

Universidad de Oviedo

Departamento de Informática

Sistemas y Servicios Informáticos para Internet

Testing Advanced Transactions in

Service-based Software Systems

Pruebas de Transacciones Avanzadas en Sistemas Software basados en Servicios

Rubén Casado Tejedor

Enero, 2013

iii

Agradecimientos

Este es uno de los momentos más importantes al escribir la tesis. El trabajo

de investigación ha sido largo por lo que “mi gente” ha tenido que compartir

conmigo buenas e inolvidables situaciones, pero también momentos difíciles y

estresantes. Es para mí un placer dedicar unas líneas a esa gente para

agradecérselo. Esa gente ha hecho posible esta tesis y les debo mi más profunda

gratitud.

Primero y más destacado, me gustaría dar las gracias a mis directores Javier

Tuya y Muhammad Younas. Esta tesis no habría sido posible sin sus inestimables

consejos y dirección. Gracias Javier por todas las veces que tuviste que explicarme

qué es testing, cuál es la diferencia entre defecto y fallo así como las valiosas

revisiones que hiciste de mis trabajos. Echaré de menos las veces que me

recordabas que tenía que publicar. Gracias Younas por compartir conmigo tu

incalculable conocimiento sobre las transacciones así como por tu valiosa ayuda

para publicar mis trabajos. Pero gracias también por hacer mis estancias en

Oxford tan cómodas. Me he sentido como si viviera y trabajara en mi propia

ciudad.

Quiero también dar las gracias a otra gente que me ha ayudado durante mi

periodo de investigación, especialmente a mis compañeros del Grupo de

Investigación en Ingeniería del Software de la Universidad de Oviedo. Quiero

también agradecer a la gente de Oxford Brookes University (Reino Unido) así

como a la gente del equipo de investigación del Profesor Claude Godart en INRIA-

LORIA (Nancy, Francia).

Finalmente y sin duda más importante, tengo que dar las gracias a mi

familia y amigos. Gracias de verdad por vuestro apoyo. Gracias Olai por querer

siempre jugar con tu tío viajero. Gracias también a su mamá porque ha criado a

mi sobrino maravillosamente. Gracias Violeta por todo este tiempo juntos. Esta

tesis está finalizando, pero nuestro tiempo acaba de empezar. Las gracias más

importantes son para mi mamá, mi papá y mi hermano. Gracias de verdad por

todo, habéis hecho que mi vida sea muy fácil. Gracias por creer en mí incluso

cuando no entendíais que es lo que hacía. Espero que algún día podáis estar

orgullosos de mi de la misma manera que yo ya lo estoy de vosotros.

v

Abstract

Service Oriented Architectures (SOA), and its implementation as Web

services (WS), provide a new computing paradigm in which functional and

non-functional requirements of specialised services are published over the

Internet such that they can be dynamically discovered and composed in

order to create composite services that provide integrated and enhanced

functionality. Web services transactions are used to ensure reliable execution

of services and to maintain the consistency of data. The classical ACID

model has been shown unsuitable for WS environments due to the loosely

coupled and distributed nature of the process. Numerous models and

protocols have been developed to deal with the new challengers of WS

transactions. These aim to improve the quality of WS transactions in terms

of response time efficiency, failure recovery, flexibility and support for long

running and complex business applications.

This thesis focuses on another quality dimension which is the testing of

WS transactions. In it, the focus of testing is to detect possible faults or

failures in software systems that rely on WS transactions. To that purpose,

we present the Framework for Testing Transactions (F2T) which has been

designed and developed for testing WS transactions. F2T has been devised

to organize all the concepts involving in the process of test case design. Due

to the variety of protocols and standards currently used to manage WS

transactions, this thesis also presents the Abstract Transaction Model

(AbTM) which is capable of modelling the transaction behaviour

independently of the protocol used. F2T uses AbTM for the testing

purposes. As part of the F2T development, a set of test techniques and

criteria have been defined to test the isolated behaviour of the services and

their dependencies (relationships) in WS transactions. These contributions

have been evaluated using rigorous experiments that reveal the efficacy and

efficiency of the proposed work. The evaluation includes a real industrial

case study of a transactional bank application and an in-depth mutation

analysis of the well-know web travel agency case study.

vii

Resumen

Las Arquitecturas Orientadas a Servicios (en inglés SOA), y su

implementación como Servicios Web (en inglés WS), definen un nuevo paradigma

computacional en donde los requisitos funcionales y no funcionales de servicios

especializados se publican en Internet. De esta manera pueden ser dinámicamente

descubiertos y compuestos con el objetivo de crear composiciones de servicios que

proporcionen una funcionalidad mejorada. Las transacciones en Servicios Web (en

inglés, WS transactions), son el mecanismo utilizado por los servicios para

asegurar una ejecución fiable manteniendo la consistencia de la información. El

modelo clásico ACID es inadecuado para el manejo de las WS transactions debido

a la naturaleza distribuida y desacoplada de este tipo de procesos. Por ello se han

propuesto numerosos modelos y protocolos para afrontar los nuevos retos que

arrojan las WS transactions. Esas alternativas tratan de mejorar la calidad de las

WS transactions en términos de eficiencia en tiempo de respuesta, recuperación de

fallos, flexibilidad y soporte para complejas aplicaciones de negocio de larga

duración.

Esta Tesis Doctoral aborda otra dimensión relativa a la calidad: el proceso

de pruebas (en inglés testing) de las WS transactions. Nuestro objetivo es detectar

posibles fallos en los sistemas software que se basan en WS transactions. Para ello

presentamos el Marco de Trabajo para Prueba de Transacciones (el acrónimo

inglés F2T). F2T ha sido diseñado y desarrollado especialmente para WS

transactions. F2T se ideó para organizar todos los conceptos que participan en el

proceso de diseño de casos de prueba. Dada la variedad de protocolos y estándares

existentes para manejar WS transactions, esta tesis también presenta el Modelo

Abstracto de Transacciones (el acrónimo en inglés AbTM) el cual es capaz de

modelar el funcionamiento de las transacciones independientemente del protocolo

utilizado. F2T utiliza el AbTM para el diseño de las pruebas. Como parte del

desarrollo de F2T, hemos propuesto un conjunto de técnicas y criterios de prueba

para probar el comportamiento aislado de los participantes así como las

dependencias (relaciones) existentes entre ellos. Estas contribuciones han sido

evaluadas utilizando rigurosos experimentos que constatan la eficacia y eficiencia

de nuestra propuesta. La evaluación que se ha llevado a cabo incluye un caso de

estudio real de una aplicación transaccional bancaria así como un profundo

análisis de mutación del recurrente caso de estudio de una agencia de viajes web.

ix

Contents

Acknowledgements …………………………………………………………………………………….i

Agradecimientos ……………………………………………………………………………………….iii

Abstract ………………………………………………………………………………………………….….v

Resumen ……………………………………………………………………………………………….….vii

Contents ……………………………………………………………………………………….....….……ix

List of Figures …………………………………………………………………………………………xiii

List of Tables …………………………………………………………………………………..……..xv

1. INTRODUCTION .. 1

1.1. Context .. 2

1.2. Research hypothesis ... 3

1.3. Research aims and objectives .. 3

1.4. Research outcomes ... 4

1.4.1. Contributions ... 4

1.4.2. Publications ... 5

1.4.3. Visits ... 8

1.5. International thesis .. 9

1.6. Thesis structure ... 10

1.7. Summary in a picture .. 11

2. BACKGROUND AND RESEARCH REVIEW 13

2.1. Service Oriented Architecture ... 14

2.1.1. Web Services .. 15

2.2. Transactions in SOA ... 16

2.2.1. Classical transaction models .. 17

2.2.2. Advanced Transaction Models ... 18

2.2.3. Web Services Transactions .. 20

2.3. Software testing in SOA .. 29

2.3.1. Formal verification of transaction processing 31

2.4. Discussion and Summary ... 32

3. THE PROPOSED MODEL AND FRAMEWORK 35

3.1. Abstract Transaction Model .. 36

x

3.1.1. Fundamental Concepts and Definitions 36

3.1.2. Executor ... 40

3.1.3. Coordinator .. 44

3.1.4. Dependencies .. 45

3.2. Framework for Testing Transactions47

3.2.1. Foundations .. 48

3.2.2. Conceptual framework ... 51

3.2.3. First level: Area of study definition 52

3.2.4. Second level: System division ... 53

3.2.5. Third level: Risk identification and analysis 55

3.2.6. Fourth level: Risk response planning 58

3.3. Summary ..61

4. TESTING AT PARTICIPANT LEVEL .. 65

4.1. Introduction..66

4.2. Specification and theoretical model ..67

4.2.1. Modelling the WS transaction standards 68

4.2.2. Test design and execution process 75

4.3. Implementation and validation ..79

4.3.1. Prototype system ... 79

4.3.2. Case study: Jboss Night Out ... 80

4.4. Summary ..88

5. TESTING AT TRANSACTION LEVEL: CONTROL-FLOW BASED

APPROACH .. 91

5.1. Introduction..92

5.2. Flow definition ...93

5.2.1. Dependencies .. 94

5.2.2. Modelling wT using dependencies 96

5.2.3. From a wT to tasks relationships...................................... 98

5.3. Test criteria ..99

5.3.1. Task-based criteria. ... 100

5.3.2. Conditions-based criteria ... 101

5.3.3. Dependency-based criteria .. 102

5.4. Example of use ... 104

5.4.1. PC purchase ... 104

5.4.2. Test case design .. 106

xi

5.4.3. Evaluation ... 108

5.4.4. Results .. 110

5.5. Industrial case study .. 110

5.5.1. Cajastur insurances application 110

5.5.2. Transaction modelling.. 112

5.5.3. Logical expressions .. 116

5.5.4. Test case generation .. 118

5.5.5. Results .. 118

5.6. Summary ... 120

6. TESTING AT TRANSACTION LEVEL: CLASSIFICATION-TREE

BASED APPROACH ... 123

6.1. Introduction ... 124

6.2. Generation of Classification-Trees for Dependencies 125

6.3. Dependencies classification trees.. 129

6.3.1. Input dependencies: Merge, Join, Exclusion 129

6.3.2. Output dependencies: Alternative, Fork, Sequence 135

6.3.3. Data dependency: Write ... 138

6.4. Test case design ... 141

6.4.1. Depth Dimension: Generation of the Combined Test

Coverage Items ... 142

6.4.2. Generating the test cases.. 147

6.5. Case study: Web Travel Agency ... 149

6.5.1. Transactional modelling of the case study 150

6.5.2. Experimental parameters .. 152

6.5.3. Results .. 155

6.5.4. Discussion ... 157

6.6. Summary ... 158

7. CONCLUSIONS ... 161

7.1. Synthesis and results ... 162

7.2. Critical analysis and future work .. 164

8. CONCLUSIONES ... 167

8.1. Resumen y resultados .. 168

8.2. Análisis crítico y trabajo futuro ... 170

xii

I. APPENDICES .. 173

A. Algorithm ABC-DC.. 174

B. OPC Test cases .. 177

C. OPC mutations .. 180

D. Travel Agency results ... 181

II. BIBLIOGRAPHY ... 183

xiii

List of Figures

Figure 1.1. Summary of publications .. 6

Figure 1.2. Thesis word cloud ... 11

Figure 2.1. WS standards stack .. 16

Figure 2.2. WS-AT and WS-BA dependency on WS-COOR 23

Figure 2.3. Web Services, transactions and contexts 28

Figure 3.1. Nested transactions .. 37

Figure 3.2. Roles in WS transactions ... 39

Figure 3.3. Executor ... 40

Figure 3.4. Executor Model for dependencies ... 42

Figure 3.5. Executor Model for behaviour .. 43

Figure 3.6. Coordinator model .. 44

Figure 3.7. Test case design concepts ... 49

Figure 3.8. Framework for Testing Transactions (F2T) 52

Figure 3.9. Recursive test levels ... 60

Figure 4.1. BTP relationship modelling .. 69

Figure 4.2. WS-BA relationship modelling ... 73

Figure 4.3. Test process using the AbTM .. 77

Figure 4.4. Night Out case study modeling... 82

Figure 4.5. Sequence diagram of a test scenario for Theatre service 85

Figure 4.6. Test scenario for test case Thr_5 ... 85

Figure 4.7. Fault in message exchange ... 86

Figure 4.8. Fault in registration process ... 87

Figure 4.9. Fault identification: transaction setup 87

Figure 4.10. Fault identification: protocol implementation 88

Figure 5.1. WS transaction example ... 98

Figure 5.2. OCP application ... 105

Figure 5.3. Test case design examples .. 108

Figure 5.4. Cajastur Insurance Application (CIA) 111

Figure 5.5. CIA model .. 113

Figure 6.1. Concepts in a dependency classification-tree 129

Figure 6.2. Merge classification tree ... 132

xiv

Figure 6.3. Join classification tree ... 133

Figure 6.4. Exclusive classification tree ... 134

Figure 6.5. Alternative classification tree .. 137

Figure 6.6. Sequence classification tree ... 138

Figure 6.7. Write classification tree ... 140

Figure 6.8. Combination of Primitive TCIs .. 142

Figure 6.9. Combined TCIs generation ... 146

Figure 6.10. Base case generation algorithm ... 148

Figure 6.11. Test suite generation algorithm ... 148

Figure 6.12. WS transaction test case ... 149

Figure 6.13. Web Travel Agency case study ... 152

xv

List of Tables

Table 1.1. Summary of research visits .. 9

Table 2.1. WS transaction standards ... 29

Table 3.1. Dependencies ... 46

Table 3.2. Example of dependencies ... 47

Table 3.3. System properties and ISO 9126 characteristics 55

Table 3.4. Summary of hazards addressed.. 63

Table 4.1. Relationship of chapter 4 with F2T .. 67

Table 4.2. BTP message mapping .. 72

Table 4.3. WS-BA message mapping .. 75

Table 4.4. Test cases for Night Out services ... 83

Table 4.5. Tests execution results .. 84

Table 5.1. Relationship of chapter 5 with F2T .. 93

Table 5.2. Actions categories .. 93

Table 5.3. Necessary conditions dependencies .. 95

Table 5.4. Sufficent conditions dependencies .. 95

Table 5.5. Composite dependencies .. 96

Table 5.6. Logical expressions in the example .. 99

Table 5.7. Logical expressions in OCP example ... 106

Table 5.8. Logical expressions in CIA .. 117

Table 6.1. Relationship of chapter 6 with F2T .. 125

Table 6.2. Generated mutants .. 154

Table 6.3. Combined TCIs generated by the criteria 155

Table 6.4. Test suites results .. 156

Table 6.5. Results by type of class ... 157

1

Chapter 1

1. Introduction

No tale is so good that it can´t be spoiled in the telling.

Proverb

his chapter introduces the context of the research work and presents

the proposed research hypothesis and goals. The main contributions

and research outcomes are also summarized. The chapter outlines the

fulfilment of the requirements for obtaining the qualification of International

Doctor. Finally, the chapter describes the structure of the thesis.

T

2 Introduction

1.1. Context

Transaction processing constitutes a key component of most modern

software systems which are required to fulfil Quality of Service (QoS)

requirements such as reliability, integrity, consistency and efficiency.

Transactions are based on the principle of (semantic) atomicity which

ensures “all or nothing” operation of software applications. Thus

transactions enable software systems to remain in consistent state despite

failures of communication systems and/or computer systems. Further,

transactions are executed concurrently thus ensuring the efficiency of

software applications.

The creation of complex software systems as a composition of simpler,

heterogeneous, and possibly distributed parts have been always present in

the different areas of computer science. The need of integrate dynamic,

independent and distributed components of software, has been addressed

through the concept of Service Oriented Architecture (SOA). Web Services

(WS) is the most widely accepted and used implementation of SOA [1].

Rapidly evolving WS technologies facilitate the development of

applications that enable collaboration and integration between different

businesses. Such applications rely on complex interactions that involve many

parties, span many different organisations, and can have long duration.

Transactions used in such scenarios differ significantly from those used in

classical systems which were closed and homogenous systems. In WS

environment, transactions involve loosely-coupled parties, often from

different administrative domains. Thus, they require commitments to be

negotiated at runtime and isolation levels to be relaxed [2]. The theme of

this dissertation is to test such transactions in WS environment proposing

suitable software testing techniques.

Software testing is the process of finding unexpected behaviours in

software systems. Software testing plays a key role in the development of

software systems in order to evaluate whether the application meets its

functional as well as non-functional (QoS related) requirements. The process

Research hypothesis 3

of testing transactions is a key issue in order to ensure the reliability of the

service oriented software systems.

1.2. Research hypothesis

This thesis sets the following research hypothesis:

A Web Services transaction represents a composition of services but

with special properties and requirements such as preservation of atomicity

and maintenance of consistency. By analyzing the transactional

requirements, we claim that a set of good test cases can be systematically

achieved. These generated test cases cannot be obtained using the current

testing techniques developed for web services compositions.

1.3. Research aims and objectives

The main goal of this thesis is to devise a framework to organize all the

concepts involved in the process of test case design for WS transactions. The

framework shall include the knowledge about the existing transaction models

and standards, a hierarchical organization of the aspects to test, as well as

the definition of new testing techniques to address the identified test

requirements. The application of the proposed testing techniques shall

provide the tester a systematic method to define different test suites

according to the features tester wants to focus on about the WS transaction.

The research objectives are detailed as follow:

• To identify the different roles that the services play during the

transaction processing.

• To model the behaviour of the identified roles from a testing point of

view.

• To define the possible dependencies between services involved in a

transaction.

4 Introduction

• By using the previously identified roles models and dependencies, to

define an abstract transaction model capable of modelling the execution

of a service based transaction independently of the underlying protocol.

• To identify the different properties that shall be taking into account in

the transaction testing process.

• To analyze those properties in order to identify the test requirements.

• To organize the testing concepts involved in the addressing of such test

requirements.

• To propose new test techniques to address the identified test

requirements.

• To define systematic test methods for transaction-based applications

using the abstract transaction model and the proposed test techniques.

• To evaluate the test cases generated for the proposed methods in real

software applications.

1.4. Research outcomes

This section outlines the research outcomes and the potential

contributions of the proposed work in this thesis.

1.4.1. Contributions

The potential contributions of this thesis are summarized as follow:

• Definition of the Abstract Transaction Model (AbTM) which is capable

of representing the existing transaction standards and protocols. This

generic model allows focusing the test methods on a single model rather

than defining specific technique for each protocol. A test suite generated

for the AbTM can be automatically translated to any of the existing

transaction standards. Furthermore, as the test model is different from

the implementation one, the AbTM allows applying a black-box testing

approach.

Research outcomes 5

• Design, development and implementation of the Framework for Testing

Transactions (F2T). This novel approach identifies the relevant

properties, attributes and dimensions of a WS transaction from a testing

point of view. F2T allows the identification of different set of test

requirements and helps in the definition of new test criteria for WS

transactions.

• Design, implementation and validation of a testing method for checking

the isolated behaviour of the services involved in a WS transaction. The

method uses the structure elements of the AbTM to achieve the set of

abstract test cases. Each abstract test case is automatically translated to

a concrete test case composed by the test scenario and the expected

system outcome according to the WS transaction standard used in the

software under test. Thus, the proposed method allows the automation

of the test design and test outcome evaluation phases.

• Design, implementation and validation of testing methods for checking

the dependencies (relationships) between the services of a WS

transaction. Two different approaches have been proposed. The control-

flow based approach defines the dependencies in terms of task

relationships. Using the logical expression derived of those relationships,

we propose a novel family of test criteria to exercise the implementation

of the flow dependencies. The Classification-Tree based approach

identifies, analyzes, and classifies the possible dependencies between

services. We use the Classification-Tree technique to derive the test

requirements. A family of novel test criteria are proposed. Such criteria

allow the tester to adjust the proposed test method in terms of

effectiveness, test effort and cost-benefit analysis.

1.4.2. Publications

This section presents a complete list of publications which are the

outcomes of this research work. An acronym represents each publication in

the Figure 1.1. It classifies our contributions according to the year of

publication (vertically) and the topic they address (horizontally). We have

used three topics: Framework refers to the organization of the concepts

6 Introduction

involved in testing WS transaction. Unit testing refers to the techniques

proposed to test the behavior of the services. Integration testing refers to the

techniques proposed to test the dependencies between the services. Note that

we use unit and integration topics just as conspiratorial wink to the classic

software testing levels. For each publication a geometric shape is presented

together with the acronym. Circle represents a publication in a journal

indexed in the Journal Citation Reports® (JCR) [3]. Square represent a

publication in an international conference ranked in the ERA Conference

Ranking Exercise (CORE) [4] and Microsoft Academic Research ranking [5]

or a published book chapter. Finally, triangle represents a publication in a

workshop, national conference or other journals. As illustrated, the graph

shows a clear definition of what has been our research path until now.

Figure 1.1. Summary of publications

• [ICWE09] Rubén Casado, Javier Tuya. Testing Transactions in

Service Oriented Architectures. International Conference on Web

Engineering, (ICWE) Doctoral Consortium. San Sebastian, June 2009

• [QSIC10] Rubén Casado, Javier Tuya, Muhammad Younas. Testing

Long-lived Web Services Transactions Using a Risk-based

2009 2010 2011 2012

Framework

Unit

Testing

Integration

Testing

ICWE09 QSIC10

JSWEB10

ICST11

ICWE11

NOVA11

NWeSP11

SAC12 CPE12

IJCI12

ATP12

WSH12

JCSS12

Workshop / National conference / Other journals

CORE-Microsoft ranked International conference / Book chapter

JCR journal

Research outcomes 7

Approach. Proceedings of the 10th International Conference on

Quality Software (QSIC). Zhangjiajie, China, July 2010.

• [JSWEB10] Rubén Casado, Javier Tuya, Muhammad Younas.

Specifying and testing recoverability requirements in WS-

BusinessActivity transactions. Actas de las VI Jornadas Científico-

Técnicas en Servicios Web y SOA, 2010

• [ICST11] Rubén Casado, Javier Tuya, Muhammad Younas. A

Framework to Test Advanced Web Services Transactions.

Proceedings of IEEE 4th International Conference on Software Testing,

Verification and Validation (ICST). Berlin, March 2011.

• [ICWE11] Rubén Casado, Javier Tuya, Muhammad Younas. An

Abstract Transaction Model for Testing the Web Services

Transactions. Proceedings of the 9th IEEE International Conference

on Web Services (ICWS). Washington DC, July 2011

• [NOVA11] Rubén Casado, Javier Tuya, Muhammad Younas.

Especificación y prueba de requisitos de recuperabilidad en

transacciones WS-BusinessActivity. Revista de la Asociación de

Técnicos en Informática (NOVATICA), 37 (211), pp 61-65, May 2011

• [NWeSP11] Rubén Casado, Javier Tuya, Claude Godart. Dependency-

based Criteria for Testing Web Services Transactional

Workflows. Proceedings of the 7th IEEE International Conference on

Next Generation Web Services Practices (NWeSP). Salamanca, October

2011.

• [SAC12] Rubén Casado, Javier Tuya, Muhammad Younas. Testing the

Reliability of Web Services Transactions in Cooperative

Applications. Proceedings of the 27th Symposium of Applied

Computing (SAC). Trento, Italy, March 2012.

• [CPE12] Rubén Casado, Javier Tuya, Muhammad Younas. Evaluating

the effectiveness of the abstract transaction model in testing

8 Introduction

web services transactions. Concurrency and Computation - Practice

and Experience, (in press) May 2012.

• [IJCI12] Rubén Casado, Javier Tuya, Claude Godart , Muhammad

Younas. Test case design for transactional flows using a

dependency-based approach. International Journal of Computer

Information Systems and Industrial Management Applications, 5 20-40,

2012.

• [ATP12] Rubén Casado, Javier Tuya, Muhammad Younas. A Family

of Test Criteria for Web Services Transactions. Proceedings of

the International Symposium on Advances in Transaction Processing.

Niagara Falls, Ontario, August 2012.

• [WSH12] Rubén Casado, Muhammad Younas, Javier Tuya. A Generic

Framework for Testing the Web Services Transactions. Chapter

in Web Services Handbook, to be published, 2012.

• [JCSS12] Rubén Casado, Muhammad Younas, Javier Tuya. Multi-

dimensional Criteria for Testing Web Services Transactions.

Journal of Computer and Systems Sciences, (in press) 2012

1.4.3. Visits

During the preparation of this thesis, I have visited the Department of

Computing and Communication Technologies of Oxford Brookes University

(Oxford, UK) and the Services and Cooperation Research team (SCORE), a

mixed research group from Laboratorie lorrain de Researche en

Informatique et ses Applications (LORIA) and Institut National de

Recherche en Informatique et en Automatique (INRIA) at Nancy, France.

In Oxford, I worked closely with Dr. Muhammad Younas, one of the world

lead researchers in the web services transactions area. In Nancy, I

collaborated with Professor Claude Godart who has a strong background of

publications about web services transaction validation and verification.

Table 1.1 summarizes the visits information.

International thesis 9

Year Duration Place Goal

2010 6 months Oxford, UK Definition of the Abstract Transaction Model

2011 3 months Nancy, France Definition of the dependencies between services

2011 2 months Oxford, UK Development of the Abstract Transaction Model

2012 4 months Oxford, UK Validation of the proposed test techniques

Table 1.1. Summary of research visits

1.5. International thesis

With this thesis, we aim to obtain the qualification of International

Doctor. The requirements, defined in the Spanish Royal Decree 99/2011 [6],

are the following:

1. During the research period, the student has completed a minimum stay

of three months outside Spain in a higher education institution in

another country studying or doing research. This stay must be

acknowledged by the thesis director and must be certified by the

manager of the research group of the institution where the student

completed this stay.

2. At least part of the thesis, as well as the abstract and conclusions must

be written and submitted in one of the languages commonly used for

scientific communication in the area of knowledge in question. In the

Computer Science area, the most widely accepted language is English.

3. At least the abstract and conclusions must be written in one of the

official language of Spain.

4. The thesis has been informed by a minimum of two experts from a

higher education institution or research institution from another country

than Spain.

10 Introduction

5. The Board of Examiners is comprised by at least one PhD holder who is

an expert on the field and belongs to a foreign higher education

institution or research institute different from the ones mentioned in

requirements 1 and 4.

We have met the above requirements during the completion of this

thesis. The requirement 1 is widely met with the certified research visits (see

Section 1.4.3) at Oxford Brookes University and INRIA/LORIA. This

document is written in English (meeting requirement 2) but also the

Abstract and Conclusions sections are written in Spanish too (meeting

requirement 3). According to the requirement 4, the document will be sent

to Professor Makoto Takizawa (Seikei University, Japan) and Dr. David

Taniar (Monash University, Australia), to obtain their evaluation reports of

the thesis. To meet the requirement 5, Professor Irfan Awan (University of

Bradford, UK) will be invited to the Board of Examiners.

1.6. Thesis structure

This remainder of the document is structured as follows:

Chapter 2 surveys the current work on transaction processing including

classical models as well as the current WS transaction standards. The second

part of the chapter reviews the works on testing web services as well as the

existing approaches about transaction verification. After the literature

review, a set of open issues are identified.

Chapter 3 presents the core of this thesis. The first part presents the

Abstract Transaction Model which is capable of modelling different WS

transaction protocols from a testing point of view. The second part of the

chapter presents the Framework for Testing Transaction which has been

devised to organize all the concepts involving in the process of test case

design.

Chapter 4 addresses in depth the issue of testing transaction

participants as defined in the framework (developed in Chapter 3). This

chapter focuses on the isolated behavior of the executors and presents an

Summary in a picture 11

automatic method to generate test case for different WS transaction

standards.

Chapter 5 addresses the issue of dependencies between participants of a

WS transaction. This chapter proposes a control-flow based technique to test

such relationships. The chapter also presents the validation of the proposed

approach through an industrial case study.

Chapter 6 addresses the same issue as that of Chapter 5 but proposing

a different testing technique. In this chapter, the approach is based on the

systematic analysis of the possible situations. A set of test criteria are

presented and evaluated with a case study.

Chapter 7 presents the main conclusions of our research works and

reports our plans for future research.

Chapter 8 (Capítulo 8) presents the conclusions and future research

work in Spanish.

1.7. Summary in a picture

According to the famous adage “a picture is worth a thousand words”,

Figure 1.2 depicts a graphic summary of the thesis in form of word cloud.

Figure 1.2. Thesis word cloud

13

Chapter 2

2. Background and research

review

You have to know the past to understand the present

Carl Sagan

his chapter reviews the main concepts involved in this thesis:

transactions and testing in the Service Oriented Architectures (SOA),

especially in its implementation as Web Services (WS). The first part

explains the evolution of the transaction model from the ACID properties to

the current WS transaction standards. It critically analyzes the Advanced

Transaction Models (ATM) in relation to the requirements and

characteristics of WS environment. The second part analyzes the existing

efforts in testing web services as well as the works on verification and

validation of transactions.

T

14 Background and research review

2.1. Service Oriented Architecture

This section outlines the concept of services and the associated

architectural paradigm, Service Oriented Architecture (SOA). It focuses on

the transactional management of the service-based applications.

SOA is a style of software architecture that is modular, distributed and

loosely coupled. SOA-style applications use business components that are

designed to be reusable across applications and enterprise boundaries. These

components are invoked through services that are based on well-defined

interface definitions, and are independent of the underlying hardware and

software platforms, as well as the development language [7].

According to [8], the definition of SOA can be perceived differently by

different people:

• Business executive and business analyst: a set of services that

constitutes information technology (IT) assets (capabilities) and can be

used for building solutions and exposing them to customers and

partners.

• Enterprise architect: a set of architectural principles and patterns

addressing overall characteristics of solutions: modularity, encapsulation,

loose coupling, separation of concerns, reuse, composability, and so on.

• Project manager: A development approach supporting massive parallel

development.

• Tester or quality assurance engineer: a way to modularize, and

consequently simplify, overall system testing.

• Software developer: a programming model complete with standards,

tools, and technologies, such as Web Services.

Independently of the perspective used, the kernel of SOA is the

services. According to the OASIS SOA RM [9], a service is:

Service Oriented Architecture 15

A mechanism to enable access to one or more capabilities, where the

access is provided using a prescribed interface and is exercised consistent

with constraints and policies as specified by the service description.

As an architectural concept, SOA permits multiple approaches for the

realization and deployment of an IT system that has been designed and built

around its service-based principles. This thesis focuses on a specific

technology that, arguably, has the most significant academic and industrial

visibility and attraction, and that is Web Services (WS) [10].

2.1.1. Web Services

The World Wide Web Consortium(W3C) [11], which has managed the

evolution of some of the most influential standards such as SOAP [12] and

WSDL [13] specifications, defines Web Services (WS) as follows [14]:

A software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a

machine-processable format (specifically WSDL). Other systems interact

with the web service in a manner prescribed by its description using SOAP

messages, typically conveyed using HTTP with XML serialization in

conjunction with other Web-related standards.

A key aspect of WS is the use of an open, standards-based approach in

which every WS specification is eventually standardized by an industry-wise

organization (such as W3C [11] or OASIS [15]). The WS community has

done significant work to address this interoperability issue, and since the

introduction of the first WS, various organizations have introduced other

WS-related specifications. Figure 2.1 illustrates the most current and widely

accepted standards, forming the WS standard stack [10].

16 Background and research review

Figure 2.1. WS standards stack

Modern and complex business scenarios necessitate the development of

applications that consist of multiple WS in order to create composite services

that can perform efficient and cost effective functions. However, it is

important to ensure that such applications are correctly executed and the

underlying data is consistent and correct even in the case of failures of

component services or communication failures. A coordinated orchestration

of the outcome of the participating services that make up the business

application is essential so that a coherent outcome of the whole business

application can be agreed upon and guaranteed. Transactions have

commonly been used in order to meet such requirements as correctness,

consistency, and coordinated orchestration of complex business applications.

2.2. Transactions in SOA

In order to ensure reliable execution of WS applications it is crucial

that their activities are modelled as transactions such that they achieve a

mutually agreed outcome. WS transactions are defined as sequences of

Transactions in SOA 17

activities that are executed under certain constraints in order to maintain

application reliability, correctness and data consistency. The management of

transactional activities complicates the business logic of web services since

their execution requires careful coordination, accounting for fault-tolerance,

correct process termination and cancelation, without undesirable

consequences at any stage of the execution.

This section outlines the evolution transaction models and explains

why the classical models are not suitable for the WS environment. A depth

analysis of the history of transactional management can be consulted in [16].

2.2.1. Classical transaction models

Transactions are a fundamental concept in building reliable distributed

applications. A transaction is a mechanism to ensure that all the

participants in an application achieve a mutually agreed outcome [17, 18].

Often, we mnemonically refer to the collection of reliability guarantees

for transactions as the ACID properties:

• Atomicity: either the all operations of a transaction are successfully

executed, or none are.

• Consistency: a transaction must bring the system from one consistent

state to another.

• Isolation: the effects of the operations are not visible outside the

transaction´s scope until it completes successfully. Each transaction

appears as if it executes in isolation.

• Durability: once a transaction has successfully completed, the changes it

has made to the data are made permanent in order to survive failures.

In order to ensure the ACID properties, distributed transaction

processing systems use the Two Phase Commit protocol (2PC) [19] for all

parties to reach an agreement on the global outcome of a transaction. In the

first preparation phase, the participants are asked to vote for the transaction

to be committed or aborted. Those who vote to commit log their updates to

18 Background and research review

a reliable backup medium. An actual commit is not carried out until the

second, completion phase, when a joint commit decision has been reached.

Some variations of 2PC have been developed. For example the presumed

abort (PA) [20] or presumed commit (PC) [21] take an assumption about the

outcome of transactions and it allow optimizing the protocol. In PA when a

coordinator decides to abort a transaction, it does not have to log its

decision. It just sends abort messages to all the participants that have voted

positively and discards all information about the transaction. That is, the

coordinator does not wait for acknowledgments and therefore, the

participants are not required to log such decisions. After a coordinator or

participant failure, if the participant inquires about the transaction, the

coordinator, not remembering the transaction, will direct the participant to

abort it (by presumption). As opposed to PA, the Presumed Commit (PC)

aims to reduce the cost of committing transactions. Instead of interpreting

missing information about transactions as abort decisions, in PC

coordinators interpret such information as commit decisions.

ACID transactions have proven to be very useful in traditional

database applications where the execution time is relatively short, the

number of concurrent transactions is relatively small and transactions

execute on only one database system. However, they lack the Sexibility to

meet the requirements of complex applications such as WS-based

applications where the workflow system needs to support long-living

transactions [16]. Advanced Transaction Models (ATM) [22] have been used

to deal with such needs.

2.2.2. Advanced Transaction Models

WS transactions are based on various models ranging from classical

ACID models to Advanced Transaction Models (ATM). Two Phase Commit

(2PC) protocol and its variants [19] have commonly been used for

maintaining ACID properties. ACID properties are vital for WS transactions

that need strict data consistency. However, they are not suitable for long

running applications due to resource locking/blocking problems [23].

Transactions in SOA 19

The distributed Two Phase Commit protocol (2PC) is a well-formed

ACID protocol. While the strict ACID behaviour is desirable in a database

environment or a short-lived distributed transaction, it can be too expensive

to secure in a long-running distributed transaction environment. 2PC

protocol cannot be completely applied in some distributed transactions

where remote entities may interact by performing complex activities that

may take longer processing. Such increased processing time results in

unnecessary locking of resources thus, making roll-back activities impossible.

Advanced (or Extended) Transaction Models (ATM) [22] have been designed

in order to relax some of ACID properties and to meet the requirements of

long running transactions.

The fundamental logic of ATM is to divide a transaction into smaller

activities according to the semantics of the applications. The advanced

transactions can perform more complex and longer-lasting tasks.

The Nested transaction model [24] was the first model using the idea to

decompose a transaction into activities and allow them to commit

independently. In this model a transaction is decomposed into a hierarchy of

cooperating activities (called subtransactions) forming a transaction tree. A

child transaction may start after its parent has started and a parent

transaction may terminate only after all its children terminate. If a parent

transaction is aborted, all its children are aborted. These strategies are

applied recursively throughout the transaction tree.

The SAGAS model [25] introduced the concept of compensation in

managing long-lived transactions. In this model a transaction is decomposed

into independent activities and each activity has associated a compensation

activity that semantically undoes the effects of committed activity. The

compensation-based transactions allow managing consistency of data across

applications without locking resources.

Both nested transaction and SAGAS models provided the basis for

developing various other models such as open-nested [26] , split-join [27],

ConTracts [28], Flex [29], WebTram [30] and so on. Further analysis of

20 Background and research review

ATM is presented in [30-32]. Some of such ATM based models have been

adopted in the WS environment.

2.2.3. Web Services Transactions

In a WS environment, transactional applications are constructed from

the composition of one or more services, each of which might manipulate

shared data and be party to an agreed overall coordinated outcome.

However, in a WS environment, the services that are the component parts of

an application are typically loosely coupled and distributed across various

independent systems spanning a network [33]. Therefore, in some scenarios,

the ACID properties might have to be applied less strictly in order to allow

more flexible forms of outcome coordination processing. It is necessary more

relax forms of transaction to accommodate collaborations, workflow, real-

time processing, and so on. Consequently, the Advanced Transaction Models

(ATM) are more suitable for the WS environment.

With the shift in interest toward Internet-based applications, web

service transactions have received growing attention from both industry and

academia.

Industrial research

Three competing standardization efforts have been taken in this area,

which are described below. This thesis does not want to develop a new

transaction protocol, but we need to understand the behaviour of the

existing standards in order to develop suitable testing methods for them. For

this reason we do not present in-depth comparison of the standards. Further

comparison between the three WS transaction standards can be consulted in

[16, 34, 35].

The Business Transaction Protocol (BTP) [36] was proposed in

2001 by a consortium of companies including Hewlett-Packard, Oracle and

BEA. It is an XML based protocol for representing and seamlessly managing

complex, multi-step business-to-business (B2B) transactions over the

Internet. BTP ensures consistent outcomes for parties that use applications

that are disparate in time, location and administration and participate in

Transactions in SOA 21

long running business transactions. Although BTP was not exclusively

designed for WS, it has been widely used in such environment.

To ensure atomicity between multiple participants, BTP uses the 2PC

protocol: during the first phase (prepare), an individual participant must

make durable any state changes that occurred within the scope of the

transaction, such that those changes can either be undone (cancelled) or

made durable (confirmed) later once consensus has been achieved. Although

BTP uses a 2PC protocol, it does not imply ACID semantics. The specific

implementation of the prepare, confirm and cancel phases depends on the

application business logic. The management of consistency and isolation

issues of data are also back-end choices and not imposed or assumed by BTP

[37].

Because the traditional 2PC protocol does not impose any restrictions

on the time between executing the first and second phases, BTP took the

approach of using this to allow business-logic decisions to be inserted

between the phases. This means that users have to drive the two phases

explicitly in what BTP terms an open-top completion protocol. The

application has complete control over when transactions prepare, and using

whatever business logic is required, later determine which transactions to

confirm or cancel. Prepare becomes part of the service business logic, for

example.

BTP specifies two extended business transactions types:

• Atoms. If the transaction is configured as an atom, it is guaranteed that

the transaction outcome of all the involved activities is atomic, meaning

that either all participants confirm or all participants cancel. That is,

Atoms meet the conditions set by ACID properties.

• Cohesions. If the transaction is configured as cohesion, the atomicity

property is relaxed. The application itself determines (using business

logic) which participants to confirm or cancel. Participants of a cohesion

that are confirmed, i.e., should commit their results form a confirm set.

The confirm set itself is in turn an atom, as all members of this set

22 Background and research review

should complete successfully (they are confirmed). Cohesion, therefore,

follows a nested transaction based model. Cohesions are used to model

long running transactions in which participants enrol in atoms which

may be cancelled or prepared, depending on certain conditions. It may

take considerable time for the cohesion to arrive at a confirm set.

The Web Services Composite Application Framework (WS-

CAF) [38] provides an interoperable, easy-to-use and easy-to-implement

framework for composite WS applications. It is composed of a series of

specifications.

• WS Context defines a generic context management mechanism for

sharing common system data (i.e., transaction context) across multiple

web services.

• WS Coordination Framework provides a coordination service that is

plugged into transaction context. It manages and coordinates multiple

Web services that are grouped together in one or more activities to

perform some task together.

• WS Transaction Management (WS-TXM) defines three protocols to

manage transaction that are plugged into the coordination framework.

- ACID transaction (TXACID). A 2PC protocol to enforce the ACID

properties.

- Long Running Action (TXLRA). A protocol designed to cover

transactions that have long duration. Compensations are used to

ensure the data consistency. This protocol uses the SAGAS model.

- Business Transaction Process (TXBP). The aim of this protocol is

to integrate different heterogeneous transaction systems (e.g., using

ACID transactions and messaging) from different business domains

into one overall business to business transaction.

Each specification covers a certain level of the overall architecture

required to build reliable business applications that span multiple systems

and use Web service technology.

Transactions in SOA 23

WS-Coordination, WS-AtomicTransaction and WS

BusinessActivity. In 2004 Microsoft, IBM and BEA released a new set of

specifications aimed at the reliable and consistent execution of web based

business transactions using different interconnected web services. In this set

of specifications, the steps to execute a distributed application are regarded

as series of activities which are created, run and completed. The Web

Services Coordination (WS-COOR) [39] specification provides a generic

foundation for web service coordination while WS-Transactions was the first

specification of a protocol that is based on that coordination protocol. Later

WS Transaction was split in two different standards: Web Services Atomic

Transactions (WS-AT) [40] and Web Services Business Activity (WS-BA)

[41]. The last versions (1.2) of these standards have been released in 2009 by

OASIS. Figure 2.2 depicts the accomplish of the three standards [42].

Figure 2.2. WS-AT and WS-BA dependency on WS-COOR

• WS-COOR. It provides a generic coordination infrastructure for web

services, making it possible to plug in specific coordination protocols

(such as WS-AT and WS-BA.) which work between clients, services and

participants. Usually one actor, the coordinator, spreads information to

a set of participants to guarantee that all participants obtain a

particular message. It defines a coordinator, which is an entity that

provides services to applications that want to participate in a

coordinated activity. Those services are:

- The Activation Service. It is responsible for instantiating a new

coordinator and its associated context on behalf of a specific

24 Background and research review

coordination protocol. It also creates a Registration Service which is

implicitly associated with the current coordinated activity.

- The Registration Service. It is used by participants to enrol with

the coordinator. It acts on behalf of a specific coordination protocol

and a specific instance of a coordinator.

• WS-AT. It is focused on the existing transaction systems and protocols

with strict ACID requirements. Existing transaction systems, that

require an all or nothing outcome, form an important part of the

companies’ back-end infrastructure. WS-AT defines two coordination

protocols:

- Completion. This protocol is used by the application that controls

the atomic transaction. The application instructs the coordinator to

commit or to abort the transaction after all the necessary

application work has been done. The coordinator will receive either

a Commit or Rollback and then executes the Volatile 2PC protocol

first before proceeding through to the execution of the Durable 2PC

protocol.

- Two-Phase Commit. The 2PC protocol used in WS-AT is the same

as the traditional 2PC protocol. So it is used to coordinate a group

of participants that all need to reach the same decision, either a

commit or an abort. The protocol uses the well-know two phases,

the prepare phase and the commit phase.

• WS-BA. This specification defines protocols that enable existing business

process and workSow systems to interoperate. It allows managing long-

lived transaction by using compensations. WS-BA defines two

coordination protocols

- BusinessAgreementWithParticipantCompletion. In this protocol, a

participant of a business activity must know when it has completed

all work for a business activity.

Transactions in SOA 25

- BusinessAgreementWithCoordinatorCompletion. In this protocol, a

participant of a business activity relies on its coordinator to tell it

when it has received all requests to perform work within the

business activity.

WS-BA, for each coordination protocol, defines two coordination types:

- AtomicOutcome: all participants will be directed by the coordinator

to either close or compensate their work.

- MixedOutcome: the coordinator should be able to choose which

participants should close their work and which ones should

compensate.

Academia research

Despite the standardization of some transaction models, the academics

have identified open issues and proposed new ideas related to the

transactional management of web services.

Charfi et al. [43] observed the lack of support for non-functional

requirements (included the transactional requirements) in BPEL-based WS

services compositions. They proposed a container framework based on

AO4BPEL in order to define and ensure such non-functional requirements.

The idea of integrate composition and coordination is also used by Chang-ai

et al. [44]. Unlikely Charfi, Chang-ai proposes the use of the standardized

transaction protocols WS-COOR, WS-BA and WS-AT. Both Charfi and

Chang-ai´s works are aligned with the approach of WS-CAF where the

composition and transaction coordination are integrated in the same

framework.

Younas et al. [45] proposed a new commit protocol for managing

transactions in composite web services. Their main goal is to improve the

performance by reducing network delays and the processing time of

transactions. The proposed protocol is based on the concept of tentative

commit that allows transactions to tentatively commit on the shared data of

26 Background and research review

web services. Their work, therefore, is aligned with the idea of optimization

protocols such as the PA or PC discussed in Section 2.2.2.

Schäfer et al. [46] claim that classical compensation based models are

not enough for the WS environment. Instead, they propose a contract-based

approach to deal with flexible advanced compensations. They separate the

compensation logic from the coordination logic. In this way, their approach

allows using different compensation strategies defined on top of basic

compensation activities and complex compensation types. In this way, Zhao

et al. [47] identify a number of issues with compensation-based extended

transaction protocols and describe a new reservation-based extended

transaction protocol that addresses those issues. In the reservation-based

protocol, an application has full control over the reservation activity, as well

as over how long the resource. The protocol defines two steps. The first step

involves an exclusive blocking reservation of the resource. The second step

involves a confirmation or cancellation of the reservation. Associated with

each reservation is a fee, which is proportional to the duration of the

reservation should be reserved. On the way of flexible advanced

compensations, Ferreira et al. [48] propose a protocol which provides

transactional recovery through incremental evolution of exception handling

by combining both backward and forward recovery mechanisms. A similar

approach is proposed by Jiuxin et al [49] where they propose flexible

compensations. All these works disagree with the lack of flexibility in the

compensation methods presented in the current transactions standards.

Choi et al. [50] argue that the isolation relaxation mostly used in the

ATM (and therefore in the WS transaction standards) introduces a serious

inconsistency problem. They proposed a mechanism to ensure the consistent

execution of the isolation-relaxing transactions based in end-state

dependencies. The notion is a relationship between two transactions in which

one transaction’s failure incurs the inconsistent state of the other

transaction. Once the inconsistent transactions are identified, the mechanism

recovers those transactions to the previous consistent states and optionally

further re-executes them. The problem to ensure the consistency is also

addressed by Alrifai et al. [51]. They propose a protocol that applies a

Transactions in SOA 27

commit-differing policy to ensure the consistency of concurrent executions.

An edge chasing algorithm is used to detect potential global waiting cycles

spanning several service providers.

Montagut et al [52] claim that existing WS transaction standards does

take into account the workflow requirements of the WS composition. In this

way, they propose an adaptive transactional protocol for the pervasive

workflow model to support the execution of business processes in the

pervasive setting. The execution of this protocol takes place in two phases.

First, candidate business partners are assigned to tasks using an algorithm

wherein the selection process is based on both functional and transactional

requirements. Then the resulting workflow execution is compliant with the

defined consistency requirements, and the coordination decisions depend on

the transactional characteristics offered by the partners assigned to each

task. A similar lack is argued by von Riegen et al [53]. They claim that there

is little support of dynamic aspects of transactional management in WS

compositions. They propose a set of rules for deciding on the ongoing

confirmation or cancelation status of participants’ work and protocol

extensions of WS-BA for monitoring the progress of a process. Various types

of participant vitality for a process are distinguished, facilitating the

controlled exit of non-vital participants as well as continuation of a process

in case of tolerable failures. Another rule-based approach is proposed by Cao

et al. [54], in this case, focus on the recovery mechanism.

On the other hand, Zhang et al.[55] focus on the fulfilment of the

ACID properties on WS transaction that require such restrictions. They

propose to improve the WS-AT standard to protect the services against

Byzantine faults. Khachana et al. [56] also focus on ACID properties but

their approach´s distinctive feature is that any or all of the ACID properties

may be maintained or relaxed depending on user need.

After the reviewing the work on different transaction models for WS,

we have achieve a number of relevant conclusions to the research work

presented in this thesis.

28 Background and research review

• The WS transaction standards share the same notion of a transaction

coordinator, participants and a transaction context (Figure 2.3 [42]) and

resemble mechanisms which are used in traditional transaction systems.

• The client application interacts with the coordinator to obtain a

transaction context which is propagated to all services that are used

within the scope of a transaction. Services may then enlist their

participants with the coordinator.

• Participants respond to transaction messages and interact with the

coordinator according to the specifics of the transaction protocol [2].

Figure 2.3. Web Services, transactions and contexts

The WS transaction standards are summarized and analysed in Table

2.1. ‘Coordination’ represents whether a particular standard provides

coordination facilities. ‘Short’ and ‘Long’ represent that the underlying

model is respectively based on ACID properties and advanced transaction

models. ‘Related’ represents the remaining standards which belong to a same

family.

Software testing in SOA 29

Standards Coordination Short Long Related

BTP � 2PC Nested �

WS-CAF � � � WS-TXM

WS-TXM � � � TXACD, TXLRA, TXBP

TXACID � 2PC � WS-TXM

TXLRA � � SAGA WS-TXM

TXBP � � Open WS-TXM

WS-COOR � � � WS-AT, WS-BA

WS-AT � 2PC � WS-COOR

WS-BA � � SAGA WS-COOR

Table 2.1. WS transaction standards

It is observed that all standards separate the coordination and the

management of the activities (subtransactions) and also distinguish short-

lived transactions from long-lived transactions. It is also observed that these

standards have proprietary definitions of their underlying transaction models

despite the fact they are based on similar concepts. This makes it difficult to

use them in a uniform way. Our analysis shows that WS transactions

standards are not homogenous and have different processing and testing

requirements. Thus it is not practical (nor easier) to test just a single WS

transaction model and evaluate its reliability. It would useful a generic

(abstract) WS transaction model capable of model the different existing

standards.

2.3. Software testing in SOA

According to [57], “one of the main technological barriers to

enterprises’ transition to SOA is denoted by the heightened importance of

the issue of trust. Web services are introduced into systems that require

high-reliability and security. Using services in these systems raises the

importance of establishing trust between the service provider and the

consumer. The trust issue is not just about correct functioning of a service.

It has many other dimensions such as reliability. Testing provides one

potential solution to the issue of establishing trust.”

30 Background and research review

Many efforts have been made in the area of testing web services. The

topic of web service testing was surveyed by Canfora and Di Penta [58] and

Bozkurt et al. [57]. Also Endo and Simão conducted a systematic review of

web services testing but focused on the formal approaches [59] while Palacios

et al. [60] focus on composition with dynamic binding.

As stated by Canfora and Di Penta [58], four testing levels can be

identified in testing web services:

• Unit Testing: Similar to component testing in traditional software. If the

service is tested by its developer, structural-based techniques such as

code coverage can be applied. In the other case, specification-based

techniques must be used.

• Integration Testing: Test how independent services work together. The

big issues are (i) the lack of information about the integrated

components, which makes the production of stubs very difficult, and (ii)

the impossibility of executing the integrated components in testing

mode.

• Regression Testing: A software exposed as a service undergoes

maintenance and evolution activities. Maintenance and evolution

strategies are out of the system integrators control, and any changes to a

service may impact all the systems using it. This changing nature of the

web services make this level of testing more important than in the

centralized architectures.

• Non-functional Testing: Focus on Quality of Service (QoS) attributes

such as performance, robustness and reliability.

WS transactions involve the collaboration of different services to meet

the requirements of a common bigger process. So testing WS transaction is

included in the level of integration testing. Furthermore, transaction is a key

issue in building reliable WS based applications [61]. Reliability is identified

as a QoS attribute [62, 63], so testing WS transaction also affect the level of

non-functional testing.

Software testing in SOA 31

Some of the issues encountered in integration testing of services are

investigated by Bucchiarone et al. [64]. Many efforts have been published to

test WS compositions [65-72]. Those works focus the test effort on aspects

such us the internal behaviour, services coordination, control flow execution

or composition robustness. On the other hand, testing QoS attributes in web

services have been addressed in [73, 74]. But none of the previous works

address specifically the issue of testing the transactional requirements of the

WS compositions.

Existing literature contains various strategies and solutions to test

classical transactions, in the areas of databases [75, 76] or system-on-chips

(SoCs) at electronic system level [77, 78]. Similarly, work on performance

testing and evaluation of transaction models has been received significant

attention from existing research [45, 79, 80].

Although the aforementioned literature presents an interesting work on

addressing various issues, it lacks research on testing the WS transactions.

2.3.1. Formal verification of transaction

processing

On contrary of testing WS transactions, work on formal verification of

classical, as well as WS transactions, has been carried out in the literature.

Lanotte et al. [81] develop a model for communicating hierarchical

timed automata in order to describe long-running transactions. This

approach allows the verification of properties by model checking. Their

approach takes in account the compositions but is limited to sequence and

parallel execution patterns. A similar work is presented by Kokash and

Arbab [82]. They suggest using the channel-based coordination language Reo

to model the long-lived transactions and verify their properties using model

checking technology.

Aligned with the previous works, Emmi and Majumdar [83] presented a

work to translates programs with compensations to tree automata. They

argue that usual trace-based semantics for web services compositions leads to

32 Background and research review

an undecidable verification problem, but a tree-based semantics gives an

algorithm that runs in time exponential in the size of the business process. It

allows a safety verification of compensating transactions.

Gaaloul et al. [84, 85] use event calculus to validate the transactional

behaviour of WS compositions. The transactional behaviour verification is

done either at design time to validate recovery mechanisms consistency, or

after runtime to report execution deviations and repair design errors, and

therefore, formally ensure service execution reliability. This work takes into

account the execution of the transaction but does not define how the tester

has to do it (the test case design).

Saleh et al. [86] present a data modelling and contracting framework

for WS that help formally verify data integrity properties in transactions.

Although the work addresses the important issue of data verification, their

approach is limited to ACID transactions.

In addition Li et al. [87] propose a formal model to verify the

requirement of relaxed atomicity whilst Bhiri et al. [88] propose using the

Accepted Termination States (ATS) to achieve the same goal.

All the above works deal with verification transaction-related

properties from a theoretical point of view. Thus, they are focus in the

design phase. None of them take into account the possible failures included

during the implementation (code developing) phase.

2.4. Discussion and Summary

Transactions in WS environment are complex as they can have

duration, involve independent providers and go through different network,

hardware and software configurations. While ACID properties are desired in

restrictive scenarios, new transaction models inspired by the ATM have been

designed to deal with the SOA characteristics. Some of those proposals have

been standardized and included in the WS standards stack.

Discussion and Summary 33

On the other hand, very interesting effort have been done in the area

of testing web services. But we have noticed that although transactions are a

key issue in developing reliable SOA based applications, the current

literature does not pay attention to the issue of testing transactions. Testing

transactions should be included in both integration and non-functional

testing levels.

Existing works have addressed the formal verification of WS

transactions. These works mainly propose formal approach to verify the

consistency and correctness of the process. However, these approaches do not

ensure that the implementation satisfies the properties since there is no

formal link between the design model and their implementation. Thus, it is

difficult to predict that the software fulfils those constraints since the

implementation phase may include faults.

According to the conclusions achieved after the current literature

review, we identify the following open issues in the area of WS transactions:

1. Web Services transactions require a flexible transaction model since the

business logic could be complex and dynamic. The existence of different

WS transaction standards does not help to the interoperability of the

applications and also make more difficult the design, implementation

and testing phases. Currently there is no a generic model capable of

representing the transaction independently of the standard used.

2. Transaction is a key issue to ensure the reliability of a WS based

application. In consequently, the transactional requirements shall be

taking into account in the test process. Currently there is no specific

method to test WS transactions.

3. A WS transaction is composition of web services with extra conditions.

Currently the business logic of composition and coordination

(transaction management) are separately in different standards. It would

be useful to integrate both protocols.

34 Background and research review

4. Classic compensation based mechanism are not enough for WS

transaction. An advanced flexible compensation protocol should be

standardized and included in the WS standard stack.

In this thesis, we address the open issues 1 and 2. Our main goal is to

define specific test methods for WS transactions (open issue 2) but because

of the variety of transaction models, we took the decision of defining a

generic model (open issue 1). Chapter 3 presents the proposed Abstract

Transaction Model (AbTM) to represent the existing transactions protocols

and standards. Then, chapter 3 also presents the Framework for Testing

Transactions (F2T) which has been designed and developed for testing WS

transactions.

35

Chapter 3

3. The proposed model and

framework

To win without risk is to triumph without glory

Pierre Corneille

his chapter presents the two main components of the research work

presented in this thesis: the Abstract Transaction Model and the

Framework for Testing Transactions. The objectives are to address the

research issues identified in Chapter 2.

As discussed in Chapter 2, there exist different WS transaction models and

standards. Such diversity of models makes difficult the process of testing the

transactions. Consequently, it is necessary to develop a generic or abstract

model that can represent all such models and standards. The first part this

chapter presents the design and development of the proposed Abstract

Transaction Model (AbTM).

In the second part this chapter presents the Framework for Testing

Transactions (F2T) which has been designed and developed for testing WS

transactions under the proposed Abstract Transaction Model. F2T has been

devised to organize all the concepts involving in the process of test case

design. The framework is inspired by the risk-based methodologies and is

hierarchically organized in four levels.

T

36 The proposed model and framework

3.1. Abstract Transaction Model

This section describes the design and development of the proposed

Abstract Transaction Model (AbTM). The goal of the AbTM is to abstractly

represent existing WS transaction models and standards. In other words, it

captures the behaviour of a WS transaction independently of the underlying

standard or model. It therefore, serves as a template for existing transactions

model and standards and provide an easy and uniform way for testing

different WS transactions.

The scope of the AbTM is defined by the existing approaches

(discussed in Section 2.2) to manage distributed transactions. In this way, it

is assumed that the WS transaction either follows a standardized protocol

(BTP [36], WS-COOR [39], WS-AT, WS-BA[41], WS-CAF[38]) or is

managed as a WS composition (WS-BPEL [89])

3.1.1. Fundamental Concepts and Definitions

This section first describes the main definitions related to a WS

transaction. Then it is presented the different roles used by the AbTM to

abstractly define the transactional process.

A Web Service transaction, wT, is a logical unit of work performed

by a flow of activities whose goal is to achieve an agreed outcome in a WS

based application. It is defined as wT={A,D} where A is a set of activities

and D a set of dependencies among them. The set of functional information

and transaction configuration shared by the activities of the wT is called

transaction context.

The outcome of wT is the final decision of the process. In other words,

if the logical unit of work defined in the transaction is performed or not. The

outcome is called atomic if all its activities are either successfully completed

or compensated. Alternatively, if activities can differ (some completed and

some not), then the outcome is called mixed.

Abstract Transaction Model 37

Activities represent the elements of work that form a wT. That is, the

work performed by each involved service. An activity can be atomic (so-

called task) or non-atomic (so-called subtransaction). An activity is

compensatable if a compensating activity exists within the wT to undo its

actions. An activity is retriable if it can be re-executed without causing any

data inconsistency. An activity is replaceable if there is an alternative that

can perform the same work.

A subtransaction is an activity which can be a transaction itself.

Thus the structure of wT follows the nested transaction structure. The WS

transaction tree, made up of these nested relationships, can be arbitrarily

wide or deep – there are no fixed limits to how many activities a transaction

can have, or how many levels of subtransactions there are between the top-

most coordinator and the bottom-most leaf executor. The actual creation of

the tree depends on the behaviour and requirements of the transaction.

Figure 3.1 shows such relationship wherein wTp, is a parent of a1, a2 and a3.

The activity a1 (or wTc) is in turn a parent of ac1 and ac2.

Figure 3.1. Nested transactions

38 The proposed model and framework

Compensation is an activity that undoes from a semantic point of

view the actions performed by another activity.

Dependencies are constraints on the processing produced by the

concurrent execution of activities. A dependency defines a relationship

between a set of activities. The types of dependencies are explained in

Section 3.1.4.

There are four activities always present during the life-cycle of a WS

transaction: creation, coordination, execution and finalization. Creation

refers to the process to create a new wT, that is, to generate a transaction

context that will be used for the involved services during the transaction

execution. Coordination refers to the management of the transaction from its

beginning until the end. Mainly it is related to the communication between

the services in order to achieve an agreed outcome. Execution refers to the

actions of each service to perform the work specified in the activities that

form the transaction. Finalization refers to decision about the final outcome

of the transaction taking in account the partial results of each service.

According to the activities commented above, the execution of a wT

involves different participants, each of which plays a certain role. As shown

in Figure 3.2 the AbTM defines four different roles of the participants

involved in processing wT:

• Executor: It represents a participant which is responsible for executing

and terminating an activity.

• Coordinator: It communicates with individual participants, coordinates

the wT and manages failures and compensations. It also collects the

results from the executors in order to maintain consistency of data after

the execution of wT.

• Initiator: It represents a participant which starts the wT. First it

requests the coordinator for a transaction context. Then it asks others

participants to participate in wT. Accordingly, the initiator is a simple

participant that does not offer any services to the transaction

coordinator or executors.

Abstract Transaction Model 39

• Terminator: It represents a participant which decides when and how wT

has to be terminated. It also participates in the coordination tasks. In

some situations, it can play the role of a sub-coordinator. It performs the

next tasks: (i) decide whether the context’s overall goals can be achieved

by querying the executor. In mixed outcome contexts, to decide for each

executor its suitable end, and, in atomic outcome contexts, decide

whether to confirm or to cancel/compensate all work. And (ii) send the

suitable message to the coordinator about the final transaction outcome.

Each wT is associated with one Coordinator and one Termintor while

each activity, ai, ∈	A, is executed by an Executor, ei. The behaviour of an

Executor is further detailed in Section 3.1.2.

Figure 3.2. Roles in WS transactions

40 The proposed model and framework

3.1.2. Executor

An executor is a web service enhanced to be able to take part in a

transaction. So it is composed by web service itself plus the transactional

interface (Figure 3.3).

Figure 3.3. Executor

Each executor is in charge of executing an activity. This is a key role

in the processing of transaction so their model is it as well. The model

resides at various levels of abstraction. The most abstract version maps each

possible input (start state) to the output end (Figure 3.2). But the model

must be sufficiently precise to serve as a basis for the generation of test cases

according to the test goals. The executor´s test goals, as is further explained

below, are related to (a) its behaviour and standard performance, and (b),

the dependencies (relationships) with other activities. So the AbTM defines

more detailed models for the executor according to the level of abstraction.

Executor Model

WS transactions do not have a homogeneous transaction model such as

the ACID (Atomicity, Consistency, Isolation and Durability) model. Instead

they are characterized by a diversity of transaction models such as BTP [36],

WS-BA [41] and WS-TXM [38] reviewed in Chapter 2. Such diversity of

models also complicates the process of testing the executors. Various kinds of

failures may happen during the processing of WS transactions, including: (i)

technical failures such as communication, system and software failures. Such

failures result in loss of messages, processing of services, etc. and (ii) service

level failures such as service acquisition failures wherein services cannot be

acquired because of unavailability of the desired services, payment problems,

or service cancellation. The test process of testing the executor shall take

into account the previous situations when defining the test conditions.

WEB

SERVICE

Transactional interface

Abstract Transaction Model 41

All the above failures affect the reliability of WS transactions. Thus it

is important to have a model in order to analyze different transaction

models, generate test case specifications and test their reliability in terms of

failures. A specific model for each transaction standard should be necessary.

But if we define a model for each standard and base the test case design

process on it, we would be defining tests for the implementation, rather than

taking into account the transactional nature of the process. An abstract

(generic) model for an executor independently of the protocol used would be

useful from a testing point of view. The Executor Model (EM) is devised

with those purposes. It have to be able to capture the behaviour of a

executer running under a specific transaction protocol, but also the

dependencies (relationships) between the activities involved in the wT. The

EM, therefore, is presented in two versions. The first version of the model

focuses on the dependencies between different executors while the second one

is focus on the behaviour of each executor during its cycle-life. The EM

versions are represented using the well-known UML statecharts [90]

notations which reflect the event-driven (message communication) nature of

the WS transactions

Executor Model for dependencies

The EM defines the dependencies between the activities in terms of the

actions carried out by the executors. For example, an executor can start

executing its activity only once another executor has finished its execution.

The goal of this model, therefore, is to capture the different actions that an

executor can do during its life-cycle. It is defined as follow:

An executor can be in any of the following commonly used states:

Initial, Active, Completed, Compensated, Aborted, Cancelled and Failed.

The state of an executor is changed by the execution of a primitive action.

There are six atomic primitive actions: begin, complete, compensate, A-

withdraw, A-cancel and A-fail. Note that the primitive action compensate is

only applicable if the activity is compensatable. The states of the executor

and state transitions are shown in Figure 3.4. Solid lines represent external

primitive actions while the dashed lines represent internal primitive actions.

42 The proposed model and framework

An executor is in the Initial state when it has been enrolled in the wT

and is waiting to be executed. An executor is in the Active state when it

has executed the begin primitive action but has not finished execution. An

executor is in the Completed state after it has successfully finished its

activity. From the completed state, the executor can enter the

Compensated state if the activity is compensatable. An executor is in the

Aborted state after it has executed one of the abort primitive actions. An

executor is in the Cancelled state after it was cancelled while executing its

activity. An executor is in the Failed state if it was not able to successfully

finish its activity. An executor which has executed a compensatable activity

is in the Compensated state after it has executed the compensate primitive

action. That is, its actions have been undone by executing a compensation.

Figure 3.4. Executor Model for dependencies

Executor Model for behaviour

When the executor is implemented according to the web services

paradigm, it must follow a concrete transaction model defined in a protocol.

We need, an abstract executor model focus on the behaviour that serves as a

template for modelling (capture the standards special features) and testing

executors running under different WS transactions standard. That is the EA

for behaviour version, depicted in Figure 3.5.

The sequence of messages from the behaviour part of the EA can be

automatically translated to a particular syntax of a WS transaction standard

(see Section 4.2.1). How the states and transitions of this abstract model can

model (or pattern) existing WS transaction standards is also shown in

Section 4.2.1.

Abstract Transaction Model 43

Figure 3.5. Executor Model for behaviour

44 The proposed model and framework

3.1.3. Coordinator

The coordinator is in charge to communicate with the executors

pursuant to the standard in order to ensure the correct execution of the

transaction. In the same way that the executor, models with different level

of abstraction can defined. Figure 3.6 shows a model of a coordinator focus

on its actions (creation, waiting and coordination). Here we defined the

Coordinator Model (CM) focus on the details of its possible behaviours

during its life-cycle. It is shown in Figure 3.6. The relationships between

coordinator and other roles have been shown in Figure 3.2, so here we focus

on its behaviour.

The coordinator is active to manage a specific transaction. It waits

until has the enough information to communicate the final decision to the

executors. That behaviour depends on the concrete protocol used to manage

the transaction. In addition, the coordinator can bear different faults during

the transaction management. Those scenarios are relevant from a testing

point of view. How the states and transitions are used to model the

standards is shown in Section 4.2.1.

Figure 3.6. Coordinator model

Abstract Transaction Model 45

3.1.4. Dependencies

The AbTM presents a wT is a collection of existing WS working

together to offer an agreed combined outcome. The process modelled as a

transaction is composed by a set of activities and a set of dependencies

(relationships) between such activities. Each activity is executed by an

executor and the AbTM uses the EM to model the executor´s behaviour.

While the EM and CM focus on the behaviour of the participants, this

section presents a complementary approach to model the dependencies

between them.

The dependencies specify how services are coupled and how the

behaviour of certain services influences the behaviour of other services. The

AbTM identifies three kinds of dependencies in WS transaction: flow, data

and control. Consider an example of a purchase process; the payment

activity must be executed after the items have been selected (flow

dependency) but the amount to be charged depends on the calculation

process that takes into account the price and quantity of the selected items

(data dependency). Finally the payment is carried out if the number of items

is at least one (control dependency). The three kinds of dependencies allow

capturing the necessary requirements to derive the test conditions and test

coverage items (see Section 3.2.1). They are presented as follow:

• Flow dependencies define constraints on the workflow in terms of the

order of execution of activities.

• Data dependencies define relationship between the data used by the

activities. These specify relations according to read and write operations

on shared data.

• Control dependencies are hybrid dependencies (a mix of flow and

data dependencies). These dependencies refer to feature dimension

described in Section 3.2.6.

A data element is a piece of information accessed by wT. An activity

is said to write a data element if it generates or modifies the value of such

46 The proposed model and framework

data element during its execution. An activity is said to read a data element

if it reads such data element during its execution. We represent a data

dependency as write(A, d 1, d 2) where activity A reads the data element

d1 and updates (writes) it to the data element d2. In other words, A requires

d1 to produce d2.

A dependency is said to be final if it is not in the input of any other

dependency. A dependency is said to be composite if its input includes

another dependency. A dependency is said to be completed if the necessary

activities has been completed. For example in Exclusive, the dependency is

completed if exactly on activity is completed. In Join, the dependency is

completed if all activities have been completed

The dependencies used by our method are graphically represented

using a BMPN based notation as shown in Table 3.1. Table 3.2 presents

some examples for further explanation of the dependencies.

Name Notation Description

Sequence The activity A1 must complete before activity

A2 can begin

Alternative

Only one activity can begin.

Fork

All the activities begin.

Merge

At least one activity must complete before

another can begin. Extra conditions can be

specified.

Join

All activities must complete before another can

begin.

Exclusion

Only one activity can complete

Write

One activity produces a data element and it

may require another data element

Table 3.1. Dependencies

A d1 d2

A2 A1

Framework for Testing Transactions 47

Dependency Example

Sequence The item is sent to the customer once the payment has been confirmed

Alternative In a purchasing process, the customer selects one method (credit card,

bank transfer, Paypal) to pay for the item.

Fork In a journal review process, the editor sends the email to all the

reviewers.

Merge At least one means of transport (car, train, plane) has to be available

before continuing the package holiday reservation.

Join All the bookings (flight, hotel, car rental) have to completed before

paying for the package holiday

Exclusion When different hotel providers are consulted, only the cheapest one has

to complete

Write
The tax to be paid depends on the number of items sold in a day

Table 3.2. Example of dependencies

3.2. Framework for Testing

Transactions

This section presents the proposed Framework for Testing Transactions

(F2T). Firstly we introduce in Section 3.2.1 some fundamental concepts

about the process of test case design and risk-based testing. The F2T,

presented in Section 3.2.2, has been devised to organize all the concepts

involving in the process of test case design for WS transactions. It leverages

such structure for the generation of specific suitable test suites for WS

transactions. The elaboration of the F2T was inspired by the risk-based

testing methodologies. The elaboration of the framework is described in

sections 3.2.3 to 3.2.6.

48 The proposed model and framework

3.2.1. Foundations

Test case design

According to the International Software Testing Qualifications Boards

(ISTQB) [91], testing is defined as:

The process consisting of all lifecycle activities, both static and

dynamic, concerned with planning, preparation and evaluation of software

products and related work products to determine that they satisfy specified

requirements, to demonstrate that they are fit for purpose and to detect

defects.

Thus, one aim of testing is to systematically explore the behaviour of a

system or a component in order to detect unexpected behaviours. Ideally, all

the possible situations of the Software Under Test (SUT) should be tested.

But this is not feasible since even if the SUT has a simple logical structure,

the number of all possible combinations of situations can be infinite.

Furthermore, the test process consumes resources such as time, cost and

other resources. For these reasons, test techniques can be used to ensure that

testing is carried within the constraints of available resources. Test

techniques provide guidance to design test cases using some information

about the SUT, for example, the workflow specification or the data usage.

They allow the systematic identification of the most relevant conditions and

most important values to test. Below we introduce some definitions about

the test case design process. Figure 3.7 shows the relation between these

concepts.

Test basis: It represents all sources from which the requirements of a

component or system can be inferred.

Test items: Test basis is broken down into test items that are the

minimal functional unit that can be tested in isolation.

Test condition: For each test item a set of test conditions is derived.

A test condition is an item or event of a component or system that could be

Framework for Testing Transactions 49

verified by one or more test cases, e.g. a function, transaction, feature,

quality attribute, or structural element.

Test coverage item: For each test condition several test coverage

items can be specified. A test coverage item is an entity or property with a

concrete value derived from a test condition; e.g. a logical value in a decision

or a concrete state of a statechart.

Test case: The test coverage items must be covered by the test cases.

A test case is a set of input values, execution preconditions, expected results

and execution postconditions, that cover and exercise a set of test coverage

items.

Test suite: The set of test cases is called a test suite.

Figure 3.7. Test case design concepts

To manage the above concepts, i.e., which test basis to use, how to

identify the test items, how to derive the test condition and test coverage

items, and how to define the test cases, it is necessary a test strategy. We

have used a strategy inspired in the risk-based methodologies to achieve a

whole test case design process for WS transactions.

Risk-based testing

The seed for the whole test case design process is the test basis (Figure

3.7). Very common used test basis are specifications where is defined what

the software (or a component) is expected to do [92]. There are different

requirements specifications according to the development phase: user

50 The proposed model and framework

requirements, functional specification, physical design, and program

specification. Many testing techniques, called specification-based techniques

[93], have been proposed to achieve test cases using such test basis. But the

set of specifications is not the only approach that can be used as test basis.

Another approach is to base the test process on the risks related to the

system rather than then software functionalities. The strategies that consider

both specification and risks are called risk-based testing.

The main goal of risk-based testing is to find the most important

defects as early as possible. A defect in the system may lead to undesirable

effects for both the development company and the system users. The

composition of likelihood and consequence of such unwanted defect is

referred as a risk exposure. By identifying and analyzing the risks related to

the system, it is possible to focus the test effort on the most critical areas of

the system. In fact, the testers have always used risk-based testing but using

and ad-hoc fashion since they based their decision on their personal expertise

[94]. Hence, the contribution of the risk based techniques to the field of

software is to provide risk assessment methods to the test process.

Risk analysis is a set of techniques used to investigate problems created

by uncertainty and to assess their effects. Originally it was used in areas like

nuclear, chemical and space industries, and nowadays it is used in software

development where safety is very important too [95]. But risk-based testing

can also be used to give directions for which test strategies to use such as

selecting test basis and the most important test items or evaluating the

testing techniques to derive test conditions [96, 97]. This approach of using a

risk-based strategy inspired the research methodology used in this thesis.

Several risk-based methods have been proposed to the software testing

process [98-103]. They are mainly adaptations from more generic risk

methodologies such as HAZOP (HAZard and OPerability study) [104] and

FMEA (Failure Mode and Effect Analysis) [105]. The high-level common

steps of all methods are the following:

1. Area of study definition. Specify the elements and context where the

method is applied.

Framework for Testing Transactions 51

2. System division. To decompose the whole scope into smaller subsystems,

3. Risk identification and analysis. Identify what could go wrong and

assign scores for the both probability and consequence.

4. Risk response planning. To propose ways to mitigate the each identified

risk.

The above steps have provided guidance to devise the F2T as is

described in Section 3.2.2.

3.2.2. Conceptual framework

As was earlier discussed in Section 2.3, there are no specific methods to

test WS transactions. So the main goal of the Framework for Testing

Transactions (F2T) is to organize the concepts related to test WS based

applications with transactional requirements. This planning allows applying

the most suitable techniques as appropriate. F2T is hierarchically organized

in four levels, inspired by the four generic steps of the risk-based

methodologies described in Section 3.2.1. Figure 3.8 illustrates the

framework.

A previous stage before defining the F2T levels was to achieve depth

knowledge of the transaction and web services related fields. Key issues are

the different models and standards published to manage the transactions and

the existing works about verification and validation focused on services

compositions. The starting point is, therefore, the literature review analyzed

in Chapter 2.

• The first level of the F2T defines the transaction using the AbTM. It

focuses on the activities involved in the transaction and the relationships

between them.

• The second level aims to divide the objective of testing WS transactions

in smaller goals. Following the approach of ISO 9126 software quality

model [62], F2T defines a set of system properties (or characteristics)

52 The proposed model and framework

that should be tested to evaluate the correct behaviour of a WS

transaction.

• In the third level, F2T identifies, for each system property, a set of

hazards that will compose the test goals.

• The fourth level defines the approach to mitigate the risks, in our case,

the test techniques to address the test goals previously identified in the

third level. Firstly we define the dimensions of testing such goals with

the objective of organize all the concepts. That is, we analyze what

could be tested and how could be done. Then, we propose specific

methods for test case generation in order to address the testing goals.

For this purpose, each system property is isolated analyzed in order to

adapt or create suitable test techniques to be used for achieving specific

test cases.

Figure 3.8. Framework for Testing Transactions (F2T)

3.2.3. First level: Area of study definition

According to the risk-based method, the first step is to define the

system where the method is applied. In our context, the system is the WS

Framework for Testing Transactions 53

transaction model. As was commented in Section 2.2, both academic and

industrial worlds have proposed different models and standards to manage

transaction in web services environments. It makes more difficult the test

process. Some activities are always presented in the transaction

management, such as creation or termination. Also the same roles al always

presented independently of the model used. For example, in an application

that allows booking different services for a night out (e.g. theatre tickets,

restaurant and taxi), the client side of the application starts the transaction

because it has the customer information. Also, it finishes the transaction

because it knows the customer’s requirements about the whole reservation

process.

Since different models can be used to manage the process, we propose

to use a generic (or abstract model) to define (or pattern) the behaviour of

the transaction running under the different standards discussed in Section

2.2. Therefore, the F2T uses the AbTM (section 3.1) since it is capable of

capture the semantic of the transaction process independently of the

standard and protocol used.

3.2.4. Second level: System division

The goal of this level is to identify the particular test objectives in a

WS transaction. This is, therefore, related to the test types and quality

properties applicable. A common approach to formulating a model for

software product quality is to first identify a small set of high-level quality

attributes and then, in a top-down fashion decompose these attributes into

sets of subordinate attributes [106]. The ISO 9126 software quality model

[62] is typical of this approach. Here we derive a specific quality model for

the WS transactions composed of a set of so-called system properties.

Existing works [24, 25, 30, 46, 50, 107-110] have addressed the features

of advanced transactions models in distributed and service-based

environments. We focus on the relevant properties from a testing point of

view.

54 The proposed model and framework

A WS transaction is composed of activities [24] that have autonomy to

commit or abort unilaterally. So the atomicity is relaxed and isolation is

violated because the results of the committed activities are visible to other

transactions. This new concept of atomicity (called semantic atomicity [30])

means that if any of the activity is aborted then the effects of the committed

transactions must be compensated [25]. Hence the system must be able to

recover [46] its previous state maintaining the consistency [50]. There are

relationships between the activities involved in a transaction. These

relationships, called dependencies, define constraints on the processing

produced by the concurrent execution of interdependent activities in terms

of control flow and data [108, 111]. To manage these operations is necessary

a specific coordination [109]. As in the ACID model, the durability of the

results of a completed transaction is a desired property [110]. Consequently,

we divide the scope of testing WS transaction in addressing the following

system properties:

Composition: A wT is composed by a set of activities, each executed

by a service. It is necessary all services to provide the desired functions

achieving the correct results.

Dependency: There are dependencies between the activities involved

in a wT. These dependencies specify constraints in the flow of execution and

define relations with the data shared during the transaction processing.

Recovery: A wT has to be able of re-establish its level of consistency

and recover the data directly affected in case of a failure or a user

requirement of cancelation of any of their activities.

Consistency: Activities and their compensations must maintain the

required consistency of services when used under any aborted, compensation

of completed conditions.

Visibility: A wT allows their activities and other transactions to see

the partial results of its activities.

Durability: Once a wT is finished successfully the results will remain

permanent in the system.

Framework for Testing Transactions 55

Controllability: A wT requires a participant to take the role of

coordinator with the goal of coordinate the process ensuring the

Composition, Consistency, Durability, Dependency and Recovery properties.

The system properties describe a software quality model for

applications that rely on WS transactions. They define aspects related to the

characteristics such as functionality or reliability defined in the ISO 9126

software quality model [62]. Therefore, we can define a mapping between the

system properties and the ISO 9126 characteristics. This relationship is

shown in Table 3.3, where column Characteristic means one of the six

general categories defined in the ISO 9126, and column Section refers to the

sub-characteristics defined in the standard. In the rest of this work, we use

the system properties because are specific for the context of WS

transactions, unlike the most of testing approaches that follow the generic

ISO 9126 characteristics.

System property Characteristic Section

Composition Functionality

Accuracy

Suitability

Compliance

Dependency Functionality Interoperability

Recovery Reliability
Fault-tolerance

Recoverability

Consistency Functionality Security

Visibility Maintainability
Analyzability

Testability

Durability Maintainability Stability

Controllability Efficiency Compliance

Table 3.3. System properties and ISO 9126 characteristics

3.2.5. Third level: Risk identification and

analysis

Once the system to be tested is divided in smaller areas, i.e. the system

properties, the next step is to define what should be tested in each one. We

identify the aspects that could cause failures, drawing, in this way, an

analogy with the risk identification process specified in the risk-based

56 The proposed model and framework

methodologies. So we define the risks in the form of hazards that concern to

our test goals (system properties). Test techniques will be defined to address

those hazards in the next level of the framework.

The identified hazards for the system properties are presented below. A

hazard is described as an expected requirement that, if it was not meet, it

would likely cause a failure in the transaction processing. An ID (in

brackets), name and description are provided for each hazard.

Composition

• [COM1] Requirements: Each service shall fulfil its requirement

specification when it executes their activity.

• [COM2] Protocol: Each service shall meet the expected transaction

protocol during the execution of its activity.

Dependency

• [DEP1] Order: The activities shall be executed fulfilling the defined

order of execution.

• [DEP2] Relationship: The activities shall be executed fulfilling the

constraints defined on the processing of the concurrently executing

activities.

• [DEP3] Data: The relationships between the share data used by the

activities shall be correctly handled.

Recovery

• [REC1] Requirements: Each service shall fulfil its requirement

specification when it executes the compensation of a previously

completed activity.

• [REC2] Protocol: Each service shall meet the expected transaction

protocol during the execution of compensations.

Framework for Testing Transactions 57

Consistency

• [CON1] Completed: The successfully execution of any activity shall bring

the transaction from one valid state to another according to the specified

requirements.

• [CON2] Compensated: The execution of any compensation shall bring

the transaction from one valid state to another according to the specified

requirements.

Visibility

• [VIS1] Results: The results reached by each finished service shall be

visible for other activities of the same or another transaction.

• [VIS2] State: The current state, according to the transaction model used,

shall be externally visible for coordination and testing purposes.

Durability

• [DUR1] Completed: Results shall remain in the system once the

transaction has been successfully completed.

• [DUR2] Compensated: Results shall have been semantically undone once

the transaction has been compensated.

Controllability

• [COT1] Configuration: The transaction need to be configurated (type,

protocol, shared information)

• [COT2] Coordinator: Coordinator shall work in presence of networks

failures.

• [COT3] Initiator: The initial process shall create correctly the

transaction in collaboration with the coordinator.

• [COT4] Executors: All the suitable services shall be enrolled in the

transaction.

58 The proposed model and framework

• [COT5] Terminator: The transaction shall achieve the right agreed

outcome according to the requirements specified.

3.2.6. Fourth level: Risk response planning

In this level of the framework we address how the identified hazards

can be addressed. First we define the scope (dimensions) of testing such

elements to organize the concepts involved in the test case design; in this

way, we can adapt or create the most suitable test techniques in order to

derive the test conditions to address such hazards.

Testing dimensions

Typically, the test case design process includes the dimensions of test

level, test type and test depth [112]. Test level defines the specificity of the

test such as unit, integration and system levels. Test type refers to the

quality attributes that those tests are focus on (see Section 3.2.4). And

finally, test depth refers to the test effort required. In this work we propose a

characterization of those dimensions to achieve a specific test case design

process for WS transactions.

We identify three orthogonal dimensions for testing WS transactions.

Level dimension defines the granularity level of testing, i.e., testing WS

transactions at different levels such as activity (web service), nested

subtransaction or at whole process (transaction) level. Feature defines the

source used to identify the situations to be tested (test conditions), for

example the flow of execution or the data elements shared by the services.

Depth is related to how to combine such conditions (test coverage items) to

design the test cases in order to achieve a cost-benefit trade-off.

Level dimension. The level dimension refers to the granularity level

of testing. It defines the test items which be used. Three values for the level

dimension are defined: executor, transaction, business process.

Participant. Different roles are involved in a WS transaction. A key

role is the executor due to the activities that compose a WS transaction are

carried out by executors. In fact an executor is a role entrusted to a web

Framework for Testing Transactions 59

service. So a first level of testing should consider each service as a test item.

When a web service is enrolled in a WS transaction, it must follow the

protocol specified for such process in order to be able to achieve an agreed

outcome of the whole transaction. The test cases for this level have to

exercise the different situations that a service (e. g. an executor) has to

manage during its life-cycle.

Transaction. A WS transaction is represented as a set of related

activities that have to achieve an agreed outcome. So they form a logical

unit of work. The integration and coordination of the participants forming

the transaction as a whole should be considered as test item.

Business process. A business process can rely on one or more WS

transactions to fulfil the whole business process requirements. So the

integration of the specific business logic of the process and the WS

transaction should be considered as test item.

Recursive application of levels. A WS transaction is composed by

activities where each activity can be an atomic task or another WS

transaction itself (subtransaction). On the other hand, a WS transaction can

be part of a bigger process too. Therefore, previous levels can be applied

recursively to both upper and lower nested process. In order to depict the

recursive relations, Figure 3.9 shows a business process P composed by two

WS transactions wT1 and wT2. wT1 is composed by the tasks A and B

while wT2 is composed by task C and subtransaction DwT, also composed

by the tasks E and F. As an example, in wT2 the participant level can be

applied over C and also over DwT if we assume it to be a logical unit of

work. The transaction level in wT2 will take into account the relationships

between C and DwT. Since DwT is a transaction itself, recursively we can

use the participant level to test E and F and the transaction level to check

their relationships.

The scope of this thesis includes the participant and transaction levels.

At both levels we mainly focus in the executor role. To deal in depth with

the other roles as well as the business process is proposed as future work.

60 The proposed model and framework

Figure 3.9. Recursive test levels

Feature dimension. The feature dimension refers to the source used

to derive the test conditions and, consequently, the test coverage items.

Three feature are defined: flow, data and control

Flow. An executor passes through different states during the execution

of an activity. The dependencies in a WS transaction define the order and

constraints of the execution of the activities. Thus, for both executor and

transaction level, a control flow analysis can be derived to identify the test

conditions. In the executor level the flow is defined by the states/transitions

model that it follows. Therefore, the test conditions can be defined in terms

of the coverage of a particular set of elements in the structure of such model.

Data. An executor may use some data elements during its execution.

Depending on the executor´s behaviour, such data can be modified by one

way (e.g. after it has completed) or another (e.g. after it is compensated).

Also different activities from a WS transaction can use the same data

elements. So the data elements are a key issue regarding the transaction

outcome and should be taken into account during the test process. By

looking for patterns of data usage, risky situations are identified and more

test conditions can be defined.

Control. The decision of an executor moving from one state to another

may depend on the value of one or more data elements. This is called a

control decision. In the same way, there are control decisions during the flow

of execution specified by the dependencies. For example when more than one

service are available to execute the same task, the control decision decides

which activity is to be selected and started. The goal of testing the control

feature is to exercise different values of the data elements that are involved

in the control decisions.

Summary 61

Depth dimension. The depth dimension refers to how combine the

identified test coverage items. So it is related to the test effort required.

Test techniques are used to define the test conditions and identify the

test coverage items. The set of test cases must cover all the test coverage

items, but this can be achieved in different ways, depending on the required

test effort. Thus different strategies are applicable to combine the test

coverage items that will be exercised by the test cases. In this way, stronger

test criteria should be applied in the areas with greater risk exposure in

order to achieve an effective testing. The maximum effort would be to

generate all possible combinations between the test coverage items and

define a test case to cover each combination. On the other hand, the

minimum effort would be simply to cover all the test coverage items using

the lowest number of test cases. Thus the test criteria propose different test

efforts ranging from the minimum to the maximum effort.

Test techniques

Finally each hazard is analyzed taken into account the three testing

dimensions in order to define the most suitable test technique for each case.

The risk response planning in our context is a specific test suite. The next

chapters of this thesis present the test techniques and methods developed to

achieve the suitable set of test cases for the identified hazards.

3.3. Summary

In this chapter we have presented the two main components of this

thesis: the Abstract Transaction Model (AbTM) and the Framework for

Testing Transactions (F2T).

AbTM addresses the issue of the wide range of existing transaction

model to manage service-based transactions that make the test process more

difficult. It defines a transaction as a set of activities and a set of

dependencies between those activities. AbTM also identifies four roles that

are always present in the transaction life-cycle: initiator, executor,

coordinator and terminator. Different levels of abstraction are used to define

62 The proposed model and framework

the models for the coordinator and executor roles. These different models

will be used by the F2T according to the test goals to address.

F2T is designed inspired by the risk-based methodologies and addresses

the issue of testing service-based transactions. It encompasses the concepts

from the transaction definition to the test case generation. F2T identifies a

set of hazards and defines how the test techniques can addressed them.

In this thesis, we have addressed the Composition, Controllability and

Dependency system properties. Table 3.4 summarizes the hazards and the

techniques proposed in this thesis. To deal with the Composition and

Controllability properties, Chapter 4 presents a structure-based testing

technique. Two different testing techniques have been proposed to deal with

the Dependency property. Chapter 5 uses a condition-based approach whilst

Chapter 6 develops a method based on the systematic analysis of the

possible situations [113].

Summary 63

C
h
a
p
te
r
 4

System properties

and hazards

Composition
COM1 Requirements

COM2 Protocol

Controllability

COT1 Configuration

COT2 Coordinator

COT3 Initiator

COT4 Executor

COT5 Terminator

Testing

Dimensions

Level Participant

Feature Flow

Depth Transition coverage criteria

Test case generation Structure-based testing

C
h
a
p
te
r
 5

System properties

and hazards
Dependency

DEP1 Order

DEP2 Relationship

Testing

Dimensions

Level Transaction

Feature Flow

Depth Action and condition coverage criteria

Test case generation Control-flow based criteria

C
h
a
p
te
r
 6

System properties

and hazards
Dependency

DEP1 Order

DEP2 Relationship

DEP3 Data

Testing

Dimensions

Level Transaction

Feature Flow, Data, Control

Depth Combination criteria

Test case generation Classification-Tree

Table 3.4. Summary of hazards addressed

65

Chapter 4

4. Testing at participant level

Size matters not. Look at me. Judge me by my size, do you?

Yoda, Star Wars

his chapter presents an in-depth study of the issue of testing at

participant level of a WS transaction. It focuses mainly on the executor

role, as was defined in the F2T presented in the previous chapter. The

executors are the services in charge of executing the activities that compose

the transaction. In this chapter the Abstract Transaction Model (AbTM,

Section 3.1) is used to derive concrete models in order to automatically

generate test cases for different WS transactions standards.

The first part of this chapter presents the proposed testing process. The

second part evaluates the approach using a case of the Jboss Transaction.

The evaluation shows that the proposed system has the capability to

automatically generate test cases and detect possible failures of executors

running under different web services transactions standards.

T

66 Testing at participant level

4.1. Introduction

The Framework for Testing Transaction (F2T) (section 3.2) identified

the behaviour of each executor (Composition property) and their

coordination (Controllability property) as testing targets: the executors are

in charge of performing the activities that compose a WS transaction, while

the coordinator manages their collaboration in order to achieve an agreed

outcomes of a WS transaction.

The hazards identified for the Composition property in Chapter 3

suggests defining tests for checking the functional behaviour of the service

(hazard COM1) and the compliance of the transaction model used to

manage the transaction (COM2). In the same way, the hazards of the

Controllability property shows the need of defining test case for checking the

configuration of the transaction (COT1), but also the behaviour of the rest

involved roles (COT2, COT3, COT4, COT5).

As WS transactions do not have a homogeneous transaction model, the

process of testing the participants of WS transaction is more complicated.

We therefore use the proposed AbTM to encode intended behaviour of the

transaction. The focus of testing in this chapter is to detect possible faults or

failures in WS transactions participants running under different models or

standards (e.g., BTP [36], WS-BA [41]). The main goal is the executor role

since they are in charge of executing the activities that actually forms the

transaction. The objective is to identify the observable differences between

the behaviours of implementation and what is expected on the basis of

specification of WS transaction models and standards.

Table 4.1 shows how the goals of this chapter fit into the F2T

presented in Section 3.2. The test case design process of this chapter focus

on the behaviour of the participant, so we address the issue of testing at

participant level. This includes testing the behaviour of executor and

coordinator roles. We use the part of the Executor Model (EM) that

captures the executor´s behaviour. This model defines the executor life-cycle

in terms of states and transitions which relates to the flow feature. The

Specification and theoretical model 67

criteria for managing (depth dimension) the test effort use the structure-

based testing techniques.

System properties

and hazards

Composition
COM1 Requirements

COM2 Protocol

Controllability

COT1 Configuration

COT2 Coordinator

COT3 Initiator

COT4 Executor

COT5 Terminator

Testing

Dimensions

Level Participant

Feature Flow

Depth Transition coverage criteria

Test case generation Structure-based testing

Table 4.1. Relationship of chapter 4 with F2T

The first part of this chapter (Section 4.2) specifies the model used to

achieve the concrete test method for participants in WS transactions. The

method relies on the AbTM to capture the behaviour of the transaction

independently of the protocol used. So firstly we show how the AbTM can

model existing WS transaction standards. We then define a test process

using the abilities of the AbTM. The method allows automatically defining

test cases but also compares the actual system outcome with the expected

system outcome.

The second part of this chapter (Section 4.3) presents the

implementation and validation of the proposed method. A prototype tool has

been developed to implement the method using a case study.

4.2. Specification and theoretical

model

This section specifies the theoretical model proposed to achieve the

testing method. The method uses the AbTM´s abilities of modelling existing

WS transactions standards in order to define a generic testing method. First

we show how the AbTM models the BTP and WS-BA standards given that

68 Testing at participant level

these are the most widely accepted standards in WS transactions. We then

present the generic testing process for WS transactions at participant level.

4.2.1. Modelling the WS transaction standards

This section shows how the BTP and WS-BA transaction standards

can be modelled using the proposed model. The modelling process is

composed of the following activities:

1. Role identification and modelling: it identifies the roles of participants

in a target WS transaction standard and models them using the roles

defined in the abstract transaction model.

2. State transitioning: it captures the important states of a target WS

transaction standard and maps them to the state transitions of the

abstract transaction model.

3. Messages mapping: it maps the messages between AbTM and a specific

WS transaction standard.

Modelling of BTP

Business Transaction Protocol (BTP) allows coordinating multiple

autonomous, cooperating services to ensure that the overall application

achieves a consistent result. This consistency can be defined a priori: all the

work is confirmed or none; or it can be determined by user’s application

intervention in the selection of the work to be confirmed. The protocol

coordinates the state changes caused by the exchange of messages.

Roles identification and modelling

This activity models the roles of the BTP participants involved in

executing wT and its activities. BTP implements nested transaction model,

that is, a parent transaction, wT, is composed of activities, and each activity

can be another wT itself (subtransactions). BTP defines a dependency called

superior:inferior between the parent (superior) and its activities (inferiors).

The superior makes the decision and the inferior abides such decision in

order to complete the transaction. That superior:inferior relationship can be

Specification and theoretical model 69

recursively extended to define a transaction tree having intermediates nodes

as superior and inferior. For example, the process of booking a holiday

package (flight, hotel and car rental reservations). The holiday package

reservation would take the role of superior and each reservation (flight, hotel

and car) would be the inferiors. Let assume that the hotel reservation is

provided by a service that manage many hotel chains. The service would

have to do some actions such as find a suitable hotel, make a pre-booking

and sent information to the customer. So the hotel reservation activity takes

the role of superior of another wT composed by the activities (inferiors)

find, pre-booking and information.

 Figure 4.1 depicts the modelling of BTP using the Abstract

Transaction Model (AbTM). Figure 4.1 (a) represents the BTP coordination

of wT and its activities using the superior:inferior relationship, and (b)

represents the coordination of the same wT using the AbTM. The superior of

BTP is modelled as Initiator in AbTM since it starts the process. Also the

superior can be modelled as Coordinator and Terminator as it decides on

the outcome of the activities. Inferior (in BTP) executes a concrete activity

and is therefore modelled as Executor in the AbTM.

Figure 4.1. BTP relationship modelling

State transitioning

The Executor Model (Figure 3.5) and the Coordinator Model (Figure

3.6) are used to model the BTP (as well as WS-BA) states and transitions.

When a wT is started at the initiative of an initiator it causes the creation of

70 Testing at participant level

a context for a new transaction. The role of initiator has finished its life-

cycle so the initiator moves from START state to FINISH state through

creation (see Figure 3.).

After receiving a context creation request from an initiator, the

coordinator replies the context (it moves from INITIAL state to ACTIVE

state). Executors receive a context, enrol with the Coordinator and are

already active in that transaction so they move from READY to ACTIVE

state. Coordinator moves to PREPARE state awaiting decisions from

Executors.

Once an Executor (inferior in the BTP model) has processed its

activity, it moves to COMPLETED. The Executor sends its outcome to

Coordinator and moves to DECISION state. The Coordinator collects the

outcomes from all Executors and takes the final decision. It moves from

PREPARE state to DECISION state. Note that in the BTP model, the

terminator role is taken by the coordinator as was previously commented.

The final decision is sent to each Executor and the Coordinator then

moves to CONFIRM state. Executor sends acknowledgement and changes its

state to END state through the transition (either completed rollback or

completed successfully) according to the decision. Once the Coordinator has

received all confirmation, it moves to END state. Note that an Executor can

leave the wT before confirming the activity. So it can move from ACTIVE

state to CANCEL state.

Although BTP uses a 2PC protocol, Executors are not required to lock

data on becoming prepared (i.e., in prepared state). This can produce a

contradicted decision since the Coordinator could take a decision for all the

Executors but some Executors may take their own decisions. When the

Coordinator detects a contradiction it notifies the concerned Executor and

moves to the END state. If the coordinator wants to cancel, the Executor

uses completed_pivot. In some cases, it uses completed_rollback. Further,

BTP allows replaceable activities. Thus if an Executor is not able to start or

carry on with its activity, it moves to FAILED state. A new Executor is

selected and the previous one moves to END state.

Specification and theoretical model 71

Message syntax

Table 4.2 presents the mapping of messages from the abstract

transitions to BTP specific message syntax. The table shows that the

abstract model captures all the messages required to complete a transaction

using BTP.

Abstract model BTP

Creation Initiator sends BEGIN to coordinator.

Created Coordinator sends BEGUN to initiator.

Setup Initiator sends the context to the executors

Execution

Executor sends ENROL to coordinator. It responses with ENROLLED. If

the executor is a superior of a new wT, it response with

CONTEXT_REPLY.

Local committed
Coordinator sends PREPARE to executor. Due a protocol optimization,

this transition could be omitted.

Local completed Executor sends PREPARED to coordinator

Local cancel Executor sends CANCEL to coordinator

Completed

successfully

Coordinator sends CONFIRM to executor and it responses with

CONFIRMED.

Completed rollback
Coordinator sends CANCEL to executor and it responses with

CANCELLED.

Preparing
It receives CONFIRM_TRANSACTION from the terminator and sends

PREPARE to all executors.

General decision Coordinator receives all executor messages

Global verdict Coordinator sends the suitable message for each executor.

Close The coordinator receives all the responses from executors and sends

TRANSACTION_CONFIRMED/ TRANSACTION_CANCELLED to

initiator.

Cancel Executor sends RESIGN to coordinator.

72 Testing at participant level

Ended cancelled Coordinator sends RESIGNED to executor.

Completed rollback

Coordinator wants confirm but there is a contradiction. Coordinator

sends CONTRADICTION to executor, and/or executor sends HAZARD

to coordinator.

Completed pivot

Coordinator cancels but there is a contradiction. Coordinator sends

CONTRADICTION to executor, and/or executor sends HAZARD to

coordinator.

Processing failure
The executor is not working. Coordinator knows it by receiving a FAIL

message or due to a timeout (non response message).

Ended replaceablity Coordinator sends REDIRECT with the address of the new executor.

Table 4.2. BTP message mapping

Modelling of WS-BA

Web Service Business Activity (WS-BA) manages transactions that

apply compensations to handle exceptions which occur during the execution

of activities. Compensation is an activity that semantically undoes the work

performed by other completed activity. In the example of the holiday

package reservation, if the holidays are cancelled, the flight company, for

example, would execute a compensation that would set as available the

booked seat and would refund to the customer part of the paid money.

WS-BA works with WS-COOR standard protocol to coordinate the

transactions. WS-BA supports two coordination types, MixedOutcome, and

AtomicOutcome, and two protocol types. MixedOutcome allows each

activity to achieve a specific outcome while AtomicOutcome requires all the

activities to finish in the same way. In holiday package reservation example,

with AtomicOutcome type either all reservations are confirmed or any on

them is confirmed. On the other hand, MixedOutcome would allow

confirming the reservation of the holiday package even if, for example, the

rent car reservation cannot be done. The protocols types differ according to

the participant’s roles in processing activities. In other words, who has the

ultimate say about the state of an activity; Executor

(BusinessAgreementWithParticipantCompletion, BAWPC) or Coordinator

(BusinessAgreementWithCoordinatorCompletion, BAWCC).

Specification and theoretical model 73

Roles identification

Figure 4.2 depicts the modelling of WS-BA using the abstract

transaction model. Figure 4.2 (a) shows the AtomicOutcome protocol, whilst

(b) shows MixedOutcome protocol. In both protocols the role of Initiator is

taken by the first participant who interacts with a Coordinator. In

AtomicOutcome the role of Terminator is taken by the Coordinator. This is

due to the fact that coordinator is the participant that knows all Executors’s

output and, therefore, it knows the final outcome: close or terminate if all

executors have successfully executed their activities, or compensate

otherwise. In MixedOutcome, the Initiator is the Terminator since each

Executor may have its specific decision so the outcome depends on the

business logic.

Figure 4.2. WS-BA relationship modelling

State transitioning

Similar to BTP, it is used the Executor Model (Figure 3.5) and the

Coordinator Model (Figure 3.6) to model the WS-BA. The Initiator creates a

new transaction by requesting a context to the transaction. The executor

finishes its life-cycle (it moves from START to FINISH). The Coordinator

responds with a context (from INITIAL to ACTIVE state). That context is

sent to the Executors by the Initiator.

The Executors join the current wT and it is modelled as the transition

from READY to ACTIVE state. Once each Executor makes a decision, it

74 Testing at participant level

moves from ACTIVE to COMPLETED state and the Coordinator moves

from ACTIVE to PREPARE state.

When the transaction is MixedOutcome, the decision for each activity

is taken alone. The Coordinator moves from PREPARE to DECISION state

when it receives an Executor’s notification. The Coordinator decides about

its outcome and moves from DECISION to CONFIRM. The Coordinator

receives the confirmation and goes back to wait for the rest of Executor’s

notifications (from CONFIRM to ACTIVE state).

In the AtomicOutcome type, the Coordinator moves from PREPARE

to DECISION state when it has a global outcome about the transaction. The

Coordinator then sends the global decision and moves from DECISION to

CONFRIM state. Finally it waits for the confirmations and moves to END

state. When an Executor is not able to start executing its activity it moves

from READY to ABORTED state. If the activity was cancelled while it was

under execution, the Executor moves from ACTIVE to CANCELLED state.

In case of failure it moves from ACTIVE to FAILED state.

Messages mapping

Table 4.3 presents the transformation from the abstract transitions to

WS-BA specific message syntax.

Abstract model WS-BA

Creation Initiator sends CREATECOORDINATIONCONTEXT to coordinator.

Created

Coordinator sends

CREATECOORDINATIONCONTEXTRESPONSE to initiator. The

initiator sends the context for the executors.

Setup Initiator sends the context to the participants

Execution

Each executor, after receiving the context, sends a REGISTER

message to its chosen coordinator. The coordinator responses with a

REGISTERRESPONSE message.

Local committed
If the coordination type is BAWCC, coordinator sends COMPLETE

to executor. In the other coordination type this transition is omitted.

Local completed Executor sends COMPLETED to the coordinator.

Specification and theoretical model 75

Local cancel Executor sends CANNOTCOMPLETE to the coordinator

Completed successfully Coordinator sends CLOSE to executor and it responses with CLOSED.

Compensatable Coordinator sends COMPENSATE to executor.

Confirm compensation
Executor executes the compensation. There is no WS-BA message for

this transition.

Completed compensated Participant sends COMPENSATED to coordinator.

Preparing
If the coordination type is BAWCC, coordinator sends COMPLETE

to executor. In the other coordination type this transition is omitted.

General decision
It is an AtomicOutcome transaction and the coordinator has received

either a FAIL message or all Completed messages..

Global veredict
It is an AtomicOutcome and the coordinator sends CLOSE /

COMPENSATE message for all completed executors.

Subdecision The coordinator receives a COMPLETED message.

Partial veredict
The coordinator sends CLOSE / COMPENSATE message to a specific

executor.

Subnotification The coordinator receives the confirmation of a subtransaction.

Close
The coordinator receives all the confirmation messages (CLOSED /

COMPENSATED) from the executors.

No execution Executor sends EXIT to coordinator.

Ended abortively Coordinator sends EXITED to executor.

Cancel Participant sends CANCEL to coordinator.

Ended cancelled Coordinator sends CANCELLED to participant.

Processing failure Participant sends FAIL to coordinator.

Ended faultily Coordinator sends FAILED to executor.

Compensating failure Executor sends FAIL to coordinator.

Completed erroneously Coordinator sends FAILED message to executor.

Table 4.3. WS-BA message mapping

4.2.2. Test design and execution process

In general, testing aims at showing that the intended and actual

behaviours of a system differ, or at gaining confidence that they do not. The

main goal of testing is failure detection, i.e., in the current scope, the

76 Testing at participant level

observable differences between the behaviours of implementation and what is

expected on the basis of the specifications of WS transaction standards. We

exploit the model-based testing approach that encodes the intended

behaviour of a system and the behaviour of its environment. Model-based

testing is capable of generating suitable test cases and it has also been

successfully used in others WS domains [68]. Specifically, we use the

structure elements of such models, so it fit in the category of structure-based

testing [93]. We have designed a test process which comprises test design,

test implementation, test execution and outcome evaluation. These phases

are depicted in Figure 4.3.

Definitions

The abstract model can be used to generate test cases for different WS

Transactions. The test basis used is the abstract model of executor and

coordinator, therefore, the level dimension is the participant. Since the

model captures the behaviour of the participants in terms of flow of

states/transitions, the feature dimension used is the flow. Also as the model

is based on states and transitions, in order to manage the depth dimension,

we propose the well known family of transition coverage criteria [114]. By

applying a test criterion over the proposed model, AbTM, we obtain a set of

abstract test cases. Each abstract test case is mapped to a concrete test case

which is composed by the test scenario and the expected system outcome.

The concepts used in this test process are defined as follows.

• Transition coverage criterion: The set of test cases must include tests

that cause every transition between states in a state-based model.

• Abstract test case: A sequence of states and transitions of a participant

using the abstract transaction model. The notation Si
�
→S’i is used to

denote that the participant pi changes its current state S to S’ executing

the transition labelled, t. If the participant is the Coordinator, it is

denoted by Κ. We use Sai
��

→Sbi – … – Sci
��

→Sdi to denote a sequence of

states/transitions.

Specification and theoretical model 77

• Test scenario: A sequence of actions in a human-understandable way to

provide guidance to the tester to execute a test case.

• System outcome: The internal state of the process defined by a sequence

of exchanged messages between participants using a specific WS

Transaction standard. The notation i[m1]j is used to denote that the

participant pi sends message m1 to participant pj. We use i [m1]j – l[m2]o

– … – v [mn]z to denote a sequence of messages.

Figure 4.3. Test process using the AbTM

Test design

This phase defines the test requirements for an item and derives the

logical (abstract) test cases. At this stage the test cases do not have concrete

values for input and the expected results. The abstract test cases are

automatically generated by applying transition coverage criterion over the

abstract model. It is obtained from a set of different paths where each path

defines an abstract test case. Thus the tests reached using this criterion are

a set of paths that cover all states and transitions of a model.

Test implementation

The sequence of states and transitions specified by the abstract test

cases generated in the test design phase are mapped to a specific WS

78 Testing at participant level

transaction standard as is shown in Section 4.2.1. As discussed above the

proposed AbTM has the ability to capture the behaviour of a WS

transaction standard as well as mapping the abstract cases to a specific WS

transaction standard. These features provide the capability of automatically

obtaining the test scenario and the expected system output.

Test execution and outcome evaluation

Once the test cases are implemented, they are executed over the

system under test (i.e. an application that uses a specific WS transaction

standard) and the actual outcome is obtained. Finally, for each test case, the

expected outcome is compared to the actual outcome to find differences in

behaviour and to detect failures. Two outcomes are considered: (i) user

outcome refers to what the user perceives, for instance, to reserve theatre

tickets whether the number of booked tickets is correct. (ii) system outcome

refers to the non-visible process that the system has carried out to achieve

the requirements - e.g., the correct exchange of messages between the

services according to the transaction standard.

Both outcomes are necessary to detect differences from the correct

behaviour of the web services application. Consider a simple application that

runs as a WS transaction in order to book theatre tickets. Assume that there

is a fault in creating messages and the format of confirmation messages is

incorrect. In a test scenario where the user confirms a reservation, the

system’s outcome would be to inform the user that the booking was

successfully completed because the application has already sent the

confirmation message to the theatre service. Since the message was

incorrectly created, the theatre service would reject the reservation and, as a

result, the tickets cannot be booked. Thus, the tester needs not only the user

outcome, but also the internal state of the process to know whether a test

case has detected a failure or not. In this chapter we focus on executors’

internal behaviours related to the transaction management of their activities.

Thus we only need to evaluate the system outcome.

Implementation and validation 79

4.3. Implementation and validation

This section explains the implementation of the proposed test process

described in Section 4.2.2. A prototype system has been developed to

evaluate the method through a case study: the JBoss Night Out open source

application.

4.3.1. Prototype system

We have developed a prototype system that implements the main

phases of the proposed test method (Figure 4.3)

• Modelling: the prototype system prompts the tester to provide

information (e.g. services, roles, transaction standard, etc) and to create

the WS transaction.

• Abstract test case generation: the abstract test cases for all the

participants (Coordinator, Executor, etc) are automatically generated by

the prototype system.

• Test case mapping: abstract test cases are mapped to WS transaction

standards (e.g., BTP or WS-BA). That is, the prototype system

automatically generates the concrete test cases (for each WS transaction

standards) which are composed of the test scenario and the expected

system outcome. A test scenario is defined as a sequence of actions in a

human-readable way to provide guidance to the tester to execute a test

case.

• Outcomes comparison: test cases are executed in order to produce the

actual system’s outcome. The prototype system automatically compares

the actual system’s outcome with the expected system’s outcome in

order to detect any fault or failure.

The prototype system is implemented in Java 1.5. It includes three

components: Model, Tests and Outcome. The Model implements the generic

transaction model. It also includes a graphic interface to allow the tester to

enter all the necessary information such about the system under test such as

80 Testing at participant level

roles, URL, WS transaction standard, etc. The Model component sends the

information to the Tests component. The Test component implements two

activities: first, it applies the transition coverage criterion in order to

generate the abstract test cases for all the participants. It then maps all the

abstract test cases into concrete test cases. That is, the Model component

generates the test scenario (text file) and the expected system’s outcome (as

an XML file). Finally, the Outcome component compares two XML files to

identify any possible faults. This component has a graphic interface that

allows the tester to add an XML file (the actual system’s outcome obtained

from the execution of test scenario) and to select the test case for

comparison purpose. The result of both outcomes is shown to the tester.

4.3.2. Case study: Jboss Night Out

In order to evaluate the proposed testing approach, we utilise the Night

Out case study of the Jboss WS-BA standard [115]. This section firstly

describes the case study and its testing process. Then the result of their

execution is discussed and an example of test case and detected failure is

described for a better understanding.

Night Out specification

The Night Out is an application based around booking independent

services for night time leisure. It is composed of three services. Restaurant

service allows customers to reserve a table for a specified number of dinner

guests. Theatre service provides automatic reservation of seats in a theatre.

There are three kinds of seats (circle, stalls, and balcony) and the service

allows customer to book a specified number of tickets for each kind of seat.

Taxi service provides the facility to reserve a taxi. These services are

implemented as transactional web services.

Night Out is implemented in a client/server architecture. The client

provides an interface to select the nature and quantity of the services

reservations. The server components consist of three services (Restaurant,

Theatre, Taxi) which are implemented as transactional web services. The

client side of the application is implemented as a servlet which allows users

Implementation and validation 81

to select the reservations and then book a night out by invoking each of the

services within the scope of a WS transaction. For example, if seats are not

available in the restaurant or the theatre, the taxi will not be necessary.

Each service, exposed as Java API for XML Web Services (JAX-WS) [116]

endpoint, has a GUI with state information and an event trace log. The

application provides logs for step of its activity. As the transaction proceeds,

each of the WS pops up a window of its own in which its state and activity

log can be seen. Some events in the service code are also logged.

The client obtains service endpoint proxies from JAX-WS and uses

them to invoke the remote service methods. The client begins a transaction

that may involve three services: reserve theatre tickets, a restaurant table

and a taxi according to the selected parameters. Night Out notifies the final

outcome of the transactional process, i.e., whether the reservations were

confirmed or not.

Test design

The transactional process included in the Night Out application has

been modelled according to the roles identified in the AbTM as is shown in

Figure 4.4. Night Out (client side) takes the role of Initiator since it starts

the transaction and asks the other web services to participate. Restaurant,

Theatre and Taxi services are modelled as Executors since they execute a

specific activity. The role of Terminator is taken by the Night Out

application since some activities (e.g. Theatre) are independent of others

services (e.g. Restaurant). Thus even if one service can not complete its

action the others are allowed to commit. The Taxi activity is dependent. For

instance, if a table is not available in the restaurant, the customer still needs

a taxi to go to the theatre. The role of Coordinator is taken by an external

service, WSCoor11, provided by the server. It follows the WS-COO [39] and

WS-BA[41] standards to exchange suitable messages.

82 Testing at participant level

Figure 4.4. Night Out case study modeling

Test implementation

This phase generates various abstract cases for each Executor, i.e.,

Restaurant, Theatre and Taxi. According to testing approach explained in

Section 4.2.2, eight abstract test cases are generated for each Executor.

Those abstract test cases were automatically mapped to generate test cases,

i.e., the test scenario and the expected system outcome for Restaurant,

Theatre and Taxi services.

Table 4.4 contains eight test cases for the Restaurant, Theatre and

Taxi. Res_1, Thr_1, and Tax_1 respectively mean test case 1 for

Restaurant, Theatre and Taxi services. Res_2, Thr_2, and Tax_2 mean

test case 2 and so on.

Implementation and validation 83

Test Case Ids Description

Restaurant Theatre Taxi

Rest_1 Thr_1 Tax_1

Cancel the in-progress booking (of restaurant,

theatre, taxi). That is, a service is started but has

not confirmed the reservation yet.

Rest_2 Thr_2 Tax_2
Service is executed but is unsuccessful as there is no

taxi or seat available in restaurant or theatre

Rest_3 Thr_3 Tax_3
Cancel (undo) booking by executing the

compensating action

Rest_4 Thr_4 Tax_4
Confirm successful booking after the commit of

transaction

Rest_5 Thr_5 Tax_5

Successfully confirm the booking when the other

services reservations have been undone through

compensating transactions

Rest_6 Thr_6 Tax_6 Abort service before it has started its execution

Rest_7 Thr_7 Tax_7
Failure occurs during the compensating process of

completed booking

Rest_8 Thr_8 Tax_8
Use retry action in case of failure during the booking

process

Table 4.4. Test cases for Night Out services

Test execution and outcome evaluation

The generated test cases have been executed over the case study and

Table 4.5 summarizes the results. ‘Pass’ means that a test case did not

detect any failure. ‘Fails’ means that the actual outcome differs from the

expected outcome (i.e. a failure has been detected). ‘Blocked’ means that a

test case cannot be executed the application does not have the interface to

achieve the required actions. In this section we use a number to identify each

test case according to the Table 4.4. For each number there are actually

three test cases, one for each executor (e.g. Rest_3, The_3, Tax_3).

Two of the designed test cases were blocked due to the following

reasons; test case 1 requires cancelling the activity (Cancel message) once

the Executor has started and has not finished yet, but the application does

not allow cancelling a booking. Test case 8 defines a scenario where the

Executor is not able to complete its activity (CanNotComplete message),

but retried executing its action. The application neither allows resending the

data nor registering again the Executor without starting a new transaction.

84 Testing at participant level

Executor Test cases

generated

Pass Fails Blocked

Restaurant 8 3 3 2

Theatre 8 3 3 2

Taxi 8 3 3 2

Table 4.5. Tests execution results

The test case 5 detected an important transaction-related failure in the

compensation process. This test case and the detected failure are further

explained below. During the execution of test cases 3 and 4 interface-related

failures were detected: the application, which shall allow changing manually

the capacity of each resource (i.e. number of tables and number of seats in

the theatre), either crashes or does not update the capacity when the button

is pressed.

A test case in detail

As an example of test case and detected failure we consider the test case

Thr_5 generated using the following abstract test which was obtained

applying the transition coverage criterion over the executor abstract model:

	
��
���������
�������� 	�����

�����_��!!���"
��������������#$%&
�
�

�����_��!'����"
��������������
��(�#)

*�!'����"_+���+,���-
������������������
)�

The abstract test case was mapped (see Section 4.2.1) to a specific

sequence of WS-BA message as depicted in Figure 4.5. From this sequence of

messages, our prototype system automatically generates the test scenario

shown in Figure 4.6. Note that the transaction creation and participant

register processes are defined by the Initiator as was shows in Figure 3.2

(creation and setup transitions).

Implementation and validation 85

Figure 4.5. Sequence diagram of a test scenario for Theatre service

STEP 1: NighOut starts the process. It sends a context request
(CreateCoordinationContext message) to the coordinator WScorr11
STEP 2: WScorr11 sends the transaction context
(CreationCoordinationContextResponse message) to NighOut
STEP 3: Theatre receives a transaction context from the initiator NighOut
STEP 4: Theatre accepts to participate in the process. It requests to be registered in
the transaction, thus it sends Register message to WScorr11
STEP 5: WScorr11 receives Register message from Theatre and registers Theatre
in the transaction. It sends RegisterResponse message to Theatre
STEP 6: NighOut sends the application data to Theatre
STEP 7: Theatre completes successfully its activity. Theatre sends Completed
message to notifies its outcome to the coordinator WScorr11
STEP 8: Theatre has successfully completed its activity. Theatre notifies the results
and leaves the transaction. Theatre sends Close message to notifies to the

coordinator WScorr11 and it responses with a Closed message

Figure 4.6. Test scenario for test case Thr_5

As described in Table 4.4, the goal of the test case Thr_5 is to

successfully confirm the theatre tickets booking when the other service

reservation has been undone through compensating transaction. As

commented in the case study specification, the theatre service is independent

of the restaurant service, so if the restaurant reservation is cancelled, the

theatre tickets booking have not to be compensated.

86 Testing at participant level

After the execution of the test case, we obtain the expected system

outcome. By comparing the expected system outcome and the actual system

outcome, a failure is detected by the prototype system. This is shown in the

code snippet in Figure 4.7. The expected system outcome requires receiving a

CLOSE message once the Theatre service has successfully completed its

activity (see sequence diagram in Figure 4.5). However, the actual outcome

has a COMPENSATED message since Restaurant service was not able to

commit. As a result, the Theatre reservations were automatically undone.

The fault which causes such failure is also found by the prototype system as

there is a difference (or discrepancy9 in the ‘Register’ message – the way

Theatre service is registered in the Night Out under the WS-BA

specification. That is, the application registers the Theatre service as an

atomic outcome when a mixed outcome was expected (Figure 4.8). In other

words, if Taxi or Restaurant services are not able to make their reservations,

the Theatre service will automatically undo the reservation even if the

customer would wish to keep the theatre tickets.

<soap:Envelope
xmlns:soap="http://schemas.xmls
oap.org/soap/envelope/">
<soap:Header>
<Action
xmlns="http://www.w3.org/2005/0
8/addressing">
http://docs.oasis-open.org/ws-
tx/wsba/2006/06/ Close
</Action>

<soap:Envelope
xmlns:soap="http://schemas.xm
lsoap.org/soap/envelope/">
<soap:Header>
<Action
xmlns="http://www.w3.org/2005
/08/addressing">
 http://docs.oasis-
open.org/ws-
tx/wsba/2006/06/ Compensate
</Action>

(a) Expected outcome (b) Actual outcome

Figure 4.7. Fault in message exchange

Implementation and validation 87

<wscoord:CoordinationType>

http://docs.oasis-open.org/ws-

tx/wsba/2006/06/ MixedOutcome

</wscoord:CoordinationType>

<wscoord:CoordinationType>

http://docs.oasis-open.org/ws-

tx/wsba/2006/06/ AtomicOutcome

</wscoord:CoordinationType>

(a) Expected outcome (b) Actual outcome

Figure 4.8. Fault in registration process

The results obtained from the test comparison are also useful for a

debugging process. In the above tests, the faults mean that the transaction

was not correctly configured or coded. This can help in identifying the faults

in the code. For example, the above fault was found in BasicClient.java file,

at line number 496 in the code shown in Figure 4.9. The configuration of the

transaction is made using the class UserBusinessActivityImple, through the

factory pattern using UserBusinessActivityFactory class. By looking at the

implementation of that class we found (in Figure 4.10) that the transaction

is defined as an AtomicOutcome.

private boolean testBusinessActivity(int restaurant Seats, int
theatreCircleSeats, int theatreStallsSeats, int
theatreBalconySeats, boolean bookTaxi) throws Excep t
{

 System.out.println("CLIENT: obtaining
 userBusinessActivity...");

 UserBusinessActivity uba =
 UserBusinessActivityFactory.userBusinessActivity ();

Figure 4.9. Fault identification: transaction setup

88 Testing at participant level

public class UserBusinessActivityImple
extends UserBusinessActivity
{

public void begin(int timeout) throws
WrongStateException,SystemException

{

 try {

if (_contextManager.currentTransaction() != null)

 throw new WrongStateException();

 CoordinationContextType ctx = _factory.create (

 BusinessActivityConstants. WSBA_PROTOCOL_ATOMIC_OUTCOME,

 null, null);

Figure 4.10. Fault identification: protocol implementation

4.4. Summary

This chapter investigated into the issue of testing WS transaction at

the participant level. In it we developed and evaluated the coordinator and

executor roles in the Abstract Transaction Model which is capable of

dynamically modelling different WS transaction models and standards. The

model exploits structure-based testing technique in order to automatically

generate test cases for testing the reliability of participants running under

WS transaction standards such as BTP and WS-BA. The proposed test

process is implemented as a prototype system with which various test cases

were automatically generated and mapped to different standards. The

evaluation was performed using the case study of Nigh Out, which is an open

source application provided by Jboss [117]. The experiments show that our

approach can effectively be used to define different test cases for the

executor level as well as test the reliability (or failure detection) of different

WS transactions standards.

This chapter was focused on the behaviour of each executor and their

coordination. Therefore, it addressed the testing goals derived from the

Summary 89

Composition and Controllability properties defined in F2T. Another

property related to the executors is Dependency that refers to the

relationships between the different executors. That property and its testing

goals are addressed in the next chapters.

91

Chapter 5

5. Testing at transaction level:

control-flow based approach

There is no dependence that can be sure but a dependence upon one's self

John Gay

his chapter presents a control-flow based approach to address the

hazards indentified in the Dependency property. The method is focused

on the flow feature – as described in the Framework for Testing

Transactions (F2T), Chapter 3.

Firstly the chapter describes how the dependencies between activities can be

defined in terms of task relationships. Using the logical expression derived

from those relationships, the chapter later presents a new family of test

criteria to exercise the implementation of the dependencies.

In order to show the viability of the proposed method, it is applied to an

example used in the literature. Furthermore, the chapter presents a real

feedback of the method through a real industrial case study.

T

92 Testing at transaction level: control-flow based approach

5.1. Introduction

As defined in the AbTM (Section 3.1), a WS transaction comprises a

group of a smaller and partially independent activities executed by different

web services. To manage the execution of the various activities, a set of

dependencies (relationships) are specified among them. Dependencies are

constraints on the processing produced by the concurrent execution of

activities. Activities dependencies represent a key component in ensuring the

flexibility required to support exceptions, alternatives, compensations and so

son, which all are the basis of the Advanced Transaction Models [19].

In Section 3.2.4, the Framework for Testing Transactions (F2T)

identified the relations between the activities involved in a WS transaction

(Dependency property) as testing target. Dependency property refers to the

execution of the activities under certain constraints (such as order of

execution, hazard DEP11) in order to maintain application reliability,

correctness and data consistency (DEP2 and DEP3). This chapter addresses

such property. It focuses on the overall transaction level (or composite web

service level) and it takes into account the relationships between the

different activities of WS transaction. To deal with these test goals, this

thesis presents two different approaches. In this chapter we define the flow

related dependencies using logical expressions. Test cases are generated using

control-flow based techniques. Chapter 6 presents a different approach to

address the hazards: we analyze a set of widely used high level dependencies

using the Classification Tree approach [118].

Table 5.1 shows how the goals of this chapter fit in the F2T. As stated

above, this chapter focuses on the transaction level according the levels

identified in F2T. The control-flow based approach presented here uses the

flow of execution of the whole transaction, so the flow feature is used to

derive the test cases. This approach, therefore, addresses the hazards DEP1

and DEP2. Note that since the data is not taking into account, the hazard

DEP3 is no addressed in this chapter. The test effort (depth dimension) is

managed by the proposed new family of test criteria based on control-flow

testing techniques.

Flow definition 93

System property

and hazards
Dependency

DEP1 Order

DEP2 Relationship

Testing

Dimensions

Level Transaction

Feature Flow

Depth Action and condition coverage criteria

Test case generation Control-flow based criteria

Table 5.1. Relationship of chapter 5 with F2T

5.2. Flow definition

This section presents the proposed method to define the dependencies

between activities in terms of flow of tasks. This flow definition will be the

basis for the test case generation explained in Section 5.3.

According to the AbTM (Section 3.1), a web service transaction is

defined as .� =< �, � > where � = 234, … , 3�6 is a set of activities and

� = 27839 , 3�:4, … , 783; , 3<:!6 is a set of dependencies between the activities.

The Executor Model (EM, Figure 3.4) defined the set of possible

actions for an executor as begin, complete, compensate, A-withdraw, A-

cancel and A-fail. These actions can be classified in three primitive tasks

according to its semantic (meaning) [119, 120]. Table 5.2 shows these tasks.

The primitive tasks are the lowest level of granularity in which a dependency

can be defined. Note that according to this classification, an activity is not

compensated by itself, instead the compensation is modelled as a related

activity that commit once the former is aborted.

Primitive Task Action

Begin
Begin

Commit

Complete

(Compensate)

Abort

A-withdraw

A-cancel

A-fail

Table 5.2. Actions categories

94 Testing at transaction level: control-flow based approach

 In this way, any activity 3� has three (primitive) tasks that we assume

are atomically executed:

• =(3�): The activity 3� begins executing.

• �(3�): The activity 3� successfully commits.

• �(3�): The activity 3� aborts.

An abortion may occur due to either a fault during the execution or an

explicit cancellation. When an activity aborts, its compensatory action will

be executed if it exists. The compensatory action is defined as another

activity part of the same wT. The original activity and their compensatory

action are, therefore, related by concrete dependencies as is shown later.

5.2.1. Dependencies

Each dependency 7(3� , 3-: defines a relationship between two activities

3>� and 3-. The formal definition of the possible dependencies is presented

below. The dependencies are divided in three groups (necessary, sufficient,

and composite) according to their constraints:

Necessary conditions dependencies: In order to be able to execute any

task %, an activity 3- may require the execution of other task ? of an

activity 3�. So 3- cannot execute % until 3� has executed ?. Formally,

%83-: 	⇒ 	?83�: 	< 	%83-:. These dependencies are labelled as 3AB − DE − FGH

(abbreviated as ax) where 3AB, FGH ∈ 2AIJKE, BDLLKM, 3ADNM6. Due to there are

three different tasks and all combinations are possible, nine dependencies are

defined as is shown in Table 5.3. For example begin-on-begin dependency,

AA83� , 3-:, specifies that the beginning of 3� is a necessary condition to

enable the beginning of 3-.

Sufficient conditions dependencies. The execution of any task % of an

activity 3� may force the execution of another 	primitive task ? of an

activity 3-. So if 3� executes %, then 3- also executes ?. Formally,

P83�: 	⇒ 	?83-:. These dependencies are labelled as ODNBI	3AB − DE − FGH

(abbreviated as fax). The nine possible dependencies of this kind are

Flow definition 95

presented in Table 5.4. For example force begin-on-abort dependency,

OA3(3� , 3-:, defines that if 3� abort then 3- has to begin.

Composite dependencies. This group is composed by the dependencies

where more than one relationship are taken into account. They are shown in

Table 5.5.

 Begin Commit Abort

Begin AA83� , 3-: AB83� , 3-: A383� , 3-:

Commit BA83� , 3-: BB83� , 3-: B383� , 3-:

Abort 3A83� , 3-: 3B83� , 3-: 3383�, 3-:

Table 5.3. Necessary conditions dependencies

 Begin Commit Abort

Begin OAA83� , 3-: OAB83� , 3-: OA383� , 3-:

Commit OBA83�, 3-: OBB83� , 3-: OB383�, 3-:

Abort O3A83�, 3-: O3B83� , 3-: O3383� , 3-:

Table 5.4. Sufficent conditions dependencies

96 Testing at transaction level: control-flow based approach

Name Description Definition Example

Weak commit

dependency,

.B(3� , 3-:

If both ax and ay

commit, then the

commitment of 3�
precedes the

commitment of ay.

�83�: 	⇒ 	 2�83-: 	
⇒ 	 [�83�: 	< 	�83-:]	6

If a paper is accepted

in a conference then it

was sent before the

deadline

Weak abort

dependency,

.3R3� , 3-S

If 3� aborts and 3-
has not been

committed, then 3-
aborts

�83�: ⇒ 	 T¬V�R3-S <
	�3F⇒	�3G

If the user cancels the

information request

process, the query is

not sent to the

database

Termination

dependency,

M83� , 3-:

3- cannot commit or

abort until 3� either
commits or aborts

�R3-S ∨ �83-:
⇒ 	�83�: ∨ �83�:

The final outcome of a

process cannot be sent

until other process has

finished

Exclusion

dependency,

I83� , 3-:

Only one of both 3�
and 3- can commit

V�83�: ⇒ 	�R3-SX
∧ [�83-: 	⇒ 	�83�:]

When two hotel

providers have been

queried, only one can

confirm the reservation.

Strong

exclusion

dependency,

sI83� , 3-:

One of both 3� and
3- must commit

V�83�: ⇒ 	�R3-SX
∧ [�83-: 	⇒ 	�83�:]

If there are two

possible means of

transport, one of them

has to be booked for

finishing the travel

reservation

Table 5.5. Composite dependencies

5.2.2. Modelling wT using dependencies

Using the above dependencies we can define aspects related to the

management of the transactional process. A compensatory action associated

to an activity is defined as two dependencies OB3 and A3. A 3� replaceable

by 3- can be defined as a dependency I83� , 3-:, >I83� , 3-: or a combination

of both, depending of the specific context.

Control flow patterns [61], such as AND-join, AND-split, OR-join,

XOR-split, parallel-overlapping, parallel-including and so on, can be

modelled with these dependencies.

Flow definition 97

AND-join pattern defines that a group of activities have to execute a

task before another(s) activity(s) can execute a task. Since it defines

necessary conditions to execute a task related to the execution of others

activities’ task, it is modelled as a set of necessary conditions dependencies.

For example AB(3� , 3<: and AB83-, 3<: define a AND-join pattern between

3� , 3-, 3< where the commitment of 3� , 3- is needed to begin 3<.

OR-join pattern defines a relationship between a group of activities,

say 3� , 3-, and another one, say 3<. The execution of the task of any activity

3� , 3- is a sufficient condition to execute the task of 3<. So this pattern is

modelled as two sufficient conditions dependencies OAB83� , 3<: and

OAB83-, 3<:

AND-split pattern defines that once an activity has executed a task,

another(s) activity(s) can execute a task. A common use is the serial

execution, defined as AB83� , 3-:, where the activity 3- has to wait until 3�

has committed before it can begin.

XOR-split pattern defines a relationship between a group of activities,

say 3� , 3-, and another one, say 3<. This relationship specifies that one and

only one activity must commit in order to enable 3< to begin. According to

the definition, XOR-split pattern is defined by a composite dependency

I83� , 3-: and two necessary conditions dependencies OAB83� , 3<: and

OABR3-, 3<S.

Two different activities, say 3� , 3-, follow the parallel overlapping

pattern if and only if the begin of 3� precedes the begin of 3-, the begin of

3- precedes the commitment of 3�, and the commitment of 3� precedes the

commitment of >-. This pattern is defined as three dependencies R3� , 3-S ,

BA83-, 3�: and BBR3� , 3-S. In a similar way, they follow the parallel including

pattern if and only if the begin of 3� precedes the begin of 3-but the

commitment of 3- precedes the commitment of 3�. This pattern is defined as

two dependencies AAR3� , 3-S and BBR3-, 3�S.

98 Testing at transaction level: control-flow based approach

5.2.3. From a wT to tasks relationships

The dependencies involved in a wT can be specified in terms of tasks

relationships. Let assume as example the WS transaction depicted in Figure

5.1.

Figure 5.1. WS transaction example

The initial step is to define the activities involved in the process.

According to the figure, we partially define the process as

.� = {�, �6, (= 23Z, 34, 3[, 3\, 3]6.

The next step is to identify the control flow patterns (e.g. AND-split)

and the transaction management aspects (e.g. replaceable activities). The

example shows a workflow where 3Z	is the first activity to be executed.

When 3Z has committed, 34 and 3[can begin (AND-split). Both 34 and 3[

are required to commit before 3>\ can begin (AND-join). If 34 is aborted

after it had committed, it is necessary to execute 3] to undone its action

(compensatory action, denoted by the broken line). Those relationships are

modelled using the dependencies as had been shown before. So we define the

set of dependencies as

 � = 2AB83Z, 34:, AB83Z, 3[:, AB834, 3\:, AB83[, 3\:, OB3834, 3]:, A3834, 3]:6

Logical conditions are specified by tailoring the dependencies. They

define a logical expression that fire a task once it is evaluated as true. In

other words, they specify a precondition to be enforced before the activities

can execute the task. =IJKE�DE783�: defines the logical expression, derived

from 3�´s dependencies, that controls the activity 3� beginning. It is

structured as

Test criteria 99

 =IJKE�DE7(3�) = ()4 	∧ …	∧)�) 	∨ 	R(4 	∨ …	∨ 	 (̂ S

where N is a necessary condition and S a sufficient condition. In a similar

way we can define �DLLKM�DE7(3�) and �ADNM�DE7(3�). In this way, the last

step in the transaction modelling is to define the =IJKE�DE7, �DLLKM�DE7

and �ADNM�DE7 expressions for all the activities. To define those expressions

is necessary to check all the dependencies where the task is involved. If the

dependency defines a necessary condition, it will be added to the left part of

the expression ()�_4 , linked by ∧). If it is a sufficient condition, it will be

added to the right part of the expression ((̂ _4 , linked by ∨). The logical

expressions for the example are presented in Table 5.6. The symbol * means

that there are no conditions, in other words, the logical expression is always

true.

 `abcdefdg(hc) efiicjefdg(hc) klfmjefdg(hc)

3Z * * *

34 �(aZ) * *

3[�(3Z)* * *

3\ �(34) ∧ �(3[) * *

3] �(34) �(34) *

Table 5.6. Logical expressions in the example

5.3. Test criteria

The goal of this section is to define test criteria for testing the

dependencies based on the flow previously defined. We base our approach on

the activities tasks relationships.

As described in Section 3.2.2, a test criterion is defined as a set of rules

that impose test requirements and must be fulfilled by the test cases. A

coverage criterion provides guidance for tests definition making this process

more efficient and effective. Many test coverage criteria have been proposed

such as path coverage, branch coverage, data flow coverage and so on [121].

These criteria are applied over some kind of model of the software under

test. For example path coverage can be used on a graph that represents the

100 Testing at transaction level: control-flow based approach

states and transitions of a software component. We define test criteria to be

applied on the dependencies model explained in the previous section.

We propose a set of criteria based on two set of criteria: task-based and

conditions-based. Task-based refers to the task(s) that are checked in the

activities. Conditions-based refers to the criteria used to check the conditions

that compose the logical expressions=IJKE�DE7, �DLLKM�DE7 and �ADNM�DE7.

Finally, these two primitive criteria are combined to define a family of test

criteria.

5.3.1. Task-based criteria.

These criteria are regarding the activities tasks to be exercised. Three

criteria are defined:

• All-begin criterion (ABC): All the activities must begin at least once.

• All-commit criterion (ACC): All the activities must commit at least

once.

• All-commit-abort criterion (ACAC): All the activities must commit and

abort at least once.

ACC subsumes ABC since any activity needs to begin before

committing. Obviously ACAC includes ACC and, therefore, also includes

ABC. A more exhaustive criterion requires more primitive tasks to be

executed and therefore, a higher testing effort.

A test suite � was defined as a set of test cases, � = {MB4, … , MB�}, where

each MB� is a test case that describes which tasks have to be executed (and

which not) in an execution of a web transaction .� = {�, �}. We can

formally define the previous criteria as follow:

� satisfies the all-begin criterion for wT if ∀ 3� ∈ �, ∃ MB̂ ∈ �/

=IJKE�DE783�: = MNrI.

� satisfies the all-commit criterion for wT if ∀ 3� ∈ �, ∃ MB̂ ∈ �/

�DLLKM�DE78a�: = MNrI.

Test criteria 101

� satisfies the all-commit-abort criterion for wT if ∀	3� 	∈ 	�, ∃	MB̂ ∈ �/

�DLLKM�DE783�: = MNrI ∧ ∃	MBs ∈ �/ �ADNM�DE783�: = MNrI.

5.3.2. Conditions-based criteria

These criteria are used to check the conditions that compose the logical

expressions BeginCond, CommitCond and AbortCond:

• Decision criterion (DC): Every logical expression has taken true and

false outcome at least once.

• Decision/Condition criterion (DCC): Every logical expression has taken

true and false outcome and all conditions in each logical expression have

taken true and false outcome at least once.

• Modified condition/decision coverage (MCDC): Every logical expression

has taken true and false outcome at least once, all conditions in each

logical expression have taken true and false outcome at least once, and

each condition has been shown to independently affect the logical

expression´s outcome (both true and false).

DCC subsumes DC and MCDC subsumes both DC and DCC. In the

same way as task-based criteria, a deeper criterion requires a higher testing

effort.

These criteria are formally defined as follow. Let define a transaction

.� = {�, �}, a test suite � = {MB4, … , MB�} and a logical expression
 ∈

{BeginCond, CommitCond, AbortCond}.

T satisfies DC for wT if ∀	3� 	∈ 	�, ∃	MB̂ ∈ �/
83�: = MNrI ∧	∃	MBs ∈ �/

83�: = O3t>I.

T satisfies the DCC for wT if ∀	3� 	∈ 	�, (∃	MB̂ ∈ �/
83�: = MNrI	 ∧

		∃	MBs ∈ �/
83�: = O3t>I) ∧ (∀	BDE7 ∈ 	
(3�), ∃	MB� ∈ �/ BDE7 = MNrI ∧ ∃	MB� ∈

�/ BDE7 = O3t>I)

T satisfies the MCDC for wT if ∀	3� 	∈ 	�, (∃	MB̂ ∈ �/
83�: = MNrI	 ∧

		∃	MBs ∈ �/
83�: = O3t>I) ∧ (∀	BDE7 ∈ 	
(3�), ∃	MB� ∈ �/
83�: = MNrI

102 Testing at transaction level: control-flow based approach

⇒	(¬BDE7	 ⇒
(3�) = O3t>I)	 ∧ ∃	MB' ∈ �/
83�: = O3t>I ⇒ 8¬BDE7	 ⇒
(3�) =

MNrI)		

5.3.3. Dependency-based criteria

Combining both primitive criteria, we define a family of criteria for

testing dependencies in web services transactions. For each task-based

criterion any conditions-based criteria can be applied. So we define nine

criteria labelled as T-C where T is a task-based criterion and C is a

condition-based criterion. T defines what primitive task will be exercised

and, therefore, what logical expressions will be used. C defines what criterion

will be used to exercise the conditions in such logical expressions. The

proposed criteria are ABC-DC, ABC-DCC, ABC-MCDC, ACC-DC, ACC-

DCC, ACC-MCDC, ACAC-DC, ACAC-DCC, ACAC-MCDC.

For example, in the ACC-DCC criterion, ACC requires all the

activities to commit, so the logical expressions to be used are

�DLLKM�DE7(>�). DCC requires all the conditions in each logical expression

to take true and false outcome at least once. So ACC-DCC criterion is

defined as follow:

ACC-DCC: All the activities must commit at least in one test case,

all activities must not commit at least in other another test case and all

conditions in the committing logical expression have taken true and false

outcome at least in one test case. Formally, let .� = {�, �}, and � =

{MB4, … , MB�}, ∀	3� 	∈ 	�, (∃	MB̂ ∈ �/ �DLLKM�DE783�: = MNrI	 ∧		∃	MBs ∈ �/

�DLLKM�DE783�: = O3t>I) ∧ (∀	BDE7 ∈ 	�DLLKM�DE7(3�), ∃	MB� ∈ �/ BDE7 =

MNrI ∧ ∃	MB� ∈ �/ BDE7 = O3t>I)

In the same way, the rest of criteria are defined as follow:

ABC-DC: All the activities must begin at least once and all activity must

not begin at least once. Formally, let .� = {�, �}, and � = {MB4, … , MB�},

∀	3� 	∈ 	�, ∃	MB̂ ∈ �/ =IJKE�DE783�: = MNrI ∧	∃	MBs ∈ �/ =IJKE�DE783�: = O3t>I

ABC-DCC: All the activities must begin at least once, all activity must

not begin at least once and all conditions in the beginning logical expression

Test criteria 103

have taken true and false outcome at least once. Formally, let .� = {�, �},

and � = {MB4, … , MB�}, ∀	3� 	∈ 	�, (∃	MB̂ ∈ �/ =IJKE�DE783�: = MNrI	 ∧		∃	MBs ∈ �/

=IJKE�DE783�: = O3t>I) ∧ (∀	BDE7 ∈ 	=IJKE�DE7(3�), ∃	MB� ∈ �/ BDE7 = MNrI ∧

∃	MB� ∈ �/ BDE7 = O3t>I)

ABC-MCDC: All the activities must begin at least once, all activity must

not begin at least once, all conditions in the beginning logical expression

have taken true and false outcome at least once, and each condition has been

shown to independently affect the final outcome (both true and false).

Formally, let .� = {�, �}, and � = {MB4, … , MB�}, ∀	3� 	∈ 	�, (∃	MB̂ ∈ �/

=IJKE�DE783�: = MNrI	 ∧		∃	MBs ∈ �/ =IJKE�DE783�: = O3t>I) ∧ (∀	BDE7 ∈

	=IJKE�DE7(3�), ∃	MB� ∈ �/
=IJKE�DE783�: = MNrI ⇒ 	 (¬BDE7	 ⇒ =IJKE�DE7(3�) = O3t>I)	 ∧ ∃	MB! ∈ �/

=IJKE�DE783�: = O3t>I ⇒ 8¬BDE7	 ⇒ =IJKE�DE7(3�) = MNrI)

ACC-DC: All the activities must commit at least once and every activity

must not commit at least once. Formally, let .� = {�, �}, and � =

{MB4, … , MB�}, ∀	3� 	∈ 	�, ∃	MB̂ ∈ �/ �DLLKM�DE783�: = MNrI ∧	∃	MBs ∈ �/
�DLLKM�DE783�: = O3t>I

ACC-MCDC: All the activities must commit at least once and all activity

must not commit at least once, all conditions in the committing logical

expression have taken true and false outcome at least once, and each

condition has been shown to independently affect the final outcome (both

true and false). Formally, let .� = {�, �}, and � = {MB4, … , MB�}, ∀	3� 	∈ 	�,

(∃	MB̂ ∈ �/ �DLLKM�DE783�: = MNrI	 ∧		∃	MBs ∈ �/ �DLLKM�DE783�: = O3t>I) ∧

(∀	BDE7 ∈ 	�DLLKM�DE7(3�), ∃	MB� ∈ �/ �DLLKM�DE783�: = MNrI ⇒ 	 (¬BDE7	

⇒ �DLLKM�DE7(3�) = O3t>I)	 ∧ ∃	MB! ∈ �/ �DLLKM�DE783�: = O3t>I ⇒ 8¬BDE7	

⇒ �DLLKM�DE7(3�) = MNrI)	

ACAC-DC: All the activities must commit and abort at least once.

Formally, let .� = {�, �}, and � = {MB4, … , MB�}, ∀	3� 	∈ 	�, ∃	MB̂ ∈ �/
�DLLKM�DE783�: = MNrI ∧	∃	MBs ∈ �/ �DLLKM�DE783�: = O3t>I ∧	∃	MB� ∈ �/

�ADNM�DE783�: = MNrI ∧	∃	MB! ∈ �/ �ADNM�DE783�: = O3t>I

104 Testing at transaction level: control-flow based approach

ACAC-DCC: All the activities must commit at least once, all activities

must not to commit at least once and all conditions in the committing

logical expression have taken true and false outcome at least once. Formally,

let .� = {�, �}, and � = {MB4, … , MB�}, ∀	3� 	∈ 	�, (∃	MB̂ ∈ �/ �DLLKM�DE783�: =

MNrI	 ∧		∃	MBs ∈ �/ �DLLKM�DE783�: = O3t>I) ∧ (∀	BDE7 ∈ 	�DLLKM�DE7(3�),

∃	MB� ∈ �/ BDE7 = MNrI ∧ ∃	MB� ∈ �/ BDE7 = O3t>I)

ACAC-MCDC: All the activities must commit and abort at least once, all

conditions in both committing and aborting logical expressions have taken

true and false outcome at least once, and each condition has been shown to

independently affect the final outcome (both true and false). Formally, let

.� = {�, �}, and � = {MB4, … , MB�}, ∀	3� 	∈ 	�, (∃	MB̂ ∈ �/ �DLLKM�DE783�: =

MNrI	 ∧		∃	MBs ∈ �/ �DLLKM�DE783�: = O3t>I) ∧ (∃	MB� ∈ �/ �ADNM�DE783�: =

MNrI	 ∧		∃	MB! ∈ �/ �ADNM�DE783�: = O3t>I) ∧ (∀	BDE7 ∈ 	�DLLKM�DE7(3�), ∃	MB�

∈ �/ �DLLKM�DE783�: = MNrI ⇒ 	 (¬BDE7	 ⇒ �DLLKM�DE7(3�) = O3t>I)	 ∧ ∃	MB'

∈ �/ �DLLKM�DE783�: = O3t>I ⇒ 8¬BDE7	 ⇒ �DLLKM�DE7(3�) = MNrI)	 ∧

(∀	BDE7 ∈ 	�ADNM�DE7(3�), ∃	MB' ∈ �/ �ADNM�DE783�: = MNrI ⇒ 	 (¬BDE7	

⇒ �ADNM�DE7(3�) = O3t>I)	 ∧ ∃	MBu ∈ �/ �ADNM�DE783�: = O3t>I ⇒ 8¬BDE7	

⇒ �ADNM�DE7(3�) = MNrI)	

5.4. Example of use

In this section we use the proposed method to test the dependencies in

an example. In order to show the complimentary aspect of our approach

with existing verification-based techniques, we will use the example

presented in [111]. In that work, the authors presented a method to ensure

the correctness of WS compositions. Here, we use the test criteria to check

those identified requirements in the design phase regarding the

implementation.

5.4.1. PC purchase

The example is an application dedicated to the online purchase of

personal computer (OCP). This application is carried out by a composite

service as illustrated in Figure 5.2. We assume the process design has been

Example of use 105

correctly verified so our goal is to find faults in the implementation. Services

involved in this application are: the Customer Requirements Specification

(CRS) service used to receive the customer order and to review the customer

requirements, the Order Items (OI) service used to order the computer

components if the online store does not have all of it, the Payment by Credit

Card (PCC) service used to guarantee the payment by credit card, the

Computer Assembly (CA) service used to ensure the computer assembly

once the payment is done and the required components are available, and

the Deliver Computer (DC) service used to deliver the computer to the

customer (provided either by Fedex (DF) or TNT (DT)).

Figure 5.2. OCP application

The whole purchase process is identified as a WS transaction. As is

identified in [111], several dependencies are necessary between the activities.

Some dependencies are directly defined by the flow patterns (e.g. AND-split

pattern). On the other hand, some dependencies are required due to the

relationship between activities. If OI service does not complete its activity,

the payment service PCC has to be compensated. In the same way, OI is

compensated by cOI since if PCC fails, the order must be undone. Also there

is a dependency between the delivery services since one and only one must

commit. The WS transaction is modelled as is shown in Section 5.2. The

logical expressions derived from the dependencies in the OCP example is

shown in Table 5.7.

.�v*w = {�v*w, �v*w}

�v*w = {�	(, #�, B#�, %��, B%��, ��, �x, ��}

�_#�% = {AB8�	(, #�:, AB8�	(, %��:,				AB(#�, ��:,

106 Testing at transaction level: control-flow based approach

		AB(%��, ��:, AB8��, �x:, AB8��, ��:,

		OB3(#�, B%��:, AB8%��, B%��:, OB38%��, B#�:,

		AB(#�, B#�:, I8�x, ��:, OI8�x, ��:	}

 =IJKE�DE7(>�) �DLLKM�DE7(>�) �ADNM�DE7(>�)

�	(* * *

#� �(�	() * *

B#� �(%��) ∧ 	�(#�) �(%��) *

%�� �(�	() * *

B%�� �(#�) ∧ 	�(%��) �(#�) *

�� �(#�) ∧ �(%��) * *

�x �(��) * �(��)

�� �(��) * �(�x)

Table 5.7. Logical expressions in OCP example

5.4.2. Test case design

Since there are infinite possible test cases, it is necessary to define a

subset of all possible tests. A test criterion will provide guidance for test

cases generation. A test case is a specific way of executing the application in

order to cover one or more requirements defined by the test criterion. To our

field, such requirements are the value of the conditions that compose the

logical expressions. So a test case describes which tasks have to be executed

(and which not) in an execution of a web transaction.

Once the dependency-based criterion is chosen, the next step is to

systematically apply it over the model. Let assume we want to apply ABC-

MCDC for OCP application:

• The task-based (ABC) criterion specifies that all subtransactions have to

begin at least in one test case and not to begin in at least another

different test case, so the BeginCond expressions will be used.

• Since the condition-based criterion is MCDC, every condition of each

BeginCond expression has to take a true outcome in at least one test

Example of use 107

case and a false outcome in at least another different test case and, in

both case, the value has been shown to affect the final expression´s

outcome.

For example the BeginCond for CA activity is =IJKE�DE7(��) =

�(#�) ∧ �(%��), as is shown in Table 5.7. MCDC criterion applied over

=IJKE�DE7(��) requires one test case where the expression takes the false

outcome due to �(%��) is false. �(%��) may be false because it has not

begun. In order to make true C(OI), it requires CRS activity to commit. So

the conditions are defined (T=true, F=false) as B(CRS)=T, C(CRS)=T,

B(OI)=T, C(OI)=T, B(PCC)=T. It defines a situation where CRS receives

and successfully reviews the customer requirements and then contacts with

OI and PCC. While the OI service correctly achieves its goal (begin and

commit the subtransaction), the PCC service does not execute its activity.

In this way, according to the defined dependencies, CA service must not

begin and thus, the rest of processes are not executed. The rest of test cases

according to the criteria can be defined in the same way. As example, we

present in Appendix A the algorithm to apply the ABC-DC criterion and to

automatically obtain the test conditions according to such criterion.

The application of the proposed test criteria allows deriving positive

and negative test cases. A positive test case exercises the application in a

right way, in other words, according to the specification. For example the

test scenario TC1 identified in Figure 5.3 achieved using ABC-DC criterion.

Dash means that it does not matter what is the value. The test scenario

defines the following execution: The Customer Requirements Service (CRS)

successfully receives and reviews the customer order. The Order Items

service (OI) has successfully ordered the required items and the payment has

been successfully done using the Payment service (PCC). These two actions

have begun in parallel. Later, the computer is successfully assembled. Finally

the two delivery services are notified to check their availability. This test

case could detect failures of extra dependency implementation; for example,

if OI waits to order the items until PCC has charged the payment, the whole

process will take longer time keeping the resources busy and maybe rejecting

new orders where they are actually available.

108 Testing at transaction level: control-flow based approach

A negative test case exercises the application in a wrong way. It means

that the execution tries to break the specification. This kind of test case can

detect fault of dependencies implementation omission. For example the test

scenario TC2 identified in Figure 5.3, achieved using the ABC-DC criterion

too. This test case tries to order and to charge without reviewing the

customer requirements. If the scenario can be executed, a failure will be

detected: the constraints of successfully committing of CRS before OI and

PCC can begin are not implemented. So a purchase of incompatible items

for a personal computer can be allowed.

Figure 5.3. Test case design examples

The Appendix B shows the test cases generated for the OPC example

following the ABC-DC (6 test cases), ACAC-DC (9 test cases) and ACC-

MCDC (9 test cases).

5.4.3. Evaluation

In order to evaluate the test cases generated guided by our test

technique, we follow the method proposed in [122]. The method, based on

specification-based mutation, allows measuring completeness, adequacy and

coverage of test sets.

Mutation analysis is a fault-based testing technique that uses mutation

operators to introduce small changes into a specification, producing faulty

versions called mutants. For instance, an insertion mutation operator can

replace a boolean condition with a disjunction of the condition and another

boolean condition. By systematically applying the set of operators we obtain

a set of mutated specifications. If a test set can distinguish a specification

Example of use 109

from each slight variation, the test set is exercising the specification

adequately. When a test set identifies a mutant, it is said that the mutant

was killed. Better test sets are those which kill more mutants. Here we apply

mutation operator over the logical expressions defined by the dependencies.

We generate first order mutants of the specification, in others words, only

one fault is injected in each mutant. We use a subset of the mutation

operations proposed in [123]:

Mutation of actions

Action Replacement Operator (ARO): It replaces a subtransaction

action by another. For example, it replaces =IJKE�DE7(3�) = �R3̂ S ∧ =(3s)

with =IJKE�DE7(3�) = �R3̂ S ∧ =(3s)

Missing Action Operator (MAO): It omits an action. For instance, it

replaces =IJKE�DE7(3>�) = �R3̂ S ∧ =(3s) with =IJKE�DE7(3�) = �R3̂ S

Action Insertion Operator (AIO): It inserts an action, that is, it

replaces a condition c with B ∗ 7 where d is another action of any

subtransaction involved in the expression, ∗	is either conjunction o

disjunction. For example, it replaces =IJKE�DE7(3�) = �R3̂ S ∧ =(3s) with

=IJKE�DE7(3�) = �R3̂ S ∧ =(3s) 	∧ 	�(3�)

Mutation of logical operators

Logical Operator Replacement (LOR): It replaces a logical operator

(∧, ∨) by another logical operator. For example, it replaces =IJKE�DE783�: =

�R3̂ S ∧ =83s: with =IJKE�DE783�: = �R3̂ S ∨ =83s:

Mutation of subtransactions

Subtransaction Replacement Operator (SRO): It replaces a activity

involved in an action by another. For example, replace =IJKE�DE783�: =

�R3̂ S ∧ =83s: with =IJKE�DE783�: = �83�: ∧ =83s:

110 Testing at transaction level: control-flow based approach

5.4.4. Results

Our method allows automatically deriving test conditions for validating

the dependencies implementation. As a first approach, the test sets for OPC

application are defined using ABC-DC, ACAC-DC and ACC-MCDC criteria.

They are shown in Appendix B.

As we explained above, the test conditions define two kinds of test

scenarios. Positive test scenarios exercise the application in a right way, in

other words, according to the specification (e.g TC1.2). Negative test

scenarios exercise the application in a wrong way. That is mean that the

execution try to break the specification (e.g. TC1.6).

The evaluation carried out shows that all mutated specifications were

killed by the test cases generated using our approach. Some faulty

specifications, achieved using the mutation operators, are shown in Appendix

C. For example MUT1 introduces a relaxation in cPCC begin conditions due

to the original specification requires OI to be aborted while MUT1 only

requires OI to be begin. This mutation is killed with the test scenario

defined in TC3.2. In that case, the expected result is that cPCC does not

begin since OI begins and commit but not aborts, but according to MUT1

cPCC would begin. In a similar way MUT2 and MUT3 can be killed by

different test scenarios.

5.5. Industrial case study

The method proposed in this chapter has been used in a real industrial

case study. This section describes the case study, the application of the

method and the obtained feedback.

5.5.1. Cajastur insurances application

Cajastur is a financial institution from Asturias (Spain). For more

than 130 years, it has been one of the pillars of the Asturian economy.

Today it conducts its banking business through Liberbank, entity which has

66 percent of the capital.

Industrial case study 111

Cajastur Insurances Application (CIA) is a software application of the

Cajastur´s systems used to contract personal and car insurances. CIA

contacts with different insurances providers and presents the customers with

different alternatives. Currently, Cajastur collaborates with three car

insurance providers and one life insurance provider.

CIA contacts with the insurance providers by using their web services.

Also CIA use the private Cajastur Customer Service (CCS), that is allocated

to the host that allows querying the personal data of the Cajastur´s

customers. The architecture of the CIA is shown in Figure 5.4.

Figure 5.4. Cajastur Insurance Application (CIA)

The process of contracting insurance is described as follow. Firstly the

CIA gets the customer´s personal data from the CCS. The additional

required information is manually introduced in the application such as type

of insurance (car or life insurance), car registration number or healthy

problems. Secondly, CIA contacts with the suitable service(s) in order to get

insurance proposals. The service(s) receive the information, generate a

Life

Web service

Life insurance
provider

CCS

Cajastur

CIA

Car 1

Web service

Car 2

Web service

Car 3

Web service

Car insurance
providers

112 Testing at transaction level: control-flow based approach

insurance proposal and send such proposal back to the CIA. There are two

type of insurance proposal. A concrete proposal means that all data are

provided (price, insurance policy, etc) and the customer can accept it. The

other type of proposal is an offer proposal. It means that the insurance

provider have to contact the customer (by phone) in order to negotiate a

concrete proposal. After the negotiation, the offer proposal becomes a

concrete proposal. The customer can accept any of the concrete proposals or

reject all of them. If no concrete proposal is accepted, the process is finished.

In the other case, the customer accepts one concrete proposal and,

automatically, the rest of proposals are rejected. Note that the process is a

long-lived transaction as a customer can stop the process of contracting an

insurance once he/she has some concrete proposal and can continue it later

(e.g. the next day he come back to the Cajastur branch). Once a concrete

proposal is accepted, the payment of such insurance is charged to the

customer´s bank account. The payment information is sent by the CIA to

the insurance provider using its web service. Finally, if there are no

problems, the insurance provider confirms the contracting of the insurance

and sends back to the CIA the customer documentation.

5.5.2. Transaction modelling

The transactional process carried out by the CIA, is modelled

according to the method explained in 5.2. The model is composed of a set of

activities and a set of dependencies.

In order to present the approach to the industrial partner, we decided

to use a graphic notation of the model. Figure 5.5 depicts such model. Each

activity is shown as a rectangle. The flow after an activity is completed is

shown as a bottom arrow. To show the possibility of abort we use a t-shaped

line in the right side of an activity. The AND-join, AND-split, OR-join, OR-

split, XOR-join and XOR-split patterns (relationships) have been illustrated

using the BPMN notation. Multiple instances of a same process (the 3 car

insurance providers in this case) are also depicted using the BPMN notation.

The transitions in the model have been enumerated to make the traceability

easier between the graphic model and the test cases generated.

Industrial case study 113

Figure 5.5. CIA model

114 Testing at transaction level: control-flow based approach

Activities

• Start: The insurance contracting starts by selecting the type of insurance

to contract.

• Customer information (CCS): Consult the CCS in order to get the

customer personal data saved in the Cajastur´s sytems.

• Life information (life): Introduce in the application the required

information to obtain a life insurance proposal.

• Car information (car): Introduce in the application the required

information to obtain a car insurance proposal.

• Proposal request (request): Send from CIA to the suitable web services

the customer information in order to get the insurance proposals.

• Proposal: The service(s) get the information from CIA, prepare an

insurance proposal and send it back to the CIA.

• Reception: CIA receives an insurance proposal.

• Concrete: CIA has received a concrete insurance proposal.

• Offer: CIA has received an offer insurance proposal. The insurance

provider contacts to the customer by phone.

• Negotiation: The insurance provider and the customer negociate the

offer proposal.

• Offer to concrete (off2con): The customer and the insurance provider

have agreed to a concrete insurance proposal. The insurance provider

sends the concrete proposal to the CIA.

• Accept: The customer accepts a concrete proposal.

• Reject: The customer rejects an insurance proposal.

• Stop: The customer stops the process without accepting or rejecting the

insurance proposals.

Industrial case study 115

• Continue: The customer continues the process of contracting an

insurance policy. The customer already has concrete proposal to accept

or reject.

Each service of an insurance provider executes the following activities:

request, proposal, reception, concrete, offer, negotiation, offer2concrete,

accept, reject, stop and continue.

• Payment: Execute the internal transaction to transfer the money from

the customer´s bank account to the insurance provider´s bank account.

Also Cajastur charges a tax as part of intermediary (agent)..

• Send: CIA send the confirmation of the payment to the insurance

provider.

• Confirmation: The insurance provider responds with the confirmation of

the insurance contracting.

• Cancel: The insurance provider responds rejecting the contracting.

• Contracting confirmation (contracting): CIA receives the confirmation

of the insurance contracting.

• Contracting rejecting: (no-contracting): CIA receives the cancellation of

the insurance contracting.

• Car end (cEnd): CIA prints the documentation related to the car

insurance contracting.

• Life end (lEnd): CIA prints the documentation related to the life

insurance contracting.

• Compensation: Undo the payment activity.

Dependencies

This section defines the dependencies exist in the CIA applications.

Here we use the notation presented in Section 5.2.

bc(CCS, start) bc(car, start) bc(life, start)

116 Testing at transaction level: control-flow based approach

bc(request, CCS) e(car, life) bc(request, fe(car, life))

bc(proposal, request) bc(reception, proposal)

e(concrete, offer) fe(concrete, offer) bc(concrete, reception)

bc(offer, reception) bc(accept, continue)

bc (negotiation, offer) bc(off2con, negotiation)

bc(reject, concrete) bc(stop, concrete) bc(continue, stop)

e(accept, reject) e(accept, stop) e(reject, stop)

fbc(accept, continue) fbc(accept, stop) fbc(reject, continue)

fbc(accept, reject) fbc (reject, stop) bc(payment, accept)

bc(send, payment) bc(confirmation, send)

bc(cancel, send) e(confirmation, cancel)

bc (contracting, confirmation) bc(cEnd, contracting)

bc(lEnd, contracting) bc(no-contracting, cancel)

bc(cEnd, car) bc(lEnd, life) e(cEnd, lEnd)

c(compensation, no-contracting) fcc (no-contracting, compensation)

fcc(acceptX, rejectY) X €{1,2,3}, Y € {1,2,3}-X

5.5.3. Logical expressions

The logical expressions that define the task relationships derived from

the dependencies (see Section 5.2.3) are shown in Table 5.8.

Industrial case study 117

Activity BeginCond CommitCond AbortCond

start

CCS C(start)

car

life

request

C(car) &&
[C(car) ||
C(life)]

proposal C(request)

reception C(request)

concrete C(reception) C(offer)

offer C(reception) C(concrete)

negotiation C(offer)

off2con C(negotiation)

accept
C(concrete) ||
C(continue)

!C(reject) &&
!C(stop)

C(reject) ||
C(stop) ||
C(acceptY)

reject
C(concrete)||
C(continue)

!C(accept) &&
!C(esp)

C(accept) ||
C(esp)

stop C(continue)
!C(accept) &&
!C(reject)

C(accept) ||
C(reject)

continue C(stop)

payment C(accept)

send C(payment)

confirmation C(send) !C(cancel) C(cancel)

cancel C(send) !C(confirmation) C(confirmation)

contracting C(confirmation)

no-contracting C(cancel)

cEnd
C(contracting)
&& C(car)

!C(life) C(life)

lEnd
C(contracting)
&& C(life) !C(car) C(car)

compensation
C(payment) &&
C(cancel)

Table 5.8. Logical expressions in CIA

118 Testing at transaction level: control-flow based approach

5.5.4. Test case generation

To generate the test cases we selected the All-Commit-Abort

Modified Condition Decision Coverage (ACA-MCDC) criterion.

Thirty-two (32) test cases were generated according to the test

criterion. Eight of them are classified as positive test cases while twenty-four

were negative. Positive test cases check whether the system do what it is

supposed to do. Negative test cases are designed to test the system in ways

it was not intended to be used.

5.5.5. Results

When we applied our test method to the CIA, it was already in the

production environment. In order to evaluate the quality of our test case we

obtained the feedback from Cajastur regarding the failures detected in the

CIA during its testing phase and other potential failures. The actual failures

had been logged by the CIA project manager. The testing phase that

Cajastur had done was composed of two phases:

1) The development team tested the software system themselves after the

coding phase using a black box approach.

2) Once the development team released a beta version, it was tested by

non-technical people who were experts on the business logic. In the case

of the CIA, it was tested by the insurance brokers. They based the tests

on their own knowledge and experience about the field.

The actual failures detected during the above testing phases and other

potential failures identified by the Cajastur team were the following:

i. CIA allowed starting the contracting process to a person whose

personal data was not stored in the CSS.

ii. CIA allowed to request a car insurance proposal without adding the car

registration number

Industrial case study 119

iii. One of the life insurance service crashed when an invalid XML message

was sent as a request message

iv. CIA was blocked if any of the services did not response

v. CIA crashed if an invalid XML message was received as a response of

any service

vi. CIA did not take into account that the insurance provider can reject a

paid proposal because the characteristics had changed.

vii. CIA was blocked if unexpected data were sent in the contracting

confirmation

viii. CIA crashed if the CSS was unavailable

ix. CIA did not allow re-printing the information in case of problem with

the printer.

x. CIA did not check the customer´s bank account balance before

executing the transaction payment.

xi. CIA did not check that the customer personal data sent to the service

was similar to the data received in the confirmation.

xii. CIA did not check that the payment was correctly received by the

service. In case of the network failure, CIA did not undo the payment.

xiii. CIA did not take into account the possible network message during the

confirmation process. If CIA did not receive the confirmation/cancel

message, it undid the payment even if the service had confirmed the

contracting and the message was lost. CIA should contact again to the

service in order to have the real decision.

xiv. If CIA received an invalid XML message as confirmation, it undid the

payment but the insurance was actually contracted.

120 Testing at transaction level: control-flow based approach

xv. If CIA had to execute the compensation (i.e. to undo the payment) and

the CSS was unavailable, CIA marked the process as compensated but

the money was not refunded to the customer.

We delivered the 32 test cases generated by our method to the CIA

project manager. He and his test team analyzed the proposed test cases. The

result of such analysis is summarized as follows:

• All failures would been detected by the proposed test cases

• Such systematization of the test case design would have saved effort and

time to the project

• Some of the proposed test case were identified as very interesting and

had not been achieved by the Cajastur testing team

• It would have been useful to have a tool to help in the modelling phase

and to automate the test case design process

5.6. Summary

This chapter has presented a condition-based approach to address the

flow feature of the Dependency property according to the Framework for

Testing Transactions (F2T) defined in Chapter 3.

The flow execution of a WS transaction is defined in terms of relations

between its activities´ tasks (begin, commit and abort). The logical

conditions specified by tailoring those relations to define a logical expression

that fire a task once is evaluated as true. In other words, they specify a

precondition to be enforced before the activities can execute the task. Taking

into account the different tasks and the existing condition-based testing

criteria, this chapter have presented a new family of test criteria for testing

the dependencies in WS transactions.

The explanation of the proposed approach has been shown through the

PC purchase application, an example previously used in different application

areas. In order to evaluate quality of the test case and the practical use of

Summary 121

the proposed method, this chapter presented the application of the approach

in an industrial case study: Cajastur Insurances Application (CIA). The

results have shown the viability of our method.

However, we have identified some open issues in this method. Firstly it

only addresses the flow feature, so the control and data features are out of

its scope. Also the existence of alternative activities increases several times

over the task relationships. It makes the flow definition difficult and,

sometime prone to make mistakes.

In order to address the open issues commented above, Chapter 6

presents a different approach. That approach uses the Classification-Tree

[118] method to deal with flow but also control and data feature, as well as

the existing of alternative activities.

 123

Chapter 6

6. Testing at transaction level:

Classification-Tree based

approach

The experimenter who does not know what he

 is looking for will not understand what he finds

Claude Bernard

his chapter presents a different testing approach to address the hazards

indentified in the Dependency property. The method proposed in this

chapter identifies, analyzes and classifies the possible relationships between

services at transaction level. The Classification-Tree technique is used to

derive the test conditions and test coverage items for each kind of

dependency (relationship). A family of test criteria are proposed to generate

the test cases based on the generated tree. Those criteria have been

designed, implemented and evaluated through a case study and a number of

experiments have been performed.

T

124 Testing at transaction level: Classification-Tree based approach

6.1. Introduction

The management of transactional activities complicates the business

logic of web services since their execution requires careful coordination,

accounting for fault-tolerance, correct process termination and cancelation,

without undesirable consequences at any stage of the execution. In a WS

transaction some information about the internal behaviour of a particular

service is disregarded since they follow a general pattern during execution

[88]. The pattern is defined in terms of the individual behaviours (i.e. the

possible states and transitions of each participant) and also in terms of

relationships between the activities (e.g. execution flows, nested

subtransactions, etc). In summary, testing of WS transactions involves

different challenges related to the relationships between services and the

shared data and consistency issues.

Testing at the transaction level involves many factors and

dependencies such as type of relationship (e.g. merge, union, etc), external

conditions derived from the business logic or cardinality of the union. Due to

these factors, there is a large set of possible situations to analyse for each

dependency. In Chapter 5 we described the dependencies in terms of logical

conditions between the activities´ tasks. A test method was proposed and

evaluated to address some of the hazards that threaten the Dependency

property. Despite the viability of such proposed method, some related issues

still require attention such as the alternative activities to perform the same

work or the use of shared data during the execution. This chapter proposes a

different approach to include all the identified Dependency hazards

according to the Framework for Testing Transactions (F2T, Section 3.2).

To deal with all the factors involved in the dependencies, this chapter

proposes to identify, organize and classify those situations. A well-known

method to classify situations for testing purposes is the Classification-Tree

(CT) approach [118]. CT has been successfully used in both academic and

industrial sectors [127, 128]. In this approach, the test basis is the whole

transaction while the test items are the dependencies. For each dependency

Generation of Classification-Trees for Dependencies 125

we identify the test conditions and test coverage items relevant for such

relationship by elaborating a CT.

Table 6.1 shows how the goals of this chapter fit into the F2T. Similar

to Chapter 5, this chapter focus on the transaction level according to the

different levels identified in F2T. The flow, data and control (feature

dimension) are all taken into account during the tree generation. This

approach, therefore, addresses the hazards DEP1, DEP2 and DEP3. The test

effort (depth dimension) is managed by the proposed new family of test

criteria based on different combination of test coverage items identified in

the tree analysis.

System property

and hazards
Dependency

DEP1 Order

DEP2 Relationship

DEP3 Data

Testing

Dimensions

Level Transaction

Feature Flow, Data, Control

Depth Combination criteria

Test case generation Classification-Tree

Table 6.1. Relationship of chapter 6 with F2T

6.2. Generation of Classification-

Trees for Dependencies

CT relies on the knowledge of the environment in order to provide a

step-wise intuitive approach and to define test cases. In the context of WS

transactions, this knowledge is included in the transaction model in terms of

dependencies and activities’ behaviours. The main features of CT approach

are summarized as follows:

a. To analyze the test basis in order to select the test items (the

dependencies in our context). Each test item (a dependency type) is

regarded under various aspects assessed as relevant for the test.

b. For each aspect, disjoint and complete classifications are formed. Classes

resulting from these classifications may be further classified (recursively).

126 Testing at transaction level: Classification-Tree based approach

These identify the test conditions that are relevant for testing purposes.

The stepwise partition of the input domain by means of classifications is

represented graphically in the form of a tree.

c. Partition the classes into test coverage items: these represent significant

values for each class from the tester’s view-point. It is represented

graphically as the leaf nodes of the tree.

d. To determine constraints among choices to prevent the construction of

unnecessary combinations of choices.

e. To design a set of test cases that covers all the test coverage items

derived from the test conditions.

In the method proposed in this chapter, we define a classification tree

for each type of dependency. The classification conceives the relevant aspects

that can influence the test process. Trees are constructed according to the

following steps.

1) The first step is to identify the test items. The dependencies between the

activities of a WS transaction are used as test items.

2) We identify the relevant features (classes) for the dependency. These

form the test conditions that are used to derive the test coverage items.

There are two types of possible identified classes: orthogonal and

exclusive.

A class is orthogonal if it can be combined with other classes. By

analyzing the logic of the dependencies used in the transactions, we have

identified the following orthogonal classes:

• Activities: refers to the aspects related to the activities involved in

the dependency such as its behaviour or the cardinality.

• Situations: defines if the situation is possible or impossible. A

situation is possible if it meets the expected behaviour. For

example, in a Sequence dependency, if the former activity does not

achieve the complete state, the later activity does not begin. In

Generation of Classification-Trees for Dependencies 127

other case, the situation is defined as impossible (e.g. the later

activity begins when the former activity had been aborted).

• Finished: refers to set of activities that are in the completed state.

• Not finished: refers to the set of activities that are not in the

completed state.

• Cardinality: number of activities involved in the situation defined

in the parent node.

• Behaviour: current state of the involved activities.

• Selected: specific activity involved in the situation

• Definer: the set of activities that act as input in the dependency

• User: the set of activities that act as output in the dependency

A set of sibling classes are exclusive (non-orthogonal) if the value of one

excludes the rest of them. During the elaboration of the CT, we have

identified the following exclusive classes:

• Continue: the requirements of the dependency are fulfilled so the

flow execution continues. For example in a Merge dependency, at

least one of the input activities is in the completed state.

• Stop: the requirements of the dependency have not been fulfilled so

the flow execution stops. For example, in Join dependency, at least

one the input activities has not achieved the completed state.

• Finished Behaviour: the activity either has completed or it has

been compensated once the flow of execution had passed the

dependency. In other words, the activity was completed when the

flow achieved the dependency but it was later compensated.

• Not Finished Behaviour: the activity is not in the completed state.

It can be still running, aborted or could been compensated before

the flow of execution achieved the dependency.

128 Testing at transaction level: Classification-Tree based approach

• Aborted: the activity has achieved the aborted state so it was

either withdrawn, cancelled or it failed.

The previous classes are hierarchically organized. In some situations

these are recursively classified according to their logic so as to achieve

elementary classes. A class is elementary if it is not further classified and,

thus, specific values for such class can be defined.

3) Each class is classified into classes and/or values. Each time a class is

classified in further classes or values, a new deep level can be defined.

These deep levels allow defining CTs which require different degree of

test effort as discussed in Section 6.4.

4) A set of constraints between the values/classes is specified. Those

constraints avoid the generation of impossible scenarios.

5) The values determined in the CT define the test coverage items. Further

details on the criteria and the generation of coverage items are presented

in Section 6.4.

Figure 6.1 shows the generic structure of a dependency classification-

tree according to the concepts presented above. The graphic notation used is

the following: orthogonal classes are shown within a rectangle and exclusive

classes are shown without rectangle. The concrete values are the leaf nodes

in the tree.

Dependencies classification trees 129

Figure 6.1. Concepts in a dependency classification-tree

6.3. Dependencies classification trees

This section presents the classification tree generated for each

dependency. The trees have been elaborated according to the steps explained

in the previous Section 6.2.

The classification trees are organized into three families according to its

structure: input, output and data. The input family includes Merge, Join and

Exclusion dependencies. This family focuses on the cardinality and behaviour

of the inputs activities. The output family includes the Sequence, Fork and

Alternative dependencies. This family mainly focuses on the outputs of

activities. Finally, the Data family includes the Write dependency since its

classification tree indentifies peculiar situations not included in the previous

families.

6.3.1. Input dependencies: Merge, Join,

Exclusion

This section explains the process of designing classification tree for the

input family. Since the structure of all their trees (Merge, Join, Exclusion),

are similar, we detail the generation with the Merge dependency and then,

the specific characteristics of the Join and Exclusion classification trees are

defined.

130 Testing at transaction level: Classification-Tree based approach

Merge classification tree

Figure 6.2 depicts the classification tree for the Merge dependencies.

The dotted lines represent the separation between the deepest level in the

tree and level before. The criteria for defining the test coverage items depend

on this division as is shown in the Section 6.4.

The Merge dependency relates a set of more than one activity with

another one. It defines that at least one of the previous activities must

complete before the latter can begin. The main feature we address in the tree

is the behaviour of the whole dependency to see whether it is fulfilled or not.

In other words, whether the execution flow (Flow) can continue or not. So at

the top level we identified two exclusive classes. Continue class classifies the

situations where at least one activity has completed, whereas Stop class

classifies the situations where no single activity has completed successfully.

In the case of Continue class, we identify two orthogonal classes to

represent the activities that have completed (Finished) and the ones that do

not (Not finished). In the case of the Finished activities, we define two

orthogonal classes in order to represent the Cardinality of the completed

activities (One and More than one) and the way they finished (Completed or

Later compensated). We define such cardinality in order to specify the

condition that at least one activity must be completed. Also we identified

those behaviours to specify the two possible scenarios for an activity that is

in the completed state when flow achieves the Merge dependency.

Selected class represents the activity which in the Completed state. i.e.,

an activity is completed. This class maintains a list of values for each

activity involved in the dependency.

The rest of activities involved are represented through the Not

Finished class. This class shows whether activities are still running

(Running), have been compensated before the flow achieved the dependency

(Previously Compensated) or are aborted (Aborted). If they are still running

it means all of them are in the Active state. We identify three types of the

Dependencies classification trees 131

Aborted class: some have been withdrawn, some have been cancelled or some

have failed.

The other branch of the tree (Stop class) means that the dependency

was not fulfilled. In other words, no activity has completed. So the relevant

feature to test is, again, the way in the activities have finished. We use again

the orthogonal classes Selected and Not finished Behaviour to represent the

behaviour of the activities. In the same way, we use the Abort class to

specify the different ways an activity can abort.

Since there are different ways to abort, it is necessary to test all those

possibilities. We use the same four values to classify the behaviour of the

non-completed activities: all were withdrawn, all were cancelled, all failed or

all of them have aborted but in different ways.

In this dependency there are not extra constraints about combining leaf

nodes apart from the specification by the orthogonality of the some classes

as was described above. The way the leaf nodes are used to define the test

coverage items are explained in the Section 6.4.

Join classification tree

The Join dependency requires all input activities to complete. The

difference between Join and Merge is that while Join requires all the

activities completed, to the Merge dependency is necessary only one.

Therefore, the Join classification tree (Figure 6.3) has a similar structure to

the Merge classification tree but CT focuses on the cardinality (Cardinality)

of the input activities, especially when the dependency requirements are not

met (Stop).

Exclusive classification tree

The Exclusive dependency requires exactly only one input activity to

complete. The difference between Merge CT and Exclusive CT (Figure 6.4)

lies in that the later focus on both behaviour (Behaviour) and cardinality

(Cardinality) aspects of the activities in the scenarios where the execution

flow does not continue (Stop).

132 Testing at transaction level: Classification-Tree based approach

Figure 6.2. Merge classification tree

Dependencies classification trees 133

Figure 6.3. Join classification tree

134 Testing at transaction level: Classification-Tree based approach

Figure 6.4. Exclusive classification tree

Dependencies classification trees 135

6.3.2. Output dependencies: Alternative, Fork,

Sequence

This section explains the process of designing classification tree for the

output family. In the same way that the input family, we illustrate the

generation with one dependency, Alternative. The specific characteristics of

the Fork and Sequence classification trees are later commented.

Alternative classification tree

The Alternative dependency relates an input activity with a set of

output activities. It defines two requirements: (i) only one of the output

activities can begin, and (ii) the input activity must complete before the

output activity can begin. The classification tree for the alternative

dependency is shown in Figure 6.5. The main feature we address in the tree

is if the flow (Flow) can continue (Continue) or not (Stop).

In the case of Continue class, we identify two orthogonal classes to

represent how the input activity has completed (Input) and the information

related to the output activity (Output). For the Input class we identify two

possible interesting values from a testing point of view. Completed refers

that the activity was successfully completed while Later Compensate means

that it was in the completed state when the flow achieved the dependency

but later the activity was compensated. To represent the information related

to the output activity, we define two orthogonal classes. Selected refers to

the activity selected to begin and Behaviour represents the behaviour of such

activity. Behaviour class is decomposed in the possible values: completed,

compensated, running, and abort. Since there are three different ways of

abort, the Abort class is decomposed in such values: withdraw, fail and

cancel.

In the case of Stop class, the tree focuses on the possible situations

(Situations) that not allow the flow to continue. If the flow cannot continue

it is due to the input activity have not completed (Possible). So we focus on

the different non-completed behaviour (Not Finished Behaviour) of that

activity. Note that we define a value Impossible to define unexpected

136 Testing at transaction level: Classification-Tree based approach

behaviour of that dependency. In other words, scenarios where an output

activity begins but the input activity have not completed. In the Not

Finished Behaviour class, we identify the possible values: Previously

Completed, Running, or Aborted. As in other cases, the class Aborted is

decomposed in the different ways to abort.

Fork classification tree

The Fork dependency relates an input activity with a set of output

activities. Fork defines that once the input activity has completed all the

output activities can begin. So the difference between Fork and Alternative

is that the latter defines only one output activity to begin while Fork defines

all of them to begin. Therefore, Fork relaxes the Alternative requirements.

The structure of both trees (Figure 6.5) is the same because, from a

testing point of view, we are still interested in the possible scenarios of the

input and output activities. Note that Fork dependency is more important to

be tested when it is the last dependency. It means that once the output

activities finish, the flow of execution of the whole transaction finishes too.

In this case, those output activities are not input activities of others

dependencies so they have to be taken into account in the Fork dependency.

In the case that Fork is not the last dependency, its output activities will be

the input activities of others dependency and will be further taken into

account on those dependencies.

Sequence classification Tree

Sequence dependency relates one input activity with one output

activity. It defines that the input activity must complete before the output

activity can begin. Sequence is, therefore, a simplification of the Alternative.

While in Alternative there are a set of candidate output activities, in

Sequence there is only one. The classification tree (Figure 6.6) still focus on

the same concepts (behaviour of the input and output activities) but it only

has to take in account one input dependency.

Dependencies classification trees 137

Figure 6.5. Alternative classification tree

138 Testing at transaction level: Classification-Tree based approach

Figure 6.6. Sequence classification tree

6.3.3. Data dependency: Write

We classify the write dependency in a different family because it is not

focus on the control of flow execution but in the data used by the activities.

Write dependency relates the activities that modify a data element (Definer)

with the activities that use the data element (User). The classification tree is

shown in Figure 6.7.

Dependencies classification trees 139

In both Definer and User classes, we are interested in which

alternative define/use (Selected) the data element and its behaviour

(Behaviour).

In the Definer class we identify two orthogonal classes regarding the

behaviour. State defines the way the activity finished (Completed, Aborted,

Compensated). Note that for testing purposes it is not considered neither

when the definer activity was compensated (previously or later) nor the way

of abort (withdraw, fail, cancel). But it does is important to identify if the

data element was modified or not (Modification). It could be, for example,

that due to the business logic of the activity, the data element is not

modified even if the activity was completed. On the other hand, it could be

that the data element is modified even if the activity was cancelled. All

those scenarios have to be taken into account for testing purposes.

In the User classes, we focus on the finished behaviours of the user

activities. It is not relevant from a testing point of view if an activity that

does not modify a data element does not achieve the completed state. So we

identify the possible values for the Finished Behaviour: Completed and

Compensate. Now it is important when the data element was modified for

compensation (Compensation Order). The user activity can read the data

element before the definer activity is compensated (Previously) or, in the

other case, it can read the data element once the definer has been

compensated (Later). Note that the data element could have different value

because the definer activity can modify the data element when execute the

compensation. Also note that the Compensation Order class only has sense

if the Compensated value for the definer state is selected.

140 Testing at transaction level: Classification-Tree based approach

Figure 6.7. Write classification tree

Test case design 141

6.4. Test case design

The goal of the test case design process is to achieve a suitable test

suite. As was explained in Section 3.2.1, a test suite is a set of test cases that

meet a test criterion. Each test case is designed to exercise a combination of

the test coverage items previously identified by some test technique. And all

the test cases (test suite) must cover (exercise) all the identified test

coverage items. In this chapter, the test technique is the CT method and the

test criteria used to combine the test coverage items are presented below.

According to the CT method, the leaf nodes define the test coverage

items that are combined to generate the test cases. In the context of testing

WS Transactions at the transaction level, a test case defines a specific

scenario that goes through different dependencies. Therefore, a test case

cannot be defined only in terms of one CT (i.e. the test coverage items

derived from a dependency), but a set of CTs. That is why it is necessary to

refine the concept of test coverage item in the CTs in order to represent

combinations of leaf nodes (Combined Test Coverage items). In this way,

these Combined Test Coverage items will be combined again leading to the

scenarios that constitute the test cases. Two kinds of coverage items defined

are:

• Primitive Test Coverage Item (Primitive TCI): It shows each value of a

class in the analysis. It is shown as a leaf node in the CT.

• Combined Test Coverage Item (Combined TCI): The specific behaviour

that all involved activities in the dependency must follow. It is generated

by combining its Primitive TCIs using different combination criteria

according to the depth dimension.

Figure 6.8 illustrates an example of Combined TCI (states are specified

in brackets and transitions between dashes) derived from combining two

Primitive Test Coverage Items.

The criterion to generate the Combined TCIs is related to the test

effort required. Therefore, it is included in the depth dimension as described

142 Testing at transaction level: Classification-Tree based approach

in Section 3. Section 6.4.1 presents different criteria for the use and

combination of the Primitive TCIs. The strategy used to organize and to

combine the Combined TCIs in scenarios that define a test case is presented

in Section 6.4.2.

Figure 6.8. Combination of Primitive TCIs

6.4.1. Depth Dimension: Generation of the

Combined Test Coverage Items

In order to combine the Primitive TCIs, we propose a family of

coverage strategies by taking into account two orthogonal aspects:

• Primitive TCI selection: This is to select the leaf nodes which are to be

used in the combination.

• Primitive TCI combination: This is to combine the selected Primitive

TCIs.

The above two aspects allow for adjusting the number of Combined

TCIs that will be generated. Note that such combinations must fulfil the

constraints defined in the CT. The more the Combined TCIs defined the

more the requirements for the test suite. Thus more test cases are generated

which result in the increase in test effort. But more test cases potentially

Test case design 143

increase the effectiveness of testing. Considering these two aspects we

achieve four different criteria that allow adjusting the testing thoroughness.

Primitive TCI selection (level)

We use the depth level information in order to select the Primitive TCI

(leaf nodes). The selection is done using the following two levels:

• Strong level: It uses the deepest level (called N level) in order to cover

all Primitive TCIs. Assume that there are three activities involved in the

Merge CT (Figure 6.2), then this criterion requires using the 19

Primitive TCIs which are found in the tree.

• Weak level: This level, called N-1 level, requires covering all non-

elementary classes but only one value of each elementary class. In this

criterion, a random leaf node (from children nodes) is selected. For

example in the Merge CT, this criterion requires using 10 Primitive

TCIs: one value for each class Selected, Finished Behaviour and

Aborted, and Valid, plus the 9 rest values of the non-elementary classes.

The number of Primitive TCI may be widely reduced. But, from a

testing point of view, the randomly selected leaf node can be less

significant than the other candidate node. It also brings a

nondeterministic factor in the design.

Note that the strong level criterion subsumes the weak level criterion.

As example, the dotted line in the Figure 6.2 separates the N level to N-1

level in the Merge dependency.

Primitive TCI combination

Combined TCIs are generated from the Primitive TCIs. There is a

range of criteria that can be used. The simplest coverage criterion, i.e., each-

used coverage, does not enforce any requirement on how the Primitive TCIs

are combined. The more complex coverage criteria, such as pair-wise or N-

wise coverage, is concerned with (sub-) combinations of interesting values of

different parameters [129]. As example, we define the boundaries and an

intermediate value of such range of combinations criteria: the each-used

144 Testing at transaction level: Classification-Tree based approach

(simplest), pair-wise (intermediate) and N-wise (strongest). Note that other

intermediate criteria can be used such as 3-wise, 4-wise, etc. [129].

• Each-used: it requires that every selected Primitive TCI to be included

in at least one Combined TCI — which is derived from this dependency

using the lowest number of Combined TCIs possible. It is the weakest

coverage criterion.

• Pair-wise: it requires that all possible pair combinations between the

selected Primitive TCIs to be included in the set of Combined TCIs

derived from this dependency. This criterion subsumes the each-used

criterion.

• N-wise: it requires all possible combinations of all selected Primitive

TCIs to be included in the set of Combined TCIs which is derived from

this dependency. It is the strongest coverage criterion and thus,

subsumes the each-used and pair-wise criteria.

Handling composite dependencies

The Primitive TCIs (leaf nodes) specify requirements in terms of

behaviours of their activities. But in a composite dependency, such

requirements may refer to another dependency. In the latter, the dependency

involved as argument (argument dependency) is considered as an activity in

terms of behaviour. In other words, if the Primitive TCI requires that such

activity (argument dependency) has to complete, a random scenario is

selected where the activity (argument dependency) is completed. If the

Primitive TCI requires the activity (argument dependency) to

cancel/abort/fail, all the activities involved in the argument dependency will

take such behaviour.

Criteria comparison

Figure 6.9 depicts the four set of Combined TCIs generated by

combining the orthogonal criteria of level (strong and weak) and

combination (each-used and N-wise) for the Merge CT. In the strong level

each leaf node is a Primitive TCI while in the weak level, a leaf node of each

Test case design 145

elementary class was randomly selected. Then each row defines a Combined

TCI achieved by applying the specified combination criterion.

With the weak level similar Combined TCIs are generated for both N-

wise and each-used criterion. The reason is that weak level prunes the leaf

nodes in the elementary classes Selected, Aborted, Rest of Activities and All

Activities. This pruning added to the merge´s logic reduces the possibility of

combination. The strong level generates more Combined TCIs than weak

level since the former always selects more Primitive TCIs. This allows for

exercising more exhaustively the dependency but the test effort (number of

Combined TCI generated) can considerably grow if strong combination

criteria are used.

146 Testing at transaction level: Classification-Tree based approach

Figure 6.9. Combined TCIs generation

N-wise Each-used

S
tr
o
n
g
 l
e
v
e
l

W
e
a
k
 l
e
v
e
l

Test case design 147

6.4.2. Generating the test cases

Once all the Combined TCIs are defined, the next step is to generate a

set of test cases that can cover them. Note that one test case can cover more

than one Combined TCI. To generate the test suite we use the base choice

(BC) strategy [129]. BC is a determinist iterative strategy, which means,

given a base test case the same test suite is produced every time. The first

step of BC is to identify a base test case. The base test case combines the

most ‘important’ value for each parameter. Importance may be based on any

pre-defined criterion such as most common, simplest, smallest, or first. From

the base test case, new test cases are created by varying the minimum

number of values at a time while keeping the values of the other parameters

fixed.

In the context of testing WS transactions, the parameters are the

behaviour of each activity (i.e. sequence of states/transitions of its executor,

see Figure 3.4). To generate the base test case we adopt the criterion of

“maximum of dependencies completed”. So the base test will define specific

behaviour for all activities forming a scenario where the number of

dependencies that are completed is maximum.

The algorithm to generate the base test case is shown in Figure 6.10.

The strategy selects, for each final dependency, a scenario where the

dependency is completed. Then the strategy is recursively applied to the

dependencies included in the input of final dependencies in order to specify

the behaviour for the activities whose behaviour was not previously defined.

If it is impossible to select a scenario to complete a dependency without

modifying the behaviour of a previously specified activity, then the

dependency takes a non-complete scenario while keeping the behaviour of

such activity fixed.

148 Testing at transaction level: Classification-Tree based approach

Base Choice Generation (output: base test case)

Generate an empty test case BC

Select all final dependencies

For each final dependency D

 Select completed scenario for D

 Copy the scenario for D in the test case BC

End

Completed Scenario (input: dependency D, output: completed scenario

for D)

 Select the activities in D that has not a specifie d behaviour yet

 If D can be completed

 Specify completed behaviour for all activities

 Else

 Select a non-completed behaviour for all activiti es

 If D is composed

 Get the arguments dependency

 For each argument dependency D’

 Select Completed Scenario for D’
End

Figure 6.10. Base case generation algorithm

Once the base test case is defined, the strategy creates the rest of

necessary test cases. The algorithm to generate the test suite is shown in

Figure 6.11. The strategy gets the test coverage items which are not covered

by the base test case. It creates new test cases by varying the behaviour of

the base test case´s activities in order to cover all the test coverage items.

This gives a set of test cases that covers all Combined TCIs which are

generated previously.

Generation of the Test Suite (input: set of Combined TCIs, base test

case BC, output: test suite)

Add the BC test case to the test suite

Set all Combined TCIs covered by the BC test case a s covered

While ∃ Combined TCI not covered

Get a not covered Combined TCI

Copy the BC test case

Modify the BC test case copy in order to cover the Combined TCI

Add the new test case to the test suite

Set all Combined TCIs covered by new test case as c overed

End

Figure 6.11. Test suite generation algorithm

Case study: Web Travel Agency 149

Test suite is obtained by following the steps of the above algorithm.

Each test case defines a concrete scenario for the overall WS transaction by

specifying the behaviour of all its activities. A test case can cover one

Combined TCI for each dependency of the transaction (as shown in Figure

6.12). This provides a set of generated test cases that cover all the Combined

TCI.

 Figure 6.12. WS transaction test case

6.5. Case study: Web Travel Agency

In this section we evaluate the proposed criteria. We use the Travel

Agent case study and model it according to the transaction model used by

our method. The valuation is carried out in order to show that the proposed

multi-dimensional criteria meeting the following research questions:

• RQ1: Effectiveness of the proposed criteria in detecting failures in WS

Transactions

• RQ2: Usefulness of the proposed criteria useful in adjusting the test

efforts and providing a trade-off in terms of cost-benefit

• RQ3: Resiliency of the proposed criteria to different types of defects or

failures

We have implemented a Travel Agency case study which is widely

discussed in the literature [1, 130-132]. Travel Agency is an application in

which customers are offered with the facilities for making travel

150 Testing at transaction level: Classification-Tree based approach

arrangements as follows. The Agency service receives an itinerary from a

customer. After checking the itinerary for errors, the process determines

which reservations to make, sending simultaneous requests to the transport,

hotel and car rental providers. The transport can be by flight or by train.

There are three alternative airline companies, two hotel agencies, one train

company and one vehicle reservation service.

If any of the reservation tasks fails, the itinerary is cancelled by

performing the compensatory action and the customer is notified of the

problem. Agency service waits for confirmation of the reservation requests.

Upon receipt of all confirmations, the Agency service sends to the customer

the reservation confirmation and final itinerary details. Finally the Agency

contacts the payment services to charge in the customer´s credit card of the

total amount. The payment services also charges an extra 1% fare for using

the service.

Travel Agency is a distributed software application written in Java 1.5.

The application includes 23 Java classes and 2,540 Java lines of code (LoC).

The average number of methods per class is 6.583 with an average of 11.83

lines per method. Each service is composed of two classes: serviceLogic and

serviceWS. The services that make reservations (flights, hotels, train and

car) also have a serviceReservation class. The serviceLogic classes implement

the business logic of the activity, for example, checking the availability in a

hotel and booking a room. The serviceWS wraps the logic class and other

classes required by the service. Auxiliary classes are Customer and Itinerary

that are used by all the services. There are also two classes regarding the

transaction processing. TAcontext represents the data elements shared by

the activities (itinerary, amount and customer data) while TAflow manages

the execution of the all services.

6.5.1. Transactional modelling of the case study

We model the travel agency case study according to the transaction

model presented in Section 3.1. Figure 6.13 depicts the modelling of the

travel agency and shows some of the important activities, data elements and

dependencies.

Case study: Web Travel Agency 151

The services (and their activities), data elements and dependencies

involved in the transaction are defined as follow.

• Agency: Checks if the departure and arrival cities are under the coverage

of the agency. It also coordinates the flow execution of the activities.

• Gold Air: An airline with high availability but is the most expensive

• Cheap Air: An airline with cheaper prices but less availability

• Train: Train tickets service

• Five Star Hotel: A luxury hotel chain. High availability and high cost.

• Two Star Hotel: A low cost hotel chain.

• Car: Rental cars service

• Payment: Credit card services for online payments

The following data elements are used by the above activities:

• Itinerary (I): Departure and arrival cities and dates

• Hotel reservation (H): Hotel address, date of arrival and number of

nights booked at the hotel

• Flight reservation (F): City, date and time of departure and city, date

and time of return

• Train reservation (T): City, date and time of departure and city, date

and time of return

• Car reservation (R): City, date and number of days booked

• Amount (A): Amount to be charged to the client

• Credit balance (B): The customer credit balance

The dependencies among the above activities are defined as follows:

• D1: Fork (Gold Air, Cheap Air, Train, 5*Hotel, 2*Hotel, Car)

152 Testing at transaction level: Classification-Tree based approach

• D2 :Exclusion (5*Hotel, 2*Hotel)

• D3 :Merge (Gold Air, Cheap Air, Train)

• D4: Join (D2, D3, Car)

• D5: Sequence (Agency, D1)

• D6: Sequence (D4, Payment)

• D7: Write({Agency, Gold Air, Cheap Air, Train Air, 5*Hotel, 2*Hotel,

Car },{Payment})

Figure 6.13. Web Travel Agency case study

6.5.2. Experimental parameters

Existing works on testing web services focus on the unit testing of the

flow management, commonly a WS-BPEL process [65, 69, 133-135]. But they

do not address the evaluation of fault detection in a particular

implementation of services. We measure the effectiveness of the testing

method as the degree on which the generated test cases are able to reveal

defects injected in a concrete implementation (described above) of the whole

transaction.

We use a mutation approach in order to inject faults in the WS

transaction of the travel agency. Mutation testing has been widely accepted

as the test adequacy criteria. The idea is to make many small changes called

Case study: Web Travel Agency 153

mutants in a given program (or web service in our case). Small changes of

the original program are expected to produce observable different outputs. A

mutant is said to be killed if it gives different outputs from the original with

some test case. The Mutation Score (MC) is the relation between the

number of mutants killed (KM) by the test suite and the number of total

generated mutants (TM). Formally, MC=KM/TM * 100. Mutation score is,

therefore, an objective measure to evaluate the effectiveness of a test suite.

To apply mutation to our Travel Agency application, we have used the

MuJava tool [136]. MuJava generates two types of mutants. Traditional

mutations are generated by applying syntactic actions such as an arithmetic

or logic operator replacement in the code. Class mutations are generated by

applying semantic actions such as changing the access modifier of a variable.

We have applied both types of mutants in all classes obtaining a total of

2.507 faulty versions of our Travel Agency application. The number of

mutants generated by each Java class is shown in Table 6.2.

154 Testing at transaction level: Classification-Tree based approach

Type

of class
Class

Total

Mutants

Traditional

Mutants

Class

mutants

Service AgencyWS 104 97 7

Service CarWS 173 156 17

Service CheapAirWS 125 116 9

Service FiveHotelWS 173 156 17

Service GoldAirWS 133 124 9

Service PaymentWS 112 105 7

Service TrainWS 133 124 9

Service TwoHotelWS 173 156 17

Logic AgencyLogic 0 0 0

Logic CarLogic 238 233 5

Logic FlightLogic 387 366 21

Logic HotelLogic 231 226 5

Logic PaymentLogic 8 6 2

Logic TrainLogic 207 195 12

Reservation FlightReservation 28 10 18

Reservation HotelReservation 28 20 8

Reservation TrainReservation 28 10 18

Reservation CarReservation 28 20 8

Auxiliary Customer 78 59 19

Auxiliary Itinerary 7 0 7

Auxiliary PaymentTransfer 10 8 2

Transaction TAcontext 59 14 45

Transaction TAflow 217 211 6

Table 6.2. Generated mutants

To evaluate the requirement RQ2, we assess the cost-benefit relation of

using the different criteria for generating the Combined TCIs, and thus, the

test cases. The cost is estimated according to the number of test cases

generated. The test benefit is highly related to the number of defects that

the test suite can reveal. It is therefore approximated by the number of

Case study: Web Travel Agency 155

mutants killed. We define the cost-benefit relation (CB) as the relationship

between the number of test cases generated by the criterion (TC) and the

mutants killed for that set of test cases (KM), say CB=TC/MT. In order to

compare different CB values, we normalize the values (CBN) ranging from 0

– 1 and using the highest CB with test suite of CBN=1. Thus, the metric

used to address RQ2 is CBN.

6.5.3. Results

We obtained the results following three steps. The first step is to

generate the Combined TCIs for each dependency. We developed a script

that requests as input the type of dependency, the service classes that

implement the involved activities, the level and combination criteria and it

generates the set of Combined TCIs. The number of Combined TCIs

generated for each dependency and each combination of criteria are shown in

Table 6.3. As was expected, the strong level noticeable increase the number

of Combined TCIs generated independently of the combination criterion

selected. Regarding the combination strategy, we realize that N-wise

criterion increases the Combined TCIs but the increment is only remarkable

when this strategy is combined with the strong level. Also we see that the

number of Combined TCI is very similar with the weak level criterion

independently of the way of combination.

ID Dependency
Strong level

N-wise

Weak level

N-wise

Strong level

each-use

Weak level

each use

D1 Fork 42 7 12 7

D2 Exclusion 17 5 9 5

D3 Merge 41 10 10 6

D4 Join 17 5 9 5

D5 Sequence 8 5 8 5

D6 Sequence 8 5 8 5

D7 Write 126 1 3 1

Total 259 38 59 34

Table 6.3. Combined TCIs generated by the criteria

The second step is to generate the test cases. We developed a script

that receives the set of Combined TCIs of all dependencies involved in the

156 Testing at transaction level: Classification-Tree based approach

transaction and then executes the algorithms shown in Section 5.2 to

generate the test cases. Each test case specifies the behaviour that the

activities have to follow during the execution. Such behaviours are described

in a text file for each test case.

The third step is to automatically execute the test cases in the 2.507

mutated versions. The code was instrumented and the services were

configured in a way that follows a specific behaviour. Thus, when the Travel

Agency WS transaction starts, it reads a test case file and configures all the

services.

The different test suites generated by combining the level and

combination criteria were automatically executed using MuJava and the

mutation score was obtained. The mutation score and cost-benefit results are

summarized in Table 6.4. Mutation scores grouped by type of class are

shown in Table 6.5. ‘S’ and ‘W’ means strong level and weak level

respectively, while ‘N’ and ‘E’ respectively means N-wise and each-used.

Information about number of killed mutants, alive mutants, traditional

mutants score and class mutation score for each class is displayed in Annex

D.

Test suite level
Strong level

N-wise

Weak level

N-wise

Strong level

each-used

Weak level

each-used

Mutation Score 99,85 81,19 92,5 65,45

Number of Test Cases (TC) 71 27 37 17

Number of mutants killed

(KM)
2676 2176 2479 1754

Cost-benefit relation (CB) 0,02653 0,01241 0,01493 0,00969

CB normalized (CBN) 1 0,47 0,56 0,37

Table 6.4. Test suites results

Case study: Web Travel Agency 157

Type of

class

Number

of

classes

Mutation score
Traditional mutation

score
Class mutation score

S/N W/N S/E W/E S/N W/N S/E W/E S/N W/N S/E W/E

Service 8 99,91 77,98 89,47 65,79 99,88 77,38 89,13 66,13 100,00 78,00 87,63 57,38

Logic 6 99,85 81,07 92,62 60,07 99,80 82,40 95,60 60,60 98,20 55,20 74,00 36,80

Reservation 4 99,11 61,61 83,04 40,18 97,50 73,75 95,00 57,00 100,00 47,75 74,25 34,50

Auxiliar 3 100,00 49,73 98,72 30,07 100,00 45,50 97,00 21,00 100,00 48,67 100,00 19,00

Transaction 2 100,00 91,45 100,00 98,00 100,00 99,50 100,00 100,00 100,00 56,50 100,00 65,00

Average 99,77 72,37 92,77 58,82 99,44 75,71 95,35 60,95 99,64 57,22 87,18 42,54

Table 6.5. Results by type of class

6.5.4. Discussion

Regarding RQ1, the results presented in Table 4 show the effectiveness

of the method measured in terms of the mutation score. All test suites

achieve a mutation score greater than 65% and even, three of the four

achieve a score greater than 80%. We see that the strong level generates test

suites that reach very high effectiveness with mutation scores greater than

90%. According to the type of class, Table 6.5 shows that the weak level

criterion achieve notably inferior mutation scores, especially in reservation

and auxiliary classes. These two types of classes are less complex than the

other, so the results suggest that the strong level is more suitable for simple

classes.

With regard to the RQ2, we see that different level and combination

criteria lead to different test efforts measured in the number of test cases

generated (TC). The benefit (killed mutants, KM) also differs in the

different test suites as shown above. There are significant differences in the

test efforts (TC). The lowest value of CBN is achieved by the criteria

combination weak level / each used. On the other hand, a similar CBN value

is achieved by weak level / N-wise (0,47) and strong level / each-used (0,56).

Although the best CBN relation is reached by the weak level / each-used

criteria, this combination achieves the lowest mutation score. At the other

end of the spectrum, strong level / N-wise have the worst CBN value but

158 Testing at transaction level: Classification-Tree based approach

achieve the best mutation score. In the middle we found the weak level / N-

wise and weak level / each- used combinations that, with a reasonable value

of CBN, achieve a high mutation score. So these results give a metric to the

tester in order to decide the test effort to use depending on what factor (cost

or benefit) want give priority to.

In relation to the RQ3, we consider the two types of injected faults:

traditional mutants and class mutants. According to the results summarized

in Table 6.5, we see that the mutation score achieved in the traditional

mutants is mostly greater than the one achieved in the class mutation. The

average mutation scores of all classes (see Appendix D) show the same

tendency. So the results seem to show that the type of fault influences the

effectiveness of the method.

We identify two main limitations and threads to validity of this

evaluation. Firstly the mutation technique simulates the faults that could

appear during the development of WS Transaction based application. As far

we do not have information about actual faults, we do not how

representative these injected faults are. But empirical studies comparing the

fault detection ability of test suites on hand-seeded, automatically-generated

(mutation) and real-world faults suggest that the generated mutants provide

a good indication of the fault detection ability of a test suite [137]. This

contributes to mitigate this threat. Secondly, as is usual in software

engineering experiments, there is also the question of how representative the

case study is. This work tried to mitigate that thread by using a case study

widely accepted in the literature.

6.6. Summary

In this chapter we have presented novel multi-dimensional criteria for

testing the WS transactions. Our approach generates test cases according to

the dependencies between the activities involved in a WS transaction. The

method elaborates a classification-tree analysis for each kind of dependency

in order to identify the relevant test conditions, and subsequently, to define

the test coverage items to derive the test cases that thoroughly exercise all

Summary 159

dependencies. Two orthogonal families of test criteria are used for the test

coverage item selection (strong level, weak level) and the test coverage item

combination (N-wise, each-used). To evaluate the proposed method we have

used a well-known case study: Travel Agency. Evaluation results showed

that the proposed criteria have the potential to design effective test cases for

WS transaction and to allow the tester to adjust the method in terms of

effectiveness, test effort and cost-benefit analysis. It also provides the

advantages of performing the testing process in a resource-scarce

environment. Further the design of the test cases is automatically generated

in order to meet the requirements of the distinguishing characteristics of WS

transactions. It reduces the cost of the test design and also improves its

effectiveness. It allows adjusting the intensity of the test process by taking

into account the time and effort limitations. It allows the tester to prioritize

the tests by firstly using low-effort criteria and subsequently complement

them when additional test effort can be applied.

161

Chapter 7

7. Conclusions

Life has given me strong blows. I could have become vulnerable and shot

myself or I could look up to the sky and carry on.

I preferred the second option

Manuel Preciado

his chapter presents the conclusions of this thesis. It outlines the main

contributions of this work and also gives a critical analysis of the

proposed methods. It also sets the directions for future research work.

T

162 Conclusions

7.1. Synthesis and results

This thesis has investigated into the issue of testing the WS

transactions — a key issue that has not been given attention to by the

current research.

Due to the existence of different approaches to manage WS

transactions, we firstly developed and evaluated the Abstract Transaction

Model (AbTM). AbTM defines a transaction as a set of activities and a set

of dependencies between those activities. AbTM also identifies four roles

that are commonly present in the transaction life-cycle: initiator, executor,

coordinator and terminator. AbTM has the potential to capture the

behaviour of a WS transaction independently of the underlying standard or

model. It therefore, serves as a template for existing transactions model and

standards and provides an easy and uniform way for testing different WS

transactions.

The second main contribution of this thesis is the design and

development of the Framework for Testing Transactions (F2F). F2T,

inspired by the risk-based testing methodologies, has been devised to

organize all the concepts involved in the process of test case design of WS

transaction. It encompasses the concepts from the transaction definition

(using the AbTM) to the test case generation. F2T identifies a set of hazards

and develop techniques that systematically address those hazards.

The framework identifies three orthogonal dimensions of testing WS

transactions (level, feature, depth) according to the basic test concepts (test

level, test conditions, test coverage items). These have been used in testing

the participant level (Chapter 4) as well as transaction level (Chapter 5 and

Chapter 6).

At the participant level, we proposed a model-based testing method

that focuses on the executor role to automatically generate test cases for

testing the failures and reliability of WS transaction standards. The

proposed test approach was implemented as a prototype system in which

various test cases were automatically generated and mapped to WS

Synthesis and results 163

transaction standards. The evaluation was performed using the case study of

Nigh Out, which is an open source WS-BA-based application provided by

Jboss. The experiments showed that our approach can be used to define

different test cases and test the reliability and failures of different WS

transaction standards.

At the transaction level, we proposed two different approaches. Firstly

(Chapter 5) we presented a set of test criteria to guide the test case

generation. The criteria are based in the logical conditions defined by the

dependencies that manage the execution of the activities primitive tasks.

The proposed method was used in an industrial case study, the Cajastur

Insurance Application (CIA). The obtained feedback showed the viability of

the method.

A new approach was defined (Chapter 6) that dealt with the

transaction level by taking into account the limitations of the previous

method (in Chapter 5). This approach also generates test cases according to

the dependencies between the activities involved in a WS transaction. In this

case, the proposed criteria elaborate a classification-tree analysis for each

kind of dependency in order to identify the relevant test condition and test

coverage items. The aim was to derive the test cases that thoroughly

exercise all dependencies. Two orthogonal families of test criteria are used

for the test coverage item selection (strong level, weak level) and the test

coverage item combination (from each-used to N-wise). To evaluate the

proposed method we have used a well-known case study of Travel Agency.

Evaluation results showed that the proposed criteria have the potential to

design effective test cases for WS transactions and to allow the tester to

adjust the method in terms of its effectiveness, test effort and cost-benefit

analysis. It also provides the advantages of performing the testing process in

a resource-scarce environment. Further the design of the test cases is

automatically generated in order to meet the requirements of the

distinguishing characteristics of WS transactions. It reduces the cost of the

test design and also improves its effectiveness. It allows for adjusting the

intensity of the test process by taking into account the time and effort. It

also allows the tester to prioritize the tests by firstly using low-effort criteria

164 Conclusions

and then subsequently complement them when additional test efforts are

required.

7.2. Critical analysis and future work

This section provides a critical analysis of the methods proposed in the

thesis and also defines the perspectives for future work.

Testing WS transactions is a non-trivial research issue given the

distributed, dynamic and loosely coupled nature of the process. The

Framework for Testing Transactions (F2T) identified a set of seven

properties (Composition, Dependency, Recovery, Consistency, Visibility,

Durability, and Controllability) that should be tested in order to ensure the

correct behaviour of the whole transaction. The hazards that imperil such

properties are organized according to the test dimensions (level, feature and

depth). In this thesis we have addressed Composition, Dependency and

Controllability properties. The remaining properties motivate interesting

research topic which can be addressed in future research work.

F2T relies on the capability of the Abstract Transaction Model

(AbTM) to capture the behaviour of existing transaction models and

standards. AbTM has been designed after an in-depth study of the existing

solutions for managing WS transactions. Currently BTP, WS-BA and WS-

COOR transaction standards have been modelled through the AbTM. In

future, we intend to study the capability of AbTM to model transaction-

based applications running under non-transaction standards such as WS-

BPEL [89].

In relation to testing the participant level, the evaluation of the test

case execution is based on the system outcome. Future works should also

take into account the user outcome to deliver the verdict. Furthermore, the

proposed method applies transition test criterion that ensures the coverage

of all transitions and states specified in the AbTM. The method however

does not guarantee the code coverage. As a part of the future research work

we plan to enhance the prototype system in order to monitor the execution

Critical analysis and future work 165

of the code. Finally, the current method is focus on the executors. A future

work is to deal with the rest of the roles involved in a WS transaction.

Finally, in relation to the methods proposed to test the transaction

level, it would useful to have a tool that provides support for automating the

test case generation. In the Classification-Tree based approach, future work

should evaluate different strategies to compose the test cases. In addition,

although the data is taking into account in the Write dependency, more

specific analysis of the data patterns is clearly a still open issue to be

addressed.

Critical analysis and future work 167

Capítulo 8

8. Conclusiones

La vida me ha golpeado fuerte. Podía haberme hecho vulnerable y acabar

pegándome un tiro, o podía mirar al cielo y crecer. Elegí la segunda opción

Manuel Preciado

ste capítulo presenta las conclusiones de la tesis. Se resumen las

principales contribuciones de este trabajo de investigación y se discuten

las limitaciones del los métodos propuestos. También se definen las líneas

para futuros trabajos de investigación.

E

168 Conclusiones

8.1. Resumen y resultados

Esta tesis ha centrado sus esfuerzos en la prueba de transacciones en

servicios web, un elemento clave que no ha recibido atención en la

investigación actual.

Dada la variedad de estándares y protocolos existentes para manejar

transacciones en servicios web, esta tesis primeramente desarrolló y evaluó

un Modelo Abstracto de Transacciones (AbtM). AbTM define una

transacción como un conjunto de actividades y una serie de dependencias

entre esas actividades. El modelo propuesto diferencia cuatro roles que están

siempre presentes durante el ciclo de vida de una transacción: iniciador,

ejecutor, coordinador y terminador. AbTM puede capturar el

comportamiento de una transacción independientemente del protocolo que

utilice. Por tanto, sirve como una plantilla genérica para modelar los

actuales modelos de transacciones permitiendo un mecanismo sencillo y

uniforme para realizar pruebas de diferentes transacciones en servicios web.

La segunda contribución de esta tesis es el diseño y desarrollo del

Marco para Pruebas de Transacciones (F2T). La realización de este marco

de trabajo estuvo inspirada por las metodologías de pruebas basadas en

riesgo. F2T organiza todos los conceptos involucrados en el diseño de casos

de prueba para transacciones en servicios web. Comprende los conceptos

desde la definición de la transacción (usando el AbTM) hasta la generación

de las pruebas. F2T identifica un conjunto elementos de riesgo y desarrolla

técnicas de prueba sistemáticas para mitigarlos.

El marco de pruebas identifica tres dimensiones ortogonales en la

prueba de transacciones (nivel, característica, profundidad) de acuerdo a los

conceptos generales de las pruebas de software (nivel de prueba, condiciones

de prueba, cobertura de elementos de prueba). Esta organización se ha

utilizado para definir métodos de prueba en el nivel participante (Capítulo 4)

así como el nivel transacción (Capítulos 5 y 6).

En el nivel participante, hemos propuesto una técnica de prueba

basada en modelos que se centra en el rol ejecutor. El método permite la

Resumen y resultados 169

generación automática de casos de prueba para detectar fallos y comprobar

la fiabilidad de los estándares para transacciones en servicios web. Se

implementó el método mediante un prototipo y fue evaluado utilizando el

caso de estudio Night Out, una aplicación open source de Jboss que utiliza el

estándar WS-BA. Los experimentos mostraron que se puede utilizar nuestro

método para generar automáticamente casos de prueba adecuados para

diferentes estándares.

Para el nivel transacción propusimos dos enfoques diferentes. Primero

(Capítulo 5), presentemos un conjunto de criterios de prueba para guiar la

generación de los casos de prueba. Estos criterios están basados en

condiciones lógicas que se derivan de las dependencias (relaciones) existentes

entre las diferentes actividades que componen la transacción. Este método se

utilizó en un caso de estudio industrial, la Aplicación para Seguros de

Cajastur. El feedback obtenido mostró la viabilidad del método propuesto.

En el Capítulo 6 propusimos un nuevo enfoque para el nivel

transacción teniendo en cuenta las limitaciones del método anterior

(Capítulo 5). El método también genera casos de prueba focalizados en las

dependencias entre actividades, pero en este caso, se utiliza la técnica de

análisis de árboles de clasificación (classification-tree analysis). Por cada

dependencia, se genera un árbol con el objetivo de identificar las condiciones

de prueba relevantes así como los elementos específicos de prueba. El

objetivo es derivar casos de pruebas para ejercitar todas las dependencias.

Propusimos dos familias de criterios de prueba ortogonales, una para la

selección de los elementos de prueba, y otra para la combinación de dichos

elementos. Para evaluar el método propuesto utilicemos un caso de estudio

ampliamente presente en la literatura: la Agencia de Viaje Web. La

evaluación mostró que los criterios propuestos tienen el potencial para

diseñar buenos casos de prueba y permiten al ingeniero de pruebas ajustar el

método en términos de efectividad, esfuerzo de las pruebas y relación coste-

beneficio. Además, el método permite el diseño automático de los casos de

prueba lo que reduce el tiempo y coste de diseño y mejora su efectividad. Los

diferentes criterios permiten al ingeniero de pruebas ajustar la intensidad del

proceso de pruebas teniendo en cuenta el tiempo y el esfuerzo. De esta

170 Conclusiones

manera, puede priorizar las prueba usando primero criterios de bajo coste y

posteriormente ir complementándolos con criterios más costosos si fuese

necesario.

8.2. Análisis crítico y trabajo futuro

Esta sección analiza métodos propuestos en esta tesis y define las

perspectivas de trabajo futuro.

Realizar pruebas para transacciones en servicios web es una ardua

tarea debido a la naturaleza distribuida, desacoplada y dinámica del proceso.

El Marco para Pruebas de Transacciones (F2T) identificó un conjunto de

siente propiedas (Composición, Dependencia, Recuperación, Consistencia,

Visibilidad, Durabilidad y Control) que deberían ser comprobadas para poder

asegurar el correcto comportamiento de la transacción. Los riesgos que

afectan a dichas propiedades han sido organizados en tres dimensiones de

prueba (nivel, característica y profundidad). En esta tesis nos hemos

centrado en las propiedades Composición, Dependencias y Control, por lo

que una motivante línea de trabajo futuro sería explorar el resto de las

propiedades propuestas.

F2T se basa en la habilidad del Modelo Abstracto de Transacciones

(AbTM) para capturar el comportamiento de los actuales estándares de

transacciones en servicios web. AbTM se diseñó tras un profundo estudio de

las soluciones existentes para el manejo de este tipo de transacciones.

Actualmente se han modelado los estándares BTP, WS-BA y WS-COOR.

En el futuro tenemos planteado estudiar la capacidad del AbTM para

modelar aplicaciones basadas en transacciones que no ejecutan un estándar

específico de transacciones, como puede ser el WS-BPEL[89].

En relación con el método propuesto para probar el nivel participante,

la evaluación de los casos de prueba se basó en la salida del sistema. Un

interesante trabajo futuro sería tener en cuenta también la salida del usuario

para definir el veredicto del caso de prueba. Además, el método aplica

cobertura de transiciones lo que asegura una cobertura total de los estados y

transiciones especificados en el AbTM. Sin embargo, el método no puede

Análisis crítico y trabajo futuro 171

asegurar ninguna cobertura de código ya que no hay un enlace formal entre

el AbTM y el código de la aplicación. Como parte de nuestro trabajo futuro,

tenemos planteado mejorar el prototipo con el objetivo de poder monitorizar

la ejecución del código y así obtener información sobre su cobertura.

Finalmente, el método actualmente se centra en el rol del ejecutor. Un futuro

trabajo sería abordar el resto de los roles involucrados en la transacción.

Con respecto a los métodos propuestos para probar el nivel transacción,

sería útil el desarrollo de herramientas que permiten la generación

automática de los casos de prueba. En el enfoque basado en árboles de

clasificación, trabajos futuros deberían evaluar otras posibles estrategias para

componer los casos de prueba. Además, aunque el uso de la información se

tiene en cuenta en la dependencia Write, un análisis más específico de los

patrones de uso de la información es claramente todavía un objetivo a tratar.

I. Appendices

174 Appendices

A. Algorithm ABC-DC

Algorithm ABC-DC (input wT: web_transaction; output ts:
test_suite)

{

s_stack: stack of activities

a: activity

tc: test case

ts: test suite

a_stack = A(wT)

while (a_stack is not empty)

{

a = a_stack.pop

if (there is not tc in ts where begin(a) = true)

{

tc= empty;

tc+= (begin(a)=true);

tc+= BC_true (a);

ts+=tc;

}

if (there is not tc in ts where begin(a) = false)

{

tc= empty;

tc+= (begin(a)=false);

tc+= BC_false (a);

ts+=tc;

}

}

return tc;

}

Algorithm ABC-DC 175

auxiliary procedure BC_true (input a: activity; output tc:

test_case)

{

tc: test_case

a2= activity

tk= task

tc=empty;

if (BeginCond(a) = true)

{

 return tc

}

else

{

 for each condition c in BeginCond(a)

 {

a2=activity involved in c

tk = task involved in c

if (tk== begin)

 tc+= Begin(a2)=true

else if (tk== commit)

 tc+= Commit(a2)=true

else

 tc+=Abort(a2)=true

tc+=BC_true(a2)

if (BeginCond(a) is true when c is true)

return tc;

}

}

}

176 Appendices

auxiliary procedure BC_false (input a: activity; output tc:

test_case)

{

tc: test_case

a2: activity

tk: task

tc=empty;

if (BeginCond(s) = false or BeginCond(s) is empty)

{

 return tc

}

else

{

 for each condition c in BeginCond(s)

 {

a2=activity involved in c

tk = task involved in c

if (tk== Begin)

 tc+= Begin(a2)=false

else if (tk== commit)

 tc+= Commit(a2)=false

else

 tc+=Abort(a2)=false

tc+=BC_false(a2)

if (BeginCond(a) is false when c is false)

return tc;

}

}

}

OPC Test cases 177

B. OPC Test cases

 CRS OI cOI PCC cPCC CA DF DT

TC1.1 Begin,

Commit

Begin,

Commit

- Begin,

Commit

- Begin,

Commit

Begin Begin

TC1.2 Begin,

Commit

- - Begin,

Commit

- - - -

TC1.3 Begin,

Commit

Begin,

Commit

- - - - - -

TC1.4 Begin Begin,

Commit,

Abort

- Begin,

Commit

Begin - - -

TC1.5 Begin - Begin Begin,

Commit,

Abort

Begin,

Commit

- - -

TC1.6 - Begin - Begin - - - -

Test conditions for OPC application using ABC-DC criterion

178 Appendices

 CRS OI cOI PCC cPCC CA DF DT

TC

2.1

Begin,

Commit

Begin,

Commit
-

Begin,

Commit
-

Begin,

Commit
-

Begin,

Commit

TC

2.2

Begin,

Commit

Begin,

Commit
-

Begin,

Commit
-

Begin,

Commit

Begin,

Commit

Begin,

Commit

Abort

TC

2.3

Begin,

Commit

Begin,

Commit
-

Begin,

Commit
-

Begin,

Commit

Begin,

Commit

Abort

Begin,

Commit

TC

2.4

Begin,

Commit

Begin,

Commit
-

Begin,

Commit
-

Begin,

Commit

Abort

- -

TC

2.5

Begin,

Commit

Begin,

Commit

Abort

-
Begin,

Commit

Begin,

Commit
- - -

TC

2.6

Begin,

Commit

Begin,

Commit

Abort

-
Begin,

Commit

Begin,

Commit

Abort

- - -

TC

2.7

Begin,

Commit

Begin,

Commit

Begin,

Commit

Begin,

Commit

Abort

- - - -

TC

2.8

Begin,

Commit

Begin,

Commit

Begin,

Commit,

Abort

Begin,

Commit

Abort

- - - -

TC

2.9

Begin,

Commit,

Abort

- - - - - - -

Test conditions for OPC application using ACAC-DC criterion

OPC Test cases 179

 CRS OI cOI PCC cPCC CA DF DT

TC

3.1

Begin,

Commit

Begin,

Commit

- Begin,

Commit

- Begin,

Commit

- Begin,

Commit

TC

3.2

Begin,

Commit

Begin,

Commit

- Begin,

Commit

- Begin,

Commit

Begin,

Commit

-

TC

3.3

Begin,

Commit

- - Begin,

Commit

- - - -

TC

3.4

Begin,

Commit

Begin,

Commit

- - - - - -

TC

3.5

Begin,

Commit

Begin,

Commit

Abort

- Begin,

Commit

Begin,

Commit

- - -

TC

3.6

Begin,

Commit

Begin,

Commit,

Abort

- Begin - - - -

TC

3.7

Begin,

Commit

Begin,

Commit

Begin

Commit

Begin,

Commit,

Abort

- - - -

TC

3.8

Begin,

Commit

Begin - Begin,

Commit,

Abort

- - - -

TC

3.9

Begin - - - - - - -

Test conditions for OPC application using ACC-MCDC criterion

180 Appendices

C. OPC mutations

MUT1 =IJKE�DE7(>�) �DLLKM�DE7(>�) �ADNM�DE7(>�)

�	(* * *

#� �(�	() * *

B#� �(%��) ∧ 	�(#�) �(%��) *

%�� �(�	() * *

B%�� =(#�) ∧ 	�(%��) �(#�) *

�� �(#�) ∧ �(%��) * *

�x �(��) * �(��)

�� �(��) * �(�x)

Examples of specification mutation using ARO

MUT2 =IJKE�DE7(>�) �DLLKM�DE7(>�) �ADNM�DE7(>�)

�	(* * *

#� �(�	() * *

B#� �(%��) �(%��) *

%�� �(�	() * *

B%�� �(#�) ∧ 	�(%��) �(#�) *

�� �(#�) ∧ �(%��) * *

�x �(��) * �(��)

�� �(��) * �(�x)

Examples of specification mutation using MAO

D. Travel Agency results

Total

mutants
Mutation score Mutants killed Mutants alive Number of mutants Traditional mutation score Class mutation score

Class Mutants S/N W/N S/E W/E S/N W/N S/E W/E S/N W/N S/E W/E Traditional Class S/N W/N S/E W/E S/N W/N S/E W/E

AgencyLogic 0 - - - - - - - - - - - - 0 0 - - - - - - - -

AgencyWS 104 100,00 84,62 97,12 84,62 104 88 101 88 0 16 3 16 97 7 100 84 96 85 100 85 100 71

CarLogic 238 100,00 91,60 99,58 78,57 238 218 237 187 0 20 1 51 233 5 100 91 99 79 100 100 100 20

CarReservation 28 100,00 96,43 96,43 89,29 28 27 27 25 0 1 1 3 20 8 100 95 100 85 100 100 87 100

CarWS 173 100,00 97,11 98,84 91,91 173 168 171 159 0 5 2 14 156 17 100 99 99 92 100 76 94 88

CheapAirWS 125 100,00 92,00 96,80 81,60 125 115 121 102 0 10 4 23 116 9 100 92 96 82 100 88 100 66

Customer 78 100,00 82,05 96,15 23,08 78 64 75 18 0 14 3 60 59 19 100 79 94 30 100 89 100 0

FiveHotelWS 173 100,00 79,19 97,69 56,65 173 137 169 98 0 36 4 75 156 17 100 76 97 57 100 100 100 52

FlightLogic 387 99,74 73,64 99,22 61,24 386 285 384 237 1 102 3 150 366 21 99 74 99 63 100 61 95 38

FlightReservation 28 96,43 42,86 96,43 42,86 27 12 27 12 1 16 1 150 10 18 90 60 100 63 100 33 94 38

GoldAirWS 133 99,25 69,17 97,74 48,87 132 92 130 65 1 41 3 68 124 9 99 66 97 49 100 100 100 44

HotelLogic 231 100,00 88,74 100,00 80,09 231 205 231 185 0 26 0 46 226 5 100 89 100 80 100 40 100 60

HotelReservation 28 100,00 64,29 100,00 14,29 28 18 28 4 0 10 0 24 20 8 100 80 100 20 100 25 100 0

Itinerary 7 100,00 57,14 100,00 57,14 7 4 7 4 0 3 0 3 0 7 - - - - 100 57 100 57

PaymentLogic 8 100,00 62,50 87,50 50,00 8 5 7 4 0 3 1 4 6 2 100 66 100 50 100 50 50 50

PaymentTransfer 10 100,00 10,00 100,00 10,00 10 1 10 1 0 9 0 9 8 2 100 12 100 12 100 0 100 0

PaymentWS 112 100,00 69,64 99,11 58,04 112 78 111 65 0 34 1 47 105 7 100 70 99 59 100 57 100 42

TAcontext 59 100,00 84,75 100,00 98,31 59 50 59 58 0 9 0 1 14 45 100 100 100 100 100 80 100 97

TAflow 217 100,00 98,16 100,00 97,70 217 213 217 212 0 4 0 5 211 6 100 99 100 100 100 33 100 33

TrainLogic 207 99,52 88,89 76,81 30,43 206 184 159 63 1 23 48 144 195 12 100 92 80 31 91 25 25 16

TrainReservation 28 100,00 42,86 39,29 14,29 28 12 11 4 0 16 17 24 10 18 100 60 80 60 100 33 16 0

TrainWS 133 100,00 71,43 63,16 45,11 133 95 84 60 0 38 49 73 124 9 100 71 63 45 100 66 55 44

TwoHotelWS 173 100,00 60,69 65,32 59,54 173 105 113 103 0 68 60 70 156 17 100 61 66 60 100 52 52 52

Total 2680 99,85 81,19 92,50 65,45 2676 2176 2479 1754 4 504 201 1060 2412 268 99,76 82,28 92,99 67,08 99,60 65,72 84,51 49,91

Bibliography 183

II. Bibliography

[1] L. Bocchi, C. Laneve, and G. Zavattaro. "A Calculus for Long-

Running Transactions", Formal Methods for Open Object-Based

Distributed Systems, vol. 2884, pp. 124-138, 2003.

[2] M. P. Machulak, J. J. Halliday, and M. C. Little. "Metadata Support

for Transactional Web Services". In EDOC Conference Workshop,

2007. EDOC '07. Eleventh International IEEE, pp. 53-56, 2007.

[3] T. Reuters. (2012, 25/09/2012). Journal Citation Reports. Available:

http://thomsonreuters.com/products_services/science/science_produ

cts/a-z/journal_citation_reports/

[4] ERA. (2012, 29/09/2012). The Computing Research and Education

Association of Australasia, CORE. Available: http://core.edu.au/

[5] Microsoft. (2012). Microsoft Academic Research.

[6] BOE. (2011, 01/11/2012). Real Decreto 99/2011, de 28 de enero, por

el que se regulan las enseñanzas oficiales de doctorado. Available:

http://www.boe.es/buscar/doc.php?id=BOE-A-2011-2541

[7] I. Gartner. (2012). IT Glossary. Available:

http://www.gartner.com/it-glossary/service-oriented-architecture-

soa/

[8] L. Boris. "Defining SOA as an architectural style", IBM

developerWorks, 2007.

[9] OASIS. (2011, 24/09/2012). SOA Reference Model.

[10] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F.

Ferguson. Web Services Platform Architecture: Soap, Wsdl, Ws-

Policy, Ws-Addressing, Ws-Bpel, Ws-Reliable Messaging and More,

Prentice Hall PTR, 2005.

[11] W3C. (24/08/2012). World Wide Web Consortium(W3C). Available:

http://www.w3.org/

[12] W3C. (2007, 24/08/2012). Simple Object Access Protocol (SOAP).

Available: http://www.w3.org/TR/soap/

[13] W3C. (2001, 24/08/2012). Web Services Description Language

(WSDL). Available: http://www.w3.org/TR/wsdl

[14] W3C. (2004, 24/08/2012). Web Services Glossary. Available:

http://www.w3.org/TR/ws-gloss/

184 Bibliography

[15] OASIS. (24/08/2012). Organization for the Advancement of

Structured Information Standards. Available: https://www.oasis-

open.org/

[16] T. Wang, J. Vonk, B. Kratz, and P. Grefen. "A survey on the history

of transaction management: from flat to grid transactions", Distrib.

Parallel Databases, vol. 23, pp. 235-270, 2008.

[17] J. Gray and A. Reuter. Transaction Processing: Concepts and

Techniques, Morgan Kaufmann Publishers, 1993.

[18] P. A. Bernstein and E. Newcomer. Principles of Transaction

Processing, Morgan Kaufmann Publishers, 2009.

[19] A. K. Elmagarmid. Database transaction models for advanced

applications: Morgan Kaufmann Publishers, 1992.

[20] C. Mohan and B. Lindsay. "Efficient commit protocols for the tree of

processes model of distributed transactions", SIGOPS Oper. Syst.

Rev., vol. 19, pp. 40-52, 1985.

[21] B. W. Lampson and D. B. Lomet. "A New Presumed Commit

Optimization for Two Phase Commit". In Proceedings of the 19th

International Conference on Very Large Data Bases, pp. 630-640,

1993.

[22] X. Yao and A. J. Glenstrup, "Distributed Transaction Management

in SOA-based System Integration," IT University of Kopenhagen,

2007.

[23] L. Gao, S. D. Urban, and J. Ramachandran. "A survey of

transactional issues for Web Service composition and recovery", Int.

J. Web Grid Serv., vol. 7, pp. 331-356, 2011.

[24] E. B. Moss. "Nested Transactions: An Approach to Reliable

Distributed Computing", Massachusetts Institute of Technology,

1981.

[25] H. Garcia-Molina and K. Salem. "Sagas". In SIGMOD 87, pp. 249-

259, 1987.

[26] G. Weikum and H.-J. Schek. "Concepts and applications of multilevel

transactions and open nested transactions", in Database transaction

models for advanced applications, ed: Morgan Kaufmann Publishers

Inc., pp. 515-553, 1992.

[27] C. Pu, G. E. Kaiser, and N. C. Hutchinson. "Split-Transactions for

Open-Ended Activities". In 14th International Conference on Very

Large Data Bases, pp. 26-37, 1988.

[28] Reuter. "ConTracts: A Means for Extending Control Beyond

Transaction Boundaries", Proceedings of the 3rd International

Workshop on High Performance Transaction Systems, 1989.

[29] A. K. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz. "A

Multidatabase Transaction Model for InterBase". In Proceedings of

Bibliography 185

the 16th International Conference on Very Large Data Bases, pp.

507-518, 1990.

[30] M. Younas, B. Eaglestone, and R. Holton. "A Formal Treatment of

the SACReD Protocol for Multidatabase Web Transactions". In

Proceedings of the 11th International Conference on Database and

Expert Systems Applications, pp. 899-908, 2000.

[31] J. Warne. "An Extensible Transaction Framework: Technical

Overview". ANSA Archi-tecture for Open Distributed Systems

Project1993.

[32] B. Limthanmaphon and Y. Zhang. "Web service composition

transaction management". In Proceedings of the 15th Australasian

database conference - Volume 27, Dunedin, New Zealand, pp. 171-

179, 2004.

[33] M. Little. "Transactions and Web services", Commun. ACM, vol. 46,

pp. 49-54, 2003.

[34] M. Little and T. J. Freund. "Introducing WS-CAF—more than just

transactions", Web Services Journal, vol. 3, pp. 52-55, 2003.

[35] B. Kratz. "Protocols for long running business transactions". Infolab,

Tilburg University, 17, 2004.

[36] OASIS. (2004, 29 Nov 2011). Business Transaction Protocol.

Available: http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=business-transaction

[37] M. Little. "Web services transactions: Past, present and future". In

XML Conference and Exposition, Philadelphia, USA, 2003.

[38] OASIS. (2006). Web Services Composite Application Framework.

Available: https://www.oasis-open.org/committees/ws-caf

[39] OASIS. "Web Services Coordination," http://docs.oasis-open.org/ws-

tx/wscoor/2006/06, 2007.

[40] OASIS. (2009, 29 Nov 2011). Web Services Atomic Transaction.

Available: http://docs.oasis-open.org/ws-tx/wsat/2006/06

[41] OASIS. (2009). Web Services Business Activity. Available:

http://docs.oasis-open.org/ws-tx/wsba/2006/06

[42] M. Little, J. Maron, and G. Pavlik. Java transaction processing:

design and implementation, Prentice Hall PTR, 2004.

[43] C. Anis, S. Benjamin, H. Andreas, and M. Mira. "Reliable, Secure,

and Transacted Web Service Compositions with AO4BPEL". In Web

Services, 2006. ECOWS '06. 4th European Conference on, pp. 23-34,

2006.

[44] S. Chang-ai, E. el Khoury, and M. Aiello. "Transaction Management

in Service-Oriented Systems: Requirements and a Proposal", Services

Computing, IEEE Transactions on, vol. 4, pp. 167-180, 2011.

186 Bibliography

[45] M. Younas and K.-M. Chao. "A tentative commit protocol for

composite web services", Journal of computer and system sciences,

vol. 72, pp. 1226-1237, 2006.

[46] M. Schäfer, P. Dolog, and W. Nejdl. "An environment for flexible

advanced compensations of Web service transactions", ACM Trans.

Web, vol. 2, pp. 1-36, 2008.

[47] Z. Wenbing, L. E. Moser, and P. M. Melliar-Smith. "A Reservation-

Based Extended Transaction Protocol", Parallel and Distributed

Systems, IEEE Transactions on, vol. 19, pp. 188-203, 2008.

[48] J. E. Ferreira, K. R. Braghetto, O. K. Takai, and C. Pu.

"Transactional Recovery Support for Robust Exception Handling in

Business Process Services". In Web Services (ICWS), 2012 IEEE

19th International Conference on, pp. 303-310, 2012.

[49] C. Jiuxin, L. Junzhou, Z. Song, Z. Xiao, L. Bo, Z. Gongrui, and Z.

Biao. "A Context-Aware Recovery Mechanism for Web Services

Business Transaction". In Services Computing (SCC), 2012 IEEE

Ninth International Conference on, pp. 352-359, 2012.

[50] S. Choi, H. Kim, H. Jang, J. Kim, S. M. Kim, J. Song, and Y.-J. Lee.

"A framework for ensuring consistency of Web Services Transactions",

Information and Software Technology, vol. 50, pp. 684-696, 2008.

[51] M. Alrifai, P. Dolog, W. T. Balke, and W. Nejdl. "Distributed

Management of Concurrent Web Service Transactions", Services

Computing, IEEE Transactions on, vol. 2, pp. 289-302, 2009.

[52] F. Montagut, R. Molva, and S. Tecumseh Golega. "The Pervasive

Workflow: A Decentralized Workflow System Supporting Long-

Running Transactions", Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on, vol. 38, pp. 319-

333, 2008.

[53] M. von Riegen, M. Husemann, S. Fink, and N. Ritter. "Rule-Based

Coordination of Distributed Web Service Transactions", Services

Computing, IEEE Transactions on, vol. 3, pp. 60-72, 2010.

[54] J. Cao, B. Zhang, B. Mao, and B. Liu. "Constraint Rules-based

Recovery for Business Transaction". In Grid and Cooperative

Computing (GCC), 2010 9th International Conference on, pp. 282-

289, 2010.

[55] Z. Honglei, C. Hua, Z. Wenbing, P. M. Melliar-Smith, and L. E.

Moser. "Trustworthy Coordination of Web Services Atomic

Transactions", Parallel and Distributed Systems, IEEE Transactions

on, vol. 23, pp. 1551-1565, 2012.

[56] R. T. Khachana, A. James, and R. Iqbal. "Relaxation of ACID

properties in AuTrA, The adaptive user-defined transaction relaxing

approach", Future Generation Computer Systems, vol. 27, pp. 58-66,

2011.

Bibliography 187

[57] M. Bozkurt, M. Harman, and Y. Hassoun. "Testing Web Services: A

survey". Department of Computer Science, King's College London,

Technical Report TR-10-012010.

[58] G. Canfora and M. Penta. "Service-Oriented Architectures Testing: A

Survey", in Software Engineering: International Summer Schools,

ISSSE 2006-2008, Salerno, Italy, Revised Tutorial Lectures, ed:

Springer-Verlag, pp. 78-105, 2009.

[59] A. T. Endo and A. d. S. Simão. "A Systematic Review on Formal

Testing Approaches for Web Services". In IV Brazilian Workshop on

Systemati and Automated Software Testing, Natal, Brasil, pp. 89-98,

2010.

[60] M. Palacios, J. Garcia-Fanjul, and J. Tuya. "Testing in Service

Oriented Architectures with dynamic binding: A mapping study", Inf.

Softw. Technol., vol. 53, pp. 171-189, 2011.

[61] S. Bhiri, C. Godart, and O. Perrin. "Transactional patterns for

reliable web services compositions". In 6th International Conference

on Web Engineering, Palo Alto, California, USA, pp. 137-144, 2006.

[62] ISO/IEC 9126-1 Software engineering, product quality 2001-06-15.

[63] J. El Hadad, M. Manouvrier, and M. Rukoz. "TQoS: Transactional

and QoS-Aware Selection Algorithm for Automatic Web Service

Composition", Services Computing, IEEE Transactions on, vol. 3,

pp. 73-85, 2010.

[64] B. Antonio, M. Hernán, and S. Francesco. "Testing Service

Composition", ed, 2008.

[65] J. Garcia-Fanjul, C. de la Riva, and J. Tuya. "Generation of

Conformance Test Suites for Compositions of Web Services Using

Model Checking". In Testing: Academic and Industrial Conference -

Practice And Research Techniques, 2006. TAIC PART 2006.

Proceedings, pp. 127-130, 2006.

[66] H. M. Rusli, S. Ibrahim, and M. Puteh. "Testing Web Services

Composition: A Mapping Study", Communications of the IBIMA,

vol. 2011, 2011.

[67] A. T. Endo, A. da Simao, S. Souza, and P. Souza. "Web Services

Composition Testing: A Strategy Based on Structural Testing of

Parallel Programs", TAIC PART '08. Testing: Academic &

Industrial Conference, 2008.

[68] A. Cavalli, T.-D. Cao, W. Mallouli, E. Martins, A. Sadovykh, S.

Salva, and F. Zaïdi. "WebMov: A Dedicated Framework for the

Modelling and Testing of Web Services Composition". In IEEE

International Conference on Web Services, Florida, USA, 2010.

[69] C.-H. Liu, S.-L. Chen, and X.-Y. Li. "A WS-BPEL Based Structural

Testing Approach for Web Service Compositions". In Proceedings of

188 Bibliography

the 2008 IEEE International Symposium on Service-Oriented System

Engineering, pp. 135-141, 2008.

[70] I. Rabhi. "Robustness Testing of Web Services Composition". In High

Performance Computing and Communication & 2012 IEEE 9th

International Conference on Embedded Software and Systems

(HPCC-ICESS), 2012 IEEE 14th International Conference on, pp.

631-638, 2012.

[71] C.-a. Sun, Y. Shang, Y. Zhao, and T. Y. Chen. "Scenario-Oriented

Testing for Web Service Compositions Using BPEL". In Quality

Software (QSIC), 2012 12th International Conference on, pp. 171-

174, 2012.

[72] Z. Hong and Z. Yufeng. "Collaborative Testing of Web Services",

Services Computing, IEEE Transactions on, vol. 5, pp. 116-130,

2012.

[73] Y. Gwyduk, Y. Taewoong, and M. Dugki. "A QoS model and testing

mechanism for quality-driven Web services selection". In Software

Technologies for Future Embedded and Ubiquitous Systems, 2006

and the 2006 Second International Workshop on Collaborative

Computing, Integration, and Assurance. SEUS 2006/WCCIA 2006.

The Fourth IEEE Workshop on, p. 6 pp., 2006.

[74] V. Pretre, F. Bouquet, and C. Lang. "Using Common Criteria to

Assess Quality of Web Services". In Proceedings of the IEEE

International Conference on Software Testing, Verification, and

Validation Workshops, pp. 295-302, 2009.

[75] D. Yuetang, P. Frankl, and C. Zhongqiang. "Testing database

transaction concurrency". In Automated Software Engineering, 2003.

Proceedings. 18th IEEE International Conference on, pp. 184-193,

2003.

[76] Y. Deng, P. Frankl, and D. Chays. "Testing database transactions

with AGENDA". In Proceedings of the 27th international conference

on Software engineering, St. Louis, MO, USA, pp. 78-87, 2005.

[77] V. Guarnieri, N. Bombieri, G. Pravadelli, F. Fummi, H. Hantson, J.

Raik, M. Jenihhin, and R. Ubar. "Mutation analysis for SystemC

designs at TLM". In Test Workshop (LATW), 2011 12th Latin

American, pp. 1-6, 2011.

[78] C. Chin-Yao, H. Chih-Yuan, L. Kuen-Jong, and A. P. Su.

"Transaction Level Modeling and Design Space Exploration for SOC

Test Architectures". In Asian Test Symposium, 2009. ATS '09., pp.

200-205, 2009.

[79] X.-D. Wu, Z.-W. Sun, and Z.-J. Xing. "A data-centered transaction

scheduling strategy of realtime database in micro-satellite ground test

system". In Mechatronics and Automation, 2009. ICMA 2009.

International Conference on, pp. 2952-2956, 2009.

Bibliography 189

[80] R. M. Czekster, P. Fernandes, A. Sales, T. Webber, and A. F. Zorzo.

"Stochastic Model for QoS Assessment in Multi-tier Web Services",

Electron. Notes Theor. Comput. Sci., vol. 275, pp. 53-72, 2011.

[81] R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, and A. Troina.

"Design and verification of long-running transactions in a timed

framework", Science of Computer Programming, vol. 73, pp. 76-94,

2008.

[82] N. Kokash and F. Arbab. "Formal Design and Verification of Long-

Running Transactions with Eclipse Coordination Tools", Services

Computing, IEEE Transactions on, vol. PP, pp. 1-1, 2011.

[83] M. Emmi and R. Majumdar. "Verifying Compensating Transactions".

In International Conference Verification, Model Checking, and

Abstract Interpretation, pp. 29-43 2007.

[84] W. Gaaloul, M. Rouached, C. Godart, and M. Hauswirth. "Verifying

composite service transactional behavior using event calculus". In

OTM Confederated international conference on On the move to

meaningful internet systems: CoopIS, DOA, ODBASE, GADA, and

IS - Volume Part I, Vilamoura, Portugal, pp. 353-370, 2007.

[85] W. Gaaloul, S. Bhiri, and M. Rouached. "Event-Based Design and

Runtime Verification of Composite Service Transactional Behavior",

Services Computing, IEEE Transactions on, vol. 3, pp. 32-45, 2010.

[86] I. Saleh, G. Kulczycki, and M. B. Blake. "Formal Specification and

Verification of Transactional Service Composition". In Services

(SERVICES), 2011 IEEE World Congress on, pp. 474-481, 2011.

[87] J. Li, H. Zhu, and J. He. "Specifying and Verifying Web

Transactions". In International Conference on Formal Techniques

for Networked and Distributed Systems, pp. 149-168 2008.

[88] S. Bhiri, W. Gaaloul, C. Godart, O. Perrin, M. Zaremba, and W.

Derguech. "Ensuring customised transactional reliability of composite

services", Journal of Database Management, vol. 22, p. 29, 2011.

[89] OASIS. (2007). Web Services Business Process Execution Language

v2.0. Available: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-

v2.0-OS.html

[90] I. Object Management Group. "OMG Unieed Modeling Language

Speciecation", ed, 2001.

[91] ISTQB. (2012, 03-03-2012). Glossary of Terms. Available:

www.istqb.org

[92] R. Black. Advanced Software Testing - Vol. 2: Guide to the ISTQB

Advanced Certification as an Advanced Test Manager, Rocky Nook,

2012.

[93] H. Zhu, P. A. V. Hall, and J. H. R. May. "Software unit test coverage

and adequacy", ACM Comput. Surv., vol. 29, pp. 366-427, 1997.

190 Bibliography

[94] S. Amland. "Risk-based testing: Risk analysis fundamentals and

metrics for software testing including a financial application case

study", The Journal of Systems and Software, pp. 287-295, 2000.

[95] T. Kletz. "Hazop and Hazun: Identifying and Assessing Process

Industry Hiizards", Institution of Chemical Engineers, 1992.

[96] A. Claesson. "A Risk Based Testing Process". In QualityWeek

Europe, Brussels, Belgium, 2002.

[97] F. Redmill. "Exploring risk-based testing and its implications:

Research Articles", Softw. Test. Verif. Reliab., vol. 14, pp. 3-15,

2004.

[98] A. Vorster and L. Labuschagne. "A framework for comparing different

information security risk analysis methodologies". In Proceedings of

the 2005 annual research conference of the South African institute of

computer scientists and information technologists on IT research in

developing countries, White River, South Africa, pp. 95-103, 2005.

[99] J. C. Bennet, G. A. Bohoris, E. M. Aspinwall, and R. C. Jall. "Risk

analysis techniques and their application to software development",

European Journal of Operational Research, pp. 467-475, 1995.

[100] J. V. Earthy. "Hazard and operability study as an approach to

software safety assessment". In Hazard Analysis, IEE Colloquium on,

pp. 5/1-5/3, 1992.

[101] H. Stallbaum, A. Metzger, and K. Pohl. "An automated technique for

risk-based test case generation and prioritization", International

Conference on Software Engineering, pp. 67-70, 2008.

[102] J. A. McDermid and D. J. Pumfrey. "A development of HAZARD

analysis to aid software design", COMPASS '94 'Safety, Reliability,

Fault Tolerance, Concurrency and Real Time, Security'.

Proceedings of the Ninth Annual Conference on, 1994.

[103] B. Tekinerdogan, H. Sozer, and M. Aksit. "Software architecture

reliability analysis using failure scenarios", Journal of Systems and

Software, vol. 81, pp. 558-575, 2008.

[104] F. Crawley, M. Preston, and B. Tyler. HAZOP : Guide to Best

Practice: Guidelines to Best Practice for the Process and Chemical

Industries, Institution of Chemical Engineers, 2008.

[105] D. H. Stamatis. Failure Mode and Effect Analysis: Fmea from

Theory to Execution, ASQ Quality Press, 2003.

[106] R. G. Dromey. "A model for software product quality", Software

Engineering, IEEE Transactions on, vol. 21, pp. 146-162, 1995.

[107] M. Younas, B. Eaglestone, and R. Holton. "A Review of

Multidatabase Transactions on The Web: From the ACID to the

SACReD". In Proceedings of the 17th British National Conferenc on

Databases: Advances in Databases, pp. 140-152, 2000.

Bibliography 191

[108] N. Ben Lakhal, T. Kobayashi, and H. Yokota. "FENECIA: failure

endurable nested-transaction based execution of composite Web

services with incorporated state analysis", The VLDB Journal, vol.

18, pp. 1-56, 2008.

[109] C. Guidi, R. Lucchi, and M. Mazzara. "A Formal Framework for Web

Services Coordination", Electronic Notes in Theoretical Computer

Science, vol. 180, pp. 55-70, 2007.

[110] S. A. Ehikioya and K. Barker. "A formal specification strategy for

electronic commerce". In Database Engineering and Applications

Symposium, 1997. IDEAS '97. Proceedings., International, pp. 201-

210, 1997.

[111] S. Bhiri, O. Perrin, and C. Godart. "Ensuring required failure

atomicity of composite Web services". In Proceedings of the 14th

international conference on World Wide Web, Chiba, Japan, pp.

138-147, 2005.

[112] M. Pol, R. Teunissen, and E. Van Veenendaal. Software Testing: A

Guide to the TMap Approach, Addison-Wesley, 2002.

[113] E. Lehmann and J. Wegener. "Test Case Design by Means of the

CTE XL". In 8th European International Conference on Software

Testing, Analysis & Review, Kopenhagen, Denmark, 2000.

[114] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann. "Generating Test

Data From State-based Specifications", Journal of Software Testing,

Verification and Reliability, vol. 13, pp. 25-53, 2003.

[115] Jboss. (2006, 29 Nov 2011). Jboss Transactions. Available:

http://www.jboss.org/jbosstm

[116] GlassFish. (2005). JAX-WS. Available: http://jax-ws.java.net/

[117] RCTA/DO-178B. "Software Considerations in Airborne Systems and

Equipment Certification". RTCA, Washington, USA1992.

[118] M. Grochtmann and K. Grimm. "Classification trees for partition

testing", Software Testing, Verification and Reliability, vol. 3, pp. 63-

82, 1993.

[119] V. Atluri, W.-k. Huang, and E. Bertino. "An Execution Model for

Multilevel Secure Work-flows". In 11th IFIP Working Conference on

Database Security, 1997.

[120] P. K. Chrysanthis and K. Ramamritham. "Synthesis of extended

transaction models using ACTA", ACM Trans. Database Syst., vol.

19, pp. 450-491, 1994.

[121] G. J. Myers. The art of software testing, Wiley, New York :, 1979.

[122] P. E. Ammann and P. E. Black. "A Specification-Based Coverage

Metric to Evaluate Test Sets". In 4th IEEE International Symposium

on High-Assurance Systems Engineering, Washington, DC., pp. 239-

248, 1999.

192 Bibliography

[123] P. E. Black, V. Okun, and Y. Yesha. "Mutation Operators for

Specifications". In The Fifteenth IEEE International Conference on

Automated Software Engineering Grenoble, pp. 81-81, 2000.

[124] Cajastur. Available: https://www.cajastur.es/

[125] Liberbank. Available: http://www.liberbank.es/

[126] Business Process Model and Notation. Available:

http://www.bpmn.org/

[127] T. Y. Chen and P. L. Poon. "On the effectiveness of classification

trees for test case construction", Information and Software

Technology, vol. 40, pp. 765-775, 1998.

[128] H. Singh, M. Conrad, and S. Sadeghipour. "Test Case Design Based

on Z and the Classification-Tree Method". In Proceedings of the 1st

International Conference on Formal Engineering Methods, p. 81,

1997.

[129] M. Grindal, J. Offutt, and S. F. Andler. "Combination testing

strategies: a survey", Software Testing, Verification and Reliability,

vol. 15, pp. 167-199, 2005.

[130] J. Jiang, G. Yang, Y. Wu, and M. Shi. "CovaTM: a transaction

model for cooperative applications". In Proceedings of the 2002 ACM

symposium on Applied computing, Madrid, Spain, pp. 329-335, 2002.

[131] A.-B. Arntsen, M. Mortensen, R. Karlsen, A. Andersen, and A.

Munch-Ellingsen. "Flexible transaction processing in the Argos

middleware". In Proceedings of the 2008 EDBT workshop on

Software engineering for tailor-made data management, Nantes,

France, pp. 12-17, 2008.

[132] R. T. Khachana, A. James, and R. Iqbal. "Relaxation of ACID

properties in AuTrA, The adaptive user-defined transaction relaxing

approach", Future Gener. Comput. Syst., vol. 27, pp. 58-66, 2011.

[133] J. Yan, L. Zhongjie, Y. Yuan, S. Wei, and Z. Jian. "BPEL4WS Unit

Testing: Test Case Generation Using a Concurrent Path Analysis

Approach". In Software Reliability Engineering, 2006. ISSRE '06.

17th International Symposium on, pp. 75-84, 2006.

[134] D. Manova, S. Ilieva, F. Lonetti, A. Bertolino, and C. Bartolini.

"Towards automated robustness testing of BPEL orchestrators". In

Proceedings of the 12th International Conference on Computer

Systems and Technologies, Vienna, Austria, pp. 659-664, 2011.

[135] T. Lertphumpanya and T. Senivongse. "A basis path testing

framework for WS-BPEL composite services". In Proceedings of the

7th WSEAS International Conference on Software Engineering,

Parallel and Distributed Systems, Cambridge, UK, pp. 107-112, 2008.

[136] Y.-S. Ma, J. Offutt, and Y. R. Kwon. "MuJava: an automated class

mutation system: Research Articles", Softw. Test. Verif. Reliab., vol.

15, pp. 97-133, 2005.

Bibliography 193

[137] J. H. Andrews, L. C. Briand, and Y. Labiche. "Is mutation an

appropriate tool for testing experiments?". In Proceedings of the 27th

international conference on Software engineering, St. Louis, MO,

USA, pp. 402-411, 2005.

