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Abstract

Online data storage is often regarded as a growing business, yet many unre-
solved issues linger in this specific field and prevent researchers from driving
it to full capacity. Data replication (most commonly known as backup) is
simply not efficient when improving persistence and accessibility of such data.
Error correcting codes are known for their efficiency when adding redundancy
to avoid lose of information. Unfortunately, the use of error correcting codes
entail additional problems such as the repair problem: how do we replace a
storage node downloading as less data as possible from other nodes.

In this dissertation, we deepen on state-of-the-art of codes applied to dis-
tributed storage systems. Additionally, a family of regenerative codes which
we call quasi-cyclic flexible regenerating codes is provided. Quasi-cyclic flex-
ible minimum storage regenerating (QCFMSR) codes are constructed and
their existence is well-proven. Quasi-cyclic flexible regenerating codes with
minimum bandwidth constructed from a base QCFMSR code are also pro-
vided.

Quasi-cyclic flexible regenerating codes are very interesting because of
their simplicity and low complexity. They allow exact repair-by-transfer in
the minimum bandwidth case and an exact pseudo repair-by-transfer in the
MSR case, where operations are needed only when a new node enters into
the system replacing a lost one.

Finally, we propose a new model whereby storage nodes are placed in
two racks. This unprecedented two-rack model is generalized to any number
of racks. In this specific set-up, storage nodes have different repair costs
depending on the rack where they are placed. A threshold function, which
minimizes the amount of stored data per node and bandwidth needed to
regenerate a failed node, is also shown. This latter threshold function gen-
eralizes those given by previous distributed storage models. Tradeoff curves
obtained from this threshold function are compared with those obtained from
previous models, and it is shown that this new model outperforms previous
ones in terms of repair cost.

vil






Resum

Encara que 'emmagatzematge online d’informacié és un negoci creixent, no
esta exempt de problematiques, una d’elles és la persisténcia i accessibilitat
de les dades. Cal replicar les dades de manera que si es perd una copia
no es perdi la informacié de forma definitiva. Malauradament, la replicacio
de dades (coneguda com a “backup”) no és una solucio6 eficient, ja que in-
trodueix molta redundancia que provoca sobre costos. Els codis correctors
d’errors son coneguts per augmentar la persisténcia i I'accessibilitat de les
dades minimitzant la redundancia necessaria. Pero el seu us introdueix al-
tres problemes com l'anomenat “repair problem” com substituir un node
d’emmagatzematge descarregant el minim de dades dels altres nodes.

En aquesta dissertacio, estudiem l’estat de ’art pel que fa als codis apli-
cats a sistemes d’emmagatzematge distribuits, com per exemple el “cloud
storage”. També ens introduim al “repair problem” des de la vessant més
aplicada, usant topologies de sistemes reals com els “data centers”.

Concretament, aportem una familia de codis regeneratius que anomenem
quasi-cyclic flexible regenerating codes i que es caracteritza per minimitzar
I'as de recursos computacionals en el procés de regeneracio d’'un node. Al-
hora, aquesta soluci6 minimitza les dades emmagatzemades i 'ample de
banda necessari per regenerar un node que falla.

També estudiem el cas en que els costos de descarrega de les dades no
son homogenis. En concret, ens centrem en el cas dels racks, on els nodes
d’emmagatzematge estan distribuits en racks, i el cost de descarrega de dades
dels nodes en el mateix rack és molt menor que el cost de descarrega de dades
dels nodes en un altre rack. Aquest nou model generalitza els models teorics
anteriors i ens permet comprovar que els costos poden disminuir si adaptem
el model teoric a la topologia concreta del sistema d’emmagatzematge dis-
tribuft.
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Chapter 1

Introduction

Since the beginning of time, humans have had a keen desire to explain activ-
ities, thoughts, discoveries, customs or any other information that we think
would be relevant now or in the future. This desire has led us to find ways
of representing such information.

The process of representing information requires three elements: the in-
formation, the technique used to represent it and the object used to store
it. Prehistoric paintings are information about activities done by prehistoric
humans, this information is represented by paintings and it is stored in stone.
Nowadays digital cameras capture images of a specific instant of time, repre-
sent them using bytes, and store them in a digital storage device, for example
a solid state card.

The second law of thermodynamics says that entropy always increases,
which means that all the elements used for storage wear out as time passes,
and the information stored in them will irretrievably be lost. From prehistoric
paintings drawn on stone to digital newspaper, one of the main goals is to
keep the information available over the maximum possible amount of time. If
the information is lost, there is no way of recovering it, so we have to prevent
this situation. For example, old prehistoric paintings are usually restored by
experts, and digital data is replicated to tolerate storage device failures.

In this research, we focus on digital information. We assume that it is
relevant enough to keep it available over time, and that it is stored using a
digital storage device.

To approximate the reader to the big picture of digital data storage, it is
interesting to know that in 2002, humanity started to store more information
on digital than on analog storage devices. In 2007, Intl. Data Corp (IDC)
estimated that the amount of information created, captured, or replicated
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exceeded available storage for the first time. In the same year, the world’s
stored information was 295 exabytes, which corresponds approximately to
two stacks of CDs stretching from the earth to the moon. Moreover, the
amount of stored information is doubling roughly every 3 years.

The increasing use of the Internet, the appearance of lots of devices that
use it (such as tablets or mobile phones), and globalization has changed
the computer science paradigm in many senses. From the storage point of
view, users want their information to be available from anywhere easily and
instantly. For example, a user edits his data using a personal computer and
wants this data to be available on his mobile phone immediately, so he can
send it to his friends. Or a user wants to share a document with his work-
group, so they can edit it without the mess that different versions, emails
and crossed editions cause.

Network Distributed Storage Systems (NDSS) has been proposed as the
main tool to store and manage information. NDSS is based on storing the
data in devices which are connected through a network. The data stored
in an NDSS can be accessible from anywhere with an Internet connection,
edition is instantaneously applied and persistence is assured. Examples of
NDSS are everywhere, email web based applications like gmail, shared doc-
ument applications like Google Drive [Inc12|, network storage applications
like Dropbox [Inc07] or BitTorrent file sharing application [Coh09].

In general, one can divide NDSS into two big families: peer-to-peer (P2P)
applications and data centers. P2P applications are based on sharing files
between users. Firstly, a user has a file and shares it using a P2P application.
Then, other users can download the file, store it, and share it with others. The
more users have replicas of the file, the more the file is available, because if one
user goes offline, the file is still accessible via the other replicas. Moreover,
each file is split into pieces, so it is possible to parallelize the download
process, decreasing the time needed to download the file and increasing the
availability of the file.

Data centers are probably the most usual NDSS nowadays. Data centers
are physical buildings keeping lots of storage devices usually organized in
racks, metallic supports designed to hold electronic equipment. Each data
center is typically keeping thousands of racks, each one keeping dozens of
storage devices. Most of the biggest information technology companies like
Google, Yahoo or Microsoft have their own data centers.

Coding theory has been proposed as the latest evolution to keep all the
stored information persistent over time while adding as little redundancy as



possible in an NDSS. Nowadays, it is already assumed that replication (back-
ups) is not a realistic option for NDSS because it is not scalable. However,
coding theory does not address some of the problems that NDSS has to face,
simply because coding theory was designed with a different purpose.

Many current data centers still use replication because of the drawbacks
that classical coding theory introduce, especially the overhead in the band-
width used to repair one device. However, because of the recent improve-
ments in this field, companies are slowly introducing coding theory in their
NDSS. The implementation of an upper layer to the Hadoop Distributed File
System [Apal2| by Facebook, and the latest Google File System are examples
of applications for NDSS where coding theory is used.

Storage devices have an approximate failure probability per year between
2% and 4%. In a data center, a file is distributed in between 3 and 14 storage
devices approximately. Each data center stores hundreds of thousands of
storage devices. This means that the failure of a storage device is a common
occurrence, but simultaneously losing another storage device containing the
same files is very improbable. In this dissertation, we address the problem
of replacing a single storage device in NDSS using coding theory.

In the following two paragraphs, the goals of this dissertation are ex-
plained. The first goal of the dissertation is to study the application of
regenerating codes in real environments and construct, if possible, a family
of realistic regenerating codes. Nowadays, codes are increasingly used in real
applications. However, regenerating codes are still in the theoretical envi-
ronment. In this dissertation, we have studied the regenerating codes from
a practical point of view and we have proposed a new family of regenerating
codes specially suitable for real environments. The results of this study have
been published in [GPV11b]|, [GPV11a| and [GPV13a].

The second goal is to study how the specific topology of a distributed
storage system can be used to improve the performance of the regenerating
codes. In this direction, we have studied the data centers and their rack based
topology and we have developed a model to represent these data centers.
Using this model, we have realized that the use of the specific topology
allows us to decrease the theoretical limit of regenerating codes. The results
of this study have been published in [GPV13b] and [GPV13c].

This memory is organized as follows. In chapter 2, we review the basic
concepts of coding theory and graph theory that have been used to develop
the contributions exposed in the following chapters. In chapter 3, we ex-
pose our first contribution, the creation of a family of regenerating codes
specially suitable for being applied in a practical environment. We call this
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family quasi-cyclic flexible regenerating codes because they flexibilize some
restrictions of regenerating codes which make them more suitable for realis-
tic environments. In chapter 4, we expose our second contribution, the rack
model. This model uses the rack based topology of data centers to provide a
better performance on the regenerating codes in these kind of architectures.
Finally, in chapter 5, we expose our conclusions. We also discuss the contri-
butions of this dissertation and we provide some further lines of research.



Chapter 2

Background

In this chapter, we introduce the basics of coding theory, network distributed
storage systems and coding theory applied to network distributed storage sys-
tems (NDSS). Firstly, in Section 2.1, we explain some of the most important
concepts of coding theory. Then, in Section 2.2, we introduce the Network
Distributed Storage Systems. In Section 2.3, we explain the most important
concepts that appear when coding theory techniques are applied to NDSS.
Finally, we show the two most known approaches of using coding theory in
an NDSS: techniques based on designing codes for NDSS are seen in Section
2.4 and network coding techniques combined with codes are seen in Section
2.5.

2.1 Coding theory

On the one hand, from the information theory point of view, the informa-
tion is defined as the set of symbols which compose the message. On the
other hand, the data is composed of the information plus the redundancy.
The redundancy is the set of symbols which do not add information to the
message.

Coding theory [MS77] is a well known mathematical theory introduced by
Shannon [Sha49|. The main goal of coding theory is to produce redundancy
for a given information by using codes, a mapping from a set of information
symbols to a set of information and redundancy symbols. This redundancy
added is used to correct errors (symbols that have changed their value) or era-
sures (symbols that have been erased). Moreover, such redundancy should be
produced with three main goals: reduce the amount of redundancy needed,
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increase the capacity to error/erasure correction and reduce the computa-
tional complexity of the algorithms used.

Codes transform a set of information symbols into codewords composed
of the information symbols and the redundancy symbols, and this process is
called encoding. Each one of the symbols of a codeword is called coordinate.
Then, the codewords are sent through a noisy channel which may produces
errors and/or erasures changing and/or erasing some coordinates. Finally,
the received symbols are decoded at the output of the channel to obtain the
original set of information symbols.

There are a lot of applications using coding theory techniques for trans-
mission like ADSL+ [GDJ05], satellite communications [Eva08] or TCP/IP
protocol [For81] among others. There are also coding theory techniques
applied to storage applications like CD/DVD [Imm94]| or RAID systems
[PGKS8S].

2.1.1 Galois fields

Finite fields [LN96], also called Galois fields in honor of the mathematician
Evariste Galois, are algebraic structures which contain a finite number of
elements (symbols) and in which the operations of addition, subtraction,
multiplication and division (except by zero) between any two elements of the
field, result in another element of the field.

Let p be a prime number and let ¢ = p™, m > 1. We denote by F,, the
finite field of ¢ elements. Moreover, F, contains the subfield F,, and it is a
vector space over [F,, of dimension m, unique up to isomorphism.

Let f(z) be an irreducible polynomial of degree m in F,[z]. Then,
F,[z]/(f(x)) is a finite field with p™ elements. Therefore, the elements of
any finite field I, can be seen as polynomials over [F,, of degree less than m.

Example 1 (The binary field). The binary field Fy can be constructed from
Zolz]/(z) and contains two elements, that is, Fo = {0,1}.

Example 2 (The field Fs2). The polynomial f(x) = 2> +x + 1 is irreducible
in Fylx]. The finite field Fy can be constructed from Fs[x]/(f(x)) and their
elements can be seen as polynomials of degree less than 2. This means that
Fy={0,1,2,2 +1}.

As we have said, an element in F,~ can be seen as a polynomial of degree
less than m with coefficients over F,. Any polynomial ay + a1z + --- +

Apm_12™ 1 of degree less than m can be represented by an ordered array of
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m coefficients as (ay,_1,...,a1,a9). If m = 2, for example, the polynomial
x + 2 can be represented by the array (1,2), or the polynomial 1 can be
represented by (0,1). Finally, one can see the field F,m as an extension of
the subfield F,, where each element of F,= is an array of m coefficients over
F,. The same can be done for any subfield of a field, for example, since [Fy2 is
a subfield of [Fy4, we can see the field [Fy4 as an extension of Fy2, where each
element of [Fy4 is an array of two coefficients over Fae.

2.1.2 Coding preliminaries

In this subsection, we summarize the basic concepts of coding theory [MS77].
A code over [F is a map from IF’; to Iy which converts vectors of k coordinates
over [F, to vectors of n coordinates over the same field, called codewords. In
this dissertation, we are only interested in linear codes, which means that
the map is linear and that the set of codewords in [ forms a subspace of
Fy.

Linear codes, generator and parity check matrices

Let F7 denote the vector space of all n-tuples over the finite field F,. An
(n, M) code C over I, is a subset of F of size M. A vector v € C' is called
codeword and the set of codewords is called the codebook of C.

If C' is a k-dimensional subspace of Fyy, then C' is called [n, k] linear code
over F,. Any [n, k] linear code C over F, has M = ¢* codewords, length n
and dimension k. A generator matrix for an [n, k] linear code C' over F, is
any k x n matrix GG, whose rows from a basis of C. Given a linear code C
with generator matrix GG, the encoding function from IF’; to [Fy can be defined
by ¢ = v@G, where v € FF and ¢ € C.

For any set of k linear independent columns of a generator matrix G,
the corresponding set of coordinates forms an information set for the cor-
responding [n, k] linear code C'. The remaining n — k coordinates are the
redundancy set of C'. If the first k& coordinates form an information set, the
linear code has a unique generator matrix of the form [I;|A], where I} is the
k x k identity matrix. In this case, the information set is placed in the first
k coordinates and the linear code C' is called systematic.

Definition 1 (Transmission rate). The transmission rate, or rate of a code
of length n and dimension k, is defined as R = k/n.
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Example 3 (The binary repetition code). An information binary symbol
v € Fy can be encoded by repeating it n times. For example, if n = 3, the
information symbol 0 is encoded by 000 and the information symbol 1 by 111.
In general, a binary repetition code is an [n,1] binary linear code C' with
generator matric G = (11 --- 1) and R =+,

Example 4 (The binary parity check code). An information vector (vq,vs,
...,ux) € F% is encoded by adding a single parity check symbol vy, =
S v, € Fy. For instance, if k = 2 then n = 3, and (vy,v;) € F3 is
encoded as (vy,v9,v1 + v2) € Fs. In general, a single parity check code is a
[k + 1, k| binary linear code C with generator matriz

10 --- 01
0 1 0 1
0 0 11
_k
(de—k—H.

If the generator matrix has the form G = [I;|A], like in the above exam-
ples, where I} is the k x k identity matrix and A is a k x (n — k) matrix,
the information vector v is placed at the beginning of the codeword ¢ = vG,
and the code is said to be systematic. This means that in every codeword of
length n, the information is in the first k coordinates and the redundancy is
in the last n — k coordinates.

As a [n, k] linear code C'is a subspace of a vector space, it is the kernel
of some linear transformation. In particular, there is an (n — k) X n matrix
H, called parity check matrix for the [n, k] linear code C, defined as

C={zecF|Ha"=0"}.

If G = [Ix|A] is a generator matrix for an [n, k] linear code C, then H =
[—AT|I,,_4] is a parity check matrix for C, where AT means the transposition
of A. Let C* be the dual code of C, that is, C* is the linear code generated
by the parity check matrix H. Notice that C* is an [n,n — k] linear code.
Moreover, C* can also be defined as C+ = {w € F} | w-c¢ = 0, Yc € C},
where w - ¢ = Z?Zl wjc; denotes the ordinary inner product of vectors in Fy.

Example 5 (The binary repetition code). The parity check matriz of the
binary repetition code of length 3 and dimension 1 with generator matriz

G=(111),
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18
1 01
H_<011)'

Example 6 (The binary parity check code). The parity check matriz of the
binary parity check code of length 3 and dimension 2 with generator matrix

101
G‘(o 1 1)’

H=(11 1).

I8
Note that the parity check matrix of a binary repetition code is the gen-

erator matrix of a binary parity check code and vice-versa.

Example 7 (Hamming code). The parity check matriz of the Hamming code
of length 7 and dimension 4 with generator matriz

1000110
G- 01 00O0T171 ’
0010101
0001111
18
1101100
H = 1 1 010

01 11001

We have seen that the encoding in a linear code can be done using a
product matrix multiplication, involving the information vector and the gen-
erator matrix to produce a codeword. Moreover, given an [n, k| linear code
C and a vector v in [}, it is possible to determine whether v is a codeword
of the code C' by using a parity check matrix H of C. Specifically, v € C' if
and only if Hv? = 07,

The parity check matrix can be used to detect errors in a codeword. The
procedure of obtaining the information vector from the received vector is
called decoding. The decoding procedure is much more complex than the
encoding. In this dissertation, we are not interested in decoding algorithms,
which usually depends on the specific code used [MS77|. For us, it is enough
to know that the decoding is possible and that its complexity depends on the
code used.
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Measure concepts

Redundancy is added to correct errors and erasures introduced by the chan-
nel. In this dissertation, we only consider erasures because, as we will see in
Section 2.2, NDSS is affected only by erasures.

Assume that a source sends one symbol over a noisy channel. If this sym-
bol is erased, the receiver can not know the symbol that was sent. However,
if the source uses a binary repetition code of length 3, like the one shown in
Example 3, the receiver can decode the received vector even if it is affected
by two erasures.

The next question to arise is, given a linear code of length n and dimension
k, which is the maximum number of arbitrary coordinate erasures that the
code can tolerate? In this context, tolerate means that the receiver is able to
decode the received vector. In order to measure this tolerance, some concepts
need to be defined.

Definition 2 (Hamming distance). The Hamming distance dy(u,v) between
two vectors u,v € F' is defined as the number of coordinates in which u and

v differ.

Definition 3 (Hamming weight). The Hamming weight wy(v) of a vector
v € F} is the number of nonzero coordinates of v.

Definition 4 (Minimum Hamming distance). The minimum Hamming dis-
tance (minimum distance) d(C') of a linear code C' is the minimum Hamming
distance between any two different codewords ci,co € C, that is,

d(C) - 01,02I£21#02{d(61’ 62)} - 01,022101217502{%01{(61 B 02)}'

Since for any u,v € Fy, dy(u,v) = wy(u —v), if C is a linear code, the
minimum distance d(C') is the same as the minimum weight of the nonzero
codewords of C.

A linear code C of length n, dimension k, and minimum distance d = d(C')
is also denoted as an [n, k,d] linear code C.

Example 8. The parity check code over Fy of dimension 2, so of length 3,
has the following codebook {(0,0,0),(0,1,1),(1,0,1),(1,1,0)}. Therefore, its
minimum distance is 2.

A received vector may contain both errors and erasures. Let C' be an
[n, k,d] linear code. If a codeword c is sent and the corresponding received
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vector y contains t errors and e erasures, then C' is capable to correct these
t errors and e erasures provided that 2t 4+ e < d.

Since we are only interested in correcting erasures, we define the erasure
correction capability as the maximum number of erasures that a code can
correct. From now on, we will talk about erasure correction capability or
correction capability indistinctly. Note that the erasure correction capability
of an [n, k, d] linear code C'is d — 1.

Maximum distance separable codes

There is a relation between the redundancy of the set of codewords of a
code and the minimum distance (and then the erasure correction capability)
of this code. If no redundancy is added, the minimum distance is 1. If a
redundancy symbol is added, the minimum distance is either 1 or 2.
Conceptually, an efficient code in terms of minimum distance (or correc-
tion capability) means a code with a fixed transmission rate and a minimum
distance as higher as possible. The highest efficiency is achieved when, for
each redundancy symbol added, the minimum distance is increased by one.
These kind of codes are called mazimum distance separable (MDS) codes.

Theorem 5. [MS77] Let C be an [n, k,d] linear code and let H be a parity
check matriz of C'. The minimum distance of C is d if and only if any set of
d — 1 columns of H are linearly independent and some set of d columns are
linearly dependent.

Theorem 6 (Singleton bound). [MS77] Let C be an [n,k,d] linear code.
Thend <n—k+ 1.

Definition 7 (Maximum distance separable code). [MS77] A code is called
mazimum distance separable (MDS) if it achieves the Singleton bound and
can tolerate (correct) up to n — k erasures.

There exist well known MDS codes, which are used in a lot of applica-
tions. An MDS code is specially suitable when the redundancy added must
be minimized. Reed-Solomon codes are probably the most used MDS codes
and they are based on an algebraic construction using polynomials. The
main drawback of Reed-Solomon codes for data transmission is that they
need a fixed set of k coordinates before encoding or decoding, and that the
complexity of their decoding algorithm (in the general case) is O(n?). How-
ever, their efficiency in terms of transmission rate and their existence for a
lot of parameters n and k, make them a good choice for most coding theory
based applications.
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Array codes

As it is explained in Subsection 2.1.1, it is possible to see a field F, as an
extension of the subfield [y, also called base field. This means that any
element of F: can be seen as an array of ¢ elements over IF,.

Recall that using an [n, k, d] code over F, we can encode an information
vector v € F';t and generate a codeword ¢ € Fj;. Since the symbols of this
codeword can always be represented as an array of symbols over [, this code
is also referred to as an array code. The symbols over Fy: of an array code are
called array coordinates, while the symbols over I, are called coordinates.
The importance of array codes lies in that once the information vector is
encoded into a codeword, the coordinates can be treated over F, or over F
indistinctly, depending on the properties needed at each specific moment. A
well known example of an array code is the EVENODD code [TS02].

Example 9 (The EVENODD code). Assume that we want to encode a vector
v E Fg4 given by 5 array coordinates over Fou using a systematic EVENODD
code of length 7 and dimension 5. Fach array coordinate can be seen as
an array of 4 coordinates over the base field Fy. Therefore, we can repre-
sent the vector v as a 4 X 5 matriz where each column represent one array
coordinate composed by the coordinates of the base field. For example, let
v = (v1, Vg, V3, Vg, V5) € IF;4 be the vector represented by the following matriz:

—_ == O
_ o O O

1
0
0
1

O = O =
O O = =

where the first column is vy, the second vy, the third vs, the fourth vy and the
fifth vs.

Now, to obtain a codeword ¢ € IF;, we need to create two array coordinates
r1 and ro that contain the redundancy of v. If we assume that the matriz
entries are a; j, then the encoding defined by the EVENODD code is

as=wu1PauPasPa PasP, 1<1<4,
a7 = S @ a1 @ 4,3 GB 3.4 @ 2.4 @,
Q27 = S @ 21 @ 1.2 GB Q4.4 @ ass @7
as 7 = S @ as;1 @ a2 EB 1,3 @ Q4.5 @,
Q47 = S @ Q41 @ as 2 @ a3 @ a1.4 @7

where S = a2 @ azzs@Pass @ ars@. Note that the encoding is given
over the base field. For example, for the above information vector v =
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(v1,v9,v3,v4,V5), the corresponding systematic codeword (vy,vs, Vs, Uy, T1,72)
can be represented by the 4 X 7 matrix

o~ O R
— = = O
S O ==
—_o O
_o O O
_ o O =
o = O O

where each column is an array coordinate stored in a different storage node.
The first five columns are the information array coordinates and the last two
columns are the redundancy array coordinates.

Note that the redundancy is produced by single coordinates over Fo, but
the MDS property is given by the code seen over Fas.

2.2 Network distributed storage systems

Definition 8 (Storage node). A storage node is a network element that
unites one or more physical storage devices to provide a simple block storage
service. Such term can include different elements such as desktops and laptop
computers, network attached storage (NAS) devices, set-top boxes (STB) or
storage components from data centers [PJ11].

Definition 9 (Network distributed storage system (NDSS)). A network dis-
tributed storage system is a distributed computer system composed of multiple
autonomous storage nodes that communicate through a computer network.
The aim of a network distributed storage system 1is to integrate all theses
storage nodes into a single and uniform data storage service that applications
and users can access through a communication network [PJ11].

From a formal point of view, an [n,k,d] NDSS is a (d—1)-fault tolerance
system composed of n storage nodes and where a subset of k storage nodes
contain enough information to recover the file.

Definition 10 (Network bandwidth). The network bandwidth is a measure-
ment for communication resources expressed in data units per time unit, for
example bits per second.

There are NDSS where the network bandwidth has no importance, for ex-
ample the Redundant Array of Independent Disks (RAID) [PGK88]. RAID
is a storage technology that combines multiple disk drive components into
one logical unit. It can be designed for two main proposes: increase the
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input/output (i/0) speed by parallelizing these operations into multiple in-
dependent disks, or increase the availability of the stored data by using coding
theory techniques. In RAID, the bandwidth limitations introduced by the
buses composing the communication network can be considered negligible
compared with the latency introduced by the i/o operations.

However, there are other NDSS where the network bandwidth is limited
and its reduction is a desired goal. The communication network of this kind
of NDSS is usually a Local Area Network (LAN) or a Wide Area Network
(WAN). An example of an NDSS using LAN can be a data center and an
example of an NDSS using WAN can be a P2P file sharing system.

In data centers, the data is placed in storage nodes which are connected
through a network. These storage nodes are usually organized in a rack, a
metallic support designed to accommodate electronic equipment. The com-
munication (bandwidth) cost between nodes which are in the same rack is
much lower than between nodes which are in different racks. In fact, in
[AGSS11], it is said that reading from a local disk is nearly as efficient as
reading from the disk of another node in the same rack.

There are many drawbacks in the use of NDSS which are being stud-
ied nowadays. The problem of the data insertion is an interesting research
topic: how to efficiently change the already stored data and propagate the
changes through the NDSS [PJOD13]. In this dissertation, we focus on an-
other problem: how to minimize the bandwidth in the NDSS using coding
theory techniques.

In this dissertation, we consider files as a black box of information sym-
bols. We have no interest in the techniques that may have been applied
previously to the files like compression or encryption. This means that we
consider the file as a sequence of information symbols to be stored.

Assume that a user wants to store a file and he wants this file to be
available. The availability of a file is given by two conditions: the user is
allowed to access the file and the file exists. The first condition is the object
of study of computer security, while the second condition is related to the
persistence of the data and it is an object of study of this research.

The first approach to increase the persistence of a file is the creation of
replicas, which is usually known as backups. A backup is an exact replication
of the file, which is stored in a different storage node. Then, if one storage
node fails and the file is lost, there is another replica of the information. Note
that the backup is in fact, redundancy of the stored information.

Definition 11 (i-fault tolerance system). An i-fault tolerance system, 1 <
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1 < n where n is the number of storage nodes of the system, is defined as an
NDSS that is able to tolerate any i number of storage node failures without
irreversibly losing partially or completely the information stored in it.

Note that the fault tolerance is defined over the storage nodes, and not
over a specific stored file. This means that an ¢-fault tolerance system ensures
that any information stored in any nodes of the system tolerates any ¢ number
of storage node failures.

It can be seen that to create an i-fault tolerance system with ¢ > 1, it is
necessary to create redundancy for the stored information. This means that
an NDSS also has a transmission rate which is the rate between the stored
information and this information plus the redundancy. Conceptually, if the
transmission rate is decreased, it is possible to increase the fault tolerance of
an NDSS.

A similar problem was already addressed by Shannon in 1948. Shannon-
Hartley theorem [Sha49] shows the maximum rate at which information can
be transmitted over a communication channel of a specified bandwidth in
the presence of noise. Assume that a source sends a message to a receiver
over a communication channel which is affected by noise. Depending on
the amount of noise, which is the maximum transmission rate at which the
entire message can be understood by the receiver? Noise affects information,
changing symbols or erasing them, and the goal is to be able to recover the
original information at the output of the channel.

As it can be seen, there is a direct relation between the communication of
information over a noisy channel and the persistence of the stored data over
an NDSS. The information to be sent is the file, the channel is the NDSS,
the noise is the failure of storage nodes and finally, the receiver is the user
who wants to recover the file by accessing to some storage nodes. This close
relation between both problems explains why coding theory, the study of
efficient and reliable data transmission methods, can also be used in NDSS.

Assume that a file is going to be stored using an NDSS, so it should be
persistent. To achieve this persistence, it can be replicated and stored over
different storage nodes in an NDSS. In this case, we are using a repetition
erasure correcting code. However, there exist much better codes than the
repetition one in terms of the transmission rate and erasure correcting ca-
pability [WKO02|, so the first idea is to use these better codes instead of the
repetition one.

Some well known efficient codes are used for storage, like Hamming and
Reed Solomon codes [MS77] or EVENODD codes [TS02|. However, NDSS



16 Chapter 2. Background

introduces a problem which is not addressed by classical coding theory and
that achieves a high importance in order to establish the efficiency of an
NDSS.

Classical coding theory is focused on recovering the whole set of informa-
tion symbols which were sent, not a subset of them. In NDSS, it is usual
that only one storage node fails, and usually, this storage node only contains
a small subset of symbols from the same file (usually only one to increase
the fault tolerance). If a new storage node replaces the lost one, the goal of
this storage node, called newcomer, is to efficiently store the data that was
lost, where efficiently means either reducing the amount of downloaded data
(repair bandwidth) or the complexity of the operations needed.

2.3 Codes and NDSS

As we have seen in Section 2.2, classical coding theory do not address some
of the problems that the application of codes to NDSS introduces. In this
section, we show the key points in the design of efficient coding techniques
for NDSS.

2.3.1 The repair problem

The repair problem is related to the amount of data needed to repair a single
storage node failure. Assume that a file is stored using an erasure correcting
code. This means that the file is split into a vector v of k coordinates, v is
encoded into a codeword ¢ of n coordinates, and each coordinate is stored
in a different storage node. Repairing a single storage node is the same as
repairing a single coordinate of ¢. The amount of data needed to repair this
coordinate is called the repair bandwidth ~.

From the storage point of view, increasing the transmission rate means
that less redundancy is stored, and increasing the correction capability means
that more node failures are tolerated. The use of codes in NDSS can produce
the same benefits than in the data transmission case, since the transmission
rate and the fault tolerance are also two key parameters. Figure 2.1 shows
a 1-fault tolerance [2,1,2] repetition code and a 1-fault tolerance [3,2,2]
parity check code. These codes are applied to two information coordinates
v1 and vy. One can assume that these coordinates represent a file to be
stored. Using the parity check code, the information (v, v2) encoded gives
the codeword (vy,vs,v; + vo) and the transmission rate is R = 2/3. Using
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Figure 2.1: Left: a [2, 1, 2] repetition code applied to two coordinates. Right:
a [3,2, 2] parity check code applied to two coordinates.

the repetition code, the information (v;) and (vq) encoded give (vy,v;) and
(v, v9), respectively, which represent (v, vy, vg, v2), and the transmission rate
is R = 1/2. The use of a more sophisticate coding technique in the parity
check code has increased the transmission rate while maintaining the fault
tolerance.

Assume that each coordinate of the codeword is stored in a different
storage node, one of them fails and we want to replace it. On the one hand,
in a repetition scheme, the storage node can be repaired by downloading one
replica of the lost coordinate and copying it. This means that the downloaded
and the stored data per newcomer are the same. On the other hand, the
classical decoding using linear codes always needs and uses n — d + 1 correct
coordinates no matter whether the codeword has one or more (up to d — 1)
erasures. Then, the repair bandwidth needed per newcomer is grater than
the stored data per newcomer.

Figure 2.1 illustrates the repair problem. To repair a single coordinate
failure, using the parity check code it is necessary to download two symbols
b, a + b and compute a = (a + b) — b, while using the repetition code it is
only necessary the copy of a. In general, repairing a single coordinate in a
repetition code needs a repair bandwidth of v = a, where « is the amount
of stored data in one storage node, in this case, the size of one coordinate.
In the parity check code, repairing a single coordinate implies downloading
any n —d+ 1 = k = 2 coordinates, so v = 2a = M, where M is the size of
the file.

The use of codes in NDSS dramatically decreases the amount of redun-
dancy needed to achieve the same fault tolerance as using a repetition scheme
[RLO5]. However, the use of the parity check code needs a repair bandwidth
of v = M to repair any subset of less than d coordinates, while the use of
the repetition code needs 7 = « for each lost coordinate. In general, we
know that o < M, so it can be seen that the repair problem is an important
drawback. This drawback is the main reason why the application of coding
theory in NDSS is being postponed and its resolution is related to the next
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question: is it possible to repair one single erasure requiring less than n—d+1
coordinates?

2.3.2 Important properties inherited from codes

When codes are applied to NDSS, there are some properties and concepts
from classical coding theory that can be seen from a different perspective.

MDS codes

As we have seen in Subsection 2.1.2, when a code is MDS it has the maximum
minimum distance for a given redundancy. In other words, it is the best code
in terms of the compromise between the transmission rate and the correction
capability. It also means that the distance is d = n — k + 1, so it can correct
n — k erasures, which means that any &k coordinates are enough to recover the
information. When we say that a code has the minimum storage overhead,
it means that the code is MDS, so its rate is R = k/(d + k — 1).

Now, we are going to do an abuse of notation on some parameters of the
codes. Let an [n,k,d] NDSS be a (d — 1)-fault tolerance system composed
of n storage nodes and where a subset of k storage nodes contain enough
information to recover the file. Assume that each storage node stores the
same amount of data « then, the transmission rate of the NDSS is R =
(ka)/(na) = k/m. When a MDS code is applied to an NDSS and each
coordinate of the codeword is stored in a different storage node, the MDS
property means that the [n, k, d] NDSS is a (n—k)-fault tolerance system and
so any k storage nodes have enough information to recover the file. Note the
difference between “a subset of k storage nodes” and “any subset of k storage
nodes”. Moreover, this “any k” property, which means that d =n — k + 1, is
achieved by all MDS codes, but can be also achieved by non MDS codes.

A code applied to an [n,k,d] NDSS is MDS if and only if it minimizes
the storage overhead and d = n — k + 1. Note that each coordinate of the
codeword is stored in one node if and only if the parameters of the NDSS
coincide with the parameters of the linear codes. From the coding theory
point of view, a MDS code means that d = n — k 4+ 1. However, when array
codes are used in NDSS;, it is possible to design non MDS codes achieving
d=mn — k+ 1, but they do not have the minimum storage overhead.

Example 10 (Non MDS code achieving d = n — k + 1). Assume that a file
is split into a vector of 2 coordinates and encoded using a [8,2, 5] code, which
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is not MDS code since 5 # 8 —2+1. This code has has an erasure correction
capability of 4 and any 8 — 4 = 4 coordinates are enough to recover the file.
Now, the resulting codeword is stored in a [4,2,3] NDSS where each stor-
age node stores 2 coordinates of the codeword. It can be seen that the NDSS
s a 2-fault tolerance system, because any 2 storage nodes have enough infor-
mation to recover the file. However, as said before, the code is not MDS.

Locality

Let C be a linear code and ¢ be a codeword of C. We say that a coordinate
1 of ¢ has repair degree r; if we can recover any symbol at coordinate ¢ by
accessing at least r; other coordinates, and the set of these coordinates is
called a repair set of . In other words, the repair degree r; of a coordinate
¢ is the minimum cardinal of all the repair sets of i. The repair sets of i
are also called the repair alternatives of 7. The repair degree of C, r, is the
maximum of 7;, ¢ = 1,...,n. When we say that a code has a high locality,
it means that the number of repair alternatives is big and their cardinals are
small. As a result r is also small. It is also worth to mention that the repair
degree is a good metric for repair bandwidth [OD11b], [PLD*12].

In [GHSY12|, it is shown that the minimum distance d of a code is upper
bounded by d < n—k—[%]+2, which means that as r increases (approaching
to k), d decreases. This bound is equivalent to the singleton bound when
r > k. Note that in the MDS codes, r = k. When r < k, the minimum
distance d decreases and the optimality is achieved when d = n—k — [£] +2.

2.4 Coding techniques for NDSS

In this section, we show some of the most known codes that have been de-
signed specifically for NDSS. It is not the aim of this dissertation to deeply
explain these constructions, which is already done in [OD12|. In these kind
of codes, each coordinate is stored in one storage node of the NDSS, which
means that the parameters of the codes and of the NDSS coincide. Moreover,
the correction capability of the code also coincides with the fault tolerance
of the NDSS.

2.4.1 Locally reconstructible codes

Locally reconstructible codes use a technique where codes are applied to
other codes with the goal to increase their locality. They are inspired in
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the product codes [Eli54], which combine two erasure codes to tolerate both
random and burst erasures. The base of the product codes is a k x k matrix
which contains the information symbols to be encoded. Firstly, the rows
of the matrix are encoded using an [n, k| linear code, resulting in a k x n
matrix. Then, the columns of this matrix are encoded with another [n, k]
linear code, resulting in a n x n matrix. This final matrix has horizontal and
vertical redundancy. Despite the minimum distance of these kind of codes is
low, their locality is increased by producing two repair alternatives for each
coordinate.

Hierarchical codes

Hierarchical codes [DB08| can be seen as a bottom-up approach on the ap-
plication of codes on other codes. Hierarchical codes use two different types
of codes. The first one takes subsets of information coordinates and encode
them independently from the other subsets to create what is called local re-
dundancy. The second one encodes the local redundancy to create what is
called global redundancy.

Example 11. Let the information vector of a file be v = (v1,vq,v3,0y).
Split v into two vectors (vy,ve) and (vs,vs) and encode them independently
using a [3,2] parity check code into (vq,ve,v1 + va) and (vs, vy, v3 +vy). The
local redundancy coordinates can be seen as a vector (vy + vo,v3 + v4) and
encoded using the same code into (vy + vy, v3 + V4, V1 + Vo + v3 + vy), where
v1+va 3404 1S a global redundancy coordinate. Finally, store the codeword
(v1, Vg, U1 + Vg, U3, Uy, U3+ Vg, U1 + V9 +v3+0y) in the NDSS with one coordinate
in each storage node.

Note that the information and local redundancy coordinates have repair
degree 2, however, the resulting NDSS is only a 1-fault tolerance system with
a transmission rate of R = 4/7. This specific encoding example can be seen
as a product code where the information is a 2 X 2 matriz and the verti-
cal redundancy is computed only over the column containing the horizontal
redundancy

v U2 V1 + U2
Ug V4 Vg + Uy
— —|v1t+v2+v3+ Uy

This example can be generalized by using more sophisticated codes for
the local and for the global redundancies, bigger information matrices, or
the iteration of the procedure multiple times. The motivation behind hierar-
chical codes is the use of local redundancy to have a small repair degree for
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some specific coordinates, while the global redundancy provides the correc-
tion capability.

Pyramid codes

Pyramid codes [Hua07| can be seen as a top-down approach on the applica-
tion of codes on other codes. Firstly, a MDS code encodes the information
vector and produces the global redundancy. Then, the information vector
is split into smaller vectors which are padded with zeros and encoded again
with the same code producing the local redundancy. Note that, the global
redundancy coefficients are in fact linear combinations of the local redun-
dancy coefficients. Finally, some local and global redundancy coefficients are
stored.

Example 12. An information vector v = (vy,...,vs) is encoded using a
[11, 8] systematic MDS code with generator matriz G. Then (vq,...,v3)G =
(v1,...,0s, p1, P2, P3), where p1, pa and ps are the global redundancy coeffi-
cients. Next, encode the vectors (v, ...,v4,0,0,0,0)G = (v1,...,v4,0,0,0,0,
P1,1, P2,1, p371) and (’05, ..., Vg, 0, O, 0, O)G = (’05, ..., Vg, 0, O, 0, O, £1,2, P2,2, p372).
Note that py = p11 + pr2, p2 = p2,1 + p22 and p3 = p31 + p32. Finally, take
some global redundancy coefficients and some local redundancy coefficients
corresponding to the rejected global coefficients. For example pi 1, p1,2, p2, P3,

and store ('Uh -5 U8, 01,15 P1,25 P2, ;03)

Note that the global coefficients are split into local coefficients, decreas-
ing the minimum distance of the code but increasing its locality. In pyramid
codes, larger codes are reused to build smaller codes, in contrast to hierarchi-
cal codes where smaller codes are assembled together to form a bigger code.
Pyramid codes achieve similar locality compared with Hierarchical codes,
but with a better fault tolerance. It is worth to mention that a variation of
pyramid codes are the base codes used in Microsoft Azure [HSX*12].

2.4.2 Locally repairable codes

Locally repairable codes (LRC) are codes designed to increase the locality,
while trying to keep a high fault tolerance. The difference with the codes
proposed in Subsection 2.4.1, is that LRC are codes specifically designed for
these two goals.

Let C be an [n,k,d] linear code and let C+ be its dual code, that is,
Ct={welF!|w-c=0, Vce C}, where w- ¢ = > -y wjcj. Then, we
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say that w € C*t is a parity check vector of C' and C* is the set of parity
check vectors of C. Given ¢ € C and w € C*, the reparation of a single
coordinate means that an specific ¢; is missing and it can be recovered by
solving Z;‘:l wjc; = 0, where ¢; is the unknown. Note that the parity check
vector w has wy(w) nonzero coordinates, where wy(w) means the Hamming
weight of w. The reparation of a single specific coordinate ¢; of a codeword
¢ requires to have a parity check vector w € C* such that w; # 0. Then,
retrieve wy(w) — 1 symbols from ¢ corresponding to the nonzero coordinates
of w except for i, and solve the above equation for ¢;. Given an index ¢ =
1,...,n, we define Q(i) = {w € C* | w; # 0}. This set represents all possible
parity check vectors which repair the coordinate c¢;, so it is the set of repair
alternatives of ¢;.

Definition 12 (Repair degree of an LRC). The repair degree of the ith coor-
dinate of a LRC is defined as r; = min{wy (w)—1 | w € Q(i)}, and the overall
repair degree r is its mazimum repair degree r = max{r;}?_, [PJHH13].

Moreover, note that the MDS codes have degree r = k. Locally repairable
codes (LRC) try to keep r at very low rates, this means that for LRC it is
a goal that r < k. However, as it is explained in Subsection 2.3.2, the low
repair degree decreases the upper bound on the minimum distance d of a code,
which also decreases the correction capability. There are many constructions
of LRC and it is a hot topic at the moment, probably, the most known ones
are [OD11a], [OD11b] and [PD12].

In general, good LRC are those codes with a low repair degree and a high
number of repair alternatives. To achieve a low repair degree, we need for
each coordinate i, one parity check vector w, w # 0 with wy(w) as low as
possible. Moreover, to achieve a high number of repair alternatives, we need
a high number of those parity check vectors.

There is a lot of research done on locally repairable codes, and an in-
creasing number of articles being published each year. However, it is not
the aim of this dissertation to deeply explain this kind of constructions. An
interested reader can find more information in the cited articles and surveys
of this section.

2.5 Network coding techniques for NDSS

The codes shown in the previous section decrease the repair degree, and
decreasing the repair degree also means decreasing the repair bandwidth.
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However, in those constructions, d << n — k 4+ 1 which is a drawback in the
case of simultaneous node fails. Regenerating codes are a family of codes
designed to achieve d = n — k 4 1, and decrease the repair bandwidth at the
same time. In this section, regenerating codes are deeply explained.

In Subsection 2.5.1, some basic concepts on graph theory and information
flow graphs are explained. In Subsection 2.5.2, network coding is introduced.
In Subsections 2.5.3, and 2.5.4, homogeneous models and non-homogeneous
modes are shown, respectively. In Subsection 2.5.5, regenerating codes are
presented. Finally, in Subsection 2.5.6, we introduce a new solution which
lies between regenerating codes and locally repairable codes and that we call
flexible regenerating codes.

2.5.1 Graph theory

Graph theory is a well known mathematical topic which studies mathematical
structures used to model pairwise relations between objects. Graph theory is
an extensive topic [Ber01]|. However, we focus only on those concepts which
are necessary to understand regenerating codes.

Definition 13 (Graph). A graph is a collection of points and lines connecting
a subset of points. The points of a graph are called vertices and the lines are
called edges. A graph G(W, E) is a pair of sets with E C W x W. There is
an edge from wy € W to wy € W if an only if (wy,wy) € E [Weil.

A weighted graph is a graph where each edge has an associated weight.

A directed graph is a graph where the edges (wy,wy) € E have direction.
This means that (wy,wy) € E goes from w; to wy but not from wy to
wi. An edge with direction is called an arc.

An acyclic graph is a directed graph where it is not possible to start at a
vertex wy; € W, follow a sequence of connected vertices, and loop back
to w1.

A simple graph is an unweighted and undirected graph containing no graph
loops (edges that connect a vertex to itself) or multiple edges (more
than one edge that connect the same two nodes).

A bipartite graph is a graph whose vertices can be divided into two dis-
joint subsets W; and Ws,, where each edge connects one vertex of
W, with one vertex of W5. A bipartite graph is usually denoted as
GWyUWy, E).
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Figure 2.2: Bipartite graph associated with a square matrix.

A matching in a graph G(W, E) is a set of pairwise non-adjacent edges.
This means that no two edges share a common vertex. A perfect match-
ing is a matching which matches all vertices of G(W, E). In a bipartite
graph G(W; U W, E), we define a complete matching from W; to Wy
(resp. Wy to W), if there is a matching which matches all vertices of
Wy (resp. Wh).

As we have said, a graph can be used to represent pairwise relations
between objects. In [Har69]|, the relation between rectangular matrices and
bipartite graphs is shown. Specifically, one can represent a rectangular matrix
using a bipartite graph, where W, represent the rows and W5 the columns of
the matrix and the matrix entries are the weights of the edges.

Example 13 (Square matrices and bipartite graphs). The square matriz
1 01
010 ],
001

can be represented by the bipartite graph G(W, U Wy, E) of Figure 2.2, where
wy, € Wy is the i-th row and wo, € Wy is the j-th column of the matrix.

Let ps(Ci,Coy- vy Cm) € FylCi,Co,- .., Gn) be the polynomial associated
with the determinant of a m’ x m’ square matrix over I, with m < m'2.
For example, the polynomial p,((1, (o, (3, (4) associated with the 2 x 2 square

matrix
( G G )
G G
is ps(C1, G2, (3, Ca) = C1Gs — Cal3-
Let 0 be the degree of ps((1, (s, ..., (n). The polynomial ps(¢i, Ca, - -+, Gm)

is defined over F,. If the polynomial p,((1, (2, - - ., Gn) is not identically zero,
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it means that, when it is expanded as a summation of terms, there exists at
least one term with a nonzero coefficient.

Let G(W;UWs, E) be the bipartite graph associated with a square matrix.
Let E(wy,) (resp. E(ws,)) denote the neighbors of wy, € Wy (resp. wq, € Ws)
in the graph G(W, U Wy, E).

Lemma 14 (Hall’s theorem). [Hal35] A bipartite graph G(W, U Wy, E) con-
tains a complete matching from Wy to Wy (resp. Ws to Wi) if and only
if it satisfies Hall’s condition, that is, for any T C Wy (resp. T C Ws),
|T| < |E(T)|, where T = {t1,...,tn} and E(T) = \U;>, E(t;). Moreover,
if |Wh| = |Ws|, the complete matching is achieved in both directions, so it
corresponds to a perfect matching.

Lemma 15. [MR95] The polynomial associated with the determinant of a
square matriz, ps(Ci,Coy ..., Cn), 1S not identically zero if and only if the
bipartite graph G(W1UWsy, E) associated with the square matriz has a perfect
matching.

If ps(¢iyCoy- -+, Gn) is not identically zero because G(W; U Wy, E') has a
perfect matching, we can use the Schwartz-Zippel lemma to determine the
probability that, for a random choice of the coefficients (i, (s, ..., (, then,

ps(gla §27 ey Qm) =0.

Lemma 16 (Schwartz-Zippel lemma). [Zip89] Let ps((y, - .., (n) be a poly-
nomial of degree 6 over F,. Assume that ps(C1, ..., Gy) is not identically zero.
If (Ci, ..., Gn) are chosen independently and uniformly over IF,, then

J

Pr[ps(gla .. 7Cm) == 0] S m

Information flow graphs

Definition 17 (Information flow graph). An information flow graph is a
directed acyclic and weighted graph which represents a flow of information
from a set of sources to a set of sinks. The source vertices are the ones
sending data and the sink vertices are the ones receiving data. Fach arc is
able to communicate an amount of data per time unit equivalent to its weight.

The maximum flow of an information flow graph is given by the mincut
between the sources and the sinks.
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Figure 2.3: Butterfly network using network coding.

Definition 18 (Mincut of a graph). Let G(W, E) be a weighted graph with
nonnegative weights. A cut of G' from w; € W to w; € W is a partition of
W into two disjoint subsets where the first one contains w; and the second
one contains w;. The weight of the cut is the sum of the weights of the edges
crossing the cut. The mincut is the cut with minimum weight [Weil.

Information flow graphs can be used to represent a NDSS. We can sim-
ulate node fails over time and apply network techniques to minimize the
amount of stored data per node a and the repair bandwidth ~.

2.5.2 Network coding

Network coding is a coding technique applied to networks with the idea of
improving the throughput, efficiency and scalability of the network. This
technique was introduced in [ACLY00] for multicast purposes but nowadays,
it has many other uses in the fields of security, compression, and coding
theory among others.

The goal of network coding is to reduce the amount of data transmitted
between a source and a set of sinks. To achieve this reduction, the inter-
mediate nodes are allowed to produce and send linear combinations of the
incoming symbols. The sinks receive these linear combinations, which can
be treated as equations. When a sink has enough equations it can solve the
system and recover the original symbols. To do that, the sinks accumulate
equations in a matrix, when they have a full rank matrix, they recover the
original symbols by applying the Gauss method.

If the network is modeled as an information flow graph, the vertices of
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the graph are the nodes of the network and the arcs are the communication
channels. Figure 2.3 shows the information flow graph known as the butterfly
network. Assume that a source sends two information symbols a and b to two
sinks, and that each arc has weight 1. This means that the arc (w;,w;y) €
E, can communicate 1 symbol from w; to ws for each time unit. If the
intermediate vertices are able to send linear combinations of the incoming
symbols, and the sinks can solve systems of equations, the source can send
a and b at the same time instead of sending a and then b which introduce a
delay in the sinks.

The maximum number of symbols per time unit that the source can send
through a network is given by the minimum mincut between the source and
the sinks. In [Med03], it is shown that the use of random coefficients, over a
sufficiently large field, in the linear combinations of the intermediate nodes
is enough to produce full rank matrices to solve the equations in the sinks,
so they can recover the original information symbols.

2.5.3 Homogeneous model

Information flow graphs can be used to simulate the life of an NDSS. The
source of the graph is the file to be stored in a NDSS and a sink of the
graph is the user who wants to recover the file. The intermediate nodes
represent the life of the NDSS, they are the storage nodes in different time
units. During the life of a NDSS some nodes fail and some others join the
system in order to replace the failed ones. The nodes send information to
each other in order to maintain the fault tolerance. The information flow
graph is like a state machine, each step is produced by a fail and produces a
new stable state. Finally, the sink wants to recover the stored information by
connecting to a subset of these nodes. In this subsection, the first proposed
model [DGWR10] which is based on the homogeneity of nodes and edges and
is explained.

Let s;, where i = 1,..., 00, be the i-th storage node. Let G(W, E) be an
information flow graph, with a set of vertices W and a set of arcs E. The
set W contains three kinds of vertices:

e Source vertex S: it represents the file to be stored. There is only one
source vertex in the graph.

e Data collector vertex D(C": it is the sink vertex that represents the user
who is allowed to access the data in order to reconstruct the file.
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e Storage node vertices w!, and w’ ,: each storage node s;, where i =
1,...,00, is represented by one inner vertex w! and one outer vertex
wz)ut'

In general, there is an arc (wy,wy) € E of weight ¢ from vertex w; € W to
vertex wy € W if wy can send ¢ data units to ws.

At the beginning of the life of an NDSS, there is a file to be stored
in n storage nodes s;, © = 1,...,n. This can be represented by a source
vertex S with outdegree n connected to vertices wt , i =1,...,n. As there
is no restriction on the amount of information that the file sends to the
storage nodes, the weight of the arcs is infinite. To represent that each one
of the storage nodes s;, i = 1,...,n, stores a data units, each vertex w?, is
connected to the vertex w! , with an arc of weight a.

When the first storage node fails, the first newcomer s, connects to r,
0 < r < n existing storage nodes sending, each one of them, § data units.
This can be represented by adding one arc from w? ,, 1 = 1,...,n, to wfnﬂ
of weight (3 if s; sends  data units to s,.1 in the regenerating process. The

nt+1 g also connected to its associated vertex w"™%!

o o With an arc

new vertex w
of weight . This process can be repeated for every failed node. Let the
newcomers be denoted by s;, where j =n +1,..., 0c0.

Finally, after some failures, a data collector wants to reconstruct the file.
Therefore, a vertex DC'is added to G(W, E) along with one arc from vertex
¢ to DC if the data collector connects to the storage node s;. Note that
if s; has been replaced by s;, the vertex DC' can not connect to w’ ,, but it
can connect to w’,,. The vertex DC' has indegree k and each arc has weight
infinite, because the user is able to get as many information as he wants from
each one of the storage nodes.

If the mincut from vertex S to DC', denoted by mincut(S, DC'), achieves
that mincut(S, DC) > M, the data collector can reconstruct the file from the
k storage nodes given by the k edges arriving to the DC, since there is enough
information flow from the source to the data collector. If we want that any
subset of k storage nodes are enough to recover the file, the data collector
should be able to connect to any k nodes, so min(mincut(S, DC)) > M,
which is achieved when the data collector connects to k storage nodes that
have already been replaced by a newcomer [DGWR10]. Note that using the
minimum of all the mincuts we are assuming that any subset of k storage

nodes have enough information to recover the file.

w

If we want to represent a code designed for an NDSS like the ones ex-
plained in Section 2.4 using an information flow graph, each coordinate is



2.5. Network coding techniques for NDSS 29

Figure 2.4: Information flow graph of a [4,2,3] NDSS with r = 3.

stored in one node and o = (. In this kind of codes, not any k storage
nodes are enough to recover the file, so min(mincut(S, DC)) > M has no
sense because the mincut will be different for each set of k storage nodes
connected to the DC'. Moreover, 3 does not appear in the mincut equation.
Finally, one can conclude that no optimization is possible on the resulting
graph using network coding techniques.

Figure 2.4 illustrates the information flow graph G(W, F) associated to an
[4,2,3] NDSS with » = 3. Remember that an [n, k,d] NDSS is a (d — 1)-fault
tolerance system composed of n storage nodes and where a subset of k storage
nodes contain enough information to recover the file. In this section, we
assume that d = n—k+1, so any subset of k storage nodes is enough to recover
the file. Note that in Figure 2.4, mincut(S, DC) = min(34, a) + min(25, «)
which is the minimum mincut for this information flow graph. In general, it

can be claimed [DGWR10| that

k—
mincut(S, DC) Z ((r—1)8,a) > M. (2.1)

1=0

It is possible to obtain a threshold function minimizing o and ~ by using
linear optimization techniques on the general equation (2.1) [DGWRI10]

el o)
TONTY e, 16 1) 22
I N
where
1) 2Mr andg(i):(QT—Qk—i-i-l-l)i’

T @k—i—1)i+2k(r—k+1) 2r

where v = r[.
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Optimal tradeoff for k=5, n=10

Bandwidth to repair one node y

Figure 2.5: Optimal tradeoff curve between « and ~ for a [10,5,6] NDSS
with r = 9.

To achieve this threshold function, multiple techniques have been used,
like interference alignment [SRKR11]|, product-matrix construction [RSK11],
or designs [RR10], among others. Behind these techniques, there are two
main ideas: the use of array codes, which allows the NDSS to treat the data
inside a node as a sequence of (small) coordinates over the base field; and
the use of network coding to send linear combinations of these coordinates
through the network.

This threshold function can be represented by a tradeoff curve like the
one shown in Figure 2.5 for some specific parameters n, k and r. The optimal
tradeoff curve represents the minimum tradeoff between o and . The two
extremes of the curve are called the Minimum Storage Regenerating (MSR)
and the Minimum Bandwidth Regenerating (MBR) points. In Figure 2.5,
these points are placed approximately in (0.36,0.2) and (0.258,0.258). Be-
tween these two points, there are the called interior points.

Using the information flow graph G(W, E), we can see that there are ex-
actly k points in the tradeoff curve, or equivalently, k£ intervals in the thresh-
old function a*(r, ), which represent & newcomers. In the mincut equation,
the k terms in the summation are computed as the minimum between two
parameters: the sum of the weights of the arcs that we have to cut to isolate
the corresponding v?, from S, and the weight of the arc that we have to cut
to isolate the corresponding v/, from S. Let the first parameter be called
the income of the corresponding newcomer s;. Note that the income of the
newcomer s; depends on the previous newcomers.

It can be seen that the newcomers can be ordered according to their
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income from the highest to the lowest. In this model, this order is only de-
termined by the order of replacement of the failed nodes. Moreover, the MSR.
point corresponds to the lowest income, which is given by the last newcomer
added to the information flow graph; and the MBR, point corresponds to the
highest, which is given by the first newcomer. It is important to note also
that, in this model, the order of replacement of the nodes does not affect
to the final result, since the mincut is always the same independently of the
specific set of k failed nodes.

2.5.4 Non-homogeneous models

In the previous subsections, we have introduced the concept of information
flow graphs and we have associated it with an NDSS. However, we have based
our analysis in the homogeneity of the parameters o and . This homogeneity
means that every single node stores o data units and every single helper node
(a node contributing to the replacement of a specific lost node) sends 3 data
units in order to repair a failed node. A non-homogeneous model means
either the amount of stored data per node or the amount of sent data per
helper node depends on the specific storage node. In this work we focus on
the second case, while the first one has also been studied [YSS11], [VYL12].

In [AKG10], Akhlaghi et al. presented another distributed storage model,
where the storage nodes are partitioned into two sets W' and W2, Let W1
be the set of “cheap bandwidth” nodes, from where each data unit sent costs
C,, and W?2 be the set of “expensive bandwidth” nodes, from where each data
unit sent costs C. such that C, > C.. This means that when a newcomer
replaces a lost storage node, the cost of downloading data from a node in !
will be lower than the cost of downloading the same amount of data from a
node in W2

Consider the same situation as in the model described in Subsection 2.5.3.
Now, when a storage node fails, the newcomer node s;, j = n+1,...,00,
connects to 7. existing storage nodes from W1 sending each one of them £,
data units to s;, and to r. existing storage nodes from W? sending each
one of them [, data units to s;. Let » = r. + r. be the number of helper
nodes. Assume that r, r., and r, are fixed, that is, they do not depend on
the newcomer s;, 7 =n +1,...,00. In terms of the information flow graph
@G, there is one arc from wi,, to w’, of weight 3. or ., depending on whether
s; sends [, or (. data units, respectively, in the regenerating process. This
new vertex w?’, is also connected to its associated vertex w’,, with an arc of
weight a.



32 Chapter 2. Background

Let the repair cost be Cr = r.C.0. + r.C.(. and the repair bandwidth
v = r.8. + refe. To simplify the model, we can assume, without loss of
generality, that 5. = 70, for some real number 7 > 1. This means that we
can minimize the repair cost Cr by downloading more data units from the set
of “cheap bandwidth” nodes W*! than from the set of “expensive bandwidth”
nodes W2. Note that if 7 is increased, the repair cost is decreased and vice-
versa.

Again, it must be satisfied that min(mincut(S, DC')) > M. Moreover, the
newcomers can also be ordered according to their income from the highest
to the lowest. However, in this model, the order is not only determined by
the order of replacement of the failed nodes, as it happened in the model
described in Subsection 2.5.3. It is important to note that, in this model, the
order of replacement of the nodes affects to the final result and the mincut
depends on the specific set of failed nodes.

The goal is also to find the min(mincut(S, DC')), so the next problem
arises: which is the set of k newcomers that minimize the mincut between S
and DC? The minimum mincut is given by the set of k newcomers with the
minimum sum of incomes. As it is shown in [AKG10], this set is composed
of any 7. + 1 newcomers from W' plus the remaining newcomers from W?2.
Moreover, the MSR point corresponds to the lowest income, which is given
by the last newcomer; and the MBR point corresponds to the highest income,
which is given by the first newcomer. Depending on k£ and 7., it is necessary
to distinguish between two cases.

Case k<r.,+1

This case corresponds to the situation when the data collector connects to
k newcomers from the set VW*!. With this scenario shown in the information
flow graph of Figure 2.6, the mincut analysis leads to

k-1

Z min(r.5. + refe — ife, ) > M. (2.3)
=0

After applying 5. = 75, and an optimization process, the mincut equation
(2.3) leads to the following threshold function:

T fe € [£(0), +00)

R RN )
i=1,. k-1,
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Figure 2.6: General information flow graphs corresponding to the case k <
re + 1.

where
2M

IO = er s~ s k= "

g(i) = i(2r,r + 2re — 2k7 4+ (i + 1)7).

Case k>r.+1

Figure 2.7: General information flow graphs corresponding to the case k& >
r. + 1.

This case corresponds to the situation when the data collector connects
to r. + 1 replaced nodes from the set W' and to k — r. — 1 replaced nodes
from the set W2. With this scenario shown in the information flow graph of
Figure 2.7, the mincut analysis leads to
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Te k—1
Z min(r.SBe + refle — ife, ) + Z min((r. +re —i)Be, ) > M. (2.5)
i=0 i=re+1

After applying 5. = 7. and an optimization process, the mincut equation
(2.5) leads to the following threshold function:

( %’ Be S [fl(O),+OO)
& Be € [11(0), f1(i — 1)
A (Te,Te, Be) = i=1,...,k—r.—1 (2.6)

2M —(g1(2)(k—rc—1)g2(i)) Be . .
i@ re Da@ie 5 ¢ [fy(i), foli — 1)),

L i=k—rq... k—1,
where
h(0) -
1 _—
! 2k(r — k) + (i + 1) + (2k — 1)’
2M

f(i) = (2kr — k2 —r2 —ro+k+2r.7) +it(2r. — i — 1)

g1(1) =i(2r — 2k +i+1), and
92(1) = (i + 1)(2re + i7).

2.5.5 Regenerating codes

Let C be a [n, k, r] regenerating code, where the length n is the total number
of nodes in the system; the dimension k is the value such that any k nodes
contain the minimum amount of information necessary to reconstruct the file;
and the cardinal of the set of helper nodes r is the number of nodes necessary
to regenerate one failed node. Let the distance d of C be d = n — k + 1.
Regenerating codes are array codes over F, designed to approximate (and
achieve if possible) the optimal parameters of the threshold function on the
information flow graph for an [n, k,n — k + 1] NDSS with repair degree r.
Let v € IF’; be the information vector representing the file to be stored in
an NDSS. Let ¢ € Fy; be the corresponding codeword after encoding v using
C, which is an array code as the ones explained in Subsection 2.1.2. If each
array coordinate of c¢ is stored in a node, and the linear code C' is MDS, the
parameters n, k and d of the regenerating code coincide with the parameters
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n, k, and d, of the linear code C'. Moreover, in this case C'is called a Minimum
Storage Regenerating (MSR) code. When a code is MDS, it means that it
minimizes the storage overhead. In other words, it is not possible to achieve a
higher correction capability with equal transmission rate and it is not possible
to achieve a higher transmission rate with equal correction capability. If each
coordinate of a codeword is stored in one storage node, there are n storage
nodes and because of the MDS property d =n — k + 1, k storage nodes are
enough to recover the original information. We can then say that MSR. codes
are MDS codes, however not all MDS codes are MSR. codes since not all of
them are able to achieve optimal repair bandwidth ~.

Note that, it is also possible to store more data in the same storage
node, for example by adding an extra set of elements over the base field
F,, producing more redundancy which could be used to regenerate a failed
node requiring less repair bandwidth ~. Using this technique, it is possible
to minimize the repair problem at the cost of some extra storage overhead,
but maintaining d =n — k + 1. When C achieves the minimum « such that
a =7, C is called a Minimum Bandwidth Regenerating (MBR) code, and it
can be seen that the parameters n, k and d of the regenerating code do not
coincide with the ones defined for a linear code C.

Regenerating codes assume the data reconstruction condition: any k
nodes must be enough to recover the file, which means that the minimum
distance must be d = n—k+1, so it is necessary to have ak > M. Moreover,
ifd=n—k+ 1 and ak = M, we have an MDS code. Another condition
is that the regeneration of any node in the system must require less repair
bandwidth than the total file size M, that is v < M. If each helper node
sends S data units, the repair bandwidth used is v = Sr. We know that any
k nodes must contain enough information to recover the file so, unlike in the
LRC case, the parameter r must achieve r > k. Note that if »r < k then
d <n—k+1andif r = k, there is no possible optimization in the repair
bandwidth. Moreover, as there are n storage nodes and one is the newcomer,
then k < r < n. It is clear that as k < r, in order to decrease the repair
bandwidth ~, each helper node must send 5 < « data units.

Note the difference between LRC and regenerating codes. In both cases,
the repair degree is the number of helper nodes r necessary to regenerate a
failed node. However, in LRC, each coordinate of a codeword c is stored in
one node, and when we access to one helper node it means that we download
the entire coordinate contained in it. Therefore, in order to decrease 7y, we
need r < k. In regenerating codes, to maintain the distance d =n — k + 1,
we need r > k. Thus, since a codeword ¢ can be seen as a vector of array
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Figure 2.8: Fragmentation, construction and regeneration of a 2-fault toler-
ance [4,2, 3] regenerating code.

coordinates, in order to decrease v we can increase r but downloading less
than an entire array coordinate from each helper node. In other words, LRC
are the result of creating new codes adapted to an NDSS, while regenerating
codes are classical codes in which a network coding technique is used to
reduce the repair bandwidth ~.

If any newcomer is able to exactly replicate the lost node, we say that the
regenerating code has the exact repair property. Otherwise, if the newcomers
store a linear combination that does not reduce the dimension of C' and it
does not coincide with the data included in the lost node, we say that the
regenerating code has the functional repair property [DRW11|. Exact repair
is much more desirable than functional repair, since despite the number of
failed nodes that the NDSS has repaired over an interval of time, it is pos-
sible to use systematic encoding of the information and keep this systematic
representation over the time. This means that there is always one accessible
copy of the original file stored in the NDSS. It is worth to mention that in
[SRKR12] it is proved that the interior points of the tradeoff curve are not
achievable using exact repair.

We say that a regenerating code has the uncoded repair property if it is
possible to replace a failed node without doing any linear operation in the
newcomer neither in the helper nodes. There exist uncoded constructions
for the MBR point like the ones shown in [RSK11] and [RR10]. However,
for the MSR point, there only exist uncoded constructions using functional
repair [HLS13|.

Example 14 (Regenerating code). Assume that a file of size M is stored in a
[4,2,3] NDSS with r = 3. The information flow graph of this NDSS is shown
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in Figure 2.4 and its mincut equation is mincut(S, DC) = min(38,a) +
min(24, «). The minimization of this equation is given by the threshold func-
tion (2.2) and provides two points in the tradeoff curve. The MSR point with
a= M/2 and v = 3M/4 and the MBR point with o« =~ = 3M /5.

Now, we design an example of a regenerating code that achieves the MSR
point, a [4,2,3] MSR code. A code achieving these parameters is shown in
Figure 2.8. Firstly, the file is divided into four coordinates over Fs and en-
coded into eight coordinates over the same field. Fach storage node stores two
of these coordinates producing an array codeword with four array coordinates
over Fs2. It can be seen that any two storage nodes have enough information
to recover the file. Finally, the functional repair of the first node is shown in
the figure for v = 3M/4.

2.5.6 Flexible regenerating codes

In Subsection 2.5.5, regenerating codes are described. We have said that a
regenerating code always achieve d = n — k + 1, despite if the code used is
MDS or not. We have shown that this is the most important difference, from
a practical point of view, between regenerating codes and LRC, because it
indicates if “any” or “a” subset of k storage nodes contain enough information
to recover the file.

However, we have intrinsically assumed that, in regenerating codes, the
set of helper nodes consists on any r non failed nodes. If the set of helper
nodes is a subset with r specific storage nodes, the resulting codes are called
[n, k,r] flexible regenerating codes. Note that these new codes are regen-
erating codes, because r > k and any subset of k storage nodes contain
enough information to recover the file. However, they share the idea of hav-
ing a specific set of helper nodes given in Subsection 2.4.2 for LRC. Flexible
regenerating codes can be seen as an hybrid solution between LRC and regen-
erating codes, where d = n — k + 1 but the set of helper nodes per newcomer
consists of specific storage nodes.

The first flexible construction of regenerating codes was given in [SRKR12].
In that article, the authors constructed flexible regenerating codes achieving
the same optimal parameters than MBR codes for r = n—1. Later, in [RR10],
the authors used mathematical designs [MS77] to generalize the construction
of these MBR codes for any r. Moreover, they discovered that by using this
kind of constructions, the optimal MBR point of the tradeoff curve could
be beaten. We call, to the resulting codes, flexible regenerating codes with
minimum bandwidth. Note that the minimum ~ is achieved when v = a.
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In this section, we formalize those contributions by giving a general con-
struction for flexible regenerating codes with minimum bandwidth along with
their bounds and key parameters. In other words, we are rewriting the con-
tributions on this topic and unifying the nomenclature, since they have been
published separately. This section has three subsections which cover the
three main aspects of any regenerating code, the code construction, the node
regeneration and the data reconstruction.

Code construction

Let C' be an [n,k,r] MSR code over F,, where any subset of k storage
nodes is enough to reconstruct the file. In this subsection, we explain how
to construct a new [n, k, 7] regenerating code C' with minimum bandwidth
over [, from the base code C. Despite it is possible to construct C' from
any regenerating code, the construction makes sense if the regenerating code
C is MSR. (so MDS viewed as an array code), because then, C' achieves the
optimal parameters a and ~.

Lemma 19. Given n > 3, there exists a simple, undirected, and 7-reqular
graph H(W, E), where W is the set of vertices where |W| =n and E is the
set of edges where |E| = n, satisfying the following conditions: |W| = n,
|E| =n, 1 <7 <n, and 70 = 2n.

Proof. Condition 7n = 2n is given by the Handshaking lemma for a simple,
undirected, and 7-regular graph. By Erdos-Gallai degree sequence theorem,
for ¥ > 1 and 7 < n, there exists at least a simple, undirected, and 7-regular
graph such that rn = 2n. O

For example, for 7 = n — 1, we have the complete graph H = K, and
for 7 = 2 we have the cycle graph H = C;. As |E| = n in H(W, E), it is
possible to assume that each edge in F corresponds to a different coordinate
¢; over Fe of a codeword ¢ = (¢q,...¢,) € C. Note that ¢; could be also
seen as an array coordinate composed of coordinates over the base field F,,
but in this section, we consider the base field Fy, so ¢; is a coordinate of
F,. Given a codeword c € C, since |W| =n in H(W, E), we can construct
a codeword ¢ = (¢y,...,¢,) € C, where each array coordinate ¢; corresponds
to a different vertex w; € W and contains the coordinates of ¢ given by the 7
edges incident to w;. Moreover, since the graph is simple, any two vertices can
not be connected by more than one edge, so each coordinate of ¢ is contained
in two array coordinates of ¢. As C is defined over F ., C is defined over
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Figure 2.9: A [10, 9, 2] MDS code used to create a [5, 3, 4] flexible regenerating
code with minimum bandwidth.

F,r. Figure 2.9 shows an example of a [5,3,4] flexible regenerating code
with minimum bandwidth created from a [10,9, 2] MDS code, which can be
used to illustrate this construction.

In the next subsections, we prove that C' is a regenerating code with min-
imum bandwidth. Firstly, in the node regeneration subsection, we show that
v = «. Then, in the data reconstruction subsection, we look for the mini-
mum o such that any k array coordinates of ¢ € C' are enough to reconstruct
the file. Note that C' is a regenerating code, but not a code from the classical
coding theory point of view, since |C| = |C| and k is not the dimension of
the code but an integer such that 1 < k < 7.

Node regeneration

Assume that a storage node fails, which is the same as erasing one array
coordinate ¢;, i = 1,...,7n of a codeword ¢ = (¢y,...,¢,) € C, or equivalently
one vertex w; € W of H(W, E). The newcomer can replace the failed node
by downloading and storing the 7 coordinates of ¢ included in each one of
the 7 neighbors of w;, and given by the corresponding 7 edges incidents to
w;. According to this regeneration process, v = a.

Note that these regenerating codes with minimum bandwidth, have the
exact repair and the uncoded repair properties. Also note that the node
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regeneration is given by an specific subset of 7 helper nodes, so they are
flexible regenerating codes.

Data reconstruction

Let E(w;), i = 1,...,n, be the set of edges incident to the vertex w; € W.
Let S be the set of all subsets of {1,...,a} of size & > 1 and let 5 € S.
For a subset 5, |U;c; £(wi)| = > ;5 |[E(w;)| — 05, where 65 represents the
intersection terms in the inclusion-exclusion formula. Since each edge is
incident to two vertices, for 5 C 5 of size |5'| > 2, |(),co E(w;)| = 0, so
O0s = > i ijes |E(wi) N E(w;)]. Let 6 be the maximum of all 65, 5 € S.
Since |E(w;) N E(w;)| <1 for any 4,5 € {1,...,n} and ¢ # j, we have that
0 < (3)-

Lemma 20. Let C be an [n,k,r] MSR code over F, with n > 3. Choose n,
k and 7 such that T = 2n, 1 <k <n, 1 <7 <k and k < kr — 0. Then,
there is a [n, k, 7] regenerating code C over Fye=. Moreover, the minimum «
is achieved when k = k7 — 0.

Proof. Given a file distributed using C', we know that there are n nodes and
that any k of those n nodes are enough to reconstruct the file. By Lemma
19, we know that if n > 3, there exists a set of n vertices W and a set of n
edges FE, such that it is possible to construct H (W, E) with 1 < 7 < n and
7 = 2n. Then, from H(W, E) it is possible to construct a code C' as it is
described in the code construction subsection.

The conditions 1 < k < 7 and 7 < k are necessary because if they are
not achieved, the code C' has no sense as a regenerating code. Note that a
subset of cardinal 7 < k coordinates of ¢ contained in 7 different nodes can
regenerate a failed one, so v < M. Finally, in order to reconstruct the file
distributed using C, any subset of £ nodes must store at least k coordinates
of c € C, 50 k < |U;cs E(wi)]. Since k < kr — 0 < ki — 05 = | ;s E(w;)]
this condition is satisfied. Therefore, C' is a regenerating code.

In the node regeneration subsection, it is shown that v = a. Moreover,
7 is the number of coordinates of ¢ which compose an array coordinate of ¢.
Then, the minimum 7 will lead to the minimum a. As 7 > (k + 6)/k, the
minimum 7 is achieved when k = k7 — 6. O

As we are trying to minimize o, we assume the equality & = k7 — 6
given by Lemma 20, and we establish an upper bound for the parameter 6
in Proposition 1.
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Proposition 1. In the graph H(W, E) with k = k7 — 0, we have that

1.0< () ifk<r+1,
2.0 < |5+ (Fmedtt) if k> 4L

Proof. Each node w; € W has 7 incident edges, so k nodes have k7 edges.
Now, we distinguish two cases.

Case k < 7+1: In H(W, E), each vertex w;, i = 1, ..., 7, shares one, and
only one, edge with another vertex w;. Each vertex w;, i € 5 and |3 = k, can
share a maximum of one edge with each one of the other vertices w;,j € 5,
i # j. Then, the maximum number of shared edges is (g) In other words,
when k& <7 + 1, it is possible to create a complete subgraph of k vertices in
H(W, E) with (’;) edges.

Case k > 7+ 1: Given H(W,E) and 5, we are going to construct a
subgraph which maximizes the number of shared edges. Each vertex w;,
i € 5, can share a maximum of 7 edges with the remaining vertices w;, j € 5,
it # j. Therefore, the maximum number of shared edges is when we consider
a complete subgraph with 7 4+ 1 vertices and (7”51) edges. As k > 7+ 1,
there could be L%J complete subgraphs, each one with (7”51) edges. The

vertices out of these complete subgraphs can share a maximum of (’5 mo% (Hl))

edges, which leads to the upper bound 6 < L%J (f‘gl) + (E mo% (Hl)) for

k>71+1. O
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Chapter 3

Quasi-cyclic Flexible
Regenerating Codes

In this chapter, we present our first contribution, a new family of regenerating
codes based on quasi-cyclic codes. This contribution has been partially pub-
lished in international conferences [GPV11lal], [GPV11b] and submitted as a
journal paper in [GPV13a]. Quasi-cyclic flexible minimum storage regenerat-
ing (QCFMSR) codes are constructed and their existence is proved. Quasi-
cyclic flexible regenerating codes with minimum bandwidth constructed from
a base QCFMSR code are also provided. These codes not only achieve op-
timal MBR parameters in terms of stored data and repair bandwidth, but
also for an specific choice of the parameters involved, they can be decreased
under the optimal MBR point.

Quasi-cyclic flexible regenerating codes are very interesting because of
their simplicity and low complexity. They allow exact repair-by-transfer in
the minimum bandwidth case and an exact pseudo repair-by-transfer in the
MSR case, where operations are needed only when a newcomer enters into
the system.

3.1 Quasi-cyclic Flexible MSR codes

In this section, we describe the quasi-cyclic flexible minimum storage regen-
erating (QCFMSR) codes in detail. We show how to construct them and
some of their properties; we see how to regenerate a failed node; we prove
their existence by showing that the data reconstruction condition is achieved;
and finally, we describe an example of a [6, 3,4] QCFMSR, code.

43
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3.1.1 Code Construction

Let C be an array code, like the ones explained in Subsection 2.1.2, of length
n = 2k and dimension k£ over 2 constructed from the nonzero coefficients
Ciy-..,C over Fy, and for which the encoding is done over the base field
F, in the following way. An information vector v € IF’;g is seen as a vector

v = (v1,...,v,) over F,, and is encoded into ¢ € IFZQ seen as a codeword
¢ = (c1,...,¢9) = (V1,...,Un,p1,...,pn) over F,, where the redundancy
coordinates p1,..., p, are given by the following equation:
k+i
pi= Y oy i=1,....n, (3.1)
j=i+1

where (; € F,\ {0} for i =1,...;kand j =i+ 1,....,k+¢ modn. The
rate of the code is R = 1/2 and the encoding over F, is done by using a
quasi-cyclic code [MST77] as we will see later. Quasi-cyclic codes are known
by their simplicity for encoding-decoding operations.

A 2k, k,r] QCFMSR code over [F 2 is a regenerating code constructed
from the array code C. Take a file of size M and split it into k pieces
over F 2, or equivalently, into n = 2k pieces over [, organized as a vector
v = (vq,...,v,) over F,. The [2k, k,r] QCFMSR code over F 2 is composed
of a set of n = 2k storage nodes, denoted by {si, ss,...,s,}, where each
storage node s;, i = 1,...,n, stores two coordinates over F,, (v;, p;) which
can be seen as one array coordinate over [F 2. The size of each coordinate over
F, is M/2k and the size of each array coordinate stored in s; is a = M /k.

Let S be the set of all subsets of {1,...,n} of size k. Let D be an n x n
matrix over F, and let s = {i1,... iy} € S. Let D denote the ith column
vector of D and D?® denote the n x k submatrix of D given by the k£ columns
determined by the set s.

Let F' = (I|Z) be a nx2n matrix, where [ is the nxn identity matrix, and

Z is a n X n circulant matrix defined from the nonzero coefficients (, ..., (x
as follows:
0 0 - 0 G G - G
G 0 -~ 0 0 G - G
Z=| ¢ -1 -+ G 0 o --- 0 |. (3.2)
0 G - G G 0O --- 0
0 0 - G C-1 G2 -+ 0
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Figure 3.1: Construction process for a [n, k, r| quasi-cyclic flexible MSR, code.

The matrix F' represents the array code C, so also the QCFMSR code
constructed from C. Each row is the encoding of one coordinate over the
base field F,, and each node is represented by two columns, one from /I and
another one from Z. Actually, the node s; which stores (v;, p;), is also given
by

(vi, pi) = (U[{i}a UZ{Z})-

Note that the information coordinates are represented by the identity matrix
I, while the redundancy coordinates are represented by the circulant matrix
Z.

Circulant matrices have been deeply studied because of their symmetric
properties [Dav79]. Moreover, F' can be seen as a generator matrix of a double
circulant code over F, [MS77|. Double circulant codes are a special case of
quasi-cyclic codes which are a family of quadratic residue codes. Quasi-cyclic
codes have already been used for distributed storage [BBBM11] which points
out the significance of these codes for NDSS.

Figure 3.1, shows the construction of a QCFMSR code. First, the file is
split into n symbols over [F,. Then, these symbols are encoded using F' and
producing 2n symbols over F,. Finally, each two symbols are stored together
in one node, this creates the array code with coordinates over IF, that can be
seen as array coordinates over [F ..
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3.1.2 Node Regeneration

In this subsection, we show how to regenerate a failed node s; which stores
(vs, pi), minimizing the required repair bandwidth. Actually, we can just
follow the next algorithm:

1. Download the information coordinates v;, j =i+ 1,...,7+k mod n,
from the next k£ nodes. Note that due to the circulant scheme, the
next node of s, is s;. From these information coordinates, compute
the redundancy coordinate p; of the newcomer.

2. Download the redundancy coordinate p;_; from the previous node, fol-
lowing the same circulant scheme. Solving a simple equation, obtain
the information coordinate v; of the newcomer.

It can be seen that r =r; = k+ 1 for any s;, ¢ = 1,...,n, and when the
repair problem is faced, it is clear that QCFMSR codes are optimal in terms
of the tradeoff curve given by the threshold function (2.2) for r = k + 1.
Note that QCFMSR codes are in fact a family of regenerating codes because
r > k. However, unlike regenerating codes, for these flexible regenerating
codes the set of r helping nodes is not any but an specific set of remaining
nodes with cardinality r. In other words, the set of nodes which is going to
send data to an specific newcomer is fixed.

Note that QCFMSR codes have also the exact repair property which
means that once encoded, the information and the redundancy can be rep-
resented for the whole life of the NDSS by ¢ = (v, ..., vn, p1, .., pn), Where
v; and p; are the information and redundancy coordinates, respectively. It is
shown in [SRKR10] and [SRKR11]| that when r < 2k — 3, exact MSR codes
do not exist. However, QCFMSR codes exist for r = k 4+ 1 which satisfies
r < 2k — 3 for k > 4. These facts illustrate the importance of the flexibility
over the set of helper nodes in this construction. Moreover, despite QCFMSR.
codes do not achieve uncoded repair, they are very efficient regenerating one
node, because they need only two simple operations on the newcomer and
no operation on the helper nodes.

3.1.3 Data Reconstruction

In Subsection 3.1.1, we have seen that M = ak. In this subsection, we prove
that the array code over [F2, used to construct a QCFMSR code, satisfies
that d = n — k + 1 for some (i,...,(; and, as a consequence, QCFMSR
codes are MDS codes over [F: applied to NDSS, so they are MSR codes. In
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[GPV11b|, we performed a computational search to claim the existence of
QCFMSR . codes. In this subsection, we prove their existence theoretically.

Let F* = (I°|Z*) denote the n x n submatrix of F' determined by s =
{ir,..., i} € S. Let ps(Ci,Coy.., ) € FylChy. .., (] be the multivariate
polynomial associated with the determinant of F** = (I°|Z°).

Assume that a DC wants to obtain the file. Then, it connects to any
k nodes {s;,...,s; } and downloads (v;,,ps);---, (vi,,pi,), so the DC is
downloading the encoding given by F*. In order to obtain the file given by
v = (v1,v9,...,v,), we need F* to be full rank. Moreover, in order to satisfy
the data reconstruction condition, we need F'* to be full rank for all s € S.
Therefore, we want to use the Lemma 16 to prove that for a random choice of
the nonzero coefficients (i, . . ., (x, the polynomial ps((y, o, - - ., () associated
with the determinant of F'* is nonzero with high probability.

It has been explained in Section 2.5.1 that there exists a relation between
determinants of matrices and bipartite graphs and that to use the Lemma 16,
we need that ps((1, (s, ..., () is not identically zero. Let G(W, UW,, E) be
the bipartite graph associated with a matrix F'*, where each row of the matrix
is represented by a vertex w,, in W,, and each column of F* is represented by
a vertex w,, in W,, where 1 = 1,...,n. Two vertices w,, € W,, w., € W, are
adjacent if the entry in the row ¢ and column j of F*® is nonzero. Moreover,
the weight of this edge is the nonzero value of this 7, jth entry. Let E(w,,)
(resp. E(w,,)) denote the neighbors of w,, (resp. w,,) in the graph G. Let
T ={t1,...,tm} C W, be a subset of vertices of W, or T" C W, be a subset
of vertices of W, indistinctly. Let E(T') denote the set | J;", E(t;).

By Lemma 15, we know that the polynomial associated with the determi-
nant of £, ps((q, (o, - - ., (x), is not identically zero if and only if the bipartite
graph G(W,.UW,, E) associated with F'* has a perfect matching. By Lemma
14, a bipartite graph G(W, U W,, E) contains a complete matching from W,
to W, (resp. W, to W,) if and only if it satisfies Hall’s condition, that is,
for any T C W, (resp. T C W,), |T| < |E(T)|. Moreover, if |W,| = |W.|,
the complete matching is achieved in both directions, so it corresponds to a
perfect matching.

Lemma 21. Let T C W, such that T # 0, then |E(T)| > |T).

Proof. Note that W, has k vertices of degree 1 and k vertices of degree k.
We can decompose T" = T} U T, where 77 contains the vertices of degree
1 and T), contains the vertices of degree k. It is clear that |E(T})| = |11
by construction, and it is easy to see that |E(Ty)| > k + |Ty| — 1 > |T3| by
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Figure 3.2: A [6,3,4] QCFMSR code with coordinates over F, and array
coordinates over F2.

the circular construction of matrix Z and because k > 1. Therefore, we can
assume that 77 # () and Ty # 0.

If |T1] < k—1, since |E(Ty) N E(Ty)| < |E(T1)| = |T1], we have that
E(T)| = [B(Ty)| + | E(Ty)| — |E(Ty) N E(Ty)| > [T + k + T — 1 — T3] >
|T}|4+|T5| = |T|. On the other hand, if |T}| = &, then |E(T)NE(Ts)| < |Ti]|—1
since for each different vertex ¢; € 75, there exists a different vertex ¢; € T;
such that E(t;) N E(t;) = 0. Thus, we also have that |E(T)| = |E(Ty)| +
|B(Ty) | = | E(T)NE(Ty)| = [Ty|+k+[To| 1= |13 +1 > T3] + T3] = |T]. O

Proposition 2. The polynomial associated with the determinant of F*, ps((1,
C2y .-, Ck), is not identically zero.

Proof. Since |W,| = |W.|, by using Lemma 14 and Lemma 21, we have that
the bipartite graph G(W,UW,, E') associated with F* has a perfect matching.
Finally, by Lemma 15, we know that ps((i, (o, ..., (k) is not identically zero.

]

For the second statement, we have to prove that for a random choice of
the nonzero coefficients (y, ..., (,, the multiplication of all the multivariate
polynomials associated with the determinant of all matrices F* s € S, is
nonzero with high probability.

Let p(Ci, ..., C) € Fy[Cus - - ., () be the multivariate polynomial p((y, . . .,

C) = [LsegPs(Cis - - G). Note that if p(Ci, ..., ) # 0, then py(Ci, ..., Ce) #
0 for all s € S.

Lemma 22. The degree of p((i, ..., k) is less than or equal to k(’;) For-
mally, deg(p(C1,...,¢)) < l{;(Z)

Proof. Each (;, © = 1,...,k, can appear a maximum of k£ times in F°. By
Lagrange minor’s theorem, py((y, . .., (x) has a maximum degree of k. By the
definition of p(Cl) R gk)? deg(p(Ch R gk)) < k(Z) O

Theorem 23. The (Z) submatrices F*°, s € S, are full rank with high prob-
ability for a sufficiently large finite field F,.
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Proof. By Proposition 2 and using Lemma 16, we know that

deg<p(<17 s Ck))
p .

Pr(p(¢i,...,¢) =0) <

know that deg(p((y,...,¢)) < k;(Z), so for a sufficiently large field size ¢,
submatrices F'*, s € S, are full rank with high probability. O

Summarizing, there is a set of full rank matrices F**, s € S, for a random
choice of the nonzero coefficients (3, ..., (, and a sufficiently large finite field.
This means that there exists such F' that represents a QCFMSR code with
the property that any k storage nodes have enough information to reconstruct
the file. In other words, a random choice of the coefficients over a sufficiently
large finite field gives the encoding for a quasi-cyclic MDS array code of length
n over [F 2 where each array coordinate of a codeword is (v;, p;). As this code
is implemented in a NDSS following the construction given in Subsection
3.1.1, it gives a QCFMSR code.

It is worth to mention that using QCFMSR codes, an uncoded piece of
the file is always kept in the system. Moreover, if more than one storage node
fails, up to n — k, the decoding for the quasi-cyclic codes has linear complex-
ity in contrast with the one for Reed-Solomon codes which has quadratic
complexity [MS77].

3.1.4 Example

In this subsection, we describe the construction of a [6,3,4] QCFMSR code
over Fzo.

First, the file is fragmented into 6 information coordinates v = (vy, . .., vg).
Then, each v; for i = 1,...,6 is stored in a node s; = (v;, p;), along with its
corresponding redundancy symbol p; which is computed using a quasi-cyclic
matrix F' of the following form:

1 000000 0 0 G & G
01 0000|&G 0 0 0 &G G
001000O0(&G G 0 0 0 ¢

F= .
000100|&G &G G 0 0 0 (3.3)
000O010[0 ¢G G G 00
0000010 0 &G & G 0
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By construction, the node regenerating condition is always achieved. In
order to satisfy the data reconstruction condition, we need to find nonzero
coefficients (i, (2, (3 such that p((i, (2, (3) # 0 over Fs. Since p((i, (2, (3) =
A~ G+ CiG) (G4 )~ GG+ (3C) (G — ), a possible solution over
Fs is ((1, (o, ¢3) = (1,1,2). Figure 3.2 shows the distribution of information
and redundancy coordinates in the nodes. Each array coordinate over Fs2 is
represented by one storage node. It can be seen that d =4 — 2+ 1 and that
ak = M, so the quasi-cyclic flexible code is a MSR. code.

Using the same argument, it is also possible to construct a [6, 3, 4] QCFMSR
code over Fg2 with nonzero coefficients ((i, (2, (3) = (1,1, 2) over Fg, where
z is a primitive element of this field. Note that there is not any [6,3,4]
QCFMSR code over Fy2, F32, Fs2 and Fre.

3.2 Quasi-cyclic flexible regenerating codes
with minimum bandwidth

It is possible to use QCFMSR codes as base regenerating codes to create
regenerating codes with minimum bandwidth using the technique described
in Subsection 2.5.6. In this subsection, we analyze the resulting parame-
ters of these called quasi-cyclic flexible regenerating codes with minimum
bandwidth.

Corollary 24. For k < 7 + 1, there exists a [n,k, 7] quasi-cyclic flezible
regenerating code with minimum bandwidth constructed from a 2k, k, k + 1]
QCFMSR code if the set of parameters {k,ﬁ, l;;,f} achieve:

. k(2F —k+1)
i T—
_ 2k(2F—k+1)
n= — ,
1 <7<k
Proof. Straightforward from Lemmas 19, 20 and Proposition 1. O

Figure 3.3 shows an example of a quasi-cyclic flexible regenerating code
with minimum bandwidth for & < 7 + 1 created from a [6,3,4] QCFMSR
code. Each node w; € W can be repaired downloading half node w;_; and
half node w;,;. Moreover, any k = 2 nodes in C' contain at least k& = 3
different coordinates of ¢ € C' which allow us to reconstruct the file. Note
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[6,3,4] QCFMSR code

U V2 U3 Vg U5 ve

vz + v3 + vg + vs + vs + v1 +
v3 +2vq4  vg + 205 v5 + 2vg ve + 201 ve + 2v1 v + 2v3

ey vy

v1 v2 v3 V4 vs ve6

v2 + v3 + vg + vs + vs + vy +
v3 +2vg4  vg + 2035 v5 + 206 ve + 2v1 ve + 201 vz + 2v3

v2 v3 va U5 Ve v1

vz + vq + vs + vs + v1 + v2 +
vgq + 2vs vy + 2vg ve + 2v7 ve + 2v1 vy + 2v3 v3 + 2v4

[6,2, 2] quasi-cyclic flexible regenerating code with minimum bandwidth

Figure 3.3: Construction of a [6,2,2] quasi-cyclic flexible regenerating code
with minimum bandwidth from a [6, 3, 4] QCFMSR code.

that o = 2% is equal to the value given in [DGWRI10] for a [6,3,4] MBR
code.

Corollary 25. For k > 7 + 1, there ezists a [n,k,7] quasi-cyclic flezible
regenerating code with minimum bandwidth constructed from a 2k, k, k + 1]
QCFMSR code if the set of parameters {k,ﬁ, l;;,f} achieves:

. LLJ (f;1) ) (k moo;(ijl))’

Proof. Straightforward from Lemmas 19, 20 and Proposition 1. O

Figure 3.4 shows an example of a quasi-cyclic flexible regenerating code
with minimum bandwidth for k& > 7 + 1 created from a [10, 5, 6] QCFMSR
code. Each node w; € W can be repaired downloading half node w;_; and
half node w;;;. Moreover, any k = 4 nodes in C' contain at least k = 5
different coordinates of ¢ € C' which allows us to reconstruct the file. Note
that o = 2M which is less than 2M, the value given in [DGWRI10] for a
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[10,5,6] QCFMSR code

v1 v2 v3 v4 U5 ve v vg vg v10
v2 +5v3 + v3 + 5vg + vg + 5v5 + v5 + 5ve + ve + Svr + vy + 5vg + vg + Svg + vg+5vip+ vipo+5vi+ vi +5vg +
2v4 + 2vs + 2ve + 2v7 + 2vg + 2vg + 2v10 + 2v3 +v2 + 2v2 +v3 + 2v3 +
vs + ve ve + v7 v7 + vg vg +vg wg +wio wioF+vr w1tz v3 v4 vg + vs
vl v2 v3 V4 U5 ve v7 vg vg v10
vg +5v3 + v3 + 5vg + va + 5v5 + v5 + 5ve + ve + Svr + vy + 5vg + vg + Svg + vg+5vi0+ vipo+5vi+ vi +5vg +
2v4 + 2v5 + 2vg + 2v7 + 2vg + 2v9 + 2v10 + 2v3 +v2 + 2v2 +v3+  2v3 +
vs +ve we tvr vrtwg wvgtvg wog+twio wiot+vr w1tz v3 vy vg + vs
v2 v3 v4 V5 v6 v7 vg vg v10 vl
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[10,4, 2] quasi-cyclic felxible regenerating code with minimum bandwidth

Figure 3.4: Construction of a [10, 4, 2] quasi-cyclic flexible regenerating code
with minimum bandwidth from a [10,5, 6] QCFMSR. code.

[10,5,6] MBR code. It is worth to mention that the reason of the decreasing
on the lower bound given in [DGWR10] is the flexibility on the parameter 7.

Figure 3.5 shows the parameters of some quasi-cyclic flexible regenerat-
ing codes with minimum bandwidth. The first column shows the parameters
[, k, 7] of the quasi-cyclic flexible regenerating codes with minimum band-
width. The second column shows the parameters [n, k, r] of the corresponding
QCFMSR codes. The third and forth columns compare the minimum « such
that a = v for MBR codes as stated in [DGWR10] with the one achieved by
the quasi-cyclic flexible regenerating codes with minimum bandwidth. First
part of the table shows cases when k& < 7+ 1, and the second part cases when
E>r+1
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[n, k, 7] n,k,r]  a=~ [DGWRI0| a=r
6,2,2]  [6,3,4] 20 /3 2M/3
8,3,3]  [12,6,7] M/2 M2
7,2,4]  [14,7,8] AM/7 AM/7
[10,4,4] [20,10,11] oM /5 2M/5
[10,4,2]  [10,5,0] AM/7 oM/5
10,5,2]  [10,6,7] 5M/9 M/3
[12,5,3] [18,9,10] 5M /12 M/3
16,7,3] [24,12,13] 7M/18 M/4

Figure 3.5: Parameters [n, k,7] for some quasi-cyclic flexible regenerating
codes with minimum bandwidth constructed from [n, k,r] QCFMSR codes,
and comparison between the o = v values given in [DGWR10] and the ones
achieved with the proposed construction.
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Chapter 4

Two-rack model

In Subsection 2.5.5, we described the model proposed in [AKG10] based on
a non-homogeneous repair bandwidth which we call static cost model. The
static cost model is based on different repair bandwidth costs where there is
one set, of “cheap” and one set of “expensive” helper nodes.

In realistic data centers, the data is placed in storage nodes which are
connected through a network. These storage nodes are usually organized in
a rack, a metallic support designed to accommodate electronic equipment.
Figure 4.1 shows the rear of a real rack used in a data center. The communi-
cation (bandwidth) cost between nodes which are in the same rack is much
lower than between nodes which are in different racks. In fact, in [AGSS11]
it is said that reading from a local disk is nearly as efficient as reading from
the disk of another node in the same rack.

In this chapter we present our second contribution, a model designed
to represent the described situation. This contribution has been partially

Figure 4.1: Rear of a real rack used in a data center.
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published in the international conference [GPV13b| and summarized as a
journal paper |[GPV13c|.

4.1 The model

In this model, the cost of sending data to a newcomer in a different rack
is higher than the cost of sending data to a newcomer in the same rack.
Note the difference of this rack model compared with the static cost model
described in Subsection 2.5.5. In that model, there is a static classification of
the storage nodes between the ones having “cheap bandwidth” and the ones
having “expensive bandwidth”. In our new model, this classification depends
on each newcomer. When a storage node fails and a newcomer enters into
the system, nodes from the same rack are in the “cheap bandwidth” set, while
nodes in other racks are in the “expensive bandwidth” set. In this section,
we analyze the case when there are only two racks. Let W; and W; be the
sets of n; and ny storage nodes from the first and second rack, respectively.

Consider the same situation as in Subsection 2.5.5, but now the sets of
“cheap bandwidth” and “expensive bandwidth” nodes depend on the specific
replaced node. Again, we can assume, without loss of generality, that 5. =
708, for some real number 7 > 1. Let the newcomers be the storage nodes
sjyj=n+1,...,00. Let r = rl +r! = r2+r? be the number of helper
nodes for any newcomer, where r!, r! and r2, r? are the number of cheap
and expensive bandwidth helper nodes of a newcomer in the first and second
rack, respectively. We can always assume that r! < r2 by swapping racks if
it is necessary. Figure 4.2 shows a scheme of a two rack model.

In the static cost model, the repair bandwidth ~ is the same for any
newcomer. In the rack model, it depends on the rack where the newcomer is
placed. Let 4! = B.(rlT +r!) be the repair bandwidth for any newcomer in
the first rack with repair cost Ch = B.(Cerlr+Cerl), and let 4? = B, (r2r+1r?)
be the repair bandwidth for any newcomer in the second rack with repair cost
C2 = B.(Cor?t+C.r?). Note that if r! =72 or 7 = 1, then v! = 72, otherwise
y! < ~% As it is mentioned in [DGWR10], in order to represent a distributed
storage system, the information flow graph is restricted to v > «a. In the rack
model, it is necessary that ¥' > o which means that v> > .

Moreover, unlike the models described in Section 2.5, where it is straight-
forward to establish which is the set of nodes which minimize the mincut, in
the rack model, this set of nodes may change depending on the parameters
2 ny and 7. We call to this set of newcomers, the minimum mincut

c)

1
k,r.,r
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Rack 1

At time 1 the first node fails

Users should be able to reconstruct the file

Figure 4.2: Scheme of a two rack model.

set. Recall that the income of a newcomer s;, j =n +1,...,00, is the sum
of the weights of the arcs that should be cut in order to isolate w? from
S. Let I be the indexed multiset containing the incomes of k newcomers
which minimize the mincut. It is easy to see that in the model described
in Subsection 2.5.3, I = {(r — )5 | ¢ = 0,...,k — 1}, and in the one de-
scribed in Subsection 2.5.5, I = {((ro — )7 +1)Be | i = 0,...,min(r., k —
Dyu{(re —9)B. | i = 1,...,k —r. — 1}. Note that when & < r. + 1,
{(re=1)B.|i=1,...,k—r.—1} is empty. In Figure 2.4, it can be seen that
I={(r—u)p|i=0,....,k—1} = {33,28}. In Figure 2.7, if we fix k = 5,
re =3 and r. = 2 that [ = {((ro — )7 +7¢)Be | i =0,...,min(r.,k — 1)} U
{(’re_i)ﬁe | 1= 17 R k:_’rc_ 1} = {(37—+2)Bea (27—+2)Bea (T+2)ﬁea 2567 Be}'

In order to establish I in the rack model, the set of kK newcomers which
minimize the mincut must be found. First, note that since r! < r? the
income of the newcomers is minimized by replacing first 7! 41 nodes from the
rack with less number of helper nodes, which in fact minimizes the mincut.
Therefore, the indexed multiset I always contains the incomes of a set of r!+1
newcomers from Wy. Define I; = {((r!=i)7+r})B. | i =0,...,min(r}, k—1)}
as the indexed multiset where [,[i], i = 0,...,min(r!, kK — 1), are the incomes
of this set of r! + 1 newcomers from V. If k < r!+1, then I = I, otherwise
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I, ¢ I and k —r! — 1 more newcomers which minimize the mincut must
be found. Taking 7 = 2 in Figure 4.3, I, = {((r! — )7 +r})B. | i =

C

0,...,min(rL, k — 1)} = {(7 + 3) B, 38} = {58, 3B}

Figure 4.3: Information flow graph corresponding to the rack model when
k>7’i—|—1, Wlthk:4’ Ti:17TZ:27T:4andn1:n2:3.

When k& > r! + 1, we will see that there are two possibilities, either the
remaining nodes from Wj are in the set of newcomers which minimize the

mincut or not. Define Io = {rlf. |i=1,... min(k—rl —1,ny —rl = 1)} U
{(r? =i)7B. | 1 =0,...,min(r? k —ny — 1)} as the indexed multiset where
L[], i=0,...,k—r! —2, are the incomes of a set of kK —r! — 1 newcomers,

including the remaining n; —r! — 1 newcomers from W, and newcomers from
W,. Note that if ny —r! —1 > k —r! — 1, it only contains newcomers
from Wi. Define I3 = {(r? —i)78. | ¢ = 0,...,min(r? k — r! — 2)} as the
indexed multiset where I3[i], i = 0,...,k —rl — 2, are the incomes of a set
of k —r! — 1 newcomers from Wy. When r2 < k —rl —1orr? < k —ny,
according to the information flow graph, the remaining incomes necessary
to complete the set of kK — rl — 1 newcomers are zero. Therefore, it can be

assumed that r2 > k —r}

— 1 > k — nq, since the mincut equation does not,
change when 2 < k —r! —1 or r? < k — ny. Taking 7 = 2 in Figure 4.3,
it can be seen that I, = {r!@. |i=1,... min(k —r! —1,n, —rl —= 1)} U
{(r? =0)7B. |i=0,...,min(r’>, k —ny — 1)} = {38,278} = {308,408} and
I3 = {(T? - i)Tﬁe ‘ 1=0,..., min(ra k— Ti - 2)} = {27—667 Tﬁe}{4ﬁea 256}'
Proposition 3. Ifk > rl+1, we have that |I| = |I3] = k—rl—1. Moreover,
if SR LI < SR Ili), then I = 1 U Io; otherwise I = I U s,

Proof: We need to prove that I, and I3 are the only possible sets
of incomes which minimize the mincut. We will see that it is not possible
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to find a set of incomes such that the sum of all its elements is less than
min( Y1 B[, S ).

Let A= L—(INI3) ={a,as,...,a, | a; =a;,i < j} and B = [3—(I,N
I3) = {b1,ba, ..., b, | b; > bj,i < j}. Let D=AUB = {dy,ds,...,do, | d; >
dj,’i < j} Then, Z?:l dz Z Z?:l bz and Z?:l dz Z Z?:l Q;. Note that A, B
and D are incomes of an information flow graph which means that one can
not add d, without having added d; to the sum. The same happens with
A or B, so the elements must be included in order from the highest to the
lowest. O

If k<r!l+ 1, I=1I and the corresponding mincut equation is

[11]—1

> min(Li], ) > M. (4.1)

1=0

On the other hand, if k > r! + 1 and I = I, U I5, the corresponding mincut
equation is

[I1]-1 |I2|-1
Z min (/4 [i], @) + Z min(l[i], «) > M, (4.2)

and if I = I; U I3, the equation is

[11]-1 [13]—1
Z min(11[i], a) + Z min(Is[i], a) > M. (4.3)

In the previous models described in Section 2.5, the decreasing behavior
of the incomes included in the mincut equation is used to find the threshold
function which minimizes the parameters o and ~. In the rack model, the
incomes included in the mincut equations may not have a decreasing behavior
as the newcomers enter into the system, so it is necessary to find the threshold
function in a different way.

Let L be the increasing ordered list of values such that for all ¢, ¢+ =
0,....,k—1, I[i]/B. € L and |I| = |L|. Note that any of the information
flow graphs, which represent the rack model or any of the two models from
Section 2.5, can be described in terms of I, so they can be represented by
L. Therefore, once L is found, it is possible to find the parameters « and
B (and then v or v! and v?) using the threshold function given in the next
theorem. Note that the way to represent this threshold function for the rack
model can be seen as a generalization, since it also represents the behavior
of the mincut equations for the previous given models.
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Theorem 26. The threshold function o*(8.) (which also depends on r, rl,
r2, k and 1) is the following:

vy Be € [£(0), +00)

B = Mg g e 15, fli— 1))
i=1,.. . k-1,

subject to vt = (rlr +rl)B. > «a, where

1) = g @ o) = > LIl

Note that f(i) is a decreasing function and g(i) is an increasing function.

Proof: =~ We want to obtain the threshold function which minimizes «,
that is,
a*(f.) = mina
subject to: S min(L[i]B., ) > M
Therefore, we are going to show the optimization of (4.5) which leads to the

threshold function (4.4).
Define M* as

(4.5)

zmm Jfera

Note that M* is a piecewise linear function of a.. Since L is a sorted list of
k values, if « is less than the lowest value L[0], then M* = ka. As a grows,
the values from L are added to the equation, so

[ ko, o € [0, L[0)5,]
M = (k: - Z)a + Z;;B L[j]ﬁea a S (L[Z - 1]567 L[Z]ﬁe] (46)
1=1,...,k—1
[ 3050 LIjI6., o € (Lk - 1]8., 00).

Using that M* > M, we can minimize « depending on M. Note that
the term Z?;S L[j]Be of the previous equation has no significance in the
minimization of «, so it can be ignored. Therefore, we obtain the function
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(X M € [0, kL[0] 5]
" M—=31 L]5]B. ) ) i )
o = Ezioi U M e (L — 1]/36(1;_—1 i) + o LI, (4.7)
L[i)Be(k — 1) + 3250 Lj]Be]
\ i=1,... k-1
Finally, define g(i) = Z;;B L]j] and f(i) = m Then, the above
expression of a* can be defined over 3, instead of over M, and the threshold
function (4.4) follows. O

Figure 4.4: Information flow graph corresponding to the rack model when
k>7’i—|—1, Wlthk:4’ T;:1a7’222a7’:4andn1:n2=3.

Example 15. Figure 4.4 shows the example of an information flow graph
corresponding to a regenerating code with k = 4, vl =1, r2 =2, r = 4
and ny = ny = 3. Taking for ezample T = 2, we have that I; = {55, 30},
I, = {36.,408.} and I3 = {40.,26.}. By Proposition 3, since 23:0 L[i] >
S L, T = LUy = {58.,38.,48.,28.}, and then L = [2,3,4,5]. The
corresponding mincut equation is (4.3) and applying L to the threshold func-
tion (4.4), we obtain

(U Be € &, +00)
M2 B, e [, M)
o (Be) = o (4.8)
—58e M M
— Be € [ﬁ,ﬁ)
M — 9667 Be € [%711\4_3)
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Figure 4.5: Information flow graph corresponding to the rack model when
E>rl+1,withk=3rl=11>=2r=4and ny =ny=3.

It can happen that two consecutive values in L are equal, that is L[i] =
Lli — 1], so f(i) = f(i —1). In this case, we consider that the interval
[f(i), f(i —1)) is empty and it can be deleted.

Example 16. Figure 4.5 shows the same example as Figure 4.3 with an
information flow graph corresponding to a regenerating code with rl = 1,
r2=2,r =4 and ny = ny = 3, but taking k = 3 instead of k = 4. If for
example T = 2, we have that I = {50e,30}, I = {36.} and I3 = {45.}. By
Proposition 3, since 3, I[i] < S0 Is]i], I = LUy = {58, 30, 3B}, and
then L = [3,3,5]. The corresponding mincut equation is (4.2) and applying
L to the threshold function (4.4), we obtain

T Be € [&, +00)

a(B)=q ¥ Bee i) (4.9)

M — 6B, B.e[iE .

117

Note that the second interval is empty and it can be deleted.

Finally, note that when k& < r!+1, the mincut equations and the threshold
function (4.4) for the rack model are exactly the same as the ones shown in
[AKG10] for the model described in Subsection 2.5.5. Actually, it can be

seen that 7! of the rack model is equivalent to 7. of the static cost model.
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Figure 4.6: Tradeoff curve for the rack model with M = 1, k = 10, r! = 5,
r2=6,r=11,n, =ny =6 and 7 = 2.

Indeed, it can be seen that when k& < r! + 1, the rack model and the static
cost model have the same behavior because I = I;.

4.1.1 MSR and MBR points

The threshold function (4.4) leads to a tradeoff curve between « and (.. Note
that, like in the static cost model, since there is a different repair bandwidth
~! and 4?2 for each rack, this curve is based on f3, instead of ! and ~2.

At the MSR point, the amount of stored data per node is aysr = M/k.

Moreover, at this point, the minimum value of g, is S, = f(0) = %, which
leads to
1 1 2 2
1 (rom+1 )M 9 (rém +r2)M
— e T e d _ Vel TTe) W
fyMSR L[O]kf an fYMSR L[O]k

On the other hand, at the MBR point, as f(i) is a decreasing function, the
parameter [, which leads to the minimum repair bandwidths is g, = f(|L| —

_ M .
1) = L[L1}(k|L|+1)+g(L1)'1\;?[1'(2?’1?}16 corresponding amount of stored data

per node is QrprR = GoIELIL-Ta0L-T)

and the repair bandwidths are

(re7 +re)M

1
p— d
TMBR = L = 1)k — [L[+ )+ g(L[—1) ™"

L (r’r +rH)M
MR T LIL = 1)k = [E[+ D + g([L[ = 1)
Figure 4.6 shows the tradeoff curve for a rack model with M =1, k = 10,
rl=51r2=6,r=11,n, = ny, = 6 and 7 = 2. The MSR point is the one
with minimum « while the MBR, point is the one with minimum /..
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4.1.2 Non-feasible situation

As we have seen, the threshold function (4.4) is subject to v* = (rlr+r!)g, >
a.

Proposition 4. If the inequality v* > « is achieved, then max(L) = ,[0]/ ..

Proof: Since L is an increasing ordered list, for ¢ = 0,...,k — 1,
max(L) = L[k — 1]. As I;[0] is the income of the first newcomer, then
1[0)/8. = rlr +rl € L. Actually, L is constructed from all elements in [
and I; C I, by Proposition 3.

If v > a, then taking 8, = f(k — 1) in Theorem 26, we have that
Y= (rlr+rHs. = (rlr + 1 )f(k —1) > M —g(k—1)f(k—1). After
t (%;ETL)H = g‘ig;_&l%} sorer e 2 Lk = 1)
Since I,[0]/B. =rlr+rl € L and max(L) = Lk — 1], rlr+rl = L[k —1] =
11[0]/ . O

Since any NDSS satisfies that 4! > «, we have that max(L) = I,[0]/8,,
by Proposition 4. In order to have this situation, we can use two different

some operations, we obtain tha

approaches. If we allow a non-homogeneous system, then, it is possible to
define a different « for each rack as it is shown in [PYGP13|. However, this
dissertation is based on a homogeneous behavior for «, so we need to remove
from L any value L[i] such that L[i] > [,[0]/B,, i =0,..., k — 1. After that,
we can assume that L[|L| — 1] = [1[0]/f5.. In terms of the tradeoff curve, this
means that there is no point in the curve that outperforms the MBR point.

Example 17. In order to illustrate this situation, we can consider the ez-
ample of a regenerating code with k = 3, vl =1, r2 =4, r =6, n; = 2
and noy = 5, and the information flow graph given in Figure 4.7. Taking
T = 2, the incomes of the newcomers s,.1, Sp1o and s,.3 are 7P, 5P and
8., respectively. Actually, we have that I = Iy U I, where Iy = {75,508}
and Iy = {8f8.}. Then, L = [5,7,8], so max (L) =8 > I[0]/B. = 7. Applying
L to the threshold function (4.4), the resulting minimization of o and B, is

y, Be € [#,+00)
)

M - 12ﬁe> Be [ )

Note that considering the last interval, we have that for . = f(k—1) =
2. ampr = 355 and Vi = (rir +rl)f(k — 1) = ZX. Applied to the

a(B) =4 HF Be € 15

Gl=

)

wl

oli
=S

9
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Figure 4.7: Information flow graph with k¥ = 3, n; = 2, np = 5, r! = 1,
r2 =4 and r = 6.

information flow graph, we obtain that mincut(S, DC') = % + % + % =M
which is true. However, since aypr > Virgr, it gives a non-feasible situation
for a distributed storage scheme. Note also that if we delete this non-feasible
interval, then Vi pp = % and oy pr = % which corresponds to the MBR
point because Yi;pr = QM BR-

It is important to note that more than one element from I can be greater
than any element from I, which will result in more impossible intervals. In
conclusion, any value from [ greater than the greatest value from I;, must
be deleted because otherwise it would lead to a non-feasible situation.

4.1.3 Case 13, > r’73.

In this case, the mincut equation has a decreasing behavior as i increases
for e =0,...,k — 1. Therefore, it is possible to define an injective function
with a decreasing behavior, which will be used to determine the intervals of
the threshold function. Basically, it is possible to use the same procedure
shown in [AKG10] and [DGWR10] to find the threshold function. Moreover,
it can be seen that the set of incomes which minimize the mincut is always
the same, it does not depend on any parameter.

It is easy to see that if '8, > r?73, and k < r!+1, the mincut equations
(and so the threshold functions) corresponding to the model explained in this
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section and the model explained in Subsection 2.5.5 are exactly the same.
Therefore, we will focus on the situation that r!8, > 278, and k > r! + 1.
Note that this is in fact a particular case of the general threshold function
(4.4), where it is possible to create a decreasing function for any feasible 4,
and then find the threshold function giving more details.

Theorem 27. When r! > r2r and k > r!+ 1, the threshold function a*(5,)
(which also depends on r, r}, r? k and 7) is the following:

[ %, B. € [£1(0), +00)
Mol B € [fi@), fili — 1))
i=1,...k—rl—2
Oé*(ﬁe) = Mfgl(kkfjffl)ﬂ-ﬁe’ 66 c [fg(k . T; _ 1)’ (410)

filk =g = 2))

M—g1(k—r§—1)T£efgz(i—k+ri+1)ﬁe B. € [f2(D), foi — 1))
i=k—rl .. k—1,

where »
(i) = %(27« — 2k +i+1),
(i) = %(27»; -
: 2M
hi) = T(2k(r — k) + (i + 1)(2k —4))’ and
fa(4) 2M

Tl 2kl — 7 (i(i — 2k + 1)+ 2(k —k — kr 4+l +rirD))’

Note that f1(i) and f5(i), i = 0,...,k—1, are decreasing functions, and g, (i)
and go(i), i = 1,...,k — 1, are increasing functions.

Proof: Note that r! = 72 + 1 and 72 = r! + 1. We consider the
mincut equation (4.3) of the rack model, since if ! > r27 then we have that
I = I, U I3, by Proposition 3. In other words, the n; — r! — 1 remaining
newcomers from W1 are not in the set of newcomers which minimizes the
mincut. Assume that & <7 = rl+r! because if r < k, requiring any r storage
nodes to have a flow of M will lead to the same condition as requiring any
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k storage nodes to have a flow of M [DGWR10]. We want to obtain the
threshold function which minimizes «, that is,

a*(fe) = mina
subject to: Z;io min(rlB, + 718, — iBe, a)+ (4.11)
S 11+1 min((r! +r! —i)B,,a) > M.

Therefore, we are going to show the optimization of (4.11) which leads to
(4.10).

Applying that 5. = 75., we can define the minimum M as M*, so

1

k—1
me rit+rl —it)B, ) + Z min((r, +r; — )70, a).

=0 i=rl4+1

In order to change the order of the above summation, we define
b(il,’iQ) :7’2 +7’; —k+ 1—|—Z1 +’i2’7’.

Note that M* is a piecewise linear function of a. The minimum value of
{(rlr+rl—ir)Be i=0,..., 73 U{(rt+rl—i)rB. | i=rl+1,.. . k—1}is
When 1=k—1 Therefore if o is less than this value, then M* = ka. Since
rl = 7241 and 72 = r' 41 the lowest value of {(rl7+r!—it)B. | i =0,... 7]
which is r!3., is higher than or equal to the highest value of {(r! + r! —
)P | i =rl+1,...,k — 1}, which is (r! — 1)78.. This means that as
« increases, the term (r! + r! — )73, is added more times in M* while
i=k—1,...,rl. When i =r! ... 0, the term (r'7 +r! —i7)3, is added
more times in M™.



68

ko,
(k —d)a+ Y70 b(4,0)7 5,

(rl+a+ b “2p(4,0)7 8.,

(k —i)or+ Z “b(j, 0) B+

SR bk — 1l —1,5)B..

el .
Z?:OC ’ b(]a O)Tﬂe+
Z;:O b(k - ’I“é - 17j)6€a

0=

Chapter 4. Two-rack model

€ [0,6(0,0)75,]
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a€ (b(k—rl—1,r13., 00).

(4.12)

Using that M > M*, we can minimize o depending on M. Note that the

last term of (4.12) does not affect in the minimization of «a, so it is ignored.
Therefore, we obtain the function

where A(i) = 76(b(4,
1,¢—k+r;+1)(k—¢—1)+zj:0

(M
k

9

M*Z;;% b(j70)7—56
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M—=32324b(3,0)7Be
k—1 ’

M3 2 41,0y B TE T b(k—ri—1,9)Be

M € [0, kb(0,0)70,]
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M € (A(i — 1), B(3)]
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\

0)(k —2—1)+Z] —o0(J,0)) and B(i) = S (b(k
b(3,

, M e (B(i—1), B(i)]
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From the definition of b(iy, is),

i—1

> b(5,0) = %(27« —2k+i+1) = (i),

=0

[y

11—

bk =1t = 1,j) = 5(2rt +7i = 7) = g0,

Il
o

J

| » o 2M M
7((k — i — 1)b(i,0) + ;Ob(J, 0= G0 =) ~ A

and
k—rl_2 i—k+rltl M
b(k—ri=1,i—k+ri+1)(k—i—1)+ > b(G.0)m+ Y blk—ri-1,j) = X0}
i=0 . -

The function (4.13) for a* can be defined over f, instead of over M, and
then function (4.10) follows. O

4.2 General rack model

Let m > 2 be the number of racks of a distributed storage system. Let n;,
j=1,...,m, be the number of storage nodes in the j-th rack. Let r/ be the
number of helper nodes providing cheap bandwidth and r/ be the number
of helper nodes providing expensive bandwidth to any newcomer in the j-th
rack. We assume that the total number of helper nodes r is fixed, so it is
satisfied that » = 74 + 7/ for j = 1,...,m. Moreover, it can be seen that
rl =30 .2;(ri +1). Let the racks be increasingly ordered by number of
cheap bandwidth nodes, so ¢ < j if and only if ! < /. First, we consider
the case when r = n — 1, and then the general case, that is, when r <n —1

4.2.1 Whenr=n-1

In this case, we impose that any available node in the system is a helper
node, that is, r = n — 1. If one node fails in the j-th rack, 74 = n; — 1
nodes from the same rack and 7 = n — n; nodes from other racks help in
the regeneration process.
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The indexed multiset I containing the incomes of the k£ newcomers which
minimize the mincut is

m j—1
I=UU@l=ir+rl=3 (ri=j+1)B [i =0, min(rl k- ZT—
J=1 z=1

(4.14)
where Z _,; 2 = 0 for any value x. Therefore, the resulting mincut equation
is S ) min(I[i], ) > M.

Finally, the threshold function (4.4) can be applied, so a and . can be
minimized. Note that the set of £k newcomers which minimize the mincut is
fixed independently of 7, so there is only one candidate set to be the minimum
mincut set.

4.2.2 Whenr<n-1

In this case, there may exist nodes in the system that, after a node failure,
do not help in the regeneration process. These kind of systems introduce the
difficulty of finding the minimum mincut set in the information flow graph.
Note that in the two-rack model, after including the first r!+1 nodes from the
first rack, we need to known whether the remaining n; — r! — 1 are included
in the minimum mincut set or not. In order to solve this point, we create
two candidate sets to be the minimum mincut set, one with these nodes and
another one without them.

Define the indexed multiset I" = 7", {((r] — )7 + ] — SYTIrE— g+
DB | i =0,....,7} UL, where ' = {(r] =S/ 1r2 —j+1)B. | i =
1,...,n; —rJ—1} contains the incomes of the remaining n; —rJ—1 newcomers
once the first rJ + 1 storage nodes have already been replaced. Note that I’
represents the incomes of all the n newcomers. Also note that in the m-th
rack, (r™ — 3" "2 —m+41)B, = 0, and that Subsection 4.2.1 describes the
particular case When nj—ri—1=0forall j=1,...,m.

We say that a rack is involved in the minimum mincut if at least one of its
nodes is in a candidate set to be the minimum mincut set. The involved racks
are always the first m’ racks, where m’ is the minimum number such that
Z;nz/l(rz + 1) > k. Since the newcomers corresponding to the incomes from
I™ are never included in the minimum mincut set, the number of candidate
sets to be the minimum mincut set is 2™ ~'. However, as the goal is to find
the set having the minimum sum of its corresponding incomes, it is possible
to design a linear algorithm with complexity O(m’—1) to solve this problem.
This algorithm is described in the next paragraph.
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Forall j =1,...,m' — 1, if S50 I'li] > S.¥0(I' — I9)[i], where I' — I/
means removing the elements of I7 inside I’, the new I’ becomes I' — I7. This
process is repeated for every j. Finally, after m’ — 1 comparisons, we obtain
that I = I’. Then, we can assure that I contains the incomes of the minimum
mincut set of newcomers. Once [ is found, we can define L as in the two-rack

model and apply the threshold function (4.4) in order to minimize « and /.

Example 18. Let the number of racks be m = 3 withn; = 3, no =4, ng = 4
and k = 7. Let the number of helper nodes for any newcomer be r = 8 with
rl=1,r2=2andr® =3, sowithr! =7, r2 =6 and r> = 5. Note that
rl <r? <3, The information flow graph corresponding to these parameters
is shown in Figure 4.8.

Since m’ = 3, the three racks are involved in the minimum mincut and

the incomes in I depend on whether the sets I' and I? are included or not:

o Including I' and I?: I«El,Z} = {(7 + 7)Be, TBe, 7B, (2T + 4)Be, (T +
4)Be, 486,48}

o Including I' but not I*: Iy = {7+ 7)Be, TBe, 7Be, (27 + 4)Be, (T +
4)Be; 4Be, 3TBe}-

o Including I? but not I': toy = LT +T7)Be, TBe, (27 +4) Be, (T+4) Be, 4P,
4B ;37 }.

o Excluding I' and I?: Iy = {(7+7)Be, TBe, (27+4) e, (T+4) Be, 45, 3T e,
276.}.

Then, if for example T = 2.2, the sum of the elements of the above multisets
are 45.805., 48.40,, 45.403. and 45.80., respectively. So I = [iz} contains the
incomes corresponding to the minimum mincut set.

We can obtain the same result by using the algorithm proposed in this
section, that s, following these steps:

1. Create I' = {(7+7)Be, T8ec, TBe, (27 +4) Be, (T+4) Be, 45, 45 37 Be, 27 e,
Tfe,0}.

2. Create I' = {78,}. Since S0 I'li] = 45.88. > S0 (I’ — IV)[i] =
45.40., the new I' becomes I' = I' — I' = I (9.

3. Create I? = {48.}. Since S0 I'li] = 4546, < S0 (I' — I?)[i] =
45.80., I = I' = I{, and Y27 I[i] = 45.40,.
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Figure 4.9: Chart comparing the rack model with the static cost model for
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Figure 4.10: Chart showing the tradeoff curves between o and (. for M =1,
k=10,r!=5,r2=6,r =11 and n; = ny = 6, so with & > r! + 1.

4.3 Analysis

When 7 = 1, we have that 8. = ., so 7/ = v = rf3, for any j. This situation
corresponds to the case when the three models shown in Subsections 2.5.3,
2.5.5 and Section 4.2 coincide in terms of the threshold function, since we
can assume that 8, = 3, = 8. When 7 > 1 and k < r! + 1, the rack model
coincides with the static cost model described in Subsection 2.5.5.

In order to compare the rack model with the static cost model when
7> 1and k> r! + 1, it is enough to consider the case m = 2. Moreover, it
only makes sense to consider the equation C}. = S.(C.rlr + C.rl). Using
the definitions given for the static cost model and the rack model, note
that r. = r! and 7. = r!. When comparing both models using C%, all
the parameters are the same except for 5, = f(i) = m Now, we
are going to prove that the resulting L will always be greater in the rack
model, so both 3. and C} will be less.

Assume that the incomes are in terms of I. For the static cost model,
I={((rl=d7+rH)B. |i=0,... .7 JU{(r!=i)B. | i=1,...,k—rl—1}. Note
that {(rl=)B. |i=1,... k—rl=1} ={(r?=)B. |i=0,...,k—rl—2}. In
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1 2 3 4
Be ’1072

Figure 4.11: Chart showing the repair cost in the rack model for M = 1,
k=5r=51r>=6,d=11,n =ny =6, C. =1 and C, = 10. The points
correspond to the k = 5 values given by f(i), i =0,...,4.

this case, both models are equal for the first r! 4+ 1 newcomers, and different
for the remaining k — r! — 1 newcomers. If I = I; U I3 for the rack model,
the incomes of the remaining k¥ — r! — 1 newcomers from the second rack are
(r> — i)73., which are greater than (r? —4)3. of the static cost model. If
I = I, U I, it can also be seen that r!8, > (r! —i)3,. Finally, we can say
that the repair cost in the rack model is less than the repair cost in the static
cost model.

The comparison between both, the rack model and the static model, is
shown in Figure 4.9 when M =1,k = 10,7l =5,72=6,r =11, n1 =ny =6
and 7 = 2. It can be seen that the curve of the rack model is below the curve
of the static model, which means that the rack model requires less stored data
per node « and less expensive repair bandwidth 5, than the static model.
As (. is decreased in the rack model, this means that the repair cost is going
to be less in the rack model than in the static model.

The decreasing behavior of 5. as 7 increases is shown in Figure 4.10 by
giving several tradeoff curves for different values of 7. As we have said, if [,
is decreased, the repair cost is also decreased. This fact is shown in Figure
4.11, where it can be seen that the repair cost decreases as 7 increases.
Summarizing, when 7 is increased, (. decreases which also decreases the
repair cost.
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Conclusions

The information age is the current period in human history where there is
a shift from traditional industry to an economy based on information com-
puterization. In this new era, the amount of digital data is increasing ex-
ponentially each year and the physical place where this data is stored and
treated is no longer defined by the users or authors of such data [Hi011|. The
computer cloud is a perfect example of this context.

Despite the fact that stored data can be accessed by users from the In-
ternet as if by magic, the companies or organizations in charge of it must
assure its security and its persistence. The data is usually stored in a Net-
work Distributed Storage System (NDSS), a system composed of multiple
independent storage nodes. However, the cost of maintaining those NDSS
not only in terms of money, but also in terms of space or ecological cost, is
high and must be addressed.

In this dissertation, we assume that the amount of data stored in a NDSS
is minimized by using coding theory, a well known mathematical art used
for data transmission. The increasing use of coding theory techniques in
the current storage systems, by some of the most influential companies like
Facebook or Google, is a clear example of such advantage. However, coding
theory is not focused on solving some of the problems that NDSS introduces.

Firstly, we have explained the current state of the art of codes applied
to NDSS. We have seen some of the most important coding theory concepts
and parameters, and we have shown the advantages and problems of using
codes in a NDSS. It is clear that the use of codes in NDSS has some huge ad-
vantages, specially regarding the minimization of the redundancy needed to
assure the persistence of the stored data. However, coding theory techniques
also introduce some problems, like the extra amount of bandwidth needed to

75
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regenerate a failed node (repair problem) or data insertion, among others.

In this dissertation, we have seen that there are two different approaches
to address the repair problem. On the one hand, the codes designed for NDSS
which address the repair problem by increasing the locality of the coordinates
stored in the storage nodes. This kind of codes not only decrease the repair
bandwidth, but also the repair degree which is the number of other storage
nodes needed to regenerate a failed one. However, they do that at the cost
of decreasing the fault tolerance of the system, so the persistence of the data
is reduced.

On the other hand, the regenerating codes address the repair problem by
using network coding techniques. The regenerating codes treat the codes as
a black box and use network coding to decrease the repair bandwidth. In this
case, the fault tolerance is maintained at the cost of some extra computational
complexity in the storage nodes. This dissertation is based on regenerating
codes.

In real environments like a data center or a P2P system, the computa-
tional cost introduced by the use of regenerating codes is a big issue that
must be addressed. If regenerating codes are used, the cost of doing linear
combinations in both the helper nodes and the newcomers is a real prob-
lem. This is because most of the storage nodes are composed of storage de-
vices without computational resources. Moreover, it is also important from
a practical point of view that the repair used is exact which complicates the
problem. It has been proven in [HLS13|, that it is impossible to achieve an
exact repair-by-transfer (an exact repair without linear combinations) when
the regenerating code has the minimum storage overhead.

5.1 Main Results

In the first contribution, we construct a family of low complexity flexible
regenerating codes using quasi-cyclic codes, where a specific set of helper
nodes is used to repair a storage node failure. The first construction is
designed to minimize the storage per node, the resulting codes are called
quasi-cyclic flexible minimum storage regenerating (QCFMSR) codes. We
provide an exact repair solution for all parameters achieving » = k 4+ 1 and
n = 2k. This construction is minimum according to the MSR point in the
fundamental tradeoff curve. Moreover, QCFMSR codes have a very simple
regenerating algorithm that approaches to the repair-by-transfer property.
In our solution, the helper nodes do not need to do any linear combination
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among their symbols. The only linear combination is done in the newcomer
to obtain the symbols the first time that it enters into the system. As far as
we are concerned, this is the first construction achieving this repair simplicity
for the MSR point. We also claim that such codes exist with high probability.
Moreover, it is shown in [SRKR10| and [SRKR11] that when r < 2k—3, exact
MSR codes do not exist. However, QCFMSR codes exist for r = k+ 1 which
satisfies r < 2k — 3 for k > 4. These facts illustrate the importance of the
flexibility over the set of helper nodes in this construction.

From a corporate point of view, it is interesting to have codes with
high rates, since these are the ones desired for actual data centers. De-
spite there are constructions with an equal [TWB11] or a higher [PD11] rate
than QCFMSR codes, their other properties (uncoded repair at the helper
nodes, low decoding and repairing complexity, good rate, low repair degree
r =k + 1 and exact repair) makes them very interesting.

The second construction is designed to minimize the repair bandwidth,
the resulting codes are called quasi-cyclic flexible regenerating codes with
minimum bandwidth. To construct them, we use a technique shown in [RR10]
and [SRKR12| which provide minimum bandwidth codes from existing MSR
codes using graphs. We analyze and prove this construction giving bounds on
the parameters of these codes. This construction gives the minimum possible
bandwidth v = « achieved by an specific set of helper nodes and it has the
repair-by-transfer property. Finally, we show that QCFMSR codes can be
used as base codes to construct quasi-cyclic flexible regenerating codes with
minimum bandwidth. We provide the conditions needed on the parameters
{n,k,d,n,k,7} for both cases, when k <7+ 1 and k > 7 + 1.

The second contribution is the design of a new mathematical model used
to represent a data center, where the storage nodes are placed in racks. In
this new model, the cost of downloading data units from nodes in different
racks is introduced. That is, the cost of downloading data units from nodes
located in the same rack is much lower than the cost of downloading data
units from nodes located in a different rack. The rack model is an approach
to a more realistic distributed storage environment like the ones used in
companies dedicated to the task of storing information.

Firstly, the rack model is deeply analyzed in the case that there are two
racks. The differences between this model and previous models are shown.
Due to it is a less simplified model compared to the ones presented previ-
ously, the rack model introduces more difficulties in order to be analyzed.
The main contribution in this case, is the generalization of the process to
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find the threshold function of a distributed storage system. This new gener-
alized threshold function fits in the previous models and allows to represent
the information flow graphs considering different repair costs. We have also
provided the tradeoff curve between the repair bandwidth and the amount
of stored data per node and we have compared it with the ones found in
previous models. We have analyzed the repair cost of this new model, and
we can conclude that the rack model outperforms previous models in terms
of repair cost.

Finally, we have also studied the general rack model where there are
m > 2 racks. This generalization represents two main contributions: the
making of a model of a distributed storage system using any number of
racks, and the description of the algorithm to find the minimum mincut set of
newcomers (which is a new problem compared to the previous models). Once
the minimum mincut set is found, we can apply the generalized threshold
function which shows the minimum tradeoff between the amount of stored
data per node and the repair bandwidth needed to regenerate a failed node.

5.2 Further Research

From the point of view of the rack model, it is for further research the case
where there are three different costs: one for nodes within the same rack,
another for nodes within different racks but in the same data center, and a
third one for nodes within different data centers. It would also be important
to give some constructions that achieve the optimal bounds. Constructing
such regenerating codes is not trivial and we don’t know if it is possible.
However, the bounds and optimal tradeoff given in this dissertation is an
initial step to provide a comparison point for further research on this field.
It is also interesting to study locally repairable codes within a rack. The rack
model provides some conceptual locality given by each rack and each data
center, so it can be interesting to see how LRC performs in these kind of
environments. In our opinion, LRC is probably the most natural solution to
the problem of applying coding theory to racks. However, our dissertation
can be also interesting for LRC, because there are no bounds on the efficiency
of codes in terms of repair bandwidth neither in terms of fault tolerance for
LRC. This dissertation is an initial step in designing LRC for racks and
comparing them with the provided optimal tradeoff.

In general, we have focused on solving the problem of coding theory in
real NDSS. From a big picture point of view, a lot of work can still be
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done. Computational complexity is a problem which is not usually addressed
by researchers but which achieves a high importance. Moreover, we have
theoretical limits to the efficiency of the repair and reconstruction in NDSS
that can be broken by using new models which adopt the specific topology
of the NDSS. For example, we have seen that by using the rack model or the
flexible regenerating codes, the theoretical bounds given in [DGWRI10] can
be supersede.

Another interesting and unaddressed problem is the introduction of the
file context. In this moment, the research on NDSS is based on the assump-
tion that the file is a black box of bits. However, compression techniques that
use the context of the files achieve higher compression rates than general com-
pression techniques. Designing a NDSS using coding and compression could
be an interesting abstraction to provide a different point of view. Conceptu-
ally, if the context of the file is added, we should be able to provide a better
compression rate, which means that the stored data can be reduced.

There are other codes that could be used in NDSS apart from LRC or
regenerating codes. Convolutional codes have some interesting locality prop-
erties, since each redundancy symbol can be composed of a small set of other
symbols. This property can reduce the repair degree of the NDSS. Moreover,
if some memory is used in the convolutional code, each coordinate might have
multiple repair alternatives. From this perspective, other codes like LDPC
may also be interesting. LDPC have the desired property of containing a
lot of zeros in their parity check matrix. This means that the words of the
dual have low weight and low repair degree which leads to a high locality.
Moreover its decoding algorithm is simple which reduces the computation
complexity needed to reconstruct a file.
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