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Abstract

Constraint programming is a paradigm wherein relations between variables are
stated in the form of constraints. It is well-known that many real life problems can
be modeled as Constraint Satisfaction Problems (CSPs). Due to their pervasive use
in solving these problems, much effort has been spent to increase the efficiency of
algorithms for solving CSPs. However, many of these techniques assume that the set
of variables, domains and constraints involved in the CSP are completely known and
fixed when the problem is modeled. This is a strong limitation because many problems
come from uncertain and dynamic environments, where the original problem, and
consequently its associated CSP model, may evolve due to the environment, the user
or other agents. In such situations, a solution that holds for the original problem can
become invalid after changes occur in the problem.

There exist two main approaches for dealing with these situations: reactive and
proactive. Using reactive approaches entails re-solving the CSP after a solution is no
longer a solution, which is time consuming. That is a clear disadvantage, especially
when we deal with short-term changes. This is also motivated in Verfaillie and Jussien
(2005), which is an important survey on constraint solving in uncertain and dynamic
environments. In this survey, the authors state that a desirable objective in dynamic
and uncertain frameworks is:

First “Limit as much as possible the need for successive online problem solvings.”

Motivated by the first statement, in this dissertation we develop proactive ap-
proaches, which try to offer a resistance to the possible future alterations of the prob-
lem. Therefore, these approaches are applied before changes in the original problem
occur. There exist two main types of proactive approaches, which can be distinguished
on the basis of the characteristics of the solutions that they obtain: robust and flexi-
ble. The flexibility concept implies modifications over the original solution whilst the
robustness concept does not. In Verfaillie and Jussien (2005), the authors make the
second statement as another desirable objective.

Second “Limit as much as possible changes in the produced solution.”

For this reason, this thesis mainly focuses on the search of robust solutions, which
have a high probability of remaining solutions after changes over the CSP. Further-
more, in Verfaillie and Jussien (2005) the authors also mention as future interesting
work the possibility of developing proactive strategies that combine the solution fea-
tures of robustness and flexibility.

Third “The production of solutions that are at the same time robust and flexible, that
have every chance to resist changes and can be easily adapted when they did
not resist, is obviously a desirable objective.”
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According to this objective, expressed in the third statement, in this thesis we
develop approaches that meet the condition of combining solution robustness and
stability (the stability is a special case of flexibility). To the best of our knowledge,
this combination has not yet been developed for CSPs.

Proactive approaches use the available knowledge about possible future changes
in order to avoid or minimize their effects. However, for many real life problems
the information about the uncertain and dynamic environment is unknown or hard to
obtain. In many proactive approaches that search for robust solutions, the form of the
algorithm is dependent on detailed knowledge about the dynamic environment. As a
result, in the lack of such a priori information, these methods can not be applied. For
this reason, the author of Hebrard (2006) makes the fourth statement for a desirable
characteristic of approaches dealing with such an uncertain and dynamic framework.

Fourth “Ideally, no additional knowledge over the data used to build the classical
constraint network is required and no more expertise than for solving the prob-
lem without taking uncertainty into account.”

In this dissertation, we try to answer an interesting question in dynamic and un-
certain environments: when additional information about the possible changes in the
problem is unknown, is it possible to define what is the robustness of a solution of a
CSP and to build appropriate algorithms? We found that it is possible and justifiable
to extract some limited (and intuitively reasonable) assumptions about the dynamism
of problems for which the order over the domain elements is significant. Therefore,
in this work we present approaches for dealing with types of problems that are, there-
fore, consistent with the fourth statement. The fulfillment of these four statements
has been the motivation and the main objective of the work presented in this thesis.

IV



Resumen

La programación con restricciones es un paradigma en el que las relaciones entre
las variables se expresan en forma de restricciones. Es bien sabido que muchos de
los problemas de la vida real se pueden modelar como Problemas de Satisfacción de
Restricciones (CSPs). Debido a su amplia utilización en la resolución de estos pro-
blemas, se ha invertido mucho esfuerzo en incrementar la eficiencia de los algorı́tmos
que resuelven CSPs. Sin embargo, muchas de estas técnicas asumen que el conjunto
de variables, dominios y las restricciones involucrados en el CSP son completamente
conocidos y fijos cuando el problema se modela. Esta es una fuerte limitación porque
muchos problemas provienen de entornos inciertos y dinámicos, en los que el pro-
blema original, y en consecuencia su modelo CSP, pueden evolucionar debido al en-
torno, al usuario u otros agentes. En tales situaciones, una solución del problema
original puede convertirse en inválida después de que se produzcan cambios en el
problema.

Existen dos estrategias principales para hacer frente a estas situaciones: reactivas
y proactivas. Utilizar estrategias reactivas implica volver a resolver el CSP después
de que una solución deje de ser una solución, lo cual conlleva un consumo de tiempo.
Esta es una desventaja obvia, especialmente cuando tratamos con cambios a corto
plazo. Esto también está motivado en Verfaillie and Jussien (2005), que es un impor-
tante estudio de la resolución de problemas con restricciones en entornos dinámicos e
inciertos. En este trabajo, los autores afirman que un objetivo deseable en los marcos
dinámicos e inciertos es:

Primera “Limitar en la medida de lo posible la necesidad de sucesivas resoluciones
online.”

Debido a esta primera declaración, en esta tesis se desarrollan estrategias proac-
tivas, que tratan de ofrecer una resistencia a las posibles modificaciones futuras del
problema. Por lo tanto, estos métodos se aplican antes de que ocurran cambios en el
problema original. Existen dos tipos principales de estrategias proactivas, las cuales
pueden distinguirse en base a las caracterı́sticas de las soluciones que se obtienen: ro-
bustez y flexibilidad. El concepto de flexibilidad implica modificaciones en la solución
original, mientras que el concepto de robustez no. En Verfaillie and Jussien (2005),
los autores hacen la segunda declaración como otro objetivo deseable.

Segunda “Limitar en la medida de lo posible, los cambios en la solución producida.”

Por esta razón, esta tesis se centra principalmente en la búsqueda de soluciones
robustas, las cuales tienen una alta probabilidad de continuar siendo soluciones des-
pués de cambios en el CSP. Además, en Verfaillie and Jussien (2005) los autores
también mencionan como un interesante trabajo futuro la posibilidad de desarrollar
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estrategias proactivas que combinen las caracterı́sticas de una solución de robustez y
flexibilidad.

Tercera “La producción de soluciones que sean a la vez robustas y flexibles, que
tengan todas las posibilidades para resistir los cambios y puedan ser adaptadas
fácilmente cuando no los resisten, es obviamente un objetivo deseable.”

De acuerdo con este objetivo, expresado en la tercera declaración, en esta tesis
se desarrollan estrategias que cumplen la condición de combinar la robustez y es-
tabilidad (la estabilidad es un caso especial de flexibilidad). Por lo que nosotros
conocemos, esta combinación todavı́a no se ha desarrollado para CSPs.

Las estrategias proactivas utilizan el conocimiento disponible acerca de los posi-
bles cambios futuros con el fin de evitar o reducir al mı́nimo sus efectos. Sin embargo,
para muchos de los problemas de la vida real la información sobre el entorno incierto
y dinámico es desconocida o difı́cil de obtener. Para muchas estrategias proactivas que
buscan soluciones robustas, la forma del algoritmo depende de un conocimiento deta-
llado sobre el entorno dinámico. Como resultado, estos métodos no se pueden aplicar
si la información requerida es desconocida. Por esta razón, el autor de Hebrard (2006)
hace la cuarta declaración como una caracterı́stica deseable de las estrategias que se
enfrentan a dicho incierto y dinámico marco.

Cuarta “Idealmente, no se requiere ningún conocimiento adicional sobre los datos
utilizados para construir la clásica red de restricciones ni más experiencia para
resolver el problema sin tener en cuenta la incertidumbre.”

En esta tesis, tratamos de responder a una pregunta interesante en entornos dinámi-
cos e inciertos: cuando no se conoce información adicional sobre los posibles cambios
en el problema, ¿es posible definir lo que es la robustez de una solución de un CSP y
desarrollar algoritmos apropiados?. Nosotros creemos que es posible y justificable ex-
traer algunas suposiciones limitadas (e intuitivamente razonables) sobre el dinamismo
de los problemas para los que el orden sobre los elementos del dominio es importante.
Por lo tanto, en este trabajo presentamos estrategias para hacer frente a tipos de pro-
blemas que son, por lo tanto, consistentes con la cuarta declaración. El cumplimiento
de estas cuatro declaraciones ha sido la motivación y el objetivo principal del trabajo
presentado en esta tesis.
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Resum

La programació amb restriccions és un paradigma en què les relacions entre les
variables s’expressen en forma de restriccions. És ben sabut que molts dels problemes
de la vida real es poden modelar com a Problemes de Satisfacció de Restriccions
(CSPs). Degut la seua àmplia utilització en la resolució d’aquestos problemes, s’ha
invertit molt esforç en incrementar l’eficiència dels algoritmes que resolen CSPs. No
obstant això, moltes d’aquestes tècniques assumixen que el conjunt de variables, do-
minis i les restriccions involucrats en el CSP són completament coneguts i fixos quan
el problema es modela. Esta és una forta limitació perquè molts problemes provenen
d’entorns incerts i dinàmics, en els que el problema original, i en conseqüència el seu
model CSP poden evolucionar a causa de l’entorn, a l’usuari o altres agents. En tals
situacions, una solució del problema original pot convertir-se en invàlida després que
es produı̈squen canvis en el problema.

Hi ha dos estratègies principals per a fer front a estes situacions: reactives i proac-
tives. Utilitzar estratègies reactives implica tornar a resoldre el CSP després que una
solució deixe de ser una solució, la qual cosa comporta un consum de temps. Este
és un desavantatge obvi, especialment quan tractem amb canvis a curt termini. Açò
també està motivat en Verfaillie and Jussien (2005), que és un important estudi de la
resolució de problemes amb restriccions en entorns dinàmics i incerts. En este treball,
els autors afirmen que un objectiu desitjable en els marcs dinàmics i incerts és:

Primera “Limitar en la mesura que siga possible la necessitat de successives reso-
lucions online.”

Motivat per la primera declaració, en esta tesi es desenvolupen estratègies proac-
tives, que tracten d’oferir una resistència a les possibles modificacions futures del
problema. Per tant, estos mètodes s’apliquen abans de que ocórreguen canvis en el
problema original. Hi ha dos tipus principals d’estratègies proactives, les quals poden
distingir-se basant-se en les caracterı́stiques de les solucions que s’obtenen: robustesa
i flexibilitat. El concepte de flexibilitat implica modificacions en la solució original,
mentres que el concepte de robustesa no. En Verfaillie and Jussien (2005), els autors
fan la segona declaració com un altre objectiu desitjable.

Segona “Limitar en la mesura que siga possible, els canvis en la solució produı̈da.”

Per aquesta raó, esta tesi es centra principalment en la busca de solucions robustes,
les quals tenen una alta probabilitat de continuar sent solucions després de canvis en
el CSP. A més a més, en Verfaillie and Jussien (2005) els autors també mencionen
com un interessant treball futur la possibilitat de desenvolupar estratègies proactives
que combinen les caracterı́stiques d’una solució de robustesa i flexibilitat.
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Tercera “La producció de solucions que siguen al mateix temps robustes i flexibles,
que tinguen totes les possibilitats de resistir els canvis i puguen ser adaptades
fàcilment quan no els resistisquen, és òbviament un objectiu desitjable.”

D’acord amb este objectiu, expressat en la tercera declaració, en esta tesi es de-
senvolupen estratègies que complixen la condició de combinar la robustesa i estabil-
itat (l’estabilitat és un cas especial de flexibilitat). Pel que nosaltres coneixem, esta
combinació encara no s’ha desenvolupat per a CSPs.

Les estratègies proactives utilitzen el coneixement disponible sobre dels possibles
canvis futurs a fi d’evitar o reduir al mı́nim els seus efectes. No obstant això, per
a molts dels problemes de la vida real la informació sobre l’entorn incert i dinàmic
és desconeguda o difı́cil d’obtindre. Per a moltes estratègies proactives que busquen
solucions robustes, la forma de l’algoritme depén d’un coneixement detallat sobre
l’entorn dinàmic. Com resultat, estos mètodes no es poden aplicar si la informació
requerida és desconeguda. Per aquesta raó, l’autor de Hebrard (2006) fa la cuarta
declaració com una caracterı́stica desitjable de les estratègies que s’enfronten a aquest
incert i dinàmic marc.

Cuarta “Idealment, no es requerix cap coneixement addicional sobre les dades util-
itzades per a construir la clàssica xarxa de restriccions ni més experiència per
a resoldre el problema sense tindre en compte la incertesa.”

En esta tesi, tractem de respondre a una pregunta interessant en entorns dinàmics i
incerts: quan no es coneix informació addicional sobre els possibles canvis en el pro-
blema, és possible definir el que és la robustesa d’una solució d’un CSP i desenvolupar
algoritmes apropiats?. Nosaltres creiem que és possible i justificable extraure algunes
suposicions limitades (i intuı̈tivament raonables) sobre el dinamisme dels problemes
per als que l’orde sobre els elements del domini és important. Per tant, en este treball
presentem estratègies per a fer front a tipus de problemes que són, per tant, consis-
tents amb la cuarta declaració. El compliment d’estes quatre declaracions ha sigut la
motivació i l’objectiu principal del treball presentat en esta tesi.
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Chapter 1

Introduction

This thesis introduces algorithms and techniques for finding solutions with certain
level of robustness and stability for problems that come from uncertain and dynamic
environments. Robust solutions have a high likelihood of remaining solutions when
faced with further possible changes over the original problem. This dissertation fo-
cuses on difficult situations when the problems do not have extra detailed information
associated about the dynamism. Thus, the techniques presented consider the robust-
ness criterion according to a new dynamism environment, which it is presented in this
dissertation, for problems whose elements have order relationships between them.

This chapter first introduces concepts related constraint programming. Secondly,
the problematic situations associated with uncertain and dynamic environments, as
well as previous work that deals with problems that come from these environments,
are explained. Since the level of knowledge about the possible future changes is
highly significant, a detailed explanation about this issue is also provided. Finally we
mention the contributions of the work developed, as well as a brief overview of the
contents that are further explained in detail throughout this dissertation.

1.1 Constraint Programming

Constraint programming (CP) is a powerful paradigm for modeling and solving com-
binatorial problems. CP was born as a multi-disciplinary research area that embeds
techniques and notions coming from many other areas, among which are artificial
intelligence, computer science, databases, programming languages, and operations
research. Constraint programming is currently applied with success to many domains
such as scheduling, planning, vehicle routing, configuration, networks, bioinformat-
ics, etc.

In CP the relations between variables are stated in the form of constraints. Many
real life problems are explicitly composed by constraints and therefore, if they are
properly modeled, the framework and algorithms of CP can be used in order to solve
them. These problems can be modeled as Constraint Satisfaction Problems (CSPs),

1
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which are composed of a finite set of variables, a finite set of values associated with
each variable and a finite set of constraints that restrict the values that the variables can
simultaneously take. Thus, if there exist at least one combination of domain values
that satisfy all the constraints, the CSP is satisfiable. The set of all the domain values
combinations of the variables that satisfy all the constraints are the complete set of
solutions of the problem. If there does not exist any solution, the CSP is unsatisfiable.

As an example of a CSP modeling, a toy scheduling problem is roughly modeled
as a CSP. In following chapters, a formal definition of a CSP (see Section 2.1) and
the formal model of this toy example (see Section 8.1) are introduced. Scheduling
problems consist in scheduling a set of finite tasks that compose a finite set of jobs
and assigning to them the resources that each task needs over time. A common ob-
jective for these problems is to minimize the makespan. The makespan is the last
finishing time of all the tasks of all the jobs of the schedule. These problems are well-
known real life problems and have been vastly used in both research and application
frameworks. Furthermore, throughout this thesis, the scheduling problems have been
analyzed and evaluated with the proposed approaches.

Example 1.1.1. In this example a toy scheduling problem with only 2 tasks is pre-
sented. Tasks T0 and T1 are both of duration 3 time units. Both tasks use the same
resource, and therefore both tasks can not be executed in parallel. Furthermore, there
is a task precedence requirement, which states that task T0 has to be executed before
T1. For this example we assume that there is not a restrictive maximum desired make-
span. This problem can be modeled as a CSP by defining a set of variables, domains
and constraints that properly represent the problem. For modeling the problem as a
CSP, the start time of each task can be modeled as a variable whose domain values
are the time units available. For this toy scheduling problem, there exist only one
constraint that predefines the task order.

This CSP is satisfiable and one of its solutions is represented in Figure 1.1. In this
figure, T0 is represented in green and T1 in orange. The start time of task T0 is 0 and
the start time of task T1 is 3 time units later, that is, T1 starts after the finalization of
task T0. Note that this solution satisfies the task order requirement.

T0

0        1          2          3           4           5          6                                                                   

T1

Figure 1.1: Valid schedule for Example 1.1.1.

Example 1.1.1 can be easily solved because it has a small number of variables,
domain values and constraints. However, typically, real life problems have a high
complexity due to the increased number of variables, domain values and constraints.
In these cases, CP techniques are useful in order to solve the CSP in a reasonable
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time. Among the CP techniques that deal with these problems, there exist: filtering
techniques, learning and distributed techniques, the use of efficient representations
and heuristics, etc. This effort resulted in the design of constraint reasoning tools
which are used to solve numerous real problems. More detailed information about
constraint programming can be seen in (Tsang, 1993; Rossi et al., 2006; Lecoutre,
2013).

1.2 Dynamism and Uncertainty

Much effort has been spent to increase the efficiency of algorithms for solving CSPs.
However, many of these techniques assume that the set of variables, domains and con-
straints involved in the CSP are known and fixed when the problem is modeled. For
real life problems, this represents a strong limitation because usually such problems
come from dynamic environments. Hence, both the original problem and its corre-
sponding modeled CSP may evolve over time because of changes in the environment,
in the user or in other agents. For instance, in a bus transport system, an incident
may occur due to some technical component failure, making the bus unavailable un-
til repairs can be made. Another example of a possible incidence could be due to
weather conditions, for instance, the buses could require lowering the speed due to
the dangerous road conditions when it is storming.

The changes that the original problem undergoes also affect to its corresponding
CSP model. However, the original and static model of a CSP is not able to cap-
ture further modifications over the original problem. To solve this shortcoming, in
(Dechter and Dechter, 1988) the authors define a variant of the mathematical CSP
model originally called Dynamic Constraint Network (DCN) and later Dynamic Con-
straint Satisfaction Problems (DynCSPs). Unlike CSPs, DynCSPs are able to capture
the changes that the original problem undergoes. A DynCSP is composed by a se-
quence of static CSPs, where each one is a result of a change in the previous one. In
this way, each static CSP represents new facts about the dynamic environment being
modeled. In Section 2.3 a formal definition of a DynCSP is introduced.

We would like to highlight that for modeling a problem that comes from a dy-
namic environment as a DynCSP, it is necessary to have some knowledge about the
future facts that the dynamic environment may undergo. Nevertheless, the real world
is uncertain in its nature and therefore, information about the dynamism of the envi-
ronment may be incomplete, erroneous or may even not exist. For instance, in the
bus transport system example explained above, the weather conditions, such as rain
or storm, could be approximated with certain likelihood. However, this data may not
be accurate enough or might be incorrect. Moreover, there are a number of future
events that are completely unforeseen (e.g., the crash of a bus or the breakdown of its
engine). These partially/totally unexpected events cannot be predicted and therefore
can not be modeled as a DynCSP. In such cases, the original CSP refers to the first
static CSP and only when future modifications occur, these changes could be modeled
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as further static CSPs in a DynCSP. In this dissertation we deal with these situations,
thus, we refer as original CSP to the first static CSP that models the original problem
before that any future uncertain change occurs.

Because of the possible future changes in the original problem, a solution that
holds for the original CSP model can become invalid after some changes over the orig-
inal problem. The solution loss could produce several negative effects in the modeled
problem. In a real problem of task assignment in a production system with several ma-
chines, it could cause the shutdown of the system, the breakage of machines, the loss
of the material/object in production, etc. Another example of the solution loss conse-
quences is focused on the transport timetabling problem, where a disruption at some
point may produce a delay that propagates through the entire schedule. In addition,
all the negative effects stated above can also entail an economic loss. For instance,
in a bread production system, if an incidence occurs that is resulting in a delay in
the bread kneading process, the bread will not be properly kneaded when the bread
baking process starts. In this case, the bread would not have the proper consistency
and could not be sold. Due to all these negative effects derived by the solution loss,
authors working in this dynamic and uncertain framework (including the authors of
this dissertation) strongly value the solution loss prevention in dynamic environments.

Considering again the toy scheduling problem of the Example 1.1.1, a problem
that frequently occurs in real life, the tasks of the problem may undergo delays in the
future. Here, for instance, we assume that task T0 undergoes a future delay of one
time unit due to some disruption. Thus, the valid schedule represented in Figure 1.1
will become invalid after this incident. Note that task T1 is not able to start in its
assigned time due to the extension of T0 duration. This fact is shown in Figure 1.2 by
a superposition of one time unit of both tasks.

T0

0        1          2          3           4           5          6                                                                   

T1

Figure 1.2: Invalid schedule for Example 1.1.1 after a delay in T0.

The research community interest in real life problems that may evolve in the future
has expanded over time. For these problems, the objective is beyond simply finding an
optimal solution because it is also important to consider the dynamism and uncertainty
of the environment. We recommend an insightful survey of approaches related to this
area: (Verfaillie and Jussien, 2005).

Following is a brief overview of different approaches and their limitations, with
special remarks on those that are of the same form as those dealt with in this thesis.
There exist two main approaches for dealing with problems that come from dynamic
and uncertain environments: reactive and proactive approaches.
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1. Reactive Approaches: These approaches are applied when the computed so-
lution becomes invalid (note that in this case the term ‘solution’ does not hold
anymore) after changes in the problem. Their main objective is to obtain a new
solution, which generally should be as similar as possible with respect to the
previous solution found before the changes occurred, as efficiently as possible.

2. Proactive Approaches: These approaches are applied before the possible fu-
ture changes over the original problem occur. Thus, they use the available
knowledge about the possible future dynamism in order to avoid or minimize
their effects in the original solution that they compute.

Regarding proactive approaches, there exist two main properties that are associ-
ated with the solutions obtained: flexibility and robustness. Furthermore, there exists
another characteristic called stability, which is a more restricted concept of the flexi-
bility characteristic. Hence, the definitions of these concepts are introduced in Section
1.4.1.

Since proactive approaches search for an original solution for the original dy-
namic problem and the reactive approaches search for a new solution after the com-
puted solution becomes invalid, both approaches are compatible and can be applied
simultaneously. A proactive approach can be initially applied and a reactive approach
would only be needed if the previously obtained solution is lost after changes in the
problem. For instance, in (Wallace and Freuder, 1998) dynamic problems are solved
by combining both types of approaches.

1.3 Reactive Approaches

Reactive approaches are applied when the solutions are no longer solutions because
of the changes in the dynamic problem. Thus, they are applied to the last CSP of a
DynCSP that models the changes that have invalidated the previous solution. These
strategies are oriented to find a new solution or to repair previous unfeasible assign-
ments. Moreover, most reactive approaches try to minimize the number of needed
changes for such a reparation. According to (Verfaillie and Jussien, 2005), reactive
strategies can be classified into two main groups:

1. Solution Reuse Techniques: These approaches use any previous complete or
incomplete consistent assignment (before changes over the previous CSP) and
repair it, until the new assignment is consistent with the current DynCSP.

2. Reasoning Reuse Techniques: These approaches use information about the af-
fected parts of any previous consistent assignment (complete or not) for solving
the current DynCSP and finding a new solution.

Some solution reuse techniques are local search-based, which use the solution that
has become invalid for starting the local search by repairing its inconsistent values.
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For instance, the version min-conflicts heuristic (Minton et al., 1992) tries to minimize
the number of constraints that are violated by the current assignment. These kind of
approaches have also been applied to scheduling problems in order to reconfigure
schedules in response to a dynamic environment. In these environments, external fac-
tors invalidated the existent schedule through the withdrawal of resources, the arrival
of new resources or because of changes in the set of the scheduled activities. Thus,
these methods firstly, model the problem as a DynCSP and secondly, apply heuristics,
local repair methods, etc. For instance, in (Verfaillie and Schiex, 1994) a technique
applied to dynamic scheduling problems is presented. It is based on the idea that it
is possible to enter a new task t iff there exists for t a location such that all the tasks
whose location is incompatible with t’s location can be removed and entered again
one after another, without modifying t’s location.

In further work of solution reuse techniques, the goal is beyond repairing the so-
lution because the main objective is to the differences of the new repaired solutions
with regard to previous solutions. This is called minimum perturbation/change and it
has been applied to constraint programming among other works in (Bellicha, 1993;
Ran et al., 2002). Furthermore, there exist many minimum perturbation approaches
applied to scheduling. These techniques search for a new schedule that differs mini-
mally from the previous one, since it is no longer a solution after changes in the prob-
lem. For instance, a technique applied to dynamic scheduling problems that is based
on the reduction of the contention in the constraints (Sakkout and Wallace, 2000). A
constraint has contention when certain combinations of domain values of the variables
may violate the constraint. For some constraints, contention can be measured, so that
the search can be oriented to regions where the contention is small. Once the feasi-
bility phase of the resources has been completed, the makespan optimization phase is
executed.

Reasoning reuse techniques employ information about the inconsistencies be-
tween the static CSPs that form the DynCSP. The main idea is based on the assump-
tion that changes between one static CSP and the previous one are small and therefore
both CSPs show similarities that can be exploited. In addition, since the previous solu-
tion has been invalidated, the next CSP is more restricted. For this reason, most of the
implied constraints, which are deduced from the consequences of the constraints, will
remain valid. These techniques first determine the validity of the implied constraints
and subsequently compose the new implied constraints. This information, which is
extracted from the inconsistencies produced in the DynCSP, is subsequently used for
solving the last static CSP of the DynCSP. An example of a reasoning reuse tech-
nique can be found in (Schiex and Verfaillie, 1994), which is an explanation-based
method that records information about the implied constraints. By means of this data,
the technique removes the implied constraints whose justification is based on another
invalid implied constraint. Another example of this type of techniques can be found
in (Verfaillie and Schiex, 1994), where the changes can occur while solving a CSP
and the solving algorithms are adapted to avoid restarting the search from scratch.
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As mentioned, reactive approaches re-solve the CSP after each solution loss,
which consumes computational time. That is a clear disadvantage, especially when
we deal with short-term changes. This idea is also shared by the first statement men-
tioned in the abstract, which comes from (Verfaillie and Jussien, 2005).

First “Limit as much as possible the need for successive online problem solvings”.

Another important issue to be considered in uncertain and dynamic situations are
the temporary changes. This kind of changes may occur repeatedly and with varying
frequencies thus resulting in frequent solution loss. Furthermore, in many applica-
tions, such as on-line planning and scheduling, the time required to compute a new
solution may be too long for actions to be taken on time. In addition, the solution loss
(independently if a new solution is provided on time or not) has several disadvantages,
which have been mentioned in Section 1.2.

1.4 Proactive Approaches

Limiting the need to resolve a problem instance as much as possible is an important
issue for dynamic problems, specially for those that undergo frequent changes. Proac-
tive approaches try to avoid the aforementioned drawbacks of re-solving the problem
after changes occur. Hence these approaches are highly valued for dealing with prob-
lems in uncertain and dynamic environments. Several proactive approaches have been
proposed in the literature for handling this type of problem, which can be classified
based on the kind of solutions that they obtain. Following, this section introduces
the solution properties: robustness, flexibility and stability. In addition, we explain
several earlier proactive approaches that deal with problems that come from uncertain
and dynamic environments.

1.4.1 Robustness, Flexibility and Stabiity

We first clarify general concepts about these terms and subsequently they are specif-
ically defined for CSP solutions. There is a thin line that separates these concepts,
and in some occasions, they have been incorrectly interpreted in the literature. For
instance, some researchers mix up the terms stability and robustness, or use them
interchangeably.

In general, a solution is stable in a dynamic system, if by means of a few changes
in the solution we can obtain a new solution that is similar to the original one. How-
ever the robustness concept is broader than the stability concept. Robustness is a
measure of feature persistence in systems that compels us to focus on perturbations
because they represent changes in the composition or topology of the system. Here, a
perturbation is a small difference in the actual state of the system (Jen, 2003). In the
field of Constraint Programming, the authors of (Verfaillie and Jussien, 2005) define
the concepts of flexible and robust solutions for the specific case of CSPs:
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Definition 1.4.1. A robust solution has every chance to resist changes, i.e., to remain
a solution in spite of these changes (Verfaillie and Jussien, 2005).

Definition 1.4.2. A flexible solution is anything (a partial solution, complete solution,
conditional solution, set of solutions, etc.) that, in case of change, can be easily
modified to produce a solution to the new problem (Verfaillie and Jussien, 2005).

Note that both concepts have a strong dependency with respect to the assumptions
of the possible future changes that may occur. Furthermore, regarding Definition
1.4.1, there are cases in which it is not possible to find a solution that is able to resist
all the changes, especially when information about possible future changes is limited.
In order to consider these cases, Definition 1.4.1 can be slightly modified to define the
most robust solution for CSPs.

Definition 1.4.3. The most robust solution to a CSP within a set of solutions is the
one with the highest likelihood of remaining a solution after changes in the CSP.

Regarding Definition 1.4.2, a more specific concept was defined for CSPs: that of
stable solutions ((Hebrard, 2006), cf.(Verfaillie and Schiex, 1994)):

Definition 1.4.4. A solution s1 is more stable than another solution s2 iff, in the event
of a change that invalidates them, a closer alternative to s1 than to s2 exists (modified
from (Hebrard, 2006)).

The main difference between the definition of stability (Definition 1.4.4) and flex-
ibility (Definition 1.4.2) is that the former introduces the concept of ‘closer’ solution.
Thus, both Definitions 1.4.2 and 1.4.4 consider the ease with which the original so-
lution can be modified to produce a solution to the new problem, but only Definition
1.4.4 specifies how much closer the new solution is to the original solution. The mea-
surement of this closeness will be explained in Section 1.4.3.

Furthermore, note that the definitions of robustness (Definition 1.4.1 and Defini-
tion 1.4.3) do not consider the alterations in the original solution but only its resis-
tance to changes in the problem. In contrast, the definitions of flexibility and stability
(Definitions 1.4.2 and 1.4.4) do consider changes to the original solution when a new
solution is produced after a change in the problem.

As mentioned in Section 1.2, the loss of the solution may cause several negative
effects. This is also motivated in (Verfaillie and Jussien, 2005) as a desirable objective,
as mentioned in the second statement of the abstract.

Second “Limit as much as possible changes in the produced solution”.

From hence, it is very important to avoid the loss of the solution and if it is lost,
it is very valued that the newly found solution is as similar as possible to the previous
one. Thus, in this dissertation, we first prioritize robustness and secondly stability.

We reconsider again the toy scheduling problem of Example 1.1.1. Figure 1.3
represents a valid schedule for this example. Furthermore, this solution is robust
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when faced with the kind of incidence explained in Section 1.2 (delay of 1 time unit
in task T0). This is due to this schedule is able to remain valid when faced with this
type of dynamism. Figure 1.4 shows how the idle time after task T0 absorbs the delay
in this task and therefore the start time of the next task (T1) remains valid.

T0

0        1          2          3           4           5          6          7                                                        

T1

Figure 1.3: Valid schedule for example Example 1.1.1.

T0

0        1          2          3           4           5          6          7                                                        

T1

Figure 1.4: Valid schedule for example Example 1.1.1 after a delay in T0.

1.4.2 Searching for Robust Solutions

Many proactive approaches search for robust solutions according to the information
of the uncertain and dynamic environment that they consider. Following, some rep-
resentative techniques of this type are categorized according to their dynamism as-
sumptions. Note that the detailed information that these approaches require is directly
related to the assumptions made about the possible future changes.

1. Dynamism in the solution values: These approaches consider that some values
of the solution might become invalid in the future. Thus, they use insights about
previous invalidations to gather statistics on which values in the solution should
be preferred. In (Wallace and Freuder, 1998) a technique that gathers the data
in the form of penalties is proposed, in which values that are no longer valid
after a change in the problem are penalized. Thereafter, the algorithm tries to
find solutions that do not include these penalized values.

2. Dynamism in the constraints: These approaches consider as possible future
changes constraint additions, restrictions and/or deletions. For dealing with
these uncertain constraints, a variant of the original CSP model can be used:
Flexible CSP (see Section 2.4.1 for a detailed explanation). The main differ-
ence that this extension of the original model includes, is that constraints can be
violated to some extent. There exist several types of Flexible CSPs according to
the manner of representing the range of violation. Among these, we following
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introduce two models, in addition, in Section 2.4.2 another model is explained
in detail: the Weighted Constraint Satisfaction Problem (WCSP). This model
has a specific section in Chapter 2 due to it is used by several approaches pre-
sented in this thesis and therefore, a more detailed and technical explanation is
necessary.

• The Probabilistic CSP (PCSP) (Fargier and Lang, 1993) has an associ-
ated likelihood of existence of each constraint. Thus, according to these
probabilities, the most robust solution is the solution that maximizes the
probability of satisfying the constraints.

• The Fuzzy CSP (FCSP) (Rosenfeld et al., 1976) has associated functions
that express the satisfiability/unsatisfiability of the values for each con-
straint. The most robust solution of a FCSP is the solution that maximizes
the value of the minimum satisfiability of all the constraints.

3. Dynamism in the variables and their domain values: The approaches classified
in this group consider uncertainty about the domain values associated with cer-
tain variables or that the variables are uncertain theirselves. Some of the main
types of approaches are:

• The Mixed CSP model (MCSP) (Fargier et al., 1996) considers the dy-
namism of certain uncontrollable variables that can take on different val-
ues of their uncertain domains. Here, the objective is to find an assignment
of decision variables (which are the usual variables of the CSP model) that
satisfy all possible values that the uncontrollable variables can take.

• The Uncertain CSP model (UCSP) (Yorke-Smith and Gervet, 2009) is
an extension of the MCSP, whose main innovation is that it considers
continuous domains.

• The Stochastic CSP model (SCSP) (Walsh, 2002)) assumes a probability
distribution associated with the uncertain domain of each uncontrollable
variable; here the objective is to find a solution with the maximum proba-
bility of validity.

• The Branching CSP model (BCSP) (Fowler and Brown, 2003) considers
the possible addition of variables to the current problem. For each vari-
able, there is a gain associated with an assignment. The objective is to find
a solution that maximizes the gain by considering the possible additional
future variables that are compatible with the original variables, and also
considers their probability of future existence.

In most of these aforementioned models, the form of the algorithm is dependent
on detailed knowledge about the dynamic environment. Therefore, a list of the pos-
sible changes or the representation of uncertainty is required, often in the form of an
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associated probability distribution. As a result, these approaches are useless if the
required information is unknown. In many real problems, however, knowledge about
possible further changes is either limited or non-existent. Hence, there is an impor-
tant need for techniques that search for robust solutions in this kind of environment.
Therefore, this is one of the main motivations of this dissertation.

1.4.3 Searching for Stable Solutions

One of the most known approaches for the search of stable solutions for CSPs is
the super-solutions approach. In (Hebrard, 2006) the author presents techniques that
search for stable solutions of a certain type, called super-solutions. The goal is to be
able to repair an invalid solution after changes occur, with minimal changes that can
be specified in advance. Here, the measurement of how ‘close’ the two solutions are is
measured as the number of variables that take the same value in both solutions. That
is to say, the dissimilarity is measured as the number of variables that do not take the
same value in both solutions.

Definition 1.4.5. A solution is an (a, b)-super-solution if the loss of values of at most
a variables can be repaired by assigning other values to these variables and changing
the values of at most b other variables (Hebrard et al., 2003).

For CSPs, a major focus has been on finding (1, 0)-super-solutions (due to the
high computational cost of computing a > 1 or b > 0). This is one of the reasons for
which we analyze this particular super-solution case in this thesis. The other reason
is that limiting the changes in the original solution as much as possible, motivates the
search of (a, 0)-super-solutions.

Definition 1.4.6. A solution is (1, 0)-super-solution if the loss of the value of one
variable at most can be repaired by assigning another value to this variable without
changing the value of any other variable (Hebrard et al., 2004).

The (1, 0)-super-solutions can be simply explained by the following example:

Example 1.4.1. Let us consider the following CSP:
x0, x1 ∈ {1, 2, 3}
C1 : x0 ≤ x1

• The solution (x0 = 1, x1 = 1) is not a (1, 0)-super-solution, because if the
variable x0 loses the value 1, it is not possible to find another value for x0 that
is consistent with C1, since (x0 = 2, x1 = 1) and (x0 = 3, x1 = 1) are not
solutions to the problem.

• The solution (x0 = 1, x1 = 2) is a (1, 0)-super-solution, because if any vari-
able loses its value, at least one value can be found that is compatible with the
assignment of the other variable. If x0 loses its value 1, a value of 2 can be
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assigned to x0, since (x0 = 2, x1 = 2) is solution of the problem. If x1 loses
its value 2, a value of 1 or 3 can be assigned to x1, since (x0 = 1, x1 = 1) and
(x0 = 1, x1 = 3) are solutions of the problem.

However, finding (1, 0)-super-solutions is problematic because, (1) if there is a
backbone variable (a variable that takes the same value in all the solutions), this
ensures that there are no (1, 0)-super-solutions, (2) in general, it is unusual to find
(1, 0)-super-solutions where all variables can be repaired. For these reasons, in (He-
brard, 2006) the author also developed a branch and bound-based algorithm for find-
ing solutions that are close to (1, 0)-super-solutions, i.e., where the number of re-
pairable variables is maximized (also called maximizing the (1, 0)-repairability).

1.5 Dynamism Knowledge

The dynamism knowledge associated with dynamic problems is a very important is-
sue to take into account. Ideally, all the information about the future changes would be
known and certain. In this case, DynCSPs could be modeled with complete certainty
prior to any changes taking place. Nevertheless, as mentioned in Section 1.2, the real
world is uncertain in its nature and therefore, the information about the dynamism of
the environment may be incomplete, erroneous or may even not exist. Under these
circumstances, it is desirable to consider approaches that do not require extra infor-
mation about the future changes. Indeed, these techniques should be able to solve
the problem only with the data needed for modeling and solving the original classical
CSP without considering the possible future changes.

As previously mentioned, fully reactive approaches are applied when changes to
the original problem invalidate the partial/complete solution. For this reason, dy-
namism knowledge does not concern them. In contrast, proactive approaches are
applied before changes in the original problem happen, and therefore have a strong
dependency with the dynamism knowledge. For many of these approaches, the infor-
mation is gathered in the form of probabilities distributions and/or a list of the possible
changes. As a result, these approaches are specific to problems with extra data, and
are therefore useless if this information is unknown. In many real problems, however,
knowledge about possible further changes is either limited or non-existent. Hence,
there is an important need for techniques that find robust solutions in this kind of en-
vironment. Note that the latter is very difficult to achieve due to the very definition
of a proactive approach, which involves techniques that try to achieve a resistance
to future perturbations. Therefore, at least some little assumptions about the future
perturbations is required in order to avoid or minimize their effects. The less detailed
the dynamism knowledge is required by an approach, the more difficult to character-
ize the robustness and stability of its solutions, but the greater the approach usability
is. This is also expressed in the fourth statement of the abstract, which comes from
(Hebrard, 2006).
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Fourth “Ideally, no additional knowledge over the data used to build the classical
constraint network is required and no more expertise than for solving the prob-
lem without taking uncertainty into account.”.

This dissertation provides an answer to an interesting question in dynamic and
uncertain environments: when we have no information about the possible changes
in the problem definition, is it possible to define what is the robustness of a solution
of a CSP and to build algorithms able to find the most robust solutions? We found
that it is possible, reasonable and justifiable to extract some limited (and intuitively
reasonable) assumptions about the dynamism of problems for which the order over
the domain elements is significant. In this framework, it is common that any bound of
the solution space undergoes restrictive or relaxed modifications in the future (this is
motivated in Section 3.1). These little assumptions are inherent to the structure of such
problems and based on them we present algorithms that search for robust solutions
under these aforementioned difficult conditions in which no extra detailed dynamism
data is available. Furthermore, we also present another approach that is informed.
The data required by this technique, is related to the same dynamism assumptions for
CSPs with ordered domains.

It must be taken into account that for such a dynamism environment, the possibil-
ity of solution loss only exists when changes over the original bounds of the solution
space are restrictive. Recall that minimizing the risk of losing the solution of the
CSP is the main objective of proactive approaches that search for robust solutions. In
Chapter 3 we will fully explain how the latter concept is related to the feasible neigh-
bours assignments surrounding the solution. At this stage, the solutions covered by
these neighbours, under certain circumstances, are introduced as ‘covered solutions’.

Figure 1.5 is an adaptation from a figure in (Hebrard, 2006) and it shows sev-
eral existent approaches for problems in dynamic and uncertain environments rep-
resented in black. Furthermore, our two different approximations described above,
which search for covered solutions with and without extra dynamism information, are
represented with red. This figure represents a 3-dimensional space that categorizes the
features of these approaches in terms of: reactivity/proactivity, robustness/stability
and knowledge intensity. Observing the existing approaches and their distribution
over the space, we can notice that one of the missing points is the search for robust
solutions with low dynamism knowledge. This dissertation focus on this region (see
the red point ‘covered solutions’). In addition, even if it has not been our chief work,
we also analyzed the search of robust solutions when there exists a high level of dy-
namism knowledge of future bounds restrictions of the solution space of CSPs with
ordered domains (see the red point ‘covered solutions with dynamism data’). This
specific type of dynamism knowledge had not been analyzed in the literature before.

Regarding the robustness/stability axis in Figure 1.5, we believe that separate
these concepts in two axis would be more appropriated. The fact that a solution is
robust does not necessarily entail a reduction of its stability. This is also expressed in
the third statement of the abstract, which comes from (Verfaillie and Jussien, 2005).
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Even so, most approaches in the literature focused only in one of these features. As
contrary, in this dissertation we analyze these both concepts and their influence. Our
approaches prioritize the search of robust solutions, but these solutions also possess
some stability properties (Chapter 3). For representing this features combination, the
work proposed is placed closer to the stability point than other robust approaches (see
red points in Figure 1.5).

Reactive
Proactive

Low/high KnowledgeStability
Robustness   

Minimal Perturbation

Super Solutions

Mixed/stochastic CSP
Probabilistic CSP

Covered Solutions
Covered Solutions

with Dynamism Data

Figure 1.5: Six proactive and reactive approaches and their characteristics.

1.6 Contributions and Outline

In this dissertation we present proactive approaches that search for robust and stable
solutions by taking profit of inherent limited assumptions to problems in which the
order of the elements is significant. This order feature has an impact on the possible
future changes of the problem. To the best of our knowledge, this inherent dynamism
information had not been analyzed in the constraint programming literature. This the-
sis contributes toward better understanding, modeling and solving of problems that
come from this kind of dynamic and uncertain environments. Furthermore, we cat-
egorize and extend the robustness and stability of the solutions in these difficult and
common situations.

Previous work exists that explores the search of stable solutions in situations in
which there does not exist additional dynamism information (Hebrard, 2006). Nev-
ertheless, the dynamism assumptions of this work are not order-related and we recall
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that stability of solutions considers modifications over the solutions, which produces
several negatives effects (see Section 1.2). Robust solutions, however, maximize the
likelihood of remaining solutions in the absence of further modifications over them.
In addition, the solutions obtained by our approaches not only posses robustness char-
acteristics, but also a specific type of stability.

Furthermore, based on the same dynamism assumptions of problems for which
the order is significant, we also analyzed the search of robust solutions for CSPs with
ordered domains with extra data about the dynamism of the solution space bounds.
The main advantage that all the approaches introduced in this thesis (with and without
extra information) present over the reactive strategies, is that they try to prevent the
loss of the original solution, by finding robust solutions. Following, we enumerate the
main contributions of this thesis:

1. We introduce a new dynamism framework for CSPs with ordered domains that
model real life problems in which the order is significant, introducing theoreti-
cal approaches for dealing with such environment. Moreover, we further extend
the definitions of robustness and stability associated with the solutions in such
framework.

2. We present an informed approach that considers extra dynamism data associ-
ated with the bounds of CSPs and an algorithm that models such information in
order to find solutions that present a resistance to these possible future changes.

3. We present three uninformed approaches that do not consider extra data about
the dynamism but only consider the existence of an order over the elements of
the domains of the CSPs. Among them, we present a modeling technique that
is specific for finite linear CSPs. The other two techniques are not limited to
this type of CSPs. The first approach is a modeling technique and the second
approach is a search algorithm. These three techniques share the main objective
of searching for robust solutions for CSPs with ordered domains. Further de-
tailed explanation about their differences is explained in the chapters associated
with these approaches.

This dissertation is structured in 10 chapters organized as follows:

• Chapter 1, Introduction: In this chapter the constraint programming frame-
work is introduced. Furthermore, the concept of dynamic and uncertain envi-
ronment is explained in detail. Subsequently, we explain the related work and
an overview of the approaches proposed in this thesis for dealing with these
situations.

• Chapter 2, Technical Background: This chapter provides several standard
notations and definitions from the literature. This formalized technical infor-
mation will be used in this thesis and is therefore necessary for a correct under-
standing of the new concepts and approaches presented. These concepts belong
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to Constraint Programming. Among them, can be found the formal CSP defini-
tion as well as some CSP extensions: DynCSPs and Constraint Satisfaction and
Optimizations Problems (CSOPs). Furthermore, we explain concepts related to
the search and consistency methods for solving CSPs and CSOPs.

• Chapter 3, New Dynamism Framework for CSPs with Ordered Domains:
This chapter focuses on the introduction and motivation of a dynamism frame-
work associated with CSPs that model problems whose elements are related
by a certain order relationship (Climent et al., 2013b). Moreover, we extend
the robustness and stability concepts to this dynamism environment (Climent
et al., 2014). For such framework, we propose two new theoretical approaches
(Climent et al., 2011, 2013c). Finally, two technical approaches are compared:
enumeration-based techniques and a search algorithm.

• Chapter 4, Probabilistic Enumeration-based Technique: We propose a new
probabilistic approach (Climent et al., 2012a). This enumeration-based tech-
nique models CSPs with extra information about the dynamism of their bounds
as WCSPs, with the objective of finding robust solutions according to this dy-
namism knowledge. The information about the dynamism is gathered in two
parameters associated with the dynamic bounds of the CSP. One of them mea-
sures the likelihood of a constraint of undergoing a restrictive modification.
The other parameter measures the magnitude of change of the aforementioned
constraint.

• Chapter 5, Enumeration-based Technique for Finite Linear CSPs: In this
chapter an enumeration-based technique designed specifically for finite linear
CSPs is introduced (Climent et al., 2011). Unlike the approach presented in the
previous chapter, this enumeration-based technique is non-probabilistic. The
only assumptions made about the dynamism are those inherent to the structure
of problems with ordered domains. This approach searches for solutions close
to the centroid of the geometric figure representing the dynamic bounds of Lin-
ear CSPs.

• Chapter 6, Enumeration-based Technique by Coverings: An enumeration-
based technique without extra detailed information about future changes (Cli-
ment et al., 2012b, 2013c,b) is presented. Unlike the technique for Linear CSPs,
this approach is for general purpose and therefore it can be applied to CSPs with
non-convex solution spaces. The main idea of this approach is to search for so-
lutions that are covered by feasible assignments for each bound. Since this
means that the solution is located far from the bounds.

• Chapter 7, Search Algorithm for Finding Robust and Stable Solutions:
Hitherto all the approaches introduced were enumeration-based approaches. In
this chapter a search algorithm that directly searches for robust and stable so-
lutions is introduced (Climent et al., 2012c, 2014). Thus, it is not necessary an
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intermediate step of WCSP modeling. Furthermore, the main advantage with
respect to the enumeration-based technique for CSPs by coverings is that the
checking of the feasibility is done directly in the solution space, instead of each
bound. The search algorithm searches for solutions that maximize an objective
function, which is the sum of the feasible contiguous surrounding neighbours
in each variable axis of the tentative assignment.

• Chapter 8, A Case Study: Scheduling Problems: There exist real life prob-
lems that can provide more information about their dynamism due to their spe-
cial characteristics. In this chapter we analyze the scheduling problems, which
are well-known real life problems. The special feature that these problems have
is that the domain values represent time units. By using this knowledge, we
adapt the two general uniformed approaches introduced in this dissertation: the
enumeration-based technique for CSPs by coverings and the search algorithm
(Climent et al., 2013a). In this way, better robustness and stability results can
be obtained. Furthermore, a toy benchmark is analyzed in order to show the
robustness and stability results, graphically.

• Chapter 9, Evaluation: In this chapter we describe the experimental results
performed for the analysis of the approaches presented in this dissertation. We
compare some of our techniques with another proactive approach that does not
require extra detailed dynamism data. Since there do not exist DynCSPs bench-
marks in the literature, we explain the process of simulating dynamism that we
perform in order to compute the robustness of the solutions obtained (Climent
et al., 2009a,c,b; Salido et al., 2009). The experiments are carried out with
random CSPs and benchmarks from the literature, among them can be found
several scheduling problems. Finally, we analyze the advantages and limita-
tions of the approaches presented in this thesis.

• Chapter 10, Conclusions: Finally, we discuss about the strengths and limita-
tions of the approaches presented in this thesis, as well as their contributions
to the literature. Future lines of work are discussed. In addition, the list of
publications associated with the work presented is mentioned.





Chapter 2

Technical Background

This chapter introduces formal definitions and explanations of Constraint Program-
ming concepts that are used throughout this dissertation, and follows the standard
notations in the literature. First, we focus on explaining in more detail some concepts
introduced in Chapter 1 about Constraint Satisfaction Problems (CSPs) and Dynamic
Constraint Satisfaction Problems (DynCSPs). Secondly, the Constraint Satisfaction
and Optimization framework is introduced, paying special attention to the model that
will be repeatedly used by three approaches presented in this thesis: the WCSP model.
Finally, Section 2.5 contains general concepts of inference techniques and Section 2.6
explains some hybrid methods. Furthermore, several heuristics and strategies that can
have a huge impact on the reduction of the computation time are explained. These
techniques are divided into variable ordering heuristics and restarting strategies.

The definitions and techniques described in this chapter belong to a vast area of
Constraint Programming. We only focus on those concepts that are necessary for
understanding the framework and approaches presented in this dissertation. For more
extended information, we strongly recommend the following books: (Rossi et al.,
2006), (Lecoutre, 2013) and (Dechter, 2003).

2.1 Constraint Satisfaction Problems (CSPs)

In this section, we introduce the formal definition of a Constraint Satisfaction Problem
and several concepts related with this model. Most of the concepts presented can be
found in the literature, however, some of them are specific to this thesis.

Definition 2.1.1. A Constraint Satisfaction Problem (Mackworth, 1977b), abbrevi-

ated as CSP, is represented as a triple P = 〈X ,D, C〉 where:

• X is a finite set of variables X = {x0, x1, . . . , xn}.

19



20 Chapter 2. Technical Background

• D is a finite set of domains D = {D(x0), D(x1), . . . , D(xn)} such that for

each variable xi ∈ X , D(xi) is a set of values that the variable can take.

• C is a finite set of constraints C = {C0, C1, . . . , Ce} which restrict the values

that the variables can simultaneously take.

Subsequently, we present a simple CSP example that will be referenced in order
to explain several concepts throughout this chapter.

Example 2.1.1. We consider a CSP namedE1 that it is composed of 3 variables, their

corresponding domains (ordered respectively) and 2 constraints. E1 = 〈{x0, x1, x2},

{{1, 2, 3, 4, 5}, {1, 2}, {1, 2, 3}}, {{x0 − x1 > 0}, {x1 + x2 < 4}}〉. Thus, D(x0) =

{1, 2, 3, 4, 5}, D(x1) = {1, 2} and D(x2) = {1, 2, 3}.

2.1.1 Domains

There are several types of domains of CSPs. Here, we only explain the types of
domains that have been used in this dissertation. Following, we explain two types of
domains related to the nature of their values.

• Numeric Domains: The domains are composed of values in the set of the real
numbers (R) (Lhomme, 1993).

For instance, integer values (e.g., {−1, 0, 1, . . . }) and rational numbers (e.g.,
{0.5, 0.51, . . . }) are numeric.

• Symbolic Domains: The domains are composed of symbols. Typically, the
domain values that are not numeric are symbolic.

For example, the colours, the clothing sizes, the names, etc.

Other two types of domains are related to the amount of elements that compose
them (Lhomme, 1993).

• Continuous Domains: A set of values that consists in all the existent numbers
in an interval.

For instance, all the values in the interval [1, 5] (including all the real num-
bers) represent a continuous domain.
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• Discrete Domains (also called discontinuous domains): A set of concrete values
within an interval.

For example the integers {1, 3, 7} and the rational numbers {0.3, 0.55} rep-
resent discrete domains.

Unlike in discrete domains, in continuous domains it is impossible to enumerate
all the elements that compose the domain due to the sampling space being defined
over the real numbers (R), which is infinite. Hence, it is not possible to enumerate all
the solutions that compose a CSP with continuous domains.

2.1.2 Assignments

Following, we define concepts related to variable assignments associated with CSPs.

Definition 2.1.2. A variable assignment is the association of a domain value to the

corresponding variable.

Among the different representations of such assignments, we use the pair variable-
value (xi = a), where a ∈ D(xi). For instance, all the possible variable assignments
for variable x1 of the CSP of Example 2.1.1 are (x1 = 1) and (x1 = 2).

Definition 2.1.3. A tuple t is an ordered assignment of domain values to a subset of

variables of X .

Definition 2.1.4. Given a tuple t, Xt ⊆ X is the subset of variables that compose t.

Some examples of possible tuples associated with the CSP of Example 2.1.1 are:
(x0 = 1), (x2 = 3), (x1 = 2, x2 = 3), (x0 = 5, x1 = 2, x2 = 1), (x0 = 1, x1 =
2, x2 = 1), etc. If a tuple is composed by the complete set of variables of a CSP,
it is also called complete assignment. From the previous set of tuples, only tuples
(x0 = 5, x1 = 2, x2 = 1) and (x0 = 1, x1 = 2, x2 = 1) are complete as-
signments. However, if a tuple is composed by a lower number of variables, it is
called partial assignment. From the previous set of tuples the partial assignments are:
(x0 = 1), (x2 = 3) and (x1 = 2, x2 = 3).

Definition 2.1.5. For a subset B of Xt, the projection of t over B is denoted as t ↓B .

For instance, considering t = (x0 = 5, x1 = 2, x2 = 1) and B = {x0, x2},
t ↓B= (x0 = 5, x2 = 1). Another projection involving only one variable is denoted
as t(xi), and it represents the projection of t over xi ∈ Xt. For the previous example,
t(x0) = 5, t(x1) = 2 and t(x2) = 1.
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2.1.3 Constraints

As mentioned earlier, in the CSP paradigm, constraints are linking variables and re-
stricting the values that these variables can simultaneously take. Subsequently, spe-
cific concepts and properties related to the CSP constraints are described.

Definition 2.1.6. A constraint of a CSP is a condition that restrict the values that the

variables can simultaneously take.

Definition 2.1.7. The arity of a constraint is the number of variables involved in the

constraint.

Typically, constraints with only one variable are called unary constraints. Con-
straints with two variables are called binary constraints. However, constraints with
three or more variables are called “n-ary” constraints, where n is their arity.

The domains of the CSP can be expressed as unary constraints. In the rest of this
thesis when we refer to constraints we also refer to these unary constraints. In order
to differentiate these constraints associated with the domains, we denote them by DC.
Note that C ∩ DC = ∅.

The number of possible tuples of a constraint Ci ∈ (C ∪ DC) is composed of
the elements of the Cartesian product of the domains of var(Ci):

∏
xj∈var(Ci)

Dj ,
where var(Ci) ⊆ X is the set of variables involved in Ci (scope of Ci). For instance,
considering the constraint C1 = {x1 + x2 < 4}, var(C1) = {x1, x2}.

Definition 2.1.8. The tightness of a constraint is the ratio of the number of forbidden

tuples over the number of possible tuples. The tightness is defined within the interval

[0, 1].

Definition 2.1.9. We denote the set of valid tuples of a constraint Ci ∈ (C ∪ DC) as

T (Ci).

Following, the cardinalities of the set of valid tuples for constraints are introduced.

|T (Ci)| =
{

|D(xj)| if Ci ∈ DC and xj ∈ var(Ci)∏
xj∈var(Ci)

|D(xj)| ∗ (1− tigthness) if Ci ∈ C
(2.1)

For further complexity analysis of the algorithms presented in this thesis, we will
use the maximum number of valid tuples of the complete set of constraints, which is
defined below.
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Definition 2.1.10. We denote the maximum set of valid tuples associated with the

constraints of a CSP as T (C)Max.

T (C)Max = max{|T (Ci)|, ∀Ci ∈ (C ∪ DC)} (2.2)

There are two equivalent representations for expressing constraints:

• Intensional constraint representation: Constraints are represented as mathemat-
ical or logical functions.

For instance, the two constraints of Example 2.1.1 ({x0 − x1 > 0}, {x1 +
x2 < 4}) are intensional constraints.

• Extensional constraint representation: Constraints are represented as the set of
all the valid/ invalid tuples.

For Example 2.1.1, the set of tuples ((x0 = 1, x1 = 1), (x0 = 1, x1 =
2), (x0 = 2, x1 = 2)) express extensionally the invalid tuples of the constraint
{x0 − x1 > 0}.

Note that if the domains are discrete, all the intensional constraints can be exten-
sionally represented, but this fact is not true in the opposite direction, since not all
the extensional constraints can also be intensionally represented. Furthermore, exten-
sional constraints can not represent continuous sets of valid tuples due to their own
nature of representing each tuple one by one.

Regarding the types of constraints, we only focus on a type that is of interest for
the work presented in this thesis. One of the most basic types of constraint is the
linear constraint. Thus, by default, the rest of the constraints are called non-linear
constraints.

Definition 2.1.11. A linear constraint is a constraint in the form of Equation 2.3,

where X represents the variables, A represents the coefficients of the variables and c

is a constant.

AX + c{<,≤,=, 6=, >,≥}0 (2.3)

Definition 2.1.12. A finite linear CSP is fully composed by integer variables and

linear constraints. An integer variable is defined in the set of the integer values.
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The search and solution spaces associated with finite linear CSPs are convex
spaces, a property that we use in the approach developed in Chapter 5 and that it
is explained in Section 2.1.5.

An additional categorization of constraints embraced throughout this thesis are
the concepts of hard and soft constraints. Hard constraints have to be satisfied in all
cases. However, soft constraints do not, so they can be relaxed but with a certain cost.
The latter type of constraints is associated with constraint optimization and therefore
explained at further depth in Section 2.4.

2.1.4 Solutions

Following, we define concepts of CSP solutions. In this thesis, in order to differentiate
a tuple that is known to be feasible/valid, we name it s. The value assigned to a
variable xi in s is denoted as s(xi). If s is a partial assignment, it is also called partial
solution. If s is a complete assignment, then it is a solution of the CSP.

Definition 2.1.13. A solution of a CSP is an assignment of the domain values to each

of the variables that does not violate any constraint.

If such an assignment does not exist, the CSP is unsatisfiable. If there exists at
least one solution, the CSP is satisfiable. Regarding Example 2.1.1, the complete
assignment (x0 = 1, x1 = 2, x2 = 1) is not a solution of E1 because it does not
satisfy the constraint {x0 − x1 > 0}. However, the complete assignment (x0 =
5, x1 = 2, x2 = 1) satisfies the two constraints {x0 − x1 > 0} and {x1 + x2 < 4}.
That is why, it is a solution of E1 and therefore E1 is satisfiable.

The set of solutions of a CSP P is denoted as S(P ). As it is known in the liter-
ature, the cardinality of a set A is usually denoted as |A|. Therefore, the number of
solutions of a CSP P is denoted as |S(P )|.

According to Definition 2.1.4,Xs is the subset of variables that compose a feasible
tuple s. Thus, X\Xs represents the set of unassigned variables. Considering the
feasible partial assignment s = (x0 = 5, x1 = 2) for E1 (CSP of Example 2.1.1),
Xs = {x0, x1} and X\Xs = {x2}.

2.1.5 Spaces associated with CSPs

There exist two main spaces associated with a CSP: the search space and the solution
space. The Cartesian product of the domains of all the variables compose the search
space, whilst only those candidates that are certainly solutions (because they satisfy
all the CSP constraints) compose the solution space. If the solution space of a CSP
is empty, this CSP is unsatisfiable. Figure 2.1 left shows a hyper-polyhedron search
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space with three variables. Once the constraints have been applied, the set of candi-
dates that satisfy all the constraints are solutions for this CSP and they compose the
solution space (see Figure 2.1 right). We would like to point out that the number of
variables of a CSP fixes the dimensionality of the search and solution spaces. Thus,
for a CSP with n variables, the associated spaces are n-dimensional.

(1)

(1)

(3)

X0

X1

X2

Figure 2.1: Hyper-polyhedron generated by the constraints of the CSP.

It is also of interest for this work to distinguish between convex and non-convex
spaces corresponding to sets of candidates/solutions of CSPs.

Definition 2.1.14. A space is convex if for every pair of points within the object, every

point on the straight line segment that joins them is also inside the space.

Definition 2.1.15. A space is non-convex if there exists a pair of points within the

object, for which there exists a point on the straight line segment that joins them that

is outside the space.

Figure 2.2 shows the two types of spaces for a 2-dimensional solution space: Fig-
ure 2.2(a) shows a convex space and Figure 2.2(b) shows a non-convex space. Note
that in each figure there is a red line representing one of the cases that determines if
the space is convex or non-convex.

2.2 Topological and Metric Spaces

In this section we introduce the concept of topology and metric space. They provide a
formal framework allowing to define proximity relations between the elements, which
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Figure 2.2: 2-dimensional convex and non-convex spaces.
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it is used in Chapter 3, Chapter 6 and Chapter 7. This is viable due to the possibility
of expressing the CSP model as a topology. More information about topologies can
be pursued in the book (William, 2006). The following definition of topology can be
found in this book as well.

Definition 2.2.1. Given a set of elements S, a topology on S is a collection Y of

subsets of S, called the open sets (a subset of S is said to be open if it is in Y ), such

that:

1. Any union of open sets is open.

2. Any finite intersection of open sets is open.

3. Both S and the empty set ∅ are open.

The set S with the topology Y is called the topological space and it is denoted
as (S, Y ). The spaces associated with the CSP models can be represented as topo-
logical spaces. In such case, the set S of elements could be the set of candidates
solutions (search space), the set of solutions itself (solution space) or a reduced set of
assignments (for instance the set of assignments that are feasible according to certain
criterion), etc.

The topological space is the most general mathematical representation of a ‘space’.
However, the metric spaces are specializations of topological spaces that incorporate
extra data structures and/or constraints. As the name suggests, the metric space is
composed by a metric, which is a function that fixes the rules that describe what it
means for elements of some space to be ‘close to’ or ‘far away from’ each other.
There exist many distance functions that can be defined over each pair of elements
x and y. The distance function, denoted as d(x, y) : R × R → R+, is a numerical
description of how far away objects are between them according to a certain metric.
Among all the distance functions, here we introduce the definitions of two of them:
The Euclidean distance and the Chebyshev distance.

The Euclidean distance measures the square root of the squared differences along
any coordinate dimension of two vectors (see Equation 2.4). The main characteristic
of this distance metric is that distinguishes hyperspheres in n-dimensional spaces,
which are analogous to circles for n = 2 and spheres for n = 3.

d(x, y)Euclidean =

√√√√ n∑
i=1

(diff (xi, yi))2 (2.4)
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The Chebyshev distance measures the maximum absolute differences along any
coordinate dimension of two vectors (see Equation 2.5). The main characteristic of
this distance metric is that distinguishes hypercubes in n-dimensional spaces, which
are analogous to squares for n = 2 and cubes for n = 3. In particular, the corners of
a cube are at the same distance from the central point as the edges are, a feature not
obtained with Euclidean distance metric.

d(x, y)Chebyshev = max
i

(|xi − yi|) (2.5)

The requirement for the applicability of the distance functions is that the elements
have to be in the set of real (R) numbers. A set of real numbers (and by extension this
includes the natural (N), integer (Z) and rational numbers (Q)) is totally ordered by
definition.

Definition 2.2.2. A set of elements S is totally ordered under ≤ iff given three ele-

ments of the set {a, b, c} ∈ S they satisfy all the following properties:

1. Antisymmetry: If a ≤ b and b ≤ a then a = b.

2. Transitivity: If a ≤ b and b ≤ c then a ≤ c.

3. Totality: a ≤ b or b ≤ a .

We recommend the book (Schröder, 2003) among others for more definitions and
demonstrations. When we deal with other types of domain elements that are not in R,
as for instance, CSPs with symbolic domains, the distance functions cannot be directly
applied, unless there exists an ordering relationship between their domain values. In
this case, a monotonic mapping function f(x) : D → R has to be applied in order to
map the elements of the CSP domain by preserving their order. Following, we explain
a simple example.

Example 2.2.1. We consider a CSP with a symbolic and ordered domain D which

represents clothing sizes: {extra small, small, medium, large, extra large}. In this

case, a monotonic function f(x) : D → N that assigns greater values to the bigger

clothing sizes can be defined. For example, f(extra small) = 1, f(small) = 2,

f(medium) = 3, f(large) = 4, f(extra large) = 5, etc.
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As we have already pointed out before, a CSP with ordered domains, both numeric
and symbolic (for the latter it is necessary to define the monotonic mapping function),
can have a metric function defined over their set of elements S. Therefore, the spaces
associated with this type of CSPs are metric spaces and the following definitions, as
well as the distance definitions, can be applied to them.

Definition 2.2.3. The neighbourhood N (N ⊆ T ) of a valid tuple t is an open set

containing all the valid tuples close to t.

Definition 2.2.4. A closed ball of a valid tuple t ∈ T at distance ε, is the neigh-

bourhood N of t composed of {y ∈ T : d(t, y) ≤ ε}, where d can be any distance

function.

2.3 Dynamic Constraint Satisfaction Problems

In this dissertation, we deal with problems that come from uncertain and dynamic
environments and therefore they might evolve over time. The original and static model
of a CSP only captures the state of a problem in a certain time instant, but it is not able
to capture the evolution of the problem over time. For this reason, we use a variant of
the static CSP model called Dynamic Constraint Satisfaction Problem, which is more
appropriate for handling dynamic real-world problems.

Definition 2.3.1. A Dynamic Constraint Satisfaction Problem (DynCSP) is a se-

quence of static CSPs 〈CSP(0), CSP(1), . . . , CSP(l)〉, each CSP(i) resulting from

a change in CSP(i−1) and representing new facts about the dynamic environment

being modeled (Dechter and Dechter, 1988).

As a result of such an incremental change, the set of solutions of each CSP(i) can
potentially decrease or increase. If the set of solutions of a static CSP(i) is smaller
than the previous one, it is considered a restriction. If the set of solutions of a static
CSP(i) is greater than the previous one, it is considered a relaxation.

In this dissertation, we focus our attention on DynCSPs that undergo restrictive
changes, i.e., the original set of solutions decreases. We do not analyze DynCSPs in
which there only exist relaxations of the CSPs since these changes cannot invalidate a
previously found solution. As mentioned in Chapter 1, our technique is applied before
the changes occur. Thus, it is applied to the original CSP (CSP(0)) of the DynCSP.
The main objective of our approaches and the rest of proactive strategies, is that the
solution found for CSP0 remain a solution for future CSPi, where i > 0.
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2.4 Constraint Satisfaction and Optimization Problems

Finding solutions with special characteristics (e.g., robustness and stability) consists
in applying an optimization criterion. In the original CSP model, the main objective
is to find a complete assignment of domain values that satisfies the set of constraints.
However, among all the solutions that satisfy the constraints, we could be interested
in finding some solutions that maximize/minimize certain criteria. In this case, the
main objective is beyond satisfiability, since optimality is also important. Once again,
the original CSP model is not able to capture the criterion to be optimized. Hence,
we introduce the following definition of the Constraint Satisfaction and Optimization
Problem (see the books (Ghédira and Dubuisson, 2013; Tsang, 1993)). We recall that
S(CSP) is the complete set of solutions of the CSP.

Definition 2.4.1. The Constraint Satisfaction and Optimization Problem (CSOP) is

an augmented model of the original CSP that introduces some objective functions.

The objective is to maximize/minimize the set of functions f(s) for s ∈ S(CSP).

Subsequently and throughout this dissertation, we use well known concepts of
complexity theory (specifically, Non-determinstic Polynomial (NP) decision prob-
lems) that can be found, among others, in (Garey and Johnson, 1979). Searching
for optimality tremendously increases the cost of solving a CSOP, being generally
NP-hard. However, this can be alleviated by using Branch & Bound techniques (see
Section 2.6.4) combined with Arc Consistency (AC) and heuristics. For instance, in
(Larrosa et al., 1999) a O(ed3) AC algorithm for soft constraints framework is pro-
posed (e is the number of constraints and d is the largest domain size).

2.4.1 Flexible CSPs and Valued CSPs

A type of CSOP for which there exists a single optimization function is called Flexible
Constraint Satisfaction Problem (Flexible CSP). This model was developed because
the original CSP model is unable to represent correctly some problems. In the orig-
inal CSP model the solutions have to satisfy all the constraints (imperative) and the
constraints have to be completely satisfied (inflexibility), which is the main character-
istic of hard constraints. In contrast, for the Flexible CSPs these assumptions do not
hold. This fact allows the existence of constraints that can be violated with certain
weight/penalization, which are called soft constraints. The main objective is to maxi-
mize/minimize a function defined over this set of costs. The Flexible CSPs can model
many real life problems for which there exists an optimization criterion or problems
that are over-constrained (because the model allows constraint relaxation). In fact, the
over-constrained problems can be seen as a problem with an optimization criterion of
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finding a solution that maximizes the satisfiability of the CSP. In (Miguel, 2004) can
be seen the integration of the DynCSP and Flexible CSP models.

In this dissertation we use a subset of the Flexible CSPs called Valued Constraint
Satisfaction Problems (Valued CSP) (Schiex et al., 1995). The main differences of
this model with respect to the original CSP model is that the constraints are local cost
functions that express the level of satisfaction/unsatisfaction of the associated tuples.
These costs are combined by an associative and commutative operator, which depends
on the type of Valued CSP. The main objective is to find the solution that has the best
combined cost. Following, the formal definition is introduced.

Definition 2.4.2. A Valued Constraint Satisfaction Problem (Valued CSP) is defined

by a classical CSP 〈X ,D, C〉, a valuation structure S = (E,~,�), and an applica-

tion ϕ from C to E. It is noted 〈X ,D, C, S, ϕ〉, where ϕ(Ci) is called the valuation of

Ci (Schiex et al., 1995).

2.4.2 Weighted CSPs

Among all the types of Valued CSPs (Probabilistic CSP, Possibilistic CSP, Fuzzy
CSP, Weighted CSP, etc.), we use the latter formalism for modeling robustness of
solutions for the enumeration-based techniques developed in this thesis. The main
characteristic of the Weighted CSP (WCSP) is that associates weights (or costs) to the
tuples of each constraint. Following, we present the formal definition.

Definition 2.4.3. A Weighted Constraint Satisfaction Problem (WCSP) is a specific

subclass of Valued CSP. Here, we consider a variant of WCSP, formalized in (Larrosa

and Schiex, 2004). This variant of WCSP is defined as P = 〈X ,D, C, S(U)〉, where:

• X and D are the set of variables and domains, respectively, as in standard

CSPs.

• S(U) = 〈{0, 1, . . . , U},⊕, >〉 is the valuation structure, where:

– {0, 1, . . . , U} is the set of costs bounded by the maximum cost U ∈ N+.

– ⊕ is the sum of costs. Thus ∀a, b ∈ {0, 1, . . . , U}, a⊕ b = min{U, a+ b}

– > is the standard order among natural numbers.
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• C is the set of constraints expressed as cost functions (Ci :
∏

xj∈var(Ci)
Dj →

{0, 1, . . . , U}).

Assigning the maximum cost U to a tuple t, means that t is an invalid tuple for
Ci. Otherwise (the cost assigned is lower than U ) t is a valid tuple for Ci with the
corresponding cost. The cost of a tuple t, denoted V(t), is the sum of all the applicable
costs:

V(t) =
⊕

Ci∈C,var(Ci)⊆Xt

Ci(t ↓var(Ci)) (2.6)

The tuple t is consistent if V(t) < U . The main objective of a WCSP is to find a
complete assignment with the minimum cost. Note that the constraints of this model
must be extensionally represented (see Section 2.1.3) because they assign a cost to
each associated tuple.

Example 2.4.1. We consider an example of WCSP named E2 = 〈{x, y}, {{ v1, v2},

{v1, v2}}, S(5), {C1, C2}〉, which is represented in Figure 2.3. It can be observed that

the set of costs is {0, . . . , 5}. Let us assume var(C1) = {x, y} and var(C2) = {x, y}.

The costs assigned by the constraints are represented as labeled edges connecting the

values of the tuples involved in the corresponding constraint. The cost assignment of

the constraint C1 is represented in Figure 2.3 (a) and the constraint C2 is represented

in Figure 2.3 (b).

Table 2.1 shows the set of tuples ofE2 with their corresponding costs assigned by
the constraints and their V(t) values. In addition, it shows which tuples are solutions
for E2. The tuples (x = v1, y = v2) and (x = v2, y = v2) are not solutions of
E2 because their values of V(t) are not lower than 5. However, the tuples (x =
v1, y = v1) and (x = v2, y = v1) are solutions of E2. The best solution for E2 is
(x = v2, y = v1) because V(x = v2, y = v1) = 1, which is the minimum global cost
for the problem.

Furthermore, Appendix A.1 describes in detail the WCSP file format used in this
thesis.

2.5 Inference

Inference is one of the most important matters in Constraint Programming. In this
constraint-based framework, inferring conclusions from the constraints of the problem
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Figure 2.3: WCSP of the CSP of Example 2.4.1.

Table 2.1: Set of tuples of the WCSP of Example 2.4.1 and their costs.

x y Cost C1 Cost C2 V(t) Solution?

v1 v1 0 3 3 Yes
v1 v2 4 1 5 No
v2 v1 0 1 1 Yes
v2 v2 5 0 5 No
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plays a fundamental role in the solving process. In this section we only give a general
overview about this important and wide topic in the literature. Deeper explanations
can be found in the books: (Rossi et al., 2006), (Lecoutre, 2013) and (Dechter, 2003).

The inferential processes for CSPs narrow the search space of possible partial
solutions by deducing new constraints derived from those that are explicitly known
about the problem. The result is a new CSP, equivalent to the original, which makes
explicit the new restrictions contained implicitly in the original CSP. Enforcing-
consistency techniques delete inconsistent values from the CSP domains by means of
the inferred constraints, reducing (if possible) the set of possible solutions. In some
cases, this procedure allows the detection of unfeasibility of a CSP. In case that the
CSP has not been demonstrated to be unsatisfiable, search techniques can be applied
with more efficiency after the consistency techniques.

2.5.1 Levels of Consistency

Consistency-enforcing processes are related to the level of consistency. A globally
inferential process would deduce completely all the information of the CSP. These
methods are called k-consistency algorithms, where k is equal to the number of vari-
ables of the CSP. However, in general, the cost of these complete inference process
is too high. Lower k-consistency methods are used more often. Generally, these al-
gorithms ensure that partial feasible assignments composed by k − 1 variables are
consistent with any other variable of the CSP. According to the level of consistency,
these inference techniques are also called: node-consistency, arc-consistency, path-
consistency and k-consistency. Subsequently we explain the two levels of consistency
used in this work: node-consistency and arc-consistency.

Definition 2.5.1. Node-consistency is the most simple consistency process and it en-

sures that all the domain values of a variable satisfy all unary constraints related to

such variable. A CSP is called node-consistent iff all its variables are node-consistent:

∀xi ∈ X ,∀Ci ∈ C,∃a ∈ D(xi) : a satisfies Ci.

Definition 2.5.2. Arc-consistency (Mackworth, 1977a) is one of the most known and

used consistency procedures. A CSP is arc-consistent iff for any pair of constrained

variables xi and xj , for each a value in Di there exists at least one value b in Dj

such that the partial assignment (xi = a, xj = b) satisfies all the constraints related

to both xi and xj . Any value in the domain of a variable which is not arc-consistent
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can be eliminated as they can not be part of any solution. The domain of a variable

is arc-consistent iff all values are arc-consistent. Thus, a problem is arc-consistent iff

all its arcs are arc-consistent:

∀ Cij ∈ C,∀a ∈ D(xi), ∃b ∈ D(xj): a and b satisfy Cij .

The inference processes are also applied when there exists a partial assignment.
In this case, consistency checking of values in the domains is only developed to those
values that are consistent with the existent partial feasible assignment. In this disser-
tation, we denote Ds(x) ⊆ D(x) to the subset of domain values of the variable x
that are consistent with s, where s is a feasible assignment. Following, we present an
example of the concepts and notations explained above.

Example 2.5.1. According to the CSPE1 presented in Example 2.1.1, we consider the

partial feasible assignment s1 = (x1 = 2, x2 = 1). Note that the missing variable

in this assignment is x0 and its original domain is D(x0) = {1, 2, 3, 4, 5}. After

checking the consistency of these values with the partial assignment s1, the values

(1, 2) can be removed because they do not satisfy the constraint C0 = {x0−x1 > 0}.

Thus, Ds1(x0) = {3, 4, 5}.

2.5.2 Generalized Arc Consistency

Initially, the inference processes were defined over binary constraints. As progresses
in the CP field increase, inference has been extended to non-binary constraints. Subse-
quently, it is defined this consistency term, called Generalized Arc Consistency (GAC)
(Mohr and Henderson, 1986; Bessiere, 2006).

Definition 2.5.3. A CSP is GAC iff all its constraints are GAC. A constraint Ci is

GAC iff each variable in its scope (var(Ci)) is GAC with respect to Ci. A variable

xi is GAC with respect to a constraint Ci iff for every value a ∈ D(xi) there exists a

tuple that involves a and satisfies Ci.

Following, we introduce the enforcing GAC3 algorithm, which is an extension of
the well-known AC3 consistency algorithm (Mackworth, 1977b). GAC3 is used in
Chapter 6 and Chapter 7.
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Algorithm 2.1: GAC3: Global Arc Consistency
Data: P = 〈X ,D, C〉
Result: Is P GAC consistent?

1 Q← {(x, c), ∀c ∈ C, ∀x ∈ var(c)} // var(c) is the scope of c
2 while Q 6= ∅ do
3 (x, c)← takeElement(Q);
4 seekS ← seekSupport(x, c); // Found support for all D(x) for c?
5 if D(x) = ∅ then
6 return false;

7 if seekS = false then
8 Q← Q ∪ {(y, c′), ∀c′ ∈ C ∧ c′ 6= c ∧ ∀x, y ∈ var(c′) ∧ x 6= y}

9 return true;

First, Algorithm 2.1, incorporates a queue of the combinations of all the con-
straints and their scopes. Recall that var(c) is the scope of c ∈ C. The seekSupport
function of GAC3 searches for a support of each domain value. The seekSupport
function searches for a tuple that satisfies the constraint c by checking each value in the
domain of the variable x (this tuple is also called support). If it does not find any sup-
port, it deletes the analyzed value from the domain of the variable (D(x)) because it
can not be part of a solution of the CSP. If any value is deleted because there does not
exist any consistent support with respect to the partial assignment, seekSupport
function returns false. In this case, Algorithm 2.1 adds to the queue all the vari-
ables related to the analyzed variable and their corresponding constraints. Finally,
Algorithm 2.1 returns false if the domain of any of the variables analyzed is empty,
since this fact means that there does not exist any value in the domain of such value
that is GAC and therefore it is not possible to enforce GAC in this CSP. This means
also that this CSP is unsatisfiable. On the contrary, if there are no empty domains, it
returns true.

Depending on the parameters of the CSPs, computing GAC might be very costly.
However, in some cases it is possible to reduce this cost by avoiding the consistency
checking of each domain value. This weaker consistency notion that is called bounds
consistency arises from the necessity of reducing the consistency process cost for
problems whose domains are large and convex. The main idea is to be sure that there
exist an upper and lower bound values of a domain that are consistent. In case that
an extreme value is not consistent, it is deleted from the domain and its neighbour is
checked until bounds consistency is achieved or such domain is empty. This weaker
consistency notion implies a highly cost reduction, specially for CSPs with large do-
mains.
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2.6 Hybrid Methods and Efficiency Improvements

As previously stated, by reasoning about the problem with the use of inference ap-
proaches, we can narrow the search space and therefore facilitate the resolution of the
problem. However, after obtaining a reduced search space, it is necessary to search
for the possible assignments until finding a solution or until we are able to demon-
strate that there does not exist any solution. Thus, search strategies are as important
(or even more) than inference approaches in Constraint Programming. Moreover, the
combination of both, search strategies and inference has resulted in hybrid methods.
They are some of the most used and efficient algorithms in this field.

There exists a vast variety and types of search strategies, which can be classified
in local search and systematic search strategies. Local search algorithms apply local
changes in a certain way to the current partial assignment, until a solution is found
or a time/repetitions cutoff is reached. That is why they are also classified as ‘any-
time’ algorithms, since they run until the fixed time is over or a number of repetitions
is reached. Local search algorithms are incomplete algorithms because they do not
guarantee that they will eventually either find a solution or state that the problem is
unsatisfable.

Nevertheless, systematic search strategies are complete algorithms because they
systematically explore the search space until finding a solution or declaring that the
problem is unsatisfiable. Generally, the cost of solving a CSP is NP-complete. In
this type of strategies, the search space is explored as a tree. Each branch of the tree
represents different combinations of value assignments and is composed of several
nodes. Each node represents a subproblem composed by a partial assignment. The
height of the tree is fixed by the number of variables of the CSP. When all the variables
have been assigned with the corresponding consistency check, the current state in the
tree is a leaf-node and this assignment is complete and feasible, that is to say, it is a
solution of the CSP.

Due to search algorithms are complete strategies, we have used a technique of
this type for some of the approaches developed in this thesis. We selected the gen-
eral search strategy called Maintaining Arc Consistency Algorithm (MAC), which
is explained below. Furthermore, in this section, we also explain several methods
that improve the efficiency of search strategies. Specifically, we will use and explain
restarting techniques and variable ordering heuristics. Finally, in this section, we will
discuss how to cope with not only satisfiability but also with optimality by means of
the Branch and Bound (B&B) technique.

2.6.1 Maintaining Arc Consistency

The MAC algorithm (Sabin and Freuder, 1994) has been vastly used in the literature.
In fact, most of the current CSP solvers use or are based on MAC. MAC algorithm
is categorized into the look-Ahead algorithms, which are characterized by assigning
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tentative (provisional) values from the variable domains to a current partial assignment
and checking the consistency in each step. When a tentative value is inconsistent, it is
deleted and a new value from the current domain is assigned and checked as a tentative
value. If the current assignment is not consistent and there are no more values in the
domain of the tentative variable to check, these look-Ahead algorithms backtrack.
This consists in removing the last inconsistent assignments done. In addition, it is
necessary to save the domain of the variables (line 7) in order to restore them (line
15) when a backtrack occurs. Note that constraint propagations can delete values of
unassigned variables, so it is mandatory to restore them after a backtrack. One of
the most basic algorithms in this category has the same name of the latter process
mentioned: Backtracking algorithm.

The MAC algorithm follows the same general pattern as the Backtracking algo-
rithm. However it incorporates the innovation of combining search with inference,
because it checks the consistency by applying arc consistency process after each ten-
tative value of the current assignment is selected. Furthermore, MAC algorithm is also
extended to non-binary constraints by using the global arc consistency. Following, we
explain the Maintaining GAC3 (MGAC3) algorithm (see Algorithm 2.2), which as-
signs to each variable x ∈ X a new value v ∈ D(x), until the value selected is GAC3
with respect to s, where s is the current partial assignment. Furthermore, Algorithm
2.2 is also responsible for updating the set of assigned variables Xs and the partial as-
signment s, which is initially (first call of the MGAC3 algorithm) equal to the empty
set. Furthermore, it stores the domains and set of neighbours of all the variables be-
fore making an assignment. Note that after a variable x is assigned, D(x) contains a
single value that is the value assigned to x. If Algorithm 2.1 (GAC3) returns false,
then Algorithm 2.2 (MGAC3) carries out the backtracking process and also restores
the domains and set of neighbours of all the variables. If all the variables of the CSP
have been satisfactorily assigned, the algorithm returns true, and the solution found
is stored in s.

2.6.2 Variable Ordering Heuristics

In general, heuristics use the data that can be extracted from previous search states
to better guide the following search. The variable ordering changes might have an
extreme impact over the search space, and as consequence, in the computational time
required in the search. There exist two types of variable ordering: static and dynamic.
The static variable ordering is fixed before the search algorithm is applied. However,
the dynamic variable ordering is fixed while the search algorithm is running. Gener-
ally, the dynamic variable ordering produces more effective results. One of the most
used dynamic heuristics is known as ‘fail-first’ and its main objective is to select the
next unassigned variable with the highest probability of restricting the most of the
remaining search space.

A very successful ‘fail-first’ heuristic is named dom/wdeg heuristic variable se-
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Algorithm 2.2: MGAC3: Maintaining Global Arc Consistency
Data: P = 〈X ,D, C〉,Xs, s
Result: Is there a solution for P ?

1 if s = ∅ then
2 Xs ← ∅; // Set of variables assigned

3 else if Xs = X then
4 return true
5 select x ∈ X\Xs;
6 Xs ← Xs ∪ x;
7 save D;
8 while D(x) 6= ∅ do
9 select v ∈ D(x);

10 s← s ∪ {x = v};
11 D(x)← v;
12 if GAC3(P = 〈X ,D, C〉) then
13 if MGAC3(P 〈X ,D, C〉,Xs, s) then
14 return true

15 restore D\D(x);
16 s← s\{x = v};
17 Xs ← Xs\x;
18 return false
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lection (Boussemart et al., 2004). This heuristic combines the information about the
domain with the weighted degree heuristic (wdeg). The weighted degree of a variable
is calculated as the sum of the weights of the constraints associated with this variable.
The weight of a constraint is increased in one unit when the consistency checking
produces a dead-end. A desirable objective in the ‘fail-first’ approach is to select a
variable with a small domain because it maximizes the changes of a future fail (there
are less possible values to try). The other objective is to find a variable that maximizes
its weighted degree because if in past assignments it was failing frequently, the likeli-
hood that it will fail in the future is also high. The combination of these two objectives
resulted in a heuristic that selects the variable that minimizes the ratio of domain size
to weighted degree (dom/wdeg), which is a very powerful heuristic.

When there does not exist an established variable ordering heuristic, it is common
to use the lexicographical order, which is the alphabetical/numerical order of their
component letters/numbers. The same happens for the value ordering heuristics (order
of value selection in the search tree), unless there is one specified, by default the
lexicographical order is used.

2.6.3 Restarting Techniques

As we have mentioned throughout this chapter, the computational time of solving
CSPs of a significant size is an important issue to take into account. One of the
reasons is the thrashing effect, that is produced when some unfavourable branches of
the search tree are systematically checked. In order to solve this problem, approaches
exist that restart the search back to the root node, thus potentially avoiding getting
stuck in these unpromising regions of the tree search.

The dom/wdeg heuristic (see Section 2.6.2) is also appropriate for avoiding the
thrashing because it selects variables that are likely to produce inconsistencies in the
first positions of the search tree. Nevertheless, this heuristic is very little informed
in the initial variable selections (in fact, it does not have any information at the root
level), while these first choices are crucial to avoiding thrashing. Hence, restarting
approaches represent such an important advantage, because they are able to re-make
choices over the early areas of the search tree and this fact can ward off the direction of
the search in unfavourable branches of the search tree. Thus, a restarting approach can
be combined with a weighted variable ordering heuristic (for instance, dom/wdeg) in
the way that after a restart occurs, the weights associated with the constraints are kept.
The availability of such information at the beginning of the search tree, can allow a
reduction of the repetition of fails in the search.

These approaches restart the search from scratch each time that the number of
failures (nbF ) reaches a predetermined cutoff value (C). Among the restarting ap-
proaches existent in the literature, we have used the geometric restarting approach
presented in (Walsh, 1999). This approach has been proved to be a very efficient
restarting approach for a wide range of problems (Grimes, 2012). Particularly, the
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geometric restart approach increases the number of fails cutoff geometrically accord-
ing to a multiplicative factor (m), generating the sequence: (1,m,m2,m3, . . . ). In
(Walsh, 1999), the authors determined that the best results for the geometric restart
approach are for the values of m ∈ (1, 2). Subsequently, in (Wu and Van Beek,
2007), a scale factor (scale) is introduced for multiplying the sequence generated by
the geometric restart approach.

Algorithm 2.3 incorporates this last modification of the geometric restarting ap-
proach. Thus, it calls repeatedly to a search algorithm by providing the corresponding
cutoff (C) of this iteration as a parameter. The systematic search algorithm described
in Algorithm 2.4 is generic, so it could be replaced by any other search algorithm
(e.g., Algorithm 2.2). Nevertheless, some modifications have to be included: (i) a
variable for counting the number of failures (nbF ) and (ii) a stop criterion when the
number of failures is equal to the cutoff. Thus, Algorithm 2.4 updates the number
of failures that have been produced from the consistency check. When the cutoff is
reached, Algorithm 2.4 returns false. Note that it returns the same value if all the
search tree has been explored and there does not exist any solution. Algorithm 2.3 is
responsible of increasing the cutoff until the CSP has been proved to be unsatisfiable
or until a solution is found.

Algorithm 2.3: Geometric Restarting
Data: P = 〈X ,D, C〉, scale,m
Result: s, Nk, lb

1 s← ∅
2 i← 1;
3 repeat
4 if nbF < C then
5 return false
6 C ← scale ∗mi; //number of fails cutoff
7 i← i+ 1;
8 until not Search Algorithm (P = 〈X ,D, C〉, s, nbF,C);
9 return true

2.6.4 Branch & Bound

In Section 2.4, we introduced the constraint satisfaction and optimization framework
and the CSOP model. As mentioned, this model extends the original CSP model
by adding at least one objective function. The main objective is to find a solution
that is the optimal one according to the stabilized criterion. The main difference that
optimization algorithms present over the purely satisfaction algorithms is that finding
one solution is not enough since the optimal function value is unknown. Thus, it



42 Chapter 2. Technical Background

Algorithm 2.4: Generic Search Algorithm
Data: P = 〈X ,D, C〉,Xs, s, nbF,C
Result: Is there a solution for P ? ∨ cutoff reached

1 if s = ∅ then
2 Xs ← ∅; // Set of variables assigned

3 else if Xs = X then
4 return true
5 select x ∈ X\Xs;
6 Xs ← Xs ∪ x;
7 save D;
8 while D(x) 6= ∅ ∧ nbF < C do
9 select v ∈ D(x); s← s ∪ {x = v};

10 D(x)← v;
11 if Consistency (P = 〈X ,D, C〉) then
12 if Search Algorithm (P 〈X ,D, C〉,Xs, s, nbF,C) then
13 return true

14 nbF ← nbF + 1; // number of failures
15 restore D\D(x);
16 s← s\{x = v};
17 Xs ← Xs\x;
18 return false
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could occur that there exist other solutions that are better than the current solution
obtained. This fact increases tremendously the cost of solving a CSOP (see Section
2.4). Nevertheless, the Branch & Bound is an ‘anytime’ algorithm, so we can limit
the search time by fixing a time cutoff.

The Branch & Bound algorithm (see Algorithm 2.5) is a well known algorithm for
solving optimization problems. The algorithm uses an inference process and prunes
the branches whose objective function value is lower or equal to the maximum func-
tion value obtained, denoted as lb (lower bound). The consistency procedure can be
any of the inference processes explained in Section 2.5, for instance GAC3 (see Al-
gorithm 2.1) or other inference processes from the literature. If the tentative value
analyzed is not consistent with the current partial assignment or the function value
of the partial assignment is lower than the lower bound, the value is deleted from
the domain and this branch of the search tree is rejected, reducing then the search
space. Note that the Branch & Bound algorithm bounds the search tree in the way
that branches of the tree with lower objective function values, are rejected from the
search (as soon as this information is available).

Algorithm 2.5 is initially called with an empty assignment s. In the first execu-
tion of B&B some necessary structures are initialized, such as the set of variables
assigned Xs and the lower bound lb. In followings executions of B&B these parame-
ters, as well as the assignment s are updated. In the same manner than MAC algorithm
saves the domain of the variables in order to restore them in case that a backtrack oc-
curs, the same storage is done in B&B algorithm. Algorithm 2.5 stops when all the
branches have been explored or pruned, providing the solution s (if there exists) with
the maximum f(s), where f(s) represents the objective function. We can also limit
the search time and therefore the quality of the best solution found by fixing a time
cutoff. However, the more time the Branch & Bound algorithm spends searching, the
better function values we might obtain.



44 Chapter 2. Technical Background

Algorithm 2.5: B&B: Branch & Bound
Data: P = 〈X ,D, C〉,Xs, s, f, lb, time cutoff (optional)
Result: lb (maximum f(s)), sbest (best solution)

1 if s = ∅ then
2 Xs ← ∅; // Set of variables assigned
3 lb← −1; // Maximum current function value
4 sbest = ∅ ; // Best current solution

5 select x ∈ X\Xs;
6 Xs ← Xs ∪ x;
7 save D;
8 while D(x) 6= ∅∧ time cutoff not reached do
9 select v ∈ D(x); s← s ∪ {x = v};

10 D(x)← v;
11 if Consistency (P = 〈X ,D, C〉) ∧ f(s) > lb then
12 if Xs = X then // New solution found
13 lb← f(s);
14 sbest = s;

15 else
16 B&B(P = 〈X ,D, C〉,Xs, s, f, lb, time cutoff );

17 restore D\D(x);
18 s← s\{x = v};
19 Xs ← Xs\x;
20 return lb



Chapter 3

New Dynamism Framework for
CSPs with Ordered Domains

In this chapter we focus on the dynamism properties of CSPs that model problems
whose elements are related by a certain order relationship. Thus, according to the
characteristics of this type of problems, we can extract some assumptions about the
future possible changes that they can undergo. This is specially useful when we deal
with difficult situations for which there does not exist additional detailed information
about the dynamism of the problem.

Firstly, we explain the main characteristics associated with the type of problems
that we analyze and the assumptions about a certain type of dynamism inherent to
them, and the motivation that has driven us to make these assumptions. Furthermore,
we compare other dynamism assumptions made in the literature. In addition, we spe-
cialize the two features associated with the solutions found by proactive approaches
(robustness and stability) to this dynamism environment. Subsequently, we explain
how we tackle these type of problems in order to find solutions that can offer a re-
sistance to this dynamism. Specifically, we present two theoretical approaches: one
of them is only addressed to CSPs with convex solution spaces whilst the other one
does not have this limitation. Finally, we make a detailed comparison between the two
types of technical approaches presented in this thesis for dealing with this dynamism:
enumeration-based techniques and a search algorithm. For both of them, we analyze
their weakness and strengths, as well as their applicability area.

3.1 Dynamism in CSPs with Ordered Domains

As stated in Section 1.5, the level of knowledge available about the uncertain and dy-
namic environment where the problem comes from plays a fundamental role in the
search of robust and/or stable solutions. Real life problems for which there does not
exist detailed information about their dynamism, represent difficult situations to deal
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with. Many proactive approaches are useless in such problematic situations in which
this information is missing or scarce. This is the main motivation of this dissertation,
to develop approaches that can provide with certain level of robustness to the solu-
tions, when there does not exist extra data about the future possible changes. That is,
when the only information available is the one required for modeling the CSP.

Nevertheless, there exist some types of real life problems that due to their particu-
lar structure can provide us more specific information about their possible dynamism.
For CSPs that model problems for which the order over its elements is significant,
limited (and intuitively reasonable) assumptions about their possible future changes
can be made. These assumptions are based on a type of change that these kind of prob-
lems can undergo, which takes the form of restrictions/relaxations at the borders of a
domain or constraint. These modifications are equivalent to a restriction/modification
of certain parts of the bounds of the solution space, because the domains and con-
straints of the CSP determine the solution space of the CSP. This is illustrated by the
following example.

Example 3.1.1. Figure 3.1 shows a solution space of a CSP (represented with the

blue and continuous line), which is composed of two variables x0 and x1. It can be

observed that it has 29 solutions (black points).
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Figure 3.1: Solution space of Example 3.1.1.
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If no specific information is given about the dynamics of Example 3.1.1, i.e., the
kinds and likelihoods of changes in the problem, it is not easy to decide which solution
is considered the most robust. In Figure 3.2, a smaller solution space coloured with
a darker blue hue and discontinuous lines is represented. This reduced space is the
result of restrictive modifications over the original constraints of the CSP (original
solution space that is coloured with light blue).

In this situation we assume that the original bounds of the solution space (delim-
ited by constraints and domains) undergo modifications in the form of range reduc-
tions or expansions (this is motivated below with real life problems examples). Note
that the possibility of solution loss only exists when changes are restrictive. For this
reason, we only focus on restrictive modifications, since our main concern is to find
solutions that maximize the resistance to these future changes.
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Figure 3.2: Restrictions over the bounds of the solution space of Example 3.1.1.

Situations similar to those depicted in Figure 3.1 often occur in a wide variety of
applications (see (Climent et al., 2013b)). One of the most obvious example is the
scheduling problem, where the most common form of change is time delays. For in-
stance, we recall the scheduling Example 1.1.1, in which the first task of the schedul-
ing problem has an end time of 3. All the subsequent tasks in the same job must
have a start time in the interval [3,max] (see Figure 1.1). In this case, if there is a
delay of 1 time unit in the aforesaid task (see Figure 1.2), then the new domains of the
subsequent tasks must be reduced to be [4,max] (see Figure 1.4).

Planning and scheduling is a rich context where uncertainties and changes cannot
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be easily avoided (Verfaillie and Jussien, 2005). For instance, arrival times of em-
ployees/transports or finalization of tasks/events may undergo delays/advances. These
temporal changes are translated into restrictions/relaxations of the borders of the re-
sultant CSP constraints.

Temporal reasoning-based problems (Dechter et al., 1991) also support this as-
sumption. These real life problems consist on the reasoning of relationships between
time and actions/events. This occurs in many contexts: natural language understand-
ing, simulation, diagnosis, scheduling, planning, etc. In temporal problems of this
sort, dynamism and uncertainty are almost inherent. Here, modifications are most
likely to occur at the bounds of the solution space given that the relationships involve
time.

The aforementioned assumptions regarding the character of changes are also sup-
ported by spatial and geometric reasoning problems. In such real life problems, mea-
surement errors can result in a partially incorrect representation of the problem, where
bounds must be subsequently adjusted. These problems also often include distance
constraints, and these are generally modified by relaxing or restricting the constraints
in boundaries.

The condition mentioned above also occurs in design problems, where the resul-
tant CSP is not completely determined before the solving process. These CSPs are
modeled by assigning the design elements to variables, where constraints represent
the properties that these elements must satisfy. For these problems, resources and
conditions of the environment may undergo changes. For instance, an example intro-
duced in (Sam, 1995) involves a design problem of damping floor vibrations by means
of beams and conduits traversing them. Consider a variable representing the number
of conduits to introduce in the beams, with a maximum of 10 conduits. In this case, it
is more likely that this maximum value will increase or decrease (modifications of the
domain border) than a certain intermediate domain value, let us say 5 conduits, will
become invalid.

The dynamism associated with all the real life examples with ordered domains
mentioned above, motivate the interest and analysis carried out in this dissertation for
dealing with such ordered problems and dynamism framework. Therefore, the rest of
the presented work is based on the following assumption.

Assumption The original bounds of the solution space of CSPs that model problems
for which the order over its elements is significant and that do not have extra
detailed data about future changes, may undergo modifications in the form of
range reductions in the future.
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3.2 Related Dynamism Assumptions in the Literature

In some real life problems that come from uncertain and dynamic environments,
sometimes (generally rarely) there exists extra detailed information associated with
the problems that estimates the kind of changes and how significant they are. In Sec-
tion 1.4 we explained several techniques that assume different additional knowledge
about the uncertain and dynamic environment. Some of them focus on the changes
over the variables and/or their values and also there is a model that focus on the con-
straints: the Probabilistic CSP (Fargier and Lang, 1993). This model considers that
each constraint is associated with a probability of existence. Thus, the most robust
solution is the solution that maximizes the probability of satisfying all the constraints.

The main differences in the above new dynamism assumption proposed in this
thesis with respect to the Probabilistic CSP, is that we consider variations over the
original constraints while the Probabilistic CSP only considers the existence of the
constraints and that we also consider changes over the domain constraints of the CSP
while the Probabilistic CSP does not. Regarding the extra information that is known
about the future changes, with the Probabilistic CSP, as well as another probabilistic
approaches, the specific probabilities of the future dynamism are required. However,
only one of the enumeration-based techniques developed in this thesis requires such
information. The other techniques introduced in this thesis are non-probabilistic ap-
proaches and therefore, they can be applied when the probabilities of the dynamism
are unknown.

There exists another non-probabilistic proactive approach that does not require
extra data about the dynamism: super-solutions (Hebrard, 2006). In this work, the
author assumes that the possible future changes are the loss of a values in the solu-
tion. Since this type of change implies the loss of the original solution, the feature of
robustness does not hold in this type of change. However, the stability feature holds
because it measures the ability of a solution of being repaired when its feasibility is
broken after the changes invalidate it. Even if the assumption that any value of the
solution could be lost with equal probability is reasonable for CSPs with non-ordered
domains, it is not always true for CSPs with ordered domains. Section 3.1 motivates
a type of dynamism that takes the form of bounds restrictions. In such a framework,
it is possible to search for robust solutions, since values that are far from the bounds
have a higher likelihood of remaining valid (see Section 3.4.2.1). Thus, it is possible
to distinguish different level of robustness between them. Nevertheless, in the type of
change assumed in (Hebrard, 2006), there is a uniform likelihood of becoming invalid
distribution over all the values. For this reason, it is not possible to distinguish differ-
ent levels of robustness between the values of these non-ordered CSPs and it is only
possible to establish stability levels.

Since we strongly value solution loss prevention in uncertain and dynamic envi-
ronments, our main goal is the search of robust solutions in the framework of CSPs
that model problems for whose elements have an order relationship, even if we also
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value their stability. Even if both features, robustness and stability are different, we
found that they are related in this dynamism framework associated with CSPs with
ordered domains (see Section 3.4.2). For this reason, and due to the fact that the ap-
proaches developed in (Hebrard, 2006) do not consider extra detailed information, we
have evaluated our non-probabilistic approaches with these approaches in Chapter 9.

3.3 Specializing Robustness and Stability Concepts

In this section we specialize the original definitions of solution robustness (Definition
1.4.3) and solution stability (Definition 1.4.4) (Climent et al., 2014) to consider the
assumption made in Section 3.1.

3.3.1 Robustness

Larger restrictions always include (some) smaller ones and therefore, a larger restric-
tion involving a tuple t, must also include any tuple closer to the given border than t.
Thus, we can also assume that values affected by larger restrictions are, in general, less
likely to be removed. The latter is shown in Figure 3.3, where the different blue hues
spaces show restrictions of different magnitude of change over the original solution
space of Example 3.1.1 (represented in Figure 3.1). Thus, the solution in the smallest
and darkest blue area, which only can be removed by the largest restrictions (see the
longest arrows in Figure 3.3), is more likely to remain a solution. The solutions in
the intermediate blue hue space are more likely to be removed because restrictions
of lower magnitude can also invalidate them (see the shortest arrows in Figure 3.3).
However, they are less likely to be removed than the solutions located on the borders
of the solution space (lightest blue area) because they can become invalid when faced
with restrictions on the border of any magnitude of change (short, intermediate, large,
etc.).

In Figure 3.3 we assumed that all the bounds of the solution space are dynamic
(general case). However, there are occasions in which due to the nature of the prob-
lems, it is known that some of the bounds are static. This type of bound never will un-
dergo any restrictive modification. Throughout this thesis, we have used static bounds
mainly for introducing simpler and clearer examples.

Given the assumptions made in this chapter and that there does not exist extra data
about the dynamism, we specialize the Definition 1.4.3 for this framework as follows.

Definition 3.3.1. The most robust solution of a CSP with ordered domains without

extra detailed dynamism data is the solution that maximizes the distance from all the

dynamic bounds of the solution space.
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Figure 3.3: Most robust solution of the CSP of Example 3.1.1.

Consequently, our main goal is to search for these solutions in both convex and
non-convex spaces. For the Example 3.1.1, which is a 2-dimensional non-convex
solution space, the solution (x0 = 5, x1 = 4) is the most robust (see the solution
highlighted in Figure 3.3). However, in a n-dimensional CSP (n is the number of
variables), selecting the most robust solution is not straightforward, especially if we
are dealing with non-convex solution spaces.

Many real life problems involve non-linear constraints, for instance, design prob-
lems (Sam, 1995). For this reason, in this dissertation, we have not only developed a
specific approach for Linear CSPs (we recall that this type of CSP always produces
convex solution spaces), but also other approaches that can be applied to both convex
and non-convex spaces.

Furthermore, even if the main focus of this thesis is the search of robust solutions
that have a high likelihood of remaining valid when faced with changes in any border
of the solution space, we have also developed an approach that considers differences
in such changes. In the latter case, Definition 3.3.1 does not hold since there are some
bounds that can have a higher likelihood of undergoing restrictive modifications, or
some of the bounds can undergo bigger/smaller restrictions. In such case, the desirable
objective is to find a solution that maximizes the criterion of being far from bounds
with higher likelihood of change, according to their magnitude of change. In the rest
of this chapter we will assume that dynamism data is unknown (since this situation is
more difficult), however, more information about informed dynamism situations can
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be found in Chapter 4.

3.3.2 Stability

The definition of stable solution (see Definition 1.4.4) can be more accurate for CSPs
with ordered domains. This is due to the fact that it is possible to define a more
specific notion of ‘closeness’ between two solutions due to the given order over the
domain values. In (Hebrard, 2006) the level of dissimilarity between two solutions
is measured by counting the number of variables that take different values in both
solutions (see Section 1.4.3). This is calculated with the Hamming distance.

d(s1, s2)Hamming =
n∑

i=1

(s1i 6= s2i) (3.1)

For this equation the dissimilarity condition (s1i 6= s2i) ∈ {0, 1}. In a following
work developed by (Hebrard et al., 2007), the authors deal with a different issue,
however they consider another similarity measure between solutions of CSPs: the
Manhattan distance. This distance measures the sum of the absolute difference of
values associated with each variable of two solutions. Note that unlike Hamming
distance, Manhattan distance requires an order relation defined over the elements.
Otherwise, it would not be possible to calculate the absolute difference of the values.

d(s1, s2)Manhattan =

n∑
i=1

|s1i − s2i| (3.2)

In this section we extend the stability concept associated with solutions of CSPs
that model problems for which there exists a significant order relation between their
elements. Due to this characteristic, it is possible to go beyond the Hamming distance
and to apply the Manhattan distance to the notion of stable solutions for CSPs of this
type. Subsequently, we define the stability of the solutions in such framework.

Definition 3.3.2. Given an order relationship over the values of a set of solutions,

a solution s1 is more stable than another solution s2 iff, in the event of a change

that invalidates them, there exists an alternative solution to s1 with lower Manhattan

distance than the Manhattan distance of any alternative solution to s2.

Furthermore, we present an extension of Definition 1.4.5 for CSPs with ordered
domains by fixing a maximum Manhattan distance between the original solution and
the repaired solution, which is called c.
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Definition 3.3.3. A solution is an (a, b, c)-super-solution if the loss of values of a vari-

ables at most, can be repaired by assigning other values whose Manhattan distance

with respect to the original values is lower or equal to c, and this involves changing

the values of b variables at most.

The above definition also holds for (1, 0, c)-super-solutions and maximizing the
(1, 0, c)-repairability, which are the main focus of the stability analysis in this work,
as mentioned in Section 1.4.3.

By extending the stability concept, we also extend the repairability value con-
cept for CSPs with ordered domains. In the work developed in (Hebrard, 2006), the
‘closeness’ between the original values broken (values that are not longer valid due
to the changes in the problem) and the repair values was not considered. However,
this characteristic is important for finding stable solutions whose associated repair so-
lutions are as similar as possible to the original one, according to the order between
elements. This idea is the second statement of the abstract, obtained from (Verfaillie
and Jussien, 2005).

Second “Limit as much as possible changes in the produced solution”.

Furthermore, the extension of the stability concept that we define for the analyzed
framework is also consistent with the similarity definition between solutions proposed
in (Hebrard et al., 2007).

3.4 New Theoretical Approaches for this Environment

In this section we explain the theoretical approaches that we have developed for CSPs
with ordered domains that come from a dynamic and uncertain environments. Hence,
these problems can undergo the dynamism assumption made in Section 3.1, our main
objective is the search of the solutions that are located as far away as possible from
the bounds of the solution space.

Since the solution spaces of CSPs with ordered domains have been proved to be
topological and metric spaces, we make use of concepts and definitions associated
with these spaces (see Section 2.2). We recall that domains that are in R have an
order relationship by definition. In contrast, when we deal with other types of domain
elements (e.g., symbolic domains), a monotonic mapping function f(x) : D → R
has to be applied in order to map the elements of the CSP domain by preserving their
order (see Section 2.2). In such case, the definitions and concepts of metric spaces
can also be used. Following, we explain an approach that is specific for convex spaces
and another method for general purpose.



54 Chapter 3. New Dynamism Framework for CSPs with Ordered Domains

3.4.1 The Centroid of the Solution Spaces of CSPs

Subsequently, we explain a theoretical approach addressed to convex spaces that is
the basis of the technical approach presented in Chapter 5 (Climent et al., 2011).
Here, we assume that all the bounds of the solution space are dynamic. As previously
mentioned, the closer the solutions are located to the bounds of the solution space
of a CSP with ordered domains, the less robust the solutions are. On the contrary,
the solutions that are located as far as possible from the bounds of the solution space
have the highest likelihood of remaining valid after these kind of changes, so they are
considered to be the most robust solutions (Definition 3.3.1).

Taking into account the Euclidean geometry definitions, we can calculate the cen-
troid or gravity center of a geometric object. Following, we introduce the definition
of the centroid of 2-dimensional spaces and we introduce an example of such type of
space.

Definition 3.4.1. The centroid of a 2-dimensional solution space is the intersection

of all straight lines that divide the solution space into two parts of equal moment. An

illustration of the latter definition is given with the following toy example.

Example 3.4.1. We consider a CSP that is composed of two variables x0 and x1 with

domains D0 : {1..8} and D1 : {1..7} respectively, and constraints:

• C1 : x1 − 6 ≤ 0

• C2 : x0 − 7 ≤ 0

• C3 : x1 − 2 ≥ 0

• C4 : x0 − 3 ≥ 0

The solution space of Example 3.4.1 is a 2-dimensional convex solution space.
Figure 3.4 shows the geometric figure of this solution space (coloured in blue), which
is a square whose centroid is the solution (x0 = 5, x1 = 4), which it is highlighted
with a circle in the figure. Note that this point is the intersection of the two straight
lines that divide the square in two equal areas.

It must be taken into account that for convex spaces, the centroid of a figure is the
point located as far as possible from all the bounds of the figure. This does not occur
for non-convex spaces, for which the centroid of the solution space can be located
outside the figure itself (see Figure 3.5).
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Figure 3.4: Centroid of the convex solution space of the CSP of Example 3.4.1.
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Figure 3.5: Centroid of a non-convex space.
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Nevertheless, the centroid of a convex geometric figure always lies in the geo-
metric figure, so we can take advantage of this characteristic of convex spaces for
locating the most robust point of the convex geometric figure, since it has the greatest
likelihood of remaining inside the geometric figure after changes in its bounds.

Definition 3.4.2 extends the previous centroid definition to a n-dimensional solu-
tion space.

Definition 3.4.2. The centroid of a n-dimensional solution space is the intersection

of all hyperplanes that divide the solution space into two parts of equal moment (Gao

and Adviser-Revesz, 2006).

Note that for CSPs with discrete domains, the centroid of a solution space may not
be a solution, so that the most robust solution is the nearest solution to the centroid,
according to the dynamism assumptions made for CSPs with ordered domains.

3.4.2 Neighbourhood and ‘Onion topology’

In the previous section, we show how the centroid of a solution space is a good in-
dicator of the solution that maximizes the distance from all the bounds of the convex
solution spaces. Unfortunately, this method can not be used for the same purpose for
non-convex spaces since the centroid can be located outside the solution space itself
(see Figure 3.5). For this reason, we have found an alternative way for determining
the most robust solution for non-convex spaces. The idea that we present in this sec-
tion is based on the relation between the neighbour solutions of a solution s and the
distance to s from the bounds of the solution space. This theoretical approach uses
concepts associated with the topology of CSPs with ordered domains, which were in-
troduced in Section 2.2. Part of the following explanation can be found in (Climent
et al., 2013b).

This idea is first shown with a very simple example in Figure 3.6. In this figure,
it can be observed a selection of two solutions of a CSP. The solution analyzed is
highlighted and it has a very close neighbour solution located on its right side. We
can observe in solid blue a small space, which is the minimum space that can be
demonstrated to be solution space. There also exists a dashed blue area that represents
the rest of the search space for which we can not ensure the feasibility due to the fact
that we do not know the rest of the neighbours of the analyzed solution. The fact that
there exists a valid assignment on the right side of the analyzed tuple ensures that it
is not located next to a solution space bound on this side. Therefore, by checking
the valid neighbours of the analyzed tuple we can ensure minimum distances to the
bounds of the solution space, which gives us an approximation to the point located
the furthest away from all the bounds of the solution space.
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X0

X1

Figure 3.6: Neighbour solutions.

Previously, we have explained a very simple neighbourhood analysis, composed
of only two neighbours. Following, we explain two cases for which we have analyzed
all the solutions of the CSP, both are shown in Figures 3.7. In the Figure 3.7(a), the an-
alyzed solution, which is highlighted, is surrounded by a great amount of neighbours.
This solution is located to a minimum distance of 2 units from the bounds, since it
has two contiguous neighbour solutions in all the directions (see the arrows in Figure
3.7(a)). However, in Figure 3.7(b) we can observe that the analyzed solution has a
high amount of close neighbours but we can not ensure that the minimum distance to
the bounds of the solution space is 2. This is due to the fact that the closest neighbour
placed below the analyzed solution is not feasible (see the red cross) and therefore
this solution is located above a bound, being very sensitive to restrictive changes over
this bound. From the latter example, we can infer the following lemma:

Lemma 3.4.1. It only can be ensured that a solution s is located to a distance d from

a bound in a certain direction of the n-dimensional space if all the tuples at distance

lower or equal to d from s in such direction are feasible.

This concept is crucial for the approaches described in Chapter 6 and Chapter
7 (both based on this theoretical approach) and it is also referred as the contiguity
between the feasible neighbours. For Figure 3.7(b), we can not ensure a distance of
2 units from the bounds in the below direction of the tuple analyzed because there is
one tuple that is not feasible and therefore it is not inside the solution space (see the
point in the space marked with a red cross).

We would like to point out that since this theoretical approach analyzes the feasi-
ble neighbours, the domains of the CSPs have to be discrete. By means of checking
the feasible neighbours of an analyzed tuple, we can estimate its robustness, since
this information provides data about the distances to the bounds. Furthermore, there
is evidence that certain forms of network robustness also fit this model of robust-
ness. It consists in the application of the ‘onion structure’ to dynamic networks. In
(Herrmann et al., 2011) the authors analyze how the structure of a network can affect
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(a) Solution located at distance 2 from the bounds of the solution space.
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(b) Solution located on a bound of the solution space.

Figure 3.7: Neighbours of different analyzed solutions.
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its robustness to targeted attacks and random failures. After a robustness analysis,
the authors stated: “Our results show that robust networks have a novel ‘onion-like’
topology consisting of a core of highly connected nodes surrounded by rings of nodes
with decreasing degree”. In this thesis, we have applied the ‘onion structure’ concept
to CSPs, which is a novel idea.

For CSPs, we roughly define a layer of this ‘onion structure’ as a convex hull
of valid neighbour tuples that surround a specific tuple. Thus, the layer measures
the protection of the tuple against perturbations. A valid tuple with more layers is
presumed to have a higher probability of remaining valid than a tuple with fewer
layers, and therefore, it is more robust. As mentioned above, there exists a direct
relation between the ‘onion layers’ of a tuple and its distance from the bounds of the
solution space: the more layers it has, the greater is its distance to the bounds. Due
to the fact that the approaches presented in this dissertation search for solutions that
have a high number of layers, our solutions were introduced in Section 1.5 as ‘covered
solutions’ (see Figure 1.5).

Here we explain the relationship between this theoretical approach and the the-
oretical approach for convex solution spaces, which was introduced in Section 3.4.1
and how the theoretical approach introduced in this section behaves with such solu-
tion spaces. Figure 3.7(a) represents the same solution space as Figure 3.4. In Figure,
3.4 the closest solution to the centroid, which is the most robust, is highlighted (it
coincides with the centroid for this example). In Figure 3.7(a), the solution with more
complete ‘onion layers’, which is the most robust, is highlighted. Notice that both
theoretical approaches consider as the most robust solution this one that maximizes
the distance from all the bounds of the solution space. In convex solution spaces, due
their very definition, there can not exist situations in which a tuple has a complete
layer of feasible tuples surrounding it and that it has in the same time, a closer incom-
plete layer (as it happens in Figure 3.7(b)). From this characteristic, we can derive
that for convex solutions spaces, the solutions with the greatest number of layers are
the closest ones to the centroid of the solution space.

There exists a relationship between this robustness criterion based on the feasibil-
ity of neighbours and the stability concept. The main objective of finding solutions
with close feasible neighbours, it also confers stability to the solutions. This is shown
in Figure 3.6, where the highlighted solution has a neighbour solution on its right side.
This feasible neighbour has the same value for the variable x1 than the analyzed solu-
tion. This means that the variable x0 is repairable because if its assigned value is lost,
it can easily be repaired by assigning the neighbour value (since this value is consis-
tent with the rest of the values of the assignment). Thus, all the neighbours located
in the direction of the axis of a variable, represent repairable solutions for the break-
age (value loss) of this variable. For instance, in Figure 3.7(a) the marked solution
has four repairable solutions for each breakage of a variable, whilst the highlighted
solution in Figure 3.7(b) has only two repairable solutions if the value assigned to x1
(value 4) is lost.
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The feasibility of neighbour assignments confers more stability to the solution
according to Definition 1.4.4. In addition, if the feasible neighbours are close to the
solution, it confers also stability to it according to the new extended definition in-
troduced for CSPs with ordered domains (see Definition 3.3.2). The latter is a more
specific concept of stability for solutions that are associated with such framework.
Note that the difference between the lost value and the repairable value of one of the
closest neighbour solution is minuscule, since they are immediate neighbours. In fact,
their value difference is one, which is the minimum possible. Thus, by means of the
search of robust solutions proposed in this chapter, we can also increase the stability of
the solutions found. We recall the third statement made in the abstract of this thesis,
which comes from the survey about dynamic and uncertain environments (Verfaillie
and Jussien, 2005).

Third “The production of solutions that are at the same time robust and flexible, that
have every chance to resist changes and can be easily adapted when they did
not resist, is obviously a desirable objective.”.

3.4.2.1 Formalization

In this thesis, we consider situations in which only a limited (and intuitively reason-
able) assumption need be made about possible changes that can occur in CSPs with
ordered domains: namely that changes always take the form of restrictions at the bor-
ders of the solution space. This means that for a restriction in a given direction of the
solution space, a tuple further from the given border is less likely to be lost than one
closer. This is simply because a larger restriction, one that involves tuple t, must also
include any tuples closer to the given border. However, when we consider restrictions
in any direction, this assumption can no longer be made. For example, consider the
case where |t| = 1 and there are three values, a, b and c, where a < b < c. Suppose
that the probability of a restriction involving a is 0, while one involving c is 1/5, and
one involving b and c is 1/10. (In this case, these are the only restrictions possible.)
Note that this example is consistent with our assumption that larger restrictions in one
direction necessarily have a lower probability of occurrence than smaller restrictions.
For this problem, then, the border value a is the most robust value, although a only
has one feasible neighbour, while b has two feasible neighbours.

Despite the existence of such extreme cases, our model will hold over a wide
variety of probability distributions. In fact, the only requirement is that the probability
associated with a given tuple must be lower than any of the probabilities for tuples
closer to a border. This will always be the case when the probabilities of losing a
border value are roughly equal for all such values. But it is also true under many
other cases. Thus, using a variation on the example just described, if the probability
of losing a is 1/2 while the probability of losing c is 1/10, and the probability of losing
b is 1/10 given the loss of either a or b, then b is still the most robust value.
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Moreover, in these cases, if we combine a choice of one tuple with the highest
feasible neighbours with another such tuple from a different constraint, then we will
have chosen the tuple with the lowest probability of being lost in each case. Hence,
this combination will be associated with the lowest probability product, i.e., with
the greatest robustness. Obviously, this argument can be extended, which gives us
a rationale for the method of aggregation described in Section 3.5, where we define
a type of weighted CSP whose solution gives us the most robust solution under our
assumptions.

3.5 New Techniques for this Environment

When we search for robust and/or stable solutions of a CSP, on one hand, we aim
at finding a solution that satisfies all the constraints, while optimizing some criteria.
Thus, the problems become in CSOPs (see Definition 2.4.1) whose objective function
is the maximization of the robustness and/or stability. Dealing with CSOPs increases
the computational time in comparison with CSPs. Generally, the cost of solving a CSP
is NP-complete, meanwhile, solving a CSOP is NP-hard (see Section 2.6). Hence, the
computational costs of the algorithms developed are of vital importance. Furthermore,
there exists the additional difficulty that the optimality criterion of the theoretical ap-
proach of Section 3.4.2 depends on the feasibility of the neighbour solutions, which
is an unknown information when the search starts. This has been one of the most dif-
ficult challenge of the approaches developed in this thesis. In this section we provide
an overview of these approaches, which can be classified as:

• Enumeration-based techniques: They model robustness and stability in CSPs as
WCSPs.

• Search algorithm: It searches for robust and stable solutions by maximizing a
certain objective function.

In this thesis we present three enumeration-based techniques for finding robust
solutions (Climent et al., 2012a, 2011, 2013b). Due to the enumeration characteristic
of them, they only can be applied to discrete domains. One of the enumeration-based
approaches is a probabilistic approach meanwhile the others are non-probabilistic.
This classification depends on the information that is known about the dynamic and
uncertain environment. We differentiate the level of knowledge about the possible
future changes over the CSPs according to if it is only inherent to the structure of the
CSPs or if it is additional external information about the future possible changes. Note
that in the second case the availability of knowledge is much higher than in the first
case. Specifically, the technique that uses additional dynamism data, is a probabilistic
approach because part of this information is gathered as probabilities of change. This
informed approach is presented in Chapter 4.
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The two non-probabilistic enumeration-based approaches developed only assume
changes that are inherent to the structure of the CSPs. The first non-probabilistic
enumeration-based approach presented in Chapter 5 is specifically addressed to finite
linear CSPs (see Definition 2.1.12), which is composed exclusively of linear con-
straints (see Definition 2.1.11). This specific feature allows to reduce significantly the
temporal complexity of the algorithm that searches for robust and stable solutions. On
the contrary, the second non-probabilistic enumeration-based approach presented in
Chapter 6 is for general purpose and as consequence it has a higher temporal com-
plexity than the specific approach for finite linear CSPs. Due to the solution spaces
associated with linear CSPs are always convex, we have used the theoretical approach
described in Section 3.4.1. However, we used the theoretical approach described in
Section 3.4.2 for the non-probabilistic enumeration-based approach for general CSPs.

For all the enumeration-based techniques presented in this thesis, we use an ex-
tension of the original CSP model named WCSP model (see Definition 2.4.3). The
aim of modeling CSPs with ordered domains as WCSPs is for obtaining robust and
stable solutions according to Definition 3.3.1 and Definition 3.3.2. This is achieved
with the costs that the constraints assign to each involved tuple. This additional ex-
pressiveness offered by the WCSP model provides a mechanism for penalizing the
tuples associated with a constraint. This mechanism is used to express the dynamism
of the constraints of the original CSP. However it has as disadvantage that all the
constraints must be extensionally expressed, which entails a high spatial cost. Finally,
the modeled WCSPs are solved by a generic WCSP solver from the literature. The
best solution of a WCSP is the solution with the minimum global cost, which it is
computed as the aggregation of all applicable costs.

The presented enumeration-based approaches do not, in and of themselves, re-
strict us to the WCSP, since there are a variety of valued CSPs and other models that
could also be compatible. However, many of these models either involve assumptions
which are questionable (e.g., probabilistic CSP, where valuations based on ‘onion
layers’ would be multiplied) or are insufficiently discriminating (e.g., fuzzy CSP). In
addition, the WCSP model adequately incorporates the enumeration aspect of number
of neighbours or number of ‘onion layers’ of an assignment, unlike most other valued
CSP models.

The penalizations assigned to the valid tuples of each constraint are based on
certain information computed for the specific enumeration-based technique. This in-
formation is different for each of the three enumeration-based approaches developed.
A disadvantage of these approaches is that the computation of the information that is
used for the penalization process is computed for each bound. Thus, if there exists
another bound that is tightening the analyzed bound, some of the valid tuples of the
first bound can be invalidated by the second bound. Hence, the enumeration-based
approaches give us approximations to the real distances of the solutions to the bounds
of the solution space. Ideally, determining the complete solution space would provide
the solution located exactly the furthest away from the bounds of a CSP. However,
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this is not viable generally because it would be extremely time consuming due to the
high combinatoriality (NP-hard generally). This has motivated the development of
the enumeration-based approaches, which allow to find approximations to the desired
solution. This is, itself, a disadvantage of this type of approach, however, by using
inference techniques (see Section 2.5), it is possible to narrow the search space in
order to make this approximation more accurate. For all the approaches developed in
this thesis we have used the Algorithm 2.1 (GAC3), although any other preprocessing
inference techniques can also be applied.

The latter disadvantage of the enumeration-based approaches has motivated the
development of the search algorithm in Chapter 7, which searches for solutions that
maximize an objective function that measures the feasibility of their neighbours (Cli-
ment et al., 2012c, 2014). This search approach is addressed to CSPs with discrete
domains because it checks the feasibility of the finite neighbours of an assignment.
One of the disadvantages of this approach is its high computational cost (which can
be alleviated with several techniques, as we will explain in Chapter 7). In addition,
the level of information available at the beginning of the search tree is low. However,
as previously mentioned, the strength of this approach is that the objective function
values associated with the solutions obtained correspond with the exact value of those
solutions in the solution space. In this way, this approach avoids the disadvantage ex-
plained above for the enumeration-based approaches. Table 3.1 summarizes the weak
(represented by the ‘-’ symbol) and strong (represented by the ‘+’ symbol) points of
both types of techniques.

Table 3.1: Characteristics of the types of the presented techniques.

Enumeration-based techniques Search Algorithm

Independent Solver Dependent Solver
(+) High information initially (-) Low information initially
(-) Optimality criterion approx. (+) Exact objective function value
(-) High spatial cost (+) Very low spatial cost

3.6 Summary and Limitations

In this chapter we address the difficulties entailed by solving problems under uncertain
and dynamic environments without extra detailed data about the future changes. The
focus is on a common type of change associated with CSPs with ordered domains:
restrictions over the bounds of the solution space. This assumption is compared with
related dynamism assumptions from the literature. In addition, the concepts of ro-
bustness and stability are extended to this dynamic environment. We propose two
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theoretical approaches for finding solutions with both features that are based on: the
centroid of convex solution spaces and the feasibility of the neighbour solutions (in-
cluding non-convex spaces). Finally, we do an overview of the technical approaches
presented in this thesis: enumeration-based techniques and a search algorithm.

As a conclusion, this chapter answers the main question that has been the focus
of this thesis: Is it possible to find robust solutions for CSPs that do not have extra
information about the future changes that they can undergo? The answer is ‘yes’ but
the elements that compose the CSP must have a significant order between all of them.
However, this is not a strong limitation due to the high fraction of real life problems
that have order relationships between their elements.



Chapter 4

Probabilistic Enumeration-based
Technique

This chapter introduces a new probabilistic enumeration-based technique that models
CSPs as WCSPs (Climent et al., 2012a). Its main objective is to find robust solutions
according to extra information about the future changes over the bounds of the CSPs.
Figure 4.1 shows a diagram that represents the basic steps that this technique carries
out. Initially, the problem is modeled as a CSP (P). Then, by using additional infor-
mation (see Section 4.1) about the dynamism of the problem, a WCSP is generated
(modP). Finally, the modeled WCSP (modP) is solved by a generic WCSP solver. The
solution space of modP is the same as the solution space of P. Furthermore, the best
solution of modP is considered to be one of the most robust solution for P, according
to the given extra dynamism data.

Robust and 

Stable 

Solution for P

WCSP

(modP)

CSP

(P)

WCSP 

Solver

Additional 

Dynamism

Information 

Problem in a 

Dynamic  

and Uncertain 

Environment

Figure 4.1: Modeling an informed CSP as a WCSP.

In order to represent the dynamism over the original CSP, the modeled WCSP
is composed of the original constraints and domains of P and sets of new generated
constraints for each dynamic bound of the original CSP. These constraints represent
possible future restrictive modifications of the constraints and domains of the original
CSP. The sets of new constraints are treated as soft constraints, since they can be
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unsatisfied because they represent changes that have a certain likelihood to occur. The
tuples associated with them have assigned costs, which represent penalizations. The
more new generated constraints a solution satisfies, the more robust it is according to
the extra information about the dynamism that this technique assumes. This solution
has a high likelihood of remaining solution when faced with these possible restrictions
over the original bounds.

4.1 Additional Information about the Dynamism

In this section we explain in further details the additional information about the dy-
namism that is required for the technique introduced in this chapter. As mentioned
in Section 3.2, there exists a model called Probabilistic CSP that considers the con-
straint deletion as a possible future change. Thus, the information known about the
dynamism is a function that indicates the probability of existence of the constraints.
On the contrary, our probabilistic enumeration-based technique considers that the con-
straints and/or domains of the original CSP may undergo restrictive modifications in
the future.

For representing this kind of possible future changes, it is not enough descriptive
to use only one dynamism function as the Probabilistic CSP model does. This is due to
the fact that restrictive modifications of the constraints can be of different magnitude.
Note that slight restrictive modifications in constraints affect in lesser extent to the
solution space of the CSP than abrupt restrictive variations. Thus, we consider an
additional function to the probability of undergoing a restrictive modification: the
magnitude of the modification. We define two functions that contain information
about these possible future restrictive modifications over the constraints and domains
of the CSPs:

• p(Ci): Each original constraint Ci ∈ (C ∪ DC) has a probability p(Ci) ∈ [0, 1[
that measures the probability that Ci undergoes a restrictive modification. It is
called dynamism likelihood function. The minimum value (p(Ci) = 0) means
that Ci will never undergo restrictive modifications in the future. On the con-
trary, when p(Ci) > 0, Ci is dynamic. The maximum value (p(Ci) ≈ 1) means
that Ci is very dynamic so the probability that it undergoes a restrictive modifi-
cation is very high.

• d(Ci): This function measures the magnitude of the restrictive modification that
could undergo a dynamic original constraint Ci ∈ (C ∪ DC). Thus, d(Ci) ∈
]0, 1[ measures the percentage of valid tuples that could become invalid if Ci

finally undergoes this type of change in the future. A value of d(Ci) ≈ 0 means
that the modification over Ci would be slight and therefore almost all the valid
tuples will remain valid. Meanwhile d(Ci) ≈ 1 means that almost all the valid
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tuples could be invalid if the future restrictive modification occurs. This func-
tion is not defined for constraints that cannot undergo restrictive modifications
(constraints whose p(Ci)=0).

There are many criteria for selecting the set of valid tuples that become invalid for
the new generated constraints. However, since the CSPs with ordered domains are the
main center of our dissertation, without loss of generality, we use a criterion that is in-
herent to their structure: the nearest tuples from the bounds of the solution space have
a higher probability of becoming invalid when faced with restrictive modifications
over these bounds (see Section 3.4.2.1 for a formal rationale). Therefore, the nearest
valid tuples from the dynamic bounds are invalidated for the new constraints. Note
that if there exists specific information about which valid tuples are more likely to
become invalid, this other criterion could also be used. In such a case, this technique
is not restricted to CSPs with ordered domains.

In the following section it is explained how our probabilistic approach uses the
function that measures the magnitude of change d(Ci) for the generation of new mod-
ified constraints whereas the function that measures the probability of change p(Ci)
is used in the cost assignment to the tuples.

4.2 New Constraints Generation

The main objective of the new constraint generation is to represent future possible re-
strictive modifications over the bounds of the original CSP based on the two functions
that describe their dynamism. The new constraints are generated for each dynamic
constraint Ci ∈ (C ∪ DC). As mentioned, this condition is determined by p(Ci), so
if p(Ci) > 0, Ci is considered as a dynamic constraint. Otherwise (p(Ci) = 0) the
constraint is static and therefore it can not undergo changes.

Due to dynamic constraints have certain probability of undergoing restrictive mod-
ifications in the future, for each of them a set of new modified constraints ordered by
their tightness {Ci1, Ci2, . . . , Ciw} is generated, where w is the number of constraints
additions for each Ci of the original CSP. The parameter w is fixed by the user ac-
cording to the desired granularity. Thus, the greater the parameterw is, the slighter the
difference between the new generated constraints is. Each new constraint generated
is a tighter version of the previous one and the level of its tightness depends on the
parameter w and the d(Ci) function. The last constraint generated (Ciw) represents
the most restrictive modification possible that can undergo Ci in the future.

In order to clarify the new constraints generation, a toy CSP with one dynamic
constraint is presented.

Example 4.2.1. Consider a CSP composed of two variables x0 and x1 with domains
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D0 : {3 . . . 7} and D1 : {2 . . . 6} respectively (discontinuous lines), and four con-

straints (continuous lines):

• C1 : x0 + x1 − 12 ≤ 0 (dynamic constraint).

• C2 : x1 − x0 − 2 ≤ 0 (static constraint).

• C3 : x1 + x0 − 6 ≥ 0 (static constraint).

• C4 : x0 − x1 − 4 ≤ 0 (static constraint).

Figure 4.2 shows the CSP of Example 4.2.1 and the set of new modified generated
constraints for the dynamic constraint C1 for w = 2. The set of new constraints is
composed by C11 and C12 (see Figure 4.2). These constraints are considered as soft
constraints, since they can be unsatisfied. However, the solutions that satisfy C11 and
C12 (darkest blue area) have a greater probability of remaining valid when faced with
restrictive modifications of C1. Note that the solutions in the darkest blue area are
more robust than the solutions in the intermediate blue area because the first ones
satisfy C12, while others do not. In addition, all the solutions located in both areas
(darkest and intermediate blue areas) are more robust than the solutions located in
the lightest blue area because the last ones do not satisfy C11 nor C12. They are
non-robust solutions for this CSP because their probability of remaining valid after
restrictive modifications of the dynamic constraint C1, is very low.

4.2.1 Properties of the New Generated Constraints

Each new generated constraint Cij is a more restricted version of an original dynamic
constraint. Therefore, the new constraints are composed of a subset of the valid tuples
of the original constraint. Each new constraint Cij is a more restricted version of
Ci(j−1) orCi (when the new constraint isCi1). Following, we formalize the properties
previously mentioned of the new constraints. We recall that T (Ci) is the set of valid
tuples for Ci (see Definition 2.1.9).

1. ∀i ∈ {1, . . . ,m} T (Ci1) is a subset of the set of T (Ci), where m is the number
of original constraints.

2. ∀i ∈ {1, . . . ,m} if a tuple satisfies Ci1 then it satisfies Ci.

3. ∀i ∈ {1, . . . ,m} {T (Cij) : j ∈ {2, . . . , w}} is a subset of T (Ci(j−1)).

4. ∀i ∈ {1, . . . ,m} if a tuple satisfies {Cij : j ∈ {2, . . . , w}} then it satisfies
Ci(j−1).
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Figure 4.2: New generated constraints for the constraint C1 of Example 4.2.1.

The number of valid tuples for the new set of constraints depends on the dy-
namism functions, which contain information about the possible future restrictive
modifications over the dynamic constraints. Specifically, the function that measures
the magnitude of the future restrictive modifications, called d(Ci), is the responsi-
ble for determining the number of valid tuples of the new constraints. If a constraint
has a high value of d(Ci) and it undergoes a change, this change will be highly pro-
nounced. For this reason, the new constraints generated for such constraint have a
significantly reduced number of valid tuples associated with them. The granularity
parameter w fixes the number of new constraints that are generated for each dynamic
constraint. Therefore, for high granularity values, the differences between the number
of valid tuples associated with the new constraints set is lower. Thus, for all the sets
of new constraints, the number of tuples that become invalid for each Cij regarding
to Ci(j−1) is b(d(Ci) ∗ |T (Ci)|)/wc. In other words, the number of valid tuples of a
new generated constraint is:

|T (Cij)| = b((1− d(Ci)) ∗ |T (Ci)|) ∗ (w + 1− j)c (4.1)

Example 4.2.2. Here, we consider an example of a dynamic original constraint C1

that has 8 valid tuples and d(C1) = 0.75, which means that there exists an estimation
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that up to 75% of their tuples could become invalid in the future, or said in another

way, only 25% of the original valid tuples will remain valid for the most restrictive of

the new constraints (Ciw).

For a fixed value of w = 3, the new constraints generated for Example 4.2.2 are:
C11, C12 and C13. In this intuitive example, the reader could guess the percentages of
valid tuples that each new constraint will have with respect to C1: 75% for C11, 50%
for C12 and 25% for C13. This is equivalent to say that the number of valid tuples
are : |T (C11)| = 6, |T (C12)| = 4 and |T (C13)| = 2. These results are obtained by
applying Equation 4.1 to each constraint:

• |T (C11)| = b((1− 0.75) ∗ 8) ∗ (3 + 1− 1)c = b(0.25 ∗ 8) ∗ 3c = b2 ∗ 3c = 6

• |T (C12)| = b((1− 0.75) ∗ 8) ∗ (3 + 1− 2)c = b(0.25 ∗ 8) ∗ 2c = b2 ∗ 2c = 4

• |T (C13)| = b((1− 0.75) ∗ 8) ∗ (3 + 1− 3)c = b(0.25 ∗ 8) ∗ 1c = b2 ∗ 1c = 2

Unlike original constraints, the set of new constraints {Ci1, Ci2, . . . , Ciw} are
considered as soft constraints. Note that if they were considered as hard constraints,
the solution space of the CSP analyzed would be reduced, which is not the purpose
of the enumeration-based technique presented here. By considering the new set of
constraints as soft constraints, we can confer some levels of priority to the tuples
that satisfy them, achieving in this sense several level of robustness in our solutions
according to the additional extra information associated with the constraints.

4.3 Cost Assignment

One of the main characteristics that introduces the WCSP model with respect to the
classical CSP model, is the cost assignment to the tuples associated with the con-
straints of the WCSP. This feature provides the opportunity of penalizing the tuples
that do not satisfy the new generated constraints. The costs are assigned according
to the dynamism functions, which contain information about the possible future re-
strictive modifications over the dynamic original constraints. Thus, the tuples that are
invalid for the new constraints have a lower likelihood to be selected as part of the
solution of the WCSP. Recall that the best solutions obtained for the WCSP modeled
by the probabilistic enumeration-based technique, are the solutions with the mini-
mum global cost. Therefore, the least penalized solutions are the best solutions for
the modeled WCSP and they have also a certain level of robustness for the original
CSP according to the dynamism functions associated with the dynamic constraints.

The cost associated with the tuples of the constraints is determined by the cost
functions. We define two different types of cost functions, depending on whether the



Cost Assignment 71

constraint is hard (Ci) or soft (Cij). The main utility of the cost function applied
to an original constraint Ci ∈ C is to forbid the tuples that do not satisfy it. Thus,
Ci(t ↓var(Ci)) assigns a cost U to the tuple t if it does not satisfy Ci. The value U
is a large number symbolizing the infinite cost. In the WCSP model, as mentioned in
Definition 2.4.3, assigning the maximum cost U to a tuple t, means that t is an invalid
tuple for Ci. On the contrary, if a tuple t satisfies the constraint Ci (t ∈ T (Ci)), the
tuple does not have to be penalized. Therefore, the cost assigned to t for Ci is zero.
Equation 4.2 shows the formalization of the cost function of the original constrains
of the CSP, where t ↓var(Ci) is the projection of the tuple t over the variables that
compose Ci (see Definition 2.1.5).

Ci(t ↓var(Ci)) =

{
0 if t ∈ T (Ci)

U, (U ≈ ∞) if t /∈ T (Ci)
(4.2)

The cost function applied to the new constraints {Ci1, Ci2, . . . , Ciw} allows to
prioritize among all the original dynamic constraints Ci ∈ (C ∪ DC) based on their
likelihood of change p(Ci). Since the dynamic constraints with a high value of p(Ci)
have a high likelihood of undergoing restrictive modifications, the tuples that do not
satisfy new constraints generated from an original constraint whose p(Ci) is high,
are strongly penalized. Thus, all the new constraints generated by the same original
constraint have the same cost function. In the same way that the cost function of the
original constraints of the CSP does not penalize the tuples that satisfy them, the same
happens with the cost function of the new generated constraints. The valid tuples of
a new constraint do not have to be penalized because if in the future the original
constraint becomes into this restricted new constraint, these tuples will still satisfy it.
Hence, the cost assigned to a valid tuple t ∈ T (Cij) is zero.

On the contrary, if a tuple t does not satisfy a new restricted constraint, it is penal-
ized with a normalized value of p(Ci). By definition, the possible values for the set
of costs of a WCSP are positive natural integers, bounded by U (see Definition 2.4.3).
For this reason, the value of p(Ci), which is a real number, has to be normalized.
This is achieved by multiplying p(Ci) by 100 and the result is rounded by the floor
function. The floor function returns the largest integer that is less than or equal to the
argument. Hence, the cost function Cij(t ↓var(Cij)) assigns a cost of bp(Ci) ∗ 100c to
the invalid tuples, that is to say t /∈ T (Cij). Therefore, the set of costs that the invalid
tuples can have associated is {0, . . . , 99}. Note that this set of costs is negligible in
comparison with U (U is a large number symbolizing the infinite cost), allowing then,
that invalid tuples of the new constraints are valid partial assignments for the WCSP
modeled and the original CSP. For this reason, we stated that the new constraints
are actually soft constraints because the solutions can dissatisfy them. Equation 4.3
shows the formalization of the cost function of the new constrains generated for the
WCSP model.
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Cij(t ↓var(Cij)) =

{
0 if t ∈ T (Cij)

bp(Ci) ∗ 100c if t /∈ T (Cij)
(4.3)

4.4 Algorithm

In this section we present an algorithm that models CSPs into WCSPs. These CSPs
must have associated knowledge of the future changes, represented by the dynamism
functions associated with their dynamic constraints. Moreover, the computation com-
plexity of this algorithm is explained.

4.4.1 Algorithm Description

The objective of this WCSP modeling is to find robust solutions for the original CSP
according to the extra information about the future changes that it may undergo.
Given an original CSP P = 〈X ,D, C〉 and the dynamism functions p and d, Algo-
rithm 4.1 generates a WCSP modP = 〈X ,D, S(U), C′〉 which is composed of the
original variables and domains, and the set of constraints C′. C′ is defined as the
union of the original constraints plus the new constraints (C′ = {Ci ∈ (C ∪ DC) ∪
{Ci1, Ci2, . . . , Ciw}}). Algorithm 4.1 also assigns the costs to the tuples associated
with each constraint according to the cost functions explained in Section 4.3.

The aim of generating a WCSP from the original CSP is finding solutions that sat-
isfy the maximum number of new constraints generated for the WCSP, considering
their priorities (which are based on the dynamism functions). Thus, these solutions
have the highest probability of remaining valid after restrictive modifications over the
dynamic bounds of the original CSP. The priority of each set of new constraints is
expressed in terms of the cost assigned to their invalid tuples (the cost depends on the
dynamism function p). A high cost means a high penalization for the tuples that do
not satisfy such constraint. As previously mentioned, the original CSP and its cor-
responding derived WCSP model both share the same solution space. In addition,
the solutions of the WCSP have an associated cost that depends on the penalizations
assigned by the soft constraints. In Definition 2.4.3 it was explained that the best
solution of a WCSP is the solution s with the minimum V(s) cost. Since we model
the WCSP by assigning costs that represent penalizations, the best solution s for the
WCSP that we model is the solution which minimizes the global associated penaliza-
tion.

Following, the algorithm for modeling WCSPs from CSPs with extra information
about the dynamism of their constraints and domains, is described in detail. Algorithm
4.1 has as input arguments the original CSP (called P), the granularity parameter w,
which fixes the number of constraints additions for eachCi ∈ (C ∪ DC) of the original
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CSP P and the dynamism functions p(Ci) and d(Ci) for each Ci. In addition, a time
cutoff can be optionally provided by the user. First, Algorithm 4.1 analyzes eachCi by
applying the cost function for hard constraints (see lines 3-8) and generating the set of
new restricted constraints ordered by their tightness {Ci1, Ci2, . . . , Ciw} for each Ci

(see lines 9-16), as well as assigning them costs. The sets of new constraints represent
possible restrictive modifications over each original constraint/domain Ci, based on
their dynamism functions p(Ci) and d(Ci). Each new constraint Cij is composed of
a subset of T (Ci). In this way, Cij is a more restricted version of Ci.

Finally, Algorithm 4.1 solves the WCSP modeled (modP ) with a usual WCSP
solver (line 18), and it returns the best solution and its global cost (if such a solution
exists)) for modP (line 19). The best solution is the one that has the lowest associated
cost, which is considered to be one of the most robust solutions for the original CSP,
according to the dynamism functions associated with the dynamic constraints and
domains. Typically, the WCSP solver allows to configure the search by fixing a time
cutoff (‘anytime’ algorithms). In such case, only the best solution found until reaching
the time cutoff is returned.

4.4.2 Computational Complexity

The complexity of the modeling phase of Algorithm 4.1 (lines 1-17) is mainly related
to the number of dynamic constraints and domains of the CSP, their number of asso-
ciated tuples and the granularity parameter w. A set of w new modified constraints is
generated over each Ci ∈ (C ∪ DC). (Here, we consider the worst case in which all
the bounds are dynamic). For each constraint of C′ (this set includes original and new
constraints), a cost is assigned to each tuple. Nevertheless, the WCSP file format (see
Appendix A.1) that we use for the WCSP modeling, allows the assignment of a de-
fault cost to the invalid tuples of a constraint. Thus, it is only necessary to analyze and
assign a cost to the valid tuples. Since we are analyzing the worst complexity case,
we consider the maximum number of valid tuples of the constraints a CSP, which are
denoted as T (C)Max (see Definition 2.1.10 and Equation 2.2).

After the previous complexity analysis, we can state that the modeling phase of
Algorithm 4.1 (lines 1-17) is O(T (C)Max ∗ |C′|), which is equivalent (when all the
constraints and domains of the CSP are dynamic) toO((e+n)∗w∗T (C)Max), where
e = |C| and n = |DC| = |X |. Recall that the cardinality of a set is denoted with a
vertical bar on each side of the set name. Therefore, the term |C′| denotes the number
of constraints of C′ and |(C ∪ DC)| is the number of constraints and domains of the
CSP. We would like to point out that the complexity of solving the modeled WCSP is
not discussed due to it depends on the WCSP solver used.
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Algorithm 4.1: Algorithm for modeling an informed CSP as a WCSP.
Data: A CSP P = 〈X ,D, C〉, p(Ci) and d(Ci) functions, parameter w and

time cutoff (optional).
Result: Best solution s and its associated global cost V(s).

1 begin
2 foreach Ci ∈ (C ∪ DC) do
3 // Hard constraints.
4 foreach t ∈ Ci do
5 if t ∈ T (Ci) then
6 Ci(t ↓var(Ci)) = 0;

7 else
8 Ci(t ↓var(Ci)) = U ;

9 // Soft constraints.
10 foreach j ∈ {1, . . . , w} do
11 Generate {Cij} based on d(Ci);
12 foreach t ∈ Cij do
13 if t ∈ T (Cij) then
14 Cij(t ↓var(Cij)) = 0;

15 else
16 Cij(t ↓var(Cij)) = bp(Ci) ∗ 100c;

17 Generate the WCSP modP = 〈X ,D, S(U), C′〉 where,
C′ = {Ci ∪ {Ci1, Ci2, . . . , Ciw}}, i ∈ {1, . . . , (e+ n)} ;

18 (s,V(s))← Solve modP in time cutoff ;
19 return (s,V(s));
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4.5 Example

In this section, we introduce an example of a CSP with extra knowledge about the dy-
namism of its constraints. Each constraint is labeled with two real numbers. The first
number between the parenthesis represents the dynamism likelihood p(Ci) and the
second the magnitude of change d(Ci). The CSP is modeled into a WCSP and solved
by a WCSP solver. The result obtained is the set of solutions for the original CSP
with an associated cost. The solutions with the lowest costs associated are the most
robust solutions of the CSP according to its extra information about the dynamism of
its constraints and domains.

Example 4.5.1. We consider a CSP with two variables x0 and x1 with domains

D0 : {3 . . . 7} and D1 : {2 . . . 6}, respectively. All its domains are static and all

its constraints are dynamic. The corresponding dynamism functions of the constraints

are:

• C1(0.2, 0.2) : x0 + x1 ≤ 12

• C2(0.8, 0.4) : x1 + x0 ≥ 6

• C3(0.4, 0.3) : x1 − x0 ≤ 2

• C4(0.2, 0.4) : x0 − x1 ≤ 4

Figure 4.3 is the representation of the CSP of Example 4.5.1 and Table 4.1 shows
the extra dynamism data. We fix the granularity parameter w = 1. The parameter U
has to be fixed to a huge number because the costs associated with valid tuples must
be negligible with respect to U .

Table 4.1: Probabilities and magnitude of change of Example 4.5.1.

Ci p(Ci) d(Ci)

C1 0.2 0.2
C2 0.8 0.4
C3 0.4 0.3
C4 0.2 0.4

Following the steps presented in Figure 4.1 and Algorithm 4.1, this CSP is mod-
eled as a WCSP (modP ). Furthermore, in Appendix A.2 it is described the Weighed
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Figure 4.3: Solution space of the informed CSP of Example 4.5.1.

CSP file format specification of modP . This modeled WCSP is composed of the
same variables and domains than the original CSP. However, it is composed of 8
constraints, of which 4 are the original dynamic constraints that have 24 valid tuples
each one and 4 are the new generated constraints, which are restricted versions of the
original constraints with a lower number of valid tuples. Thus, modP is composed
of two variables x0 and x1 with domains D0 : {3 . . . 7} and D1 : {2 . . . 6} and the
following constraints:

• C1 : x0 + x1 ≤ 12 (24 tuples).

• C11 : restricted version of C1 with only 19 tuples.

• C2 : x1 + x0 ≥ 6 (24 tuples).

• C21 : restricted version of C2 with only 14 tuples.

• C3 : x1 − x0 ≤ 2 (24 tuples).

• C31 : restricted version of C3 with only 16 tuples.

• C4 : x0 − x1 ≤ 4 (24 tuples).

• C41 : restricted version of C4 with only 14 tuples.
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As it has been explained in Section 4.3, all the valid tuples of the constraints (both
original and new constraints) have an associated cost of zero. The invalid tuples have
different associated cost depending on if the constraint is original or it is a new one.
As previously mentioned, the cost associated with the invalid tuples of the original
constraints is U . The costs associated with the invalid tuples of the new constraints
depends on the probability of change (p(Ci)) of each original constraint that they
come from (see Equation 4.3). Thus, the cost associated with the invalid tuples of
C11 is 20 (p(C1) = 0.2), for C21 is 80 (p(C2) = 0.8), for C31 is 40 (p(C3) = 0.4)
and for C41 is 20 (p(C4) = 0.2). The number of tuples that become invalid for the
new constraints is calculated according to Equation 4.1, which involves the parameter
that measures the magnitude of change of each original constraint. Following, we
introduce their computation:

• |T (C11)| = b((1− 0.2) ∗ |T (C1)|) ∗ 1c = b(0.8 ∗ 24)c = 19

• |T (C21)| = b((1− 0.4) ∗ |T (C2)|) ∗ 1c = b(0.6 ∗ 24))c = 14

• |T (C31)| = b((1− 0.3) ∗ |T (C3)|) ∗ 1c = b(0.7 ∗ 24)c = 16

• |T (C41)| = b((1− 0.4) ∗ |T (C4)|) ∗ 1c = b(0.6 ∗ 24)c = 14

The tuples that become invalid for the new constraints are those tuples that are
located closer to the corresponding constraint (see these specific tuples in Appendix
A.2). As we have pointed out, the WCSP solver finds as best solution, the solution
s with the minimum value of V(s) associated. The best solution for modP is (x0 =
5, x1 = 4), because V(x0 = 5, x1 = 4) = 0. This is due to the fact that this solution
satisfies all the set of new modified constraints (C11, C21, C31 and C41) and therefore
it is never penalized. For this reason, it is one of the most robust solutions for P .

The solution (x0 = 3, x1 = 3) that is the solution provided by an ordinary CSP
solver with a lexicographical value ordering, only satisfies two of the four new mod-
ified constraints of modP . It does not satisfy the constraints C21 and C31. As men-
tioned, the cost assigned to a tuple that does not satisfyC21 is 80 and the cost assigned
to a tuple that does not satisfy C31 is 40. That is why, V(x0 = 3, x1 = 3) = 120.
This solution is an unrobust solution for P since it has a low probability of remaining
valid when faced with changes in the constraints C2 and C3.

4.6 Summary and Limitations

In this chapter we deal with CSPs that model problems whose elements share an
order relationship and, in addition, they have certain associated information about
the future possible changes that they might undergo. Specifically, these changes can
take the form of restrictive modifications of the bounds of the solution space, which
is composed by the constraints and domains. The dynamism data associated with
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the problems is gathered in two parameters: the first one measures the probability
of change of the constraints and the second one measures their magnitude of change
(that it is to say, how much a change could narrow the solution space).

The approach introduced in this chapter for dealing with such situations is a prob-
abilistic enumeration-based technique that models the original CSP as a WCSP. In the
WCSP model new constraints that represent restrictive modifications of the original
constraints, are generated according to the desired granularity parameter. These new
constraints are treated as soft constraints and the cost associated with their tuples and
the quantity of valid tuples that they have depends on the dynamism parameters asso-
ciated with the original constraint that they were induced from. The main objective
is to find solutions that minimize the sum of costs associated with the new restricted
constraints, where these costs represent penalizations to the tuples that do not satisfy
them. The penalizations depend on the probability of change of the constraints that
they come from. In this way, if a solution only does not satisfy a new constraint that
is 90% likely to occur and another solution only does not satisfy a new constraint that
is 10% likely to occur, the latter solution is more robust than the first solution.

This approach contributes to deal with an informed type of restrictive change over
the bounds. This is a novelty brought by our work since, as far as we know, it has
not been analyzed in the literature before. The most similar type of change that was
previously analyzed was the constraint deletion, measured by a probability of exis-
tence (Probabilistic CSP). However, in this chapter we introduce the parameters that
measure the possible restrictive modifications over the bounds (both, constraints and
domains). Moreover, we propose a probabilistic technique that it is able to find robust
solutions according to the initial known information about this type of changes. Both,
the probabilistic approach introduced and the parameters that are able to gather this
type of changes, represent an innovation in the literature for dealing with this type
of change, which is common among the problems with ordered domains (see Section
3.1).

The main limitation of this approach is the same that many other proactive ap-
proaches that search for robust solutions: they require detailed dynamism informa-
tion. This approach is a probabilistic approach that gathers detailed information in
two parameters associated with each constraint. This fact represents a strong diffi-
culty when this information is unknown. However, if the information availability is
partial, that is to say that only the dynamism data of certain constraints is known,
it is possible to model their dynamism and to find robust solutions according to this
known data. Unfortunately, the solutions found can not be guaranteed to be robust for
restrictive modifications over the constraints for which we do not possess dynamism
information. The latter fact has motivated that the rest of approaches presented in this
dissertation do not require extra detailed data about the dynamism.



Chapter 5

Enumeration-based Technique for
Finite Linear CSPs

This chapter introduces an enumeration-based technique that models robustness and
stability in finite linear CSPs as WCSPs (Climent et al., 2011). Unlike the approach in-
troduced in Chapter 4, this approach is non-probabilistic. The probabilistic enumeration-
based technique is very effective for finding robust solutions based on the information
of the dynamism associated with the CSP. However, this dynamism information de-
pendency is problematic when there is a lack of such data (see Section 1.5). Hence,
in this thesis we have focused on developing approaches for which only the infor-
mation available for modeling the original CSP is necessary. Our approaches are
based on assumptions that can be made for common changes associated with CSPs
with ordered domains (see the motivation in Section 3.1). Thus, we have developed
two enumeration-based techniques for CSPs with ordered domains where the only as-
sumptions made about changes are those inherent in the structure of these problems.
In this chapter we explain the enumeration-based technique developed specifically
for finite linear CSPs. In Chapter 6 another enumeration-based approach for general
purpose is presented.

The approach presented in this chapter is based on the theoretical approach of the
centroid of convex solution spaces (Section 3.4.1). Figure 5.1 shows the diagram that
represents the basic steps that this technique carries out. Initially, before applying
the technique, the real problem is modeled as a CSP (P). Then, by using distance
measures from the bounds of the solution space, a WCSP is generated (modP). Finally,
the modeled WCSP (modP) is solved by a generic WCSP solver. The solution space
of modP is the same as the solution space of P. Furthermore, the best solution of
modP is considered to be one of the most robust solution for P, because this solution
has a high likelihood of remaining valid when faced with restrictive modifications of
the linear constraints of P.

79
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Figure 5.1: Modeling an uniformed finite linear CSP as a WCSP.

5.1 Dynamism over Linear CSP with Ordered Domains

In this chapter, we deal with problems that come from uncertain and dynamic envi-
ronments that can be modeled as finite linear CSPs (see Definition 2.1.12). We recall
that this type of CSP is characterized by its linear constraints and domains that can be
expressed as unary linear constraints. Due to this fact, the domains of a linear CSP
are numeric and therefore, they are ordered. In this context, it is reasonable to assume
that the original linear constraints may undergo modifications in the form of range
reductions, even if no specific data of these future changes exists (see Section 3.1).
The solution space of CSPs composed of linear constraints (see Definition 2.1.11) is
a convex and n-dimensional space, where n = |X | (number of variables of the CSP).
In order to clarify the explanation of the dynamism over the bounds of the solution
space, we show an example in a convex and 2-dimensional space.

Example 5.1.1. We consider a finite linear CSP composed of two variables x0 and

x1 with static domains D0 : {3..7} and D1 : {2..6} and four dynamic constraints:

• C1 : x0 + x1 − 12 ≤ 0

• C2 : x1 − x0 − 2 ≤ 0

• C3 : x1 + x0 − 6 ≥ 0

• C4 : x0 − x1 − 4 ≤ 0

Figure 5.2 shows the search and solution space of the CSP of Example 5.1.1.
The search space is composed by the domain bounds, which are represented with
discontinuous lines. The solution space is delimited by the domain bounds and the
constraints (blue area). The Cartesian product of the variable domains involve 25
complete assignments (candidate solutions), of which only 21 are actual solutions.
The solutions are represented by black points while the other candidates are repre-
sented by grey points. Since the constraints are considered dynamic but no detailed
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data about their dynamism is known, then, it is difficult to determine which is the
most robust solution. In Figure 5.2, four possible modifications, one for each orig-
inal dynamic constraint, are represented (C ′1, C

′
2, C

′
3 and C ′4). If the original con-

straints of the problem change restrictively in this way, the solution space will be
reduced and the tuples located in the lightest blue area, which are: (x0 = 3, x1 = 3),
(x0 = 3, x1 = 5), (x0 = 4, x1 = 2), (x0 = 4, x1 = 6), (x0 = 6, x1 = 2),
(x0 = 6, x1 = 6), (x0 = 7, x1 = 3) and (x0 = 7, x1 = 5) will not satisfy the new
constraints C ′1, C

′
2, C

′
3 and C ′4 and therefore will not remain solutions of the problem.

1            2            3             4            5            6            7            8            9 

1
  

  
  
  

  
  
2

  
  
  

  
  
  
3

  
  
  

  
  
  

 4
  
  
  

  
  
  

5
  
  

  
  
  

  
6
  

  
  
  

  
  
7

  
  

X0

X1

C1

C1’

C3

C3’

C2

C2’

C4

C4’

Figure 5.2: Restrictions over the solution space of the CSP of Example 5.1.1.

The solutions located close to the bounds of the original dynamic constraints have
a low probability of remaining valid after changes in the problem. For this reason, the
main idea of our technique is based on searching for solutions which are located as
far as possible from the dynamic bounds of the solution space. In this example, it can
be observed that the most robust solution is the central solution (x0 = 5, x1 = 4).

Example 5.1.1 is a toy example in which the most robust solution can be easily
observed. Nevertheless, in problems with a n-dimensional solution space, it is more
complicated to obtain this solution. In the following section we explain the main
objective for achieving the most robust solutions for n-dimensional finite linear CSPs.
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5.2 Distances Computation and Cost Assignment

As motivated in Section 3.1, the closer the solutions are located to the bounds of the
solution space, the less robust the solutions are for the CSP with ordered domains.
This is due to the fact that these solutions have a low likelihood of remaining valid
when faced with restrictive modifications over the linear constraints. However a solu-
tion that is located as far as possible from the bounds of the solution space has a high
likelihood of remaining valid after changes, so these solutions are considered to be
more robust solutions. In Section 3.4.1, it was explained the theoretical approach for
meeting this criterion for convex solution spaces: the search of the closest solution to
the centroid.

The aim of modeling a CSP as a WCSP is to obtain an approximation to the cen-
troid of its solution space. Searching for the centroid of a CSP requires determining
the solution space of the CSP, which is NP-hard. However, our aim is not to calculate
all the solutions of the CSP, but to find a solution close to the centroid of the solution
space. To this end, we have developed an enumeration-based technique based on the
assignment of costs to the tuples of each dynamic Ci ∈ (C ∪ DC), where C is the
set of constraints and DC is the set of unary constraints associated with D. The cost
associated with each tuple represents its penalization, which depends on the distance
of the tuples to each dynamic constraint.

In the following, the process of calculating distances and subsequently the cost as-
signment to the valid tuples is explained. The cost assigned is indirectly related to this
distance, since a greater penalization has to be assigned to the tuples that are close to
a bound of the solution space. The distances from the constraints are calculated only
for the valid tuples, since the invalid tuples can not be part of a solution. Recall that,
as mentioned in Chapter 2, the set of valid tuples (or partial assignments) of Ci is de-
noted as T (Ci). For calculating these distances, we consider that this constraint is rep-
resented as a hyperplane in the search space and a complete assignment is represented
as a point of the search space. A tuple t of Ci is also represented as a point in the hy-
perplane space associated with Ci. Thus, in order to calculate the distance of t from
Ci we use the Euclidean distance from a point to an hyperplane D(t, Ci)Euclidean.
Particularly, if t is located on the Ci boundary then D(t, Ci)Euclidean = 0. Equation
5.1 express the Euclidean distance between a point and a hyperplane.

D(t, Ci)Euclidean =
|a1x1 + ...+ anxn + l|√

a21 + ...+ a2n
(5.1)

To assign penalizations to the valid tuples of the constraints, it is necessary to
know the maximum distance from any valid tuple t ∈ T (Ci) to Ci, because a tuple t
located to a maximum distance from Ci is the most robust tuple for Ci. This is due to
its likelihood to remain valid when faced with restrictive modifications over Ci is the
highest. Thus, a tuple that is located at the maximal possible distance is not penalized.
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The maximum distance of any t ∈ T (Ci) from Ci is denoted as maxD(T (Ci), Ci).

maxD(T (Ci), Ci) = max{D(t, Ci)Euclidean}∀t ∈ T (Ci) (5.2)

The main utility of the cost functions is to prioritize among the valid tuples of each
dynamic constraint. In addition, they are also the responsible for forbidding the invalid
tuples. The cost function for the tuples of Ci is denoted as Ci(t ↓var(Ci)), where
var(Ci) represents the scope of Ci . In the WCSP model, as mentioned in Definition
2.4.3, assigning the maximum cost U to a tuple t, means that t is an invalid tuple
for Ci. Hence, Ci(t ↓var(Ci)) assigns a cost of U to a tuple t that does not satisfy the
constraintCi, since it can not be part of a solution of the original CSP. On the contrary,
if a tuple t satisfies Ci (t ∈ T (Ci)), then Ci(t ↓var(Ci)) ∈ [0, bmaxD(T (Ci), Ci)

2c].

Ci(t ↓var(Ci)) =


b(D(t, Ci)Euclidean −maxD(T (Ci), Ci))

2c if t ∈ T (Ci)

U, (U ≈ ∞) if t /∈ T (Ci)
(5.3)

A penalty of zero is assigned to a tuple t ∈ T (Ci) whose distance from Ci is
the maximum possible. This is due to the fact that this tuple t is considered the most
robust tuple for Ci since t is the valid tuple with the highest probability of remain-
ing valid when faced with restrictive modifications over Ci. However, we assign the
maximum penalization, which is bmaxD(T (Ci), Ci)

2c to a tuple t ∈ T (Ci) that is
located on the Ci boundary, that is D(t, Ci)Euclidean = 0. Note that t is the least ro-
bust tuple for Ci because it has the lowest probability of remaining valid when faced
with restrictive modifications over Ci.

5.3 Algorithm

In this section we present an algorithm that models finite linear CSPs into WCSPs and
its computational complexity.

5.3.1 Algorithm Description

The objective of this WCSP modeling is to find robust solutions for the original finite
linear CSP because they are located close to the centroid of the solution space, and
therefore, it has a high likelihood to resist changes over the dynamic bounds of the
solution space. Given an original finite linear CSP called P = 〈X ,D, C〉, Algorithm
5.1 generates a WCSP that we name modP = 〈X ,D, S(U), C′〉 which is composed of
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the original CSP and the sets of costs associated with all the tuples of each dynamic
constraint. When all the bounds are dynamic, C′ = (C ∪ DC).

The associated costs are assigned according to the cost functions of Equation 5.3.
The solutions of the WCSP modeled are also solutions of the original CSP and they
have an associated global cost. This is due to the fact that the only associated cost
that is great enough for invalidating the tuples is the cost U and this cost is only
assigned by Ci to the tuples that do not satisfy it. Since the set of constraints of C′
must be satisfied, they are hard constraints. However, among all the set of valid tuples
that satisfy Ci ∈ C′ a cost is assigned to each one. Thus, the global cost associated
with a solution s, denoted as V(s), is the sum of all its associated costs for each Ci

(Definition 2.4.3).
Algorithm 5.1 shows the reformulation of the finite linear CSP as a WCSP and

the solving process. The assignment of the cost to each associated tuple of each
constraint of the CSP is carried out in lines 2-8. First, for each Ci Algorithm 5.1
calculates the maximum possible distance of any t ∈ T (Ci) from it (see Equation
5.2). Subsequently, a cost is assigned to each associated tuple according to the cost
function described in Equation 5.3. Once this process is finished, Algorithm 5.1 shows
the generation of the modeled WCSP, called modP (line 9). The WCSP is solved by
a general WCSP solver in line 10 by fixing a time cutoff if it has been provided. The
best solution found by the WCSP solver as well as its global associated cost is returned
by Algorithm 5.1 in line 11. As previously explained, the best solution of the WCSP
is the solution with the minimum sum of costs, which fits with the philosophy of our
enumeration-based technique that consists in assigning penalizations to the tuples.
Thus, the solution with the minimum global cost is also the one that has the minimum
total sum of penalizations assigned. For this reason, it is considered to be one of the
most robust solutions for the original CSP, according to our dynamism assumptions.

5.3.2 Computational Complexity

The complexity of the modeling phase of Algorithm 5.1 (lines 2-8) is mainly related
to the number of dynamic constraints and domains of the CSP and their number of
associated tuples. Here, we consider the worst case in which all the bounds are dy-
namic (C ′ = (C ∪ DC)). For each constraint of C′, a cost is assigned to each tuple.
Nevertheless, as mentioned in the analysis of the computational cost in Chapter 4, the
WCSP file format used in this dissertation (see Section A.1), allows the assignment of
a default cost to the invalid tuples of a constraint. Thus, it is only necessary to analyze
and assign a cost to the valid tuples. Since we are analyzing the worst complexity
case, we consider the maximum number of valid tuples of the constraints of a CSP,
which are denoted as T (C)Max (see Definition 2.1.10 and Equation 2.2).

The set of valid tuples of each Ci is analyzed twice by Algorithm 5.1. The first
time is for calculating the maximum possible distance and the second time for as-
signing the cost to each valid tuple. Hence, the modeling phase of Algorithm 5.1 is
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Algorithm 5.1: Algorithm for modeling an uninformed finite linear CSP as a
WCSP.

Data: A CSP P = 〈X ,D, C〉, time cutoff (optional).
Result: Best solution s and its associated global cost V(s).

1 begin
2 foreach Ci ∈ (C ∪ DC) do
3 Calculate maxD(T (Ci), Ci)) according to Equation 5.2
4 foreach t ∈ Ci do
5 if t ∈ T (Ci) then
6 Ci(t ↓var(Ci)) = b(D(t, Ci)Euclidean −maxD(T (Ci), Ci))

2c;
7 else
8 Ci(t ↓var(Ci)) = U ;

9 Generate a WCSP modP = 〈X ,D, S(U), C′〉, where,
C′ = Ci, i ∈ {1, .., (e+ n)} ;

10 (s,V(s))← Solve modP in time cutoff ;
11 return (s,V(s));

O(T (C)Max ∗ |C′|). This is equivalent to O((e+n)∗T (C)Max) when all the bounds
are dynamic, where e = |C| and n = |DC| = |X |.

5.4 Example

In this section the WCSP modeling process of the CSP of Example 5.1.1 is explained.
The obtained solutions are shown in decreasing robustness order according to their
corresponding global cost V(s) (see Table 5.1 (right)). The solutions with the lowest
associated costs are considered to be the most robust solutions for this linear CSP.

Following, the cost assignment of the constraint C1 to its valid tuples is explained
in detail in order to show to the reader the process of the cost assignment. In Table 5.1
(left), the set T (C1) can be observed for the modeled WCSP and its C1(t ↓var(C1)).
The application of Equation 5.2 to C1 results on the maximum possible distance of
any tuple from a constraint C1:

maxD(T (C1), C1) = max{|x0 + x1 − 12|√
12 + 12

}∀t ∈ T (C1). (5.4)

The maximum distance value is obtained for the tuple t1 = (x0 = 3, x1 = 2):

maxD(T (C1), C1) =
|3 + 2− 12|√

12 + 12
=

7√
2
= 4.949 (5.5)
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Applying maxD(T (C1), C1) to Equation 5.3, it is obtained the cost function of
C1:

C1(t ↓var(C1)) =


b(D(t, C1)Euclidean − 4.949)2c if t ∈ T (C1)

U, (U ≈ ∞) if t /∈ T (Ci)
(5.6)

The interval of costs thatC1 assigns to the valid tuples is calculated by substituting
D(t, C1)Euclidean in Equation 5.6 for the maximum distance possible, which is 4.949,
and for the minimum distance possible, which is zero. Therefore, C1(t ↓var(C1)) ∈
[0, 24] for t ∈ T (C1).

Here, we describe the cost assignment of the solution s21 = (x0 = 7, x1 = 5).
The cost assigned by the constraint C1 to this tuple is the maximum possible, which
is 24. This is due to the solution s21 being located on the bound of the constraint C1,
therefore the Euclidean distance of s21 from C1 is zero. Thus, applying the Equation
5.3, C1(s21) = b(0 −maxD(T (C1), C1))

2c = b−4.9492c = 24. For this example,
there is the coincidence that maxD(ti, Ci) are equal for all the constraints. Thus, the
distances of this solution to the other constraints are:

• D(s21, C2)Euclidean = |5−7−2|√
2

= 2.828

• D(s21, C3)Euclidean = |5+7−6|√
2

= 4.242

• D(s21, C4)Euclidean = |7−5−4|√
2

= 1.414

Furthermore, the costs assigned by these constraints are:

• C2(s21) = b(2.828− 4.949)2c = 4

• C3(s21) = b(4.242− 4.949)2c = 0

• C4(s21) = b(1.414− 4.949)2c = 12

After the computation of all the costs, the global cost assigned to the solution is
the sum of all of them, so V(s21) = C1(s21) + C2(s21) + C3(s21) + C4(s21) =
24 + 4 + 0 + 12 = 40, which is the maximum global associated cost.

Table 5.1 (right) shows the solutions of the CSP of Example 5.1.1 and their global
costs. They have been obtained by solving the modeled WCSP with a WCSP solver.
It can be observed that among the set of solutions there are three different global
costs: 32, 36 and 40. Since they represent penalizations due to their distance to each
bound of the solution space, the lower the global cost of a solution is, the more robust
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Table 5.1: Constraint C1 of the WCSP (left) and solutions of the CSP(right).

T (C1) C1(t ↓var(C1)) Solutions V(s)

x0 x1 x0 x1

3 2 0 5 4 32
3 3 0 5 3 32
3 4 2 5 5 32
3 5 4 4 4 32
3 6 8 6 4 32
4 2 0 6 3 36
4 3 2 4 5 36
4 4 4 4 3 36
4 5 8 6 5 36
4 6 12 3 3 40
5 2 2 3 4 40
5 3 4 4 2 40
5 4 8 5 6 40
5 5 12 6 2 40
5 6 18 4 6 40
6 2 4 5 2 40
6 3 8 3 5 40
6 4 12 6 6 40
6 5 18 7 3 40
6 6 24 7 4 40
7 2 8 7 5 40
7 3 12
7 4 18
7 5 24
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Figure 5.3: Solutions of the CSP of Example 5.1.1 and their robustness.

the solution is. Figure 5.3 shows the 3 robustness areas obtained. As mentioned, the
darker the blue area is, the more robust the solutions located in this area are. It can be
observed that the approximation of the robustness is correct, because solutions located
on the dynamic bounds of the solution space ((x0 = 3, x1 = 3), (x0 = 3, x1 = 5),
(x0 = 4, x1 = 2), (x0 = 4, x1 = 6), (x0 = 6, x1 = 2), (x0 = 6, x1 = 6),
(x0 = 7, x1 = 3) and (x0 = 7, x1 = 5)) have been classified as the least robust
solutions, in contrast to the central solutions. The solutions located on a dynamic
bound have the maximum global cost of 40 (see Table 5.1, right). It means that the
sum of their penalizations is the maximum possible for this CSP.

One of the best solutions found for the modeled WCSP (the solution s that has
the minimum V(s)), corresponds to the solution located in the centroid of the poly-
gon that represents the solution space of P : (x0 = 5, x1 = 4). This is shown in
figure 5.4. Note that this solution has the minimum penalization associated, which
is (V((x0 = 5, x1 = 4)) = 32). Thus, the enumeration-based technique presented in
this chapter, has been able to classify the solution located in the centroid of the solu-
tion space as one of the most robust solutions.
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Figure 5.4: Example of the CSP P and its centroid.

5.5 Summary and Limitations

In this chapter we cope with linear CSPs that model dynamic problems whose ele-
ments are ordered according to a certain relationship. These problems do not have
detailed information about the future changes that they can undergo. However, as mo-
tivated in Section 3.1, there exists a common type of change associated with problems
with ordered domains: it takes the form of restrictive modifications over the bounds
of the solution space (which is composed by the constraints and domains). The pe-
culiarity of the linear CSPs is that all their constraints and domains can be modeled
as intensional linear constraints and as a consequence, the solution spaces are always
convex. This fact makes possible the use of the theoretical approach explained in
3.4.1, which is to search for the solution located as close as possible to the centroid of
the solution space. In this chapter we introduce an enumeration-based approach that
models the original linear CSP as a WCSP in which the valid tuples of each constraint
have an associated cost that depends on the distance of the tuple from the linear con-
straint. This is calculated by using the equation of the Euclidean distance of a point
from a hyperplane.

The main advantage of this specific enumeration-based approach over the ap-
proach introduced in Chapter 6, which can be applied for any type of constraints, is
the lower computational time. The computation of the distance equation is quicker
than the neighbours feasibility checking (this theoretical approach is explained in
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Section 3.4.2) used in the further approaches introduced in this thesis. Some ex-
periments about the latter statements are shown in Chapter 9. The disadvantage of the
enumeration-based technique for linear CSP introduced in this chapter is the speci-
fiability of this approach itself. The fact that it only can be applied in the area of
linear CSPs makes it useless when faced with other types of CSPs, such as CSPs with
non-convex solution spaces and CSPs with any constraint extensionally represented.
Even so, it provides a quick answer when the problems can be modeled as finite linear
CSPs.



Chapter 6

Enumeration-based Technique by
Coverings

This chapter presents an enumeration-based technique by coverings that models CSPs
with ordered domains as WCSPs (Climent et al., 2012b, 2013c,b), with the objective
of finding robust and stable solutions. Contrarily to the approach introduced in Chap-
ter 5, the methodology presented in this chapter addresses both CSPs with convex and
non-convex solution spaces (see Section 2.1.5). Both enumeration-based techniques
share that they are non-probabilistic, and do not require extra detailed information
about the dynamism and they both consider the dynamism assumptions explained in
Section 3.1. The approach presented in this chapter deals with non-convex solution
spaces and therefore the theoretical approach of the centroid of the solution space
(used in Chapter 5) does not hold. Instead, we use the theoretical approach based on
the ‘onion model’ (see Section 3.4.2). This approach is based on checking the feasi-
bility of the neighbourhood of the solutions, since they provide information about the
distances to the bounds of the solution space.

Figure 6.1 shows the diagram that represents the basic steps that this technique
carries out. The modeling process is quite similar to the one explained for linear CSPs
(see Figure 5.1). The major difference lies in the computation of the costs associated
with the valid tuples. After modeling the real problem as a CSP (P), we apply our
approach for checking the feasibility of the neighbours of the valid tuples, which is
also referred to as covering computation. Thus, a WCSP is generated (modP) by
associating costs to the tuples based on their coverings. Finally, the modeled WCSP
(modP) is solved by a generic WCSP solver. The solution space of modP is the same
as the solution space of P. Furthermore, the best solution of modP is considered to be
one of the most robust solution for P, because this solution has a high likelihood of
remaining valid given the dynamism assumptions associated with CSPs with ordered
domains.

91
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Figure 6.1: Modeling an uniformed CSP a WCSP by using Coverings.

6.1 The Concept of Coverings

According to the assumptions in Section 3.1, the closer the solutions are located to
the bounds of the solution space, the less robust the solutions are for the CSP with
ordered domains. In Section 3.4.2 we explained the theoretical approach for finding
robust solutions for such environment and for both convex and non-convex spaces. It
is based on the ‘onion topology’ that has been proved to provide robustness to dynamic
networks in (Herrmann et al., 2011). We defined the layer of this ‘onion structure’ as
a convex hull of valid neighbour tuples that surround a specific tuple. Therefore, the
core of an ‘onion structure’ is the most robust part of the structure. Since surrounding
layers protect it against perturbations, and the core is located at the furthest point from
the outer layer. The same is true for the solutions of the CSPs with ordered domains
that our model is concerned with: the further away a solution is from the bounds of
the solution space, the more robust the solution is. In order to determine how far a
valid tuple is from the bounds, we analyze its coverings (‘onion layers’).

In the following, we present a formal framework using some of the definitions
and notations related to the topological and metric spaces associated with CSPs that
model problems for which there exists a significant order over their elements (see Sec-
tion 2.2). As mentioned, in metric spaces (this includes search and solution spaces of
CSP with ordered domains) there are several distance functions d(x, y) : T×T → R+

that can be defined over each pair of tuples x and y. We use the Chebyshev distance,
which measures the maximum absolute differences along any coordinate dimension
of two vectors (see Equation 2.5). The main reason for selecting this distance metric
is that it distinguishes between hypercubes in n-dimensional spaces. In particular, the
corners of a cube are at the same distance from the central point as the edges, a fea-
ture not obtained with Euclidean distance metric. By checking areas of satisfiability
inside these hypercubes, we can ensure minimum distances to the bounds, which is
used for the robustness computation. Subsequently, we formally define the concept of
covering.

Definition 6.1.1. We define the k-covering(t) of a valid tuple t ∈ T as its neighbour-

hood {y ∈ T : y 6= t ∧ d(t, y)Chebyshev ≤ k}, where k ∈ N.

From Definition 6.1.1 the following property can be deduced: k-covering(t)⊇ (k-1)-
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covering(t).
To compute the coverings of CSPs with ordered non-integer domains, a mono-

tonic function has to be applied in order to map the elements (it must also be an order
preserving function). Example 2.2.1 shows an example of mapping function for sym-
bolic domains. Below we give an example for rational domains.

Example 6.1.1. We consider a CSP with a rational and ordered domain D: {0.156,

0.205, 0.212, 0.854}. Therefore, a monotonic function that preserves the order of the

set of values could be defined. For example, f(0.156) = 1, f(0.205) = 2, f(0.212) =

3 and f(0.854) = 4.

Definition 6.1.2. maxTup(k, |t|) denotes the maximum number of tuples that can

make up a k-covering(t), where k is the k-covering and |t| represents the arity of t.

Proposition 6.1.1. The maximum possible number of tuples inside a k-covering(t) is:

maxTup(k, |t|) = (2k + 1)|t| − 1 (6.1)

Proof. The exclusion of the central tuple t from the n-dimensional generalization of

the Moore neighbourhood (an adaptation from (Goles and Martı́nez, 1990)) is equiv-

alent to maxTup(k, |t|). The number of elements in a Moore neighbourhood in a 2-

dimensional space is (2k + 1)2. For a generalization of this formula, we suppose that

k = 1, so we are working on 1-covering and we consider the number of tuples includ-

ing t (that will be removed later). For a 2-dimensional space, Moore neighbourhood

is (2 · 1 + 1)2 = 9. It is straightforward that for t dimensions R× ...t...× R: Moore

neighbourhood is (2k + 1)|t|. Thus, if we remove the tuple (p1, p2, ..., pt), the num-

ber of neighbours of this tuple is: maxTup(1, |t|) = (2k + 1)|t| − 1. When k > 1, the

same argument holds, since we are just adding tuples on either side of the central tuple

in each dimension. So, we can conclude that maxTup(k, |t|) = (2k + 1)|t| − 1.

From Proposition 6.1.1, it is obvious that |k-covering(t)| ≤maxTup(k, |t|), where
|k-covering(t)| is the covering cardinality.
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Definition 6.1.3. A k-covering(t) is complete if |k-covering(t)| = maxTup(k, |t|).

If k-covering(t) is complete, it means that t is located at a Chebyshev distance of
at least k from the bounds, because inside the k-covering(t) all the tuples are valid. On
the contrary, if at least one invalid tuple is inside the k-covering(t), the unsatisfiability
space is not completely outside of k-covering(t) and the minimum distance of t from
the bounds of the solution space is the distance to the closest invalid tuple. Note that
if at least one of the closest neighbours of t is invalid, this means that t is located on
a bound of the solution space.

If there are several tuples with the same number of complete coverings, are they
equally robust? The answer is obtained by calculating the number of valid tuples
of the minimum incomplete covering (the next covering to the maximum complete
covering). Considering the ‘onion topology’, if there are holes in an ‘onion layer’, it
is preferable that they are as small as possible. The same happens with tuples that do
not have any complete covering. In these cases, we cannot ensure even a minimum
distance of 1 from the bounds (very low robustness), but the tuples with higher |1-
covering(t)| are more robust.

Example 6.1.2. Here we explain an example of the coverings concepts and definitions

presented in this section. Figure 6.2 represents the solution space of Example 3.1.1).

We recall that this 2-dimensional solution space is composed by 29 solutions (black

points). It can be observed in this figure the 1-covering(t) and 2-covering(t) for the

highlighted solution t = (x0 = 5, x1 = 4). We can see that the 1-covering(t) is com-

plete because |1-covering(t)| = maxTup(1,|t|)= 8. However, the 2-covering(t) is not

complete because maxTup(2, |t|) = 24 and |2-covering(t)| = 20. Thus, we can only

ensure that (x0 = 5, x1 = 4) is located at a distance of at least 1 from the bounds (it

has only one completed layer). Note that some bounds of the solution space are lo-

cated inside the 2-covering(t). For those tuples whose 1-covering is incomplete, their

robustness can be distinguished by the cardinality of their 1-covering. For instance,

the tuple v = (x0 = 3, x1 = 4) is more robust than w = (x0 = 7, x1 = 7) because

|1-covering(v)| = 6 and |1-covering(w)| = 2. This information is equivalent to the

closeness of both tuples to the bounds of the solution space. Note that the tuple v only

has bounds on its left and left-up. On the contrary, the tuplew has bounds on its right,
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right-up, right-down, left-up, up and down sides.
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Figure 6.2: Coverings of a solution of the CSP of Example 3.1.1.

6.2 Algorithm for Calculating Coverings

Searching for a solution that is completely surrounded by the greatest number of so-
lutions (core of the ‘onion’) requires determining the complete solution space of the
CSP, which is NP-hard in general. An approach based on calculating all CSP solu-
tions is not generally viable because it would be extremely time consuming due to the
high combinatoriality of CSPs. Consequently, we have developed an approach that
is based on modeling the coverings of each valid tuple of constraints of the CSP as a
WCSP. The algorithm that performs this procedure and its computational complexity
are described in this section. We would like to remark that solving WCSPs is also
NP-hard in general (since it is an optimization problem). However, this can be alle-
viated using Branch & Bound techniques combined with Arc Consistency (AC) and
heuristics. In addition, the Branch & Bound is an ‘anytime’ algorithm, so we can limit
the search time by fixing a time cutoff.
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6.2.1 Algorithm Description

Here we present Algorithm 6.1, which calculates the coverings of the valid tuples,
after first carrying out a global arc-consistency (GAC) process (line 1). In this prelim-
inary step, it searches for a support of each domain value in order to detect tuples that
are not globally consistent. For this purpose, we have implemented the well known
and effective GAC3 (Mackworth, 1977b) (Algorithm 2.1). However, other consis-
tency techniques could also be applied (see Section 2.5 for some examples).

For calculating coverings, Algorithm 6.1 begins with k = 1 (1-covering(t)), in-
creasing this value by one unit in each iteration until reaching the K upper bound. In
each iteration, ∀t ∈ T (Ci), ∀Ci ∈ (C ∪ DC), k-covering(t) is computed, iff k = 1 or
(k-1)-covering(t) is complete (see Definition 6.1.3).

Definition 6.2.1. We define last-covering(t) to be the last k-covering(t) computed by

the algorithm for the tuple t. The value of ‘last’ in the last-covering(t) term is equal

to min(K, (k + 1)), if k-covering(t) is the highest complete covering of t.

Algorithm 6.1 returns the size of last-covering(t) computed for each valid tuple t
of each constraint and domain of the CSP, which as defined above, is a measure of the
robustness of each tuple of each constraint. Since k-covering(t) ⊇ (k-1)-covering(t),
the algorithm only analyzes the new possible neighbours of t, which are the neigh-
bours that belong to it but do not belong to (k-1)-covering(t) (the neighbours placed in
the kth ‘onion layer’). This is because the neighbours of the lower coverings have al-
ready been calculated in previous iterations and stored in last-covering(t). If a tuple t
has an incomplete covering, which is indicated by the boolean variable t.incomplete
(lines 13 and 15), the algorithm does not compute its further coverings.

Algorithm 6.1 first initializes some necessary structures (lines 2 − 7). Then the
sets of valid tuples T (Ci) of each constraint Ci ∈ (C ∪ DC) are ordered by the value
of the first variable of the valid tuples. In this way, a tuple a can only be located in
a lower position than a tuple b if a1 ≤ b1 (considering that the subindex 1 indicates
the first variable that makes up the tuple). Thus, the tuples whose first variable has
the minimum possible value will be placed in the lowest positions. For expressing the
order of the tuples, we use the notation a < b, which means that the tuple a is located
in a lower position than b in the list of ordered tuples.

The implementation of an algorithm for calculating coverings does not strictly
require an ordered list of T (Ci); however, with the ordering that we have selected we
can reduce computation time by exploiting the symmetry of the neighbours relation.
In this way, only a subset of possible neighbours of each valid tuple t ∈ T (Ci) need
to be checked. This reduced set is composed of the valid tuples that are ordered in a
lower position than t in the ordered list of T (Ci) and whose difference between the
value of their first variable with respect to t is lower or equal to k. More formally, for
a given t, the reduced set is composed of y ∈ T (Ci) : y < t ∧ d(t1, y1)Chebyshev ≤ k
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Algorithm 6.1: Algorithm for computing the coverings of a CSP
Data: A CSP P = 〈X ,D, C〉 and K
Result: |last-covering(t)| ∀t ∈ T (Ci)∀Ci ∈ (C ∪ DC)

1 GAC3(P);
2 k ← 1;
3 foreach Ci ∈ (C ∪ DC) do
4 T (Ci)← Ordered list of valid tuples of Ci;
5 foreach t ∈ T (Ci) do
6 |last-covering(t)| ← 0;
7 t.incomplete← false;

8 repeat
9 foreach Ci ∈ (C ∪ DC) do

10 foreach t ∈ T (Ci) do
11 foreach {y ∈ T (Ci): y < t ∧ d(t1, y1)Chebyshev ≤ k } do
12 if isNewNeighbour(k,t,y) then
13 if t.incomplete = false then
14 |last-covering(t)| ← |last-covering(t)|+ 1;

15 if y.incomplete = false then
16 |last-covering(y)| ← |last-covering(y)|+ 1;

17 if ∀i ∈ [1, |y|], d(ti, yi)Chebyshev = k∧ not
isComplete(k,|last-covering(y)|,|y|) then

18 y.incomplete← true;

19 k ← k + 1;
20 until k > K;
21 return |last-coverings|
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(line 11). We would like to point out that other orderings are also possible, as for
example the full lexicographical order. Here, we select the partial order because it
is quite discriminative and only requires the time to compute the difference of two
values for each tuple ordering, while the full ordering requires a higher computing
time.

The procedure isNewNeighbour checks if a valid tuple y is a new neighbour
in k-covering(t). This condition is determined by checking that at least one of the
variables of y has a value difference of k with respect to t (line 5) and the rest of
the variables have a value difference lower or equal to k (lines 3 and 5). If pro-
cedure isNewNeighbour returns true, Algorithm 6.1 increments the value of
the |last-covering| for each of the two tuples involved, but only if the tuple does
not have any incomplete covering. This last-mentioned condition is checked in the
procedure isComplete, which, first calculates the maximum number of tuples of
k-covering(t): maxTup(k, |t|) (see Equation 6.1) and then checks if |last-covering(t)|
is equal to this value.

Procedure isNewNeighbour(k,t,y) : Boolean

1 equalDist← false;
2 for i← 1 to |t| do
3 if d(ti, yi)Chebyshev > k then
4 return false
5 if d(ti, yi)Chebyshev = k then
6 equalDist = true;

7 return equalDist

Procedure isComplete(k,|last-covering(t)|,|t|) : Boolean

1 maxTup(k, |t|) := (2k + 1)|t|-1;
2 return |last-covering(t)| ≥ maxTup(k, |t|)

Algorithm 6.1 fixes the value of y.incomplete to true in line 18 if its analyzed
covering is incomplete and y has had all the possible neighbours already analyzed.
This condition is checked in line 17 by checking if all the variable values differences
with respect to t are equal to k (this means that t is the greatest neighbour of y accord-
ing to the value ordering). For the remaining tuples the completeness is not checked
because there may be other neighbours that will be analyzed later due to their order.
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6.2.2 Computational Complexity

The complexity of Algorithm 6.1 is directly related to the number of coverings com-
puted, the number of valid tuples of the constraints, the number of variables and the
number of constraints and their arity. However, not all these parameters have the same
impact on the computational cost. In the following, we analyze the impact of these
factors on the steps that the algorithm carries out.

The first step of the algorithm is a GAC3 process, which runs in O(er3dr+1),
where d is the largest domain size, r is the greatest arity of the constraints and e = |C|.
In the second step Algorithm 6.1 sorts the set of valid tuples by the value of their first
variable for each constraint Ci ∈ (C ∪ DC). The cardinality of the largest possible
set of valid tuples that we have used in previous computational analysis is T (C)Max

(see Definition 2.1.10 and Equation 2.2). However, for this computational cost, we
separate its individual terms in order to group similar terms in the final cost equation.
Thus, we consider worst-case upper bound of valid tuples as dr ∗ (1− tM ), where tM
is the minimum constraint tightness. The cost of sorting a set of p elements with the
quicksort algorithm is O(p ∗ log(p)). Thus, sorting the maximum set of valid tuples
for all constraints and domains is O((e+ n) ∗ dr ∗ (1− tM ) ∗ log(dr ∗ (1− tM ))),
where n = |DC| = |X |.

Finally, the k-coverings are computed for each valid tuple t of eachCi ∈ (C∪DC).
As noted above, our algorithm analyzes a reduced subset of possible new neighbours
of t. The size of the subset depends on k and the number of valid tuples, and in the
worst case is equal to ((k+1)∗dr−1 ∗ (1− tM )). Note that the reason for subtracting
one unit from r in dr−1 is because one variable’s value is fixed to the value difference
of k (the first variable), while the values of the remaining variables can have any
combination of domain values. For calculating a covering of a valid tuple, all the
variables of all the tuples of its reduced subset are checked. In the worst case, the K
parameter is equal to bd2c (all tuples are valid for all coverings). The computation time
of the second step of the algorithm is obtained by multiplying the maximum number
of tuples in the reduced set, the arity of the tuples (r), the maximum possible number
of tuples for each Ci ∈ (C ∪DC), the total number of constraints and domains (e+n)
and the worst case of K. The result is: O(d2r ∗ (1− tM )2 ∗ k ∗ r ∗ (e+ n) ∗ d

2).

For calculating the total computational cost of Algorithm 6.1, we sum the three
steps: GAC3 process, ordering of the reduced set of tuples and calculating the cover-
ings, and we group common terms, which results in: O((er3dr+1)+(e+n)∗dr ∗(1−
tM )∗ ((dr ∗ (1− tM )∗k ∗r ∗ d

2)+ log(d
r ∗ (1− tM )))). Note that the number of valid

tuples of the constraints is crucial in the computational cost of Algorithm 6.1. For
this reason, the GAC3 process (line 1), which restricts the search space by deleting
inconsistent values, has a large impact on the reduction of the computational cost.
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6.3 Modeling CSPs as WCSPs by Coverings

In this section we introduce how to model robustness and stability in a CSP as a WCSP
by using the information about the |last-coverings| of the valid tuples that Algorithm
6.1 provides. Thus, our enumeration-based technique models a CSP as a WCSP based
on the |last-coverings| of the valid tuples for each constraint. As argued earlier and
in Chapter 3, under many conditions |last-covering(s ↓var(Ci))| for a solution s is a
reasonable measure of its robustness for Ci, and it is moreover reasonable to use the
sum of |last-covering(s ↓var(Ci))| for each Ci ∈ (C ∪ DC) as an approximation of the
robustness of s for the CSP.

We recall that the WCSP model considers that the sum of the costs assigned to the
tuples of each constraint determines how good a solution is for the WCSP. Although
there are other valued CSPs that could conceivably be used to model robustness, the
WCSP adequately incorporates the enumeration aspect of coverings and other ad-
vantages, unlike the other valued CSP models (see Section 3.5 for a more detailed
explanation).

6.3.1 Cost Assignment

The modeling process begins by assigning a cost to each valid tuple t involved in each
constraint, which represents its penalty as a function of its |last-covering(t)|. Tuples
with the highest last-covering for a Ci ∈ (C ∪ DC) have the lowest associated cost,
because this value indicates the minimum distance of t from the bounds of Ci. Hence,
the maximum last-covering of a constraint is subsequently defined.

Definition 6.3.1. We define max-|last-covering(Ci)| = max {|last-covering(t)|, ∀t ∈

T (Ci)}.

The penalty of a valid tuple t for a constraint Ci without considering the rest of
the constraints of the CSP is denoted as pi(t) (see Equation 6.2). The penalty is based
on the size of the last-covering of this tuple in comparison with the maximum size of
last-covering for the analyzed constraint.

pi(t) = max-|last-covering(Ci)| − |last-covering(t)| (6.2)

However, this penalty is not the final cost assigned to the valid tuples. Since
the maximum possible size of a covering increases with the arity of the tuples (see
Equation 6.1), with unnormalized penalties constraints with higher arities would have
greater cost ranges and therefore higher penalties. In this case, we would be assuming
that these constraints have a higher likelihood of undergoing restrictive modifications,
which is not necessarily true according to the limited assumptions we are making for
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CSPs with discrete and ordered domains (see Section 3.1 in page 45). By using a
normalization process, we can achieve the same cost range for all the constraints.

To obtain normalized scores, we use the maximum penalty assigned to the tuples
of each constraint and the maximum penalty assigned to tuples across all the con-
straints. The cost function of the constraints Ci ∈ (C ∪ DC) assign the normalized
cost to each tuple t, which is following defined.

Ci(t ↓var(Ci)) =


0 if t ∈ T (Ci) ∧ pi(t) = 0⌊

pi(t)∗max{pj(x),∀j∈[1...e]∀x∈T (Cj)}
max{pi(y),∀y∈T (Ci)}

⌋
if t ∈ T (Ci) ∧ pi(t) 6= 0

U, (U ≈ ∞) if t /∈ T (Ci)
(6.3)

In line with the version of WCSP used (see Definition 2.4.3), Ci(t ↓var(Ci)) as-
signs a cost of U to each tuple t that does not satisfy the constraint Ci because it is
not a partial solution. Note that for valid tuples Ci(t ↓var(Ci)) ∈ [0,max{pj(x), ∀j ∈
[1 . . . e]∀x ∈ T (Cj)}]. The cost associated with a valid tuple twhose |last-covering(t)|
= max-|last-covering(Ci)| (pi(t) = 0) is 0. This tuple is not penalized because it has
the highest likelihood of remaining valid when faced with future changes in Ci. How-
ever, if |last-covering(t)| = 0 for Ci, which means that t does not have any neigh-
bour in its 1-covering(t) (t is completely non-robust for Ci because it is located in
its bound), t receives the maximum possible cost: max{pj(x),∀j ∈ [1 . . . e]∀x ∈
T (Cj)}.

6.3.2 Modeling Algorithm

As previously mentioned, the cost assignment of the constraints to their corresponding
tuples is intended for penalizing the tuples according to their location with respect to
the bounds of each constraint/domain. By means of the cost assignment, we model
the original CSP as a WCSP, which is solved using a WCSP solver. As mentioned
previous chapters, the solution space of the modeled WCSP is the same solution space
as the original CSP. The solutions of the WCSP have an associated cost that depends
on the penalizations assigned by the soft constraints. Furthermore, the best solution s
with the minimum global cost, denoted as V(s), (see Definition 2.4.3) is taken to be
one of the most robust solutions for the original CSP according to the cost functions
specified, which depend on our dynamism assumptions.

Following, we introduce an algorithm for modeling robustness in CSPs as WCSPs,
which is a generalization of Algorithm 5.1 in Chapter 5. Thus, Algorithm 5.1 assigns a
cost to each tuple associated with the dynamic constraints and domains of the original
CSP. Depending on the cost functions (Ci(t ↓var(Ci))) applied in Algorithm 5.1, we
are modeling the original CSPs as WCSPs according to different criteria. When we
apply Equation 6.3, we are applying the enumeration-based technique introduced in
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this chapter, which is based on the coverings of the tuples. However, if we apply
Equation 5.3, we are applying the enumeration-based technique based on euclidean
distances for linear constraints.

Algorithm 6.2: General algorithm for modeling an uninformed CSP as a WCSP.

Data: A CSP P = 〈X ,D, C〉, time cutoff (optional).
Result: Best solution s and its associated global cost V(s).

1 begin
2 foreach Ci ∈ (C ∪ DC) do
3 foreach t ∈ Ci do
4 Assign a cost Ci(t ↓var(Ci)) to t;

5 Generate the WCSP modP = 〈X ,D, S(U), C′〉, where,
C′ = Ci, i ∈ {1, .., (m+ e)};

6 (s,V(s))← Solve modP in time cutoff ;
7 return (s,V(s));

6.4 Examples

In order to clarify the concepts, definitions and algorithms introduced in this chapter,
we explain in detail two different examples. Firstly, we present a simple 2-dimensional
example and later we introduce a more complicated 3-dimensional example. Both of
them are non-convex spaces. For every example we show the costs assigned to the
solutions of the problems for every dynamic constraint and domain of the modeled
WCSP of the enumeration-based technique that computes the coverings.

6.4.1 2-dimensional Example

Example 6.4.1. We consider a CSP composed of two variables x0 and x1 with do-

mains D0 : {2..6} and D1 : {1..5}, respectively. Figures 6.3 show the CSP repre-

sentation. The domains associated with x0 and x1 are represented in Figure 6.3(a)

and Figure 6.3(b), respectively. There exist three extensional constraints C0, C1 and

C2 (Figure 6.3(c), Figure 6.3(d) and Figure 6.3(e), respectively). The valid tuples of

the constraints and domains are represented with black points; the invalid tuples are
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represented with grey points.
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Figure 6.3: Representation of the 2-dimensional CSP of Example 6.4.1.

The solution space of the CSP described in Example 6.4.1 is represented in Fig-
ure 6.3(f). This figure shows all the solutions ranked by the level of robustness, as
assessed by our enumeration-based technique by coverings. Table 6.1 also shows the
complete set of solutions of the CSP of Example 6.4.1 (S(CSP )) in decreasing order
of robustness (si). This order is inversely related to the V(s) obtained after solving the
modeled WCSP. In addition, we present |last-covering(s)| for the complete solution
space of the CSP of Example 6.4.1. Note that in this case, it is possible to compute
the complete solution space because we are dealing with a toy problem. As expected,
the robustness results obtained match with the |last-coverings| in the solution space:
the solutions with higher |last-coverings| in the solution space are identified as more
robust by our technique (see the highlighted columns in Table 6.1 and note that |last-
coverings| is shorted as |cov|).
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Table 6.1 also shows the costs assigned by the constraints (Ci) and domains
(Di), whose sum is V(s) (see Equation 2.6). To clarify the process of cost assign-
ment, we explain it in detail for the specific case of the constraint C0 to the solution
s3 = (x0 = 3, x1 = 3). We compute K = 2 The penalty associated with the
solution s3 (before the normalization process) is p0(s3) = 16 − 6 = 10 (see Equa-
tion 6.2), since max-|last-covering(C0)| = 16 (|last-covering((4, 2))| = 16 for C0,
which is the maximum for C0) and |last-covering(s3)| = 6 for C0. The associated
cost (following normalization) is: C0(s3) = b10∗1514 c = 10 (see Equation 6.3), since
max{pj(x),∀j ∈ [1 . . . e]∀x ∈ T (Cj)} = 15 (p1((3, 1)) = 18 − 3 = 15, which
is the maximum for this CSP) and max{p0(y), ∀y ∈ T (C0)} = 14 (p0((6, 5)) =
16− 2 = 14, which is the maximum for C0).

Table 6.1: Solutions of the CSP of Example 6.4.1 ordered by their robustness.

si S(CSP ) |cov(s)| V(s) D0(s) D1(s) C0(s) C1(s) C2(s)

1 (4,3) 6 17 0 0 9 0 8
2 (4,4) 5 27 0 5 11 11 0
3 (3,3) 4 28 5 0 10 3 10
4 (5,3) 4 28 5 0 9 3 11
5 (5,2) 4 34 5 5 2 12 10
6 (3,4) 3 36 5 5 13 12 1
7 (3,2) 3 41 5 5 9 12 10
8 (6,2) 3 57 15 5 11 14 12
9 (5,1) 2 58 5 15 11 15 12
10 (3,1) 1 59 5 15 11 15 13
11 (5,5) 1 61 5 15 13 15 13

The best solution found is s1 = (x0 = 4, x1 = 3) and its |last-covering(s1)| in the
solution space equals 6, which is the highest for the CSP of Example 6.4.1. This fact
can be observed in Figure 6.3(f), in which the solution with the maximum number of
neighbours solutions, that is to say 6 neighbours, is the solution s1 (highlighted in the
figure). As previously mentioned, the solution s with the highest |last-covering(s)|
in the solution space is the solution located furthest away from the solution space
bounds. As a result, its likelihood of remaining valid in the face of future restric-
tive modifications over the bounds of the solution space, is higher than for any other
solution. Therefore, it is the most robust solution for the original CSP according to
our dynamism assumptions for CSPs with ordered domains. In contrast, the solutions
s10 = (x0 = 3, x1 = 1) and s11 = (x0 = 5, x1 = 5) are the least robust solutions
since their |last-covering| = 1, means that each of these solutions only has 1 neigh-
bour solution in the solution space (see Figure 6.3(f)). And this is the lowest size of
last-covering for this CSP. Thus, it is very probable that s10 and s11 will become
invalid after restrictive modifications over the original constraints and domains of the
CSP.
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6.4.2 3-dimensional Example

Example 6.4.2. We consider a CSP composed of three variables x0, x1 and x2 with

domain Di : {0, 1, 2}. Figures 6.4 show the CSP representation. There are three

extensional constraints: C0 (3-ary), C1 and C2 (binary constraints) (Figures 6.4(a),

6.4(b) and 6.4(c), respectively). The valid tuples of the constraints and domains are

represented with points; the invalid tuples are represented with crosses. We have

used a different way of representing invalid tuples in this figure due to the difficulty of

plotting a 3-ary constraint.
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Figure 6.4: Representation of the 3-dimensional CSP of Example 6.4.2.

The solution space of the CSP described in Example 6.4.2 is represented in Figure
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Table 6.2: Solutions of the CSP of Example 6.4.2 ordered by their robustness.

si S(CSP ) |cov(s)| V(s) D0(s) D1(s) D2(s) C0(s) C1(s) C2(s)

1 (1,1,1) 10 0 0 0 0 0 0 0
2 (1,1,2) 6 35 0 0 18 8 0 9
3 (1,0,1) 6 36 0 18 0 9 9 0
4 (0,1,2) 6 67 18 0 18 13 9 0
5 (0,2,1) 6 67 18 18 0 14 13 4
6 (1,0,2) 4 68 0 18 18 14 9 9
7 (0,1,0) 4 72 18 0 18 14 9 13
8 (0,2,2) 4 93 18 18 18 17 13 9
9 (0,2,0) 3 98 18 18 18 18 13 13
10 (2,0,0) 2 102 18 18 18 17 13 18
11 (2,2,0) 1 107 18 18 18 17 18 18

6.4(d). In the same way than Example 6.4.1, the order of the solutions obtained by
our enumeration-based technique by coverings is represented in the figure as well as
in the table (Table 6.2 in this case). As expected, the robustness results obtained match
with the |last-coverings| order in the solution space: the solutions with higher |last-
coverings| in the solution space are identified as more robust by our technique (see
the highlighted columns in Table 6.2).

Following, we present an example of cost assignment in this 3-dimensional exam-
ple. In particular, we explain the cost assignment of the constraint C0 to the solution
s2 = (x0 = 1, x1 = 1, x2 = 2), in detail. Considering K = 1, the penalty associated
with the solution s2 (before the normalization process) is p0(s2) = 23− 15 = 8 (see
Equation 6.2), since max-|last-covering(C0)| = 23 (|last-covering((1, 1, 1))| = 23
for C0, which is the maximum for C0) and |last-covering(s2)| = 15 for C0. The as-
sociated cost (considering the normalization) is: C0(s2) = b8∗1818 c = 8 (see Equation
6.3). Becausemax{p0(y), ∀y ∈ T (C0)} = 18 (p0((0, 2, 0)) = 23−5 = 18) and this
cost is also the maximum penalization for R, since max{pj(x), ∀j ∈ [1 . . . e]∀x ∈
T (Cj)} = 18.

The best solution found is the solution s1 = (x0 = 1, x1 = 1, x2 = 1) and its
|last-covering(s1)| = 10 in the solution space, which is the highest for this analyzed
CSP (see Figure 6.4(d)). As previously mentioned, the solution s with the highest
|last-covering(s)| in the solution space, has the highest likelihood of remaining valid
when faced with future possible restrictive modifications over the bounds of the solu-
tion space. Therefore, it is the most robust solution for the original CSP according to
our dynamism assumptions for CSPs with ordered domains. In contrast, the solution
s11 = (x0 = 2, x1 = 2, x2 = 0) is classified by our technique as the least robust so-
lution. Note that s11 only has one neighbour in the solution space (see Figure 6.4(d)).
Thus, it is very probable that they will become invalid after restrictive modifications
over the original constraints and domains of the CSP.
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6.5 Summary and Limitations

In this chapter we have presented an enumeration-based approach that models CSPs
as WCSPs by calculating coverings, with the aim of finding robust solutions for the
original CSPs. The main advantage (and also the motivation) of this covering ap-
proach over the approach introduced in Chapter 5 is that it can be applied to all the set
of CSPs that model problems for which the order is significant. On the contrary, the
previous approach is only addressed for finite linear CSPs.

Both enumeration-based approaches share the same dynamism assumptions. Dy-
namism takes the form of restrictive modifications over the bounds of the solution
space of CSPs with ordered domains. They also share the same general WCSP mod-
eling algorithm (see Algorithm 6.2). The differences between them lie in the way of
penalizing the tuples by means of the cost functions. The penalizations to the tuples
are computed based on the information that the approaches compute in order to figure
out the distance of each tuple to a bound. While the approach designed for linear CSPs
computes Euclidean distances to the bounds, the approach presented in this chapter
computes coverings. A covering is a convex hull of feasible assignments surrounding
the tuple, which ensures minimum distances to the bounds. The coverings computa-
tion allows to extend the applicability of the approach to non-convex search spaces.
For this reason, it is not only restricted to finite linear CSPs.

Extending the applicability of the enumeration-based approach to CSPs with non-
convex search spaces is not costless. The computation cost of the algorithm that cal-
culates the coverings (Algorithm 6.1) is quite higher than the Algorithm 5.1 because it
requires the checking of feasible neighbour tuples for each valid tuple analyzed, whilst
Algorithm 5.1 only computes a distance equation for each valid tuple analyzed. For
this reason, the number of valid tuples of the constraints is crucial in the computational
cost of Algorithm 6.1. The smaller the search space is, the quicker the algorithm is.
As previously mentioned, the GAC3 process used before the coverings computation
can help to restrict the search space by deleting inconsistent values, in such case, the
computation time is reduced.

A weakness of the enumeration-based approaches that have been already intro-
duced in Chapter 5 and Chapter 6 is that the computation of the information that is
used for the penalization process is computed for each bound (constraint/domain).
Thus, if there exists another bound that tights the analyzed bound, the information
is not completely certain. For this reason, the enumeration-based approaches give
us approximations to the real distances of the solutions to the bounds of the solution
space. This issue was introduced in Section 3.5 and it would be deeply treated in the
following Chapter 7.





Chapter 7

Search Algorithm for Finding
Robust and Stable Solutions

The previous approaches presented in this dissertation are enumeration-based ap-
proaches that model robustness and stability in CSPs as WCSPs. In contrast, in this
chapter we introduce a search algorithm that aims for finding the best solution ac-
cording to an objective function that captures robustness and stability (Climent et al.,
2012c, 2014). Along with the approach introduced in Chapter 6, in this chapter we
propose a non-probabilistic technique which does not require extra detailed informa-
tion about the dynamism. It is based on the theoretical notion about neighbourhood
explained in Section 3.4.2.

Figure 7.1 shows a diagram that represents the basic steps that this approach car-
ries out. In the first inspection of the diagram, it can be observed the simplicity of
its steps in comparison with the diagrams of the enumeration-based approaches. In-
stead of modeling CSPs as WCSPs, the presented search algorithm solves directly the
CSPs with ordered domains, according to the little dynamism assumptions made for
such framework. For this purpose, we define an objective function that is based on
the feasibility of contiguous surrounding neighbour solutions for each assignment of
a variable.

Robust and 
Stable 

Solution for P

CSP
(P)

Problem in a 
Dynamic  

and Uncertain 
Environment

Robust 
CSP 

Solver

Figure 7.1: Robust and stable solutions search by our uninformed CSP solver.

The enumeration-based approach by coverings discussed previously has the dis-
advantage that the coverings information that they extract from the valid tuples of

109
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each constraint is only based on themselves and the preprocessing inference process.
Thus, some controversial situations might arise, in which some neighbour tuples are
feasible for one constraint but are not for another one. In this chapter we introduce
a search algorithm that checks the feasibility of the neighbours in the solution space
instead of for each bound of the CSP. In this way, the search algorithm copes with
this weakness. Furthermore, it introduces some advantages, such as the versatility of
its objective function and the computational space saved due to avoiding the WCSP
modeling step.

7.1 Neighbourhood in the Solution Space

In this section we apply the neighbourhood notion described in Section 3.4.2 to the
solution space of the CSPs. We recall the Lemma 3.4.1 that we concluded in this
section:

It only can be ensured that a solution s is located at least at a distance d from a
bound in a certain direction of the n-dimensional space if all the tuples at distance
lower or equal to d from s in such direction are feasible.

Thus, the number of feasible contiguous surrounding neighbours of a solution is
a measure of its robustness. In addition, as mentioned, having feasible neighbours
close to a solution provides stability to it. This is because if the value assigned to
a variable has at least one of these feasible neighbour values, then this variable is
repairable. That is, if its assigned value is lost, it can be easily repaired by assigning
the neighbour value (since this value is consistent with the rest of the values of the
assignment).

Computing all the solutions of a CSP is generally NP-Hard. This is due to the high
combinatoriality of all the values in the domain for all the variables of the CSP. Thus,
computing all the solutions surrounding another solution is not viable. However, com-
puting the closest neighbour solutions in the greater and lower order directions for a
fixed axis is reasonable. These neighbour assignments are equivalent to the analyzed
assignment when it is modified the value assigned to a variable in increasing or de-
creasing order. In Chapter 6, we called covering to the set of surrounding neighbours
tuples. However, in this proposal, we store feasible surrounding values on both sides
for each variable. We use the term N for denoting this set of neighbours. Further-
more, we use the same maximum distance parameter k that the coverings technique
uses (k ∈ N).

For the coverings approach we used the Chebyshev distance, which measures the
maximum absolute differences along any coordinate dimension of two tuples (see
Equation 2.5). We also introduced the Euclidean distance in Equation 2.4. In this
chapter, the distance is applied to tuples of only one dimension, that is to say, it
is applied to values. In such cases, the Chebyshev and Euclidean, both distances
are equivalent to the absolute difference between two values, which is used for the
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distance measurement. These concepts are following illustrated with an example.

Example 7.1.1. Here we take as an example again the solution space of the CSP

described in Example 3.1.1. We recall that this 2-dimensional solution space is com-

posed by 29 solutions (black points). Figure 7.2 shows the surrounding contiguous

neighbour solutions for k = 1 and k = 2 of the highlighted solution s = (x0 =

5, x1 = 4). We can observe that all the possible neighbours for both directions for

each variable are feasible for both distances k = 1 and k = 2. Note that the conti-

guity property (explained in detail in Section 3.4.2) is satisfied because all the closest

neighbours (all the neighbours located at distance k = 1 from the highlighted solu-

tion), are feasible. Therefore, we can ensure that the highlighted solution is located

at least to a distance two from the bounds in each direction of the two axis.
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Figure 7.2: Surrounding contiguous neighbours for a solution of the CSP of Example
3.1.1 for k = 1 and k = 2.

Note that the diagonal axis solutions are not computed (due to the impossibility
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of computing such combinatoriality). This does not represent a problem for convex
solution spaces since their main characteristic is that there can not exist holes (un-
feasibility areas) in such spaces. However, there can be controversial situations for
k > 1 for non-convex solution spaces because some of the closest neighbour located
on a diagonal can be unfeasible even if the contiguous surrounding neighbours for
k > 1 are all feasible. Nevertheless, for non-convex solution spaces, due to the fact
that there can exist holes in the space, the likelihood that a solution does not have an
unfeasible neighbour close to it, is lower than in convex spaces. For this reason, usu-
ally for non-convex solution spaces, the adequate value of the k parameter is lower,
which make more unlikely these controversial situations.

The set of feasible contiguous neighbour values of the value v that have differ-
ences not greater than k with respect to v in increasing, or decreasing, or both direc-
tions with respect to the order relationship is denoted as Nk(x, v, s,⊕). Value v is a
feasible value for variable x in the feasible partial/complete assignment s. Here, when
we say that other values are feasible, we mean that they are also feasible with respect
to s. We recall that, as mentioned in Chapter 2, Ds(x) ⊆ D(x) denotes the subset of
domain values that are consistent with the feasible partial assignment s. The list of
operators ⊕ is composed of a set of paired elements, or operator pairs. Each operator
pair is denoted as ⊕i ∈ {{>,+}, {<,−}}. The operator pairs fix the order directions
to analyze. Thus, the set {>,+} refers to values greater than v (increasing direction)
and the set {<,−} refers to values lower than v (decreasing direction). For each op-
erator pair, the operator in position j is referenced as ⊕ij . For instance, if the list of
operators is ⊕ = {{>,+}, {<,−}}, the operator pair ⊕1 references {>,+} and the
operator ⊕12 references the operator +. Given this notation, we defineNk(x, v, s,⊕)
as:

Nk(x, v, s,⊕)= {w ∈ Ds(x) : ∃⊕i, w ⊕i1 v ∧ |v − w| ≤ k ∧ (7.1)

∀ ⊕z ∀j ∈ [1 . . . (|v − w| − 1)], (v ⊕z2 j) ∈ Ds(x)}

The first condition of Equation 7.1 ensures that the value w is greater or lower
than v according to the operator ⊕i1 ∈ {>,<} and the distance between these values
is less or equal to k. The second condition ensures that all values that are closer to
v than w are also feasible values for s. If at least one of them is not feasible, the
value w cannot belong toNk(x, v, s,⊕). As mentioned previously, the set of feasible
neighbours of a value has to be contiguous. Otherwise, there is an unfeasible space
between this value and another feasible value.

Due to the specific nature of some types of real life problems, in some occasions
it is possible to extract more assumptions about their dynamism. For this reason the
list of operator pairs does not have to be necessary the same for all the problems.
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For instance, in Chapter 8 will be analyzed a type of real life problem for which
the list of set operators only contains one element. However, for the general case
of CSPs with ordered domains in which we assume that all the bounds are dynamic,
the desirable objective is to find contiguous surrounding feasible neighbours on both
sides. Therefore, ⊕ = {{>,+}, {<,−}}. For this list of operator pairs, the last
condition of Equation 7.1 checks that all the values in both directions that are closer
to v than w, are also feasible values for s. Subsequently, we present an example of a
lack of contiguity in the feasibility.

Example 7.1.2. We consider a small two dimensional non-convex solution space com-

posed only of 10 solutions. In Figure 7.3, it can be observed the surrounding contigu-

ous neighbour solutions for any k for the highlighted solution s = (x0 = 2, x1 = 2).

There are two surrounding neighbours for each variable assignment. If we consider

k > 2, the value 5 of x1 does not belong to Nk(x1, 2, {x0 = 2},⊕) because the

value 4 (this value is located at distance two) is not a feasible value and therefore it

is outside the bounds of the solution space. Thus, Nk(x0, 2, {x1 = 2}, {{>,+}, {<

,−}}) = {1, 3} and Nk(x1, 2, {x0 = 2}, {{>,+}, {<,−}}) = {1, 3} for any k

value. Note that these neighbours are on both sides of the value 2 with respect to the

x0 axis and the value 2 with respect to the x1. Therefore, we can only ensure that

the highlighted solution is located at least to a distance one from the bounds in each

direction of the two axis.

To apply Equation 7.1 to domains that are not ordered in Z, a monotonic and
order-preserving function has to be applied in order to map the elements. Following,
we describe a short example of such application.

Example 7.1.3. Consider a symbolic domain D = {freezing, cold, mild, warm,

hot, boiling}, a monotonic function that assigns greater values to values with higher

temperatures could be defined. For example, f(freezing) = 1, f(cold) = 2, f(mild)

= 3, f(warm) = 4, f(hot) = 5 and f(boiling) = 6.
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Figure 7.3: Surrounding contiguous neighbours for a solution of the CSP of Example
7.1.2 for any k.

7.2 Objective Function

In Section 7.1 we stated that the main desirable objective for a selected value is to have
as many contiguous feasible neighbours in a certain direction, because they determine
the minimum distance of this value from the bound in such direction. For approxi-
mating the distance of several assigned values (partial or complete assignment), we
compute the sum of the number of neighbours of each value. Therefore, we define
as an objective function of our search algorithm the sum of the size of Nk(x, v, s,⊕)
(denoted |Nk(x, v, s,⊕)|) for each variable x ∈ X . If s is an incomplete assignment,
we calculate the maximum |Nk(x, v, s,⊕)| for each v ∈ Ds(x) of each unassigned
variable x ∈ X\Xs (upper bound).

The maximum size of the set of neighbour values for each variable is | ⊕ | ∗ k,
where | ⊕ | is the number of pair operators. Thus, the maximum size of the set of
neighbour values is 2k if ⊕ is composed of two operator pairs or k if ⊕ is composed
of only one operator pair. Note that it is not necessary to check all the values of
Ds(x) if, for at least one of them, the size of the set is the maximum possible. In
the following equation, we formalize the objective function that is used by our search
algorithm.

f(s, k,⊕)= {
∑

x∈X\Xs

max{|Nk(x, v, s,⊕)|, ∀v ∈ Ds(x)}+ (7.2)

∑
y∈Xs

|Nk(y, s(y), s,⊕)|}
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Example 7.2.1. Considering again the solution space represented in Figure 7.3, it

can be observed that the objective function for the highlighted solution s = (x0 =

2, x1 = 2) is f(s, k, {{>,+}, {<,−}}) = 4, for any k value, since every value

assigned to each solution has two contiguous neighbours on both sides.

7.2.1 Formalization

Next, we give a formal rationale for using the total number of neighbours of the so-
lution (sum of feasible surrounding neighbours of each value of the solution) as a
measure of robustness.

For k = 1, in a convex solution space, each value has either zero, one or two
feasible neighbours. Here we can discount the case of zero neighbours because if an
assignment has zero feasible neighbours, then it must be part of a singleton domain,
and it will be part of all solutions. So we need only to consider values with one or two
feasible neighbours.

In this case, a solution with a greater sum is one whose assignments have more
feasible neighbour pairs. This can be easily seen if we consider the difference between
a solution all of whose values have only one feasible neighbour and any other solution;
this difference will be equal to the number of feasible neighbour pairs associated with
the latter’s assignments. Hence, the following proposition can be trivially deduced.

Proposition 7.2.1. If we assume that having two feasible neighbours confers greater

robustness than having one and that the probabilities of single changes are indepen-

dent, then a solution with a greater feasible neighbour-sum than another will also be

more robust, and vice versa.

In the non-convex case, it is unfortunately possible for one assignment to have
zero feasible neighbours, while other assignments to the same variable have one or
two. In this case, we cannot assume Proposition 7.2.1. However, as the number
of variables in the problem increases, it becomes increasingly unlikely that a variable
with an assignment having zero feasible neighbours will be associated with the largest
neighbour-sum for the remaining variables.

Regarding the stability, a solution that maximizes the (1, 0, k)-repairability (see
Definition 3.3.3) also maximizes the number of variables that can be repaired by a
neighbour value at a distance less or equal to k (without modifying any other vari-
able). However, to obtain robust solutions we maximize the sum of neighbour values
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of each value of the solution. Note that even if both maximization criteria are not
identical, as mentioned, when the number of variables in the problem increases, it
becomes increasingly unlikely that a non-repairable variable will be associated with
the largest neighbour-sum for the remaining variables. So in this work we will use
the same technique for finding robust and stable solutions for CSPs with ordered do-
mains. Nevertheless, the basic units of measure for both criteria are different. The
robustness is measured as the total sum of contiguous neighbours at distance lower or
equal to k; and the stability is measured as the number of variables whose values have
at least one feasible neighbour at distance lower or equal to k.

7.3 Search Algorithm

In this section we present an algorithm for finding robust and stable solutions ac-
cording to the main objective described in Section 7.2. For this purpose, we have
incorporated this optimization criterion into a Branch & Bound algorithm. For a de-
tailed explanation of the Branch & Bound algorithm (see Section 2.6.4). We have
developed a search algorithm denoted as B&B-Nk that maximizes the objective func-
tion f(s, k,⊕) (see Equation 7.2). As mentioned, this function sums |Nk| of each
assigned variable and the maximum possible |Nk| of each unassigned variable. Note
that this computation is an upper bound of the final total number of feasible contigu-
ous neighbours of the solution.

Algorithm 7.1 (B&B-Nk) is an ‘anytime’ algorithm that uses an inference process
and prunes the branches whose objective function value is lower or equal to the current
maximum function value obtained, referred to as lb (lower bound). The process stops
when all the branches have been explored or pruned, providing the solution s with the
maximum f(s, k,⊕). We can also limit the search time and therefore the quality of
the best solution found by fixing a time cutoff. Of course, the more time Algorithm
7.1 spends for searching, the more robust and stable the solution provided can be.
In addition, we compute the maximum possible objective function value, which is
the maximum number of neighbours for each variable multiplied by the number of
variables of the CSP, denoted as ub (upper bound). Thus, if the objective function
value of a new solution found is equal to ub, the algorithm stops, since this solution is
optimal.

We have implemented the Branch & Bound algorithm using a Geometric restart
strategy (Walsh, 1999) in order to reduce the repetition of fails in the search due to
very early wrong assignments (thrashing). The detailed explanation of the restarting
techniques can be found in 2.6.3. In addition, the pseudo code for the geometric restart
algorithm was described in Algorithm 2.3. We recall that for this restarting algorithm,
each time that the number of failures (referenced as nbF ) reaches the number-of-fails
cutoff value condition (C) that is checked in Algorithm 7.3, the algorithm restarts the
search from scratch, except for some specific information that is stored. The value
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Algorithm 7.1: B&B-Nk: Branch & Bound anytime algorithm
Data: P = 〈X ,D, C〉,⊕, k, scale,m, time cutoff (optional).
Result: Best solution s and its associated f(s, k,⊕).

1 s← ∅; // Partial assignment
2 Xs ← ∅; // Set of variables assigned
3 Nk ← ∅; // Set of contiguous surrounding neighbours
4 lb← −1; // Maximum f(s, k,⊕) for the solutions
5 ub← | ⊕ | ∗ k ∗ |X |;
6 i← 1;
7 GAC3-Nk(P, s,Xs,Nk,⊕, k, lb);
8 repeat
9 if restarting-scratch ∧ new solution found then

10 i← 1;

11 C ← scale ∗mi; //number of fails cutoff
12 i← i+ 1;
13 until time cutoff ∨ not MGAC3-Nk(P, s,Xs,Nk,⊕, k, lb, 0, C, ub);

of the number of fails cutoff is increased geometrically in Algorithm 7.1 according to
the scale factor and the multiplicative factor (referred as m). The information that we
store after each restart is the constraint weights computed by the dom/wdeg heuristic
variable selection (Boussemart et al., 2004). This variable heuristic was explained in
Section 2.6.2 and we select it due to its successful results, especially combined with
restarting strategies.

We have implemented two different options to carry out after a solution is found.
In the first, called restarting-completion, when the first solution is found, the algo-
rithm continues the search until completion (this is done by assigning a huge num-
ber representing infinite to the number of fails cutoff). In the second option, called
restarting-scratch, after each solution found, the algorithm restarts the search from
scratch and also restarts the number of fails cutoff computation (the constraint weighs
remain the same). For instances with very large domain sizes, this restarting option
can be effective because it avoids spending a large amount of time in a specific branch.
The latter happens when Algorithm 7.1 checks many domain values of variables lo-
cated at low levels of the search tree, because the objective function of the partial
assignment is better than the current maximum (lb). In this case, if there exists a time
cutoff, Algorithm 7.1 could not to have time for analyzing other branches of the tree
that may contain solutions of better quality.

The inference process is carried out by Algorithm 7.2 (GAC3-Nk), which is an
extension of the GAC3 consistency algorithm (see Algorithm 2.1). We recall that
var(c) is the scope of c ∈ C. The original seekSupport function of GAC3 searches
for a support for each domain value. We have modified this function slightly by
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providing the set of values to be analyzed as a parameter of the function. Thus, if
any of these values is deleted because there does not exist any consistent support with
respect to the partial assignment, seekSupport returns false. This function is
first called with the values of the domain of the variables (for checking if the partial
assignment s is GAC3) and later with Nk just for assigned variables (for checking if
each Nk(x, s(x), s,⊕) is GAC3 with respect to s). In order to ensure the contiguity
of the values in Nk, Algorithm 7.2 checks the consistency of subsets of Ni ⊆ Nk,
where i is equal to one initially, and it is increased by one unit until at least one of the
values of Ni is inconsistent or i reaches the value of k. The complexity of updating
Ni can be reduced to | ⊕ | ∗ i if the domains are ordered. Note that in the case where
both greater and lower values are candidates to be in the set, the updating cost is 2 ∗ i.
After composing the set of contiguous neighbour values that are GAC3 with respect
to s, Algorithm 7.2 analyzes whether the objective function f(s, k,⊕) is greater than
lb. If not, or s is not GAC3, it returns false.

Algorithm 7.2: GAC3-Nk: Global Arc Consistency algorithm
Data: P, s,Xs,Nk,⊕, k, lb, nbF
Result: D,Nk, nbF

1 Q← {(x, c), ∀c ∈ C, ∀x ∈ var(c)} // var(c) is the scope of c
2 while Q 6= ∅ do
3 (x, c)← takeElement(Q);
4 seekD ← seekSupport(x,D(x), c); // Found support for all D(x)?
5 if D(x) = ∅ then
6 nbF ← nbF + 1; // number of failures
7 return false
8 if not seekD then
9 Q← Q ∪ {(y, c′), ∀c′ ∈ C ∧ c′ 6= c ∧ ∀x, y ∈ var(c′) ∧ x 6= y}

10 if x ∈ Xs then
11 i← 1;
12 repeat
13 update Ni(x, s(x), s,⊕) applying Equation 7.1;

seekN ← seekSupport(x,Ni(x, s(x), s,⊕), c);
14 i← i+ 1;
15 until seekN = false ∨ i > k;
16 Nk(x, s(x), s,⊕)← Ni(x, s(x), s,⊕)

17 return f(s, k,⊕) > lb // See Equation 7.2

As it was explained in Section 2.6.1, the maintaining arc consistency algorithm
assigns tentative domain values to each variable by checking their consistency in each
step. Here, we use the maintaining GAC3 algorithm, whose pseudo code can be found
in Algorithm 2.2. Algorithm 7.3 (MGAC3-Nk) is based on the latter algorithm, even
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if it incorporates several novelties. The maintaining consistency process is done by
assigning to each variable x ∈ X a new value v ∈ D(x), until the value selected
is GAC3-Nk with respect to s. We have implemented two value selection heuris-
tics: lexicographical order and selection of the value that maximizes |Nk(x, v, s,⊕)|,
starting from intermediate values. There are some real life problems for which the
lexicographical selection order is effective in finding feasible solutions quickly. An
example is scheduling problems, whose domain values represent time units; hence the
importance of selecting low values in order not to exceed the maximum fixed make-
span. However, if it is not important to select low values, the other heuristic may
offer better results because it is selecting values that maximize the objective function
at the current node of the search tree. Furthermore, since search starts with interme-
diate values, the likelihood of selecting values located far from the domain bounds is
higher.

Algorithm 7.3: MGAC3-Nk: Maintaining Global Arc Consistency
Data: P, s,Xs,Nk,⊕, k, lb, nbF,C, ub
Result: s,Nk, lb

1 select x ∈ X\Xs; // dom/wdeg heuristic
2 Xs ← Xs ∪ x;
3 save D and Nk;
4 while D(x) 6= ∅ ∧ nbF < C do
5 select min(v) ∈ D(x); // Heuristic 1: lexicographical value order
6 select v ∈ D(x),max{|Nk(x, v, s,⊕)|} starting by intermediate values; //

Heuristic 2
7 s← s ∪ {x = v}
8 D(x)← v;
9 if GAC3-Nk(P, s,Xs,Nk, k, lb, nbF ) then

10 if Xs = X then // New solution found
11 lb← f(s, k,⊕);
12 if lb = ub then
13 return true // Best possible sum achieved

14 C ←∞; // restarting-completion
15 return false // restarting-scratch

16 else if MGAC3-Nk(P, s,Xs,Nk, k, lb, nbF,C, uB) then
17 return true

18 restore D\D(x) and Nk;
19 s← s\{x = v};
20 Xs ← Xs\x;
21 return false
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Algorithm 7.3 is also responsible for updating the set of assigned variables Xs,
the partial assignment s and the maximum objective function value lb (for each solu-
tion found). Furthermore, it stores the domains and the set of neighbours of all the
variables before making an assignment. Note that after a variable x is assigned, D(x)
contains a single value that is the value assigned to x. If Algorithm 7.2 (GAC3-Nk) re-
turns false, then Algorithm 7.3 (MGAC3-Nk) carries out the backtracking process
and also restores the domains and set of neighbours of all the variables.

Bounds Arc Consistency for discrete CSPs (Lhomme, 1993) (see Section 2.5.2)
allows a computational time reduction in CSPs with convex domains. Hence, it has
been implement and included in the search algorithm. The main feature of this con-
sistency technique is that the arc consistency is restricted with respect to the bounds
of each convex domain. Thus, including it in the search algorithm only affects to the
seekSupport function, which instead of seeking for a support for all the set of val-
ues, just checks the minimum and maximum bounds. Note that this implementation is
not necessary for the search of robust and stable solutions; however it allows a signif-
icant reduction of the search time. We only apply bounds consistency to the tentative
values of the assignment but not to their set of neighbours, since they require a com-
plete consistency check. Otherwise there could exist unfeasible gaps, which would
break the contiguity requirement that ensures minimum distances to the bounds.

7.4 Summary and Limitations

In this chapter we have introduced a search algorithm that seeks for solutions that
maximize an objective function that sums the set of feasible contiguous surrounding
neighbours of each value that compose an assignment. Thus, minimum distances to
the bounds in the increasing and decreasing directions of each axis of each variable
can be ensured. In this way, the algorithm searches for robust solutions according
to the dynamism assumptions made for CSPs with ordered domains. Furthermore,
these feasible surrounding neighbours provide stability to the solution, since a value
loss can be repaired by means of these close feasible neighbours and therefore, the
difference between the original value and the new one is extremely low.

In order to check for the feasibility of the analyzed assignment as well as its neigh-
bours, we have implemented several algorithms from the Constraint Programming lit-
erature: a branch and bound algorithm, an inference algorithm, a heuristic variable
selection and a bounds consistency technique. We have thus developed a search algo-
rithm that is able solve the CSP providing robust and stable solutions.

The approach presented in this chapter differs significantly from the previous
approaches introduced, which are enumeration-based approaches. The main advan-
tage of the search algorithm is that the checking of the neighbourhood feasibility is
made in the solution space. This fact avoids certain controversial situations that the
enumeration-based approaches have when a neighbour assignment is feasible for a
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bound of the CSP but is not for another. However, this precise search has a higher
temporal cost, due to the difficulty in bounding branches of the search tree in early
steps. This difficulty is due to the lack of information about the feasibility of the
unassigned parts of the tentative solution. Another issue of the search algorithm is
that diagonal axis of the solutions are not computed (due to the impossibility of com-
puting such combinatoriality). As it has been shown in this chapter, this fact is not
problematic for convex solution spaces but it can be for some non-convex spaces for
k > 1.

The strength of the search algorithm presented in this chapter comes from its ver-
satility. The objective function can be easily adapted for a specific problem and it can
be converted into a multi-objective function by adding other optimality criteria, then,
it could handle Constraint Satisfaction and Optimization Problems (see Section 2.4).
Hence, our model could be extended by including other kinds of optimization, as for
instance, minimizing the time, maximizing the profit, etc. Furthermore, as contrary
as the previous introduced modeling techniques, we can add as many techniques from
the literature as we consider to this search algorithm.





Chapter 8

A Case Study: Scheduling
Problems

In this chapter we explore a highly well-known type of real life problems: scheduling
problems. They represent one of the most crucial optimization problems of high-level
synthesis. In addition, they are one of the most complex real life problems and there-
fore they have been extensively explored in the related literature. Scheduling problems
come from uncertain and dynamic environments, hence the importance of the analysis
and application of proactive approaches. All the reasons previously mentioned have
motivated the selection of such problems as case study, as well as for the evaluation
of the approaches presented in this dissertation. For more extended information about
scheduling, we recommend the book (Pinedo, 2012).

As previously mentioned, scheduling problems are optimality problems. A com-
mon main optimization criterion is to minimize the makespan. However, typically
scheduling problems can be converted into satisfiability problems by fixing a maxi-
mum makespan and they can be modeled as CSPs.

In this thesis we focus on dynamic problems for which the only limited dynamism
assumptions are extracted from the nature of the problems for which the order is sig-
nificant. Scheduling problems are also problems with a straightforward order function
associated with the domain elements: they represent time units. Due to their particular
structure, they can provide us more specific information about their dynamism. The
latter would be explained in detail throughout this chapter, as well as some specific
robustness measures for scheduling problems.

In this chapter we have explained in detail the adaptation of our approaches to
scheduling problems in order to increase their performance for such type of problems.
We also comment the adaptation of another CSP proactive approach to this type of
problems. Finally, all the adapted approaches have been tested in a benchmark from
the literature, with the purpose of graphically show the robustness of the obtained
schedules.

123
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8.1 Modeling Scheduling Problems as CSPs

Before explaining the dynamism in scheduling, we consider the importance of ex-
plaining the process of modeling scheduling problems as CSPs. It is well known that
a scheduling problem is composed by a finite set of tasks that use particular resources.
The main objective consists in assigning the tasks to the resources over time, avoiding
resources conflicts. A solution of this type of problem is called schedule. Typically, in
scheduling problems, the main objective is to minimize the makespan, although there
also exist other criteria to optimize.

Definition 8.1.1. The makespan of a schedule is the latest finishing time of all the

tasks of that schedule.

Scheduling problems can be converted into satisfiability problems by fixing a
maximum desired makespan. In this case, the main objective is to find any schedule
configuration that does not exceed the maximum desired makespan and that satisfies
all the constraints. The CSP model of such problems usually consists in associating to
each variable a start or end time of a task (in this thesis we use the start time). In addi-
tion, the domains associated with each variable represent the possible time units and
they fix the maximum allowed makespan. The latter is achieved by the upper domain
bound of each variable, which is fixed to the maximum allowed makespan minus the
duration of the task associated with the variable. The variable associated with a task
represents its starting time, the end of the task is therefore the variable value plus the
duration of the task. Finally, the duration of the tasks and their order can be fixed
by means of the CSP constraints. These constraints forbid the variables represent-
ing the posterior tasks from taking values lower than the previous task variable (also
considering their duration).

In Chapter 1 a toy scheduling example (Example 1.1.1), was roughly modeled as
a CSP. After formally defining the CSP model and also explaining the scheduling
modeling process, a formal CSP model can be defined. This scheduling problem is
composed of 2 tasks of 3 time units each, and both tasks share the same resource.
As previously mentioned, we associate a CSP variable to each task, representing its
starting time. Thus, X = {x0, x1}, where x0 refers to T0 and x1 refers to T1. The
domains of the variables are in the integer interval of the start time and the maximum
fixed makespan (called max for this instance) minus the duration of the related tasks.
Therefore, D = {{0, 1, . . . , (max− 3)}, {0, 1, . . . , (max− 3)}}. Regarding the task
order, there is one constraint fixing that task T0 must be executed before than task
T1. There are several constraint representations that can model the task order. One of
them is: {x0 + 3 ≤ x1}. This constraint forbids than x1 takes lower values than x0
plus 3. This is because task T0 has 3 time units duration and task T1 must start after
task T0 finishes (start time plus duration). The composition of these 3 sets (X ,D and
C) form the CSP representation (we name it E2) of this scheduling problem. Thus,
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E2 = 〈{x0, x1}, {{0, 1, . . . , (max−3)}, {0, 1, . . . , (max−3)}}, {{x0+3 ≤ x1}}〉.

8.2 Dynamism in Scheduling

As mentioned in Chapter 1, there are two main approaches for dealing with problems
that come from uncertain and dynamic environments: reactive approaches and proac-
tive approaches. For dynamic scheduling the classification is more extended: reactive
scheduling, stochastic scheduling, scheduling under fuzziness, proactive scheduling
and sensitivity analysis. A more detailed explanation of these different types of ap-
proaches can be seen in the survey of scheduling under uncertainty (Herroelen and
Leus, 2005).

It has already been commented that re-solving the problem after the loss of a solu-
tion (reactive approaches) consumes computational time. In addition, for scheduling
problems, another disadvantage appears if the new schedule is delivered late, since
it could cause the shutdown of the production system, the breakage of machines, the
loss of the material/object in production, etc., which can also entail an economic loss.
Due to all these negative effects derived by the solution loss, authors who deal with
dynamic and uncertain scheduling problems strongly value the scheduling loss pre-
vention in dynamic environments. However, stochastic scheduling and scheduling
under fuzziness require detailed extra dynamism information (for instance probabil-
ities distributions of the dynamism), which is unknown or scarce in many real life
problems. For the reasons mentioned above, the use of proactive approaches that do
not require extra detailed information about the changes that the schedule may un-
dergo is highly valued in the literature, as well as by the authors of the approaches
presented in this dissertation.

As previously mentioned, scheduling is a rich context where uncertainties and
changes can not be easily avoided (Verfaillie and Jussien, 2005). One of the most
common form of changes in this type of problems is time delays. In (Fu et al.,
2012), the authors stated that unexpected external events such as manpower avail-
ability, weather changes, etc. lead to delays or advances in completion of activities in
scheduling problems. For instance, arrival times of employees/transports or finaliza-
tion of tasks/events may undergo delays/advances. These temporal changes are trans-
lated into restrictions/relaxations of the borders of the resultant CSPs constraints. The
fact that a task finishes earlier than expected (relaxation) cannot invalidate the origi-
nal schedule obtained. Nevertheless, the schedule unfeasibility can be produced when
there are delays in the schedule (restriction). Furthermore, a delay of a task due to
a disruption at some point of the schedule, may produce a propagation of the delay
through the entire schedule, since future related tasks may be not able to start on time
due to this delay. For all these reasons, delays in scheduling problems are an important
issue to take into account.

As explained in Chapter 1, a buffer time located after a task in a schedule can
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absorb a delay in such task as long as the buffer itself. The term buffer (also the term
slack) refers to the spare time between related tasks. For instance, in Figure 1.4, which
is a valid schedule for Example 1.1.1, we can observe how a delay of one time unit
in a task is absorbed by a buffer of one time unit. Therefore, the schedule remains
valid after such little delay, which is our main objective. If no specific information is
given about the dynamics of the scheduling problem, it is reasonable to assume that
any task of the schedule may undergo a delay due the expected duration of an activity
being exceeded, because a required resource has became unexpectedly unavailable or
other external situations. Consequently, the presented work for scheduling problems
is based on the following assumption.

Assumption Any task of a schedule may undergo a delay in the future.

In (Climent et al., 2008a,b), an analysis of the above dynamism mentioned con-
cepts are presented for a real life scheduling problem: the railway timetabling prob-
lem. In this work, the authors empirically demonstrate how the buffers (and other
factors that indirectly generate them) contribute not only to increase the robustness
but also to decrease the total delay propagation when a re-scheduling is necessary
because the original schedule has become invalid after a disruption.

8.3 Robustness Measurement in Scheduling

In this section, we introduce several criteria for measuring the robustness in schedul-
ing. There are two main factors that increase the capability of the schedule to absorb
unexpected delays in its activities: the number of buffers and their duration. Since
longer delays in a task include smaller delays in the aforesaid task, we assume that
shorter delays are more likely to occur over all the tasks. For this reason, in this work
and in the literature it is strongly valued that the slack are uniformly distributed across
the whole schedule. The simplest way of determining this feature is calculating the
number of buffers.

Ideally, according to the robustness criterion, a buffer time should be as long as
possible because the longer it is, the longer are the delays that is able to absorb. Hence,
another straight-forward robustness measurement was proposed in (Leon et al., 1994)
as the slack average in the schedule. The combination of the duration of the buffers
and their distribution across the schedule provides a more accurate robustness mea-
sure denoted asRs

slack (see Equation 8.1). It is a slight variant of a measure introduced
in (Surico et al., 2008) that consists in maximizing the slack average (shorted as avg)
and minimizing their standard deviation (shorted as std) for a schedule s. For reg-
ulating the importance of the standard deviation term, the authors use a parameter
called α, which can take any value in the interval [0.2,0.25], according to the authors
considerations.
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Rs
slack = avg(slack)− α std(slack) (8.1)

Another measure unit defined in (Kitano, 2007) for measuring the robustness of
a system, is related to its resistance when faced with perturbations with certain prob-
ability to occur. This measure was used in (Escamilla et al., 2012) for scheduling
problems in which the probabilities of task delays are unknown. Therefore, the au-
thors assumed an equally probability disruption distribution over all the scheduling
tasks. The authors of (Escamilla et al., 2012) adapted the Kitano’s robustness mea-
sure to these scheduling problems, denoting it as Rs

F,Z (see Equation 8.2), where:

• s is a schedule.

• Z is the discrete set of unexpected independent incidences that represents de-
lays in the duration of tasks.

• F measures whether s is still feasible after the disruption.

– F (z) = 1 iff the affected task is modified by z. Therefore, there is a
buffer time after the aforesaid task, and this buffer is able to absorb the
incidence.

– F (z) = 0, iff more tasks are modified by z. Therefore, there does not
exist a buffer time after the aforesaid task or it exists but it is not long
enough for absorbing the incidence. Thus, the incidence is propagated to
the rest of the schedule.

• p(z) = 1
|z| , ∀z ∈ Z. It is the probability for an incidence z ∈ Z. All the tasks

have the same probability of undergoing a delay due to there does not exist
detailed information about the future possible incidences.

Rs
F,Z =

∑
z∈Z

p(z) ∗ F (z) (8.2)

8.4 Neighbourhood in Scheduling

As stated before, ideally a robust schedule should exhibit well distributed slack, so
that the probability that it can absorb delays and still remain valid is high. To meet
this objective, we extend our approaches for CSPs with ordered domains to scheduling
problems.

For the general CSP robust search in both convex and non-convex solution spaces,
we stated that robust solutions are surrounded by feasible contiguous neighbours.
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However, there are some types of real life problems whose structure can provide us
with specific information about their dynamism. In CSP models of scheduling prob-
lems, the fact that domain values represent time units has implications involved with
the measures of robustness and stability. For these problems, when a value of the
solution is lost, lower values cannot be used for replacing this unfeasible value be-
cause they represent time units that have already taken place. Thus, if there is an
incident and the time point t is not available, neither are the values that are lower than
t. Therefore, having lower feasible neighbour solutions does not improve the robust-
ness nor the stability of a solution of a CSP that models a scheduling problem (since
they cannot absorb delays nor be used as repairable values).

Given these characteristics, the main desirable objective is to search for neigh-
bours solutions greater than the value assigned. Furthermore, in the two following
sections we describe in detail the scheduling adaptation for the search algorithm and
the enumeration-based approach by coverings. This adaptation allows to improve the
robustness of the schedules obtained by these approaches. Note that since both ap-
proaches are based on the feasibility of neighbour solutions, they are versatile for their
adaptation to problems with specific characteristics.

Example 8.4.1. We consider a scheduling problem with two tasks: T0 and T1. Both

have a duration of two time units and they must be executed in the order listed. The

maximum makespan allowed is six time units. In Figure 8.1 we can see the associ-

ated CSP model and its solution space. The variables X0 and X1 represent the start

times of tasks T0 and T1, respectively. The domain of both variables (represented by

discontinuous lines) is [0 . . . 4], which preserves the maximum makespan of six time

units (the maximum start time of a task is the maximum makespan minus the duration

of the aforesaid task). There is one constraint controlling the execution order of the

tasks (T0 must start before T1), which is C0 : X1 ≥ X0 + 2. The solution space is

represented by a blue area, where there are six solutions (black dots).

If no specific information is given about the dynamic environment, which sched-
ule is the most robust? As stated in Section 8.3, the greater number of buffer times
and the greater their duration is, the more robust the schedule is. But how can we
determine which solution of the modeled CSP meets these characteristics? The an-
swer is obtained by calculating the distance to the bounds of the solution space that
restrict greater values. As stated in Section 3.4.2, minimum distances are related to
contiguous feasible neighbours. Thus, if we want to ensure a minimum distance of k
from a solution to a bound located on a greater position in a certain direction (accord-
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Figure 8.1: CSP model associated with Example 8.4.1 and its solution space.

ing to the order relationship over the domains), all the greater neighbours located at a
distance lower or equal to k from a solution on this direction must be feasible.

The number of greater feasible neighbours associated with each variable, corre-
sponds to the duration of the slack that is located after the task that is represented by
this variable. This is explained in detail in Section 8.5. Thus, the slack is able to ab-
sorb a delay in the previous task as long as itself, without modifying the other tasks of
the obtained schedule (robustness feature). Furthermore, if the slack associated with a
task is not long enough to absorb a delay, the start of the following task can be delayed
if there is a long enough buffer associated with this following task (stability feature).

8.5 Adaptation of the Search Algorithm to Scheduling

Firstly, we describe the application of the search algorithm introduced in Chapter 7
to the above example. Afterwards, we introduce an adaptation of the neighbourhood
set concept and therefore the objective function of the search algorithm for schedul-
ing problems (Climent et al., 2013a). As previously mentioned, due to the nature
of scheduling problems, only greater feasible neighbours provide robustness to the
schedule. For this reason, when we compute the set of neighbour values Nk (see
Equation 7.1) we fix the list of operators to only one operator set: ⊕ = {{>,+}}.
We recall that the operator pairs fix the order directions of the neighbours feasibility
checking. Thus, the set {>,+} analyzes the greater values than v (increasing direc-
tion) and the set {<,−} analyzes the lower values than v (decreasing direction). Since
we are not interested in the feasibility of lower neighbours, the operator {<,−} is not
used for scheduling problems.

For the Example 8.4.1, which is a 2-dimensional CSP representing a two tasks
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scheduling problem, there exist three more robust schedules according to the robust-
ness criteria stated in Section 8.3. If we maximize the sum of greater neighbours
values that are located at a distance one (k = 1) from each value of the assign-
ment, the solution obtained is shown in Figure 8.2(a), whose sum is f(s0, k = 1, {>
,+}) = 1+1 (see Equation 7.2). The first number of the sum isNk(x0, v0, s, {>,+})
and second is Nk(x1, v1, s, {>,+}), where v0 and v1 are the values assigned to
the variables x0 and x1 respectively. Note that the sums of greater neighbours lo-
cated at a distance one of the solutions represented in Figures 8.3(a) and 8.4(a) are
f(s1, k = 1, {>,+}) = 1+ 0 and f(s2, k = 1, {>,+}) = 0+ 1, respectively. In the
following (a) figures, the greater neighbours are surrounded by a circle and connected
to the marked solution. In the following (b) figures, the schedules equivalent to the so-
lutions marked in (a) figures are shown. Note that the greater neighbours surrounded
in (a) figures correspond to the slack in figures (b). For instance, in Figure 8.2(b) each
task have an associated slack of duration one time unit due to the existence of one
greater neighbour for each value assignment in Figure 8.2(a).

If we maximize the sum of greater neighbours values for k > 1, the three solu-
tions represented in Figures 8.2(a), 8.3(a) and 8.4(a) are classified as best solutions
according to our objective function. The computation of the sum of neighbours lo-
cated at a distance lower or equal to k, for k > 1 is: f(s0, k > 1, {>,+}) = 1 + 1
(Figure 8.2(a)), f(s1, k > 1, {>,+}) = 2 + 0 (Figure 8.3(a)) and f(s2, k > 1, {>
,+}) = 0 + 2 (Figure 8.4(a)). Note that the schedules in Figures 8.3(b) and 8.4(b)
only have one buffer time each one, but its duration is two time units, unlike the sched-
ule represented in Figure 8.2(b) that has two buffer times of one time unit each one.
We would like to point out that by fixing k = 1 we are prioritizing the seek of a high
number of buffer times. In contrast, for greater k values, the duration of the buffers is
prioritized, even if in this case their distribution may not be optimal. The number of
feasible greater contiguous neighbours than a variable assignment has, it is equivalent
to the duration of the buffer time after the corresponding task in the schedule. Thus,
if there does not exist any feasible greater contiguous neighbour for a variable, its
corresponding task does not have a buffer time.
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Figure 8.2: Robust schedule s0 = (x0 = 0, x1 = 3) for Example 8.4.1 and its greater
neighbours for k ≥ 1.
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Figure 8.3: Robust schedule s1 = (x0 = 0, x1 = 4) for Example 8.4.1 and its greater
neighbours for k > 1.
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Figure 8.4: Robust schedule s2 = (x0 = 0, x1 = 2) for Example 8.4.1 and its greater
neighbours for k > 1.

At this stage, we wonder again which feature is preferable: greater number of little
buffer times or lower number of long buffer times? (if both features, high number of
buffers of long duration, cannot coexist). The answer is obviously related to the type
of dynamism associated with the scheduling problem. Lower k values are performing
better for frequent short delays that can occur in any task. In contrast, the greater k
values can obtain schedules that may face greater delays in the tasks, but these sched-
ules probably will become invalid when faced with high frequency delays (because
of the lower number of tasks that have slack associated). For Example 8.4.1, if in the
future a task undergoes only one delay of 2 time units, the schedules in Figures 8.3(b)
and 8.4(b) have a 50% likelihood of remaining valid. However the schedule in Figure
8.2(b) has 0% chances of remaining valid. However, if the two tasks undergo a short
delay of 1 time unit each one, the schedule in Figure 8.2(b) will remain valid (100%
likelihood) unlike the schedules in Figures 8.3(b) and 8.4(b), which will not resist the
two changes (0% likelihood). In Chapter 9 we evaluate our approaches analyzing sev-
eral ranges of k values and we also compute several robustness measures (each one
favouring several different types of future changes).

The above previous analysis is measuring the robustness of the solutions. How-
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ever, if we consider the stability of the solutions, small modifications in the solutions
are always preferred. In this case, if it is not possible that a task starts at the scheduled
time, by reassigning its start time to a closer greater neighbour, we are composing
another schedule that is very similar to the original one. Therefore, the search of the
feasible greater neighbours (which introduces buffers into the tasks of the schedule)
are improving both, the robustness and stability of the obtained schedules.

As previously motivated, ⊕ = {{>,+}} for scheduling problems (search of
greater feasible neighbours). Thus, the general equation of the set of neighbours
for any operator list (⊕), introduced in Equation 7.1 can be simplified for this spe-
cific case. Equation 8.3 shows this simplification. The first condition of the equa-
tion checks that the feasible neighbour values are greater than the value v and their
distance from v is lower or equal to k, where k ∈ N. The second condition en-
sures that all the greater values that are closer to v than w are also feasible values
(contiguity condition). If at least one of them is not, the value w does not belong
to Nk(x, v, s, {>,+}). The set of feasible greater neighbours has to be contiguous
because otherwise, it means that there exists at least a task that is making these inter-
mediate values unfeasible. Therefore, non-feasible contiguous values cannot compute
as a measure of robustness because they do not represent slack in the schedule.

Nk(x, v, s, {>,+})= {w ∈ Ds(x) : w > v ∧ w − v ≤ k ∧ (8.3)

∀j ∈ [1 . . . (w − v − 1)](v + j) ∈ Ds(x)}

Furthermore, when we apply our search algorithm (Algorithm 7.1 (MGAC3-Nk))
to scheduling problems, we use the lexicographical value selection order. This heuris-
tic allows us to find feasible solutions for scheduling problems quicker, since their
domain values represent time units and hence the importance of selecting low val-
ues in order to not exceed the maximum makespan. In addition, in order to reduce
the computational time, we have used Bounds Arc Consistency for discrete CSPs
(Lhomme, 1993) when dealing with convex domains. This allows a significant reduc-
tion of the search time, which is very important in complex scheduling problems due
to their elevated combinatoriality.

8.6 Adaptation of the Coverigns Technique to Scheduling

In this section we describe the adaptation of the enumeration-based approach by cov-
erings introduced in Chapter 6. The main idea for such adaptation is the same than
the explained in Section 8.5: checking only feasibilities of greater neighbours. Thus,
instead of analyzing a whole covering (see Definition 6.1.1), we analyze a part of
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it, which is called informally greater covering (it is also differentiated by the > op-
erator). In such area, all the values of the neighbour assignments must be equal or
greater than the values of the analyzed assignment. According to the hyper-cube rep-
resentation of coverings, only the right top hyper-cube (space between the analyzed
assigment and the right top corner) satisfies such condition. This is illustrated below
in Figure 8.5, which represents the solution space of Example 3.1.1. The part of the
covering that includes the neighbours that are greater to the highlighted solution is
represented in the red area. Thus, only these red areas represent the greater coverings
of this solution.
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Figure 8.5: Greater coverings of a solution of the CSP of Example 3.1.1.

Bellow we formally define the k-covering(t, >), which is composed only by as-
signments with all the values greater or equal to the analyzed assignment t.

Definition 8.6.1. We define the k-covering(t, >) of a valid tuple t ∈ T as its neigh-

bourhood {y ∈ T : y 6= t ∧ {∀i ∈ |y| : yi ≥ ti ∧ yi − ti ≤ k}}, where k ∈ N.

Since Definition 8.6.1 is a more restrictive concept of covering than the one in-
troduced in Definition 6.1.1, the maximum number of tuples of k-covering(t, >) is
lower. In Equation 8.4 we present a little modification of Equation 6.1 that describes
the maximum size of a greater covering. The only difference with respect to Equation
6.1 is that k is not multiplied by two. This was representing the two directions of the
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analysis (greater and lower values), however for a greater covering only one direction
is analyzed.

maxTup(k, |t|, >) = (k + 1)|t| − 1 (8.4)

By changing the above definition and equation, the rest of the concepts explained
in Chapter 6 hold for the greater covering introduced in this section. For instance,
the completeness property (see Definition 6.1.3) holds also for Definition 8.6.1 and
Equation 8.4. Thus, we can ensure minimum distances to bounds that restrict greater
values by checking the completeness of the coverings of an assignment. In the same
way, the algorithm that computes the coverings (Algorithm 6.1) holds according to
the adaptation presented.

8.7 Alternative Proactive Approaches in Scheduling

In this section we analyze another CSP proactive approach for dynamic scheduling
problems that does not either require extra detailed dynamism information. In addi-
tion, it is addressed also to general dynamic CSPs, as well as our approaches. Fur-
thermore, we also explain a model reformulation technique with the same purpose of
obtaining slack.

A proactive CSP approach based on super-solutions (Hebrard, 2006) was deeply
explained in Section 1.4.3. Here, we only explain a little modification that the au-
thors made for adapting the approach to scheduling problems. For general CSPs the
authors considered that a breakage was the lost of the value assigned to a variable of
an assignment. Thus, any other value that is feasible with the rest of the assignment
could be used as a repairable value. Afterwards, the authors extended this concept for
scheduling problems in the way that a breakage is considered a delay of duration d in
a task. Therefore, only values that are greater than the value assigned in d time units
are considered as repairable values.

Thus, this adaptation has been incorporated to the (1, 0)-repairability approach for
the evaluation of scheduling problems in Chapter 9, as well as for the analysis of the
toy scheduling benchmark in this chapter (see Section 8.8). For a proper comparison
of this approach with our approaches, we used the same values for k and d parameters.
In the following, in order to avoid term repetition, we assume that d = k. Thus, the
approach that maximizes the (1, 0)-repairability for a breakage of k in scheduling
problems, searches for schedules that have the highest number of buffers of k time
units. However, our approaches applied to scheduling problems (see Section 8.4)
include in their robustness criterion the buffers that are smaller than k units (even if
they try to find buffers of k time units). The latter condition is advantageous for the
robustness of the schedule in certain cases, as it will be shown in the next section.

The search of schedules with buffers that are up to k time units can also be
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achieved with model reformulation techniques by adding two variables to each orig-
inal variable (the variables that represent the start time of the tasks). One variable
represents the slack that follows the task and the other variable represents the sum of
this slack and the original starting time. For instance, let pi be the starting time of
the task xi. Thus, we would add the constraint p′i = pi + si, where si represents the
slack associated with task xi. In addition, depending on the maximum desired dura-
tion of the buffers, another constraint may be added, such as si ≤ k. In this case, the
delay is up to k time units. In addition, an objective function that express the goal of
maximizing the total slack (max

∑n
i=1 si) must be defined.

An advantage of our adapted approaches over the above model reformulation tech-
nique is that they are generic for CSPs with ordered domains whilst the other approach
can only be applied to scheduling problems. The other main advantage when we deal
with scheduling problems is that our approach can be applied when all the slack-
values require a consistency check. This requirement is necessary in scheduling prob-
lems where intermediate non-valid slack values are possible. Examples of this type of
problem are scheduling problems with limited machine availability (see for instance
(Schmidt, 2000)). In these cases, some machines are unavailable in certain time inter-
vals; for this reason, tasks that require these resources cannot be executed in such time
units. The same occurs with some scheduling with operators, where the workers have
some breaks during the day, which produces unfeasible time gaps in the schedules.

8.8 Example

In this section an example of a scheduling benchmark is described to graphically show
the robustness of schedules obtained by our approaches. Moreover, this benchmark is
also used for showing the trade-off between robustness and makespan. Specifically,
we analyze an instance derived from Taillard optimization problems (Taillard, 1993):
“os-taillard-4-105-0”, which is an instance of the well-known open-shop problem and
was used in the CSP solver competition1. This problem was modeled as a satisfaction
problem by fixing the maximum makespan allowed (latest finishing time). The best
makespan known for such problem is 193 time units. However, for the analyzed in-
stance the maximum makespan is set to 105% of the best one. Therefore, the obtained
schedules for this problem may be, and usually will be, non-optimal. In this way, it is
possible to have schedules with instances of greater slack. Similar descriptions of this
example can be found in (Climent et al., 2013a,b).

Since the open-shop benchmark is composed of four machines, four jobs and four
tasks per job, the resultant CSP model contains 16 variables and 48 constraints; the
latter prevents two tasks from using the same machine at the same time as well as
from ensure that two tasks of the same job do not overlap. Here, in this example,

1http://www.cril.univ-artois.fr/ lecoutre/benchmarks.html
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we converted the open shop to job shop by fixing the order of the tasks to the same
order obtained by an ordinary CSP solver. We have done this modification in order
to increase the clarity of all the graphs presented in this section since the order of
the tasks of the schedules obtained by each technique is the same, and therefore, it
is easier to compare the slack between different schedules. The machine used for
solving this benchmark was a Intel Core i5-650 Processor (3.20 Ghz) and we have
fixed a time cutoff of 30s. All the approaches use the lexicographical value order
selection.

Figure 8.6 shows a non-robust schedule obtained by an ordinary CSP solver. The
jobs are represented on the vertical axis and time is represented on the horizontal
axis. Tasks are shown with the corresponding task number and with different colours
according to the machine that they use. Thus, all the tasks of the same colour use the
same machine. The striped slack represents the natural slack produced because the
earlier starting next task related to a task, waits to the release of a machine or to the
end of another task, or by the gap between the last task of a job and the makespan.
It can be observed that this schedule has only seven natural buffers after the tasks,
so a delay at any other place in the schedule will invalidate the obtained solution.
Furthermore, three of these natural buffers are after the last task of the jobs that do not
fix the makespan, which are inherent to all the schedules.

Figure 8.6: Non-robust schedule (makespan=193).

8.8.1 Obtaining Robust Schedules

Following, we introduce schedules obtained by our approaches and for the approach
that maximizes the (1, 0)-repairability, all of them adapted for scheduling problems as
indicated in the previous sections. The restarting parameters setting have been fixed
as follows: the scale factor to 10 and the multiplicative factor to 1.5. The sched-
ules obtained by our WCSP modeling approach presented in Chapter 6 are referred as
“WCSP-mod” schedules. The schedules obtained by our search algorithm presented
in Chapter 7 for restarting-scratch are referred as “neigh-search(R)”. For calculating
schedules that maximize the number of repairable values for (1, 0)-super-solutions
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(referred as “super-sol” schedules), we modified Algorithm 7.1 (B&B-Nk) by chang-
ing MGAC3-Nk and GAC3-Nk algorithms for MAC+ and GAC+ (Hebrard, 2006),
respectively.

Figure 8.7 shows the schedule obtained for the three techniques mentioned above
for k = 1. It can be observed that it has additional instances of slack (in dark gray).
These buffer times are not produced because the earlier starting next task related to a
task is not able to start before. Hence, they are differentiated from the natural slack
by denoting them as robust. Because of them, this schedule is more robust and stable
than the previous one. It is more robust because more tasks maintain slack to handle
short delays. Moreover, it is more stable because in case some tasks can not start
on time, their start can be delayed (reassigned) as much as their associated buffer
time. Note that this schedule has 13 robust-stable buffer times, each of one time unit.
Therefore, if any task has a delay of one time unit the schedule will still be valid. The
makespan of this schedule is only two units longer than the makespan of the schedule
represented in Figure 8.6 (trade-off between robustness and makespan).

All the approaches obtained the best schedule for k = 1 according to their respec-
tive objective functions since they finished the search before reaching the time cutoff.
This fact, and also the fact that there was the possibility of introducing a little buffer
time of one time unit after all the tasks has entailed that the schedule obtained was the
same for the three approaches.

Figure 8.7: Schedule for k = 1 for WCSP-mod, neigh-search(R) and super-sol (nbRo-
bustBuffers=13, robustBuffersSum=13, makespan=195).

As mentioned, the duration of each robust-stable buffer time obtained in the pre-
vious schedule is one time unit. However, when we increase the value of k for the
three approaches analyzed, the slack in the obtained schedules vary. Figure 8.8, Fig-
ure 8.9 and Figure 8.10 show the schedules obtained by neigh-search(R), WCSP-mod
and super-sol, respectively. In Figures 8.8 and Figures 8.9, it can be observed that our
approaches find schedules with a makespan that is three time units greater than the
schedule of Figure 8.7. However, the total slack of the schedule neigh-search(R) (see
Figure 8.8) is 30 time units and WCSP-mod obtains even five time units more of total
slack (see Figure 8.9).
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Finding a schedule that has a buffer of five time units after each task is not possible
for such instance. However, WCSP-mod finds a schedule with eight of its nine robust-
stable buffers of four time units (see Figure 8.9). Neigh-search(R) has found one less
buffer time, all of them in the interval of [1, 4] time units (see Figure 8.8). Both
approaches find very robust schedules, fact that is more obvious when we compare
the results with the super-sol approach (see Figure 8.10), which only obtains two
buffer times of five time units each. This fact is mainly due to two factors. The
approach that searches for super-solutions only searches for buffers of k time units
(it does not consider lower duration buffer times), thus it performs poorly generally
for high k values because it is difficult to find many buffers of such great size for a
certain fixed makespan. In addition, this technique maintains as a repairable values set
all the feasible values in the domain of each variable. This requires more time when
checking the satisfiability of such domain than our reduced set of feasible neighbours.

From all the approaches analyzed for k = 5, only the enumeration-based approach
(WCSP-mod) obtains the best schedule according to its objective function criterion.
The approach that maximizes the (1, 0)-repairability and our search algorithm (for
both restarting options) provide the best schedule found until reaching the cut-off
time, so that they are not able to analyze all the search tree. For the cut-off time
allowed for this analysis and for k > 1, the enumeration-based approach performs
better because the neighbour feasibility is computed before the solving process, also,
there are almost no conflicts in such computed feasibility between the constraints.

Figure 8.8: Schedule for k = 5 for neigh-search(R) (nbRobustBuffers=8, robust-
BuffersSum=30, makespan=198).

Note that even if the sum of robust slack is higher, all the obtained schedules for
k = 5 have a smaller number of buffer times than the schedule obtained for k = 1.
Since it is more difficult to find buffers with up to five time units, it may happen than
our algorithm sacrifices some shorter buffers in order to find one buffer time of five
time units. Thus, the obtained schedules with lower k values tend to maximize the
number of buffers even if their size is small. However, the computation of higher
k values tends to give priority to the duration of the buffers and as a consequence,
the number of buffers obtained can be lower. Therefore, depending on the dynamic
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Figure 8.9: Schedule for k = 5 for WCSP-mod (nbRobustBuffers=9, robust-
BuffersSum=35, makespan=198).

Figure 8.10: Schedule for k = 5 for super-sol (nbRobustBuffers=2, robustBuffers-
Sum=10, makespan=193).
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nature of the problem, it would be desirable to prioritize between a higher number of
short buffers or a lower number of long buffers (in case it is not possible to maximize
both features). The greater the number and duration of robust buffers, the higher the
probability that the rest of the schedule will remain satisfiable after changes and as a
consequence, the more robust the schedule will be according to the assumptions that
any task can undergo a future delay.

8.8.2 Trade-off between Robustness and Makespan

Here we want to analyze the well-known trade-off between robustness and makespan
in scheduling. For such purpose, we analyze the “os-taillard-4-100-0” problem more
extensively by fixing the makespan over a range of different percentages out of the
best known makespan (which is 193 time units). The solutions were obtained by our
enumeration-based approach by coverings for k = 7. Figure 8.11 shows the makespan
of the schedules on the horizontal axis, the number of robust-stable buffers on the left
vertical axis and the sum of the robust-stable buffers on the right vertical axis. The
time required to calculate our schedules was around between [4, 10] seconds more
than that required to obtain a simple schedule (greater time for the greater makespans).
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Figure 8.11: Robustness-makespan analysis for k = 7 for WCSP-mod for “os-
taillard-4-100-0”.

As expected, the robustness of the solutions obtained is positively correlated to
the makespan. It can be observed that the number of buffer times obtained increases
proportionally until reaching the point of the makespan 211. This schedule has only
one buffer time more than the previous schedule (makespan = 206), even if there are
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five time units of difference between their makespans. The reason is that by this point
almost all the tasks have an associated robust-stable buffer (or they are the last task
in their job), so finding further buffers becomes more difficult. However, the sum of
buffer times increases in a more uniform fashion, which shows that at some point it is
more difficult to find new buffers than it is to increase the size of a buffer.

Figure 8.12 shows the schedule with the highest makespan of the analysis done
previously, which is 211 time units. Here we can appreciate how much the robustness
of the schedule can increase when we exceed highly the best known makespan. Note
that for all the tasks in which it is possible to include a robust-stable buffer there is a
robust-stable buffer of five, six and often seven time units, with the unique exception
of one buffer of two time units.

Figure 8.12: Schedule for k = 7 for WCSP-mod (nbRobustBuffers=13, robust-
BuffersSum=80, makespan=211).

8.9 Summary and Limitations

In this chapter we have described the relation of the new dynamism framework as-
sociated with ordered domains (see Chapter 3) with scheduling problems. Further,
we explain in detail the adaptation of our approaches to such particular environment
with the purpose of increasing the robustness of the obtained schedules. Dynamism
in scheduling usually takes the form of delays over the tasks, which can produce a
propagation of the delay through the entire schedule. That is why handling delays
by keeping the schedule feasible is an issue of extreme importance. This is achieved
by introducing slack in the schedule. In this chapter we also explain several specific
robustness measurement units for the scheduling problems. These measures take into
account the duration of the slack and also its distribution over the schedule.

After introducing the dynamism in scheduling and the main characteristics of a ro-
bust schedule, we have incorporated them into the theoretical approach for searching
robust solutions for CSPs with convex and non-convex solution spaces. We would like
to remind the reader that the theoretical base of conferring robustness and stability to
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the solutions of such CSPs is to select a solution with a high number of feasible con-
tiguous surrounding solutions. However, the latter criterion can be adapted to schedul-
ing problems due to their particular characteristic: their domain values represent time
units. Thus, when there is an incident at some point, lower values represent time that
has already happened and they can not be used for dealing with the incidence. For
this reason, it was stated that lower feasible neighbour solutions do not improve the
robustness nor the stability of a solution of a CSP that models a scheduling problem.
Thus, the adaptation of our approaches to scheduling problems consists in restricting
the feasibility checking only to the neighbour assignments that are greater than the
analyzed one.

The scheduling adaptations have been formalized and applied to a benchmark
from the literature in order to show graphically the slack of the schedules obtained by
our approaches. Furthermore, the scheduling adaptation for the approach that searches
for super-solutions has also been analyzed in this chapter. The first obtained results
show that in situations in which it is not possible to add a slack of k time units after
each task, our approaches find schedules with greater number of buffers and also
they are longer in average. The enumeration-based technique obtained slightly better
results than the search algorithm for k > 1, since the latter has the limitation of
not finding the optimal solution because the cut-off time is reached (as the technique
that maximizes the (1, 0)-repairability). However, this approach has the limitation of
the spatial cost, which is significantly higher that what is required by the searching
algorithm.

Although the trade-off between the makespan and the robustness has been ana-
lyzed in the literature, we have also analyzed it with this scheduling problem in order
to corroborate the behaviour of the adaptation of our theoretical approach of selecting
solutions with greater contiguous neighbours. As expected, the greater the makespan,
the more robust we found the obtained schedules to be.
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Evaluation

The main purpose of this chapter is to evaluate the quality of the solutions obtained by
the approaches presented in this dissertation. In Chapter 8, a preliminary analysis was
done for a case study of a toy scheduling problem. In this chapter, experiments are
carried out on both structured and random CSPs. Among the structured CSPs there
are scheduling benchmarks, since these problems are complex and often come from
a dynamic and uncertain environment. The purpose of evaluating random CSPs is to
analyze the performing of the approaches based on a wide range of CSP parameter
setting, as well as the analysis of non-convex solution spaces.

The evaluation performed in this chapter is based on the two main features as-
sociated with solutions obtained by proactive approaches: stability and robustness
(see Section 1.4.1). In addition to assess the approaches presented in this thesis, we
also evaluate another proactive method that does not require specific additional in-
formation about the dynamism: super-solutions (Hebrard, 2006). This approach was
explained in detail in Section 1.4.3. In addition, we compute and analyze solutions
obtained by an ordinary CSP solver.

First, we describe in this chapter the problems setting, providing specific tech-
nical information that it is necessary for the correct performing of the experiments.
Subsequently, we explain the dynamism simulation, which is used for measuring the
robustness of the solutions obtained. At this stage, we explain several experiments
performed to the approaches presented in this dissertation, which are presented as it
follows. First, the probabilistic enumeration-based approach is described, followed
by the enumeration-based approach for linear CSPs; and subsequently the general
methods of the enumeration-based approach by coverings and the search algorithm
are evaluated. Finally, all the conclusions and limitations of the approaches extracted
from the experimental results are summarized.

143
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9.1 Problems Setting

In this section it is explained in detail the necessary information for performing all
the experiments presented in this thesis. This description is divided in three parts:
description of the structured and random CSPs used for the evaluation, the explanation
of the comparison of our techniques with other approaches and the description of the
solvers used and the parameters setting.

9.1.1 Structured and Random CSPs

For the experiments performed in this chapter, we used benchmarks from two different
sources. Some of the benchmarks are WCSPs that were acquired from Givry’s web
page 1. The format of these benchmarks is the WCSP file format (see Appendix A.1
for an explanation of such format). In this format, the constraints are extensionally
represented. The original soft constraints were removed from the problems due to our
technique has not been developed for constraint satisfaction and optimization prob-
lems (CSOPs). The other set of benchmarks was acquired from Christophe Lecoutre’s
web page 2. The format of these benchmarks is in XCSP (the detailed description of
the format can also be found in this web page). Among all the benchmarks analyzed,
there are scheduling problems, due to they are complex real life problems that usually
come from dynamic and uncertain environments.

For generating non-convex random CSPs, we used the RBGenerator 2.0, which
can also be found in Christophe Lecoutre’s web page. These random CSPs are com-
posed of non-convex constraints (therefore, they are extensionally represented). Due
to this non-convexity property, the bounds consistency technique (see Section 2.5.2)
cannot be used. The CSP parameters: arity, number of variables, domain size, num-
ber of constraints and tightness are configurable. The domain values of these random
CSPs are integer values in the interval [0, |D| − 1], where |D| is the domain size.

Furthermore, for some experiments we used finite linear CSPs. Since it is not pos-
sible to generate this type of CSPs with the Lecoutre’s random generator, we imple-
mented a random linear CSP generator. As well as RBGenerator 2.0, the domains are
integer values in the interval [0, |D| − 1]. The random linear constraints are generated
according to Equation 2.3. In addition, all of them must satisfy the correct number
of valid tuples according to their tightness (see Equation 2.1). However, there exists
the difficulty of balancing the random linear constraints with the selected tightness
because we must check that the number of tuples invalidated for the linear constraint
coincides with the tightness value. Hence, we allowed a variability of 10% of the fixed
tightness for the generation of random constraints. Moreover, all constraints must be
non-redundant, that is, a new random constraint must invalidate at least one different

1http://www7.inra.fr/mia/T/degivry/
2http://www.cril.univ-artois.fr/ lecoutre/index.html
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tuple more than the rest of the generated constraints. In order to generate n-ary ran-
dom linear constraints, n random variables are selected. Each variable is preceded by
a plus or negative sign and a coefficient of 1 or 2 multiplies it, all of these options
have the same likelihood of being randomly selected. Finally, the lower/greater or
equal sign is randomly selected as well, and based on it, the domain sizes and the
tightness, the constant term is fixed.

In the following, an idea that will be further explained is introduced. It is not
possible to distinguish robustness according to the dynamism assumptions made in
this dissertation when there only exists one or few solutions scattered over the solution
space. This is due to the fact that in these cases, all the solutions are located in a bound.
For this reason, benchmarks and random CSPs that have such characteristics are not
considered for the robustness evaluations.

9.1.2 Uninformed Approaches Comparison

Throughout this chapter, we compared the solutions obtained by our the approaches
with solutions obtained without specifying any robustness/stability criterion (referred
to as “simple solutions”). This analysis has not been included as an alternative to
our approaches obviously, but in order to detect whether there are cases in which all
solutions have similar robustness/stability.

In the experimental results performed, we do not include proactive approaches
from the literature that use specific dynamism information. This is due to the fact
that the quality of the solutions depends on such known information and therefore
solutions obtained by approaches that use different dynamism data can not be properly
compared. Nevertheless, we incorporated in the evaluation a proactive approach that
does not require extra dynamism data: super-solutions (Hebrard, 2006). We would
like to emphasize that this technique searches for stable solutions, but not for robust
solutions. The main focus is in (1, 0)-repairability (see Section 1.4.3). To implement
this technique, we modified Algorithm 7.3 (B&B-Nk) by exchanging MGAC3-Nk

and GAC3-Nk algorithms for MAC+ and GAC+, respectively. The solutions obtained
by this technique are referred to as “super-solutions”. Furthermore, for scheduling
problems, the extension explained in Section 8.7 has been included for the approach
that searches for super-solutions. For such problems, this approach considers a k
parameter, as well as our approaches introduced in Chapter 6 and Chapter 7. For non-
scheduling problems, both the ordinary CSP solver and the super-solutions solver do
not consider the k parameter for solving the CSPs.

Regarding the approaches presented in this dissertation, the abbreviations for re-
ferring to the solutions obtained by them are as follows: “WCSP-mod solutions” for
enumeration-based techniques and “neighbours solutions” for the search algorithm
(restarting-completion). For restarting-scratch, the solutions are differentiated with a
“(R)”.
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9.1.3 Solvers and Parameters Setting

Subsequently, we explain the solvers used for carrying out the experiments. We use
the WCSP solver ToulBar2 (see Givry’s web page) for the enumeration-based ap-
proaches. One of the CSP formats accepted by the solver is the WCSP format (see
Appendix A.1). However, the solver does not support the XCSP format. Hence,
we implemented a parser from the XCSP to the WCSP format. Furthermore, we
also implemented our own solver for incorporating the search algorithm introduced in
Chapter 7. For coding our solver, we used the classes and structures that Christophe
Lecoutre provides in package Tools2008, which can be downloaded from Lecoutre’s
web page. Thus, our solver supports the XCSP format. For implementing the ap-
proach that maximizes the (1, 0)-repairability, as well as for obtaining a simple so-
lution, we used our solver (in order to make a fair measurement of the computing
times). This solver includes the geometric restart (Section 2.6.3) and bounds consis-
tency (Section 2.5.2). The restarting parameters setting were fixed as follows: the
scale factor to 10 and the multiplicative factor to 1.5 (common parameters for such
technique according to the related literature). Unfortunately, it was necessary to use a
different solver for the enumeration-based approaches because they generate WCSP
models. Throughout all the evaluation, we included the computational times of both
solvers, however, the fact that the solvers are different should be taken into account.

All the approaches evaluated with the exception of the ordinary CSP solver, are
also ‘anytime’ techniques, so we fix a maximum time cutoff, which is different ac-
cording to the difficulty of the experiments. Experiments were run on an Intel Core
i5-650 Processor (3.20 Ghz). In order to evaluate the quality of the solutions ob-
tained, we measure stability and robustness. We use the robustness and stability
measures described in Section 3.3. Specifically, the stability is measured by the
(1, 0, c)-repairability, which incorporates the distance c parameter to the repairable
values; and the robustness is measured by the remoteness of the solution to the bounds
of the solution space. For scheduling problems there exist specific robustness mea-
sures (see Section 8.3) that were computed as well. For all the tables presented in this
chapter, the best robustness/stability results obtained are highlighted in bold.

9.2 Dynamism Simulation in Uninformed Environments

In this section we explain the dynamism simulation performed for the robustness
evaluation of the solutions obtained by the approaches that do not require extra de-
tailed dynamism data. To the best of our knowledge, there are no benchmarks of
DynCSPs (see Definition 2.3.1) in the literature, so authors working in this field sim-
ulate changes in CSPs in order to generate DynCSPs. In this thesis we assume that
there does not exist detailed knowledge about the future possible changes in the prob-
lems. Hence, the difficulty of simulating such dynamism. According to the little
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dynamism assumptions made about CSPs with ordered domains (see Section 3.1), we
present two different types of dynamism simulation: over the search space and over
the solution space.

9.2.1 Dynamism in the Search Space

A straight-forward idea for the dynamism simulation is to restrict the original con-
straints and domains. Since we assume that there is not information about which
bounds are more likely to undergo modifications, the dynamism of the bounds is ran-
domly performed with an equal likelihood distribution. Thus, we generated DynCSPs
that are composed of l+1 static CSPs: 〈CSP(0), CSP(1), ..., CSP(l)〉, whereCSP(0)

is the original CSP. We created two types of DynCSPs: with dependent/independent
changes. For the DynCSPs whose changes are dependent, each CSP(i) is generated
fromCSP(i−1) by making a restrictive modification with respect to some bound of the
solution space of CSP(i−1). However, if the changes are independent, each CSP(i)

includes a restrictive modification with respect to some bound of the solution space
of CSP(0). Thus, in the first case changes are cumulative but not in the second case.
For dependent changes, we selected constraints and domains for restriction based on
their relative frequency. Thus, if there are x times more constraints than domains for
a CSP, x constraints are restricted for each domain that is restricted. The reason of
making this ‘equality’ distribution is to carry out the same proportion of restrictions
for instances with different number of variables and/or constraints.

For simulating dynamism in linear CSPs, dependent restrictive changes over the
bounds of the original random linear CSPs are made. Specifically, we modify the
constant term of their constraints (see Equation 2.3) in i units with regard to CSP(0)

(each time the constant term is restricted in one unit for all the constraints of the
problem). In this way, we generate as many static CSPs as possible, with the condition
that they must maintain at least one solution. More detailed examples of simulations
in linear constraints can be found in (Climent et al., 2009a,c).

The simulation of restrictive changes over non-convex constraints was done by
randomly selecting an invalid tuple located next to any bound of the CSP and inval-
idating all the tuples that surround it to a distance of d. This idea was inspired from
(Wallace and Grimes, 2010), where the dynamism simulation over random CSPs was
to randomly change tuples constituting particular relations. Thus, the number of con-
straints remains the same after each alteration. For CSPs with ordered domains, the
authors reduced the maximum domain values and restricted the constraints (when they
were restricting the CSPs, since they also consider CSP relaxations). Inspired by this
simulation, we added the idea that tuples located on the bounds of the solution space
are more likely to become invalid after changes in the original problem. For DynCSPs
whose changes are dependent we fixed d = 1. (The changes are cumulative; there-
fore, a bigger d than 1 would very markedly restrict the CSP). In this case, only valid
tuples located on a bound became invalid. As stated, a tuple is located on a bound if at
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least one of its closest neighbour tuples is invalid. Note that if a valid tuple becomes
invalid for CSP(i), a valid tuple located next to the new invalid tuple can become in-
valid for CSP(j),∀j > i. For DynCSPs whose changes are independent, we selected
magnitudes at random from the interval d ∈ [1, . . . ,maxd] for each CSP(i); because
these changes were non-cumulative, they could be of larger magnitude without unduly
restricting the original CSP. We fixed different values of maxd commensurate with
the domain sizes of the problems analyzed. Note that if d > 1 valid tuples that are not
located on a bound can also became invalid (but they have to be at distance lower or
equal to d from some bound).

For each DynCSP, new restrictive CSPs were generated until the obtained solution
became invalid. Thus, l indicates the number of restrictive changes that a solution is
able to resist for a DynCSP. For each experiment performed, we generate a certain
number of random different DynCSPs for each problem and compute the average
number of changes satisfied, which can be considered a measure of the robustness
of the solutions according to Definition 3.3.1. The higher the number of changes
satisfied l (or its percentage) is, the more robust the solution is, due to the solution is
able to remain valid after a high number of changes in the constraints of the problem.
Furthermore, in order to perform uniform changes simulation over the constraints
when the experiments involves random CSPs, we used an option of the RBGenerator
2.0 that merges the constraints of similar scope. We would like to point out that only
for the probabilistic-based approach, we added random dynamism functions to the
bounds of the CSPs evaluated. This is deeply explained in Section 9.3.

9.2.2 Dynamism in the Solution Space

In addition to the above dynamism simulation described, we also developed a dy-
namism simulation over the solution space. A reason for performing this type of
dynamism is that a restriction in a constraint/domain does not necessarily implies a
restriction over the solution space. The latter happens in cases in which there also exist
other constraints/domains that are partially/totally more restrictive than the aforemen-
tioned simulation. In order to perform restrictions over all the solution space, it would
be necessary to compute the complete set of solutions of a CSP. However, as men-
tioned in Section 2.4, this option is not feasible due to it is usually NP-hard. Instead,
we sample the closest surrounding neighbours (at some distance k). For perform-
ing this sampling, we make a certain number of random modifications of magnitude
k over the values assigned to the variables of the solutions. Thus, we fix a number
of variable assignments to be modified (denoted as nbV arMod). Thus, if a closest
surrounding neighbour obtained by such modifications is not a solution of the CSP, it
means that the analyzed solution could become unfeasible after a change of magnitude
k or greater to the original bound/s that invalidate such neighbour. On the contrary,
if the neighbour is a solution of the CSP, this means that this restrictive modification
would not invalidate the analyzed solution. Therefore, satisfiability checking of a ran-
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dom sample of the neighbours of the solutions provides an estimation of the likelihood
that the solutions will remain valid, which represents an estimation of their robustness.
A first proposal of dynamism simulation in the solution space was presented in (Cli-
ment et al., 2009b; Salido et al., 2009) and was further extended in (Climent et al.,
2014).

We believe that both types of dynamism simulations (in the search space and in
the solution space) are interesting for the analysis of the robustness. Commonly, both
simulations coincide when the level of interaction between constraints is low. That is
to say, when the scope of the constraints differs significantly. However, we consider
that it is also interesting to include the dynamism simulation over the solution space
because it provides a good view of the interaction of the changes over all the bounds of
the solution space. For instance, in scheduling problems, as mentioned in Section 8.2,
one of the most common type of dynamism is delays over the tasks of the schedule,
which represent a change over the solution space. We also would like to mention
that according to the dynamism assumptions in scheduling problems, for such type of
problems the robustness was evaluated with robustness measures from the literature
(see Section 8.3).

9.3 Probabilistic Technique Evaluation

In this section, the probabilistic enumeration-based approach introduced in Chapter 4
is evaluated. As its name indicates, this approach requires probability distributions.
Specifically, the dynamism information that the approach considers is composed of
two functions associated with the constraints and domains of the CSPs: their prob-
ability of undergoing a restrictive modification (p(Ci)) and the magnitude of the re-
strictive modification (d(Ci)). As we mentioned in Chapter 1, the information de-
pendency of a proactive approach determines its usability. As previously mentioned,
there do not exist dynamic benchmarks in the literature, either benchmarks with such
dynamism information. Hence, we generated random dynamism functions associated
with the constraints and domains of CSP benchmarks from the literature: Academics
and Planning (acquired from Givry’s web page). For each benchmark, we generated
10 random instances with different random dynamism functions. For all the instances,
we fixed a cutoff time of 600s. The experimental results presented in this section can
be classified in two different parts: firstly, depending on the number of restrictive
constraints added to the modeled WCSPs and secondly, depending on the dynamism
functions.

The dynamism information associated with the CSPs determines the robustness
measurement of the solutions obtained. In Section 9.2 we explained several ways for
measuring the robustness when the dynamism data is unknown. In contrast, for this
probabilistic-enumeration based approach, each bound of the CSP has a likelihood
and a magnitude of change. For this reason, this information should be considered
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in the robustness measurement. In Section 4.2 we explained the new constraints gen-
eration for the modeled WCSPs. Due to these new generated constraints are based
on the dynamism information associated with the bounds of the original CSPs, they
represent future possible modifications that the bounds may undergo. Therefore, the
number of new generated constraints that a solution satisfies is a robustness indicator
considering this dynamism information. In (Climent et al., 2010) there are examples
of the simulation of restrictive modifications of informed constraints. Moreover, the
evaluation of the probabilistic enumeration-based approach can be found in (Climent
et al., 2012a).

In the tables and figures presented in this section, the number of new modified
constraints generated for a problem is denoted as m-C and from this set, the ones that
are satisfied by a solution, are denoted as s-C. Note that each addition of a modified
constraint to the previous static CSPi represent a dependent change and the union of
all the static CSPs composes a DynCSP.

9.3.1 Experiments based on the Number of Constraints Additions

In this first developed analysis our aim was to determine the effectiveness of the prob-
abilistic enumeration-based approach presented in this dissertation and to analyze the
influence of the parameter w in the robustness of the solution obtained. We recall that
the parameter w is the number of new generated constraints (which are added in the
modeled WCSP) for each bound of the original CSPs. This parameter is fixed by the
user according to the desired granularity. Thus, the greater the w parameter is, the
slighter the difference between the new constraints is.

Table 9.1 shows the number of original constraints (C) of the problems analyzed.
In addition, it can be observed how many new modified constraints were generated
(m-C). This number is directly related to the parameter w. However, there is a satu-
ration point for the number of new modified restrictive constraints that it is possible
to create. This happens when the granularity is so high that it is not possible to re-
strict more the previous generated constraint considering the dynamism parameters.
When this happen for certain w value, we call it the saturation point. This is fur-
ther explained in Section 9.3.1. For each analyzed problem, it is shown the number
of modified constraints satisfied (s-C) by the solutions computed by the probabilis-
tic enumeration-based approach (referenced as “WCSP-m”) and by an ordinary CSP
solver (referenced as “simple”). Furthermore, the difference in the number of satis-
fied modified constraints between both approaches is represented in table as D, that
is to say, that D is the improvement of our approach with respect to the ordinary CSP
solver.
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The robustness results obtained for the analysis show that for all the problems,
the number of new modified constraints satisfied (s-C) for the solutions found by the
probabilistic enumeration-based approach is always greater than by an ordinary CSP
solver. Therefore, the solutions obtained by our technique are more robust. The
highest improvement of the probabilistic enumeration-based approach is achieved for
the problem slangford 3 11 because the obtained solutions have the highest difference
in the number of modified constraints satisfied (D) with respect to an ordinary solver.

Figure 9.1 shows a graphic with four of the most representative problems of the
Table 9.1 and the difference in the number of modified constraints satisfied. In both,
this figure and Table 9.1, it can be observed the evolution of the robustness based
on the w parameter. From them, it can be concluded that the number of modified
constraints satisfied (m-C) by our approach and the improvement with respect to the
ordinary solver (D) are directly related to w: the greater w is, the greater these ro-
bustness measures commonly are. For example, the best robustness improvement is
achieved forw = 32 in the slangford 3 11 benchmark, since the solutions obtained by
our technique satisfy 720 new modified constraints more than the solutions obtained
by an ordinary CSP solver.
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Figure 9.1: Robustness analysis of the benchmarks based on w.

Nevertheless, as previously explained, when w takes the value of the saturation
point, it is not possible to increase the number of new constraints (m-C). Thus, in
this saturation point, D does not increase. Each problem has a different saturation
point, depending on the number of valid tuples for the constraints of the problem.
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For example, in Figure 9.1, it can be observed that the problem langford 3 9 has a
saturation point of w = 16, because D stops its increase for w > 16. Nevertheless,
Figure 9.1 shows that the other three problems do not have a saturation point lower
than or equal to w = 32, because in this point, D has not stopped its increase.

9.3.2 Experiments based on the Dynamism Functions

In this second evaluation performed, the main objective is to analyze the effect of the
dynamism functions in the robustness of the solutions obtained. For this purpose, we
selected two benchmarks: driverlog01cc and slangford 3 11, and we fixed w = 1.

Table 9.2 shows the number of new modified constraints (m-C), the number of
modified constraints satisfied (s-C) and the difference between these values (D). The
dynamism functions p(Ci) and d(Ci) are shorted as p and d. It can be observed
that the dynamism function p(Ci) does not have a significant effect in the robustness
improvement (D). The function p(Ci) is used in the cost assignment to the invalid
tuples of the new modified constraints. Thus, the function p(Ci) affects to the global
cost of the solutions obtained (V(s)) by increasing its magnitude, but it does not affect
significantly to the number of modified constraints satisfied (s-C).

Nevertheless, we can observe in Table 9.2 that the dynamism function d(Ci) has a
significant relation with the number of constraints satisfied (s-C) and also with the ro-
bustness improvement (D) of the probabilistic enumeration-based approach over the
ordinary CSP solver. The latter is shown graphically in Figure 9.2 for the two prob-
lems driverlog01cc (Figure 9.2(a)) and slangford 3 11 (Figure 9.2(b)) with a fixed
p(Ci) = 0.2.

The robustness improvement of our approach over the ordinary CSP solver (D)
increases when d(Ci) increases because the percentage of invalid tuples for a new
modified constraint also increases. For this reason, it is more likely that a non-robust
solution obtained by an ordinary solver satisfies less modified constraints (s-C). How-
ever, there is a saturation point which is d(Ci) = 0.8 for both problems. At this
point the number of new satisfied constraints decreases due to their high tightness,
and therefore, it is unlikely that the solutions are able to satisfy a high number of
such magnitude of restrictive modifications. For both problems the maximum level of
robustness improvement (D) is achieved for d(Ci) = 0.6.

9.4 Technique for Finite Linear CSPs Evaluation

In this section we evaluate the enumeration-based approach for finite linear CSPs. To
this end, we used our own random linear CSP generator (explained in Section 9.1).
We recall that Lecoutre’s generator only produces CSPs with non-convex constraints,
which are therefore extensionally represented. Furthermore, for these experiments,
we apply the dynamism simulation over the search space for linear constraints (see
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Table 9.2: Robustness analysis based on p(Ci) and d(Ci).
(a) driverlog01cc benchmark (C = 472).

p=0.2 p=0.4 p=0.6 p=0.8

d Approach m-C s-C D s-C D s-C D s-C D

0.2 simple 26 16 9 18 6 17 7 18 7
WCSP-m 25 24 24 25

0.4 simple 43 19 11 20 11 22 8 19 12
WCSP-m 30 31 30 31

0.6 simple 49 11 13 14 11 14 10 13 11
WCSP-m 24 25 24 24

0.8 simple 49 3 8 4 7 3 8 3 8
WCSP-m 11 11 11 11

(b) slangford 3 11 benchmark (C = 550).

p=0.2 p=0.4 p=0.6 p=0.8

d Approach m-C s-C D s-C D s-C D s-C D

0.2 simple 550 437 76 437 75 440 72 435 78
WCSP-m 513 512 512 513

0.4 simple 550 330 91 331 93 331 89 333 91
WCSP-m 421 427 420 424

0.6 simple 550 215 94 217 95 219 91 224 86
WCSP-m 309 312 310 310

0.8 simple 550 107 75 108 73 112 65 178 71
WCSP-m 182 181 117 107
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Section 9.2). The following evaluation of the enumeration-based technique for finite
linear CSPs is also shown in (Climent et al., 2011).

Table 9.3 shows several binary CSP topologies and the average results obtained
for the 10 random instances generated for each topology. The classification is shown
according to the CSPs parameters: number of variables: |X |, domain size: |D|, num-
ber of constraints: |C| and tightness. For each instance type, we measure the average
number of static CSPs (Mod) that could be generated from CSP0 (until there does
not exist a solution for the instance). All the static CSPs of an instance compose
the DynCSP. The percentage of static CSPs satisfied by the solutions found by our
approach is presented in %Sat. The average runtime (in seconds) of the WCSP mod-
eling phase is denoted as timeM . Here, it is encompassed the time for calculating
the distances to the bounds and also the time for modeling the WCSP according to
the cost functions. In addition, the average runtime for solving the WCSP by the
ToulBar2 solver is indicated as timeS.

Table 9.3: Percentage of static CSPs satisfied and computing times (s).

|X | |D| |C| tightness Mod %Sat timeM timeS

50 100 50 0.1 78.2 50.9% 0.22 1.34
100 100 50 0.1 90.8 68.5% 0.23 1.11
150 100 50 0.1 99.3 82.1% 0.23 0.94

100 80 60 0.2 60.8 53% 0.16 0.7
100 120 60 0.2 87.4 56.8% 0.3 2.37
100 200 60 0.2 158 62.9% 0.9 13.72

100 50 30 0.2 46.6 78.8% 0.27 0.2
100 50 60 0.2 36.1 50.4% 0.48 0.38
100 50 80 0.2 10.6 31.5% 0.64 0.44

150 200 60 0.1 184 72.1% 1.16 6969
150 200 60 0.25 143 54.9% 0.81 8405
150 200 60 0.4 95.6 50.9% 0.82 6452

The results show that the enumeration-based approach for finite linear CSPs finds
solutions that remain valid for a high number of restrictions over the constant term
of the bounds of the CSPs. For example, for instances with |X | = 150, |D| =
100, |C| = 50 and tightness = 0.1, an average of 99.3 static and feasible CSPs
could be generated and the 82.1% of them were satisfied by the solutions obtained by
our enumeration-based approach, which indicates the high robustness of the solutions
when faced with this type of restrictive modifications. The modeling phase was car-
ried out (in average) in 0.23s and the solutions for the modeled WCSPs are found by
ToulBar2 solver in 0.94s in average. We would like to point out that the modeling
time required by our approach for all the instances analyzed, is low in comparison
with the solving time. We recall that the little computational time required by this
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evaluated approach (see Section 5.3.2) is one of its advantages.
For these experimental results, we presented a wide range of CSP parameters

in order to analyze their influence in the robustness of the solutions. The highest
percentages are achieved when the number of variables and the domain sizes are high
and the tightness and the number of constraints are low. Note that for the rest of
the parameters fixed, when the number of variables or the domain sizes increase,
the solution space increases as well. In contrast, when the number of constraints or
the tightness increase, the solution space decreases. Hence, it can be concluded that
the higher robustness performance for these experiments was obtained for the low
restricted instances, which are instances with greater solution spaces.

9.5 Coverings Evaluation based on the CSP Parameters

In this section, we make an exhaustive analysis of a wide interval of values for the
CSP parameters and their influence in the robustness of the solutions obtained for
non-convex instances. For this purpose, we selected the enumeration-based approach
by coverings and we used RBGenerator 2.0 for generating 500 random non-convex
CSPs instances for each value of each parameter analyzed. Since in this analysis we
deal with the general case of CSPs with ordered domains, we use the general covering
definition (see Definition 6.1.1). For these experiments, instead of using a fixed k
parameter for all the CSP typologies, k is determined according to the characteristics
of the topology. We achieved a commensurate k value by fixing it to the smallest value
for which there is no tuple whose k-covering is complete for some Ci ∈ (C ∪ DC).
Furthermore, for this evaluation, we also analyze the approach that maximizes the
(1, 0)-repairability because it deals with non-convex spaces and it does not require
extra additional dynamism data. For all the approaches analyzed, the time cutoff was
fixed to 200s. The solutions obtained by an ordinary solver are also included in the
experiments. We performed a dynamism simulation over the search space, applying
both types of changes: dependent and independent. For the latter type of change, we
fixed maxd = 5, commensurate with the domain sizes of these problems. Part of the
evaluation presented in this section can be found in (Climent et al., 2013b).

The robustness analysis developed for the CSP parameters show a general pattern
according to the level of constrainedness of the CSPs. Firstly, we explain these general
behaviours and subsequently more specific information about the evaluation of each
CSP parameter is provided. For all the CSPs that are not extremely highly restricted
the mean number of changes satisfied by the solutions obtained by the enumeration-
based approach is higher than the changes satisfied by the solutions that maximize the
(1, 0)-repairability and the simple solutions. However, for CSPs that are very highly
restricted, the number of changes satisfied by the three solutions is similar, because
in these cases the CSPs have very few solutions and consequently the distances of
the solutions from the bounds is very low. Note that for most of these instances, the
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number of solutions is as low that the solutions are scattered, so the likelihood that the
solutions are located on the bounds of the solution space is very high. It could even be
the case that there do not exist solutions with at least one feasible neighbour solution
inside its 1-covering. In such case, all the solutions are equally non-robust according
to the limited assumptions made for CSPs with discrete and ordered domains. In
this section we present the experimental results obtained for the following parameters
of the CSP: number of variables, domain size and tightness. Similar results were
obtained for other parameters such as domain size and constraint graph density, which
are not included (for avoiding data repetition).

For all the following figures, the parameters of the analyzed CSPs are represented
as: < arity, number of variables: |X |, domain size: |D|, number of constraints:
|C|, tightness >. In each figure, the left vertical axis shows the mean number of
supported changes with the standard deviation (continuous line) or the modeling time
required by our technique (discontinuous line). The modeling time includes the time
required by Algorithm 6.1 for calculating the coverings and also the time necessary
for modeling the CSP as a WCSP. Data for dependent and independent changes are
shown separately.

Figure 9.3 shows robustness results when the number of variables of the CSP is
varied. In Figure 9.3(a) we see that the WCSP-mod solutions satisfy a higher mean
number of dependent changes for higher numbers of variables. (This is because the
larger CSPs are less constrained and therefore the number of solutions is higher.) The
maximum number of cumulative changes required to invalidate the WCSP-mod so-
lutions is 136.72, which was found for the maximum number of variables evaluated
(100 variables). However, for the same condition, the simple solutions and the so-
lutions that maximize the (1, 0)-repairability had their worst robustness results (just
6.49 and 6.63 for mean number of dependent changes without breakage, respectively).
For the smallest number of variables evaluated (20 variables), the improvement of
the enumeration-based approach over the other two approaches is much lower be-
cause this problem is highly constrained. The robustness obtained by our approach
for DynCSPs with independent changes (see Figure 9.3(b)) is more similar over all
the problems. This is because increasing the number of variables does not increase
the number of valid tuples associated with each constraint, which is the information
that our algorithm uses for computing the coverings and subsequently penalizing the
valid tuples of the modeled WCSP.

Figure 9.4 shows the WCSP modeling time (including the covering computation)
required by the enumeration-based approach under each condition. We see that al-
though there is an abrupt increase in time for the instance that has 80 variables, this
increase is only 0.016s. Increasing the number of variables only generates new unary
constraints associated with the domains (whose number of new valid tuples is their
domain size), and for this reason the increase of the time is not very significant in
comparison with other CSPs parameters.

These results were evaluated statistically, first with a two-factor Analysis of Vari-
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Figure 9.3: Robustness-variables analysis (<2, |X |, 18, 200, 0.22 >).
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Figure 9.4: Modeling Time (s) of WCSP-mod technique.

ance (ANOVA), followed by the Tukey HSD test for differences between pairs of
individual means ((Hays, 1973), (Winer, 1971)). For the experiment with cumula-
tive changes, the main effects (algorithm and problem) were highly significant; for
algorithms, F (2,7485)=1948.1, p << 0.001; for problems, F (4,7485)=137.3, p <<
0.001. In addition, the interaction was statistically significant: F (8, 7485) = 149.3,
p << 0.001. Because of the large number of tests made under each condition, the
Tukey HSD statistic was very small (approx. 0.1), so all but one of the differences
between means were statistically significant. For the experiment with independent
changes, the F statistics were somewhat smaller, but still greater than 100, so both the
main effects and interaction were highly significant statistically. Here HSD = 0.08, so
almost all differences between means were statistically significant.

Figure 9.5 shows the robustness analysis for different range of domain sizes. In
Figures 9.5(a) and 9.5(b), we observe that with our technique the mean number of
cumulative or independent changes that leave the solution satisfied is markedly in-
creased as domain size increases. In these cases, the CSPs are much less constrained
and in addition the number of valid tuples associated with each constraint is greater.
(This means that the likelihood of finding a tuple surrounded by a high number of valid
tuples is greater.) The largest mean for cumulative changes before solution breakage
is 869.12, while for independent changes it is 311.06. These best robustness results
for the WCSP-mod solutions were obtained for the maximum domain size analyzed,
which is 90. For the same condition, the other two methods found solutions that were
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distinctly less robust. Thus, the mean number of changes before solution breakage
was less than 10% of the mean with our method for cumulative changes and less than
22% of the mean for sequences of independent changes.

As shown in Figure 9.6, the maximum difference in modeling time required for the
different types of instances is 0.78s. The main reason for the increase with increasing
domain size is that this parameter is directly related to the number of valid tuples of
the constraints, which has a high impact on the computational time of Algorithm 6.1.

For both domain size experiments, the ANOVA gave F values that were highly
significant statistically, for both of the main effects and for the interaction. Given the
small value for HSD (again, about 0.1 in each case), all differences between individual
means were statistically significant with p = 0.01.

In Figure 9.7(a) the robustness analysis according to several tightness values is
shown. It can be observed that the mean number of cumulative changes before solu-
tion breakage decreases as tightness increases and the problems become more con-
strained overall. The maximum mean number of cumulative changes allowed by
the WCSP-mod solutions is 289.83, which was found for the lowest tightness value
(0.1). For this instance, the simple solutions and the solutions that maximize the
(1, 0)-repairability had their worst results since their solutions became invalid after
fewer than 8 changes. For the maximum tightness evaluated (0.9), even when the
problem had only 5 solutions the enumeration-based approach by coverings was able
to find solutions that remained valid for a few more dependent changes than solutions
found by the other algorithms (the mean difference was 6).

From these experiments we conclude that for CSPs that are not highly restricted,
the mean number of changes before solution breakage for solutions obtained by the
enumeration-based approach is much greater than the number of changes for solutions
obtained by either of the other techniques. For CSPs that are very highly restricted,
the number of changes allowed by solutions obtained by the three methods is similar.
This is because in these cases the CSPs have very few solutions and consequently the
distances of all solutions from the bounds is very low. For most of these instances,
solutions are scattered within the tuple-space, so the likelihood of a solution being
located on the bounds of the solution space is very high. For problems of low con-
strainedness, the solution space is greater and therefore the likelihood that there are
solutions surrounded by neighbour solutions is also higher. However, this feature
presents a disadvantage for techniques that search for (1, 0)-super-solutions because
the likelihood that there is a large percentage of solutions with a high number of re-
pairable values is greater also. In this case, among all equally stable solutions this
technique finds a solution according to the lexicographical value ordering.

With respect to the two types of DynCSPs generated (dependent/independent
changes), we found that the mean number of dependent changes satisfied is higher
(and less variable) than the mean number of independent changes satisfied. This is
largely due to the magnitude of the changes simulated. Figure 9.7(b) shows that the
mean number of independent changes allowed by solutions found by the enumeration-
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Figure 9.5: Robustness-domain analysis (< 2, 25, |D|, 75, 0.45 >).
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Figure 9.6: Modeling Time (s) of WCSP-mod technique.

based approach also decreased as tightness increased. Although this decrease is not
as marked as for cumulative changes, there was a difference of almost 10 between the
means for the most and the least constrained problems. Figure 9.8 shows the modeling
time required by our technique for each instance. The maximum difference between
instances was 0.155s. As mentioned, Algorithm 6.1 spends more time finding cover-
ings for low tightness values (because the number of valid tuples is also low).

These results were evaluated statistically with a two-factor Analysis of Variance
(ANOVA) followed by the Tukey HSD test for differences between pairs of individual
means ((Hays, 1973; Winer, 1971)). For both tightness experiments, the ANOVA
gave F values that were highly significant statistically. Because of the large number
of tests made under each condition, the Tukey HSD statistic was very small (about
0.1 and 0.08), so almost all differences between individual means were statistically
significant for p = 0.01.

9.6 Non-convex Random CSPs Evaluation

In this section, we evaluate the robustness and stability of the solutions obtained by the
two approaches that deal with general non-convex CSPs with ordered domains: the
enumeration-based approach by coverings and the search algorithm (Climent et al.,
2014). Unlike the enumeration-based approach for Linear CSPs, these approaches
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Figure 9.8: Modeling Time (s) of WCSP-mod technique.

are able to deal with non-convex CSPs. For the evaluation of such type of CSPs,
non-convex random CSPs were generated by the RBGenerator 2.0. The generated
CSPs have 25 variables with domain size 30 and 200 binary extensional constraints.
Domain values are integer values in the interval [0, 29]. In this section, a range of
tightness values are analyzed in order to extract conclusions about their effect in the
quality of the solutions obtained. Specifically, we analyze the tightness values: 0.1,
0.2, and 0.3. (Note: 0.34 is the critical value of the tightness of this CSP typology).
For each tightness we generated 10 random instances. Since in this analysis we deal
with the general case of CSPs with ordered domains, we use the general covering
definition (see Definition 6.1.1) for the enumeration-based approach and we fix the
set of operators for our search algorithm (see Algorithm 7.1) to ⊕ = {{>,+}, {<
,−}} and its value selection heuristic is the second, which maximizes |Nk(x, v, s,⊕)|
starting from intermediate values. The time cutoff was fixed to 100s.

For the evaluation of these both approaches, we pretend to analyze the effect in the
approaches performance of situations where a neighbour assignment is feasible for a
bound of the CSP but is not for another. In Section 9.2 we explained that changes
made in the solution space instead of in the search space consider such situations.
Therefore, the dynamism simulation selected for this evaluation was the dynamism
over the solution space. For such purpose, we sample the feasibility of the neighbour-
hood of the solutions by making certain number of random modifications of magni-
tude k = 1 over the values assigned to the variables of the solutions. The number
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of values assigned to the variables of the solutions that are modified, is denoted as
nbV arMod ∈ [1 . . . 10]. For each value of nbV arMod, we sampled 500 neigh-
bours over the solution analyzed and checked their feasibility. The average number of
feasible neighbours for each type of solution are shown in Table 9.4.

It can be observed that our search algorithm with either restarting options, dra-
matically outperformed the ordinary CSP solver and the technique that maximizes
the (1, 0)-repairability. It also outperformed the WCSP modeling approach for tight-
ness 0.2 and 0.3. The weakness of the modeling approach is when there exist situa-
tions in which there is a high relationship between constraints, because it computes
feasible neighbours for each constraint boundary. Thus, the higher the tightness, the
higher the likelihood of the existence of neighbour tuples that are feasible for one con-
straint/domain but not for another one. These conflicting situations are less frequent
in very unconstrained instances. Hence, for tightness 0.1, the performance of the
modeling approach is better for a high number of variables modified in the sampling
(nbV arMod). In regard to our search algorithm (see Algorithm 7.3), the restarting-
completion option provides better results than restarting-scratch (differentiated with
“R”) for very unconstrained instances, while they preform similarly for higher tight-
ness values. In Figure 9.9(b) we selected the nbV arMod = 2 to emphasize trends in
robustness and stability as a function of varying tightness.
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For the stability measurement, the (1, 0, 1)-repairability is used (see Definition
3.3.3), which measures the number of variables that can be replaced by a value lo-
cated at a distance one from the value assigned without modifying the rest of values
in the solution. Stability results are shown in Figure 9.9(a). As mentioned, if a solu-
tion value is lost, the objective is to find the closest repairable values. For this reason,
our algorithm does not consider feasible values that are k units greater or smaller
than the value assigned, since this could result in future solutions where the Manhat-
tan distance between the new solution and the original one would be exaggeratedly
great (see Section 3.3.1 for a detailed explanation). In contrast, the technique that
maximizes the (1, 0)-repairability considers any value as a repairable value. This fact
represents a disadvantage when searching for close repairable values in ordered do-
mains. This can be observed in Figure 9.9(a), where we can see the poor performance
of the super-solutions solver for the (1, 0, 1)-repairability.

Note that for CSPs that are very highly restricted, the stability and robustness of
the solutions obtained by all the evaluated methods are very similar. As previously
mentioned, this is due to the fact that in these cases the CSPs have very few solutions
and consequently the distances of all solutions from the bounds are very low. For most
of these instances, the number of solutions is so low that the solutions are scattered
within the tuple-space, so the likelihood of a solution being located on the bounds of
the solution space is very high. For the same reason, the likelihood that a variable has
a feasible repairable value that is near-by is very low. It can even be the case that none
of the solutions has an assignment with feasible neighbours located at distance k. In
this case, all the solutions are equally robust and stable for this k value.

9.7 Scheduling Benchmarks Evaluation

In this section, we evaluate scheduling benchmarks from the literature with the two
approaches that deal with general CSPs with ordered domains: the enumeration-based
approach by coverings and the search algorithm. In addition, a wide range of k values
is analyzed in order to evaluate the robustness/stability performance according to such
parameter. Part of the following evaluation can be found in (Climent et al., 2014). The
scheduling benchmarks analyzed are part of five sets of 10 job-shop CSP instances,
studied in (Sadeh and Fox, 1996). Each instance is composed of 10 jobs of five tasks
each and there are five resources. Each job has a random linear sequence of resources
to visit, with the exception of the bottleneck resources, which are visited after a fixed
number of operations (in order to further increase resource contention). The equiva-
lent CSP models that can be found in Christophe Lecoutre’s web page are composed
of 50 variables of domain sizes not greater than 150 elements and 265 constraints.

Since in these experiments we are dealing with scheduling problems, we included
the scheduling extensions explained in Chapter 8 to the approaches evaluated. Thus,
for the search algorithm approach, the set of operators of Algorithm 7.3 were fixed
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to ⊕ = {{>,+}} and the value selection is done with heuristic 1, in which values
are selected in lexicographical order. The enumeration-based approach by coverings
was also adapted by using the concept of greater covering (see Definition 8.6.1). As
mentioned, it was incorporated to the super-solutions solver the scheduling adaptation
explained in Section 8.7 that consists in considering only values greater or equal to
k as repairable values. For a proper comparison of all these approaches, we use the
same k range interval, as well as the same maximum cutoff time: 100s.

As mentioned in Section 9.1, the enumeration-based approach by coverings uses
a different solver than the other three approaches evaluated in this section. For this
reason, it is not possible to make a completely fear time computation comparison. For
the solver that we implemented, we used techniques from the literature that reduce the
solving computational time (i.e., restarting technique and bounds-consistency). This
effect is more marked in complex problems, such as scheduling problems. However,
it is unknown if such techniques are implemented in the ToulBar2 WCSP solver. This
WCSP solver is not able to solve all the instances of these benchmarks in the cutoff
time fixed. Hence, the enumeration-based approach was not included in all the exper-
iments presented in this thesis. However, it was included in a table that shows only
the results for the instances that the WCSP solver is able to solve in the fixed time
cutoff.

For measuring the robustness of the obtained schedules, we used the robustness
measures introduced in Section 8.3. A first robustness measurement assessment is
made by measuring the total slack whose duration does not exceed k, which is denoted
as tS(k). In addition, a more accurate measure is also used, Rs

slack(k) (see Equation
8.1), which measures the average total slack, minus the standard deviation multiplied
by the α parameter. The α parameter was fixed to 0.25, which is inside the interval that
the authors consider appropriate for this parameter. Another robustness measure used
is based on the resistance of a schedule when faced with perturbations, and is denoted
as Rs

F,Z (see Equation 8.2), where Z is the set of incidents that consist in delays of
durations up to maxd over the tasks. We used 2 different values for maxd: 1 and
k. In each case, we independently simulated 500 delays up to maxd units with equal
probability over the entire schedule and checked if the schedule remained valid. For
the stability measurement, again, (1, 0, 1)-repairability is used (see Definition 3.3.3),
which is equivalent to the measurement of the number of buffers of the schedule,
denoted as nbB. Note that the desired objective is that in cases where repairs are
necessary, the start time of a task is delayed in the shortest time possible.

The following figures and tables show the evaluation for two of the Sadeh prob-
lem sets. We show results for the e0ddr1 and e0ddr2 benchmarks in order to compare
robustness and stability of schedules obtained with different numbers of bottlenecks
in the problem (other parameters are fixed). Sadeh stated that the e0ddr1 benchmark
contained just one bottleneck and e0ddr2 benchmark contained two bottlenecks. Ta-
bles 9.5 and 9.6 show the means for the robustness and stability measures for schedul-
ing problems. In addition, other measurements are showed, including the number of
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schedules obtained nbS, total number of restarts done by the search algorithm nbR,
the total number of nodes explored nbN and the total number of failures nbF . Figure
9.10 shows the stability and robustness measurements (vertical axis): the mean num-
ber of buffers and mean Rs

slack(k) for the e0ddr1. The horizontal axis of the figures
represents the value of the ratio of parameter k.
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As expected, schedules obtained by all of the approaches for the e0ddr1 bench-
mark are more robust and stable than those for the e0ddr2 benchmark (see Tables 9.5
and 9.6) From the robustness analysis, we see that our search algorithm for k = 11
(for both restarting options) increased the robustness measure Rs

F,Z(k) by more than
0.5 units for problems with only one bottleneck. Therefore, as expected, the fewer bot-
tlenecks a scheduling problem has, the more robust the schedule obtained by our al-
gorithm. Detailed results for all robustness measures are found under columns tS(k),
Rs

slack(k), R
s
F,Z(1) and Rs

F,Z(k) in the tables. For instance, for the largest k value
analyzed (k = 11), the total sum of all the buffer times of duration up to k of the
schedule obtained by Algorithm 7.3 for restarting-completion is 140.2 time units for
the e0ddr1 benchmark and 109.67 time units for the e0ddr2 benchmark (more than
30 time units difference). Regarding the stability analysis, our algorithm for k = 1
restarting-scratch (differentiated with “R”) found schedules with four mean number
of buffers (nbB) more for the problems with one bottleneck than for the problems
with two bottlenecks for the best case. Therefore, as expected, the fewer bottlenecks
a scheduling problem has, the more stable the schedule obtained by our algorithm.

In both tables and both figures, we can see that Algorithm 7.3 with either restart-
ing option outperformed both the ordinary CSP solver and the super-solutions solver.
Furthermore, the analysis of the k parameter shows that when these parameters have
the lowest values, the number of buffers of the schedules found by our algorithm are
markedly greater than these two techniques (see Figures 9.10(a) and 9.11(a)). In con-
trast, the improvement in robustness for our algorithm with respect to the ordinary
solver is a little more marked for greater k values. For the e0ddr1 benchmark the ro-
bustness improvement of our schedules with respect to the (1, 0)-repairability is more
uniform over all the values of the k parameter (see Figure 9.10(b)). This fact is due
to the e0ddr1 benchmark is less constrained (it only has 1 bottleneck) and therefore it
is more likely that there exist buffers of long durations. Recall that (1, 0)-repairability
technique for scheduling problems only considers as repairable values those that are k
units greater than the assigned ones. For this reason, for high k values the likelihood
of finding those values is lower for more constrained instances.

Regarding the other robustness measures that are not plotted in the figure but are
shown in Tables 9.5 and 9.6, we see that there is a correlation between the Rs

F,Z(1)
measure and the number of buffers. This relation is expected, since the random in-
cidents generated for measuring Rs

F,Z(1) were delays of one unit time. Therefore,
the more buffers there are (whatever is their duration) the greater the likelihood that
a schedule can absorb delays of one time unit. In addition, the tS(k), Rs

slack(k) and
Rs

F,Z(k) measures are correlated. Recall that tS(k) is the total slack whose duration
does not exceed k andRs

slack(k) is its average minus the standard deviation multiplied
by an α parameter. Therefore, unless the distribution of the slack is very poor, the two
values must be proportional. Note that the lower the α parameter for Rs

slack(k), the
greater the proportionality with respect to the other two robustness measures. The
Rs

F,Z(k) measure is calculated by generating random delays up to duration k over the
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Figure 9.10: Robustness-stability-k analysis for the e0ddr1 benchmark.
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Figure 9.11: Robustness-stability-k analysis for the e0ddr2 benchmark.
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schedule. For this reason, this robustness measure is strongly related with the two
aforementioned. A example of the relation of all the aforementioned measurement
units can be observed in Table 9.5 for k = 11, where the schedules obtained with
restarting-scratch option (differentiated with “R”) have greater numbers of buffers
and Rs

F,Z(1) values, and schedules obtained with restarting-completion option have
greater tS(k), Rs

slack(k) and Rs
F,Z(k) values. This means that the latter has a greater

total slack whose duration does not exceed k, but its distribution is more limited.

In Tables 9.5 and 9.6 we also observe measurements that are not correlated with
robustness or stability, but important information can still be extracted from them.
For k > 1, the restarting-completion for our algorithm finds the greater mean number
of solutions (nbS). Only for k = 1 does the restarting-scratch (differentiated with
“R”) find more solutions. The greater k is, the easier it is to find new solutions whose
objective function is better than the maximum one (if the instance is not highly re-
stricted). Hence, the mean number of solutions found is greater for high k values.
For both restarting options, the mean number of solutions is considerably higher than
for the technique that maximizes the (1, 0)-repairability. This effect is stronger for
greater values of k because the condition of a repairable value for the latter technique
becomes more restrictive. Moreover, this technique considers all feasible values in the
domains as repairable values; as a result, feasibility checking is slower than for tech-
niques that assume only k neighbours (as our technique does). As expected, the mean
number of restarts (nbR) is much greater for the restarting-scratch option because the
other techniques only restart until finding the first solution. As a consequence, their
mean number of nodes explored (nbN ) and mean number of failures (nbF ) is lower.

The schedules obtained by Algorithm 7.3 for the lowest k value had the highest
number of buffers. However, the robustness measures are greater for the greater k
values. Depending on the dynamic nature of the problem, it would be desirable to
prioritize between a higher number of buffers of short duration and a lower number
of buffers of long duration (if the two features cannot both be maximized). Thus, if
there exists the knowledge that the possible future delays will have a duration of at
least d time units, it does not make sense to compute k values lower than d because
the obtained time buffers could not absorb the delay. Nevertheless, if it is known that
possible future delays cannot have a duration greater than d time units, then it does not
make sense to compute k values greater than d because this may decrease the number
of buffers. Hence, the more information about possible future changes we have, the
better the robustness results we can obtain. However, even if this information is un-
known, we can obtain a schedule with certain level of both robustness and stability by
setting k to an intermediate value in Algorithm 7.3.

The above evaluation consists in analyzing the best results obtained for each tech-
nique for the fixed cutoff time. However, we also wanted to analyze the change in
the degree of robustness and stability of the schedules found over the time. For this
evaluation, we used the e0ddr1 benchmark and determined the mean for 50 instances
for each interval of time with a discretization of 10s. Figures 9.12(a) and 9.12(b)
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Figure 9.12: Number of buffers over time intervals for the e0ddr1 benchmark.
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show the mean number of buffers found by each approach for k values equal to one
and seven. Other measures are not shown since similar trends were found in these
cases. We would like to note that after 20s the simple solution technique does not find
better schedules because it only searches for one schedule for each instance (which
is done in less or equal to 20s). The most remarkable aspect is that for k = 1 Algo-
rithm 7.3 for both restarting options obtains a greater number of buffer times than the
super-solutions solver for k = 1 for all time intervals (see Figure 9.12(a)).

Figure 9.12(b), which represents k = 7, shows more unstable results. Since it is
difficult to find buffers with up to seven time units, it may happen than our algorithm
sacrifices some shorter buffers in order to find one buffer of seven time units. Thus,
even if the overall tendency is for the measure to increase over the time, it is not en-
tirely uniform. However, the upward shape of the trend for the super-solutions solver
is due to the fact that it considers values as repairable if there is any possible alterna-
tive for the start time of a task that follows a task sharing the same resource, which is
not equivalent to have a slack associated with this task in the schedule. For this rea-
son, schedules that are considered more stable than other ones by this technique may
contain a lower number of buffers. This feature is more marked for greater values of
k, since the repairable values have to be at least k unit times greater than the assigned
values, and therefore it is more unlikely to find repairable values that are close to the
assigned ones.

On the basis of this evaluation, we can conclude that the difference in performance
between the two restarting options (restarting-completion and restarting-scratch) is
not very significant. Sometimes, the time needed to restart from scratch after each
solution makes this option less effective than restarting-completion. In other cases,
the restarting-completion option loses time in branches in which there are no better
solutions, while restarting-scratch explores other branches. For instance, for the ran-
dom experiments analyzed in Section 9.6, we concluded that restarting-completion
provided slightly better results generally (see Table 9.4 and Figure 9.9(b)), while for
the scheduling problems, restarting-scratch obtained schedules that were a bit more
robust and stable for lower k values (see k ∈ [1, 5] in Figure 9.10). For greater k
values, both restarting options gave similar results.

Subsequently, we present the experiments obtained for the enumeration-based ap-
proach by coverings for the e0ddr2 benchmark. As previously mentioned, we did not
incorporate the results in the other tables presented in this section because the WCSP
solver (ToulBar2) can not solve some of the instances. We recall that for developing
our solver, the simple solver and the super-solution solver, we included several algo-
rithms that improve the solver performance for scheduling problems, such as restart-
ing option, bounds consistency, etc. We would like to point out that depending on
the value of the k parameter, the modeling time required can produce that for some
instance the solving time is not enough. For instance, for k parameters that are greater
than 5, the modeling time required exceed the 100s, producing a time out. In Table
9.7 we incorporated the averages only for the instances that the enumeration-based ap-
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proach could solve (the same procedure was done for the other approaches analyzed).
The number of instances solved are as follow: five instances for k = 1, four instances
for k = 3 and six instances for k = 5. For greater k parameters we computed the
results of all the instances of the benchmark for the rest of the approaches analyzed.
We do not include the two restarting options for our search algorithm since, as men-
tioned, both obtain similar performances. In addition, we incorporated a new column
in Table 9.7 that indicates the average of the modeling time (coverings computation
and WCSP modeling) required by the enumeration-based approach by coverings. The
rest of the time until reaching 100s is the time that the WCSP ToulBar2 has for finding
the solutions. Even if the enumeration-based approach by coverings using the Toul-
Bar2 as a solver could not solve all the instances, it can be observed in the table that
for the solved instances outperformed all the other approaches analyzed (search algo-
rithm, super-solutions solver and ordinary solver). This improvement is more stressed
for the lowest k value, that is to say for k = 1. For which the enumeration-based ap-
proach achieves almost 15 buffers more than the search algorithm and more than 25
than super solutions. However, the disadvantage is that the modeling time increases
strongly when the k parameter increases and at some point is (k ≥ 7) not able to
provide a solution.

To conclude, we can state that for these experiments the super-solution approach
finds solutions with lower robustness and (1, 0, 1)-repairability than the approaches
that we presented in this dissertation for general CSPs with ordered domains. One
of the reasons of this behaviour, is that this technique considers any value greater
or equal to k than the value selected as repairable value. Thus, repairable values
located far from the value assigned are considered as repairable. Another reason is
that this technique only assumes that delays are of duration k. Thus, only values
greater than this value are considered as repairable values. However, we consider up
to k neighbours and therefore, slacks of duration lower than k are also valued by our
objective function in contrast to the (1, 0)-repairability objective function.

9.8 Summary and Limitations

In this chapter we performed experiments to the approaches presented in this disser-
tation in order to evaluate their significance and to determine their behaviour and per-
formance for different CSP topologies. Furthermore, we also analyzed benchmarks
from the literature. Among them, there are scheduling problems, which usually are
complex problems that come from dynamic and uncertain environments.

Firstly, we evaluated the probabilistic enumeration-based approach, which con-
siders extra dynamism data associated with the problems. As mentioned, this infor-
mation gathers the probability and magnitude of change of the bounds of the CSPs.
By means of the generation of new restricted constraints based on such information,
we concluded that the solutions obtained by the probabilistic approach are able to
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Table 9.7: Evaluation of ‘e0ddr2’ benchmark with the coverings technique.

k Approach modT (s) nbB tS(k) Rs
slack(k) Rs

F,Z(1) Rs
F,Z(k)

1 simple - 14 14 0.168 0.28 0.286
super - 19 19 0.262 0.38 0.39
neigh - 29.8 29.8 0.478 0.596 0.596
WCSP-m 9.21 45.8 45.8 0.848 0.916 0.908

3 simple - 14.25 37.25 0.44 0.285 0.2575
super - 16.5 44.25 0.5625 0.33 0.3
neigh - 21.25 57 0.7925 0.425 0.39
WCSP-m 38.03 31 86.25 1.3725 0.62 0.56

5 simple - 14.17 52.17 0.58 0.28 0.205
super - 23.83 53.79 0.77 0.48 0.44
neigh - 18.17 73.5 0.94 0.36 0.295
WCSP-m 82.91 23.83 97 1.38 0.48 0.37

7 simple - 14.11 68.22 0.75 0.28 0.19
super - 15.78 82.22 0.97 0.32 0.23
neigh - 17.22 88.67 1.09 0.34 0.25
WCSP-m - - - - - -

9 simple - 14.11 78.67 0.84 0.28 0.17
super - 15.56 92.89 1.06 0.31 0.2
neigh - 16.78 100.44 1.19 0.34 0.22
WCSP-m - - - - - -

11 simple - 14.11 87.44 0.91 0.28 0.15
super - 15.22 98.89 1.08 0.3 0.17
neigh - 16.11 107.67 1.22 0.32 0.19
WCSP-m - - - - - -
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satisfy a high number of these new constraints, specially for high values of granu-
larity (number of new generated constraints for each original bound), until arriving
to a saturation point. In addition, we explained how the magnitude of change has a
relationship in the robustness of the solutions obtained. Nevertheless, the limitation
of this informed approach is precisely the requirement of such dynamism data. Re-
garding the enumeration-based approach for finite linear CSPs, the solutions obtained
for such technique satisfied a high percentage or restricted linear constraints, specially
for low constrained problem topologies. However, the limitation of this technique is
that it is only addressed to finite linear CSPs.

At this stage, we evaluated the two general approaches presented in this disser-
tation that are much more versatile because they do not have the above mentioned
drawbacks. The first one is also an enumeration-based approach and it is addressed to
a type of dynamism restriction over the search space whilst the latter approach pro-
posed, which is a search algorithm, it is addressed to a type of dynamism restriction
over the solution space. After several experiments, we can conclude that in the dy-
namic and ordered environment analyzed in this dissertation, our general approaches
dramatically outperform both the ordinary CSP solver and the super-solutions solver
(for scheduling problems the improvement is less abrupt for the latter approach) un-
der many conditions where there are real differences in the robustness of solutions
that might be obtained. The latter occurs under conditions where the constraints
of the problem are not so great that there are only a few valid solutions. Regard-
ing scheduling problems, the improvement over the approach that maximizes the
(1, 0)-repairability for high k values is not as highly marked. Even so, our approaches
found schedules with a higher number of buffers and with a greater total slack, gener-
ally.

Regarding the comparison of our two general approaches, which check the fea-
sibility of the neighbourhood in different spaces (search space and solution space,
respectively) we observed that for scheduling problems the enumeration-based ap-
proach by coverings highly outperforms the search algorithm for low k values. How-
ever, due to the modeling time increases highly when the k parameter increases, for
high k values, the technique reached the time cutoff without providing any solution.
The highly modeling time required for instances with a high number of tuples for k
high values represents a limitation for this technique. In addition, we performed ex-
periments simulating dynamism over the solution space, in order to analyze the other
limitation of the enumeration-based technique, which happens when the tightness and
the topology of the CSPs produce situations in which some neighbour tuples are feasi-
ble for a bound of the CSP but are not for another (when the tightness is not very low).
In such cases, the search algorithm obtained better results than the enumeration-based
approach.

For the analysis of the search algorithm, we performed experiments with both
restarting options: restarting-completion and restarting-scratch. We concluded that
the difference in performance between they is not very significant, even if in some
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types of problems there exist little differences in their behaviour. For instance, restarting-
completion provided slightly better results generally in the random performed exper-
iments, while for the scheduling problems, restarting-scratch obtained schedules that
were a bit more robust and stable for lower k values. Furthermore, we show that
the search algorithm has a characteristic that represents a limitation in some complex
instances such as scheduling problems: the algorithm is not well informed at the be-
ginning of the search (because the feasibility checking is done while the CSP is being
solved), therefore, the time spent in some non-optimal branches due to this fact could
produce the reach of the time cutoff.

To conclude, in this chapter we empirically demonstrated the high performance
of the approaches presented in this dissertation for the ordered environments and cor-
respondingly their assumed dynamism. We also concluded after several experiments
with different CSP topologies that the best robustness results were obtained for low
constrained instances. We also applied the general approaches to complex schedul-
ing problems, obtaining schedules that are both robust and stable. Furthermore, we
analyzed the situations that are favouring/disfavouring each technique.
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Conclusions

In this dissertation, our main challenge has been the search of robust solutions for
CSPs in difficult situations in which there is a lack of extra detailed data about the fu-
ture possible changes that the problems may undergo. This challenge has represented
a difficulty itself due to the relationship of the robustness with regard to the informa-
tion that is known about the dynamism of the environment. In this thesis, we focus
on CSPs that model problems with ordered domains and therefore, we analyzed and
formalized a dynamism framework related to this field.

Furthermore, we presented theoretical approaches for dealing with such dynamism.
Based on them, we designed and developed four technical approaches. First, we pre-
sented a probabilistic enumeration-based technique that considers extra detailed in-
formation of the dynamism. The rest of the approaches presented in this thesis do not
consider extra dynamism information. One of them, which it is also an enumeration-
based approach, it is only addressed to finite linear CSPs, with the advantage that the
computational time is low. However, the other two approaches complete the drawback
of the specifiability of the latter approach. One of them is also an enumeration-based
approach that address a type of dynamism restriction over the search space. Whilst
the latter approach is a search algorithm addressed to a type of dynamism restriction
over the solution space.

Finally, after evaluating the techniques introduced in this dissertation, we state
several specific conclusions for each approach introduced. Furthermore, we showed
the competitive performing of our approaches for the extended concepts of robustness
and stability according to the assumptions made for problems with ordered domains.
Therefore, our approaches are effective for the search of robust and stable solutions for
CSPs with ordered domains. In this chapter we summarize the evidences that support
this statement. Thus, the contributions made in this thesis are explained in detail,
subsequently the limitations of the work presented in this dissertation are mentioned
and finally we describe some future lines of work and final conclusions. In addition,
the list of publications associated with this thesis is shown.

185
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10.1 Contributions

Typically, previous proactive approaches that search for robust solutions consider
some data (usually detailed) about future possible changes. However, if such informa-
tion is uncertain or unknown, the approach itself can not be applied. This drawback
has motivated the exploration of this new branch in dynamic and uncertain environ-
ments: robustness search without extra data about the future dynamism. We found
that it is possible to extract little dynamism assumptions in problems for which there
exists an order relationship over their elements. The explanation and formalization of
such assumptions and its framework is the first contribution of this thesis. Further-
more, we designed four different algorithms for dealing with this type of dynamism
in several scenarios. Finally, we extended the dynamism framework to scheduling
problems and adapted the general algorithms to this type of problem. All these con-
tributions mentioned, are summarized as follows.

10.1.1 New Dynamism Framework for Ordered Domains

The first contribution of this dissertation is the analysis and formalization of a type of
dynamism that is usually associated with this type of problems: dynamism takes the
form of expansions and restrictions over the bounds of the solution space. This was
motivated in Chapter 3 with different types of real life problems. In regard to this dy-
namism, we only consider the restrictive changes since relaxations can not invalidate
the original solution found, which is exactly what we try to avoid by searching for so-
lution robustness. We would like to point out that, as far as we know, such dynamism
framework is new in the literature. In addition it represents a significant contribution
since many real life problems have order relationships and therefore they can undergo
this kind of dynamism.

Another important contribution of this dissertation is the extension of the robust-
ness and stability concepts to this analyzed dynamism framework. Thus, according to
the little dynamism assumptions made, a solution is robust if it is located far from the
bounds of the solution space. This robustness concept has not been previously ana-
lyzed in the literature. Moreover, we extend the stability by incorporating the distance
concept, since in this context, the order over the elements is significant. Therefore,
in cases where a value of the solution is lost, it is important to replace it by a nearby
value in order to have a solution as similar as possible to the original one. This close-
ness feature is not handled by the existent proactive approach that searches for stable
solutions called super-solutions approach (Hebrard, 2006).

Furthermore, we presented two theoretical approaches that describe the main ideas
for dealing with such possible future restrictive dynamism over the bounds of the CSP.
One of them is addressed only to finite linear CSPs (convex solution spaces) and the
other theoretical approach is opened to both, convex and non-convex solution spaces
that are discrete. We would like to recall that the second theoretical approach, which
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introduces obvious advantages, since it is addressed to a large number of different
types of CSPs, has been a challenge itself due to the difficulty of calculating distances
to the bounds when the only information that the constraints provide is the set of
valid/invalid tuples associated with them. For this purpose, we proposed the search
of solutions with a great feasible neighbourhood, based in an ‘onion-like’ topology.
Even if this model has been successful in other fields, the application of this model
to CSPs is a novel idea. Furthermore, by fulfilling this criterion, we also increase the
stability of the solution related to its close repairable values.

Regarding the dynamism associated with this environment analyzed, and consid-
ering that in the literature there do not exist DynCSPs benchmarks, we proposed and
implemented several ways of simulating dynamism. We simulated random depen-
dent/independent restrictive changes over the search/solution space. This simulation
allows the solution robustness measurement in such ordered environments without
extra dynamism data.

10.1.2 Proposed Techniques and Designed Algorithms

In this dissertation we presented four approaches for finding robust and stable solu-
tions for CSPs that model problems with ordered domains that come from uncertain
and dynamic environments. One of the approaches introduced considers extra de-
tailed data about this type of dynamism. The other approach does not possess such
extra information.

Moreover, three of the approaches introduced are enumeration-based approaches
that assign certain penalizations to the tuples associated with each bound of a CSP,
composing a WCSP. The other approach presented is a search algorithm that searches
for a solution that maximizes an objective function. Following, the approaches intro-
duced are listed by their order of presentation:

1. Probabilistic Enumeration-based Technique.

2. Enumeration-based Technique for Linear CSPs.

3. Enumeration-based Technique for CSPs by Coverings.

4. Search Algorithm for CSPs.

As mentioned, the first approach is applicable to an informed dynamism ordered
framework. The main reason of the development of this informed approach is that it is
more accurate in the robustness search when there is detailed data about the possible
future restrictions over the bounds of the solution space. The second approach is re-
stricted to linear bounds. However it includes the advantage of the easiness and quick-
ness of the bounds distance computation. Therefore, its application is recommended
in cases in which a quick answer is needed and always that the linear requirements
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are satisfied. The third and fourth approaches are opened to any type of restriction,
therefore they have an extent field of applicability. The main difference between them
is that for the third approach, the robustness is modeled according to the feasibility
of the tuples of each bound, whilst for the fourth approach, the feasibility checking is
performed considering all the bounds. In addition, in Section 10.2.1 the repercussions
of the differences of these approaches are further explained.

For each of the above approaches, we developed an algorithm that fulfills the pur-
pose of its associated approach. For the first approach, we designed an algorithm
that considers the data that describes the possible future restrictions over the bounds
and it generates a WCSP that incorporates new modified constraints. For the second
approach, which it is addressed to finite linear CSPs, we designed an algorithm that
calculates the distances to each linear CSP bound. For the third approach, we designed
an algorithm for calculating the coverings of an assignment in a certain space. This
algorithm represents an important contribution since it is the first of this kind in the
literature. Finally, for the last approach, we designed a search algorithm that searches
for a solution that maximizes the number of closest contiguous solutions in each axis
of each variable of the solution. This idea is also novel in the literature and it has
been proved to be effective in the robustness and stability search. Furthermore, a CSP
solver that includes this search algorithm was implemented for the correct evaluation
of the approach. The design and development of the four approaches presented in this
dissertation, as well as their corresponding algorithms and the solver. They represent
a contribution to the related literature because they cover the unexplored field of ro-
bustness and stability search in the new dynamic framework with ordered domains
presented in this thesis.

Furthermore, in this dissertation we adapted the enumeration-based approach by
coverings and the search algorithm to scheduling problems. These problems are a
highly well-known type of real life problems that usually come from uncertain and dy-
namic environments, and therefore they are very significant for the related literature.
The extension of our approaches and algorithms to scheduling problems consists, ba-
sically, in restricting the selection of feasible neighbours only to greater values. This
has allowed the achievement of schedules with slack, which it is able to absorb unex-
pected delays in the tasks.

10.2 Conclusions of our Approaches

In this section we recall and summarize statements made throughout this disserta-
tion about the performance, and the advantages and disadvantages of the approaches
presented in this dissertation.
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10.2.1 Performance

We evaluated the approaches presented in order to demonstrate their performance. In
addition, we analyzed their behaviour when faced with a wide range of CSP topologies
and real life problems. We also analyzed the influence of the parameters associated
with each approach. Moreover, a proactive approach that does not require dynamism
information has been compared with our uninformed approaches.

For analyzing a wide range of CSP topologies, we generated random CSPs of
two types: finite linear CSPs and non-convex CSPs. For the generation of the first
type of CSPs, we implemented a random linear CSPs generator. In addition, we also
used an existing non-convex random CSP generator (RBGenerator 2.0). As previ-
ously mentioned, in order to perform the experiments, we implemented a CSP solver
that incorporates the search algorithm introduced in Chapter 7 (Algorithm 7.1). In
addition, we used a WCSP solver (ToulBar2) for solving the WCSPs modeled by our
enumeration-based approaches.

Furthermore, for the evaluation of the approaches presented in this thesis, we
had the difficulty that there do not exist benchmarks of DynCSPs. For this rea-
son, we performed a dynamism simulation by randomly restricting the bounds of
the search/solution space with dependent/independent modifications with the purpose
of estimating the robustness of the solutions obtained. For scheduling problems, we
use existing robustness measures from the literature. As previously mentioned, the
stability measurement was calculated with the (1, 0, 1)-repairability (see Definition
3.3.3).

After we conducted the experiments, we concluded that in the dynamic and or-
dered environment analyzed, our general approaches outperformed both ordinary CSP
algorithms and algorithms that maximize the (1, 0)-repairability under many condi-
tions where there are real differences in the robustness of solutions that might be ob-
tained. This improvement was more marked in non-scheduling problems, for which
the best improvement was obtained for low k values. One of the disadvantages of the
super-solutions approach in this ordered type of environment is that this approach con-
siders as repairable value any value in the domain. Thus, the feasible repairable values
can be located far from the selected solution. Furthermore, it only searches for an al-
ternative solution for each variable of the CSP, whilst our approaches search for the
contiguous surrounding solutions at distance lower or equal to k (which ensures min-
imum distances to the bounds). Hence, the super solutions technique considers all the
feasible values in the domains as repairable values; as a result, the feasibility checking
is slower than for techniques that assume only k neighbours (as our approaches do).

Regarding the influence of the k parameter over the solutions obtained, lower
k values tend to distribute the distance to the bounds more uniformly over all the
variable assignments. However, their total distance to the bounds is not usually high.
With higher k values we obtain higher total distances, even if their distribution is
worse. Depending on the dynamic nature of the problem, it would be desirable to
prioritize between these two criteria (if the two features cannot both be maximized).
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Thus, if there is knowledge that the possible future changes are going to be of a low
magnitude and highly frequent and distributed, it does not make sense to compute
high k values. The opposite would occur with high magnitudes of change but less
frequent: a high k value would be the recommended choice. This above mentioned
information would make more accurate the robustness and stability of the solutions
found, but it is not a requirement, since for any k value, our approaches are able to
find certain level of robustness and stability.

10.2.2 Strengths and Limitations

In this section we explain the advantages and weaknesses of the approaches presented
in this thesis. Some of them were briefly introduced in Section 10.1.2.

The most remarkable characteristic of the probabilistic enumeration-based tech-
nique is its accurateness due to the fact that it is an informed approach. However,
this informed property shows also a drawback, since as its name indicates, it requires
specific data, among them, the likelihoods of change. Moreover it also uses the in-
formation of the magnitude of the changes. In this way, this is a limitation due to the
necessity of such dynamism data. Even so, if the available dynamism information is
partial, the approach could be applied by modeling only this knowledge in the WCSP.
For instance, if there is a lack of information about the dynamism of a bound of the
CSP, it would be excluded of the new constraint generation and would be treated as a
hard bound (the same would happen if one of the bounds appears not to be dynamic).
Thus, the solution found would be robust for the other bounds with the dynamism
data available, but not for the uninformed bound.

The main advantage of the enumeration-based technique for linear CSPs is how
quick the bounds distance computation is and, consequently, the WCSP robustness
modeling. Nevertheless, its specific characteristic of being applicable only to finite
linear CSPs represents its main weakness.

Regarding the enumeration-based technique by coverings and the search algo-
rithm presented, indisputably their main advantages are that they do not need extra
dynamism data and that they are applicable to any type of constraint. In Table 3.1 we
listed the main properties of both approaches. Moreover, we further explain in detail
the differences and the positive/negative repercussions of both approaches.

• Type of Solver: Since the search algorithm technique is the main piece of a
solver itself, the solver depends on this algorithm. This fact has the advan-
tages that it is easy to incorporate other techniques, functions and/or heuristics
that improve their performance according to the characteristics of the prob-
lems analyzed. The latter is not possible for the enumeration-based approach
because it uses a generic solver. This provides versatility to the enumeration-
based technique, since the modeling phase is independent of the solving phase,
and therefore the user can select any type of WCSP solver.
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• Initial Information: Since the enumeration-based technique by coverings mod-
els the robustness in the WCSP before the solving process, the solver is highly
informed at the beginning of the search. However, the feasibility checking of
the search technique is performed while it is searching the solution. This prop-
erty only represents a limitation for the search algorithm in complex problems
in where we fix a time cutoff. If there were no time restrictions, the algorithm
would find the optimal solution.

• Optimality criterion: In one hand, the search algorithm checks the neighbour-
hood feasibility in the solution space and therefore it deals properly in situations
where a neighbour assignment is feasible for a bound of the CSP but it is not for
another, which is very useful in problems in which the constraints have a high
number of interactions and that have high tightness values. On the contrary, the
enumeration-based approach checks the feasibility for each individual bound.
Hence, a tuple that is considered a feasible neighbour for a constraint, could
be unfeasible for another constraint, and therefore it would be unfeasible in the
solution space. The fact that the search algorithm checks the neighbourhood
feasibility in the solution space, has the limitation that only neighbours on both
directions of each axis are checked. The diagonals are not checked due to the
vast combinatoriality of finding as many neighbours solutions (NP-hard).

• Spatial Cost: The strength of the search algorithm is that it does not generate
another extra data model and therefore its spatial cost is very low. On the con-
trary, the enumeration-based approach generates an extra WCSP file. Its spatial
cost is high for complex problems, since all the constraints must be extension-
ally represented.

After all the strengths and limitations mentioned above, subsequently we analyze
the best situations for using each approach. We endorse the use of the probabilistic
enumeration-based technique when there exist detailed dynamism information about
the future possible restrictions that the bounds of the CSPs may undergo. The use of
the enumeration-based technique for finite linear CSPs is only suitable for such type
of problems when a quick answer is required.

The approaches that we highly recommend for their generality and versatility are
the enumeration-based technique by coverings and the search algorithm. Among
them, we distinguish between two cases according to the computation time limita-
tions. We recommend the use of the search algorithm for low k values if there are
not time restrictions. For high k values the enumeration-based approach could pro-
vide better results due to the diagonals neighbourhood computation (if the interaction
between constraints is not high). When there are time limitations, we recommend the
enumeration-based approach iff the interaction between constraints is very low and
there are not tight spacial limitations. Otherwise, the search algorithm would be the
best choice. It would be also the best option for problems with a very high number
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of valid tuples associated to the constraints. These usability advices represent general
patterns, so they should not be taken as undeniable statements. Hence, depending on
the topology and characteristics of the dynamic problem, the performance of these
approaches can vary.

10.3 Future Work

In this section we mention two further lines of work that could be carried out in the fu-
ture as an extension of the work presented in this dissertation. The first one is related
to the dynamism knowledge associated with the problem. Specifically, it consists in
adapting the uninformed approaches presented in this dissertation for considering cer-
tain extra dynamism data. Thus, these techniques would be more accurate when this
dynamism knowledge is available. The other future line of work consists in com-
bining optimality criteria, where two of them are the robustness and stability of the
solutions.

10.3.1 Considering Certain Dynamism Information

We presented three uninformed approaches in this thesis. The fact that they do not
require extra dynamism data is one of their main advantages and it has represented
one of the main challenges of this dissertation. However, the adaptation of these ap-
proaches for considering certain information about the changes could represent an
interesting future line of work. For such variation, we could consider how the ro-
bustness is modeled/calculated by each type of approach. The enumeration-based
approaches model the robustness for each bound (constraints and domains) of the
CSP. The search algorithm computes the robustness according to the neighbour-
hood of each assignment of a variable that composes the solution. In this way, the
enumeration-based approaches could consider dynamism data about the constraints
and/or domains, whilst the search algorithm could consider dynamism data associ-
ated with the variables. In the rest of this section, we analyze the extension of these
approaches for dealing with probabilistic dynamism extra data.

For the uninformed enumeration-based approaches presented in this thesis, the dy-
namism information could consist on probabilities of the restrictions that the bounds
can undergo. The latter dynamism parameter, as well as a parameter that measures
the magnitude of change, have already been considered by the informed approach
presented in this dissertation. For the enumeration-based approach by coverings, this
informed extension could consist on pondering the costs of the bounds of the modeled
WCSP. For instance, the costs of all the tuples of a bound would be multiplied by its
probability of undergoing a restrictive change. Furthermore, the k-covering computed
for each bound would be fixed according to the magnitude of change of such bound.
Thus, the higher the magnitude of change is, the higher the k-covering computed is.
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Subsequently, we analyze a possible extension of the search algorithm for con-
sidering, as extra dynamism data, the likelihood that the assignment of a variable is
invalidated by a restriction of a bound in the future. This dynamism information rep-
resents a different point of view than the previous dynamism information analyzed.
An example of such dynamism can be found in scheduling problems. In this type of
problems, some tasks might have higher likelihoods of undergoing delays than the
others. Equation 10.1 is an extension of the objective function introduced in Chapter
7 (see Equation 7.2) that considers such probabilities. Thus, in the extended equa-
tion, each variable x ∈ X has a likelihood p(x) ∈ [0, 1[ that the assignment of x is
invalidated by a restriction of a bound in the future. By multiplying the probability
of each variable by its neighbourhood, we are prioritizing the variables with higher
probabilities.

f(s, k,⊕)= {
∑

x∈X\Xs

p(x)max{|Nk(x, v, s,⊕)|,∀v ∈ Ds(x)}+ (10.1)

∑
y∈Xs

p(y) |Nk(y, s(y), s,⊕)|}

10.3.2 Combining Optimality Criteria

In this dissertation, we developed approaches that deal with CSPs. A future line of
work, would be the extension of these techniques for handling constraint satisfaction
and optimization problems (CSOP). Thus, our models could be extended by including
other kinds of optimization criteria (in addition to the robustness and stability). For
instance, minimizing the time, maximizing the profit, etc. In a scheduling problem,
the desirable multi-objective criteria could be not only to increase the stability and the
robustness of the schedule but also to decrease its makespan. We consider that this
step would increase the versatility of our technique, since we could potentially find
robust and stable solutions while meeting several other optimality criteria.

A proposal for this extension for the enumeration-based approaches would be
to combine the costs associated with the tuples of the modeled WCSPs generated
with other penalizations according to the other criterion evaluated. For instance, if
some combinations of tuples are worse for a certain objective function, an extra cost,
representing a penalization, would be added to them. Therefore, for these tuples, the
likelihood of being selected as a part of the best solution, would decrease.

As mentioned, the search algorithm is highly adaptable, and therefore, an ex-
tension for adding other optimality criterion is quite straight forward. It consists in
adding the other criterion to the objective function to be maximized by the solutions
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that the search algorithm finds. If a criterion is positive, it is added to the objective
function. Otherwise, it is subtracted to the objective function.

For instance, in scheduling problems, a very well known criterion to minimize
is the makespan. Equation 10.2 represents a possible representation of this multi-
criterion objective function. The global objective function (F ) is a combination of
the robustness neighbourhood function f (see Equation 7.2) and the makespan (or its
upper bound estimation) of the partial/complete assignment s. These two criteria are
weighted by means of the α ∈ [0, 1] parameter. By means of this parameter, it is
possible to balance the priority of these criteria.

F (s, k,⊕) = α f(s, k,⊕)− (1− α)makespan(s) (10.2)

10.4 Final Conclusions

In this dissertation we defend that it is possible, reasonable and justifiable the devel-
opment of approaches for a dynamic, uncertain and ordered framework that fulfill the
four objectives stated in the abstract of this thesis:

First “Limit as much as possible the need for successive online problem solvings.”

Second “Limit as much as possible changes in the produced solution.”

Third “The production of solutions that are at the same time robust and flexible, that
have every chance to resist changes and can be easily adapted when they did
not resist, is obviously a desirable objective.”

Fourth “Ideally, no additional knowledge over the data used to build the classical
constraint network is required and no more expertise than for solving the prob-
lem without taking uncertainty into account.”

In this thesis we formalize a dynamism framework associated with problems for
which the order is significant. We also extend the definitions of robustness and sta-
bility for such framework. Furthermore, in this context, we present theoretical and
practical approaches. They allow to distinguish between the robustness of the solu-
tions of CSPs with ordered domains that do not have additional detailed information
about the dynamism. Finding solutions located far from the bounds is important when
we face restrictive modifications over the bounds of the solution space. Moreover, cer-
tain level of stability in the obtained solutions is achieved. In cases where a value is
lost, it is important to replace it by a nearby value in order to have a solution as simi-
lar as possible to the original one. Therefore, achieving both features in the solutions
obtained is extremely useful and practical in many real life situations where prob-
lems can undergo restrictive changes, especially if there is the added difficulty that
information about the possible future changes is limited or non-existent.
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Appendix A

Weighted CSPs File Format
Specification

In this appendix, it is described the file format Weighted CSP specification used in
this work for modeling the WCSPs: the WCSP file format. First, a description of this
format is introduced and subsequently a detailed example is described.

A.1 File Format Description

In this section, we explain the format used in this thesis for defining the WCSPs
generated by the enumeration-based approaches proposed in this thesis. The format
used is the WCSP file format, which can be found in Dechter’s group web page 1. The
WCSP format is a simple format which should be easy to parse by WCSP solvers. It
is composed of a list of numerical terms, except for the first one which defines the
name of the problem, separated by space, tabulation or end of line. Instead of using
names for making reference to variables, variable indices are employed. The same for
domain values. All indices start at zero. All the constraints are defined in extension,
by their list of tuples. A default cost value is defined per constraint in order to reduce
the size of the list. Only tuples with a different cost value should be given. All the cost
values must be positive. The structure of the format is: first, the name of the problem
and dimensions, then the definition of the variables, and finally, the definition of the
constraints. Files typically have the .wcsp extension.

A file in the wcsp format starts with the prologue:
<Problem name> < N > < K > < C > < U >, where

• <N> is the number of variables (integer).

• <K> is the maximum domain size (integer).
1http://graphmod.ics.uci.edu/group/WCSP file format
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• <C> is the total number of constraints (integer).

• < U > is the global upper bound of the problem (long integer).

The prologue is followed by the variable specifications:
<domain size of variable with index 0> ... <domain size of variable with index

N-1>

The constraints are specified as follows (in one line):
<Arity of the constraint>
<Index of the first variable in the scope of the constraint>
...
<Index of the last variable in the scope of the constraint>
<Default cost value>
<Number of tuples with a cost different than the default cost>

And for every tuple (again in one line):
<Index of the value assigned to the first variable in the scope>
...
<Index of the value assigned to the last variable in the scope>
<Cost of the tuple>

There can exist several constraints with the same scope (the solver should combine
them into one constraint). The arity of a constraint may be equal to zero. In this case,
there are no tuples and the default cost value is added to the total solution cost. This
can be used to represent a global lower bound of the problem. The goal is to find
an assignment of all the variables with minimum cost, strictly lower than the global
upper bound U . Tuples with a cost greater than or equal to U are forbidden (hard
constraint).

A.2 Example

This section describes the WCSP file generated for the WCSP model described in
Section 4.5. The original informed CSP (P) (see Example 4.5) is represented in Table
A.1 (left) and its WCSP model (modP ) is described in Table A.1 (right).

Recall that the original CSP represented in Table A.1 (left) is composed by two
variables of domain size five, and four constraints. We would like to highlight that for
this modeling example, one new constraint is generated for each original constraint.
The rest of the parameters (variables and domains) remain the same. The first line
of Table A.1 (right) shows this information. In addition, a huge number is specified
for the parameter U because the costs associated with valid tuples must be negligible
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Table A.1: Informed CSP (P) (left) and WCSP modeled (modP ) (right).

P modP

Variables: filename.wcsp 2 2 8 8 100000000
X0 . . . X1 8 7
Domain:
D0 : 3− 7
D1 : 2− 6
C1(0.2, 0.2) : x0 + x1 ≤ 12 2 0 1 100000000 24

{(3 2 0), (3 3 0), (3 4 0), (3 5 0), (3 6 0), (4 2 0),
(4 3 0), (4 4 0), (4 5 0), (4 6 0), (5 2 0), (5 3 0),
(5 4 0), (5 5 0), (5 6 0), (6 2 0), (6 3 0), (6 4 0),
(6 5 0), (6 6 0), (7 2 0), (7 3 0), (7 4 0), (7 5 0)}
2 0 1 20 19
{(3 2 0), (3 3 0), (3 4 0), (3 5 0), (3 6 0), (4 2 0),
(4 3 0), (4 4 0), (4 5 0), (4 6 0), (5 2 0), (5 3 0),
(5 4 0), (5 5 0), (6 2 0), (6 3 0), (6 4 0), (7 2 0),
(7 3 0)}

C2(0.8, 0.4) : x1 + x0 ≥ 6 2 1 0 100000000 24
{(3 3 0), (3 4 0), (3 5 0), (3 6 0), (4 2 0), (4 3 0),
(4 4 0), (4 5 0), (4 6 0), (5 2 0), (5 3 0), (5 4 0),
(5 5 0), (5 6 0), (6 2 0), (6 3 0), (6 4 0), (6 5 0),
(6 6 0), (7 2 0), (7 3 0), (7 4 0), (7 5 0), (7 6 0)}
2 1 0 80 14
{(4 5 0), (4 6 0), (5 4 0), (5 5 0), (5 6 0), (6 3 0),
(6 4 0), (6 5 0), (6 6 0), (7 2 0), (7 3 0), (7 4 0),
(7 5 0), (7 6 0)}

C3(0.4, 0.3) : x1 − x0 ≤ 2 2 1 0 100000000 24
{(3 2 0), (3 3 0), (3 4 0), (3 5 0), (4 2 0), (4 3 0),
(4 4 0), (4 5 0), (4 6 0), (5 2 0), (5 3 0), (5 4 0),
(5 5 0), (5 6 0), (6 2 0), (6 3 0), (6 4 0), (6 5 0),
(6 6 0), (7 2 0), (7 3 0), (7 4 0), (7 5 0), (7 6 0)}
2 1 0 40 16
{(3 2 0), (4 2 0), (4 3 0), (5 2 0), (5 3 0), (5 4 0),
(6 2 0), (6 3 0), (6 4 0), (6 5 0), (6 6 0), (7 2 0),
(7 3 0), (7 4 0), (7 5 0), (7 6 0)}

C4(0.2, 0.4) : x0 − x1 ≤ 4 2 0 1 100000000 24
{(3 2 0),(3 3 0), (3 4 0), (3 5 0), (3 6 0), (4 2 0),
(4 3 0), (4 4 0), (4 5 0), (4 6 0), (5 2 0), (5 3 0),
(5 4 0), (5 5 0), (5 6 0), (6 2 0), (6 3 0), (6 4 0),
(6 5 0),(6 6 0), (7 3 0), (7 4 0), (7 5 0), (7 6 0)}
2 0 1 20 14
{(3 3 0), (3 4 0), (3 5 0), (3 6 0), (4 3 0), (4 4 0),
(4 5 0), (4 6 0), (5 4 0), (5 5 0), (5 6 0), (6 5 0),
(6 6 0), (7 6 0)}
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with respect to U . For this example we fixed U = 100000000. The second line of
Table A.1 (right) fixes the maximum domains of the variables.

The rest of lines of Table A.1 (right) represent the constraints of modP . For the
clarification of their representation, one original constraint (C1) and one new gener-
ated constraint (C41) are explained in further details in the following.

The first original constraint is C1 and it is composed by the variables x0 and x1.
This is the respective order of its tuples (the first number refers to the assigned value
to x0 and the second one to the assigned value to x1). This constraint has 24 valid
tuples. Since this constraint is hard, the rest of the tuples are not allowed to be part
of a solution. This fact is represented in modP by assigning a default cost of U
to all of them. The first valid tuple of C1 is (x0 = 3, x1 = 2) and the last one is
(x0 = 7, x1 = 5).

The last new generated constraint of modP , called C41, has also the same two
variables (with the same tuples representation order than C1). However, C41 has only
14 tuples that satisfy it (see the calculation of |T (C41)| above). For this reason, the
cost assigned to them is zero (since they do not have to be penalized). The tuples that
do not satisfy the new constraint C41 have a default cost of 20 because p(C4) = 0.2
for P (see Example 4.5). Note that this cost is much lower than the cost U . For this
reason these tuples are allowed to be part of a solution (soft constraint), however any
solution that is composed by any of these invalid tuples has associated a penalization
cost.
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