2}-a_{2}-b_{1}+a 1}$ and $z$ is thepoint in $\left[a_{2}, b_{2}\right]$ such that

$$
{\frac{z-a_{1}}{b_{1}-a_{1}}}^{p}+{\frac{z-a_{2}}{b_{2}-a_{2}}}^{p}=1
$$

and $Q^{P}, Q^{M}$ and $Q^{L}$ denotes the probabilistic relationwhen the random variables are coupled by the product, the minimum and the $Ł u k a s i e w i c z ~ o p e r a t o r s, ~ r e s p e c t i v e l y . ~$

Pro of Let usbegin bycomputing theexpression of $Q^{P}\left(\theta_{1}, \theta_{2}\right)$. Sincethey areindependent and continuous, $P\left(\theta_{1}=\theta_{2}\right)=0$. Then:

$$
Q^{P}\left(\theta_{1}, \theta_{2}\right)=P\left(\theta_{1}>\theta_{2}\right)=P\left(\theta_{1} \quad\left[b_{2}, b_{1}\right]\right)+P\left(b_{2}>\theta_{1}>\theta_{2}\right) .
$$

Letus compute each oneof the previous probabilities:

Taking $z=\frac{x-a_{2}}{b_{2}-a_{2}}$, the previous expression becomes:

$$
\begin{aligned}
& =\frac{p}{\left(b_{1}-a_{1}\right)^{p}}{ }_{k=0}^{p-1} \sum_{k}^{p-1} \quad\left(a_{2}-a_{1}\right)^{p-k-1}\left(b_{2}-a_{2}\right)^{k-1} .
\end{aligned}
$$

Making the sum ofthetwo probabilities, we obtain the value of $Q\left(\theta_{1}, \theta_{2}\right)$.
Next, assume that $\theta_{1}$ and $\theta_{2}$ are comonotonic. Since $\left\{x: F_{\theta_{1}}(x)=F \theta_{2}(x)\right\}=$, applying Equation (3.6) we deduce that

Moreover, $\left\{x: F \theta_{1}(x)<F \quad \theta_{2}(x)\right\}=\left(t, b_{1}\right]$, where $t$ is the point satisfying:

$$
\begin{aligned}
F_{\theta_{1}}(t)=F \theta_{2}(t) \quad & {\frac{t-a_{1}}{b_{1}-a_{1}}}^{p}=\frac{t-a_{2}}{b_{2}-a_{2}} p \\
& t\left(b_{2}-a_{2}\right)-a_{1}\left(b_{2}-a_{2}\right)=t \quad\left(b_{1}-a_{1}\right)-a_{2}\left(b_{1}-a_{1}\right) \\
& t=\frac{a_{1} b_{2}-a_{2} b_{1}}{b_{2}-a_{2}-b_{1}+a_{1}} .
\end{aligned}
$$

Then:

$$
Q^{M}\left(\theta_{1}, \theta_{2}\right)={ }_{t}^{b_{1}} p_{\left(b_{1}-a_{1}\right)^{p}}^{\left(b_{1}-a^{p-1}\right.} \mathrm{d} x=1-{\frac{t-a_{1}}{b_{1}-a_{1}}}^{p} .
$$

Finally, assume that $\theta_{1}$ and $\theta_{2}$ are countermonotonic. By Equation (3.7),

$$
Q^{L}\left(\theta_{1}, \theta_{2}\right)=F \theta_{2}(z)={\frac{z-a_{2}}{b_{1}-a_{1}}}^{p}
$$

where $Z$ satisfies that:

$$
F_{\theta_{1}(z)+F} \theta_{\theta_{2}}(z)=1 \quad \frac{z-a_{1}}{b_{1}-a_{1}}{ }^{p}+{\frac{z-a_{2}}{b_{2}-a_{2}}}^{p}=1 .
$$

Prop osition 3.115etus considerthedifferent fitnessvalues $\theta_{1}$ and $\theta_{2}$ with associated intervals $F M S E_{1}=\left[\begin{array}{ll}1 & \left.1, b_{1}\right]\end{array}\right]$ and $F M S E_{2}=\left[\begin{array}{ll}\left.a_{2}, b_{2}\right]\end{array}\right.$ fol lowing the distribution $\beta\left(1, q, a^{i}, b_{i}\right)$, where $a_{1} \leq a_{2}<b_{2} \leq b_{1}$. Then

$$
\begin{aligned}
& Q^{P}\left(\theta_{1}, \theta_{2}\right)=q_{k=0}^{q-1} q^{q-1} \frac{\left(b_{1}-b_{2}\right)^{k}\left(b_{2}-a_{2}\right)^{q-k-2}}{\left(b_{1}-a_{1}\right)^{q}(q+k+1)}+\frac{b_{1}-a_{2}}{b_{1}-a_{1}}{ }^{q}, \\
& Q^{M}\left(\theta_{1}, \theta_{2}\right)=1_{-\frac{b}{1}-t}^{b_{1}-a_{1}}{ }^{q}, \\
& Q^{L}\left(\theta_{1}, \theta_{2}\right)=1-{\frac{b_{1}-z}{b_{1}-a_{1}}}_{p},
\end{aligned}
$$

wheret $=\frac{a_{1} b_{2}-b_{1} a_{2}}{b_{2}-a_{2}-b_{1}+a_{1}}$ and $z$ is thepoint in $\left[a_{2}, b_{2}\right]$ such that

$$
\frac{\left(b_{1}-x\right)^{q}}{\left(b_{1}-a_{1}\right)^{q-1}}+\frac{\left(b_{2}-x\right)^{q}}{\left(b_{2}-a_{2}\right)^{q-1}}=1
$$

and $Q^{P}, Q^{M}$ and $Q^{L}$ denotes theprobabilisticrelation when the randomvariables are coupled by the product, the minimum and the $Ł u k a s i e w i c z ~ o p e r a t o r s, ~ r e s p e c t i v e l y . ~$

Pro of We begin by computing the expression of $Q^{P}\left(\theta_{1}, \theta_{2}\right)$. Again, sincethey are indep endent and continuous $P\left(\theta_{1}=\theta_{2}\right)=0$, and then:

$$
Q^{P}\left(\theta_{1}, \theta_{2}\right)=P\left(\theta_{1}>\theta_{2}\right)=P\left(\theta_{1} \quad\left[b_{2}, b_{1}\right]\right)+P\left(b_{2}>\theta_{1}>\theta_{2}\right) .
$$

Letus compute each onethe the previous probabilities:

$$
\begin{aligned}
& P\left(\theta_{1} \quad\left[b_{2}, b_{1}\right]\right)={ }_{b_{2}}^{b_{1}} q_{\left(b_{1}-x\right)^{q-1}}^{\left(b_{1}-a_{1}\right)^{q}} \mathrm{~d} x=\frac{b_{1}-b_{2}}{b_{1}-a_{1}} \quad . \\
& P\left(b_{2}>\theta_{1}>\theta_{2}\right)=\quad \begin{array}{cc}
b_{2} & x \\
a_{2} \quad a_{2}
\end{array} \frac{q^{2}}{\left(b_{1}-x\right)^{q-1}} \underset{\left(b_{1}-a_{1}\right)^{q}}{\left(b_{2}-y\right)^{q-1}} \underset{\left(b_{2}-a_{2}\right)^{q}}{d} d y d x \\
& =a_{a_{2}}^{b_{2}} q \frac{\left(b_{1}-x\right)^{q-1}}{\left(b_{1}-a_{1}\right)^{q}} 1-\frac{b_{2}-x}{b_{2}-a_{2}} \quad d x \\
& ={ }_{a_{2}}^{b_{2}} q^{\left(b_{1}-x\right)^{q-1}}\left(b_{1}-a_{1}\right)^{q} d x-a_{a_{2}}^{b_{2}} q_{\left(b_{1}-x\right)^{q-1}}^{\left(b_{1}\right)^{q}} \frac{b_{2}-x}{b_{2}-a_{2}} \quad \mathrm{~d} x \\
& =\frac{b_{1}-a_{2}}{b_{1}-a_{1}}-\frac{b_{1}-b_{2}}{b_{1}-a_{1}}-{\frac{b_{2}}{a_{2}}}_{q \frac{\left(b_{1}-x\right)^{q-1}}{\left(b_{1}-a_{1}\right)^{q}} \frac{b_{2}-x}{b_{2}-a_{2}}}{ }^{q} \mathrm{~d} x .
\end{aligned}
$$

Taking $z=\frac{b_{2}-x}{b_{2}-a_{2}}$, the last integral becomes:

$$
\begin{aligned}
& P\left(b_{2}>\theta_{1}>\theta_{2}\right)={ }_{0}^{1} q z^{q} \frac{\left(b_{1}-b_{2}+z\left(b_{2}-a_{2}\right)\right)^{q-1}}{\left(b_{1}-a_{1}\right)^{q}} \frac{d z}{b_{2}-a_{2}} \\
& =q \int_{0}^{1} \frac{z^{q}}{\left(b_{2}-a_{2}\right)\left(b_{1}-a_{1}\right)^{q}}{ }_{k=0}^{q-1}{ }_{k}^{q-1}\left(\left(b_{1}-b_{2}\right) z\right)^{k}\left(b_{2}-a_{2}\right)^{q-k-1} d z \\
& =q \underbrace{q-1}_{k=0} \quad q-1 \frac{\left(b_{1}-b_{2}\right)^{k}\left(b_{2}-a_{2}\right)^{q-k-2}}{\left(b_{1}-a_{1}\right)^{q}(q+k+1)} \frac{1}{q+k+1} .
\end{aligned}
$$

Making the sum ofthethree terms, we obtain the expression of $Q^{P}\left(\theta_{1}, \theta_{2}\right)$.
Consider now the fitness to be comonotonic.Then, since $\left\{x: F \theta_{1}(x)=F \theta_{2}(x)\right\}=$, the expression of the probabilistic relation given in Eq.(3.6) becomes:

Then, $\left\{x: F \theta_{1}(x)<F \theta_{2}(x)\right\}=\left(t, b_{1}\right]$, where:

$$
\begin{aligned}
F_{\theta_{1}}(t)=F \theta_{2}(t) \quad & 1^{-}{\frac{b_{1}-t}{b_{1}-a_{1}}}^{q}=1-\frac{b}{2}-t_{b_{2}-a_{2}}^{q} \\
& \frac{b_{1}-t}{b_{1}-a_{1}}=\frac{b_{2}-t}{b_{2}-a_{2}} \quad t=\frac{a_{1} b_{2}-b_{1} a_{2}}{b_{2}-a_{2}-b_{1}+a_{1}} .
\end{aligned}
$$

Then:

$$
Q^{M}\left(\theta_{1}, \theta_{2}\right)=\quad{ }_{t}^{b_{1}} \frac{\left(b_{1}-x\right)^{q-1}}{\left(b_{1}-a_{1}\right)^{q}} \mathrm{~d} x=\frac{b_{1}-x}{b_{1}-a_{1}} \quad q
$$

Finally, assume that $\theta_{1}$ and $\theta_{2}$ are countermonotonic. Then, $Q^{L}\left(\theta_{1}, \theta_{2}\right)=F \quad \theta_{2}(z)$, where $z$ satisfies:

$$
\begin{array}{cc}
F_{\theta_{1}}(z)+F \theta_{2}(z)=1 \quad & 1-{\frac{b_{1}-x}{b_{1}-a_{1}}}^{q}+1-{\frac{b_{2}-x}{b_{2}-a_{2}}}^{q}=1 \\
& \frac{b_{1}-x}{b_{1}-a_{1}}+{\frac{b_{2}-x}{b_{2}-a_{2}}}^{q}=1 .
\end{array}
$$

Remark 3.116In order to prove the previous result it is not possible to fol low the procedu re of Proposition 3.78.There, we used the fol lowing property:

$$
X \equiv \beta(p, 1) \quad 1-X \equiv \beta(1, p)
$$

Then, since $Q(X, Y)=Q(1-Y, 1-X)$ (see Proposit ion 3.3), the case of $q=1$ was solved using the cas $\oplus=1$. In thecase ofgeneral beta distributions, it holds that:

$$
X \equiv \beta(p, 1, a, b) \quad\left(b^{-} a\right)-X \equiv \beta(1, p, a, b)
$$

The problem isthat $Q(X, Y)=Q\left(\left(b_{2}-a_{2}\right)-Y,\left(b_{1}-a_{1}\right)-X\right)$, andthereforethis kind of procedure is not possible.

Remark 3.117Note that for beta distribution it is not possible to obtain a simpler characterization of the statistical preference like the one foruniform distributions.

To conclude this section, let us present anexample where we show how the values of the probabilistic relation changewhen we vary thevalue of $p$.

Example 3.118Considerthe fitnessvalues $\theta_{1}$ and $\theta_{2}$ withassociatedvalues $F M S E_{1}=$ [ $a_{1}, b_{1}$ ] and $F M S E_{2}=\left[\begin{array}{ll}\left.a_{2}, b_{2}\right] \text {, where } a_{1} \leq a_{2}<b_{2} \leq b_{1} \text {, and let assume they fol low the }\end{array}\right.$ beta distribution $\beta\left(p, 1, a_{i}, b_{i}\right)$. Consider $a_{1}=1, b_{1}=4, a_{2}=2$ and $b_{2}=3$. Table 3.5 shows thevalues of theprobabilistic relation whenp moves from 1 to 5 , whereit is possible to see that $\theta_{1}$ and $\theta_{2}$ areequivalent when $p=1$, but $\theta_{1}$ ispreferred to $\theta_{2}$ when $p \geq 2$. Moreover, the greater the value of $p$, the stronger the preference of $\theta_{1}$ over $\theta_{2}$.

Consider now different values of the intervals: $a_{1}=0.7, b_{1}=1.4, a_{2}=0.8$ and $b_{2}=1.2$. In this case, alt houg $\left.{ }_{a_{2}}, b_{2}\right] \quad\left[a_{1}, b_{1}\right]$ as inthe previousexample, the difference betweenb $b_{1}$ and $b_{2}$ isgreater than $a_{1}$ and $a_{2}$. The results aresummarisedin Table 3.6. There, wecan seethat inthe threecases, $\theta_{1}$ sp $\theta_{2}$ for any $p \geq 1$. Furthermore, the greater the value ofp, thestrongerthe preferenceof $\theta_{1}$ over $\theta_{2}$. InFigure3.7 we cansee how thevalues of Qvary we changethe value of the parameter p from 1 to 10.

| $p$ | $Q^{P}$ | $Q^{M}$ | $Q^{L}$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.5 | 0.5 | 0.5 |
| 2 | 0.6853 | 0.75 | 0.64 |
| 3 | 0.7945 | 0.875 | 0.7436 |
| 4 | 0.8644 | 0.9375 | 0.8208 |
| 5 | 0.9101 | 0.9688 | 0.8766 |

Table 3.5: Degrees of preference for the different values of the param eterfor FMSE $_{1}=$ [1, 4] and $\mathrm{FMSE}_{2}=[2,3]$.

| $p$ | $Q^{P}$ | $Q^{M}$ | $Q^{L}$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.5715 | 0.6667 | 0.5455 |
| 2 | 0.7076 | 0.8889 | 0.64 |
| 3 | 0.7936 | 0.9630 | 0.7192 |
| 4 | 0.8533 | 0.9877 | 0.7852 |
| 5 | 0.8955 | 0.9959 | 0.8384 |

Table 3.6: Degrees of preference for the different values of the param eterfor FMSE $_{1}=$ [0. 7, 1.4 ${ }^{\text {band }} \mathrm{FMSE}_{2}=[0.8,1.2$ ]

### 3.4.2 Generalstatisticapreference as a to fadr linguis tic decision making

As we have seen, general statistical preference was intro duced as a method that allows for the comparison of more than two random variablesAsan illustrationofthe utilityof this metho d we can consider a decision making problem with linguistic utilities. We consider the example of pro duct management given in [123, Section 8]:acompanyseeks toplan its pro duction strategy for the next year, and they consider six p ossible alternatives:

- $A_{1}$ : Create a new pro duct for very high-income customers.
- $A_{2}$ : Create a new pro duct for high-income customers.
- $A_{3}$ : Create a new pro duct for medium-income customers.
- $A_{4}$ : Create a new pro duct for low-income customers.
- $A_{5}$ : Create a new pro duct suitable for all customers.
- $A_{6}$ : Do not create a new pro duct.

Due to the large uncertainty, the three exp erts of the company are not able to draw the information ab out the impact of each alternative in a numerical way, and for this reason


Figure 3.7: Values of the probabilistic relation for differentvalues of $p$. The ab ove picture corresp onds to interval\$ $\left.a_{1}, b_{1}\right]=[1,4]$ and $\left[a_{2}, b_{2}\right]=[2,3]$, and the picture below corresp onds to intervals $\left[a_{1}, b_{1}\right]=[0.7,1.4]$ and $\left[a_{2}, b_{2}\right]=[0.8,1.2]$
theyexpress theutilitybased onaseven linguistic scale $S=\left\{s_{1}, \ldots, s\right\}$, where:

| $s_{1}:$ None | $s_{5}:$ High |
| :--- | :--- |
| $s_{2}:$ Very low | $s_{6}:$ Very high |
| $s_{3}:$ Low | $s_{7}:$ Perfect |
| $s_{4}:$ Medium |  |

Note that the three exp erts have not the same influence in the company, and itsimportance is given by the weight vector (0.2, 0. 4, 0.4) Moreover, sinc e the decision of each exp ert depends on the economic situation of the following ye ar, sixscenarios are considered:

| $N_{1}:$ Very bad | $N_{4}:$ Regular-Go od |
| :--- | :--- |
| $N_{2}:$ Bad | $N_{5}:$ Go od |
| $N_{3}:$ Regular-Bad | $N_{6}:$ Very go od |

The exp erts assume the following weighting vector for these scenarios:

$$
W=(0.1,0.1,0.1,0.2,0.2,0.3)
$$

Finally, the preferences of each exp ert are given in Tables 3.7, 3.8 and 3.9.
Although in [123] this problem was solved by means of a particular typ e of aggregation op erators, we prop ose to use the general statistical preferencEor any exp erte ${ }_{i}$, $i=1,2,3$, we can compute the preference degree of the alte rnative $A_{j}$ over theothers

|  | $N_{1}$ | $N_{2}$ | $N_{3}$ | $N_{4}$ | $N_{5}$ | $N_{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1}$ | $s_{2}$ | $s_{1}$ | $s_{4}$ | $s_{6}$ | $s_{7}$ | $s_{5}$ |
| $A_{2}$ | $s_{1}$ | $s_{3}$ | $s_{5}$ | $s_{5}$ | $s_{6}$ | $s_{6}$ |
| $A_{3}$ | $s_{3}$ | $s_{4}$ | $s_{4}$ | $s_{4}$ | $s_{4}$ | $s_{7}$ |
| $A_{4}$ | $s_{2}$ | $s_{5}$ | $s_{6}$ | $s_{4}$ | $s_{2}$ | $s_{5}$ |
| $A_{5}$ | $s_{1}$ | $s_{3}$ | $s_{4}$ | $s_{5}$ | $s_{6}$ | $s_{6}$ |
| $A_{6}$ | $s_{6}$ | $s_{5}$ | $s_{5}$ | $s_{4}$ | $s_{2}$ | $s_{2}$ |

Table 3.7: Linguistic payoff matrix-Exp ert 1.

|  | $N_{1}$ | $N_{2}$ | $N_{3}$ | $N_{4}$ | $N_{5}$ | $N_{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1}$ | $s_{3}$ | $s_{1}$ | $s_{3}$ | $s_{5}$ | $s_{6}$ | $s_{6}$ |
| $A_{2}$ | $s_{1}$ | $s_{3}$ | $s_{4}$ | $s_{5}$ | $s_{6}$ | $s_{6}$ |
| $A_{3}$ | $s_{3}$ | $s_{4}$ | $s_{5}$ | $s_{4}$ | $s_{3}$ | $s_{7}$ |
| $A_{4}$ | $s_{3}$ | $s_{4}$ | $s_{5}$ | $s_{4}$ | $s_{2}$ | $s_{4}$ |
| $A_{5}$ | $s_{2}$ | $s_{3}$ | $s_{4}$ | $s_{6}$ | $s_{6}$ | $s_{6}$ |
| $A_{6}$ | $s_{7}$ | $s_{6}$ | $s_{4}$ | $s_{3}$ | $s_{2}$ | $s_{2}$ |

Table 3.8: Linguistic payoff matrix-Exp ert 2.

|  | $N_{1}$ | $N_{2}$ | $N_{3}$ | $N_{4}$ | $N_{5}$ | $N_{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1}$ | $s_{1}$ | $s_{2}$ | $s_{3}$ | $s_{5}$ | $s_{7}$ | $s_{6}$ |
| $A_{2}$ | $s_{2}$ | $s_{3}$ | $s_{4}$ | $s_{4}$ | $s_{5}$ | $s_{6}$ |
| $A_{3}$ | $s_{3}$ | $s_{4}$ | $s_{6}$ | $s_{4}$ | $s_{3}$ | $s_{7}$ |
| $A_{4}$ | $s_{2}$ | $s_{4}$ | $s_{6}$ | $s_{4}$ | $s_{2}$ | $s_{4}$ |
| $A_{5}$ | $s_{1}$ | $s_{3}$ | $s_{4}$ | $s_{5}$ | $s_{6}$ | $s_{6}$ |
| $A_{6}$ | $s_{6}$ | $s_{6}$ | $s_{5}$ | $s_{3}$ | $s_{2}$ | $s_{3}$ |

Table 3.9: Linguistic payoff matrix-Exp ert 3.
$A_{-j}$, and we obtain the following values:

$$
\begin{aligned}
& Q\left(A_{1},[A-1] \mid e_{1}\right)=P\left(N_{4}\right)+P\left(N_{5}\right)=0.4 . \\
& Q\left(A_{2},[A-2] \mid e_{1}\right)=0 . \\
& Q\left(A_{3},[A-3] \mid e_{1}\right)=P\left(N_{6}\right)=0.3 . \\
& Q\left(A_{4},[A-4] \mid e_{1}\right)={ }_{2}^{1} P\left(N_{2}\right)+P\left(N_{3}\right)=0.15 . \\
& Q\left(A_{5},[A-5] \mid e_{1}\right)=0 . \\
& Q\left(A_{6},[A-6] \mid e_{1}\right)=P\left(N_{1}\right)+{ }_{2}^{1} P\left(N_{2}\right)=0.15 . \\
& Q\left(A_{1},[A-1] \mid e_{2}\right)={ }_{3}^{1} P\left(N_{5}\right)=0.0667 . \\
& Q\left(A_{2},[A-2] \mid e_{2}\right)={ }_{3}^{1} P\left(N_{5}\right)=0.0667 . \\
& Q\left(A_{3},[A-3] \mid e_{2}\right)={ }_{2}^{1} P\left(N_{3}\right)+P\left(N_{6}\right)=0.35 . \\
& Q\left(A_{4},[A-4] \mid e_{2}\right)={ }_{2}^{1} P\left(N_{3}\right)=0.05 . \\
& Q\left(A_{5},[A-5] \mid e_{2}\right)=P\left(N_{4}\right)+{ }_{3}^{1} P\left(N_{5}\right)=0.2667 . \\
& Q\left(A_{6},[A-6] \mid e_{2}\right)=P\left(N_{1}\right)+P\left(N_{2}\right)=0.2 . \\
& Q\left(A_{1},[A-1] \mid e_{3}\right)={ }_{2}^{1} P\left(N_{4}\right)+P\left(N_{5}\right)=0.3 . \\
& Q\left(A_{2},[A-2] \mid e_{3}\right)=0 . \\
& Q\left(A_{3},[A-3] \mid e_{3}\right)={ }_{2}^{1} P\left(N_{3}\right)+P\left(N_{6}\right)=0.35 . \\
& Q\left(A_{4},[A-4] \mid e_{3}\right)={ }_{2}^{1} P\left(N_{3}\right)=0.05 . \\
& Q\left(A_{5},[A-5] \mid e_{3}\right)={ }_{2}^{1} P\left(N_{4}\right)=0.1 . \\
& Q\left(A_{6},[A-6] \mid e_{3}\right)=P\left(N_{1}\right)+P\left(N_{2}\right)=0.2 .
\end{aligned}
$$

Now, since the imp ortance of each exp ert is given by the weighting vectofo. 2, 0. 4, 0.4) we can obtain the preferenc e degree of each alternative:

$$
\begin{aligned}
Q\left(A_{1},[A-1]\right)= & Q\left(A_{1},[A-1] \mid e_{1}\right) 0.2+Q\left(A_{1},[A-1] \mid e_{2}\right) 0.4 \\
& +Q\left(A_{1},[A-1] \mid e_{3}\right) 0.4=0.4 \quad 0.2+0.06670 .4+0.30 .4=0.22667 .
\end{aligned}
$$

And similarly:

$$
\begin{aligned}
& Q\left(A_{2},[A-2]\right)=0.0667 \quad 0.4=0.02667 . \\
& Q\left(A_{3},[A-3]\right)=0.3 \quad 0.2+0.350 .4+0.350 .4=0.34 . \\
& Q\left(A_{4},[A-4]\right)=0.150 .2+0.050 .4+0.050 .4=0.07 \\
& Q\left(A_{5},[A-5]\right)=0.2667 \quad 0.4+0.10 .4=0.14667 . \\
& Q\left(A_{6},[A-6]\right)=0.150 .2+0.20 .4+0.20 .4=0.19
\end{aligned}
$$

Thus, general statistical preference gives $A_{3}$ as thepreferredalternative: $A_{3}$ SP $[A-3]$; $A_{1}$ isthe secondpreferredalternative, $\quad A_{6}$ the third, $A_{5}$ the fourth, $A_{4}$ the fifth and finally $A_{2}$ isthe lesspreferred alternative. Conse quently,creating a new pro duct for medium-income customers seems to be the best option, while the worst alternative is creating a new pro duct for high-income customers.

### 3.5 Conclusions

Sto chastic orders are to ols that allow us to compare random quantities, so they $b$ ecome particularly useful in decision problem s under uncertainty. One of the most imp ortant sto chastic orders that can be found in the literature is sto chastic dominance. This metho d , based onthe comparison of the cumulative distribution functions, has been widely studied in the literature, and it has $b$ een ap plied in many different areas. One alternative sto chastic order is statistical preference, which has remained unexplored fora long time. For th is reason, we have dedicated the first part of this chapter to the investigation of the prop erties of statistical preference as a stochastic ordemparticular, while sto chastic dominance is close to the exp ectation, we have seen that statistical preference is related to another lo cation parameter: the median. This showed that both sto chastic orders have adifferent philosophy under their definition.

Interestingly, there are situations where b oth sto chastic orders give rise to the same conclusions. For instance, we have found conditions under which first degree sto chastic dominance implies statistical preference. These situations included, for example, independent random variables or continuous comonotonic/countermonotonic random variables, among others. Although the two metho ds are not equivalent in general, we have proved that the coincide when comparing indep endent random variables whose distributions are Bernoulli, exp onential, uniform, Pareto, b eta and normal.

Both metho ds have been devised for the pairwise comparison of random variables, and may be unsuitable when more than two random variables must be compared simultaneously. For this reason, we have intro duced a new stochastic order,that generalises statistical preference and preserves its underlying philosophy, that allows us to comp are more than two random variable $s$ at the same time. We have also investigated its main prop erties and its connection with the usual sto chastic orders.

Sto chastic orders app ears in many different real-life problemsForthis reason, the last part of this chapter was devoted to present a numb er of applications that show the relevance of our res ults.On the one hand, we have seen that b oth sto chastic dominance and statistical preference could be an interesting alternative to the comparison of fitness values, andon the other hand we have applied the general statistical preference toa multicriteria decision making with linguistic lab els.

From the results we have showed in this chapter new op en problems arise. For instance, we have given some conditions under which first degree sto chastic dominance implies statistical preference, and we have seen that this relation do es not hold in general. Thus, anaturalquestion arises: is it $p$ ossible to characteris e the situations in which first degree sto chastic dominance implies statistical preference?

Moreover, we have also seen that both sto chastic dominance and statistic preference coincide for the comparison of indep endent random variables whose distribution is

Bernoulli, exp onential, normal, .. . In fact, b oth metho ds reduce to the comparison of the exp ectation of the variables. We conjecture that for indep endent random variables whose distribution belongs to the exp onential family of distributions, both sto chastic dominance and statistical preference coincide and are equivalent to the comparison of the exp ectation. Although this is an op en question that has not been answered yet, a first approach, basedon simulations, has already be done by Casero ([32]). We have intro duced the general statistical preference as a sto chastic order for the comparison of more than two random variables simultaneously. Although we have investigated its main prop erties, a different approach could be given to this notion. In fact, the gen eral statistical preference could be seen as a fuzzy choice function ([81]) on a set of random variables, since it gives degrees of preferenc e of a random variable over a set a random variables. Then, the investigation of the prop erties of the general statis tical preference as a fuz zy choice function could be an interesting line of research.

# 4 Comparison of alternatives underuncertainty and imprecision 

In the previous chapte $r$ we have dealt with the comparison of alternatives under uncertainty. When these alternatives are mo delled by means of random variables, the comparison must be performed using sto chastic orders. However, there are situations in which it is not $p$ ossible or adequate to mo del the exp eriments by means of a single random variable, due to the presence of imprecision in the exp eriment. Inother words, we fo cus now in situations where the alternatives are defined under uncertainty but also under imprecision. In such cases, we shall compare sets of random variables instead of single ones; more generally, we shall compare imprecise probability mo dels. For this reason, this chapter is devoted to the extension of the pairwise metho ds studied in the previous chapter to the comparison of imprecise probability mo dels.

As we have already mentioned, imprec ise probabilities ([205]) is a generic term that refers to all mathematical mo dels that serve as an alternative and a generalisation to probability m o dels in case of imprecise knowl edgle this resp ect, sto chastic dominance was connected to imprecise probabilities by Deno eux ([61]), who generalised this notion to the comparison of b elie f functions ([187]). He proposed four extensions of sto chastic dominance based on the orders between real intervals given in [78]. One step forward was made by Aiche and Dub ois ([1]), by using sto chastic dominance to compare random intervals stemming from rankings $b$ etween real intervals, in a similar manner as Deno eux, and also in thecomparison of fuzzy random variables ([105]).

Onthe other hand, the comparison of sets of random variables app ears naturally in decision making under imprecision. Inthis sense, the us ualutility order hasalready been extended in several ways to the comparison of sets of random variables: interval dominance ([219]), maximax ([184])andmaximin criteria([82]), and E-admissibility ([107]). See a surveyon thistopicin([202]).

With resp ect to statistical prefe re nceCouso and Sánchez ([46]) prop osed it asa metho d for comparing sets of desirable gambles (see [205, Sec. 2.2.4] for further information). Also, Couso and Dub ois ([43]) prop osed a common formulation for b oth statistical
preference and sto chastic dominance to the comparison of imprecise probability mo dels, and they studied its formulation in terms of exp ected utility.

Our aim he re is to consider a more general situatiome start from a binary relation, that may be sto chastic dominance, statistical preference or any other, as in Section 2.1, and extend itto thecomparison of sets of random variables. We shall consider six possible extensions of the binary relation, andwe shall study the connections between them. Afterwards, we consider the particular cases when the binary relation is sto chastic dominance or statistical preferen ce.As weshallsee, ourapproachismoregeneralthan that of Deno eux,sincethe comparisonof belief func tions arises a particular case. On the other hand, ou r approach differs from the one of [43, 46] b ecause they considered the comparison of sets of desirable gamble s instead of sets of random variables, and the underlying philosophy oftheir approach is slightly different to ours.

After the se general considerations, we shall fo cus on two scenarios that can be emb edded into the comparison of sets of random variables: thecomparison of two alternatives with imprecision either in the utilities or in the beliefs. Theformer will be formulated by means of random sets, and their comparison will be made by means of the asso ciated sets of measurable selections. the latter, we shall ass ume that there is a set of probability measures mo delling the real probability measure of the probability space.

Since there c ou ld be imprecision on the initial probability, we devote the next section to the mo delling of the joint distribution in an imprecise framework. Forthis aim, we shall investigate how the bivariate distribution can be expressed when there is imprecision in the initial probability. Then, we investigate bivariate $\mathrm{p}-\mathrm{b}$ oxes, and in particular how sets of bivariate distribution functions can define a bivariate p-b ox, andwe study if it is $p$ ossibl $e$ to formulate an imprecise version of the famous Sklar's Theorem (see Theorem 2.27).

We conclude the chapter with several appli cations. First of all, we use im precise sto chastic dominance to compare sets of Lorenz Curves and cancer survivalrates. Secondly, we usea multi criteria decision making problem to illustrate how imprecise sto chastic orders can be applied in a context of imprecision either in the utilities or in the beliefs.

## 4.1 generalisationof thebinary relations tothe comparison of sets of random variables

In the following, we prop ose a number of metho ds for comparing pairs of sets of variables which are based on $p$ erforming pairwise comparisons of elements within thes e seffirst we shall give our definitions for the case where the comparisons of the elements are made by means of abinary relation, as we did at the beginning of Section 2.1, and laterwe
shall apply them to the particular cases where this binary relation consists of sto chastic dominanceor statistical preference.

We shall consider a probability $\operatorname{space}(\Omega, A, P)$ and an ordered utility scale $\Omega$, that in some situations will be consid ered as numericalWe shall also conside $r$ sets of random variables, defined fromthe probability space to $\Omega$, that will be denoted by $X, Y, Z, \ldots$.

We begin with the extension of a binary relation to the comparison of sets of random variables.

Definition 4.1 Let be a binary relation betweenrandom variables defined froma probability space $(\Omega, A, P)$ to an ordered utility scale $\Omega$. Given twosetsof random variables $X$ and $Y$, we say that:

1. $X \quad{ }_{1} Y$ if andonly if forevery $\quad X \quad X, Y \quad Y$ it holdsthat $X \quad Y$.
2. $X \quad{ }_{2} Y$ if andonly if thereis some $\quad X \quad X$ such that $X \quad Y$ for every $Y \quad Y$.
3. $X \quad{ }_{3} Y$ if andonly if forevery $\quad Y \quad Y$ there issome $X \quad X$ such that $X \quad Y$.
4. $X \quad{ }_{4} Y$ if andonly if thereare $X \quad X, Y \quad Y$ such that $X \quad Y$.
5. $X \quad{ }_{5} Y$ if andonly if thereis some $\quad Y \quad Y$ such that $X \quad Y$ for every $X \quad X$.
6. $X \quad{ }_{6} Y$ if andonly if forevery $\quad X \quad X$ there is $Y \quad Y$ such that $X \quad Y$.

Remark 4.2 As wedid inDefinition 2.1, from any of these definitions we can infer immediately arelation of strict preference( $i$ ) and the indifference $\left(\equiv_{i}\right)$ :

$$
\begin{array}{lllll}
X & i Y & X & i Y \text { and } Y & i X, \\
X \equiv & i Y & X & i Y \text { and } Y & i X,
\end{array}
$$

for any $i=1, \ldots ., 6$. Moreover, wesaythat $X$ and $Y$ are incomparablewithrespectto $i$ when $X \quad i \quad$ and $Y$ i $X$.

The conditions in this definition can be given the following interpretation. 1 means that any alternative in $X$ is -preferredto anyalternative in $Y$, and as such it is related to the idea of interval dominance from decision making with sets of probabilities [219]. Conditions 2 and 3 mean that the "b est" alternative in $X$ is -better than the "best" alternative in $Y$. The difference $b$ etween th em lies in whether there is a maximal element in $X$ in theorderdetermined by . Thesetwoconditionsare relatedtothe $\Gamma$-maximax criteria considered in [184]. Ontheother hand, conditions 5 and 6 mean that the "worst" alternative in $X$ is -preferredto the"worst" alternative in $Y$, and arerelated to the $\Gamma$-maximin criteria in [20, 82]. Again, the difference between them lies in whether there is a minimum element in $Y$ with resp ect to the order determined by or not.

Finally, $\quad 4$ is a weakenedversion of 1 , in thesense thatit onlyrequiresthatsome alternative in $X$ is -preferred tosome otheralternativein $Y$, instead of requiring it for any pair in $X, Y$.

Taking this interpretation into account, it is not difficult to establish the followi ng relationships $b$ etween the definitions.

Prop osition 4.3 he fol lowing implications hold:
$\begin{array}{llll}1 & 2 & 3 & 4 .\end{array}$

Pro of ( $\begin{array}{llllll}1 & 2) \text { : If } X \quad Y \text { for every } X \quad X, Y \quad Y \text {, in particular given any } X \quad X, ~\end{array}$ it holds that $X \quad Y$ for every $Y \quad Y$.
( 23 3): If there exists $X \quad X$ such that $X \quad Y$ for every $Y \quad Y$, the condition in $\quad 3$ is satisfied with resp ect to $X$ for every $Y \quad Y$.
$\left(\begin{array}{ll}3 & 4\end{array}\right):$ Iffor every $Y \quad Y$ there exists $X_{Y} \quad X$ such that $X_{Y} \quad Y_{\text {, we havea }}$ pair $(X Y, Y) \quad X \times Y$ such that $X_{Y} \quad Y$.
 holds that $X \quad Y$ for every $X \quad X$.
( $\left.\begin{array}{ll}5 & 6\end{array}\right)$ : If there is some $Y \quad Y$ such that $X \quad Y$ for every $X \quad X$, in particul ar, for every $X \quad X$ itholds that $X \quad Y$.
$\left(\begin{array}{ll}6 & 4\end{array}\right):$ If for every $X \quad X$ there exists $Y_{X} \quad Y$ such that $X \quad Y_{X}$, we havea pair $(X, Y X) \quad X \times Y$ such that $X \quad Y_{X}$.

The previous impli cations are depicted in Figure 4.1. Oth er relationships b etween the six definitions do not hold in general, as we can see in the following example.

Example 4.4Considera probability space withonly oneelement $\omega$, and let $\delta_{x}$ denote the random variable satisfy $\operatorname{ing}_{x}(\omega)=x$. Consideralsothe binaryrelation such that:

$$
\begin{equation*}
X \quad Y \quad X(\omega) \geq Y(\omega) \tag{4.1}
\end{equation*}
$$

If we take $X=\left\{\delta_{1}, \delta_{3}\right\}$ and $Y=\left\{\delta_{2}\right\}$, it fol lows that $\delta_{3} \quad \delta_{2} \quad \delta_{1}$, whence, applying Definition 4.1, we have that:

$$
X \quad{ }_{2} Y, \quad X \quad{ }_{3} Y, \quad X \equiv{ }_{4} Y, \quad Y \quad{ }_{5} X, \quad Y \quad{ }_{6} X
$$

and $X$ and $Y$ areincomparablewith respectto thefirst extension. From thiswe deduce that:


Figure 4.1: Relationships among the diffe rent extensions of the binary relation for the comparison of setsof random variables.

```
- 2 , 1, 5, 6 and therefore 3, 1, 5, 6.
- 4, 1, 2, 3, 5, 6.
- 5, 1, 2, 3 and therefore 6 , 1, 2, 3.
```

Next, given $X=Y=\left\{\delta_{x}: x \quad(0,1)\right\}$, we have that $X \equiv{ }_{3} Y$ and $X \equiv{ }_{6} Y$, because $\delta_{x} \equiv \delta_{x}$ for all $x \quad(0,1$.$) However, X$ and $Y$ areincomparablewith respect tosecond andfifth definitions, because there are not $x_{1}, x_{2} \quad(0,1)$ for which $\delta_{x_{1}} \quad \delta_{r}$ and $\delta_{r} \quad \delta_{x_{2}}$ for all $r$ (0, 1). Hence:

- 3 .
- 65 .

Remark 4.5 Insomecases, itmaybe interesting tocombinesomeof thesedefinitions, for instance to consider $X$ preferred to $Y$ when it ispreferred according to definitions and 5. Takinginto account theimplications depictedin Proposition 4.3, the combinations thatproduce newconditions arethose where we take onecondition out of $\left\{\begin{array}{ll}2 & 3\end{array}\right\}$ together with one out of $\{5,6\}$.

If we combine for instance $\quad 2$ with $\quad 5$, we can introduce the extension, denoted by ${ }_{5}$, and defined by:

$$
\begin{array}{llll}
X & { }_{2,5} Y & X & { }_{2} Y \text { and } X
\end{array}{ }_{5} Y .
$$

Then, $\quad{ }_{2,5}$ requires that $X$ hasa -bestcasescenario which isbetterthan anysituation in $Y$ and that $Y$ hasa -worstcase whichisworse thanany situationin $X$. This turns
out to be an intermediate condition bet ween $1_{1}$ and each of 2 and 5 , anditcan be derivedfrom the previousexample that itis not equivalentto any of them.

The implications in Prop osition 4.3 can also be seen easily in the case where $X$ and $Y$ are finite sets, $X=\left\{X_{1}, \ldots, X_{n}\right\}$ and $Y=\left\{Y_{1}, \ldots, Y_{m}\right\}$. Then ifwedenote by $M$ the $n \times m$ matrix where

$$
M_{i, j}=\begin{array}{ll}
1 & \text { if } X_{i} \quad Y_{j} \\
0 & \text { otherwis } \theta
\end{array}
$$

the ab ove definitions are characterised in the following way:


Observe that, aswe havealready seen, forany binaryrelation , its extensions 2 and 3 (resp ectively 5 and 6 ) are quite related: b oth compare the b est (resp ectively, the worst) alternatives withineach set $X, Y$. Since the difference between them lies on whether there is a maximal (resp ectively, minimal) element within each of these sets or not, we can easily give a necess ary and sufficient condition for the equivalences 23 and 56.

Prop osition 4.6et be a binaryrelation on the set of random variables that is reflexive and transitive.
(a) Given aset $X$ of random variables, $X \quad{ }_{3} Y \quad X \quad{ }_{2} Y$ foranyset of variables $Y$ if and only if $X$ hasa maximumelement under
(b) Given a set $Y$ of random variables, $X \quad{ }_{6} Y \quad X \quad{ }_{5} Y$ foranyset of variables $\quad X$ if and only if $Y$ has a minimumelementunder

## Pro of

(a) Assume that $X$ has a maximumelement $X$ such that $X \quad X$ for every $X \quad X$. If $X \quad{ }_{3} Y$, then for every $Y \quad Y$ there is some $X_{Y} \quad X$ such that $X_{Y}{ }_{Y}$. Since
is transitive, wededuce that $X \quad X_{Y} \quad Y$, and then $X \quad Y$ for every $Y \quad Y$, and as aconsequence $X \quad{ }_{2} Y$.
Conve rs elyif $X$ do es not have a maximum element, we can take $Y=X$ and we would have $X \equiv{ }_{3} Y$ because is reflexive; however, $X$ and $Y$ are incomparable with resp ect to 2 because ${ }^{X}$ do es not have a maximum element.
(b) Similarly, if $Y$ hasa minimum element $Y$, it holds that $Y \quad Y$ for any $Y \quad Y$. If $X \quad{ }_{6} \quad Y$, then for every $X \quad X$ there exists $Y_{X} \quad Y$ such that $X \quad Y_{X}$, and since is transitive we obtain that $X \quad Y$ for every $X \quad X$, whence $X \quad{ }_{5} Y$.
Conve rs elyif $Y$ do es not have a minimum element, wecan take $X=Y$ and we would have $X \equiv{ }_{6} Y$ because is reflexive; however, $X$ and $Y$ are incomparable with resp ect to 5 because ${ }^{Y}$ do es not have a minimum element.

Under some conditions, we can also give a simpler characterisation of the ab ove prop erties:

Prop osition 4.Zet bea binaryrelationbetweenrandomvariables, andassumethat it satisfies the Pareto Dominanc e condition:

$$
\begin{equation*}
X(\omega) \geq Y(\omega) \quad \omega \quad X \quad Y \tag{4.2}
\end{equation*}
$$

Considertwo sets of random variables $X, Y$. Ifthe randomvariables $\min X, \max X$ exist and belong to $X$ and $\min Y$, max $Y$ exist andbelong to $Y$, then:
(a) $X \quad{ }_{1} Y \quad \min X \quad \max Y$.
(b) $X \quad{ }_{2} Y \quad X \quad{ }_{3} Y \quad \max X \quad \max Y$.
(c) $X \quad{ }_{4} Y \quad \max X \quad \min Y$.
(d) $X \quad{ }_{5} Y \quad X \quad{ }_{6} Y \quad \min X \quad \min Y$.

Pro of Note thatwhenboth $X, Y$ includea maximum anda minimumrandom variable, Equation (4.2) implie s that for every $X \quad X, Y \quad Y$,

$$
\min X \quad Y \quad X \quad Y \quad \max X \quad Y
$$

and

$$
X \quad \max Y \quad X \quad Y \quad X \quad \min Y
$$

Then:
(a) Since $\min X \quad \max Y$, it isobviousthat $X \quad{ }^{1}{ }_{Y}$. Ontheother hand, using the pre vious equations, if every $X \quad X \quad$ and $Y \quad Y$ satisfy $X \quad Y$, then also $\min X \geq \max Y$.
(c) Since $\max X \quad \min Y$, and $\max X \quad X \quad$ and $\min Y \quad Y$, then $X \quad{ }_{4} Y$. On the other hand, using the previous e quations, if $X \quad Y$ for some $X \quad X, Y \quad Y$, also $\max X \quad \min { }^{Y}$.
(b,d) Using the previousequations, $X$ has a maximumelement and $Y$ has a min imum element under . By Prop osition 4.6, $X \quad{ }_{3} Y \quad X \quad{ }_{2} Y$ and $X \quad{ }_{6} Y \quad X \quad{ }_{5}$ $Y$. The remaining equivalence can be estab lished in an analogous manner to the previous cases.

Remark 4.8 AccordingtoRemark4.5, underthe conditions ofthepreviousresult, itis immediate that $X \quad{ }_{2,5} Y$ if andonly if $\max X \quad \max Y$ and $\min X \quad \min Y$.

Next we investigate which prop erties of the binary relation hold ontothe extensions $1, \ldots, 6$. Obviously, since all these definitions become inthe caseof sin gle tons, if is notreflexive (resp., antisymmetric, transitive), neither are i, for $i=1, \ldots$., 6 . Converse ly, we can establish the following result.

Prop osition 4.get bea binaryrelationonrandomvariables, andlet i, i=1,.. .,6 be its extensions to sets of random variables, given by Definition 4.1.
(a) If is reflexive,soare 3,4 and 6 .
(b) If is antisymmetric, so is $\quad 1$.
(c) If is transitive,so are ifor $i=1,2,3,5,6$.

Pro of Firstofall, if is reflexive, $X \equiv X$ for anyrandom variable $X$, and applying Definition 4.1 we de duce that $X \quad$ i $X$ for any $i=3,4,6$ and any set of random variables $X$.

Secondly, assume that is antisymmetric andthat two sets of random variables $X, Y$ satisfy $X \quad{ }_{1} Y$ and $Y \quad{ }_{1} X$. Then, $X \quad Y$ and $Y \quad X$ for every $X \quad X$ and $Y \quad Y$, and by the antisymmetry prop erty of , wededuce that $X=Y$ for every $X \quad X, Y \quad Y$. But this can only be if $X=\{Z\}=Y$ forsome randomvariable $Z$. As a consequence, 1 is antisymmetric.

Finally, assume that istransitive, andletusshowthatsoare ifor $i=1,2,3,5,6$. Considerthree setsof random variables $X, Y, Z$ :

1. If $X \quad, \quad Y$ and $Y \quad{ }_{1} Z$ then $X \quad Y$ and $Y \quad Z$ for every $X \quad X, Y \quad Y, Z \quad Z$. Applying the transitivity of $\quad$, we dedu ce that $X \quad Z$ for every $X \quad X, Z \quad Z$, and as aconsequence ${ }^{X} \quad{ }_{1} Z$.
2. If $X \quad{ }_{2} Y$ and $Y \quad{ }_{2} Z$, there is $X \quad X$ such that $X \quad Y$ for every $Y \quad Y$ and there is $Y \quad Y$ such that $Y \quad Z$ for every $Z \quad Z$. In particular, $X \quad Y \quad Z$ for every $Z \quad Z$, whence, by the trans itivity of,$X \quad{ }_{2} Z$.
3. If $X \quad{ }_{3} Y$ and $Y \quad{ }_{3} Z$, for every $Y \quad{ }_{Y} \quad$ thereis some $X_{Y} \quad X$ such that $X_{Y} \quad{ }_{Y}$, and for every $Z \quad Z$ there is $Y_{Z} \quad Y$ such that $Y_{Z} \quad Z$. As a consequence,for every $Z \quad Z$ itholds that $X_{Y_{Z}} \quad Z$, and th erefore $X \quad{ }_{3} Z$.

The pro of of the transitivity of 5 and 6 holdsbyanalogyto thatof 2 and resp ectively.

Our next example shows that reflexivity an d antisymmetry do not hold for definitions different than the ones of $s$ tate ments (a) and (b)Loshow thatthe fourthextension is not transitive in general, even whenthe binaryrelationis, werefer toExample4.18, where we shall show that the fourth extension is not tran sitive when considering the binary relation to be the first degree stochastic dominance.

Example 4.10Consider theuniverse $\Omega=\{\omega\}$ and, as we made inExample 4.4, denote by $\delta_{x}$ therandomvariable suchthat $\quad \delta_{x}(\omega)=x$, andthebinary relationdefinedin Equation (4.1). Considerthe set ofrandom variables $X$ defined by $X=\left\{\delta_{x}: x \quad(0,1)\right\}$. Then, although is reflexive, $X$ is incomparable wit $h$ itself with respect to $1_{1}, 2$ and 5. Now,consider the setsof random variables $X$ and $Y$ defined by:

$$
X=\left\{\delta_{x}: x \quad[0 \text {, 䜣 }] \text { and } Y=\left\{\delta_{x}: x \quad[0,1\}[0.5\}\right\}\right. \text {. }
$$

Then, $X \equiv{ }_{i} Y$ for any $i=2,3,4,5,6$, but $X=Y$, while is an antisymmetricrelation.

Another interesting prop erty in a binary relation is that of completeness, which means thatgiven anytwoelements, either oneis preferredtothe otherorthey are indifferent, but theyare never incomparable. From Prop osition 4.3, it follows that the incomparable pairs with resp ect to an extension i are also incomparable with resp ect to the stronger extensions. The following resultshowsthat if is a complete relation, then itsweakest extensions (namely, 3, 4 and 6) also induce complete binary relations:

Prop osition 4.11 Considera binary relation betweenrandomvariables, andlet i, for $i=1, . . ., 6$, be its extensions to sets of random variables given by Definition 4.1. If is complete, then so are 3,4 and 6.

Pro of Let $X, Y$ be two sets of random variables, and assumethat $X \quad{ }_{3} Y$. Then there is some $Y \quad Y$ such that $X \quad Y$ for all $X \quad X$. But since is acomplete relation, this meansthat $Y \quad X$ for all $X \quad X$. As a consequence $Y \quad{ }_{2} X$, and applying Prop osition 4.3 we deduce that $Y \quad{ }_{3} X$. Hence, the binary relation 3 is complete.

|  | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Reflexive |  |  | $\bullet$ | $\bullet$ |  | $\bullet$ |
| Antisymmetric | $\bullet$ |  |  |  |  |  |
| Transitive | $\bullet$ | $\bullet$ | $\bullet$ |  | $\bullet$ | $\bullet$ |
| Complete |  |  | $\bullet$ | $\bullet$ |  | $\bullet$ |

Table 4.1: Summary of the prop erties of the binary relation that hold onto their extensions 1,..., 6.

Onthe otherhand, if $X \quad{ }_{4} Y$, we deduce from Prop osition 4.3 that also $X \quad{ }_{3} Y$, whence the ab ove reasoning implies that $Y \quad{ }_{3} X$ and again from Prop osition 4.3 we deduce that $Y{ }_{4} X$.

The pro of that 6 alsoinduces a completerelation isanalogous.
Letus now give an example where we see that the completenessof the binary relationship do es not imply the completeness of the extensions $1,2,5$.

Example 4.12Consideragain Example4.10, andtake thesets of random variables $X=Y=\left\{\delta_{x}: x \quad(0,1\}\right.$ and the binary relation definedinEquation (4.1). Although is complete, $X$ and $Y$ are incomparable with respectto ${ }_{1}, \quad 2$ and 5 .

Table 4.1 summarises the properties we have investigated in Prop ositions 4.9 and 4.11.
Remark 4.13Althoughin this report we shall focus on the particular application of Definition4.1 to the relation associated with stochastic dominance or statisticalpreference, there are other cases of interest. Perhapsthemost important oneis thatwhere the comparison between pairs of random variables is made by means of their expected utility:

$$
X \quad Y \quad E(X) \geq E(Y) \text {; }
$$

it is not difficult to see that Definition 4.1 gives rise to some wel I-known generalisations of expectedutility thatare formulatedinterms of lowerandupper expectations. Consider two sets $X, Y$ andassume thatthe expectationsof all their elements exist. Then with respect to definition ${ }_{1}$ it holdsthat:

$$
X \quad{ }_{1} Y \quad E(X)=\inf _{X} E(X) \geq \sup _{Y} E(Y)=\bar{E}(Y) \text {, }
$$

which relates this notion tothe concept of intervaldominance considered in [219].
If we now consider definition ${ }_{3}$, it holds that

$$
\left.X \quad{ }_{3} Y \quad \bar{E}(X)=\sup _{X} E(X) \geq \sup _{Y} E(Y)=\overline{E( } Y\right)
$$

Thus, definition 3 is stronger than the maximaxcriterium [184], whichis based on comparing the best possibilities in our sets of alternat ives. Similarly, if we consider definition ${ }_{6}$ it holdsthat:

$$
X \quad{ }_{6} Y \quad E(X)=\inf _{x} E(X) \geq \inf _{Y} E(Y)=E(Y) \text {. }
$$

Thus, definition 6 isstrongerthanthe maximin criterium[82], whichcompares the worst possibilities within the sets of alternatives.

Final ly, definition ${ }_{4}$ implies that

$$
X \quad{ }_{4} Y \quad \bar{E}(X)=\sup _{X} E(X) \geq \inf _{X} E(Y)=E(Y),
$$

so if $X$ is ${ }_{4}$-preferred to $Y$ then it is also preferred with respect to the criterion of E-admissibility from [107]. See [43, 202]for relatedcomments.

### 4.1.1 Imprecise sto chastic dominance

Inthis subsection, weexplore insome detailthe casewherethebinaryrelation is the one asso ciated with the notion of first degree sto chastic dominance we have intro duced inDefinition2.2, i.e., the relation is defined by FSD. We call this extension impre cise sto chastic dominance. We shall assume that the utility space $\Omega$ is $[0,1$,$] although the$ results can be immediately extended to any bounded interval of real numb ers. Since sto chastic dominance is based on the comparison of cumulative distribution functions asso ciated with the random variables, we shall employ the notatio $\digamma_{X} \quad$ FSD $F_{Y}$ instead of $X \quad$ fsd $\quad Y$. For the same reason, along this subs ection we will consider sets of cumulative distribution functions $F_{X}$ and $F_{Y}$ insteadofsetsofrandom variables $X$ and $Y$.

Remark 4.14Fromnow on, we shall say that aset of distribution functions $F_{X}$ is ( $F$ SDi)-preferred or that it ( $F$ SDi)-stochastical ly dominates another set of distribution functions $F_{Y}$ when $F_{X} \quad$ FSD $_{i} F_{Y}$. We wil I also use the notation FSD $_{\mathrm{i}, \mathrm{j}}$ when both $\mathrm{FSD}_{\mathrm{i}}$ and $\mathrm{FSD}_{\mathrm{j}}$ hold.

An illustration of the six extensions of Definition 4.1 when considering sto chastic dominance isgiven in Figure4.2, where we compare the set of distribution functions re presented by a continuous line(that weshall call continuous distributions inthis paragraph) with the set of distribution functions represented by a dotte d line (that we shall call dotted distributions). Ontheone hand, in the left picture the set of continuous distributions (FSD1)-sto chastically dominates the set of dotted distributions. In theright picture, there is a continuous distribution that dominates all dotted distributions, and a dotted distribution whichis dominated by all continuous distributions. T his means
thatthe set of continuous distributions sto chastically dominates the set of dotted distributions with resp ect to the second to sixth definitions. Sincethere isalsoadotted distribution that is dominated by a continuous distribution, we deduce that the set of continuous distributions and the set of dotted distributions are equivalent with resp ect to the fourth definition. Noticethat the binaryrelationship considered inExample 4.4


Figure 4.2: Examples of several definitions of imprecise sto chastic dominance.
is equivalent to first degree sto chastic dominance when the initial space $\Omega$ only has one element. Then, such example shows that the converse implications of Prop osition 4.3 do not hold in general when considering the binary relation to be the first degree sto chastic dominance.

Now, we investigate which prop erties hold when considering the strict imprecise sto chastic dominance.

Prop osition 4.15onsider the extensions of stochastic dominance given in Definition 4.1. Itholds that:

$$
\begin{aligned}
& \bullet F_{x} \\
& \mathrm{FSD}_{2} F_{\mathrm{Y}} \\
& { }^{-} F_{\times} \\
& \mathrm{FSD}_{5} F_{\mathrm{Y}} \\
& F_{X} \\
& \mathrm{FSD}_{3} F_{\mathrm{Y}} . \\
& \mathrm{FSD}_{6} F_{\mathrm{Y}} .
\end{aligned}
$$

Pro of Webegin proving that $\mathrm{FSD}_{2}$ implies $\mathrm{FSD}_{3}$. Observe that $F_{\mathrm{X}} \quad \mathrm{FSD}_{2} F_{\mathrm{Y}}$ is equivalent to:

$$
\begin{array}{lllll}
\text { (I) } & F_{X} & \mathrm{FSD}_{2} & F_{Y} & F_{1} \\
F_{X} \text { such that } F_{1} \leq F_{2} \text { for all } F_{2} \quad F_{\mathrm{Y}} . \\
\text { (II) } & F_{Y} & \mathrm{FSD}_{2} & F_{\mathrm{X}} & F_{2} \\
F_{\mathrm{Y}}, F_{1} & F_{\mathrm{X}} \text { such that } F_{2} \leq F_{1} .
\end{array}
$$

It follows from (I) and Prop osition 4.3 that $F_{\mathrm{X}} \quad \mathrm{FSD}_{3} F_{\mathrm{Y}}$. We only have to prove that $F_{\mathrm{Y}} \quad \mathrm{FSD}_{3} F_{\mathrm{X}}$, or equivalently, that there is $F_{1} \quad F_{\mathrm{X}}$ such that $F_{2} \leq F_{1}$ for any $F_{2} \quad F_{\mathrm{Y}}$. If $F_{1}$ satisfies this prop erty, the pro of is finished. If not, there issome $F_{2} F$ y such that $F_{2} \leq F_{1}$, wh ence $F_{1}=F_{2}$. Applying (II), thereexists some $F_{1} F_{x}$ such that $F_{1} \leq F_{1}$, which meansthat $F_{1}(t)<F_{1}(t)$ for some $t$. As a consequence, $F_{1}(t)<F_{2}(t)$ for any $F_{2} \quad F_{\mathrm{Y}}$, whence $F_{\mathrm{Y}} \quad \mathrm{FSD}_{3} F_{\mathrm{X}}$. Hence, $F_{\mathrm{X}} \quad \mathrm{FSD}_{3} F_{\mathrm{Y}}$.

Let us now prove that $\mathrm{FSD}_{5} \quad \mathrm{FSD}_{6}$. Similarly to the previous cas e $\mathrm{F}_{\mathrm{X}} \quad \mathrm{FSD}_{5} F_{\mathrm{Y}}$ is equivalent to:
(I) $\quad F_{\mathrm{X}} \quad \mathrm{FSD}_{5} F_{\mathrm{Y}} \quad F_{2} \quad F_{\mathrm{Y}}$ such that $F_{1} \leq F_{2}$ for all $F_{1} \quad F_{\mathrm{X}}$.
(II) $F_{\mathrm{Y}} \quad \mathrm{FSD}_{5} F_{\mathrm{X}} \quad F_{1} \quad F_{\mathrm{X}}, \quad F_{2} \quad F_{\mathrm{Y}}$ such that $F_{2} \leq F_{1}$.

It follows from (I) and Prop osition 4.3 that $F_{X}{ }_{F_{S D}{ }_{6}} F_{Y}$. We only haveto prove that $F_{\mathrm{Y}} \quad \mathrm{FSD}_{6} F_{\mathrm{X}}$, or equivalently, that there is $F_{2} \quad F_{\mathrm{Y}}$ such that $F_{2} \leq F_{1}$ for any $F_{1} \quad F_{\mathrm{X}}$. If $F_{2}$ satisfies this prop erty, the pro of is finished. If not, there exists $F_{1} F \times$ such that $F_{2} \leq F_{1}$, and applying (I) we deduce that $F_{1}=F_{2} \quad F_{x}$. Applying (II) we deducethat there is some $F_{2} \quad F_{y}$ such that $F_{2} \leq F_{1}$, whence there is somet such that $F_{2}(t)>F_{1}(t)=F_{2}(t) \geq F_{1}(t)$ for every $F_{1} \quad F_{x}$. Hence, $F_{2} \leq F_{1}$ for any $F_{1} F_{x}$ and the prop erty holds.

Furthermore, next example sh ows that there are no other relationships b etween the strict extensions of sto chastic dominance.

Example 4.16Considerthe sameconditionsof Example4.4: $\Omega=\{\omega\}$, $\delta_{x}$ isthe random variable given by $\delta_{x}(\omega)=x$ and isgivenbyEquation (4.1), thatisequivalentto fsd in thiscase.

Take the sets $X=\left\{\delta_{1}\right\}$ and $Y=\left\{\delta_{0}, \delta_{1}\right\}$. It holdsthat:


If we consider thesets $X=\left\{\delta_{0}, \delta_{1}\right\}$ and $Y=\left\{\delta_{0}\right\}$, it holds that:


With res p ect to the other results, since FSD is refl exi ve and transitive, we canapply Prop osition 4.6 and characterise the equivalences between $\mathrm{FSD}_{2}$ and $\mathrm{FSD}_{3}$, and also between $\mathrm{FSD}_{5}$ and $\mathrm{FSD}_{6}$ by means of the existence of a maximum and a min imum value in the sets $F_{X}, F_{Y}$ wewant tocompare. Moreover, we can deduce from Prop osition 4.9 andExamples4.10 and4.12 that $\quad F_{S D}$ isreflexive for $i=3,4,6$ and transitive for $i=1,2,3,5,6$. On the othe $r$ hand, since two different random variables may induce the same distribution func tion, FSD is notantisymmetric. Nevertheles sif we are deal ing with sets of cumulative distribution fun ctions instead of sets of random variables, FSD b ecomes antisymmetric.Next example shows that ( $F S D_{4}$ ) is not tran sitive in general.

Remark 4.17Through this subsection we shall present severalexamples showing that the propositions established cannot be improved, in the sense that the missing implicat ions
do not hold in general. Some of these examples wil I consider distribution functions associated with probability measures with finite supports.Tofixnotation, given $a=\left(a{ }_{1}, \ldots, a_{4}\right)$ such that $a_{1}+\ldots+a n=1$, and $t=(t \quad 1, \ldots, \hbar)$ with $t_{1} \leq \ldots \leq t_{n}$, the function $F_{a, t}$ corresponds to the cumulative distribution function of the probability measure $P_{a, t}$ satisfying $P_{a, t}\left(\left\{t_{i}\right\}\right)=a$ i for $i=1, \ldots, n$. Indeed, the only continu ous distribution function we shal l consider is the identityF $=i d$, defined byF $(x)=i d(x)=x$ for any $x \quad[0,1]$

Example 4.18Consider the three sets of cumulative distribution functions $F_{X}, F_{Y}$ and $F_{z}$ defined by:

$$
F_{X}=\left\{F_{(0.5,0.5),(0,1)}\right\}, \quad F_{Z}=\{F\}, \quad F_{Y}=F_{X} \quad F_{Z}
$$

Since both sets $F_{X}$ and $F_{Z}$ areincluded in $F_{Y}$, Proposition 4.29later onassures that $F_{X} \equiv{ }_{\mathrm{FSD}}^{4}$ $F_{Y}$ and $F_{\mathrm{Y}} \equiv \equiv_{\mathrm{FSD}_{4}} F_{\mathrm{Z}}$. However, $F_{X}$ and $F_{\mathrm{Z}}$ arenot comparable, since the distribution functions $F_{(0.5,0.5),(0,1)}$ and $F$ arenotcomparablewithrespecttofirst degree stochastic dominance.

Since FSD also complies with Pareto dominanc e (Equ ation (4.2)), we deduce from Prop osition 4.7 that when the sets $F_{X}$ and $F_{Y}$ to compare have b oth a maximum and aminimum element, we can easilycharacterise the conditions $\operatorname{FSD}_{\mathrm{i}}, i=1, \ldots, 6$ by comparing thes e maximum and minimum elements only. Finally, note that, as wealready mention ed in Example 2.3, FSD isnot a completerelation, andasa consequence, Prop osition 4.11 is not applicable in this context.

As we re marked in Section 2.2.1, p-b oxes are one modelwithin the theory of imprecise probabilities. Sto chastic dominance between sets of probabilities or cumulative distribution functions can be studied by means of a p-b ox representation. Given anyset of cumulative distribution functions $F$, it induces a p-b ox $(F, F)$, aswesaw inEquation (2.16):

$$
F(x):=\inf _{F} F(x), \quad \bar{F}(x):=\sup _{F} F(x)
$$

Our next result relates the imprecise sto chastic dominance for sets of cumulative distribution functions to their asso ciated p-b ox representation.

Prop osition 4.19et $F_{X}$ and $F_{Y}$ be two set $s$ of cumulative distribution functions, and denote by $\left(F_{X}, F_{X}\right)$ and ( $F_{Y}, F_{Y}$ ) the p-boxes theyinduce bymeans ofEquation (2.16). Then the fol lowing statements hold:
$\begin{array}{llll}\text { 1. } F_{X} & \mathrm{FSD}_{1} F_{Y} & \bar{F}_{X} & \text { FSD } E_{Y} . \\ \text { 2. } F_{X} & \mathrm{FSD}_{2} F_{Y} & E_{X} & \text { FSD } E_{Y} . \\ \text { 3. } F_{X} & \mathrm{FSD}_{3} F_{Y} & E_{X} & \text { FSD } E_{Y} .\end{array}$
4. $F_{X} \quad \mathrm{FSD}_{4} F_{Y} \quad E_{X} \quad{ }_{\mathrm{FSD}} \bar{F}_{Y}$.
5. $F_{X} \quad{ }_{\mathrm{FSD}}^{5} 5\left(F_{Y} \quad \bar{F}_{X} \quad{ }_{\mathrm{FSD}} \bar{F}_{Y}\right.$.
6. $F_{X} \quad{ }_{\text {FSD }}^{6}$ $F_{Y} \quad \bar{F}_{X} \quad$ FSD $\bar{F}_{Y}$.

## Pro of

(1) Note that $F_{X} \quad$ FSD ${ }_{1} F_{Y}$ ifand only if $\quad F_{1} \leq F_{2}$ for every $F_{1} \quad F_{X}, F_{2} \quad F_{Y}$, and this is equivalent to $F_{X}=\sup F_{1} F_{X} F_{1} \leq \inf F_{2} F_{Y} F_{2}=F_{-}$.
(3) By hyp othesis, for every $F_{2} F_{Y}$ thereis some $F_{1} \quad F_{x}$ such that $F_{1} \leq F_{2}$. Asa consequence,$F_{X} \leq F_{2} \quad F_{2} \quad F_{2} \quad E_{X} \leq \inf F_{2} F_{Y} F_{2}=F_{-Y}$.
(4) Ifthere are $F_{1} \quad F_{X}$ and $F_{2} \quad F_{Y}$ such that $F_{1} \leq F_{2}$, then $E_{X} \leq F_{1} \leq F_{2} \leq \bar{F}_{Y}$.
(6) Iffor every $F_{1} F_{x}$ thereis some $F_{2} F_{Y}$ such that $F_{1} \leq F_{2}$, then it holds that $F_{X}=\sup F_{1} F_{X} F_{1} \leq \sup _{2} F_{Y} F_{2}=F \quad Y$.
$(2,5)$ Thesecond (resp. fifth) statement follows from the third (resp., sixth) and Prop osition 4.3.

Nextexampleshows thatthe converse implications inthesecondto sixthstatementsdo nothold in general.

Example 4.20Take $\left.F_{X}=\left\{F_{(0.3,0.7),(0,1)}, F_{(0.2,0.8),(0.2,0.3)}\right\}, F_{Y}=\underline{\{F}\right\}$. They are incomparableunder any ofthe definitions but $E_{X} \leq E_{Y}=F=F \quad Y \leq F_{X}$, from which we deducethat the converse implications in Proposition 4.19 donot hold.

As we mentioned after Definition 4.1, the differe nce b etweф币 $S D_{2}$ ) and ( $F S D_{3}$ ) lies on whetherthe set ofdistribution functions $F_{X}$ has a "b est case", i.e., a smallest distribution function; similarly, the difference between (FSD5) and (FSD6) lies on whether $F_{Y}$ has agreatest distribution function. Takingthis intoaccount, we can easilyadapt the conditions of Prop osition 4.6 towards imprecise sto chastic dominance:

Prop osition 4.21et $F_{X}$ and $F_{Y}$ be twosets of cumulativedistribution functions.

1. $E_{\mathrm{X}} \quad F_{\mathrm{X}} \quad F_{\mathrm{X}} \quad \mathrm{FSD}_{2} F_{\mathrm{Y}} \quad F_{\mathrm{X}} \quad \mathrm{FSD}_{3} F_{\mathrm{Y}}$.


Pro of To see the firststatement, use that by Prop osition $4.3 F_{X} \quad{ }_{\mathrm{FSD}_{2}} F_{\mathrm{Y}}$ implies $F_{\mathrm{X}} \quad \mathrm{FSD}_{3} F_{\mathrm{Y}}$. Moreover, $F_{\mathrm{X}} \quad \mathrm{FSD}_{3} F_{\mathrm{Y}}$ if and only if for every $F_{2} F_{\mathrm{Y}}$ there is
$F_{1} F_{x}$ such that $F_{1} \leq F_{2}$. In particular, since $E_{X} \leq F_{1}$ for every $F_{1} F_{x}$, it holds that $E_{\mathrm{X}} \leq F_{2}$ for every $F_{2} \quad F_{\mathrm{Y}}$, and consequently, as $F_{\mathrm{X}} \quad F_{\mathrm{X}}$, that $F_{\mathrm{X}} \quad \mathrm{FSD}_{2} F_{\mathrm{Y}}$.

The pro of of the second statement is analogous.
When $b$ oth the lower and upp er distributions $b$ elong to the corresp onding p-box, they can $b$ e used to characterise the pre ferences $b$ etween thlmthat case, the sto chastic dominance $b$ etween two sets of cumulative distribution functions can $b$ e characte rised by means of the relationships of sto chastic dominance between their lower and upper distribution functions.

Corollary 4.22Let $F_{X}, F_{Y}$ betwosets of cumulative distribution functions, and let $\left(F_{X}, F_{X}\right)$ and $\left(F_{Y}, F_{Y}\right)$ be their associated p-boxeslf $E_{X}, F_{X} \quad F_{X}$ and $E_{Y}, F_{Y} \quad F_{Y}$, then

1. $F_{X} \quad{ }_{F S D}{ }_{1} F_{Y} \quad \bar{F}_{X} \leq E_{Y}$.
2. $F_{\mathrm{X}} \quad \mathrm{FSD}_{2} F_{\mathrm{Y}} \quad F_{\mathrm{X}} \quad \mathrm{FSD}_{3} F_{\mathrm{Y}} \quad E_{\mathrm{X}} \leq E_{\mathrm{Y}}$.
3. $F_{X} \quad \mathrm{FSD}_{4} F_{Y} \quad E_{X} \leq \bar{F}_{Y}$.
4. $F_{\mathrm{X}} \quad \mathrm{FSD}_{5} F_{\mathrm{Y}} \quad F_{\mathrm{X}} \quad \mathrm{FSD}_{6} F_{\mathrm{Y}} \quad \bar{F}_{\mathrm{X}} \leq \bar{F}_{\mathrm{Y}}$.

Pro of The first item has already b een showed in Prop osition 4.19. The equivalences between $\left(F S D_{2}\right)^{-}\left(F S D_{3}\right)$ and $\left(F S D_{5}\right)^{-}\left(F S D_{6}\right)$ are given by Prop osition 4.21.Also, the directimplications of second, third and fourth items are given by Prop osition 4.19. Let us prove the converse implic ations:

- If $E_{Y} \geq E_{X} \quad F_{\mathrm{X}}$, there is some $F_{1} \quad F_{\mathrm{X}}$ such that $F_{1} \leq F_{2}$ for all $F_{2} F_{\mathrm{Y}}$, and as a consequencé ${ }_{X} \quad \mathrm{FSD}_{2} F_{Y}$.
- If $E_{X} \leq \bar{F}_{Y}$, thenthere exist $F_{1} F_{X}$ and $F_{2} F_{Y}$ such that $F_{1} \leq F_{2}$, whence $F_{X}{ }_{\mathrm{FSD}}^{4}$ $F_{\mathrm{Y}}$.
- If $\bar{F}_{X} \leq \bar{F}_{Y}$, then since $\bar{F}_{Y} \quad F_{Y}$ thenthere issome $F_{2} \quad F_{Y}$ such that $F_{1} \leq F_{2}$ for every $F_{1} F_{x}$, because $F_{X} \leq F_{X}$ for any $F_{X} \quad F_{X}$.

In Section 2.1.1 we established a characterisation of sto chastic dominance in terms of exp ectations:Theorem2.10assures thatgiventworandomvariables $X$ and $Y, X$ fsd $Y$ ifand only if $E(u(X)) \geq E(u(Y)$ )for every increasingfunction $u$. When we com pare sets of random variables, we must replace these exp ectations by lower and upp er exp ectations. Foranygiven set of distribution functions $F$ and any increasing function $u:[0,1] \rightarrow R$, we shall denote $E_{F}(u):=\inf F F E_{P_{F}}(u)$ and $E_{F}(u):=\sup F_{F} E_{P_{F}}(u)$.

Theorem 4.23Letus consider twosetsof cumulativedistributionfunctions $F_{X}$ and $F_{Y}$, and let $U$ be the set of all increasing functions $u:[0,1] \rightarrow R$. The fol lowing statements hold:

1. $F_{X} \quad F_{S D}{ }_{1} F_{Y} \quad E_{F_{X}(u)} \geq \bar{E}_{F_{Y}(u)}$ for every $u \quad U$.
2. $F_{X} \quad \mathrm{FSD}_{2} F_{Y} \quad \bar{E}_{F_{X}(u)} \geq \bar{E}_{F_{Y}(u)}$ for every $u \quad U$.
3. $F_{X} \quad \mathrm{FSD}_{3} F_{Y} \quad \bar{E}_{F_{X}(u)} \geq \bar{E}_{F_{Y}(u)}$ for every $u \quad U$.
4. $F_{X} \quad \mathrm{FSD}_{4} F_{Y} \quad E_{F_{X}(u)} \geq E_{F_{Y}}(u)$ for every $u \quad U$.
5. $F_{X} \quad \mathrm{FSD}_{5} F_{Y} \quad E_{F_{X}(u)} \geq E_{F_{Y}(u)}$ for every $u \quad U$.
6. $F_{X} \quad \mathrm{FSD}_{6} F_{Y} \quad E_{F_{X}}(u) \geq E_{F_{Y}}(u)$ for every $u \quad U$.

## Pro of

1. Firstof all, $F_{X}$ FSD ${ }_{1} F_{Y}$ if and only ifforevery $F_{1} \quad F_{X}$ and $F_{2} \quad F_{Y} F_{1}$ FSD $F_{2}$. This is equivalent to $E_{P_{1}}(u) \geq E_{P_{2}}(u)$, for every $u \quad U$, and every $F_{1} F \times$ and $F_{2} \quad F_{Y}$, where $P_{i}$ is the probability asso ciated with $F_{i}$, for $i=1,2$, andthis in turn is equivalent to

$$
E_{F_{X}}(u)=\inf \left\{E_{P_{F}(u)} \mid F \quad F_{X}\right\} \geq \sup \left\{E_{P_{F}}(u) \mid F \quad F_{Y}\right\}=\bar{E}_{F_{Y}}(u)
$$

for every $u \quad U$.
3. If $F_{\mathrm{X}} \quad \mathrm{FSD}_{3} \quad F_{\mathrm{Y}}$, the n for every $F_{2} \quad F_{\mathrm{Y}}$ there is $F_{1} \quad F_{\mathrm{X}}$ such that $F_{1} \leq F_{2}$. Equivalently, for every $F_{2} \quad F_{\mathrm{Y}}$ there is $F_{1} \quad F_{\text {x }}$ such that $E_{P_{1}(u)} \geq E_{P_{2}}(u)$ for every $u \cup$. Then given $U U$ and $F_{2} F_{\mathrm{y}}$,

$$
E_{P_{2}}(u) \leq \sup \left\{E_{P_{F}}(u) \mid F \quad F_{x}\right\}=E^{-} F_{x}(u),
$$

and consequently

$$
\bar{E}_{\left.F_{Y}(u)=\sup E_{P_{F}(u)} \mid F \quad F_{Y}\right\} \leq \bar{E}_{F_{X}}(u) . . . . . .}
$$

2. The second statement follows from the third one and from Prop osition 4.3.
3. Let us assum e that $F_{\mathrm{X}} \quad \mathrm{FSD}_{4} \quad F_{\mathrm{Y}}$. The n, bydefinition there are $\quad F_{1} \quad F_{\mathrm{x}}$ and $F_{2} F_{Y}$ such that $F_{1} \leq F_{2}$, or equivalently, $E_{P_{1}(u)} \geq E_{P_{2}}(u)$ for every $u \quad U$. We deduce that

$$
\begin{aligned}
\bar{E}_{F_{X}(u)} & \left.=\sup _{\left\{E_{P_{F}}(u) \mid F \quad F\right.}^{x}\right\} \geq \quad E_{P_{1}}(u) \\
& \geq E_{P_{2}}(u) \geq \inf \left\{E_{P_{F}}(u) \mid F \quad F \quad F_{Y}\right\}=E-F_{Y}(u) .
\end{aligned}
$$

6. If $F_{X} \quad$ FSD $_{6} \quad F_{Y}$, the n for every $F_{1} \quad F_{X}$ there is $F_{2} \quad F_{Y}$ such that $F_{1} \leq F_{2}$. Equivalently, for every $F_{1} F_{X}, E_{P_{1}}(u) \geq E_{P_{2}}(u)$ for some $F_{2} F_{Y}$ andfor every $u \cup$. Thus, forevery $F_{1} F \times$ and $u U$,

$$
E_{P_{1}(u)} \geq \inf \left\{E_{P_{F}}(u) \mid F \quad F_{\mathrm{Y}}\right\}
$$

and consequently

$$
E_{F_{X}}(u)=\inf \left\{E_{P_{F}(u)} \mid F \quad F_{X}\right\} \geq \inf \left\{E_{P_{F}}(u) \mid F \quad F_{Y}\right\}=E-F_{Y}(u)
$$

5. Finally, the fifth statement follows from the sixth and from Prop osition 4.3.

Remark 4.24If we considerthe extension of stochastic dominance $\mathrm{FSD}_{3,6}$, that is, $F_{X} \quad \mathrm{FSD}_{3,6} F_{Y}$ if andonly if $\quad F_{X} \quad \mathrm{FSD}_{3} F_{Y}$ and $F_{X} \quad \mathrm{FSD}_{6} F_{Y}$, it holds that:

$$
\begin{array}{ll}
F_{X} \quad F_{3,6} & F_{Y} \quad E_{X} \quad \text { FSD }  \tag{4.3}\\
\bar{E}_{F_{X}}(u) \geq \bar{E}_{F_{Y}}(u) \text { and } \bar{F}_{X} \quad E_{F_{X}}(u) \geq \bar{F}_{Y} . \\
F_{Y}(u) \quad u \quad U .
\end{array}
$$

With asimilar notation, wecan consider $\quad \mathrm{FSD}_{2,5}$, and it holds that $F_{X} \quad{ }_{\mathrm{FSD}}^{2,5}$ $\quad F_{Y}$ implies $F_{X} \quad$ FSD $_{3,6} F_{Y}$. Then, from theprevious resultswe deducethat $F_{X} \quad \operatorname{FSD}_{2,5} F_{Y}$ also impliesthe results ofEquation (4.3).

Taking into account Equation (2.6), the ab ove implications hold in particular when we replace the set $U$ by the subset $U$ of increasing and bounded functions $u:[0,1] \rightarrow R$. This will be useful when comparing random sets bymeans of sto chastic dominance in Section 4.2.1.

Remark 4.25 Theorem 4.23shows thattheextensions of first degree stochastic dominancetosets ofalternatives arerelatedto the comparison of thelower and upper expectations they induce. Taking this idea int o account, we may introduce alternative definitions by consideringa convex combination of these lower and upper expectations, in a similar way tothe Hurwicz criterion [96]:

$$
F_{X} \quad \operatorname{FSD}_{H} F_{Y} \quad \lambda E_{F_{X}}(u)+(1-\lambda) \bar{E} F_{X}(u) \geq \lambda E_{F_{Y}}(u)+(1-\lambda) \bar{E} F_{Y}(u)
$$

for all $u U$, where $\lambda \quad[0,1$ plays the roleof a pessimistic index. It isnotdifficult to see that

$$
F_{\mathrm{X}} \quad \mathrm{FSD}_{1} F_{\mathrm{Y}} \quad F_{\mathrm{X}} \quad \mathrm{FSD}_{2,5} F_{\mathrm{Y}} \quad F_{\mathrm{X}} \quad \mathrm{FSD}_{3,6} F_{\mathrm{Y}} \quad F_{\mathrm{X}} \quad \mathrm{FSD}_{\mathrm{H}} F_{\mathrm{Y}}
$$

and that the converses donot hold.

When the $b$ ounds of the $p-b$ oxes $b$ elong the sets of distribution functions, the implications on Theorem 4.23 b ecome equivalenc es.

Corollary 4.26 Let $F_{X}$ and $F_{Y}$ betwosets ofcumulativedistributionfunctions, and let $\left(F_{X}, F_{X}\right)$ and $\left(F_{Y}, F_{Y}\right)$ be theirassociated p-boxes.If $E_{X}, F_{X} \quad F_{X}$ and $E_{Y}, F_{Y} \quad F_{Y}$, then:

1. $F_{X} \quad{ }_{F S D}{ }_{1} F_{Y} \quad E_{F_{X}(u)} \geq \bar{E}_{F_{Y}(u)}$ for every $u \quad U$.
2. $F_{\mathrm{X}} \quad \mathrm{FSD}_{2} F_{\mathrm{Y}} \quad F_{X} \quad \mathrm{FSD}_{3} F_{Y} \quad \bar{E}_{F_{X}(u)} \geq \bar{E}_{F_{Y}(u)}$ for every $u \quad U$.
3. $F_{X} \quad \mathrm{FSD}_{4} F_{Y} \quad \bar{E}_{F_{X}(u)} \geq E_{F_{Y}(u)}$ for every $u \quad U$.
4. $F_{X} \quad \mathrm{FSD}_{5} F_{Y} \quad F_{X} \quad \mathrm{FSD}_{6} F_{Y} \quad E_{F_{X}(u)} \geq E_{F_{Y}}(u)$ for every $u \quad U$.

Pro of The proof is based on the factthat, since $E_{X}, \bar{F}_{X} \quad F_{X}$ and $E_{Y}, \bar{F}_{\mathrm{Y}} F_{\mathrm{Y}}$, then:

$$
\begin{array}{lll}
E_{F_{X}(u)=E} & \bar{F}_{X}(u), & E_{F_{X}}(u)=E \\
E_{F_{Y}}(u)=E & E_{X}(u), \\
F_{Y}(u), & E_{F_{Y}}(u)=E & E_{Y}(u) .
\end{array}
$$

Then, applying Corollary 4.22, the implications directly hold.
It is also possible to consider the $n$-th degree sto chastic dominance, fo $\mathrm{P} \geq 2$ as the binary relation in Definition4.1. Inthatcase, weshalldenoteby $n S D_{i}$ or by ( $n S D_{i}$ ) its extensions. With thisrelation, we can also state similar re sults to the ones established for first degree sto chastic dominance. For instan ce, the following statements hold for imprecise $n$-th degree sto chastic dominance:


```
\bulletF x nsD }\mp@subsup{\mp@code{n}}{5}{}\mp@subsup{F}{Y}{}\quad\mp@subsup{F}{x}{}\times\quad\mp@subsup{}{nSD}{6
```



In addition, theconnection of thecomparison of setsof cumulativedistribution functions with the asso ciated p-boxes (Proposition 4.19) or with the asso ciated lower and upp er exp ectations (Theorem 4.23) can also be stated for the imprecisen-th degree sto chastic dominance as follows:

Prop osition 4.2zet $F_{X}$ and $F_{Y}$ be two set $s$ of cumulative distribution functions, and denote by $\left(F_{X}, F_{X}\right)$ and $\left(F_{Y}, F_{Y}\right)$ the associated p-boxeDDenot e by $y_{n}$ the set ofbounded and increasing functions $u: R \rightarrow \mathrm{R}$ that are n-monotone. Thenit holds that:

- $F_{x} \quad{ }_{n S D}{ }_{1} F_{Y}$ holds ifand only if $\bar{F}_{X} \quad{ }_{n S D}{ }_{1} E_{Y}$, and this is equivalent to

$$
E_{F_{X}}(u) \geq \bar{E}_{F_{Y}}(u)
$$

for every $u U_{n}$.
$\qquad$

- $F_{x}{ }_{n S D_{2}} F_{Y}$ implies:

$$
E_{X} \quad{ }_{n S D_{2}} E_{Y} \text { and } \bar{E}_{F_{X}(u)} \geq \bar{E}_{F_{Y}(u)} \text { for every } u \quad U_{n} .
$$

- $F \times{ }_{\mathrm{nSD}}^{3}$ $F_{\mathrm{Y}}$ implies:

$$
E_{X} \quad n S D_{3} E_{Y} \text { and } \bar{E}_{F_{X}(u)} \geq \bar{E}_{F_{Y}(u)} \text { for every } u \quad U_{n}
$$

- $F_{x} \quad{ }_{n S D}{ }_{4} F_{Y}$ implies:

$$
E_{X} \quad F_{S D}{ }_{4} \bar{F}_{Y} \text { and } \bar{E}_{F_{X}(u)} \geq E_{F_{Y}(u)} \text { for every } u \quad U_{n}
$$

- $F_{x} \quad{ }_{n S D}{ }_{5} F_{Y}$ implies:

$$
\bar{F}_{X} \quad{ }_{n S D} 5
$$

- $F \times \quad{ }_{\mathrm{nSD}}^{6}$ $F_{Y}$ implies:

$$
\bar{F}_{X} \quad{ }_{n S D}{ }_{6} \bar{F}_{Y} \text { and } E_{F_{X}}(u) \geq E_{F_{Y}}(u) \text { for every } u \quad U_{n} .
$$

Furthermore, the converse implications hold when $E_{X}, \bar{F}_{X} \quad F_{X}$ and $E_{Y}, \bar{F}_{Y} \quad F_{Y}$.

We omit the proof $b$ ecause it is analogous to the one of Prop osition 4.19, Theorem 4.23 andCorollaries 4.22 and 4.26.

In the remainder of the subsection we shall investigate several prop erties of imprecise sto chastic dominanceHowever, from now on we shall fo cus on the first degree stochastic dominance for two main reasons: onthe onehand, it is the most common sto chastic dominance in the literature and, on the other hand, as we have just seen, the results for first degree can be easily extended forn-th degree sto chastic dominance.

## Connection with previous approaches

A first approach tothe extension of the sto chastic dominance towards an imprecise framework was made by Deno eux in [61].

He considered two random variables $U$ and $V$ such that $P(U \leq V)=1$. They can be equivalently represented as a random interval[ $U, V$ ], which in turn induces a belief and a plausibility function, as we saw in Definition 2.43:

$$
\operatorname{bel}(A)=P([U, V] \quad A) \text { and } p l(A)=P([U, V] \cap A=\quad)
$$

for every element $A$ in the Borelsigma-algebra $\beta_{\mathrm{R}}$. Thus, for every $x \quad \mathrm{R}$ :

$$
\operatorname{bel}\left(\left(^{\infty}, x\right]\right)=F \quad v(x) \text { and } p l\left(\left(\left(^{\infty}, x\right]\right)=F \quad u(x) .\right.
$$

The asso ciated set of probability measure ${ }^{P}$ compatible with bel and $p l$ is give n by:

$$
P=\left\{P \text { probability : bel }(A) \leq P(A) \leq p l(A) \text { for every } A \quad \beta_{R}\right\}
$$

Deno eux considered two random closed intervalş $U, V$ ] and $[U, V]$. One possible way of comparing them is to compare their asso ciated sets of probabilities:

$$
\begin{aligned}
& P=\{P \text { probability : bel }(A) \leq P(A) \leq p l(A) \text { for every } A \\
& P=\left\{P \text { probability }: \operatorname{bel}(A) \leq P(A) \leq p l(A) \text { for every } A \quad \beta_{R}\right\} .
\end{aligned}
$$

Based onthe usual ordering b etwee n realintervals (see [78]), Denoeux prop osed the following notions:

$$
\begin{array}{llll}
\text {-P } & P & p l((x, \infty)) \leq b e l\left(\left(x,,^{\infty}\right)\right) \text { for every } x & \mathrm{R} . \\
\text {-P } & P & p l((x, \infty)) \leq p l((x, \infty)) \text { for every } x & \mathrm{R} . \\
\text {-P } & P & b e l\left(\left(x,,^{\infty}\right)\right) \leq \operatorname{bel}((x, \infty)) \text { for every } x & \mathrm{R} . \\
\text {-P } & P & b e l\left(\left(x,,^{\infty}\right)\right) \leq p l((x, \infty)) \text { for every } x & \mathrm{R} .
\end{array}
$$

It turns out that the above notions can be characterised in terms of the sto chastic dominance b etween the lower and upp er limits of the random intervals:

Prop osition 4.28 ([61])et $(U, V)$ and $(U, V)$ be two pairs of random variables satisfying $P(U \leq V)=P(U \leq V)=1$, and let $P$ and $P$ their associated sets of probability measures. The fol lowing equivalences hold:

| $\cdot P$ | $P$ | $U$ | FSD $V$. |
| :--- | :--- | :--- | :--- |
| $\cdot P$ | $P$ | $U$ | FSD $U$. |
| •P | $P$ | $V$ | FSD $V$. |
| $\cdot P$ | $P$ | $V$ | FSD $U$. |

Note that the ab ove definitions can be represented in an equivalent way by means of $p$-b oxes:if we conside $r$ the set of distribution functions induced by $P$, we obtain

$$
\left\{F: F \vee \leq F \leq F_{U}\right\}
$$

i.e., the p-b ox determined by $F_{V}$ and $F_{U}$. Similarly, the set $P$ induces the p-b ox ( $F \vee, F \cup$ ), and Deno eux's definitions are equivalent to comparing the lower and upp er distribution functions of these p-b oxes, as we can see from Prop osition 4.28. Note moreover thatthe same result holds if we considerfinitelyadditive probability measures
instead of $\sigma$-additive ones, b ecause b oth of them determine the same $\mathrm{p}-\mathrm{b}$ ox and the lower and upp er distribution functions are included in both cases.

There is a clear connection $b$ etween the scenario prop osed by Deno eux and our proposal. Let $[U, V]$ and $[U, V]$ betwo random closed intervals, whose asso ciated belief and plausibility functions determine the setsofprobability measures $P, P$ andthe setsofcumulative distribution functions $F$ and $F$. Applying Prop osition 4.28 and Corollary 4.22, we obtain the following equivalences:

| -F | FSD ${ }_{1}$ |  | $(t) \leq F_{V}$ | for every $t$ | R | $P$ | $P$. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -F | $\mathrm{FSD}_{2}$ | $F$ | $\mathrm{FSD}_{3} \mathrm{~F}$ | $F_{V(t)} \leq F_{V}$ |  |  | ery $t$ |  | R |  |  | $P$ |
| $\bullet F$ | FSD ${ }_{4}$ |  | $(t) \leq F_{U}$ | for every $t$ | R | $P$ |  |  |  |  |  |  |
| -F | FSD ${ }_{5}$ | $F$ | $\mathrm{FSD}_{6} \mathrm{~F}$ | $F_{U(t)} \leq F_{u}$ | t) f | for e | ery $t$ |  | R |  | P | $P$ |

Hence, condition gives rise to $\left(F S D_{2}\right)$ (when $P$ has a smallest distribution function) and $\left(F S D_{3}\right)$ (when it do es not have it); similarly, condition pro duces $\left(F S D_{5}\right.$ ) (if $P$ has a greatest distributionfunction) and (FSD6) (otherwise).

This also shows that our prop osal is more general in the sense that it can be applied to arbitrary sets of probability measures, and not only those asso ciated with a random closed interval. Ontheotherhand, ourworkismorerestrictiveinthesensethatweare assuming that our referential space is $[0,1]$, instead of the real line. Aswe mentioned at the beginning of the section, our results are imm ediately extendable to distribution functions taking values in any closedinterval $[a, b]$ where $a<b$ are real numb ers. The restriction to $b$ ounded intervals is made so that the lower envelop e of a set of cumulative distribution functions is a finitely additive distribution function, which may not be the case if we consider the whole real line as our referential space. Onesolution tothis problem is to add to our space a smallest and a greatest value $0 \Omega, 1 \Omega$, so that we always have $F(0 \Omega)=0$ and $F(1 \Omega)=1$.

## Increasing imprecision

Next we study the behaviour of the differentnotions of sto chastic dominance for sets of distributions when we use them to compare two sets of distribution functions, one of which is more imprecis e than the other. This may be useful in some situations: for instance, p-b oxes can be seen as confidence bands [38,4], which mo delour imprecise information ab out a distribution function taking into account a given sample and a fixed confidence level. Thenifweapplytwodifferentconfidence levelsto thesamedata, we obtain two con fidence bands, one included in the other, and we may study which of the two is preferred according to the different criteria we have prop osed. In thissense, we may also study our preferences $b$ etween a set of portfoliosthat we representbymeans
of a set of distribution functions, and a greater set, where we include more distribution functions, but where also the asso ciated risk may increase.

Wearegoing toconsider two different situations: thefirstone iswhenourinformation is given by a set of distribution fu nctions. Hence, weconsidertwosets $F_{\mathrm{X}} \quad F_{\mathrm{Y}}$ and investigate our preferences $b$ etween them:

Prop osition 4.2get us consider two set s of cumulative distribution functions $F_{X}$ and $F_{Y}$ such that $F_{X} \quad F_{Y}$. It holdsthat:

1. If $F_{X}$ hasonly onedistributionfunction, then all thepossibilities arevalid for ( $F S D_{1}$ ). Otherwise, if $F_{X}$ is formedby more than one distributionfunction, $F_{X}$ and $F_{Y}$ are incomparable withrespect to $\left(F S D_{1}\right)$.
2. With respectto $\left(F S_{2}\right), \ldots,(F S \Delta)$, thepossible scenariosare summarisedin the fol lowing table:

|  | $F S D_{2}$ | $F S D_{3}$ | $F S D_{4}$ | $F S D_{5}$ | $F S D_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{X}{ }_{F S D} F_{Y} F_{Y}$ |  |  |  | $\bullet$ | $\bullet$ |
| $F_{Y}{ }_{F S D} F_{X}$ | $\bullet$ | $\bullet$ |  |  |  |
| $F_{X} \equiv_{\text {FSD }} F_{Y}$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| $F_{X}, F_{Y}$ incomparable | $\bullet$ |  |  | $\bullet$ |  |

Pro of Let us prove that the p ossibilities ruled out in the statement of the prop osition cannot happ en:

1. Onthe onehand, if $F_{X}$ has morethanone cumulative distribution function, we deduce that $F_{X}$ is in comparable with i tself with resp ect to ( $F S D_{1}$ ), andasa consequence it is also incomparable with resp ect to the greater se $F_{Y}$.
2. Since $F_{X} \quad F_{Y}$, for any $F_{1} \quad F_{x}$ there exists $F_{2} \quad F_{Y}$ such that $F_{1}=F_{\text {2 }}$. Hence, we always have $F_{Y} \quad \mathrm{FSD}_{3} F_{X}$ and $F_{X} \quad \mathrm{FSD}_{6} F_{Y}$. Thus, weobtainthat $F_{X} \quad \mathrm{FSD}_{3} F_{Y}$, $F_{Y} \quad{ }_{F S D}{ }_{6} F_{X}$, and b oth sets cannot be incomparable with resp ect $t \phi F S D_{3}$ ) and ( $F S_{6}$ ). Moreover, using Prop osition $4.3 F_{X} \quad{ }_{F S D}^{2}{ }_{2} F_{Y}$ and $F_{Y} \quad{ }_{F S D}^{5} F_{X}$ are not possible. Thisalsoshows that $F_{X} \equiv_{\mathrm{FSD}_{4}} F_{\mathrm{Y}}$, because any $F_{\mathrm{X}} F_{\mathrm{Y}}$ is equivalent to itself.

Next example shows that all the other scenarios are indeed possible.

Example 4.30 • Let ussee that $F_{X} \quad{ }_{F S D}{ }_{i} F_{Y}$ is possible for $i=1,5,6$. For this aim, take $F_{X}=\{F\}$ and $F_{Y}=\left\{F, F_{1,0}\right\}$. Then, it holds that $F_{X} \quad{ }_{F S D} F_{Y}$ for $i=1,5,6$ and $F_{X} \equiv{ }_{\mathrm{FSD}}^{\mathrm{i}}$ $F_{Y}$ for $i=2,3$.

- Letus checkthat $F_{Y} \quad{ }_{F S D} F_{X}$, is possible for $i=1,2,3$. Consider $F_{X}=\{F\}$ and $F_{Y}=\left\{F, F_{1,1}\right\}$. Then, it holds that $F_{Y} \quad$ FSD $_{i} F_{X}$ for $i=1,2,3$ and $F_{X} \equiv{ }_{F S D} F_{Y}$ for $i=5,6$.
- Now, letusseethat $F_{X} \equiv_{F_{S D}} F_{Y}$, is possible for $i=1, \ldots, 6$. Forthisaim, take $F_{X}=F_{Y}=\{F\}$. Then, $F_{X} \equiv_{\mathrm{FSD}_{1}} F_{Y}$ and by Proposition 4.3, $F_{X} \equiv_{\mathrm{FSD}_{\mathrm{i}}} F_{Y}$ for any $i=2, \ldots, 6$
- To seethatincomparabilityispossiblefor $\quad i=1,2,5$, let $F_{X}=F_{Y}=\left\{F, F_{1,0.5}\right\}$. Then $F_{X}$ and $F_{Y}$ are ( $F S_{i}$ ) incomparable for $i=1,2,5$, since $F$ and $F_{1,0.5}$ are incomparable.

Remark 4.31A particular case of the above result would be when we compare a set of distribution functions $F_{X}$ with itself, i.e., when $F_{Y}=F_{X}$. In that case, $F_{X} \equiv_{{ }_{F S D}} F_{X}$ for $i=3,4,6$, as we have seen in Proposition 4.9. Withrespect to $\left(F S D_{1}\right),\left(F S D_{2}\right)$ and (F SD5), wemay haveeither incomparability orindifference: to seethat wemay have incomparability, consider $F_{X}=F_{Y}=\left\{F, F_{1,0.5}\right\}$; for indifference take $F_{X}=F_{Y}=\{F\}$.

The second scenario corresp onds to the case where our information ab out the set of distribution functions is given by means of a p-b ox.A more imprecise p-b ox corresp onds to the case where either the lower distribution function is smaller, the upp er distribution function is greater, or both. We begin by considering the latter case.

Prop osition 4.32etus considertwo setsofcumulative distributionfunctions $\quad F_{X}$ and $F_{Y}$, and let $\left(E_{X}, F_{X}\right)$ and $\left(F_{Y}, \bar{F}_{Y}\right)$ denote their associated p-boxesAssume that $E_{Y}<$ $E_{X}<F_{x}<F_{Y}$. Then the possible scenarios ofstochastic dominance are summarised in the fol lowing table:

|  | $F S D_{1}$ | $\mathrm{FSD}_{2}$ | $\mathrm{FSD}_{3}$ | $\mathrm{FSD}_{4}$ | $\mathrm{FSD}_{5}$ | $F S D_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{X} \mathrm{FSD}_{i} F_{Y}$ |  |  |  | $\bullet$ | $\bullet$ | $\bullet$ |
| $F_{Y} \mathrm{FSD}_{\mathrm{i}} F_{X}$ |  | $\bullet$ | $\bullet$ | $\bullet$ |  |  |
| $F_{X} \equiv_{\mathrm{FSD}} F_{Y}$ |  |  |  | $\bullet$ |  |  |
| $F_{X}, F_{Y}$ incomparable | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |

Pro of Using Proposition 4.3, weknow that $F_{X} \quad{ }_{F S D}{ }_{1} F_{Y}$ ifand onlyif $\bar{F}_{X} \leq E_{Y}$, which isincompatible with theassumptions. Similarly, wecansee that $F_{Y}{ }_{F S D}{ }_{1} F_{X}$ andas aconsequence they are incomparable.

On the other hand, if $F_{X} \quad{ }_{\text {FSD }}^{i}$ $F_{Y}$, for $i=2,3$, using Prop osition 4.19 it holds that $E_{X} \leq E_{Y}$, a contradiction with the hyp othesis.
$\bar{F}_{Y} \leq F_{X}$ Similarly, if $F_{Y} \underset{\text { FSD } i}{ } F_{X}$, for $i=5,6$, we deduce from Prop osition 4.19 that $F_{Y} \leq F_{X}$, again a contradiction.

Next example shows that the scenarios included in the table are p oss ible.

Example 4.33 • Letusseethat for $\left(F S D^{i}\right), i=2, \ldots, 6, F_{X}$ and $F_{Y}$ can be incomparable. For thisaim weconsider $F_{X}=\{F, F\}$, where $F=\max \left\{F, F_{1,0.7}\right\}$, and $F_{Y}=\left\{F_{1,0.5}, F_{\{(0.5,0.5),(0,1)\}}\right\}$. It is easy to check that bot $h$ sets of cumulative distribution functionsare incomparable, since every distribution functionon $F_{X}$ is incomparable with every distribution function on $F_{Y}$.

- Let usnow consider

$$
F_{X}=\{F, F\} \text { and } F_{Y}=\left\{F_{(0.5,0.5),(0,0.5)}, F_{(0.5,0.5),(0.5,1)}\right\} .
$$

Then $F_{Y} \quad \mathrm{FSD}_{i} F_{X}$ for $i=2,3$ and $F_{X} \quad \mathrm{FSD}_{i} F_{Y}$ for $i=5,6$. As a consequence, both sets are indifferent with respect to Definition (FSD4).

- Final ly, it only remains to see that we may have strict preference under Definition ( F SD4). On theone hand, ifwe considerthe sets

$$
F_{X}=\{F, F\} \text { and } F_{Y}=\left\{F_{1,0.5}, F_{(0.5,0.5),(0,1)}, F_{(0.5,0.5),(0,0.5)}\right\} \text {, }
$$

it holds that $F_{X} \quad \mathrm{FSD}_{4} F_{Y}$. In theother hand, ifwe consider

$$
F_{Y}=\left\{F_{1,0.5}, F_{(0.5,0.5),(0,1)}, F_{(0.5,0.5),(0.5,1)}\right\},
$$

we obtain that $F_{Y} \quad \mathrm{FSD}_{4} F_{X}$.
Although the_inclusion $F_{X} \quad F_{Y}$ implies that $E_{Y} \leq E_{X} \leq \bar{F}_{X} \leq \bar{F}_{Y}$, wemay have $E_{Y}<F_{-X}<F_{x}<F_{Y}$ even if $F_{X}$ and $F_{Y}$ aredisjoint, forinstancewhentheselowerand upp er distribution functions are $\sigma_{\text {-additive }}$ and we take the sets $F_{X}=\left\{E_{X}, F_{X}\right\}$ and $F_{Y}=\left\{E_{Y}, F_{Y}\right\}$. For this reason in Prop osition 4.29 we cannot have $F_{X} \quad{ }_{F S D}^{4}{ }_{4} F_{Y}$ nor $F_{Y} \quad \mathrm{FSD}_{4} F_{X}$ and under the conditions of Prop osition 4.32 we can.

Prop osition 4.34 ndertheaboveconditions, ifinaddition $\quad E_{X}, F_{X}$ belong to $F_{X}$ and $E_{Y}, F_{Y}$ belong to $F_{Y}$, the possible scenarios are:

|  | $F S D_{1}$ | $F S D_{2}$ | $\mathrm{FSD}_{3}$ | $F S D_{4}$ | $F S D_{5}$ | $F S D_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{1}$ ESD; $F_{2}$ |  |  |  |  | - | - |
| $F_{2} \mathrm{FSD}, F_{1}$ |  | - | - |  |  |  |
| $F_{1} \equiv_{\text {FSD }} F_{2}$ |  |  |  | - |  |  |
| $F_{1}, F_{2}$ incomparable | - |  |  |  |  |  |

## Pro of

- It isobvious that $F_{X}$ and $F_{Y}$ are incomparable with resp ect to Definition $\left(F S D_{1}\right)$.
$\qquad$ Chapter 4. Comparisonofalternatives underuncertainty andimprecision
- It holds that $E_{Y}<F_{-X} \leq F_{1}$ for any $F_{1} \quad F_{X}$, and then $F_{Y} \quad{ }_{F S D}^{2}$ $F_{X}$. Moreover, using Corollary4.22 ( $F S D_{2}$ ) and ( $F S D_{3}$ ) are equivalent, and consequently $F_{Y} \mathrm{FSD}_{3} F_{\mathrm{X}}$.
- We knowthat $E_{Y}<F_{-X}$, then $F_{Y} \quad{ }_{F S D}{ }_{4} F_{X}$, and moreover $\bar{F}_{X}<F_{Y}$, and then $F_{X} \quad \mathrm{FSD}_{4} F_{Y}$. Using both inequalities we obtain that $F_{X} \equiv{ }_{\mathrm{FSD}_{4}} F_{Y}$.
- Itholds that $F_{1} \leq F_{X}<F_{Y}$ for any $F_{1} \quad F_{X}$, and then $F_{X} \quad{ }_{\text {FSD }}^{5}$ $F_{Y}$. Furthermore, using Corollary4.22, ( $F S D_{5}$ ) and ( $F S_{6}$ ) are equivalent, andconsequently $F_{X} \quad \operatorname{FSD}_{6} F_{Y}$.

In partic ular, the ab ove result is applicable when $F_{X}=\left(F_{-X}, \bar{F}_{X}\right)$ and $F_{Y}=\left(F_{Y}, \bar{F}_{Y}\right)$, with $E_{X}, F_{X} \quad F_{X}$ and $E_{Y}, F_{Y} \quad F_{Y}$.

To conclude this part, we consider the case where only one of the bounds becomes more imprecise in the second p-b ox.

Prop osition 4.35etus considertwo setsofcumulative distributionfunctions $F_{X}$ and $F_{Y}$, and let $\left(F_{X}, F_{X}\right)$ and $\left(F_{Y}, F_{Y}\right)$ denote their associated p-boxes.
a) Let usassume that $E_{Y}<F_{-X}<F_{X}=F_{Y}$. Then thepossible scenariosare:

|  | $F S_{1}$ | $F S D_{2}$ | $F S D_{3}$ | $F S D_{4}$ | $F S D_{5}$ | $F S D_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{X}{ }_{F S D} F_{Y} F_{Y}$ |  |  |  | $\bullet$ | $\bullet$ | $\bullet$ |
| $F_{Y}{ }_{F S D} F_{X}$ |  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| $F_{X} \equiv_{\text {FSD }} F_{Y}$ |  |  |  | $\bullet$ | $\bullet$ | $\bullet$ |
| $F_{X}, F_{Y}$ incomparable | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |

b) Let usassume that $E_{Y}=F_{-x}<F_{x}<F_{Y}$. Then thepossible situationsare:

|  | $F S_{1}$ | $F S D_{2}$ | $F S D_{3}$ | $F S D_{4}$ | $F S D_{5}$ | $F S D_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{X}{ }_{F S D} F_{Y} F_{Y}$ |  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| $F_{Y}{ }_{F S D} F_{X}$ |  | $\bullet$ | $\bullet$ | $\bullet$ |  |  |
| $F_{X} \equiv_{\text {FSD }_{i},} F_{Y}$ |  | $\bullet$ | $\bullet$ | $\bullet$ |  |  |
| $F_{X}, F_{Y}$ incomparable | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |

## Pro of

a) Let us first show that incomparability is the only situation possible according to Definition $\left(F S D_{1}\right)$. As proven in Prop osition 4.19, $F_{X} \quad F_{S D}{ }_{1} F_{Y}$ if and only if $F_{X} \leq E_{Y}$. But this inequality is not compatible with the hyp othesis. For thesame reason, the converse ine quality, $F_{Y} \leq E_{X}$ is not possible either.

With resp ect to $\left(F S D_{2}\right)$, $\left(F S D_{3}\right)$, note thatif $E_{Y}<F_{-x}$,

$$
x_{0} \quad[0,1] \text { such that } E_{Y}\left(x_{0}\right)=\inf _{2} F_{Y} F_{2}\left(x_{0}\right)<F_{-x}\left(x_{0}\right)
$$

whence there exists $F_{2} \quad F_{y}$ such that $F_{2}\left(x_{0}\right)<F_{-x}\left(x_{0}\right) \leq F_{1}\left(x_{0}\right)$ for all $F_{1} \quad F_{x}$. Thus, $F_{1} \leq F_{2}$ for any $F_{1} \quad F_{x}$ and $F_{X} \quad \mathrm{FSD}_{3} F_{Y}$. Applying Prop osition 4.19, $F_{\mathrm{X}} \quad \mathrm{FSD}_{2} F_{\mathrm{Y}}$.
b) The pro of concerning Definition $\left(F S D_{1}\right)$ is analogous to the onein a).

Concerning ( $F S D_{5}$ ), ( $F S D_{6}$ ), note thatsince $\bar{F}_{X}<\bar{F}_{Y}$,

$$
x_{0} \quad[0,1] \text { such that } \bar{F}_{Y}\left(x_{0}\right)=\sup _{F_{2} F_{Y}} F_{2\left(x_{0}\right)>F^{-}} \times\left(x_{0}\right)
$$

whence there if $F_{2} F_{Y}$ such that $F_{2}\left(x_{0}\right)>F \quad F_{\left(x_{0}\right)} \geq F_{1}\left(x_{0}\right)$ for all $F_{1} \quad F_{x}$, then $F_{1} \geq F_{2}$ for any $F_{1} \quad F_{x}$ and $F_{Y} \quad F_{S D} F_{X}$. It also follows from Prop osition 4.19 that $F_{\mathrm{Y}} \quad \mathrm{FSD}_{5} F_{\mathrm{X}}$.

Next we give examples showingthat when the lower distribution function is smaller in the second $p$-box and the upp er distribution functions coincide, all the p ossibiliti es not ruled out in the first table of the previous prop osition can arise. Similar examples can be constructed for the case where $E_{X}=F_{-}$and $F_{X}<F_{Y}$.

Example 4.36 - We beginbyshowing that $F_{X}$ and $F_{Y}$ canbe incomparable under any definition ( $F$ SDi) for $i=2, . . ., 6$. Letus consider thesets:

$$
F_{X}=\left\{\left.F_{\left(0.5^{-} \frac{1}{n}, 0.5,{ }_{n}^{1}\right),(0,0.5,1)} \right\rvert\, n \geq 3\right\} \text { and } F_{Y}=\left\{F_{1,0.5}, F_{(0.5,0.5),(0,1)}\right\}
$$

For all $F_{1} \quad F_{\mathrm{x}}$ and $F_{2} \quad F_{\mathrm{y}}$ it holdsthat $F_{2}$ FSD $F_{1}$ and $F_{1} \quad$ FSD $F_{2}$. Then, $F_{X}$ and $F_{Y}$ are incomparable according tq $F S D_{4}$ ), and thereforealso accordingto ( $F$ SD) for $i=2,3,5,6$.

- To seethat $F_{X}, F_{Y}$ can beindifferent accordingto (FSD4), (FSD5) or (FSD6), take:

$$
F_{X}=\left\{F_{1,0.5,}, F_{(0.5,0.5),(0,0.5)}\right\} \text { and } F_{Y}=\left\{F_{(0.5,0.5),(0,0.5)}, F_{1,1}\right\} .
$$

Since $F_{X}=F_{Y}=F_{(0.5,0.5),(0,0.5)}$ belongsto bothsets, theyverifythat $F_{X}{ }_{F S D}{ }_{5} F_{Y}$ and also $F_{Y} \quad \mathrm{FSD}_{5} F_{\mathrm{X}}$. Therefore, $F_{\mathrm{X}} \equiv \equiv_{\mathrm{FSD} 5} F_{\mathrm{Y}}$. As a consequ ence, they are also indifferent according to $\left(F S_{6}\right)$ and (FSD4).

- Nextwe showthat itis alsopossible that $F_{X} \quad{ }_{\text {FSD }}^{i}$ $F_{Y}$ for $i=5,6$. Letus consider

$$
F_{X}=\left\{F_{\left(1-\frac{1}{n}, \frac{1}{n}\right),(0,1)}: n \geq 3\right\} \text { and } F_{Y}=\left\{F_{1,0}, F_{1,1}\right\} .
$$

They verify that $F_{X} \quad \mathrm{FSD}_{5} \quad F_{Y}$ since $F_{\left(1-\frac{1}{n}, \frac{1}{n}\right),(0,1)} \quad$ FSD $\quad F_{1,0}$ for all $n$; but $F_{Y} \quad$ FSD $_{5} \quad F_{X}$ sincethere isnot $\quad F \quad F_{x}$ such that $F_{1,0} \quad$ FSD $F$. We conclude that $F_{\mathrm{X}} \quad \mathrm{FSD}_{5} F_{\mathrm{Y}}$, and applying Proposition 4.15 also $F_{\mathrm{X}} \quad \mathrm{FSD}_{6} F_{\mathrm{Y}}$.

- To see thatwe may alsohave $F_{Y} \quad{ }_{F S D} F_{X}$ for $i=5,6$, take:

$$
F_{X}=\left\{F_{1,0}, F_{(0.75,0.25),(0,1)}\right\} \text { and } F_{Y}=\left\{F_{\left(1-\frac{1}{n}, \frac{1}{n}\right),(0,1)}: n \geq 3\right\}
$$

Then $F_{Y} \quad$ FSD $_{5} F_{X}$ becaus $F_{\left(1-\frac{1}{n}, \frac{1}{n}\right),(0,1)} \quad$ FSD $F_{1,0}$ for every $n$, but they are not indifferent with respect to (FSD5). Hence, $F_{Y} \quad \mathrm{FSD}_{5} F_{X}$ andapplying Proposition 4.15 also $F_{Y} \quad{ }_{\mathrm{FSD}}^{6}$ $F_{\mathrm{X}}$.

- Let usgive next anexample where $F_{X} \quad \mathrm{FSD}_{4} F_{\mathrm{Y}}$. Consider

$$
\begin{aligned}
& F_{X}=\left\{F_{(0.6,0.4),(0.5,1)}, F_{\left(0.5^{-}-\frac{1}{n}, 0.5, \frac{1}{n}\right),(0,0.5,1)}: n \geq 3\right\} \text { and } \\
& F_{Y}=\left\{F_{1,0.5}, F_{(0.5,0.5),(0,1)}\right\} .
\end{aligned}
$$

Then, $F_{X} \quad \mathrm{FSD}_{4} F_{Y} \operatorname{since} F_{(0.6,0.4),(0.5,1)} \quad$ FSD $F_{1,0.5}$ but $F_{Y} \quad \mathrm{FSD}_{4} F_{X}$ since

$$
F_{1,0.5}(0.5)>F_{\left(0.5^{-} \frac{1}{n}, 0.5,{ }_{n}^{1}\right),(0,0.5,1)}(0.5) \text { for all } n \geq 3
$$

and $F_{1,0.5}(0.5)>F_{(0.6,0.4),(0.5,1)}(0.5)$ Also

$$
F_{(0.5,0.5),(0,1)}(0)>F_{\left(0.5^{-}{ }_{n}^{1}, 0.5,{ }_{n}^{1}\right),(0,0.5,1)}(0) \text { for all } n \geq 3
$$

and $F_{(0.5,0.5),(0,1)}(0)>F_{(0.6,0.4),(0.5,1)}(0)$.

- We concludeby showingthat itmay alsohappen that $F_{Y} \quad{ }_{F S D}{ }_{i} F_{X}$ for $i=2,3,4$. Let us consider

$$
\begin{aligned}
& F_{X}=\left\{F_{\left(0.5-\frac{1}{n}, 0.5,{ }_{n}^{1}\right),(0,0.5,1)}: n \geq 3\right\} \text { and } \\
& F_{Y}=\left\{F_{1,0.5}, F_{(0.5,0.5),(0,1)}, F_{(0.5,0.5),(0.5,1)}\right\} .
\end{aligned}
$$

It holds that

$$
F_{(0.5,0.5),(0.5,1)} \quad \operatorname{FSD} F_{\left(0.5-\frac{1}{n}, 0.5,{ }_{n}^{1}\right),(0,0.5,1)} \text { for all } n \geq 3
$$

whence $F_{Y} \quad$ FSD $_{i} F_{X}$ for $i=2,3,4$. On theother hand,

$$
F_{\left(0.5^{-} \frac{1}{n}, 0.5, \frac{1}{n}\right),(0,0.5,1)}(0)>F_{(0.5,0.5),(0.5,1)}(0)
$$

and

$$
F_{\left(0.5^{\left.-\frac{1}{n}, 0.5,{ }_{n}^{1}\right),(0,0.5,1)}\right.}(0.5)>F_{(0.5,0.5),(0.5,1)}(0.5),
$$

whence ${ }_{X} \quad$ FSD $_{i} F_{Y}$ for $i=2,3,4$.

## Sets of distribution functions asso ciated with the same p-b ox

Next we investigate the relationships between the preferences on two sets of distributions functions asso ciated with the same p-box. Weconsiderthecase of non-trivial p-b oxes (that is, those where the lower and the upp er distribution functions are different), since otherwiseweobviously obtain indifference.

Prop osition 4.3zet us consider two set s of cumulative distribution functions $F_{X}$ and $F_{Y}$ such that $E_{X}=F_{-}, F_{X}=F$ and $E_{X}<F$. Then:

1. $F_{X}$ and $F_{Y}$ are incomparable withrespect to $F S D_{1}$.
2. With respect to $\left(F S^{i}\right), i=2, \ldots, 6$, we mayhave incomparability, strictstochastic dominance or indifference betweer $F_{X}$ and $F_{Y}$.

Pro of By Prop osition 4.19, $F_{X} \quad F_{S D}{ }_{1} F_{Y}$ if andonly if $F_{X} \leq E_{Y}$, which in this case holds if and only if $F_{X}=F-x$, a contradiction with our hyp otheses.

With resp ect to conditions (FSD2), . . , (F SLB), it iseasy tofind examplesof indifference by taking $F_{X}=F_{Y}$ including the lower and upp er distribution functions. Nextexample showsthat we mayalso have strict dominance or incomparability.

Example 4.38/nthese exampleswe are goingto showthat, giventwo setsofcumulative distribution functions $F_{X}$ and $F_{Y}$ associatedwiththesamep-box, then therecanbestrict dominance or incomparability (that they may also be indifferent has already been showed in Proposition 4.37).

- Let usconsider

$$
F_{X}=\left\{F_{(0.5,0.5),(0,0.5)}, F_{(0.5,0.5),(0.5,1)}\right\} \text { and } F_{Y}=\left\{F_{1,0.5}, F_{(0.5,0.5),(0,1)}\right\} .
$$

Then, itholds that $F_{X} \quad$ FSD $_{i} F_{Y}$ for $i=2,3$ and $F_{Y} \quad{ }_{\text {FSD }}^{i}{ } F_{X}$ for $i=5,6$. By reversing the roles of $F_{X}$ and $F_{Y}$, we obtainanexampleof $F_{X}$ and $F_{Y}$ inducing the same p-box and with $F_{X} \quad \mathrm{FSD}_{\mathrm{i}} F_{Y}$ for $i=5,6$ and $F_{Y} \quad \mathrm{FSD}_{i} F_{X}$ for $i=2,3$.

- To see theincomparability, take

$$
\begin{aligned}
& F_{X}=\left\{F_{1,0.5}, F_{(0.5,0.5),(0,1)}\right\} \text { and } \\
& F_{Y}=\left\{F_{\left(\frac{1}{n}, 0.5,0.5^{\left.-\frac{1}{n}\right),(0,0.5,1)}\right.}, F_{\left(0.5-\frac{1}{n}, 0.5, \frac{1}{n}\right),(0,0.5,1)}: n \geq 3\right\} .
\end{aligned}
$$

It is easy tocheck thatboth sets are incomparable with respect t $\varphi F S_{4}$ ), and then they are also incomparable with respect to $F S D_{i}$ ) for $i=1, \ldots, 6$.

- Final ly, if we consider $F_{X}=\left\{F_{1,0.5}, F_{(0.5,0.5),(0,1)}\right\}$ and

$$
F_{Y}=\left\{F_{\left(\frac{1}{n, 0.5,0.5}-\frac{1}{n}\right),(0,0.5,1)}, F_{\left(0.5^{-\frac{1}{n}, 0.5, n}\right),(0,0.5,1)}: n \geq 3, F_{(0.5,0.5),(0.5,1)}\right\} .
$$

We have that $F_{(0.5,0.5),(0.5,1)}$. FSD $F_{1,0.5}$, while noneof the distribution functions in $F_{X}$ isdominated bya distribution functionin $\quad F_{Y}$. Thus, $F_{Y} \quad{ }_{F S D}^{4}{ }_{4} F_{X}$. Again, reversing the roles of $F_{X}$ and $F_{Y}$ we seethat we can also have $F_{Y} \quad{ }_{F S D}^{4}{ }_{X} F_{X}$.

When the lower and upp er distribution functions belong to our set of distributions, we deducethe following result.

Corollary 4.39Let us consider two sets of cumulative distribution fu nction $\bar{\xi}_{X}$ and $F_{Y}$ such that $E_{X}=F_{-}, F_{X}=F_{Y}, E_{X}<F_{x}$ and $E_{X}, F_{X} \quad F_{X} \cap F_{Y}$. Then $F_{X} \equiv_{F S D_{i}} F_{Y}$ for $i=2, \ldots, 6$, and they are incomparable with respect to $\left(F S D_{1}\right)$.

Pro of The result follows immediately from Proposition 4.37 and Corollary 4.22.
Next we investigate the case whe re we compare these two sets of distribution functions with a third one, and determine if they pro duce the same preferences:

Prop osition 4.4@etus consider $F_{X}, F_{X}$ and $F_{Y}$ three sets of cumulative distribution functions such that $E_{x}=F-x$ and $\bar{F}_{x}=F x$. In thatcase:

1. $F_{\mathrm{X}} \quad \mathrm{FSD}_{1} F_{\mathrm{Y}} \quad F_{\mathrm{X}} \quad \mathrm{FSD}_{1} F_{\mathrm{Y}}$, and $F_{\mathrm{Y}} \quad \mathrm{FSD}_{1} F_{\mathrm{X}} \quad F_{\mathrm{Y}} \quad \mathrm{FSD}_{1} F_{\mathrm{X}}$.
2. With respect to definitions $\left(F S D_{2}\right), \ldots,(F S D)$, if we assume that $F_{X} \quad{ }_{F S D} F_{Y}$, then the possible scenarios for the relationship betwe $\boldsymbol{F}_{X}$ and $F_{Y}$ are summarised by the fol lowing table:

|  | $F S D_{2}$ | $\mathrm{FSD}_{3}$ | $F S D_{4}$ | $F S D_{5}$ | $F S D_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{X} \mathrm{FSD}_{i} F_{Y}$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| $F_{Y} F_{X S D} F_{X}$ |  | $\bullet$ | $\bullet$ |  | $\bullet$ |
| $F_{X} \equiv_{\mathrm{FSD}_{i}} F_{Y}$ |  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| $F_{X}, F_{Y}$ incomparable | $\bullet$ | $\bullet$ | $\bullet$ |  | $\bullet$ |

Pro of Concerning definition ( $F S D_{1}$ ), Prop osition 4.19 assures that $F_{X} \quad{ }_{F S D}{ }_{1} F_{Y}$ if and only if $F_{X}=F \quad x \leq E_{Y}$, and using the same result this is equivalent tox $\quad{ }_{\mathrm{FSD}}^{1} 1{ }_{\mathrm{X}} F_{\mathrm{Y}}$. The same result shows that $F_{Y} \quad \mathrm{FSD}_{1} F_{X}$ if and only if $F_{Y} \leq E_{X}=F-X$, andthis is again equivalent to $F_{Y}$ FSD $F_{X}$.
Let us provethat $F_{\mathrm{X}} \quad \mathrm{FSD}_{2} F_{\mathrm{Y}}$ and $F_{\mathrm{Y}} \quad \mathrm{FSD}_{2} F_{\mathrm{X}}$ are incompatible. If $F_{\mathrm{X}} \quad \mathrm{FSD}_{2} F_{\mathrm{Y}}$, then $F_{\mathrm{Y}} \quad \mathrm{FSD}_{2} F_{\mathrm{X}}$. Thi s means that for every $F_{2} \quad F_{\mathrm{Y}}$ there exist $F_{1} \quad F_{\mathrm{X}}$ and $x_{0}$ such that $F_{1}\left(x_{0}\right)<F_{2}\left(x_{0}\right)$. As a consequence,

$$
\inf _{1} F_{x} F_{1}\left(x_{0}\right)=F-x\left(x_{0}\right)=F-x\left(x_{0}\right) \leq F_{1}\left(x_{0}\right)<F_{2}\left(x_{0}\right),
$$

whence for every $F_{2} \quad F_{x}$ there is some $F_{1} \quad F_{x}$ such that $F_{1}\left(x_{0}\right)<F_{2}\left(x_{0}\right)$, and consequently $F_{2} \leq F_{1}$. This meansthat $F_{Y} \quad F_{F S D_{2}} F_{X}$, and therefore we cannothave $F_{Y} \quad \mathrm{FSD}_{2} F_{\mathrm{X}}$.

Let us show next that $F_{X} \quad \mathrm{FSD}_{5} F_{\mathrm{Y}}$ implies that $F_{\mathrm{X}} \quad \mathrm{FSD}_{5} F_{\mathrm{Y}}$. If $F_{\mathrm{X}} \quad{ }_{\mathrm{FSD}}^{5} 5\left(F_{\mathrm{Y}}\right.$, there is $F_{2} \quad F_{Y}$ such that $F_{1} \leq F_{2}$ for every $F_{1} F_{X}$. Whence, $F_{X} \leq F_{2}$, and there fore $F_{X} \leq F_{2}$, which implies that also $F_{1} \leq F_{2}$ for every $F_{1} \quad F_{X}$. Hence, $F_{X} \quad$ FSD ${ }_{5} F_{Y}$.

Next example shows that the other scenarios are poss ible.

Example 4.41Let us consider setsof cumulative distribution functions $F_{X}, F_{X}$ and $F_{Y}$ that satisfies $E_{x}=F_{-x}$ and $\bar{F}_{x}=F_{x}$, and we are going to see that the scenarios given in Proposition 4.40 are possible.

- It isobvious that we canfind some exampleswhere $F_{X} \quad$ FSD $_{i} F_{Y}$ for $i=2, \ldots, 6$ and $F_{X} \quad{ }_{\text {FSD }}, ~ F_{Y}$. To see it , it is enough to consider $F_{X}=F_{X}$.
- Let us show that $F_{X} \quad \mathrm{FSD}_{3} F_{Y}$ and $F_{Y} \quad \mathrm{FSD}_{3} F_{X}$ can hold simultaneously. Consider the sets:

$$
\begin{aligned}
& F_{X}=\left\{F_{(0.5,0.5),(0,0.5)}, F_{(0.5,0.5),(0.5,1)}\right\}, \\
& F_{X}=\left\{F_{1,0.5}, F_{(0.5,0.5),(0,1)}\right\}, \\
& F_{Y}=\left\{F_{(0.75,0.25),(0.5,1)}, F_{(0.25,0.25,0.5),(0,0.5,1)}\right\} .
\end{aligned}
$$

It holds that $E_{X}=F_{-}$and $\bar{F}_{X}=F_{X}$. Moreoverit holds that $F_{X} \quad{ }_{F S D}^{3}{ } F_{Y}$ since

$$
F_{(0.5,0.5),(0.5,1)} \quad \operatorname{FSD} \quad F_{(0.75,0.25),(0.5,1)}, F_{(0.25,0.25,0.5),(0,0.5,1)},
$$

but for $F_{(0.5,0.5),(0.5,1)}$ thereis nodistributionfunction in $\quad F_{Y}$ smal ler than or equal to $F_{(0.5,0.5),(0.5,1)}$. Similarly, $F_{Y} \quad \mathrm{FSD}_{3} F_{X}$, since

$$
\begin{array}{lll}
F_{(0.75,0.25),(0.5,1)} & \text { FSD } & F_{1,0.5} \text { and } \\
F_{(0.25,0.25,0.5),(0,0.5,1)} & \text { FSD } F_{(0.5,0.5),(0,1)}
\end{array}
$$

However, $F_{1,0.5}, F_{(0.5,0.5),(0,1)} \quad$ FSD $F_{(0.25,0.25,0.5),(0,0.5,1)}$.

- We now provethat the samecan happenwith Definition (FSD6). Let usconsider

$$
F_{Y}=\left\{F_{(0.25,0.75),(0,0.5)}, F_{(0.5,0.25,0.25),(0,0.5,1)}\right\} .
$$

Thenit holds that $F_{X} \quad{ }_{\mathrm{FSD}}^{6}{ } F_{\mathrm{Y}}$ and $F_{\mathrm{Y}} \quad{ }_{\mathrm{FSD}}^{6} \boldsymbol{} F_{\mathrm{X}}$. To check that $F_{\mathrm{X}} \quad{ }_{\mathrm{FSD}}^{6}$ $F_{\mathrm{Y}}$ it suffices to see that:

$$
\begin{aligned}
& F_{1,0.5} \quad \text { FSD } \quad F_{(0.25,0.75),(0,0.5)} \text { and that } \\
& F_{(0.5,0.5),(0,1)} \quad \text { FSD } F_{(0.5,0.25,0.25),(0,0.5,1)},
\end{aligned}
$$

but $F_{(0.25,0.75),(0,0.5)} \quad$ FSD $F_{1,0.5}, F_{(0.5,0.5),(0,1)}$. Tocheck that $F_{Y} \quad{ }_{\text {FSD }}^{6}$ $F_{X}$ it suffices to see that

$$
F_{(0.25,0.75),(0,0.5)}, F_{(0.5,0.25,0.25),(0,0.5,1)} \quad \text { FSD } \quad F_{(0.5,0.5),(0,0.5)}
$$

but $F_{(0.5,0.5),(0,0.5)}$ is not stochastical ly dominated by none of the distribution inF ${ }_{Y}$.

- Next weprove thatitis possiblethat $\quad F_{X} \quad \mathrm{FSD}_{4} F_{\mathrm{Y}}$ and $F_{\mathrm{Y}} \quad \mathrm{FSD}_{4} F_{\mathrm{X}}$. For this aim, we consider:

$$
\begin{aligned}
& F_{X}=\left\{F_{(0.25,0.25,0.5),(0,0.5,1)}, F_{1,0.5}, F_{(0.5,0.5),(0,1)}\right\}, \\
& F_{Y}=\left\{F_{(0.25,0.5,0.25),(0,0.5,1)}, F_{(0.4,0.2,0.4),(0,0.5,1)}\right\} \text { and } \\
& F_{X}=\left\{F_{(0.25,0.75),(0,0.5)}, F_{1,0.5}, F_{(0.5,0.5),(0,1)}\right\} .
\end{aligned}
$$

It holds that $E_{\mathrm{X}}=\mathrm{F}_{-\mathrm{x}}$ and $\bar{F}_{\mathrm{X}}=\bar{F}_{\mathrm{x}}$. Also

$$
F_{(0.25,0.25,0.5),(0,0.5,1)} \quad \text { FSD } \quad F_{(0.25,0.5,0.25),(0,0.5,1)},
$$

but no distribution in $F_{Y}$ isdominatedbya distributionfunction in $\quad F_{X}$. Whence $F_{X} \quad \mathrm{FSD}_{4} F_{Y}$. On theother hand,

$$
\begin{aligned}
& F_{(0.25,0.5,0.25),(0,0.5,1)} \quad \text { FSD } F_{(0.25,0.75),(0,0.5)}, \text { but } \\
& F_{(0.25,0.75),(0,0.5)} \quad \text { FSD } \\
& F_{(0.0 .25,0.5,0.25),(0,0.5,1)} \quad F_{(0.4,0.2,0.4),(0,0.5,1)} \\
& F_{(0.5,0.5),(0,1)} \quad F_{(0.25,0.5,0.25),(0,0.5)}, F_{(0.4,0.2,0.4),(0,0.5,1)}, \\
& F_{(0.25,0.5,0.25),(0,0.5,1),}, F_{(0.4,0.2,0.4),(0,0.5,1)},
\end{aligned}
$$

$$
\operatorname{so} F_{Y} \quad \mathrm{FSD}_{4} F_{X} .
$$

- Let usnowshow that $F_{X}$ may strictlydominate $F_{Y}$ while $F_{X}$ and $F_{Y}$ are indifferent when we consider definition ( $F$ SDi) for $i=3,4,6$. For thisaimconsider $F_{X}, F_{Y}$ associated with the samep-box and such that $F_{X} \quad{ }_{F S D}{ }_{i} F_{Y}$ for $i=3, \ldots, 6$, as in Example 4.38, and let $F_{X}=F_{Y}$.
- To seethat $F_{X} \equiv_{\mathrm{FSD}_{5}} F_{Y}$ and $F_{X} \quad \mathrm{FSD}_{5} F_{Y}$, it is enough to consider thesets $F_{X}=\left\{F_{1,0.5,}, F_{(0.5,0.5),(0,1)}\right\}, F_{Y}=\left\{F_{(0.5,0.5),(0,0.5),}, F_{(0.5,0.5),(0.5,1)}\right\}$ and $F_{X}=F_{Y}$.
- For $F_{X} \quad \mathrm{FSD}_{i} F_{Y}$ while $F_{X}, F_{Y}$ are ( $F$ SDi) incomparable for $i=2,3,4$, take

$$
\begin{aligned}
& F_{X}=\left\{F_{(0.5,0.5),(0.5,1)}, F_{(0.5,0.5),(0,0.5)}\right\}, \\
& F_{Y}=\{F\}, \text { and } \\
& F_{X}=\left\{F_{1,0.5}, F_{(0.5,0.5),(0,1)}\right\}
\end{aligned}
$$

- For $F_{X} \quad{ }_{\mathrm{FSD}}^{6}$ $F_{Y}$ while $F_{X}, F_{Y}$ are (F SD6) incomparable, take

$$
\begin{aligned}
& F_{X}=\left\{F_{\left(\frac{1}{n}, 1-\frac{2}{n}, \frac{1}{n}\right),(0,0.5,1)}, \left.F_{\left(\frac{1}{2}-\frac{1}{n}, \frac{2}{n}, \frac{1}{2}-\frac{1}{n}\right),(0,0.5,1)} \right\rvert\, n \geq 3\right\}, \\
& F_{X}=\left\{F_{1,0.5}, F_{(0.5,0.5),(0,1)}\right\}, \\
& F_{Y}=\left\{F_{\left(0.5-\frac{1}{n, 0.5, n}\right),(0,0.5,1)}, F \mid n \geq 3\right\} .
\end{aligned}
$$

Remark 4.42Notethat, undertheconditionsofthepreviousproposition, ifweassume in addition that $E_{X}, F_{X} F_{X} \cap F_{\mathrm{X}}$ and that $E_{Y}, F_{Y} \quad F_{Y}$, then we deduce from Corollary 4.22 that $F_{\mathrm{X}} \quad \mathrm{FSD}_{\mathrm{i}} F_{\mathrm{Y}} \quad F_{\mathrm{X}} \quad \mathrm{FSD}_{\mathrm{i}} F_{\mathrm{Y}}$, for $i=1, \ldots, 6$.

## $\sigma_{\text {-additive VS }}$ finitely additive distribution functions

Although in this work we are fo cusing on sets of distribution functions associated with $\sigma_{\text {-additive probability measures, it is not uncommon to encounter situations where our }}$ impreciseinformation isgivenbymeans ofsets of finitely additive probabilities: this is the case of the mo dels of coherent lower and upper previsions in [205], and in particular
of almost all mo dels of non-additive measures considered in the literature [126];in this sense the $y$ are easier to handle than sets of $\sigma$-additive probability measures, which do not have an easy characterisation in terms of their lower and upp er envelopes, as showed in [102].

A finitely additive probability measure induces a finitely additive distribu tion function, and conversely, any finitely additive distribution function can be induced bya finitely additive probability measure [133]. As a consequence, given a $p-b$ o $\mathcal{F} F, F$ ), the set of finitely additive probabilities compatible with this p-b ox induces the class of finitely additive dis tribution functions

$$
\begin{equation*}
F:=\{F \text { finitelyadditive distributionfunction } \quad: F \leq F \leq \bar{F}\} \tag{4.4}
\end{equation*}
$$

In particu lar, b oth $E \bar{F}$ belong to $F$. Takingthisintoaccount, ifwedefineconditions of sto chastic dominance analogous to those in Definition 4.1 for sets of finitely additive distribution fu nctions, it is not difficult to es tablish a characterisation similar to Corollary 4.22 .

Lemma 4.43Let $F_{X}, F_{Y}$ betwo sets offinitely additivedistributionfunctions with associated p-boxe\$ $\left.F_{X}, F_{X}\right),\left(F_{Y}, F_{Y}\right)$. Assume $E_{X}, F_{X} F_{X}$ and $E_{Y}, F_{Y} F_{Y}$.

1. $F_{X} \quad{ }_{\mathrm{FSD}}^{1}{ }_{1} F_{Y} \quad \bar{F}_{X} \leq E_{Y}$.
2. $F_{\mathrm{X}} \quad \mathrm{FSD}_{2} F_{\mathrm{Y}} \quad F_{\mathrm{X}} \quad \mathrm{FSD}_{3} F_{\mathrm{Y}} \quad E_{\mathrm{X}} \leq E_{\mathrm{Y}}$.
3. $F_{X} \quad \mathrm{FSD}_{4} F_{Y} \quad E_{X} \leq \bar{F}_{Y}$.
4. $F_{\mathrm{X}} \quad \mathrm{FSD}_{5} F_{\mathrm{Y}} \quad F_{\mathrm{X}} \quad \mathrm{FSD}_{6} F_{\mathrm{Y}} \quad \bar{F}_{\mathrm{X}} \leq \bar{F}_{\mathrm{Y}}$.

Pro of The proof is analogous to the one for Corollary 4.22.
We deduce in particular that under the ab ove conditions definitions ( $F S D_{2}$ ) and $\left(F S D_{3}\right)$ are equivalent, and the same applies to (FSD5) and (FSD6). Note that, although in this result we are using that the lower and upp er distribution functions of the $\mathrm{p}-\mathrm{b}$ ox b elong to the asso ciated set of finitely additive distribution functions, this isnot necessary for the first statement.

In this section, we are going to investigate the relationship b etween the res ults we have obtained for sets of $\sigma_{\text {-additive probability measures and those we would obtain for }}$ finitely additive ones. Let $P_{X}, P_{Y}$ be two sets of $\sigma_{\text {-additive probability measures, and }}$ let $F_{X}, F_{Y}$ be their asso ciated sets of distribution functions. Thesesets ofdistribution functions determine p-b oxes ( $F_{X}, F_{X}$ ), ( $F_{Y}, F_{Y}$ ). Let $F_{X}, F_{Y}$ be two sets of finitely additive distribution functions asso ciated with the p-b oxes $\left(F_{X}, F_{X}\right)$, $\left(F_{Y}, F_{X}\right)$.

When the lower and upp er distribution functions of the asso ciated p-b ox b elong toour set of cumulative distribution functions, we can easily show that the sto chastic
dominance holds under the same conditions re gardle ss of whether we work with finitely or $\sigma$-additive probabil ity measures:

Corollary 4.44Let us consider two sets of cumulative distribution fu nction $\bar{S}_{X}$ and $F_{Y}$ with associated p-boxe $\left.F_{X}, F_{X}\right),\left(F_{Y}, F_{Y}\right)$, and let $F_{X}, F_{Y}$ bethesets offinitelyadditive distribution functions associated with these p-boxes.If $E_{X}, F_{X} \quad F_{X}$ and $E_{Y}, F_{Y} \quad F_{Y}$, it holds that:

$$
F_{X} \quad F_{F S D} F_{Y} \quad F_{X} \quad F_{F S D} F_{Y},
$$

for $i=1, \ldots ., 6$.

Pro of The result is an immediate conse quence of Corollary 4.22 and Lemma 4.43.
However, when the lower and the upp er distribution functions induced by $F_{X}$ and $F_{Y}$ do not belong to these sets, the equivalence no longe $r$ holds. Wecan nonetheless establish the followingresult:

Prop osition 4.4马etus considertwo setsofcumulative distributionfunctions $F_{X}$ and $F_{Y}$, and two sets of finite distribution functions $F_{X}$ and $F_{Y}$ such that $F_{X}, F_{X}$ induce the same $p-\operatorname{box}\left(F_{X}, \bar{F}_{X}\right)$ and $F_{Y}, F_{Y}$ induce thesame $p-b o x\left(F_{Y}, \bar{F}_{Y}\right)$. Then:

1. $F_{\mathrm{X}} \quad \mathrm{FSD}_{1} F_{\mathrm{Y}} \quad F_{\mathrm{X}} \quad{ }_{\mathrm{FSD}}^{1} \boldsymbol{1} F_{\mathrm{Y}}$.
2. The relationship $F_{X} \quad{ }_{F S D}{ }_{i} F_{Y}$ does not have any implicationin general on the relationship between $F_{X}$ and $F_{Y}$ with respectto ( $F S D i$ ),for $i=2,3,4,5,6$.

## Pro of

1. From Prop osition 4.19, we know that $F_{X} \quad{ }_{F S D}{ }_{1} F_{Y} \quad \bar{F}_{X} \leq E_{Y}$. The same pro of allows to show the equivalence with $F_{X} \quad{ }_{F S D}{ }_{1} F_{Y}$.
2. If we apply Prop osition 4.40 with $F_{Y}=F_{Y}$, we see that all we need to prove is that $F_{X} \quad$ FSD $_{i} F_{Y}$ is compatiblewith $F_{Y} \quad{ }_{\text {FSD }}{ }_{i} F_{X}$ for $i=2,5$, with $\quad F_{X} \equiv_{\text {FSD }_{i}} F_{Y}$ for $i=2$ and with $F_{X}, F_{Y}$ incomparable with resp ect to ( $F S D_{5}$ ).

Next we give examples of all the possibilities in the previous result.
Example 4.46Let us show that, given two sets $F_{X}, F_{X}$, with $\left(F_{X}, \bar{F}_{X}\right)=\left(F_{-}, \bar{F}_{X}\right)$, and $F_{Y}, F_{Y}$, with $\left(F_{Y}, \bar{F}_{Y}\right)=\left(F_{-}, \bar{F}_{Y}\right)$, anumber ofpreferencescenarios arepossible (the other possible scenarios have already been established in the proof ).

We begin by showing that wemayhave $F_{X} \quad \mathrm{FSD}_{2} F_{\mathrm{Y}}$ and $F_{\mathrm{Y}} \quad \mathrm{FSD}_{2} F_{\mathrm{X}}$. To see this, consider $F_{X}, F_{Y}$ defined by:

$$
\begin{aligned}
& F_{X}=\left\{F_{(0.5,0.5),(0,0.5)}, F_{(0.5,0.5),(0.5,1)}\right\} \text { and } \\
& F_{Y}=\left\{F_{1,0.5}, F_{(0.5,0.5),(0,1)}\right\} .
\end{aligned}
$$

They are associatedwith the same p-box and satisfy $F_{X} \quad \mathrm{FSD}_{2} F_{Y}$. Wealso consider $F_{X}=F_{Y}, F_{Y}=F_{X}$. Asimilarreasoningshowsthatwemay have $\quad F_{X} \quad{ }_{F S D}^{5}$. $F_{Y}$ while $F_{Y} \quad F_{Y S D} F_{Y}$.

Next, weshow that we may have $F_{X} \quad \mathrm{FSD}_{2} F_{\mathrm{Y}}$ and $F_{\mathrm{X}} \equiv_{\mathrm{FSD}_{2}} F_{\mathrm{Y}}$. Let

$$
\begin{aligned}
& F_{X}=F_{X}=F_{Y}=\left\{F_{(0.5,0.5)(0,0.5)}, F_{(0.5,0.5),(0.5,1)}\right\} \text { and } \\
& F_{Y}=\left\{F_{1,0.5}, F_{(0.5,0.5),(0,1)}\right\} .
\end{aligned}
$$

It can be easily seen that $F_{X} \quad \mathrm{FSD}_{2} F_{Y}$ and that $F_{X}, F_{Y}$ inducethe same p-box. Since $F_{(0.5,0.5),(0.5,1)} F_{X} \cap F_{Y}$ satisfies that $F_{(0.5,0.5),(0.5,1)} \leq F_{(0.5,0.5),(0,0.5)}$, we deduce that $F_{X} \equiv_{\mathrm{FSD}_{2}} F_{\mathrm{Y}}$.

To conclude, wegive anexamplewhere $F_{X} \quad \mathrm{FSD}_{5} F_{Y}$ while $F_{X}, F_{Y}$ are incomparable wit $h$ respect to $\left(F S D_{5}\right)$. Consider the sets cumulative distribution functions

$$
\begin{aligned}
& F_{X}=F_{X}=\left\{\left.F_{\left(\frac{1}{n}, 1-\frac{2}{n}, \frac{1}{n}\right),(0,0.5,1)} \right\rvert\, n \geq 3\right\}, \\
& F_{Y}=\left\{F_{(0.5,0.5),(0,0.5)}, F_{(0.5,0.5),(0.5,1)}\right\} \text { and } \\
& F_{Y}=\left\{F_{1,0.5}, F_{(0.5,0.5),(0,1)}\right\} .
\end{aligned}
$$

Then $F_{X} \quad \mathrm{FSD}_{5} F_{Y}$ because $F_{\left(\frac{1}{\left.n, 1-\frac{2}{n}, \frac{1}{n}\right),(0,0.5,1)}\right.} \leq F_{(0.5,0.5),(0,0.5)}$ for every $n \geq 3$. On the other hand, $F_{X}$ and $F_{Y}$ are incomparable with respectto $\left(F S D_{5}\right)$.

It is known that any finitely additive cumulative distribution function $\quad F$ can be approximated bya $\sigma_{\text {-additive cumulative distribution function } \quad F \text { : its right-continuous }}^{\text {- }}$ approximation, given by

$$
\begin{equation*}
F(x)=\inf _{y x} F(y) \quad x<1, \quad F(1)=1 \tag{4.5}
\end{equation*}
$$

Hence, toany set $F$ of finitely additive cumulative distribution functions we can asso ciate
 and where $F$ is given byEquation (4.5). However, both sets do not mo del the same preferences, as wecan see from the followingresult:

Prop osition 4.47et $F$ be a set of finitely additive cu mulative distribution functions, and let $F$ bethe setof their $\sigma$-additive approximations. Therelationships between $F$ and $F$ are summarised in the fol lowing table:

|  | $F S D_{1}$ | $F S D_{2}$ | $F S D_{3}$ | $F S D_{4}$ | $F S D_{5}$ | $F S D_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F \quad \mathrm{FSD}$; $F$ | - | - | - | - | - | - |
| $F \quad \mathrm{FSD}_{\text {; }} ;$ |  |  |  |  |  |  |
| $F \equiv{ }_{\text {FSD }}$; $F$ | $\bullet$ | - | - | - | - | - |
| $F, F$ incomparable | - | - |  |  | - |  |

Pro of FromEquation (4.5), $F \leq F$ for any $F \quad F$, whence $F^{F} \quad{ }_{\mathrm{FSD}}^{\mathrm{i}}$, $F$, for $i=3,4,6$ We deduce from Prop osition 4.3 that we cannot have $^{F} \quad{ }^{F S D}{ }_{i} F$ for $i=1, \ldots, 6$.

Next example shows that the remaining scenarios are p os sible.

Example 4.48/f $F_{1}$ isa $\sigma$-additive distribution function and we take $F=\left\{F_{1}\right\}$, we obtain $F=F=\left\{F_{1}\right\}$, and $F \equiv_{F_{S D} i} F$ for $i=1, \ldots, 6$.
 whence $F_{1}<F_{1}$ and asa consequence $F \quad$ FSD $i F$ for $i=1, \ldots, 6$.

Final ly, if $F=\left\{I_{[x, 1]}: x \quad(0,1)\right\}$, we obt ain that $F=F$ and $F$ is incomparable with itself with respectto conditions (FSDi) for $i=1,2,5$.

## Convergence of p-b oxes

It is well-known that a distribution functi on can $b$ e seen as the limit of the empirical distribution function that we derive from a sample, as we increase th e sample siz§omething similar app lies when we consider a set of distribution functions: it wasprovenin [136] that any p-box on the unit interval is the limit of a sequence of p-b oxes $\left(F_{n}, F_{n}\right) n$ that are discrete, in the sense that for every $n$ both $E_{n}$ and $F_{n}$ have a finite numb er of discontinuity points.

If for two given p-b oxes $\left(F_{X}, \bar{F}_{X}\right),\left(F_{Y}, \bar{F}_{Y}\right)$ we consider resp ective approximating sequence $\left.F_{\mathrm{X}, \mathrm{n}}, F_{\mathrm{X}, \mathrm{n}}\right) n,\left(F_{\mathrm{Y}, \mathrm{n}}, F_{\mathrm{Y}, \mathrm{n}}\right) n$, in the sense that

$$
\lim _{n} E_{X, n}=F_{-x}, \lim _{n} \bar{F}_{X, n}=\bar{F}_{x}, \lim _{n} E_{Y, n}=F_{-Y}, \lim _{n} \bar{F}_{Y, n}=\bar{F}_{Y},
$$

 ( $F_{Y}, F_{Y}$ ) by comparing for each $n$ the discrete p-b oxes $\left(F_{X, n}, F_{X, n}\right)$ and ( $F_{Y, n}, F_{Y, n}$ ). This is what we set out to do in this section.Weshallbe evenmore general, byconsidering sets of distribution functions whose asso ciated p-boxes converge to some limit.

Prop osition 4.4get $\left.\left(F_{X, n}\right)_{n,( } F_{Y, n}\right)_{n}$ be twosequencesof setsofdistributionfunctions andlet us denotetheir associated sequences of p-boxes bX $F_{X, n}, \bar{F}_{X, n}$ ) and ( $F_{Y, n}, \bar{F}_{Y, n}$ ) for $n \quad \mathrm{~N}$. Let $F_{X}, F_{Y}$ betwosets of cumulativedistribution functions withassociated
$p-\operatorname{boxes}\left(F_{X}, \bar{F}_{X}\right)$ and $\left(F_{Y}, \bar{F}_{Y}\right)$. Letus assume that:

$$
\begin{array}{ll}
\bar{F}_{X, n}-\stackrel{n}{\rightarrow} \bar{F}_{X} & E_{X, n} \xrightarrow{n} E_{X} \\
\bar{F}_{\mathrm{Y}, \mathrm{n}} \xrightarrow{n} \bar{F}_{\mathrm{Y}} & E_{\mathrm{Y}, \mathrm{n}} \xrightarrow{n} E_{\mathrm{Y}}
\end{array}
$$

and that $E_{X}, \bar{F}_{X} \quad F_{x}$ and $E_{Y}, \bar{F}_{Y} \quad F_{Y}$. Then, $F_{X, n} \quad{ }_{F S D}{ }_{i} F_{Y, n} \quad n$, implies that $F_{X} \quad$ FSD $_{i} F_{Y}$, for $i=1, \ldots, 6$.

Pro of The result immediately follows from Propositions 4.3 and 4.19 and Corollary 4.22.

It follows from the pro of ab ove that the assumption that the upp er and lower distribution functions $b$ elong to the corresp onding sets of distribution is not necessary for the implication with resp ect to ( $F S D_{1}$ ); however, it is nece ssary for the other definitions, as we cansee in the next example.

Example 4.50 ${ }^{\text {Let }}$ us consider the fol lowing sets of cumulative distribution functions:

$$
\begin{aligned}
& F_{X}=\left\{F_{1,0.5,} F_{(0.5,0.5),(0,1)}\right\} . \\
& F_{X, n}=\left\{F_{(0.5,0.5),(0,0.5),}, F_{(0.5,0.5),(0.5,1)}\right\} . \\
& F_{Y}=F_{Y, n}=\{F\} .
\end{aligned}
$$

$F_{X}$ and $F_{Y}$ areincomparablewithrespect to $\left(F S_{4}\right)$, and consequently withrespect to (F SDi),for $i=1, \ldots, 6$. However, $F_{X, n} \quad$ FSD ${ }_{i} F_{Y, n}$ for $i=2,3,4$ and $F_{Y, n} \quad$ FSD ${ }_{i} F_{X, n}$ for $i=4,5,6$.

## Sto chastic dominance between possibility measures

So far, we have explored the extension of the notion of sto chastic dominance towards sets of probability measu re s, and we have showed that in some cases it is equivalent to compare the p-b oxes they determine.In this section, we are going to use sto chastic dominance to compare p ossibility measures asso ciated with continuous distribution functions. Recall that, from Definition2.41, a possibility measure $\Pi$ is a supremum preserving function $\Pi: P([0,1]) \rightarrow[0,1$,$] andit ischaracterised byits restrictionto events \pi$, called possibility distribution. Given two possibility measures $\Pi_{1}$ and $\Pi_{2}$, we can consider their asso ciated credal sets, given by Equation(2.19):

$$
\begin{aligned}
& M\left(\Pi_{1}\right):=\left\{P \text { probability }: P(A) \leq \Pi_{1}(A) \quad A\right\}, \text { and } \\
& M\left(\Pi_{2}\right):=\left\{P \text { probability }: P(A) \leq \Pi_{2}(A) \quad A\right\} .
\end{aligned}
$$

From these credal sets, we can also consider their asso ciated sets of distribution functions and their associated p-b oxes, given in Equation (2.20) by

$$
\begin{array}{llll}
\bar{F}_{1}(x)=\sup _{y \leq x} \pi_{1}(y), & E_{1}(x)=1 & -\sup _{y>x} & \pi_{1}(y), \\
\bar{F}_{2}(x)=\sup _{y \leq x} \pi_{2}(y), & E_{2}(x)=1 & -\sup _{y>x} & \pi_{2}(y) .
\end{array}
$$

When considering $p$ ossibility measures asso ciated with continuous distribution functions, $b$ oth the lower and the upper distribution functions belong to the set of distribution functions asso ciated with the possibility measures:

Lemma 4.51Let $\Pi$ be a possibility measure associated wit $h$ a continuous possibility distribution on [0,1]. Then, thereexistprobabilitymeasures $P_{1}, P_{2} M(\Pi)$ whose associated distribution functions are $F_{\mathrm{P}_{1}}=F, F \quad \mathrm{P}_{2}=F-$.

Pro of Letus considerthe probability space $\left([0,1], \beta_{[0,1]}, \lambda_{[0,1]}\right)$, where $\beta_{[0,1]}$ denotes the Borel $\sigma_{\text {-field }}$ and $\lambda_{[0,1]}$ the Leb esgue measureand let $\Gamma$ : $[0,1] \rightarrow P([0,1])$ be the random set given by $\Gamma(\alpha)=\{x: \pi(x) \geq \alpha\}=\pi^{-1}([\alpha, 1])$ Then it was proved in [84] that $\Pi$ is the upp er probability of $\Gamma$.

Let us consider the mappings $U_{1}, U_{2}:[0,1] \rightarrow[0,1]$ given by $U_{1}(\alpha)=\min \Gamma(\alpha)$, $U_{2}(\alpha)=\max \Gamma(\alpha)$. Since weareassumingthat $\pi$ is acontinuous mapping, the set $\pi^{-1}([\alpha, 1])=\Gamma(\alpha)$ hasa maximum and aminimum valuefor every $\alpha[0,1$,$] so U_{1}, U_{2}$ are well-defined. It alsofollows that $U_{1}, U_{2}$ aremeasurable mappings, andas a consequence the probability meas ures they induce ${ }^{P} u_{1}, P U_{2}$ belong to the set $M$ ( $\Pi$ ). Their asso ciated distribution functions are:

$$
\begin{aligned}
F_{U_{1}(x)} & =P \quad U_{1}([0, x])=\lambda[0,1]\left(U_{1}^{-1}([0, x])\right)=\lambda \quad[0,1](\{\alpha: \min \Gamma(\alpha) \leq x\}) \\
& =\lambda[0,1](\{\alpha: \quad y \leq x: \pi(y) \geq \alpha\})=\lambda \quad[0,1](\{\alpha: \Pi[0, x] \geq \alpha\}) \\
& =\Pi([0, x])=F(x),
\end{aligned}
$$

where the fifth equality followsfromthe continuityof $\quad \lambda_{[0,1]}$, and similarly

$$
\begin{aligned}
F_{U_{2}}(x) & =P U_{2}([0, x])=\lambda[0,1]\left(U_{2}^{-1}([0, x])\right)=\lambda{ }_{[0,1]}(\{\alpha: \max \Gamma(\alpha) \leq x\}) \\
& =\lambda[0,1](\{\alpha: \pi(y)<\alpha \quad y>x\})=\lambda[0,1](\{\alpha: \Pi(x, 1] \leq \alpha\}) \\
& =1-\Pi((x, 1])=F(x),
\end{aligned}
$$

again using the continuity of $\lambda_{[0,1]}$. Hence, $\bar{F}, F$ belong to the set of distribution functions induced by $M$ ( $\Pi$ ).

As a consequence, if we consider two possibility measures $\Pi_{1}, \Pi_{2}$ with continuous possibility distributions $\pi_{1}, \pi_{2}$, the lower and upper distribution functions of their resp ective p-b oxes b elong to the sets,$F_{2}$. Hence, we can apply Prop osition 4.21 and conclude that $F_{1} \quad \mathrm{FSD}_{2} F_{2} \quad F_{1} \quad \mathrm{FSD}_{3} F_{2}$ and $F_{1} \quad \mathrm{FSD}_{5} F_{2} \quad F_{1} \quad \mathrm{FSD}_{6} F_{2}$. Moreover, wecan use Corollary 4.22 and conclude that:

$$
\begin{array}{lll}
F_{1} & \mathrm{FSD}_{1} F_{2} & \bar{F}_{1} \leq E_{2} \\
F_{1} & \mathrm{FSD}_{2} F_{2} & E_{1} \leq E_{2} \\
F_{1} & \mathrm{FSD}_{4} F_{2} & E_{1} \leq \bar{F}_{2} \\
F_{1} & \mathrm{FSD}_{5} F_{2} & \bar{F}_{1} \leq \bar{F}_{2}
\end{array}
$$

The following prop osition gives a sufficient condition for each of these relationships.

Prop osition 4.52 et $F_{1}, F_{2}$ bethesets of distribution functions associated with the possibility measures $\Pi_{1}, \Pi_{2}$.

1. $\Pi_{1} \leq N_{2} \quad F_{1} \quad \mathrm{FSD}_{1} F_{2}$.
2. $\Pi_{2} \leq \Pi_{1} \quad F_{1} \quad \mathrm{FSD}_{2} F_{2}, F_{1} \mathrm{FSD}_{3} F_{2}$
3. $M\left(\Pi_{1}\right) \cap M\left(\Pi_{2}\right)=\quad F_{1 \quad \mathrm{FSD}_{4}} F_{2}$.
4. $N_{2} \leq N_{1} \quad F_{1} \quad \mathrm{FSD}_{5} F_{2}, F_{1} \quad \mathrm{FSD}_{6} F_{2}$.

## Pro of

1. Note that $\bar{F}_{1} \leq E_{2}$ if and only if supy $\sin _{x} \pi_{1}(y) \leq 1-\sup _{y>x} \pi_{2}(y)$ for every $x$, or, equivalently, if and onlyif $\Pi_{1}([0, x]) \leq 1-\Pi_{2}((x, 1])=N{ }_{2}([0, x])$ for every $x$. Then, if $\Pi_{1}(A) \leq N_{2}(A)$ for any $A$, in particu lar the inequality holds for the sets $[0, x]$ and therefore $F_{1} \leq E_{2}$.
2. Similarly, $E_{1} \leq E_{2}$ if and only if $1-\sup _{y \leq x} \pi_{1}(y) \leq 1-$ supy $_{\gg x} \pi_{2}(y)$ for every $x$, or, equivalently, if and only if $\Pi_{2}((x, 1]) \leq \Pi_{1}((x, 1])$ for every $x$. Then, if $\Pi_{2}(A) \leq \Pi_{1}(A)$ for any $A$, in particular the inequality holds for the sets $(x, 1]$, and therefore $E_{1} \leq E_{2}$.
3. For the fourth condition of sto chastic dominance, note that $E_{1} \leq \bar{F}_{2}$ ifand only if 1 - supp $>x \pi_{1}(y) \leq$ sup $_{y \leq x} \pi_{2}(y)$ for every $x$, or, equivalently, if and only if $1 \leq \Pi_{1}((x, 1])+\Pi_{2}([0, x])$ for every $x$. As a consequence,ffthere is a probability $P M\left(\Pi_{1}\right) \cap M\left(\Pi_{2}\right)$,

$$
1=P((x, 1])+P([0, x]) \leq \Pi_{1}((x, 1])+\Pi_{2}([0, x])
$$

whence $F_{1} \quad \mathrm{FSD}_{4} F_{2}$.
4. Finally, note that $\bar{F}_{1} \leq \bar{F}_{2}$ if and only if $\sup _{y \leq x} \pi_{1}(y) \leq \sup _{y \leq x} \pi_{2}(y)$ for every $x$, or, equivalently, if and onlyif $\Pi_{1}([0, x]) \leq \Pi_{2}([0, x])$ for every $x$. Hence, if $\Pi_{1} \leq \Pi_{2}$ (or, equivalently, if $N_{2} \leq N_{1}$ ) we have that $F_{1} \quad$ FSD $_{5} F_{2}$ and $F_{1} \quad$ FSD $_{6} F_{2}$.

However, none of the ab ove conditions is necessary, as we show in the next example.

Example 4.53 1. First of al $l$, let usseethat $F_{X} F_{S D}{ }_{1} F_{Y} \quad \Pi_{X} \leq N_{Y}$. For this aim, let $\pi_{X}, \pi_{Y}$ be givenby

$$
\pi_{X}(x)=\begin{array}{ll}
0 & \text { if } x \leq 0.5 \\
2 x-1 & \text { otherwise, }
\end{array} \text { and } \pi_{Y}(x)=\begin{array}{ll}
1 & \text { if } x \leq 0.5 \\
2-2 x & \text { otherwise } .
\end{array}
$$

$\qquad$

Then for everyx $\quad\left[0,1 j t\right.$ holds that $\Pi_{x}([0, x])+\Pi_{Y}((x, 1]) \leq 1$ : this holds trivial ly for $x \leq 0.5$ because in that cas $\bigoplus 1 x([0, x])=0$. For $x>0.5$, we have that

$$
\Pi x([0, x])+\Pi y((x, 1])=2 x-1+2-2 x=1
$$

Hence, $F_{X} \quad{ }_{\mathrm{FSD}}^{1} 1{ }_{1} F_{\mathrm{Y}}$. However:

$$
\Pi x([0.5,1])=1>N Y([0.5,1])=1-\Pi y([0,0.5))=1-1=0,
$$

so the converse of the first implication does not hold.
2. Now, weare goingto see that $\quad F_{X} \quad \mathrm{FSD}_{2, \mathrm{FSD}}^{3} \boldsymbol{} F_{Y} \quad \Pi_{Y} \leq \Pi_{x}$. Consider the possibility distributions $\pi_{\mathrm{X}}, \pi_{\mathrm{Y}}$ given by

$$
\pi_{X}(x)=x, \quad \pi_{Y}(x)=1 \quad x
$$

Then $\Pi_{Y}((x, 1])=1=\Pi \quad x((x, 1])$ for all $x$, whence $F_{X} \quad F_{F_{2}} F_{Y}$. However,

3. Now we are going to seethat $F_{X} \quad \mathrm{FSD}_{4} F_{Y} \quad M\left(\Pi_{\mathrm{X}}\right) \cap M\left(\Pi_{Y}\right)=$. Let $\pi_{X}, \pi_{Y}$ be given by

$$
\pi_{X}(x)=\begin{array}{lll}
4 x-3 & \text { if } x \geq 0.75 \\
0 & \text { otherwise. }
\end{array} \text { and } \pi_{Y}(x)=\begin{array}{ll}
1-4 x & \text { if } x \leq 0.25 \\
0 & \text { otherwise. }
\end{array}
$$

Then for every $x \quad[0,1 j$ tholds that

$$
\Pi x((x, 1])+\Pi y([0, x]) \geq \Pi y([0, x])=1
$$

whence $F_{X} \quad \mathrm{FSD}_{4} F_{Y}$. However, any probability $P$ in $M\left(\Pi_{\mathrm{X}}\right) \cap M\left(\Pi_{\mathrm{Y}}\right)$ should satisfy

$$
P([0,0.5]) \leq \Pi x([0,0.5])=0, P((0.5,1]) \leq \Pi_{Y}((0.5,1])=0
$$

Hence, $M\left(\Pi_{x}\right) \cap M\left(\Pi_{Y}\right)=$
4. Final ly, weare goingtoseethat $\quad F_{X} \quad \mathrm{FSD}_{5, \mathrm{FSD}_{6}} F_{Y} \quad \Pi_{X} \leq \Pi_{Y}$. Consider the possibility distributions $\pi_{X}, \pi_{Y}$ given by

$$
\pi_{X}(x)=1, \quad \pi_{Y}(x)=1-x, \quad x
$$

Then it holds that $\Pi_{X}([0, x]) \leq \Pi_{Y}([0, x]) \quad x$, whence $F_{X} \quad{ }_{F S D}^{5}$ $F_{Y}$. However, $\Pi x([0.5,1])=1>0.5=\Pi_{y}([0.5,1])$ so $\Pi_{x} \Pi_{\mathrm{y}}$.

An op en problem from this section would be to apply the notion of stochastic dominance to compare $p$ ossibil ity measures whose distributions are not necessarily continuous.

## P-b oxes where one of the bounds is trivial

To conclude this section we investigate the case of p-b oxes where one of the bounds is trivial. The se have $b$ een related to $p$ ossibility and maxitive measures in [199], and consequently they are in some sense re lated to the previous paragraph. We shall show that when the lower distribution function is trivial, then the sec ond and third conditions, which are based on the comparison of this bound, always pro duce indifference.

Prop osition 4.54et us consider the p-boxes $F_{X}=\left(F_{-X}, F_{X}\right)_{\text {_ and }} F_{Y}=\left(F_{-}, F_{Y}\right)$. Let us assume that $E_{X}=F_{-Y}=I \quad\{1\}, E_{X}=F \times$ and $E_{Y}=F \quad \mathrm{Y}$. Thenthe possible relationships between $F_{X}$ and $F_{Y}$ are:

|  | $F S D_{1}$ | $F S D_{2}$ | $F S D_{3}$ | $F S D_{4}$ | $F S D_{5}$ | $F S D_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{X}{ }_{F S D_{i}} F_{Y}$ |  |  |  |  | $\bullet$ | $\bullet$ |
| $F_{Y} F_{X S} F_{X}$ |  |  |  |  | $\bullet$ | $\bullet$ |
| $F_{X} \equiv_{F S D_{i},} F_{Y}$ |  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| $F_{X}, F_{Y}$ incomparable | $\bullet$ |  |  |  | $\bullet$ | $\bullet$ |

## Pro of

- Using Prop osition 4.19 we know that $F_{X} \quad{ }_{F S D}{ }_{1} F_{Y} \quad \bar{F}_{X} \leq E_{Y}$. However, this cannot happ en sincE $\mathcal{E}_{Y}=l\{1\}$ and the p-b oxes are not trivial. Consequently, both sets are incomparable with resp ect to $\left(F S D_{1}\right)$.
- Since $E_{X}=F_{Y} F_{X} \cap F_{Y}$, wededucefromCorollary4.22 that $\quad F_{X} \equiv{ }_{F_{\mathrm{FD}}^{2}} F_{Y}$. Applying Prop osition 4.3, we deduce that $F_{X} \equiv_{\mathrm{FSD}_{3}} F_{Y}$ and $F_{X} \equiv_{\mathrm{FSD}_{4}} F_{Y}$.
- On the other hand, it is easy to see that anything can happen for definition( $\left.\neq S D_{5}\right)$ and ( $F S D_{6}$ ), since these dep end on the upp er cumulative distribution functions of the $\mathrm{p}-\mathrm{b}$ oxes.

Similarly, when the upp er distribution function is trivial, thenthe fifth and sixth conditions, which are based on the comparison of these bounds, always pro duce indifference.

Prop osition 4.5\$et usconsider the $p-\operatorname{boxes}^{-} F_{X}=\left(F_{-X}, \bar{F}_{X}\right)$ and $F_{Y}=\left(F_{-Y}, \bar{F}_{Y}\right)$. Let us assume that $F_{X}=F_{Y}=1, E_{X}<F_{x}$ and $E_{Y}<F_{Y}$. Thenthe possible relationships between $F_{X}$ and $F_{Y}$ are:

|  | $F S D_{1}$ | $F S D_{2}$ | $F S D_{3}$ | $F S D_{4}$ | $F S D_{5}$ | $F S D_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{X} F_{F S D} F_{Y}$ |  | $\bullet$ | $\bullet$ |  |  |  |
| $F_{Y} F_{X}$ |  | $\bullet$ | $\bullet$ |  |  |  |
| $F_{X} \equiv_{F S D_{i} D_{Y}} F_{Y}$ |  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| $F_{X}, F_{Y}$ incomparable | $\bullet$ | $\bullet$ | $\bullet$ |  |  |  |

Pro of This proof is analogous to the previous one.
This case is related to the previous paragraph devoted to $p$ ossib ility measures: when the lower distribution function is trivial, the prob ability measures determined by the p-b ox are those dominated by the possibility measure that has $F$ as a p oss ibility distribution; however, a similar result do es not hold for the case of ( $F, 1$ ) in general, because we neecF to $b$ e right-c ontinuous.

## 0-1-valued p-b oxes

Let us now fo cus on0-1-valued p-b oxes, by which we mean p-b oxes where both the lower and up $p$ er cumulative distribution functions $E, F$ are $0-1$-valued. As we shall see, the notions of sto chastic dominance will be related to the orderings between the intervals of the real lin e determined by these $0-1$-valued distribution functions. $0-1$-valued $p$-b oxes have also b een related to p oss ibility measures in [199].

Givena $0-1$-valued distribution function $F$, we denote

$$
x_{F}=\inf \{x \mid F(x)=1\}
$$

Note that this infimum is a minimum when we consider distribution functions asso ciated with $\sigma_{\text {-additive }}$ probability measures, but not necessarily for those asso ciated with finitely additive $p$ robabi lity measures.

Using this notation and Prop osition 4.19, wecancharacterise the comparisonof sets of 0-1 valued distributionfunctions:

Prop osition 4.56et $F_{X}$ and $F_{Y}$ be two sets of cumulative distribut ion functions, with associated $p$-boxe\$ $\left.F_{X}, F_{X}\right),\left(F_{Y}, F_{Y}\right)$.
a) If $E_{X}, \bar{F}_{X}, E_{Y}$ and $\bar{F}_{Y}$ are 0-1-valued functions, then

1. $F_{X} \quad{ }_{F S D}{ }_{1} F_{Y} \quad x_{\bar{F}_{X}} \geq x_{E_{Y}}$.
2. $F_{X} \quad \mathrm{FSD}_{2} F_{Y} \quad x_{E_{X}} \geq x_{E_{Y}}$.
3. $F_{X} \quad{ }_{\mathrm{FSD}}^{3}$ $F_{Y} \quad x_{E_{X}} \geq x_{E_{Y}}$.
4. $F_{X} \quad \mathrm{FSD}_{4} F_{Y} \quad x_{E_{X}} \geq x_{\bar{F}_{Y}}$.
5. $F_{X} \quad{ }_{F S D}^{5} 5 F_{Y} \quad x_{\bar{F}_{X}} \geq x_{\bar{F}_{Y}}$.
6. $F_{X} \quad{ }_{F S D}^{6}{ }_{6} F_{Y} \quad x_{\bar{F}_{X}} \geq x_{\bar{F}_{Y}}$.

Moreover, if $E_{X}, \bar{F}_{X} \quad F_{X}$ and $E_{Y}, \bar{F}_{Y} \quad F_{Y}$, the converses also hold.
b) Ifin particular $\quad F_{X}$ and $F_{Y}$ are two sets of 0-1 cumulative distribution functions it also holds that
2. $x_{E_{X}}>X_{E_{Y}} \quad F_{X} \quad \mathrm{FSD}_{2} F_{Y} \quad F_{\mathrm{X}} \quad \mathrm{FSD}_{2} F_{\mathrm{Y}}$.
3. $x_{E_{X}}>X_{E_{Y}} \quad F_{X} \quad \mathrm{FSD}_{3} F_{\mathrm{Y}} \quad F_{\mathrm{X}} \quad \mathrm{FSD}_{3} F_{\mathrm{Y}}$.
4. $X_{E_{X}}>X \bar{F}_{Y} \quad F_{X} \quad \mathrm{FSD}_{4} F_{Y}$.
5. $x_{\bar{F}_{X}}>X \quad \bar{F}_{Y} \quad F_{X} \quad \mathrm{FSD}_{5} F_{Y} \quad F_{X} \quad \mathrm{FSD}_{5} F_{Y}$.
6. $x_{\bar{F}_{X}}>X \bar{F}_{Y} \quad F_{X} \quad{ }_{\mathrm{FSD}}^{6}{ } F_{Y} \quad F_{X} \quad \mathrm{FSD}_{6} F_{\mathrm{Y}}$.

Pro of In order to prove the first item of this result it is enough to consider Proposition 4.19, andto note that, if $F$ and $G$ are two0-1 finitely additivedistribution functions then $F \leq G$ implies that $x_{F} \geq x_{G}$. In particular, if $G$ is a cumulative distribution function, $F \leq G$ if and only if $x_{F} \geq x_{G}$, from whichwe deduce that $x_{\bar{F}_{X}} \geq x_{E_{Y}} \quad F_{X} \quad{ }_{F S D}{ }_{1} F_{Y}$.

Moreover, if $E_{X}, \bar{F}_{X} \quad F_{X}$ and $E_{Y}, \bar{F}_{Y} \quad F_{Y}$, these arecumulative distribution functions, andwecanuse that $F \leq G$ if andonly if $X_{F} \geq X_{G}$. Applying Corollary 4.22 we deducethat in that case the converse implications also hold.

Let us consider the second part. Onthe one hand, itisobviousthat $\quad F_{X} \quad{ }_{\text {FSD }}^{i}$ i $F_{Y}$ implies $F_{X} \quad{ }_{\text {FSD }}^{i}$ i $F_{Y}$ for $i=2,3,5,6$. Let us check the other implicati on s.
2. If $X_{E_{X}}>E_{Y}, x_{0}$ such that $X_{E_{X}}>X{ }_{0}>E_{Y}$. Then, since $X_{0}>E_{Y}, E_{Y}\left(x_{0}\right)=1$ and therefore $F_{2}\left(x_{0}\right)=1 \quad F_{2} F_{Y}$. Since $X_{E_{X}}>x_{0}, E_{X}\left(x_{0}\right)=0$ and as we are considering only $0^{-1} 1$ valued cumulative distribution functions, there issome $F_{1} F_{x}$ such that $F_{1}\left(x_{0}\right)=0$. Thus,

$$
F_{1} \quad F_{x} \text { such that } F_{1} \quad \text { FSD } F_{2} \quad F_{2} \quad F_{Y} .
$$

 Prop osition 4.19 implies that $E_{X} \quad$ FSD $E_{Y}$, and moreover the preference must be strict (otherwise both sets would be indifferent). Then, $X_{E_{X}}>X_{E_{Y}}$.
3. On the one hand, the direct implication follows from the previous item and Prop osition 4.15. Ontheotherhand, if $\quad F_{X} \quad \mathrm{FSD}_{3} \quad F_{Y}$, by Prop osition 4.19 we know that $E_{X} \quad$ FSD $E_{Y}$, andthe preferenceisinfact strict(otherwisethe sets $\quad F_{X}$ and $F_{Y}$ would be indifferent). Then, following the sam e steps than in the previous item we conclude that $X_{\mathrm{F}_{X}}>X_{\mathrm{E}_{Y}}$.
4. If $X_{E_{X}}>x \bar{F}_{Y}, \quad x_{0}$ such that $X_{E_{X}}>X_{0}>x \bar{F}_{Y}$. Then, $\bar{F}_{Y}\left(x_{0}\right)=1$, and since all the cumulative distribution function are $0-1$ valued, $F_{2} F_{Y}$ such that $F_{2}\left(x_{0}\right)=1$. On the other hand, $E_{X}\left(x_{0}\right)=0$, and since all thecumulative distribution functions are 0-1 valued, thereis some $F_{1} \quad F_{x}$ such that $F_{1\left(x_{0}\right)}=0$. Hence, $F_{1} \leq F_{2}$ and therefore $F_{X} \quad \mathrm{FSD}_{4} F_{\mathrm{Y}}$.
In this case, the preference may be non-strict.Forinstance, if $F_{X}=F_{Y}=\left\{F_{1}, F_{2}\right\}$ such that $X_{F_{1}}=0$ and $X_{F_{2}}=1$, then $X_{\mathrm{F}_{X}}=1>0=X \quad \bar{F}_{Y}$ but $F_{X} \equiv_{\mathrm{FSD}_{4}} F_{Y}$.
5. If $x_{\bar{F}_{X}}>x \bar{F}_{Y}$, there issome $x_{0}$ such that $X_{\bar{F}}>X_{0}>X_{\bar{F}_{Y}}$. Hence, $\bar{F}_{Y}\left(x_{0}\right)=1$. Since all the cumulative distribution functionsare $0^{-1} 1$ valued, $F_{2} F_{\text {y such }}$ that $F_{2}\left(x_{0}\right)=1$. On the otherhand, $F_{X\left(x_{0}\right)}=0$, whence $F_{1}\left(x_{0}\right)=0$ for all $F_{1} \quad F_{x}$. Hence, $F_{1} \quad$ FSD $F_{2}$ for all $F_{1} \quad F_{x}$. We conclude that $F_{X} \quad F_{\text {FSD }}^{5}-F_{Y}$ but $F_{Y} \quad \mathrm{FSD}_{5} F_{\mathrm{X}}$.
Onthe otherhand, when $F_{X} \quad{ }_{\text {FSD }}^{5}$ $F_{Y}$ Prop osition 4.19 implies $\bar{F}_{X} \quad$ FSD ${ }_{F} \bar{F}_{Y}$, and the preference must b e strict b ecause otherwis $E_{X}$ and $F_{Y}$ would b e in different. Then, $X_{F_{X}}^{-}>X \bar{F}_{Y}$.
6. Onthe onehand, if $X_{\bar{F}_{X}}^{-}>X \bar{F}_{Y}$, the result follow s from the previous item and Prop osition 4.15. Ontheotherhand, when $F_{X} \quad$ FSD $_{6} F_{Y}$, Prop osition 4.19 assures that $F_{X} \quad$ FSD $F_{Y}$, and the preference must be strict b ec au se otherwisex and $F_{Y}$ would $b$ e indi fferent. Then, aswe sawintheprevious item, it holds that $X_{F_{X}}^{-}>X \bar{F}_{Y}$.

Nextexample showsthat the converse implicationsmay not hold in general.
Example 4.57We begin byconsideringthe firstitem. Consider the fol lowing sets of distribution functions:

$$
F_{X}=\left\{F_{1,0.5-\frac{1}{n}}: n>3\right\} \text { and } F_{Y}=\left\{F_{1,0.5}\right\}
$$

It holds that $E_{X}=F_{-}=F_{Y}=F_{1,0.5}$, and then $x_{E_{X}}=X \quad E_{Y}=0.5$, but $F_{X} \quad{ }^{\text {FSD }}{ }_{i} F_{Y}$ for $i=2,3,4$.

Similarly, we can consider the fol lowing sets:

$$
F_{X}=\left\{F_{1,0.5+\frac{1}{n}}: n>3 \quad\right\} \text { and } F_{Y}=\left\{F_{1,0.5}\right\}
$$

It holds that $\bar{F}_{X}=\bar{F}_{Y}=F_{1,0.5}$ and consequentlyX $\bar{F}_{X}=x \bar{F}_{Y}=0.5$ but $F_{X} \quad{ }_{F S D}{ }_{i} F_{Y}$ for $i=5,6$.

We move next to the second item.It isenoughto considera0-1 valueddistribution function $F_{1}$ andthe sets $F_{X}=F_{Y}=\left\{F_{1}\right\}$. Bothsets are indifferent for Definition (F SDi) for $i=1, \ldots, 6$, but no strict inequality hold.

Next we are going to compare the preferences between two sets of $0-1$ valued distribution functions and their convex hull. Consider $S_{X}, S_{Y} \quad[0,1$,$] and let us define the sets:$

$$
\left.\begin{array}{ll}
F_{S_{X}}=\left\{\begin{array}{lll}
F & 0-1 \text { c.d.f. } & \mid x_{F} \\
S_{X}
\end{array}\right\} \\
F_{S_{Y}}=\left\{\begin{array}{ll}
F & 0-1 \text { c.d.f. }
\end{array} x_{F}\right. & S_{Y}
\end{array}\right\} .
$$

Since we are working with $\sigma_{\text {-additive cumulative distribution functions, }} \quad F_{S_{X}}$ and $F_{S_{Y}}$ arerelated to thedegenerateprobability measureson elements of $S_{X}, S_{Y}$, resp ectively.

We shall also consider theirconvex hulls $F_{X}:=\operatorname{conv}\left(F_{S_{X}}\right), F_{Y}:=\operatorname{conv}\left(F_{S_{Y}}\right)$. These are the sets of cumulative distribution functions with finite supp orts that are included in $S_{X}$ and $S_{Y}$, resp ectively.

Now, given any set $F$ ofcumulativedistributionfunctionsand itsconvexhull $F_{c}$, the p-b oxes $(F, F)$ and $\left(F_{c}, F_{c}\right)$ asso ciated with $F_{,} F_{c}$, coincide:

$$
\begin{equation*}
F=F-c \quad \bar{F}=F \bar{c} . \tag{4.6}
\end{equation*}
$$

Thus, $F_{X}$ and $F_{S_{X}}$ determine the same p-b ox, and the same applies t $\sigma_{Y}$ and $F_{S_{Y}}$. We begin with an immediate lemma, whose pro of is trivial and therefore omitted.

Lemma 4.58Consider $\underline{S} \quad[0,1]$ and $F_{S}=\left\{F 0-1\right.$ c.d.f. $\left.\mid x_{F} \quad S\right\}$. Let $*=\operatorname{infS}$ and $\bar{x}=$ supS and let E,F be the lower and upper distribu tion functions associated with $F$. Then

$$
F=I \quad[\bar{x}, 1] \text { and } \bar{F}=\quad \begin{array}{ll}
I_{[x, 1]} & \text { if } x \quad S \\
I_{(x, 1]} & \text { otherwise. }
\end{array}
$$

Moreover, if $\bar{x} \quad S$, then $E \quad F$, and if $x \quad S$, then $\bar{F} \quad F$.

Note that when $F=I_{(*, 1] \text {, this is a finite, but not cumulative, distribution function, and }}$ as a con sequence it cannot $b$ elong tōs.

Prop osition 4.59et $S_{X}$ and $S_{Y}$ be twosubsets of $[0,1]$ Then:

1. $F_{X} \quad \mathrm{FSD}_{1} F_{Y} \quad F_{S_{X}} \quad \mathrm{FSD}_{1} F_{S_{Y}} \quad \inf S X \geq \sup S_{Y}$.

If in addition both infS $x$ and $\sup S_{X}$ belong to $S_{X}$, and also $i n f S_{Y}$ and $\operatorname{supS}_{Y}$ belong to $S_{\mathrm{Y}}$, then also:
2. $F_{X} \quad \mathrm{FSD}_{2} F_{Y} \quad F_{S_{X}} \quad \mathrm{FSD}_{2} F_{\mathrm{S}_{\mathrm{Y}}} \quad \max S_{X} \geq \max S_{Y}$. Moreover, $\max S_{X}>\max S_{Y} \quad F S_{X} \quad \mathrm{FSD}_{2} F_{S_{Y}}$ and $\operatorname{maxS} X=\max S_{Y} \quad F_{S_{X}} \equiv_{\mathrm{FSD}_{2}} F_{S_{Y}}$.
3. $F_{X} \quad \mathrm{FSD}_{3} F_{Y} \quad F_{S_{X}} \quad \mathrm{FSD}_{3} F_{S_{Y}} \quad \operatorname{maxSX} \geq \max S_{Y}$. Moreover, $\max S_{X}>\operatorname{maxS} Y_{Y} \quad F_{S_{X}} \quad \mathrm{FSD}_{3} F_{S_{Y}}$ and $\max S_{X}=\operatorname{maxS} Y_{Y} \quad F_{S_{X}} \equiv_{\mathrm{FSD}_{3}} F_{S_{Y}}$.
4. $F_{X} \quad \mathrm{FSD}_{4} F_{Y} \quad F_{S_{X}} \quad \mathrm{FSD}_{4} F_{S_{Y}} \quad \operatorname{maxS} X \geq \min S_{Y}$. Moreover, $\max S X>\min S_{Y} \quad F S_{X} \quad \mathrm{FSD}_{4} F_{S_{Y}}$ and $\max S_{X}=\min S_{Y} \quad F_{S_{X}} \equiv_{\mathrm{FSD}_{4}} F_{\mathrm{S}_{\mathrm{Y}}}$.
5. $F_{X} \quad \mathrm{FSD}_{5} F_{Y} \quad F_{S_{X}} \quad \mathrm{FSD}_{5} F_{S_{Y}} \quad \min S_{X} \geq \min S_{Y}$. Moreover, $\min S_{X}>\min S_{Y} \quad F_{S_{X}} \quad \mathrm{FSD}_{5} F_{S_{Y}}$ and $\min S X=\min S_{Y} \quad F_{S_{X}} \equiv_{\mathrm{FSD}_{5}} F_{S_{Y}}$.
$\qquad$
6. $F_{X} \quad{ }_{\mathrm{FSD}}^{6}{ }^{6} F_{Y} \quad F_{S_{X}} \quad \mathrm{FSD}_{6} F_{S_{Y}} \quad \min S_{X} \geq \min S_{Y}$. Moreover, $\min S_{X}>\min S_{Y} \quad F_{S_{X}} \quad{ }^{F_{S D}{ }_{6}} F_{S_{Y}}$ and $\min S_{X}=\min S_{Y} \quad F_{S_{X}} \equiv_{F_{S D}{ }_{6}} F_{S_{Y}}$.

Pro of The first statement follows from Prop osition 4.19 and Equation (4.6), taking alsointo account that, from Lemma 4.58, $F_{X} \leq E_{Y}$ ifand onlyif $\inf S x \geq \sup S_{Y}$.

To provethe otherstatements, notefirst ofall that if the infima andsuprema of $S_{X}$ and $S_{Y}$ are incl uded in the set, it follows from Lemma 4.58 that $E_{X}, F_{X} \quad F s_{X}$ and $E_{Y}, F_{Y} \quad F_{S_{Y}}$, and applying Corollary 4.22 together with Equation (4.6) we deduce that

$$
F_{X} \quad F_{S D}{ }_{i} F_{Y} \quad F_{S_{X}} \quad F_{S D i} F_{S_{Y}} \quad i=2, \ldots, 6
$$

On the other hand, it follows from Lemma 4.58 thatinthose cases

$$
\left.E_{X}=l_{\left[\max S_{x, 1}\right.}, E_{Y}=l_{\left[\max S_{Y, 1]}\right.}, \bar{F}_{X}=l_{[\min S} x, 1\right], \bar{F}_{Y}=l\left[\min S_{Y, 1]} .\right.
$$

The second and th ird equivalences in each statement follow then from Corollary 4.22.
Asa consequenceof this result, weobtain the following corollary.

Corollary 4.60 If $S_{X}$ and $S_{Y}$ areclosed subsets of $[0$, 1] then:

1. $F_{S_{X}} \quad \mathrm{FSD}_{1} F_{S_{Y}} \quad \min S_{X} \geq \max S_{Y}$.
2. $F_{S_{X}} \quad \mathrm{FSD}_{2} F_{S_{Y}} \quad \max S_{X} \geq \max S_{Y}$.
3. $F_{S_{X}} \quad \mathrm{FSD}_{3} F_{S_{Y}} \quad \max S_{X} \geq \max S_{Y}$.
4. $F_{S_{X}} \quad \mathrm{FSD}_{4} F_{S_{Y}} \quad \max S_{X} \geq \min S_{Y}$.
5. $F_{S_{X}} \quad \mathrm{FSD}_{5} F_{S_{Y}} \quad \min S_{X} \geq \min S_{Y}$.
6. $F_{S_{X}} \quad$ FSD $_{6} F_{S_{X}} \quad \min S_{X} \geq \min S_{Y}$.

Hence, inthat case $\left(F S D_{2}\right)$ is equivalent to $\left(F S D_{3}\right)$ and $\left(F S D_{5}\right)$ is equivalent to $\left(F S D_{6}\right)$.

It is easy to see that Prop osition 4.59 and Corollary 4.60 also hold when we consider x and $F_{Y}$ given by

$$
F_{X}=\left\{F \text { c.d.f. } \mid P_{F}\left(S_{X}\right)=1\right\} \text { and } F_{Y}=\left\{F \text { c.d.f. } \mid P_{F}\left(S_{Y}\right)=1\right\} .
$$

### 4.1.2 Imprecise statisticalpreference

In Section 4.1.1 we considered the particular case in which the binary relation is sto chastic dominance. Now we fo cus on the case where the binary relation is that of $s$ tati stical preference, givenin Definition 2.16. Hence, we shall assume that the utility space $\Omega$ is an ordered set, which ne ed not b e numeric al.

Remark 4.61Analogously to the case of stochastic dominance, we shal I denote bosp $_{i}$, $i=1, . . ., 6$ the conditions obtainedby using statistical preference asthe binary relation in Definition 4.1. We shal I also say thak is (SPi) preferred or $\left(S_{P_{i}}\right)$ statistical ly preferred to $Y$ when $X \quad \mathrm{sp}_{\mathrm{i}} Y$. Furthermore, thenotation $X \quad \mathrm{sp}_{\mathrm{i}, \mathrm{j}} Y$ means that $X \quad \mathrm{sp}_{\mathrm{i}} Y$ and $X \quad{ }_{\mathrm{SP}_{j}} Y$. Notethat inSection4.1.1weusedinterchangeablythenotation $\quad X \quad{ }_{\mathrm{FSD}}^{i} 10$ and $F_{X} \quad$ FSD ${ }_{i} F_{Y}$, since stochastic dominance isbased on the directcomparison of the cumulative distribution functions. Now, we shall only employ the notation $X \quad \mathrm{sp}_{\mathrm{i}} Y$, because statisticalpreferenceis based on the joint distribution of the random variables, and the marginal distributions do not keep all the information about it.

When the binary relation is sto chastic dominance, we saw in Prop osition 4.15 that there are some general relationships between its strict extensions. Inthe case of statistic al preference, the relationships showed in Prop osition 4.15 do not hold in general, as we cansee fromthe following example:

Example 4.62Considerthe universe $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ and let $P$ bethediscrete uniform distribution on $\Omega$. Considerthe setsof random variables $X=\left\{X_{1}, X_{2}, X_{3}\right\}$ and $Y=$ $\left\{X_{2}, X_{4}\right\}$, where the randomvariables are defined by:

|  | $\omega_{1}$ | $\omega_{2}$ | $\omega_{3}$ |
| :--- | :---: | :---: | :---: |
| $X_{1}$ | 0 | 2 | 4 |
| $X_{2}$ | 4 | 0 | 2 |
| $X_{3}$ | 2 | 4 | 0 |
| $X_{4}$ | 3 | 2 | 1 |

For these sets, since $X_{1} \quad$ sp $X_{2}$ and $X_{1} \equiv{ }_{\mathrm{sp}} X_{4}$, then $X \quad{ }_{\mathrm{sp}}^{2}$ $Y$. Moreover, since $X_{2} \quad$ sp $X_{1}$ and $X_{4} \quad$ sp $X_{2}$, we have that $Y \quad \mathrm{sp}_{2} X$, hence $X \quad \mathrm{sp}_{2} Y$.

However, $X \quad \mathrm{sp}_{3} Y:$ since $X_{1} \equiv{ }_{\mathrm{sp}} X_{4}, X_{2} \equiv_{\mathrm{sp}} X_{2}$ and $X_{4} \quad{ }_{\mathrm{sp}} X_{3}$, it holds that $Y \quad \mathrm{sp}_{3} X$. Hence, $X \equiv \mathrm{sp}_{3} Y$.

With asimilar example it could be proved that $X \quad{ }_{\mathrm{sP}_{5}} Y$ and $X \equiv{ }_{\mathrm{sP}_{6}} Y$ are compatible st at ement s.

Note that $\quad \mathrm{SP}$ is reflexive and comple te,but it is ne ither antisymmetric nor transitive. Hence, Prop osition 4.6 do es not apply in this case; indeed, we can use statistical preference to show that Prop osition 4.6 cannot be extended to non transitive relationships.

Example 4.63Considerthe random variables $A, B, C$ from Example 3.83 such that $A \quad \mathrm{sp} B \quad \mathrm{sp} C \quad \mathrm{sp} A$, and let $X=\{A, B\}, Y=\{A, C\}$. Then since $A$ sp $A$ and $B \quad$ sp $C$, we deducethat $X \quad \mathrm{sp}_{3} Y$; since $A \quad \mathrm{sp} B$ and $C \quad \mathrm{sp} A$, we see that $X \quad \mathrm{sp}_{2} Y$; however, $X$ has a maximumelement,because $A$ sp $B$.

On the other hand, since statistical preference complies with Pareto dominance we deduce from Prop osition 4.7 that the different conditions can be reduced to the comparison of the maximum andminimum elements of $X, Y$, when these maximum and minimum elements exist. Finally, we deduce from Prop ositions 4.9 and 4.11 that conditionssp ${ }_{3}, \mathrm{SP}_{4}, \quad \mathrm{SP}_{6}$ induce a reflexive and comple te relationship.

We can also use statistical preference to show that Prop osition 4.11 cannot be extended to the relations ${ }_{1}, 2$ nor 5 : take thesets $X=Y=\{A, B, C\}$, where the variables $A, B, C$ satisfy $A \quad$ sp $B \quad$ sp $C \quad$ sp $A$ as in Example 3.83 ; then the set $X$ has neither a maximum nor a minimu $m$ element, whence it is incomparable with itself with resp ect to $\mathrm{SP}_{2}$ and $\quad \mathrm{SP}_{5}$. Applying Prop osition 4.3, we deduce that $X, Y$ are also incomparable with resp ect to $\mathrm{SP}_{1}$.

Weshowedin Theorem 4.23 thatthe generalisationsof sto chastic dominance towards sets of variables are related to lower and upp er exp ectation llext, weestablisha similar resultforthe generalisationsof statisticalpreference. RecallthatinTheorem 3.40 we proved that:

$$
\begin{equation*}
\sup \operatorname{Me}(X-Y)>0 \quad X \quad \text { sp } Y \quad \sup \operatorname{Me}(X-Y) \geq 0 \tag{4.7}
\end{equation*}
$$

Taking into thisresult, we shall establish a generalisation in terms of lower and upp er medians, andfor thisweshall requireour utility space $\Omega$ to be the reals. Let usconsider two sets ofalternatives $X, Y$ with valueson $\Omega$, and let us intro duce the following notation:

$$
\left.\begin{array}{l}
\operatorname{Me}(X-Y)=\{\operatorname{Me}(X-Y): \quad X \quad X, Y \quad Y
\end{array}\right\} .
$$

where we recall that the median of a random variable with resp ect to a probability measureis given by Equation (3.14).

Prop osition 4.64et $X, Y$ betwosets of random variables defined on a probability space $(\Omega, A, P)$ and taking values on $R$.

1. $\operatorname{Me}(X-Y)>0 \quad X \quad \operatorname{sP}_{1} Y \quad \overline{\operatorname{Me}}(X-Y) \geq 0$.
2. $X \quad X$ such that $\operatorname{Me}(\{X\}-Y)>0 \quad X \quad \operatorname{sp}_{2} Y \quad X \quad X$ such that $\overline{\operatorname{Me}}(\{X\}-$ $Y) \geq 0$.
3. $\overline{\operatorname{Me}}(X-\{Y\})>0 \quad Y \quad Y \quad X \quad \operatorname{sP}_{3} Y \quad \overline{\operatorname{Me}}(X-\{Y\}) \geq 0 \quad Y \quad Y$.
4. $\overline{\operatorname{Me}}(X-Y)>0 \quad X \quad \operatorname{sp}_{4} Y \quad \overline{\operatorname{Me}}(X-Y) \geq 0$.
5. $Y \quad Y$ such that $\operatorname{Me}(X-\{\quad Y\})>0 \quad X \quad \operatorname{sP}_{5} Y \quad Y \quad Y$ such that $\overline{\operatorname{Me}}(X-$ $\{Y\}) \geq 0$.
6. $\operatorname{Me}(\{X\}-Y)>0 \quad X \quad X \quad X \quad \operatorname{sp}_{6} Y \quad \overline{\operatorname{Me}}(\{X\}-Y) \geq 0 \quad X \quad X$.

Pro of Recalloncemore thatfromEquation(4.7) giventworandomvariables $X, Y$,

$$
\overline{\operatorname{Me}}(X-Y)>0 \quad X \quad \text { sp } Y \quad \overline{\operatorname{Me}}(X-Y) \geq 0
$$

SP1: If $\operatorname{Me}(X-Y)>0$, in particu lar $\operatorname{Me}(X-Y)>0$, and th en $\operatorname{Me}(X-Y)>0$ for every $X \quad X$ and $Y \quad Y$. Applying Equation(4.7), $X \quad$ sp $Y$ for every $X \quad X$ and $Y \quad Y$, and consequently $X \quad \mathrm{sp}_{1} Y$. Moreover,

$$
\begin{array}{lllllll}
X & \mathrm{sp}_{1} & Y & X \quad \mathrm{sp} Y \text { for every } X \quad X, Y \quad Y \\
& \sup \operatorname{Me}(X-Y) \geq 0 \text { for every } X \quad X, Y \quad Y \quad \overline{\operatorname{Me}}(X-Y) \geq 0 .
\end{array}
$$

SP2: If there is some $X \quad X$ such that $\operatorname{Me}(\{X\}-Y)>0$, then $\operatorname{Me}(X-Y)>0$ for every $Y \quad Y$. Applying Equation(4.7), wededuce that $X \quad$ sp $Y$ for every $Y \quad Y$, and therefore $X \quad \mathrm{sp}_{2} Y$.

On the other hand,
$X \quad \mathrm{sp}_{2} Y$ there is some $X \quad X$ such that $X \quad$ sp $Y$ for every $Y \quad Y$
sup $\operatorname{Me}(X-Y) \geq 0$ for every $Y \quad Y \quad \operatorname{Me}(\{X\}-Y) \geq 0$.
$\mathbf{S P}_{\mathbf{3}}$ : Consider $Y \quad Y$. If $\operatorname{Me}(X-\{Y\})>0$, then there is some $X \quad X$ such that $\operatorname{Me}(X-Y)>0$. Hence, for every $Y \quad Y$ there is $X \quad X$ such that $X \quad$ sp $Y$, and consequently $X \quad \mathrm{sp}_{3} Y$. Moreover,

$$
\begin{aligned}
& X \quad \mathrm{sp}_{3} Y \quad \text { for every } Y \quad Y \text { there is } X \quad X \text { such that } X \quad \text { sp } Y \\
& \text { for every } Y \quad Y \text { there is } X \quad X \quad \text { such that } \sup \operatorname{Me}(X-Y) \geq 0
\end{aligned}
$$

SP4: If $\operatorname{Me}(X-Y)>0$, there are $X \quad X$ and $Y \quad Y$ such that $\operatorname{Me}(X-Y)>0$, and consequently $X \quad$ sp $Y$. Thus, $X \quad \mathrm{sp}_{4} Y$. On theotherhand,
$X \quad \mathrm{sp}_{4} Y \quad$ there are $X \quad X, Y \quad Y$ such that $X \quad$ sp $Y$ there are $X \quad X, Y \quad Y$ such that sup $\operatorname{Me}(X-Y) \geq 0 \quad \operatorname{Me}(X-Y) \geq 0$.

SP5 : Assume that the re exists some $Y \quad Y$ such that $\operatorname{Me}(X-\{Y\})>0$. Then $\operatorname{Me}(X-Y)>0 \quad$ for every $X \quad X$, andapplying (4.7) weconcludethatthereis $\quad Y \quad Y$
such that $X \quad$ sp $Y$ for every $X \quad X$, and consequently $X \quad \mathrm{sp}_{5} Y$. On theotherhand,

$$
\begin{array}{lllll}
X & \mathrm{sp}_{5} Y & \text { there is } Y & Y & \text { such that } X \quad \text { sp } Y \text { for every } Y \quad Y \\
& & \text { there is } Y & Y & \text { such that } \sup \operatorname{Me}(X-Y) \geq 0 \text { for every } X
\end{array}
$$

SP6: Finally, if $\overline{\operatorname{Me}}(\{X\}-Y)>0$ for every $X \quad X$, then forevery $X \quad X$ there is some $Y \quad Y$ such that $\operatorname{Me}(X-Y)>0$, wh ence (4.7) implies that $X$ sp $Y$. We conclude that $X \quad \mathrm{sP}_{6} Y$. Moreover,

```
\(X \quad{ }_{\text {sp }}^{6} \boldsymbol{} Y \quad\) for every \(X \quad X\) there is \(Y \quad Y\) such that \(X \quad\) sp \(Y\)
    for every \(X \quad X\) there is \(Y \quad Y\) such that \(\sup \operatorname{Me}(X-Y) \geq 0\)
    for every \(X \quad X, \operatorname{Me}(\{X\}-Y) \geq 0\).
```

Taking into account the prop erties of the median, we conclude from this result that statistical preference may be seen as a more robust alternative to sto chastic dominance or exp ected utility in the presence of outliers.

As we made in Section 4.1 .1 with imprecise sto chastic dominance, now weshall investigate some of the prop erties of the imprecise statistical preference.

## Increasing imprecision

We first study the behavior of conditions $\mathrm{SP}_{\mathrm{i}}, i=1, \ldots ., 6$, whenweenlarge thesets $X, Y$ of alternatives we want to compare. This may corresp ond to an increase in the imprecision of our mo dels. Not surpris ingly, if the more restrictive condition $\mathrm{SP}_{1}$ is satisfied on the large sets, then it is automatically s ati sfied on the smaller ones; while for the least restrictive one $\mathrm{SP}_{4}$ we have the opp osite implication.

Prop osition 4.65et $X, Y, X$ and $Y$ befour setsof randomvariablessatisfying $X \quad X$ and $Y \quad Y$. Then

$$
\begin{array}{llllll}
X & \mathrm{sp}_{1} Y & X & \mathrm{sp}_{1} Y \text { and } X & \mathrm{sp}_{4} Y & X
\end{array} \mathrm{sp}_{4} Y .
$$

Pro of Itis clearthat $X \quad \mathrm{sp}_{1} Y \quad X \quad \mathrm{sp}_{1} Y$, since if $X \quad \mathrm{sp} Y$ for every $X \quad X$ and $Y \quad Y$, the inequality holds in particular for every $X \quad X$ and $Y \quad Y$.

On the other hand, $X \quad \mathrm{sP}_{4} Y$ implies the existenc e o $X \quad X \quad$ and $Y \quad Y$ satisfying $X \quad$ sp $Y$, and then the inclusions $X \quad X$ and $Y \quad Y$ imply that $X \quad{ }_{\mathrm{sp}_{4}} Y$.

Similar implications cannot be established for $\mathrm{SP}_{\mathrm{i}}$, for $i=2,3,5,6$, as the following example shows:

Example 4.66Consider theuniverse $\Omega=\{\omega\}$ and let $\delta_{x}$ denotetherandom variable satisfying $\delta_{x}(\omega)=x$.

$$
\begin{aligned}
& \text { Let us prove that } X \quad \mathrm{sp}_{\mathrm{i}} Y \text { and } Y \quad \mathrm{sp}_{\mathrm{i}} X \text { is possiblefor } i=2,3,5,6 \text { : } \\
& \text { - Consider } X=\left\{\delta_{0}\right\}, X=\left\{\delta_{0}, \delta_{2}\right\} \text { and } Y=Y=\left\{\delta_{1}\right\} \text {. It holdsthat } Y \quad \mathrm{sp}_{\mathrm{i}} X \text { for } \\
& \\
& i=1, \ldots, 6 \text { while } X \quad \mathrm{sP}_{\mathrm{i}} Y \text { for } i=2,3, \text { since } \delta_{2} \quad \mathrm{sp} \delta_{1} \text {. } \\
& \text { - Now, given } X=\left\{\delta_{2}\right\}, X=\left\{\delta_{0}, \delta_{2}\right\} \text { and } Y=Y=\left\{\delta_{1}\right\} \text {, itholds that } X \quad \mathrm{sp}_{\mathrm{i}} Y \text { for } \\
& \\
& i=1, \ldots, 6 \text { while } Y \quad \mathrm{sPi}_{\mathrm{i}} X \text { for } i=5,6, \text { since } \delta_{1} \quad \mathrm{sp} \delta_{0} \text {. }
\end{aligned}
$$

Note that these examples also show that the implications of the previous proposition are not equivalences in general.

One particular case when wemay enlargeour sets of alternatives is when we consider convex combinations (note that for this we shall again to assume that the utility space $\Omega$ is equalto $R$ ). This may be of interest for instance if we want to compare random sets by means of their measurable selections, as weshall do in Section 4.2.1, and wemove from a purely atomic toa non-atomic initial probability space. We shall consider two possibilities, for a given set of alternatives $D$ : its convex hull

$$
\operatorname{Conv}(D)=\quad U=\lambda_{i=1}^{n} \lambda_{i} X_{i}: \lambda i>0, X_{i} \quad D \quad i, \lambda_{i=1}^{n} \quad \lambda_{i}=1
$$

and also the se $t$ of alternatives whose utilities $b$ elong to the range of utilities determined by $A$ :

$$
\begin{equation*}
C \operatorname{onv}(D)=\{U \text { r.v. } \mid U(\omega) \quad C \operatorname{conv}(\{U(\omega): U \quad D\})\} ; \tag{4.8}
\end{equation*}
$$

note that $D \quad \operatorname{Conv}(D) \quad C \operatorname{onv}(D)$. Then Prop osition 4.65 allows to immediately deduce the following:

Corollary 4.67 Consider twosets of alternatives $X, Y$.
(a) $\operatorname{Conv}(X) \quad \mathrm{sp}_{1} \operatorname{Conv}\left({ }^{Y}\right) \quad \operatorname{Conv}(X) \quad \mathrm{sP}_{1} \operatorname{Conv}\left({ }^{( }\right) \quad X \quad \mathrm{sp}_{1} Y$.
(b) $\operatorname{Conv}\left({ }^{( }\right) \quad \mathrm{sP}_{4} C \operatorname{onv}\left({ }^{Y}\right) \quad X \quad \mathrm{sP}_{4} Y \quad C \operatorname{lonv}(X) \quad \mathrm{SP}_{4} C \operatorname{lonv}\left({ }^{( }\right)$.

To see that we cannot establish similar implications with resp ect to $\quad \mathrm{sP}_{\mathrm{i}}, i=2,3,5,6$, take the following example:

Example 4.68Consider $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ with $P(\{\omega\})=\frac{1}{3}$ for every $i=1,2,3$. Let us consider the sets ofvariables $X=\left\{X_{1}, X_{2}\right\}$ and $Y=\{Y\}$ given by:

|  | $\omega_{1}$ | $\omega_{2}$ | $\omega_{3}$ |
| :---: | :---: | :---: | :---: |
| $X_{1}$ | 0 | 3 | 0 |
| $X_{2}$ | 3 | 0 | 0 |
| $Y$ | 1 | 1 | 1 |

Then since $Q\left(X_{1}, Y\right)=Q\left(\begin{array}{l}X \\ 2, Y)\end{array}{\underset{3}{1}}_{3}^{1}\right.$, it fol lows that $Y \quad{ }_{\text {spi }} X$ for $i=1, \ldots, 6$. However, $C$ onv $(X) \quad \mathrm{sp}_{\mathrm{i}} \operatorname{Conv}(Y)$, for $i=2,3, C \operatorname{onv}(X) \equiv \mathrm{sp}_{4} C \operatorname{onv}(Y)$ and they are incomparable with respect to $\mathrm{sP}_{1}$.

On the other hand, if we consider instead the sets $X=\left\{X_{1}, X_{2}\right\}$ and $Y=\{Y\}$, where

|  | $\omega_{1}$ | $\omega_{2}$ | $\omega_{3}$ |
| :---: | :---: | :---: | :---: |
| $X_{1}$ | 0 | 3 | 3 |
| $X_{2}$ | 3 | 0 | 3 |
| $Y$ | 2 | 2 | 2 |

it holds that $X \quad \mathrm{sP}_{\mathrm{i}} Y$ for $i=1, \ldots ., 6 . \operatorname{However}, \operatorname{Conv}(Y) \quad \mathrm{sP}_{\mathrm{i}} \operatorname{Conv}(X)$,for $i=5,6$.
Thesamesets ofvariables show that there isno additional implication if weconsider the convex hul Is determined by Equation (4.8) instead.

## Connection with aggregation functions

Since the binary relation asso ciated with statistical preference is complete, we deduce from Prop osition 4.11 that the relations $\mathrm{SP}_{3}, \quad \mathrm{SP}_{4}, \quad \mathrm{SP}_{6}$ alsoinduce a completerelation. Such relations are interesting because they mean that we can always express a preference between two sets of alternatives $X, Y$. One way of deriving acomplete relation when we make multiple comparisons is to establis $h$ a degree of prefe rence for every pairwise comparison, andtoaggregatethesedegreesof preference intoajointone. This is possible by me an $s$ of an aggregation func tion.

Let $X=\left\{X_{1}, \ldots, X_{n}\right\}$ and $Y=\left\{Y_{1}, \ldots, Y_{m}\right\}$ b e two fini te sets of random variables taking valu es on an ordered utility spac®, and let us compute the statistic al preference $Q\left(X_{i}, Y_{j}\right)$ for every pair of vari ab les ${ }_{i} X_{,}, Y_{j} \quad Y$ by means of Equation(2.7). The set of all these preferences is an instance of profile of preference [80], and can be represented by me an s of the matrix


Note that the profil e of preferences of $Y$ over $X, \mathrm{Q}^{Y, X}$, corresp onds to one minus the transp osed matrix of $Q^{X}, Y$, i.e., $1^{-} \mathrm{Q}^{t}, Y$. Weshall showthat conditions $\mathrm{SP}_{1}, \ldots, \mathrm{SP}_{6}$ can $b$ e expressed by means of an aggregation function over the profil e of preference:

Definition $4.69([31,80]$ ) An aggregationfunction is a mapping defined by

$$
G: \quad s_{N}[0,1]^{s} \rightarrow[0,1]
$$

that it componentwise increasing and satisfies the boundary conditions $G(0, \ldots, 0)=0$ and $G(1, \ldots, 1)=1$.

The matrix $Q^{X, Y}$ representing the profile of preferences betweer $X$ and $Y$ can be equivalently represented by meansof a vector on $[0,1]^{m}$ usingthe lexicographicorder:

$$
Z x, Y=\left(Q\left(X_{1}, Y_{1}\right), Q\left(X_{1}, Y_{2}\right), \ldots, Q\left(X_{1}, Y_{m}\right), Q\left(X_{2}, Y_{1}\right), \ldots, Q\left(X_{1}, Y_{m}\right)\right)
$$

Taking this into account, given an aggregation function $G: s^{N}[0,1] \rightarrow[0,1]$ we shall denote by $G\left(Q^{X, Y}\right)$ the image of the vector $Z X, Y$ bymeansofthis aggregationfunction.

Definition 4.70Given twofinite sets of random variables $X$ and $Y, X=\left\{X_{1}, \ldots, X_{n}\right\}$ and $Y=\left\{Y_{1}, \ldots, Y_{m}\right\}$, and anaggregationfunction $G$, we saythat $X$ is G-statistically preferred to $Y$, and denote it by $X \quad \operatorname{spg}_{g} Y$, if

$$
\begin{equation*}
G\left(Q^{X, Y}\right):=G(z X, Y) \geq \frac{1}{2} . \tag{4.10}
\end{equation*}
$$

We refer to [31] for a review of aggregation functions.Some imp ortant properties are the following:

Definition 4.71 ([31])An aggregationfunction $G: s_{N}[0,1] \rightarrow[0,1] s$ cal led:

- Symmetric if itis invariant underpermutations.
- Monotone if $G\left(r_{1}, \ldots, r_{s}\right) \geq G\left(r_{1}, \ldots, r_{s}\right)$ wheneverr $_{i} \geq r_{i}$ for every $i=1, \ldots, s$.
- Idemp otent if $G(r, \ldots, r)=r$.

We shallcall anaggregation function $G: s_{N}[0,1]^{s} \rightarrow[0,1]$ self-dual if

$$
G\left(r_{1}, \ldots, r_{s}\right)=1-G\left(1-r_{1}, \ldots, 1-r_{s}\right)
$$

for every $\left(r_{1}, \ldots, r_{s}\right) \quad[0,1]$ and for every $s \quad \mathrm{~N}$.
All these prop erties are interesting when aggregating the profile of preferences into ajoint one: symmetry impliesthatall the elements in the profile are given the same
weight; idemp otency means that if all the preference degrees equal the final preference degree should also equar; monotonicity assures that if we increase all the values in the profile of preferences, the final valu e should also increasend self-dualitypreserves the idea behind the notion of probabilistic relation in De finition 2.7, since fora self-dual aggregation function $G, G\left(Q^{t}, Y\right)+G\left(Q^{Y, X}\right)=1$. If in addition $G$ is symmetric, we obtain that $G\left(Q^{X, Y}\right)+G\left(Q^{Y, X}\right)=1$.

This last prop erty means that, when $G$ is a self-dual and symmetric aggregation function, Equation (4. 10) is equivalent to $G\left(Q^{X, Y}\right) \geq G\left(Q^{Y, X}\right)$.

The relations $\mathrm{SP}_{\mathrm{i}}$, for $i=1, \ldots, 6$, can all expressed by means of an aggregation function, as we summarise in the following prop osition. Its pro of is immediate and therefore omitted.

Prop osition 4.72et $X=\left\{X_{1}, \ldots, X_{n}\right\}, Y=\left\{Y_{1}, \ldots, Y_{m}\right\}$ be two finite sets of random variables taking values onan ordered space $\Omega$. Thenfor any $i=1, \ldots, 6 \quad X \quad{ }_{s p_{i}} Y$ if and only if it is $G_{i}$-statistical ly preferred to $Y$, where the aggregationfunctions $G_{i}$ are given by:

$$
\begin{aligned}
& G_{1}\left(Q^{X}, Y\right):=\min _{i, j} Q\left(X_{i}, Y_{j}\right) . \\
& G_{2}\left(Q^{X}, Y\right):=\max _{j=1, \ldots, n} \min _{j=1, \ldots, m} Q\left(X_{i}, Y_{j}\right) . \\
& G_{3}\left(Q^{X}, Y\right):=\min _{j=1, \ldots, m} \max _{i=1, \ldots, n} Q\left(X_{i}, Y_{j}\right) . \\
& G_{4}\left(Q^{X}, Y\right):=\max _{i, j} Q\left(X_{i}, Y_{j}\right) . \\
& G_{5}\left(Q^{X}, Y\right):=\max _{j=1, \ldots, m} \quad i=\min _{i, \ldots, n} Q\left(X_{i}, Y_{j}\right) . \\
& G_{6}\left(Q^{X}, Y\right):=\min _{=1, \ldots, n} \quad \max _{j=1, \ldots, m} Q\left(X_{i}, Y_{j}\right) .
\end{aligned}
$$

It is not difficult to see that all the aggregationfunctions $G_{i}$ ab ove are monotonic and comply with the boundary conditions $G_{i}(0, \ldots, 0)=0$ and $G_{i}(1, \ldots, 1)=1$. On the other hand, only $G_{1}$ and $G_{4}$ are symmetric, and none of the $m$ is self-dual.

We can also use these aggregation functions to deduce the relationships between the different conditions established in Prop osition 4.3 in the case of statistical preference.it suffices to takeinto account that $G_{1} \leq G_{2} \leq G_{3} \leq G_{4}$ and $G_{1} \leq G_{5} \leq G_{6} \leq G_{4}$.

Remark 4.73Proposition4.72 helpsto verify eachof theconditions

$$
\mathrm{sP}_{\mathrm{i}}, i=1, \ldots ., 6
$$

by looking at the profileof preferences $\mathrm{Q}^{X, Y}$ given byEquation (4.9):

- X $\quad \mathrm{SP}_{1} Y$ if and only if all elements in the mat rix are greater than or equalto $\frac{1}{2}$.
- $X \quad \mathrm{SP}_{2} \mathrm{Y}$ if and only if there is a row whose elements are al I greater than or equal to $\frac{1}{2}$.
- $X \quad \mathrm{sp}_{3} Y$ if andonlyif ineachcolumnthere isatleastone element greater than or equal to ${ }_{2}^{1}$.
- $X \quad \mathrm{sp}_{4} Y$ if andonly if thereis an elementgreater thanor equal to ${ }_{2}^{1}$.
- $X \quad \mathrm{sP}_{5} Y$ if and only if there is a column whose elements are all greater than or equalto $\frac{1}{2}$.
- $X \quad \mathrm{SP}_{6} Y$ if and only if ineach rowthere is at least one element greaterthan or equalto ${ }_{2}^{1}$.

See the comments after Proposition 4.3 for a related idea.

The ab ove remarks suggest that other preference relationships may be defined by means of other aggregation functions $G$, and this would allow us to take all the elements of the profile of preferences into account, instead of fo cusing on the b est or worst scenarios only. Next, we explore briefly one of these possibilities: the arithmetic mean $G_{\text {mean }}$, given by

$$
\begin{aligned}
G_{\text {mean }}: s_{N}[0,1]^{s} & \rightarrow[0,1] \\
\left(r_{1}, \ldots, r_{s}\right) & \rightarrow \frac{r_{1}++r s}{s} .
\end{aligned}
$$

This is a symmetric, monotone, idemp otent and self-dual aggregation function. For
 The connection between $\mathrm{SP}_{\text {mean }}$ and $\mathrm{SP}_{\mathrm{i}}, i=1, \ldots, 6$ is aconsequence of the following result:

Prop osition 4.74iventwo finitesets ofrandom variables $X$ and $Y, X=\left\{X_{1}, \ldots, X_{n}\right\}$ and $Y=\left\{Y_{1}, \ldots, Y_{m}\right\}$, anda monotone and idempotent aggregationfunction $G$,

$$
X \quad \mathrm{sp}_{1} Y X \quad \mathrm{sp}_{\mathrm{G}} Y X \quad \mathrm{sp}_{4} Y .
$$

Pro of On the one hand, assume that $X \quad \mathrm{sp}_{1} Y$. Then, $Q(X, Y) \geq{ }_{2}^{1}$ for every $X \quad X$ and $Y \quad Y$. Since $G$ is monotone and idemp otent, $G\left(Q^{X, Y}\right) \geq G \underset{2}{\frac{1}{2}}, \ldots, \frac{1}{2}=\frac{1}{2}$, and consequently $X$ spg $Y$.

On the oth er hand, ass ume ex-absurdo thal $G\left(Q^{X}, Y\right) \geq{ }_{2}^{1}$ and that $X \quad \mathrm{sp}_{4} Y$, so that $Q(X, Y)<{ }_{2}^{1}$ for every $X \quad X$ and $Y \quad Y$. Then $G\left(Q^{X, Y)} \leq\right.$ maxi,j $Q\left(X i, Y_{j}\right)<{ }^{2}$ acontradiction. Hence, $X \quad \mathrm{sp}_{4} Y$.

Inparticular, wesee that $\mathrm{SP}_{\text {mean }}$ is an intermediate notion between $\mathrm{SP}_{1}$ and $\mathrm{SP}_{4}$. To see that it is notrelated to $\quad \mathrm{SP}_{\mathrm{i}}$ for $i=2,3,5,6$, consider the following exam ple:

Example 4.75Consider $\Omega=\left\{\omega_{1}, \omega_{2}\right\} \quad(P(\{\omega\})=1 / 2)$, and thesets ofrandomvariables $X=\left\{X_{1}, X_{2}, X_{3}\right\}$ and $Y=\{Y\}$ defined by:

|  | $\omega_{1}$ | $\omega_{2}$ |
| :---: | :---: | :---: |
| $X_{1}$ | 0 | 2 |
| $X_{2}$ | 0 | 0 |
| $X_{3}$ | 2 | 2 |
| $Y$ | 1 | 1 |

Then,

$$
\mathrm{Q}^{X, Y}:=\begin{gathered}
\square \\
\begin{array}{l}
1 \\
2
\end{array} \square \\
\square \\
0
\end{gathered} \square \text { and }_{\mathrm{Q}^{Y, X}:=} \quad \begin{array}{lll}
1 & 1 & 0
\end{array}
$$

whence Remark 4.73 implies that $X \quad \mathrm{sp}_{\mathrm{i}} Y$, for $i=2,3$, and $Y \quad \mathrm{sP}_{\mathrm{i}} X$, for $i=5,6$. On the other hand,

and consequently $X \equiv \mathrm{sp}_{\text {mean }} Y$. Hence, $X \quad \mathrm{sp}_{\text {mean }} Y \quad X \quad \mathrm{sp}_{i} Y$ for $i=5,6$, and $Y \quad \mathrm{sP}_{\text {mean }} X \quad Y \quad \mathrm{sp}_{\mathrm{i}} X$ for $i=2,3$. By comparing $Z_{1}=\left\{X_{2}, Y\right\}$ and $Z_{2}=\left\{X_{3}, Y\right\}$ with $X$, we can see that: $Z_{1} \equiv{ }_{\mathrm{SP}_{5,6}} X \quad$ spmean $Z_{1}$ and $Z_{2} \equiv{ }_{\mathrm{sP}_{2,3}} X \quad{ }_{\mathrm{sP} \text { mean }} Z_{2}$. Then, there are not generalrelationships between $\mathrm{sP}_{\text {mean }}$ and $\mathrm{sp}_{\mathrm{i}}$ for $i=2,3,5,6$.

### 4.2 Modelling imprecision in decision making problems

In this section, we shall show how the ab ove results can be applied in two different scenarios where imprecisi on enters a de cision problethe case where we have imprecise information ab out the utilities of the diffe rent alternatives, and that wherewehave imprecise $b$ eliefs $a b$ out the states of nature.

### 4.2.1 Imprecision on the utilities

Let us start with the first case. Consider a decision problem where we must cho ose between two alternatives $X$ and $Y$ whose resp ective utilities dep end on the value $\xi^{\prime}$ of the states of nature. Assume that we have precise information ab out the probabilities of these state s of nature, so that $X$ and $Y$ can be seen as random variables defined on aprobability space $(\Omega, A, P)$. If we have imprecise knowledge ab out the utilities $X(\omega)$ asso ciated with the different states of nature, one p ossible mo del would be to associate to any $\omega \quad \Omega$ aset $\Gamma(\omega)$ that is su re to include the 'true' utility $X(\omega)$. By doing this, we obtain a multi-valued mapping $\Gamma: \Omega \rightarrow P(\Omega)$, and all we know ab out $X$ is that itis one of the measurable selections off, that were defined in Equation (2.21) by:

$$
\begin{equation*}
S(\Gamma)=\{U: \Omega \rightarrow \Omega \text { r.v. }: U(\omega) \Gamma(\omega) \text { for every } \omega \quad \Omega\} . \tag{4.11}
\end{equation*}
$$

In this pap er, we shall consider only multi-valued mappings satisfying the measurability condition:

$$
\Gamma(A):=\{\omega \quad \Omega: \Gamma(\omega) \cap A=\quad\} A \text { for any } A A .
$$

Aswesaw in Definition2.42,these multi-valued mappings are called random sets.
Our comparison of two alternatives with imp recise utilities results thus in the comparison of two random sets $\Gamma_{1}, \Gamma_{2}$, that we shall make by means of their resp ective sets of measurable selectionsS $\left(\Gamma_{1}\right)$, $S\left(\Gamma_{2}\right)$ determined by Equation (2.21). Forsimplicity, we shall use the notation $\Gamma_{1} \quad \Gamma_{2}$ instead of $S\left(\Gamma_{1}\right) \quad S\left(\Gamma_{2}\right)$ when no confusion is possible.

Let us begin by studying the comparison of random sets bymeans of sto chastic dominance.

Prop osition 4.76et $(\Omega, A, P)$ be a probabilityspace, $(\Omega, P(\Omega))$ a measurable space, with $\Omega$ a finite su bset of R , and $\Gamma_{\mathrm{x}, \Gamma_{\mathrm{y}}}$ betworandom sets. The fol lowing equivalences hold:
(a) $\Gamma_{X} \mathrm{FSD}_{1} \Gamma_{Y} \min \Gamma \mathrm{X} \quad \mathrm{FSD} \max \Gamma_{Y}$.
(b) $\Gamma \mathrm{X} \quad \mathrm{FSD}_{2} \Gamma_{Y} \quad \Gamma \mathrm{X} \quad \mathrm{FSD}_{3} \Gamma \mathrm{Y} \quad \max \Gamma \mathrm{X} \quad \mathrm{FSD} \max \Gamma_{Y}$.
(c) $\Gamma_{X} \mathrm{FSD}_{4} \Gamma_{Y} \quad \max \Gamma \mathrm{X} \quad \mathrm{FSD} \min \Gamma_{Y}$.
(d) $\Gamma \mathrm{X} \quad \mathrm{FSD}_{5} \Gamma_{Y} \quad \Gamma_{X} \mathrm{FSD}_{6} \Gamma_{Y} \quad \min \Gamma \mathrm{X} \quad \mathrm{FSD} \min \Gamma_{Y}$.

Pro of The result follows from Proposition 4.19, taki ng into account that givena random set $\Gamma$ taking values on a finite space, the lower distribution function asso ciated with its set $S(\Gamma)$ of measurable sele ctions is induced byax $\Gamma$ and its upp er distribution function is inducedby $\min \Gamma$.

Moreover, wecancharacterise the conditions $\mathrm{FSD}_{\mathrm{i}}, i=1, \ldots, 6$ even for random sets that take values on infinite spaces. To seehow thiscomes out, we shall consider the upp er and lower probabilities induced by the random set. Recall that, from Equation(2.22), they are defined by:

$$
\begin{aligned}
& P(A)=P\left(\left\{\omega: \Gamma(\omega)^{\cap} A=\quad\right\}\right. \text { and } \\
& P(A)=P(\{\omega: \quad=\Gamma(\omega) \quad A\})
\end{aligned}
$$

for any $A \quad A$. As we have already see n in Equation (2.24), the upp er and lower probabilities of a random set constitute upp er and lower bounds of the probabilities inducedby the measurable selections:

$$
P(A) \leq P_{\cup}(A) \leq P(A) \quad \cup \quad S(\Gamma),
$$

and in particular their asso ciated cumulative distributions provide lower and upp er b ounds of the lower and upp er distribution functions asso ciated withS( $Г$ ).

We have seen in Theorem 2.46 thatwhen $P(A)$ is attainedbythe probabilities induced by the measurable selections for any elemeAt $A$, thesupremumand infimum of the integrals of a gamble with resp ect to the measurable selections can be expressed by means of the Cho quet integral of the gamble with resp ect to $P$ and $P$. This result allows to characterise the imprecise sto chastic dominance $b$ etween random sets by means of the comparison of Cho quet or Aumann integrals. Recall that we have denoted by $U$ the set of increasing and bounded functions $u:[0,1] \rightarrow R$.

Prop osition 4.7\&et $(\Omega, A, P)$ be a probability space. Considerthe measurable space $\left([0,1], \beta_{[0,1]}\right)$ and let $\Gamma_{x}, \Gamma_{Y}: \Omega \rightarrow P([0,1])$ betwo randomsets. If for all $A \quad \beta_{[0,1]}$ it holds that $P_{X}(A)=m \operatorname{ax} P\left(\Gamma_{x}\right)(A)$ and $\left.P_{Y}(A)=\max P_{( } \Gamma_{Y}\right)(A)$, the fol lowing equivalences hold:

1. $\Gamma \mathrm{X}$ FSD ${ }_{1} \Gamma \mathrm{Y}$
(C) $u d P_{X} \geq$ (C) $u d P_{Y}$ for every $u \quad U$.
2. $\Gamma \mathrm{X} \mathrm{FSD}_{2} \Gamma_{\mathrm{Y}}$
(C) $u d P_{X} \geq$ (C) $u d P_{Y}$ for every $u \quad U$.
3. $\Gamma \mathrm{X} \mathrm{FSD}_{3} \Gamma \mathrm{Y}$
(C) $u d P_{X} \geq$ (C) $u d P_{X}$ for every $u U$.
4. $\Gamma \mathrm{X} \mathrm{FSD}_{4} \Gamma \mathrm{Y}$
(C) $u d P_{x} \geq$ (C) $u d P_{x}$ for every $u \quad U$.
5. $\Gamma \mathrm{X} \mathrm{FSD}_{5} \Gamma \mathrm{Y}$
(C) $u d P_{x} \geq$ (C) $u d P_{x}$ for every $u U$.
6. $\Gamma \mathrm{X} \quad \mathrm{FSD}_{6} \Gamma \mathrm{Y}$
(C) $u d P_{X} \geq(C) \quad u d P_{Y}$ for every $u U$.

Pro of Consider $u \quad U$. We deduce from Theorem 2.46 that, under the hyp otheses of the prop osition,
(C) $u d P_{\mathrm{x}}=\sup _{U} u(\Gamma \mathrm{x}) \mathrm{ud} P_{U}=E_{s(\Gamma x)(u) \text { and }}^{-}$
(C) $u d P_{x}=\inf _{S(\Gamma x)} u d P_{u}=E_{-S(\Gamma x)}(u)$
and similarly:

$$
\begin{aligned}
& \text { (C) } u d P_{Y}=\sup _{U\left(\Gamma_{Y}\right)} u d P_{U}=E-S_{\left(\Gamma_{Y}\right)(u) \text { and }} \\
& \text { (C) } u d P_{Y}=u \inf _{S\left(\Gamma_{Y}\right)} u d P_{U}=E-S\left(\Gamma_{Y}\right)(u)
\end{aligned}
$$

The result followsthen applyingTheorem4.23.

Let us discu ss next the comparison of random sets by means of statistical preference. When the utility space $\Omega$ is finite, we obtain a result related to Prop osition 4.76:

Prop osition 4.78et $(\Omega, A, P)$ be a probabilityspace, $(\Omega, P(\Omega))$ a measurable space, with $\Omega$ finite, and $\Gamma_{\chi}, \Gamma_{\mathrm{Y}}$ be tworandom sets. The fol lowing equivalences hold:
(a) $\Gamma \mathrm{X} \quad \mathrm{SP}_{1} \Gamma \mathrm{Y} \quad \min \Gamma \mathrm{X} \quad \mathrm{sP} \max \Gamma \mathrm{Y}$.
(b) $\Gamma \mathrm{X} \quad \mathrm{SP}_{2} \Gamma \mathrm{Y} \quad \Gamma \mathrm{X} \quad \mathrm{SP}_{3} \Gamma \mathrm{Y} \quad \max \Gamma \mathrm{X} \quad \mathrm{sP} \max \Gamma \mathrm{Y}$.
(c) $\Gamma_{\mathrm{X}} \quad \mathrm{SP}_{4} \Gamma_{Y} \quad \max \Gamma \mathrm{X} \quad \mathrm{SP} \min \Gamma_{Y}$.
(d) $\Gamma_{\mathrm{X}} \quad \mathrm{SP}_{5} \Gamma_{Y} \quad \Gamma \mathrm{X} \quad \mathrm{SP}_{6} \Gamma_{Y} \quad \min \Gamma \mathrm{X} \quad \mathrm{sP} \min \Gamma_{Y}$.

Pro of The result follows from Proposition 4.7, takingintoaccountthat statistical preference satisfies the monotonic ity condition of Equation (4.2) and that If is arandom set taking values on a finite space, the $n$ the mappingsmin $\Gamma$, max $\Gamma$ belong to $S(\Gamma)$.

In particular, we deduce that we can fo cus on the minimum and maximum measurable selections in order to characterise these exte nsions of statistical prefere nce.

Corollary 4.79Let $(\Omega, A, P)$ be aprobability space, $\Omega$ a finitespace andconsider two random sets $\Gamma \mathrm{x}, \Gamma \mathrm{y}: \Omega \rightarrow P(\Omega)$. Then forevery $i=1, \ldots, 6$ :

$$
\begin{equation*}
\Gamma x \quad s_{P} \Gamma_{Y}\{\min \Gamma x, \max \Gamma x\} \quad s_{P}\{\min \Gamma y, \max \Gamma y\} . \tag{4.12}
\end{equation*}
$$

These two results are interesting b ecause random sets takin $g$ values on finite spaces are quite common in practice; they have been studied in detail in [59, 127], and oneof their most interesting prop erties is that they constitute equivalent mo dels to $b$ elief and plausibility functions [170].

Note that the equivalence in Equation (4.12) do es not hold for the relation $\mathrm{SP}_{\text {mean }}$ definedin Section 4.1.2.

Example 4.80Consider theprobability space $(\Omega, A, P)$ where $\Omega=\left\{\omega_{1}, \omega_{2}\right\}, A=P(\Omega)$ and $P$ isaprobabilityuniformlydistributed on $\quad \Omega$, and let $\Gamma \times$ betherandomset given by $\Gamma_{x}\left(\omega_{1}\right)=\left\{0,1, \Gamma_{x}\left(\omega_{2}\right)=\left\{0,2,3,4\right.\right.$, and let $\Gamma_{Y}$ be single-valued random set given by $\Gamma_{Y}\left(\omega_{1}\right)=\{1\}=\Gamma Y\left(\omega_{2}\right)$. Then $\min \Gamma \mathrm{x}$ isthe constantrandomvariable on 0 , while $\max \Gamma \mathrm{x}$ is given by $\max \Gamma \mathrm{x}\left(\omega_{1}\right)=1, \max \Gamma \quad \mathrm{x}\left(\omega_{2}\right)=4$. Hence, if wecompare the set $\left\{\min \Gamma x, \max \Gamma_{x}\right\}$ with $\Gamma_{Y}$ by meansof $\mathrm{SP}_{\text {mean }}$ we obtain

$$
Q(\min \Gamma x, \Gamma y)+Q(\max \Gamma x, \Gamma y)=\frac{0+0.75}{2}=0.375
$$

and thus $\Gamma_{Y} \quad S_{\operatorname{mean}}\{\min \Gamma x, \max \Gamma \mathrm{x}\}$. Ontheotherhand, thesetofselectionsof is given by (where aselection $X$ is identified with the vect or $(U(\omega), U(\omega))$ ):

$$
S(\Gamma x)=\{(0,0),(0,2),(0,3),(0,4),(1,0),(1,2),(1,3),(1,4)
$$

from which we deduce that $\Gamma \mathrm{x} \quad \mathrm{SP}_{\text {mean }} \Gamma_{\mathrm{Y}}$.

### 4.2.2 Imprecision on the beliefs

We next consider the case where we want to cho ose $b$ etween two random variablend $Y$ defined from $\Omega$ to $\Omega$, and there is some uncertainty ab out the probability distribution $P$ ofthe differentstates ofnature $\omega \quad \Omega$, that we mo del by means of a set of probability distributions on $\Omega$. Then we may asso ciate with $X$ aset $X$ of random variables, that corresp ond to the transformations of $X$ underanyoftheprobabilitydistributions in $P$; and similarly for $Y$. Weend upthuswith two sets $X, Y$ of random variables, and we should establish metho ds to determine which of these two sets is preferable.

One particular cas e where this situation may arise is in the context of missing data [218]. Wemaydividethevariablesdeterminingthe statesofnatureintwogroups: one for which we have precise information, that we mo del by means of a probability measure $P$ over thedifferent states, and another ab out which are completely ignorant, knowing onlywhichare the different states, but nothing more. Then we may get to the cl assical scenario byfixing the value of the variables in this second group: for each ofthese values the alternatives may be seen as random variables, usingthe probabilitymeasure $P$ to determine the probabilities of the different reward s. Hence, bydoing thiswewould transform the two alternatives $X$ and $Y$ into twosets of alternatives $X, Y$, considering all the possible values of the variables in the second group.

Inthis situation, we may compare the sets $X, Y$ by means of the generalisations of statistical preference or sto chastic dominance we have discussed in Section 4.1; however, we argue that other notion s may make more sense in this context. This is because conditions ${ }_{1}, \ldots, 6$ arebased onconsideringa particularpair $\left(X_{1}, Y_{1}\right)$ in $X \times Y$ and on comparing $X_{1}$ with $Y_{1}$ by means of the binary relation. However, any $X_{1}$ in $X$ corresp onds to a particular choice of aprobability measure $P \quad P$, andsimilarly for any $Y_{1} \quad Y$; and if we use an e pistemic interpre tation ofour uncertainty under which only one $P \quad P$ is the 'true' mo del, it makes nosense to compare $X_{1}$ and $Y_{1}$ based on adifferent distribution. This isparticularlyclearin casewewanttoapply statistical preference, whichisbased oncomparing $P(X>Y)$ with $P(Y>X)$, where $P$ is the initial probability measure.

To make this explicit, in this section we may denote oursets of alternatives by $X:=\{(X, P): P \quad P\}$ and $Y:=\{(Y, P): P P\}$, meaning that our utilitiesare precise (and are determinedby the variables $X$ and $Y$, resp ectively), while our beliefs are imprecise and are mo delled by the set $P$. Toavoid confusions, we will now write
$X \quad{ }^{P} Y$ toexpress that $X$ is preferred to $Y$ whenweconsidertheprobability measure $P$ in the initial probability space. Then we can establish the following definitions:

Definition 4.81Let be a binary relationon random variables. Wesay that:

- $X$ is strongly $P$ preferred to $Y$, anddenote it $X \quad{ }_{\mathrm{s}}^{P} Y$, when $X \quad{ }^{P} Y$ for every $P \quad P$;
- $X$ is weakly $P$ preferred, anddenote it $X \quad{ }_{\mathrm{w}}^{P} Y$, to $Y$ when $X \quad{ }^{P} Y$ for some $P \quad P$.

Obviously, th e strong preference implies the weak one.Tosee thattheyare notequivalent, consider the follow ing simple example:

Example 4.82Let be the binary relation associated with statistical preference and consider the variables $X, Y$ that represent theresults ofthe dices $A$ and $B$, respectively, in Example 3.83. If weconsider the uniform distribution $P_{1}$ in all the dieoutcomes, we obtain $Q(X, Y)={ }_{9}^{5}$, so that $X \quad \begin{gathered}P_{1} \\ S P\end{gathered}$; if we take instead the uniform distribution $P_{2}$ on $\{1,2,3\}$, then $Q(X, Y)=\frac{1}{9}$, and asa consequence $Y \quad{ }_{S P}^{P_{2}} X$. Hence, $X$ is weakly $\left\{P_{1}, P_{2}\right\}$ statistical ly preferred to $Y$, but not strongly so.

With resp ect to the notions established in Section 4.1, it is not difficult to establish the following res ult. Its pro of is immediate, and therefore omitted.

Prop osition 4.83et $X, Y$ be the setsof alternatives consideredabove, and let bea binary relation. Then

$$
\begin{array}{llllllll}
X & { }_{1} Y & X & { }_{\mathrm{s}}^{P} & Y & { }_{\mathrm{w}} & X & X \\
{ }_{4}
\end{array}
$$

To see that the converse implicationsdo not hold, consider the followingexample:

Example 4.84Consider $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$, the set of probabilities

$$
P:=\left\{P: P\left(\omega_{1}\right)>P\left(\omega_{2}\right), P\left(\omega_{2}\right) \quad[0,0 . \lambda]\right.
$$

and the alternatives $X, Y$ given by

|  | $\omega_{1}$ | $\omega_{3}$ | $\omega_{3}$ |
| :---: | :---: | :---: | :---: |
| $X$ | 1 | 0 | 1 |
| $Y$ | 0 | 1 | 1 |

If weconsider thesets $X=\{(X, P): P \quad P\}$ and $Y=\left\{\left(Y_{X}, P_{P}\right): P\right.$. $\left.P\right\}$ andwe compare them by means of stochastic dominance, itis clearthat $X{ }_{\mathrm{s}} \quad Y$; however, itdoes not
hold that $X \quad{ }_{F S D}{ }_{1} Y$ : ifwe consider $P_{1}:=\left(0.3,0.2,0\right.$. 5nd $P_{2}:=(0.1,0,0.9)$ it holds that $\left(Y, P_{2}\right) \quad$ FSD $\left(X, P_{1}\right)$.

Moreover, inthis examplewe also havethat $X$ is strictlyweakly $P$-preferred to $Y$ while $X \equiv{ }_{\text {FSD }_{4}} Y$.

Remark 4.85If the binary relation we start with is complete, sois the weak $P$ preference. In that case, we obtainthat $X{ }_{\mathrm{w}}^{P} Y$ implies that $X \quad{ }_{\mathrm{s}}^{P} Y$, because if $X \quad{ }_{\mathrm{w}}^{P} Y$ we musthave that $(X, P) \quad(Y, P)$ for every $P \quad P$.

Moreover, when $X \equiv{ }_{w}^{P} Y$, we may have strict preference, indifference or incomparability with respect to strong $P$-preference.

In what follows, we study in somedetail the noti on s of we ak and strong preference for particular choicesofthe binary relation . If corresponds to expected utility, s trong preference of $X$ over $Y$ means that $X$ is preferred to $Y$ with resp ect to all the probability measures ${ }^{P}$ in $P$, and then it is related to the idea of maximality [205]; on the other hand, weak preference means that $X$ is preferredto $Y$ (i.e., itis the optimalalternative) with resp ect to some of the elements of ; this idea is c los e to the criterion of -admissibility [107]. See alsoRemark4.13and [43,Section3.2].

When is the binary relation associated with stochastic dominance, we obtain the following.

Prop osition 4.86onsider a set $P$ of probability measureson $\Omega$, and let $X, Y$ be two real-valued random variables on $\Omega$. Let usdefine the sets $F_{X}:=\left\{F_{X}^{P}: P \quad P\right\}$ and $F_{Y}:=\left\{\begin{array}{ll}P & P\end{array} \quad P\right\}$.

1. $\bar{F}_{X} \leq E_{Y} \quad X \quad$ is strongly $P$-preferred to $Y$ with respect to stochasticdominance.
2. $X$ is weakly $P$-preferred to $Y$ with respect to stochasticdominance $E_{X} \leq \bar{F}_{Y}$.

Pro of Assume that $\bar{F}_{X} \leq E_{Y}$. Then, forany $P \quad P$ itholds that:

$$
F_{X}^{P} \leq \bar{F}_{X} \leq E_{Y} \leq F_{Y}^{P}
$$

Then, $X$ is strongly $P^{P}$-preferred to $Y$ with resp ect to first degree sto chastic dominance.
Now, assume that $X$ is weakly $P^{P}$-preferred to ${ }^{Y}$ with resp ect to first degree stochastic dominance. Then the re exists $P \quad P$ such that $F_{X}^{P} \leq F_{Y}^{P}$. Then, in particular $X \quad \mathrm{FSD}_{4} Y$, and by Prop osition 4.19 we deduce that $E_{X} \leq \bar{F}_{Y}$.

Note that this result could also b e derived from Prop ositions 4.19 and 4.83.
Finally, when corresponds to statistical pre ferencewe canapply Remark4.85, because is a complete relation. In addition, we can establish the fol lowing result:

Prop osition 4.87onsider a set $P$ of probability measures, and let $P, \bar{P}$ denote its lowerandupperenvelopes, givenbyEquation (2.18). Let $X, Y$ be two real-valued random variables on $\Omega$, and let $u=I \quad(0,+\infty)^{-} I_{(-\infty, 0)}$.

1. $X$ is strongly $P$ statistical ly preferred to $Y \quad P(u(X-Y)) \geq 0$.
2. $X$ is weakly $P$ statistical ly preferred to $Y \quad \bar{P}(u(X-Y)) \geq 0$. The converseholds if $P=M(P)$.

Pro of The result follows simply by considering that if $X, Y$ are random variableson aprobability space $(\Omega, A, P)$, then, by applying Equation (3.1), $X \quad{ }_{S P}^{P} Y$ if andonly if $P(u(X-Y)) \geq 0$, where wealsouse $P$ to denote the expectation op erator asso ciated with the probability measure $P$.

To see that the converse of the se cond statement holds wheh = $M(P)$, note that the upp er envelope $P$ of $P$ is a coherentlowerprevision. From[205, Section3.3.3], given the bounded random variable $u(X-Y)$ there exists aprobability $P$ in $M(P)$ such that $P(u(X-Y))=P(u(X-Y))$.

The ab ove result can be related to the lower median, as in [46, 148]. For th is, let usdefine thelower median of $X-Y$ bythe credalset $M(P)$ by

$$
M e(X-Y):=\inf \left\{M e_{P}(X-Y): P \quad M(P)\right\}
$$

anditsupper median by

$$
\overline{M e}(X-Y):=\sup \left\{M e_{P}(X-Y): P \quad M(P)\right\}
$$

where Mep $(X-Y)$ denotes the medianof $X-Y$ when $P$ isthe probabilityoftheinitial space.

Then, we deduce from Prop osition 4.64 that

$$
\begin{array}{llll}
M e(X-Y)>0 & X & \begin{array}{l}
M(P) \\
\mathrm{SP}, \mathrm{~s}
\end{array} & Y
\end{array} \overline{M e}(X-Y) \geq 0,
$$

and that
Arelated resultwas established in [46, Prop osition 4], by me ans of a slightly different definition of median. See also Prop osition 4.64,and [83, 164] forapproaches based on the expected utility mo del.

### 4.3 Modelling the jointdistribution in an imprecise framework

Statistical preference is an sto chastic order that depends on the joint distribution of the random variables. This joint distribution function can be determined, according
to Sklar's Theorem (Theorem 2.27), fromthemarginals bymeansof acopula. In the imprecise context we are dealing with in this chapter, there may be imprecision either in the marginal distribution functions or in the copulathat links themarginals. In the former case, we can mo del the lack of information by means of p-b oxes, and in the second one the sh ould consider a set of $p$ oss ible copulasln both situations we shall obtaina set of bivariatedistribution functions.

In order to determine the mathematical mo del for this situation, we shall consider two steps: ontheone hand, we shall study how to mo del sets of bivariate distribution functions, since the lower and upp er bounds are not, in general, distribution functions.o deal with th is problem, we shall extend the notion of p-b ox when considering bivariate distribution functions, and we will investigate under which conditions such bivariate p-b ox can define a coherent lower probability. Then, we shall consider two marginal imprecise distribution functions and we will try to build from them a joint distribution. In this context, the mainresultis toextend Sklar's Theorem toan imprecise framework; we shall also study the application of these results can be applied into bivariate sto chastic orders.

### 4.3.1 Bivariate distributionwith imprecision

## Bivariate p-b oxes

Let $\Omega_{1}, \Omega_{2}$ be two totally ordered spacesAsin[198], weassumewithoutlossofgenerality that b oth have a maximum element, that we denote resp ectively by $x, y$. Note that this is trivial in the case offinitespaces.

We start by intro ducing standardized functions and bivariate distribution functions.

Definition 4.88Consider two ordered spaces $\Omega_{1, \Omega_{2}}$. Amap $F: \Omega_{1} \times \Omega_{2} \rightarrow[0,1]$ is cal led standardized when it is component-wise increasing andF(x,y)=1. It is cal led a distributionfunction when moreover it satisfies the rectangleinequality:

$$
(\mathbf{R I}): \quad F\left(x_{2}, y_{2}\right)+F\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right) \geq 0
$$

for every $x_{1}, x_{2} \quad \Omega_{1}$ and $y_{1}, y_{2} \quad \Omega_{2}$ such that $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$.

Here, and inwhat follows, we shall makean assumptionof logical independence, meaning that we consider all values in the pro duct space $\Omega_{1} \times \Omega_{2}$ to be possible.

The rectangle inequality is equivalent to monotonicity in the univariate case, so in that case a distribution function is simply an increasing and normalized function $F: \quad X \rightarrow[0,1$.$] Moreover, a lower envelop e of univariate distribution functions is again$ a distribution function, by Prop osition 2.34. Unfortunately, the situation isnot as clear
cut in the bivariate case: the envelop es of a set of distribution functions are standardized maps, but not necessarilydistribution functions.

Prop osition 4.8get $\Omega_{1}$ and $\Omega_{2}$ betwoordered spacesandF beafamily of distribution functions $F: \Omega_{1} \times \Omega_{2} \rightarrow[0,1]$ Theirlower and upperenvelopes $F, F: \Omega{ }_{1} \times \Omega_{2} \rightarrow[0,1]$ given by

$$
F(x, y)=\inf _{F} F(x, y) \text { and } \bar{F}(x, y)=\sup _{F} F(x, y)
$$

for every $x \quad \Omega_{1}, y \quad \Omega_{2}$, are standardized maps.
Pro of It suffices totake into account thatthe monotonicity andnormalization properties are preserved by lower and upper envelop es.

To see that these envelop es are not necessarily distribution functions, consider the following example:

Example 4.90Take $\Omega_{1}=\Omega_{2}=\{a, b, c\}$, with $a<b<c \quad$ and let $F_{1}, F_{2}$ be thedistribution functions determined by the fol lowing joint probability measures:

| $X_{1}, Y_{1}$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: |
| $a$ | 0.1 | 0.1 | 0 |
| $b$ | 0.4 | 0.1 | 0 |
| $c$ | 0 | 0 | 0.3 |


| $X_{2}, Y_{2}$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: |
| $a$ | 0.4 | 0 | 0.2 |
| $b$ | 0.1 | 0 | 0 |
| $c$ | 0.1 | 0 | 0.2 |

Then $F_{1}$ and $F_{2}$ are givenby:

|  | $(a, a)$ | $(a, b)$ | $(a, c)$ | $(b, a)$ | $(b, b)$ | $(b, c)$ | $(c, a)$ | $(c, b)$ | $(c, c)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{1}$ | 0.1 | 0.2 | 0.2 | 0.5 | 0.7 | 0.7 | 0.5 | 0.7 | 1 |
| $F_{2}$ | 0.4 | 0.4 | 0.6 | 0.5 | 0.5 | 0.7 | 0.6 | 0.6 | 1 |

and their lower and upper envelopes are given by:

|  | $(a, a)$ | $(a, b)$ | $(a, c)$ | $(b, a)$ | $(b, b)$ | $(b, c)$ | $(c, a)$ | $(c, b)$ | $(c, c)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E$ | 0.1 | 0.2 | 0.2 | 0.5 | 0.5 | 0.7 | 0.5 | 0.6 | 1 |
| $F$ | 0.4 | 0.4 | 0.6 | 0.5 | 0.7 | 0.7 | 0.6 | 0.7 | 1 |

Then

$$
F(b, b)+F(a, a)-F(a, b)-F(b, a)=0.5+0.1-0.2-0.5=-0.1<0
$$

and

$$
\bar{F}(b, c)+\bar{F}(a, b)-\bar{F}(a, c)-\bar{F}(b, b)=0.7+0.4^{-} 0.6^{-} 0.7=-0.2<0 .
$$

As aconsequence, neither $E$ nor $\bar{F}$ are distributionfunctions.

Taking this result into account, we give the following de finition:

Definition 4.91 Consider twoordered spaces $\Omega_{1}, \Omega_{2}$, and let $F, \bar{F}: \Omega_{1} \times \Omega_{2} \rightarrow[0,1]$ be two standardized fu nctions satisfying $F(x, y) \leq F(x, y)$ for every $x \quad \Omega_{1}, y \quad \Omega_{2}$. Then the pair $(F, F)$ is cal led a bivariate p-box.

Prop osition 4.89 shows that bivariate p-boxes can be obtained in particular by means ofa set of distribution functions, taking lower and upp er envelop estowever, notallbivariate p -b oxes are of this typeif we consider forinstance a map $F=F$ that isstandardized but not adistribution function, then there is no bivariate distribution function between $E$ and $F$, and as a consequence these cannot be obtained as envelop es of a set of distribution functions. Ournextparagraph will deep en into this matter, by meansof the notion of coherence oflower probabilities. In particular, we shall investi gate how Theorem 2.35 could b e extended to bivariate $\mathrm{p}-\mathrm{b}$ oxes.

## Lower probabilities and p-b oxes

In order to define a lower probability from a bivariate p-b ox, let us now intro ducea notation similar totheoneof Section2.2.1.

Consider two ordered space $\Omega_{1}, \Omega_{2}$, and let $(F, \bar{F})$ be a bivariate p-b ox on $\Omega_{1} \times \Omega_{2}$. Denote

$$
A_{(x, y)}:=\left\{(x, y) \quad \Omega_{1} \times \Omega_{2}: x \leq x, y \leq y\right\}
$$

and let us define

$$
K_{1}:=\left\{\begin{array}{llll}
A_{(x, y)}: x & \Omega_{1}, y & \Omega_{2}
\end{array}\right\} \text { and } K_{2}:=\left\{\begin{array}{lll}
A_{(x, y)}^{c}: x & \Omega_{1}, y & \Omega_{2}
\end{array}\right\} .
$$

The maps $E$ and $\bar{F}$ can b e used to de fine the lower probabilities $P_{E}: K_{1} \rightarrow \mathrm{R}$ and $\mathcal{E}_{\bar{F}}: K_{2} \rightarrow \mathrm{R}$ by:

$$
\begin{equation*}
P_{E}\left(A_{(x, y)}\right)=F(x, y) \quad \text { and } \quad P_{\bar{F}}\left(A_{(x, y)}^{c}\right)=1-\bar{F}(x, y) . \tag{4.13}
\end{equation*}
$$

Define now $K:=K_{1} \quad K_{2}$; note that $A_{(x, y)}=\Omega{ }_{1} \times \Omega_{2}$, where $x, y$ are the maximum of $\Omega_{1}$ and $\Omega_{2}$, resp ectively.Thus, both $\Omega_{1} \times \Omega_{2}$ and belong to $K$.

Definition 4.92The lowerprobabilityinduced by $(F, \bar{F})$ is the $\operatorname{map} P_{(F, F)}: K \rightarrow[0,1]$ given by:

$$
\begin{equation*}
P_{(F, \bar{F})}\left(A_{(x, y)}\right)=F(x, y), \quad P_{(F, \bar{F})}\left(A_{(x, y)}^{c}\right)=1-\bar{F}(x, y) \tag{4.14}
\end{equation*}
$$

for every $x \quad \Omega_{1}, y \quad \Omega_{2}$.
Note that $P_{(F, \bar{F})}\left(\Omega_{1} \times \Omega_{2}\right)=1$ and $P_{(F, \bar{F})}()=0$ because $F$ and $\bar{F}$ are standardized.
In this section, we are going to study which prop erties of the lower probability $P_{(F, \bar{E})}$ can be characterised in te rm s of lower and upp er distribution functions $E$ and $F$.

Avoiding sure lossWe begin with the property of avoiding sure loss. Recallthat, as we saw in Definition 2.29, a lower prob ab ility $P$ with domain K $P\left(\Omega_{1} \times \Omega_{2}\right)$ avoids sure loss if and only if there is a finitely additive probability $\quad P: P\left(\Omega_{1} \times \Omega_{2}\right) \rightarrow[0,1]$ that dominates $P$ onits domain. This is a consequence of [205, Corollary3.2.3 and Theorem 3.3.3].
 meansofEquation (4.14) avoidssurelossifand onlyifthereisa distributionfunction $F: \Omega{ }_{1} \times \Omega_{2} \rightarrow[0,1]$ satisfying $E \leq F \leq F$.

Pro of We begin withthe direct implication. Assume that $P_{(F, \bar{F})}$ avoids sureloss. Then, there exists afinitelyadditive probability $\quad P: P\left(\Omega_{1} \times \Omega_{2}\right) \rightarrow[0,1]$ such that $P(A) \geq P_{(E, \bar{F})}(A)$ for every $A K$. Let usdefinethe map $F_{P}: \Omega_{1} \times \Omega_{2} \rightarrow[0,1]$ by $F_{P}(x, y)=P\left(\begin{array}{ll}A & (x, y)\end{array}\right)$. Then $F_{P}$ is a distribution function that is b ou nded b etween $E$ and $F$ :

- Consider $x_{1}, x_{2} \quad \Omega_{1}$ and $y_{1}, y_{2} \quad \Omega_{2}$ such that $x_{1} \leq x_{2}, y_{1} \leq y_{2}$. Then:

$$
F_{P\left(x_{1}, y_{1}\right)}=P\left(A_{\left(x_{1}, y_{1}\right)}\right) \leq P\left(A_{\left(x_{2}, y_{2}\right)}\right)=F_{P\left(x_{2}, y_{2}\right)}
$$

because $P$ is monotone.

- $F_{P}(x, y)=P\left(A_{(x, y)}\right)=P\left(\Omega_{1} \times \Omega_{2}\right)=1$.
- Consider $x_{1}, x_{2} \quad \Omega_{1}$ and $y_{1}, y_{2} \quad \Omega_{2}$ such that $x_{1} \leq x_{2}, y_{1} \leq y_{2}$. Then itholds that

$$
\begin{aligned}
& F_{\left.P\left(x_{1}, y_{1}\right)+F P\left(x_{2}, y_{2}\right)-F_{P\left(x_{1}, y_{2}\right)}-F_{P\left(x_{2}, y_{1}\right)}\right)\left(A, A_{1}\right)} \\
& =P\left(A_{\left(x_{1}, y_{1}\right)}\right)+P\left(A_{\left(x_{2}, y_{2}\right)}\right)-P\left(A_{\left(x_{1}, y_{2}\right)}\right)-P\left(A_{\left(x_{2}, y_{1}\right)}\right) \\
& =P\left(\left\{(x, y) \quad \Omega_{1} \times \Omega_{2}: x_{1}<x \leq x_{2}, y_{1}<y \leq y_{2}\right\}\right) \geq 0 \text {. }
\end{aligned}
$$

- For every $x$
$\Omega_{1}, y \quad \Omega_{2}$,

$$
F_{P}(x, y)=P\left(A_{(x, y)}\right) \geq P_{(F, \bar{F})}\left(A_{(x, y)}\right)=F(x, y)
$$

and on the other hand,

$$
\begin{aligned}
F_{P}(x, y) & =P(A(x, y))=1-P\left(A_{(x, y)}^{c}\right) \\
& \leq 1-P_{(F, F)}\left(A_{(x, y)}^{c}\right)=1^{-}(1-\bar{F}(x, y))=\bar{F}(x, y)
\end{aligned}
$$

Converse ly, assume tha $: \Omega{ }_{1} \times \Omega_{2} \rightarrow[0,1]$ s a distribution function that lies between $E$ and $F$, and let us define the fin itely additive probability $P_{F}$ onthe fieldgenerated by $K$ bymeans of

$$
\begin{align*}
& P_{F}\left(\left\{(x, y) \quad \Omega_{1} \times \Omega_{2}: x_{1}<x \leq x_{2}, y_{1}<y \leq y_{2}\right\}\right) \\
&=F P\left(x_{1}, y_{1}\right)+F P\left(x_{2}, y_{2}\right)-F_{P\left(x_{1}, y_{2}\right)}-F_{P}\left(x_{2}, y_{1}\right) \geq 0 . \tag{4.15}
\end{align*}
$$

Then it followsthat $\quad P_{F}\left(A_{(x, y)}\right)=F(x, y) \geq F(x, y)=P_{-\left(F_{F}\right)}\left(A_{(x, y)}\right)$ and moreover $P_{F}\left(A_{(x, y)}^{c}\right)=1-F(x, y) \geq 1-\bar{F}(x, y)=P_{(E, \bar{F})}\left(A_{(x, y)}^{c}\right)$.

Since any finitely additive probability on afield of events has afinitely additive extension to $P\left(\Omega_{1} \times \Omega_{2}\right)$, we deduce that there is a fin itely additive probability that dominates $P_{(F, F)}$, and as a consequence th is lower probability avoids sure loss.

This result allows us to fo cus on the lower and upp er distributions of the p-b ox, that shall simplify search for for necessary and sufficient conditions.Weshall say that ( $F, F$ ) avoids sure loss when thelowerprobability $R_{(E, \bar{F})}$ itinduces bymeansofEquation(4.14) do es.Ournext resultgives a necessarycondition:

Prop osition $4.94(F, \bar{F})$ avoidssure loss, thenfor every $x_{1}, x_{2} \quad \Omega_{1}$ and $y_{1}, y_{2} \quad \Omega_{2}$ such that $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$ it holdsthat

$$
(\mathbf{I}-\mathbf{R I O}): \bar{F}\left(x_{2}, y_{2}\right)+\bar{F}\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right) \geq 0
$$

Pro of Assume that $(F, \bar{F})$ avoids sure lossBy Prop osition 4.93, there is a distribution function $F$ bounded by EF. Given $x_{1}, x_{2} \quad \Omega_{1}$ and $y_{1}, y_{2} \quad \Omega_{2}$ such that $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$, it foll ows from (RI) that

$$
\begin{aligned}
0 & \leq F\left(x_{2}, y_{2}\right)+F\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right) \\
& \leq \bar{F}\left(x_{2}, y_{2}\right)+F\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right),
\end{aligned}
$$

where the second inequality foll ows from $E \leq F \leq \bar{F}$.
Let us show that thi s necessary condition is not sufficient in general:
Example 4.95Consider $\Omega_{1}=\Omega_{2}=\{a, b, c\}$, with $a<b<c \quad$ and let $E$ and $\bar{F}$ be given by:

|  | $(a, a)$ | $(a, b)$ | $(a, c)$ | $(b, a)$ | $(b, b)$ | $(b, c)$ | $(c, a)$ | $(c, b)$ | $(c, c)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E$ | 0 | 0.65 | 0.7 | 0.2 | 0.8 | 0.8 | 0.35 | 0.9 | 1 |
| $F$ | 0.1 | 0.7 | 0.7 | 0.25 | 0.8 | 0.8 | 0.4 | 0.9 | 1 |

It is immediate to check that bot $h$ maps are standardized and that together they satisfy (I-RIO). However, ( $F, F$ ) does not avoid sure loss: fromProposition4.93, itsufficesto show that there isno distribution function $F$ bounded byF $(x, y)$ and $F(x, y)$ for every $x, y\{\underline{a}, b, c\}$. To see that this is indeed the case, note thatany distribution function $F \quad(F, F)$ should satisfy

$$
F(a, c)=0.7, F(b, b)=0.8, F(b, c)=0.8, F(c, b)=0.9 \text { and } F(c, c)=1
$$

$B y(R I)$ to $\left(x_{1}, y_{1}\right)=(a, b)$ and $\left(x_{2}, y_{2}\right)=(b, c)$, we deducethat $F(a, b)=0.7$, and then applying againthe rectangle inequality we deducethat

$$
F(b, b)+F(a, a)^{-} F(a, b)^{-} F(b, a)=0.8+F(a, a) 0.7^{-} F(b, a) \geq 0
$$

if and only if $F(a, a)+0.1 \geq F(b, a)$ whence $F(a, a)=0.1$ and $F(b, a)=0.2$. If wenow apply $(R I)$ to $\left(x_{1}, y_{1}\right)=(b, a)$ and $\left(x_{2}, y_{2}\right)=(c, b)$, we deduce that

$$
F(c, b)+F(b, a) F(b, b)^{-} F(c, a)=0.9+0.2^{-} 0.8^{-} F(c, a) \geq 0
$$

if and only if $F(c, a) \leq 0.3$ Butonthe other handwe musthave $F(c, a) \geq F(c, a)=0.35$ acontradiction. Hence, $(F, F)$ does notavoid sure loss.

However, (I-RIO) is a neces sary and sufficient condition when b oth $\Omega_{1, \Omega_{2}}$ are binary spaces.

Prop osition 4.96Assumethat both $\Omega_{1}=\left\{x_{1}, x_{2}\right\}$ and $\Omega_{2}=\left\{y_{1}, y_{2}\right\}$ are binary spaces such that $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$, and let $(F, F)$ be a bivariate $p$-box on $\Omega_{1} \times \Omega_{2}$. Then the fol lowing are equivalent:

1. $(F, \bar{F})$ avoids sure loss.
2. $\bar{F}\left(x_{2}, y_{2}\right)+\bar{F}\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right) \geq 0$ for all $x_{1}, x_{2} \quad \Omega_{1}, y_{1}, y_{2} \quad \Omega_{2}$.
3. $F\left(x_{2}, y_{2}\right)+\bar{F}\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right) \geq 0$ for all $x_{1}, x_{2} \quad \Omega_{1}, y_{1}, y_{2} \quad \Omega_{2}$.

Pro of The first statement implies the second from Proposition 4.94. To see thatthe second implies thethird note that, since $E$ and $F$ are standardizedmaps, it holds that $F\left(x_{2}, y_{2}\right)=F\left(x_{2}, y_{2}\right)=1$.

Tosee thatthe third statement impliesthe first, letus consider $F: \Omega{ }_{1} \times \Omega_{2} \rightarrow[0,1]$ given by

$$
\begin{aligned}
& F\left(x_{1}, y_{1}\right)=\bar{F}\left(x_{1}, y_{1}\right) \\
& F\left(x_{1}, y_{2}\right)=\max \left\{\bar{F}\left(x_{1}, y_{1}\right), F\left(x_{1}, y_{2}\right)\right\} \\
& F\left(x_{2}, y_{1}\right)=\max \left\{\bar{F}\left(x_{1}, y_{1}\right), F\left(x_{2}, y_{1}\right)\right\} \\
& F\left(x_{2}, y_{2}\right)=1 .
\end{aligned}
$$

By construction, $F$ is a standardized map and it is bounded by $E F \bar{F}$. To se e that it indeed is a distribution func tion, notethat if either $F\left(x_{1}, y_{2}\right)$ or_ $F\left(x_{2}, y_{1}\right)$ is equal to $F\left(x_{1}, y_{1}\right)=F\left(x_{1}, y_{1}\right)$, then it follows from the monotonicity of $E, F$ that

$$
F\left(x_{2}, y_{2}\right)+F\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right) \geq 0 ;
$$

and if $F\left(x_{1}, y_{2}\right)=F\left(x_{1}, y_{2}\right)$ and $F\left(x_{2}, y_{1}\right)=F\left(x_{2}, y_{1}\right)$, then

$$
\begin{aligned}
& F\left(x_{2}, y_{2}\right)+F\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right) \\
&=F\left(x_{2}, y_{2}\right)+F\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right) \geq 0 .
\end{aligned}
$$

Coherence Let us turn now to coherence, where we shall see that Theorem 2.35 does not extend immediately to the bivariate cas e. We begin by establishing a result related to Prop osition 4.93:

Prop osition 4.97The lowerprobability $P_{(F, \bar{F})}$ inducedby the bivariatep-box $(F, \bar{F})$ is coherentif and only if $E$ and $\bar{F}$ are $t$ he lower and the upper envelopes of the set

$$
\left\{F: \Omega_{1} \times \Omega_{2} \rightarrow[0,1] \text { distribution function }: F \leq F \leq \bar{F}\right\}
$$

respectively.

Pro of We b egin with the direct implication. If $P_{(E, \bar{F})}$ iscoherent, thenforany $x \Omega_{1}$ and $y \quad \Omega_{2}$ there issomeprobability $P \geq \sum_{(F, \bar{F})}$ such that $P\left(A_{(x, y)}\right)=P_{-_{(F, F)}}\left(A_{(x, y)}\right)$. Consider the function $F_{P}: \Omega_{1} \times \Omega_{2} \rightarrow[0,1]$ defined by $F_{P}(x, y)=P\left(A_{(x, y)}\right)$ for every $(x, y) \quad \Omega_{1} \times \Omega_{2}$. Reasoning as in the pro of of Prop osition 4.93, we deduce thaFP is a distribution function that belongs to $(F, F)$. Moreover, by con struction:

$$
F_{P}(x, y)=P\left(A_{(x, y)}\right)=P_{(E, \bar{F})}\left(A_{(x, y)}\right)=F(x, y) .
$$

Similarly, thereexists some $P \geq R_{(F, F)}$ such that

$$
P\left(A_{(x, y)}^{c}\right)=P_{(F, F)} \bar{F}\left(A_{(x, y)}^{c}\right)
$$

Let $F_{P}: \Omega_{1} \times \Omega_{2} \rightarrow\left[0,1\right.$ be given by $F_{P}(x, y)=P\left(A \quad(x, y) \quad\right.$ ) for every $(x, y) \quad \Omega_{1} \times \Omega_{2}$. Reasoning as in the pro of of Prop osition 4.93, wededuce that $F_{P}$ is a dis trib ution function that belongs to ( $F, F$ ). Moreover, by con struction:

$$
1-F_{P}(x, y)=1-P(A(x, y))=P\left(A_{(x, y)}^{c}\right)=P_{(E, \bar{F})}\left(A_{(x, y)}^{c}\right)=1-\bar{F}(x, y)
$$

whence $F_{P}(x, y)=\bar{F}(x, y)$.
Convers elyfix $(x, y) \quad \Omega_{1} \times \Omega_{2}$ and let $F_{1}, F_{2}$ be distribution functions in $(F, F)$ such that $F_{1}(x, y)=F(x, y)$ and $F_{2}(x, y)=F(x, y)$. Let $P_{1}, P_{2}$ be the finitely additive probabilities they induce in $K$ by meansof Equation (4.15). The n it follows from the pro of of Prop osition 4.93 that $P_{1}, P_{2}$ dominate $P_{(F, F)}$, and moreover

$$
\begin{aligned}
& P_{1}\left(A_{(x, y)}\right)=F_{1}(x, y)=F(x, y)=P-_{(F, F)}(A x, y) \text { and } \\
& P_{2}\left(A_{(x, y)}^{c}\right)=1-P_{2}\left(A_{(x, y)}\right)=1-F_{2(x, y)=1-\bar{F}(x, y)=P_{(F, F)}\left(A_{x, y}^{c}\right)}
\end{aligned}
$$

Since $P_{1}, P_{2}$ have finitelyadditive extensionsto $P_{\left(\Omega_{1} \times \Omega_{2}\right) \text {, we deducefromthis that }}$ $P_{(F, F)}$ is coherent.

We shall call the bivariate p-b ox $(F, \bar{F})$ coherent when its asso ciated lower probability is. One interestingdifferencewiththeunivariatecaseisthat EF need notbe
distribution functions for ( $F, \bar{F}$ ) to be coherent (although if $E, \bar{F}$ are distributionfunctions then trivially ( $F, F$ ) is coherent by Prop osition 4.97). This can b e seen for instance with Example 4.90, where the lower envelop e ofaset of distribution functions (which determines the lower distributionfunction of a coherent p-box) is not a distribution function itself.

Out next result uses prop erties (2.11)-(2.15) of coherent lower probabilities to obtain four imprecise-versions of the rectangle inequality that, as we shall see, will play an imp ortant role.

Prop osition 4.9\&et $(F, \bar{F})$ be abivariate p-box on $\Omega_{1} \times \Omega_{2}$. Ifitiscoherent, thenthe fol lowing conditions hold for every $x_{1}, x_{2} \quad \Omega_{1}$ and $y_{1}, y_{2} \quad \Omega_{2}$ such that $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$ :

$$
\begin{array}{ll}
(\mathbf{I}-\mathbf{R I} 1): & F\left(x_{2}, y_{2}\right)+\bar{F}\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right) \geq 0 \\
(\mathbf{I}-\mathbf{R I 2}): & \bar{F}\left(x_{2}, y_{2}\right)+F\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right) \geq 0 \\
(\mathbf{I}-\mathbf{R I} 3): & \bar{F}\left(x_{2}, y_{2}\right)+\bar{F}\left(x_{1}, y_{1}\right)-\bar{F}\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right) \geq 0 . \\
(\mathbf{I}-\mathbf{R I 4}): & \bar{F}\left(x_{2}, y_{2}\right)+\overline{F\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-\bar{F}\left(x_{2}, y_{1}\right) \geq 0 .}
\end{array}
$$

Pro of Consider $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in $\Omega_{1} \times \Omega_{2}$ such that $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$. Let $P_{(F, \bar{F})}$ b e the lower probability induc ed by $(F, F)$ by means of Equation (4.14). It is coherent by Prop osition 4.97.

Then, by Equations(2.11) and (2.13), it holds that:

$$
\begin{aligned}
P\left(A_{\left(x_{2}, y_{2}\right)}\right) & \geq P\left(A_{\left(x_{1}, y_{2}\right)} \quad A_{\left(x_{2}, y_{1}\right)}\right)+P\left(A_{\left(x_{2}, y_{2}\right)} \mid\left(A_{\left(x_{1}, y_{2}\right)} \quad A_{\left(x_{2}, y_{1}\right)}\right)\right) \\
& \geq P\left(A_{\left(x_{1}, y_{2}\right)}\right)+P\left(A_{\left(x_{2}, y_{1}\right)}\right)-P\left(A_{\left(x_{1}, y_{2}\right)} \cap A_{\left(x_{2}, y_{1}\right)}\right) \\
& +P\left(A_{\left(x_{2}, y_{2}\right)} \mid\left(A_{\left(x_{1}, y_{2}\right)} \quad A_{\left.\left(x_{2}, y_{1}\right)\right)}\right) .\right.
\end{aligned}
$$

Thus:

$$
\begin{aligned}
P\left(A_{\left(x_{2}, y_{2}\right)}\right)-P\left(A_{\left(x_{1}, y_{2}\right)}\right)-P\left(A_{\left(x_{2}, y_{1}\right)}\right)+ & \left.\overline{P( }_{\left(x_{1}, y_{2}\right)} \cap A_{\left(x_{2}, y_{1}\right)}\right) \\
& \geq P\left(A_{\left(x_{2}, y_{2}\right)} \mid\left(A_{\left(x_{1}, y_{2}\right)} \quad A_{\left(x_{2}, y_{1}\right)}\right)\right) \geq 0 .
\end{aligned}
$$

If we write the previous equation in terms of the maps $E \bar{F}$, we obtain that:

$$
F\left(x_{2}, y_{2}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right)+\bar{F}\left(x_{1}, y_{1}\right) \geq 0 .
$$

On the otherhand,applyingEquations (2.12) and(2.14)

$$
\begin{aligned}
\bar{P}\left(A_{\left(x_{2}, y_{2}\right)}\right) & \geq \bar{P}\left(A_{\left(x_{1}, y_{2}\right)} \quad A_{\left(x_{2}, y_{1}\right)}\right)+P\left(A_{\left(x_{2}, y_{2}\right)} \mid\left(A_{\left(x_{1}, y_{2}\right)} \quad A_{\left.\left(x_{2}, y_{1}\right)\right)}\right)\right. \\
& \geq P\left(A_{\left(x_{1}, y_{2}\right)}\right)+P\left(A_{\left(x_{2}, y_{1}\right)}\right)-P\left(A_{\left(x_{1}, y_{2}\right)} \cap A_{\left(x_{2}, y_{1}\right)}\right) \\
& \left.+P\left(A_{\left(x_{2}, y_{2}\right)}\right)\left(A_{\left(x_{1}, y_{2}\right)} \quad A_{\left(x_{2}, y_{1}\right)}\right)\right) .
\end{aligned}
$$

$\qquad$

Then:

$$
\begin{aligned}
& \bar{P}\left(A_{\left(x_{2}, y_{2}\right)}\right)+P\left(A_{\left(x_{1}, y_{2}\right)} \cap A_{\left.\left(x_{2}, y_{1}\right)\right)}\right)-P\left(A_{\left.\left(x_{1}, y_{2}\right)\right)}-P\left(A_{\left.\left(x_{2}, y_{1}\right)\right)}\right.\right. \\
& \quad \geq P\left(A_{\left(x_{2}, y_{2}\right)} \mid\left(A_{\left(x_{1}, y_{2}\right)} \quad A_{\left.\left(x_{2}, y_{1}\right)\right)}\right) \geq 0 .\right.
\end{aligned}
$$

In terms of $E \bar{F}$, this means that

$$
\bar{F}\left(x_{2}, y_{2}\right)+F\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right) \geq 0 .
$$

Analogously, byEquation (2.12)

$$
\bar{P}\left(A_{\left(x_{2}, y_{2}\right)}\right) \geq \bar{P}\left(A_{\left(x_{1}, y_{2}\right)} \quad A_{\left(x_{2}, y_{1}\right)}\right)+P\left(A_{\left(x_{2}, y_{2}\right)} \mid\left(A_{\left(x_{1}, y_{2}\right)} \quad A_{\left(x_{2}, y_{1}\right)}\right)\right)
$$

and, from Equation (2.15), this is gre ate $r$ than or equal to $b$ oth

$$
\left.P\left(A_{\left(x_{2}, y_{2}\right)} \mid\left(A_{\left(x_{1}, y_{2}\right)} \quad A_{\left(x_{2}, y_{1}\right)}\right)\right)+P\left(A_{\left(x_{1}, y_{2}\right)}\right)+\overline{P( } A_{\left(x_{2}, y_{1}\right)}\right)-\bar{P}\left(A_{\left(x_{1}, y_{2}\right)} \cap A_{\left(x_{2}, y_{1}\right)}\right)
$$

and

$$
P\left(A_{\left(x_{2}, y_{2}\right)} \mid\left(A_{\left(x_{1}, y_{2}\right)} \quad A_{\left(x_{2}, y_{1}\right)}\right)\right)+\bar{P}\left(A_{\left(x_{1}, y_{2}\right)}\right)+P\left(A_{\left(x_{2}, y_{1}\right)}\right)-\bar{P}\left(A_{\left(x_{1}, y_{2}\right)} \cap A_{\left(x_{2}, y_{1}\right)}\right) .
$$

Then:

$$
\begin{aligned}
& 0 \leq P\left(A_{\left(x_{2}, y_{2}\right)} \mid\left(A_{\left(x_{1}, y_{2}\right)} A_{\left(x_{2}, y_{1}\right)}\right)\right) \\
& \leq \frac{\left.P\left(A_{\left(x_{2}, y_{2}\right)}\right)-\bar{P}\left(A_{\left(x_{1}, y_{2}\right)}\right)-\bar{P}\left(A_{\left(x_{2}, y_{1}\right)}\right)+\overline{P( } A_{\left(x_{1}, y_{2}\right)} \cap A_{\left(x_{2}, y_{1}\right)}\right) .}{P\left(A_{\left(x_{2}, y_{2}\right)}\right)-\overline{P\left(A_{\left(x_{1}, y_{2}\right)}\right)}-P\left(A_{\left(x_{2}, y_{1}\right)}\right)+P\left(A_{\left(x_{1}, y_{2}\right)} \cap A_{\left(x_{2}, y_{1}\right)}\right) .}
\end{aligned}
$$

In terms of $E \bar{F}$, this means that:

$$
\begin{aligned}
& \bar{F}\left(x_{2}, y_{2}\right)+\bar{F}\left(x_{1}, y_{1}\right)-\bar{F}\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right) \geq 0 \\
& F\left(x_{2}, y_{2}\right)+F\left(x_{1}, y_{1}\right)-F\left(x_{1}, y_{2}\right)-F\left(x_{2}, y_{1}\right) \geq 0 .
\end{aligned}
$$

None of these conditions is sufficient for coherence, as we can seein the following examples.

Example 4.99Let us show an example where both $E$ and $\bar{F}$ satisfy (I-RI1), (I-RI2) and (I-RI4), but not (I-RI3), and thelower prevision $P$ is not coherent. For thisaim consider three realnumbers $a<b<c$ and the functions $E$ and $\bar{F}$ defined by:

|  | $(a, a)$ | $(a, b)$ | $(a, c)$ | $(b, a)$ | $(b, b)$ | $(b, c)$ | $(c, a)$ | $(c, b)$ | $(c, c)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E$ | 0 | 0.3 | 0.45 | 0.3 | 0.6 | 0.75 | 0.45 | 0.8 | 1 |
| $F$ | 0 | 0.3 | 0.5 | 0.3 | 0.6 | 0.85 | 0.5 | 0.85 | 1 |

Both $E$ and $\bar{F}$ are standardizedmaps. In addition, $E$ isa distributionfunction, andconsequentlyE and F satisfy(I-RI1)and (I-RI2). Itcan be checked that(I-RI4)is alsosatisfied. Assume that their lowerprobability $\sum_{(F, \bar{F})}$ is coherent. Then, byProposition4.97
theremust bea distribution function $F$ between $\bar{F}$ such that $F(b, c)=\bar{F}(b, c)=0.85$. However, this implies that

$$
F(c, c)+F(b, b) F(b, c)-F(c, b)=1+0.6-0.85^{-} F(c, b) \geq 0 \quad F(c, b) \leq 0.75
$$

But on the other hand we must have $F(c, b) \geq F(c, b)=0.8$ this is a contradiction.
Similarly, ifwe define $E$ and $\bar{F}$ by $E(x, y)=F(y, x)$ and $\bar{F}(x, y)=\bar{F}(y, x)$, we obtainan examplewhere(I-RI1), (I-RI2)and(I-RI3) aresatisfied butthep-box is not coherent.

Example 4.100-et usgive next anexample where $E$ and $\bar{F}$ satisfy conditions(I-RI2) and (I-RI3) and (I-RI4), but not (I-RI1), and the bivariate p-box $\quad(F, F)$ is not coherent. For this aim consider three real numbers $a<b<c \quad$ and the functions $E$ and $F$ defined by:

|  | $(a, a)$ | $(a, b)$ | $(a, c)$ | $(b, a)$ | $(b, b)$ | $(b, c)$ | $(c, a)$ | $(c, b)$ | $(c, c)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{E}$ | 0 | 0.3 | 0.4 | 0.3 | 0.6 | 0.6 | 0.5 | 0.8 | 1 |
| $F$ | 0 | 0.3 | 0.4 | 0.3 | 0.6 | 0.7 | 0.5 | 0.8 | 1 |

Both $E$ and $\bar{F}$ are standardizedfunctions. Theyalsosatisfyconditions(I-RI2)and, since $F$ is a cumulative distribution function, alsoconditions (I-RI3) and (I-RI4). Assume that $(F, F)$ is coherent. Then, there mustbe a distributionfunction $\quad F$ such that $F(b, c)=$ $F(b, c)=0.6$. Then:

$$
F(b, c)+F(a, b)-F(b, b)^{-} F(a, c)=0.6+0.30 .6^{-} 0.4=-0.1<0
$$

acontradiction.
Example 4.101Final ly, let usgive an example where $E$ and $\bar{F}$ satisfy(I-RII) and (I-RI3) and (I-RI4), but not condition (I-RI2), and the bivariat e p-box ( $F, F$ ) is not coherent. Asinthe previous examples, consider three real numbers $a<b<c$ and the functions $E$ and $\bar{F}$ defined by:

|  | $(a, a)$ | $(a, b)$ | $(a, c)$ | $(b, a)$ | $(b, b)$ | $(b, c)$ | $(c, a)$ | $(c, b)$ | $(c, c)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E$ | 0 | 0.3 | 0.4 | 0.3 | 0.5 | 0.7 | 0.5 | 0.8 | 1 |
| $F$ | 0.1 | 0.3 | 0.4 | 0.3 | 0.5 | 0.7 | 0.5 | 0.8 | 1 |

Thesefunctionscan be easilyproven to satisfy (I-RI1), (I-RI3)and (I-RI4). However, they donot satisfy (I-RI2) since:

$$
\bar{F}(b, b)+F(a, a)^{-} F(a, b)^{-} F(b, a)=0.5+0^{-} 0.3-0.3=-0.1<0
$$

Then, $P_{(F, \bar{F})}$ is notcoherent.

Next we establish the most imp ortant result in this section: a characteri sation of the coherence of a bivariate $\mathrm{p}-\mathrm{b}$ ox in the case when one of the variables is binary.

Prop osition 4.102ssume that $\Omega_{2}=\left\{y_{1}, y_{2}\right\}$ is abinary space and $\Omega_{1}=\left\{x_{1}, \ldots, x_{n}\right\}$ is finite, and let $(F, F)$ be abivariate $p$-box on $\Omega_{1} \times \Omega_{2}$.

1. If $E, F$ satisfy (I-RI1)and (I-RI2), then

$$
F=\min \{F \text { distribution function }: F \leq F \leq \bar{F}\} \text {. }
$$

2. If E,F satisfy (I-RI3) and (I-RI4), then

$$
\bar{F}=\max \{F \text { distribution function }: F \leq F \leq \bar{F}\}
$$

3. As a consequence $(F, F)$ is coherent EF satisfyconditions (I-RII)to(I-RI4).

Pro of Firstofall, letuscheckthatif $E$ and $\bar{F}$ satisfy (I-RI2), thenthereisa cumulative distribution function $F_{2}$ such that $E \leq F_{2}$ and $F_{2\left(x i, y_{1}\right)}=F\left(x i, y_{1}\right)$ for any $i=1, \ldots, n$. For this aim we definethe function $F_{2}$ by:

$$
\begin{aligned}
& F_{2}\left(x_{i}, y_{1}\right)=F\left(x_{i}, y_{1}\right) \text { for } i=1, \ldots, n, \\
& F_{2}\left(x_{1}, y_{2}\right)=F\left(x_{1}, y_{2}\right), \text { and } \\
& F_{2}\left(x_{i}, y_{2}\right)=F\left(x_{i}, y_{2}\right)-\min (0, \Delta E \\
& \left.R_{E} R_{i-1}\right), \text { for } i=2, \ldots, n, \text { where } \\
& \Delta_{E}=F\left(x_{i}, y_{2}\right)+F\left(x_{i-1}, y_{1}\right)-F\left(x_{i,}, y_{1}\right)-F_{2\left(x_{i-1}, y_{2}\right) .}
\end{aligned}
$$

On the one hand, by definition $F_{2}\left(x^{i}, y_{1}\right)=F\left(\notin i, y_{1}\right)$ for $i=1, \ldots, n$. On the other hand, let usprovethat $E \leq F_{2} \leq F, F_{2\left(x_{n}, y_{2}\right)=1, F_{2} \text { is monotoneand } \Delta F_{2} \geq 0 \text {, } F_{i-1} \geq 0}$ where:

$$
\Delta \stackrel{F}{2}_{R_{i-1}}=F_{2}\left(x_{i}, y_{2}\right)+F_{2}\left(x_{i-1}, y_{1}\right)-F_{2}\left(x_{i}, y_{1}\right)-F_{2}\left(x_{i-1}, y_{2}\right),
$$

for $i=2, \ldots, n$. In su ch a case $F_{2}$ would be a distribution function bounded by $E$ and $F$.

1. $F_{2} \geq E$ :

It triviallyholds since $-\min \left(0, \Delta \underset{E}{R_{i-1}}\right) \geq 0$.
2. $F_{2} \leq \bar{F}$ :

For either $i=1$ or $j=1, F_{2}\left(x^{i}, y_{j}\right)=F\left(x_{\left.i, y_{j}\right)} \leq \bar{F}\left(x_{i}, y_{j}\right)\right.$. When $i, j \geq 2$, and $(i, j)=(n, 2)$, it holds that:

$$
\bar{F}\left(x_{i}, y_{2}\right) \geq F_{2}\left(x^{i}, y_{2}\right) \quad \bar{F}\left(x_{i}, y_{2}\right)-F\left(x_{i}, y_{2}\right)+\min \left(\Delta{ }_{E}^{R_{i-1}}, 0\right) \geq 0
$$

This is obvious when $\Delta E_{E}^{R_{i-1}} \geq 0$. Otherwise, wehavetoprovethat

$$
\bar{F}\left(x_{i}, y_{2}\right)-F\left(x_{i}, y_{2}\right)+\Delta{ }_{E}^{R_{i-1}} \geq 0
$$

Thisinequalityholdsif and onlyif:

$$
\begin{aligned}
0 & \left.\leq \bar{F}\left(x i, y_{2}\right)-F\left(x i, y_{2}\right)+F\left(x i, y_{2}\right)-F\left(x i, y_{1}\right)-F_{2(x i-1}, y_{2}\right)+F\left(x i-1, y_{1}\right) \\
& \left.=F\left(x i, y_{2}\right)-F\left(x i, y_{1}\right)-F_{2(x i-1}, y_{2}\right)+F\left(x i-1, y_{1}\right) .
\end{aligned}
$$

Then, we shall prove that

$$
\begin{equation*}
\bar{F}\left(x_{i}, y_{2}\right)-F\left(x_{i}, y_{1}\right)-F_{2}\left(x k, y_{2}\right)+F\left(x k, y_{1}\right) \geq 0 \tag{4.16}
\end{equation*}
$$

for any $k=1, \ldots, i-1$ by indu ction on $k$.
(a) $k=1$ : Equation (4.16) becomes:

$$
\bar{F}\left(x_{i}, y_{2}\right)-F\left(x_{i}, y_{1}\right)-F\left(x_{1}, y_{2}\right)+F\left(x_{1}, y_{1}\right) \geq 0
$$

andit holdsfor (I-RI2).
(b) Assume thatEquation (4.16)holds for $k-1$. Then, for $k=1$ Equation (4.16) becomes:

$$
\bar{F}\left(x_{i}, y_{2}\right)-F\left(x_{i}, y_{1}\right)-F\left(x_{k}, y_{2}\right)+\min \left(\Delta \underset{E}{R_{k-1}}, 0\right)+F\left(x_{k}, y_{1}\right) \geq 0
$$

and this is positive when $\Delta E_{E}^{R_{k-1}} \geq 0$ by (I-RI2). Otherwise, it becomes:

$$
\begin{aligned}
\bar{F}\left(x i, y_{2}\right) & -F\left(x i, y_{1}\right)-F\left(x k, y_{2}\right)+F\left(x k, y_{2}\right)-F\left(x k, y_{1}\right) \\
& -F_{2}\left(x k-{ }_{1}, y_{2}\right)+F\left(x k^{-}-y_{1}\right)+F\left(x k, y_{1}\right) \\
& =F\left(x i, y_{2}\right)-F\left(x i, y_{1}\right)-F_{2}\left(x k-{ }_{1}, y_{2}\right)+F\left(x k_{k}{ }_{1}, y_{1}\right) \geq 0,
\end{aligned}
$$

sinceEquation (4.16) holds for $k-1$.
3. $F_{2\left(x n, y_{2}\right)}=1$ :

In fact:

$$
\begin{aligned}
& F_{2}\left(x n, y_{2}\right)=1 \quad F\left(x n, y_{2}\right)-\min \left(\Delta E_{E}^{R_{n-1}}, 0\right)=1-\min \left(\Delta E_{E}^{R_{n-1}}, 0\right)=1 \\
& \Delta_{E}^{R_{n-1}} \geq 0 \\
& \left.F\left(x n, y_{2}\right)-F\left(x n, y_{1}\right)-F_{2(x n-1}, y_{2}\right)+F\left(x n-1, y_{1}\right) \\
& =F\left(x n, y_{2}\right)-F\left(x n, y_{1}\right)-F_{2}\left(x n-1, y_{2}\right)+F\left(x n-{ }_{1}, y_{1}\right) \geq 0 \text {, }
\end{aligned}
$$

which follows from the pro of by induction of Equation (4.16) by putting $i=n$ and $k=n-1$.
4. $F_{2}$ is monotone:
(a) On theone hand, $\quad F_{2}\left(x_{i}, y_{1}\right)=F\left(x_{\left.i, y_{1}\right)} \leq F\left(x_{i+1}, y_{1}\right)=F \quad 2\left(x_{i}, y_{1}\right)\right.$ for any $i=1, . ., n-1$.
(b) $F_{2\left(x i, y_{2}\right)} \geq F_{2\left(x i-1, y_{2}\right)}$ :

$$
\begin{aligned}
& F_{2}\left(x_{i}, y_{2}\right)=F\left(x_{i}, y_{2}\right)-\min \left(\Delta \stackrel{R_{i-1}}{R_{i-1}}, 0\right) \\
& =\max \left(E\left(x_{i}, y_{2}\right)-\Delta_{E}{ }^{1-1}, E\left(x_{i}, y_{2}\right)\right) \\
& =\max \left(F_{2}\left(x_{i-1}, y_{2}\right)+F\left(x_{i}, y_{1}\right)-F\left(x_{i-1}, y_{1}\right), F\left(x_{i}, y_{2}\right)\right) \\
& \geq F_{2}\left(x^{i-1}, y_{2}\right)+F\left(x_{i}, y_{1}\right)-F\left(x^{i-1}, y_{1}\right) \geq F_{2\left(x^{i-1}, y_{2}\right)} \text {, }
\end{aligned}
$$

by the monotonicityof $E$.
(c) $\left.F_{2\left(x i, y_{2}\right)} \geq F_{2(x i,} y_{1}\right)=F\left(x i, y_{1}\right)$ since

$$
F_{2}\left(x_{i}, y_{2}\right) \geq F\left(x^{i}, y_{2}\right) \geq F\left(x^{i}, y_{1}\right) .
$$

5. $\Delta{ }_{F_{2}}^{R_{i-1}} \geq 0$ for $i=1, . . ., n$ :

It holds that:

$$
\begin{aligned}
\Delta F_{2}^{R_{i-1}} & =F{ }_{2}\left(x_{i}, y_{2}\right)-F\left(x_{i}, y_{1}\right)_{R_{i-1}}-F_{2}\left(x_{i-1}, y_{2}\right)+F\left(x_{i-1}, y_{1}\right) \\
& =F\left(x_{i}, y_{2}\right)+\max \left(-\Delta E_{R_{i-1}}, 0\right)-F\left(x_{i}, y_{1}\right)-F_{2\left(x^{i-1}, y_{2}\right)+F\left(x_{i-1}, y_{1}\right)} \\
& =\max \left(-\Delta E(0)+\Delta E=\max \left(0, \Delta E R_{i-1}\right) \geq 0 .\right.
\end{aligned}
$$

Now, considerthe function $F_{1}$ defined by:

$$
\begin{aligned}
& F_{1}\left(x_{i}, y_{2}\right)=F\left(x_{i}, y_{2}\right) \text { for } i=1, \ldots, n, \\
& F_{1}\left(x_{i}, y_{1}\right)=F\left(x_{i} \quad, y_{1}\right)-\min \left(\Delta \underset{E}{R_{i}}, 0\right) \text {, where } \\
& R_{i}=F\left(x_{i+1}, y_{2}\right)-F_{1}\left(x_{i+1}, y_{1}\right)-F\left(x_{i}, y_{2}\right)+F\left(x_{i}, y_{1}\right),
\end{aligned}
$$

for $i=n-1, \ldots, 1$ If $E$ and $\bar{F}$ satisfy (I-RI1), with a similar pro of as the one for $F_{2}$, we can prove that $F_{1}$ is a dis tribution function b ounded by $E$ and $F$ and, byits definition, $F_{1}\left(x^{i}, y_{2}\right)=F\left(x^{i}, y_{2}\right)$ for $i=1, \ldots, n$. Then, taking into account $F_{1}$ and $F_{2}$, it holds that:

$$
F=\min \{F \text { distribution functions }: F \leq F \leq \bar{F}\}
$$

Finally, considerthe functions $F_{3}$ and $F_{4}$, defined by:

$$
\begin{aligned}
& F_{3}\left(x_{i}, y_{2}\right)=\bar{F}\left(x_{i}, y_{2}\right) \text { for } i=1, \ldots, n, \\
& F_{3}\left(x_{1}, y_{1}\right)=F\left(x_{1}, y_{1}\right), \text { and } \\
& F_{3}\left(x_{i}, y_{1}\right)=\bar{F}\left(x_{i}, y_{1}\right)+\min \left(\Delta \frac{R_{i-1}}{F}, 0\right), \text { where } \\
& \Delta \frac{R_{i-1}}{F}=\bar{F}\left(x_{i}, y_{2}\right)+F_{3\left(x_{i-1}, y_{1}\right)}-\bar{F}\left(x_{i-1}, y_{2}\right)-\bar{F}\left(x_{i}, y_{1}\right)
\end{aligned}
$$

for $i=2, \ldots, n$, and:

$$
\begin{aligned}
& F_{4}\left(x_{i}, y_{1}\right)=\bar{F}\left(x_{i}, y_{1}\right) \text { for } i=1, \ldots, n, \\
& F_{4}\left(x^{n}, y_{2}\right)=F\left(x^{n}, y_{2}\right), \text { and } \\
& F_{4}\left(x_{i}, y_{1}\right)=F\left(x_{i}, y_{1}\right)+\min \left(\Delta \frac{R_{i}}{F}, 0\right) \text {, where } \\
& \Delta \frac{R i}{F}=F\left(x_{i+1}, y_{2}\right)+\bar{F}\left(x_{i}, y_{1}\right)-F_{4}\left(x_{i}, y_{2}\right)-\bar{F}\left(x_{i-1}, y_{1}\right)
\end{aligned}
$$

for $i=n-1, \ldots, 1$ With a similar pro of as the one for $F_{2}$, we can check that when $E$ and $F$ satisfy $(I-R I 3)$ (resp ectively (I-RI4)) $F_{3}$ (resp ectively $F_{4}$ ) is a dis tri bution function bounded by $E$ and $F$ such that $F_{3}\left(x_{i}, y_{2}\right)=F\left(x_{i}, y_{2}\right)\left(\right.$ resp ectively $\left.F_{4}\left(x_{i}, y_{1}\right)=F\left(x i, y_{1}\right)\right)$ for $i=1, \ldots, n$. Then, this impliesthatwhen $E$ and $F$ satisfyconditions (I-RI3) and (I-RI4) it hold $s$ that:

$$
\bar{F}=\max \{F \text { distribution functions }: F \leq F \leq \bar{F}\}
$$

Putting the functions $F_{1}, F_{2}, F_{3}$ and $F_{4}$ together, wededucethatwhen $E$ and $\bar{F}$ satisfy (I-RI1) to (I-RI4), ( $F, F$ ) is a coherent bivariate $\mathrm{p}-\mathrm{b}$ ox; the convers e implication holds by Prop osition 4.98.

As a consequence, we ded uce that conditions (I-RI1)-(I-RI4) are also equivalent to the coherence of $F, F$ ) when both variables $\Omega_{1}, \Omega_{2}$ are binary. Infact, weconjecturethat conditions (I-RI1)-(I-RI4) are also equivalent to the coherence of $(F, F)$ in the general case.

To conclude this section, we investigate if the third statement in Theore m 2.35 can b e used to characterise coherence in the bivariate caseLet $E F$ be standardized maps on $\Omega_{1} \times \Omega_{2}$, and let $D_{E}: K_{1} \rightarrow \mathrm{R}$ and $\mathcal{D}_{\bar{F}}: K_{2} \rightarrow \mathrm{R}$ b e the lower probabilities asso ciated with them by Equation (4.13).

Prop osition 4.10bet $(F, \bar{F})$ be abivariate $p$-box and let $X_{E}, Q_{\bar{F}}$ be thelower previsions they induce on $K_{1}, K_{2}$, respectively. Then:
(a) ${P_{E}}, P_{\bar{F}}$ always avoidsure loss.
(b) $P_{E}$ is coherent $P_{(E, 1)}$ is coherent.
(c) $E_{\bar{F}}$ is coherent $E_{\left(I_{(x, y), \bar{F})} \text { is coherent. }\right.}$
(d) $P_{(F, F)}$ coherent $P_{E}, P_{\bar{F}}$ coherent.

## Pro of

(a) Tosee that $P_{E}$ and $P_{\bar{F}}$ always avoid sure loss, it suffice s to take into account that the constant map on 1 is adistribution function that dominates $E$ and that $I_{(x, y)}$ is a distribution function that is dominated by $\bar{F}$.
(b) The lower probability $P_{E}$ is coherent if and only if for every $(x, y) \quad \Omega_{1} \times \Omega_{2}$ there is a distribution function $F \geq E$ such that $F(x, y)=F(x, y)$. The condition $F \geq E$ is equivalent to $E \leq F \leq 1$, andon theotherhand theconstantmapon 1 is triviallya distribution function. We deduce from Prop osition 4.97 that $P_{(E, 1)}$ is coherent if and only if $E$ is the lower envelop e of the distribution functions in ( $\digamma, 1$,) and asa consequence wehave theequivalence.
(c) The lowerprobability $R_{\bar{F}}$ is coherent if and only if for every $(x, y) \quad \Omega_{1} \times \Omega_{2}$ there is a distribu tion function $F \leq F_{\text {such that }} F(x, y)=F(x, y)$. The condition $F \leq F$ is equivalent to $I_{(x, y)} \leq F \leq F$, and on the other hand the map $I_{(x, y)}$ is trivially a distribution func tion. We deduce from Prop osition 4.97 tha $\mathcal{P}_{\left(I_{(x, y),}, \bar{F}\right)}$ is coherentifand onlyif $\quad \bar{F}$ is the upp er envelop e of the distribution functions in ( $I_{(x, y), F) \text {, and asa consequence wehave theequivalence. }}^{\text {a }}$
(d) This statement follows from the previous two and from Prop osition 4.97, taking into account that the setof distribution functions $(F, F)$ is the intersection of the $\operatorname{sets}(F, 1)$ and (I (x,y),F).

To see that the converse in the fourth statement do es not hold, consider the following example.

Example 4.104Considernow thefunctions $E$ and $\bar{F}$ of Example 4.100. To seethat ( $F, 1$ ) is coherent, it suffices to take into account that $E$ isthe lowerenvelopeof the distribution functions $F_{1}, F_{2}$ given by:

|  | $(a, a)$ | $(a, b)$ | $(a, c)$ | $(b, a)$ | $(b, b)$ | $(b, c)$ | $(c, a)$ | $(c, b)$ | $(c, c)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{1}$ | 0 | 0.3 | 0.4 | 0.3 | 0.6 | 0.7 | 0.5 | 0.8 | 1 |
| $F_{2}$ | 0.1 | 0.4 | 0.4 | 0.3 | 0.6 | 0.6 | 0.5 | 0.8 | 1 |

while the constant map on 1 is trivial ly a distribution function.
Similarly, since both $I_{(c, c)}$ and $\bar{F}$ aredistributionfunctions, wededucethat $\quad\left(I_{(c, c)}, \bar{F}\right)$ is also coherent. However, we saw inExample 4.100 that $(F, F)$ are not coherent.

This shows that one of the equivalences in Theorem 2.35 do es not extend to the bivariate case. Moreover, wecanseefromthisexamplethatthecoherenceof $\quad P_{E}$ do es not imply that $E$ is a dis tribution function: we havethat $F(a, b)+F(b, c)<F(a, c)+F(b, b)$. Ina similar way (using for instance Example 4.99) we can see that the coherence o ${ }^{\mathcal{P}} \bar{F}$ do es not imply that $F$ is a distribution function.

Another consequence is that whenever (I-RI1)-(I-RI4) characterise the coherence of $(F, F)$ (as is for instance the case in Prop osition 4.102), it holds that $P_{\bar{F}}$ is coherentfor anya standardized function $F$, because they hold trivially whenever $E$ isthe indicator function $I_{(x, y)}$. Ontheother hand, $P_{E}$ may not be coherent:consider $\Omega_{1}=\Omega_{2}=\{0,1\}$ and $F$ given by:

$$
\begin{array}{c|cccc} 
& (0,0) & (0,1) & (1,0) & (1,1) \\
\hline E & 0 & 0.6 & 0.6 & 1
\end{array}
$$

Then there is no distribution function $F \geq E$ satisfying $F(0,0)=F(0,0)=0$, because then

$$
F(1,1)+F(0,0)=1<1.2 \leq F(0,1)+F(1,0) .
$$

2-monotonicity In the univariate case, the lowerprobability $P_{(E, \bar{F})}$ asso ciated with a p-b ox is completely monotone [198]. Aswesawin Definition 2.40, this means, in particular, that for everypair of events $A, B$ in its domain it holds th at

$$
E_{(E, \bar{F})}\left(\begin{array}{ll}
A & B
\end{array}\right)+P-_{(E, \bar{F})}(A \cap B) \geq R_{(E, \bar{F})}(A)+P_{(E, \bar{F})}(B),
$$

provided also $A \quad B$ and $A \cap B$ belong to the domain. 2-monotone capaciti es have b een studied in detail in [53, 204], among others. They satisfy the prop erty of comonotone additivity, which is of interest in economy ( $[35,203]$ ).

Inthe univariatecase, wecan assume withoutlossof generalitythatthe domainof the lower probability induced by the p-b ox is a lattice (see [198] for more details), and this al lows us to apply the results from [53]. This is not the case for bivariate p-b oxes: the domain $K$ of $P_{(E, \bar{F})}$ isnot a lattice, soifwewanttouse theresults in[53]weneed to take the natural extension of $E_{(E, F)}$. By the Envelop e Theorem (Theorem 2.30) and Prop osition 4.97, this natural extension is the lower envelope of the set

$$
\left\{P_{F}: F \text { distribution function }, F \leq F \leq \bar{F}\right\},
$$

where $P_{F}$ is the finitely additive probability asso ciated with the distribution function $F$ by means of Equation (4.15).

However, and as the following example shows, in the bivariate case it could $b$ e th at the lower probability asso ciated with the p-b ox $(F, F)$ is coherent but not 2-monotone, even if both $E, F$ aredistribution functions:

Example 4.105Consider $\Omega_{1}=\Omega_{2}=\{0$,$\} , and let F, \bar{F}: \Omega_{1} \times \Omega_{2} \rightarrow[0,1]$ be the standardized maps given by:

$$
\begin{array}{c|cccc} 
& (0,0) & (0,1) & (1,0) & (1,1) \\
\hline E & 0 & 0 & 0.5 & 1 \\
F & 0.25 & 0.25 & 0.5 & 1
\end{array}
$$

Then, both E, $\bar{F}$ are dist ribution functions, because

$$
\begin{aligned}
& \underline{E}(1,1)+F(0,0) \underline{E}(0,1) \underline{E}(1,0)=0 ; \\
& F(1,1)+F(0,0) F(0,1) F(1,0)=0.25>0
\end{aligned}
$$

and the other comparisons are trivial.
Now, in theparticular caseof binaryspaces thecorrespondencebetween distribution functionsand finitelyadditive probabilities inEquation (4.15)meansthat anydistribution function $F$ on $\Omega_{1} \times \Omega_{2}$ determines uniquelya probabilitymass functionon $P\left(\Omega_{1}\right) \times P\left(\Omega_{2}\right)$ by:

$$
\begin{aligned}
P_{F}(\{(0,0)\}) & =F(0,0) . \\
P_{F}(\{(0,1)\}) & =F(0,1)^{-} F(0,0) . \\
P_{F}(\{(1,0)\}) & =F(1,0)-F(0,0) . \\
P_{F}(\{(1,1)\}) & =1-P_{F}\left(\{(0,1\})-P_{F}\left(\{(1,0\})-P_{F}(\{(0,0\})\right.\right. \\
& =F(1,1)^{-} F(0,1)-F(1,0)+F(0, \text { 由 } 0 .
\end{aligned}
$$

Let $F$ be theset of distributionfunctions that liebetween $E$ and $\bar{F}$, and let us define

$$
M_{F}:=\left\{P_{F}: F \quad F\right\} .
$$

Then $P_{\left(E_{F} \bar{F}\right.}$ isthe lower envelope of $M_{F}$ on $K$ andsoisits natural extension $E$. Let us show that $E$ is not 2-monotone.

Since $\bar{F}(1,0)=0.5, \bar{F}(0,1)=0.25$ and $F(1,1)=1$, any map $F$ bounded between $E$ and $\bar{F}$ will satisfy $F(1,0)+F(0,1) \leq F(0,0)+F(1,1)$ so it will be a distribution function as soon as it is monotone. Inother words, $F=\{F$ monotone : $E \leq F \leq \bar{F}\}$.

Denote $a=\{(0,0\}, b=\{(0,1)\}, c=\{(1,0\}, d=\underline{\{ }(1,1\}$ and take $A=\{a, c\}$ and $B=\{c, d\}$. Anymonotone map $F$ bounded by E,F induces themass function ( $P(a), P(b), P(c), P(, d y) h e r e:$

$$
\begin{array}{ll}
P(a) \quad[0,0.25], & P(a)+P(b)[0,0.25] \\
P(a)+P(c)=0.5, & P(a)+P(b)+P(c)+P(d)=1
\end{array}
$$

Then:

$$
\begin{array}{rlr}
M_{F} & =\left\{\left(P_{F}(a), P_{F}(b), P_{F}(c), P_{F}(d)\right): F\right. & (F, \bar{F})\} \\
& =\left\{\left(\lambda, v-\lambda, 0.5^{\left.-\lambda, 0.5^{-} v+\lambda\right): v}[0,0.25], \lambda[0, v\},\right.\right.
\end{array}
$$

and as a consequence:

- $E(A)=E(\{a, c\})=0.5$.
- $E(B)=\min \{P(c)+P(d): P \quad M \quad F\}=0.75$, consideringthemass function $P=(0.25,0,0.25,0.5)$
- $E\left(\begin{array}{ll}A & B\end{array}\right)=\min \{P(a)+P(c)+P(d): P M \quad F\}=0.75$, with $P=(0,0.25,0.5,0.25$ )
- $E(A \cap B)=\min \{P(c): P \quad M \quad F\}=0.25$, considering the massfunction $P=$ (0.25, 0, 0. $25,0.5$ )

This means that $E(A \quad B)+E(A \cap B)<E(A)+E(B)$ and therefore the lower probability induced by the $p-b o x(F, F)$ is not 2-monotone.

Interestingly, in thisexamplethe lowerprobability $E$ do es not coincide with the lower envelop e ofmin $\left\{P_{E}, P_{F}\right\}$ : these are asso ciated with the mass functionSE $=(0,0,0.5,0.5)$ and $P_{\bar{F}}=(0.25,0,0.25,0,50$

$$
\min \left\{P_{E}\left(\begin{array}{ll}
A & B
\end{array}\right), P_{\bar{F}}^{-}\left(\begin{array}{ll}
A & B
\end{array}\right)\right\}=1>0.75=E\left(\begin{array}{ll}
A & B
\end{array}\right)
$$

This means that even if the $p$-b ox is determined by the distribution functions $E \bar{F} \bar{F}$, the same do es not apply to its associated lower probability.

On the other hand, when the bivariate p-b ox determinesa 2-monotone lower probability, it is not to o difficult to show that $E$ isindeed a distributionfunction. Note he re the difference with the case where we onlyrequire that thelower probability is coherent, discussed inSection 4.3.1.

Prop osition 4.106 ([185, Lemma 6fssume thatthe natural extensionof the lower probability $\sum_{(E, \bar{F})}$ inducedby the bivariate $p$-box $\left.F, F\right)$ byEquation (4.14) is 2-monotone. Then $E$ isa distribution function.

However, the standardizedmap $\bar{F}$ of the p-b ox determined bya 2-monotone lower probability is not necessarily a distribution function.

Example 4.107Considertheupperprobability definedby $\quad \bar{P}(A)=\min ((1+\delta) P(A), 1)$ for every $A \quad P\left(\Omega_{1} \times \Omega_{2}\right)$, where $\delta>0$,

$$
K\left\{A_{(x, y)}: x \quad \Omega_{1}, y \quad \Omega_{2}\right\},
$$

and $P$ isaprobability measure. Thiscorrespondsto Pari-mutuel model(see [205, Section2.9.3]) andit is known that $\quad \bar{P}$ is 2-alternating. Considerthe random variables $X$ and $Y$ defined on $\Omega_{1}=\Omega_{2}=\{a, b, c\}$, where $a<b<c \quad$, probability $P$ and value of $\delta=0.25$

| $X \mid Y$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: |
| $a$ | 0.1 | 0 | 0.15 |
| $b$ | 0.2 | 0.2 | 0.05 |
| $c$ | 0.15 | 0.1 | 0.05 |
| Joint probability distribution |  |  |  |


| $X \mid Y$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: |
| $a$ | 0.1 | 0.1 | 0.25 |
| $b$ | 0.3 | 0.5 | 0.7 |
| $c$ | 0.45 | 0.75 | 1 |
| Joint distribution function |  |  |  |

In this situation, $\bar{F}$ is nota precisecumulative distribution function:

$$
\bar{F}(3,3)+\bar{F}(2,2) \bar{F}(3,2)-\bar{F}(2,3)=1+0.625^{-} 0.9375^{-} 0.875<0 .
$$

Remark 4.108One interesting case is that when the bivariate p-box is precise, that is, when the standardized mapsE,F coincide. In thatcase, weobviously havethat ( $F, F$ ) avoids sure loss if and only if it is coherent, and if and only if $F=F$ is a bivariate distribution function. When $\Omega_{1}$ and $\Omega_{2}$ are finite, it fol lows from Equation (4.15) that this distribution function has aunique extension tothe power set of $\Omega_{1} \times \Omega_{2}$; this means that in that case thelower probability associated with $(F, F)$ is linear.

Notehowever, thata distributionfunction doesnot determineuniquely itsassociated finitely additive probability, not eveninthe univariatecase; thisis a problemthat has been explored indetail in [133].

### 4.3.2 Imprecise copulas

One particular case where bivariate $p$-b oxes can arise is inthe combination of two marginal $p$-b oxes. In thissection, we shall explore thiscase in detail, by studyingthe prop erties of a numb er of bivariate p-b oxes with given marginalshemost conservative one, that shall be obtained by means of the Fré chet b ounds and the notion of natural extension, and also the one corresp onding to mo dea notion of indep endence. In both cases,we shall see that the bivariate mo del can be derived by means of an appropriate extension of thenotion of copula.

Related results can be found in [198, Section 7], with one fundamental differencein [198], the authors assume the existence of a total preorder on the pro duct space $1_{1} \times \Omega_{2}$ that is compatible with the orders in $\Omega_{1, \Omega_{2}}$; while here we shall only consider the partial order given by

$$
\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right) \quad x_{1} \leq x_{2} \text { and } y_{1} \leq y_{2} .
$$

## Animprecise version of Sklar's theorem

Taking into account our previous results, we see that the combination of themarginal p-b oxes into a bivariate one is related to the combination of marginal lower probabilities into ajoint one. This is a problem that has $b$ een studie $d$ in detail under some conditions of indep endence [52].

Rememb er that Sklar's Theorem (see Theorem 2.27) stated that given two random variables $X$ and $Y$ with asso ciated cumulative distribution functions $F_{X}$ and $F_{Y}$, there exists acopula $C$ such thatthe jointdistribution function, named $F$, can be expressed by:

$$
F(x, y)=C\left(F \times(x), F_{Y}(y)\right) \text { for any } x, y .
$$

Moreover, the copulais uniqueon Rang (FX) ${ }^{\times}$Rang $(F Y)$. Conversely, any transformation of marginal distribution functionsby means of a copula pro duces a bivariate distribution function.

Next, we intro duce the notion of imprecise copula. It isa simple generalisation of precise copulas; the $m$ ain difference lies in the rectangle inequality that has $b$ ee $n$ replaced by its four imprecise extens ions of (I-RI1)-(I-RI4).

Definition 4.109Apair offunctions
$C, \bar{C}:[0,1] \times[0,1] \rightarrow[0,1]$ s cal led an imprecise copula if:

- Both $C$ and $\bar{C}$ arecomponent-wise increasing.
- $C \leq \bar{C}$.
- $C(0, u)=\bar{C}(0, u)=0=\bar{C}(v, 0)=C(v, 0) v \quad[0,1]$
- $C(1, u)=\bar{C}(1, u)=u$ and $\bar{C}(v, 1)=C(v, 1)=v u \quad S_{2}, v \quad S_{1}$.
- $C$ and $C$ satisfy the fol lowing conditions for any $x_{1}, x_{2}, y_{1}, y_{2}$ [0,1]such that $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$ :

$$
\begin{array}{ll}
(\mathbf{I}-\mathbf{C R I 1}): & \bar{C}\left(x_{1}, y_{1}\right)+C\left(x_{2}, y_{2}\right) \geq G\left(x_{1}, y_{2}\right)+C\left(x_{2}, y_{1}\right) . \\
(\mathbf{I}-\mathbf{C R I 2}): & C\left(x_{1}, y_{1}\right)+\bar{C}\left(x_{2}, y_{2}\right) \geq G\left(x_{1}, y_{2}\right)+C\left(x_{2}, y_{1}\right) . \\
(\mathbf{I}-\mathbf{C R I 3}): & \bar{C}\left(x_{1}, y_{1}\right)+\bar{C}\left(x_{2}, y_{2}\right) \geq G\left(x_{1}, y_{2}\right)+\bar{C}\left(x_{2}, y_{1}\right) . \\
(\mathbf{I}-\mathbf{C R I 4}): & \bar{C}\left(x_{1}, y_{1}\right)+\bar{C}\left(x_{2}, y_{2}\right) \geq \bar{C}\left(x_{1}, y_{2}\right)+C\left(x_{2}, y_{1}\right) .
\end{array}
$$

$C$ and $\bar{C}$ shall be named the lower and the upp er copulas, respectively.
Note that monotonicity and condition $\quad C \leqq \bar{C}$ may not be imp osed in the definition of imprecise copula: ontheone hand, $C \leq C$ can $b$ e derived from conditions (I-C RI1) to (I-CRI4): for any $x, y \quad[0,1],(I-C R I 1)$ assures that

$$
C(x, y)+G(x, y) \geq G(x, y)+\epsilon(x, y)
$$

that is equivalent to $C(x, y) \geq G(x, y)$. Furthermore, taking $0 \leq x$ and $y_{1} \leq y_{2}$ and applying (I-CRI1) we obtain that $\quad C$ is increasing in the second comp onent. Similarly, using conditions (I-CRI1) to (I-CRI4) we obtain that both $C$ and $C$ are increasingin each comp onent.

As next result shows, one way of obtainingimprecise copulas is by taking the infimum and supremum of sets of copulas, or just simplybyconsidering twoordered copulas.

Prop osition 4.116et $C$ be a non-empty set ofcopulas. Take $C$ and $\bar{C}$ defined by:

$$
G(x, y)=\inf _{C} C(x, y) \text { and } \bar{C}(x, y)=\sup _{C} C(x, y)
$$

for any $(x, y)$. Then, $(C, \bar{C})$ forms an imprecise copula. Moreover, if $C_{1}$ and $C_{2}$ are two copulas such that $C_{1} \leq C_{2}$, then $\left(C_{1}, C_{2}\right)$ also forms an imprecise copula.

Pro of Consider $C$ a non-empty se $t$ of copulas, and let $C$ and $\bar{C}$ denote theirinfimum and supremum. Sinc e any copula is in particular a bivariate cumulative distribution function, $(G, C)$ forms a bivariate $p-b$ ox. Hence, $C$ and $C$ satisfy $C \leq C$, monotonicity, the b oundary conditions and (I-CRI1) to (I-CRI 4).

In particular, if we consider two copulas $C_{1}$ and $C_{2}$ such that $C_{1} \leq C_{2}$, the previous result applies, b eing $C_{1}$ and $C_{2}$ the infimum and supremum, resp ectively.

Let us see to which extent Sklar's theorem also holds inan imprecise framework. For this aim, we start by considering marginal imprecise distributions, describ ed by (univariate) p-b oxes, and we use imprecise copulas to obtain a bivariate p-b ox that generates a coherentlower probability.

Prop osition 4.114et $\left(F_{X}, \bar{F}_{X}\right)$ and $\left(F_{Y}, \bar{F}_{Y}\right)$ be two marginal p-boxes on respective spaces $\Omega_{1, \Omega_{2}}$, and let $C$ be a setof copulas. Define the bivariatep-box $(F, F)$ by:

$$
\begin{equation*}
F(x, y)=\inf _{C} C\left(F_{X}(x), F_{Y}(y)\right) \text { and } \bar{F}(x, y)=\sup _{C} C\left(\bar{F}_{x}(x), \bar{F}_{Y}(y)\right) \tag{4.17}
\end{equation*}
$$

for any ( $x, y$ ), and let $P$ be itsassociated lowerprobability byEquation (4.14). Then, $P$ is a coherent lower probability. Moreover,

$$
F(x, y)=C\left(F_{X}(x), F_{Y}(y)\right) \text { and } \bar{F}(x, y)=\bar{C}\left(\bar{F}_{X}(x), \bar{F}_{Y}(y)\right)
$$

where $\mathcal{C}(x, y)=\inf \subset \subset C(x, y)$ and $\bar{C}(x, y)=\sup \subset \subset C(x, y)$.
Pro of Given $C \quad C, F_{1} \quad\left(F_{X}, \bar{F}_{X}\right)$ and $F_{2} \quad\left(F_{Y}, \bar{F}_{Y}\right)$, the bivariatedistribution function $C\left(F_{1}, F_{2}\right)$ is bounded by $E, F$. Applying Prop osition 4.93, wededuce that $P$ avoids sure loss.Letus nowcheckthat itisalso coherent. Fix $(x, y)$ in $\Omega_{1} \times \Omega_{2}$. Since the marginal p-b oxes $\left(F_{X}, F_{X}\right),\left(F_{Y}, F_{Y}\right)$ are coh erent, there are $F_{1} \quad\left(F_{X}, F_{X}\right)$ and $F_{2} \quad\left(F_{Y}, F_{Y}\right)$ such that $F_{1}(x)=F_{-x}(x)$ and $F_{2}(y)=F_{Y}(y)$. As a consequence,

$$
F(x, y)=\inf _{C} C\left(F_{X}(x), F_{Y}(y)\right)=\inf _{C} C\left(F_{1}(x), F_{2}(y)\right)
$$

and since $C\left(F_{1}, F_{2}\right) \quad(F, \bar{F})$ for every $C \quad C$, it then follows from monotonicity that $E$ is the lower envelop e of the set $\{F$ distribution function $: E \leq F \leq F\}$. Similarly, we can also prove that

$$
\bar{F}=\sup \{F \text { distribution function }: F \leq F \leq \bar{F}\}
$$

Applying now Prop osition 4.97, we deduce that $P$ is coherent.
In particular, when the information ab out the marginal distribution is precise, and it is given bythe distribution functions $\quad F_{X}$ and $F_{Y}$, the bivariate $p$-b ox in the above prop osition is given by

$$
F(x, y)=\inf _{C} C\left(F x(x), F_{Y}(y)\right) \text { and } \bar{F}(x, y)=\sup _{C} C\left(F x(x), F_{Y}(y)\right)
$$

for any $(x, y) \quad \Omega_{1} \times \Omega_{2}$.
Remark 4.112Thisresult generalises [167, Theorem 2.4], wherethe authors only focused on the functions $E$ and $F$, showing that

$$
F(x, y)=G\left(F x(x), F_{Y}(y)\right) \text { and } \bar{F}(x, y)=\bar{C}\left(F_{X}(x), F_{Y}(y)\right) .
$$

Proposition 4.111 establishesmoreoverthe coherence of the jointlower probability, and itis moregeneral than [167, Theorem 2.4] since weare assuming the existenceof imprecision in the marginal distribution, that we model by means of p-boxes.

Using these results, wecangivetheform of the credal set $M(P)$ (that is, theset of dominating probabilities) asso ciated with the lower probability $P$. Note that, in the sequel, we can assume that the probabilities in $M(P)$ are defined on a suitable set of events, larger than the domainof $P$. Hence, the domains of $P$ and of the probabilities in $M(P)$ do not ne cessarily coincide.

Corollary 4.113UndertheassumptionsofProposition4.111, thecredal set $M$ ( $P$ ) of the lower probability $P$ is givenby:

$$
\left\{P \text { probability } \mid \in\left(F_{X}(x), F_{Y}(y)\right) \leq F_{P}(x, y) \leq \bar{C}\left(\bar{F}_{x}(x), \bar{F}_{Y}(y)\right) \quad x, y\right\}
$$

Pro of By Proposition 4.97, we know that $P$ is coherent if andonly if $E$ and $\bar{F}$ are the lower and the upp er envelop es of the set

$$
\{F \text { distribution function } \mid E \leq F \leq \bar{F}\} .
$$

From this, the thesis follows simply by replacing the lower and upp er distribution functions bytheirexpressions in terms of $C$ and $C$.

Next, weinvestigatewhether thesecondpart ofSklar's theorem alsoholds, meaning whether any bivariate $\mathrm{p}-\mathrm{b}$ ox can be obtained as the combination of its marginals by means ofan imprecise copula. A partial result in this sense has b een es tablished in [185, Theorem 9]. The next example shows that this result cannot be generalised to arbitrary p-b oxes.

Example 4.114Consider $\Omega_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}, \Omega_{2}=\left\{y_{1}, y_{2}\right\}$ with $x_{1}<x_{2}<x \quad 3, y_{1}<y_{2}$ and let $P_{1}, P_{2}$ be theprobability measuresassociated withthe mass functions:

|  | $\left(x_{1}, y_{1}\right)$ | $\left(x_{2}, y_{1}\right)$ | $\left(x_{1}, y_{2}\right)$ | $\left(x_{2}, y_{2}\right)$ | $\left(x_{3}, y_{1}\right)$ | $\left(x_{3}, y_{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{1}$ | 0.2 | 0 | 0.3 | 0 | 0 | 0.5 |
| $P_{2}$ | 0.1 | 0.2 | 0.5 | 0.1 | 0 | 0.1 |

Let $P=\min \quad\left\{P_{1}, P_{2}\right\}$. Thenits associated $p$-box satisfies $F\left(x_{1}\right)=F\left(\begin{array}{ll}* & 2\end{array}\right)=0.5$ and $F\left(y_{1}\right)=0.2$ while $F\left(x_{1}, y_{1}\right)=0.1<F\left(x_{2}, y_{1}\right)=0.2$. Hence, thereis nofunction $C$ such that $F\left(x_{1}, y_{1}\right)=C\left(F\left(x_{1}\right), F\left(y_{1}\right)\right)=C\left(F\left(x_{2}\right), F\left(y_{1}\right)\right)=F\left(x_{2}, y_{1}\right)$. Consequently, the lower distribution in the bivariatep-box cannot beexpressed as afunction of its marginals.

Obviously, when both $E, \bar{F}$ are bivariate distribution functions, we can express them as a function of their marginals b ecause of Sklar's theorem; the exam ple shows that this is no longer possible when they are simply standardized functions.

Nexttheorem summarises the results ofthisparagraph.

Theorem 4.115(Imprecise version of Sklar's Theoremgnsider a set of copulas $C$ and twomarginal $p$-boxes $\left(F_{\mathrm{x}}, F_{\mathrm{x}}\right)$. The functions $E$ and $F$ defined by

$$
\begin{aligned}
& E(x, y)=\inf \subset \subset C\left(F_{-x}(x), F_{Y}(y)\right) \text { and } \\
& F(x, y)=\operatorname{supc} \subset C\left(F_{x}(x), F_{Y}(y)\right)
\end{aligned}
$$

form abivariate p-box whose marginals are $\left(F_{X}, \bar{F}_{X}\right)$ and $\left(F_{Y}, \bar{F}_{Y}\right)$. Furthermore, the lower probability associated wit $h$ this bivariate $p$-box is coherent.

However, given a bivariatep-box $\left(F_{X}, \bar{F}_{X}\right)$ and $\left(F_{Y}, \bar{F}_{Y}\right)$, theremay not be an imprecise copula( $G, C)$ that generates $(F, F)$ fromitsmarginals, evenwhenits associated lower probability is coherent.

## Natural extension and indep endent pro ducts

In this section we consider two particular combinations of the marginal p-b oxes into the bivariate one. First of all, we consider the case where there is no information ab out the copula that links themarginal distribution functions.

Lemma 4.116Considerthe univariate p-boxes $\left(F_{X}, \bar{F}_{X}\right)$ and $\left(F_{Y}, \bar{F}_{Y}\right)$, and let $P$ be the lowerprevision defined on

$$
\begin{equation*}
A=\left\{A_{(x, y)}, A_{(x, y)}^{c}, A_{(x, y)}, A_{(x, y)}^{c}: x, y \quad \mathrm{R}\right\} \tag{4.18}
\end{equation*}
$$

by

$$
\begin{array}{ll}
P(A(x, y))=F-x(x) & P\left(A_{(x, y)}^{c}\right)=1-\bar{F}_{X}(x) .  \tag{4.19}\\
P\left(A_{(x, y)}\right)=F-_{Y}(y) & P\left(A_{(x, y)}^{c}\right)=1-\bar{F}_{Y}(y) .
\end{array}
$$

Then:

1. $P$ is a coherent lowerprobability.
2. $M(P)=M\left(C_{L}, C_{M}\right)$, where $M\left(C_{L}, C_{M}\right)$ is given by

$$
\left\{P \text { prob. } \mid F_{P}(x, y) \quad\left[C L\left(F_{X}(x), F_{Y}(y)\right), O_{n}\left(\bar{F}_{X}(x), \bar{F}_{Y}(y)\right)\right\}\right.
$$

Pro of Let $C_{P}$ denote the pro duct copula, and le $\mathbb{P}_{P}$ be the coherent lower probability on $K$ that results from Prop osition 4.111 , taking $C=\left\{C_{P}\right\}$. Then $P$ coincides with $P_{C_{P}}$ in $A$, and consequently $P$ is coherent.

On the other hand, let us check the equality between the credal sets $M(P)$ and $M_{\left(C_{L}, C_{M}\right)}$ (note that both sets are trivially non-empty).

- Let $P$ be a probability in $M\left(C L, C_{M}\right)$, and let $F_{P}$ be its asso ciated distribution function. Th en it holds that:

$$
\begin{array}{ll}
F_{P}(x, y) & {\left[C L\left(F_{X}(x), 1\right), C M\left(\bar{F}_{X}(x), 1\right)\right]=\left[F_{X}(x), \bar{F}_{X}(x)\right] .} \\
F_{P}(x, y) & {\left[C L\left(1, F_{Y}(y)\right), C M\left(1, F_{Y}(y)\right)\right]=\left[F_{Y}(y), F_{Y}(y)\right] .}
\end{array}
$$

Thus, the marginal distribution functions of $F_{P}$ belong to the p-b oxes $\left(F_{X}, \bar{F}_{x}\right)$ and $\left(F_{Y}, F_{Y}\right)$. As a consequence, $P \quad M(P)$.

- Convers elylet $P$ be a probability on $M(P)$, and let $F_{P}$ b e its asso ciated distribution function. Then, Sklar's Theorem assures that there is a (prec ise) copula $C$ such that $F_{P}(x, y)=C(F P(x, y), F P(x, y))$ for every $(x, y) \quad \Omega_{1} \times \Omega_{2}$. Hence,

$$
\begin{aligned}
C_{L}\left(F_{X}(x), F_{Y}(y)\right) & \leq C_{L}\left(F_{P}(x, y), F P(x, y)\right) \leq C\left(F_{P}(x, y), F P(x, y)\right) \\
& \leq C\left(F_{x}(x), F_{Y}(y)\right) \leq C_{M}\left(F_{x}(x), F_{Y}(y)\right),
\end{aligned}
$$

taking into account that any copula lies between $C_{L}$ and $C_{M}$. We conclu de that $P \quad M\left(C_{L}, C_{M}\right)$ and as a consequence both sets coincide.

From this result we can immediately derive the expression of the natural extension [205] of two marginal p-b oxes,that is theleast-committal (i.e., the mostimprecise) coherent lower probabilitythatextends $P$ toa larger domain.

Prop osition 4.11łet $\left(F_{X}, \bar{F}_{X}\right)$ and $\left(F_{Y}, \bar{F}_{Y}\right)$ be two univariate p-boxes. Let $P$ be the lower prevision defined on the set $A$ given by Equation (4.18)by means of Equation (4.19). Then, thenatural extension E of $P$ to $K$ is givenby

$$
E\left(A_{(x, y)}\right)=C L\left(F_{X}(x), F_{Y}(y)\right) \text { and } E\left(A_{(x, y)}^{c}\right)=1-C_{M}\left(\bar{F}_{X}(x), \bar{F}_{Y}(y)\right)
$$

The bivariate $p$-box $(F, \bar{F})$ associated withE is givenby:

$$
F(x, y)=C \quad L\left(F_{X}(x), F_{Y}(y)\right) \text { and } \bar{F}(x, y)=C M\left(\bar{F}_{X}(x), \bar{F}_{Y}(y)\right) \text {. }
$$

Pro of On the onehand, thelower prevision $P$ iscoherentfromtheprevious lemma, and in addition its asso ciated credal set is $M(P)=M\left(C_{L}, C_{M}\right)$. The natural extension of $P$ tothe set $K$ is given by:

$$
\begin{aligned}
E\left(A_{(x, y)}\right) & =\inf P M_{(P)} F_{P}(x, y)=\inf P M_{\left(C_{L}, C_{M}\right)} F_{P}(x, y)=C_{L}\left(F_{X}(x), F_{Y}(y)\right) . \\
E\left(A_{(x, y)}^{(x)}\right) & =\inf P M_{(P)}\left(1-P\left(A_{(x, y)}\right)\right)=1-\operatorname{supp} M_{(P)} F_{P} \underline{(x, y)} \\
& =1-\sup M_{\left(C_{L}, C_{M}\right)} F_{P}(x, y)=1-C_{M}\left(F_{X}(x), F_{Y}(y)\right) .
\end{aligned}
$$

The second partis an immediateconsequenceof thefirst.
Recall that Prop osition 4.110 assures that every pair of copul\&si and $C_{2}$ satisfying $C_{1} \leq C_{2}$ (in particular $C_{\mathrm{L}}$ and $C_{M}$ ) forms an imprecise copula $\left(C_{1}, C_{2}\right)$.

Until now, wehavestudied howtobuildthe joint p-b ox $(F, \bar{F})$ fromtwo given marginals $\left(F_{X}, F_{X}\right),\left(F_{Y}, F_{Y}\right)$, when we have no information ab out the interaction b etwe en the underlying variables $X$ and $Y$ : we have argued that we should us e in that case the natural extension of the asso ciated coherent lower probabilities, which corresp onds to combining the compatible univariate distribution functions by means of all the possible copulas, and then considering the lower envelop e.

Next, we consider another case of interest: that where the variables $\underline{X}$ and $Y$ are assumed to be indep endent. Consider marginal p-b oxes $\left(F_{X}, F_{X}\right)$, $\left(F_{Y}, F_{Y}\right)$, and let $P_{X}, P_{Y}$ the coherent lower probabilities theyinduce by meansof Equation (2.17). We shall also use this notation to refer to their natu ral extensions, so that

$$
\begin{aligned}
& E_{X}:=\min \left\{P: P(A x) \quad\left[F_{X}(x), \bar{F}_{x}(x)\right] \quad x \quad \Omega_{1}\right\} \text { and } \\
& E_{Y}:=\min \left\{P: P(A y) \quad\left[F_{Y}(y), \bar{F}_{Y}(y)\right] y \quad \Omega_{2}\right\} .
\end{aligned}
$$

Under imprecise information, there is more than one way to mo del the notion ofindependence; see [47]for a survey on this top ic. Because ofthis, thereismore thanone manner in which we can say th at a coherent lower prevision $P$ on the pro duct space is an independent pro duct of its marginals $P_{X}, \underline{-}_{Y}$. Thi s was studied in some detail in [52]. Inthe remainder of this paragraph, we shall follow that pap er into assuming that the spaces $\Omega$ and $\Omega$ are finite. We recall thus the following definition s.

Definition 4.118Let $P$ be acoherent lower prevision on $L\left(\Omega_{1} \times \Omega_{2}\right)$ with marginals $R_{X}, R_{Y}$. Wesay that $P$ is an indep endent pro duct when it is coherent with the conditional lower previsions $P_{X}\left(\mid \Omega_{2}\right), P_{Y}\left(\mid \Omega_{1}\right)$ derived from $P_{X}, P_{Y}$ by epistemic irrelevance, meaning that

$$
E_{X}\left(\left.f\right|_{y}\right):=P-_{X}(f(, y)) \text { and } R_{Y}\left(\left.f\right|_{X}\right):=R_{Y}(f(x,)) \quad f \quad L\left(\Omega_{1} \times \Omega_{2}\right), x \quad \Omega_{1}, y \quad \Omega_{2}
$$

One example of indep endent pro duct is the strong product, given by

$$
P_{X} \quad P_{Y}:=\inf \left\{P_{X} \times P_{Y}: P X \geq P_{X}, P_{Y} \geq P_{Y}\right\}
$$

This is the joint mo del satisfying the notion of strong independenc\&owever, it is not the only independent pro duct, norisitthe smallestone. In fact, the smallest indep endent pro duct of the marginal coherent lower previsions $D_{X}, P_{Y}$ istheirindependent natural extension, whichis given by

$$
\begin{aligned}
\left(P_{X} \quad\right. & \left.P_{Y}\right)(f) \\
= & \sup \left\{\mu: f-\mu \geq g-E_{X}\left(g \mid \Omega_{2}\right)+h-P_{Y}\left(h \mid \Omega_{1}\right) \text { for some } g, h \quad L\left(\Omega_{1} \times \Omega_{2}\right)\right\}
\end{aligned}
$$

for every gamble $f$ on $\Omega_{1} \times \Omega_{2}$.
One way of building indep endent pro ducts is by means of the following condition:
Definition 4.119A coherent lower previsionP on $L\left(\Omega_{1} \times \Omega_{2}\right)$ is cal led factorising when

$$
P(f g)=P(f P(g)) \quad f \quad L^{+}\left(\Omega_{1}\right), g \quad L\left(\Omega_{2}\right)
$$

and

$$
P(f g)=P(g P(f)) f \quad L\left(\Omega_{1}\right), g \quad L^{+}\left(\Omega_{2}\right)
$$

Both the indep endent natural extension and the strong product are factorising. Indeed, it can be proven [52, Theorem 28] that any factorising $P$ is an indep endent pro duct of its marginals, but the converse is not true. Underfactorisation, itisnotdifficulttoestablish the follow ing result.

Prop osition 4.12bet $\left(F_{X}, \bar{F}_{X}\right),\left(F_{Y}, \bar{F}_{Y}\right)$ be marginal p-boxes, and let $E_{X}, E_{Y}$ be their associated coherent lower previsions. Let $P$ bea factorising coherent lower prevision on $L\left(\Omega_{1} \times \Omega_{2}\right)$ with these marginals. Then itinduces the bivariate p-box $(F, F)$ given by

$$
F(x, y)=F-x(x) \quad E_{Y}(y) \quad \text { and } \bar{F}(x, y)=\bar{F} x(x) \quad \bar{F}_{Y}(y)
$$

Pro of Itsufficesto takeinto accountthat,if $\quad P$ isfactorising, then

$$
P\left(A_{(x, y)}\right)=P\left(I A_{(x, y}, \quad I_{A_{(x, y)}}\right)=P\left(A_{(x, y)}\right) P P\left(A_{(x, y)}\right)=F_{-x}(x) \quad E_{Y}(y),
$$

and similarly using conjugacy we deducethat

$$
\left.\bar{P}\left(A_{(x, y)}\right)=\bar{P}\left(A_{(x, y)}, \quad A_{(x, y)}\right)=\overline{P( } A_{(x, y)}\right) \bar{P}\left(A_{(x, y)}\right)=\bar{F} x(x) \quad \bar{F}_{Y}(y)
$$

taking into account in the application of the factorisation condition that both gambles $A_{(x, y)}, A_{(x, y)}$ are positive, and recallingalsothat $x, y$ denotethe maxima of $\Omega, \Omega$, resp ectively.

Fromthis, itis easyto deduce thatthe $\quad p$-b ox $(F, F)$ induced by afactorising $P$ is the lower envelop e of the set of bivariate distribution functions

$$
\left\{F: F(x, y)=F x(x) \quad F_{Y}(y) \text { for } F_{X} \quad\left(F_{X}, \bar{F}_{x}\right), F_{Y} \quad\left(F_{Y}, \bar{F}_{Y}\right)\right\}
$$

Inother words, the bivariate $p_{\text {-b ox can b e obtained by applying the imprecise version of }}$ Sklar's theorem (Prop osition 4.111) with the pro duct copula.

In particular, this also holds for other (stronger) con ditions than factorisation also discussed in [52], such as the Kuznetsov prop erty.

Note also that in our defin ition of the marginal coherent lower prevision $B_{X}, P_{Y}$ we have considered the natural extensions of their res tric tions to cumulative sets; however,
the result still holds if we consider any other coherent extens ion，since in our use of the factorisationcondition onlythe valuesin $A_{(x, y)}, A_{(x, y)}$ matter．We conclu de then that， even if the indep endent natural extension and the strong pro duct do not coincide in general［205，Section 9．3．4］，they agree with resp ect to their asso ciated bivariate p－b ox．

Interestingly，not all indep endent products induce the same $p$－b ox determined by the copula of the pro duct：

Example 4．121Consider $\Omega_{1}=\Omega_{2}=\{0,1\}$ and let $E_{X}=F_{-Y}$ be the marginal distri－ bution fu nctions given by $E_{X}(0)=F-Y(0)=0.5, E_{X}(1)=F-Y(1)=1$ ．They inducethe marginal coherent lower previsions $P_{X}, P_{Y}$ given by

$$
E_{X}(f)=\min \left\{f(0), 0.5 f(0)+0.5 f(1) \text { and } E_{Y}(g)=\min \{g(0), 0.5 g(0)+0.5 g(Y)\right.
$$

for every $f \quad L\left(\Omega_{1}\right), g \quad L\left(\Omega_{2}\right)$ ．Theirstrong product isgiven by：

$$
B_{X} \quad P_{Y}:=\min \{(0.25,0.25,0.25,0.25),(0.5,0,0.5,0),(0.5,0.5,0,0),\}\left(, 1,\left(A_{1} .20\right) 0\right)
$$

wherein theabove equationa vector $(a, b, c, d)$ is used to denote the vector of probabilities $\{(P(0,0), P(0,1), P(1,0), P(1\} 1)$,$\} et P$ be thecoherent lowerprevision givenby

$$
P:=\min \{(0.375,0.125,0.375,0.125),(0.375,0.375,0.125,0.125),\}(.1,0,0,0)
$$

Then the marginals of $E$ are also $E_{X}, D_{Y}$ ．Moreover，weseefromEquation（4．20）that $E$ dominates $E_{X} \quad E_{Y}$ ，and this al lows us to deduce thate is weaklycoherent with both $R_{X}\left(\mid \Omega_{2}\right), R_{Y}\left(| |_{\Omega_{1}}\right)$ ：given a gamblef on $\Omega_{1} \times \Omega_{2}$ ，

$$
P\left(G\left(f \mid \Omega_{2}\right)\right) \geq\left(P_{X} \quad P_{Y}\right)\left(G\left(f \mid \Omega_{2}\right)\right) \geq 0,
$$

whence in particular $P(G(f \mid y))=P\left(G\left(\left.f 1 \quad y\right|_{\Omega_{2}}\right)\right) \geq 0$ for every $y \quad \Omega_{2}$ ．And since $E_{Y}$ is the marginal of $P$ ，it fol lows that we must haveP $(G(f \mid y))=0$ ：ifit were $P(G(f \mid y))>0$ then we would define the gambleg by $g(x, y)=f(x, y)$ and

$$
0=P\left(g-P_{x}(g)\right) \geq{ }_{y} P(G(g l y))>0
$$

acontradiction．Similarly，$P\left(G\left(\left.f\right|_{1_{1}}\right)\right) \geq 0$ and $P\left(G\left(\left.f\right|_{x}\right)\right)=0$ for every $x \quad \Omega_{1}$ ． Applying［137，Theorem 1］，we conclu de tha己，$P_{X}\left(\left.\right|_{\Omega_{1}}\right), P_{Y}\left(\mid \|_{1}\right)$ are weaklycoherent， and since $E_{X}\left(\mid \Omega_{2}\right), P_{Y}\left(\mid \Omega_{1}\right)$ are coherentbecausethey are jointly coherent wit⿻上丨${ }_{X} \quad E_{Y}$ ， we deduce from the reduction theorem［205，Theorem 7．1．5］that $P, P_{X}\left(\mid \|_{2}\right), P_{Y}\left(\mid \|_{1}\right)$ are coherent．Thus，$P$ is an independent product．Itsassociated distribution functionis given by

$$
F(0,0)=0.375, F(0,1)=0.5, F(1,0)=0.5, F(1,1)=1 .
$$

This differs from the bivariate distribution function $E$ induced by $P_{X} \quad E_{Y}$ ，which is the product of its marginalsand which satisfiestherefore $F(0,0)=0.25$

### 4.3.3 The roleof imprecise copulas in the imprecise orders

Next we study how imprecise copulas can be used to express the relationship between imprecise sto chastic dominance and statistical preference, that arise by using FSD and SP as the binary relation in Section 4.1. Afterwards, we shall stu dy the role of imprecise copulas with resp ect to imprecise bivariate sto chastic orders.

## Univariate orders

We have seen in Section 3.2 that, although first degree sto chastic dominance do es not imply statistical preference ingeneral (seeExample3.43), thereare situations inwhich the imp lication holds (see Theorem 3.64), in termsof themarginal distributions of the variables and thecopula that determines their joint distribution.

Given two random variables $X$ and $Y$, let usdenote by $C_{X, Y}$ the setof copulas that make sto chastic dominance imply statistical preferenceSince the latter dep ends on the joint distribution of the random variables, it may be that $X$ is preferred to $Y$ when theirjointdistributionis determined byacopula $\quad C_{1}$ and $Y$ ispreferred to $X$ whenit is determined by different copula $C_{2}$.

In the imprecise framework, it is p ossible to establ ish the following conn ection $b$ etween the imprecise sto chastic dominance and statistical preferencteve shallassume that we have imprecise information ab out the marginal distributions (that we mo del by means of p-b oxes) and by the copula that links the marginal distributionsinto a joint (that we mo del by means of a set of copulas), in a manner similar to Prop osition 4.111:

Prop osition 4.12£onsidera coherent lowerprevision $P$ definedon thespaceproduct $X \times Y$ of two finite spacesthat is factorising. Denote by $(F, \bar{F})$ its associated bivari-atep-box, that fromProposition 4.120 isbuilt fromthemarginal p-boxes $\left(F_{X}, \bar{F}_{x}\right)$ and $\left(F_{Y}, F_{Y}\right)$ using the product copula. Then,it holds that:

$$
\left(F_{X}, \bar{F}_{X}\right) \quad \mathrm{FSD}_{i}\left(F_{Y}, \bar{F}_{Y}\right) \quad X \quad \mathrm{sP}_{i} Y
$$

for any $i=1, \ldots, 6$, where $X$ (respectively $Y$ ) denotes the set of random variables whose cumulative distribution function belongs to $\left(F_{X}, F_{X}\right)\left(\left(F_{Y}, F_{Y}\right)\right.$, respectively).

Pro of We know from Prop osition 4.120 that $(F, \bar{F})$ is built by applying the pro duct copula to their marginal p-b oxes.

- $i=1$ : Weknowthat forany $F_{X} \quad\left(F_{X}, \bar{F}_{X}\right)$ and $F_{Y} \quad\left(F_{Y}, \bar{F}_{Y}\right), F_{X} \quad$ FSD $F_{Y}$. Since they are coupled by the pro duct copula, Theorem 3.44 implie $S_{F X} \quad{ }_{S P} P_{F_{Y}}$. Thus, $X \quad \mathrm{sp}_{1} Y$.
- $i=2$ : We know that there is $F_{X} \quad\left(F_{X}, \bar{F}_{X}\right)$ such that $F_{X} \quad$ FSD $F_{Y}$ for any $F_{Y} \quad\left(F_{Y}, F_{Y}\right)$. Since they are coupled by the pro duct copula, Theorem 3.44 implies $P_{F_{X}} \quad$ sp $P_{F_{Y}}$ for any $F_{Y} \quad\left(F_{Y}, F_{Y}\right)$. Then, $X \quad \mathrm{SP}_{2} Y$.
- $i=3$ : Weknow thatforany $F_{Y} \quad\left(F_{Y}, F_{Y}\right)$ there is $F_{X} \quad\left(F_{X}, F_{X}\right)$ such that $F_{X}$ FSD $F_{Y}$. Then, for any $P_{F_{Y}}$, thereisa $P_{F_{X}}$ such that $F_{X}$ FSD $F_{Y}$, and consequently, the pro duct copula links them, and by Theorem 3.44, $P_{\mathrm{FX}} \quad$ sp $P_{\mathrm{FY}}$.
- $i=4$ : We know that there are $F_{X} \quad\left(F_{X}, \bar{F}_{X}\right)$ and $F_{Y} \quad\left(F_{Y}, \bar{F}_{Y}\right)$ such that $F_{X} \quad$ FSD $F_{Y}$. Then, consider $P_{F_{X}}$ and $P_{F_{Y}}$. Since they are coupled by the pro duct copula, Theorem 3.44 implies $P_{\mathrm{FX}} \quad$ sP $P_{\mathrm{FY}}$.
- The pro of case $=5$ and $i=6$ are similar to the one cases $=2$ and $i=3$.

Remark 4.123Although we maythink thatthe previousresult also holds when webuild the joint bivariate p-box from the marginal p-boxes by means of a set of copul\&s $C_{X, Y}$, inthemanner ofProposition4.111, sucharesult doesnotseemto holdingeneral. The reason is that, as soonasone ofthe marginal p-boxes is imprecise (i.e., if its lower and the upper bounds do not coincide), we canfind a distribution function inside the p-box associated with aneither continuousnor discrete randomvariable, and then, taking into accountTheorem3.64, we cannotassurethe implication FSD sp unlesswe assume independence between the two p-boxes.

## Bivariate orders

As we saw in Equation (2.6), univariate sto chastic dominance can be expressed in terms of the comparison of exp ectations. It is also well-known that sto chastic dominance can b e expressed by means othe comparison of the survival distribution functions: given two random variables $X$ and $Y$, their dis tribution functions are given by $F_{X}$ and $F_{Y}$, and let $F_{X}(t)=P(X>t) \quad$ and $F_{Y}=P(Y>t) \quad$ denote their asso ciated survival distribution functions. Then, it holds that:

$$
\begin{equation*}
F_{X}(t)=P(X \leq t) \leq P(Y \leq t)=F_{Y}(t) \quad F_{X}(t)=1 \quad-F_{X}(t) \geq 1-F_{Y}(t)=F_{Y} \tag{4.21}
\end{equation*}
$$

Indeed, according to Equation(2.5), we have thefollowing characterisationsfor first degree sto chastic dominance:

$$
\begin{aligned}
X \quad \text { FSD } Y \quad & F_{X}(t) \leq F_{Y}(t) \text { for any } t \\
& E[u(X)] \geq E[u(Y) \text { for any increasing } u \\
& F_{X}(t) \geq F_{Y}(t) \text { for any } t .
\end{aligned}
$$

In the bivariate cas e, the survival distribution functions are not related to the distribution functionsas inEquation(4.21), since $P(X>t \quad 1, Y>t \quad 2)=1-P\left(X \leq t_{1}, Y \leq t_{2}\right)$. Then,
these three conditions are not equivalent, and they generate three different sto chastic orders:

Definition 4.124Let $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$ be tworandom vectors with bivariate distribution functions $F_{X_{1}, X_{2}}$ and $F_{Y_{1}, Y_{2}}$. We say that:

- $\left(X_{1}, X_{2}\right)$ sto chastically dominates $\left(Y_{1}, Y_{2}\right)$, and denote it $\left(X_{1}, X_{2}\right) \quad$ FSD $\left(Y_{1}, Y_{2}\right)$, if $E\left[u\left(X_{1}, X_{2}\right)\right] \geq E\left[u\left(Y_{1}, Y_{2}\right)\right]$ for any increasing $u: \mathrm{R}^{2} \rightarrow \mathrm{R}$.
- $\left(X_{1}, X_{2}\right)$ is preferred to $\left(Y_{1}, Y_{2}\right)$ with resp ect to the upp er orthant order, and denote it $\left(X_{1}, X_{2}\right)$ uo $\left(Y_{1}, Y_{2}\right)$, if $\quad F_{X_{1}, X_{2}(t)} \geq F_{Y_{1}, Y_{2}(t)}$ for any $t \quad R^{2}$.
- $\left(X_{1}, X_{2}\right)$ is preferred to $\left(Y_{1}, Y_{2}\right)$ with res $p$ ect to the lower orthant order, and denote it $\left(X_{1}, X_{2}\right) \quad$ юo $\left(Y_{1}, Y_{2}\right)$, if $\quad F_{X_{1}, X_{2}}(t) \leq F_{Y_{1}, Y_{2}}(t)$ for any $t \quad R^{2}$.

These three orders are equivalent in the univariate case, but not in th e bivariate. Next theorem describ e the relationships between these three orders:
 In addition, there is no implication between the lower and the upperorthant orders.

In Remark 4.127 we will give an example where the lower and the upp er orthant orders are not equivalent.

Since any copulaC is inparticular a bivariate distributionfunction on $[0,1\}[0,1$, the previous orders can also $b$ e ap plied to the comparison of copulas. Takingthis into account, we can establis $h$ the following result, that links the comparison of bivariate p-b oxes with the comparison of their asso ciated marginal p-b oxes.

Prop osition 4.126et ( $F_{X_{1}}, \bar{F}_{X_{1}}$ ), ( $F_{X_{2}}, \bar{F}_{X_{2}}$ ), ( $F_{Y_{1},}, \bar{F}_{Y_{1}}$ ) be univariate p-boxes and $\left(F_{Y_{2}}, F_{Y_{2}}\right)$ and the set of copulas $X_{X}$ and $G_{Y}$. Let $\left(F_{X}, F_{X}\right)$ and $\left(F_{Y}, F_{Y}\right)$ be the bivariate $p$-boxes given by:

$$
\left.\begin{array}{llll}
\left(F_{X}, \bar{F}_{X}\right):=\left\{C\left(F_{X_{1}}, F_{X_{2}}\right): C\right. & C_{X}, F_{X_{1}} & \left(F_{X_{1}}, \bar{F}_{X_{1}}\right), F X_{X_{2}} & \left(F_{X_{2}}, \bar{F}_{X_{2}}\right)
\end{array}\right\}
$$

Then, it holds that:

$$
\begin{array}{lrl}
\left(F_{X_{1}}, \bar{F}_{X_{1}}\right) & \mathrm{FSD}_{\mathrm{i}}\left(F_{Y_{1}}, \bar{F}_{Y_{1}}\right) \\
\left(F_{X_{2}}, \bar{F}_{\mathrm{X}_{2}}\right) & \mathrm{FSDi}_{\mathrm{i}}\left(F_{Y_{2}}, \bar{F}_{\mathrm{Y}_{2}}\right) \\
& C_{X} \quad \text { loi }_{Y} \quad \square
\end{array} \quad\left(F_{X}, \bar{F}_{\mathrm{X}}\right) \quad \text { loi }\left(F_{Y}, \bar{F}_{Y}\right)
$$

for $i=1, . . ., 6$.

## Pro of

( $i=1$ ) We knowthat:

$$
\begin{aligned}
& F_{X_{1}} \quad\left(F_{X_{1}}, \bar{F}_{X_{1}}\right), F_{Y_{1}} \quad\left(F_{Y_{1}}, \bar{F}_{\mathrm{Y}_{1}}\right), F_{X_{1}} \leq F_{\mathrm{Y}_{1}} . \\
& F_{X_{2}}\left(F_{X_{X_{2}}}, F_{\mathrm{X}_{2}}\right), F_{\mathrm{Y}_{2}}\left(F_{\mathrm{Y}_{2}}, F_{\mathrm{Y}_{2}}\right), F \mathrm{~F}_{2} \leq F_{\mathrm{Y}_{2}} . \\
& C_{X} \quad C_{X}, C_{Y} \quad C_{Y}, C_{X} \leq C_{Y} .
\end{aligned}
$$

Consider $F_{X} \quad\left(F_{X}, \bar{F}_{X}\right)$ and $F_{Y} \quad\left(F_{Y}, \bar{F}_{Y}\right)$. They can b e expres sed in the following way: $F_{X}(x, y)=C \times\left(F_{X_{1}}(x), F_{X_{2}}(y)\right)$ and $F_{Y}(x, y)=C \quad Y\left(F_{Y_{1}}(x), F_{Y_{2}}(y)\right)$. Then:

$$
\begin{aligned}
F_{X}(x, y) & =C_{x}\left(F_{X_{1}}(x), F_{X_{2}}(y)\right) \leq C_{X}\left(F_{Y_{1}}(x), F_{Y_{2}}(y)\right) \\
& \leq C_{Y}\left(F_{Y_{1}}(x), F_{Y_{2}}(y)\right)=F_{Y}(x, y) .
\end{aligned}
$$

$(i=2)$ We know th at:

$$
\begin{array}{llll}
F_{X_{1}} \quad\left(F_{X_{1}}, \bar{F}_{X_{1}}\right) \text { such that } F_{X_{1}} \leq F_{Y_{1}} & F_{Y_{1}} & \left(F_{Y_{1}}, \bar{F}_{Y_{1}}\right) . \\
F_{X_{2}} & \left(F_{X_{2}}, F_{X_{2}}\right) \text { such that } F_{X_{2}} \leq F_{Y_{2}} & F_{Y_{2}} & \left(F_{Y_{2}}, F_{Y_{2}}\right) . \\
C_{X} C_{X} \text { such that } C_{X} \leq C_{Y} & C_{Y} & C_{Y} . &
\end{array}
$$

Consider $F_{X}(x, y):=C \quad x\left(F_{X_{1}}(x), F_{X_{2}}(y)\right)$, and letusseethat $\quad F_{X} \leq F_{Y}$ for any $F_{Y}(x, y)=C_{Y}\left(F_{Y_{1}}(x), F_{Y_{2}}(y)\right)$ :

$$
\begin{aligned}
F_{X}(x, y) & =C_{X}\left(F_{X_{1}}(x), F_{X_{2}}(y)\right) \leq C_{X}\left(F_{Y_{1}}(x), F_{X_{2}}(y)\right) \\
& \leq C_{Y}\left(F_{Y_{1}}(x), F_{X_{2}}(y)\right)=F_{Y}(x, y) .
\end{aligned}
$$

( $i=3$ ) We know th at:

$$
\begin{array}{llll}
F_{Y_{1}} & \left(F_{Y_{1}}, \bar{F}_{Y_{1}}\right), \quad F_{X_{1}} \quad\left(F_{X_{1}}, \bar{F}_{X_{1}}\right) \text { such that } F_{X_{1}} \leq F_{Y_{1}} . \\
F_{Y_{2}} & \left(F_{Y_{2}}, F_{Y_{2}}\right), \quad F_{X_{2}} \quad\left(F_{X_{2}}, F_{X_{2}}\right) \text { such that } F_{X_{2}} \leq F_{Y_{2}} . \\
C_{Y} & C_{Y} C_{X} \quad C_{X} \text { such that } C_{X} \leq C_{Y} .
\end{array}
$$

Consider $F_{Y}(x, y)=C \quad Y\left(F_{Y_{1}}(x), F_{Y_{2}}(y)\right)$, andlet us check thatthere is $F_{X}$ such that $F_{X} \leq F_{Y}$. We define $F_{X}(x, y)=C \times\left(F_{X_{1}}(x), F_{X_{2}}(y)\right)$ such that $C_{X} \leq C_{Y}$, $F_{X_{1}} \leq F_{Y_{1}}$ and $F_{X_{2}} \leq F_{Y_{2}}$. Then:

$$
\begin{aligned}
F_{X}(x, y) & =C_{x}\left(F_{X_{1}}(x), F_{X_{2}}(y)\right) \leq C_{X}\left(F_{Y_{1}}(x), F_{Y_{2}}(y)\right) \\
& \left.\leq C_{Y}\left(F_{Y_{1}}(x), F_{Y_{2}}(y)\right)\right)=F_{Y}(x, y) .
\end{aligned}
$$

( $i=4$ ) Weknow that:

$$
\begin{aligned}
& F_{X_{1}} \quad\left(F_{X_{1}}, \bar{F}_{X_{1}}\right), F_{Y_{1}} \quad\left(F_{Y_{1}}, \bar{F}_{Y_{1}}\right) \text { such that } F_{X_{1}} \leq F_{Y_{Y_{1}}} . \\
& F_{X_{2}}\left(F_{X_{2}}, F_{X_{2}}\right), F_{Y_{2}} \quad\left(F_{Y_{2}}, \bar{F}_{Y_{2}}\right) \text { such that } F_{X_{2}} \leq F_{Y_{2}} . \\
& C_{X} C_{X}, C_{Y} \quad C_{Y} \text { such that } C_{X} \leq C_{Y} .
\end{aligned}
$$

Consider $F_{X}(x, y)=C \quad x\left(F_{X_{1}}(x), F_{X_{2}}(y)\right)$ and $F_{Y}(x, y)=C \quad{ }_{Y}\left(F_{Y_{1}}(x), F_{Y_{2}}(y)\right)$ ．It holds that $F_{X} \leq F_{Y}$ ：

$$
\begin{aligned}
F_{X}(x, y) & =C_{X}\left(F_{X_{1}}(x), F_{X_{2}}(y)\right) \leq C_{X}\left(F_{Y_{1}}(x), F_{Y_{2}}(y)\right) \\
& \leq C_{Y}\left(F_{Y_{1}}(x), F_{Y_{2}}(y)\right)=F_{Y}(x, y) .
\end{aligned}
$$

（ $i=5, i=6$ ）The pro of of thes e two cases is analogous to that of $i=2$ and $i=3$ resp ectively．

Remark 4．127Note that under the hypotheses of Proposition 4.126 we do not neces－ sarily have that（ $F_{X}, F_{X}$ ）uo（ $F_{Y}, F_{Y}$ ）．To see this，consider the fol lowing probability mass functions（see［139，Example 3．3．3］）：

| $X_{2} \mid X_{1}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 8 |
| 2 | 4 | 4 | 0 |
| 4 | 8 | 0 |  |


| $Y_{2} \mid Y_{1}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 0 |
| 1 | 4 | 4 | 0 |
| 2 | 0 | 8 | 8 |
| 1 | 1 | 0 | 0 |

Then，$\left(X_{1}, X_{2}\right) \quad$ ⿺夂 $\left(Y_{1}, Y_{2}\right)$ since $F_{X_{1}, X_{2}} \leq F_{Y_{1}, Y_{2}}$ ．However，$\left(X_{1}, X_{2}\right) \quad$ ио $\left(Y_{1}, Y_{2}\right)$ ， since：

$$
F_{X}(1,0)=P\left(X_{1}>1, X_{2}>0\right)=0<\quad \frac{1}{8}=P\left(Y_{1}>1, Y_{2}>0\right)=F_{Y(1,0)} .
$$

Thisexample also shows that under the assumptions of Proposition 4.126 it does not necessarily hold that $\left(X_{1}, X_{2}\right) \quad$ FSD $\left(Y_{1}, Y_{2}\right)$ ；otherwise，we woulddeduce fromTheo－ rem 4.125 that $\left(X_{1}, X_{2}\right)$ ио（ $Y_{1}, Y_{2}$ ），a contradiction with the example above．

A result similar to Prop osition 4.126 can be established when we consider the upp er instead of thelower orthantorder：

Prop osition 4．128et（ $F_{X_{1}}, \bar{F}_{X_{1}}$ ），（ $F_{X_{2}}, \bar{F}_{X_{2}}$ ），（ $F_{Y_{1}}, \bar{F}_{Y_{1}}$ ）be univariate $p$－boxes and （ $F_{Y_{2}}, F_{Y_{2}}$ ）and the set of copula $⿷_{X}$ and $G_{Y}$ ．Let $\left(F_{X}, F_{X}\right)$ and $\left(F_{Y}, \bar{F}_{Y}\right)$ be the bivariate $p$－boxes given by：

$$
\left.\begin{array}{lll}
\left(F_{X}, \bar{F}_{X}\right):=\left\{C\left(F_{X_{1}}, F_{X_{2}}\right): C\right. & C_{X}, F_{X_{1}} & \left(F_{X_{1}}, \bar{F}_{X_{1}}\right), F_{X_{2}}
\end{array}\left(F_{X_{2}}, \bar{F}_{X_{2}}\right)\right\}, ~\left(\begin{array}{lll} 
\\
\left(F_{Y}, \bar{F}_{Y}\right):=\left\{C\left(F_{Y_{1}}, F_{Y_{2}}\right): C\right. & C_{Y}, F_{Y_{1}} & \left(F_{Y_{1}}, \bar{F}_{Y_{1}}\right), F_{Y_{2}}
\end{array}\left(F_{\left.Y_{Y_{2}}, \bar{F}_{Y_{2}}\right)}\right)\right\} .
$$

Then，it holds that：
for $i=1, \ldots, 6$ ．
The pro of of thisresult is analogous tothe one of
Prop osition 4．126，and therefore omitted．

## Natural extension and indep endent pro duct

To conclude this section, we consider the particular cases where the bivariate p-b oxes are made by means of the natural extension or a factorising pro duct.

By Prop osition 4.117, the natural extension of two marginal p-b oxe\$ $F_{x}, \bar{F}_{x}$ ) and $\left(F_{Y}, F_{Y}\right)$ is given by:

$$
\begin{equation*}
F(x, y)=C \quad\left\llcorner\left(F_{X}(x), F_{Y}(y)\right) \text { and } \bar{F}(x, y)=C \mathrm{~m}\left(\bar{F}_{X}(x), \bar{F}_{Y}(y)\right)\right. \text {. } \tag{4.22}
\end{equation*}
$$

This allows us to prove the following result:
Corollary 4.129Considermarginal p-boxes $\left(F_{X_{1}}, \bar{F}_{X_{1}}\right)$, $\left(F_{X_{2}}, \bar{F}_{X_{2}}\right)$ and $\left(F_{Y_{1}}, \bar{F}_{Y_{1}}\right)$ and $\left(F_{Y_{2}}, F_{Y_{2}}\right)$. Let $\left(F_{X}, F_{X}\right)$ (respectively, $\left(F_{Y_{Y}}, F_{Y}\right)$ )denote the natural extension of the $p-\operatorname{boxes}\left(F_{X_{1}}, \bar{F}_{X_{1}}\right)$ and $\left(F_{X_{2}}, \bar{F}_{X_{2}}\right)$ (respectively, $\left(F_{Y_{1}}, \bar{F}_{\mathrm{Y}_{1}}\right),\left(F_{\mathrm{Y}_{2}}, \bar{F}_{\mathrm{Y}_{2}}\right)$ )by means of Equation (4.22). Then:

$$
\begin{aligned}
& \left(F_{X_{1}}, \bar{F}_{X_{1}}\right) \quad \text { FSDi }_{i}\left(F_{Y_{1}}, \bar{F}_{Y_{1}}\right) \\
& \left(F_{X_{2}}, \bar{F}_{X_{2}}\right) \quad \text { FSDi }^{( }\left(F_{Y_{2}}, \bar{F}_{Y_{2}}\right)
\end{aligned} \quad\left(F_{X}, \bar{F}_{X}\right) \quad \text { loi }\left(F_{Y}, \bar{F}_{Y}\right)
$$

for $i=2, \ldots ., 6$.

Pro of The result follows immediately from Proposition 4.126.
To see that the result do es not hold for $\mathrm{lo}_{\mathrm{i}}$, consider the following example.
Example 4.130${ }^{\text {For }} j=1,2$, let $E_{X_{j}}=F_{X_{j}}=F_{Y_{j}}=F^{-}{ }_{Y_{j}}$ be the distribution fu nction associated with auniformdistribution on $[0,1]$ and let us denote it byF. Then, trivial ly:

$$
\left(F_{X_{j}}, \bar{F}_{X_{j}}\right) \quad F_{S D}\left(F_{Y_{j}}, \bar{F}_{Y_{j}}\right) \text { for } j=1,2 .
$$

To see that $\left(F_{X}, \bar{F}_{X}\right) \quad$ lo1 $\left(F_{Y}, \bar{F}_{Y}\right)$, itsufficestonote that $\quad C_{M}(F, F) \quad\left(F_{X}, \bar{F}_{X}\right)$ and $C_{L}(F, F) \quad\left(F_{Y}, F_{Y}\right)$, and:

$$
C_{M}(F(0.5), F(0.5))=C_{M}(0.5,0.5)=0.5>0=C_{\mathrm{L}}(0.5,0.5)=C_{\mathrm{L}}(F(0.5), F(0.5))
$$

We also saw in Prop osition 4.120 that the bivariate p-b ox associated with a factorising coherent lower probability is obtained applying the pro duct copula to the two marginal p-b oxes. This fact allows us to simplify Prop ositions 4.126 and 4.128:

Corollary 4.131Considertwo factorisingcoherent lowerprobabilities $P_{X}$ and $P_{Y}$ defined on $X \times Y$, where bothsetsare finite. Denote by $\left(F_{X}, F_{X}\right)$ and $\left(F_{Y}, F_{Y}\right)$ their associated bivariate p-boxes, that from Proposition 4.120 can be obtained byapplying the product copula to their respective marginal distributionsrepresented by the p-boxes
$\left(F_{X_{1}}, \bar{F}_{\mathrm{X}_{1}}\right),\left(F_{\mathrm{X}_{2}}, \bar{F}_{\mathrm{X}_{2}}\right)$ and $\left(F_{\mathrm{Y}_{1}}, \bar{F}_{\mathrm{Y}_{1}}\right)$ and $\left(F_{\mathrm{Y}_{2}}, \bar{F}_{\mathrm{Y}_{2}}\right)$, respectively. Then, it holds that:

$$
\begin{array}{llll}
\left(F_{X_{1}}, \bar{F}_{X_{1}}\right) & \text { FSD }_{i}\left(F_{Y_{1}}, \bar{F}_{Y_{1}}\right) & \left(F_{X}, \bar{F}_{X}\right) & \text { иоі }\left(F_{Y}, \bar{F}_{Y}\right) \\
\left(F_{X_{2}}, \bar{F}_{X_{2}}\right) & \text { FSDi }^{\left(F_{Y_{2}}, \bar{F}_{Y_{2}}\right)} & \left(F_{X}, \bar{F}_{X}\right) & \text { иоі }\left(F_{Y}, \bar{F}_{Y}\right)
\end{array}
$$

Pro of We have seen in Prop osition 4.120 that the bivariate p-b ox asso ciated witha factorising coherent lower probability is made by considering the pro duct copula applied to the marginal p-b oxes. Then, this result is a partic ular case of Prop ositions 4.126 and 4.128.

### 4.4 Applications

To conclude the chapter, we give some $p$ ossible applications of the extension of sto chastic orders to an im precise framework. We start with two possible applications of imprecise sto chastic dominance: the comparisonof Lorenz Curves and that of cancer survival rates. Lorenz Curves are a well-known economic to ol that measure how the wealth of a population is distributed. Sinc e Lorenz Curves can be seen as distribution functions, we can compare them by means of sto chastic dominance. Furthermore, insome cases the economical analysis is made forgeographical regionsthat comprise several countries, like for example Nordic countries, Southern Europ e, American, .. . Then, wecan use the imprecise sto chastic dominance to compare the sets of Lorenz Curves asso ciated with thes e groups of countries. On the othe $r$ hand, some kind of cancer sites $c$ an also by grou $p$ ed into Digestive,Respiratory, Repro ductive or Other. Then, it is poss ible to compare the su rvival rates of the group of cancer by comparing their asso ciated set of mortality rates, that can be expressed as distribution functions. Then, alsotheimprecise sto chastic dominance could be applied.

Afterwards, we fo cus on a Multi-Criteria Decision Making problem, whereit is $p$ ossible to find imprecision in the utilities or in the b eliefs. This allows us to illus trate how both the imprecise sto chastic dominance and statistical preference can be usedas well as the strong and weak dominance intro duced in Section 4.2.2.

### 4.4.1 Comparison ofLorenz curves

Aswe mentioned in Section 2.1.1, the notion of sto chastic dominance has been applied in many different contexts. One of the most interesting is in the field of so cial welfare [3, 117, 190], for comparing Lorenz curves. They are a graphical representation of the cumulative distributionfunctionof the wealth: the elements of the population are ordered according to it, and the curve shows, for the bottom $x \%$ elements, what percentage $y \%$ of

| Country-year | $\mathbf{0 - 0 . 2}$ | $\mathbf{0 . 2 - 0 . 4}$ | $\mathbf{0 . 4 - 0 . 6}$ | $\mathbf{0 . 6 - 0 . 8}$ | $\mathbf{0 . 8 - 1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Australia-1994 | 5.9 | 12.01 | 17.2 | 23.57 | 41.32 |
| Canada-2000 | 7.2 | 12.73 | 17.18 | 22.95 | 39.94 |
| China-2005 | 5.73 | 9.8 | 14.66 | 22 | 47.81 |
| Finland-2000 | 9.62 | 14.07 | 17.47 | 22.14 | 36.7 |
| FYR Macedonia-2000 | 9.02 | 13.45 | 17.49 | 22.61 | 37.43 |
| Greece-2000 | 6.74 | 11.89 | 16.84 | 23.04 | 41.49 |
| India-2005 | 8.08 | 11.27 | 14.94 | 20.37 | 45.34 |
| Japan-1993 | 10.58 | 14.21 | 17.58 | 21.98 | 35.65 |
| Maldives-2004 | 6.51 | 10.88 | 15.71 | 22.66 | 44.24 |
| Norway-2000 | 9.59 | 13.96 | 17.24 | 21.98 | 37.23 |
| Sweden-2000 | 9.12 | 13.98 | 17.57 | 22.7 | 36.63 |
| USA-2000 | 5.44 | 10.68 | 15.66 | 22.4 | 45.82 |

Table 4.2: Quintiles of the Lorenz Curves ass o ciated with different countries.
the total wealth they have. Hence, the Lorenz curve can be used as a measure of equality: the closest the curve is to the straight line, the more equal the asso ciated society is.

Ifwe havethe Lorenzcurves oftwo differentcountries, we can compare them by means of sto chastic dominance: if one of them is domi nated by the other, the closest to the straight line will be asso ciated with a more equal so ciety,and will therefore be considered preferable. Inthis section, we are going to use our extensions of sto chastic dominance to compare sets of Lorenz curves asso ciated with countries in different areas of the world. We shall consider the Lorenz curves asso ciated with the qui ntiles of the empirical distribution functions. Table4.2 providesthe wealthineachofthequintiles (Source data: World Bankdatabase. http://timetric.c om/datas et/worldbank):

To make the comparison by means of the extensions of sto chastic dominance clearer, we are going to consider the cumulative distribution from the richest to the po orest group: in this way, we will always obtain a curve which is ab ove the straight line, and it will comply with our idea of considering preferable the smalle st distribution function. If we applythis to thedata in Table 4.2, weobtain the dataofTable4.3.

We are going to group thesecountriesby continents/regions:

- Group 1: China, Japan,India.
- Group 2: Finland, Norway,Sweden.
- Group 3: Canada, USA.
- Group 4: FYR Macedonia, Greece.

| Country-year | $\mathbf{F}(\mathbf{0 . 2})$ | $\mathbf{F}(\mathbf{0 . 4})$ | $\mathbf{F}(\mathbf{0 . 6})$ | $\mathbf{F}(\mathbf{0 . 8})$ | $\mathbf{F ( 1 )}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Australia-1994 | 41.32 | 64.89 | 82.09 | 94.1 | 100 |
| Canada-2000 | 39.94 | 62.89 | 80.07 | 92.8 | 100 |
| China-2005 | 47.81 | 69.81 | 84.47 | 94.27 | 100 |
| Finland-2000 | 36.7 | 58.84 | 76.31 | 90.38 | 100 |
| FYR Macedonia-2000 | 37.43 | 60.04 | 77.53 | 90.98 | 100 |
| Greece-2000 | 41.49 | 64.53 | 81.37 | 93.26 | 100 |
| India-2005 | 45.34 | 65.71 | 80.65 | 91.92 | 100 |
| Japan-1993 | 35.65 | 57.63 | 75.21 | 89.42 | 100 |
| Maldives-2004 | 44.24 | 66.9 | 82.61 | 93.49 | 100 |
| Norway-2000 | 37.23 | 59.21 | 76.45 | 90.41 | 100 |
| Sweden-2000 | 36.63 | 59.33 | 76.9 | 90.88 | 100 |
| USA-2000 | 45.82 | 68.22 | 83.88 | 94.56 | 100 |

Table 4.3: Cumulative distribution functions asso ciated with the Lorenz Curves of the countries.

|  | Group 1 | Group2 | Group3 | Group4 | Group5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Group1 | 三 FSD ${ }_{2,5}$ | FSD 2 | $\mathrm{FSD}_{2}$ | $\mathrm{FSD}_{2}$ | FSD 2 |
| Group2 | FSD 5 | $\equiv_{\text {FSD }}^{3,6}$ | FSD 1 | FSD ${ }_{1}$ | FSD 1 |
| Group3 | $\equiv_{\text {FSD }}^{4}$ |  | $\equiv_{\text {FSD }}^{2,5}$ | FSD 2 | FSD 2 |
| Group4 | $\mathrm{FSD}_{5}$ |  | $\mathrm{FSD}_{5}$ | $\equiv_{\text {FSD }}^{3,6}$ | FSD ${ }_{3,6}$ |
| Group5 | $\mathrm{FSD}_{5}$ |  | FSD 5 |  | 三 $\mathrm{FSD}_{3,6}$ |

Table 4.4: Result of the comparison of the regions by means of the imprecise sto chastic dominance.

- Group 5: Australia, Maldives.

The relationships b etween thes e groups are summarised in Table 4.4.
This means for instance that the set of distribution functions in the first group strictly dominates the second group according to definition (FSD2), while thesecond group strictly dominates the first group according to definition (FSD5). This is because the b est country in the first group (Japan) sto chastically dominates all the countries in the second group, but the worst (China) is sto chastically dominated by all countries in the second group. This, together with Prop osition 4.3, implies that thefirst group strictly dominates the second accordingto $\left(F S D_{3}\right)$, is strictly dominated by the second according to ( $F S D_{6}$ ), thatthey areindifferentaccording to ( $F S_{4}$ ) and incomparable according to ( $F S D_{1}$ ).

Similar considerations hold for the other pairwise comparisons.Forinstance, group

4strictly dominatesgroup 5accordingto ( $F S_{3}$ ), ( $F S_{6}$ ), but it do es not dominate it according to $\left(F S D_{2}\right)$, $\left(F S D_{5}\right)$. This also shows thatconditions $\left(F S D_{2}\right)$ and $\left(F S D_{3}\right)$ are not equivalent (and similarly for ( $F S_{5}$ ) and ( $F S_{6}$ )).

The cells where we have left a blank space mean th at no dominance relationship is satisfied: for instance, group 3 do es not dominate group 2 according to any of the definitions.

Since all the groupshave more than one element, they will not satisfy ( $F \mathrm{SD}_{1}$ ) when comparing th em to themselves.It follows from Remark 4.31 that they are always indifferent to themselves according to $\left(F S D_{3}\right)$, $\left(F S D_{4}\right)$ and ( $F S D_{6}$ ); theyare indifferent to themselves according to $\left(F S D_{2}\right)$ when they have a best-case-scenario (as it is the case for groups 1 and 3), and indifferent acc ordi ng to $\left(F S D_{5}\right)$ when they have a worst-case scenario (as it is the case again for groups 1 and 3 ), and incomparable acc ord ing to these definitions in theother cases.

Note that we can also use the ab ove data to illustrate some of the results in this pap er: for instance, we saw in Remark 4.9 that condition ( $F S D_{2}$ ) is tran sitive, and in the table ab ove we see that group 1 is preferred to group 3 according to ( $F S D_{2}$ ) and group3 is preferred to group4 according to ( $F S D_{2}$ ): this allows ustoinfer immediately that group 1 ispreferred togroup 4according to this condition. The comparisonof the first two groups is an instance of Prop osition 4.32, b ecause the p-b ox induced by the first group is strictly more imprecise (i.e ., it has a smaller lower cumulative distribution and a greater upp er cumulative distribution function) than that of the second group.

Remark 4.132In economy, the Gini Index is a wel I-known inequality measure that express how the incomes of a populationare shared. It takes values between0 and1, where a Gini Index of Omeans perfect equality for theincomes of the people, whilea Gini Indez of 1express a total inequality in the incomes. Thus, thegreater theGini Index is,the more inequality the incomesof a populationare.

The Gini Index isquite relatedto Lorenzcurves: given a LorenzCurve $F$, that express the distribution function of the wealth of a population (a country, a region,. .. ), its associated Gini index is defined by:

$$
G=2 \int_{0}^{100}(x-F(x)) \mathrm{d} x
$$

Thus, the closer the Lorenz curve is to the straight $y=x$, the smal ler the Gini index is.
In the imprecise framework, if we are working with a p-box that represent s the Lorenz curve, we can compute the lower and the upper Gini Indexes, that area lowerand an upper boundof the Ginilndex, simplyby consideringthe Gini indexes of theupper and the lowerbounds of the p-box. Then, foranyp-box ( $F, F$ ) representing Lorenz curveF we obtain aGini_ index given inaninterval form: $[G, G]$, where $G$ is the Gini index associated withF and $\bar{G}$ is the Gini index associated with $\bar{E}$. Then, inordertocompare
the Gini intervals associated with two imprecise Lorenz curves, it is possible to consider the usual orderings for real intervals (see for instance [69, 78]).

### 4.4.2 Comparison ofcancer survival rates

According to [28], long-term cancer survival rates have substantially improved in the past decades.However, there are still some kinds of cancer whose survi val rates could clearly b e improved. Here, we use the survi val rates of different cancer sites given in [28]. hese can be group ed in Digestive, Respiratory, Repro ductive and Other, and we shall compare the survival rates of these typ es applying imprecise sto chastic dominance.

Table 4.5showsthesurvivalrates of different cancer sites (see [28]).
Note that it is possible to transform the survival rates of Table 4.5 into cumulative distribution functions. In thiscase, we assum e the distribution functions to $b$ e defined in the interval $[0,100]$, and we imp ose the condition $F(100)=1$, that means that the survivalrate after 100years ofthe cancer diagnostic is zero. The resu lts are showed in Table 4.6.

These cancer sites can be group ed as follows:

DigestivesColon (C), Rec tum (R), Oral cavity and pharynx(OCP), Stomach (S), Oesophagus(O), Liver and intrahepaticbileduct (LIBD), Pancreas (P).

Respiratory Larynx (L), Lung and bronchus (LB).
Repro ductiveProstate (Pr), Testis (T), Breast (B), Cervix uteri (CU), Corpus uteri and uterus (CUU), Ovary (Ov).

Other Melanomas (M), Urinary bladder (UB), Kidney and renal pelvis (KRP), Brain and other nervous system (BNS), Thyroid (Th), Ho dgkin's disease (HD), NonHo dgkin lymphomas (NHL), Leukaemias (L).

Let us compare these kinds of cancer by means of the imprecise sto chastic dominance. Note that in this case, give n two distribution functions $F_{1}$ and $F_{2}$ thatrepresent the mortality rates of two cancer sites, $F_{1}$ FSD $F_{2}$ meansthatthe cancer $F_{1}$ isless deadly than th e cancer $F_{2}$, or equivalently, that the cancer $F_{1}$ has a greater survivalrate than the cancer $F_{2}$.

First of all, note that Pancreas $(P)$ is the worst cancer with resp ect to sto chastic dominance, since $F<F$ p for anyother distribution function $F$. This impliesthat Digestive is $\mathrm{FSD}_{5}$ dominated by the other three groups, and then, from a p essimistic point of view, digestive cancersarethe worst. Furthermore, ProstateandThyroidcancersareless deadly than any of the digestive cancers, and then both Repro ductive and Other groups

Relative survivalrate, \%
1 year 4 years 7 years 10 years

| Cancer site |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Colon | 80.7 | 65.6 | 60.5 | 58.2 |
| Rectum | 86.3 | 68.2 | 61.2 | 57.9 |
| Oral cavity and pharynx | 82.9 | 63.0 | 56.1 | 50.2 |
| Stomach | 49.0 | 27.0 | 22.9 | 20.8 |
| Oesophagus | 43.4 | 17.9 | 13.8 | 11.8 |
| Liver and intrahepaticbile duct | 34.5 | 15.2 | 11.0 | 9.2 |
| Pancreas | 23.0 | 6.2 | 4.5 | 3.8 |
| Larynx | 85.9 | 66.3 | 57.0 | 49.6 |
| Lung and bronchus | 41.2 | 17.5 | 13.0 | 10.5 |
| Prostate* | 99.6 | 98.6 | 97.9 | 97.0 |
| Testis* | 97.8 | 95.7 | 95.4 | 95.0 |
| Breast** | 97.5 | 90.4 | 85.8 | 82.6 |
| Cervix uteri** | 88.0 | 72.3 | 68.3 | 66.1 |
| Corpus uteri anduterus** | 92.4 | 83.9 | 81.5 | 80.3 |
| Ovary* | 74.9 | 48.5 | 38.8 | 35.0 |
| Melanomas | 97.3 | 92.2 | 90.3 | 89.5 |
| Urinary bladder | 90.1 | 80.9 | 76.4 | 72.7 |
| Kidney and renal pelvis | 80.8 | 69.3 | 63.8 | 59.4 |
| Brain and othe r nervous system | 56.4 | 35.1 | 30.6 | 27.9 |
| Thyroid | 97.6 | 96.9 | 96.3 | 95.9 |
| Ho dgkin's disease | 92.4 | 85.8 | 82.2 | 79.6 |
| Non-Ho dgkin lymphomas | 77.2 | 65.1 | 59.0 | 54.3 |
| Leukae mias | 70.2 | 55.0 | 48.3 | 43.8 |

Table 4.5: Estimationof relativesurvivalratesby cancersite. The ratesarederivedfrom SEER 1973-98 database, all ethnic groups, both sexes (except (*), only formale, and (**) for female). [191].
$\mathrm{FSD}_{2}$ dominates Digestive. However,Digestiveand Respiratoryare incomparablewith resp ect to $\left(F S D_{2}\right)$ and $\left(F S D_{3}\right)$, and they are equivalent with resp ect to ( $F S D_{4}$ ), since $F_{\mathrm{P}}>F_{\text {LB }}>F_{\text {c }}$. Also Digestive is $\left(F S D_{4}\right)$ equivalent to Repro ductive and Other groups, since $F_{\mathrm{P}}>F_{\text {Ov }}>F_{\mathrm{c}}$ and $F_{\mathrm{P}}>F_{\text {BNS }}>F_{\text {c }}$.

Since Lung and Brounch cancer has a greater mortality than any Repro ductive cancer, Respiratory is $\mathrm{FSD}_{5}$ dominated by Repro ductive group. Furthermore , they are not comparable with resp ect to ( $F S_{2}$ ) and indifferent with resp ect to ( $F \mathrm{SD}_{4}$ ) since $F_{\mathrm{L}}<F_{\mathrm{Ov}}<F_{\mathrm{LL}}$.

Finally, since Brain and other nervous system cancer is sto chastically dominated by any Reproductive cancer, Repro ductive $\mathrm{FSD}_{5}$ dominatesOther group, andthey are

|  | Cumulative distribution functions |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $F(1)$ | $F(4)$ | $F(7)$ | $F(10)$ |
| Cancer site |  |  |  |  |
| Colon | 0.193 | 0.344 | 0.395 | 0.418 |
| Rectum | 0.137 | 0.318 | 0.388 | 0.421 |
| Oral cavity and pharynx | 0.171 | 0.370 | 0.439 | 0.498 |
| Stomach | 0.510 | 0.730 | 0.771 | 0.792 |
| Oesophagus | 0.566 | 0.821 | 0.862 | 0.882 |
| Liver an d intrahepatic bile duct | 0.655 | 0.846 | 0.890 | 0.908 |
| Pancreas | 0.770 | 0.938 | 0.955 | 0.962 |
| Larynx | 0.141 | 0.337 | 0.430 | 0.504 |
| Lung and bronchus | 0.588 | 0.825 | 0.870 | 0.895 |
| Prostate | 0.004 | 0.014 | 0.021 | 0.030 |
| Testis | 0.022 | 0.043 | 0.046 | 0.050 |
| Breast | 0.025 | 0.096 | 0.142 | 0.174 |
| Cervix uteri | 0.120 | 0.277 | 0.317 | 0.339 |
| Corpus uteri anduterus | 0.076 | 0.161 | 0.185 | 0.197 |
| Ovary | 0.251 | 0.515 | 0.612 | 0.650 |
| Melanomas | 0.027 | 0.078 | 0.097 | 0.105 |
| Urinary bladder | 0.099 | 0.191 | 0.236 | 0.273 |
| Kidney and renal pelvis | 0.192 | 0.307 | 0.362 | 0.406 |
| Brain and othe r nervous system | 0.436 | 0.649 | 0.694 | 0.721 |
| Thyroid | 0.024 | 0.031 | 0.037 | 0.041 |
| Ho dgkin's disease | 0.076 | 0.142 | 0.178 | 0.204 |
| Non-Ho dgkin lymphomas | 0.228 | 0.349 | 0.410 | 0.457 |
| Leukaemias | 0.298 | 0.450 | 0.517 | 0.562 |

Table 4.6: Estimation ofrelativemortalityratesby cancersite.
equivalent with resp ect to $\left(F S D_{4}\right)$ since $F_{\mathrm{M}}<F_{\mathrm{cu}}<F_{\text {BNS }}$.
The results aredepicted in Table 4.7.
Thus, according to our results, Digestive cancer seems to be the group with a greater mortality rate, while Repro ductive cancer seems to $b e$ the least deadly.

### 4.4.3 Multiattributedecision making

In this section, we shall illustrate the extension of statistical preference to acontext of im precision by means of an application to decision making. We shall consider two different scenarios: on the one hand, we sh allcompare two alternatives in acontext of

|  | Digestive | Respiratory | Repro ductive | Other |
| :---: | :---: | :---: | :---: | :---: |
| Digestive | $\equiv_{\mathrm{FSD}_{5}}$ | $\equiv_{\mathrm{FSD}_{4}}$ | $\equiv_{\mathrm{FSD}_{4}}$ | $\equiv_{\mathrm{FSD}_{4}}$ |
| Respiratory | $\mathrm{FSD}_{5}$ | $\equiv_{\mathrm{FSD}_{2,5}}$ |  | $\equiv_{\mathrm{FSD}_{4}}$ |
| Repro ductive | $\mathrm{FSD}_{2,5}$ | $\mathrm{FSD}_{5}$ | $\equiv_{\mathrm{FSD}_{5}}$ | $\mathrm{FSD}_{5}$ |
| Other | $\mathrm{FSD}_{2,5}$ | $\mathrm{FSD}_{2}$ | $\equiv_{\mathrm{FSD}_{4}}$ | $\equiv_{\mathrm{FSD}_{2,5}}$ |

Table 4.7: Result of the comparis on of the different groups of cancer by means of the imprecise sto chastic dominance.
imprecise information ab out their utilities or probabilities, bymeans of the results in Sections 4.2.1 and 4.2.2; onthe other hand, we shall consider the comparison of two sets ofalternatives, by meansofthe techniques establishedin Section4.1. Our runn ing example throughout thissection is basedon [118,Section 4].

## A decision problem with uncertain beliefs

Consider a decision problem where we must cho ose $b$ etween alternatives $a_{1}, \ldots, a_{1}$, whose rewards dep end on the values of the states of natur $\otimes_{1}, \ldots, \theta_{n}$, which hold with certain probabilities $P\left(\theta_{1}\right), \ldots, P(\theta)$.

Let us start by assuming that there is uncertainty ab out these probabilities, that we mo del by means of a set of probability measure?. Then, weshallcompare anytwo alternatives by means of the concepts of weak and stroRg.preference we have considered in Section 4.2.2.

Example 4.133Acompanymustchoose where toinvestitsmoney. The alternatives are: $a_{1}$-a computer company; $a_{2}$-a car company; $a_{3}$-a fast food company. The rewards associated with the investment depend on anattribute $c_{1}$ : "economic evolution", which may take the values $\theta_{1}$-"very good", $\theta_{2}$-"good", $\theta_{3}$-"normal" or $\theta_{4}$-"bad". The probabilities of each of thesestatesare expressedbymeans of an interval. The rewardsassociated with anycombination (alternative, state)are expressed in a linguistic scale, withvalues $S=\left\{\mathrm{s}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}, \mathrm{~S}_{5}, \mathrm{~S}_{6}\right\}$ (very poor, poor, slightly poor, normal, slightly good, good, very good). The available information is summarised in the fol lowing table:

|  | $\theta_{1}$ | $\theta_{2}$ | $\theta_{3}$ | $\theta_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $[0.1,0.4][0.2,0.7]$ | $[0.3,0.4]$ | $[0.1,0.4]$ |  |
| $a_{1}$ | $s_{4}$ | $s_{3}$ | $s_{3}$ | $s_{2}$ |
| $a_{2}$ | $s_{5}$ | $s_{4}$ | $s_{4}$ | $s_{2}$ |
| $a_{3}$ | $s_{2}$ | $s_{3}$ | $s_{5}$ | $s_{4}$ |

Hence, the setP of probability measures forour beliefsis given by

$$
\begin{aligned}
& P=\left\{\left(p_{1}, p_{2}, p_{3}, p_{4}\right): p_{1}+p_{2}+p_{3}+p_{4}=1,\right. \\
& \quad p_{1} \quad[0.1,0.4]_{2} p[0.2,0.7]_{3} p[0.3,0.4], p \quad[0.1,0.4\}
\end{aligned}
$$

Since the rewards are expressedin a qualitative scale, weare going to comparethe different alternatives by means of statistical preference. We obtainthat:

$$
\begin{aligned}
& Q\left(a_{1}, a_{2}\right)={ }_{2}^{1} p_{4} \quad[0.05,0.2] . \\
& Q\left(a_{1}, a_{3}\right)=p_{1}+{ }_{2}^{1} p_{2} \quad[0.2,0.5] . \\
& Q\left(a_{2}, a_{3}\right)=p_{1}+p_{2} \quad[0.3,0.6] .
\end{aligned}
$$

We deduce that, using statisticalpreference as ou r basic binary relation:

- $a_{2}{ }_{\mathrm{s}}^{\mathrm{P}} \mathrm{a}_{1}$ and $\mathrm{a}_{2}{ }_{\mathrm{w}}^{\mathrm{p}} \mathrm{a}_{1}$.
- $a_{3}{ }_{\mathrm{s}}^{P} a_{1}$ and $a_{3} \equiv_{w}^{P} a_{1}$.
- $a_{2} \equiv_{\mathrm{w}}^{P} a_{3}$ and theyare incomparablewith respect to strong P-preference.

Consequently, wit h respect to the strong preferencethe carcompanyis preferred tothe computer company, whilethe carandthe fast food company are incomparable. With respect to weak preferencethecarcompanyisalsopreferredtothe computer company, while thefast food company is indifferent to the car and thecomputer companies.

## A decision problem with uncertainrewards

Assume next that we have precise information ab out the probabilities of the different states of nature but that we have imprecise information ab out the utilities asso ciated with the different rewards. Let us mo del this case by means of arandom set, as we discussed in Section 4.2.1.

Example 4.133 (Cont)Assumethatthe probability ofthedifferentstates ofnatureis given by:

$$
P\left(\theta_{1}\right)=0.2 \quad P\left(\theta_{2}\right)=0.25 \quad P\left(\theta_{3}\right)=0.3 \quad P\left(\theta_{4}\right)=0.25,
$$

but that we cannot determine precisely the consequences associated with each combination (alternative, state). We model the available information by means of aset of possible consequences, that we summarise in the fol lowing table:

|  | $\theta_{1}$ | $\theta_{2}$ | $\theta_{3}$ | $\theta_{4}$ |
| :--- | :--- | :--- | :--- | :--- |
|  | 0.2 | 0.25 | 0.3 | 0.25 |
| $a_{1}$ | $\left[s_{4}, s_{5}\right]$ | $\left\{s_{3}\right\}$ | $\left[s_{2}, s_{3}\right]$ | $\left\{s_{2}\right\}$ |
| $a_{2}$ | $\left\{s_{5}\right\}$ | $\left[s_{3}, s_{4}\right]$ | $\left[s_{3}, s_{5}\right]$ | $\left[s_{2}, s_{4}\right]$ |
| $a_{3}$ | $\left\{s_{2}\right\}$ | $\left[s_{3}\right]$ | $\left[s_{3}, s_{5}\right]$ | $\left[s_{3}, s_{4}\right]$ |

Since again we have qualitat ive rewards, we shall use statistical preference to compare the different alternatives. Taking into account that the utility space is finite, we deduce from Proposition 4.78 that the comparison of the random set s associated with each of the alternatives reduces to the comparison of their maximaand minima measurable selections. Moreover,since the utilityspace is finite, $\begin{array}{lllll} & \mathrm{SP}_{2} & \mathrm{SP}_{3} & \text { and } & \mathrm{SP}_{5}\end{array} \mathrm{SP}_{6}$.

Let us compare alternatives $\mathrm{a}_{1}, \mathrm{a}_{2}$ :
$Q\left(\min a_{1}, \max a_{2}\right)=0$.
$Q\left(\min a_{1}, \min a_{2}\right)=0.25$
$Q\left(\max a_{1}, \operatorname{maxa}_{2}\right)=0.1$.
$Q\left(\max a_{1}, \operatorname{mina}_{2}\right)=0.5$

Using Proposition 4.78, we conclude that $a_{2} \quad \mathrm{SP}_{\mathrm{i}} \mathrm{a}_{1}$ for $i=1,2,3,5,6$ and $\mathrm{a}_{1} \equiv{ }_{\mathrm{SP}}{ }_{4} a_{2}$.
With respect to alternatives $a_{1}$ and $a_{3}$, we obtain that:

$$
\begin{aligned}
& Q\left(\operatorname{mina}_{1}, \max _{3}\right)=0.325 \\
& Q\left(\min a_{1}, \min a_{3}\right)=0.325 . \\
& Q\left(\max 1_{1}, \max a_{3}\right)=0.325 . \\
& Q\left(\operatorname{maxa}_{1}, \operatorname{mina}_{3}\right)=0.475 .
\end{aligned}
$$

UsingProposition 4.78, we concludethat $a_{3} \quad \mathrm{sp}_{\mathrm{i}} \mathrm{a}_{1}$ for $i=4$ andasa consequence also for $i=1,2,3,5,6$.

Final $l y$, if we compare alternatives $a_{2}$ and $a_{3}$, we obtain that:

$$
\begin{aligned}
& Q(\operatorname{mina} 2, \operatorname{maxa3})=0.325 \\
& Q(\operatorname{mina} 2, \operatorname{mina} 3)=0.475 . \\
& Q(\operatorname{maxa} 2, \operatorname{maxa3})=0.725 . \\
& Q(\operatorname{maxa} 2, \operatorname{mina} 3)=1 .
\end{aligned}
$$

UsingProposition 4.78, weconclude that $a_{2} \quad \mathrm{sP}_{\mathrm{i}} a_{3}$ for $i=2,3, a_{3} \quad \mathrm{sP}_{\mathrm{i}} a_{2}$ for $i=5,6$, $\mathrm{a}_{2} \equiv \mathrm{SP}_{4} \mathrm{a}_{3}$ and they areincomparable with respect to $\mathrm{SP}_{1}$. Hence, inthiscasethechoice betweena $a_{2}$ and $a_{3}$ woulddependonourattitudetowardsrisk, which woulddetermineif wefocus onthe best ortheworst-casescenarios. Consequently, boththecarandthefast foodcompaniesarepreferred tothecomputer one. However, thepreferencebetweenthe car and fast foodcompanies dependson the chosencriteria.

## A decision problem between sets of alternatives

Assume now that we have precise beliefs and utilities but the choice must be made between sets of alternatives instead of pairs. Inthatcase, weshallapplytheconditions andresults from Section 4.1.

Example 4.133 (Cont)Assumenow thatwe mayinvest ourmoney inanother company $a_{4}$ in the telecommunications area, and that the choice must be made bet ween two portfolios: one -that we shal I denot -made by alternativesa $a_{1}, a_{2}$, and another -denoted by $Y$-made bya ${ }_{3}, a_{4}$. Assu me that the rewards associated with each alternative are given by the fol lowing table:

|  | $\theta_{1}$ | $\theta_{2}$ | $\theta_{3}$ | $\theta_{4}$ |
| :--- | :--- | :--- | :--- | :--- |
|  | 0.2 | 0.25 | 0.3 | 0.25 |
| $a_{1}$ | 75 | 60 | 55 | 50 |
| $a_{2}$ | 80 | 65 | 55 | 40 |
| $a_{3}$ | 60 | 55 | 50 | 55 |
| $a_{4}$ | 80 | 55 | 40 | 65 |

where the utilities are now expressed ina [0, 100]scale.
If we compare these alternatives by means of stochast ic dominance, we obtain that $a_{1}$ FSD $a_{3}, a_{2}$ FSD $a_{4}$ and any otherpair $\left(a_{i}, a_{j}\right)$ with $i \quad\{1,2\}, j \quad\{3,4\}$ are incomparablewithrespectto stochastic dominance. Hence, $X \quad \mathrm{FSD}_{i} Y$ for $i=3,4,6$ and they are incomparable wit $h$ respect to ${ }_{\mathrm{FSD}_{i}}$ for $i=1,2,5$.

Note that this example is an instance where $\quad \mathrm{FSD}_{2}$ is not equivalent to $\quad \mathrm{FSD}_{3}$ and $\mathrm{FSD}_{5}$ isnotequivalent to $\quad \mathrm{FSD}_{6}$, because there is neither a maximum nor a minimum in thesets of distribution functions associated with $X, Y$.

On theother hand, if we compare any two alternativesby means of statistical preference, we obtain the fol lowing profile of preferences:

$$
\mathrm{Q}^{X, Y}:=\quad \begin{array}{ll}
0.75 & 0.55 \\
0.75 & 0.65
\end{array}
$$

Using Remark 4.73, we obtain that $X \quad \mathrm{sp}_{1} Y$, and as a consequence $X \quad \mathrm{sp}_{\mathrm{i}} Y$ for $i=2, . ., 6$ and also $X \quad \mathrm{sP}_{\text {mean }} Y$. Hence, fromthepointofviewofstatisticalpreference the first portfolio should be preferred to the second.

### 4.5 Conclusions

In this chapter we have considered the comparison of alternatives unde $r b$ oth uncertainty and imprecision. AsinChapter 3, alternatives defined under unc ertainty have $b$ een mo delled by means of random variables, while the imprecision ab out the random variables has been mo delled with sets of random variables, or in a more general situation, imprecise probability mo dels.

Wehave extended binary relations tothe comparison of setsof random variables instead of pairs of them. Forthis aim, we considered six possible generalisations. We have seen that the interpretation of each extension is related to the extensions of exp ected utility within imprecise probabilities.

We have mainly fo cused on two stochastic orders in this rep ort: sto chastic dominance and $s$ tatis tical preference $N$ hen we consider the binary relation to be first degree sto chastic dominance, its extensionsare related tothe comparison of the p-b oxes asso ciated with the sets of random variables to compare. Also, accordingtothe usual characterisation of stochastic dominance in terms of the comparison of the exp ectation of the increasing tran sform ation s of the random variables,wecan also relateimprecise sto chastic dominance to the comparison of the upp er or lower expectations of the increasing transformation of the sets of random variables. We have als o seen that our approach to extend sto chastic dominance to the comparison of sets of random variables includes Deno eux approach ([61]) as a particular case, and we have also applied sto chastic dominance to the comparison of possibility measures.

The extension of statistical preference has been connected to the comparison of the lower and upp er medians of some set of random variables. Wehaveseen that, when the sets of random variables to compare are finite, their comparison can be made by means of the pointwise comparison of therandom variables by means of statistical preference, aggregating them with an aggregation func tion, and we have showed that the six extensions of statis ti cal preference can be expressed in terms of aggregation functions.

We have also investi gated two situations which can be considered as particular cases of the comparison of sets of random variable@ntheonehand, weconsideredtwo randomvariables with imprecisionontheutilities. That is, imprecise knowledge ab out the value of $X(\omega)$ and $Y(\omega)$. To mo del this imprecision, wehave consideredrandom sets $\Gamma_{x}$ and $\Gamma_{Y}$, with the interpretation that the real value of $\quad X(\omega)$ (resp ectively, $Y(\omega)$ ) belongs to $\Gamma X(\omega)$ (resp ectively $\Gamma Y(\omega)$ ). Then, weknowthattherandomvariables $\quad X, Y$ to be compared belong to the set of measurable selections of the random setsThus, the comparison of the random variables with imprecise utilities is made by the comparison of the random sets, which in fact can be made by means of the comparison of their asso ciated sets of measurable selections.

Onthe other hand, we have also c on sidered two random variables defined ina probability space whose probability is imprecisely describ ed. We mo delled this lack of information by means of acredal set. Then the random variables dep end on the exact probability of the initial space. To deal with this imprecision we have intro duced two new definitions: strong and weakpreference.

We have seen that some binary relations, such as statistical preference, dep end on the joint distribution of the random variables. In thisframeworkSklar's Theoremis a powerful to ol that allows to build the joint distribution function from the marginals. Howe ver, there could $b$ e imprecision eithe $r$ in the marginal distributions, for example by considering p-b oxes instead ofdistribution functions, or in thecopula thatlinks these marginals. For this reason we have develop ed a mathematicalmo delthat allows us to deal with this problem. In the first step, we sh owed that the infimum and supremum of sets of bivariate distribution functions are not bivariate distribution functions in general, b ecause it may not satisfy the rectangle inequality. Wehave studiedthis problemby
means of imprecise probabilities, extending the notionof $\mathrm{p}-\mathrm{b}$ ox to the bivariate case. Then, the infimum and supremum of bivariate dis trib ution functions determine a coherent lower probability that satisfi es some imprecise version of the rectangle inequalities.

On the other han d we have considered the case where the lack of information lies in the copula that lin ks the marginals. For this problem, we have extende d copulas to the imprecise framework, and we haveprovenanimprecise versionoftheSklar'sTheorem. Finally, we have seen how bivariate p-b oxes and this imprecise version of the Sklar's Theorem could be applied to one and two-dimensional sto chastic orders.

Since in the real life it is common to encounter situations in which the information is imprecisely describ ed,theresults ofthischapterhaveseveral applications. We have showed how imprecise sto chastic dominance can be applied in the comparison of Lorenz Curves and cancer survival rates, andillustrated theusefulnessof imprecisestatistical preference for multicriteria decision making problems under un certainty.

## 5 Comparison of alternatives underimprecision

Chapter 3 wasdevoted tothe comparison of alternatives in a decision proble $m$ under acontext of uncertainty, where these alternatives were mo delled by means of random variables. In C hapter 4 we added imprecisi on to the original problem, and we studied the comparison of sets of random variables. In thischapterwe shall assume that the alternatives are defined under imprecision but withoutuncertainty. In thiscasewe need not use probability theory, as the outcomes of the differe nt alternative will b e constant. However, the imprecision makes crisp sets not to an adequate mo del of the available information. Because of this, we shall use amore flexibletheorythanthe oneofcrisp sets: thatoffuzzysetsoranyofitsextensions, suchasthetheoryofIF-setsorIVF-sets.

While for the comparison of random variables or sets of rand om variables we use sto chastic orders, and some to ols of the imprecise probability theory, for the comparison of IF-sets orIVF-sets we shall use some measures of comparison of these kinds of sets.

In the framework of fuzzy set theory, we can find in the literature se veral measures of comparison between fuzzy sets. The more us ual measures of comparison are dissimilarities ([119]), dissimilitudes ([44]) and di vergences ([159]),inaddition to classical distances. Otherauthors, likeBouchon-Meunier([27])triedtodefinea generalmeasure of comparison between fuzzy sets, that includethe citedmeasures asparticular cases. The last attempt was made by C ou so et al.([45]) where someusual axioms requiredby the measures of comparison of fuz zy sets are collected and analyzed.

Montes ([159])made a completestudy of divergencesas comparisonmeasures of fuzzy sets. She intro duced a particular kind of divergences, the so-called lo cal divergences, which have been proved to be very useful.

Howe ver,jn theframeworkofIF-sets, inthe literaturewecanonly finddistances for IF-se ts and a lot of examples of IF-dissimil arities (see for example [36, 37, 85, 89, $92,111,113,114,138,193,212]$ ), butthere isnota thoroughmathematical theory of comparison of IF-sets.

For this re ason, the first part of this chapter is devoted to the generalization of the comparison measuresfrom fuzzysets to IF-sets. Note thateven thoughin thispart we shall deal with IF-sets, our commentsin Section 2.3 guarantee that all ourresults remain valid for IVF-sets.

Afterwards, we shall investigate the relationship b etwe en IF-sets and imprecise probabilities. Inthis secondpart, we shall interpret IF-sets as IVF-sets, because this allows for aclearer connection to imprecise probability. Thus, we shall assume that the IVF-set is defined on a probability space, and that it may be thus interpreted as a random set. Then, we shall investigate its main prop erties.

The results we present in thischapter have several applications. On the one hand, the measures of comparison of IF -sets have b een used in severfields, suchas pattern recognition ([92, 93, 94, 113, 114]) or decisi on making ([194, 211]), among others. On the other hand, the connection between IVF-sets and imprecise probabilities will be very useful when producing a graded version of sto chastic dominance, and they shall allow us to prop ose a generalization of stochastic dominance that allow the comparison of more than two sets of cumulative distributi on functions.

### 5.1 Measuresof comparisonof IF-sets

In this section we are going to intro duce some comparison measures for IF-sets. We begin by recalling the most common comparison measures for IF-sets: distances and dissimilarities.

Definition 5.1Amap d:IF $\operatorname{Ss}(\Omega) \times \operatorname{IFSs}(\Omega) \rightarrow \mathrm{R}$ is a distance betweenIF-sets if it satisfies the fol lowing properties:

| Positivity: | $d(A, B) \geq 0$ for every $A, B \quad$ IF $\operatorname{Ss}(\Omega)$. |
| ---: | :--- |
| Identity of indiscernibles: | $d(A, B)=0$ if and only if $A=B$. |
| Symmetry: | $d(A, B)=d(B, A)$ for every $A$ and $B$ in $\operatorname{Ss}(\Omega)$. |
| Triangle inequality: | $d(A, C) \leq d(A, B)+d(B, C)$ for every $A, B, C$ IF $\operatorname{Ss}(\Omega)$. |

Definition 5.2Amap $D$ : IF Ss $(\Omega) \times$ IF $S s(\Omega) \rightarrow R$ is adissimilarity for IF-sets (IF-dissimilarity, for short) if it satisfies the fol lowing axioms:

```
IF-Diss.1: }D(A,A)=0\quad\mathrm{ for every A IF Ss( }\Omega)
```



```
IF-Diss.3: For every A, B,C IF Ss(\Omega) such that A B C
    it holds that D(A,C) \geq max(D(A,B ),D(B,C ))
```

Remark 5.3 Someauthors (see forinstance[93,113,211]) replace axiomIF-Diss.1by astronger condition:

$$
\text { IF-Diss.1: } \quad D(A, B)=0 \quad A=B \text {. }
$$

Thus, an IF-dissimilaritythatsatisfies IF-Diss.1is more restrictivethanIF-dissimilarities. Here, we shall restrict ourselves tothe usual definition of IF-dissimilarity because it is more common in the literature.

There are seve ralexamples of dissimilarities in the literature, as we shall see in Section 5.1.3. However, since its definition is not to o restrictive, it is possible to definea counterintuitive meas ure of comparison for which axioms IF-Diss.1, IF-Diss. 2 andIFDiss. 3 hold. In order to overcome this problem, we prop ose a measure of comparison of IF-sets called IF-divergence that satisfies the following natural prop erties:

- The divergence between two IF-sets is positive.
- The divergence between an IF-set and itself must be zero.
- The divergence between two IF-sets $A$ and $B$ is thesame than thedivergence between $B$ and $A$. That is, it must be a symmetric function.
- The "more similar" two IF-sets are, the smaller is the divergence between them.

This is formally defined as foll ows.
Definition 5.4Let us consider a function $D_{\text {IFS }}: \operatorname{IF} \operatorname{SS}(\Omega) \times \operatorname{IF} S s(\Omega) \rightarrow$ R. It isa divergence for IF-sets (IF-divergence for short) when it satisfies the fol lowing axioms:

```
IF-Diss.1: }\quad\mp@subsup{D}{\mathrm{ IFS }}{}(A,A)=0\quad\mathrm{ for every A IF Ss ( }\Omega)
IF-Diss.2: }\quad\mp@subsup{D}{\textrm{IFS}}{}(A,B)=D\quad\operatorname{IFs}(B,A)\mathrm{ for every A,B IF Ss( }\Omega)\mathrm{ .
IF-Div.3: }\quad\mp@subsup{D}{\textrm{IFS}}{}(A\capC,B\capC)\leq\mp@subsup{D}{\textrm{IFS}}{}(A,B),\mathrm{ for every A,B,C IF Ss}(\Omega)
IF-Div.4: }\quad\mp@subsup{D}{\textrm{IFS}}{(A
```

Note that IF-divergences are morerestrictive thanIF-dissimilarities. In orde r to prove this, let usfirst give a preliminary result.

Lemma 5.5Let $D_{\mathrm{IFS}}$ beanIF-divergence, and let $A, B, C$ and $D$ be IF-setssuch that $A \quad C \quad D \quad B$. Then $D_{\mathrm{IFS}}(A, B) \geq D_{\mathrm{IFS}}(C, D)$.

Pro of Note that, if $N$ and $M$ are two IF-sets such that $N \quad M$, then $N \quad M=M$ and $N \cap M=N$. Then, itholdsthat:

$$
\begin{array}{llllll}
C & D & C \cap D=C, & D & B & B \cap D=D, \\
A & C & C & A=C, & C & B
\end{array} B \quad C=B .
$$

Using axioms IF-Div. 3 and IF-Div.4weobtain that:

$$
\begin{aligned}
D_{\mathrm{IFS}}(C, D) & =D \operatorname{IFS}(C \cap D, B \cap D) \leq D_{\mathrm{IFS}}(C, B) \\
& =D \operatorname{IFS}(A \quad C, B \\
(A) & \leq D_{\mathrm{IFS}}(A, B) .
\end{aligned}
$$

We conclude that $D_{\mathrm{IFS}}(C, D) \leq D_{\mathrm{IFS}}(A, B)$.
Using this le mma we can prove now that every IF-divergence is also an IF-dissimilarity.
Prop osition 5.6-very IF-divergence is anIF-dissimilarity.
Pro of Let $D_{\text {IFS }}$ be an IF-divergence, and let us check that it is also an IF-dissimilarity. For this, it suffices to prove that it satisfies axiom IF-Diss .3, because first and second axioms of IF-divergences and IF-dissimilarities coin cideLet $A, B$ and $C$ be three IF-sets such that $A \quad B \quad C$. Then, takingintoaccountthat $A$ previous lemma, $D_{\mathrm{IFS}}(A, C) \geq D_{\mathrm{IFS}}(A, B)$. Ontheotherhand, since $A \quad B \quad C \quad C$, the previous lemma also implies that $D_{\mathrm{IFS}}(A, C) \geq D_{\mathrm{IFS}}(B, C)$.

Hence, $D_{\text {IFS }}$ satisfies axiom Diss. 3 and, consequently, it is a dissi milarity.
We have seen that every IF-divergence is also an IF-dis similarity. In Example 5.8 we will see that the converse do es not hold in general.

In the fuzzy framework Cou so et al. ([44]) intro duced a measure of comparison called dissimilitude. It can be generalized to the comparison of IF-sets in the following way.

Definition 5.7Amap $D: \operatorname{IF} \operatorname{Ss}(\Omega) \times$ IF $S s(\Omega) \rightarrow R$ is anIF-dissimilitude if it satisfies the fol lowing properties:

```
IF-Diss.1: }\quad\mp@subsup{D}{\mathrm{ IFS }}{}(A,A)=0\quad\mathrm{ for every A IF Ss ( }\Omega)
IF-Diss.2: }\quad\mp@subsup{D}{\textrm{IFS}}{(A,B)=D IFS (B,A) for every A,B IF Ss}(\Omega)
IF-Diss.3: If A, B,C IF Ss(\Omega) satisfies A B C, then
    D IFS (A,C) \geq max(DIFS (A,B ),D DIFS (B,C ))
IF-Div.4: }\quad\mp@subsup{D}{\textrm{IFS}}{}(\begin{array}{lll}{A}&{C,B}&{C}\end{array})\leq\mp@subsup{D}{\textrm{IFS}}{(A,B), for everyA, B,C IF Ss}(\Omega)
```

This measure of comparison is stronger than IF-dissimilarities, butless restrictive than IF-divergences. Moreover, theconverseimplicationsdonotholdingeneral. Let usgive an example of an IF-dissim ilitude that is not an IF-divergence and an example of an IF-dissimilarity that isnotan IF-dissimilitude.

Example 5.8First of all, we are going to build a dissimilarity that is not a dissimilitude.
Let us consider the function $D: \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IF} \operatorname{Ss}(\Omega) \rightarrow[0,1]$ defined on a finite $\Omega$ by:

$$
D(A, B)=\quad \mid \max _{\Omega}\left(\max \left(0, \mu_{\mathrm{B}}(\omega)-\mu_{\mathrm{A}}(\omega)\right)\right)-\max _{\Omega}\left(\max \left(0, \mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right)\right) .
$$

Let us see that $D$ is anIF-dissimilarity:
IF-Diss.1: $D(A, A)=0$, since $\mu_{\mathrm{B}}(\omega)-\mu_{\mathrm{A}}(\omega)=0$ for any $\omega \Omega$
IF-Diss.2: Obviously, $D(A, B)=D(B, A)$.
IF-Diss.3: Let $A, B$ and $C$ be threelF-sets such that $A \quad B \quad C$. Then, since $\mu_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{B}}(\omega) \leq \mu_{\mathrm{C}}(\omega)$, it holds that:

$$
\begin{aligned}
& D(A, B)=\left|\max \omega \Omega \mu_{\mathrm{B}}(\omega)-\mu_{\mathrm{A}}(\omega)\right|, \\
& D(B, C)=\left|\max \omega \Omega \mu_{\mathrm{C}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|, \\
& D(A, C)=\left|\max \omega \Omega \mu_{\mathrm{C}}(\omega)-\mu_{\mathrm{A}}(\omega)\right| .
\end{aligned}
$$

Moreover,

$$
\mu_{\mathrm{C}}(\omega)-\mu_{\mathrm{A}}(\omega) \geq \max \left(\mu_{\mathrm{C}}(\omega)-\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{B}}(\omega)-\mu_{\mathrm{A}}(\omega)\right),
$$

and therefore:

$$
D(A, C) \geq \max (D(A, B), D(B, C))
$$

Thus, $D$ satisfiesaxiom IF-Diss.3and thereforeit isan IF-dissimilarity. Let usshow that $D$ is not a dissimilitude, orequivalently, that there arelF-sets $A, B$ and $C$ such that $D\left(\begin{array}{lll}A & C, B & C\end{array}\right)>D(A, B)$. Tosee this, let usconsider $\Omega=\left\{\omega_{1}, \omega_{2}\right\}$ and define the IF-sets $A$ and $B$ by:

$$
\begin{aligned}
& A=\left\{(\omega 1,0.5,0),((\omega) 0,0\}, \quad B=\left\{(\omega 1,0,0),\left(x \omega 0.6, \theta^{\prime}\right),\right.\right. \\
& C=\left\{(\omega 1,0.5,0),\left(\mathbb{E}_{1}\right) 0.2, \delta\right) .
\end{aligned}
$$

It holds that:

$$
\begin{array}{ll}
A & C=\left\{\left(\omega_{1}, 0.5,0\right),\left(\Sigma_{1}\right) 0.2,0\right\} \\
B & C=\left\{\left(\omega_{1}, 0.5,0\right),\left(\Sigma_{1}\right) 0.6,0\right) .
\end{array}
$$

Then:

$$
D(A, B)=\left|0.5^{-} 0.6\right|=0.1 \geq 0.4=|0.2-0.6|=D\left(\begin{array}{lll}
A & C, B & C
\end{array}\right)
$$

Hence, $D$ does not fulfill Div.4, andtherefore it is neither an IF-dissimilitude nor an IF-divergence.

Example 5.9Let usgive anIF-dissimilitude thatis notan IF-divergence.
Consider the function $D$ defined by:

$$
D(A, B)=\begin{array}{ll}
1 & \text { if } A=\text { or } B=\quad, \text { but } A=B . \\
0 & \text { otherwise. }
\end{array}
$$

Let ussee that this function is adissimilitude:
IF-Diss.1: $D(A, A)=0 \quad$ by definition.
IF-Diss.2: $D$ is symmetricby definition.

IF-Diss.3: Let $A, B$ and $C$ be three IF-sets suchthat $A \quad B \quad C$. Then,

$$
\mu_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{B}}(\omega) \leq \mu_{\mathrm{C}}(\omega) \text { and } v_{\mathrm{A}}(\omega) \geq v_{\mathrm{B}}(\omega) \geq v_{\mathrm{C}}(\omega)
$$

for every $\omega \quad \Omega$.
There are two cases:on the onehand, if $D(A, C)=1$,then

$$
D(A, C)=1 \geq \max (D(A, B), D(B, C)) .
$$

On theother hand, $A=\quad$ and $C=\quad$ or $A=C$. Since $A \quad B \quad C$, in the first case $B=$ and in the second one $B=A=C$. In all cases, $D(A, C)=D(A, B)=D(B, C)=0$.
 This inequality holds if $D(A, B)=1$. Otherwise, if $D(A, B)=0$ then $A=$ and $B=$ or $A=B \quad$. Since $A \quad A \quad C$ and $B \quad B \quad C$, in the first case we deduce that $A \quad C=$ and $B \quad C=\quad$ andwe concludethat $D\left(\begin{array}{lll}A & C, B & C\end{array}\right)=D(A, B)=0 \quad$. Inthe second case, $D\left(\begin{array}{lll}A & C, B & C\end{array}\right)=D\left(\begin{array}{lll}A & C, A & C\end{array}\right)=0=D(A, B)$.

Thus, $D$ is an IF-dissimilitude, but it is not an IF-divergence since it does not fulfill axiom Div.3: if we considerthe IF-sets $A, B$ and $C$ defined by

$$
\begin{aligned}
& A=\left\{\left(\omega_{0}, 0,1\right),\left(\omega, \mu(\omega), v_{A}(\omega)\right) \mid \omega=\omega_{0}\right\} ; \\
& B=\{(\omega, \mu \mathrm{B}(\omega), \nu B(\omega)) \mid \omega \Omega\} ; \\
& C=\left\{\left(\omega_{0}, 1,0\right),(\omega, 0,1) \omega=\omega_{0}\right\}
\end{aligned}
$$

where $\mu_{\mathrm{B}}(\omega)>0$ for every $\omega \quad \Omega$ and $\mu_{\mathrm{A}}(\omega)=\mu \mathrm{B}(\omega)$ for every $\omega=\omega$, for a fixed element $\omega_{0}$ of $\Omega$; then, $A \cap C=$ but $B \cap C=$, and therefore:

$$
D(A \cap C, B \cap C)=1>0=D(A, B)
$$

Hence, $D$ is anIF-dissimilitude that isnot an IF-divergence.

Wehave already studied the relationships among IF-dissimilarities, IF-divergences and IF-dissimilitudes, andwe have also mentioned somecounterexamples related to the distance. In fact, that there is not a general relationship b etwee n the notion of distance for IF-sets and thesethreemeasures ofcomparison. Toshowthat, westartwithanexample of an IF -distance that is not an IF-dissimilarity.

Example 5.10 Let usconsider thefunction $D$ defined by:

wherethe IF-difference is theone of Example 2.56. Let us see that this fu nction isa distance for IF-sets.

Positivity: By definition, $D(A, B) \geq 0$ for every $A, B \quad$ IF $\operatorname{Ss}(\Omega)$.
Identity of indiscernibles: By definition, $D(A, B)=0$ if and only if $A=B$.
Symmetry: $D$ is alsosymmetric by definition.
Triangular inequality: Let us see that $D(A, C) \leq D(A, B)+D(B, C)$ holds forany $A, B, C \quad$ IF $S s(\Omega)$. On the onehand, if $D(A, C)=0$, the inequality trivial ly holds. If $D(A, B)=\frac{1}{2}$, wecan assume, without lossof generality, that $A-C=$, and then, $A=C$. This impliesthat either $\quad A=B \quad$ or $B=C$, and consequently either $D(A, B) \geq \frac{1}{2}$ or $D(B, C) \geq{ }_{2}^{1}$. Therefore the inequality holds. Final ly, if $D(A, C)=1$ and we assume that thetriangleinequality does not hold, thenwithoutloss of generalitywe can assume that $D(A, B)=0$. In that case, $A=B$, and therefore $D(A, C)=D(B, C)=1 \quad$, a contradiction arises. Weconclude that thetriangle inequality holds.

Thus, $D$ is a distancefor IF-sets. However, itisnotanIF-dissimilarity, sincewe can find IF-sets $A, B$ and $C$, with $A \quad B \quad C$, such that $D(A, C)<D(A, B)$ : let us consider $\Omega=\{\omega\}$ and the IF-sets $A, B$ and $C$ defined by:

$$
A=\{(\omega, 0.2,0\} .4) B=\left\{(\omega, 0.3,0.2) C=\left\{(\omega, 0.4,\}_{0}\right)\right.
$$

It is obvious that $A \quad B \quad$ C. Moreover, it holds that:

$$
D(A, C)=1 \text { and } D(B, C)=0.5
$$

We conclude thatD is notan IF-dissimilarity.

We have seen that I F-distances are not IF-dissimi laritie s in general.Thus, th ey cannot be, in general, IF-divergencesor IF-dissimilitudes, since in that case they would be in particular IF-dissimilarities. We next show that the converse implications do not hold either.

Example 5.11Letus giveanexample ofanIF-divergencethat isnot a distancebetween IF-sets. Considerthe function $D$ defined by:
$D(A, B)=\max _{\Omega}\left(\max \left(0, \mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right)\right)^{2}+\max _{\Omega}\left(\max \left(0, \mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right)\right)^{2}$.

IF-Div.1:It isobvious that $D(A, A)=0$.
IF-Div.2:By definition, $\quad D$ is alsosymmetric.
IF-Div.3:Let us provethat $D(A, B) \geq D(A \cap C, B \cap C)$ for any $A, B, C$. Using the first part of Lemma A. 1 in Appendix A, forany $\omega$ it holdsthat:

$$
\max \left(0, \mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right)^{\geq} \max \left(0, \min \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega)\right)^{-} \min \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{C}}(\omega)\right)\right)
$$

It trivially fol lows that $D(A, B) \geq D(A \cap C, B \cap C)$.
IF-Div.4: Similarly, let us prove that $D(A, B) \geq D\left(\begin{array}{lll}A & C, B & C\end{array}\right)$ for any $A, B, C$. Taking intoaccount againthe first part of Example A. 1 inLemma A, any $\omega$ satisfies the fol lowing:
$\max \left(0, \mu_{\mathrm{A}}(\omega)^{-} \mu_{\mathrm{B}}(\omega)\right)^{\geq} \max \left(0, \max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega)\right)^{-} \max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{C}}(\omega)\right)\right)$.
This implies that $D(A, B) \geq D\left(\begin{array}{lll}A & C, B & C\end{array}\right)$.
We conclude thatD is anIF-divergence. However, itdoesnotsatisfythetriangular inequality, because for the IF-setsA, B and $C$ of $\Omega=\{\omega\}$, defined by:

$$
A=\left\{(\omega, 0,\}_{1}\right) \quad B=\left\{\left(\omega, 0.4, \delta^{d}\right) \text { and } C=\left\{\left(\omega, 0.5, b_{0}\right)\right.\right.
$$

it holds that:

$$
D(A, C)=0.25 \leq 0.16+0.01=D(A, B)+D(B, C)
$$

Thus, $D$ does notsatisfy the triangularinequality.

Since themeasure defined inthis example isan IF-divergence, it is alsoan IF-dissimilarity and an IF-dissimilitude. Then, wecanseethatnoneofthesemeasuressatisfy, ingeneral, the prop erties that define a distance.

Let us show next that an IF-dissimilitude and a dis tance is not necessarily an IFdivergence.

Example 5.12Let usconsider themap

$$
D: \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IF} \operatorname{Ss}(\Omega) \rightarrow \mathrm{R}
$$

defined by:

$$
D(A, B)=\begin{array}{ll}
\square_{0} & \text { if } A=B . \\
\square_{1} & \text { if } A=B
\end{array} \quad \text { and either } \mu_{\mathrm{A}}(\omega)=0 \quad \omega \quad \Omega \text { or } \mu_{\mathrm{B}}(\omega)=0 \quad \omega \quad \Omega .
$$

First of al I, let us prove that $D$ is a distancefor IF-sets.
Positivity: By definition, $\quad D(A, B) \geq 0$ for every $A, B \quad$ IF $S s(\Omega)$.
Identity of indiscernibles: By definition, $D(A, B)=0$ if and only if $A=B$.
Triangular inequality: Let us consider $A, B, C$ IF $\operatorname{Ss}(\Omega)$, and let us prove that $D(A, C) \leq D(A, B)+D(B, C)$. If $D(A, C)=0$, obviouslythe inequality holds. If $D(A, C)=0.5$, then $A=C$, and therefore either $A=B$, and consequent/y $D(A, B) \geq 0.5$ or $B=C$, and consequently $D(B, C) \geq 0.5$ Then, $D(A, B)+D(B, C) \geq 0.5=D(A, C)$.

Otherwise, $D(A, C)=1$. In sucha case, $A=C$ and wecan assume that $\mu_{A}(\omega)=0$ for every $\omega \quad \Omega$. Then, if $A=B \quad D(A, B)=1$, and if $A=B \quad$, then $D(B, C)=D(A, C)=1$. We conclude thus that the triangularinequality holds.

Let us now prove that $D$ is alsoan IF-dissimilitude:
IF-Diss.1: We have already seen thatD $(A, A)=0$.
IF-Diss.2: Obviously, D is symmetric.
IF-Diss.3: Consider $A, B, C \quad$ IF $S s(\Omega)$ such that $A \quad B \quad C$, and let us prove that $D(A, C) \geq \max (D(A, B), D(B, C))$ Note that if $D(A, C)=0$, then $A=B=C$ andthereforethe inequality holds. Moreover, if $D(A, C)=1$ then the inequality also holds becaus申nax $(D(A, B), D(B, C)) \leq 1$. Final ly, assume that $D(A, C)=0.5$. In such acase $A=C$, and thereforeeither $A=B$ or $B=C$, and there is $\omega \quad \Omega$ such that $\mu_{\mathrm{C}}(\omega) \geq \mu_{\mathrm{A}}(\omega)>0$. Then, as $\mu_{\mathrm{C}}(\omega) \geq \mu_{\mathrm{B}}(\omega) \geq \mu_{\mathrm{A}}(\omega), D(A, B), D(B, C)$ 0.5 Thus, axiom IF-Diss. 3 holds.

IF-Div.4: Let us now consider three IF-sets $A, B$ and $C$, and let us prove that $D\left(\begin{array}{lll}A & C, B & C\end{array}\right) \leq D(A, B)$. First of al $l$, if $D(A, B)=1$, then theprevious inequality trivial ly holds, since $D$ isbounded by1. Moreover, if $D(A, B)=0$ then $A=B$, and consequently applying IF-Diss. $1 D\left(\begin{array}{llll}A & C, B & C\end{array}\right)=D\left(\begin{array}{lll}A & C, A & C\end{array}\right)=0$. Final ly, assume that $D(A, B)=0.5$. In suchacase, $A=B$ andthere exist $\omega_{1}, \omega_{2} \quad \Omega$ such that $\mu_{\mathrm{A}}\left(\omega_{1}\right)>0$ and $\mu_{\mathrm{B}}\left(\omega_{2}\right)>0$. Letus note that:

$$
\begin{aligned}
& \mu_{\mathrm{A}} \quad \mathrm{c}(\omega)=\max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega)\right) \geq \mu_{\mathrm{A}}(\omega) \text { and } \\
& \mu_{\mathrm{B}} \quad \mathrm{c}(\omega)=\max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{C}}(\omega)\right) \geq \mu_{\mathrm{B}}(\omega) .
\end{aligned}
$$

Consequently, $\mu_{\mathrm{A}} \mathrm{c}\left(\omega_{1}\right) \geq \mu_{\mathrm{A}}\left(\omega_{1}\right)>0$ and $\mu_{\mathrm{B}} \mathrm{c}\left(\omega_{2}\right) \geq \mu_{\mathrm{B}}\left(\omega_{2}\right)>0$. Thenit holdsthat $D(A$ $C, B \quad C) \leq 0.5=D(A, B)$.

Thus, $D$ is a distance andan IF-dissimilitude. Let us show that it isnot an IFdivergence. Consider $\Omega=\left\{\omega_{1}, \omega_{2}\right\}$ and the IF-sets $A, B$ and $C$ defined by:

$$
\begin{aligned}
& A=\{(\omega 1,1,0),(\omega), 0,0\}^{2} . \\
& B=\{(\omega 1,1,0),(\omega) 1,0\}^{2} . \\
& C=\left\{(\omega 1,0,0),(\infty, 1,0)^{2} .\right.
\end{aligned}
$$

Then:
$A \cap C=\{(\omega 1,0,0),(\omega) 0,0)$.
$B \cap C=\{(\omega 1,0,0),(\omega, 1,0)$.

Then, $D(A, B)=0.5$ and $D(A \cap C, B \cap C)=1$, and therefore

$$
D(A \cap C, B \cap C)>D(A, B),
$$

acontradiction with IF-Div.3. Thus D cannot be anIF-divergence.

To conclude this part, itonly remainsto showthat if $\quad D$ isan IF-dissimilarityanda distance, it isnot necessarily an IF-dissimilitude.

Example 5.13Consider themap

$$
D: \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IF} \operatorname{Ss}(\Omega) \rightarrow \mathrm{R}
$$

defined by:


Let us prove that $D$ is a distancefor IF-sets.
Positivity, the identity of indiscernibles and symmetry trivial ly hold. Letus prove that the triangular inequality is also satisfied. Let $A, B$ and $D$ bethreelF-sets, andlet us see that $D(A, C) \leq D(A, B)+D(B, C)$.

- If $D(A, C)=0$, the inequality trivial ly holds.
- If $D(A, C)=0.5$, then $A=C$, and thereforeeither $A=B$ or $B=C$, and consequently $D(A, B)+D(B, C) \geq 0.5=D(A, C)$
- Final ly, if $D(A, C)=1$, we can assume, without lossof generality, that $A=\Omega$. Then, if $B=A \quad, D(B, C)=1$, and therefore $D(A, C)=1=D(A, B)+D(B, C)$. Otherwise, if $B=A$, then $D(A, B)=1$, and therefore

$$
D(A, C)=1 \leq D(A, B)+D(B, C)
$$

Thus, $D$ is a distancefor IF-sets.
Let us now prove that it is also an IF-dissimilarity. Onthe onehand, properties IF-Diss. 1 and IF-Diss. 2 are trivial ly satisfied. Let us see that IF-Diss. 3 also holds. Consider threelF-sets $A, B, C$ satisfying $A \quad B \quad C$, and let us prove that $D(A, C) \geq \max (D(A, B), D(B, C))$

- If $D(A, C)=1$,obviously $D(A, C) \geq \max (D(A, B), D(B, C))$
- If $D(A, C)=0.5$, then $A=C$ andthere is $\omega \quad \Omega$ such that $\mu_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{B}}(\omega) \leq$ $\mu_{\mathrm{C}}(\omega)<1$. Then, $\max (D(A, B), D(B, C)) \leq 0.5=D(A, C)$.
- Final ly, if $D(A, C)=0, A=B=C$ holds, andthen $D(A, B)=D(B, C)=0$.

Thus, $D$ is a dist ance for IF-sets and an IF-dissimilarity. However, it is not an IFdissimilitude, forit does not satisfy axiom IF-Div.4: tosee this, consider the universe $\Omega=\left\{\omega_{1}, \omega_{2}\right\}$, and the IF-sets

$$
A=\left\{\left(\omega_{1}, 1,0\right),\left(\omega_{0} 0,0\right)\right\} \text { and } B=\left\{\left(\omega_{1}, 0,0\right),(\omega, 1,0)\right\} .
$$

It holds that $D(A, B)=0.5$. However, if we consider $C=B$, then $A \quad C=\Omega$, and therefore:

$$
D(A \quad C, B \quad C)=D(\Omega, B)=1 .
$$

Then, $D\left(\begin{array}{lll}A & C, B & C\end{array}\right)>D(A, B)$, and therefore axiomIF-Div.4is notsatisfied. This shows that $D$ is notan IF-divergence.

Figure 5.1 summarizes the relationships between the different metho ds for comparing IF-sets.


Figure 5.1: Relationships among IF-divergences, I F-d issimilitudes, IF-dissimilarities and distances for IF-sets.

### 5.1.1 Theoretical approach to the comparisonofIF-sets

Bouchon-Meunier et al. ([27]) prop osed a generameasure ofcomparisonforfuzzy sets that generates some particular measures depending on the conditions imp osed to sucha general measure.

Following this ideas, in thissection wedefine a general measure of comparison b etween IF-sets that, dep ending on the imp osed prop ertiesgenerateseither distances, or IF-dissimilarities orIF-divergences.

For this, let us consider a function $D: \operatorname{IF} S s(\Omega) \times \operatorname{IF} S s(\Omega) \rightarrow R$, and assume that there is ageneratorfunction $G_{D}$ :

$$
\begin{equation*}
G_{D}: \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IF} \operatorname{Ss}(\Omega) \rightarrow \mathrm{R}^{+} \tag{5.1}
\end{equation*}
$$

such that $D$ can beexpresse d by:

$$
D(A, B)=G 口(A \cap B, B-A, A-B),
$$

where ${ }^{-}$is a difference op erator for IF-sets, according to Definition 2.55, that fulfills D3, D4 and D5.

We shall see that dep ending on the conditions imp osed ofro , we can obtain that $D$ is either an IF-dissimilarity, an IF-divergence or a distan ce for IF-sets.

We begin by determining which conditions must be imp osed on $G_{D}$ in order to obtain a di stance for IF-sets.

Prop osition 5.14onsiderthe function $D: \operatorname{IFSs}(\Omega) \times \operatorname{IFSs}(\Omega) \rightarrow R$ that can be expressedasinEquation (5.1) bymeansof a generator $G_{D}: \operatorname{IFSs}(\Omega) \times \operatorname{IF} \operatorname{Ss}(\Omega) \times$ I FSS $(\Omega) \rightarrow \mathrm{R}^{+}$. If thefunction $G_{D}$ satisfies theproperties:

$$
\begin{array}{ll}
\text { S-Dist.1: } & G_{D}(A, B, C)=0 \quad \text { if and only if } B=C=\quad ; \\
\text { S-Dist.2: } & G_{D}(A, B, C)=G \quad D(A, C, B) \text { for every } A, B, C \quad \text { IF } S s(\Omega) ; \\
\text { S-Dist.3: } & \text { For every } A, B, C \quad \text { IFSs }(\Omega), \\
& G_{D}(A \cap C, C-A, A-C) \leq G_{D}(A \cap B, B-A, A-B) \\
& +G D(B \cap C, C-B, B-C) ;
\end{array}
$$

then $D$ is a distancefor IF-sets.

Pro of Let us prove that $D$ satisfiesthe axiomsofIF-distances.
Positivity: it trivially follow s from the $p$ ositivity of $G_{D}$. Toshow theidentity of indiscernibles, let $A$ and $B$ be two IF-sets. Then, by prop erty S-Dist.1:

$$
D(A, B)=G D(A \cap B, B-A, A-B)=0 \quad B-A=A-B=
$$

and by prop erties D1 and D5 this is equivalent to $A=B$.
Symmetry: Let $A$ and $B$ be two IF-sets. Using S-Dist.2, wehavethat:

$$
\begin{aligned}
D(A, B) & =G D(A \cap B, B-A, A-B) \\
& =G D(A \cap B, A-B, B-A)=D(B, A) .
\end{aligned}
$$

Triangular inequality:Let $A, B$ and $C$ be three IF-sets.By S-Dist.3, itholds that:

$$
\begin{aligned}
D(A, C) & =G \mathrm{D}(A \cap C, C-A, A-C) \\
& \leq G_{D}(A \cap B, B-A, A-B)+G \mathrm{D}(B \cap C, C-B, B-C) \\
& =D(A, B)+D(B, C) .
\end{aligned}
$$

Letus now consider IF-dissimilarities. Wehaveproven thefollowingresult:

Prop osition 5.15et $D$ be amap $D: \operatorname{IFSs}(\Omega) \times \operatorname{IFSs}(\Omega) \rightarrow \mathrm{R}^{+}$that canbeexpressed asinEquation (5.1) bymeansofthe generator $G_{D}$, where $G_{D}:$ IF Ss $(\Omega) \times \operatorname{IFSs}(\Omega) \times$ I FSs $(\Omega) \rightarrow R^{+}$. Then, $D$ is anIF-dissimilarity if $G_{D}$ satisfies the fol lowing properties:

$$
\begin{array}{llll}
\text { S-Diss.1: } & G_{D}(A,,)=0 \text { for every } A \text { IF } S s(\Omega) . & \\
\text { S-Dist.2: } & G_{D}(A, B, C)=G \text { D }(A, C, B) \text { for every } A, B, C & \text { IF } S s(\Omega) . \\
S \text {-Diss.3: } & G_{D}(A, B,) \text { in increasing in } B . & \\
\text { S-Diss.4: } & G_{D}(A, B,) \text { is decreasing in } A .
\end{array}
$$

Pro of Letus provethat $D$ isan IF-dissimilarity.
IF-Diss.1: Let $A$ be an IF-set. By D1 and S-Diss . 1 it holds that

$$
D(A, A)=G D(A \cap A, A-A, A-A)=G D(A, \quad)=0 \text {. }
$$

IF-Diss.2: Let $A$ and $B$ be two IF-sets. Then, byS-Dist.2, $D$ is symmetric:

$$
\begin{aligned}
D(A, B) & =G D(A \cap B, B-A, A-B) \\
& =G D(A \cap B, A-B, B-A)=D(B, A) .
\end{aligned}
$$

IF-Diss.3: Let $A, B$ and $C$ be three I $F$-s ets such tha $\quad B \quad C$, and let us prove that $D(A, C) \geq \max (D(A, B), D(B, C))$. Firstof all, letus compute $D(A, C), D(A, B)$ and $D(B, C)$.

$$
\begin{aligned}
& D(A, C)=G D(A \cap C, C-A, A-C)=G D(A, C-A,) . \\
& D(A, B)=G D(A \cap B, B-A, A-B)=G D(A, B-A,) . \\
& D(B, C)=G D(B \cap C, C-B, B-C)=G D(B, C-B,) .
\end{aligned}
$$

Ononehand, letus provethat $\quad D(A, C) \geq D(A, B)$. ByD2, itholdsthat $B-A \quad C-A$, and therefore, byS-Diss.3:

$$
D(A, C)=G D(A, C-A, \quad) \geq G_{D}(A, B-A, \quad)=D(A, B) .
$$

Let us prove next that $D(A, C) \geq D(B, C)$. ByD4it holdsthat $C-B \quad C-A$, and therefore:

Thus, we conclude that $D$ isan IF-dissimilarity.
ConcerningIF-divergences, we haveestablished thefollowing:
Prop osition 5.16et $D$ be a map $D: \operatorname{IF} S s(\Omega) \times I F S s(\Omega) \rightarrow R$ generated by $G_{D}$ as in Equation (5.1), where $G_{D}: \operatorname{IF} S S(\Omega) \times \operatorname{IF} S s(\Omega) \times \operatorname{IFSs}(\Omega) \rightarrow R^{+}$. Then, $D$ is an IF-divergence if $G_{D}$ satisfies the fol lowing properties:

```
S-Diss.1: G}\mp@subsup{G}{D}{}(A, , )=0 for every A,B IF Ss(\Omega)
S-Dist.2: }\quad\mp@subsup{G}{D}{}(A,B,C)=G\quadD(A,C,B) for every A,B,C IF Ss (\Omega)
S-Div.3: }\quad\mp@subsup{G}{D}{}(A,B,C) is increasing in B and C.
S-Div.4: }\quad\mp@subsup{G}{D}{}(A,B,C) is independent of A.
```

Note that axiom S-Div. 4 is a very strongcondition. We require it because IF-divergences fo cus on the difference $b$ etween the IF-sets instead of the intersection.

Pro of Let us prove that $D$ isan IF-divergence.
First andsecond axiomsof IF-divergences and IF-dissimilarities coincide. Furthermore, as we proved in Prop osition 5.15, they follow from S-Diss. 1 and S-Dist.2.

IF-Div.3: Let $A, B$ and $C$ be three IF-sets. Since the IF-difference op erator fulfills D3, then $(A \cap C)^{-}(B \cap C) \quad A-B$ and $(B \cap C)^{-}(A \cap C) \quad B-A$. Therefore, by S-Div. 3 and S-Div.4:

$$
\begin{aligned}
D(A & \cap C, B \cap C) \\
& =G D(A \cap B \cap C,(B \cap C)-(A \cap C),(A \cap C)-(B \cap C)) \\
& =G D(A \cap B,(B \cap C)-(A \cap C),(A \cap C)-(B \cap C)) \\
& \leq G D(A \cap B, B-A, A-B)=D(A, B) .
\end{aligned}
$$

IF-Div.4: Consider the IF-sets $A, B$ and $C$. Asinthe previousaxiom, applying prop erty D4 of the IF-difference ${ }^{-}$, we obtainthat $\left(\begin{array}{ll}A & C\end{array}\right)^{-}\left(\begin{array}{ll}B & C\end{array}\right) \quad A-B$ and $\left(\begin{array}{ll}B & C\end{array}\right)^{-}\left(\begin{array}{ll}A & C\end{array}\right) \quad B-A$. As a consequence,

$$
\left.\begin{array}{rl}
D(A & C, B \\
= & C
\end{array}\right)
$$

We conclude that $D$ isan IF-divergence.
Inorder to findsufficient conditionsover $\quad G_{D}$ so as to build an IF-d issimilitude $D$, we need $D$ tosatisfy axiomsIF-Diss.1, IF-Diss.2, IF-Diss.3and IF-Div.4. Aswe have already mention ed, axioms IF-Diss. 1 and IF-Diss. 2 are implied by conditions:

S-Diss.1: $\quad G_{D}(A, \quad, \quad$ for every $A, B \quad$ IF $S s(\Omega)$.
S-Dist.2: $\quad G_{D}(A, B, C)=G \quad D(A, C, B)$ for every $A, B \quad$ IF $S s(\Omega)$.
In order to prove condition IF-Div.4, in Prop osition 5.16 we required the following:
S-Div.3: $\quad G_{D}(A, B, C)$ is increasing in $B$ and $C$.
S-Div.4: $\quad G_{D}(A, B, C)$ is indep endent of $A$.
Moreover, itis trivial that these conditions implyS-Diss. 3 and S-Diss.4, that also follow from axiom IF-Diss.3. Therefore, the conditions that need to be imp osed on $G_{D}$
in order to obtain an IF-dissimilitude are the same that we have imp osed in order to obtain an IF -divergence.

Letusgive an example of a function $G_{D}$ thatgeneratesan IF-dissimilaritybutnot an IF-divergence.

Example 5.17Consider thefunction $G_{D}: \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IFSs}(\Omega) \times \operatorname{IFSs}(\Omega) \rightarrow \mathrm{R}^{+}$ defined, for every $A, B, C$ IF $\operatorname{Ss}(\Omega)$, by:

$$
G_{D}(A, B, C)=\left|\max _{\Omega} \mu_{B}(\omega)-\max _{\Omega} \mu_{C}(\omega)\right| .
$$

This function generates an IF-dissimilarity because it satisfies properties S-Diss. i, with $i=1,3,4$ and S-Dist.2.

S-Diss.1: By definition, $G_{D}(A, \quad)=0$, since $\mu(\omega)=0$ for every $\omega \quad \Omega$.
S-Dist.2: $G_{D}$ is symmetric with respect its second and third component s:

$$
\begin{aligned}
G_{\mathrm{D}}(A, B, C) & =\left|\max \omega \Omega_{\mathrm{B}} \mu_{\mathrm{B}}(\omega)-\max \omega \Omega_{\mathrm{C}}(\omega)\right| \\
& =\left|\max \omega \mu_{\mathrm{C}} \mu_{\mathrm{C}}(\omega)-\max \omega \mu_{\mathrm{B}}(\omega)\right|=G \mathrm{D}(A, C, B) .
\end{aligned}
$$

S-Diss.3: Let $A, B$ and $B$ be threelF-sets such thatB $\quad B$. Then, $\mu_{B}(\omega) \leq \mu_{B}(\omega)$ for every $\omega \quad \Omega$. Then itholds that:

$$
G_{\mathrm{D}}(A, B, \quad)=\max _{\Omega} \mu_{\mathrm{B}}(\omega) \leq \max _{\Omega} \mu_{\mathrm{B}}(\omega)=G \mathrm{D}(A, B, \quad) .
$$

Thus, $G_{D}(A, B, \quad)$ is increasing in $B$.
S-Diss.4: It is obvious that $G_{D}$ doesnot dependon itsfirst component, and therefore, it is in particular decreasing on $A$.

Hence, $G_{D}$ satisfiesthe conditions of Proposition 5.15, and therefore themap $D$ defined by:

$$
D(A, B)=G D(A \cap B, B-A, A-B), \text { for every } A, B \quad \text { IF } S s(\Omega)
$$

is an IF-dissimilarity. However, ingeneral $G_{D}$ doesnotsatisfy S-Div.4. Toseethis, it is enough to consider the IF-difference of Example 2.56. In that case, the function $G_{D}$ generatesthe IF-dissimilarity of Example 5.8, which was showed not to satisfy condition IF-Div.4. Then, D isneitheranIF-dissimilitudenoran IF-divergence. This implies that $G_{D}$ does not fulfill S-Div.4, because otherwis@ would bean IF-divergence.

Let us see next an example of afunction $G_{D}$ that generates an IF-divergence th at is not adistance for IF-sets.

Example 5.18Consider the function $G_{D}: \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IF} S s(\Omega) \times \operatorname{IF} S s(\Omega) \rightarrow \mathrm{R}^{+}$ defined by:

$$
G_{D}(A, B, C)=\max _{\Omega} \mu_{B}(\omega)^{2}+\max _{\Omega} \mu_{C}(\omega)^{2}
$$

for every $A, B, C \quad$ IF $S s(\Omega)$. This function generates an IF-divergence, since it trivial ly satisfies the conditions in Proposition 5.16. However, it does not generat e a distance for IF-sets. Tosee it, consider theIF-differencedefined in Example 2.56. Then, the IF-divergence that generates $G_{D}$ with this IF-differencecoincides with the one given in Example 5.11, where weproved that it was not adistance for IF-sets.

Finally, letus give an exampleof a fun ction $G_{D}$ that generatesa distance forfuzzy setsthat is notan IF-dissimilarity, IF-dissimilitude.

Example 5.19Consider thefunction

$$
G_{D}: \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IF} S s(\Omega) \times \operatorname{IFSs}(\Omega) \rightarrow \mathrm{R}^{+}
$$

by:

$$
G_{D}(A, B, C)=\begin{array}{ll}
\square_{0} & \text { if } B=C=\quad, \\
\boxminus_{0.5} & \text { if } B=\quad \text { or } C= \\
\square 1 & \text { otherwise. }
\end{array} \quad \text { and } \mu_{\mathrm{A}}(\omega)=0.3 \text { for all } \omega \quad \Omega,
$$

Let us prove that $G_{D}$ satisfies conditionsof Proposition5.14.
S-Dist.1: By definition, $G_{D}(A, B, C)=0$ if and only if $B=C=$
S-Dist.2: Obviously, $G_{D}(A, B, C)=G \quad D(A, C, B)$ for every $A, B, C \quad$ IF $\operatorname{Ss}(\Omega)$.
S-Dist.3: Let us consider A, B,C IF Ss( $\Omega)$, and we want to prove that

$$
G_{D}(A \cap C, C-A, A-C) \leq G_{D}(A \cap B, B-A, A-B)+G \perp(C \cap B, B-C, C-B) .
$$

- If $G_{D}(A \cap C, C-A, A-C)=0$, then the inequality trivial ly holds.
- Let us nowassume that $G_{D}(A \cap C, C-A, A-C)=0.5$. Thus, either $A-C=$ or $C-A=\quad$ and $\mu_{\mathrm{A} \cap \mathrm{C}}(\omega)=0.3$ for every $\omega \quad \Omega$. Let us note $t$ hat, as $A=C$, either $A=B$ or $B=C$. Equivalently, either $G_{D}(A \cap B, B-A, A-B) \geq 0.5$ or $G_{D}(C \cap B, B-C, C-B) \geq 0.5$ Then, inthis casethe inequality alsoholds.
- Final ly, consider the case whereG $(A \cap C, C-A, A-C)=1$. Then, $A-C=$ or $C-A=\quad$ and $\mu_{\mathrm{A} \cap \mathrm{C}}(\omega)=0.3$ for some $\omega$. If $A=B$, then:

$$
\begin{array}{ll}
G_{D}(A \cap B, B-A, A-B)=0 & \text { and } \\
G_{D}(C \cap B, B-C, C-B)=G & D(C \cap A, A-C, C-A)=1 .
\end{array}
$$

The samehappens when $B=C$. Otherwise, if $A=B \quad$ and $B=C$, then both $G_{D}(C \cap B, B-C, C-B)$ and $G_{D}(A \cap B, B-A, A-B)$ aregreater or equal to 0.5 , and its sum equals 1.

Therefore, $G_{D}$ generatesa distance forlF-sets. Toshow that it generates neither an IF-dissimilaritynor an IF-divergence, itis enoughto considertheIF-differenceof Example2.56, becauseinthat casethefunction $G_{D}$ generatesthe distance ofExamples5.10, wherewe showed that such function is neither an IF-dissimilarity nor an IF-divergence.

We have see $n$ sufficient conditions for $G_{D}$ to generatedistances, IF-dissimi laritie $s$ and IF-divergences. However, such conditions are not necess aryand we c an not assure that every distance, IF-dissimilarity or IF-divergence can b e generated in this way.

Aswe haveseen, IF-divergencesare morerestrictive thanIF-dissimilaritiesand IFdissimilitudes. Thus, IF-divergencesavoidsomecounterintuitivemeasuresofcomparison oflF-sets, sincethe strongertheconditions, themore"robust" themeasureis. Because of this, we think it is preferable to work with IF-divergences, and we shall fo cus on them in the remainder of this chapter.

### 5.1.2 Properties of the IF-divergences

We have prop osed an axiomatic definition of divergence measures for intuitionistic fuzzy sets, which are particular cas es of dissimi larity and dissimilitude measures. Next, we study their prop erties in more detail. We begin by noting that a desirable prop erty fora measure of the difference between IF-sets is positivityAlthough it has not b een imp osed in the definition, it can be easily derived from axioms IF-Diss. 1 and IF-Div.3:

Lemma 5.20If $D:$ IF $S s(\Omega) \times$ IF $S s(\Omega) \rightarrow \mathrm{R}$ satisfiesIF-Diss. 1 and IF-Div.3, thenit is posit ive.

Pro of Consider two IF-sets $A$ and $B$.From IF-Div.3, for every $C$ IF Ss $(\Omega)$ it holds that:

$$
D(A, B) \geq D(A \cap C, B \cap C) .
$$

If we take $C=$, then:

$$
D(A, B) \geq D(A \cap, B \cap)=D(,)=0
$$

by IF-Diss .1. Thus, $D$ is a positive function.
Now we investigate an interesting prop erty of IF-divergences.
Prop osition 5.2国iven anIF-divergence $D_{\mathrm{IFS}}$, it fulfil Is that:

$$
D_{\mathrm{IFS}}(A \cap B, B)=D \quad \operatorname{IFS}(A, A \quad B),
$$

and this value is lower than or equal to $D_{\mathrm{IFS}}(A, B)$ and $D_{\mathrm{IFS}}(A \cap B, A \quad B)$, that is:

$$
D_{\mathrm{IFS}}(A \cap B, B)=D \quad \mathrm{IFS}(A, A \quad B) \leq \min \left\{D_{\mathrm{IFS}}(A, B), D_{\mathrm{IFS}}(A \cap B, A \quad B)\right\} .
$$

However, there is no fixed relationship betweerD $D_{\mathrm{IFS}}\left(\begin{array}{ll}A \cap B, A & B\end{array}\right)$ and $D_{\mathrm{IFS}}(A, B)$.
Pro of By thedefinitions of union and intersection of intuitionistic fuzzy sets, we have that ( $A \quad B)^{\cap} B=B$ and $(A \cap B) \quad A=A$. Applying axiomsIF-Div.3andIF-Div.4, we obtain that

$$
\begin{aligned}
& D_{\text {IFS }}(A \cap B, B)=D \operatorname{IFS}(A \cap B,(A \quad B) \cap B) \leq D_{\text {IFS }}(A, A \quad B) \\
& =D \operatorname{IFS}((A \cap B) \quad A, B \quad A) \leq D_{\operatorname{IFS}}(A \cap B, B) .
\end{aligned}
$$

Thus, $D_{\text {IFS }}(A \cap B, B)=D \quad \operatorname{IFS}(A, A \quad B)$.
On the other hand, $B \cap B=B$, whence

$$
D_{\mathrm{IFS}}(A \cap B, B)=D \quad \operatorname{IFS}(A \cap B, B \cap B) \leq D_{\mathrm{IFS}}(A, B) \text { by Axiom IF-Div. } 3 .
$$

Finally, since $A \cap B \quad A \quad A \quad B$, by Lemma 5.5 we have that

$$
D_{\mathrm{IFS}}(A, A \quad B) \leq D_{\mathrm{IFS}}(A \cap B, A \quad B)
$$

In order to prove that there is no dominance relationship between $D_{\mathrm{IFS}}(A \cap B, A \quad B)$ and $D_{\mathrm{IFS}}(A, B)$, let usconsider the universe $\Omega=\{\omega\}$ and the IF-sets:

$$
\begin{array}{ll}
A=\{(\omega, 0.2,0.6) & A \cap B=\{(\omega, 0.2,0 . \hbar) \\
B=\{(\omega, 0.3,0\}) & A \cap B=\{(\omega, 0.3,0.6)
\end{array}
$$

Consider the IF-divergences $D_{L}$ and $l_{\text {IFS }}$ defined by:

$$
\begin{aligned}
D_{L}(A, B)= & { }_{4}^{1}\left(\left|\left(\mu_{\mathrm{A}}(\omega)-v_{\mathrm{A}}(\omega)\right)^{-}\left(\mu_{\mathrm{B}}(\omega)-v_{\mathrm{B}}(\omega)\right)+\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|\right.\right. \\
& \left.+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right) . \\
I_{\mathrm{IFS}}(A, B)= & { }_{2}^{1}\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|+\left|\pi_{\mathrm{A}}(\omega)^{-} \pi_{\mathrm{B}}(\omega)\right| .
\end{aligned}
$$

As we shall see in Section 5.1.3, they corresp ond to the Hong and Kim IF-divergence and the Hamming distance, resp ectively.Then:

$$
\begin{aligned}
& I_{\text {FF }}(A, B)=0.2 \text { and } \\
& I_{\text {IFS }}(A \cap B, A \\
& D_{L}(A, B)=0.0 .2 \text { and }=0.1 . \\
& D_{L}(A \cap B, A \quad B)=\frac{0.2+0.1+0.1}{4}=\frac{0.4}{4} .
\end{aligned}
$$

Thus:

$$
I_{\text {IFS }}(A, B)>1 \quad \text { IFS }(A \cap B, A \quad B) \text { and } D_{L}(A, B)<D \quad L(A \cap B, A \quad B)
$$

and therefore, there is not fixed relationship between these two quantities.
Next, we shall study under which conditions axioms IF-Div. 3 and IF-Div. 4 are equivalent. But before tackling this problem, we give an example showing that they are not equivalent in gen eral.

Example 5.22Consider thefunction $D: \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IF} S s(\Omega) \rightarrow R$ given by

$$
D(A, B)={ }_{\omega \Omega} h\left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega)\right) \text {, for every } A, B \quad \text { IFS } s(\Omega),
$$

whereh is defined by

$$
h(x, y)=\begin{array}{ll}
0 & \text { if } x=y \\
1-x y & \text { if } x=y
\end{array}
$$

We shal I prove in Example 5.53 of Section 5.1.5 thal satisfies IF-Diss.1, IF-Diss.2and IF-Div.4. However, itisnot anIF-divergence. For instance, if we considera universe $\Omega=\left\{\omega_{1}, \ldots, \omega_{1}\right\}$, and the IF-sets defined by:

$$
\left.\begin{array}{l}
A=\{(\omega, 0.2,0 . \phi) \omega \\
B=\{(\omega, 0.8,0.2) \omega \\
B \\
C=\{(\omega, 0.5,0 . \$) \omega \\
C
\end{array}\right\} .
$$

it holds that:

$$
\begin{aligned}
& D(A \cap C, B \cap C)=D(A, C)=\omega_{\omega}(1-0.20 .5)=\omega_{\Omega} 0.9=0.9 n . \\
& D_{\mathrm{IF}}(A, B)=1_{\omega \Omega} 0.84=0.84 n .
\end{aligned}
$$

Thus, $D(A \cap C, B \cap C)=0.9 n>0.84 n=D(A, B)$ andthereforelF-Div. 3 isnotsatisfied.
Hence, wehaveanexample of a function that satisfies IF-Div.4but it does not satisfy IF-Div.3. Nextwearegoing toshowbymeansofan examplethatlF-Div.3does not imply IF-Div. 4 either. Consider thefunction $D: \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IF} S s(\Omega) \rightarrow \mathrm{R}$ given by:

$$
D(A, B)={ }_{\omega \Omega} h\left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega)\right) \text { for every } A, B \quad F S(\Omega),
$$

where $h: \mathrm{R}^{2} \rightarrow \mathrm{R}$ is defined by:

$$
h(x, y)=\begin{array}{ll}
0 & \text { if } x=y . \\
x y & \text { if } x=y .
\end{array}
$$

We shall also see in Example 5.53 of Section 5.1.5 that thisfunction satisfies IF-Diss.1, IF-Diss. 2 andIF-Div.3, but it is notan IF-divergence: $\operatorname{consider~} \Omega=\left\{\omega_{1}, \ldots, c_{A}\right\}$, and the IF-sets of the previous example. Then, itholds that

$$
\begin{aligned}
& D\left(\begin{array}{ll}
A & C, B
\end{array} C\right)=D(C, B)=\quad 0.80 .5=\quad 0.4=0.4 n . \\
& D(A, B)=\quad 0.20 .8=\quad 0.16=0.16 n .
\end{aligned}
$$

We can conclu de that axiom IF-Div. 4 is not satisfied since

$$
D(A \quad C, B \quad C)=0.4 n>0.16 n=D(A, B)
$$

Therefore, axioms IF-Div. 3 andIF-Div. 4 are not relatedin general. We sh all see however, that under som e additional conditions they become equivalent. Letus consider the following natural prop erty:

IF-Div.5: $D_{\text {IFS }}(A, B)=D \quad$ IFS $\left(A^{c}, B^{c}\right)$ for every $A, B \quad$ IF $\operatorname{Ss}(\Omega)$.
Inthe following sectionwe shall see some examples of IF-divergences satisfying this prop erty. To see, however, that notall IF-divergences satisfy IF -Div.5, take $\Omega=\{\omega\}$ and the function definedby:

$$
\begin{equation*}
D_{\mathrm{IFS}}(A, B)=\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|^{2} \tag{5.2}
\end{equation*}
$$

We shall prove in Example 5.54 of Section 5.1.5 that this function is an IF-divergence. However, it do es not satisfy IF-Div.5. To see that, consider the IF -s ets

$$
A=\{(\omega, 0.6,0\} . \text { क्यnd } B=\{(\omega, 0.5,0\} .1)
$$

It holds that:

$$
D_{\mathrm{IFS}}(A, B)=0.1+0.09=0.19=0.31=0.3+0.01=\mathbb{Z}\left(A^{c}, B^{c}\right)
$$

Our ne xt result shows that, when IF -Div. 5 is satisfied, then axioms IF-Div. 3 and IF-Div. 4 are equivalent.

Prop osition 5.2才 $D$ is a function $D: \operatorname{IF} S s(\Omega) \times I F S s(\Omega) \rightarrow R$ satisfying the property IF-Div.5, then it satisfies IF-Div. 3 if and only if it satisfies IF-Div. 4.

Pro of First of all let us show that, since $D(A, B)=D\left(A^{c}, B^{c}\right)$ by IF -Div.5, it also holds that:
$D(A$
$C, B$
$C)=D((A$
$C)^{c},(B$
$\left.C)^{c}\right)=D\left(A^{c} \cap C^{c}, B^{c} \cap C^{c}\right)$.

Assume that $D$ satisfies IF-Div.3:

$$
D(A \cap C, B \cap C) \leq D(A, B) \text { for every } A, B \quad I F S s(\Omega)
$$

Then it alsosatisfies IF-Div.4:

$$
D\left(\begin{array}{lll}
A & C, B & C
\end{array}\right)=D\left(A^{c} \cap C^{c}, B^{c} \cap C^{c}\right) \leq D\left(A^{c}, B^{c}\right)=D(A, B)
$$

Similarly, assume that $D$ satisfiesIF-Div.4, thatis,

$$
D\left(\begin{array}{lll}
A & C, B & C
\end{array}\right) \leq D(A, B) \text { for every } A, B \quad \text { IFS } s(\Omega)
$$

Then, it also satisfiesaxiom IF-Div.3:

$$
D(A \cap C, B \cap C)=D\left(A^{c} \quad C^{c}, B^{c} \quad C^{c}\right) \leq D\left(A^{c}, B^{c}\right)=D(A, B)
$$

Now, we will obtain a general expression of IF-divergences by comparing the memb ership and non-memb ership functions of the IF-sets by means of a t-conorm.

Prop osition 5.24onsider a finite set $\Omega$. If $S$ and $S$ aretwot-conorms, thefunction $D_{\text {IFS }}$ defined by:

$$
\left.D_{\mathrm{IFS}}(A, B)=S \omega \Omega_{(S}\left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|,\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right)\right)
$$

for every $A, B \quad$ IF $S s(\Omega)$, is an IF-divergence. Moreover, it satisfiesIF-Div. 5.

Pro of Letus provethat $D_{\text {IFS }}$ fulfillsaxioms IF-Diss.1tolF-Div. 4 .
IF-Diss.1: Let $A$ be an IF-set. Obviously, $D_{\text {IFS }}(A, A)=0$ :

$$
D_{\mathrm{IFS}}(A, A)=S \omega \Omega(S(0,0))=S(0, \ldots, 0)=0 .
$$

IF-Diss.2: Let $A$ and $B$ be two IF-sets. It holdsthat:

$$
\begin{aligned}
D_{\mathrm{IFS}}(A, B) & =S \omega \Omega\left(S\left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|,\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right)\right) \\
& =\mathrm{S} \omega \Omega\left(\mathrm{~S}\left(\left|\mu_{\mathrm{B}}(\omega)-\mu_{\mathrm{A}}(\omega)\right|,\left|v_{\mathrm{B}}(\omega)-v_{\mathrm{A}}(\omega)\right|\right)\right)=D \quad \operatorname{IFS}(B, A) .
\end{aligned}
$$

IF-Div.3: Let $A, B$ and $C$ three IF-sets. Wehaveto provethat

$$
D_{\mathrm{IFS}}(A, B) \geq D_{\mathrm{IFS}}(A \cap C, B \cap C) .
$$

Applying the first part of Lemma A. 1 of App endix A, we have that

$$
\begin{aligned}
& \left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right| \geq \mid \min \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{c}}(\omega)\right)^{-} \min \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{c}}(\omega)\left|=\left|\mu_{\mathrm{A} \cap \mathrm{c}}(\omega)-\mu_{\mathrm{B}} \mathrm{c}(\omega)\right| .\right.\right. \\
& \left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right| \geq \mid \max \left(v_{\mathrm{A}}(\omega), v \mathrm{c}(\omega)\right)^{-} \max \left(v_{\mathrm{B}}(\omega), v \mathrm{c}(\omega)\left|=\left|v_{\mathrm{A} \cap \mathrm{c}}(\omega)^{-}-v_{\mathrm{B}} \mathrm{c}(\omega)\right| .\right.\right.
\end{aligned}
$$

Since everyt-conorm is increasing, it holds that:

$$
\begin{aligned}
D_{\mathrm{IFS}}(A, B) & =\mathrm{S} \omega \Omega\left(S\left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|,\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right)\right) \\
& \left.\geq S_{\omega}\right)^{\left(S\left(\left|\mu_{\mathrm{A} \cap \mathrm{C}}(\omega)-\mu_{\mathrm{B} \cap \mathrm{C}}(\omega)\right|,\left|v_{\mathrm{A} \cap \mathrm{C}}(\omega)^{-} v_{\mathrm{B} \cap \mathrm{C}}(\omega)\right|\right)\right)} \\
& =D \operatorname{IFS}(A \cap C, B \cap C) .
\end{aligned}
$$

IF-Div.4:-Considerthree IF-sets $A, B$ and $C$. Using thefirstpart ofLemmaA. 1 of App endix A, we see that:

$$
\begin{aligned}
\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right| & \geq\left|\max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{c}}(\omega)\right)^{-} \max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{c}}(\omega)\right)\right| \\
& =\left|\mu_{\mathrm{A}} \mathrm{c}(\omega)-\mu_{\mathrm{B}} \mathrm{c}(\omega)\right| . \\
\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right| & \geq \mid \min \left(v_{\mathrm{A}}(\omega), v \mathrm{c}(\omega)\right)^{-} \min \left(v_{\mathrm{B}}(\omega), v \mathrm{c}(\omega)\right) \\
& =\left|v_{\mathrm{A}} \mathrm{c}(\omega)^{-}-v_{\mathrm{B}} \mathrm{c}(\omega)\right| .
\end{aligned}
$$

Since t-conorms are increasing op erators,

$$
\begin{aligned}
D_{\mathrm{IFS}}(A, B) & =S \omega \Omega\left(S\left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|,\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right)\right) \\
& \geq S_{\omega} \Omega\left(\mathrm{S}\left(\left|\mu_{\mathrm{A}} \mathrm{c}(\omega)-\mu_{\mathrm{B}} \mathrm{c}(\omega)\right|,\left|v_{\mathrm{A}} \mathrm{c}(\omega)-v_{\mathrm{B}} \mathrm{c}(\omega)\right|\right)\right) \\
& =D \operatorname{IFS}\left(\begin{array}{lll}
A & C, B & C
\end{array}\right) .
\end{aligned}
$$

Thus, $D_{\text {IFs }}$ is anIF-divergence. Now, wearegoingtoprovethatitalsosatisfiesIF-Div.5. Using that every t-conorm is symmetric, we de duce that:

$$
\begin{aligned}
D_{\mathrm{IFS}}(A, B) & =\mathrm{S} \omega \Omega\left(\mathrm{~S}\left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|,\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right)\right) \\
& =\mathrm{S} \omega \Omega\left(\mathrm{~S}\left(\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|,\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|\right)\right)=D \operatorname{IFS}\left(A^{c}, B^{c}\right) .
\end{aligned}
$$

Therefore $D_{\mathrm{IFS}}(A, B)=D \quad \operatorname{IFS}\left(A^{c}, B^{c}\right)$ for every $A, B \quad$ IF $\operatorname{Ss}(\Omega)$.
One of the con ditions we required on IF-divergences was that "the more similar two IF-sets are, the lower the divergence is between them". Inthe following resultwe are going to see that, if the non-memb ership functions of $A$ and $B$ are thesame thanthe ones of $C$ and $D$, resp ectively, or the memb ership functions of $C$ and $D$ are the same, then the IF-divergence between $A$ and $B$ is gre ate $r$ than the IF-divergence $b$ etweer and $D$.

Prop osition 5.25et $A$ and $B$ betwo IF-sets. Let usconsiderthelF-sets $C_{A}$ and $D_{B}$ given by:

$$
\left.\begin{array}{l}
C_{\mathrm{A}}=\{(\omega, \mu(\omega), \mathrm{LA}(\omega)) \mid \omega \\
D_{\mathrm{B}}=\{(\omega, \mu(\omega), \mathrm{LB}(\omega)) \mid \omega
\end{array}\right\},
$$

where $\mu: \Omega \rightarrow[0,1]$ s amap such that $\mu(\omega)+\mathrm{A}(\omega) \leq 1$ and $\mu(\omega)+v_{\mathrm{B}}(\omega) \leq 1$ for every $\omega \Omega$. If $D$ is anIF-divergence, then $D(A, B) \geq D\left(C_{A}, D_{B}\right)$.

Pro of Letusdefine thefollowing IF-set:

$$
N=\{(\omega, \min (\mu(\omega), \mu(\omega)), 0) \omega \quad \Omega\}
$$

Then,

$$
\begin{aligned}
& A \cap N=\{(\omega, \min (A(\omega), \mu(\omega)), \alpha(\omega)) \mid \omega \quad \Omega\} . \\
& B \cap N=\{(\omega, \min (\mu \mathbb{B}(\omega), \mu(\omega), \mu(\omega)), V B(\omega)) \mid \omega \quad \Omega\}
\end{aligned}
$$

Applying IF-Div. 3 we obtain that $D(A, B) \geq D(A \cap N, B \cap N)$. Consider now another IF-set, defined by:

$$
M=\{(\omega, \mu(\omega), \max (4 ้(\omega), V B(\omega))) \mid \omega \quad \Omega\} .
$$

We obtain that:

$$
\left.\begin{array}{rl}
(A \cap N) \quad M & =\{(\omega, \max (\mu(\omega), \min (\mu(\omega), \mu(\omega))), \mathbb{L}(\omega)) \mid \omega \quad \Omega
\end{array}\right\}
$$

Applying IF-Div.4,

$$
D(A, B) \geq D(A \cap N, B \cap N) \geq D((A \cap N) \quad M,(B \cap N) \quad M)=D\left(C \quad \text { A }, D_{B}\right)
$$

Analogously, we can obtain a similar result by exchanging the memb ership and the non-memb ership functions.

Prop osition 5.26et $A$ and $B$ betwo IF-sets. Let usconsiderthelF-sets $C_{A}$ and $D_{B}$ given by:

$$
C=\{(\omega, \mu \mathrm{A}(\omega), v(\omega)) \omega \quad \Omega\} \text { and } D=\{(\omega, \mathbb{E}(\omega), v(\omega)) \omega \quad \Omega\}
$$

where $_{v}: \Omega \rightarrow[0,1]$ s a map such that $\mu_{\mathrm{A}}(\omega)+v\left(\omega \neq 1\right.$ and $\mu_{\mathrm{B}}(\omega)+v(\omega f 1$ for every $\omega \quad \Omega$. If $D_{\mathrm{IFS}}$ is anIF-divergence, then $D_{\mathrm{IFS}}(A, B) \geq D_{\mathrm{IFS}}\left(C_{\mathrm{A}}, D_{\mathrm{B}}\right)$.

We conclude this section with a prop erty that assures that some transformations of IF-divergences are also IF-divergences.

Prop osition 5.2才 $D$ isan IF-divergence and $\varphi: R \rightarrow R$ is an increasing function with $\varphi(0)=0$, then $D^{\varphi}$ defined by:

$$
D_{\mathrm{IFS}}^{\varphi}(A, B)=\varphi(D \operatorname{IFS}(A, B)) \text { for every } A, B \quad \text { IFS } s(\Omega)
$$

is also an IF-divergence. Moreover, if $D_{\mathrm{IFS}}$ satisfiesaxiomIF-Div.5, thensodoes $D_{\mathrm{IFS}}^{\varphi}$.

Pro of Let $D_{\text {IFS }}$ be an IF-divergence and $\varphi$ an increasing function with $\varphi(0)=0$ ConditionIF-Diss. 1 follows from $\varphi(0)=0$ and conditions IF-Div. 3 andIF-Div. 4 follow from themonotonicity of $\varphi$, and IF-Div. 2 and IF-Div. 5 are trivially fulfilled by definition.

### 5.1.3 Examples of IF-divergences and IF-dissimilarities

This subsectionis devoted to the study of some of the most imp ortant examples of IF-divergences and dissimilarities. Sp ecifically, we shall investigate whether the most prominent examples of dissimilarities that can be found in the literature are particular cases of IF-divergence.Furthermore, we shall also study if they satisfy other prop erties, such as axiom IF-Div.5, or if they are dissimilitude s.

## Dissimilarities that also are IF-divergences

Inthis section we are going to present an overview of the dissimilarities thatare also IF-divergences. From nowon, $\Omega$ denotes a finite universe with $n$ elements.

Hamming and normalized Hamming distanceOne of the most important comparison measures for IF-sets are th e Hamming distance ([193]), defined by:

$$
I_{\mathrm{IFS}}(A, B)=\frac{1}{2}_{\omega \Omega}\left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|+\left|\pi_{\mathrm{A}}(\omega)-\pi_{\mathrm{B}}(\omega)\right|\right)
$$

and the normalized Hamming distance by:

$$
I_{\mathrm{nIFS}}(A, B)=\frac{1}{n} I_{\mathrm{IFS}}(A, B), \text { for every } A, B \quad \text { IFS } s(\Omega) \text {. }
$$

These functions are known to be dissimilarities. Letusprovethat theyare also IFdivergences. In orderto do this, we shall first of all prove that the Hamming distance is an IF-divergence; this, together with Prop osition 5.27 , we allowus to conclude that the normalized Hamming distance is also an IF-divergence, because it is an increasing transformation (by meansof $\varphi(x)=\stackrel{x}{n}$ ) of the Hamming distance. Inorderto provethat the Hamming distance is an IF-divergence, we shall begin by showing that it satisfies axiom IF-Div.5. Let us note that

$$
\pi_{\mathrm{A}}(\omega)=1-\mu_{\mathrm{A}}(\omega)-v_{\mathrm{A}}(\omega)=1-v_{\mathrm{A}^{\mathrm{C}}}(\omega)-\mu_{\mathrm{A}^{\mathrm{C}}}(\omega)=\pi_{\mathrm{A}^{\mathrm{c}}}(\omega)
$$

for every $\omega \quad \Omega$ and $A \quad$ IF $\operatorname{Ss}(\Omega)$. Then:

$$
\begin{aligned}
I_{\mathrm{IFS}}\left(A^{c}, B^{c}\right) & ={ }_{\omega \Omega}\left(\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|+\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|\pi_{\mathrm{A}^{\mathrm{c}}}(\omega)-\pi_{\mathrm{B}^{\mathrm{c}}}(\omega)\right|\right) \\
& ={ }_{\omega \Omega}\left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|+\left|\pi_{\mathrm{A}}(\omega)-\pi_{\mathrm{B}}(\omega)\right|\right)=/ \text { IFS }(A, B) .
\end{aligned}
$$

By Prop osition 5.23, axioms IF-Div. 3 and IF-Div. 4 are equivalent. Moreover, axiomsIFDiss. 1 and IF-Diss .2 are satisfied since ${ }_{\text {IFS }}$ is an IF-dissim ilarity (see for instance [92]). Hence, inorderto provethat $I_{\text {IFS }}$ is anIF-divergence itsuffices to checkthat it fulfills either IF-Div. 3 or IF-Div.4. Let us show thelatter. Let $A, B$ and $C$ be three IF-sets; using Lemma A. 2 of App endix A, we know that for every $\omega \quad \Omega$, the following inequality holds:

$$
\begin{aligned}
& \left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|+\left|\pi_{\mathrm{A}}(\omega)-\pi_{\mathrm{B}}(\omega)\right| \geq \\
& \mid \max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{c}}(\omega)\right)^{-} \max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{c}}(\omega)\right)_{+}^{+} \\
& \mid \min \left(v_{A}(\omega), v c(\omega)\right)^{-} \min \left(v_{B}(\omega), v c(\omega)\right)^{+} \\
& I \max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega)\right)+\min \left(v_{\mathrm{A}}(\omega), v c(\omega)\right)- \\
& \max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{C}}(\omega)\right)^{-} \min \left(\nu_{\mathrm{B}}(\omega), v_{c}(\omega)\right) \text {. }
\end{aligned}
$$

Then:

$$
\begin{aligned}
I_{\text {IFS }}(A, B)= & \left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|+\left|\pi_{\mathrm{A}}(\omega)-\pi_{\mathrm{B}}(\omega)\right| \\
& \geq{ }^{2} \mid \max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega)\right)^{-} \max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{C}}(\omega) \mid\right. \\
& +\left|\min \left(v_{\mathrm{A}}(\omega), v \mathrm{c}(\omega)\right)^{-} \min \left(v_{\mathrm{B}}(\omega), v \mathrm{c}(\omega)\right)\right| \\
& +\mid \max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega)\right)^{-} \min \left(v_{\mathrm{A}}(\omega), \mathrm{C}(\omega)\right) \\
& +\max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{C}}(\omega)\right)^{-} \min \left(v_{\mathrm{B}}(\omega), v \mathrm{C}(\omega)\right)^{\prime}=I \operatorname{IFS}(A \quad C, B \quad C) .
\end{aligned}
$$

Thus, $I_{\mathrm{IFS}}(A, B) \geq I_{\mathrm{IFS}}\left(\begin{array}{lll}A & C, B & C\end{array}\right)$.
In otherwords, we have proven that $I_{\mathrm{IFS}}$ satisfiesaxiomIF-Div.4, andthereforeit also satisfies IF-Div.3. Hence, $I_{\text {IFS }}$ isan IF-divergence, andasaconsequencesois $I_{\text {nIFS }}$.

Moreover, sinc e they are IF-divergences, we deduce that theyare also dissimilitudes. In summary, the Hamming and the normalized Hamming di stances are examples of dissimilarities, IF -divergences, dissimilitudes and distances.

Hausdorff dissimilarityAnother very imp ortant dissimilarity b etween IF-sets is based on the Hausdorff distance (see forexample [85]). It isdefinedby:

$$
d_{\mathrm{H}}(A, B)=\omega_{\omega \Omega} \max \left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|,\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right) .
$$

As the Hamming distance, the Hausdorff dissimilarity satisfies axiom IF-Div.5, because

$$
d_{H}\left(A^{c}, B^{c}\right)=\omega_{\Omega} \max \left(\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|,\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|\right)=d_{\mathrm{H}}(A, B) .
$$

Applying Prop 5.23, we deduce that axioms IF-Div. 3 and IF-Div. 4 areequivalent. Note that axioms IF-Diss. 1 and IF-Diss. 2 are satisfied by $\quad d_{\mathrm{H}}$ sinceit is a IF-dissimilarity. Hence, inorder toprovethat $\quad d_{\mathrm{H}}$ isan IF-divergence, itsuffices toprovethat either IF-Div. 3 or IF-Div. 4 hold.

Let us prove that axiom IF-Div. 4 is satisfied by $d_{H}$. Consider threelF-sets $A, B$ and $C$. Then, thelF-sets $A \quad C$ and $B \quad C$ aregiven by:

$$
\begin{array}{lll}
A & C=\left\{\left(\omega, \max \left(\mu(\omega), \mu_{C}(\omega)\right), \min (\mathrm{A}(\omega), v(\omega)) \mid \omega\right.\right. & \Omega\} \\
B & C=\left\{\left(\omega, \max \left(\mathbb{B}(\omega), \mu_{C}(\omega)\right), \min (\omega), v(\omega)\right)\right) \mid \omega & \Omega
\end{array} .
$$

By the second part of Lemma A. 1 of App endix A, it holds that:

$$
\begin{aligned}
& \left|\max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega)\right)^{-} \max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{C}}(\omega)\right) \leq\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right| .\right. \\
& \left|\min \left(v_{\mathrm{A}}(\omega),, v^{( }(\omega)\right)^{-} \min \left(v_{\mathrm{B}}(\omega), v^{( }(\omega)\right) \leq \leq v_{\mathrm{A}}(\omega)^{-} v_{\mathrm{B}}(\omega)\right| .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \left|\mu_{\mathrm{A}} c(\omega)-\mu_{\mathrm{B}} c(\omega)\right| \leq\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right| \text { and } \\
& \left|v_{\mathrm{A}} c(\omega)^{-}-v_{\mathrm{B}} c(\omega)\right| \leq\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right| .
\end{aligned}
$$

From these inequalities itfollows that:

$$
\begin{aligned}
\max \left(\left|\mu_{\mathrm{A}} \subset(\omega)-\mu_{\mathrm{B}} \subset(\omega)\right|, \mid v_{\mathrm{A}} \subset(\omega)-\right. & \left.v_{\mathrm{B}} \subset(\omega) \mid\right) \\
\leq & \max \left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|,\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right) .
\end{aligned}
$$

This inequality has been proved for every $\omega$ in $\Omega$, and consequently:

$$
\begin{aligned}
d_{\mathrm{H}}\left(\begin{array}{lll}
A & C, B \quad & C
\end{array}\right) & =\max \left(\left|\mu_{\mathrm{A}} \mathrm{c}(\omega)-\mu_{\mathrm{B}} \mathrm{c}(\omega)\right|,\left|v_{\mathrm{A}} \mathrm{c}(\omega)-v_{\mathrm{B}} \mathrm{c}(\omega)\right|\right) \\
& \leq{ }_{\omega \Omega} \max \left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|,\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right)=d \mathrm{H}(A, B) .
\end{aligned}
$$

Thus, the Hausdorff IF-dissimilarity isanIF-divergence, and consequently it isalsoa dissimilitude.

Note that it is also possible to define the normalized Hausdorff dissimilarity, denoted by $d_{n H}$, by:

$$
d_{\mathrm{nH}}(A, B)=\frac{1}{n} d_{H}(A, B), \text { for every } A, B \quad \text { IFS } s(\Omega) \text {. }
$$

It holds that $d_{n H}(A, B)=\varphi(d \quad H(A, B))$, whe $\operatorname{re} \varphi(x)={ }_{n}^{1} x$. Aswe alreadysaid, this function $\varphi$ is increasingand $\varphi(0)=0$. Therefore, using Prop osition 5.27, we deduce that $d_{n H}$ isalso anIF-divergencethat fulfillsaxiomIF-Div.5.

We conclude that $d_{\mathrm{H}}$ and $d_{\mathrm{nH}}$ are distances, IF-dissimilarities, IF-divergenc es and IF-dissimilitudes at the same time.

Hong \&Kim dissimilarities Hong and Kim proposed two dissimilarity measures in [89]. They aredefinedby:

$$
\begin{aligned}
& D_{\mathrm{C}}(A, B)=\frac{1}{2 n}\left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right) \text { and } \\
& D_{\mathrm{L}}(A, B)=\frac{1}{4 n}{ }_{\omega \Omega}\left|S_{\mathrm{A}}(\omega)-\mathrm{S}_{\mathrm{B}}(\omega)\right|+{ }_{\omega \Omega}\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|
\end{aligned}
$$

where $S_{A}(\omega)=\mu_{\mathrm{A}}(\omega)-v_{\mathrm{A}}(\omega)$ and $\mathrm{S}_{\mathrm{B}}(\omega)=\mu_{\mathrm{B}}(\omega)-v_{\mathrm{B}}(\omega)$.
Recall that $D_{\mathrm{L}}$ can be equivalently expressed by:
$D_{\mathrm{L}}(A, B)=\left.\frac{1}{4 n_{\omega}}\right|_{\Omega}\left(\mu_{\mathrm{A}}(\omega)^{-} \mu_{\mathrm{B}}(\omega)\right) \Gamma\left(v_{\mathrm{A}}(\omega)^{-} v_{\mathrm{B}}(\omega)\right)^{+}+\left|\mu_{\mathrm{A}}(\omega)^{-} \mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)^{-} v_{\mathrm{B}}(\omega)\right|$
for every $A, B \quad$ IF $\operatorname{Ss}(\Omega)$.
Inorder to prove that $D_{\text {C satisfies IF -Div.3, we shall use part b) of Lemma A.1: }}^{\text {s }}$

$$
\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right| \geq
$$

$\left|\max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega)\right)^{-} \max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{C}}(\omega)\right)^{\prime}+\right| \min \left(\nu_{\mathrm{A}}(\omega), v \mathrm{c}(\omega)\right)^{-} \min \left(\nu_{\mathrm{B}}(\omega), v_{c}(\omega)\right)$.
Using this fact, IF-Div. 3 trivially follow s, and IF-Div. 4 can be similarly proved.
Let us see that $D_{\mathrm{L}}$ is alsoanIF-divergence. For this, it suffic es to take into account that, from Lemma A.3, for every $\omega \Omega$ it holds that:

$$
\begin{aligned}
& \left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)-v_{\mathrm{A}}(\omega)+v_{\mathrm{B}}(\omega)\right|+\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+v \mathrm{~A}(\omega)-v_{\mathrm{B}}(\omega) \mid \\
& \quad \geq \mid \max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{c}}(\omega)\right)^{-} \max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{c}}(\omega)\right) \\
& \quad-\min \left(v_{\mathrm{A}}(\omega), v \mathrm{c}(\omega)\right)+\min \left(v_{\mathrm{B}}(\omega), v \mathrm{c}(\omega)\right) \\
& \quad+\left|\max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{c}}(\omega)\right)^{-} \max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{c}}(\omega)\right)\right| \\
& \quad+\mid \min \left(v_{\mathrm{A}}(\omega), v \mathrm{c}(\omega)\right)^{-} \min \left(v_{\mathrm{B}}(\omega), v \mathrm{c}(\omega)\right) .
\end{aligned}
$$

By taking the sum on $\Omega$ on every part of the inequality, and multip lying each term by $\frac{1}{4 n}$, we obtain that:

$$
D_{\mathrm{L}}(A, B) \geq D_{\mathrm{L}}\left(\begin{array}{lll}
A & C, B & C
\end{array}\right)
$$

Thus, $D_{\mathrm{L}}$ satisfies axiom IF-Div.4, and there fore also IF-Div. 3 sind $\mathcal{L}_{\mathrm{L}}$ satisfies theproperty IF-Div.5. We conclude that both $D_{\mathrm{C}}$ and $D_{\mathrm{L}}$ areIF-dissimilarities, IF-divergences and IF-dissimilitude s.

Li et al. dissimilarity Another dissimilarity measure for IF-sets was prop osed by Li et al. ([113]):

$$
D_{\mathrm{O}}(A, B)=\quad \frac{1}{2 n} \omega_{\Omega}\left(\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right)^{2}+\left(v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right)^{2^{\frac{1}{2}}}
$$

This dissimilarity also satisfies IF-Div. 5 , sinc $\oplus_{\circ}\left(A^{c}, B^{c}\right)=D \circ(A, B)$. Then, by Prop osition 5.23, in order to prove that $D_{\mathrm{O}}$ isanIF-divergence itisenoughtoprovethatit satisfies IF-Div.4. Letus consider $A, B$ and $C$ three IF-sets. Bythe secondpart of Lemma A. 1 in App endix $A$, we know that:

$$
\begin{aligned}
& \left|\max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega)\right)^{-} \max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{C}}(\omega)\right) \leq \leq \mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right| \text { and } \\
& \left|\min \left(v_{\mathrm{A}}(\omega), v \mathrm{c}(\omega)\right)^{-} \min \left(v_{\mathrm{B}}(\omega), \mathrm{c}(\omega)\right) \leq\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right.
\end{aligned}
$$

or, equivalently,

$$
\begin{aligned}
& \left|\mu_{\mathrm{A}} \mathrm{c}(\omega)-\mu_{\mathrm{B}} \mathrm{c}(\omega)\right| \leq\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right| \text { and } \\
& \left|v_{\mathrm{A}} \mathrm{c}(\omega)-v_{\mathrm{B}} \mathrm{c}(\omega)\right| \leq\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right| .
\end{aligned}
$$

Then it holdsthat:

$$
\begin{aligned}
&\left|\mu_{\mathrm{A}} \mathrm{c}(\omega)-\mu_{\mathrm{B}} \mathrm{c}(\omega)\right|^{2}+\left|v_{\mathrm{A}} \mathrm{c}(\omega)-v_{\mathrm{B}} \mathrm{c}(\omega)\right|^{2} \\
& \leq\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|^{2}+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|^{2}
\end{aligned}
$$

whence

$$
\begin{aligned}
D_{\mathrm{O}}\left(\begin{array}{ll}
A & C, B \quad C
\end{array}\right) & =\frac{11}{2 n} \omega_{\omega}\left|\mu_{\mathrm{A}} \mathrm{c}(\omega)-\mu_{\mathrm{B}} \mathrm{c}(\omega)\right|^{2}+\left|v_{\mathrm{A}} \mathrm{c}(\omega)-v_{\mathrm{B}} \mathrm{c}(\omega)\right|^{2} \\
& \leq \frac{1}{2 n}{ }_{\omega \Omega}\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|^{2}+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|^{\left.\right|^{\frac{1}{2}}}=D \circ(A, B) .
\end{aligned}
$$

Thus, $D_{\mathrm{O}}$ satisfies axiom IF-Div. 4 and therefore it is an IF-Divergence, and in particular an IF-dissimilitude.

Mitchell dissimilarity Mitchell ([138]) proposed a dissimilarity defined by:

$$
D_{\mathrm{HB}}(A, B)=\frac{\frac{1}{\gamma^{p} \bar{n}}}{\omega \Omega}{ }_{\omega}\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|^{p \stackrel{1}{p}}+\omega_{\Omega}\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|^{p^{\frac{1}{p}}}
$$

for some $p \geq 1$. This dissimilarityobviously satisfies IF-Div.5. Thus, inorder toprove that $D_{\mathrm{HB}}$ isanIF-divergenceit isenoughtoprove IF-Div.4, sinceIF-Diss.1andIF-Diss. 2 are satisfied for everydissimilarity. Consider $A, B$ and $C$. Applying again thesecond part of Lemma A. 1 from App endix A we deduce that:

$$
\begin{aligned}
& \left|\mu_{\mathrm{A}} \mathrm{c}(\omega)-\mu_{\mathrm{B}} \mathrm{c}(\omega)\right| \leq\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right| \text { and } \\
& \left|v_{\mathrm{A}} \mathrm{c}(\omega)-v_{\mathrm{B}} \mathrm{c}(\omega)\right| \leq\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right| .
\end{aligned}
$$

Moreover, the inequalities holds if we rais e every term to the $p$ ower of whence

$$
\begin{aligned}
& D_{\mathrm{HB}}(\mathrm{~A}, \mathrm{~B})=\frac{\frac{1}{2} \bar{n}}{2^{p}}\left|\mu_{\mathrm{A}} \mathrm{c}(\omega)-\mu_{\mathrm{B}} \mathrm{c}(\omega)\right|^{p \stackrel{1}{p}}+{ }_{\omega \Omega}\left|v_{\mathrm{A}} \mathrm{c}(\omega)-v_{\mathrm{B}} \mathrm{c}(\omega)\right|^{p}{ }^{\frac{1}{p}} \\
& \leq \frac{\gamma}{2^{p} \bar{n}}{ }_{\omega \Omega}\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|^{p \stackrel{1}{p}}+{ }_{\omega \Omega}\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|^{p \stackrel{1}{p}} \\
& =D \quad \mathrm{нв}(A, B) \text {. }
\end{aligned}
$$

Thus, axiomIF-Div. 4 holds, and therefore $D_{\text {HB }}$ isan IF-divergence, andin particulara dissimilitude.

Liang \& Shi dissimilaritiesLiangand $\operatorname{Shi}([114])$ definedthe dissimilarities $\quad D_{\mathrm{e}}^{p}$ and $D_{\mathrm{h}}^{p}$, for some $p \geq 1$,by

$$
\begin{aligned}
& D_{\mathrm{e}}^{p}(A, B)=\frac{1}{2^{p} \bar{n}}\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|^{p \stackrel{1}{p}} \\
& D_{\mathrm{h}}^{p}(A, B)={\underset{p}{\gamma} \frac{1}{3 n} \omega_{\Omega}\left(\eta_{1}(\omega)+\eta_{2}(\omega)+\eta_{3}(\omega)\right)^{p}}_{\stackrel{1}{p}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \eta_{1}(\omega)={ }_{2}^{1}\left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right) . \\
& \eta_{2}(\omega)={ }_{2}^{1}\left|\mu_{\mathrm{A}}(\omega)-v_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)+v_{\mathrm{B}}(\omega)\right| . \\
& \eta_{3}(\omega)=\max \left(I_{\mathrm{A}}(\omega), I_{\mathrm{B}}(\omega)\right)^{-} \min \left(I_{\mathrm{A}}(\omega), I_{\mathrm{B}}(\omega)\right) . \\
& I_{\mathrm{A}}(\omega)={ }_{2}^{1}\left(1-v_{\mathrm{A}}(\omega)-\mu_{\mathrm{A}}(\omega)\right) . \\
& I_{\mathrm{B}}(\omega)={ }_{2}^{1}\left(1-v_{\mathrm{B}}(\omega)-\mu_{\mathrm{B}}(\omega)\right) .
\end{aligned}
$$

Note that $D_{\mathrm{h}}^{p}$ can b e express ed in a equivalent way as

$$
\begin{aligned}
& D_{\mathrm{h}}^{p}(A, B)=\frac{\sqrt{1} \overline{2^{p}}}{2^{3 n}}\left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right. \\
& +\mid\left(\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right)^{-}\left(v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right) \\
& +\left\lvert\,\left(\mu_{\mathrm{A}}(\omega)+v_{\mathrm{A}}(\omega)\right)^{-}\left(\mu_{\mathrm{B}}(\omega)+v_{\mathrm{B}}(\omega)\right)^{p}{ }^{p} \stackrel{\frac{1}{p}}{ } .\right.
\end{aligned}
$$

As in the previou s examples, b ot $ゆ_{\mathrm{e}}^{p}$ and $D_{\mathrm{h}}^{p}$ satisfy IF-Div. 5 , and therefore it suffices to prove that both functions satisfy IF-Div. 4 to prove that they are IF-divergences. Let us first fo cus on $D_{\mathrm{e}}^{p}$, and let us consider $A, B$ and $C$ three IF-sets. Applyingagain the second part of Lemma A. 1 in App endix A we know that:

$$
\begin{aligned}
& \left|\mu_{\mathrm{A}} \mathrm{c}(\omega)-\mu_{\mathrm{B}} \quad \mathrm{c}(\omega)\right| \leq\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right| \text { and } \\
& \left|v_{\mathrm{A}} \mathrm{c}(\omega)-v_{\mathrm{B}} \mathrm{c}(\omega)\right| \leq\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right| .
\end{aligned}
$$

If we sum both inequalities we obtain

$$
\left|\mu_{\mathrm{A}} \mathrm{c}(\omega)-\mu_{\mathrm{B}} \mathrm{c}(\omega)\right|+\left|v_{\mathrm{A}} \mathrm{c}(\omega)-v_{\mathrm{B}} \mathrm{c}(\omega)\right| \leq\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|
$$

and since this inequality also holds when we raise every comp onent to the power o $\mathbb{P}$,

$$
\begin{aligned}
D_{\mathrm{e}}^{p}\left(\begin{array}{ll}
A & C, B
\end{array} C\right) & =\frac{\frac{1}{2^{p} \bar{n}} \omega \Omega}{\omega \Omega}\left(\left|\mu_{\mathrm{A}} \mathrm{c}(\omega)-\mu_{\mathrm{B}} \mathrm{c}(\omega)\right|+\mid v_{\mathrm{A}} \mathrm{c}(\omega)-v_{\mathrm{B}} \mathrm{c}(\omega)\right)^{p}{ }^{\frac{1}{p}} \\
& \leq \frac{1}{2^{p} \bar{n}}{ }_{\omega \Omega}\left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right)^{p}{ }^{\stackrel{1}{p}}=D_{\mathrm{e}}^{p}(A, B)
\end{aligned}
$$

Thus, $D_{\mathrm{e}}^{p}$ satisfies IF-Div.4, and, takingintoaccountthatitsatisfiesIF-Div.5, alsoaxiom IF-Div.3. Hence, it is a di ssimilarity, and consequently, a dissimilitude.

Consider now $D_{h}^{p}$. Using Lemma A. 4 in App endix A, we know that, for every $\omega \quad \Omega$,

$$
\begin{aligned}
& \left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|+ \\
& \left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)-v_{\mathrm{A}}(\omega)+v_{\mathrm{B}}(\omega)\right|+ \\
& \left|\mu_{\mathrm{A}}(\omega)+v_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)-v_{\mathrm{B}}(\omega)\right| \geq \\
& \left|\mu_{\mathrm{A}} \mathrm{c}(\omega)-\mu_{\mathrm{B}} \mathrm{c}(\omega)\right|+\left|v_{\mathrm{A}} \mathrm{c}(\omega)-v_{\mathrm{B}} \mathrm{c}(\omega)\right|+ \\
& \left|\mu_{\mathrm{A}} \mathrm{c}(\omega)-\mu_{\mathrm{B}} \mathrm{c}(\omega)-v_{\mathrm{A}} \mathrm{c}(\omega)+v_{\mathrm{B}} \mathrm{c}(\omega)\right|+ \\
& \left|\mu_{\mathrm{A}} \mathrm{c}(\omega)+v_{\mathrm{A}} \mathrm{c}(\omega)-\mu_{\mathrm{B}} \mathrm{c}(\omega)-v_{\mathrm{B}} \mathrm{c}(\omega)\right| .
\end{aligned}
$$

Making the su mmation over every $\omega$ in $\Omega$ in each part of the inequality and multiplying by $2_{2^{1}}^{\sqrt{1}}=$, we obtain that $D_{\mathrm{h}}^{p}(A, B) \geq D_{\mathrm{h}}^{p}\left(\begin{array}{lll}A & C, B & C\end{array}\right)$.

Thus, both $D_{\mathrm{e}}^{p}$ and $D_{\mathrm{h}}^{p}$ areIF-dissimilarities, IF-divergencesand IF-dissimilitudes.

Hung \& Yang dissimilarities Hung and Yang proposed some new dissimilarities in [92], two of which are based on the Hausdorff dissimilarity. As we shall see, itis easyto check that both are also IF-divergences. These dissimilarities are de fined by:

$$
\begin{aligned}
& D_{\mathrm{HY}}^{1}(A, B)=d \mathrm{nH}(A, B) . \\
& D_{\mathrm{HY}}^{2}(A, B)=1-\frac{e^{-d_{n H}(A, B)}-e^{-1}}{1-e^{-1}} \\
& D_{\mathrm{HY}}^{3}(A, B)=1-\frac{1-d_{\mathrm{nH}}(A, B)}{1+d_{\mathrm{nH}}(A, B)}
\end{aligned}
$$

We have already proven that the Hausdorff dis similarity is an IF-divergence that satisfies the prop erty IF-Div.5. Consider the fun ctions $\varphi_{2}$ and $\varphi_{3}$ defined by:

$$
\varphi_{2}(x)=1-\frac{e^{-x}-e^{-1}}{1-e^{-1}} \text { and } \varphi_{3}(x)=1-\frac{1-x}{1+x}
$$

Thesefunctions are increasing and satisfy $\varphi_{2}(0)=\varphi{ }_{3}(0)=0$. Applying Prop osition 5.27 we conclude that

$$
\begin{array}{lll}
d_{\mathrm{H}}^{\varphi_{2}}(A, B)=\varphi & 2\left(d_{\mathrm{nH}}(A, B)\right)=D & \stackrel{2}{\mathrm{HY}}(A, B) \text { and } \\
d_{\mathrm{H}}^{\phi_{3}}(A, B)=\varphi & 3\left(d_{\mathrm{nH}}(A, B)\right)=D & 3 \\
\mathrm{HY}
\end{array}(A, B), l
$$

are IF-divergences that satisfy prop erty IF-Div.5. Thus, they are also IF-dissimilitu des.
On the other hand, Hung and Yang also prop osed the IF-dissimilarity given by

$$
D_{\mathrm{pk} 2}(A, B)=\frac{1}{2} \max _{\Omega}\left(\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|\right)+\max _{\Omega}\left(\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|\right)
$$

This measure satisfies IF-Div.5, whence, applying Prop osition 5.23, it is enough to prove that, indeed, $D_{\text {pk2 }}$ satisfies IF-Div.4. Ifwe consider $A, B$ and $C$ threelF-sets, weknow from the second part of Lemma A. 1 in App endix A that:

$$
\begin{aligned}
& \left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right| \geq \mid \quad \max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega)\right)^{-} \max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{c}}(\omega)\right) . \\
& \left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right| \geq 1 \min \left(v_{\mathrm{A}}(\omega), \mathrm{vc}^{( }(\omega)\right)^{-} \min \left(v_{\mathrm{B}}(\omega), \mathrm{vc}^{(\omega))} .\right.
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \max _{\omega}\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right| \geq \max _{\omega} \mid \max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega)\right)^{-} \max \left(\mu_{\mathrm{B}}(\omega), \mu_{\mathrm{C}}(\omega)\right) . \\
& \max _{\Omega}\left|v_{\mathrm{A}}(\omega)^{-} v_{\mathrm{B}}(\omega)\right| \geq \max _{\Omega} \mid \min \left(v_{\mathrm{A}}(\omega), v \mathrm{c}(\omega)\right)^{-} \min \left(v_{\mathrm{B}}(\omega), \mathrm{vc}(\omega)\right) .
\end{aligned}
$$

Then, $D_{\mathrm{pk} 2}(A, B) \geq D_{\mathrm{pk} 2}\left(\begin{array}{lll}A & C, B & C\end{array}\right)$. Weconclude that $D_{\mathrm{pk} 2}$ is another exam ple of IF-dissimilarity that isalsoan IF-divergence and IF-dissimilitude.

## Dissimilarities that are not IF-divergences

Let us now provide some examp les of dissimilarities, very frequently used in th e literature, that are not IF-divergen ces. Weshall alsogive some examplesshowingthat these comparison measures are, in some cases,counterintuitive.

Euclidean and normalizedEuclidean distanceogether with the H am ming and Hausdorff distances, one of the most imp ortant comparison measures is the Euclidean
distance (seefor example.nThis distance is used to define a dissimilarity between IF-sets and its normalizationasfollows ([85]):

$$
q_{\mathrm{IFS}}(A, B)=\frac{1}{2}_{\omega \Omega}\left(\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right)^{2}+\left(v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right)^{2}+\left(\pi_{\mathrm{A}}(\omega)-\pi_{\mathrm{B}}(\omega)\right)^{\frac{1}{2}}
$$

$q_{\mathrm{nIFS}}(A, B)={ }_{n}^{1} q_{\mathrm{IFS}}(A, B)$.
These dissimilarities fu lfill axiom IF-Div. 5 , since $\pi_{\mathrm{A}}(\omega)=\pi \mathrm{A}^{\mathrm{c}}(\omega)$ and $\pi_{\mathrm{B}}(\omega)=\pi \mathrm{B}^{\mathrm{c}}(\omega)$ for every $A, B \quad$ IF $\operatorname{Ss}(\Omega)$. However, they are not IF-divergenc es, sincethey do not satisfy axioms IF-Div.3nor IF-Div.4. To seea counterexample, consider $\Omega=\{\omega\}$ and the follow ing IF-sets:

$$
A=\{(\omega, 0.12,0.68) B=\{(\omega, 0.29,0.5 \xi,) C=\{(\omega, 0.11,0.3 \delta)
$$

The IF-sets $A \quad C$ and $B \quad C$ aregiven by:

$$
A \quad C=\{(\omega, 0.12,0.36) \text { and } B \quad C=\{(\omega, 0.29,0.36)
$$

It holds that $q_{\text {IFS }}\left(\begin{array}{lll}A & C, B & C\end{array}\right)>q \operatorname{IFS}(A, B)$ :

$$
\begin{aligned}
& q_{\text {IFS }}\left(\begin{array}{ll}
A & C, B \\
q_{\text {IFS }}(A, B)= & C
\end{array}\right)=\quad{ }_{2}^{1}\left(0.17_{2}^{2}\left(0.17^{2}+0+0.09^{2}+0.08^{2}\right)^{0.5}\right)^{0.5}=0.1473
\end{aligned}
$$

Moreove $r$, sincelfs do es not satisfy IF-Div.4, axiom IF-Div. 3 cannot hold either $b$ ecause they are equivalent under IF-Div.5. Therefore, $q_{\text {IFS }}$ is neither an IF-divergence nora dissimilitude. The sameexample shows that $q_{\mathrm{nIFs}}$ is notan IF-divergence, since for $n=1$ we have that $q_{\mathrm{IFS}}=q \mathrm{nIFS}$.

Liang \& Shi dissimilarity Wehaveseen previously somelF-dissimilarities proposed by Liang and Shi that are alsolF-divergences. They also prop osed another IFdissimilarity measure,that is defined by:

$$
D_{\mathrm{s}}^{p}(A, B)={\stackrel{\gamma}{p} \bar{\gamma}_{\omega \Omega}\left(\phi_{s 1}(\omega)+\phi_{s 2}(\omega)\right)^{p}, ~ ; ~}_{p}^{p}
$$

where $p \geq 1$ and

$$
\begin{aligned}
& \phi_{\mathrm{s} 1}(\omega)={ }_{2}^{1}\left|m_{\mathrm{A} 1}(\omega)-m_{\mathrm{B} 1}(\omega)\right| . \\
& \phi_{\mathrm{s} 2}(\omega)={ }_{2}^{1}\left|m_{\mathrm{A} 2}(\omega)-m_{\mathrm{B} 2}(\omega)\right| . \\
& m_{\mathrm{A} 1}(\omega)={ }_{2}^{1}\left(\mu_{\mathrm{A}}(\omega)+m_{\mathrm{A}}(\omega)\right) . \\
& m_{\mathrm{A} 2}(\omega)={ }_{2}^{1}\left(m_{\mathrm{A}}(\omega)+1-v_{\mathrm{A}}(\omega)\right) . \\
& m_{\mathrm{B} 1}(\omega)=\frac{1}{2}\left(\mu_{\mathrm{B}}(\omega)+m_{\mathrm{B}}(\omega)\right) . \\
& m_{\mathrm{B} 2}(\omega)=\frac{1}{2}\left(m_{\mathrm{B}}(\omega)+1-v_{\mathrm{B}}(\omega)\right) . \\
& m_{\mathrm{A}}(\omega)=\frac{1}{2}\left(\mu_{\mathrm{A}}(\omega)+1-v_{\mathrm{A}}(\omega)\right) . \\
& m_{\mathrm{B}}(\omega)={ }_{2}^{1}\left(\mu_{\mathrm{B}}(\omega)+1-v_{\mathrm{B}}(\omega)\right) .
\end{aligned}
$$

Note that $D_{\mathrm{s}}^{p}$ can also be expressed by:

$$
\begin{aligned}
& D_{\mathrm{s}}^{p}(A, B)=\stackrel{\frac{1}{p} \bar{n}}{\omega \Omega_{\Omega}}{ }^{\frac{1}{8}\left(\mid 3\left(\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right)^{-}\left(v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right)\right.} \\
&+\left\lvert\,\left(\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right)^{\left.-3\left(v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right)\right)^{\frac{1}{p}} .}\right.
\end{aligned}
$$

Thus, thisdissimilaritysatisfies axiomIF-Div.5. However, neitherIF-Div.3norIF-Div. 4 are satisfied. To see this, consi de $Q=\{\omega\}$ and the IF-sets

$$
A=\{(\omega, 0.25,0.2 \xi) \text { and } B=\{(\omega, 0.6,0.3 .5)
$$

For the se IF-sets it holds that $D_{\mathrm{s}}^{p}(A, B)=0.125$. Furthermore, if we consider the IF-set $C$ defined by:

$$
C=\{(\omega, 0.2,0\} .2)
$$

it holds that

$$
A \quad C=\{(\omega, 0.25,0.2) \text { and } B \quad C=\{(\omega, 0.6,0.2)
$$

whence,

$$
D_{\mathrm{s}}^{p}(A \quad C, B \quad C)=0.175>0.125=D(A, B)
$$

Consequently, $D_{s}^{p}$ isneither anIF-divergence, noranIF-dissimilitude.

Chen dissimilarity Chen ([36, 37]) defined an IF-dissimilarity measure by:

$$
D_{\mathrm{C}}(A, B)=\frac{1}{2 n_{\omega \Omega}}\left|S_{\mathrm{A}}(\omega)-S_{\mathrm{B}}(\omega)\right|
$$

where $S_{\mathrm{A}}(\omega)=\mu_{\mathrm{A}}(\omega)-v_{\mathrm{A}}(\omega)$ and $\mathrm{S}_{\mathrm{B}}(\omega)=\mu_{\mathrm{B}}(\omega)-v_{\mathrm{B}}(\omega)$.
This diss imilarity also satisfies axiom IF-Div.5, b ecause:

$$
\begin{aligned}
D_{\mathrm{C}}\left(A^{c}, B^{c}\right) & \left.=\frac{1}{2 n} \omega S_{\mathrm{A}^{\mathrm{c}}}(\omega)-S_{\mathrm{B}^{\mathrm{c}}}(\omega) \right\rvert\, \\
& \left.=\frac{1}{2 n} \omega \mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)-v_{\mathrm{A}}(\omega)+v_{\mathrm{B}}(\omega) \right\rvert\, \\
& =\frac{1}{2 n} \omega{ }_{\omega}\left|S_{\mathrm{A}}(\omega)-S_{\mathrm{B}}(\omega)\right|=D(A, B) .
\end{aligned}
$$

By Prop osition 5.23 axioms IF-Div. 3 and IF-Div. 4 are equivalent. Letussee anexample where axiom IF-Div. 4 isviolated. Cons ider $\Omega=\{\omega\}$ and the IF-sets:

$$
A=\{(\omega, 0.25,0.75) \text { and } B=\{(\omega, 0,0.5)
$$

It holds that $D_{\mathrm{C}}(A, B)=0$. If weconsider $C=\left\{\left(\omega, 0.2,0 . \omega_{)}\right)\right.$it holds that:

$$
A \quad C=\{\omega, 0.25,0\} . \text { and } B \quad C=\{\omega, 0.2,0.5
$$

whence

$$
D_{C}(A \quad C, B \quad C)=0.025>0=D \quad \subset(A, B)
$$

Thus, $D_{\mathrm{C}}$ isneither anIF-divergence noradissimilitude.
In [89], Hong provided an exam ple that showed that this IF-dissimilarity is a counterintuitive measureofcomparison offuzzy sets. Themainreason isthat:

$$
\mu_{\mathrm{A}}(\omega)-v_{\mathrm{A}}(\omega)=\mu_{\mathrm{B}}(\omega)-v_{\mathrm{B}}(\omega) \quad \omega \quad \Omega \quad D_{\mathrm{C}}(A, B)=0 .
$$

Infact, if weconsider thelF-sets $A$ and $B$ defined by:

$$
A=\{(\omega, 0, d) \omega \quad \Omega\} \text { and } B=\{(\omega, 0.5,0.5) \omega \quad \Omega\} \text {; }
$$

we obtain $D_{C}(A, B)=0$. However, these IF-sets do not seem to $b$ e ve ry similar.

Dengfenf \& Chuntian dissimilarity Dengfenf and Chuntian ([111]) prop osed the following IF -dis similarity:

$$
D_{\mathrm{DC}}(A, B)=\stackrel{\downarrow}{p}_{{ }^{1}}^{\bar{n}}{ }_{\omega \Omega} \mathrm{I}_{2}^{\frac{1}{2}}\left(\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)-v_{\mathrm{A}}(\omega)+v_{\mathrm{B}}(\omega)\right)^{p}
$$

for some $p \geq 1$. Again, itobviously holdsthat $\quad D\left(A^{c}, B^{c}\right)=D(A, B)$, that is, $D_{D C}$ satisfies IF-Div.5, and therefore, by Prop osition 5.23, axioms IF-Div. 3 and IF-Div. 4 are equivalent. Furthermore, wh enp=1 , $D_{\text {DC }} \mathrm{b}$ ecomes Chen dissim ilarity multiplied by aconstant. Thus, inorderto obtainacounterexample, it suffices to consider th e same than in thepreviousparagraph.

Hung \&Yang dissimilarities Previously wehave seensome examples of IF-dissimilarities prop osed by Hung and Yang that are also IF-divergences. Herewe givesome examples of IF-dissimilarities prop osed by them which are not IF-divergences.Th ey are given by:

$$
\begin{aligned}
& D_{\omega 1}(A, B)=1-{\underset{n}{n}}_{n_{\Omega}} \frac{\min \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega)\right)+\min \left(\nu_{\mathrm{A}}(\omega), \nu_{\mathrm{B}}(\omega)\right)}{\max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega)\right)+\max \left(v_{\mathrm{A}}(\omega), \nu_{\mathrm{B}}(\omega)\right)} . \\
& \min \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega)\right)+\min \left(\nu_{\mathrm{A}}(\omega), \nu_{\mathrm{B}}(\omega)\right) \\
& D_{\mathrm{pk} 1}(A, B)=1-\frac{\omega \Omega}{\max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega)\right)+\max \left(\nu_{\mathrm{A}}(\omega), \nu_{B}(\omega)\right)} \text {. } \\
& \omega \Omega \\
& \left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right| \\
& D_{\mathrm{pk} 3}(A, B)=\stackrel{\omega \Omega}{\left|\mu_{\mathrm{A}}(\omega)+\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)+v_{\mathrm{B}}(\omega)\right|} . \\
& \omega \Omega
\end{aligned}
$$

These dissimilarities satisfy axiom IF-Div.5, and therefore, using Prop osition 5.23, b oth axioms IF-Div. 3 and IF-Div. 4 b ec ome equivalent.However, none ofthem satisfiesthese axioms. Let usgiveacounterexamplefor $\quad D_{\omega 1}$ : consider anuniverse $\Omega=\{\omega\}$ and the IF-sets:

$$
A=\{(\omega, 0.75,0.1 \xi) \text { and } B=\{(\omega, 0.48,0.2\})
$$

For these IF-sets, $D_{\omega 1}(A, B)=0.32$ If wenowconsider thelF-set $\quad C=\left\{\left(\omega, 0.25,0.0^{\prime} 6\right)\right.$ then $A \quad C$ and $B \quad C$ aregiven by:

$$
A \quad C=\left\{(\omega, 0.75,0.0 \delta) \text { and } B \quad C=\left\{\left(\omega, 0.48,0.0^{0} 6\right)\right.\right.
$$

Hence,

$$
D_{\omega 1}(A \quad C, B \quad C) \geq 0.333>0.32=D(A, B) .
$$

The same exampleshowsthat $D_{\mathrm{pk} 1}$ do es not satisfy IF-Div.4, since for $n=1 D$ pk1 and $D_{\omega 1}$ arethe samefunction.

Let us prove now that $D_{\omega 3}$ do es not satisfy IF-Div. 4 neither.Forthis, take $\Omega=\{\omega\}$ definethe following IF-sets:

$$
A=\{(\omega, 0.24,0.28,) B=\{(\omega, 0.66,0.2 \xi .) C=\{(\omega, 0.02,0.1 \text {. }\}
$$

Then, it holdsthat:

$$
D_{\mathrm{pk} 3}(A, B)=0.29<0.35=D_{\mathrm{pk} 3}\left(\begin{array}{lll}
A & C, B & C
\end{array}\right) .
$$

Thus, noneof these IF-dissimilaritymeasures areIF-divergencesor IF-dissimilitudes.
In Table 5.1 we have summarizedthe results we have presented in this section. There, we can see which axioms satisfy every one of the example s ofIF-dissimilarities we have studied. We canremarkthat all these examples satisfy the prop erty IF-Div.5, and then IF-Div. 3 and IF-Div. 4 areequivalent. Recall that all the measures we have studied satisfy prop erty IF-Div.5, and then IF-divergences and IF-dissimilitudes become equivalent.

### 5.1.4 Local IF-divergences

In this section we are going to study a sp ecial typ e of IF-divergences called the lo cal IF-divergences. They are an imp ortant family of IF-divergences because of the interesting prop erties they satisfy.

Let us consider auniverse $\Omega=\left\{\omega_{1}, \ldots, C_{Q}\right\}$ and an IF-divergence $D_{\text {IFS }}$ defined on IFSs $(\Omega)^{\times}$IF $S s(\Omega)$. FromIF-Div.4, weknowthat $\quad D\left(\begin{array}{lll}A & C, B & C\end{array}\right) \leq D(A, B)$ for every $C$ IF $S s(\Omega)$. In particular, given $C=\{\omega\}$, wecanexpress itequivalently by

$$
C=\{(\omega, 1,0),(\omega) 0,1) \mid j=i\}
$$

| Name | Notation | IF-Diss. 1 \&2 | IF-Div.3\&4 | IF-Div. 5 | \||IF-diss | IF-div |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hamming | $I_{\text {IFS }}$ | OK | OK | OK | Yes | Yes |
| Normalized Hamming | $I_{\text {niFs }}$ | OK | OK | OK | Yes | Yes |
| Hausdorff | $d_{\text {H }}$ | OK | OK | OK | Yes | Yes |
| Normalized Hausdorff | $d_{\text {nH }}$ | OK | OK | OK | Yes | Yes |
| Normalized Eucliden | $q_{\text {IFS }}$ | OK | FAIL | OK | Yes | No |
| Hong and Kim (1) | $D_{\text {c }}$ | OK | OK | OK | Yes | Yes |
| Hong and Kim (ل1) | $D_{\text {L }}$ | OK | OK | OK | Yes | Yes |
| Li et al. | $D_{0}$ | OK | OK | OK | Yes | Yes |
| Mitchell | $D_{\text {HB }}$ | OK | OK | OK | Yes | Yes |
| Liang and Shi (l) | $D_{\mathrm{e}}^{p}$ | OK | OK | OK | Yes | Yes |
| Liang and Shi (11) | $D_{\text {h }}^{p}$ | OK | OK | OK | Yes | Yes |
| Liang and Shi (ل1) | $D_{\text {s }}^{p}$ | OK | FAIL | OK | Yes | No |
| Chen | $D_{\text {c }}$ | OK | FAIL | OK | Yes | No |
| Dengfeng and Chuntian | $D_{\text {DC }}$ | OK | FAIL | OK | Yes | No |
| Hung and Yang (I) | $D_{\text {HY }}^{1}$ | OK | OK | OK | Yes | Yes |
| Hung and Yang (11) | $D_{\text {HY }}^{2}$ | OK | OK | OK | Yes | Yes |
| Hung and Yang(لШ) | $D^{3} \mathrm{HY}$ | OK | OK | OK | Yes | Yes |
| Hung and Yang (IV) | $D_{\omega 1}$ | OK | FAIL | OK | Yes | No |
| Hung and <br> Yang (V) | $D_{\text {pk1 }}$ | OK | FAIL | OK | Yes | No |
| Hung and Yang (VI) | $D_{\text {pk2 }}$ | OK | OK | OK | Yes | Yes |
| Hung and Yang(V山一) | $D_{\text {pk3 }}$ | OK | FAIL | OK | Yes | No |

Table 5.1: Behaviour of well-know $n$ dissimilarities and IF-divergences.

Then, the IF-sets $A \quad\{\omega\}$ and $B \quad\{\omega\}$ are given by:

$$
\begin{aligned}
& A \quad\{\omega\}=\left\{\left(\omega_{j}, 1,0\right),\left(\omega_{1}, \mu_{\mathrm{A}}\left(\omega_{j}\right), v_{\mathrm{A}}\left(\omega_{j}\right)\right) \mid j=i\right\} . \\
& B \quad\{\omega\}=\left\{\left(\omega_{j}, 1,0\right),\left(\omega_{0} \mu_{\mathrm{B}}\left(\omega_{j}^{j}\right), v \mathrm{~B}\left(\omega_{j}\right)\right) \mid j=i\right\} .
\end{aligned}
$$

Applying axiom IF-Div. 4 to these IF-sets, we obtain the following inequality:

$$
D_{\mathrm{IFS}}(A \quad\{\omega\}, B \quad\{\omega\})=D \quad \operatorname{IFS}(A, B)
$$

Hence, the only differenc e b etween $D_{\mathrm{IFS}}\left(\begin{array}{lll}A & C, B & C\end{array}\right)$ and $D_{\mathrm{IFS}}(A, B)$ is on the i -th element. However, such a function may not exist. When it do es, the IF-divergence will be called local.

Definition 5.28Let $D_{\mathrm{IFS}}$ be anIF-divergence. It is cal led local(or it is said to sat isfy the local property) when for every $A, B \quad$ IF $\operatorname{Ss}(\Omega)$ and every $\omega \quad \Omega$ it holds that:

$$
\begin{equation*}
D_{\mathrm{IFS}}(A, B)-D_{\mathrm{IFS}}(A\{\omega\}, B \quad\{\omega\})=h \text { IFS }\left(\mu_{\mathrm{A}}(\omega), \mathrm{V}_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{V}_{\mathrm{B}}(\omega)\right) \tag{5.3}
\end{equation*}
$$

In order to characterize lo cal IF-divergences we are going to see the next Theorem.
Theorem 5.29Amap $D_{\text {IFS }}:$ IF Ss $(\Omega) \times \operatorname{IF} \operatorname{Ss}(\Omega) \rightarrow R$ on afinite universe $\Omega=$ $\left\{\omega_{1}, \ldots, \omega_{a}\right\}$ is a locallF-divergenceif and only ifthereisa function $\quad h_{\text {IFs }}: T^{2} \rightarrow \mathrm{R}$ such that for every $A, B$ IF $\operatorname{Ss}(\Omega)$ :

$$
\begin{equation*}
D_{\mathrm{IFS}}(A, B)=h_{i=1} h_{\text {IFS }}\left(\mu_{\mathrm{A}}\left(\omega_{i}\right), \nu_{\mathrm{A}}\left(\omega_{i}\right), \mu_{\mathrm{B}}\left(\omega_{i}\right), \nu_{\mathrm{B}}\left(\omega_{i}\right)\right), \tag{5.4}
\end{equation*}
$$

where $T$ denotes theset $T=\{(t, z) \quad[0,1] \mid t+z \leq 1\}$ and $h_{\text {IFs }}$ fulfil Is the following properties:

IF-loc. $1 \quad h_{\text {IFs }}(x, y, x, y)=0$ for every $(x, y) \quad T$.
IF-loc. $2 h_{\text {IFs }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=h$ IFs $\left(y_{1}, y_{2}, x_{1}, x_{2}\right)$ for every
$\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) T$.
IF-loc. 3 If $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \quad T, z \quad[0,1]$ and $x_{1} \leq z \leq y_{1}$, it holds that: $h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \geq h_{\text {IFS }}\left(x_{1}, x_{2}, z, y_{2}\right)$.
Moreover, if $\left(x_{2}, z\right),\left(y_{2}, z\right) T$ it holdsthat $h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \geq h_{\text {IFS }}\left(z, x_{2}, y_{1}, y_{2}\right)$.
IF-loc. 4 If $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) T, z \quad[0,1]$ and $x_{2} \leq z \leq y_{2}$, it holds that: $h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \geq h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, z\right)$.
Moreover, if $\left(x_{1}, z\right),\left(y_{1}, z\right) T$ it holdsthat:
$h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \geq h_{\text {IFS }}\left(x_{1}, z, y_{1}, y_{2}\right)$.
IF-loc. 5 If $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \quad T$ and $z$ [0, 1]then:
$h_{\text {IFS }}\left(z, x_{2}, z, y_{2}\right) \leq h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ if $\left(x_{2}, z\right),(y, z) \quad T$ and
$h_{\text {IFS }}\left(x_{1}, z, y_{1}, z\right) \leq h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ if $\left(x_{1}, z\right),(y, z) \quad T$.

Pro of Assume firstof all that $D_{\mathrm{IFS}}$ is a lo cal IF-divergence and let us prove that $D_{\text {IFS }}(A, B)$ can b e expresse $d$ as in Equation (5.4) for every $A, B \quad$ IF $\operatorname{Ss}(\Omega)$, where $h_{\text {IFs }}$ satisfies the properties IF-lo c. 1 to IF-lo c.6. In orderto prove that, we will apply recursively Equation (5.3):

$$
\begin{aligned}
& D_{\mathrm{IFS}}(A, B)=D \operatorname{IFS}\left(A \quad\left\{\omega_{1}\right\}, B \quad\left\{\omega_{1}\right\}\right) \\
& +h \text { IFS }\left(\mu_{\mathrm{A}}\left(\omega_{1}\right), \nu_{\mathrm{A}}\left(\omega_{1}\right), \mu_{\mathrm{B}}\left(\omega_{1}\right), \nu_{\mathrm{B}}\left(\omega_{1}\right)\right) \\
& =D \operatorname{IFS}\left(A\left\{\omega_{1}\right\}\left\{\omega_{2}\right\}, B \quad\left\{\omega_{1}\right\}\left\{\omega_{2}\right\}\right) \\
& +\quad h_{\text {IFS }}\left(\mu_{\mathrm{A}}\left(\omega^{i}\right), \nu_{\mathrm{A}}\left(\omega^{i}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right), \nu_{\mathrm{B}}\left(\omega^{i}\right)\right) \\
& i=1 \\
& \text { = ... } \\
& =D \operatorname{IFS}(\Omega, \Omega)+h_{i=1} h_{\text {IFS }}\left(\mu_{\mathrm{A}}\left(\omega^{\dot{\prime}}\right), \nu \mathrm{A}\left(\omega^{\dot{*}}\right), \mu_{\mathrm{B}}\left(\omega^{\dot{j}}\right), \nu \mathrm{B}\left(\omega^{\dot{j}}\right)\right) \text {. }
\end{aligned}
$$

Moreover, fromaxiomIF-Diss.1weknow that $\quad D_{\text {IFS }}(\Omega, \Omega)=0$, and the re fore $D_{\text {IFS }}$ can b e expressed by:

$$
D_{\mathrm{IFS}}(A, B)=h_{i=1} h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}\left(\omega^{i}\right), \nu_{\mathrm{A}}\left(\omega^{i}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right), \nu \mathrm{B}\left(\omega^{i}\right)\right) \text {. }
$$

This shows that $D_{\text {IFS }}$ can be expressed as in Equation (5.4).
Let us prove next that $h_{\text {IFs }}$ fulfills prop erties IF-lo c. 1 to IF-lo c.5:
IF-loc.1: Take $x, y \quad T$, and let us prove that $h_{\text {IFS }}(x, y, x, y)=0$. Define theIF-set $A$ by $\mu_{\mathrm{A}}(\omega)=x$ and $\nu_{\mathrm{A}}(\omega)=y$, for every $i=1, \ldots, n$. Note that $A$ is in fact an IF-set since $\mu_{\mathrm{A}}\left(\omega^{i}\right)+v \mathrm{~A}\left(\omega^{i}\right)=x+y \leq 1$ for every $i=1, \ldots, n$. Applying IF-diss.1, $D_{\mathrm{IFS}}(A, A)=0$, and therefore, since $D_{\mathrm{IFS}}(A, A)$ can be expressed as in Equation (5.4), it holds that:

$$
\begin{aligned}
0=D \quad \operatorname{IFS}(A, A) & =h_{i=1}^{n} h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}\left(\omega^{j}\right), \nu \mathrm{A}\left(\omega^{j}\right), \mu_{\mathrm{A}}\left(\omega^{j}\right), \nu_{\mathrm{A}}\left(\omega^{j}\right)\right) \\
& =h_{i=1} h_{\mathrm{IFS}}(x, y, x, y)=n \quad h_{\mathrm{IFS}}(x, y, x, y) .
\end{aligned}
$$

Then, it must holdthat $h_{\text {IFs }}(x, y, x, y)=0$.
FF-lo c.2: Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$ be two elements in $T$. Consi der the IF-sets $A$ and $B$ defined by: $\mu_{\mathrm{A}}\left(\omega^{i}\right)=x \quad 1, v_{\mathrm{A}}\left(\omega^{\dot{*}}\right)=x \quad 2, \mu_{\mathrm{B}}\left(\omega^{*}\right)=y \quad 1$ and $\nu_{\mathrm{B}}\left(\omega^{\dot{*}}\right)=y \quad 2$. Using axiom

IF-diss. 2 and Equation(5.4) we obtain the following:

$$
\begin{aligned}
n h_{\mathrm{IFS}}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =h_{i=1}^{n} h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}\left(\omega^{i}\right), \nu_{\mathrm{A}}\left(\omega^{i}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right), \nu_{\mathrm{B}}\left(\omega^{i}\right)\right) \\
& =D_{n} \mathrm{IFS}(A, B)=D \operatorname{IFS}(B, A) \\
& =h_{\mathrm{IFS}}^{i=1}\left(\mu_{\mathrm{B}}\left(\omega^{i}\right), \nu \mathrm{B}\left(\omega^{i}\right), \mu_{\mathrm{A}}\left(\omega^{i}\right), \nu_{\mathrm{A}}\left(\omega^{i}\right)\right) \\
& =n h \operatorname{IFS}\left(y_{1}, y_{2}, x_{1}, x_{2}\right) .
\end{aligned}
$$

Thus, $h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=h \quad{ }_{\text {IFS }}\left(y_{1}, y_{2}, x_{1}, x_{2}\right)$.
IF-loc.3: Consider $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \quad T$ and $z \quad[0,1]$ such that $x_{1} \leq z \leq y_{1}$, and let us definethe IF-sets $A$ and $B$ by: $\mu_{\mathrm{A}}\left(\omega^{i}\right)=x \quad 1, \nu_{\mathrm{A}}\left(\omega^{i}\right)=x \quad 2, \mu_{\mathrm{B}}\left(\omega^{i}\right)=y \quad 1$ and $\nu_{\mathrm{B}}\left(\omega_{i}\right)=y 2$, for every $i=1, \ldots, n$. We have to consider two cases:

- Onone handweare goingtoprovethat

$$
h_{\mathrm{IFS}}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \geq h_{\mathrm{IFS}}\left(x_{1}, x_{2}, z, y_{2}\right)
$$

To see this, consider the IF-set $C$ defined by $\mu_{C}(\omega)=z$ and $\nu_{C}(\omega)=0$ for $i=1, \ldots, n$. Then thelF-sets $A \cap C$ and $B \cap C$ aregiven by:

$$
\begin{aligned}
& A \cap C=A . \\
& B \cap C=\left\{\left(\omega^{i}, \mu_{C}\left(\omega^{j}\right), \nu_{\mathrm{B}}\left(\omega^{j}\right)\right) \mid i=1, \ldots, n\right\} .
\end{aligned}
$$

ByaxiomIF-Div.3, we see that $D_{\mathrm{IFS}}(A, B) \geq D_{\mathrm{IFS}}(A \cap C, B \cap C)=D \quad \mathrm{IFS}(A, B \cap C)$, and then Equation (5.4) implies th at:

$$
\begin{aligned}
n \quad h_{\mathrm{IFS}}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =D \quad \underset{\operatorname{IFS}}{ }(A, B) \geq D_{\mathrm{IFS}}(A \cap C, B \cap C) \\
& =n \quad h_{\mathrm{IFS}}\left(x_{1}, x_{2}, z, y_{2}\right) .
\end{aligned}
$$

Hence, $h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \geq h_{\text {IFS }}\left(x_{1}, x_{2}, z, y_{2}\right)$.

- Letus provenowthat,when $\left(x_{2}, z\right),\left(y_{2}, z\right) T$, it holds that $h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \geq h_{\text {IFS }}\left(z, x_{2}, y_{1}, y_{2}\right)$. Con sider the IF-sef defined by $\mu_{\mathrm{C}}\left(\omega^{*}\right)=z$ and $\nu_{\mathrm{C}}\left(\omega^{i}\right)=\max \left(\begin{array}{ll}x & \left.2, y_{2}\right) \text {, for } i=1, \ldots, n \text {. Note that } C \text { is an IF-set because }\end{array}\right.$ $\mu_{\mathrm{C}}\left(\omega_{i}\right)+v \mathrm{c}\left(\omega_{i}\right)=\max \left(x_{2}+z, y_{2}+z\right) \leq 1$,for $i=1, \ldots, n$. Using axiom IF-Div.4, we deduce that $D_{\text {IFS }}(A, B) \geq D_{\text {IFS }}\left(\begin{array}{lll}A & C, B & C) \text {. Moreover, the IF-sets } A C\end{array}\right.$ and $B \quad C$ aregiven by:

$$
\begin{array}{ll}
A & C=\left\{\left(\omega_{i}, \mu_{C}\left(\omega_{i}\right), \nu \mathrm{A}\left(\omega^{i}\right) \mid i=1, \ldots, n\right\} .\right. \\
B & C=B .
\end{array}
$$

Then, $D_{\mathrm{IFS}}(A, B) \geq D_{\mathrm{IFS}}\left(\begin{array}{ll}A & C, B\end{array}\right)$. This, together with Equation (5.4), implies that:
$n h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=D \quad \operatorname{IFS}(A, B) \geq D_{\mathrm{IFS}}(A$
$C, B$
$C)=n \quad h_{\text {IFS }}\left(z, x_{2}, y_{1}, y_{2}\right)$.

Hence, $h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \geq h_{\text {IFS }}\left(z, x_{2}, y_{1}, y_{2}\right)$.

IF-lo c.4: The proof is similar to that of IF-lo c.3. Consider $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ in $T$, and let $z$ be a point in $[0,1]$ such that $x_{2} \leq z \leq y_{2}$. Define thelF-sets $A$ and $B$ by:

$$
A=\left\{\left(\omega, x_{1}, x_{2}\right) \mid \omega \quad \Omega\right\} \text { and } B=\left\{\left(\omega, y, y_{2}\right) \mid \omega \quad \Omega\right\} \text {. }
$$

If we consider the IF -s eF given by:

$$
C=\{(\omega, 0, z) \omega \quad \Omega\}
$$

then, the IF-sets $A \quad C$ and $B \quad C$ aregiven by:

$$
A \quad C=A \quad \text { and } B \quad C=\{(\omega, y, z)\} .
$$

Applying axiomIF-Div. 4 wededuce that

$$
D_{\mathrm{IFS}}(A, B) \geq D_{\mathrm{IFS}}\left(\begin{array}{lll}
A & C, B & C
\end{array}\right)=D \quad \mathrm{IFS}(A, B \quad C)
$$

and using now Equation(5.4), weobtain:

$$
n \quad h_{\mathrm{IFS}}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=D \quad \operatorname{IFS}(A, B) \geq D_{\mathrm{IFS}}\left(\begin{array}{lll}
A & C, B & C
\end{array}\right)=n \quad h_{\mathrm{IFS}}\left(x_{1}, x_{2}, y_{1}, z\right)
$$

Moreover, if $\left(x_{1}, z\right),\left(y_{1}, z\right) T$, we consider the set

$$
C=\left\{\left(\omega, \max \left(x_{1} y_{1}\right), z\right) \mid \omega \quad \Omega\right\} .
$$

Since $\left(x_{1}, z\right),\left(y_{1}, z\right) \quad T, C$ isan IF-set. Moreover, $A \cap C$ and $B \cap C$ aregiven by:

$$
A \cap C=\{(\omega, x, z) \mid \omega \quad \Omega\} \text { and } B \cap C=B
$$

Using axiom IF-D iv.3, we deduce that

$$
D_{\mathrm{IFS}}(A, B) \geq D_{\mathrm{IFS}}(A \cap C, B \cap C)=D \quad \mathrm{IFS}(A \cap C, B),
$$

and applying Equation (5.4),

$$
n h_{\mathrm{IFS}}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=D \quad \operatorname{IFS}(A, B) \geq D_{\mathrm{IFS}}(A \cap C, B \cap C)=n \quad h_{\mathrm{IFS}}\left(x_{1}, z, y_{1}, y_{2}\right) .
$$

Hence, $h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \geq h_{\text {IFS }}\left(x_{1}, z, y_{1}, y_{2}\right)$.
IF-loc.5: Let us consider $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \quad T$ and $z \quad[0,1$.
If we ass ume that $\left(x_{2}, z\right),\left(y_{2}, z\right) \quad T$, then $\max \left(x_{2}, y_{2}\right)+z \leq 1$; we considerthe IF-sets $A, B, C$ and $D$ given by:

$$
\begin{array}{ll}
A=\left\{\left(\omega, x_{1}, x_{2}\right) \mid \omega \Omega\right\}, & B=\left\{\left(\omega, y, y_{2}\right) \mid \omega \Omega\right\} . \\
C=\left\{\left(\omega, z_{2 x}\right) \mid \omega \Omega\right\}, & D=\{(\omega, z, y) \mid \omega \Omega\} .
\end{array}
$$

From Prop osition 5.25 , weknow that $D_{\mathrm{IFS}}(A, B) \geq D_{\mathrm{IFS}}(C, D)$, and applyingEquation (5.4) we deduce that

$$
n h_{\mathrm{IFS}}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=D \quad \operatorname{IFS}(A, B) \geq D_{\mathrm{IFS}}(C, D)=n \quad h_{\mathrm{IFS}}\left(z, x_{2}, z, y_{2}\right) .
$$

Thus, $h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \geq h_{\text {IFS }}\left(z, x_{2}, z, y_{2}\right)$.
If we assume now that $\left(x_{1}, z\right),\left(y_{1}, z\right) \quad T$, itholds that $\max \left(x_{1}, y_{1}\right)+z \leq 1$; we consider the IF-sets:

$$
\begin{array}{ll}
A=\left\{\left(\omega, x, x_{2}\right) \mid \omega \Omega\right\}, & B=\left\{\left(\omega, y, y_{2}\right) \mid \omega \Omega\right\} . \\
C=\{(\omega, x, z) \mid \omega \Omega\}, & D=\{(\omega, y, z) \mid \omega \Omega\} .
\end{array}
$$

Applying Corollary 5.26, $D_{\mathrm{IFS}}(A, B) \geq D_{\mathrm{IFS}}(C, D)$. Using Equation(5.4), we obtain:

$$
n h_{\mathrm{IFS}}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=D \quad \operatorname{IFS}(A, B) \geq D_{\mathrm{IFS}}(C, D)=n \quad h_{\mathrm{IFS}}\left(x_{1}, z, y_{1}, z\right)
$$

Thus, $h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \geq h_{\text {IFS }}\left(x_{1}, z, y_{1}, z\right)$.
Summarizing, if $D_{\text {IFS }}$ is a lo cal IF-divergence, then $D_{\text {IFS }}(A, B)$ can b e expre ssed as in Equation (5.4) wherethefunction $h_{\text {IFs }}$ satisfies IF-lo c. 1 to IF-loc. 5.

Let usprove the converse: that if afunction $D_{\text {IFS }}$ is defined byEquation (5.4), where $h_{\text {IFs }}$ fulfills prop erties IF-loc. 1 to IF-lo c. 5 , then $D_{\text {IFS }}$ is a lo cal IF-divergence.

Firstof all, let usprovethat $D_{\text {IFS }}$ isanIF-divergence, i.e., thatitsatisfiesaxioms IF-Diss.1, IF-Diss.2, IF-Div. 3 andIF-Div. 4.

IF-Diss.1: Let $A$ be an IF-set. Then, $D_{\mathrm{IFS}}(A, A)=0$ because

$$
D_{\mathrm{IFS}}(A, A)=h_{i=1} h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}\left(\omega^{i}\right), \nu_{\mathrm{A}}\left(\omega^{i}\right), \mu_{\mathrm{A}}\left(\omega^{i}\right), \nu_{\mathrm{A}}\left(\omega^{i}\right)\right)=0
$$

since IF-lo c. 1 implies that $h_{\text {IFS }}(x, y, x, y)=0 \quad$ for every $(x, y) \quad T$, and in particular $\left(\mu_{\mathrm{A}}\left(\omega^{*}\right), \nu_{\mathrm{A}}\left(\omega^{*}\right)\right) \quad T$ 。

IF-Diss.2: Let $A, B$ be IF-sets, an d let us prove that $D_{\mathrm{IFS}}(A, B)=D \quad \operatorname{IFS}(B, A)$. By IF-lo c.2, $h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=h \quad$ IFS $\left(y_{1}, y_{2}, x_{1}, x_{2}\right)$ for every $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \quad T$, as $\left(\mu_{\mathrm{A}}\left(\omega_{i}\right), \nu \mathrm{A}(\omega i)\right),\left(\mu_{\mathrm{B}}\left(\omega_{i}\right), \nu \mathrm{B}(\omega i)\right) \quad T$, whence

$$
D_{\mathrm{IFS}}(A, B)=D \quad \mathrm{IFS}(B, A)
$$

IF-Div.3-1F-Div.4:- Consider three IF-sets $A, B$ and $C$, and let us show that $D_{\mathrm{IFS}}(A, B) \geq \max \left(D_{\mathrm{IFS}}(A \quad C, B \quad C), D_{\mathrm{IFS}}(A \cap C, B \cap C)\right)$. Consider the following partition of $\Omega$ :

$$
\left.\begin{array}{l}
P_{1}=\left\{\omega \quad \Omega \mid \max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega)\right) \leq \mu_{\mathrm{C}}(\omega)\right\} . \\
P_{2}=\left\{\omega \quad \Omega \mid \mu_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{C}}(\omega)<\mu_{\mathrm{B}}(\omega)\right\} \\
P_{3}=\{\omega \\
\Omega \mid \mu_{\mathrm{B}}(\omega) \leq \mu_{\mathrm{C}}(\omega)<\mu_{\mathrm{A}}(\omega)
\end{array}\right\} .
$$

44
Thus, $\Omega=\quad\left(P_{i} \cap Q_{j}\right)$. Weare goingtoprovethat, for every $i, j \quad\{1, \ldots, 4$, if $i=1 \quad j=1$ $\omega \quad P_{i} \cap Q_{j}$ then both:

$$
\begin{aligned}
& h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}} \mathrm{c}(\omega), v_{\mathrm{A}} \mathrm{c}(\omega), \mu_{\mathrm{B}} \mathrm{c}(\omega), v_{\mathrm{B}} \mathrm{c}\right) \text { and } \\
& h_{\mathrm{IFS}}\left(\mu_{\mathrm{A} \cap \mathrm{C}}(\omega), v_{\mathrm{A} \cap \mathrm{C}}(\omega), \mu_{\mathrm{B}} \cap \mathrm{c}(\omega), v_{\mathrm{B}} \cap \mathrm{c}\right)
\end{aligned}
$$

are smaller than

$$
h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), v_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), V_{\mathrm{B}}(\omega)\right)
$$

1. $\omega \quad P_{1} \cap Q_{1}$; by hyp othesis, we have that:

$$
\max \left(\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega)\right) \leq \mu_{\mathrm{C}}(\omega) \text { and } \max \left(v_{\mathrm{A}}(\omega), v_{\mathrm{B}}(\omega)\right) \leq v_{\mathrm{C}}(\omega)
$$

whence

$$
\begin{array}{ll}
\mu_{\mathrm{A}} \mathrm{c}(\omega)=\mu_{\mathrm{c}}(\omega), & v_{\mathrm{A}} \mathrm{c}(\omega)=\nu \mathrm{A}(\omega), \\
\mu_{\mathrm{A} \cap \mathrm{C}}(\omega)=\mu_{\mathrm{A}}(\omega), & v_{\mathrm{A} \cap \mathrm{c}(\omega)}=\nu \mathrm{c}(\omega), \\
\mu_{\mathrm{B}} \mathrm{c}(\omega)=\mu_{\mathrm{c}}(\omega), & v_{\mathrm{B}} \mathrm{c}(\omega)=\nu \mathrm{B}(\omega), \\
\mu_{\mathrm{B} \cap \mathrm{c}}(\omega)=\mu_{\mathrm{B}}(\omega), & v_{\mathrm{B} \cap \mathrm{c}(\omega)}=\nu \mathrm{c}(\omega) .
\end{array}
$$

Moreover, property IF-lo c. 5 can be applied since

$$
\max \left(v_{\mathrm{A}}(\omega), \nu_{B}(\omega)\right)+\mu \mathrm{c}(\omega) \leq \nu_{\mathrm{C}}(\omega)+\mu \mathrm{c}(\omega) \leq 1
$$

whence $\left(\nu_{\mathrm{A}}(\omega), \mu \mathrm{C}(\omega)\right),(\mathrm{BB}(\omega), \mu \mathrm{C}(\omega))^{T}$ and therefore

$$
\begin{aligned}
& h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), V_{\mathrm{B}}(\omega)\right) \\
& \quad \geq h_{\mathrm{IFS}}\left(\mu_{\mathrm{c}}(\omega), v_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega), V_{B}(\omega)\right) \\
& \quad=h \quad{ }_{\text {IFS }}\left(\mu_{\mathrm{A}} \quad \mathrm{c}(\omega), v_{\mathrm{A}} \mathrm{c}(\omega), \mu_{\mathrm{B}} \quad \mathrm{c}(\omega), V_{B} \quad \mathrm{c}(\omega)\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VB}(\omega)\right) \\
& \quad \geq h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), \mathrm{V}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VC}^{( }(\omega)\right) \\
& \quad=h \text { IFS }\left(\mu_{\mathrm{A}} \cap \mathrm{C}(\omega), \mathrm{VA}_{\mathrm{A}} \cap \mathrm{C}(\omega), \mu_{\mathrm{B}} \cap \mathrm{C}(\omega), \mathrm{VB}_{\mathrm{B}} \cap \mathrm{C}(\omega)\right) .
\end{aligned}
$$

Let us remark that, in the rest of the proof, axioms IF-lo c.3, IF-loc. 4 and IF-lo c. 5 are applicable b ecause the previous hyp otheses are satisfied.
2. $\omega \quad P_{1} \cap Q_{2}$; by hyp othesis it holds that:

$$
\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega) \leq \mu_{\mathrm{C}}(\omega) \text { and } v_{\mathrm{A}}(\omega) \leq v_{\mathrm{C}}(\omega)<\nu_{\mathrm{B}}(\omega)
$$

whence

$$
\begin{array}{ll}
\mu_{\mathrm{A}} \mathrm{c}(\omega)=\mu \mathrm{c}(\omega), & v_{\mathrm{A}} \mathrm{c}(\omega)=v_{\mathrm{A}}(\omega), \\
\mu_{\mathrm{A} \cap \mathrm{c}}(\omega)=\mu_{\mathrm{A}}(\omega), & v_{\mathrm{A} \cap \mathrm{C}(\omega)}=\nu \mathrm{c}(\omega), \\
\mu_{\mathrm{B}} \mathrm{c}(\omega)=\mu \mathrm{c}(\omega), & v_{\mathrm{B}} \mathrm{c}(\omega)=v \mathrm{c}(\omega), \\
\mu_{\mathrm{B} \cap \mathrm{c}}(\omega)=\mu_{\mathrm{B}}(\omega), & v_{\mathrm{B} \cap \mathrm{c}(\omega)}=v_{\mathrm{B}}(\omega),
\end{array}
$$

As a consequence, by IF-loc. 4 and IF-lo c.5:

$$
\begin{aligned}
h_{\mathrm{IFS}} & \left(\mu_{\mathrm{A}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), V_{\mathrm{B}}(\omega)\right) \\
& \geq h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), v_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), v_{\mathrm{C}}(\omega)\right) \\
& \geq h_{\mathrm{IFS}}\left(\mu_{\mathrm{c}}(\omega), v_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega), v_{c}(\omega)\right) \\
& =h \operatorname{IFS}\left(\mu_{\mathrm{A}} \mathrm{c}(\omega), v_{\mathrm{A}} \mathrm{c}(\omega), \mu_{\mathrm{B}} \quad \mathrm{c}(\omega), V_{B} \mathrm{c}(\omega)\right) .
\end{aligned}
$$

Similarly, by IF-lo c.4:

$$
\begin{aligned}
& h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), V_{\mathrm{B}}(\omega)\right) \\
& \quad \geq h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), \mathrm{VC}(\omega), \mu_{\mathrm{B}}(\omega), V_{\mathrm{B}}(\omega)\right) \\
& \quad=h \text { IFS }\left(\mu_{\mathrm{A}} \cap \mathrm{C}(\omega), V_{\mathrm{A}} \cap \mathrm{C}(\omega), \mu_{\mathrm{B}} \cap \mathrm{C}(\omega), V_{\mathrm{B}} \cap \mathrm{C}(\omega)\right) .
\end{aligned}
$$

3. $\omega \quad P_{1} \cap Q_{3}$; this case is immediate from case 2 , if we exchange the roles of and $B$.
4. $\omega \quad P_{1} \cap Q_{4}$; then we know that:

$$
\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega) \leq \mu_{\mathrm{C}}(\omega) \text {, and } \nu_{\mathrm{C}}(\omega)<\nu_{\mathrm{A}}(\omega), \nu_{\mathrm{B}}(\omega) .
$$

Then, it holdsthat $A \quad C=B \quad C=C, A \cap C=A$ and $B \cap C=B$, whence

$$
h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), V_{\mathrm{B}}(\omega)\right)=h_{\text {IFS }}\left(\mu_{\mathrm{A} \cap \mathrm{C}}(\omega), V_{\mathrm{A}} \cap \mathrm{C}(\omega), \mu_{\mathrm{B} \cap \mathrm{C}}(\omega), \mathrm{VB}_{\mathrm{B}} \cap \mathrm{C}(\omega)\right)
$$

Moreover,

$$
\begin{aligned}
& =h_{\text {IFS }}\left(\mu_{\mathrm{A}} \mathrm{c}(\omega), V_{\mathrm{A}} \mathrm{c}(\omega), \mu_{\mathrm{B}} \mathrm{c}(\omega), \mathrm{VB}^{\mathrm{C}} \quad \mathrm{c}(\omega)\right) \text {. }
\end{aligned}
$$

5. $\omega \quad P_{2} \cap Q_{1}$; in that case we know that:

$$
\mu_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{C}}(\omega)<\mu_{\mathrm{B}}(\omega) \text { and } v_{\mathrm{A}}(\omega), \mathrm{VB}(\omega) \leq v_{\mathrm{C}}(\omega)
$$

whence

$$
\begin{aligned}
& \mu_{\mathrm{A}} \mathrm{c}(\omega)=\mu \mathrm{c}(\omega), \quad \nu_{\mathrm{A}} \mathrm{c}(\omega)=\nu \mathrm{A}(\omega), \\
& \mu_{\mathrm{A} \cap \mathrm{C}}(\omega)=\mu_{\mathrm{A}}(\omega), \quad v_{\mathrm{A}} \cap \mathrm{C}(\omega)=v \mathrm{C}(\omega), \\
& \mu_{\mathrm{B}} \mathrm{c}(\omega)=\mu_{\mathrm{B}}(\omega), \quad \nu_{\mathrm{B}} \mathrm{c}(\omega)=\nu_{\mathrm{B}}(\omega) \text {, } \\
& \mu_{\mathrm{B} \cap \mathrm{C}}(\omega)=\mu \mathrm{C}(\omega), \quad \nu_{\mathrm{B} \cap \mathrm{C}}(\omega)=\nu \mathrm{C}(\omega) \text {. }
\end{aligned}
$$

Thus, by IF-lo c.3,

$$
\begin{aligned}
& h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), V_{\mathrm{B}}(\omega)\right) \\
& \quad \geq h_{\mathrm{IFS}}\left(\mu_{\mathrm{c}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), V_{B}(\omega)\right) \\
& \quad=h \text { IFS }\left(\mu_{\mathrm{A}} \mathrm{c}(\omega), V_{\mathrm{A}} \quad \mathrm{c}(\omega), \mu_{\mathrm{B}} \quad \mathrm{c}(\omega), V_{B} \mathrm{c}(\omega)\right) .
\end{aligned}
$$

Similarly, by IF-lo c. 1 and IF-lo c.3,

$$
\begin{aligned}
& h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VB}_{\mathrm{B}}(\omega)\right) \\
& \geq 0=h_{\text {IFs }}(\mu \mathrm{c}(\omega), \mathrm{vc}(\omega), \mu \mathrm{C}(\omega), \mathrm{vc}(\omega)) \\
& \geq h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), \mathrm{vc}(\omega), \mu_{\mathrm{C}}(\omega), \mathrm{vc}(\omega)\right) \\
& =h \text { IFS }\left(\mu_{\mathrm{A}} \cap \mathrm{C}(\omega), V \mathrm{~A} \cap \mathrm{C}(\omega), \mu_{\mathrm{B}} \cap \mathrm{C}(\omega), \nu \mathrm{B} \cap \mathrm{C}(\omega)\right) \text {. }
\end{aligned}
$$

6. $\omega \quad P_{2} \cap Q_{2}$; we know that:

$$
\mu_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{C}}(\omega)<\mu_{\mathrm{B}}(\omega) \text { and } v_{\mathrm{A}}(\omega) \leq v_{\mathrm{C}}(\omega)<\nu_{\mathrm{B}}(\omega)
$$

Then

$$
\begin{array}{ll}
\mu_{\mathrm{A}} \mathrm{c}(\omega)=\mu \mathrm{c}(\omega), & v_{\mathrm{A}} \mathrm{c}(\omega)=\nu \mathrm{A}(\omega), \\
\mu_{\mathrm{A} \cap \mathrm{C}}(\omega)=\mu_{\mathrm{A}}(\omega), & v_{\mathrm{A} \cap \mathrm{c}(\omega)}=\nu \mathrm{c}(\omega), \\
\mu_{\mathrm{B}} \mathrm{c}(\omega)=\mu_{\mathrm{B}}(\omega), & v_{\mathrm{B}} \mathrm{c}(\omega)=v \mathrm{c}(\omega), \\
\mu_{\mathrm{B} \cap \mathrm{c}}(\omega)=\mu \mathrm{c}(\omega), & \left.v_{\mathrm{B} \cap \mathrm{c}(\omega)}\right)=\nu \mathrm{B}(\omega),
\end{array}
$$

and therefore, by IF-loc. 3 and IF-lo c.4,

$$
\begin{aligned}
& h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), \nu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VB}_{\mathrm{B}}(\omega)\right) \\
& \geq h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), \nu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), \nu \mathrm{v}(\omega)\right) \\
& \geq h_{\text {IFS }}\left(\mu_{\mathrm{C}}(\omega), \nu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), v \mathrm{c}(\omega)\right) \\
& =h_{\text {IFS }}\left(\mu_{\mathrm{A}} \mathrm{c}(\omega), V_{\mathrm{A}} \mathrm{C}(\omega), \mu_{\mathrm{B}} \mathrm{c}(\omega) \text {, VB } \quad \mathrm{C}(\omega)\right. \text { ). }
\end{aligned}
$$

As a consequence,

$$
\begin{aligned}
& h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), \nu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), \nu_{\mathrm{B}}(\omega)\right) \\
& \geq h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), \mathrm{vC}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VB}(\omega)\right) \\
& \geq h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), \mathrm{vC}(\omega), \mu_{\mathrm{C}}(\omega), \mathrm{VB}(\omega)\right) \\
& =h \text { IFS }\left(\mu_{\mathrm{A}} \cap \mathrm{C}(\omega), V_{\mathrm{A}} \cap \mathrm{C}(\omega), \mu_{\mathrm{B}} \cap \mathrm{C}(\omega), \mathrm{VB} \cap \mathrm{C}(\omega)\right) \text {. }
\end{aligned}
$$

7. $\omega \quad P_{2} \cap Q_{3}$; we know that:

$$
\mu_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{C}}(\omega)<\mu_{\mathrm{B}}(\omega) \text { and } v_{\mathrm{B}}(\omega) \leq v_{\mathrm{C}}(\omega)<\nu_{\mathrm{A}}(\omega) .
$$

Thus,

$$
\begin{array}{ll}
\mu_{\mathrm{A}} \mathrm{c}(\omega)=\mu \mathrm{c}(\omega), & v_{\mathrm{A}} \mathrm{c}(\omega)=v \mathrm{c}(\omega), \\
\mu_{\mathrm{A} \cap \mathrm{C}}(\omega)=\mu_{\mathrm{A}}(\omega), & v_{\mathrm{A} \cap \mathrm{C}(\omega)}=\nu_{\mathrm{A}}(\omega), \\
\mu_{\mathrm{B}} \mathrm{c}(\omega)=\mu_{\mathrm{B}}(\omega), & v_{\mathrm{B}} \mathrm{c}(\omega)=v_{\mathrm{B}}(\omega), \\
\mu_{\mathrm{B} \cap \mathrm{c}}(\omega)=\mu_{\mathrm{c}}(\omega), & \left.v_{\mathrm{B} \cap \mathrm{c}(\omega)}\right)=v \mathrm{c}(\omega)
\end{array}
$$

whence, applying IF-loc. 3 and IF-lo c.4,

$$
\begin{aligned}
& h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), \mathrm{VA}_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VB}(\omega)\right) \\
& \geq h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), \mathrm{VC}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VB}_{\mathrm{B}}(\omega)\right) \\
& \geq h_{\text {IFS }}\left(\mu_{\mathrm{C}}(\omega), \mathrm{vc}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VB}_{\mathrm{B}}(\omega)\right) \\
& \left.=h \text { IFS }^{( } \mu_{\mathrm{A}} \mathrm{c}(\omega), V_{\mathrm{A}} \mathrm{c}(\omega), \mu_{\mathrm{B}} \mathrm{c}(\omega) \text {, VB } \mathrm{c}(\omega)\right) \text {, }
\end{aligned}
$$

and as aconsequence

$$
\begin{aligned}
& h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), V_{\mathrm{B}}(\omega)\right) \\
& \quad \geq h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), \mathrm{VA}_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega), V_{\mathrm{B}}(\omega)\right) \\
& \quad \geq h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), \mathrm{VA}_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega), \mathrm{VC}^{( }(\omega)\right) \\
& \quad=h \operatorname{lFS}\left(\mu_{\mathrm{A}} \cap \mathrm{C}(\omega), V_{\mathrm{A}} \cap \mathrm{C}(\omega), \mu_{\mathrm{B}} \cap \mathrm{C}(\omega), \mathrm{VB}_{\mathrm{B}} \cap \mathrm{C}(\omega)\right) .
\end{aligned}
$$

8. $\omega \quad P_{2} \cap Q_{4}$; it holds that:

$$
\mu_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{C}}(\omega)<\mu_{\mathrm{B}}(\omega) \text { and } v_{\mathrm{C}}(\omega) \leq v_{\mathrm{A}}(\omega), \mathrm{VB}_{\mathrm{B}}(\omega)
$$

whence

$$
\begin{aligned}
& \mu_{\mathrm{A}} \mathrm{c}(\omega)=\mu \mathrm{c}(\omega), \quad v_{\mathrm{A}} \mathrm{c}(\omega)=v \mathrm{c}(\omega) \text {, } \\
& \mu_{\mathrm{A}} \cap \mathrm{C}(\omega)=\mu_{\mathrm{A}}(\omega), \quad \nu_{\mathrm{A}} \cap \mathrm{C}(\omega)=\nu_{\mathrm{A}}(\omega), \\
& \mu_{\mathrm{B}} \mathrm{c}(\omega)=\mu_{\mathrm{B}}(\omega), \quad \nu_{\mathrm{B}} \mathrm{c}(\omega)=\nu \mathrm{c}(\omega) \text {, } \\
& \mu_{\mathrm{B} \cap \mathrm{C}}(\omega)=\mu \mathrm{C}(\omega), \quad \nu_{\mathrm{B} \cap \mathrm{C}}(\omega)=\nu \mathrm{B}(\omega) .
\end{aligned}
$$

and thus, by IF-lo c.3,

$$
\begin{aligned}
& h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), \nu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VB}_{\mathrm{B}}(\omega)\right) \\
& 0=h \text { ifs }(\mu \mathrm{c}(\omega), \mathrm{vc}(\omega), \mu \mathrm{c}(\omega), \mathrm{vc}(\omega)) \\
& \geq h_{\text {IFS }}\left(\mu \mathrm{C}(\omega), \mathrm{vc}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{LC}(\omega)\right) \\
& =h_{\text {IFS }}\left(\mu_{\mathrm{A}} \mathrm{c}(\omega), v_{\mathrm{A}} \mathrm{C}(\omega), \mu_{\mathrm{B}} \mathrm{c}(\omega) \text {, VB } \quad \mathrm{c}(\omega)\right. \text { ). }
\end{aligned}
$$

In addition,

$$
\begin{aligned}
& h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VB}(\omega)\right) \\
& \quad \geq h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega), V \mathrm{~B}(\omega)\right) \\
& \quad=h \operatorname{lFS}\left(\mu_{\mathrm{A} \cap \mathrm{C}}(\omega), V_{\mathrm{A}} \cap \mathrm{C}(\omega), \mu_{\mathrm{B}} \cap \mathrm{C}(\omega), V_{\mathrm{B}} \cap \mathrm{C}(\omega)\right) .
\end{aligned}
$$

9. $\omega \quad P_{3} \cap Q_{i}$; this case is immediate if we exchange the roles of $A$ and $B$ and apply the case when $\omega \quad P_{2} \cap Q_{i}$.
10. $\omega \quad P_{4} \cap Q_{1}$; in such case

$$
\mu_{\mathrm{C}}(\omega)<\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega) \text { and } \nu_{\mathrm{A}}(\omega), \nu_{\mathrm{B}}(\omega) \leq \nu_{\mathrm{C}}(\omega)
$$

We have that:

$$
\begin{array}{ll}
\mu_{\mathrm{A}} \mathrm{c}(\omega)=\mu_{\mathrm{A}}(\omega), & v_{\mathrm{A}} \mathrm{c}(\omega)=\nu_{\mathrm{A}}(\omega), \\
\mu_{\mathrm{A} \cap \mathrm{c}}(\omega)=\mu \mathrm{c}(\omega), & v_{\mathrm{A} \cap \mathrm{c}(\omega)}=\nu \mathrm{c}(\omega), \\
\mu_{\mathrm{B}} \mathrm{c}(\omega)=\mu_{\mathrm{B}}(\omega), & v_{\mathrm{B}} \mathrm{c}(\omega)=\nu \mathrm{B}(\omega), \\
\mu_{\mathrm{B} \cap \mathrm{c}}(\omega)=\mu \mathrm{c}(\omega), & \left.v_{\mathrm{B} \cap \mathrm{c}(\omega)}\right)=\nu \mathrm{c}(\omega),
\end{array}
$$

whence

$$
h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VB}^{( }(\omega)\right)=h_{\text {IFS }}\left(\mu_{\mathrm{A}} \mathrm{c}(\omega), V_{\mathrm{A}} \mathrm{c}(\omega), \mu_{\mathrm{B}} \mathrm{c}(\omega), V_{\mathrm{B}} \mathrm{c}(\omega)\right),
$$

and moreover, by IF-lo c. 1 ,

$$
\begin{aligned}
& h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), V \mathrm{~B}(\omega)\right) \\
& \quad=0 \geq h_{\text {IFS }}\left(\mu \mathrm{C}(\omega), \mathrm{VC}(\omega), \mu_{\mathrm{C}}(\omega), v \mathrm{c}(\omega)\right) \\
& \quad=h \text { IFS }\left(\mu_{\mathrm{A} \cap \mathrm{C}}(\omega), V \mathrm{~A} \cap \mathrm{C}(\omega), \mu_{\mathrm{B} \cap \mathrm{C}}(\omega), \mathrm{VB}^{2} \cap \mathrm{C}(\omega)\right) .
\end{aligned}
$$

11. $\omega \quad P_{4} \cap Q_{2}$; in such case we know that

$$
\mu_{\mathrm{C}}(\omega)<\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega) \text { and } v_{\mathrm{A}}(\omega) \leq v_{\mathrm{C}}(\omega)<\nu_{\mathrm{B}}(\omega) .
$$

It holds that

$$
\begin{array}{ll}
\mu_{\mathrm{A}} \mathrm{c}(\omega)=\mu_{\mathrm{A}}(\omega), & v_{\mathrm{A}} \mathrm{c}(\omega)=v_{\mathrm{A}}(\omega), \\
\mu_{\mathrm{A} \cap \mathrm{c}}(\omega)=\mu_{\mathrm{c}}(\omega), & v_{\mathrm{A} \cap \mathrm{c}(\omega)}=\nu \mathrm{c}(\omega), \\
\mu_{\mathrm{B}} \mathrm{c}(\omega)=\mu_{\mathrm{B}}(\omega), & v_{\mathrm{B}} \mathrm{c}(\omega)=v \mathrm{c}(\omega), \\
\mu_{\mathrm{B} \cap \mathrm{c}( }(\omega)=\mu_{\mathrm{c}}(\omega), & v_{\mathrm{B} \cap \mathrm{c}(\omega)}=\nu \mathrm{b}(\omega),
\end{array}
$$

whence, applying IF-lo c.4,

$$
\begin{aligned}
& h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), V_{\mathrm{B}}(\omega)\right) \\
& \quad \geq h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), V \mathrm{C}(\omega)\right) \\
& \quad=h_{\text {IFS }}\left(\mu_{\mathrm{A}} \mathrm{c}(\omega), V_{\mathrm{A}} \quad \mathrm{c}(\omega), \mu_{\mathrm{B}} \quad \mathrm{c}(\omega), V_{\mathrm{B}} \mathrm{c}(\omega)\right) .
\end{aligned}
$$

Moreover, applying IF-lo c. 1 and IF-loc.4,

$$
\begin{aligned}
& h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), \nu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VB}_{\mathrm{B}}(\omega)\right) \\
& =0 \geq h_{\text {IFs }}(\mu \mathrm{c}(\omega), \mathrm{vc}(\omega), \mu \mathrm{c}(\omega), \mathrm{vc}(\omega)) \\
& \geq h_{\text {IFs }}(\mu \mathrm{C}(\omega), \mathrm{vc}(\omega), \mu \mathrm{C}(\omega), \mathrm{vB}(\omega)) \\
& =h \text { ifs }\left(\mu_{\mathrm{A}} \cap \mathrm{C}(\omega), V \mathrm{~A} \cap \mathrm{C}(\omega), \mu_{\mathrm{B}} \cap \mathrm{C}(\omega), \mathrm{VB} \cap \mathrm{C}(\omega)\right) \text {. }
\end{aligned}
$$

12. $\omega \quad P_{4} \cap Q_{3}$; this follows from the previous case by exchanging the roles of $A$ and $B$.
13. $\omega \quad P_{4} \cap Q_{4}$; we know that

$$
\mu_{\mathrm{C}}(\omega)<\mu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega) \text { and } v_{\mathrm{C}}(\omega)<\nu_{\mathrm{A}}(\omega), \nu_{\mathrm{B}}(\omega)
$$

whence

$$
\begin{array}{ll}
\mu_{\mathrm{A}} \mathrm{c}(\omega)=\mu_{\mathrm{A}}(\omega), & v_{\mathrm{A}} \mathrm{c}(\omega)=v \mathrm{c}(\omega), \\
\mu_{\mathrm{A} \cap \mathrm{c}}(\omega)=\mu \mathrm{c}(\omega), & v_{\mathrm{A} \cap \mathrm{c}(\omega)}=\nu \mathrm{A}(\omega), \\
\mu_{\mathrm{B}} \mathrm{c}(\omega)=\mu_{\mathrm{B}}(\omega), & v_{\mathrm{B}} \mathrm{c}(\omega)=\nu \mathrm{c}(\omega), \\
\mu_{\mathrm{B} \cap \mathrm{c}(\omega)}(\omega)=\mu \mathrm{c}(\omega), & \left.v_{\mathrm{B} \cap \mathrm{c}(\omega)}\right)=\nu \mathrm{b}(\omega),
\end{array}
$$

and thus by IF-lo c. 5

$$
\begin{aligned}
& h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), v_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), V_{\mathrm{B}}(\omega)\right) \\
& \quad \geq h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), v \mathrm{C}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VC}(\omega)\right) \\
& \quad=h{ }_{\text {IFS }}\left(\mu_{\mathrm{A} \cap \mathrm{C}}(\omega), v_{\mathrm{A}} \cap \mathrm{C}(\omega), \mu_{\mathrm{B}} \cap \mathrm{C}(\omega), \mathrm{VB}_{\mathrm{B}} \cap \mathrm{C}(\omega)\right) .
\end{aligned}
$$

Moreover:

$$
\begin{aligned}
& h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), V \mathrm{~A}(\omega), \mu_{\mathrm{B}}(\omega), V_{\mathrm{B}}(\omega)\right) \\
& \quad \geq h_{\mathrm{IFS}}\left(\mu \mathrm{C}(\omega), V_{\mathrm{A}}(\omega), \mu_{\mathrm{C}}(\omega), V_{\mathrm{B}}(\omega)\right) \\
& \quad=h \text { IFS }\left(\mu_{\mathrm{A}} \cap \mathrm{C}(\omega), V_{\mathrm{A}} \cap \mathrm{C}(\omega), \mu_{\mathrm{B}} \cap \mathrm{C}(\omega), V_{\mathrm{B}} \cap \mathrm{C}(\omega)\right) .
\end{aligned}
$$

```
Hence, since \(\Omega={ }_{i=1}^{4} \quad 4\)
\(h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega), \nu_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VB}^{( }(\omega)\right) \geq\)
    \(\left.\operatorname{maxh} \operatorname{lifs}^{( } \mu_{\mathrm{A}} \mathrm{c}(\omega), \nu_{\mathrm{A}} \mathrm{c}(\omega), \mu_{\mathrm{B}} \mathrm{c}(\omega), \nu_{\mathrm{B}} \mathrm{c}(\omega)\right)\),
    \(h_{\text {IFS }}\left(\mu_{\mathrm{A}} \cap \mathrm{C}(\omega), V_{\mathrm{A}} \cap \mathrm{C}(\omega), \mu_{\mathrm{B}} \cap \mathrm{C}(\omega), V \mathrm{~B} \cap \mathrm{C}(\omega)\right)\).
```

Thus, $D_{\text {IFS }}$ satisfies both IF-Div. 3 and IF-Div.4, and therefore it is an IF-divergence. It only remains to show that $D_{\text {IFS }}$ is lo cal. Butthisholdstrivially, takingintoaccountthat

$$
\begin{aligned}
& D_{\mathrm{IFS}}(A, \underset{n}{B})-D_{\mathrm{IFS}}(A \quad\{\omega\}, B \quad\{\omega\} \text { ) } \\
& =h_{i=1} h_{\text {IFS }}\left(\mu_{\mathrm{A}}\left(\omega_{i}\right), \nu_{\mathrm{A}}\left(\omega_{i}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right), \nu_{\mathrm{B}}\left(\omega_{i}\right)\right) \\
& -\quad h_{\text {IFS }}\left(\mu_{\mathrm{A}}\left(\omega^{j}\right), \nu_{\mathrm{A}}\left(\omega^{\dot{i}}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right), \nu_{\mathrm{B}}\left(\omega^{j}\right)\right)-h_{\text {IFS }}(1,1,0,0) \\
& i=j \\
& =h_{\text {IFS }}\left(\mu_{\mathrm{A}}\left(\omega_{j}\right), \nu_{\mathrm{A}}\left(\omega_{j}\right), \mu_{\mathrm{B}}\left(\omega_{j}\right), \nu_{\mathrm{B}}\left(\omega_{j}\right)\right) \text {. }
\end{aligned}
$$

We conclude that $D_{\text {IFS }}$ is a lo cal IF-divergence.

## Properties of lo cal IF-divergences

In this section we are going to study some prop erties of lo cal IF-divergences. In some cases, the lo cal prop erty will allows us to obtain interesting and useful prop erties.

We $b$ egin by studying under which conditions a lo cal divergence satisfies IF-Div.5.
Prop osition 5.3@et $D_{\text {IFS }}$ be a local IF-divergence which associated functionh ${ }_{\text {IFs }}$. It satisfies IF-Div.5if and only if for every

$$
\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \quad T=\left\{(x, y) \quad[0,1\}^{2} \mid x+y \leq 1\right\}
$$

it holds that

$$
h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=h \text { IFS }\left(x_{2}, x_{1}, y_{2}, y_{1}\right) \text {. }
$$

Pro of Assume that $D_{\text {IFS }}$ satisfiesaxiomIF-Div.5, i.e., thatforevery $A, B$ IF $\operatorname{Ss}(\Omega)$, $D_{\text {IFS }}(A, B)=D \quad \operatorname{IFS}\left(A^{c}, B^{c}\right)$. Consider $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \quad T$, and defi ne the IF-setsf and $B$ by:

$$
A=\left\{\left(\omega, x_{1}, x_{2}\right) \mid \omega \quad \Omega\right\} \text { and } B=\left\{\left(\omega, y_{1}, y_{2}\right) \mid \omega \quad \Omega\right\}
$$

By IF-Div.5,it holdsthat $\quad D_{\mathrm{IFS}}(A, B)=D \quad \operatorname{IFS}\left(A^{c}, B^{c}\right)$. Using Equation(5.4),

$$
n \quad h_{\mathrm{IFS}}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=D \quad \operatorname{IFS}(A, B)=D \quad \operatorname{IFS}\left(A^{c}, B^{c}\right)=n \quad h_{\mathrm{IFS}}\left(x_{2}, x_{1}, y_{2}, y_{1}\right) .
$$

Thus, $h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=h \quad$ IFS $\left(x_{2}, x_{1}, y_{2}, y_{1}\right)$.

Converse lyassume that $h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=h \quad$ IFS $\left(x_{2}, x_{1}, y_{2}, y_{1}\right)$ for everytwo elements $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \quad T$. Let $A$ and $B$ be two IF-sets. Then, forevery $i=1, \ldots, n$ it holds that:

$$
h_{\text {IFS }}\left(\mu_{\mathrm{A}}\left(\omega^{i}\right), \nu_{\mathrm{A}}\left(\omega^{i}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right), \nu_{\mathrm{B}}\left(\omega^{i}\right)\right)=h \quad \mathrm{IFS}\left(\nu_{\mathrm{A}}\left(\omega^{i}\right), \mu_{\mathrm{A}}\left(\omega^{i}\right), \nu_{\mathrm{B}}\left(\omega^{i}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right)\right)
$$

and therefore $D_{\mathrm{IFS}}(A, B)=D \quad \mathrm{IFS}\left(A^{c}, B^{c}\right)$.
Next we give a le mma that shall be useful later.

Lemma 5.31/f $D_{\text {IFS }}$ is a local IF-divergence, then for every $i=1$, .. ., $n$ it holds that

$$
D_{\mathrm{IFS}}(A\{\omega\}, B \quad\{\omega\})=D \quad \operatorname{IFS}\left(A \cap\{\omega\}^{c}, B \cap\{\omega\}^{c}\right) \text {. }
$$

Pro of Considerthe IF-sets $A \cap\{\omega\}^{c}$ and $B \cap\{\omega\}^{c}$. Note that

$$
\left.\begin{array}{ll}
\left(A \cap\{\omega\}^{c}\right) & \{\omega\}=(A
\end{array} \quad\{\omega\}\right) \cap\left(\{\omega\}^{c} \quad\{\omega\}\right)=A \quad\{\omega\} .
$$

Since $D_{\text {IFS }}$ is a lo cal IF-divergence,

$$
\begin{aligned}
& D_{\text {IFS }} A \cap\{\omega\}^{c}, B \cap\{\omega\}^{c}-D_{\text {IFS }}\left(A \cap\{\omega\}^{c}\right)\{\omega\},\left(B \cap\{\omega\}^{c}\right)\{\omega\} \\
& =D \operatorname{IFS}\left(A \cap\{\omega\}^{c}, B \cap\{\omega\}^{c}\right)-D_{\mathrm{IFS}}(A \quad\{\omega\}, B \quad\{\omega\}) \\
& =h \text { IFS }\left(\mu_{\mathrm{A}} \cap\left\{\omega_{i}\right\} \mathrm{c}\left(\omega^{i}\right), \nu \mathrm{A} \cap\left\{\omega_{i}\right\} \mathrm{c}\left(\omega^{i}\right), \mu_{\mathrm{B}} \cap\left\{\omega_{i}\right\} \mathrm{c}\left(\omega^{i}\right), \nu \mathrm{B} \cap\left\{\omega_{i}\right\}^{\circ}\left(\omega^{i}\right)\right) \\
& =h \text { IFS }(0,1,0,1)=0 \text {, }
\end{aligned}
$$

using that

$$
\begin{aligned}
& \mu_{\mathrm{A} \cap\left\{\omega_{i}\right\}^{c}\left(\omega^{i}\right)}=\min \left(\mu_{\mathrm{A}}\left(\omega^{i}\right), 0\right)=0, \\
& v_{\mathrm{A} \cap\left\{\omega_{i}\right\}^{c}\left(\omega^{*}\right)}=\mathrm{m} \operatorname{ax}\left(v_{\mathrm{A}}\left(\omega^{*}\right), 1\right)=1, \\
& \mu_{\mathrm{B} \cap\left\{\omega_{i}\right\}^{c}\left(\omega^{*}\right)}=\min \left(\mu_{\mathrm{B}}\left(\omega_{i}\right), 0\right)=0, \\
& v_{\mathrm{B} \cap\left\{\omega_{i}\right\}^{\mathrm{c}}\left(\omega^{*}\right)}=\max \left(\mu_{\mathrm{B}}\left(\omega^{*}\right), 1\right)=1 .
\end{aligned}
$$

Using this lemma, we can establish the following prop osition.

Prop osition 5.32n IF-divergence $D_{\text {IFS }}$ is local if and only if there is afunction $h$ such that

$$
D_{\mathrm{IFS}}(A, B)-D_{\mathrm{IFS}}\left(A \cap\{\omega\}^{c}, B \cap\{\omega\}^{c}\right)=h\left(\mu_{\mathrm{A}}\left(\omega^{*}\right), \nu_{\mathrm{A}}\left(\omega^{\dot{*}}\right), \mu_{\mathrm{B}}\left(\omega^{*}\right), \nu_{\mathrm{B}}\left(\omega^{\dot{*}}\right)\right)
$$

for every $A, B \quad$ IF $\operatorname{Ss}(\Omega)$.

Pro of It is immediate from the previous lemma.
Let us give another characterization of lo cal IF-divergences.

Prop osition 5．33月n IF－divergence $D_{\text {IFS }}$ is local if and only if for every $X \quad P(\Omega)$ it holds that：

$$
D_{\operatorname{IFS}}(A, B)=D \quad \operatorname{IFS}(A \cap X, B \cap X)+D \quad \operatorname{IFS}\left(A \cap X^{c}, B \cap X^{c}\right),
$$

for every $A, B \quad$ IF $\operatorname{Ss}(\Omega)$ ．
Pro of Assume that $D_{\text {IFS }}$ is a lo cal IF－divergence，and let us consideA，$B$ IF Ss $(\Omega)$ and $X \quad P(\Omega)$ ．

$$
\begin{gathered}
\text { Since } A=(A \cap X) \quad\left(A \cap X^{c}\right) \text { and } B=(B \cap X) \quad\left(B \cap X^{c}\right), \text { it holds that } \\
D_{\mathrm{IFS}}(A, B)=D \quad \operatorname{IFS}\left((A \cap X) \quad\left(A \cap X^{c}\right),(B \cap X) \quad\left(B \cap X^{c}\right)\right) .
\end{gathered}
$$

Taking into account that $D_{\text {IFS }}$ is lo cal，we deduce that：

$$
\begin{aligned}
& D_{\text {IFS }}(A, B)=h_{i=1}\left(\mu_{(\mathrm{A} \cap \mathrm{X})}\left(\mathrm{A} \cap \mathrm{X}^{\mathrm{c}}\right)(\omega i), V(\mathrm{~A} \cap \mathrm{X}) \quad\left(\mathrm{A} \cap \mathrm{X}^{\mathrm{C}}\right)\left(\omega_{i}\right),\right. \\
& \left.\mu_{(B \cap X)} \quad\left(B \cap X^{c}\right)\left(\omega^{j}\right), \nu(B \cap X) \quad\left(B \cap X^{c}\right)\left(\omega^{j}\right)\right) .
\end{aligned}
$$

Moreover，by splitting the sum b etwe en the elements on $X$ and $X^{c}$ ，

$$
\begin{aligned}
& D_{\mathrm{IFS}}(A, B)=\quad h_{\text {IFS }}\left(\mu(\mathrm{A} \cap \mathrm{X}) \quad\left(\mathrm{A} \cap \mathrm{X}^{\mathrm{C}}\right)(\omega), V_{\mathrm{A} \cap \mathrm{X})} \quad\left(\mathrm{A} \cap \mathrm{X}^{\mathrm{C}}\right)(\omega),\right. \\
& \omega X \\
& \left.\left.\mu_{(\mathrm{B} \cap \mathrm{X})} \quad\left(\mathrm{B} \cap \mathrm{X}^{\mathrm{c}}\right)(\omega), \mathrm{YB} \cap \mathrm{X}\right) \quad\left(\mathrm{~B} \cap \mathrm{X}^{\mathrm{c}}\right)(\omega)\right) \\
& +h_{\text {IFS }}\left(\mu_{(\mathrm{A} \cap \mathrm{X})}\left(\mathrm{A} \cap \mathrm{X}^{c}\right)(\omega), V \mathrm{~A} \cap \mathrm{X}\right)\left(\mathrm{A} \cap \mathrm{X}^{c}\right)(\omega) \text {, } \\
& \left.\left.\mu_{(B \cap X)} \quad\left(B \cap X^{c}\right)(\omega), V_{B} \cap X\right)\left(B \cap X^{c}\right)(\omega)\right) .
\end{aligned}
$$

Furthermore：

$$
\begin{aligned}
& \square \mu_{(\mathrm{A} \cap \mathrm{X})}\left(\mathrm{A} \cap \mathrm{X}^{\mathrm{c}}\right)(\omega)=\max \left(\mu_{\mathrm{A}} \cap \mathrm{X}(\omega), \mu_{\mathrm{A}} \cap \mathrm{X}^{\mathrm{c}}(\omega)\right) \\
& \omega x \text { 自 } \quad=\max \left(\mu_{\mathrm{A}} \cap \mathrm{x}(\omega), 0\right)=\mu_{\mathrm{A} \cap \mathrm{n}}(\omega) \text {. } \\
& \text { 目 }{ }^{V_{(A \cap X)}\left(A \cap X^{c}\right)}(\omega)=\min \left(V_{A} \cap X(\omega), V_{A} \cap X^{c}(\omega)\right) \\
& =m \operatorname{in}(\operatorname{A} \cap x(\omega), 1)=V A \cap x(\omega) . \\
& \omega X^{c} \\
& \square \mu_{(\mathrm{A} \cap \mathrm{X})}\left(\mathrm{A} \cap \mathrm{X}^{\mathrm{c}}\right)(\omega)=\max \left(\mu_{\mathrm{A}} \cap \mathrm{X}(\omega), \mu_{\mathrm{A}} \cap \mathrm{X}^{\mathrm{c}}(\omega)\right) \\
& \begin{aligned}
\text { 目 }^{V_{(A \cap X)}\left(A \cap X^{c}\right)(\omega)} & =\min \left(V_{A} \cap x(\omega), V A \cap x^{C}(\omega)\right) \\
& =\min \left(1, V A \cap X^{c}(\omega)\right)=V A \cap X^{c}(\omega) .
\end{aligned}
\end{aligned}
$$

Similarly，

$$
\begin{aligned}
& \omega \quad X \quad \mu_{(\mathrm{B} \cap \mathrm{X})} \quad\left(\mathrm{B} \cap \mathrm{X}^{\mathrm{c}}\right)(\omega)=\mu_{\mathrm{B} \cap \mathrm{X}}(\omega) \text {. } \\
& \nu_{(B \cap X)}\left(B \cap X^{c}\right)(\omega)=\nu B \cap X(\omega) . \\
& \omega \quad X^{c} \quad \mu_{(\mathrm{B} \cap \mathrm{X})} \quad\left(\mathrm{B} \cap \mathrm{X}^{\mathrm{c}}\right)(\omega)=\mu_{\mathrm{B} \cap \mathrm{X}^{\mathrm{c}}}(\omega) \text {. } \\
& \nu_{(B \cap X)} \quad\left(B \cap X^{c}\right)(\omega)=V_{B \cap X^{c}}(\omega) .
\end{aligned}
$$

Thus, the expressionof $D_{\mathrm{IFS}}(A, B)$ becomes

$$
\begin{aligned}
& D_{\mathrm{IFS}}(A, B)=\omega_{\omega x} h_{\text {IFS }}\left(\mu_{\mathrm{A}} \cap \times(\omega), V \mathrm{VA} \cap \mathrm{X}(\omega), \mu_{\mathrm{B}} \cap \times(\omega), V \mathrm{~B} \cap \times(\omega)\right) \\
& +x_{\omega x^{c}} h_{\text {IFS }}\left(\mu_{\mathrm{A}} \cap \mathrm{X}^{\mathrm{c}}(\omega), V_{\mathrm{A}} \cap \mathrm{X}^{\mathrm{c}}(\omega), \mu_{\mathrm{B}} \cap \mathrm{X}^{\mathrm{c}}(\omega), \mathrm{VB}_{\mathrm{B}} \cap \mathrm{X}^{\mathrm{c}}(\omega)\right) \text {. }
\end{aligned}
$$

Taking into account that

$$
\begin{aligned}
& D_{\text {IFS }}(A \cap X, B \cap X)=\quad h_{\text {IFS }}\left(\mu_{\mathrm{A} \cap X}(\omega), V A \cap X(\omega), \mu_{\mathrm{B} \cap \mathrm{X}}(\omega), V B \cap X(\omega)\right) \\
& ={ }_{\omega x} h_{\text {IFS }}\left(\mu_{\mathrm{A} \cap \mathrm{X}}(\omega), V \mathrm{~V} \cap \mathrm{X}(\omega), \mu_{\mathrm{B} \cap \mathrm{X}}(\omega), V \mathrm{VB} \cap(\omega)\right) \\
& +\underset{\omega X^{c}}{ } h_{\text {IFS }}\left(\mu_{\mathrm{A}} \cap \mathrm{X}(\omega), V \mathrm{~A} \cap X(\omega), \mu_{\mathrm{B}} \cap \mathrm{X}(\omega), \mathrm{VB} \cap X(\omega)\right) \\
& =\omega_{\omega x} h_{\text {IFS }}\left(\mu_{\mathrm{A}} \cap x(\omega), V A \cap x(\omega), \mu_{\mathrm{B}} \cap x(\omega), V B \cap x(\omega)\right), \\
& D_{\mathrm{IFS}}\left(A \cap X^{c}, B \cap X^{c}\right)=h_{\omega} h_{\mathrm{IFS}}\left(\mu_{\mathrm{A} \cap \mathrm{X}^{c}}(\omega), V A \cap X^{c}(\omega), \mu_{\mathrm{B} \cap \mathrm{X}^{c}}(\omega), V B \cap X^{c}(\omega)\right) \\
& =h_{\text {IFS }}\left(\mu_{\mathrm{A} \cap \mathrm{X}^{\mathrm{c}}}(\omega), V \mathrm{VA} \cap X^{c}(\omega), \mu_{\mathrm{B} \cap \mathrm{X}^{\mathrm{c}}}(\omega), \mathrm{VB} \cap X^{c}(\omega)\right) \\
& +x_{\omega x^{c}} h_{\text {IFS }}\left(\mu_{\mathrm{A} \cap \mathrm{X}^{\mathrm{c}}}(\omega), V A \cap X^{c}(\omega), \mu_{\mathrm{B}} \cap \mathrm{X}^{\mathrm{c}}(\omega), V B \cap X^{c}(\omega)\right) \\
& ={ }_{\omega x^{c}} h_{\text {IFS }}\left(\mu_{\mathrm{A} \cap \mathrm{X}^{\mathrm{c}}}(\omega), V \mathrm{~A} \cap X^{c}(\omega), \mu_{\mathrm{B}} \cap \mathrm{X}^{\mathrm{c}}(\omega), V B \cap x^{c}(\omega)\right) \text {, }
\end{aligned}
$$

we conclude that

$$
D_{\operatorname{IFS}}(A, B)=D \quad \operatorname{IFS}(A \cap X, B \cap X)+D \quad \operatorname{IFS}\left(A \cap X^{c}, B \cap X^{c}\right)
$$

Convers ely, assume tha $\mathbb{I}_{\mathrm{IFS}}(A, B)=D \quad \operatorname{IFS}(A \cap X, B \cap X)+D \quad \operatorname{IFS}\left(A \cap X^{C}, B \cap X^{C}\right)$ for every $A, B \quad$ IF $\operatorname{Ss}(\Omega)$ and $X \quad \Omega$. Applying this prop erty to the crisp set $X=\left\{\omega_{1}\right\}$,

$$
\begin{aligned}
D_{\mathrm{IFS}}(A, B) & =D \operatorname{IFS}\left(A \cap\left\{\omega_{1}\right\}, B \cap\left\{\omega_{1}\right\}\right)+D \operatorname{IFS}\left(A \cap\left\{\omega_{2}, \ldots, c_{A}\right\}, B \cap\left\{\omega_{2}, \ldots, c_{A}\right\}\right) \\
& =D \operatorname{IFS}\left(A_{1}, B B_{1}\right)+D \operatorname{IFS}\left(A \cap\left\{\omega_{2}, \ldots, c_{A}\right\}, B \cap\left\{\omega_{2}, \ldots, C_{A}\right\}\right),
\end{aligned}
$$

where the IF-sets $A_{1}$ and $B_{1}$ aredefined by

$$
\begin{aligned}
& A_{1}=\left\{\left(\omega_{1}, \mu_{\mathrm{A}}\left(\omega_{1}\right), v_{\mathrm{A}}\left(\omega_{1}\right)\right),\left(\omega_{1}, 0,1\right) \mid i=1\right\} \\
& B_{1}=\left\{\left(\omega_{1}, \mu_{\mathrm{B}}\left(\omega_{1}\right), v_{\mathrm{B}}\left(\omega_{1}\right)\right),\left(\omega_{0}, 0,1\right) \mid i=1\right.
\end{aligned}
$$

Now, apply the hyp othesis to the crisp set $X=\left\{\omega_{2}\right\}$ andthe IF-sets $A \cap\left\{\omega_{2}, \ldots, \omega_{d}\right\}$ and $B \cap\left\{\omega_{2}, \ldots, \omega_{a}\right\}$.

$$
\begin{aligned}
D_{\operatorname{IFS}}\left(A \cap\left\{\omega_{2}, \ldots, \omega_{A}\right\}, B \cap\left\{\omega_{2}, \ldots, \omega_{A}\right\}\right. & =D \operatorname{IFS}\left(A \cap\left\{\omega_{2}\right\}, B \cap\left\{\omega_{2}\right\}\right) \\
& +D \operatorname{IFS}\left(A \cap\left\{\omega_{3}, \ldots, \omega_{A}\right\}, B \cap\left\{\omega_{3}, \ldots, c_{A}\right\}\right) \\
& =D \operatorname{IFS}(A 2, B 2) \\
& +D \operatorname{IFS}\left(A \cap\left\{\omega_{3}, \ldots, \omega_{A}\right\}, B \cap\left\{\omega_{3}, \ldots, c_{A}\right\}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{2}=\left\{\left(\omega_{2}, \mu_{\mathrm{A}}\left(\omega_{2}\right), v_{\mathrm{A}}\left(\omega_{2}\right)\right),\left(\omega_{0}, 0,1\right) \mid i=2\right\}, \\
& B_{2}=\left\{\left(\omega_{2}, \mu_{\mathrm{B}}\left(\omega_{2}\right), v_{\mathrm{B}}\left(\omega_{2}\right)\right),\left(\omega_{2}, 0,1\right) \mid i=2\right\} .
\end{aligned}
$$

If we rep eat the process,for any $j \quad\left\{1, \ldots, n^{-1}\right\}$, given $X=\{\omega\}$ and the IF-sets $A \cap\left\{\omega_{\omega}, \ldots, C_{A}\right\}$ and $B \cap\left\{\omega_{\omega}, \ldots, C_{d}\right\}$, it hol ds that:

$$
\begin{aligned}
D_{\mathrm{IFS}} & \left(A \cap\left\{\omega_{j}, \ldots, \omega_{A}\right\}, B \cap\left\{\omega_{j}, \ldots, C_{A}\right\}\right. \\
= & D \operatorname{IFS}\left(A \cap\left\{\omega_{j}\right\}, B \cap\left\{\omega_{j}\right\}\right)+D \operatorname{IFS}\left(A \cap\left\{\omega_{j+1}, \ldots, C_{A}\right\}, B \cap\left\{\omega_{+1}, \ldots, C_{A}\right\}\right) \\
& =D \operatorname{IFS}(A j, B j)+D \operatorname{IFS}\left(A \cap\left\{\omega_{j+1}, \ldots, C_{A}\right\}, B \cap\left\{\omega_{j+1}, \ldots, C_{A}\right\}\right),
\end{aligned}
$$

where

$$
\left.\begin{array}{l}
A_{j}=\left\{\left(\omega_{j}, \mu_{\mathrm{A}}\left(\omega_{j}\right), v_{\mathrm{A}}\left(\omega_{j}\right)\right),(\omega, 0,1) \mid i=j\right\}, \\
B_{j}=\left\{\left(\omega^{j}, \mu_{\mathrm{B}}\left(\omega^{j}\right), v_{\mathrm{B}}\left(\omega^{j}\right)\right),\left(\omega^{j}, 0,1\right) \mid i=j\right.
\end{array}\right\} .
$$

Then, $D_{\mathrm{IFS}}(A, B)$ can b e express ed by

$$
\begin{aligned}
D_{\mathrm{IFS}}(A, B) & =D \operatorname{IFS}\left(A_{1}, B_{1}\right)+D \operatorname{IFS}\left(A \cap\left\{\omega_{2}, \ldots, C_{A}\right\}, B \cap\left\{\omega_{2}, \ldots, G_{A}\right\}\right) \\
& =D \operatorname{IFS}\left(A_{1}, B 1\right)+D \operatorname{IFS}\left(A_{2}, B 2\right) \\
& +D \operatorname{IFS}\left(A_{n} \cap\left\{\omega_{3}, \ldots, C_{A}\right\}, B \cap\left\{\omega_{3}, \ldots, G_{A}\right\}\right) \\
& =\ldots=D_{i=1} \quad D_{\operatorname{IFS}}\left(A_{i}, B_{i}\right) .
\end{aligned}
$$

Now, consider the difference between $D_{\mathrm{IFS}}(A, B)$ and $D_{\mathrm{IFS}}(A \cap\{\omega\}, B \cap\{\omega\})$ :

$$
D_{\mathrm{IFS}}(A\{\omega\}, B \quad\{\omega\})-D_{\mathrm{IFS}}(A, B)=D \quad \operatorname{IFS}\left(A_{i}\{\omega\}, B_{i} \quad\{\omega\}\right)-D_{\mathrm{IFS}}\left(A_{i}, B_{i}\right) .
$$

 Definition 5.28 weconclude that $D_{\text {IFS }}$ is a lo cal IF-divergence.

A particular caseofinterest isthe comparisonofan IF-setandits complementary. In this sense, it seemsuseful to measure how imprecise an IF-set is. We conside $r$ the following partial order $b$ etwee $n$ IF-sets: given twoIF-sets $A$ and $B$, we saythat $A$ is sharp er than $B$, and denote it $A<B$, when $\left|\mu_{\mathrm{A}}(\omega)-0.5\right| \geq\left|\mu_{\mathrm{B}}(\omega)-0.5\right|$ and $\left|\nu_{\mathrm{A}}(\omega)-0.5\right| \geq\left|\nu_{\mathrm{B}}(\omega)-0.5\right|$ for every $\omega \quad \Omega$.

Using this partial order we can establish the following interesting prop erty.

Prop osition 5.34 $D_{\text {IFS }}$ is alocal IF-divergence and $A \ll B$, then it holds that $D_{\text {IFS }}\left(A, A^{c}\right) \geq D_{\text {IFS }}\left(B, B^{c}\right)$.

Pro of Assume that $A<B$, and let us consider the crisp sets $X$ and $Y$ defined by

$$
\begin{aligned}
& X=\left\{\omega \quad \Omega \mid \mu_{\mathrm{A}}(\omega) \leq 0.5 \text { and } v_{\mathrm{A}}(\omega) \geq 0.5\right\} \text {. } \\
& Y=\left\{\begin{array}{ll}
\omega & \Omega \mid \mu_{\mathrm{B}}(\omega) \leq \nu_{\mathrm{B}}(\omega)
\end{array}\right\} .
\end{aligned}
$$

Applying Prop osition 5.33,

$$
D_{\operatorname{IFS}}\left(A, A^{c}\right)=D \quad \operatorname{IFS}\left(A \cap X, A^{c} \cap X\right)+D \quad \operatorname{IFS}\left(A \cap X^{c}, A^{c} \cap X^{c}\right)
$$

and if we use the same prop osition with $\Phi_{\mathrm{IFS}}\left(A \cap X, A^{c} \cap X\right)$ and $D_{\mathrm{IFS}}\left(A \cap X^{c}, A^{c} \cap X^{c}\right)$, we obtai $n$ that

$$
\begin{aligned}
D_{\mathrm{IFS}}\left(A \cap X, A^{c} \cap X\right) & =D \operatorname{IFS}\left(A \cap X \cap Y, A^{c} \cap X \cap Y\right) \\
& +D \operatorname{IFS}\left(A \cap X \cap Y^{c}, A^{c} \cap X \cap Y^{c}\right), \\
D_{\operatorname{IFS}}\left(A \cap X^{c}, A^{c} \cap X^{c}\right) & =D \operatorname{IFS}\left(A \cap X^{c} \cap Y, A^{c} \cap X^{c} \cap Y\right) \\
& +D \operatorname{IFS}\left(A \cap X^{c} \cap Y^{c}, A^{c} \cap X^{c} \cap Y^{c}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
D_{\mathrm{IFS}}\left(A, A^{c}\right) & =D \operatorname{IFS}\left(A \cap X \cap Y, A^{c} \cap X \cap Y\right) \\
& +D \operatorname{IFS}\left(A \cap X \cap Y^{c}, A^{c} \cap X \cap Y^{c}\right) \\
& +D \operatorname{IFS}\left(A \cap X^{c} \cap Y, A^{c} \cap X^{c} \cap Y\right) \\
& +D \operatorname{IFS}\left(A \cap X^{c} \cap Y^{c}, A^{c} \cap X^{c} \cap Y^{c}\right) .
\end{aligned}
$$

Letus studyeachof the summandsin the right-hand-sideseparately. For the firstone, we have that

$$
\begin{aligned}
& \mu_{\mathrm{A} \cap \mathrm{X} \cap \mathrm{Y}}(\omega)=\begin{array}{ll}
\mu_{\mathrm{A}}(\omega) & \text { if } \mu_{\mathrm{A}}(\omega) \leq 0.5 \leq v_{\mathrm{A}}(\omega) \text { and } \mu_{\mathrm{B}}(\omega) \leq v_{\mathrm{B}}(\omega), \\
0 & \text { otherwise }, \\
v_{\mathrm{A}}(\omega) & \text { if } \mu_{\mathrm{A}}(\omega) \leq 0.5 \leq v_{\mathrm{A}}(\omega) \text { and } \mu_{\mathrm{B}}(\omega) \leq v_{\mathrm{B}}(\omega), \\
1 & \text { otherwise. }
\end{array} .
\end{aligned}
$$

Howe ver, if $\omega \quad X \cap Y$, taking into account that $A \ll B$, it holds that

$$
\mu_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{B}}(\omega) \leq 0.5 \leq v_{\mathrm{B}}(\omega) \leq v_{\mathrm{A}}(\omega)
$$

and therefore,

$$
A \cap X \cap Y \quad B \quad B^{c} \cap X \cap Y \quad A^{c} \cap X \cap Y
$$

Now, applying Lemma 5.5 we obtainthat

$$
D_{\mathrm{IFS}}\left(A \cap X \cap Y, A^{c} \cap X \cap Y\right) \geq D_{\mathrm{IFS}}\left(B \cap X \cap Y, B^{c} \cap X \cap Y\right)
$$

Letus considernext the second term

$$
\begin{aligned}
& \mu_{\mathrm{A} \cap \mathrm{X} \cap \mathrm{Y}}(\omega)=\begin{array}{ll}
\mu_{\mathrm{A}}(\omega) & \text { if } \mu_{\mathrm{A}}(\omega) \leq 0.5 \leq v_{\mathrm{A}}(\omega) \text { and } v_{\mathrm{B}}(\omega) \leq \mu_{\mathrm{B}}(\omega), \\
0 & \text { otherwise, } \\
v_{\mathrm{A}}(\omega) & \text { if } \mu_{\mathrm{A}}(\omega) \leq 0.5 \leq v_{\mathrm{A}}(\omega) \text { and } v_{\mathrm{B}}(\omega) \leq \mu_{\mathrm{B}}(\omega), \\
1 & \text { otherwise, }
\end{array},
\end{aligned}
$$

However, if $\omega \quad X \cap Y^{c}$, since $A \ll B$ itholds that

$$
\mu_{\mathrm{A}}(\omega) \leq v_{\mathrm{B}}(\omega) \leq 0.5 \leq \mu_{\mathrm{B}}(\omega) \leq v_{\mathrm{A}}(\omega)
$$

whence

$$
A \cap X \cap Y^{c} \quad B^{c} \cap X \cap Y^{c} \quad B \cap X \cap Y^{c} \quad A^{c} \cap X \cap Y^{c}
$$

and if we applyLemma 5.5 we obtain that

$$
D_{\mathrm{IFS}}\left(A \cap X \cap Y^{c}, A^{c} \cap X \cap Y^{c}\right) \geq D_{\mathrm{IFS}}\left(B \cap X \cap Y^{c}, B^{c} \cap X \cap Y^{c}\right)
$$

Considernext the third summand

$$
\begin{aligned}
& \mu_{\mathrm{A} \cap \mathrm{X}^{\mathrm{C}} \cap \mathrm{Y}}(\omega)=\begin{array}{ll}
\mu_{\mathrm{A}}(\omega) & \text { if } v_{\mathrm{A}}(\omega) \leq 0.5 \leq \mu_{\mathrm{A}}(\omega) \text { and } \mu_{\mathrm{B}}(\omega) \leq v_{\mathrm{B}}(\omega), \\
0 & \text { otherwise }, \\
v_{\mathrm{A}}(\omega) & \text { if } v_{\mathrm{A}}(\omega) \leq 0.5 \leq \mu_{\mathrm{A}}(\omega) \text { and } \mu_{\mathrm{B}}(\omega) \leq v_{\mathrm{B}}(\omega), \\
1 & \text { otherwise. }
\end{array} .
\end{aligned}
$$

If $\omega \quad X^{c} \cap Y$, since $A \ll B$, it holds that

$$
v_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{B}}(\omega) \leq 0.5 \leq v_{\mathrm{B}}(\omega) \leq \mu_{\mathrm{A}}(\omega)
$$

whence

$$
A^{c} \cap X^{c} \cap Y \quad B \cap X^{c} \cap Y \quad B^{c} \cap X^{c} \cap Y \quad A \cap X^{c} \cap Y
$$

Applying Lemma 5.5 , we obtain that

$$
D_{\mathrm{IFS}}\left(A \cap X^{c} \cap Y, A^{c} \cap X^{c} \cap Y\right) \geq D_{\mathrm{IFS}}\left(B \cap X^{c} \cap Y, B^{c} \cap X^{c} \cap Y\right)
$$

Finally, consider the fourthterm:

$$
\begin{aligned}
& \left.\mu_{\mathrm{A} \cap \mathrm{X}^{\mathrm{c}} \cap \mathrm{Y}^{\mathrm{c}}}(\omega)=\begin{array}{ll}
\mu_{\mathrm{A}}(\omega) & \text { if } v_{\mathrm{A}}(\omega) \leq 0.5 \leq \mu_{\mathrm{A}}(\omega) \text { and } v_{\mathrm{B}}(\omega) \leq \mu_{\mathrm{B}}(\omega), \\
0 & \text { otherwise, } \\
v_{\mathrm{A} \cap \mathrm{X}^{\mathrm{c}} \cap \mathrm{Y}^{\mathrm{c}}}(\omega)=\begin{array}{ll}
v_{\mathrm{A}}(\omega) & \text { if } v_{\mathrm{A}}(\omega) \leq 0.5 \leq \mu_{\mathrm{A}}(\omega) \text { and } v_{\mathrm{B}}(\omega) \leq \mu_{\mathrm{B}}(\omega), \\
1 & \text { otherwise. }
\end{array} .
\end{array} . \begin{array}{l}
\end{array}\right)
\end{aligned}
$$

If $\omega \quad X^{c} \cap Y^{c}$, taking into account that $A \ll B$, it hold $s$ that:

$$
v_{\mathrm{A}}(\omega) \leq v_{\mathrm{B}}(\omega) \leq 0.5 \leq \mu_{\mathrm{B}}(\omega) \leq \mu_{\mathrm{A}}(\omega)
$$

Then, using Lemma 5.5 we obtain that

$$
D_{\mathrm{IFS}}\left(A \cap X^{c} \cap Y^{c}, A^{c} \cap X^{c} \cap Y^{c}\right) \geq D_{\mathrm{IFS}}\left(B \cap X^{c} \cap Y^{c}, B^{c} \cap X^{c} \cap Y^{c}\right)
$$

and therefore

$$
\begin{aligned}
D_{\operatorname{IFS}}\left(A, A^{c}\right) & =D \operatorname{IFS}\left(A \cap X \cap Y, A^{c} \cap X \cap Y\right) \\
& +D \operatorname{IFS}\left(A \cap X \cap Y^{c}, A^{c} \cap X \cap Y^{c}\right) \\
& +D \operatorname{IFS}\left(A \cap X^{c} \cap Y, A^{c} \cap X^{c} \cap Y\right) \\
& +D \operatorname{IFS}\left(A \cap X^{c} \cap Y^{c}, A^{c} \cap X^{c} \cap Y^{c}\right) \\
& \geq D_{\operatorname{IFS}}\left(B \cap X \cap Y, B^{c} \cap X \cap Y\right) \\
& +D \operatorname{IFS}\left(B \cap X \cap Y^{c}, B^{c} \cap X \cap Y^{c}\right) \\
& +D \operatorname{IFS}\left(B \cap X^{c} \cap Y, B^{c} \cap X^{c} \cap Y\right) \\
& +D \operatorname{IFS}\left(B \cap X^{c} \cap Y^{c}, B^{c} \cap X^{c} \cap Y^{c}\right)=D \operatorname{IFS}\left(B, B^{c}\right) .
\end{aligned}
$$

This completes the pro of.
The ab ove result implies that the lower the fuzziness, the greater the divergence between an IF-set and its complementary. Moreover, the divergenc e is maximum when the IF-set iscrisp.

Prop osition 5.35 $V$ and $Z$ are twocrisp sets and $D_{\text {IFs }}$ is a local IF-divergence,

$$
D_{\mathrm{IFS}}\left(V, V^{c}\right)=D \quad \operatorname{IFS}\left(Z, Z^{c}\right)
$$

In addition, if $\quad A, B \quad$ IF $S S(\Omega)$, then $D_{\mathrm{IFS}}(A, B) \leq D_{\mathrm{IFS}}\left(Z, Z^{c}\right)$.

Pro of Note that, by IF-lo c. 2 of Theorem $5.29 h_{\text {IFS }}(1,0,0,1)=h_{\text {IFS }}(0,1,1,0)$ and therefore

$$
D_{\mathrm{IFS}}\left(V, V^{c}\right)=n \quad h_{\mathrm{IFS}}(1,0,0,1)=\operatorname{DFS}\left(Z, Z^{c}\right)
$$

Now, taking intoaccountthat $\quad h_{\text {IFS }}(1,0,0,1) \geq h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$, since by IF-lo c. 3 and IF-lo c.4:

$$
\begin{aligned}
h_{\mathrm{IFS}}(1,0,0, & h_{\mathrm{IFS}}\left(x_{1}, 0,0,1\right) \geq h_{\mathrm{IFS}}\left(x_{1}, x_{2}, 0,1\right) \\
& \geq h_{\mathrm{IFS}}\left(x_{1}, x_{2}, 0, y_{2}\right) \geq h_{\mathrm{FFS}}\left(x_{1}, x_{2}, y_{1}, y_{2}\right),
\end{aligned}
$$

we have that

$$
\begin{aligned}
D_{\mathrm{IFS}}(A, B) & ={ }^{n} h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}\left(\omega^{i}\right), \nu_{\mathrm{A}}\left(\omega^{i}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right), \nu_{\mathrm{B}}\left(\omega^{i}\right)\right) \\
& \leq{ }_{i=1} h_{\mathrm{IFS}}(1,0,0,1)=\operatorname{DFS}\left(Z, Z^{c}\right) .
\end{aligned}
$$

We have seen that every IF-divergence is also an IF-dissimilarity, and therefore it satisfies that $D_{\text {IFS }}(A, C) \geq \max \left(D_{\text {IFS }}(A, B), D_{\text {IFS }}(B, C)\right)$ for every IF-sets $A, B$ and $C$ such that $\begin{array}{llll}A & B & C\end{array}$. In the following proposition we obtain a similar result for lo cal IF-divergences withless restrictive conditions.

Prop osition 5.36et $D_{\text {IFS }}$ be a locallF-divergence. Iffor every $\omega$ either

$$
\mu_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{B}}(\omega) \leq \mu_{\mathrm{C}}(\omega) \text { and } v_{\mathrm{A}}(\omega) \geq v_{\mathrm{B}}(\omega) \geq v_{\mathrm{C}}(\omega),
$$

or

$$
\mu_{\mathrm{A}}(\omega) \geq \mu_{\mathrm{B}}(\omega) \geq \mu_{\mathrm{C}}(\omega) \text { and } v_{\mathrm{A}}(\omega) \leq v_{\mathrm{B}}(\omega) \leq v_{\mathrm{C}}(\omega)
$$

then $D_{\mathrm{IFS}}(A, C) \geq \max \left(D_{\mathrm{IFS}}(A, B), D_{\mathrm{IFS}}(B, C)\right)$

Pro of Since the IF-divergence is local we can apply properties IF-lo c. 3 and IF-lo c.4,
and we obtain the following:

$$
\begin{aligned}
& D_{\text {IFS }}(A, C)=h_{i=1} h_{\text {IFS }}\left(\mu_{\mathrm{A}}(\omega i), \nu \mathrm{A}(\omega i), \mu \mathrm{c}(\omega i), \nu \mathrm{c}(\omega i)\right) \\
& \geq \max h_{i=1} h_{\mathrm{FS}}\left(\mu_{\mathrm{A}}\left(\omega^{i}\right), \nu_{\mathrm{A}}\left(\omega^{i}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right), \nu_{\mathrm{B}}\left(\omega^{i}\right)\right), \\
& i=1 \\
& h_{\text {IFS }}\left(\mu_{\mathrm{B}}\left(\omega^{i}\right), \nu \mathrm{B}\left(\omega^{i}\right), \mu \mathrm{C}\left(\omega^{i}\right), \nu \mathrm{C}\left(\omega^{i}\right)\right) \\
& i=1 \\
& =\max (D \operatorname{IFS}(A, B), D \operatorname{IFS}(B, C)) \text {. }
\end{aligned}
$$

In Prop osition 5.27 we proved that, if $D_{\text {IFS }}$ is an IF-divergence, then $D_{\text {IFS }}^{\varphi}$ is also an IF-divergence, where $D_{\mathrm{IFS}}^{\varphi}(A, B)=\varphi(D \quad \mathrm{IFS}(A, B))$ and $\varphi$ is a increasing function such that $\varphi(0)=0$. In particular, if $D_{\text {IFS }}$ is a lo cal IF-divergence, $D_{\text {IFS }}^{\varphi}$ is lo calif and only if $\varphi$ is linear. Next we derive a similar method to build lo cal IF-divergences from lo cal IF-divergences.

Prop osition 5.37et $D_{\text {IFS }}$ be a local IF-divergence, and let $\varphi$ : $[0, \infty) \rightarrow[0, \infty)$ bea increasing function such that $\varphi(0)=0$. Then, thefunction $D_{\mathrm{IFS}, \varphi}$, defined by

$$
D_{\text {IFS }, \varphi}(A, B)=h_{i=1} \quad \varphi h_{\text {IFS }}\left(\mu_{\mathrm{A}}\left(\omega_{i}\right), \nu_{\mathrm{A}}\left(\omega^{i}\right), \mu_{\mathrm{B}}\left(\omega_{i}\right), \nu_{\mathrm{B}}\left(\omega_{i}\right)\right),
$$

is alocal IF-divergence.
Pro of Immediate using the prop erties of $\varphi$ and taking into account that $h_{\text {IFs }}$ satisfies the prop erties IF-lo c. 1 to IF-loc. 5.

To conclude this section, we relate lo cal IF-divergences and real distances.
Prop osition 5.38onsider a distance $d: R^{\times} R \rightarrow R$ satisfying

$$
\max (d(x, y), d(y, z d(x, z)
$$

for $x<y<z$. Then, foreveryincreasingfunction $\varphi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ such that $\varphi(0,0)=0$, the function $D_{\text {IFS }}: \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IF} \operatorname{Ss}(\Omega) \rightarrow \mathrm{R}$ defined by:

$$
D_{\mathrm{IFS}}(A, B)={ }_{i=1} \varphi\left(d\left(\mu \mathrm{~A}\left(\omega^{i}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right)\right), d\left(\mathrm{LA}\left(\omega^{i}\right), \nu_{\mathrm{B}}\left(\omega^{i}\right)\right)\right)
$$

is alocal IF-divergence.
Pro of UsingTheorem5.42, itsufficesto provethat thefunction

$$
h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\varphi\left(d\left(x_{1}, y_{1}\right), d\left(x_{2}, y_{2}\right)\right)
$$

satisfies the prop erties IF-lo c. 1 to IF-lo c. 5.
IF-loc.1: Consider $(x, y) \quad T=\{(x, y) \quad[0,1] \mid x+y \leq 1\}$. Sinced is a distance, $d(x, x)=d(y, y)=0$, and therefore

$$
h_{\text {IFS }}(x, y, x, y)=\varphi(d(x, x), d(y, y))=\varphi(0,0)=0
$$

IF-lo c.2: Take $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ in $T$. Since $d$ is a distance, $d\left(x_{1}, y_{1}\right)=d\left(y_{1}, x_{1}\right)$ and $d\left(x_{2}, y_{2}\right)=d\left(y_{2}, x_{2}\right)$, whence
$h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\varphi\left(d\left(x_{1}, y_{1}\right), d\left(x_{2}, y_{2}\right)\right)=\varphi\left(d\left(y_{1}, x_{1}\right), d\left(y_{2}, x_{2}\right)\right)=h \quad$ IFS $\left(y_{1}, y_{2}, x_{1}, x_{2}\right)$.
IF-lo c.3: Consider $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \quad T \quad$ and $z \quad[0,1]$ such that $x_{1} \leq z \leq y_{1}$. Applying the hyp othesis on $d$,

$$
d\left(x_{1}, y_{1}\right) \geq \max (d(x, z), d(z, y)
$$

## whence

$$
h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\varphi\left(d\left(x_{1}, y_{1}\right), d\left(x_{2}, y_{2}\right)\right) \geq \varphi\left(d\left(x_{1}, z\right), d\left(x_{1}, y_{2}\right)\right)=h \quad \operatorname{IFS}\left(x_{1}, x_{2}, z, y_{2}\right) .
$$

Moreover, if $\left(x_{2}, z\right),\left(y_{2}, z\right)^{T}$, then $\max \left(x_{2}, y_{2}\right)+z \leq 1$ and it holds that:

$$
h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\varphi\left(d\left(x_{1}, y_{1}\right), d\left(x_{2}, y_{2}\right)\right) \geq \varphi\left(d\left(z, y_{1}\right), d\left(x_{2}, y_{2}\right)\right)=h_{\text {IFS }}\left(z, x_{2}, y_{1}, y_{2}\right)
$$

F-loc.4: Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \quad T$ and $z \quad[0,1]$ such that $x_{2} \leq z \leq y_{2}$. Applying the hyp othesis ond,

$$
d\left(x_{2}, y_{2}\right) \geq \max \left(d\left(x_{2}, z\right), d(z, y 2)\right)
$$

Since $\varphi$ is increasing in each comp onent:

$$
h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\varphi\left(d\left(x_{1}, y_{1}\right), d\left(x_{2}, y_{2}\right)\right) \geq \varphi\left(d\left(x_{1}, y_{1}\right), d\left(x_{2}, z\right)\right)=h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, z\right) .
$$

Moreover, if $\left(x_{1}, z\right),\left(y_{1}, z\right) \quad T$, it hold $s$ that $\max \left(x_{1}, y_{1}\right)+z \leq 1$ and then:

$$
h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\varphi\left(d\left(x_{1}, y_{1}\right), d\left(x_{2}, y_{2}\right)\right) \geq \varphi\left(d\left(x_{1}, y_{1}\right), d(z, y)\right)=h_{\text {IFS }}\left(x_{1}, z, y_{1}, y_{2}\right)
$$

IF-lo c.5: Finally, consider $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \quad T$ and $z \quad[0,1$.$] Applying our hyp oth-$ esis ond, it hold $s$ that:

$$
d(z, z)=0 \leq \min \left(d\left(x_{1}, y_{1}\right), d\left(x_{2}, y_{2}\right)\right) .
$$

Then, if $\left(x_{2}, z\right),(\not x, z) T$, it holds that $\max \left(x_{2}, y_{2}\right)+z \leq 1$, and since $\varphi$ is increasing in each comp onent, it follows that

$$
h_{\text {IFS }}\left(z, x_{2}, z, y_{2}\right)=\varphi\left(d(z, z), d\left(x_{2}, y_{2}\right)\right) \leq \varphi\left(d\left(x_{1}, y_{1}\right), d\left(x_{2}, y_{2}\right)\right)=h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) .
$$

Moreover, if $\left(x_{1}, z\right),\left(x_{2}, z\right) T$, then $\max \left(x_{1}, y_{1}\right)+z \leq 1$, and since $\varphi$ is increasing in each comp onent, it holds that:

$$
h_{\text {IFS }}\left(x_{1}, z, y_{1}, z\right)=\varphi\left(d\left(x_{1}, y_{1}\right), d(z, z)\right) \leq \varphi\left(d\left(x_{1}, y_{1}\right), d\left(x_{2}, y_{2}\right)\right)=h_{\text {IFS }}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) .
$$

Thus, $h_{\text {IFS }}$ satisfies properties IF-lo c. 1 to IF-lo c.5.ApplyingTheorem 5.29, weconclude that $D_{\text {IFS }}$ is a lo cal IF-divergence.

Letus seean example ofan application of this result.
Example 5.39Considerthe distance $d$ defined by $d(x, y)=|x-y|$, and the increasing function $\varphi(x, y)=\frac{x+y}{2 n}$, that satisfies $\varphi(0,0)=0$. Then, wecandefine thefunction $D_{\mathrm{IFS}}: \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IF} \operatorname{Ss}(\Omega) \rightarrow \mathrm{R}^{\text {defined by }}$
$n$

$$
D_{\mathrm{IFS}}(A, B)={ }_{i=1} \varphi d\left(\mu_{\mathrm{A}}\left(\omega^{i}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right)\right), d\left(\mathrm{LA}^{*}\left(\omega^{i}\right), \nu \mathrm{B}\left(\omega^{i}\right)\right.
$$

for every $A, B \quad$ IF $\operatorname{Ss}(\Omega)$ is an IF-divergence. Infact, ifweinputthevaluesof $\varphi$ and d, $D_{\text {IFS }}$ becomes

$$
D_{\mathrm{IFS}}(A, B)=\sum_{i=1}\left|\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)\right|+\left|v_{\mathrm{A}}\left(\omega^{i}\right)-v_{\mathrm{B}}\left(\omega^{i}\right)\right|
$$

i.e., we obtain Hong andKim IF-divergence $D_{C}$ (see 5.1.3).

## Examples of lo cal IF-divergences

In this section we are going to study which of the examples of IF-dive rgen ces oSection 5.1.3 are in particular lo cal IF-divergences.

Let us b egin with the Hamming distance (see Section 5.1.3). Itis definedby:

$$
I_{\mathrm{IFS}}(A, B)=\sum_{i=1}\left|\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)\right|+\left|v_{\mathrm{A}}\left(\omega^{i}\right)-v_{\mathrm{B}}\left(\omega^{i}\right)\right|+\left|\pi_{\mathrm{A}}\left(\omega^{i}\right)-\pi_{\mathrm{B}}\left(\omega^{i}\right)\right|
$$

Consider two IF-sets $A$ and $B$, and an element $\omega \quad \Omega$. Wehave toseethatthe difference $I_{\text {IFS }}(A, B)-I_{\text {IFS }}\left(A \quad\{\omega\}, B \quad\{\omega\}\right.$ ) only dep ends or $\mu_{\mathrm{A}}\left(\omega^{*}\right), \mu_{\mathrm{B}}\left(\omega^{*}\right), \nu_{\mathrm{A}}\left(\omega^{i}\right)$ and $v_{\mathrm{B}}\left(\omega^{i}\right)$. Note that, since $\mu_{\mathrm{A}}\left\{\omega_{i}\right\}\left(\omega^{i}\right)=\mu \quad$ в $\left\{\omega_{i}\right\}\left(\omega_{i}\right)=1 \quad$ and $\nu_{\mathrm{A}}\left\{\omega_{i}\right\}\left(\omega^{i}\right)=\nu \quad$ в $\left\{\omega_{i}\right\}\left(\omega^{i}\right)=0$, $I_{\text {IFS }}(A\{\omega\}, B \quad\{\omega\})$ takes the followingvalue:

$$
\begin{aligned}
& I_{\mathrm{IFS}}(A \quad\{\omega\}, B \quad\{\omega\})= \\
&\left|\mu_{\mathrm{A}}\left(\omega_{j}\right)-\mu_{\mathrm{B}}\left(\omega_{j}\right)\right|+\left|v_{\mathrm{A}}\left(\omega_{j}\right)-v_{\mathrm{B}}\left(\omega_{j}\right)\right|+\left|\pi_{\mathrm{A}}\left(\omega^{j}\right)-\pi_{\mathrm{B}}\left(\omega^{j}\right)\right|
\end{aligned}
$$

whence

$$
\begin{aligned}
& I_{\text {IFS }}(A, B)-I_{\text {IFS }}(A \quad\{\omega\}, B \quad\{\omega\})= \\
& \left|\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)\right|+\left|v_{\mathrm{A}}\left(\omega^{i}\right)-v_{\mathrm{B}}\left(\omega^{i}\right)\right|+\left|\pi_{\mathrm{A}}\left(\omega^{i}\right)-\pi_{\mathrm{B}}\left(\omega^{i}\right)\right|= \\
& h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}\left(\omega^{i}\right), v_{\mathrm{A}}\left(\omega^{i}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right), v_{\mathrm{B}}\left(\omega^{i}\right)\right) .
\end{aligned}
$$

Thus, $I_{\text {IFS }}$ is a lo cal IF-divergence whose asso ciated functid $\prod_{F S}$ is give n by:

$$
h_{\mathrm{IFS}}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|+\left|x_{1}+x_{2}-y_{1}-y_{2}\right| .
$$

Moreover, the normalized Hamming distance, defi ned by $I_{\mathrm{nIFS}}(A, B)={ }_{n}^{1} I_{\mathrm{IFS}}(A, B)$, is also a lo cal IF-divergence. Thereason isthat $I_{\mathrm{nIFS}}(A, B)=\varphi(I \operatorname{IFS}(A, B))$, where $\varphi(x)=\frac{x}{n}$, and we have already mentioned that in that case $I_{\text {nIFs }}$ is lo cal if and only if $\varphi$ is linear.

Let us next study the Hausdorff distance for IF-sets (see Section 5.1.3), which is given by:

$$
d_{\mathrm{H}}(A, B)=\max _{i=1}\left(\left|\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)\right|,\left|v_{\mathrm{A}}\left(\omega^{i}\right), v_{\mathrm{B}}\left(\omega^{i}\right)\right|\right) .
$$

Consider $\omega \quad \Omega$, and let $A$ and $B$ be two IF -setsAs we have done in the previous case, $d_{H}(A \quad\{\omega\}, B \quad\{\omega\})$ is given by

$$
d_{\mathrm{H}}\left(A \quad\left\{\omega_{j}\right\}, B \quad\left\{\omega_{j}\right\}\right)=\max _{j=i}\left(\left|\mu_{\mathrm{A}}\left(\omega_{j}\right)-\mu_{\mathrm{B}}\left(\omega_{j}\right)\right|,\left|v_{\mathrm{A}}\left(\omega_{j}\right), \nu_{\mathrm{B}}\left(\omega_{j}\right)\right|\right),
$$

taking into accountthat $A\{\omega\}$ and $B\{\omega\}$ are given by:

$$
\begin{aligned}
& A \quad\left\{\omega_{\}}\right\}=\left\{\left(\omega_{j}^{j}, \mu_{\mathrm{A}}\left(\omega_{j}^{j}\right), \nu_{\mathrm{A}}\left(\omega_{j}^{j}\right)\right),\left(\omega_{0}, 1,0\right) \mid j=i \quad\right\} . \\
& B \quad\left\{\omega_{j}\right\}=\left\{\left(\omega_{j}^{j}, \mu_{\mathrm{B}}\left(\omega_{j}^{j}\right), v_{\mathrm{B}}\left(\omega_{j}^{j}\right)\right),\left(\omega_{0}, 1,0\right) \mid j=i\right.
\end{aligned}
$$

Hence, $d_{\mathrm{H}}(A, B)-d_{\mathrm{H}}(A \quad\{\omega\}, B \quad\{\omega\})$ isgiven by

$$
d_{\mathrm{H}}(A, B)-d_{\mathrm{H}}(A \quad\{\omega\}, B \quad\{\omega\})=\max \left(\left|\mu_{\mathrm{A}}(\omega i)-\mu_{\mathrm{B}}(\omega i)\right|,\left|v_{\mathrm{A}}(\omega i)-v_{\mathrm{B}}(\omega i)\right|\right) .
$$

Therefore, the Hamming distance for IF-sets is a lo cal IF-divergence, whose asso ciated function $h_{d \mu}$ isgiven by

$$
h_{\mathrm{dH}}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)
$$

The same appliesto the normalized Hausdorffdistance, since it isa linear transformation of the Hau sdorff distance.

Considernow the IF-divergences defined by Hong and Kim, $D_{\mathrm{C}}$ and $D_{\mathrm{L}}$ (see Section 5.1.3), given by

$$
\begin{aligned}
D_{\mathrm{C}}(A, B) & =\frac{1}{2 n}_{i=1}^{n}\left|\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)\right|+\left|v_{\mathrm{A}}\left(\omega^{i}\right)-v_{\mathrm{B}}\left(\omega^{i}\right)\right| . \\
D_{\mathrm{L}}(A, B) & =\frac{1}{4 n}_{i=1}^{n}\left|\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)-v_{\mathrm{A}}\left(\omega^{i}\right)+v_{\mathrm{B}}\left(\omega^{i}\right)\right| \\
& +\left|\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)\right|+\left|v_{\mathrm{A}}\left(\omega^{i}\right)-v_{\mathrm{B}}\left(\omega^{i}\right)\right| .
\end{aligned}
$$

Let us see that b oth IF-divergences are lo cal. Considertwo IF-sets $A$ and $B$ and an element $\omega \quad \Omega$, and let us compute $D_{C}(A \quad\{\omega\}, B \quad\{\omega\})$ and $D_{\mathrm{L}}(A\{\omega\}, B \quad\{\omega\})$.

$$
\begin{aligned}
D_{\mathrm{C}}\left(A\{\omega\}, B \quad\left\{\omega_{j}\right\}\right) & =\frac{1}{2 n}{ }_{j=i}\left|\mu_{\mathrm{A}}\left(\omega_{j}\right)-\mu_{\mathrm{B}}\left(\omega_{j}\right)\right|+\left|v_{\mathrm{A}}\left(\omega_{j}\right)-v_{\mathrm{B}}\left(\omega_{j}\right)\right| . \\
D_{\mathrm{L}}\left(A\left\{\omega_{i}\right\}, B \quad\left\{\omega_{j}\right\}\right) & =\frac{1}{4 n}_{j=i}\left|\mu_{\mathrm{A}}\left(\omega_{j}\right)-\mu_{\mathrm{B}}\left(\omega_{j}\right)-v_{\mathrm{A}}\left(\omega_{j}\right)+v_{\mathrm{B}}\left(\omega_{j}\right)\right| \\
& +\left|\mu_{\mathrm{A}}\left(\omega_{j}\right)-\mu_{\mathrm{B}}\left(\omega_{j}\right)\right|+\left|v_{\mathrm{A}}\left(\omega_{j}\right)-v_{\mathrm{B}}\left(\omega_{j}\right)\right| .
\end{aligned}
$$

Then,

$$
\begin{aligned}
D_{\mathrm{C}}(A, B) & -D_{\mathrm{C}}(A \quad\{\omega\}, B \quad\{\omega\})=\left|\mu_{\mathrm{A}}\left(\omega_{i}\right)-\mu_{\mathrm{B}}\left(\omega_{i}\right)\right|+\left|v_{\mathrm{A}}\left(\omega_{i}\right)-v_{\mathrm{B}}\left(\omega_{i}\right)\right| . \\
D_{\mathrm{L}}(A, B) & -D_{\mathrm{L}}(A\{\omega\}, B \quad\{\omega\}) \\
& =\left|\mu_{\mathrm{A}}(\omega j)-\mu_{\mathrm{B}}(\omega j)-v_{\mathrm{A}}(\omega j)+v \mathrm{~B}(\omega j)\right| \\
& +\left|\mu_{\mathrm{A}}(\omega j)-\mu_{\mathrm{B}}(\omega j)\right|+\left|v_{\mathrm{A}}\left(\omega_{j}\right)-v_{\mathrm{B}}\left(\omega_{j}\right)\right| .
\end{aligned}
$$

Thus, both IF-divergences are local, and their resp ective functions $h_{D_{c}}$ and $h_{D_{L}}$ are:

$$
\begin{aligned}
& h_{\mathrm{Dc}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right| .}^{h_{\mathrm{DL}_{\mathrm{L}}}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left|x_{1}-y_{1}-x_{2}+y_{2}\right|+\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right| .}
\end{aligned}
$$

Insummary, HammingandHausdorff distancesandthe IF-divergencesofHong andKim are lo cal IF-divergencesIt can be checked that the other examples of IF-divergences are not lo cal.

### 5.1.5 IF-divergences Vs Divergences

Some of the studies presented until now in this chapter are inspired in the concept of fuzzy divergence intro duced by Montes et al.([160]).

Definition 5.40 ([160])-et $\Omega$ bean universe. Amap $D: F S(\Omega) \times F S(\Omega) \rightarrow \mathrm{R}$ isa divergence if it satisfies the fol lowing conditions:


```
Div.2: }D(A,B)=D(B,A)\quadfor every A,B\quadFS(\Omega)
Div.3: }D(A\capC,B\capC)\leqD(A,B), for every A,B,C FS(\Omega)
Div.4: D(A C,B C)\leqD(A,B), for every A,B,C FS (\Omega).
```

Montes et all ([160]) also investigated the local prop erty for fuzzy divergences.
Definition5.41 ([160, Def. 3.2] ${ }^{A}$ divergence measure defined ona finite universe is alocal divergence, or it is said to fulfill the local property, if for every $A, B \quad F S(\Omega)$ and every $\omega \quad \Omega$ we have that:

$$
D(A, B)-D(A \quad\{\omega\}, B \quad\{\omega\})=h(A(\omega), B(\omega))
$$

Lo cal fuzzy divergences were characterized as follows.

Theorem 5.42 ([160, Prop. 3.4] ${ }^{\text {Amap }} D: \quad F S(\Omega) \times F S(\Omega) \rightarrow R$ defined ona finite universe $\Omega=\left\{\omega_{1}, \ldots, Q_{a}\right\}$ is alocal divergence if and only if there is a function $h:[0,1]^{\times}[0,1] \rightarrow \mathrm{R}$ such that

$$
D(A, B)={ }_{i=1}^{n} h\left(A(\omega), B\left(\omega_{i}\right)\right)
$$

and

$$
\begin{array}{ll}
\text { loc.1: } & h(x, y)=h(y, x) \text {, for every }(x, y) \quad[0,1]^{2} . \\
\text { loc.2: } & h(x, x)=0 \text { for every } x \quad[0,1 .] \\
\text { loc.3: } & h(x, z) \geq \max (h(x, y), h(y, z \text { 呻 every } x, y, z \quad[0,1] \\
& \text { such that } x<y<z .
\end{array}
$$

In this section we are going to study the relationship b etween dive rgen ces and IFdivergences. We shall provide some metho ds to derive IF-divergences from divergences and vice versa. Moreover, we shall investigate under which conditions the prop erty of b eing lo cal is preserved under these transformations.

## From IF-divergences tofuzzy divergences

Consider an IF-divergence $D_{\text {IFS }}:$ IF $S s(\Omega) \times$ IF $S s(\Omega) \rightarrow R$ definedon a finite universe $\Omega=\left\{\omega_{1}, \ldots, \omega_{A}\right\}$. Recall that every fuzzy set $A$ is in particularan IF-set, whose membership and non-memb ership functions are $\mu_{\mathrm{A}}\left(\omega^{i}\right)=A\left(\omega\right.$ i) and $v_{\mathrm{A}}\left(\omega^{i}\right)=1 \quad-A\left(\omega^{i}\right)$, resp ectively. Hence, if $A$ and $B$ are two fuzz y sets, we can compute its divergen as:

$$
D(A, B)=D \quad \operatorname{IFS}(A, B)
$$

Prop osition 5.4 ${ }^{\boldsymbol{J}} D_{\mathrm{IFS}}$ isanIF-divergence, themap $D: F S(\Omega) \times F S(\Omega) \rightarrow \mathrm{R}$ given by

$$
D(A, B)=D \quad \operatorname{IFS}(A, B)
$$

is a divergence for fuzzy setsMoreover, if $D_{\mathrm{IFS}}$ satisfies axiom IF-D iv.5, thenD satisfies axiom Div.5, and if $D_{\mathrm{IFS}}$ islocal, then so is $D$.

Pro of Let us prove that $D$ is a divergence, i.e., that it satisfie s axioms Diss. 1 to Div. 4 .
Diss.1: Let $A$ be a fuzzy set. Then:

$$
D(A, A)=D \quad \operatorname{IFS}(A, A)=0
$$

Diss.2: Let $A$ and $B$ be two fuzzy sets. Sincetheyare in particular IF-sets, $D_{\mathrm{IFS}}(A, B)=D \quad \operatorname{IFS}(B, A)$, and therefore:

$$
D(A, B)=D \operatorname{IFS}(A, B)=D \quad \operatorname{IFS}(B, A)=D(B, A)
$$

Div.3: Let $A, B$ and $C$ be fuzzy sets. Again, since theyare inparticular IF-sets, it holds that $D_{\mathrm{IFS}}(A \cap C, B \cap C) \leq D_{\mathrm{IFS}}(A, B)$. Then:

$$
D(A \cap C, B \cap C)=D \quad \operatorname{IFS}(A \cap C, B \cap C) \leq D_{\mathrm{IFS}}(A, B)=D(A, B)
$$

Div.4:Similarly to Div.3, consider fuzzy sets $A, B$ and $C$. Since they are in particular IF-sets, theysatisfy $D_{\mathrm{IFS}}\left(\begin{array}{lll}A & C, B & C\end{array}\right) \leq D_{\mathrm{IFS}}(A, B)$, whence
$D\left(\begin{array}{ll}A & C, B\end{array}\right.$
$C)=D \operatorname{IFS}(A$
$C, B$
$C) \leq D_{\mathrm{IFS}}(A, B)=D(A, B)$.

Thus, $D$ isa divergenceforfuzzy sets. Assume nowthat $D_{\text {IFS }}$ satisfiesIF-Div.5, i.e.,

$$
D_{\mathrm{IFS}}(A, B)=D \quad \operatorname{IFS}\left(A^{c}, B^{c}\right) \text { for every } A, B \quad \text { IFS } s(\Omega)
$$

Then, in particular, $D$ satisfiesaxiom Div. 5

$$
D(A, B)=D \quad \operatorname{IFS}(A, B)=D \quad \operatorname{IFS}\left(A^{c}, B^{c}\right)=D\left(A^{c}, B^{c}\right)
$$

for every $A, B \quad F S(\Omega)$. Assu me now that $D_{\text {IFS }}$ is a lo cal IF-divergence.Then:

$$
\begin{aligned}
D(A, B)-D(A\{\omega\}, B \quad\{\omega\} & =D \operatorname{IFS}(A, B)-D_{\mathrm{IFS}}(A \quad\{\omega\}, B \quad\{\omega\}) \\
& =h\left(A(\omega), 1^{-A(\omega), B(\omega), \uparrow B(\omega))=h(A(\omega), B(\omega))}\right.
\end{aligned}
$$

where $h(x, y)=h\left(x, 1^{-x}, y, 1^{-y} y\right)$. Consequently, $D$ is a lo cal divergence between fuzzy sets.

Remark 5.44The function $D$ definedin the previousproposition isin facta composition of some functions:

$$
D: F S(\Omega) \times F S(\Omega) \xrightarrow{i} \operatorname{IFSs}(\Omega) \times I F S s(\Omega) \xrightarrow{D_{\mathbb{I F S}}} \mathrm{R}
$$

where $i(A, B)$ stands for the inclusion of $F S(\Omega) \times F S(\Omega)$ on IF $\operatorname{Ss}(\Omega) \times$ IF $\operatorname{Ss}(\Omega)$.

Remark 5.45IfwelookattheproofofProposition5.43, weseethat, inordertoprove that $D$ satisfiesaxiom Div. i, for $i \quad\{1,2\}$ it is enough for $D_{\mathrm{IFS}}$ tosatisfy axiomIFDiss.i. Moreover, if $D_{\text {IFs }}$ satisfies axiomIF-Div. $j$, for $j\{3,4\}$, then $D$ also satisfies axiom Div. j. In fact, if for instance $D_{\text {IFS }}$ is notan IF-divergence, but it satisfiesIFDiss.1, IF-Diss. 2 andIF-Div.3, we cannot assurethat $D$ is a divergence. However, we know that $D$ satisfies axiomsDiv.1, IF-Div. 2 andIF-Div. 3.

The ab ove method of deriving divergences from IF-divergences seems to be naturallet us show how it can be used in a few examples.

Example 5.46Consider the Hamming distance for IF-set s that we have already studied in Sect ion 5.1.3, given by:

$$
I_{\mathrm{IFS}}(A, B)=\frac{1}{2}_{i=1}^{n}\left(\left|\mu_{\mathrm{A}}\left(\omega_{i}\right)-\mu_{\mathrm{B}}\left(\omega_{i}\right)\right|+\left|v_{\mathrm{A}}\left(\omega_{i}\right)-v_{\mathrm{B}}\left(\omega_{i}\right)\right|+\left|\pi_{\mathrm{A}}\left(\omega_{i}\right)-\pi_{\mathrm{B}}\left(\omega_{i}\right)\right|\right)
$$

If we considerA and B twofuzzy sets, thedivergenceD defined in the previous proposition is:

$$
D_{1}(A, B)=\quad\left|A\left(\omega_{i}\right)-B\left(\omega_{i}\right)\right| .
$$

Recall that the function:

$$
I_{\mathrm{FS}}(A, B)={ }_{i=1}\left|A\left(\omega_{i}\right)-B\left(\omega_{i}\right)\right|, \quad A, B \quad F S(\Omega)
$$

is known as the Hamming distance for fuzzy sets. Then, from the Hamming distance for IF-sets we obtain the Hamming distance for fuzzysets. Moreover, if we consider the normalized Hamming distance for IF-sets, wealso obtain the normalizedHamming distance, defined by $I_{n F S}(A, B)={ }_{n}^{1} I_{\mathrm{FS}}$, for fuzzy sets.

Consider now the Hausdorff dist ance (see Section 5.1.3) for IF-sets:

$$
d_{\mathrm{H}}(A, B)=\max _{i=1}\left(\left|\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)\right|,\left|v_{\mathrm{A}}\left(\omega^{i}\right)-v_{\mathrm{B}}\left(\omega^{i}\right)\right|\right)
$$

Given two fuzzy sets $A$ and $B$, if we apply Proposition 5.43 we obtain the Hamming distance for fuzzy sets:

$$
\begin{aligned}
D_{2}(A, B) & =d_{H}(A, B)=\max _{i=1}^{n}\left(\left|A(\omega)-B\left(\omega_{i}\right)\right|,\left|\left(1-A\left(\omega_{i}\right)\right)-\left(1-B\left(\omega_{i}\right)\right)\right|\right) \\
& ={ }_{i=1}^{n}\left|A(\omega)-B\left(\omega_{i}\right)\right|=\mid \mathrm{FS}(A, B)
\end{aligned}
$$

Moreover, if we consider the normalized Hausdorff dist ance, we obtainthe normalized Hamming dist ance:

$$
\begin{aligned}
D_{3}(A, B) & =d n_{n H}(A, B)=\frac{1}{n}_{i=1}^{n} \max \left(\left|A\left(\omega_{i}\right)-B\left(\omega_{i}\right)\right|,\left|\left(1-A\left(\omega_{i}\right)\right)-\left(1-B\left(\omega_{i}\right)\right)\right|\right) \\
& =\frac{1}{n}_{i=1}^{n}\left|A\left(\omega_{i}\right)-B\left(\omega_{i}\right)\right|=/ \operatorname{nFS}(A, B)
\end{aligned}
$$

Thus, both the Hamming distance andthe Hausdorffdistance forlF-sets producethe same divergence for fuzzy sets.the Hamming dist ance for fuzzy sets.

However, if we consider the IF-divergences of Hong and Kim (see Section 5.1.3), defined by:

$$
\begin{aligned}
D_{\mathrm{C}}(A, B) & =\frac{1}{2 n}_{i=1}^{n}\left(\left|\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)\right|+\left|v_{\mathrm{A}}\left(\omega^{i}\right)-v_{\mathrm{B}}\left(\omega^{i}\right)\right|\right) ; \\
D_{\mathrm{L}}(A, B) & =\frac{1}{4 n}_{i=1}\left|\left(\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)\right)-\left(v_{\mathrm{A}}\left(\omega^{i}\right)-v_{\mathrm{B}}\left(\omega^{i}\right)\right)\right| \\
& +\left|\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)\right|+\left|v_{\mathrm{A}}\left(\omega^{i}\right)-v_{\mathrm{B}}\left(\omega^{i}\right)\right| ;
\end{aligned}
$$

and we apply Proposition 5.43 we obtainalso the normalizedHamming distance:

$$
\begin{aligned}
D_{4}(A, B) & =D c(A, B)=\frac{1}{2 n}_{i=1}^{n}\left(\left|A(\omega)-B\left(\omega_{i}\right)\right|+\left|\left(1-A\left(\omega_{i}\right)\right)-\left(1-B\left(\omega_{i}\right)\right)\right|\right. \\
& =\frac{1}{n}_{i=1}^{n}\left|A\left(\omega_{i}\right)-B\left(\omega_{i}\right)\right|=\mid \operatorname{nFS}(A, B) . \\
D_{5}(A, B) & =D L(A, B)=\frac{1}{4 n}_{i=1}^{n}\left|\left(A(\omega)-B\left(\omega_{i}\right)\right)-\left(1-A\left(\omega_{i}\right)-1+B\left(\omega_{i}\right)\right)\right| \\
& +\left|A\left(\omega_{n}\right)-B\left(\omega_{i}\right)\right|+\left|1-A\left(\omega_{i}\right)-1+B\left(\omega_{i}\right)\right| \\
& =\frac{1}{n}_{i=1}\left|A\left(\omega_{i}\right)-B\left(\omega_{i}\right)\right|=\mid \operatorname{nFS}(A, B) .
\end{aligned}
$$

Thus, bothHammingandHausdorffdistances for IF-setsproducetheHamming distance for fuzzy sets, andthe normalizedHamming andHausdorff distances, and Hongand Kim dissimilarit ies for IF-sets produce the normalized Hamming distance for fuzzy sets. Consequently, all theseIF-divergencescan be seen as generalizations of the Hamming distance forfuzzy sets to the comparisonof IF-sets.

Example 5.47Letus nowconsider thelF-divergencedefined byLi etal. (seepage 283 of Section 5.1.3):

$$
D_{\mathrm{O}}(A, B)=\quad \frac{1}{2 n}{ }_{i=1}^{n}\left(\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)\right)^{2}+\left(v_{\mathrm{A}}\left(\omega^{i}\right)-v_{\mathrm{B}}\left(\omega^{i}\right)\right)^{2}
$$

If we use Proposition 5.43 in order to build a divergencefor fuzzy sets from $D_{0}$, we obtain the normalized Euclidean distance for fuzzy sets:

$$
\begin{aligned}
D(A, B) & =D \circ(A, B)=\quad \frac{1}{2 n}{ }_{i=1}^{n}(A(\omega)-B(\omega i))^{2}+(1-A(\omega i)-1+B(\omega i))^{2}{ }^{\frac{1}{2}} \\
& =V^{\frac{1}{n}}{ }_{i=1}^{n}(A(\omega)-B(\omega i))^{2}=\sqrt{2}=2 \operatorname{coFS}(A, B) .
\end{aligned}
$$

Thus, both thenormalizedEuclideandistanceforIF-sets and Lietal. IF-divergence are generalizations of the normalized Euclideandistance forfuzzy sets.Note however thatthe normalizedEuclidean distance is not an IF-divergence (see Section 5.1.3), even though Li et al.'s dissimilarity is.

Example 5.48Consider now the IF-divergence defined by Mitchell(see Section 5.1.3):

$$
D_{\mathrm{HB}}(A, B)=\frac{\sqrt{1}}{2^{p} \bar{n}}{ }_{i=1}^{n}\left|\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)\right|^{p \stackrel{1}{p}}+{ }_{i=1}^{n}\left|v_{\mathrm{A}}\left(\omega^{i}\right)-v_{\mathrm{B}}\left(\omega^{i}\right)\right|^{p}{ }_{p}^{\frac{1}{p}} .
$$

Applying Proposition 5.43, we obtain the fol lowing divergence for fuzzy sets:

$$
\begin{aligned}
D_{1}(A, B) & =D \text { нв }(A, B)=\frac{1}{2^{p} \bar{n}}{ }_{i=1}^{n}\left|A(\omega)-B\left(\omega_{i}\right)\right|^{p \stackrel{1}{p}} \\
& +{ }_{i=1}^{n}\left|\left(1-A\left(\omega_{i}\right)\right)-\left(1-B\left(\omega_{i}\right)\right)\right|^{p 1^{-p}}={\underset{p}{p} \bar{n}}_{{ }_{i=1}^{1}}^{n}\left|A\left(\omega_{i}\right)-B\left(\omega_{i}\right)\right|^{p} \stackrel{+}{p}
\end{aligned}
$$

If we now consider the IF-Divergence $D_{\mathrm{e}}^{p}$ of Liang and Shi (see Section 5.1.3), defined by:

$$
D_{\mathrm{e}}^{p}(A, B)=\frac{\gamma}{2^{p} \bar{n}}{ }_{i=1}^{n}\left|\mu_{\mathrm{A}}\left(\omega^{\dot{v}}\right)-\mu_{\mathrm{B}}\left(\omega^{\dot{j}}\right)\right|+\left|v_{\mathrm{A}}\left(\omega^{\dot{j}}\right)-v_{\mathrm{B}}\left(\omega^{\dot{j}}\right)\right|^{p \stackrel{1}{p}}
$$

and apply Proposition 5.43, we obtain the fol lowing divergence:

$$
\begin{aligned}
& D_{2}(A, B)=D{ }_{\mathrm{e}}^{p}(A, B) \\
& =\frac{\frac{1}{2^{p} \bar{n}}}{i=1}\left|A(\omega)-B\left(\omega_{i}\right)\right|+\left|\left(1-A\left(\omega_{i}\right)\right)-(1-B(\omega i))\right|^{p \stackrel{1}{p}} \\
& =\stackrel{\downarrow}{p} \frac{1}{n}{ }_{i=1}^{n}\left|A\left(\omega_{i}\right)-B\left(\omega_{i}\right)\right|^{p} \stackrel{\frac{1}{p}}{ } \text {. }
\end{aligned}
$$

Note that $D_{1}(A, B)=D \quad 2(A, B)$. Thus, both $D_{\mathrm{HB}}$ and $D_{\mathrm{e}}^{p}$ producethesame divergence between fuzzy sets, and thereforebothof them can be seen as a generalization of the divergence $D_{1}$.

Although the method prop osed in Prop osition 5.43 seems to be very natural, there is another possible, alb eit less intuitive, way of deriving divergences from IF-d ivergences, thatwe detail next.

Prop osition 5.49he function $D: F S(\Omega) \times F S(\Omega) \rightarrow \mathrm{R}$ defined by

$$
D(A, B)=D \quad \operatorname{IFS}(A, B)
$$

where $D_{\mathrm{IFS}}$ isan IF-divergence, is a divergencefor fuzzysets, where $A$ and $B$ are given by:

$$
\begin{aligned}
& A=\{(\omega, A(\omega), 0) \omega \\
& B=\{(\omega, B(\omega), 0 l) \omega \\
& B
\end{aligned} \quad \text { IFSs }(\Omega) .
$$

However, althoughD $D_{\text {IFS }}$ satisfies IF-Div.5, D may notsatisfy Div.5.
Pro of Letussee that $D$ satisfiesthe divergenceaxioms.
Diss.1: Let $A$ b e a fuzzy se t . Then $A=\{(\omega, A(\omega)$, 0) $\omega \quad \Omega\}$, and therefore, as $D_{\text {IFS }}$ isan IF-divergence,

$$
D(A, A)=D \quad \operatorname{IFS}(A, A)=0
$$

Diss.2: Let $A$ and $B$ be two fuzzy sets. Then

$$
D(A, B)=D \quad \operatorname{IFS}(A, B)=D \quad \operatorname{IFS}(B, A)=D(B, A)
$$

because $D_{\text {IFS }}$ is symmetric.
Div.3: Consider $A, B, C \quad$ IF $S s(\Omega)$. Since $D_{\text {IFS }}$ is anIF-divergence, $D_{\text {IFS }}(A \cap$ $C, B \cap C) \leq D_{\mathrm{IFS}}(A, B)$. Moreover,

$$
\begin{aligned}
& A \cap C=\{(\omega, \min (\mu(\omega), \mu \mathrm{c}(\omega)), d) \omega \\
& B \cap C=\{(\omega, \min (\mu B(\omega), \mu \mathrm{c}(\omega)), 0) \mid \omega \\
& B\}=B \cap C
\end{aligned}
$$

whence

$$
\begin{aligned}
D(A \cap C, B \cap C) & =D \operatorname{IFS}(A \cap C, B \cap C) \\
& =D \operatorname{IFS}(A \cap C, B \cap C) \leq D_{\mathrm{IFS}}(A, B)=D(A, B)
\end{aligned}
$$

Div.4: The pro of is similar to the previous one. Consider three fuzzy sets $A, B$ and $C$. We know that $D_{\mathrm{IFS}}\left(\begin{array}{lll}A & C, B & C\end{array}\right) \leq D_{\mathrm{IFS}}(A, B)$. Moreover,

$$
\begin{array}{llll}
A & C=\{(\omega, \max (\mu(\omega), \mu c(\omega)), 0) \mid \omega & \Omega\}=A & C \\
B & C=\{(\omega, \max (\mu \mathbb{B}(\omega), \mu c(\omega)), d) \omega & \Omega\}=B & C .
\end{array}
$$

Then, axiom Div. 4 is satisfied, because:
$D(A$
C,B
$\begin{array}{rl}C) & =D \operatorname{IFS}(A \\ C, B & C \\ & =D \operatorname{lFs}(A \\ C, B & C\end{array}$
C) $=D \operatorname{IFS}\left(\begin{array}{lll}A & C, B & C\end{array}\right) \leq D_{\mathrm{IFS}}(A, B)=D(A, B)$.

Hence, $D$ is a divergence for fu zzy setsAs sume now that $D_{\text {IFS }}$ satisfiesaxiom IF-Div. 5 and let us show thatin that case $D$ may notsatisfy Div.5. Considera singleton universe $\Omega=\{\omega\}$, and the function $D_{\text {IFS }}: \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IF} \operatorname{Ss}(\Omega) \rightarrow \mathrm{R}$ defined by

$$
\begin{aligned}
D_{\mathrm{IFS}}(A, B) & =\mid \max \left(\mu_{\mathrm{A}}(\omega)^{-0.5,0}\right)^{-} \max \left(\mu_{\mathrm{B}}(\omega)^{-0.5,0}\right) \\
& +\mid \max \left(v_{\mathrm{A}}(\omega)^{-0.5,0}-0 . \max \left(V_{\mathrm{B}}(\omega)^{-0.5,0}\right)^{-0.0}\right.
\end{aligned}
$$

Letus see that $D_{\text {IFS }}$ isan IF-divergence.
IF-Diss.1: Let $A$ be an IF-set. Trivially

$$
\begin{aligned}
& \mid \max \left(\mu_{\mathrm{A}}(\omega)-0.5,0\right) \max \left(\mu_{\mathrm{A}}(\omega)-0.5, \mathrm{~d}\right)=0 \text { and } \\
& \mid \max \left(v_{\mathrm{A}}(\omega)-0.5,0\right) \max \left(v_{\mathrm{A}}(\omega)-0.5, \mathrm{~d}\right)=0,
\end{aligned}
$$

and therefore $D_{\mathrm{IFS}}(A, A)=0$.
IF-Diss.2: Let $A$ and $B$ be two IF-sets. Then it follows from the definition that $D_{\mathrm{IFS}}(A, B)=D \quad \mathrm{IFS}(B, A)$.

IF-Div.3: Let $A, B$ and $C$ be three IF-sets. Wemust prove the following inequality:

$$
\begin{aligned}
& \mid \max \left(\mu_{\mathrm{A}}(\omega)-0.5,0\right) \max \left(\mu_{\mathrm{B}}(\omega)-0.5,0\right)+ \\
& \mid \max \left(v_{\mathrm{A}}(\omega)-0.5,0\right)^{-} \max \left(v_{\mathrm{B}}(\omega)^{-0.5,0) \geq}\right. \\
& \quad \mid \max \left(\mu_{\mathrm{A} \cap \mathrm{C}}(\omega)^{-}-0.5,0\right) \max \left(\mu_{\mathrm{B}} \cap \mathrm{C}(\omega)-0.5,0\right)+ \\
& \quad \mid \max \left(v_{\mathrm{A}} \cap \mathrm{C}(\omega)-0.5,0\right)^{-} \max \left(v_{\mathrm{B}} \cap \mathrm{C}(\omega)^{-0.5,0)} .\right.
\end{aligned}
$$

This follows from Lemma A. 5 in App endix A.
IF-Div.4: Similarly, if $A, B$ and $C$ are three IF -sets, condition IF-Div. 4 holds if and only if:

$$
\begin{aligned}
& \mid \max \left(\mu_{\mathrm{A}}(\omega)-0.5,0\right)-\max \left(\mu_{\mathrm{B}}(\omega)-0.5,0\right)+ \\
& \mid \max \left(v_{\mathrm{A}}(\omega)-0.5,0\right)^{-} \max \left(v_{\mathrm{B}}(\omega)-0.5,0\right) \geq \\
& \quad \mid \max \left(\mu_{\mathrm{A}} \mathrm{c}(\omega)-0.5,0\right) \max \left(\mu_{\mathrm{B}} \mathrm{c}(\omega)-0.5,0\right)+ \\
& \quad \mid \max \left(v_{\mathrm{A}} \mathrm{c}(\omega)-0.5,0\right) \max \left(v_{\mathrm{B}} \mathrm{c}(\omega)^{-}-0.5,0\right),
\end{aligned}
$$

and this follows from Lemma A. 5 in App endix A.
Hence, $D_{\text {IFS }}$ is anIF-divergence. Moreover, it also trivially satisfies axiom IF -Div. 5 .
Consider the divergence derived in this prop osition:
$D(A, B)=D \operatorname{IFS}(\{(\omega, A(\omega)\}, 0\{(\omega, B(\omega)\} 0=1 \max (A(\omega) 0.5,0) \max (B(\omega) 0.5,0)$
Although $D_{\text {IFS }}$ satisfies IF-Div.5, $D$ do es not fulfill Div.5: ifwe considerthefuzzysets $A$ and $B$ given by

$$
\begin{array}{ll}
A=\{(\omega, 0\}\}) & A^{c}=\{(\omega, 0.7\}, \\
B=\{(\omega, 0.4\} & B^{c}=\{(\omega, 0.6\}
\end{array}
$$

then it holds that $D(A, B)=0=0.1=D\left(A^{c}, B^{c}\right)$.
Although this second metho d for deriving divergences from IF-divergences is also valid, for us the first one seems to be more natural; besides, we have sh own that some of the most important examples of divergences can be obtained applying this metho d to the corresp onding IF-divergences.

## From fuzzy divergencestolF-divergences

Consider now adivergence $D: F S(\Omega) \times F S(\Omega) \rightarrow \mathrm{R}$ b etween fuzzy sets defi ne ona finite space $\Omega=\left\{\omega_{1}, \ldots, \omega_{\alpha}\right\}$, and let us studyhow toderivean IF-divergence from it. Consider two IF-sets $A$ and $B$. Each of them can be decomp osed into two fuzzy sets as follows:

$$
\begin{aligned}
& A=\left\{\left(\omega_{i}, \mu_{\mathrm{A}}\left(\omega_{i}\right), \nu \mathrm{A}\left(\omega_{i}\right) \mid i=1, \ldots, n\right\} \quad \text { IF } \operatorname{Ss}(\Omega)\right. \\
& A_{1}=\left\{\left(\omega_{i}, \mu_{\mathrm{A}}\left(\omega^{i}\right) \mid i=1, \ldots, n\right\} \quad F S(\Omega) \quad \text { IFS } s(\Omega)\right. \text {. } \\
& A_{2}=\left\{\left(\omega_{i}, v_{\mathrm{A}}\left(\omega^{i}\right)\right) \mid i=1, \ldots, n\right\} \quad F S(\Omega) \quad \operatorname{lFS}(\Omega) \text {. } \\
& B=\left\{\left(\omega^{i}, \mu_{\mathrm{B}}\left(\omega^{i}\right), \nu_{\mathrm{B}}\left(\omega^{i}\right) \mid i=1, \ldots, n\right\} \quad \text { IF } \operatorname{Ss}(\Omega)\right. \\
& B_{1}=\left\{\left(\omega_{i}, \mu_{\mathrm{B}}\left(\omega^{i}\right) \mid i=1, \ldots, n\right\} \quad F S(\Omega) \quad I F S s(\Omega)\right. \text {. } \\
& B_{2}=\left\{\left(\omega, \nu_{\mathrm{B}}(\omega)\right) \mid i=1, \ldots, n\right\} \quad F S(\Omega) \quad I F S S(\Omega) \text {. }
\end{aligned}
$$

Using the divergence $D$ we can measure the divergence between the pairs of fuzzy sets $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$. In other words, we have the divergence between the memb ership degrees and the non-memb ership degrees; in order to compute the divergence $b$ etwßen and $B$ itonlyremains tocombine thesetwodivergences.

Theorem 5.50Let $D$ beadivergencefor fuzzysets, andlet $f:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ be a mapping satisfying the fol lowing two properties:
f1: $\quad f(0,0)=0$;
f2: $\quad f(, t)$ and $f(t, \quad)$ are increasing for everyt $[0, \infty)$;
then, the function $D_{\text {IFS }}: \operatorname{IF} \operatorname{Ss}(\Omega) \times$ IF $S s(\Omega) \rightarrow \mathrm{R}$ defined by

$$
D_{\mathrm{IFS}}(A, B)=f\left(D\left(A_{1}, B_{1}\right), D\left(A_{2}, B_{2}\right)\right), \text { for every } A, B \quad \text { IFS } s(\Omega)
$$

is an IF-divergence. Moreover, if $D$ is a local divergence,then $D_{\text {IFS }}$ isalso a local IFdivergence iff has theform: $f(x, y)=\alpha x+\beta y$, for some $\alpha, \beta \geq 0$.

Final ly, if $f$ issymmetric then $D_{\text {IFS }}$ fulfil Is axiom IF-Div. 5 (regardless of whether $D$ satisfiesor not axiom Div.5), and if $f$ is not symmetric, then although $D$ satisfies Div.5, $D_{\text {IFS }}$ may notsatisfy IF-Div.5.

Pro of We beginbyshowingthat $D_{\text {IFS }}$ isan IF-divergence.
IF-Diss.1: Let $A$ be an IF-set. Applying the definiti on of $D_{\text {IFS }}$ we obtainthat:

$$
D_{\mathrm{IFS}}(A, A)=f\left(D\left(A_{1}, A_{1}\right), D\left(A_{2}, A_{2}\right)\right)=f(0,0) \stackrel{f 1}{=} 0
$$

IF-Diss.2: Let $A, B$ be IF-sets, and let us prove that $D_{\text {IFS }}(A, B)=D$ IFS $(B, A)$.

$$
\begin{aligned}
D_{\mathrm{IFS}}(A, B) & =f\left(D\left(A_{1}, B_{1}\right), D\left(A_{2}, B_{2}\right)\right) \\
& =f\left(D\left(B_{1}, A_{1}\right), D\left(B_{2}, A_{2}\right)\right)=D \quad \operatorname{IFS}(B, A) .
\end{aligned}
$$

IF-Div.3: Consider the IF-sets $A, B$ and $C$, and let us prove that $D_{\text {IFS }}(A \cap C, B \cap$ $C) \leq D_{\mathrm{IFS}}(A, B)$. Let usnotethe following:

$$
\left.\begin{array}{rlrl}
A \cap C= & \{(\omega, \mu A \cap c(\omega), v A \cap C(\omega) \mid \omega \quad \Omega
\end{array}\right\}
$$

Similarly, we als o obtain that

$$
\begin{aligned}
& (B \cap C)_{1}=\{(\omega, \min (\mu \mathbb{B}(\omega), \mu \mathrm{C}(\omega))) \mid \omega \\
& (B \cap C)_{2}=\{(\omega, \max (\mathbb{B}(\omega), v(\omega))) \mid \omega \\
& (B\} \\
& (B S(\Omega) . \\
& F S(\Omega) .
\end{aligned}
$$

Since $D$ isa divergenceforfuzzy sets,applyingDiv.3weobtainthat:

$$
D\left(A \cap C_{1}, B \cap C_{1}\right)=D\left((A \cap C)_{1,}(B \cap C)_{1}\right) \leq D\left(A_{1}, B_{1}\right),
$$

where $C_{1}=\mu \mathrm{c}$, and ap plying Div.4,

$$
D\left(A \quad C_{2}, B \quad C_{2}\right)=D\left((A \cap C)_{2,}(B \cap C)_{2}\right) \leq D\left(A_{2}, B_{2}\right),
$$

where $C_{2}=v$ c. From these prop erties, $D_{\mathrm{IFS}}(A \cap C, B \cap C) \leq D_{\mathrm{IFS}}(A, B)$

$$
\begin{aligned}
D_{\mathrm{IFS}}(A \cap C, B \cap C) & =f\left(D\left(\left(A^{( } \cap C\right)_{1},(B \cap C)_{1}\right), D\left(\left(\begin{array}{ll}
A & C
\end{array}\right)_{2,},\left(\begin{array}{ll}
B & C
\end{array}\right)\right)\right. \\
& \leq f\left(D\left(A_{1}, B_{1}\right), D\left(A_{2}, B_{2}\right)\right)=D \quad 1 \mathrm{IFS}(A, B) .
\end{aligned}
$$

IF-Div.4: Letus prove that $D_{\text {IFS }}\left(\begin{array}{lll}A & C, B & C\end{array}\right) \leq D_{\mathrm{IFS}}(A, B)$ for every IF-sets $A, B$ and $C$, similarly to the previous point. We havethat

$$
\begin{array}{llll}
A & C_{1}=\{(\omega, \max (\mu(\omega), \mu c(\omega))) \mid \omega & \Omega\} & F S(\Omega), \\
A & C_{2}=\{(\omega, \min (k(\omega), v(\omega))) \mid \omega & \Omega\} & F S(\Omega), \\
B & C_{1}=\{(\omega, \max (\mathbb{R}(\omega), \mu c(\omega))) \mid \omega & \Omega\} & F S(\Omega), \\
B & C_{2}=\{(\omega, \min (\mathbb{L}(\omega), v(\omega))) \mid \omega & \Omega\} & F S(\Omega) .
\end{array}
$$

Applying Div.4,

$$
D\left(A \quad C_{1}, B \quad C_{1}\right) \leq D\left(A_{1}, B_{1}\right)
$$

and Div. 3 imp lies that:

$$
D\left(A \quad C_{2}, B \quad C_{2}\right) \leq D\left(A_{2}, B_{2}\right) .
$$

Using these two inequalitie s, we can prove that $D_{\mathrm{IFS}}\left(\begin{array}{lll}A & C, B & C\end{array}\right) \leq D_{\mathrm{IFS}}(A, B)$

$$
\left.\left.\begin{array}{rlll}
D_{\mathrm{IFS}}(A & C, B & C
\end{array}\right)=f\left(\begin{array}{llll}
A & C_{1}, B & C_{1}
\end{array}\right), D\left(\begin{array}{ll}
A & C_{2}, B \\
& \\
& \\
& C_{2}
\end{array}\right)\right)
$$

Hence, $D_{\text {IFS }}$ isan IF-divergence. Assumenow that $f$ issymmetric, i.e., $f(x, y)=f(y, x)$ for every $(x, y) \quad[0,1]$, then it is immediate that $D_{\text {IFS }}$ satisfiesaxiomIF-Div.5, thatis, $D_{\text {IFS }}(A, B)=D \quad$ IFS $\left(A^{c}, B^{c}\right)$ for every $A, B \quad$ IF $\operatorname{SS}(\Omega)$, since:

$$
D_{\mathrm{IFS}}(A, B)=f\left(D\left(A_{1}, B_{1}\right), D\left(A_{2}, B_{2}\right)\right)=f\left(D\left(A_{2}, B_{2}\right), D\left(A_{1}, B_{1}\right)\right)=D \quad \operatorname{IFS}\left(A^{c}, B^{c}\right)
$$

Howe ver,assume that $f$ is not symmetric, and le t us give an example of divergence $D$ that fulfills axiomDiv.5, such that $D_{\text {IFS }}$ do es not satisfies IF-Div.5. Consider the normalized Hamming divergence for fuzz y sets:

$$
I_{\mathrm{FS}}(A, B)=\frac{1}{n}_{i=1}^{n}|A(\omega)-B(\omega i)|
$$

and let $f$ be given by: $f(x, y)=\alpha x+\beta y \quad$, where $\alpha=\beta \quad$, for example $\alpha=1 \quad$ and $\beta=0$. Then:

$$
D_{\mathrm{IFS}}(A, B)=\frac{1}{n}_{i=1}^{n}\left(\alpha\left|\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)\right|+\beta\left|v_{\mathrm{A}}\left(\omega^{i}\right)-v_{\mathrm{B}}\left(\omega^{i}\right)\right|\right)
$$

is an IF-divergence. Obviously $D$ satisfies axiomDiv.5, but $D_{\text {IFS }}$ do es not satisfy IFDiv.5; to se e this, it suffices to consider the IF-sets

$$
A=\{(\omega, 0.6,0.2) \omega \quad \Omega\} \text { and } B=\{(\omega, 0.5,0.4) \omega \quad \Omega\}
$$

Then it holdsthat

$$
\begin{aligned}
& D_{\mathrm{IFS}}(A, B)={ }_{n}^{\frac{1}{n}}{ }_{i=1}^{n}\left(\begin{array}{lllll}
\alpha & 0.1+\beta & 0.2)=\alpha & 0.1+\beta & 0.2=0.1
\end{array}\right. \\
& D_{\mathrm{IFS}}\left(A^{c}, B^{c}\right)={ }_{n}^{1}{ }_{i=1}^{1}\left(\begin{array}{lllll}
\alpha & 0.2+\beta & 0.1)=\alpha & 0.2+\beta & 0.1=0.2
\end{array}\right.
\end{aligned}
$$

and therefore $D_{\mathrm{IFS}}(A, B)=D \quad \operatorname{IFS}\left(A^{c}, B^{c}\right)$.
Assume now that $D$ is a lo cal divergence, i.e., that there is a function $h$, such that

```
lo c.1: }h(x,y)=h(y,x)\mathrm{ ,for every (x,y) [0, 仵;
```

lo c.2: $h(x, x)=0 \quad$ for every $x \quad[0,1]$
lo c.3: $h(x, z) \geq \max (h(x, y), h(y, z$, ffifor every $x, y, z \quad[0,1]$
such that $x<y<z$;
for which $D$ can be expresse d by:

$$
D(A, B)={ }_{i=1} h(A(\omega), B(\omega i))
$$

Then, $D_{\text {IFS }}$ is given by

$$
D_{\mathrm{IFS}}(A, B)=f \quad{ }_{i=1}^{n} h\left(\mu_{\mathrm{A}}\left(\omega^{i}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right)\right),{ }_{i=1}^{n} h\left(\nu_{\mathrm{A}}\left(\omega^{i}\right), \nu_{\mathrm{B}}\left(\omega^{i}\right)\right)
$$

Let us see that if $f$ is linearthen $D_{\text {IFS }}$ is a lo cal IF-divergence.In such a case, $D_{\text {IFS }}$ has the following form:

$$
D_{\mathrm{IFS}}(A, B)=\quad \alpha h\left(\mu_{\mathrm{A}}\left(\omega^{i}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right)\right)+\beta \quad h\left(\nu_{\mathrm{A}}\left(\omega^{i}\right), \nu_{\mathrm{B}}\left(\omega^{i}\right)\right),
$$

and if we define $h$ by:

$$
h\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=\alpha \quad h\left(x_{1}, x_{2}\right)+\beta \quad h\left(y_{1}, y_{2}\right)
$$

then if suffices to showthat $h$ satisfies prop erties (i)-(iv) to deduce that $D_{\text {IFS }}$ is a lo cal IF-divergence. Letussee thatthisis indeedthecase:

IF-loc.1: Consider $(x, y) \quad[0,1$ 1]. By hyp othesis it holds that $h(x, x)=h(y, y)=0$, and then:

$$
h(x, y, x, y)=\alpha h(x, x)+\beta h(y, y)=0
$$

IF-loc.2: Consider $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ in $T$. Then $h\left(x_{1}, y_{1}\right)=h\left(y_{1}, x_{1}\right)$ and $h\left(x_{2}, y_{2}\right)=h\left(y_{2}, x_{2}\right)$, whence

$$
\begin{aligned}
h\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =\alpha h\left(x_{1}, y_{1}\right)+\beta h\left(x_{2}, y_{2}\right) \\
& =\alpha h\left(y_{1}, x_{1}\right)+\beta h\left(y_{2}, x_{2}\right)=h\left(y_{1}, y_{2}, x_{1}, x_{2}\right) .
\end{aligned}
$$

IF-lo c.3: Take $\operatorname{now}\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \quad T$ and $z \quad[0,1]$ such that $x_{1} \leq z \leq y_{1}$. Then, lo c. 3 implies that:

$$
h\left(x_{1}, y_{1}\right) \geq \max \left(h(x, z), h\left(z, y_{1}\right)\right)
$$

whence

$$
\begin{aligned}
h\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =\alpha \quad h\left(x_{1}, y_{1}\right)+\beta \quad h\left(x_{2}, y_{2}\right) \geq \alpha \max \left(h\left(x_{1}, z\right), h(z, y)\right)+\beta \quad h\left(x_{2}, y_{2}\right) \\
& =\max \left(h\left(x_{1}, x_{2}, z, y_{2}\right), h\left(z, x_{1} y_{1}, y_{2}\right)\right) .
\end{aligned}
$$

In particular, $h\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \geq h\left(x_{1}, x_{2}, z, y_{2}\right)$ and, if $\left(x_{2}, z\right),\left(y_{2}, z\right) T$, then $\max \left(x_{2}+\right.$ $\left.z, y_{2}+z\right) \leq 1$ and $h\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \geq h\left(z, x_{2}, y_{1}, y_{2}\right)$.

IF-loc.4: Consider $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \quad T$ and $z \quad[0,1]$ such that $x_{2} \leq z \leq y_{2}$. Applying prop erty lo c. 3 we see that

$$
h\left(x_{2}, y_{2}\right) \geq \max \left(h\left(x_{2}, z\right), h(z, y)\right)
$$

and therefore

$$
\begin{aligned}
h\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =\alpha h\left(x_{1}, y_{1}\right)+\beta h\left(x_{2}, y_{2}\right) \geq \alpha h\left(x_{1}, y_{1}\right)+\beta \max \left(h\left(x_{2}, z\right), h(z, y)\right) \\
& =\max \left(h\left(x_{1}, x_{2}, y_{1}, z\right), h\left(x_{1}, z, y_{1}, y_{2}\right)\right) .
\end{aligned}
$$

IF-loc.5: Consider $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \quad T$ and $z \quad[0,1$.$] By lo c.1, we knowthat$ $h(z, z)=0$. Then:

$$
\begin{aligned}
h\left(z, x_{2}, z, y_{2}\right) & =\alpha h(z, z)+\beta h\left(x_{2}, y_{2}\right)=\beta h\left(x_{2}, y_{2}\right) \\
& \leq \alpha h\left(x_{1}, y_{1}\right)+\beta h\left(x_{2}, y_{2}\right)=h\left(x_{1}, x_{2}, y_{1}, y_{2}\right) . \\
h\left(x_{1}, z, y_{1}, z\right) & =\alpha h\left(x_{1}, y_{1}\right)+\beta h(z, z)=\alpha h\left(x_{1}, y_{1}\right) \\
& \leq \alpha h\left(x_{1}, y_{1}\right)+\beta h\left(x_{2}, y_{2}\right)=h\left(x_{1}, x_{2}, y_{1}, y_{2}\right) .
\end{aligned}
$$

Thus, $D_{\text {IFS }}$ is a lo cal divergence.
Remark 5.51 In a similar way, it ispossible to prove that, if $D_{1}$ and $D_{2}$ are two divergences for fuzzy sets, and if $f:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ is an increasing function with $f(0,0)=0$, then the function $D_{\text {IFS }}: \operatorname{IF} \operatorname{Ss}(\Omega) \times \operatorname{IF} \operatorname{Ss}(\Omega) \rightarrow \mathrm{R}$ defined by:

$$
D_{\mathrm{IFS}}(A, B)=f\left(D_{1}\left(\mu_{\mathrm{A}}, \mu_{\mathrm{B}}\right), D_{2}\left(v_{\mathrm{A}}, v_{\mathrm{B}}\right)\right)
$$

for every $A, B \quad$ IF $\operatorname{Ss}(\Omega)$, is an IF-divergence.
If in particular we conside $r$ the function $f(x, y)=x$ we obtain the following result.
Corollary 5.52Let $D$ be amap $D: F S(\Omega) \times F S(\Omega) \rightarrow R^{2}$, and consider thefunction $f:[0, \infty) \times\left[0,{ }^{\infty}\right) \rightarrow\left[0,{ }^{\infty}\right)$ given by $f(x, y)=x$. Define $D_{\mathrm{IFS}}: \operatorname{IF} \operatorname{Ss}(\Omega) \times$ IF $S s(\Omega) \rightarrow \mathrm{R}$ by:

$$
D_{\mathrm{IFS}}(A, B)=f\left(D_{\left.\left(A_{1}, B_{1}\right), D\left(A_{2}, B_{2}\right)\right), \text { for every } A, B \quad \text { IFS } s(\Omega) . ~}^{\text {I }}\right.
$$

Then, if $D$ satisfies axiom Div.i (i $\left\{1,2^{\chi}\right.$ ), then $D_{\text {IFS }}$ satisfies axiom IF-Diss.i, and if $D$ satisfies axiomDiv. $j$ ( $j \quad\{3,4\}$ ), $D_{\text {IFs }}$ satisfies axiom IF-v.j. Inparticular, if $D$ is a divergence for fuzzysets, then $D_{\text {IFS }}$ is anIF-divergence. Moreover, if $D$ islocal, then $D_{\text {IFS }}$ isalso a local IF-divergence. However, $D_{\text {IFS }}$ may not satisfy the property IF-D iv. 5 even if $D$ satisfies Div.5.

## Pro of

- Letus assumethat $D$ satisfies Dis s.1Then, $D_{\text {IFS }}$ satisfies IF-Diss .1 since:

$$
D_{\mathrm{IFS}}(A, A)=D\left(A_{1}, A_{1}\right)=0 .
$$

- Letus assumethat $D$ satisfies $D$ is s.2.Then, $D_{\mathrm{IFS}}$ isalso symmetricsince:

$$
D_{\mathrm{IFS}}(A, B)=D\left(\begin{array}{ll}
A_{1}, B_{1}
\end{array}\right)=D\left(B_{1}, A_{1}\right)=D \quad \mathrm{IFS}(B, A) .
$$

- Let us assu me that $D$ satisfies Div.3, and letus see that $D_{\mathrm{IFS}}(A \cap C, B \cap C) \leq$ $D_{\text {IFS }}(A, B)$ for every IF-sets $A, B$ and $C$.

$$
D_{\mathrm{IFS}}(A \cap C, B \cap C)=D\left(A \cap C_{1}, B \cap C_{1}\right) \leq D\left(A_{1}, B_{1}\right)=D \quad \operatorname{IFS}(A, B)
$$

- Finally, assume that $D$ satisfies Div.4. Then also $D_{\text {IFS }}$ satisfies axiom IF-Div.4, since for every $A, B$ and $C$ itholds that:

$$
D_{\mathrm{IFS}}(A \quad C, B \quad C)=D\left(A \quad C_{1}, B \quad C_{1}\right) \leq D\left(A_{1}, B_{1}\right)=D \quad \operatorname{IFS}(A, B) .
$$

Thus, if $D$ is adivergence for fuzzy sets, then $D_{\text {IFS }}$ is also an IF -divergence.Moreover, taking into account theprevious theoremandthat $\quad f$ isa linearfunction, if $D$ is a lo cal divergence, then $D_{\text {IFS }}$ is also a lo callF-divergence. Furthermore, wehaveseen inthat result that asufficient condition for $D_{\text {IFS }}$ tosatisfy IF-Div. 5 isthat $f$ issymmetric, which is not the case for $f(x, y)=x$. Then, wecannot assure $D_{\text {IFS }}$ tosatisfy IF-Div. 5 .

Using the previous resultswecan give some examples of IF-divergences.

Example 5.53Consider thefunction $D: F S(\Omega) \times F S(\Omega) \rightarrow{ }_{R}$ defined by:

$$
D(A, B)={ }_{\omega \Omega} h(A(\omega), B(\omega)),
$$

where $h: \mathrm{R}^{2} \rightarrow \mathrm{R}$ is given by:

$$
h(x, y)=\begin{array}{ll}
0 & \text { if } x=y \\
1-x y & \text { if } x=y
\end{array}
$$

Montes proved that thisfunctionsatisfies Div.1, Div. 2 and Div.3(see[159]). Then, if we apply Theorem 5.50with the function $f(x, y)=x$, we conclude that the function $D_{1}$ satisfies IF-Div.1, IF-Div. 2 and IF-Div. 3.

Similarly, we can consider the function

$$
h(x, y)=\begin{array}{ll}
0 & \text { if } x=y \\
x y & \text { if } x=y
\end{array}
$$

and $D: F S(\Omega) \times F S(\Omega) \rightarrow R$ defined by:

$$
D(A, B)=\operatorname{\omega }_{\Omega} h(A(\omega), B(\omega)) .
$$

Montes et al. ([159]) provedthat D satisfies Div.1, Div.2and Div.4. Then, applying Theorem 5.50 with the funct ion $f(x, y)=x$, we conclude that the function $D_{2}$ they generate sat isfies IF-Diss.1, IF-Diss. 2 and IF-Div. 4.

These two functions $D_{1}$ and $D_{2}$ were usedin Example 5.22, and there we have proved that they are not IF-divergences.

Example 5.54In Equation (5.2), we considereda function $D: F S(\Omega) \times F S(\Omega) \rightarrow R_{R}$ defined on the spaces= $\{\omega\}$ by:

$$
D(A, B)=D \operatorname{IFS}(A, B)=\left|\mu_{\mathrm{A}}(\omega)-\mu_{\mathrm{B}}(\omega)\right|+\left|v_{\mathrm{A}}(\omega)-v_{\mathrm{B}}(\omega)\right|^{2}
$$

The Hamming distance for fuzzy sets, $I_{\text {FS }}$, is knownto bea divergencefor fuzzy sets. Then, applying Theorem 5.50 to this divergence and the fu nction $f(x, y)=x+y{ }^{2}$, we obtainthe function of Equation (5.2), and therefore weconcludethat it is anIFdivergence.

Assume nowthatwe havean IF-divergence $D_{\text {IFS }}$. Using Theorem5.50wecanbuilda divergence $D$ forfuzzy sets. On the othe $r$ hand, Prop osition 5.43 allows us to derive another IF-divergence $D_{\text {IFS }}$. We next investigate under which conditions thes e two IFdivergences coincide.

Remark 5.55Letus consider $D_{\mathrm{IFS}}$ an IF-divergence. Let $D$ bethe divergencedetermined by Proposition 5.43:

$$
D(A, B)=D \operatorname{IFS}(A, B), \text { for every } A, B \quad F S(\Omega)
$$

and let $D_{\text {IFS }}$ be theIF-divergence derived from $D$ by meansof Theorem5.50:

$$
D_{\mathrm{IFS}}(A, B)=f\left(D\left(A_{1}, B_{1}\right), D\left(A_{2}, B_{2}\right)\right), \text { for every } A, B \quad I F S s(\Omega)
$$

Then, $D_{\mathrm{IFS}}=D_{\text {IFS }}$ if andonly if forevery $\quad A, B \quad$ IF $\operatorname{Ss}(\Omega)$ it holds that:

$$
D_{\mathrm{IFS}}(A, B)=f\left(D_{\mathrm{IFS}}\left(A_{1}, B_{1}\right), D_{\mathrm{IFS}}\left(A_{2}, B_{2}\right)\right)
$$

Similarly, let $D$ be a divergence for fuzzy sets. Using Theorem5.50 we canbuild anIFdivergence $D_{\text {IFS }}$, and applying Prop osition 5.43 , from $D_{\text {IFS }}$ we canderive a divergence $D$. Again, wewanttodetermine ifwerecoverourinitial divergence.

Theorem 5.56Let $D$ beadivergenceforfuzzysets, andlet $D_{\text {IFS }}$ be thelF-divergence derived from $D$ by meansof Theorem5.50, given by

$$
D_{\mathrm{IFS}}(A, B)=f\left(D\left(A_{1}, B_{1}\right), D\left(A_{2}, B_{2}\right)\right) \quad A, B \quad I F S S(\Omega) .
$$

Let $D$ be thedivergence derived from $D_{\text {IFS }}$ by meansof Proposition5.43:

$$
D(A, B)=D \quad \operatorname{IFS}(A, B), \text { for every } A, B \quad F S(\Omega)
$$

Then, $D=D \quad$ if andonly if $f(x, y)=x \quad$ for every $(x, y) \quad[0,1\}$.

Pro of Letuscompute theexpressionof $D$ :

$$
\left.D(A, B)=D \quad \operatorname{IFS}(A, B)=f\left(D(A, B), D\left(A^{c}, B^{c}\right)\right)\right)
$$

for every $A, B \quad F S(\Omega)$. Thus, $D(A, B)=D \quad(A, B)$ for every $A, B \quad F S(\Omega)$ if and only if:

$$
D(A, B)=f\left(D(A, B), D\left(A \quad{ }^{c}, B^{c}\right)\right),
$$

and this is equivalentto $f(x, y)=x \quad$ for every $(x, y) \quad[0,1]$.
Let us see how Remark 5.55 and Theorem 5.56 apply to the Hamming distance for fuzzy sets andtheIF-divergence ofHongand Kim.

Example 5.57Let usconsider the Hamming distance forfuzzy sets:

$$
I_{\mathrm{FS}}(A, B)={ }_{i=1}^{n}\left|A\left(\omega_{i}\right)-B(\omega i)\right|, \text { for every } A, B \quad F S(\Omega)
$$

Applying Theorem 5.50, we can build an IF-divergence from $I_{\mathrm{Fs}}$ :

$$
D_{\mathrm{IFS}}(A, B)=f \quad\left|\mu_{\mathrm{A}}\left(\omega_{i}\right)-\mu_{\mathrm{B}}\left(\omega_{i}\right)\right|, v_{i=1}^{n}\left|v_{\mathrm{A}}\left(\omega^{i}\right)-v_{\mathrm{B}}\left(\omega_{i}\right)\right|
$$

andusingProposition5.43, wecanderive from $\quad D_{\mathrm{IFS}}$ another divergenceD for fuzzy sets:

$$
D(A, B)=f \quad\left|A\left(\omega_{i}\right)-B\left(\omega_{i}\right)\right|,\left|A\left(\omega_{i}\right)-B\left(\omega_{i}\right)\right| .
$$

Then, $D(A, B)=I \quad \mathrm{FS}(A, B)$ if and only if $f(x, x)=x$. In particular $D$ and $I_{F S}$ are the same divergence iff $(x, y)=\begin{gathered}x+y \\ 2\end{gathered}$.

Consider now the IF-divergence $D_{\mathrm{C}}$ defined byHong and Kimin Section5.1.3:

$$
D_{\mathrm{C}}(A, B)=\frac{1}{2}_{i=1}^{n}\left|\mu_{\mathrm{A}}\left(\omega^{i}\right)-\mu_{\mathrm{B}}\left(\omega^{i}\right)\right|+\left|v_{\mathrm{A}}\left(\omega^{i}\right)-v_{\mathrm{B}}\left(\omega^{i}\right)\right|
$$

Using Proposition 5.43 we can build a divergence forfuzzy sets:

$$
D(A, B)=D \operatorname{IFS}(A, B)=\prod_{i=1}^{n}\left|A\left(\omega^{i}\right)-B\left(\omega_{i}\right)\right|=/ \mathrm{FS}(A, B) .
$$

If we now apply Theorem 5.50, we can build other IF-divergence given by:

$$
\begin{aligned}
D_{\mathrm{IFS}}(A, B) & =f\left(D_{n}^{\left.\left(A_{1}, B_{1}\right), D\left(A_{2}, B_{2}\right)\right)}{ }_{n}^{n}\right. \\
& =f \quad{ }_{i=1}\left|\mu_{\mathrm{A}}\left(\omega_{i}\right)-\mu_{\mathrm{B}}\left(\omega_{i}\right)\right|, v_{\mathrm{A}}\left(\omega_{i}\right)-v_{\mathrm{B}}\left(\omega_{i}\right) \mid
\end{aligned}
$$

Thus, we conclude that $D_{\mathrm{IFS}}(A, B)=D \quad \mathrm{c}(A, B)$ if and only if $f(x, y)=\frac{x+y}{2}$.

Corollary 5.58Let $D$ be a divergence forfuzzy sets. Then, thediagram:

commutes if and only if $f(x, y)=x$ and

$$
D_{\mathrm{IFS}}(A, B)=D\left(A_{1}, B_{1}\right), \text { for every } A, B \quad \text { IFS } s(\Omega) \text {. }
$$

Pro of Ontheone hand, fromTheorem5.56weknow that $f(x, y)=x$. Moreover, from Remark 5.55 the following equation must hold:

$$
\begin{aligned}
D_{\mathrm{IFS}}(A, B) & =f\left(D \operatorname{IFS}\left(A_{1}, B_{1}\right), D \operatorname{IFS}\left(A_{2}, B_{2}\right)\right)=D \operatorname{IFS}\left(A_{1}, B_{1}\right) \\
& =f\left(D\left(A_{1}, B_{1}\right), D\left(A_{2}, B_{2}\right)\right)=D\left(A_{1}, B_{1}\right) .
\end{aligned}
$$

Thus, for every $A, B \quad$ IF $\operatorname{Ss}(\Omega)$ it mu st hold that:

$$
D_{\mathrm{IFS}}(A, B)=D\left(A_{1}, B_{1}\right) .
$$

### 5.2 Connecting IVF-sets andimprecise probabilities

This section is devoted to investigate the relationship between IF-sets and Imprecise Probabilities. In fuzzysettheory, it iswellknown([217])thatthere existsaconnection b etween fuzzy sets and p ossibility measurebnfact, given a normalizedfuzzyset $\mu_{\mathrm{A}}$, it defines a p ossibility distribution with asso ciated $p$ ossibility measur巴 defined by:

$$
\Pi(B)=\sup _{x} \mu_{\mathrm{A}}(x) .
$$

Convers elygiven a possibility measure $\Pi$ with asso ciated p ossibility distribution $\pi$, it defines a fuzzy set with memb ership function $\pi$.

In this section, we shall assume first of all that the IVF -s ets are defined ona probability space. Thus, any IVF-set definesa random set, andthen the probabilistic information of the IVF-set can be su mmarized by means of the set of distributi ons of the measurable selections. Inthis framework, we investigate in wh ich situations the probabilistic information can be equivalently represented by the set of probabilities that dominate the lower probability induc ed by the random interval, and the conditions under which the upp er probability induced by the random interval is a p ossibility measure.

Afterwards, we shall investigate other $p$ ossib le relationships $b$ etween IVF-sets and imprecise probabilities. For instance, we shall se e that the definition of probability for IVF-set given byGrzegorzewski and Mrowka ([86]) becomes a particular case in our theory. We also investigate how a one-to-one relation could be defined between IVF-sets, p-b oxes and clouds.

### 5.2.1 Probabilistic information of IVF-sets

In this section we shall assume that IVF-se ts are defined on a probability space. Then, they define random sets. We investigate how the probabilistic information ofa IVF-set can be summarized by means of Imprecise Probabilities.

Since formally IVF-sets and IF-setsare equivalent, aswe sawin Section2.3, we shall denote IVF-sets by:

$$
\left\{\left[\mu_{\mathrm{A}}(\omega), 1-v_{\mathrm{A}}(\omega)\right]: \omega \quad \Omega\right\}
$$

where $\mu_{\mathrm{A}}$ and $v_{\mathrm{A}}$ refer the membership and non-memb ership degree ofthe asso ciated IF-set.

## IVFS as random intervals

As we mentioned in Section 2.3, an IVF-set can be regarded as a mo del for the imprecise knowledge ab out the membership function of a fuzzy set in the sense that for ever $y \omega$ in the possibility space $\Omega$, its memb ership degree belongs to the interv ${ }^{\prime} \mu_{\mathrm{A}}(\omega), 1^{-} v_{\mathrm{A}}(\omega)$ ] Hence, we canequivalently represent thelVF-set $I_{A}$ by meansof a multi-valued mapping $\Gamma_{\mathrm{A}}: \Omega \rightarrow P([0,1])$ where

$$
\begin{equation*}
\Gamma_{\mathrm{A}}(\omega):=\left[\mu_{\mathrm{A}}(\omega), 1-v_{\mathrm{A}}(\omega)\right] \tag{5.5}
\end{equation*}
$$

If the intuitionistic fuzzy set isdefined on aprobability space $\quad(\Omega, A, P)$, then theprobabilistic information enco ded by the multi-valued mapping $\Gamma_{A}$ can be summarized by means of its lower and upp er probabilities $P_{\Gamma_{A}}, P_{\Gamma_{A}}$. Recallthat, fromEquation(2.22), for any subset $B$ inthe Borel $\sigma_{\text {-field }} \beta_{[0,1]}$, its lower and upp er probabilities are given by

$$
P_{\Gamma_{A}}(B):=P\left(\left\{\omega: \Gamma_{\mathrm{A}}(\omega) \quad B\right\}\right)
$$

and

$$
P_{\Gamma_{\mathrm{A}}}(B):=P\left(\left\{\omega: \Gamma_{\mathrm{A}}(\omega) \cap B=\quad\right\}\right)
$$

We need to make two clarifications here: the firstone isthatthe imagesof themultivalued mapping $\Gamma_{\mathrm{A}}$ are non-empty, as a consequence ofthe restriction $\mu_{\mathrm{A}} \leq 1-v_{\mathrm{A}}$ in the definition of IVF-sets; thesecond isthat, in order to $b$ e able to define the lower and upp er probabilities $P_{\Gamma_{A}}, P_{\Gamma_{A}}$, the multi-valued mapping $\Gamma_{\mathrm{A}}$ needs to be strongly measurable ([88]), which in this cas e ([129]) means that the mappings

$$
\mu_{\mathrm{A}}, v_{\mathrm{A}}: \Omega \rightarrow[0,1]
$$

must be $A-\beta_{[0,1]}{ }^{-}$measurable.

If we assume that the 'true' memb ership function imprecisely sp ecified by means of the IVF-set is $A-\beta_{[0,1]}$ - measurable, the n it must b elong to the set of measurable selections of $\Gamma_{\text {A (seeEquation (2.21)): }}$

$$
S\left(\Gamma_{\mathrm{A}}\right):=\left\{\varphi: \Omega \rightarrow\left[0,1 \text { measurable: } \varphi(\omega) \quad\left[\mu_{\mathrm{A}}(\omega), 1-v_{\mathrm{A}}(\omega)\right] \omega \quad \Omega\right\}\right.
$$

and as a consequence the probability measure it induces will belong to the set

$$
P\left(\Gamma_{\mathrm{A}}\right):=\left\{P_{\varphi}: \varphi \quad S\left(\Gamma_{\mathrm{A}}\right)\right\}
$$

Any probability measure in $P\left(\Gamma_{\mathrm{A}}\right)$ is bounded by the upp er probability $P_{\Gamma_{A}}$, andasa consequence the $\operatorname{setP}\left(\Gamma_{\mathrm{A}}\right)$ isincluded inthe set $M\left(P_{\Gamma_{\mathrm{A}}}\right)$ of probability measures that are dominated by $P_{\Gamma A}$. As we have seen in Section 2.2.4, both sets are not equivalent in general; however, Prop osition 2.45 shows severalsituationsin which theycoincide. Taking this result into account, we can establish the following conditions forthe equality between the credal sets generated by an IVF-set.

Corollary 5.59 Considerthe initial space $\left([0,1], \beta_{[0,1]}, \lambda_{[0,1])}\right.$ and $\Gamma_{A}:[0,1] \rightarrow P([0,1])$ defined as in Equation (5.5). Then, the equality $M\left(P_{\Gamma_{A}}\right)=P\left(\Gamma_{\mathrm{A}}\right)$ holdsunder anyof the fol lowing conditions:
(a) The membershipfunction $\mu_{\mathrm{A}}$ is increasing and the non-membershipfunction $v_{\mathrm{A}}$ is decreasing.
(b) $\mu_{\mathrm{A}}(\omega)=0$ for any $\omega \Omega$.
(c) For any $\omega, \omega \quad \Omega$, either $\Gamma_{\mathrm{A}}(\omega) \leq \Gamma_{\mathrm{A}}(\omega)$ or $\Gamma_{\mathrm{A}}(\omega) \geq \Gamma_{\mathrm{A}}(\omega)$, where $\left[a_{1}, b_{1}\right] \leq$ $\left[a_{2}, b_{2}\right]$ if $a_{1} \leq a_{2}$ and $b_{1} \leq b_{2}$.

The previous conditions can be interpreted as follow s:
(a) Thegreater thevalue of $\omega$, the more evidence supp orts that $\omega$ belongs to $A$.
(b) There is no evidence supp orting that the elements b elong to $\operatorname{set} A$.
(c) The intervals asso ciated with the elements are ordered. In particular, this holds whenthe hesitationis constant.

## Pro of

(a) Condition (3a) of Prop osition 2.45 assures that $M\left(P_{\Gamma_{\mathrm{A}}}\right)$ and $P\left(\Gamma_{\mathrm{A}}\right)$ coincide whenever the bounds of the random interval are increasing. Inthe particularcaseof IVF-set, this means that both $\mu_{\mathrm{A}}$ and $1-v_{\mathrm{A}}$ areincreasing, orequivalently, that $\mu_{\mathrm{A}}$ isincreasing and $v_{\mathrm{A}}$ is decreasing.
(b) Condition (3b) of Prop osition 2.45 assures that $M\left(P_{\Gamma_{\mathrm{A}}}\right)$ and $P\left(\Gamma_{\mathrm{A}}\right)$ coincide if the lower bound of the interval equals 0 . In the caseof IVF-sets, thismeans that $\mu_{\mathrm{A}}=0$.
(c) Condition (3c) of Prop osition 2.45 assures that $M\left(P_{\Gamma_{\mathrm{A}}}\right)$ and $P\left(\Gamma_{\mathrm{A}}\right)$ coincide ifthe bounds of the interval are strictly comonotone. In the case of IVF-sets, the bounds of the interval, $\mu_{\mathrm{A}}$ and $1-v_{\mathrm{A}}$, are comonotone if an d only if $\Gamma_{\mathrm{A}}(\omega) \geq \Gamma_{\mathrm{A}}(\omega)$ or $\Gamma_{\mathrm{A}}(\omega) \leq \Gamma_{\mathrm{A}}(\omega)$ for any $\omega, \omega$ : assume that $\mu_{\mathrm{A}}$ and $1-v_{\mathrm{A}}$ are comonotone, then $\mu_{\mathrm{A}}(\omega) \geq \mu_{\mathrm{A}}(\omega)$ if and only if $1-v_{\mathrm{A}}(\omega) \geq 1-v_{\mathrm{A}}(\omega)$ for every $\omega, \omega$. Thus:

- If $\mu_{\mathrm{A}}(\omega)>\mu_{\mathrm{A}}(\omega)$, then $1-v_{\mathrm{A}}(\omega)>1-v_{\mathrm{A}}(\omega)$, so

$$
\Gamma_{\mathrm{A}}(\omega)=\left[\mu_{\mathrm{A}}(\omega), 1-v_{\mathrm{A}}(\omega)\right]>\left[\mu_{\mathrm{A}}(\omega), 1-v_{\mathrm{A}}(\omega)\right]=\Gamma_{\mathrm{A}}(\omega)
$$

- If $\mu_{\mathrm{A}}(\omega)<\mu_{\mathrm{A}}(\omega)$, then $1-v_{\mathrm{A}}(\omega)<1-v_{\mathrm{A}}(\omega)$, so

$$
\Gamma_{\mathrm{A}}(\omega)=\left[\mu_{\mathrm{A}}(\omega), 1-v_{\mathrm{A}}(\omega)\right]<\left[\mu_{\mathrm{A}}(\omega), 1-v_{\mathrm{A}}(\omega)\right]=\Gamma_{\mathrm{A}}(\omega) .
$$

Onthe otherhand, assumethat either $\Gamma_{\mathrm{A}}(\omega) \geq \Gamma_{\mathrm{A}}(\omega)$ or $\Gamma_{\mathrm{A}}(\omega) \leq \Gamma_{\mathrm{A}}(\omega)$ for any $\omega, \omega$. Then:

$$
\begin{array}{ll}
\Gamma_{\mathrm{A}}(\omega) \geq \Gamma_{\mathrm{A}}(\omega) & \mu_{\mathrm{A}}(\omega) \geq \mu_{\mathrm{A}}(\omega) \text { and } 1-v_{\mathrm{A}}(\omega) \geq 1-v_{\mathrm{A}}(\omega) \\
\Gamma_{\mathrm{A}}(\omega) \leq \Gamma_{\mathrm{A}}(\omega) & \mu_{\mathrm{A}}(\omega) \leq \mu_{\mathrm{A}}(\omega) \text { and } 1-v_{\mathrm{A}}(\omega) \leq 1-v_{\mathrm{A}}(\omega)
\end{array}
$$

and from this we dedu ce that $\mu_{\mathrm{A}}$ and $1-v_{\mathrm{A}}$ are comonotone.

On theother hand, [129, Example 3.3] shows that the equality $P(\Gamma)=M(P$ г) do es not necessarily hold forall the randomclosed intervals, even whenthe initial probability space is non-atomic: it suffices to cons ide $(\Omega, A, P)=([0,1], \beta 0,1], \lambda[0,1])$ and $\Gamma:[0,1] \rightarrow P(R)$ given by

$$
\Gamma(\omega)=[-\omega, \omega] \omega \quad[0,1] .
$$

It is easy to adapttheexampleto our context and deduce thatthere are intuitionistic fuzzy sets where the information $a b$ out the memb ership function is not completely determined by the upp er probability $P_{\Gamma_{A}}$ : itwould suffice to take $\Gamma_{A}:[0,1] \rightarrow P([0,1])$ given by

$$
\begin{equation*}
\Gamma_{\mathrm{A}}(\omega)=0.5-\frac{\omega}{2}, 0.5+\frac{\omega}{2} \quad \omega \quad[0,1] \tag{5.6}
\end{equation*}
$$

that is, to consider the IVF-set such that the memb ership and non-memb ership functions of its asso ciated IF-set coincide and take the value $\frac{1-\omega}{2}$.

We have seen in Prop osition 2.47 that the upp er probability asso ciated witha random set is a p oss ibility measure if and only if the images of $\Gamma$ arenested except for anull subset. In the particular case of the random closed intervals asso ciated with an IVF-set, wededuce the following:

Corollary 5.60 Let $\Gamma_{\mathrm{A}}: \Omega \rightarrow P([0,1])$ be the random set defined in the probability space $(\Omega, A, P)$ by Equation (5.5). Then, $P_{\Gamma}$ is possibility measure ifand onlyif there exists some $N \quad \Omega$ null such that $\mu_{\mathrm{A}}$ and $v_{\mathrm{A}}$ are comonotoneon $\Omega(N$.

Pro of Assume that $\Gamma_{A}$ is a possibility measure. Then, by Prop osition 2.47 , the re is anull set $N$ such that $\Gamma_{\mathrm{A}}\left(\omega_{1}\right) \quad \Gamma_{\mathrm{A}}\left(\omega_{2}\right)$ or $\Gamma_{\mathrm{A}}\left(\omega_{2}\right) \quad \Gamma_{\mathrm{A}}\left(\omega_{1}\right)$ for any $\omega_{1}, \omega_{2} \quad \Omega^{l N}$. Consider $\omega_{4}, \omega_{2} \quad \Omega^{l N}$, it holds that:

$$
\begin{array}{lll}
\Gamma_{\mathrm{A}}\left(\omega_{1}\right) & \Gamma_{\mathrm{A}}\left(\omega_{2}\right) & {\left[\mu_{\mathrm{A}}\left(\omega_{1}\right), 1-v_{\mathrm{A}}\left(\omega_{1}\right)\right] \quad\left[\mu_{\mathrm{A}}\left(\omega_{2}\right), 1-v_{\mathrm{A}}\left(\omega_{2}\right)\right]} \\
& & \mu_{\mathrm{A}}\left(\omega_{1}\right) \geq \mu_{\mathrm{A}}\left(\omega_{2}\right) \text { and } 1-v_{\mathrm{A}}\left(\omega_{1}\right) \leq 1-v_{\mathrm{A}}\left(\omega_{2}\right) \\
& & \mu_{\mathrm{A}}\left(\omega_{1}\right) \geq \mu_{\mathrm{A}}\left(\omega_{2}\right) \text { and } v_{\mathrm{A}}\left(\omega_{1}\right) \geq v_{\mathrm{A}}\left(\omega_{2}\right) \\
& \Gamma_{\mathrm{A}}\left(\omega_{2}\right) \quad & \Gamma_{\mathrm{A}}\left(\omega_{1}\right) \\
& & {\left[\mu_{\mathrm{A}}\left(\omega_{2}\right), 1-v_{\mathrm{A}}\left(\omega_{2}\right)\right] \quad\left[\mu_{\mathrm{A}}\left(\omega_{1}\right), 1-v_{\mathrm{A}}\left(\omega_{1}\right)\right]} \\
& & \mu_{\mathrm{A}}\left(\omega_{2}\right) \geq \mu_{\mathrm{A}}\left(\omega_{1}\right) \text { and } 1-v_{\mathrm{A}}\left(\omega_{2}\right) \leq 1-v_{\mathrm{A}}\left(\omega_{1}\right) \\
& & \mu_{\mathrm{A}}\left(\omega_{2}\right) \geq \mu_{\mathrm{A}}\left(\omega_{1}\right) \text { and } v_{\mathrm{A}}\left(\omega_{2}\right) \geq v_{\mathrm{A}}\left(\omega_{1}\right) .
\end{array}
$$

Then, $\mu_{\mathrm{A}}$ and $v_{\mathrm{A}}$ arecomonotone on $\Omega^{\} N$.
Conversely, as sume tha ${ }^{l_{\mathrm{A}}}$ and $v_{\mathrm{A}}$ arecomonotone on $\Omega^{l} N$.

$$
\begin{array}{llll}
\text { If } \mu_{\mathrm{A}}\left(\omega_{1}\right) \leq \mu_{\mathrm{A}}\left(\omega_{2}\right) & v_{\mathrm{A}}\left(\omega_{1}\right) \leq v_{\mathrm{A}}\left(\omega_{2}\right) & & \\
\quad\left[\mu_{\mathrm{A}}\left(\omega_{1}\right), 1-v_{\mathrm{A}}\left(\omega_{1}\right)\right] \quad\left[\mu_{\mathrm{A}}\left(\omega_{2}\right), 1-v_{\mathrm{A}}\left(\omega_{2}\right)\right] & \Gamma_{\mathrm{A}}\left(\omega_{2}\right) & \Gamma_{\mathrm{A}}\left(\omega_{1}\right) . \\
\text { If } \mu_{\mathrm{A}}\left(\omega_{2}\right) \leq \mu_{\mathrm{A}}\left(\omega_{1}\right) & v_{\mathrm{A}}\left(\omega_{2}\right) \leq v_{\mathrm{A}}\left(\omega_{1}\right) & & \\
& {\left[\mu_{\mathrm{A}}\left(\omega_{2}\right), 1-v_{\mathrm{A}}\left(\omega_{2}\right)\right]} & {\left[\mu_{\mathrm{A}}\left(\omega_{1}\right), 1-v_{\mathrm{A}}\left(\omega_{1}\right)\right]} & \Gamma_{\mathrm{A}}\left(\omega_{1}\right)
\end{array} \Gamma_{\mathrm{A}}\left(\omega_{2}\right) .
$$

## P-b ox induced by a IVF-set

The lower and upp er probabilities $P_{\Gamma_{A}}, P_{\Gamma_{A}}$ summarize the probabilistic information ab out the probability distribution of the memb ership function of the IVF-set $A$. If in particular we want to summarise the information ab out the distribution function of this variable, we must use the lower and upp er distribution functions:

$$
E_{\mathrm{A}}, \bar{F}_{\mathrm{A}}: \Omega \rightarrow[0,1]
$$

where

$$
\begin{equation*}
E_{\mathrm{A}}(x):=P \Gamma_{\mathrm{A}}([0, x])=P\left(\left\{\omega: 1-v_{\mathrm{A}}(\omega) \leq x\right\}\right)=P v_{\mathrm{A}}([1-x, 1]) \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{F}_{\mathrm{A}}(x):=P_{\Gamma_{\mathrm{A}}}([0, x])=P\left(\left\{\omega: \mu_{\mathrm{A}}(\omega) \leq x\right\}\right)=P \mu_{\mathrm{A}}([0, x]) . \tag{5.8}
\end{equation*}
$$

When $\Omega$ is an ordered space(for instance if $\Omega=[0,1]$ ), the lower and upp er distribution functions $E_{A}, F_{A}$ can be used to determinea $p$-b ox. In that case, we shall refer to $\left(F_{A}, F_{A}\right)$ asthe $p$-box on $\Omega$ associated with the intuitionistic fuzzy set $A$.

The lower and upp er distribution functions also determine a set of probability measures:

$$
M\left(F_{A}, \bar{F}_{A}\right):=\left\{Q: \beta[0,1] \rightarrow[0,1]: F_{A}(x) \leq F_{Q}(x) \leq \bar{F}_{A}(x) \quad x \quad[0,1\}\right.
$$

where $F_{Q}$ is the distribution function asso ciated with the probability measure $Q$. It is immediate to see that the set $M\left(F_{-A}, F_{A}\right)$ includes $M\left(P_{\Gamma_{A}}\right)$. However, the two sets do not coincide in general, and as a consequence the use of the lower and upp er distribution functions may pro duce a loss of information, as we can see in the following example.

Example 5.61ConsidertherandomsetofEquation (5.6), definedon ( $[0,1], \beta_{0,1]}, \lambda_{[0,1]}$ ) by $\Gamma_{\mathrm{A}}(\omega)=0.5-\frac{\omega}{2}, 0.5+\frac{\omega}{2}$. Using Equation (2.23), we already know that the credal set $M\left(P_{\Gamma_{A}}\right)$ is given by:

$$
M\left(P_{\Gamma_{A}}\right)=\left\{P \text { probability } \mid P_{\Gamma_{A}}(B) \leq P(B) \leq P_{\Gamma_{A}}(B) \text { for any } B\right\} .
$$

Let us now compute theform of theset $M\left(F_{-A}, \bar{F}_{A}\right)$ :

$$
\begin{aligned}
& E_{\mathrm{A}}(x)=P \Gamma_{\mathrm{A}}([0, x])=P(\{\omega \quad[0,1]: \Gamma(\omega) \quad[0, x\}) \\
& =P\left(\omega[0,1]: \Gamma(\omega)=0.5-\frac{\omega}{2}, 0.5+\frac{\omega}{2} \quad[0, x]\right) \\
& =P\left(\left\{\omega \quad[0,1]: \omega\left[-1,2 x^{-1} 1\right\}\right)\right. \\
& =P\left(\left\{\omega \quad[0,1]: \omega \quad\left[0,2 x^{-} 1\right\}\right\}\right) \\
& =0 \text { if } x \leq \frac{1}{2} \text {. } \\
& \text { 2x-1 otherwise. } \\
& F_{\mathrm{A}}(x)=P_{\Gamma_{\mathrm{A}}}([0, x])=P(\{\omega \quad[0,1]: \Gamma(\omega) \cap[0, x]=\}) \\
& =P\left(\omega \quad[0,1]: 0.5-\frac{\omega}{2}, 0.5+\frac{\omega}{2} \cap[0, x]=\quad\right) \\
& =\begin{array}{ll}
2 x & \text { if } x \leq \frac{1}{2} . \\
1 & \text { otherwise } .
\end{array}
\end{aligned}
$$

Thus, the set $M\left(F_{-A}, \bar{F}_{A}\right)$ is formed by the probabilities whose associated cumulative distribution function is boundedby $E_{A}$ and $F_{A}$.

Consider now $t$ he probabilit y distribution associated with the cumulative distribution function $F$ defined by:

$$
F(x)=\begin{array}{ll}
\square \bar{F}_{\mathrm{A}}(x) & \text { if } x \leq \frac{1}{4} \\
\mathrm{G}_{1} & \text { if } x \\
2 \\
2
\end{array}, \frac{3}{4} .
$$

Its associated probability, $P_{F}$, belongs to $M\left(F_{-A}, \bar{F}_{A}\right)$. Now, let us check that $P_{F}$ does not belong to $M\left(P_{\Gamma_{A}}\right)$. For this aim, note that:

$$
\begin{aligned}
P_{\Gamma A} \quad \stackrel{1}{4}, \frac{3}{4} & =P \\
& =P \\
& =P \quad[0,1]: \Gamma(\omega) \quad \stackrel{1}{4}, \frac{3}{4} \\
& \\
& \omega
\end{aligned}
$$

This means that every probabilityP in $M\left(P_{\Gamma_{A}}\right)$ must hold that $P \quad \underset{4}{1},{ }_{4}^{3} \geq \frac{1}{2}$. However, $P_{F} \quad \begin{aligned} & 1 \\ & 4\end{aligned}{ }_{4}^{3}=0$, and consequently $P_{F} / M\left(P_{\Gamma_{A}}\right)$.

We conclude that $M\left(F_{-A}, \bar{F}_{A}\right) \quad M\left(P_{\Gamma_{A}}\right)$.

Nevertheless, there are non-trivial situations in which both sets coincide.

Example 5.62Consider the initial space $\left([0,1], \beta_{[0,1]}, \lambda_{[0,1]}\right)$ andtherandom set $\Gamma_{A}$ defined from the IF-set $I_{A}$ by:

$$
\Gamma_{\mathrm{A}}(\omega)=\begin{array}{lll}
\{\omega\} & \text { if } \omega \quad 0, \stackrel{1}{4} \\
{ }_{4}^{1},{ }_{4}^{3}
\end{array} \quad \begin{aligned}
& 3 \\
& \text { otherwise. }
\end{aligned}
$$

Thus, themembership and non-membership functions are given by:

$$
\mu_{\mathrm{A}}(\omega)=\begin{array}{llrl}
\omega & \text { if } \omega & 0,{ }_{4}^{1} & { }_{4}^{3}, 1 \\
{ }_{4}^{1} & \text { otherwise, }
\end{array}
$$

and

$$
v_{\mathrm{A}}(\omega)=\begin{array}{lll}
1-\omega & \text { if } \omega \quad 0, \frac{1}{4} & \stackrel{3}{4}, 1 \\
\frac{1}{4} & \text { otherwise. }
\end{array}
$$

Then, the lower and upper cdfs $E_{\mathrm{A}}$ and $\bar{F}_{\mathrm{A}}$ are givenby:

We know that $M\left(F_{-A}, \bar{F}_{A}\right) \quad M\left(P_{\Gamma_{A}}\right)$. Let us now see that for every probability $P$ such that $E_{A} \leq F_{P} \leq F_{A}, P \quad M\left(P_{\Gamma_{A}}\right)$. Let $P$ beone suchprobability, and let $F_{P}$ denote its associated cumulative distribution function. Considernow themeasurable map $U(\omega):=F_{P}^{-1]}(\omega)$, where $F_{P}^{-1]}$ denotesthe pseudo-inverseof thecumulative distribution function $F_{P}$. It trivial ly holds that $U \quad S\left(\Gamma_{A}\right)$, and consequently $P_{U} \quad P\left(\Gamma_{A}\right) \quad M\left(P_{\Gamma_{A}}\right)$. On theotherhand, since $F_{P}^{-1]}(\omega) \leq x$ if and only if $\omega \quad\left[0, F_{P}(x)\right] F_{U}$ and $F_{P}$ coincide:

$$
\left.\begin{array}{rl}
F_{U}(x) & =P(\{\omega \quad[0,1] \cup(\omega) \leq x\}
\end{array}\right)=P\left(\left\{\omega \quad[0,1] F_{\mathrm{P}}^{-1]}(\omega) \leq x\right\}\right), ~\left(\left\{\omega \quad[0,1] \omega \leq F_{\mathrm{P}}(x)\right\}\right)=P([0, F \quad \mathrm{P}(x)])=F_{\mathrm{P}}(x) .
$$

Thus, $P=P$ u, and consequentlyP $P\left(\Gamma_{\mathrm{A}}\right) \quad M\left(P_{\Gamma_{\mathrm{A}}}\right)$.
The following result gives a sufficient condition for the equality betweer $M\left(F_{-A}, \bar{F}_{A}\right)$ and $M\left(P_{\Gamma_{A}}\right)$ :

Prop osition 5.63 the initial space is ( $[0,1], \beta_{0,1]}, \lambda_{[0,1]}$ ) and the random int erval is an IVF-setasinEquation (5.5), where $\mu_{\mathrm{A}}(x)=0$ for every $x$, then $M\left(F_{-\mathrm{A}}, F_{\mathrm{A}}\right)=M\left(P_{\Gamma_{\mathrm{A}}}\right)$.

Pro of Assume thereis a probability $P \quad M\left(F_{A}, \bar{F}_{A}\right)$ such that for some measurable $B$ it satisfies $P(B) /\left[P \Gamma_{A}(B), P_{\Gamma_{A}}(B)\right]$. We consider two cas es0 $B$ and $0 / B$.

0/ $B$ : When $0 / B$, it holds that $P_{\Gamma_{A}}(B)=0$ :

$$
P_{\Gamma_{\mathrm{A}}}(B)=P(\{\omega \mid \Gamma(\omega) \quad B\})=P\left(\left\{\omega \mid\left[0, \mu_{\mathrm{A}}(\omega)\right] \quad B\right\}\right)=0,
$$

since 0 $\Gamma_{A}(\omega)^{\mid B}$ for any $\omega$. Then, itholds that $P(B)>P_{\Gamma_{A}}(B)$. In addition, $P_{\Gamma_{A}}(B)=1-P_{\Gamma_{A}}\left(B^{c}\right)$, and consequently $P_{\Gamma_{A}}\left(B^{c}\right)$ must be strictly positive (otherwise $P(B)>P \Gamma_{A}(B)=1$ and a contradiction arises). Thus, thereexistsan interval $[0, x] \quad B^{C}$. Let $\varepsilon=\sup \left\{x:[0, x] \quad B^{c}\right\}$, and considertwo cases:

- Assume that $\varepsilon=\max \left\{x:[0, x] \quad B^{c}\right\}$. Then, $\operatorname{since}(\varepsilon, 1] \quad B$, it holds that:

$$
P(B) \leq P((\varepsilon, 1])=1-F_{P}(\varepsilon),
$$

and consequently:

$$
1-F_{\mathrm{P}}(\varepsilon) \geq P(B)>P_{\Gamma_{\mathrm{A}}}(B)=1-P_{\Gamma_{\mathrm{A}}}\left(B^{c}\right) .
$$

But:

$$
P_{\Gamma_{A}}\left(B^{c}\right)=P\left(\left\{\omega \mid \Gamma_{\mathrm{A}}(\omega) \quad B^{c}\right\}\right)=P\left(\left\{\omega \mid \Gamma_{\mathrm{A}}(\omega) \quad[0, \varepsilon\}\right)=F_{-A}(\varepsilon) .\right.
$$

Thus:

$$
1-F_{\mathrm{P}}(\varepsilon)>1-P_{\Gamma_{\mathrm{A}}}\left(B^{c}\right)=1-E_{\mathrm{A}}(\varepsilon) \quad E_{\mathrm{A}}(\varepsilon)>F(\varepsilon),
$$

and a contradiction arises since $P / \quad M\left(F_{-A}, \bar{F}_{A}\right)$.

- Assume that $\varepsilon=\max \left\{x:[0, x] \quad B^{x}\right\}$. Then:

$$
P \Gamma_{A}\left(B^{c}\right)=P\left(\left\{\omega \mid \Gamma_{A}(\omega) \quad B^{c}\right\}\right)=P\left(\left\{\omega \mid \Gamma_{A}(\omega) \quad[0, \varepsilon)\right\}\right)=P \quad \Gamma_{A}([0, \varepsilon)) .
$$

Moreover:

$$
[0, \varepsilon) \quad B^{C} \quad[\varepsilon, 1] \quad B \quad P([\varepsilon, 1]) \geq P(B) .
$$

Thus, it holds that

$$
P([\varepsilon, 1]) \geq P(B)>1-P_{\Gamma_{A}}([0, \varepsilon))=P_{\Gamma_{A}}([\varepsilon, 1]) .
$$

However, note that $F_{\mathrm{P}}(t) \geq E_{\mathrm{A}}(t)=F_{1-v_{\mathrm{A}}}(t)$ for any $t$, and:

$$
P([\varepsilon, 1])=1-F_{\mathrm{P}}\left(t^{-}\right) \leq 1-E_{\mathrm{A}}\left(t^{-}\right)=P \Gamma_{\mathrm{A}}([\varepsilon, 1]),
$$

a contradic tion.
$0 \quad B$ : Notethat, since $0 \quad B, P_{\Gamma A}(B)=1$ :

$$
P_{\Gamma A}(B)=P(\{\omega \mid \Gamma(\omega) \cap B=\quad\}) \geq P(\{\omega \mid \Gamma(\omega) \cap\{0\}=\})=1 .
$$

Then $P(B)<P \quad \Gamma_{A}(B)$. Since $P \Gamma_{A}(B)>0$, there exists $[0, x] \quad B$. Define $\varepsilon=\sup \{x:[0, x] \quad B\}$ and consider two cases:

- Assume that $\varepsilon=\max \{x:[0, x] \quad B\}$. Then, $P(B) \geq P([0, \varepsilon])=F \quad P(\varepsilon)$. However:

$$
\begin{aligned}
P_{\Gamma_{\mathrm{A}}}(B) & =P\left(\left\{\omega \mid \Gamma_{\mathrm{A}}(\omega) \quad B\right\}\right)=P\left(\left\{\omega \mid \Gamma_{\mathrm{A}}(\omega) \quad[0, \varepsilon\}\right)\right. \\
& =F_{-\mathrm{A}}(\varepsilon) \leq F_{\mathrm{P}}(\varepsilon) \leq P(B),
\end{aligned}
$$

a contradic tion, b ecause we had assumed th\&ी $\Gamma_{A}(B)>P(B)$.

- Assume that $\varepsilon=\max \{x:[0, x] \quad B\}$. Then $P(B) \geq P([0, \varepsilon))$. Moreover,

$$
\begin{aligned}
P_{\Gamma_{A}}(B) & =P(\{\omega \mid \Gamma A(\omega) \quad B\})=P(\{\omega \mid \Gamma A(\omega) \quad[0, \varepsilon\}) \\
& =F_{-A}\left(\varepsilon^{-}\right)=F \quad 1^{-v_{A}}\left(\varepsilon^{-}\right) \leq F_{P}\left(\varepsilon^{-}\right)=P([0, \varepsilon)) \leq P(B) .
\end{aligned}
$$

This contradictstheassumption of $P_{\Gamma_{\mathrm{A}}}(B)>P(B)$.
Another suffic ient condition for the equality b etween $M\left(P_{\Gamma_{A}}\right)$ and $M\left(F_{=_{A}}, \bar{F}_{\mathrm{A}}\right)$ is the strict comonotonicity between $\mu_{\mathrm{A}}$ and $1-v_{\mathrm{A}}$, that, as we have seen in Corollary 5.59 , is equivalent to the exis tence of a total order $b$ etween the intervals $\mu_{\mathrm{A}}(\omega), 1-v_{\mathrm{A}}(\omega)$ ]

Prop osition 5.64 the initial space is $\left([0,1], \beta_{[0,1]}, \lambda_{[0,1]}\right)$ and the random interval is givenbyanIF-setasinEquation (5.5), where $\Gamma_{\mathrm{A}}(\omega) \leq \Gamma_{\mathrm{A}}(\omega)$ or $\Gamma_{\mathrm{A}}(\omega) \geq \Gamma_{\mathrm{A}}(\omega)$ for any $\omega, \omega \quad \Omega$, then $M\left(F_{-A}, F_{\mathrm{A}}\right)=M\left(P_{\Gamma_{\mathrm{A}}}\right)$.

Pro of $\ln$ [129, Theorem 4.5] it is proven that when therandom interval is defined on ( $[0,1], \beta_{[0,1]}, \lambda_{[0,1]}$ ) and its bounds are strictly comonotone, then it is p ossibl e to define the random interval $\Gamma:[0,1] \rightarrow P([0,1])$ by:

$$
\Gamma(\omega):=[U(\omega), V(\omega)]
$$

where $U$ and $V$ denote the quantile functions of the lower and upp er bounds of $\Gamma_{\mathrm{A}}$, resp ectively, that are defined by:

$$
U(\omega)=\inf \{x \quad \mathrm{R}: \omega \leq F(x)\} \text { and } V(\omega)=\inf \{x \quad \mathrm{R}: \omega \leq \bar{F}(x)\}
$$

This random interval satisfies $P_{\Gamma}=P \Gamma_{\mathrm{A}}$, and consequently $M\left(P_{\Gamma}\right)=M\left(P_{\Gamma_{A}}\right)$ and $M(F, \bar{F})=M\left(F_{-A}, \bar{F}_{\mathrm{A}}\right)$. Then, in ordertoprove theequality $\quad M\left(P_{\Gamma_{\mathrm{A}}}\right)=M\left(F_{-_{\mathrm{A}}}, F_{\mathrm{A}}\right)$ it is sufficient to establish the equality between $M\left(P_{\Gamma}\right)=M\left(F_{-} F\right)$.

Consider now a probability $P \quad M(F, \bar{F})$, and define $W$ asthe quantilefunction of $F_{P}$. Since $E \leq F_{P} \leq F, W(\omega)$ is bounded by $U(\omega)$ and $V(\omega)$ for any $\omega \quad[0,1$.$] Then, W$
is a measurable selection of, an $d$ its induce probability $P_{\mathrm{w}}$ belongs to $P(\Gamma)$. Moreover, since $P(\Gamma)=M\left(P_{\text {г }}\right), P_{\mathrm{W}}$ also belongs to $M\left(P_{\Gamma}\right)$.

Thus, $M\left(P_{\Gamma}\right)=M\left(F_{-,} \bar{F}\right)$, and therefore $M\left(P_{\Gamma_{A}}\right)=M\left(F_{-A}, \bar{F}_{A}\right)$.
One particular situation where the previous result holds is when $\quad \mu_{\mathrm{A}}$ is strictly increasing, $v_{\mathrm{A}}$ isstrictly decreasingand $\mu_{\mathrm{A}}(\omega)=\mu_{\mathrm{A}}(\omega)$ if and only if $v_{\mathrm{A}}(\omega)=\nu_{\mathrm{A}}(\omega)$.

Finally, we are going to see that the equality between b oth credal se ts also holds when the $b$ ounds of the interval are inc reasing.

Prop osition 5.65 the initial space is $\left([0,1], \beta_{0,1]}, \lambda_{[0,1]}\right)$ and the random interval is given by an IF-set asin Equation (5.5), where $\mu_{\mathrm{A}}$ is increasingand $v_{\mathrm{A}}$ is decreasing, then $M\left(F_{-A}, F_{A}\right)=M\left(P_{\Gamma_{A}}\right)$.

Pro of Let $P$ be a probability in $M\left(F_{A}, \bar{F}_{A}\right)$, andweare going tosee thatthere is ameasurable selection $V$ such that $P_{V}=P$, and therefore $M\left(F_{-A}, F_{A}\right) \quad P\left(\Gamma_{\mathrm{A}}\right)$ $M\left(P_{\Gamma_{A}}\right)$. Since $\mu_{\mathrm{A}}$ is increasing, there is a countable numb er of elements $\omega \quad(0,1)$ such that $\mu_{\mathrm{A}}(\omega)>\sup _{\omega<\omega} \mu_{\mathrm{A}}(\omega)$. Denote thi s set by $N$, and consider the fu nction $V:[0,1] \rightarrow R$ defined by:

$$
V(\omega)=\begin{array}{ll}
\inf \{y: \omega \leq P((-\infty, y])\} & \text { if } \omega \quad(0,1) N . \\
\mu_{\mathrm{A}}(\omega) & \text { otherwise } .
\end{array}
$$

Following the same steps than in [129, Prop osition 4.1], this function $V$ can be proved to b e a measurable selection БA such that $P_{V}=P$. Then, we conclude that $M\left(F_{-}, F_{\mathrm{A}}\right)$ $P\left(\Gamma_{\mathrm{A}}\right) \quad M\left(P_{\Gamma_{\mathrm{A}}}\right)$, and then we conc lude that b oth credal s ets coincide.

These results allow us state a numb er of sufficient conditions for the equality $b$ etween the three sets of probabilities $P\left(\Gamma_{\mathrm{A}}\right), M\left(P_{\Gamma_{\mathrm{A}}}\right)$ and $M\left(F_{-\mathrm{A}}, F_{\mathrm{A}}\right)$.

Corollary 5.66 Considerthe initialspace is ( $[0,1], \beta_{0,1}, \lambda, \lambda_{[0,1]}$ ) and the random interval $\Gamma_{\mathrm{A}}$ givenbyanIVF-setas inEquation (5.5). Then, theequalities $P\left(\Gamma_{\mathrm{A}}\right)=M\left(P_{\Gamma_{\mathrm{A}}}\right)=$ $M\left(F_{-A}, F_{\mathrm{A}}\right)$ hold if one of the fol lowing conditions is satisfied:

- $\mu_{\mathrm{A}}$ isincreasing and $v_{\mathrm{A}}$ is decreasing.
- $\mu_{\mathrm{A}}(\omega)=0$ for any $\omega$ [0, 1.]
- $\mu_{\mathrm{A}}$ and $1-v_{\mathrm{A}}$ are strictly comonotone, or equivalently, if $\Gamma_{\mathrm{A}}(\omega) \leq \Gamma_{\mathrm{A}}(\omega)$ or $\Gamma_{\mathrm{A}}(\omega) \leq \Gamma_{\mathrm{A}}(\omega)$ for any $\omega, \omega \quad[0,1]$

We have seen sufficient conditions under which the p-b ox defined from the random interval $\Gamma_{A}$ contains the same information than the set of me asurable selectionsConversely,
there are situations inwhich, given a p-b ox, it is possible to define a random interval $\Gamma_{\mathrm{A}}$ whose asso ciated p-b ox coincides with the previous oneand that the probabil istic information given by the p-b ox is the same that the information given by the set of measurable sele ctions.

Prop osition 5.6 fonsider a $\left.p-\operatorname{box}^{(F,} \bar{F}\right)$ defined on $[0,1]$ such that both $E$ and $\bar{F}$ are right-continuous. Then it ispossibleto define arandom interval $\Gamma$ : $[0,1] \rightarrow P([0,1])$ whose associated p-box ifF, F). In addition, if eit her $E$ and $F$ are strictlycomonotone or $F(x)=1$, then the random interval $\Gamma$ satisfies $P(\Gamma)=M\left(F_{-} F\right)$.

Pro of Proposition 2.45 assures that $P(\Gamma)=M\left(P \Gamma_{\mathrm{A}}\right)$. Given the p-b ox $(F, F)$, define the random interval $\Gamma_{\mathrm{A}}(\omega)=[U(\omega), V(\omega)$ wh ere $U$ and $V$ are thequantilefunctionsof $E$ and $F$, resp ectively.Then, the p-b ox asso ciated with $\Gamma_{\mathrm{A}}$ is given by:

$$
\left.\left.\begin{array}{ll}
\underline{E}_{\mathrm{A}}(t)=F & \vee(t)=P(\{\omega \\
F_{\mathrm{A}}(t)=F & {[0,1] \cup(t)=P(\{\omega}
\end{array} \quad[0,1] \cup(\omega) \leq t\right\}\right)=F(t) .
$$

Since $E$ and $\bar{F}$ are right-continuous, $U$ and $V$ are random variables because their cumulative distribution functions are right-continuous. Assume nowthat $E$ and $F$ are strictly comonotone. Then, $U$ and $V$ are also strictly comonotone, and following Prop osition 5.64, the credal set $P\left(\Gamma_{\mathrm{A}}\right)$ coincideswith the credal set $M(F, F)$.

Assume that $F(x)=1$. Then, $U=0 \quad$ almost surely. Applying Prop osition 5.63. $P\left(\Gamma_{\mathrm{A}}\right)=M\left(F_{-}, F\right)$.

In Corollary 5.60 we have seen that the upp er probability induced by the random set $\Gamma_{\mathrm{A}}$ definedfrom anIF-set $I_{\mathrm{A}}$ is a possibility measure if and only if $\mu_{\mathrm{A}}$ and $v_{\mathrm{A}}$ are strictly comonotone on the complementary ofa null set. In[199], thefollowingresultis proved:

Prop osition 5.68 ([199, Corollary 17Assume that $\Omega /$ is order completeand let $(F, F)$ be a p-box. Let $P_{(\bar{F}, \bar{F})}$ denotethe lowerprobabilityassociatedwith $\quad(F, \bar{F})$ by meansof Equation (2.17). Then the natural extension of $\underline{E}_{(E, F)}$ is a possibilitymeasure if and only if either
(L1) E is 0-1valued,
(L2) $\bar{F}(x)=\bar{F}\left(x^{-}\right)$for all $x \quad \Omega$ that have no immediate predecessor, and
(L3) $\left\{x \quad \Omega\left\{0^{-}\right\}: F(x)=1\right\}$ has aminimum, where $0^{-}$isaminimumelement on $\Omega$
(U1) $\bar{F}$ is 0-1valued,
(U2) $F(x)=F\left(x^{+}\right)$for all $x \quad \Omega$ that have no immediate successor, and
(U3) $\left\{x \quad \Omega\left\{0^{-}\right\}: F(x)=0\right\}$ has amaximum.

In ourcontext, whentheinitialspaceis [0, 1] no element in such interval has immediate predecessor or successoAssume now that the p-b ox $\left(F_{A}, F_{A}\right)$ definedfrom the random interval $\Gamma_{A}$ as in Equations (5.7) and (5.8) is a p ossibi lity measure.Note that since $E_{A}$ and $F_{\mathrm{A}}$ are right-continuous, $(U 2)$ becomes trivial. On theonehand, assume that $E_{\mathrm{A}}$ is $0-1$ valued. Then, there exists $t$ such that $F(t)=1$ for any $t \geq t$ and $F(t)=0$ for any $t<t$, and by (L3) it is left-continuous. Equivalently:

$$
\begin{aligned}
& F(t)=P\left(\left\{\omega \quad[0,1] \Gamma_{\mathrm{A}}(\omega)\right.\right. \\
& F(t)=P(\{0, t])=1 \quad \text { for any } t \geq t . \\
& \left\{\omega \quad[0,1] \Gamma_{\mathrm{A}}(\omega)\right. \\
& [0, t])=0
\end{aligned} \text { for any } t<t . .
$$

Then, $1-v_{\mathrm{A}}(\omega)=t$ for every $\omega \quad[0,1] N$ for some nul I set $N$ on $\beta_{[0,1]}$. Onthe other hand, assume that $\bar{F}_{\mathrm{A}}$ is $0-1$ valued. Then, there exists $t$ such that $F(t)=1$ for any $t>t$ and $F(t)=0$ for any $t \leq t$, and by $(\cup 2)$ it is right-continuous. Equivalently:

$$
\begin{array}{llll}
\bar{F}(t)=P(\{\omega & {[0,1] \Gamma_{\mathrm{A}}(\omega) \cap[0, t]=} & \})=1 & \text { for any } t \geq t . \\
F(t)=P(\{\omega & {[0,1] \Gamma_{\mathrm{A}}(\omega) \cap[0, t]=} & \})=0 & \text { for any } t<t .
\end{array}
$$

Thus, $\mu_{\mathrm{A}}(\omega)=t$ for every $\omega \quad[0,1] N$ forsome nullset $N$ on $\beta_{[0,1]}$. Wededuce that:

Prop osition 5.6Fonsider theinitial space $\left([0,1], \beta_{[0,1],} \underline{\lambda}_{[0,1]}\right)$ and the random interval $\Gamma_{\mathrm{A}}$ defined fromthe IVF-set $I_{A}$. Consider thep-box ( $F_{\mathrm{A}}, F_{\mathrm{A}}$ ) definedin Equations (5.7) and (5.8). If ( $F_{A}, F_{A}$ ) defines a possibility measure, then there is a null set $N$ on $\beta_{[0,1]}$ and $t$ such that either $1-v_{\mathrm{A}}(\omega)=t$ for any $\omega \quad[0,-1] N$ or $\mu_{\mathrm{A}}(\omega)=t$ for any $\omega \quad[0,1] N$. In sucha case, $P\left(\Gamma_{\mathrm{A}}\right)=M\left(P_{\Gamma_{\mathrm{A}}}\right)=M\left(F_{-A}, F_{\mathrm{A}}\right)$.

## A non-measurable ap proach

The previous developments assumethat theintuitionistic fuzzy setis definedon aprobability space and that the functions $\mu_{\mathrm{A}}, v_{\mathrm{A}}$ are measurable with resp ect to the $\sigma^{-f i e l d}$ we have on thisspace and the Borel $\sigma_{\text {-field on [0, 1] Although thisisa standardassumption }}$ when considering the probabilities asso ciated with fuzzy events, itis arguablydone for mathematical convenience only.In this section, we present an alternative approach where wegetrid of themeasurabilityassumptions by meansof finitelyadditiveprobabilities.
This allows us to make a clearer li nk withp-b oxes, by means of Walley's notion of natural extension intro duced in Definition 2.32.

Consider thus aintuitionistic fuzzy set $A$ defined on aspace $\Omega$. If thissetis determined by thefunctions $\mu_{\mathrm{A}}, \nu_{\mathrm{A}}$, we can represent it by means of the multi-valued mapping
$\Gamma_{\mathrm{A}}: \Omega \rightarrow\left[0,1\right.$ given by $\Gamma_{\mathrm{A}}(\omega)=\left[\mu_{\mathrm{A}}(\omega), 1^{-} v_{\mathrm{A}}(\omega)\right]$ Note thatwearenot assuminganymore thatthis multi-valuedmapping is strongly measurable, and now ourinformation ab out the "true" memb ership function would be given by the set of functions

$$
\left\{\varphi: \Omega \rightarrow[0,1]: \mu_{\mathrm{A}}(\omega) \leq \varphi(\omega) \leq 1-v_{\mathrm{A}}(\omega)\right\}
$$

Now, if wedo notassume themeasurabilityof $\mu_{\mathrm{A}}, \nu_{\mathrm{A}}$ and considerthen thefield $P(\Omega)$ of all events in the initial space, we may not be able to mo del our uncertainty by means of a $\sigma$-additive probability measure. However, we can do so by means of a finitely additive probability measure $P$ ormoregenerallybymeans of an imprecise probability mo del [205]. Moreover, the notions of lower and upp er probabilities can be generalized to that case [132].Iffor instance we consider a finitely additive probability $P$ on $P(\Omega)$, then by an analogous re as oning to that in Section 5.2.1 we obtain that

$$
P_{\varphi}(C) \quad\left[P \Gamma_{A}(C), P_{\Gamma_{A}}(C)\right] \quad C \quad[0,1]
$$

where $P_{\Gamma_{\mathrm{A}}}$ is the completely alternating upp er probability given by

$$
P_{\Gamma_{\mathrm{A}}}(C)=P\left(\left\{\omega: \Gamma_{\mathrm{A}}(\omega) \cap C=\quad\right\}\right)
$$

and its conjugate $P_{\Gamma_{\mathrm{A}}}$ isthe completelymonotonelowerprobabilitygivenby

$$
P_{\Gamma_{\mathrm{A}}(C)}=P(\{\omega: \quad=\Gamma \mathrm{A}(\omega) \quad C\})
$$

for every $C \quad[0,1$.$] Then the information ab out P_{\varphi}$ is given by the set of finitely additive probabilities dominated by $P_{\Gamma_{A}}$, and we do not need to make the distinction between $P\left(\Gamma_{\mathrm{A}}\right)$ and $M\left(P_{\Gamma_{\mathrm{A}}}\right)$ as in Section 5.2.1.

The asso ciated $p-b$ ox is given now by the set of finitely additive distribution functions (that is, monotone and normalized) that lie between $E_{A}$ and $F_{\mathrm{A}}$, where again $E_{A}, F_{A}$ are given by Equations (5.7) and (5.8), resp ectively.

This set is equivalent to the set of asso ciated finitely additive probability measures that can be determined by natural extension.Th is can $b$ e determined in the following way ([198]): if we denoteby $H$ thefield of subsetsof [0, 1 generated by thesets $\{[0, x],(x, 1)$ : $x \quad[0,1]$, then any set $B \quad H$ isof theform

$$
B:=\left[\begin{array}{ll}
0, x & 1
\end{array}\right] \quad\left(x_{2}, x_{3}\right] \quad \ldots\left(x_{2 n}, x_{2 n+1}\right]
$$

or
for somen $\quad \mathrm{N}^{\prime} X_{1}<x_{2}<\quad<x_{n} \quad[0,1$.$] It holdsthat$

$$
\left.E_{E, \bar{F}\left(\left[0, x_{1}\right]\right.} \quad\left(x_{2}, x_{3}\right] \quad \ldots\left(x_{n}, 1\right]\right)=F_{-\mathrm{A}}\left(x_{1}\right)+{ }_{i=1}^{n} \max \left\{0, F_{\mathrm{A}}\left(x_{2 i+1}\right)-\bar{F}_{\mathrm{A}}\left(x_{2 i}\right)\right\}
$$

and

$$
\begin{equation*}
E_{E, \bar{F}}\left(\left(x_{1}, x_{2}\right] \quad \ldots\left(x_{2 n}, x_{2 n+1}\right]\right)={ }_{i=0}^{n} \max \left\{0, F_{\mathrm{A}}\left(x_{2 i+1}\right)-\bar{F}_{\mathrm{A}}\left(x_{2 i}\right)\right\} \tag{5.9}
\end{equation*}
$$

and if we consider any $C \quad[0,1$,$] then$

$$
E_{E, \bar{F}}(C)=\sup _{B} \sin _{H} E_{E, \bar{F}}(B) .
$$

The upp er probability $P_{\Gamma_{A}}$ isdetermined by $P_{\Gamma_{A}}$ using conjugacy.
It can be easily seen that $P_{\Gamma_{A}}$ and the natural extension of the p-b ox $E_{E, \bar{F}}$ do not coincide in general, even in sets ofthe form ( $x_{1}, x_{2}$ ]:

Example 5.70Consider the random interval of Example 5.61. Wealready knowthat
 Equation (5.9)to compute $E_{E, \bar{F}} \quad \begin{gathered}1 \\ 4\end{gathered}, \frac{3}{4}$ :

$$
E_{E, \bar{F}} \quad \frac{1}{4}, \frac{3}{4}=\max \quad 0, F_{\mathrm{A}} \quad \frac{3}{4}-\bar{F}_{\mathrm{A}} \frac{1}{4}=\max \quad 0, \frac{1}{2}-\frac{1}{2}=0
$$

We conclude that, in general, $P_{\Gamma_{A}}$ and $E_{E, \bar{F}}$ donot coincideevenin setsof the form ( $x_{1}, x_{2}$ ].

Our next example shows that $P_{\Gamma_{A}}$ and $E_{E, \bar{F}}$ do not coincide neither when the bounds of the random interval are increasing.

Example 5.71Consider therandom interval defined by:


The bou nds of its associated p-box are defined by:

$$
\begin{aligned}
& E_{\mathrm{A}}(x)=\begin{array}{ll}
{ }_{2}^{1} x & \text { if } x \quad 0,{ }_{3}^{2} . \\
x & \text { otherwise. } \\
\bar{F}_{\mathrm{A}}(x)= & \begin{array}{l}
x
\end{array} \quad \text { if } x \quad 0,{ }_{3}^{1} . \\
{ }_{2}^{1} x+ & { }_{2}^{1} \text { otherwise. }
\end{array} .
\end{aligned}
$$

Then, $P_{\text {「 }} \quad \frac{1}{3}, \frac{2}{3}=\frac{1}{3}$. However, it holds that:

$$
E_{E_{A}, \bar{F}_{A}} \quad \frac{1}{3}, \underline{2} 3 \quad=F_{-A} \quad \underline{\underline{2}} 3-\bar{F}_{A} \quad \frac{1}{2}=\frac{\underline{2}}{3}-\frac{2}{3}=0 .
$$

Furthermore:

$$
E_{E_{A}, \bar{F}_{A}} \frac{12}{3}, \frac{2}{3}=\sup _{B}^{\left[\begin{array}{c}
1 \\
3
\end{array}, \frac{2}{3}\right], B} \boldsymbol{E} E_{E_{A}, \bar{F}_{A}}(B) \leq E_{E_{A}, \bar{F}_{A}} \quad \frac{1}{3}, \underline{2} 3=0 .
$$

Thus, the natural extension is less informative than the original lower probability.

Next we show that the lower probability and the natural extension defined of the p-b ox coincide when $\mu_{\mathrm{A}}=0$.

Prop osition 5.72onsider theinitial space ( $[0,1], \beta_{0,1]}, \lambda_{[0,1]}$ ) and the random interval defined from an IF-set $A$ with $\mu_{A}=0$. Then, $E_{E_{A}}, \bar{F}_{A}=P \quad \Gamma_{A}$.

Pro of We know that $\mu_{\mathrm{A}}=0$ implies that $\bar{F}_{\mathrm{A}}=1$. Let us prove the equality between thenatural extension and thelower probability followingseveral steps:

1. Let $B$ be a set on $H$. Wehaveseveral cases:

- Assume that $B=[0, x]$. Then:

$$
\begin{aligned}
& P \Gamma_{A}([0, x])=P\left(\{\omega: \Gamma(\omega) \quad[0, x\})=F_{-A}(x) .\right. \\
& E_{E_{A}}, \bar{F}_{A}([0, x])=F_{-A}(x) .
\end{aligned}
$$

- Assume now that $B=\left[\begin{array}{lll}0, x_{1} & 1\end{array}\right] \quad\left[x_{2}, x_{3}\right) \quad \ldots \quad\left[x_{2 k}, x_{2 k}+1\right]$, with $x_{1}<x_{2}<$ ... $<x$ n. Then:

$$
\begin{aligned}
& P_{\Gamma_{\mathrm{A}}}(B)=P(\{\omega: \Gamma \mathrm{C}(\omega) \quad B\})=P\left(\left\{\omega: \Gamma_{n}(\omega) \quad\left[0, x_{1}\right]\right\}\right)=F_{-\mathrm{A}}\left(x_{1}\right) \\
& E_{E_{\mathrm{A}}, F_{\mathrm{A}}}(B)=F_{-\mathrm{A}}\left(x_{1}\right)+\bar{F}_{i=1}^{i=1} \\
&=F_{-\mathrm{A}}\left(x_{1}\right)+{ }_{i=1} \max \left\{0, F_{\mathrm{A}}\left(x_{2 i+1}\right)-\bar{F}_{\mathrm{A}}\left(x_{2 i}\right)\right\} \\
& \max \left\{0, F_{\mathrm{A}}\left(x_{2 i+1}\right)-1\right\}=F_{-\mathrm{A}}\left(x_{1}\right)
\end{aligned}
$$

- Finally, assumethat $B=\left(\begin{array}{ll}x & 1, x_{2}\end{array}\right] \cdots\left(x_{2 n}, x_{2 n+1}\right]$, with $x_{1}<x_{2}<\ldots<x_{n} \quad n$. Then:

$$
\begin{aligned}
P_{\Gamma_{\mathrm{A}}}(B) & \left.=P_{n}\left\{\omega: \Gamma \mathrm{A}(\omega)=\left[0,1-v_{\mathrm{A}}(\omega)\right] \quad B\right\}\right)=0 \\
E_{E_{\mathrm{A}}}, \bar{F}_{\mathrm{A}}(B) & ={\underset{i=1}{i=1}}^{\max \left\{0, F_{\mathrm{A}}\left(x_{2 i+1}\right)-\bar{F}_{\mathrm{A}}\left(x_{2 i}\right)\right\}} \\
& ={ }_{i=1} \max \left\{0, F_{\mathrm{A}}\left(x_{2 i+1}\right)-1\right\}=0
\end{aligned}
$$

Then, $E_{E_{A}, \bar{F}_{A}}$ and $P_{\Gamma_{A} \text { coincidefor elementsin }} H$.
2. Consider $C \quad[0,1$.$] Denote by x \quad=\sup \{x:[0, x] \quad C\}$. Wehaveseveral cases:

- Assume that $\{x:[0, x] \quad C\}=$, that meansthat $0 / C$. Then, $0 / B$ for every $B \quad H$, and then $E_{E_{A}}, \bar{F}_{A}(B)=0$. Thus, we concludethat

$$
E_{E_{A}}, \bar{F}_{A}(C)=\sup _{B} \sup _{H}(B)=0
$$

Furthermore, since $0 / \quad C, P_{\text {ГA }}(C)=0$.

- Now, assumethat $x=\max \{x:[0, x] \quad C\}$, that meansthat $0 \quad C$ and there is $x$ such that $[0, x] \quad C$ but $[0, x+\varepsilon] \quad C$ for any $\varepsilon>0$. Then:

$$
\begin{aligned}
P_{\Gamma_{\mathrm{A}}}(C) & =P\left(\left\{\omega: \Gamma_{\mathrm{A}}(\omega) \quad C\right\}\right)=P\left(\left\{\omega: \Gamma_{\mathrm{A}}(\omega) \quad[0, x \quad]\right\}\right)=F_{-\mathrm{A}}(x) . \\
E_{E_{\mathrm{A}}, \bar{F}_{\mathrm{A}}([0, x])} & =F_{-\mathrm{A}}(x) .
\end{aligned}
$$

Furthermore, as in theprevious case:

$$
E_{E_{A}}, \bar{F}_{A}([0, x])=E-E_{A}, \bar{F}_{A}(B)
$$

for any $B$ such that $[0, x] \quad B$, and consequently

$$
E_{E_{A}}, \bar{F}_{A}(C)=E-E_{A}, \bar{F}_{A}([0, x])=F-A(x)
$$

- Finally, assumethat $x$ isasupremum, notamaximum, thatis: [0,x ) but $x / C$. Then:

$$
\begin{aligned}
P_{\Gamma_{A}}(C) & =P\left(\left\{\omega: \Gamma_{A}(\omega) \quad[0, x)\right\}\right)=\lim \varepsilon \rightarrow 0 P\left(\left\{\omega: 1-v_{\mathrm{A}}(\omega) \leq x-\varepsilon\right\}\right) \\
& =\lim _{x \rightarrow 0} E_{A}(x-\varepsilon)=\lim _{\varepsilon \rightarrow 0} P_{\Gamma_{A}}([0, x-\varepsilon]) \\
& =\lim \varepsilon \rightarrow 0 E_{E_{A}, \bar{F}_{A}}([0, x-\varepsilon]) \\
& =\sup B \quad[0, x \quad), B \quad H E_{E_{A}}, \bar{F}_{A}(B)=E-E_{A}, \bar{F}_{A}([0, x)) .
\end{aligned}
$$

In addition, every $B \quad H$ such that $[0, x) \quad B$ satisfies that $E_{E_{A}}, \bar{F}_{A}(B)=$ $E_{E_{A}, \bar{F}_{A}}([0, x))$. Then, thelowerprobabilityandthenaturalextensioncoincide.

Wecouldthink thatthe lowerprobabilityand thenatural extension of the asso ciated p-b ox also coincide when the b ounds of the ran dom interval are strictly comonotone functions. However, we can find examples where such equality do es not hold.

Example 5.73Consider therandom interval $\Gamma_{\mathrm{A}}$ defined on $\left([0,1], \beta_{[0,1]}, \lambda_{[0,1]}\right)$ by:

Since $\mu_{\mathrm{A}}(\omega)=\left(1-v_{\mathrm{A}}(\omega)\right)^{-\frac{1}{2}}$, we see that $\mu_{\mathrm{A}}$ and $1_{1-v_{\mathrm{A}}}$ are strictly comonotone. Its associated $p$-box is defined by:

Let us compute $P_{\Gamma_{\mathrm{A}}}$ and $E_{E_{\mathrm{A}}, \bar{F}_{\mathrm{A}}}$ for theset $\quad \underset{4}{1}, \frac{7}{8}$ :

$$
\begin{aligned}
& P_{\text {ГA }}{ }_{4}^{1}, \frac{7}{8}=P \quad \omega: \Gamma \mathrm{A}(\omega) \quad \underset{4}{1}, \frac{7}{8} \quad=\frac{1}{4} . \\
& E_{E_{A}, \bar{F}_{A}} \begin{array}{l}
1 \\
4
\end{array}, \frac{7}{8}=\max 0, F_{A}{ }_{4}^{1}-\bar{F}_{A}{ }_{8}^{7}={ }_{4}^{1} .
\end{aligned}
$$

Thus, they coincide. However, we aregoingto checkthat theydonot agreeonthe set ${ }_{4}^{1},{ }_{8}^{7}$.

$$
P_{\text {ГA }} \frac{1}{4}, \frac{7}{8} \quad=P \quad \omega: \Gamma \mathrm{A}(\omega) \quad \frac{1}{4}, \frac{7}{8} \quad=\frac{3}{4} .
$$

By definition, $E_{E_{A}, \bar{F}_{A}} \stackrel{1}{4}, \frac{7}{8}=\sup _{B}\left[\begin{array}{l}1,7 \\ 4\end{array} \frac{7}{8}\right], B H E_{E_{A}}, \bar{F}_{A}(B)$. But

$$
E_{E_{A}}, \bar{F}_{A}(B) \leq E_{E_{A}}, \bar{F}_{A} \quad \frac{1}{4}, \frac{7}{8}=\frac{1}{4}
$$

for any B $\quad \underset{4}{1}, \frac{7}{8}$ in $H$. Thus,

$$
P_{\Gamma \mathrm{A}} \quad \frac{1}{4}, \frac{7}{8} \quad>E_{E_{\mathrm{A}}, \bar{F}_{\mathrm{A}}} \quad \frac{1}{4}, \frac{7}{8}
$$

### 5.2.2 Connection with other approaches

We now investigate the connection between the framework we have presented and other theories that can befound in the li teratu re. For thisaim, wefirst investigate the connection with the approach of Grzegorzewski and Mrowka ([86]) and then we establisha one-to-one relationship between IVF-sets, p-b oxes and clouds.

## Probabilities asso ciated with IF-Sets

One of the most imp ortant works on the connection b etween IF-sets and imprecise probabilities is the work carried out in [86] on the probabilities of IF-sets. Given a probability space $(\Omega, A, P)$, the probability asso ciated with an IF-set $A$ is a numb er of the interval

$$
\begin{equation*}
{ }_{\Omega} \mu_{\mathrm{A}} \mathrm{~d} P,{ }_{\Omega} 1-v_{\mathrm{A}} \mathrm{~d} P . \tag{5.10}
\end{equation*}
$$

Using this definition, in [86] a linkisestablished with probabilitytheory by considering the appropriate op erators in the spaces of realintervals andof intuitionisticfuzzy sets. Note that in this work it is assum ed that we have a structure of probability space on $\Omega$ and that moreover the functions $\mu_{\mathrm{A}}, v_{\mathrm{A}}$ are measurable, as we have done in Section 5.2.1.

Remark 5.74This definit ion generalises an earlier definition by Zadeh [215] for fuzzy events. He defined the probability of a fu zzy even $\mu_{\mathrm{A}}$ by:

$$
P\left(\mu_{\mathrm{A}}\right)=\mu_{\Omega} \mathrm{d} P=E[\mu \mathrm{~A}] .
$$

Although Zadeh proved that thisdefinitionsatisfiestheaxioms ofKolmogorovwhenconsidering the minimum operator for making intersections, it was provedin [144] that this doesnothappenforany t-norm(see[100]fora complete review ont-norms). In fact, it wasproved thatevery strict and continuous t-norm made Zadeh's probability tosatisfy Kolmogorov axioms, while the $Ł u k a s i e w i c z ~ o p e r a t o r ~ i s ~ t h e ~ o n l y ~ n i l p o t e n t ~ a n d c o n t i n u o u s ~$ $t$-norm that satisfies these axioms.

If we consider the random interval asso ciated with the intuitionistic fuzzy set $A$ in Equation (5.5), we can see that the interval in Equation (5.10) corresp onds simply to the set of exp ectations of the measurable selections DAA: itfollowsfrom[130, Theorem14]that if we consider themapping id : $[0,1] \rightarrow[0,1]$ then the Aumann integral [13] of (id ${ }^{\circ}$ ГА ), defined on Equation (2.26), satisfies th at

$$
\inf (A) \quad\left(\text { id }^{\circ} \Gamma_{\mathrm{A}}\right) \mathrm{d} P, \sup (A) \quad\left(\text { id }{ }^{\circ} \Gamma_{\mathrm{A}}\right) \mathrm{d} P \quad=\quad(C) \quad \text { idd } P_{\Gamma_{\mathrm{A}}},(C) \quad \text { idd } P \Gamma_{\mathrm{A}},
$$

where (C) is used to denote the Cho quet integral [39,60] with respect to the non-additive measures $P_{\Gamma_{A}}, P_{\Gamma_{A}}$, resp ectively. Since on the other hand it is im mediate to see that

$$
\sup (A) \quad\left(\mathrm{id}^{\circ} \Gamma_{\mathrm{A}}\right) \mathrm{d} P=\quad\left(1-v_{\mathrm{A}}\right) \mathrm{d} P
$$

and

$$
\inf (A) \quad\left(\operatorname{id}^{\circ} \Gamma_{\mathrm{A}}\right) \mathrm{d} P=\quad \mu_{\mathrm{A}} \mathrm{~d} P
$$

we deduce that the probabilistic information ab out the intuitionistic fuzzy set $A$ can be determined in particular by the lower and upp er probabilities of its associated random interval. Notemoreover thatthe Aumannintegral of a random set is not convex in general, and it is only guarante ed to b e so when the probability $\operatorname{space}(\Omega, A, P)$ is nonatomic.

## A one-to-one relationship between p-b oxes and IFS

In Section 5.2.1, we saw that the corresp ondence between interval-valued fuzzy sets and $p$-b oxes on $[0,1]$ is many-to-one, in the sense that many different IFS determine the same
lower and upp er distribution functions. In this section, we cons ider a subset of the class of IFS for which a bijection can $b$ e established with the set of $p-b$ oxesln contradistinction to our work in Section 5.2.1, the p-b ox we shall establish here shall be established in the possibility space $\Omega$, that we shall conside $r$ here to $b$ e the unit interval.

Denote by IF $([0,1])$ the set:

$$
\text { IF } \quad([0,1])= \begin{cases}A & \text { IF } S s(\Omega) \mid \mu_{\mathrm{A}} \text { increasing and } v_{\mathrm{A}} \text { decreasing. } . ~\end{cases}
$$

Denote also ${ }^{F}([0,1])$ the set of all $p-b$ oxes on $[0,1]$, and let us define the correspondences:

$$
\begin{array}{rllll}
f_{1}: & F([0,1]) & \rightarrow & \text { IF }([0,1]) \\
& (F, F) & \rightarrow & A_{(F, F)}=(x, F(x), 1 & -\bar{F}(x)) \\
f_{2}: & I F \quad([0,1]) & \rightarrow & \rightarrow & ([0,1]) \\
& A & \rightarrow & \left(\mu_{\mathrm{A}, 1}-v_{\mathrm{A}}\right)
\end{array}
$$

We can se e that every IFSA has an asso ciated p-b ox $\left(\mu_{\mathrm{A}}, 1-v_{\mathrm{A}}\right)$. The interpretation here would be that ( $\mu_{\mathrm{A}}, 1-v_{\mathrm{A}}$ ) mo dels the imprecise information ab out the distribution function asso ciated with the set $A$, instead of ab out the memb ership function, as we did in Section 5.2.1.

The following prop erties follow immediately, and therefore their pro of is omitted:
Prop osition 5.75et $f_{1}, f_{2}$ be thetwo correspondences betweEn $[0,1]$ ) and IF ([0, 1]) considered above.Then:
(a) $f_{1}, f_{2}$ arebijective, and $f_{1}=f_{2}^{-1}$.
(b) $f_{1}((F, \bar{F})) \Gamma \quad F=F^{-}$.
(c) $f_{2}(A)=(F, F) \quad A \quad F S(\Omega)$.

Another prop erty assures that there exists a relationship b etween applicatiof $f_{1}$ and the sto chastic order( $F$ SD 2,5 ):

$$
\left(F_{1}, \bar{F}_{1}\right) \quad \mathrm{FSD}_{2,5}\left(F_{2}, \bar{F}_{2}\right) \quad f_{1}\left(\left(F_{1}, \bar{F}_{1}\right)\right) \quad f_{1}\left(\left(F_{2}, \bar{F}_{2}\right)\right)
$$

## A one-to-one relationship between clouds and IFS

A similar corresp ondence can be made $b$ etween intuitionistic fuzzy sets and clourtecall thata cloud isapair offunctions $\delta, \pi$ such that $\delta \leq \pi$ andthere are $x, y \quad[0,1]$ such that $\delta(x)=0$ and $\pi(y)=1$. Let usdenoteby IF the followingset:

Then, if we denoteby $C l([0,1])$ the set ofall theclouds on $[0,1]$, the following functions can be defined:

$$
\begin{array}{rlll}
g_{1}: & C l([0,1]) & \rightarrow & \text { IF }([0,1]) \\
& (\delta, \pi) & \rightarrow & A_{(\delta, \pi)}=(x, \delta(x), 1-\pi(x)) \\
& g_{2}: & \text { IF }([0,1]) & \rightarrow \\
& A & C l([0,1]) \\
& A & \left(\mu \mathrm{~A}, 1-v_{\mathrm{A}}\right)
\end{array}
$$

Acloud $(\delta, \pi)$ iscalled thin ([168]), when $\delta=\pi$; in that case, its asso ciated IVF-sets by $g_{1}$ becomes $(x, \delta, 1-\delta) \quad F S(\Omega)$, that is, a fuzzy set.

This is consistent in the sense that, given a possibility distribution $\pi$, it hasan asso ciated fuzzy setpl $(x):=\pi(x)$. Thus, thisisamoregeneralapproachthatcontains the relationship $b$ etween fuzzy sets and $p$ ossibility distribution as a partic ular case.

Another particular typ e of clouds are the fuzzy clouds, for which $\delta=0$. In sucha case the asso ciated IFS is $(x, 0,1-\pi)$.

Some immediate prop erties of the ab ove corresp ondences are the following:
Prop osition 5.76et $g_{1}, g_{2}$ be the correspondences bet wee®l/([0, 1]) and IF ([0, 1]) considered above.The fol lowing conditions hold:
(a) $g_{1}((\delta, \pi)) \quad F S(\Omega) \quad \delta=\pi \quad(\delta, \pi)$ is athin cloud.
(b) $g_{2}(A)=(\delta, \delta) \quad A \quad F S(\Omega)$.
(c) $g_{1}, g_{2}$ arebijective, and $g_{1}=g_{2}^{-1}$.

The ab ove corresp ondence is related to the connection $b$ etween clouds and imprecise probabilities established in [65], where the credal set asso ciated with a clou $\varnothing, \pi)$ is the set of probability measures on $\Omega$ satisfying $M\left(\left(\pi, 1^{-} \delta\right)\right)=M(\pi)^{\cap} M\left(1^{-} \delta\right)$, where $M(\pi)$ (resp ectively $M(1-\delta)$ )is the credal set asso ciated with the p ossibility measure $\pi$ (resp ectively1 - $\delta$ ).

### 5.3 Applications

In the previous sections we have presented a theoretical study of comparison measures for intuitionistic fuzzy sets, fo cusing in the study of IF-divergences, andwe havealso investigate $d$ the connection $b$ etween IVF-sets and imprecise probabilities.

Now we shall present some p ossible applications of the theories we have develop ed. On one hand, we will see how IF-divergences can be applied in multiple attribu te decision
making ([ 211]), and we will outline some examples of application in pattern recognition ([92, 93, 114]). Ontheother hand, we shall see how the connection between IVF-sets and imprecise probabilities allows us to extend sto chastic dominance to the comparison more than two sets ofcumulative distributionfunctions.

### 5.3.1 Application to pattern recognition

One interesting are a of application of comparison meas ures b etween IF-sets is in pattern recognition ([92, 93, 114]). Let us conside r a universe $\Omega=\left\{\omega_{1}, \ldots, c_{1}\right\}$, and assume the patterns $A_{1}, \ldots, A_{n}$, that are represented by IF-sets. The n :

$$
A_{j}=\left\{\left(\omega^{i}, \mu_{\mathrm{A}_{j}}\left(\omega^{i}\right), v_{\mathrm{A}_{j}}\left(\omega^{i}\right) \mid i=1, \ldots, n\right\}, \text { for } j=1, \ldots, m\right.
$$

If $B$ is a sampl e that is also represented by an IF-set, and we want to classify it into one of the patterns, we can measure the differenc e b etweß and $A_{i}$ :

$$
D_{\mathrm{IFS}}\left(A_{1}, B\right), \ldots, D_{\mathrm{IFS}}(A m, B)
$$

where $D_{\text {IFS }}$ can be an IF-divergence or an IF-dissimilarity. Finally, we asso ciate $B$ to the patte rn $A_{j}$ whenever $D_{\text {IFS }}\left(A_{j}, B\right)=\min _{i=1, \ldots, m}\left(D_{\text {IFS }}\left(A_{i}, B\right)\right)$, i.e., we classify $B$ into thepattern from whichit differs theleast.

Example 5.77([114, Section 4]Fonsider a possibility space with three element s, $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$, and the fol lowing three patterns:

$$
\begin{aligned}
& A_{1}=\{(\omega 1,0.1,0.1), 2(\omega 0.5,0.4), 3(\omega .1,0.9\} \\
& A_{2}=\{(\omega 1,0.5,0.5),\{(\omega 0.7,0.3),(\mathbb{3}, 0,0.8) . \\
& A_{3}=\left\{(\omega 1,0.7,0.2),\left(\mathcal{Z}_{1} 0.1,0.8\right),(\mathbb{Z}, 0.4,0.4)\right.
\end{aligned}
$$

Assume that a sample $B=\{(\omega 1,0.4,0.4), 2(\omega 0.6,0.2), 3(\omega, 0.8\}$ is given, and letus considerthe Hamming and the Hausdorff distances for IF-sets. We obtain the fol lowing results.

$$
\begin{array}{ll}
l_{\mathrm{IFS}}\left(A_{1}, B\right)=1, & l_{\mathrm{IFS}}\left(A_{2}, B\right)=0.4, \\
d_{\mathrm{H}}\left(A_{1}, B\right)=0.6, & d_{\mathrm{H}}\left(A_{2}, B\right)=0.2, \\
\left.d_{\mathrm{H}}\left(A_{3}, B\right)=1.3\right)=1.3 .
\end{array}
$$

Thus, both distances classify $B$ into thepattern $A_{2}$, because

$$
\begin{aligned}
& I_{\mathrm{IFS}}\left(A_{2}, B\right) \leq I_{\mathrm{IFS}}\left(A_{1}, B\right), I_{\mathrm{IFS}}\left(A_{3}, B\right) . \\
& d_{\mathrm{H}}\left(A_{2}, B\right) \leq d_{\mathrm{H}}\left(A_{1}, B\right), d_{\mathrm{H}}\left(A_{3}, B\right) .
\end{aligned}
$$

In the frame work of pattern recognition it is usually assumed that every p oint $u_{i}$ in the universehas the same weight, that is, $\alpha_{i}=\frac{1}{n}$ for $i=1, \ldots, n$. However, it is p oss ible that the weight vector $\alpha=\left(\begin{array}{ll}\alpha & 1, \ldots, \alpha_{h}\end{array}\right)$ is not cons tant, that is, $\alpha_{i} \geq 0$ for $i=1, \ldots, n$ and $\alpha_{1}+\ldots .+\alpha \quad n=1$.

|  | $\omega_{1}$ | $\omega_{2}$ | $\omega_{3}$ | $\omega_{4}$ | $\omega_{5}$ | $\omega_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu_{\mathrm{C}_{1}(\omega)}$ | 0.739 | 0.033 | 0.188 | 0.492 | 0.020 | 0.739 |
| $\nu_{\mathrm{C}_{1}}(\omega)$ | 0.125 | 0.818 | 0.626 | 0.358 | 0.628 | 0.125 |
| $\mu_{\mathrm{C}_{2}(\omega)}$ | 0.124 | 0.030 | 0.048 | 0.136 | 0.019 | 0.393 |
| $\nu_{\mathrm{C}_{2}}(\omega)$ | 0.665 | 0.825 | 0.800 | 0.648 | 0.823 | 0.653 |
| $\mu_{\mathrm{C}_{3}(\omega)}$ | 0.449 | 0.662 | 1.000 | 1.000 | 1.000 | 1.000 |
| $\nu_{\mathrm{C}_{3}}\left(\omega^{\prime}\right)$ | 0.387 | 0.298 | 0.000 | 0.000 | 0.000 | 0.000 |
| $\mu_{\mathrm{C}_{4}(\omega)}$ | 0.280 | 0.521 | 0.470 | 0.295 | 0.188 | 0.735 |
| $\nu_{\mathrm{C}_{4}}\left(\omega^{\prime}\right)$ | 0.715 | 0.368 | 0.423 | 0.658 | 0.806 | 0.118 |
| $\mu_{\mathrm{C}_{5}(\omega)}$ | 0.326 | 1.000 | 0.182 | 0.156 | 0.049 | 0.675 |
| $\nu_{\mathrm{C}_{5}}\left(\omega^{\prime}\right)$ | 0.452 | 0.000 | 0.725 | 0.765 | 0.896 | 0.263 |
| $\mu_{\mathrm{B}}\left(\omega^{*}\right)$ | 0.629 | 0.524 | 0.210 | 0.218 | 0.069 | 0.658 |
| $\nu_{B}\left(\omega^{*}\right)$ | 0.303 | 0.356 | 0.689 | 0.753 | 0.876 | 0.256 |

Table 5.2: Six kindsofmaterialsare representedbylF-sets.

To deal with this situation, we prop ose the following metho d. Let usconsidera lo cal IF-divergence $D_{\text {IFS }}$, and for every point $u_{i}$ let us compute the follow ing:

$$
D_{\mathrm{IFS}}\left(A_{j}, B\right)-D_{\mathrm{IFS}}\left(A_{j} \quad\{\omega\}, B \quad\{\omega\}\right)=h \quad \mathrm{IFS}\left(\mu_{\mathrm{A}_{j}}\left(\omega_{i}\right), v \mathrm{~A}_{\mathrm{j}}\left(\omega_{i}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right), \nu \mathrm{B}\left(\omega_{i}\right)\right)
$$

Then, for every $j\{1, \ldots, m\}$ we have that

$$
\begin{aligned}
d\left(A_{j}, B\right) & =\omega_{i=1}^{i} n\left(D_{\mathrm{IFS}}\left(A_{j}, B\right)-D_{\mathrm{IFS}}\left(A_{j} \quad\{\omega\}, B \quad\{\omega\}\right)\right) \\
& =\alpha_{i=1} \alpha_{i} h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}_{\mathrm{j}}}\left(\omega^{i}\right), v_{\mathrm{A}}\left(\omega^{j}\right), \mu_{\mathrm{B}}\left(\omega^{i}\right), v_{\mathrm{B}}\left(\omega^{i}\right)\right) .
\end{aligned}
$$

Then, we classify the sample $B$ intothe pattern $A_{j}$ if

$$
d(A j, B)=\min _{i=1, \ldots, m}\left(d\left(A_{i}, B\right)\right)
$$

Example 5.78 ([206, Example 4.2 ${ }^{\text {O}}$ onsider five kinds of mineral fields, each of themfeatured by the content of six minerals andcontaining one kind of typical hybrid mineral. The five kinds of typical hybrid mineral are represented by IF-setsC ${ }_{1}, C_{2}, C_{3}$, $C_{4}$ and $C_{5}$ in $\Omega=\left\{\omega_{1}, \ldots, c_{3}\right\}$,respectively. Assume that we are given anot her kind of hybrid mineral $B$, and that we want to classify it intoone of the aforementioned mineral fields. Assume that the IF-sets $C_{i}$ and $B$ aredefined in Table 5.2, and that our experts have established the fol lowing weight vector on: $\alpha=\frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}$. Let us use our method to classify B. Ifwe consider the Hamming distance forlF-sets as local

IF-divergence, we obtain that:

|  | $\omega_{1}$ | $\omega_{2}$ | $\omega_{3}$ | $\omega_{4}$ | $\omega_{5}$ | $\omega_{6}$ |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $I_{\text {IFS }}\left(C_{1}, B\right)-I_{\text {IFS }}\left(C_{1}\{\omega\}, B\right.$ | $\{\omega\})$ | 0.178 | 0.491 | 0.085 | 0.395 | 0.297 | 0.131 |
| $I_{\text {FS }}\left(C_{2}, B\right)-I_{\text {IFS }}\left(C_{2}\{\omega\}, B\right.$ | $\{\omega\}\})$ | 0.505 | 0.494 | 0.162 | 0.187 | 0.103 | 0.397 |
| $I_{\text {IFS }}\left(C_{3}, B\right)-I_{\text {IFS }}\left(C_{3}\{\omega\}\right\}, B$ | $\{\omega\})$ | 0.180 | 0.138 | 0.790 | 0.782 | 0.931 | 0.342 |
| $I_{\text {IFS }}\left(C_{4}, B\right)-I_{\text {IFS }}\left(C_{4}\{\omega\}, B\right.$ | $\{\omega\})$ | 0.412 | 0.012 | 0.266 | 0.095 | 0.119 | 0.138 |
| $I_{\text {IFS }}\left(C_{5}, B\right)-I_{\text {IFS }}\left(C_{5}\{\omega\}, B\right.$ | $\{\omega\})$ | 0.303 | 0.476 | 0.036 | 0.062 | 0.020 | 0.024 |

whence

$$
\begin{aligned}
& d\left(C_{1}, B\right)={ }_{4}^{7} 0.178+{ }_{4}^{7} 0.491+{ }_{8}^{7} 0.085+{ }_{8}^{7} 0.395+{ }_{8}^{7} 0.297+{ }_{8}^{7} 0.131=0.2808 . \\
& d\left(C_{2}, B\right)={ }_{4}^{7} 0.505+{ }_{4}^{7} 0.494+{ }_{8}^{7} 0.162+{ }_{8}^{7} 0.187+{ }_{8}^{7} 0.103+{ }_{8}^{7} 0.397=0.3559 . \\
& d\left(C_{3}, B\right)={ }_{4}^{7} 0.180+{ }_{4}^{7} 0.138+{ }_{8}^{7} 0.790+\frac{1}{8} 0.782+\frac{{ }_{8}^{7}}{7} 0.931+{ }_{8}^{7} 0.342=0.4351 . \\
& d\left(C_{4}, B\right)={ }_{4}^{7} 0.412+{ }_{4}^{7} 0.012+{ }_{8}^{7} 0.266+{ }_{8}^{7} 0.095+{ }_{8}^{7} 0.119+{ }_{8}^{7} 0.138=0.1833 . \\
& d\left(C_{5}, B\right)={ }_{4}^{7} 0.303+{ }_{4}^{7} 0.476+{ }_{8}^{7} 0.036+{ }_{8}^{\frac{1}{7} 0.062+}{ }_{8}^{7} 0.020+{ }_{8}^{7} 0.024=0.2125 .
\end{aligned}
$$

Thus, we classify $B$ into thehybrid mineral $C_{4}$.
If werepeat the process withlocal IF-divergence $d_{\mathrm{H}}$, we obtain the fol lowing:

|  | $\omega_{1}$ | $\omega_{2}$ | $\omega_{3}$ | $\omega_{4}$ | $\omega_{5}$ | $\omega_{5}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $d_{\mathrm{H}}\left(C_{1}, B\right)-d_{\mathrm{H}}\left(C_{1}\{\omega\}, B\right.$ | $\{\omega\})$ | 0.178 | 0.491 | 0.063 | 0.395 | 0.248 | 0.131 |
| $d_{\mathrm{H}}\left(C_{2}, B\right)-d_{\mathrm{H}}\left(C_{2}\right.$ | $\{\omega\}, B$ | $\{\omega\}$ |  |  |  |  |  |
| $d_{\mathrm{H}}\left(C_{3}, B\right)-d_{\mathrm{H}}\left(C_{3}\right.$ | $\{\omega\}, B$ | $\{\omega\}$ | 0.505 | 0.494 | 0.162 | 0.105 | 0.053 |
| 0.397 |  |  |  |  |  |  |  |
| $d_{\mathrm{H}}\left(C_{4}, B\right)-d_{\mathrm{H}}\left(C_{4}\right.$ | $\{\omega\}, B$ | $\{\omega\}$ | 0.180 | 0.138 | 0.790 | 0.782 | 0.931 |
| 0.342 |  |  |  |  |  |  |  |
| $d_{\mathrm{H}}\left(C_{5}, B\right)-d_{\mathrm{H}}\left(C_{5}\{\omega\}, B\right.$ | $\{\omega\})$ | 0.412 | 0.012 | 0.266 | 0.095 | 0.119 | 0.138 |
|  | 0.303 | 0.476 | 0.036 | 0.062 | 0.020 | 0.017 |  |

Then:

$$
\begin{aligned}
& d\left(C_{1}, B\right)={ }_{4}^{1} 0.178+{ }_{4}^{1} 0.491+{ }_{8}^{1} 0.063+{ }_{8}^{1} 0.395+{ }_{8}^{1} 0.248+{ }_{8}^{1} 0.131=0.2719 . \\
& d\left(C_{2}, B\right)={ }_{4}^{1} 0.505+{ }_{4}^{7} 0.494+{ }_{8}^{7} 0.162+{ }_{8}^{1} 0.105+{ }_{8}^{1} 0.053+{ }_{8}^{7} 0.397=0.3394 . \\
& d\left(C_{3}, B\right)={ }_{4}^{1} 0.180+{ }_{4}^{1} 0.138+{ }_{8}^{1} 0.790+\frac{1}{1} 0.782+\frac{1}{8} 0.931+{ }_{8}^{1} 0.342=0.4351 . \\
& d\left(C_{4}, B\right)={ }_{4}^{1} 0.412+{ }_{4}^{7} 0.012+{ }_{8}^{7} 0.266+{ }_{8}^{7} 0.095+{ }_{8}^{7} 0.119+{ }_{8}^{7} 0.138=0.1833 . \\
& d\left(C_{5}, B\right)={ }_{4}^{1} 0.303+{ }_{4}^{7} 0.476+{ }_{8}^{7} 0.036+{ }_{8}^{7} 0.062+{ }_{8}^{7} 0.020+{ }_{8}^{7} 0.017=0.2116,
\end{aligned}
$$

and we conclude that wealso should classify $B$ into thehybrid mineral $C_{4}$.

### 5.3.2 Application todecision making

In [211], Xushowedhowmeasures of similarityforlF-sets(and, consequently, also IFdissimilarities) can be applied within multiple attribute decision making. Letus overview the main asp ects of this application.

We use the following notation: let $A=\left\{A_{1}, \ldots, A_{m}\right\}$ denote a set ofm alternatives, let $C=\left\{C_{1}, \ldots, C_{n}\right\}$ be a set of attributes and let $\alpha=\left\{\alpha_{1}, \ldots, C_{n}\right\}$ be its asso ciated weight vector(i.e., it holdsthat $\alpha_{i} \geq 0$ for every $i=1, \ldots, n$ and that $\alpha_{1}+\ldots+\alpha n=1$ ).

Every alternative $A_{i}$ can be represented by means of an IF-set:

$$
A_{i}=\left\{\left(C_{j}, \mu_{\mathrm{A}_{i}}\left(C_{j}\right), \nu_{A_{i}}\left(C_{j}\right) \mid j=1, \ldots, n\right\} .\right.
$$

Thus, $\mu_{\mathrm{A}_{i}}\left(C_{j}\right)$ and $V_{\mathrm{A}_{i}}\left(C_{j}\right)$ stand for the degree in which alternative $A_{i}$ agrees and do es not agree with characteristic $C_{j}$, resp ectively.

Xu ([211]) defined the IF-sets $A^{+}$and $A^{-}$inthe followingway:

$$
\begin{aligned}
& A^{+}=\left\{\left(C_{j}, \mu_{\mathrm{A}^{+}}\left(C_{j}\right), v_{\mathrm{A}^{+}}\left(C_{j}\right)\right) \mid j=1, \ldots, n \quad\right\} \text { and } \\
& A^{-}=\left\{\left(C_{j}, \mu_{\mathrm{A}^{-}}\left(C_{j}\right), v_{\mathrm{A}^{-}}\left(C_{j}\right)\right) \mid j=1, \ldots, n\right\},
\end{aligned}
$$

where

$$
\begin{array}{ll}
\mu_{\mathrm{A}^{+}}\left(C_{j}\right)=\max _{i=1, \ldots, m}\left(\mu_{\mathrm{A}_{\mathrm{i}}}\left(C_{j}\right)\right), & v_{\mathrm{A}^{+}}\left(C_{j}\right)=\min _{i=1, \ldots, m}\left(v_{\mathrm{A}_{\mathrm{i}}}\left(C_{j}\right)\right), \\
\mu_{\mathrm{A}^{-}}\left(C_{j}\right)=\min _{i=1, \ldots, m}\left(\mu_{\mathrm{A}_{\mathrm{i}}}\left(C_{j}\right)\right), & v_{\mathrm{A}^{-}}\left(C_{j}\right)=\max _{i=1, \ldots, m}\left(v_{\mathrm{A}_{\mathrm{i}}}\left(C_{j}\right)\right), \tag{5.12}
\end{array}
$$

that is, $A^{+}=\sum_{i=1}^{m} A_{i}$ and $A^{-}=\sum_{i=1}^{m} A_{i}$.
These IF-sets can b e interpreted as the "optimal" andthe "least optimal" alternatives. Therefore, the preferredalternative in $A$ would the one that is simultaneously more similar to $A^{+}$andmore differentto $A^{-}$.

In order to measure how different is $A_{i}$ to both $A^{+}$and $A^{-}$, Xu consideredsome different functions, such as:

$$
\begin{aligned}
D\left(A^{+}, A_{i}\right)={ }_{j=1}^{n} \alpha_{j}\left|\mu_{\mathrm{A}^{+}}\left(C_{j}\right)-\mu_{\mathrm{A}_{\mathrm{i}}}\left(C_{j}\right)\right|^{\beta}+\mid v_{\mathrm{A}^{+}}\left(C_{j}\right) & -\left.v_{\mathrm{A}_{\mathrm{i}}}\left(C_{j}\right)\right|^{\beta} \\
& +\left|\pi_{\mathrm{A}^{+}}\left(C_{j}\right)-\pi_{\mathrm{A}_{\mathrm{i}}}\left(C_{j}\right)\right|^{\beta \quad \frac{1}{\beta}}
\end{aligned}
$$

and

$$
\begin{aligned}
D\left(A^{-}, A_{i}\right)={ }_{j=1}^{n} \alpha_{j}\left|\mu_{\mathrm{A}^{-}}\left(C_{j}\right)-\mu_{\mathrm{A}_{i}}\left(C_{j}\right)\right|^{\beta}+\mid v_{\mathrm{A}^{-}}\left(C_{j}\right) & -\left.v_{\mathrm{A}_{i}}\left(C_{j}\right)\right|^{\beta} \\
& +\left|\pi_{\mathrm{A}^{+}}\left(C_{j}\right)-\pi_{\mathrm{A}_{\mathrm{i}}}\left(C_{j}\right)\right|^{\beta \quad \frac{1}{\beta}} .
\end{aligned}
$$

Besides, Xu considerthequotient:

$$
d_{i}=\frac{D\left(A^{+}, A_{i}\right)}{D\left(A^{+}, A_{i}\right)+D\left(A^{-}, A_{i}\right)}
$$

Then, the greaterthe value $d_{i}$, the better the alternative $A_{i}$.
Next we prop ose a mo dification of the ab ove method.Let us consider a lo cal IFdivergence $D_{\text {IFS }}$, so th at for every pair of IF-sets $A$ and $B, D_{\text {IFS }}(A, B)$ can be expressed by:

$$
D_{\mathrm{IFS}}(A, B)=h_{i=1}^{n} h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}\left(C_{i}\right), \nu_{\mathrm{A}}\left(C_{i}\right), \mu_{\mathrm{B}}\left(C_{i}\right), \nu_{\mathrm{B}}\left(C_{i}\right)\right) \text {. }
$$

We consider the IF-set $A_{i}$, that represents the $i$-th alternative, and for every $j$ $\{1, \ldots, h$ we compute the followin g :
$D_{\mathrm{IFS}}\left(A^{+}, A_{i}\right)-D_{\mathrm{IFS}}\left(A^{+}\left\{C_{j}\right\}, A_{i} \quad\left\{C_{j}\right\}\right)=h_{\text {IFS }}\left(\mu_{\mathrm{A}^{+}}\left(C_{j}\right), \nu \mathrm{A}^{+}\left(C_{j}\right), \mu_{\mathrm{A}_{i}}\left(C_{j}\right), V \mathrm{~A}_{\mathrm{i}}\left(C_{j}\right)\right)$.
This quantity me asures how different $A^{+}$and $A_{i}$ are with resp ect to element $C_{j}$. Then, we can compute the difference between $A_{i}$ and $A^{+}$:

$$
d\left(A_{i}, A^{+}\right)={ }_{j=1}^{n} \alpha_{j} h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}^{+}}\left(C_{j}\right), \nu_{\mathrm{A}^{+}}\left(C_{j}\right), \mu_{\mathrm{A}_{i}}\left(C_{j}\right), \nu_{\mathrm{A}_{i}}\left(C_{j}\right)\right) .
$$

In thi s wayd $\left(A_{i}, A^{+}\right)$measures how much difference there is betweeti and theoptimal set $A^{+}$.

Similarly, we can compute the difference b etweeA $i$ and $A^{-}$:

$$
d\left(A_{i}, A^{-}\right)=\alpha_{j=1} h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}^{-}}\left(C_{j}\right), v_{\mathrm{A}^{-}}\left(C_{j}\right), \mu_{\mathrm{A}_{\mathrm{i}}}\left(C_{j}\right), v \mathrm{~A}_{\mathrm{i}}\left(C_{j}\right)\right) .
$$

Thus, $d\left(A_{i}, A^{-}\right)$measureshow much differentis $A_{i}$ fromthe leastoptimal $A^{-}$.
Therefore, if we consider a map $f:\left[0, \infty^{\infty}\right)^{\times}\left[0,{ }^{\infty}\right) \rightarrow\left[0,{ }^{\infty}\right)$ that is dec reasing in the first comp onent and increasing on the second one, we obtainthe followingvalue $a_{i}$ for alternative $A_{i}$ :

$$
a_{i}=f\left(d\left(A_{i}, A^{+}\right), d\left(A_{i}, A^{-}\right)\right)
$$

Thus, thegreaterthe valueof $a_{i}$, the more preferred is the alternative $A_{i}$.
We can see that we can cho ose the functiorf dep ending on the part we are more interested in: the difference between $A_{i}$ andthe optimum $A^{+}$or the difference between $A_{i}$ andthe leastoptimum $A^{-}$. The followingexamples illustratethisfact.

Example 5.79 ( $[211$, Section 47 ) cityis planning to builda library, and thecity commissioner has to determine the air-conditioning system to be instal led in the library. The builder offers the commissionerfive feasible alternatives $A_{i}$, which might be adapted to the physical structure of the library. Suppose that three attributes $C_{1}$ (economic), $C_{2}$ (functional) and $C_{3}$ (operational) are taken into consideration in the instal lation problem,
and that the weight vectorof the attributes $C_{j}$ is $\alpha=(0.3,0.5,0.2)$. Assume moreover that the characteristics of the alternatives $A_{i}$ are represented by the fol lowing IF-sets:

$$
\begin{aligned}
& A_{1}=\left\{\left(C_{1}, 0.2,0.4\right),(\Omega 0.7,0.1),(\Omega, 0.6,0.3)\right. \text {, } \\
& A_{2}=\left\{\left(C_{1}, 0.4,0.2\right),(\Omega 0.5,0.2),(\Omega 0.8,0 .\}^{2}\right) \\
& A_{3}=\left\{\left(C_{1}, 0.5,0.4\right),(\Omega 0.6,0.2),\left(6 C 0.9, \sigma^{\prime}\right)\right. \text {, } \\
& A_{4}=\left\{\left(C_{1}, 0.3,0.5\right),(\Omega 0.8,0.1),\left(3 C 0.7,0 . \varepsilon_{2}\right)\right. \\
& A_{5}=\left\{\left(C_{1}, 0.8,0.2\right),(\Omega 0.7,0),(๔, 0.1,0.6\}\right) \text { ). }
\end{aligned}
$$

For these IF-sets, the correspondingA+ and $A^{-}$aregiven by:

$$
\begin{aligned}
& A^{+}=\left\{\left(C_{1}, 0.8,0.2\right),(\Omega 0.8,0),\left(6 C 0.9, \delta^{-}\right) .\right. \\
& A^{-}=\left\{\left(C_{1}, 0.2,0.5\right),(\Omega, 0.5,0.2),(\Omega, 0.1,0.6)\right.
\end{aligned}
$$

Then, if we consider the Hamming distance for IF-sets (see Subsect ion 5.1.3), we obtain the fol lowing:

|  |  | $C_{1}$ | $C_{2}$ | $C_{3}$ |  |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $I_{\text {IIFS }}\left(A_{1}, A^{+}\right)-I_{\text {IFS }}\left(A_{1}\right.$ | $\left\{C_{j}\right\}, A^{+}$ | $\left.\left\{C_{j}\right\}\right)$ | 1.2 | 0.2 | 0.6 |
| $I_{\text {IFS }}\left(A_{1}, A^{-}\right)-I_{\text {IFS }}\left(A_{1}\right.$ | $\left\{C_{j}\right\}, A^{-}$ | $\left.\left\{C_{j}\right\}\right)$ | 0.2 | 0.4 | 1 |
| $I_{\text {IFS }}\left(A_{2}, A^{+}\right)-I_{\text {IFS }}\left(A_{2}\right.$ | $\left\{C_{j}\right\}, A^{+}$ | $\left.\left\{C_{j}\right\}\right)$ | 0.8 | 0.6 | 0.2 |
| $I_{\text {IFS }}\left(A_{2}, A^{+}\right)-I_{\text {IFS }}\left(A_{2}\right.$ | $\left\{C_{j}\right\}, A^{+}$ | $\left.\left\{C_{j}\right\}\right)$ | 0.6 | 0 | 1.4 |
| $I_{\text {IFS }}\left(A_{3}, A^{+}\right)-I_{\text {IFS }}\left(A_{3}\right.$ | $\left\{C_{j}\right\}, A^{+}$ | $\left.\left\{C_{j}\right\}\right)$ | 0.6 | 0.4 | 0 |
| $I_{\text {IFS }}\left(A_{3}, A^{+}\right)-I_{\text {IFS }}\left(A_{3}\right.$ | $\left\{C_{j}\right\}, A^{+}$ | $\left.\left\{C_{j}\right\}\right)$ | 0.6 | 0.2 | 1.6 |
| $I_{\text {IFS }}\left(A_{4}, A^{+}\right)-I_{\text {IFS }}\left(A_{4}\right.$ | $\left\{C_{j}\right\}, A^{+}$ | $\left.\left\{C_{j}\right\}\right)$ | 1 | 0.2 | 0.4 |
| $I_{\text {IIFS }}\left(A_{4}, A^{+}\right)-I_{\text {IFS }}\left(A_{4}\right.$ | $\left\{C_{j}\right\}, A^{+}$ | $\left.\left\{C_{j}\right\}\right)$ | 0.2 | 0.6 | 1.2 |
| $I_{\text {IFS }}\left(A_{5}, A^{+}\right)-I_{\text {IFS }}\left(A_{5}\right.$ | $\left\{C_{j}\right\}, A^{+}$ | $\left.\left\{C_{j}\right\}\right)$ | 0 | 0.2 | 1.6 |
| $I_{\text {IFS }}\left(A_{5}, A^{+}\right)-I_{\text {IFS }}\left(A_{5}\right.$ | $\left\{C_{j}\right\}, A^{+}$ | $\left.\left\{C_{j}\right\}\right)$ | 1.2 | 0.4 | 0 |

Thus:

$$
\begin{array}{ll}
d\left(A_{1}, A^{+}\right)=0.3 & 1.2+0.50 .2+0.20 .6=0.58 . \\
d\left(A_{1}, A^{-}\right)=0.3 & 0.2+0.50 .4+0.21=0.46 . \\
d\left(A_{2}, A^{+}\right)=0.3 & 0.8+0.50 .6+0.20 .2=0.58 . \\
d\left(A_{2}, A^{-}\right)=0.3 & 0.6+0.50+0.2 \quad 1.4=0.46 . \\
d\left(A_{3}, A^{+}\right)=0.3 & 0.6+0.50 .4+0.20=0.38 . \\
d\left(A_{3}, A^{-}\right)=0.3 & 0.6+0.50 .2+0.21 .6=0.6 . \\
d\left(A_{4}, A^{+}\right)=0.3 & 1+0.50 .2+0.20 .4=0.48 . \\
d\left(A_{4}, A^{-}\right)=0.3 & 0.2+0.50 .6+0.21 .2=0.6 . \\
d\left(A_{5}, A^{+}\right)=0.3 & 0+0.50 .2+0.21 .6=0.42 . \\
d\left(A_{5}, A^{-}\right)=0.3 & 1.2+0.50 .4+0.20=0.56 .
\end{array}
$$

Assume that we want to choose the alternative that is, at the same time, more similar to $A^{+}$andlesssimilar totheworstcase $A^{-}$. Insuchacase wecanconsiderthefunction $f$ given byf $(x, y)=\frac{1}{2} \frac{1}{x}+y$. We cansee that thisfunction take intoaccount the difference
between $A_{i}$ and $A^{+}$and between $A_{i}$ and $A^{-}$. We obtain the fol lowing results:

$$
\begin{aligned}
& a_{1}=f\left(d\left(A_{1}, A^{+}\right), d\left(A_{1}, A^{-}\right)\right)=\begin{array}{c}
1 \\
2
\end{array} \frac{1}{0.58}+0.46=1.09 . \\
& a_{2}=f\left(d\left(A_{2}, A^{+}\right), d\left(A_{2}, A^{-}\right)\right)={ }_{2}^{1} \frac{1}{2} \frac{1}{0.58}+0.46=1.09 \text {. } \\
& a_{3}=f\left(d\left(A_{3}, A^{+}\right), d\left(A_{3}, A^{-}\right)\right)={ }_{2}^{1} \frac{1}{0.38}+0.6=1.62 . \\
& a_{4}=f\left(d\left(A_{4}, A^{+}\right), d\left(A_{4}, A^{+}\right)\right)={ }_{2}^{1} \frac{1}{0.48}+0.6=1.34 . \\
& a_{5}=f\left(d\left(A_{5}, A^{+}\right), d\left(A_{5}, A^{+}\right)\right)={ }_{2}^{1} \frac{1}{0.42}+0.56=1.47 .
\end{aligned}
$$

Assume nextthat we decide to choose the alternativethat is moresimilar to the optimum $A^{+}$, regard less the difference from $A^{-}$. In that case, wemayconsider $f(x, y)=\frac{1}{x}$. This functiononly dependsin thedifference between $A_{i}$ andthe optimum $A^{+}$. We obtain the fol lowing result:

$$
\begin{aligned}
& a_{1}=f\left(d\left(A_{1}, A^{+}\right), d\left(A_{1}, A^{-}\right)\right)=\frac{1}{d\left(A_{1}, A^{+}\right)}=\frac{1}{0.58} \\
& a_{2}=f\left(d\left(A_{2}, A^{+}\right), d\left(A_{2}, A^{-}\right)\right)=\frac{1}{d\left(A_{2}, A^{+}\right)}=\frac{1}{0.58} . \\
& a_{3}=f\left(d\left(A_{3}, A^{+}\right), d\left(A_{3}, A^{-}\right)\right)=\frac{1}{d\left(A_{3}, A^{+}\right)}=\frac{1}{0.38} . \\
& a_{4}=f\left(d\left(A_{4}, A^{+}\right), d\left(A_{4}, A^{+}\right)\right)=\frac{1}{d\left(A_{4}, A^{+}\right)}=\frac{1}{0.48} . \\
& a_{5}=f\left(d\left(A_{5}, A^{+}\right), d\left(A_{5}, A^{+}\right)\right)=\frac{1}{d\left(A_{5}, A^{+}\right)}=\frac{1}{0.42} .
\end{aligned}
$$

Thus, $A_{3} \quad A_{5} \quad A_{4} \quad A_{1} \quad A_{2}$, and as a consequence the best alternative is $A_{3}$.
Final ly, assume we are interested in the alternative that differs more from the worst alternative $A^{-}$. In sucha situationwe shouldconsider $f(x, y)=y$. This functiononly depends on the differencebetweenA ${ }_{i}$ and $A^{-}$. We obtain the fol lowing results:

$$
\begin{aligned}
& a_{1}=f\left(d\left(A_{1}, A^{+}\right), d\left(A_{1}, A^{-}\right)\right)=d\left(A_{1}, A^{-}\right)=0.46 . \\
& a_{2}=f\left(d\left(A_{2}, A^{+}\right), d\left(A_{2}, A^{-}\right)\right)=d\left(A_{2}, A^{-}\right)=0.46 . \\
& a_{3}=f\left(d\left(A_{3}, A^{+}\right), d\left(A_{3}, A^{-}\right)\right)=d\left(A_{3}, A^{-}\right)=0.6 . \\
& a_{4}=f\left(d\left(A_{4}, A^{+}\right), d\left(A_{4}, A^{+}\right)\right)=d\left(A_{4}, A^{-}\right)=0.6 . \\
& a_{5}=f\left(d\left(A_{5}, A^{+}\right), d\left(A_{5}, A^{+}\right)\right)=d\left(A_{5}, A^{-}\right)=0.56 .
\end{aligned}
$$

Thus, $A_{3} \quad A_{4} \quad A_{5} \quad A_{1} \quad A_{2}$. We concludethat in thiscase $A_{3}$ and $A_{4}$ are the preferred alternatives.

Example 5.80Considerthepreviousexample, butnowwiththeHausdorffdistancefor IF-sets (see Section 5.1.3). Usingthe same IVF-sets, we obtain that:

|  | $C_{1}$ | $C_{2}$ | $C_{3}$ |
| :---: | :---: | :---: | :---: |
| $d_{H}\left(A_{1}, A^{+}\right)-d_{H}\left(A_{1}\left\{C_{j}\right\}, A^{+}\left\{C_{j}\right\}\right)$ | 0.6 | 0.1 | 0.3 |
| $d_{H}\left(A_{1}, A^{-}\right)-d_{H}\left(A_{1}\left\{C_{j}\right\}, A^{-}\left\{\left\{C_{j}\right\}\right)\right.$ | 0.3 | 0.2 | 0.5 |
| $d_{H}\left(A_{2}, A^{+}\right)-d_{H}\left(A_{2}\left\{C_{j}\right\}, A^{+}\left\{C_{j}\right\}\right)$ | 0.4 | 0.3 | 0.1 |
| $d_{H}\left(A_{2}, A^{-}\right)-d_{H}\left(A_{2}\left\{C_{C}\right\}, A^{+}\left\{C_{j}\right\}\right)$ | 0.3 | 0 | 0.7 |
| $d_{H}\left(A_{3}, A^{+}\right)-d_{H}\left(A_{3}\left\{C_{j}\right\}, A^{+}\left\{C_{j}\right\}\right)$ | 0.3 | 0.2 | 0 |
| $d_{H}\left(A_{3}, A^{-}\right)-d_{H}\left(A_{3}\left\{C_{j}\right\}, A^{+}\left\{C_{j}\right\}\right)$ | 0.3 | 0.1 | 0.8 |
| $d_{H}\left(A_{4}, A^{+}\right)-d_{H}\left(A_{4}\left\{C_{j}\right\}, A^{+}\left\{C_{j}\right\}\right)$ | 0.5 | 0.1 | 0.2 |
| $d_{H}\left(A_{4}, A^{-}\right)-d_{H}\left(A_{4}\left\{C_{j}\right\}, A^{+}\left\{C_{j}\right\}\right)$ | 0.3 | 0.3 | 0.6 |
| $d_{H}\left(A_{5}, A^{+}\right)-d_{H}\left(A_{5}\left\{C_{j}\right\}, A^{+}\left\{C_{j}\right\}\right)$ | 0 | 0.1 | 0.8 |
| $d_{H}\left(A_{5}, A^{-}\right)-d_{H}\left(A_{5}\left\{C_{j}\right\}, A^{+}\left\{C_{j}\right\}\right)$ | 0.6 | 0.2 | 0 |

Then:

$$
\begin{aligned}
& d\left(A_{1}, A^{+}\right)=0.3 \quad 0.6+0.50 .1+0.2 \quad 0.3=0.29 . \\
& d\left(A_{1}, A^{-}\right)=0.3 \quad 0.3+0.5 \quad 0.2+0.30 .5=0.34 \text {. } \\
& d\left(A_{2}, A^{+}\right)=0.3 \quad 0.4+0.50 .3+0.30 .1=0.3 . \\
& d\left(A_{2}, A^{-}\right)=0.3 \quad 0.3+0.5 \quad 0+0.3 \quad 0.7=0.3 . \\
& d\left(A_{3}, A^{+}\right)=0.3 \quad 0.3+0.50 .2+0.30=0.19 . \\
& d\left(A_{3}, A^{+}\right)=0.3 \quad 0.3+0.50 .1+0.3 \quad 0.8=0.38 . \\
& d\left(A_{4}, A^{+}\right)=0.3 \quad 0.5+0.50 .1+0.30 .2=0.26 \text {. } \\
& d\left(A_{4}, A^{-}\right)=0.3 \quad 0.3+0.50 .3+0.3 \quad 0.6=0.42 . \\
& d\left(A_{5}, A^{+}\right)=0.3 \quad 0+0.5 \quad 0.1+0.30 .8=0.29 \text {. } \\
& d\left(A_{5}, A^{-}\right)=0.3 \quad 0.6+0.50 .2+0.3 \quad 0=0.28 \text {. }
\end{aligned}
$$

As before, we first look for the alternative that is, at the same time, more similar to the optimum $A^{+}$andless similarto theleast optimum $A^{-}$. For thisaim wecan consider the function $f(x, y)=\frac{1}{2} \frac{1}{x}+y$. It holdsthat:

$$
\begin{aligned}
& a_{1}=f\left(d\left(A_{1}, A^{+}\right), d\left(A_{1}, A^{-}\right)\right)=\begin{array}{cc}
\frac{1}{2} & \frac{1}{0.29}+0.34=3.79 .
\end{array} \\
& a_{2}=f\left(d\left(A_{2}, A^{+}\right), d\left(A_{2}, A^{-}\right)\right)=\begin{array}{c}
\frac{1}{2} \\
\frac{1}{0.3}+0.3=3.63 .
\end{array} \\
& a_{3}=f\left(d\left(A_{3}, A^{+}\right), d\left(A_{3}, A^{-}\right)\right)=\begin{array}{cc}
\frac{1}{2} & \frac{1}{0.19}+0.38=5.64 .
\end{array} \\
& a_{4}=f\left(d\left(A_{4}, A^{+}\right), d\left(A_{4}, A^{+}\right)\right)=\begin{array}{cc}
1 & \frac{1}{2} \\
2 & 0.26 \\
0.42 & =4.27 .
\end{array} \\
& a_{5}=f\left(d\left(A_{5}, A^{+}\right), d\left(A_{5}, A^{+}\right)\right)=\quad \begin{array}{c}
1 \\
2
\end{array} \frac{1}{0.29}+0.28=3.72 .
\end{aligned}
$$

Then $A_{3} \quad A_{4} \quad A_{1} \quad A_{5} \quad A_{2}$, and therefore $A_{3}$ is thepreferred alternative.
Next, we seek for the alternative that is more similar to the optimal $A^{+}$. Apossible
function $f$ for thisscenario is $f(x, y)=\frac{1}{x}$. In su ch a case:

$$
\begin{aligned}
& a_{1}=f\left(d\left(A_{1}, A^{+}\right), d\left(A_{1}, A^{-}\right)\right)=\frac{1}{d\left(A_{1}, A^{+}\right)}=\frac{1}{0.29} . \\
& a_{2}=f\left(d\left(A_{2}, A^{+}\right), d\left(A_{2}, A^{-}\right)\right)=\frac{1}{d\left(A_{2}, A^{+}\right)}=\frac{1}{0.3} . \\
& a_{3}=f\left(d\left(A_{3}, A^{+}\right), d\left(A_{3}, A^{-}\right)\right)=\frac{1}{d\left(A_{3}, A^{+}\right)}=\frac{1}{0.1} . \\
& a_{4}=f\left(d\left(A_{4}, A^{+}\right), d\left(A_{4}, A^{+}\right)\right)=\frac{1}{d\left(A_{4}, A^{+}\right)}=\frac{1}{0.26} . \\
& a_{5}=f\left(d\left(A_{5}, A^{+}\right), d\left(A_{5}, A^{+}\right)\right)=\frac{1}{d\left(A_{5}, A^{+}\right)}=\frac{1}{0.29 .}
\end{aligned}
$$

Then, it holds that $A_{3} \quad A_{4} \quad A_{1} \quad A_{5} \quad A_{2}$, and therefore alternative $A_{3}$ is the preferred one.

Final ly, if we look for the alternative that differs more from the worst possibility $A^{-}$, we can choosef $(x, y)=y$. In thatcase,

$$
\begin{aligned}
& a_{1}=f\left(d\left(A_{1}, A^{+}\right), d\left(A_{1}, A^{-}\right)\right)=d\left(A_{1}, A^{-}\right)=0.34 . \\
& a_{2}=f\left(d\left(A_{2}, A^{+}\right), d\left(A_{2}, A^{-}\right)\right)=d\left(A_{2}, A^{-}\right)=0.3 . \\
& a_{3}=f\left(d\left(A_{3}, A^{+}\right), d\left(A_{3}, A^{-}\right)\right)=d\left(A_{3}, A^{-}\right)=0.38 . \\
& a_{4}=f\left(d\left(A_{4}, A^{+}\right), d\left(A_{4}, A^{+}\right)\right)=d\left(A_{4}, A^{-}\right)=0.42 . \\
& a_{5}=f\left(d\left(A_{5}, A^{+}\right), d\left(A_{5}, A^{+}\right)\right)=d\left(A_{5}, A^{-}\right)=0.28 .
\end{aligned}
$$

We conclude that $A_{4} \quad A_{3} \quad A_{1} \quad A_{2} \quad A_{5}$, whence $A_{4}$ is thebest alternative.

### 5.3.3 Using IF-divergences to extend stochastic dominance

Consider now the problem of comparing more than two random variablesln Section 3.3 we mentioned that both sto chastic dominance and statistical preference are metho ds for the pairwise comparison of random variables, and we prop osed a generalization of statistical preference for comparing more than tworandom variables, based onan extension of the probabilisticrelation definedin Equation (2.7). Now, basedonthelF-divergences and due to the connection between IF-sets and imprecise probabilities we have investigated in Section 5.2, we prop ose a metho d that allows us to compare p-b oxes in order to obtain an order between them.

In orderto do this, consider $n$ p-b oxes $\left(F_{1}, \bar{F}_{1}\right)$, .. ., $\left(F_{n}, \bar{F}_{n}\right)$. For each p-b ox $\left(F_{i}, F_{i}\right)$, define therandom interval $\Gamma_{i}$ by $\Gamma_{i}(\omega)=\left[U_{i}(\omega), V(\omega)\right]$ where $U_{i}$ and $V_{i}$ are the quanti le functions of $E_{i}$ and $F_{i}$, resp ectively. Then, for each p-b ox $\left(F_{i}, F_{i}\right)$ we have an asso ciated random interval that we can understand as a random interval defined from an IF-set $A_{i}$. Thus, we can apply the method describ ed in Section 5.3.2 to obtain the p -box closer to the "optimal" p-b ox, that is the one asso ciated with ${ }^{+}$, and more distant to the "less optimal" p-b ox, that is the one asso ciated with $A^{-}$.

Remark 5.81During thissection we haveinvestigated measuresof comparisondefined on finite spaces, according to the usu alframework. However, all the measures we have studied canbe extended to anyspace, non-necessarily finite. Forinstance, whendealing with local IF-divergences, they couldbedefinedfrom $\quad[a, b]$ to ${ }_{\mathrm{R}}$ by using the Lebesgue measure $_{[a, b]}$ in $[a, b]$

$$
D_{\mathrm{IFS}}(A, B)=h_{[\mathrm{a}, b]} \quad h_{\mathrm{IFS}}\left(\mu_{\mathrm{A}}(\omega), \mathrm{VA}_{\mathrm{A}}(\omega), \mu_{\mathrm{B}}(\omega), \mathrm{VB}(\omega)\right) \mathrm{d} \lambda_{[\mathrm{a}, b]} .
$$

In order to illustrate this metho d, we prop ose a numericalexample based on the comparison of sets of Lorenz Curves as we made in Section 4.4.1.

## Numerical examplecomparisonofLorenz curves

In Section 4.4.1 we considered the Lorenz curves asso ciated with several countriesuch data wasillustratedin Table 4.2, andTable4.3 showedthecumulativedistribution functions asso ciated with each Lorenz curve. Recall that we group ed the countries by continents/regionsin the followingway:

- Group 1: China, Japan, India.
- Group 2: Finland, Norway,Sweden.
- Group 3: Canada, USA.
- Group 4: FYR Macedonia, Greece.
- Group 5: Australia, Maldives.

Next table shows the p-boxes asso ciated with these groups.
$\qquad$

| Group |  | $\mathbf{F}(\mathbf{0 . 2})$ | $\mathbf{F}(\mathbf{0 . 4})$ | $\mathbf{F}(\mathbf{0 . 6})$ | $\mathbf{F}(\mathbf{0 . 8})$ | $\mathbf{F}(\mathbf{1})$ |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| Group-1 | $\bar{F}_{1}$ | 47.81 | 69.81 | 84.47 | 94.27 | 100 |
|  | $E_{1}$ | 35.65 | 57.63 | 75.21 | 89.42 | 100 |
| Group-2 | $\bar{F}_{2}$ | 37.23 | 59.33 | 76.9 | 90.88 | 100 |
|  | $E_{2}$ | 36.63 | 58.84 | 76.31 | 90.38 | 100 |
| Group-3 | $\bar{F}_{3}$ | 45.82 | 68.22 | 83.88 | 94.56 | 100 |
|  | $E_{3}$ | 39.94 | 62.89 | 80.07 | 92.8 | 100 |
| Group-4 | $\bar{F}_{4}$ | 41.49 | 64.53 | 81.37 | 93.26 | 100 |
|  | $E_{4}$ | 37.43 | 60.04 | 77.53 | 90.98 | 100 |
| Group-5 | $\bar{F}_{5}$ | 49.24 | 66.9 | 82.61 | 94.1 | 100 |
|  | $E_{5}$ | 41.32 | 64.89 | 82.09 | 93.49 | 100 |

Assume now that we are interestedin comparing all the groupsof countries together. Then, followingthe stepsof Section5.3.2, denoteby $A_{i}$ theIF-set definedby $\mu_{\mathrm{A}_{i}}=F_{i}{ }_{i}^{1]}$ and $1-v_{A_{i}}=F_{i}^{-1]}$, that is, the IF-set defined by the quantil e functions of $\left(F_{i}, \bar{F}_{i}\right)$. These IF-se ts are given by:



Consider now the IF-sets $A^{+}$and $A^{-}$defined in Equations(5.11) and (5.12), that are defined by $\mu_{\mathrm{A}^{+}}=\mu \mathrm{A}_{2}, 1^{-} v_{\mathrm{A}^{+}}=1-v_{\mathrm{A}_{1}, 1}-v_{\mathrm{A}^{-}}=1-v_{\mathrm{A}_{5}}$ and:

Now, we consider two ofthe most usualmeasures of comparisonof IF-divergences we can find in the literature, the Hausdorffandthe Hammingdistances that, as we have said in Section 5.1.3, are also lo cal IF-divergencesRecall that they are defined, resp ectively, by:

We represent theresultson thenexttable.

|  | $l_{\text {IFS }}\left(A_{i}, A^{+}\right)$ | $l_{\text {IFS }}\left(A_{i}, A^{-}\right)$ | $d_{H}\left(A_{i}, A^{+}\right)$ | $d_{H}\left(A_{i}, A^{-}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | 6.404 | 2.561 | 6.404 | 5.122 |
| $A_{2}$ | 0.852 | 4.773 | 0.852 | 7.414 |
| $A_{3}$ | 4.594 | 1.169 | 6.916 | 5.974 |
| $A_{4}$ | 2.439 | 3.324 | 5.052 | 6.386 |
| $A_{5}$ | 5.448 | 0.523 | 6.99 | 1.046 |

Now, we consider thre e different functions:

$$
f_{1}(x, y)=y, \quad f_{2}(x, y)=-x \text { and } f_{3}(x, y)=y-x
$$

$f_{1}$ only fo cus in the closest IF-set to the least optimal alternative; $f_{2}$ only fo cus in the closest IF-set tothe most optimal alte rn ative,while $f_{3}$ fo cus in the IF-set that is both closer to the most optimal alternative andless closer IF-set tothe leastoptimal alternative. We obtainthefollowing results:

| $l_{\text {IES }}$ | $f_{1}$ | $f_{2}$ | $f_{3}$ |
| :---: | :---: | :---: | :---: |
| $A_{1}$ | 2.561 | -6.404 | -3.843 |
| $A_{2}$ | 4.773 | -0.852 | 3.921 |
| $A_{3}$ | 1.169 | -4.594 | -3.425 |
| $A_{4}$ | 3.324 | -2.439 | 0.885 |
| $A_{5}$ | 0.523 | -5.448 | -4.925 |


| $d_{\mathrm{H}}$ | $f_{1}$ | $f_{2}$ | $f_{3}$ |
| :---: | :---: | :---: | :---: |
| $A_{1}$ | 5122 | -6404 | 1282 |
| $A_{2}$ | 7414 | -0852 | 6562 |
| $A_{3}$ | 5974 | -6916 | -0942 |
| $A_{4}$ | 6386 | -5052 | 1334 |
| $A_{5}$ | 1046 | -699 | -5944 |

In the three cases, and with both IF-divergences, the preferred group is the second, that is, thegroup ofNordic countries. Theworstalternative, exceptfortheIF-divergence $I_{\text {IFS }}$ and the function $f_{2}$, is the group $A_{5}$, that is the group of o ceanic countries. This means that the group of countries that has a b ette $r$ wealth distribution is the group of Nordic countries, while thegreaterwealthinequalities are, in the most cases, in the group of oceanic countries.

### 5.4 Conclusions

The comparison of fuzzy sets is a topic that has been widely investigated, an several pap ers with mathematical theories can be found in the literature. However, when we move towards IF-sets th e efforts are somewhat scattered, and there is not an axiomatic approach to the comparisonof this kind ofsets.

For this reason we have develop ed a mathematical theory of the comparison of IF-sets. In particular, we have fo cused on IF-divergences, which are more restrictive measures than IF-dissi milarities. In particular, IF-divergences with the lo cal prop erty, named lo callF-divergences, played an imp ortant role. As was exp ected, a c on nection between divergences for fuzzy sets and IF-divergences can be establishedand we have found the conditions under which the lo cal prop erty, among other interesting prop erties, are preserved when we move from IF-divergences to divergences, and conversely, from divergences to IF-divergenc es.We also showed that these measures can be applied in pattern recognition and decision making, showing several examples.

On the other hand, we have investigated the connection between IVF-sets and Imprecise Probabilities. In this sense, we assumed thatthe IVF-set is defined ona probability space, and then it can be interpreted as a random interval. Then, we have
investigated the probabilistic information enco ded by the random interval or its measurable selections, and we found conditions under whichthis probabilistic information coincides with the probabilistic information given by its asso ciated set of probabiliti es dominated by the upp er probability. We als o investigated the connection b etween our approach and other ones that can be found in the literature. Inparticular, thedefinition ofprobability forIF-sets given by Grzegorzewski and Mrowka iscontained as a particular case of ourtheory.

The connection between IVF-sets and Imprecise Probabilities has allowed us to extend sto chastic dominance to the comparison of more than two p-b oxes simultaneously, determining also a completerelationship (i.e., avoiding incomparability). This metho d, that dep ends on the chosen IF-divergence,gives us a ranking of the p-b oxes. We have illustrated its behaviour continuing with the example of Section 4.4.1 in which we compare sets of Lorenz Curves.

For future research, some op en problems arise in the topic of comparison of IF-sets. On the one hand, it is $p$ ossible to investigate under which conditions IF-divergences, and in particular lo cal IF-divergences, can define an entropy for IF-sets ([29]). Onthe other hand, as could be seen in the applications of IF-divergence, it is interesting to intro duce weights in the elements of theuniverse. In this situation it would be interesting to define lo cal IF-divergence with weights, and trying to find an analogous result to Theorem 5.29 to characterize them. Furthermore, we could investigate if it is possible to define lo cality with an op erator different than the sum; a t-conormfor instance. Moreover, ouraimis to extend the lo cal prop erty to general universes, non-necessarily finite. With resp ect to the connection between IF-sets, IVF-sets andlmprecise Probabilities, we pretendto continue studying IF-sets and IVF-sets as bip olar mo dels for representing positive and negative information ([72, 73]).

## Conclusiones y traba jo futuro

Alo largo de esta memoriaseha tratado el problema de lacomparación dealternativas ba jo ciertos tipos de falta de información: incertidumbre e imprecisión. La incertidumbre se refiere a situaciones en las que los posibles resultados del exp erimento están perfectamente descritos, pero el resultado del mismo es descono cidoPorotra parte, la imprecisión se refiere a situ aciones en las que eresultado del experimento es cono cido p ero no es posible describirlo con precisiónLas herramientas utilizadas para mo delar la incertidumbre y la imprecisión han sido la Teoría de las Probabilidades y la Teoría de los Conjuntos Intuicionísticos, resp ectivamente, mientras que la Teoría de las Probabilidades Imprecisas se ha utilizado para mo delar ambas faltas de información simultáneas.

Cuando las alternativas a comparar están definid as $\mathrm{b} a$ jo incertidumbre, éstas se han mo delado mediante variables aleatorias, que son habitualme nte comparadas mediante órdenes esto cásticoङEnestamemoriasehanconsiderado, principalmente, dosdeestos órdenes: la dominancia esto cástica y la preferencia estadísticaEl primerode ellos es el orden esto cástico más habitual en la literatura, y ha sido utilizado en diferentes ámbitos con destacables resultados.Por otra parte, la preferencia estadística es elméto do más adecuado para c omparar variables cu ali tativas.

A pesar de que la dominancia esto cástica es un méto do que ha sido investigado p or varios autores, la preferencia estadística no ha sido estudiada con tanta profundidad. Ésta es la raz ón p or la cualhemos estudiado sus propiedades como orden esto cásticos. Uno de los resultados más destacados en este estudio es la relación de este méto do con la mediana. Estodemuestra que, mientras que la dominancia esto cástica está relacionada con la media, la preferencia estadística es más cercana a otro parámetro de lo calización.

También hemos investigado la relación entre la dominancia esto cástica y la preferencia estadística, y hemos encontrado condiciones ba jo las cuales la dominancia estocástica de primer orden implica la preferencia estadístic a. Dadoque lapreferencia estadística dep ende de la distribución conjunta de las variables $y$, $p$ or tanto, de la cópula que las liga, dichas condicionesestán tambiénrelacionadas con la cópula. El Teorema 3.64 resume estas condiciones.variables aleatorias indep endientes, variables aleatorias continuas ligadas $p$ or una cópula Arquimediana o variables aleatorias o bien continuas o bien discretas
con sop ortes finitos que son comonótonas o contramonótonasAdemás, hemos comprobado qu e esta relación no se cumple en general. Por tanto, demanera natural surge la siguiente cuestión: ¿es p osible caracterizar las cópulas qu e hacen que la dominancia esto cástica de primer orden implique la preferencia estadística?

Cuando las variables a comparar p erten ecen a la misma familia paramétrica de distribuciones, como por ejemplo Bernoulli, exp onencial, uniforme, Pareto, beta o normal, hemos visto que la dominancia esto cástica y la preferencia estadística coinciden, yde hecho, amb os méto dos se reducen a la comparación de sus esp eranzđß̧or esta razón es posible plantearse la siguiente conjetura: cuandolas variables a compararsiguen la misma distribución perteneciente a la familia exp onencial de distribuciones, tanto la dominancia esto cástica como la preferencia estadística se reducen a la comparación de esp eranzas y son,por tanto, equivalentes. Aunque éste es un problemaabierto, una primera aproximación basadaensimulaciones seha realizadoen[32].

La dominancia esto cástica y la preferencia estadística son méto dos de comparación de variables aleatorias por pares.Esto hace que en ocasiones no sean méto dos adecuados para comparar más de dos variables simu Itáneamene he cho, la preferencia estadística es una relación no transitiva, y por lo tanto puede pro ducir resultados ilógicos. Ésta es la razón que nos ha llevado a definiruna generalización de la preferencia estadística para la comparación demás de dos variablessimultáneamente. Siguie ndo la misma aproximación que en el cas o de la preferencia estadísticanuestra generalización da un grado de preferencia a cada una de las variables de manera que to dos los grados sumen uno. Por lo tanto, la variable preferida será aque lla con el mayor grado de preferencia. Para este méto do hemos estudiado su conexión con los órdenes esto cásticos p or pares. En particular, hemos visto que las mismas condic iones del Teorema 3.64 p ermiten asegurar que siuna de las variables domina esto cásticamente de primer grado alresto, entonces ésta es también preferida a to das las demás utilizando nuestra generalización dela preferencia estadística.

A la preferencia estadística general le po demos dar la siguiente interpretaciódado un conjunto de alternativas (en este cas o variables aleatorias) tenemos que elegir entre la preferida, y po demos asignar a cada variable un grado de preferencia. Este grado de preferencia puede entenderse como cuánto de preferida es cada alternativa sob re el resto. Estohace quelapreferenciaestadísticageneral se pueda ver como una func ión de ele cción difusa $([81,207])$. Un punto abierto sería por tanto estudiar la preferencia estadística general como unafunción de elección difusa.

Hay situaciones en las cuales las alternativas a comparar están definidas tanto ba jo incertidumbre como ba jo imprecisión. En talescasos, lasvariablesaleatoriasno recogen to das la información. En esta situación hemos mo delado las alternativas mediante conjuntos de variables aleatorias con una interpretación episté micacada conjuntocontiene la variable ale atoria original, que es descono cida.De cara a compararestos conjuntos de alternativas, hemos tenido que extender los órdenes esto cásticos para la comparación de conjuntosde variables aleatorias. Esta extensión da lugar a seis posibles méto dos de
ordenación de conjuntos de variable s aleatoriasUna vez investigadas estas extensione s, nos hemos centrado en los casos en los que el orden esto cástico utilizado es o bien la dominancia esto cástica o bien la preferencia estadística, y hemos llamado a sus extensiones dominancia esto cástica imprecisa y preferencia estadística impreci\$a Prop osición 4.19 yel Corolario 4.22 muestran que la dominancia esto cástica imprecisa está relacionada con la comparación de las p-b oxes aso ciadas a los conjuntos de variables aleatorias por medio de la dominancia esto cástica.Estos resultados también nos perm iten ver el estudio realizado por Deno eux ([61]) como un caso particular de nuestro estudio. Deno eux consideró dos medidas de creencia, y sus medidas de plausibilidad aso ciadas, y utilizó la dominancia esto cástica para compararlas§inembargo, dadoquelasmedidasdecreencia y plausibilidad definen conjuntos de probabilidades, es posible compararlas mediante la dominancia esto cástica imprecisa.

Lo mismo ocurre con $p$ osibilidades: una medida de p osibil idad define un conjunto de probabilidades, y $p$ or lo tanto es posible utilizar la dominancia esto cástica imprecisa para compararlas. En la Prop osición 4.52 hemos dado una caracterización de la dominancia esto cástica imprecisa para medidas de p osibilidad con distribuciones de p osibilidad continu as. Aquí surge un nuevo problema abie rto:en casode quelas distribucionesde p osibilidad aso ciadas a las distribuciones de posibilidad no sean continuas, ¿se cumple la misma caracterización de la Prop osición 4.52?

Dos situaciones habituales dentro de la Teoría de la Decisión se pueden mo delar mediante la comparación de conjuntos de variables aleatorias. Por una parte, he mos considerado la comparación de dos variables aleatorias con imprecisión en las utilidades. Esta falta de información ha sido mo delada con conjuntos aleatorios. La in formación probabilística de un conjunto aleatorio se recoge en sus selecc iones medilfestanto, la comparación de conjuntos aleatorios se realiza mediante la comparación de sus con juntos de se lecciones medibleßPor otraparte, hemos consideradolacomparación devariables aleatorias definidas sobreun espacioprobabilístico donde la probabilidadno está definida de manera precisa. Enesta situación, en vez de hab er una única probabilidad, hemos consideradoun conjunto de probabilidades.De esta manera también es posible definir dos conjuntos de variables aleatorias que recogen la información disp onible.Para estasdos situaciones hemos investigado en particular las propiedades de la dominancia esto cástica imprecisa yla preferencia estadística imprecisa, estudiando sus conexiones con la Teoría de las Probabilidades Imprecisas.

La preferencia estadística es un orden esto cástico que está basado en la distribución conjunta de las variables aleatorias. ElTeorema de Sklarasegura quela función de distribución conjuntade dos variablesse puede expresara través de las marginalesmediante el uso de la cópula adecuada. Ahorabien, dados dos variable aleatoriasdefinidas en un espacio de probabilidad descrito de manera im precisa, el Teoremade Sklar no permite construir la distribución conjunta. Para tratar este problema, hemos investigado las p-b oxes bivariantes y su conexión con las probabilidades inferiores coherentes. En particular, hemos visto que las funciones de distribución inferior y superior aso ciadas
a un conjunto de funciones de distribución bivariantesno sonen general funciones de distribución bivariantes, puesto que no cumpl en la desigualdad de los rectángulos. Sin embargo, hemos visto que $p$ ermiten defi nir una probabilidad inferior coherente, y a partir de resultados conocidos, las funciones de distribución inferior y sup erior cumplen cuatro desigualdades,llamadas (l-RI1), (l-RI2), (l-RI3) y (I-RI4), que puede $n$ verse como las versiones imprecisas dela desigualdad de los rectángulosLa Prop osición 4.102 asegura que dos funciones de distribuci ón bivariantes, normalizadas y ordenadas define $n$ una probabilidadinferiorcoherentecuandounadelasfuncionesde distribución estádefinida sobre un espacio binario. Como traba jo futuro, deseamos estudiarsi esta propiedadse cumple para funciones de distribución definidas sobre to do tip o de espaciosno necesariamente binarios.

El estudio de las p-b oxes bivariantes nos han permitido demostrar una versión imprecisa del Teorema de Sklar. Ennuestroestudiohemos asumidoque partimosde dos distribuciones margi nales imprecisasdefinidas mediante p-b oxesyde unconjunto de cópulas. En esta situación es p osible definir una p-b ox bivariante que defina a su vez una probabilidad inferior coherente. Además, hemosvisto queel recípro co no se cumple en general, puesto que una p-b ox bivariante que define una probabilidad inferior coherente no puede ser expresada, en general, a través de las p-b oxes margindtemos comprobado que esta versión imprecisa del Te orema de Sklar es muy útil cuando hay que utilizar órdenes estocásticos ba jo imprecisión.

La extensión de los órdenes esto cásticos para la comparación de conjuntos de variables aleatorias tiene varias aplicaciones. Ademásdelasaplicacioneshabituales de los órdenes esto cásticos en la Teoría de la Decisión, hemos visto que también pueden ser aplicados a la comparación de Curvas de Lorenz aso ciadas a distintos grup os de países o regiones.Estos conjuntos de Curvas de Lorenz han sido comparados mediante la dominancia esto cástica imprecisa.Un estudio si milar se ha realizado para comparar tasas de sup ervivencia aso ciadas a distintos tip os cáncer, estudiando qué tip o de cáncer tiene peor diagnóstico.

Las alternativas definidas ba jo imprecisión, sin incertidumbre, se han mo delado mediante conjuntos intuicionísticos (IF-sets). IF-sets son un tip o de conjuntos que sirven para modelar información bip olar: considera los grados de $p$ ertenencia y no pertenencia. Varios e je mplos de medidas de comparación de IF-sets se pueden encontrar en la literatura. Sin embargo, hasta este momento no se había desarrollado una teoría matemática. Por esta razón hemos considerados diferentes tip os de medidas de comparación, IF-disimilaridades, IF-divergencias, IF-disimilitudes y distancias, y las hemos estudiado de sde un punto de vis ta teóricd?or una parte hemos estudiado las relaciones existentes entre estas medidas, y hemos definido una medida general de comparación de IF-sets quecontiene alas otras medidas como casos particulares. Posteriorme nte nos hemos centrado en el estudiode las IF-divergencias, estudiando sus propiedades más interesantes. Enparticular, hemosconsideradounaclasedeIF-divergenciasquesatisface una condición de lo calidad.Tambiénhemos vistoquéconexión existeentre lasdivergen-
cias para conjuntos difusos y lasIF-divergencias. Por último, se han explicado posibles aplicaciones de las IF-divergencias en el recono cimiento de patrones y en la Teoría de la Decisión.

Pasamos a comentar algunos problemas ab iertos relacionados con las IF-divergencias. Por una parte, encaso dequeloselementosdel es pacio inicialtengan unos pesos asociados, parece p osible extender las IF-divergencias lo cales considerando los pesoB.or otra parte, las IF-divergencias se po drían estudiar como entropías para IF-set\&Además, creemos que es p osible extender la propiedad de lo calidad para universos no finitos,o incluso dar una defición de lo calidad basada en un op erador diferente de la suma, como p o dría ser una t-conorma.

En las últimas fechas varios investigadoreshan centradosu atención encómolas probabilidades imprecisas pueden mo delar la información bip olarDadoque losIF-sets también son utilizados en este mismocontexto, hemos establecidounaconexión entre ambas teorías. Para ello, hemos consideradolF-sets definidos enun espacioprobabilístico, ysi entendemos losIF-sets comoconjuntosintervalo-valorados, pueden servistos como conjuntos aleatorios. Enestasituación, lainformaciónprobabilísticaestárecogida en el conjunto de selecciones mediblesHemos visto condiciones ba jo las cuales esta información coincide con la información probabilística dada p or el conjunto credal aso ciado al conjunto aleatorio. Además, hemos vis to que aproximaciones que ya se encontraban en la literatura se pueden ver como casos particulares de nue stro estudio.

La conexión entre los IF-sets y las probabilidades imprecisas nos han permitido extender la dominancia esto cástica para la comparación de más de dos p-b oxes al mismo tiemp o. Como traba jo futuro, $p$ ensamos que este estudio $p$ o dría ser com pletad®్n particular, se podría estudiar la relac ión depro cedimiento que hemos explicado con el usode la habitual distancia de Kolmogoroventre funciones dedistribución. Sin embargo, creemos que éste puede verse como un cas o particular de nuestro estudio.

## Conclusions and further research

This memoryhas dealtwith theproblem of comparing alternatives underlack ofinformation. This lack of information can $b$ e of different kin ds, andherewe haveassumed that it corresp onds to either uncertainty or imprecision. Uncertainty refers to situations where the p ossible results of the exp eriment are precisely describ ed, but the exact result is unknown; onthe otherhand, imprecisionrefers to situationsin which theresult ofthe exp eriment is known but it cannot be precisely describ edln order to mo del uncertainty and imprecision we have us ed Probability Theory and Intuitionistic Fuzzy Set Theory, resp ectively; when b oth these features app ear together in the decision problem, we have usedthe Theoryof Imprecise Probabilities.

When the alternatives are sub ject to uncertainty in the outcomes, wewe have mo delled them as random variables, and have used sto chastic orders so as to makea comparison between them. We have fo cused mainly in two different sto chastic orders: sto chastic dominance and statistical preference. The form er is one of the most wide ly used sto chastic orders we can find in the literature and the latter is of particular interest when comparing qu alitative variables. Indeed, although sto chastic dominance is a wellknown metho $d$ th at has $b$ een widely investigated by several authors, statistical preference remained partly unexplored. Forthisreasonwehave studiedseveral prop erties of this sto chastic order.Possibly the most imp ortant one is its characterization in terms of the median, that serves us to compare it as a robust alternative to sto chastic dominance, which is related to another lo cation parameter: the mean.

We have also investigated the relationship b etween sto chastic dominance and statistical preference, and we have found conditions under which (first degree) sto chastic dominance implies statistical preference. Since statistical preference dep ends on the copula that lin ks the variables into a joint distribution, theconditions wehaveobtained are al so related to the copula. Theorem 3.64 summ arizes such conditions: indep endent random variables, continuousrandom variables coupled by an Archimedean copula and either continuous or discrete random variables with finite supp orts that are either comonotonic or countermonotonic. In addition, wehavealsoshowed thattheimplication b etween these two sto chastic orders do es not hold in generaThus, the first op en question naturally arises: it is possible to characterize the set of copulas that makes first
degree sto chastic dominance to imply statistical preference?
When the random variables to be compared belong to the same parametric family of distributions, like forinstance Bernoulli, exp onential, uniform, Pareto, beta or normal, we have seen that $b$ oth sto chastic dominance and statistical preference coincide, and in fact, they are equivalent to compare the exp ectations of the random variables. This makes us to conjecture that when comparing two random variables that belong to the same parametric family of distribution within the exp onential family, then sto chastic dominance and statis tical preference reduce to the comparison of the exp ectations. Although this problem is still op en, a first ap proach, based onsimulations, has already b e done in [32].

Sto chastic dominance and statistical preference are pairwise metho ds of comparison of random variables. In this resp ect, they were not defined to compare more than two variables simultaneously. In fact, statistical preference is not atransitive relation, and therefore it may pro duce nonsensical results. For this reason we have gen eral ized statistical preference to the comparison of more than two random variables at the same time. Withsimilarunderlyingideas tothoseof statistical preference, our generalization assigns apreference degree to any of the random variables, and the sum of these preference degrees is one.Then, the preferred randomvariableis theone with greater preference de gree.Forthisnew approachwehave investigated itsconnectionto the usual statistical preference and sto chastic dominance. In fact, the sameconditions of Theorem 3.64 that guarantee that sto chastic dominance implies statistical preference also ass ures that if there is a random variable that pairwise dominates all the others with resp ect to sto chastic dominance,then such random variable will be the preferred one with resp ect to our generalization of statistical preference.

A future line of research appears asso ciated with this general statistical preference. Given aset of alternatives (inthis case, random variables)out of which we have to cho ose the preferred one, wecanassign a degree of preference, that weunderstand as the strength of the preference of eachalternativeover the other. Then, the general statistical preference can be seen as a fuzzy choice function de fined on a set of alternatives ( $[81,207]$ ). Thus, it may be interesting to investigate the prop erties of the general statistical preference inthe frameworkof fuzzy choice functions.

Onthe other hand, there are situation in which the alternatives to be compared are defined, notonlyunder uncertainty, butalso under imprecision. In such cases, randomvariables do notcollect allthe available information. Thus, we have mo delled the alternatives by me ans of sets of random variables with an epistemic interpretation:each set contains thereal unknownrandom variable. Inordertocomparethesesets, weneedto extend sto chastic orders to this general framework orde $r$ to do this, we have considered any binary relation defined for the comparisonofsingle random variablesand wehave extended it for the comparison of sets of random variables. We have thus cons idered six $p$ ossib le ways of ordering se ts of random variableAfterinvestigating somegeneral prop erties of these extensions,we have fo cused in the cases in which binary relation is
either sto chastic dominance or statistical preference. We have called the ir extensions imprecise sto chastic dominance and imprecise statistical pre ference. Prop osition 4.19 and Corollary 4.22 showed that the former is clearly connected to the comparison of the $b$ ounds of the asso ciated p-boxes by means of sto chastic dominancब.hese results also help ed to show that the approach given by Deno eux ([61]) is a particular case of our more general frame work. Deno eux considered two b elieffunctions, and their resp ective plausibility functions, and used sto chastic dominance to compare then\$ince each b eliefand plausibility function can be represented as a set of probabilities, and therefore imprecise sto chastic dominance can be applied; we have seen that our definitions b ecome the ones given by Denoeux for this particular case.

The same happ ens with p ossibilitieseach possibility defines a set of probabilities, and therefore the imprecise sto chastic dominance can be used to compare thefmop osition 4.52 showed a characterization of the imprecise sto chastic dominance for $p$ ossibility measures with continuous $p$ ossibility di stribution. Thus, an op en problem is to investigate if such characterization also holds for possibility measures with non-continuous possibility distributions.

We have explored two situations that are usually pre sent in decision making and that can be mo delled by means of the comparison of sets of random variables. On the one hand, we haveconsidered thecomparisonof two random variables with imprec ision on the utilities. We have mo delled this imprecision with random sets. Since under our epistemic interpretation the setof measurable selections ofa random set enco des its probabilistic information, the comparison of random sets must be made by means of the comparison of their asso ciated credal sets.Onthe otherhand, wecan alsocompare random variables defined on a probability space with a non-prec isely determined probability; in thatcase, wehavetoconsidera setofprobabilities insteada singleone. In this situation we can also consider two se ts of random variables that summarise all the available information. For these two particular situations we have explored the prop erties of imprecise sto chastic dominance and statisticalpreference, and weheaveinvestigated their connection to imprecise probabilities.

We know that statistical preference is a sto chastic order that is based on the joint distribution of the random variables. BySklar's Theorem, this jointdistribution is determined combining the marginals by means ofa copula. However, given tworandom variables defined in a probability space with imprecise b eliefs, Sklar's Theorem do es not allow to define the jointdistribution. Inordertosolvethisproblem, wehaveinvestigated bivariate p-b oxes and how they can define a coherent lower probability. In particular, we have seen that the lower and upp er distributions associated with a set of bi variate distribution functions are notin general bivariate distribution functions b ecause th ey violatethe rectangle inequality. However, we have seen that they define a coherent lower probability and they satisfy four inequalities, named (I-RI1), (I-RI2), (I-RI3) and (I-RI4), that can be seen as the im precise versions of the rectangle inequality.We have seen in Prop osition 4.102 that given two ordered normalized bivariate distribution functions that
satisfy them, they definea coherent lower probability if oneof the normalizedfunctions is defined on a binary spac eAn op en problem for future research is to investigate if this prop erty also holds for normalized functions defined on any space.

The study of bivariate p-b oxes have allowed to define an imprecise version of Sklar's Theorem. We have assumed thatwehavetwo imprecisemarginal distributions, thatwe mo delby means of p-b oxes,and we havea set of possible copulas that link them. In this situation it is possible to define a bivariate p-b ox that defines a coherent lower probability. However, the second part of the Sklar's Theorem do es not hold, becausea bivariate p-b ox that defines a coherent lower probability cannot be expressed, in general, by means of the marginal p-b oxes. We have also seen how this imprec ise version is very useful when dealing with bivariate sto chastic orders with imprecision.

The extension of sto chastic orders to the comparison of sets of random variables we have prop osed has several applicationBesides the usual application of sto chastic orders in decision making, we have seen that they can be also applie d to the comparison of the inequality indices between groups of countries. Inthis work, wehave consideredthe Lorenzcurveof each country, that measures theinequalityofsuchcountry, andwehave group ed them by geographicalareas. Then, we havecompared these groups ofLorenz curves using the imprecise sto chastic dominance.Wehave made a similar approachto the comparison of cancer survival rates, grouping thembycancer sites, an d we have analyzed which cancer site hasaworst prognosis.

Alternatives defined un der imprecision, without uncertainty, have been mo delled by means of IF-sets. IF-sets are bip olar mo dels that allow to define memb ership and non-memb ership degrees.Several examples of measures of comparison of IF-sets had been prop osed in the literature. However, amathematical theory had not been develop ed.For thisreasonwehaveconsidered differentkinds ofmeasures, IF-dissimilarities, IF-divergences, IF-diss imilitudes and distances, and we have inves ti gated them froma theoretical p oint of vi ew. First of all, we have seen the relationships between these measures, andwe have defined a general measureof comparison ofIF-sets thatcontainsthem as particular cases.Then, we have fo cused on IF-divergences and we have investigated its main prop erties. Inparticular, wehaveconsideredoneinstanceoflF-divergences, those that satisfy a lo cal prop erty. We have also seen the conne ction b etween IF-divergences and divergences for fuzzy se tsWe have also showed how IF-divergences can be applied within pattern recognition anddecision making.

There are several op en problems related to this study of IF-divergences. On the one hand, it would $b$ e interesting to define lo cal IF-divergences that take into account aweight function on the the elements of the initial spac e. On theother hand, IFdivergences could $b$ e studied as entrop ies for IF-sets. Furthermore, it is possible to extend the lo cal prop erty to spaces non-necessarily finite, and also to define the lo cal prop erty by means of an op erator different than the sum, like t-conorms, for instance.

Currently, several authors have $b$ een inve stigating how imprecise probabilities can
be used to mo del bip olar information. Since IF-sets are alsouseful in this context, we have establishe $d$ a connection $b$ etween $b$ oth theorid\&le have assumed that IF-setsare defined in a probability space; if we understand them as IVF-sets, theycan thenbe seen as randomsets. In thatcase, their probabilistic information can be enco ded by the set of measurable selecti on $\$$ Wehaveseen conditions underwhichsuch information coincides with the probabilistic information given the credal set asso ciated to the random set. Furthermore, we have seen h ow previous approaches made for defining a probabil ity measure on IF-sets can be emb edded into our approach.

The connection between IF-sets and imprecise probabilities has allowed us to extend sto chastic dominance to the comparison of more than two p-b oxes simultaneously.For future research, we think that this prop osal could be studied more thoroughly. For instance, a similar extension of sto chastic dominance may b e made by using the usual Kolmogorov distance between cumulative distribution functions. It would $b$ e intere sting to determine if this becomes a particular case of our more general framework.

## A App endixBasic Results

In this App endix we prove some results that we have used throughout this rep ort.

Lemma A. 1 Let $a, b$ and $c$ be three realnu mbers in[0, 1.] Then
a) $\max \{0, \min \{a, c\}-\min \{b, c\}\} \leq \max \{0, a-b\}$ and $\max \{0, \max \{a, c\}-\max \{b, c\}\} \leq \max \left\{0, a^{-b}\right\}$.
b) $\max (|\max \{a, c\}-\max \{b, c\}|,|\min \{a, c\}-\min \{b, c\}|) \leq|a-b|$.

Pro of We distinguis $h$ the following cases, dep ending on the minimum and the maximum of $\{a, c\}$ and $\{b, c\}$ :

1. Assume that $\min \{a, c\}=a$ and $\min \{b, c\}=b$, and consequently $\max \{a, c\}=$ $\max \{b, c\}=c$. Then:
a) $\max \{0, \min \{a, c\}-\min \{b, c\}\}=\max \{0, a-b\}$. $\max \{0, \max \{a, c\}-\max \{b, c\}\}=0 \leq \max \{0, a-b\}$.
b) $|\max \{a, c\}-\quad \max \{b, c\}|=|c-c|=0 \leq|a-b|$. $\left|\min \{a, c\}^{-} \min \{b, c\}\right|=|a-b|$.
2. Assume next that $\min \{a, c\}=a$ and $\min \{b, c\}=c$, and therefore $\max \{a, c\}=c$ and $\max \{b, c\}=b$. Note that, since $\min \{a, c\}=a$, then $a \leq c$, and therefore $a-c \leq 0$. Moreover, italso holdsthat $c \leq b$, and consequently $a \leq c \leq b$. Hence:
a) $\max \{0, \min \{a, c\}-\min \{b, c\}\}=\max \{0, a-c\}=0$ $\leq \max \{0, a-b\}$. $\max \{0, \max \{a, c\}-\max \{b, c\}\}=\max \left\{0, c^{-} b\right\}=0$ $\leq \max \left\{0, c^{-} b\right\}$.
b) $\quad|\max \{a, c\}-\quad \max \{b, c\}|=|c-b| \leq|a-b|$.
$|\min \{a, c\}-\min \{b, c\}|=|a-c| \leq|a-b|$.
3. Thirdly, assumethat $\min \{a, c\}=c$ and $\min \{b, c\}=b$, whence
$\max \{a, c\}=a$ and $\max \{b, c\}=c$. In such a case, $c \leq a$ and $b \leq c$, and therefore $b \leq c \leq a$, that implies $c-b \leq a-b$ and $a-c \leq a-b$. Hence:
a) $\max \{0, \min \{a, c\}-\min \{b, c\}\}=\max \left\{0, c^{-} b\right\}$
$\max \{0, \max \{a, c\}-\max \{b, c\}\}=\max \{0, a-c\}$
$\leq \max \{0, a-b\}$.
b) $|\max \{a, c\}-\max \{b, c\}|=|a-c| \leq|a-b|$.
$|\min \{a, c\}-\min \{b, c\}|=|c-b| \leq|a-b|$.
4. Finally, ass ume thatmin $\{a, c\}=\min \{b, c\}=c$, and consequently $\max \{a, c\}=a$ and $\max \{b, c\}=b$. Then:
a) $\max \{0, \min \{a, c\}-\min \{b, c\}\}=0 \leq \max \left\{0, a^{-} b\right\}$. $\max \{0, \max \{a, c\}-\max \{b, c\}\}=\max \{0, a-b\}$.
b) $|\max \{a, c\}-\quad \max \{b, c\}|=|a-b|$.

$$
|\min \{a, c\}-\min \{b, c\}|=|c-c|=0 \leq|a-b|
$$

Lemma A. 2 If $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ and $\left(c_{1}, c_{2}\right)$ are elementson $T=\{(x, y) \quad[0,1\}$ | $x+y \leq 1\}$, it holds that:

$$
\begin{aligned}
\alpha & =\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{1}+a a_{2}-b_{1}-b_{2}\right| \\
& \geq\left|\max \left\{a_{1}, c_{1}\right\}-\quad \max \left\{b_{1}, c_{1}\right\}\right|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}+\min \left\{a_{2}, c_{2}\right\}-\max \left\{b_{1}, c_{1}\right\}-\min \left\{b_{2}, c_{2}\right\}\right|=\beta .
\end{aligned}
$$

Pro of Let us consid er the following possibilities:

1. $a_{1}, b_{1} \leq c_{1}$ and $a_{2}, b_{2} \leq c_{2}$. Then:

$$
\begin{aligned}
\beta= & \left|c_{1}-c_{1}\right|+\left|a_{2}-b_{2}\right|+\left|c_{1}+a_{2}-c_{1}-b_{2}\right|=2\left|a_{2}-b_{2}\right| \\
& \leq\left|a_{2}-b_{2}\right|+\left|a_{1}-b_{1}\right|+\left|a_{1}+a_{2}-b_{1}-b_{2}\right|=\alpha .
\end{aligned}
$$

2. $a_{1}, b_{1} \leq c_{1}$ and $c_{2} \leq a_{2}, b_{2}$. Then itholdsthat:

$$
\beta=\left|c_{1}-c_{1}\right|+\left|c_{2}-c_{2}\right|+\left|c_{1}+c_{2}-c_{1}-c_{2}\right|=0 \leq \alpha
$$

3. $a_{1}, b_{1} \leq c_{1}$ and $b_{2} \leq c_{2} \leq a_{2}$ :

$$
\begin{aligned}
& \beta=\left|c_{1}-c_{1}\right|+\left|c_{2}-b_{2}\right|+\left|c_{1}+c_{2}-c_{1}-b_{2}\right|=2\left|c_{2}-b_{2}\right| \\
& \leq 2\left|a_{2}-b_{2}\right| \leq \alpha .
\end{aligned}
$$

4. $c_{1} \leq a_{1}, b_{1}$ and $c_{2} \leq a_{2}, b_{2}$ :

$$
\begin{aligned}
\beta= & \left|a_{1}-b_{1}\right|+\left|c_{2}-c_{2}\right|+\left|a_{1}+c_{2}-b_{1}-c_{2}\right|=2\left|a_{1}-b_{1}\right| \\
& \leq\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{1}+a_{2}-b_{1}-b_{2}\right|=\alpha .
\end{aligned}
$$

5. $c_{1} \leq a_{1}, b_{1}$ and $b_{2} \leq c_{2} \leq a_{2}$.

$$
\begin{aligned}
& \beta=\left|a_{1}-b_{1}\right|+\left|c_{2}-b_{2}\right|+\left|a_{1}+c_{2}-b_{1}-b_{2}\right| \\
&=\left|b_{1}-a_{1}\right|+\left(c_{2}-b_{2}\right)+\left(a_{1}-b_{1}\right)-\left(b_{2}-c_{2}\right) \\
&\left|b_{1}-a_{1}\right|+\left(c_{2}-a_{1}-b_{1}\right)+\left(b_{2}-c_{2}\right)-\left(b_{1}-b_{1}\right)-c_{2} \\
&= \text { if } a_{1}-b_{1}<b_{2}-c_{2} \\
&\left|b_{1}-a_{1}\right|+\left(a_{1}-b_{1}\right)+2\left(c_{2}-b_{2}\right) \\
& 2\left|b_{1}-a_{1}\right| \text { if } a_{1}-b_{1} \geq b_{2}-c_{2} \\
& \leq\left|b_{1}-b_{1}<b_{2}-c_{2}\right|+\left(a_{1}-b_{1}\right)+\left(c_{2}-b_{2}\right)+\left(a_{2}-b_{2}\right) \\
& \text { if } a_{1}-b_{1} \geq b_{2}-c_{2} \\
&\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{1}+a_{2}-b_{1}-b_{2}\right| \text { if } a_{1}-b_{1}<b_{2}-c_{2} \\
& \leq\left|b_{1}-a_{1}\right|+\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right)+\left(a_{2}-b_{2}\right) \\
& \text { if } a_{1}-b_{1} \geq b_{2}-c_{2} \\
&\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{1}+a_{2}-b_{1}-b_{2}\right| \\
& \leq \alpha . \text { if } a_{1}-b_{1}<b_{2}-c_{2}
\end{aligned}
$$

6. $b_{1} \leq c_{1} \leq a_{1}$ and $b_{2} \leq c_{2} \leq a_{2}$.

$$
\begin{aligned}
\beta= & \left|a_{1}-c_{1}\right|+\left|c_{2}-b_{2}\right|+\left|a_{1}+c_{2}-c_{1}-b_{2}\right| \\
& =\left(a_{1}-c_{1}\right)+\left(c_{2}-b_{2}\right)+\left(a_{1}-c_{1}\right)+\left(c_{2}-b_{2}\right) \\
& =2\left(a_{1}-c_{1}\right)+2\left(c_{2}-b_{2}\right) \leq 2\left(a_{1}-b_{1}\right)+2\left(a_{2}-b_{2}\right) \leq \alpha .
\end{aligned}
$$

7. $b_{1} \leq c_{1} \leq a_{1}$ and $a_{2} \leq c_{2} \leq b_{2}$.

$$
\begin{aligned}
& \beta=\left|a_{1}-c_{1}\right|+\left|a_{2}-c_{2}\right|+\left|a_{1}+a_{2}-c_{1}-c_{2}\right| \\
&=\left(a_{1}-c_{1}\right)+\left(c_{2}-a_{2}\right)+\left(a_{1}-c_{1}\right)+\left(a_{2}-c_{2}\right) \text { if } a_{1}-c_{1} \geq c_{2}-a_{2} \\
&\left(a_{1}-c_{1}\right)+\left(c_{2}-a_{2}\right)-\left(a_{1}-c_{1}\right)-\left(a_{2}-c_{2}\right) \text { if } a_{1}-c_{1}<c_{2}-a_{2} \\
&= 2\left(a_{1}-c_{1}\right) \leq 2\left(a_{1}-b_{1}\right) \text { if } a_{1}-c_{1} \geq c_{2}-a_{2} \\
& 2\left(c_{2}-a_{2}\right) \leq 2\left(b_{2}-a_{2}\right) \text { if } a_{1}-c_{1}<c_{2}-a_{2} \\
& \leq 2\left(a_{1}-b_{1}\right) \text { if } a_{1}-c_{1} \geq c_{2}-a_{2} \leq \alpha . \\
& 2\left(b_{2}-a_{2}\right) \text { if } a_{1}-c_{1}<c_{2}-a_{2}
\end{aligned}
$$

Inthe remainingcases, it isenough to exchange therolesof $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$ and to apply the previous cases.

Lemma A. 3 If $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ and $\left(c_{1}, c_{2}\right)$ are elementson $T=\{(x, y) \quad[0$, 价 $\mid$ $x+y \leq 1\}$, then it holds that:

$$
\begin{aligned}
\mid a_{1}- & b_{1}-a_{2}+b_{2}\left|+\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right| \geq\right. \\
& \left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}-\min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\}\right|+ \\
& \left|\max \left\{a_{1}, c_{1}\right\}-\quad \max \left\{b_{1}, c_{1}\right\}\right|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| .
\end{aligned}
$$

Pro of Let us consider some cases.

1. $a_{1}, b_{1} \leq c_{1}$ and $a_{2}, b_{2} \leq c_{2}$.

$$
\begin{aligned}
& \left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}-\min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\quad \max \left\{b_{1}, c_{1}\right\}\right|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& \quad=\left|c_{1}-c_{1}-a_{2}+b{ }_{2}\right|+\left|c_{1}-c_{1}\right|+\left|a_{2}-b_{2}\right|=2\left|b_{2}-a_{2}\right| \\
& \quad \leq\left|a_{1}-b_{1}-a_{2}+b{ }_{2}\right|+\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right| .
\end{aligned}
$$

2. $a_{1}, b_{1} \leq c_{1}$ and $c_{2} \leq a_{2}, b_{2}$.

$$
\begin{aligned}
& I \max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}-\min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\} \mid \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}\right|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& \quad=\left|c_{1}-c_{1}-c_{2}+c{ }_{2}\right|+\left|c_{1}-c_{1}\right|+\left|c_{2}-c_{2}\right|=0 \\
& \quad \leq\left|a_{1}-b_{1}-a_{2}+b 2\right|+\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right| .
\end{aligned}
$$

3. $a_{1}, b_{1} \leq c_{1}$ and $b_{2} \leq c_{2} \leq a_{2}$.

$$
\begin{aligned}
& I \max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}-\min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\} \mid \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\quad \max \left\{b_{1}, c_{1}\right\}\right|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& \quad=\left|c_{1}-c_{1}-c_{2}+b{ }_{2}\right|+\left|c_{1}-c_{1}\right|+\left|c_{2}-b_{2}\right|=2\left|c_{2}-b_{2}\right| \\
& \quad \leq\left|a_{1}-b_{1}-a_{2}+b b_{2}\right|+\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right| .
\end{aligned}
$$

4. $a_{1}, b_{1} \leq c_{1}$ and $a_{2} \leq c_{2} \leq b_{2}$. It suffices to exch an ge the roles $\left(f_{1}, a_{2}\right)$ and ( $b_{1}, b_{2}$ ) and to ap ply the previous case.
5. $c_{1} \leq a_{1}, b_{1}$ and $a_{2}, b_{2} \leq c_{2}$. Take $\left(a_{2}, a_{1}\right)$ and $\left(b_{2}, b_{1}\right)$ and apply case 2.
6. $c_{1} \leq a_{1}, b_{1}$ and $c_{2} \leq a_{2}, b_{2}$.

$$
\begin{aligned}
& I \max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}-\min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\} \mid \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}\right|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& \quad=\left|a_{1}-b_{1}-c_{2}+c{ }_{2}\right|+\left|a_{1}-b_{1}\right|+\left|c_{2}-c_{2}\right|=2\left|a_{1}-b_{1}\right| \\
& \quad=\left|a_{1}-b_{1}-a_{2}+b 2\right|+\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right| .
\end{aligned}
$$

7. $c_{1} \leq a_{1}, b_{1}$ and $b_{2} \leq c_{2} \leq a_{2}$.

$$
\begin{aligned}
& \left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}-\min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}\right|+\mid \min \left\{a_{2}, c_{2}\right\}- \\
& \left.=\left|a_{1}-b_{1}-c_{2}+b_{2}\right|+\mid a_{1}, c_{2}\right\} \mid \\
& =\left|b_{1}\right|+\left|c_{2}-b_{2}\right| \\
& =\quad\left(a_{1}-b_{1}\right)-\left(c_{2}-b_{2}\right)+\left|a_{1}-b_{1}\right|+\left(c c_{2}-b_{2}\right) \\
& =2\left(c_{2}-b_{2}\right)-\left(a_{1}-b_{1}\right)+\mid a_{1}-b_{1} \geq c_{2}-b_{2} \\
& \leq \quad \text { if } a_{1}-b_{1} \leq c_{2}-b_{2} \\
& \leq \quad \text { if } a_{1}-b_{1} \geq c_{2}-b_{1} \mid \\
& \left.=\mid a_{1}-b_{2}\right)-\left(a_{1}-b_{1}\right)+\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right| \\
& \text { if } a_{1}-b_{1} \leq c_{2}-b_{2} \\
& =\left|a_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{1}-b_{1}-a_{2}+b{ }_{2}\right| .
\end{aligned}
$$

8. $c_{1} \leq a_{1}, b_{1}$ and $a_{2} \leq c_{2} \leq b_{2}$. It suffices to exchange $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ and to apply the previouscase.
9. $b_{1} \leq c_{1} \leq a_{1}$ and $a_{2}, b_{2} \leq c_{2}$. It is enough to consid er $\left(a_{2}, a_{1}\right)$ and $\left(b_{1}, b_{2}\right)$ and to apply case 3 .
10. $b_{1} \leq c_{1} \leq a_{1}$ and $c_{2} \leq a_{2}, b_{2}$. Itsuffices toconsider $\left(a_{2}, a_{1}\right)$ and $\left(b_{1}, b_{2}\right)$ and to apply case 7 .
11. $b_{1} \leq c_{1} \leq a_{1}$ and $b_{2} \leq c_{2} \leq a_{2}$.

$$
\begin{aligned}
& \left|\max \left\{a_{1}, c_{1}\right\}-\quad \max \left\{b_{1}, c_{1}\right\}-\quad \min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}\right|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& =\left|a_{1}-c_{1}-c_{2}+b_{2}\right|+\left|a_{1}-c_{1}\right|+\left|c_{2}-b_{2}\right| \\
& =\quad 2\left(a_{1}-c_{1}\right)+\left(c_{2}-b_{2}\right)-\left(c_{2}-b_{2}\right) \quad \text { if } a_{1}-c_{1} \geq c_{2}-b_{2} \\
& =\left(a_{1}-c_{1}\right)+2\left(c_{2}-b_{2}\right)-\left(a_{1}-c_{1}\right) \text { if } a_{1}-c_{1} \leq c_{2}-b_{2} \\
& \leq \quad 2\left(a_{1}-b_{1}\right) \text { if } a_{1}-c_{1} \geq c_{2}-b_{2} \\
& 2\left(a_{2}-b_{2}\right) \text { if } a_{1}-c_{1} \leq c_{2}-b_{2} \\
& =\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{1}-b_{1}-a_{2}+b_{2}\right| .
\end{aligned}
$$

12. $b_{1} \leq c_{1} \leq a_{1}$ and $a_{2} \leq c_{2} \leq b_{2}$.

$$
\begin{aligned}
& \left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}-\min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}\right|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& \quad=\left|a_{1}-c_{1}-a_{2}+c{ }_{2}\right|+\left|a_{1}-c_{1}\right|+\left|a_{2}-c_{2}\right| \\
& \quad=2\left(a_{1}-c_{1}\right)+2\left(c_{2}-a_{2}\right) \\
& \quad \leq 2\left(a_{1}-b_{1}\right)+2\left(b_{2}-a_{2}\right) \\
& \quad=\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{1}-b_{1}-a_{2}+b{ }_{2}\right| .
\end{aligned}
$$

13. $a_{1} \leq c_{1} \leq b_{1}$. Itisenough toconsider $\left(a_{2}, a_{1}\right)$ and $\left(b_{2}, b_{1}\right)$ andto applythe previous cases.

Lemma A. 4 If $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ and $\left(c_{1}, c_{2}\right)$ are elementson $T=\{(x, y) \quad[0$, 1$]$ | $x+y \leq 1\}$,then:

$$
\begin{aligned}
& \mid a_{1}- b_{1}\left|+\left|a_{2}-b_{2}\right|+\left|a_{1}-b_{1}-a_{2}+b{ }_{2}\right|+\left|a_{1}+a_{2}-b_{1}-b_{2}\right| \geq\right. \\
& \mid \max \left\{a_{1}, c_{1}\right\}- \\
& \max \left\{b_{1}, c_{1}\right\}\left|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right|+\right. \\
& \mid \max \left\{a_{1}, c_{1}\right\}- \\
& \max \left\{b_{1}, c_{1}\right\}-\min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\} \mid+ \\
& \max \left\{a_{1}, c_{1}\right\}- \\
& \max \left\{b_{1}, c_{1}\right\}+\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\} \mid .
\end{aligned}
$$

Pro of Throughout this proof we will use the fact that $|x+y|+|x-y|=\max \{2|x|, 2|y|\}$. Let us consider the following possibilities.

1. $a_{1}, b_{1} \leq c_{1}$ and $a_{2}, b_{2} \leq c_{2}$.

$$
\begin{aligned}
& \left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}\right|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}-\min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}+\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& \quad=\left|c_{1}-c_{1}\right|+\left|a_{2}-b_{2}\right|+\left|c_{1}-c_{1}-a_{2}+b{ }_{2}\right|+\left|c_{1}-c_{1}+a_{2}-b_{2}\right| \\
& \quad=3\left|a_{2}-b_{2}\right| \leq\left|a_{2}-b_{2}\right|+\left|a_{2}-b_{2}-a_{1}+b 1\right|+\left|a_{2}-b_{2}+a_{1}-b_{1}\right| \\
& \quad \leq\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{2}-b_{2}-a_{1}+b b_{1}\right|+\left|a_{2}-b_{2}+a_{1}-b_{1}\right| .
\end{aligned}
$$

2. $a_{1}, b_{1} \leq c_{1}$ and $c_{2} \leq a_{2}, b_{2}$.

$$
\begin{aligned}
& \left|\max \left\{a_{1}, c_{1}\right\}-\quad \max \left\{b_{1}, c_{1}\right\}\right|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}-\min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}+\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& =\left|c_{1}-c_{1}\right|+\left|c_{2}-c_{2}\right|+\left|c_{1}-c_{1}-c_{2}+c c_{2}\right|+\left|c_{1}-c_{1}+c 2_{2}-c_{2}\right| \\
& =0 \leq\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{2}-b_{2}-a_{1}+b 1\right|+\left|a_{2}-b_{2}+a_{1}-b_{1}\right| .
\end{aligned}
$$

3. $a_{1}, b_{1} \leq c_{1}$ and $b_{2} \leq c_{2} \leq a_{2}$.

$$
\begin{aligned}
& \left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}\right|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}-\min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}+\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& \quad=\left|c_{1}-c_{1}\right|+\left|c_{2}-b_{2}\right|+\left|c_{1}-c_{1}-c_{2}+b{ }_{2}\right|+\left|c_{1}-c_{1}+c{ }_{2}-b_{2}\right| \\
& \quad=3\left|c_{2}-b_{2}\right| \leq 3\left|a_{2}-b_{2}\right| \\
& \quad=\left|a_{2}-b_{2}\right|+\left|a_{2}-b_{2}-a_{1}+b_{1}\right|+\left|a_{2}-b_{2}+a 1_{1}-b_{1}\right| \\
& \quad \leq\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{2}-b_{2}-a_{1}+b{ }_{1}\right|+\left|a_{2}-b_{2}+a_{1}-b_{1}\right| .
\end{aligned}
$$

4. $a_{1}, b_{1} \leq c_{1}$ and $a_{2} \leq c_{2} \leq a_{2}$. It suffi ces to exchange the roles of $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$.
5. $c_{1} \leq a_{1}, b_{1}$ and $a_{2}, b_{2} \leq c_{2}$. It suffices toconsider $\left(a_{2}, a_{1}\right)$ and $\left(b_{2}, b_{1}\right)$ and to apply case 2.
6. $c_{1} \leq a_{1}, b_{1}$ and $c_{2} \leq a_{2}, b_{2}$.

$$
\begin{aligned}
& \left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}\right|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}-\min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}+\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& \quad=\left|a_{1}-b_{1}\right|+\left|c_{2}-c_{2}\right|+\left|a_{1}-b_{1}+c c_{2}-c_{2}\right|+\left|a_{1}-b_{1}-c_{2}+c_{2}\right| \\
& \quad=3\left|a_{1}-b_{1}\right| \leq\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}-a_{1}+b 1\right|+\left|a_{2}-b_{2}+a_{1}-b_{1}\right| \\
& \quad \leq\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{2}-b_{2}-a_{1}+b b_{1}\right|+\left|a_{2}-b_{2}+a_{1}-b_{1}\right| .
\end{aligned}
$$

7. $c_{1} \leq a_{1}, b_{1}$ and $b_{2} \leq c_{2} \leq a_{2}$.

$$
\begin{aligned}
& \left|\max \left\{a_{1}, c_{1}\right\}-\quad \max \left\{b_{1}, c_{1}\right\}\right|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}-\min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}+\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& \quad=\left|a_{1}-b_{1}\right|+\left|c_{2}-b_{2}\right|+\left|a_{1}-b_{1}-c_{2}+b b_{2}\right|+\left|a_{1}-b_{1}+c_{2}-b_{2}\right| \\
& \quad=\left|a_{1}-b_{1}\right|+\left|c_{2}-b_{2}\right|+2 \max \left(\left|a_{1}-b_{1}\right|,\left|c_{2}-b_{2}\right|\right) \\
& \quad \leq\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+2 \max \left(\left|a_{1}-b_{1}\right|,\left|a_{2}-b_{2}\right|\right) \\
& \quad \leq\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{2}-b_{2}-a_{1}+b{ }_{1}\right|+\left|a_{2}-b_{2}+a_{1}-b_{1}\right| .
\end{aligned}
$$

8. $c_{1} \leq a_{1}, b_{1}$ and $a_{2} \leq c_{2} \leq a_{2}$. It sufficesto exchange the roles of $\left(a_{1}, a_{2}\right)$ and ( $b_{1}, b_{2}$ ) and to applythe previouscase.
9. $b_{1} \leq c_{1} \leq a_{1}$ and $a_{2}, b_{2} \leq c_{2}$. It is enough to consid er ( $a_{2}, a_{1}$ ) and ( $b_{2}, b_{1}$ ) and to apply case 3 .
10. $b_{1} \leq c_{1} \leq a_{1}$ and $c_{2} \leq a_{2}, b_{2}$. Consid er $\left(a_{2}, a_{1}\right)$ and ( $b_{2}, b_{1}$ ) and to app ly case 7 .
11. $b_{1} \leq c_{1} \leq a_{1}$ and $b_{2} \leq c_{2} \leq a_{2}$.

$$
\begin{aligned}
& \left|\max \left\{a_{1}, c_{1}\right\}-\quad \max \left\{b_{1}, c_{1}\right\}\right|+\left|\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}-\min \left\{a_{2}, c_{2}\right\}+\min \left\{b_{2}, c_{2}\right\}\right| \\
& +\left|\max \left\{a_{1}, c_{1}\right\}-\max \left\{b_{1}, c_{1}\right\}+\min \left\{a_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\}\right| \\
& \quad=\left|a_{1}-c_{1}\right|+\left|c_{2}-b_{2}\right|+\left|a_{1}-c_{1}-c_{2}+b{ }_{2}\right|+\left|a_{1}-c_{1}+c_{2}-b_{2}\right| \\
& \quad=\left|a_{1}-c_{1}\right|+\left|c_{2}-b_{2}\right|+2 \max \left(\left|a_{1}-c_{1}\right|,\left|c_{2}-b_{2}\right|\right) \\
& \quad \leq\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+2 \max \left(\left|a_{1}-b_{1}\right|,\left|a_{2}-b_{2}\right|\right) \\
& \quad=\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\left|a_{2}-b_{2}-a_{1}+b{ }_{1}\right|+\left|a_{2}-b_{2}+a_{1}-b_{1}\right| .
\end{aligned}
$$

12. $b_{1} \leq c_{1} \leq a_{1}$ and $a_{2} \leq c_{2} \leq b_{2}$. It suffices to exchange the roles of $\left(a_{1}, a_{2}\right)$ and ( $b_{1}, b_{2}$ ) and to appl $y$ the previous case.
13. $a_{1} \leq c_{1} \leq b_{1}$. Itsuffices to exchange $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ and to apply the previous cases.

Lemma A. 5 If $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ and $\left(c_{1}, c_{2}\right)$ are three elements in $T=\left\{(x, y) \quad\left[0,1_{1}\right]\right.$ | $x+y \leq 1\}$,then:

$$
\begin{aligned}
& \mid \max \left\{a_{1}-0.5,0^{-} \max \left\{b_{1}-0.5,0 \mid+\right.\right. \\
& \mid \max \left\{a_{2}-0.5,0\right\}-\max \left\{b_{2}-0.5, \partial \mid \geq\right. \\
& I \max \left\{\max \left\{a_{1}, c_{1}\right\}-0.5,0\right\}-\quad \max \left\{\max \left\{b_{1}, c_{1}\right\}-0.5,0 \mid+\right. \\
& \mid \max \left\{\min \left\{a_{2}, c_{2}\right\}^{-} \quad 0.5,0^{-} \max \left\{\min \left\{b_{2}, c_{2}\right\}^{-} \quad 0.5,0\right)\right. \text {. }
\end{aligned}
$$

Pro of In order to prove this result, we are going to prove the following inequalities:

$$
\begin{aligned}
& \mid \max \left\{a-0.5, \delta^{-} \max \left\{b-0.5, d^{\prime} \mid \geq\right.\right. \\
& \quad \mid \max \left\{\max \{a, c\}-0.5, \delta^{-} \max \{\max \{b, c\}-\quad 0.5,0\} \mid,\right. \\
& \mid \max \left\{a-0.5, \delta^{-} \max \left\{b-0.5, \delta^{-} \mid \geq\right.\right. \\
& \quad \mid \max \left\{\min \{a, c\}-0.5, \delta^{-} \quad \max \left\{\min \{b, c\}-\quad 0.5, \delta^{-} \mid,\right.\right.
\end{aligned}
$$

for every $a, b, c \quad[0,1$.$] Let usconsiderseveralcases.$

1. $a \leq b \leq c$.

$$
\begin{aligned}
& \mid \max \{\max \{a, c\}-0.5,0\}-\quad \max \{\max \{b, c\}-\quad 0.5,0 \mid \\
& \quad=\mid \max \left\{c-0.5,0^{-} \quad \max \{c-0.5,0 \mid\right. \\
& \quad=0 \leq|\max \{a-0.5,0\}-\max \{b-0.5,0\}| \\
& \mid \max (\min \{a, c\}-0.5,0\}-\max \{\min \{b, c\}- \\
& \quad=\mid \max \{a-0.5,0 \mid \\
& \quad 0.5,0^{-}+\max \{b-0.5,0 \mid .
\end{aligned}
$$

2. $a \leq c \leq b$. This impliesthat $b-0.5 \geq c-0.5 \geq a-0.5$, and therefore $\max \{b-$ $0.5,0 \geq \max \{c-0.5,0 \geq \max \{a-0.5,0\}$.

$$
\begin{aligned}
& \mid \max \left\{\max \{a, c\}-\quad 0.5, \delta^{-} \max \left\{\max \{b, c\}-\quad 0.5, \delta^{-} \mid\right.\right. \\
& =|\max \{c-0.5,0\}-\quad \max \{b-0.5,0\}| \\
& \leq \mid \max \left\{a-0.5,0^{-} \max \left\{b-0.5,0^{\prime} \mid\right.\right. \\
& \mid \max \left\{\min \{a, c\}^{-} \quad 0.5,0^{-} \max \{\min \{b, c\}-\quad 0.5,0\} \mid\right. \\
& =\mid \max \left\{a-0.5, d^{-} \max \left\{c-0.5, d^{-} \mid\right.\right. \\
& \leq|\max \{a-0.5,0\}-\max \{b-0.5,0\}| \text {. }
\end{aligned}
$$

3. $b \leq a \leq c$.

$$
\begin{aligned}
& \mid \max \{\max \{a, c\}-\quad 0.5,0\}-\max \left\{\max \{b, c\}-\quad 0.5, \partial^{\prime} \mid\right. \\
& \quad=\mid \max \left\{c-0.5, \partial^{-} \quad \max \left\{c-0.5, d^{\prime} \mid\right.\right. \\
& \quad=0 \leq \mid \max \left\{a-0.5, \partial^{-}-\max \{b-0.5,0\} \mid\right. \\
& \mid \max \left\{\min \{a, c\}-0.5, \partial^{-} \max \left\{\min \{b, c\}-0.5, \partial^{\prime} \mid\right.\right. \\
& \quad=\mid \max \left\{a-0.5, \partial^{-} \quad \max \left\{b-0.5, \partial^{-} \mid .\right.\right.
\end{aligned}
$$

4. $b \leq c \leq a$. Then $a-0.5 \geq c-0.5 \geq b-0.5$, and cons equ entlynax $\{a-0.5, d \geq$ $\max \{c-0.5, b \geq \max \{b-0.5,0$.

$$
\begin{aligned}
& \mid \max \left\{\max \{a, c\}-0.5, d^{-} \max \{\max \{b, c\}-\right. \\
& \quad=|\max \{a-0.5,0\}| \\
& \quad \leq \mid \max \left\{a-0.5, d^{-} \max \left\{c-0.5, d^{-} \mid\right.\right. \\
& \quad \mid \max \left\{b-0,5, d^{-} \mid\right. \\
& \quad=\mid \min \{a, c\}-0.5, d^{-} \max \left\{\min \{b, c\}-\quad 0.5, d^{\prime} \mid\right. \\
& \quad \leq \mid \max \left\{a-0.5, d^{-} \max \{b-0.5,0\} \mid\right. \\
& \quad 0.5, \delta^{-} \max \left\{b-0.5, d^{-} \mid .\right.
\end{aligned}
$$

5. $c \leq a \leq b$.

$$
\begin{aligned}
& \mid \max \left\{\max \{a, c\}-\quad 0.5, d^{-} \quad \max \left\{\max \{b, c\}-\quad 0.5,0^{-} \mid\right.\right. \\
& \quad=\mid \max \left\{a-0.5, d^{-} \max \{b-0.5,0\} \mid\right. \\
& \mid \max \left\{\min \{a, c\}-0.5, d^{-} \quad \max \{\min \{b, c\}-\right. \\
& \quad=|\max \{c-0.5\}| \\
& \quad=0 \leq \mid \max \left\{a-0.5, d^{-} \max \{c-0.5,0\} \mid\right. \\
& \quad \max \{b-0.5,0 \mid
\end{aligned}
$$

6. $c \leq b \leq a$.

$$
\begin{aligned}
& I \max \left\{\max \{a, c\}-\quad 0.5,0^{-} \max \left\{\max \{b, c\}-\quad 0.5, \delta^{\prime} \mid\right.\right. \\
& =|\max \{a-0.5,0\}-\max \{b-0.5,0\}| \text {. } \\
& \mid \max \left\{\min \{a, c\}-\quad 0.5, \delta^{-} \max \left\{\min \{b, c\}-\quad 0.5, \delta^{-} \mid\right.\right. \\
& =\mid \max \left\{c-0.5, \delta^{-} \max \{c-0.5,0 \mid\right. \\
& =0 \leq|\max \{a-0.5,0\}-\max \{b-0.5,0\}| \text {. }
\end{aligned}
$$

Thus, for every $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right) \quad T$ itholds that:

$$
\begin{aligned}
& \mid \max \left\{a_{1}-0.5,0^{-} \quad \max \left\{b_{1}-0.5,0\right\} \mid+\right. \\
& \mid \max \left\{a_{2}-0.5,0^{-} \max \left\{b_{2}-0.5,0\right\} \mid \geq\right. \\
& \mid \max \left\{\max \left\{a_{1}, c_{1}\right\}-\quad 0.5,0\right\}-\quad \max \left\{\max \left\{b_{1}, c_{1}\right\}-\quad 0.5,0 \mid+\right. \\
& \mid \max \left\{a_{2}-0.5,0\right\}-\quad \max \left\{b_{2}-0.5,0 \mid \geq\right. \\
& \mid \max \left\{\max \left\{a_{1}, c_{1}\right\}^{-} \quad 0.5,0\right\}^{-} \quad \max \left\{\max \left\{b_{1}, c_{1}\right\}^{-} \quad 0.5,0 \mid+\right. \\
& \left|\max \left\{\min \left\{a_{2}, c_{2}\right\}^{-} 0.5,0\right\}^{-} \max \left\{\min \left\{b_{2}, c_{2}\right\}^{-} 0.5,0\right\}\right| \text {. }
\end{aligned}
$$

## List of symb ols

| $\begin{gathered} (\Omega, A, P) \\ X, Y, Z, \ldots \end{gathered}$ | Probability space. Random variables. |
| :---: | :---: |
| $F_{X}, F_{Y}, F_{Z}, \ldots$ | Cumulative distributionfunctions. |
| ( $\Omega, A$ ) | Ordered space. |
|  | Preference relation. |
|  | Strict preference relation. |
| 三 | Indifference relation. |
|  | Incomparability relation. |
| D | Setof random variables. |
| FSD | First degree stochastic dominance. |
| SSD | Second degree stochastic dominance. |
| $\begin{gathered} \mathrm{nSD} \\ \mathrm{U} \end{gathered}$ | $n$-th degree sto chastic dominance. |
| $\cup$ | Setof increasingandboundedfunctions |
| $Q$ | $u: R \rightarrow R$. Probabilistic relation. |
| SP | Statistical preference. |
| $Q_{\frac{1}{2}}$ | ${ }_{2}^{1}$-cut of the probabilistic relation $Q$. |
| C | Copula. |
| M | Minimum copula. |
| W | Łukasiewicz copula. |
| $\pi$ | Product copula. |
| $\phi$ | Generatorofan Archimedeancopula. |
| $L_{(\Omega)}$ | Set of gambleson $\Omega$. |
| K | Set ofgambles $K \quad L \quad(\Omega)$. |
| P | Lower prevision. |


| $P$ | Upper prevision. |
| :---: | :---: |
| $M(P)$ | Credal set associated with $P$. |
| $E$ | Natural extension. |
| $\underline{E}$ | Lower distributionfunction. |
| F | Upper distribution function. |
| $(F, F)$ | P-b ox. |
| $P_{(F, F)}$ | Lower probability associated with the p-box ( $F, F$ ). |
| $\Pi$ | Possibility measure. |
| $\pi$ | Possibility distribution. |
| $N$ | Necessity measure. |
| $[\delta, \pi]$ | Cloud. |
| $\Gamma$ | Random set. |
| $\Gamma(A)$ | Upper inverse of $\Gamma$ in $A$. |
| $S(\Gamma)$ | Setof measurableselectionsof therandomset Г. |
| $P_{\Gamma}$ | Upper probability defined from the random set $\Gamma$. |
| $P$ 「 | Lower probability defined from the random set $\Gamma$. |
| $P(\Gamma)$ | Set of probabilities defined by the measurable selections. |
| $\beta_{[0,1]}$ | Borel $\sigma_{\text {-algebra on }[0,1 .] ~}^{\text {d }}$ |
| $\lambda_{[0,1]}$ | Lebesgue measure orin 0 1] |
| (C) $f d \mu$ | Choquet integral of $f$ with resp ect to $\mu$. |
| $\mu_{\mathrm{A}}, \nu_{\mathrm{A}}$ | Membership and non-membership functions of an IF-set $A$. |
| $\pi_{\mathrm{A}}$ | Hesitationindex ofthelF-set $A$. |
| [ $I_{A}, u_{\text {A }}$ ] | Lower and upper bounds of the IVF-set $A$. |
| I F Ss $(\Omega)$ | Setof alllF-setsdefined on $\Omega$. |
| $F S(\Omega)$ | Set of all fuzzy sets defined on $\Omega$. |
| $B(p)$ | Bernoullidistribution withparameter $p$. |
| $E x p(\lambda)$ | Exponential distribution with parameter $\lambda$. |
| $U_{(a, b)}$ | Uniform distribution in the interval ( $a, b$ ). |
| $P_{a}(\lambda)$ | Pareto distribution with parameter $\lambda$. |
| $\beta(p, q)$ | Betadistribution withparameters $p$ and $q$. |
| $\beta(p, q, a, b)$ | Betadistribution ontheinterval $\quad(a, b)$ with parameters $p$ and $q$. |
| $N(\mu, \sigma)$ | Normaldistribution withmean $\mu$ and variance $\sigma^{2}$. |
| $N(\mu, \Sigma)$ | Multidimensional normal distribution with vector of means $\mu$ and matrix of variances-covariance $\bar{\Sigma}$. |


| $\rho$ | Correlation coefficient. |
| :---: | :---: |
| $Q_{n}($ [ [ ] $)$ | Generalprobabilistic relation. |
| $\delta_{a}$ | Diracfunctional onthepoint a. |
| pp | Probabilisticprior relation. |
| sd | Strongdominance relation. |
| $X, Y, Z, \ldots$ | Setsof randomvariables. |
| FSD ${ }^{\text {i }}$ | Imprecise first degree stochastic dominance. |
| $F_{X}, F_{Y}$ | Setsof cumulativedistribution functions. |
| bel | Belief function. |
| pl | Plausibility function. |
| SPi | Imprecise statistical preference. |
| $\mathrm{Q}^{X, Y}$ | Profile of preferences of the sets of random variables $X$ and $Y$. |
| $\Omega_{1}, \Omega_{2}$ | Ordered spaces. |
| C | Upper copula. |
| C | Lower copula. |
| $(6, C)$ | Imprecise copula. |
| $P_{X} \quad \underline{P}_{Y}$ | Independent natural extension of $P_{X}$ and $P_{Y}$. |
| $E_{X} \quad E_{Y}$ | Strong product of $E_{X}$ and $E_{Y}$. |
| uo | Upper orthant relation. |
| 10 | Lower orthant relation. |
| $D_{\text {IFS }}$ | IF-divergence. |
| $I_{\text {IFS }}$ | Hammingdistance forlF-sets. |
| $d_{\text {H }}$ | Hausdorffdistance forlF-sets. |
| $D_{\text {C }}, D_{\text {L }}$ | Hongand Kimdissimilarities. |
| $D_{0}$ | Liet al. dissimilarity. |
| $D_{\text {HB }}$ | Mitchell dissimilarity. |
| $D_{\mathrm{e}}^{p}, D_{\mathrm{h}}^{p}$ | Liangand Shidissimilarities. |
| $D_{\text {HY }}^{1}, D_{\text {HY }}^{2}, D_{\text {HY }}^{3}$ | Hungand Yang dissimilarities. |
| $q_{\text {IFS }}$ | Euclideandistance forlF-sets. |
| $D_{\text {s }}^{p}$ | Liangand Shidissimilarity. |
| $D_{\text {c }}$ | Chen dissimilarity. |
| $D_{\text {DC }}$ | Dengfenf and Chuntian dissimilarity. |
| $D_{\omega 1}, D_{\text {pk } 1}, D_{\text {pk3 }}$ | Hungand Yang dissimilarities. |
| $h_{\text {IFS }}$ | Function that defines a local IF-divergence. |
| $C l([0,1])$ | Setof cloudsdefinedon [0, 1] |
| IF ([0, 1]) | Setof IF-setson $[0,1]$ such that $\mu_{\mathrm{A}}(x)=0$ and $v_{\mathrm{A}}(y)=0$ for somex,y $[0,1]$ |

## Index

Aggregation function, 199
Aumann integral, 33, 204
Belieffunction, 31, 166
Binary relation, 9, 149
Incomparablerelation, 9, 149
Indifference relation, 9,149
Strict preference relation, 9, 149
Weakpreference relation, 9, 149
Bivariate distribution function, 210
Cho quet integral, 33, 204
Cloud, 30, 348
Coherent lower probability
$n$ monotone, 225
Comonotone functions, 32
Strict comonotone functions, 32, 333
Comonotonic randomvariables, $23,56,57$, 81,83, 116, 134
Concave order, 13, see also Seconddegree sto chastic dominance
Convergenc e, 15, 49
Conve rgen ce almost sure, 15, 49
Conve rgen ce imp-th mean, 15, 49
Conve rgen ce in distribution, 15, 49
Conve rgen ce in probability, 15, 49
Copula, 21
Łukas iewicz copula, 21
Archimedean copula, 22
Imprecise cop ula, 228
Minimum copula, 21
Nilp otent Archimedean copula, 22, 70, 89
Pro duct copula, 21

StrictArchimedeancopula, 22, 67, 86, 123
Countermonotonicrandom variables, 23,57 , 60, 82, 83
Credal set, 24, 183, 231, 332, 349
Dirac-delta functional, 115
Distance for IF-sets,262
Envelop e Theorem, 24, 225
Finitely additive distribution functions, 178
Fitness values, 130
Freéchet-Ho effding bounds, 22
Fuzzy Sets, 34
Fuzzy sets, 330
Gamble, 24
Gini Index, 246
Hesitation index, 35,332
Hurwicz criterion, 164

Idemp otent aggregation function, 199
IF-difference, 39, 262, 270-273
IF-dissimilarity, 258
IF-dissimilitude, 260
IF-divergence, 259
Imprecise probabilitie s, 24
Interval-valued fuzzy sets, 34,330
Intuistionistic fuzzy sets, 34
Intuitionistic fuzzy sets, 258
Lorenz curves, 244, 359
Lower distributionfunction,26, 211,334

Lowe r prevision, 24
$n$ monotone, 29
Coherent lower prevision, 24
Lowe r probability, 25, 203, 209, 331
$n$ monotone, 29
Measurable selec tion, 31, 202, 332
Median, 72, 194
Lower median, 209
Upp er median, 209
Monotone aggregation functi on , 199
Multiattribute decision making,250, 352
Natural extension, 25,233,341
Necessity measure, 29
P-b ox, 26, 160, 334, 358
Bivariate p-b ox, 212
Pareto dominanc e, 153
Plausibility fu nction, 31, 166
Possibility measure,29, 183, 330
Preference structure, 10
Preference structure with ou t incomparable elements, 10
Probabilistic prior dominance, 131
Probabilistic relation, 16,200
Random set, 31, 203, 331
Rectangle inequality, 210
Imprecise rec tangle inequalities, 217
Self-Dualaggregation function, 199
Sklar Theorem, 23
ImpreciseSklar Theorem, 232
Statistical preference, 16
General statistical preference,106
Imprecise statis tical preference, 193
Sto chastic dominance, 10, 359
$n$-th degree sto chastic dominance, 13
Bivariate sto chastic dominance, 239
First degree sto chastic dominance, 11
Imprecise sto chastic dominance, 157
Second degree sto chastic dominance, 12
Sto chastic order, 11, see also Firstdegree sto chastic dominance

Strongdominance, 131
Symmetric aggregation fun ction, 199
Upp er distribution function, 26, 211, 334
Upp er prevision, 25
Coherent upp er prevision, 25
Upp er probability, 25, 203, 209, 331

## List of Figures

2.1 Example of first degree stochastic dominance: $X$ FSD $Y$ ..... 12
2.2 Example of second degree stochastic dominance $X$ ssd $Y$. ..... 13
2.3 Interpretation of the reciprocal relation $Q$. ..... 16
2.4 Geometricalinterpretationofthestatistical preference: $X \quad{ }_{\mathrm{sp}} Y$. ..... 17
2.5 Examples of the membership and non-membership functions of the IF-sets that express the P is a go od politician( ), P is honest $\left({ }^{\circ}\right)$ andP is close to the people( ${ }^{*}$ ). ..... 38
3.1 Graphicsof thefunctions $G_{X}^{2}$ and $G_{Y}^{2}$ ..... 91
3.2 Graphicsof thefunctions $G_{X}^{2}$ and $G_{Y}^{2}$. ..... 92
3.3 General relationship between stochastic dominance and statistical prefer- ence. ..... 93
3.4 Probabilistic relation for the three dices. ..... 104
3.5 Relationshipsamong first and $n^{\text {th }}$ degree sto chastic dominance, statistical preferenceand the generalstatistical preference. ..... 129
3.6 Summary of the relationships between strong dominance, first degree stochas- tic dominance, probabilistic prior and statistical preference given in Prop o- sition 3.110. ..... 133
3.7 Values of the probabilisticrelation for differentvaluesof $\quad p$. The ab ove picture corresp onds to intervals $\left[a_{1}, b_{1}\right]=[1,4]$ and $\left[a_{2}, b_{2}\right]=[2,3]$ and the picture below corresp onds to interval $\left.a_{1}, b_{1}\right]=[0.7,1.4]$ and $\left[a_{2}, b_{2}\right]=$ [0.8, 1. 2] ..... 142
4.1 Relationshipsamongthe differentextensionsof thebinaryrelationforthe comparison of setsof random variables.151
4.2 Examples of several definitions of imprecise stochastic dominance. ..... 158
5.1 Relationships among IF-divergences, IF-dissimil itudes, IF-dissi milarities and distances forlF-sets. ..... 267

## List of Tables

3.1 Definition of random variables $X$ and $Y$. ..... 72
3.2 Definition of random variables $X$ and $Y$.. ..... 74
3.3 Characteristicsof thecontinuous distributionstobestudied. ..... 95
3.4 Characterizations of statistical preference between indep endent random variables included in the same family of distributions. ..... 102
3.5 Degrees of preference for the different values of the parameffer $\mathrm{FMSE}_{1}=$ $[1,4]$ and FMSE $_{2}=[2,3]$. ..... 141
3.6 Degrees of preference for the different values of the parameqfer $\mathrm{FMSE}_{1}=$ $\left[0.7,1\right.$. 4月nd $\mathrm{FMSE}_{2}=[0.8,1.2]$ ..... 141
3.7 Linguistic payoff matrix-Expert 1. ..... 143
3.8 Linguistic payoff matrix-Expert 2. ..... 143
3.9 Linguistic payoff matrix-Expert 3. ..... 143
4.1 Summary of the properties of the binary relation thathold ontotheir extensions ..... 156
4.2 Quintiles of the Lorenz Curves asso ciated with different countries. ..... 244
4.3 Cumulative distribution functions asso ciated with the Lorenz Curves of the countries. ..... 245
4.4 Result of the comparison of the regions by means of the imprecise stochas- tic dominance. ..... 245
4.5 Estimation of relative survival ratesby cancersite. The ratesare derived from SEER 1973-98 database, all ethnic groups, both sexes (except (*), only formale, and (**)forfemale). [191].248
4.6 Estimation of relative mortality rates by cancer site. ..... 249
4.7 Result ofthe comparison ofthe different groupsof cancer bymeans of the imprecise sto chastic dominance. ..... 250
5.1 Behaviour of well-known dissimilarities and IF-divergences ..... 291
5.2 Six kinds of materials are represented by IF-sets ..... 351

## Bibliography

[1] F. Aiche and D. Dub ois. An extension of sto chastic dominance to fuzzy random variables. In Proceedings of IPMU 2010 . Springer-Verlag, 2010.
[2] M. A.Arcones, P. H.Kvam, and F.J. Samaniego. Nonparametric estimation ofa distribution sub ject to a stochastic preference constraint. Journalof the American Statistical Association , 97:170-182, 2002.
[3] B. Arnold. Majorization andthe LorenzOrder: ABrief Introduction. Springer, 1987.
[4] K. Atanas sov. Intuitionistic fuzzysets. InProceedings of VII ITKR, Sofia,1983.
[5] K. Atanas sov. Intuitionistic fuzzysets. Fuzzy Sets and Systems , 20:87-96, 1986.
[6] K. Atanassov. Interval valued intuitionistic fuzzy sets. Fuzzy SetsandSystems, 31:343-349, 1989.
[7] K. Atanassov. Intuitionistic Fuzzy Sets: Theory and Applications . Physica-Verlang, Wyrzburg, 1999.
[8] K. Atanassov. Intuitionistic fuz zy sets: Past, present andfuture. In Proccedings of the "European Society of Fuzzy Logic and Technology Conference" (EUSFLAT) 2003, 2003.
[9] K. Atanassov and G. Gargov. Intuitionistic fuzzylogic. CR Acad. Bulg. Soc., 43(3):9-12, 1990.
[10] K.AtanassovandG.Georgeiv. Intuitionisticfuzzyprolog. Fuzzy Sets and Systems, 53:121-128, 1993.
[11] A. Atkins on. On the measureme nt of p overtyEconometrica, 55:749-764,1987.
[12] J. Au mann. Utility theory without the c ompleteness axiom. Econometrica, 30:445462, 1962.
[13] J.Aumann. Integralofsetvaluedfunctions. Journal of Mathematical Analysis and Applications, 12:1-12, 1965.
[14] B. De Baets and H. De Meyer. Transitivity frameworks for recipro cal relations: cycle-transitivity versus -transitivity. Fuzzy Sets and Systems,152(2):249-270, 2005.
[15] B. De Baets, H. De Meyer, and K. De Lo of. On the cycle-transitivity of the mutual rank probability relation of a poset. Fuzzy Sets and Systems , 161(20):2695-2708, 2010.
[16] B. De Baets, H. De Meyer, B. De Schuymer, and S. Jenei. Cyclic evaluation of transitivity of recipro cal relations. Social Choice and Welfare, 26:217-238,2006.
[17] C. Baudrit and D. Dub ois. Practical representations of incomp lete probabilistic knowledge. Computational Statistics and Data Analysis , 51(1):86-108, 2006.
[18] F. Belzunce, J. A. Mercader, J. M. Ruiz, and F. Spizzichino. Sto chastic comparisons of multivariate mixture mo dels. Journal of Multivariate Analysis, 100:1657-1669, 2009.
[19] S. Benferhat, D. Dub ois, and H. Prade. Towards a possibilistic logic handling of preferences.Applied Intel ligence, 14:303-317, 2001.
[20] J. O.Berger. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York, 1985.
[21] J. C. Bezdek, D. Spliman, and R. Spilman. A fuzzy relation space for groupdecision theory. Fuzzy Sets and Syst ems, 1:255-268, 1978.
[22] B. Bhandari, N. R. Pal, and D. D. Ma jumder. Fuzzy dive rge nce, probability measureof fuzzy events and image thresholding. Pattern Recognition Letters , 13:857867, 1992.
[23] P. K. Bhatia and S. Singh. Anew measure of fuzzy dire cted divergence and its application in image segmentation. Journal of Intel ligent Systems and Applications, 4:81-89, 2013.
[24] P. Billingsley. Probabilityand Measure. Wiley-Inte rs cience, 3 edition, April 1995.
[25] P. J. Boland, M. Hollander, K. Joag-Dev, and S. Ko char. Bivariate dep endence prop erties of order statistics. Journal of Multivariate Analysis , 56:75-89, 1996.
[26] P. J. Boland, H. Singh, and B. Cukic. The sto chastic precedence ordering with applicationsin sampling and testing. Journal of Applied Probability, 41:73-82, 2004.
[27] B. Bouchon-M eunier, M. Rifqi, and S.Bothorel. Towards generalmeasuresof comparison of ob jects.Fuzzy Sets and Systems , 84:143-153, 1996.
[28] H. Brenner. Long-termsurvivalratesofcancer patientsachived bytheendofthe 20th century: a prio d analysis. The Lancet , 360:1131-1135, 2002.
[29] P. Burrillo an d H. Bus tince. Entropy onintuitionisticfuzzy setsand on intervalvalued fuzzy sets. Fuzzy Sets and Syst ems, 78(3):305-316, 1996.
[30] H. Bus ti nce and P.Burrillo. Vague se ts are intuitionistic fuzzy sets. Fuzzy Sets and Systems, 79:403-405,1996.
[31] T.Calvo, A.Kolesárová, M.Komorníková, andR.Mesiar. Aggregation operators, New Trends and Applications. Physica-Verlag, Heidelb ert, 2002.
[32] A. C as ero. Uso de simulación para el estudio de la preferencia estadística entre variables aleatorias. Traba jo Académicamente dirigido, Licenciatura de Matemáticas, Dirigido p or E. M irand a, 2011.
[33] D. Cayrac, D. Dub ois, M. Haziza, and H. Prade. Handling uncertainty with possibility theory andfuzzy sets in asatellite fault diagnosis application. IEEE Transactions on Fuzzy Systems , 4:251-259, 1996.
[34] T. Chaira and A. K. Ray. Segmentation using fuzzy divergence. Pattern Recognit ion Letters, 24:1837-1844, 2003.
[35] A. Chateauneuf, M. Cohen, and R. Kast. Comonotone random variable s in economics: a reviewofsome results. Cahiers d'ECOMATH,97.32,1997.
[36] S. M. Che n. Measures of similarity between vague sets. FuzzySets andSystems, 67:217-223, 1995.
[37] S.M. Chen. Sim ilarity measures $b$ etween vague sets and $b$ etween elementer Trans. Syst. Mn Cybernet. , 27(1):153-158, 1997.
[38] R.Cheng, B.Evans, andJ.Williams. Confidencebandestimationfordistributions used in probabilisticdesign. International Journal of Mechanical Sciences, 30:835845, 1988.
[39] G. Cho quet. Theory of capacities. Annales de l'Institut Fourier,5:131-295,19531954.
[40] M.Condorcet. An eassy on the application of probability theory to plurality decision making: an electionbetween three candidatesReprintedin1989, F.Sommerlad, I. McLean (Eds.), 1785.
[41] O. Cordón, F. Herrera, F. Gomide, F. Hoffmann, and L. Magdalena. Ten years of genetic-fuzzy s ys temsa current frame work and new trends. In Proccedings of Joint 9th IF SA World Congress and 20th NAFIPS International Conference, Vancouver-Canada, pages 1241-1246. 2001.
[42] O. Cordón, F. Herrera, F. Hoffm an n,and L. Magdalena. Genetic Fuzzy Systems: Evolutionary Tuning and Learningof Fuzzy Know ledge Bases. World Scientific Publishing, 2001.
[43] I. Couso and D. Dub ois. An imprecise probability approach to joint extensi on s of sto chastic and interval orderings. InProceedings of IPMU 2012. Springer-Verlag, 2012.
[44] I. Couso, L. Garrido, S. Montes, and L. Sánch ez.Exp ected pairwise comparison of the values of a fuzzy random variab le. In C. Borgelt, G. González-Ro dríguez, W. Trutschnig, M.A. Lubiano, M.A. Gil, P. Grzegiorzewski, and O. Hryniewicz, editors, Combining Soft Computing and Statistical Methods in Data Analysis, volume 77 of Advances in Intel ligent and Soft Computing, pages 105-114.Springer, 2010.
[45] I. Couso, L.Garrido, and L. Sánchez. Similarityand dissimilaritymeasures between fuzzy sets:A formalrelationalstudy. Information Sciences, 229(0):122-141, 2013.
[46] I. Cousoand L. Sánchez. The b ehavioural meaning of the median.InC. Borgelt, G. González-Ro dríguez,W. Trutschnig, M.A. Lubiano, M.A. Gil, P. Grzegiorzewski, and O. Hryniewicz, editors, Combining Soft Computing and St atistical Methods in Data Analysis, volume 77 of Advances in Intel ligent and Soft Computing, pages 115-122. Springer,2010.
[47] Inés Couso, Serafín Moral, and Peter Walley. A survey of concepts of indep endence for imprecise probabilities. Risk Decision and Policy , 5:165-181, 2000.
[48] S.K.De, R.Biswas, andA.R.Roy. An ap plication of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets and Sy stems, 117:209-213, 2001.
[49] B.De Baetsand H. DeMeyer. Onthe cycle-transitivecomparison ofartificiall coupled random variables. International Journal of Approximate Reasoning, 47:306322, 2008.
[50] G. de Co oman. Integration in possibility theory. In M. Grabisch, T. Murofushi, and M. Su ge no, editors, Fuzzy Measures and Integrals - Theory and Applications, pages 124-160. Physica-Verlag (Springer), Heidelb erg, 2000.
[51] G. de Co oman and D. AeyelsSupremum preserving upp er probabilities.Information Sciences, 118:173-212,1999.
[52] G. de Co oman, E. Miranda, and M. Zaffalon. Indep endent natural extens ion. Artificial , 175(12-13):1911-1950, 2011.
[53] G. de Co oman, M. C. M. Troffaes, and E. Miranda. $n$-Monotone exact functionals. Journal of Mathematical Analysis and Applications , 347:143-156, 2008.
[54] H.DeMeyer, B.DeBaets, andB.DeSchuymer. Onthetransitivityofthecomonotonic and cou ntermonotonic comparison of random variables. Journal of Multivariate Analysis , 98:177-193, 2007.
[55] B. De Schuymer, H. De Meyer, and B. De Baets. A fuzzy approach to st ochastic dominance of random variables, pages 253-260. Lecture Notes in Artifial Intelligence 2715, 2003.
[56] B. De Schuymer, H. De Meyer, an d B. De Baets.Cycle-transitivitycomparison of indep endent random variables. Journal of Multivariate Analysis, 96:352-373, 2005.
[57] B. De Schuymer, H. De Meyer, B. De Baets, and S. Jenei. On the cycle-transitivity of the dice mo del. Theory and Decision , 54:261-285, 2003.
[58] B. De Schuymer, H. De Me yer, and B. De Baets. Extremecopulas and thecomparison of ordered lists. Theory and Decision , 62:195-217, 2007.
[59] A. P.Dempster. Upp er and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics , 38:325-339, 1967.
[60] D. Denneb erg.Non-Additive Measure and Int egral. KluwerAcademic, Dordrecht, 1994.
[61] T. Deno eux. Extending sto chastic ordering to $b$ elief func tions on the real line. Information Sciences, 179:1362-1376, 2009.
[62] M. Denuit, J. Dhaene, M. Goovaerts, and R. Kaas. Actuarial Theory for Dependent Risks Measures, Orders and Models,John Wiley\& Sons,2005.
[63] G. Deschrijverand E.Kerre. A generalization of op erators on intuitionistic fuzzy sets using triangular norms and c on orms\otes on Intuitionistic Fuzzy Sets,1:1927, 2002.
[64] S. Destercke, D. Dub ois, and E. Cho jnacki. Unifying practical uncertainty representations- ii: Generalised p-b oxes. International Journal of Approximate Reasoning, 49(3):649-663, 2008.
[65] S. Destercke, D. Dub ois, and E. Cho jnacki. Unifying practical uncertainty representations: li.clouds. International Journal of Approximate Reasoning,49(3):664-677, 2008.
[66] P. Dirac. Principles of quantu m mechanics. Oxford attheClaredon Press, 4th edition, 1958.
[67] D. Dub ois,H. Fargier, and P. Perny. Qualitative decision theory withpreference relations and comparative uncertainty: An axiomaticapproach. Artificial Intel ligence, 148:219-260, 2003.
[68] D. Dub ois, S. Gottwald, P. Ha jek, J. Kacprzyk, and H. Prade. Terminological difficulties in fuzzy set theory-the case of "intuitionistic fuzzy sets". Fuzzy Setsand Systems, 156:485-491, 2005.
[69] D. Dub ois, E. Kerre, and R. Mesiar. Fuzzy interval analysis. In D. Dub ois and H. Prade, editors, Fundamentals of Fuzzy sets, p age s 483-58Kluwer Academic Publishers, Boston, 2000.
[70] D. Dub ois and H. Prade. Possibility Theory. PlenumPress,New York, 1988.
[71] D. Dubois and H. Prade. Fundamentals of Fuzzy Sets. Kluwer Academic Publishers, Massachusetts, 2000.
[72] D. Dub ois and H. Prade. An overviewof the asymmetric bip olar representation of positive and negative information in p ossibility theory. Fuzzy Setsand Systems, 160(10):1355-1366, 2009.
[73] D. Dub ois and H. Prade. Gradualness, uncertainty and bip olarity: Making sense of fuzzy sets. Fuzzy Sets and Syst ems, 192:3-24, 2012.
[74] J.FanandW. Xie. Distance measureandinduced fuzzyentropy. Fuzzy Setsand Systems, 104:305-314, 1999.
[75] S. Ferson, V. Kreinovich, L. Ginzburg, D. S. Myers, and K. Sentz. Constructing probability b oxes and Dempster-Shafer structu res.Technical Rep ort SAND20024015, Sandia National Lab oratories, January 2003.
[76] S. Ferson andW. Tucker. Probability boxes as info-gap mo dels.InProceedings of the Annual Meeting of the North AmericanFuzzy Information Processing Society, New York(USA), 2008.
[77] M. Finkelstein. On sto chastic comparisons of $p$ opulation dens ities and life expectancies. Demographic Research,13:143-162,2005.
[78] P. C. Fishburn. Interval Orders and Interval Graphs. Wiley,New York,1985.
[79] M. Fréchet. Généralisations du théorème des probabilités totales. Fundamenta Mathematicae, 25:379-387, 1935.
[80] J. L. García-Lapresta andB. Llamazares. Ma jority decisions based on differences of votes. Journal of Mathematical Economics, 35:463-381,2001.
[81] I. Georgescu. FuzzyChoiceFunctions, a RevealedPreferenceApproach. Springer, Berlin, 2007.
[82] I. Gilb oa and D. Schmeidler. Maxmin exp ected utility with a non-unique prior. Journal of Mathematical Economics, 18:141-153,1989.
[83] F. J. Giron and S. Rios. Quas i-Bayesian b ehaviour'A more re alistic approach to decision making? In J. M. Bernardo, M. H. DeGro ot, D. V. Lindley, and A. F. M. Smith, editors, Bayesian Statistics, pages 17-38. Valenc ia University Press, Valencia, 1980.
[84] I. R. Go o dman.Fuzzy sets as equivalence classes of random setmp.R. Yager, editor, Fuzzy Sets and Possibility Theory, pages327-342.PergamonPress, Oxford, 1982.
[85] P.Grzegorzewski. Distances betweenintuitionisticfuzzy setsand/orinterval-valued fuzzy sets based on th e hausdorff metric. Fuzzy Sets and Systems,148:319-328, 2004.
[86] P. Grzegorzewskiand E. Mrowka. Probability of intuitionistic fuzzy events. In P. Grzegiorzewski, O. Hryniewicz, and M. A. Gil, editors, Soft methods in probability, statistics and data analysis, pages 105-115. Physica-Verlag,2002.
[87] F. Herrera. Genetic fuzzy systems: taxonomy and current research trend and prosp ects.Evolutionary Intel ligence, 1:27-46, 2008.
[88] C. J. Himmelb erg. Measurable relations. Fundamenta Mathematicae, 87:53-72, 1975.
[89] D. H. Hong and C. Kim. A note on similarity measures between vague sets and between elements.Information Sciences, 115:83-96, 1999.
[90] T. Hu and C. Xie. Negative dep endence in the balls and binds exp eriment with applications to order statistics. Journal of Multivariate Analysis, 97:1342-1354, 2006.
[91] E. Hüllermeier. Cased-based approximate reasonin§pringer, 2007.
[92] W-L. Hungand M-S.Yang. Similarity measures of intuitionistic fuzzy sets based on hausdorff distances. Pattern Recognition Letters,25:1603-1611,2004.
[93] W-L. Hungand M-S.Yang. Similarity measures of intuitionistic fuzzy sets based on $I_{p}$ metric. International Journal of Approximate Reasoning, 46:120-136,2007.
[94] W-L. Hung and M-S. Yang. On similarity measures b etween intuitionistic fu zzy sets. Internation Journal of Intel ligent Systems, 23:364-383, 2008.
[95] M. Islam and J. Braden. Bio-economics development of flo o dplairssarming versus fishing in bangladesh. Environment and Development Economics, 11(1):95-126, 2006.
[96] J.-Y. Jaffray an d M. Jeleva. Information pro cessing under imprecise risk with the Hurwicz criterion. InProccedings of the Fifth Int. Symposium on Imprecise Probabilities and Their Applications, ISIPTA , 2007.
[97] V. Janiš. T-norm based cuts of intuitionistic fuzzy sets. Information Sciences, 180(7):1134-1137, 2010.
[98] A. Kaur, L. S. Prakasa Rao, and H. Singh. Testing for second-order sto chastic dominanceof two distributions. Econometric Theory, 10:849-866, 1994.
[99] E. P. Klement, R. Mesiar, and E. Pap. Triangular norms. Kluwer Academic Publishers, Dordrecht, 2000.
[100] E. P. Klement, R. Mesiar, and E. Pap. Triangular Norms. Kluwer Academic Publishers, Dordrecht, 2000.
[101] G. Klir and B.Yuan. Fuzzy setsandfuzzy logic: theory andapplications. Prentice Hall, New Jersey, 1995.
[102] V. Krätschmer. When fuzzy measures are upp er envelop es of probability measures. Fuzzy Sets and Syst ems, 138:455-468, 2003.
[103] E. Kriegler. Utilizing belief functions for the estimation of future climate change. International Journal of Approximate Reasoning, 39(2-3):185-209,2005.
[104] R. Kruse and K. D. Meyer. Statisticswithvague data. D. Reidel Publishing Company, Dordrecht, 1987.
[105] H.Kwakernaak. Fuzzyrandomvariables, i, ii. Information Sciences, 15-17:253-178, 1979.
[106] E.L. Lehmann. Orderingfamilies ofdistributions. Annals of Mathematical Statistics , 26:399-419, 1955.
[107] I. Levi. The enterprise of know ledgeMIT Press,Cambridge, 1980.
[108] H. Levy. Stochastic dominance and exp ected utility: survey andanalysis. Management Science , 38:555-593, 1992.
[109] H. Levy. Stochastic Dominance. KluwerAcademic Publishers, 1998.
[110] M.Levy andH.Levy. Testin g for risk aversion:a sto chastic dominance approach. Economics Letters, 71:233-240, 2001.
[111] D. F. Li andC.T. Chen. New similarity measures ofintuitionisticfuzzy sets and applications to pattern recognitions. Pattern Recognition Letters, 23:221-225, 2002.
[112] X.Liand X.Hu. Some new sto chastic comparisons for redundancy allo cations in seriesand parallel systems. Statistics and Probability Letters,78:3388-3394,2008.
[113] Y. Li, D. L. Olson, and Z. Qin. Similarity measures between intuitionistic fuzzy (vague) sets: Acomparative analysis. Pattern RecognitionLetters, 28:278-285, 2007.
[114] Z. Liang and P. Shi. Si milarity measures on intuitionistic fuzzy sets. Pattern Recognit ion Letters, 24:2687-2693, 2003.
[115] C.J. Liau. On the p ossibility theory-bas ed semantics for logics of preference! $n$ ternational Journal of Approximate Reasoning, 20:173-190, 1999.
[116] P. Limb ourg. Multiob jective optimization of problems with epistemic uncertainty. In Proceedings of Third International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato-Mexico , pages 413-427, 2005.
[117] M. Lorenz. Metho ds of measuring the concrentration of wealthPublications ofthe American Statistical Association, 9(209-219):70, 1905.
[118] P. Lui, F. Jin, X. Zhang, Y. Su, and M.Wang. Research onthemulti-attribute decision-making under risk with interval probability based on prosp ects theory and the uncertain linguisticvariables. Know ledge-Based Systems, 24:554-561, 2011.
[119] X. Lui. Entropy, distancemeasureandsimilarity measureoffuzzysetsandther relations. Fuzzy Sets and Sy stems, 52:305-318, 1992.
[120] D.Martinetti, V.Jani š, and S. Montes. Cuts of intuitionistic fuzzy sets resp ecting fuzzy connectives.Information Sciences , 232:267-275, 2013.
[121] D.Martinetti, I.Montes, andS.Díaz. Transitivityofthefuzzyandtheprobabilistic relations asso ciated to a set of random variablesnP.Burrillo, H.Bustince, B.De Baets, and J. Fo dor,editors, Proceedings of EUROFUSE 2009 Conferencepages 21-26, 2009.
[122] D. Martinetti, I. Montes, S. Díaz, and S. Monte s. Astudy of the transitivityof the probabilistic and fuzzy relation. Fuzzy Sets and Sy stems, 184:156-170, 2011.
[123] J. M. Merigó and A. M. Gil-Lafuente. Induced 2-tuple linguisticgeneralized aggregation op erators and their application in decision-making. Information Sciences, 236:1-16, 2013.
[124] P. Mikusiński, H. Sherwo ok, and M.D. Taylor. The Fréchet bounds revisited. Real Anal Exchange, 17:759-764,1991-92.
[125] E. Miranda. Análisis de la información probabilística de los conjuntos aleat orios. PhD thesis, University of Oviedo, 2003. In Spanish.
[126] E. Miranda. Asurvey of the theory of coherent lower previsions. International Journal of Approximate Reasoning , 48(2):628-658, 2008.
[127] E. Miranda, I. Couso, and P. Gil. Upp er probabilities and selectors of random sets. InP.Grzegorzewski, O.Hryniewicz, andM.A.Gil, editors, Soft methods in probability, statistics and data analysis, pages 126-133. Physica-Verlag, Heidelb erg, 2002.
[128] E. Miranda, I. Couso, and P. Gil. A random set characteriz ation of possibility measures.Information Sciences, 168:51-75, 2004.
[129] E. Miranda, I. Couso, and P. Gil. Random intervals as a mo del for imprec ise information. Fuzzy Sets and Syst ems, 154:386-412, 2005.
[130] E.Miranda, I.Couso, andP.Gil. Approximations of upp er and lower probabilities by me as urable selection\$nformation Sciences, 180:1407-1417, 2010.
[131] E. Miran da, I. Couso, and P.Gil. Upp er probabilities attainable by distributions of measurable selections.Information Sciences , 180(8):107-1417, 2010.
[132] E. Miranda, G. de Co oman, and I. Cous o. Lower previs ion s induced by multivalued mappings. Journal of Statistical Planning and Inference, 133(1):173-197, 2005.
[133] E. Miranda, G. de Co oman, and E. Quaegheb eur. Fini tely additive extensions of distribution functions and moment sequences: The coherent lower prevision approach. International Journal of Approximate Reasoning, 48(1):132-155, 2008.
[134] E. Miranda and I. Montes. Imprecise preferences by means of probability boxes. InProceedings of 4th ERCIM, page 63, 2011.
[135] E. Miranda, I. Montes, R. Pelessoni, and P. Vicig. Bivariate p-b oxes. In Proceedings of 8th ISIPTA, 2013.
[136] E.Miranda, M.Troffaes, andS.Destercke. Generalised p-b oxes on totally ordered spaces. In D. Dub ois, M. Lubiano, H. Prade, M. Gil, P. Grzegiorzewski, and O. Hryniewicz, editors, Soft Methods for Hand ling Variability and Imprecision, pages 235-242. Springe r, 2008.
[137] E. Mirandaand M. Zaffalon. Coherence graphsArtificial Intel ligence, 173(1):104144, 2009.
[138] H. B. Mitchell. On the dengfeng-chuntian similarity measure and its application to pattern re cognition. Pattern Recognition Letters,24:3101-3104,2003.
[139] A. Mülle r and D. Stoyan. Comparison Methodsfor Stochastic Models and Risks. Wiley, 2002.
[140] I. Montes. Some general comments ab out statistical preferencelnProceedings of I TUIM Conference, 2010.
[141] I. Montes. Divergences for intuition istic fuzzy sets. InProceedings of II TUIM Conference, 2011.
[142] I. Montes. Comparisonofmore thantwo random variables by meansof the statistical preference. In Proceedings of XXXIII SEIO Conference , 2012.
[143] I. Montes, S. Díaz, and S. Montes. Comparison of imprecise fitness values mo delled by b eta di stributions. pages 489-494, 2010cited By (since 1996)0.
[144] I.Montes, J.Hernández, D.Martinetti, andS.Montes. Characterizationofcontinuous t-normscompatible withzadeh's probability of fuzzy events. Fuzzy Setsand Systems, 228:29-43, 2013.
[145] I. Montes, V. Janiš, and S. Montes. Anaxiomatic definitionof divergence for intuitionistic fuzzy sets. volume 1, pages547-553,2011. citedBy(since 1996)0.
[146] I.Montes, V.Jani š, and S.Montes. Onthe study of some measuresof comparison of if-sets. In Proceedings of XVI ESTYLF Conference, 2011.
[147] I. Monte s, V. Janiš, and S. Montes. Lo cal if-diverge nces. Communications in Computer and Information Science, 298CCIS(PART 2):491-500, 2012. cited By (since 1996)0.
[148] I.Montes, D.Martinetti, S.Díaz, andS.Montes. Acharacterisationof statistical preferenceby means of the median. 2012. Submitted forpublication.
[149] I. Montes, D. Martinetti, and S. Díaz. On the statistical preferen ce as a pairwise comparison for random variables.In Proceedings of EUROFUSE 2009 Conference, 2009.
[150] I. Montes, D. Martinetti, S. Díaz, and S. Montes. Comparisonof random variables coupled byarchimedean copulas. In Christian Borgelt, Gil González-Ro dríguez, Wolfgang Trutschnig, María Lubiano, María Gil, Przemyslaw Grzegorzewski,and OlgierdHryniewicz, editors, Combining Soft Computing and Statistical Methods in Data Analysis, volume 77of Advances in Intel ligent and Soft Computing, pages 467-474. Springer Berlin / Heidelb erg, 2010.
[151] I. Montes, D. Martinetti, S. Díaz, and S. Montes. Estudio de la preferencia estadísticaen distribuciones normales bidimensionales. InProceedings of XXXII SEIO Conference, 2010.
[152] I.Montes, D.Martinetti, S.Díaz, andS.Montes. Statistical preference asacomparison metho d of two imprecise fitness values. InProceedings of XV ESTYLF Conference, 2010.
[153] I. Montes, D. Martinetti, S. Díaz, and S. Montes. Statistical preference as a to ol in consensus pro cessebn Enrique Herre ra-Viedma, José García-Lapresta, Janusz Kacprzyk, Mario Fedrizzi, Hannu Nurmi, and SlawomirZadrozny, editors, Consensual Processes,volume 267 of Studies in Fuzziness and Soft Computing, pages 65-92. Springer Berlin / Heidelb erg, 2011.
[154] I. Montes, D. Martinetti, and S. Montes. Statistical preference for testing algorithms. InProceedings of Centennial Congress of the Spanish RoyaMathematical Society RSME, 2011.
[155] I. Montes, E. Miranda, and S. Díaz. Preferences with p-b oxes.InProceedings of 4th WPMSIIP, 2011.
[156] I. M ontes, E. Miranda, and S. Montes. Decision making with imprecise probabil ities and utilities by means of statistical preference and sto chastic dominance. European Journal of Operational Research , 234(1):209-220, 2014.
[157] I. Montes, E. Miranda, and S. Montes. Sto chastic dominance with imprecise information. Computational Statistics and Data Analysis, 71/C:867-885, 2014. In press.
[158] I.Montes, N.R.Pal, V.Jani š, andS.Montes. Divergencemeasures forintuitionistic fuzzy sets. IEEE Transactions on Fuzzy Systems, Accepted to publication, 2014.
[159] S. Montes. Partitions anddivergence measuresin fuzzy models. PhD thesis, University of Oviedo,1998.
[160] S. Montes, I. Cous o, P. Gil, and C. Bertoluzza.Dive rge nce measure b etween fuzzy sets. International Journal of Approximate Reasoning, 30:91-105, 2002.
[161] S. Montes, T. Iglesias, V. Janiš, and I. Montes. A commonframework forsome comparison measures of if-setsJnProceedings of IWIFSGN Conference,2012.
[162] S.Montes, D.Martinetti, I.Montes, andS.Díaz. Gradedcomparison ofimprecise fitness values. In Proceedings of Hard \& Soft Conference , 2010.
[163] S. Montes, D. Martinetti, I. Montes, and S. Díaz. Min-transitivityof graded comparisons for random variables. InProceedings of FUZZ-IEEE 2010, BarcelonaSpain. 2010.
[164] R. F. Nau. Indeterminate probabilitiesonfinite sets. TheAnnals of Statistics, 20:1737-1767, 1992.
[165] R. F. Nau. The s hap e of incomplete preference\&nnals of Statistics,34(5):24302448, 2006.
[166] R. Nelsen. An introduction to copulas. Springer, NewYork, 1999.
[167] R. Nelsen, J. J. Quesada Molina, J. A. Ro dríguez-Lallena, and M. Úb eda Flores. Best-p ossible b ounds on sets obivariate distribution functions. Journal of Multivariate Analysis , 90:348-358, 2004.
[168] A. Ne umaier. Clouds, fuzzysets andprobability intervals. Reliable Compu ting, 10:249-272, 2004.
[169] H. T. Nguyen. On random sets and belief functions. Journal of Mathematical Analysis and Applications, 65(3):531-542, 1978.
[170] H.T. Nguyen. An introduction torandom sets. Chapman andHall,2006.
[171] N. Noyan, G. Rudolf, and A. Ruszczyński. Relaxations of linear programming problems with first order sto chastic dominance constrains.Operations ResearchL, 34:653-659, 2006.
[172] M. Ob erguggenb erger and W.Fellin. Reliability bounds through random sets: non-parametric metho ds and geotechnical applications. Computers and Structures, 86(10):1093-1101, 2008.
[173] W. Ogryczak and A.Ruszczyński. From sto chastic dominance to mean-risk mo dels: Semideviations and riskmeasures. European Journal of Operational Research, 116:33-50, 1999.
[174] G. Owe n. Game theory. Academic Press, San Die go. Third Edition, 1995.
[175] N. R. Pal and S. K. Pal. Entropy, a new definitionand its applications. IEEE Trans. Syst. Mn Cybernet. , 21(5):1260-1270, 1991.
[176] R.Pelessoni, P.Vicig, I.Montes, andE.Miranda. Imprecise copulasand bivariate sto chastic orders.InProceedings of EUROFUSE 2013 Conference,2013.
[177] E. Raufas te,R. DaSilva Neves, and C. Mariné. Testingthe descriptive validity of possibility theory in human judgements of uncertainty. Artificial Intel ligence, 148:197-218, 2003.
[178] D. Ríos Insua. On the foundations of decision analysis with partial information. Theory and Decision , 33:83-100, 1992.
[179] M. Roub ens and Ph. Vincke. Preference Model ling.Springer-Verlag,Berlin, 1985.
[180] L. Sánchez an d I. CousoAdvo cating the use of imprecise observed data in genetic fuzzy systems. IEEE Transactions on Fuzzy Systems , 15:551-562, 2007.
[181] L. Sánchez, I. Couso, and J. Cas illas.A multiob jective genetic fuzzy system with imprecise probability fitness forvague data. InProceedings of 2006 IEEE International Conference on Evolutionary Fuzzy Sy st ems, Ambleside-UK. 2006.
[182] L. Sánchez, I. Couso, and J. Casillas. Mo deling vague data with genetic fuzzy system under a combination of crisp and imprecise criteria. InProceedings of 2007 IEEE Symposionon Computational Intel ligence in Multicriteria Decision Making, Honolulu-USA. 2007.
[183] L. Sánchez, I. Couso, and J. Casil lasGeneticlearningof fuzzyrulesbased onlow quality data. Fuzzy Sets and Systms , 160:2524-2552, 2009.
[184] J. K.Satia andR. E. Lave. Markovian decision pro cesses with uncertain transition probabilities. Operations Research,21:728-740,1973.
[185] M. Scarsini. Copulae of capacities on pro duct spaces. In LudgerRüschendorf, Berthold Schwe izer, and Michael Dee Taylor, editors, Distributions withFized Marginals andRelated Topics, volume28 of IMS Lecture Notes- Monograph Series, pages 307-318. Institute ofMathematical Statistics, 1996.
[186] T. Seid enfeld,M. J. Schervish, and J. B. Kadane. Arepresentation of partially ordered preferences.The Annals of Statistics , 23:2168-2217, 1995.
[187] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ, 1976.
[188] M. Shaked and J. G. Shanthikumar. Stochastic Orders and theirapplications. Springer, 2006.
[189] A. Sklar. Fonctions de répartitionà n-dimensions et leursmarges. Publications de I'Institute de Statist iqu e de l'Université de Paris, 8:229-231, 1959.
[190] C.Strobl, A.L.Boulesteix, andT.Augustin. Unbiased split selection for class ification trees based on the gini index. Computational Statistics and Dat a Analysis, 52(1):483-501, 2007.
[191] Surveillance, Epidemiology, and EndResults(SEER)ProgramPublic-UseData (1973-1998). Bethesda (MD):National Cancer Institute, DCCPS, Cancer Surveillance Reasearch Program, Cancer StatisticsBranch, released April2001, based on the August 2000 submission.
[192] R.Szekli. Stochastic ordering and dependence in applied probability. Springer, 1995.
[193] E. Szmidt and J.Kacprzyk. Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114:505-518, 2000.
[194] E. Szmidt and J. Kacprzyk. An applicationof intuitionistic fuzzyset similarity measures to a multi-criteria decision makingproblem. InLeszek Rutkowski, Ryszard Tadeusiewicz, LotfiA. Zadeh, and JacekM. Å»urada, editors, Artificial Intel ligence and Soft Computing ICAISC 2006, volume 4029 of Lecture Notes in Computer Science, pages 314-323. Springer Berlin Heidelb erg, 2006.
[195] E. Szmidtand J.Kacprzyk. Analysis of sim ilarity measures for atannasov's intuitionistic fuzzy sets. In J. P. Carvalho, D. Dub ois, U. Kaymak, and J. M. C. Sousa, editors, Proccedings of"International Fuzzy Systems Association World Congress and 2009 EuropeanSociety of Fu zzy Logic and Technology Conference"(IFSAEUSFLAT 2009), pages 1416-1421. 2009.
[196] H. Tanaka and P. J. Guo. Possibilistic Data Analysis forOperations Research. Physica-Verlag, Heidelb erg, 1999.
[197] J. Teich. Pareto-front exploration with uncertain objectives. In Proceedings of First International Conference on Evolutionary Multi-Criterion Optimization. 2001.
[198] M. Troffaes and S. Destercke. Probability b oxes on totally preordered spaces for multivariate mo dell. International Jou rnal of Approximate Reasoning, 52(6):767791, 2011.
[199] M. Troffaes, E. Miranda, an d S. Destercke.On the connection b etween probabil ity b oxes and p ossibility measure\$nProceedings of EUSFLAT'2011, pages836-843, Aix-les-Bains, France, 2011.
[200] M. Troffaes, E. Miranda, an d S. Destercke.On the connection b etween probabil ity b oxes and possibility measuresInformation Sciences, 224:88-108, 2013.
[201] M. C.M. Troffaes. Optimality, Uncertainty, and Dynamic Programming with Lower Previsions. PhD th esis, Ghent University, Ghent, Belgium, March 2005.
[202] M.C. M.Troffaes. Decision makingunder uncertainty usingimprecise probabilities. International Journal of Approximate Reasoning, 45(1):17-29,2007.
[203] P. Wakker. Characterizing optimism and p essimism through comonoton icity. Journal of Economic Theory, 52:453-463,1990.
[204] P. Walley. Coherent lower (and upp er) probabilities. Technical Rep ort Statistics Research Rep ort 22, University of Warwick, Coventry, 1981.
[205] P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman andHall, London, 1991.
[206] W. Wang and X. Xin. Distan ce measure b etween intuitionistic fuzzy sets. ${ }^{\text {Pattern }}$ Recognit ion Letters, 26:2063-2069, 2005.
[207] X. Wang, C. Wu, and X.Wu. Choice functionsinfuzzy environment: An overview. Studies in Fuzziness and Soft Compu ting, 261:149-169,2010. citedBy (since 1996)2.
[208] G. A. Whitmore and M. C. Findlay. Stochastic dominance: An approachto decision-making under risk. Lexington Bo oks, 1978.
[209] R. Williamson. Probabilistic arithmetic. PhD thesis, Universi ty of Queensland, 1989.
[210] C. WratherandP.L.Yu. Probabilitydominance inrandomoutcomes. Journal of Optimization Theory and Applications, 36:315-334,1982.
[211] Z. Xu. Some similarity measures of intuiti on istic fuzzy sets and their applications to multiple attribute decisionmaking. Fuzzy Optimizat ion and Decision Making, 6:109-121, 2007.
[212] Z. S. Xu and J. Chen. An overview of distance an d similarity measures of intuitionistic fuzzy sets. Internation Journal of Uncertainty, Fuzziness and Know ledge-Based Systems, 16(4):529-555, 2008.
[213] Y. Yuan and H. Zhuang. A gen eral algorithm for generating fuzzy classification rules. Fuzzy Sets and Syst ems, 84:1-19, 1996.
[214] L. A. Zad eh. Fuzzy sets. Information and Control , 8:338-353, 1965.
[215] L. A.Zadeh. Probability measuresof fuzzy events. Journal of Mathematical Analysis and Applications, 23:421-427, 1968.
[216] L. A. Zadeh. Outline ofa newapproach tothe analysisofcomplex systemsand decision pro cesses interval-valued fuzzy sets. IEEE Trans. Syst. Mn Cybernet., 3:28-44, 1973.
[217] L. A. Zadeh. Fuzzy sets as a basis fora theory of possibility. Fuzzy Setsand Systems, 1:3-28, 1978.
[218] M. Zaffalon and E. Miranda. Conservativeinference ruleforuncertain reasoning under incompleteness.Journal of Artificial Intel ligence Research, 34:757-821, Jan 2009.
[219] M.Zaffalon, K.Wesnes, andO.Petrini. Reliablediagnosesofdementiabythenaive credal classifier inferred from incomplete cognitive data. Artificial Intel ligence in Medicine, 29:61-79, 2003.

