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Abstract

Bounds on the size of a code are an important part of coding theory. One of the fundamental

problems in coding theory is to find a code with largest possible distance d. Researchers

have found different upper and lower bounds on the size of linear and nonlinear codes; e.g.,

Plotkin, Johnson, Singleton, Elias, Linear Programming, Griesmer, Gilbert and Varshamov

bounds. In this dissertation we have studied the Singleton bound, which is an upper bound

on the minimum distance of a code, and have defined maximum distance separable (MDS)

Z2Z4-additive codes. Two different forms of these bounds are presented in this work where

we have characterized all maximum distance separable Z2Z4-additive codes with respect to

the Singleton bound (MDSS codes) and strong conditions are given for maximum distance

separable Z2Z4-additive codes with respect to the rank bound (MDSR codes).

Generation of new codes has always been an interesting topic, where one can study

the properties of these newly generated codes and establish new results. Self-dual codes

are an important class of codes. There are numerous constructions of self-dual codes from

combinatorial objects. In this work we have given two methods for generating self-dual

codes from 3-class association schemes, namely pure construction and bordered construc-

tion. Binary self-dual codes are generated by using these two methods from non-symmetric

3-class association schemes and self-dual codes from rectangular association schemes are

generated over Zk.
Borges, Dougherty and Fernández-Córdoba in 2011 presented a method to generate

new Z2Z4-additive self-dual codes from existing Z2Z4-additive self-dual codes by extend-

ing their length. In this work we have verified whether properties like separability, antipo-

dality and code Type are retained or not, when using this method.
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coding theory. An introduction to binary, quaternary and Z2Z4-additive codes is given.

The second chapter comprises of basics of binary, quaternary and Z2Z4-additive codes. We

define minimum distance, minimum weight, inner product, generator matrix, parity check

matrix, dual codes and self-dual codes. The third chapter consists of the theory related to

the contributions and a short description for each contribution. We start by talking about

bounds on the minimum distance of codes, in particular the Singleton bound, which we

apply to Z2Z4-additive codes. After this, we give contributions related to this topic. Next,

association schemes are defined and we discuss how we have constructed self-dual codes

from the adjacency matrices of 3-class association schemes. We give descriptions for the

contributions related to these constructions. Finally, extension of Z2Z4-additive self-dual

codes is discussed in the light of the work done in [BDFC12] and we check if certain

properties of these new codes are retained or not. We also list the related contributions for

it. In the fourth chapter, one can read the summary of all the work done during my Ph.D.,

and also we give ideas about possible future research topics. I hope you have a good read.
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Chapter 1

Introduction

Every day, we come in contact with and use various modern communication systems and

media, the most common being mobile phones, television, Internet, etc. Using these media

we instantly come in contact with people in different cities, countries and continents. We

are instantly informed about different events that occur around the world through Internet

and television. Email and social media have made it possible to instantly send messages

to your friends and family across the globe. We can not imagine a world without these

means of communications and yet most of these important communication systems were

made during the last century. If we go back in the history, we can take a look at the most

important developments in the last 2 centuries.

One of the earliest invention of significance importance was the electric battery in 1799

made by Alessandro Volta. This made it possible for Samuel Morse to develop electric

telegraph, which was the first electronic method of communication. Telephony came into

being by the invention of telephone in 1870 by Alexander Graham Bell and the first tele-

phony company, Bell Telephone Company, was established in 1877. The development of

wireless communication started from the work of Oersted, Faraday, Gauss, Maxwell and

Hertz during the nineteenth century. There has been significant growth in communication

services during the last 65 years. The invention of transistor in 1947 by Walter Brattain,

John Bardeen and William Shockley; the integrated circuit in 1958 by Jack Kilby and

Robert Noyce; and the laser by Townes and Schawlow in 1958, have made it possible to

develop small-size, low-power, low-weight and high-speed electronic circuits that are used

1



2 CHAPTER 1. INTRODUCTION

in construction of satellite communication systems, wideband microwave radio systems

and lightwave communication systems using fiver optic cables.

In 1948, Claude Shannon published the landmark paper “A mathematical theory of

communication" [Sha48] that signified the beginning of both information theory and cod-

ing theory. Given a communication channel which may corrupt information sent over it,

Shannon identified a number called channel capacity and prove that some reliable com-

munication is possible at a rate that is below the channel capacity. The results given by

Shannon guarantee that data can be encoded in such a way before transmission that the

altered data can be decoded with a specified degree of accuracy. Some examples where we

use these results are storage devices, compact discs and communication done over mobile

phones. Please refer to [PS01] to read further about the history of communication systems.

The communication channels contain a source that sends information over a channel to

a receiver. For example, in a compact disc, the information is in the form of text, audio

or video. The information is placed on the disc which acts as a channel and we, the users,

are the receivers. The channel can be noisy, meaning that information sent over it may

contain errors when received at the other end. Suppose that binary data is being sent over a

channel. Ideally when we sent 0 we would like to receive 0 but due to noise in the channel

sometime we will receive 1 instead. Noise in a compact disc can be caused by fingerprints

or scratches on the disc. The fundamental problem in coding theory is to determine what

message was sent on the basis of what is received.

In a simple communication channel, we have a source with a message x, containing

k information bits which is to be sent to the receiver. The message passes through the

channel to the receiver. Any noise may distort the message and it will not be recoverable at

the receiver side. To counter this problem we add redundancy to the message. The source

passes the message x, containing k bits of information, to the encoder, see 1.1. The encoder

sends n bits to the channel, meaning it adds n− k bits of redundancy to the message. The

amount of redundancy added by the encoder is measured by the ratio n/k. The reciprocal

of this ratio, namely k/n is called code rate. The channel adds noise e to the message and

a distorted message y is received. The received message is sent to the decoder where errors

are removed, redundancy is stripped off and an estimate message x̂ is obtained. Shannon’s

Theorem guarantees that our hopes will be fulfilled a certain percentage of the time. Refer
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to [HP03] to read further about communication channels and coding theory.

Figure 1.1: Communication Channel

Binary codes are the most commonly used codes in communications. Thus, codes are

subsets of Zn2 , which is a space of binary words of length n. Linear codes are the most

commonly used and studied codes because of their algebraic structure and because they are

easier to encode and decode than non-linear codes. For any linear code there is a generator

matrix which is used to generate codewords.

The study of codes over the ring Z4 attracted great interest through the work of Calder-

bank, Hammons, Kumar, Sloane, and Solé in the early 1990’s which resulted in the publi-

cation of a paper [HKC+94] showing how several well-known families of nonlinear binary

codes were related to linear codes over Z4. A binary code with an algebraic structure over

Z4 is called Z4-linear code and the codes which are defined as additive subgroups of Z4 are

called quaternary linear codes. In [HKC+94], it was proved that the well-known Kerdock

and Preparata-like codes are Z4-linear codes and, moreover, they are Z4-dual codes.

Additive codes were first defined by Delsarte in 1973 in terms of association schemes

[Del73], [DL98]. In general, an additive code, in a translation association scheme, is de-

fined as a subgroup of the underlying abelian group. On the other hand, translation invariant

propelinear codes were first defined by Pujol and Rifà in 1997 in [PR97] where it is proved

that all these binary codes are group-isomorphic to subgroups of Zα2 × Zβ4 ×Qσ
8 , being Q8

the non-abelian quaternion group on eight elements. In the special case when the associa-

tion scheme is the binary Hamming scheme, that is, when the underlying abelian group is

of order 2n, the additive codes coincide with the abelian translation invariant propelinear
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codes. Hence, as it is pointed out in [DL98], the only structures for the abelian group are

those of the form Zα2 × Zβ4 with α + 2β = n, (α, β ≥ 0). Therefore, the subgroups C of

Zα2 × Zβ4 are the only additive codes in the binary Hamming scheme.



Chapter 2

Coding Theory

This is an introductory chapter where we give basic definitions for binary codes, codes

over Z4 and Z2Z4-additive codes. We define the minimum distance, minimum weight,

generator matrix, parity-check matrix, dual codes and self-dual codes over all the rings

mentioned above.

2.1 Binary Codes

Let Z2 be the ring of integers modulo two. Let Zn2 be the set of all binary words of length

n. A subset C of Zn2 is called a binary code of length n and an element v ∈ C is called

a codeword. When C is a linear subspace of Zn2 , C is a linear code, and the sum of two

codewords is also a codeword; i.e., v + w ∈ C for all v, w ∈ C. If C is a linear code, we

say that C is an (n, k) code, where n is the length and k represents the dimension of the

linear subspace C in Zn2 . The number of codewords present are |C| = 2k.

The Hamming weight of a vector v ∈ Zn2 is the number of nonzero coordinates of v and

is denoted bywH(v). For example, the Hamming weight of the vector v = (0, 1, 1, 0, 0, 1, 1)

∈ Z7
2 is 4. The Hamming distance between two vectors v, w ∈ C is the number of coordi-

nates in which v andw differ from one another and it is denoted by dH(v, w). The minimum

Hamming distance of a code C is denoted by dH(C) and is given as:

dH(C) = min {dH(v, w) : v, w ∈ C, v 6= w} .

5



6 CHAPTER 2. CODING THEORY

The minimum Hamming weight of a code C is defined as

wH(C) = min {wH(v) : v ∈ C, v 6= 0} ,

where 0 denotes the all-zero vector.

Let C be a binary code of length nwithAi being the number of codewords of Hamming

weight i. Then {A1, A2, . . . , An} is called the weight distribution of C. The Hamming

weight enumerator for a binary code C is defined as

WC(X0, X1) =
n∑

i=1

AiX0
n−iX1

i.

WC is a homogeneous polynomial of degree n in X0 and X1.

A code C is distance invariant if the Hamming weight distribution of c + C is the

same for all c ∈ C. Note that all linear codes must be distance invariant simply because

c+ C = C, for all c ∈ C.

Let C be an (n, k) binary linear code. It is possible to find k linearly independent code-

words in C such that every codeword v in C is a linear combination of these k codewords;

that is, there exists a set of linearly independent codewords {g0, g1, . . . , gk−1} such that

v = u0g0 + u1g1 + ...+ uk−1gk−1,

where ui ∈ {0, 1}, for 0 6 i < k. We can arrange these k linearly independent codewords

as the rows of a k × n matrix

G =




g0

g1

:

gk−1




=




g00 g01 g02 ... g0,n−1

g10 g11 g12 ... g1,n−1

: : : : :

gk−1,0 gk−1,1 gk−1,2 ... gk−1,n−1



,

where G is called the generator matrix for C. The parity check matrix H of a code C is a
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(n− k)× n matrix whose rows generate the orthogonal code of C; i.e.,

v ·HT = 0, if and only if v ∈ C.

For any set of k independent columns of a generator matrix G, the corresponding set

of coordinates forms an information set for C. The remaining r = n − k coordinates are

termed a redundancy set and r is called the redundancy of C. If the first k coordinates form

an information set, the code has a unique generator matrix of the form

GS = [IkP ] ,

where Ik is the k × k identity matrix and P is the redundancy matrix of size k × r. Such

a generator matrix is in standard form. For a code C with generator matrix GS , the parity

check matrix is given as:

HS =
[
P T In−k

]
.

Two codes C1 and C2 are said to be permutation-equivalent, if one can be obtained from

the other by permuting the coordinates. The inner product of two vectors v, w ∈ Zn2 is

defined as:

(v, w) =
n∑

i=1

viwi.

Let C be a binary linear code of length n and dimension k, we define the dual of C, C⊥, as

the orthogonal space of C given as

C⊥ = {v ∈ Zn2 : (v, w) = 0, ∀ w ∈ C} .

The dual of a binary linear code is again a binary linear code. The dual code C⊥ for the

code C with dimension k has dimension n− k. The parity check matrix H of a code C is

the generator matrix for C⊥. The code C is said to be self-dual if it is equal to its dual; i.e.,

C = C⊥ and self-orthogonal if it is contained in its dual; i.e., C ⊆ C⊥.

If we know the weight distribution of a linear binary code then the distribution of its

dual can be computed by the MacWilliams identities [MS83].

According to MacWilliams identities, two equivalent formulations of the result for bi-
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nary dual codes are:

WC⊥(X0, X1) =
1

|C|WC(X0 +X1, X0 −X1). (2.1)

∑

u∈C⊥

X
n−wt(u)
0 X

wt(u)
1 =

1

|C|
∑

u∈C
(X0 +X1)

n−wt(u)(X0 −X1)
wt(u). (2.2)

A binary self-dual code C with all weights divisible by 4 is of Type II; otherwise, the

code C is of Type I. A Type I code may or may not be of Type II, but all Type II codes are

also of Type I. A self-dual code is said to be strictly Type I if it is of Type I and not of Type

II.

Example 1 The code C1 = {00, 11} is a (2,1) code with weight enumerator polynomial

x2 + y2 and it is a strictly Type I code.

2.2 Codes over Z4

Let Z4 be the ring of integers mod 4 and let Zn4 be the set of all n-tuples over Z4; i.e.,

Zn4 = {(x1, x2, ....xn)|xi ∈ Z4 for i = 1, 2, . . . , n} .

Any non-empty subset C of Zn4 is called a quaternary code or a code over Z4 and n is

the length of the code. Any n-tuple in a quaternary code C is called a codeword of C. Any

additive subgroup of Zn4 is called a quaternary linear code.

Two codes C1 and C2 are said to be equivalent, if one can be obtained from the other by

permuting the coordinates and, if needed, changing the sign of certain coordinates. Qua-

ternary codes that differ only by a permutation of coordinates are said to be permutation-

equivalent. The automorphism groupAut(C) of a quaternary code C is the group generated

by all permutations and sign-changes of the coordinates that preserves the set of codewords

of C.

Let C be a quaternary linear code of length n. Since C is a subgroup of Zn4 , it is iso-

morphic to an abelian structure Zγ2 × Zδ4. Therefore, C is of type 2γ4δ as a group, it has
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|C| = 2γ+2δ codewords and 2γ+δ of these codewords have order two including the all-zero

codeword.

Let C be a quaternary linear code of length n. A k × n matrix G over Z4 is called a

generator matrix for C if the rows of G generate C and there is no proper subset of the rows

of G that generates C.

Proposition 1 [HKC+94] Any quaternary linear code C containing some nonzero code-

words is permutation-equivalent to a quaternary linear code with a generator matrix of the

form [
Iδ A B

0 2Iγ 2C

]
, (2.3)

where A and C are matrices over Z4 with all its entries in {0, 1} ⊂ Z4 and B is a matrix

over Z4. C is of type 4δ2γ and contains 22δ+γ codewords.

Example 2 Let K4 denote a quaternary linear code with generator matrix




1 1 1 1

0 2 0 2

0 0 2 2


 .

K4 is of type 4122. If we compare this generator matrix to Equation (2.3) we can clearly

see that
Iδ = [1] , A =

[
1 1

]
,

B = [1] , Iγ =

[
1 0

0 1

]
, C = [1] .

The inner product of any two vectors v, w ∈ Zn4 is defined as

(v, w) =
n∑

i=1

viwi.

Let C be a quaternary linear code of length n, we define the dual code of C, C⊥, as the
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orthogonal space of C given as

C⊥ = {v ∈ Zn4 : (v, w) = 0, ∀ w ∈ C} ,

The dual code C⊥ of a quaternary linear code C with generator matrix given by Equation

(2.3) has the following generator matrix

[
−Bt − CtAt Ct In−δ−γ

2At 2Iγ 0

]
,

where n is the length of C. C⊥ is an abelian group of type 4n−δ−γ2γ and it contains 22n−2δ−γ

codewords.

The Lee weights of 0, 1, 2, 3 ∈ Z4 are 0, 1, 2, 1, respectively. Hence, for a vector

v = (v1, . . . , vn) ∈ Zn4 the Lee weight is given as wL (v) =
n∑
i=1

wL (vi). The Lee weight

function defines a distance function called Lee distance defined as

dL(u, v) = wL(u− v),

where u and v are vectors over in Zn4 . The minimum Lee distance for a code C is the

minimum value of dL(u, v) for u, v ∈ C such that u 6= v. We denote it by dL(C). The

minimum Lee weight of a code C is defined as

wL(C) = min {wL(v) : v ∈ C, v 6= 0} ,

where 0 denotes the all-zero vector.

The Gray map, φ, provides a one-to-one correspondence between a Z4 and Z2
2:

Z4
φ−→ Z2

2

0 −→ 00

1 −→ 01

2 −→ 11

3 −→ 10

.
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If C is a quaternary code, then C = φ(C) is the binary image of C under φ, where

φ : Zn4 −→ Z2n
2 is the component-wise extended function. A binary code C is said to be

Z4-linear if its coordinates can be arranged in a way that it is an image under the Gray map

of a quaternary linear code.

Perhaps the most important property of the Gray map is that it preserves the weights of

vectors during transformation from Zn4 to Z2n
2 ; i.e.,

wL(u) = w(φ(u)),∀u ∈ Zn4 .

In general, the Z4-linear code C = φ(C) is not linear, so it may not have a dual. The

Z4-dual of φ(C) is C⊥ = φ(C⊥)

C φ−→ C = φ(C)
|
⊥
↓

C⊥ φ−→ C⊥ = φ(C⊥).

Although the two codes C = φ(C) and C⊥ = φ(C⊥) may not be dual, they are called

formally dual which means that the weight enumerators of the binary codes are related

under MacWilliams identities, see Equations (2.1), (2.2).

2.3 Z2Z4-additive codes

If C is a subgroup of Zα2 × Zβ4 , then C is called a Z2Z4-additive code. We will take an

extension of the usual Gray map denoted by Φ: Zα2 ×Zβ4 −→ Zn2 , where n = α+ 2β, given

by

Φ (v, w) = (v, φ (w1) , . . . , φ (wβ)) , ∀ v ∈ Zα2 , ∀ (w1, . . . , wβ) ∈ Zβ4 ;

where φ: Z4 −→ Z2 is the usual Gray map defined earlier.

The binary image of a Z2Z4-additive code under the extended Gray map is called a
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Z2Z4-linear code and has length n = α + 2β. Since a Z2Z4-additive code C is a subgroup

of Zα2 ×Zβ4 , it is also isomorphic to an abelian structure like Zγ2 ×Zδ4. So C is of type 2γ4δ,

the number of codewords in C is |C| = 2γ+2δ and the number of order two codewords of C
is 2γ+δ. This Gray map is an isometry which transforms Lee distances defined in Zα2 × Zβ4
to Hamming distances defined in Zα+2β

2 .

Let v1 ∈ Zn2 and v2 ∈ Zβ4 . Denote by wH(v1) the Hamming weight of v1 and wL(v2) the

Lee weight of v2. For a vector v = (v1, v2) ∈ Zα2 × Zβ4 , define the weight of v, denoted by

w(v) as wH(v1) + wL(v2) or, equivalently, the Hamming weight of Φ(v). Denote by d (C)
the minimum distance between codewords in C, where the distance between two vectors

v, w ∈ Zα2 × Zβ4 is given as

d (u, v) = w (u− v) .

Let X (respectively Y ) be the set of Z2 (respectively Z4) coordinate positions, so |X| = α

and |Y | = β. Unless otherwise stated, the set X corresponds to the first α coordinates and

Y corresponds to the last β coordinates. Call CX (respectively CY ) the punctured code of C
by deleting the coordinates outside X (respectively Y ). Let Cb be the subcode of C which

contains all order two codewords and let κ be the dimension of (Cb)X , which is a binary

linear code. For the case α = 0, κ is 0.

Taking into account all the parameters mentioned above we say C is of type (α, β;

γ, δ; κ). Two Z2Z4-additive codes of the same type are said to be monomially-equivalent,

if one can be obtained from the other by permutation of the coordinates and, if needed,

also by changing the signs of certain Z4 coordinates. If two Z2Z4-additive codes C1 and

C2 are monomially-equivalent, then after Gray map the Z2Z4-linear codes are permutation-

equivalent as binary codes. The inverse may not be true.

The Z2Z4-additive codes of type (α, β; γ, δ; κ) are a generalization of binary linear

codes and quaternary linear codes. If β = 0, a Z2Z4-additive code is a binary linear code

and if α = 0, a Z2Z4-additive code is a quaternary linear code.

Let C be a Z2Z4-additive code. Although C is not a free module, every codeword is

uniquely expressible in the form

γ∑

i=1

λiui +

γ+δ∑

j=γ+1

µjvj,
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where λi ∈ Z2 , µj ∈ Z4 and ui, vj ∈ Zα2 × Zβ4 for 1 6 i 6 γ and γ + 1 6 j 6 γ + δ.

These γ + δ vectors give us a generator matrix G of size (γ + δ)× (α+ β) for a code C. G
is given as

G =

[
B1 2B3

B2 Q

]
,

where B1, B2 are matrices over Z2 of size γ × α and δ × α, respectively; B3 is a matrix

over Z4 of size γ×β with all entries in {0, 1} ⊂ Z4 and Q is a matrix over Z4 of size δ×β
with quaternary row vectors of order four.

Theorem 2 [BFCP+10] Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ). Then, C
is permutation equivalent to a Z2Z4-additive code with canonical generator matrix of the

form

GS =



Ik Tb 2T2 0 0

0 0 2T1 2Iγ−κ 0

0 Sb Sq R Iδ


 ,

where Tb, Sb are matrices over Z2; T1, T2, R are matrices over Z4 with all entries in

{0, 1} ⊂ Z4 and Sq is a matrix over Z4.

We define the inner product of vectors u, v ∈ Zα2 × Zβ4 as

(u, v) = 2

(
α∑

i=1

uivi

)
+

α+β∑

j=α+1

uivi ∈ Z4.

Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ). The additive dual code of C
denoted by C⊥ is defined as

C⊥ =
{
v ∈ Zα2 × Zβ4 |(u, v) = 0, ∀ u ∈ C

}
.

The additive dual code C⊥ is a Z2Z4-additive code. The weight enumerator polynomial

of C = Φ(C) is related to the weight enumerator polynomial of Φ(C⊥) by MacWilliams

identities, see Equations (2.1), (2.2).

Theorem 3 [BFCP+10] Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ). The
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additive dual code C⊥ is of type (α, β; γ̄, δ̄; κ̄), where

γ̄ = α + γ − 2κ,

δ̄ = β − γ − δ + κ,

κ̄ = α− κ.

Theorem 4 [BFCP+10] Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ) with

generator matrix GS , then the dual code C⊥ has generator matrix of the form

HS =



T tb Iα−k 0 0 2Stb

0 0 0 2Iγ−κ 2Rt

T t2 0 Iβ+k−γ−δ T t1 −(Sq +RT1)
t


 ,

where Tb, T2 are matrices over Z2; T1, R, Sb are matrices over Z4 with all entries in

{0, 1} ⊂ Z4 and Sq is a matrix over Z4.

Let C be a Z2Z4-additive code, we say that C is an additive self-orthogonal code if C ⊆ C⊥
and C is an additive self-dual code if C = C⊥.

Lemma 5 [BDFC12] If C is a Z2Z4-additive self-dual code, then C is of type (2κ, β; β +

κ− 2δ, δ;κ), |C| = 2κ+β and |Cb| = 2κ+β−δ.

Lemma 6 [BDFC12] If C is a Z2Z4-additive self-dual code, then the subcode (Cb)X is a

binary self-dual code.

Denote by 1 and 2 the all one and all two vectors. A binary code C is antipodal if for any

codeword z ∈ C, z + 1 ∈ C, otherwise it is non-antipodal. If C is a Z2Z4-additive code,

we say that C is antipodal if Φ(C) is antipodal. Clearly, a Z2Z4-additive code C ⊆ Zα2 ×Zβ4
is antipodal if and only if (1α,2β) ∈ C, where α and β indicate the length of the all-one

and all-two vectors, respectively.

Example 3 Consider a code C1 with generator matrix

G =

[
1 1 0

0 0 2

]
.
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The code C1 is of type (2, 1; 2, 0; 1) and has the following codewords

C1 = {(00 0), (00 2), (11 0), (11 2)}.

We can easily see that this code is antipodal as (11 2) ∈ C.

Proposition 7 [BDFC12] Let C be an additive self-dual code of type (2κ, β; β + κ −
2δ, δ;κ). The following statements are equivalent

• CX is binary self-orthogonal.

• CX is binary self-dual.

• |CX | = 2κ.

• CY is a quaternary self-orthogonal code.

• CY is a quaternary self-dual code.

• |CY | = 2β.

• C = CX ⊕ CY .

Proposition 8 [BDFC12] If CX is a binary self-dual code of length α = 2κ and CY is a

quaternary self-dual code of type (0, β; γ, δ;κ) then C = CX ⊕ CY is an additive self-dual

code of type (2κ, β; β + κ− 2δ, δ;κ).

Definition 9 A Z2Z4-additive self-dual code C with even and odd weights is of Type 0. A

Z2Z4-additive self-dual code C with all weights divisible by 2 is of Type I and a Z2Z4-

additive self-dual code C with all weights divisible by 4 is of Type II. A Type I code may or

may not be of Type II, but all Type II codes are also of Type I.

Let C be a Z2Z4-additive code. If C = CX ⊕ CY , then C is called separable. If C is a

separable Z2Z4-additive code, then the generator matrix of C in standard form is

GS =



Ik T ′ 0 0 0

0 0 2T1 2Iγ−κ 0

0 0 Sq R Iδ


 .
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Theorem 10 [BDFC12] If C is a Z2Z4-additive self-dual code of Type I or Type II, then C
is antipodal.

Theorem 11 [BDFC12] If C is a Z2Z4-additive self-dual code of Type 0, then C is non-

separable and non-antipodal.



Chapter 3

Contributions

This chapter contains the basic theory on bounds on the size of codes, definition of the

Singleton bound, association schemes, self-dual codes from 3-class association schemes

and extensions of Z2Z4-additive self-dual codes along with the contributions. We start

with the bounds on the size of codes and define the Singleton bound. We define an MDS

code. Then we state the contributions related to this topic and give a short description for

them. Next we give a little history of association schemes and define them. We define

intersection numbers, symmetric association schemes, non-symmetric association schemes

and adjacency matrices. A short description of the work done on the generation of self-

dual codes from 2-class association schemes in [DKS07] is given, which motivated us to

generate self-dual code from 3-class association schemes. Contributions related to this

topic are stated along with a short summary for each of them. The last section is about

extension of Z2Z4-additive self-dual codes. We study the work done in [BDFC12] and see

if the properties like Type, separability and antipodality are preserved when one extends

the length of a Z2Z4-additive self-dual code. The contribution related to this topic is also

given.

17
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3.1 Optimal Z2Z4-additive codes

3.1.1 Bounds on the size of codes

In this section we will describe codes that have as many codewords as possible for a given

length and minimum distance. The minimum distance d of a codeword, Hamming or Lee,

is a simple measure of the goodness of a code. One of the fundamental problems in coding

theory is to produce a code with largest possible d. Alternatively, determine the maximum

number of codewords, A(n, d), for a given n and d. A (n,M, d) code C is a code with

length n, distance d and M codewords. A code of length n and minimum distance at least

d will be called optimal if it has A (n, d) codewords. There can be other ways to define

optimal codes; e.g., one can find the largest d for a given n and M , such that there exists

a code with M codewords, length n and minimum distance d, or find the smallest n for a

given d and M , such that there exists a code with M codewords, length n and minimum

distance d.

3.1.2 Singleton Bound

The Singleton bound, which was introduced by Richard Collom Singleton in 1964 [Sin64],

is an upper bound on the minimum distance of a code. We start by defining the bound for

binary codes.

Theorem 12 (Singleton Bound [Sin64]) Let C be a binary (possibly nonlinear) code of

length n with minimum Hamming distance dH(C), then

dH(C) 6 n− log2 |C|+ 1. (3.1)

The Singleton bound is a rather weak bound in general, codes that meet this bound are

known as MDS or maximum distance separable codes. MDS contains a very important

class of codes known as Reed-Solomon codes, useful in many applications. This is a com-

binatorial bound and does not rely on the algebraic structure of the code. It is well known

[MS83] that for the binary case, the only codes achieving this bound are the repetition

codes, codes with minimum distance 2 and size 2n−1 or the trivial code containing all 2n
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vectors. We remark that sometimes the singleton codes; i.e., codes with just one codeword,

are also considered in this class, but it depends on the definition of minimum distance for

such codes.

In the case of quaternary codes, we consider the rank bound. From [DS01], we know

that if C is a code of length n over Z4 with minimum Lee distance dL (C) then

⌊
dL (C)− 1

2

⌋
6 n− rank (C) , (3.2)

where rank (C) is the minimal cardinality of a generating system for C.

3.1.3 Contributions

The Singleton bound described above along with the MDS Z2Z4-additive codes were stud-

ied and presented in the form of the following two articles.

(i) M. Bilal, J. Borges, S. Dougherty, C. Fernández-Córdoba, Optimal codes over Z2 ×
Z4. In libro de actas VII Jornadas de Matemática Discreta y Algorítmica, Castro

Urdiales (Spain), pp. 131-139, (2010).

(ii) M. Bilal, J. Borges, S. Dougherty, C. Fernández-Córdoba, Maximum Distance Sepa-

rable codes over Z4 and Z2 × Z4. Designs, codes and cryptography, vol.61, n.1, pp.

31-40, (2011).

In contribution (i), we have given two forms of the Singleton bound for Z2Z4-additive

codes. The first bound is an extension of the Singleton bound for binary codes, Equation

3.1, described in [Sin64]. We achieved this by applying the Singleton bound to C = Φ(C).

The second bound is an extension of the results in [DS01], given by Equation 3.2. We also

defined MDS Z2Z4-additive codes.

In contribution (ii), we extended the work done in contribution (i). A Z2Z4-additive

code attaining the bound obtained from Equation 3.1 is defined as an MDS Z2Z4-additive

code with respect to the Singleton bound, briefly MDSS. In the second case; i.e., the bound

obtained from Equation 3.2, C is an MDS Z2Z4-additive code with respect to the rank

bound, briefly MDSR, if C attains this bound. The main results are also valid when α = 0,
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namely quaternary linear codes. We completely characterized MDSS Z2Z4-additive codes

and strong conditions are given for MDSR Z2Z4-additive codes. As a conclusion, we have

that all MDS Z2Z4-additive codes are zero or one error-correcting codes, with the exception

of the trivial repetition codes containing two codewords.

3.2 Self-dual codes from 3-class association schemes

3.2.1 Association schemes

Incomplete-block design for experiments were first developed by Yates at Rothamsted Ex-

perimental Station. He produced a remarkable collection of designs for individual exper-

iments. These designs posed questions for the statisticians: (i) what is the best way of

choosing subsets of the treatments to allocate to the blocks, given the recourse constraints?

(ii) how should one analyze the data from the experiments?

Designs with partial balance help statisticians answer these two questions. The designs

were introduced by Bose and Nair in [BN39]. The fundamental concept here was asso-

ciation scheme, which was defined in its own right by Bose and Shimamoto in [BS52].

Many experiments have more than one system of blocks, which can have complicated

inter-relationships. The general structure is an orthogonal block structure and although

they were introduced separately of partially balanced incomplete-block designs, they also

are association schemes. Thus association schemes play an important part in the design of

experiments. Association schemes also come into play in permutation groups, quite inde-

pendently of any statistical applications. Much of the modern literature about association

schemes is in the language of abstract algebra.

The subject became an object of algebraic interest with the publication of [BM59] and

the introduction of the Bose-Mesner algebra. The most important contribution to the theory

was the thesis of P. Delsarte [Del73] who recognized and fully used the connections with

coding theory and design theory.

Association schemes are about the relations between pair of elements of a set. Let X

be a finite set, |X| = v. Let Ri be a subset of X × X , ∀i ∈ I = {0, . . . , d} , d > 0. We

define < = {Ri}i∈I . We say that (X,<) is a d-class association scheme if the following
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properties are satisfied:

(i) R0 = {(x, x) : x ∈ X} is the identity relation.

(ii) For every x, y ∈ X , (x, y) ∈ Ri for exactly one i.

(iii) ∀ i ∈ I, ∃ i′ ∈ I such that RT
i = Ri′ , where RT

i = {(x, y) : (y, x) ∈ Ri}.

(iv) If (x, y) ∈ Rk, the number of z ∈ X such that (x, z) ∈ Ri and (z, y) ∈ Rj is a

constant pkij .

The values pkij are called intersection numbers. The elements x, y ∈ X are called ith as-

sociates if (x, y) ∈ Ri. If i = i′ for all i then the association scheme is said to be symmetric,

otherwise it is non-symmetric. The association scheme (X,<) is commutative if pkij = pkji,

for all i, j, k ∈ I. Note that a symmetric association scheme is always commutative but the

converse is not true.

The adjacency matrix Ai for the relation Ri for i ∈ I, is the v× v matrix with rows and

columns labeled by the points of X and defined by

(Ai)x,y =

{
1, if (x, y) ∈ Ri,

0, otherwise.

The conditions (i)-(iv) in the definition of (X,<) are equivalent to:

(i) A0 = I (the identity matrix).

(ii)
∑

i∈I Ai = J (the all-ones matrix).

(iii) ∀ i ∈ I,∃ i′ ∈ I, such that Ai = ATi′ .

(iv) ∀ i, j ∈ I, AiAj =
∑
k∈I

pkijAk.

If the association scheme is symmetric, then Ai = ATi , for all i ∈ I. If the association

scheme is commutative, then AiAj = AjAi, for all i, j ∈ I. The adjacency matrices

generate a (n+ 1)-dimensional algebra A of symmetric matrices. This algebra is called

the Bose-Mesner algebra.

Higman [Hig75] proved that a d-class association scheme with d ≤ 4 is always com-

mutative, meaning that pkij = pkji, for all i, j, k ∈ I.
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3.2.2 Self-dual codes from 3-class association schemes

2-class association schemes consist of either strongly regular graphs (SRG) or doubly reg-

ular tournaments (DRT). Self-dual codes from the adjacency matrices of 2-class associ-

ation schemes were presented in [DKS07]. The purpose of the work done in [DKS07]

was to unify the earlier known constructions of double circulant codes, thus generalizing

Quadratic Double Circulant Codes [Gab02] and to construct codes with high minimum

distance. Examples were given for codes over F2, F3, F4 and Z4.

3.2.3 Contributions

Following the work done in [DKS07] with 2-class association schemes, we have presented

two methods to generate self-dual codes from 3-class association schemes. In this regards

we have done two publications which are the following.

(i) M. Bilal, J. Borges, S. Dougherty, C. Fernández-Córdoba, Binary self-dual codes from

3-class association schemes, 3rd International Castle Meeting on Coding Theory and

Applications, Cardona (Spain), Servei de publicacions UAB, pp. 59-64, (2011).

(ii) M. Bilal, J. Borges, C. Fernández-Córdoba, Self-dual codes over Zk from rectangular

association schemes, In libro de actas VII Jornadas de Matemática Discreta y Algo-

rítmica, Almería (Spain), pp. 103-110, (2012).

In contribution (i), we have generated binary self-dual codes from the adjacency ma-

trices of 3-class association schemes. Two methods for construction of self-dual codes are

used, namely pure construction and bordered construction. We have given conditions for

both symmetric and non-symmetric association schemes.

In contribution (ii), we used 3-class rectangular association schemes to generate self-

dual codes over several rings. We used pure and bordered constructions to obtain these

codes over Zk. All values of k are determined so that we can obtain such self-dual codes

from the adjacency matrices.
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3.3 Extensions of Z2Z4-additive self-dual codes

3.3.1 Z2Z4-additive self-dual codes. Type and separability

Z2Z4-additive self-dual codes were defined in Chapter 2 along with properties like code

Type, separability and antipodality. In [BDFC12], all three Types of self-dual Z2Z4-

additive codes are defined and the possible values of α, β such that there exist a Z2Z4-

additive self-dual code C ⊆ Zα2 × Zβ4 are given.

The Z2Z4-additive self-dual codes are extended by increasing the length of the code-

words. The standard techniques of invariant theory were used to achieve the results. The

paper summarizes all the results in the form a table where all the possible minimum values

of (α, β) are given for all separable or non-separable codes of each Type. The paper also

gives weight enumerators for each of the three Types of codes.

3.3.2 Contributions

Following [BDFC12], given a Z2Z4-additive self-dual code, one can easily extend this

code and generate an extended Z2Z4-additive self-dual code with greater length. In the

following communication, we have studied these constructions and checked if properties

like separability, antipodality and code Type are retained or not.

(*) M. Bilal, J. Borges, S. Dougherty, C. Fernández-Córdoba, Extensions of Z2Z4-additive

self-dual codes preserving their properties, IEEE 2012 International Symposium on

Information Theory, MIT Cambridge, Conference publication, pp. 3101-3105, (2012).

In the above contribution we used the technique given in [BDFC12]; i.e., extending

the length of code, to obtain a new Z2Z4-additive self-dual code with greater length. We

extended Type 0, I and II codes using this technique. We have concluded that, given a

Z2Z4-additive self-dual of type (α, β; γ, δ;κ), one can extend the length of the code and

obtain a new Z2Z4-additive self-dual code of type (α+α′, β+β′; γ̄, δ̄; κ̄) while preserving

the Type, separability or non-separability, and antipodality or non-antipodality.
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Chapter 4

Conclusion

This chapter starts with the summary of the work done for this dissertation. We summarize

all topics and provide the main results from our research. The chapter ends with some ideas

about future work.

4.1 Summary and main results

Researchers have been working in coding theory ever since Claude Shannon published

the landmark paper [Sha48]. Through the years there have been many developments in

this field. Apart from the codes that are produced by the researchers for communications

systems, there has been quite a lot of work done in classifying codes and learning their

mathematical aspects. This thesis, which is more about the classification of codes, is pre-

sented in the form of a compendium of publications, which were presented at different

conferences and in a journal during my PhD. studies.

By now the reader knows that the thesis is mainly comprised of two parts: bounds on

the minimum distance of a code and self-dual codes.

4.1.1 Maximum distance separable codes over Z2 × Z4

In the first part of our research we studied bounds on the minimum distance of a code. We

studied the Singleton bound and MDS codes and applied the bound to Z2Z4-additive codes.

25
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We have done publications on this topic in which we presented two forms of Singleton

bound for Z2Z4-additive codes. The codes that meet these bounds are called MDSS and

MDSR codes. We presented our results along with examples for each of these bounds. The

main results are also valid when α = 0, namely for quaternary linear codes. For details see

[BBDFC10] and [BBDFC11b]. The main results from these contributions are as follows:

Theorem 13 If C is a Z2Z4-additive code with parameters (α, β, γ, δ, κ), then

d(C)− 1

2
6 α

2
+ β − γ

2
− δ, (4.1)

⌊
d (C)− 1

2

⌋
6 α + β − γ − δ. (4.2)

This theorem gives us two bounds for Z2Z4-additive codes. We say that a Z2Z4-additive

code C is MDS if d (C) meets the bound given in (4.1) or (4.2). In the first case, we say

that C is MDS with respect to the Singleton bound, briefly MDSS. In the second case, C is

MDS with respect to the rank bound, briefly MDSR.

The following theorem characterizes all MDSS Z2Z4-additive codes. By the even code

we mean the set of all even weight vectors and by the repetition code we mean the code

such that its binary Gray image is the binary repetition code with the all-zero and the all-one

codewords.

Theorem 14 Let C be an MDSS Z2Z4-additive code of type (α, β; γ, δ;κ) such that 1 <

|C| < 2α+2β . Then C is either

(i) the repetition code of type (α, β; 1, 0;κ) and minimum distance d(C) = α + 2β,

where κ = 1 if α > 0 and κ = 0 otherwise; or

(ii) the even code with minimum distance d(C) = 2 and type (α, β;α − 1, β;α − 1) if

α > 0, or type (0, β; 1, β − 1; 0) otherwise.

We have also given a strong condition for a Z2Z4-additive code to be MDSR.

Theorem 15 Let C be an MDSR Z2Z4-additive code of type (α, β; γ, δ;κ) such that 1 <

|C| < 2α+2β . Then, either
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(i) C is the repetition code as in (i) of Theorem 14 with α ≤ 1; or

(ii) C is of type (α, β; γ, α+β− γ− 1;α), where α ≤ 1 and d(C) = 4−α ∈ {3, 4}; or

(iii) C is of type (α, β; γ, α + β − γ;α), where α ≤ 1 and d(C) ≤ 2− α ∈ {1, 2}.

4.1.2 Self-dual codes

The second part is about self-dual codes, their generation from association schemes and

extensions of Z2Z4-additive self-dual codes while preserving their properties.

Self-dual codes from 2-class association schemes were first given in [DKS07]. In our

work we use 3-class association schemes to generate self-dual codes. We use two methods

of generating self-dual codes from 3-class association schemes, the pure and the bordered

construction. Starting from the parameters of a 3-class association scheme we state which

linear combinations of the adjacency matrices give a generator matrix of a self-dual code,

using pure and bordered constructions.

In [BBDFC11a] we use the two constructions to generate binary self-dual codes from

symmetric and non-symmetric 3-class association schemes. Using the non-symmetric 3-

class association schemes, we give the conditions and parameters and use them to generate

binary self-dual codes from pure and bordered constructions. For the case of binary self-

dual codes from symmetric 3-class association schemes, the number of equations and pa-

rameters become quite a lot, so for the sake of simplicity we use the rectangular association

scheme, which is a symmetric association scheme. We give the conditions and parameters

such that the generated binary code is self-dual, using pure and bordered constructions.

In [BBFC12] we use 3-class rectangular association schemes to construct self-dual

codes over several rings. We use the pure and bordered construction to get self-dual codes

over Zk. We completely determine the values of k along with the parameters and necessary

conditions which we use to obtain self-dual codes from the adjacency matrices of 3-class

rectangular association schemes using pure and bordered constructions.

In [BDFC12], a Z2Z4-additive self-dual code was extended to generate an extended

Z2Z4-additive self-dual code with greater length. These extended codes were studied and

we investigated if properties like the Type and separability are retained in the extended code
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or not when using this extension method. We found that if C is a Z2Z4-additive self-dual

code of type (α, β; γ, δ;κ), we extend the length of the code C and obtain a new Z2Z4-

additive self-dual code C̄ of type (α+ α′, β + β′; γ̄, δ̄; κ̄) preserving the Type, separability

or non-separability, and antipodality or non-antipodality. For further details please read

[BBDFC12]

4.2 Future Work

Here we would like to give some research ideas for the future work that come up as a result

of the research work done during this Ph.D.

First, in this work we have studied the Singleton bound for Z2Z4-additive codes. As a

future work one can apply other bounds like Plotkin bound, Johnson bound, Linear Pro-

gramming bound, etc. over Z2Z4-additive codes and present new results.

Second, we have generated self-dual codes from 3-class association schemes using two

constructions, namely pure and bordered construction and we have given results for binary

self-dual codes from non-symmetric association schemes and self-dual codes over Zk from

rectangular association schemes. It would be interesting to generate self-dual codes from

other association schemes like Johnson schemes, Hamming schemes, etc., and over other

rings and fields.

Third, it would be interesting to see whether properties like Type and separability or

antipodality of a Z2Z4-additive self-dual code are preserved or not if we use other known

constructions; e.g., neighbor construction or building-up construction of self-dual codes.
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Abstract. We study additive codes over Z2 × Z4 with largest minimum distance.
We find two kinds of maximum distance separable codes and we state which are the
possible parameters, i.e. the type of the code, for such codes.

Key words: Additive codes, minimum distance bounds, maximum distance separa-

ble codes.

1 Introduction

We denote by Z2 and Z4 the ring of integers modulo 2 and modulo 4, respec-
tively. A binary linear code is a subspace of Zn

2 . A quaternary linear code is a
subgroup of Zn

4 .
In [4] Delsarte defines additive codes as subgroups of the underlying abelian

group in a translation association scheme. For the binary Hamming scheme,
the only structures for the abelian group are those of the form Zα

2 × Zβ
4 , with

α+2β = n [3]. Thus, the subgroups C of Zα
2 ×Zβ

4 are the only additive codes
in a binary Hamming scheme.

As in [1] and [2], we define an extension of the usual Gray map. We define

Φ : Zα
2×Zβ

4 −→ Zn
2 , where n = α+2β, given by Φ(x, y) = (x, φ(y1), . . . , φ(yβ))

for any x ∈ Zα
2 and any y = (y1, . . . , yβ) ∈ Zβ

4 , where φ : Z4 −→ Z2
2 is the usual

Gray map, that is, φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0).

The map Φ is an isometry which transforms Lee distances in Zα
2 × Zβ

4 to

Hamming distances in Zα+2β
2 .

Denote by wtH(v1) the Hamming weight of v1 ∈ Zα
2 and wtL(v2) the Lee

weight of v2 ∈ Zβ
4 . For a vector v = (v1, v2) ∈ Zα

2 × Zβ
4 , define the weight

of v, denoted by wt(v), as wtH(v1) + wtL(v2), or equivalently, the Hamming

⋆ This work has been supported by the Spanish MICINN grants MTM2009-08435 and
PCI2006-A7-0616 and the Catalan AGAUR grant 2009 SGR1224.
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weight of Φ(v). Denote by d (C) the minimum distance between codewords in
C. Let 0 be the all-zero vector (binary or quaternary).

Since C is a subgroup of Zα
2×Zβ

4 , it is also isomorphic to an abelian structure
Zγ
2 ×Zδ

4. Therefore, C is of type 2γ4δ as a group, it has |C| = 2γ+2δ codewords
and the number of order two codewords in C is 2γ+δ . Let X (respectively Y ) be
the set of Z2 (respectively Z4) coordinate positions, so |X| = α and |Y | = β.
Unless otherwise stated, the set X corresponds to the first α coordinates
and Y corresponds to the last β coordinates. Call CX (respectively CY ) the
punctured code of C by deleting the coordinates outside X (respectively Y ).
Let Cb be the subcode of C which contains all order two codewords and let κ
be the dimension of (Cb)X , which is a binary linear code. For the case α = 0,
we will write κ = 0. Considering all these parameters, we will say that C, or
equivalently C = Φ(C), is of type (α, β; γ, δ;κ).

Definition 1. Let C be a Z2Z4-additive code, which is a subgroup of Zα
2 ×Zβ

4 .
We say that the binary image C = Φ(C) is a Z2Z4-linear code of binary length
n = α+ 2β and type (α, β; γ, δ;κ), where γ, δ and κ are defined as above.

Let C be a Z2Z4-additive code. Every codeword is uniquely expressible in
the form

d

γ∑

i=1

λiui +

δ∑

j=1

µjvj,

where λi ∈ Z2 for 1 ≤ i ≤ γ, µj ∈ Z4 for 1 ≤ j ≤ δ and ui,vj are vectors

in Zα
2 × Zβ

4 of order two and four, respectively. The vectors ui,vj give us a
generator matrix G of size (γ + δ)× (α+ β) for the code C.
G can be written as

G =

(
B1 2B3

B2 Q

)
,

whereB1, B2, B3 are matrices over Z2 of size γ×α, δ×α and γ×β, respectively;
and Q is a matrix over Z4 of size δ × β with quaternary row vectors of order
four.

It is shown in [2] that the generator matrix for a Z2Z4-additive code C of
type (α, β; γ, δ;κ) can be written in the following standard form:

GS =



Iκ T

′ 2T2 0 0
0 0 2T1 2Iγ−κ 0

0 S′ S R Iδ


 ,

where T ′, T1, T2, R, S′ are matrices over Z2 and S is a matrix over Z4.
In [2], the following inner product is defined for any two vectors u,v ∈

Zα
2 × Zβ

4 :

〈u,v〉 = 2(

α∑

i=1

uivi) +

α+β∑

j=α+1

ujvj ∈ Z4.
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The additive dual code of C, denoted by C⊥, is defined in the standard way

C⊥ = {v ∈ Zα
2 × Zβ

4 | 〈u,v〉 = 0 for all u ∈ C}.

If C = φ(C), the binary code Φ(C⊥) is denoted by C⊥ and called the Z2Z4-
dual code of C. Moreover, in [2] it was proved that the additive dual code C⊥,
which is also a Z2Z4-additive code, is of type (α, β; γ̄, δ̄; κ̄), where

γ̄ = α+ γ − 2κ,
δ̄ = β − γ − δ + κ,
κ̄ = α− κ.

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). Define the usual Ham-
ming weight enumerator of C to be

WC(x, y) =
∑

c∈C
xn−wt(c)ywt(c),

where n = α+2β. We know from [1,2,3,6] that this weight enumerator satisfies
the MacWilliams identities, i.e.

WC⊥(x, y) =
1

|C|WC(x+ y, x− y).

It follows that if C is a Z2Z4-additive code of type (α, β; γ, δ;κ) and C⊥ its
additive dual code, then |C||C⊥| = 2n, where n = α+ 2β.

2 Bounds on the minimum distance

The usual Singleton bound [7] for codes over an alphabet of size q is given by

d(C) ≤ n− logq |C|+ 1.

This bound is a combinatorial bound and does not rely on the algebraic struc-
ture of the code. In [5], the following Singleton bound for the Lee weight of a
quaternary linear code is given. For a code C of type 2γ4δ we have

⌊
d(C) − 1

2

⌋
≤ n− δ − γ

2
.

Theorem 1. If C be a Z2Z4-additive code with parameters (α, β, γ, δ, κ), then

d(C) − 1

2
6 α

2
+ β − γ

2
− δ, (1)

⌊
d (C)− 1

2

⌋
6 α+ β − γ − δ. (2)
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Proof. Bound (1) can be obtained by simply applying the Singleton bound
given in [7] to C = Φ(C).

Let X be the map from Z2 to Z4 which is the normal inclusion from the
additive structure in Z2 to Z4, that is X (0) = 0, X (1) = 2 and its extension

(X , Id) : Zα
2 × Zβ

4 → Zα+β
4 , denoted also by X .

We know that
d(C) 6 d(X (C)).

From [5] we know that if C is a code of length n over a ring R with minimum
distance d (C) then

⌊
d (C)− 1

2

⌋
6 n− rank (C) ,

where rank (C) is the minimal cardinality of a generating system for C.
Hence the theorem follows.

Lemma 1. Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ), then Bound (1)
is strictly stronger than Bound (2) if and only if

(i) d (C) is even and α > γ.
(ii) d (C) is odd and α > γ.

Proof. If d (C) is even then Bound (1) is stronger that Bound (2) if and only
if

α+ 2β − γ − 2δ + 1 < 2 (α+ β − γ − δ + 1) ,

α+ 2β − γ − 2δ + 1 < 2α + 2β − 2γ − 2δ + 2,

α− γ + 1 < 2α − 2γ + 2,

γ − 1 < α,

i.e. α > γ.

If d (C) is odd then Bound (1) is stronger that Bound (2) if and only if

α+ 2β − γ − 2δ + 1 < 2 (α+ β − γ − δ) + 1,

α+ 2β − γ − 2δ + 1 < 2α + 2β − 2γ − 2δ + 1,

α− γ < 2α − 2γ,

γ < α.

Let C be a Z2Z4-additive code. If C = CX × CY , then C is called separable.

Theorem 2. If C is a Z2Z4-additive code which is separable, then the mini-
mum distance is given by

d (C) = min {d (CX) , d (CY )} . (3)
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Proof. The code C is distance invariant [6] i.e. d (C) = wt (C), where wt (C) =
min {wt (v)| v ∈ C, v 6= 0} is the minimum weight of C.

If (a, b) ∈ C then, for a separable code, (a,0) ∈ C and (0, b) ∈ C or similarly
a ∈ CX , b ∈ CY , and we know that

d (C) = wt (C) = min {wt (a, b)| (a, b) ∈ C} ,
= min {wt (a,0) , wt (0, b)|a ∈ CX , b ∈ CY } ,
= min {d (CX) , d (CY )} .

Corollary 1. If C is a Z2Z4-additive code of type (α, β; γ, δ;κ) which is sep-
arable, then

d (C) ≤ min
{
α− κ+ 1, d

}
, (4)

where d is the maximum value satisfying both Bound (1) and Bound (2).

3 Maximum distance separable codes

We say that a Z2Z4-additive code C is maximum distance separable (MDS) if
d (C) meets the bound given in (1) or (2). Let Ci be the punctured code of C
be deleting the ith coordinate position.

Lemma 2. If C is an MDS Z2Z4-additive code of type (α, β; γ, δ;κ) with
d (C) > 1 and α > 0 then, if i ∈ X, the minimum distance of Ci is

d
(
Ci
)
= d (C)− 1.

Proof. Let i ∈ X, then Ci is of type (α− 1, β; γ, δ;κ∗), where κ− 1 6 κ∗ 6 κ.
We know that d (C) − 1 6 d

(
Ci
)

6 d (C). If d
(
Ci
)
= d (C), then by Theo-

rem 1 we have a contradiction, hence d
(
Ci
)
= d (C)− 1.

Proposition 1. If C is an MDS Z2Z4-additive code of type (α, β; γ, δ;κ),
α > 0, such that d (C) meets Bound (2), then d (C) is odd and α = 1.

Proof. Assume d (C) is even. Let i ∈ X, d
(
Ci
)
is odd by Lemma 2. By Theo-

rem 1

⌊
d (C)− 1

2

⌋
= α+ β − γ − δ,

and ⌊
d
(
Ci
)
− 1

2

⌋
6 α− 1 + β − γ − δ.

But since d
(
Ci
)
is odd, this implies that

⌊
d (C)− 1

2

⌋
=

⌊
d
(
Ci
)
− 1

2

⌋
,
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which is a contradiction.
If α > 1, i ∈ X then d

(
Ci
)
is even where

⌊
d (C)− 1

2

⌋
=

⌊
d
(
Ci
)
− 1

2

⌋
= α− 1 + β − γ − δ.

Then Ci is an MDS code meeting Bound (2) with α − 1 > 0 and d
(
Ci
)
is

even, which is a contradiction.

Lemma 3. If C is an MDS Z2Z4-additive code of type (α, β; γ, δ;κ) with α > 1
such that d (C) meets Bound (1), then the punctured code Ci, i ∈ X, is again
an MDS code meeting Bound (1).

Proof. For i ∈ X, the code Ci is of type (α−1, β; γ, δ;κ∗), where κ−1 6 κ∗ 6 κ.
Since C is an MDS code then

d (C) = α+ 2β − 2δ − γ + 1.

After puncturing we get

d
(
Ci
)
= d (C)− 1 = α− 1 + 2β − 2δ − γ + 1,

hence Ci is again an MDS code.

Proposition 2. If C is an MDS code of type (α, β; γ, δ;κ) satisfying Bound (1),
then γ 6 1.

Proof. From Lemma 1 we know that α > γ. From Lemma 3 by puncturing
binary coordinates, we can get a code of type (1, β; γ, δ;κ∗) and hence γ 6 1.

The next proposition gives a general construction for MDS codes meeting
Bound (2) starting from binary MDS codes.

Proposition 3. Let C be a binary [n, k, d] MDS code. Applying χ to all but
one coordinate gives a Z2Z4-additive code C of type (1, n − 1; k, 0; 1) which
satisfies Bound (2).

Proof. The type of the code C is obtained directly from construction.
After applying χ, the Z2Z4-additive code C has d (C) = 2d − 1. Then

d = n− k + 1 = α+ β − γ + 1. So
⌊
d(C)−1

2

⌋
= d− 1 = α+ β − (γ + δ) which

meets Bound (2).

In particular, this construction works for the even binary code and the
ambient space Zn

2 which are the possible binary linear MDS codes with more
than one codeword.



Optimal codes over Z2 × Z4 137

3.1 Examples

Examples 1 and 2 satisfies Bound (1). Example 1 is an MDS code with γ = 0.
Example 2 is an MDS code with α > 1.

Example 1. Consider a Z2Z4-additive code C2 of length 2 with generator ma-
trix

G2 = (1 | 1).
The code is of type (1, 1; 0, 1; 0) and d (C2) = 2. Applying Bound (1) we

get

2− 1

2
6 1

2
+ 1− 0

2
− 1,

1

2
6 1

2
.

Example 2. Consider a Z2Z4-additive code C3 generated by the following gen-
erator matrix

G3 =
(
0 1 1
1 1 0

)
.

The code C3 is of type (2, 1; 1, 1; 1) with minimum weight d (C3) = 2. When
we apply Bound (1) we obtain the following results.

d (C)− 1

2
6 α

2
+ β − γ

2
− δ,

2− 1

2
6 1

2
+ 1− 1

2
− 1,

0.5 6 0.5.

The next example satisfies Bound (2).

Example 3. Consider a Z2Z4-additive code C4 generated by the following gen-
erator matrix

G4 =




1 2 2 2
0 2 0 2
0 0 2 2


 .

The code C4 is of type (1, 3; 3, 0; 1) with minimum weight d (C4) = 3. When
we apply Bound (2) we obtain the following results.

⌊
d (C)− 1

2

⌋
6 α+ β − 3− 0,

⌊
3− 1

2

⌋
6 4− 3,

1 6 1.
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Codes in Examples 4 and 5 are seperable codes where d (C) is d (CY ) and
d (CX) respectively.

Example 4. Let C8 be a binary linear code of length 8 with d (C8) = 4 and
generator matrix

G8 =




1 0 0 0 1 1 0 1
0 1 0 0 0 1 1 1
0 0 1 0 1 1 1 0
0 0 0 1 1 0 1 1


 ,

and C1 a quaternary linear code length 1 and minimum weight d (C1) = 2 has
generator matrix

G1 = (2) .

The Z2Z4-additive code C9 = C8 × C1 has length 9 and has parameters
(8, 1; 5, 0; 4). Applying Bound (4) we get

d (C9) 6 min {5, 2} ,
= 2.

Example 5. Let C2 be a binary linear code of length 2 with d (C2) = 2 and
generator matrix

G2 =
(
1 1
)
,

and C4 a quaternary linear code length with length 4 and minimum weight
d (C4) = 4 has generator matrix

G4 =




1 1 1 1
0 2 0 2
0 0 2 2


 .

The Z2Z4-additive code C6 = C2 × C4 has length 6 and has parameters
(2, 4; 3, 1; 1). Applying Bound (4) we get

d (C6) 6 min {2, 4} ,
= 2.
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In [3], Delsarte defines additive codes as subgroups of the underlying abelian group in a
translation association scheme. For the binary Hamming scheme, the only structures for the
abelian group are those of the form Zα

2 × Zβ
4 , with α + 2β = n [4]. Thus, the subgroups C

of Zα
2 × Zβ

4 are the only additive codes in a binary Hamming scheme.
As in [1] and [2], we define an extension of the usual Gray map. We define Φ : Zα

2 ×
Zβ

4 −→ Zn
2, where n = α + 2β, given by Φ(x, y) = (x, φ(y1), . . . , φ(yβ)) for any x ∈ Zα

2

and any y = (y1, . . . , yβ) ∈ Zβ
4 , where φ : Z4 −→ Z2

2 is the usual Gray map, that is,
φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0). The map Φ is an isometry
which transforms Lee distances in Zα

2 × Zβ
4 to Hamming distances in Zα+2β

2 .
Denote by wtH (v1) the Hamming weight of v1 ∈ Zα

2 and by wtL(v2) the Lee weight of

v2 ∈ Zβ
4 . For a vector v = (v1, v2) ∈ Zα

2 × Zβ
4 , define the weight of v, denoted by wt (v),

as wtH (v1) + wtL(v2), or equivalently, the Hamming weight of Φ(v). Denote by d (C) the
minimum distance between codewords in C. Let 0, 1, 2 be the all-zero vector, the all-one
vector and the all-two vector, respectively. The length of these vectors will be clear from the
context.

Since C is a subgroup of Zα
2 × Zβ

4 , it is also isomorphic to an abelian structure Zγ
2 × Zδ

4.
Therefore, C is of type 2γ 4δ as a group, it has |C| = 2γ+2δ codewords and the number of
order two codewords in C is 2γ+δ . Let X (respectively Y ) be the set of Z2 (respectively Z4)
coordinate positions, so |X | = α and |Y | = β. Unless otherwise stated, the set X corresponds
to the first α coordinates and Y corresponds to the last β coordinates. Call CX (respectively
CY ) the punctured code of C by deleting the coordinates outside X (respectively Y ). Let Cb

be the subcode of C which contains all order two codewords and let κ be the dimension of
(Cb)X , which is a binary linear code. For the case α = 0, we will write κ = 0. Considering
all these parameters, we will say that C, or equivalently C = Φ(C), is of type (α, β; γ, δ; κ).
Throughout this paper, we shall always assume that β > 0 and we shall specify when α is
strictly positive.

Definition 1 Let C be a Z2Z4-additive code, which is a subgroup of Zα
2 × Zβ

4 . We say that
the binary image C = Φ(C) is a Z2Z4-linear code of binary length n = α + 2β and type
(α, β; γ, δ; κ), where γ, δ and κ are defined as above.

Let C be a Z2Z4-additive code. Every codeword is uniquely expressible in the form

γ∑

i=1

λi ui +
δ∑

j=1

μ j v j ,

where λi ∈ Z2 for 1 ≤ i ≤ γ, μ j ∈ Z4 for 1 ≤ j ≤ δ and ui , v j are vectors in Zα
2 × Zβ

4
of order two and four, respectively. The vectors ui , v j give us a generator matrix G of size
(γ + δ) × (α + β) for the code C.

G can be written as

G =
(

B1 2B3

B2 Q

)
,

where B1, B2, B3 are matrices over Z2 of size γ × α, δ × α and γ × β, respectively; and Q
is a matrix over Z4 of size δ × β with quaternary row vectors of order four.
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It is shown in [2] that the generator matrix for a Z2Z4-additive code C of type (α, β; γ, δ; κ)

can be written in the following standard form:

GS =
⎛

⎝
Iκ T ′ 2T2 0 0
0 0 2T1 2Iγ−κ 0
0 S′ S R Iδ

⎞

⎠ ,

where T ′, T1, T2, R, S′ are matrices over Z2 and S is a matrix over Z4.
In [2], the following inner product is defined for any two vectors u, v ∈ Zα

2 × Zβ
4 :

〈u, v〉 = 2

(
α∑

i=1

uivi

)
+

α+β∑

j=α+1

u jv j ∈ Z4.

The additive dual code of C, denoted by C⊥, is defined in the standard way

C⊥ =
{

v ∈ Zα
2 × Zβ

4 | 〈u, v〉 = 0 for all u ∈ C
}

.

If C = φ(C), the binary code 
(C⊥) is denoted by C⊥ and called the Z2Z4-dual code of C .
Moreover, in [2] it was proved that the additive dual code C⊥, which is also a Z2Z4-additive
code, is of type (α, β; γ̄ , δ̄; κ̄), where

γ̄ = α + γ − 2κ,

δ̄ = β − γ − δ + κ,

κ̄ = α − κ. (1)

Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ). Define the usual Hamming weight
enumerator of C to be

WC(x, y) =
∑

c∈C
xn−wt (c)ywt (c),

where n = α + 2β. We know from [1,2,4,8] that this weight enumerator satisfies the
MacWilliams identities, i.e.

WC⊥(x, y) = 1

|C| WC(x + y, x − y).

It follows that if C is a Z2Z4-additive code of type (α, β; γ, δ; κ) and C⊥ its additive dual
code, then |C||C⊥| = 2n , where n = α + 2β.

The paper is organized as follows. In Sect. 2 we state two upper bounds for the minimum
distance of a Z2Z4-additive code. Such bounds are simply particular cases of known bounds
for codes over rings. In Sect. 3 we define the corresponding two kinds of maximum distance
separable (MDS) codes, i.e. codes with minimum distance achieving any of those bounds.
We investigate the existence of such MDS codes giving the possible parameters. Moreover,
we completely determine the minimum distance of such codes. In Sect. 4, we give examples
of all different types of MDS codes. Finally, in Sect. 5 we summarize the results and give
some conclusions.

2 Bounds on the minimum distance

The usual Singleton bound [9] for a code C of length n over an alphabet of size q is given by

d(C) ≤ n − logq |C| + 1.
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This is a combinatorial bound and does not rely on the algebraic structure of the code. It is
well known [7] that for the binary case, q = 2, the only codes achieving this bound are the
repetition codes (with d(C) = n), codes with minimum distance 2 and size 2n−1 or the trivial
code containing all 2n vectors. We remark that sometimes the singleton codes, i.e. codes
with just one codeword, are also considered in this class, but it depends on the definition of
minimum distance for such codes.

Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ) and let C be its binary Gray image,
C = Φ(C). Since d(C) = d(C), we immediately obtain

d(C) ≤ α + 2β − γ − 2δ + 1. (2)

This version of the Singleton bound was previously stated for quaternary linear codes (α = 0)
in [5].

From [5] we know that if C is a code of length n over a ring R with minimum distance
d (C) then

⌊
d (C) − 1

2

⌋
� n − rank (C) , (3)

where rank (C) is the minimal cardinality of a generating system for C.
Let X be the map from Z2 to Z4 which is the normal inclusion from the additive structure

in Z2 to Z4, that is X (0) = 0, X (1) = 2 and its extension (X , I d) : Zα
2 × Zβ

4 → Zα+β
4 ,

denoted also by X .

Theorem 1 Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ), then

d(C) − 1

2
�

α

2
+ β − γ

2
− δ; (4)

⌊
d (C) − 1

2

⌋
� α + β − γ − δ. (5)

Proof Bound (4) is the same as Bound (2). Clearly d(C) � d(X (C)), hence Bound (5) follows
from Bound (3). 	

Lemma 1 Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ), then Bound (4) is strictly
stronger than Bound (5) if and only if

(i) d (C) is even and α � γ ;
(ii) d (C) is odd and α > γ .

Proof If d (C) is even then Bound (4) is stronger that Bound (5) if and only if

α + 2β − γ − 2δ + 1 < 2 (α + β − γ − δ + 1) ,

this reduces to γ − 1 < α, or similarly, α ≥ γ .
If d (C) is odd then Bound (4) is stronger that Bound (5) if and only if

α + 2β − γ − 2δ + 1 < 2 (α + β − γ − δ) + 1,

which implies γ < α. 	

Let C be a Z2Z4-additive code. If C = CX × CY , then C is called separable.

Theorem 2 If C is a Z2Z4-additive code which is separable, then the minimum distance is
given by

d (C) = min {d (CX ) , d (CY )} .
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Proof The code C is distance invariant [8] i.e. d (C) = wt (C), where wt (C) = min{wt (v) |
v ∈ C, v �= 0} is the minimum weight of C.

If (a, b) ∈ C then, for a separable code, (a, 0) ∈ C and (0, b) ∈ C or similarly a ∈ CX ,

b ∈ CY , and we know that

d (C) = wt (C) = min {wt (a, b)| (a, b) ∈ C}
= min {wt (a, 0) , wt (0, b) | a ∈ CX , b ∈ CY }
= min {d (CX ) , d (CY )} .

	

Corollary 1 If C is a Z2Z4-additive code of type (α, β; γ, δ; κ) which is separable, then

d (C) ≤ min
{
α − κ + 1, d

}
, (6)

where d is the maximum value satisfying both Bound (4) and Bound (5).

3 Maximum distance separable codes

We say that a Z2Z4-additive code C is maximum distance separable (MDS) if d (C) meets the
bound given in (4) or (5). In the first case, we say that C is MDS with respect to the Singleton
bound, briefly MDSS. In the second case, C is MDS with respect to the rank bound, briefly
MDSR. Let Ci be the punctured code of C by deleting the i th coordinate position.

Lemma 2 If C is an MDS Z2Z4-additive code of type (α, β; γ, δ; κ) with d (C) > 1 and
α > 0 then, if i ∈ X, the minimum distance of Ci is

d(Ci ) = d (C) − 1.

Proof Let i ∈ X , then Ci is of type (α − 1, β; γ, δ; κ∗), where κ − 1 � κ∗ � κ .
We know that d (C) − 1 � d

(
Ci

)
� d (C). If d

(
Ci

) = d (C), then by Theorem 1 we have
a contradiction, hence d

(
Ci

) = d (C) − 1. 	

Proposition 1 If C is an MDSR Z2Z4-additive code of type (α, β; γ, δ; κ), α > 0, then d (C)

is odd and α = 1.

Proof Assume d (C) is even. Let i ∈ X, d
(
Ci

)
is odd by Lemma 2. By Theorem 1, we have

⌊
d (C) − 1

2

⌋
= α + β − γ − δ,

and
⌊

d
(
Ci

) − 1

2

⌋
� α − 1 + β − γ − δ.

But since d
(
Ci

)
is odd, this implies that

⌊
d (C) − 1

2

⌋
=

⌊
d

(
Ci

) − 1

2

⌋
,

which is a contradiction.
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If α > 1, i ∈ X then d
(
Ci

)
is even where

⌊
d (C) − 1

2

⌋
=

⌊
d

(
Ci

) − 1

2

⌋
= α − 1 + β − γ − δ. (7)

Then Ci is an MDSR code with α − 1 > 0 and d
(
Ci

)
is even, which is a contradiction. 	


Now, we characterize all MDSS Z2Z4-additive codes. By the even code we mean the set
of all even weight vectors. By the repetition code we mean the code such that its binary Gray
image is the binary repetition code with the all-zero and the all-one codewords.

Theorem 3 Let C be an MDSS Z2Z4-additive code of type (α, β; γ, δ; κ) such that 1 <

|C| < 2α+2β . Then C is either

(i) the repetition code of type (α, β; 1, 0; κ) and minimum distance d(C) = α+2β, where
κ = 1 if α > 0 and κ = 0 otherwise; or

(ii) the even code with minimum distance d(C) = 2 and type (α, β;α − 1, β;α − 1) if
α > 0, or type (0, β; 1, β − 1; 0) otherwise.

Proof If C is an MDSS code, so is C = Φ(C). Therefore C is the binary repetition code or
the binary even code (C cannot be the odd code since C contains the all-zero vector). The
parameters of C are clear in both cases. Note also, that cases (i) and (ii) correspond to additive
dual codes, so the parameters are related by the equations in (1). 	


Since the codes described in (i) and (ii) of Theorem 3 are additive dual codes, it is still
true that the dual of an MDSS code is again MDSS, which is a well known property for linear
codes over finite fields [7].

We can also give a strong condition for a Z2Z4-additive code to be MDSR.

Theorem 4 Let C be an MDSR Z2Z4-additive code of type (α, β; γ, δ; κ) such that 1 <

|C| < 2α+2β . Then, either

(i) C is the repetition code as in (i) of Theorem 3 with α ≤ 1; or
(ii) C is of type (α, β; γ, α + β − γ − 1;α), where α ≤ 1 and d(C) = 4 − α ∈ {3, 4}; or

(iii) C is of type (α, β; γ, α + β − γ ;α), where α ≤ 1 and d(C) ≤ 2 − α ∈ {1, 2}.
Proof Recall that Cb is the subcode of C which contains all order 2 codewords. Let D be the
binary linear code which is as Cb but replacing coordinates 2 with 1. The code D has length
α + β and dimension γ + δ. Obviously, 2d(D) ≥ d(Cb) ≥ d(C). Since C is MDSR, we
obtain

2d(D) ≥ 2(α + β − γ − δ) + 1,

and then

d(D) ≥ α + β − γ − δ + 1,

implying that D is a binary MDSS code. Thus D is the binary repetition code, the binary
even code or the trivial code containing all vectors.

In the first case, we have that the dimension of D is γ + δ = 1 and the minimum distance
of C is

d(C) = 2α + 2β − 1 if d(C) is odd,

d(C) = 2α + 2β if d(C) is even.
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If α = 0, then d(C) = 2β − 1 is not possible because C contains the all-two vector. Hence
d(C) must be even and d(C) = 2β implying that C is the quaternary code formed by the
all-zero and the all-two vectors. If α > 0, then by Proposition 1, d(C) is odd and α = 1.
Therefore d(C) = 1 + 2β and C = {(0, 0), (1, 2)}.

In the second case, when D is the binary even code, we have that the dimension of D is
γ + δ = α + β − 1. Therefore d(C) = 3 if d(C) is odd, and d(C) = 4 if d(C) is even. If
α > 0, then α = 1 and d(C) is odd, by Proposition 1. If α = 0, then we claim that d(C) = 4.
Indeed, if x ∈ C would have weight 3, then 2x would have weight 6 and D would contain a
codeword of weight 3, which is not possible.

Finally, if D contains all possible vectors, then its dimension is γ + δ = α + β. In this
case,

⌊
d(C) − 1

2

⌋
= 0,

and then d(C) ≤ 2. By Proposition 1, α ≤ 1 and if α = 1, then d(C) = 1.
This completes the proof. 	


Note that it is not true that the additive dual code of an MDSR code is again MDSR. See
the examples in the next section.

The rank of a binary code C is the dimension of the linear span of C . If C is linear, then
the rank is simply the dimension of C . For MDS Z2Z4-additive codes we can state which are
the possible values for the rank of the binary images.

Corollary 2 If C is an MDS Z2Z4-additive code, then C = 
(C) is a linear code or it has
rank equal to log2 |C | + 1. In this last case, C is an MDSR code with minimum distance 3
or 4.

Proof Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ).
If C is an MDSS code (cases (i) or (ii) in Theorem 3 or case (i) in Theorem 4), then

C = 
(C) is clearly a binary linear code. For cases (ii) and (iii) in Theorem 4, we apply the
result given in [6] which states that the rank of C must be in the range

γ + 2δ, . . . , min

{
β + δ + κ, γ + 2δ + δ(δ − 1)

2

}
.

For case (ii) in Theorem 4, since δ = α + β − γ − 1 and κ = α, we have that

γ + 2δ = 2α + 2β − γ − 2;
β + δ + κ = 2α + 2β − γ − 1 = γ + 2δ + 1.

Therefore, if δ ≤ 1, then the rank of C is γ + 2δ and C is linear. If δ > 1, then C is linear or
it has rank γ + 2δ + 1.

For case (iii) in Theorem 4, we have

γ + 2δ = 2α + 2β − γ ;
β + δ + κ = α + 2β − γ + κ.

But α = κ , thus γ + 2δ = β + δ + κ and C is linear. 	


123



38 M. Bilal et al.

4 Examples

Examples 1 and 2 satisfy Bound (4). Example 1 is an MDS code with γ = 0. Example 2 is
an MDS code with α > 1.

Example 1 Consider a Z2Z4-additive code C2 of length 2 with generator matrix

G2 = (1 | 1).

The code is of type (1, 1; 0, 1; 0) and d (C2) = 2. Applying Bound (4) we get that C2 is
an MDSS code. In fact, it is the even code with α = β = 1. Its additive dual code C⊥

2 is the
repetition code {(0, 0), (1, 2)}, which is MDSS and MDSR. However, note that C2 is not an
MDSR code.

Example 2 Consider a Z2Z4-additive code C3 generated by the following generator matrix

G3 =
(

0 1 1
1 1 0

)
.

The code C3 is of type (2, 1; 1, 1; 1) with minimum weight d (C3) = 2. This is again an
MDSS code, which is the even code for α = 2 and β = 1. The code C3 is not an MDSR
code, but C⊥

3 = {(0, 0, 0), (1, 1, 2)} is again MDSS and MDSR.

The next example satisfies Bound (5).

Example 3 Consider a Z2Z4-additive code C4 generated by the following generator matrix

G4 =
⎛

⎝
1 2 0 0
1 0 2 0
1 0 0 2

⎞

⎠ .

The code C4 is of type (1, 3; 3, 0; 1) with minimum weight d (C4) = 3. Thus, C4 is an
MDSR code (but not MDSS).

Codes in Examples 4 and 5 are separable codes where d (C) is d (CY ) and d (CX ) respec-
tively.

Example 4 Let C8 be the binary linear code of length 8 with d (C8) = 4 and generator matrix

G8 =

⎛

⎜⎜⎝

1 0 0 0 1 1 0 1
0 1 0 0 0 1 1 1
0 0 1 0 1 1 1 0
0 0 0 1 1 0 1 1

⎞

⎟⎟⎠ ,

and let C1 be the quaternary linear code length 1 and minimum weight d (C1) = 2 with
generator matrix

G1 = (2) .

The Z2Z4-additive code C9 = C8 × C1 has length 9 and has parameters (8, 1; 5, 0; 4).
Applying Bound (6) we get

d (C9) � min {5, 2} = 2.

123



Maximum distance separable codes over Z4 and Z2 × Z4 39

Example 5 Let C2 be the binary linear code of length 2 with d (C2) = 2 and generator matrix

G2 = (
1 1

)
,

and let C4 be the quaternary linear code with length 4 and minimum weight d (C4) = 4
generated by

G4 =
⎛

⎝
1 1 1 1
0 2 0 2
0 0 2 2

⎞

⎠ .

The Z2Z4-additive code C6 = C2 ×C4 has length 6 and has parameters (2, 4; 3, 1; 1). Apply-
ing Bound (6) we get

d (C6) � min {2, 4} = 2.

The next example gives a general construction for MDS codes meeting Bound (5) starting
from binary MDS codes.

Example 6 Let C be a binary [n, k, d] MDS code. Applying χ to all but one coordinate gives
a Z2Z4-additive code C with α = 1, β = n − 1, γ = k, δ = 0 and d(C) = 2d − 1. Then

d = n − k + 1 = α + β − γ + 1 so that
⌊

d(C)−1
2

⌋
= ⌊

d − 1
2

⌋ = d − 1 = α + β − (γ + δ)

and meets Bound (5). Of course, this construction works for the even binary code and the
repetition binary code which are the possible binary linear MDS codes with more than one
codeword.

Finally the next example shows an MDSR Z2Z4-additive code C8. From Examples 1 to
5, all of them have binary linear image but our next example has a binary non-linear image.

Example 7 Let C8 be an MDSR Z2Z4-additive code given by following generator matrix.

G8 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0 0 0 0 0 0
0 2 2 0 0 0 0 0
0 2 0 2 0 0 0 0
0 2 0 0 2 0 0 0
0 2 0 0 0 2 0 0
0 1 1 1 0 0 1 0
0 1 0 0 1 1 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The code C8 is of type (1, 7; 5, 2; 1) with d (C8) = 3, it also meets Bound (5). Since
2 (0 1110010) ∗ (0 1001101) /∈ C8, where ∗ denotes the component-wise product, then
from [6] the rank is 10 and therefore; C8 has a binary non-linear image.

5 Conclusions

As a summary, we enumerate the possible maximum distance separable Z2Z4-additive codes
of type (α, β; γ, δ; κ), with β > 0 and γ + 2δ < α + 2β:

1. Repetition codes with two codewords of type (α, β; 1, 0; 1), α > 0; or (0, β; 1, 0; 0) in
the quaternary linear case. These are MDSS codes which are also MDSR if and only if
α ≤ 1. Their minimum distance is α + 2β.
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2. Even codes of type (α, β;α − 1, β;α − 1), α > 0, which are MDSS codes but not
MDSR; or (0, β; 1, β − 1; 0) in the quaternary linear case, which are MDSS and MDSR
codes. In any case, these codes have minimum distance 2.

3. Codes of type (1, β; γ, β − γ ; 1) with minimum distance 3. These are MDSR codes but
not MDSS, except for β = γ = 1, which is a repetition code. Note that, for β > 1 and
γ = 1, it is not possible to have minimum distance 3; otherwise the binary Gray image
would be an MDSS code that does not exist.

4. Quaternary linear codes of type (0, β; γ, β −γ −1; 0) with minimum distance 4. Again,
these are MDSR codes but not MDSS, except for γ = 1 and β = 2, which is a repetition
code. For β �= 2 and γ = 1, it is not possible to have minimum distance 4; otherwise
the binary Gray image would be an MDSS code that does not exist.

5. Codes of type (α, β; γ, α+β−γ ;α), where α ≤ 1 and minimum distance d(C) ≤ 2−α.
These are MDSR codes but not MDSS, except for the case (0, β; 1, β − 1; 0) which is
already included in 2.

In the first two cases, the binary Gray images are linear codes. In Cases 3 and 4, let C be
the binary Gray image of such a code, then C is linear or its linear span has size 2|C |. In
Case 5, the binary Gray images are linear codes.

As a conclusion we have that all MDS Z2Z4-additive codes are zero or one error-correcting
codes with the exception of the trivial repetition codes containing two codewords.
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F2. We use the pure and bordered construction to get self-dual codes starting from the adja-
cency matrices of symmetric and non-symmetric 3-class association schemes.

Keywords: Self-dual codes, association schemes, 3-class association schemes.

1 Introduction

Self-dual codes are an important class of codes both over fields and rings. There are nu-
merous constructions of self-dual codes from combinatorial objects. In [1], self-dual codes
were constructed from two class association schemes. In this paper, we extend that work by
constructing self-dual codes from three class association schemes. We begin with some def-
initions from coding theory and then give some definitions from the theory of association
schemes.

Let C be a binary code. We define the dual code C⊥ as C⊥ = {w | w · v = 0, ∀ v ∈ C}.
The code is said to be self-dual if it is equal to its dual and self-orthogonal if it is contained
in its dual. A self-dual code is Type II if the Euclidean weight of each of its elements is a
multiple of 4. We refer the reader to [3] for a complete description of self-dual codes.
Let X be a finite set, |X| = v. Let Ri be a subset of X ×X , ∀i ∈ I = {0, . . . , d} , d > 0.
We define ℜ = {Ri}i∈I . We say that (X,ℜ) is a d-class association scheme if the following
properties are satisfied:

(i) R0 = {(x, x) : x ∈ X} is the identity relation.
(ii) For every x, y ∈ X , (x, y) ∈ Ri for exactly one i.

(iii) ∀ i ∈ I, ∃ i′ ∈ I such that Rt
i = Ri′ , where Rt

i = {(x, y) : (y, x) ∈ Ri}.
(iv) If (x, y) ∈ Rk, the number of z ∈ X such that (x, z) ∈ Ri and (z, y) ∈ Rj is a constant

pkij .

⋆ This work has been supported by the Spanish MICINN grant MTM2009-08435 and the Catalan
AGAUR grant 2009 SGR1224.
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The values pkij are called intersection numbers. The elements x, y ∈ X are called ith

associates if (x, y) ∈ Ri. If i = i′ for all i then the association scheme is said to be symmetric,
otherwise it is non-symmetric. The association scheme (X,ℜ) is commutative if pkij = pkji,
for all i, j, k ∈ I. Note that a symmetric association scheme is always commutative but the
converse is not true. Higman [2] proved that a d-class association scheme with d ≤ 4 is
always commutative, meaning that pkij = pkji, for all i, j, k ∈ I.

The adjacency matrix Ai for the relation Ri for i ∈ I, is the v × v matrix with rows and
columns labeled by the points of X and defined by

(Ai)x,y =

{
1, if (x, y) ∈ Ri,
0, otherwise.

The conditions (i)-(iv) in the definition of (X,ℜ) are equivalent to:

(i) A0 = I (the identity matrix).
(ii)

∑
i∈I Ai = J (the all-ones matrix).

(iii) ∀ i ∈ I, ∃ i′ ∈ I, such that Ai = At
i′ .

(iv) ∀ i, j ∈ I, AiAj =
∑
k∈I

pkijAk.

If the association scheme is symmetric, then Ai = At
i, for all i ∈ I. If the association

scheme is commutative, then AiAj = AjAi, for all i, j ∈ I. The adjacency matrices generate
a (n+ 1)-dimensional algebra A of symmetric matrices. This algebra is called the Bose-
Mesner algebra.

2 3-class association schemes and self dual codes

Let (X,ℜ) be a 3-class association scheme. The adjacency matrix for R0 is I and the adja-
cency matrices of R1, R2 and R3 are A1, A2 and J − I −A1 −A2, respectively.

Lemma 1. If (X,ℜ) is a 3-class association scheme then the following equations hold:

(i) A1J = JA1 = p011J , A2J = JA2 = p022J .
(ii) A1A2 = A2A1 = p012I + p112A1 + p212A2 + p312 (J − I −A1 −A2).

Note that the number of ones per row (or column) in A1 is p011, A2 is p022 and A3 is p033.

Over F2, we describe the following construction which we shall use in our construction
of self-dual codes. For arbitrary values of r, s, t, u ∈ F2 let

QR (r, s, t, u) = rA0 + sA1 + tA2 + uA3

= rI + sA1 + tA2 + u (J + I +A1 +A2)

= (r + u) I + (s+ u)A1 + (t+ u)A2 + uJ. (1)

We write Q for QR (r, s, t, u). We will define two different methods of constructing self-
dual codes, the pure and bordered construction. The pure construction is

PR(r, s, t, u) = (I | Q). (2)
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The bordered construction is

BR(r, s, t, u) =




1 0 . . . 0 a b . . . b
0
...
0

I

c
...
c

Q


 . (3)

We define the code PR(r, s, t, u) to be the row span over F2 of PR(r, s, t, u) and let
BR(r, s, t, u) be the row span over F2 of BR(r, s, t, u). Both codes are free and have the size
of a self-dual code with the code PR(r, s, t, u) having length 2v and the code BR(r, s, t, u)
having length 2v + 2. Thus to construct a self-dual code we need only make them self-
orthogonal. We write P and B for PR (r, s, t, u) and BR (r, s, t, u), respectively and also P
and B for PR (r, s, t, u)and BR (r, s, t, u), respectively.

3 Self-dual codes from non-symmetric three class association
schemes

Let (X,ℜ) be a 3-class association scheme. If it is non-symmetric then we can order the
relations such that R2 = Rt

1 and R3 is a symmetric relation. The association scheme is
uniquely determined by R1. If we denote the adjacency matrix for R1 by A then the adjacency
matrices of R0, R2 and R3 are I , At and J − I −A−At, respectively.

Lemma 2. If (X,ℜ) is a non-symmetric 3-class association scheme then the following equa-
tions hold:

AJ = JA = κJ,
AAt = AtA = κI + λ (A+At) + µ (J − I −A−At) ,
A2 = αA+ βAt + γ (J − I −A−At) ,

(4)

where κ = p012 = p021, λ = p112 = p121, µ = p312 = p321, α = p111, β = p211 and γ = p311.
Moreover, α = λ and κ is the number of ones at each row and at each column of A.

Related to (X,ℜ) we have the parameters v, κ, λ, µ, α, β and γ as in Equation (4). For
the code P to be self-orthogonal we need

(I | Q)(I | Q)T = 0.

Namely we need QQT = I.
For the pure construction to give a Type II code we need the inner product of any row

with itself to be 0 (mod 4), that is we need

1 + r + sκ+ tκ+ u(v + 1) ≡ 0 (mod 4).

For B to be self-dual we need the following:

1 + a+ vb = 0 (5)
ac+ b [r + sκ+ tκ+ u(v + 1)] = 0 (6)

I + cJ +QQT = 0. (7)
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The first equation is the inner-product of the top row with itself. The second is the inner-
product of the top row with any other row, and the third ensures that the other rows are or-
thogonal to each other. Computing QQt for the non-symmetric three class association scheme
we obtain:

QQT = [r + u+ (s+ t)(κ+ µ)] I

+ [(s+ t)(r + u+ λ+ µ) + (s+ u)(t+ u)(λ+ β)] (A+AT )

+ [(s+ t)µ+ uv] J.

Theorem 3. Let C be the binary linear code generated by P with parameters v, κ, λ, µ, α,
β and γ. The code C is self-dual if and only if one of the following holds:

(i) s 6= t; κ 6= λ = r + u+ µ; µ = uv.
(ii) s = t; r = u; s = u or λ = β; uv = 0.

Corollary 4. Let C be the binary linear code generated by P . The code C is Type II if and
only if one of the following holds:

(i) Q = wI +D, µ = λ+ w = 0, λ 6= κ and a+ κ ≡ 3 (mod 4); or
(ii) Q = wI +D + J , µ = λ+ w = v, λ 6= κ and 1 + v ≡ κ+ w (mod 4); or

(iii) Q = I +A+AT ; λ = β and κ is odd; or
(iv) Q = I +A+AT + J; λ = β and v is even; or
(v) Q = I + J and v ≡ 0 (mod 4).

Where w ∈ {0, 1}, D stands for A or AT .

For b = 0 we will always have a code, generated by B, with minimum weight 2 which
does not lead to any interesting results, hence we confine ourselves to codes generated by B
for b = 1.

Theorem 5. Let C be the binary linear code generated by B with parameters v, κ, λ, µ, α,
β, γ, a, c and b = 1. The code C is self-dual if and only if a = 0, c = v = 1 and one of the
following holds:

(i) s 6= t; r = κ 6= λ, µ 6= u.
(ii) s = t; r = 0, u = 1, (t+ u)(λ+ β) = 0.

Corollary 6. Let C be a binary self-dual code generated by B, with b = 1. The code C is
Type II if and only if one of the following conditions holds:

(i) Q = D, with a = 0, v ≡ 3, κ ≡ 2, µ ≡ 1, c = 1 and λ ≡ 1; or
(ii) Q = I +D + J , with a = 0, v ≡ 3, κ ≡ 0, µ ≡ 0, c = 1 and λ ≡ 1.; or

(iii) Q = I +D, with a = 0, v ≡ 3, κ ≡ 1, µ ≡ 1, c = 1 and λ ≡ 0; or
(iv) Q = D + J , with a = 0, v ≡ 3, κ ≡ 3, µ ≡ 0, c = 1 and λ ≡ 0.
(v) Q = I +A+At + J with a = 0, v ≡ 1, κ is even, c = 1 and λ+ β ≡ 0.

(vi) Q = I + J with a = 0, v ≡ 1 and c = 1.

Where D stands for A or AT and the congruences are modulo 4.
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4 Self-dual codes from symmetric three class association schemes

For symmetric three class association schemes, the number of equations and parameters in-
crease, so for the sake of simplicity we focus on a particular example. Consider the rectangu-
lar scheme n ×m (n,m ≥ 2) which is defined as follows. Consider two sets A and B with
|A| = n ≥ 2 and |B| = m ≥ 2. Let X = A×B and define the binary relations over X:

R0 =
{
((x, y) , (x, y)) ∈ X2

}
;

R1 =
{
((x, y) , (x, y′)) ∈ X2

∣∣ y 6= y′} ;
R2 =

{
((x, y) , (x′, y)) ∈ X2

∣∣x 6= x′} ;
R3 =

{
((x, y) , (x′, y′)) ∈ X2

∣∣x 6= x′ and y 6= y′} .
(X,ℜ) is a symmetric 3-class association scheme with parameters:

v = nm; p011 = m− 1; p022 = n− 1; p033 = (m− 1) (n− 1) ;
p111 = m− 2; p123 = p132 = n− 1; p133 = (n− 1) (m− 2) ;
p213 = p231 = m− 1; p222 = n− 2; p233 = (n− 2) (m− 1) ;
p312 = p321 = 1; p331 = p313 = m− 2; p223 = p232 = n− 2 = p333 = (n− 2) (m− 2) ;
and pkij = 0, for all other cases.

Lemma 7. If (X,ℜ) is a n×m symmetric rectangular association scheme, then the following
equations hold:

(i) A1J = JA1 = (m− 1) J , A2J = JA2 = (n− 1) J , J2 = n2m2J;
(ii) A2

1 = (m− 1) I + (m− 2)A1; A2
2 = (n− 1) I + (n− 2)A2;

(iii) A1A2 = A2A1 = A3 = J − I −A1 −A2.

For the code P to be self-orthogonal we need QQT = I as previously. For B to be
self-dual we need the following:

1 + a+ nmb = 0 (8)
ac+ b [r + s(m+ 1) + t(n+ 1) + u(m+ 1)(n+ 1)] = 0 (9)

I + cJ +QQT = 0. (10)

The first equation is the inner-product of the top row with itself. The second is the inner-
product of the top row with any other row, and the third ensures that the other rows are
orthogonal to each other. Computing QQt for the rectangular association scheme we obtain:

QQT = Q2

= [(r + u) + (s+ u) (m+ 1) + (t+ u) (n+ 1)] I

+ [(s+ u)m]A1 + [(t+ u)n]A2 + unmJ.

Theorem 8. Let C be a binary linear code generated by P . The code C is self-dual if r +
s+ t+ u = 1 and

(i) If m is even and n is odd then C is self-dual whenever r 6= s.
(ii) If n is even and m is odd then C is self-dual whenever r 6= t.
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(iii) If m and n are odd then C is self-dual whenever r = 1, s = t = u = 0.

Where all operations are over F2

Again we only consider cases where b = 1 in B.

Theorem 9. Let C be a binary linear code generated by B, with b = 1. The code C is
self-dual if and only if

Q = I + J, a = 0, c = 1

with m and n odd. Moreover the code C is Type II if and only if nm ≡ 3 (mod 4).
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Barcelona, 08193-Bellaterra (Spain).
mbilal,jborges,cfernandez@deic.uab.cat

Abstract. 3-class association schemes are used to construct self-dual codes over
several rings. We have used the pure and bordered construction to get self-dual codes
over Zk. We completely determine the values of k so that we can obtain such self-dual
codes from the adjacency matrices of 3-class rectangular association schemes.

Key words: Association schemes, symmetric association schemes, rectangular asso-
ciation schemes, self-dual codes.

1 Introduction

Self-dual codes are an important class of codes over both fields and rings.
There are various constructions available to generate self-dual codes from
combinatorial objects. In [1], self-dual codes were constructed from 2-class
association schemes. In [4], binary self-dual codes were constructed from
non-symmetric 3-class association schemes and from rectangular association
schemes in the case of symmetric 3-class association schemes. In this paper,
we construct self-dual codes from 3-class rectangular association schemes over
Zk. We begin with some definitions from coding theory and then give some
definitions from the theory of association schemes.

Let R denote a finite commutative ring with identity. A code of length
n over R is a subset of Rn and the code is said to be linear if it is an
R−submodule of Rn.

We define the dual code C⊥ of a code C with respect to the usual inner
product, that is C⊥ = {w | w ·v = 0, ∀ v ∈ C}. The code is said to be self-dual
if it is equal to its dual and self-orthogonal if it is contained in its dual. We
refer the reader to [2] for a complete description of self-dual codes.

? This work has been supported by the Spanish MICINN grants MTM2009-08435 and
PCI2006-A7-0616 and the Catalan AGAUR grant 2009 SGR1224.
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Let X be a finite set, |X| = v. Let Ri be a subset of X × X, ∀i ∈ I =
{0, . . . , d} , d > 0. We define < = {Ri}i∈I . We say that (X,<) is a d-class
association scheme if the following properties are satisfied:

(i) R0 = {(x, x) : x ∈ X} is the identity relation.
(ii) For every x, y ∈ X, (x, y) ∈ Ri for exactly one i.
(iii) ∀ i ∈ I, ∃ i′ ∈ I such that RTi = Ri′ , where RTi = {(x, y) : (y, x) ∈ Ri}.
(iv) If (x, y) ∈ Rk, the number of z ∈ X such that (x, z) ∈ Ri and (z, y) ∈ Rj

is a constant pkij .

The values pkij are called intersection numbers. The elements x, y ∈ X are

called ith associates if (x, y) ∈ Ri. If i = i′ for all i then the association scheme
is said to be symmetric, otherwise it is non-symmetric. The association scheme
(X,<) is commutative if pkij = pkji, for all i, j, k ∈ I. Note that a symmetric
association scheme is always commutative but the converse is not true.

The adjacency matrix Ai for the relation Ri for i ∈ I, is the v × v matrix
with rows and columns labeled by the points of X and defined by

(Ai)x,y =

{
1, if (x, y) ∈ Ri,
0, otherwise.

The conditions (i)-(iv) in the definition of (X,<) are equivalent to:

(i) A0 = I (the identity matrix).
(ii)

∑
i∈I Ai = J (the all-ones matrix).

(iii) ∀ i ∈ I,∃ i′ ∈ I, such that Ai = ATi′ .
(iv) ∀ i, j ∈ I, AiAj =

∑
k∈I

pkijAk.

If the association scheme is symmetric, then Ai = ATi , for all i ∈ I. If the
association scheme is commutative, then AiAj = AjAi, for all i, j ∈ I. The
adjacency matrices generate a (n+ 1)-dimensional algebra A of symmetric
matrices. This algebra is called the Bose-Mesner algebra.

Higman [3] proved that a d-class association scheme with d ≤ 4 is always
commutative.

2 Self-dual codes from 3-class association schemes

Let (X,<) be a 3-class association scheme. The adjacency matrix for R0 is I
and the adjacency matrices for R1, R2 and R3 are A1, A2 and J−I−A1−A2,
respectively.

Lemma 1. If (X,<) is a 3-class association scheme then the following equa-
tions hold.

A1J = JA1 = p011J,A2J = JA2 = p022J ;
A1A2 = A2A1 = p012I + p112A1 + p212A2 + p312 (J − I −A1 −A2) .
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Note that the number of ones per row (or column) in A1 is p011, A2 is p022
and A3 is p033.

Let A0, A1, A2, A3 be the adjacency matrices of (X,<). Given a ring R of
characteristic m, we describe the following construction which we shall use in
our construction of self-dual codes. For arbitrary values of r, s, t, u ∈ R let

QR (r, s, t, u) = rA0 + sA1 + tA2 + uA3

= rI + sA1 + tA2 + u (J − I −A1 −A2)

= (r − u) I + (s− u)A1 + (t− u)A2 + uJ. (1)

We write Q for QR (r, s, t, u). We define two different methods of con-
structing self-dual codes, the pure and bordered construction. In both cases,
the generator matrices are defined by using the matrix Q. In the pure con-
struction, the generator matrix is

PR(r, s, t, u) = (I | Q). (2)

In the bordered construction the generator matrix is

BR(r, s, t, u) =




1 0 . . . 0 a b . . . b

0
...
0

I

c
...
c

Q


 . (3)

Codes generated by PR(r, s, t, u) and BR(r, s, t, u) are free and have length
2v and 2v + 2, respectively. Thus, to construct a self-dual code we need only
make it self-orthogonal.

For the code generated by PR(r, s, t, u) to be self-orthogonal we need

(I | Q)(I | Q)T = 0.

Namely, we need QQT = −I.
For the code generated by BR(r, s, t, u) to be self-dual we need the follow-

ing:

1 + a2 + vb2 = 0; (4)

ac+ b(r + sκ+ tκ+ u(v − 2κ− 1)) = 0; (5)

I + c2J +QQT = 0. (6)

The first equation is the inner product of the top row with itself. The second
is the inner product of the top row with any other row, and the third ensures
that the other rows are orthogonal to each other.

We write P and B for PR (r, s, t, u) and BR (r, s, t, u) respectively.
In [4], a generation of binary self-dual codes from non-symmetric 3-class

association schemes was studied along with the binary self-dual codes from
3-class rectangular association scheme. In this paper, we study the generation
of self-dual codes from 3-class rectangular association schemes over Zk.
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3 Self-dual codes from rectangular association schemes

Let (X,<) be a 3-class association scheme. The case of binary non-symmetric
3-class association schemes was studiend in [4]. If the 3-class association
scheme is symmetric, then the number of conditions and equations increase
when generating self-dual codes from 3-class association schemes over Zk, for
k ≥ 2. Therefore, we limit ourselves to the rectangular association scheme
n×m (n,m ≥ 2) which is defined as follows.

Consider two sets A and B with |A| = n ≥ 2 and |B| = m ≥ 2. Let
X = A×B and define the binary relations over X:

R0 =
{

((x, y) , (x, y)) ∈ X2
}

;

R1 =
{(

(x, y) ,
(
x, y′

))
∈ X2

∣∣ y 6= y′
}

;

R2 =
{(

(x, y) ,
(
x′, y

))
∈ X2

∣∣x 6= x′
}

;

R3 =
{(

(x, y) ,
(
x′, y′

))
∈ X2

∣∣x 6= x′ and y 6= y′
}
.

(X,<) is a symmetric 3-class association scheme with parameters:

v = nm, p011 = m− 1; p022 = n− 1; p033 = (m− 1) (n− 1) ;
p111 = m− 2; p123 = p132 = n− 1; p133 = (n− 1) (m− 2) ;
p213 = p231 = m− 1; p222 = n− 2; p233 = (n− 2) (m− 1) ;
p312 = p321 = 1; p331 = p313 = m− 2; p223 = p232 = n− 2 = p333 = (n− 2) (m− 2) ;
and pkij = 0, for all other cases.

Lemma 2. If (X,<) is a n × m rectangular association scheme, then the
following equations hold:

A1J = JA1 = (m− 1) J,A2J = JA2 = (n− 1) J, J2 = n2m2;
A2

1 = (m− 1) I + (m− 2)A1, A
2
2 = (n− 1) I + (n− 2)A2;

A1A2 = A2A1 = A3 = J − I −A1 −A2.

Proof. The proof follows by applying Lemma 1 to a rectangular association
scheme. ut

Using Lemma 2 and Equation (1) we obtain:

QQT = Q2

=
[
(r − u)2 + (s− u)2 (m− 1) + (t− u)2 (n− 1)− 2 (s− u) (t− u)

]
I

+
[
2 (r − u) (s− u) + (s− u)2 (m− 2)− 2 (s− u) (t− u)

]
A1

+
[
2 (r − u) (t− u) + (t− u)2 (n− 2)− 2 (s− u) (t− u)

]
A2

+ [u
[
2 (r − u) + 2 (s− u) (m− 1) + 2 (t− u) (n− 1) + un2m2

]

+ 2 (s− u) (t− u)]J.

(7)
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Let ρ = r − u, σ = s− u and τ = t− u. We can write Equation (7) as

Q2 =
[
ρ2 + σ2 (m− 1) + τ2 (n− 1)− 2στ

]
I

+
[
2ρσ + σ2 (m− 2)− 2στ

]
A1

+
[
2ρτ + τ2 (n− 2)− 2στ

]
A1

+
[
u
[
2ρ+ 2σ (m− 1) + 2τ (n− 1) + un2m2

]
+ 2στ

]
J.

(8)

For the code generated by P to be self-orthogonal we need

ρ2 + σ2 (m− 1) + τ2 (n− 1)− 2στ = −1,

2ρσ + σ2 (m− 2)− 2στ = 0,

2ρτ + τ2 (n− 2)− 2στ = 0,

u
[
2ρ+ 2σ (m− 1) + 2τ (n− 1) + un2m2

]
+ 2στ = 0.

(9)

and, for a code generated by B to be self-orthogonal, along with Equations
(4) and (5), we need

ρ2 + σ2 (m− 1) + τ2 (n− 1)− 2στ = −1;

2ρσ + σ2 (m− 2)− 2στ = 0;

2ρτ + τ2 (n− 2)− 2στ = 0;

u
[
2ρ+ 2σ (m− 1) + 2τ (n− 1) + un2m2

]
+ 2στ = −c2.

(10)

Theorem 1. Let C be a code generated from a n × m rectangular associ-
ation scheme over Zk by using the pure or the bordered construction. Let
k = 2α0pα1

1 · · · pα
r

r be the prime factor decomposition of k. If C is a self-dual
code, then

α0 ≤ 1 and pi ≡ 1 (mod 4) ∀i = 1, . . . , r. (11)

Moreover, if (11) is satisfied, then there exist values of n and m such that C
is a self-dual code.

Proof. Assume that C is a self-dual code. Thus, Equations (9) or (10) are
satisfied over Zk. Note that the first three equations are the same in both
cases. From these three equations, it is easy to obtain (ρ − σ − τ)2 ≡ −1
(mod k). Hence, −1 is a quadratic residue modulo k and, using classical results
of number theory, it follows (11).

If (11) is satisfied, then we can take the following values:
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m ≡ 1 (mod k);

n ≡ 2 (mod k);

ρ2 ≡ −1 (mod k);

τ ≡ 0 (mod k);

σ ≡ 2ρ (mod k).

With these values, the first three equations in (9) or (10) are satisfied. The
fourth equation becomes:

2u(ρ+ 2u) ≡ 0 (mod k), or 2u(ρ+ 2u) ≡ −c2 (mod k);

respectively in (9) or (10). Clearly, the equation has solutions in both cases.
It is also straightforward to find solutions for the Equations (4) and (5), as
we can see in the following example. ut

Example 1. Consider the 3-class rectangular association scheme with n = 2
and m = 6. The parameters are:

p011 = 5; p022 = 1; p033 = 5;
p111 = 4; p123 = p132 = 1; p133 = 4;
p213 = p231 = 5; p222 = 0; p233 = 0;
p312 = p321 = 1; p331 = p313 = 4; p223 = p232 = 0 = p333 = 0;
and pkij = 0 for all other cases.

The adjacency matrices are:

A0 = I, A1 =




0 1 1 1 1 1 0 0 0 0 0 0
1 0 1 1 1 1 0 0 0 0 0 0
1 1 0 1 1 1 0 0 0 0 0 0
1 1 1 0 1 1 0 0 0 0 0 0
1 1 1 1 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 1 1 1 0 1 1
0 0 0 0 0 0 1 1 1 1 0 1
0 0 0 0 0 0 1 1 1 1 1 0




,
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A2 =




0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0




, A3 =




0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 1 1 1 0 1 1
0 0 0 0 0 0 1 1 1 1 0 1
0 0 0 0 0 0 1 1 1 1 1 0
0 1 1 1 1 1 0 0 0 0 0 0
1 0 1 1 1 1 0 0 0 0 0 0
1 1 0 1 1 1 0 0 0 0 0 0
1 1 1 0 1 1 0 0 0 0 0 0
1 1 1 1 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0




.

The code C generated by P, with Q = 2I + 4A1, is a self-dual code over
Z5.

We can generate two self-dual codes over Z5 with B, using Q = 2I + 4A1

with a ≡ 2 (mod 5) or a ≡ 3 (mod 5) along with b ≡ c ≡ 0 (mod 5).
Note that ρ2 ≡ −1 (mod k), τ ≡ 0 (mod k) and σ ≡ 2ρ (mod k) in this

example.
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Abstract—Following [5], given a Z2Z4-additive self-dual code,
one can easily extend this code and generate an extended Z2Z4-
additive self-dual code with greater length. In this communica-
tion we study these constructions and check if properties like
separability and code Type are retained or not.

Keywords-Self-dual codes, Z2Z4-additive codes, separability.

I. INTRODUCTION

We denote by Z2 and Z4 the ring of integers modulo 2 and
modulo 4, respectively. A binary linear code is a subspace of
Zn2 . A quaternary linear code is a subgroup of Zn4 .

In [3] Delsarte defines additive codes as subgroups of the
underlying abelian group in a translation association scheme.
For the binary Hamming scheme, the only structures for the
abelian group are those of the form Zα2 ×Zβ4 , with α+2β = n
[2]. Thus, the subgroups C of Zα2 × Zβ4 are the only additive
codes in a binary Hamming scheme which were first defined
in [6] and then later deeply studied in [1].

As in [4] and [1], we define an extension of the usual Gray
map. We define Φ : Zα2 × Zβ4 −→ Zn2 , where n = α + 2β,
given by Φ(x,y) = (x, φ(y1), . . . , φ(yβ)) for any x ∈ Zα2
and any y = (y1, . . . , yβ) ∈ Zβ4 , where φ : Z4 −→ Z2

2 is the
usual Gray map, that is, φ(0) = (0, 0), φ(1) = (0, 1), φ(2) =
(1, 1), φ(3) = (1, 0).

Since C is a subgroup of Zα2 × Zβ4 , it is also isomorphic to
an abelian structure Zγ2×Zδ4. Therefore, C is of type 2γ4δ as a
group, it has |C| = 2γ+2δ codewords and the number of order
two codewords in C is 2γ+δ . Let X (respectively Y ) be the
set of Z2 (respectively Z4) coordinate positions, so |X| = α
and |Y | = β. Unless otherwise stated, the set X corresponds
to the first α coordinates and Y corresponds to the last β
coordinates. Call CX (respectively CY ) the punctured code of
C by deleting the coordinates outside X (respectively Y ). Let

This work has been supported by the Spanish MICINN grants MTM2009-
08435 and PCI2006-A7-0616 and the Catalan AGAUR grant 2009 SGR1224.

Cb be the subcode of C which contains all order two codewords
and let κ be the dimension of (Cb)X , which is a binary linear
code. For the case α = 0, we will write κ = 0. Considering
all these parameters, we will say that C, or equivalently C =
Φ(C), is of type (α, β; γ, δ;κ).

Definition 1: Let C be a Z2Z4-additive code, which is a
subgroup of Zα2 ×Zβ4 . We say that the binary image C = Φ(C)
is a Z2Z4-linear code of binary length n = α + 2β and type
(α, β; γ, δ;κ), where γ, δ and κ are defined as above.

The generator matrix for a Z2Z4-additive code C of type
(α, β; γ, δ;κ) can be written in the following standard form
[1]:

GS =




Iκ T ′ 2T2 0 0
0 0 2T1 2Iγ−κ 0
0 S′ S R Iδ


 ,

where T ′, T1, T2, R, S
′ are matrices over Z2 and S is a matrix

over Z4. Let 0 be the all-zero vector or matrix. The dimension
of these vectors or matrices will be clear from the context.

The Hamming weight of a vector vX ∈ Zα2 is the number
of its nonzero coordinates and it is denoted by wtH(vX).
The Hamming distance between two vectors vX ,uX ∈ Zα2
is the number of coordinates in which vX and uX differ
from one another, and it is denoted by dH(vX ,uX). The
Lee weights of 0, 1, 2, 3 ∈ Z4 are 0, 1, 2, 1 respectively.
The Lee weight of a vector vY = (v1, . . . , vβ) ∈ Zβ4
is then wL (vY ) =

∑
i

wL (vi). The Lee Distance between

vY ,uY ∈ Zβ4 is dL(vY ,uY ) = wtL(vY − uY ). For a vector
v = (vX ,vY ) ∈ Zα2 × Zβ4 , define the weight of v, denoted
by wt(v), as wtH(vX) + wtL(vY ) and for v,u ∈ Zα2 × Zβ4
define the distance as d(v,u) = wt(v − u).

The map Φ is an isometry which transforms distances in
Zα2 × Zβ4 to Hamming distances in Zα+2β

2 .



In [1], the following inner product is defined for any two
vectors u,v ∈ Zα2 × Zβ4 :

[u,v] = 2(
α∑

i=1

uivi) +

α+β∑

j=α+1

ujvj ∈ Z4.

The Z2Z4-additive dual code of C, denoted by C⊥, is
defined in the standard way

C⊥ = {v ∈ Zα2 × Zβ4 | [u,v] = 0 for all u ∈ C}.
If C = C⊥, then we say that C is a self-dual code. If C ⊆ C⊥,
meaning all vectors are orthogonal to each other, then we say
that C is self-orthogonal. If C = φ(C), the binary code Φ(C⊥)
is denoted by C⊥ and called the Z2Z4-dual code of C. Z2Z4-
additive self-dual codes were studied in [5].

Let C be a Z2Z4-additive code. If C = CX × CY , then C is
called separable. If C is a separable Z2Z4-additive code, then
the generator matrix of C in standard form is

GS =




Iκ T ′ 0 0 0
0 0 2T1 2Tγ−κ 0
0 0 S R Iδ


 .

Definition 2: A binary code C is antipodal if for any
codeword c ∈ C, we have c+ 1 ∈ C. If C is a Z2Z4-additive
code then we say that C is antipodal if Φ(C) is antipodal,
where Φ(C) is the binary image of C.

Definition 3: If a Z2Z4-additive self-dual code has odd
weights, then it is said to be of Type 0. If the code has only
even weights then we say that the code is of Type I and if the
code has only doubly even weights then it is a Type II code.

In [5] it is proven that if C is a Z2Z4-additive self-dual code
then the following statements hold:
(i) C is antipodal if and only if C is Type I or Type II.

(ii) If C is separable then C is antipodal.
Therefore a Type 0 code is non-antipodal and non-separable.

A Type I or Type II code is antipodal and separable or non-
separable.

Theorem 1: [5] Let C be a Z2Z4-additive self-dual code of
type (α, β; γ, δ;κ) with α, β > 0.
(i) If C is Type 0, then α ≥ 2, β ≥ 2.

(ii) If C is Type I and separable, then α ≥ 2, β ≥ 1.
(iii) If C is Type I and non-separable, then α ≥ 4, β ≥ 4.
(iv) If C is Type II , then α ≥ 8, β ≥ 4.

The following table combines all the results given above for
Type 0, I and II codes.

II. CONSTRUCTION TECHNIQUE: EXTENDING THE
LENGTH

The construction technique that is described below is from
[5]. In [5] examples are given for all the minimum values of α
and β that are given in Table I. In this paper we shall extend
Z2Z4-additive self-dual codes retaining the original properties
like the type of the code and separability.

Let C be a Z2Z4-additive self-dual code of type
(α, β; γ, δ;κ) and let v ∈ Zα2 × Zβ4 with v /∈ C. We

Type 0 Type I Type II
separable/ separable/ separable/

non-separable non-separable non-separable non-separable
antipodality non-antipodal antipodal antipodal

separable - α = 2 + 2a α = 8 + 8a
α, β; a, b > 0 - β = 1 + b β = 4 + 4b

non-separable α = 2 + 2a α = 4 + 2a α = 8 + 8a
α, β; a, b > 0 β = 2 + b β = 4 + b β = 4 + 4b

TABLE I
POSSIBLE VALUES OF α AND β

define Cv = {u ∈ C| [u,v] = 0}. It is immediate that Cv is
a subgroup of C and that the index [C : Cv] is either 2 or 4.
In either case we have [C : Cv] = [C⊥v : C] and C⊥v = 〈C,v〉.
Let w be a vector such that C = 〈Cv,w〉. We can then write
C⊥v = 〈C,v,w〉. We shall form a code C̄ by extending the
code C = C⊥v in the following manner.

For u = (uX ,uY ) ∈ C⊥v we let ū = (u′X ,uX ,uY ,u
′
Y )

where u′X is an extension of the binary part and u′Y is an
extension of the quaternary part. Then let C̄ =

〈
ū|u ∈C⊥v

〉
.

We shall choose u′X and u′Y such that C̄ is a self-orthogonal
code. We denote by α′ the length of u′X and by β′ the length
of u′Y . If C̄ is not self-dual we may need to add more vectors
to the code. In all cases we let u′X and u′Y be 0 if u ∈ Cv
and we denote by C̄v the extension of Cv. Since C = 〈Cv,w〉,
we denote C̄ = 〈C̄v, w̄〉.

Theorem 2: [5] If C is a Z2Z4-additive code of type
(α, β; γ, δ;κ) and v /∈ C. Let w, Cv be as before and
C = C⊥v = 〈C,v,w〉. There exists a Z2Z4-additive self-dual
code D = 〈C̄, V 〉 of type (α+α′, β+β′; γ′, δ′;κ′), for some
set of vectors V with the following conditions :
(i) α′ 6= 0 and β′ = 0 only if [v,w] = 2 and [v,v] ∈ {0, 2}.

(ii) α′ = 0 and β′ 6= 0 only if [v,w] = 2 or [v,w] ∈ {1, 3}
and [v,v] ∈ {1, 3}.

(iii) α′ 6= 0 and β′ 6= 0.
Let C be a Z2Z4-additive code and v 6∈ C. We define

oC(v) = |〈C,v〉|/|C|. Note that oC(v) is not the order of v.
In fact, oC(v) ∈ {2, 4} and oC(v) = 2 if and only if 2v ∈ C.
Similarly, for a set of vectors V such that V ∩ C = ∅, we
define oC(V ) = |〈C, V 〉|/|C|. Note that, by definition, if C is
a Z2Z4-additive self-dual code, v 6∈ C and w ∈ C such that
C = 〈Cv,w〉, then

oCv(w) = [C : Cv], (1)

and, by definition of C⊥v ,

oC(v) = [C⊥v : C] = [C : Cv]. (2)

Lemma 1: [5] Let C ⊂ Zα2 × Zβ4 be an additive self-dual
code, v and w as above and C = C⊥v = 〈Cv,w,v〉. Then
C̄ is a self-orthogonal code and we can construct a set V of
self-orthogonal vectors so that 〈C̄, V 〉 is self-dual if and only
if

oC̄(V ) =

√
2α′+2β′

oC̄(v̄)
(
oC̄v(w̄)/oCv(w)

) . (3)

If oC̄(V ) = 1, then V = ∅ and C̄ is self-dual.



A. Examples of Codes for minimum values of α and β

The following generator matrices generate Z2Z4-additive
self-dual codes for the minimum values of α and β taken
from Table I.

The code C1 generated by the matrix G1 is a Z2Z4-additive
self-dual code of type (2, 2; 1, 1; 1). The code has vectors with
odd weight, hence it is a Type 0 code, and therefore it is non-
separable.

G1 =

(
1 1 2 0
0 1 1 1

)
.

The code C2 generated by the matrix G2 is a Z2Z4-additive
self-dual code of type (2, 1; 2, 0; 1). The code C2 is a separable
Type I code.

G2 =

(
1 1 0
0 0 2

)
.

The code C3 generated by the matrix G3 is a Z2Z4-additive
self-dual code of type (4, 4; 4, 1; 2). The code C3 is a non-
separable Type I code.

G3 =




1 1 1 1 0 0 0 0
0 1 0 1 2 0 0 0
0 1 0 1 0 2 0 0
0 1 0 1 0 0 2 0
0 0 1 1 1 1 1 1



.

Let CH be the extended binary Hamming code of length 8
with generator matrix

GH =




1 1 1 0 0 0 0 1
1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1
1 1 0 1 0 0 1 0


 .

The code CH is a binary self-dual code. Let D be the
quaternary linear code generated by

GD =




2 2 0 0
2 0 2 0
1 1 1 1


 .

The code D is a quaternary self-dual code. Since both codes
CH and D have doubly even weights we can generate a Z2Z4-
additive code C4 = C ×D which will be a Type II separable
code. The code C4 is of type (8, 4; 6, 1; 4) and it is generated
by

G4 =

(
GH 0
0 GD

)
.

Finally, the code C5 generated by the matrix G5 is a Z2Z4-
additive self-dual code of type (8, 4; 6, 1; 4). The code C5 is a
non-separable Type II code.

G5 =




1 0 0 1 0 1 1 0 0 0 0 0
0 1 0 0 1 1 1 0 0 0 0 0
0 0 1 0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 0 2 0 0 0
0 0 0 0 0 1 1 0 0 2 0 0
0 0 0 0 0 1 1 0 0 0 2 0
0 0 0 1 1 0 1 1 1 1 1 1




B. Extending a Z2Z4-additive self-dual Type 0 code

Let C be a Z2Z4-additive self-dual code of Type 0. By
Table I, the possible values of α and β are α = 2 + 2a and
β = 2+b, a, b ≥ 0. We shall extend the binary coordinate first.
Let v /∈ C be such that [v,v] = 2 and we select w ∈ C\Cv
such that [v,w] = 2. Define v′X = (0, 1) and w′X = (1, 1).
By Lemma 1, oC̄(V ) = 1 and hence V = ∅. By using
the technique described before, we can extend the code C of
type (α, β; γ, δ;κ) and obtain a new Z2Z4-additive self-dual
code C̄ which is of type (α + 2, β; γ′, δ′;κ′). The new code
generated is of Type 0 and therefore non-separable.

Example 1: Take the Z2Z4-additive self-dual code C1 gen-
erated by G1. We can extend the binary coordinates by
selecting v = (0, 1 0, 0) and w = (0, 1 3, 3) along with the
v′X and w′X given above. The extended Z2Z4-additive self-
dual code C̄1 with generator matrix Ḡ1 has type (4, 2; 2, 1; 2).
It is non-separable and is of Type 0.

Ḡ1 =




0 0 1 0 1 3
1 1 0 1 3 3
0 1 0 1 0 0


 .

Next we extend the quaternary coordinates. Let v /∈ C
be such that [v,v] = 2 and we select w ∈ C\Cv such
that [v,w] = 2. Define v′Y = (1, 1) and w′Y = (2, 0).
By Lemma 1, oC̄(V ) = 1 and hence V = ∅. By using
the technique described before, we can extend the code C of
type (α, β; γ, δ;κ) and obtain a new Z2Z4-additive self-dual
code C̄ which is of type (α, β + 2; γ′, δ′;κ′). The new code
generated is of Type 0 and therefore non-separable and non-
antipodal.

Example 2: Take the Z2Z4-additive self-dual code C1 gen-
erated by G1. We can extend the quaternary coordinates by
selecting v = (0, 1 0, 0) and w = (0, 1 3, 3) along with the
v′Y and w′Y given above. The extended Z2Z4-additive self-
dual code C̄1 with generator matrix Ḡ1 has type (2, 4; 1, 2; 1).
It is non-separable and is of Type 0.

Ḡ1 =




1 0 1 3 0 0
0 1 3 3 2 0
0 1 0 0 1 1


 .

C. Extending a Z2Z4-additive self-dual Type I code

Let C be a Z2Z4-additive self-dual code of Type I . By Table
I, the possible values of α and β for separable codes are α =
2 + 2a and β = 1 + b, a, b ≥ 0, and for non-separable codes
are α = 4 + 2a and β = 4 + b, a, b ≥ 0.



We start by extending the binary coordinates first. Let v /∈ C
such that [v,v] = 2 and we select w ∈ C\Cv such that
[v,w] = 2. Define v′X = (0, 1) and w′X = (1, 1). By
Lemma 1, oC̄(V ) = 1 and hence V = ∅. By using the
technique described earlier we can extend the code C of type
(α, β; γ, δ;κ) and obtain a new Z2Z4-additive self-dual code
C̄ which is of type (α+ 2, β; γ′, δ′;κ′).

Example 3: Take the Z2Z4-additive self-dual code C2 gen-
erated by G2. We can extend the binary coordinates by
selecting v = (1, 0 2) and w = (1, 1 0) along with the v′X
and w′X given above. The extended Z2Z4-additive self-dual
code C̄2, with generator matrix Ḡ2, obtained by extending the
binary coordinates of C2 has type (4, 1; 3, 0; 2). It is separable
and is of Type I .

Ḡ2 =




0 0 0 0 2
0 1 1 0 2
1 1 1 1 0


 .

Take the Z2Z4-additive self-dual code C3 generated by
G3. We can extend the binary coordinates by selecting v =
(0, 1, 0, 0, 1, 1, 1, 1) and w = (1, 0, 1, 0 2, 0, 0, 0) along
with the v′X and w′X given above. The extended Z2Z4-additive
self-dual code C̄3, with generator matrix Ḡ3, obtained by
extending the binary coordinates of C3 has type (6, 4; 5, 1; 3).
It is non-separable and is of Type I

Ḡ3 =




0 0 0 1 0 1 2 0 0 0
0 0 0 1 0 1 0 2 0 0
0 0 0 1 0 1 0 0 2 0
0 0 0 0 1 1 1 1 1 1
1 1 1 0 1 0 2 0 0 0
0 1 0 1 0 0 1 1 1 1



.

Now we extend the quaternary part. Let v /∈ C such that
[v,v] = 2 and we select w ∈ C\Cv such that [v,w] = 2.
Define v′Y = (1, 1) and w′Y = (2, 0). By Lemma 1, oC̄(V ) =
1 and hence V = ∅. By using the technique described earlier
we can extend the code C of type (α, β; γ, δ;κ) and obtain a
new Z2Z4-additive self-dual code C̄ which is of type (α, β+
2; γ′, δ′;κ′).

Example 4: Take the Z2Z4-additive self-dual code C2 gen-
erated by G2. We can extend the quaternary coordinates by
selecting v = (1, 0 2) and w = (1, 1 0) along with the
v′Y and w′Y given above. When we extend the quaternary
coordinates of C2 we get a Z2Z4-additive self-dual code C̄2

matrix Ḡ2 of type (2, 3; 2, 1; 1). It is separable and is of Type
I .

Ḡ2 =




0 0 2 0 0
1 0 2 1 1
1 1 0 2 0


 .

Take the Z2Z4-additive self-dual codes C3 generated by
G3. We can extend the quaternary coordinates by selecting
v = (0, 1, 0, 0, 1, 1, 1, 1) and w = (1, 0, 1, 0 2, 0, 0, 0)
along with the v′Y and w′Y given above.When we extend the
quaternary coordinates of C3, we get a Z2Z4-additive self-dual

code C̄3 with generator matrix Ḡ3 of type (4, 6; 4, 2; 2). It is
non-separable and is of Type I .

Ḡ3 =




0 1 0 1 2 0 0 0 0 0
0 1 0 1 0 2 0 0 0 0
0 1 0 1 0 0 2 0 0 0
0 0 1 1 1 1 1 1 0 0
1 0 1 0 2 0 0 0 2 0
0 1 0 0 1 1 1 1 1 1



.

Hence the extended code generated by a Type I code C
using the method described above, both extending the binary
or the quaternary coordinates, will generate a Type I separable
code if C is separable and non-separable if C is non-separable.

D. Extending a Z2Z4-additive self-dual Type II code

Let C be a Z2Z4-additive self-dual Type II code. By Table
I, the possible values of α and β are α = 8+8a and β = 4+4b,
a, b ≥ 0.

We start by extending the binary part first. Let v /∈ C
such that [v,v] = 2 and we select w ∈ C\Cv such that
[v,w] = 2. Define v′X = (1, 0, 0, 0, 0, 0, 1, 1) and w′X =
(0, 1, 1, 1, 0, 0, 0, 1). By Lemma 1, oC̄(V ) = 3 and hence V =
(1, 0, 0, 0, 1, 1, 1, 0), (0, 0, 0, 1, 1, 0, 1, 1), (1, 0, 1, 1, 0, 0, 1, 0).
By using the technique described earlier we can extend the
code C of type (α, β; γ, δ;κ) and obtain a new Z2Z4-additive
self-dual code C̄ which is of type (α+ 8, β; γ′, δ′;κ′).

Example 5: We consider the Z2Z4-additive self-dual code
C4 generated by G4. We can extend the binary coordi-
nates by selecting v = (0, 0, 0, 0, 1, 0, 0, 0 0) and w =
(0, 1, 0, 0, 1, 0, 1, 1 0) along with the v′X , w′X and V given
above. The extended Z2Z4-additive self-dual code C̄4 with
generator matrix Ḡ4 has type (16, 4; 10, 1; 8). It is separable
and is of Type II .

Ḡ4 =

(
ḠH 0
0 GD

)
,

where ḠH is

ḠH =




0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0
0 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1
1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0




.

We consider the Z2Z4-additive self-dual code C5 gen-
erated by G5. We can extend the binary coordinates by
selecting v = (0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 1) and w =
(0, 0, 0, 1, 1, 0, 1, 1 1, 1, 1, 1) along with the v′X , w′X and V
given above. The extended Z2Z4-additive self-dual code C̄5

with generator matrix Ḡ5 has type (16, 4; 10, 1; 8). It is non-
separable and is of Type II .

Ḡ5 =
(
GB GQ

)
,

where



GB =




0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
0 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0
1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0




,

and

GQ =




0 0 0 0
0 0 0 0
2 0 0 0
0 2 0 0
0 0 2 0
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




.

Now we will extend the quaternary part of a Z2Z4-additive
self-dual non-separable code. Again let C be a Z2Z4-additive
self-dual code of Type II . Let v /∈ C such that [v,v] = 1
and we select w ∈ C\Cv such that [v,w] = 1. Define v′Y =
(1, 1, 1, 0) and w′Y = (1, 1, 1, 1). By Lemma 1, oC̄(V ) = 2,
hence we select V = {(0, 0, 2, 2, 0), (0, 2, 2, 0, 0)}. If C is of
type (α, β; γ, δ;κ) then by extending the code C we get a new
code C̄ which is of type (α, β + 4; γ′, δ′;κ′).

Example 6: We consider the Z2Z4-additive self-dual code
C4 generated by G4. We can extend the quaternary coordinates
by selecting v = (0, 2, 1, 0) and w = (3, 1, 3, 1) along
with the v′Y , w′Y and V given above. The extended Z2Z4-
additive self-dual code C̄4 with generator matrix Ḡ4 has type
(16, 4; 10, 1; 8). It is separable and is of Type II .

G4 =

(
GH 0
0 ḠD

)
,

where ḠD is

ḠD =




0 2 0 2 0 0 0 0
2 2 0 0 0 0 0 0
0 2 1 0 1 1 1 0
3 1 3 1 1 1 1 1
0 0 0 0 0 2 2 0
0 0 0 0 2 2 0 0



.

We consider the Z2Z4-additive self-dual code C5 gen-
erated by G5. We can extend the quaternary coordinates
by selecting v = (0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 1) and w =
(0, 0, 0, 1, 1, 0, 1, 1 1, 1, 1, 1) along with the v′Y , w′Y and V
given above. When we extend the quaternary coordinates of
C5 we get a Z2Z4-additive self-dual code C̄5 matrix Ḡ5 of type
(8, 8; 8, 2; 4). It is non-separable and is of Type II .

Ḡ5 =
(
GB GQ

)
,

where

GB =




1 0 0 1 0 1 1 0
0 1 0 0 1 1 1 0
0 0 1 0 0 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




,

and

GQ =




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0
0 0 0 0 0 2 2 0
0 0 0 0 2 2 0 0




.

Hence, the extended code generated by a Type II code
C, using the method described above and both extending the
binary or the quaternary coordinates, will generate a Type II
separable code if C is separable and non-separable if C is non-
separable.

III. CONCLUSION

In this communication, we studied the code extension
technique described in [5] for Z2Z4-additive self-dual codes.
The following theorem summarizes our results.

Theorem 3: If C is a Z2Z4-additive self-dual code of type
(α, β; γ, δ;κ) then given the proper choices of v′X , w′X , v′Y ,
w′Y and V , one can extend the length of the code C and obtain
a new Z2Z4-additive self-dual code C̄ of type (α + α′, β +
β′; γ̄, δ̄; κ̄) preserving both the Type and separability or non-
separability.
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