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Chapter 1

Introduction

The growing flows of freight have been a fundamental component of contem-
porary changes in economic systems at the global, regional, and local scales.
Road transportation is nowadays the predominant way of transporting goods
in many parts of the world. Direct costs associated with road transportation
have experienced a significant increase in the last decade due to the rise of
oil price1, among other economical factors. Furthermore, road transportation
faces new challenges related to other indirect or external related costs, which
usually are easily observable —noise, pollution, accidents, etc.— but difficult
to quantify. The role of transport and logistics as an economic sector can-
not be nowadays neglected since new modes of production are concomitant
with new modes of distribution. Achieving flexible, efficient, and sustainable
routing is a complex strategy requiring a high level of logistical integration to
properly respond to variations of the freight transport demand. The necessity
for optimizing road transportation affects to both the public and the private
sectors, and constitutes a major challenge for most industrialized regions.

An important component of many distribution systems is routing vehicles
to serve customers. Many companies are confronted daily with problems re-
garding the transportation of people, goods or information. These companies
have to optimize transportation by using rational manners and effective tools.
The Vehicle Routing Problem (VRP) provides a theoretical framework for ap-
proaching this class of logistic problems dealing with physical distribution.
This is among the most popular research lines in combinatorial optimization.

1According to the World Bank Commodity Price Data, the annual price of a Brent barrel
has risen from $28.27 in 2000 to $110.94 in 2011, a 292.43 % increase.
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2 Introduction

It was first defined by Dantzig and Ramser [51] in 1959, and several variants
of the basic problem have been proposed and studied later. These variants
represent different types of operational constraints such as, for instance, time
windows, pick-up and delivery, heterogeneous fleets, or multi-depot problems.

The interest in VRP problems comes from its practical relevance as well
as from the considerable difficulty to solve them exactly. In the field of com-
binatorial optimization, the VRP is regarded as one of the most challenging
problems because of its NP -Hardness [158], meaning that it is not solvable
in polynomial time. For such problems in real situations, it is often desirable
to obtain approximate solutions, so they can be found fast enough and are
sufficiently accurate for the purpose.

From the industrial applicability perspective, the VRP characterizes a fam-
ily of different distribution problems which, one way or another, are present in
real industrial problems. Nevertheless, in most of the application cases none of
the classical VRP variants can represent uniquely the real problem, i.e. a com-
bination of different operational constraints are present in realistic cases. In
this scenario, it becomes evident the need of developing new flexible methods,
models, and systems to give support to the decision making process so that
optimal strategies can be chosen in physical distribution and, in particular, in
road transportation.

During the last fifty years, the VRP has generated an intense research re-
lated to exact and heuristic methods. The interest about hybrid optimization
methods has grown very fast for the last few years [167] [90]. Hybridization has
become a very promising strategy in designing and developing improved meta-
heuristic solution methods, because of their heuristic nature, greater flexibil-
ity, and less strict mathematical formulation. A hybrid metaheuristic method
combines structure and efficiency advantages from different principles and ap-
proaches, while reducing the effects of their limitations. Thus, hybrid methods
often provide a highly flexible and efficient tool in solving difficult combinato-
rial optimization problems.

This thesis is aimed to introduce three different yet related hybrid method-
ologies to solve the VRP. These methodologies have been especially designed
for being flexible in the sense that they can be used, with minor adaptations,
for solving different variants of the VRP present in industrial application cases.

In the three methodologies described in this work, different technologies are
used to achieve the desired flexibility, efficiency, and robustness. Constraint
Programming (CP) has been chosen as the modeling paradigm to describe
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the main constraints involved in the VRP. CP provides the pursued flexibility
for the three methodologies, since adding side constraints present in most real
application cases becomes a modeling issue and does not affect the search algo-
rithm definition. In the first two hybrid methodologies, the CP model is used
to check solution’s feasibility during search. The third methodology presents
a richer model for the VRP capable of tackling different problem variants. In
this case, the search is performed and controlled from a CP perspective.

Lagrangian Relaxation (LR) and a probabilistic version of the classic Clarke
and Wright Savings (CWS) heuristic are used for specific purposes within the
proposed methodologies. The former is used for minimizing the total traveled
distance and the latter to provide a good initial solution quickly. Both methods
provide an efficient approach to the respectively faced problems. Moreover, the
use of LR permits reducing the computational complexity of the performed
local search processes and therefore reduces the required computational time
to solve the VRP.

All methodologies are based on the so-called Variable Neighborhood Search
(VNS), a quite recent metaheuristic introduced for the first time by Mladen-
ovic and Hansen [121]. The VNS is formed by a family of algorithms which
exploits systematically the idea of neighborhood changes both in the search
phase to find a local minimum, and in perturbation phase, to escape from
the corresponding valley. Although it is an extended method, there are few
examples of its application to the VRP. However, interesting results have been
obtained even applying the simplest VNS algorithms to this problem.

The present thesis is aimed to contribute to the current research on the
application of the VNS metaheuristic to the VRP. It has been chosen as the
framework where the mentioned techniques are embedded. Hence, the meta-
heuristic is used to guide the search, while the desired efficiency is provided
by the composing methods. On the other hand, using CP as the modeling
paradigm provides the required flexibility. This characteristic is enhanced in
the last described methodology. In this case, the CP search is guided by a com-
bination of the VNS and the Large Neighborhood Search (LNS) metaheuristics.
This methodology represents an initial approach for tackling efficiently more
complex and richer VRP, similar to real application cases.



4 Introduction

1.1 Objectives

The objectives of this thesis are:

• The development of a hybrid methodology aimed to tackle the VRP
based on the VNS metaheuristic framework. This methodology should
be flexible, efficient, and robust.

• The study and implementation of different mechanisms and strategies
to enhance methodology’s performance, such as reducing the size of
the neighborhoods to be explored during search and the use of efficient
heuristics in different processes.

• The integration of the developed methodology into a parallelized calcu-
lation environment to improve its efficiency and competitiveness.

• The study of different VRP variants from a CP perspective and the
development of a complete and extendable model, seed of a VRP library
based on the CP paradigm.

• The development of a CP-based search methodology based on the VNS
and LNS metaheuristics able to tackle small and medium-sized VRP.
This methodology is aimed to provide a first approach to the VRP com-
bining these technologies within a CP search environment, since CP-
based exact methods have a limited application due to the required com-
putational times.

• The study and implementation of different strategies and heuristics to
improve CP-based methodology’s performance.

• The assessment of the developed methodologies by their application to
different VRP benchmark sets.

1.2 Structure of this Thesis

The current chapter introduces the thesis with a brief description of the re-
search context and the objectives of this work. The remainder of this thesis
is structured as follows. Chapter 2 describes the VRP and its variants. It
also includes a review of the state of the art for this problem including both
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exact and heuristic methods. Chapter 3 presents a background of the differ-
ent technologies used in this work. Chapter 4 introduces the foundations and
characteristics of the three methodologies developed. This chapter includes the
two formulations used for the VRP, as well as the algorithms and implemented
improvements. Chapter 5 assesses these methodologies by means of different
benchmark problems. This work is also positioned in the VRP context by
comparing the obtained results with other state-of-art methodologies. Finally,
Chapter 6 presents the conclusions of this thesis, its contributions, and the
possible future research lines.



	
  



Chapter 2

The Vehicle Routing Problem

Vehicle Routing Problem (VRP) is a generic name given to a whole class of
problems involving the design of optimal routes for a fleet of vehicles to service
a set of customers subject to side constraints. Collection of household waste,
gasoline delivery trucks, goods distribution, and mail delivery are some exam-
ples of the wide number of real-life applications of the VRP. Thus, the VRP
is considered to play a central role in distribution and logistics.

In practice, several variants of the VRP exist, depending on the nature of
the transported goods, the quality of service required, and the characteristics of
customers and vehicles. In all cases, the objective is to supply the customers at
minimum cost. Some typical complications are heterogeneous vehicles located
at one or several depots, customers incompatible with certain vehicles types,
customers accepting being serviced within specified time windows, multiple-
day or periodic planning horizons and vehicles performing multiple routes.
According to these side constraints, several variants of the VRP can be defined:

• Capacitated VRP (CVRP): the CVRP is a VRP in which a fixed fleet
of delivery vehicles of uniform capacity must service known customer
demands for a single commodity from a common depot at minimum
transit cost. That is, CVRP is like VRP with the additional constraint
that vehicle’s capacity is limited, which makes the vehicle periodically
return to the depot for reloading. As the capacity constraint always
exists in any kind of VRP problems, the CVRP is considered to be the
basics, to which all other constraints are added.

• VRP with Time Windows (VRPTW): the VRPTW is the same
problem that the VRP with the additional restriction that in the VRPTW

7



8 The Vehicle Routing Problem

a time window is associated with each customer, defining an interval
wherein it has to be supplied. The interval at the depot is called the
scheduling horizon. Specific examples of problems with time windows
include bank or postal deliveries, industrial refuse collection, school-bus
routing and situations where the customer must provide access, verifi-
cation, or payment upon delivery of the product or service. In these
problems, customers can be served only during certain hours of the day,
such as office hours or the hours before the opening of a shop.

• Multiple Depot VRP (MDVRP): a company may have several de-
pots from which it can serve its customers. If the customers are clustered
around depots, then the distribution problem may be modeled as a set
of independent VRPs with a single depot. However, if the customers and
the depots are intermingled then a MDVRP should be solved. A MD-
VRP requires the assignment of customers to depots. A fleet of vehicles
is based at each depot. Each vehicle originates from one depot, services
the assigned customers, and returns to the same depot. The objective of
the problem is to service all customers while minimizing the number of
vehicles and traveled distance.

• VRP with Pick-up and Delivery (VRPPD): the VRPPD is a VRP
in which some goods should be delivered from one set of customers to
another. That means that all vehicles start their trip from the depot
empty, pick up some commodities from definite customers and deliver it
to others according to the orders. After all orders are satisfied, vehicles
return to the depot empty. Usually there is a restriction, that all cus-
tomers should be served by exactly one vehicle. The main difficulty in
dealing with this problem is to find the correct order of pick-up and de-
livery operations, because these restrictions makes the planning problem
more difficult and can lead to bad utilization of the vehicles capacities,
increased travel distances or a need for more vehicles. It can be noted
that the CVRP and the VRPTW are particular cases of the VRPPD
in which either all origins or all destinations are located at the common
depot.

• VRP with Backhauls (VRPB): the VRPB is a VRP in which cus-
tomers can demand or return some commodities. So in VRPB it is
needed to take into account that the goods that customers return to the
deliver vehicle must fit into it. The critical assumption is that all deliv-
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eries must be made on each route before any pick-ups can be made. This
arises from the fact that the vehicles are rear-loaded, and rearrangement
of the loads on the trucks at the delivery points is not deemed economical
or feasible. The quantities to be delivered and picked up are fixed and
known in advance.

• Split Delivery VRP (SDVRP): SDVRP is a relaxation of the VRP
wherein it is allowed that the same customer can be served by different
vehicles if it reduces overall costs. This relaxation is very important if
the size of customers’ orders is as big as the capacity of a vehicle.

• Stochastic VRP (SVRP): SVRP are VRPs where one or several com-
ponents of the problem are not deterministic. Different SVRPs can be
originated according to stochastic variables: customers may be present
with a certain probability, random demands, random service and travel
times, etc. In the SVRP, two stages are made for getting a solution. A
first solution is determined before knowing the realizations of the random
variables. In a second stage, a recourse or corrective action can be taken
when the values of the random variables are known.

• Periodic VRP (PVRP): In classical VRPs, typically the planning
period is a single day. In the case of the PVRP, the classical VRP is
generalized by extending the planning period to a certain number of
days.

The most basic VRP is the CVRP, that assumes a fixed fleet of vehicles of
uniform capacity housed in a central depot. It is intrinsically a spatial problem
with some capacity constraints. In addition to the geographic component, more
realistic routing problems include a scheduling part by incorporating travel
times between every pair of nodes, customer service times and the maximum
tour duration as additional problem data. The VRPTW is an extension of the
CVRP with the further complexity of time windows and other time data. In
the VRPTW problem, each customer has an associated time window defined
by the earliest and the latest time to start the customer service. The depot
may also have a time window defining the scheduling horizon. Time windows
can be hard or soft. In the hard time window case, a vehicle arriving too
early at the customer site is permitted to wait until the customer window is
open. However, a vehicle is not permitted at all to arrive at the node after the
latest service start time. In contrast, the soft time window case permits time
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window violations at the expense of a penalty cost. The VRPPD with Time
Windows (PDTW) is a further extension of the VRPTW. In the PDTW, pairs
are defined among customers so pick up and drop off locations are determined,
in addition to time windows constraints related to each visit.

The symmetric CVRP can be considered as a complete undirected graph
G = (I, E), connecting the vertex set I = {1, 2, ..., n} through a set of undi-
rected edges E = {(i, j) | i, j ∈ I}. The edge eij ∈ E has associated a travel
cost cij, supposed to be the lowest cost route connecting node i to node j. Each
vertex i ∈ I \ {1} has a nonnegative demand qi, while vertex 1 corresponds
to a depot without associated demand. A fixed fleet of m identical vehicles,
each of capacity Q, is available at the depot to accomplish the required tasks.
Solving the CVRP consists of determining a set of m routes whose total travel
cost is minimized and such that: (i) each customer is visited exactly once by
a single vehicle, (ii) each route starts and ends at the depot, and (iii) the to-
tal demand of the customers assigned to a route does not exceed the vehicle
capacity. Therefore, a solution to the CVRP is a set of m cycles sharing a
common vertex at the depot. In some cases, the fleet size is not fixed and
minimizing the total number of used vehicles becomes an additional objective.

The VRPTW extends the CVRP by associating a travel time tij to each
edge eij ∈ E. Each vertex i ∈ I \ {1} has a time demand ti required to
perform the service, which should start within a defined time window [ai, bi].
The primary objective of the VRPTW is to find the minimum number of
routes, i.e. use the minimum number of vehicles. A secondary objective is
imposed to minimize the total cost of routes, that can be expressed in terms
of the total traveled distance or the total scheduled time.

Complexity theory provides a mathematical framework in which combina-
torial problems such as the VRP can be studied so they can be classified as
"easy" or "hard" to solve. In order to determine if a combinatorial problem is
easy or hard, we study the computational resources (time and memory capac-
ity) required to solve the problem as a function of the size of the considered
instance S, denoted by |S|. For optimization problems, solving means finding
a solution, for any given instance, that is optimal in terms of the objective
function, and for decision problems solving is deciding correctly, for any given
instance, whether or not the instance has at least one feasible solution. A
problem is considered to be "easy" if there exists an algorithm that solves
the problem in time bounded by a polynomial function of |S|. If a decision
problem is easy, then, under a mild restriction on the range of the objective
function, one can apply binary search to obtain a polynomial time algorithm
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for the optimization problem. On the other hand, if an optimization problem
is easy, then clearly the decision version of this problem is also easy. Let P
denote the class of decision problems that can be solved in polynomial time.

Let NP denote the class of decision problems that have the property that
for every instance S that has a feasible solution, there exists a certificate y such
that |y| is bounded by a polynomial in |S| and such that it can be checked
in polynomial time that y is indeed a certificate for a feasible solution of S.
Notice that the membership of NP does not mean that it is easy to find such
a certificate.

The class of NP contains an enormous number of problems, including
all problems in P . Many problems in NP are not known to be solvable in
polynomial time, however. It is not known whether P equals NP , but it is
widely conjectured that this is not the case [65].

We can compare the complexity of two decision problems inNP by reducing
one problem to another. We say that

∏
1 reduces to

∏
2 (
∏

1 ∝
∏

2) if there is a
polynomial transformation from every instance of

∏
1 to an equivalent instance

of
∏

2. In this context, equivalent means that the instance of
∏

2 is feasible
iff the corresponding instance in

∏
1 is feasible. In this case, the existence

of a polynomial algorithm to solve
∏

2 implies the existence of a polynomial
algorithm for

∏
1. The existence of such a polynomial transformation shows

that
∏

1 can be studied as a special case of
∏

2, or that
∏

2 is at least as hard
as
∏

1.
A problem

∏
is said to be NP -hard if there exists a polynomial reduction

from every problem in NP to
∏
. If, in addition,

∏
∈ NP , the problem is

said to be NP -complete. If an NP -complete or NP -hard problem would be
solvable in polynomial time, then all problems in NP would be solvable in
polynomial time, implying P = NP . Hence, for an NP -complete or NP -hard
problem, a polynomial time algorithm is unlikely to exist.

Notice that once at least one problem
∏

1 is known to be NP -complete,
showing NP -completeness of another problem

∏
2 requires only showing that∏

2 ∈ NP , and that
∏

1 ∝
∏

2. Cook [47] provided the first NP -completeness
proof for a problem, by giving a master reduction from every problem in NP
to it.

Almost all vehicle and scheduling problems are NP -hard and hence un-
likely to be solvable in polynomial time [109]. The general VRP belongs to the
NP -hard problems class. When additional constraints are introduced in the
problem, e.g. capacity constraints, time windows, maximum number of cus-
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tomers per route, limited fleet, etc., this constrained VRP can be demonstrated
to be NP , and so it is NP -complete [158].

2.1 State of the Art

Since it was first defined by Dantzig and Ramser in [51] as a generalization of
the Traveling Salesman Problem (TSP), the VRP has attracted the attention
of many researchers. The most studied variants are the most basic VRP,
the CVRP and the VRPTW, because of their high complexity level and its
wide applicability to real situations. Both problems have generated an intense
research related to exact and heuristic methods during the last fifty years.
In this section, we provide a summary of some of the most significant works.
For further reading on both exact and heuristic methods for these VRPs, the
reader is referred to the exhaustive surveys [174] [35] [36] [114] [164] [19] [18].

2.1.1 Exact approaches

Currently, the most successful exact methods for the VRP are based on the
two-index flow formulation, the two-commodity flow formulation, and the set
partitioning formulation. Valid lower bounds on the VRP can be derived from
the Linear Programming (LP) relaxations of these mathematical formulations.
Some of the resulting LP programs cannot be solved directly, even for moderate
size VRPs, since either the number of variables or constraints is exponential
in the problem size. Thus, the lower bounds are usually computed using cut-
ting plane and column generation techniques. In addition, to strengthen the
relaxations, a variety of valid inequalities have been described in the literature
for the different formulations. An extended explanation of these inequalities
can be found in [19].

The branch-and-cut (BC) algorithms for the CVRP are based either on
the two-index flow or the two commodity flow formulation. Augerat et al.
[10] were the first to describe an exact BC algorithm for the CVRP based on
the two-index flow formulation, originally proposed by Laporte et al. [105],
strengthened by valid inequalities such as the generalized capacity constraints,
hypotour inequalities, comb inequalities, and path-bin inequalities. The BC
algorithm of Augerat et al. [10] was able to solve, for the first time, a CVRP
instance involving 135 customers. Naddef and Rinaldi [125] revisited the BC
algorithm by Augerat et al. [10] and presented an improved version.
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Ralphs et al. [143] described a BC algorithm based on the two-index flow
formulation and on the addition of rounded capacity constraints in a cutting
plane fashion.

Lysgaard et al. [116] described a BC algorithm based on the two-index
flow formulation, strengthened by valid inequalities, including the rounding
capacity, generalized capacity, framed capacity, strengthened comb, multistar,
partial multistar, extended hypotour inequalities, and Gomory mixed integer
cuts. Their BC algorithm solved several instances not solved by Augerat et al.
[10].

Baldacci et al. [16] proposed a two-commodity flow formulation of the
CVRP which extends the TSP model introduced by Finke et al. [63]. The BC
algorithm based on this model uses rounded capacity inequalities in a cutting
plane fashion to strengthen the lower bound obtained by the LP relaxation
of the two-commodity formulation. The reported computational results show
that this BC algorithm is competitive with the algorithm of Naddef and Rinaldi
[125].

The Set Partitioning formulation of the CVRP originally proposed in [20]
associates a binary variable with each feasible route. It cannot be used directly
to solve nontrivial CVRP instances because of the large number of potential
routes. The set partitioning model is very general and can take into account
several route contraints, e.g. time windows, because the route feasibility is
implicitly considered in the definition of the route set.

Christofides et al. [45] introduced the concept of q-routes. A (q,i)-path
is a nonnecessarily elementary path, starting from the depot, visiting a set of
vertices (without loops) of total demand q, and ending at vertex i, whose cost
can be computed by using dynamic programming. A q-route is a (q,0)-path.
Fukasawa et al. [66] described a branch-and-cut-and-price (BCP) algorithm
based on the set partitioning model where the variables correspond to the set
of q-routes, while the constraints correspond to the original set partitioning
constraints and inequalities designed for the two-index formulation, such as
rounded capacity inequalities, framed capacity, strengthened comb, multistar,
partial multistar, generalized large multistar, and hypotour inequalities, all pre-
sented in Lysgaard et al. [116].

Baldacci et al. [15] proposed a BCP algorithm based on the set partitioning
formulation, including strengthened capacity inequalities and clique inequali-
ties. This method is based on a bounding procedure that computes a lower
bound on the CVRP by finding a near-optimal solution of the dual of the LP
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relaxation. They propose to solve the LP relaxation using three column gener-
ation procedures, that produce three lower bounds corresponding to the costs
of three different dual solutions of the relaxed problem. The three procedures
are executed in sequence, and the dual solution produced by one procedure is
used to generate the master problem of the next procedure. In practice, the
third procedure requires few iterations to converge to an optimal dual solution
of the LP relaxation.

Several exact algorithms have been presented for the VRPTW. A review
of the exact methods for this problem is reported in [18] and [96]. The best
exact methods recently published on the VRPTW are based on the set par-
titioning model, where the route set contains any least-cost route satisfying
time windows constraints.

The set partitioning model can be strengthened by any valid inequality
studied for the CVRP, and by the k-path inequalities introduced by Kohl et al.
[101]. These inequalities can be considered as a generalization of the rounded
capacity constraints. Other valid inequalities, related to k-path inequalities
and called Reachability cuts, have been investigated by Lysgaard [115].

The exact algorithms for solving the resulting set partitioning model of the
VRPTW use column generation methods for computing the lower bound and
either branch-and-price (BP) or BCP algorithms to find an optimal integer
solution. The key component of these algorithms is the method for solving
the pricing problem. This algorithm consists of finding a number of VRPTW
routes of negative reduced cost with respect to the duals of the set partitioning
constraints, and of the different inequalities separated during the previous iter-
ations. This problem is solved using different dynamic programming strategies
to find either nonelementary or elementary routes.

Kohl et al. [101] described a BP algorithm which improves the BP of
Desrochers et al. [55] by adding 2-path inequalities to the LP relaxation of the
set partitioning formulation and by using nonelementary routes in solving the
pricing problem. Irnich and Villeneuve [88] improved the BP of Kohl et al.
[101] by using a sophisticated k-cycle elimination that substantially improves
the lower bounds. This elimination proved to be a key ingredient for solving
to optimality more than 15 unsolved Solomon [163] instances with 25, 50, and
100 customers. Nonetheless, this method fails to solve several instances with
25 customers.

Algorithms based on the computation of elementary routes were proposed
by Feillet et al. [60], Danna and Le Pape [50], and Chabrier [40]. Righini and
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Salani [149] proposed a dynamic programming method, called decremental
state-space algorithm, to solve the pricing problem by forcing the routes to
visit the customers of a selected subset at most once.

A significant contribution was given by Jepsen et al. [89], who extended the
BCP framework by adding the Subset-Row inequalities (SR3) to the set parti-
tioning master problem. The SR3 inequalities provide better lower bounds but
increase the complexity of the pricing problem. To reduce the computing time,
they attempted to solve the pricing problem heuristically. The computational
results indicate that the algorithm of Jepsen et al. [89] outperforms those of
Irnich and Villeneuve [88] and Chabrier [40].

The BCP of Jepsen et al. [89] was improved by Desaulniers et al. [54] by
adding both SR3 and generalized k-path inequalities and using a tabu search
heuristic, before using dynamic programming, to rapidly generate negative re-
duced cost routes. Their method outperforms all other algorithms, decreasing
the computational time on Solomon [163] instances with 100 customers.

Baldacci et al. [17] extended the BCP algorithm of Baldacci et al. [15] to
solve both the CVRP and the VRPTW. They introduce a new route relaxation
called ng-route, used by different dual ascent heuristics to find near-optimal
dual solutions of the LP relaxation of the set partitioning model. They de-
scribe a column-and-cut generation algorithm strengthened by different valid
inequalities, SR3 [89] and Weak Subset-Row (WSR3) inequalities, and a new
pricing strategy involving multiple dual solutions. This method significantly
improves some results and the running times of the other algorithms for both
CVRP [116] [66] [15] and VRPTW [89] [54].

2.1.2 Heuristic and Metaheuristic methods

The Clarke and Wright’s Savings (CWS) constructive algorithm [46] is prob-
ably the most cited heuristic to solve the CVRP. The CWS is an iterative
method that starts out by considering an initial dummy solution in which
each customer is served by a dedicated vehicle. Next, the algorithm initi-
ates an iterative process for merging some of the routes in the initial solution.
Merging routes can improve the expensive initial solution so that a unique
vehicle serves the nodes of the merged route. The merging criterion is based
upon the concept of savings. Given a pair of nodes to be served, a savings
value can be assigned to the edge connecting these two nodes. This savings
value is given by the reduction in the total cost function due to serving both
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nodes with the same vehicle instead of using a dedicated vehicle to serve each
node, as proposed in the initial dummy solution. This way, the algorithm con-
structs a list of savings, one for each possible edge connecting two demanding
nodes. At each iteration of the merging process, the edge with the largest
possible savings is selected from the list as far as the following conditions are
satisfied: (a) the nodes defining the edge are adjacent to the depot, and (b)
the two corresponding routes can be feasibly merged, i.e. the vehicle capac-
ity is not exceeded after the merging. The CWS algorithm usually provides
relatively good solutions, especially for small and medium-size problems, but
it also presents difficulties in some cases. Many variants and improvements of
the CWS have been proposed in the literature. For a comprehensive discussion
on the various CWS variants, the reader is referred to Toth and Vigo [174] and
Laporte [104].

Monte Carlo Simulation (MCS) can be defined as a set of techniques that
make use of random numbers and statistical distributions to solve certain
stochastic and deterministic problems [108]. MCS has proved to be extremely
useful for obtaining numerical solutions to complex problems that cannot be
efficiently solved by using analytical approaches. Buxey [38] was probably the
first author to combine MCS with the CWS algorithm to develop a procedure
for the CVRP. This method was revisited by Faulin and Juan [59], who intro-
duced an entropy function to guide the random selection of nodes. MCS has
also been used by Fernández de Córdoba et al. [52] and Juan et al. [91][94][93]
to solve the CVRP. In this last paper, the authors make use of MCS to de-
velop an efficient randomized version of the CWS heuristic, which we use in our
approach to efficiently generate initial solutions. The authors have later im-
proved the algorithm by introducing efficient computing techniques, intelligent
solutions splitting and optimal routes tracking [92].

The VRPTW has also been the subject of intensive research efforts for
heuristic approaches. The first example of a route construction heuristic for
the VRPTW was given by Solomon [162]. A route construction heuristic select
nodes (or arcs) sequentially until a feasible solution has been created. Nodes
are chosen based on some cost minimization criterion, often subject to the
restriction that the selected nodes do not create a violation of vehicle capacity
or time window constraints.

Solomon [162] proposed a route-first cluster-second scheme using a giant-
tour heuristic. First, the customers are scheduled into one giant tour, which
is then divided into a number of smaller routes. The initial giant tour is often
generated by considering the problem as a TSP, i.e. without considering the



2.1. State of the Art 17

capacity and time constraints.
Solomon [163] describes several heuristics for the VRPTW. One of the

methods is an extension to the CWS heuristic with a waiting time limit to
account for both the spatial and temporal closeness of customers. The second
heuristic, a time-oriented nearest neighbor, starts every route by finding an
unrouted customer closest to the depot. At every subsequent iteration, the
heuristic searches for the customer closest to the last customer added into the
route and adds it at the end of the route. A new route is started any time the
search fails to find a feasible insertion place, unless there are no more unrouted
customers left. Again, the metric used to measure the closeness of any pair of
customers attempts to account for both geographical and temporal closeness
of customers. Solomon [163] proposed three different insertion criteria: (i)
I1, based on a time insertion criterion; (ii) I2, aiming to select customers
whose insertion costs minimize a measure of total route distance and time;
and (iii) I3, which accounts for the urgency of servicing a customer. Albeit
the most successful of the three proposed insertion heuristics is I1, Dullaert
[57] and Dullaert and Bräysy [58], argue that Solomon’s time insertion criterion
understimates the additional time needed to insert a new customer between the
depot and the first customer in the partially constructed route. The authors
introduce new time insertion criteria to solve this problem.

Solomon [163] also describes a time-oriented sweep heuristic based on the
idea of decomposing the problem into a clustering stage and a scheduling
stage. In the first phase, customers are assigned to vehicles as in the original
sweep heuristic [75]. In the secong phase, customers assigned to a vehicle are
scheduled using an insertion heuristic of type I1.

Potvin and Rousseau [138] introduce a parallel version of Solomon’s in-
sertion heuristic I1, where the set of m routes is initialized at once. Russell
[157] embeds global tour improvement procedures within the tour construc-
tion process. The construction procedure used is similar to that in Potvin and
Rousseau [138].

Ioannou et al. [87] use the generic sequential insertion framework proposed
by Solomon to solve a number of theoretical benchmark problems and an
industrial example from the food industry. The proposed approach is based
on new criteria for customer selection and insertion that are motivated by the
minimization function of a greedy look-ahead heuristic.

Balakrishnan [14] describes three heuristics for the VRP with soft time
windows. The heuristics are based on nearest neighbor and CWS rules, and



18 The Vehicle Routing Problem

they differ only in the way used to determine the first customer on a route and
in the criteria used to identify the next customer for insertion. The motivation
behind the use of soft time windows is that by allowing limited time window
violations for some customers, it may be possible to obtain significant reduc-
tions in the number of vehicles required and the total distance or time of all
routes. Among the soft time window problem instances, dial-a-ride problems
play a central role [48].

In addition to construction heuristics, classical local search methods have
also been used to tackle the VRPTW. The edge-exchange neighborhoods for
a single route are the set of tours that can be obtained from an initial tour by
replacing a set of k of its edges by another set of k edges. Such replacements
are called k-exchanges, and a tour that cannot be improved by a k-exchange
is said to be k-optimal. Russell [156] reports early work on the VRPTW for a
k-optimal improvement heuristic.

Prosser and Shaw [141] extend to the VRPTW some intraroute and inter-
route operators defined for the CVRP. The intraroute operator is the 2-opt
by Lin [112], while an extension of the relocate, exchange, and cross operators
originally proposed by Savelsbergh [158] are used as interroute operators. De
Backer et al. [12] report research similar to Prosser and Shaw [141] in the
Constraint Programming (CP) context. Other frequently applied neighbor-
hood operators for the VRPTW are the λ-interchange of Osman [130], the
CROSS -exchange of Taillard et al. [166], the GENI -exchange of Gendreau et
al. [72], and ejection chains [76]

Shaw [160] describes a Large Neighborhood Search (LNS) based on reschedul-
ing selected customer visits using CP techniques. The search operates by
choosing in a randomized fashion a set of customer visits. The selected cus-
tomers are removed from the schedule, and then reinserted at optimal cost. To
create opportunity for interchange of customer visits between routes, the re-
moved visits are chosen so that they are related. A branch-and-bound method
coupled with CP is then used to reschedule removed visits. Due to high com-
putational requirements, this approach can be applied only to problems where
the number of customers per route is relatively low.

Shaw [161] proposes a similar LNS approach which uses constraint-based
limited discrepancy search in the reinsertion of customers within the branch-
and-bound procedure. The number of visits to be removed is increased during
the search each time a number of consecutive attempted moves have not re-
sulted in an improvement of the cost. Limited discrepancy search is used to
explore the search tree in order of an increasing number of discrepancies, a
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discrepancy being a branch against the best reinsertion places, e.g. inserting
a customer at its second cheapest position.

Bent and Hentenryck [23] describe a LNS heuristic for the VRPTW. The
authors propose to solve the problem in a two-stage approach. In the first
stage the number of routes is minimized by a Simulated Annealing (SA) [129]
algorithm that uses traditional, small neighborhoods. SA is a stochastic re-
laxation technique, which has its origin in statistical mechanics. It is based
on an analogy from the annealing process of solids, where a solid is heated to
a high temperature and gradually cooled for it to crystallize in a low energy
configuration. In the second stage of Bent and Hentenryck [23] approach, the
total route lengths are minimized with an LNS heuristic. The size of the neigh-
borhood is gradually increased, starting out by only removing one customer
and by steadily increasing the number of customers to remove as the search
progresses. At regular intervals, the number of customers to remove is reset
to one and the neighborhood size increase starts over. The repair method is
implemented using a truncated branch-and-bound algorithm. The LNS algo-
rithm only accepts improving solutions. A similar algorithm was also proposed
by the same authors for the Pickup and Delivery Problem with Time Windows
(PDTW) [24].

Ropke and Pisinger [151] introduce the Adaptive Large Neighborhood Search
(ALNS) extension of the LNS. The algorithm is applied to the PDTW. Differ-
ences with the method in [23] are: (i) several different destroy/repair methods
are used, (ii) fast, greedy heuristics are used as repair methods, (iii) the size of
the neighborhoods varies from iteration to iteration (the number of customers
to remove is chosen randomly from a predefined interval), and (iv) a SA ac-
ceptance criterion is used. In subsequent papers [135] [152] it is shown that
many VRP variants (including the CVRP and VRPTW) can be transformed
to a PDTW and solved using an improved version of the ALNS heuristic from
[151]. This unified model can be seen as a Rich Pickup and Delivery Problem
with Time Windows.

Prescott-Gagnon et al. [139] present an LNS heuristic for the VRPTW
with an advanced repair operator that solves a restricted VRPTW through a
heuristic branch-and-price algorithm. Four destroy methods are used and are
chosen based on performance as in [151]. Overall, the heuristic reaches better
solutions than previous LNS approaches, probably due to the advanced repair
operator.

Nagata and Bräysy [127] present an efficient heuristic based on the idea
of the ejection pool [111], combined with Guided Local Search (GLS) [177]
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to guide the ejections. The authors incorporate an insertion procedure that
accepts temporal infeasible insertions, followed by an attempt to restore the
feasibility. Results demonstrate that this algorithm is competitive with other
state-of-the-art heuristic approaches, such as those by Pisinger and Ropke [135]
and Prescott-Gagnon et al. [139].

Using constructive heuristics as a basis, metaheuristics became popular for
the CVRP during the 90s. Tabu Search (TS) is a local search metaheuristic
that explores the solution space by moving at each iteration from a solution
s to the best solution in a subset of its neighborhood N(s) [71]. Contrary
to classical descent methods, the current solution may deteriorate from one
solution to the next. Accepting worse solutions insures new regions of a prob-
lem’s solution space are investigated with the goal of avoiding local minima.
To avoid cycling, solutions possessing some attributes of recently explored so-
lutions are temporarily declared tabu, i.e. forbidden. The duration that an
attribute remains tabu is called its tabu tenure, and it can vary over different
intervals of time. The tabu status can be overridden if certain conditions are
met. This is called the aspiration criteria, and it happens, for example, when
a tabu solution is better than any previously seen solution. Finally, various
techniques are often employed to diversify or to intensify the search process.

Some early examples of the application of TS metaheuristic to the CVRP
are the Taburoute method by Gendreau et al. [73] or the Boneroute method of
Tarantilis and Kiranoudis [171]. TS algorithms, like those proposed by Taillard
[165] or Toth and Vigo [175], are among the most cited metaheuristics.

Garcia et al. [68] were the first to apply TS to the VRPTW. The TS they
developed is a fairly simple one, involving Solomon’s I1 [163] insertion heuristic
to create an initial solution 2∗-opt and Or-opt exchanges for improvement.
Many authors since that time have presented numerous TS implementations
involving sophisticated diversification and intensification techniques, explicit
strategies for minimizing the number of routes, complex post-optimization
techniques, hybridizations with other search techniques such as SA andGenetic
Algorithms (GA) [144], parallel implementations, and allowance of infeasible
solutions during the search. The initial solution is typically created with some
cheapest insertion heuristic, being Solomon’s I1 [163] the most common one.
After creating an initial solution, an attempt is made to improve it using local
search with one or more neighborhood structures (e.g. 2-opt, Or-opt, relocate,
exchange, CROSS-, GENI-, and λ- exchanges) and a best-accept strategy.

To reduce the complexity of the search, some authors propose special strate-
gies for limiting the neighborhood. For instance, Garcia et al. [68] only allow
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moves involving arcs that are close in distance. Taillard et al. [166] decompose
solutions into a collection of disjoint subsets of routes by using the polar angle
associated with the center of gravity of each route. TS is then applied to each
subset separately. Another frequently used strategy to speed up the search
is to implement the proposed algorithm in parallel on several processors. For
instance, Badeau et al [13] apply the solution approach of Taillard et al. [166]
using a two-level parallel implementation. On the other hand, to cross the
barriers of the search space, created by time window constraints, some authors
allow infeasibilities during the search. For instance, Brandão [32], Cordeau et
al. [49], and Lau et al. [107] allow violation of each constraint type (load,
duration, and time window constraints). The violations of constraints are pe-
nalized in the cost function, and the parameter values regarding each type of
violation are adjusted dynamically.

Because the number of routes is often considered as the primary objective,
some authors use different explicit strategies for reducing the number of routes.
For example, the algorithms of Garcia et al. [68] and Potvin et al. [137]
try to move customers from routes with a few customers into other routes
using Or-opt exchanges. Similarly, the method of Schulze and Fahle [159] tries
to eliminate routes having at most three customers by trying to move these
customers into other routes. In Lau et al. [107] a limit is set for the number
of routes that cannot be exceeded during the search.

Most of the proposed TS use specialized diversification and intensification
strategies to guide the search. For instance, Rochat and Taillard [150] propose
using a so-called adaptive memory. The adaptive memory is a pool of routes
taken from the best solutions visited during the search. Its purpose is to
provide new starting solutions for the TS through selection and combination
of routes extracted from the memory. The selected tours are improved using
TS and inserted subsequently back into the adaptive memory. Tan et al. [170]
diversify the search each time a local minimum is found by performing a series
of random λ-interchange hops combined with the 2∗-opt operator. A candidate
list is maintained to record elite solutions discovered during the search process.
These elite solutions are then used as a starting point for intensification. Lau
et al. [106] present a generic, constraint-based diversification technique, where
VRPTW is modeled as a linear constraint satisfaction problem that is solved
by a simple local search algorithm.

Carlton [39] and Chiang and Russell [42] test a reactive TS that dynami-
cally adjusts its parameter values based on the current search status to avoid
both cycles as well as an overly constrained search path.
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Finally, several authors report using various post-optimization techniques.
For example, Rochat and Taillard [150] solve exactly a set partitioning problem
at the end, using the routes in the adaptive memory to return the best possible
solution. A similar approach is used by Desaulniers et al. [54]. Taillard et al.
[166] apply an adaptation of the GENIUS heuristic [72] for time windows to
each individual route of the final solution. Similarly, in Cordeau et al. [49]
the best solution identified after n iterations is post-optimized by applying to
each individual route a specialized heuristic for the TSP with time windows.

The most recent TS approach to the VRPTW is provided by Moccia et al.
[122]. The authors propose an Incremental neighborhood TS (ITS) heuristic.
They replace the TS neighborhood structure by one which is exponential in
size, but with an evaluation procedure of polynomial complexity.

GA have also played a major role in the development of effective approaches
for the VRP. GA are a family of adaptive heuristic search methods based on
population genetics [144]. GA evolve a population of individuals encoded as
chromosomes by creating new generations of offspring through an iterative pro-
cess until some convergence criteria are met, e.g. maximum number of itera-
tions or reaching an homogeneous population composed of similar individuals.
The best chromosome generated is then decoded, providing the corresponding
solution. Population’s evolution is mainly driven by three major steps: selec-
tion, recombination, and mutation. The selection phase consists of randomly
choosing two parent individuals from the population. The probability of se-
lecting a population member is generally proportional to its fitness, a value
given through a fitness function, to emphasize genetic quality while maintain-
ing genetic diversity. The recombination or reproduction process makes use of
genes of selected parents to produce offspring that will form the next genera-
tion. As for mutation, it consists of randomly modifying some genes of a single
individual at a time to further explore the solution space and ensure genetic
diversity. The mutation is generally associated with a low probability.

An example of the use of GA to solve the CVRP is provided by Berger and
Barkaoui [25]. The authors concurrently evolve two populations of solutions to
minimize the total traveled distance and to solve a time-variant of the problem
that helps on guiding the search while keeping balance between diversification
and intensification. Prins [140] proposed a hybrid GA algorithm which sub-
stitutes classical mutation operators with a local search process. Mester and
Bräysy [119] combined the GLS and evolution strategies into an iterative two-
stage procedure. Nagata [126] extended a recombination operator originally
designed for the TSP by ignoring vehicles’ capacity constraint. To address the
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constraint violation, the author introduces a penalty function into the evolu-
tionary algorithm.

Thangiah et al. [173] were the first to apply a GA to the VRPTW. This
first paper describes an approach that uses a GA to find good clusters of
customers, within a cluster-first route-second problem-solving strategy. During
the 90s and beginning of 2000s, numerous papers were written on generating
good solutions for the VRPTW with GA. Almost all these papers present
hybridizations of a GA with different construction heuristics [29] [27], local
searches [172] [136] [95], and other metaheuristics such as TS [100] and Ant
Colony Systems (ACS) [26].

Homberger and Gehring [85] present two evolution strategies for the VRPTW.
Together with GA and evolutionary programming, the evolution strategies form
the class of evolutionary algorithms [34]. By definition, the main differences
between these three types of algorithms lie in the representation and in the
role of mutation [34]. In Gehring and Homberger [69] the evolution strate-
gies of Homberger and Gehring [85] are hybridized with TS to minimize the
total distance, and the approach is parallelized using the concept of cooper-
ative autonomy, i.e. several autonomous sequential solution procedures co-
operate through the exchange of solutions. Gehring and Homberger [70] in-
troduce three different improvements to the parallel method of Gehring and
Homberger [69]. In the evaluation of individuals, capacity related information
is used to determine the routes for elimination. In Homberger and Gehring
[86], a single processor implementation is presented, and capacity ifnormation
is not used in the evaluation criterion. Mester [118] also experimented with
evolution strategies similar to Homberger and Gehring [85]. Le Bouthillier
and Crainic [31] present a parallel cooperative methodology in which several
agents communicate through a pool of feasible solutions. The agents consist
of simple construction and local search algorithms, GA and adaptations of the
Taburoute method of Gendreau et al. [73].

Nagata et al. [128] develop a penalty-based Memetic Algorithm (MA)
[124] for the VRPTW by extending the Edge Assembly Memetic Algorithm
(EAMA) of Nagata [126] for the CVRP. MA is a population-based heuristic
search approach that combines evolutionary algorithms for the global, more
distant search (exploration), with local search algorithms to organize a more
intensive local search (exploitation). For this reason, MAs are often referred
to as hybrid GA or genetic local searches. The proposed EAMA is based on a
two-stage approach. An initial population of solutions, each consisting of the
same number of routes, is generated with the route-minimization procedure
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developed by Nagata and Bräysy [127]. A subsequent procedure of the EAMA
is then applied for minimizing total travel distance for the determined number
of routes.

The initial population is typically created either randomly or using modifi-
cations of well-known construction heuristics. A random heuristic can be found
in Blanton et al. [29] and Le Bouthillier and Crainic [31], though the last one
applies also a set of construction heuristics combined with 2-opt, 3-opt, and
Or-opt improvement heuristics.

Fitness values are usually based on routing costs, i.e. number of routes,
total distance, and duration. The most typical selection scheme for selecting
a pair of individuals for recombination is the roulette-wheel scheme. In this
stochastic scheme, the probability of selecting an individual is proportional to
its fitness value. Tan et al. [169] and Jung and Moon [95] use so-called tourna-
ment selection. The basic idea is to perform the roulette wheel scheme twice
and to select the better out of the two individuals identified by the roulette
wheel scheme. In Wee Kit et al. [100], Homberger and Gehring [85] [86],
Gehring and Homberger [69] [70], and Mester [118], the parents are selected
randomly. Finally, Potvin and Bengio [136] and Le Bouthillier and Crainic
[31] use a ranking scheme, where the probability of selecting an individual is
based on its rank.

The recombination is the most crucial part of a GA. The traditional two-
point crossover, which exchanges a randomly selected portion of the bit string
between the chromosomes, is used, for example, in Thangiah [172]. In the con-
text of VRPTW, many authors have proposed specialized heuristic crossover
procedures, instead of traditional operators. For instance, in Berger et al.
[27][26], a removal procedure is first carried out to remove some key customer
nodes in a similar fashion to Shaw’s LNS [161]. Then, an insertion proce-
dure inspired from Solomon [163] is locally applied to reconstruct the partial
solution.

The mutation is often considered as a secondary strategy, and its pur-
pose in traditional GA is mainly to help escape from local minima. How-
ever, in the evolution strategies of Homberger and Gehring [85] [86], Gehring
and Homberger [69] [70], and Mester [118], the search is mainly driven by
mutation, based on traditional local search operators (2∗-opt, Or-opt, and λ-
interchanges). Berger et al. [26] present five mutation operators including
Shaw’s LNS [161], λ-exchanges, exchange of customers served too late in the
current solution, elimination of the shortest route, and within-route reordering
using Solomon’s heuristic [163].
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Different intensification techniques are often coupled to a GA. For instance,
Tan et al. [169] introduce a special hill-climbing technique, where a randomly
selected part of the population is improved by partial λ-exchanges. In Wee
Kit et al. [100], a simple TS is applied to individual solutions in the later
generations to intensify the search. Like the in many TS works, many GA
allow infeasibilities during the search to escape from local minima. Examples
of such strategies can be found in Blanton and Wainwright [29], Thangiah
[172], Berger et al. [26], and Le Bouthillier and Crainic [31].

Another important approach to the CVRP is given by the Greedy Random-
ized Adaptive Search Procedure (GRASP) [61] [62] [147]. A GRASP algorithm
is a multi-start or iterative process in which each GRASP iteration consists
of two phases: a construction phase, in which a feasible solution is produced,
and a local search phase, in which a local optimum in the neighborhood of the
constructed solution is sought. The best overall solution is kept as the result.
In the construction phase, a feasible solution is iteratively constructed, one el-
ement at a time. At each construction iteration, the choice of the next element
to be added is determined by ordering all candidate elements in a candidate
list according to a greedy function. This function measures the (myopic) ben-
efit of selecting each element. The heuristic is adaptive because the benefits
associated with every element are updated at each iteration of the construc-
tion phase to reflect the changes brought on by the selection of the previous
element. The probabilistic component of a GRASP is characterized by the
random choice of one of the best candidates in the list, but not necessarily
the top candidate. This choice technique allows for different solutions to be
obtained at each GRASP iteration.

Kontoravdis and Bard [102] proposed a two-phase GRASP for the VRPTW.
The construction procedure first initializes a number of routes by selecting
seed customers that are either geographically most dispersed or the most time
constrained. After initialization, the algorithm finds the best feasible insertion
location in each route for every unrouted customer and calculates a specific
penalty value using Solomon’s cost function [163].

Among metaheuristics, Variable Neighborhood Search (VNS) (see section
3.3), introduced for the first time by Mladenovic and Hansen [121], is a quite
recent method with far less application examples in VRP research. However,
interesting results have been obtained even applying the simplest VNS algo-
rithms. For example, Hasle and Kloster [81] apply a Variable Neighborhood
Descent (VND) scheme (see section 3.3.1) to solve the CVRP, capable of im-
proving some best-known solutions and providing the first known solution of
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a benchmark instance.
Rousseau et al. [155] examine a VND scheme and new large neighborhood

operators within a CP framework. The first operator introduced is inspired by
ideas from Shaw’s LNS [161]. The algorithm removes first, randomly, a subset
of customers with a bias toward customers generating the longest detour. A CP
version of the GENI algorithm for the TSP with time windows by Gendreau et
al. [74] is used to reinsert removed customers. The second operator introduced
is called naive ejection chains [76], and it is used to create the initial solution
and diversify the search. To limit search space and prevent cycling, the first
completed ejection chain is always accepted and each customer is allowed to be
moved only once. The third proposed operator, SMART, removes a set of arcs
instead of customers from the solution, creating an incomplete solution. The
removed arcs can be either consecutive or randomly selected with a bias toward
the longer arcs. This smaller routing problem is then solved either exactly by
using the modified TSP with time windows model developed by Pesant et al.
[132] or, in the case of a larger neighborhood size, by using limited discrepancy
search with a bounded number of discrepancies. The search oscillates between
the two suggested operators to escape local minima. In the end, routes are
either exactly reordered using the algorithm of Pesant et al. [132] or, in case
of longer routes, using the post-optimization part of the algorithm proposed
by Pesant et al. [133].

Bräysy [33] presents a four-phase deterministic metaheuristic algorithm
based on a modification of the VNS. In the first phase, an initial solution is
created using a construction heuristic that borrows its basic ideas from the
works of Solomon [163] and Russell [157]. Routes are built one at a time
sequentially and after k customers have been inserted into the route, it is
reordered using Or-opt exchanges. Then, a special route elimination operator
based on ejection chains is used to minimize the number of routes. In the
third phase, the created solutions are improved in terms of distance using VNS
oscillating between four improvement procedures. These procedures are based
on modifications to CROSS-exchange of Taillard et al. [166] and cheapest
insertion heuristics. In the fourth phase, the objective function used by the
local search operators is modified to also consider waiting time to escape from
local minima.

Bräysy et al. [37] continue the study of Bräysy [33] by introducing mod-
ifications to the construction and improvement heuristics, and by applying
a new post-optimization technique based on threshold accepting, that can be
considered as a deterministic modification of the SA. The reordering proce-
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dure is removed from the construction heuristic, and an extension of ejection
chains that allows for infeasible solutions and removal of several customers
from each route is used in the second phase. In the distance optimization
phase, only modifications of CROSS-exchange are used. The modifications
also include considering inverting the order of the customers in the selected
segments, and more insertion positions for segments. The post-optimization is
based on an interroute exchange heuristic that combines the ideas of CROSS-
and GENIUS-exchanges.

In addition, a variety of other metaheuristics have been applied to the VRP.
Chiang and Russell [43] developed a SA approach for the VRPTW. The au-
thors combine the SA process with the parallel construction approach of Russell
[157] that incorporates improvement procedures during the construction pro-
cess. Tan et al. [170] developed a fast SA method based on two-interchanges
with best-accept strategy and a monotonously decreasing cooling scheme. Af-
ter the final temperature is reached, special temperature resets based on the
initial temperature and the temperature that produced the current best solu-
tion are used to restart the procedure. Li et al. [110] propose a tabu-embedded
SA restart metaheuristic. Initial solutions are created by the insertion and ex-
tended sweep heuristics of Solomon [163]. Three neighborhood operators based
on shifting and exchanging customer segments between and within routes are
combined with a SA procedure that is forced to restart from the current best
solution several times. Other examples of hybrid SA approaches can be found
in the works of Zhong and Pan [182] and Brandão de Oliveira and Vasconcelos
[53]. In this last work, the authors combine SA with a Hill Climbing heuristic
and a random restart policy that helps on diversifying the search.

Kilby et al. [98] introduced GLS for VRPTW. GLS is a memory-based
technique which operates by augmenting the cost function with a penalty term
based on how close the search moves to previously visited local minima, thus
encouraging diversification. GLS moves out of local minima by penalizing
particular solution features it considers should not occur in a near-optimal
solution weighted by the number of times the feature has already been penal-
ized. Kilby et al. [98] choose arcs as the feature to penalize. In the initial
solution, no visits are allocated to any vehicle. A penalty is associated with
not performing a visit, and so the search process constructs a solution in the
process of minimizing cost using four different local searches.

De Backer et al. [11] test iterative improvement techniques within a CP
framework. The improvement techniques are coupled to TS and GLS to avoid
the search being trapped in local minima. The CP system is used only as
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background operator to check the validity of solutions and to speed up legality
checks of improvement procedures.

Gambardella et al. [67] use an Ant Colony Optimization (ACO) [56] ap-
proach with a hierarchy of two cooperative artificial ant colonies. The first
colony is used to minimize the number of vehicles, while the second colony
minimizes the total traveled distance. The two colonies cooperate through
updating the best solution found, and in case the new best solution contains
fewer vehicles, both colonies are reactivated with the reduced number of ve-
hicles. Chen and Ting [41] propose an improved ACO with modified local
and global pheromone updating rules. The authors add local search proce-
dures to ant’s behavior. Qi and Sun [142] propose an ACO hybridized with a
randomized algorithm, which uses some randomly chosen customers in ants’
probability evaluation function.

Finally, Particle Swarm Optimization (PSO) [97] algorihtms are a research
area that have attracted some attention in the last years. For instance, Ai and
Kachitvichyanukul proposed PSO approaches for both the CVRP [5] and the
VRPTW [4]. Another example is the work by Masrom et al. [117], where the
authors introduce a hybrid approach between PSO and GA to overcome the
problem of premature convergence that often arises in standard PSO.



Chapter 3

Technologies

In this chapter, the technologies used throughout this work are reviewed. First,
we provide a formal definition for combinatorial optimization problems, the
concept of neighborhood and local search. Although we have commented the
origins and some basic features in section 2.1, the central part of this chap-
ter is devoted to describe some characteristics of the three main technologies
applied in the proposed approach: constraint programming, variable neighbor-
hood search and large neighborhood search. Other methods that we use for
some specific operations are briefly introduced at the end of this chapter.

3.1 Local Search: an overview

We first formally introduce a combinatorial optimization problem and the con-
cept of a neighborhood. There are alternative ways of representing combina-
torial optimization problems, all relying on some method for representing the
set of feasible solutions. Here, we will let the set of feasible solutions be repre-
sented as subsets of a finite set. This formulation is based on the one presented
in [3].

Let E = {1, 2, ...,m} be a finite set. In general, for a set S, we let |S|
denote its cardinality. Let F ⊆ 2E, where 2E denotes the set of all the subsets
of E. The elements of F are called feasible solutions. Let f : F → R. The
function f is called the objective function or cost function. Then an instance
of a combinatorial optimization problem is represented as follows:

min{f(S) : S ∈ F}

29
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We assume that the family F is not given explicitly by listing all its ele-
ments; instead, it is represented in a compact form of size polynomial in m.
An instance of a combinatorial optimization problem is denoted by the pair
(F, f). For most of the problems, the cost function is linear, that is, there is a
vector f1, f2, ..., fm such that for all feasible sets S, f(S) =

∑
i∈S fi.

Suppose that (F, f) is an instance of a combinatorial optimization problem.
A neighborhood function is a point to set map N : F → 2E. Under this
function, each S ∈ F has an associated subset N(S) of E. The set N(S)
is called the neighborhood of the solution S, and we assume without loss of
generality that S ∈ N(S). A solution S∗ ∈ F is said to be locally optimal with
respect to a neighborhood function N if f(S∗) ≤ f(S) for all S ∈ N(S∗). The
neighborhood N(S) is said to be exponential if |N(S)| grows exponentially in
m as m increases.

With these definitions it is possible to define a neighborhood search al-
gorithm. The algorithm takes an initial solution x as input. It computes
x′ = argminx′′∈N(x){f(x′′)}, that is, it finds the cheapest solution x′ in the
neighborhood of x. If f(x′) < f(x) then the algorithm performs the update
x ← x′. The neighborhood of the new solution x is searched for an improv-
ing solution and this is repeated until a local optimum x is reached. When
this happens the algorithm stops. The algorithm is denoted a steepest descent
algorithm if it always chooses the best solution in the neighborhood.

3.2 Constraint Programming

Constraint Programming (CP) is powerful paradigm for representing and solv-
ing a wide range of combinatorial problems [154]. In the last few decades, it
has attracted much attention among researchers due to its flexibility and its
potential for solving hard combinatorial problems in areas such as scheduling,
planning, timetabling and routing. CP combines strong theoretical founda-
tions (e.g. techniques originated in different areas such as Mathematics, Arti-
ficial Intelligence, and Operations Research) with a wide range of application
in the areas of modeling heterogeneous optimization and satisfaction prob-
lems. Moreover, CP nature provides other important advantages such as fast
program development, economic program maintenance and efficient runtime
performance.

Problems are expressed in terms of three entities: variables, their corre-
sponding domains, and constraints relating them. Constraints can be consid-
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ered as the heart of CP. They are treated as logical relations among several un-
knowns (or variables), each taking a value from a set of accepted values called
domain, which can be a range with lower and upper bounds or a discrete list of
numbers. The representation of the problem, in terms of constraints, results in
short and simple programs easily adaptable to future changing requirements.
Furthermore, quick developing and modification of programs makes it possible
to experiment with different models until the best and fastest program has
been found - without the programming task becoming unmanageable. This
helps the programmer to concentrate only on finding the best model for the
problem.

The practical benefits of CP really began to emerge when it was embed-
ded in a programming language. Thus, CP is usually found embedded in a
logic programming language, such as Prolog. In that case, it is called Con-
straint Logic Programming (CLP), but it does not necessarily mean that CP
is restricted to CLP. Constraints can be integrated also to typical imperative
languages like C/C++, e.g. COMET [176] or ILOG [2], and Java, e.g. Cream
[168]. The programs implementing the methodologies presented in this thesis
have been made using the CLP platform ECLiPSe [9].

A CLP language combines:

• logic, which is used to specify a set of possibilities to be explored by
means of very simple search methods like generate-and-test, backtracking
or backmarking,

• and constraints, which are used to minimize the search by eliminating im-
possible alternatives in advance by the use of consistency techniques like
node-consistency, arc-consistency, path-consistency or directional arc-
consistency.

Thus, the system combines reasoning and search. The constraints are used
to restrict and guide the search. This combination is a common way of solving
problems with a set of constraints to be satisfied. There are mainly two ap-
proaches, depending on the way reasoning and search complement each other:

• look back schemes, such as backtracking, backjumping, backchecking, and
backmarking,

• and look ahead schemes, like forward checking and partial look ahead.
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Since CP is the study of computational systems based on constraints, its
idea is to solve problems by stating constraints (requirements) about the prob-
lem area and, consequently, finding a solution satisfying all the constraints.
This class of problems is usually termed Constraint Satisfaction Problems
(CSP) and the core mechanism used in solving them is constraint propaga-
tion.

Constraint propagation embeds any reasoning which consists in explicitly
forbidding values or combinations of values for some variables of a problem
because a given subset of its constraints cannot be satisfied otherwise [28]. In
other words, constraint propagation is a way to produce the consequences of
a decision.

In order to formally describe how constraint propagation works, some def-
initions should be introduced first.

Definition A label is a variable-value pair that presents the assignment of
the value to a variable. It is used < x, v > to denote the label of assigning the
value v to the variable x.

Definition A compound label is the simultaneous assignment of values
to a (possibly empty) set of variables. It is used (< x1, v1 >,< x2, v2 >
, ..., < xn, vn >) to denote the compound label of assigning v1, v2, ..., vn to
x1, x2, ..., xn, respectively.

Definition A Constraint Satisfaction Problem (CSP) is a triple

(Z,D,C)

where

• Z is a finite set of variables x1, x2, ..., xn;

• D is a function which maps every variable in Z to a set of objects of
arbitrary type: D : Z → finite set of objects (of any type)

We shall take Dxi as the set of objects mapped from xi by D. We call
these objects possible values of xi and the set Dxi the domain of xi;

• C is a finite (possibly empty) set of constraints on an arbitrary subset
of variables in Z. In other words, C is a set of sets of compound labels.
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A solution to a CSP is a full assignment to the variables of the problem,
in such a way that all constraints are satisfied at once. We may want to find:

• just one solution, with no preference to which one,

• all solutions,

• an optimal, or at least a good solution, given some objective function
defined in terms of some or all of the variables. In this case, the CSP
becomes a Constraint Optimization Problem (COP).

Propagation is a generalization of data-driven computation. In general,
when a variable belonging to a constraint is labeled, that value is propagated
to the rest of variables involved in that constraint.

The next example intuitively shows how propagation works. Let us consider
a problem with three variables, X, Y , and Z, whose domains are defined as
follows:

[X, Y ] :: [0..10]→ X{0..10}, Y {0..10}

Z :: [2..8]→ Z{2..8}

where the symbol ’::’ is used to define the domain of a variable or a set
of variables. Thus, X :: [DXmin

..DXmax ] declares the possible values for the
variable X to be between the bounds DXmin

and DXmax . Once the domain of
a variable has been defined, that variable is represented as X{DXmin

..DXmax}.
We consider these variables subject to the following set of constraints:

C1 : X{0..10} = Y {0..10}+ 1

C2 : Y {0..10}2 > Z{2..8}

C3 : Z{2..8} = X{0..10}+ 1

C4 : Z{2..8} > 4

Before binding a variable, due to the unary constraint C4 (Z > 4), the
values 2 to 4 are removed from the domain of Z. Its new domain is [5..8].
All the unary constraints, that is, constraints involving only one variable, are
evaluated before any variable assignation.
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X{0..10}, Y {0..10}, Z{2..8} C4−→ X{0..10}, Y {0..10}, Z{5..8}

Binary and more complex constraints are used to propagate the changes
made to one of their variables to the other variables involved in that constraint.

During the search of a solution, an assignation Y = 0 makes the constraint
C1 and C2 propagate and find an inconsistency. Hence, the value 0 is rejected
from the domain of Y and the search continues:

• Propagation over C1:

X{0..10} = Y {0}+ 1→ X{0..10} = 0 + 1 = 1→ X{1}

• Propagation over C2:

Y {0}2 > Z{5..8} → 02 = 0 > Z{5..8}

An inconsistence is found, since Z has no value lower than 0 in its domain.

This is a first assignation to a variable in the search of a solution satisfying
the constraints, i.e. a feasible solution. From this point, a new value from the
domain of Y would be tried and so on.

An important contribution of CP is to allow the end user to control the
search. The topic of search comes from the heart of AI, which has developed
several algorithms to perform the search in a solution space. End user’s search
control is achieved by combining generic techniques, when the generation of the
whole search tree is unfeasible, and problem-specific techniques, when there is
an extra knowledge about special features of the problem. Thus, while mathe-
matical programming is mainly based in the application of certain algorithms
to a model, CP allows the user to take some decisions on the search stage like
the order of instantiation of the variables and the order of selection of values
from domains. Depending on those decisions the way decisions are made is
totally different and the performance of the search algorithm can be highly
affected.

Given the benefits carried by the combination of these features, several
research groups are studying different fields. One line of research has focused
on propagation, showing how to improve the way information propagates. An-
other line of research is the global shape of the problem. It considers the
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problem like a graph, where each variable is a node and each constraint an
edge (or an hyper-edge) in the graph. This is a technique mainly used with
binary CSPs, i.e. CSPs where the primitive constraints have at most two
variables. Tree-structured problems are relatively easy to solve, but research
has also revealed a variety of ways of dealing with more awkward structures,
by breaking down a problem into easier subproblems, whose results can be
combined into a solution of the original problem.

3.2.1 Constraint Satisfaction

As it has been said above, constraint satisfaction is related to problems defined
over finite domains. Solutions to a CSP can be found by searching (system-
atically) through the possible assignments of values to variables, that is gen-
erating the whole search tree. Search methods can be divided into two broad
classes: those that traverse the space of partial solutions (or partial value as-
signments), and those which explore the space of complete value assignments
(to all variables) stochastically.

From the theoretical point of view, solving a CSP is trivial using systematic
exploration of the solution space. But that is not true from the practical point
of view, where the efficiency takes place. Even if systematic search methods
(without additional improvements) look very simple and non-efficient, they are
important because they make the foundations of more advanced and efficient
algorithms.

The simplest algorithm that searches the space of complete labelings, is
called Generate-and-Test (GT). The idea of GT is very simple: firstly, a com-
plete labeling of variables is randomly generated and, consequently, if this
labeling satisfies all the constraints then the solution is already found; other-
wise, another labeling is tried.

The GT algorithm is clearly a weak generic algorithm used only if every-
thing else failed. Its efficiency is very poor for two reasons: it has a non-
informed generator and there is a late discovery of inconsistence. There are
two ways to improve efficiency in GT:

• To program a smart (informed) generator of valuations, i.e. able to
generate the complete valuation in such a way that the conflict found by
the test phase is minimized.
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• To merge the generator and the tester, i.e. the validity of the constraint
is tested as soon as its respective variables are instantiated. This method
is used by the backtracking approach.

Backtracking (BT) [8] is a method used for solving CSPs by incrementally
extending a partial solution that specifies consistent values for some of the
variables, towards a complete solution, by repeatedly choosing a value for
another variable consistent with the values in the current partial solution.

As said above, BT is a merge of the generating and testing phases of GT.
The variables are labeled sequentially and as soon as all the variables relevant
to a constraint are instantiated, the validity of the constraint is checked. If
a partial solution violates any of the constraints, backtracking is performed
to the most recently instantiated variable that still has alternatives available.
Clearly, whenever a partial instantiation violates a constraint, backtracking
is able to eliminate a subspace from the Cartesian product of all variables’
domains. Hence, backtracking is strictly better than GT. However, its running
complexity for most non-trivial problems is still exponential.

There are three major drawbacks of the standard BT:

• Thrashing : it is a repeated failure (and consequent backtrack) due to
the same reason. This happens because there is no information stored
when a failure occurs. Thus, if there is a similar situation in the future
the search will also fail and backtrack.

• Redundant work: conflicting values of variables are not remembered.
This makes the search fail the same way in different branches of the tree.

• Late detection of conflicts: conflict is not detected before it really occurs.

Improved methods for solving the first two drawbacks were proposed, namely
backjumping and backmarking (introduced in section 3.2.2), but more attention
was paid to detect the inconsistency of partial solutions sooner using consis-
tency techniques [28]. The latter are based on the idea of removing inconsistent
values from variables’ domains until a solution is found. It is very important
to note that consistency techniques are deterministic.

There exist several consistency techniques, but most of them are not com-
plete [8]. For this reason, these techniques are rarely used alone to solve a
CSP completely. The names of basic consistency techniques are derived from
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the graph notions. As said above, a binary CSP can be represented as a con-
straint graph where nodes correspond to variables and edges are labeled by
constraints [123]. Although this representation can be applied only to binary
CSPs, it is easy to show that every CSP can be transformed to an equivalent
binary CSP [153]. However, in practice this operation is not likely to be worth
doing and it is easier to extend the algorithms so they can tackle non binary
CSPs as well.

Among consistency techniques, some of the most common are:

• Node-Consistency : it removes values from variables’ domains that are in-
consistent with constraints involving one variable, i.e. unary constraints.
It is the simplest consistency technique.

• Arc-Consistency : it removes values from variables’ domains which are
inconsistent with constraints involving two variables, i.e. binary con-
straints.

• Path-Consistency : it requires for every pair of values of two variables x
and y satisfying the respective binary constraint that there exists a value
for each variable along some path between x and y such that all binary
constraints in the path are satisfied.

• K-Consistency and Strong K-Consistency : a constraint graph is k-consistent
if for every system of values for k−1 variables satisfying all the constraints
among these variables, there is a value for an arbitrary kth variable such
that the constraints among these variables are satisfied. A constraint
graph is strongly k-consistent if it is j-consistent for all j ≤ k. All previ-
ously mentioned techniques can be generated by k-consistency and strong
k-consistency.

Attention should be paid to the use of these consistency techniques. They
provide a good mechanism to remove inconsistent values from variables’ do-
mains during search, but they often penalize with respect to efficiency terms.
For this reason, they are often neglected on designing efficient search algo-
rithms and substituted by heuristic approaches.

3.2.2 Search schemes

Although both systematic search and some consistency techniques can be used
alone to solve a CSP completely, this is rarely done. A combination of both
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approaches is a more common way of solving a CSP. There are mainly two
schemes to solve a CSP using constraint propagation: the look back and the
look ahead schemes.

A look back schema uses consistency checks among already instantiated
variables. BT is a simple example of this schema. To avoid some problems
of BT, like thrashing and redundant work, other look back schemes were pro-
posed.

Backjumping (BJ) is a method to avoid thrashing in BT. The control of
BJ is exactly the same as BT, except when backtracking takes place. Both
algorithms pick one variable at a time and look for a value for this variable
making sure that this new assignment is compatible with values committed to
so far. However, if BJ finds an inconsistency, it analyses the situation in order
to identify the source of inconsistency. It uses the violated constraints as a
guidance to find out the conflicting variable. If all the values in the domain
are explored, then the BJ algorithm backtracks to the most recent conflicting
variable. This is the main difference from the BT algorithm, which backtracks
to the immediate past variables.

Another look back schemes, called Backchecking (BC) and Backmarking
(BM), avoid redundant work of BT. Both BC and its descendent BM are useful
algorithms for reducing the number of compatibility checks. If the algorithm
finds that some label < Y, b > is incompatible with any recent label < X, a >
then it remembers this incompatibility. As long as < X, a > is still committed
to, the < Y, b > will not be considered again.

BM is an improvement over BC that avoids some redundant constraint
checking as well as some redundant discoveries of inconsistencies. It reduces
the number of compatibility checks by remembering for every label the incom-
patible recent labels. Furthermore, it avoids repeating compatibility checks
which have already been performed and which have succeeded.

To cope with COPs, one should take into account the cost function. The
appropriate modification of the BT search schema is called Branch-and-Bound
(BB). During the search, BB maintains the current best value of the cost
function (bound) and, each time a solution with a smaller cost is found, its value
is updated. There are many variations on the BB algorithm. One consideration
is what to do after a solution with a new best cost is found. The simplest
approach is to restart the computation with the bound variable initialized to
this new best cost. A less naive approach is to continue the search for better
solutions without restarting. In this case, the cost function upper bound is
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constrained to the bound variable value. Each time a solution with a new best
cost is found, this cost is dynamically imposed through this constraint. The
constraint propagation triggered by this constraint leads to a pruning of the
search tree by identifying the nodes under which no solution with a smaller
cost can be present.

All look back schemes share the disadvantage of late detection of the con-
flict. As a matter of fact, they solve the inconsistency when it occurs but do
not prevent the inconsistency to occur. Therefore, look ahead schemes were
proposed to prevent future conflicts.

Forward Checking (FC) is the easiest example of look ahead strategy. It
performs arc-consistency between pairs of not yet instantiated variable and
instantiated variable, i.e. when a value is assigned to the current variable,
any value in the domain of the "future" variable which conflicts with this as-
signment is (temporally) removed from the domain. Therefore, FC maintains
the invariance that for every unlabeled variable there exists at least one value
in its domain that is compatible with the values of instantiated/labeled vari-
ables. FC does more work than BT when each assignment is added to the
current partial solution. Nevertheless, it is almost always a better choice than
chronological backtracking.

Even more future inconsistencies are removed by the Partial Look Ahead
(PLA) method. While FC performs only the checks of constraints between the
current variable and the future variables, the PLA extends this consistency
checking even to variables which does not have direct connection with labeled
variables.

The approach that uses full arc-consistency after each labeling step is called
(Full) Look Ahead (LA) or Maintaining Arc Consistency (MAC). It can use
arbitrary arc-consistency algorithms to achieve arc-consistency. However, it
should be noted that LA does even more work than FC and PLA when each
assignment is added to the current partial solution. Actually, in some cases
LA may be more expensive than BT and, therefore, FC and BT are still used
in applications.

Stochastic and Heuristic Algorithms

As mentioned, one of the main contributions of CP is to allow the end user to
control the search, so problem-specific and generic techniques can be combined
to obtained more efficient algorithms. Thus, depending on the problem to be
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solved, it is possible to apply specific CP techniques. However, it is important
to notice that, although a search improved by these techniques can be useful
to find a faster solution for a problem, it can significantly slow the solution of
a different problem.

An important technique is to select the order of labeling for the variables
and the order in which the values in the domains of these variables are selected.
This point represents one of the most important differences with Linear Pro-
gramming (LP): when using LP, once the problem is modeled, the rest of the
work is done by the solver. In the CP methodology, the order of variable label-
ing and value selection is essential to drive the search. It could be unnecessary
to find the optimal values for a set of variables if they do not affect the cost
function variables. In this case, they can be labeled only once or leave them
represented by their bounded feasible domains. Some of these techniques come
usually implemented in CP platforms such as ECLiPSe [9].

Generic techniques for local search such as Genetic Algorithms, Simulated
Annealing (SA), or Tabu Search (TS) can also be used to aid CP to find quasi-
optimal solutions when it is not feasible to generate the whole search tree (due
to memory or CPU time problems). Some examples have been introduced in
section 2.1.2. These methods are used when the size of the problem is huge
and it is not possible to find the optimal solution. Then, CP is used to find
fast poor solutions which will be used as initial values for these techniques. A
good solution is sought from these input values. If the best solution found by
these techniques is not good enough then new initial values are generated by
CP. To avoid the same values than in previous searches, either new constraints
are added or some of the existing constraints are removed.

For further descriptions on CP modeling techniques, algorithms, tools, and
applications, the reader is referred to [154].

3.3 Variable Neighborhood Search

Variable Neighborhood Search (VNS), as defined in [80], is a metaheuristic, or
a framework for building heuristics, aimed at solving combinatorial and global
optimization problems. It exploits systematically the idea of neighborhood
changes both in descent phase to find a local minimum, and in perturbation
phase, to emerge from the corresponding valley. Since it was first proposed
in 1997 [121], VNS has rapidly grown into many developments and has been
applied in different fields. Its application to VRP problems has been depicted
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in section 2.1.2. A complete and revised description of different VNS methods
can be found in [79].

VNS concept strongly depends on the following observations:

1. A local minimum with respect to one neighborhood structure is not nec-
essarily a local minimum for another neighborhood structure.

2. A global minimum is a local minimum with respect to all possible neigh-
borhood structures.

However, experiments show that, for many problems, local minima with
respect to one or several neighborhoods are relatively close to each other. It
implies that a local optimum often provides some information about the global
optimum. This fact is used in some VNS schemes to guide the search.

One of the main advantages of VNS with respect to many other metaheuris-
tics relies upon the fact that the basic schemes of VNS and their extensions
are simple and require few, and sometimes no parameters.

In order to formally describe the different VNS algorithms, some notation
should be introduced first. Let us denote with Nk, (k = 1, ..., kmax), a finite
set of pre-selected neighborhood structures, and with Nk(x) the set of feasible
solutions in the kth neighborhood of x. An optimal solution xopt (or global
minimum) is a feasible solution where a minimum of the problem is reached.
We call x′ ∈ X a local minimum of the problem with respect to Nk, if there is
no solution x ∈ Nk(x

′) ⊆ X such that f(x) < f(x′). In the description of all
algorithms that follow, we assume that an initial solution x is given.

3.3.1 Variable Neighborhood Descent (VND)

The Variable Neighborhood Descent (VND) method is obtained if the change
of neighborhoods is performed in a deterministic way. It is the simplest VNS
schema and so is often used as a local search method for more complex frame-
works, such as VNS itself. The VND algorithm is presented in Algorithm
3.1.

As it can be inferred from Algorithm 3.1, the final solution should be a
local minimum with respect to all neighborhoods; hence the chances to reach
a global one are larger when using VND than with a single neighborhood
structure.
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Algorithm 3.1 Variable Neighborhood Descent (VND)
Initialization: Find an initial solution x.

Repeat the following sequence until no improvement is obtained:

1. Set k ← 1.

2. Repeat the following steps until k = kmax:

(a) Exploration of neighborhood: find the best neighbor x′ of x (x′ ∈
Nk(x)).

(b) Move or not: if the solution x′ thus obtained is better than x, set
x← x′ and k ← 1; otherwise, set k ← k + 1.

Alternatively to the best accept strategy used in steps (a) and (b), where
the neighbor x′ ∈ Nk(x) with the lowest cost value is selected, a first accept
strategy can be used. The latter consists on accepting the first neighbor x′ ∈
Nk(x) found during the search that is able to improve the current solution x
cost value. Thus, the first accept strategy draws an incomplete search able
to speed up neighborhoods exploration when they are huge. In this case,
performing a complete search using the best accept strategy could lead to
unmanageable computational times.

Although VND is a very simple algorithm, some drawbacks may arise when
applying this method to some problems. In particular, the complexity of the
different moves used to define the neighborhoods has a large influence on algo-
rithm’s performance. Often, a move defined over a simple elementary change
may lead to a very large neighborhood. If exploring such a neighborhood
involves checking too many elementary changes, the resulting heuristic may
be very slow and often take more time than an exact algorithm on small or
medium size examples.

Another important question when implementing a VND algorithm is which
order is the best in applying the different moves. It bears upon computing
times in relation to the quality of solutions obtained. A frequent implementa-
tion consists of ranking moves by order of complexity of their application and
returning to the first one each time a direction of descent is found and a step
made in that direction.
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Algorithm 3.2 Reduced VNS
Initialization: Find an initial solution x; choose a stopping condition.

Repeat the following sequence until the stopping condition is met:

1. Set k ← 1.

2. Repeat the following steps until k = kmax:

(a) Shaking: generate a point x′ at random from the kth neighbourhood
of x (x′ ∈ Nk(x)).

(b) Move or not: if this point is better than the incumbent, move there
(x← x′) and set k ← 1; otherwise, set k ← k + 1.

Finally, it is important to ensure that the moves considered guarantee a
thorough exploration of the region containing x. For some problems, elemen-
tary moves are not sufficient to leave a narrow valley, and heuristics using them
only can give very poor results. Thus, this question is crucial. It is also related
to the desired precision of the VND final solution. In most situations, a better
solution will be pursued when VND is used alone, while poorer solutions may
be accepted when it is embedded in a larger framework, such as VNS itself. In
this case, one may prefer to get a good-enough solution fairly quickly by the
deterministic VND, using simpler moves or incomplete search, and to improve
it later by faster stochastic search in VNS.

3.3.2 Reduced VNS

The Reduced VNS (RVNS) method is obtained if random points are selected
from Nk(x) and no local search is made. Rather, the values of these new
points are compared with that of the incumbent and updating takes place in
case of improvement. We assume that a stopping condition has been chosen,
among various possibilities, e.g., the maximum CPU time allowed tmax, or
the maximum number of iterations between two improvements. Therefore,
RVNS uses two parameters: tmax (or, alternatively, the maximum number of
iterations) and kmax. Its steps are presented in Algorithm 3.2.

A set of neighborhoods N1(x), N2(x), ..., Nkmax(x) is considered around the
current point x. Since any generated solution x′ ∈ Nk(x) may be accepted
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during the search, the current point x may be or not a local optimum. Usually,
the neighborhoods N1(x), N2(x), ..., Nkmax(x) are nested, i.e., each one contains
the previous. Then a point is chosen at random in the first neighborhood. If
its value is better than that of the incumbent (f(x′) < f(x)), the search is
recentered there (x← x′). Otherwise, one proceeds to the next neighborhood.
After all neighborhoods have been considered, one begins again with the first
(k ← 1), until the stopping condition is satisfied.

Due to the nestedness property, the size of successive neighborhoods will be
increasing. Therefore, one will explore more thoroughly close neighborhoods of
x than farther ones. However, the search will reach these larger neighborhoods
whenever it is not able to find further improvements within the first, smaller
ones.

RVNS is useful in very large instances, for which local search is costly.
RVNS is akin to a Monte Carlo method, but is more systematic.

3.3.3 Basic VNS and General VNS

The Basic VNS (BVNS) method combines deterministic and stochastic changes
of neighborhood. It combines a local search with systematic changes of neigh-
borhoods around the local optimum found. The BVNS can be seen as an
extended RVNS where a local search is performed any time a random point is
generated. The BVNS is presented in Algorithm 3.3.

Often successive neighborhoods Nk are nested as in the RVNS. The point
x′ is generated at random in order to avoid cycling, which might occur if a
deterministic rule is applied. Then, a descent from x′ is done with the local
search routine. This leads to a new local minimum x′′. At this point, three
outcomes are possible: (i) x′′ = x, i.e., the search is again at the bottom of the
same valley; in this case the procedure is iterated using the next neighborhood
Nk(x), k ≥ 2; (ii) x′′ 6= x but f(x′′) ≥ f(x), i.e., another local optimum has
been found, which is not better than the previous best solution; in this case
the procedure is iterated using the next neighborhood too; (iii) x′′ 6= x and
f(x′′) < f(x), i.e., another local optimum, better than the incumbent has been
found; in this case the search is recentered around x′′ and begins again with
the first neighborhood. Should the last neighborhood be reached without a
solution better than the incumbent being found, the search begins again at
the first neighborhood N1(x) until the stopping criterion is met.
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Algorithm 3.3 Basic VNS
Initialization: Find an initial solution x; choose a stopping condition.

Repeat the following sequence until the stopping condition is met:

1. Set k ← 1.

2. Repeat the following steps until k = kmax:

(a) Shaking: generate a point x′ at random from the kth neighborhood
of x (x′ ∈ Nk(x)).

(b) Local Search: apply some local search method with x′ as initial
solution; denote with x′′ the so obtained local optimum.

(c) Move or not: if the local optimum x′′ is better than the incumbent
x, move there (x← x′′), and continue the search with N1 (k ← 1);
otherwise, set k ← k + 1.

If instead of simple local search, one uses VND and if one improves the ini-
tial solution (generally, by means of VND or RVNS), the algorithm obtained
is known as the General VNS or, simply VNS. Its steps are presented in Algo-
rithm 3.4. This algorithm has led to the most successful applications reported
so far (see section 2.1.2).

Note that in the scheme presented in Algorithm 3.4, neighborhood struc-
tures have been denoted as Nk for the shaking and Nl for the local search.
However, they are usually chosen to be the same structures for both processes.
The main question arising from the selection of these neighborhood structures
is what properties should hold in order to be able to find a globally optimal
or near-optimal solution. To avoid being blocked in a valley, while there may
be deeper ones, the union of the neighborhoods around any feasible solution x
should contain the whole feasible set:

X ⊆ N1(x) ∪N2(x) ∪ ... ∪Nkmax(x),∀x ∈ X

These sets may cover X without necessarily partitioning it, which is easier
to implement, e.g. when using nested neighborhoods, i.e.,

N1(x) ⊂ N2(x) ⊂ ... ⊂ Nkmax(x), X ⊂ Nkmax(x),∀x ∈ X
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Algorithm 3.4 General VNS
Initialization: Select the set of neighborhood structures Nk, for k = 1, ..., kmax,
that will be used in the shaking phase, and the set of neighborhood structures
Nl, for l = 1, ..., lmax, that will be used in the local search; find an initial solu-
tion x and improve it by some local search process; choose a stopping condition.

Repeat the following sequence until the stopping condition is met:

1. Set k ← 1.

2. Repeat the following steps until k = kmax:

(a) Shaking: generate a point x′ at random from the kth neighborhood
of x (x′ ∈ Nk(x)).

(b) Local Search by VND:

i. Set l← 1.
ii. Repeat the following steps until l = lmax:
• Exploration of neighborhood: find the best neighbor x′′ of
x′ (x′′ ∈ Nl(x

′)).
• Move or not: if the solution x′′ thus obtained is better than
x′, set x′ ← x′′ and l← 1; otherwise, set l← l + 1.

(c) Move or not: if the local optimum x′′ is better than the incumbent
x, move there (x← x′′), and continue the search with N1 (k ← 1);
otherwise, set k ← k + 1.

If these properties do not hold, the search might still be able to explore X
completely, by traversing small neighborhoods around points on some trajec-
tory, but it is no more guaranteed. However, often the size of the feasible set
X is too large to be explored completely in an efficient manner, so a trade-
off between thoroughness and efficiency should be adopted on defining the
neighborhood structures.

Nested neighborhoods are easily obtained for many combinatorial problems
by defining a first neighborhood N1(x) by a type of move (e.g. 2-opt in the
TSP or the VRP) and then iterating it k times to obtain neighborhoods Nk(x)
for k = 2, ..., kmax. They have the property that their sizes are increasing.
Therefore if, as is often the case, the search goes many times through the whole
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Algorithm 3.5 Variable Neighborhood Decomposition Search
Initialization: Find an initial solution x; choose a stopping condition.

Repeat the following sequence until the stopping condition is met:

1. Set k ← 1.

2. Repeat the following steps until k = kmax:

(a) Shaking: generate a point x′ at random from the kth neighborhood
of x (x′ ∈ Nk(x)); in other words, let y be a set of p solution
attributes present in x′ but not in x (y = x′ \ x).

(b) Local Search: find a local optimum in the space of y either by in-
spection or by some heuristic; denote the best solution found with
y′ and with x′′ the corresponding solution in the whole space S
(x′′ = (x′ \ y) ∪ y′).

(c) Move or not: if the solution thus obtained is better than the in-
cumbent, move there (x ← x′′), and continue the search with N1

(k ← 1); otherwise, set k ← k + 1.

sequence of neighborhoods, the first one will be explored more thoroughly than
the last ones. This is a desirable property since, as mentioned, experiments
show that for many problems local minima tend to be close one from another.

3.3.4 Other VNS approaches

While the BVNS is clearly useful for obtaining an approximate solution to
many combinatorial and global optimization problems, it remains difficult or
lengthy to solve very large instances. The Variable Neighborhood Decomposi-
tion Search (VNDS) method extends the BVNS into a two-level VNS scheme
based on decomposition of the problem. Its steps are presented in Algorithm
3.5.

Note that the only difference between the BVNS and VNDS is in step 2b:
instead of applying some local search method in the whole solution space S
(starting from x′ ∈ Nk(x)), in VNDS one solves at each iteration a subproblem
in some subspace Vk ⊆ Nk(x) with x′ ∈ Vk. When the local search used in
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this step is also VNS, the two-level VNS-schema arises. Thus, VNDS can
be viewed as embedding the classical successive approximation schema in the
VNS framework.

Other approaches based on VNS include the idea of parallelization, such
as the Parallel VNS (PVNS). For this extension, several ways of parallelizing
VNS have been outlined: (i) parallelize local search; (ii) augment the number
of solutions drawn from the current neighborhood and make a local search in
parallel from each of them; and (iii), do the same as (ii) but updating the
information about the best solution found.

3.4 Large Neighborhood Search

In Large Neighbourhood Search (LNS), proposed by Shaw [161], an initial solu-
tion is gradually improved by alternately destroying and repairing the solution.
Over the years, LNS has proved to be competitive with other local search tech-
niques, especially when combined with CP. It complements the CP framework
as LNS benefits from improved propagation while CP benefits from this effi-
cient, while simple, search framework [131]. Some examples of its application
to the VRP have been outlined in section 2.1.2. A complete introduction to
the subject can be found in [134].

The LNS metaheuristic belongs to the class of heuristics known as Very
Large Scale Neighborhood search (VLSN) algorithms. A neighborhood search
algorithm is considered as belonging to the class of VLSN algorithms if the
neighborhood it searches grows exponentially with the instance size or if the
neighborhood is simply too large to be searched explicitly in practice [3]. Al-
though the concept of VLSN was not formalized until recently, algorithms
based on similar principles have been used for decades.

All VLSN algorithms are based on the observation that searching a large
neighborhood results in finding local optima of high quality, and hence overall
a VLSN algorithm may return better solutions. However, searching a large
neighborhood is time consuming, hence various filtering techniques are used to
limit the search. In VLSN algorithms, the neighborhood is typically restricted
to a subset of the solutions which can be searched efficiently.

Intuitively, searching a very large neighborhood should lead to higher qual-
ity solutions than searching a small neighborhood. Nevertheless, in practice,
small neighborhoods can provide similar or superior solution quality if embed-
ded in a metaheuristic framework because they typically can be searched more
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Figure 3.1: Illustration of the neighborhoods used by (a) VDNS and (b) VNS.
The current solution is marked x. VDNS typically operated on one type of
neighborhood with variable depth, while VNS operates on structurally different
neighborhoods.

quickly. Large neighborhoods generally lead to local solutions of better quality,
but the search is more time-consuming. Hence, a natural idea is to gradually
extend the size of the neighborhood, each time the search gets trapped in a
local minimum, as in the nested neighborhoods referred to in the previous
section.

Variable-Depth Neighborhood Search (VDNS) methods search a parame-
terized family of still deeper neighborhoods N1, N2, ..., Nk in a heuristic way
(see Figure 3.1). A typical example is the 1-exchange neighborhood N1 where
one variable/position is changed. Similarly, the 2-exchange neighborhood N2

swaps the value of two variables/positions. In general the k-exchange neighbor-
hood Nk changes k variables. Variable-depth search methods are techniques
that search the k-exchange neighborhood partially, i.e. up to a certain k not
covering the whole search space, hence reducing the time used to search the
neighborhood.

In the LNS metaheuristic, the neighborhoods are implicitly defined by
methods (often heuristics) which are used to destroy and repair an incum-
bent solution. A destroy method destructs part of the current solution while a
repair method rebuilds the destroyed solution. The destroy method typically
contains an element of stochasticity such that different parts of the solution
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Algorithm 3.6 Large Neighborhood Search
Initialization: Find an initial solution x and set xb ← x as the best solution
found so far; choose a stopping condition.

Repeat the following sequence until the stopping condition is met:

1. x′ = r(d(x))

2. If accept(x′, x) then x← x′

3. If c(x′) ≤ c(xb) then xb ← x′

are destroyed in every invocation of the method. The neighborhood N(x) of
a solution x is then defined as the set of solutions that can be reached by first
applying the destroy method and then the repair method. Since the destroy
method can destruct a large part of the solution, the neighborhood contains a
large amount of solutions which explains the name of the heuristic.

The steps of the LNS method are shown in Algorithm 3.6. Three variables
are maintained by the algorithm: the variable xb is the best solution observed
so far during the search, x is the current solution, and x′ is a temporary so-
lution that can be discarded or promoted to the status of current solution.
The function d(·) is the destroy method while r(·) is the repair method. More
specifically, d(x) returns a copy of x that is partially destroyed. Applying
r(·) to a partly destroyed solution repairs it, i.e. it returns a feasible solution
built from the destroyed one. Both destroy and repair methods can be imple-
mented in different ways obeying different criteria. In step 2 the new solution
is evaluated, and then the heuristic determines whether this solution should
become the new current solution or whether it should be rejected. The accept
function can be implemented in different ways. The simplest choice is to only
accept improving solutions, but some works propose an acceptance criteria
borrowed from SA [151], that is, accepting solutions that may be worse than
the incumbent aiming to diversify the search.

From the pseudo-code presented in Algorithm 3.6, it can be noticed that
the LNS metaheuristic does not search the entire neighborhood of a solution,
but merely samples this neighborhood.

The destroy method is an important part of the LNS heuristic. The most
important choice when implementing the destroy method is the degree of de-
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struction: if only a small part of the solution is destroyed then the heuristic
may have troubles exploring the search space as the effect of a large neighbor-
hood is lost. If a very large part of the solution is destroyed, then the LNS
heuristic almost degrades into repeated re-optimization or a multi-start pro-
cess. This can be time consuming or yield poor quality solutions dependent on
how the partial solution is repaired. Shaw [161] proposed to gradually increase
the degree of destruction, while Ropke and Pisinger [151] choose the degree of
destruction randomly at each iteration from a specific range dependent on the
instance size. The destroy method must also be chosen such that the entire
search space can be reached, or at least the interesting part of the search space
where the global optimum is expected to be found. Therefore, it cannot focus
on always destroying a particular component of the solution but must make it
possible to destroy every part of the solution.

Choosing the repair method permits much more freedom when implement-
ing an LNS heuristic. A first decision is whether the repair method should be
optimal in the sense that the best possible full solution is constructed from the
partial solution, or whether it should be a heuristic assuming that one is sat-
isfied with a good solution constructed from the partial solution. An optimal
repair operation will be slower than a heuristic one, but may potentially lead
to high quality solutions in a few iterations. However, from a diversification
point of view, an optimal repair operation may not be attractive: only improv-
ing or identical-cost solutions will be produced and it can be difficult to leave
valleys in the search space unless a large part of the solution is destroyed at
each iteration.

The Adaptive Large Neighborhood Search (ALNS) heuristic was proposed
in [151] and extends the LNS heuristic by allowing multiple destroy and repair
methods to be used within the same search. Using neighborhood search ter-
minology, one can say that the ALNS extends the LNS by allowing multiple
neighborhoods within the same search. Each destroy/repair method is assigned
a weight that controls how often the particular method is attempted during
the search. The weights are adjusted dynamically as the search progresses de-
pending on the performance of each neighborhood, so that the heuristic adapts
to the instance at hand and to the state of the search.

The considerations for selecting destroy and repair methods in the LNS
heuristic also holds for an ALNS heuristic. However, the ALNS framework
gives some extra freedom because multiple destroy/repair methods are allowed.
In the pure LNS heuristic we have to select a destroy and repair method that is
expected to work well for a wide range of instances. In an ALNS heuristic one
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can afford to include destroy/repair methods that only are suitable in some
cases, while the adaptive weight adjustment will ensure that these heuristics
seldom are used on instances where they are ineffective. Therefore, the selec-
tion of destroy and repair methods can be turned into a search for methods
that are good at either diversification or intensification.

Diversification and intensification for the destroy methods can be accom-
plished as follows: to diversify the search, one may randomly select the parts
of the solution that should be destroyed (random destroy method). To inten-
sify the search, one may try to remove a number of "critical" variables, i.e.
variables having a large cost or variables spoiling the current structure of the
solution (worst destroy or critical destroy, respectively). One may also choose
a number of related variables that are easy to interchange while maintaining
feasibility of the solution (related destroy method). Finally, one may use his-
tory based destroy where a number of variables are chosen according to some
historical information.

The repair methods are often based on concrete well-performing heuristics
for the given problem. They can be also based on approximation algorithms
or exact algorithms. Exact algorithms can be relaxed to obtain faster solution
times at the cost of solution quality. Time consuming and fast repair methods
can be mixed by penalizing the time consuming methods. Furthermore, it can
often be advantageous to use noising or randomization in the repair methods
to help on obtaining a proper diversification.

The ALNS is related to the VNS metaheuristic in the sense that both
heuristics search multiple neighborhoods. VNS makes use of a parameterized
family of neighborhoods. When the algorithm reaches a local minimum using
one of the neighborhoods, it proceeds with an often larger neighborhood from
the parameterized family. When the VNS gets out of the local minimum, it
proceeds with the smaller neighborhood. Thus, VNS performs the search in
a systematic fashion. On the contrary, ALNS operates on a predefined set of
large neighborhoods corresponding to the destroy and repair heuristics, and
chooses which one to explore at each iteration according to its performance
in previous stages of the search. Therefore, ALNS may be able to adapt the
search as it progresses.
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3.5 Other techniques

In this thesis, two other methods are used for some specific operations: La-
grangian Relaxation and a modified Clarke and Wright Savings heuristic. In
this section, their main characteristics are outlined, although the concrete pro-
cedures used in this work are further explained in sections 4.2.1 and 4.3.1,
respectively.

3.5.1 Lagrangian Relaxation

Lagrangian Relaxation (LR) is a general mathematical programming method
applied for decomposing or relaxing problems to exploit their special struc-
tures. It has long been used for discovering theoretical insights and developing
solution algorithms for various difficult mathematical programming problems.
For discrete and combinatorial optimization problems, LR is typically used
to relax a set of complicating side constraints and accordingly compensate
a penalty term in the objective function [64]. By adjusting the values of La-
grangian multipliers with the penalty term to an appropriate level, the optimal
solution may be found by solving the relaxed Lagrangian problem that can of-
ten take advantage of various previously developed algorithms. For a complete
review on the subject, the reader is referred to [77].

Consider the following general optimization problem P , which we call the
primal problem (P ):

min f(x) (3.1)

subject to:

gi(x) ≥ bi, i = 1, 2, ...,m (3.2)

x ∈ X (3.3)

where the functions f(x), and gi(x), i = 1, 2, ...,m can be arbitrary nonlinear
or nonconvex functions. The feasible region of the problem consists of explicit
constraints (3.2) and other constraints (including nonnegativity and integrality
restrictions) which are represented by set (3.3). We assume that the problem
would be easy to solve in the absence of constraints (3.2).
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LR relaxes constraints (3.2) by moving them to the objective function with
associated multipliers ui ≥ 0, i = 1, 2, ...,m, which results in the following
Lagrangian function:

L(x,u) = f(x) +
m∑
i=1

ui(bi − gi(x)) (3.4)

where ui ≥ 0, i = 1, 2, ...,m are called Lagrangian multipliers or dual variables.
If a relaxed constraint i is a "≤" constraint, then the associated Lagrangian
multiplier is ui ≤ 0. Thus, equality constraints have unrestricted multipliers.

The Lagrangian dual function is defined as

h(u) = min
x∈X

L(x,u) (3.5)

This problem is called Lagrangian subproblem. The dual function is ob-
tained by minimizing the Lagrangian function subject to the constraints (3.3).
Then, the Lagrangian dual problem (D) of the problem P is formulated as

max
u≥0

h(u) (3.6)

where

h(u) = min
x∈X
{f(x +

m∑
i=1

ui(bi − gi(x))} (3.7)

It is important to notice that the optimal solution obtained from the La-
grangian subproblem may not be feasible to the primal problem P , since we
have eliminated the constraints (3.2). However, for any u ≥ 0 it can be proved
that h(u) ≤ f(x∗), where x∗ is an optimal solution to the problem P and f(x∗)
denotes the optimal objective value of P . Thus, for any value of the Lagrangian
multipliers u ≥ 0, the value of the dual function provides a lower bound on
the optimal objective function value of the original problem P .

To obtain the best lower bound for all possible u, the dual problem (3.6)
is to be solved. The solution of the dual problem reduces to the search for
the maximum of the concave function h(u) over the convex set u ≥ 0. Since
h(u) ≤ f(x∗) for any u ≥ 0, we can infer the relation between the objective
function values of the Lagrangian dual problem D and the primal problem P :
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h(u) ≤ h(u∗) ≤ f(x∗) ≤ f(x) (3.8)

where x and u are the feasible solutions to the primal and the dual problems,
respectively. The difference between f(x∗) and h(u∗) is called duality gap. In
general, it is positive, but for linear problems its relation becomes an equality
h(u∗) = f(x∗).

Under the LR framework, it is well known that the effectiveness of the LR
method mainly depends on how to determine the values of Lagrangian multipli-
ers u. The conventional way to do so is to employ the subgradient optimization
(SO) method [82], which consists of adjusting the Lagrangian multipliers val-
ues based on the results of repeatedly solving the Lagrangian problem until
the Lagrangian multiplier values converge to a satisfied level. The main diffi-
culty of this algorithm lays on choosing a correct step-size λk aiming to ensure
algorithm’s convergence [145]. However, given that the relaxed Lagrangian
problem is still a difficult combinatorial optimization problem, a procedure
that requires solving it repeatedly may not be cost-effective.

In order to address this limitations, the method introduced in section 4.2.1
combines the SO algorithm with a heuristic to obtain a feasible primal solution
from a dual solution. It can get a better upper bound, so it improves the
convergence on the optimal solution starting at an initial upper bound obtained
with a Nearest Neighbor heuristic. Although optimality may not always be
reached, this method is able to provide a feasible solution with a tight duality
gap in a reasonable number of iterations.

3.5.2 Clarke and Wright Savings Heuristic

The Clarke and Wright’s Savings (CWS) constructive heuristic is probably the
best known approach to solve the CVRP. The CWS is an iterative method that
starts out by considering an initial dummy solution in which each customer
is served by a dedicated vehicle. Next, the algorithm initiates an iterative
process for merging some of the routes in the initial solution. Merging routes
can improve the expensive initial solution so that a unique vehicle serves the
nodes of the merged route. The merging criterion is based upon the concept
of savings.

Consider two customers i and j visited on separate routes. An alternative
is to visit the two customers on the same route. Since the CVRP is usually
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symmetric, sequences i− j and j− i yield the same results. Because the trans-
portation costs are given, the savings that result from serving both customers
in the same or separate routes can be calculated. Denoting the transportation
cost between two given customers i and j by cij (see chapter 2 for notation),
the total transportation cost D2routes is

D2routes = c0i + ci0 + c0j + cj0 (3.9)

where c0i (ci0) denotes the cost of traveling from (to) the depot to (from)
customer i.

Equivalently, the transportation cost of serving both customers in a single
route D1route is

D1route = c0i + cij + cj0 (3.10)

Therefore, by combining the two routes one obtains the savings Sij:

Sij = D2routes −D1route = ci0 + c0j − cij (3.11)

Relatively large values of Sij indicate that is desirable, with regard to costs,
to visit customers i and j on the same route. However, i and j cannot be
combined if the resulting tour violates capacity constraints.

With these definitions, it is possible to depict the CWS algorithm. Its
steps are outlined in Algorithm 3.7. In the first stage, the savings for all
pairs of customers are calculated, and all pairs of customers are sorted in
descending order of the savings. Hence, the CWS heuristic follows a steepest
descent strategy. At each iteration of the merging process, the edge with the
largest possible savings is selected from the list (step 1) as far as the following
conditions are satisfied: (a) the nodes defining the edge are adjacent to the
depot (conditions 2a, 2b, and 2c), and (b) the two corresponding routes can be
feasibly merged, i.e. the vehicle capacity is not exceeded after the merging. In
the final solution, any customer that have not been assigned to a route during
the search should be served by a route that begins at the depot, visits the
unassigned customer, and returns to the depot.

The CWS algorithm usually provides relatively good solutions, especially
for small and medium-size problems, but it also presents difficulties in some
cases. For this reason, many variants and improvements of the CWS have
been proposed since it was first defined by Clarke and Wright [46]. For a
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Algorithm 3.7 Clarke and Wright’s Savings Heuristic
Initialization: calculate the savings Sij for every pair (i, j),∀ i, j ∈ I. Create
the savings list S, ranking the savings Sij in descending order. Build the
initial solution.

Repeat the following sequence until S is empty:

1. Pick the first element Sij from S

2. Include the edge eij in a route if capacity constraints are not violated,
and if:

(a) Neither i nor j have already been assigned to a route → Initiate a
new route including both i and j

(b) One of the two customers has already been included in an existing
route and that point is not interior to that route → Add the edge
eij to that same route

(c) Both i and j have already been included in two different existing
routes and neither point is interior to its route→Merge both routes
by adding edge eij.

3. Remove the element Sij from S

comprehensive discussion on the various CWS variants, the reader is referred
to [174] and [104]. The randomized variant used in this work is described in
detail in section 4.3.1.



	
  



Chapter 4

Hybrid Methodologies

As explained in Chapter 2, solving a VRP consists of determining a set of
routes whose total travel cost is minimized and such that all side constraints
are satisfied. In some cases, the fleet size is not fixed and minimizing the total
number of used vehicles becomes an additional objective.

In this chapter, three hybrid methodologies aimed to solve the VRP are
described. The first two approaches are focused on solving the most basic —
yet complicated from a computational point of view— VRP, the CVRP. They
are based on a VNS framework where CP and LR techniques are embedded.
The third methodology, based on the CP paradigm, is able to deal with more
complex VRP variants, such as the VRPTW.

The CVRP has been defined in two different ways according to the method-
ology used to solve it. From the hybrid VNS perspective, the CVRP has been
divided into two subproblems, concerning customers’ allocation and routing
optimization separately. On the other hand, a complete formulation has been
developed to tackle the problem by using CP techniques. Both formulations
are introduced in sections 4.1 and 4.4.1, respectively.

After introducing the problem formulation, section 4.2 is devoted to the hy-
brid VNS methodology adopted as the initial framework. The multi-start ap-
proach explained in section 4.3 is an improved evolution of this initial method.
Finally, a complete CP-based methodology is described in section 4.4. This
hybrid approach combines CP characteristics, such as constraint propagation,
with a metaheuristics framework to guide the search. In addition, some tech-
niques to improve its efficiency are introduced at the end of this chapter.

59
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4.1 Hybrid CVRP formulation

As said before, in the present hybrid approach the CVRP has been divided into
two subproblems, concerning customers’ allocation and routing optimization
separately. The first is aimed to assign customers to vehicles fulfilling capacity
limitations. The latter is used to solve each independent route to optimality,
giving the best solution for a particular allocation. Thus, routing optimization
process can be viewed as solving a set of m independent symmetric TSPs. CP
is used to find a feasible solution in terms of capacity, while routing problems
are solved by using LR.

Capacity problem

The proposed capacity subproblem definition uses the following variables:

• R = R1, ..., Rn with an integer domain [1..m]

• Qv = Q1, ..., Qm with a real domain [0..Q]

R is a list of n variables, corresponding to the n customers. Each Ri value
indicates which vehicle is serving the ith customer, and so it can take values
from 1 to m. R1 value is not relevant, since it corresponds to the depot and
has no associated demand. However, it is included for simplicity reasons on
defining variables lists.

Qv is a list of m variables used to trace the cumulative capacity at each
of the m routes. Capacity constraints are enforced through domains defini-
tion, forcing each Qv to take positive values up to a maximum corresponding
to vehicles’ capacity Q. Thus, the definition of additional constraints to im-
pose capacity limitations for each vehicle is avoided through an appropriate
domains’ definition. Hence, the use of CP and its characteristics lead to a
simpler and neater formulation of the capacity subproblem.

A set of dimension m × n of binary variables B has been introduced to
relate R and Qv values. For each vehicle v ∈ V (v = 1, ...,m), a list of n
binary variables Bvi (i = 1, ..., n) is defined, taking value 1 whenever customer
i ∈ I is assigned to vehicle v and 0 otherwise. Since each customer i is visited
by a single vehicle, for all values of v the binary variable Bvi can take value
1 only once, that is, only one element per column can take value 1. This
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constraint is expressed in terms of the global constraint occurrences, included
as a built-in predicate in most CP platforms such as the software ECLiPSe [9].

occurrences(1, Bvi, 1) ∀v ∈ V (4.1)

Expression (4.1) states that value 1 can occur only once in the list of
variables Bvi, i.e. for a fixed value i, only one of the m elements of the list Bvi

can take value 1. Predicate occurrences may be seen as an implementation of
the general global constraint cardinality [21].

Using global constraints increases the search efficiency. Whenever a vari-
able is instantiated during the search process, propagation mechanisms reduce
uninstantiated variables’ domains to some degree [28]. Global constraints en-
sure a faster reduction of domains through specifically programmed propaga-
tion methods. Moreover, they allow a clean and fast definition of constraints
patterns for sets of variables of any size.

The binary set B and allocation variables R are related through the fol-
lowing statement:

Ri = ri → Brii = 1 ∀i ∈ I (4.2)

Expression (4.2) states that the ith element of the ri list of B will have
value 1 whenever the ith component of R takes value ri. Global constraint
(4.1) ensures propagation so all values of Bvi | v ∈ {1, ...,m} \ ri are set to 0
automatically. Therefore, cumulative capacities can be traced simply by using
the following equation:

Qv =
∑
i∈I

Bviqi ∀v ∈ V (4.3)

The proposed formulation is used to find a partial initial solution fulfilling
capacity constraints. By solving resultant routing problems, which are always
feasible because they do not contain any additional constraints, a complete
solution may be easily obtained in most cases. Thus, capacity problem’s goal
is to find a feasible solution with the minimum number of required vehicles.
With this objective, a depth-first search method is applied to find a feasible
solution that uses all available vehicles. A vehicle is removed from the list and
the process is repeated recursively. The algorithm stops when unfeasibility is
reached, returning the last feasible solution found in the previous iteration.
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The described formulation is also used to check feasibility any time a new
candidate partial solution is generated. During diversification processes, as
well as in local search, new points in the search space are generated within the
neighborhood of the current solution, according to the defined moves. Before
any further calculation is done, this CP model is used to check the feasibility
of the new candidate partial solution. If it is feasible, the cost is updated by
calculating the corresponding new routes. Otherwise, the point is rejected and
either the diversification process or the local search is resumed.

Routing problem

The routing problem, tackled for each vehicle separately, can be viewed as a
Traveling Salesman Problem (TSP) instance. The TSP is probably the best
known combinatorial problem: "A salesman is required to visit once and only
once each of n different customers starting from a depot, and returning to the
depot. What path minimizes the total distance travelled by the salesman?"
[22]. The CVRP and the TSP are closely related: the CVRP is usually defined
as a generalization of the TSP. Similarly, the TSP can be viewed as a simplified
CVRP with one single vehicle without capacity limitations.

According with the notation introduced in section 2, the TSP can be for-
mulated over subsets of the defined variables. For each vehicle v ∈ V , the
related TSP can be considered as a complete undirected graph G = (Iv, Ev),
connecting assigned customers Iv = {i ∈ I | Ri = v} through a set of undi-
rected edges Ev = {(i, j) ∈ E | i, j ∈ Iv}. The solution is a path connected
by edges belonging to Ev that starts and ends at the depot (i = 1) and visits
all assigned customers.

Since there are no capacity limitations, a feasible solution of the TSP
should, by definition, satisfy the CVRP constraints enforcing that each cus-
tomer is visited exactly once and that each route starts and ends at the depot.
The TSP goal is minimizing the total travel cost of the route.

The proposed mathematical formulation requires defining the binary vari-
able xe to denote that the edge eij ∈ Ev is used in the path:

xe =

{
1 if customer j is visited immediately after i
0 otherwise

The proposed mathematical formulation for the TSP problem is as follows:



4.2. General Variable Neighborhood Search 63

min
∑
e∈Ev

cexe (4.4)

subject to ∑
e∈δ(i)

xe = 2 ∀i ∈ Iv (4.5)

∑
e∈Ev(V )

xe ≤ |V | − 1 ∀V ⊂ Iv, |V | ≤
1

2
|Iv| (4.6)

where

• δ(i) = {e ∈ Ev | ∃j ∈ Iv, e = (i, j) or (j, i)} represents the set of arcs
whose starting or ending node is i;

• Ev(V ) = {e = (i, j) ∈ Ev | i, j ∈ V } represents the set of arcs whose
nodes are in the subset of vertices V .

The objective function (4.4) aims to minimize the total cost of the route,
being ce the associated cost to the undirected edge e (eij or eji).

Constraint (4.5) states that every node i ∈ Iv must be visited once. Being
δ(i) the subset of arcs whose starting or ending node is i, expression (4.5)
constraints every customer i ∈ Iv to have only two incident edges.

Subtour elimination constraint (4.6) states that the tour must be a Hamil-
tonian cycle [120], i.e. it cannot have any subcycle. This constraint avoids any
subcycle of the subset V ⊂ Iv, since the number of edges must be lower than
the size of the subset. It only considers the subsets V which |V | ≤ 1

2
|Iv|. For

any solution containing more than one subcycle, at least one of the subcycles
will connect a number of vertices V such that |V | ≤ 1

2
|Iv| is fulfilled. Con-

straint (4.6) ensures that these subcycles are banned and, in consequence, all
subcycles are avoided.

4.2 General Variable Neighborhood Search

The CVRP, decomposed and formulated as described in section 4.1, has been
tackled using a hybrid approach. The proposed methodology combines CP and
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LR within a VNS framework in order to improve algorithm’s performance. As
mentioned in section 2.1.2, even the most basic VNS algorithm, known as VND
(see section 3.3.1), has provided promising results when solving different VRP
variants. In the proposed approach, a general VNS framework (see section
3.3.3) has been chosen to embed the selected paradigms.

In any case, other well-known metaheuristics could have been used to em-
bed CP and LR, such as Tabu Search (TS) or Genetic Algorithms (GA). Both
metaheuristics have been widely used for tackling different VRP variants ob-
taining good results (see section 2.1.2). However, VNS permits overcoming
some of their limitations. On the one hand, TS is based on a local search
where the process may lead to worse solutions in order to escape from local
minima. It may be comparable to the VND algorithm, but the latter has the
advantage of alternating different moves to explore the search space. Swapping
these neighbourhoods structures allows escaping from local minima in a more
natural manner and avoids defining and tuning tabu lists and aspiration crite-
ria. The latter parameters affect algorithm’s behavior and are critical for TS
performance. Moreover, by using a general VNS scheme, a diversification pro-
cess is naturally introduced and integrated within the algorithm, so search is
restarted at each iteration from a point obtained from the best solution found
so far. This diversification process may be tuned so the algorithm behaves con-
servatively or following a multi-start strategy. On the other hand, GA require
defining some parameters that become critical for algorithm’s performance,
such as the population size or crossover and mutation ratios. According to
problem dimensions, managing correctly the memory used to store population
data may become a major issue. In some cases, reducing the population size
may lead to misleading results [144]. Thus, finding a trade-off between effi-
ciency and effectiveness often needs a fine-tuning process that is not required
when using a VNS algorithm. For these reasons, the general VNS has been se-
lected as the main structure that leads the search process in the methodologies
presented in this thesis.

Within the general VNS framework, CP and LR are used in different pro-
cesses. During algorithm’s initialization, CP is used to find an initial feasible
solution by means of capacity constraints. CP is also used to check solutions
feasibility within diversification and local search processes.

In turn, a tailored LR method is applied to calculate routes every time
a partial solution is generated either during initialization, diversification or
local search processes. Using LR allows reducing the computation time when
compared to other routing post-optimization methods, such as a VND with
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single-route classical moves, e.g. classical 2-opt or 3-opt. So, the proposed LR
approach provides optimal routes in very low times and, at the same time,
permits reducing algorithm’s definition and complexity.

4.2.1 Tailored Lagrangian Relaxation method

As mentioned in section 3.5.1, LR is a well-known method that works by
moving hard-to-satisfy constraints into the objective function, associating a
penalty in case they are not satisfied.

LR exploits the structure of the problem, so it reduces considerably prob-
lem’s complexity. Thus, the Lagrangian Problem needs less computational
effort to be solved. However, as mentioned, it is often a major issue to find
the optimal Lagrangian multipliers. The commonly used approach is the Sub-
gradient Optimization (SO) method [82]. It guarantees convergence, but it is
too slow to become a method of real practical interest.

Given the assigned customers to each vehicle, the LR-based method is
used to solve the associated routing problems. In this proposed approach, LR
relaxes the constraints set requiring that all customers must be served (4.5),
presented in section 4.1:

∑
e∈δ(i)

xe = 2 ∀i ∈ Iv (4.5)

Constructing the solution x as a 1-tree permits avoiding all subcycles. A
1-tree can be defined as a tree on the graph induced by nodes {2, ..., nv} plus
two incident edges at node 1 [82]. Actually, a feasible solution of the TSP is a
1-tree having two incident edges at each node.

The Lagrangian Dual problem obtained from the TSP formulation pre-
sented in section 4.1, moving into the objective function equalities (4.5), is:

max
u∈<|Iv |

L(u) (4.7)

where the Lagrangian function is:

L(u) = min
x1−tree

∑
e∈Ev

cexe +
∑
i∈Iv

ui(2−
∑
e∈δ(i)

xe) (4.8)
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This LR relaxes constraints (4.5) weighting them with a multiplier vector
u of appropriate dimension and unrestricted sign, defining the subgradient:

γi = 2−
∑
e∈δ(i)

xe ∀i ∈ Iv (4.9)

Finding a minimum spanning tree induced by nodes {2, ..., nv} is relatively
easy, so the presented relaxation becomes potentially interesting. A minimum
spanning tree is a minimum cost spanning tree, i.e. a tree connecting all the
vertices, in a connected, undirected graph. The commonly used technique for
finding a minimum spanning tree is Prim’s algorithm [103]. Its time complexity
is O(n2), where n = |Iv| − 1 is the number of vertices involved, excluding the
depot.

The SO is an iterative method used to solve the Lagrangian problem finding
a maximum value of the lower bound [83]. The main difficulty of this algorithm
lays on choosing a correct step-size λk [178]. This is a critical choice, since the
convergence can be highly influenced by this parameter [145].

The LR-based method used in this thesis to tackle the TSP problem asso-
ciated to each route improves the convergence on the optimal solution of the
SO by using a heuristic which obtains a feasible solution from a LR solution.
If the optimal solution is not reached at a reasonable number of iterations,
the proposed method is able to provide a feasible solution with a tight gap
between the primal and the optimal cost. This approach is explained in detail
by Herrero et al. [84].

Being LB a dual lower bound and L∗ the optimal value, so LB ≤ L∗, the
step-size λk at iteration k is defined according to the expression:

λk = δk
LB − L(uk)

‖ γk ‖2
, 0 < δk ≤ 2 (4.10)

Then, L(uk) → L, or the algorithm finds uk with LB ≤ L(uk) ≤ L∗ for
some finite k. In practice, LB is typically unknown and it is more likely to
know a good primal upper bound UB ≥ L∗. Such an upper bound UB is then
used initially in place of LB. However, if UB � L∗, the term UB − L(uk)
in the numerator will not tend to zero, and so sequences {uk} and {L(uk)}
will not converge. In order to find a feasible solution of the TSP, which may
give an accurate UB, a Nearest Neighbor Heuristic is applied. This method
is commonly used with this purpose, since it is computationally efficient and
easy to implement.



4.2. General Variable Neighborhood Search 67

The used LR-based method is implemented within the local search process
to solve routing subproblems to optimality. It can be considered a specification
of the Lagrangian Metaheuristic presented on Boschetti and Maniezzo [30].
As mentioned, it uses the SO algorithm combined with a heuristic able to
obtain a feasible solution from the dual variable, aiming to improve algorithm’s
convergence to the optimal solution [84]. This method tries to improve the UB
with the values of these feasible solutions, so a better convergence is obtained.
Eventually, this feasible solution found by the heuristic may be provided as the
best solution if the method is stopped. The stopping criterion is based on the
maximum number of iterations (k < maxiterations) and also on a floating-point
exception on the step-size (λk < 10−15). The described tailored LR-based
method is shown in Algorithm 4.1.

Algorithm 4.1 Tailored LR-based method for the TSP
Inicialization:

• Initialize parameters u0 = 0; δ0 = 2; αL = 1/3

• Obtain an UB applying Nearest Neighbor Heuristic

• Initialize L = L(u0) + αL(UB − L(u0))

Repeat the following sequence until k < maxiterations or λk < 10−15:

1. Solve the Lagrangian function L(uk)

2. Check the subgradient γki = 2−
∑

e∈δ(i) xe

3. If ‖ γk ‖2= 0 then the optimal solution is found ⇒ EXIT

4. If ‖ γk ‖2< ζ then apply a heuristic to improve the UB

5. Update the parameter L

6. Calculate the step-size λk = δk
L−L(uk)
‖γk‖2

7. Update the Lagrangian multipliers uk+1 = uk + λkγ
k

8. k ← k + 1
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The proposed heuristic to improve the UB is applied when the solution is
nearly a route, i.e. if the subgradient γ is below a certain value ζ, ‖ γk ‖< ζ
(step 4). As any solution is a 1-tree, this criterion means that the solution
has few vertices without two incident edges. This heuristic replaces an edge
eij where the vertex j has some extra incident edges for an edge eil where
the vertex l has one single incident edge. Before applying the exchange, the
heuristic checks if the new solution is a 1-tree. Otherwise, the heuristic can
divide it into more trees having some subtours. The chosen vertices i, j, l
minimize the cost of the exchange:

{i, j, l} = argmin{cil − cij : γj < 0, γl > 0, γi ≤ 0, xij = 1, xil = 0} (4.11)

The parameter ζ depends on the number of variables. A good estimation of
ζ value would avoid increasing the computation time. First, its value may be
large, for instance |Iv|/2, but it should be updated whenever a feasible solution
is found according to ζ =‖ γk ‖2. If this parameter is not correctly updated,
the heuristic becomes time consuming. Eventually, the heuristic could find the
optimal solution without detecting it, so the method would continue iterating
until LB = UB.

As mentioned, algorithm’s convergence is critically influenced by the step-
size λk. This value relies on either the LB or the UB, which are normally
unknown or bad estimated. Therefore, convergence may not be assured for all
cases. In order to overcome this limitations, the use of a parameter L, such
that LB ≤ L ≤ UB, is proposed. By definition, this parameter corresponds to
a better estimation of the optimum L∗ than those obtained for LB and UB.
Therefore, the calculation of the step-size turns into the expression (4.12) (step
6):

λk = δk
L− L(uk)

‖ γk ‖2
(4.12)

The convergence is guaranteed if the term L − L(uk) tends to zero. In
turn, convergence efficiency can be improved as long as the new parameter gets
closer to the (unknown) optimal solution. The main idea is very simple: as the
algorithm converges to the solution, new better lower bounds are known and
new better upper bounds estimations can be obtained by using the heuristic
designed to get feasible solutions. Therefore, the parameter L is updated
according to the following conditions:
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• It is initialized L = L(u0) + αL(UB − L(u0)) with 0 < αL < 1;

• If L(uk) > L, it is updated L = L(uk) + αL(UB − L(uk));

• If L > UB, then L = UB.

Finally, the parameter δk is initialized to the value 2 and is updated as
Zamani and Lau [181] suggest. If the lower bound is not improved, δk is
decreased, using the formula (4.13):

δk+1 = δkρ, 0 < ρ < 1 (4.13)

On the other hand, if the lower bound is improved, then δk is increased
according to the formula (4.14):

δk+1 = δk
3− ρ

2
, 0 < ρ < 1 (4.14)

provided that 0 ≤ δk ≤ 2 to ensure convergence.

4.2.2 Movements definition

The VNS metaheuristic is based on the exploration of different neighborhoods
around a given feasible solution (see section 3.3). In order to establish these
neighborhoods, different moves are defined. In our approach, four different
inter-routes classic moves [158], represented in Figure 4.1, have been defined
so they can be used within diversification and local search processes:

(a) Relocate: moves a customer from one route to a different one.

(b) Swapping: exchanges two customers belonging to two different routes.

(c) Chain: swaps sections of two contiguous customers from two different
routes.

(d) Ejection chain: swaps the end portions of two different routes.
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Figure 4.1: Inter-route movements used in our approach: (a) Relocate, (b)
Swapping, (c) Chain, and (d) Ejection Chain.
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The relocate, swapping, and ejection chain moves can be characterized as
2-opt methods, although in some cases they involve the deletion and generation
of more than two arcs. This is because only two arcs have to be determined
to fully describe a given move. As an example, the relocate move depicted in
Figure 4.1(a) can be fully described by the deletion of the arc in the upper route
and the one ending at the node A, while the deleted arc departing from this
node is implicitly defined by the move mechanism. Analogously, the swapping
and ejection chain moves represented in Figure 4.1(b) and 4.1(d), can be fully
described by the deleted arcs ending at nodes A and B (swapping), or A1 and
B1 (ejection chain). The computational complexity of exhaustively exploring
these neighborhoods is O(n2). A similar reasoning can be used to describe
the chain move as a specialization of the 3-opt operator, whose computational
complexity is O(n3). For a further discussion on this subject, the reader is
referred to section 4.2.4.

Usually, a post-optimization method based on intra-route moves is applied
to improve each single route quality [155]. The use of LR ensures the partial
optimality of most solutions from the routing perspective. The reason is that,
since we are considering a relatively small number of customers per route,
the LR-based method described in section 4.2.1 can quickly find the optimal
solution to most routing problems. In effect, the respective lower bounds
and upper bounds converge rapidly, keeping their gap between 0 and 10−10,
which guarantees the solution optimality. In addition, LR solves all routes
in negligible times, while reducing local search complexity (see section 4.2.4).
Thus, LR is an efficient alternative for intra-route optimization processes and
avoids defining intra-route moves.

4.2.3 Variable Neighborhood Search framework

As a first approach, a general VNS framework, as presented in section 3.3,
has been implemented embedding the described methods. At each iteration, a
local minimum is reached departing from an initial solution. A diversification
process (shaking) ensures that different regions from the search space are ex-
plored by changing the initial solution at each iteration. This diversification
process allows escaping from the valleys surrounding the local minima found
during search. Algorithm 4.2 and Figure 4.2 outline the main steps of our ap-
proach, clearly identifying where CP and LR methods are used. The stopping
criterion is chosen to be based on the maximum number of iterations.
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Algorithm 4.2 General VNS hybrid approach
Initialization:
- Select the set of neighborhood structures Nk, for k = 1, ..., kmax, that will
be used in the shaking phase, and the set of neighborhood structures Nl, for
l = 1, ..., lmax, that will be used in the local search;
- Find an initial solution x: Use CP to assign customers to vehicles and LR
to calculate the corresponding routes;
- Choose a stopping condition.

Repeat the following sequence until the stopping condition is met:

1. Set k ← 1.

2. Repeat the following steps until k = kmax:

(a) Shaking: generate a point x′ at random from the kth neighborhood
of x (x′ ∈ Nk(x)). Use CP to check feasibility and LR to calculate
the cost of modified routes.

(b) Local Search by VND:

i. Set l← 1.
ii. Repeat the following steps until l = lmax:

A. Exploration of neighborhood:
- Find all neighbors x′′ of x′ (x′′ ∈ Nl(x

′));
- Check feasibility of capacity constraints using CP;
- Calculate the cost of modified routes using LR;
- Choose the best neighbor x′′ of x′ (x′′ ∈ Nl(x

′)).
B. Move or not: if the solution x′′ thus obtained is better than

x′ (f(x′′) < f(x′)), set x′ ← x′′ and l ← 1; otherwise, set
l← l + 1.

(c) Move or not: if the local optimum x′′ is better than the incumbent
x (f(x′′) < f(x)), move there (x ← x′′), and continue the search
with N1 (k ← 1); otherwise, set k ← k + 1.
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In this approach, the four moves described in the previous section have
been selected to be used in the shaking and local search neighborhoods. As a
first step in the algorithm, an initial feasible solution is found using CP and
LR. CP is used to assign all customers to available vehicles fulfilling capacity
constraints, while resulting routes are solved to optimality by means of LR.

Every time a new point is randomly generated from the kth neighborhood
Nk(x) of x in order to diversify the search, its feasibility is immediately checked
using CP. If the generated point is unfeasible, the process is repeated until a
new feasible point is found. However, if the valley surrounding the solution
x is large, a thorough diversification should be done aiming to avoid getting
trapped in a local optimum. For this reason, the implemented shaking process
is repeated several times, tracing a path of feasible solutions in the search
space. The cost of these feasible solutions is ignored until the last iteration,
when routes are recalculated using LR to provide a complete solution. Hence,
the time required for the diversification is reduced while keeping solutions’
feasibility.

The local search process is performed by means of a VND algorithm (Al-
gorithm 3.1 in section 3.3.1). It should be remarked that it takes advantage
of all neighborhood structures for l = 1, ..., lmax, instead of applying a simple
local search method. Thus, the VND approach increases the chances to reach
a global minimum with respect to greedy local search methods. In addition, no
parameters are to be introduced, unlike other metaheuristic methods such as
TS. In any case, the VND may eventually get trapped in a local optimum. For
this reason, VND is embedded within a diversification/local search iterative
process, i.e. the VNS framework.

Within the VND algorithm, an exhaustive exploration of the lth neighbor-
hood Nl(x

′) of x′ is performed. Departing from the solution x′, the lth move
is applied and new solution’s feasibility is checked using CP. Whenever it is
proved feasible, LR is used to recalculate only modified routes. This approach
permits to consider only two routes per solution, reducing the computation
time. Finally, the best neighbor x′′ is chosen in terms of its solution value
f(x′′) =

∑m
v=1 UBv.

A slightly different approach has also been considered for the exhaustive
exploration. In this case, CP consistency techniques (see section 3.2.1) are ap-
plied to get feasible domains for the variables to be modified, i.e. when moving
customers, only those routes with enough spare capacity to include them are
allowed. Thus, only values corresponding to feasible solutions are explored
and capacity constraints do not need to be checked afterwards. This approach
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provides the same results, but the calculation time is dramatically increased
due to consistency algorithms’ high complexity. However, tailored propagation
and consistency techniques could lead to an important time reduction and so
it is a promising line for future research work.

4.2.4 Computational complexity reduction of local search

The mechanisms of evaluating solution neighborhoods is a crucial aspect on
the efficiency of local search methods. The neighborhood of a given solution
consists of every solution generated from it, by performing a certain move-
ment. The simplicity of these movements is an objective mainly for computa-
tional reasons: the population of generated solutions (neighborhood cardinality)
should be limited to manageable levels, and the evaluation of the neighboring
solutions quality should require a reasonable (and usually constant) time.

In local search methods, to pass from one solution to the subsequent one,
an exhaustive examination of the neighboring solutions is performed. Then,
the highest quality neighboring solution is chosen and the current solution is
updated. The computational complexity of a local search method is defined
by the number of calculations needed for exhaustively evaluating the neighbor-
hood of a candidate solution. The computational time required per iteration
is mainly determined by the neighborhood cardinality. Therefore, the compu-
tational time is bounded by a polynomial function of the instance size.

In the present thesis, we propose a strategy for reducing the computational
complexity required for exhaustively exploring the neighborhoods within the
local search processes. This strategy is similar to the one proposed by Zachari-
adis and Kiranoudis [180]. The central idea for achieving this complexity re-
duction is straightforward: when moving from one solution to the next one,
only a small part of the incumbent solution is modified. Therefore, to examine
the next solution neighborhood, only the tentative moves affecting the modified
parts are to be explored. On the other hand, moves that refer to unchanged
parts of the solutions have already been evaluated in previous neighborhood
explorations. If they have been appropriately recorded, their recalculation is
therefore unnecessary.

In order to explain the applied strategy for reducing the computational
complexity in local search processes, we will consider the relocate movement
introduced in section 4.2.2. In any case, the discussion can be extended to
the remaining moves, i.e. swapping, chain, and ejection chain movements.
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The relocate move can be seen as the traditional local search operator 2-
opt. In general, the complexity of exhaustively examining the k-exchange
neighborhood of a solution is O(nk), where n is the number of customers.
As a result, the cardinality of the 2-opt neighborhood is O(n2), and so the
computational effort required for exhaustively examining this neighborhood is
O(n2).

By using the LR approach for the TSP, we can reduce the size of the relocate
neighborhood. The traditional 2-opt operator considers every position where
a customer can be inserted, either in the same route or in a different one.
Applying the LR method for routes calculation permits obviating the exact
point of insertion. Thus, provided that the capacity constraints are fulfilled,
customers are assigned to a route and LR returns the optimal position within
the route for each one. This way, the size of the relocate neighborhood is
reduced to O(n ·m), where n is the number of customers and m the number
of considered routes. Since m � n for most instances, search complexity is
significantly reduced, and so is the required computational time with respect
to classical approaches.

The size of the relocated neighborhood can be further reduced by consider-
ing how a solution is modified after an improving movement is applied. When
a higher quality neighboring solution is found, a customer is moved from one
route to another one and inserted in the best possible position. Therefore,
only two routes are modified, while the rest remains unchanged. Exhaustively
exploring the new solution neighborhood would imply checking again all possi-
bilities between every two routes, repeating evaluations that have already been
done in previous explorations. Hence, it would be more efficient to evaluate
only the two changed routes against all others.

This approach reduces the neighborhood search space to be explored, keep-
ing a linearithmic complexity in respect to the instance size. However, since we
apply a best neighbor strategy, it may be other improving movements between
two other different routes that are rejected. If only the two modified routes
are checked in the next iteration, the search will avoid these movements and
we may be loosing such improvements. For this reason, a slightly different
strategy is adopted: all improving moves are recorded and ranked in descend-
ing order according to its quality. Starting from the best one, these moves are
successively applied whenever they do not affect already modified routes, i.e.
if two moves affect the same route, we only apply the one leading to a higher
improvement. As in the previous approach, only those routes that have been
modified are considered in the next iteration. Therefore, all improving moves
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that were rejected because there was a better one affecting the same route are
reevaluated, while calculations related to not improving moves are omitted.

The computational complexity of this approach remains linear on the in-
stance size. Furthermore, this approach improves the local search convergence
to a local minimum. In the general case, considering that k routes have been
modified in the previous iteration, the required computational effort is

O((k + 1)n+ (m− k − 1)
∑
i∈K

ni)

where K represents the set of modified routes and k is its cardinality (2 ≤ k ≤
m). Since the number of customers allocated in a route may change at each
iteration, so does K, the term

∑
i∈K ni may change at each step. Nevertheless,

it is clear that
∑

i∈K ni ≤ n. In the worst case, when all routes are modified
(k = m), we retrieve the computational complexity related to an exhaustive
exploration O(n ·m).

Using the proposed hybrid approach provides advantages for reducing the
computational effort required to solve the CVRP. On the first hand, using the
LR method to solve the routing subproblems permits updating the solution
cost by recalculating only the costs related to the modified routes. Thus, if all
routes costs are appropriately recorded, the solution cost can be updated in
constant time. On the other hand, the proposed decomposition and using the
CP model for the capacity subproblem permits checking moves’ feasibility be-
fore any calculation is done. This way, in practice, the required computational
time to explore the relocate neighborhood is reduced and remains below the
bounds discussed above.

The ideas presented in this section have been implemented within the VNS
frameworks described in this chapter. The corresponding modifications of the
general VNS hybrid approach described in section 4.2.3 are shown in Algo-
rithm 4.3. Results show that our strategy is efficient and achieves the desired
behavior. These results are further discussed in the corresponding section
5.1.1.
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Algorithm 4.3 General VNS hybrid approach with improved local search
efficiency
Initialization:
- Select the set of neighborhood structures Nk, for k = 1, ..., kmax, that will be used
in the shaking phase, and the set of neighborhood structures Nl, for l = 1, ..., lmax,
that will be used in the local search;
- Find an initial solution x: Use CP to assign customers to vehicles and LR to
calculate the corresponding routes;
- Initialize the set LastModified ← V ;
- Choose a stopping condition.

Repeat the following sequence until the stopping condition is met:

1. Set k ← 1.

2. Repeat the following steps until k = kmax:

(a) Shaking: generate a point x′ at random from the kth neighborhood of x
(x′ ∈ Nk(x)). Use CP to check feasibility and LR to calculate the cost
of modified routes.

(b) Local Search by VND:

i. Set l← 1.
ii. Repeat the following steps until l = lmax:

A. Exploration of neighborhood:
- Find all neighbors x′′ of x′ (x′′ ∈ Nl(x

′, LastModified));
- Check feasibility of capacity constraints using CP;
- Calculate the cost of modified routes using LR;
- If the solution x′′ is better than x′ (f(x′′) < f(x′)), include it
in a list of improving changes.

B. Choose the best compatible neighbors:
- Set LastModified ← ∅;
- Sort the list of improving changes;
- Apply the first improving change;
- Add in descending order the next compatible improvements;
- Add the modified routes identifiers to LastModified.

C. If the list is empty, set l← l + 1 and LastModified ← V ; other-
wise, set x′ ← x′′ and l← 1.

(c) Move or not: if the local optimum x′′ is better than the incumbent x
(f(x′′) < f(x)), move there (x ← x′′), and continue the search with N1

(k ← 1); otherwise, set k ← k + 1.
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4.3 Multi-Start Variable Neighborhood Search

In this section, we describe aMulti-Start Variable Neighborhood Descent (VND)
method, based on the VND algorithm described in section 3.3.1, to tackle the
CVRP. The local search process of the VND is supported by CP and LR,
as in the hybrid approach presented in the previous section. Again, CP is
used to check solutions feasibility within the local search process, while the
LR-based algorithm is used to efficiently find the optimal routing solution for
each transportation resource. Using the CP paradigm provides the desired
flexibility in case additional constraints are required to model other opera-
tional constraints, beyond vehicle capacity. A probabilistic Clarke and Wright
Savings (CWS) (see section 4.3.1) constructive method is used to generate
initial solutions. This algorithm provides different good quality solutions that
are used as seeds to launch the exploration of different regions of the search
space. Therefore, algorithm’s probabilistic behavior introduces a natural di-
versification mechanism and turns the schema into an approach likely to be
parallelized.

Although solutions’ quality is comparable for both methodologies, the Multi-
Start VND approach presented in this section is much more competitive with
other state-of-the-art metaheuristics in terms of computational time (see sec-
tion 5.1.2) than the hybrid approach described in section 4.2. Methodology’s
efficiency has been significantly enhanced by including a multi-start procedure
which makes use of a randomized CWS heuristic in order to quickly provide a
set of different “good” initial solutions, over which a flexible local-search pro-
cess is applied. Thus, the VNS diversification procedure is substituted by a
multi-start approach, where different regions are explored thanks to the di-
versity of solutions provided by the randomized CWS algorithm. The local
search process has also been enhanced with respect to the initial hybrid VNS
approach by incorporating the new mechanisms for reducing computational
complexity described in section 4.2.4. Finally, the methodology described in
this section has been parallelized to improve its efficiency.

It can be notice that this approach has some similarities with the Greedy
Randomized Adaptive Search Procedure (GRASP) [61]. GRASP is a typically
two-phase approach where in the first phase a constructive heuristic is ran-
domized. The second phase includes a local search phase. In the approach
presented in this section, we use a randomized version of the classic CWS
heuristic to generate good initial solutions, which are afterwards improved by
means of a VND method. In addition, these processes are performed in a
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parallel multi-start fashion.

4.3.1 Randomized Clarke and Wright Savings Heuristic

As discussed in section 3.5.2, in the classic Clarke and Wright Savings (CWS)
algorithm, the edge with the largest possible savings is selected from the list
at each iteration of the merging process, as far as the following conditions are
satisfied: (a) the nodes defining the edge are adjacent to the depot, and (b) the
two corresponding routes can be feasibly merged —i.e. the vehicle capacity is
not exceeded.

The algorithm presented by Juan et al. [93], the Generalized or Randomized
Clarke and Wright Savings (RCWS) heuristic, combines the CWS algorithm
with the use of Monte Carlo Simulation (MCS) techniques [108]. This approach
assigns a selection probability to each edge in the savings list. This probability
should be coherent with the savings value associated with each edge, i.e. edges
with larger savings will be more likely to be selected from the list than those
with smaller savings. In addition, this approach adds this biased random
behavior without introducing too many parameters in the algorithm.

In order to introduce such a probabilistic behavior, the RCWS uses different
geometric statistical distributions during the solution construction process:
every time a new edge must be selected from the list of available edges, a
quasi-geometric distribution is randomly selected. This distribution is used to
assign exponentially diminishing probabilities to each eligible edge, according
to its position inside the sorted savings list. This way, edges with higher
savings values are always more likely to be selected from the list, but the exact
probabilities assigned are variable and they depend on the concrete distribution
selected at each step. By iterating this methodology, the algorithm performs
a random but efficient search process.

Formally, every time a new edge must be selected, we choose a real value
α, 0 < α < 1, and then consider the following probability distribution (4.15)
for selecting the kth edge:

P (X = k) = α · (1− α)k−1 + ε, ∀k = 1, 2, ..., s (4.15)

where s is the current size of the list.
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Algorithm 4.4 Randomized Clarke and Wright’s Savings Heuristic
Initialization: calculate the savings Sij for every pair (i, j),∀ i, j ∈ I. Create
the savings list S, ranking the savings Sij in descending order. Build the
initial solution.

Repeat the following sequence until S is empty:

1. Pick the element Sij from S at random:

(a) Choose an α-value in the interval [0.25, 0.35]

(b) Assign the corresponding probability to each element in S

(c) Pick the element Sij from S according to its probability.

2. Include the edge eij in a route if capacity constraints are not violated,
and if:

(a) Neither i nor j have already been assigned to a route → Initiate a
new route including both i and j

(b) One of the two customers has already been included in an existing
route and that point is not interior to that route → Add the edge
eij to that same route

(c) Both i and j have already been included in two different existing
routes and neither point is interior to its route→Merge both routes
by adding edge eij.

3. Remove the element Sij from S

The geometric distribution assigns a positive probability to every value in
the interval [1,+∞). Since the algorithm always works with a finite savings
list, the error term ε (4.16) is introduced in the geometric distribution to obtain
the quasi-geometric one (4.15).

ε =
+∞∑
k=s+1

α · (1− α)k−1 = 1−
s∑

k=1

α · (1− α)k−1 (4.16)

As the process evolves, the savings list size s diminishes as new edges are
extracted from it. If the size of the savings list is large enough, the term ε is
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close to zero and the probability distribution (4.15) behaves like a geometric
distribution. Thus, the parameter α can be interpreted as the probability of
selecting the edge with the highest savings value at the current step of the
construction process. Choosing a relatively low α-value implies considering
a large number of edges from the savings list as potentially eligible. On the
contrary, choosing a relatively high α-value implies reducing the list of potential
eligible edges significantly. Once a value for α is chosen, this same value can
be used for all future steps. However, Juan et al. [93] recommend to consider
this α-value as a random variable to avoid minor fine-tuning processes. In
this thesis, the value for α is chosen according to a uniform distribution in the
interval [0.25, 0.35] at each edge-selection step, as Juan et al. [93] suggest.

The RCWS algorithm, presented in Algorithm 4.4, is able to provide a
random feasible solution at the end of each constructive process. Moreover, it
outperforms the results obtained by means of the classic deterministic CWS,
getting quasi-optimal solutions in very low times. These characteristics turn
the RCWS into a good alternative for generating an initial solution for any
local search process, such as VNS. In addition, its randomized behavior permits
obtaining a set of quasi-optimal solutions with different characteristics, which
is a desirable feature for feeding a multi-start schema like the one proposed in
this section. For these reasons, we have chosen the RCWS method to generate
the initial solutions required in our Multi-Start VND approach.

4.3.2 Parallel Multi-Start Variable Neighborhood Descent

A general VND, as explained in section 3.3.1, has been implemented embedding
CP and LR methods. The VND method starts from an initial solution x′,
obtained by means of the RCWS heuristic, which is afterwards improved by
a local search process. Figure 4.3 shows the flow chart corresponding to this
hybrid VND approach.

In the proposed approach, outlined in Algorithm 4.5, four moves, described
in section 4.2.2, are selected to be used in local search neighborhoods: relocate,
swapping, chain, and ejection chain.

In the exploration of each neighborhood Nk, starting from the solution
x′, the kth move is applied and the new solution’s feasibility is checked using
CP. Whenever it is proved feasible, LR is used to recalculate only modified
routes. As mentioned for the hybrid VNS methodology, this approach permits
to consider only two routes per solution, reducing the computation time when
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k ← 1

k ≤ kmaxEXIT

x' ← x''
k ← 1

k ← k + 1
LastModified ← V

f( x'' ) < f( x' )

Exploration: find all 
neighbors x'' of x'  in 
Nk(x',LastModified)

Y

Y

N

N

Find an initial solution x' using RCWS

LastModified ← V

Apply the best 
compatible moves to 

get x''

Update LastModified

Figure 4.3: Flow chart of the hybrid VND approach. The process that uses
the described CP and LR methods is highlighted.

compared to other routing post-optimization methods [155]. Improvements
are stored in a sorted list until no more feasible solutions are left in the kth
neighborhood. Then, all those which are independent, i.e. affect different
route pairs, are applied in descending order on x′ to get a better solution, x′′.
This way, solution improvement is faster than applying a single change at each
iteration.
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Algorithm 4.5 Hybrid VND algorithm with improved local search efficiency
Initialization:
- Select the set of neighborhood structures Nk, for k = 1, ..., kmax, that will be
used in the local search;
- Let x′ be the initial solution, obtained by means of the RCWS algorithm;
- Initialize the set LastModified ← V ;
- Choose a stopping condition;
- Set k ← 1.

Repeat the following steps until k = kmax:

1. Exploration of neighborhood:
- Find all neighbors x′′ of x′ (x′′ ∈ Nk(x

′, LastModified));
- Check feasibility of capacity constraints using CP;
- Calculate the cost of modified routes using LR;
- If the solution x′′ is better than x′ (f(x′′) < f(x′)), include it in a list
of improving changes.

2. Choose the best compatible neighbors:
- Set LastModified ← ∅;
- Sort the list of improving changes;
- Apply the first improving change;
- Add in descending order the next compatible improvements;
- Add the modified routes identifiers to LastModified.

3. If the list is empty, set k ← k + 1 and LastModified ← V ; otherwise, set
x′ ← x′′ and k ← 1.

After the first exhaustive exploration of each neighborhood, only those
changes affecting routes modified by previous movements are explored in order
to reduce the computation time. The modified routes are stored in the set
LastModified.

If the obtained neighbor x′′ is better than the incumbent (f(x′′) < f(x′)),
the current solution x′ is updated and neighborhoods’ exploration is restarted.
Otherwise, the algorithm keeps x′ as the best solution found so far and con-
tinues exploring the next neighborhood. When the VND process reaches a
local optimum, no solution improvement may be found according to defined
neighborhoods, and x′ is returned as the best solution found.
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Algorithm 4.6 Parallel Multi-Start VND algorithm
Initialization:
- Let x be the best solution;
- Create a thread pool with Ntotal threads.

Repeat the following steps until Ntotal threads end or until tmax time is con-
sumed:

1. Execute Nmax simultaneous threads:

(a) Generate an initial feasible solution x′ using RCWS.

(b) Improve x′ to obtain x′′ by using the hybrid VND.

(c) If x′′ is better than x (f(x′′) < f(x)), set x← x′′.

As mentioned, the VND-based local search process requires some type of
diversification in order to overcome local optimality. As more constraints are
introduced in the problem, it usually becomes more efficient —in terms of com-
putational time employed— to generate new feasible solutions from scratch
than to apply complex shaking processes that might end in non-feasible solu-
tions. This is especially certain if we consider that the Randomized version
of the CWS introduced in section 4.3.1 is a really fast method for generating
different feasible and good solutions that can serve as initial solutions in a
multi-start approach.

Thus, a Multi-Start strategy provides an appropriate framework which
achieves diversification by re-starting the search from a new solution once a
region has been extensively explored. Moreover, this approach is likely to be
parallelized as long as the best solution found so far is correctly updated.

A simplified schema of the Parallel Multi-Start strategy is presented in
Algorithm 4.6 and depicted in Figure 4.4. The RCWS algorithm is used to
find a good initial solution. Then, the VND method helps to reach a local
minimum in the neighborhood of the solution. The Parallel Multi-Start VND
generates Ntotal tasks within a thread pool. If a thread is not available for
the task, they wait in a queue for an active task to end. The algorithm stops
when all tasks have been completed, or the maximum execution time tmax is
reached, whichever happens first. Each task executes two phases: a first one
in which a new feasible solution is constructed, and a second one in which the
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...

...
Best solution x

Executing tasks

Waiting queue
(Thread pool)

Figure 4.4: Parallel Multi-Start VND schema. A set of waiting tasks is gen-
erated within a thread pool. Anytime an executing task finds an improving
solution, it updates the best solution found so far.

initial solution is improved through a VND local search process. Starting
from a different initial solution ensures certain diversification, overcoming local
optimality. Finally, anytime a task finds a feasible solution x′′ better than the
incumbent (f(x′′) < f(x)), the current solution x is updated.
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4.4 Constraint Programming Approach to the
VRP

In the previous sections, we have presented two hybrid methodologies focused
on solving the CVRP. Both approaches are based on the problem formulation
described in section 4.1, which departs from its decomposition into two sub-
problems: resources allocation and routing solving. The former is modeled
according to the CP paradigm, while the latter is formulated so it can be eas-
ily tackled from a LR perspective. As explained in sections 4.2 and 4.3, this
decomposition provides an efficient approach to the problem.

Other VRP variants, such as the VRP with Time Windows (VRPTW) or
the Pick-Up and Delivery Problem with Time Windows (PDTW) (see Chapter
2), define additional constraints that could lead to the need of a different
decomposition strategy and complex problem formulations. In these cases,
CP becomes a suitable approach to model these constraints in a compact and
natural way. This paradigm permits defining a complete model of the problem
at hand and, in addition, provides the flexibility needed to add new constraints
in order to cope with richer instances. Moreover, CP allows modeling these
constraints without altering the search procedures, intrinsically defined.

For these reasons, we present in this section a complete CP formulation for
the VRP, based on the work by Kilby and Shaw [99]. This formulation has
been implemented in order to overcome some limitations of the formulation
described in section 4.1 and the hybrid methodologies introduced in the pre-
vious sections, such as instances dealing with an heterogeneous fleet or time
windows constraints. It should be noticed that this CP formulation may be
considered as a first step on the implementation of a VRP library based on
the CP paradigm, able to cope with rich VRP variants and flexible enough
to accept new constraints based on real applications. This library was first
introduced in the article by Riera et al. [148].

4.4.1 Problem formulation

This section details a CP formulation of the VRP with quantity of goods and
time constraints maintained along each route. As described in section 3.2,
CP paradigm is based in three entities: (i) variables, (ii) their corresponding
domains, and (iii) the constraints relating these variables. Therefore, the pro-
posed CP formulation is defined according to these elements. This model can



88 Hybrid Methodologies

be used as a basis for different VRP variants, and is specially suitable for the
CVRP and the VRPTW. Nevertheless, one of the main virtues of CP is its
versatility, so new constraints may be added without adjustment to this basic
model.

Assuming the notation introduced in Chapter 2, we consider a set of n
customers and a fleet ofm vehicles. Then, the variables used in this formulation
are:

• C = c1...cn are the customers to serve;

• M = m1...mm are the available vehicles;

• Qm = qm1 ...qmm are the vehicles capacities;

• V = v1...vn+2m are the visits, with domain V :: [1..m].

It should be noticed that there is one visit per customer and two special
visits per vehicle: the starting and ending nodes for the vehicle, usually the
depot. Thus, two subsets of V , F and L, are defined as the vehicles departure
and arrival nodes:

• F = {n+ 1...n+m} is the set of first visits;

• L = {n+m+ 1...n+ 2m} is the set of last visits.

In addition, two indexes are defined to denote the first and last visit for
each vehicle:

• fk = n+ k is the first visit of vehicle k;

• lk = n+m+ k is the last visit of vehicle k.

To deal with routes, the predecessors set P is introduced to model the
direct predecessor pi of each visit i (∀i ∈ V − F ):

• P = p1...pn+m is the predecessors set, with domain P :: [1..n + m] ::
(V − L);

Similarly, the set S is introduced to model the direct successor si of each
visit i (∀i ∈ V − L):
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• S = s1...sn+m is the successors set, with domain S :: [1..n, n+m+ 1..n+
2m] :: (V − F ).

By convention, each first visit of a vehicle has as predecessor the vehicle’s
last visit (∀k ∈ M pfk = lk). Likewise, each last visit of a vehicle has as
successor the vehicle’s first visit (∀k ∈M slk = fk).

The use of the predecessor and successor sets creates a symmetric model.
Although the solution space could be specified using only one of these sets
without changing the set of solutions of the problem, defining both variables
helps on propagating values more efficiently during the search. Thus, this re-
dundant modeling permits making additional inferences which can significantly
prune the search tree.

The predecessor and successor variables form a permutation of V and are
therefore subject to the difference constraints (4.17) and (4.18).

pi 6= pj ∀i, j ∈ V ∧ i < j (4.17)

si 6= sj ∀i, j ∈ V ∧ i < j (4.18)

These equations force predecessor and successor sets to contain no repe-
titions. Thus, one customer can have one and only one predecessor and suc-
cessor. Notice that, when minimizing the number of vehicles is an objective,
these constraints domains are restricted to ∀i, j ∈ V1...Vn∧ i < j to permit the
spare vehicles to remain at the depot.

The successor variables are kept consistent with the predecessor variables
via the following coherence constraints :

spi = i ∀i ∈ V − F (4.19)

psi = i ∀i ∈ V − L (4.20)

Equations (4.19) and (4.20) connect the concepts successor and predecessor
as follows: the former says that i is the successor of its predecessor, and the
latter says that i is the predecessor of its successor.

To model multiple vehicles, we let the variables vi from the set V to have
a domain [1..m] for each visit i, representing the vehicle which performs the
visit. Along a route, all visits are performed by the same vehicle. This is
maintained by the following path constraints :
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vi = vpi ∀i ∈ V − F (4.21)

vi = vsi ∀i ∈ V − L (4.22)

Equations (4.21) and (4.22) are used to ensure that the vehicle assigned to
i is the same as that assigned to its predecessor and successor. Naturally, for
the first and last visits, the following constraints (4.23) are imposed:

vfk = vlk = k ∀k ∈M (4.23)

Another three sets of variables are defined to represent visits’ demands,
cumulated capacities and the time for each visit:

• R = r1...rn is the demands list, determining the amount of goods to be
picked up (ri > 0) or delivered (ri < 0) at each visit i;

• Q = q1...qn is the cumulated capacity list. After every visit i, qi ≥ 0 is
a constrained variable representing the quantity of goods in the vehicle
serving the visit;

• T = t1...tn is the times list, indicating the time when the visit i is per-
formed.

To maintain the load on the vehicles at each point in their route, the
following capacity constraints are enforced:

qi = qpi + ri ∀i ∈ V − F (4.24)

qi = qsi − rsi ∀i ∈ V − L (4.25)

Equations (4.24) and (4.25) count the goods picked up in a route, and
the goods delivered in that route. Thus, the first constraint says the goods
accumulated after visiting customer i is the addition of those accumulated in its
predecessor plus those picked up in i (ri 6= 0). The second constraint is similar
but using the successor. Furthermore, the maximum capacity Qk defined for a
vehicle k must limit the accumulated capacities for every customer visited by
that vehicle. This can be done either with an extra constraint or with domains
bounding in case all vehicles have the same maximum capacity:

Q :: [0..Qk]←→ 0 ≤ qi ≤ Qk ∀i ∈ V, k ∈M (4.26)
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A constraint (4.27) can be added to model that all vehicles begin their
routes empty, as in the CVRP or the VRPTW. Leaving these quantities un-
constrained would permit modeling different problems.

qi = 0 ∀i ∈ F (4.27)

Time is maintained in the same manner as vehicle load except that waiting
is normally allowed, and so the time constraints (4.28) and (4.29) maintain an
inequality rather than an equality.

ti ≥ 0 ∀i ∈ V

ti ≥ tpi + τpii [+τi] ∀i ∈ V − F (4.28)

ti ≤ tsi − τisi [−τi] ∀i ∈ V − L (4.29)

Equations (4.28) and (4.29) bound the accumulated time spent by a vehicle
visiting the customer i. This time is, at least, the accumulated time in the
predecessor of i, plus the travel time from the predecessor to i (τpii). Equally,
this time must be, at most, the accumulated time in the successor, minus the
travel time from i to its successor (τisi). This constraints may include the time
spent at customer i (τi) if it is required by the problem instance.

Time windows on customers are specified by adding time windows con-
straints on the time variables:

ai ≤ ti ≤ bi ∀i ∈ V (4.30)

Equation (4.30) states that customer i must be visited between times a
and b. Usually, depot’s time window is known as the scheduling horizon. De-
pending on the problem at hand, a customer i may be serviced out of its time
window with a related penalty in the objective function (soft time windows).
Minimizing these penalties becomes a secondary goal of the problem. In case
this is not permitted, a vehicle is allowed to wait, but it cannot perform the
visit i after its latest service time bi (hard time windows). To model both
situations, time windows constraints (4.30) are turned into (4.31) and (4.32).

∆ai ≥ ai − ti ∀i ∈ V (4.31)

∆bi ≥ ti − bi ∀i ∈ V (4.32)

The soft time windows are allowed by defining the ∆a and ∆b values as
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∆ai ≥ 0 ∀i ∈ V
∆bi ≥ 0 ∀i ∈ V (4.33)

while the hard time windows case is obtained by enforcing the ∆b to be equal
to zero:

∆ai ≥ 0 ∀i ∈ V
∆bi = 0 ∀i ∈ V (4.34)

Finally, the cost function of the problem is based on the total traveled
distance. Considering δij as the travel distance from visit i to visit j, the cost
function is defined as follows:

d =
∑

i∈V−F

δpii (4.35)

d =
∑
i∈V−L

δisi (4.36)

It should be noticed the use of both the predecessor and successor variables
to constrain the cost, which is usually more effective during search than using
one single set.

In general, for CVRP problems the distance is considered to be equal to the
traveling time, i.e. time variables may replace distances in the cost function.
Therefore, equations (4.37) and (4.38) may be used to bind the cost function
value.

d =
∑

i∈V−F

δpii ←→ d =
∑

i∈V−F

tpii (4.37)

d =
∑
i∈V−L

δisi ←→ d =
∑
i∈V−L

tisi (4.38)

For the VRPTW, in case soft time windows are allowed, the cost function
may include penalty terms representing the time windows violations:

d =
∑

i∈V−F

δpii + ρ
∑
i∈V

∆ai + ω
∑
i∈V

∆bi (4.39)

d =
∑
i∈V−L

δisi + ρ
∑
i∈V

∆ai + ω
∑
i∈V

∆bi (4.40)
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where ρ and ω are penalty weights that can be adjusted according to different
modeling purposes.

Eventually, the cost function may also be defined according to the last visit
performed by each vehicle, following the equation (4.41).

d =
∑
k∈M

tlk (4.41)

In order to improve the propagation during the search, equation (4.41) may
be used simultaneously to the other defined cost functions, so tighter bounds
are obtained on the total cost.

4.4.2 Constraint Programming-based search methods

Constraint Programming can offer many modeling advantages, as well as when
solving routing problems, due to the increased pruning achieved through prop-
agation. On the other hand, local search methods are an effective tool for
solving such problems. However, some difficulties may arise when these two
methodologies are used together. In general, a sequence of moves performed
in local search may violate a basic operating principle in CP, the so-called
chronological backtracking. Under chronological backtracking, decisions must
be undone in the reverse of the order they were made. So in order to undo the
last decision made during local search, we would have to undo all operations
performed since that time, which would be unacceptable from a local search
point of view.

In order to solve this problem, mainly two ways have been identified so far.
The first is to allow a heuristic or metaheuristic method to control the search,
as in the methods presented in sections 4.2 and 4.3. In this case, CP is used
simply to check constraints fulfillment. The second way is to insulate the CP
system from the changes made at the local search level, which is embedded
within an operator. Many of these operators are based on serial insertion and
block deletion, modifications well suited to use within a CP framework. One
such insertion-based technique is Large Neighborhood Search (LNS) (see section
3.4), specifically developed by Shaw [161] to be used in a CP environment.

As mentioned in section 3.4, in LNS an initial solution is gradually improved
by alternately destroying and repairing the solution. In this metaheuristic,
the neighborhoods are implicitly defined by the destroy and repair operators.
The destroy operator typically contains an element of stochasticity such that
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different parts of the solution are destroyed in every invocation of the method.
Nevertheless, deterministic destroy methods can also be implemented.

Searching a very large neighborhood should potentially lead to higher qual-
ity solutions than searching a small neighborhood. However, in practice, small
neighborhoods can provide similar or superior solution quality if embedded in a
metaheuristic framework. Hence, a natural idea is to gradually extend the size
of the neighborhood, each time the search gets trapped in a local minimum.
This leads to a nested structure that can be searched efficiently. In this sense,
destroy operators can be defined in a way such that the degree of destruction
is gradually increased, as Shaw [161] proposes. The degree of destruction is an
important choice when defining a destroy method: if only a small part of the
solution is destroyed it may be difficult to leave a valley in the search space; if
a very large part of the solution is destroyed, the LNS heuristic may degrade
into a multi-start process.

Choosing the repair method permits much more freedom when implement-
ing a LNS heuristic. A first decision is whether the repair method should
be exact or heuristic. The former, although slower, may lead to high qual-
ity solutions in few iterations. The latter may be more interesting from a
diversification point of view.

As introduced in section 3.2, CP search methods are mainly based on as-
signing values to variables, in such a way that constraints are satisfied and
other variables’ domains are reduced to their compatible values through con-
straint propagation. Therefore, CP-based destroy and repair methods will
unassign and assign values to variables, respectively, at different stages of the
search. The definition of both concepts is straightforward.

Definition: An unassignment is a pair of variable x and value a (denoted
x 6← a) such that a has been ruled out as a possible value for x at the point
in search under consideration. An assignment is a pair of variable x and value
a (denoted x ← a) where variable x is set to a at the point in search under
consideration.

From these definitions, it can be inferred that a solution is a complete
assignment (or complete labeling) to the variables of the problem, in such a
way that all constraints are satisfied at once.

A CP-based destroy operator unassigns some values from a solution, de-
stroying it partially. For the VRP, it is useful to remove some visits from a
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Algorithm 4.7 SPLIT LNS-based operator
Initialization:
- Select the set of k (k = 1, ..., kmax) areas that will be used for splitting;
- Let x be the initial solution;
- Set k ← 1.

Repeat the following steps until k = kmax:

1. Assign the partial labeling x′ = x \ {xk}

2. Repair the partial solution x′ using branch-and-bound during tmax time
to get x′′

3. If the solution x′′ is better than x (f(x′′) < f(x)), set x← x′′ and k ← 1;
otherwise, set k ← k + 1

solution, i.e. unassign all values from variables related to these visits. The
solution can then be re-optimized by re-inserting these visits, using a repair
method. One iteration of removal and re-insertion can be considered as the
examination of a neighborhood move. If a re-insertion is found that results in
a cost below that of the best solution found so far, this new solution is kept
as the current one.

A critical choice on designing a destroy method is how to select the cus-
tomers to be removed and re-inserted. A general strategy consists of choosing
related visits, since removing visits whose re-insertion is independent of the
others is less likely to lead to a solution improvement. Based on the ob-
servation that visits geographically close to one another are more related than
remote ones, we define two strategies for choosing the customers to be removed
from a solution.

The first strategy for choosing the visits to be removed is based on the
geographical distribution of customers. It is implemented in the SPLIT oper-
ator outlined in Algorithm 4.7. The nodes scatterplot is divided into the four
quadrants according to the Cartesian axes, and a different VRP is solved on
each subspace. First, all customers laying in the first quadrant are selected
for removal and their corresponding variables are unassigned. These visits are
then re-inserted in order to reduce the solution cost. Figure 4.5 shows how
the SPLIT operator performs the search. The four quadrants are visited in a
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VND fashion: anytime an improving solution is found, the first quadrant is
revisited and the process is repeated; otherwise, the algorithm switches to the
next quadrant. The process stops when no improvements are found. It should
be remarked that other geographical-based strategies may be implemented,
like the ones proposed by Juan et al. [92].

(a) (b)

(c) (d)

Figure 4.5: SPLIT operator. (a) Original solution; (b) customers from the
quadrant to be explored are removed; (c) the repair method re-inserts the
removed visits; (d) new solution.
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Algorithm 4.8 RPOP LNS-based operator
Initialization:
- Select a maximum number of pivots kmax to be used;
- Select the number of customers l around each pivot to be removed;
- Let x be the initial solution;
- Set k ← 1.

Repeat the following steps until k = kmax:

1. Choose randomly k pivots from the solution x ⇒ xk

2. Choose the l closest neighboring visits around each pivot k⇒ xl =
⋃
k xlk

3. Assign the partial labeling x′ = x \ {xk ∪ xl}

4. Repair the partial solution x′ using branch-and-bound during tmax time
to get x′′

5. If the solution x′′ is better than x (f(x′′) < f(x)), set x← x′′ and k ← 1;
otherwise, set k ← k + 1

The second destroy method chooses the customers to be removed randomly.
The steps of this operator, which we call Random Pivot OPerator (RPOP),
are outlined in Algorithm 4.8. For efficiency reasons, we want to remove the
smallest set of customers that could lead to an improvement on the cost when
the visits are re-inserted. Initially, we choose one visit to be removed, which
we call a pivot. As this only could lead the search to the previous solution,
a set of neighboring customers are also removed, creating a hole around the
pivot. It is important to notice that the set of removed customers may or may
not belong to the same route, since they have been chosen according to their
proximity. This characteristic permits swapping visits between different routes
that could decrease the solution cost. Figure 4.6 depicts the RPOP behavior.
During search, if re-inserting these removed customers has not resulted in an
improvement in the cost, the number of pivots is increased by one at next it-
eration. This way, the degree of destruction is gradually increased. An upper
limit on the number of pivots is to be defined to avoid generating neighbor-
hoods too large to be explored. A VND exploration strategy is again adopted:
anytime an improvement is found, search is redirected to the exploration of
the smaller neighborhood, i.e. starts over by selecting one single pivot.
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pivot

(a) (b)

(c) (d)

Figure 4.6: RPOP operator. (a) Original solution; (b) pivot customers and
their closest neighbors are removed; (c) the repair method re-inserts the re-
moved visits; (d) new solution.

We have chosen a CP-based exact repair method so it takes advantage
of improved propagation as it departs from a partial solution which helps on
pruning the search tree. Concretely, the repair method consists of a branch-
and-bound method with constraint propagation, with a limited execution time.
Thus, although slower than heuristic methods, we benefit from high quality
solutions while not being penalized with an excessive computational time. Dur-
ing search, the upper bound is set to the cost of the best solution found so far.
Insertion positions for visits can be forbidden if they take the lower bound on
the cost over the defined upper bound. We form the lower bound as the current
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Algorithm 4.9 VND-LNS algorithm
Initialization:
- Select the set of operators Ok, for k = 1, ..., kmax, that will be used;
- Find an initial solution x and improve it by means of a branch-and-bound
method for a limited time;
- Set k ← 1.

Repeat the following steps until k = kmax:

1. Apply the Ok operator to obtain the solution x′

2. If the solution x′ is better than x (f(x′) < f(x)), set x← x′ and k ← 1;
otherwise, set k ← k + 1

cost of the partial solution constructed during search, i.e. the lower bound is
not computed separately by any other method. This makes the repair method
faster, but the search tree is larger than it would be if an accurate lower bound
was calculated. In its simplest form, the branch-and-bound search explores the
whole tree for the re-insertion of all visits at minimum cost. However, variable
and value selection heuristics may be defined to improve the search efficiency
(see section 4.4.3).

The SPLIT and RPOP operators are used in a local descent strategy, as
they never allow the objective function to increase. As these strategies are
likely to get trapped in a local minimum, we embed them within a VND
algorithm, as explained in section 3.3.1. The steps of this algorithm are pre-
sented in Algorithm 4.9. Combining LNS with a VND metaheuristic permits
exploring the search space in a systematic fashion. Whenever the algorithm
reaches a local minimum for any of the operators, it changes to a different,
usually smaller neighborhood defined by a different operator. Thus, the VND
oscillates between the two operators, hoping that changes in neighborhood
structure will permit escaping from most local minima.

Although we are using an exact method such as branch-and-bound to repair
a partially destroyed solution, we are limiting its execution time. For this
reason, further improvements may be found during subsequent executions. In
addition, every time the algorithm finds a better solution, the upper bound is
updated and the search tree is pruned in consequence. Therefore, the branch-
and-bound method can explore more efficiently the search space in order to
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find a better solution in the destroyed region. At this stage, the combination
of LNS and VND play a key role, so different neighborhoods can be explored
and revisited iteratively with improved upper bounds.

As for the destroy methods, the SPLIT operator deserves special atten-
tion. If all routes are completely separated into quadrants and the customers
are re-inserted optimally, re-optimizing these areas would imply a waste of
computational time. However, this is very unlikely and usually routes fall over
different quadrants, so any change in one of them may affect some others. For
example, relocating one customer in a different route affects capacity and time
constraints of the original route and the destination one. These changes may
turn useful re-optimizing the quadrants affected by these two routes. Again, us-
ing VND and LNS strategies ensure revisiting neighborhoods anytime a change
that can modify them is found during search.

It should be remarked that the addition of time constraints to the VRP
makes the problem much more difficult. In the VRPTW, even finding a fea-
sible solution is NP -hard [158]. For this reason, the application of CP exact
methods to explore the search space is limited and the definition of heuristic
incomplete methods becomes mandatory. Even though, tackling the VRPTW
by using pure CP techniques can take high computational times, even for find-
ing an initial feasible solution or solving the associated subproblems [132]. The
approach presented in this section may help on solving the VRPTW, but it re-
quires further improvements to be competitive with other state-of-art methods.
Some of these improvements are introduced in the next section.

Eventually, this approach may be used to solve some small CVRP instances.
The methods introduced in this section are not able to cope with most of the
medium and large VRPTW instances. However, it may solve most instances
if soft time windows are considered. Thus, this methodology may be useful to
find appropriate lower bounds to the VRPTW instances, since the soft time
windows variant is a relaxed problem of its original VRPTW instance. In
any case, as mentioned, none of these applications are competitive with other
approaches and further efforts need to be addressed in this direction.

The aim of this approach was to establish an initial framework as a first
approach to more complex, rich VRP. The proposed formulation can be used
to check feasibility, as well as the VND-LNS approach can be used to solve or
re-optimize small parts of a problem. Although other faster heuristic methods
could be used for the latter, they do not provide the flexibility obtained by
using CP. Adding a new constraint in CP is a modeling issue, while adding the
same constraint in other methods may imply important changes in algorithm’s
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structure and performance. Hybrid methodologies that use CP to validate
solutions, such as the ones presented in sections 4.2 and 4.3, would suffer
from the introduction of complex and very tight constraints because solutions
acceptable by the CP solver would become more rare. As for this approach, it
would gain in performance, since propagation would be used more extensively
to prune the search space.

4.4.3 Variable and value ordering heuristics and improve-
ment methods

As mentioned, the algorithm’s performance may be improved by introducing
several modifications. First hand, although the formulation presented in sec-
tion 4.4.1 exactly describe the set of feasible solutions, additional constraints
may improve the logical reasoning and reduce the solution space. On the other
hand, modifying the order in which variables are assigned and their values can
drastically alter the shape of the search tree.

Time windows defined for each customer may be preprocessed to add new
constraints to the problem. These additional constraints may help on pruning
the search space by reducing variables’ domains. Depending on the problem in-
stance, some time windows may be overlapped, so a vehicle cannot serve those
customers without violating their respective working times. Time windows
preprocessing is used to detect these situations and add constraints defining
which customers are incompatible to be in the same route.

Two customers are determined to be incompatible if a vehicle cannot per-
form both visits within their respective time windows. Considering a vehicle
arriving to customer i ∈ V and starting the service at a time corresponding to
the lower bound of its time window (ai), it cannot be visited previously in the
same route than a second customer j ∈ V if the cost to reach j from i exceeds
the latter’s time window upper bound (bj).

ai + τij [+τi] > bj (4.42)

If the expression (4.42) still holds swapping indexes i and j, then customers
i, j ∈ V cannot lead to a feasible solution fulfilling time windows when they
are included in the same route. Therefore, an additional constraint is defined
so they cannot be assigned to the same route:
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ai + τij [+τi] > bj ∧ aj + τij [+τj] > bi ⇒ vi 6= vj ∀i, j ∈ V (4.43)

Constraint (4.43) is defined for each pair of incompatible visits. Thus,
time windows preprocessing helps to avoid the exploration of some unfeasible
solutions, since it provides a more constrained problem.

Additional constraints may be inferred from the time windows preprocess-
ing. Although the path constraints (4.21) and (4.22) propagate on P and S
variables when constraint (4.43) is imposed, explicit constraints may be de-
fined on these variables. In addition, it should be noticed that two customers
may be feasibly included in the same route, but with some limitations on the
precedence order. For example, it may happen that customers i and j fulfill
the expression (4.42), but the inverse swapping indexes is not satisfied. In
this case, in order to fulfill the time windows constraints, i cannot be vis-
ited immediately before j. In consequence, constraints (4.44) and (4.45) are
defined.

ai + τij [+τi] > bj ⇒ pj 6= i ∧ si 6= j ∀i ∈ V − L, j ∈ V − F (4.44)

aj + τij [+τj] > bi ⇒ pi 6= j ∧ sj 6= i ∀i ∈ V − F, j ∈ V − L (4.45)

By definition, if constraint (4.43) is imposed, both constraints (4.44) and
(4.45) are automatically enforced.

Though the imposed constraints may contribute to significantly reduce the
size of the search space to be explored, search strategies still play a major role.
In this sense, the order in which variables are fixed and their values tried have
a large influence on search algorithms’ performance.

Variable ordering is by far the most important since it can drastically alter
the shape of the search tree. Value ordering determines which parts of the
tree are first explored and how soon a very good solution, or even an optimal
one, may be found. An appropriate combination of both strategies may lead
the search efficiently, while a wrong choice could force the search method to
explore infertile regions of the search space.

Dynamic variable ordering strategies are generally recognized to be more
effective rather than fixing an ordering a priori. Thus, the most promising
variable is chosen according to the information available at that point of search.
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Within this schemes, the first-fail heuristic emerges as a good strategy. It
states that the search should provoke dead-ends as early as possible to reduce
the search effort. For this reason, the variable with the smallest domain size
is favored to be chosen. A first-fail variant, the most-constrained heuristic,
works in a similar way, but in case several variables have the same domain
size, the one with the largest number of attached constraints is selected first.
Finally, variable ordering heuristics may be based on the values associated to
each domain. For example, a smallest heuristic will pick the variable with the
smallest value in its domain.

The value ordering strategies determine how the values in a domain are
explored. A common strategy for most optimization problems is to explore a
domain so values are tried in increasing order. However, multiple strategies
have been defined over the years, such as starting from the middle value of the
domain, successively splitting and removing intervals in the domain, or trying
values in a random order. Most of these variable and value ordering heuristics
are implemented in most CP platforms.

Following these guidelines, we define two strategies for variable and value
ordering for the VRPTW. These strategies take advantage of the problem’s
structure.

The first strategy is based on a Nearest Neighbor heuristic. Since close visits
are more likely to be in the same route in the optimal solution, variables to be
assigned are chosen according to this criterion. Before starting the search, the
distances matrix is used to determine the distances from each visit to all its
feasible successors. By associating these values to each variable si (∀i ∈ V −L)
and using the smallest heuristic as the variable ordering strategy, the order
in which the variables si are labeled is based on the distance to their closest
neighbor. Moreover, if the values are tried in increasing order, anytime a
successor is found unfeasible, the second closest neighbor will be tried, and so
on.

The second strategy is defined according to the start time on each visit
time window (ai). In a similar fashion to the strategy presented above, the
earlier starting time for each feasible successor is associated to each variable
si (∀i ∈ V − L), and the search is performed using the smallest heuristic as
the variable ordering strategy. Thus, variables corresponding to visits with the
earliest starting time window are assigned first. Again, the values are tried in
increasing order, since minimizing the traveling time is a goal of the problem.

Though this time criterion is used for ordering the variables labeling, it
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should be remarked that time variables are not assigned during search. For
efficiency reasons, only lower and upper bounds for each time variable are
maintained and updated through propagation. Time constraints (4.28) and
(4.29) are used to reduce the domains of the time variables anytime a prede-
cessor or successor variable is assigned. Keeping the time variables bounded
to their feasible domains permits pruning the search tree, while reducing the
computational burden required for assigning each time variable individually.

The described strategies have been included in the CP-based search method
presented in section 4.4.2. Although these heuristics may help on guiding the
search, this methodology still requires further improvements to be competi-
tive with state-of-art methods. Even applying such techniques, the described
methodology may not be able to solve the VRPTW in a reasonable time. Sim-
ilarly, Pesant et al. [132] propose a model alike with improved propagation
strategies to solve the TSPTW, but they are not able to solve many instances
in reasonable times. The computational complexity associated to the VRPTW
makes it a hard problem to tackle from a pure CP perspective. In this sense,
the methodology and strategies presented in this section are an initial approach
which keeps open different lines for future research. Some of them are outlined
in section 6.2.



Chapter 5

Application and Case Studies

In this chapter, the computational results obtained for the different method-
ologies described in Chapter 4 are presented. First, we provide some results for
the two hybrid methodologies —the hybrid VNS approach and the Multi-Start
VND method—, focused on the CVRP. These results are analyzed separately,
and subsequently compared with other state-of-art heuristics in section 5.1.3.
Finally, results for the CP-based approach are reviewed in the last section.
This methodology has been used to tackle the CVRP and the VRPTW, yield-
ing interesting results as a first approach to these problems.

5.1 Hybrid approaches to the CVRP

A total of 97 classical CVRP benchmark instances have been used to test
the efficiency of the presented approaches. They have been obtained from
branchandcut.org [1], a reference site with a large number of benchmark sets
for different combinatorial problems, yet not updated results. Best known
solutions for problems not solved to optimality have been updated with recent
references in order to provide a thorough comparative with results obtained
by using the methodologies presented in this thesis. Instances were selected
according to the distance type used in their definition. Only those instances
whose distance is defined as Euclidean or Geographic have been selected, in
order to ensure triangular inequality’s fulfillment. Therefore, all problems
from benchmark sets A, B, F, G, M, and P have been included. In addition,
those instances from the set E accomplishing the mentioned criterion are also
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considered, as well as three TSPLib [146] converted problems (att-n48-k4 and
both ulysses instances).

For further references on the size of each instance, all problems are labeled
according to the following notation: the first letter denotes the benchmark set
which the instance belongs to; the number after the n is the total number
of customers, including one depot, i.e. it indicates the size of the problem;
the number after the k is the maximum number of available vehicles to solve
the instance. For example, the instance A-n32-k5 belongs to the set A, 31
customers and one depot are defined, and a feasible solution may use at most
5 vehicles.

5.1.1 General Variable Neighborhood Search

The methodology described in section 4.2 has been implemented in Java and
linked to the open-source CP software system ECLiPSe 6.0 [9]. All tests have
been performed on a non-dedicated server with an Intel Xeon Quad-Core i5
processor at 2.66GHz and 16GB RAM. In general, five to seven processes were
launched in parallel to solve different problems, while external applications
were active at the same time. Nevertheless, we strongly believe that these
applications had a poor influence on the results presented in this section, since
their use of CPU and memory resources was low and not continuous in time.
In any case, so obtained CPU times are to be considered as approximated.

The hybrid VNS approach has been used to solve the 97 considered CVRP
benchmark instances. In this case, distances have been rounded to integers,
according to the specification included in the TSPLib [146]. This approach
allows comparing the obtained results with those published in a wide range
of references working over the same benchmark sets. However, this methodol-
ogy is not restricted to work with integer distances, so it can be used without
adding any modification to solve the same instances considering real costs.
Although a good number of publications adopt this realistic approach, results
presented in this section are aimed to be compared with best known integer
solutions. In order to compare the obtained solutions with best known realis-
tic ones, the algorithm should be run using real costs matrices, since rounding
distances prior to solving make both instances different, and so are their cor-
responding solutions. This realistic approach is adopted for the Multi-Start
VND approach, whose results are presented in section 5.1.2.

In all tests, swapping (see section 4.2.2 for movements description) has
been set as the initial move both for shaking (k = 1) and local search (l = 1)
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Table 5.1: Summary of results obtained by means of the hybrid VNS approach
with a swapping/relocate configuration.
Class Problems Opt. No opt. Not solved % Dev. % Max % Min
A 27 14 (51.85%) 13 (48.15%) 0 (0.00%) 0.65 2.14 0.14
B 23 12 (52.17%) 11 (47.83%) 0 (0.00%) 1.79 4.28 0.13
E 11 5 (45.45%) 6 (54.55%) 0 (0.00%) 0.68 1.59 0.41
F 3 1 (33.33%) 2 (66.67%) 0 (0.00%) 4.22 4.22 4.22
G 1 0 (0.00%) 1 (100.00%) 0 (0.00%) 0.44 0.44 0.44
M 5 1 (20.00%) 4 (80.00%) 0 (0.00%) 2.44 4.35 0.69
P 24 14 (58.33%) 8 (33.33%) 2 (8.33%) 0.88 3.30 0.15
TSPLib 3 1 (33.33%) 2 (66.67%) 0 (0.00%) 2.28 3.23 1.33
Totals 97 48 (49.48%) 47 (48.45%) 2 (2.06%) 1.67 2.94 0.94

processes. Relocate, chain, and ejection chain are used next whenever the
previous solution is not improved. In the implemented approach, the relative
percentage of customers modified by the ejection chain movement has been set
to 40 %. In general, the number of customers assigned to each route is low for
most CVRP instances, so a relatively high percentage of removed customers
at the end of each route is required to avoid exploring a subset of the chain
neighborhood. A summary of the obtained results with this neighborhood set
is presented in Table 5.1. In all cases, the stopping criterion has been set to a
maximum of 40 iterations.

Table 5.1 presents the number of problems successfully solved to optimality
by using the hybrid VNS methodology, as well as the number of problems
whose optimal value was not reached and those which could not be solved.
Table 5.1 also shows the average (% Dev.), maximum (% Max), and minimum
(% Min) deviation from the best known value for those problems that could
not be solved to optimality. A low deviation is observed for most problem sets,
comparable to the results obtained by means of other metaheuristics.

Another test has been done exchanging the swapping and relocate prior-
ities, getting a similar performance. For this reason, only results from the
first configuration are shown. Nevertheless, it is remarkable that, in general,
the swapping/relocate configuration has a better performance when applied
to class M problems, while relocate/swapping behaves better on class B in-
stances. Probably, performance differences rely on customers distribution and
the tightness of each problem, i.e. the ratio demand/capacity of each problem.
In class B problems, the customers are clustered, so higher improvements are
expected when applying the relocate movement first. On the other hand, class
M instances are very tight problems. Thus, relocating customers may be dif-
ficult due to capacity constraints. In this case, swapping customers might be
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Figure 5.1: Convergence of the lower (dashed line) and the upper (solid line)
bounds in three routes from problem M-n200-k16. Although LR maximum
number of iterations is set to 300, it usually converges in less than 50 iterations
for most problems.

a more efficient strategy to reduce the total cost.

As mentioned in section 4.2.3, the initial solution is obtained by solving
separately capacity and routing problems. This approach is able to provide a
low-quality quick solution, since both subproblems are easily solved but their
variables are unlinked. However, this solution is highly improved at the first
iteration. As an example, this approach may provide an initial feasible solution
for larger problems, such as the M-n200-k16, in less than 6 seconds. After the
first iteration, the cost of the current solution is usually close to the final result.

Furthermore, the use of LR ensures the partial optimality of all solutions
from the routing perspective. The reason is that the tailored LR-based ap-
proach presented in section 4.2.1 can optimally solve all TSP instances result-
ing from the allocation of customers. As can be seen in Figure 5.1, the lower
and upper bounds converge rapidly. For all problems, their gap is always lo-
cated between 0 and 10−10, guaranteeing so the solution optimality. Moreover,
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Figure 5.2: An example of the local search process on problem A-n45-k7 for
the first 10 iterations. The solid line corresponds to the final solution evolution,
while the dotted line shows the shaking process and the local search behavior.

LR solves all routes in negligible times, due to the number of associated cus-
tomers is always low. Thus, LR has demonstrated to be an efficient alternative
for intra-route optimization processes.

The detailed behavior of the hybrid VNS method can be observed in Fig-
ures 5.2 and 5.3. In Figure 5.2, the solid line corresponds to the final solution
evolution, while the dotted line shows algorithm’s behavior at each iteration.
Every shaking process draws a peak, while the local search process leads the
algorithm to a solution with a lower cost. Figure 5.3 shows this behavior in
more detail. It can be observed that, after some iterations, the local search pro-
cess converges more often to the best solution found so far. As the algorithm
evolves, so does solution’s structure quality, getting closer to the optimum.
Therefore, a more thorough shaking process would be needed to get the so-
lution far enough so different regions from the solution space were explored.
Nevertheless, it could cause the algorithm to diverge or to degrade into a multi-
start process. As an example, when chain and ejection chain movements are
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Figure 5.3: Detailed behavior of the hybrid VNS approach for the problem A-
n32-k5. It can be observed how the shaking and local search processes affect
the solution cost.

applied in the shaking process, the local search process either converges slowly
or may not find the current best solution. Since both moves modify larger
section than relocate or swapping, the exploration might be leaded to regions
far from the current solution.

The hybrid VNS methodology performs similarly both for small and large
instances. Thus, its applicability is not restricted. It is remarkable that the
algorithm eventually reaches the optimal solution for smaller problems (50
customers or less), but it stops near the optimum for larger instances. Tables
5.2 and 5.3 show representative results obtained for classes A and P. These
results are similar to those obtained for the remaining classes. These tables
compare the obtained results to the best known integer solutions (columns
BKS and #OV ). They show the initial (IS ) and the final solution (OBS ),
computational times spent on calculating them, and the corresponding gap of
the final solution. The computational time needed to reach a solution with a
gap lower than 2 %, selected as a good quality solution threshold, has also been
included in all tables. The last column presents the iteration at which the best-
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Table 5.2: Results obtained for class A problems.
Problem BKS IS CPUIS OBS CPUOBS Gap BKS- CPU≤2% #V/ Opt.

(s) (s) OBS (%) (s) #OV It.
A-n32-k5 784 1243 0.256 784 96.62 - 96.62 5 / 5 2
A-n33-k5 661 1185 0.018 661 42.67 - 28.05 5 / 5 2
A-n33-k6 742 1289 0.013 742 34.86 - 34.86 6 / 6 32
A-n34-k5 778 1259 0.014 778 27.88 - 27.88 5 / 5 1
A-n36-k5 799 1207 0.024 799 524.33 - 148.16 5 / 5 22
A-n37-k5 669 960 0.012 669 65.76 - 19.82 5 / 5 2
A-n37-k6 949 1393 0.020 949 59.67 - 27.10 6 / 6 14
A-n38-k5 730 1240 0.017 731 69.02 0.14 23.07 5 / 5 -
A-n39-k5 822 1291 0.010 822 277.41 - 39.54 5 / 5 8
A-n39-k6 831 1523 0.014 833 554.50 0.24 84.94 6 / 6 -
A-n44-k6 937 1547 0.020 942 149.39 0.53 60.68 6 / 6 -
A-n45-k6 944 1826 0.022 950 141.67 0.64 64.16 6 / 6 -
A-n45-k7 1146 1768 0.022 1146 207.30 - 77.42 7 / 7 3
A-n46-k7 914 1711 0.024 914 265.87 - 94.97 7 / 7 2
A-n48-k7 1073 1840 0.025 1084 295.10 1.03 178.55 7 / 7 -
A-n53-k7 1010 1841 0.030 1020 1291.31 0.99 122.65 7 / 7 -
A-n54-k7 1167 1883 0.051 1167 321.39 - 202.48 7 / 7 8
A-n55-k9 1073 2074 0.034 1073 1387.84 - 218.51 9 / 9 3
A-n60-k9 1354 2224 0.037 1354 1689.65 - 159.74 9 / 9 6
A-n61-k9 1034 2045 0.034 1037 1796.11 0.29 370.63 9 / 9 -
A-n62-k8 1288 2344 0.033 1290 3867.11 0.16 445.29 8 / 8 -
A-n63-k9 1616 2659 0.039 1629 1254.34 0.80 183.58 9 / 9 -
A-n63-k10 1314 2275 0.039 1318 3226.55 0.30 298.88 10 / 10 -
A-n64-k9 1401 2215 0.039 1431 386.78 2.14 - 9 / 9 -
A-n65-k9 1174 2331 0.045 1177 1577.88 0.26 552.54 9 / 9 -
A-n69-k9 1159 2463 0.068 1170 3752.35 0.95 1512.49 9 / 9 -
A-n80-k10 1763 3165 0.053 1763 9145.79 - 884.94 10 / 10 20

known value is reached or improved. As the maximum number of iterations
has been fixed to 40, we have included the values obtained by the algorithm
after these number of iterations for all problems not solved to optimality, but
we have not specified any number in the last column.

Table 5.4 shows that this methodology is able to provide state-of-art results
for large benchmark instances (100 customers or more) in terms of solution
quality. As observed, final values are normally close to the best known integer
solutions. It is also remarkable the result obtained for the largest selected test
instance G-n262-k25, which stays slightly (0.44 %) over the best known value
to the best of our knowledge, published by Hasle and Kloster [81].

Finally, two problems deserve special attention: M-n200-k16 and P-n55-
k8. The hybrid VNS methodology has been able to find a new best solution
for the first and an alternative solution for the latter.
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Table 5.3: Results obtained for class P problems. Improved solutions are
marked in bold.
Problem BKS IS CPUIS OBS CPUOBS Gap BKS- CPU≤2% #V/ Opt.

(s) (s) OBS (%) (s) #OV It.
P-n16-k8 450 534 0.020 453 0.62 0.67 0.62 8 / 8 -
P-n19-k2 212 267 0.156 219 0.57 3.30 - 2 / 2 -
P-n20-k2 216 266 0.003 216 0.95 - 0.95 2 / 2 1
P-n21-k2 211 276 0.003 211 2.75 - 2.75 2 / 2 1
P-n22-k2 216 278 0.003 216 4.68 - 4.68 2 / 2 1
P-n22-k8 603 687 0.009 603 1.20 - 1.20 8 / 8 1
P-n23-k8 529 642 0.016 529 2.43 - 2.43 8 / 8 8
P-n40-k5 458 773 0.014 458 39.43 - 39.43 5 / 5 1
P-n45-k5 510 827 0.015 510 111.05 - 111.05 5 / 5 1
P-n50-k7 554 1012 0.035 554 115.43 - 115.43 7 / 7 20
P-n50-k8 631 - - - - - - - / 8 -
P-n50-k10 696 1233 0.032 700 375.69 0.57 147.29 10 / 10 -
P-n51-k10 741 1248 0.031 741 427.25 - 181.10 10 / 10 5
P-n55-k7 568 1047 0.025 568 448.47 - 224.55 7 / 7 8
P-n55-k8 (a) 588 1093 0.029 577 247.69 -1.87 247.69 7 / 8 1
P-n55-k8 (b) 588 1116 0.031 590 1379.75 0.34 68.99 8 / 8 -
P-n55-k10 694 1302 0.053 700 704.90 0.86 168.09 10 / 10 -
P-n55-k15 989 - - - - - - - / 15 -
P-n60-k10 744 1529 0.034 744 1671.03 - 321.79 10 / 10 12
P-n60-k15 968 1761 0.052 975 1023.88 0.72 178.30 15 / 15 -
P-n65-k10 792 1509 0.041 792 780.61 - 379.99 10 / 10 15
P-n70-k10 827 1586 0.055 842 3108.94 1.81 1293.94 10 / 10 -
P-n76-k4 593 1062 0.068 594 12328.96 0.17 3740.66 4 / 4 -
P-n76-k5 627 1177 0.042 628 10784.63 0.16 1167.90 5 / 5 -
P-n101-k4 681 1124 0.156 682 82818.18 0.15 16563.72 4 / 4 -

Table 5.4: Results obtained for large problems (100 or more customers). Im-
proved solutions are marked in bold.
Problem BKS IS CPUIS OBS CPUOBS Gap BKS- CPU≤2% #V/ Opt.

(s) (s) OBS (%) (s) #OV It.
E-n101-k8 817 1628 0.199 817 40888.91 - 10021.63 8 / 8 18
E-n101-k14 1067 2106 0.106 1084 4558.74 1.59 3655.71 14 / 14 -
M-n101-k10 820 1091 0.252 840 12897.92 2.44 - 10 / 10 -
M-n121-k7 1034 1227 0.193 1079 39383.90 4.35 - 7 / 7 -
M-n151-k12 1015 2481 0.287 1022 76933.89 0.69 70339.55 12 / 12 -
M-n200-k16 1371 3287 6.253 1335 109850.18 -2.63 12923.55 16 / 16 1
M-n200-k17 1275 3201 5.983 1304 195727.29 2.27 - 17 / 17 -
G-n262-k25 5685 14563 0.724 5710 443081.89 0.44 65442.80 25 / 25 -

For the test instance M-n200-k16, a new best solution with a cost of 1335
has been obtained. This solution is depicted in Figure 5.4. To the best of
our knowledge, only one previous feasible solution with a cost of 1371 was
known [81]. It was obtained by means of a VND algorithm embedded in the
VRP software SPIDER. Taking into account the best known lower bound for
this instance (1256.4), published by Baldacci et al. [15], the solution found by
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Figure 5.4: Proposed best solution for the test instance M-n200-k16.

means of the hybrid VNS algorithm reduces the gap between bounds from the
previous value of 8.36 % to 5.89 %.

The solution found for the test instance P-n55-k8 becomes an alternative
to the published optimum [10]. For this case, a solution with a value of 577
has been found by using the swapping/relocate configuration, while a value of
576 has been obtained exchanging movements’ priorities. This last solution is
shown in Figure 5.5. Both solutions use 7 vehicles, instead of the 8 vehicles
used in the published optimum. This solution has been marked as P-n55-k8
(a) in Table 5.3. P-n55-k8 (b) corresponds to the solution obtained when
forcing the algorithm to use 8 vehicles. As far as we know, only two previous
works, Alba and Dorronsoro [6] and Altinel and Öncan [7], have also presented
this alternative value as the best known solution for this instance, while most
authors keep the original cost of 588 using 8 vehicles as optimal.

In any case, optimality may not be guaranteed in the proposed solution
for the instance P-n55-k8. Instances P-n55-k7 and P-n55-k8 share customers’
distribution and demand, but the available vehicles have different capacities.
Thus, both problems are critically different and the optimal cost of the instance
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P−n55−k8

Figure 5.5: Alternative solution (left) to the published optimal configuration
(right) for the test instance P-n55-k8. The proposed alternative solution has
been obtained with a relocate/swapping configuration.

P-n55-k7 cannot be chosen as a reference. In fact, the solution of the instance
P-n55-k7 is not feasible according to P-n55-k8 vehicles’ capacity. The pro-
posed solution has so the lowest known cost for this problem, but its optimality
needs to be proved by means of an exact algorithm.

Computational complexity reduction of local search

The mechanisms for reducing the computational complexity of local search
described in section 4.2.4 have been implemented in the hybrid VNS approach
evaluated in this section. Some tests have been done in order to study the
performance improvement obtained by means of these strategies.

The results obtained for the set A of benchmark instances are shown in
Table 5.5. From these results, it can be stated that, in general, the strategies
implemented to reduce the computational complexity of local search achieve
the desired behavior. For most problems, the total calculation time is reduced
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Table 5.5: Results obtained for class A problems comparing the original ex-
haustive local search method and a more efficient local search, including the
computational complexity reduction strategies.

Original local search Efficient local search
Problem BKS OBS CPUOBS Gap BKS- OBS CPUOBS Gap BKS-

(s) OBS (%) (s) OBS (%)
A-n32-k5 784 784 96.62 - 784 4.88 -
A-n33-k5 661 661 42.67 - 661 6.09 -
A-n33-k6 742 742 34.86 - 742 113.74 -
A-n34-k5 778 778 27.88 - 778 1.56 -
A-n36-k5 799 799 524.33 - 799 214.60 -
A-n37-k5 669 669 65.76 - 669 8.10 -
A-n37-k6 949 949 59.67 - 949 25.15 -
A-n38-k5 730 731 69.02 0.14 730 83.79 -
A-n39-k5 822 822 277.41 - 822 174.97 -
A-n39-k6 831 833 554.50 0.24 833 282.93 0.24
A-n44-k6 937 942 149.39 0.53 939 465.84 0.21
A-n45-k6 944 950 141.67 0.64 954 284.49 1.06
A-n45-k7 1146 1146 207.30 - 1158 479.01 1.05
A-n46-k7 914 914 265.87 - 914 112.23 -
A-n48-k7 1073 1084 295.10 1.03 1073 318.25 -
A-n53-k7 1010 1020 1291.31 0.99 1017 813.00 0.69
A-n54-k7 1167 1167 321.39 - 1172 861.31 0.43
A-n55-k9 1073 1073 1387.84 - 1074 739.85 0.09
A-n60-k9 1354 1354 1689.65 - 1354 675.40 -
A-n61-k9 1034 1037 1796.11 0.29 1037 886.55 0.29
A-n62-k8 1288 1290 3867.11 0.16 1302 1200.06 1.09
A-n63-k9 1616 1629 1254.34 0.80 1621 1248.39 0.31
A-n63-k10 1314 1318 3226.55 0.30 1323 1388.43 0.68
A-n64-k9 1401 1431 386.78 2.14 1419 1261.82 1.28
A-n65-k9 1174 1177 1577.88 0.26 1174 539.01 -
A-n69-k9 1159 1170 3752.35 0.95 1159 353.18 -
A-n80-k10 1763 1763 9145.79 - 1778 3203.25 0.85

while keeping the solution quality. For those problems from the set A not solved
to optimality the average gap is 0.65 when using the original local search and
0.64 when the described strategies are applied. Therefore, these mechanisms
help on getting a more competitive approach to the CVRP, although the times
presented are still not competitive with most state-of-art heuristics.

Figure 5.6 compares the average time per iteration when using the former
exhaustive local search and a more efficient one including the proposed strate-
gies. Clearly, the introduced mechanisms get a linearithmic behavior on the
instance size, as explained in section 4.2.4. Thus, algorithm’s performance is
significantly improved by considering these mechanisms, while final solution’s
quality remains unchanged.
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Figure 5.6: Average time per iteration when using the two different local search
strategies. The dashed line represents the original exhaustive local search
method, while the solid line depicts algorithm’s behavior when applying the
computational complexity reduction mechanisms.

Initial solution method

Although in all results presented in this section the initial solution has been
obtained by solving separately capacity and routing problems, other methods
may be used to get the initial solution. Table 5.6 presents a comparative of
results for some problems from the set A using different techniques to obtain
an initial solution.

First, it may be obtained using the proposed problem decomposition in a
CP/LR schema (1), as mentioned. This approach is able to provide a low-
quality quick solution, since both subproblems are easily solved but their vari-
ables are unlinked. This solution may be highly improved applying a VND
method, providing an initial solution whose value is usually close to the final
result (2). The initial solution may be also obtained by means of the RCWS
algorithm (3) described in section 4.3.1. This algorithm provides a good ini-
tial solution in negligible times, but the maximum number of available vehicles
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might not be always respected. For this reason, it may be forced to execute
iteratively until a solution fulfilling this requirement is reached (4).

Table 5.6: Results obtained for some class A benchmark instances comparing
different methods to get an initial solution: (1) CP/LR schema without VND,
(2) CP/LR schema + VND, (3) RCWS and (4) RCWS forced to use the
minimum number of required vehicles.

Problem BKS Init.Sol. CPU (s)
(1) (2) (3) (4) (1) (2) (3) (4)

A-n32-k5 784 1243 989 840 876 0.096 0.177 0.018 0.020
A-n36-k5 799 1207 815 838 859 0.010 0.011 0.004 0.005
A-n38-k5 730 1240 786 790 805 0.008 0.009 0.022 0.004
A-n39-k5 822 1291 906 870 856 0.011 0.010 0.004 0.004
A-n44-k6 937 1547 987 980 1040 0.013 0.013 0.003 0.104
A-n45-k7 1146 1768 1244 1267 1284 0.019 0.018 0.004 0.004
A-n53-k7 1010 1841 1105 1072 1057 0.022 0.021 0.005 0.005
A-n54-k7 1167 1883 1284 1238 1216 0.094 0.029 0.005 0.009
A-n55-k9 1073 2088 1177 1105 1118 0.026 0.030 0.005 0.005
A-n63-k9 1616 2659 1839 1657 1711 0.032 0.037 0.012 0.022
A-n63-k10 1288 2344 1323 1352 1360 0.026 0.027 0.008 0.004

Problem BKS Fin.Sol. CPU (s)
(1) (2) (3) (4) (1) (2) (3) (4)

A-n32-k5 784 784 784 784 784 5.36 4.88 3.22 6.23
A-n36-k5 799 799 799 799 799 74.17 214.60 34.82 163.41
A-n38-k5 730 730 730 730 730 172.60 83.79 53.84 18.92
A-n39-k5 822 825 822 822 822 122.42 174.97 33.14 253.68
A-n44-k6 937 942 939 942 939 37.62 66.70 40.77 434.59
A-n45-k7 1146 1146 1158 1146 1146 294.07 464.83 156.67 243.55
A-n53-k7 1010 1017 1017 1017 1017 313.78 535.10 244.51 497.05
A-n54-k7 1167 1167 1172 1167 1172 606.60 586.11 282.75 640.31
A-n55-k9 1073 1074 1074 1073 1073 104.05 354.78 631.93 519.22
A-n63-k9 1616 1635 1621 1621 1635 660.21 760.76 1002.37 1049.66
A-n63-k10 1288 1302 1302 1308 1308 965.23 197.05 71.21 484.29

Problem BKS Gap BKS-FS (%) # it
(1) (2) (3) (4) (1) (2) (3) (4)

A-n32-k5 784 - - - - 1 1 1 1
A-n36-k5 799 - - - - 16 39 7 26
A-n38-k5 730 - - - - 31 13 7 2
A-n39-k5 822 0.36 - - - 17 25 5 33
A-n44-k6 937 0.53 0.21 0.53 0.21 1 4 3 2
A-n45-k7 1146 - 1.05 - - 22 39 9 17
A-n53-k7 1010 0.69 0.69 0.69 0.69 14 26 12 27
A-n54-k7 1167 - 0.43 - 0.43 29 26 12 30
A-n55-k9 1073 0.09 0.09 - - 3 16 37 30
A-n63-k9 1616 1.18 0.31 0.31 1.18 22 24 34 32
A-n63-k10 1288 1.09 1.09 1.55 1.55 27 4 2 13



118 Application and Case Studies

It can be stated from results presented in Table 5.6 that RCWS is clearly
faster than the other methods to get a good initial solution. Even when it is
forced to iterate to reach a given number of vehicles, it may provide a solution
quickly. It is remarkable that this algorithm eventually finds a comparable,
or even better, initial solution than the CP/LR + VND schema in a much
lower time, becoming so a better alternative. For small problems, the RCWS
combined with the hybrid VNS framework outperforms the same methodology
using the CP/LR schema to provide the initial solution, reaching best known
values in lower times. On the other hand, times are comparable for larger
problems. For small problems, feasible points around a given solution may be
usually low, while the solution space may grow dramatically as the problem
size increases, and so does the time needed to explore it.

Using the RCWS algorithm to get an initial solution allows solving to the
best known value 15 of 27 problems from the set A. Instead, the CP/LR
+ VND combination allows solving 14 problems. This method uses all four
defined moves to reach a minimum. As they are also used in the hybrid VNS
framework, the initial solution is a local optimum for all moves defined in its
local search processes. Thus, a more thorough shaking would be mandatory
to get a better algorithm’s performance and avoid getting trapped in local
minima. Moreover, the algorithm fails to successfully solve the same problems,
regardless which method is used to get the initial solution. Again, a poor
shaking might be the main reason for this behavior. Table 5.6 also shows
the gap between the final solution and the best known value, when it is not
reached. It can be observed that it is usually low when a good initial solution
is provided.

Table 5.7 shows times needed to reach good quality solutions, i.e. with a
gap lower or equal to 2 % from the best known solution, for different bench-
mark instances. It presents results comparing different methods to get an
initial solution. It can be observed that, in average, using the RCWS algo-
rithm to obtain the initial solution permits reaching a high quality solution
in much lower times. This characteristic makes this method a better choice
when running the algorithm for a fixed period of time, since it is more likely
to provide a better final solution.

Finally, it is remarkable that combining the RCWS algorithm with the
hybrid VNS methodology has been able to improve the best published result
for the largest test instance G-n262-k25. To the best of our knowledge, the
best integer result (5685) for this problem was published by Hasle and Kloster
[81]. The result obtained by means of the proposed methodology reduces this
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Table 5.7: Times required to reach a high quality solution for some class A
benchmark instances when different methods to get an initial solution are used:
(1) CP/LR schema without VND, (2) CP/LR schema + VND, (3) RCWS and
(4) RCWS forced to use the minimum number of required vehicles.

Problem CPU≤2% (s) CPU≤1% (s)
(1) (2) (3) (4) (1) (2) (3) (4)

A-n32-k5 5.36 4.89 3.22 6.23 5.36 4.89 3.22 6.23
A-n36-k5 27.09 26.66 15.49 12.26 74.17 63.42 34.82 12.26
A-n38-k5 16.79 80.71 18.72 7.27 16.79 83.79 30.13 18.92
A-n39-k5 13.56 18.32 5.71 9.16 13.56 18.32 18.28 30.54
A-n44-k6 37.62 26.05 28.35 33.41 37.62 26.05 28.35 33.41
A-n45-k7 44.47 53.58 16.64 38.41 44.47 - 47.81 62.68
A-n53-k7 193.28 139.10 37.83 14.89 313.78 535.10 37.83 497.05
A-n54-k7 115.70 156.42 17.65 50.25 115.70 438.14 282.75 557.86
A-n55-k9 57.42 93.72 29.98 17.10 104.05 192.08 29.98 43.32
A-n63-k9 127.56 196.37 29.79 135.26 - 196.37 182.11 -
A-n63-k10 130.23 130.42 53.74 474.66 819.65 130.42 53.74 474.66
Average: 69.92 84.20 23.37 72.63 154.51 168.86 68.09 173.69

value a 1.95 %, setting it to 5574. This result reduces the gap between the
best known lower and upper bounds from 10.92 % to 9.15 %. Figure 5.7 shows
the obtained solution for this problem.

5.1.2 Multi-Start Variable Neighborhood Search

The methodology described in section 4.3 has been implemented in Java and
linked to the open-source CP software system ECLiPSe 6.0 [9]. All tests have
been performed on a dedicated server with an Intel Xeon Quad-Core i5 pro-
cessor at 2.66GHz and 16GB RAM. A total of 91 benchmark instances have
been solved and used to test the efficiency of the described approach when
dealing with this simple —in terms of constraints— but extensively tested sce-
nario. The selected problems include 7 instances from Christofides et al. [44]
(denoted in tables as C1 -C5, C11, and C12 ). Although these problems are
equivalent to some instances from the sets E and M, we also use this notation
for further comparison with some recent metaheuristics.

In all tests, relocate (see section 4.2.2 for movements description) has been
set as the initial move in local search processes (k = 1). Since the implemented
algorithm is based on the VND approach, there is no shaking process and the
diversification is obtained by means of the multi-start approach (see section
4.3). Swapping, chain, and ejection chain are used next whenever the previous
solution is not improved. As in the previous methodology, the relative per-
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G−n262−k25 UB:5574

Figure 5.7: Proposed best solution for the test instance G-n262-k25.

centage of customers modified by the ejection chain movement has been set to
40 %.

As the algorithm has been designed to be run in a parallel computing
environment, a test has been done over the set A of benchmark problems to
determine the most suitable number of simultaneous threads. This parameter
is to be fixed mainly according to computer’s characteristics. The total number
of threads (Ntotal in Algorithm 4.6) has been set up to 50, while the number of
parallel threads (Nmax in Algorithm 4.6) grows from 1 to 50. According to this
test, the average time spent on calculating a pseudo-optimal solution increases
smoothly while the number of parallel threads is below 8. This result was to be
expected due to quad-core processors characteristics. Figure 5.8(b) represents
the relation between the average time spent on calculating a solution and the
number of concurrent threads, showing the described trend.

In the particular server used with this methodology, up to 4 threads may
be executed in parallel in order to keep a reasonable computational efficiency.
As shown in Figure 5.8(a), the lowest total computational times are obtained
when running 4 to 7 threads simultaneously. Since the average time to calculate
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Figure 5.8: (a) Average total computation time and (b) average time per thread
as the number of concurrent threads increases.

one pseudo-optimal solution increases with the number of concurrent threads,
the best trade-off is found when 4 calculations are run in parallel. For this
reason, all results presented in this section correspond to a Multi-Start VND
implementation with 4 parallel processes, since this approach has demonstrated
to keep a reasonable balance between the time spent on calculating one single
solution and the total execution time. Adopting this parallelized approach
permits reducing the total computation time significantly. In the performed
test for problems from the set A, the total computation time is 41 % lower, in
average, than the total time spent using a sequential approach.

Table 5.8 shows results obtained for some representative problems from
the selected benchmark sets. Due to algorithm’s probabilistic behavior, the fi-
nal solutions’ quality depends on the total number of threads. For this reason,
100 total tasks have been considered for each problem, i.e. 100 pseudo-optimal
solutions have been generated for each benchmark instance. Table 5.8 summa-
rizes information regarding the best solution found (OBS ) for each problem, as
well as the time required to reach this solution. These results are compared to
the best known solutions (BKS ) so far. As mentioned in the previous section,
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Table 5.8: Results for 50 classical benchmark instances.
Problem BKS OBS Gap BKS- #V/ CPUOBS

OBS (%) #OV (s)
A-n32-k5 787.81 787.08 -0.09 5 / 5 0.633
A-n33-k5 662.76 662.11 -0.10 5 / 5 0.842
A-n33-k6 742.83 742.69 -0.02 6 / 6 0.480
A-n37-k5 672.59 673.59 0.15 5 / 5 1.948
A-n37-k6 952.22 950.85 -0.14 6 / 6 1.631
A-n38-k5 734.18 733.95 -0.03 5 / 5 2.546
A-n45-k6 944.88 944.88 0.00 6 / 6 1.622
A-n46-k7 918.46 918.13 -0.04 7 / 7 2.062
A-n54-k7 1171.78 1171.78 0.00 7 / 7 4.007
A-n55-k9 1074.46 1076.85 0.22 9 / 9 5.544
A-n63-k9 1622.14 1622.14 0.00 9 / 9 8.073
B-n31-k5 676.76 676.09 -0.10 5 / 5 0.657
B-n34-k5 791.24 789.84 -0.18 5 / 5 0.497
B-n35-k5 956.29 958.94 0.28 5 / 5 1.174
B-n38-k6 809.45 809.45 0.00 6 / 6 1.211
B-n39-k5 553.27 553.16 -0.02 5 / 5 1.577
B-n43-k6 747.54 746.98 -0.07 6 / 6 1.520
B-n45-k5 755.43 753.96 -0.19 5 / 5 1.011
B-n50-k7 744.78 744.23 -0.07 7 / 7 1.721
B-n50-k8 1316.20 1319.53 0.25 8 / 8 7.069
B-n51-k7 1035.71 1037.54 0.18 7 / 7 597.915
B-n57-k9 1603.63 1604.88 0.08 9 / 9 7.653
B-n64-k9 869.32 868.31 -0.12 9 / 9 287.953
E-n22-k4 375.28 375.28 0.00 4 / 4 0.337
E-n23-k3 568.56 568.56 0.00 3 / 3 0.422
E-n33-k4 838.72 837.67 -0.13 4 / 4 0.819
E-n51-k5 (C1) 524.61 527.98 0.64 5 / 5 17.164
E-n76-k10 (C2) 835.26 843.49 0.99 10 / 10 28.941
E-n101-k8 (C3) 826.14 841.16 1.82 8 / 8 195.271
F-n45-k4 724.57 727.75 0.44 4 / 4 4.459
F-n135-k7 1170.65 1179.09 0.72 7 / 7 630.427
G-n262-k25 5685.00 5722.00 0.65 25 / 25 1651.360
M-n101-k10 (C12) 819.81 821.40 0.19 10 / 10 51.395
M-n121-k7 (C11) 1042.11 1045.14 0.29 7 / 7 137.553
M-n151-k12 (C4) 1028.42 1052.52 2.34 12 / 12 834.642
M-n200-k17 (C5) 1291.45 1324.91 2.59 17 / 17 243.789
P-n16-k8 451.95 451.95 0.00 8 / 8 0.019
P-n19-k2 212.66 212.66 0.00 2 / 2 0.243
P-n20-k2 217.42 217.42 0.00 2 / 2 0.148
P-n21-k2 212.71 212.71 0.00 2 / 2 0.275
P-n22-k2 217.85 217.85 0.00 2 / 2 0.277
P-n23-k8 531.17 531.17 0.00 8 / 8 1.447
P-n40-k5 461.73 461.73 0.00 5 / 5 6.189
P-n45-k5 512.79 512.79 0.00 5 / 5 10.016
P-n50-k7 559.86 560.15 0.05 7 / 7 5.155
P-n51-k10 742.48 742.36 -0.02 10 / 10 5.156
P-n55-k10 697.81 698.00 0.03 10 / 10 5.331
P-n55-k8 592.17 581.17 -1.86 7 / 8 14.703
P-n76-k5 635.04 633.32 -0.27 5 / 5 92.627
P-n101-k4 692.28 693.54 0.18 4 / 4 839.622
Average: 0.17
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most sources give these values as integer numbers, obtained by rounding costs,
except for the problems from [44] where real values are usually given. To
adopt a more realistic approach and comparing the obtained results to other
methodologies, we have calculated the real costs from the detailed integer
solutions. It should be remarked that the real cost of an integer optimal
solution might not correspond to the optimal solution considering real costs.
For this reason, negative gaps appear on this table. Thus, it can be deduced
that the Multi-Start VND is able to match, and in many cases overcome, the
real value associated to integer best known solutions. Concretely, the presented
approach has been able to overcome 23 best known solutions, considering real
costs, out of the 91 tested instances. In addition, the gap is kept reasonably
low for all considered instances, being the average gap 0.65 %. It remains
lower, 0.17 %, for the problems selected in Table 5.8, which include most of
the largest instances.

Furthermore, it should be remarked that these results have been obtained
in competitive times even for some large instances. As shown in Table 5.8,
most solutions for small problems are obtained in less than a second, while
larger instances require higher yet reasonable computational times. In most
cases, higher times are closely related to higher quality solutions, i.e. solutions
with a negative gap.

As a final remark, it can be observed that the lowest gap (-1.86 %) corre-
sponds to the problem P-n55-k8, where a solution considering only 7 vehicles
(#V ) has been obtained. As discussed for the previous methodology (see sec-
tion 5.1.1), although the best known solution for this problem uses 8 vehicles,
feasible solutions with 7 vehicles and lower costs may be reached, as the one
obtained with this approach. However, if only 7 vehicles are considered, the
Multi-Start VND has finished slightly over the value 580.96 (576 considering
integer costs), presented in the previous section and published in [6] and [7].

5.1.3 Comparison between approaches and other heuris-
tics

In this section, we provide a brief comparison of the results obtained for the
hybrid VNS and the Multi-Start VND approaches, described in sections 4.2
and 4.3, respectively. Furthermore, we compare these values with the results
published for some state-of-art metaheuristics.

Most works devoted to the CVRP present solutions only for those problems
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contained in the benchmark set by Christofides et al. [44]. This set contains
14 instances: 7 CVRP with a side constraint limiting the total length of the
tours and 7 corresponding to the classic CVRP. For this reason, only the latter
7 instances from this benchmark set have been considered in this thesis. As
mentioned, they are equivalent to some problems from the sets E and M and
have been denoted in Tables 5.9 and 5.10 as C1 -C5, C11, and C12, as in the
previous section.

Most sources give the solutions to these problems as real numbers, while
integer solutions are usually reported for the other benchmark sets. Neverthe-
less, some approaches like those from Juan et al. [93] [92] present values based
on real distances, and not on distances obtained by rounding initial costs. In
order to clarify the comparison, we have calculated the real costs correspond-
ing to the best known integer solutions —as already done in section 5.1.2.
Moreover, we have calculated the real values corresponding to the solutions
obtained by means of the hybrid VNS approach and presented in section 5.1.1.
Again, it should be remarked that the real cost of an integer optimal solution
might not correspond to the optimal solution considering real costs.

Tables 5.9 and 5.10 provide a comparison between the two hybrid method-
ologies presented in this thesis and some recent publications. The hybrid VNS
approach presented in section 4.2 is denoted as HVNS. As mentioned, the so-
lutions presented in Table 5.9 correspond to the real values calculated from
the detailed integer solutions obtained by means of this methodology. Times
presented for this approach (Table 5.10) improve those reported in section
5.1.1, since they include the strategies introduced to reduce the computational
complexity of local search processes. Column MS-VND in Tables 5.9 and 5.10
presents some results obtained with the Multi-Start VND algorithm described
in section 4.3.

As it may be observed, both presented methodologies are able to match —
or even improve— most of the best known solutions for the selected problems.
Although both approaches get similar pseudo-optimal solutions, the hybrid
VNS algorithm is not competitive in terms of computational time. In this
sense, the Multi-Start VND method obtains similar solutions in significantly
lower times. Thus, the improvements introduced in the latter turns this ap-
proach into a more suitable methodology to tackle the CVRP than the former
one.
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In order to compare the methodologies described in this thesis with other
approaches, we provide the results for some recent publications in Tables 5.9
and 5.10. Although a direct comparison between different algorithms may
be a delicate issue —they are normally implemented in different languages
and executed in different computing environments—, some conclusions may
be inferred. For this work, we have selected five heuristic approaches to the
CVRP. The first three metaheuristics are a hybrid algorithm of Simulated An-
nealing and Tabu Search (SA-TS ) introduced by Lin et al. [113], a hybrid
Electromagnetism-like heuristic (HEMA) proposed by Yurtkuran and Emel
[179], and a Particle Swarm algorithm (SR-2 ) described by Jin Ai and Ka-
chitvichyanukul [5]. Finally, we have included the randomized Clarke and
Wright Savings (SR-GCWS ) algorithm by Juan et al. [93] and its improved
version using cache and splitting techniques (SR-GCWS-CS ), introduced by
the same authors in [92].

It may be observed that the results reported for the methodologies pre-
sented in this thesis are similar to those obtained by means of other state-of-art
metaheuristics. The proposed approaches are comparable in terms of quality.
The Multi-Start VND methodology is also competitive regarding computa-
tional efficiency. Times needed by this approach to reach a pseudo-optimal
solution are in most cases lower than those required by means of the other
algorithms.

It is remarkable that the Multi-Start VND approach clearly improves the
efficiency of the two algorithms which form its basis: the hybrid VNS method-
ology and the randomized version of the Clarke and Wright Savings heuristic
(SR-GCWS ). For most problems, only the improved version of the SR-GCWS
algorithm is able to reach similar computational times. Furthermore, the hy-
brid VNS and the Multi-Start VND methodologies provide the lowest aver-
age gaps among the selected metaheuristics, only beated by the SR-GCWS
and the SR-GCWS-CS approaches. However, most of the higher gaps ob-
tained with the methodologies proposed in this thesis correspond to some of
the largest instances, whose results are not reported for the SR-GCWS and
the SR-GCWS-CS algorithms.
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5.2 Constraint Programming approach to the
VRP

As mentioned in section 4.4.2, the application of exact CP techniques to solve
VRP problems implies high computational times and therefore requires the
definition of heuristic methods. Even though, the involved computational ef-
fort may be too high to be competitive with other state-of-art approaches. For
this reason, we use the described approach to solve small CVRP instances.
Furthermore, the methods introduced in section 4.4.2 are not able to cope
with most of the VRPTW instances. Nevertheless, we can use the described
methodology to solve these instances if soft time windows are considered. Since
they correspond to relaxed variants of the original problems, our approach may
be used to provide reasonable lower bounds. In any case, none of these appli-
cations are competitive with other approaches and further efforts need to be
addressed in this direction. However, the aim of our methodology was to es-
tablish an initial framework as a first approach to richer VRP problems. A CP
solver gains in performance as the problem gets more constrained, providing
thus some advantages over other approaches.

The CP-based methodology described in section 4.4.2 has been imple-
mented in the open-source CP software system ECLiPSe 6.0 [9]. All tests
have been performed on a dedicated server with an Intel Xeon Quad-Core i5
processor at 2.66GHz and 16GB RAM.

In this particular implementation, the maximum number of pivots to be
chosen is set to 10. Moreover, 5 neighboring visits are selected around each
pivot. Thus, for larger VRPTW instances involving 100 customers, the RPOP
operator is able to destroy up to 60 % of the current solution. Since it corre-
sponds to a large part of the solution and the solver may require high compu-
tational times to re-optimize it, the branch-and-bound searches performed by
the repair method are limited to 60 seconds. The total execution time is also
set as the stopping condition for the VND-LNS algorithm.

Finally, it should be remarked that all initial solutions have been obtained
by doing a simple labeling for all variables. This solution is later improved by
means of a branch-and-bound algorithm limited to 60 seconds. We strongly
believe that the use of other methods to get the initial solution, such as the
RCWS algorithm or Solomon’s heuristics [163], would provide better final re-
sults. Nevertheless, the tests presented in this section are aimed to validate the
described formulation and methodology, which needs to be further improved
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to be comparable with other approaches.

CVRP

As mentioned, the CP-based approach described in section 4.4.2 may be used
to solve small CVRP instances. For this reason, we have selected instances
with up to 30 customers from the CVRP benchmark sets E and P. In addition,
the smallest instances from the sets A and B have also been included, with
32 and 31 visits respectively. In total, 11 instances ranging from 16 to 32
customers have been used in this test.

For a clearer comparison, integer distances have been considered, since most
publications provide integer solutions for the selected instances. In addition,
although CP methods are not restricted to work with finite integer domains,
their performance is better when such domains are defined. Thus, using integer
distances becomes a reasonable approach from a CP perspective.

In order to determine the efficiency of the Nearest Neighbor-based variable
ordering heuristic introduced in section 4.4.3, a test has been done over the
selected instances. To avoid the effects of the random behavior of the RPOP
operator, a deterministic branch-and-bound algorithm has been used to solve
the selected problems. In this test, the execution of the branch-and-bound
algorithm was limited to 300 seconds. The obtained results are presented in
Table 5.11. In this table, solutions reached by the algorithm (OS ) are shown,
as well as their corresponding gaps to the best known solutions (BKS ), either
using the Nearest Neighbor variable ordering heuristic or not.

Table 5.11: Results obtained applying a simple branch-and-bound algorithm
and the same method combined with a Nearest Neighbor variable ordering
heuristic during 300 seconds.

Problem BKS BB BB + heuristic
OS Gap BKS OS Gap BKS

OS (%) OS (%)
A-n32-k5 784 1691 115.7 1337 70.5
B-n31-k5 672 1366 103.3 1163 73.1
E-n22-k4 375 491 30.9 488 30.1
E-n30-k3 534 960 79.8 807 51.1
P-n16-k8 450 495 10.0 495 10.0
P-n19-k2 212 331 56.1 310 46.2
P-n20-k2 216 350 62.0 307 42.1
P-n21-k2 211 366 73.5 300 42.2
P-n22-k2 216 379 75.5 309 43.1
P-n22-k8 603 663 10.0 663 10.0
P-n23-k8 529 636 20.2 636 20.2
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Figure 5.9: Nearest Neighbor-based variable ordering heuristic effect on the
solution cost. The solid line represents the results for a branch-and-bound
algorithm combined with this heuristic, while the dashed line depicts the be-
havior for the same algorithm without using it.

As expected, results in Table 5.11 show that solutions obtained with the
variable ordering heuristic improve those obtained by means of a branch-and-
bound algorithm without introducing any mechanism to guide the search. In
all cases, the branch-and-bound algorithm combined with the Nearest Neighbor-
based heuristic is able to match or overcome the results reached without this
variable ordering method when run during the same time. Figure 5.9 depicts
the effects of using this heuristic on the solution cost obtained after 300 seconds
of execution. The dashed line represents the cost for the branch-and-bound al-
gorithm, while the solid line shows the behavior of the same method combined
with the variable ordering heuristic.

Moreover, the number of backtracks is significantly reduced. A CP-based
search method backtracks any time a partial solution either violates any of the
defined constraints or has a higher cost than the upper bound at that point of
search. In both cases, backtracking is performed to the most recently instanti-
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Figure 5.10: Number of backtracks for a branch-and-bound algorithm run for
(a) 300 s and (b) 3600 s. Black bars show the number of backtracks performed
without the Nearest Neighbor variable ordering heuristic, while white bars
represent the number of backtracks considering it.

ated variable that still has available alternative values in its domain. Therefore,
reducing the number of backtracks implies a more efficient exploration of the
search tree. Figure 5.10 shows how the use of the Nearest Neighbor variable or-
dering heuristic reduces the number of backtracks for most selected problems.
Black bars represent the number of backtracks performed during the search
when a simple branch-and-bound algorithm is used. White bars indicate the
number of backtracks obtained when the variable ordering heuristic is consid-
ered. As can be seen, differences in the number of backtracks increase as the
algorithm is run for longer periods. For these reasons, it can be stated that us-
ing the Nearest Neighbor-based variable ordering heuristic helps on improving
the search efficiency for the CVRP problem.

Table 5.12 shows the results obtained by means of the methodology de-
scribed in section 4.4.2 for the selected instances. The execution time of the al-
gorithm has been limited to 300 seconds for all problems. The results obtained
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Table 5.12: Results obtained for some small CVRP instances using the CP-
based VND-LNS methodology during 300 s.

Problem BKS BB + heuristic VND-LNS VND-LNS + heuristic
OS Gap BKS OS Gap BKS OS Gap BKS

OS (%) OS (%) OS (%)
A-n32-k5 784 1337 70.5 1313 67.5 1392 77.6
B-n31-k5 672 1163 73.1 1012 50.6 950 41.4
E-n22-k4 375 488 30.1 421 12.3 407 8.5
E-n30-k3 534 807 51.1 753 41.0 713 33.5
P-n16-k8 450 495 10.0 450 0.0 456 1.3
P-n19-k2 212 310 46.2 231 9.0 237 11.8
P-n20-k2 216 307 42.1 257 19.0 258 19.4
P-n21-k2 211 300 42.2 220 4.3 216 2.4
P-n22-k2 216 309 43.1 266 23.1 271 25.5
P-n22-k8 603 663 10.0 644 6.8 640 6.1
P-n23-k8 529 636 20.2 553 4.5 553 4.5

with the branch-and-bound algorithm combined with the Nearest Neighbor
variable ordering heuristic have also been included for comparison. As ex-
pected, the described methodology is able to provide better solutions faster
than the branch-and-bound algorithm. The VND-LNS method samples the
neighborhoods, while the considered branch-and-bound algorithm performs a
complete search. Although this sampling strategy might loose the global opti-
mum, as other heuristic approaches, it is an efficient way of exploring the so-
lutions space. Changing the neighborhood to be explored systematically helps
on escaping from local minima and the surrounding valleys, while a branch-
and-bound algorithm will spend time checking all solutions around them.

The effects of using the Nearest Neighbor variable ordering heuristic within
the described methodology may also be observed in results presented in Table
5.12. Using this heuristic combined with the search methodology permits
matching or overcoming the best results obtained by means of the VND-LNS
method without using the heuristic for 6 of the 11 instances. Since the VND-
LNS methodology is based on a probabilistic algorithm, it is difficult to trace
the direct effect of the variable ordering heuristic on the overall behavior.
Nevertheless, the described methodology uses repeatedly a repair method that
consists on a branch-and-bound algorithm. As explained above, this method
is significantly enhanced by using the Nearest Neighbor-based heuristic. For
this reason, it is possible to infer that using this heuristic in the repair method
will provide, in general, better quality solutions in lower times, and so it can
be considered a significant enhancement of the proposed methodology.

Finally, it should be remarked that the results presented in Table 5.12
are far from other state-of-art approaches to the CVRP, both in terms of
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quality and computational times. In this sense, the hybrid methodologies
introduced in sections 4.2 and 4.3 are able to provide higher quality solutions.
Moreover, the Multi-Start VND method reaches such solutions in competitive
times. Nevertheless, the CP-based VND-LNS approach provides additional
flexibility related to CP characteristics. Because of CP nature, it is expected
to behave better as the problem gets more complex with the addition of some
side constraints. Therefore, this approach is to be considered as a first step on
tackling richer, more complex VRP problems.

VRPTW

The VRPTW is a much more difficult problem than the CVRP. For the
VRPTW, even finding a feasible solution is NP-hard [158]. In such prob-
lems, the application of CP techniques may require high computational times,
even for finding a feasible initial solution or solving the associated subprob-
lems [132]. For this reason, a soft time windows constraints approach has been
adopted to tackle the VRPTW. In this variant, time windows for each visit
might be violated and a corresponding penalty term is added to the objective
function.

In the VRPTW, the main objective is to minimize the total traveled dis-
tance, while fulfilling the side constraints, i.e. capacity and time windows
constraints. As mentioned, in a soft time windows approach, customers may
be visited out of their allowed service times, incurring in a penalization that
is added to the objective function. Therefore, minimizing these time windows
violations becomes a secondary objective of the problem.

For this test, we have selected the VRPTW benchmark set by Solomon
[163]. It contains 56 instances featuring 100 customers which require several
vehicles to service them while obeying the side constraints. The maximum
number of available vehicles is set to 25, but the number of used vehicle should
also be minimized. The problems are distributed in three sets, each of them
having two subsets.

The C set features customers arranged in clusters, the R set contains uni-
formly distributed visits, and the RC set contains a mixture of both sets, that
is, some customers are clustered and the rest are uniformly distributed. All sets
have two different subsets: classes 1 and 2. The former subsets have tight time
windows and, in consequence, few visits may be feasibly assigned to each route.
The latter class accepts a higher number of visits per route, since wider time
windows are defined. Each subset contains 8 to 12 instances, where different
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time windows are defined for each customer. All results for these problems are
usually published in real numbers and they only take into account the traveling
distance (or time) between customers, excluding the depot. For this reason,
we present the results obtained by means of the VND-LNS methodology using
real costs. To simplify the search, the algorithm uses integer distances in all
the assignments and the values are later converted to reals to provide the final
result.

The implemented VND-LNS methodology corresponds to the one intro-
duced in section 4.4.2 combined with the enhancement mechanisms described
in section 4.4.3. Since the VRPTW is a more complex problem than the CVRP,
the maximum execution time has been raised to 900 seconds for each problem.
Although soft time windows are considered, the time windows preprocessing
permits adding additional constraints that help on finding a better assignment
of customers to routes.

Some authors refer to a simplification of Solomon’s instances to test the
proposed algorithms. In these cases, only the first 25, 50, or 75 customers
from each instance are considered, while keeping the number of available vehi-
cles. These problems, although still NP-hard, permit studying our algorithm’s
performance before tackling the larger 100-customer instances. In our test,
we have selected the 25-customer variants of subset C1 instances. Results ob-
tained by means of the CP-based VND-LNS methodology for these problems
are presented in Table 5.13.

As can be observed in Table 5.13, for most 25-customer C1 instances the
result obtained by means of the VND-LNS (OS ) is over the value of the best
known solution (BKS ). This is due to the algorithm is stopped after the maxi-
mum allowed execution time, before it reaches a minimum. Since time windows
violations are included in the objective function, the algorithm may find a bet-

Table 5.13: Results for 25-customers C1 instances.
Problem BKS OS # veh.

OS / BKS
c101-25 191.3 177.2 3 / 3
c102-25 190.3 203.2 3 / 3
c103-25 190.3 214.0 3 / 3
c104-25 186.9 206.6 3 / 3
c105-25 191.3 209.7 3 / 3
c106-25 191.3 215.4 3 / 3
c107-25 191.3 215.0 3 / 3
c108-25 191.3 213.2 3 / 3
c109-25 191.3 213.1 3 / 3
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ter improving solution by reducing them, while the total traveled distance
remains unchanged. Thus, because of the assigned weights in the objective
function, the algorithm may focus on minimizing unfeasibility before tackling
distance minimization. If enough running time is provided, the algorithm may
eventually cancel these terms in the objective function and find a feasible solu-
tion for the hard time windows problem. In order to get an appropriate lower
bound for the original instance, the penalty terms in the relaxed problem may
be adjusted so the algorithm focuses on minimizing the total traveled distance.
However, this adjustment is not straightforward, since it could provide a lower
bound far below the optimal solution which would not be helpful for solving
the original instance.

Table 5.14 presents the results obtained by applying the VND-LNS method-
ology to Solomon’s benchmark instances. As may be observed, most results
are far from the best known solution. The reason may be found on the fact
that the algorithm is stopped after 900 seconds, not providing enough time to
reach a minimum. Nevertheless, some observations may be inferred from these
results.

In general, results for class 1 problems are better than those obtained for
class 2 instances, except for the R set. The former subsets accept few customers
per route because of the narrow time windows defined for each customer. As
mentioned, a CP-based algorithm is expected to behave better as the problem
gets tighter. In the case of looser problems, domains are larger and therefore
the algorithm may try more values for each variable, growing the search tree
size. Thus, for class 2 problems, the set of improving solutions found by
adjusting the time windows violations is higher than for the class 1 instances.
Since the branch-and-bound performs a complete search, it will spend more
time exploring these solutions before moving to a different one with a lower
traveling cost. For this reason, results for class 2 problems are worse in average,
provided the execution time limitation.

It can be observed in the results in Table 5.14 that the VND-LNS method
behaves better on those problems with clustered customers. Solutions for sets
C and RC are closer to the best known solutions, in average, than those for
instances with uniformly distributed customers from the R set. This behavior
may be related to the use of the Nearest Neighbor-based variable ordering
heuristic, which has a significantly higher influence on problems with clustered
visits. Its use in R instances may lead to assign a set of nearby customers to
the same route, even though it causes significant time windows violations. For
these instances, probably the use of time variables ordering criteria would
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perform better if applied without the distance-based ordering heuristics.
As can be inferred from the presented results, the application of the de-

scribed VND-LNS methodology to the VRPTW requires further efforts to be
addressed in the future in order to get a competitive approach. For exam-
ple, its performance departing from a good initial solution obtained by means
of an efficient constructive heuristic is to be analyzed. As mentioned above,
the influence of the different defined variable ordering heuristics should also
be studied. In addition, several heuristics to control the branch-and-bound
repair method may be introduced to improve its performance. However, the
VND-LNS method described in section 4.4.2 was aimed to develop an ini-
tial approach to complex VRP problems, difficult to tackle from a pure CP
perspective. In this sense, the obtained results justify the application of the
proposed methodology and provide a starting point for further developments.



	
  



Chapter 6

Conclusions and Future Research

In the present thesis, we have introduced three different yet related methodolo-
gies to tackle the Vehicle Routing Problem. Their structures make use of several
metaheuristics frameworks from the Variable Neighborhood Search family and
combine Constraint Programming and Lagrangian Relaxation paradigms, as
well as probabilistic constructive heuristics.

In the first two hybrid approaches, presented in sections 4.2 and 4.3, the
Capacitated VRP problem has been decomposed into two separate subprob-
lems. The first one is aimed to assign customers to vehicles in terms of capacity,
while the second is used to optimize the corresponding routes. This approach
allows reducing the computational time, since the problems to be solved are
far less complex than the original CVRP.

In both subproblems, two well-known paradigms aimed to solve combina-
torial problems, CP and LR, have been applied. The used LR-based method
permits reducing the calculation times due to its improved convergence with
respect to the Subgradient Optimization classical algorithm. It also provides
optimal routes when the number of customers is relatively small, as it is for
all CVRP benchmark instances. Combining these characteristics with the
adopted decomposition allows reducing the total computation time. On the
one hand, the selected decomposition makes LR only necessary to recalculate
two routes at each iteration. On the other hand, the LR-based method is
faster and simpler than other routing post-optimization processes, since no
intra-route movements are to be defined. At the same time, the adopted CP
approach to customers’ allocation has demonstrated to be efficient both for
solving the capacity subproblem and for checking feasibility at runtime.

139



140 Conclusions and Future Research

The mentioned paradigms have been embedded into a general VNS meta-
heuristic framework in the first presented methodology, introduced in section
4.2. In this approach, the described decomposition is combined with CP and
LR to get a quick initial solution for the CVRP, even for larger instances.
Although solutions quality is usually low, it is rapidly improved after the first
iterations. This methodology has provided state-of-art results, in terms of
quality, for most CVRP benchmark instances. It has been able to reach —or,
in some cases, overcome— best-known or optimal solutions in few iterations.
Otherwise, the gap between the obtained solution and the best-known one is
usually low (under 1 % for most benchmark instances).

Although this hybrid methodology has demonstrated to be effective for
solving the CVRP, the required computational time is not competitive with
other state-of-art heuristics. Some mechanisms have been introduced to en-
hance its performance. First, some strategies have been implemented to re-
duce the computational complexity of neighborhoods exploration. Since only
a small part of the solution is changed any time a feasible move is applied, the
algorithm may focus on exploring this region at next iteration. This approach
does not modify the solutions space. In addition, if all feasible moves are
recorded, the independent moves may be applied at once in order to improve
algorithm’s convergence to a local optimum. Results show the desired reduc-
tion of the required computational time after implementing these strategies.
On the other hand, departing from a good initial solution may yield to better
results faster than the implemented method. For this reason, we have studied
the influence of initial solution’s quality. In this test, the obtained solutions
and computational times show that the randomized version of the Clarke and
Wright Savings heuristic provides a useful mechanism to get the initial solution
for this hybrid methodology.

The RCWS heuristic has been used to feed the multi-start schema presented
as the second methodology, described in section 4.3. This approach consists of
a Variable Neighborhood Descent framework which embeds CP and LR to cope
with the described CVRP decomposition, while the RCWS algorithm is used
to provide high-quality initial solutions. This schema has been parallelized and
a multi-start approach has been adopted.

Because of the techniques we have used, it is remarkable that both method-
ologies are robust, due to the light requirements for fine tuning. The tailored
LR-based algorithm does not require any specific adjustment since all the con-
vergence parameters are self-tuned. The CP-based subproblem depends just
on the quality of the defined constraint model to properly describe the feasi-
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ble solutions. The RCWS does not require any adaptation either. Only the
movements used in the VND and VNS frameworks could require a different
prioritization depending on the problem being solved in order to get a better
solution quality.

The efficiency of the Multi-Start VND approach is supported by the ob-
tained results. As discussed, this methodology is able to match the best known
solutions for CVRP benchmark problems of different sizes in reasonable com-
putational times. The provided comparison proves that its efficiency is similar
to other state-of-art metaheuristics, both in terms of computational time and
solutions quality.

It should be noticed that, due to their modular design, the hybrid VNS
and the Multi-Start VND methodologies provide a moderate flexibility to be
adapted to solve other VRP with additional constraints. Both approaches ben-
efit from the CP capabilities to model different operational constraints. This
constraints are present in most of the real application cases and, in general,
affect to the allocation decisions. CP facilitates the representation of these allo-
cation constraints without requiring any specific action on the solving method.
Nevertheless, facing other relevant VRP variants, such as those involving pick-
up and delivery locations or time windows, would imply the modification of
the LR-based method and the implementation of new neighborhoods in the
VND and VNS metaheuristics. The RCWS algorithm should be also adapted
and would require a proof of its efficiency in the new scenario.

In order to cope with such VRP variants, a CP-based methodology has
been introduced in section 4.4. First, an extension of the CP model for the
VRP introduced by Kilby and Shaw [99] has been described. This formulation
has been implemented as a first step for defining a VRP library, providing a
unified model able to tackle different VRP classes. This model can be easily
extended, since CP permits adding side constraints that would be difficult to
implement using other approaches.

For problems like the VRP, the application of CP exact methods to explore
the search space is limited and the definition of heuristic methods becomes
mandatory. The heuristic methodology described in section 4.4.2 combines
CP search methods within VND and Large Neighborhood Search frameworks.
After an initial solution is provided, the two operators SPLIT and RPOP
are iteratively used to partially destroy and re-optimize the current solution
in a LNS fashion. A VND metaheuristic guides this search process. Some
strategies have been defined to enhance the performance of this CP-based
VND-LNS methodology in section 4.4.3.
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The VND-LNS methodology has been tested on several CVRP and VRPTW
benchmark instances. Due to the CP techniques used to re-optimize the so-
lutions, the required computational times are high and far from state-of-art
methods. As may be observed in the reported results, the presented methodol-
ogy is only able to tackle small CVRP instances, as well as soft time windows
instances in the VRPTW case. However, the main goal was to establish an
initial approach to the VRP using CP techniques, suitable to be extended
to richer VRP variants and enhanced by the application of different heuristic
methods. Hence, the presented methodology constitutes the starting point for
further developments, achieving thus the pursued objective.

6.1 Contributions of this work

The contributions of this thesis, discussed in the previous section, can be
summarized in the following list:

• The CVRP has been decomposed and formulated according to CP and
LR paradigms. These paradigms have been used to solve the decomposed
problem efficiently.

• The CP and LR methods have been embedded in a VNS metaheuristic
framework to obtain better quality solutions and to escape from local
minima. Two different implementations of this algorithm’s family, the
general VNS and the VND, have been developed.

• The local search efficiency has been improved by choosing which partial
solutions should be checked, developing the corresponding data struc-
tures to manage this information, and speeding up algorithm’s conver-
gence to a local optimum because of the application of several indepen-
dent local moves.

• Several strategies to obtain the initial solution for the algorithm have
been tested. Their influence in the quality of the final solution has also
been analyzed. One of these strategies is a randomized version of the
CWS heuristic, capable of getting nearly optimal initial solutions in very
low times.
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• The hybrid VND approach has been parallelized in a multi-start schema.
The RCWS heuristic is used to feed this parallelized algorithm. This ap-
proach allows reducing the computational times significantly while im-
proving solutions’ quality, becoming a competitive alternative to other
state-of-art methods.

• The CP model presented by Kilby and Shaw [99] has been extended,
considering additional constraints in order to cope with more complex
VRP variants.

• A CP search method based on the VND and LNS heuristics has been
implemented. Two different strategies have been defined to partially de-
stroy the solutions, while a CP exact method is used for re-optimization.

• Two specific variable ordering heuristics have been implemented to im-
prove the CP search method performance when tackling the CVRP and
VRPTW problems.

Publications

The publications related in this section are to be considered as part of the
contributions of this work.

The work presented in this thesis has been partially published in the fol-
lowing journal articles:

• D. Guimarans, R. Herrero, D. Riera, A.A. Juan, and J.J. Ramos. Com-
bining probabilistic algorithms, Constraint Programming and Lagrangian
Relaxation to solve the Vehicle Routing Problem. Annals of Mathematics
and Artificial Inetlligence, 62(3): 299–315, 2011.

• D. Guimarans, R. Herrero, J.J. Ramos, and S. Padrón. Solving Vehi-
cle Routing Problems using Constraint Programming and Lagrangean
Relaxation in a Metaheuristics Framework. International Journal of In-
formation Systems and Supply Chain Management, 4(2): 61–81, 2011.

Some parts of this work have also been presented in several international
conferences and published in the following related articles:



144 Conclusions and Future Research

• R. Herrero, J.J. Ramos, and D. Guimarans. Lagrangean Metaheuristic
for the Travelling Salesman Problem. Operational Research Conference
52 (OR-52). Surrey, UK. September 2010.

• J.J. Ramos, S. Padrón, L. Guillén, M.A. Piera, D. Guimarans, and R.
Herrero. Intelligent platform for sustainable routing. XV Summer School
Francesco Turco. Porto Giardino, Italy. September 2010.

• R. Herrero, D. Guimarans, J.J. Ramos, and S. Padrón. A Variable Neigh-
bourhood Search combining Constraint Programming and Lagrangean
Relaxation for solving routing problems. Summer Computer Simulation
Conference (SCSC). Ottawa, Canada. July 2010.

• D. Guimarans, R. Herrero, D. Riera, A.A. Juan, and J.J. Ramos. Com-
bining Constraint Programming, Lagrangian Relaxation and probabilis-
tic algorithms to solve the Vehicle Routing Problem. RCRA Interna-
tional Workshop, CP-AI-OR. Bologna, Italy. June 2010.

• R. Herrero, D. Guimarans, and J.J. Ramos. Solving the Travelling Sales-
man Problem with Time Windows by Lagrangean Relaxation. European
Modeling and Simulation Symposium (EMSS). Tenerife, Spain. Septem-
ber, 2009.

• D. Riera, A.A. Juan, D. Guimarans, and E. Pagans. A Constraint
Programming-based library for the Vehicle Routing Problem. European
Modeling and Simulation Symposium (EMSS). Tenerife, Spain. Septem-
ber, 2009.

• D. Guimarans, J.J. Ramos, M.G. Wallace, and D. Riera. A hybrid Con-
straint Programming / Local Seach approach to the Pick-up and Delivery
Problem with Time Windows. European Modeling and Simulation Sym-
posium (EMSS). Tenerife, Spain. September, 2009.

Finally, the hybrid VNS methodology described in section 4.2 has been
registered with the following software license:

• D. Guimarans, R. Herrero, J.J. Ramos, and M.A. Piera. ITSLogiSim Op-
timization Suite 1.0. Registered at Universitat Autònoma de Barcelona,
30th June 2010.
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Currently, the company Digital Aeronautics Engineering Services is using
this software license under a commercial agreement. Combined with a clus-
tering algorithm, it is being applied to solve problems up to 22,000 customers
and more than 5,000 planned routes.

6.2 Future Research

Several fields for future research are open for the three methodologies presented
in this thesis. We present a short review of some of these lines, separating them
according to the presented methodologies. In any case, since the three method-
ologies are strongly related, most of the proposed lines are to be considered
transverse.

Regarding the hybrid VNS and the Multi-Start VND methodologies, the
following lines for future research have been identified:

• Different VNS schemes are to be studied, such as the Variable Neigh-
borhood Decomposition Search (see Section 3.3.4), whose shaking process
can be improved by embedding CP techniques. The definition of new
VNS approaches may also be considered. In this context, two algo-
rithms have already been defined, although further efforts need to be
addressed in this direction. The first approach hybridizes the general
VNS algorithm with a Simulated Annealing solutions’ acceptance strat-
egy. Thus, at first iterations the algorithm is more likely to accept some
non-improving solutions to escape from local minima and diversify the
search. This probability decreases as the exploration evolves, intensifying
the search. The second approach assigns probabilities to each movement
and applies a roulette wheel selection to decide which neighborhood to
explore at each iteration. The weights are adjusted in runtime according
to algorithm’s performance exploring each neighborhood for the problem
at hand, becoming an adaptive approach.

• New movements are to be defined, as well as designing heuristics to effi-
ciently explore the corresponding neighborhoods. The described strate-
gies for reducing the computational complexity of local search are to be
evaluated and adapted to these new neighborhoods.

• The methodologies are to be adapted to different VRP variants, espe-
cially those including time windows and pick-up and delivery side con-
straints. To achieve this goal, the LR-based method is to be adapted
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so it can handle the additional constraints. In addition, new movements
are to be defined to explore the feasible regions of these problems’ solu-
tion space. Eventually, the RCWS algorithm should also be adapted, or
substituted by other efficient approaches for each VRP variant.

As for the CP-based VND-LNS methodology, the following lines for future
research have been identified:

• The presented approach is to be combined with the two previous hybrid
methodologies for checking solutions’ feasibility and re-optimizing small
parts of the VRP at hand. This approach would permit the hybrid
methodology to guide the search, while the CP-based method would be
used as a solver. For example, the relocate movement could be redefined
as a mechanism to choose a pivot customer and subsequently apply the
CP-based approach. This approach would modify a larger part of the
current solution and so the algorithm’s convergence to a local optimum
would be improved. Moreover, since CP handles side constraints in a
natural manner, it would permit tackling VRP problems with additional
restrictions with little adjustments in the algorithm.

• New destroy methods are to be defined for the VRP. Some of these de-
stroy strategies could include, but are not limited to, unfixing one com-
plete route, unassigning pairs of neighboring routes, choosing customers
to remove according to their time windows violations, or choosing visits
to remove following the relatedness criterion defined by Shaw [161].

• The repair methods are to be enhanced by using heuristics on the search.
Furthermore, tailored CP search methods may be studied and applied to
improve algorithm’s performance for specific problems.

• The CP model is to be extended to other VRP variants, such as the
PDTW or the Rich VRP. In the first case, the model may be easily
adapted by adding a corresponding constraint on the time variable for
each pick-up/delivery pair. Nevertheless, propagation over time variables
may not be efficient and it would be preferable to add a new sequence
variable so propagation is improved. Similar modifications are to be
studied in order to tackle more complex VRP problems.

Finally, the adaptation of the three methodologies presented in this thesis
to other combinatorial problems is to be considered.
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