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Introduction

Let me start this introduction with a question: what the hell
is a hadron? This question was already formulated for the first
time around 1964 when Murray Gell-Mann and George Zweig
proposed, independently, that all hadrons are formed by ele-
mentary particles, which Gell-Mann named quarks. According
to the quark model, every hadron could be either composed of
three quarks, which is called baryon, or by a quark-antiquark
pair, such hadron is called meson. Keeping this idea in mind,
it was just a matter of time to build up the different baryons
and mesons observed in Nature (for an elementary introduction
see [1]). All one needed was to write all the possible combina-~
tions of three quarks or quark-antiquark pairs as a function of
their charge and strangeness. Excitations of these quarks from
the ground state to different high energy levels would gener-
ate more hadrons with a relatively short lifetime and which are
called resonance. However, the quark model suffers one pro-
found embarrassment: nobody has ever observed an individual
quark! The quark model solved this problem by introducing
the concept of quark confinement: the quarks in the baryons
and mesons are absolutely confined, therefore, it does not mat-
ter what you do, you will never be able to get them out of
the hadron. But even if all the quarks are confined inside the

15



16 Introduction

hadrons, this does not imply that they are inaccessible for ex-
perimental purposes. One can study the inner structure of a
proton in a way similar to the one in which Rutherford inves-
tigated the structure of an atom, i.e, by firing something into
it. Another way of confirming the existence and the confine-
ment of the quarks is through the study of the eTe™ annihila-
tion. When an e™ collides with an e~ a quark-antiquark pair
is produced. For a brief moment of time the quarks “fly” apart
as free particles, but when they reach a separation distance of
about 1fm (the diameter of a hadron) their interaction is so
strong that it decelerates the quarks. The decelerated quarks
emit new quark-antiquark pair(s) which form hadrons just as a
decelerated charged particle emits photons via Bremsstrahlung.
In all this process there is an unmistakable footprint left behind
by the original quark-antiquark pair: the new quark-antiquark
pair(s) emerge in opposite directions in order to conserve the
momentum, therefore, the observed hadrons are produced in
two “jets”, one along the direction of the primordial quarks,
and the other marking the direction of the antiquarks [1].

However, it seems that Nature is more complicated than
this and the picture in which all the hadrons can be understood
as three quarks or a quark-antiquark pair is too simple to de-
scribe the properties of all the known hadrons. For example, the
lowest excited state found of the nucleon is the N*(1440). How-
ever, in a three-quark model for a baryon, the state N*(1535)
should be expected to be the first excitation of the nucleon,
with a radial excitation of a quark. From the kinematical point
of view, this implies providing an energy of around 600 MeV
to one of the three quarks in the nucleon in order to excite it
to a higher energy level to get the N*(1535). This energy is
sufficient to create, for example, a pion or two pions or an eta
meson. Thus, if one tries to excite a quark to an energy level
which is 600 MeV far from the ground state, before that hap-
pens, by analogy to the collision between an e™ and an e™, a
pair quark-antiquark will be created in form of a meson, for
example, a pion. Then it seems plausible to think that the in-
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teraction between a pion/two pions/an eta and a nucleon can
be more important for the description of the properties of the
N*(1535) than its possible three-quark structure, of course, if
the interaction amongst hadrons is attractive in Nature.

Obviously, this does not mean that if one has to construct
a wave function for the N*(1535) only the pion-nucleon com-
ponent will be present. The wave function, for instance, must
contain a three quark seed, but each of the components, three
quarks, meson-baryon, etc., will have a different weight. Var-
ious investigations show that the properties of the N*(1535)
can be understood by taking into account only the part of its
wave function which is related to the meson-baryon component,
which means that the other possible constituents, like, for ex-
ample, three quarks, are much less important for the description
of its properties. Thus, the N*(1535) can be considered mainly
as a kind of 7N “molecular” state. Such “molecular” states, in
which the weight of the meson-baryon component in the wave
function overcomes the rest, are called dynamically generated
resonances, since they appear as poles in the scattering matrix
due to the interaction of the mesons and baryons.

Therefore, a theory which uses the hadrons as degrees of free-
dom instead of quarks can be more reliable to understand the
properties of some of the mesons and baryons found in Nature.
This situation is in fact far more expected when ones studies
interactions of hadrons in a low and an intermediate energy re-
gion. Here, due to the inherent confinement of the quarks, the
quarks can not be considered as the asymptotic states of the
theory. In the recent past, Chiral Perturbation Theory (xPT)
has emerged as an appropriate formalism to deal with hadrons
at low and intermediate energies. xPT describes the interac-
tion between hadrons by taking them as the building blocks
of the theory and by incorporating them into a series of effec-
tive Lagrangians in an expansion in powers of momenta. The
expansion scale is of the order of 1 GeV, which implies that
the series is valid for momenta smaller than 1 GeV. This the-
ory, however has two basic limitations: the first one is that its
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range of convergence is just a few hundreds of MeV, which cor-
responds to the energy region where the first meson resonances
appear. This implies the presence of the corresponding poles
in the scattering amplitude and an expansion in a power series
can not reproduce a pole; the second one is that the number of
free parameters increases tremendously with the increase in the
order of the expansion in momenta. Thus, the theory loses its
predictive power.

In the last years, non-perturbative unitarity techniques based
on chiral Lagrangians have been developed to extend the vali-
dation range of the chiral theories up to energies of the order
of 2 GeV. These unitarity extensions of the yPT have been
applied to the study of different two-body meson-baryon and
meson-meson systems, for example, KN, 7%, 7A, =N, mw, KK,
7, etc., and dynamical generation of many baryon and me-
son resonances in these systems has been found, for instance,
the A(1405), A(1520), N*(1535), etc., in the baryon sector and
the f0(980), ao(980), o(600), etc., in the meson sector [2-20].
It has also been found that all these states contain important
meson-baryon and meson-meson components, respectively, in
their wave functions, which play an important role in the de-
scription of their physical properties [21].

Since the interaction in such two-body systems is strongly
attractive, it seems plausible to anticipate that the addition
of one more meson or baryon could lead to the generation of
new states in which case the interaction of the three particles
could be determinant in understanding some of the experimen-
tal findings. This mean that there could exist some hadrons
having, dominantly, a three-body structure. The properties of
such hadrons would not be easily understood if their three-body
structure is ignored. In fact, in the S = —1 baryonic sector,
there exist A and X resonances with poor or controversial sta-
tus, e.g., X(1560), 3(1580), ¥(1620), etc., [22]. Also some of
these seem to remain unexplained in terms of two-body dynam-
ics, e.g., a study of the K~ p — 7%7YA reaction in a coupled
channel approach [16] involving 7¥(1385), K=(1530), KN and
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7% channels, and where the A(1520) gets dynamically gener-
ated, provides an explanation for the bulk of the data [23], but
fails to explain a bump in the A(1600) region. Further, in [24]
the excitation of the 3(1660) has been indicated in the data on
the K~p — m979%° reaction. These findings naturally demand
a study of three-body system(s) such as 77X, nwA, etc. There
are many more hadron resonances which strongly suggest that
their three-body structure should be explored for a clear un-
derstanding of their characteristics and that it is this missing
information which has created a confusion about the properties
of these resonances. We shall discuss some examples of such
states in detail below.

In the S = 0 baryonic sector, the excited states of the nu-
cleon have been studied extensively theoretically as well as ex-
perimentally. This is evident from the fact that many of these
states, especially those in the energy region below 1750 MeV,
have been assigned either three or four stars by the particle
data group (PDG) [22]. Even then, there are some resonances
in this low energy region which still need unanimous agreement
on their characteristics or existence, e.g., the J™ = 1/2% res-
onances in the isospin 1/2 domain. The N*(1440) or Roper
resonance is a subject of continuous debate and the existence of
the N*(1710) is even questioned. The quark models face diffi-
culties in reproducing both these states [25-27]. In case of the
N*(1710), some partial wave analyses [28,29] do not find any
pole corresponding to it, while others claim a clear manifesta-
tion of this resonance [30-33]. On the other hand, the authors
of [34] claim an undisputable existence of the N*(1710) from
their study of the 7N — nN reaction in the coupled channel
formalism and suggest that the status of this resonance should
be upgraded from three-star to four-star.

Another controversy about the N*(1710) started after the
finding of a narrow peak in the yA — (K™n)X reaction at
LEPS [35], suggesting the existence of a pentaquark state which
some groups associated to a SU(3) antidecuplet to which the
N*(1710) would also belong (see, for example, [36,37]). In or-
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der to be compatible with the ©T, the N*(1710) is required to
be narrow. However, the width of this resonance is not known
precisely, but the widths listed in [22] for it rang from ~ 90 - 480
MeV. The authors of [38] reanalyzed the TN — KA reaction
and found that a narrow width of the N*(1710) [22] was in-
compatible with the data and proposed the existence of another
narrow resonance in this energy region. The partial wave anal-
yses group who do not find a pole for the N*(1710) suggested
to look for another resonance in this energy region as a possible
narrow, non-strange partner of the 0% [39,40]. The debate on
this issue has continued with new analyses which do not find a
signal for the 0™, as a consequence of which, the case for this
state has weakened (see [41] for a review).

In the case of the Roper resonance, which is the lowest ex-
cited state of the nucleon and, hence, in the simplest quark
model should be expected to be a 3-quark state with a radial
excitation of a quark, alternative descriptions, like a 3-quark-
gluon structure [42], a quark core dressed by meson clouds [43],
a dynamically generated resonance from interaction of mesons
and a baryon [44], etc., are posed in order to reproduce its prop-
erties.

Looking at the characteristics of both these 1/2% resonances
in [22], i.e., a large branching ratio for the 77N decay channel,
(~ 30-40 % for the N*(1440) and 40-90 % for the N*(1710)),
it seems that they couple strongly to two meson-one baryon
systems. There are many findings which support this idea, e.g.,
astrong o N coupling to the Roper resonance reported in [44,45],
an important contribution from the two meson cloud to the
masses of the SU(3) antidecuplet members found in [21], and
a good reproduction of the data on the 7 distribution in the
7~ p — K931 reaction by taking the 77N decay channel of the
N*(1710) into account [46]. Hence, it looks like a study of the
three-body structure of these resonances could shed more light
on their properties.

In the meson sector there are also several states which could
be possible candidates for three-body resonances. For example,
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the X (2175). The discovery of the X(2175) 17~ resonance in
ete™ — ¢fp(980) with initial state radiation at BABAR [47,48],
also confirmed at BES in J/U — n¢ f((980) [49], has stimulated
research around its nontrivial nature in terms of quark compo-
nents. The possibility of it being a tetraquark s§ss is inves-
tigated within QCD sum rules in [50], and as a gluon hybrid
s8¢ state has been discussed in [51,52]. A recent review on this
issue can be seen in [53], where the basic problem of the ex-
pected large decay widths into two mesons of the states of these
models, contrary to what is experimentally observed, is dis-
cussed. The basic data available on this resonance from [47,48]
are Mx = 2175+10 MeV and I' = 58 16 + 20 MeV, which are
consistent with the numbers quoted by BES Mx = 2186+10+6
MeV and I' = 65 + 25 £ 17 MeV. In Ref. [48] an indication of
this resonance is seen as an increase of the K™K~ K™K~ cross
section around 2150 MeV. A detailed theoretical study of the
ete™ — ¢f0(980) reaction was done in Ref. [54] by means of
loop diagrams involving kaons and K*, using chiral amplitudes
for the K K — 7 channel which contains the f3(980) pole gen-
erated dynamically by the theory. The study revealed that the
loop mechanisms reproduced the background but failed to pro-
duce the peak around 2175 MeV, thus reinforcing the claims
for a new resonance around this mass. In the chiral models the
f0(980) gets dynamically generated in the 77 and K K interac-
tion. Therefore there is a possibility to generate dynamically
the X(2175) in the ¢mr and ¢K K system. There are many
similar examples like the Y (4260), X (1750), Y (4460), etc.

With the motivation to search for all such states and to
understand their properties, we have extended the well studied
two-body chiral formalism to three-body systems.

The study of three-body systems requires solving of Fad-
deev equations [55] which in its exact form is a cumbersome
task, due to which one often resorts to approximations. While
most conventional studies of three-body systems use potentials
in coordinate space, usually separable potentials to make the
solution of the Faddeev equations feasible, we used two parti-
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cle amplitudes generated within the unitary chiral approach in
momentum space. The most novel finding in this work is the
realization that, for s-waves and in the SU(3) limit, there is an
exact cancellation between the off-shell part of the two-body
amplitudes and the three-body forces generated by the same
chiral Lagrangians [56-58]. To be more precise, the on-shell
amplitude means that the s-wave amplitude is calculated as a
function of the Mandelstam variable s imposing ¢> = m? for
the external momenta of the two body amplitudes. When these
lines are inside the Faddeev diagrams where some line can be
off-shell, the full amplitude is separated into this “on-shell” part
plus and “off-shell” part which goes as ¢ — m? for mesons and
q° — E(q) for baryons and vanishes when the external lines are
on-shell. This off-shell part contains an inverse particle prop-
agator and cancels one particle propagator while iterating the
Faddeev equations, rendering a three-body diagram with two
two-body t-matrices into a three-body contact term, which has
the same topology as genuine three-body forces that stem from
the chiral Lagrangians. We find that the sum of all these three-
body forces is null in the SU(3) limit. As a consequence, one
needs only the on-shell two-body t-matrices and can ignore these
three-body forces. This finding is novel for such studies and
simplifies the work technically, although not much, since loops
involve a changing s-variable, and consequently the s-dependent
t-matrices must be inserted into the loop functions. This makes
this approach different and technically more involved than the
study of the two body interaction, where using arguments of the
N/D method one can factorize on shell amplitudes outside the
loop functions which involve only two hadron propagators [4].
The greatest benefit of this finding in the three-body problem
is that the results do not depend upon the off-shell extrapola-
tions of the amplitudes which is a source of uncertainty in the
three-body calculations that rely upon a potential. Indeed, it
is well known that given a certain physical amplitude, on-shell
in nature, one has an infinite number of potentials that give
this amplitude upon solving the Schrédinger equation. The dif-
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ferences between the different potentials will only show in the
off-shell extrapolation of the amplitudes. However, this infor-
mation enters the solution of the Faddeev equations and, hence,
different potentials leading to the same on shell amplitude will
provide different results upon solution of the Faddeev equations.

The problem stated above is most probably the main reason
why recent works dealing with the K NN system lead to quite
different results in the binding and the width. In this sense, we
find a series of works based on Faddeev equations which lead
to relatively large binding, of the order of 50 — 70 MeV [59-62],
while other works based on variational methods lead to smaller
bindings of the order of 20-30 MeV [63-65]. The widths also
vary from 50 — 100 MeV.

The arbitrariness of the off-shell amplitude is also well known
in field theory, where the implementation of unitary transfor-
mations of the fields in the Lagrangian maintains the same on-
shell amplitudes but changes their off-shell extrapolation. In
this sense it is interesting to note that, although the cancella-
tion of the off-shell part of the three-body amplitude versus the
three-body forces discussed here is not explicitly shown in other
three-body works using also chiral dynamics [66,67], these ap-
proaches are invariant under unitary transformations, indicat-
ing that the mentioned cancellations apparently occur in the
full calculation [68]. A similar independence of results from the
off-shell extrapolation has been shown in different reactions like
the TN — 7w N reaction [69] and the study of the interact-
ing two pion exchange in the NN interaction [70]. However,
the explicit realization of the off-shell versus three-body forces
indicates that one can neglect the three-body forces from the
beginning, certainly simplifying the approach, and use only the
two-body on-shell amplitudes.

As shall be explained in the subsequent chapters of this The-
sis, we start with the lowest order chiral Lagrangian for the two-
body interaction and use the on-shell factorization of the poten-
tials and t-matrices in the Bethe-Salpeter equation [5-7,10, 18],
which replaces the solving of the integral equations to that of
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algebraic equations. This simplification makes the solution of
the few body equations conceivable, even if the unitary chiral
approach demands inclusion of large number of coupled chan-
nels in order to implement the SU(3) symmetry. Following the
method of the on-shell factorization in the Bethe-Salpeter equa-
tion, we have developed a similar approach to solve the Faddeev
equations and the procedure shall be explained in the following
chapters.

This theory has been applied to the 7 KN and its coupled
channels, where all the A and ¥ 1/2%" resonances listed in the
Particle Data book [22], in the 1480 — 1800 MeV region, have
been found to get dynamically generated. Further, calculations
using the same formalism have been done for S = 0 baryon
resonances. Concretely, we have studied the n7w N, mnN, 1 KA,
7KY and K KN systems considering them as coupled channels.
As a result, two N*’s; the N*(1710) and the N*(2100), and one
A resonance, the A(1910), have been found in the three-body
amplitudes. Also a new N* state, which was predicted in [71],
appears around 1920 MeV in the NK K system when the KK
is resonating as the f,(980) or the ay(980).

Also, a two meson-one baryon system with total strangeness
+1 have been studied with the aim of describing the © pen-
taquark state as a NmK bound state. We do not find any trace
of the ©T but we find a broad structure with 200 MeV of width
at an energy of 1700 MeV [72].

In the case of three-meson systems, a calculation for the
$K K and ¢rm systems has been done which has revealed the
dynamical generation of the X (2175) state when the n7 and
K K subsystem is projected in isospin zero and its invariant mass
is close to 980 MeV. This confirms the experimental findings of
BABAR and BES [47-49] that the X (2175) has a very strong
coupling to the ¢ fy(980) channel. We have also investigated the
J/yrm and J/Y KK systems where we find the charm partner
of the X (2175), i.e, Y (4260), which gets dynamically generated
when the J /1 with two pseudoscalars rearrange as J/v f(980).

In the next chapter of this Thesis a formalism is developed
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to solve the Faddeev equations using two-body amplitudes ob-
tained from chiral Lagrangians. In subsequent chapters we focus
on using this formalism for different three-hadron systems and
give details of the calculation and the results obtained in each
case. The Thesis ends with a summary of the whole study and
with a list of future plans.






CHAPTER 1

LFormaIism I: Faddeev equations and Uy PT

For the last eight years strong interaction physics has
been concerned mainly with two-particle systems. My
own opinion is that two-particle systems are now finished.
By this I do not mean that we have done everything we
hoped to do, but rather we have done everything we are
going to be able to do. I think the future of strong
interactions now lies with many-particle systems. Here the
surface has barely been scratched.

C. LOVELACE [73]

In this chapter, we shall discuss the formalism to study the
three-body systems made up of two mesons and one baryon or
three mesons. Obviously, this requires the study of the meson-
meson and the meson-baryon interactions , which has been de-
scribed using unitary chiral perturbation theory (UxPT). Fol-
lowing a brief discussion on the two-body interaction an intro-
duction to the Faddeev equations is given. These equations are
then rederived using field theory. Finally, a reformulation of

27
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the Faddeev equations is obtained by using unitary chiral dy-
namics for the two-body interactions. The motivation for the
reformulation and its benefits are also discussed. The novel and
one of the most important finding of the cancellation between
three-body forces and the off-shell contribution of the two-body
t-matrices to the three-body diagrams is shown analytically in
this chapter for the two meson-one baryon as well as the three-
meson case. The chapter ends with the new set of equations
obtained, which are solved for different three-hadron systems as
explained in the subsequent chapters.

1.1 Two-body interactions in Uy PT

Quantum Chromodynamics or QCD is the theory which de-
scribes the strong interaction in terms of the fundamental con-
stituents of the hadrons: quarks and gluons. However, while in
the high energy region, due to the asymptotic freedom of the
quarks, the theory has been successfully tested by the experi-
ment, this is not the situation for low and intermediate ener-
gies. The introduction of the effective chiral Lagrangians for-
malism to account for the basic symmetries of QC'D and its
application through chiral perturbation theory (xPT') to the
study of meson-meson interaction [74] or meson-baryon interac-
tion [75-77] has shed new light on these problems and allowed a
systematic approach. The standard chiral perturbative model,
i.e., an expansion in powers of the typical momenta involved
in the process, is constrained to the low energy region, where it
has had remarkable success, but makes unaffordable the study of
the intermediate energy region where resonances appear, since
the singularities associated to the resonance cannot be gener-
ated perturbatively. In recent years, the combination of the
information of the chiral Lagrangians, together with the use of
non-perturbative schemes, has allowed one to make predictions
beyond those of the chiral perturbation expansion. The main
idea to extend the range of applicability of xPT to higher en-
ergies is the inclusion of unitarity in coupled channels. Within
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the framework of chiral dynamics, the combination of unitarity
in coupled channels together with a reordering of the chiral ex-
pansion provides a faster convergence and a larger convergence
radius of a new chiral expansion, such that the lowest energy res-
onances are generated within those models. This then advances
the chiral perturbation theory (xPT) to the unitary chiral per-
turbation theory (UxPT).

One starts from the standard chiral Lagrangians in the low-
est order of chiral perturbation theory (x PT') coupling the octet
of pseudoscalar mesons to the octet of 1/2% baryons for the
pseudosclar meson-baryon interaction and with itself for the
pseudoscalar-pseudosclar meson interaction. These Lagrangians
provide the potentials which we use to solve the coupled chan-
nel Lipmann-Schwinger equation with relativistic propagators
in the intermediate states (or Bethe-Salpeter equation) to ob-
tain the two-body t-matrices.

The interaction chiral Lagrangians are given by [2, 5]

Lyp = 4—}@<Bmﬂ[(auq>q> — $9,9))B
— B(0,9® — 99,9))) (1.1)

for the interaction of a pseudoscalar meson with a baryon of the
1/27% octet and

1

= 2 (0u20 - 00,0)? + Md*) (1.2)

Ly

for the pseudoscalar-pseudoscalar meson interaction. In Eqgs.
(1.1, 1.2) fis the pion decay constant and the symbol ( ) denotes
the trace in the flavor space of the SU(3) matrices ¢, B and M

1, 1
— T+ — Tt K+
2" T 1 1
b = T ——a0 = KO 1.3
7 7" 2 (1.3)
K~ KY ——n
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_ZO + —A EJr
vitovEe o
B= ¥ ——=30+—A n (1.4)
2 6
= \/_ =0 \/— _iA
- - V6
m2 0 0
M=| 0 m2 0
0 0 2m%—m2

In the M matrix we have taken the isospin limit (m, = my).
Using the equations (1.1), (1.2) and (1.4) we can get the po-
tentials for the different coupled channels of the system under
consideration. For the pseudoscalar meson-baryon case, the po-
tential has a common structure for the different channels (m,
n) [17], ie.,

r_
Vin = —Cmnrﬁus(p’)yuus(ﬁ)(ku + k;) (1.5)

with ug(p) [us(p”)] being the initial (final) baryon spinor and
k (k') the momentum of the incoming (outgoing) meson. The
matrix Cj;, which is symmetric, contains the coefficients which
show the SU(3) symmetry of the problem and can be found, for
example, in [5,17]. If the interest is in S-wave interactions, the
potentials (1.5) are projected in S-wave, getting

M; + Ei(E
Vi) = =G (28 = M = M) —IQ—Mz‘( :
M, + E;(E)
W (16)

where F is the total energy in the CM system of the two par-
ticles, F; and M; (Ey and My) are the energy and the mass,
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respectively, of the initial (final) baryon. Note that a different
decay constant is introduced for each meson (fr = 93 MeV,
Tk =1.22f, fT] =13fx [74])

In the case of the pseudoscalar-pseudoscalar meson interac-
tion the potentials do not have a general form (see [2] as an
example for the case of two pseudoscalars). These potentials
are inserted in the coupled channel Bethe-Salpeter equation

tij = Vij + VilGltlj (1.7)
with
VGt = z/ d'q M, Vi(k, )ti(g, ')
1= ] @ B R+ 0 — 0~ Bi@) + e
1

X —m ———— 1.8
qQ—ml?-i-ie (1.8)

in the pseudoscalar meson-baryon case, while

[ d*q Va(k,q)ti(q. k)
VGt = ’ S
g Z/(27T)4 g% +m?, + ie
1

X , 1.9)
(P —q)? —mj +ie (

for the pseudoscalar-pseudoscalar meson interaction. In (1.8)
only the positive energy component of the fermion propagator
has been kept. The quantities M; and Ej correspond to the mass
and the energy of the intermediate baryon and m; to the mass
of the intermediate meson. Equation (1.7) can be represented
as an infinite sum of the series of diagrams shown in Fig.1.1.

Figure 1.1: Diagrammatic representation of the Bethe-Salpeter
equation.
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The Bethe-Salpeter equation (1.7) is an integral equation and
hence requires off-shell V and ¢ for its solution. However, the use
of the off-shell part of V and ¢ can be circumvented, as we show
below, and only the on-shell information will be needed. To see
this, let us take, for example, the one loop diagram of the Fig.1.1
for the pseudoscalar meson-baryon interaction, which can be
mathematically expressed as VGV. For simplicity, we assume
equal masses in the external and intermediate states. In the low
energy region, where one can neglect the spatial components in
Eq.(1.5) and only the 7° component becomes relevant, we have

Von + Vorp)? = C? (k" + ¢°)? = C?(2k" + ¢° — k")?
= C*(2k°)% + 202 (2k%) (¢° — k%)
+ C?(¢" — k)2 (1.10)

with C a constant and hence
dtq M
VGV = z/——
(2m)* E(q)
" C’2(2k:0)2 + 202(2k0)(q0 — ko) + 02(q0 — k0)2
kO 4+ p — ¢ — E(q) + ie
1

X . 1.11
q? —m? +ie (L.11)

It is obvious that the first term of the equation (1.10) is the
on-shell contribution V2, V,, being C(2k%). A typical approx-
imation for the heavy baryon propagation is to neglect the dif-
ference p® — F(q) in Eq.(1.11) [78]. In this form, the one loop
integral for the second term on the right hand side of Eq.(1.11)

becomes

o /_d3q [ER S
o 3 ) 27 E(Q) KO —q° ()% — w(q)? + ie

dq M 1 9
20 on Von ]..].2
Voo | G aog Vot (112)

where w(q) = \/¢? +m?. This term is proportional to Vo,
therefore, it has the same structure as the tree level term in the
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Bethe-Salpeter equation (1.7). Hence, it can be reabsorbed in
the lowest order Lagrangian by making a suitable renormaliza-
tion of the coupling constant f, giving then an effective chiral
Lagrangian with the physical couplings. However, since we are
already taking the physical values for the coupling constant f
(f = fr = 93 MeV) and the masses in the Lagrangians, this
term should be omitted. Similarly, the last term of (1.11), pro-
portional to (¢° — k%)2, gets canceled with the (K — ¢") term
in the denominator, i.e., the baryon propagator, and the inte-
gral of the remaining factor gives a term proportional to £° (and
therefore to V,,,) and another proportional to ¢°, which vanishes
for parity reasons. These arguments can be easily extended to
higher order loops and also for the meson-meson interaction
(either pseudoscalar or vector mesons) [2,5,79]. An alternative
derivation has been done using the N/D method starting from
the unitarity condition Im{t~'} = —Im{G} and using a disper-
sion relation to get t~!. In such a case, just from the beginning,
only the on-shell part of V is needed [4,6].

To conclude, only the on-shell part of the potential is needed
in order to solve the Bethe-Salpeter equation (1.7) and, there-
fore, the potential can be extracted outside the loop integral
leaving the loop function

dq M, 1
G(E) =i
2 Z/(2W)4Ez((f)k°+p0—q0—Ez(fD+i6
1
X

q2—ml2—|-ie

_/ d3q 1 Ml
) @) 2wi(9) Ei(Q)
1
. PO+ kO —wi(q) — Ei(q) + ie

(1.13)
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in the pseudoscalar meson-baryon case, while

4

2m)4 ¢ + m3, + ie (P — q)? — m3, + ie

/ d’q wy + ws (1.14)
) (2m)3 wiwe[E? — (wy + w2)? + ie] '

withwy = (/¢ 2 + m?, and wy = 1/§? + m3, for the pseudoscalar-
pseudoscalar meson interaction.

The integral in equations (1.13) and (1.14) is logarithmically
divergent. In xPT these divergences are canceled by countert-
erms of chiral Lagrangians at higher order and some finite con-
tribution remains from the loops and the counterterms. Also
one can regularize the loops by using a cut off ¢4, for the max-
imum value of the modulus of the momentum | ¢'|, typically of
the order of 1 GeV, or through the dimensional regularization
method, in which case

N, m2, m:—m3i+E. m
G|(E) = d {al(u)—klnu—ll—kuln—%

(4m)? 2 2F m%l
+ DEL g — (3 — ) + 28Qu(1))

+ In{E + (m3 — m%)) + 2BQ,(E)}
—In{—FE + (13, —m3)) + 2EQ(E)}—

~ In{~E — (i}, — %) + 2BQu(E)}] } (1.15)

where p is the regularization scale (=~ 1.2 gnq.) and N; = 2M;,
my; = my and mo; = M; in the pseudoscalar meson-baryon in-
teraction, while in the pseudoscalar-pseudoscalar meson inter-
action N; = 1 and my;, My are both the meson masses of the
intermediate state. Q;(E) is the on-shell center of mass momen-
tum of the system under consideration. The first term in Eq.
(1.15) is a real constant and stands for the finite contribution of
the counterterms. We treat these a;(u) constants as unknown
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parameters and determine them from fits to the data [7,17],
requiring, however, that they are of natural size [6], which in
terms of the cut off regularization means a cut off of the order
of 1 GeV (the scale of these effective theories). In the same way,
if one regularizes the loops with the cut off, one can vary it to
fix some characteristics of the data (for example the position of
the maximum of an experimental cross section). After this is
done (by choosing a cut off, or by dimensional regularization),
there is no free parameter left in the model.

Note that the imaginary part of the Gy(E) (1.15) can be

written as NOI(E)
_ _=E)
Im{Gi|(E)} = S E (1.16)
From (1.7) it is easy to see that Im{t} = ¢t ImGt*, or
_ NiQi(E)
1 s 1\l
Im{t™(E)yj = 6 —¢ (1.17)

which expresses the unitarity condition in the present normal-
ization [80].

To summarize this discussion, it has been shown that only
the on-shell part of the potentials together with the energy de-
pendent loop function (1.14) is required to solve the coupled
channel Bethe-Salpeter equation (1.7), reducing it to an alge-
braic equation. In matrix form

t(E) =V(E)+ V(E)G(E)t(E) (1.18)
which upon reordering give the two-body t-matrix as

t(E) =[1 — V(E)G(E)|'V(E). (1.19)

1.2 The Faddeev equations

Let us consider three particles, labeled as 1, 2, 3, interacting by
means of two-body potentials. We denote V' as the potential
acting between particles 2 and 3, V? between the particles 1
and 3 and V? between 1 and 2 [81]. By analogy with the two-
body problem, one could consider solving the Bethe-Salpeter
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equation for the three particle system with a kernel K = GV,
where V = V! + V2 + V3 and G the three-body Green function
1/(E — H). Unfortunately, there are two serious problems in
using the Bethe-Salpeter equation (1.7) for the scattering of
three or more particles. The first difficulty, as pointed out by
Faddeev [55], is that the kernel of the Bethe-Salpeter equation is
not square integrable! (.£?) for the scattering of three or more
particles. It should be stressed that the kernel of the Bethe-
Salpeter equation for the two-body case written in an arbitrary
reference frame is also non integrable. However, this problem is
trivially solved by working in the two-body center of mass, as
it is well known, which is not so for the case of three or more
particles. To see this, let us evaluate the norm of the operator
K, [ K], [81]

| K ||= [Tr{KK}/? = /dado/ |<d | K|a>* (1.20)

with a being a complete set of variables. In the momentum
space, the matrix element in (1.20) is given by

<R, Ry Ry | K | By, Ry, By >= 84 (Fy+ oy + K3 — Ky — By — &)
1 - -
x = = ———[0%(k1 — ky)
E — Ei(k1) — Ea(k2) — E3(ks) + ie
X <K |V k> +0%(ky — Ky) < Ky | V2| By >
+ 83 (ks — Ky) < Ky | V3 | ks >]. (1.21)

If we work in the global center of mass, i.e., in the center of
mass system of the three particles, we can eliminate the total
momentum conserving delta function. However, there will be
still terms like [0(k; — k})]% in the integrand of the equation
(1.20), making the Tr{K K} infinite and the kernel K not .#2.
The second difficulty is that the Bethe-Salpeter equations do
not have a unique solution when the limit ¢ — 0% is taken for

'f K(x,y) is a finite and continuous function in the domain a < < b,
a <y < b, the condition K (z,y) € .22 imply that: || K ||*= fab dx f: dy |
K(x,) [*< 00; [} dy | K(z,y) < 00 ¥ a; [ dur | K(z,y) P< 00V y
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the three-body case before solving the equation [81]. These two
problems are totally new with respect to the two-body scatter-
ing and are intrinsic to the case of three (or more) particles.

In order to remove these difficulties, Faddeev [55] suggested
to write the T-matrix operator as a sum of three partitions

T=T'4+T*+13 (1.22)

where T%, i = 1, 2, 3 includes all the possible interactions con-
tributing to the three-body T-matrix with the particle i being
a spectator in the last interaction (Fig.1.2). Obviously, the sum
of T, T? and T3 contains all the possible diagrams obtained
by permutations of the different interactions between the three
particles. The Faddeev equations can be deduced by several
methods?, however, a derivation in terms of perturbation the-
ory and the corresponding Feynman diagrams can give a more
intuitive picture and a better understanding of the physical con-
tent of the equations. For this reason, we adopt this procedure
to write the contribution of the different diagrams with differ-
ent set of three-body interactions in order to derive the Faddeev
equations.

We now list a set of conventions which we follow while rep-
resenting the mathematical expressions diagrammatically:

e Particles are represented by horizontal lines, with those in
the initial state on the left side being labeled by the four-
momentum k; = (wi,Ei), and those in the final state by
the four-momentum k, = (w}, /) on the right side. With

this convention the diagrams have to be read from right
to left.

e A dashed line between two particles represent a two-body
interaction (potential, V).

e An empty blob between a pair of particle lines correspond
to a two-body t-matrix.

2For example, by defining the operators T, T2, T as T® = V' + V'GT,
with ¢« = 1,2,3, and using the Bethe-Salpeter equation to describe the
interaction between the two particle subsystems.
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e A filled grey blob indicates any three-body interaction.

I I

D

k3

ki

P

T2 ko /\
ks U Ky
ky k1
t3
3 ks /\ O K
T3 = 2 %3
ks U k4

Figure 1.2: Diagrammatic representation of the Faddeev parti-
tions.

The diagrams contributing to the T partition can thus be
represented as those shown in Fig. 1.3. Let us consider the

k1 ki k1 ki Ky k|

ey Ky _ ky By 4k @ ke
b O O S G I IR
ky K f——————K ky k4
ALV A G I G O v V R G

k1 K} ky K

v O e e oo
VG I O IV G

Figure 1.3: Perturbation series of diagrams which contribute to
the T partition.

particular case in which particles labeled by 1 and 2 are mesons
and particle labeled by 3 is a baryon. Denoting the contribution
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I K ey i

®) S
ks ks ks K

Figure 1.4: Lowest order diagram that contribute to T,

of each diagram of the Fig.1.3 to the S — matriz corresponding
to the T partition, S, as S](-i), where the upper index refers to
the Faddeev partition under consideration and the lower index
indicates the number of ¢-matrices (pair interactions) contained
in the diagram, we have S = Sfl) + S;l) + Sél) + .-+, with the
first term (Fig.1.4) written as

3
I IR 1
< k), k5, kb S(l) ki, ko, k >——/al4 ||
123|1|123 fCll:2 o

X H 2m3 ’L(k’ +k3)x1( ’Ltl)

< e~ (k2+k?3)£r15_, .
1,k

= V2 \/—\/Tmi"HmH\/ﬂ

x 0% (kg + ks — kb — kg)\/gw(él)\/zw(*;) tla,;h,gi (1.23)

The my, mg (m), m)) are the masses of the mesons in the initial
(final) state and mg (m}) is the mass of the baryon in the initial
(final) state. The plane waves are normalized to unity in the
volume V. There is a §-Kronecker in (1.23) , 6 LR

first particle is not interacting. According to our normalization

because the

1 i L1t z 2T 3 - -,
5121 = —/d?’:):e (k1=k1)T ( V) & (ky — k})- (1.24)
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Therefore, Eq. (1.23) can be written as

o o o IR o )4
<K, K, By | S | ke, Ko, Ky >= —z‘(;g) V2ms

2mly6* (k — k' H \/ﬂ H \/ﬂ
v \/2w(/21)\/2w(/23)53(121 iy (1.25)

with k = ki + ko + k3 the total four-momentum in the initial
state and k' = Kk} + k5 + k5 in the final state.

The contribution from the second diagram on the right hand
side of the Fig.1.3 (redrawn in Fig. 1.5) can be written as

ky K

Figure 1.5: Diagram at second order in t which contribute to
T

3
A O 4 4 H 1
1 / ’ .
/2m3 V3 (k‘2+k3)a}2 (_itl)e—zkgarg

d4 igp(v1—w2) .
x / 5 q)24 i M (itg)e TR (1.26)
m)4 g5 —m3 + e

with m; the mass of the particle ¢ in the intermediate state, such
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that

o o, oS L dO d3
<k/17ké7k2/3|‘g§1)|k17k27k3>:_1/%/ g2 /d(E(Q)

’ ’
% o i(kS+a9—kY —k9")xd d:): e (kY +kS—a9—kY") xIH 1
\/2w1

3
X V2msz/2m, /d3:1: e~ ilka+ o~y — k%) 2
1:1 \/ﬂ Sy3 ?

d3x1€*i(k1+k2*d’2*ki)flt

X tg (127)

T

1 N .
(49)* — E3 (@) + ie

where E;(G) = 1/(§;)% + m2. After integrating in d*z; and d'z

the expression (1.27) results in
<K By By | S By, Ko, Ky >= /d%/@
1, oy 3 1, 2, 3 (271') (271')3

1
x W(%) 20(kS + a5 — K" — K§)O(kY + kS — a5 — KY)

2mly (2m)3 03 (ks + @y — Ky — k)

T Ty

1
(27T)353(k1 tky— G — k)t

(42)* — E3 (@) + i

t3.

Integrating the §’s we get

I IR om)4
<Kk, By | S | Ky, Ko, Ky >= —i(;) Sk — k)

2m3 tl

Mo

—— t3
(k? + k9 — K92 — E%(k‘l + kg — K}) + e

Further, decomposing the propagators in the positive and neg-
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ative energy parts

1 1

(¢9)2 — F2(q) +ie ~ 2E(q)

1
q" — E(q) + ie

I
" + E(q) — ie

(@°)2 — E2(q) +ie  E(q) | ¢° — E(q) + ie
;vs(—d)@s(—d)

and neglecting the negative energy part of the propagators?,
since the calculations will be made in the low energy region we

get,

1 1 1
=
(qY)? — E2(q) + ie 2E(q) q° — E(q) + ie
¢+ M M 1

— = ;
(¢°)? = E2(Q) +ie ~ E() ¢° — E(q) +ie
Note that the operator »_ us(q)us(q) is used to construct the
S
vertices, i.e., Us(p’) v us(q), us(q)y" us(p’) (see Eq.(1.5)), where

us(p”), us(p”) would be the external spinors.
Thus, for the diagram shown in Fig. 1.5 we have

T (2m)*
<K, K, By | SSY | Ky, Ko, Ky >= — 7 5k — k)

1
V 2m3 2mé tl 2—&

3 3
1 1
X
ll_Il V2w, k:l_I1 /2wy,
1

X 7 = = = ts3
KO + K — kY — Eo(ky + ko — K)) + ic

The next diagram of Fig.1.3 contains a loop (as shown in Fig.1.6)
In this case,

3In the vicinity of the pole (¢° = M, | ¢ | small), ¢° — E ~ ¢*/(2M),
while p° + E gives a much larger value of about 2M.
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ky o K
t3
2
ks ﬂ \ Q @ k)
T2
ks . Ky
Ty a3 T3

Figure 1.6: Diagram with three successive interactions for the
T partition.

< B R B S | By ey By = / s / 'z

/d4x1 H \/ﬂ H \/ﬂ 2m3

4
xe"(kﬁké)ws(_itl)/ d a0 . eia2(v2=3)
(2m)* (q2)% — 3 + i€
x €12 (_jtg)ethav2 / d'qs . (g5 + 1)
(2m)* (g3)? — 3 + ie
% e’iqg(xle)/ d4q1i ele(m—xg)
(2m)* (q1)? — g + e
X (—’L.tQ)e_i(kl‘f‘kB)l’l

(1.29)

where m; are the masses of the particles in the intermediate
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states. Integrating in d*z;

3 3
< l;i, l;é, Eé ’ S?()l) ’ l;l, EQ, E3 >= — H H
=1 k

X \/2m3\/2m:’3/d4q1/d4QQ/d4QS5(q(2) +qg ko,‘ kg/)

!
x 5(k9 + ¢ — g5 — k)0 (k) + kS — ¢§ — qf)
x 0(G + G5 — kb — k3)d(ka + @y — @ — K})
1

(g2)% — 3 + ie

¢ +1m3 1

2 _ 521 77 2
(g3)* —m3 +ie (q1)? — My + ie

x 8(ky + k3 — @3 — @1 )t

X tg (130)

Solving the ¢’s functions and neglecting the negative energy part
of the propagators we get

3
AV, Wy 7oz o1 1
< ki, Ky, Ky | Sy |k1,k2,k3>—ml_[1\/2_w
3

\/— 2myst(k — k') / dq / dq3
1

Xt 1

177 e =

285 kY + kY —  — Ea (K + K — Gs) + e
2mg 1 1
3 =
2E3 q3 Eg( )—|—Z€ 2E1

1
X = =
K) + kS — ¢§ — Er(ky + ks — q3) + i€

to-

(1.31)

The two-body t-matrices depend on the total energy of the inter-
acting pair, i.e., on its invariant mass. Therefore, t; = t1(s23),
to = ta(s31) and t3 = t3(s12), hence, for the diagram in Fig.1.6,
593 — (k‘é + ké)2, S§31 — (kl + k3)2 and S12 = (,IC - Q3)2, with
k being the total four-momentum. This implies that ¢; and
ty can be taken out of the integral (1.31), but not t3, which
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depends on the loop variable ¢3. Using energy conservation

E =k + k9 +k) = kY + k9 + kY’ the previous equation can be
written as

3

o o N, - = = 1 1
<k’1,k§,kg|8§)|k1,k2,k3>:ﬁH
=1

B
= \/2w1 l;:l_{ \/2(,02
1
X /2mz 1/ 2mi ot (k — k')t [/d?)%/dqgﬁ
2

1
X = = =
E — B (k) — Ba(ky + k5 — G3) — q§ + i€
23 1 1
X t3 = 0 ——— - =
2E5 g5 — E3(q3) + i€ 2
1
X

to

B — E1(E1 +E3 - q3) — E2(E2) — ¢ +ie

(1.32)

where we have used that k¥ = Ey(K}) and k9 = Ey(ks) . To
make the integration in dqg it is necessary to know the pole po-

sition of the t-matrix which is in the integrand. Consider the
following diagram

k‘g q3 k/3

Figure 1.7: Pole contribution from the two-body t-matriz.

where we have split the t3-matrix in terms of potential V' .
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Using Feynman rules, the contribution to the #3-matrix is

/WV[(k —3)] 3B 7 — B + i< 2B + 1)
1
@ —E(G+p)+ (k- g3)°] (1.33)

where there are two poles (p°); = E(p) — ie and (p°)2 = k° —
q) — E(@3 + p) +ie. Using Cauchy’s theorem to evaluate the dp°
integration in Eq.(1.33) we have

d3p 9 1 1
(/@B@wk_®”2m@ZM@+m
1

T o B Ut DR

And the pole in Eq.(1.34) for the variable of the loop in Eq.(1.32),
@), is in the upper plane. Closing the contour of integration
clockwise in the lower half plane (Fig.1.8) while applying the
Cauchy’s theorem to calculate the integral in Eq.(1.32) is a suit-
able choice, because in this way we avoid complications due to
the presence of multiple poles in the upper half plane.

In this way,

oo o R o )4
<K Ky Ky | SSY | Ry, Ky, Ky >= ;) 5k — k')

V3
d q;g 1 1

X V2ms/2m! /

H \/20.1 H \/2—’ ’ ) 2F, 2B,

ms y 1

=1 = — =

"By E— By (k) — Ex(ky + k5 — §3) — E3(q3) + ie

1

X t3 — = to (135)

E — Ey(ky + k3 — @3) — Ea(ka) — E3(q3) + ie

with
ts = t3[(k — g3)* lg9=Es(a))- (1.36)
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Im{q3}

E — E{(k;) — Ea(Ky+ K — @)
[ ]
X

E — Ei(ki + k3 — @) — Ea(ks)

Re{q3}

Figure 1.8: Argand diagram. (x) indicates the position of the
pole of the t3-matriz.

Similarly, for diagrams with four, five or more interactions the
S(l), Sél), etc., contribution to the SM_matrix can be calculated
to get

S0 = 5 4 g gt 4 (1.37)
Using the relation between the S and the T matrices
<y, Ky, Ry | SW |, Ko, ks >=0p g0, 505 1
— N <Ky, kb, Ky | T | ki, ko, ks >
with
(2m) :
N =i k-] H 2ml, (1.38)
3 3
\% ey \/2w «/2w

we obtain the three-body 7" matrix which sums all those di-
agrams contributing to the three-body system where the last
interaction is between particles 2 and 3.

T =t + Gt + 3G + 3G -]
+ G2 + 2Gt + 3Gt + - -] (1.39)
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where G is the Green-function

1 1
SEE_H meson-meson interaction
G- (1.40)
M 1 b int ti
- eson-baryo eractio
N meson-baryon interaction

The factors 1/2E and M/E have their origin in the relativistic
kinematics. In the same way, we can get the equations for the
sum of the contribution of all those diagrams where the last

interaction is between particles 1 and 3, and between particles
1 and 2

T? = 2 + 2G[tE + G2 + t1Gt3 + -]
+ G + 3G + 3G + -]

T3 =3 + 3G + Gt +t'Gt> + -]
+ 3G + Gt + 2G4 -],

The series 7', T? and T can be rewritten to get the Faddeev
equations

T =t + th[T2 - Tﬂ
T2 =12 4 t2G[T1 + Tﬂ (1.41)

T3 — 3 4 t3G[T1 +T2}.

1.3 Faddeev equations within Unitary Chiral Dynamics

The Faddeev equations, like the Bethe-Salpeter equation, are
integral equations. However, we have seen in section (1.1) that
in the Bethe-Salpeter equation the off-shell part of the poten-
tials in the unitary chiral approach is such that its contribution
can be reabsorbed by making a suitable renormalization of the
coupling constants in the Lagrangians. This allows to extract
the two-body potentials out of the integral and, therefore, one
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only needs the on-shell two-body ¢-matrices to solve the Bethe-
Salpeter equation, which gets simplified to an algebraic one.
The question now is if there is a possibility to develop a simi-
lar technique for the Faddeev equations by using unitary chiral
dynamics.

In this section, we discuss the origins of three-body forces:
(a) Due to the off-shell contribution of the two-body t-matrices;
(b) From the Chiral Lagrangians. We show that these three-
body forces cancel in the SU(3) limit leading to a reformulation
of the Faddeev equations with a formalism that makes solving
them technically faster.

1.3.1 Three-body forces

As suggested by Faddeev himself and discussed by others, e.g.,
in [82], in order to study the genuine three-body dynamics (for
instance, poles of the three-body T-matrix) the terms with dis-
connected diagrams, i.e., the ones which contain only one t-
matrix (obviously, with an associated delta function) can be
neglected. Let us then consider the lowest order connected di-
agrams of the Faddeev equations Eq. (1.41) which are second
order in t, i.e., the terms which contain two ¢t-matrices. There
are six terms of this kind as shown in the diagrams of Fig. 1.9

k1 k! k1 K ky ki

1

VIO OV
(@) (0 ©

E] E], ]?] - l:l/ ]?] 1:1/

G ® 5 oA O g

i VNG BooR_ i
(@) (©) ")

Figure 1.9: All the diagrams at second order in t which give rise
to a three-body force.

Mathematically, the contribution of these diagrams can be ex-
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0 « _
0

@ (b)

~

Figure 1.10: A diagrammatic representation of the t'g'3t3 term.
The blob in (a) represents a t-matriz which can be expressed

mathematically as V +VgV +VgVgV +VgVgVgV +.... And (b)
shows the term (Vg VigtyhHgB(V3g3 V32 V3) of Eq. (1.42).

pressed as t'¢g"/t/, and which can be expanded in terms of the
potentials as

tighitl = [Vi VGV 4 Vighyigiyi +] g
% [Vj + ngjvj + ngjngjyj 4. ]
= VgV VIGVIgIVI 4 VIV gV 4 (1.42)
For example, a term of t!g'3#3 expanded as in Eq. (1.42) is
shown in Fig. 1.10.

All the terms of the kind t'¢¥#/ in our formalism give rise
to a three-body force. This can be easily understood if we pay
attention to the form of the potentials obtained from the chiral
Lagrangians. The potentials in chiral dynamics can be split into
an on-shell part which depends on the center of mass energy of
the interacting particles and an off-shell part proportional to
k"* — m? for each of the meson legs, in case of meson-meson
interaction (where k" is the four vector of the off-shell particle
and m is its mass). In case of the meson-baryon interaction, the
off-shell part of the potential behaves as p? — k°, where p° (k) is
the energy corresponding to the off-shell (on-shell) momentum.
Due to this behavior, the off-shell part of the potential cancels
a propagator in the loops, giving rise effectively to a three body
force, for example, the one shown in Fig. 1.11 corresponding to
the t!¢'3¢3 term shown in Fig. 1.10. In both cases we show that
these three-body forces together with the three-body contact

term coming from the chiral Lagrangian is null.
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(

Figure 1.11: An induced effective three-body force generated by
the cancellation of the off-shell part of the potential and a prop-
agator as explained in the text.

Similar effective three-body forces arise from other terms
too. We shall now write the contributions for the first terms
of all six t'¢¥t/ terms (Eq. (1.42)) including the off-shell parts
of the t-matrices, first for a system of two pseudoscalar mesons
and a baryon from the octet and later for a system of two pseu-
doscalar mesons and one vector meson.

1.3.1.1 Three-body forces for two pseudoscalars and one
baryon system

Let us take the 777~ n channel as an example for this case and
evaluate the total effect of the three-body forces.

We label the initial (final) four-momentum of the 7 as p
(p’), that of the 7~ as k (k') and that of the neutron as ¢ (¢’) as
shown in Fig. 4. We assign a four vector k" to the intermediate
states (see Fig. 1.10).

Figure 1.12: Assigning four momenta to the m™7n~n system.

The potentials calculated from the chiral Lagrangians Eqs.
(1.1, 1.2) for the three possible two-body interactions are

V7r+7r*~>7r+7r* = _6Lf2 [387F7T - Z(pf - m?)} ) (143)

7



52 Formalism I: Faddeev equations and U x PT

Vﬂ*n—w*n -

1
—4—F(k:9r + .9, (1.44)

Vﬂ""n%ﬂ‘*‘n = _Vﬂ'_’nHﬂ'_TH (145)

where s, is the invariant mass of the m — 7 subsystem, f is
the pion decay constant and k2 (k;o) is the energy of the pion
before (after) the 7N interaction.

In this way, the contribution of the first term of Eq. (1.42)
for i = 1 and j = 2, which corresponds to the first diagram in
Fig. 1.9, is given by

T — 04 1/0\n
¢ 16f4(k K )En
1
X =
k0 +q"° — kO — E,(p" + k) + ie
x (p° +p'%) = 1" (1.46)

my, in Eq.(1.46) is the neutron mass and the superscript “on” on
T, denotes that there is no off-shell dependence in this equation.
For the diagram (b) of Fig. 1.9

1 /0 1710 /0 1
T = 5ip 26"+ (170 = k)] TR
X [30+ k) = (k" = m2)]
=T+ T (1.47)
with
1 0 1 2
= k 1.4
b 4f4 (p-l—k—p’)Q—m?r(p—’_ ) ( 8)
o 1
bef _ T _ /0 _po _ k0 +p/0
k//O - k/O

representing the on-shell and off-shell contributions to 7. In
Eq. (1.48) and in the first term of Eq. (1.49), k" has been
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replaced by p+k —p’ using the energy-momentum conservation
law from the initial state. For the second term of Eq. (1.49) we
apply energy-momentum conservation from the final state

K% = (k' +q —q)? . (1.50)
Defining Aq = ¢’ — ¢, Eq. (1.50) becomes

K" =m2 + (Aq)? + 2k - Aq

and, hence
k//O N k,/O _ (Aq)o (1 51)
k2 —m2  (Agq)2+2k'-Aq '
Therefore,
off _ L | 40 0 g0 00
T, 541 p +p
A 0
L3 4 k280 (1.52)

(Aq)2 +2k"-Aq|

The contribution of the diagram (c) of Fig. 1.9 is

1 0. Mnp, 1
T, =— P+ p") =2 =
‘ 16f4( )En KO+ ¢ — k0 — E,(p+ k")
x (K°+ k")
_7on (1.58)
Similarly,
1 /0 110 /0 1
sz—w@p +p =P )3 2

< Bp+ k) = (0" —m2)]
=T+ 177 (1.54)
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with
T = _Lp/O ! (p+ k)? (1.55)
Y prk—k)2Z—m2
1
TOff:_ _ 0 0 _ 10 /0

J 511 [ D p —k"+k

p//O _p/O

P _mT(

Analogous to Eq. (1.51), we write

0 0
" —p’ (Aq)°

= 1.
p//Q_mzr (Aq)2+2p/Aq ( 57)
which gives
qorf _ 1 _p 0 04
d 24f4
+3(p + k)? (Ag)” (1.58)
(Ag)2+2p’ Ag | '
For the next diagram, we have
T — / N2 22
= B+ R - 7 )
1 0 10 0
x (2K K k)
=T + T (1.59)
where
Ton — L(pl + k,/)2 1 k,O (1 60)
e 4f4 (p’—l—k’—p)2—m72r :
1
Toff — o kO o /0 o klo 0
k/IO _ k0
2
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In this case k¥’ = k — Aq and therefore
k,llo _ kO B (Aq)o

= — 1.62
k/’2—m% (Aq)Q—Qk-Aq ( )
leading to
o 1
Teff — W —,ICO _p/O _k/0+p0
Ag)°
—3(p" +k')? ( : 1.63
0 K m g g (06
For the last diagram of Fig. 1.9 we have
1 2
Ty =~ g+ k)2 = (" —m3)]
1
T 2p° +p"° — ) (1.64)
=T + T2
where
TOTL 1 / AW 1 0 1 65
;ff — _24f4 _pO /0 k/O _’_kO
0 0
P —p

Following the same method as in the previous equations

=" (Aq)°

P2 —m2  (Aq)2—2p-Aq (1.67)
then
T]?ff — _f]m _pO _p/O . ]{:/O _’_kO
A 0
3 4 k)28 (1.68)

(Ag)?2 —2p-Aq |
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7t ot
~ s
~ s
~ v
T N v T
= AN % -~
~ - N N // —
~ v
~ —
n et n

Figure 1.13: Source of three-body force from the chiral La-
grangians.

On the other hand, genuine three-body forces also originate
directly from the chiral Lagrangian , where we can find a con-
tact term as the one shown in Fig. (1.13) (such diagrams were
considered for example in [83]).

In order to find the contribution of the diagram shown in Fig.
1.13 we consider the interaction Lagrangian between mesons and
baryon at lowest order in momentum, which is

£ = i(By"[T,, B) (1.69)
where
r,= %(uTauu +udul), u?= eV22/f (1.70)

and ¢, B are same as those defined in Egs. (1.3, 1.4). If we
expand I';, up to the terms which contain four meson fields, we
get

1|1 1
"= g lga“q@?’ — $9,9P* + $%9,0D — §¢>36u¢>] (1.71)

For the case under consideration, i.e., 777 n, using I, from
Eq. (1.71), the Eq. (1.69) becomes

] 1
L= SQLf‘lﬁ [§a7r7r+ﬂ'7r+ —n gt ot

1
+a rtgr At — §7T7T+7Ta7'('+] n. (1.72)
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In this way, the contribution of the diagram in Fig. 1.13 is
1 .

Since we are interested in the low energy region, only the ~°
component of Eq. (1.73) is relevant, then

Ty, (2p° — 270 — 2k0 + 2p°). (1.74)

1
2474

Adding this to the off-shell contributions from the Faddeev
equations at second order in t-matrices, we get

e

o 1
E:Eff+ﬂ%—24ﬂ[—4w+4p”—4wo+@9
+3(p + KX (D) !
(Aq)2 + 2k’ - Aq

1
o 3 ! k/ 2 A 0
(Aq)2+2p’~Aq} +3(p" +k')*(Ag)

« L _ ! (1.75)
(Ag)? —2p-Aq (Aq)? —2k-Aq '

If we consider small momentum transfer for the baryon, i.e.,
|AG] << 1, Eq. (1.75) can be expressed as

6
Z T 4+ Ty =

i=1

1 1
+3(p+k)? -
b { Bap 1287 (B 127 }

, , 1 1
+3(p +k )2{(Aq)0—2p0 - (Aq)O—QkO}

And there is a cancellation of the terms in the SU(2) limit,
assuming equal average energies for the pion. Furthermore, if

—4k0 + 4p”® — 4k 4 4p°

1
24 f1

(1.76)
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the propagators in the Eq. (1.75) are projected over s-wave, as
we do in our study, the curly brackets become

= =—In = =
20K &g | \(Ag)? +2k"°(Aq)° —2 | k' || Ag |
L ((Aq>2+2p'°<Aq>°+2 17" 1] &q |
(

{ 1 ((Aq)2+2k’°(Aq)0+2|E’||5q|>

i — n —
29" [| Ag | \(Ag)? +2p"°(Aq)° — 2| p" || Aq |
and
1 ln((Aq)2 —2p°(Aq)° + 2 | || Aq \)
27| Aq| \(Aq)? —2p°(Aq)° —2| 7] Ag|
B m((AqV — 2K0(Aq)° + 2| K || &g |>}
21k || Ag| \(Ag)2—2k0(Aq)° —2 | k|| Ag|

respectively, and the cancellation is exact.

1.3.1.2 Three-body forces for two pseudoscalars and one
vector meson system

Analogously to the cancellation shown in the previous section,
here we are going to show that a similar cancellation also occurs
in the case of one vector and two pseudoscalar mesons. We
consider, as an example, the channel p™7 7~ and, in order to
simplify the formulation, we take no other coupled channels of
the system into account.

The interaction of a vector and any number of pseudoscalar
mesons is described by the chiral Lagrangian [79]

L=—Tr{[V* 8"V,]T,} (1.77)
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where
4,0 1 + *+
Vil Tt 1 Ig 1 " 0
p —5P tpw KT
% 0
K ) p
1
r, = 5 (u'd,u + ud,ul)
W=
%WO—F%’OS 7wt Kt
P = T —%Woﬁ-%ng K°
K~ K _%778

If we expand w in series up to terms containing two pseu-
doscalar fields P, we obtain

1
Ly = 5(P.0.P) (1.78)
and Eq. (1.77) becomes
Lyp = 4f2Tr{[V“ 0" V,][P,0,Pl}. (1.79)

For the case under consideration, we need to calculate the
prt — ptaT and p™r~ — ptw~ amplitudes. In this case,
Eq. (1.79) has the form

1
— “wo— Y — Ak Y
L= 2f2(8pyp —p,0"p )
X (éﬁﬁrﬁrJr - 7778M7T+> (1.80)
leading to (see Fig. (1.14))

Vp+7r+_>p+7r+ = 2f2 (k1 + k1 )(kQ + k2’)(e . e/)
Vv

ptr——ptn— = _Vp+7r+—>p+7r+' (181)
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ot ot

Figure 1.14: Lowest order diagram contributing to the p*z™
interaction.

The 77~ amplitude, from Eq. (7.4), is

1
Vitn——pta— = _6—]@2 |:357r7r - ;(kZQ - m?)] ) (1.82)

where k; and m; represent the momentum and mass, respec-
tively, of the external particles for the 777~ interaction.

pt_k ky ot pt_k kq ot opt_k ky pt

a+ k‘z‘ K Ky ot oat k‘z} ky e A Ky a+

ks [ B o iy ¥ [ Fopm p ks | 0 N K o
(a) (b) (c)

pt_k K} pt pt_k K ki pt opt_k K ki pt

otk 14 [ # — ky J [ % ot gt R [ P ot

T ki“ ks p= p_ks \l R \1 ks -

(d) (e) (f)

Figure 1.15: Diagrams in which the off-shell part of the ¢ ma-
trices lead to a three-body force.

In this way, the contribution of the first diagram in Fig.
(1.15) is given by

_ 1 / 1\2 12 2 1
T =~ [+ R)? = (7 =) | g
1
X [_ s (b KL)(2h + K~ 1@)} (e-¢)

=T + T (1.83)
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with 7" (T, /7 being the contribution which comes from the
on-shell (off-shell) part of the ¢ matrices:

1
T = ky + K
a 2f4(2+ 3) (k1+k2—k/1)2—m2

(k:l + k) ka(e - €)

. K — /@
7T k'= k1+k27k3
1 K?—
— —(k k!
12/ K2 —m ( 1R
x (k2 + k,)k’:kﬂrkzk’l] (e-¢€) (1.84)

From the results obtained in the previous section for two
meson-one baryon system, we expect that the contribution of
the off-shell part for the different diagrams of Fig. (1.15), to-
gether with one of the vector-pseudoscalar-pseudoscalar contact
terms of the chiral Lagrangian, vanishes in the limit of equal
masses for the pseudoscalars and equal masses for the vectors.
Following the algebra of the previous section for Eq. (1.84)

Aky

7ol — Ky + k22 (ky + K
a (2+ 3) ( 1+ 1)(Ak1)2+2]€2Ak‘1

4f4
1
T 121t

(k1 + K})(2ky + Akp) | (e - €) (1.85)

with Aky = k; — k}. Using that
(ky + k) Aky = k2 — K> =m? —m/” (1.86)
is zero in the limit of equal masses, we have

T = —?(kl + ko€ - €) (1.87)
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+ +
P y K, P

ot s kb ot
— s K, _

Figure 1.16: Contact term whose origin is in the chiral La-
grangian.

Analogously, for the rest of the diagrams in Fig. (1.15) we have

) 1

T = 6—f4(k1 + K )ks(e - €)
o 1

chf = 6—f4(k1+k/1) G(e-€)
o 1

T3 = _6—f4(k1 + Ky)ky(e - €)

T =0

't =0

Adding all these T°// we get
i=f 1
DT = Kk — ke ks — R)(e ) (189)

In order to evaluate the vector-pseudoscalar-pseudoscalar
(VPP) contact term, we have to expand I', up to terms with
four pseudoscalar fields

1 |1 1
,=——|=8,PP3— Pd,PP>+ P?0,PP— ~P39,P| (1.89
32f4 |3 + 3 (1.89)

and, therefore, using Eq. (1.77), the chiral Lagrangian for the
VPP contact term for the p™ 77~ interaction is (Fig. (1.16))
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]- — 12 — v
Lvpp W@”Pu pt = p, 0Mp")
X (r a7t Ount —a ot (1.90)
which implies
1
Tmen = —gprth+ KD — ke + ks —g)(e- ) (191)

The sum of Eq. (1.88) and Eq. (1.91) results in
f
STt T =0 (1.92)
i=a

The proof of the cancellation stated above has proceeded
taking the potentials (tree level amplitudes) derived from the
lowest order chiral Lagrangians. The extension of the proof
made to the corresponding one using t-matrices is straight for-
ward, since the t-matrices would be generated by further itera-
tions of the tree level amplitudes in the Faddeev diagrams, as
done in [2,17], where the off-shell part of the potential in these
iterations is reabsorbed in constants of the on-shell potential.
Hence the cancellations are guaranteed when iterations are done
to obtain Faddeev diagrams in terms of t-matrices rather than
potentials.

Thus, we have proved that the off-shell dependence of the
t-matrices in the three-body diagrams is found to cancel exactly
with the three-body forces generated from the chiral Lagrangian
for 2 pseudoscalar meson + baryon (or vector meson) — 2 pseu-
doscalar meson + baryon (or vector meson) contact term in the
SU(3) limit. If this limit is not considered, the total contribu-
tion of the off-shell part of the t-matrices is found to be less than
5% of the total on-shell contribution . Therefore, for a hadronic
model as ours, it is enough to retain the on-shell parts of the ¢-
matrices, which depend on the invariant mass of the interacting
pair, and neglect the contribution from the off-shell part of the
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70 (k) @ m° (k3)
VO
n (k3)

Figure 1.17: An example of a simplest possible interaction
amongst the three particles, ™1°n. The labels k; (I_cZ) on the
particle lines denote the momenta corresponding to the initial
(final) state. The meaning of the blob is shown in Fig. 1.18.

Figure 1.18: The blob in the Fig. 1.17, which is a t-matrix.

t-matrices together with the three-body forces present in the
system.

In the next sections, having this idea in mind, we are going
to start evaluating the contribution of the different diagrams
involved in the three-body interaction.

1.3.2 Lowest order diagrams

Our aim is to calculate the three-body scattering matrix which
includes all the possible “connected” diagrams between three
particles. In order to develop the formalism, let us take the
7979 system as an example. The simplest possible three-body
connected diagram we can have is the one which contains two
t-matrices, for example the one shown in Fig. 1.17 for the con-
sidered channel. This diagram can be expressed mathematically

as ( reading Fig. 1.17 from right to left as a convention )

t1g'2t? (1.93)
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where the superscript on ¢t denotes the particle which is not
interacting in the three-body system. Hence, t! is the t-matrix
for the interaction of particles 2 and 3 and ¢ is that for particles
1 and 3. The discussion of the last section makes it clear that
both t! and #? matrices in Eq. (1.93) are on-shell, meaning they
depend on the invariant mass of the interacting pairs. These
t-matrices are always obtained by solving the Bethe-Salpeter
equation, Eq. (1.19), in the coupled channel approach with the
potentials obtained from the Lagrangians given by Eqs. (1.1),
(1.2).

For example, to obtain the 7%7 — 7%n t-matrix for the
diagram of Fig. 1.17, we would take 7N, nN, KA and KX as
the coupled channels, which means Eq. (1.19) is solved with the
potential,

Vir0p—ron Vﬂ'on—ﬂ'{'_p Vﬂonann
Vﬂ*p—ﬂron Vw*p—wr*p Vﬂ*p—mn
Y= VT)TLHT(OH Vnnﬂﬂ—p Vnnﬂnn

VK*Z*—ern VK*Z*—)ﬂ*p VK*Z*—mn

V05070, VKoonﬂ—p VKoonnn

VKOA—WTOTL VKOA—wr*p VKOA—mn
and the t0,,_, r0,, element of the resulting matrix would be in Eq.
(1.93) as t? and t!. As shown in Fig. 1.9, there are six possible
three-body diagrams involving two t-matrices. To calculate all
these diagrams for the 7%7% channel, we would require the 77
t-matrices also, which we would calculate by solving the Bethe-
Salpeter equation with 77, 7 and KK as coupled channels
(as done in [2,3]), with the potentials obtained from the chiral
Lagrangian of Eq. (1.2).

The ¢g'2 in Eq. (1.93) is a three-body Green’s function which

can be written as

g2 = M;
By(¥; + F2)
y 1
Vs — El(%i) — EQ(EQ) — E3(l§i + E2) + i€

(1.94)
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Figure 1.19: A diagram involving three t-matrices.

Therefore, all the diagrams in Fig. 1.9 can be expressed math-
ematically as t'g”t/ with i # j = 1,2,3. In this discussion we
have taken one channel, 7°7%n, as an example but normally
our calculations require taking several coupled channels into
account. Hence t', ¢” and #/ are normally matrices and the
elements of the g%/ matrix have a general form

- 2N,

r=1

1

X — — = JFL#5,=1,2,3
Vs — Eij(ki ) — Ey(ki + kj) — E;(kj) + ie

(1.95)

where the subscript ¢ represents an element of the matrix?, D
is the number of particles propagating between two t-matrices.
Following the normalization of [80], N, = 1 for a meson and
N, = 2M, for a baryon with M, being the mass of the baryon.
k?;/(k:_;) in Eq. (1.95) denotes the momentum of the ith (jth)
particle in the final (initial) state.

1.3.3 Higher order diagrams

The calculation of diagrams with more than two t-matrices in-
volve a loop of three propagators and three two-body t-matrices,

“In this Thesis the subscript “¢” shall always represent an element of a
matrix
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as shown in Fig. 1.19. The contribution of this diagram can be
written mathematically as

3
/ é:)lgtl(@ Vg2 (kr, @) (s5) g™ (@, k)t (s23)  (1.96)
Note that, while so3 in Eq. (1.96) can be defined from the exter-
nal variables for the diagram shown in Fig. 1.19, the argument
sg31 of the t’-matrix is a function of the loop variable and must
be kept in the loop integral. The s} can be defined in terms
of the loop variable, g1, which is the four vector of the particle
2 with ¢ defined in the global center of mass system (see Eq.
1.36)

831 = (P — Q1’q?:E2(q*1))2- (1.97)
In the equation written above, P is the total four momentum
of the three-body system
Therefore, the two ¢! matrices can be extracted out of the
loop integral, but not t*>. However, we would like to factorize
the t2¢g?'t? term outside the integral, because in this way the
multifunction integral (1.96) simplifies to that of a single func-
tion, which could ultimately speed up the numerical calculation
of the Faddeev equations. The expression in Eq. (1.96) can be
rearranged as

3
t1(823)[/éTq)13912( L (s5) g (@1, k)

x [921]_1[t2(831)]_1] t(s51)97 t' (523) (1.98)

where an identity expression depending on the on-shell variables
has been introduced, i.e., [¢?1] 7 [t%(s31)] 1% (s31)9°

We define the expression in the square bracket in Eq. (1.98)
as

dqy .
G2 — / @)y GRF2N (G, K, Ky, 1) (1.99)
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with
FlQl(qlagévglvsgi) = t2(8§11) X 921(9717];1)
—1

x g7 (R, k)] [ (V/san)) 7 (1.100)

In this way, the contribution of the diagram in Fig. 1.19,
thus, can be expressed as

G E = ! (Vam) G (V)
x g% (b, k1 )t (v/523). (1.101)

The F'?! function contains the inverse of t? calculated as a
function of s31, which is evaluated in terms of on-shell variables.
It also depends on the ¢?' propagator which is a function of
the loop variable, and also involves the inverse of g?' on-shell.
In this way, [¢2! (Kb, k1)] ™" x [t2(\/531)] 7! in F'?! (and hence in
G'2!) when multiplied to tQ(\/@)gm(l_{Q, k1) in Eq. (1.101) give
an identity leaving t?¢*! evaluated with the loop variable in the
loop integral. Simplifying Eq. (1.101) we arrive to Eq. (1.96),
which is the appropriate contribution of the diagram in Fig.
1.19. However, for convenience, we will replace in Eq. (1.99)
the ¢'2 propagator by the corresponding one written in the rest
frame of particles 2 and 3, §'2.

KT M; 1
e = 9B (q1) Bs(@h) /523 — Ba(@) — Es(@h) + ie

There are six possible diagrams for the three-body scattering
with two successive (pair) interactions amongst them (Fig.1.9).
There are two possibilities to add another interaction to these
diagrams giving rise to a total of twelve possible diagrams for
three successive interactions and, therefore, twelve correspond-
ing G-functions, with a general definition

L A3k R L .
GZ]k = / (27_(_)3._@”(817717 k”)FZ]k(k‘”?k;’akkusﬁk/) (1102)
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Figure 1.20: A diagram with two concatenated loops.

with ¢ # 7,7 # k=1,2,3,1 #m # 1,l' # k' # j, where the
elements of the §* matrix are given by

Az] Nl Nm
I T SR 2B (R
1

X = =
Vi — Ei(R") — Eny (k) + i€

and the matrix

(1.103)

FIRE" K ki, shp) =t (shpe) x g7" (K" Ko
X [gjk(/z},Ek)]_l[tj(sl'k/)]_l- (1.104)

The integrals of G* are regularized with a cut-off of 1 GeV in
the modulus of the momentum, which if changed to 1.5 GeV in-
troduces less than 1% of a change in G. A diagram with three ¢-
matrices is, thus, written as t!G7*tJ g7/kt* instead of t'g"ti g7* ¢k,

The formalism is further developed by repeating the above
procedure for higher order diagrams too, i.e., by replacing the
g% propagator by the G¥* loop function every time a new in-
teraction is added.

In case of the diagrams with more than three ¢-matrices,
this scheme involves an approximation, since the introduction
of a new interaction, to the diagrams of the kind shown in Fig.
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1.19, replaces the external variables in the latter case by vari-
ables of a former loop. This procedure, which would render the
integral Faddeev equations into a set of algebraic equations, is
certainly very economical in terms of numerical solution and a
justification for its use is given below.

Let us discuss in detail a diagram with four ¢-matrices as
shown in Fig. 1.20, as an example. This diagram is written
explicitly as (considering only one meson-meson-baryon channel
for simplification)

dq 1
t1G121t2G212t1 12t2 — tl / -
g e\ | Gmp 2B

» Ms 1
E3(q1) /523 — E2(q1) — E3(q1) + ie

x g (@, k1) [g (R, )] ! [tQ(\/E)W)tQ(\/@)

) / dp 1 M 1
(2m)3 2E1(q2) E3(q2) /531 — E1(q2) — E3(q2) + e
x t'(s%3) 9" (G, k2) 9" (K1, /52)]_1[t1(\/@)]_1>
x t'(V/523) 9" (K], Ka) £ (/531) (1.105)

which can be simplified to

dqy 1 My
2m)3 2E5(q1) E3(qh)
]. 2 ad
X _ _ —t2(s* (@1, k
/—82 _EQ(q1) _ES(C]l) T e ( 31)9 (ql 1)
- o A 1 My
% 21 k,,k 1/ - 2
o= M | o 25 @) B

A [ ¢

x ! £(s2)
V531 — Bi(@) — Bs(qp) +ie 23
x g (@2, k)t (\/531), (1.106)
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where s33 is calculated analogously to Eq.(1.97). We compare
our expression (1.106) with the corresponding one written in
terms of the g propagators with the concatenated two loops

dg dg. i q1
Fve [/ (27%3 / (2Z§3912(k1’QI)t2(831)
x N (1, @)t (553)9" (@2, /52)] £2(\/331)- (1.107)

This exercise shows that the dependence of ¢! on the two loop
variables has been factorized in Eq. (1.106) as

NG, ) = F1(q1) Fald), (1.108)
where
FUq@) = g*M (G, k)™ (K, k)]~ (1.109)
and
1 M
3‘5 = :~21 ) — _ il
2(02) = 57 (¢2) (D) B (@)
1

Ve B@) - @) S

This factorization, which simplifies the calculations to a
great extent, leads to very similar results to those obtained with
the concatenated loop function as can be seen in Fig. 1.21 for
the 7°7%n system as an example. We show the mod-square of
the Eq. (1.106) and Eq. (1.107) as a function of the invariant
mass of the three particles in the energy region where, as we
shall show in chapter 4, the N*(1710) gets dynamically gener-
ated.

The agreement of the results depicted in Fig. 1.21 shows
that Eq. (1.106) is a good approximation of Eq. (1.107). Hence,
this scheme is used to write the rest of the higher order diagrams
which contribute to the three-body amplitude.
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Figure 1.21: The comparison of modulus square of Eq. (1.106)
and Eq. (1.107) shown as dashed and solid lines, respectively,
in units of 10715 Me V=5,

1.4 Reformulation of the Faddeev equations

If we sum Eqgs. (1.17), (1.101), (1.105) and all the other possible
diagrams with the last two t-matrices as 2 and t!, we get the
series

t1g12t2 + t1G121t2g21t1 + t1G121t2G212tlgl2t2 4.
+ t1G123t2923t3 4 t1G123t2G232t3932t2 4o (1111)

which we define as T’ }122. Similarly, we consider all other possi-
ble diagrams obtained by permutating different interactions be-
tween the three hadrons and get the following equations upon
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summing all the diagrams with the same last two ¢-matrices
T2 = 411242 4 41 (12t T2 4 G128 T}%P’-
T3 = t1g1343 4 41 :G 18131 182 T}gzz
T2 = 262141 4 42 :G212T1%2+G213T1%3: (1.112)
T2 = 22343 4 ¢2 :G231 T3 4 G232 T}%2:

T]%l — t3931t1 + t3 G312 T]%Q + G313 T]%:S

T]%Q — t3932t2 + t3 G321 T]%I + G323 T}%B

In Eq. (1.112) all the loop dependence is assembled in the loop
function G¥*, therefore, they are algebraic equations. The Ty
partitions consider all the different contributions to the three-
body T- matrix in which the last interactions are given in terms
of the two-body t-matrices t/ and t’, respectively. The Ty Y ma-
trices are related to the Faddeev partitions T° through

=0%(k; — k! t“rz Z T (1.113)
1=1 j#i=1

—

with j £k #£i=1,2, 3and (ki — k) = [(2@3&53(%} - /2;)]

where
' \/2w )1/ 2w( k’ 1=1,2
Mo (/20 k) 20(8)) / (Vami/2n) i =3.

for a two meson-one baryon system and

Ni =\ 2w(k)\/20(K), i=1,2,3

for a three meson system. The & (E;) is the initial (final) mo-
mentum of the particle . The subscription R on 7% signifies
that these equations do not contain the terms corresponding to
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the disconnected diagrams but are composed of the rest of all
the terms for the connected diagrams. Thus, the full three-body
T-matrix is given by

3 3
T=YT'=> 8k —k)+Tr
=1 i=1

3 3
Tr=)Y_ > 1Y (1.114)

i=1 j£i=1

As our objective is to search for peaks in the T-matrix which
can be associated with physical states, we can restrict ourselves
to the study of the properties of

3 3
Th=Tr—Y > tgt (1.115)

i=1 j£i=1

since neither ti53(Ei’ — k;) nor the tig¥tJ terms can give rise to
any three-body resonance.
This chapter can be summarized as follows:

1. The Faddeev equations have been obtained by evaluating
the contribution of the different Feynman diagrams with
different interactions between the three particles which
form the system under study.

2. The off-shell part of the two-body amplitudes calculated
from the chiral Lagrangians gives rise to three-body forces,
when plugged in the Faddeev equations. All such terms
when added to the three-body contact term of the same
Lagrangian cancel in the SU(3) limit and give a negligible
contribution for a realistic case. Then, in such a formal-
ism, the Faddeev equations can be solved with the on-shell
part of the two-body t matrices.

3. The contribution of diagrams with more than three ¢t ma-
trices is written by collecting all the loop dependence in
the G¥* functions.
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4. Writing the higher order terms with the same procedure
involves an approximation which has been illustrated to
be excellent for our purpose.

5. Finally we obtain six coupled equations which appear as
reformulation of the Faddeev equations. These equations
have the advantage that they are algebraic equations in-
stead of integral equations. The solution of these equa-
tions and its interpretation requires more technical infor-
mation like kinematics, isospin algebra and the correspon-
dence of the peaks found in the amplitude to poles. We
will focus on all these topics in the next chapter.






CHAPTER 2

LFormaIism Il: Kinematics, Isospin and poles

In the last chapter we derived the equations which we will use to
investigate three-hadron systems made of mesons and baryons.
In this chapter we will define the kinematics for these equations
and we will also discuss the algebra for the isospin projection
of the three-body T matrix. This will be useful in interpreting
the results in the subsequent chapters of this Thesis. Finally,
we will show the correspondence of our results to the poles in
the complex plane.

2.1 Kinematics

We now define the kinematics for the system. The first choice
we make is that all the calculations will be carried out in S
wave. There will be always two variables in the calculation: the
total energy of the three-body system, denoted as /s, and the
invariant mass of the particles 2 and 3, denoted as /s23. The
other invariant masses are obtained in terms of these variables
as

V3(/5E — Br)(sa3 +mi —m?)
523

Sij = S+ mi — (21)

7
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with my being the mass of the non-interacting particle and

s — So3 +m7
25

The definition in Eq. (2.1) implies an angular average between
external momenta suited for the study of s-waves.

B = (2.2)

From all this we can calculate the momenta |k1,|¥}| of the
particle 1 in the global center of mass system and that of the
particles 2 and 3 in their rest frame (Rs3), which we denote as
K (K’) in the initial (final) state;

- 1

’kl’ — 2—\/§A1/2(8,823,m%)

- 1

’ki’:: 5;7§A1/2(8,823,7n32) (2.3)
~ 1

‘K’ = 2—\/@)‘1/2(3237m%7m§)

= 1 2 2
K| = 5= (s23,m5", m}").

V523

The calculation of the g% propagators for different diagrams
requires the momenta of the particles in the global center of
mass. For this, we boost the momentum in Ra3 to the global
center of mass using the relations [84]:

P = (\f—El(/ﬁ) B 1>1?./21 _ EJ(K) B4R
I 593 1_5% \/523
Fy = (\/g_El(kl)_1>(_ q)'El_Egl,%QS(K) PR
I 593 Ef \/$23
. i _E 7 ff’- 7 E Ros3 Kv’/ R R
N R, V523
E/ _ (\/g_El(_‘ll) _ 1) (_K/) ) kll o E3R23(K,) i’ _[‘{’/
N AV 2 V523
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We are going to work with t-matrices calculated in S wave.
Therefore, all the angular dependent expressions have to be pro-
jected in S wave. Having defined all the variables it should be
noted that the projection in S-wave consists of integrating over
the angles of these momenta

@/dQ(l%l)/dQ(f()/dQ(/%ﬁ)/dQ(k')- (2:5)

We define k1 to be along the z-axis,which implies a symmetry
under a global rotation along the ky axis, and K to form a plane
with k1, i.e., its azimuthal angle ¢ = 0:

0 | K | sinf
ki=| 0 K= 0 (2.6)
| k1 | | K | cost
| B! | sind|cosd | K' | sinf'cos¢’
K= |# 5 sinb sing} K'=| | K| sinf'sing’
| K | cos®, | K| cost

with the definitions and expressions defined until now we can
calculate the TZIf partitions up to second order in ¢ using

1. The invariant mass /s23 and others defined by Eq. (2.1)
for calculation of the two-body ¢ matrices.

2. The momenta k;, Eg defined by Eqs. (2.3,2.4) along with
the directions defined by Eq. (2.6) to obtain the g% func-
tion, which, as discussed earlier, are on-shell in nature
since we know two of the three momenta in the global
center of mass and the third one can be always obtained
from the law of conservation of momentum in the global
center of mass, i.e. k1 + kg + kg =0.

Before we proceed with other definitions, we should discuss the
kinematical dependence of the ¢ functions in more detail.
There are no problems in the calculations of the g% propaga-
tors if we are above the threshold(s) of a system but it gets non-
trivial if we are below threshold(s). A three-body system com-
posed of particles with different masses has multiple thresholds.
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In our case, where all the kinematics is defined in terms of /s
and /s23, we would have the three-body threshold m+ma+ms,
other would be /s23 = mo+m3 and yet another threshold would
be \/s23+m1. When we calculate the three-body equations, de-
pending on the energy range which we consider, one or more of
the following conditions might be satisfied

I)/s>mi+ma+ ms.
1I ) \/S23 > Mo + Mm3.

111 ) \/g > mq + /S23.

IV ) \/§<m1+m2—|—m3.
A\ ) \/S23 < Mo + ms3.
VI ) \/§<m1+\/523.

If all the first three conditions are satisfied, the momenta and
energies are real and trivial to calculate. However, if the con-
dition V or VI or both are satisfied, we need a procedure to
continue the Tff equations below threshold. For example, if

Vs < mq + /s23, then |k1| gets purely imaginary, which makes
the momenta ks and k3 calculated from Eq. (2.4) complex,
which in turn makes Fo and E3 complex. Another example is
if \/s23 < ma + mg. In that case, we have |K| purely imagi-
nary and its use in Eq. (2.4) again gives complex momenta and
energy. In order to avoid such unphysical situations we do the
following:

1. If \/5 < my + /323, we fix |k1| to a minimun value, |k | =

Pmin = D0 MeV.
2. If \/s93 < mo + mg, we introduce a binding energy, Bas,
such that
Pinin | Pimi
/823 = —Baz + T 4 R 4 my 4 mig (2.7)

2m2 2m3
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and
By p2,
EQ = —— 4+ —min + meo
2 2mo
B  pZ
By = ——— 4 un . 2.8
3 2 + 2ms +ms (2.8)

The Bss in Eq. (2.8) can be calculated by fixing the pyin
(typically 50 MeV). The philosophy used is that the par-
ticles below threshold(s) are bound and have a physical
momentum and energy. This is indeed the real case and
our approach tries to stick closely to that situation.

With this philosophy, a binding energy can also be defined
if the condition VI is satisfied. Let us assume that in
the case of /s < my + /523 the three-body problem is
reduced to a bound state of particles with mass m; and
/523 having a small center of mass momentum p,,;, and
a binding energy B. Then,

Vs = E1+\[s23+ Py,
= \/(ml = B)? + P + \/823 + Pin

Rearranging the equation written above, we get

<\/— — /823t pmm> ) + pmzn

which means,

<\/§ -V 523 +pmm> pmzn - ml B)2

and hence

2
—B=4 <\/§— S23 +p$m-n> _pgnin'
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In the above equation, we choose the positive sign since
otherwise we will have m; < B which does not make sense.
Thus,

2
B=mj— <\/§ — 1/ 823 +p$nm> - pgnin' (2'9)

Although, as we will see in the following chapters, practically all
the resonances found are far above any of the thresholds listed,
in cases where we need to use the procedure described above,
we have analyzed the dependence of the results on the p,in.

Finally it remains to obtain explicit expressions for the in-
variant masses in terms of the loop variable which will be neces-
sary to calculate the two-body ¢ matrices in the loop functions
of Eq. (1.102). In general all these invariant masses can be
defined as

sy = (P — Q)Q\qozé(q—) (2.10)

where P is the four vector of the three-body system in the global
center of mass frame, P = (y/s,0), and ¢ is the four vector for
the loop variable. This means

sho=s+mi—2V5 E(@), k#i#] (2.11)

with Ek((j) = 6_72 + mi

We shall always need the sgj in the calculation of the G*/*
functions. As discussed in section 1.3.3 the loop variable, ¢,
in the G%* functions is defined in the center of mass of the
two propagating particles of ¢ (see Eq. (1.103)). However, to
calculate Eq. (2.11) we need to boost the ¢ to the global center
of mass frame.

We shall now describe the method to do this for one particu-
lar diagram as an example. In all other cases we can proceed in
completely analogous manner. Let us consider the ¢! G121¢2¢?1¢!
term, which has been discussed in section 1.3.3 and which is
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shown diagrammatically in Fig. (1.19). In this case, we want
to evaluate si] to calculate the t2 matrix in the loop. From Eq.
(2.11)

3 =5 +m3 = 2v/s - Ba(q1) (2.12)

with m9 the mass of the particle which has four momentum ¢,
and Fs(q1) the energy of that particle in the three-body center
of mass frame. Since G'?! contains a propagator §'? which is
defined in the center of mass frame of particles 2 and 3, ¢7 and,
hence, Fy(q)) in the diagram Fig. 1.19 is defined in the rest
frame of particles 2 and 3. Let us denote the rest frame of
particles i and j by R¥. Thus we need to boost Es(q1) from
R?*? to the global center of mass to calculate sd]. Using the
Lorentz relations

_ ESMB(g,) + 0gy

Es () 2.13
Q(Q1) m ( )
with ¢ the speed. In this case
7/
U= . W (2.14)

Vs — Ei(ky)

Using the relation ESM%(q)) = \/q? +m3 in Eq. (2.13), we
have

NGV El(k) —q - K
E2(q1): ql 2(\/7 8231( 1)) q1 1’ (215)

which when substituted in Eq. (2.12) after averaging over the
angles gives

@& +m3(V's — Er(ky))
—2/s .
\/ 523
We end the present section by stating that now we have all

the information and expressions required to solve the T equa-
tions. Before going ahead and discussing the study of different

sit = s+ m3 (2.16)
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three hadron systems within our formalism, we need to define
some isospin base in order to interpret our results. We give a
short note on the method of projecting the 7% matrices on the
isospin base.

2.2 Isospin base

We shall construct the three-body Tpr-matrices using isospin
symmetry, for which we must take an average mass for the
isospin multiplets 7 (7%, 7%, 77), p(p™, p°, p7), K (K°, K7),
K(K+ K%, K*(K*°, K*~), K* (K**, K*9), ¥ (2,30, %7),
N (p,n), and = (2, =7). However, the evaluation of the scat-
tering matrix is done in the physical base of states. In order to
identify the nature of the resulting states, we project the Tg-
matrix on the isospin base. One appropriate base is the one
where the states are classified by the total isospin of the three
particles “I” and the total isospin of a subsystem “Ig;”. We
thus label the states in the isospin base as | I, Is,p). Obviously
transitions between states with same total isospin but different
isospin of a subsystem are possible. As we will show, the peaks
in the amplitudes are nevertheless seen more clearly for some
particular isospin of the subsystem, indicating that the domi-
nant structure of the state found in the three-body system has
a certain value of the total isospin and that of the isospin of
a subsystem. We can thus write our Tr-matrix in the isospin
base, in general, as (I, Iy | TrR(\/S, /523) | I, 1IL,;)-

Normally, if we consider three particles with isospin 17, Is
and I3, respectively, we start by writing the three-body states
as

(11, Ip, Is) = |10, 1) @ |1, I5) @ |13, 13) (2.17)
which could be written in one of the following ways

|1, Iz, I3) = |12, IT5) ® |13, 15) = |I, I12)
= |Ilvllz> ® |I23712Z3> = |I7 IQ3>
= |12712Z> ® |I317]§1> = |I7 I31>



2.3 Poles in the complex plane 85

where Ij,,, denotes the total isospin of the (Im) subsystem and
the z superscript indicates the third isospin component.

Having classified the Tr matrices in the isospin configura-
tions, we will plot the resulting modulus squared amplitudes
for different channels as a function of the two variables of the
formalism, /s and /sz3. We would identify the peaks in these
plots as resonances. The question now arises is if these peaks
correspond to poles in the complex plane. We address this ques-
tion in the next section.

2.3 Poles in the complex plane

The peaks obtained in our formalism are very neat and we as-
sociate them to physical resonance states. In the two body
scattering it is customary to look for poles in the second Rie-
mann sheet to associate them to resonances. In the three-body
problem, the difficulty to work with two complex variables, /s
and /sy which induce complex three momenta needed in the
evaluation of integrals are obvious. Yet, an approximate method
can be devised for the case when a subsystem of two particles
can be treated as a resonance. Therefore the three-body system
can be interpreted as a system of a particle (P) and a reso-
nance (R). As we will see in the next chapters, this is indeed
the case for the different three-body systems studied, i.e., the
resonances normally appear when two out of the three hadrons
rearrange themselves as a know resonance. For example, the
NKK system where a resonance around 1920 MeV is found
can be considered as a Nag(980) or N fp(980) system. In such
cases, the three-body problem is reduced to a two-body scat-
tering and usual poles can be identified in the complex energy
(v/s) plane. Thus, as long as the resonances found in our work
follow an approximate Breit-Wigner shape, the poles in the sec-
ond Riemann sheet are guaranteed. Yet, we have looked at it
in more detail, though, in a simplified way. Let us consider, for
example, a three meson system. We keep the variable ,/s23 as
real, and we fix its value to the one where the peak appears
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and then study the PR (particle plus a two-body resonance)
amplitude as a function of the complex /s variable. We must
move to the second Riemann sheet in the PR amplitude which
is accomplished by changing the momentum in the PR center of
mass system, kp — —kp in the PR loop function. We proceed
as explained below.

The unitarity condition allows us to write [4]

Tpr=Vpph—Gpr (2.18)

with Vppr the real potential and Gpg the PR loop function
used in Eq. (1.14)

Going to the second Riemann sheet implies substituting
Gpr by ég Ry Where ég p is obtained by changing kp with
—kp in the analytical expression of Gp g [79]

2 2 2

~ 1 m m% —m%b+s,_m
Gpr(Vs) = 16?{@(#) ‘H’nu—f + % nm—g

+ k—\/g [ln{s — (mp —m¥%) + 2kp/s} + In{s + (mp — m%)
+ 2kp\/s} — In{s — (m% — m%) — 2kp/s}

—In{s + (m%H —m%) — 2kp\/s} — 2m’] } (2.19)

Thus we can write

(Tp )" = (Vpr) = (Gpr)
=(Tpp) +Gpr— (Gpr)""
_ kp
=(Tpp) —i—— 2.20
( PR) t 45’ ( )
where I and I1 superindices indicate the first and second Rie-
mann sheet, respectively. We can approximate T of Eq. (1.114)
by a Breit-Wigner form as

2

g
Th ~ 2.21
B s 5o+ iMT(s) (2:21)
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In the vicinity of a resonance, Tp g must be proportional to Tg,
implying then Tpr = olr. Assuming « to be real and using
the unitarity condition Im{Tp} = —Im{Gpr} we have
Im{Tp 3} = a ' Im{Tx"}
kp
=—-Im{G =— 2.22
m{Grr} = ¢ Nk (2.22)

which determines o. Therefore

(T];}{)I — (OéflTEl)I

_ kp —1
_(SWE Im{TRl})ﬁM f (228)

which leads to

_ kp 1
=L\
Tr ) <87T\/§MF>\/5M
kp

— MID) —i———= 2.24
X (s — 8o+ 1MT) Z47r\/§’ (2.24)

which upon taking into account that the decay width of a two
meson system

1
r=—¢k 2.25
87rsg P ( )

with kp being real, results in

Then (T ;) has a pole at

2v/s — M
S — 50 — ’ng—:_ (_\/g >92 = 07 (227)

which appears indeed very close to Rey/s ~ /sg and Im./s ~
I'/2 as we have checked numerically for different cases, taking sg
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and ¢? from the shape of Tr. We also get the complex conjugate
pole taking another branch of the logarithm.

With the end of this discussion, we have completely pre-
pared the base for the three-body calculations. In the next
chapter we discuss the study of the 7K N system and its cou-
pled channels for strangeness -1 and total charge zero. As we
will show, these meson-meson-baryon systems generate several
resonances dynamically.



CHAPTER 3

The low lying 1/27 ¥ and A states

The formalism developed in chapters 1 and 2 shall now be ap-
plied to the 7K N system. The calculations are carried out as
a function of two variables: the total energy of the three-body
system and that of the KN subsystem and its coupled chan-
nels. A short introduction is followed by a technical discussion.
Finally, the results are projected on the isospin base and peaks
in the total three-body T-matrix are shown.

3.1 Introduction

One of the successes of unitary chiral dynamics is the repro-
duction of the A(1405) Sy (J¥ = 1/27) properties, which has
been found to get dynamically generated (with a two pole struc-
ture [8]) from the KN interaction and its coupled channels. If
another pseudoscalar meson is added to this system, in S-wave,
it results into states with spin-parity J* = 1/2F. The lightest
pseudoscalar meson which can be added is the pion. The result-
ing three-body system would posses a mass ~ 1570 MeV. This
is exactly the region where the 1/2% hyperon resonances have
poor status. The poor status of these low-lying S = —1 states is
evident from the following facts: a) The spin-parity assignment
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for many of these states is unknown, e.g., for ¥(1480), ¥(1560),
etc., b) the partial-wave analysis and production experiments
have been often kept separately in the PDG listings, e.g., for
¥(1620), X(1670), c) other times, e.g., in case of A(1600), it is
stated that existence of two resonances, in this energy region, is
quite possible [22]. Indeed, there are hints for some of them to
decay to three-body final states, like A(1600) [23], 3(1660) [24].
Therefore, some of the 1/2% resonances in the S = —1 sector
have an appreciable overlap with two-mesons and one baryon
states. An additional encouragement comes from the finding
that the two meson cloud gives a sizable contribution to the
mass in the spectrum of the 1/2% baryon antidecuplet [21]. The
chiral dynamics has been used earlier in the context of the three
nucleon problems, e.g., in [85]. Here we present the first study
of two mesons-one baryon systems applying chiral dynamics to
solve the Faddeev equations. As shall be described in this chap-
ter, our calculations for the 7K N system and its coupled chan-
nels reveal peaks which we identify with the resonances ¥(1770),
¥(1650), 3(1620), X(1560), >(1480), A(1810) and A(1600).

The strong coupling of the KN to the A(1405) resonance
implies that the correlation of the KN and its coupled channels
should be largely kept during the three-body scattering. Thus
to solve the equations (1.112) we assume a given invariant mass
for the KN system and the three-body T-matrix is, therefore,
evaluated as a function of this mass and the total energy, which
we denote as so3 and s, respectively. The other variables on
which the two-body t-matrices and the propagators depend are
defined in chapter 2. As has been already mentioned in chapter
1, the two-body t-matrices depend on the total energy, s;;, in
the corresponding two-body center of mass. The expression for
the s12 and si3 obtained from the energy conservation from
the external (on-shell) variables is given by Eq. (2.1). Note,
however, that in the loop functions the invariant mass of two
particles, as we discussed in sections 1.3.3 and 2.1, is a running
variable and it is taken as such in the integral Eq.(1.102).
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3.2 Coupled channels

The three pair interactions in the 7/ N system are attractive in
Nature and generate resonances in certain energy region. The
7K system generates the scalar x(800) [3]. The KK, 7m and
7 systems generates the f((980) and ay(980) states. The 71N
and its coupled channels generate the N*(1535) and the K N in-
teraction (and coupled channels) form the A(1405). Certainly,
we can choose to study the three-body interaction in an energy
range where resonances get built in one or more pair interac-
tions. This augments the possibility of formation of a three-
hadron resonance. For example, if we vary the invariant mass
of the KN system around that of the A(1405) the total mass of
the 7K N system will be around 1540 MeV. By varying the total
energy from 1500-1800 MeV, we can scan exactly that energy re-
gion where the S = —1 resonances are not well understood and
which we expect to couple strongly to three-hadron channels.
This, in a way, is equivalent to study the wA(1405) interaction.

Hence, we start by taking all the combinations of a pseu-
doscalar meson of the 0~ SU(3) octet and a baryon of the 1/27
octet which couple to S = —1 with any charge. To this system
we add a pion and obtain twenty-two coupled channels with
net charge zero: 7K ~p, 79K, 107080 797ty 70x—2+,
707N, 79930, 709A, 7OK+T=-, 7OK20, xtK—n, nta'%—,
T~ 20, ntn—A, TNy, atKOZ~ 7= K%, 7= 7%+, 77t %0,
a~rtA, 3t T KT=E0. -

Thus we solve the six coupled Tj equations for the above
mentioned twenty-two coupled channels. It is the cancellations
found in section 1.3.1 along with the characteristics of the for-
malism, rid of uncertainties from the off-shell parts of the ¢-
matrices, which makes the numerical calculation of the present
order feasible.

3.3 Isospin formalism

In order to identify the nature of the resulting states, we project
the T-matrix on the isospin base. We choose as base the one
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where the states are classified by the total isospin of the three
particles, I, and the total isospin of the two mesons, I in the
case of two pions. Using the phase convention | 77) = — | 1,1),
[K) = —|1/2,-1/2), | 5*) = — | 1,1) and | 27) =

—|1/2,—1/2) we have, for example, for the the 77 % channel

® |13 =113, =0)

2 1
— ) =21 =0)— /= | I; = 0,1, = 0
{\/;‘ > \/;‘ >}

® I3 =1,I5 =0)

2 2
=4/ |I[=31;,=2)——|I=1,1,=2
Velr=sm =22 ji=1n=2

1
/= |I=1,I;=0
Jii=15=0

To simplify the notation, we omit the label I and I, and write

2 2 1
|7r°7r020>:\/;|3,2>—\/—1_5 | 1,2>—\/;| 1,0).  (3.1)

Similarly,
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/1 [1 1
ta e = —/—13,2 —12—\/j21
1 1
/1 [1 1
Tty =/ — 132 — 11,2 \/j 2.1
1 1
/1 1 [3
Ta0Y Yy = /= 3,2 — 2 12,2) —/— |1,2
1 1 1
2 - sy fE e
N /1 1 [3
Ot ey =— E‘372>_§’272>_ %\1,2>
1 1 1
by 2+ 5L+ E o
/1 1 [3
— 0+
Yy = /= 13.2)+ =122 —4/— | 1,2
1 1 1
by 20— s+ /E o
N /1 1 /3
oty =— E‘372>+§’272>_ %\1,2>
1 1 1
P R E U

These equations are written in a matrix form as
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- S S R
A W 2 A A A A
o I + o + = |

& & S S & S &
O.H + I + o I o
= S S S S S S

Il

~ =N N = = = =
n.O? 27 17 27 17 07 17

— =™ — |
o o o o
_ _

— — —
- — o |© |© — o — | |©

1
12
1

o B2 iz 2E o
|
Zimiw_w ~a & 28 » |8
|

]2
20

0
1
2
1
2

1
10
1
10

S
@& S
_
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Inverting this matrix we have

1
13,2) = —— [2 | 707050~ |t 7™ 20— | 7t 2O
V10

— | a2y = | O rT 2T

— |t | O Zﬂ]

1
12,2) = —5[ |7t 202 ) [ 2t D) - [ A0 )

—|7TO7T72+>}
1
11,2) :—15[—2|w0w020>+|w+w—20>+|w—ﬂ+20>]
3
- 2—0|:|7T+7T02_>-|- | 707t S+ |7 20 2T
+|7TO7T72+>}
1
12,1) :2—¢§[—2|w+w*20>+2|ww+20>—|7T+7r02*>

+ | mat SV | a2 — | 2O E+>]

1
|1,1) = 5{— | 7T 0S4+ | 7Ot )~ | Al )

+ | 707 Zﬂ}

1
10,1) :—[\ﬁfz%—\fﬁz%—yw+7r02*>

V6

+ | mat SV | a2 — | 2O E+>]

1
| 1,0) = ——[ | 0O+ | 7T 2 2O+ |t EO>]

V3

Similarly, other channels can be projected on the isospin
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base defined by the total isospin of the system and that of the
two meson system.

3.4 Results

We plot the squared (1, Lsup|Th|1, Isyy) amplitudes as a function
of /s and /s23 (see Eq. (1.115) for the definition of T},).

[T1? (10"°MeV )

25 —
20 —
15
1.0
0.5
0.0

1360

2% sl
1380 NS §\\§§§§\\§§\§\\§\\\\\\\\\\\\

Vs,3 (MeV) 1400

o 1620 1650 1680

1440
1500 1530 1560 159

Vs (MeV)

Figure 3.1: Two % resonances in the 7Y amplitude in [ = 1,
I = 2 configuration.

In Fig.3.1, we show a plot of the squared Tj;-matrix and
its projection, for the w7 channel in the total isospin I = 1
configuration obtained for the two pions in isospin I, = 2. We
see two peaks; one at /s = 1656 MeV with the full width at
half maximum ~ 30 MeV and another at /s = 1630 MeV with
' = 39 MeV. We identify the peak at /s = 1656 MeV with
the well established ¥(1660 —i100/2) [22] as a resonance in the
Yl system. It is interesting to recall that the excitation of
this resonance is claimed in the study of the K~ p — 707920
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reaction [23]. Note that since we are plotting the squared ampli-
tude, which would be proportional to a cross section of a certain
process, we can associate our results to the ordinary masses of
the PDG and not to the “pole positions” also quoted there.

The peak in squared T;-matrix observed at 1630 MeV with
a width of 39 MeV needs a special attention. The two-star reso-
nance %(1620) [22], though listed as a 1/27 state, seems to be a
very unclear case. The partial wave analysis and the production
experiments have been kept separately in [22] since it is difficult
to know the quantum numbers from the production experiments
and if more than one resonance contributes to a single bump.
Interestingly, there is a 1/2% state found by the partial wave
analysis work of martin et. al. [86] in this region. The authors
of [86] use a multichannel partial wave analysis of the KN data
and find a resonance at 1597 MeV. This result has however been
listed under the 3(1660) in [22]. Another partial wave analysis
of the KN — A reaction made by Armenteros et. al. [87] find
a 1/2% Pj; resonance at 1610 MeV with a width of 60 MeV.
These findings would provide some phenomenological support
to our claim of a 1/2% ¥ resonance around ~ 1620 MeV.

We find two more peaks in the I = 1 sector; one at /s =
1590 MeV with a width ~ 70 MeV in I = 1, I, = 0 state and
another at /s = 1790 MeV with I' =24 MeV in I = 1, I, =
2 case. The former one supports the existence of the ¥(1560)
“bump”, whose spin-parity is unknown [22]. Our results would
associate a 1/2% to the spin-parity of this resonance. The latter
finding supports the one-star 3(1770).

Next, we discuss the three isospin zero states obtained in
these calculations. First we look at states observed in 7K N with
Iz = 1/2. Two peaks in the A(1600) MeV region have been
found at /s = 1568 with a width of 60 MeV and at 1700 MeV
with I'=136 MeV. One should note that the PDG quotes a mass
for the A(1600) between 1560 MeV and 1700 MeV. We should
also note the quoting of the PDG concerning this resonance,
“There are quite possibly two Py states in this region”. Our
results reinforce this hypothesis.
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Finally, in the 77 A amplitude for the I = 0, I, = 0 con-
figuration we find a similar structure at 1740 MeV with the
full width at half maximum being 20 MeV (which is shown in
Fig.3.2). We identify this peak as the A(1810 — 150/2) res-
onance, which is listed as a three-star 1/2 resonance by the
particle data group [22]. We note that there is a large variation
in the peak positions as well as the widths reported by different
partial wave analyses [22] for the A(1810) resonance (the peak
position changes from 1750 MeV to 1850 MeV and the width
from 50-250 MeV). The value 1810 MeV is just an average of
the results of different partial wave analyses.

[Trl? (10°° MeV )

16 —

12

1580

Vs,3 (MeV)

1660 1680 1700 1720 1740 1760 1780
Vs (MeV)

Figure 3.2: The A(1810) resonance in the 77 A amplitude in I
=0,I,=0.

We do not find any states with exotic isospin.

We have investigated the theoretical uncertainties of the
model. We have already mentioned in chapters 2 and 1 that
Pmin and the cut off in the three particle loops do not produce
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practically changes in the results. In addition, we have checked
the sensitivity of our results to the change in the two body input
parameters. We have varied the pion decay constant and the
two body cut offs, by about 5%, which still guarantees a fair
agreement of our two body cross sections with the experimental
ones. We find changes in the peak positions by less than 5 MeV
from each source, or 7 MeV when summed in quadrature. This
gives us an idea of the accuracy of our results.

The states obtained are not exotic and their quantum num-
bers can be reached with just three quarks. But our findings
imply that in Nature these three quarks states unavoidably cou-
ple to two mesons and one baryon, and, that these components
overcome the weight of the original three quarks seed. This
particular nature could be tested experimentally by means of
different reactions, among which, the strong three body decay
channels and the radiative decays should play an important role
and deserve further theoretical and experimental studies.

We conclude the discussion by emphasizing that all the low
lying 1/27 ¥ and A resonances in the PDG [22], up to the 1800
MeV energy region, get dynamically generated as two meson-
one baryon states in these calculations. In addition, we predict
the quantum numbers of the ¥(1560) and also find evidence for a
1/2"7 ¥ resonance at ~ 1620 MeV. Tt is rewarding to see that the
widths obtained in this work, which correspond to decay into
three body systems, are smaller than the total ones to which
the two body decay widths also contribute. There would be no
contradiction with these two body channels having a smaller
weight in the resonance wave functions, as implicitly assumed
in our study, and having a fair contribution to the total width,
since some of the three body channels to which the resonances
couple are kinematically closed for decay, and others which are
open have a far smaller phase space than that available for two
body decay channels.
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We summarize our findings in Table 3.1.

I' (PDG) | Peak position (this work) | I" (this work)
(MeV) (MeV) (MeV)
Isospin = 1
Y(1560) | 10 - 100 1590 70
$(1620) | 10 - 100 1630 39
3(1660) | 40 - 200 1656 30
¥(1770) | 60 - 100 1790 2
Isospin = 0
A(1600) | 50 - 250 1568, 1700 60, 136
A(1810) | 50 - 250 1740 20

Table 3.1: A comparison of the resonances found in our work
with the states listed by the PDG.




CHAPTER 4

LSearching for 1/2%, S = 0 resonances

In this chapter we take the meson-meson-baryon systems with
strangeness zero. We study the 77wV system and coupled chan-
nels using as input for the 7N interaction, first, the amplitude
obtained with the chiral model of [17] and, later, the correspond-
ing one calculated with experimental phase shifts and inelastic-
ities. The results within the two approaches are compatible,
indicating, thus, that in our formalism it is possible to use ex-
perimental amplitudes as input for the Faddeev equations, since
the model does not depend on off-shell parts of the t-matrices.
As we will show, the interaction of the three hadrons considered
in this case generates dynamically three N* resonances, two of
them listed in the PDG [22], the N*(1710) and the N*(2100),
and a new one, not listed in the PDG, at 1920 MeV, and one A
state, the A(1910).

4.1 Introduction

In the previous chapter, the study of systems with strangeness
S = —1 like w3, A, etc., produced resonant states which
could be identified with the existing low lying baryonic J* =
1/2% two A and four X resonances. In this chapter we will
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see if, in similarity with the S = —1 system of the previous
chapter, a study of three-hadron channels with S = 0 also re-
produces all the 1/2 resonances. According to the PDG, in
the S' = 0 sector, there are three N* resonances, concretely, the
N*(1440), N*(1710) and the N*(2100), and two A states, the
A(1750) and A(1910), with JP = 1/2F. For the first two N*
resonances, the large branching ratio found experimentally to
the 7N [22] channel already indicates a possibility of inter-
preting these states as three-body resonances. A study of the
mwN system and coupled channels is thus important in order
for clarify the nature of these states.

With this perspective and motivation let us tackle here the
investigation of three-body systems with two mesons and a
baryon with strangeness S = 0.

Before we start, we recall that the work of [17] shows that for
the wN interaction the chiral unitary approach using the lowest
order chiral Lagrangian provides a fair amplitude up to /s =
1600 MeV but fails beyond this energy. For instance, in [17] the
N*(1535) gets dynamically generated but the N*(1650) does
not appear in the approach. As a consequence, any three-body
states which could cluster a 7N subsystem into this resonance
would not be obtained by solving the Faddeev equations with
the chiral amplitude of [17]. We will first discuss the study of
the mm N system and its coupled channels made by taking the
7N interaction from the correspondent chiral Lagrangian. It
will be shown that such a study generates the N*(1710) which
couples almost only to the 77N channel. But no other 1/27
resonances are found. Next we will investigate the same system
but using experimental 7N amplitudes and will show that in
this case not only we reproduce the N*(1710) resonance without
practically any modification with respect to the case in which
chiral amplitudes are used as input in Eq. (1.112), but the use
of a more realistic 7V interaction at higher energies leads also
to the generation of the N*(2100) and the A(1910) resonances
too.
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4.2 Studying the 7w N system with chiral amplitudes

Since the Roper and the N*(1710) resonances are expected
to couple strongly to two meson-one baryon channels, we cal-
culate the T matrix in Eq. (1.114) in s-wave for fourteen
coupled channels: 7%7%, 797 p, 7OK+¥~, 70KO%0 70KOA,
7T077n, atrn, 7t KOS, r=ntn, 1%, n~ K+E0, 7~ K09+,
7 KTA and 77 np as a function of /s and /sa3 in the energy
region 1300-2000 MeV. However, we have checked that the effect
of the KA, mK%, mnX and mnA channels in the energy region
studied is negligible and the results remain mostly unchanged
by using only the five 7w N channels listed above. Since we work
with interactions in S wave, all the angle dependent expressions
are projected in s-wave. The Tr-matrix (Eq. (1.114)) is then
projected on the isospin base defined in terms of the total isospin
of the three body system, I, and the total isospin of two pions,
Iy, defining the states as |I, I;r). These states are obtained
assuming the phase convention for | 7) as — | 1,1). We write
the state | 7° 7% n), for example, as

| 70n) = 1,00® | 1,00® | 1/2,-1/2)

{\/>]IM2,I§W— \fumo,fg,r_m}

®|1/2,-1/2)

2 2
=[S T=5/2 T =2) + —— | [ = 3/2, In =2
Jai=5/ )= 1 1=3/ )

1
—\@|J:1/2,1m=o>

To simplify the notation, we omit the label I and I;; and write

\fy5/22 = 13/2.2) - \fy1/20
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Similarly,

|7t 7 n) = \fwn \f|3/22 \f|3/21
—\ﬁrl/w—\ﬁu/m

n ) \fwn \f|3/22 \f|3/21
+\@11/2,1>—\/;\1/2,o>

w—w°p>=\/§|5/2,2>—\/?%|3/2,2>
—\/213/2,1>+\/§\1/2,1>

w%—m:\/§|5/2,2>—\/?%|3/2,2>+\/g|3/2,1>
- ﬁ 1/2.1). (4.1)

From Egs. (4.1), one can obtain

| 5/2,2) = \/I(ﬁhroﬂon)—k | 707" p)+ | 7~ 70 p)

\[Mwn \fmwn)

13/2,2) = \/;(m W) - w0 ph - S 7 a%)
—|rtr ny— |7 7t n>> (4.2)

| 1/2,0) = —\/g( | 7070 n)+ | 7t T n)+ | 7T_7r+n>>.

One could equivalently define the states in terms of the total
isospin and the isospin of a pion-nucleon subsystem (I:n) by
repeating the former procedure or using the Racah coefficients
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Figure 4.1: The squared amplitude for the mwN system in
isospin 1/2 configuration as a function of \/s and /S23.

for the transformation of the | I, Ir) states to | I, I n) states as
explained in section 4.1. But we discuss only those amplitudes
where we find a resonance.

In Fig. 4.1 we show the squared amplitude | T} [*=| Tr —

3

S tigiti |2 for the 7N system, calculated in s-wave and
i#j=1
pi]ojected on the isospin base | I,I.;) =| 1/2,0). A peak at
/s = 1704 MeV, with a full width at half maximum of 375 MeV
(see also Fig. 4.2) is found. These results are in good agree-
ment with the characteristics of the N*(1710) [22] and, hence,
we relate the resonance shown in Fig. 4.1 with the N*(1710).
To get further physical meaning of this peak, we show the same
amplitude depicted in Fig. 4.1, but as a function of ,/s23 and
V512 in Fig. 4.3. The peak in /512 is very wide (width ~ 270
MeV ) and is in the energy region of the o resonance (see also
Fig. 4.4). This means that the N*(1710) has a large 77N com-
ponent where the w7 subsystem rearranges itself as the o reso-
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Figure 4.2: The projection of the amplitude shown in Fig. 4.1.
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Figure 4.3: The same as shown in Fig. 4.1 but as a function of
the wm invariant mass and that of the 1N system.
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Figure 4.4: The projection of the amplitude shown in Fig. 4.3

nance. This gives a natural explanation for the large width of
the N*(1710). The peak position and the width obtained from
the 7w N amplitude in s-wave, where the 77 subsystem forms
the o resonance, show that our results are in good agreement
with the information available from experimental analyses [22].

Although we find evidence for the N*(1710), this work fails
to find any clear trace of the Roper resonance, which means
that considering the 77N system in s-wave interaction does not
suffice to generate the Roper resonance, which is not surprising.
Other works such as the Juelich model [44], which successfully
describes the dynamical generation of the Roper resonance, con-
tains additional information on the 7N, 7A, pN coupled chan-
nels and oV forces beyond the three body contact term of the
chiral Lagrangians which we include here and which cancels the
off-shell dependence of the amplitudes. An important contribu-
tion of the 7A channel and 77 final state interaction (with one
of the pions coming from the decay of the A resonance) to the
Roper resonance has also been claimed in [88]. Such informa-
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tion is not present in our formalism. Things are different in the
case of the N*(1710) with its large empirical coupling to 77N
and weaker to 7N and other coupled channels.

We also do not find any resonance corresponding to the
N*(2100), A(1750) and A(1910). In any case, we did not ex-
pect to find any resonance in the energy region beyond 1800
MeV, since for that the 7N t matrix is to be calculated for an
invariant mass greater than 1600 MeV, where we know that our
input is not good. Also, other three-body coupled channels may
play an important role at these energies which we removed since
they did not contribute much in the generation of the N*(1710).

Another important result of this work is that we do not find
any resonant structure in the total isospin I = 3/2 and I = 5/2
configuration. Should we have found the latter, it would be
exotic in the sense that it would not be possible to construct it
with just three quarks.

4.3 Beyond the chiral description of the 7N interac-
tion

The total energy range studied in the previous section corre-
sponded to a variation of the invariant masses of the 7N pairs
up to ~ 1550 MeV. The calculations developed there are limited
to this energy range because, as it was mentioned in the Intro-
duction, the input /N t-matrix used in that work was taken
from [17] which reproduces the 7N scattering data well up to
about 1600 MeV.

The motivation in this section is to extend the previous
calculations to higher energies by including the N*(1535) and
N*(1650) in the input 7N ¢t-matrix and look for the other three-
body isospin 1/2 and 3/2 states with J© = 1/2F in the 77N
system and coupled channels. In order to do this, we use the
experimental L = 0 phase shifts (§) and inelasticities () [89]
for the 7N system in isospin 1/2 and 3/2 configurations ( Fig.
4.5, 4.6 ) and calculate from them the 7N amplitudes in the
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Figure 4.5: Experimental phase shifts and inelasticity for the
mN interaction in isospin 1/2.
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Figure 4.6: Experimental phase shifts and inelasticity for the
mN interaction in isospin 3/2.

isospin base (Fig. 4.7 ) using the relation

AnE
= —%fl, 1=1/2,3/2 (4.3)

with .
16215 -1

=" (4.4)

2iq

where 7! is the inelasticity, ¢/ the phase shift, M is the nu-

cleon mass, F is the mIN center of mass energy and ¢ is the
corresponding momentum.

We require the input two-body t-matrices in the charge base

to solve the Faddeev equations in our model. For this we use
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Figure 4.7: Experimental t-matrices for the 7wV interaction in
isospin 1/2 and 3/2.

the relations

t o o _gt3/2_|_1t1/2 t o —ﬁtS/Q—@tl/Q
mon—nin = 3 3 ) min—mop = T 3 )
1 2
tﬂfp—nr*p = §t3/2 + §t1/27 lr—nonr—n = t3/2,
lrtnortn = T p—TT Py tﬂ'op—ﬂrop = tr0p—rOn; (45)
tﬂopaﬂ‘*‘n = _tﬂ'o’n—ﬂ'{'_p’

Using these 7N t-matrices as input for Egs. (1.41), we can
extend the model for the 77N interaction of [57] to higher en-
ergies where the invariant masses of the 7N subsystems can be
varied around 1650 MeV.

At this point we would like to make some comments about
the cancellation of the off-shell part of the t-matrices with the
three-body forces discussed in section 1.3.1. There, in order
to prove the cancellation we have made used of chiral ampli-
tudes. This is fine for the S = —1 system studied in chapter
3. However, the situation is different for S = 0, since, as men-
tioned in the introduction, the results of the calculations done
with the lowest order chiral Lagrangian already fail beyond the
total energy of 1600 MeV of the 7N system. Thus we could for-
mally make no claims in this region about cancellations between
the off-shell part of the Tr-matrices and the three-body forces.
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However, we also insist on the fact that the results cannot de-
pend on the off-shell part of the amplitudes, because these are
unphysical.

The finding of the exact cancellation of the off-shell part
with the three-body forces is very useful because it implies that
the Faddeev equations can be solved using only the physical
information, that is the on-shell amplitudes. This feature cer-
tainly must sustain even when one goes beyond that realm where
the lowest order chiral Lagrangian reproduces the experimental
data. Further, one could also wonder if such a cancellation
would also occur in those cases where the higher order terms
of the Lagrangian would be necessary. Technically our asser-
tion, that one can use only the on-shell amplitudes, is rigorous
as long as the amplitudes obtained with the lowest order chiral
Lagrangian, upon unitarization, can reproduce the experimental
data. This seems to be the case, for example, in S=-1 systems,
for the energy range considered here. Indeed, calculations done
in [10] using higher order terms of the Lagrangians show that
the results obtained by using the lowest order Lagrangian fall
well within the accepted uncertainties in the model. It would be
interesting to study cancellations similar to those found in sec-
tion 1.3.1 for the present case by using higher order Lagrangians
but this is beyond the scope of this Thesis.

It should be also said, when using higher order terms in the
Lagrangians, that although the elimination of the off-shell (un-
physical) part is guaranteed, because the results cannot depend
on unphysical amplitudes, it is not clear that the cancellation
mentioned above would not leave some finite remanent part. It
is also not guaranteed that, apart from three-body forces origi-
nating from the chiral Lagrangians, there are no other genuine
three-body forces which would remain after necessary cancella-
tions of off-shell terms.

However, let us make the following observation. We used
a theory suited to the study of the 77N system up to /s =~
1750 — 1850 MeV and concluded that one can study the system
using only on-shell amplitudes, which one can get from experi-
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ment. Although proved within a certain theory, the conclusion
“one can use Faddeev equations with experimental amplitudes”
is not linked to any model. With this in mind we make an ansatz
that this conclusion should not be linked to the theory used to
prove it and should be a characteristic of the dynamics of these
systems for a wider range of energies than the one where we
could establish a proof based on a particular theoretical frame-
work.

After all we will only extend our calculation to energies up
to /s ~ 2200 MeV which is not too far from the energies at
which the calculations were made earlier. Although certainly
it is an ansatz at these higher energies, our assumption that
one can rely solely upon the on-shell amplitudes in the Faddeev
approach gets a strong support from the results that we obtain
in the present work.

4.3.1 Exploring the 77N system through experimental am-
plitudes

We first study the 77N system with total charge zero consid-
ering 7979, 77 p, 77 n, 7 nTn and 7 7% as coupled
channels. We label them as particle 1, 2 and 3 in the order
in which they are written above. We calculate the three-body
Ty matrices (Egs. (1.41)) by using, for the 7N interaction: (a)
experimental amplitudes, i.e., Eq. (4.3) with the phase shifts
and inelasticities shown in Fig. 4.5, when the invariant mass of
mN system is above its threshold (b) and the ¢-matrix obtained
from chiral Lagrangian [17] for those 7N total energies which
fall below threshold. For the 77 interaction we use the t-matrix
obtained and studied thoroughly in [2], where the dynamical
generation of the ¢(600), fp(980) and ap(980) resonances was
found and the theoretical results for physical observables coin-
cided well with the experimental ones. We take proper sym-
metrized amplitudes into account wherever necessary, for in-
stance, for the 7970 subsystem in the 7%7%N channel.

In order to be consistent with the results of section 4.2, we
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first check if we find an evidence for the N*(1710). For this,
we obtain the amplitude for total isospin of the three parti-
cles I=1/2 and for the isospin of the 77 subsystem, denoted
by I.r, being equal to zero, i.e., we calculate (I = 1/2, I, =
0|Tr(Vs,v/$23)[I = 1/2,Izx = 0) (see the definition of the
|I =1/2, I = 0) state in the previous section ).

We find exactly the same peak at 1704 MeV in the squared
amplitude as obtained in Fig.s 4.1 -4.4. In this way, we ensure
that we reproduce our previous results by using the experimen-
tal data for the w/N interaction above the 7N threshold. With
this assurance, we now look for resonances in the higher energy
region in same or other isospin configurations.

We now study the 77N amplitudes for the case in which the
isospin of the subsystem of particle 2 and 3, i.e., pion nucleon
(and its coupled channels) is 1/2 in the initial as well as the
final state. To obtain this amplitude we write the 77N states
in the isospin base as

| 7°7%n) = 1,0)® | 1,0)® | 1/2,—1/2)

_|1O {\/>|IN—3/27 7rN__1/2>
\/7|IN—1/27 7rN__1/2>}

—ﬁ!f—5/2,IwN—3/2>
\/>|1—3/21N_3/2>

__|I_1/2 ITI'N_S/2>

+ ‘/?— | I=3/2,Ly =1/2)

1
+3 1 1=1/2, Iy = 1/2).

Similarly, by omitting the label I and Iy to simplify,
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e % 15/2,3/2) — % 13/2,3/2)
/5117232

7o) = —\/7\5/23/2 \/7;3/23/2

f 11/2,3/2) — L= | 3/2,1/2)
+211/2,1/2) (46)
B 1 4
mx'p) = \/; 15/2,3/2) — 35 13/2,3/2))

1 1
+311/2:3/2- 5 13/2.1/2)

+ ﬁ 11/2,1/2)

\[ 15/2:3/2) + = 13/2.3/2)
-2 11/2,3/2) -2 \ 3/2,1/2)

- g 11/2,1/2).

Inverting the above equations we get, for example,
172172 = 3 (1750 — VB |07 )
+\/§|7T_770p>+2|7r_77+n>> (4.7)
13/2,1/2) = é(\@ 12070y — 2 [ 707 p)
—\7r7r0p—\/§]7r7r+n>). (4.8)
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In Fig. 4.8 we show the squared T5 amplitude for I =
1/2 and I;ny =1/2 in the initial and the final state versus the
total energy of the three-body system and the invariant mass
of the meson-baryon subsystem formed by the second and third
particle (7N). A peak around an energy of 2100 MeV with
a width of ~ 250 MeV appears when ,/s23 is close to 1670
MeV, thus having a #N*(1650) structure. The peak position
and the width of this peak are compatible with the findings of
various partial wave analyzes indicated by the PDG [22] about
the N*(2100), for which the peak position is found in the range
1855 - 2200 MeV and the width in the range of 69-360 MeV.
Thus we identify this peak with the N*(2100).
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Figure 4.8: The N*(2100) in the 77N system with five coupled
channels.

Since this peak appears when ,/so3 is close to the mass of
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Figure 4.9: The N*(2100) in the 77N system including 14 cou-
pled channels.

the N* (1650) and has been obtained using as input that 7N
t-matrix which contains the information on the N*(1650), we
conclude that the inclusion of the N*(1650) in the 7N subsys-
tem is essential to generate a resonance at 2100 MeV.

In this former study, we do not find evidence for any reso-
nance in the isospin 3/2 configuration, but the situation is dif-
ferent when we introduce coupled channels, as we discuss below.

4.3.2 Inclusion of the 7 K3, mKA and 7N channels

Next, we solve the Faddeev equations with fourteen coupled
channels: 7%7%, 7077 p, ""K*+¥~, 7OK%0, 7O0KOA, 7%n,
Tt n, 7T KOS~ nmntn, n %, nm KTE0, i~ K99+, 7~ KTA
and 7~ np. Again, we label them as particles 1, 2 and 3 in the
order in which they are written above. As there are no data for
KY. — KX, KA — KA, etc., we use the model of [17] to calcu-
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late the corresponding amplitudes. The 7N interaction below
threshold is determined using the same model as for K'Y and
KA and above the threshold we use the experimental results.

We continue to study those amplitudes where the isospin of
the subsystem of particle 2 and 3, i.e., pion nucleon (and its
coupled channels), is 1/2 in the initial as well as the final state.
In Fig. 4.9 we show the 77N amplitude for total isospin I = 1/2
for such a case, ie., |(I = 1/2, I,y = 1/2|T{|I = 1/2,Ixn =
1/2))2.

As shown in Fig. 4.9 we obtain a peak at an energy of 2080
MeV with a width of 54 MeV for a ,/s23 near 1570 MeV, which
we identify with the N*(2100) listed in the PDG [22]. Com-
parison of the Figs. 4.8 and 4.9 shows that the inclusion of the
mKY, KA and mN channels makes the resonance more pro-
nounced (by an order of magnitude in the squared T7j-matrix)
and much narrower. These changes in the results can be easily
understood with respect to the previous ones obtained with only
five coupled channels by noticing that now the wave function of
the resonance contains extra components which have smaller
phase space in the decay of the resonance. At the same time,
the 7w N component becomes smaller due to the normalization
of the wave function and, hence, the decay into w7 N is also
reduced.

In Fig. 4.10 we plot now the T5-matrix for the 7 KA channel
for total isospin I = 3/2 with Ixn = 1/2 in the initial and the
final state. This amplitude has been calculated by using the
relation

%(\/5 | TOKOA)+ | 7~ KTA)),
(4.9)

which has been obtained by writing the wK A states in isospin
base analogously to Eqs. (4.6,4.7).

A peak is found in the (I = 3/2,Ixa = 1/2 | Tj(\/s,\/523) |
I = 3/2,Igpx = 1/2) amplitude at a total energy of ~ 2126
MeV with ~ 42 MeV of width. In this case, the invariant mass
/823, at which the peak appears, is around 1590 MeV. This

|1 =3/2,Ixn =1/2) =
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peak can be identified with the A(1910) listed in [22], whose
position, given by different partial wave analyzes, ranges up to
2070 MeV and the width varies from 190-500 MeV.
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Figure 4.10: The A(1910) in the 7 KA system including 14 cou-
pled channels.

Thus the introduction of the 1K, 7 KA and 7N channels,
together with the inclusion of the N*(1650) in the 7N ¢t-matrix,
is important to get this resonance. One should note that we
get smaller widths than the experimental ones. The 7N decay
channels are not considered in our approach and they should
contribute to increase the widths. Note that this can be done
even with a small 7N component, as implicitly assumed here,
since there is more phase space for decay into the 7N channel.

We do not find any evidence of the A(1750), which could
indicate a different structure for this state than the one studied
in this work.
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4.4 Exploring the N f, and Na, systems

Until now, we have investigated possible resonant states in the
7N system and its coupled channels which have been obtained
by adding a pion to pseudoscalar-baryon systems which couple
strongly in J™ = 1/27 and isospin 1/2 configuration, i.e., 7N,
K3, KA and nN. The invariant mass of this pseudoscalar-
baryon subsystem has been varied around that of the N*(1535)
and N*(1650), hence, treating the three-body system as a 7 N*
system with 1500 < My~ < 1760 MeV, although within the
three-body Faddeev equations. There are other configurations
of this three-body system, like Nap(980) and N f,(980), which
we have not discussed so far.

In order to study such a system, we must take NKK, Nrw
and N7 as coupled channels, such that the 77 and KK sub-
system dynamically generate the fy(980) and the 77 subsystem
along with KK generates the ag(980) resonance. In this way,
we can study the N fp(980) and Nap(980) systems simultane-
ously. Concretely, we take the following coupled channels into
account: 70, prl7=, na'n, nertr, ne—xt, pr=x°, pry,
nKtTK~, nK°K°, pK9K~. We label the particles as 1, 2, 3
in the order in which they are written above. This means that
the subsystem of particles 2 and 3 consists of two pseudoscalar
mesons whose invariant mass, /s23, is varied around 980 MeV.
With these channels we solve the Egs. (1.41) in the same for-
malism which we have explained in the previous sections. In this
case we find that the NKK amplitude is bigger in magnitude
as compared to those of the other coupled channels. We thus
make isospin combinations of the NK K channels, similarly to
Eqgs. (4.6, 4.7) and obtain the amplitude for total isospin I =
1/2 and the isospin of the K K system, I, equal to 0 or 1.

In the case of total isospin of the NKK system equal to
1/2 with the isospin of the KK subsystem equal to one the
amplitude

(I =1/2 g = 1| Th(V5,/333) | T = 1/2, I = 1), (4.10)
shows a peak around 2080 MeV |, with a width of 51 MeV (which
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we do not show here), which we relate as the Na(980) partner
of the peaks shown in Figs. 4.8 and 4.9. Thus the peak corre-
sponding to the N*(2100) has been seen in 77N system as well
as in the NK K system.

Interestingly, along with this N*(2100) state, we find an-
other peak with even larger magnitude of the squared three-
body amplitude at /s = 1924 MeV with a width of 20 MeV.
We show this peak in Fig. 4.11 for the NK K channel.
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Figure 4.11: A possible N*(1910) in the NK K channels.

This state is about 7 MeV below the NKK threshold (as-
suming an average mass for the kaons of 496 MeV and 939
MeV for the nucleon). Therefore, this result indicates that the
Nap(980) system gets bound at around 1920 MeV. This pos-
sibility has been already suggested by the authors in [71], in
which they study the NKK channel using effective two-body
potentials to describe the KN, KK, KN interactions. They
find that the NKK system can get bound while the KK sub-
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system acts like the ag. Our result is, thus, in agreement with
the suggestions in [71]. Interestingly, the existence of a 1/27 N*
resonance around 1935 MeV has also been proposed earlier [90]
on the basis of a study of the data on the vp — KTA reaction
in an isobar model, although other theories [91] which include
explicitly resonances up to 1855 MeV can reproduce these data
(further work along these lines to include higher mass resonances
is under way [92]).

Since this peak found at 1920 MeV is below the three-body
threshold and, in the two-body problem, the poles for the f,(980)
and ag(980) appear below the K K threshold, the three particles
in the system have associated complex momenta in the momen-
tum representation. To avoid the use of unphysical complex mo-
menta in the three-body system, which will lead to imaginary
energies in the real plane, we give a minimum value, around
50 MeV, to the momentum of the particles as explained in sec-
tion 2.1. We have checked the sensitivity of our results to the
mentioned choice by changing the minimum momentum from
50 MeV to 100 MeV and we find the peak and width to remain
almost unchanged.

We also made the total isospin 1/2 combination of the N K K
system by considering the K K subsystem in isospin 0 in the ini-
tial and the final state, i.e., considering the N f,(980) component
of the NK K channel. In this case too, just as in the amplitude
for Nap(980), we find a peak around 1923 MeV with a width of
30 MeV and another one around 2052 MeV with a width of 60
MeV. The magnitude of the N fy(980) amplitude around 1920
MeV is very similar to the one of the Nap(980) amplitude (i.e.,
the one shown in Fig. 4.11), but the magnitude of N f,(980)
amplitude around 2050 MeV is bigger than the magnitude of
the Nag(980) amplitude.

From the whole study we would conclude that there are two
N*’s with J™ = 1/2" in the energy region 1800 < /s < 2200
MeV.
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4.5 Conclusions

We can summarize the results of this study as follows:

1. We have first studied the 7w N system in s-wave, thus in
J™ =1/2% configuration, using unitary chiral amplitudes.
We find a resonance at 1704 MeV, which can be associated
with the N*(1710) [22]. The peak has a full width I' =
375 MeV to be compared with that of the N*(1710) which
ranges from 90-500 MeV [22]. We find that the invariant
mass of the w7 subsystem falls in the region of the mass
of the o (500 -i 200 MeV) when the 77N amplitude peaks
at /s = 1704 MeV, which means that the large width of
the N*(1710) could be related to that of the o resonance
formed in the 7w subsystem. We do not find other N*
or A resonances with J© = 1/27. The Roper resonance,
although it has an important coupling to ¢ (500 — i200) N,
does not show up in our approach. This should not be seen
as a negative result, but as an evidence that the structure
of the Roper is far more complex than that envisaged by
the 77N interaction in s-wave, which is what we have
investigated in the present work. No evidence for states
with I = 3/2 and I = 5/2 is found in this work

2. After studying the 7w N system using chiral amplitudes
for the description of the wNN interaction, we have ex-
tended the study of the mw N system to higher energies
by using the experimental data for the w/N interaction,
which contains the information on excitation of both the
N*(1535) and the N*(1650). The latter N* was absent
within the chiral 7N t-matrix. Here, apart from confirm-
ing the N*(1710), we find evidence for the other 1/2%
N*, ie., the N*(2100), and also for the 1/27 A(1910)
resonance. The findings reported here indicate that the
inclusion of the N*(1650) in the interaction of the mIN
subsystem is essential to generate these higher mass 1/2%
resonances.



4.5 Conclusions 123

e We have first made a search taking only the mn N
channels where a resonance having the properties of
N*(2100) was found.

e No isospin 3/2 resonances is found in the study of
the 7w N channels alone.

e On including the 7K, 7 KA and 703 channels, the
same resonance around 2100 MeV is produced but
with larger magnitude and narrower width, indicat-
ing the addition of more channels to which the reso-
nance couples strongly.

e The A(1910) is found on inclusion of the TK'Y, n KA
and 7n% channels in the isospin I = 3/2 amplitude.

e Further, we have investigated the NKK, Nzrm and
N1 channels where the KK — 7 subsystem rear-
ranges itself as a fp(980) resonance, while KK — 7
acts like the ap(980). We obtain a new peak at
~ 1924 MeV, apart from the one corresponding to
the N*(2100), with a strong coupling to Nag(980)
and N f,(980).

3. Finally the resonances found here show that the three-
body component is large and dominant in the wave func-
tion of these resonances. Though this does not exclude
contributions from 7N or genuine three quarks compo-
nents, they must be relatively suppressed. One could
aim at including such additional components in a coupled
channel formalism. The realization of the important role
of the two meson cloud in the structure of the resonance
is a very novel result to which one should pay attention
when exploring other static or dynamical properties of the
resonance.

We conclude this chapter by stating that the study of three-
body systems, for the cases where a complete theoretical two-
body input is not available, is also possible in our formalism
using on-shell experimental amplitudes.






CHAPTER b

LCIues for a new N* state around 1920 MeV

In the last chapter, we have obtained a bound state of NKK
around 1920 MeV with J¥ = 1/2% when the KK system is
resonating like the f(980) or the a(980). In this chapter, we
provide a series of arguments which support the idea that the
peak seen in the yp — KA reaction around 1920 MeV should
correspond to the mentioned state. At the same time we propose
polarization experiments for this reaction as a further test of the
prediction, as well as a study of the total cross section for the
vp — KK~ p reaction at energies close to threshold and the
mass distribution of the two kaons.

5.1 Introduction

The theoretical interest in three-hadron systems other than the
traditional three-nucleon states is old. In [93] a study of a possi-
ble system of K7 N was made, based only on symmetries. More
recently, a possible K NN bound state has been the object of
intense study [59-64]. However, our efforts have proved to be
a qualitative step forward in this topic, which has been made
possible by combining elements of unitarized chiral perturbation
theory UxPT [2-4,9,94-96], with Faddeev equations in coupled
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channels. In chapter 3 systems of two mesons and one baryon
with strangeness S = —1 were studied, finding resonant states
which could be identified with the existing low-lying baryonic
JP = 1/2% resonances, two A and four X states. Similarly, in
the case of the S = 0 sector the N*(1710) appears neatly as a
resonance of the 7w N system, as well as including the channels
coupled to 7w N within SU(3). Further studies, including a re-
alistic 7N amplitude beyond the N*(1535) region to which the
chiral theories are limited, give rise to other S =0, J¥ = 1/2%
states, more precisely, the N*(2100) and the A(1910) (all this
has been discussed in the previous chapter).

Independently, interesting studies based on variational meth-
ods have been made [71,97]. In particular, in Ref. [71] a bound
state of KK N with I = 1/2, JF = 1/2% was found around 1910
MeV in the configuration ap(980)N, suggesting a bound state
of the ag(980) and a nucleon. Since the KK system couples to
7w and nm channels to generate the fp(980) and ag(980) reso-
nances, a more complete coupled channel study using Faddeev
equations was called for, and this was done within our formal-
ism, as discussed in section 4.3.1, where it was concluded that a
state appears indeed around this energy, mostly made of K K N
but as a mixture of ag(980)N and f,(980)N.

A N* state with these characteristics is not catalogued in the
PDG [22]. However, there is a peak in the yp — KT A reaction
at around 1920 MeV, clearly visible in the integrated cross sec-
tion and also at all angles from forward to backward [98-100].
The vp — KA reaction has been the object of intense theo-
retical study [90,101-104] (see [105] for a recent review). With
respect to our present investigation, the possible signal for a new
resonance from the peak of the cross section around 1920 MeV
was already suggested in [90]. However, no spin and parity as-
signment were given, since there were several candidates in this
region related to the missing resonances of the quark models.
Other theoretical studies do not make use of this extra state, as
in [101], although in this latter work only resonances with mass
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up to 1855 MeV were included!. In a recent combined analysis
of the yp — KT A reaction with other reactions [106], a claim
for a N* resonance around 1900 MeV was made, however, the
resonance was assumed to have JI = 3/2%. Note in this re-
spect that the PDG quotes in its latest edition that there is no
evidence for this resonance in the latest analysis of the GWU
group [107]. The state around this energy found in [8,108] has
instead J¥ = 1/2* quantum numbers.

As one can see, the situation concerning this state and its
possible nature is far from settled. In this chapter we collect
several arguments to make a case in favor of the state predicted
in [71] with J¥ = 1/2% and confirmed by us.

5.2 Comparison of the vp — KA and 7vp — K*X°
reactions

A peak of moderate strength on top of a large background is
clearly seen for the yp — KA reaction around 1920 MeV at
all angles (see Fig. 18 of [99]). One can induce qualitatively
a width for this peak of about 100 MeV or less. On the other
hand, if one looks at the yp — KTX° reaction, one finds that
starting from the threshold a big large and broad structure de-
velops, also visible at all angles (see Fig. 19 of [99]). The width
of this structure is about 200-300 MeV. One can argue qualita-
tively that the relatively narrow peak of the yp — KT A reaction
around 1920 MeV on top of a large background has nothing to
do with the broad structure of vp — KX° around 1900 MeV.
A more quantitative argument can be provided by recalling that
in [109] the broad structure of the yp — KX is associated to
two broad A resonances in their model, which obviously can
not produce any peak in the yp — KA reaction, which filters
isospin 1/2 in the final state. Certainly, part of the structure is
background, which is already obtained in chiral unitary theories
at the low energies of the reaction [104].

"Work to include more resonances in the approach of [101] is underway
92]



128 Clues for a new N* state around 1920 MeV

p

Figure 5.1: Diagrams depicting the yp — KTA, yp — Ktx°
processes through the 1/2% N* K*K~ N resonance of [71,108].

We believe that the peak in the yp — KA reaction is a
genuine isospin 1/2 contribution which does not show up in the
vp — KXY reaction. This feature would find a natural inter-
pretation in the picture of the state proposed in [71,108]. In-
deed, in those works the state at 1920 MeV is a K K N system in
relative s-waves for all pairs. The yp — K+A and yp — K+tx°
reactions proceeding through the excitation of this resonance
are depicted in Fig. 5.1. The two reactions are identical in this
picture, the only difference being the Yukawa coupling of the
K~ to the proton to generate either a A or a %Y.

The Yukawa couplings in SU(3) are well known and given in
terms of the F and D coefficients [76], with D + F' = 1.26 and
D — F =0.33 [104,110]. The particular couplings for K~ p — A
and K~p — XYare e.g. given in [111].

v _ _2D+F 1D-F
Ko=h = B 2f T of
(5.1)

D—-F
Vik-—poso = 57

with f the pion decay constant. Hence, the couplings are pro-
portional to —1.26 and 0.33 for the K~p — A and K~ p — X°
vertices, respectively. Therefore, it is clear that in this picture
the signal of the resonance in the yp — KA reaction is far
larger than in the yp — KX° one, by as much as an order
of magnitude in the case that the resonance and background
contributions sum incoherently. The 3/2" resonance used in
the analysis of the yp — KA reaction in [106] is also used for
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the yp — K X0 reaction in that work and also gives a smaller
contribution in this latter case. In the picture of [71,108] the
1/2% resonance also appears in the yp — K+X° reaction but
with a smaller intensity than in the vp — KA one, as we have
mentioned.

5.3 Pion induced reactions

The fact that a N* resonance around 1900 MeV is not reported
in the PDG tables finds a natural interpretation from our work
and that of [71]. Indeed, since most of the information about
resonances is obtained from 7N reactions, it is easy to under-
stand why this resonance did not appear in these reactions.
Once again, in our framework and in that of [71], the pion in-
duced reactions going through the resonance would proceed as
shown in Fig. 5.2a.

T .
Tha - T -
‘ Jo(980) final ‘ a0 (980) final
N Ty’ N state N Ne’ N state
(a) (b)

Figure 5.2: Diagrams for m induced reactions exciting the 1/27"
resonance of [8,108].

As we can see from Fig. 5.2, the fact that the fp(980) has a
small coupling to the w7 channels [2], as reflected by its small de-
cay width, necessarily weakens the strength of the pion induced
reactions producing the resonance, compared to other processes.
Since the wave function of the state has also an ap(980)N com-
ponent, in this case the mechanism would be the one of Fig.
5.2b, since the a((980) has also a small coupling to nm. This,
and also the small NN coupling (see e.g. Ref. [112]), make
again the mechanism of production very weak.

It is also possible to devise some indirect method to create
the N fp(980)/ap(980) intermediate states. One can devise the
mechanisms of Fig. 5.3. The diagram of Fig. 5.3a involves the
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/0(980)/ao(980) )
,’. ™ K

. u(080)an(950)

Figure 5.3: Possible indirect mechanism for the =N —
N £0(980)/a(980).

7N — KA(1405) transition while the one of Fig. 5.3b involves
the 7N — KA one. The strength of the former amplitude is
much weaker than that of the second one as one can induce
from experimental cross sections [113, 114] and the associated
amplitudes [17,46]. However, the second one is penalized by the
p-wave coupling K NA in the loop, where the two other vertices
are in s-wave. As a general rule, loops are reduced with respect
to tree level amplitudes, but in the present case the structure
of these loops, with a meson-meson — meson-meson vertex,
makes the contribution very small as a direct evaluation of the
diagrams shows [13].

In this respect it is also very illustrative to see that in [106]
a large set of reactions was analyzed, and in Table 1 of the
paper it was shown that the resonance around 1900 MeV had a
weight bigger than 1 % only in the yp — KA and vp — K+X°
reactions. This means that the weight of this resonance in the
vp — TN, vyp = NN, yp — 7aN, vyp — 7N and 7N — 7N,
analyzed there, is negligible. This would again find a natural
explanation along the lines discussed above if one looks at the
mechanisms for these reactions depicted in Fig. 5.4 which are
all suppressed, since they always involve the coupling of the
f0(980) to 7w or the ap(980) to mn.

5.4 Angular distributions

In this section we give a different argument in favor of the ex-
istence of a N* at 1920 MeV with J¥ = 1/2+. We study the
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v

a0(980)

N » N N

f0(980)

» N

Figure 5.4: Diagrammatic representation of the v induced reac-
tions through the 1/2% N* resonance of [71,108] with 7N, nN,
N or nwN in the final state.

angular dependence of the yp — KA proceeding through the
resonance excitation. In order to get the basic structure of the
amplitude with the quantum numbers of the resonance we take
a typical mechanism compatible with the nature of the reso-
nance as having KK in s-wave and in relative s-wave with the
nucleon. This is shown in Fig. 5.5

The structure of the amplitude, close to K+ K ~p threshold,

is given by
7 x k
12 « 37 (‘;A;N ) g (5.2)

where ¢ (¢ = —qk+) and k are depicted in Fig. 5.5, My is
the nucleon mass an € is the photon polarization vector. The
amplitude can be rewritten as

t1/2) xc&(7x k) +ieqak —icdkq (5.3)

Summing the modulus squared of the amplitude over initial and
final polarizations of the nucleons and the photons one obtains

SO 2R o 247 2 (5.4)

and we see that there is no angular dependence.
Next we assume that we have a J = 3/2% state and we
show in Fig. 5.6 the equivalent diagram to that in Fig. 5.5, but
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K+

P A

Figure 5.5: Schematic amplitude for yp — KTA exciting the
1/2T N* resonance of [8,108].

Figure 5.6: Schematic amplitude for yp — K+ A exciting a 3/27
A intermediate state.

assuming a JP = 3/2% baryonic intermediate state coupled to
K K. The amplitude has now the structure

L (St xk
£3/2) o S@(‘Zﬂ; k) & (5.5)
N

with S the spin transition operator from spin 3/2 to spin 1/2.
We can rewrite the amplitude taking into account the relation-
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ship
2 i
> Si M) (M| ST = 30ij = geinon (5.6)
Mg
and find
3/2) o 2o(rs B Legaha tealls
t ocge(qu)—geqak—i—geakq. (5.7)

Upon summing the modulus square of the amplitudes over
initial and final spins we find now

_ .
DD NARE §k:2 7% (3 5in%0 + 2). (5.8)

We see that now we have a strong angular dependence and the
biggest strength is expected for 6 = 90 degrees.

Although we have extracted the angular dependence from
the particular model of Figs. 5.5, 5.6, the results are general
for YN — R — KA with R a 1/2% or a 3/2" resonance, as one
would get from the tree level amplitudes of Fig. 5.7 using the
standard yYNN, PNN, yYNR, PNR vertices, where P stands
for a pseudoscalar meson [115].

N : A N A

Figure 5.7: Diagrams for the process YN — N* — KA (a) and
YN — A* — KA (b).

Next we would like to recall what happens experimentally.
As one can see in Ref. [99], the signal around 1920 MeV is
present at all angles and one finds roughly a contribution of
the peak around 1920 MeV over a smooth background of the
order of 0.5 ub for do/dcosf at all angles. This would disfavor
the association of the peak to a 3/2" resonance, since in this
case at 90 degrees one would expect the maximum signal of
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the resonance, with a strength about 5/2 the size of the one
at forward or backward angles. The argument assumes that
signal and background will sum incoherently in the reaction,
which does not have to be necessarily correct, but one does not
expect much coherence either in view of the many mechanisms
contributing to the background in the theoretical models.

We have also given some thought to the possible use of the
asymmetries already measured for this reaction [100, 116]. It
is easy to see that the asymmetry, X, for the amplitude of our
1/2% state given by Eq.(5.2) is ¥ = 0. With this value of 3,
and assuming the contribution of the peak of the state over the
background of about 20%, we find that adding the contribution
of the 1/2% signal ¥ is reduced by about 20%. Considering that
the values measured for ¥ in [100,116] have less precision than
the cross sections, ¥ ~ 0.25£0.15, the changes induced in X by
the 1/27 signal are not of much help.

5.5 Test with polarization experiments

In case the J = 1/2% assignment was correct, an easy test
can be carried out to rule out the 3/2% state. The experiment
consists in performing the yp — KA reaction with a circularly
polarized photon with helicity 1, thus S, = 1 with the z-axis
defined along the photon direction, together with a polarized
proton of the target with S, = 1/2 along the same direction.
With this set up, the total spin has S = 3/2. Since L, is
zero with that choice of the z direction, then J! = 3/2 and
J must be equal or bigger than 3/2. Should the resonant state
be J¥ = 1/2%, the peak signal would disappear for this polar-
ization selection, while it would remain if the resonance was a
JP = 3/2% state (unless the amplitude becomes zero for some
reason). Thus, the disappearance of the signal with this polar-
ization set up would rule out the J = 3/2% assignment.

Such type of polarization set ups have been done and are
common in facilities like ELSA at Bonn, MAMI B at Mainz or
CEBATF at Jefferson Lab, where spin-3/2 and 1/2 cross sections,
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which play a crucial role in the GDH sum rule, see e.g. Ref.

[117], were measured in the two-pion photoproduction [118,119]
reaction. The theoretical analysis of [120] shows indeed that
the separation of the amplitudes in the spin channels provides
information on the resonances excited in the reaction.

5.6 Analysis of the reaction vp — KTK p close to
threshold

An ideal test of the nature of the resonance predicted around
1920 MeV is the study of the process yp — KK p close to
threshold. This reaction has received relatively good experi-
mental attention [121-124], stimulated recently by the search
of a possible pentaquark state of strangeness S=1. Theoreti-
cally it has also been studied in [15,16,125-127], also motivated
by the search of the pentaquark of strangeness S = 1, or to
study the nature of the A(1520) and other resonances. Yet, the
emphasis here is different and the measurements required are
very close to threshold, in the region below the ¢ production
to avoid unnecessary complications in the analysis. Indeed, as
we mentioned, the resonance has all the K™K ~p components
in s-wave and the energy is just a bit below the threshold of
the reaction. The effect of this resonance should be seen as an
accumulation of strength in the cross section close to threshold
compared with phase space. Such effects are common in many
reactions [128-130]. In order to see the effects expected for this
case we again draw in Fig. 5.8 a typical diagram which would
contribute to the vp — KT K ~p close to threshold through the
intermediate resonance excitation.

In Fig. 5.8, the shaded blob represents all the interactions
of KT K—p — KT K~ p, which one encounters in a full Faddeev
calculation. Hence, the amplitude for yp — KTK"p can be
written as

tprod o8 TKJFK*pHKJFK*p (59)

The Tk+g-px+K—p amplitude was evaluated using Faddeev
equations in coupled channels [108]. We are assuming that this
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Figure 5.8: Schematic amplitude for yp — K™K ~p exciting the
1/27 N* resonance of [8,108].

term, which exhibits the peak due to the 1/27 N* resonance,
dominates over a possible background term close to threshold
(for instance, a tree level diagram like the one of Fig. 5.8 omit-
ting the interaction of the particles symbolized by the shaded
blob or diagrams with two-particle final-state interactions). The
scheme of the latter work is very rewarding for experimental
tests. Indeed, what one evaluates there is the T-matrix as a
function of two variables. These are /s, the total energy, and
/523, the invariant mass of the subsystem of two particles that
one expects to be highly correlated. This is the case here, where
the KT K~ is correlated to the ap(980) and f,(980) resonances
below the KK~ threshold, hence |/sa3 is taken for the KK~
pair. Since the 7" amplitude of [108] does not have any angular
dependence, and for a fixed total energy only depends on /523,
the differential cross section for the yp — K™K p reaction is
readily found to be

do 1 1
=C —p§|Tres - _? 5.10
dMos S_MJQV \/gpq! K+tK-p—K+tK p‘ ( )
_AVR(s, M, MR) AV2(MZ,,, mc, m)

p_ 2\/5 ) q: 2M2‘nv

where C' is a constant and we have written M;,, for the in-
variant mass of the two-kaon system, the ,/s93 variable in our
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Figure 5.9: do /dM;y,,, with phase space (dashed line) and using
the KTK~p — K™K~ p amplitude of [108] (solid line). The
curves have been normalized to have the same integrated cross
section.

formalism.

In order to show the effects of the resonance below threshold
and the correlations of M;,, we show two plots in Figs. 5.9 and
5.10.

In Fig. 5.9 we take a fixed energy, just below ¢ N produc-
tion with /s = 1955 MeV and plot do/dM;,, as a function
of M;,, for phase space (dashed line) and for Eq. (5.10) (solid
line). As we can see, there is a big asymmetry of the mass dis-
tribution with respect to phase space, with a clear accumulation
of strength close to M;,, = 2mg as a consequence of the pres-
ence of the f,(980) or ap(980) below threshold. The results have
been normalized by multiplying an arbitrary factor in order to
obtain the same integrated cross sections.

In Fig. 5.10, we have instead represented the integrated cross
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Figure 5.10: Integrated cross sections. Dashed line: phase
space. Dotted line: using the amplitude of Eq. (5.11) accounting
for K™K~ final-state interaction. Solid line: results obtained
using the K™K ~p — KK~ p amplitude of [108]. The curves
have been normalized to unity at 1955 MeV.

section of vp — KK ~p as a function of the energy from thresh-
old up to /s = 1955 MeV evaluated with Eq. (5.10) (solid line)
and we compare the results with phase space (dashed line). The
cross section have been normalized to one at /s = 1955 MeV
for comparison. What we observe here is that the cross section
is also more pronounced at lower energies as a consequence of
the presence of the three particle resonance below threshold.
We should also take into account that the shape of do /dMj,,
in Fig. 5.9 should be expected from final-state interactions of the
K*K~ pair close to threshold, even if the N*(1920) resonance
were not present [128-130]. This means that instead of phase
space we should already consider a T' matrix element accounting
for the K™K~ final-state interaction incorporating the pole of
the fp(980) or ap(980). Thus we perform the evaluation of the
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cross section with an empirical amplitude

1
Mz, — M3 + il 5, My,

muv

(5.11)

tprod X

with My, = 980 MeV and I'y, = 30 MeV. We note that using
this amplitude we obtain a distribution do/dMj,, very similar
to the one obtained in Fig. 5.9 using the amplitude of [108].
The results for the integrated cross section with the amplitude
of Eq. (5.11) can be seen as the dotted line in Fig. 5.10. We can
still see deviations from the new curve incorporating the K™K~
final-state interaction with respect to the curve accounting for
the N*(1920) resonance in addition (solid curve in Fig. 5.10).

In our work the width obtained, of around 20 MeV, should
be smaller than the one of the real state because we only have
three-body states and the decay into two particles is not in-
cluded in our formalism. As discussed in the previous chapters,
even if the building blocks are three particles, one can obtain a
larger width for the decay into two-body systems because there
is more phase space for it. Because of that, in order to esti-
mate possible uncertainties from this deficiency, we show what
we would observe if we just had a resonance below threshold
with a typical Breit-Wigner amplitude with mass Mpr = 1924
MeV and width of about 60 MeV,

1 1

- - (5.12)
\/E— Mpg —I-Zg MZ%W — MJ%O +2Ff0MfO

tprod X

The problem in this case is that the span of energies chosen in
Fig. 5.10 from threshold to 1955 MeV is only of about 25 MeV,
smaller than the width, such that one can not see the resonance
structure in such a narrow range any more. Going to higher
energies has the problem that we should face the ¢ production
which has a large cross section. A way out of this problem could
be found by eliminating from the experimental cross section
the very narrow peak for the ¢ production. Assuming then
that there is no contribution from ¢ production we compare the
result obtained with the amplitude of Eq.(5.11) and the one
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Figure 5.11: Integrated cross sections. Dashed line: using the
amplitude of Eq. (5.11) which accounts for the KTK~ final-
state interaction. Solid line: results using the KK p ampli-
tude of [108]. Dotted line: results using the empirical amplitude
of Eq. (5.12) accounting for the KK~ final-state interaction
plus a resonant pole at 1924 MeV with a width of 60 MeV.

with Eq. (5.12) which accounts also for the N*(1920) resonant
pole. We show the results in Fig. 5.11, where the cross sections
have been normalized to one at /s = 1980 MeV.

We observe that the effect of the N*(1920) resonance is
clearly visible, with an enhanced cross section at lower ener-
gies compared with the curve that has only the K™K~ final
state. We also include in the figure the results obtained using
the amplitude of Eq. (5.9) (solid line). The region between the
two upper curves can indicate the theoretical uncertainties but
we can see that, in any case, a clear enhancement due to the
N* resonance is seen.

The effects observed in this calculation call for an exper-
imental test which could verify, or eventually refute the find-
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ings obtained above, which are based on the nature of the pre-
dicted 1/2% state around 1920 MeV. This analysis is underway
at Spring8/Osaka [131].

5.7 Conclusions

The independent prediction, also using different methods, of a
1/27F state around 1920 MeV as a bound state of K K N, which
appears in the ag(980)N and fy(980)N configurations, stimu-
lated us to suggest that this state may have already been seen
in the peak observed in the yp — KA reaction around this
energy. Based on the structure found in [71] and in our work,
we could explain why a relatively narrow peak appears in the
vp — KTA reaction on top of a large background and it does
not show up on top of the broader structure around these en-
ergies in the yp — KTX° reaction. We could also find an easy
interpretation on why the state does not show up in pion in-
duced reactions, or in reactions with #/N or n/N in the final
states, because of the small coupling of the fy(980)N to 77 or
of the ap(980)N to nm. In order to find extra support for the
idea we suggested two experiments. One of them is the sepa-
ration of the S, = 3/2 and S, = 1/2 parts of the yp — KA
cross section, which would rule out the 3/2% assignment if there
is no cross section in the S, = 3/2 channel. The other one is
the investigation of the cross section close to threshold and the
invariant mass distributions close to the two kaon mass, which
should show enhancements close to both thresholds, indicating a
bound state below the K K N mass with the two kaons strongly
correlated to form the ap(980)N and f,(980)N states. Both ex-
periments are feasible in existing laboratories and we hope that
the present work encourages their implementation.






CHAPTER O

S =1, 1/2% states in the N7K system

6.1 Introduction

The observation of a peak in the K*n invariant mass for the
yn — KTK™n reaction on a '2C target at Spring8/Osaka [35]
raised great hopes that for the first time a strangeness S=1 nar-
row exotic baryon could be found. The peak was thus associated
to a pentaquark, since the standard 3¢ states cannot produce
S=1. Subsequently, many experiments were done, some which
reproduced this peak and others which did not, and the issue
stimulated a large number of theoretical works that gave a huge
impetus to the field of hadron structure (see the extensive list
of references, for example, in [132,133]). Waters calmed down,
a thorough experimental review was written in [134] and a pe-
riod of rest followed till a new experimental analysis was done
at LEPS confirming the original peak, now on a deuteron target
and with more statistics [135]. Although one cannot rule out
an interpretation of the peak as a consequence of the particular
set up of LEPS, no alternative conventional explanation for this
peak has been provided.

On the theoretical side most of the works concentrated on
finding possible states of five quarks (pentaquark). From the
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perspective of the meson-baryon interaction the situation does
not look encouraging, since the KN interaction obtained from
chiral Lagrangians is basically repulsive in nature [76], and one
does not expect to find a narrow (long lived) resonance, as the
one claimed in [35], in this system. This is why very early there
were suggestions that if the peak represented a new state it
could be a bound state of three hadrons, K7 /N, with the pion
acting as a glue between the nucleon and the K, which would
only be bound by about 30 MeV. However, investigations along
this line, weakly concluded the difficulty to have this system as
a bound state [83,136].

The purpose of this chapter is to perform a thorough calcula-
tion of the KN system using Faddeev equations to see the pos-
sibility to find bound states or resonances. The interest in the
three hadron systems is old. In [93] there was already a study
of such possible systems based only on symmetries. In chap-
ter 3 systems of two mesons and one baryon with strangeness
S = —1 were studied, finding resonant states which could be
identified with two A and four ¥ known low-lying resonances
with J = 1/2%. Similarly, in the case of the S = 0 sector
(chapter 4) the N*(1710) appears neatly as a resonance of the
nw N system, as well as including the channels coupled to m7w N
within SU(3) [57]. The study in S = 0 sector was further ex-
tended by using the experimental data on the 7N scattering and
by adding more coupled channels in section 4.3, the outcome of
which was the dynamical generation of three resonances, one
with quantum numbers of the N* (2100), another with those of
the A (1910), plus a new N* at ~ 1920 MeV (also predicted by
Jido et. al. [71]).

The achievements obtained in the former studies and espe-
cially the finding of several low-lying S =-1 resonances with two
meson-one baryon structure motivates us to have a fresh look
at the KN system using our formalism and to make a thor-
ough investigation of the possibility to have the system bound.
This is the purpose of the present chapter. As we will show
in the following section, we do not get the system bound in
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the region of the possible S=1 state of [35]. At higher energies
a bump appears which, however, does not have the ordinary
shape of the resonances that we have found in other channels.
This could correspond to some of the bumps seen using the time
delay method in the analysis of the KN system in [137].

6.2 Formalism and Results

We solve the Faddeev equations for the N7 K system following
the formalism developed chapters 1 and 2. We study the NwK
system for total charge +1 taking into account four channels to
solve Eqs. (1.112): pr’K° nr'K*, pr~ K+, natK°. In this
case, the coupled channels appearing for the calculation of the
two-body t-matrices are listed below:

o Kt¥0 K%+ K*A, 7%, ntn, np for the 7N interaction
with charge +1.

o Kt¥— K930 KOA, n=p, 7%, nn for the 7N interaction
with null charge.

o 77 KO 70KT for 7K interaction with charge +1.
o 7 K1, 70KY for 7K interaction with charge 0.

e And K%, K*n for KN interaction with charge +1,
KO for charge 0 and K *p for charge +2.

The meson-baryon potential obtained with chiral Lagrangians
has the general form, after projecting in S-wave, of Eq. (1.6).
For the mN system and its coupled channels for total charge
zero, which dynamically generate the N* (1535), the coefficients
Cj; in Eq. (1.6) can be found in [17], while for the KN system
in [5]. The coefficients for the 7N system for total charge +1
are given in Table 6.1 .

The potential for the 7K system can be obtained from [3],
in which the x(800) gets dynamically generated.
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Table 6.1: Cj; coefficients for the 7N interaction with charge

+1
Kt K%t KYA 7% =otn  nmp
1 1 V3
K*ts0 0 V2 0 -5 5 Y
0y -+ 1 _./3
K% 1 0 5 0 \E
V3 3 3
KA 0 =% -5 -3
7p 0 V2 0
n 1 0
np 0

The Ty, matrix for different possible total isospins has been
obtained using the following relations:

1
INTK;T =0, I = 1/2)

V6

Ipm°K®) — V2[pr~ KT)

+V2nat KO + \erK‘F)}

1
INTK; I =1, 1k =1/2)

1

NrK:I =1, =3/2
| K /> \/6

1

INTK; I =2, I =3/2) = NG

V6

Ipr°K) — V2|pr~KT)

S|t KO — \WOKU} (6.1)

V2lpr®K°)

+ |lpr K1) + [nn T KO) — \/§|n7TOK+>}

V2lprOK®) + [pr K )

— |naTK°) + \/§\n7r0K+>}
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with the phase convention |77) = —|I; = 1,1, = 1). The [
and I,x in the above equations represent the total isospin of
the three-body system and that of the 7K system, respectively.

We calculate Egs. (1.112) as a function of the total energy
and the invariant mass of the subsystem of particles 2 and 3.
The invariant masses of the other two subsystems can be written
in terms of /s and ,/s23 as explained in section 2.1. We have
calculated the Tr matrices for the energy range 1500 MeV <
Vs < 2100 MeV, with the motivation to find some structure
around 1540 MeV, and for 600 < ,/s23 < 1100 MeV to generate
dynamically the £ (800) in the K'N subsystem in order to have
some attractive interaction in the three-body system.

We do not find any resonance in the isospin 1 and 2 con-
figurations. We obtain one peak with a broad structure in the
squared amplitude in isospin zero (i.e., when the 7K subsystem
is in isospin 1/2 configuration) around 1720 MeV. The full width
at half maximum of the peak is of the order of 200 MeV. These
features have nothing in common with the resonance claimed
in [35]. The value of |/sp3, for which the bump is found, is
around the mass of the x (800) resonance. We show this peak
in Fig. 6.1, where we plot the squared amplitude for the to-
tal isospin zero. As is evident from Fig. 6.1, the structure
of the peak is far from a Breit-Wigner. Though the strength
of this amplitude is similar to that of the corresponding S =
-1 case [56], its shape is different from those of the clear reso-
nances found in the latter. Its unconventional peaking behavior
cast doubts whether this peak could have a pole associated in
the complex plane, the accepted criterium to define a peak as a
resonance. The technique to extrapolate the amplitudes to the
complex plane with the two variables that we have is not avail-
able and looks nontrivial, since it involves working with complex
momenta for some particles and real for others. Yet, indepen-
dently from whether the structure found deserves or not to be
called a resonance, the fact remains that the chiral dynamics of
this coupled channel three-body system leads to such a bump
in the cross section in a region where the system clusters like a
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r and a nucleon. This peak should be visible in KN scattering
with the quantum numbers I = 0, J© = 1/2%, but even better
in the K N — K N reaction, since the peak appears well above
the 7 KN threshold, or in any reaction producing tK N in I =0
in the final state.

TR 17 (x 1020 MeVv®)

4

500 1700 1600 1500 100
0
V's (MeV)

Figure 6.1: The isospin zero amplitude squared for the N7 K
system as a function of the total energy and the invariant mass
of the mK subsystem.

Interestingly, a broad structure at around 1800 MeV seems
to be present in the data [138] of KT N scattering in the Py
partial wave and in the time delay analysis of these data [137],
which could correspond to the peak shown in Fig. 6.1.

6.3 Summary

The possibility of existence of strangeness +1 baryon with a
strong coupling to the N7wK system has been investigated by
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solving Faddeev equations in the formalism which has gener-
ated dynamically many strange and non strange resonances in
three-body systems. We do not find any structure in the en-
ergy region close to 1542 MeV, therefore, the interpretation of a
possible ©1 as a N7K bound state, with all the interactions in
s-wave, is ruled out. A bump is found around 1720 MeV with
about 200 MeV of width and with isospin zero, which reveals
the underlying chiral dynamics of the three-body system, and
that we hope can be seen in K TN scattering, but much better
in reactions producing 7K N in I = 0 in the final state. Our
study should stimulate experimental work in this direction.






CHAPTER [

\_The X(2175) as a ¢ K K molecular state

So far we have discussed only meson-meson-baryon systems
studied with our formalism. In this chapter we will focus on
investigations of three meson systems consisting of two pseu-
doscalars and one vector meson, KK and ¢mm. The study
results in finding of a resonance which supports the recently
177 X(2175) state found at BABAR and BES facilities.

7.1 Introduction

The discovery of the X(2175) 17~ resonance in ete™ — ¢ f((980)
with initial state radiation at BABAR [47,48], also confirmed at
BES in J/¥ — n¢fo(980) [49], has stimulated research around
its nontrivial nature in terms of quark components. The possi-
bility of it being a tetraquark ssss is investigated within QCD
sum rules in [50], and as a gluon hybrid sSg state has been dis-
cussed in [51,52]. A recent review on this issue can be seen
in [53], where the basic problem of the expected large decay
widths into two mesons of the states of these models, contrary
to what is experimentally observed, is discussed. The basic data
on this resonance from [47,48] are Mx = 2175 + 10 MeV and
I' =58 +£ 16 + 20 MeV, which are consistent with the numbers
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quoted from BES My = 2186+104+6 MeV and I' = 65+254+17
MeV. In Ref. [48] an indication of this resonance is seen as an
increase of the KK~ KK~ cross section around 2150 MeV. A
detailed theoretical study of the eTe™ — ¢ f(980) reaction was
done in Ref. [54] by means of loop diagrams involving kaons and
K*, using chiral amplitudes for the KK — 77 channel which
contains the f,(980) pole generated dynamically by the theory.
The study revealed that the loop mechanisms reproduced the
background but failed to produce the peak around 2175 MeV,
thus reinforcing the claims for a new resonance around this mass
(see Fig. 7.1).

0.6 —

o () (nb)
=

02—

PR S i B e R
2400 2600 2800

J5(Mev)

1
1800

Figure 7.1: The cross section for the et e~ — ¢ fy reaction.
The dashed-dotted line shows the result of the calculation of
the cross section in the plane wave approximation [54]. The
data, which corresponds to the et e~ — ¢ (n7m)7—o reaction
(triangles for charged pions and boxes for neutral pions), have
been taken from [47,48].

We wish to advocate a very different picture for the X(2175)
resonance for which a reliable calculation can be made and
which could lead naturally to a very narrow width and no cou-
pling to two pseudoscalar mesons. The picture is that the
X(2175) is an ordinary resonant state of ¢f5(980) generated
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by their interaction. The fp(980) resonance is dynamically gen-
erated from the interaction of 7w and KK treated as coupled
channels within the chiral unitary approach of [2,139,140], qual-
ifying as a kind of molecule with 77 and K K as its components,
with a large coupling to KK and a weaker one to 77 [hence,
the small width compared to that of the ¢(600)]. The vector-
pseudoscalar interaction has also been studied using chiral dy-
namics in [79,141], which lead to the dynamical generation of
the low-lying axial vectors. We shall follow the approach of
Ref. [79] to obtain the ¢ K and ¢m amplitudes and that of [2] to
calculate the KK and 7 ones .

To study the ¢f,(980) interaction, we are thus forced to in-
vestigate the three-body system ¢ K K. For this purpose we have
solved the Faddeev equations with coupled channels ¢ K TK~
and ¢ K 0K0. The picture is later complemented with the addi-
tion of the ¢mm state as a coupled channel.

7.2 Formalism

To study the ¢ K K system, it is required to solve Egs. (1.112).
The procedure followed is (1) we solve coupled-channel Bethe-
Salpeter equations for pseudoscalar - pseudoscalar meson (PP)
interaction as done in [2]; and for pseudoscalar-vector mesons
(PV) interaction as in [79]; (2) then we solve the Faddeev equa-
tions for the three-body, i.e., vector-pseudoscalar-pseudoscalar
(VPP) mesons, system using the model developed in chapters 1
and 2. We revise the input and the formalism for this study in
this section.

We label ¢ as particle 1 and K and K as particle 2 and
3, respectively. The invariant mass of the KK system /523 is
taken as an input in the three-body calculations and is varied
around the mass of the fy. The KK interaction t! in this region
contains the pole of the f((980) [2,139]. The other invariant
masses s12 and sq13 can be then calculated in terms of |/s23 and
the total energy (Eq. (2.1)). Thus, there are two variables of
the calculations, i.e., the total energy and the invariant mass of
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the KK system.
To obtain the input the two-body ¢ matrices for the PP
interaction we solve the Bethe-Salpeter equation

t=V+VGt (7.1)

for five coupled channels, i.e., KT K~, K'K°, 777, 7970, and
7%n. The potentials V are calculated from the lowest order
chiral Lagrangian and the loops G have been calculated using
dimensional regularization as in [2]. The authors of [2,139,140]
found poles in the ¢ matrices, in the isospin 0 sector, corre-
sponding to the ¢ and the fy resonances, and also the one cor-
responding to the ap(980) for the isospin 1 case. It was also
found that the fy resonance is dominated by the KK channel
and the pole for the fy appears at ~ 973 MeV even when the 77
channel is eliminated. The matrix element corresponding to the
KK — KK scattering is used as an input to solve Eqgs.(1.112)
and (1.114). In the two-body problem, the f,(980) pole appears
below the K K threshold. It corresponds to total energies of the
K K system below 2my, and in the momentum representation to
purely imaginary kaon momenta if we take p%( = m%( (which is
not the case in a bound state). To avoid using unphysical com-
plex momenta in the three-body system, we give a minimum
value of about 50 MeV/c to the kaon momentum in the KK
center of mass system, as discussed in section 2.1. It should be
mentioned that the results are almost insensitive to this choice
of the minimum momentum. For example, a change in this mo-
mentum by about 40% changes the position of the peak merely
by ~ 5 MeV.

For the VP meson interaction, Eq. (7.1) is calculated with
oK, wK, pK, K*n, and K*m as coupled channels. The potential
for the VP meson-meson interaction has been obtained from
the lowest order chiral Lagrangian and projected in the s wave
[79], and then the ¢ K — ¢K element of the resulting coupled-
channel ¢ matrix is used as an input in Eq. (1.112)

Coming back to the three-body problem, our interest is to
check the possibility of existence of a resonance or a bound state
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with isospin zero in the ¢ KK system; thus the full Tz matrix
[Eq. (1.114)] is to be projected to total isospin 0. When adding
the ¢ channel, we must deal with the 77 and ¢7 interactions
which are part of the coupled-channel study of the scalar and
axial vector resonances, respectively.

7.3 A discussion on possible three-body coupled chan-
nels

In the construction of the KK and ¢K two-body t matrices we
consider all coupled channels as indicated in section 7.2. We
shall argue here that in the three-body case we can omit some
states. The ¢ K system couples to wK, pK, K*r, and K*n. We
shall bear in mind that we are looking for a state with total
I = 0 and with /s23 ~ 980 MeV, as found in the experiment
[47,48]. When adding the K of the three-body ¢ K K system to
the coupled channels of the ¢ K, we obtain the following states:
wKK, pKK, K*rK, and K*nK. If we want the subsystem
of two pseudoscalar mesons to build up the fy (980), which is
dynamically generated in the KK and 77 interaction, we must
exclude the K*rK and K*nK states. The pKK state is also
excluded because when KK couples to the fo (980) the total
isospin of the state is I = 1. Only the wK K state is left over. We
could consider this channel as a coupled channel of ¢/ K, but
the wK K channel lies ~ 400 MeV below the X (2175) resonance
mass and hence is not expected to have much influence in that
region. In more technical words, a channel which lies far away
from the energy region under investigation would only bring a
small and smooth energy-independent contribution to the final
amplitude because of the large off-shellness of the propagators.

Thus the introduction of the wK K channel can only influ-
ence mildly the results obtained with the ¢/ K system alone,
and thus we neglect it in the study. Furthermore we have also
seen that the oK — wK and wK — wK amplitudes are weaker
than the ¢ K — ¢K one.

Even though we argue above that K*7K and K*nK chan-
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nels should be neglected, we have also investigated the effect of
including the K*mK channel, as an example. This is a channel
where the 7K interaction (together with the nK channel) leads
to the scalar k resonance, and actually there are works which
hint towards a possibility of K*x forming a molecule with mass
around 1576 MeV [142]. What we find can be summarized as
follows:

e In the energy region of our interest, we find a small tran-
sition amplitude from ¢K — K*m as compared to oK —
¢K, indicating a small mixture of the ¢K K, and K*1K
components.

e Studying the K*7 K system alone, we find that the corre-
sponding amplitudes are much smaller in size than those
found in the ¢K K system in the energy region around
2150 MeV.

e Around 1600 MeV, the K*rK amplitudes can be bigger
than around 2150 MeV, but they are still smaller than the
¢K K amplitude at 2150 MeV.

From these findings we conclude that, although more de-
tailed work needs to be done at energies around 1600 MeV
to check the suggestion of [142], the amplitude of the K*rK
channel in this energy region seems too weak to support bound
states. On the other hand, we can be more assertive by stat-
ing that the effect of the K*7K channel around 2150 MeV is
negligible.

We can now stick to having the ¢ as the vector meson and
KK as the main PP channel. Yet, KK and 77 couple strongly
in =0, both the KK — KK and nr — mr amplitudes are
strong, and it is only the intricate nonlinear dynamics of coupled
channels of the Bethe-Salpeter equations that produces at the
end two states, the o that couples strongly to the w7 channel
and the fo (980) that couple strongly to K K. Hence, we find
advisable to include ¢7mm as a coupled channel.
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7.4 Results

In Fig. 7.2, we show the squared amplitude | T | and its pro-
jection, as a function of the total energy (1/s) and the invariant
mass of the KK system (y/s23), in the isospin zero configura-
tion. We have made the isospin projection of the amplitude of
Eq. (1.114) using the phase convention | K~) = — | 1/2,—-1/2)
as
1

V2

A clear sharp peak of | T |? can be seen at 2150 MeV, with a
full width at half maximum ~ 16 MeV. In order to make a mean-
ingful comparison of this width with the experimental results,
we have folded the theoretical distribution with the experimen-
tal resolution of about 10 MeV and then we find an appropriate
Breit-Wigner distribution with a width I' ~ 27 MeV. The peak
in | Tg | appears for the /s33 ~ 970 MeV which is very close
to the pole of the fy resonance [2].

The total mass, the invariant mass of the KK subsystem
and the quantum numbers I¢, JP¢ = 0, 17~ of the resonance
found here are all in agreement with those found experimentally
for the X(2175) [47,48]. These findings strongly suggest that
this resonance can be identified with the X (2175).

Yet, our approach can go further and we can make an eval-
uation of the production cross section and compare it with the
experimental results of [47,48]. For this we make use of the
theoretical evaluation of the ¢fo(980) production in the ete™
reaction studied in [54]. The authors in [54] studied the produc-
tion of the ¢ and fp(980) as plane waves (pw) in the final state
and could reproduce the background but not the peak structure
around X (2175) mass. Since our resonance develops from the
interaction of the ¢ and fj, the consideration of the final state
interaction (fsi), in addition to the uncorrelated ¢fy produc-
tion amplitude (T}1%) of [54], could explain the experimental
data in the peak region. We show here that this is indeed the
case. We implement the ¢fy fsi by multiplying TIfiUR by the

|OKK:T =0T = 0) = —=| | 6K 7K™ )+ | 6K°K")].
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Figure 7.2: The ¢ K K squared amplitude in the isospin 0 con-
figuration.

factor
Ffsi = [1 + ép R(S)tp R(S)], (7.2)

where tp p is the scattering matrix for ¢ and fy and Gp g(s) is
the loop function of the ¢ and fy propagators. For Gp  we use
the standard formula for two mesons [2] with a cut-off (A) of
the order of the sum of the two meson masses, as was the case
in [2], and hence A ~ 2 GeV here. We do not have the tpp,
but in the vicinity of the resonance it must be proportional to
the three-body Tg [Eq. (1.114)], implying Tpr = aTg. The
proportionality coefficient « is readily obtained using a rela-
tion based on unitarity, Im{Tp %L} = —Im{Gpr}, implicit in
Eq. (7.1). Assuming the ¢fy channel to be the main source of
Im{TRr}, as the experimental study suggests [47,48], we have

Im{Tp i} = a "Im{Ty'}y = —Im{Gpr} = (7.3)

kg
8my/s’
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which determines o. In Eq. (7.3), k4 is the ¢ momentum in the
¢ fo center of mass system.

¥

L - L L L L L L L L L L 1 I L
1800 2000 2200 2400 2600 2800
J5(Mev)

a (¢fy) (nb)

Figure 7.3: The cross section for the et e~ — ¢ fy reaction.
The dashed-dotted line shows the result of the calculation of
the cross section in the plane wave approximation [54]. The
dashed (solid) line shows the result of multiplying the amplitude
from Ref. [54] by the final state interaction factor [Eq. (7.2)]
calculated using a cutoff of 2 (2.5) GeV for the Gpr(s). The
data, which corresponds to the et e~ — ¢ (n7)7—o reaction
(triangles for charged pions and boxes for neutral pions), have
been taken from [47,48].

With this information we evaluate the et e~ — ¢ fy pro-
duction cross section taking the results for the ¢ fy production
in the plane wave approximation from [54], and by multiplying
the final state interaction factor of Eq. (7.2) calculated with
our three-body amplitude. We show the results in Fig.7.3. We
can see that taking a cut-off of the order of 2-2.5 GeV for the
G p R, we obtain results for the production cross section which
are in fair agreement with the experimental ones.

We would like now to comment on the effects of including
the ¢ channel, as discussed in Sec. 7.3 . We observe a similar
peak as in Fig. 7.2 (see Fig. 7.4); however, the position of the
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Figure 7.4: The squared amplitude in the isospin 0 configuration
including the ¢7m channel.

peak in the total energy has been displaced by about 38 MeV
downwards to an energy of 2112 MeV. At the same time, the
peak shows up around ,/s23 ~ 965 MeV, about 15 MeV be-
low the nominal energy of the fy (980). These differences with
the nominal values of the masses of the resonances are typical
of any hadronic model of resonances and, thus, the association
of the resonance found to the X (2175), which has the same
quantum numbers as the resonance found, is the most reason-
able conclusion. In any case, the different checks made in our
work, have always led to a clean peak around the same position,
and the difference found could give us an idea of the theoretical
uncertainties.

We have checked the sensitivity of the resonance found to
the change in the cut-off (A ~ 1000 MeV) used in the calcula-
tion of the input two-body ¢ matrices [Eq. (7.1)], which gives
the same results as dimensional regularization. There is not
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much freedom to change the A in our case, because it has been
constrained by reproducing the data on the respective two-body
scattering. We thus change A by ~ 20 MeV for calculating Eq.
(7.1), which still guarantees a reasonable agreement with the
two-body cross sections, and find that it gives rise to a change
in the peak position (in Fig.7.2) in /s by ~ 8 MeV. The cutoff
is also needed to evaluate the G functions of Eq. (1.102), and
we use the same cut-off of about 1 GeV. Since this function in-
volves loops with three-meson propagators, it is very insensitive
to the cutoff. The same change of ~ 20 MeV (or more) in A
leads to negligible changes in the results in this case.

Finally, it should be mentioned that the T'r matrix for isospin
1 does not show any structure.

7.5 Off-shell effects and three-body forces

As discussed in section 1.3.1, our approach makes use of the
explicit cancellation of the off-shell parts of the two-body ¢ ma-
trices in the three-body diagrams with the genuine three-body
forces, which arise from the same chiral Lagrangians. This
makes sense since the off-shell part of a scattering matrix is
unphysical and can be changed arbitrarily by performing a uni-
tary transformation of the fields.

As we explained in section 1.3.1, inside the loops, the off-
shell part of the chiral amplitudes, which behaves as p?> — m?
(where p is the four vector of the off-shell particle) for each of
the meson legs, cancels a propagator leading to a diagram with
the topology of a three-body force. It is also a peculiar feature of
the chiral Lagrangians that there is a cancellation of these three-
body forces with those arising from the PPV — PPV contact
terms of the theory. Examples of similar cancellations are well
known in chiral theories [18,143]. The detailed derivation of
the cancellation of the off-shell part of the ¢ matrices and the
three-body force arising from the chiral Lagrangian can be seen
in section 1.3.1. However, in the ¢ K — ¢K case, the potential
is zero. In this case, the ¢t matrix is generated by rescattering
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through K*7 and K*n states, and the cancellation is found in
the transition potentials.

We find also instructive to see what one gets if the off-shell
part of the two-body t matrices is retained. Following Refs.
[2,79] we find, for the s wave,

Ver(I =0) = — (o = (F —md) (74
Vo = ssn— 5 Somd = S Gh - md). (1)

i
The (p? —m?) terms in Eq. (7.4) are ineffective in the loops
of the two-body ¢ matrix [Eq. (7.1)] [2] but will show up in the

external legs of the two-body ¢ matrix used as an input in the
Faddeev equations. Hence

>} —m3)
th((I = 0) = ton <1 - Zi) (7.6)

3823

>(pf —m7)

tor =ton |1 -~ ), 7.7
oK on( 3812_2%2) (7.7)
K]

where t,, denotes the corresponding on-shell t-matrix. If we
use these amplitudes to study the ¢ K K system, instead of the
on-shell ones we find a very similar result to that depicted in
Fig.7.2, with the amplitude peaking at /s = 2110 MeV and
/523 = 975 MeV. Thus, the K K still appears very correlated
around the fy(980), but the total energy has been shifted by
40 MeV. This is the result we obtain by using the off-shell ¢
matrices and neglecting the effect of the PPV — PPV contact
term of the theory, which as discussed in section 1.3.1.2 cancels
the effect of the off-shell part of the ¢ matrix. In other words,
we could say that the three-body forces of the chiral Lagrangian
are responsible for a shift of the resonance mass from 2110 to ~
2150 MeV, thus leading to a better agreement with the mass of
the X (2175), but, of course, the result holds for the particular
choice of fields of the ordinary chiral Lagrangians.
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7.6 Summary

In summary, the interaction of the K K system studied with
the Faddeev equations leads to a rearrangement of the KK
subsystem as the f,(980)(0"") resonance. Then, the f;(980)
together with the ¢ forms a narrow resonant 1~ state with a
mass bigger than mg + 2mg, which decays into ¢ fo(980) and
hence is most naturally associated to the recently discovered
X (2175) resonance. The narrow width of around 27 MeV ob-
tained here is compatible within errors with the experimental
width 58 216420 MeV. We have also included ¢n7 as a coupled
channel of /K K and find a peak very similar to the one found
with the ¢ X K channel alone, except that the peak is displaced
by 38 MeV down to smaller masses. We also noted that the
theoretical uncertainties are of this order of magnitude.

The typical differences of our results with the experimental
ones are in the range of 50 MeV for the mass and the width are
roughly compatible. These are typical differences found in suc-
cessful models of hadron spectroscopy. The theory also shows
that there is no resonance in ¢a(980). Although a complete
study of this state would require the addition of the ¢nm chan-
nel, we found that the strength of the ¢/ K amplitude in I =1
is much smaller in magnitude than that of the KK in I = 0,
far away from developing a pole upon reasonable changes of the
input variables. It would be most interesting to test experimen-
tally this prediction.

The ¢(1020)fy(980) s-wave scattering has also been stud-
ied later in [144] employing chiral Lagrangians coupled to vec-
tor mesons through a minimal coupling. The X(2175) reso-
nance is generated in that approach by the self-interactions be-
tween the ¢(1020) and the fp(980) resonances. The authors
of [144] are able to describe the eTe™ — ¢(1020)fo(980) scat-
tering data, concluding that the X (2175) resonance has a large
#(1020) fo(980) meson-meson component and, thus, confirming
the results shown in this chapter.

Yet another work, with completely different model but sim-
ilar conclusions like ours, has been reported recently [145].






CHAPTER 8

The Y (4260) as a J/¢ K K system

We have studied another three meson system where a new char-
monium like resonance has recently been found. It has been
named as the Y (4260) and it appears in the J/¢7mm invariant
mass. In many ways this state resembles the X (2175) resonance
which has been discussed in the previous chapter. As we will
show in this chapter, the Y (4260) also gets generated due to the
dynamics of three mesons: J/¢nm and J/YKK.

8.1 Introduction

An enhancement in the data for the 7*7~J/¢ invariant mass
spectrum was found near 4.26 GeV by the BABAR collaboration
in a study of the ete™ — ~yrgpmtn~J/1 process [146]. A fit
to this data set was made by assuming a resonance with 4.26
GeV of mass and 50 to 90 MeV of width [146]. The resonance
was named as the Y (4260) and it was found to be of J'C =
17~ nature. Later on, an accumulation of events with similar
characteristics in the 77~ J/, 7%7°J /4 and the KT K~J/v
mass spectra was reported by the CLEO collaboration [147,
148], thus confirming the results from BABAR. Following these
works, the BELLE collaboration obtained the cross sections for

165
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the ete™ — w7~ J/1 reaction in the 3.8 to 5.5 GeV region
[149], by keeping all the interactions in the final state in S-

wave, and found a peak at 4.26 GeV and a bump around 4.05
GeV.

Although the Y (4260) does not seem to fit in to the charmo-
nium spectrum of the particle data group [22] known up to ~ 4.4
GeV, a proposal to accommodate it as a 4s state has been made
in [150]. Several other suggestions have been made for the inter-
pretation of this state, for example, the authors of [151] propose
it to be a tetra-quark state, others propose a hadronic molecule
of D1D, DyD* [152,153], xcw [154], Xc1p [155] and yet another
idea is that it is a hybrid charmonium [156] or charm baryo-
nium [157], etc. Within the available experimental information,
none of these suggestions can be completely ruled out and it is
not clear if the Y (4260) possesses any of these structures dom-
inantly or is a mixture of all of them. In Refs. [158-160] the
authors call the attention of the readers to the presence of the
opening of the D*D* channel very close to the peak position of
the Y (4260) in the updated data from BABAR [161] and as-
sociate the peak corresponding to Y (4260) to a DD} cusp. A
fit to the data from [146,161] has been made in [159] and the
additional presence of a rather broad bump around 4.35 GeV
has been proposed.

There are some peculiarities in the experimental findings
which motivate us to carry out a study of the J/¢rm system.
There is no enhancement found around 4.26 GeV in the pro-
cess with the D*D* [162] or other hadron final states [22] and
it is concluded that Y (4260) has an unusually strong coupling
to the mwJ/v final state [146-149]. Further, the data on the
invariant mass of the wm subsystem obtained by the Belle col-
laboration [149], for total energy range, 3.8-4.2 GeV, 4.2-4.4
GeV and 4.4-4.6 GeV, have curious features. The w7 mass dis-
tribution data in 3.8-4.2 GeV and 4.4-4.6 GeV seem to follow
the phase space, however, that corresponding to the 4.2-4.4 GeV
total energy differs significantly from the phase space and shows
an enhancement near m,, = 1 GeV. Do these findings indicate
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that the Y (4260) has a strong coupling to f,(980).J/v, similar
to the X (2175) to the ¢fo(980) [47,49]7 It is interesting to
recall that the X (2175) was found as a dynamically generated
resonance in the ¢K K system [58,144] with the KK subsys-
tem possessing the characteristics of the fy(980). Similarly, the
Y (4660) [163] has been suggested as a 1’ f(980) resonance [164].

In order to find an answer to this question, we have solved
the Faddeev equations for the J/i¢mm and J/¢YKK coupled
channels and we discuss the formalism and results of our study
in this chapter.

8.2 Formalism

In the previous chapter the K K system was investigated and
we found the dynamical generation of the X (2175) resonance
[58]. The study was carried out by solving the Faddeev equa-
tions for the three-meson system using chiral Lagrangians for
interaction of the constituent mesons. There are some similari-
ties between the X (2175) and the Y (4260). Both resonances are
of JP¢ =17 nature. The X (2175) was found in the ¢ £,(980)
cross sections [47-49] and a study of this system using chiral
dynamics required calculations for the ¢ KX K system since the
f0(980) is basically a KK molecule in such a formalism. The
Y'(4260) has been found in a system of a vector and two pseu-
doscalar mesons, with the two pseudoscalars interacting in s-
wave and with their invariant mass showing a dominant peak
around 1 GeV in the Y (4260) region. This hints towards a pos-
sibility of clustering of the two pions to form the fy(980). If
the two pions rearranged themselves to form the fy(980) reso-
nance, the Y (4260) would be about 200 MeV above the J/v fo
threshold just as in case of the X (2175) which is about 200
MeV above the ¢fy(980) threshold. Besides, the diagonal term
of the potential obtained from chiral Lagrangian for J/¢m is
zero just as the one for the ¢K (or ¢m) interaction. However,
the ¢m (or ¢K) scattering matrix is non-zero due to loops of
the non-diagonal (coupled channel) ¢ — KK*(KK*) terms.
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Similarly, the J/¢m — J/¢7 at the lowest order is null but the
scattering matrix is formed through iterations of the potential
involving non diagonal transitions within the coupled channels,
like .J /b1 — DD* — J/+pm. This would give rise to three-body
diagrams of the kind shown in Figs. 8.1 and 8.2. All these
mentioned similarities between the X (2175) and the Y (4260),
and the experimental findings of Y (4260) with seemingly strong
coupling to the J/¢7m channel motivate us to carry out a three-
body calculation of the J/¢mm system. Then, by analogy to
the study of the /K K system made in chapter 7, we study the
J/yrm and J/ K K systems as coupled channels in the isospin 0
base and by considering all the interactions in S-wave. In order
to do that, we first have to calculate the two-body amplitudes
for the pseudoscalar-vector and the pseudoscalar-pseudoscalar
pairs.

I/ D’ T/

-]
o-----9

¢------9

¢-----9

Figure 8.1: A three-body interaction diagram where the J /YT
interaction proceeds through D D* coupled channel.

8.2.1 The t-matrix for the pseudoscalar-vector meson inter-
action.

For constructing the pseudoscalar-vector interaction Lagrangian
we follow the works in [165,166]. The starting point for the con-
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Figure 8.2: Another possible contribution of the J/vm ampli-

tude, through loops of other coupled channels, to the three-body
interaction.

struction of the Lagrangian are fields containing all pseudoscalar
and vector mesons from a 15-plet of SU(4) plus a singlet. In
the physical basis these fields read:

— mo_x 0 -
. m st K D
— -0 2 _
K K Jar - % D,
D0 D Dt e
Pl | w + + 0
R K+ D
— —p0 w 0 -
. o Pt KDy
=
K5~ K ¢u Dy
D0 D DEE T/,

These two fields differ from those used in [165,166] because of
the inclusion of a SU (4) singlet in order to take into account the



170 The Y (4260) as a J/Y KK system

n-n" and w-¢ mixing, which was not considered in these previous
works.
For each one of these fields a current is defined:

I = (8,9)® — 39, (8.1)
T = 0V, = V,0,V". (8.2)

and the Lagrangian is constructed by coupling these currents:

Lopvy = —4—}2% (T TH). (8.3)
The Lagrangian in Eq. (8.3) is SU(4) symmetric by con-
struction. We know, though, that SU(4) symmetry is badly
broken in nature, because of the heavy charmed quark mass.
The first step to break the SU(4) symmetry in the Lagrangian
is to recognize that the interaction behind the coupling of the
two currents in Eq. (8.3) is the exchange of a vector meson,
which can be formally visualized within the hidden gauge ap-
proach of [167-170]. In this way we suppress these terms in
the Lagrangian where a heavy meson is exchanged by the factor
v = m% / m%{ where my, is the value of a light vector-meson mass
(800 MeV) and mp the value of the heavy vector-meson mass
(2050 MeV). In the interaction of only heavy mesons (D* D,
D D*) the vector meson exchanged is the .J/1 and we suppress
it by the factor ¢ = m% / m% e We also consider different values
for the f appearing in the coupling of Eq. (8.3), for light mesons
we use f = fr = 93 MeV but for heavy ones f = fp = 165 MeV.
With our phenomenological Lagrangian we can obtain the
potential for a given process (P(p)V (k)); — (P'(p")V'(K));:

v (s, t,u) = — ' (s —u)e.€, (8.4)
where s and u are the usual Mandelstam variables, fi is the
decay constant of the pseudoscalar meson k, €’s are the vector-
meson polarization vectors and 4, j refer to the initial and final
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channels in the coupled channel space. The matrix of coefficients
&ij can be directly calculated from the Lagrangian of Eq. (8.3).
Eq. (8.4) should be projected into s-wave, which is the only
partial wave that we study. We come back to technical details
in the results section.

We take the following coupled channels for the strangeness
S=1 case: K*m, pK, K*n, K*n/, wK, ¢K, DD, D*Dg, J/WK
and K*n.. And the coefficient matrix §;; for these channels in
isospin I = % is given below
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For strangeness S=-1 the coupled channels considered are
K*m, pK, K*n, K*nt, wK, ¢K, D*D, D* Dy, J/¢K and K*n,
and the coefficients for these channels are the same as for their
corresponding S=1 channels above.

For strangeness S=0, one can find the coupled channels and
the coefficient matrix in [171].

To obtain the t-matrix we project in s-wave the potentials
of Eq. (8.4) (removing -€ - €') and plug them into the scattering
equation for the coupled channels:

t=v+uvg't. (8.5)

In this equation ¢’ is a diagonal matrix with each one of its
elements given by the loop function for each channel in the
coupled channel space. For channel ¢ with mesons of masses m;
and meg, g,; is given by:

1 2 2 2
g;i__< mhy—mits

162 o; + Log% + 95
(Log s— m%;- m%;— 2py/s
—s+mj —mi +2p\/s
s+m3 —m? + 2py/s )))

—s—m3+m?+2p\/s

ms
2
1

L P

NG

+ Log

(8.6)

where p is the three momentum of the two mesons in their center
of mass frame. The two parameters p and « are not indepen-
dent, we fix p=1500 MeV and use for o the same values used
in [166]. These values of «a are obtained from moderate changes
from their natural size [6] in order to fit the spectrum for most
of the known light and charmed axial resonances.

8.2.2 The t-matrix for the pseudoscalar-pseudoscalar meson
interaction.

As discussed earlier, the Lagrangian for the 7w, KK diagonal
and non-diagonal potential is obtained from the lowest order
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chiral Lagrangian [2]

1
r— WTT((%@@ — $9,8)2 + MdY), (8.7)
where,
70 | M + +
ntve T K
o — = _m s KO 8.8
= V2 V6 (88)
B —0
K K —%778
and
m2 0 0
M = 0 mgr 0 (8 9)

2

0 0 2m%-—m2

The on-shell part of the potential obtained from the Lagrangian
Eq. (8.7) in S-wave, for total isospin of the two pseudoscalars
equal to 0, is [2]

3
VkR—KE = TR
V3
Vi KK = Tap 523 (8.10)

1 m2
Vir—onr = _ﬁ (523 - 7ﬂ—> .

These potentials are used to solve the Bethe-Salpeter equations
for 7w and KK coupled channels using the same subtraction
constants as the ones used in [2]. We would like to mention that
we have taken care of the symmetrization of the 77 states. The
dynamical generation of the o and f((980) scalar resonances in
these systems was found using the potentials Eq. (8.10) in [2].
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Thus, we obtain the t-matrices for the scattering of two pseu-
doscalars and of the vector-pseudoscalar mesons which repro-
duce the experimental data in the corresponding cases. With
these inputs we solve the Faddeev equations Eqgs. (1.112). We
shall now discuss the results of our calculations.

8.3 Results and conclusions

Using the t-matrices explained in the above section as input,
we solve Eqs. (1.112) for the J/¢7m and J/¥KK channels in
total isospin 0, varying the total energy /s between 4 and 5
GeV and the invariant mass of the two pseudoscalars, |/s23,
between 400 to 1100 MeV. As explained above, the J/¢7m and
J/YK interaction is null at the lowest order but it is non-zero
when the loops of the coupled channels are considered in the
iteration of the potential leading to the t-matrix. A diagram for
the lowest order non-zero contribution to the J/¢7 interaction
has been shown in Fig. 8.1, and its contribution is written
mathematically as

13
Unp—nm G ’UJ/’LZJTI'HD*D gb*[) ’UD*DHJ/dm' (811)

The potential in Eq. (8.4) has been obtained by assuming
that the momentum transfer, i.e., the Mandelstam variable ¢,
in J/¢m — D*D amplitude is negligibly small compared to the
vector mass. However for the energies and channels considered
here, such an approximation is not good and we need to take
the effect of large momentum transfer into account. In order

to do this, we consider the D*-exchange in the J/¢¥m — D*D
potential (following [17]) to get

d?f/ _m2D*
Vjjpn—D*D — | ;- YJ/ymr—D*D , (812)
fvm A T (k' — k)2 —m3,.

where k' and k are the four vectors of the D* and the J/v, re-
spectively. This would mean that the J/¢m — J/i¢m amplitude
implicit in Eq. (8.11) would be as shown in Fig.8.3. Similarly,
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J/ D J/

D*

¢------9

Figure 8.3: The J/¢m — J/¢m amplitude proceeding through
the intermediate D*D channel in the loop with a D* exchange
at the J/ym — D*D vertex.

we take into account this correction for the J/¢ K and the J/¢ K
amplitudes also.

With these new potentials we calculate the ¢-matrix for the
J/1¢-pseudoscalar interaction and carry out the calculations for
the J/¢rm and the J/¢KK systems. We find a resonance in
both systems at /s = 4150 MeV with a full width at half max-
imum of 90 MeV. The peak appears when the invariant mass of
two pseudoscalars is around that of the f,(980), indicating that
the resonance has a strong coupling to the J/1 f;(980) channel.
Both the J/¢mm and the J/1 K K amplitudes are similar in this
energy region, though they have quite different magnitudes. We
find the .J/vK K amplitude to be much larger in magnitude as
compared to that of the J/¢mm system. This reveals the strong
coupling of the three-body resonance to J/1 f,(980), since the
f0(980) couples most strongly to KK [3,139,172].

In Fig. 8.4 we show the J/¥KK squared amplitude as a
function of the total energy of the three body system and the
invariant mass of the KK system. We have also studied the
invariant mass spectrum of the two pions at /s = 4 GeV, 4.3
GeV and 4.5 GeV, i.e., in the energy region of the resonance
and below and above it. To do that we take the three-body
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|T};|>-matrix and multiply it by the phase space factor

q

7 (8.13)

=

where

muv

T (8.14)

is the momentum of the J/v in the global center of mass system
and

)\1/2(8,'rnL2,/1/},M<2 )

=

A2 (MG,, m3,m3)

mnuv?

2Mim}

i= (8.15)
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the momentum of the pion in the corresponding two-body center
of mass system (M;y,, is the invariant mass of the two pions).

As shown in Figs. 8.5, the invariant mass spectrum at /s =
4 GeV shows a phase space like behavior and the one at /s =
4.3 GeV shows a dominant peak of the fy(980) resonance. At
4.5 GeV, we still see the presence of the f3(980) in the two pion
mass spectrum but the magnitude of this peak is much smaller
as compared to the one seen at /s = 4.3 GeV, and we find that
it gradually fades away at higher energies.

The features described above and depicted in Fig. 8.5 agree
qualitatively with those found for the M, spectrum in [149].
One should note that the peak of the |T|? matrix is found around
4150 MeV rather than the nominal 4260 MeV. While 100 MeV
difference is not a big difference for a hadronic model where
no parameters have been fitted to the resonance data, the fact
remains that this difference is the largest one found so far for
all the three-body states that we have studied in the earlier
chapters of this Thesis. This should not be surprising and we
would like to attribute it to uncertainties in SU(4) and the
fact that, unlike other cases, here we have no data to tune our
J/ym and J/¢K (K) interaction with our limited freedom in
the subtraction constants.

In order to have some rough estimate of uncertainties we
have varied the SU(4) symmetry breaking parameter, -, which
enters the evaluation of the J/ym — J/¢m or J/YK(K) —
J/¢ K (K) amplitudes, which proceed as shown in Fig. 8.3 and
involve necessarily this parameter. We summarize the results
here: if we increase v in 15 % we find that the strength of the
peak of Fig. 8.4 is also increased in about 50 %. The magnitud
of the peaks in Fig. 8.5 are also changed in a similar amount.
However, we see that the position of the peaks and their widths
are affected much less and the changes found are of the order of
5 MeV for both.

To summarize the results, the quantum numbers of the state
obtained, the proximity in the mass to the experimental one
and particularly the decay mode of the resonance give us strong
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reasons to associate the state found to the Y (4260) resonance.

With the end of the summary of this chapter we are close
to the end of this Thesis. This is the last of the three-hadron
systems we have studied so far. All our results are definitely
encouraging and motivate us to scrutinize many more such sys-
tems. In the next and last chapter of this Thesis we will make
a summary of our work along with a list of future plans.



180 The Y (4260) as a J/Y KK system

6x10'37 T T ——— — —]
L Total Energy= 4 GeV ]
o sx10°F 8
% L ]
=3 [ ]
5 #10°F ]
&8 r ]
&
3x10° i
& r 1
S 2a0° q
x C ]
N
. E [ ]
E 1x10° - N
ol v v L L L L N ]
400 500 600 700 800 900 1000
M, (MeV)
[a]
1)(10-27 L A B L B HL A
r Total Energy= 4.3 GeV 1
L gaosl ]
x10° - ]
3 L ]
= . 1
5 [ 1
8 6x10° B
% [ ]
128 L ]
8 a0’ e
ey N 4
o = 4
x . 4
N F 4
W ]I .l
= 2x10 L ]
L Tl e b L 1]
900 500 600 700 800 900 1000
M, (MeV)
[b]
2510° T T T T T T 1 1
= Total Energy = 4.5 GeV B
o 3l ]
S, 20x10° B
3 [ ]
= F ]
S F ]
Bisao® B
& [ ]
B 10a0° - e
< r 4
[=% L 4
x L 4
) -
* © -A7 ]
= 5010 - ]
00k e S e O e AR
400 500 600 700 800 900 1000
M, (MeV)
[c]

Figure 8.5: |T%|* times the phase space factor for J/17m plotted
as a function of the invariant mass M, of the two pions system
for three different total energies: a) 4 GeV; b) 4.3 GeV; c) 4.5
GeV.



CHAPTER 9

Summary and future outlook

In this Thesis we have formulated a general formalism to solve
the Faddeev equations in the coupled channel approach by us-
ing unitary chiral dynamics to calculate the input two-body
amplitudes for the different pairs of the system and its coupled
channels. The off-shell contributions of the two-body t-matrices
to the Faddeev equations has been found to give rise to three-
body forces, apart from those arising directly from the chiral
Lagrangian. However, the total sum of all these forces has been
found to be zero in the SU(3) limit. In a realistic case, this sum
is only 5 % of the total on-shell contribution of the t-matrices
to the Faddeev equations. Hence, the on-shell ¢t-matrices have
been used for the solution of the Faddeev equations, while at
the same time neglecting three-body forces generated by the
same chiral Lagrangian. This fact allowed us to reformulate the
integral Faddeev equations into a set of algebraic equations.
We have applied this scheme to study several three-hadron
systems. In chapter 3 we have explained our investigation of
the mK N system and its coupled channels for S = -1, Q = 0
and JP = 1/2% quantum numbers. The calculations result
into dynamical generation of the following four ¥ and two A
resonances: %(1560), 3(1620), X(1660), %(1770), A(1600) and
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A(1810). The spin-parity for ¥(1560) is unknown and our work
predicts it to be 1/2%. The X’s and A’s found in our work corre-
spond to all the 1/2% resonances in the energy region scanned,
ie., 1500 — 1800 MeV.

A study of the 7nN system and its coupled channels has
been exposed in chapter 4. The calculated three-body T-matrix
reveals dynamical generation of four resonances: (1) One with
mass around 1704 MeV and 375 MeV of width, which we obtain
when the two pions interact for an invariant mass close to 600
MeV in isospin zero, thus, in the ¢(600) region. This is in
perfect agreement with the feature of the N*(1710) listed by
the PDG [22]. (2) Another one with mass around that of the
N*(2100), with one of the 7N pairs simultaneously resonating
as the N*(1650), implying a 7N*(1650) structure. (3) Another
one with mass and quantum numbers of the A(1910). (4) And
yet another peak around 1920 MeV shows up in the T-matrix for
the K KN channel with total isospin 1/2, J™ = 1/2%, when the
KK system clusters to generate the f(980) and the ag(980)
resonances. This state is not listed in the PDG and it was
already suggested by the authors of [71]. In fact, there are
many experimental findings which favor the existence of a N*
with spin-parity 1/27 at an energy close to 1910 MeV, although
better experimental studies are needed to confirm this state.

In chapter 5 we provide a series of arguments which support
the idea that the peak seen in the yp — KA reaction around
1920 MeV should correspond to the above mentioned state. At
the same time we propose polarization experiments in that re-
action as a further test of the prediction, as well as a study
of the total cross section for yp — K™K p at energies close
to threshold and of do/dM;,, for invariant masses close to the
two kaon threshold. These experiments are already going on at
Spring8.

We have also looked for exotic states in two meson-one baryon
systems. In chapter 6 we have considered the N7 K system with
total strangeness +1 in order to investigate the possibility that
the ©T could be interpreted as a NmK bound state. We do not
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find any structure in the energy region 1530-1540 MeV, there-
fore the © can not be considered as a N7K bound state, with
all the interactions in s-wave. However, a signal is found around
1720 MeV with about 200 MeV of width and with isospin zero,
which reveals the underlying chiral dynamics of the three-body
system, and that we hope can be seen in K TN scattering, but
much better in reactions producing 7KN in I = 0 in the final
state. Our study should stimulate experimental work in this
direction.

Recently, the X (2175) resonance has been predicted in the
ete” — X — ¢f0(980) reaction. Since in the chiral models the
f0(980) resonance appears in the KK interaction with a strong
coupling to that channel, a study of the ¢/ K system could
explain the experimental results. We solved the few-body equa-
tions for the ¢ KK and ¢ system and found the dynamical
generation of the X (2175) state when the K K, w7 subsystem is
resonating close to the fy(980), exactly as it was found exper-
imentally. We further implement the final state interaction to
the ete™ — ¢f0(980) amplitude with our three-body T matrix
and we are able to find the peak in the cross section around
2175 MeV. This has been elaborated in chapter 7.

In chapter 8, the model was also used to investigate the
formation of the Y (4260) resonance in the J/¢rm and J/ KK
system, arriving to the conclusion that this state is dynamically
generated when the three-body system clusters like a J/1¢ and
the f,(980).

The success obtained in the study of the tKN, 7m N, TK N,
¢K K, and J/9K K systems and their respective coupled chan-
nels encourage us to extend the formalism to other systems.

The work developed in this Thesis opens a new research
line in hadron physics and there are still many systems to be
explored and whose properties can be understood as a conse-
quence of having dynamical generation of three-body hadron
resonances . Some examples of the systems which we plan to
study are listed below.
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Two baryon- One meson systems

Recently, several investigations have been made to check
the possibility of existence of a bound state in the KNN sys-
tem [59-65]. All these works arrive to the conclusion that there
is a bound state in the K NN system, however, they have dis-
crepancies about the value of the binding energy and the width
of the bound state. We find a series of works based on Fad-
deev equations which lead to relatively large binding, of the
order of 50-70 MeV [59-62], while other works based on vari-
ational methods lead to smaller bindings of the order of 20-30
MeV [63-65]. The widths also vary from 50-100 MeV. We be-
lieve that the origin of such discrepancies may lie in the fact that
these models work with off-shell amplitudes: it is well known
that given a certain physical amplitude, on shell in nature, there
are infinite number of potentials that give this amplitude upon
solving the Schrodinger equation. The differences between the
different potentials will only show up in the off shell extrapola-
tion of the amplitude. However, this information enters as an
input while solving the Faddeev equation as well as in the vari-
ational calculations. Therefore, different potentials leading to
the same on shell amplitude will provide different results upon
solution of the respective equations.

Thus our formalism which does not depend on the off-shell
part of the amplitudes can be very important in order to clarify
the value of the width and binding energy of the bound state
found in the KNN.

It is also interesting to study systems like nN N, wN N, etc.
The possibility of existence of n-nucleus bound states/resonances
has been discussed since almost two decades ago [173] and the
issue is still not settled. Many theoretical investigations sug-
gest the existence of such states with deuteron or two nucleons.
Also, a search of w nucleus bound states is being made both
experimentally and theoretically [174]. A study of such systems
with our formalism could shed some light on these issues.
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Two pseudoscalar and one vector meson systems

Analogous to the study we made of the K K, ¢ systems
at high energies, it is also interesting to study systems like pm,
wrm, K*1K, etc., at lower energies since many of the low-lying
vector states, like, for example, w(1450), w(1650) can couple
strongly to these channels and, therefore, could be dynamically
generated in those systems. Very recently a new resonance,
namely the X(1576), has been found in the K* K7 system [175]
which would be also interesting to study.

Three-body systems with two vector mesons

Inspired by the success of the unitary chiral approach, a fur-
ther extension has recently been made to study the interaction
between two vector mesons and between one vector meson and
one baryon [15,176-179]. The novelty is that instead of using in-
teraction kernels provided by ChPT, one uses the transition am-
plitudes provided by the hidden-gauge Lagrangians [167], which
lead to a suitable description of the interaction of vector mesons
among themselves and of vector mesons with other mesons or
baryons. Coupled-channel unitarity works in the same way as
in the unitary chiral approach, but now the dynamics is pro-
vided by the hidden-gauge Lagrangians [167,168]. As shown by
several recent works [176-181], this combination seems to work
very well.

We can use these vector-vector and vector meson-baryon
amplitudes as input in our formalism and, then, we can investi-
gate the possibility of dynamical generation of states in systems
formed by, for example, three vector mesons, two vector mesons
and one baryon, two vector mesons and one pseudoscalar meson,
etc.

Three pseudoscalar systems

There are several states listed in the Particle Data Book, for
example, 7(1295), 1n(1475), which have large branching ratios
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for the nwm decay channel. This indicates that the interaction
of the nmm and coupled channels might lead to such resonances.
Therefore, investigation of these kind of systems could play an
important role in understanding the properties of these states.
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Introduccion

La Cromodindmica Cudntica (QCD) es la teoria de la inter-
accién fuerte basada en una fuerza de color que describe la
interacciéon entre quarks y gluones. Es bien conocido que el
desarrollo perturbativo de QCD tiene gran éxito en la regién de
altas energias debido al fenémeno de la libertad asintética (a al-
tas energias los quarks que constituyen el hadrén interaccionan
muy débilmente, tanto, que pueden cosiderarse como particulas
libres), pero la teorfa se convierte en no perturbativa a bajas
e intermedias energias y es imposible utilizar métodos pertur-
bativos para extraer informacién de los Lagrangianos de QCD.
Existen progresos en esa linea (QCD en el reticulo) pero todavia
existen serios problemas por resolver.

Una de las teorias que han permitido describir con éxito la
interaccion fuerte a bajas e intermedias energias es la teoria chi-
ral unitaria (UxPT), cuyo radio de convergencia es del ordern
de 2 GeV. La teoria chiral unitaria ha permitido describir exi-
tosamente la interacciéon hadron-hadrén dando lugar a la expli-
cacién de muchos estados como resonancias generadas dinamica-
mente, hecho que pone de manifiesto la existencia de diversos
estados cuyas propiedades no pueden explicarse como sistemas
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de tres quarks o de pares quark-anti-quark.

Sin embargo, existen todavia muchos estados que parecen
poseer una estructura interna mas compleja, como, por ejemplo,
dos mesones y un barién, o tres mesones. A pesar de que existe
una larga tradicion en el estudio de sistemas de tres bariones,
como por ejemplo, sistemas formados por tres nucleones, un
estudio de sistemas formados por dos mesones y un barién, como
7y, T, o tres mesones, como, por ejemplo, K K, ¢m, etc.
no ha sido realizado nunca. El estudio de este tipo de sistemas
constituye un paso importante hacia un mayor conocimiento de
la interaccion fuerte a energias intermedias y la estructura de
los hadrones.

En esta Tesis hemos realizado un estudio de sistemas for-
mados por tres hadrones, concretamente, dos mesones pseu-
doscalares y un barién del octete 1/2%7, y un mesén vectorial
y dos mesones pseudoscalares, con el fin de explorar la posible
formacién de resonancias e investigar los efectos de la inter-
accién de estas particulas en la seccién eficaz de reacciones que
involucran un estado final de tres particulas.

Metodologia

Para estudiar sistemas de tres cuerpos es necesario resolver
las ecuaciones de Faddeev. Tradicionalmente, las ecuaciones
de Faddeev han sido resueltas mediante el uso de potenciales
separables y considerando pocos canales acoplados. Sin em-
bargo, nosotros hemos utilizado la teoria chiral unitaria para
resolver dichas ecuaciones. Este hecho requiere la incorporacién
de un gran numero de canales acoplados a fin de implemen-
tar la simetrfa SU(3) en la dindmica chiral unitaria. El uso de
las amplitudes chirales nos ha permitido demostrar que existe
una cancelacién entre la parte off-shell de esas amplitudes y las
fuerzas de tres cuerpos procedentes de los propios Lagrangianos
quirales, siendo por tanto la parte on-shell de las amplitudes la
Unica relevante a la hora de resolver las ecuaciones. Este he-
cho es de especial importancia, puesto que a diferencia de los
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métodos utilizados usualmente que asumen una determinada
parte off-shell en los potenciales, los resultados obtenidos no
dependen de la extrapolacién off-shell de las amplitudes, la cual
es no fisica, y permiten convertir las ecuaciones de Faddeev,
que son ecuaciones integrales, en un sistema algebraico de ecua-
ciones acopladas.

La resolucién de las ecuaciones de Faddeev nos permite obtener
la matriz T" del sistema de tres cuerpos y, por tanto, buscar reso-
nancias que puedan asociarse con estados que hayan sido obser-
vados experimentalmente. Para obtener la matriz 7', tal y como
hemos explicado en el capitulo 1, reescribimos las ecuaciones de
Faddeev de la siguiente manera:

3
T' =tk — k) + > TY, i=1,2.3 (9.1)
j#i=1

con k; (l;;) el momento inicial (final) de la particula 7, tal que

las particiones T} satisfacen el siguiente sistema de ecuaciones
algebraicas

T}%Q — 1122 4 4! 'G121 T}%l + G123T]%3'
T3 = 1g1343 4 ¢! :G131 T3 4 G132 TI%QZ
T2 = 2g2441 1 42 :G212T}%2 —|—G213T]%3:
T2 = 122343 4 2 (231 T3 4 G232 T1§2: (9.2)

T}%I _ t3931t1 + t3 G312 T}%2 + G313 T]%?)

T3 = 1343242 4 3 (321 T2 4 G323 TI%S_

Las particiones Tg contienen la contribucién de todos los di-
agramas en los que las tultimas interacciones vienen dadas en
términos de las matrices de dos cuerpos ¢/ y t, respectivamente.
g% es la funcién de Green del sistema y GY* es una funcién loop
(para més detalles véase capitulo 1).
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De esta forma, la matriz T" viene dada por
T=> T =) 6%kl - k)+Tr
i=1 i=1

3 3
Tr=)»_ > T/ (9.3)

i=1 j£i=1

Todas las matrices que aparecen en la Eq. (9.2) estan proyec-
tadas en onda S, por lo tanto dando lugar a J™ = 1/2% para los
sitemas de dos mesones y un barion estudiados y J™ = 17 para
los sistemas de tres mesones analizados.

Este sistema de ecuaciones ha sido resuelto para diversos
sistemas:

1. Sistema Mesén-Meson-Barién con extraneza -1

Utilizando el formalismo desarrollado a lo largo de esta
Tesis hemos estudiado el sistema 7K N y sus 22 canales
acoplados para carga total nula. Tal y como hemos mostrado
en el capitulo 3, hemos obtenido la generacién dinamica
de todas las resonancias ¥ y A de espin-paridad 1/2% con-
tenidas en la Tabla de Particulas en la regién de energias
1500-1800 MeV.

2. Estados de extraneza nulay J” = 1/2% como reso-
nancias en el sistema m7 N

Los resultados obtenidos en el estudio del sistema 7K N
nos hizo extender el modelo presentado en esta Tesis a
sistemas formados por dos mesones y un barién para el
caso de carga total nula y extraneza cero.

El analisis realizado en el capitulo 4 ha puesto de man-
ifiesto que el estado N*(1710) puede interpretarse como
un sistema resonante constituido por dos piones y un nu-
cleén interaccionando en onda s. Ademads, también hemos
obtenido que este estado tiene una importante compo-
nente o(600)N en su funcién de onda y que ningin otro
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canal juega un papel importante en la generacion de esa
resonancia.

Sin embargo, tal y como vemos en la seccién 4.3 de esta
Tesis, a parte de este estado existen otras resonancias
con espin-paridad 1/2%, como, por ejemplo, N*(2100) y
A(1910) que no aparecen con las amplitudes procedentes
de los Lagrangianos chirales al orden mas bajo. Tal y como
se pone de manifiesto en [17], sabemos que la teorfa chiral
unitaria utilizando los Lagrangianos a orden mas bajo da
lugar a una amplitud para la interaccién 7N que es capaz
de reproducir los datos experimentales hasta una energia
cercana a 1600 MeV, pero falla méas alla de esa region de
energia. De hecho, la resonancia N*(1650) no aparece con
ese formalismo. Como consecuencia, cualquier estado for-
mado por tres cuerpos en los que dos de sus particulas
interaccionen para dar lugar a la resonancia N*(1650)
no podriamos obtenerlo con el mismo modelo utilizado
para el estudio del sistema 77N y que da lugar al estado
N*(1710).

En la seccién 4.3 de esta Tesis realizamos un nuevo estu-
dio del sistema 7w N y canales acoplados para extraneza
cero utilizando para describir la interacciéon del sistema
mN: a) las amplitudes experimentales en lugar de las pro-
porcionadas por la teoria chiral unitaria cuando estamos
por encima del umbral del sistema 7N ; b) Las ampli-
tudes tedricas segin el modelo desarrollado en [17] siem-
pre que estemos por debajo del umbral de 7N. A fin de
comprobar este modelo, primero calculamos de nuevo la
matriz 1" del sistema de tres cuerpos mwN en la zona de
energia cerca a 1700 MeV para ver si somos capaces de
reproducir el estado N*(1710). La respuesta es que en-
contramos el mismo resultado que en el caso en el que
utilizdbamos las amplitudes chirales para el sistema 7wN.
Confirmada la resonancia N*(1710), empezamos a ver si
es posible generar también el resto de estados 1/27 que se
encuentran a energias mas altas:
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e En primer lugar realizamos un estudio del sistema

mw N, considerando éste como 1inico canal, utilizando
la nueva amplitud 7N que contiene informacién sobre
la N*(1535) y N*(1650). Como resultado, a parte de
obtener nuevamente el estado N*(1710), el estudio da
lugar a otro estado sobre una energia total cercana a
2100 MeV y con una anchura alrededor de 250 MeV
que puede identificarse con la resonancia N*(2100)
que aparece en la Tabla de Particulas.

Una vez hecho esto, consideramos los canales m K32,
mKA, mpN junto con el canal 7w N y recalculamos
la amplitud. Esta vez, obtenemos un pico, de mayor
magnitud, a una energia de 2080 MeV y con una
anchura de 54 MeV. Los cambios surgidos como con-
secuencia de la adicién de méas canales pueden enten-
derse facilmente si se considera que ahora la funcién
de onda asociada a la resonancia contiene més com-
ponentes que en el caso de un solo canal, las cudles
tienen menor espacio de fases en el proceso de desin-
tegracion de la resonancia. Al mismo tiempo, la
componente mwN se ve reducida debido a la nor-
malizacién de la funcién de onda y, por lo tanto,
la anchura de desintegracion a ww N también se ve
reducida. Ademds del estado N*(2100), obtenemos
una resonancia con isospin 3/2 con una masa cercana
a 1910 que puede identificarse con el estado A(1910)
de la Tabla de Particulas. Las dos resonancias, es de-
cir, N*(2100) y A(1910), aparecen cuando la masa
invariante del subsistema 7N en isospin 1/2 es cer-
cana a 1650 MeV. Lo cual muestra que la presencia
de la N*(1650) en la interacciéon 7N juega un pa-
pel importante en la generacién de estos dos estados
y que la dindmica de todos los canales acoplados es
esencial para el caso de la A(1910).

A parte de estudiar la estructura o N y mIN* de estos
sistemas, también hemos investigado la posibilidad
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de obtener estados en los que los dos mesones puedan
formar las resonancias fp(980) y ao(980). Para ello,
hemos incluido el canal KKN ya que tanto la reso-
nancia fo(980) como ag(980) se acoplan fuertemente
a dicho canal. La resoluciéon del sistema con este
nuevo canal genera un pico sobre 2080 MeV con una
anchura de 50 MeV que puede interpretarse como la
componente ap(980)N del estado N*(2100). Ademés
la matriz T para el sistema revela otro pico sobre
1920 MeV confirmando la predicciéon de D. Jido y Y.
Kanada-En’yo [71] sobre la existencia de una reso-
nancia N* de espin-paridad 1/2%7 sobre 1910 MeV.
Este estado no aparece en la Tabla de Particulas,
aunque especulaciones sobre su existencia existen desde
hace casi 10 afos.

Todos estos resultados se encuentran explicados con mayor
detalle en el capitulo 4 de esta Tesis.

3. Posible evidencia de una resonancia N* constitu-
ida por tres hadrones en la reaccién vp — KTA
reaction.

En el capitulo 4, tal y como hemos explicado, obtuvimos
la generacién dindmica de un nuevo estado N* de espin-
paridad 1/2%, de masa alrededor de 1920 MeV, como un
estado constituido por dos mesones y un barién. Un es-
tado de estas caracteristicas, es decir, I = 1/2, J¥ = 1/2%
y masa cercana a 1920 MeV, fue predicho independien-
temente por los autores de [71] con un modelo basado
en calculos variacionales para el sistema KKN. Un es-
tado N* de estas caracteristicas no esta catalogado en la
Tabla de Particulas. Sin embargo, la seccién eficaz para
la reaccién yp — KA muestra un pico sobre una energia
de 1920 MeV [98,99].

La reaccién vp — KA ha sido objeto de muchos estudios
tedricos (véase las referencias del articulo arXiv:0902.3633
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[nucl-th]) y, de hecho, los autores de [105] sugieren que la
senal observada alrededor de 1920 MeV en esa reaccién
corresponde a una nueva resonancia N*. Sin embargo,
no son capaces de identificar su espin y paridad, ya que
existen diversos estados con diferentes espin-paridad en
esa zona de energia asociados a los estados predichos por
los modelos de quarks. En el capitulo 5 hemos intentado
analizar si el estado observado con nuestro modelo y predi-
cho por los autores de [71] corresponde al pico observado
en la seccion eficaz del proceso yp — KA. Cabe destacar
que la seccién eficaz para el proceso vp — K T3° no mues-
tra ningin pico en la regiéon de energias cercana a 1920
MeV, asi como en reacciones que involucren 7N o n/N en
el estado final. Nosotros pensamos que la diferente intensi-
dad en las constantes de acoplo para los vértices K~ p — A
y K~p — XY es la responsable de la aparicién de un pico
relativamente estrecho en la reaccién yp — KTA y su
ausencia en el proceso vp — K130,

También proponemos un razonamiento sencillo a través
del cudl somos capaces de explicar por qué el estado encon-
trado en el sistema K KN y canales acoplados no aparece
en reacciones inducidas por piones o procesos con 7N o
nN en el estado final, dado el pequeno acoplo de la res-
onancia fp(980)N a 7w o de la ao(980) a 7. Con tal
de observar estas propiedades hemos sugerido dos exper-
imentos. Uno de ellos consiste en la separacion de las
componentes S, = 3/2 y S, = 1/2 en la seccién eficaz
del proceso yp — KTA, lo cual permitird descartar la
posibilidad de que el pico observado en esa seccion efi-
caz corresponde a un estado de espin-paridad 3/2% en
caso de que no se observe nada en el canal S, = 3/2.
El otro experimento sugerido seria investigar la seccion
eficaz del proceso yp — KTK N cerca del umbral y la
distribucién para la masa invariante para una energia cer-
cana a la suma de las masas de dos kaones, puesto que
si la seccion eficaz mostrase un aumento cerca de ambos
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umbrales indicaria la presencia de una resonancia debajo
del umbral KK N donde los dos kaones estaran correla-
cionados para dar lugar a los estados fp(980) y a(980).
En el capitulo 5 hemos analizado la seccion eficaz de estos
procesos y hemos obtenido resultados que invitan a pen-
sar que el pico observado en la reaccién yp — KTA se
corresponde con el estado predicho por los autores de [71]
y confirmado por nosotros. Nuestro trabajo ha dado lu-
gar a que se empiece a analizar nuestras propuestas para
confirmar este estado en el laboratorio Spring8 en Osaka.

4. Resonancias de S = +1 en el sistema N7K.

La observacién de un pico en la masa invariante K ™n para
la reaccién yn — KK ~n en un blanco de 2C en el labo-
ratorio Spring8 en Osaka [35] generd grandes expectativas
sobre el posible descubrimiento de un barién de extraneza
positiva, el cudl se denominé ©*. La senal observada fue
asociada con un estado formado por cinco quarks, ya que
con tres quarks no es posible obtener extraneza +1. De-
spués de este descubrimiento, se llevaron a cabo muchos
experimentos con el afdn de observar ese pico estimulando
asi la apariciéon de muchos trabajos tedricos con la final-
idad de interpretar esa senal (véase la extensa lista de
referencias, por ejemplo, en [132,133]. Algunos experi-
mentos observaron el estado, otros no y a pesar de que
el pico fue confirmado en un nuevo andlisis experimen-
tal realizado en LEPS, esta vez utilizando un blanco de
deuterén y con mas estadistica, no se puede descartar que
la senal que aparece sea consecuencia de las caracteristicas
particulares del LEPS. La situacién actual es que todavia
no existe ninguna explicacion alternativa para la senal ob-
servada.

Desde el punto de vista tedrico, la mayor parte de los
trabajos realizados se concentraron en la buisqueda de un
estado formado por cinco quarks. Sin embargo, desde el
punto de vista de la interaccién mesén-barion, la situacion
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no parece muy prometedora, ya que la interaccién KN
obtenida mediante Lagrangianos chirales es repulsiva [76].
Por lo tanto, no es de esperar que aparezca un estado es-
trecho como el observado en [35] en ese sistema. Por ese
motivo, desde el principio, hubieron sugerencias de que si
el pico observado representaba realmente una resonancia
podria ser que pudiese explicarse como un estado ligado
de N7 K, con el pién actuando como una especie de pega-
mento entre el nucleén y el kaén. La energia de ligadura
seria unos 30 MeV. No obstante, estudios realizados en
esa linea pusieron de manifiesto la dificultad de formar un
estado ligado en el sistema N7K [83,136].

En el capitulo 6 hemos investigado la posibilidad de la ex-
istencia de un estado de extraneza positiva con un fuerte
acoplamiento al sistema N7 K mediante el formalismo de-
sarrollado en esta Tesis. El resultado de dicho estudio
es que no encontramos ninguin estado en la region de en-
ergfas 1520-1540 MeV que pudiese asociarse con el O,
pero observamos una estructura de unos 200 MeV de an-
chura sobre una energia de 1700 MeV para isospin total
zero y en una zona de energia para el caso en el que el
subsistema 7K genera la resonancia £(700).

Estudio de los mesones vectoriales X (2175) e Y (4260).
Recientemente se ha observado experimentalmente diver-
sas resonancias mesonicas cuyas propiedades no pueden
entenderse si se considera que estan formadas por un par
qq. Estos estados reciben el nombre de X, Y, Z. Por ejem-
plo, la resonancia X (2175) 17~ observada en BABAR [47,
48] en el proceso ete” — ¢f(980) (también confirmada
en BES en la reaccién J/U — n¢fp(980) [49]) ha gener-
ado diversos estudios intentando explicar sus propiedades
considerando a ésta como un tetraquark o como un es-
tado hibrido [50,51]. Un estudio detallado de la reaccién
ete™ — ¢f0(980) fue realizado en [54] utilizando diagra-
mas con loops que involucran kaones y K*, usando ampli-
tudes chirales para el canal KK — 77 que contiene el polo
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para el estado f,(980), el cual es generado dindmicamente
por la teoria. Este estudio pone de manifiesto que el
mecanismo utilizado es capaz de reproducir el fondo ex-
perimental observado para la reaccién pero falla en repro-
ducir la senal sobre 2175 MeV, por lo tanto, dando mas
fuerza a la posible existencia de un nuevo estado sobre esa
energia.

Como en los modelos chirales la resonancia f(980) se gen-
era dindmicamente en el sistema w7, KK, puede pensarse
que el estado X (2175) pudiera entenderse como un estado
resonante en el sistema ¢K K. En el capitulo 7 de esta
Tesis hemos estudiado el sistema ¢ K K, ¢pwr considerando
la interaccién entre las tres particulas. Para ello hemos
utilizado el formalismo desarrollado en los capitulos 1 y 2
encontrando que el estado X (2175) se genera dindmicamente
en el sistema de canales acoplados 9K K, ¢mm cuando la
masa invariante del subsistema 77w, KK en isospin zero
estd cerca de la resonancia fp(980). Por lo tanto, indi-
cando que la X (2175) tiene un fuerte acoplo al sistema
?£0(980), tal y como ha sido observado experimentalmente.

En el capitulo 8 de la Tesis hemos presentado un estu-
dio del sistema formado por los canales J/W KK, J/ynr
con tal de analizar la posible existencia de la resonancia
Y (4260), observada experimentalmente en la masa invari-
ante J/¢mm para el proceso eTe” — wtr T J /¢ [147-149].
Nuestro trabajo muestra que este estado, andlogamente a
la X (2175), puede interpretarse como un estado formado
en el sistema J/YK K, J/yrr con el subsistema KK, w7
resonando cerca de la f(980).

Conclusiones

En esta Tesis hemos sentado las bases para la resolucién de las
ecuaciones de Faddeev con canales acoplados mediante el uso
de la teoria quiral unitaria para calcular las matrices t que de-
scriben la interaccién de los diferentes pares de particulas que
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podemos tener en el sistema bajo consideraciéon y sus respec-
tivos canales acoplados. Tal y como hemos visto en la seccién
1.3.1, la parte off-shell de las matrices ¢ da lugar a una fuerza
de tres cuerpos, ademas del término de contacto procedente del
propio Lagrangiano chiral. Sin embargo, la suma de estas con-
tribuciones resulta ser nula en el limite de SU(3). En un caso
mas cercano a la realidad, esta suma es, aproximadamente, un
5% de la contributicén on-shell de las matrices ¢ a las ecua-
ciones de Faddeev. Por lo tanto, para un modelo hadroénico,
basta con considerar la parte on-shell de las matrices ¢ para re-
solver las ecuaciones de Faddeev, despreciando al mismo tiempo
las fuerzas de tres cuerpos procedentes del mismo Lagrangiano
chiral. Este hecho permite convertir las ecuaciones integrales de
Faddeev en unas algebraicas.

El formalismo desarrollado ha sido utilizado para el estu-
dio de diferentes sistemas de tres cuerpos, dando lugar a la
generacién dinamica de muchos estados y explicando asi las
propiedades y la naturaleza de estos, que hasta el momento,
en muchos casos, todavia era desconocida.

El trabajo llevado a cabo en esta Tesis abre una nueva linea
de investigacion en la Fisica Hadronica y todavia existen muchos
sistemas por explorar cuyas propiedades pueden ser debidas a
la generacion de resonancias formadas por la interaccién de tres
cuerpos. Algunos ejemplos de sistemas que tenemos en mente
estudiar son:

1. Sistemas formados por dos bariones y un mesén.

Recientemente, diversos trabajos teéricos han investigado
la posibilidad de formar un estado ligado en el sistema
KNN [59-65]. En todos ellos la conclusién es que existe
un estado ligado en dicho sistema, sin embargo, existen
discrepancias sobre el valor de la energia de ligadura y la
anchura asociada al estado. De esta forma, aparecen una
serie de articulos basados en las ecuaciones de Faddeev que
dan lugar a una energia de ligadura relativamente grande,
del orden de 50-70 MeV [59-62], mientras que otros traba-
jos basados en métodos variacionales generan una ligadura
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menor, del orden de 20-30 MeV [63-65]. La anchura del
estado ligado varia en el rango 50-100 MeV. En nuestra
opinién el origen de tales discrepancias puede residir en el
hecho de que estos modelos trabajan con la parte off-shell
de las matrices t: es bien conocido que dada una cierta
amplitud fisica, on-shell por naturaleza, existen infinitos
potenciales que pueden dar lugar a esa amplitud después
de resolver la ecuacion de Schrodinger. La diferencia entre
los potenciales radica en la extrapolacion off-shell de es-
tos. Esta informacion entra en juego tanto al resolver las
ecuaciones de Faddeev como en los métodos variacionales.
Por lo tanto, diferentes potenciales que dan lugar a la
misma amplitud on-shell generaran diferentes resultados
al resolver las correspondientes ecuaciones.

Con lo cual, un formalismo que no dependa de la parte
off-shell de las amplitudes como el nuestro puede jugar un
papel muy importante a la hora de clarificar el valor para
la energia de ligadura y la anchura del estado ligado en el
sistema K NN.

También resulta interesante estudiar sistemas como, per
ejemplo, NN, wNN, etc. La posible existencia de es-
tados ligados/resonancias de este tipo ha sido discutida
desde hace casi dos décadas [173] y todavia no hay una
respuesta clara. Muchos trabajos tedricos sugieren la ex-
istencia de tales estados con deuteréon o dos nucleones.
También, la bisqueda de estados ligados wN N esté llevan-
dose a cabo en estos momentos tedricamente y experimen-
talmente [174]. Luego un estudio de tales sistemas con
nuestro formalismo podria servir para confirmar tedrica-
mente este tipo de estados.

2. Sistemas de dos pseudoescalares y un mesoén vec-
torial.

Anélogamente al estudio realizado del sistema ¢ K K, ¢nm
a altas energias, también seria interesante el estudio de
sistemas como, por ejemplo, prm, wrw, K*7K, etc., a en-
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ergias més bajas ya que existen diversos estados, como,
w(1450), w(1650) que pueden tener un fuerte acoplo a es-
tos canales y, por lo tanto, podrian generarse dindmicamente
en estos sistemas. Recientemente, un nuevo estado, X (1576),
ha sido observado experimentalmente en el sistema K*Km
[175], luego seria interesante investigar este sistema.

3. Sistemas de tres cuerpos que contienen dos mesones
vectoriales.

Basado en el éxito de las teorias chirales unitarias, recien-
temente se ha llevado a cabo una generalizacion de éstas
con tal de estudiar sistemas formados por dos mesones
vectoriales y también un mesén vectorial y un barién [15,
176-179]. La novedad de estos trabajos es que en lu-
gar de utilizar como potenciales en la ecuacién de Bethe-
Salpeter las amplitudes proporcionadas por las teorias chi-
rales, se utilizan las proporcionadas por los Lagrangianos
de la teoria del hidden-gauge [167]. Estas permiten de-
scribir con éxito la interaccién entre mesones vectoriales
y también entre un mesén vectorial y otros mesones o
bariones. La unitariedad en canles acoplados se imple-
menta de la misma forma que en las teorias chirales, pero
la dindmica viene dada ahora por los Lagrangianos de la
teoria del hidden-gauge [167,168]. Tal y como recientes
trabajos apuntan [176-180] la combinacién de unitariedad
en canales acoplados y amplitudes proporcionadas por los
Lagrangianos del hidden-gauge da lugar a buenos resulta-
dos en la descripcién de los sistemas mencionados anteri-
ormente.

La extensién al caso de sistemas de tres cuerpos es in-
mediata, ya que bastaria con utilizar las amplitudes mesén
vectorial- mesén vectorial y mesén vectorial-barién como
input en nuestro formalismo. De esta forma podemos in-
vestigar la posibilidad de generar resonancias en sistemas
formados, por ejemplo, por tres mesones vectoriales, dos
mesones vectoriales y un barién, dos mesones vectoriales
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y uno pseudoscalar, etc.

4. Sistemas constituidos por tres mesones pseudoescalares.

Existen diversos estados contenidos en la Tabla de Particulas,
por ejemplo, 17(1295), n(1475), que poseen una importante
fraccién de desintegracion a sistemas de tres cuerpos como
nmm. Este hecho pone de manifiesto que la interaccion nrm

y canales acoplados podria dar lugar a la generacién de esa
resonancia. De este modo, el estudio de este tipo de sis-
temas puede desempenar un papel importante a la hora
de entender las propiedades de estos estados.
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