
Ph.D. Thesis

2015

Solving Differential Equations with

Evolutionary Algorithms

José Maŕıa Chaquet Ulldemolins

Master in Advanced Artificial Intelligence by

Universidad Nacional de Educación a Distancia

Doctoral Program in Intelligence Systems

Advisor

Enrique J. Carmona Suárez

.

Universidad Nacional de Educación a Distancia

Departamento de Inteligencia Artificial

Escuela Técnica Superior de Ingenieŕıa Informática

Solving Differential Equations with
Evolutionary Algorithms

José Maŕıa Chaquet Ulldemolins

Industrial Engineer by Universidad Politécnica de Madrid

Master in Advanced Artificial Intelligence by UNED

Advisor

Enrique J. Carmona Suárez

Associate Professor in Artificial Intelligence Department

at Universidad Nacional de Educación a Distancia

c©2015 José M. Chaquet Ulldemolins
This document has been generated

using Lyx, LATEX, Veusz and
other open-source tools.

“If people do not believe that mathematics is simple, it is only because they do not realize

how complicated life is.”

-John von Neumann.

For Maŕıa, Javier and Alicia

Acknowledgments

I would like to express my gratitude to my thesis director, Enrique, for all the time dedicated

to me. Our relationship started during my Master degree studies in Artificial Intelligence

and continue until today. I remember several times when the security guard of the school

kindly invited us to leave the facilities because it was so late in the night. And thanks to

Enrique for allowing me to use several computers installed in his office. This allow me to

complete the calculations needed for this work in time.

And of course, I would like to acknowledge my wife Maŕıa for her generosity and support.

Thanks to her I could allocate the time needed to complete this thesis. To be honest, I think

the more challenging issue was sharing my time between my duties at work in ITP, at home

with my little kids and with my research activities. Without the support of Maria all these

would have been impossible.

Summary

Many fundamental laws of Physics and Chemistry can be formulated as differential equations

(DEs) and they are useful to model different problems in fields as Biology, Economics or En-

gineering. Some DEs admit solutions given by explicit formulae. However, in the general

case, only approximated solutions can be found. Several methods to find approximated solu-

tions to DEs are available in the literature. The most extended ones are numerical methods.

However, in the present dissertation we focus the attention in non-standard methods, called

by some authors heuristic methods.

In this thesis, first a survey of heuristic algorithms to solve DEs is presented. In this

type of methods, the original problem, solving a DE, is transformed into an optimization

problem. The new problem involves seeking a function, solution of the DE, which minimizes

a cost function defined with the boundary conditions and with the DE itself. To solve the

new problem, candidate solutions are expressed using functions basis, parametric kernels or

generic mathematical expressions. The search of the optimum solution is performed by means

of Evolutionary Algorithms.

The main contribution of the present thesis is twofold. In the one hand, several studies

about the optimum way of representing the candidate solutions are presented. On the other

hand, the election of the most efficient evolutionary algorithm for tuning the parameters which

express the solution is provided. We have also focused in developing a general framework to

solve different types of DEs, such as ordinary (liner and non-linear), partial and systems of

DEs.

To show the performance of the proposed algorithms, they are applied on a set of 32 DEs

i

extracted from the literature and a comparison with other heuristic and numerical methods

are commented. Good behavior is observed, DEs are correctly solved achieving competitive

performance. A lower computational effort compared with other heuristic methods is also

observed.

Numerical methods are very efficient, well developed and can cope with the majority of

real problems. However, from the moment in which the problem of solving a differential

equation is transformed in an optimization problem, the proposed methods, in particular,

and evolutionary algorithms, in general, have interesting properties (mesh-free, mathematical

function as solution, same algorithm for different families of equations, etc) that can be useful

in this application domain. On the other hand and from a general view, the main drawbacks

of evolutionary methods is that there is not guarantee of which accuracy can be obtained and

the low convergence speed because a population of candidate solutions has to be handled.

ii

Resumen (Summary in Spanish)

Una gran cantidad de leyes fundamentales de F́ısica y Qúımica se formulan mediante ecua-

ciones diferenciales (EDs), las cuales son además útiles a la hora de modelizar diferentes

problemas en disciplinas tales como Bioloǵıa, Economı́a o Ingenieŕıa. Algunas EDs admiten

soluciones cerradas o exactas. Sin embargo, la gran mayoŕıa sólo pueden resolverse de forma

aproximada. Existen en la literatura gran cantidad de métodos para encontrar dichas aprox-

imaciones. Los más extendidos son los denominados métodos numéricos. En la presente tesis

nos centraremos en otro tipo de métodos no estándar, llamados por algunos autores métodos

heuŕısticos.

En este trabajo se expone un estudio de las algoritmos heuŕısticos presentes en la literatura

para resolver EDs. En este tipo de métodos, el problema original (resolver una ED) se

transforma en un nuevo problema de optimización. El nuevo problema conlleva encontrar una

función, solución de la ED, que minimiza una función de coste construida con las condiciones

de contorno y con la propia ED. Para resolver el nuevo problema, las soluciones candidatas se

pueden expresar mediante una base funcional, kernels paramétricos o mediante expresiones

matemáticas genéricas. La búsqueda de la solución óptima al problema se realiza mediante

algoritmos evolutivos.

Las principales contribuciones de la presente tesis se pueden agrupar en dos ideas básicas.

Por un lado, se realizan varios estudios para determinar el modo óptimo de representar las

soluciones candidatas. Por otro lado, se expone cuál es el algoritmo evolutivo más eficiente

para ajustar los parámetros que expresan la solución. Los algoritmos expuestos tratan de

ser además genéricos: son capaces de resolver, manteniendo los parámetros de control, una

iii

gran variedad de EDs, tales como ecuaciones ordinarias (lineales y no lineales), ecuaciones

en derivadas parciales y sistemas de ecuaciones.

Para estudiar el comportamiento de los algoritmos propuestos, se han aplicado a un

conjunto de 32 EDs extráıdas de la literatura. También se presenta una comparación con

otros métodos heuŕısticos y numéricos. Se observa un buen comportamiento de los algoritmos

propuestos, las EDs se han resuelto correctamente alcanzando resultados competitivos con

menor coste computacional comparado con otros métodos heuŕısticos.

Los métodos numéricos son eficientes, maduros y capaces de resolver la mayoŕıa de los

problemas reales. Sin embargo, en cuanto el problema de resolver una ecuación diferencial se

transforma en un problema de optimización, los métodos propuestos cuentan con propiedades

interesantes (métodos no basados en malla, solución simbólica, mismos algoritmos para dife-

rentes familias de ecuaciones, etc) que pueden resultar útiles en este campo de conocimiento.

Por otro lado y desde un punto de vista general, las principales desventajas de los métodos

evolutivos son que el nivel de convergencia no está garantizado y el mayor coste computacional

por usar una estrategia poblacional.

iv

Contents

Summary i

Resumen (Summary in Spanish) iii

Contents v

List of Figures ix

List of Tables xiii

List of Acronyms xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Scope of the Thesis . 3

1.3 Problem Statement . 5

1.4 Research Methodology . 8

1.5 Structure of the Thesis . 9

2 State of the Art 13

2.1 Introduction . 13

2.2 Taxonomy of Methods for solving DEs . 23

2.3 Heuristic Methods for DEs . 26

2.3.1 Cellular Automata (CA) . 26

v

2.3.2 Differential Evolution . 29

2.3.3 Genetic Algorithm . 30

2.3.4 Genetic Programming . 31

2.3.5 Grammatical Evolution (GE) . 33

2.3.6 Heuristics using Artificial Neural Networks 35

2.3.7 Particle Swarm Optimization . 46

2.3.8 Support Vector Machines (SVM) . 48

2.4 Conclusion . 49

3 Background 51

3.1 Grammatical Evolution (GE) . 51

3.1.1 Backus-Naur Form . 52

3.1.2 Mapping process . 53

3.1.3 Evolutionary Algorithm . 55

3.2 Evolution Strategies (ES) . 55

3.2.1 Representation . 56

3.2.2 Mutation Operators . 56

3.2.3 Recombination . 58

3.2.4 Parent selection . 59

3.2.5 Survivor Selection . 59

3.3 Covariance Matrix Adaptation ES (CMA-ES) 59

3.3.1 Sampling . 62

3.3.2 Selection and Recombination . 63

3.3.3 Adapting the Covariance Matrix . 63

3.3.4 Step Size Control . 64

3.4 Downhill Simplex Method . 64

3.4.1 Algorithm description . 65

4 Novel Methods for Solving DEs 67

4.1 Problem Statement: Summary . 67

vi

4.2 Solving DEs with GE (DESGE) . 68

4.2.1 GiNaC: A Symbolic Mathematical Engine 69

4.2.2 Algorithm Description . 70

4.2.3 Enhancing DESGE Algorithm . 75

4.3 Solving DEs with ES (DESES) . 81

4.3.1 Representation of Candidate Solutions 82

4.3.2 Fitness Function . 84

4.3.3 New symbolic expression interpreter . 84

4.3.4 Algorithm Description . 86

4.3.5 Separation of Variables . 92

4.4 Solving DEs with CMA-ES (DESCMA-ES) . 93

4.4.1 Representation of Candidate Solutions 94

4.4.2 Fitness Function . 95

4.4.3 Algorithm Description . 97

4.4.4 Other possible kernels . 100

5 Results and Discussion 103

5.1 Benchmarking Problems . 103

5.2 Numerical Experiments . 108

5.2.1 DESGE Results . 109

5.2.2 DESES Results . 114

5.2.3 DESCMA-ES Results . 121

5.3 Comparisons with other Methods . 130

5.3.1 Comparing of DESES algorithm with Numerical Methods 130

5.3.2 Comparison of DESES algorithm with other Evolutionary Computing

approaches . 134

5.3.3 Comparison of DESCMA-ES with Numerical Methods 136

5.3.4 Comparison of DESCMA-ES with DESES and other Evolutionary Al-

gorithms . 139

vii

6 Future Research 145

6.1 Analysis of other kernels in DESCMA-ES . 145

6.2 More complex problems: Stiff equations . 147

7 Conclusions 155

A Release Control Version 161

B A C++ Program to Test GiNaC Library 165

C Configuration File Examples 169

D Conclusiones (Conclusions in Spanish) 177

E Publications 185

Bibliography 189

viii

List of Figures

2.1 Geometrical interpretation of derivative of function f (x) at point a as the

limit of secant line when h goes to 0. 14

2.2 A possible taxonomy of methods to solve differential equations. 23

2.3 Schematic of an artificial neuron. 36

2.4 Generic Neural Network with L hidden layers. For the sake of clarity, only one

output is plot. 37

3.1 Example of a run with CMA-ES on a simple two-dimensional problem. 62

3.2 Geometric operations in a polytope performed by Downhill Simplex method. 66

4.1 Block diagram of the generic proposed algorithms. The global search of the

differential equation (DE) solution is made using an evolutionary algorithm

(EA). 68

4.2 Block diagram of the proposed algorithm based on Grammatical Evolution.

The global search of the DE solution is made using an genetic algorithm,

which drives a grammatical evolution (GE) engine. 69

4.3 Block diagram of the proposed algorithm based on Evolution Strategies. Note

that several steps are used sequentially. 81

4.4 Even periodic expansion example of a function originally defined in the range

[1, 2]. 83

4.5 Tree representing the math expression ln (x+ sinx) + 3x− 2 85

4.6 First 10 Fourier coefficients computed for LODE1 case. 87

ix

4.7 Global strategy as a sequence of ES steps. Each bar represents, going from

left to right, the frozen harmonics (pattern filled), the active (black color) and

the inactive ones (white color). 88

4.8 Block diagram of the proposed algorithm. The global search of the Differential

Equation (DE) solution is made using Covariance Matrix Adaptation Evolu-

tion Strategies (CMA-ES) and the local search by mean of a Downhill Simplex

(DS) algorithm. 93

4.9 A Gaussian kernel Φ (x, c) and its first and second derivatives. 97

4.10 An one-dimensional example of arctan kernel with its first and second derivatives.101

4.11 Approximating an arctan kernel with 2 Gaussian kernels (left) and approxi-

mating a Gaussian kernel with two atan kernels (right). 102

5.1 Non-rectangular domains. Unit circle for PDE5 (a), and Cassini’s oval for

PDE6 (b). 104

5.2 Convergence history for LODE2 problem of one successful run using baseline

DESGE algorithm: fitness versus generations (left) and average chromosome

size, maximum chromosome size, percentage of feasible and different solutions

versus generation (right). 110

5.3 Fitness value (a) and harmonic coefficients (b) of the best individual over

the generations for one run of NLODE4 case using DESES algorithm. In (a)

number in parentheses indicate the number of active plus frozen harmonics.

Fine tuning step is shown as well. 117

5.4 Mutation strengths of the best individual over the generations (a), comparison

(b, top) and difference (b, bottom) between the exact solution and the com-

puted one for one run of NLODE4 case using DESES algorithm. Mutation

strength in (a) of inactive harmonics are considered out of the plot with a

value close to 0. For the sake of clarity, in (b, top) figure, only 11 points are

plot for the evolved solution, although 100 collocation points were taken into

account. 118

x

5.5 Comparison of the computed solution using 10, 20 and 30 harmonics with the

numerical approximation for NLODE6 case for DESES algorithm. 120

5.6 Population size µ of the DESCMA-ES algorithm according to the number

of unknowns N . Dots mark the specific population used to solved the test

problems. 122

5.7 A typical run of DESCMA-ES algorithm for NLODE4 showing the fitness

value and RMSE evolution with the number of fitness evaluations. 125

5.8 A typical run of NLODE4 using DESCMA-ES algorithm showing the evolution

of the Gaussian kernels: wi, ci and γi. 126

5.9 Final evolved solution obtained in a typical run of DESCMA-ES algorithm for

NLODE4 and constrained to range [e, 2e]. It is shown as well the 4 Gaussian

kernels which form the approximated solution. 126

5.10 Comparison between the final solution obtained in a typical run of DESCMA-

ES algorithm for NLODE4 with the exact one (up) and error between the

evolved solution and the exact one (down). For the sake of clarity, in the top

figure only 11 points are plot for the evolved solution, although 100 collocation

points were taken into account. Note the order of magnitude of the error in

second figure. 127

5.11 Comparison of a typical solution obtained by the DESCMA-ES algorithm with

the exact one for PDE8 (Wave equation). 127

5.12 Comparison of evolved solutions by DESCMA-ES algorithm with the exact

one for NLODE6 equation. 130

5.13 Numerical schemes for comparison. Arrows indicate that one node is affecting

to another. Note that at Runge-Kutta method, point (i, j) affects to all his

neighbours. On the contrary, at Explicit method, all nodes at time instant

tj+1 does not affect to previous time instants tj and tj−1. 137

5.14 Comparison of a typical run of DESCMA-ES with DESES algorithm for pro-

blem NLODE1. 142

xi

6.1 Comparison of the exact solution with several evolved ones for NLODE6 pro-

blem using DESCMA-ES and arctan kernel. 146

6.2 Explicit numerical methods exhibiting instability when integrating a stiff or-

dinary differential equation. 148

6.3 Comparison of exact and evolutionary solutions for stiff 1 equation. 149

6.4 Exact solution of Pol oscillator with µ = 5. 150

6.5 Van der Pol oscillator solution obtained using DESCMA-ES algorithm with

arctan kernel and splitting the time domain into 6 sub-domains, marked in the

plot with crosses. 150

6.6 Comparison of exact (left column) and evolutionary solutions (right column)

for Robertson equation using arctan kernels. 153

xii

List of Tables

2.1 Common derivative notations. 15

2.2 Some famous DEs in Physics and Engineering sorted in chronological order. . 20

2.3 Some famous DEs in Biology sorted in chronological order. 22

2.4 Some famous DEs in Economics sorted in chronological order. 22

2.6 Survey of works about solving DEs with heuristic methods. 27

2.7 Activation functions for ANNs. 37

5.1 Test cases (linear and non-linear equations): differential equations, ranges and

boundary conditions. 104

5.2 Test cases (systems and partial equations): differential equations, ranges and

boundary conditions. 105

5.3 Exact solutions for the test cases. 107

5.4 Control parameters for baseline DESGE algorithm. 109

5.5 Control parameters for enhanced DESGE algorithm. 112

5.6 Results obtained using enhanced DESGE algorithm. Average values of 20

repetitions are reported. In [1] and [2], averaged fitness evaluation with 30

repetitions are provided, being the success rate 100% in all the problems. . . 112

5.7 Numerical values for the parameters of the DESES method. 115

5.8 Experimental results for DESES algorithm. Data are presented giving the

average values and the standard deviations. 116

5.9 Harmonic number analysis for LODE8, LODE9, LODE10 and NLODE6 pro-

blems for DESES algorithm. 119

xiii

5.10 Harmonic number analysis for original LODE3 problem using DESES algo-

rithm. 121

5.11 Experimental results of DESCMA-ES algorithm. Each case was run 50 times

using different seeds for the random number generator. In columns “Fitness”

and “RMSE”, the best values obtained are highlighted in bold letter. 123

5.12 CMA-ES parameter values. 124

5.13 DS parameter values. 124

5.14 Effect of increasing the number of centers in DESCMA-ES algorithm. In

columns “Fitness” and “RMSE” the best values obtained are highlighted in

bold letter. 129

5.15 Comparison of the numerical method solution with DESES algorithm for

NODE2 case. Two grid sizes of 102 and 103 have been used in the numerical

method. The RMSE are computed on three grid sizes using a linear interpo-

lation for the numerical solution and the equation (4.6) for the evolutionary

one. 132

5.16 Comparison numerical method solution with DESES algorithm for NODE5

case. Two grid sizes of 102 and 103 have been used in the numerical method.

The RMSE is obtained using a linear interpolation for the numerical solution

and the equation (4.6) for the evolutionary one in three different grids of 102,

103 and 104 nodes. 133

5.17 Comparison of different algorithms for PDE1 and PDE8. 139

5.18 Comparison of the obtained errors using DESCMA-ES algorithm, respect to

exact solution, (RMSE) considering only those works where that information

is reported [3, 4, 5]. Standard deviations are not always provided in the refer-

enced works. The best results are marked in bold letter. The final number of

centers, n, (see Eq. (4.24)), used by DESCMA-ES for this comparison, is also

provided in the last column. 140

xiv

6.1 Inner penalty κ sensitivity analysis in NLODE6 using DESCMA-ES algorithm

with arctan kernel. 146

6.2 Time splitting for solving Van der Pol oscillator using DESCMA-ES algorithm

with arctan kernel. 151

xv

xvi

List of Acronyms

This is a list of acronyms used in this thesis:

ANN Artificial Neural Network

ANFIS Adaptive Network-based Fuzzy Inference System

ASA Active-set Algorithm

BFGS Broyden-Fletcher-Goldfarb-Shanno Algorithm

BNF Backus-Naur Form

CA Cellular Automata

CAS Computer Algebra System

CGP Cartesian Genetic Programming

CNN Cellular Neural Network

CMA-ES Covariance Matrix Adaptation Evolution Strategies

DAE Differential Algebraic Equation

DDE Delay Differential Equation

DE Differential Equation

DEM Diffusive Element Method

xvii

DESCMA-ES Differential Equation Solver based on CMA-ES

DESES Differential Equation Solver based on Evolution Strategies

DESGE Differential Equation Solver based on Grammatical Evolution

DEv Differential Evolution

DS Downhill Simplex

EC Evolutionary Computation, a. k. a. Evolutionary Computing

ED Ecuación Diferencial (Differential Equation in Spanish)

ES Evolution Strategies

DE Differential Equation

FEM Finite Element Method

FDE Fractional Differential Equation

FDM Finite Difference Method

FENN Finite-Element Neural Network

FNN Fuzzy Neural Network

FVM Finite Volume Method

GA Genetic Algorithm

GDC Greatest Common Divisor

GE Grammatical Evolution

GEP Gene Expression Programming

GP Genetic Programming

xviii

GSD Gradient Steepest Descent

LGP Linear Genetic Programming

LHS Left Hand Side

LHSE LHS Enhanced

LS-SVM Least Squares Support Vector Machine

MEP Multi-Expression Programming

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PIM Point Interpolation Method

PRC Persistent Random Constants

PS Pattern Search

RES Robust Evolution Strategies

RK Runge Kutta method

RMSE Root of the Mean Squared Error

SA Simulated Annealing

SDE Stochastic Differential Equation

SFDE System of Fuzzy Differential Equations

SPH Smoothed Particle Hydrodynamics

SVM Support Vector Machine

xix

xx

Chapter 1

Introduction

In this first chapter, the motivation of the thesis will be exposed in Section 1.1. Then, in Sec-

tion 1.2 the scope of this work will be commented. The problem statement and research goals

of this dissertation are summarized in Section 1.3. The research methodology is described in

1.4. Finally, the structure of the thesis is described in 1.5.

1.1 Motivation

Part of the extraordinary progress of science in the modern era can be explained by the

discovery of Calculus in the 17th century by Isaac Newton and Gottfried Wilhelm Leibniz,

although elements of it have appeared in ancient Greece, China, medieval Europe, India,

and the Middle East. Calculus is the mathematical study of change and makes use of the

fundamental notions of convergence of infinite sequences and infinite series to a well-defined

limit.

One important concept managed in Calculus is the Derivative, which measures the sen-

sitivity to change of a quantity which is determined by another quantity. The process of

finding a derivative is called differentiation. A differential equation (DE) is just an algebraic

relation between functions and their derivatives. These mathematical entities allow scientists

to understand a wide range of complex phenomena. Many fundamental laws of Physics and

Chemistry can be formulated as DEs. And they are useful to model different problems in a

1

1.1. Motivation Chapter 1. Introduction

lot of scientific fields, such as Biology, Economics or Engineering.

DEs are mathematically studied from several different perspectives, mostly concerned

with their solution, i. e., the set of functions that satisfy the equation. Only the simplest

DEs are solvable by explicit formulas. But normally only approximated solutions can be

obtained. The most extended methods to solve DEs make use of numerical analysis. For

that, the equation is discretized bringing it into a finite-dimensional subspace. This can be

done by a finite element, a finite difference, or a finite volume methods reducing the problem

to the solution of an algebraic equation.

In the late years of 20th century new approaches to solve DEs were reported. They try

to solve DEs with non-standard algorithms. By non-standard methods we mean those not

inspired in numerical methods and therefore, less extended in the literature. Other authors

call these type of algorithms heuristic methods. Although normally they are less efficient

than numerical methods, heuristics have some advantages regarding set-up of the problem,

storing requirements, interpolation properties, etc.

Although a great progress has been produced in the context of methods to solve DEs,

several issues are still challenging. Mesh-based methods like finite element analysis have

become a traditional engineering tool. However, they still have some drawbacks, such as

difficulties in mesh generation and mesh distortion in large deformation analysis of structures.

This causes researchers and engineers to search for alternative numerical approaches and the

so-called meshless methods were originated. That method uses only distribution of nodes on a

differential equation domain to achieve its approximate solution. Over the last few decades,

there have been numerous meshless methods proposed to solve a number of engineering

applications. The meshless methods, despite having some advantages, have some weak points

such as difficulties in dealing with boundary conditions. Other limitations of numerical

methods (messless or mesh-based) are that the solution is given by numerical values at the

collocation points used to solve the equation. Therefore, the solution is only valid in those

points, needing interpolation if the solution is needed in different collocation points. Although

several very efficient methods are reported, normally based on numerical analysis, they only

are valid to a very specific equation, or at least, a family of equations. If the equation to

2

Chapter 1. Introduction 1.2. Scope of the Thesis

solve is changed, the method must be adjusted, or even it must be completely modified.

A great number of contributions reported in recent literature try to cover the limitations of

current methods. Thus, regarding numerical analysis, several lines can be distinguished, such

as improvements in the mesh generation, high order methods, preconditioning, parallelization

or implicit methods. Heuristic methods focus their efforts in two different issues. In the one

hand, how coding the candidate solutions. For instance, cellular automata, polynomials or

neural networks have been reported. On the other hand, several optimization methods have

been employed to tune the unknowns parameters which code the solution: backpropagation,

Genetic Algorithm, Swarm Optimization or Genetic Programming among others.

Focusing in the contribution of heuristic methods, it is difficult to make a quantitative

comparison because only fitness values are provided, which are high dependent on the solver

parameters and on how differential equations is transformed into an optimization problem.

Other limitation which can be commented is that normally heuristic methods are applied on

a few problems, or to very simple equations. So a lack of generality in the benchmarking

tests is observed. A common drawback of the works reported in the literature is that a lot of

computational effort is needed to solve relative simple equations, making their use in realistic

applications very difficult. It is observed as well in the literature a lack of information about

the convergence process. Due to the stochastic properties of heuristic algorithms, several runs

must be performed and mean and dispersion values should be provided to actually study the

behavior of the different approaches.

1.2 Scope of the Thesis

The main goal of the present thesis is to develop new algorithms based on Evolutionary

Computing to solve a wide variety of DEs. In the following lines, these concepts will be

extended.

Although some DEs admit exact solutions, the majority of equations only can be approxi-

mately solved. There are in the literature several approaches to find approximated solution

of DEs. The present work can be classified inside what some authors call heuristic methods,

3

1.2. Scope of the Thesis Chapter 1. Introduction

opposite to numerical methods which reduce the original problem into a set of algebraic

equations. Inside heuristic methods, we are interested in Evolutionary Computation (EC),

a subfield of artificial intelligence that deals with optimization problems. Its algorithms can

be considered global optimization methods with a metaheuristic or stochastic optimization

character and are mostly applied for black box problems (no derivatives known), often in the

context of expensive optimization. For that, our original problem (solving a DE) must be

transformed into an optimization one. This is done defining a proper fitness function based

on the DE itself and its boundary conditions. Then, a population of candidate solutions is

evolved trying to obtain the best solution in terms of the fitness function.

Evolutionary algorithms are inspired in biological process and have a set of common

characteristics. Thus, first an initial population of individuals is randomly generated, giving

the first generation. Then, the fitness function of each individual in that population is

evaluated. On each generation, several operations are repeated until some stop condition is

fulfilled. Therefore, in each generation the best-fit individuals are selected for reproduction.

An offspring population is generated using mutation and crossover operators. Finally, least-

fit individuals are replaced with new individuals, although several survival mechanism can

be adopted.

DEs is a wide concept and several types can be enumerated. Generally speaking, we

can distinguish between classic DEs, that is, deterministic DEs, and not classic ones. In the

second group we can find stochastic and fuzzy DEs. In this work we only deal with classic

equations. Among these deterministic equations exist several types such as ordinary and

partial equations, linear and non-linear or system of DEs. We are interested in all of these

types.

On the contrary than numerical methods, we will build the candidate solutions using

symbolic expressions. These expressions can be generated using functions basis, parametric

kernels or generic algebraic expressions. It is important to highlight that even in those cases

where no exact solution exist, the symbolic expression obtained will be used to approximate

the solution. Having symbolic expressions are very attractive regarding storing requirements

or for obtaining numerical values at points different from those used to find the solution.

4

Chapter 1. Introduction 1.3. Problem Statement

There are several paradigms in Evolutionary algorithms. According to the characteris-

tic of the problem to solve, in the present work we have employed Grammatical Evolution

(GE), a recent variation of genetic programming, and Evolution Strategies (ES). The first

algorithm seeks the best combination of symbolic functions to expressed the candidate solu-

tions, whereas the ES focus on the the best parameterization of the solution given a function

basis or function kernels, due to its good behavior dealing with optimization problems of

real-valued functions.

1.3 Problem Statement and Research Goals

From a mathematical point of view, the problem to be solved can be stated as following: we

consider the general equation

Ly (x) = f (x) in Ω ⊂ Rd (1.1)

subject to the boundary conditions

By (x) = g (x) on ∂Ω, (1.2)

where L and B are differential operators in the space x ∈ Rd and y (x) denotes the unknown

solution vector. Functions f (x) and g (x) denote source terms, so only depend on x, but not

on y or its derivatives. From a general point of view, y (x), f (x) and g (x) belong to the set

of vector-valued functions Rd→ Rm. On the other hand, Ω ⊂ Rd is a bounded domain and

∂Ω denotes its boundary. Strictly speaking, this notation corresponds to elliptic equations,

where the boundary conditions must be imposed in all the boundary of the domain. In other

problems, such as initial value differential equations, the boundary conditions are given in

a subset of ∂Ω. Note that if d = 1 and m = 1, we have an ordinary differential equation

(ODE) problem, which can be linear (LODE) or non linear (NLODE). If d = 1 and m > 1, a

system of differential equations (SODE) problem is managed. Finally, if d > 1 and m = 1, a

5

1.3. Problem Statement Chapter 1. Introduction

partial differential equation (PDE) problem is established. The solution satisfying (1.1) and

(1.2) can be computed solving the following Constrained Optimization Problem:

Minimize :
�

Ω
‖Ly (x)− f (x)‖2 dx

Subject to :
�

∂Ω
‖By (x)− g (x)‖2 dx = 0

(1.3)

where ‖·‖ denotes the Euclidean norm in Rd space.

The problem is then discretized using a set of nC collocation points

C = {(xi) |i=1,··· ,nC
⊂ Ω} , (1.4)

situated within the domain and as well nB points on the boundary

B = {(xj) |j=1,··· ,nB
⊂ ∂Ω} . (1.5)

Finally the original problem is transformed into a Free Constrained Optimization Problem

defining a cost function as follows

F (y) =

nC∑
i=1

‖Ly (xi)− f (xi)‖2 +

nB∑
j=1

‖By (xj)− g (xj)‖2 . (1.6)

Therefore, the original problem of solving the DE given by Eq. (1.1) is transformed into

a new problem consisting in seeking a function y (x) which minimizes the cost function given

by Eq. (1.6).

In the context of the problem presented above, the main goals treated in this thesis are:

1. Stablish the more efficient way of expressing the solution function y (x).

2. Create, adapt or select efficient evolutionary methods to search the function

y (x).

3. Create a generic framework to solve different types of deterministic DEs:

6

Chapter 1. Introduction 1.3. Problem Statement

linear and non linear, ordinary and partial equations, and systems of DEs.

Regarding the first goal, several alternatives can be studied. Thus, it is possible to build the

solution using functions basis, parametric kernels or generic algebraic expressions.

To solve the optimization problem of seeking the best function y (x), heuristic methods

based in population of candidate solution, as Evolutionary Algorithms, will be used. This

approach reduces the probability of being trapped in local minima. In this context, it will

be important to determine if the algorithms need to solve non-separable problems. These

type of problems are very challenging because they can not be split into smaller ones, so the

original problem must be solved simultaneously in all the coordinates.

As a result of these work, a generic tool to solve DEs should be obtained. Generic not

only means that the same algorithm can managed a wide variety of DEs, but as well it should

be robust, in the sense that good results should be obtained without investing a lot of effort

in adjusting the control parameters. Another important aspect to highlight is that, although

evolutionary algorithms are stochastic, low dispersion should be observed in the results when

the algorithm runs several times solving the same DE. An friendly interface is desirable in

order to facilitate the use by non-expert users in high advanced mathematics.

Finally, to finish this section, a set of research question will be enumerated. These state-

ments suggest some open question or hypothesis, which they will be treated along the thesis.

In the conclusion and based on the research performed in the thesis, they will be answered.

1. Is it more efficient to express candidate solutions using function basis, para-

metric kernels or generic mathematical expressions?

2. Does the heuristic algorithms need to deal with non-separable problems in

the context of solving DEs?

3. Although numerical methods are by far the most efficient approach to solve

DEs, could heuristics outperform them in some aspects? If any, which ones?

4. Because derivatives must be obtained from each solution proposed by the

evolutionary algorithm, it is possible to implement efficient solvers without

7

1.4. Research Methodology Chapter 1. Introduction

using complex symbolic engine libraries?

5. Although evolutionary algorithms are stochastic methods, it is possible to

guarantee a good convergence to the solution?

1.4 Research Methodology

To solve the proposed problem, several EC paradigms can be employed. A first option could

be Genetic Programming (GP), or some modern variations as Grammatical Evolution (GE).

These two options build candidate solutions by means of algebraic expressions based on a set

of functions or terminals defined a priori. On the other hand, the original problem could be

transformed into an optimization one where several real unknown values must be sought. In

this context, other paradigms such as Genetic Algorithms (GA) or Evolution Strategies (ES)

could be used.

Evolutionary Algorithms often perform well approximating solutions to all types of pro-

blems because they ideally do not make any assumption about the underlying fitness land-

scape and can cope with high dimensionality spaces making good exploration of the solution

space. Furthermore, Evolutionary Algorithms can be easily combined with other methods to

perform local search to improve the exploitation of the best solutions.

If the DE is solved as a real optimization problem, in order to simplify the search process

and to ensure that the solution can be expressed accurately by the algorithm, a basis function

could be employed. Then, the problem will turn into seeking the best lineal combination of

the basis function, so the domain space size is considerably reduced compared with the sym-

bolic regression approach. Several basis functions could be used. In our case, trigonometric

functions (Fourier decomposition) and Gaussian kernels have been employed.

Following the complete action schedule is given:

1. Bibliography study of the current state of the art (EC techniques to solve DEs): 4

months.

2. Analysis and election of a symbolic math engine library: 1 month.

8

Chapter 1. Introduction 1.5. Structure of the Thesis

3. Definition of a problem test suite extracted from the literature to check the perfor-

mances of the solvers: 4 months.

4. Implementation, analysis and test of a DE solver based on GE (DESGE): 6 months.

5. Implementation, analysis and test of a DE solver based on ES and Fourier series (DE-

SES): 7 months.

6. Publish DESGE algorithm (generate a paper and journal submission): 1 month

7. Implementation, analysis and test of a DE solver based on ES and Gaussian kernels

(DESCMA-ES): 7 months.

8. Publish DESCMA-ES algorithm (generate a paper and journal submission): 2 month

9. Write the Ph.D. report: 4 months.

1.5 Structure of the Thesis

This thesis consists of 7 chapters. Below we provide a brief overview summarizing the contents

of each of these chapters:

• Chapter 1 “Introduction”: We present the motivation and scope of this thesis. The

problem statement is mathematically formalized. Finally, the research methodology is

provided.

• Chapter 2 “State of the Art”: First the concept of derivative and differentiation is

provided. Then, a general introduction of differential equations and their importance

in fields such as engineering, biology or economics is commented. A taxonomy of the

existing methods to solve differential equations is provided. Here a survey of existing

works for solving differential equations with heuristic methods is commented. The study

is carried out according to the algorithms used (neural networks, genetic programming,

swarm optimization, etc) and how the candidate solutions are expressed (Fourier series,

general mathematical expressions, linear combination of kernels, etc).

9

1.5. Structure of the Thesis Chapter 1. Introduction

• Chapter 3 “Background”: In this chapter all the evolutionary algorithms used in the

present thesis for solving differential equations are described. Concretely, Grammatical

Evolution (GE), Evolution Strategies (ES) and Covariance Matrix Adaptation Evolu-

tion Strategies (CMA-ES). Additionally, one heuristic optimization method used as a

local search is presented: Downhill Simplex method.

• Chapter 4“Novel Methods for solving DEs”: This chapter is the main contribution

of the present work. Here, several methods to solve differential equations are described,

all of them using evolutionary paradigms: GE, ES and CMA-ES.

• Chapter 5“Results and Discussion”: In this chapter first an extensive set of DE pro-

blems extracted from the literature are provided, including the domain range, boundary

conditions and exact solution (if it exists). Then, the proposed algorithms are applied

on these problems to measure the performance.

• Chapter 6 “Future Research”: An outlook on future directions of the work is pro-

vided. The best algorithm presented in the thesis is applied with some modifications

(changing the kernel basis functions) on some real problems involving stiff equations.

• Chapter 7 “Conclusions”: We discuss and summarize the main conclusions and con-

tributions of the work.

Additionally, the thesis contains the following appendices at the end, with complementary

information:

• Appendix A “Release Control Version”: Release notes of the implementation pro-

grams developed in C++ to test all the algorithms described in the present work.

• Appendix B “A C++ Program to Test GiNaC Library”: Several checks are

performed to validate a symbolic mathematical engine.

• Appendix C “Configuration File Examples”: Two examples of the configuration

file for solving one ordinary differential equation and one partial differential equation

are listed.

10

Chapter 1. Introduction 1.5. Structure of the Thesis

• Appendix D“Conclusiones (Conclusions in Spanish)”: We present the conclusions

of this thesis in Spanish language.

• Appendix E “Publications”: We list our main publications related with parts of the

work presented in this thesis.

11

1.5. Structure of the Thesis Chapter 1. Introduction

12

Chapter 2

State of the Art

In this chapter a state of the art of the existing methods to solve differential equations (DEs)

will be exposed. First, in Section 2.1, a brief review of derivative concept is provided and

a definition of DEs will be given. It will be highlighted the importance of these entities

in almost all the scientific fields. DEs can provide not only qualitative knowledge about a

certain phenomenon, but quantitative information can be obtained if we can solve them.

In Section 2.2 a possible taxonomy of the most popular methods to solve DEs is briefly

described. Following, in Section 2.3 we pay attention to heuristic methods for solving DEs

giving a survey of the most important works reported in the literature. Finally, Section 2.4

gives some conclusions about the state of the art in the field of solving DEs with heuristic

methods.

2.1 Introduction

The Derivative

Calculus is the mathematical study of the rate of change. It has two major branches,

differential calculus (concerning rates of change and slopes of curves), and integral calculus

(concerning accumulation of quantities and the areas under and between curves). These

13

2.1. Introduction Chapter 2. State of the Art

y
ax

is

x axis

y=f(a
)+(df/dx)(a

)(x
-a)

y=
f(a

)+
(f(

a+h)-
f(a

))(
x-

a)/
h

y=
f(

x)

f(
a)

f(
a+

h
)

a+ha

Figure 2.1: Geometrical interpretation of derivative of function f (x) at point a as the limit
of secant line when h goes to 0.

two branches are related to each other by the fundamental theorem of Calculus [6]. The

modern development of calculus is usually credited to Isaac Newton (1643-1727) and Gottfried

Leibniz (1646-1716), who provided independent and unified approaches to differentiation and

derivatives.

The process of finding a derivative is called differentiation. The reverse process is called

antidifferentiation. The fundamental theorem of Calculus states that antidifferentiation is

the same as integration. Differentiation and integration constitute the two fundamental

operations in single-variable calculus.

Differentiation is the action of computing a derivative. The derivative of a function f (x)

of a variable x is a measure of the rate at which the value of the function changes with

respect to the change of the variable. It is called the derivative of f with respect to x. The

geometrical interpretation of the derivative is given in Fig. 2.1. If x and y are real numbers,

and if the graph of f is plotted against x, the derivative is the slope of this graph at each

point. The mathematical rigorous definition of derivative of function f at point a is expressed

using the concept of limit:

f ′ (a) = lim
h→0

f (a+ h)− f (a)

h
. (2.1)

14

Chapter 2. State of the Art 2.1. Introduction

First Derivative Second Derivative

Lagrange (prime) f ′ f ′′

Newton (dot) ḟ f̈

Euler Df D2f

Leibniz df/dx d2f/dx2

Subscript fx fxx

Table 2.1: Common derivative notations.

When the limit exists, f is said to be differentiable at a. Here f ′ (a) is the Lagrange’s notation

to express the derivative. Other notations are also common in the literature, as Table 2.1

shows.

Let f be a function that has a derivative at every point a in the definition domain of

f . Because every point has a derivative, there is a function that maps the point a to the

derivative of f at a. This function is written f ′ and is called the derivative function or the

derivative of f . Sometimes f has a derivative at the majority of points of its domain, but

not all of them. The function whose value at a maps f ′ (a) whenever f ′ (a) is defined and

elsewhere is undefined is also called the derivative of f . It is still a function, but its domain

is strictly smaller than the domain of f .

Let f be a differentiable function, and let f ′ (x) be its derivative. The derivative of

f ′ (x) (if it has one) is written f ′′ (x) and is called the second derivative of f . Similarly, the

derivative of a second derivative, if it exists, is written f ′′′ (x) and is called the third derivative

of f . Continuing this process, one can define, if it exists, the nth derivative as the derivative

of the (n− 1)th derivative. These repeated derivatives are called higher-order derivatives.

The nth derivative is also called the derivative of order n.

If function f depends on several variables, instead of derivatives, partial derivatives are

used. In general, the partial derivative of a function f (x1, · · · , xn) in the direction xi at the

15

2.1. Introduction Chapter 2. State of the Art

point (a1, · · · , an) is defined as:

∂f

∂xi

(a1, · · · , an) = lim
h→0

f (a1, · · · , ai + h, · · · , an)− f (a1, · · · , an)

h
. (2.2)

Differential Equations (DEs)

Once the concept of derivative has been exposed in the previous section, here DEs will be

introduced.

A DE is just an algebraic relation between functions and their derivatives. Many fun-

damental laws of Physics and Chemistry can be formulated as DEs. And they are useful

to model different problems in a lot of scientific fields, such as Biology, Economics or Engi-

neering. Moreover, when the same DE describes different phenomena, it has been used as

unifying principle. As an example, the propagation of sound in the atmosphere, or the waves

on the surface of a pond may be described by the same second-order partial differential equa-

tion, the Wave equation. In the same way, heat conduction in a solid is governed by another

second-order partial differential equation, the Heat equation. The Black-Scholes equation in

finance is, for instance, related to the Heat equation.

DEs are mathematically studied from several different perspectives, mostly concerned

with their solution, i. e., the set of functions that satisfy the equation. Only the simplest

differential equations are solvable by explicit formulas. However, some properties of solutions

of a given DE may be determined without finding their exact form. If a closed-form expression

for the solution is not available, the solution may be numerically approximated. The theory of

dynamical systems puts emphasis on qualitative analysis of systems described by differential

equations, while many numerical methods have been developed to determine solutions with

a given degree of accuracy.

The study of DEs is a vast field in pure and applied Mathematics, Physics, and Engineer-

ing. All of these disciplines are concerned with the properties of DEs of various types. Pure

Mathematics focuses on the existence and uniqueness of solutions, while applied Mathematics

emphasizes the rigorous justification of the methods for approximating solutions. The study

16

Chapter 2. State of the Art 2.1. Introduction

of the stability of solutions of differential equations is known as stability theory.

Following, a taxonomy of DEs will be described. A first classification can be done accord-

ing to the number of independent variables involved. Thus, an ordinary differential equation

(ODE) is a differential equation in which the unknown function (also called dependent vari-

able) is a function of a single independent variable. Ordinary DEs are further classified

according to the order of the highest derivative of the dependent variable with respect to the

independent variable appearing in the equation. The most important cases for applications

are first-order and second-order differential equations.

On the other hand, when the unknown function is a function of multiple independent

variables and the equation involves its partial derivatives, the DE is called partial differential

equation (PDE). The order is defined similarly to the case of ordinary differential equa-

tions, but further classification into elliptic, hyperbolic, and parabolic equations, especially

for second-order linear equations. Some PDEs do not fall into any of these categories over

the whole domain of the independent variables and they are said to be of mixed type.

Both ordinary and partial DEs are broadly classified as linear and nonlinear. To determine

if a DE is linear or not, we express the equation as a function F of the independent variables,

dependant variables and their derivatives. To fix ideas, in the case of the following DE

y′′ + x · y′ + y = sin (x) ,

we can express the original DE by means of the function F in this way:

F (x, y, y′, y′′) = 0.

In this case, the function will be

F (x1, y1, y2, y3) = y3 + x1 · y2 + y1 − sin (x1) .

Note that x1 denote the independent variable, meanwhile yi are the dependent variables

and their derivatives. Then, the original DE will be linear if and only if the function F

17

2.1. Introduction Chapter 2. State of the Art

is linear respect to yi variables. The characteristic property of linear equations is that their

solutions form an affine subspace of an appropriate function space, which results in much more

developed theory of linear DEs. Homogeneous linear DEs are a further subclass for which

the space of solutions is a linear subspace, i.e., the sum of any set of solutions or multiples

of solutions is also a solution. Nonlinear DEs can exhibit very complicated behavior over

extended time intervals, characteristic of chaos. Even the fundamental questions of existence,

uniqueness, and extendibility of solutions for nonlinear DEs, and well-posedness of initial and

boundary value problems for nonlinear PDEs are hard problems and their resolution in special

cases is considered to be a significant advance in the mathematical theory.

When several dependent variables are involved simultaneously, a system of differential

equation must be solved. Depending of the derivatives, the system can be of ordinary or of

partial differential equations.

Other equations related with DEs are delay differential equations (DDEs), stochastic dif-

ferential equations (SDEs), differential algebraic equations (DAEs) and fractional differential

equations (FDEs). A DDE is an equation for a function of a single variable, usually called

time, in which the derivative of the function at a certain time is given in terms of the values

of the function at earlier times. A simple example could be x′ (t) = −x (t− 1). A SDE is

an equation in which the unknown quantity is a stochastic process and the equation involves

some known stochastic processes. A DAE is a DE comprising differential and algebraic terms,

given in implicit form. FDEs (also known as extraordinary differential equations) are a gene-

ralization of differential equations through the application of fractional calculus. Fractional

calculus studies the possibility of taking real or complex number powers of the differentiation

operator. Thus, extending nth derivative of a monomial xk

dn

dxn
xk =

k!

(k − n)!
xk−n

to not integral number v, we obtained the fractional derivative using the gamma function:

dv

dxv
xk =

Γ (v + 1)

Γ (k − v + 1)
xk−v.

18

Chapter 2. State of the Art 2.1. Introduction

In general, the fractional derivative of function f (t) of order v is given by

dv

dxv
f (t) =

1

Γ (v)

� t

0

(t− ξ)−v−1 f (ξ) dξ,

for t > 0 and ν ∈ R+.

Examples of DEs

To conclude this section, some famous DEs are enumerated in Tables 2.2, 2.3 and 2.4. For the

sake of conciseness, only some equations will be briefly commented. Equations are sorted in

three groups according if they are related to Physics and Engineering, Biology or Economics.

Inside each group, the equations are presented in chronological order.

The Newton’s second law states that the net force on an object is equal to the derivative

of its linear momentum in an inertial reference frame. The second law can also be stated

in terms of an object’s acceleration. Since Newton’s second law is only valid for constant-

mass systems, mass can be taken outside the differentiation operator by the constant factor

rule in differentiation. The three laws of motion were first compiled by Isaac Newton in his

Philosophiæ Naturalis Principia Mathematica, first published in 1687.

The Wave equation is an important second-order linear partial differential equation for

the description of waves such as sound, light and water waves. It arises in fields like acoustics,

electromagnetics, and fluid dynamics. Historically, the problem of a vibrating string such as

that of a musical instrument was studied by Jean le Rond d’Alembert, Leonhard Euler, Daniel

Bernoulli, and Joseph-Louis Lagrange. In 1746, d’Alembert discovered the one-dimensional

Wave equation, and within ten years Euler discovered the three-dimensional Wave equation.

The Heat equation is a parabolic partial differential equation that describes the distribu-

tion of heat (or variation in temperature) in a given region over time. The Heat equation is

a consequence of Fourier’s law of conduction. Solutions of the Heat equation are characteri-

zed by a gradual smoothing of the initial temperature distribution by the flow of heat from

warmer to colder areas of an object. Generally, many different states and starting conditions

19

2.1. Introduction Chapter 2. State of the Art

Equation Name Date Expressions

Newton’s second law 1687 F = d(mv)
dt

Wave 1746 ∂2u
∂t2

= c2∇2u

Euler-Lagrange 1750 Lx (t, q (t) , q′ (t))− d
dt
Lv (t, q (t) , q′ (t)) = 0

Cauchy-Riemann 1752


∂u
∂x

= ∂v
∂y

∂u
∂y

= − ∂v
∂x

Laplace 1783 ∇2ϕ = 0

Heat 1822 ∂u
∂t

= α∇2u

Navier-Stokes 1822 ρ
(

∂v
∂t

+ v · ∇v
)

= −∇p+∇ ·T + f

Poisson 1813 ∇2ϕ = f

Geodesic 1854 d2xλ

dt2
+ Γλ

µν
dxµ

dt
dxν

dt
= 0

Hamilton 1855


dp
dt

= −∂H
∂q

dq
dt

= ∂H
∂p

Diffusion 1855 ∂φ(r,t)
∂t

= ∇ · [D (φ, r)∇φ (r, t)]

Maxwell 1861



∇ · E = ρ/ε0

∇ ·B = 0

∇× E = −∂B/∂t

∇×B = µ0 (J + ε0∂E/∂t)

Radioactive decay 1896 −dN
N

= λdt

Einstein field 1915 Rµν − 1
2
gµνR + gµνΛ = 8πG

c4
Tµν

Schrödinger 1925 i~∂Ψ
∂t

= ĤΨ

Lorenz 1963


dx
dt

= σ (y − x)

dy
dt

= x (ρ− z)− y

dz
dt

= xy − βz

Table 2.2: Some famous DEs in Physics and Engineering sorted in chronological order.

20

Chapter 2. State of the Art 2.1. Introduction

will tend toward the same stable equilibrium. As a consequence, to reverse the solution and

conclude something about earlier times or initial conditions from the present heat distribution

is very inaccurate except for short time periods.

Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes,

describe the motion of fluid substances. These equations arise from applying Newton’s second

law to fluid motion, together with the assumption that the stress in the fluid is the sum of a

diffusing viscous term (proportional to the gradient of velocity) and a pressure term.

Maxwell’s equations are a set of partial differential equations that, together with the

Lorentz force law, form the foundation of classical electrodynamics, classical optics, and elec-

tric circuits. These fields in turn underlie modern electrical and communications technologies.

Maxwell’s equations describe how electric and magnetic fields are generated and altered by

each other and by charges and currents. They are named after the Scottish physicist and

mathematician James Clerk Maxwell, who published an early form of those equations between

1861 and 1862.

In quantum mechanics, the Schrödinger equation is a partial differential equation that

describes how the quantum state of a physical system changes with time. It was formulated

in late 1925, and published in 1926, by the Austrian physicist Erwin Schrödinger.

The Lorenz system is a system of ordinary differential equations first studied by Edward

Lorenz. It is notable for having chaotic solutions for certain parameter values and initial

conditions. In particular, the Lorenz attractor is a set of chaotic solutions of the Lorenz sys-

tem which, when plotted, resemble a butterfly or figure eight. Edward Lorenz developed this

equation when he was studying a simplified mathematical model for atmospheric convection.

Besides, it also arise in simplified models for lasers, dynamos, thermosyphons, brushless DC

motors, electric circuits, chemical reactions and forward osmosis

A logistic function or logistic curve is a common ”S” shape (sigmoid curve), with equation

f (x) = 1/ (1 + e−x). The function was named in 1844-1845 by Pierre François Verhulst,

who studied it in relation to population growth. The initial stage of growth is approximately

exponential. Then, as saturation begins, the growth slows, and at maturity, growth stops.

21

2.1. Introduction Chapter 2. State of the Art

Equation Name Date Expressions

Verhust 1884 d
dx
f (x) = f (x) · (1− f (x))

Lotka-Volterra 1910


dx
dt

= x (α− βy)

dy
dt

= −y (γ − δx)

Von Bertalanffy model 1934 L′ (t) = rB (L∞ − L (t))

Hodgkin-Huxley model 1952

 I = Cm
dVm

dt
+ gk (Vm − Vk) +

gNa (Vm − VNa) + gl (Vm − Vl)

Replicator equation 1973 ẋi = xi

[
fi (x)−

∑n
j=1 xjfj (x)

]
Table 2.3: Some famous DEs in Biology sorted in chronological order.

Equation Name Date Expressions

Malthusian growth model 1798 dx
dt

= kx

Solow-Swan 1956 k̇ (t) = sk (t)α − (n+ g + δ) k (t)

Black-Scholes 1973 ∂V
∂t

+ 1
2
σ2S2 ∂2V

∂S2 + rS ∂V
∂S
− rV = 0

Shethi model 1983 dXt =
(
rUt

√
1−Xt − δXt

)
dt+ σ (Xt) dzt

Table 2.4: Some famous DEs in Economics sorted in chronological order.

A Malthusian growth model, sometimes called a simple exponential growth model, is

essentially exponential growth based on a constant rate. This model is widely regarded in

the field of population ecology as the first principle of population dynamics.

The Black-Scholes model is a mathematical model of a financial market containing certain

derivative investment instruments. From the model, one can deduce the Black-Scholes for-

mula, which gives a theoretical estimate of the price of European-style options. The formula

led to a boom in options trading and legitimized scientifically the activities of the Chicago

Board Options Exchange and other options markets around the world. It is widely used,

although often with adjustments and corrections, by options market participants.

22

Chapter 2. State of the Art 2.2. Taxonomy of Methods for solving DEs

-Point Interpolation
-Diffusive Element

-Perturbation methods

-Series expansion
-Separation of variablesAnalytical

-Evolution Strategies
-Particle Swarm Optimization
-Genetic Programming
-Neural Networks

-Smoothed Particle Hydrodynamics

-Finite Volume
-Finite Difference
-Finite Element

Mesh-free

No Mesh-free

Hybrid Methods

Heuristics

Numerical Methods

Methods to solve Differential Equations

Figure 2.2: A possible taxonomy of methods to solve differential equations.

2.2 Taxonomy of Methods for solving DEs

Some simple differential equations admit solutions given by explicit formulas. But in

the general case, only approximated solutions can be found. Several paradigms exist in the

literature to solve the equations. Fig. 2.2 shows a possible taxonomy of existing methods to

solve differential equations. A first group can be formed with analytical methods, which try

to find exact solutions. One of these method is separation of variables, also known as Fourier

method. Basically, algebra allows one to rewrite the equation so that each of two variables

occurs on a different side of the equation. For example, being u ≡ u (x, t) we consider the

Heat equation

ut = αuxx

with homogeneous boundary condition u (0, t) = u (L, t) = 0. Note that subscript notation

described in Table 2.1 is employed. Now, if we assume that a possible solution is in the form

of u (x, t) = X (x)T (t) and substituting u back into equation and using the product rule, we

obtain
T ′ (t)

αT (t)
=
X ′′ (x)

X (x)
.

23

2.2. Taxonomy of Methods for solving DEs Chapter 2. State of the Art

Since the right hand side depends only on x and the left hand side only on t, both sides

are equal to some constant value −λ. Making some algebra, we finally obtain the general

solution of the equation in the form of

u (x, t) =
∞∑

n=1

Dn sin
nπx

L
exp

(
−n

2π2αt

L2

)
,

where Dn coefficients are determined by the initial condition u (x, 0) = f (x). Thus,

f (x) =
∞∑

n=1

Dn sin
nπx

L
.

However, as it has been commented, very few problems admit an analytical solution. The

second group of methods transforms the original differential equations into a system of alge-

braic equations and solve them by numerical methods. Inside this category, two subfamilies

can be distinguished according to whether or not a connectivity or mesh is needed. Mesh

schemes can be divided in finite element method (FEM) [7], finite difference method (FDM)

[8], or finite volume method (FVM) [9]. For the sake of clarity, let see an example of finite

difference method to solve the Heat equation. For that, we approximate all the derivatives

by finite differences. We discretize the space domain using a mesh x0, · · · , xJ and the time

by means of several instants t0, · · · , tN . We assume a uniform partition both in space and

in time, so the difference between two consecutive space points will be h and between two

consecutive time points will be k. The points u (xj, tn) = un
j will represent the numerical

approximation of u (xj, tn) with j = 0, · · · , J and n = 0, · · · , N . Using a forward difference

at time tn and a second-order central difference for the space derivative at position xj we get

the recurrence equation:
un+1

j − un
j

k
=
un

j+1 − 2un
j + un

j−1

h2

This is an explicit method for solving the one-dimensional heat equation. We can obtain

un+1
j from the other values in this way:

un+1
j = (1− 2r)un

j + run
j−1 + run

j+1

24

Chapter 2. State of the Art 2.2. Taxonomy of Methods for solving DEs

where r = k/h2. So, with this recurrence relation, and knowing the values at time n, one

can obtain the corresponding values at time n + 1. Note that un
0 and un

J must be replaced

by the boundary conditions, where in this example, they are both 0. This explicit method

is known to be numerically stable and convergent whenever r ≤ 1/2. Other schemes have

different behavior, such as implicit methods or Crank-Nicolson method.

On the other hand, mesh-free algorithms, such as smoothed particle hydrodynamics (SPH),

diffusive element method (DEM) and point interpolation method (PIM), do not require a

mesh connectivity [10]. However, the final algebraic equations obtained are solved using

numerical methods. For the sake of completeness, following a brief introduction to SPH is

given. This method was applied traditionally to solve fluids, although it is possible to be

applied to solids. The method works by dividing the fluid into a set of discrete elements,

referred to as particles. These particles have a spatial distance (known as the ”smoothing

length”, typically represented in equations by h), over which their properties are ”smoothed”

by a kernel function. This means that the physical quantity of any particle can be obtained

by summing the relevant properties of all the particles which lie within the range of the

kernel. The contributions of each particle to a property are weighted according to their

distance from the particle of interest, and their density. Mathematically, this is governed by

the kernel function. Kernel functions commonly used include the Gaussian function and the

cubic spline. The latter function is exactly zero for particles further away than two smoothing

lengths.

A radical different approach (gather in Heuristic group at Fig. 2.2) for solving differential

equations consists on transforming the problem into an optimization one where a candidate

solution is tested according to a fitness or cost function which measures how the differential

equations are fulfilled. Generally speaking, these methods are as well mesh-free, but are

more flexible because can cope with different type of equations. Several paradigms have been

reported in this field, such as cellular automata [11], artificial neural networks [12, 13, 14,

15, 16, 17, 2, 18, 19, 20, 21, 22], genetic algorithms (GAs) [23], genetic programming (GP)

[24, 25, 26, 3, 27, 28], particle swarm optimization (PSO) [29, 4], differential evolution [5]

or support vector machines (SVM) [30]. A survey about solving differential equations with

25

2.3. Heuristic Methods for DEs Chapter 2. State of the Art

a special type of neural networks (multilayer perceptron) and radial basis functions can be

consulted in [19].

Finally, a fourth approach can be adopted, where numerical and heuristics methods are

combined [31, 32, 33]. Thus, He et al. [31] propose three hybrid algorithms for solving

linear and partial differential equations. The hybrid algorithms integrate the classical SOR

method with evolutionary computation techniques. The recombination operator in the hybrid

algorithms mixes two parents by a kind of averaging, which is similar to the intermediate

recombination often used in evolution strategies. The mutation operator is equivalent to one

iteration in the SOR method. However, the mutation is stochastic as a result of stochastic

self-adaptation of the relaxation parameter .

2.3 Heuristic Methods for DEs

In this section a review of the existing works which try to solve differential equations with

“non standard” algorithms is presented. By non standard methods we mean those algorithms

not inspired in numerical methods and therefore, less extended in the literature. Other

authors call these type of algorithms heuristic methods. Although normally they are less

efficient than numerical methods, heuristics have some advantages regarding set-up of the

problem, storing requirements, interpolation properties, etc. Several classifications could be

done in this area according to the optimization algorithm used or how the candidate solutions

are expressed. Table 2.6 presents a summary of the present survey. It shows the year, the

main equations solved, how the candidate solutions are built or expressed, the optimization

algorithm and whether if a local search is used or not.

2.3.1 Cellular Automata (CA)

A cellular automaton is a discrete model which consist of a regular grid of cells, each in one

of a finite number of states. The grid can be in any finite number of dimensions. For each

cell, a set of cells called its neighborhood is defined relative to the specified cell. An initial

state is selected by assigning a state for each cell. A new generation is created, according to

26

Chapter 2. State of the Art 2.3. Heuristic Methods for DEs

Year Paper Equation Solution expression Optimization Method Local Search

1995 [11] Burger and Korteweg-de-Vries CNN Downhill Simplex No

1998 [12] Ordinary and Partial DEs ANN BFGS No

2000 [13] First order PDEs for a controller ANN Backpropagation No

2001 [24] 1D Convection-Diffusion Polynomials GP No

2001 [34] 1D Unsteady Groundwater flow ANN Evolutionary Algorithm No

2003 [14] Catalytic solid-gas reactor ANN GA Gradient descent

2003 [15] Poisson ANN Backpropagation No

2005 [25] Ordinary DEs Gram-Schmidt basis functions GP No

2005 [32] Electromagnetic problems FENN Gradient descent No

2006 [26] Second order, homogeneous Symbolic expressions Graph-based GP No

2006 [1] Ordinary and Partial DEs Symbolic expressions GE No

2008 [3] Elliptic PDEs Symbolic expressions GP Gradient Boosting

2008 [35] Schrodinger Analytical basis functions GA No

2009 [2] Ordinary and Partial DEs ANN GE BFGS

2009 [29] First order DEs ANN PSO No

2009 [27] Ricatti Symbolic expressions GE No

2009 [17] Schrödinger ANN Backpropagation No

2010 [36] LDE, constant coefficients ANFIS Backpropagation No

2010 [28] Simple linear ODEs Symbolic expressions CGP No

2010 [37] Fractional DEs ANN GA Active set algorithm

2010 [38] Schrodinger Exponential functions GA No

2011 [39] Fractional Ricatti ANN PSO SA

2011 [18] Allen-Cahn ANN Residual subsampling No

2011 [33] Navier-Stokes ANN GA No

2012 [23] Schrödinger Parameterized basis functions GA No

2013 [4] ODEs Fourier series PSO No

2013 [21] Systems of Fuzzy DEs FNN Backpropagation No

2013 [40] Electronic circuits ANN GA No

2014 [5] Poisson Polynomials DE No

2014 [41] Wind Speed time series ANN SA, GSD No

2014 [42] Pantograph functional DE ANN SA, PS, GA ASA

2015 [30] Second order PDEs LS-SVM - No

Table 2.6: Survey of works about solving DEs with heuristic methods.

27

2.3. Heuristic Methods for DEs Chapter 2. State of the Art

some fixed rule that determines the new state of each cell in terms of the current state of the

cell and the states of the cells in its neighborhood. The concept was originally discovered

in the 1940s by Stanislaw Ulam and John von Neumann while they were contemporaries at

Los Alamos National Laboratory. It was not until the 1970s and Conway’s Game of Life, a

two-dimensional cellular automaton, that interest in the subject expanded beyond academia.

Since then, a lot of works have used CA approach. As an example, Monteagudo and Santos

[43, 44] present a CA model for cancer growth where emergent dynamics of tumor growth at

cellular level is studied.

Although the evolution of CA is governed by certain updating rules rather than differen-

tial equations, exists a close relationship between both concepts. That is, given differential

equations, we can construct a rule-based cellular automaton, or vice versa. As an example,

considered the one dimensional heat equation:

∂T

∂t
= κ

∂2T

∂x2
,

where T is temperature and κ is the thermal diffusivity. The simplest discretization of the

above heat equation is the central difference for spatial derivative and forward scheme for

time derivatives:

T n+1
i − T n

i =
κ∆t

(∆x)2

(
T n

i+1 − 2T n
i + T n

i−1

)
,

where i and n are the spatial and time indices. If we choose the time steps and spatial

discretization such that κ∆t/ (∆x)2 = 1, we finally obtain

T n+1
i − T n

i = T n
i+1 − 2T n

i + T n
i−1,

which actually is a cellular automata.

As we see with the previous example, it is relatively straightforward to derive the updating

rules for cellular automata from the corresponding partial differential equations. However,

the reverse is usually very difficult. There is no general method available to formulate the

continuum model or differential equations for given rule-based cellular.

28

Chapter 2. State of the Art 2.3. Heuristic Methods for DEs

Several works in the literature can be found that use CA to model different dynamic

systems. Thus Puffer et al. [11] present a mixed approach between CA and Artificial Neural

Network (ANN) to solve differential equations. This work will be described in more detail in

subsection 2.3.6 devoted to ANN.

2.3.2 Differential Evolution

Differential Evolution (DEv) is originally due to Storn and Price in 1997 [45]. DEv is a

very simple population based, stochastic function minimizer which is very powerful at the

same time. DEv managed to finish 3rd at the First International Contest on Evolutionary

Computation (1stICEO) which was held in Nagoya in 1996. DE turned out to be the best

genetic type of algorithm for solving the real-valued test function suite of the 1st ICEO (the

first two places were given to non-GA type algorithms which are not universally applicable

but solved the test-problems faster than DEv). The crucial idea behind DEv is a scheme for

generating trial parameter vectors. Basically, DEv adds the weighted difference between two

population vectors to a third vector.

An interesting approach for solving differential equations using DEv can be consulted

in a work by Panagant and Bureerat [5] where the two dimensional Poisson equation with

different source terms is solved. Partial differential equation solutions are approximated by

a polynomial expansion

Ψ (x, y) = a1 +
n∑

i=1

ai+1x
i +

n∑
i=1

ai+n+1y
i +

n∑
i=1

n∑
j=1

a(i−1)n+j+2n+1x
iyj,

where ai are polynomial coefficients to be determined and n is a maximum of the polynomial

order for x and y. The number of terms ai is (n+ 1)2, which means that there are the

same design variables for an optimization problem. A minimization problem is defined,

where the design variables ai are seek in order to minimize the functional
�

Ω
|R (x, y)| dA,

where R is a residual function, subject to the constrains defined by the boundary conditions.

The constrained optimization problem is transform into an unconstrained one adding the

29

2.3. Heuristic Methods for DEs Chapter 2. State of the Art

boundary conditions term to the functional defined with the residuals. The optimization

problem is solved using Differential Evolution.

2.3.3 Genetic Algorithm

The father of the original Genetic Algorithm (GA) was John Holland who invented it in the

early 1970’s. Genetic Algorithms are the most popular of all population-based methods in

Evolutionary Computing. A population of candidate solutions (called individuals or phe-

notypes) to an optimization problem is evolved toward the best solutions. Each candidate

solution has a set of chromosomes which can be mutated and recombined with other indivi-

duals. Traditionally, solutions are binary coded as strings of 0s and 1s, but other encodings

are also possible.

The evolution usually starts from a population of randomly generated individuals, and

is an iterative process. The population in each iteration is called a generation. In each

generation, the fitness of every individual in the population is evaluated, which is usually

the value of the objective function for that individual in the optimization problem being

solved. The fittest individuals are stochastically selected from the current population, and

each individual’s genome is modified (recombined and possibly randomly mutated) to form a

new generation. The new generation of candidate solutions is then used in the next iteration

of the algorithm. Commonly, the algorithm terminates when either a maximum number of

generations has been produced, or a satisfactory fitness level has been reached.

The use of GA for solving differential equations is not common, although some examples

can be consulted in the literature. Thus, in a set of articles from MacNeil, [35, 38, 23] the

solution of the Schrödinger equation is presented. Specifically speaking, the equation to solve

is the two-center Coulomb electrostatic problem:

HΨ = EΨ,

where H is the Hamiltonian operator, E is an energy eigenvalue, and Ψ is the Schrödinger

wave function. The wave function Ψ must not only solve the equation, but is subject to

30

Chapter 2. State of the Art 2.3. Heuristic Methods for DEs

several other constraints. The equation error is defined then as error = (H − E) Ψ. The

fitness function for the GA is defined using the square error of the function:

Fitness =
1�

|error|2 dxdydz

A parameterization of the wave function was selected (Ψ = c exp (−f · r)), so the number of

unknowns is considerably reduced. MacNeil presents in his last paper [23] a more complex

problem, a multi-atom molecule of H+
2 . In this problem, the GA always find anomalous

solutions, called by the authors “parasitic solutions”. To deal with these solutions, the author

propose three alternatives: to change the basis functions, to change the fitness functions, or

to reformulate the main equation.

2.3.4 Genetic Programming

The first statement of modern “tree-based” genetic programming was given by Nichael L.

Cramer (1985). This work was later greatly expanded by John R. Koza, a main propo-

nent of GP who has pioneered the application of genetic programming in various complex

optimization and search problems.

GP is another evolutionary paradigm inspired by biological evolution to find computer

programs that perform a user-defined task. Essentially GP is a set of instructions and a

fitness function to measure how well a computer has performed a task. GP uses parse trees

as chromosome, creating expressions in a given formal syntax.

Several works in the literature solves ED using GP. Thus, Howard and Roberts [24]

propose solving the convective-diffusion equation using polynomials. The equation is

Txx − PeTx = 0

where the unknown function T is the temperature and Pe is the Peclet number. The boundary

conditions are T (0) = 1 and T (1) = 0. The original equation is transformed in order to

fulfill by construction the boundary conditions. The fitness function is computed with the

31

2.3. Heuristic Methods for DEs Chapter 2. State of the Art

least square errors of the residuals. An analytical expression for the fitness function can be

obtained because the solutions are expressed by means of polynomials.

Another interesting work can be consulted in Kirstukas et al. [25], where a GP approach

from an engineering perspective is employed. This paper presents a novel technique for per-

forming the fitness evaluation by analytically evaluating derivatives of the candidate solution

functions. The analytical solution approach provides a significant advantage in rapid reanal-

ysis of the problem when the boundary conditions, initial conditions, or material properties

change. Because symbolic differentiation is used, symbolic constants can be included in

the differential equations. The method is applied to linear and non-linear DEs. Homoge-

neous and non-homogeneous linear DEs are solved in two steps. The first step is relatively

time consuming and employs GP techniques to find basis functions that span the solution

space. The second step is very fast and uses a Gram-Schmidt algorithm to compute the

basis function multipliers to develop a complete solution for a given set of boundary con-

ditions. For non-homogeneous linear DEs, in the first step the particular solution for the

non-homogeneous linear DE is found in parallel with finding complementary solutions based

on the homogeneous part of the DE. Following the same process as used for the homoge-

neous linear differential equation is used except that the particular solution is added to the

scaled complementary solutions to satisfy the boundary conditions. For non-linear equations

there is not a direct and widely applicable methodology for obtaining analytical solutions. In

this case, the complete solution including the boundary conditions is evolved simultaneously.

Candidate solutions are expressed with a LISP-like notation to display the functions using

standard ASCII output.

Bryden et al. [26] explores evolutionary algorithms that use combinatorial graphs to limit

possible crossover partners. These graphs limit the speed and manner in which information

can spread giving competing solutions time to mature. This use of graphs is a computationally

inexpensive method of picking a global level of trade-off between exploration and exploitation.

Among other examples, this paper presents the solution of a simple differential equation

(y′′− 5y′ + 6y = 0) by a GP technique and using the graph based ideas. Candidate solutions

are expressed using parse trees representing mathematical expressions f (x). The fitness

32

Chapter 2. State of the Art 2.3. Heuristic Methods for DEs

function was computed as the sum of the error function E (x) = f (x)′′−5f ′ (x)+6f (x) over

100 equally spaced samples. This is the squared deviation points in the range from agreement

with the differential equation.

Another GP approach can be seen in Sobester et al. [3], where they propose a technique for

the mesh-free solution of elliptic partial differential equations where least-squares collocation

principle has been employed to define an appropriate objective function. In that work no

particular function basis is used, but symbolic regression is performed. This makes the

search space very large. In the case of problems defined on geometrically simple domains,

the solution evolved by GP is modified adding additional terms, such that the boundary

conditions are satisfied by construction. To satisfy the boundary conditions for geometrically

irregular domains, GP model is combined with a radial basis function network.

Seaton et al. [28] investigate the influence of the complexity when symbolic solutions to

a differential equation are found. They show that reducing the search space can improve

significantly the algorithm performances. A possible approach for reducing the search space

dimension is using some kind of function basis for building candidate solutions. The equa-

tions presented in the paper are first and second ordinary linear and non linear differential

equations. The fitness function is built adding to the residuals the error at the boundary

conditions. The solutions are expressed as mathematical expressions using the following

functions and operators: +, −, /, ∗, sin, cos, ln and exp.

2.3.5 Grammatical Evolution (GE)

Grammatical evolution (GE) is a relatively new evolutionary computation technique pio-

neered by Conor Ryan, JJ Collins and Michael O’Neill in 1998 [46] at the BDS Group in the

University of Limerick. It is related to the idea of genetic programming in that the objec-

tive is to find an executable program, or program fragment, that will achieve a good fitness

value for the given objective function. In most published work on Genetic Programming, a

LISP-style tree-structured expression is directly manipulated, whereas Grammatical Evolu-

tion applies genetic operators to an integer string, subsequently mapped to a program (or

33

2.3. Heuristic Methods for DEs Chapter 2. State of the Art

similar) through the use of a grammar. One of the benefits of GE is that it is possible to apply

standard mutation and recombination operators because candidate solutions are expressed

by means of linear codons. A more deep description of GE will be provided in section 3.1.

In the same way than GP, GE has been applied to solve DEs. Thus, Tsoulos and Lagaris

[1] solve a set of ordinary and partial DEs in a closed form analytical form using GE. If the

grammar has a rich function repertoire, and the DE has a closed form solution, it is very

likely that the method will recover it. If however the exact solution can not be represented in

a closed form, the method will produce a closed form approximant. Fitness function is built

adding to the residuals at the inner collocation points, the errors at the boundary conditions.

To compute the fitness function, derivatives must be obtained. This is done using a symbolic

mathematical engine.

GE has been used as well for enhancing the constructed neural method in Tsoulos et al. [2].

The main advantage of this approach is that the user does not choose a priori the number of

neuron cells. In that contribution local search is employed over some individuals. That paper

is based on a previous work from the same authors [47] where a new method for neural network

evolution that evolves the network topology along with the network parameters is described.

The proposed method uses GE to encode both the network and the parameters space. In

[2], each dependent variable (one for DEs and several for systems of DEs) is computed as the

output of a neural network. This output is a summation of different sigmoidal units:

N(X,P) =
H∑

i=1

βjσ

(
D∑

j=1

αijxj + bi

)
, (2.3)

where D independent variables are considered, H is the number of hidden units, αij is the

weight connection between input j and hidden unit i, βj is the connection weight between

the hidden unit j and the unique output. The coefficient bi is the bias of the hidden unit

i. The independent variables vector is X = [xi]. The vector with all the weights and bias is

P = [αij, βj, bi]. Only the sigmoidal function is used as activation function:

σ (x) =
1

1 + exp (−x)
(2.4)

34

Chapter 2. State of the Art 2.3. Heuristic Methods for DEs

The fitness evaluation uses penalization. Thus, the proposed penalty function is used to

force the neural network to train on the boundary conditions (PDEs) or the initial conditions

(ODEs). The error function represents the neural network’s misclassification rate and is

necessary in order to measure its efficiency. A Powell’s variant of the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) local optimization method is used each 20 generations over 20

individuals. Several problems are solved with a very good performance, achieving errors

between 10−5 and 10−9. The generations needed are between 43 and 1422. Solutions found

have good generalization properties because the errors remain low not only in the training

points, but as well in test points.

Balbasubramaniam et al. [27] propose a novel approach to find the solution of the matrix

Riccati differential equation (MRDE) for nonlinear singular systems using GE. The needs for

solving this equation often arise in analysis and synthesis such as linear quadratic optimal

control systems, robust control systems, performance criteria, stochastic filtering and control

systems, model reduction, differential games, etc. The GE solution is compared with a

more classical one using Runge Kutta (RK) method. The GE solutions are expressed as

mathematical expressions given by the grammar. Standard terminals are used, such as +,

−, /, ∗, sin, cos, exp and ln. Fitness function is built as in other approaches adding to the

residuals computed in the collocation points the errors at the boundary conditions. The paper

shows that solving MRDE is equivalent to solving the system of nonlinear DEs. According

to the authors, a GE approach can yield a solution of MRDE significantly faster than the

RK method.

2.3.6 Heuristics using Artificial Neural Networks

Artificial neural networks (ANNs) are computational models inspired by an animal’s central

nervous systems (the brain, in particular) which are able to learn as well as recognize pat-

terns. Artificial neural networks are generally presented as systems of interconnected neurons

which can compute values from inputs. Like other machine learning methods (systems that

learn from data) neural networks have been used to solve a wide variety of tasks that are

35

2.3. Heuristic Methods for DEs Chapter 2. State of the Art

x

x

x

x

f(...+b)

1

2

i

i

n

y

wn

w

2w

w
1

Figure 2.3: Schematic of an artificial neuron.

hard to solve using ordinary rule-based programming, including computer vision and speech

recognition.

A neural network consists of an interconnected group of artificial neurons. The neurons

are grouped in layers. Neurons of individual layers are independent of each other. This

naturally enables a degree of parallelism in the implementation. In Fig. 2.3 an individual

neuron is plot. The output of a neuron is the nonlinear weighted sum of the inputs computed

using an activation function:

y = f

(
N∑

i=1

wixi + b

)
(2.5)

where y is the neuron output, xi are all the inputs to the neuron, b is a bias and f is the

activation function. Note that the inputs are added with different weights wi.

Several activation function can be used. Even it is possible to used different activation

functions in the same network. In Table 2.7 some activation functions are given. As we will

see in next sections, derivatives of the activation functions would be useful.

Artificial neural network types vary from those with only one or two layers of single

direction logic, to complicated multi-input many directional feedback loops and layers. On

the whole, these systems use algorithms in their programming to determine control and

organization of their functions. One of the most common type of interconnection is a feed-

forward one, where connections between the units do not form a directed cycle. This is

36

Chapter 2. State of the Art 2.3. Heuristic Methods for DEs

Name Function f(x) First Derivative

Linear x 1

Sigmoidal 1/ (1 + e−x) f(x) (1− f(x))

Arctangent arctan (x) 1/ (1 + x2)

Hyperbolic tangent tanh (x) 1− f 2(x)

Table 2.7: Activation functions for ANNs.

x

x
0

i

10
u

...

...

x
D−1

u
1j

u
1N1

0ij ...

...

...

w u
Lj

wL−1,ij

u

u

L0

LNL

...

...

u
kj

wk−1,ij

u

u

k0

kNk

...

...

...

...

...

y
wLi0

0 1 k L L+1Layers:

...

...

Figure 2.4: Generic Neural Network with L hidden layers. For the sake of clarity, only one
output is plot.

different from recurrent neural networks. The feed-forward neural network was the first and

simplest type of artificial neural network devised. In this network, the information moves in

only one direction, forward, from the input nodes, through the hidden nodes (if any) and to

the output nodes. There are no cycles or loops in the network.

In the classic use of ANNs, several type of learning algorithms are reported. The learning

process consist of seeking the optimum values of the weights and bias to solve a specific task.

Generally speaking, exist three types of learning: Supervised, Unsupervised and Reinforce-

ment learning. Most of the algorithms used in training artificial neural networks employ

some form of gradient descent, using backpropagation to compute the actual gradients. It is

common to split the data in two sets: a trained set of data, and test data.

37

2.3. Heuristic Methods for DEs Chapter 2. State of the Art

Although in this survey the papers that solve DEs using heuristics are presented according

to the optimization algorithm (GA, Differential Evolution, Genetic Programming, etc), here

we will provide those works which use ANN to express the candidate solutions. As we will

see in the next lines, we adopt this approach because of the great number of works using

ANN to solve DEs.

We can find several works where ANNs are used to solve differential equations (a survey

about solving DE with a special type of neural networks and radial basis functions can be

consulted in [19]). As we will see in the next lines, ANNs are used to expressed the solution of a

particular DE. Classic training algorithms such as backpropagation, are not used because the

cost function not only depends on the ANN output, but as well on its derivatives. Therefore

the data can not be split in two different sets. Normally, some heuristic method is employed

to adjust the ANN parameters (weights, bias, etc). However, as it will be indicated in the

next lines, some works use backpropagation in very specific problems, where the output of

the ANNs can be known in advance considering special characteristic of the equation or the

type of solution.

Thus, Puffer et al. [11] present a special type of ANN called cellular neural networks

(CNN) to solve DEs. CNNs are a parallel computing paradigm similar to neural networks,

with the difference that communication is allowed between neighbouring units only. The dy-

namical behaviors of CNN processors can be expressed mathematically as a series of ordinary

differential equations, where each equation represents the state of an individual processing

unit. The behaviour of the entire CNN processor is defined by its initial conditions, the

inputs, the cell interconnection (topology and weights), and the cells themselves. Interac-

tions between cells are local and usually translation invariant, i.e. a connection from a cell

j towards another cell i only exists if j is part of i’s neighborhood N(i) and its type and

strength depends only on the relative position of j with respect to i. Thus the number of

connections increases only linearly with the number of cells. State and output vm
x,i of a cell i

in layer m are real numbers, their dynamics being determined by state equations of the form

dvm
x,i (t)
dt

= −g
(
vm
x,i (t)

)
+

M∑
m′=1

∑
i+l∈N(i)

am′m
l

(
vm′
y,i+l (t) , vm

y,i (t) ; pm′m
a,l

)
+

∑
i+l∈N(i)

bm
l

(
vm
u,i+l (t) , vm

u.i (t) ; pm
b,l

)
38

Chapter 2. State of the Art 2.3. Heuristic Methods for DEs

with vm
y,i+l = fout

(
vm

x,i

)
. The feedback connection from a cell i+ l in layer m′ towards another

cell i in layer m is defined by the weight function am′m
l , while the functions bml define the

connection from an input node vm
u,i+l towards a cell i, the parameter vectors pm′m

a,l and pm
b,l

have to be determined (e.g. by a learning algorithm). This type of networks are used for

approximating the solutions of some derivative equations. CNN are suitable for reproducing

the behavior of very non-linear differential equations regarding with time as independent

variable. Because in each neuron a derivative must be solved, it is not straightforward to

compute the outputs of the network. The results show that, depending on the training

pattern, solutions of various PDE can be approximated with high accuracy by a simple CNN

structure. Results for two nonlinear PDE, Burgers’ equation and the Korteweg-de Vries

equation, are discussed in detail. The cost function is computed as the mean square error of

the difference between the output of the CNN and a reference solution. Therefore, because a

reference solution is needed, this approach is opposite from the aforementioned works: here

the solution is known and what it is sought is an DE which produce the observed outputs.

To train the CNN, a Downhill Simplex method is used which requires no explicit gradient

information.

Lagaris et al. [12] use a feed-forward neural network to codify the solutions of DEs. The

trial solutions are computed as a sum of two parts. The first part satisfies the initial/boundary

conditions and contains no adjustable parameters. The second part is constructed so as not

to affect the initial/boundary conditions. To fix ideas, the authors present the solution to

the following first order ODE:
dy

dx
= f (y, x) ,

in the domain x ∈ [0, 1] with the boundary condition y (0) = A, being A a constant. The

proposed approach consist of expressing the trial solution as

yt (x) = A+ xN (x,p)

where N (x,p) is the output of a feed-forward neural network with one hidden unit and

weights p. Note that by construction, yt satisfies the boundary conditions for all possible

39

2.3. Heuristic Methods for DEs Chapter 2. State of the Art

N (x,p). The cost function to be minimized is built as

E (p) =
∑

i

(
dyt (xi)

dx
− f (yt (xi) , xi)

)2

,

where xi are the collocation points. As we can observe, this approach is problem dependent

because in some cases could be difficult to split the candidate solutions in the two terms. Neu-

ral network weights and bias are optimized using a quasi-Newton Broyden-Fletcher-Goldfarb-

Shanno method. This decompositions has the advantage of reducing the difficulty in the

optimization of the neural network, but is not a general approach. The neural networks only

have one hidden layer of 10 units and can be expressed as equation (2.3). The activation

functions are the sigmoid functions, Eq. (2.4). Authors show that is easy to symbolically

compute the derivatives of the neural network respect to the weights and the inputs. A grid

of 10 points is used in the ordinary and system differential equations are used, wheres 100

points are used in the partial derivative equations problems. The method exhibits excellent

generalization performance since the deviation at the test points was in no case greater than

the maximum deviation at the training points. This is in contrast with the finite element

method where the deviation at the testing points was significantly greater than the deviation

at the training points. The accuracy was measured using the exact solutions, and was around

10−6 and 10−7.

He et al. [13] present and ANN used as a controller of a first order system. The controller

must maintain the output of the system in a desired level. Therefore, the ANN can be

trained in the classic sense using backpropagation algorithm. Authors present an extended

backpropagation algorithm. Some advantages of this approach can be devised, as easily and

quickly finding approximate solutions for complicated first-order partial differential equations.

The differential equation solved is a very particular one (linear first order equation x′ = f(x)).

Let the output of an n-layer feed-forward network be an
i (w, b), (where w and b are the weights

and the bias of the network, respectively). The neural network can be described with the

40

Chapter 2. State of the Art 2.3. Heuristic Methods for DEs

following expressions

ok = wkak−1 + bk ak = fk
(
ok
)

k = 1, 2, . . . , n

where a0 = x is an n0-dimensional input vector, ak and fk are the nk-dimensional output

and the activation function vectors in the kth layer, respectively. The activation functions

in the hidden layers of the network were taken to be hyperbolic tangent sigmoid functions.

The numbers of nodes in the hidden layers were fixed to 30. The networks were trained using

a modification of the backpropagation algorithm taking into account the derivatives of the

neural network outputs:

4wk = −η ∂E
∂wk 4bk = −η ∂E

∂bk
,

being E the error of the neural network taking into account the outputs and the derivatives

and η the learning rate.

Aarts and Veer [34] present a method to solve a one dimensional unsteady groundwater

in a confined semi-infinite aquifer towards open water, without entrance resistance:

uxx − ut = 0,

with the boundary conditions u (0, t) = sin (t) and u (x, 0) = exp
(
−
√

0.5x
)
sin
(
−
√

0.5x
)
.

Candidate solutions are expressed with a combination of ANNs. The tuning of the network

parameters are performed using an evolutionary algorithm. The topology of the ANNs are

built using information of the specific DE to be solved. So it is not a generic approach. The

fitness function is computed comparing the ANNs outputs with the DE at several collocation

points, that is, the residuals are employed for this task.

The same approach than [12] has been successfully applied to a system of partial differen-

tial equations which models a non-steady fixed bed non-catalytic solid-gas reactor in Parisi

et al. work [14]. As usual, residuals (errors of the differential equation at one specified point)

at the inner and boundary collocation points are used to compute the fitness function. The

41

2.3. Heuristic Methods for DEs Chapter 2. State of the Art

training (weights and bias tuning) was performed using first a GA and then a gradient des-

cent method. The solution was found with uniform accuracy and the trained neural network

provides a compact expression for the analytical solution over the entire finite domain. The

neural network approximation has two units in the input layer, five units in the hidden layer

and one unit in the output layer. The output neurons have activation functions as well:

N(X,P) = g

(
H∑

i=1

βjg

(
D∑

j=1

αijxj + bi

))
, (2.6)

being all the activation functions

g (x) =
2

1 + exp (−2x)
− 1.

Modification of the activation functions is needed because any output value different from the

range of the activation function output can be achieved. The training set was composed by

110 equidistant points. The genetic algorithm takes around 500 generations and the gradient

descent routine takes approximately 2 · 104 iterations to converge.

Sun et al. [15] present a neural network trained in order to give the solution of the

Poisson differential equation, but in a traditional way, giving as training points the true

solution of the equation. The main idea is that Poisson PDE has a closed solution in simple

domains, such as a sphere. However, authors work with more complex domains to model the

behavior of human tissues. Concretely speaking, the human brain is model using a spheroid.

The network has only one hidden layer. Bipolar sigmoid and linear activation functions are

employed. Several popular training algorithms, including resilient backpropagation, scaled

conjugate gradient, Fletcher-Reeves, Polak-Ribiere, and Powell Beale were experimented.

The scaled conjugate gradient algorithm performed the best, although the differences between

algorithms were small. Although heavy computation is required to train the network when

the computational system is constructed, this is a one-time procedure which does not affect

the on-line performance.

Ramuhalli et al. [32] propose a finite-element neural network (FENN) obtained by embed-

42

Chapter 2. State of the Art 2.3. Heuristic Methods for DEs

ding a finite-element model in a neural network architecture that enables fast and accurate

solution of the forward problem. Results of applying the FENN to several simple electro-

magnetic forward and inverse problems are presented. It is based on a discretization of the

domain and it is a very specific method, only thought for solving a FEM solver in parallel.

In the general case with M elements and N nodes in the FEM mesh, the input layer will

have M inputs. The hidden layer has N2 neurons. Each neuron in the hidden layer acts

as a summation unit. The outputs of the hidden layer neurons are the elements Kij of the

global stiffness matrix. Each output neuron is also a summation unit followed by a linear

activation function. As a conclusion, the major advantage of the FENN is that it represents

the finite-element model in a parallel form, enabling parallel implementation in either hard-

ware or software. Further, computing gradients in the FENN is very simple. But a mesh

connectivity is required.

Shirvany et al. [17] use Multilayer Perceptron and Radial Basis Function neural network

to solve the nonlinear Schröndinger equation in hydrogen atom:

Hψ (r) = f (r) in D

ψ (r) = 0 on ∂D

 ,

where H is a differential operator, f (r) is a unknown function, D ⊂ R3 and ∂D is the

boundary of D. The collocation method is adopted, discretization the continue domain in

a finite number of points. As usual, the cost function for training the network is the sum

squared error (SSE) of residuals. For solving the optimization problem, the gradient-descent

backpropagation algorithm is used. This method can be used because of the particular form

of the equation. For that, eigenvalues of the system must be used. The strategy consists of

using a first guess for the eigenvalues. Knowing the eigenvalues, for a giving network, not

only the output can be computed in the collocation points, but as well the SSE values. If

after some steps, the energy function (residuals) did not converge to zero, the eigenvalues

were wrong. Therefore, the eigenvalues should be increased and tried again. However, after

43

2.3. Heuristic Methods for DEs Chapter 2. State of the Art

performing this process if the error cannot be reduced, the network is allowed to grow, i.e.,

the number of hidden neurons is increased by one.

Although Tsoulos et al. [2] was already mentioned in previous section because GE is

employed, the candidate solutions are expressed using a feed-forward artificial neural network

with one hidden level and one output. The output of the constructed neural network is a

summation of different sigmoidal units.

Raja et al. [37] present a GA approach for solution of FDEs. The general form of FDEs

solved in this work is

Dvy (t) = f (t, y (t) , y′ (t)) ,

with initial and boundary conditions given by

Dky (0) = ck, D
ky (t0) = bk,

with k = 0, 1, 2, · · · , dve − 1. In this method, a feed forward ANN is used to accurately

model the equation and a GA is applied for learning of weights. The fitness function is built

adding the square of the equation residuals at the some collocation points. Standard log-

sigmoid activation functions of the ANN are replaced by exponential functions to facilitate the

fractional derivative computations. The design scheme has been successfully applied to solve

different types of linear and nonlinear ordinary FDEs. The results were compared with exact

solutions, approximate analytic solution and standard numerical techniques. In case of linear

ordinary fractional differential equations, relatively more accurate solutions were obtained

than standard numerical methods. However, for complex nonlinear fractional differential

equation, the same scheme is applicable, but with reduced accuracy. The advantage of this

approach is that it provides the solution on continuous entire finite domain unlike the other

numerical techniques.

In Yazdi and Pourreza [36] paper, a novel structure of unsupervised adaptive network-

based fuzzy inference system (ANFIS) is presented to solve differential equations, where

an ANN and a fuzzy system are combined. The presented solution of DE consists of two

parts; the first part satisfies the initial/boundary condition and has no adjustable parameter

44

Chapter 2. State of the Art 2.3. Heuristic Methods for DEs

whereas the second part is an ANFIS which has no effect on initial/boundary conditions

and its adjustable parameters are the weights of ANFIS. The unsupervised training of the

network is performed using a hybrid learning algorithm which combines the least square

method and the backpropagation algorithm. For that, the desired outputs to a given input

must be computed. As in other approaches, this is done computing the residuals of the given

equation. To do that, derivatives of outputs are calculated numerically.

Chen et al. [18] present a mesh-free numerical method for solving PDEs based on inte-

grated radial basis function networks with adaptive residual sub-sampling training scheme.

Numerical experiments solving several PDEs show that this algorithm with the adaptive pro-

cedure requires fewer neurons to attain the desired accuracy than conventional radial basis

function networks. No detail description is given in the paper, but the training process is

based on the residuals of the DE, both in the inner and the boundary condition points. Due

to the particular type of problem solved, a linear equation system arise, which is solved by

linear least-square programming.

A different approach dealing with ANNs consist of solving a family of DEs using tra-

ditional methods and training a neural network for building surrogate models. Following

this line, El-Emam and Al-Rabeh [33] present a new hybrid adaptive neural network with

modified adaptive smoothing errors based on GA to construct a learning system for complex

problem solving in fluid dynamics. The system can predict an incompressible viscous fluid

flow represented by stream function through symmetrical backward-facing steps channels.

Mosleh [21] presents a novel approach to solve system of fuzzy differential equations

(SFDEs) with fuzzy initial values by applying the universal approximation method (UAM)

through an artificial intelligence utility in a simple way. The model finds the approximated

solution of SFDEs inside of its domain for the close enough neighborhood of the fuzzy initial

points. The author proposes a learning algorithm for adjusting the fuzzy weights. At the same

time, some examples in engineering and economics are designed. Due to the stochastic nature

of the DE involved, training techniques of the ANN requires a mathematical background that

is out of the scope of this survey.

In Zjavka and Abraham [40] paper, a method to predict failures in electronic circuits is

45

2.3. Heuristic Methods for DEs Chapter 2. State of the Art

presented. For that, a special ANN is employed called differential polynomial neural network,

which constructs and substitutes an unknown general sum partial differential equation with a

total sum of fractional polynomial terms. Therefore, strictly speaking, in this paper authors

do not present a method to solve DEs. In a later paper [41] by the same authors, the same

techniques are applied to predict time series of wind speed. To adjust the networks, two

different techniques are employed: simulated annealing (SA) and gradient steepest descent

(GSD). As the target of these works is not solving a specific DE, but substitute an unknown

DE by a simpler equation to achieve predictive capabilities in time series models, this paper

is as well out of the scope of this survey.

In Raja [42] paper, a solution for the Pantograph functional DE is presented:

d2y (t)

dt2
= f (t, y (t) , y (λt)) ,

with t ∈ (0, T) and the boundary conditions y (0) = b and y (T) = c, where b, c and λ are

constants. Functional DE are a generalization of delay DE. To approximate the equation,

feed-forward ANNs are appropriately combined to define an objective function. The weights

of these networks are optimized to minimize the objective function value with help of SA, PS

and GAs, Active set algorithm (ASA) and their hybrid combination. The cost functions are

built as usual adding the equation residuals with the errors at the boundary conditions.

2.3.7 Particle Swarm Optimization

Particle swarm optimization (PSO) is a computational method that optimizes a problem by

iteratively trying to improve a candidate solution with regard to a given measure of quality.

PSO optimizes a problem by having a population of candidate solutions, also called particles,

and moving these particles around in the search-space according to simple mathematical

formulae over the particle’s position and velocity. Each particle’s movement is influenced

by its local best known position but, is also guided toward the best known positions in the

search-space, which are updated as better positions found by other particles. This is expected

to move the swarm toward the best solutions.

46

Chapter 2. State of the Art 2.3. Heuristic Methods for DEs

PSO is originally attributed to Kennedy, Eberhart and Shi [48, 49] and was first intended

for simulating social behavior, as a stylized representation of the movement of organisms in

a bird flock or fish shoal. The algorithm was simplified and it was observed to be performing

optimization. The book by Kennedy and Eberhart [50] describes many philosophical aspects

of PSO and swarm intelligence. An extensive survey of PSO applications is made by Poli

[51].

Several works using PSO to solve differential equations can be found in the literature.

Thus in Khan et al. [29] paper, first order differential equations are expressed using ANNs,

and the PSO is employed to adjust the network weights. The solutions are achieved on the

continuous grid of time instead of discrete unlike numerical techniques. The fitness function

is built with the DE residuals at the collocation points.

In Raja et al. [39] the same approach using in [37] is applied to solve the fractional order

of the Ricatti differential equation:

dvy (t)

dtv
= p (t) + q (t) y (t) + r (t) y2 (t) ,

with 0 < t ≤ T . Feed-forward artificial neural network is employed for accurate mathematical

modeling and learning of its weights is made with heuristic computational algorithm based

on PSO as a tool for the rapid global search method, and SA for efficient local search. The

scheme is equally capable of solving the integer order or fractional order Riccati differential

equations. The fitness function of each particle is calculated by defining an unsupervised

error function which is formed by linear combination of the equation residuals in a predefined

temporal instants.

Babaei [4] employs the Fourier series expansion, calculus of variation, and particle swarm

optimization in the formulation of the problem. Both boundary value problems and initial

value problems are treated in the same way. Boundary and initial conditions are both modeled

as constraints of the optimization problem. The constraints are imposed through the penalty

function strategy. The fitness function is built adding the residuals at the collocation points

and adding the errors at the boundary conditions. Only ordinary DE problems are presented.

47

2.3. Heuristic Methods for DEs Chapter 2. State of the Art

2.3.8 Support Vector Machines (SVM)

A support vector machine (SVM) constructs a hyperplane or set of hyperplanes in a high-

or infinite-dimensional space. It is a nonlinear generalization of the Generalized Portrait

algorithm developed in Russia in the sixties by Vapnik, Lerner and Chervonenkis [52, 53]. In

1992, Boser, Guyon and Vapnik suggested a way to create nonlinear classifiers using kernel

functions [54]. The current standard algorithm was proposed by Cortes and Vapnik in 1993

and published in 1995 [55]. Least Squares SVM (LS-SVM) is a modification of the original

SVM approach where one finds the solution by solving a set of linear equations instead of a

convex quadratic programming problem for classical SVMs.

Although SVMs have been traditionally used in classification and regression tasks, some

works have been reported using SVMs for solving DEs. Thus, Mehrkanoon and Suykens [30]

present a method to solve second order partial differential equations with variable coefficients.

Given a general differential equation Lu (z) = f (z) with z ∈ Σ ⊂ R2 subject to the boundary

conditions Bu (z) = g (z) with z ∈ ∂Σ, the approximated solution function is expressed as

u (z) = wTϕ (z)+ d, where w and d are parameters of the model that have to be determined.

Function ϕ defines a kernel function in the form K (z, r) = ϕ (z)T ϕ (r). Then, the original

problem is transformed into a minimization one

min
w,d,e

1

2
wTw +

γ

2
eT e

subject to a set of constraints given by the collocation points and the boundary conditions.

γ is a positive parameter, and components of vector e are defined as the errors between the

approximated solution given by the LS-SVM and the differential equation at the collocation

points and boundary condition points. Note that the transformed problem is a quadratic

minimization under linear equality constraints, which enables an efficient solution. Authors

test the algorithm on a set of linear PDEs in rectangular and irregular domains. The LS-

SVM approach allows them obtain the solution of a linear PDE by solving a system of linear

equations. For a nonlinear PDE one requires applying a Newton-type iterative method.

48

Chapter 2. State of the Art 2.4. Conclusion

2.4 Conclusion

One the state of the art about solving DEs with heuristic methods has been exposed, some

conclusions can be commented.

First of all, we can say that these non classical methods to solve DEs are relative recent,

with the first papers appearing at the last decade of 20th century. So it is a young field with

around 20 years of history. Some interest in the research community is observed, appearing

new works every year. This interest can be partially explained thanks to the great advances

in Evolutionary Computing techniques and in the computer hardware.

Works in the literature can be classified following different criteria. Thus, regarding how

the candidate solutions are expressed, the most extended method (more than the 50% of

the papers reported in this survey) employ artificial neural networks. Other classification

can be done according the optimization process employed to adjust candidate solutions. A

relative high number of papers use other techniques related with Genetic Programming, or

some modern variation such as Grammatical Evolution. In order to increase the quality of

the solutions, a reduce number of works (less than 20%) employ some type of local search,

although it is not observed any predominant algorithm.

Regarding the global search process, there is not a predominant algorithm. It is important

to notice here that backpropagation, one of the most extended training algorithm for ANN,

in this survey is not the most extended. This is because ANN are not used as in the classical

approach of machine learning. On the contrary, ANNs must adjust no only the unknown

solution, but as well its derivatives.

Some papers focus on a very specific type of equation, such as Ricatti, Navier-Stokes or

Schrödinger equations. Those papers which try to solve a wider set of equations, only present

relative simple problems. Therefore we can conclude that the field of solving DEs using

heuristic methods, or more specific ones such as Evolutionary Algorithms, is not completely

explored a new ideas can be proposed.

49

2.4. Conclusion Chapter 2. State of the Art

50

Chapter 3

Background

In this chapter, all the search algorithms used in the present thesis are described: Gramma-

tical Evolution (GE), Evolution Strategies (ES), Covariance Matrix Adaptation Evolution

Strategies (CMA-ES) and Downhill Simplex (DS) method.

3.1 Grammatical Evolution (GE)

Grammatical Evolution (GE) was created by Conor Ryan, J. J. Collins and Michael O’Neill in

1998 [56] at the Biocomputing-Developmental Systems Group in the University of Limerick.

GE is an evolutionary algorithm that can evolve complete programs in an arbitrary language

using variable-length binary strings [46]. The binary genome determines which production

rules in a Backus-Naur form (BNF) grammar definition are used in a genotype-to-phenotype

mapping process to create a program.

Although GE is not the first instance in which grammars have been used with evolutionary

approaches to automatic programming, GE presents a unique way of using grammars in the

process of automatic programming. Variable-length binary string chromosomes are used.

Each consecutive group of 8 bits represent a codon. The integer values associated to each

codon are used in a mapping function to select an appropriate production rule from the

BNF definition. GE does not suffer from the problem of having to ignore codon integer

values because it does not generate illegal values. The issue of ensuring a complete mapping

51

3.1. Grammatical Evolution (GE) Chapter 3. Background

of an individual onto a program comprised exclusively of terminals is partly resolved using

wrapping. This technique involves re-using parts of the genome which has already being

expressed and draws inspiration from the overlapping genes phenomenon exhibited by many

bacteria, viruses, and mitochondria.

Since the publication of the first paper in 1998, a lot of works have been reported about

GE. Some of them present variations of the original GE algorithm, such as O’Neill and

Ryan [57] where several crossover operators are investigated, or O’Neill et al. [58] where

a position-independent variation on Grammatical Evolution’s genotype-phenotype mapping

process called π-GE is reported. Left Hand Side (LHS) crossover is a structure preserving

crossover in GE described in Harper and Blair [59, 60]. In other work by Harper and Blair

[61] dynamically defined functions is presented. Several extensions to standard GE has been

presented in Nicolau and Dempsey [62]. Ortega et al. [63] present a GE approach with

semantics. A GE variation guided by reinforcement was presented in Migo and Aler [64].

Byrne and O’Neil [65] study the difference between Persistent Random Constants and Digit

Concatenation as methods for generating constants. A good survey of works using GP, and

in particular GE, can be consulted in Langdon and Gustafson[66]. A specific book about

GE was published in 2004 by Alfonseca and Ortega [67] and some Ph.D. thesis are available

[68, 69, 70] in the literature.

3.1.1 Backus-Naur Form

Backus-Naur Form (BNF) is a notation for expressing the grammar of a language in the form

of production rules. BNF grammars consist of terminals, which are items that can appear

in the language, and nonterminals which can be expanded into one or more terminals and

nonterminals. A grammar can be represented by the tuple {N, T, P, S}, where N is the set

of nonterminals, T the set of terminals, P a set of production rules that maps the elements of

N to T , and S is a start symbol that is a member of N . When there are several productions

that can be applied to one particular element in N , the choice is delimited with the symbol

’|’.

52

Chapter 3. Background 3.1. Grammatical Evolution (GE)

A simple example of a grammar for symbolic regression could be:

N={expr,op,func}

T={sin,cos,tan,+,-,/,*,x,1.0,(,)}

S=<expr>

And the production rules P the following:

(1)<expr>::=<expr><op><expr> (0)

| (<expr><op><expr>) (1)

| <func>(<expr>) (2)

| <var> (3)

(2)<op>::=+ (0)

| - (1)

| / (2)

| * (3)

(3)<func>::=sin (0)

| cos (1)

| tan (2)

(4)<var>::=x (0)

| 1.0 (1)

where the numbers in parenthesis are used to numerate and identify each rule associated

to one nonterminal.

3.1.2 Mapping process

The genotype is used to map the start symbol onto terminals by reading codons of 8 bits

and generating a corresponding integer value from which an appropriate production rule is

selected by using the mapping function

rule = (codon integer value)mod (number of rules for the current nontermial)

where modular arithmetic is used. Each time a production rule has to be selected to map

from a nonterminal, another codon is read. In this way, the system traverses the chromosome.

During the genotype-to-phenotype mapping process it is possible for individuals to run out

53

3.1. Grammatical Evolution (GE) Chapter 3. Background

of codons. In this case, we wrap the individual and reuse the codons, that is, the traverse

of the chromosome continues from the beginning. If the decoding process has not finished

at the end of the chromosome, another wrap step is performed. A limit in the wrap steps

should be specified because some ill cases need an infinite number of codons.

In GE, each time the same codon is expressed, it will always generate the same integer

value, but depending on the current nonterminal to which it is being applied, it may result

in the selection of a different production rule. What is crucial, however, is that each time

a particular individual is mapped from its genotype to its phenotype, the same output is

generated. This results because the same choices are made each time. It is possible that

an incomplete mapping could occur even after several wrapping events and, in this case, the

individual in question is penalized. The selection and replacement mechanisms then operate

accordingly to increase the likelihood that this individual is removed from the population. An

incomplete mapping could arise if the integer values expressed by the genotype were applying

the same production rules over and over.

To reduce the number of invalid individuals being passed from generation to generation,

a steady-state replacement mechanism is employed.

In the following example, it is show how the genotype (10, 28, 1, 98, 45, 3, 1, 12, 35) of an

individual is decoded to finally obtain the phenotype cos (sin (1.0) + x) using the grammar

already given in the previous section. Note that one wrapping process was needed.

Genotype: 10 28 1 98 45 3 1 12 35

Step 0 : 10 28 1 98 45 3 1 12 35 -> <exp>

Step 1 : 10 28 1 98 45 3 1 12 35 -> 10 mod 4 = 2 -> <func>(<expr>)

Step 2 : 10 28 1 98 45 3 1 12 35 -> 28 mod 3 = 1 -> cos(<expr>)

Step 3 : 10 28 1 98 45 3 1 12 35 -> 1 mod 4 = 1 -> cos((<expr><op><expr>))

Step 4 : 10 28 1 98 45 3 1 12 35 -> 98 mod 4 = 2 -> cos((<func>(<expr>)<op><expr>))

Step 5 : 10 28 1 98 45 3 1 12 35 -> 45 mod 3 = 0 -> cos((sin(<expr>)<op><expr>))

Step 6 : 10 28 1 98 45 3 1 12 35 -> 3 mod 4 = 3 -> cos((sin(<var>)<op><expr>))

Step 7 : 10 28 1 98 45 3 1 12 35 -> 1 mod 2 = 0 -> cos((sin(1.0)<op><expr>))

Step 8 : 10 28 1 98 45 3 1 12 35 -> 12 mod 4 = 0 -> cos((sin(1.0)+<expr>))

Step 9 : 10 28 1 98 45 3 1 12 35 -> 35 mod 4 = 3 -> cos((sin(1.0)+<var>))

Step 10: 10 28 1 98 45 3 1 12 35 -> 10 mod 2 = 0 -> cos((sin(1.0)+x))

Phenotype: cos((sin(1.0)+x))

54

Chapter 3. Background 3.2. Evolution Strategies (ES)

3.1.3 Evolutionary Algorithm

As the population being evolved comprises simple binary strings, the standard GE algorithm

does not employ any special crossover or mutation operators and an unconstrained search

is performed on these strings due to the genotype-to-phenotype mapping process that will

generate syntactically correct individuals. Any evolutionary algortihm can be adopted, al-

though the most common option should be a variable-length genetic algorithm with standard

genetic operators of mutation and crossover.

3.2 Evolution Strategies (ES)

Evolution Strategies (ES) were created in the early 1960s and developed further in the 1970s

and later by Ingo Rechenberg, Hans-Paul Schwefel and their co-workers. Several good intro-

ductory articles can be consulted in the literature, such as [71, 72].

ES belong to the family of evolutionary algorithms that address optimization problems

in continues domains by implementing a repeated process of (small) stochastic variations

followed by selection: in each generation, new offspring (or candidate solutions) are generated

from their parents (candidate solutions already visited), their fitness is evaluated, and the

better offspring are selected to become the parents for the next generation.

One of the main contributions of ES to the field of Evolutionary Computing is the self-

adaptation of the mutation parameters . In general, self-adaptivity means that some pa-

rameters of the ES are varied during a run. For that, the parameters are included in the

chromosomes and co-evolve with the solutions.

A great number of ES references can be consulted in the Beyer’s ES tutorial [71], although

this work dates from 2002. A lot of papers devoted to improve the performance of the standard

ES are available in the literature. Thus, in order to improve the self-adaptive property of

strategy parameters, a new extended ES called Robust-ES is proposed in Ohkura et al. [73].

An interesting application using ES and Fourier series to difficult optimization tasks can be

consulted in Leung and Liang [74]. In Shir and Back [75, 76] niching methods are applied

55

3.2. Evolution Strategies (ES) Chapter 3. Background

to ES. In Kramer and Schwefel[77] several new constraint handling methods for ES are

presented. In Debski et al. [78] three new mechanisms for maintaining population diversity

in (µ, λ)-ES are introduced: deterministic modification of standard deviations, crowding,

and elitism. Another important variation of ES is Natural-ES [79], where self-adaptation of

the mutation matrix is derived using a Monte Carlo estimate of the natural gradient towards

better expected fitness. Several papers presents theory and applications of this new approach,

such as Glasmachers et al. [80].

3.2.1 Representation

Evolution strategies most commonly address the problem of continuous black-box opti-

mization. The search space is the continuous domain, Rn , and solutions in search space

are n-dimensional vectors, denoted as x. We consider an objective or fitness function

f : Rn → R,x → f (x) to be minimized. We make no specific assumptions on f , other

than that f can be evaluated for each x, and refer to this search problem as black-box op-

timization. The objective is, loosely speaking, to generate solutions (x-vectors) with small

f -values (assuming a minimization problem) while using a small number of f -evaluations.

Standard representation of the objectives variables xi are adopted, so the genotype space

is identical to the phenotype space. However, modern ES employs self adaptation, which

requires coding in the genotype several strategy parameters related to the mutation process.

3.2.2 Mutation Operators

The mutation operator introduces small variations by adding a point symmetric perturba-

tion to the result of recombination. This perturbation is drawn from a multivariate normal

distribution, N (0,C), with zero mean (expected value) and covariance matrix C ∈ Rn×n.

We have x + N (0,C) ∼ N (x,C), meaning that x determines the expected value of the

new offspring individual. We also have x + N (0,C) ∼ x + C1/2N (0, I), meaning that the

linear transformation C1/2 generates the desired distribution from the vector N (0, I) that

has independent and identically distributed N (0, 1) components.

56

Chapter 3. Background 3.2. Evolution Strategies (ES)

Based on multivariate normal distributions, three different mutation operators can be dis-

tinguished [81]: uncorrelated with one step size, uncorrelated with n step sizes, and correlated.

In the following subsections, these operators are described.

Uncorrelated Mutation with One Step Size

The covariance matrix is proportional to the identity, i.e., the mutation distribution follows

σN (0, I) with step-size σ > 0. The distribution is spherical and invariant under rotations

about its mean. Other authors [72] call this type of mutation operator spherical or isotropic.

The same distribution is used to mutate each component xi, therefore we only have one

strategy parameter σ in each individual. The mutation mechanism is sketched according to

the following expressions:

σ′ = σeτN(0,1),

x′i = xi + σ′Ni (0, 1) ,

where N (0, 1) denotes a random variable with standard normal distribution. The propor-

tionality constant τ is an external parameter called learning rate and is normally proportional

to 1/
√
n being n the problem dimensionality.

Uncorrelated Mutation with n Step Sizes

The covariance matrix is a diagonal matrix, i.e., the mutation distribution followsN (0, diag (σ)),

where σ is a vector of coordinate-wise standard deviations and the diagonal matrix diag (σ)

has eigenvalues σ2
i with eigenvectors ei. The principal axes of the ellipsoid are parallel to the

coordinate axes. This case includes the previous isotropic case. This operator is also known

axis-parallel [72].

The mutation mechanism is sketched according to the following expressions:

σ′i = σie
τ ′N(0,1)+τNi(0,1),

x′i = xi + σ′iNi (0, 1) ,

57

3.2. Evolution Strategies (ES) Chapter 3. Background

where τ ′ is proportional to 1/
√

2n and τ is proportional to 1/
√

2
√
n and, as in the previous

case, are called learning rates.

Correlated Mutation

In this type of operator, the covariance matrix is symmetric and positive definite (i.e. xCx >

0 for all x 6= 0), generally non-diagonal and has (n2 + n) /2 degrees of freedom (control

parameters). The general case includes the previous axis-parallel and spherical cases.

The rationale behind correlated mutations is to allow the ellipsoids to have any orientation

by rotating them with the covariance matrix C. The scaling factors σi and rotating angles

αij are related with the elements of the covariance matrix cij in the following way:

cii = σ2
i

cij,i6=j = 1
2

(
σ2

i − σ2
j

)
tan (2αij)


Several techniques are reported in the literature about how to evolve the covariance matrix

C.

3.2.3 Recombination

Recombination is the operator used to obtain one child or several children given at least

two parents. There are two recombination variants depending on how the parent alleles are

mixed. Thus, in discrete recombination one of the parents alleles is randomly chosen with

equal chance for either parents. On the other hand, in intermediate recombination the value

of the parent alleles are averaged.

Other classification of recombination operator can be followed regarding the number of

parents involved. When only two parents are used to create a child, local recombination

is used. On the contrary, we can use global recombination, where the complete population

behaves as a parent. In this case, the exact number of parents in global recombination cannot

58

Chapter 3. Background 3.3. Covariance Matrix Adaptation ES (CMA-ES)

be defined in advance.

ES typically uses global recombination. Besides, discrete recombination is used for the

object variable part, meanwhile intermediary recombination is recommended for the strategy

part [81]. With this approach, the scheme preserves diversity allowing the trial of very

different combination of values, whilst the strategy parameters are adapted in a cautious

mode.

3.2.4 Parent selection

Parent selection is not biased by fitness value, they are randomly selected. As global recom-

bination is normally used, instead of talking about parent individuals, the whole population

behaves as parent population.

3.2.5 Survivor Selection

Normally two selection schemes are used in ES. The (µ, λ) scheme creates λ children in-

dividuals using a parent population composed of µ individuals. The best µ are chosen

deterministically only from the offspring population. The (µ+ λ) scheme as well selects

deterministically µ individuals, but considering a population formed by the union of parents

and offspring. Classical ES generally use (µ, λ) selection because the algorithm is in prin-

ciple able to leave local optima and facilitate the self-adaptation mechanism. The selective

pressure is very high because λ is typically much higher than µ. A 1/7 ratio is recommended

[81].

3.3 Covariance Matrix Adaptation ES (CMA-ES)

The covariance matrix adaptation evolution strategy (CMA-ES) [82, 83, 72] is a de facto

standard in continuous domain evolutionary computation. It is based in standard ES, but

enhances the performances using several principles which they will described in following

sections. The algorithm was developed by Hansen in 2001.

59

3.3. Covariance Matrix Adaptation ES (CMA-ES) Chapter 3. Background

Algorithm 3.1 Simple random search algorithm.

Initialize x randomly
Until termination criteria do

Sample a new position y in the surrounding of x
if f (y) < f (x) then x = y

Return x

The CMA-ES is an attractive option for non-linear optimization if “classical” search methods,

such as quasi-Newton methods or conjugate gradient methods, fail due to a non-convex or

rugged search landscape. In fact, CMA-ES belongs to random search algorithms, also known

as direct-search, derivative-free, or black-box methods. In Algorithm 3.1, a simple example of

this type algorithm is sketched.

Learning the covariance matrix in the CMA-ES method is analogous to learning the in-

verse Hessian matrix in a quasi-Newton method. In the end, any convex-quadratic (ellipsoid)

objective function is transformed into the spherical function. This can improve the perfor-

mance on ill-conditioned and/or non-separable problems by orders of magnitude.

The CMA-ES overcomes typical problems that are often associated with evolutionary

algorithms:

• Poor performance on badly scaled and/or highly non-separable objective functions.

• The inherent need to use large population sizes. The CMA-ES algorithm is designed in

order to avoid having all the population in a same subspace even in small population

sizes.

• Premature convergence of the population. Step-size control in CMAES prevents the

population to converge prematurely.

An interesting feature of CMA-ES is its invariance properties, which can explain part of its

good performance in different fields. Invariance properties of a search algorithm denote iden-

tical behavior on a set, or a class of objective functions. Thus, CMA-ES presents translation

invariant. Further invariances, e.g. to certain linear transformations of the search space,

60

Chapter 3. Background 3.3. Covariance Matrix Adaptation ES (CMA-ES)

are highly desirable: they imply uniform performance on classes of functions and therefore

allow for generalization of empirical results. In summary, the CMA-ES exhibits the following

invariances.

• Invariance to order transformations, preserving the objective function value (i.e. strictly

monotonic). The algorithm only depends on the ranking of function values.

• Invariance to angle transformations (rigid), preserving the search space (rotation, re-

flection, and translation) if the initial search point is transformed accordingly.

• Invariance to a scaling of variables if the initial diagonal covariance matrix is scaled

accordingly.

• Invariance to any invertible linear transformation of the search space.

Fig. 3.1 shows a simple example on a two-dimensional problem1. The spherical optimization

landscape is depicted with solid lines of equal fitness values. Individuals in the population are

represented with dots. The distribution of the population is marked with dotted lines. Note

how the distribution expands, rotates and contracts along the generations. On this simple

problem, the population concentrates over the global optimum within a few generations.

A list of applications of CMA-ES is provided by Hansen in his web page2. Although the

list is not exhaustive and is not updated, it shows the good acceptance of the algorithm in a

lot of fields. Thus, in Hohm and Zitzler [84] we can see an application in molecular biology

where CMA-ES is used for parameter estimation of ordinary differential equation-based gene

regulatory network models. A photographic supra-projection application is presented in

Santamaŕıa et al. [85] where a forensic process that aims to identify a missing person from

a photograph and a skull found is described. The craniofacial superimposition as a 3D-

2D image registration problem is solved by means of a CMA-ES. In a more recent work

[86], the craniofacial superimposition problem is improved taking into account the different

1Figure extracted from http://en.wikipedia.org/wiki/CMA-ES
2https://www.lri.fr/~hansen/cmaapplications.pdf

61

http://en.wikipedia.org/wiki/CMA-ES
https://www.lri.fr/~hansen/cmaapplications.pdf

3.3. Covariance Matrix Adaptation ES (CMA-ES) Chapter 3. Background

Figure 3.1: Example of a run with CMA-ES on a simple two-dimensional problem.

sources of uncertainty. As in the previous work, the optimization problem is solved using

CMA-ES. Colutto et al. [87] present a generalization of CMA-ES in Riemannian manifolds.

More concretely, the CMA-ES algorithm is used to the segmentation of 3-D voxel images

obtaining a 3D model of a human brain from medical images. In [88] a design of resonator

dielectric antenna using a CMA-ES is presented. Other interesting medical application work

is Gong et al. [89], where a multiple-object 2-D/3-D registration technique for non-invasively

identifying the poses of fracture fragments in the space of a preoperative treatment plan.

Other application of antenna design can be consulted in Gegory et al. [90], where several

symmetries are exploited in order to obtain an ultra-wideband device.

3.3.1 Sampling

A population of new search points (individuals, offspring) is generated by sampling a multi-

variate normal distribution. The basic equation for sampling the search points for generation

g is as follows

x
(g+1)
k ∼ m(g) + σ(g)N

(
0,C(g)

)
, (3.1)

62

Chapter 3. Background 3.3. Covariance Matrix Adaptation ES (CMA-ES)

for k going from 1 to all the population λ. In the above expression ∼ denotes the same

distribution on the left and right side, N
(
0,C(g)

)
is a multivariate normal distribution with

zero mean and covariance matrix C(g), x
(g+1)
k ∈ Rn is the k-th offspring (individual, search

point) from generation g + 1, m(g) ∈ Rn is the mean value of the search distribution at

generation g, σ(g) is the step size at generation g and C(g) ∈ Rn×n is the covariance matrix

at generation g.

3.3.2 Selection and Recombination

The new mean m(g+1) of the search distribution is a weighted average of µ selected points

from the sample x
(g+1)
1 , · · · ,x(g+1)

λ :

m(g+1) =

µ∑
i=1

wix
(g+1)
i:λ , (3.2)

where µ ≤ λ is the parent selection size, wi are positive weight coefficients for recombination

(
∑µ

i=1wi = 1) and x
(g+1)
i:λ i-th best individual out x

(g+1)
1 , · · · ,x(g+1)

λ from Eq. (3.1).

3.3.3 Adapting the Covariance Matrix

How the Covariance Matrix C is updated is the central part of the CMA-ES algorithm. Here

we do not try to give a detailed description of the process, neither the theoretical foundations

of the algorithm. The interested reader can consult several Hansen’s papers, such as [83].

However, some basics will be described in this section.

A maximum-likelihood principle, based on the idea to increase the probability of successful

candidate solutions and search steps, is exploited by the CMA-ES algorithm. The mean of the

distribution is updated such that the likelihood of previously successful candidate solutions

is maximized. The covariance matrix of the distribution is updated (incrementally) such

that the likelihood of previously successful search steps is increased. Both updates can be

interpreted as a natural gradient descent. Also, in consequence, the CMA-ES conducts an

iterated principal components analysis of successful search steps while retaining all principal

63

3.4. Downhill Simplex Method Chapter 3. Background

axes.

3.3.4 Step Size Control

Two search paths are maintained, sσ and sc. The first path, sσ, accumulates steps in the

coordinate system where the mutation distribution is isotropic and which can be derived

by scaling in the principal axes of the mutation ellipsoid only. Under neutral selection,

sσ ∼ N (0, I) and log σ is unbiased. The second path, sc , accumulates steps, disregarding σ,

in the given coordinate system. The covariance matrix update consists of a rank-one update,

based on the search path sc , and a rank-µ update with µ nonzero recombination weights wk.

Under neutral selection the expected covariance matrix equals the covariance matrix before

the update. The updates of x and C follow a common principle. The mean x is updated such

that the likelihood of successful offspring to be sampled again is maximized. The covariance

matrix C is updated such that the likelihood of successful steps (xk − x) /σ to appear again,

or the likelihood to sample (in direction of) the path sC , is increased. For further details

about the updating of the covariance matrix C we can consult [83].

3.4 Downhill Simplex Method

Downhill Simplex method, also known as Nelder-Mead or Amoeba method, was proposed by

John Nelder and Roger Mead in 1965 [91] and is a technique for minimizing an objective

function in a many-dimensional space. The method uses the concept of a simplex, which is a

special polytope of n+ 1 vertices in n dimensions. The algorithm generates a new vertex by

extrapolating the behavior of the objective function, measured at each test point arranged

as a simplex, and applying geometric rules such as reflection, expansion, contraction and

reduction. The algorithm then chooses to replace the worst of these vertices with the new

test point and so the technique progresses.

Several applications of Downhill Simplex method can be consulted in the literature. Thus,

Robin et al. [92] present an optimization of Electron-Beam Lithography step in the fabrication

64

Chapter 3. Background 3.4. Downhill Simplex Method

Algorithm 3.2 Downhill Simplex algorithm

0: Given a polytope x1, · · · ,xn+1 while not happy
1: Sort: f (x1) ≤ f (x2) ≤ · · · ≤ f (xn+1)
2: x0 = 1

n

∑n
i=1 xi

3: xr = x0 + α (x0 − xn+1) //Reflection
if f (x1) ≤ f (xr) < f (xn) then

xn+1 = xr

go to 0
4: if f (xr) < f (x1) then //Expansion

xe = x0 + γ (x0 − xn+1)
if f (xe) < f (xr) then

xn+1 = xe

go to 0
else

xn+1 = xr

go to 0
5: xc = x0 + ρ (x0 − xn+1) //Contraction

if f (xc) < f (xn+1) then
xn+1 = xc

go to 0
6: xi = x1 + σ (xi − x1) ∀i ∈ {2, . . . , n+ 1}//Reduction

go to 0

of microwave electronic circuits. A fast on-line optical signal-to-noise ratio measurement

technique which uses the Downhill Simplex algorithm as a minimum finder is proposed and

tested in Floridia and Moraes [93]. A benchmarking analysis is presented by Hansen [94].

Neto et al. [95] report a simple and fast method to estimate the fiber dispersion and laser

chirp3 parameters on a dispersive Intensity Modulation and Direct Detection (IM/DD) optical

channel.

3.4.1 Algorithm description

Many variations exist depending on the actual nature of the problem being solved. Al-

gorithm 3.2 describes a variation of the original algorithm. The parameters α, γ, ρ and

σ are respectively the reflection, the expansion, the contraction and the shrink coefficients.

3A chirp is a signal in which the frequency increases or decreases with time.

65

3.4. Downhill Simplex Method Chapter 3. Background

3X

X1

X2

ReductionReflection
3X

X1

X2

Xr

X0

X

3X

X1

X2

Expansion

X0

e

3X

X1

X2

Contraction

X
0

cX

Figure 3.2: Geometric operations in a polytope performed by Downhill Simplex method.

Standard values are α = 1, γ = 2, ρ = −1/2 and σ = 1/2. The initial simplex is important,

indeed, a too small initial simplex can lead to a local search, consequently the algorithm can

get more easily stuck. So this simplex should depend on the nature of the problem. Fig. 3.2

shows in a graphical way all the possible geometric operations to compute the new candidate

node of the simplex in a simple two dimensional problem.

66

Chapter 4

Novel Methods for Solving DEs

This chapter describes the main contributions of the Thesis. Three novel algorithms to

solve differential equations (DEs) are presented. All of them can be generically described

by Fig. 4.1. As we see in the figure, the original problem of solving a DE is transformed

into an optimization problem. This new problem is solved using an evolutionary algorithm.

Depending on the approach, a local search can be applied on the best individual found by the

evolutionary algorithm. Finally, the best individual at the end of the local search represent

the solution to the original problem.

The methods are chronologically sorted. First a summary of the problem formulation

is given in Section 4.1. Section 4.2 describes a new method to solve DEs based on GE. A

baseline algorithm is first commented, and then several enhancements are sketched. Section

4.3 describes a different approach to solve DEs based on Fourier Series and ES. Finally, the

last main contribution to this thesis is provided in section 4.4, where DEs are solved using a

new method based on Gaussian kernels and CMA-ES.

4.1 Problem Statement: Summary

The mathematical problem statement was given in the Chapter 1 of this document. For the

sake of clarity, following a brief summary is provided. The original problem to be solved can

67

4.2. Solving DEs with GE (DESGE) Chapter 4. Novel Methods for Solving DEs

Problem solution

Local search

Best individual

Global Search by EA

Optimization Problem

Original Problem: Solving a DE

Reformulation

Figure 4.1: Block diagram of the generic proposed algorithms. The global search of the
differential equation (DE) solution is made using an evolutionary algorithm (EA).

be formulated according to expression (1.1) subject to boundary conditions given by (1.2).

Depending on the dimensionality of the independent and dependent variable space, ordinary

differential equation (ODE), a system of differential equations (SODE) or partial differential

equation (PDE) can be formulated. ODEs can be linear can be linear (LODE) or non linear

(NLODE).

The solution satisfying (1.1) and (1.2) can be computed solving a Constrained Optimiza-

tion Problem given by (1.3). The problem is then discretized using a set of nC collocation

points situated within the domain and as well nB points on the boundary. Finally the orig-

inal problem is transformed into a Free Constrained Optimization Problem defining a cost

function according to (1.6).

4.2 Solving DEs with Grammatical Evolution: DESGE

Algorithm

This part of the thesis describes the first contribution to the field of solving DEs with Evolu-

tionary Computing. An algorithm based on Grammatical Evolution (GE) is presented. Al-

68

Chapter 4. Novel Methods for Solving DEs 4.2. Solving DEs with GE (DESGE)

Problem solution

GE GA

Optimization Problem

Original Problem: Solving a DE

Reformulation

Figure 4.2: Block diagram of the proposed algorithm based on Grammatical Evolution.
The global search of the DE solution is made using an genetic algorithm, which drives a
grammatical evolution (GE) engine.

though other works in the literature solve DE using GE [1, 2], we adopt the same approach in

this fist contribution because symbolic mathematical expressions are the more direct approach

to express the candidate solutions. GE gives a framework to handle these symbolic expres-

sions in a natural way.

As it is shown in Fig. 4.2, a Genetic Algorithm (GA) based on Grammatical Evolution is

employed. Opposite to Fig. 4.1, no local search is used. Candidate solutions are expressed

as generic mathematical expressions. To check if that expressions are solution of the ED, a

symbolic mathematical engine is needed. Thus, Section 4.2.1 described the particular engine

selected in the implementation. Then, Section 4.2.2 gives a complete description of the

baseline algorithm. Finally Section 4.2.3 describes several enhancements implemented trying

to improve the quality of the results and the convergence of the global algorithm.

4.2.1 GiNaC: A Symbolic Mathematical Engine

GiNaC [96] is a free computer algebra system released under the GNU General Public Li-

cense. The name is a recursive acronym for ”GiNaC is Not a CAS” (Computer Algebra

System). What distinguishes GiNaC from most other computer algebra systems is that it

does not provide a high-level interface for user interaction. Rather, it encourages its users to

write symbolic algorithms directly in C++, which is GiNaC’s implementation programming

69

4.2. Solving DEs with GE (DESGE) Chapter 4. Novel Methods for Solving DEs

language. Algebraic syntax is achieved in C++ through the use of operator overloading.

GiNaC uses the CLN library [97] for implementing arbitrary-precision arithmetic. Sym-

bolically, it can do multivariate polynomial arithmetic, factor polynomials, compute GCDs

(greatest common divisors), expand series, and compute with matrices. It is equipped to han-

dle certain non-commutative algebras which are extensively used in theoretical high energy

physics: Clifford algebras, Lie algebras, and Lorentz tensors.

All the needed features needed for developing a DE solver based on GP has been checked:

• Create a symbolic expression from a string of characters (decoding).

• Symbolic differentiation.

• Expression substitution.

• Symbolic evaluation (exact solution).

• Numerical evaluation.

• Create a string of characters from a symbolic expression (encoding).

All these operations have been checked executing a C++ program included in the Appendix

B.

4.2.2 Algorithm Description

Following lines describe the algorithm implemented to solve a generic DE based on Gram-

matical Evolution paradigm. An example of a configuration file for the program can be

consulted in Appendix C.

Grammar

The grammar can be configured easily with the input file, depending on the problem to

solve. A grammar {N, T, P, S} is composed by 4 elements as it was described in Section 3.1:

nonterminals N , terminals T , product rules P and a start symbol S. Following the grammar

used to solve differential equations is provided:

70

Chapter 4. Novel Methods for Solving DEs 4.2. Solving DEs with GE (DESGE)

N={<exp>,<op>,<func>,<con>,<var>,<ephcon>}
T={+,-,*,^,(,),2.3323, ... ,sin,cos,...}
S=<exp>

P:
<exp>::= (<exp><op><exp>) //Parenthesis needed for ^

| (<exp>)
| <var>
| <con> //Optional
| <fun>(<exp>) //Optional
| <ephcon> //Optional

<op> ::= + | - | * | / | ^

<fun>::= sin | cos | tan | atan | exp | log | ...

<var>::= x | z | y | ...

Parenthesis in the first production rule of <exp> is needed because ^ symbol in GiNaC

can’t work with expression such as 4^x^3. The number of functions, constants, operators

and variables are defined in the input file.

In the grammar, the symbol <ephcon> represents a Ephemeral constants, which is a

numerical-constant generation method. It can be seen as a translation of the classical ge-

netic programming’s ephemeral random constant to the grammatical evolution framework.

Ephemeral constants have been implemented according to Nicolau and Dempsey [62]. In this

approach data which are needed for constant creation, are stored in the genotype. Therefore

the numerical constants can evolve with the algorithm. User can choose the number of codons

n and the range [a, b]. Then, the ephemeral constant is computed as

a+

∑n−1
i=0 ci256i

255
∑n−1

i=0 256i
(b− a)

where ci is the integer number codified by codon i, which goes from 0 to 255 (each codon

is codified by an unsigned char C type, which is 1 byte size). Ephemeral constants are

transformed into character strings using 2n digits. In this way, the accuracy of the expression

obtained in the decoding process depends on the number of bytes of the ephemeral constants.

Nevertheless, the symbolic library GiNaC represents internally the constant with 20 digits

71

4.2. Solving DEs with GE (DESGE) Chapter 4. Novel Methods for Solving DEs

so it has not sense to use more than 10 bytes for each ephemeral constant. However it is

straightforward to force GiNaC to work with a higher accuracy.

Fitness Function

The fitness function is computed adding errors at the collocation and boundary points using

the original simple fitness function (1.6), but slightly modified to:

F (y) =
1

m · (nC + nB)

[
nC∑
i=1

‖Ly (xi)− f (xi)‖2 + ϕ

nB∑
j=1

‖By (xj)− g (xj)‖2

]
. (4.1)

Note that the cost function is obtained dividing the residuals by the total number of col-

location points m · (nC + nB) in a similar way as in [14]. Other authors [12, 3, 27] do not

make this normalization, which makes their values more dependent on the number of collo-

cation points. The penalty parameter ϕ controls the relative weights assigned to boundary

condition points compared with the inner collocation points (normally nC � nB). As it has

been commented previously, derivatives and the numerical evaluation of the expressions at

the collocation points are performed using GiNaC library.

Selection, Crossover and Mutation

Parent selection is performed using tournament method. The number of parents can be

selected in the input file.

Two crossover operators have been implemented: standard one point crossover and LHS

(Left Hand Side) crossover according to [59]. The last one is a structure preserving operator

and needs for each individual to store some extra information created during the decoding

process. The first crossover point in the first parent is selected randomly. The first crossover

point in the second parent is constrained to that of a codon that expands (or it is associated

with) the same type of non-terminal as the codon following the crossover point of the first

parent. The second crossover point in each parent is selected so that the codon sequence

in between the two crossover points fully expands the non-terminal designated by the first

72

Chapter 4. Novel Methods for Solving DEs 4.2. Solving DEs with GE (DESGE)

crossover point.

These two operators are applied according to the following strategy:

• When the maximum wrapper value is 1, LHS crossover is used if both parents are

feasible and it exists a correct first point crossover in the second parent.

• Otherwise standard crossover is employed. If the maximum wrapper is greater than 1,

always standard crossover is used.

For the sake of clarity, an example of a standard crossover is shown (parents⇒children).

P1 : (x ∗ C2)

P2 : (cos(sin((((log(C4) + x)/(C0))))))

⇒
Ch1 : (x ∗ C2)

Ch2 : (cos(sin(((C8)))))

It is important to notice that this and the following examples are shown at phenotype level,

meanwhile the operator is performed at genotype level. Observe that in the second child

appear a constant C8 which is not in any parent. Even more, it is possible to obtain one or

both infeasible children using two feasible parents. An example of LHS crossover could be

P1 : (exp(sin(exp(C8))) + x)

P2 : sin(C3)

⇒
Ch1 : (C3 + x)

Ch2 : sin(exp(sin(exp(C8))))

We can observed that the parent structures have been preserved. Parents have inter-

changed sub-expressions exp(sin(exp(C8))) and C3.

Once a new population is created, mutation operator is applied in some individuals.

Two different mutation operators are designed. One of them modifies the codons adding a

random variable with uniform distribution between -26 and 26. These limits are a 10% of

the maximum integer number codified by a codon (8 bits). The second mutation operator

interchanges codons inside the same individual. Each mutation operator is applied with

certain probability defined in the control file.

73

4.2. Solving DEs with GE (DESGE) Chapter 4. Novel Methods for Solving DEs

To fix ideas, following the source code of the two mutation operators is provided:

//Individual
void GODChromosome::MutateIntra(double Pmut)
{
for(unsigned int e=0; e<codon.size(); e++)
for(unsigned int c=0; c<codon[e].size(); c++)
if(RandomDouble() <= Pmut)
{
if(RandomBit()) codon[e][c] += (unsigned char)RandomInt(26); //+10%
else codon[e][c] += (unsigned char)(256-RandomInt(26)); //-10%

}
fitnessUpdated = false;

}

void GODChromosome::MutateExtra(double Pmut)
{
if(codon.size()<2) return;
if(RandomDouble() > Pmut) return;

vector<unsigned char> aux;
unsigned int i = RandomInt(codon.size());
unsigned int j = RandomInt(codon.size());
aux = codon[i];
codon[i] = codon[j];
codon[j] = aux;
fitnessUpdated = false;

}

//Population
void GODPopulation::MutateIntra(double pMutation)
{
for(unsigned int i=0; i<chromosome.size(); i++)
chromosome[i].MutateIntra(pMutation);

}

void GODPopulation::MutateExtra(double pMutation)
{
for(unsigned int i=0; i<chromosome.size(); i++)
chromosome[i].MutateExtra(pMutation);

}

//Main loop
for(generation=0; generation<evaluator.generations; generation++)
{
//Dump
// ...

//Stop criteria
// ...

74

Chapter 4. Novel Methods for Solving DEs 4.2. Solving DEs with GE (DESGE)

//Store Best individuals
// ...

//Cross operator. Population is considered even
for(unsigned int cross=0; cross<population.chromosome.size()/2; cross++)
population.CrossChromosomes(evaluator.tournament,

evaluator.pRecombination,
childs.chromosome[2*cross],
childs.chromosome[2*cross+1]);

//Generation Model
population = childs;

//Mutate Intra
population.MutateIntra(evaluator.pMutationIntra);

//Mutate Extra
population.MutateExtra(evaluator.pMutationExtra);

//Elitism: substitute worst individuals by the bests in previus generation
// ...

}

A generational model is employed, i. e., the old population is substituted by the popula-

tion generated with the children individuals. Elitism of one or two individual is used.

4.2.3 Enhancing DESGE Algorithm

Several enhancements to the baseline algorithm have been implemented and tested.

Ephemeral Local Search

An Ephemeral Local Search is done over an individual choosing one random ephemeral cons-

tant in his phenotype. A Newton-Raphson method is performed modifying the ephemeral

constant. The number of iterations of this local search can be specified in the input file. If the

new individual has a better fitness than the original one, the original individual is swapped

with the new one.

Local Search is applied only over feasible individuals. If an individual codes a set of

expressions (for system of equations problems), local search is applied over each equation.

Following the details of the Newton-Raphson method are explained. If the individual has

several ephemeral constants, one of them, c for instance, is randomly chosen. Calling F (c)

75

4.2. Solving DEs with GE (DESGE) Chapter 4. Novel Methods for Solving DEs

the fitness of this individual, the Newton-Raphson algorithm is as follows:

ci+1 = ci − 0.8
F (ci)

F (ci)− F (ci−1)
(ci − ci−1) ,

where ci+1 is the new ephemeral constant at step i+ 1 computed with previous values ci and

ci−1. Note that a relaxation factor of 0.8 is used. This relaxation improves the performance

of the Newton-Raphson algorithm. If c0 is the initial value of the ephemeral constant at the

individual before doing the local search, the next constant is obtained as c1 = c0 +4 always

fulfilling that c1 ∈ [a, b]. The increment 4 is computed as 4 = ζ b−a
100

where ζ is a random

variable of uniform distribution between −1 and 1. The Newton-Raphson is repeated until

a predefined maximum number of iterations is achieved. The constant c is only changed

if during the process a lower fitness value has been detected. There are other two stop

conditions: |ci − ci−1| < 10−2B and |F (ci)− F (ci−1)| < 10−2B, where B is the ephemeral

constant number of bytes.

Ephemeral Constant Local Search is done only over feasible individuals in the population

with a probability peph for each individual. If an individual has several ephemeral constants,

one is randomly chosen. Ephemeral Local Search is always performed in each generation over

the best individual in the population (peph = 1 for that individual).

A more advance local search has been investigated: Newton-Raphson using derivatives.

In the ephemeral local search described above, a complete fitness evaluation was required in

each sub-step of the Newton-Raphson algorithm. Furthermore, the fitness function deriva-

tive was made numerically, so at least two fitness evaluation was needed for estimating the

derivative. For the sake of simplicity, ordinary differential equation with dependent variable

y and independent variable x is considered, although the method could be applied for any

kind of differential equation problem. Let’s consider that local search is done over and indi-

vidual with a phenotype given by an expression g, that is, a possible solution has the shape

y = g(x). The idea is to choose one ephemeral constant in the phenotype and substitute its

numerical value by a symbol κ. In this way, using (4.26), the fitness of the phenotype will be

76

Chapter 4. Novel Methods for Solving DEs 4.2. Solving DEs with GE (DESGE)

a function instead of a numerical value

F (g (κ)) ≡ F (κ)

Defining the derivative of the fitness function as

F ′ (κ) =
∂F

∂κ

the Newton-Raphson can be computed with the following algorithm

κn+1 = κn − 0.8
F (κn)

F ′ (κn)
(4.2)

Eq. (4.2) is thought for finding the root of the fitness function. Due to definition of the

fitness function, it never has negative values, so equation (4.2) is numerically unstable. A

possible solution is to find the minimum value of the symbolic fitness function. This is the

same than finding the roots of the first derivative. Therefore a possible new approach is to

modified the Newton-Raphson algorithm using the second derivative F ′′ (κ) = ∂2F/∂κ2 :

κn+1 = κn − 0.8
F ′ (κn)

F ′′ (κn)
(4.3)

This new iterative scheme is numerically more stable, less steps are needed for the convergence

and better accuracy is obtained in the solution. Nevertheless there are two drawbacks: Second

symbolic derivative must be computed, which add a little overhead; and the iterative scheme

could converge into a local maximum instead of a local minimum.

The final algorithm for ephemeral constant local search is a trade-off between both approa-

ches:

• The local search is done over the best individual of the population. In the other

individuals, the local search is done with a certain probability pLocalSearch, typically 0.5.

• Newton-Raphson is applied using equation (4.2) or (4.3) with a probability of 0.5. In

77

4.2. Solving DEs with GE (DESGE) Chapter 4. Novel Methods for Solving DEs

this way, equation (4.2) gives good convergence, and equation (4.3) allows to scape

from local maximum and explore other possible minimums.

• A predefined Newton-Raphson number of steps are performed, typically 20. This steps

could be lower if the stop criteria is fulfilled, i.e, |κn+1 − κn| < 10−20 or |F ′ (κn)| <

10−20. If second derivative is used, the last stop criteria is changed to |F ′′ (κn)| <

10−20. All the Newton-Raphson steps do not required a full fitness evaluation, only the

symbolic fitness function must be computed once at the beginning of the algorithm.

• The final value of the constant κ is only modified if a better fitness is found.

Gaussian local search

A new concept for improving the solver performance has been checked. For that, a new set

of defined functions (Gaussians) can be used in the search process. The Gaussian functions

are coded in the genotype in a optimized way. For problems of just one independent variable

x, the Gaussian will have 4 ephemerals constant as parameters:

G(x; c1, c2, c3, c4) = (c1 + c2(x− c4)) exp
(
−c3(x− c4)

2
)

If the range of the constant includes negative values, c3 is changed with its square c23. The

target of these functions is to control in the point c4 the value of the dependent variable of

the differential equation problem modifying c1, and the derivatives of the candidate solutions

by means of c2 parameter. With c3 we control the width of the “bell”.

Note that c4 appears twice in the phenotype. In the genotype only is coded once, so any

operator applied over a Gaussian which modifies this constant will be applied in a preserving

way. For cases of more independent variables, the Gaussian functions are defined conveniently.

For instance, for two independent variables x and y we have

G(x, y; c1, c2, c3, c4, c5, c6, c7) = (c1 + c2(x− c6) + c3(y − c7)) exp
(
−c4(x− c6)

2 − c5(y − c7)
2
)

A Gaussian Local Search operator over an individual consist of adding a Gaussian to the

78

Chapter 4. Novel Methods for Solving DEs 4.2. Solving DEs with GE (DESGE)

individual and performing ephemeral local searches over all the Gaussian ephemeral constants

except those which place the Gaussian in the domain (c4 in the previous one dimensional

example). If the new individual has a better fitness, it is swapped by the original one. This

operation is performed only over feasible individuals. The ephemeral constant are initialized

to (cmax − cmin)/100 except the constant which place the Gaussian, where cmax and cmin are

the maximum and minimum collocation points in the domain. The Gaussian is placed at the

collocation point where the residual of the main equations or the boundary conditions are

higher. For that reason it is mandatory that all the collocation points are inside the range

of ephemeral constants.

Before adding a Gaussian, it is checked if there is a previous Gaussian in the genotype of

the individual at the same collocation point. If so, an ephemeral constant local search is per-

formed without adding a Gaussian. In this way, we try to minimize bloat. However Gaussian

local search is more expensive that ephemeral local search and can provoke bloat. Therefore

Gaussian local search is only used when any fitness variation of the best individual is detected

along some number of generations controlled with the parameter MAX_GENERATION_INERTIA.

As for Ephemeral Local Search, all individuals are selected with a probability of peph, except

the best individual which is always selected.

Addition Crossover

A new crossover operator was implemented. Given two parents with phenotypes f1 and f2

the two children will be

Ch1 : αf1 + (1− α)f2

Ch2 : (1− α)f1 + αf2

being α a random ephemeral constant between 0 and 1. Addition crossover is only used if

both parents are feasible. It is mandatory, if addition crossover is used, that 0 and 1 values

are inside the range of the ephemeral constants. If there are several dependent variables,

different α values will be used for each expression of the genotype.

79

4.2. Solving DEs with GE (DESGE) Chapter 4. Novel Methods for Solving DEs

A new parameter ADDITION_CROSSOVER_RATIO controls the ratio between LHS crossover

and addition crossover. Each crossover type is applied over the whole population. With 0

only LHS crossover is used.

Grammar for real numbers

A specific grammar to code real numbers was tested using scientific notation with 3 digits

in the exponent and a fixed number of digits in the mantissa (which can be selected by the

user). An example grammar of 3 digits in the mantissa is shown:

<real> = <dig>.<dig><dig>e<dig><dig><dig> |

<dig>.<dig><dig>e-<dig><dig><dig> |

-<dig>.<dig><dig>e<dig><dig><dig> |

-<dig>.<dig><dig>e-<dig><dig><dig>

<dig> = <GECodonValue_0_9>

The meaning of label <GECodonValue_0_9> is the same that in paper [62]. It allow

us extract codon values and integrate them directly into the generated phenotype strings.

During the mapping process, if this symbol is encountered, it is replaced with the numerical

value of the current codon, and this codon is consumed. The 0 and 9 specifies a lower and

upper limit for this value, so the codon value is mapped to the range specified, using the mod

operator.

This grammar has several advantages: scientific notation allows to represent a high range

of real numbers, so it is not necessary to specify limits; and the implementation is easy

because the ephemeral constant size in the genotype is always known. Sometimes could be

interesting to restrict the ephemeral constant range. For that, the user can specify a range

limit. This is particular useful to avoid numerical problems with GiNaC library when high

numbers appear, as it was commented in section 4.2.1. If the float value decoded from a

chromosome is outside the feasible range, the actual value is set to the closer limit.

80

Chapter 4. Novel Methods for Solving DEs 4.3. Solving DEs with ES (DESES)

ES

...

ES

Problem solution

ES

Optimization Problem

Original Problem: Solving a DE

Reformulation

Figure 4.3: Block diagram of the proposed algorithm based on Evolution Strategies. Note
that several steps are used sequentially.

4.3 Solving DEs with Evolution Strategies and Fourier

Series: DESES Algorithm

In the present section, a different approach for solving differential equations is reported.

Fig. 4.3 gives a general overview of the algorithm. Candidate solutions are expressed as par-

tial sums of Fourier series. In order to simplify the problem, an even periodic expansion of

the solutions is done in such a way that all the sine coefficients are vanished. This represen-

tation can be regarded equivalent to a Discrete Cosine Transform (DCT) [98] which has been

successfully used in several science and engineering applications, as for lossy compression of

audio (MP3) and image (JPEG). With the chosen solution representation, and as it was com-

mented in the previous approach, the problem of solving differential equations is transformed

into an optimization one. The differential equation residuals and the boundary condition

errors are minimized. The optimal Fourier coefficients are tuning using Evolution Strategies

(ESs). In order to facilitate the process, the harmonic searching is done in a progressive way

starting with the lowest order harmonic and using a different ES cycle to find the optimum

value for each one. This sequential process is represented in Fig. 4.3 with different ES steps.

81

4.3. Solving DEs with ES (DESES) Chapter 4. Novel Methods for Solving DEs

Following the details of our approximation are exposed.

4.3.1 Representation of Candidate Solutions

In the proposed approach, each component y (x) of the trial solution is expressed as a partial

sum of a Fourier series. The periodic expansion of y (x) from the original definition range to

all Rd is always performed using even functions. Therefore all the sine Fourier coefficients are

vanished. In order to define this expansion, first some notation must be introduced. For each

coordinate xk with k = 1, · · · , d, variables xk,min and xk,max are defined as the minimum and

maximum values among the inner collocation points C and the boundary condition points

B. Using these values and an user defined parameter ξ ≥ 0 called range extension, a new

coordinate origin ck and a semi-period Lk are defined as

ck = xk,min − ξ (xk,max − xk,min) (4.4)

Lk = (xk,max − xk,min) (1 + 2ξ) (4.5)

Then each component y (x) of the solution vector is expressed as a partial sum of Fourier

Cosine series:

y (x1, . . . , xd) =
a0

2
+

N∑
n1,...,nd=1

an1,...,nd

d∏
k=1

cos

(
πnk

Lk

(xk − ck)

)
(4.6)

where a0 and an1,...,nd
are the unknown coefficients or harmonics and N is an user parameter

which determines the number of harmonics used. The total number of harmonics for each

component will be 1+Nd. By definition, this expanded function is periodic in each dimension

with period 2Lk and, in addition, is defined everywhere, continuous and infinitely differen-

tiable. However, according to Eq. (1.6), this function will be only evaluated in the original

definition range. Therefore the expansion can be done anyhow with the following constraints:

the expanded function must be periodic, even and solution to the original problem in Ω and

∂Ω.

Range extension parameter ξ is needed in order to suppress the intrinsic limitations of

82

Chapter 4. Novel Methods for Solving DEs 4.3. Solving DEs with ES (DESES)

ξ(xmax-xmin)

xmin xmax

L

y(
x)

3

3.5

4

4.5

x

0 1 2 3 4 5 6

Figure 4.4: Even periodic expansion example of a function originally defined in the range
[1, 2].

even functions at the boundaries regarding the first partial derivative:

∂y (x1, . . . , xd)

∂xk

∣∣∣∣
xk=ck

= 0. (4.7)

Note that if ξ = 0 the null first derivative will be obtained at points xk = xk,min, which could

be interesting in some particular cases. Nevertheless, a general problem will have not-null

first derivatives at boundaries. Because non discontinuities are introduced, neither in the

expanded function itself nor in their derivatives, convergence problems regarding Gibbs phe-

nomenon (large oscillations of the nth partial sum of the Fourier series near the discontinuity

jump) are avoided. According to expression (4.6), Fig. 4.4 shows an even periodic expansion

example of a function originally defined in the range [1, 2], in one dimension (d = 1) with a

range expansion ξ = 1. Note the null first derivatives at points x = 0, x = 3 and x = 6.

83

4.3. Solving DEs with ES (DESES) Chapter 4. Novel Methods for Solving DEs

4.3.2 Fitness Function

The same fitness function than DESGE algorithm is emplyed, Eq. (4.1). Computing the cost

function implies obtaining derivatives of expression (4.6). A generic derivative operator D

can be expressed as

D =
∂λ1

∂xλ1
1

∂λ2

∂xλ2
2

. . .
∂λd

∂xλd
d

. (4.8)

Using Eq. (4.6), the differential operator D applied to the dependent variable y yields

D (y) =
N∑

n1,...,nd=1

an1,...,nd

d∏
k=1

(
πnk

Lk

)λk

cos(λk)

(
πnk

Lk

(xk − ck)

)
(4.9)

where the nth derivative of cosine function can be computed as

cos(n) x =



cosx if n%4 = 0

− sin x if n%4 = 1

− cosx if n%4 = 2

sin x if n%4 = 3

. (4.10)

4.3.3 New symbolic expression interpreter

The symbolic engine GiNaC [96] has been substituted by an in-house symbolic interpreter.

Because the individual phenotype structure is known a priori, symbolic derivatives can be

computed directly in the code using the expressions in (4.10). Therefore, the use of GiNaC

library is not necessary. In fact, depending on the derivative equation complexity, GiNaC

library makes the computation inefficient.

An in-house C++ class dealing with symbolic expressions has been developed. It consists

of binary trees. Each node in the tree is a pointer to some object representing a mathematical

function, an operator, a variable or a number. The leaves of the the tree are variables and

84

Chapter 4. Novel Methods for Solving DEs 4.3. Solving DEs with ES (DESES)

2

x

*

3

x

sin

-

+

ln

x

+

Figure 4.5: Tree representing the math expression ln (x+ sinx) + 3x− 2

numbers. Recursive functions are used, allowing an easy implementation. The only drawback

of this new approach is that the user must provide the expression in a special way for building

the tree. Tree nodes are filled starting with the most left free positions. In future versions

an interpreter could be used for making the input file more friendly.

For instance, the following expression

ln (x+ sinx) + 3x− 2

is stored as the tree showed in Fig. 4.5. User must provide the tree nodes in the following

order1:

+ ln + x sin x − ∗ 3 x 2

Using this new approach has two main advantages. Firstly, it is not necessary to link

with GiNaC and CLN libraries, simplifying the source code, the maintenance and reducing

the executable size. Secondly, the performance has been increased. For instance, the CPU

time needed for a run of NLODE2 problem (the benchmark problems will be described in

Section 5) has been decreased 7 times, almost one order of magnitude.

1The same expression could be coded with different trees.

85

4.3. Solving DEs with ES (DESES) Chapter 4. Novel Methods for Solving DEs

4.3.4 Algorithm Description

In this section a global strategy for solving the original problem is presented. The basic idea

consists of introducing harmonics one by one in the evolutionary process starting with the

lower order ones. This strategy is based on the assumption that the absolute values of Fourier

coefficients decrease when the harmonic number is increased. There are several works that

give bounds to the Fourier coefficients assuming some properties to the original function [99].

For instance, if we assume that y is an absolutely continuous function of one real variable,

then the nth Fourier coefficient an fulfills

|an| ≤
K

n
, (4.11)

where the constant K only depends on y but not on n. Better bounds can be given if more

features are assumed on y. This property has been observed experimentally in all the test

problems. In Fig. 4.6 the absolute value of the first ten Fourier coefficients |an| are shown

for LODE1 case (the test cases will be described in section 5.3). We can observe the decay

of the absolute values when the harmonic number is increased. Note the logarithm scale on

the vertical axis.

The global algorithm consists of several basic steps, called ES steps. Each ES step co-

rresponds to a closed evolutionary strategy and is instantiated as it will be explained in next

subsection. In addition, a global flag of three possible values (active, inactive and frozen),

named flagn, is associated to each harmonic coefficient an. Each flagn is initialized before

running an ES step, does not evolve and has the same value for all individuals in the popula-

tion. If a harmonic is active, it participates for computing the fitness value of the individual,

using Eq. (4.26), and is evolved by the ES step. If a harmonic is inactive, it is not used (zero

value) for computing the fitness value and is not evolved. Finally, if the harmonic is frozen,

it is used for computing the fitness value but is not evolved by the ES step. Representing

each ES step by ES [mlow,mhigh], each harmonic in an individual is classified as follows:

86

Chapter 4. Novel Methods for Solving DEs 4.3. Solving DEs with ES (DESES)

0 1 2 3 4 5 6 7 8 9 10
Harmonic number

0.
00

01
0.

00
1

0.
01

0.
1

1
H

ar
m

on
ic

 c
oe

ff
ic

ie
nt

 a
bs

ol
ut

e
va

lu
es

Figure 4.6: First 10 Fourier coefficients computed for LODE1 case.

• Harmonic an1,...,nd
will be active if there is at least one index ni ∈ [mlow,mhigh] and the

remaining indexes are nj ≤ mhigh.

• A harmonic will be considered frozen when for all indexes nj < mlow.

• A harmonic will be considered inactive if there is at least one index nj > mhigh.

Using the aforementioned notation, the global strategy can be implemented by a sequence of

ES steps represented by the algorithm shown in Fig. 4.7.

Note that there is always an ES step of type ES [0,m] after of an ES step of type

ES [m,m]. As can be seen easily, a new harmonic is tuned (activated) in an ES step of

type ES [m,m]. Then, all the harmonics lower or equal than the new one are tuned in a

step of type ES [0,m]. With this policy the search space dimension is reduced making the

searching process more systematic and the optimization problem easier. The steps ES [0, 0]

and ES [1, 1] are not considered because the algorithm starts tuning the two first harmonic

simultaneously (ES [0, 1]). The final step is called Fine Tuning phase and its aim is to adjust

finely all the harmonics simultaneously, so all of them are activated. The stop criterion for

87

4.3. Solving DEs with ES (DESES) Chapter 4. Novel Methods for Solving DEs

�����
�����
�����
�����

�
�
�
�

��
��
��
��

�����
�����
�����
�����

ES[3,3]

ES[0,1]
ES[2,2]
ES[0,2]

ES[N−1,N−1]
...
ES[0,3]

ES[N,N]
ES[0,N−1]

ES[0,N]
ES Fine Tuning

Figure 4.7: Global strategy as a sequence of ES steps. Each bar represents, going from left
to right, the frozen harmonics (pattern filled), the active (black color) and the inactive ones
(white color).

each ES step is fulfilled when the best fitness during a predefined number of consecutive

generations is not modified within a given tolerance or when a predefined maximum number

of generations G are fulfilled. These three parameters (number of generations, tolerance and

G) are input parameter for the algorithm.

Before running each ES step, the population must be initialized. The initialization po-

licy is different for ES steps of types ES [m,m], ES [0,m] or the Fine Tuning phase. The

population initialization in each ES step of type ES [m,m] can be summarized as follows:

an =



U (α, β) if flagn = active

ân if flagn = frozen

0 if flagn = inactive

, (4.12)

where U (α, β) is a random sample from a continuous uniform distribution in the range [α, β],

being α and β user defined parameters. The symbol ân denotes the harmonic with index n of

the best individual at the final population of the previous ES step run. This policy avoids the

algorithm being trapped in local optima when a new harmonic is used. On the other hand, it

is not performed any particular initialization in steps of type ES [0,m] or Fine Tuning steps,

88

Chapter 4. Novel Methods for Solving DEs 4.3. Solving DEs with ES (DESES)

that is, the initial population is copied from the final population of the previous ES step.

Mutation strengths are initialized in a similar way. For steps of type ES [m,m] it is used

the next expression:

σn =


U (γ, δ) if flagn = active

0 if flagn = inactive or frozen

, (4.13)

where the range of the random variable U (γ, δ) is as well a user defined parameter. Initiali-

zation for ES [0,m] is done in a range ten times lower than in expression (4.13) in order to

re-adjust lower harmonics when the new harmonic has been computed:

σn =


U (γ, δ) /10 if flagn = active

0 if flagn = inactive or frozen

. (4.14)

Finally, all the mutation strengths in Fine Tuning phase are initialized to a small value (10−7

in the experiments).

In PDEs, an increment of the harmonic order implies a non linear increment in the number

of harmonics depending on the problem dimension. For instance, for a two dimensional

problem, going from ES [0, 3] to ES [0, 4] implies an increment in the number of harmonics

of 7, as we can observe in Eq. (4.15):



a11 a12 a13

a21 a22 a23

a31 a32 a33


=⇒



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


. (4.15)

89

4.3. Solving DEs with ES (DESES) Chapter 4. Novel Methods for Solving DEs

Therefore, in PDE problems, the maximum number of new coefficients to tune in each

ES [m,m] phase could be specified as another algorithm input. In this way, this type of

phases would be split into several sub-phases.

Evolution Strategy

The optimization problem of searching the best set of harmonic coefficients is solved using

a ES which is an optimization technique based on ideas of adaptation and evolution [71].

Among all the Evolutionary Computing paradigms, ES has been chosen because they are

typically used for continuous parameter optimization problems and its very useful feature:

self-adaptation of strategy parameters [81]. There is a strong emphasis on mutation for

creating offspring. In this approach uncorrelated mutation with several step sizes is used.

Regarding the genotype coding, each component of the solution vector is represented bya0, a1,··· ,1, · · · , aN,··· ,N︸ ︷︷ ︸
a

, σ0, σ1,··· ,1, · · · , σN,··· ,N︸ ︷︷ ︸
σ

 . (4.16)

In the case of a system of equations, as many vectors as Eq. (4.16) will be handle as dependant

variables. The first part of the genotype, a, codifies all the harmonic coefficients needed for

building the individual’s phenotype using Eq. (4.6). For each individual, a fitness value

can be computed using Eq. (4.26). The second part of the vector, σ, codifies the mutation

strengths for each harmonic. In system of equations, as many coefficients and sigmas will be

handle as number of dependent solution.

Within one ES generational cycle, λ offspring individuals are generated from a set of

µ parent individuals using recombination and mutation operators. Then selection operator

chooses those individuals which will form the population in the next generation. The process

will be repeated in a close loop until some stop condition is fulfilled.

Global discrete recombination is used for the harmonics, and global intermediate recom-

90

Chapter 4. Novel Methods for Solving DEs 4.3. Solving DEs with ES (DESES)

bination is performed for the mutation strengths. That is,

achild
n = aparent1

n or aparent2
n

σchild
n = (σparent1

n + σparent2
n) /2


(4.17)

where n ≡ n1, · · · , nd is an index vector according to expression (4.6) and the parents are

chosen randomly among all the population. This scheme of recombination is the most used

in ES implementations because preserves diversity within the phenotype space, allowing the

trial of very different combinations of values, whilst the averaging effect of intermediate

recombination assures a more cautious adaptation of mutation strengths [81].

Each λ offspring individual is mutated using independent random samples from a standard

normal distribution N (0, 1)

σ′n = σn exp (τ ′N (0, 1) + τNi (0, 1)) (4.18)

a′n = an + σ′nNi (0, 1) (4.19)

where τ and τ ′ are the learning rates defined as

τ ′ = fτ/
√

2m (1 +Nd)

τ = fτ/
√

2m
√

1 +Nd

 ,

being fτ a learning rate factor defined by the user and 1+Nd the total number of harmonics

for each component, and m the number of dependent variables or equations. In order to

91

4.3. Solving DEs with ES (DESES) Chapter 4. Novel Methods for Solving DEs

avoid too small mutation steps, a threshold ε is applied in the following way:

if σ′n < ε =⇒ σ′n = ε (4.20)

The threshold used in the present work is ε = 10−20. In order to guarantee extinction of misfit

individuals, the classical selection process (µ, λ) is used. However, it is modified adding elitism

of one individual. That is, the next generation is formed by the best µ individuals among the

λ mutated offspring and the best individual among all the parents. In this way, the fitness

of the best individual in the population is a monotonic function with the generation number.

Two stop conditions are checked: maximum number of generations or unchanged fitness of

the best individual during a predefined number of generations. The tolerance used in the

present work to distinguish unchanged fitness values is 10−9.

4.3.5 Separation of Variables

As we will see in Chapter 5.3, solving PDEs are more difficult compared with ODEs because

the number of unknowns to be tuned is bigger (for example, from 11 unknowns in ODEs we

move to 101 in PDEs). Two strategies based on the separation of variables of PDEs have

been tested: separation of variables is a method for solving ordinary and partial differential

equations, in which algebra allows us to rewrite an equation so that each of two variables

occurs on a different side of the equation2. The first strategy consist of reducing the number

of unknowns from 101 to just 21 changing the expression (4.6) by

y (x1, . . . , xD−1) =
a0

2
+

N∑
n0,...,nD−1=1

D−1∏
i=0

ai,ni
cos

(
2π

D∑
k=1

nk

Lk

(xk −Bk)

)
. (4.21)

As we see the original unknowns an0,··· ,nD−1
have been substituted by ai,ni

. The accuracy is

decreased, but the search space is reduced facilitating the optimization process.

The other separation of variables approach consists of using all the possible harmonics

an0,··· ,nD−1
, but when a new harmonic n is taking into account, instead of performing several

2http://en.wikipedia.org/wiki/Separation of variables

92

Chapter 4. Novel Methods for Solving DEs 4.4. Solving DEs with CMA-ES (DESCMA-ES)

Problem solution

DS (local search)

Best individual

CMA-ES (global search)

Optimization Problem

Original Problem: Solving a DE

Reformulation

Figure 4.8: Block diagram of the proposed algorithm. The global search of the Differential
Equation (DE) solution is made using Covariance Matrix Adaptation Evolution Strategies
(CMA-ES) and the local search by mean of a Downhill Simplex (DS) algorithm.

steps for using the new unknowns gradually, a separation of variables simplification is used

only in this step. Only an···n is searched, meanwhile the rest of new unknowns are computed

with the following expression:

an0···nD−1
=

D−1∏
i=0

ani···ni
.

Both strategies have been tested with several PDEs. Unfortunately, results obtained are

worse than those obtained with the method without separation of variables.

4.4 Solving DEs with CMA-ES and Gaussian Func-

tions: DESCMA-ES Algorithm

In this section an heuristic method based on Covariance Matrix Adaptation Evolution Strate-

gies (CMA-ES) for solving differential equation is presented. Candidate solutions are ex-

pressed as a weighted sum of Gaussian functions, which can be considered a special type of

radial basis functions. To increase the accuracy of the method, a local search is applied to

93

4.4. Solving DEs with CMA-ES (DESCMA-ES) Chapter 4. Novel Methods for Solving DEs

the best solution found by the CMA-ES using the Downhill Simplex (DS) algorithm.

A block diagram of the algorithm is showed in Fig. 4.8. As we see, the original problem

of solving a particular DE is reformulated as a new optimization problem. The solution is

obtained making a global search by mean of an evolutionary algorithm (CMA-ES). On the

best individual obtained in such search, a local search is performed employing a Downhill

Simplex (DS) algorithm.

Following it is described the individual representation and the fitness function used in

this new approach. These elements will define the new algorithm implemented.

4.4.1 Representation of Candidate Solutions

In the previous approaches, the candidate solutions were expressed using general symbolic

mathematical expressions (DESGE algorithm) and Fourier series (DESES algorithm). The

first approach make the optimization problem very large, because it is not known a priori

how the solution will be built using the terminals of the grammar. In the second approach,

the search space is reduced using a basis function. However, the algorithm is not efficient

when the problem dimension is lager than one.

In order to facilitate the search, it has been used a different functional basis to express

the candidate solutions: radial basis functions have been adopted. A radial function is

a real-valued function whose value depends only on the distance from the origin, so that

φ (x) = φ (‖x‖); or alternatively on the distance from some other point c, called a center,

so that φ (x, c) = φ (‖x− c‖). The norm is usually the Euclidean distance, although other

distance functions are also possible.

Among the family of radial basis function, Gaussian functions are chosen because its good

behavior to approximate any continuous function [100]. A Gaussian kernel is defined as

Φ (x, c) = exp
(
−γ ‖x− c‖2) , (4.22)

where c ∈ Rd is a vector defining the center of the Gaussian, and γ > 0 is a scalar which con-

trol the dispersion of the distribution. A candidate solution y (x) is then expressed combining

94

Chapter 4. Novel Methods for Solving DEs 4.4. Solving DEs with CMA-ES (DESCMA-ES)

n Gaussian kernels in the following way:

y (x) =
n∑

i=1

wiΦ (x, ci) =
n∑

i=1

wi exp

[
−

d∑
j=1

γi (xj − cij)
2

]
. (4.23)

For each Gaussian we have d + 2 degrees of freedom: the d components of the centers ci,

the dispersion parameter γi and the weight wi. This problem can be seen as an optimization

problem with n (d+ 2) degrees of freedom. If the function to be estimated is a vector function

with m dimensions in the output domain, we apply the previous ideas to all of m dimensions.

Therefore we obtain the following degrees of freedom or number of unknowns (variables):

N = m · n · (d+ 2) . (4.24)

For instance, in the case of an ordinary DE (m = d = 1), each genotype would be represented

by

[w1, γ1, c1, · · · , wn, γn, cn] . (4.25)

Finally, the original problem has been transformed into a Free Constrained Optimization

Problem. Therefore, non-constrains in the variables are considered. In particular, γ values

are not limited to positive values. Although standard Gaussian kernels have positive γ values,

no constrains are applied over gammas because it has been observed experimentally better

convergence if γ ∈ R. For example, for γ = 0 a constant function can be approximated with

only one kernel. This has the disadvantage that these non-standard Gaussian kernels are

not bounded when γ < 0, that is, limx→∞ Φ (x, c) = ∞. However, we are only interested in

solving differential equations in bounded domains.

4.4.2 Fitness Function

In the present approach, the fitness function is computed with a modification of Eq. (4.1) as

follows:

F (y) =
1

m · (nC + nB)

[
nC∑
i=1

ξ (xi) ‖Ly (xi)− f (xi)‖2 + ϕ

nB∑
j=1

‖By (xj)− g (xj)‖2

]
, (4.26)

95

4.4. Solving DEs with CMA-ES (DESCMA-ES) Chapter 4. Novel Methods for Solving DEs

where a weighting factor ξ (x) ∈ R+ only dependent on the collocation points xi is intro-

duced. The weighting factor ξ (x) can be used to modify the algorithm convergence behavior

increasing the relative errors in some domain locations. In the present approach, it is used to

increase the weights of the inner collocation points closer to boundary points in the following

way:

ξ (xi) =

1 + κ

(
1−

min∀xj∈B ‖xi − xj‖
max∀xk∈C

(
min∀xj∈B ‖xk − xj‖

))
1 + κ

, (4.27)

where κ ≥ 0 is a user parameter called inner weighting factor. The previous expression

assigns a maximum value of 1 to all the collocation points closest to the boundary ∂Ω, and

a value of 1/ (1 + κ) to those collocation points with the maximum distance to ∂Ω, i. e.,

the more interior points. When κ = 0, the standard fitness function is recovered because

ξ (x) = 1. Note that the weighting factor only depends on the collocation points. So it can be

computed in a pre-processing step, not adding any extra computational cost to the algorithm.

It is also important to notice that any connectivity is needed, so the method maintains its

mesh-free feature.

According to Eq. (4.26), not only the candidate solution function is needed, but as well its

derivatives. For that reason we have chosen Gaussian kernels: they are infinitely differentiable

and the derivatives can be obtained straightforward. Nevertheless, there is not any general

expression to obtain all the derivatives for any arbitrary order. The first derivative respect

to component k is:

∂y (x)

∂xk

= −2
n∑

i=1

wiγi (xk − cik) Φ (x, ci) . (4.28)

The second derivative is a bit more complex. If k 6= l we have

∂2y (x)

∂xk∂xl

=
n∑

i=1

wi4γ
2
i (xk − cik) (xl − cil) Φ (x, ci) , (4.29)

otherwise
∂2y (x)

∂x2
k

=
n∑

i=1

wiγi

[
4γi (xk − cik)

2 − 2
]
Φ (x, ci) . (4.30)

96

Chapter 4. Novel Methods for Solving DEs 4.4. Solving DEs with CMA-ES (DESCMA-ES)

−20

−15

−10

−5

0

5

10

x
−1 −0.5 0 0.5 1

Φ''(x,c)
Φ(x,c)

Φ'(x,c)

γ=10 c=0

Figure 4.9: A Gaussian kernel Φ (x, c) and its first and second derivatives.

Higher order derivatives can be obtained by hand. This will depend on the DE to solve.

In Fig. 4.9 it is plotted a Gaussian kernel Φ (x, c) in one dimension with center in the origin

c = 0 and γ = 10. It is plotted as well the first and second derivatives. We can observe that

although the function’s zone of influence is located near the center, this is not true for the first

and second derivatives. In fact, the first derivative has a zero value at the center and a local

maximum and minimum at x = c±
√

1/2γ. The second derivative has two local maximum

and one global minimum. Φ (x, c) and Φ′′ (x, c) are even functions, whereas Φ′ (x, c) is an odd

function. Therefore, the problem of adjusting simultaneously the values and derivatives of a

function using kernels is not straightforward.

4.4.3 Algorithm Description

Following it is described the two search algorithms (global and local) used in this third

approach.

Global Search of the solution: CMA-ES algorithm

In our second approach to solve DE, ES algorithm was adopted. Some convergence pro-

blems have been observed in some differential equations. Besides, the implementation is not

97

4.4. Solving DEs with CMA-ES (DESCMA-ES) Chapter 4. Novel Methods for Solving DEs

straightforward because several ES steps have been used. Therfore, a more powerful evolu-

tionary algorithm has been adopted in this third approach: CMA-ES has been selected (see

Chapter 3 for a detailed description). The transformed optimization problem appearing in

DEs can be non-separable. CMA-ES is a second order approach estimating a positive defi-

nite matrix within an iterative procedure. This makes the method feasible on non-separable

and/or badly conditioned problems [101]. Another interesting property of CMA-ES is that

is feasible on non-smooth and even non-continuous problems. And finally, it does not require

a tedious parameter tuning to be applied.

CMA-ES is used to search the best weights, centers and gammas, that is, those which

get the minimum fitness value using Eq. (4.26). First of all, the unknowns are randomly

initialized. As we see in Fig. 4.9, the influence of the kernel derivatives is located far away

from its center. Therefore, the initial values of centers, cik, are set randomly in an extended

range in the form

cik ∈ [xk,min − βRk, xk,max + βRk] (4.31)

being Rk the original ranges for dimension k, Rk = xk,max − xk,min, and β an initialization

parameter which control the range length. The domain range [xk,min, xk,max] are obtained

with all the collocation points within sets B and C, Eq. (1.4) and (1.5). Non-constraints are

used in the variables (unknowns). Therefore it must be said that Eq. (4.31) is only applied

in the initialization of the population, but not in the rest of generations.

All the defaults parameters for CMA-ES proposed by Hansen in his CMA-ES public

implementation [83] are adopted, except the offspring number, λ, and the population size, µ.

The default value for the offspring number is

λdefault = 4 + b3 lnNc , (4.32)

and the population size is obtained dividing by 2: µdefault = bλdefault/2c. In these expressions

N is the number of unknowns. In our case, the offspring number is slightly increased by

multiplying the default value by a constant and, consequently, given that µ depends on λ,

the population size is also increased. These changes have experimentally shown to produce

98

Chapter 4. Novel Methods for Solving DEs 4.4. Solving DEs with CMA-ES (DESCMA-ES)

better results and decrease the dispersion between the runs. Therefore the final values for

this couple of parameters were λ = 3 · λdefault and µ = bλ/2c = b3 · λdefault/2c ≈ 3 · µdefault.

The N value, necessary to compute λdefault, is given by the Eq. (4.24).

Several generations are computed until some of the default stop criteria [83] are met.

Then the best individual found at the end of the run is returned by the global search.

Local search of the solution: Downhill Simplex method

Once the CMA-ES algorithm is finished, a Downhill Simplex (DS) method (see Chapter 3 for

a detailed description) is applied on the best individual obtained in the last generation of the

evolutionary algorithm. For that the first simplex is computed applying sequentially a random

increment to each unknown, maintaining the rest of unknowns unmodified. Expressed in a

mathematical way, let S0 be a vector of size N with all the unknowns (wi, γi and cij) obtained

from the CMA-ES. The size of the vector is N = n ·m · (2 + d). A simplex is formed by the

N + 1 nodes {S0,S1, · · · ,SN}. The nodes Sk = {sk1, sk2, · · · , skN} of the initial simplex is

computed applying a random step ρk ∈ [−4,4] to each component in the following way:

skl =


s0l, if k 6= l

s0l + ρk, if k = l

, (4.33)

where 4 ∈ R+ is a user parameter and k = 1, · · · , N .

Then several iterations on the simplex are performed applying the DS rules depending on

the fitness values at the simplex nodes. Several stop criteria are checked: a maximum number

of fitness evaluations, a distance from the best and worst simplex nodes below a predefined

tolerance (parameter convergence criterion), and fitness value difference from the best and

worst nodes below a threshold (target convergence criterion).

DS method, as other heuristics algorithms, can converge to local optimum depending on

initialization issues. To reduce this effect, the algorithm is restarted several times recomputing

the first simplex as it previously was described using as initial node the best one found so

99

4.4. Solving DEs with CMA-ES (DESCMA-ES) Chapter 4. Novel Methods for Solving DEs

far.

4.4.4 Other possible kernels

Gaussian kernels can be substituted by other different kernels, such as arctan kernel:

Φ (x, c, v, a) = arctan (vxc + a) = arctan

(
v

d∑
j=1

xjcj + a

)
(4.34)

As we see, each kernel has one center c and two parameters v and a. Candidate solutions

are expressed as linear combination of n kernels:

y (x) =
n∑

i=1

wi arctan

(
vi

d∑
j=1

xjcij + ai

)
.

We need (at least) the first and second derivatives:

∂y (x)

∂xk

=
n∑

i=1

wi
vicik

1 +
(
vi

∑d
j=1 xjcij + ai

)2 ,

∂2y (x)

∂xk∂xl

= −
n∑

i=1

wi

2v2
i cikcil

(
vi

∑d
j=1 xjcij + ai

)
[
1 +

(
vi

∑d
j=1 xjcij + ai

)2
]2 .

Fig. 4.10 shows one example kernel and its first and second derivatives with v = 10, c = 1

and a = 0 in one dimension.

In order to understand why arctan kernels could achieve better performance than Gaussian

kernels, the following experiment is performed. First one arctan kernel is approximated with

only two Gaussian kernels solving a symbolic regression problem (Fig. 4.11, left). Then

the same is test is performed in the opposite way, thus a Gaussian kernel is approximated

with only 2 arctan kernels (Fig. 4.11, right). As we see, the arctan kernels obtain a better

approximation.

100

Chapter 4. Novel Methods for Solving DEs 4.4. Solving DEs with CMA-ES (DESCMA-ES)

Φ''(x)

Φ(x)
Φ'(x)

v=10 c=1 a=0

−15

−10

−5

0

5

10

15

x
−3 −2 −1 0 1 2 3

Figure 4.10: An one-dimensional example of arctan kernel with its first and second deriva-
tives.

Other possibility is the polynomial kernel:

Φ (x, c, v, a) = (xc + a)v =

(
d∑

j=1

xjcj + a

)v

As usual, candidate solutions are expressed as linear combination of n kernels:

y (x) =
n∑

i=1

wi

(
d∑

j=1

xjcij + ai

)vi

.

In the same way we need (at least) the first and second derivatives:

∂y (x)

∂xk

=
n∑

i=1

wivicik

(
d∑

j=1

xjcij + ai

)vi−1

,

∂2y (x)

∂xk∂xl

=
n∑

i=1

wivi (vi − 1) cikcil

(
d∑

j=1

xjcij + ai

)vi−2

If vi /∈ Z the solution can be unfeasible when the base is negative. Therefore vi is forced to

101

4.4. Solving DEs with CMA-ES (DESCMA-ES) Chapter 4. Novel Methods for Solving DEs

Exact: atan(5x)
Aproximated with 2 Gaussian kernels

−2

−1

0

1

2

x
−3 −2 −1 0 1 2 3

Exact: exp(-10.x2)
Aproximated with 2 atan kernels

0

0.2

0.4

0.6

0.8

1

x
−1 −0.5 0 0.5 1

Figure 4.11: Approximating an arctan kernel with 2 Gaussian kernels (left) and approxi-
mating a Gaussian kernel with two atan kernels (right).

be a natural number.

Other possibility is the Dirichlet kernel:

Φ (x, c, a) =
sin [(a+ 0.5) ‖x− c‖]

sin [0.5 ‖x− c‖]
=

sin
[
(a+ 0.5)

√∑d
j=1 (xj − cj)

2
]

sin
[
0.5
√∑d

j=1 (xj − cj)
2
] ,

where a normally is a natural number. As usual, candidate solutions are expressed as linear

combination of n kernels:

y (x) =
n∑

i=1

wiΦ (x, ci, ai) .

Due to the high complexity of the second derivative, only the first derivative is provided:

∂y (x)
∂xk

=
n∑

i=1

wixk
ai cos [(ai + 0.5) ‖x− ci‖] sin [0.5 ‖x− ci‖]− 0.5 sin [(ai + 0.5) ‖x− ci‖] cos [0.5 ‖x− ci‖]

sin2 [0.5 ‖x− ci‖] ‖x− ci‖
.

102

Chapter 5

Results and Discussion

In this chapter, the three algorithms proposed for solving differential equations (DEs) are

tested. For that, first of all, a set of problems to be solved are described in section 5.1, where

equations, boundary conditions, domains and exact solutions (if they exist) are provided.

Once all the test problems are presented, the proposed algorithms are tested in section 5.2.

Finally, several comparisons between them and with other methods in the literature are given

in section 5.3.

5.1 Benchmarking Problems

The proposed algorithms have been applied over a total of 32 differential equations extracted

from the literature related to this domain of application. In order to demonstrate the ca-

pabilities of the proposed approaches, a wide range of problems are studied: linear ordinary

DEs (LODEs), non linear ordinary DEs (NLODEs), systems of ordinary DEs (SODEs) and

partial DEs (PDEs). Tables 5.1 and 5.2 show all the problems used and the references of

papers where they were also solved.

103

5.1. Benchmarking Problems Chapter 5. Results and Discussion

Case Equation Range Boundary Conditions Used in
LODE1 y′ = (2x− y) /x x ∈ [1, 2] y (1) = 3 [1, 2]
LODE2 y′ = (1− y cos (x)) / sin (x) x ∈ [1, 2] y (1) = 3/ sin 1 [1, 2]
LODE3 y′′ = 6y′ − 9y x ∈ [0, 1] y(0) = 0; y′(0) = 2 [2]

LODE4 y′′ + 1
5y′ + y = − 1

5e−x/5 cos (x) x ∈ [0, 1] y(0) = 0
y(1) = sin (1) /e0.2

}
[1, 2]

LODE5 xy′′ + y′ = cos (x) x ∈ [0, 1] y(0) = 0; y′(0) = 1 [12, 1, 2]
LODE6 y′′ + 2xy = 0 x ∈ [0, 1] y(0) = 0; y′(0) = 1 [1, 2]
LODE7 y′′

(
x2 + 1

)
− 2xy − x2 − 1 = 0 x ∈ [0, 1] y(0) = 0; y′(0) = 1 [1, 2]

LODE8 y′ + 2y = 1 x ∈ [0, 10] y(0) = 1 [36]
LODE9 y′ + 2y = sin (x) x ∈ [0, 10] y(0) = 1 [36]
LODE10 y′′ = −16π2 sin (4πx) x ∈ [0, 1] y(0) = 2; y(1) = 2 [18]
LODE11 u′′ + 2u′ + 5u = 0 x ∈ [0, π] u(0) = 0; u′(0) = 1 [4]
NLODE1 y′ = 1/ (2y) x ∈ [1, 4] y(1) = 1 [1, 2]

NLODE2 (y′)2 + log y =
cos2 x + 2 cos x + 1 + log (x + sinx)

}
x ∈ [1, 2] y(1) = 1 + sin 1 [1, 2]

NLODE3 y′′y′ = −4/x3 x ∈ [1, 2] y(1) = 0; y′(1) = 2 [1, 2]
NLODE4 x2y′′ + (xy′)2 + 1/ log x = 0 x ∈ [e, 2e] y(e) = 0; y′(e) = 1/e [1, 2]
NLODE5 y′′ − yy′/

(
x sinx2

)
= −4x2 sinx2 x ∈ [1, 2] y(1) = sin 1; y(2) = sin 4 -

NLODE6 10−4y′′ + y − y3 = 0 x ∈ [−1, 1] y(−1) = −1; y(1) = 1 [18]

Table 5.1: Test cases (linear and non-linear equations): differential equations, ranges and
boundary conditions.

a) b)

y

−1

−0.5

0

0.5

1

x
−1 −0.5 0 0.5 1

y

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x
−1.5 −1 −0.5 0 0.5 1 1.5

Figure 5.1: Non-rectangular domains. Unit circle for PDE5 (a), and Cassini’s oval for PDE6
(b).

104

Chapter 5. Results and Discussion 5.1. Benchmarking Problems

Case Equation Range Boundary Conditions Used in

SODE1
y′1 = cos x + y2

1+
+y2 −

`
x2 + sin2 x

´
y′2 = 2x− x2 sin x + y1y2

9=; x ∈ [0, 1]
y1(0) = 0
y2(0) = 0

ff
[1, 2]

SODE2
y′1 = (cos x− sin x) /y2

y′2 = y1y2 + ex − sin x

ff
x ∈ [0, 1]

y1(0) = 0
y2(0) = 1

ff
[1, 2]

SODE3

y′1 = cos x
y′2 = −y1

y′3 = y2

y′4 = −y3

y′5 = y4

9>>>=>>>; x ∈ [0, 1]

y1(0) = 0
y2(0) = 1
y3(0) = 0
y4(0) = 1
y5(0) = 0

9>>>=>>>; [1, 2]

SODE4
y′1 = − sin (ex) /y2

y′2 = −y2

ff
x ∈ [0, 1]

y1(0) = cos 1
y2(0) = 1

ff
[1, 2]

SODE5
I′ = −I − V
V ′ = 2I − V

ff
t ∈ [0, 1.5]

I(0) = 2
V (0) = 2

ff
[4]

SODE6

h
1 + (y′)2

i
y = k2

k′ = 0

)
x ∈ [0, 1]

y(0) = 0
y(1) = 2

ff
[4]

PDE1
Ψxx + Ψyy =

e−x
`
x− 2 + y3 + 6y

´ ff
x, y ∈ [0, 1]

Ψ (0, y) = y3

Ψ(1, y) =
`
1 + y3

´
e−1

Ψ(x, 0) = xe−x

Ψ(x, 1) = (x + 1) e−x

9>>=>>; [12, 1, 3, 2, 5]

PDE2 Ψxx + Ψyy = −2Ψ x, y ∈ [0, 1]

Ψ (0, y) = 0
Ψ (1, y) = sin (1) cos (y)

Ψ (x, 0) = sin (x)
Ψ (x, 1) = sin (x) cos (1)

9>>=>>; [1, 2, 5]

PDE3 Ψxx + Ψyy = 4 x, y ∈ [0, 1]

Ψ (0, y) = y2 + y + 1
Ψ (1, y) = y2 + y + 3
Ψ (x, 0) = x2 + x + 1
Ψ (x, 1) = x2 + x + 3

9>>=>>; [1, 2, 5]

PDE4 Ψxx + Ψyy = −Ψ
`
x2 + y2

´
x, y ∈ [0, 1]

Ψ (0, y) = 0
Ψ (1, y) = sin (y)

Ψ (x, 0) = 0
Ψ (x, 1) = sin (x)

9>>=>>; [1, 5]

PDE5
Ψxx + Ψyy = 4x cos x+
+

`
5− x2 − y2

´
sin x

ff
x2 + y2 ≤ 1 Ψ (x, y) = 0 in ∂Ω [3, 5]

PDE6 Ψxx + Ψyy = 2e(x−y) R2 (θ) ≤ cos (2θ)+p
1.1 sin2 (2θ)

Ψ = ex
`
e−y + cos y

´
in ∂Ω

ff
[3, 5]

PDE7 ux + ut = 0 x, t ∈ [0, 2]
u (0, t) = e−2(t−1)2

u (x, 0) = e−2(x+1)2

)
-

PDE8 uxx − utt = 0 x, t ∈ [0, 1]

u (0, t) = 0
u (1, t) = 0
u (x, 0) = 0

ut (x, 0) = π sin (πx)

9>>=>>; -

PDE9 ut − uux = uxx x, t ∈ [0, 1]
u (0, t) = 1 + 2/ (t + 1)
u (x, 0) = 1 + 2/ (x + 1)

ux (0, t) = −2/ (t + 1)2

9=; -

Table 5.2: Test cases (systems and partial equations): differential equations, ranges and
boundary conditions.

105

5.1. Benchmarking Problems Chapter 5. Results and Discussion

Following some notes will be given of some equations of the benchmark set. Thus, the

original problem LODE11 was presented in [4] as an integro-differential equation u′ + 2u +

5
� x

0
u (t) dt = 1 in the range [0, π] with the boundary condition u (0) = 0. Taking derivatives

and using the fundamental theorem of calculus [6], the original problem is transformed into

an ordinary differential equation as it is presented in Table 5.1. SODE5 and SODE6 were

presented as well in [4]. The former describes a simple engineering application dealing with

electric current and potential difference in an electronic circuit. The later describes the

brachistochrome problem, which consists on finding the curve along with a particle slides

from a given point to lower one without friction in the least time. The problem is formulated

as a system of differential equations because a constant k must be determined. Note that

PDE5 and PDE6 are defined on non-rectangular domains (Fig. 5.1). To show the potential

of our approximations, some partial differential equations different from Poisson problems

presented in Sobester et al. [3] are defined in Table 5.1. Thus, PDE7 describes a traveling

wave with velocity +1. PDE8 correspond to the one dimensional wave equation with constant

speed of wave propagation c = 1. Finally, PDE9 is the inviscid Burgers’ equation which is a

prototype for equations for which the solution can develop discontinuities (shock waves).

The exact solutions are provided in Table 5.3 with the exception of Allen-Cahn equation

[18] in NLODE6, which does not have a close analytical solution. The solution of SODE6

is a parametric equation of a cycloid. The constant k2 ' 4.81125 is obtained solving a

transcendental equation.

Measuring the Solution Quality

Fitness function value is not a good measure for comparing the final solutions obtained in

different problems because it is very dependent on some algorithm parameters as for example

the boundary condition penalty ϕ. Moreover, the fitness value can be modified depending on

how the differential equation is provided to Eq. (4.26). For instance, LODE1 equation can be

provided as y′− (2x− y) /x, y′x− (2x− y) or even [y′ − (2x− y) /x] /k. Although the same

106

Chapter 5. Results and Discussion 5.1. Benchmarking Problems

Case Exact Solution

LODE1 y = x + 2/x

LODE2 y = (x + 2) / sin (x)
LODE3 y = 2xe3x

LODE4 y = e−x/5 sin (x)
LODE5 y =

� x

0
sin(t)

t dt

LODE6 y =
� x

0
e−t2dt

LODE7 y =
(
x2 + 1

)
arctan (x)

LODE8 y =
(
e−2x + 1

)
/2

LODE9 y =
[
6e−2x + 2 sin (x)− cos (x)

]
/5

LODE10 y = 2 + sin (4πx)
LODE11 u = 0.5e−x sin (2x)

NLODE1 y =
√

x

NLODE2 y = x + sin (x)
NLODE3 y = log

(
x2
)

NLODE4 y = log (log (x))
NLODE5 y = sin

(
x2
)

NLODE6 No analytical solution

SODE1
y1 = sinx

y2 = x2

}
SODE2

y1 = sin (x) /ex

y2 = ex

}
SODE3

y1 = y3 = y5 = sinx

y2 = y4 = cos x

}
SODE4

y1 = cos (ex)
y2 = e−x

}
SODE5

I = e−t
[
2 cos

(√
2t
)
−
√

2 sin
(√

2t
)]

V = 2e−t
[
cos
(√

2t
)

+
√

2 sin
(√

2t
)] }

SODE6
x = k2 (θ − sin θ) /2
y = k2 (1− cos θ) /2

2
k2 = arccos

(
1− 4

k2

)
− sin arccos

(
1− 4

k2

)


PDE1 Ψ =
(
x + y3

)
e−x

PDE2 Ψ = sin (x) cos (y)
PDE3 Ψ = x2 + y2 + x + y + 1
PDE4 Ψ = sin (xy)
PDE5 Ψ =

(
x2 + y2 − 1

)
sinx

PDE6 Ψ = e(x−y) + ex cos y

PDE7 u = e−2(t−x−1)2

PDE8 u = sin (πt) · sin (πx)
PDE9 u = 1 + 2/ (x + t + 1)

Table 5.3: Exact solutions for the test cases.

107

5.2. Numerical Experiments Chapter 5. Results and Discussion

problem is solved, the fitness function values are modified: First and last equations have the

same fitness landscape, but with a scale value given by the constant k. Second equation has

a different fitness landscape so could have a different behavior during the evolving process.

Therefore we believe that a new metric for measuring the final solution quality obtained

is necessary. Concretely, in this work we propose using the Root of the Mean Squared Error

(RMSE) between the computed final solution y and the exact solution yexact:

RMSE =

√∑nC

i=1,xi∈C ‖y (xi)− yexact (xi)‖2 +
∑nB

j=1,xj∈B ‖y (xj)− yexact (xj)‖2

d · (nC + nB)
. (5.1)

Other authors use the same measure for determine the achieved accuracy [17]. This error

does not deal with the differential equation residuals, but measures distances between the

computed solution and the exact one. Obviously RMSE can be only used when the exact

solution is known and for benchmarking purposes.

Because NLODE6 does not have analytical solution, the RMSE for this problem has been

computed using a numerical approximation of the solution computed with a Runge-Kutta

relaxation method [102] discretizing the domain range in 1000 nodes.

5.2 Numerical Experiments

Once the benchmarking problems are described, the results obtained applying the three al-

gorithms explained in Chapter 4 are provided in this section. The algorithm results are

presented in chronological order, that is, according to the date of implementation and anal-

ysis during the development of the present thesis. As we will see, the most powerful algo-

rithm is the last one, that based on Covariance Matrix Adaptation Evolutionary Strategies

(DESCMA-ES), meanwhile the weak approach is the first one, based on Grammatical Evo-

lution (DESGE). Therefore, only in the last approach an exhaustive benchmarking process

is followed, solving all the equations presented in Tables 5.1 and 5.2.

108

Chapter 5. Results and Discussion 5.2. Numerical Experiments

Parameter Value

Maximum wrapping 1

Population 1000

Maximum generations 2000

Fitness stop criterion 10−10

Minimum chromosome size at initialization 20

Maximum chromosome size at initialization 50

Maximum chromosome size 100

Tournament size 3

Recombination probability 0.9

Mutation probability 0.2

Elitism size 3

Table 5.4: Control parameters for baseline DESGE algorithm.

5.2.1 DESGE Results

In this section the results obtained applying out first approximation to solve DEs are reported.

First of all, the baseline algorithm based in Grammatical Evolution is employed to solve the

LODE2 equation. Then, a more exhaustive analysis using more equations is reported using

the enhanced techniques described in section 4.2.3.

Baseline algorithm

LODE2 problem has been chosen to test the baseline DESGE algorithm. Ten constants have

been defined with all the integer values between 0 and 9 denoted by C0 = 0, C1 = 1, C2 = 2,

..., C9 = 9. Operators and functions used are: +,−, ∗, /, sin, cos, exp and log. A total

of 19 collocation points have been defined equispaced along the domain range. The penalty

number ϕ for the boundary condition is set to 100, Eq. (4.1). The best results have been

obtained with the control parameters given in Table 5.4.

The solver has been run 30 times, and in 29 of them the exact solution has been found. The

average number of generations needed has been 758, with a minimum of 39 (for the average

109

5.2. Numerical Experiments Chapter 5. Results and Discussion

F
it

n
e

s
s

10
−30

10
−24

10
−18

10
−6

1

10
6

Generations

0 20 40 60 80

Average chromosome size
Maximum chromosome size
Feasible solutions %
Different solutions %

P
e

rc
e

n
ta

n
g

e
 %

20

40

60

80

100

C
h

ro
m

o
so

m
e

 s
iz

e

20

40

60

80

100

Generations

0 20 40 60 80

Figure 5.2: Convergence history for LODE2 problem of one successful run using baseline
DESGE algorithm: fitness versus generations (left) and average chromosome size, maximum
chromosome size, percentage of feasible and different solutions versus generation (right).

computation, the unsuccessful run is not taking into account). All the exact solutions have

the same fitness (zero machine), but several different phenotype has been found:

((C2 + x)/(sin(x)))

((x+ C2)/sin((x)))

((((x) + C2))/sin((x− ((log(C1))))))

(((x+ (((x/x) ∗ C2)))/sin(x)))

((C1 + (C1 + x))/sin(x))

Nevertheless, the symbolic engine simplifies all this solutions in what we call canonical

expression: (x+C2)*sin(x)^(-1).

In Fig. 5.2 one simulation history is plotted. As we can see, the exact solution is isolated

in the fitness domain, that is, no smooth convergence is observed. Because of this reason is

110

Chapter 5. Results and Discussion 5.2. Numerical Experiments

so difficult to find the exact solution. In the figure at the right side is also shown the average

chromosome size at the population, the maximum chromosome size, the percentage of feasible

solutions, and the percentage of feasible and different solution within the population. Two

solutions are considered different according to the fitness function, so it is not based on the

genotypic space.

Enhanced DESGE

Although good results are obtained for LODE2 problem using the baseline algorithm, when

more complex equations are solved, the algorithm does not behave as expected: it is not able

to find the exact solution, or big dispersion in the results is observed, or the approximated

solution is not enough accurate. Part of the problem is related with the inefficient behavior

to seek numerical constants such as π, e or
√

2 without a local search. In this section, some

results obtained using all the enhanced techniques described in section 4.2.3 are described.

For the sake of conciseness, the four techniques (ephemeral local search, Gaussian local search,

addition crossover and new grammar for real constants) are applied together. Previously, they

have been applied one by one to check the benefits obtained respect to the original baseline

algorithm.

Table 5.5 shows the control parameters used in this analysis. A total of 20 runs has

been done and the average numbers are reported. For cases LODE3 to NLODE4 operator

ˆ has been added to the operator set and the ephemeral constant are limited in the range

[−10, 10]. In the last two columns, the averaged fitness evaluations needed by Tsoulos et

al. in works [1] and [2] are presented. To do this comparison, it is important to notice that

a local optimization technique is used in [2], which is a Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method variant due to Powell [103]. The BFGS method approximates Newton’s

method, a class of hill-climbing optimization techniques that seeks a stationary point of a

(twice continuously differentiable) function. The fitness evaluation number in [2] is obtained

estimating that the average number of neurons in the hidden layer is 10 and that 20 steps are

111

5.2. Numerical Experiments Chapter 5. Results and Discussion

Parameter Value

Ephemeral constants 7 digits, unlimited range

Constants Not used

Maximum Wrapping 1

Population 500

Generations 2500

Max. Fitness Evaluation 105

Fitness Value Stop Criteria 10−7

Initialization sizes Between 20 and 50

Maximum Chromosome size 600

Tournament size 3

Recombination probability 0.9

Mutation probability 0.3

Elitism size 10

Ephemeral Local Search 20 steps, probability 0.5

Gaussian Local Search No fitness variation after 10 generations

Crossover Type Addition

Table 5.5: Control parameters for enhanced DESGE algorithm.

Case Gene. Fitness %Success Best Time Fitness Fitness

Eval. Runs Fitness per Run Eval. in [1] Eval. in [2]

LODE1 10 4511 100 1.65984e-11 15.8s 653000 59940

LODE2 141 58236 100 2.66559e-12 4m 32s 742000 42120

LODE3 168 10003 0 2.61997e-02 44m 29s - 23220

LODE4 154 100292 0 6.90137e-02 41m 20s 714000 102060

LODE5 380 100121 0 1.6842e-06 12m 32s 441000 64260

LODE6 172 100463 0 3.8989e-02 36m 52s 451000 35100

LODE7 166 100488 0 1.1688e-01 42m 0s 444000 493020

NLODE1 2 1298 100 1.96932e-09 2.4s 182000 37260

NLODE2 2.8 1210 100 4.18804e-09 13s 86000 218700

NLODE3 4 2780 100 5.07432e-09 54s 191000 454680

NLODE4 4.6 3122 100 3.09527e-18 48s 161000 156060

Table 5.6: Results obtained using enhanced DESGE algorithm. Average values of 20 repeti-
tions are reported. In [1] and [2], averaged fitness evaluation with 30 repetitions are provided,
being the success rate 100% in all the problems.

112

Chapter 5. Results and Discussion 5.2. Numerical Experiments

performed1. Therefore, the fitness evaluation number in [2] is estimated with the following

formula

FitnessEval = g · 500 +
g

20
20 · 40,

being g the generation number. On the other hand, the number of fitness evaluations in [1]

is straightforward because no local search is employed (a population size of 1000 individuals

is used):

FitnessEval = g · 1000.

The column of “successful runs” at Table 5.6 are computed considering that the exact

symbolic solution has been found, that is, a canonical expression coincident with the exact

solutions given in Table 5.3 is obtained by the algorithm. For these type of solutions, the

ideal fitness value should be 0. However, at Table 5.6 non zero values are obtained due to

round-off errors. Anyway the values are very low, between 10−9 and 10−18. It is important

to notice that the successful run rate of works [1] and [2] is 100%.

As we can see, for some equations, enhanced DESGE algorithm outperforms results pre-

sented in [1] and [2] by several order of magnitude in the fitness evaluation number (LODE1,

NLODE1, NLODE2, NLODE3 and NLODE4), but for other problems it is not possible to

reduce the fitness values more than a minimum value depending on the case (LODE3 to

LODE7). Although some convergence problems have been observed, there are two important

drawbacks to these type of algorithms using generic mathematical expressions. First of all,

the exact solution only can be found if all the terminals and functions needed to express the

symbolic expression are defined in the grammar. Secondly, the majority of real problems

have not a closed analytical solution. In these type of problems, only approximated solutions

can be found. Because of the characteristic of the method, the search process could turn

inefficient. If more terminals and functions are incorporated to the original grammar, the

search space increases, making the process much more difficult.

1According to Ioannis Tsoulos’ comments: “We have used analytical evolution of the gradient for the neural
network error and not some estimation. I think that for every neural network 20 function in the BFGS local
search procedure were sufficient.” One fitness evaluation is considered here for each parameter in order to
compute the analytical gradient.

113

5.2. Numerical Experiments Chapter 5. Results and Discussion

5.2.2 DESES Results

The method was run 10 times on every differential equation described previously using dif-

ferent seeds for the random number generator and averages were taken. The number of

repetitions has been considered sufficient for the analysis because low dispersion in the re-

sults has been observed, as we will see in the following lines. A total of 100 equidistant

collocation points have been used in all cases, except for PDE5 and PDE6. In those non-

rectangular domain cases, 51 internal points and 25 boundary points have been used for

PDE5 (Fig. 5.1a), and 48 internal and 32 boundary points in PDE6 (Fig. 5.1b) as in [3].

A maximum harmonic order N = 10 has been used, which gives a total of 11 harmonics for

LODEs and NLODEs problems, 22 harmonics for SODEs cases (systems of two equations

each), except SODE3 (system of five equations) with 55 harmonics, and 101 harmonics for

PDEs.

Table 5.7 lists the algorithm parameter values which have been used for all test cases and

the good results obtained provide evidence about the robustness of the method. However,

more improvements could be obtained if the parameters were tuned specifically for each case.

In this way, we can differentiate those parameters which are directly sensitive to the solution

quality (maximum harmonic order N and range extension ξ) and those which affect to the

convergence process (rest of algorithm parameters in Table 5.7). Regarding the former, the

required maximum harmonic order N depends on the variations of the solution function and

its derivatives. Generally speaking, more harmonics implies better accuracy in terms of a

lower value of RMSE. As it will further be shown, good results have been obtained for N = 10

because the solution functions do not have high frequency harmonics. Nevertheless, in some

punctual cases higher harmonics are needed. This is the case of LODE3, LODE8, LODE9,

LODE10 and NLODE6 problems as it will further be described. The range extension ξ

should be higher than 0 when no null first derivatives are desired in the domain boundaries.

Good results have been obtained for ξ = 1. Low sensitivity has been observed when this

value is increased or reduced, except for values close to 0. Concerning the second type of

parameters, the initialization values have a high sensitivity in the results. According to Table

114

Chapter 5. Results and Discussion 5.2. Numerical Experiments

Parameter Values

Maximum harmonic order N 10

Initial coefficients Between α = −10−3 and β = 10−3

Initial mutation strengths Between γ = 3 · 10−4 and δ = 3 · 10−3

Parent selection (µ, λ) = (10, 400)

Learning Rate factor fτ 1

Boundary Condition Penalty ϕ 300

Range extension ξ 1

Stop criteria 15 generations with unchanged fitness

or 80 generations

Maximum Generations G 3000

Max. new harmonics in each step 8

Table 5.7: Numerical values for the parameters of the DESES method.

5.7, the best results have been obtained using low values for the initial coefficients, and a

similar maximum value for the initial mutation strengths. Regarding the population, as

expected, better convergence is achieved increasing its size. A trade-off among performance

and computational cost is achieved using a population size of µ = 10. A higher selective

pressure than λ/µ ' 7 (according to [81]) has been observed more effective. The learning

rate factor could be increased in some cases up to 2 or 3 for speed-up the convergence process.

According to the definition of the fitness function, Eq. (4.1), the boundary condition penalty

ϕ should be of the same order than the number of collocation points and the boundary point

ratio nC/nB. Finally, in simple cases as LODEs, the stop criteria could be relaxed in order

to find the solution in less number of generations.

Table 5.8 shows the result of DESES algorithm over the test cases. Average values of the 10

runs are listed for fitness and it can be seen the RMSE values of the best individual in the last

generation and the number of generations used. This table also gives the standard deviation

of these values, showing low dispersion in the results. These low dispersions observed imply

that it is not necessary to increase the number of repetitions of each equation (10 runs). As

we can appreciate, LODE3 problem results are very different from the rest of test cases. At

115

5.2. Numerical Experiments Chapter 5. Results and Discussion

Case Fitness RMSE Generations

LODE1 (5.94± 0.630) · 10−7 (3.70± 0.166) · 10−5 2581± 476

LODE2 (2.51± 0.128) · 10−6 (6.59± 0.255) · 10−5 3000± 0

LODE3 7.48± 0.0132 13.16± 0.0135 3000± 0

LODE4 (4.96± 0.003) · 10−6 (1.65± 0.872) · 10−6 1113± 38

LODE5 (4.31± 0.365) · 10−8 (9.90± 0.383) · 10−5 819± 21

LODE6 (2.91± 1.47) · 10−8 (5.44± 3.64) · 10−6 801± 74

LODE7 (9.34± 0.465) · 10−6 (1.25± 0.264) · 10−5 3000± 0

LODE8 (1.51± 0.02) · 10−3 (1.22± 0.01) · 10−2 3000± 0

LODE9 (9.98± 0.291) · 10−3 (3.15± 0.052) · 10−2 3000± 0

LODE10 (1.46± 0.205) · 102 (3.90± 0.165) · 10−2 3000± 0

NLODE1 (2.26± 0.963) · 10−7 (7.42± 1.81) · 10−5 1218± 419

NLODE2 (7.87± 0.707) · 10−8 (5.90± 0.549) · 10−6 1349± 106

NLODE3 (1.12± 0.068) · 10−5 (3.64± 0.492) · 10−5 3000± 0

NLODE4 (3.67± 0.081) · 10−7 (8.32± 0.791) · 10−5 2187± 49

NLODE5 (3.58± 1.03) · 10−7 (3.19± 0.596) · 10−6 2755± 78

NLODE6 (3.12± 0.019) · 10−2 (3.03± 0.009) · 10−1 3000± 0

SODE1 (2.13± 0.218) · 10−7 (7.67± 1.66) · 10−5 1117± 147

SODE2 (2.43± 2.43) · 10−8 (3.90± 0.377) · 10−5 2701± 166

SODE3 (1.73± 0.588) · 10−7 (8.51± 4.02) · 10−5 1149± 48

SODE4 (1.17± 0.099) · 10−6 (4.72± 0.261) · 10−5 3000± 0

SODE5 (3.58± 1.03) · 10−7 (3.19± 3.18) · 10−6 2755± 78

PDE1 (1.56± 0.301) · 10−2 (6.37± 0.733) · 10−3 2700± 57

PDE2 (7.18± 1.77) · 10−4 (1.16± 0.214) · 10−3 1956± 139

PDE3 (1.70± 0.363) · 10−2 (5.90± 0.799) · 10−3 2564± 156

PDE4 (6.90± 0.676) · 10−4 (1.23± 0.036) · 10−3 2066± 102

PDE5 (9.24± 2.10) · 10−4 (9.06± 1.29) · 10−4 2599± 66

PDE6 (2.22± 0.624) · 10−1 (1.79± 0.384) · 10−2 2979± 42

Table 5.8: Experimental results for DESES algorithm. Data are presented giving the average
values and the standard deviations.

116

Chapter 5. Results and Discussion 5.2. Numerical Experiments

a) b)

0 500 1000 1500 2000
Generations

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

B
es

t F
itn

es
s

(1)

(2)

(3)

(4)

(5)

(6)
(7)

(8)
(9)

(10)

Fine tuning

0 500 1000 1500 2000
Generations

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

H
ar

m
on

ic
 C

oe
ff

ic
ie

nt
s

a0
a1
a2
a3
a4
a5
a6
a7
a8
a9
a10

Figure 5.3: Fitness value (a) and harmonic coefficients (b) of the best individual over the
generations for one run of NLODE4 case using DESES algorithm. In (a) number in paren-
theses indicate the number of active plus frozen harmonics. Fine tuning step is shown as
well.

the end of this subsection further details will be given. Excluding LODE3 problem, good

results have been obtained with RMSE values between 10−6 and 10−1 for one-dimensional

problems, and between 10−4 and 10−2 for PDEs. As an example, Fig. 5.3 and 5.4 show plots

related to the evolution of characteristic parameters of the algorithm and the quality of the

solution obtained for a run of the NLODE4 case. In particular, Fig. 5.3a and Fig. 5.3b show

the fitness value and harmonic coefficients of the best individual over the generations. Fig.

5.4a shows the evolution of the mutation strengths of the best individual with the generation

number. Fig. 5.4b compares the exact solution with the computed one. We can appreciate

the good matching obtained.

Number of harmonics study

Observing the RMSE for one dimensional problems in table 5.8, we can see that all the

cases have achieved a good accuracy with RMSEs values between 10−5 and 10−6 except for

cases LODE3, LODE8, LODE9, LODE10 and NLODE6. These last cases have a more com-

plicated shape and more than 10 harmonics are needed for approximate the solution. In table

117

5.2. Numerical Experiments Chapter 5. Results and Discussion

a) b)

0 500 1000 1500 2000
Generations

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

M
ut

at
io

n
St

re
ng

ht
s

sa0
sa1
sa2
sa3
sa4
sa5
sa6
sa7
sa8
sa9
sa10

Computed solution
Exact solution

y

0

0.1

0.2

0.3

0.4

0.5

0.6

y
-y

e
x

a
c

t

0
2.5

×10
−5

7.5
×10

−5

1.2
5×10

−4

x

2.5 3 3.5 4 4.5 5 5.5

Figure 5.4: Mutation strengths of the best individual over the generations (a), comparison
(b, top) and difference (b, bottom) between the exact solution and the computed one for one
run of NLODE4 case using DESES algorithm. Mutation strength in (a) of inactive harmonics
are considered out of the plot with a value close to 0. For the sake of clarity, in (b, top)
figure, only 11 points are plot for the evolved solution, although 100 collocation points were
taken into account.

118

Chapter 5. Results and Discussion 5.2. Numerical Experiments

Case Max. Harmonic Order Fitness RMSE

LODE8 10 1.51 · 10−3 1.22 · 10−2

20 1.35 · 10−4 2.84 · 10−3

30 1.84 · 10−5 9.24 · 10−4

LODE9 10 1.00 · 10−2 3.16 · 10−2

20 8.32 · 10−4 7.08 · 10−3

30 1.18 · 10−4 2.32 · 10−3

LODE10 10 1.46 · 102 3.39 · 10−2

20 3.27 · 10−1 1.34 · 10−3

30 5.65 · 10−3 5.33 · 10−4

NLODE6 10 3.13 · 10−2 3.03 · 10−1

20 1.80 · 10−2 2.17 · 10−1

30 1.25 · 10−2 1.73 · 10−1

Table 5.9: Harmonic number analysis for LODE8, LODE9, LODE10 and NLODE6 problems
for DESES algorithm.

5.9 the fitness and RMSEs values running the algorithm with the same solver parameters (Ta-

ble 5.7) but using 10, 20 and 30 harmonics are given. As expected, the accuracy is increased

when more harmonics are used. Fig. 5.5 compares the solutions obtained for NLODE6 case

with the numerical approximation using a numerical method. We can appreciate that due to

the strong variation of the function near the origin 10 harmonics are not enough for a proper

representation of the solution.

ODE3 discussion

Not as good results have been obtained for LODE3 problem, with a RMSE of several orders

of magnitude bigger than the rest ODEs. Studying the differences between this problem and

the others, we can see that the variation range of the derivatives appearing in the differential

equation is around one order of magnitude higher than in the other cases:

y′(1)

y′(0)
= 4e3 ' 80

y′′(1)

y′′(0)
=

30

12
e3 ' 50

 . (5.2)

119

5.2. Numerical Experiments Chapter 5. Results and Discussion

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Numerical solution
10 harmonics
20 harmonics
30 harmonics

Figure 5.5: Comparison of the computed solution using 10, 20 and 30 harmonics with the
numerical approximation for NLODE6 case for DESES algorithm.

In order to check if these ratios are the cause of the bad results, the same problem ODE3

has been solved using the same solver parameters (Table 5.7) but reducing the independent

variable range from the original x ∈ [0, 1] to x ∈ [0, 0.2]. In this way, the above ratios turn

y′(0.2)

y′(0)
=

3.2

2
e0.6 ' 2.9

y′′(0.2)

y′′(0)
=

15.6

12
e0.6 ' 2.4

 . (5.3)

Algorithm performance has been recovered for this new problem, obtaining an average fitness

of 5.48 · 10−4 and an average RMSE of 1.02 · 10−4.

Focusing in the original LODE3 problem, a study on the influence of the number of

harmonic coefficients in the result quality has been performed. Several runs with an unlimited

number of generations have been done. Results are shown in Table 5.10. As we can see

the results improve when the number of harmonic coefficients is increased. More than 20

harmonics are needed for having a RMSE close to the rest of cases. Other important problem

detected is the slow convergence rate, needing a higher number of generations.

120

Chapter 5. Results and Discussion 5.2. Numerical Experiments

Max. Harmonic Order Fitness RMSE Generations

5 7.60 13.03 20053

10 1.49 4.45 194630

15 2.40 · 10−1 2.00 230060

20 3.93 · 10−2 5.83 · 10−1 380060

Table 5.10: Harmonic number analysis for original LODE3 problem using DESES algorithm.

5.2.3 DESCMA-ES Results

DESCMA-ES algorithm was run 50 times on the test problems given in Table 5.1 using

different seeds for the random number generator and averages were taken. A total of 100

equidistant collocation points have been used in all cases, except in partial differential equa-

tions defined in a non-rectangular domain (PDE5 and PDE6), where the same points distri-

bution used in [3] were imposed (77 and 80 points respectively) in order to facilitate a fair

comparison.

Table 5.12 and 5.13 list the algorithm parameters which have been used in all test cases

regarding the CMA-ES and DS methods. As it was already commented, all the defaults

parameters recommended by Hansen [83] for CMA-ES are adopted, except the size of the

population and the offspring number. Therefore, according to Eq. (4.24) and Eq. (4.32), the

population size µ is related with the number of unknowns N :

µ =

⌊
6 +

3

2
b3 · lnNc

⌋
. (5.4)

Fig. 5.6 plots the relation between µ and N for all the test problems. The number of

unknowns depends on the number of kernels n, the number of dependent variables m and the

problem dimensionality d according to Eq. (4.24). Concretely speaking, the experimental

criterion used to select the number of kernels was the following: 4 kernels for each dependent

variable in LODEs, NLODEs and SODEs, and 8 in PDEs. Thus, for LODEs and NLODEs,

the number of kernels was always 4. On the other hand, if the number of equations (dependent

121

5.2. Numerical Experiments Chapter 5. Results and Discussion

SODE3

PDE1 to PDE9

SODE1 & SODE2 & SODE4 to SODE6

LODE1 to LODE11 & NLODE1 to NLODE6

6+4.5Ln(N)

P
o

p
u

la
ti

o
n

 S
iz

e
μ

5

10

15

20

25

Number of Unknows N

20 40 60 80 100

Figure 5.6: Population size µ of the DESCMA-ES algorithm according to the number of
unknowns N . Dots mark the specific population used to solved the test problems.

variables) in a SODE is m, the number of kernels used was 4m. Regarding PDEs, we can say

that all of them have 2 independent variables, which make the problem harder to be solved

compared with ODEs. Therefore, the number of kernels for PDEs has been doubled respect

to ODEs. As we can see in Fig. 5.6, SODE3 has more unknowns than the other SODEs

because 5 dependent variable must be solved (m = 5) instead of only two (m = 2) for the

rest of SODEs. The centers are initialized randomly in an extended range controlled by a

user parameter β according to Eq. (4.31).

Some parameters affect to both CMA-ES and DS algorithms: the boundary condition

penalty ϕ is set to 300, the inner weighting factor κ used is 30, and the maximum number of

fitness evaluations allowed is 106.

The results are given at Table 5.11 where data are presented grouped in two categories:

those obtained at the end of the CMA-ES phase, and the final ones at the end of the DS

method. Data are presented giving the average values and the standard deviations. By

122

Chapter 5. Results and Discussion 5.2. Numerical Experiments
C

a
se

C
e
n
te

r
s

n
F
it
n
e
ss

F
it
n
e
ss

R
M

S
E

R
M

S
E

F
it
n
e
ss

F
it
n
e
ss

(s
e
e

E
q
.

(C
M

A
-E

S
)

(C
M

A
-E

S
+

D
S
)

(C
M

A
-E

S
)

(C
M

A
-E

S
+

D
S
)

E
v
a
l.
×

1
0
5

E
v
a
lu

a
ti
o
n
s×

1
0
5

(4
.2

4
))

(C
M

A
-E

S
)

(C
M

A
-E

S
+

D
S
)

L
O

D
E

1
4

(8
.7

3
±

3
4
.5

)
1
0
−

8
(1

.1
8
±

2
.8

7
)
1
0
−

9
(1

.4
1
±

3
.7

7
)
1
0
−

5
(2

.3
5
±

2
.5

2
)
1
0
−

6
1
.0

8
±

0
.4

8
1

1
.9

2
±

0
.4

7
3

L
O

D
E

2
4

(7
.3

2
±

4
7
.7

)
1
0
−

7
(6

.8
2
±

4
7
.7

)
1
0
−

7
(2

.7
0
±

1
4
.4

)
1
0
−

5
(2

.1
4
±

1
4
.4

)
1
0
−

5
0
.9

5
8
±

0
.7

4
9

1
.7

7
±

0
.8

0
2

L
O

D
E

3
4

(1
.4

2
±

8
.8

7
)
1
0
−

1
(3

.4
7
±

1
7
.5

)
1
0
−

4
(2

.5
1
±

1
6
.1

)
1
0
−

1
(2

.1
3
±

7
.5

3
)
1
0
−

3
0
.6

9
1
±

0
.2

1
5

1
.7

1
±

0
.3

1
2

L
O

D
E

4
4

(4
.3

1
±

2
0
.2

)
1
0
−

5
(1

.8
1
±

1
1
.6

)
1
0
−

5
(2

.0
8
±

9
.5

0
)
1
0
−

4
(1

.0
3
±

6
.2

0
)
1
0
−

4
0
.9

2
8
±

0
.6

5
6

1
.6

4
±

0
.6

7
8

L
O

D
E

5
4

(4
.4

5
±

0
.2

2
2
)
1
0
−

7
(7

.3
2
±

0
.3

7
3
)
1
0
−

1
0

(5
.6

4
±

2
6
.2

)
1
0
−

5
(3

.0
1
±

8
.1

3
)
1
0
−

6
1
.0

4
±

0
.5

7
0

1
.7

1
±

0
.7

2
3

L
O

D
E

6
4

(2
.7

1
±

1
8
.0

)
1
0
−

8
(9

.8
7
±

4
2
.2

)
1
0
−

1
0

(1
.0

7
±

5
.7

5
)
1
0
−

6
(1

.7
2
±

2
.8

5
)
1
0
−

7
1
.1

4
±

0
.7

8
6

1
.7

8
±

0
.8

5
6

L
O

D
E

7
4

(4
.4

2
±

1
7
.9

)
1
0
−

6
(2

.3
9
±

9
.4

7
)
1
0
−

6
(1

.4
0
±

5
.3

0
)
1
0
−

5
(6

.7
1
±

2
.3

3
)
1
0
−

6
2
.7

7
±

1
.7

3
3
.4

1
±

1
.6

5

L
O

D
E

8
4

(1
.2

0
±

2
.3

4
)
1
0
−

7
(2

.9
6
±

8
.5

4
)
1
0
−

8
(9

.0
7
±

8
.4

1
)
1
0
−

5
(4

.8
7
±

5
.4

1
)
1
0
−

5
0
.4

3
9
±

0
.1

6
1

1
.4

3
±

0
.2

3
5

L
O

D
E

9
4

(1
.0

1
±

0
.4

0
3
)
1
0
−

1
(9

.7
0
±

4
.2

6
)
1
0
−

2
(2

.1
8
±

0
.7

7
0
)
1
0
−

1
(2

.1
6
±

0
.7

7
3
)
1
0
−

1
0
.8

2
5
±

0
.2

8
1

1
.7

6
±

0
.4

0
5

L
O

D
E

1
0

4
(1

.2
2
±

1
.1

4
)
1
0
3

(9
.2

8
±

1
0
.2

)
1
0
2

1
.8

8
±

1
.3

3
1
.9

0
±

1
.4

1
0
.5

2
2
±

0
.2

3
4

1
.4

1
±

0
.5

0
2

L
O

D
E

1
1

4
(4

.3
2
±

2
0
.4

)
1
0
−

4
(2

.2
4
±

1
4
.3

)
1
0
−

4
(1

.4
0
±

5
.4

1
)
1
0
−

3
(9

.1
6
±

3
9
.4

)
1
0
−

4
2
.3

2
±

1
.4

4
2
.7

8
±

1
.4

4

N
L
O

D
E

1
4

(1
.0

5
±

2
.2

6
)
1
0
−

7
(6

.6
1
±

1
8
.2

)
1
0
−

9
(6

.4
0
±

8
.7

0
)
1
0
−

5
(1

.6
1
±

2
.1

2
)
1
0
−

5
0
.9

1
4
±

0
.4

4
6

1
.8

8
±

0
.4

5
3

N
L
O

D
E

2
4

(2
.7

9
±

1
9
.5

)
1
0
−

4
(2

.7
9
±

1
9
.4

5
)
1
0
−

4
(4

.8
4
±

3
3
.8

)
1
0
−

4
(4

.8
3
±

3
3
.8

)
1
0
−

4
1
.1

0
±

0
.5

8
9

1
.7

7
±

0
.6

8
6

N
L
O

D
E

3
4

(1
.3

4
±

7
.1

)
1
0
−

2
(1

.1
9
±

5
.0

2
)
1
0
−

7
(4

.8
3
±

2
4
.2

)
1
0
−

3
(2

.0
5
±

5
.0

4
)
1
0
−

6
1
.3

1
±

0
.5

4
2

2
.2

6
±

0
.4

7
5

N
L
O

D
E

4
4

(6
.8

5
±

1
6
.2

)
1
0
−

3
(1

.0
5
±

4
.7

1
)
1
0
−

6
(4

.7
8
±

1
0
.4

)
1
0
−

2
(8

.1
0
±

3
9
.9

)
1
0
−

3
0
.7

1
7
±

0
.3

9
2

1
.7

8
±

0
.3

6
0

N
L
O

D
E

5
4

(3
.7

6
±

2
1
.8

)
1
0
−

4
(5

.2
1
3
±

1
7
.9

)
1
0
−

5
(2

.2
4
±

7
.4

8
)
1
0
−

4
(8

.5
1
±

1
2
.1

)
1
0
−

5
2
.7

6
±

2
.1

3
3
.4

2
±

1
.9

6

N
L
O

D
E

6
4

(3
.7

9
±

2
.0

7
)
1
0
−

3
(3

.3
5
±

1
.6

6
)
1
0
−

3
(5

.3
0
±

3
.5

3
)
1
0
−

1
(5

.3
2
±

3
.5

7
)
1
0
−

1
1
.2

1
±

0
.6

4
9

2
.1

0
±

0
.9

0
4

S
O

D
E

1
4

(1
.4

1
±

7
.6

6
)
1
0
−

9
(1

.1
6
±

6
.7

4
)
1
0
−

9
(2

.2
3
±

4
.4

2
)
1
0
−

6
(1

.8
6
±

3
.9

5
)
1
0
−

6
3
.6

6
±

1
.3

9
5
.0

4
±

1
.4

1

S
O

D
E

2
4

(3
.1

8
±

4
.9

0
)
1
0
−

1
0

(2
.4

7
±

4
.1

6
)
1
0
−

1
0

(1
.6

1
±

1
.2

3
)
1
0
−

6
(1

.4
0
±

1
.1

2
)
1
0
−

6
3
.7

5
±

1
.4

1
4
.9

8
±

1
.3

7

S
O

D
E

3
4

(9
.2

1
±

3
0
.0

)
1
0
−

9
(9

.1
3
±

3
0
.0

)
1
0
−

9
(8

.2
8
±

9
.5

4
)
1
0
−

6
(8

.1
9
±

9
.4

6
)
1
0
−

6
9
.5

4
±

0
.8

3
3

9
.9

5
±

0
.1

7
5

S
O

D
E

4
4

(1
.4

5
±

4
.3

5
)
1
0
−

1
(1

.1
7
±

3
.9

7
)
1
0
−

1
6
.6

7
±

2
6
.4

8
.3

7
±

3
1
.7

4
.4

9
±

2
.3

6
6
.0

0
±

2
.1

2

S
O

D
E

5
4

(1
.2

1
±

3
.2

8
)
1
0
−

2
(1

.2
1
±

3
.2

7
)
1
0
−

2
(2

.8
8
±

7
.7

9
)
1
0
−

2
(2

.8
8
±

7
.7

8
)
1
0
−

2
4
.5

8
±

2
.6

7
5
.8

9
±

2
.3

6

S
O

D
E

6
4

(2
.0

7
±

1
.3

9
)
1
0
−

2
(1

.3
4
±

1
.1

4
)
1
0
−

2
(2

.8
3
±

1
.4

6
)
1
0
−

2
(1

.9
2
±

1
.2

7
)
1
0
−

2
1
.4

7
±

0
.4

6
5

3
.2

1
±

0
.7

3
4

P
D

E
1

8
(2

.8
2
±

5
.5

0
)
1
0
−

5
(2

.0
2
±

2
.8

2
)
1
0
−

5
(1

.9
8
±

1
.6

0
)
1
0
−

4
(1

.7
5
±

1
.1

4
)
1
0
−

4
5
.1

4
±

1
.6

3
7
.1

0
±

1
.5

2

P
D

E
2

8
(1

.0
2
±

4
.3

6
)
1
0
−

5
(8

.7
7
±

3
6
.1

)
1
0
−

6
(9

.8
8
±

1
2
.2

)
1
0
−

5
(9

.4
8
±

1
1
.3

)
1
0
−

5
6
.8

5
±

2
.5

9
8
.1

3
±

1
.8

0

P
D

E
3

8
(1

.9
8
±

2
.9

5
)
1
0
−

7
(1

.7
2
±

2
.4

8
)
1
0
−

7
(1

.1
9
±

0
.9

6
3
)
1
0
−

5
(1

.0
9
±

0
.8

4
6
)
1
0
−

5
6
.4

1
±

1
.7

8
8
.0

3
±

1
.4

0

P
D

E
4

8
(2

.4
4
±

4
.9

0
)
1
0
−

4
(2

.0
3
±

3
.5

3
)
1
0
−

4
(7

.3
1
±

5
.8

0
)
1
0
−

4
(7

.0
2
±

5
.2

8
)
1
0
−

4
5
.1

6
±

1
.9

6
7
.0

2
±

1
.7

2

P
D

E
5

8
(7

.5
6
±

1
9
.8

)
1
0
−

4
(6

.2
6
±

1
5
.4

)
1
0
−

4
(8

.0
7
±

7
.9

7
)
1
0
−

4
(7

.5
3
±

6
.3

9
)
1
0
−

4
7
.7

9
±

2
.2

9
8
.9

4
±

1
.6

3

P
D

E
6

8
(3

.1
2
±

8
.2

0
)
1
0
−

4
(1

.9
6
±

5
.0

1
)
1
0
−

4
(5

.7
6
±

7
.3

7
)
1
0
−

4
(4

.7
5
±

5
.2

6
)
1
0
−

4
4
.7

1
±

1
.4

1
6
.7

0
±

1
.4

0

P
D

E
7

8
(2

.2
5
±

4
.1

5
)
1
0
−

3
(2

.0
7
±

4
.1

1
)
1
0
−

3
(1

.6
0
±

1
.3

9
)
1
0
−

2
(1

.5
5
±

1
.3

7
)
1
0
−

2
3
.9

7
±

1
.9

6
5
.8

0
±

1
.8

6

P
D

E
8

8
(6

.4
4
±

1
2
.7

)
1
0
−

1
(4

.3
6
±

7
.6

3
)
1
0
−

1
(5

.7
7
±

6
.1

1
)
1
0
−

2
(5

.1
5
±

5
.2

9
)
1
0
−

2
3
.7

8
±

2
.1

0
5
.6

2
±

1
.8

8

P
D

E
9

8
(1

.2
2
±

1
.5

3
)
1
0
−

5
(7

.6
9
±

8
.1

8
)
1
0
−

6
(3

.7
7
±

2
.6

4
)
1
0
−

4
(3

.4
7
±

2
.4

5
)
1
0
−

4
4
.0

1
±

1
.0

7
6
.0

1
±

1
.0

7

T
ab

le
5.

11
:

E
x
p
er

im
en

ta
l

re
su

lt
s

of
D

E
S
C

M
A

-E
S

al
go

ri
th

m
.

E
ac

h
ca

se
w

as
ru

n
50

ti
m

es
u
si

n
g

d
iff

er
en

t
se

ed
s

fo
r

th
e

ra
n
d
om

n
u
m

b
er

ge
n
er

at
or

.
In

co
lu

m
n
s
“F

it
n
es

s”
an

d
“R

M
S
E

”,
th

e
b
es

t
va

lu
es

ob
ta

in
ed

ar
e

h
ig

h
li
gh

te
d

in
b
ol

d
le

tt
er

.

123

5.2. Numerical Experiments Chapter 5. Results and Discussion

Parameter Values

Initial weights Randomly in wi ∈ [−0.01, 0.01]

Initial γi Randomly in γi ∈ (0, 1]

Initial centers cik Randomly using Eq. (4.31) and β = 2

Initial mutation step σ 0.01

Offspring number λ = 3 · λdefault (see Eq. (4.32))

Population size µ = bλ/2c
Stop criteria Default (see [83])

Table 5.12: CMA-ES parameter values.

Parameter Values

Number of restarts 10

Increment for first simplex 4 = 10−2. Eq. (4.33).

Stop criterion Fitness evaluations = 2 · 104

Parameter convergence criterion 10−20

Target convergence criterion 10−20

Table 5.13: DS parameter values.

construction of the local search algorithm (see Section 4.4.3), its results (column marked

as “Fitness CMA-ES+DS”) always outperform the fitness values of the CMA-ES algorithm

(column marked as “Fitness CMA-ES”). In some cases, the DS phase improves significantly

the fitness value by several orders of magnitude as in LODE3, LODE5, LODE6, NLODE3,

NLODE4 or SODE4 problems. In other cases, the solution obtained by the CMA-ES algo-

rithm is good enough and the improvements obtained with the DS phase are less important.

In relation to RMSE values, the behavior is similar. Only in a few cases that value slightly

gets worse when the DS phase is applied. However, note that the value RMSE is never

used by the evolutionary algorithm or by local search method in the optimization process.

Therefore, from both points of view (fitness and RMSE), we can say that the use of the

DS algorithm allows us to improve (or maintain) the results obtained by the evolutionary

algorithm for all the problems, without modifying the control parameters, and with a limited

cost, as we can see comparing the number of fitness evaluation before and after the DS phase

(two last columns of the mentioned table).

124

Chapter 5. Results and Discussion 5.2. Numerical Experiments

End of CMA-ES phase

Fitness

RMSE

NLODE4

10−9

10−6

10−3

1

Fitness Evaluations

0 5×104 105 1.5×105 2×105

Figure 5.7: A typical run of DESCMA-ES algorithm for NLODE4 showing the fitness value
and RMSE evolution with the number of fitness evaluations.

As an example, Fig. 5.7 to Fig. 5.11 show how DESCMA-ES algorithm behaves when

it is applied to two particular problems. The first four figures refers to NLODE4 equation

and the fifth is from PDE8. Thus, in Fig. 5.7 a typical run for NLODE4 problem showing

the evolution of fitness function and the RMSE versus the number of fitness evaluations is

provided. Fig. 5.8 shows the evolution of the Gaussian kernels for the same run of NLODE4.

Note how a big variation is observed at the first generations, where the CMA-ES explores the

solution space. Afterwards the rate of change decreases because CMA-ES and DS perform an

exploitation of the best solutions. Fig. 5.9 shows the approximated solution of NLODE4 as

an addition of the four Gaussian kernels that form the solution. Note that in this particular

case the four centers ci are outside the independent variable range, and that one kernel has

a negative γ value. Fig. 5.10 shows a comparison between the exact and the approximated

solutions of NLODE4. Finally, Fig. 5.11 shows a comparison between the approximated

solution found by the proposed algorithm versus the exact one for the wave equation (PDE8).

The solution represents the vibration of a string in his fundamental harmonic scale. Only

125

5.2. Numerical Experiments Chapter 5. Results and Discussion

w1

w2

w3

w4

W
e

ig
h

ts

−30
−25

−5
0

c1

c2

c3

c4

C
e

n
te

rs

−3

−2

−1

0

1

γ1

γ2

γ3

γ4

G
a

m
m

a
s

−0.5

−0.25

0

0.5

0.75
1

Fitness Evaluations

0 5×104 105 1.5×105 2×105

Figure 5.8: A typical run of NLODE4 using DESCMA-ES algorithm showing the evolution
of the Gaussian kernels: wi, ci and γi.

Exact
Approximated
wiΦ(ci,γi)

-0.453Φ(0.412,0.260)

-0.568Φ(0.486,7.76e-2)

-27.0Φ(-2.53,0.247)

0.496Φ(-0.717,-5.55e-3)

y

−0.5

−0.25

0

0.25

0.5

0.75

x
2 3 4 5 6

Figure 5.9: Final evolved solution obtained in a typical run of DESCMA-ES algorithm for
NLODE4 and constrained to range [e, 2e]. It is shown as well the 4 Gaussian kernels which
form the approximated solution.

126

Chapter 5. Results and Discussion 5.2. Numerical Experiments

y
0

0.1

0.2

0.3

0.4

0.5

0.6

y
e

xa
ct

-y
e

vo
lv

e
d

−2.5
×10

−5

0

2.5
×10

−5

5×10
−5

7.5
×10

−5

10
−4

x

2.5 3 3.5 4 4.5 5 5.5

Figure 5.10: Comparison between the final solution obtained in a typical run of DESCMA-ES
algorithm for NLODE4 with the exact one (up) and error between the evolved solution and
the exact one (down). For the sake of clarity, in the top figure only 11 points are plot for the
evolved solution, although 100 collocation points were taken into account. Note the order of
magnitude of the error in second figure.

Exact solution
Approximated solution

t=0

u

0
0.2
0.4
0.6
0.8

1

t=0.1

u

0
0.2
0.4
0.6
0.8

1

t=0.2

u

0
0.2
0.4
0.6
0.8

1

t=0.3

u

0
0.2
0.4
0.6
0.8

1

t=0.4

u

0
0.2
0.4
0.6
0.8

1

t=0.5

u

0
0.2
0.4
0.6
0.8

1

X
0 0.2 0.4 0.6 0.8 1

Figure 5.11: Comparison of a typical solution obtained by the DESCMA-ES algorithm with
the exact one for PDE8 (Wave equation).

127

5.2. Numerical Experiments Chapter 5. Results and Discussion

5 time instants are plotted for t from 0 to 0.5, although the equation is solved in the range

t ∈ [0, 1]. As we can observe in the close up view at the bottom figure, the solution evolved

by the algorithm is in good agreement with the exact one.

Sensitivity to the number of kernels and the inner weighting factor (κ)

The solutions of the majority of the test problems present fitness values with orders of magni-

tude below of 10−3 and, in some cases, achieving values below of 10−9 as we can see in Table

5.11. In this section we want to study the effect of increasing the number of kernels in the

solution quality. For that, we select, for instance, all the problems whose order of magnitude

associated to the fitness value is higher than 10−3. We will vary the number of kernels but

the rest of the control parameters described in Tables 5.12 and 5.13 are maintained.

As we see in Table 5.14, better values of fitness are obtained when the number of kernels is

increased for all the cases, except for SODE4 problem, where all the fitness values in the table

are very similar (same order of magnitude). However, for this particular problem, increasing

the number of kernels from 4 (Table 5.11) to 6 (Table 5.14) is enough to obtain fitness

values with order of magnitude from 10−1 to 10−9. On the other hand, the value of RMSE

also improves or is approximately maintained when the number of kernels grows. Here, it is

important newly to mention that the RMSE value is not used in the evolutionary algorithm or

the local search method. Therefore, from the evidence here presented, we can say that when

the solution evolved is not as accurate as desired we should increase the number of kernels

to improve such accuracy. Finally, in relation to the average number of fitness evaluation,

obviously it increases as the size of the problem does with the number of kernels.

As it was already commented, the inner parameter κ was set to 30 for all the cases. It

is not observed a high sensitivity in the results to the inner weighting factor κ except for

NLODE6 case. As we see in Fig. 5.12, this equation is hard to solve because has a strong

gradient in the origin. For example, when κ = 0, the algorithm is not capable to locate

the appropriate transition from -1 to 1 at the origin. When an appropriate value of κ is set

(κ = 30), we can observe how the quality of the solution only depends on the number of

128

Chapter 5. Results and Discussion 5.2. Numerical Experiments

C
as

e
C

en
te

rs
n

U
n
k
n
ow

n
s

N
P
op

u
la

ti
on

µ
F
it

n
es

s
R

M
S
E

F
it

.
E
va

lu
at

io
n
s

E
q.

(4
.2

4)
E

q.
(5

.4
)

(C
M

A
-E

S
+

D
S
)

(C
M

A
-E

S
+

D
S
)

(C
M

A
-E

S
+

D
S
)

L
O

D
E

9
6

18
18

(4
.1

4
±

5.
46

)1
0−

2
(1

.0
4
±

1.
08

)1
0−

1
(3

.3
6
±

0.
84

3)
10

5

10
30

21
(2

.4
8
±

16
.3

)1
0−

3
(1

.0
8
±

3.
48

)1
0−

2
(5

.9
0
±

1.
05

)1
05

14
42

22
(7

.4
4
±

43
.7

)1
0−

6
(4

.4
9
±

20
.4

)1
0−

4
(9

.4
4
±

0.
80

)1
05

L
O

D
E

10
6

18
18

(1
.1

8
±

3.
66

)1
02

(2
.2

6
±

6.
14

)1
0−

1
(3

.0
3
±

1.
50

)1
05

10
30

21
(4

.7
2
±

23
.1

)1
0−

3
(5

.1
8
±

9.
21

)1
0−

4
(6

.1
5
±

1.
40

)1
05

14
42

22
(1

.3
2
±

5.
04

)1
0−

3
(4

.5
4
±

6.
74

)1
0−

4
(9

.2
7
±

1.
06

)1
05

N
L
O

D
E

6
6

18
18

(1
.8

7
±

1.
43

)1
0−

3
(4

.1
2
±

3.
54

)1
0−

1
(3

.8
8
±

1.
36

)1
05

10
30

21
(1

.3
0
±

1.
36

)1
0−

3
(3

.0
5
±

2.
99

)1
0−

1
(6

.1
9
±

1.
14

)1
05

14
42

22
(6

.2
6
±

8.
50

)1
0−

4
(2

.0
2
±

2.
74

)1
0−

1
(8

.8
9
±

1.
15

)1
05

SO
D

E
4

6
36

21
(2

.1
8
±

5.
89

)1
0−

9
(2

.7
6
±

3.
23

)1
0−

6
(8

.1
5
±

2.
01

)1
05

10
60

24
(3

.5
8
±

5.
56

)1
0−

9
(4

.4
7
±

3.
13

)1
0−

6
(9

.5
5
±

1.
15

)1
05

14
84

25
(6

.5
7
±

8.
52

)1
0−

9
(6

.3
8
±

4.
45

)1
0−

6
(9

.4
9
±

1.
09

)1
05

SO
D

E
5

6
36

21
(2

.6
3
±

12
.9

)1
0−

9
(3

.5
3
±

3.
98

)1
0−

6
(7

.8
6
±

1.
80

)1
05

10
60

24
(6

.2
6
±

11
.7

)1
0−

1
0

(2
.2

8
±

1.
95

)1
0−

6
(8

.8
3
±

1.
40

)1
05

14
84

25
(6

.2
2
±

5.
37

)1
0−

1
0

(2
.3

8
±

1.
24

)1
0−

6
(8

.7
6
±

1.
51

)1
05

SO
D

E
6

6
36

21
(1

.4
3
±

0.
20

8)
10

−
2

(2
.1

1
±

0.
28

8)
10

−
2

(4
.2

9
±

0.
77

)1
05

10
60

24
(1

.0
2
±

0.
30

3)
10

−
2

(1
.6

4
±

0.
37

4)
10

−
2

(7
.3

0
±

1.
91

)1
05

14
84

25
(8

.7
0
±

4.
88

)1
0−

3
(1

.3
8
±

0.
55

6)
10

−
2

(8
.9

2
±

1.
34

)1
05

P
D

E
7

6
24

19
(7

.9
5
±

11
.7

)1
0−

2
(2

.9
8
±

2.
52

)1
0−

2
(3

.8
7
±

2.
15

)1
05

10
40

22
(7

.8
0
±

10
.2

)1
0−

4
(9

.8
8
±

10
.0

)1
0−

3
(7

.7
3
±

1.
95

)1
05

14
56

24
(2

.7
8
±

4.
02

)1
0−

4
(6

.1
9
±

6.
41

)1
0−

3
(9

.5
6
±

1.
04

)1
05

P
D

E
8

6
24

19
1.

20
±

1.
90

(1
.0

0
±

0.
72

9)
10

−
1

(3
.3

8
±

1.
64

)1
05

10
40

22
(1

.9
7
±

6.
39

)1
0−

2
(7

.0
0
±

14
.3

)1
0−

3
(8

.7
5
±

1.
60

)1
05

14
56

24
(8

.2
3
±

14
.8

)1
0−

4
(1

.5
0
±

1.
90

)1
0−

3
(9

.9
5
±

0.
21

5)
10

5

T
ab

le
5.

14
:

E
ff
ec

t
of

in
cr

ea
si

n
g

th
e

n
u
m

b
er

of
ce

n
te

rs
in

D
E

S
C

M
A

-E
S

al
go

ri
th

m
.

In
co

lu
m

n
s
“F

it
n
es

s”
an

d
“R

M
S
E

”
th

e
b
es

t
va

lu
es

ob
ta

in
ed

ar
e

h
ig

h
li
gh

te
d

in
b
ol

d
le

tt
er

.

129

5.3. Comparisons with other Methods Chapter 5. Results and Discussion

Exact
4 centers, κ=30
15 centers, κ=30
15 centers, κ=0

y

−1

−0.5

0

0.5

1

x
−1 −0.5 0 0.5 1

Figure 5.12: Comparison of evolved solutions by DESCMA-ES algorithm with the exact one
for NLODE6 equation.

centers, increasing the first when the second does.

5.3 Comparisons with other Methods

For the sake of clarity, this section is only devoted to compare the two best algorithms pre-

sented (DESES and DESCMA-ES) with other algorithms, such as other heuristic approaches

or more traditional numerical methods. A comparison between both algorithms is also pro-

vided. Nevertheless, in Section 5.2.1 where the results of DESGE algorithm were provided,

a brief comparison and discussion of this algorithm with works [1, 2] were also commented.

5.3.1 Comparing of DESES algorithm with Numerical Methods

Maybe the greater advantage of the proposed DESES approach is that it is a generic frame-

work, i. e., it does not depend on the type of differential equation. On the other hand,

numerical methods are specific for each equation type. For instance, classical Runge-Kutta

methods are used for initial value problems due to their higher accuracy features compared

with more efficient algorithms as Euler’s method. Classical Runge-Kutta methods are ex-

130

Chapter 5. Results and Discussion 5.3. Comparisons with other Methods

plicit, and are unsuitable for stiff systems because of their small region of stability. On the

contrary, implicit Runge-Kutta methods have a large region of absolute stability [7]. Bound-

ary value problems requires different algorithms, such as shooting method for one-dimensional

problems or the finite element method for more general domains. Even for the same equa-

tion, in some problems depending on the boundary conditions the numerical scheme must

be changed due to stability reasons [104]. Furthermore, the implementation of a new numer-

ical method could turn difficult because it is necessary to take into account several issues

as the discretization order, the algorithm stability, the convergence speed, how to fulfill the

boundary conditions, etc. In the methods described in this thesis, the original problem is

transformed into an optimization one according to Eq. (4.1), so the problem of choosing the

most appropriate numerical method disappears.

For making a quantitative comparison with a numerical method, two non-linear ordinary

differential equations from the test case suite (Tables 5.1 and 5.2) have been solved with tra-

ditional numerical methods. The first problem, NLODE2 is a first order non-liner differential

equation. The domain interval x ∈ [1, 2] is discretized into N equidistant nodes. This system

can be solved in a very efficient way using a fourth order Runge-Kutta (RK4) algorithm

[102]. Once the solution is obtained, the RMSE is computed according to Eq. (5.1). The

RMSE can be computed on different grids using a liner interpolation obtaining the values

of the dependant variable yi on each grid node xi. In table 5.15 the results obtained for

two different grid sizes (102 and 103 nodes) for the numerical method are compared with the

evolutionary approach (using 102 collocation points). The RMSE are computed from the

obtained solutions in each case on three different grid sizes (102, 103 and 104 nodes).

We can see that the RMSE of evolutionary solution is not dependant on the grid size. The

RK4 solutions have a high accuracy in the grid used in the computation, but this accuracy

decreases when other grid is used due to the linear interpolation. The RK4 algorithm with

the same grid size as the evolutionary solution has less accuracy in the finer grids (103 and

104 nodes). As expected, if the number of nodes is increased, the accuracy achieved is

higher and better than the evolutionary approach. It is worth to point out that the solution

131

5.3. Comparisons with other Methods Chapter 5. Results and Discussion

Method Grid size RMSE102 RMSE103 RMSE104

RK4 102 2.23 · 10−12 8.91 · 10−6 8.91 · 10−6

RK4 103 8.71 · 10−8 3.80 · 10−15 8.75 · 10−8

DESES 102 5.98 · 10−6 5.99 · 10−6 5.99 · 10−6

Table 5.15: Comparison of the numerical method solution with DESES algorithm for NODE2
case. Two grid sizes of 102 and 103 have been used in the numerical method. The RMSE are
computed on three grid sizes using a linear interpolation for the numerical solution and the
equation (4.6) for the evolutionary one.

representation of the evolutionary approach only needs to store 11 numbers (the harmonic

coefficients), whereas the RK4 solution requires to store the values of x and y in all the

grid nodes, i. e. the RK4 solution in the finer grid is around 200 times bigger than the

evolutionary solution.

For the next comparative NLODE5 has been selected. It is as well a non linear differential

equation, but the boundary conditions are given in different points. This type of cases is

called two point boundary problems. The crucial distinction between initial value problems

and two point boundary value problems is that in the former case we are able to start an

acceptable solution at its beginning, while in the present case, the boundary conditions at

the starting point do not determine a unique solution to start with. For this reason, two

point boundary value problems require considerably more effort to solve than do initial value

problems. The shooting method [102] has been used to solve this problem. In this method

the original problem is transformed into a root finding problem. We choose values for all

of the dependent variables at one boundary. We then integrate the ODE by initial value

methods, arriving at the other boundary. We find discrepancies from the desired boundary

values there, so the initial boundary condition is readjusted. The iteration process is stopped

when no improve is detected in the error of the boundary condition at the left side of the

domain interval. Each iteration is solved using a RK4 algorithm transforming the initial two

order equation into the following equivalent first order system:

132

Chapter 5. Results and Discussion 5.3. Comparisons with other Methods

Method Grid size RMSE102 RMSE103 RMSE104

Shooting 102 3.92 · 10−7 5.67 · 10−5 5.68 · 10−5

Shooting 103 5.54 · 10−7 3.89 · 10−10 5.60 · 10−7

DESES 102 3.12 · 10−6 3.13 · 10−6 3.14 · 10−6

Table 5.16: Comparison numerical method solution with DESES algorithm for NODE5 case.
Two grid sizes of 102 and 103 have been used in the numerical method. The RMSE is
obtained using a linear interpolation for the numerical solution and the equation (4.6) for the
evolutionary one in three different grids of 102, 103 and 104 nodes.

y′ = z

z′ =
yz

x sin x2
− 4x2 sin x2

 , (5.5)

Table 5.16 shows a comparative of the solutions obtained using two grid sizes. As before,

the RMSE values are computed in three different grids using a linear interpolation in the

numerical solutions, and equation (4.6) for the evolutionary one.

We see that as in the previous case a finer grid is needed for achieving a better RMSE

value than in the evolutionary approach. When the RMSE is computed in a different grid

than the one used in the Shooting algorithm, the errors increase. On the other hand, the

RMSE values of the Evolutionary solutions are not affected by the grid size. Note that the

numerical integration is performed using a fourth order Runge-Kutta algorithm, which is a

high order method, i. e. the errors depends on the grid size rise to the power of four. The

memory requirements of the Shooting solution using 103 nodes is around 200 times bigger

than the evolutionary solution (arrays of x and y values must be stored, meanwhile only the

harmonic coefficients must be kept in evolutionary solution).

With these two examples, we can say that in some cases the evolutionary approach can

achieve a more accurate solution using less number of nodes. The solutions obtained are

coded in a more compact way requiring significantly less amount of memory. Nevertheless, a

major drawback is the CPU time consuming. In this comparison, the Evolutionary approach

consumes around 5000 more time than the numerical approach. This number could be

133

5.3. Comparisons with other Methods Chapter 5. Results and Discussion

decreased in other problems where efficient numerical methods as RK4 and Shooting can not

be applied, as for instance in PDEs.

5.3.2 Comparison of DESES algorithm with other Evolutionary

Computing approaches

It is difficult to make a quantitative comparative study with other reported approaches. Al-

though the same problems described in [2] have been used with the same collocation points,

the comparative is not straightforward because, as it was already commented previously, the

fitness values are high dependent on the solver parameters and on how differential equations

are provided to expression (4.1). A correct comparison of the solution quality should be done

with the RMSE values, but these quantities are not reported in previous contributions. How-

ever, Tsoulos et al. [2] obtained an average fitness values between 10−5 and 10−9, meanwhile

in the present work the fitness values are in the range of 10−2 and 10−8. Therefore it seems

that neural networks can approximate the solution functions with better accuracy. Moreover,

no problems have been reported for ODE3 case in [2, 1]. It is important to notice that in

the present contribution all the test cases have been run with the same solver parameters

in order to present a systematic method. However, better results could be obtained if these

solver parameters were adjusted by trial and error for each problem.

In contribution [17] a PDE using complex numbers on a triangle shape domain is re-

ported. The RMSE is computed approximating the exact solution by a numerical method

solution. The RMSE obtained is around 10−4, which is better than those obtained by DE-

SES. Nevertheless, the number of unknowns that must be tuned in [17] is much higher than

in DESES algorithm. A total of 132 neurons are needed, so considering the weights and bias,

this implies a number of unknowns around 260 against 100 of the present contribution. In a

similar way, good accuracy has been obtained for ODE9 using 30 harmonics, whereas in [18]

more than 70 neurons are needed for obtaining a similar solution.

It can be remarked that in some other previous contributions [12, 2, 1] PDE’s results are

of the same quality than ODEs. In DESES algorithm, the PDE’s RMSE is around two orders

134

Chapter 5. Results and Discussion 5.3. Comparisons with other Methods

of magnitude bigger compared with ODEs and SODEs. This could be explained noting that

the number of unknown coefficients needed by a neural network for solving a PDE problem

scale linearly with the dependent variable dimension. On the other hand, using an harmonic

approach, the number of harmonics increases quadratically for 2D problems, as it was shown

in expression (4.15).

Because local search is used in other approaches [12, 14, 2], but not in DESES algorithm,

it is difficult as well to make a quantitative comparison of the required computational power.

It should be compared not the generation number, but the number of fitness evaluations.

But these quantities have not been reported in the approaches mentioned. Furthermore, in

DESES, the fitness evaluation number could be reduced taking into account that is cheaper

to evaluate the fitness function when the number of active harmonics is lower in the first ES

steps than in the last ES steps.

From a qualitative point of view, some advantages of DESES algorithm can be enumer-

ated. Firstly, in our algorithm is straightforward to compute the derivatives because all the

solutions are only expressed as sum of cosine functions. In works based on GP [27, 3, 1], an au-

tomatic differentiation engine must be used. In neural networks approaches [12, 17, 2, 14, 18],

the activation function must be differentiated, which could be hard depending on the cho-

sen function. Furthermore, if more than one hidden layer is used, the symbolic derivatives

implementation could turn very complex.

Secondly, in DESES, several steps of a classical ES are used, guiding the search process

in a more efficient way. Other approaches [12, 14, 2] use local search, which makes the

implementation and analysis more difficult. Nevertheless, the proposed approach can deal

naturally with local search phases, but we have wanted to test the skills of our method in

the simplest way possible. In any case, the addition of this kind of search could accelerate

the convergence velocity.

Thirdly, low dispersion in the results has been observed, so this finding provides evidence

about the robustness of our method. Works based on GP reported a higher dispersion.

And finally, DESES algorithm can be applied to different kind of differential equations.

Some authors [12, 3, 36] use some particular methods for dealing with the boundary condi-

135

5.3. Comparisons with other Methods Chapter 5. Results and Discussion

tions, facilitating the optimization process eliminating the constraints. Nevertheless, these

methods are problem dependant and can not be applied to all problems. DESES does not

assume any particular structures in the boundary conditions. That is, it is straightforward to

assign a fitness value to each individual in the population transforming the original problem

into an optimization one according to Eq. (4.1), even in those problems with complex geome-

tries and boundary conditions, such as PDE6 (see Table 5.2) where the definition domain is

more complex than a simple 2-dimensional interval.

5.3.3 Comparison of DESCMA-ES with Numerical Methods

In this subsection a comparison of the proposed DESCMA-ES algorithm with numerical

methods is presented. As in Section 5.3.1, our intention here is not to give an exhaustive

comparison with this kind of methods. Numerical methods are much more mature than

evolutionary methods, can cope with a great variety of difficult problems and are faster

than evolutionary approaches. Therefore, we focus the comparison from the point of view

that numerical methods are usually specific for each type of equation while an evolutionary

algorithm could cope with different types of differential equations if they are transformed

into an optimization problem. An example of this is analyzed here. For that, two partial

differential equations are chosen: PDE1 (Poisson equation) and PDE8 (Wave equation).

Although both equations are of second order, the former is elliptic and the later hyperbolic.

This fact causes that different numerical methods should be employed to solve them. As we

will show in the next paragraphs, the proposed evolutionary method can cope with the two

problems without any change in the algorithm or in the user parameters.

A brief description of two simple finite difference numerical methods used in the compar-

ison is provided. The first method is an explicit four order Runge-Kutta (RK4) [102]. Being

the equation Ψxx + Ψyy = f (x, y), after a discretization on the grid nodes and using central

differences, the residual at point (i, j) of a candidate solution field Ψ is computed as

Ri,j (Ψ) =
Ψi−1,j − 2Ψij + Ψi+1,j

4x2
+

Ψi,j−1 − 2Ψij + Ψi,j+1

4y2
− f (xi, yj) , (5.6)

136

Chapter 5. Results and Discussion 5.3. Comparisons with other Methods

RK4 scheme

(a)

tj

tj+1

tj-1

xi+1xixi-1

Simple Explicit

(b)

Figure 5.13: Numerical schemes for comparison. Arrows indicate that one node is affecting
to another. Note that at Runge-Kutta method, point (i, j) affects to all his neighbours. On
the contrary, at Explicit method, all nodes at time instant tj+1 does not affect to previous
time instants tj and tj−1.

where constant grid sizes 4x and 4y are assumed. At the boundary condition points, the

residual is set to 0. Defining a pseudo time parameter τ which controls the rate of convergence

and the stability of the method, the RK4 consist on the following sequence:

Ψ0 = Ψ

Ψ1 = Ψ + τR (Ψ0) /4

Ψ2 = Ψ + τR (Ψ1) /3

Ψ3 = Ψ + τR (Ψ2) /2

Ψ = Ψ3



(5.7)

The above sequence is repeated after some convergence criterion is fulfilled, typically a maxi-

mum number of iterations or when the norm of the residual array R is below a predefined

tolerance. We have used 2000 iterations and τ = 10−3 for PDE1. At Fig. 5.13a we can see a

schematic of the numerical scheme.

137

5.3. Comparisons with other Methods Chapter 5. Results and Discussion

Some modifications must be done to the numerical scheme to solve Wave equation. Thus

the coefficient of the discretization of the second derivative utt in Eq. (5.6) changes the sign.

Boundary conditions must be applied in a different way because not only they are set on u,

but as well on its first derivative ut. However, this method does not work for Wave equation

because the algorithm is not stable, even for very low values of τ .

To solve the PDE8, a different approach must be followed. A simple explicit scheme can

be used. Being the equation utt = uxx, and using as well central differences, the field can be

computed in a straightforward way in just a single iteration:

ui,j+1 = −ui,j−1 + 2
(
1− α2

)
uij + α2 (ui+1,j + ui−1,j) , (5.8)

where α = 4t/4x. Note that the first and second time instant (ui,0 and ui,1) must be

obtained from the boundary conditions. At Fig. 5.13b the numerical scheme is outlined. In

the same way than with RK4 algorithm, some changes must be applied on Eq. (5.8) and in

the boundary condition to solve the Poisson equation.

Table 5.17 shows the results of solving PDE1 and PDE8 with the evolutionary algorithm

and with both numerical methods. As we can observe, the numerical methods are specific

for only one type of equation and can not cope with different problems. On the other hand,

evolutionary algorithm works properly both for elliptic and parabolic equations. When the

numerical schemes converge, the RMSE values are on the same order of magnitude. However,

the elapsed time required by the numerical methods is several orders of magnitude lower.

Other advantage of DESCMA-ES algorithm, like DESES, is that it has lower memory

requirements: using 8 centers, a total of 32 unknowns must be stored. Numerical methods

must be stored as many values as collocation points, 100 in these examples. Therefore the

solution requires 3 times less memory. And what is more important, the solution is sym-

bolically stored, so new solution values different from the collocation points can be obtained

without performing any interpolation.

It is important to highlight that this comparison has to be taken as an example. It is

probable that a more complex numerical method, for instance an implicit one, could solve

138

Chapter 5. Results and Discussion 5.3. Comparisons with other Methods

Case Method RMSE Iterations/ Absolute Relative

Fitness Eval. Elapsed time Elapsed time

PDE1 Evolutionary 8.3 · 10−6 1.4 · 105 68s 8.1 · 10−2

RK4 6.5 · 10−5 8.0 · 103 0.2s 2.4 · 10−4

Simple Explicit 1.1 1 0.003s 3.6 · 10−6

PDE8 Evolutionary 7.8 · 10−3 4.2 · 105 14minutes 1

RK4 ∞ ∞ ∞ ∞
Simple Explicit 4.7 · 10−3 1 0.004s 4.7 · 10−6

Table 5.17: Comparison of different algorithms for PDE1 and PDE8.

both equations as the evolutionary approach does. Here we only want to give some experi-

mental feedback about how an evolutionary approach could be more flexible and with a more

straightforward setup than a numerical method.

5.3.4 Comparison of DESCMA-ES with DESES and other Evolu-

tionary Algorithms

As it was commented in Section 5.3.2, it is difficult to make a quantitative comparative

study with other reported approaches because the fitness values are high dependent on the

solver parameters and on how differential equations are provided to Eq. (4.26). A correct

comparison of the solution quality should be done with the RMSE values, but these quantities

generally are not reported in previous contributions. As discussed in Section 5.2.3, the

direct way to increase the solution accuracy in DESCMA-ES method depends strongly on

the number of kernels used. In order to measure the performance of our approximation in

relation to other methods, we maintained here the set-up used previously, Tables 5.12 and

5.13, except the number of kernels. That is, when the RMSE value obtained in Table 5.11 was

lower than the best result obtained by one of the techniques of the comparison, we increased

the number of kernels to investigate the potential of our method. In this regard, we also

reused the results obtained in Table 5.14.

139

5.3. Comparisons with other Methods Chapter 5. Results and Discussion

Problem RMSE RMSE RMSE RMSE RMSE in DESCMA-ES|

in [3] in DESES in [4] in [5] centers n used

LODE1 - (3.70± 0.166) · 10−5 - - (2.35± 2.52) · 10−6|4

LODE2 - (6.59± 0.255) · 10−5 - - (2.14± 14.4) · 10−5|4

LODE3 - 13.16± 0.013 - - (2.13± 7.53) · 10−3|4

LODE4 - (1.65± 0.87) · 10−6 - - (4.17± 9.16) · 10−7|6

LODE5 - (9.90± 0.38) · 10−5 - - (3.01± 8.13) · 10−6|4

LODE6 - (5.44± 3.64) · 10−6 - - (1.72± 2.85) · 10−7|4

LODE7 - (1.25± 0.26) · 10−5 - - (6.71± 2.33) · 10−6|4

LODE8 - (1.22± 0.001) · 10−2 - - (4.87± 5.41) · 10−5|4

LODE9 - (1.51± 0.001) · 10−2 - - (1.08± 3.48) · 10−2|10

LODE10 - (3.15± 0.0519) · 10−2 - - (5.18± 9.21) · 10−4|10

LODE11 - - 4.65 · 10−3 - (9.16± 39.4) · 10−4|4

NLODE1 - (7.42± 0.968) · 10−5 - - (1.61± 2.12) · 10−5|4

NLODE2 - (5.90± 0.549) · 10−6 - - (3.79± 3.31) · 10−7|6

NLODE3 - (3.64± 0.49) · 10−5 - - (2.05± 5.04) · 10−6|4

NLODE4 - (8.32± 0.79) · 10−5 - - (8.21± 33.0) · 10−7|6

NLODE5 - (3.19± 0.59) · 10−6 - - (1.59± 1.74) · 10−6|8

NLODE6 (3.03± 0.0009) · 10−1 (2.02± 2.74) · 10−1|14

SODE1 - (7.465± 1.66) · 10−5 - - (1.86± 3.95) · 10−6|4

SODE2 - (3.90± 0.37) · 10−5 - - (1.40± 1.12) · 10−6|4

SODE3 - (8.51± 4.02) · 10−5 - - (8.19± 9.46) · 10−6|4

SODE4 - (4.72± 0.261) · 10−5 - - (2.76± 3.23) · 10−6|6

SODE5 - (3.19± 3.18) · 10−6 - - (2.28± 1.95) · 10−6|10

SODE6 - - 1.78 · 10−2 - (1.64± 0.374) · 10−2|10

PDE1 (6.9± 8.3) · 10−4 (6.37± 0.73) · 10−3 - 7.25 · 10−4 (6.20± 3.36) · 10−5|14

PDE2 - (1.16± 0.21) · 10−3 - 2.45 · 10−4 (9.48± 11) · 10−5|8

PDE3 - (5.90± 0.79) · 10−3 - 9.48 · 10−6 (5.02± 2.19) · 10−6|10

PDE4 - (1.23± 0.03) · 10−3 - 6.60 · 10−3 (7.02± 5.2) · 10−4|8

PDE5 (1.4± 2.7) · 10−2 (9.06± 1.29) · 10−4 - 3.72 · 10−2 (1.17± 0.73) · 10−4|14

PDE6 (2.0± 2.1) · 10−2 (1.79± 0.03) · 10−2 - 3.82 · 10−1 (1.80± 1.15) · 10−4|10

Table 5.18: Comparison of the obtained errors using DESCMA-ES algorithm, respect to exact
solution, (RMSE) considering only those works where that information is reported [3, 4, 5].
Standard deviations are not always provided in the referenced works. The best results are
marked in bold letter. The final number of centers, n, (see Eq. (4.24)), used by DESCMA-ES
for this comparison, is also provided in the last column.

140

Chapter 5. Results and Discussion 5.3. Comparisons with other Methods

We begin this comparison focusing in those works where RMSE values (or at least some

other measure of the solution accuracy) are managed [3, 4, 5], and obviously including DESES

and DESCMA-ES algorithms. The results of the comparison are showed in Table 5.18. The

DESCMA-ES approach clearly outperforms the results of DESES in terms of lower values of

RMSE.

As an example, Fig. 5.14 shows a typical run of DESCMA-ES algorithm against the

DESES method for NLODE1 problem. Regarding the set-up for this comparison, the same

parameters already commented in Tables 5.12 and 5.13 have been employed for the DESCMA-

ES algorithm, i. e., 4 kernels are adjusted (12 unknowns) with a population of (µ, λ) =

(16, 33). The DESES algorithm uses 10 harmonics or unknowns and a population of (µ, λ) =

(10, 400). Note how the CMA-ES algorithm needs a lower λ value, which turns in a lower

number of fitness evaluations. In any case, due to the stochastic nature of the algorithms,

when average values are compared after running both algorithms 50 times, DESCMA-ES

algorithm obtains a RMSE of (1.61± 2.12) · 10−5 needing (1.88± 0.453) · 105 fitness eval-

uations, meanwhile in DESES approach, the RMSE obtained was (7.42± 0.968) · 10−5 in

(4.87± 1.67) · 105. In DESCMA-ES algorithm all the problems solved by DESES approach

have as well successfully solved, meanwhile in the harmonic evolutionary solver LODE3 was

not correctly handled. As it was already commented, in DESES the number of unknowns

increases exponentially with the space dimension. This drawback does not exist DESCMA-

ES. Thus, for example, for a PDE with two dependent variables, the election of 10 centers in

DESCMA-ES algorithm turns into 40 unknowns, meanwhile 10 harmonics in DESES implies

the tuning of 100 unknowns, more than the double. Thanks to the good performance of

CMA-ES, all the unknowns can be adjusted simultaneously. However, in DESES algorithm,

successive ES steps should be done to adjust, in each, a harmonic coefficient. Therefore

our DESCMA-ES algorithm greatly simplifies the procedure used to tune the variables (un-

knowns).

Another approach using Fourier series can be seen in Babaei’s work [4], where PSO

techniques are employed to tune the fitness coefficients. There, none PDE was presented.

141

5.3. Comparisons with other Methods Chapter 5. Results and Discussion

DESES
DESCMA-ES

NLODE1

F
it

n
es

s
10−12

10−9

10−6

10−3

1

1000

106

R
M

SE

10−6

10−5

10−4

10−3

0.1
1

10

Fitness Evaluations

0 105 2×105 3×105 4×105 5×105 6×105 7×105

Figure 5.14: Comparison of a typical run of DESCMA-ES with DESES algorithm for problem
NLODE1.

In that work, some tuned Fourier coefficients are given, so it is possible to calculate and

compare the RMSE values obtained. Thus, for the brachistrone problem (SODE6) the best

RMSE obtained was 1.78 · 10−2. In DESCMA-ES algorithm 4.44 · 10−3 is achieved as best

value using 4 centers, which gives the same number of unknowns, 12, than used in [4]. In a

similar way, the best RMSE value reported in [4] for LODE11 is 4.65 · 10−3, meanwhile in

DESCMA-ES the best RMSE obtained is 1.74 · 10−6.

Another work where RMSE values are reported can be consulted in Panagant and Bu-

reerat [5]. There, only PDEs are solved and the solutions are approximated by polynomial

functions where their coefficients are tuned using a method based on Differential Evolution.

However the number of executions for each problem, the dispersion of the results, and the

number of unknowns used are not provided. According to Tables 5.8 and 5.18 is easy to see

that DESCMA-ES outperforms Panagant and Bureerat approach [5], using only 8 centers

and considering that the number of fitness evaluations is of the same order in both cases

(105).

Sobester et al. [3] presents a Genetic Programming approach for solving differential equa-

tions where the solutions are split into two terms in order to fulfill the boundary conditions

142

Chapter 5. Results and Discussion 5.3. Comparisons with other Methods

by construction. This particular approach can be adopted only in some specific geometries.

In that paper, as a measure of accuracy the MSE (mean square error) is used, although it

is straightforward to obtain the RMSE values (RMSE2 = MSE). As we can see in Table

5.18, the accuracy of our approach is better than the results presented in [3].

Solution accuracy were partially reported in Lagaris et al. [12] for PDE1 achieving a

maximum error value around 10−7. Mean and dispersion measures are not provided, so we

assume that the reported values correspond to the best solution found. A drawback of [12]

method is that boundary conditions should be treated in different ways for each problem, and

the method only works for second order elliptic differential equations. DESCMA-ES does not

have such limitations. Besides, the RMSE can be reduced until 10−5 increasing the number

of centers (see Table 5.18).

As said above, Table 5.18 summarizes the comparison with the mentioned works in terms

of RMSE values. Note that only the available values for each work and equation are given,

and very few works report standard deviations.

An important issue to compare stochastic algorithms is the dispersion in the results. A

good algorithm should give similar results in all the executions. However, very few works in

the literature give dispersion rates. Tsoulos and Lagaris [1] present a differential equation

solver using Genetic Programming. Although RMSE values are not provided, as a measure

of dispersion the authors give minimum, maximum and average of the number of generations

needed to find a correct solution. Knowing the population size used, it is possible to perform

a comparison with our proposed approach in terms of the number of fitness evaluations.

Thus, the average order of magnitude calculated was 105, i.e., the same as that obtained by

our method, and all the problems solved there were also successfully solved here.

In contribution by Shirvany et al. [17] a PDE using complex numbers on a triangle

shape domain is reported. The RMSE is computed approximating the exact solution by a

numerical method solution. The RMSE obtained is around 10−4, which is of the same order

than the average obtained for all the PDEs in DESCMA-ES algorithm. However, the number

of unknowns that must be tuned in [17] is much higher than in the present work. A total of

132 neurons are needed, against 32 unknowns and RMSE order of magnitude varying from

143

5.3. Comparisons with other Methods Chapter 5. Results and Discussion

10−2 to 10−5 (see Table 5.8) in DESCMA-ES. In a similar way, in Yazdi and Pourreza [36]

more than 70 neurons are needed for obtaining a solution in LODE9. In our case, good

accuracy (RMSE order of magnitude equal to 10−4) has been obtained with 42 unknowns

(see Table 5.14).

From a qualitative point of view, some advantages of DESCMA-ES algorithm can be

enumerated. Firstly, in our algorithm is straightforward to compute the derivatives because

all the solutions are only expressed as sum of Gaussian kernels. This feature is also true

in DESES method. In works based on GP [27, 3, 1], an automatic differentiation engine

must be used. In neural networks approaches [12, 17, 2, 14, 18], the activation function must

be differentiated, which could be hard depending on the chosen function. Furthermore, if

more than one hidden layer is used, the symbolic derivatives implementation could turn very

complex.

Secondly, like in DESES, low dispersion in the results has been observed, so this finding

provides evidence about the robustness of our method. Works based on GP reported a higher

dispersion.

And finally, the proposed approach can be applied to different types of differential equa-

tions. Some authors [12, 3, 36] use some particular methods for dealing with the boundary

conditions, facilitating the optimization process eliminating the constraints. Nevertheless,

these methods are problem dependent and can not be applied to all problems. DESES and

DESCMA-ES alorithms do not assumed any particular structures in the boundary conditions

making the methods suitable for all problems handled in this work.

144

Chapter 6

Future Research

The motivation of this chapter is to sketch some possible future works and research. From

the three approaches presented to solve differential equations with evolutionary algorithms,

DESCMA-ES method has obtained the best results in all of the benchmarking problems

in terms of accuracy and convergence. Therefore, in this chapter several ideas to improve

DESCMA-ES are discussed.

First, it is sketched the effects of changing the kernel functions in the capabilities of the

algorithm to approximate complex solutions with strong gradients. Then, other challenging

equations are solved with DESCMA-ES. These problems are stiff equations, which have some

difficulties even for numerical methods.

6.1 Analysis of other kernels in DESCMA-ES

To see the influence of the kernels in DESCMA-ES algorithm, LODE4 and NLODE6 equa-

tions have been solved using several kernels. The best results have been obtained with arctan

kernel, Eq. (4.34), improving even the good results obtained with Gaussian kernels.

Thus LODE4 has been correctly solved using 4 arctan kernels, achieving a fitness value

of 6.9 · 10−12 and a RMSE of 1.5 · 10−8, which are better than those using Gaussian kernels

(fitness of 2.7 ·10−9 and RMSE of 2.6 ·10−6). NLODE6 equation has been solved using only 1

and 4 new kernels. The control parameter inner penalty κ has little influence in the results,

145

6.1. Analysis of other kernels in DESCMA-ES Chapter 6. Future Research

Exact
n=1 κ =0
n=1 κ =30
n=4 κ =0
n=4 κ =30

y

−1

−0.5

0

0.5

1

x

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−0.1 −0.05 0 0.05 0.1

Figure 6.1: Comparison of the exact solution with several evolved ones for NLODE6 problem
using DESCMA-ES and arctan kernel.

Kernels κ Fitness RMSE Fitness Evaluations

1 0 3.52e− 3 4.61e− 2 6559

1 30 3.40e− 4 4.48e− 2 7239

4 0 3.30e− 10 2.40e− 3 97115

4 30 4.98e− 9 2.13e− 1 289310

Table 6.1: Inner penalty κ sensitivity analysis in NLODE6 using DESCMA-ES algorithm
with arctan kernel.

even more, it is better not to use it in order to weight more the errors in the origin, where is

located the strongest gradients (Table 6.1). The solution is compared with the exact one in

Fig. 6.1. We can observe that the agreement is pretty good with just one kernel, and with 4

kernels the matching is almost perfect.

146

Chapter 6. Future Research 6.2. More complex problems: Stiff equations

6.2 More complex problems: Stiff equations

This final section is devoted to test the performance of the best algorithm so far, the

DESCMA-ES, on more challenging equations. To do that, three stiff equations are stud-

ied. Our intention in this section is not to do an exhaustive study, but to motivate the

analysis of this new equations and to show the potential of DESCMA-ES algorithm.

In mathematics, a stiff equation is a differential equation for which certain numerical

methods for solving the equation are numerically unstable, unless the step size is taken to

be extremely small. It has been proven difficult to formulate a precise definition of stiffness,

but the main idea is that the equation includes some terms that can lead to rapid variation

in the solution.

When integrating a differential equation numerically, one would expect the requisite step

size to be relatively small in a region where the solution curve displays much variation and

to be relatively large where the solution curve straightens out to approach a line with slope

nearly zero. For some problems this is not the case. Sometimes the step size is forced down

to an unacceptably small level in a region where the solution curve is very smooth. The

phenomenon being exhibited here is known as stiffness. In some cases we may have two

different problems with the same solution, yet problem one is not stiff and problem two is

stiff. Clearly the phenomenon cannot be a property of the exact solution, since this is the

same for both problems, and must be a property of the differential system itself. It is thus

appropriate to speak of stiff systems.

Stiff Example 1: Simple Stiff Equation

In this first equation, a motivation example has been solved with DESCMA-ES algorithm.

The equation is

y′ (t) = −15y (t)

in the range t ∈ [0, 1] with the boundary condition y (0) = 1. The exact solution is y (t) =

e−15t. Fig. 6.2 illustrates the numerical issues for various numerical integrators applied on

147

6.2. More complex problems: Stiff equations Chapter 6. Future Research

Exact
Euler h=1/4
Euler h=1/8
Trapezoidal h=1/8

−3

−2

−1

0

1

2

3

t

0 0.2 0.4 0.6 0.8 1

Figure 6.2: Explicit numerical methods exhibiting instability when integrating a stiff ordinary
differential equation.

the equation. Euler’s method with a step size of h = 1/4 oscillates wildly and quickly exits

the range of the graph. Euler’s method for this case can be expressed as

y (tn+1) = (1− 15h) · y (tn) ,

being h the step size in time, that is, tn+1 = tn + h. Euler’s method with half the step size,

h = 1/2, produces a solution within the graph boundaries, but oscillates about zero. The

trapezoidal method (i.e., the two-stage Adams-Moulton method) gives a much better result.

This method consist of

y (tn+1) = y (tn)− 15h [y (tn+1) + y (tn)] ,

so finally

y (tn+1) =
2− 15h

2 + 15h
y (tn) .

148

Chapter 6. Future Research 6.2. More complex problems: Stiff equations

Evolved with 5 coll. points
Evolved with 100 coll. points
Exact

y(
t)

0

0.2

0.4

0.6

0.8

1

t

0 0.2 0.4 0.6 0.8 1

Figure 6.3: Comparison of exact and evolutionary solutions for stiff 1 equation.

Fig. 6.3 compares the exact solution with two evolved solutions using DESCMA-ES. The

same control parameters given in Tables 5.12 and 5.13 are employed using 4 centers. In the

first solution, only 4 collocation points are used (which gives a step size of h = 1/4) and 100

collocation points in the second solution. As we can observe, good agreement is obtained no

matter how many collocation points are used, on the contrary than numerical methods.

Stiff Example 2: Van der Pol oscillator

In dynamics, the Van der Pol oscillator is a non-conservative oscillator with non-linear dam-

ping. It evolves in time according to the second order differential equation:

y′′ − µ
(
1− y2

)
y′ + y = 0

Lets solve this equation with µ = 5 and boundary conditions y (0) = 2 and y′ (0) = 0 on a

range 0 ≤ t ≤ 15. Fig. 6.4 shows the exact solutions. As we see, the solution is periodic with

a period around 11.

149

6.2. More complex problems: Stiff equations Chapter 6. Future Research

Figure 6.4: Exact solution of Pol oscillator with µ = 5.

y

−2

−1

0

1

2

t
0 2.5 5 10 12.5 15

Figure 6.5: Van der Pol oscillator solution obtained using DESCMA-ES algorithm with arctan
kernel and splitting the time domain into 6 sub-domains, marked in the plot with crosses.

Taking advantage of the type of Van der Pol oscillator equation (initial value problem), the

time domain has been split into 6 sub-domains, as we can see in Table 6.2. The boundary

conditions of each domain is taken from the last point of the previous domain imposing

continuity in the function and in its first derivative. In Fig. 6.5 the evolved solution is

shown.

Stiff Example 3: Robertson equation

This problem is a stiff system of 3 non-linear ordinary differential equations. It was proposed

by H. H. Robertson in 1966:

y′1 = −0.04y1 + 104y2y3

y′2 = 0.04y1 − 104y2y3 − 3 · 107y2
2

y′3 = 3 · 107y2
2


150

Chapter 6. Future Research 6.2. More complex problems: Stiff equations

Sub-domain Range t ∈ [a, b] y (a) y′ (a) Kernels Fitness

1 [0, 4.5] 2 0 8 3.97602e− 09

2 [4.5, 5.025] 1.00079 -0.62987 8 2.77432e− 08

3 [5.025, 6] 0.339938 -2.72308 8 1.56187e− 04

4 [6, 11.025] -1.98307 0.133722 8 1.26075e− 05

5 [11.025, 11.55] 0.461843 6.49762 10 1.27254e− 03

6 [11.55, 15] 2.01693 -0.0985352 8 3.53942e− 03

Table 6.2: Time splitting for solving Van der Pol oscillator using DESCMA-ES algorithm
with arctan kernel.

with the boundary conditions y1 (0) = 1 and y2 (0) = y3 (0) = 0. The Robertson problem

describes the kinetics of an autocatalytic reaction. It is very popular in numerical studies

and it is often used as a test problem in the stiff integrator comparisons. The large difference

among the reaction rate constants is the reason for stiffness. As is typical for problems

arising in chemical kinetics this special system has a small very quick initial transient. This

phase is followed by a very smooth variation of the components where a large step size would

be appropriate for a numerical method. Originally the problem was posed on the interval

0 ≤ t ≤ 40, but it is convenient to integrate it on much longer intervals. As a matter of fact,

Hindmarsh discovered that many codes fail if t becomes very large [105]. In this case if y2

accidentally becomes negative, it then tends to −∞, causing overflow.

Robertson equation has been solved using DESCMA-ES solver with arctan. To obtain a

good result, the 3 equations are transformed into a system of two equations. For that, the

third equation is used to substitute the second dependant variable (y2 =
√
y′3/3 · 107). Thus,

the original problem is transformed into:

y′1 = −0.04y1 + 104y3

√
y′3

3·107

y′′3√
12·107y′3

= 0.04y1 − y3

√
y′3
0.3
− y′3


151

6.2. More complex problems: Stiff equations Chapter 6. Future Research

with the boundary conditions y1 (0) = 1 and y3 (0) = y′3 (0) = 0. The system has been solved

in the time range t ∈ [0, 1011]. Due to the behavior of the system, the collocation points are

distributed in a logarithm scale. A total of 10 kernels are used and the original time range is

solved in only one run without splitting it. Fig. 6.6 compares the solutions obtained with the

exact one. We can appreciate a good matching obtaining a fitness value of 3.31e− 4. Other

runs with different number of kernels are also plot. Note that the shape of y2 is better using

less number of kernels. However, the steady state of y3 at the end of the time range is not 1

because of the errors at the first time instants. It has been tested as well to split the original

range into two intervals, marked as 6+6 kernels in the plot.

152

Chapter 6. Future Research 6.2. More complex problems: Stiff equations

10 centers. Fit = 3.31 10-4

7 centers. Fit = 2.88 10-6

15 centers. Fit = 1.78 10-5

6+6 centers. Fit = 9.50 10-6+9.85 10-3

y

0

0.2

0.4

0.6

0.8

1

t
10−3 1 1000 106 109 1012

10 centers
7 centers
15 centers
6+6 centers

y 2

0

10−5

3×10−5

4×10−5

t
10−3 1 1000 106 109 1012

10 centers
7 centers
15 centers
6+6 centers

y 3

0

0.2

0.4

0.6

0.8

1

t
10−3 1 1000 106 109 1012

Figure 6.6: Comparison of exact (left column) and evolutionary solutions (right column) for
Robertson equation using arctan kernels.

153

6.2. More complex problems: Stiff equations Chapter 6. Future Research

154

Chapter 7

Conclusions

In this final chapter, the main conclusions and contributions are summarize. As the title of

the thesis suggests, the main target of this work is to demonstrate that is reliable to solve

differential equations (DEs) with evolutionary algorithms. First, a survey of the related works

has been performed. Non-classical methods to solve DEs are relative recent, with the first

papers appearing at the last decade of 20th century. So it is a young field with around 20

years of history. Interest in the research community is observed, appearing new works every

year. This interest can be partially explained thanks to the great advances in Evolutionary

Computing techniques and increment of the computation power of the new hardware.

Three novel methods to solve DEs based on evolutionary algorithms are proposed. The

first one, called DESGE (Differential Equation Solver based on Grammatical Evolution), is

based on Grammatical Evolution and expresses candidate solutions as generic mathematical

expressions. The second one uses a Fourier series to express candidate solutions and an ad-

hoc Evolutionary Strategy to seek the optimum harmonics. We call this algorithm DESES

(Differential Equation Solver based on Evolution Strategies). Finally, a third approach based

on Gaussian kernels and Covariance Matrix Adaptation Evolutionary Strategies has been

implemented. This method is called DESCMA-ES (Differential Equation Solver based on

Covariance Matrix Adaptation Evolutionary Strategies).

A total of 32 problems have been defined to test the algorithms. The first approach,

155

Chapter 7. Conclusions

DESGE algorithm has been tested in some of those problems. No good results have been

obtained with the base algorithm because of the inefficient method to seek numeric constants.

Better results were obtained with the so called enhanced DESGE, where 4 modifications to

the baseline algorithm are proposed. However, in some problems, it was not possible to

decrease the fitness function from a certain level. Besides, some theoretical limitation of

these approach has been reported, such as difficulties to approximate solutions without an

exact representation or when the functions and terminals in the grammar do not contain the

necessary elements to represent the exact solution.

A more systematic study has been performed with the second approach, DESES. Good

results have been performed in the majority of the equation, outperforming other heuristic

approaches in the literature. However, some convergence problems have been reported in one

of the benchmarking equation, and bad scalability is observed in partial differential equations.

Finally, using the third approach, DESCMA-ES algorithm, has been demonstrated good

behavior in all the 32 benchmarking problems. The comparison with other approaches have

confirmed the good features of the algorithm and good scalability is observed in all the solved

problems.

After the finalization of the present thesis, we can answer the following research questions

stated in the introduction chapter.

Is it more efficient to express candidate solutions using function basis, parametric

kernels or generic mathematical expressions?

To obtain the answer to this question, three different evolutionary algorithms have been

implemented. Regarding how the candidate solutions are expressed, the algorithms are very

different. Thus, DESGE uses generic mathematical expressions, DESES algorithm employs

Fourier series and DESCMA-ES Gaussian kernels.

DESGE approach could turn inefficient in some problems. Although it is possible to

obtain the exact solution (if it exists and if the appropriate functions and terminals are

included in the grammar) dispersion in the results is observed, and some problems are not

correctly solved.

156

Chapter 7. Conclusions

Using a function based approach (concretely speaking, Fourier series have been employed

in this thesis) improves significantly the results. Almost all the problems are correctly

approximated (with this approach the exact solutions are not obtained any more). Nev-

ertheless, the efficiency of the method decreases when the dimensionality of the solution

domain increases. The scalability of the algorithm is not good, increasing the number of

unknowns with the power of the number of independent variables.

The best results have been obtained using kernels to express the candidate solutions.

The kernels used are built using Gaussian functions. As in the previous approach, exact

solutions never will be obtained. Better scalability to partial differential equations is observed.

Opposite to the previous approach, a direct evolutionary algorithm has been used to find the

best solution, not needing different sub-steps to gradually seek the parameters. Several kernels

have been tested. To solve more complex differential equations, such as stiff equations, even

better behavior have been observed using arctangent kernels instead of Gaussian functions.

Therefore, we conclude that the most efficient method to express candidate solutions to

solve differential equations is using kernel functions.

Does the heuristic algorithms need to deal with non-separable problems in the

context of solving DEs?

A problem is called separable [106], when the decision variables involved are independent of

each other. Therefore, the problem can be easily solved by decomposing it into a number of

sub-problems, each of which involves only one decision variable while treating all others as

constants. Mathematically speaking, a function f (x1, · · · , xN) is separable if

arg min(x1,··· ,xN) f (x1, · · · , xN) =

(arg minx1 f (x1, · · ·) , · · · , arg minxN
f (· · · , xN))

, (7.1)

where the dots (· · ·) in the right part of the expression means that the rest of variables can

be set to any constant value for doing the partial minimization. Some separable functions

157

Chapter 7. Conclusions

fulfill a stronger property called additively separable condition when

f (x1, · · · , xN) =
N∑

i=1

fi (xi) . (7.2)

Therefore, all additively separable functions are as well separable, but not all separable

functions are additively separable. An easy way of obtaining non-separable functions consist

in applying a reflection or rotation to the search space before using a separable function.

When the original DE problem is transformed into an optimization one, the question is if

the new problem is non-separable. According with the results reported, we justify the better

performance of DESCMA-ES respect DESES algorithm in the fact that the new optimization

problems obtained transforming the original DE problems are non-separable. The ES used in

DESES approach could deal with non-separable problems if correlated mutation operator had

been used. However, according to Rudolph [107], the convergence of ES on non-separable

problems is not satisfactory. The main reason might be found in the fact that the step

size adaptation process affects the angle adaptation process in a disruptive way. For that

reason, in order to obtain acceptable convergences, a sophisticate policy of running several

sub-steps introducing harmonics one by one has been adopted. If all the harmonics are tuned

simultaneusly, the evolutionary algorithm is normally trapped in a local optimum.

On the other hand, in DESCMA-ES algorithm, the evolutionary method adopted can

handle non-separable problems in a natural way. Therefore, good convergence is reported

although all the variables are handle simultaneously. This fact make DESCMA-ES algorithm

much more efficient, because any guided search by means of different sub-steps is needed.

Although numerical methods are by far the most efficient approach to solve DEs,

could heuristics outperform them in some aspects? If any, which ones?

Maybe the greater advantage of the proposed approaches (DESES and DESCMA-ES) is that

they provide a generic framework, i. e., they does not depend on the type of differential

equation. On the other hand, numerical methods are specific for each equation type. For

instance, classical Runge-Kutta methods are used for initial value problems due to their

158

Chapter 7. Conclusions

higher accuracy features compared with more efficient algorithms as Euler’s method. Clas-

sical Runge-Kutta methods are explicit, and are unsuitable for stiff systems because of their

small region of stability. On the contrary, implicit Runge-Kutta methods have a large re-

gion of absolute stability [7]. Boundary value problems requires different algorithms, such as

shooting method for one-dimensional problems or the finite element method for more general

domains. Even for the same equation, in some problems depending on the boundary con-

ditions the numerical scheme must be changed due to stability reasons [104]. Furthermore,

the implementation of a new numerical method could turn difficult because it is necessary

to take into account several issues as the discretization order, the algorithm stability, the

convergence rate, how to fulfill the boundary conditions, etc.

In the methods described in this thesis, the original problem is transformed into an opti-

mization one, so the problem of choosing the most appropriate numerical method disappears.

In some cases the evolutionary approach can achieve a more accurate solution using less num-

ber of nodes. The solutions obtained are coded in a more compact way requiring significantly

less amount of memory. Other advantage of evolutionary algorithm is that in some cases

it has lower memory requirements. Numerical methods must store as many values as col-

location points. And what is more important, the solution is symbolically stored, so new

solution values different from the collocation points can be obtained without performing any

interpolation.

However, the main drawbacks of evolutionary methods can be considered from two dif-

ferent point of views. In the one hand, the stochastic nature of the evolutionary algorithms

cannot guarantee the convergence to the solution in the 100% of the executions. On the other

hand, it is possible to obtain a low convergence speed because a population of candidate so-

lutions has to be handled.

159

Chapter 7. Conclusions

Because derivatives must be obtained from each solution proposed by the evo-

lutionary algorithm, it is possible to implement efficient solvers without using

complex symbolic engine libraries?

The answer to this question is affirmative if a function basis or a family of kernels are used.

That is, if the symbolic derivatives of the involved functions can be known a priori, the

symbolic engine only is needed for compute algebraic expressions. In this thesis, a simple

symbolic engine based in binary trees has been implemented, making the computation much

more efficient than if a commercial or open-source engine is employed.

When kernel approach is used, depending of the complexity of computing their derivatives,

in some occasions a mathematical engine can be used. But this process can be done offline

and store the derivatives. Thus, when the evolutionary algorithm is run, the derivatives of

the kernel are known, so the mathematical engine is not needed.

Although evolutionary algorithms are stochastic methods, it is possible to guar-

antee a good convergence to the solution?

Because of the stochastic characteristic of evolutionary algorithms, the answer to this question

is done from an experimental point of view and taking into account only the set of bench-

marking problems studied in this thesis. Good behavior in all the 32 benchmarking problems

are reported achieving equal or better accuracy respect to other methods. Low dispersion

has been observed in the results, an the same control parameters have been maintained in

all the experiments.

Although a not exhaustive study has been done on three more complex problems (stiff

equations), the DESCMA-ES algorithm seems to behave properly. However, the solution

quality depends on the type of kernel used and how a unique fitness function is built using

the errors of the DE itself and the boundary conditions. As future works, the behavior of the

algorithm in these more complex equations should be studied in a more systematic way.

160

Appendix A

Release Control Version

GODEHYDA: Genetic prOgramming Derivative Equation HYbrid DynAmic solver

22/03/2010 v0.0 First release. Basic data structure.

16/05/2010 v0.1 New features: local search for ephemeral constants. Fitness
evaluations counter. Addition crossover. Gaussians. Gaussian
local search. Inertia in fitness. Reinitialize population.

26/06/2010 v0.2 Improve ephemeral local search: random delta for initialization
and relaxation of 0.8 in Newton-Raphson. Probability for
local serach. Convergence History with
fitness evalautions counter. Change elitism and best/worst
chromosome policy.

31/07/2010 v1.0 Radical change of ephemeral constant coding acording to paper
"Introducing Based Extensions for Grammatical Evolution":

<real> = <int>.<int> | <int>.0 | (-<int>.<int>) | (-<int>.0) |
<GECodonValue_0_9>.<int>e+<GECodonValue_0_9><GECodonValue_0_9><GECodonValue_0_9> |
<GECodonValue_0_9>.<int>e-<GECodonValue_0_9><GECodonValue_0_9><GECodonValue_0_9> |

(-<GECodonValue_0_9>.<int>e+<GECodonValue_0_9><GECodonValue_0_9><GECodonValue_0_9>) |
(-<GECodonValue_0_9>.<int>e-<GECodonValue_0_9><GECodonValue_0_9><GECodonValue_0_9>)
<int> = <int><GECodonValue_0_9>|<GECodonValue_0_9>

Still there are several "ad hoc" values in the code:
- Precission for Real numbers: 8
- Maximum delta for real local search: 1e-3
- Relaxation factor for Newton-Rapson: 0.8
- Tolerance for stop criteria in Newton-Rapson: 1e-7
- Tolerance for fitness inertia counter: 1e-20
- Initial real values for gaussian local search: 0.01

29/09/2010 v0.3 Using v0.2, improving of grammar for ephemeral constants:

161

Appendix A. Release Control Version

<GECV> = <GECodonValue_0_9>
<eph> = <GECV>.<GECV>e+<GECV><GECV><GECV> |

<GECV>.<GECV>e-<GECV><GECV><GECV> |
(-<GECV>.<GECV>e+<GECV><GECV><GECV>) |
(-<GECV>.<GECV>e-<GECV><GECV><GECV>)

- Maximum delta for real local search: 1e-1

29/10/2010 v0.4 Using v0.3 several crossovers operators can be chosen. A new one
is implemented: LHSE (LHS enhanced).
Symbolic Newton-Raphson for Local Search.

03/12/2010 v2.0 Radical change. Use Fourier series and Evolutionary Estrategies.

03/12/2010 v2.0.0 Dynamic Fitness functions, trying avoid local optima.

24/12/2010 v2.1 Use Even extension of Fourier Series without c coefficients.

25/12/2010 v2.2 Use Taylor series.

08/01/2011 v2.3 As version 2.1 using Niching.

18/01/2011 v2.4 Some minor improvements. Cache for the collocation points.

21/01/2011 v3.0 Not linking with GiNaC and CLN for increasing performance.
Parser for expression using same idea than Gene Expression
Programming.

12/03/2011 v3.1 Remove sine extension and niching features. Only multiple
mutation steps.

01/04/2011 v3.2 Remove descendant Order list. Adding last step for fine tuning.

27/08/2011 v4.0 Change Evolutionary Estrategy by Dual Genetic Algorithm.

09/09/2011 v4.0.1 Include a substep in the dual GA.

15/10/2011 v3.3 From 3.2, do Separation of variables reducing the number of
unkows in PDEs.

17/10/2011 v3.2.1 From 3.2, do separation of variables only when a new harmonic
is taking into account.
Some test for improving ODE3 performances: bc penalty dynamic
with the generation number, (mu+lambda) posibility.

17/08/2013 v5.0 Use v3.2 as base line, change base functions from sine to
exponential, using support vector machine ideas.

31/08/2013 v5.1 As 5.0, but in three phases: the first one the centers are
not evolved, only the weights and the betas. Then the centers,
and finally all the variables.

162

Appendix A. Release Control Version

01/09/2013 v5.2 As v5.0, but the centers are sorted for a better cross
operation. Add new parameter: FeasibleFactor.

03/09/2013 v5.3 Usign v5.2 as baseline, add correlated mutation.
operation.

09/09/2013 v5.4 Usign v5.2 as baseline, subtitute the fine tuning phase by
DownHill Simplex method.

12/09/2013 v5.5 Make only one phase dealing with all the centers. Do a local
search in the best individual with a DownHill simplex method.

06/02/2014 v5.4 Use a random sign and increment in Jacobian icrement for
Downhill Simplex. Maximum increment = 1e-3.
Reduce max. iterations of Simplex to 200000 and tarConvCrit
and parConvCrit to parConvCrit to 1e-20.
Things to do: Impose a maximum generations of 3000 in Simplex.

Compleate statistic history in Simplex.
Store phase in statistics.

14/02/2014 v5.6 Taken 5.4, change Gaussian sigma by its inverse, called gamma.
It was already done in previous code!
Substitute ES by DownHill Simplex.

17/02/2014 v5.7 DownHill Simplex whith niching.

24/02/2014 v6.0 Use CMA-ES in the first phase, and DownHill Simplex in the
second one.

04/03/2014 v6.1 Absolute value in gammas at evalutaor-> poor performance!

04/03/2014 v6.2 Not allow negative gammas, resampling population if detected.
-> poor performance!

04/03/2014 v6.3 First phase as v6.0 (no restriction in gamma values). Change
second phase removing restarts: Apply DownHill Simplex method
on the best 10 individuals of the last generation.

13/03/2014 v6.4 As 6.0, but it is possible to define weights to compute fitness.

16/03/2014 v6.4 Implement two new functions: allen() and si().

24/03/2014 v6.5 As 6.0, but including allen() and si() functions. Satistics
with values before and after the local search.
New brachistochrone function: brachis
For this problem, when an exact solution is a constant, the
errors are computed taking the absolute value of the aproximated
solution.

08/04/2014 v6.6 Including new parameter(OutlierPenalty) to try to fix NLODE6.
Warning: it should be done more efficiently!

163

Appendix A. Release Control Version

12/04/2014 v6.6 Change OutlierPenalty by innerPenalty considering the distances
to the boundary condition points.

19/06/2014 v6.6.1 Dump in the .sol file all the derivatives in order to allow
split the domain into several subdomains and facilitate the
convergence of stiff equations.

22/06/2014 v6.7 Change Gaussian kernels by atan kernel.

13/07/2014 v6.8 Change atan kernels by polinomials.

09/09/2014 v6.6.2 As 6.6.1, but 50 repetitions in multisolver.

164

Appendix B

A C++ Program to Test GiNaC

Library

In order to test all the needed features to develop a differential equation solver based on

Grammatical Evolution (DESGE), the following C++ program has been created:

#include <iostream>
#include <sstream>
#include <ginac/ginac.h>
using namespace std;
using namespace GiNaC;

int main()
{
symbol x("x"), y("y");
lst symbols(x,y);
string expression;

cout << "Type a symbolic expression in x and y:\n";
cin >> expression;
cout << "Results:\n\n";
try
{
//Create symbolic expression
ex e(expression, symbols);

//Transform into string
ostringstream s;
s << e;
cout << "e in std::string format: " << s.str() << "\n";

165

Appendix B. A C++ Program to Test GiNaC Library

//Some operations: derivatives, substitutions and evaluations
cout << "e(x,y) = " << e << "\n"
<< "e(x,y).diff(x) = " << e.diff(x) << "\n"
<< "e(x,y).diff(y) = " << e.diff(y) << "\n";

e = e.subs(x==2*y);
e = e.subs(y==sin(y));
cout << "e(2*y,sin(y)) = " << e << "\n"
<< "e(2*x,sin(y)).diff(y) = " << e.diff(y) << "\n";

e = e.subs(y==1);
cout << "e(1,0) = " << e << "\n"
<< "evalf(e(1,0)) = " << evalf(e) << "\n";

}
catch(exception &error)
{
cout << "Exception: " << error.what() << "\n";
exit(1);

}
catch(...)
{
cout << "Unkown exception!\n";
exit(1);

}
}

A correct output of the program is shown:

jose@linux-xpm6:~/GPDE/src/GINAC_TEST> TestGiNaC.lx
Type a symbolic expression in x and y:
x^2+x^x-sin(atan(y))
Results:

e in std::string format: x^2+x^x-y*(1+y^2)^(-1/2)
e(x,y) = x^2+x^x-y*(1+y^2)^(-1/2)
e(x,y).diff(x) = 2*x+x^x*(1+log(x))
e(x,y).diff(y) = y^2*(1+y^2)^(-3/2)-(1+y^2)^(-1/2)
e(2*y,sin(y)) = 4*sin(y)^2-(1+sin(y)^2)^(-1/2)*sin(y)+(2*sin(y))^(2*sin(y))
e(2*y,sin(y)).diff(y) = 2*(log(2*sin(y))*cos(y)+cos(y))*(2*sin(y))^(2*sin(y))-
(1+sin(y)^2)^(-1/2)*cos(y)+8*sin(y)*cos(y)+(1+sin(y)^2)^(-3/2)*sin(y)^2*cos(y)

e(1,0) = -(1+sin(1)^2)^(-1/2)*sin(1)+(2*sin(1))^(2*sin(1))+4*sin(1)^2
evalf(e(1,0)) = 4.589823896395813796

Before integrating GiNaC library in our DE solver, all the numerical evaluations of math

functions have been modified. GiNaC always tries to compute whatever demanded opera-

tion. With high big numbers, the amount of memory needed could be very high making the

computation un-affordable. For instance, an expression such as exp (exp (10)) ' 109565 can

be generated during the GP convergence. GiNaC can computed accurately this expression

but is a waste of time because the searched solution should be in a more manageable range.

166

Appendix B. A C++ Program to Test GiNaC Library

Therefore GiNaC library has been modified. Only one source file (numeric.cpp) has been

changed using the DBL_MAX constant of the standard library as it is shown in the following

code:

/** Exponential function.
*
* @return arbitrary precision numerical exp(x). */
const numeric exp(const numeric &x)
{
if(abs(x)>=DBL_MAX) throw std::range_error("Numeric overflow (>DBL_MAX)");

return numeric(cln::exp(x.to_cl_N()));
}

As we can see, an exception is thrown if the input parameter is higher than DBL_MAX. In

a standard 64 bits machine, DBL_MAX=1.79769 · 10308. This technique has been used in the

following GiNaC functions: exp(x), log(x), sin(x), cos(x), tan(x), asin(x), acos(x), atan(x),

atan(y, x), sinh(x), cosh(x), tanh(x), asinh(x), acosh(x) and atanh(x).

During the develop of the thesis, some numerical problems have been detected in the li-

brary. Thus, trigonometric functions give the same value for big numbers: sin (C) = 0 ∀C >

1039. And due to limit of floating point representation, when two numbers are added with

very different range, the result could be constant: x+ C = C if x ∈ [0, 1] and C > 1018.

167

Appendix B. A C++ Program to Test GiNaC Library

168

Appendix C

Configuration File Examples

An example of a configuration file for DESGE of an ordinary differential equation problem

is given in this appendix:

GODEHYDA_VERSION 0.0

######################
PROBLEM PARAMETERS
######################
INDEPENDENT_VARIABLES x
DEPENDENT_VARIABLES y
CONSTANTS C0 0 C1 1 C2 2 C3 3 C4 4 C5 5 C6 6 C7 7 C8 8 C9 9
#EPHEMERAL_CONSTANS 3 0.000000000000000e+00 1.000000000000000e+01
OPERATORS + - * /
FUNCTIONS sin cos exp log
DERIVATIVES DyDx y x 1
DIFFERENTIAL_EQUATIONS DyDx-(1-y*cos(x))/sin(x)
BEGIN_COLLOCATION_POINTS
x
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7

169

Appendix C. Configuration File Examples

0.75
0.8
0.85
0.9
0.95
1.0

END_COLLOCATION_POINTS
BEGIN_BOUNDARY_CONDITIONS
x expression

0.1 y-2.1/sin(0.1)
END_BOUNDARY_CONDITIONS

#####################
SOLVER PARAMETERS
#####################
#Possible actions: SOLVE CHECK_INPUTS POSTPROCESS MULTI_SOLVE
ACTION SOLVE
CASE_NAME ODE2
MAXIMUN_WRAPPING 1
#SEED 1272065064
BC_PENALTY 100
POPULATION 1000
GENERATIONS 2000
MAX_BEST_FITNESS 1e-10
MINIMUM_CHR_SIZE_INITIALIZATION 20
MAXIMUM_CHR_SIZE_INITIALIZATION 50
MAXIMUM_CHR_SIZE 100
TOURNAMENT_SIZE 3
P_RECOMBINATION 0.9
P_MUTATION_INTRA_CODON 0.2
P_MUTATION_EXTRA_CODON 0.1
ELITISM 2
#USE_SOLUTION

There are two sections. In the first one, the problem to solve is defined. It is possible

to specify systems of equations defining several dependent variables. The derivatives are

defined with couples of dependent and independent variables and their order. The differen-

tial equations are specified moving all the terms to one side of the equality mathematical

expression.

In the second section of the input file, the parameters for the iterative GP algorithm

are specified. It is possible to specify a seed for the random number generator in order to

reproduce runs for debugging purposes. If no seed is specified, or 0 value is used, a new seed

using the machine clock is generated.

Following another example of a configuration file for DESCMA-ES algorithm where a

170

Appendix C. Configuration File Examples

partial differential equation is specified is shown:

GODEHYDA_VERSION 6.0

######################
PROBLEM PARAMETERS
######################
INDEPENDENT_VARIABLES x y
DEPENDENT_VARIABLES Z
DERIVATIVES Zxx Z 2 0
DERIVATIVES Zyy Z 0 2
DIFFERENTIAL_EQUATIONS - + Zxx Zyy * exp * -1 x + ^ y 3 + x - * 6 y 2
SOLUTIONS * exp * -1 x + x ^ y 3

BEGIN_COLLOCATION_POINTS
x y

0. 0.
0. 0.1
0. 0.2
0. 0.3
0. 0.4
0. 0.5
0. 0.6
0. 0.7
0. 0.8
0. 0.9
0. 1.0

0.1 0.
0.1 0.1
0.1 0.2
0.1 0.3
0.1 0.4
0.1 0.5
0.1 0.6
0.1 0.7
0.1 0.8
0.1 0.9
0.1 1.0

0.2 0.
0.2 0.1
0.2 0.2
0.2 0.3
0.2 0.4
0.2 0.5
0.2 0.6
0.2 0.7
0.2 0.8
0.2 0.9
0.2 1.0

171

Appendix C. Configuration File Examples

0.3 0.
0.3 0.1
0.3 0.2
0.3 0.3
0.3 0.4
0.3 0.5
0.3 0.6
0.3 0.7
0.3 0.8
0.3 0.9
0.3 1.0

0.4 0.
0.4 0.1
0.4 0.2
0.4 0.3
0.4 0.4
0.4 0.5
0.4 0.6
0.4 0.7
0.4 0.8
0.4 0.9
0.4 1.0

0.5 0.
0.5 0.1
0.5 0.2
0.5 0.3
0.5 0.4
0.5 0.5
0.5 0.6
0.5 0.7
0.5 0.8
0.5 0.9
0.5 1.0

0.6 0.
0.6 0.1
0.6 0.2
0.6 0.3
0.6 0.4
0.6 0.5
0.6 0.6
0.6 0.7
0.6 0.8
0.6 0.9
0.6 1.0

0.7 0.
0.7 0.1
0.7 0.2

172

Appendix C. Configuration File Examples

0.7 0.3
0.7 0.4
0.7 0.5
0.7 0.6
0.7 0.7
0.7 0.8
0.7 0.9
0.7 1.0

0.8 0.
0.8 0.1
0.8 0.2
0.8 0.3
0.8 0.4
0.8 0.5
0.8 0.6
0.8 0.7
0.8 0.8
0.8 0.9
0.8 1.0

0.9 0.
0.9 0.1
0.9 0.2
0.9 0.3
0.9 0.4
0.9 0.5
0.9 0.6
0.9 0.7
0.9 0.8
0.9 0.9
0.9 1.0

1. 0.
1. 0.1
1. 0.2
1. 0.3
1. 0.4
1. 0.5
1. 0.6
1. 0.7
1. 0.8
1. 0.9
1. 1.0

END_COLLOCATION_POINTS
BEGIN_BOUNDARY_CONDITIONS
x y expression

0. 0. - Z 0
0. 0.1 - Z 0.001
0. 0.2 - Z 0.008
0. 0.3 - Z 0.027
0. 0.4 - Z 0.064

173

Appendix C. Configuration File Examples

0. 0.5 - Z 0.125
0. 0.6 - Z 0.216
0. 0.7 - Z 0.343
0. 0.8 - Z 0.512
0. 0.9 - Z 0.729
0. 1.0 - Z 1

1. 0. - Z 0.367879
1. 0.1 - Z 0.368247
1. 0.2 - Z 0.370822
1. 0.3 - Z 0.377812
1. 0.4 - Z 0.391424
1. 0.5 - Z 0.413864
1. 0.6 - Z 0.447341
1. 0.7 - Z 0.494062
1. 0.8 - Z 0.556234
1. 0.9 - Z 0.636064
1. 1.0 - Z 0.735759

0. 0. - Z 0
0.1 0. - Z 0.0904837
0.2 0. - Z 0.163746
0.3 0. - Z 0.222245
0.4 0. - Z 0.268128
0.5 0. - Z 0.303265
0.6 0. - Z 0.329287
0.7 0. - Z 0.34761
0.8 0. - Z 0.359463
0.9 0. - Z 0.365913
1.0 0. - Z 0.367879

0. 1. - Z 1
0.1 1. - Z 0.995321
0.2 1. - Z 0.982477
0.3 1. - Z 0.963064
0.4 1. - Z 0.938448
0.5 1. - Z 0.909796
0.6 1. - Z 0.878099
0.7 1. - Z 0.844195
0.8 1. - Z 0.808792
0.9 1. - Z 0.772482
1.0 1. - Z 0.735759

END_BOUNDARY_CONDITIONS

#####################
SOLVER PARAMETERS
#####################
#Possible actions: SOLVE CHECK_INPUTS POSTPROCESS MULTI_SOLVE PLOT TEST_NORMAL
ACTION MULTI_SOLVE
CASE_NAME PDE1
#SEED 1296682309
BC_PENALTY 300

174

Appendix C. Configuration File Examples

INITIALIZATIONS -0.01 0.01 1 0.1
LAMBDA_MULT 3
EVALUATIONS 1e6
FEASIBLE_FACTOR 2
#RESTART
NCENTERS 8

Note how the expressions are given in a such a way that the in-house symbolic interpreter

can built a binary tree.

175

Appendix C. Configuration File Examples

176

Appendix D

Conclusiones (Conclusions in Spanish)

Las principales conclusiones y contribuciones se exponen a continuación. Como sugiere el

t́ıtulo de esta tesis, el objetivo principal de este trabajo es demostrar que es posible resolver

ecuaciones diferenciales (EDs) mediante algoritmos evolutivos. En primer lugar, se ha re-

alizado un estudio bibliográfico de trabajos relacionados con la resolución de EDs mediante

metodos heuŕısticos. Estos métodos, al contrario con los métodos tradicionales, son relativa-

mente recientes, ya que los primeros art́ıculos datan de la última década del siglo XX. Por

ello, consideramos que se trata de un campo de conocimiento joven con apenas 20 años de

historia. La comunidad cient́ıfica ha mostrado interés en este campo, por lo que podemos

encontrar nuevos trabajos cada año. Este interés puede explicarse parcialmente debido al

gran avance experimentado en las técnicas de Computación Evolutiva y a un incremento de

la capacidad de cálculo del hardware.

Se ha desarrollado tres novedos métodos para resolver EDs basados en algoritmos evolu-

tivos. El primero de ellos, llamado DESGE (Differential Equation Solver based on Gramma-

tical Evolution), está basado en Grammatical Evolution y construye las soluciones candidatas

mediante expresiones matemáticas genéricas. El segundo método propuesto usa series de

Fourier para representar las soluciones candidatas y una estrategia evolutiva ad hoc para sin-

177

Appendix D. Conclusiones (Conclusions in Spanish)

tonizar los harmónicos. Hemos llamado a este algorimo DESES (Differential Equation Solver

based on Evolution Strategies). Finalmente, se ha implementado una tercera aproximación

basada en kernels gaussianos y estrategias evolutivas de matrices de covarianzas adaptativos

(CAM-ES). A este método lo denominamos DESCMA-ES (Differential Equation Solver based

on Covariance Matrix Adapatation Evolution Strategies).

Se han definido un total de 32 problemas para comprobar los algoritmos propuestos. La

primera aproximación, el agoritmo DESGE, sólo se ha comprobado en algunos problemas. No

se ha obtenido buenos resultados con el algoritmo básico porque el método es ineficiente para

ajustar las posibles constantes numéricas que aparecen en la solución simbólica candidata.

Se han obtenido mejores resultados con el denominado algoritmo DESGE mejorado, en el

cual se han introducido 4 modificaciones respecto al algoritmo inicial. De todas formas,

en algunas problemas no ha sido posible alcanzar la precisión deseada. Además, se han

encontrado ciertas limitaciones teóricas del método, tales como la dificultad inherente de

aproximar soluciones que no cuenten con una representación simbólica exacta o el problema

de no disponer en la gramática de las funciones y terminales necesarios para representar las

soluciones candidatas.

Se ha realizado un estudio más sistemático con la se segunda aproximación, algoritmo

DESES. Se han obtenido buenos resultados en la mayoŕıa de las ecuaciones, mejorando incluso

a otras aproximaciones heuŕısticas de la literatura. Sin embargo, se han detectado ciertos

problemas de convergencia en una de las ecuaciones del conjunto de prueba, y también

problemas de escabilidad en las ecuaciones en derivadas parciales.

Finalmente, el tercer algoritmo, DESCMA-ES, ha demostrado un muy buen compor-

tamiento en todo el conjunto de las 32 ecuaciones de prueba. Su buen comportamiento ha

quedado también patente en una comparación realizada con otras aproximaciones publicadas

en la literatura. Aśı mismo se ha observado una buena escalabilidad en todos los problemas

resueltos.

Tras la finalización de esta tesis, estamos en disposición de respondes a las siguiente

preguntas de investigación enunciadas en el caṕıtulo introductorio.

178

Appendix D. Conclusiones (Conclusions in Spanish)

¿Es más eficiente expresar las soluciones candidatas mediante una base funcional,

o mediante kernels paramétricos o usando expresiones matemáticas genéricas?

Para obtener la respuesta a esta pregunta, se han desarrollado tres nuevos algoritmos evo-

lutivos. Respecto a cómo representan las soluciones candidatas, los algoritmos son muy

diferentes. Aśı, DESGE utiliza expresiones matemáticas genéricas, DESES emplea series de

Fourier y DESCMA-ES kernels gaussianos.

El algoritmo DESGE puede resultar poco eficiente. Aunque es posible obtener la solución

exacta (si existe y si la gramática cuenta con las funciones y terminales apropiados), se ha

observado bastante dispersión en los resultados. Además, ciertos problemas no se han resuelto

con el nivel de precisión deseado.

Los resultados han mejorado significativamente usando una base de funciones, concreta-

mente se han empleado en esta tesis series de Fourier. Aunque todos los problemas se han

resuelto satisfactoriamente (con esta aproximación ya no se puede obtener la solución ex-

acta, si es que existe). Sin embargo, la eficiencia del método se reduce drásticamente cuando

aumenta la dimensión del problema. La escalabilidad del algoritmo no es buena, ya que el

número de incógnitas aumenta exponencialmente con el número de variables independientes

de la ecuación diferencial.

Los mejores resultados se han obtenido con el algoritmo DESCMA-ES, el cual utiliza

kernels para construir las soluciones candidatas. Estos kernels se han implementado mediante

funciones gaussianas. Al igual que en el algoritmo DESES, no es posible obtener las soluciones

exactas. No obstante, la precisión obtenida en los resultados es satisfactoria, aśı como se

observa una mejor escalabilidad en las ecuaciones en derivadas parciales. Al contrario que en

el método anterior, ha sido posible el uso de un sólo algoritmo evolutivo directo para encontrar

las mejores soluciones, es decir, no ha sido necesario el uso de pasos intermedios de ajuste de

los parámetros de forma gradual. Se han analizado varios kernels. Para resolver problemas

más complejos, como las ecuaciones tipo stiff, se ha observado un mejor comportamiento

empleando el kernel arco-tangente en lugar del gaussiano.

Por todo lo expuesto, podemos concluir que la manera más eficiente de expresar las

179

Appendix D. Conclusiones (Conclusions in Spanish)

soluciones candidatas para resolver ecuaciones diferenciales es mediante el uso de kernels.

¿Necesitan los algoritmos heuŕısticos resolver problemas no separables dentro del

contexto de resolución de ecuaciones diferenciales?

Un problema se denomina separable [106] cuandolas variables de decisión onvolucradas son

independientes unas de otras. Por tanto, el problema puede resolverse fácilmente descom-

poniéndolo en varios sub-problemas en los cuales sólo interviene una variable de decisón y el

resto se consideran constantes. En notación formal, una función f (x1, · · · , xN) es separable

si

arg min(x1,··· ,xN) f (x1, · · · , xN) =

(arg minx1 f (x1, · · ·) , · · · , arg minxN
f (· · · , xN))

,

donde los puntos (· · ·) de las expresiones a la derecha de la igualdad significan que el resto

de las variables se pueden considerar constantes a la hora de reolver los problemas parciales

de minimización. Algunas funciones separables pueden cumplir una propiedad más fuerte

llamada condición separable aditiva cuando

f (x1, · · · , xN) =
N∑

i=1

fi (xi) .

Por tanto, toda función separable aditiva es también separable, pero no toda función

separable es aditivamente separable. Una forma sencilla de obtener una función no separa-

ble consiste en aplicar una reflexión o una rotación al espacio de definición a una función

separable.

Cuando el problema original de resolver una ecuación diferencial se transforma en un

problema de optimización, la pregunta que se nos plantea es si el nuevo problema es no

separable. De acuerdo con los resultados obtenidos justificamos las mejores prestaciones del

algoritmo DESCMA-ES respecto de DESES en que el problema de optimización obtenido

180

Appendix D. Conclusiones (Conclusions in Spanish)

resulta se no separable. La estrategia evolutiva usada en el método DESES podŕıa tratar

problemas no separables si hiciera uso del operador de mutación correlacionada. Sin embargo,

de acuerdo con Rudolph [107], la convergencia de las estrategias evolutivas en problemas no

separables no es satisfactoria. El motivo principal radica en que la adapatación del paso

de mutación afecta al proceso de adaptación de los ángulos de la matriz de covarianzas de

una forma muy disruptiva. Por ello, de cara a obtener una convergencia aceptable, se ha

tenido que adoptar una estrategia bastante sofisticada ajustando de forma sucesiva y gradual

los diferentes armónicos. Si todos los armónicos se ajustan simultáneamente, el algoritmo

evolutivo puede quedar atrapado en mı́nimos locales.

Por otro lado, el algoritmo evolutivo empleado por el método DESCMA-ES puede mane-

jar problemas non separables de una forma natural. Por tanto, se ha observado una buena

convergencia ajustando simultáneamente todas los parámetros. Este hecho hace que el al-

goritmo DESCMA-ES sea mucho más eficiente, ya que no es necesario realizar búsquedas

guiadas mediante diferentes subetapas de optimización.

Aunque los métodos numéricos son las aproximaciones más eficientes pare re-

solver EDs, ¿pueden los métodos heuŕısticos tener algunas ventajas? ¿Cuáles?

Probablemente la mayor ventaja de los métodos propuestos (DESES y DESCMA-ES) es que

son métodos genéricos, es decir, el algoritmo no depende del tipo de ecuación diferencial

a resolver. Por el contrario, los métodos numéricos son espećıficos para cada ecuación o

familia de ecuaciones. Poe ejemplo, los métodos clásicos de tipo Runge-Kutta se uilizan para

problemas de valor inicial debido a sus buenas caracteŕısticas de precisión comparados con

otros métodos más eficientes como los de tipo Euler. Los métodos clásicos Runge-Kutta son

expĺıcitos, y por tanto no son aptos para sistemas tipo stiff debido a su reducida región de

estabilidad. Por el contrario, los métodos Runge-Kutta impĺıcitos cuentan con una región de

estabilidad absoluta mayor [7]. Los problemas de valors en la frontera requieren de algoritmos

numéricos diferentes, tales como el método shooting para problemas uni-dimensionales o el

método de elementos finitos para domios más generales. Incluso para la misma ecuación,

algunos problemas deben usar esquemas numéricos diferentes dependiendo de kas condiciones

181

Appendix D. Conclusiones (Conclusions in Spanish)

de contorno debido a razones de estabilidad [104]. Además, la implementación de un nuevo

método numérico puede resultar complejo porque es necesario tener en cuenta diferentes

aspectos tales como el orden de la discretización, la estabilidad del algoritmo, la velocidad

de convergencia, las condiciones de contorno, etc.

En los tres métodos descritos en esta tesis, el problema original se transforma en un prob-

lema de optimización, por lo que la dificultad de elegir el algoritmo numérico más apropiado

desaparece. En algunios casos el algoritmo evolutivo es capaz de obtener una solución más

precisa usando un menor número de puntos de colocación. Además, la solución se codifica de

una forma más compacta necesitando una menor cantidad de memoria. Otra ventaja de los

algoritmos evolutivos es que en algunas ocasiones requieren un menor consumo de memoria.

Los métodos numéricos deben almacenar tantos valores como puntos de colocación. Y lo que

es más importante, la solución en el caso de los algoritmos evolutivos es simbólica, por lo que

es posible obtener valores numéricos en puntos diferentes a los usado para la resolución del

problema sin necesidad de realizar ninguna interpolación.

Sin embargo, las principales desventajas de los métodos evolutivos puden ser consideradas

desde dos puntos de vista. Por un lado, la naturaleza estocástica de los algoritmos evolutivos

hace que no se pueda garantizar la vonvergencia a la solución en el 100% de los casos. Por otro

lado, el coste computacional puede llegar a ser elevado debido a que se utiliza una población

de soluciones.

Dado que de cada solución propuesta por el método evolutivo deben calcularse

las derivadas, ¿es posible implementar algoritmos eficientes sin la necesidad de

usar complejos motores de cálculo simbólico?

La respuesta a esta cuestión es afirmativa si se utiliza una base funcional o una familia de

kernels. Es decir, si las derivadas simbólicas pueden conocerse a priori, el motor simbólico

sólo es necesario para el cálculo de expresiones algebraicas. En esta tesis, se ha implementado

un motor de cálculo simbólico de forma simple basado en árboles binarios, lo cual hace que

el algoritmo sea mucho más eficiente que si se hubiera empleado un motor de uso general.

Cuando se utilice una aproaximación basada en kernels, dependiendo de la complejidad

182

Appendix D. Conclusiones (Conclusions in Spanish)

del cálculo de las derivadas de los propios kernels, en algunas ocasiones puede ser necesario el

uso de herramientas de cálculo simbólico de uso general. Pero este proceso puede realizarse

offline guardando las derivadas simbólicas para su uso posterior. Durante la ejecución del

algoritmo evolutivo, no se necesita el motor simbólico, pues las derivadas simbólicas se han

precalculado en una etapa anterior.

Aunque los algoritmo evolutivos son métodos estocásticos, ¿es posible garantizar

una buena convergencia a la solución exacta?

Dada la naturaleza estocástica de los algoritmos evolutivos, la respuestas a esta pregunta

se puede realizar en base a un punto de vista experimental y tomando en consideración

únicamente el conjunto de problemas de validación estudiados en esta tesis. Se ha observado

un buen comportamiento en los 32 problemas de validación alcanzando una precisión igual o

mayor respecto a otros métodos de resolución de ecuaciones diferenciales. Aśı mismo, se ha

observado una baja dispersión en los resultados obtenidos.

Aunque no se ha realizado un estudio exhaustivo en tres equaiones más complejas pre-

sentadas en este trabajo (ecuaciones stiff), el algoritmo DESCMA-ES parece comportarse

mejor que los otros dos métodos. Sin embargo, la calidd de la solución depende del tipo de

kernel usado y de cómo la función fitness se construye con los errores de la ecuación misma

y con las condiciones de contorno. Como trabajos futuros, el comportamiento del algoritmo

es estas ecuaciones más complejas debe ser analizado.

183

Appendix D. Conclusiones (Conclusions in Spanish)

184

Appendix E

Publications

Solving Differential Equations with Evolutionary Algorithms

• J.M. Chaquet and E.J. Carmona, “Solving Differential Equations with

Fourier Series and Evolution Strategies”, Applied Soft Computing, Volume 12,

Issue 9, Pages 3051-3062, September 2012. Impact factor 2.14 (Q1)

• J.M. Chaquet and E.J. Carmona, “Using Covariance Matrix Adapta-

tion Evolution Strategies for Solving Different Types of Differential Equa-

tions”, Soft Computing, Submitted.

• J.M. Chaquet and E.J. Carmona, “A Grid-based Genetic Algorithm

for Multimodal Real Function Optimization”, ECTA 2012: 4th International

Conference on Evolutionary Computation, Theory and Applications, June 2012. In-

dexed in SCITEPRESS Digital Library. Rank C (ERA).

185

Appendix E. Publications

Solving Differential Equations with Numerical Methods

• J.M. Chaquet, R. Corral, G. Pastor, J. Pueblas and D.D. Coren, “Vali-

dation of a Coupled Fluid/Solid Heat Transfer Method”, 56th ASME Turbo

Expo: Power for Land, Sea and Air, GT2011-45951, June 2011. Indexed in the Amer-

ican Society of Mechanical Engineers (ASME) Digital Collection.

• J.M. Chaquet, Z. Wang, R. Corral and G. Pastor,“Loosely Coupled Fluid/Solid

Heat Transfer Analysis Using a Dynamic HTC Approach”, Paper 223, Eu-

ropean Turbomachinery Conference 2013, April 2013.

• J.M. Chaquet, A. Altuna, R. Corral, F. Gisbert and G. Pastor, “Appli-

cation of a Fast Loosely Coupled Fluid/Solid Heat Transfer Method to

the Transient Analysis of Low-Pressure-Turbine Disk Cavities”, GT2013-

95426, ASME Turbo Expo, June 2013. Indexed in the American Society of Mechanical

Engineers (ASME) Digital Collection.

• J.M. Chaquet, Z. Wang, R. Corral and G. Pastor, “Analysis and Im-

provement of Loosely Coupled Fluid-Solid Heat Transfer Method”, GT2013-

94332, ASME Turbo Expo, June 2013. Indexed in the American Society of Mechanical

Engineers (ASME) Digital Collection.

• J.M. Chaquet, R. Corral, F. Gisbert and G. Pastor,“A Loosely Coupled

Fluid/Solid Heat Transfer Method For Disc Cavities Including Mixing

Planes and a Combination of 2D and 3D Cavities”, GT2015-42269, ASME

Turbo Expo, June 2015. Indexed in the American Society of Mechanical Engineers

(ASME) Digital Collection.

186

Appendix E. Publications

Evolutionary Algorithms

• J.M. Chaquet, E.J. Carmona and R. Corral, “Optimizing the Number of

Airfoils in Turbine Design using Genetic Algorithms”. IEA/AIE’10 Proceed-

ings of the 23rd international conference on Industrial engineering and other applica-

tions of applied intelligent systems, Part III, Pages 169-178, June 2010. Indexed in

ACM Digital Library. Rank C (ERA).

• J.M. Chaquet, E.J. Carmona and R. Corral,“Using Genetic Algorithms to

Improve the Thermodynamic Efficiency of Gas Turbines Designed by Tra-

ditional Methods”, Applied Soft Computing, Volume 12, Issue 11, Pages 3627–3635,

November 2012. Impact factor 2.14 (Q1)

187

Appendix E. Publications

188

Bibliography

[1] Tsoulos, I. G. and Lagaris, I. E., “Solving differential equations with genetic program-

ming,” Genetic Programming and Evolvable Machines , Vol. 7, 2006, pp. 33–54.

[2] Tsoulos, I. G., Gavrilis, D., and Glavas, E., “Solving differential equations with con-

structed neural networks,” Neurocomputing , Vol. 72, 2009, pp. 2385–2391.

[3] Sobester, A., Nair, P. B., and Keane, A. J., “Genetic Programming Approaches for

Solving Elliptic Partial Differential Equations,” IEEE Transactions on Evolutionary

Computation, Vol. 12, 2008, pp. 469–478.

[4] Babaei, M., “A general approach to approximate solutions of nonlinear differential

equations using particle swarm optimization,” Applied Soft Computing , Vol. 13, No. 7,

2013, pp. 3354 – 3365.

[5] Panagant, N. and Bureerat, S., “Solving Partial Differential Equations Using a New

Differential Evolution Algorithm,” Mathematical Problems in Engineering , Vol. 2014,

No. 747490, 2014, pp. 10.

[6] Spivak, M., Calculus , Publish or Perish, 4th ed., 1980.

[7] Suli, E. and Mayers, D. F., An Introduction to Numerical Analysis , Cambridge Uni-

versity Press, 2003.

[8] Ozisik, M. N., Finite Difference Methods in Heat Transfer , CRC Press, Inc., 1994.

[9] Leveque, R. J., Finite Volume Methods for Hyperbolic Problems , Cambridge University

Press, 2002.

189

Bibliography Bibliography

[10] Liu, G. R., Meshfree Methods. Moving Beyond the Finite Element Method , CRC Press,

Inc., 2010.

[11] Puffer, F., Tetzlaff, R., and Wolf, D., “A learning algorithm for cellular neural networks

(CNN) solving nonlinear partial differential equations,”Proceedings International Sym-

posium on Signals, Systems, and Electronics, ISSSE ’95 URSI , Vol. 1, 1995, pp. 501–

504.

[12] Lagaris, I. E., Likas, A., and Fotiadis, D. I., “Artificial Neural Networks for Solving

Ordinary and Partial Differential Equations,” IEEE Transactions on Neural Networks ,

Vol. 5, 1998, pp. 987–1000.

[13] He, S., Reif, K., and Unbehauen, R., “Multilayer neural networks for solving a class of

partial differential equations,” Neural Networks , Vol. 13, 2000, pp. 385–396.

[14] Parisi, D. R., Mariani, M. C., and Laborde, M. A., “Solving differential equations with

unsupervised neural networks,” Chemical Engineering and Processing , Vol. 42, 2003,

pp. 715–721.

[15] Sun, M., Yan, X., and Sclabassi, R. J., “Solving Partial Differential Equations in Real-

Time using Artificial Neural Network Signal Processing as an Alternative to Finite

Element Analysis,” IEEE Int. Conf. Neural Networks & Signal Processing , Vol. 1,

2003, pp. 381–384.

[16] Choi, B. and Lee, J., “Comparison of generalization ability on solving differential equa-

tions using backpropagation and reformulated radial basis function networks,” Neuro-

computing , Vol. 73, 2009, pp. 115–118.

[17] Shirvany, Y., Hayati, M., and Moradian, R., “Multilayer perceptron neural networks

with novel unsupervised trining method for numerical solution of the partial differential

equations,” Applied Soft Computing , Vol. 9, 2009, pp. 20–29.

190

Bibliography Bibliography

[18] Chen, H., Kong, L., and Leng, W.-J., “Numerical solution of PDEs via integrated radial

basis function networks with adaptive training algorithm,” Applied Soft Computing ,

Vol. 11, 2011, pp. 855–860.

[19] Kumar, M. and Yadav, N., “Multilayer perceptrons and radial basis function neural

network methods for the solution of differential equations. A survey,” Computers and

Mathematics with Applications , Vol. 62, 2011, pp. 3796–3811.

[20] Yazdi, H. S., Pakdaman, M., and Modaghegh, H., “Unsupervised kernel least mean

square algorithm for solving ordinary differential equations,” Neurocomputing , Vol. 74,

2011, pp. 2062–2071.

[21] Mosleh, M., “Fuzzy neural network for solving a system of fuzzy differential equations,”

Applied Soft Computing , Vol. 13, No. 8, 2013, pp. 3597 – 3607.

[22] Rudd, K. and Ferrari, S., “A constrained integration (CINT) approach to solving partial

differential equations using artificial neural networks,”Neurocomputing , Vol. 155, 2015,

pp. 277–285.

[23] MacNeil, P., “A technique for generating approximate solutions and it’s application to

Coulomb interactions,” Southeastcon, 2012 Proceedings of IEEE , March 2012, pp. 1–5.

[24] Howard, D. and Roberts, S. C., “Genetic programming solution of the convection-

diffusion equation,” Proceedings of Genetic Evolutionary Computation Conference

(GECCO-2001), 2001, pp. 34–41.

[25] Kirstukas, S. J., Bryden, K. M., and Ashlock, D. A., “A hybrid genetic programming

approach for the analytical solution of differential equations,” International Journal of

General Systems , Vol. 34, 2005, pp. 279–299.

[26] Bryden, K. M., Ashlock, D. A., Corns, S., and Willson, S. J., “Graph-Based Evolu-

tionary Algorithms,” IEEE Transactions on Evolutionary Computation, Vol. 10, No. 5,

2006, pp. 550–567.

191

Bibliography Bibliography

[27] Balasubramaniam, P. and Kumar, A. V. A., “Solution of matrix Riccati differential

equation for nonlinear singular system using genetic programming,” Genetic Program-

ming and Evolvable Machines , Vol. 10, 2009, pp. 71–89.

[28] Seaton, T., Brown, G., and Miller, J. F., “Analytic Solutions to Differential Equations

under Graph-Based Genetic Programming,” EuroGP LNCS , Vol. 6021, 2010, pp. 232–

243.

[29] Khan, J., Zahoor, R., and Qureshi, I., “Swarm Intelligence for the Solution of Problems

in Differential Equations,” Environmental and Computer Science, 2009. ICECS ’09.

Second International Conference on, Dec 2009, pp. 141–147.

[30] Mehrkanoon, S. and Suykens, J. A. K., “Learning solutions to partial differential equa-

tions using LS-SVM,” Neurocomputing , Vol. 159, 2015, pp. 105–116.

[31] He, J., Xu, J., and Yao, X., “Solving Equations by Hybrid Evolutionary Computation

Techniques,” IEEE Transactions on Evolutionary Computation, Vol. 4, No. 3, 2000,

pp. 295–304.

[32] Ramuhalli, P., Udpa, L., and Udpa, S. S., “Finite-Element Neural Networks for Solving

Differential Equations,” IEEE Transactions on Neural Networks , Vol. 16, No. 6, 2005,

pp. 1381–1392.

[33] El-Emam, N. N. and Al-Rabeh., R. H., “An itelligent computing technique for fluid

flow problems using hybrid adaptive neural network and genetic algorithm,” Applied

Soft Computing , Vol. 11, 2011, pp. 3283–3296.

[34] Veer, L. P. A. . P. V. D., “Neural Network Method for Solving Partial Differential

Equations,” Neural Processing Letters , Vol. 14, 2001, pp. 261–271.

[35] MacNeil, P. E., “Genetic Algorithms and Solutions of an Interesting Differential Equa-

tion,”Proceeding of the 10th Annual Genetic and Evoutionary Computation Conference

(GECCO), July 2008, pp. 1711–1712.

192

Bibliography Bibliography

[36] Yazdi, H. S. and Pourreza, R., “Unsupervised adaptive neural-fuzzy inference system

for solving differential equations,” Applied Soft Computing , Vol. 10, 2010, pp. 267–275.

[37] Raja, M. A. Z., Khan, J. A., and Qureshi, I. M., “Evolutionary Computational Intel-

ligence in Solving the Fractional Differential Equations,” Lecture Notes in Computer

Science, Vol. 5990, 2010, pp. 231–240.

[38] MacNeil, P. E. and Schultz, S. R., “A Genetic Algorithm Approach to the Solution of a

Differential Equation,” Proceeding of the 2010 IEEE Southeastern Conference, March

2010, pp. 448–450.

[39] Raja, M. A. Z., Khan, J. A., and Qureshi, I. M., “A new stochastic approach for

solution of Riccati differential equation of fractional order,” Annals of Mathematics

and Artificial Intelligence, 2011.

[40] Zjavka, L. and Abraham, A., “Failure and Power Utilization System Models of Differ-

ential Equations by Polynomial Neural Networks,” International Conference on Hybrid

Intelligent Systems (HIS), 2013, pp. 273–278.

[41] Zjavka, L. and Snasel, V., “Constructing Ordinary Sum Differential Equations Using

Polynomial Networks,” Information Sciences , Vol. 281, 2014, pp. 462–477.

[42] Raja, M. A. Z., “Numerical treatment for boundary value problems of Pantograph

functional differential equation using computational intelligence algorithms,” Applied

Soft Computing , Vol. 24, 2014, pp. 806–821.

[43] Monteagudo, A. and Santos, J., “Studying the capability of different cancer hallmarks

to initiate tumor growth using a cellular automaton simulation. Application in a cancer

stem cell context,” Biosystems , Vol. 115, 2014, pp. 46–58.

[44] Santos, J. and Monteagudo, A., “Analysis of behaviour transitions in tumour growth

using a cellular automaton simulation, , DOI: 10.1049/iet-syb.2014.0015,” IET Systems

Biology , 2014.

193

Bibliography Bibliography

[45] Storn, R. and Price, K., “Differential Evolution: A Simple and Efficient Heuristic

for global Optimization over Continuous Spaces,” Global Optimization, Vol. 11, 1997,

pp. 341–359.

[46] O’Neill, M. and Ryan, C., “Grammatical Evolution,” IEEE Transactions on Evolution-

ary Computation, Vol. 5, 2001, pp. 349–358.

[47] Tsoulos, I., Gavrilis, D., and Glavas, E., “Neural network construction and training

using grammatical evolution,” Neurocomputing , Vol. 72, 2008, pp. 269–277.

[48] Kennedy, J. and Eberhart, R., “Particle Swarm Optimization,” Proceedings of IEEE

International Conference on Neural Networks IV , 1995, pp. 1942–1948.

[49] Shi, Y. and Eberhart, R., “A modified particle swarm optimizer,” Proceedings of IEEE

International Conference on Evolutionary Computation, 1998, pp. 69–73.

[50] Kennedy, J. and Eberhart, R., Swarm Intelligence, Morgan Kaufmann, isbn 1-55860-

595-9 ed., 2001.

[51] Poli, R., “Analysis of the publications on the applications of particle swarm optimisa-

tion,” Artificial Evolution and Applications , 2008, pp. 1–10.

[52] Vapnik, V. and Lerner, A., “Pattern recognition using generalized portrait method,”

Automation and Remote Control , Vol. 24, 1963, pp. 774–780.

[53] Vapnik, V. and Chervonenkis, A., “A note on one class of perceptrons,” Automation

and Remote Control , Vol. 25, 1964.

[54] Boser, B. E., Guyon, I. M., and Vapnik, V. N., “A training algorithm for optimal margin

classifiers,” Proceedings of the fifth annual workshop on Computational learning theory

- COLT ’92 , 1992.

[55] Cortes, C. and Vapnik, V., “Support-vector networks,” Machine Learning , Vol. 20,

No. 3, 1995, pp. 273–297.

194

Bibliography Bibliography

[56] Ryan, C., Collins, J., and O’Neill, M., Genetic Programming: First European Work-

shop, EuroGP’98 , chap. Grammatical evolution: Evolving programs for an arbitrary

language, Springer Berlin Heidelberg, April 1998, pp. 83–96.

[57] O’Neill, M. and Ryan, C.,“Crossover in Grammatical Evolution,”Genetic Programming

and Evolvable Machines , Vol. 4, 2003, pp. 67–93.

[58] O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S. M., and Keenan, P., “pi-

Grammatical Evolution,” GECCO , 2004, pp. 617–629.

[59] Harper, R. and Blair, A., “A Structure Preserving Crossover In Grammatical Evolu-

tion,” IEEE Evolutionary Computation, Vol. 3, 2005, pp. 2537–2544.

[60] Harper, R. and Blair, A., “A Self-Selecting Crossover Operator,” IEEE Congress on

Evolutionary Computation, July 2006, pp. 1420–1427.

[61] Harper, R. and Blair, A., “Dynamically Defined Functions In Grammatical Evolution,”

IEEE Congress on Evolutionary Computation, Vol. 1, 2006, pp. 2638 – 2645.

[62] Nicolau, M. and Dempsey, I., “Introducing Grammar Based Extensions for Gramma-

tical Evolution,” IEEE Congress on Evolutionary Computation, 2006, pp. 648–655.

[63] Ortega, A., de la Cruz, M., and Alfonseca, M., “Christiansen Grammar Evolution:

Grammatical Evolution With Semantics,” IEEE Transactions on Evolutionary Com-

putation, Vol. 11, 2007, pp. 77–90.

[64] Mingo, J. M. and Aler, R., “The Role Of The Lamarck Hypothesis In The Gramma-

tical Evolution Guided By Reinforcement,” Latin America Transactions , Vol. 6, 2008,

pp. 500–504.

[65] Byrne, J., O’Neil, M., Hemberg, E., and Brabazon, A., “Analysis of Constant Creation

Techniques on the Binomial-3 Problem with Grammatical Evolution,” IEEE Congress

on Evolutionary Computation, Vol. 1, 2009, pp. 568–573.

195

Bibliography Bibliography

[66] Langdon, W. B. and Gustafson, S. M., “Genetic Programming and Evolvable Machines:

ten years of reviews,” Genetic Programming and Evolvable Machines , Vol. 11, Septem-

ber 2010, pp. 321–338.

[67] Alfonseca, M. and Ortega, A., “Book Review: Grammatical Evolution: Evolutionary

Automatic Programming in an Arbitrary Language,”Genetic Programming and Evolv-

able Machines , Vol. 5, No. 4, 2004, pp. 393–393.

[68] Swafford, J., Analyzing the Discovery and Use of Modules in Grammatical Evolution,

Master’s thesis, University College, Dublin, 2013.

[69] Fagan, D., An analysis of genotype-phenotype mapping in Grammatical Evolution, Mas-

ter’s thesis, University College, Dublin, 2013.

[70] Murphy, E., An Exploration of Tree-Adjoining Grammars for Grammatical Evolution,

Master’s thesis, University College Dublin, 2013.

[71] Beyer, H. G. and Schwefel, H. P.,“Evolution strategies - A comprehensive introduction.”

Natural Computing , Vol. 1, 2002, pp. 3–52.

[72] Hansen, N., Arnold, D. V., and Auger, A., “Evolution Strategies,” Unpublished.

[73] Ohkura, K., Matsumura, Y., and Ueda, K., “Robust Evolution Strategies,” Applied

Intelligence, Vol. 15, 2001, pp. 153–169.

[74] Leung, K.-S. and Liang, Y., “Evolution Strategies with a Fourier Series Auxiliary

Function for Difficult Function Optimization,” Lecture Notes in Computer Science,

Vol. 2690, 2003, pp. 303–312.

[75] Shir, O. M. and Back, T., “Dynamic Niching in Evolution Strategies with Covariance

Matrix Adaptation,” Congress on Evolutionary Computation CEC-2005 , Vol. 1, 2005,

pp. 2584–2591.

[76] Shir, O. M. and Back, T., “Niching in Evolution Strategies,” Conference on Genetic

and evolutionary computation, GECCO , 2005.

196

Bibliography Bibliography

[77] Kramer, O. and Schwefel, H.-P., “On three new approaches to handle constraints within

evolution strategies,” Natural Computing , Vol. 5, 2006, pp. 363–385.

[78] Debski, R., Drezewski, R., and Kisiel-Dorohinicki, M., “Maintaining Population Diver-

sity in Evolution Strategy for Engineering Problems,” IEA/AIE , Vol. 1, 2008, pp. 379–

387.

[79] Wierstra, D., Schaul, T., Peters, J., and Schmidhuber, J., “Natural Evolution

Strategies,” Proceedings of IEEE Congress on Evolutionary Computation (CEC-2008,

Hongkong), 2008.

[80] Glasmachers, T., Schaul, T., and Schmidhuber, J., “A Natural Evolution Strategy for

Multi-objective Optimization,” Lecture Notes in Computer Science, Vol. 6238, 2011,

pp. 627–636.

[81] Eiben, A. E. and Smith, J. E., Introduction to Evolutionary Computing , Springer-Verlag

Berlin Heidelberg, 2nd ed., 2007.

[82] Hansen, N., “The CMA Evolution Strategy: A Comparing Review,” Towards a New

Evolutionary Computation, edited by J. Lozano, P. Larranaga, I. Inza, and E. Ben-

goetxea, Vol. 192 of Studies in Fuzziness and Soft Computing , Springer Berlin Heidel-

berg, 2006, pp. 75–102.

[83] Hansen, N., “The CMA Evolution Strategy: A Tutorial,” https://www.lri.fr/

~hansen/cmatutorial.pdf, June 2011.

[84] Hohm, T. and Zitzler, E., “Multicellular pattern formation,” Engineering in Medicine

and Biology Magazine, IEEE , Vol. 28, No. 4, July 2009, pp. 52–57.

[85] Santamaria, J., O. Cordon, O., Damas, S., and Ibanez, O., “3D-2D image registration

for craniofacial superimposition in forensic medicine using covariance matrix adaptation

evolution strategy,” Information Technology and Applications in Biomedicine, 2009.

ITAB 2009. 9th International Conference on, 2009.

197

https://www.lri.fr/~hansen/cmatutorial.pdf
https://www.lri.fr/~hansen/cmatutorial.pdf

Bibliography Bibliography

[86] Ibanez, O., Cordon, O., Damas, S., and Santamaria, J., “Modeling the Skull-Face

Overlay Uncertainty Using Fuzzy Sets,”Fuzzy Systems, IEEE Transactions on, Vol. 19,

No. 5, Oct 2011, pp. 946–959.

[87] Colutto, S., Fruhauf, F., Fuchs, M., and Scherzer, O., “The CMA-ES on Riemannian

Manifolds to Reconstruct Shapes in 3-D Voxel Images,” IEEE Trans. Evol. Comput.,

Vol. 14, No. 2, april 2010, pp. 227–245.

[88] Fang, X. S., Chow, C. K., Leung, K.-W., and Lim, E. H., “New Single-/Dual-Mode

Design Formulas of the Rectangular Dielectric Resonator Antenna Using Covariance

Matrix Adaptation Evolutionary Strategy,” Antennas and Wireless Propagation Let-

ters, IEEE , Vol. 10, 2011, pp. 734–737.

[89] Gong, R. H., Stewart, J., and Abolmaesumi, P., “Multiple-Object 2-D-3-D Registration

for Noninvasive Pose Identification of Fracture Fragments,” Biomedical Engineering,

IEEE Transactions on, Vol. 58, No. 6, June 2011, pp. 1592–1601.

[90] Gregory, M., Namin, F., and Werner, D., “Exploiting Rotational Symmetry for the

Design of Ultra-Wideband Planar Phased Array Layouts,” Antennas and Propagation,

IEEE Transactions on, Vol. 61, No. 1, Jan 2013, pp. 176–184.

[91] Nelder, J. A. and Mead, R., “A Simplex Method for Function Minimization,” The

Computer Journal , Vol. 7, No. 4, 1965, pp. 308–313.

[92] Robin, F., Orzati, A., Moreno, E., Homan, O., and Bachtold, W., “Simulation and evo-

lutionary optimization of electron-beam lithography with genetic and simplex-downhill

algorithms,”Evolutionary Computation, IEEE Transactions on, Vol. 7, No. 1, Feb 2003,

pp. 69–82.

[93] Floridia, C. and de Moraes, J.,“Fast on-line OSNR measurements based on polarisation-

nulling method with downhill simplex algorithm,” Electronics Letters , Vol. 44, No. 15,

July 2008, pp. 926–927.

198

Bibliography Bibliography

[94] Hansen, N., “Benchmarking the nelder-mead downhill simplex algorithm with many

local restarts,” GECCO ’09: Proceedings of the 11th Annual Conference Companion

on Genetic and Evolutionary Computation Conference: Late Breaking Papers, 2009.

[95] Anet Neto, L., Erasme, D., Genay, N., Chanclou, P., Deniel, Q., Traore, F., Anfray,

T., Hmadou, R., and Aupetit-Berthelemot, C., “Simple Estimation of Fiber Dispersion

and Laser Chirp Parameters Using the Downhill Simplex Fitting Algorithm,”Lightwave

Technology, Journal of , Vol. 31, No. 2, Jan 2013, pp. 334–342.

[96] Bauer, C., Frink, A., and Kreckel, R., “Introduction to the GiNaC Framework for Sym-

bolic Computation within the C++ Programming Language,” Symbolic Computation,

Vol. 33, 2002, pp. 1–12.

[97] CLN, “Class Library for Numbers,” http://www.ginac.de/CLN/.

[98] Rao, K. R. and Yip, P., Discrete Cosine Transform. Algorithms, Advantages and Apli-

cations , Academic Press, Inc, 1990.

[99] Ghodadra, B. L., “Order of magnitude of multiple Fourier coefficients of functions of

bounded p-variation,” Acta Mathematica Hungarica, Vol. 22, No. 3, 2010, pp. 187–198.

[100] Hangelbroek, T. and Ron, A., “Nonlinear approximation using Gaussian kernels,”Jour-

nal of Functional Analysis , Vol. 259, No. 1, 2010, pp. 203 – 219.

[101] Hansen, N. and Kern, S., “Evaluating the CMA Evolution Strategy on Multimodal Test

Functions,” Eighth International Conference on Parallel Problem Solving from Nature

PPSN VIII , Springer, 2004, pp. 282–291.

[102] Press, W. H., Vetterling, W. T., Teukolsky, S. A., and Flannery, B. P., Numerical

Recipes in C++: the art of scientific computing , Cambridge University Press, New

York, NY, USA, 2nd ed., 2002.

[103] Powell, M. J. D., “A Tolerant Algorithm for Linearly Constrained Optimization Calcu-

lations,” Mathematical Programming , Vol. 45, 1989, pp. 547–566.

199

http://www.ginac.de/CLN/

Bibliography Bibliography

[104] Zhao, X., “Stream Function Solution of Transonic Flow Along S2 Streamsurface of

Axial Turbomachines,” Journal of Engineering for Gas Turbines and Power , Vol. 108,

No. 1, 1986, pp. 138–143.

[105] Hairer, E. and Wanner, G., Solving Ordinary Differential Equations II: Stiff and

Differential-algebraic Problems , Springer-Verlag, second revised edition ed., 1996.

[106] Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y.-P., Auger, A., and

Tiwari, S., “Problem definitions and evaluation criteria for the CEC 2005 special session

on real-parameter optimization,” Tech. rep., Nanyang Technological Univ., Singapore,

2007.

[107] Rudolph, G., “On Correlated Mutations in Evolutionary Strategies,”Proceedings of the

2nd Conference on Parallel Problem Solving from Nature, edited by R. Manner and

B. Manderick, Elsevier, 1992, p. 105.114.

200

	Summary
	Resumen (Summary in Spanish)
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Scope of the Thesis
	Problem Statement
	Research Methodology
	Structure of the Thesis

	State of the Art
	Introduction
	Taxonomy of Methods for solving DEs
	Heuristic Methods for DEs
	Cellular Automata (CA)
	Differential Evolution
	Genetic Algorithm
	Genetic Programming
	Grammatical Evolution (GE)
	Heuristics using Artificial Neural Networks
	Particle Swarm Optimization
	Support Vector Machines (SVM)

	Conclusion

	Background
	Grammatical Evolution (GE)
	Backus-Naur Form
	Mapping process
	Evolutionary Algorithm

	Evolution Strategies (ES)
	Representation
	Mutation Operators
	Recombination
	Parent selection
	Survivor Selection

	Covariance Matrix Adaptation ES (CMA-ES)
	Sampling
	Selection and Recombination
	Adapting the Covariance Matrix
	Step Size Control

	Downhill Simplex Method
	Algorithm description

	Novel Methods for Solving DEs
	Problem Statement: Summary
	Solving DEs with GE (DESGE)
	GiNaC: A Symbolic Mathematical Engine
	Algorithm Description
	Enhancing DESGE Algorithm

	Solving DEs with ES (DESES)
	Representation of Candidate Solutions
	Fitness Function
	New symbolic expression interpreter
	Algorithm Description
	Separation of Variables

	Solving DEs with CMA-ES (DESCMA-ES)
	Representation of Candidate Solutions
	Fitness Function
	Algorithm Description
	Other possible kernels

	Results and Discussion
	Benchmarking Problems
	Numerical Experiments
	DESGE Results
	DESES Results
	DESCMA-ES Results

	Comparisons with other Methods
	Comparing of DESES algorithm with Numerical Methods
	Comparison of DESES algorithm with other Evolutionary Computing approaches
	Comparison of DESCMA-ES with Numerical Methods
	Comparison of DESCMA-ES with DESES and other Evolutionary Algorithms

	Future Research
	Analysis of other kernels in DESCMA-ES
	More complex problems: Stiff equations

	Conclusions
	Release Control Version
	A C++ Program to Test GiNaC Library
	Configuration File Examples
	Conclusiones (Conclusions in Spanish)
	Publications
	Bibliography

