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Abstra
t

Online data storage is often regarded as a growing business, yet many unre-

solved issues linger in this spe
i�
 �eld and prevent resear
hers from driving

it to full 
apa
ity. Data repli
ation (most 
ommonly known as ba
kup) is

simply not e�
ient when improving persisten
e and a

essibility of su
h data.

Error 
orre
ting 
odes are known for their e�
ien
y when adding redundan
y

to avoid lose of information. Unfortunately, the use of error 
orre
ting 
odes

entail additional problems su
h as the repair problem: how do we repla
e a

storage node downloading as less data as possible from other nodes.

In this dissertation, we deepen on state-of-the-art of 
odes applied to dis-

tributed storage systems. Additionally, a family of regenerative 
odes whi
h

we 
all quasi-
y
li
 �exible regenerating 
odes is provided. Quasi-
y
li
 �ex-

ible minimum storage regenerating (QCFMSR) 
odes are 
onstru
ted and

their existen
e is well-proven. Quasi-
y
li
 �exible regenerating 
odes with

minimum bandwidth 
onstru
ted from a base QCFMSR 
ode are also pro-

vided.

Quasi-
y
li
 �exible regenerating 
odes are very interesting be
ause of

their simpli
ity and low 
omplexity. They allow exa
t repair-by-transfer in

the minimum bandwidth 
ase and an exa
t pseudo repair-by-transfer in the

MSR 
ase, where operations are needed only when a new node enters into

the system repla
ing a lost one.

Finally, we propose a new model whereby storage nodes are pla
ed in

two ra
ks. This unpre
edented two-ra
k model is generalized to any number

of ra
ks. In this spe
i�
 set-up, storage nodes have di�erent repair 
osts

depending on the ra
k where they are pla
ed. A threshold fun
tion, whi
h

minimizes the amount of stored data per node and bandwidth needed to

regenerate a failed node, is also shown. This latter threshold fun
tion gen-

eralizes those given by previous distributed storage models. Tradeo� 
urves

obtained from this threshold fun
tion are 
ompared with those obtained from

previous models, and it is shown that this new model outperforms previous

ones in terms of repair 
ost.
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Resum

En
ara que l'emmagatzematge online d'informa
ió és un nego
i 
reixent, no

està exempt de problemàtiques, una d'elles és la persistèn
ia i a

essibilitat

de les dades. Cal repli
ar les dades de manera que si es perd una 
òpia

no es perdi la informa
ió de forma de�nitiva. Malauradament, la repli
a
ió

de dades (
oneguda 
om a �ba
kup�) no és una solu
ió e�
ient, ja que in-

trodueix molta redundàn
ia que provo
a sobre 
ostos. Els 
odis 
orre
tors

d'errors són 
oneguts per augmentar la persistèn
ia i l'a

essibilitat de les

dades minimitzant la redundàn
ia ne
essària. Però el seu us introdueix al-

tres problemes 
om l'anomenat �repair problem�: 
om substituir un node

d'emmagatzematge des
arregant el mínim de dades dels altres nodes.

En aquesta disserta
ió, estudiem l'estat de l'art pel que fa als 
odis apli-


ats a sistemes d'emmagatzematge distribuïts, 
om per exemple el �
loud

storage�. També ens introduïm al �repair problem� des de la vessant més

apli
ada, usant topologies de sistemes reals 
om els �data 
enters�.

Con
retament, aportem una família de 
odis regeneratius que anomenem

quasi-
y
li
 �exible regenerating 
odes i que es 
ara
teritza per minimitzar

l'ús de re
ursos 
omputa
ionals en el pro
és de regenera
ió d'un node. Al-

hora, aquesta solu
ió minimitza les dades emmagatzemades i l'ample de

banda ne
essari per regenerar un node que falla.

També estudiem el 
as en que els 
ostos de des
àrrega de les dades no

són homogenis. En 
on
ret, ens 
entrem en el 
as dels ra
ks, on els nodes

d'emmagatzematge estan distribuïts en ra
ks, i el 
ost de des
àrrega de dades

dels nodes en el mateix ra
k és molt menor que el 
ost de des
àrrega de dades

dels nodes en un altre ra
k. Aquest nou model generalitza els models teòri
s

anteriors i ens permet 
omprovar que els 
ostos poden disminuir si adaptem

el model teòri
 a la topologia 
on
reta del sistema d'emmagatzematge dis-

tribuït.
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Chapter 1

Introdu
tion

Sin
e the beginning of time, humans have had a keen desire to explain a
tiv-

ities, thoughts, dis
overies, 
ustoms or any other information that we think

would be relevant now or in the future. This desire has led us to �nd ways

of representing su
h information.

The pro
ess of representing information requires three elements: the in-

formation, the te
hnique used to represent it and the obje
t used to store

it. Prehistori
 paintings are information about a
tivities done by prehistori


humans, this information is represented by paintings and it is stored in stone.

Nowadays digital 
ameras 
apture images of a spe
i�
 instant of time, repre-

sent them using bytes, and store them in a digital storage devi
e, for example

a solid state 
ard.

The se
ond law of thermodynami
s says that entropy always in
reases,

whi
h means that all the elements used for storage wear out as time passes,

and the information stored in them will irretrievably be lost. From prehistori


paintings drawn on stone to digital newspaper, one of the main goals is to

keep the information available over the maximum possible amount of time. If

the information is lost, there is no way of re
overing it, so we have to prevent

this situation. For example, old prehistori
 paintings are usually restored by

experts, and digital data is repli
ated to tolerate storage devi
e failures.

In this resear
h, we fo
us on digital information. We assume that it is

relevant enough to keep it available over time, and that it is stored using a

digital storage devi
e.

To approximate the reader to the big pi
ture of digital data storage, it is

interesting to know that in 2002, humanity started to store more information

on digital than on analog storage devi
es. In 2007, Intl. Data Corp (IDC)

estimated that the amount of information 
reated, 
aptured, or repli
ated

1



2 Chapter 1. Introdu
tion

ex
eeded available storage for the �rst time. In the same year, the world's

stored information was 295 exabytes, whi
h 
orresponds approximately to

two sta
ks of CDs stret
hing from the earth to the moon. Moreover, the

amount of stored information is doubling roughly every 3 years.

The in
reasing use of the Internet, the appearan
e of lots of devi
es that

use it (su
h as tablets or mobile phones), and globalization has 
hanged

the 
omputer s
ien
e paradigm in many senses. From the storage point of

view, users want their information to be available from anywhere easily and

instantly. For example, a user edits his data using a personal 
omputer and

wants this data to be available on his mobile phone immediately, so he 
an

send it to his friends. Or a user wants to share a do
ument with his work-

group, so they 
an edit it without the mess that di�erent versions, emails

and 
rossed editions 
ause.

Network Distributed Storage Systems (NDSS) has been proposed as the

main tool to store and manage information. NDSS is based on storing the

data in devi
es whi
h are 
onne
ted through a network. The data stored

in an NDSS 
an be a

essible from anywhere with an Internet 
onne
tion,

edition is instantaneously applied and persisten
e is assured. Examples of

NDSS are everywhere, email web based appli
ations like gmail, shared do
-

ument appli
ations like Google Drive [In
12℄, network storage appli
ations

like Dropbox [In
07℄ or BitTorrent �le sharing appli
ation [Coh09℄.

In general, one 
an divide NDSS into two big families: peer-to-peer (P2P)

appli
ations and data 
enters. P2P appli
ations are based on sharing �les

between users. Firstly, a user has a �le and shares it using a P2P appli
ation.

Then, other users 
an download the �le, store it, and share it with others. The

more users have repli
as of the �le, the more the �le is available, be
ause if one

user goes o�ine, the �le is still a

essible via the other repli
as. Moreover,

ea
h �le is split into pie
es, so it is possible to parallelize the download

pro
ess, de
reasing the time needed to download the �le and in
reasing the

availability of the �le.

Data 
enters are probably the most usual NDSS nowadays. Data 
enters

are physi
al buildings keeping lots of storage devi
es usually organized in

ra
ks, metalli
 supports designed to hold ele
troni
 equipment. Ea
h data


enter is typi
ally keeping thousands of ra
ks, ea
h one keeping dozens of

storage devi
es. Most of the biggest information te
hnology 
ompanies like

Google, Yahoo or Mi
rosoft have their own data 
enters.

Coding theory has been proposed as the latest evolution to keep all the

stored information persistent over time while adding as little redundan
y as
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possible in an NDSS. Nowadays, it is already assumed that repli
ation (ba
k-

ups) is not a realisti
 option for NDSS be
ause it is not s
alable. However,


oding theory does not address some of the problems that NDSS has to fa
e,

simply be
ause 
oding theory was designed with a di�erent purpose.

Many 
urrent data 
enters still use repli
ation be
ause of the drawba
ks

that 
lassi
al 
oding theory introdu
e, espe
ially the overhead in the band-

width used to repair one devi
e. However, be
ause of the re
ent improve-

ments in this �eld, 
ompanies are slowly introdu
ing 
oding theory in their

NDSS. The implementation of an upper layer to the Hadoop Distributed File

System [Apa12℄ by Fa
ebook, and the latest Google File System are examples

of appli
ations for NDSS where 
oding theory is used.

Storage devi
es have an approximate failure probability per year between

2% and 4%. In a data 
enter, a �le is distributed in between 3 and 14 storage

devi
es approximately. Ea
h data 
enter stores hundreds of thousands of

storage devi
es. This means that the failure of a storage devi
e is a 
ommon

o

urren
e, but simultaneously losing another storage devi
e 
ontaining the

same �les is very improbable. In this dissertation, we address the problem

of repla
ing a single storage devi
e in NDSS using 
oding theory.

In the following two paragraphs, the goals of this dissertation are ex-

plained. The �rst goal of the dissertation is to study the appli
ation of

regenerating 
odes in real environments and 
onstru
t, if possible, a family

of realisti
 regenerating 
odes. Nowadays, 
odes are in
reasingly used in real

appli
ations. However, regenerating 
odes are still in the theoreti
al envi-

ronment. In this dissertation, we have studied the regenerating 
odes from

a pra
ti
al point of view and we have proposed a new family of regenerating


odes spe
ially suitable for real environments. The results of this study have

been published in [GPV11b℄, [GPV11a℄ and [GPV13a℄.

The se
ond goal is to study how the spe
i�
 topology of a distributed

storage system 
an be used to improve the performan
e of the regenerating


odes. In this dire
tion, we have studied the data 
enters and their ra
k based

topology and we have developed a model to represent these data 
enters.

Using this model, we have realized that the use of the spe
i�
 topology

allows us to de
rease the theoreti
al limit of regenerating 
odes. The results

of this study have been published in [GPV13b℄ and [GPV13
℄.

This memory is organized as follows. In 
hapter 2, we review the basi



on
epts of 
oding theory and graph theory that have been used to develop

the 
ontributions exposed in the following 
hapters. In 
hapter 3, we ex-

pose our �rst 
ontribution, the 
reation of a family of regenerating 
odes

spe
ially suitable for being applied in a pra
ti
al environment. We 
all this
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tion

family quasi-
y
li
 �exible regenerating 
odes be
ause they �exibilize some

restri
tions of regenerating 
odes whi
h make them more suitable for realis-

ti
 environments. In 
hapter 4, we expose our se
ond 
ontribution, the ra
k

model. This model uses the ra
k based topology of data 
enters to provide a

better performan
e on the regenerating 
odes in these kind of ar
hite
tures.

Finally, in 
hapter 5, we expose our 
on
lusions. We also dis
uss the 
ontri-

butions of this dissertation and we provide some further lines of resear
h.



Chapter 2

Ba
kground

In this 
hapter, we introdu
e the basi
s of 
oding theory, network distributed

storage systems and 
oding theory applied to network distributed storage sys-

tems (NDSS). Firstly, in Se
tion 2.1, we explain some of the most important


on
epts of 
oding theory. Then, in Se
tion 2.2, we introdu
e the Network

Distributed Storage Systems. In Se
tion 2.3, we explain the most important


on
epts that appear when 
oding theory te
hniques are applied to NDSS.

Finally, we show the two most known approa
hes of using 
oding theory in

an NDSS: te
hniques based on designing 
odes for NDSS are seen in Se
tion

2.4 and network 
oding te
hniques 
ombined with 
odes are seen in Se
tion

2.5.

2.1 Coding theory

On the one hand, from the information theory point of view, the informa-

tion is de�ned as the set of symbols whi
h 
ompose the message. On the

other hand, the data is 
omposed of the information plus the redundan
y.

The redundan
y is the set of symbols whi
h do not add information to the

message.

Coding theory [MS77℄ is a well known mathemati
al theory introdu
ed by

Shannon [Sha49℄. The main goal of 
oding theory is to produ
e redundan
y

for a given information by using 
odes, a mapping from a set of information

symbols to a set of information and redundan
y symbols. This redundan
y

added is used to 
orre
t errors (symbols that have 
hanged their value) or era-

sures (symbols that have been erased). Moreover, su
h redundan
y should be

produ
ed with three main goals: redu
e the amount of redundan
y needed,

5



6 Chapter 2. Ba
kground

in
rease the 
apa
ity to error/erasure 
orre
tion and redu
e the 
omputa-

tional 
omplexity of the algorithms used.

Codes transform a set of information symbols into 
odewords 
omposed

of the information symbols and the redundan
y symbols, and this pro
ess is


alled en
oding. Ea
h one of the symbols of a 
odeword is 
alled 
oordinate.

Then, the 
odewords are sent through a noisy 
hannel whi
h may produ
es

errors and/or erasures 
hanging and/or erasing some 
oordinates. Finally,

the re
eived symbols are de
oded at the output of the 
hannel to obtain the

original set of information symbols.

There are a lot of appli
ations using 
oding theory te
hniques for trans-

mission like ADSL+ [GDJ05℄, satellite 
ommuni
ations [Eva08℄ or TCP/IP

proto
ol [For81℄ among others. There are also 
oding theory te
hniques

applied to storage appli
ations like CD/DVD [Imm94℄ or RAID systems

[PGK88℄.

2.1.1 Galois �elds

Finite �elds [LN96℄, also 
alled Galois �elds in honor of the mathemati
ian

Evariste Galois, are algebrai
 stru
tures whi
h 
ontain a �nite number of

elements (symbols) and in whi
h the operations of addition, subtra
tion,

multipli
ation and division (ex
ept by zero) between any two elements of the

�eld, result in another element of the �eld.

Let p be a prime number and let q = pm, m ≥ 1. We denote by Fq, the

�nite �eld of q elements. Moreover, Fq 
ontains the sub�eld Fp, and it is a

ve
tor spa
e over Fp of dimension m, unique up to isomorphism.

Let f(x) be an irredu
ible polynomial of degree m in Fp[x]. Then,

Fp[x]/(f(x)) is a �nite �eld with pm elements. Therefore, the elements of

any �nite �eld Fq 
an be seen as polynomials over Fp of degree less than m.

Example 1 (The binary �eld). The binary �eld F2 
an be 
onstru
ted from

Z2[x]/(x) and 
ontains two elements, that is, F2 = {0, 1}.

Example 2 (The �eld F22). The polynomial f(x) = x2 + x+1 is irredu
ible

in F2[x]. The �nite �eld F4 
an be 
onstru
ted from F2[x]/(f(x)) and their

elements 
an be seen as polynomials of degree less than 2. This means that

F4 = {0, 1, x, x+ 1}.

As we have said, an element in Fpm 
an be seen as a polynomial of degree

less than m with 
oe�
ients over Fp. Any polynomial a0 + a1x + · · · +
am−1x

m−1
of degree less than m 
an be represented by an ordered array of
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m 
oe�
ients as (am−1, . . . , a1, a0). If m = 2, for example, the polynomial

x + 2 
an be represented by the array (1, 2), or the polynomial 1 
an be

represented by (0, 1). Finally, one 
an see the �eld Fpm as an extension of

the sub�eld Fp, where ea
h element of Fpm is an array of m 
oe�
ients over

Fp. The same 
an be done for any sub�eld of a �eld, for example, sin
e F22 is

a sub�eld of F24 , we 
an see the �eld F24 as an extension of F22 , where ea
h

element of F24 is an array of two 
oe�
ients over F22 .

2.1.2 Coding preliminaries

In this subse
tion, we summarize the basi
 
on
epts of 
oding theory [MS77℄.

A 
ode over Fq is a map from F
k
q to F

n
q whi
h 
onverts ve
tors of k 
oordinates

over Fq to ve
tors of n 
oordinates over the same �eld, 
alled 
odewords. In

this dissertation, we are only interested in linear 
odes, whi
h means that

the map is linear and that the set of 
odewords in F
n
q forms a subspa
e of

F
n
q .

Linear 
odes, generator and parity 
he
k matri
es

Let F
n
q denote the ve
tor spa
e of all n-tuples over the �nite �eld Fq. An

(n,M) 
ode C over Fq is a subset of F
n
q of size M . A ve
tor v ∈ C is 
alled


odeword and the set of 
odewords is 
alled the 
odebook of C.

If C is a k-dimensional subspa
e of F
n
q , then C is 
alled [n, k] linear 
ode

over Fq. Any [n, k] linear 
ode C over Fq has M = qk 
odewords, length n

and dimension k. A generator matrix for an [n, k] linear 
ode C over Fq is

any k × n matrix G, whose rows from a basis of C. Given a linear 
ode C

with generator matrix G, the en
oding fun
tion from F
k
q to F

n
q 
an be de�ned

by c = vG, where v ∈ F
k
q and c ∈ C.

For any set of k linear independent 
olumns of a generator matrix G,

the 
orresponding set of 
oordinates forms an information set for the 
or-

responding [n, k] linear 
ode C. The remaining n − k 
oordinates are the

redundan
y set of C. If the �rst k 
oordinates form an information set, the

linear 
ode has a unique generator matrix of the form [Ik|A], where Ik is the
k × k identity matrix. In this 
ase, the information set is pla
ed in the �rst

k 
oordinates and the linear 
ode C is 
alled systemati
.

De�nition 1 (Transmission rate). The transmission rate, or rate of a 
ode

of length n and dimension k, is de�ned as R = k/n.
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Example 3 (The binary repetition 
ode). An information binary symbol

v ∈ F2 
an be en
oded by repeating it n times. For example, if n = 3, the

information symbol 0 is en
oded by 000 and the information symbol 1 by 111.

In general, a binary repetition 
ode is an [n, 1] binary linear 
ode C with

generator matrix G = (1 1 · · · 1) and R = 1
n
.

Example 4 (The binary parity 
he
k 
ode). An information ve
tor (v1, v2,

. . . , vk) ∈ F
k
2 is en
oded by adding a single parity 
he
k symbol vk+1 =

∑k

i=1 vi ∈ F2. For instan
e, if k = 2 then n = 3, and (v1, v2) ∈ F
2
2 is

en
oded as (v1, v2, v1 + v2) ∈ F
3
2. In general, a single parity 
he
k 
ode is a

[k + 1, k] binary linear 
ode C with generator matrix

G =











1 0 · · · 0 1

0 1 · · · 0 1
.

.

.

0 0 · · · 1 1











and R = k
k+1

.

If the generator matrix has the form G = [Ik|A], like in the above exam-

ples, where Ik is the k × k identity matrix and A is a k × (n − k) matrix,

the information ve
tor v is pla
ed at the beginning of the 
odeword c = vG,

and the 
ode is said to be systemati
. This means that in every 
odeword of

length n, the information is in the �rst k 
oordinates and the redundan
y is

in the last n− k 
oordinates.

As a [n, k] linear 
ode C is a subspa
e of a ve
tor spa
e, it is the kernel

of some linear transformation. In parti
ular, there is an (n− k) × n matrix

H , 
alled parity 
he
k matrix for the [n, k] linear 
ode C, de�ned as

C = {x ∈ F
n
q | HxT = 0

T}.

If G = [Ik|A] is a generator matrix for an [n, k] linear 
ode C, then H =

[−AT |In−k] is a parity 
he
k matrix for C, where AT
means the transposition

of A. Let C⊥
be the dual 
ode of C, that is, C⊥

is the linear 
ode generated

by the parity 
he
k matrix H . Noti
e that C⊥
is an [n, n − k] linear 
ode.

Moreover, C⊥

an also be de�ned as C⊥ = {w ∈ F

n
q | w · c = 0, ∀c ∈ C},

where w · c =
∑n

j=1wjcj denotes the ordinary inner produ
t of ve
tors in F
n
q .

Example 5 (The binary repetition 
ode). The parity 
he
k matrix of the

binary repetition 
ode of length 3 and dimension 1 with generator matrix

G =
(

1 1 1
)

,
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is

H =

(

1 0 1

0 1 1

)

.

Example 6 (The binary parity 
he
k 
ode). The parity 
he
k matrix of the

binary parity 
he
k 
ode of length 3 and dimension 2 with generator matrix

G =

(

1 0 1

0 1 1

)

,

is

H =
(

1 1 1
)

.

Note that the parity 
he
k matrix of a binary repetition 
ode is the gen-

erator matrix of a binary parity 
he
k 
ode and vi
e-versa.

Example 7 (Hamming 
ode). The parity 
he
k matrix of the Hamming 
ode

of length 7 and dimension 4 with generator matrix

G =









1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 0 1

0 0 0 1 1 1 1









,

is

H =





1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1



 .

We have seen that the en
oding in a linear 
ode 
an be done using a

produ
t matrix multipli
ation, involving the information ve
tor and the gen-

erator matrix to produ
e a 
odeword. Moreover, given an [n, k] linear 
ode

C and a ve
tor v in F
n
q , it is possible to determine whether v is a 
odeword

of the 
ode C by using a parity 
he
k matrix H of C. Spe
i�
ally, v ∈ C if

and only if HvT = 0
T
.

The parity 
he
k matrix 
an be used to dete
t errors in a 
odeword. The

pro
edure of obtaining the information ve
tor from the re
eived ve
tor is


alled de
oding. The de
oding pro
edure is mu
h more 
omplex than the

en
oding. In this dissertation, we are not interested in de
oding algorithms,

whi
h usually depends on the spe
i�
 
ode used [MS77℄. For us, it is enough

to know that the de
oding is possible and that its 
omplexity depends on the


ode used.
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Measure 
on
epts

Redundan
y is added to 
orre
t errors and erasures introdu
ed by the 
han-

nel. In this dissertation, we only 
onsider erasures be
ause, as we will see in

Se
tion 2.2, NDSS is a�e
ted only by erasures.

Assume that a sour
e sends one symbol over a noisy 
hannel. If this sym-

bol is erased, the re
eiver 
an not know the symbol that was sent. However,

if the sour
e uses a binary repetition 
ode of length 3, like the one shown in

Example 3, the re
eiver 
an de
ode the re
eived ve
tor even if it is a�e
ted

by two erasures.

The next question to arise is, given a linear 
ode of length n and dimension

k, whi
h is the maximum number of arbitrary 
oordinate erasures that the


ode 
an tolerate? In this 
ontext, tolerate means that the re
eiver is able to

de
ode the re
eived ve
tor. In order to measure this toleran
e, some 
on
epts

need to be de�ned.

De�nition 2 (Hamming distan
e). The Hamming distan
e dH(u, v) between

two ve
tors u, v ∈ F n
q is de�ned as the number of 
oordinates in whi
h u and

v di�er.

De�nition 3 (Hamming weight). The Hamming weight wH(v) of a ve
tor

v ∈ F
n
q is the number of nonzero 
oordinates of v.

De�nition 4 (Minimum Hamming distan
e). The minimum Hamming dis-

tan
e (minimum distan
e) d(C) of a linear 
ode C is the minimum Hamming

distan
e between any two di�erent 
odewords c1, c2 ∈ C, that is,

d(C) = min
c1,c2∈C,c1 6=c2

{d(c1, c2)} = min
c1,c2∈C,c1 6=c2

{wH(c1 − c2)}.

Sin
e for any u, v ∈ F
n
q , dH(u, v) = wH(u − v), if C is a linear 
ode, the

minimum distan
e d(C) is the same as the minimum weight of the nonzero


odewords of C.

A linear 
ode C of length n, dimension k, and minimum distan
e d = d(C)

is also denoted as an [n, k, d] linear 
ode C.

Example 8. The parity 
he
k 
ode over F2 of dimension 2, so of length 3,

has the following 
odebook {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. Therefore, its
minimum distan
e is 2.

A re
eived ve
tor may 
ontain both errors and erasures. Let C be an

[n, k, d] linear 
ode. If a 
odeword c is sent and the 
orresponding re
eived
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ve
tor y 
ontains t errors and e erasures, then C is 
apable to 
orre
t these

t errors and e erasures provided that 2t+ e < d.

Sin
e we are only interested in 
orre
ting erasures, we de�ne the erasure


orre
tion 
apability as the maximum number of erasures that a 
ode 
an


orre
t. From now on, we will talk about erasure 
orre
tion 
apability or


orre
tion 
apability indistin
tly. Note that the erasure 
orre
tion 
apability

of an [n, k, d] linear 
ode C is d− 1.

Maximum distan
e separable 
odes

There is a relation between the redundan
y of the set of 
odewords of a


ode and the minimum distan
e (and then the erasure 
orre
tion 
apability)

of this 
ode. If no redundan
y is added, the minimum distan
e is 1. If a

redundan
y symbol is added, the minimum distan
e is either 1 or 2.

Con
eptually, an e�
ient 
ode in terms of minimum distan
e (or 
orre
-

tion 
apability) means a 
ode with a �xed transmission rate and a minimum

distan
e as higher as possible. The highest e�
ien
y is a
hieved when, for

ea
h redundan
y symbol added, the minimum distan
e is in
reased by one.

These kind of 
odes are 
alled maximum distan
e separable (MDS) 
odes.

Theorem 5. [MS77℄ Let C be an [n, k, d] linear 
ode and let H be a parity


he
k matrix of C. The minimum distan
e of C is d if and only if any set of

d − 1 
olumns of H are linearly independent and some set of d 
olumns are

linearly dependent.

Theorem 6 (Singleton bound). [MS77℄ Let C be an [n, k, d] linear 
ode.

Then d ≤ n− k + 1.

De�nition 7 (Maximum distan
e separable 
ode). [MS77℄ A 
ode is 
alled

maximum distan
e separable (MDS) if it a
hieves the Singleton bound and


an tolerate (
orre
t) up to n− k erasures.

There exist well known MDS 
odes, whi
h are used in a lot of appli
a-

tions. An MDS 
ode is spe
ially suitable when the redundan
y added must

be minimized. Reed-Solomon 
odes are probably the most used MDS 
odes

and they are based on an algebrai
 
onstru
tion using polynomials. The

main drawba
k of Reed-Solomon 
odes for data transmission is that they

need a �xed set of k 
oordinates before en
oding or de
oding, and that the


omplexity of their de
oding algorithm (in the general 
ase) is O(n2). How-

ever, their e�
ien
y in terms of transmission rate and their existen
e for a

lot of parameters n and k, make them a good 
hoi
e for most 
oding theory

based appli
ations.
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Array 
odes

As it is explained in Subse
tion 2.1.1, it is possible to see a �eld Fqt as an

extension of the sub�eld Fq, also 
alled base �eld. This means that any

element of Fqt 
an be seen as an array of t elements over Fq.

Re
all that using an [n, k, d] 
ode over Fqt , we 
an en
ode an information

ve
tor v ∈ F
k
qt and generate a 
odeword c ∈ F

n
qt. Sin
e the symbols of this


odeword 
an always be represented as an array of symbols over Fq, this 
ode

is also referred to as an array 
ode. The symbols over Fqt of an array 
ode are


alled array 
oordinates, while the symbols over Fq are 
alled 
oordinates.

The importan
e of array 
odes lies in that on
e the information ve
tor is

en
oded into a 
odeword, the 
oordinates 
an be treated over Fq or over Fqt

indistin
tly, depending on the properties needed at ea
h spe
i�
 moment. A

well known example of an array 
ode is the EVENODD 
ode [TS02℄.

Example 9 (The EVENODD 
ode). Assume that we want to en
ode a ve
tor

v ∈ F
5
24 given by 5 array 
oordinates over F24 using a systemati
 EVENODD


ode of length 7 and dimension 5. Ea
h array 
oordinate 
an be seen as

an array of 4 
oordinates over the base �eld F2. Therefore, we 
an repre-

sent the ve
tor v as a 4 × 5 matrix where ea
h 
olumn represent one array


oordinate 
omposed by the 
oordinates of the base �eld. For example, let

v = (v1, v2, v3, v4, v5) ∈ F
5
24 be the ve
tor represented by the following matrix:









1 0 1 1 0

0 1 1 0 0

1 1 0 0 0

0 1 0 1 1









,

where the �rst 
olumn is v1, the se
ond v2, the third v3, the fourth v4 and the

�fth v5.

Now, to obtain a 
odeword c ∈ F
7
24, we need to 
reate two array 
oordinates

r1 and r2 that 
ontain the redundan
y of v. If we assume that the matrix

entries are ai,j, then the en
oding de�ned by the EVENODD 
ode is

al,6 = al,1
⊕

al,2
⊕

al,3
⊕

al,4
⊕

al,5
⊕

, 1 ≤ l ≤ 4,

a1,7 = S
⊕

a1,1
⊕

a4,3
⊕

a3,4
⊕

a2,4
⊕

,

a2,7 = S
⊕

a2,1
⊕

a1,2
⊕

a4,4
⊕

a3,5
⊕

,

a3,7 = S
⊕

a3,1
⊕

a2,2
⊕

a1,3
⊕

a4,5
⊕

,

a4,7 = S
⊕

a4,1
⊕

a3,2
⊕

a2,3
⊕

a1,4
⊕

,

where S = a4,2
⊕

a3,3
⊕

a2,4
⊕

a1,5
⊕

. Note that the en
oding is given

over the base �eld. For example, for the above information ve
tor v =
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(v1, v2, v3, v4, v5), the 
orresponding systemati
 
odeword (v1, v2, v3, v4, r1, r2)


an be represented by the 4× 7 matrix









1 0 1 1 0 1 0

0 1 1 0 0 0 0

1 1 0 0 0 0 1

0 1 0 1 1 1 0









,

where ea
h 
olumn is an array 
oordinate stored in a di�erent storage node.

The �rst �ve 
olumns are the information array 
oordinates and the last two


olumns are the redundan
y array 
oordinates.

Note that the redundan
y is produ
ed by single 
oordinates over F2, but

the MDS property is given by the 
ode seen over F24.

2.2 Network distributed storage systems

De�nition 8 (Storage node). A storage node is a network element that

unites one or more physi
al storage devi
es to provide a simple blo
k storage

servi
e. Su
h term 
an in
lude di�erent elements su
h as desktops and laptop


omputers, network atta
hed storage (NAS) devi
es, set-top boxes (STB) or

storage 
omponents from data 
enters [PJ11℄.

De�nition 9 (Network distributed storage system (NDSS)). A network dis-

tributed storage system is a distributed 
omputer system 
omposed of multiple

autonomous storage nodes that 
ommuni
ate through a 
omputer network.

The aim of a network distributed storage system is to integrate all theses

storage nodes into a single and uniform data storage servi
e that appli
ations

and users 
an a

ess through a 
ommuni
ation network [PJ11℄.

From a formal point of view, an [n, k, d] NDSS is a (d−1)-fault toleran
e

system 
omposed of n storage nodes and where a subset of k storage nodes


ontain enough information to re
over the �le.

De�nition 10 (Network bandwidth). The network bandwidth is a measure-

ment for 
ommuni
ation resour
es expressed in data units per time unit, for

example bits per se
ond.

There are NDSS where the network bandwidth has no importan
e, for ex-

ample the Redundant Array of Independent Disks (RAID) [PGK88℄. RAID

is a storage te
hnology that 
ombines multiple disk drive 
omponents into

one logi
al unit. It 
an be designed for two main proposes: in
rease the
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input/output (i/o) speed by parallelizing these operations into multiple in-

dependent disks, or in
rease the availability of the stored data by using 
oding

theory te
hniques. In RAID, the bandwidth limitations introdu
ed by the

buses 
omposing the 
ommuni
ation network 
an be 
onsidered negligible


ompared with the laten
y introdu
ed by the i/o operations.

However, there are other NDSS where the network bandwidth is limited

and its redu
tion is a desired goal. The 
ommuni
ation network of this kind

of NDSS is usually a Lo
al Area Network (LAN) or a Wide Area Network

(WAN). An example of an NDSS using LAN 
an be a data 
enter and an

example of an NDSS using WAN 
an be a P2P �le sharing system.

In data 
enters, the data is pla
ed in storage nodes whi
h are 
onne
ted

through a network. These storage nodes are usually organized in a ra
k, a

metalli
 support designed to a

ommodate ele
troni
 equipment. The 
om-

muni
ation (bandwidth) 
ost between nodes whi
h are in the same ra
k is

mu
h lower than between nodes whi
h are in di�erent ra
ks. In fa
t, in

[AGSS11℄, it is said that reading from a lo
al disk is nearly as e�
ient as

reading from the disk of another node in the same ra
k.

There are many drawba
ks in the use of NDSS whi
h are being stud-

ied nowadays. The problem of the data insertion is an interesting resear
h

topi
: how to e�
iently 
hange the already stored data and propagate the


hanges through the NDSS [PJOD13℄. In this dissertation, we fo
us on an-

other problem: how to minimize the bandwidth in the NDSS using 
oding

theory te
hniques.

In this dissertation, we 
onsider �les as a bla
k box of information sym-

bols. We have no interest in the te
hniques that may have been applied

previously to the �les like 
ompression or en
ryption. This means that we


onsider the �le as a sequen
e of information symbols to be stored.

Assume that a user wants to store a �le and he wants this �le to be

available. The availability of a �le is given by two 
onditions: the user is

allowed to a

ess the �le and the �le exists. The �rst 
ondition is the obje
t

of study of 
omputer se
urity, while the se
ond 
ondition is related to the

persisten
e of the data and it is an obje
t of study of this resear
h.

The �rst approa
h to in
rease the persisten
e of a �le is the 
reation of

repli
as, whi
h is usually known as ba
kups. A ba
kup is an exa
t repli
ation

of the �le, whi
h is stored in a di�erent storage node. Then, if one storage

node fails and the �le is lost, there is another repli
a of the information. Note

that the ba
kup is in fa
t, redundan
y of the stored information.

De�nition 11 (i-fault toleran
e system). An i-fault toleran
e system, 1 ≤
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i ≤ n where n is the number of storage nodes of the system, is de�ned as an

NDSS that is able to tolerate any i number of storage node failures without

irreversibly losing partially or 
ompletely the information stored in it.

Note that the fault toleran
e is de�ned over the storage nodes, and not

over a spe
i�
 stored �le. This means that an i-fault toleran
e system ensures

that any information stored in any nodes of the system tolerates any i number

of storage node failures.

It 
an be seen that to 
reate an i-fault toleran
e system with i ≥ 1, it is

ne
essary to 
reate redundan
y for the stored information. This means that

an NDSS also has a transmission rate whi
h is the rate between the stored

information and this information plus the redundan
y. Con
eptually, if the

transmission rate is de
reased, it is possible to in
rease the fault toleran
e of

an NDSS.

A similar problem was already addressed by Shannon in 1948. Shannon-

Hartley theorem [Sha49℄ shows the maximum rate at whi
h information 
an

be transmitted over a 
ommuni
ation 
hannel of a spe
i�ed bandwidth in

the presen
e of noise. Assume that a sour
e sends a message to a re
eiver

over a 
ommuni
ation 
hannel whi
h is a�e
ted by noise. Depending on

the amount of noise, whi
h is the maximum transmission rate at whi
h the

entire message 
an be understood by the re
eiver? Noise a�e
ts information,


hanging symbols or erasing them, and the goal is to be able to re
over the

original information at the output of the 
hannel.

As it 
an be seen, there is a dire
t relation between the 
ommuni
ation of

information over a noisy 
hannel and the persisten
e of the stored data over

an NDSS. The information to be sent is the �le, the 
hannel is the NDSS,

the noise is the failure of storage nodes and �nally, the re
eiver is the user

who wants to re
over the �le by a

essing to some storage nodes. This 
lose

relation between both problems explains why 
oding theory, the study of

e�
ient and reliable data transmission methods, 
an also be used in NDSS.

Assume that a �le is going to be stored using an NDSS, so it should be

persistent. To a
hieve this persisten
e, it 
an be repli
ated and stored over

di�erent storage nodes in an NDSS. In this 
ase, we are using a repetition

erasure 
orre
ting 
ode. However, there exist mu
h better 
odes than the

repetition one in terms of the transmission rate and erasure 
orre
ting 
a-

pability [WK02℄, so the �rst idea is to use these better 
odes instead of the

repetition one.

Some well known e�
ient 
odes are used for storage, like Hamming and

Reed Solomon 
odes [MS77℄ or EVENODD 
odes [TS02℄. However, NDSS
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introdu
es a problem whi
h is not addressed by 
lassi
al 
oding theory and

that a
hieves a high importan
e in order to establish the e�
ien
y of an

NDSS.

Classi
al 
oding theory is fo
used on re
overing the whole set of informa-

tion symbols whi
h were sent, not a subset of them. In NDSS, it is usual

that only one storage node fails, and usually, this storage node only 
ontains

a small subset of symbols from the same �le (usually only one to in
rease

the fault toleran
e). If a new storage node repla
es the lost one, the goal of

this storage node, 
alled new
omer, is to e�
iently store the data that was

lost, where e�
iently means either redu
ing the amount of downloaded data

(repair bandwidth) or the 
omplexity of the operations needed.

2.3 Codes and NDSS

As we have seen in Se
tion 2.2, 
lassi
al 
oding theory do not address some

of the problems that the appli
ation of 
odes to NDSS introdu
es. In this

se
tion, we show the key points in the design of e�
ient 
oding te
hniques

for NDSS.

2.3.1 The repair problem

The repair problem is related to the amount of data needed to repair a single

storage node failure. Assume that a �le is stored using an erasure 
orre
ting


ode. This means that the �le is split into a ve
tor v of k 
oordinates, v is

en
oded into a 
odeword c of n 
oordinates, and ea
h 
oordinate is stored

in a di�erent storage node. Repairing a single storage node is the same as

repairing a single 
oordinate of c. The amount of data needed to repair this


oordinate is 
alled the repair bandwidth γ.

From the storage point of view, in
reasing the transmission rate means

that less redundan
y is stored, and in
reasing the 
orre
tion 
apability means

that more node failures are tolerated. The use of 
odes in NDSS 
an produ
e

the same bene�ts than in the data transmission 
ase, sin
e the transmission

rate and the fault toleran
e are also two key parameters. Figure 2.1 shows

a 1-fault toleran
e [2, 1, 2] repetition 
ode and a 1-fault toleran
e [3, 2, 2]

parity 
he
k 
ode. These 
odes are applied to two information 
oordinates

v1 and v2. One 
an assume that these 
oordinates represent a �le to be

stored. Using the parity 
he
k 
ode, the information (v1, v2) en
oded gives

the 
odeword (v1, v2, v1 + v2) and the transmission rate is R = 2/3. Using
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v1 v2

v1 v1 v2 v2

v1 v2

v1 v2 v1 + v2

Figure 2.1: Left: a [2, 1, 2] repetition 
ode applied to two 
oordinates. Right:

a [3, 2, 2] parity 
he
k 
ode applied to two 
oordinates.

the repetition 
ode, the information (v1) and (v2) en
oded give (v1, v1) and

(v2, v2), respe
tively, whi
h represent (v1, v1, v2, v2), and the transmission rate

is R = 1/2. The use of a more sophisti
ate 
oding te
hnique in the parity


he
k 
ode has in
reased the transmission rate while maintaining the fault

toleran
e.

Assume that ea
h 
oordinate of the 
odeword is stored in a di�erent

storage node, one of them fails and we want to repla
e it. On the one hand,

in a repetition s
heme, the storage node 
an be repaired by downloading one

repli
a of the lost 
oordinate and 
opying it. This means that the downloaded

and the stored data per new
omer are the same. On the other hand, the


lassi
al de
oding using linear 
odes always needs and uses n− d+1 
orre
t


oordinates no matter whether the 
odeword has one or more (up to d − 1)

erasures. Then, the repair bandwidth needed per new
omer is grater than

the stored data per new
omer.

Figure 2.1 illustrates the repair problem. To repair a single 
oordinate

failure, using the parity 
he
k 
ode it is ne
essary to download two symbols

b, a + b and 
ompute a = (a + b) − b, while using the repetition 
ode it is

only ne
essary the 
opy of a. In general, repairing a single 
oordinate in a

repetition 
ode needs a repair bandwidth of γ = α, where α is the amount

of stored data in one storage node, in this 
ase, the size of one 
oordinate.

In the parity 
he
k 
ode, repairing a single 
oordinate implies downloading

any n − d + 1 = k = 2 
oordinates, so γ = 2α = M , where M is the size of

the �le.

The use of 
odes in NDSS dramati
ally de
reases the amount of redun-

dan
y needed to a
hieve the same fault toleran
e as using a repetition s
heme

[RL05℄. However, the use of the parity 
he
k 
ode needs a repair bandwidth

of γ = M to repair any subset of less than d 
oordinates, while the use of

the repetition 
ode needs γ = α for ea
h lost 
oordinate. In general, we

know that α ≪ M , so it 
an be seen that the repair problem is an important

drawba
k. This drawba
k is the main reason why the appli
ation of 
oding

theory in NDSS is being postponed and its resolution is related to the next
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question: is it possible to repair one single erasure requiring less than n−d+1


oordinates?

2.3.2 Important properties inherited from 
odes

When 
odes are applied to NDSS, there are some properties and 
on
epts

from 
lassi
al 
oding theory that 
an be seen from a di�erent perspe
tive.

MDS 
odes

As we have seen in Subse
tion 2.1.2, when a 
ode is MDS it has the maximum

minimum distan
e for a given redundan
y. In other words, it is the best 
ode

in terms of the 
ompromise between the transmission rate and the 
orre
tion


apability. It also means that the distan
e is d = n− k+ 1, so it 
an 
orre
t

n−k erasures, whi
h means that any k 
oordinates are enough to re
over the

information. When we say that a 
ode has the minimum storage overhead,

it means that the 
ode is MDS, so its rate is R = k/(d+ k − 1).

Now, we are going to do an abuse of notation on some parameters of the


odes. Let an [n, k, d] NDSS be a (d − 1)-fault toleran
e system 
omposed

of n storage nodes and where a subset of k storage nodes 
ontain enough

information to re
over the �le. Assume that ea
h storage node stores the

same amount of data α then, the transmission rate of the NDSS is R =

(kα)/(nα) = k/n. When a MDS 
ode is applied to an NDSS and ea
h


oordinate of the 
odeword is stored in a di�erent storage node, the MDS

property means that the [n, k, d] NDSS is a (n−k)-fault toleran
e system and

so any k storage nodes have enough information to re
over the �le. Note the

di�eren
e between �a subset of k storage nodes� and �any subset of k storage

nodes�. Moreover, this �any k� property, whi
h means that d = n− k + 1, is

a
hieved by all MDS 
odes, but 
an be also a
hieved by non MDS 
odes.

A 
ode applied to an [n, k, d] NDSS is MDS if and only if it minimizes

the storage overhead and d = n − k + 1. Note that ea
h 
oordinate of the


odeword is stored in one node if and only if the parameters of the NDSS


oin
ide with the parameters of the linear 
odes. From the 
oding theory

point of view, a MDS 
ode means that d = n− k + 1. However, when array


odes are used in NDSS, it is possible to design non MDS 
odes a
hieving

d = n− k + 1, but they do not have the minimum storage overhead.

Example 10 (Non MDS 
ode a
hieving d = n− k + 1). Assume that a �le

is split into a ve
tor of 2 
oordinates and en
oded using a [8, 2, 5] 
ode, whi
h
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is not MDS 
ode sin
e 5 6= 8−2+1. This 
ode has has an erasure 
orre
tion


apability of 4 and any 8− 4 = 4 
oordinates are enough to re
over the �le.

Now, the resulting 
odeword is stored in a [4, 2, 3] NDSS where ea
h stor-

age node stores 2 
oordinates of the 
odeword. It 
an be seen that the NDSS

is a 2-fault toleran
e system, be
ause any 2 storage nodes have enough infor-

mation to re
over the �le. However, as said before, the 
ode is not MDS.

Lo
ality

Let C be a linear 
ode and c be a 
odeword of C. We say that a 
oordinate

i of c has repair degree ri if we 
an re
over any symbol at 
oordinate i by

a

essing at least ri other 
oordinates, and the set of these 
oordinates is


alled a repair set of i. In other words, the repair degree ri of a 
oordinate

i is the minimum 
ardinal of all the repair sets of i. The repair sets of i

are also 
alled the repair alternatives of i. The repair degree of C, r, is the

maximum of ri, i = 1, . . . , n. When we say that a 
ode has a high lo
ality,

it means that the number of repair alternatives is big and their 
ardinals are

small. As a result r is also small. It is also worth to mention that the repair

degree is a good metri
 for repair bandwidth [OD11b℄, [PLD

+
12℄.

In [GHSY12℄, it is shown that the minimum distan
e d of a 
ode is upper

bounded by d ≤ n−k−⌈k
r
⌉+2, whi
h means that as r in
reases (approa
hing

to k), d de
reases. This bound is equivalent to the singleton bound when

r ≥ k. Note that in the MDS 
odes, r = k. When r < k, the minimum

distan
e d de
reases and the optimality is a
hieved when d = n−k−⌈k
r
⌉+2.

2.4 Coding te
hniques for NDSS

In this se
tion, we show some of the most known 
odes that have been de-

signed spe
i�
ally for NDSS. It is not the aim of this dissertation to deeply

explain these 
onstru
tions, whi
h is already done in [OD12℄. In these kind

of 
odes, ea
h 
oordinate is stored in one storage node of the NDSS, whi
h

means that the parameters of the 
odes and of the NDSS 
oin
ide. Moreover,

the 
orre
tion 
apability of the 
ode also 
oin
ides with the fault toleran
e

of the NDSS.

2.4.1 Lo
ally re
onstru
tible 
odes

Lo
ally re
onstru
tible 
odes use a te
hnique where 
odes are applied to

other 
odes with the goal to in
rease their lo
ality. They are inspired in
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the produ
t 
odes [Eli54℄, whi
h 
ombine two erasure 
odes to tolerate both

random and burst erasures. The base of the produ
t 
odes is a k× k matrix

whi
h 
ontains the information symbols to be en
oded. Firstly, the rows

of the matrix are en
oded using an [n, k] linear 
ode, resulting in a k × n

matrix. Then, the 
olumns of this matrix are en
oded with another [n, k]

linear 
ode, resulting in a n×n matrix. This �nal matrix has horizontal and

verti
al redundan
y. Despite the minimum distan
e of these kind of 
odes is

low, their lo
ality is in
reased by produ
ing two repair alternatives for ea
h


oordinate.

Hierar
hi
al 
odes

Hierar
hi
al 
odes [DB08℄ 
an be seen as a bottom-up approa
h on the ap-

pli
ation of 
odes on other 
odes. Hierar
hi
al 
odes use two di�erent types

of 
odes. The �rst one takes subsets of information 
oordinates and en
ode

them independently from the other subsets to 
reate what is 
alled lo
al re-

dundan
y. The se
ond one en
odes the lo
al redundan
y to 
reate what is


alled global redundan
y.

Example 11. Let the information ve
tor of a �le be v = (v1, v2, v3, v4).

Split v into two ve
tors (v1, v2) and (v3, v4) and en
ode them independently

using a [3, 2] parity 
he
k 
ode into (v1, v2, v1 + v2) and (v3, v4, v3 + v4). The

lo
al redundan
y 
oordinates 
an be seen as a ve
tor (v1 + v2, v3 + v4) and

en
oded using the same 
ode into (v1 + v2, v3 + v4, v1 + v2 + v3 + v4), where

v1+v2+v3+v4 is a global redundan
y 
oordinate. Finally, store the 
odeword

(v1, v2, v1+v2, v3, v4, v3+v4, v1+v2+v3+v4) in the NDSS with one 
oordinate

in ea
h storage node.

Note that the information and lo
al redundan
y 
oordinates have repair

degree 2, however, the resulting NDSS is only a 1-fault toleran
e system with

a transmission rate of R = 4/7. This spe
i�
 en
oding example 
an be seen

as a produ
t 
ode where the information is a 2 × 2 matrix and the verti-


al redundan
y is 
omputed only over the 
olumn 
ontaining the horizontal

redundan
y





v1 v2 v1 + v2
v3 v4 v3 + v4
− − v1 + v2 + v3 + v4



 .

This example 
an be generalized by using more sophisti
ated 
odes for

the lo
al and for the global redundan
ies, bigger information matri
es, or

the iteration of the pro
edure multiple times. The motivation behind hierar-


hi
al 
odes is the use of lo
al redundan
y to have a small repair degree for
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some spe
i�
 
oordinates, while the global redundan
y provides the 
orre
-

tion 
apability.

Pyramid 
odes

Pyramid 
odes [Hua07℄ 
an be seen as a top-down approa
h on the appli
a-

tion of 
odes on other 
odes. Firstly, a MDS 
ode en
odes the information

ve
tor and produ
es the global redundan
y. Then, the information ve
tor

is split into smaller ve
tors whi
h are padded with zeros and en
oded again

with the same 
ode produ
ing the lo
al redundan
y. Note that, the global

redundan
y 
oe�
ients are in fa
t linear 
ombinations of the lo
al redun-

dan
y 
oe�
ients. Finally, some lo
al and global redundan
y 
oe�
ients are

stored.

Example 12. An information ve
tor v = (v1, . . . , v8) is en
oded using a

[11, 8] systemati
 MDS 
ode with generator matrix G. Then (v1, . . . , v8)G =

(v1, . . . , v8, ρ1, ρ2, ρ3), where ρ1, ρ2 and ρ3 are the global redundan
y 
oe�-


ients. Next, en
ode the ve
tors (v1, . . . , v4, 0, 0, 0, 0)G = (v1, . . . , v4, 0, 0, 0, 0,

ρ1,1, ρ2,1, ρ3,1) and (v5, . . . , v6, 0, 0, 0, 0)G = (v5, . . . , v6, 0, 0, 0, 0, ρ1,2, ρ2,2, ρ3,2).

Note that ρ1 = ρ1,1 + ρ1,2, ρ2 = ρ2,1 + ρ2,2 and ρ3 = ρ3,1 + ρ3,2. Finally, take

some global redundan
y 
oe�
ients and some lo
al redundan
y 
oe�
ients


orresponding to the reje
ted global 
oe�
ients. For example ρ1,1, ρ1,2, ρ2, ρ3,

and store (v1, . . . , v8, ρ1,1, ρ1,2, ρ2, ρ3).

Note that the global 
oe�
ients are split into lo
al 
oe�
ients, de
reas-

ing the minimum distan
e of the 
ode but in
reasing its lo
ality. In pyramid


odes, larger 
odes are reused to build smaller 
odes, in 
ontrast to hierar
hi-


al 
odes where smaller 
odes are assembled together to form a bigger 
ode.

Pyramid 
odes a
hieve similar lo
ality 
ompared with Hierar
hi
al 
odes,

but with a better fault toleran
e. It is worth to mention that a variation of

pyramid 
odes are the base 
odes used in Mi
rosoft Azure [HSX

+
12℄.

2.4.2 Lo
ally repairable 
odes

Lo
ally repairable 
odes (LRC) are 
odes designed to in
rease the lo
ality,

while trying to keep a high fault toleran
e. The di�eren
e with the 
odes

proposed in Subse
tion 2.4.1, is that LRC are 
odes spe
i�
ally designed for

these two goals.

Let C be an [n, k, d] linear 
ode and let C⊥
be its dual 
ode, that is,

C⊥ = {ω ∈ F
n
q | ω · c = 0, ∀c ∈ C}, where ω · c =

∑n

j=1 ωjcj. Then, we
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say that ω ∈ C⊥
is a parity 
he
k ve
tor of C and C⊥

is the set of parity


he
k ve
tors of C. Given c ∈ C and ω ∈ C⊥
, the reparation of a single


oordinate means that an spe
i�
 ci is missing and it 
an be re
overed by

solving

∑n

j=1 ωjcj = 0, where ci is the unknown. Note that the parity 
he
k

ve
tor ω has wH(ω) nonzero 
oordinates, where wH(ω) means the Hamming

weight of ω. The reparation of a single spe
i�
 
oordinate ci of a 
odeword

c requires to have a parity 
he
k ve
tor ω ∈ C⊥
su
h that ωi 6= 0. Then,

retrieve wH(ω)− 1 symbols from c 
orresponding to the nonzero 
oordinates

of ω ex
ept for i, and solve the above equation for ci. Given an index i =

1, . . . , n, we de�ne Ω(i) = {ω ∈ C⊥ | ωi 6= 0}. This set represents all possible
parity 
he
k ve
tors whi
h repair the 
oordinate ci, so it is the set of repair

alternatives of ci.

De�nition 12 (Repair degree of an LRC). The repair degree of the ith 
oor-

dinate of a LRC is de�ned as ri = min{wH(ω)−1 | ω ∈ Ω(i)}, and the overall
repair degree r is its maximum repair degree r = max{ri}

n
i=1 [PJHH13℄.

Moreover, note that the MDS 
odes have degree r = k. Lo
ally repairable


odes (LRC) try to keep r at very low rates, this means that for LRC it is

a goal that r ≪ k. However, as it is explained in Subse
tion 2.3.2, the low

repair degree de
reases the upper bound on the minimum distan
e d of a 
ode,

whi
h also de
reases the 
orre
tion 
apability. There are many 
onstru
tions

of LRC and it is a hot topi
 at the moment, probably, the most known ones

are [OD11a℄, [OD11b℄ and [PD12℄.

In general, good LRC are those 
odes with a low repair degree and a high

number of repair alternatives. To a
hieve a low repair degree, we need for

ea
h 
oordinate i, one parity 
he
k ve
tor ω, ω 6= 0 with wH(ω) as low as

possible. Moreover, to a
hieve a high number of repair alternatives, we need

a high number of those parity 
he
k ve
tors.

There is a lot of resear
h done on lo
ally repairable 
odes, and an in-


reasing number of arti
les being published ea
h year. However, it is not

the aim of this dissertation to deeply explain this kind of 
onstru
tions. An

interested reader 
an �nd more information in the 
ited arti
les and surveys

of this se
tion.

2.5 Network 
oding te
hniques for NDSS

The 
odes shown in the previous se
tion de
rease the repair degree, and

de
reasing the repair degree also means de
reasing the repair bandwidth.
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However, in those 
onstru
tions, d ≪ n − k + 1 whi
h is a drawba
k in the


ase of simultaneous node fails. Regenerating 
odes are a family of 
odes

designed to a
hieve d = n− k+ 1, and de
rease the repair bandwidth at the

same time. In this se
tion, regenerating 
odes are deeply explained.

In Subse
tion 2.5.1, some basi
 
on
epts on graph theory and information

�ow graphs are explained. In Subse
tion 2.5.2, network 
oding is introdu
ed.

In Subse
tions 2.5.3, and 2.5.4, homogeneous models and non-homogeneous

modes are shown, respe
tively. In Subse
tion 2.5.5, regenerating 
odes are

presented. Finally, in Subse
tion 2.5.6, we introdu
e a new solution whi
h

lies between regenerating 
odes and lo
ally repairable 
odes and that we 
all

�exible regenerating 
odes.

2.5.1 Graph theory

Graph theory is a well known mathemati
al topi
 whi
h studies mathemati
al

stru
tures used to model pairwise relations between obje
ts. Graph theory is

an extensive topi
 [Ber01℄. However, we fo
us only on those 
on
epts whi
h

are ne
essary to understand regenerating 
odes.

De�nition 13 (Graph). A graph is a 
olle
tion of points and lines 
onne
ting

a subset of points. The points of a graph are 
alled verti
es and the lines are


alled edges. A graph G(W,E) is a pair of sets with E ⊆ W ×W . There is

an edge from w1 ∈ W to w2 ∈ W if an only if (w1, w2) ∈ E [Wei℄.

A weighted graph is a graph where ea
h edge has an asso
iated weight.

A dire
ted graph is a graph where the edges (w1, w2) ∈ E have dire
tion.

This means that (w1, w2) ∈ E goes from w1 to w2 but not from w2 to

w1. An edge with dire
tion is 
alled an ar
.

An a
y
li
 graph is a dire
ted graph where it is not possible to start at a

vertex w1 ∈ W , follow a sequen
e of 
onne
ted verti
es, and loop ba
k

to w1.

A simple graph is an unweighted and undire
ted graph 
ontaining no graph

loops (edges that 
onne
t a vertex to itself) or multiple edges (more

than one edge that 
onne
t the same two nodes).

A bipartite graph is a graph whose verti
es 
an be divided into two dis-

joint subsets W1 and W2, where ea
h edge 
onne
ts one vertex of

W1 with one vertex of W2. A bipartite graph is usually denoted as

G(W1 ∪W2, E).
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w11

w12

w13

w21

w22

w23

Figure 2.2: Bipartite graph asso
iated with a square matrix.

A mat
hing in a graph G(W,E) is a set of pairwise non-adja
ent edges.

This means that no two edges share a 
ommon vertex. A perfe
t mat
h-

ing is a mat
hing whi
h mat
hes all verti
es of G(W,E). In a bipartite

graph G(W1 ∪W2, E), we de�ne a 
omplete mat
hing from W1 to W2

(resp. W2 to W1), if there is a mat
hing whi
h mat
hes all verti
es of

W1 (resp. W2).

As we have said, a graph 
an be used to represent pairwise relations

between obje
ts. In [Har69℄, the relation between re
tangular matri
es and

bipartite graphs is shown. Spe
i�
ally, one 
an represent a re
tangular matrix

using a bipartite graph, where W1 represent the rows and W2 the 
olumns of

the matrix and the matrix entries are the weights of the edges.

Example 13 (Square matri
es and bipartite graphs). The square matrix





1 0 1

0 1 0

0 0 1



 ,


an be represented by the bipartite graph G(W1∪W2, E) of Figure 2.2, where

w1i ∈ W1 is the i-th row and w2j ∈ W2 is the j-th 
olumn of the matrix.

Let ps(ζ1, ζ2, . . . , ζm) ∈ Fq[ζ1, ζ2, . . . , ζm] be the polynomial asso
iated

with the determinant of a m′ × m′
square matrix over Fq with m ≤ m′2

.

For example, the polynomial ps(ζ1, ζ2, ζ3, ζ4) asso
iated with the 2×2 square

matrix

(

ζ1 ζ2
ζ3 ζ4

)

is ps(ζ1, ζ2, ζ3, ζ4) = ζ1ζ4 − ζ2ζ3.

Let δ be the degree of ps(ζ1, ζ2, . . . , ζm). The polynomial ps(ζ1, ζ2, . . . , ζm)

is de�ned over Fq. If the polynomial ps(ζ1, ζ2, . . . , ζm) is not identi
ally zero,
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it means that, when it is expanded as a summation of terms, there exists at

least one term with a nonzero 
oe�
ient.

Let G(W1∪W2, E) be the bipartite graph asso
iated with a square matrix.

Let E(w1i) (resp. E(w2i)) denote the neighbors of w1i ∈ W1 (resp. w2i ∈ W2)

in the graph G(W1 ∪W2, E).

Lemma 14 (Hall's theorem). [Hal35℄ A bipartite graph G(W1∪W2, E) 
on-

tains a 
omplete mat
hing from W1 to W2 (resp. W2 to W1) if and only

if it satis�es Hall's 
ondition, that is, for any T ⊆ W1 (resp. T ⊆ W2),

|T | ≤ |E(T )|, where T = {t1, . . . , tm} and E(T ) =
⋃m

i=1E(ti). Moreover,

if |W1| = |W2|, the 
omplete mat
hing is a
hieved in both dire
tions, so it


orresponds to a perfe
t mat
hing.

Lemma 15. [MR95℄ The polynomial asso
iated with the determinant of a

square matrix, ps(ζ1, ζ2, . . . , ζm), is not identi
ally zero if and only if the

bipartite graph G(W1∪W2, E) asso
iated with the square matrix has a perfe
t

mat
hing.

If ps(ζ1, ζ2, . . . , ζm) is not identi
ally zero be
ause G(W1 ∪ W2, E) has a

perfe
t mat
hing, we 
an use the S
hwartz-Zippel lemma to determine the

probability that, for a random 
hoi
e of the 
oe�
ients ζ1, ζ2, . . . , ζm then,

ps(ζ1, ζ2, . . . , ζm) = 0.

Lemma 16 (S
hwartz-Zippel lemma). [Zip89℄ Let ps(ζ1, . . . , ζm) be a poly-

nomial of degree δ over Fq. Assume that ps(ζ1, . . . , ζm) is not identi
ally zero.

If (ζ1, . . . , ζm) are 
hosen independently and uniformly over Fq, then

Pr[ ps(ζ1, . . . , ζm) = 0 ] ≤
δ

|Fq|
.

Information �ow graphs

De�nition 17 (Information �ow graph). An information �ow graph is a

dire
ted a
y
li
 and weighted graph whi
h represents a �ow of information

from a set of sour
es to a set of sinks. The sour
e verti
es are the ones

sending data and the sink verti
es are the ones re
eiving data. Ea
h ar
 is

able to 
ommuni
ate an amount of data per time unit equivalent to its weight.

The maximum �ow of an information �ow graph is given by the min
ut

between the sour
es and the sinks.
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Figure 2.3: Butter�y network using network 
oding.

De�nition 18 (Min
ut of a graph). Let G(W,E) be a weighted graph with

nonnegative weights. A 
ut of G from wi ∈ W to wj ∈ W is a partition of

W into two disjoint subsets where the �rst one 
ontains wi and the se
ond

one 
ontains wj. The weight of the 
ut is the sum of the weights of the edges


rossing the 
ut. The min
ut is the 
ut with minimum weight [Wei℄.

Information �ow graphs 
an be used to represent a NDSS. We 
an sim-

ulate node fails over time and apply network te
hniques to minimize the

amount of stored data per node α and the repair bandwidth γ.

2.5.2 Network 
oding

Network 
oding is a 
oding te
hnique applied to networks with the idea of

improving the throughput, e�
ien
y and s
alability of the network. This

te
hnique was introdu
ed in [ACLY00℄ for multi
ast purposes but nowadays,

it has many other uses in the �elds of se
urity, 
ompression, and 
oding

theory among others.

The goal of network 
oding is to redu
e the amount of data transmitted

between a sour
e and a set of sinks. To a
hieve this redu
tion, the inter-

mediate nodes are allowed to produ
e and send linear 
ombinations of the

in
oming symbols. The sinks re
eive these linear 
ombinations, whi
h 
an

be treated as equations. When a sink has enough equations it 
an solve the

system and re
over the original symbols. To do that, the sinks a

umulate

equations in a matrix, when they have a full rank matrix, they re
over the

original symbols by applying the Gauss method.

If the network is modeled as an information �ow graph, the verti
es of
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the graph are the nodes of the network and the ar
s are the 
ommuni
ation


hannels. Figure 2.3 shows the information �ow graph known as the butter�y

network. Assume that a sour
e sends two information symbols a and b to two

sinks, and that ea
h ar
 has weight 1. This means that the ar
 (w1, w2) ∈
E, 
an 
ommuni
ate 1 symbol from w1 to w2 for ea
h time unit. If the

intermediate verti
es are able to send linear 
ombinations of the in
oming

symbols, and the sinks 
an solve systems of equations, the sour
e 
an send

a and b at the same time instead of sending a and then b whi
h introdu
e a

delay in the sinks.

The maximum number of symbols per time unit that the sour
e 
an send

through a network is given by the minimum min
ut between the sour
e and

the sinks. In [Med03℄, it is shown that the use of random 
oe�
ients, over a

su�
iently large �eld, in the linear 
ombinations of the intermediate nodes

is enough to produ
e full rank matri
es to solve the equations in the sinks,

so they 
an re
over the original information symbols.

2.5.3 Homogeneous model

Information �ow graphs 
an be used to simulate the life of an NDSS. The

sour
e of the graph is the �le to be stored in a NDSS and a sink of the

graph is the user who wants to re
over the �le. The intermediate nodes

represent the life of the NDSS, they are the storage nodes in di�erent time

units. During the life of a NDSS some nodes fail and some others join the

system in order to repla
e the failed ones. The nodes send information to

ea
h other in order to maintain the fault toleran
e. The information �ow

graph is like a state ma
hine, ea
h step is produ
ed by a fail and produ
es a

new stable state. Finally, the sink wants to re
over the stored information by


onne
ting to a subset of these nodes. In this subse
tion, the �rst proposed

model [DGWR10℄ whi
h is based on the homogeneity of nodes and edges and

is explained.

Let si, where i = 1, . . . ,∞, be the i-th storage node. Let G(W,E) be an

information �ow graph, with a set of verti
es W and a set of ar
s E. The

set W 
ontains three kinds of verti
es:

• Sour
e vertex S: it represents the �le to be stored. There is only one

sour
e vertex in the graph.

• Data 
olle
tor vertex DC: it is the sink vertex that represents the user

who is allowed to a

ess the data in order to re
onstru
t the �le.
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• Storage node verti
es wi
in and wi

out: ea
h storage node si, where i =

1, . . . ,∞, is represented by one inner vertex wi
in and one outer vertex

wi
out.

In general, there is an ar
 (w1, w2) ∈ E of weight ς from vertex w1 ∈ W to

vertex w2 ∈ W if w1 
an send ς data units to w2.

At the beginning of the life of an NDSS, there is a �le to be stored

in n storage nodes si, i = 1, . . . , n. This 
an be represented by a sour
e

vertex S with outdegree n 
onne
ted to verti
es wi
in, i = 1, . . . , n. As there

is no restri
tion on the amount of information that the �le sends to the

storage nodes, the weight of the ar
s is in�nite. To represent that ea
h one

of the storage nodes si, i = 1, . . . , n, stores α data units, ea
h vertex wi
in is


onne
ted to the vertex wi
out with an ar
 of weight α.

When the �rst storage node fails, the �rst new
omer sn+1 
onne
ts to r,

0 < r < n existing storage nodes sending, ea
h one of them, β data units.

This 
an be represented by adding one ar
 from wi
out, i = 1, . . . , n, to wn+1

in

of weight β if si sends β data units to sn+1 in the regenerating pro
ess. The

new vertex wn+1
in is also 
onne
ted to its asso
iated vertex wn+1

out with an ar


of weight α. This pro
ess 
an be repeated for every failed node. Let the

new
omers be denoted by sj , where j = n + 1, . . . ,∞.

Finally, after some failures, a data 
olle
tor wants to re
onstru
t the �le.

Therefore, a vertex DC is added to G(W,E) along with one ar
 from vertex

wi
out to DC if the data 
olle
tor 
onne
ts to the storage node si. Note that

if si has been repla
ed by sj, the vertex DC 
an not 
onne
t to wi
out, but it


an 
onne
t to wj
out. The vertex DC has indegree k and ea
h ar
 has weight

in�nite, be
ause the user is able to get as many information as he wants from

ea
h one of the storage nodes.

If the min
ut from vertex S to DC, denoted by min
ut(S,DC), a
hieves

that min
ut(S,DC) ≥ M , the data 
olle
tor 
an re
onstru
t the �le from the

k storage nodes given by the k edges arriving to the DC, sin
e there is enough

information �ow from the sour
e to the data 
olle
tor. If we want that any

subset of k storage nodes are enough to re
over the �le, the data 
olle
tor

should be able to 
onne
t to any k nodes, so min(min
ut(S,DC)) ≥ M ,

whi
h is a
hieved when the data 
olle
tor 
onne
ts to k storage nodes that

have already been repla
ed by a new
omer [DGWR10℄. Note that using the

minimum of all the min
uts we are assuming that any subset of k storage

nodes have enough information to re
over the �le.

If we want to represent a 
ode designed for an NDSS like the ones ex-

plained in Se
tion 2.4 using an information �ow graph, ea
h 
oordinate is
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Figure 2.4: Information �ow graph of a [4, 2, 3] NDSS with r = 3.

stored in one node and α = β. In this kind of 
odes, not any k storage

nodes are enough to re
over the �le, so min(min
ut(S,DC)) ≥ M has no

sense be
ause the min
ut will be di�erent for ea
h set of k storage nodes


onne
ted to the DC. Moreover, β does not appear in the min
ut equation.

Finally, one 
an 
on
lude that no optimization is possible on the resulting

graph using network 
oding te
hniques.

Figure 2.4 illustrates the information �ow graph G(W,E) asso
iated to an

[4, 2, 3] NDSS with r = 3. Remember that an [n, k, d] NDSS is a (d−1)-fault

toleran
e system 
omposed of n storage nodes and where a subset of k storage

nodes 
ontain enough information to re
over the �le. In this se
tion, we

assume that d = n−k+1, so any subset of k storage nodes is enough to re
over

the �le. Note that in Figure 2.4, min
ut(S,DC) = min(3β, α) + min(2β, α)

whi
h is the minimum min
ut for this information �ow graph. In general, it


an be 
laimed [DGWR10℄ that

min
ut(S,DC) ≥
k−1
∑

i=0

min((r − i)β, α) ≥ M. (2.1)

It is possible to obtain a threshold fun
tion minimizing α and γ by using

linear optimization te
hniques on the general equation (2.1) [DGWR10℄

α∗(r, γ) =















M
k
, γ ∈ [f(0),+∞)

M−g(i)γ
k−i

, γ ∈ [f(i), f(i− 1))

i = 1, . . . , k − 1,

(2.2)

where

f(i) =
2Mr

(2k − i− 1)i+ 2k(r − k + 1)
and g(i) =

(2r − 2k + i+ 1)i

2r
,

where γ = rβ.
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Figure 2.5: Optimal tradeo� 
urve between α and γ for a [10, 5, 6] NDSS

with r = 9.

To a
hieve this threshold fun
tion, multiple te
hniques have been used,

like interferen
e alignment [SRKR11℄, produ
t-matrix 
onstru
tion [RSK11℄,

or designs [RR10℄, among others. Behind these te
hniques, there are two

main ideas: the use of array 
odes, whi
h allows the NDSS to treat the data

inside a node as a sequen
e of (small) 
oordinates over the base �eld; and

the use of network 
oding to send linear 
ombinations of these 
oordinates

through the network.

This threshold fun
tion 
an be represented by a tradeo� 
urve like the

one shown in Figure 2.5 for some spe
i�
 parameters n, k and r. The optimal

tradeo� 
urve represents the minimum tradeo� between α and γ. The two

extremes of the 
urve are 
alled the Minimum Storage Regenerating (MSR)

and the Minimum Bandwidth Regenerating (MBR) points. In Figure 2.5,

these points are pla
ed approximately in (0.36, 0.2) and (0.258, 0.258). Be-

tween these two points, there are the 
alled interior points.

Using the information �ow graph G(W,E), we 
an see that there are ex-

a
tly k points in the tradeo� 
urve, or equivalently, k intervals in the thresh-

old fun
tion α∗(r, γ), whi
h represent k new
omers. In the min
ut equation,

the k terms in the summation are 
omputed as the minimum between two

parameters: the sum of the weights of the ar
s that we have to 
ut to isolate

the 
orresponding vjin from S, and the weight of the ar
 that we have to 
ut

to isolate the 
orresponding vjout from S. Let the �rst parameter be 
alled

the in
ome of the 
orresponding new
omer sj. Note that the in
ome of the

new
omer sj depends on the previous new
omers.

It 
an be seen that the new
omers 
an be ordered a

ording to their
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in
ome from the highest to the lowest. In this model, this order is only de-

termined by the order of repla
ement of the failed nodes. Moreover, the MSR

point 
orresponds to the lowest in
ome, whi
h is given by the last new
omer

added to the information �ow graph; and the MBR point 
orresponds to the

highest, whi
h is given by the �rst new
omer. It is important to note also

that, in this model, the order of repla
ement of the nodes does not a�e
t

to the �nal result, sin
e the min
ut is always the same independently of the

spe
i�
 set of k failed nodes.

2.5.4 Non-homogeneous models

In the previous subse
tions, we have introdu
ed the 
on
ept of information

�ow graphs and we have asso
iated it with an NDSS. However, we have based

our analysis in the homogeneity of the parameters α and γ. This homogeneity

means that every single node stores α data units and every single helper node

(a node 
ontributing to the repla
ement of a spe
i�
 lost node) sends β data

units in order to repair a failed node. A non-homogeneous model means

either the amount of stored data per node or the amount of sent data per

helper node depends on the spe
i�
 storage node. In this work we fo
us on

the se
ond 
ase, while the �rst one has also been studied [YSS11℄, [VYL12℄.

In [AKG10℄, Akhlaghi et al. presented another distributed storage model,

where the storage nodes are partitioned into two sets W 1
and W 2

. Let W 1

be the set of �
heap bandwidth� nodes, from where ea
h data unit sent 
osts

Cc, and W 2
be the set of �expensive bandwidth� nodes, from where ea
h data

unit sent 
osts Ce su
h that Ce > Cc. This means that when a new
omer

repla
es a lost storage node, the 
ost of downloading data from a node in W 1

will be lower than the 
ost of downloading the same amount of data from a

node in W 2
.

Consider the same situation as in the model des
ribed in Subse
tion 2.5.3.

Now, when a storage node fails, the new
omer node sj, j = n + 1, . . . ,∞,


onne
ts to rc existing storage nodes from W 1
sending ea
h one of them βc

data units to sj, and to re existing storage nodes from W 2
sending ea
h

one of them βe data units to sj. Let r = rc + re be the number of helper

nodes. Assume that r, rc, and re are �xed, that is, they do not depend on

the new
omer sj , j = n + 1, . . . ,∞. In terms of the information �ow graph

G, there is one ar
 from wi
out to wj

in of weight βc or βe, depending on whether

si sends βc or βe data units, respe
tively, in the regenerating pro
ess. This

new vertex wj
in is also 
onne
ted to its asso
iated vertex wj

out with an ar
 of

weight α.
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Let the repair 
ost be CT = rcCcβc + reCeβe and the repair bandwidth

γ = rcβc + reβe. To simplify the model, we 
an assume, without loss of

generality, that βc = τβe for some real number τ ≥ 1. This means that we


an minimize the repair 
ost CT by downloading more data units from the set

of �
heap bandwidth� nodes W 1
than from the set of �expensive bandwidth�

nodes W 2
. Note that if τ is in
reased, the repair 
ost is de
reased and vi
e-

versa.

Again, it must be satis�ed that min(min
ut(S,DC)) ≥ M . Moreover, the

new
omers 
an also be ordered a

ording to their in
ome from the highest

to the lowest. However, in this model, the order is not only determined by

the order of repla
ement of the failed nodes, as it happened in the model

des
ribed in Subse
tion 2.5.3. It is important to note that, in this model, the

order of repla
ement of the nodes a�e
ts to the �nal result and the min
ut

depends on the spe
i�
 set of failed nodes.

The goal is also to �nd the min(min
ut(S,DC)), so the next problem

arises: whi
h is the set of k new
omers that minimize the min
ut between S

and DC? The minimum min
ut is given by the set of k new
omers with the

minimum sum of in
omes. As it is shown in [AKG10℄, this set is 
omposed

of any rc + 1 new
omers from W 1
plus the remaining new
omers from W 2

.

Moreover, the MSR point 
orresponds to the lowest in
ome, whi
h is given

by the last new
omer; and the MBR point 
orresponds to the highest in
ome,

whi
h is given by the �rst new
omer. Depending on k and rc, it is ne
essary

to distinguish between two 
ases.

Case k ≤ rc + 1

This 
ase 
orresponds to the situation when the data 
olle
tor 
onne
ts to

k new
omers from the set W 1
. With this s
enario shown in the information

�ow graph of Figure 2.6, the min
ut analysis leads to

k−1
∑

i=0

min(rcβc + reβe − iβc, α) ≥ M. (2.3)

After applying βc = τβe and an optimization pro
ess, the min
ut equation

(2.3) leads to the following threshold fun
tion:

α∗(rc, re, βe) =



















M
k
, βe ∈ [f(0),+∞)

2M−g(i)βe

2(k−i)
, βe ∈ [f(i), f(i− 1))

i = 1, . . . , k − 1,

(2.4)
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Figure 2.6: General information �ow graphs 
orresponding to the 
ase k ≤
rc + 1.

where

f(i) =
2M

2k(rcτ + re − τk) + τ(i+ 1)(2k − i)
and

g(i) = i(2rcτ + 2re − 2kτ + (i+ 1)τ).

Case k > rc + 1
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Figure 2.7: General information �ow graphs 
orresponding to the 
ase k >

rc + 1.

This 
ase 
orresponds to the situation when the data 
olle
tor 
onne
ts

to rc + 1 repla
ed nodes from the set W 1
and to k − rc − 1 repla
ed nodes

from the set W 2
. With this s
enario shown in the information �ow graph of

Figure 2.7, the min
ut analysis leads to
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rc
∑

i=0

min(rcβc + reβe − iβc, α) +

k−1
∑

i=rc+1

min((rc + re − i)βe, α) ≥ M. (2.5)

After applying βc = τβe and an optimization pro
ess, the min
ut equation

(2.5) leads to the following threshold fun
tion:

α∗(rc, re, βe) =











































M
k
, βe ∈ [f1(0),+∞)

2M−g(i)βe

2(k−i)
, βe ∈ [f1(i), f1(i− 1))

i = 1, . . . , k − rc − 1

2M−(g1(i)(k−rc−1)g2(i))βe

2(rc−i)
, βe ∈ [f2(i), f2(i− 1)),

i = k − rc, . . . , k − 1,

(2.6)

where

f1(i) =
2M

2k(r − k) + (i+ 1) + (2k − 1)
,

f2(i) =
2M

(2kr − k2 − r2c − rc + k + 2rcτ) + iτ(2rc − i− 1)
,

g1(i) = i(2r − 2k + i+ 1), and

g2(i) = (i+ 1)(2re + iτ).

2.5.5 Regenerating 
odes

Let C be a [n, k, r] regenerating 
ode, where the length n is the total number

of nodes in the system; the dimension k is the value su
h that any k nodes


ontain the minimum amount of information ne
essary to re
onstru
t the �le;

and the 
ardinal of the set of helper nodes r is the number of nodes ne
essary

to regenerate one failed node. Let the distan
e d of C be d = n − k + 1.

Regenerating 
odes are array 
odes over Fqt designed to approximate (and

a
hieve if possible) the optimal parameters of the threshold fun
tion on the

information �ow graph for an [n, k, n− k + 1] NDSS with repair degree r.

Let v ∈ F
k
qt be the information ve
tor representing the �le to be stored in

an NDSS. Let c ∈ F
n
qt be the 
orresponding 
odeword after en
oding v using

C, whi
h is an array 
ode as the ones explained in Subse
tion 2.1.2. If ea
h

array 
oordinate of c is stored in a node, and the linear 
ode C is MDS, the

parameters n, k and d of the regenerating 
ode 
oin
ide with the parameters
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n, k, and d, of the linear 
ode C. Moreover, in this 
ase C is 
alled a Minimum

Storage Regenerating (MSR) 
ode. When a 
ode is MDS, it means that it

minimizes the storage overhead. In other words, it is not possible to a
hieve a

higher 
orre
tion 
apability with equal transmission rate and it is not possible

to a
hieve a higher transmission rate with equal 
orre
tion 
apability. If ea
h


oordinate of a 
odeword is stored in one storage node, there are n storage

nodes and be
ause of the MDS property d = n− k + 1, k storage nodes are

enough to re
over the original information. We 
an then say that MSR 
odes

are MDS 
odes, however not all MDS 
odes are MSR 
odes sin
e not all of

them are able to a
hieve optimal repair bandwidth γ.

Note that, it is also possible to store more data in the same storage

node, for example by adding an extra set of elements over the base �eld

Fq, produ
ing more redundan
y whi
h 
ould be used to regenerate a failed

node requiring less repair bandwidth γ. Using this te
hnique, it is possible

to minimize the repair problem at the 
ost of some extra storage overhead,

but maintaining d = n− k + 1. When C a
hieves the minimum α su
h that

α = γ, C is 
alled a Minimum Bandwidth Regenerating (MBR) 
ode, and it


an be seen that the parameters n, k and d of the regenerating 
ode do not


oin
ide with the ones de�ned for a linear 
ode C.

Regenerating 
odes assume the data re
onstru
tion 
ondition: any k

nodes must be enough to re
over the �le, whi
h means that the minimum

distan
e must be d = n−k+1, so it is ne
essary to have αk ≥ M . Moreover,

if d = n − k + 1 and αk = M , we have an MDS 
ode. Another 
ondition

is that the regeneration of any node in the system must require less repair

bandwidth than the total �le size M , that is γ < M . If ea
h helper node

sends β data units, the repair bandwidth used is γ = βr. We know that any

k nodes must 
ontain enough information to re
over the �le so, unlike in the

LRC 
ase, the parameter r must a
hieve r > k. Note that if r < k then

d < n − k + 1 and if r = k, there is no possible optimization in the repair

bandwidth. Moreover, as there are n storage nodes and one is the new
omer,

then k < r < n. It is 
lear that as k < r, in order to de
rease the repair

bandwidth γ, ea
h helper node must send β < α data units.

Note the di�eren
e between LRC and regenerating 
odes. In both 
ases,

the repair degree is the number of helper nodes r ne
essary to regenerate a

failed node. However, in LRC, ea
h 
oordinate of a 
odeword c is stored in

one node, and when we a

ess to one helper node it means that we download

the entire 
oordinate 
ontained in it. Therefore, in order to de
rease γ, we

need r ≪ k. In regenerating 
odes, to maintain the distan
e d = n− k + 1,

we need r ≥ k. Thus, sin
e a 
odeword c 
an be seen as a ve
tor of array
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Figure 2.8: Fragmentation, 
onstru
tion and regeneration of a 2-fault toler-

an
e [4, 2, 3] regenerating 
ode.


oordinates, in order to de
rease γ we 
an in
rease r but downloading less

than an entire array 
oordinate from ea
h helper node. In other words, LRC

are the result of 
reating new 
odes adapted to an NDSS, while regenerating


odes are 
lassi
al 
odes in whi
h a network 
oding te
hnique is used to

redu
e the repair bandwidth γ.

If any new
omer is able to exa
tly repli
ate the lost node, we say that the

regenerating 
ode has the exa
t repair property. Otherwise, if the new
omers

store a linear 
ombination that does not redu
e the dimension of C and it

does not 
oin
ide with the data in
luded in the lost node, we say that the

regenerating 
ode has the fun
tional repair property [DRW11℄. Exa
t repair

is mu
h more desirable than fun
tional repair, sin
e despite the number of

failed nodes that the NDSS has repaired over an interval of time, it is pos-

sible to use systemati
 en
oding of the information and keep this systemati


representation over the time. This means that there is always one a

essible


opy of the original �le stored in the NDSS. It is worth to mention that in

[SRKR12℄ it is proved that the interior points of the tradeo� 
urve are not

a
hievable using exa
t repair.

We say that a regenerating 
ode has the un
oded repair property if it is

possible to repla
e a failed node without doing any linear operation in the

new
omer neither in the helper nodes. There exist un
oded 
onstru
tions

for the MBR point like the ones shown in [RSK11℄ and [RR10℄. However,

for the MSR point, there only exist un
oded 
onstru
tions using fun
tional

repair [HLS13℄.

Example 14 (Regenerating 
ode). Assume that a �le of size M is stored in a

[4, 2, 3] NDSS with r = 3. The information �ow graph of this NDSS is shown
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in Figure 2.4 and its min
ut equation is min
ut(S,DC) = min(3β, α) +

min(2β, α). The minimization of this equation is given by the threshold fun
-

tion (2.2) and provides two points in the tradeo� 
urve. The MSR point with

α = M/2 and γ = 3M/4 and the MBR point with α = γ = 3M/5.

Now, we design an example of a regenerating 
ode that a
hieves the MSR

point, a [4, 2, 3] MSR 
ode. A 
ode a
hieving these parameters is shown in

Figure 2.8. Firstly, the �le is divided into four 
oordinates over F3 and en-


oded into eight 
oordinates over the same �eld. Ea
h storage node stores two

of these 
oordinates produ
ing an array 
odeword with four array 
oordinates

over F32. It 
an be seen that any two storage nodes have enough information

to re
over the �le. Finally, the fun
tional repair of the �rst node is shown in

the �gure for γ = 3M/4.

2.5.6 Flexible regenerating 
odes

In Subse
tion 2.5.5, regenerating 
odes are des
ribed. We have said that a

regenerating 
ode always a
hieve d = n − k + 1, despite if the 
ode used is

MDS or not. We have shown that this is the most important di�eren
e, from

a pra
ti
al point of view, between regenerating 
odes and LRC, be
ause it

indi
ates if �any� or �a� subset of k storage nodes 
ontain enough information

to re
over the �le.

However, we have intrinsi
ally assumed that, in regenerating 
odes, the

set of helper nodes 
onsists on any r non failed nodes. If the set of helper

nodes is a subset with r spe
i�
 storage nodes, the resulting 
odes are 
alled

[n, k, r] �exible regenerating 
odes. Note that these new 
odes are regen-

erating 
odes, be
ause r ≥ k and any subset of k storage nodes 
ontain

enough information to re
over the �le. However, they share the idea of hav-

ing a spe
i�
 set of helper nodes given in Subse
tion 2.4.2 for LRC. Flexible

regenerating 
odes 
an be seen as an hybrid solution between LRC and regen-

erating 
odes, where d = n− k+1 but the set of helper nodes per new
omer


onsists of spe
i�
 storage nodes.

The �rst �exible 
onstru
tion of regenerating 
odes was given in [SRKR12℄.

In that arti
le, the authors 
onstru
ted �exible regenerating 
odes a
hieving

the same optimal parameters than MBR 
odes for r = n−1. Later, in [RR10℄,

the authors used mathemati
al designs [MS77℄ to generalize the 
onstru
tion

of these MBR 
odes for any r. Moreover, they dis
overed that by using this

kind of 
onstru
tions, the optimal MBR point of the tradeo� 
urve 
ould

be beaten. We 
all, to the resulting 
odes, �exible regenerating 
odes with

minimum bandwidth. Note that the minimum γ is a
hieved when γ = α.
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In this se
tion, we formalize those 
ontributions by giving a general 
on-

stru
tion for �exible regenerating 
odes with minimum bandwidth along with

their bounds and key parameters. In other words, we are rewriting the 
on-

tributions on this topi
 and unifying the nomen
lature, sin
e they have been

published separately. This se
tion has three subse
tions whi
h 
over the

three main aspe
ts of any regenerating 
ode, the 
ode 
onstru
tion, the node

regeneration and the data re
onstru
tion.

Code 
onstru
tion

Let C be an [n, k, r] MSR 
ode over Fqt , where any subset of k storage

nodes is enough to re
onstru
t the �le. In this subse
tion, we explain how

to 
onstru
t a new [n̄, k̄, r̄] regenerating 
ode C̄ with minimum bandwidth

over Fqtr̄ , from the base 
ode C. Despite it is possible to 
onstru
t C̄ from

any regenerating 
ode, the 
onstru
tion makes sense if the regenerating 
ode

C is MSR (so MDS viewed as an array 
ode), be
ause then, C̄ a
hieves the

optimal parameters α and γ.

Lemma 19. Given n ≥ 3, there exists a simple, undire
ted, and r̄-regular

graph H(W,E), where W is the set of verti
es where |W | = n̄ and E is the

set of edges where |E| = n, satisfying the following 
onditions: |W | = n̄,

|E| = n, 1 < r̄ < n̄, and r̄n̄ = 2n.

Proof. Condition r̄n̄ = 2n is given by the Handshaking lemma for a simple,

undire
ted, and r̄-regular graph. By Erdos-Gallai degree sequen
e theorem,

for r̄ > 1 and r̄ < n̄, there exists at least a simple, undire
ted, and r̄-regular

graph su
h that r̄n̄ = 2n.

For example, for r̄ = n̄ − 1, we have the 
omplete graph H = Kn̄, and

for r̄ = 2 we have the 
y
le graph H = Cn̄. As |E| = n in H(W,E), it is

possible to assume that ea
h edge in E 
orresponds to a di�erent 
oordinate

cj over Fqt of a 
odeword c = (c1, . . . cn) ∈ C. Note that cj 
ould be also

seen as an array 
oordinate 
omposed of 
oordinates over the base �eld Fq,

but in this se
tion, we 
onsider the base �eld Fqt, so cj is a 
oordinate of

Fqt . Given a 
odeword c ∈ C, sin
e |W | = n̄ in H(W,E), we 
an 
onstru
t

a 
odeword c̄ = (c̄1, . . . , c̄n̄) ∈ C̄, where ea
h array 
oordinate c̄i 
orresponds

to a di�erent vertex wi ∈ W and 
ontains the 
oordinates of c given by the r̄

edges in
ident to wi. Moreover, sin
e the graph is simple, any two verti
es 
an

not be 
onne
ted by more than one edge, so ea
h 
oordinate of c is 
ontained

in two array 
oordinates of c̄. As C is de�ned over Fqt , C̄ is de�ned over
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Figure 2.9: A [10, 9, 2]MDS 
ode used to 
reate a [5, 3, 4] �exible regenerating


ode with minimum bandwidth.

Fqtr̄ . Figure 2.9 shows an example of a [5, 3, 4] �exible regenerating 
ode

with minimum bandwidth 
reated from a [10, 9, 2] MDS 
ode, whi
h 
an be

used to illustrate this 
onstru
tion.

In the next subse
tions, we prove that C̄ is a regenerating 
ode with min-

imum bandwidth. Firstly, in the node regeneration subse
tion, we show that

γ = α. Then, in the data re
onstru
tion subse
tion, we look for the mini-

mum α su
h that any k̄ array 
oordinates of c̄ ∈ C̄ are enough to re
onstru
t

the �le. Note that C̄ is a regenerating 
ode, but not a 
ode from the 
lassi
al


oding theory point of view, sin
e |C̄| = |C| and k̄ is not the dimension of

the 
ode but an integer su
h that 1 < k̄ < n̄.

Node regeneration

Assume that a storage node fails, whi
h is the same as erasing one array


oordinate c̄i, i = 1, . . . , n̄ of a 
odeword c̄ = (c̄1, . . . , c̄n̄) ∈ C̄, or equivalently

one vertex wi ∈ W of H(W,E). The new
omer 
an repla
e the failed node

by downloading and storing the r̄ 
oordinates of c in
luded in ea
h one of

the r̄ neighbors of wi, and given by the 
orresponding r̄ edges in
idents to

wi. A

ording to this regeneration pro
ess, γ = α.

Note that these regenerating 
odes with minimum bandwidth, have the

exa
t repair and the un
oded repair properties. Also note that the node
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regeneration is given by an spe
i�
 subset of r̄ helper nodes, so they are

�exible regenerating 
odes.

Data re
onstru
tion

Let E(wi), i = 1, . . . , n̄, be the set of edges in
ident to the vertex wi ∈ W .

Let S̄ be the set of all subsets of {1, . . . , n̄} of size k̄ > 1 and let s̄ ∈ S̄.

For a subset s̄, |
⋃

i∈s̄ E(wi)| =
∑

i∈s̄ |E(wi)| − θs̄, where θs̄ represents the

interse
tion terms in the in
lusion-ex
lusion formula. Sin
e ea
h edge is

in
ident to two verti
es, for s̄′ ⊆ s̄ of size |s̄′| > 2, |
⋂

i∈s̄′ E(wi)| = 0, so

θs̄ =
∑

i<j, i,j∈s̄ |E(wi) ∩ E(wj)|. Let θ be the maximum of all θs̄, s̄ ∈ S̄.

Sin
e |E(wi) ∩ E(wj)| ≤ 1 for any i, j ∈ {1, . . . , n̄} and i 6= j, we have that

θ ≤
(

k̄

2

)

.

Lemma 20. Let C be an [n, k, r] MSR 
ode over Fqt with n ≥ 3. Choose n̄,

k̄ and r̄ su
h that r̄n̄ = 2n, 1 < k̄ < n̄, 1 < r̄ < k and k ≤ k̄r̄ − θ. Then,

there is a [n̄, k̄, r̄] regenerating 
ode C̄ over Fqtr̄ . Moreover, the minimum α

is a
hieved when k = k̄r̄ − θ.

Proof. Given a �le distributed using C, we know that there are n nodes and

that any k of those n nodes are enough to re
onstru
t the �le. By Lemma

19, we know that if n ≥ 3, there exists a set of n̄ verti
es W and a set of n

edges E, su
h that it is possible to 
onstru
t H(W,E) with 1 < r̄ < n̄ and

r̄n̄ = 2n. Then, from H(W,E) it is possible to 
onstru
t a 
ode C̄ as it is

des
ribed in the 
ode 
onstru
tion subse
tion.

The 
onditions 1 < k̄ < n̄ and r̄ < k are ne
essary be
ause if they are

not a
hieved, the 
ode C̄ has no sense as a regenerating 
ode. Note that a

subset of 
ardinal r̄ < k 
oordinates of c 
ontained in r̄ di�erent nodes 
an

regenerate a failed one, so γ < M . Finally, in order to re
onstru
t the �le

distributed using C̄, any subset of k̄ nodes must store at least k 
oordinates

of c ∈ C, so k ≤ |
⋃

i∈s̄E(wi)|. Sin
e k ≤ k̄r̄ − θ ≤ k̄r̄ − θs̄ = |
⋃

i∈s̄E(wi)|
this 
ondition is satis�ed. Therefore, C̄ is a regenerating 
ode.

In the node regeneration subse
tion, it is shown that γ = α. Moreover,

r̄ is the number of 
oordinates of c whi
h 
ompose an array 
oordinate of c̄.

Then, the minimum r̄ will lead to the minimum α. As r̄ ≥ (k + θ)/k̄, the

minimum r̄ is a
hieved when k = k̄r̄ − θ.

As we are trying to minimize α, we assume the equality k = k̄r̄ − θ

given by Lemma 20, and we establish an upper bound for the parameter θ

in Proposition 1.
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Proposition 1. In the graph H(W,E) with k = k̄r̄ − θ, we have that

1. θ ≤
(

k̄

2

)

if k̄ ≤ r̄ + 1,

2. θ ≤ ⌊ k̄
r̄+1

⌋
(

r̄+1
2

)

+
(

k̄ mod (r̄+1)
2

)

if k̄ > r̄ + 1.

Proof. Ea
h node wi ∈ W has r̄ in
ident edges, so k̄ nodes have k̄r̄ edges.

Now, we distinguish two 
ases.

Case k̄ ≤ r̄+1: In H(W,E), ea
h vertex wi, i = 1, . . . , n̄, shares one, and

only one, edge with another vertex wj. Ea
h vertex wi, i ∈ s̄ and |s̄| = k̄, 
an

share a maximum of one edge with ea
h one of the other verti
es wj , j ∈ s̄,

i 6= j. Then, the maximum number of shared edges is

(

k̄

2

)

. In other words,

when k̄ ≤ r̄ + 1, it is possible to 
reate a 
omplete subgraph of k̄ verti
es in

H(W,E) with
(

k̄

2

)

edges.

Case k̄ > r̄ + 1: Given H(W,E) and s̄, we are going to 
onstru
t a

subgraph whi
h maximizes the number of shared edges. Ea
h vertex wi,

i ∈ s̄, 
an share a maximum of r̄ edges with the remaining verti
es wj, j ∈ s̄,

i 6= j. Therefore, the maximum number of shared edges is when we 
onsider

a 
omplete subgraph with r̄ + 1 verti
es and

(

r̄+1
2

)

edges. As k̄ > r̄ + 1,

there 
ould be ⌊ k̄
r̄+1

⌋ 
omplete subgraphs, ea
h one with

(

r̄+1
2

)

edges. The

verti
es out of these 
omplete subgraphs 
an share a maximum of

(

k̄ mod (r̄+1)
2

)

edges, whi
h leads to the upper bound θ ≤ ⌊ k̄
r̄+1

⌋
(

r̄+1
2

)

+
(

k̄ mod (r̄+1)
2

)

for

k̄ > r̄ + 1.
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Chapter 3

Quasi-
y
li
 Flexible

Regenerating Codes

In this 
hapter, we present our �rst 
ontribution, a new family of regenerating


odes based on quasi-
y
li
 
odes. This 
ontribution has been partially pub-

lished in international 
onferen
es [GPV11a℄, [GPV11b℄ and submitted as a

journal paper in [GPV13a℄. Quasi-
y
li
 �exible minimum storage regenerat-

ing (QCFMSR) 
odes are 
onstru
ted and their existen
e is proved. Quasi-


y
li
 �exible regenerating 
odes with minimum bandwidth 
onstru
ted from

a base QCFMSR 
ode are also provided. These 
odes not only a
hieve op-

timal MBR parameters in terms of stored data and repair bandwidth, but

also for an spe
i�
 
hoi
e of the parameters involved, they 
an be de
reased

under the optimal MBR point.

Quasi-
y
li
 �exible regenerating 
odes are very interesting be
ause of

their simpli
ity and low 
omplexity. They allow exa
t repair-by-transfer in

the minimum bandwidth 
ase and an exa
t pseudo repair-by-transfer in the

MSR 
ase, where operations are needed only when a new
omer enters into

the system.

3.1 Quasi-
y
li
 Flexible MSR 
odes

In this se
tion, we des
ribe the quasi-
y
li
 �exible minimum storage regen-

erating (QCFMSR) 
odes in detail. We show how to 
onstru
t them and

some of their properties; we see how to regenerate a failed node; we prove

their existen
e by showing that the data re
onstru
tion 
ondition is a
hieved;

and �nally, we des
ribe an example of a [6, 3, 4] QCFMSR 
ode.

43
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3.1.1 Code Constru
tion

Let C be an array 
ode, like the ones explained in Subse
tion 2.1.2, of length

n = 2k and dimension k over Fq2 
onstru
ted from the nonzero 
oe�
ients

ζ1, . . . , ζk over Fq, and for whi
h the en
oding is done over the base �eld

Fq in the following way. An information ve
tor v ∈ F
k
q2

is seen as a ve
tor

v = (v1, . . . , vn) over Fq, and is en
oded into c ∈ F
n
q2 seen as a 
odeword

c = (c1, . . . , c2n) = (v1, . . . , vn, ρ1, . . . , ρn) over Fq, where the redundan
y


oordinates ρ1, . . . , ρn are given by the following equation:

ρi =

k+i
∑

j=i+1

ζj−ivj i = 1, . . . , n, (3.1)

where ζl ∈ Fq \ {0} for l = 1, . . . , k and j = i + 1, . . . , k + i mod n. The

rate of the 
ode is R = 1/2 and the en
oding over Fq is done by using a

quasi-
y
li
 
ode [MS77℄ as we will see later. Quasi-
y
li
 
odes are known

by their simpli
ity for en
oding-de
oding operations.

A [2k, k, r] QCFMSR 
ode over Fq2 is a regenerating 
ode 
onstru
ted

from the array 
ode C. Take a �le of size M and split it into k pie
es

over Fq2 , or equivalently, into n = 2k pie
es over Fq organized as a ve
tor

v = (v1, . . . , vn) over Fq. The [2k, k, r] QCFMSR 
ode over Fq2 is 
omposed

of a set of n = 2k storage nodes, denoted by {s1, s2, . . . , sn}, where ea
h

storage node si, i = 1, . . . , n, stores two 
oordinates over Fq, (vi, ρi) whi
h


an be seen as one array 
oordinate over Fq2 . The size of ea
h 
oordinate over

Fq is M/2k and the size of ea
h array 
oordinate stored in si is α = M/k.

Let S be the set of all subsets of {1, . . . , n} of size k. Let D be an n× n

matrix over Fq and let s = {i1, . . . , ik} ∈ S. Let D{i}
denote the ith 
olumn

ve
tor of D and Ds
denote the n× k submatrix of D given by the k 
olumns

determined by the set s.

Let F = (I|Z) be a n×2nmatrix, where I is the n×n identity matrix, and

Z is a n× n 
ir
ulant matrix de�ned from the nonzero 
oe�
ients ζ1, . . . , ζk
as follows:

Z =

























0 0 · · · 0 ζk ζk−1 · · · ζ1
ζ1 0 · · · 0 0 ζk · · · ζ2
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ζk ζk−1 · · · ζ1 0 0 · · · 0

0 ζk · · · ζ2 ζ1 0 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · ζk ζk−1 ζk−2 · · · 0

























. (3.2)
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v1

v2
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.

vn

quasi-
y
li
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v1

ρ1

v2

ρ2

.

.

.

vn

ρn

s1

s2

sn

Information 
oordinates

Storage nodes

Figure 3.1: Constru
tion pro
ess for a [n, k, r] quasi-
y
li
 �exible MSR 
ode.

The matrix F represents the array 
ode C, so also the QCFMSR 
ode


onstru
ted from C. Ea
h row is the en
oding of one 
oordinate over the

base �eld Fq, and ea
h node is represented by two 
olumns, one from I and

another one from Z. A
tually, the node si whi
h stores (vi, ρi), is also given

by

(vi, ρi) = (vI{i}, vZ{i}).

Note that the information 
oordinates are represented by the identity matrix

I, while the redundan
y 
oordinates are represented by the 
ir
ulant matrix

Z.

Cir
ulant matri
es have been deeply studied be
ause of their symmetri


properties [Dav79℄. Moreover, F 
an be seen as a generator matrix of a double


ir
ulant 
ode over Fq [MS77℄. Double 
ir
ulant 
odes are a spe
ial 
ase of

quasi-
y
li
 
odes whi
h are a family of quadrati
 residue 
odes. Quasi-
y
li



odes have already been used for distributed storage [BBBM11℄ whi
h points

out the signi�
an
e of these 
odes for NDSS.

Figure 3.1, shows the 
onstru
tion of a QCFMSR 
ode. First, the �le is

split into n symbols over Fq. Then, these symbols are en
oded using F and

produ
ing 2n symbols over Fq. Finally, ea
h two symbols are stored together

in one node, this 
reates the array 
ode with 
oordinates over Fq that 
an be

seen as array 
oordinates over Fq2.
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3.1.2 Node Regeneration

In this subse
tion, we show how to regenerate a failed node si whi
h stores

(vi, ρi), minimizing the required repair bandwidth. A
tually, we 
an just

follow the next algorithm:

1. Download the information 
oordinates vj , j = i+ 1, . . . , i+ k mod n,

from the next k nodes. Note that due to the 
ir
ulant s
heme, the

next node of sn is s1. From these information 
oordinates, 
ompute

the redundan
y 
oordinate ρi of the new
omer.

2. Download the redundan
y 
oordinate ρi−1 from the previous node, fol-

lowing the same 
ir
ulant s
heme. Solving a simple equation, obtain

the information 
oordinate vi of the new
omer.

It 
an be seen that r = ri = k + 1 for any si, i = 1, . . . , n, and when the

repair problem is fa
ed, it is 
lear that QCFMSR 
odes are optimal in terms

of the tradeo� 
urve given by the threshold fun
tion (2.2) for r = k + 1.

Note that QCFMSR 
odes are in fa
t a family of regenerating 
odes be
ause

r > k. However, unlike regenerating 
odes, for these �exible regenerating


odes the set of r helping nodes is not any but an spe
i�
 set of remaining

nodes with 
ardinality r. In other words, the set of nodes whi
h is going to

send data to an spe
i�
 new
omer is �xed.

Note that QCFMSR 
odes have also the exa
t repair property whi
h

means that on
e en
oded, the information and the redundan
y 
an be rep-

resented for the whole life of the NDSS by c = (v1, . . . , vn, ρ1, . . . , ρn), where

vi and ρi are the information and redundan
y 
oordinates, respe
tively. It is

shown in [SRKR10℄ and [SRKR11℄ that when r < 2k − 3, exa
t MSR 
odes

do not exist. However, QCFMSR 
odes exist for r = k + 1 whi
h satis�es

r < 2k − 3 for k > 4. These fa
ts illustrate the importan
e of the �exibility

over the set of helper nodes in this 
onstru
tion. Moreover, despite QCFMSR


odes do not a
hieve un
oded repair, they are very e�
ient regenerating one

node, be
ause they need only two simple operations on the new
omer and

no operation on the helper nodes.

3.1.3 Data Re
onstru
tion

In Subse
tion 3.1.1, we have seen that M = αk. In this subse
tion, we prove

that the array 
ode over Fq2, used to 
onstru
t a QCFMSR 
ode, satis�es

that d = n − k + 1 for some ζ1, . . . , ζk and, as a 
onsequen
e, QCFMSR


odes are MDS 
odes over Fq2 applied to NDSS, so they are MSR 
odes. In
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[GPV11b℄, we performed a 
omputational sear
h to 
laim the existen
e of

QCFMSR 
odes. In this subse
tion, we prove their existen
e theoreti
ally.

Let F s = (Is|Zs) denote the n × n submatrix of F determined by s =

{i1, . . . , ik} ∈ S. Let ps(ζ1, ζ2, . . . , ζk) ∈ Fq[ζ1, . . . , ζk] be the multivariate

polynomial asso
iated with the determinant of F s = (Is|Zs).

Assume that a DC wants to obtain the �le. Then, it 
onne
ts to any

k nodes {si1, . . . , sik} and downloads (vi1 , ρi1), . . . , (vik , ρik), so the DC is

downloading the en
oding given by F s
. In order to obtain the �le given by

v = (v1, v2, . . . , vn), we need F s
to be full rank. Moreover, in order to satisfy

the data re
onstru
tion 
ondition, we need F s
to be full rank for all s ∈ S.

Therefore, we want to use the Lemma 16 to prove that for a random 
hoi
e of

the nonzero 
oe�
ients ζ1, . . . , ζk, the polynomial ps(ζ1, ζ2, . . . , ζk) asso
iated

with the determinant of F s
is nonzero with high probability.

It has been explained in Se
tion 2.5.1 that there exists a relation between

determinants of matri
es and bipartite graphs and that to use the Lemma 16,

we need that ps(ζ1, ζ2, . . . , ζk) is not identi
ally zero. Let G(Wr ∪Wc, E) be

the bipartite graph asso
iated with a matrix F s
, where ea
h row of the matrix

is represented by a vertex wri in Wr, and ea
h 
olumn of F s
is represented by

a vertex wci in Wc, where i = 1, . . . , n. Two verti
es wri ∈ Wr, wci ∈ Wc are

adja
ent if the entry in the row i and 
olumn j of F s
is nonzero. Moreover,

the weight of this edge is the nonzero value of this i, jth entry. Let E(wci)

(resp. E(wri)) denote the neighbors of wci (resp. wri) in the graph G. Let

T = {t1, . . . , tm} ⊆ Wc be a subset of verti
es of Wc or T ⊆ Wr be a subset

of verti
es of Wr indistin
tly. Let E(T ) denote the set
⋃m

i=1E(ti).

By Lemma 15, we know that the polynomial asso
iated with the determi-

nant of F s
, ps(ζ1, ζ2, . . . , ζk), is not identi
ally zero if and only if the bipartite

graph G(Wr∪Wc, E) asso
iated with F s
has a perfe
t mat
hing. By Lemma

14, a bipartite graph G(Wr ∪Wc, E) 
ontains a 
omplete mat
hing from Wr

to Wc (resp. Wc to Wr) if and only if it satis�es Hall's 
ondition, that is,

for any T ⊆ Wc (resp. T ⊆ Wr), |T | ≤ |E(T )|. Moreover, if |Wr| = |Wc|,
the 
omplete mat
hing is a
hieved in both dire
tions, so it 
orresponds to a

perfe
t mat
hing.

Lemma 21. Let T ⊆ Wc su
h that T 6= ∅, then |E(T )| ≥ |T |.

Proof. Note that Wc has k verti
es of degree 1 and k verti
es of degree k.

We 
an de
ompose T = T1 ∪ T2, where T1 
ontains the verti
es of degree

1 and T2 
ontains the verti
es of degree k. It is 
lear that |E(T1)| = |T1|
by 
onstru
tion, and it is easy to see that |E(T2)| ≥ k + |T2| − 1 ≥ |T2| by
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s1 s2 s3 s4 s5 s6

v1 v2 v3 v4 v5 v6

v2 + v3 + 2v4 v3 + v4 + 2v5 v4 + v5 + 2v6 v5 + v6 + 2v1 v6 + v1 + 2v2 v1 + v2 + 2v3

Figure 3.2: A [6, 3, 4] QCFMSR 
ode with 
oordinates over Fq and array


oordinates over F
2
q .

the 
ir
ular 
onstru
tion of matrix Z and be
ause k > 1. Therefore, we 
an

assume that T1 6= ∅ and T2 6= ∅.
If |T1| ≤ k − 1, sin
e |E(T1) ∩ E(T2)| ≤ |E(T1)| = |T1|, we have that

|E(T )| = |E(T1)| + |E(T2)| − |E(T1) ∩ E(T2)| ≥ |T1| + k + |T2| − 1 − |T1| ≥
|T1|+|T2| = |T |. On the other hand, if |T1| = k, then |E(T1)∩E(T2)| ≤ |T1|−1

sin
e for ea
h di�erent vertex ti ∈ T2, there exists a di�erent vertex tj ∈ T1

su
h that E(ti) ∩ E(tj) = ∅. Thus, we also have that |E(T )| = |E(T1)| +
|E(T2)|−|E(T1)∩E(T2)| ≥ |T1|+k+ |T2|−1−|T1|+1 ≥ |T1|+ |T2| = |T |.

Proposition 2. The polynomial asso
iated with the determinant of F s
, ps(ζ1,

ζ2, . . . , ζk), is not identi
ally zero.

Proof. Sin
e |Wr| = |Wc|, by using Lemma 14 and Lemma 21, we have that

the bipartite graph G(Wr∪Wc, E) asso
iated with F s
has a perfe
t mat
hing.

Finally, by Lemma 15, we know that ps(ζ1, ζ2, . . . , ζk) is not identi
ally zero.

For the se
ond statement, we have to prove that for a random 
hoi
e of

the nonzero 
oe�
ients ζ1, . . . , ζn, the multipli
ation of all the multivariate

polynomials asso
iated with the determinant of all matri
es F s, s ∈ S, is

nonzero with high probability.

Let p(ζ1, . . . , ζk) ∈ Fq[ζ1, . . . , ζk] be the multivariate polynomial p(ζ1, . . . ,

ζk) =
∏

s∈S ps(ζ1, . . . , ζk). Note that if p(ζ1, . . . , ζk) 6= 0, then ps(ζ1, . . . , ζk) 6=
0 for all s ∈ S.

Lemma 22. The degree of p(ζ1, . . . , ζk) is less than or equal to k
(

n

k

)

. For-

mally, deg(p(ζ1, . . . , ζk)) ≤ k
(

n

k

)

.

Proof. Ea
h ζi, i = 1, . . . , k, 
an appear a maximum of k times in F s
. By

Lagrange minor's theorem, ps(ζ1, . . . , ζk) has a maximum degree of k. By the

de�nition of p(ζ1, . . . , ζk), deg(p(ζ1, . . . , ζk)) ≤ k
(

n

k

)

.

Theorem 23. The

(

n

k

)

submatri
es F s, s ∈ S, are full rank with high prob-

ability for a su�
iently large �nite �eld Fq.



3.1. Quasi-
y
li
 Flexible MSR 
odes 49

Proof. By Proposition 2 and using Lemma 16, we know that

Pr(p(ζ1, . . . , ζk) = 0) ≤
deg(p(ζ1, . . . , ζk))

q
.

Therefore, Pr(p(ζ1, . . . , ζk) 6= 0) ≥ 1 − deg(p(ζ1,...,ζk))
q

. And by Lemma 22, we

know that deg(p(ζ1, . . . , ζk)) ≤ k
(

n

k

)

, so for a su�
iently large �eld size q,

submatri
es F s, s ∈ S, are full rank with high probability.

Summarizing, there is a set of full rank matri
es F s
, s ∈ S, for a random


hoi
e of the nonzero 
oe�
ients ζ1, . . . , ζn and a su�
iently large �nite �eld.

This means that there exists su
h F that represents a QCFMSR 
ode with

the property that any k storage nodes have enough information to re
onstru
t

the �le. In other words, a random 
hoi
e of the 
oe�
ients over a su�
iently

large �nite �eld gives the en
oding for a quasi-
y
li
 MDS array 
ode of length

n over Fq2 where ea
h array 
oordinate of a 
odeword is (vi, ρi). As this 
ode

is implemented in a NDSS following the 
onstru
tion given in Subse
tion

3.1.1, it gives a QCFMSR 
ode.

It is worth to mention that using QCFMSR 
odes, an un
oded pie
e of

the �le is always kept in the system. Moreover, if more than one storage node

fails, up to n−k, the de
oding for the quasi-
y
li
 
odes has linear 
omplex-

ity in 
ontrast with the one for Reed-Solomon 
odes whi
h has quadrati



omplexity [MS77℄.

3.1.4 Example

In this subse
tion, we des
ribe the 
onstru
tion of a [6, 3, 4] QCFMSR 
ode

over F52 .

First, the �le is fragmented into 6 information 
oordinates v = (v1, . . . , v6).

Then, ea
h vi for i = 1, . . . , 6 is stored in a node si = (vi, ρi), along with its


orresponding redundan
y symbol ρi whi
h is 
omputed using a quasi-
y
li


matrix F of the following form:

F =

















1 0 0 0 0 0 0 0 0 ζ3 ζ2 ζ1
0 1 0 0 0 0 ζ1 0 0 0 ζ3 ζ2
0 0 1 0 0 0 ζ2 ζ1 0 0 0 ζ3
0 0 0 1 0 0 ζ3 ζ2 ζ1 0 0 0

0 0 0 0 1 0 0 ζ3 ζ2 ζ1 0 0

0 0 0 0 0 1 0 0 ζ3 ζ2 ζ1 0

















. (3.3)
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By 
onstru
tion, the node regenerating 
ondition is always a
hieved. In

order to satisfy the data re
onstru
tion 
ondition, we need to �nd nonzero


oe�
ients ζ1, ζ2, ζ3 su
h that p(ζ1, ζ2, ζ3) 6= 0 over F5. Sin
e p(ζ1, ζ2, ζ3) =

ζ241 ζ122 ζ53(−ζ22+ζ1ζ3)
5(ζ33+ζ31 )(−ζ1ζ

2
3+ζ22ζ3)(−ζ33−ζ31 ), a possible solution over

F5 is (ζ1, ζ2, ζ3) = (1, 1, 2). Figure 3.2 shows the distribution of information

and redundan
y 
oordinates in the nodes. Ea
h array 
oordinate over F52 is

represented by one storage node. It 
an be seen that d = 4− 2 + 1 and that

αk = M , so the quasi-
y
li
 �exible 
ode is a MSR 
ode.

Using the same argument, it is also possible to 
onstru
t a [6, 3, 4]QCFMSR


ode over F82 with nonzero 
oe�
ients (ζ1, ζ2, ζ3) = (1, 1, z) over F8, where

z is a primitive element of this �eld. Note that there is not any [6, 3, 4]

QCFMSR 
ode over F22 , F32 , F42 and F72 .

3.2 Quasi-
y
li
 �exible regenerating 
odes

with minimum bandwidth

It is possible to use QCFMSR 
odes as base regenerating 
odes to 
reate

regenerating 
odes with minimum bandwidth using the te
hnique des
ribed

in Subse
tion 2.5.6. In this subse
tion, we analyze the resulting parame-

ters of these 
alled quasi-
y
li
 �exible regenerating 
odes with minimum

bandwidth.

Corollary 24. For k̄ ≤ r̄ + 1, there exists a [n̄, k̄, r̄] quasi-
y
li
 �exible

regenerating 
ode with minimum bandwidth 
onstru
ted from a [2k, k, k + 1]

QCFMSR 
ode if the set of parameters

{

k, n̄, k̄, r̄
}

a
hieve:

k =
k̄(2r̄ − k̄ + 1)

2
,

n̄ =
2k̄(2r̄ − k̄ + 1)

r̄
,

1 < r̄ < k.

Proof. Straightforward from Lemmas 19, 20 and Proposition 1.

Figure 3.3 shows an example of a quasi-
y
li
 �exible regenerating 
ode

with minimum bandwidth for k̄ ≤ r̄ + 1 
reated from a [6, 3, 4] QCFMSR


ode. Ea
h node ωi ∈ W 
an be repaired downloading half node ωi−1 and

half node ωi+1. Moreover, any k̄ = 2 nodes in C̄ 
ontain at least k = 3

di�erent 
oordinates of c ∈ C whi
h allow us to re
onstru
t the �le. Note
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[6, 3, 4] QCFMSR 
ode

[6, 2, 2] quasi-
y
li
 �exible regenerating 
ode with minimum bandwidth

v1 v2 v3 v4 v5 v6

v2 +

v3 + 2v4

v3 +

v4 + 2v5

v4 +

v5 + 2v6

v5 +

v6 + 2v1

v5 +

v6 + 2v1

v1 +

v2 + 2v3

v1 v2 v3 v4 v5 v6

v2 +

v3 + 2v4

v3 +

v4 + 2v5

v4 +

v5 + 2v6

v5 +

v6 + 2v1

v5 +

v6 + 2v1

v1 +

v2 + 2v3

v2 v3 v4 v5 v6 v1

v3 +

v4 + 2v5

v4 +

v5 + 2v6

v5 +

v6 + 2v1

v5 +

v6 + 2v1

v1 +

v2 + 2v3

v2 +

v3 + 2v4

Figure 3.3: Constru
tion of a [6, 2, 2] quasi-
y
li
 �exible regenerating 
ode

with minimum bandwidth from a [6, 3, 4] QCFMSR 
ode.

that α = 2M
3

is equal to the value given in [DGWR10℄ for a [6, 3, 4] MBR


ode.

Corollary 25. For k̄ > r̄ + 1, there exists a [n̄, k̄, r̄] quasi-
y
li
 �exible

regenerating 
ode with minimum bandwidth 
onstru
ted from a [2k, k, k + 1]

QCFMSR 
ode if the set of parameters

{

k, n̄, k̄, r̄
}

a
hieves:

k = k̄r̄ −

⌊

k̄

r̄ + 1

⌋(

r̄ + 1

2

)

+

(

k̄ mod (r̄ + 1)

2

)

,

n̄ =
2n

r̄
,

1 < r̄ < k.

Proof. Straightforward from Lemmas 19, 20 and Proposition 1.

Figure 3.4 shows an example of a quasi-
y
li
 �exible regenerating 
ode

with minimum bandwidth for k̄ > r̄ + 1 
reated from a [10, 5, 6] QCFMSR


ode. Ea
h node ωi ∈ W 
an be repaired downloading half node ωi−1 and

half node ωi+1. Moreover, any k̄ = 4 nodes in C̄ 
ontain at least k = 5

di�erent 
oordinates of c ∈ C whi
h allows us to re
onstru
t the �le. Note

that α = 2
5
M whi
h is less than

4
7
M , the value given in [DGWR10℄ for a
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[10, 5, 6] QCFMSR 
ode

[10, 4, 2] quasi-
y
li
 felxible regenerating 
ode with minimum bandwidth

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v2 +5v3 +

2v4 +

v5 + v6

v3 +5v4 +

2v5 +

v6 + v7

v4 +5v5 +

2v6 +

v7 + v8

v5 +5v6 +

2v7 +

v8 + v9

v6 +5v7 +

2v8 +

v9 + v10

v7 +5v8 +

2v9 +

v10 + v1

v8 +5v9 +

2v10 +

v1 + v2

v9+5v10+
2v1 + v2 +

v3

v10+5v1+
2v2 + v3 +

v4

v1 +5v2 +

2v3 +

v4 + v5

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v2 +5v3 +

2v4 +

v5 + v6

v3 +5v4 +

2v5 +

v6 + v7

v4 +5v5 +

2v6 +

v7 + v8

v5 +5v6 +

2v7 +

v8 + v9

v6 +5v7 +

2v8 +

v9 + v10

v7 +5v8 +

2v9 +

v10 + v1

v8 +5v9 +

2v10 +

v1 + v2

v9+5v10+
2v1 + v2 +

v3

v10+5v1+
2v2 + v3 +

v4

v1 +5v2 +

2v3 +

v4 + v5

v2 v3 v4 v5 v6 v7 v8 v9 v10 v1

v3 +5v4 +

2v5 +

v6 + v7

v4 +5v5 +

2v6 +

v7 + v8

v5 +5v6 +

2v7 +

v8 + v9

v6 +5v7 +

2v8 +

v9 + v10

v7 +5v8 +

2v9 +

v10 + v1

v8 +5v9 +

2v10 +

v1 + v2

v9+5v10+
2v1 + v2 +

v3

v10+5v1+
2v2 + v3 +

v4

v1 +5v2 +

2v3 +

v4 + v5

v2 +5v3 +

2v4 +

v5 + v6

Figure 3.4: Constru
tion of a [10, 4, 2] quasi-
y
li
 �exible regenerating 
ode

with minimum bandwidth from a [10, 5, 6] QCFMSR 
ode.

[10, 5, 6] MBR 
ode. It is worth to mention that the reason of the de
reasing

on the lower bound given in [DGWR10℄ is the �exibility on the parameter r̄.

Figure 3.5 shows the parameters of some quasi-
y
li
 �exible regenerat-

ing 
odes with minimum bandwidth. The �rst 
olumn shows the parameters

[n̄, k̄, r̄] of the quasi-
y
li
 �exible regenerating 
odes with minimum band-

width. The se
ond 
olumn shows the parameters [n, k, r] of the 
orresponding

QCFMSR 
odes. The third and forth 
olumns 
ompare the minimum α su
h

that α = γ for MBR 
odes as stated in [DGWR10℄ with the one a
hieved by

the quasi-
y
li
 �exible regenerating 
odes with minimum bandwidth. First

part of the table shows 
ases when k̄ ≤ r̄+1, and the se
ond part 
ases when

k̄ > r̄ + 1
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[n̄, k̄, r̄] [n, k, r] α = γ [DGWR10℄ α = γ

[6, 2, 2] [6, 3, 4] 2M/3 2M/3

[8, 3, 3] [12, 6, 7] M/2 M/2

[7, 2, 4] [14, 7, 8] 4M/7 4M/7

[10, 4, 4] [20, 10, 11] 2M/5 2M/5

[10, 4, 2] [10, 5, 6] 4M/7 2M/5

[10, 5, 2] [10, 6, 7] 5M/9 M/3

[12, 5, 3] [18, 9, 10] 5M/12 M/3

[16, 7, 3] [24, 12, 13] 7M/18 M/4

Figure 3.5: Parameters [n̄, k̄, r̄] for some quasi-
y
li
 �exible regenerating


odes with minimum bandwidth 
onstru
ted from [n, k, r] QCFMSR 
odes,

and 
omparison between the α = γ values given in [DGWR10℄ and the ones

a
hieved with the proposed 
onstru
tion.
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Chapter 4

Two-ra
k model

In Subse
tion 2.5.5, we des
ribed the model proposed in [AKG10℄ based on

a non-homogeneous repair bandwidth whi
h we 
all stati
 
ost model. The

stati
 
ost model is based on di�erent repair bandwidth 
osts where there is

one set of �
heap� and one set of �expensive� helper nodes.

In realisti
 data 
enters, the data is pla
ed in storage nodes whi
h are


onne
ted through a network. These storage nodes are usually organized in

a ra
k, a metalli
 support designed to a

ommodate ele
troni
 equipment.

Figure 4.1 shows the rear of a real ra
k used in a data 
enter. The 
ommuni-


ation (bandwidth) 
ost between nodes whi
h are in the same ra
k is mu
h

lower than between nodes whi
h are in di�erent ra
ks. In fa
t, in [AGSS11℄

it is said that reading from a lo
al disk is nearly as e�
ient as reading from

the disk of another node in the same ra
k.

In this 
hapter we present our se
ond 
ontribution, a model designed

to represent the des
ribed situation. This 
ontribution has been partially

Figure 4.1: Rear of a real ra
k used in a data 
enter.

55
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published in the international 
onferen
e [GPV13b℄ and summarized as a

journal paper [GPV13
℄.

4.1 The model

In this model, the 
ost of sending data to a new
omer in a di�erent ra
k

is higher than the 
ost of sending data to a new
omer in the same ra
k.

Note the di�eren
e of this ra
k model 
ompared with the stati
 
ost model

des
ribed in Subse
tion 2.5.5. In that model, there is a stati
 
lassi�
ation of

the storage nodes between the ones having �
heap bandwidth� and the ones

having �expensive bandwidth�. In our new model, this 
lassi�
ation depends

on ea
h new
omer. When a storage node fails and a new
omer enters into

the system, nodes from the same ra
k are in the �
heap bandwidth� set, while

nodes in other ra
ks are in the �expensive bandwidth� set. In this se
tion,

we analyze the 
ase when there are only two ra
ks. Let W1 and W2 be the

sets of n1 and n2 storage nodes from the �rst and se
ond ra
k, respe
tively.

Consider the same situation as in Subse
tion 2.5.5, but now the sets of

�
heap bandwidth� and �expensive bandwidth� nodes depend on the spe
i�


repla
ed node. Again, we 
an assume, without loss of generality, that βc =

τβe for some real number τ ≥ 1. Let the new
omers be the storage nodes

sj, j = n + 1, . . . ,∞. Let r = r1c + r1e = r2c + r2e be the number of helper

nodes for any new
omer, where r1c , r
1
e and r2c , r

2
e are the number of 
heap

and expensive bandwidth helper nodes of a new
omer in the �rst and se
ond

ra
k, respe
tively. We 
an always assume that r1c ≤ r2c , by swapping ra
ks if

it is ne
essary. Figure 4.2 shows a s
heme of a two ra
k model.

In the stati
 
ost model, the repair bandwidth γ is the same for any

new
omer. In the ra
k model, it depends on the ra
k where the new
omer is

pla
ed. Let γ1 = βe(r
1
cτ + r1e) be the repair bandwidth for any new
omer in

the �rst ra
k with repair 
ost C1
T = βe(Ccr

1
cτ+Cer

1
e), and let γ

2 = βe(r
2
cτ+r2e)

be the repair bandwidth for any new
omer in the se
ond ra
k with repair 
ost

C2
T = βe(Ccr

2
cτ+Cer

2
e). Note that if r

1
c = r2c or τ = 1, then γ1 = γ2

, otherwise

γ1 < γ2
. As it is mentioned in [DGWR10℄, in order to represent a distributed

storage system, the information �ow graph is restri
ted to γ ≥ α. In the ra
k

model, it is ne
essary that γ1 ≥ α whi
h means that γ2 ≥ α.

Moreover, unlike the models des
ribed in Se
tion 2.5, where it is straight-

forward to establish whi
h is the set of nodes whi
h minimize the min
ut, in

the ra
k model, this set of nodes may 
hange depending on the parameters

k, r1c , r
2
c , n1 and τ . We 
all to this set of new
omers, the minimum min
ut
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Figure 4.2: S
heme of a two ra
k model.

set. Re
all that the in
ome of a new
omer sj , j = n + 1, . . . ,∞, is the sum

of the weights of the ar
s that should be 
ut in order to isolate wj
in from

S. Let I be the indexed multiset 
ontaining the in
omes of k new
omers

whi
h minimize the min
ut. It is easy to see that in the model des
ribed

in Subse
tion 2.5.3, I = {(r − i)β | i = 0, . . . , k − 1}, and in the one de-

s
ribed in Subse
tion 2.5.5, I = {((rc − i)τ + re)βe | i = 0, . . . ,min(rc, k −
1)} ∪ {(re − i)βe | i = 1, . . . , k − rc − 1}. Note that when k ≤ rc + 1,

{(re− i)βe | i = 1, . . . , k− rc−1} is empty. In Figure 2.4, it 
an be seen that

I = {(r − i)β | i = 0, . . . , k − 1} = {3β, 2β}. In Figure 2.7, if we �x k = 5,

rc = 3 and re = 2 that I = {((rc − i)τ + re)βe | i = 0, . . . ,min(rc, k − 1)} ∪
{(re− i)βe | i = 1, . . . , k−rc−1} = {(3τ+2)βe, (2τ+2)βe, (τ+2)βe, 2βe, βe}.

In order to establish I in the ra
k model, the set of k new
omers whi
h

minimize the min
ut must be found. First, note that sin
e r1c ≤ r2c , the

in
ome of the new
omers is minimized by repla
ing �rst r1c+1 nodes from the

ra
k with less number of helper nodes, whi
h in fa
t minimizes the min
ut.

Therefore, the indexed multiset I always 
ontains the in
omes of a set of r1c+1

new
omers fromW1. De�ne I1 = {((r1c−i)τ+r1e)βe | i = 0, . . . ,min(r1c , k−1)}
as the indexed multiset where I1[i], i = 0, . . . ,min(r1c , k−1), are the in
omes

of this set of r1c +1 new
omers from V 1
. If k ≤ r1c +1, then I = I1, otherwise
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I1 ⊂ I and k − r1c − 1 more new
omers whi
h minimize the min
ut must

be found. Taking τ = 2 in Figure 4.3, I1 = {((r1c − i)τ + r1e)βe | i =

0, . . . ,min(r1c , k − 1)} = {(τ + 3)βe, 3βe} = {5βe, 3βe}.
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Figure 4.3: Information �ow graph 
orresponding to the ra
k model when

k > r1c + 1, with k = 4, r1c = 1, r2c = 2, r = 4 and n1 = n2 = 3.

When k > r1c + 1, we will see that there are two possibilities, either the

remaining nodes from W1 are in the set of new
omers whi
h minimize the

min
ut or not. De�ne I2 = {r1eβe | i = 1, . . . ,min(k − r1c − 1, n1 − r1c − 1)} ∪
{(r2c − i)τβe | i = 0, . . . ,min(r2c , k − n1 − 1)} as the indexed multiset where

I2[i], i = 0, . . . , k − r1c − 2, are the in
omes of a set of k − r1c − 1 new
omers,

in
luding the remaining n1−r1c −1 new
omers from W1 and new
omers from

W2. Note that if n1 − r1c − 1 > k − r1c − 1, it only 
ontains new
omers

from W1. De�ne I3 = {(r2c − i)τβe | i = 0, . . . ,min(r2c , k − r1c − 2)} as the

indexed multiset where I3[i], i = 0, . . . , k − r1c − 2, are the in
omes of a set

of k − r1c − 1 new
omers from W2. When r2c < k − r1c − 1 or r2c < k − n1,

a

ording to the information �ow graph, the remaining in
omes ne
essary

to 
omplete the set of k − r1c − 1 new
omers are zero. Therefore, it 
an be

assumed that r2c ≥ k − r1c − 1 ≥ k − n1, sin
e the min
ut equation does not


hange when r2c < k − r1c − 1 or r2c < k − n1. Taking τ = 2 in Figure 4.3,

it 
an be seen that I2 = {r1eβe | i = 1, . . . ,min(k − r1c − 1, n1 − r1c − 1)} ∪
{(r2c − i)τβe | i = 0, . . . ,min(r2c , k − n1 − 1)} = {3βe, 2τβe} = {3βe, 4βe} and

I3 = {(r2c − i)τβe | i = 0, . . . ,min(r2c , k − r1c − 2)} = {2τβe, τβe}{4βe, 2βe}.

Proposition 3. If k > r1c+1, we have that |I2| = |I3| = k−r1c−1. Moreover,

if

∑k−r1c−2
i=0 I2[i] <

∑k−r1c−2
i=0 I3[i], then I = I1 ∪ I2; otherwise I = I1 ∪ I3.

Proof: We need to prove that I2 and I3 are the only possible sets

of in
omes whi
h minimize the min
ut. We will see that it is not possible
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to �nd a set of in
omes su
h that the sum of all its elements is less than

min(
∑|I2|−1

i=0 I2[i],
∑|I3|−1

i=0 I3[i]).

Let A = I2−(I2∩I3) = {a1, a2, . . . , an | ai = aj , i < j} and B = I3−(I2∩
I3) = {b1, b2, . . . , bn | bi > bj , i < j}. Let D = A ∪ B = {d1, d2, . . . , d2n | di ≥
dj, i < j}. Then,

∑n

i=1 di ≥
∑n

i=1 bi and
∑n

i=1 di ≥
∑n

i=1 ai. Note that A, B

and D are in
omes of an information �ow graph whi
h means that one 
an

not add d2 without having added d1 to the sum. The same happens with

A or B, so the elements must be in
luded in order from the highest to the

lowest.

If k ≤ r1c + 1, I = I1 and the 
orresponding min
ut equation is

|I1|−1
∑

i=0

min(I1[i], α) ≥ M. (4.1)

On the other hand, if k > r1c + 1 and I = I1 ∪ I2, the 
orresponding min
ut

equation is

|I1|−1
∑

i=0

min(I1[i], α) +

|I2|−1
∑

i=0

min(I2[i], α) ≥ M, (4.2)

and if I = I1 ∪ I3, the equation is

|I1|−1
∑

i=0

min(I1[i], α) +

|I3|−1
∑

i=0

min(I3[i], α) ≥ M. (4.3)

In the previous models des
ribed in Se
tion 2.5, the de
reasing behavior

of the in
omes in
luded in the min
ut equation is used to �nd the threshold

fun
tion whi
h minimizes the parameters α and γ. In the ra
k model, the

in
omes in
luded in the min
ut equations may not have a de
reasing behavior

as the new
omers enter into the system, so it is ne
essary to �nd the threshold

fun
tion in a di�erent way.

Let L be the in
reasing ordered list of values su
h that for all i, i =

0, . . . , k − 1, I[i]/βe ∈ L and |I| = |L|. Note that any of the information

�ow graphs, whi
h represent the ra
k model or any of the two models from

Se
tion 2.5, 
an be des
ribed in terms of I, so they 
an be represented by

L. Therefore, on
e L is found, it is possible to �nd the parameters α and

βe (and then γ or γ1
and γ2

) using the threshold fun
tion given in the next

theorem. Note that the way to represent this threshold fun
tion for the ra
k

model 
an be seen as a generalization, sin
e it also represents the behavior

of the min
ut equations for the previous given models.
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Theorem 26. The threshold fun
tion α∗(βe) (whi
h also depends on r, r1c ,

r2c , k and τ) is the following:

α∗(βe) =















M
k
, βe ∈ [f(0),+∞)

M−g(i)βe

k−i
, βe ∈ [f(i), f(i− 1))

i = 1, . . . , k − 1,

(4.4)

subje
t to γ1 = (r1cτ + r1e)βe ≥ α, where

f(i) =
M

L[i](k − i) + g(i)
and g(i) =

i−1
∑

j=0

L[j].

Note that f(i) is a de
reasing fun
tion and g(i) is an in
reasing fun
tion.

Proof: We want to obtain the threshold fun
tion whi
h minimizes α,

that is,

α∗(βe) = minα

subje
t to:

∑k−1
i=0 min(L[i]βe, α) ≥ M.

(4.5)

Therefore, we are going to show the optimization of (4.5) whi
h leads to the

threshold fun
tion (4.4).

De�ne M∗
as

M∗ =
k−1
∑

i=0

min(L[i]βe, α).

Note that M∗
is a pie
ewise linear fun
tion of α. Sin
e L is a sorted list of

k values, if α is less than the lowest value L[0], then M∗ = kα. As α grows,

the values from L are added to the equation, so

M∗ =



































kα, α ∈ [0, L[0]βe]

(k − i)α +
∑i−1

j=0 L[j]βe, α ∈ (L[i− 1]βe, L[i]βe]

i = 1, . . . , k − 1

∑k−1
j=0 L[j]βe, α ∈ (L[k − 1]βe,∞).

(4.6)

Using that M∗ ≥ M , we 
an minimize α depending on M . Note that

the term

∑k−1
j=0 L[j]βe of the previous equation has no signi�
an
e in the

minimization of α, so it 
an be ignored. Therefore, we obtain the fun
tion
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α∗ =



























M
k
, M ∈ [0, kL[0]βe]

M−
∑i−1

j=0
L[j]βe

k−i
, M ∈ (L[i− 1]βe(k − i) +

∑i−1
j=0L[j]βe,

L[i]βe(k − i) +
∑i−1

j=0L[j]βe]

i = 1, . . . , k − 1.

(4.7)

Finally, de�ne g(i) =
∑i−1

j=0L[j] and f(i) = M
L[i](k−i)+g(i)

. Then, the above

expression of α∗

an be de�ned over βe instead of over M , and the threshold

fun
tion (4.4) follows.
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Figure 4.4: Information �ow graph 
orresponding to the ra
k model when

k > r1c + 1, with k = 4, r1c = 1, r2c = 2, r = 4 and n1 = n2 = 3.

Example 15. Figure 4.4 shows the example of an information �ow graph


orresponding to a regenerating 
ode with k = 4, r1c = 1, r2c = 2, r = 4

and n1 = n2 = 3. Taking for example τ = 2, we have that I1 = {5βe, 3βe},
I2 = {3βe, 4βe} and I3 = {4βe, 2βe}. By Proposition 3, sin
e

∑1
i=0 I2[i] >

∑1
i=0 I3[i], I = I1 ∪ I3 = {5βe, 3βe, 4βe, 2βe}, and then L = [2, 3, 4, 5]. The


orresponding min
ut equation is (4.3) and applying L to the threshold fun
-

tion (4.4), we obtain

α∗(βe) =











































M
4
, βe ∈ [M

8
,+∞)

M−2βe

3
, βe ∈ [M

11
, M

8
)

M−5βe

2
, βe ∈ [M

13
, M
11
)

M − 9βe, βe ∈ [M
14
, M
13
).

(4.8)
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Figure 4.5: Information �ow graph 
orresponding to the ra
k model when

k > r1c + 1, with k = 3, r1c = 1, r2c = 2, r = 4 and n1 = n2 = 3.

It 
an happen that two 
onse
utive values in L are equal, that is L[i] =

L[i − 1], so f(i) = f(i − 1). In this 
ase, we 
onsider that the interval

[f(i), f(i− 1)) is empty and it 
an be deleted.

Example 16. Figure 4.5 shows the same example as Figure 4.3 with an

information �ow graph 
orresponding to a regenerating 
ode with r1c = 1,

r2c = 2, r = 4 and n1 = n2 = 3, but taking k = 3 instead of k = 4. If for

example τ = 2, we have that I1 = {5βe, 3βe}, I2 = {3βe} and I3 = {4βe}. By
Proposition 3, sin
e

∑0
i=0 I2[i] <

∑0
i=0 I3[i], I = I1∪I2 = {5βe, 3βe, 3βe}, and

then L = [3, 3, 5]. The 
orresponding min
ut equation is (4.2) and applying

L to the threshold fun
tion (4.4), we obtain

α∗(βe) =























M
3
, βe ∈ [M

9
,+∞)

M−3βe

2
, βe ∈ [M

9
, M

9
)

M − 6βe, βe ∈ [M
11
, M

9
).

(4.9)

Note that the se
ond interval is empty and it 
an be deleted.

Finally, note that when k ≤ r1c+1, the min
ut equations and the threshold

fun
tion (4.4) for the ra
k model are exa
tly the same as the ones shown in

[AKG10℄ for the model des
ribed in Subse
tion 2.5.5. A
tually, it 
an be

seen that r1c of the ra
k model is equivalent to rc of the stati
 
ost model.
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Figure 4.6: Tradeo� 
urve for the ra
k model with M = 1, k = 10, r1c = 5,

r2c = 6, r = 11, n1 = n2 = 6 and τ = 2.

Indeed, it 
an be seen that when k ≤ r1c + 1, the ra
k model and the stati



ost model have the same behavior be
ause I = I1.

4.1.1 MSR and MBR points

The threshold fun
tion (4.4) leads to a tradeo� 
urve between α and βe. Note

that, like in the stati
 
ost model, sin
e there is a di�erent repair bandwidth

γ1
and γ2

for ea
h ra
k, this 
urve is based on βe instead of γ1
and γ2

.

At the MSR point, the amount of stored data per node is αMSR = M/k.

Moreover, at this point, the minimum value of βe is βe = f(0) = M
L[0]k

, whi
h

leads to

γ1
MSR =

(r1cτ + r1e)M

L[0]k
and γ2

MSR =
(r2cτ + r2e)M

L[0]k
.

On the other hand, at the MBR point, as f(i) is a de
reasing fun
tion, the

parameter βe whi
h leads to the minimum repair bandwidths is βe = f(|L|−
1) = M

L[|L|−1](k−|L|+1)+g(|L|−1)
. Then, the 
orresponding amount of stored data

per node is αMBR = ML[|L|−1]
(k−|L|+1)L[|L|−1]+g(|L|−1)

, and the repair bandwidths are

γ1
MBR =

(r1cτ + r1e)M

L[|L| − 1](k − |L|+ 1) + g(|L| − 1)
and

γ2
MBR =

(r2cτ + r2e)M

L[|L| − 1](k − |L|+ 1) + g(|L| − 1)
.

Figure 4.6 shows the tradeo� 
urve for a ra
k model with M = 1, k = 10,

r1c = 5, r2c = 6, r = 11, n1 = n2 = 6 and τ = 2. The MSR point is the one

with minimum α while the MBR point is the one with minimum βe.



64 Chapter 4. Two-ra
k model

4.1.2 Non-feasible situation

As we have seen, the threshold fun
tion (4.4) is subje
t to γ1 = (r1cτ+r1e)βe ≥
α.

Proposition 4. If the inequality γ1 ≥ α is a
hieved, then max(L) = I1[0]/βe.

Proof: Sin
e L is an in
reasing ordered list, for i = 0, . . . , k − 1,

max(L) = L[k − 1]. As I1[0] is the in
ome of the �rst new
omer, then

I1[0]/βe = r1cτ + r1e ∈ L. A
tually, L is 
onstru
ted from all elements in I

and I1 ⊆ I, by Proposition 3.

If γ1 ≥ α, then taking βe = f(k − 1) in Theorem 26, we have that

γ1 = (r1cτ + r1e)βe = (r1cτ + r1e)f(k − 1) ≥ M − g(k − 1)f(k − 1). After

some operations, we obtain that

(r1cτ+r1e)M∑k−1

j=0
L[j]

≥ L[k−1]M
∑k−1

j=0
L[j]

, so r1cτ + r1e ≥ L[k−1].

Sin
e I1[0]/βe = r1cτ + r1e ∈ L and max(L) = L[k − 1], r1cτ + r1e = L[k − 1] =

I1[0]/βe.

Sin
e any NDSS satis�es that γ1 ≥ α, we have that max(L) = I1[0]/βe,

by Proposition 4. In order to have this situation, we 
an use two di�erent

approa
hes. If we allow a non-homogeneous system, then, it is possible to

de�ne a di�erent α for ea
h ra
k as it is shown in [PYGP13℄. However, this

dissertation is based on a homogeneous behavior for α, so we need to remove

from L any value L[i] su
h that L[i] > I1[0]/βe, i = 0, . . . , k − 1. After that,

we 
an assume that L[|L|−1] = I1[0]/βe. In terms of the tradeo� 
urve, this

means that there is no point in the 
urve that outperforms the MBR point.

Example 17. In order to illustrate this situation, we 
an 
onsider the ex-

ample of a regenerating 
ode with k = 3, r1c = 1, r2c = 4, r = 6, n1 = 2

and n2 = 5, and the information �ow graph given in Figure 4.7. Taking

τ = 2, the in
omes of the new
omers sn+1, sn+2 and sn+3 are 7βe, 5βe and

8βe, respe
tively. A
tually, we have that I = I1 ∪ I2, where I1 = {7βe, 5βe}
and I2 = {8βe}. Then, L = [5, 7, 8], so max (L) = 8 > I[0]/βe = 7. Applying

L to the threshold fun
tion (4.4), the resulting minimization of α and βe is

α∗(βe) =























M
3
, βe ∈ [M

15
,+∞)

M−5βe

2
, βe ∈ [M

19
, M
15
)

M − 12βe, βe ∈ [M
20
, M
19
).

Note that 
onsidering the last interval, we have that for βe = f(k − 1) =
M
20
, αMBR = 8M

20
and γ1

MBR = (r1cτ + r1e)f(k − 1) = 7M
20
. Applied to the
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Figure 4.7: Information �ow graph with k = 3, n1 = 2, n2 = 5, r1c = 1,

r2c = 4 and r = 6.

information �ow graph, we obtain that min
ut(S,DC) = 7M
20

+ 5M
20

+ 8M
20

= M

whi
h is true. However, sin
e αMBR > γ1
MBR, it gives a non-feasible situation

for a distributed storage s
heme. Note also that if we delete this non-feasible

interval, then γ1
MBR = 7M

19
and αMBR = 7M

19
whi
h 
orresponds to the MBR

point be
ause γ1
MBR = αMBR.

It is important to note that more than one element from I 
an be greater

than any element from I1, whi
h will result in more impossible intervals. In


on
lusion, any value from I greater than the greatest value from I1, must

be deleted be
ause otherwise it would lead to a non-feasible situation.

4.1.3 Case r1
e
βe ≥ r2

c
τβe

In this 
ase, the min
ut equation has a de
reasing behavior as i in
reases

for i = 0, . . . , k − 1. Therefore, it is possible to de�ne an inje
tive fun
tion

with a de
reasing behavior, whi
h will be used to determine the intervals of

the threshold fun
tion. Basi
ally, it is possible to use the same pro
edure

shown in [AKG10℄ and [DGWR10℄ to �nd the threshold fun
tion. Moreover,

it 
an be seen that the set of in
omes whi
h minimize the min
ut is always

the same, it does not depend on any parameter.

It is easy to see that if r1eβe ≥ r2cτβe and k ≤ r1c +1, the min
ut equations

(and so the threshold fun
tions) 
orresponding to the model explained in this
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se
tion and the model explained in Subse
tion 2.5.5 are exa
tly the same.

Therefore, we will fo
us on the situation that r1eβe ≥ r2cτβe and k > r1c + 1.

Note that this is in fa
t a parti
ular 
ase of the general threshold fun
tion

(4.4), where it is possible to 
reate a de
reasing fun
tion for any feasible i,

and then �nd the threshold fun
tion giving more details.

Theorem 27. When r1e ≥ r2cτ and k > r1c + 1, the threshold fun
tion α∗(βe)

(whi
h also depends on r, r1c , r
2
c , k and τ) is the following:

α∗(βe) =







































































M
k
, βe ∈ [f1(0),+∞)

M−g1(i)τβe

k−i
, βe ∈ [f1(i), f1(i− 1))

i = 1, . . . , k − r1c − 2

M−g1(k−r1c−1)τβe

k−i
, βe ∈ [f2(k − r1c − 1),

f1(k − r1c − 2))

M−g1(k−r1c−1)τβe−g2(i−k+r1c+1)βe

k−i
, βe ∈ [f2(i), f2(i− 1))

i = k − r1c , . . . , k − 1,

(4.10)

where

g1(i) =
i

2
(2r − 2k + i+ 1),

g2(i) =
i

2
(2r1e + τi− τ),

f1(i) =
2M

τ(2k(r − k) + (i+ 1)(2k − i))
, and

f2(i) =
2M

2r1e + 2r1er
1
c − τ(i(i− 2k + 1) + 2(k2 − k − kr + r1e + r1er

1
c ))

.

Note that f1(i) and f2(i), i = 0, . . . , k−1, are de
reasing fun
tions, and g1(i)

and g2(i), i = 1, . . . , k − 1, are in
reasing fun
tions.

Proof: Note that r1e = r2c + 1 and r2e = r1c + 1. We 
onsider the

min
ut equation (4.3) of the ra
k model, sin
e if r1e ≥ r2cτ , then we have that

I = I1 ∪ I3, by Proposition 3. In other words, the n1 − r1c − 1 remaining

new
omers from W 1
are not in the set of new
omers whi
h minimizes the

min
ut. Assume that k ≤ r = r1c+r1e be
ause if r < k, requiring any r storage

nodes to have a �ow of M will lead to the same 
ondition as requiring any
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k storage nodes to have a �ow of M [DGWR10℄. We want to obtain the

threshold fun
tion whi
h minimizes α, that is,

α∗(βe) = minα

subje
t to:

∑r1c
i=0min(r1cβc + r1eβe − iβc, α)+

∑k−1
i=r1c+1min((r1c + r1e − i)βc, α) ≥ M.

(4.11)

Therefore, we are going to show the optimization of (4.11) whi
h leads to

(4.10).

Applying that βc = τβe, we 
an de�ne the minimum M as M∗
, so

M∗ =

r1c
∑

i=0

min((r1cτ + r1e − iτ)βe, α) +
k−1
∑

i=r1c+1

min((r1c + r1e − i)τβe, α).

In order to 
hange the order of the above summation, we de�ne

b(i1, i2) = r1c + r1e − k + 1 + i1 + i2τ.

Note that M∗
is a pie
ewise linear fun
tion of α. The minimum value of

{(r1cτ + r1e − iτ)βe | i = 0, . . . , r1c}∪{(r1c + r1e − i)τβe | i = r1c +1, . . . , k−1} is
when i = k − 1. Therefore, if α is less than this value, then M∗ = kα. Sin
e

r1e = r2c+1 and r2e = r1c+1 the lowest value of {(r1cτ+r1e−iτ)βe | i = 0, . . . , r1c}
whi
h is r1eβe, is higher than or equal to the highest value of {(r1c + r1e −
i)τβe | i = r1c + 1, . . . , k − 1}, whi
h is (r1e − 1)τβe. This means that as

α in
reases, the term (r1c + r1e − i)τβe is added more times in M∗
while

i = k − 1, . . . , r1c . When i = r1c , . . . , 0, the term (r1cτ + r1e − iτ)βe is added

more times in M∗
.
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M∗ =


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

































































































































kα, α ∈ [0, b(0, 0)τβe]

(k − i)α +
∑i−1

j=0 b(j, 0)τβe, α ∈ (b(i− 1, 0)τβe, b(i, 0)τβe]

i = 1, . . . , k − r1c − 2

(r1c + 1)α+
∑k−r1c−2

j=0 b(j, 0)τβe, α ∈ (b(k − r1c − 2, 0)τβe,

b(k − r1c − 1, 0)βe]

(k − i)α +
∑k−r1c−2

j=0 b(j, 0)τβe+
∑i−k+r1c

j=0 b(k − r1c − 1, j)βe, α ∈ (b(k − r1c − 1, i− k + r1c )βe,

b(k − r1c − 1, i− k + r1c + 1)βe]

i = k − r1c , . . . , k − 1
∑k−r1c−2

j=0 b(j, 0)τβe+
∑r1c

j=0 b(k − r1c − 1, j)βe, α ∈ (b(k − r1c − 1, r1c )βe,∞).

(4.12)

Using that M ≥ M∗
, we 
an minimize α depending on M . Note that the

last term of (4.12) does not a�e
t in the minimization of α, so it is ignored.

Therefore, we obtain the fun
tion

α∗ =



























































M
k
, M ∈ [0, kb(0, 0)τβe]

M−
∑i−1

j=0
b(j,0)τβe

k−i
, M ∈ (A(i− 1), A(i)]

i = 1, . . . , k − r1c − 2
M−

∑i−1

j=0
b(j,0)τβe

k−i
, M ∈ (A(i− 1), B(i)]

M−
∑k−r1c−2

j=0
b(j,0)τβe−

∑i−k+r1c
j=0

b(k−r1c−1,j)βe

k−i
, M ∈ (B(i− 1), B(i)]

i = k − r1c , . . . , k − 1,
(4.13)

where A(i) = τβe(b(i, 0)(k − i− 1) +
∑i

j=0 b(j, 0)) and B(i) = βe(b(k − r1c −

1, i− k + r1c + 1)(k − i− 1) +
∑k−r1c−2

j=0 b(j, 0)τ +
∑i−k+r1c+1

j=0 b(k − r1c − 1, j)).



4.2. General ra
k model 69

From the de�nition of b(i1, i2),

i−1
∑

j=0

b(j, 0) =
i

2
(2r − 2k + i+ 1) = g1(i),

i−1
∑

j=0

b(k − r1c − 1, j) =
i

2
(2r1e + τi− τ) = g2(i),

τ((k − i− 1)b(i, 0) +

i
∑

j=0

b(j, 0)) =
2M

τ(2k(r − k) + (i+ 1)(2k − i))
=

M

f1(i)

and

b(k−r1c−1, i−k+r1c+1)(k−i−1)+

k−r1c−2
∑

j=0

b(j, 0)τ+

i−k+r1c+1
∑

j=0

b(k−r1c−1, j) =
M

f2(i)
.

The fun
tion (4.13) for α∗

an be de�ned over βe instead of over M , and

then fun
tion (4.10) follows.

4.2 General ra
k model

Let m ≥ 2 be the number of ra
ks of a distributed storage system. Let nj ,

j = 1, . . . , m, be the number of storage nodes in the j-th ra
k. Let rjc be the

number of helper nodes providing 
heap bandwidth and rje be the number

of helper nodes providing expensive bandwidth to any new
omer in the j-th

ra
k. We assume that the total number of helper nodes r is �xed, so it is

satis�ed that r = rjc + rje for j = 1, . . . , m. Moreover, it 
an be seen that

rje =
∑m

z=1,z 6=j(r
z
c + 1). Let the ra
ks be in
reasingly ordered by number of


heap bandwidth nodes, so i ≤ j if and only if ric ≤ rjc . First, we 
onsider

the 
ase when r = n− 1, and then the general 
ase, that is, when r ≤ n− 1

4.2.1 When r = n− 1

In this 
ase, we impose that any available node in the system is a helper

node, that is, r = n − 1. If one node fails in the j-th ra
k, rjc = nj − 1

nodes from the same ra
k and rje = n − nj nodes from other ra
ks help in

the regeneration pro
ess.
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The indexed multiset I 
ontaining the in
omes of the k new
omers whi
h

minimize the min
ut is

I =

m
⋃

j=1

{((rjc − i)τ + rje−

j−1
∑

z=1

(rzc − j+1)βe | i = 0, . . . ,min(rjc , k−

j−1
∑

z=1

rzc − j)},

(4.14)

where

∑0
z=1 x = 0 for any value x. Therefore, the resulting min
ut equation

is

∑k−1
i=0 min(I[i], α) ≥ M .

Finally, the threshold fun
tion (4.4) 
an be applied, so α and βe 
an be

minimized. Note that the set of k new
omers whi
h minimize the min
ut is

�xed independently of τ , so there is only one 
andidate set to be the minimum

min
ut set.

4.2.2 When r ≤ n− 1

In this 
ase, there may exist nodes in the system that, after a node failure,

do not help in the regeneration pro
ess. These kind of systems introdu
e the

di�
ulty of �nding the minimum min
ut set in the information �ow graph.

Note that in the two-ra
k model, after in
luding the �rst r1c+1 nodes from the

�rst ra
k, we need to known whether the remaining n1 − r1c − 1 are in
luded

in the minimum min
ut set or not. In order to solve this point, we 
reate

two 
andidate sets to be the minimum min
ut set, one with these nodes and

another one without them.

De�ne the indexed multiset I ′ =
⋃m

j=1{((r
j
c − i)τ + rje −

∑j−1
z=1 r

z
c − j +

1)βe | i = 0, . . . , rjc} ∪ Ij , where Ij = {(rje −
∑j−1

z=1 r
z
c − j + 1)βe | i =

1, . . . , nj−rjc−1} 
ontains the in
omes of the remaining nj−rjc−1 new
omers

on
e the �rst rjc + 1 storage nodes have already been repla
ed. Note that I ′

represents the in
omes of all the n new
omers. Also note that in the m-th

ra
k, (rme −
∑m−1

z=1 rzc −m+1)βe = 0, and that Subse
tion 4.2.1 des
ribes the

parti
ular 
ase when nj − rjc − 1 = 0 for all j = 1, . . . , m.

We say that a ra
k is involved in the minimummin
ut if at least one of its

nodes is in a 
andidate set to be the minimummin
ut set. The involved ra
ks

are always the �rst m′
ra
ks, where m′

is the minimum number su
h that

∑m′

j=1(r
j
c + 1) ≥ k. Sin
e the new
omers 
orresponding to the in
omes from

Im
′

are never in
luded in the minimum min
ut set, the number of 
andidate

sets to be the minimum min
ut set is 2m
′−1

. However, as the goal is to �nd

the set having the minimum sum of its 
orresponding in
omes, it is possible

to design a linear algorithm with 
omplexity O(m′−1) to solve this problem.

This algorithm is des
ribed in the next paragraph.
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For all j = 1, . . . , m′ − 1, if
∑k−1

i=0 I ′[i] >
∑k−1

i=0 (I
′ − Ij)[i], where I ′ − Ij

means removing the elements of Ij inside I ′, the new I ′ be
omes I ′−Ij. This

pro
ess is repeated for every j. Finally, after m′ − 1 
omparisons, we obtain

that I = I ′. Then, we 
an assure that I 
ontains the in
omes of the minimum

min
ut set of new
omers. On
e I is found, we 
an de�ne L as in the two-ra
k

model and apply the threshold fun
tion (4.4) in order to minimize α and βe.

Example 18. Let the number of ra
ks be m = 3 with n1 = 3, n2 = 4, n3 = 4

and k = 7. Let the number of helper nodes for any new
omer be r = 8 with

r1c = 1, r2c = 2 and r3c = 3, so with r1e = 7, r2e = 6 and r3e = 5. Note that

r1c ≤ r2c ≤ r3c . The information �ow graph 
orresponding to these parameters

is shown in Figure 4.8.

Sin
e m′ = 3, the three ra
ks are involved in the minimum min
ut and

the in
omes in I depend on whether the sets I1 and I2 are in
luded or not:

• In
luding I1 and I2: I ′{1,2} = {(τ + 7)βe, 7βe, 7βe, (2τ + 4)βe, (τ +

4)βe, 4βe, 4βe}.

• In
luding I1 but not I2: I ′{1} = {(τ + 7)βe, 7βe, 7βe, (2τ + 4)βe, (τ +

4)βe, 4βe, 3τβe}.

• In
luding I2 but not I1: I ′{2} = {(τ+7)βe, 7βe, (2τ+4)βe, (τ+4)βe, 4βe,

4βe , 3τβe}.

• Ex
luding I1 and I2: I ′∅ = {(τ+7)βe, 7βe, (2τ+4)βe, (τ+4)βe, 4βe, 3τβe,

2τβe}.

Then, if for example τ = 2.2, the sum of the elements of the above multisets

are 45.8βe, 48.4βe, 45.4βe and 45.8βe, respe
tively. So I = I ′{2} 
ontains the

in
omes 
orresponding to the minimum min
ut set.

We 
an obtain the same result by using the algorithm proposed in this

se
tion, that is, following these steps:

1. Create I ′ = {(τ+7)βe, 7βe, 7βe, (2τ+4)βe, (τ+4)βe, 4βe, 4βe 3τβe, 2τβe,

τβe, 0}.

2. Create I1 = {7βe}. Sin
e

∑6
i=0 I

′[i] = 45.8βe >
∑6

i=0(I
′ − I1)[i] =

45.4βe, the new I ′ be
omes I ′ = I ′ − I1 = I{2}.

3. Create I2 = {4βe}. Sin
e

∑6
i=0 I

′[i] = 45.4βe ≤
∑6

i=0(I
′ − I2)[i] =

45.8βe, I = I ′ = I ′{2} and

∑6
i=0 I[i] = 45.4βe.
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α

α

α

α

α

α

α

τβe τβe

τβe

τβe

βe

βe

τβe

τβe

βe

βe

τβe

τβe

βe

βe

τβe

τβe

τβe

βe

βe

τβe

τβe

τβe

βe

βe

βe

βe

βe

Figure 4.8: Information �ow graph 
orresponding to the ra
k model with

k = 7, r1c = 1, r2c = 2, r3c = 3 and r = 8.
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Figure 4.9: Chart 
omparing the ra
k model with the stati
 
ost model for

M = 1, k = 10, r1c = 5, r2c = 6, r = 11, n1 = n2 = 6 and τ = 2.
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Figure 4.10: Chart showing the tradeo� 
urves between α and βe for M = 1,

k = 10, r1c = 5, r2c = 6, r = 11 and n1 = n2 = 6, so with k > r1c + 1.

4.3 Analysis

When τ = 1, we have that βe = βc, so γj = γ = rβe for any j. This situation


orresponds to the 
ase when the three models shown in Subse
tions 2.5.3,

2.5.5 and Se
tion 4.2 
oin
ide in terms of the threshold fun
tion, sin
e we


an assume that βc = βe = β. When τ > 1 and k ≤ r1c + 1, the ra
k model


oin
ides with the stati
 
ost model des
ribed in Subse
tion 2.5.5.

In order to 
ompare the ra
k model with the stati
 
ost model when

τ > 1 and k > r1c + 1, it is enough to 
onsider the 
ase m = 2. Moreover, it

only makes sense to 
onsider the equation C1
T = βe(Ccr

1
cτ + Cer

1
e). Using

the de�nitions given for the stati
 
ost model and the ra
k model, note

that rc = r1c and re = r1e . When 
omparing both models using C1
T , all

the parameters are the same ex
ept for βe = f(i) = M
L[i](k−i)+g(i)

. Now, we

are going to prove that the resulting L will always be greater in the ra
k

model, so both βe and C1
T will be less.

Assume that the in
omes are in terms of I. For the stati
 
ost model,

I = {((r1c−i)τ+r1e)βe | i = 0, . . . , r1c}∪{(r
1
e−i)βe | i = 1, . . . , k−r1c−1}. Note

that {(r1e−i)βe | i = 1, . . . , k−r1c−1} = {(r2c−i)βe | i = 0, . . . , k−r1c−2}. In
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Figure 4.11: Chart showing the repair 
ost in the ra
k model for M = 1,

k = 5, r1c = 5, r2c = 6, d = 11, n1 = n2 = 6, Cc = 1 and Ce = 10. The points


orrespond to the k = 5 values given by f(i), i = 0, . . . , 4.

this 
ase, both models are equal for the �rst r1c +1 new
omers, and di�erent

for the remaining k − r1c − 1 new
omers. If I = I1 ∪ I3 for the ra
k model,

the in
omes of the remaining k− r1c − 1 new
omers from the se
ond ra
k are

(r2c − i)τβe, whi
h are greater than (r2c − i)βe of the stati
 
ost model. If

I = I1 ∪ I2, it 
an also be seen that r1eβe > (r1e − i)βe. Finally, we 
an say

that the repair 
ost in the ra
k model is less than the repair 
ost in the stati



ost model.

The 
omparison between both, the ra
k model and the stati
 model, is

shown in Figure 4.9 whenM = 1, k = 10, r1c = 5, r2c = 6, r = 11, n1 = n2 = 6

and τ = 2. It 
an be seen that the 
urve of the ra
k model is below the 
urve

of the stati
 model, whi
h means that the ra
k model requires less stored data

per node α and less expensive repair bandwidth βe than the stati
 model.

As βe is de
reased in the ra
k model, this means that the repair 
ost is going

to be less in the ra
k model than in the stati
 model.

The de
reasing behavior of βe as τ in
reases is shown in Figure 4.10 by

giving several tradeo� 
urves for di�erent values of τ . As we have said, if βe

is de
reased, the repair 
ost is also de
reased. This fa
t is shown in Figure

4.11, where it 
an be seen that the repair 
ost de
reases as τ in
reases.

Summarizing, when τ is in
reased, βe de
reases whi
h also de
reases the

repair 
ost.



Chapter 5

Con
lusions

The information age is the 
urrent period in human history where there is

a shift from traditional industry to an e
onomy based on information 
om-

puterization. In this new era, the amount of digital data is in
reasing ex-

ponentially ea
h year and the physi
al pla
e where this data is stored and

treated is no longer de�ned by the users or authors of su
h data [Hi011℄. The


omputer 
loud is a perfe
t example of this 
ontext.

Despite the fa
t that stored data 
an be a

essed by users from the In-

ternet as if by magi
, the 
ompanies or organizations in 
harge of it must

assure its se
urity and its persisten
e. The data is usually stored in a Net-

work Distributed Storage System (NDSS), a system 
omposed of multiple

independent storage nodes. However, the 
ost of maintaining those NDSS

not only in terms of money, but also in terms of spa
e or e
ologi
al 
ost, is

high and must be addressed.

In this dissertation, we assume that the amount of data stored in a NDSS

is minimized by using 
oding theory, a well known mathemati
al art used

for data transmission. The in
reasing use of 
oding theory te
hniques in

the 
urrent storage systems, by some of the most in�uential 
ompanies like

Fa
ebook or Google, is a 
lear example of su
h advantage. However, 
oding

theory is not fo
used on solving some of the problems that NDSS introdu
es.

Firstly, we have explained the 
urrent state of the art of 
odes applied

to NDSS. We have seen some of the most important 
oding theory 
on
epts

and parameters, and we have shown the advantages and problems of using


odes in a NDSS. It is 
lear that the use of 
odes in NDSS has some huge ad-

vantages, spe
ially regarding the minimization of the redundan
y needed to

assure the persisten
e of the stored data. However, 
oding theory te
hniques

also introdu
e some problems, like the extra amount of bandwidth needed to

75
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regenerate a failed node (repair problem) or data insertion, among others.

In this dissertation, we have seen that there are two di�erent approa
hes

to address the repair problem. On the one hand, the 
odes designed for NDSS

whi
h address the repair problem by in
reasing the lo
ality of the 
oordinates

stored in the storage nodes. This kind of 
odes not only de
rease the repair

bandwidth, but also the repair degree whi
h is the number of other storage

nodes needed to regenerate a failed one. However, they do that at the 
ost

of de
reasing the fault toleran
e of the system, so the persisten
e of the data

is redu
ed.

On the other hand, the regenerating 
odes address the repair problem by

using network 
oding te
hniques. The regenerating 
odes treat the 
odes as

a bla
k box and use network 
oding to de
rease the repair bandwidth. In this


ase, the fault toleran
e is maintained at the 
ost of some extra 
omputational


omplexity in the storage nodes. This dissertation is based on regenerating


odes.

In real environments like a data 
enter or a P2P system, the 
omputa-

tional 
ost introdu
ed by the use of regenerating 
odes is a big issue that

must be addressed. If regenerating 
odes are used, the 
ost of doing linear


ombinations in both the helper nodes and the new
omers is a real prob-

lem. This is be
ause most of the storage nodes are 
omposed of storage de-

vi
es without 
omputational resour
es. Moreover, it is also important from

a pra
ti
al point of view that the repair used is exa
t whi
h 
ompli
ates the

problem. It has been proven in [HLS13℄, that it is impossible to a
hieve an

exa
t repair-by-transfer (an exa
t repair without linear 
ombinations) when

the regenerating 
ode has the minimum storage overhead.

5.1 Main Results

In the �rst 
ontribution, we 
onstru
t a family of low 
omplexity �exible

regenerating 
odes using quasi-
y
li
 
odes, where a spe
i�
 set of helper

nodes is used to repair a storage node failure. The �rst 
onstru
tion is

designed to minimize the storage per node, the resulting 
odes are 
alled

quasi-
y
li
 �exible minimum storage regenerating (QCFMSR) 
odes. We

provide an exa
t repair solution for all parameters a
hieving r = k + 1 and

n = 2k. This 
onstru
tion is minimum a

ording to the MSR point in the

fundamental tradeo� 
urve. Moreover, QCFMSR 
odes have a very simple

regenerating algorithm that approa
hes to the repair-by-transfer property.

In our solution, the helper nodes do not need to do any linear 
ombination
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among their symbols. The only linear 
ombination is done in the new
omer

to obtain the symbols the �rst time that it enters into the system. As far as

we are 
on
erned, this is the �rst 
onstru
tion a
hieving this repair simpli
ity

for the MSR point. We also 
laim that su
h 
odes exist with high probability.

Moreover, it is shown in [SRKR10℄ and [SRKR11℄ that when r < 2k−3, exa
t

MSR 
odes do not exist. However, QCFMSR 
odes exist for r = k+1 whi
h

satis�es r < 2k − 3 for k > 4. These fa
ts illustrate the importan
e of the

�exibility over the set of helper nodes in this 
onstru
tion.

From a 
orporate point of view, it is interesting to have 
odes with

high rates, sin
e these are the ones desired for a
tual data 
enters. De-

spite there are 
onstru
tions with an equal [TWB11℄ or a higher [PD11℄ rate

than QCFMSR 
odes, their other properties (un
oded repair at the helper

nodes, low de
oding and repairing 
omplexity, good rate, low repair degree

r = k + 1 and exa
t repair) makes them very interesting.

The se
ond 
onstru
tion is designed to minimize the repair bandwidth,

the resulting 
odes are 
alled quasi-
y
li
 �exible regenerating 
odes with

minimumbandwidth. To 
onstru
t them, we use a te
hnique shown in [RR10℄

and [SRKR12℄ whi
h provide minimum bandwidth 
odes from existing MSR


odes using graphs. We analyze and prove this 
onstru
tion giving bounds on

the parameters of these 
odes. This 
onstru
tion gives the minimum possible

bandwidth γ = α a
hieved by an spe
i�
 set of helper nodes and it has the

repair-by-transfer property. Finally, we show that QCFMSR 
odes 
an be

used as base 
odes to 
onstru
t quasi-
y
li
 �exible regenerating 
odes with

minimum bandwidth. We provide the 
onditions needed on the parameters

{n, k, d, n̄, k̄, r̄} for both 
ases, when k̄ ≤ r̄ + 1 and k̄ > r̄ + 1.

The se
ond 
ontribution is the design of a new mathemati
al model used

to represent a data 
enter, where the storage nodes are pla
ed in ra
ks. In

this new model, the 
ost of downloading data units from nodes in di�erent

ra
ks is introdu
ed. That is, the 
ost of downloading data units from nodes

lo
ated in the same ra
k is mu
h lower than the 
ost of downloading data

units from nodes lo
ated in a di�erent ra
k. The ra
k model is an approa
h

to a more realisti
 distributed storage environment like the ones used in


ompanies dedi
ated to the task of storing information.

Firstly, the ra
k model is deeply analyzed in the 
ase that there are two

ra
ks. The di�eren
es between this model and previous models are shown.

Due to it is a less simpli�ed model 
ompared to the ones presented previ-

ously, the ra
k model introdu
es more di�
ulties in order to be analyzed.

The main 
ontribution in this 
ase, is the generalization of the pro
ess to
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�nd the threshold fun
tion of a distributed storage system. This new gener-

alized threshold fun
tion �ts in the previous models and allows to represent

the information �ow graphs 
onsidering di�erent repair 
osts. We have also

provided the tradeo� 
urve between the repair bandwidth and the amount

of stored data per node and we have 
ompared it with the ones found in

previous models. We have analyzed the repair 
ost of this new model, and

we 
an 
on
lude that the ra
k model outperforms previous models in terms

of repair 
ost.

Finally, we have also studied the general ra
k model where there are

m ≥ 2 ra
ks. This generalization represents two main 
ontributions: the

making of a model of a distributed storage system using any number of

ra
ks, and the des
ription of the algorithm to �nd the minimummin
ut set of

new
omers (whi
h is a new problem 
ompared to the previous models). On
e

the minimum min
ut set is found, we 
an apply the generalized threshold

fun
tion whi
h shows the minimum tradeo� between the amount of stored

data per node and the repair bandwidth needed to regenerate a failed node.

5.2 Further Resear
h

From the point of view of the ra
k model, it is for further resear
h the 
ase

where there are three di�erent 
osts: one for nodes within the same ra
k,

another for nodes within di�erent ra
ks but in the same data 
enter, and a

third one for nodes within di�erent data 
enters. It would also be important

to give some 
onstru
tions that a
hieve the optimal bounds. Constru
ting

su
h regenerating 
odes is not trivial and we don't know if it is possible.

However, the bounds and optimal tradeo� given in this dissertation is an

initial step to provide a 
omparison point for further resear
h on this �eld.

It is also interesting to study lo
ally repairable 
odes within a ra
k. The ra
k

model provides some 
on
eptual lo
ality given by ea
h ra
k and ea
h data


enter, so it 
an be interesting to see how LRC performs in these kind of

environments. In our opinion, LRC is probably the most natural solution to

the problem of applying 
oding theory to ra
ks. However, our dissertation


an be also interesting for LRC, be
ause there are no bounds on the e�
ien
y

of 
odes in terms of repair bandwidth neither in terms of fault toleran
e for

LRC. This dissertation is an initial step in designing LRC for ra
ks and


omparing them with the provided optimal tradeo�.

In general, we have fo
used on solving the problem of 
oding theory in

real NDSS. From a big pi
ture point of view, a lot of work 
an still be
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done. Computational 
omplexity is a problem whi
h is not usually addressed

by resear
hers but whi
h a
hieves a high importan
e. Moreover, we have

theoreti
al limits to the e�
ien
y of the repair and re
onstru
tion in NDSS

that 
an be broken by using new models whi
h adopt the spe
i�
 topology

of the NDSS. For example, we have seen that by using the ra
k model or the

�exible regenerating 
odes, the theoreti
al bounds given in [DGWR10℄ 
an

be supersede.

Another interesting and unaddressed problem is the introdu
tion of the

�le 
ontext. In this moment, the resear
h on NDSS is based on the assump-

tion that the �le is a bla
k box of bits. However, 
ompression te
hniques that

use the 
ontext of the �les a
hieve higher 
ompression rates than general 
om-

pression te
hniques. Designing a NDSS using 
oding and 
ompression 
ould

be an interesting abstra
tion to provide a di�erent point of view. Con
eptu-

ally, if the 
ontext of the �le is added, we should be able to provide a better


ompression rate, whi
h means that the stored data 
an be redu
ed.

There are other 
odes that 
ould be used in NDSS apart from LRC or

regenerating 
odes. Convolutional 
odes have some interesting lo
ality prop-

erties, sin
e ea
h redundan
y symbol 
an be 
omposed of a small set of other

symbols. This property 
an redu
e the repair degree of the NDSS. Moreover,

if some memory is used in the 
onvolutional 
ode, ea
h 
oordinate might have

multiple repair alternatives. From this perspe
tive, other 
odes like LDPC

may also be interesting. LDPC have the desired property of 
ontaining a

lot of zeros in their parity 
he
k matrix. This means that the words of the

dual have low weight and low repair degree whi
h leads to a high lo
ality.

Moreover its de
oding algorithm is simple whi
h redu
es the 
omputation


omplexity needed to re
onstru
t a �le.
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