

 TESIS DOCTORAL

METODOLOGIA DE EVALUACIÓN DE HERRAMIENTAS DE

ANÁLISIS AUTOMÁTICO DE SEGURIDAD DE APLICACIONES

WEB PARA SU ADAPTACIÓN EN EL CICLO DE VIDA DE

DESARROLLO

ASSESSMENT METHODOLOGY OF WEB APPLICATIONS AUTOMATIC

SECURITY ANALYSIS TOOLS FOR ADAPTATION IN THE DEVELOPMENT

LIFE CYCLE

JUAN RAMÓN BERMEJO HIGUERA

Ingeniero en Informática por la Universidad Nacional de Educación a

Distancia

Tesis presentada en el

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA Y CONTROL

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

como parte de los requerimientos para la obtención del

Grado de Doctor

2014

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA Y CONTROL

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

Título de la Tesis:

METODOLOGIA DE EVALUACIÓN DE HERRAMIENTAS DE

ANÁLISIS AUTOMÁTICO DE SEGURIDAD DE APLICACIONES

WEB PARA SU ADAPTACIÓN EN EL CICLO DE VIDA DE

DESARROLLO

ASSESSMENT METHODOLOGY OF WEB APPLICATIONS AUTOMATIC

SECURITY ANALYSIS TOOLS FOR ADAPTATION IN THE DEVELOPMENT

LIFE CYCLE

Autor:

JUAN RAMÓN BERMEJO HIGUERA

Ingeniero en Informática por la Universidad Nacional de

Educación a Distancia

Director de la Tesis:

Dr. GABRIEL DÍAZ ORUETA

4

5

Agradecimientos

A Ana, Paula y Marta por la cantidad de horas de atención robadas.

 A mi hermano Javier por el apoyo y ánimo constante.

A Gabriel, por haberme dado esta oportunidad y atención.

6

7

Resumen

Como técnicas de análisis de seguridad de una aplicación, las pruebas de caja blanca y de

caja negra realizadas manualmente (revisión de código, test de penetración), sufren de falta

de cobertura de la superficie de ataque que tienen las aplicaciones y lo más probable es que

con estas pruebas de penetración manuales se tenga una gran pérdida de detección de

vulnerabilidades de seguridad. La dificultad de realizar estos test manualmente conduce al

desarrollo de técnicas automáticas de análisis de la seguridad. Este trabajo de tesis trata de

fijar el “estado del arte” en cuanto a las últimas tendencias de herramientas de análisis

automáticas: análisis estático de caja blanca (SAST), dinámico de caja negra (DAST) y

análisis dinámico de caja blanca (RAST / IAST) en tiempo real. También hay disponibles

desarrollos de herramientas híbridas combinando varias de los tipos anteriores, con el

objetivo de reducir los falsos positivos y negativos que tienen las herramientas de análisis

estático y dinámico. Todas estos tipos de herramientas son evaluadas de acuerdo a una

metodología desde una perspectiva global para establecer el grado de eficacia de las

herramientas en cuanto detecciones correctas (verdaderos positivos), falsas alarmas (falsos

positivos), grado de cobertura de vulnerabilidades, etc.

La metodología de evaluación de las herramientas consiste en ejecutar cada herramienta

contra aplicaciones benchmark que contienen vulnerabilidades de seguridad conocidas. Las

aplicaciones benchmark utilizadas han de tener la capacidad de comprobar falsos positivos,

es decir, porciones de código seguras controladas donde las herramientas no deberían

informar de la existencia de una vulnerabilidad concreta. Al resultado de las ejecuciones se

les aplican posteriormente métricas seleccionadas y ampliamente aceptadas para establecer

un ranking en cuanto a la efectividad de análisis de seguridad de cada herramienta.

El objetivo final del resultado de la evaluación de los diferentes tipos de herramientas

mencionados, es la derivación de un modelo de ciclo de vida de desarrollo seguro de

8

software (SSDLC), aplicando en cada fase los tipos de herramientas más adecuados para

conseguir un resultado de conjunto lo más optimizado posible. La diferente naturaleza de

cada tipo de herramienta, e incluso entre distintas herramientas del mismo tipo, hace

necesario estudiar la sinergia existente entre ellas cuando se combinan para reducir el

porcentaje de falsos positivos y aumentar el porcentaje de verdaderos positivos.

El modelo de ciclo de vida de desarrollo seguro de software resultante siempre estará en

función de los tipos de herramientas disponibles, del personal disponible para realizar las

tareas de análisis, del tiempo y otros factores como los cambios de tendencias de la

frecuencia y peligrosidad de las vulnerabilidades con el tiempo, de la evolución de las

propias herramientas y de la aparición de otras nuevas. Estos factores de cambio implican

analizar esta evolución para adaptar continuamente el modelo de SSDLC.

9

Summary

As security analysis techniques of an application, white-box and black testing performed

manually (code review, penetration testing), suffer from lack of coverage to analyze the

applications attack surface and most likely manual penetration testing has a great loss of

security vulnerability detection. The difficulty in performing these tests manually leads to

the development of automatic techniques of security analysis. This dissertation will set the

"state of the art" in terms of the latest trends in automatic analysis tools: static analysis

white box (SAST), Dynamic black box (DAST) and white-box dynamic analysis (RAST /

IAST) in real time. Also, available hybrid tool developments combining several of the

above types, with the goal of reducing false positives and negatives that static and dynamic

analysis tools suffer. All these types of tools are evaluated according to a methodology,

from a global perspective, to establish the performance of the tools in terms of correct

detections (true positives), false alarms (false positives), degree of vulnerability coverage,

etc.

The methodology of evaluation of the tools is to run each tool against benchmark

applications containing known security vulnerabilities. Benchmark applications used must

have the ability to check false positives with controlled safe portions of code where tools

should not report the existence of a particular vulnerability. Subsequently widely accepted

metrics are selected and applied to the results of the executions to establish a ranking in

terms of the performance of security analysis of each tool.

The final objective of the result of the evaluation of different types of tools mentioned

above, is the derivation of a secure software development lifecycle (SSDLC), using at each

stage the types of tools best suited for a result as optimized as possible. The different nature

of each type of tool and even between different tools of the same type obliges us to explore

10

the synergy between them when combined to reduce the percentage of false positive

detections and increase the percentage of true positives.

The secure software development lifecycle model resulting will always depend on the types

of tools available, the personnel available to perform the analysis tasks, time and other

factors such as changes in trends in the frequency and danger of vulnerabilities with time

and also evolutions of the tools themselves. These factors involve analyzing these

evolutions and changes to adapt continuously the SSDLC model.

11

Preface

This thesis is the result of six years of research in the area of software security analysis

accomplished with white and black box analysis security tools at the Electrical Engineering

Department (Departamento de Ingeniería Eléctrica, Electrónica y de Control) of UNED

(Spanish University for Distance Education). During this time, I have dedicated myself to

be informed about the latest software security analysis tools tendencies. This knowledge is

necessary to perform an efficient analysis in a reasonable time, so I have been developing

the most adequate methodology to evaluate many of the available automatic tools to

perform the best and most efficient security test of an application.

I started investigating about security vulnerabilities that developers introduce inadvertently

in the code, their nature, attack vectors, the most frequent ones and the most dangerous

vulnerabilities, with the aid of information distributed by important security standards.

Also, I studied the ways to perform a software security analysis with the aid of specialized

tools, static with source and executable code, black box analysis in runtime and white box

analysis in runtime. I investigated the available tools, the skills of each tool and also their

problems, as false negatives rates, false positives rates or vulnerabilities coverage degree.

Next, I continued investigating on developing a methodology for evaluating the security

tools to establish a strict rank of tool performance in software security analysis to help the

practitioners to make the best election to accomplish a security analysis.

I participated in security courses as “Security of Technologies of information and

Communications” “Risk analysis tools” and “Cryptologist specialist” performed in the

Spanish Cryptology National Center (CCN), belonging to the Spanish Intelligent National

Center (CNI), which gave me a good perspective of the state of software security.

12

I have published a research paper about source code analysis titled “Static analysis of

source code security: Assessment of tools against SAMATE tests” in Information and

Software Technology journal, from Elsevier.

I have participated in several conferences about “Static analysis for source code security

and “Automatic Analysis tools for security of applications” at the University of Alcala de

Henares and e-Madrid e-learning project.

I have promoted and advised the implementation of a software security analysis project in

the Marañosa Institute of technology of Spanish Defense Ministry, with the purpose of

analyzing the security of source code software of all projects belonging to the Defense

Ministry.

13

14

Index

Glossary ... 18

Figure Index .. 22

Table index .. 25

1. INTRODUCTION .. 29

1.1. MOTIVATION ... 29

1.2. PURPOSE .. 31

1.3. DOCUMENT ORGANIZATION ... 34

2. LAST TENDENCIES IN APPLICATIONS DEVELOPMENT 39

2.1. APPLICATION CATEGORIES. .. 39

2.2. APPLICATIONS ARCHITECTURE STYLES.. 49

2.3. DEVELOPMENT TECHNOLOGIES AND LANGUAGES 53

2.3.1. LANGUAGES FOR NON-WEB APPLICATIONS 55

2.3.2. LANGUAGES FOR WEB APPLICATIONS ... 56

2.3.3. PLATFORMS AND LANGUAGES FOR MOBILE APPLICATIONS 58

3. APPLICATIONS SECURITY PROBLEMS ... 67

3.1. SECURITY DESIGN ASPECTS OF ARCHITECTURE. 70

3.2. ARCHITECTURE SPECIAL CASES EXAMPLES. 74

3.3. SOFTWARE VULNERABILITIES... 77

3.4. VULNERABILITIES AND ATTACKS TENDENCIES.................................... 82

3.4.1. VULNERABILITIES TENDENCIES. ... 83

3.4.2. ATTACKS TENDENCIES. ... 93

3.5. CONCLUSIONS. .. 98

4. STATE OF THE ART IN APPLICATIONS SECURITY ANALYSIS 101

4.1. ORGANIZATIONS AND STANDARDS OF SOFTWARE SECURITY. 102

4.2. SECURE SOFTWARE DEVELOPMENT LIFE CYCLE (SSDLC) 106

4.2.1. Microsoft SDL .. 108

4.2.2. OWASP CLASP .. 109

4.2.3. SDLC Touchpoints .. 111

4.2.4. SDL, CLASP, SDLC Touchpoints TESTING COMPARISON 112

4.2.5. ADDITIONAL SSDLC,s and CMM,s SURVEY 113

4.3. WHITE BOX SECURITY ANALYSIS: STATIC ANALYSIS TOOLS 114

4.3.1. SAST TOOLS CHARACTERISTICS .. 115

4.3.2. SAST TOOLS CATEGORIES ... 120

15

4.3.3. SAST TOOLS AVAILABILITY SURVEY .. 123

4.4. BLACK BOX SECURITY ANALYSIS: DYNAMIC ANALYSIS TOOLS 128

4.4.1. DAST TOOLS CHARACTERISTICS .. 129

4.4.2. AVAILABILITY SURVEY OF DAST TOOLS ... 134

4.5. WHITE BOX SECURITY ANALYSIS: REAL-TIME ANALYSIS TOOLS 135

4.5.1. ARCHITECTURE AND CHARACTERISTICS ... 136

4.5.2. RAST (IAST) TOOLS AVAILABILITY SURVEY. 140

4.6. HYBRID ANALYSIS TOOLS .. 143

4.6.1. INTRODUCTION ... 143

4.6.2. HYBRID TOOLS TYPES. ... 148

4.7. METHODOLOGIES FOR TOOLS EVALUATION. 161

4.8. BENCHMARKS FOR TOOLS SECURITY EVALUATION. 167

4.9. CONCLUSIONS. .. 176

5. ASSESSMENT OF SECURITY ANALYSIS TOOLS ... 179

5.1. INTRODUCTION. ... 179

5.3. EVALUATION METRICS. .. 181

5.4. SAST ASSESSMENT IN C-C++ APPLICATIONS. 183

5.4.1. BENCHMARK SELECTION. ... 185

5.4.2. SAST SELECTION. .. 186

5.4.4. ASSESSMENT RESULTS. .. 192

5.4.5. CONCLUSIONS. ... 194

5.5. SAST ASSESSMENT IN WEB APPLICATIONS. 197

5.5.1. BENCHMARK SELECTION. ... 199

5.5.2. SAST SELECTION. .. 202

5.5.3. EXECUTION RESULTS. .. 205

5.5.4. ASSESSMENT RESULTS. .. 208

5.5.5. CONCLUSIONS. ... 211

5.6. DAST, IAST AND HYBRID ASSESSMENT IN WEB APPLICATIONS. 213

5.6.1. BENCHMARK SELECTION. ... 214

5.6.2. DAST, IAST, HYBRID TOOLS SELECTION. .. 215

5.6.3. EXECUTION RESULTS. .. 219

5.6.4. ASSESSMENT RESULTS. .. 221

5.6.5. CONCLUSIONS. ... 222

5.7. ASSESSMENT CONCLUSIONS. ... 225

6. DISCUSSION .. 229

16

6.1. RESEARCH QUESTION 1: Which is the true positives / false positives

balance for the analyzed tools? ... 229

6.2. RESEARCH QUESTION 2: Which is the usability level of the tools? 231

6.3. RESEARCH QUESTION 3: Which is the degree of adequacy of the

selected benchmarks within the proposed methodology? 235

6.4. RESEARCH QUESTION 4: How static, dynamic and hybrid tools must be

integrated in SSDLC?.. 237

6.5. Conclusions. ... 240

7. RELATED WORKS .. 243

7.1. SAST assessments for C/C++ applications related works. 243

7.2. SAST assessments for web applications related works. 247

7.3. DAST, IAST and HYBRID assessments for web applications related

works. ... 251

7.4. Conclusions. ... 261

8. CONCLUSIONS AND FUTURE WORKS .. 265

8.1. Research summary. .. 265

8.2. Assessment Methodology.. 267

8.3. Conclusions of SAST assessment for C/C++ applications. 267

8.4. Conclusions of SAST assessment for J2EE web applications.............. 268

8.5. SAST tools recommendations. .. 270

8.6. Conclusions of DAST, IAST and HYBRID assessment for J2EE web

applications. .. 271

8.6.1. DAST, IAST and HYBRID Recommendations. 273

8.7. Integration of tools in SSDLC. ... 274

8.8. Future work. .. 277

BIBLIOGRAPHY ... 279

APPENDIX A – CD CONTENTS. ... 309

APPENDIX B – SAMATE TEST SUITES 45 – 46 RESULTS. 311

APPENDIX C – SAMATE JULIET 2010 TEST SUITES SELECTION EXECUTION

RESULTS. .. 315

APPENDIX D – CURRICULUM VITAE. ¡Error! Marcador no definido.

17

18

Glossary

API Application Program Interface

CBMC C Bounded Model Checking tool

CLASP Comprehensive, Lightweight Application Security Process

CMDI Command Injection

CMM Capability Maturity Models

CMMI Capability Maturity Model Integration

CSRF Cross Site Request Forgery

CVE Common Vulnerability Enumeration

CVSS Common Vulnerability Score System

CWE Common Weak Enumeration (MITRE Corporation)

DAST Static Application Security Testing

DISA Defense Information Systems Agency

DOS Denegation of service

FAA-iCMM Federal Aviation Administration integrated Capability Maturity Model

FN False Negative

FP False Positive

GPL General Public License

HTML Hyper Text Marked Language

HTML5 Hyper Text Marked Language version 5

IAST Interactive Application Security Testing

ICS Industrial Control Systems

ICT Information and Communication Technology

IETF Internet Engineering Task Force

J2EE Java 2 Enterprise Edition

JSON JavaScript Object Notation

19

LFI Local File Inclusion

MVC Model View Controller

NFA Non deterministic Automaton

NFC Near Field Communications

NIST National Institute of Standards and Technologies U.S.A.

NSA National Security Agency U.S.A.

OASIS Open Control Standards for the Information Society

OISSG Open Information Systems Security Groups

OSVDB Open Source Vulnerability Database

OWASP Open Web Application Security Project

PCI DSS Payment Card Industry Data Security Standard

PQL Program Query Language

RAST Real Time Application Security Testing

RFI Remote File Inclusion

RIA Rich Internet Applications

RIA Rich Internet Applications

SAMATE Software Assurance Metrics and Tool Evaluation

SANS Institute for security training

SAST Static Application Security Testing

SAT Satisfiability

SCA Source Code Analyzer

SCADA System Control Architecture and Data Acquisition

SDL Security Development Lifecycle

SEI Software Engineering Institute

SOA Service Oriented Architecture

SOA Service Oriented Architecture

20

SQLI SQL Injection

SSDLC Secure Software Development Life Cycle

SSE-CMM Systems Security Engineering Capability Maturity Model

TC Test Case

T-CMM/TSM Trusted CMM/Trusted Software Methodology

TN True Negative

TP True Positive

WAF Web Application Firewall

WASC Web Application Security Consortium

WAVSEP Web Application Vulnerability Evaluation Project

WHID Web Hacking Incident Database

XHTML eXtended Hyper Text Marked Language

XML eXtended Marked Language

XMLI XML Injection

XSF cross-frame scripting

XSS Cross-site scripting

XXE XML eXternal Entity

ZDI Zero Day Initiative

21

22

Figure Index

Figure 1 Mobile applications architecture [Microsoft, 2103] 41

Figure 2 Rich client applications architecture [Microsoft, 2103] 42

Figure 3 Rich Internet applications architecture [Microsoft, 2103] 43

Figure 4 Service applications architecture [Microsoft, 2103] 44

Figure 5 Web application architecture [Microsoft, 2103] 45

Figure 6 Distribution of applications by categories. [Veracode, 2012] 48

Figure 7 Distribution of applications by Supplier. [Veracode 2012] 49

Figure 8 Languages more used for non-web applications [Veracode, 2012] 56

Figure 9 Languages more used for web applications [Veracode, 2012] 57

Figure 10 Distribution of mobile applications by platform [Veracode, 2012] 58

Figure 11 Materialization of a threat: Attack [Owasp, 2013] 68

Figure 12 Applications compliance with Policies upon First Submission

[Veracode 2012]

69

Figure 13 Security issues identified in a typical Web application architecture at

SSDLC design phase

72

Figure 14 Ajax against traditional web applications architectures [Ajax, 2013] 74

Figure 15 Web services architecture example [W3c, 2013] 75

Figure 16 Vulnerabilities trend [HP-report, 2102] 85

Figure 17 SCADA Vulnerabilities trend [HP-report, 2102] 86

Figure 18 Top Vulnerability Categories (Percentage of Affected Web Application

Builds) [Veracode, 2012]

88

Figure 19 Top Vulnerability Categories (Percentage of Affected NON-Web

Application Builds) [Veracode, 2012]

90

Figure 20 Share of total vulnerabilities found trends for Java Applications

[Veracode, 2012]

92

Figure 21 Percentage of Java Applications Affected [Veracode, 2012] 93

23

Figure 22 Attacks origin and victims locations [Trustwave, 2013] 94

Figure 23 Microsoft SDL [Microsoft-SDL, 2013] 109

Figure 24 OWASP CLASP Views [Owasp-CLASP, 2013] 110

Figure 25 SDLC Touchpoints [McGraw, 2006] 112

Figure 26 Static analysis tools process [Díaz, 2013] 115

Figure 27 Web application vulnerability scanner schema [Samate, 2013] 130

Figure 28 Run-time Overload comparison. [Livshits 2006] 138

Figure 29 Acunetix+Acusensor. [Acunetix, 2013] 143

Figure 30 Hybrid analysis information flow. [HP-fortify, 2013] 146

Figure 31 HP FORTIFY HIBRID ANALYSIS [HP-Fortify, 2013] 148

Figure 32 JNUKE architecture [Artho, 2005] 151

Figure 33 JPREDICTOR [Cheng, 2006] 153

Figure 34 SANER results with application benchmarks. [Balzarotti, 2008] 155

Figure 35 SDAPT tool. [Halfond, 2011] 159

Figure 36 SAMATE test case 1898 of test suite 45 169

Figure 37 SAMATE test case 1897 of test suite 45

170

Figure 38 Analysis of SAMATE test case 1897 of test suite 45 with Fortify SCA 171

Figure 39 Methodology process 181

Figure 40 Vulnerabilities types not covered by tools for test suite 45 [Díaz, 2103] 193

Figure 41 Vulnerability correlation with auditworkbench 234

Figure 42 Security tools integration in a Secure Software Development Life cycle 239

Figure 43 F-score metric results of Pomorova assessment of SCA tools

[Pomorova, 2103]

245

Figure 44 Gartner magic quadrant for static analysis [Gartner, 2010] 249

Figure 45 Gartner magic quadrant for application security testing [Gartner, 2013] 253

Figure 46 Vulnerability detection percentage for Antunes comparison [Antunes,

2009]

254

24

Figure 47 Vulnerability false positive percentage for Antunes comparison

[Antunes, 2009]

255

Figure 48 AnantaSec comparison results [AnantaSec, 2009] 257

Figure 49 DAST tools comparison detection results [Suto, 2010] 259

Figure 50 DAST tools comparison false positive/negative results [Suto, 2010] 259

25

Table index

Table 1 Document organization 34

Table 2 Benefits and considerations for the common application archetypes

[Microsoft, 2013]

46

Table 3 Common architectural styles [Microsoft, 2013] 50

Table 4 The historical development of the business, application, and ICT

platform domains [Aerts, 2003]

52

Table 5 Index of languages more used up to May 2013 [Tiobe, 2013] 54

Table 6 Languages more common used up for development of non-web

applications [Tiobe, 2013]

55

Table 7 Comparison about development features [Palmieri, 2012] 62

Table 8 OWASP TOP TEN 2010 vs. 2013 vulnerabilities [Owasp, 2013] 78

Table 9 OWASP TOP TEN 2013 vulnerabilities description [Owasp, 2013]

79

Table 10 SANS TOP 25 Vulnerabilities. [Sans, 2013] 81

Table 11 Top 10 mobile vulnerabilities in 2012 [HP-report, 2012]

87

Table 12 Share of total vulnerabilities found in mobile applications [Veracode,

2012]

91

Table 13 Types of targeted data by attacks [Trustwave, 2013] 95

Table 14 Attack entry methods [Trustwave, 2013]

97

Table 15 TOP 10 WHID attack methods [Trustwave, 2013] 98

Table 16 SSDLC,s and CMM,s comparison [Kara, 2012] 114

Table 17 Open source SAST tools

124

Table 18 Commercial SAST tools

127

Table 19 DAST tools [Owasp, 2013]

134

Table 20 Set of source code vulnerabilities [NIST268, 2007] 183

Table 21 Analyzed commercial static analysis tools. [Díaz 2013] 187

Table 22 Analyzed open source static analysis tools [Díaz, 2013]

189

26

Table 23 Executions results for SAMATE test suite 45 [Díaz, 2013] 191

Table 24 Executions results for SAMATE test suite 46 [Díaz, 2013] 192

Table 25 Metrics applied to test suites absolute results [Díaz, 2103]

193

Table 26 Metrics applied to test suites weighted results [Díaz, 2013] 194

Table 27 Most dangerous security vulnerabilities in web applications

[NIST269, 2008]

198

Table 28 Most dangerous vulnerabilities of SAMATE Juliet 2010 test suite

[Bermejo, 2011]

201

Table 29 Complement vulnerabilities of SAMATE Juliet 2010 test suite

[Bermejo, 2011]

202

Table 30 Vulnerabilities detection for Group 1. True positive ratio

[Bermejo, 2011]

206

Table 31 Vulnerabilities detection for Group 1. False positive ratio [Bermejo,

2011]

207

Table 32 Group 2. Vulnerabilities coverage and TRUE/FALSE positive ratio

[Bermejo, 2011]

208

Table 33 Assessment results computing the selected metrics [Bermejo2011]

209

Table 34 Vulnerabilities categories not detected by any tool

[Bermejo 2011]

209

Table 35 Results correlation of detections (true positives) between pair of tools

[Bermejo, 2011]

210

Table 36 Vulnerabilities categories coverage for group two (2)

211

Table 37 Vulnerability coverage of DASD, IAST and HYBRID tools

selected (1)

218

Table 38 Vulnerability coverage of DASD, IAST and HYBRID tools

selected (2)

218

Table 39 WAVSEP Benchmark detection results 219

Table 40 WAVSEP Benchmark false positive results 220

Table 41 Metrics applied to WAVSEP test suites weighted results 222

Table 42 Summary of results of execution against SAMATE Test suite 45

[Díaz, 2013]

311

Table 43 Summary of results of execution against SAMATE Test suite 46

[Díaz, 2013]

312

Table 44 Table 44. Test cases CWE 23 [Bermejo, 2011] 315

27

Table 45 Test cases CWE 36 [Bermejo, 2011] 316

Table 46 Test cases CWE 78 [Bermejo, 2011] 316

Table 47 Test cases CWE 80 [Bermejo, 2011]

317

Table 48 Test cases CWE 83 [Bermejo, 2011] 318

Table 49 Test cases CWE 81 [Bermejo, 2011] 319

Table 50

Test cases CWE 89 [Bermejo, 2011] 320

Table 51 Test cases CWE 90 [Bermejo, 2011] 321

Table 52 Test cases CWE 113 [Bermejo, 2011] 322

Table 53 Test cases CWE 352 [Bermejo, 2011] 323

Table 54 Test cases CWE 566 [Bermejo, 2011] 323

Table 55 Test cases CWE 601 [Bermejo, 2011] 324

Table 56 Group 2 test cases for vulnerability coverage analysis

[Bermejo, 2011]

325

28

29

1. INTRODUCTION

1.1. MOTIVATION

Communication and Information systems are facing today some of the biggest security

challenges because of different kinds of risks: trojans for identity theft, spyware, traditional

sniffing of secure information, electronic warfare and many more forms of cyberattacks.

Many industries depend on software coming from vendors, open source or third parties. The

number of distributed systems with more complex interactions is growing as well,

comprising operating system and application patches coming from Internet or from

collaboration through different distributed sites. Applications are used to shop,

communicate, banks transactions, logistic and personal management in companies and

organizations. The security needs for command and control air systems, avionics systems

[Black, 2007], social networks and Internet Portals [Yahoo, 2013], or the most recent virus

attack [Flame, 2012] demonstrate that information security is a multifaceted problem where

organizations, enterprises and users need security assurance on the software they use.

According to the Veracode Volume 5 report [Veracode, 2012], that examines data collected

over an 18 month period from January 2011 through June 2012 ,from 22,430 applications

builds uploaded (web, non-web and mobile), 70% of them failed to comply with enterprise

security policies and 87% with the OWASP Top 10 [Owasp, 2013]. The web applications

were over 75% of the total in Veracode report. The security vulnerabilities, risk and attacks

applications can suffer should force organizations to make a security analysis to avoid as

many threats as possible.

This dissertation thesis is about a kind of vulnerabilities and security threats different of

security problems emanating from poor management configuration, server application type,

database management system, development framework adopted or security services

30

according to the specification or developing technology used. Among these security

services are the access authentication and authorization for access to application resources,

such as database, access to operating system resources where you installed the application

server machine even client machines. However, some types of vulnerabilities found in the

code may lead to vulnerabilities of privileges escalation allowing access to forbidden

resources. This may suggest that the problem is poor security administrator permissions

regarding security based on users and roles for instance, when the real problem is a

vulnerability of privileges escalation. To solve this kind of problems, vulnerabilities in the

code must be patched.

The most desirable mean to avoid vulnerabilities in applications code is prevention,

developers should have been trained in security programming to avoid making "mistakes"

involving programming vulnerabilities. Even when a very good training of programmers

exists, there will always be vulnerabilities in the code and there will be no choice once

developed the first version of the application. Software engineers must consider a variety of

strategies to build secure software before release. Achieving this goal is only possible by

using various techniques and automatic tools to ensure security in all phases of SSDLC.

As a testing technique, white box and black box manuals skills (code auditing, penetrating

tests), still suffer from lack of coverage and therefore likely they miss a large fraction of

vulnerabilities. Manual code auditing to analyze the security of a web application with

thousands of lines of code can become an arduous and painstaking work, quite time

consuming. Also, a manual penetration test has the problem of covering all inputs to the

application (attack surface) of the application and testing all user roles. This is really

difficult and there are aspects not able to test with this method.

The difficulty of performing such tests manually leads us to examine last tendencies in

automatic techniques. Indeed the tools used for software development and maintenance can

31

supply developers with information for assurance cases. This information must be gathered

to get software secure enough for its intended use. Different types of automatic tools can be

used for examining source code, the entire application deployed included in a secure

software development lifecycle. Automated security analysis tools of source and executable

code, automatic vulnerabilities scanners and interactive real time analysis tools are

increasingly used today and taken into account in software development strategies. Those

tools are designed to detect vulnerabilities: flaws, faults, bugs and other errors in software

code that, if left unaddressed, could lead to exploitable security vulnerabilities.

1.2. PURPOSE

The goal of this thesis is to help practitioners to select appropriate tools for a security

review process of software in all phases of Secure Software Development Life Cycle

(SSDLC). This thesis establish a well-defined and repeatable methodology to evaluate the

tools selected for each type of automatic security analysis, and how those ones can be

integrated in the SSDLC, correlating their results and obtaining the most secure possible

software as a whole result. The tools can have several problems while performing an

analysis:

- False positives: A tool can report a security vulnerability in a program that is not

really a vulnerability.

- False negatives: a security vulnerability in the code which is not detected by the

tool.

- Coverage degree of vulnerabilities detection. A security tool must have a complete

coverage of most dangerous and frequent vulnerabilities according to OWASP TOP

TEN 2013 [Owasp, 2013] or SANS TOP 25 [Sans, 2013].

32

To accomplish the goal, this thesis:

 Examines the state of the art of all automatic security analysis tools categories available

to perform a security process in a SSDLC:

- Static Application Security Testing (SAST). White box tools that perform a static

analysis of source or executable code of the application.

- Dynamic Application Security Testing (DAST). Black box tools that perform a

dynamic analysis of the application.

- Real time Application Security Testing (RAST) or Interactive Application Security

Testing (IAST). White box tools that perform a runtime analysis of the application.

- Hybrid tools SAST-DAST, SAST-DAST-RAST, SAST-RAST, and DAST-RAST.

 Each category is evaluated following a well-defined and repeatable methodology. For

each security analyzer type (SAST, DAST, RAST), the performance degree about its

vulnerabilities detection capacity is obtained. The methodology uses a selected

benchmark with a well-known set of security vulnerabilities. A tool has the best

performance against a benchmark if it has the best balance between detecting the

highest number of true positives and having few false positives. The result of the

assessment of each security tool category is a strict rank of the security

performance of all tools involved in its respective comparative.

 Finally, the defined methodology is used firstly to compare distinct types of security

tools, analyzing and obtaining conclusions about their different capabilities. Also the

tools are evaluated from a whole perspective, correlating their results to obtain better

results with more detection and less false positives, with the final objective of getting

the best integration in the SSDLC.

33

The main conclusions obtained by this study are related with:

- Which kind of vulnerabilities each security tool type detects.

- Correlation detection results between distinct types of tools.

- The most appropriate phase of the SSDLC for using each security tool type.

- How the different types of security tools can be best combined in different phases of

SSDLC to get the best whole result.

- Comparing the results obtained in by each tool in the same phase of SSDLC and the

results obtained combining several tools.

- Recommendations to the personnel that must make security analysis of applications

to obtain the best performance of automatic security analysis.

34

1.3. DOCUMENT ORGANIZATION

Table 1 shows the organization of this dissertation.

 Table 1

 Document organization

 Stages Thesis section

Introduction

1. INTRODUCTION

Background and

State of the Art

2. LAST TENDENCIES IN APPLICATIONS

DEVELOPMENT

3. APPLICATIONS SECURITY PROBLEMS

4. STATE OF THE ART IN APPLICATIONS

SECURITY ANALYSIS

Automatic security tools

evaluation

5. ASSESSMENT METHODOLOGY OF SECURITY

ANALYSIS TOOLS

Discussion and research

questions

6. DISCUSSION.

Related work

7. RELATED WORK AND DISCUSSION.

Conclusions and

Future work

8. CONCLUSIONS AND FUTURE WORK

Chapter 1 describes the motivation, purpose and objectives of the thesis, showing the steps,

methods and resources used to achieve them. It also contains the document structure.

Chapter 2 examines the last tendencies in applications development, attending to new

architectures, frameworks and the most used development technologies.

35

Chapter 3 is a study of the most common security problems in applications, security

vulnerabilities, risk and threats that applications are exposed to, and the attacks they can

suffer as a consequence of these defects and lacks in security requirements derivation,

design or implementation. It also shows the attacks vectors and vulnerabilities evolution in

the last years, to aid understanding how to better protect an application.

Chapter 4 shows an updated state of the art of security artifacts, resources, tools, metrics,

methodologies and benchmarks that can be used to improve the security of an application

against the most dangerous attacks. In particular, we analyze:

- Software security organizations and Standards.

- Secure Software Development Life Cycle.

- Static Application Security Testing (SAST).

- Dynamic Application Security Testing (DAST).

- Real time Application Security Testing (RAST) or Interactive Application Security

Testing (IAST).

- Hybrid tools SAST-DAST, SAST-DAST-RAST, SAST-RAST, and DAST-RAST.

- Assessment methodologies of security tools.

- Benchmarks used for assessments of security tools.

Chapter 5 describes in detail our well-defined methodology to assess each automatic

security tools category, to obtain a strict rank of their security performance. Afterwards, the

methodology is applied to perform the evaluation of:

- Application static analysis tools. This assessment is based on Juan R. Bermejo and

Gabriel Díaz publication in Information and Software Technology journal: Static

36

analysis of source code security: Assessment of tools against SAMATE tests [Diaz,

2013].

- Web application static analysis tools. This assessment is based on master final work

of the doctoral formation period of Juan R. Bermejo [Bermejo, 2011].

- Web application dynamic analysis tools and web application hybrid analysis tools.

This assessment is performed in the thesis investigation period.

Chapter 6 analyzes and discusses the assessments results answering to four complementary

research questions about performance, adequation of benchmarks, usability of the tools and

how leveraging the assessments results to integrate all categories of security automatic tools

in SSDLC. This will allow obtaining the best performance in the security review process of

an application, as a whole result of exploiting the different individual skills in detection

capabilities of tools.

Chapter 7 reviews different related works on automatic security analysis tools comparisons.

It also compares the results of these studies with our own results, discussing differences and

similarities between them.

Chapter 8 summarizes the main conclusions of this thesis. These conclusions are based on

the tools comparisons results about the performance in vulnerability detection possibilities

and false positive rate, vulnerabilities coverage and languages coverage degree or report

quality and completeness. It also gives some guidelines on related future researchs.

37

38

39

2. LAST TENDENCIES IN APPLICATIONS

DEVELOPMENT

Before starting the study of the tools available in the market and free software for automatic

detection of security vulnerabilities in applications, it is necessary to give an overview of

applications categories and the technologies, specifications and architectures commonly

used to build an application. The choice of the application type, architecture, development

specification or language has security implications that must be known. The developers

must know the security characteristics of the languages that each technology use, such as

java, C#, C++, HTML, scripting languages, etc. Differente languages implement different

security checks in compilation time. The prevention degree of security vulnerabilities of

each language depends on these previous security checks that define the security degree of a

specific language. If a language incorporates implicitly compilation security checks, the

developers do not have to include explicitly additional code to avoid vulnerabilities. For

example, java implements security aspects such as implicit checking array limits preventing

buffer overflow vulnerabilities [Long, 2005].

2.1. APPLICATION CATEGORIES.

This section is an overview of the benefits and considerations for the common application

archetypes used to develop software applications. New architectures tendencies have

appeared in web development as for example Rich Internet Applications (RIA) and Web

services (WS) that need a review of the new security problems they introduce. Also Control

Systems as Supervisory Control and Data Acquisition (SCADA) are being objective of

attacks according to HP 2012 cyber security risk report [HP report, 2012]. In particular, the

data for 2012 showed how the number of vulnerabilities disclosed in Supervisory Control

40

And Data Acquisition (SCADA) systems increased from 22 in 2008 to 191 in 2012 (a 768

percent increase).

The most general classification of software applications includes the following three

categories:

- Non-Web Applications

o Client-Server Applications

o Service Oriented Architecture (SOA) applications (Dcom, Java-RMI, Corba,

etc.)

o Embedded Systems for avionics, Supervision Control Systems as SCADA

or Air Defense commander and control systems, etc.

- Web applications

o Traditional N-tier Web Applications with Model View Controller (MVC)

pattern design

o Rich Internet Applications (RIA)

 Flash [Flash, 2013]

 Ajax [Connolly 2008]

 JavaFX [JavaFX, 2013]

 Microsoft SilverLight [SilverLight, 2013]

 OPenLaszlo [OPenLaszlo, 2013]

 HTML5 [HTML5, 2013]

o Web services

- Mobile applications

o Native Applications

o Web applications

41

Another classification for applications is the one given by Microsoft Corporation

[Microsoft, 2013]:

- Mobile applications. Applications of this type can be developed as thin client or rich

client applications. Rich client mobile applications can support disconnected or

occasionally connected scenarios. Web or thin client applications support connected

scenarios only. Device resources may prove to be a constraint when designing mobile

applications. Figure 1 shows the mobile applications architecture.

Figure 1. Mobile applications architecture [Microsoft, 2013]

42

- Rich client applications. Applications of this type are usually developed as stand-

alone applications with a graphical user interface that displays data using a range of

controls. Rich client applications can be designed for disconnected and occasionally

connected scenarios if they need to access remote data or functionality. The most

common security problems are design vulnerabilities and security vulnerabilities in

the code. The choice of language to develop the application has to be as a function of

its safety features. There are more security languages as C#, Java, Python, Ruby or

CCured and Cyclone that check types and memory in compilation time. Figure 2

shows rich client applications architecture.

Figure 2. Rich client applications architecture [Microsoft, 2013]

43

- Rich Internet applications. Applications of this type can be developed to support

multiple platforms and multiple browsers, displaying rich media or graphical content.

Rich Internet applications run in a browser sandbox that restricts access to some

features of the client. The principal new security problem that this architecture type

introduces is because of client engine (usually in javascript code). The javascript

engine can be visualized and reveals the logic application information and can be the

source of more common vulnerabilities as XSS. Figure 3 shows the rich internet

applications architecture.

Figure 3. Rich Internet applications architecture [Microsoft, 2013]

44

- Service applications. Also called Service Oriented Architecture (SOA), services

expose shared business functionality and allow clients to access them from a local or

a remote system. Service operations are called using messages, based on XML

schemas, passed over a transport channel. The goal of this type of application is to

achieve loose coupling between the client and the server. In SOA, there are usually

three entities: consumer of service, provider of service and Register for services

offered by the provider. In that distributed environment to get all security elements as

authentication, authorization, integrity, etc. is a great challenge. For getting the most

secure web services applications, all entities should follow adequate security

standards as a requisite to be compatible and interoperable. Figure 4 shows the

service applications architecture.

Figure 4. Service applications architecture [Microsoft, 2013]

45

- Web applications. Applications of this type typically support connected scenarios

and can support different browsers running on a range of operating systems and

platforms. The most used design pattern in development of web applications is Model

View controller (MVC) with three tiers of software: the model consists of application

data, business rules, logic, and functions. A view can be any output representation of

data, such as a chart or a diagram. Multiple views of the same data are possible, such

as a bar chart for management and a tabular view for accountants. The controller

mediates input, converting it to commands for the model or view (figure 5).

Figure 5. Web applications architecture [Microsoft, 2013]

46

Table 2 indicates the benefits and considerations for the common application archetypes.

Each application type can be implemented using one or more technologies. Scenarios and

technology constraints, as well as the capabilities and experience of the development team,

will drive the choice of technology.

Table 2

Benefits and considerations for the common application archetypes [Microsoft, 2013]

Application

type

Benefits Considerations

Mobile

applications

Support for handheld devices.

Availability and ease of use

for out of office users.

Support for offline and

occasionally-connected

scenarios.

Input and navigation limitations.

Limited screen display area.

Rich client

applications

Ability to leverage client

resources.

Better responsiveness, rich UI

functionality, and improved

user experience.

Highly dynamic and

responsive interaction.

Support for offline and

occasionally connected

scenarios.

Deployment complexity; however, a

range of installation options such as

ClickOnce, Windows Installer, and

XCOPY are available.

Challenging to version over time.

Platform specific.

Rich Internet

applications

(RIA)

The same rich user interface

capability as rich clients.

Support for rich and

streaming media and

Larger application footprint on the client

compared to a Web application.

Restrictions on leveraging client

resources compared to a rich client

47

graphical display.

Simple deployment with the

same distribution capabilities

(reach) as Web clients.

Simple upgrade and version

updating.

Cross-platform and cross-

browser support.

application.

Requires deployment of a suitable

runtime framework on the client.

Service

applications

Loosely coupled interactions

between client and server.

Can be consumed by different

and unrelated applications.

Support for interoperability.

No UI support.

Dependent on network connectivity.

Web

applications

Broad reach and a standards-

based UI across multiple

platforms.

Ease of deployment and

change management.

Dependent on continual network

connectivity.

Difficult to provide a rich user interface.

The percentage of each category of applications are shown in figure 6, according to

Veracode Security State of Software report Volume 5 [Veracode, 2012], that examines data

collected over an 18 month period, from January 2011 through June 2012, from 22,430

application builds uploaded and assessed by its platform. Web applications have the highest

rate with a 73 percent of total applications examined.

48

Figure 6. Distribution of applications by categories [Veracode, 2012].

Today the total of web and mobile applications are constantly increasing. Web applications

are the most used over Internet and even in Intranets within organizations and are used to

communicate, for bank transactions, e-commerce, e-learning education, logistic, human

resources, shopping, etc. The great number of mobile devices available as mobile phones,

tablets, smartphones, etc. gives the possibility of using mobile applications to communicate,

m-commerce, etc. anywhere, anytime and this fact is motivating that more people every day

use mobile device applications.

From the perspective of software application suppliers, figure 7 shows that approximately

22% of the applications analyzed were identified as third-party (commercial, open source

and outsourced). The percentage of outsourced applications remains low at 1%. Often the

outsourced nature of applications labeled “internally developed” is only revealed during

remediation, when an outsourced part is assigned the task of fixing vulnerabilities. Probably

the true percentage of “outsourced” code is higher than represented in figure 7. This fact

obliged us to think in how to conduct a security analysis for third party software when the

source code is not available. Security analysis tools for executable code can be very useful

to perform code review in these cases.

49

 Figure 7. Distribution of applications by Supplier [Veracode 2012].

For commercial, open sourced and outsourced applications, it would be important knowing

if the organization that acquires the application can rely on its security. The organization

should be able to test all external application or having an official certification of approved

security test, as the types addressed by this job accomplish over the SSDLC.

2.2. APPLICATIONS ARCHITECTURE STYLES.

The application categories described in previous section can be designed according to an

architectural style. Architectural styles, sometimes called architectural patterns, are a set of

principles, a coarse grained pattern that provides an abstract framework for a family of

systems. An architectural style improves partitioning and promotes design reuse by

providing solutions to frequently recurring problems. Architecture styles and patterns can

be particularized as sets of principles that shape an application. Garlan and Shaw define an

architectural style as [Garlan, 1994]:

“Family of systems in terms of a pattern of structural organization. More specifically, an

architectural style determines the vocabulary of components and connectors that can be

50

used in instances of that style, together with a set of constraints on how they can be

combined. These can include topological constraints on architectural descriptions (e.g., no

cycles). Other constraints—say, having to do with execution semantics—might also be part

of the style definition.”

An understanding of architectural styles provides several benefits. The most important

benefit is that they provide a common language. They also provide opportunities for

conversations that are technology agnostic. This facilitates a higher level of conversation

that is inclusive of patterns and principles, without getting into specifics. For example, by

using architecture styles, somebody can talk about client/server versus n-tier. Architectural

styles can be organized by their key focus area. Table 3 [Microsoft, 2013] lists the major

areas of focus and the corresponding architectural styles.

Table 3

Common architectural styles [Microsoft, 2013]

Architecture style Description

Client/Server Segregates the system into two applications, where the client makes

requests to the server. In many cases, the server is a database with

application logic represented as stored procedures.

Component-Based

Architecture

Decomposes application design into reusable functional or logical

components that expose well-defined communication interfaces.

Domain Driven

Design

An object-oriented architectural style focused on modeling a

business domain and defining business objects based on entities

within the business domain.

Layered

Architecture

Partitions the concerns of the application into stacked groups

(layers).

Message Bus An architecture style that prescribes use of a software system that

can receive and send messages using one or more communication

channels, so that applications can interact without needing to know

specific details about each other.

N-Tier / 3-Tier Segregates functionality into separate segments in much the same

51

way as the layered style, but with each segment being a tier located

on a physically separate computer.

Object-Oriented A design paradigm based on division of responsibilities for an

application or system into individual reusable and self-sufficient

objects, each containing the data and the behavior relevant to the

object.

Service-Oriented

Architecture

(SOA)

Refers to applications that expose and consume functionality as a

service using contracts and messages.

Table 4 gives a somewhat abstract outline of the historical development of the various

architectures according to A.T.M. Aerts, J.B.M. Goossenaerts, D.K. Hammer and J.C.

Wortmann [Aerts, 2003]. They characterize each development phase by the dominant

architectural model and a crude indication of the decade in which it became important, if

not generally accepted. In this context, they were concerned with three domains in which

architecture matters:

1. The business architecture defines the business system in its environment of

suppliers and customers. The system consists of humans and resources (including

ICT), business processes, and rules. It belongs to the disciplines of industrial

engineering and management science.

2. The application architecture details the software application components and their

interaction. Its details can be described using object or component models, or

application frameworks. It belongs to the discipline of computer science.

3. ICT platform architecture is the architecture of the generic resource layer, which

describes the computers, networks, peripherals, operating systems, data base

management systems, UI frameworks, system services, middleware, etc. that will be

used as a platform for the construction of the system for the enterprise. Its

52

description includes various platform paradigms such as mainframe-terminal, n-tier

client–server, and mobile or wireless architectures. It belongs to the discipline of

computer systems engineering.

Table 4

The historical development of the business, application, and ICT platform domains

[Aerts, 2003]

 Business

architecture

Application

architecture

ICT architecture

1950s Functional

hierarchy

No Limited

1960s Functional

hierarchy

Function

oriented

Mainframe

1970s Logistics imposed

on functional

hierarchy

Function oriented

with DBMS

Information

Islands

1980s Business process Two-tier C/S GUI Networks of

mainframe and

minis

1990s Supply chain Enterprise

applications

Multi-site, n-tier

Today Web-enabled (Generic)

components OOUI

Ubiquitous

computing

As commented in previous section according to application categories statistics, Web

applications and ubiquitous computing with mobile applications are currently the last

tendencies. The security efforts of organizations and companies must put emphasis in these

new architectures and ubiquitous technologies without forgotting the other more traditional

architectures and patterns.

53

2.3. DEVELOPMENT TECHNOLOGIES AND LANGUAGES

Before beginning the study of the tools available in the market and free software for

automatic detection of security vulnerabilities in software applications, this thesis gives a

small overview of the technologies and languages most commonly used for building

applications. The aim of this work is to analyze the performance, when analyzing the code

of these applications, of automatic detection tools for detecting vulnerabilities that could

lead to the materialization of different threats (attacks).

In this sense this study emphasizes on a kind of vulnerabilities and security threats that are

different from security problems emanating from poor management configuration in

application servers, database management systems or client machines.

This section addresses mainly the language characteristics about security to get the most

secure possible code. The security characteristics implemented implicitly by each language

can help to avoid a concrete set of vulnerabilities. For example java language implements

security aspects such as implicit checking array limits for preventing buffer overflow

vulnerabilities [Long, 2005].

Table 5 shows a brief summary of the languages most commonly used in software application

development according to Tiobe [Tiobe, 2013]. These include different languages and

platforms such as C/C+ +, J2EE, ColdFusion, PHP and. NET, which are among the most

commonly used today. These languages are used for all types of applications as web,

service, mobile, non-web applications, etc. Periodically Tiobe publishes language

statistics, updated including the degree of positive or negative tendency variation and

the previous year position. C language is the most used with 18,729% followed by java

with 16,914%.

54

Table 5

Index of languages more used up to May 2013 [Tiobe, 2013]

Position

May

2013

Position

May

2012

Delta in

Position

Programming

Language

Ratings

May 2013

Delta

May 2012

Status

1 1

C 18.729% +1.38% A

2 2

Java 16.914% +0.31% A

3 4

Objective-C 10.428% +2.12% A

4 3

C++ 9.198% -0.63% A

5 5

C# 6.119% -0.70% A

6 6

PHP 5.784% +0.07% A

7 7

(Visual) Basic 4.656% -0.80% A

8 8

Python 4.322% +0.50% A

9 9

Perl 2.276% -0.53% A

10 11

Ruby 1.670% +0.22% A

11 10

JavaScript 1.536% -0.60% A

12 12

Visual Basic .NET 1.131% -0.14% A

13 15

Lisp 0.894% -0.05% A

14 18

Transact-SQL 0.819% +0.16% A

15 17

Pascal 0.805% 0.00% A

16 24

Bash 0.792% +0.33% A

17 14

Delphi/Object

Pascal

0.731% -0.27% A

18 13

PL/SQL 0.708% -0.41% A

19 22

Assembly 0.638% +0.12% B

20 20

Lua 0.632% +0.07% B

http://www.tiobe.com/content/paperinfo/tpci/C.html
http://www.tiobe.com/content/paperinfo/tpci/Java.html
http://www.tiobe.com/content/paperinfo/tpci/Objective-C.html
http://www.tiobe.com/content/paperinfo/tpci/C__.html
http://www.tiobe.com/content/paperinfo/tpci/C_.html
http://www.tiobe.com/content/paperinfo/tpci/PHP.html
http://www.tiobe.com/content/paperinfo/tpci/(Visual)_Basic.html
http://www.tiobe.com/content/paperinfo/tpci/Python.html
http://www.tiobe.com/content/paperinfo/tpci/Perl.html
http://www.tiobe.com/content/paperinfo/tpci/Ruby.html
http://www.tiobe.com/content/paperinfo/tpci/JavaScript.html
http://www.tiobe.com/content/paperinfo/tpci/Visual_Basic__NET.html
http://www.tiobe.com/content/paperinfo/tpci/Lisp.html
http://www.tiobe.com/content/paperinfo/tpci/Transact-SQL.html
http://www.tiobe.com/content/paperinfo/tpci/Pascal.html
http://www.tiobe.com/content/paperinfo/tpci/Bash.html
http://www.tiobe.com/content/paperinfo/tpci/Delphi_Object_Pascal.html
http://www.tiobe.com/content/paperinfo/tpci/Delphi_Object_Pascal.html
http://www.tiobe.com/content/paperinfo/tpci/PL_SQL.html
http://www.tiobe.com/content/paperinfo/tpci/Assembly.html
http://www.tiobe.com/content/paperinfo/tpci/Lua.html

55

2.3.1. LANGUAGES FOR NON-WEB APPLICATIONS

Table 6 shows the most commonly used languages for development of non-web

applications:

Table 6

Languages more common used up for development of non-web applications

 [Tiobe, 2013]

Position

May

2013

Position

May

2012

Delta in

Position

Programming

Language

Ratings

May 2013

Delta

May 2012

Status

1 1

C 18.729% +1.38% A

2 2

Java 16.914% +0.31% A

3 4

Objective-C 10.428% +2.12% A

4 3

C++ 9.198% -0.63% A

6 6

PHP 5.784% +0.07% A

7 7

(Visual) Basic 4.656% -0.80% A

13 15

Lisp 0.894% -0.05% A

15 17

Pascal 0.805% 0.00% A

17 14

Delphi/Object

Pascal

0.731% -0.27% A

Table 6 is based on table 5, we have removed the languages non used for non-web

applications development. It is important to see that Visual Basic, C++ and Java

languages are used for web and non-web applications development and so table 6

reflects both uses in its statistics.

Another interesting statistic of languages use for non-web applications is state of

software report of Veracode [Veracode, 2012], Figure 8 shows the statistics of most

used languages in all applications analyzed in the year 2012. Java, .NET and C/C++ are

the most used languages.

http://www.tiobe.com/content/paperinfo/tpci/C.html
http://www.tiobe.com/content/paperinfo/tpci/Java.html
http://www.tiobe.com/content/paperinfo/tpci/Objective-C.html
http://www.tiobe.com/content/paperinfo/tpci/C__.html
http://www.tiobe.com/content/paperinfo/tpci/PHP.html
http://www.tiobe.com/content/paperinfo/tpci/(Visual)_Basic.html
http://www.tiobe.com/content/paperinfo/tpci/Lisp.html
http://www.tiobe.com/content/paperinfo/tpci/Pascal.html
http://www.tiobe.com/content/paperinfo/tpci/Delphi_Object_Pascal.html
http://www.tiobe.com/content/paperinfo/tpci/Delphi_Object_Pascal.html

56

Figure 8. Languages more used for non-web applications [Veracode, 2012]

Next section analyzes the security characteristics of the most used languages to

understand the precautions that a programmer should have when building an

application.

2.3.2. LANGUAGES FOR WEB APPLICATIONS

The state of software report volume 5 of Veracode [Veracode, 2012] of figure 6 showed

that 73% of applications that Veracode analyzed in 2012 were web applications. The

most used languages to develop web applications, according to that report, is shown in

figure 9, the two dominant development specifications were J2EE with 56% and .NET

with 28%. According to IBM x-force 2102 mid-year trend and risk report [IBM, 2012],

the percentage of web applications vulnerabilities disclosures in 2012 were 47% of

total, which gives an idea of the importance of putting a great effort to build web

applications as secure as possible.

57

Figure 9. Languages more used for web applications [Veracode, 2012]

For building a web application, several language types are usually used:

- Marked languages as HTML, XHTML, HTML5, etc. for creating web pages

and other information that can be displayed in a web browser. The can incorporate

script code and can be downloaded from application servers and web servers or also

from an AJAX engine.

- Scripting languages as PHP, ColdFusion or javascript, are not compiled and

run interpreted inside the web server process. Those are used both in the client

layer and in the server layer. The browsers usually have support for javascript

[Javascript, 2013] code that is the language used by AJAX engines for building

of Rich Internet Applications. The majority of scripting languages are slower

than compiled programs; they are no strongly typed and do not promote good

secure programming practices.

58

- Specifications for web development as J2EE [J2EE, 2013] or .NET [NET, 2013]

for building large enterprise applications. Those specifications are a great set of

features for implementing all different and necessary service requirements of web

applications with a very good performance and with capacity of scaling as required.

2.3.3. PLATFORMS AND LANGUAGES FOR MOBILE APPLICATIONS

The furious rate of technological change and growth in the mobile market has made very

challenging for developers to strategically plan a bespoke project, not only from a technical

standpoint, but also because the market share for smartphones is changing rapidly between

different systems.

Mobile Platforms. Until recently, the iPhone iOS dominated the mobile market, but

Google Android has now demonstrably overtaken iPhone in terms of market share, due

partly to the power of the Google brand and partly to the platform's openness. Other mobile

operating systems include the Blackberry RIM OS and Windows 8. Figure 10 shows the

distribution of mobile applications by platform [Veracode, 2012].

Figure 10. Distribution of mobile applications by platform [Veracode, 2012]

59

As well as the wealth of mobile platforms emerging, there are now more hardware

manufacturers than ever producing mobile devices.

An additional complicating factor is the intense competition in mobile software, which is

fuelling accelerated change within each of the platforms. Windows Mobile was replaced by

Windows Phone 7, which has now become Windows 8. Both Apple iOS and Android have

undergone significant changes with each release, making the task of supporting users a

major undertaking, even for a single operating system.

Some of the platforms, Android in particular, are being deployed on devices produced by a

long list of manufacturers, each of whom likes to modify the operating system to their

particular requirements. Meanwhile, Android hardware is now available across a much

wider market sector than ever before. In the early days of the smartphone, the technology

was essentially only available to consumers shopping within the top price brackets. Now

these handsets have become more accessible in terms of cost, and approximately 60 per cent

of people in the UK currently use smartphones.

The result is that developers must consider a lengthy array of screen sizes, hardware

specifications and configurations and ultimately a range of fundamentally differing models

Mobile applications types. The languages used to build mobile applications are the same

that ones used for other devices as personal computers. There are two broad choices in

deploying a system to mobile users [Mobile, 2013] [Smutny, 2012]:

- Native apps custom targeted at some or all of the major mobile platforms.

- Web applications optimized for mobile access.

There are a number of benefits and drawbacks to each approach, all of which need to be

weighed up along with the specifics of any particular project. When considering how best to

60

incorporate mobile technology into an existing business model, the primary issue for both

clients and developers is currently the choice between native apps and web applications or a

combination of the two. The growth in mobile technologies has meant that businesses in

certain sectors are even receiving most of their web traffic from users browsing in mobile

contexts. When considering a mobile strategy, one of the big decisions for many clients is

whether to focus resources on a Web application or on native apps targeted at specific

mobile platforms. There is no "one size fits all" solution to this issue, because of the number

of platforms operating, and the best approach for one business may be entirely different to

that for another.

Native Apps targeted at specific mobile platforms advantages:

- Native access to the user interface creates a level of interaction that is difficult, if

not impossible, to achieve through a Web browser.

- Native apps are in prime position to exploit the unique hardware and software

facilities within mobile devices, such as GPS and localization tools, accelerometers

and touch screens.

The primary consideration when implementing a service using mobile apps is the number of

platforms. If targeting a sizeable chunk of the market is necessary, the resources required

may be considerable.

Mobile apps distributed commercially through app stores are subject to sales transaction

charges. The task of promotion and adoption by new users is also increasingly challenging,

as many of the app stores, particularly Android, are becoming extremely overcrowded. For

some purposes, a native app may be primarily used as a marketing resource, providing a

supplementary service which highlights some larger branding or commercial objective.

Both short and long term native app development implications include:

61

- A diverse skill-set is necessary to develop apps for multiple platforms.

- There are significant maintenance implications, as the various operating systems,

software and hardware contexts are in a constant state of flux.

Web applications accessible over the mobile network advantages:

- Only one system need be developed, optimized and enhanced to cater for users.

- Both development and maintenance are simpler and less labor intensive for a single

application, even allowing for the enhancements necessary to cope with user

platforms.

- The sophistication level in mobile Web browsers is advancing at such a rate that in

some cases the gap between mobile and desktop functionality is diminishing.

- For commercial applications, early evidence suggests that consumers are more

inclined to make purchases via mobile websites than native apps.

The fundamental consideration when focusing on the mobile Web is that, while there are

tremendous advantages from both development and deployment perspectives, the network

technologies and infrastructure have some way to come yet, in terms of specification and

support at the client end.

Web applications are also somewhat limited in terms of both hardware exploitation and user

interaction. Innovative uses of scripting can approximate a native experience within a web

application, for example via HTML5 and jQuery. However, the native app presently has the

ability to create a much more intuitive and immersive user experience.

Mobile web application languages. Emerging new and recent technologies are being used

for mobile application development:

62

- HTML5 [HTML5, 2013] is a developing standard which is already starting to have

a dramatic impact on the mobile Web. Although the final specification is not

expected for several years yet, some major sites have already begun focusing on

HTML5, for example the Financial Times newspaper, which released a Web

application instead of device-specific apps.

- JQUERY [Jquery, 2013] Mobile Web development relies heavily on external

libraries and support tools some commercial, some open-source. One of these is

jQuery Mobile an enhanced version of the jQuery JavaScript platform that is

optimized for touch interaction. JQuery is a JavaScript library which makes cross-

browser programming easier. The mobile version provides a unified set of user

interface tools designed to be compatible across mobile browsers. Additional

scripting tools combine with jQuery to create improved user interfaces for mobile

Web applications, coming some way towards a native app experience on the Web.

Other libraries include The-M-Project, Mobi and jQTouch.

In general, the extent to which Web technologies, including HTML5, can make use of

valuable native mobile hardware and software tools is limited, but will almost certainly

improve within the next few years. A comparative about development features (table 7) is

provided by Manuel Palmieri [Palmieri, 2012].

Table 7

Comparison about development features [Palmieri, 2012]

Name Language Accessibility to

native API’s

IDE Plug-in

Extendibility

RhoMoblie HTML,

HTML5, CSS,

JavaScript,

JavaScript RhoStudio

RhoHub, *

YES

PhoneGap HTML,

HTML5, CSS,

CSS3,

JavaScript

JavaScript IDE native of

the mobile OS

(e.g Eclipse,

Xcode)

YES

63

DragonRad D&D Na DragonRad

Designer

NO

MoSync HTML,

HTML5, CSS,

JavaScript,

JavaScript,

C/C++

Based on

Eclipse

YES

There are ways in which applications can adopt some of the characteristics of both Web and

native apps. In general, the loading issues in mobile devices require efficient applications to

adopt well-defined coping strategies such as:

- Using minimal HTTP requests.

- Carrying out as much processing as possible at server side.

- Generally minimizing data and media content.

When these practices are adopted, there is increased scope for focusing platform specific

development on creating lightweight interfaces, with server side processing usable across

platforms. This model can allow projects to better maximize on development resources,

while still catering for multiple user environments. For many organizations, deploying both

native and Web apps is still seen as necessary. Users are still using them both, and in subtly

different ways. There are also specific cases in which it makes sense to target one or more

platforms with dedicated apps, where the unique features of that platform have heightened

relevance, for example with the superior level of Google Maps support on the Android

platform.

2.4. CONCLUSIONS.

Automatic security analysis tools must be designed according to the last tendencies in

architecture and most used languages in software development. These tools must enable to

64

perform security analysis of client-server, standalone, web, web services and mobile

applications. The choice of a specific language for application development must be based

on the knowledge of language security characteristics.

To design automatic security analysis tools, it is important to take into account several facts:

- There are many different languages to use in application development.

- There are specific languages for specific architecture software as web, mobile

applications or embedded software.

- Web and mobile development is increasing continuously over time.

The knowledge of architecture and languages for software development leads to the study

of the state of art of these security tools. This study will help us to select the most adequate

tools to be included in the assessments that are a partial objective of this thesis.

65

66

67

3. APPLICATIONS SECURITY PROBLEMS

Application vulnerabilities open the door to malicious data, scripts or code with the

objective of capturing sensible data or remote unauthorized access to the application. These

attacks can materialize in many diverse forms depending on the nature of vulnerability. In

general, an attack is any malicious act against a system or set of systems. There are two

very important concepts in this definition that it is worth clarifying. First, the act is done

with malicious intent, without specifying any goals or objectives. Second, some attacks

target a particular system, while others have no particular goal. The attacks may be based on

defects, which may occur at any stage of the life cycle of software and systems

development. According to [Cheswick, 2003], and taking into account any kind of

vulnerability, the attacks can be of various types:

- Stealing Passwords

- Social Engineering

- Software vulnerabilities and Back Doors

- Authentication Failures

- Protocol Failures

- Information Leakage

- Exponential Attacks Viruses and Worms

- Denial-of-Service Attacks

- Botnets

- Active Attacks

A number of factors (see figure 11) are involved when a threat materializes in an

application, exploiting an existing vulnerability and generating business impact:

- Agent or threat, the person making the attack.

68

- Attack Vectors, used to carry out the attack.

- Security weakness vulnerability

- Absence or failure to control.

- Impact on any asset of the information systems of the organization.

- Impact on the business of the Organization

Figure 11. Materialization of a threat: Attack [Owasp, 2013]

Open security projects and security standards organizations, as OWASP [Owasp, 2013] and

SANS [Sans, 2013], publish regularly the most dangerous security vulnerabilities. An

illustrative example, with respect to applications security, is the study of State of Software

report Volume 5 [Veracode, 2012], based in OWASP TOP 10 and SANS TOP 25

vulnerabilities classifications. Figure 12 illustrates the compliance upon initial application

submission against two standard policies.

69

Figure 12. Applications compliance with Policies upon First Submission

[Veracode 2012]

Web applications are assessed against the OWASP Top 10 and only 13% complied on first

submission. Non-web applications are assessed against the CWE/SANS Top 25 and 31%

complied on first submission. Only 30% of applications complied with enterprise defined

policies. Compliance with policies upon first submission of an application can be a good

indicator of the success or failure of “building-in” security as part of the software

development lifecycle (SDLC).

According to CVE MITRE [CVE, 2013] a security vulnerability is a mistake in software

that can be directly used by a hacker to gain access to a system or network. The types of

vulnerabilities can be defined in terms of each phase of SSDLC. These include commonly

accepted design, implementation and operational vulnerabilities according to The Art of

Software Security Assessment: Identifying and Preventing Software Vulnerabilities [Dowd

2006].

The security community generally accepts design vulnerabilities as defects in the software

system architecture and specifications. They can be found in the requirements analysis

phase, or in the specifications of the design phase.

70

The implementation vulnerabilities category logically refers to security errors done by

developers when developing modules or objects of the system to meet the specifications.

The operational vulnerabilities category refers to security defects that arise in the

deployment and configuration of the system developed in a particular environment

The following sections will analyze the security design aspects of applications architecture

and will show both statistics about vulnerabilities detected in applications and statistics

about materialized attacks in applications exploiting existing vulnerabilities.

3.1. SECURITY DESIGN ASPECTS OF ARCHITECTURE.

The security design of an application must be accomplished from the beginning of SSDLC.

After the phase of security requirements analysis of an application, a selection for its

archetype and design pattern must be done, based also in safety in addition to other aspects.

All software applications types can have vulnerabilities in the code of all architecture tiers

and design vulnerabilities in its architectural platforms and components. The number of

attacks that an application can suffer depends on vulnerabilities in:

- Software architecture components and tiers.

- Platform and operating system.

- Client software security including operating system.

- Application Servers.

- Network.

- Database Management System.

- Development technology

- Programming languages.

- Security experience and knowledge of programmers.

71

- Online protections.

The individual security objectives can be used to divide the application architecture for

further analysis, and to help identifying the application vulnerabilities. This approach leads

to a design that optimizes the following security objectives:

- Authentication. Authentication is the process where one entity definitively

establishes the identity of another entity, typically with credentials such as a

username and password.

- Authorization. Authorization refers to how an application controls access to

resources and operations.

- Configuration Management. Run context of the application, databases it connects,

the way that the application is administered and how the resources are protected,

Configuration management refers to how an application handles these operations and

issues.

- Confidentiality. The application must protect the secrets, confidential user and

application data and handle properly sensitive data. Sensitive data refers to how the

application handles any data that must be protected either in memory, over the

network, or in persistent storage. It is usually done by using cryptographic algorithms.

- Integrity. The application must check data or libraries for alterations. Random values

must be cryptographically strong. It is also done by using cryptography.

- Availability. Maintain availability of information handled by a system or its

resources.

- Non-repudiation. Provide proof that a particular transmission or reception has been

made, the receiver / transmitter cannot deny that it occurred.

72

These security objectives can be used to make key security design decisions for an

application, and document these as part of the architecture. For example, Figure 13 shows

the security issues identified in a typical Web application architecture.

-

-

-

-

-

- .

-

-

-

-

- Off

Figure 13. Security issues identified in a typical Web application architecture at

SSDLC design phase.

The Security Policy of an organization is a set of rules that govern and determine what to

do and what not in it. According to the IETF is defined as: "A series of formal statements

(rules) to which all people have access to any information organization and technology"

Some of the most important features of any security policy can be highlighted [IETF, 1997]:

- It sets which tools are needed and which procedures.

- It is used to communicate a consensus on the use of data and applications within the

organization.

- It provides a basis for demonstrating the inappropriate use of resources, by

employees or external.

- It defines the appropriate behavior for each case.

BROWSER

APPLICATION

SERVER

DATABASE

SERVER

APPLICATION

 USER SECURITY CONNECTIONS SECURITY CONNECTIONS SECURITY

 SESSION MANAGEMENT AUTHENTICATION – AUTHORIZATION

 DATA CIPHERED – DIGITAL SIGNATRE (CONIDENCIALITY – INTEGRITY)

73

The security policy of an organization is of dynamic nature, always being updated, which

allows taking into account that the maintenance of security is a living process and must be

manageable in a structured and organized way. So security is a process that has to be

achieved through the development of security policy. The policy must be understood as

something dynamic that must be updated by following a number of security principles.

Many security experts talk about security principles that should govern all design, most of

them overlap and generally coincide thus being similar. Michael Howard and David

LeBlanc promulgated in Writing Secure Code [Howard, 2003] principles as:

- Secure by design

- Secure by default

- Secure in deployment

- Principle of least privilege

- Principle of depth on defense

- Principle of diversity of defense

- Identifying weaknesses

- Centralized security management

- Principle of simplicity

- Learn from errors

- Reducing the attack surface to the minimum

- Use of default security

- Assume that external services are insecure

- Having plans in case of failure

- Fail to secure mode

- Secure components are not secure

- Do not mix code and data

- Fix security issues correctly

74

- Never depend on security through obscurity alone

- Backward compatibility will always give you grief

3.2. ARCHITECTURE SPECIAL CASES EXAMPLES.

The choice of a specific application category, archetype and architectural style has different

security implications that must be analyzed, studied and tested to make the best secure

selection possible. This section will show three examples of several applications types and

architecture styles with different design security implications.

Figure 14. Ajax against traditional web applications architectures [Ajax, 2013]

By example, with respect to application types, the Ajax Rich Internet Applications have

the advantage of providing richer client interfaces and the asynchronous communications

http://www.adaptivepath.com/uploads/archive/images/publications/essays/ajax-fig1.png

75

with the server makes it quicker. However, this type of application introduces new sources

of security vulnerabilities in the code of the Ajax engine that the client runs as, for example,

cross site scripting (XSS) and violations of same origin policy accessing other not allowed

domains (figure 14).

Another example, with respect to the selection of architectural style, is Service Object

Architecture (SOA). The entities involved in the provision of a service must implement the

same security standards for providing all security goals as authentication, authorization,

confidentiality, etc. This requisite can be difficult to achieve when heterogeneous entities

have to interact themselves (Figure 15).

Figure 15. Web services architecture example [W3c, 2013]

Finally it is worth commenting on the characteristics of System Control Architecture and

Data Acquisition (SCADA) and Industrial Control Systems (ICS) that are being attack

objectives in recent years. According to the statistics [HP-report, 2012] SCADA systems

which control automated industrial processes such as manufacturing, power generation,

mining, and water treatment, rely on considerably more mature technology. These systems,

which have historically operated over separate networks with proprietary protocols, have

76

begun to migrate to standard networks, and even the Internet, to simplify asset management,

billing, and operations. As these systems have moved off their separate isolated networks,

security problems that were once masked by a restricted attack surface have begun to

manifest themselves. One of the most popular remote attack vectors on SCADA is

fingerprinting of exposed industrial devices by its front-ends and server-side components

through application protocols (HTTP, UPnP, SNMP, FTP, SSH, Telnet). It helps the

hackers to detect critical infrastructures, as well as signatures of smart-metering devices,

HVAC, medical devices. Projects as OWASP Scada Security Project [OWASP, 2013] have

the objective of gathering information about the ways of improving the security measures in

modern ICS environments and to create guidelines for its hardening. These systems control

nuclear, electrical plants and other similar installations that need a 24x7 work continuously.

The natural importance of this installation type requires a detailed and planned security

design during its implantation during SSDLC. Only 76 vulnerabilities were disclosed in

SCADA systems from 2008 through 2010. However, after the Stuxnet worm was

discovered in an Iranian uranium enrichment plant in 2010 [Schneier, 2010], much attention

has been focused on the security of SCADA systems. In 2011, there were 164

vulnerabilities disclosed in SCADA systems, and the number rose again to 191 in 2012,

representing a 768 percent increase from 2008 numbers [HP-report, 2012]. A recent paper

“SCADA security in the light of Cyber-Warfare” surveys ongoing research and provides a

coherent overview of the threats, risks and mitigation strategies in the area of SCADA

security [Nicholson, 2012]. A guide to get SCADA and ICS systems more secure can be

found in special publications of NIST [SP-800-82, 2011].

77

3.3. SOFTWARE VULNERABILITIES

The implementation phase of SSDLC accomplishes the code development of the entire

application. There are several aspects relative to security that must be developed in a correct

secure pattern to accomplish with the security objectives during the implementation

phase (figure 13):

- Exception Management. How the application acts when a method call fails and

information is shown in error messages to end users. If it passes valuable exception

information back to the calling code. If it fails gracefully. If it helps administrators to

perform root cause analysis of the fault. Exception management refers to how

exceptions are handling within the application.

- Input and output Data Validation. All inputs and outputs of the application must be

validated. The content of all input data must be validated to check arrays length,

check malicious content, data sources such as databases and file shares, etc.

- Session Management. The application must handle and protect user sessions using

strong identifiers with solid random numbers, using a new identifier for each new

session, with a session timeout by default, etc.

- Auditing and Logging. The application must register and audit security-related

events to report how its continued operation is. Logging refers to how the application

publishes information about its operation. The information to reveal should be the

minimum necessary.

There are Organizations like OWASP, SANS and WASC that have as one of its goals to

raise awareness about application security by identifying some of the most critical risks

facing organizations. The OWASP Top 10 project is referenced by many standards, books,

tools, and organizations, including MITRE, PCI DSS, DISA, FTC, and many more. The

78

2103 release of the OWASP Top 10 marks this project’s tenth anniversary of raising

awareness of the importance of application security risks. The OWASP Top 10 was first

released in 2003, with minor updates in 2004 and 2007. The 2010 version was revamped to

prioritize by risk, not just prevalence. The 2013 edition follows the same approach. Table 8

shows the top ten most dangerous vulnerabilities, according to OWASP [Owasp, 2013],

comparing the top ten 2010 with the top ten 2013 to observe the evolution in a three years

period:

Table 8

OWASP TOP TEN 2010 vs. 2013 vulnerabilities [Owasp, 2013]

OWASP TOP TEN 2013 OWASP TOP TEN 2010

A1-Injection A1-Injection

A2-Broken Authentication and Session

Management

A2-Cross Site Scripting (XSS)

A3-Cross-Site Scripting (XSS) A3-Broken Authentication and Session

Management

A4-Insecure Direct Object References A4-Insecure Direct Object References

A5-Security Misconfiguration A5-Cross Site Request Forgery (CSRF)

A6-Sensitive Data Exposure A6-Security Misconfiguration

A7-Missing Function Level Access

Control

A7-Insecure Cryptographic Storage

A8-Cross-Site Request Forgery (CSRF) A8-Failure to Restrict URL Access

A9-Using Components with Known

Vulnerabilities

A9-Insufficient Transport Layer Protection

A10-Unvalidated Redirects and

Forwards

A10-Unvalidated Redirects and Forwards

Table 9 gives a short description of OWASP top ten 2013 vulnerabilities.

79

Table 9

OWASP TOP TEN 2013 vulnerabilities description [Owasp, 2013]

Vulnerability description

A1-Injection

Injection flaws, such as SQL, OS, and LDAP

injection occur when untrusted data is sent to an

interpreter as part of a command or query. The

attacker’s hostile data can trick the interpreter into
executing unintended commands or accessing data

without proper authorization

A2-Broken Authentication and Session

Management

Application functions related to authentication and

session management are often not implemented

correctly, allowing attackers to compromise

passwords, keys, or session tokens, or to exploit

other implementation flaws to assume other users’

identities

A3-Cross-Site Scripting (XSS)

XSS flaws occur whenever an application takes

untrusted data and sends it to a web browser

without proper validation or escaping. XSS allows

attackers to execute scripts in the victim’s browser

which can hijack user sessions, deface web sites,

or redirect the user to malicious sites

A4-Insecure Direct Object References

A direct object reference occurs when a developer

exposes a reference to an internal implementation

object, such as a file, directory, or database key.
Without an access control check or other

protection, attackers can manipulate these

references to access unauthorized data

A5-Security Misconfiguration

Good security requires having a secure

configuration defined and deployed for the

application, frameworks, application server, web

server, database server, and platform. Secure

settings should be defined, implemented, and

maintained, as defaults are often insecure.

Additionally, software should be kept up to date

A6-Sensitive Data Exposure

Many web applications do not properly protect

sensitive data, such as credit cards, tax IDs, and

authentication credentials. Attackers may steal or

modify such weakly protected data to conduct

credit card fraud, identity theft, or other crimes.
Sensitive data deserves extra protection such as

encryption at rest or in transit, as well as special

precautions when exchanged with the browser

A7-Missing Function Level Access Control

Most web applications verify function level access

rights before making that functionality visible in

the UI. However, applications need to perform the

same access control checks on the server when

each function is accessed. If requests are not

verified, attackers will be able to forge requests in

order to access functionality without proper

authorization

A8-Cross-Site Request Forgery (CSRF)

A CSRF attack forces a logged-on victim’s

browser to send a forged HTTP request, including

the victim’s session cookie and any other

automatically included authentication information,

to a vulnerable web application. This allows the
attacker to force the victim’s browser to generate

requests the vulnerable application thinks are

https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)

80

legitimate requests from the victim

A9-Using Components with Known

Vulnerabilities

Components, such as libraries, frameworks, and

other software modules, almost always run with

full privileges. If a vulnerable component is

exploited, such an attack can facilitate serious data

loss or server takeover. Applications using

components with known vulnerabilities may

undermine application defenses and enable a range

of possible attacks and impacts

A10-Unvalidated Redirects and Forwards

Web applications frequently redirect and forward

users to other pages and websites, and use

untrusted data to determine the destination pages.

Without proper validation, attackers can redirect

victims to phishing or malware sites, or use
forwards to access unauthorized pages

SANS TOP 25 [Sans, 2013] is another project that deals with classifying vulnerabilities of

applications, in terms of their importance related with the frequency with which they occur

in the applications and the danger of the attacks that exploit them. In this project, the

vulnerabilities are classified into three categories with expression of MITRE CWE

(Common Weakness Enumeration) identifier (Table 10). Common Weakness Enumeration

is a formal list or dictionary of common software weaknesses that can occur in software’s

architecture, design, code or implementation that can lead to exploitable security

vulnerabilities. CWE was created to:

- Serve as a common language for describing software security weaknesses.

- Serve as a standard measuring stick for software security tools targeting these

weaknesses

- Provide a common baseline standard for weakness identification, mitigation, and

prevention efforts. Software weaknesses are flaws, faults, bugs, vulnerabilities, and

other errors in software implementation, code, design, or architecture that if left

unaddressed could result in systems and networks being vulnerable to attack.

Example software weaknesses include: buffer overflows, format strings, etc.; structure and

validity problems; common special element manipulations; channel and path errors; handler

https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards

81

errors; user interface errors; pathname traversal and equivalence errors; authentication

errors; resource management errors; insufficient verification of data; code evaluation and

injection; and randomness and predictability.

MITRE CWE “provides a unified, measurable set of software weaknesses that is enabling

more effective discussion, description, selection, and use of software security tools and

services, that can find these weaknesses in source code and operational systems, as well as

a better understanding and management of software weaknesses related to architecture and

design” [Mitre, 2013].

Table 10

SANS TOP 25 Vulnerabilities. [Sans, 2013]

SANS TOP 25 Vulnerabilities.

Software Error Category: Insecure Interaction Between Components (6 errors)

CWE-89 Improper Neutralization of Special Elements used in an SQL Command

('SQL Injection')

CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS

Command Injection')

CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site

Scripting')

CWE-

434

Unrestricted Upload of File with Dangerous Type

CWE-

352

Cross-Site Request Forgery (CSRF)

CWE-

601

URL Redirection to Untrusted Site ('Open Redirect')

Software Error Category: Risky Resource Management (8 errors)

CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path

Traversal')

CWE-494 Download of Code Without Integrity Check

CWE-829 Inclusion of Functionality from Untrusted Control Sphere

http://cwe.mitre.org/top25/index.html#CWE-89
http://cwe.mitre.org/top25/index.html#CWE-78
http://cwe.mitre.org/top25/index.html#CWE-79
http://cwe.mitre.org/top25/index.html#CWE-434
http://cwe.mitre.org/top25/index.html#CWE-434
http://cwe.mitre.org/top25/index.html#CWE-352
http://cwe.mitre.org/top25/index.html#CWE-352
http://cwe.mitre.org/top25/index.html#CWE-601
http://cwe.mitre.org/top25/index.html#CWE-601
http://cwe.mitre.org/top25/index.html#CWE-120
http://cwe.mitre.org/top25/index.html#CWE-22
http://cwe.mitre.org/top25/index.html#CWE-494
http://cwe.mitre.org/top25/index.html#CWE-829

82

CWE-676 Use of Potentially Dangerous Function

CWE-131 Incorrect Calculation of Buffer Size

CWE-134 Uncontrolled Format String

CWE-190 Integer Overflow or Wraparound

Software Error Category: Porous Defenses (11 errors)

CWE-306 Missing Authentication for Critical Function

CWE-862 Missing Authorization

CWE-798 Use of Hard-coded Credentials

CWE-311 Missing Encryption of Sensitive Data

CWE-807 Reliance on Untrusted Inputs in a Security Decision

CWE-250 Execution with Unnecessary Privileges

CWE-863 Incorrect Authorization

CWE-732 Incorrect Permission Assignment for Critical Resource

CWE-327 Use of a Broken or Risky Cryptographic Algorithm

CWE-307 Improper Restriction of Excessive Authentication Attempts

CWE-759 Use of a One-Way Hash without a Salt

Finally, for web applications, another good vulnerabilities classification is the one of the

Web Application Security Consortium (WASC) [Wasc, 2013] that explains the

vulnerabilities and problems most characteristic in web applications. The greatest

contribution of WASC is the variety of projects developed and in course about web

application security. Special importance for this thesis is the Static Analysis Technologies

Evaluation Criteria project, which is an excellent starting point to establish the main

objectives to perform a SAST assessment.

3.4. VULNERABILITIES AND ATTACKS TENDENCIES.

This section will show:

http://cwe.mitre.org/top25/index.html#CWE-676
http://cwe.mitre.org/top25/index.html#CWE-131
http://cwe.mitre.org/top25/index.html#CWE-134
http://cwe.mitre.org/top25/index.html#CWE-190
http://cwe.mitre.org/top25/index.html#CWE-306
http://cwe.mitre.org/top25/index.html#CWE-862
http://cwe.mitre.org/top25/index.html#CWE-798
http://cwe.mitre.org/top25/index.html#CWE-311
http://cwe.mitre.org/top25/index.html#CWE-807
http://cwe.mitre.org/top25/index.html#CWE-250
http://cwe.mitre.org/top25/index.html#CWE-863
http://cwe.mitre.org/top25/index.html#CWE-732
http://cwe.mitre.org/top25/index.html#CWE-327
http://cwe.mitre.org/top25/index.html#CWE-307
http://cwe.mitre.org/top25/index.html#CWE-759

83

- Statistics about vulnerabilities detected in applications obtained by companies and

organizations by using manual and automatic methods and

- Statistics about materialized attacks in applications exploiting existing vulnerabilities.

The two types of statistics are distinct because not all vulnerabilities that an application has

are exploitable or, even when a vulnerability is exploitable, an attack never is materialized

on it because the vulnerability is not discovered. It is important to take into account both the

vulnerabilities that an application has and the most dangerous and frequent attacks in order

to perform an assessment of the detection of vulnerabilities and its posterior patching. The

process of the patching for an application should be based on the most dangerous and

frequent attacks.

3.4.1. VULNERABILITIES TENDENCIES.

This section shows vulnerabilities trend statistics of two reports from two important

companies:

- HP cyber risk report 2012 [HP-report, 2012]

- Veracode State of software security report volume 5 [Veracode, 2102]

HP 2012 Cyber Risk Report, HP Enterprise Security provides a broad view of the

vulnerability landscape, ranging from industry-wide data down to a focused look at

different technologies, including Web and mobile. The goal of this report is to provide the

kind of actionable security that intelligence organizations need to understand the

vulnerability landscapes as well as best deploy their resources to minimize security risk.

The report offers the following key findings:

- Critical vulnerabilities are on the decline, but still pose a significant threat.

CVSS (Common Vulnerability Scoring System) is a vulnerability scoring system

designed to provide an open and standardized method for rating IT vulnerabilities.

High-severity vulnerabilities (CVSS score of 8 to 10) made up 23 percent of the

84

total scored vulnerabilities submitted to OSVDB (Open Source Vulnerability

DataBase), in 2011 and dropped to 20 percent in 2012. OSVDB is an independent

and open sourced web-based vulnerability database created for the security

community. The goal of the project is to provide accurate, detailed, current, and

unbiased technical information on security vulnerabilities) [Osvdb, 2013]. While

this reduction is significant, the data shows that nearly one in five vulnerabilities

can still allow attackers to gain total control of the target.

- Mature technologies introduce continued risk. As demonstrated by the recent

Department of Homeland Security announcement recommending that the Oracle

Java SE platform be universally disabled in Web browsers, seemingly mature

technologies still suffer from new exploits. In particular, as commented before,

2012 data show the number of vulnerabilities disclosed in Supervisory Control And

Data Acquisition (SCADA) systems increased from 22 in 2008 to 191 in 2012 (a

768 percent increase).

- Mobile platforms represent a major growth area for vulnerabilities. The

explosive adoption of mobile devices and the applications that drive them has

resulted in a corresponding boom in mobile vulnerabilities. The last five years have

seen a 787 percent increase in mobile application vulnerability disclosures, with

novel technologies, such as near field communications (NFC), introducing

previously unseen vulnerability types.

- Web applications remain a substantial source of vulnerabilities. OSVDB data

from 2000 to 2012 shows that of the six most submitted vulnerability types, four

(SQL injection, cross-site scripting, cross-site request forgery and remote file

includes) exist primarily or exclusively in Web applications.

- Cross-site scripting remains a major threat to organizations and users. Cross-

site scripting (XSS) remains a widespread problem, with 44.5 percent and 44

85

percent of the applications in our data sets suffering from the vulnerability. In one

case, analysis of a multinational corporation showed that just under half (48.32

percent) of their Web applications were vulnerable to some form of XSS.

Furthermore, new methods of exploiting this vulnerability continue to be found.

- Effective mitigation for cross-frame scripting remains noticeably absent. The

first documented cross-frame scripting (XFS) vulnerability, the root cause behind

clickjacking attacks, was discovered over 10 years ago. Since then, clickjacking has

become a household name, yet less than one percent of 100,000 URLs tested

included the best-known mitigation, the X-Frame-Options header.

The HP cyber risk report also analyzes the vulnerability trends. Understanding technical

security risk begins with knowing how and where vulnerabilities occur within an

organization. This section of the report uses data from the Open Source Vulnerability

Database (OSVDB) [Osvdb, 2013] and the HP Zero Day Initiative (ZDI) [Zdi, 2103] to

demonstrate the following global vulnerability trends:

- The vulnerability arms race total vulnerability disclosures in 2012 increased 19

percent from 2011. The total number of vulnerabilities reported provides a

snapshot into the world of vulnerabilities and serves to illustrate the nature of a

constantly changing threat landscape, as seen in figure 16.

Figure 16. Vulnerabilities trend [HP-report, 2012]

86

- Evolving marketplaces and increasing complexity impact discovery and

reporting. Vulnerability disclosure data highlights how changes in the vulnerability

marketplace and the technical complexity of systems impact both the number and

severity of reported vulnerabilities.

- Web applications continue to introduce significant technical risk to

organizations. A small number of critical Web application vulnerabilities still

represent a large minority of the overall vulnerabilities disclosed in 2012.

- The maturity of a technology does not govern its vulnerability profile. Data in

2012 shows an increase of more than 700 percent in vulnerability disclosures

impacting both SCADA systems (primarily legacy technology), see figure 17, and

mobile devices (the next frontier for IT).

Figure 17. SCADA Vulnerabilities trend [HP-report, 2102]

Table 11 shows the top 10 mobile vulnerabilities.

87

Table 11. Top 10 mobile vulnerabilities in 2012 [HP-report, 2012]

Top 10 mobile vulnerabilities in 2012

Unauthorized access 18%

Cross site scripting 15%

Insecure session handling 11%

Cookie handling vulnerabilities 9%

Improper encryption 9%

Poor logging practices 8%

Autocomplete on sensitive form fields 6%

Cleartext credentials 6%

Poor error messages 6%

Veracode state of software security report volume 5 [Veracode, 2012] examines data

collected over an 18 month period from January 2011 through June 2012 from 22,430

application builds uploaded and assessed by its platform. The principal findings are the

following:

- 70% of applications failed to comply with enterprise security policies on first

submission.

- SQL injection prevalence has plateaued, affecting approximately 32% of web

applications.

- Eradicating SQL injection in web applications remains a challenge as organizations

make tradeoffs around what to remediate first.

- Cryptographic issues affect a sizeable portion of Android (64%) and iOS (58%)

applications.

Veracode “state of software security report volume 5” shows statistics of vulnerabilities

trend for non-web applications, web applications and mobile applications.

88

- State of Web Application Security. Figure 18 shows how the top ten vulnerability

categories for web applications have varied over the last three states of software

security reports of Veracode Company.

Figure 18. Top Vulnerability Categories (Percentage of Affected Web

Application Builds) [Veracode, 2012]

89

Not much has changed. The top five categories remain the same as Volume 4.

Cross-site scripting and information leakage are at the top with 67% and 65%

respectively. Volume 5 reporting includes two additional CWE categories

associated with the insufficient input validation category which vaulted the category

to sixth place. API abuse dropped just out of the top ten.

- State of Non-Web Application Security. Figure 19 shows the trends in the top

vulnerability categories for non-web applications over the last three Volumes.

Cryptographic issues and directory traversal have remained the top two

vulnerability categories for the last three Volumes, affecting 47% and 38% of all

non-web applications in the current reporting period. Information leakage (26%)

takes the third spot from error handling, which drops to fourth place. Buffer

overflow dropped out of the top ten for the first time in this volume, and is replaced

by SQL injection which is now affecting 16% of non-web applications. The good

news is that the percentage of applications with buffer management errors is

declining, from 20% in Volume 3 to 13% in Volume 5. However, the rise in the

percentage of applications containing information leakage and SQL injection

vulnerabilities is disturbing since applications are the conduit through which

attackers gain access to confidential or proprietary information. It is noteworthy that

the percentages reported in Figure 19 are generally lower than those reported in the

software supply chain feature supplement published in November 2012. For

example, cryptographic issues affected 62% of vendor supplied applications but

only 47% of all applications (which include internally developed, outsourced, and

open source applications in addition to vendor supplied applications). The relatively

higher percentages reported in the supplement demonstrate the need for vendors to

continue to work towards developing more secure software.

90

Figure 19. Top Vulnerability Categories (Percentage of Affected NON-Web

Application Builds) [Veracode, 2012]

- State of Mobile Application Security. First they examine the vulnerability

distribution in terms of share of total vulnerabilities discovered across all

application builds associated with each mobile platform. In Volume 5, there is

91

enough data on all three platforms to provide a statistically sound basis for

comparison. Table 12 shows that all three mobile platforms that they analyzed share

cryptographic issues and information leakage in the Top 5 list of vulnerabilities, as

measured by percent of total vulnerabilities found. As jailbreaking becomes more

common practice and new features such as surviving reboots are supported,

cryptographic issues significantly weaken data protection. Attackers with physical

control of a mobile device for a small amount of time can jailbreak it and install a

backdoor with keyloggers or other malware and/or copy the content. Both

cryptographic issues and information leakage vulnerabilities increase the attack

surface for mobile applications, and are two of Cloud Security Alliance’s top five

identified threats to mobile devices.

Table 12

Share of total vulnerabilities found in mobile applications [Veracode, 2012]

Mobile applications vulnerabilities

ANDROID IOS
JAVA ME

CRLF injection 37% Information leakage 62% Crytographic issues
47%

Crytographic issues 33% Error handling 20% Information leakage
47%

Information leakage 10% Cryptographic issues 7% Directory traversal
3%

SQL injecgtion 9% Directory traversal 6% Poor input validation
2%

Time and state 4% Buffer management 3%º Credentials

management

<1%

Veracode state of software security report volume 5 [Veracode, 2012] contains java, .NET.

C/C++, PHP and COLDFUSION languages analysis trends from report volume 3 to

92

volume 5. By example the figure 20 shows trends of java vulnerabilities percentage of the

total and figure 21 shows percentage of applications affected by vulnerabilities:

- Java vulnerabilities percentage:

Figure 20. Share of total vulnerabilities found trends for Java Applications

[Veracode, 2012]

93

Figure 21. Percentage of Java Applications Affected [Veracode, 2012]

3.4.2. ATTACKS TENDENCIES.

This section shows how the attacks materialize by exploiting vulnerabilities, the methods

used and the most used vulnerabilities. To clarify the last tendencies in recent attacks

incidents, this section will analyze the results from 2013 Trustwave Global Security Report

[Trustwave, 2013]. This report analyzes the results of hundreds of incident response

investigations, thousands of penetration tests, millions of website and Web application

attacks and tens of billions of events. It also includes detailed contributions from law

enforcement agencies and experts from around the world. All in an effort to provide with

perspectives on the latest threats and vulnerabilities facing organizations, along with

actionable recommendations you can begin implementing immediately to strengthen your

security program. The knowledge of how, when and the number of attacks is a valuable

94

resource for business, helping defend better, act faster and prepare for what’s ahead in the

upcoming future and beyond.

Specifically this section shows statistics about:

- Origin of attacks and the principal locations of the victims.

- The types of most targeted data.

- Attack Methods.

- Most frequently exploited vulnerabilities by attack methods.

Figure 22 shows a summary of the origin of attacks and the principal locations of the

victims. The top victim locations are United States of America (73%) and Australia (7%)

and the top attacker locations are Romania (33.4%) and United States of America (29%).

Obviously United States of America is the most interesting place to study.

Figure 22. Attacks origin and victims locations [Trustwave, 2013]

Table 13 shows the types of most targeted data. The primary data type targeted by

attackers in 2012, as in 2011, was cardholder data. There is a well-established underground

marketplace for stolen payment card data; cards data are bought and sold quickly for use in

fraudulent transactions. With such a vast number of merchants accepting payment cards

(estimates from major credit card brands put the total in the United States of America

between nine and 10 million merchants), and with so many available attack vectors, it is

unlikely this market will change any time soon.

95

Criminals also sought personally identifiable information (PII), which has some monetary

value, albeit not as much as cardholder data, since it requires additional work and risk (i.e.,

posing as someone else) without the same lucrative return on investment.

The primary targets of cybercriminals in 2012 were Retail (45%), Food & Beverage (24%)

and Hospitality (9%). There are several contributing factors to this continuing trend:

- The sheer volume of payment cards used in these industries makes them obvious

targets.

- The main focus of organizations operating in these spaces is customer service, not

data security.

- There’s a misconception that these organizations are not a target. In practically all of

the 2012 investigations, this statement was made in just about every case: “Why me?”

The answer can only be: “Because, you have something worth taking that is not

protected.”

Table 13

Types of targeted data by attacks [Trustwave, 2013]

Types of targeted data by attacks

Customer Records (Payment Card Data, PII, Email Addresses) 96%

Confidential Information & Intellectual Property 2%

Electronic Protected Health Information (ePHI) 1%

Business Financial Account Numbers 1%

With respect to attack methods, remote access remained the most widely used method of

infiltration in 2012. Unfortunately for victim organizations, the front door is still open.

Organizations that use third-party support typically use remote access applications like

96

Terminal Services or Remote Desktop Protocol, pcAnywhere, Virtual Network Client

(VNC), LogMeIn or Remote Administrator to access their customers’ systems. If these

utilities are left enabled, attackers can access them as though they are legitimate system

administrators.

How do attackers find remote access systems? Would-be attackers simply scan blocks of IP

addresses looking for hosts that respond to queries on one of these ports. Once they have a

focused target list of IP addresses with open remote administration ports, they can move on

to the next part of the attack, one of the most exploited vulnerabilities: default/weak

credentials. Unfortunately, gaining access to systems is just as easy as it is for attackers to

identify targets.

Most current Web pages are not made up of static content as they were years ago, but of

fluid dynamic components and content. In addition, many pages ask for information,

location, preferences, with the goal of improved efficiency and user interaction. This

dynamic content is usually transferred to and from back-end databases that contain volumes

of information anything from cardholder data to which type of running shoes is most

purchased. Pages will make Structured Query Language (SQL) queries to databases to send

and receive information critical to making a positive user experience. Poor coding practices

have allowed the SQL injection attack vector to remain on the threat landscape for more

than 15 years. Any application that fails to properly handle user-supplied input is at risk.

The good news is that properly using parameterized statements (aka prepared statements)

will prevent SQL injection. When programmers fail to validate input (either by incorrectly

validating or not validating at all), attackers can send arbitrary SQL commands to the

database server. The most common attack goal with SQL injection is bulk extraction of

data. Attackers can dump database tables with hundreds of thousands of customer records

that contain personally identifiable information, cardholder data and anything else stored by

the victim organization. In the wrong environment, SQL injection can also be exploited to

97

modify or delete data, execute arbitrary operating system commands or launch denial of

service (DoS) attacks.

The third most widely seen method of entry in Trustwave’s investigations was “Unknown.”

However, an overwhelming number of these cases possessed a common indicator of

compromise, specifically weak and/or default credentials.

In the majority of cases Trustwave investigated in 2012, username and password

combinations were woefully simple. Combinations included administrator:password,

guest:guest and admin:admin. In addition, many IT service providers had standard

passwords that were used by administrators allowing them to access any customer at any

time. This means that if one location is compromised, every customer with that same

username:password combination could also be compromised. Table 14 shows the most

used attacks methods during year 2012.

Table 14

Attack entry methods [Trustwave, 2013]

Attack ENTRY methods

Remote Access 47%

SQL Injection 26%

Unknown 18%

Remote code execution 3%

Client-side-attack 2%

Remote file inclusion 2%

Authorization flaw 1%

Physical theft 1%

With respect to web applications, table 15 shows the top 10 Web Hacking Incidents

Database during the 2012 year. Denial of service is on the top of classification; Attackers

constantly create tools to facilitate DoS attacks, such as WHID 2012-372, or WHID 2012-

98

368, [Whid, 2013] in which GoDaddy (Enterprise mail server) was stopped by a massive

DoS attack. SQL injection vulnerability is one of the most used attack method for web

applications. Another classification can be consulted in WhiteHat official web site

[WhiteHat, 2012]

Table 15

TOP 10 WHID attack methods [Trustwave, 2013]

TOP 10 WHID Attack methods

Unknown 46%

Denial of service 29%

Sql injection 11%

Stolen credentials 3%

Brute force 3%

Banking trojan 2%

Cross site scripting 1%

Predictable resource location 1%

DNS hijacking 1%

Cross site request forgery 1%

3.5. CONCLUSIONS.

The security design of an application must be accomplished from the beginning of SSDLC.

All software applications types can have vulnerabilities in the code of all architecture tiers

and design vulnerabilities in their architectural platforms and components. To perform a

security assessment of an application is obliged knowing the main security vulnerabilities

tendencies in the code, application design and also operational security vulnerabilities. This

section of the dissertation has shown code vulnerability assessment statistics of known

organizations about the main security vulnerabilities that applications had in recent years.

The security vulnerabilities are the door for materializing attacks. It is important to know

the latest trends in application attacks. Therefore, this section has also shown application

99

attacks statistics in recent years, including mention to special applications cases as AJAX,

SCADA, WEB or MOBILE applications. The number of these applications is increasing

continuously and it is important to study its vulnerability tendencies in the most recent

years.

100

101

4. STATE OF THE ART IN APPLICATIONS SECURITY

ANALYSIS

This chapter is a state of the art analysis of tools and artifacts involved in software security

analysis of applications, such as knowledge sources, security analysis tools, benchmarks

and methodologies for security analysis tools evaluation during the phases of Secure

Software Development Life Cycle (SSDLC). A good state of the art is an excellent start

point for:

- Understanding the different types of existing security analysis tools.

- Building an effective methodology to perform an assessment of the tools to allow

making the best choice of them.

- Understanding how the tools can collaborate together to reach better results.

Doing this type of state of the art analysis involves an exhaustive knowledge of security

standards, Secure Software Development Life Cycle process, security analysis tools and

assessment methodologies or benchmarks:

- Organizations and standards of software security.

- Secure Software Development Life Cycle (SSDLC)

- Security Analysis Tools:

 White box security analysis: Static Application Security Testing (SAST)

 White box security analysis: Real time or interactive Application Security

Testing (RAST/IAST) for Web applications

 Black box security analysis: Dynamic Application Security Testing (DAST)

for web applications

 Hybrid of some SAST-RAST-DAST type tools for web applications

- Methodologies for tools evaluation.

102

- Benchmarks for tools evaluation.

4.1. ORGANIZATIONS AND STANDARDS OF SOFTWARE

SECURITY.

To address the security design of a system or application it is necessary to obtain and

acquire a good overview of how to achieve a security analysis of an application. To test an

application online is complicated and needs to gather adequate knowledge. This knowledge

can be gathered through various sources, one of them is to address and investigate in

organizations, open projects and standards that have been occupied for some time

collecting information about methodologies, protocols, cryptography, paradigms, reference

projects and studies on the characteristics of all regarding security, test tools and tools and

other forms of real-time protection, etc.

A Security Standard reference can provide information and knowledge about aspects such

as:

- Security vulnerabilities, nature, characteristics, importance, statistics, etc.

- Application development methodologies, security software development life cycles

(SSDLC).

- Methodologies for testing and application security testing.

- Security analysis tools, types, features, etc.

- Online protection tools, lists, features, etc.

- Assessment Methodologies for testing security analysis tools.

- Benchmarks for assessment of security analysis tools and vulnerabilities.

The following organizations must be considered among the most important ones concerned

with the security of applications:

103

- NIST. National Institute of Standards and Technologies. U.S.A. [Nist, 2013]

- OWASP. Open Web Application Security Project. [Owasp, 2013]

- WASC. Web Application Security Consortium. [Wasc, 2013]

- MITRE CWE. Common Weakness Enumeration. [Mitre, 2013]

- SANS Institute for security training. [Sans, 2013]

- NSA. National Security Agency. U.S.A. [Nsa, 2013]

- OASIS. Open Control Standards for the Information Society. [Oasis, 2013]

- OISSG. Open Information Systems Security Groups. [Oissg, 2013]

- CGISECURITY. Web application security services [Cgisecurity, 2013]

- SEI CERT. Software Engineering Institute. [Sei, 2013]

- HOMELAND SECURITY. Build Security In. [Homeland, 2013]

- CISECURITY. Center for Internet Security. [Cisecurity, 2013]

Being the most complete, general and important ones, the standards, organizations and open

projects highlighted in bold, OWASP, WASC, SANS, NIST and CWE MITRE have been

the most consulted and referenced by this thesis.

The OWASP project, [Owasp, 2013] is an independent organization dedicated to finding

and fighting the causes of insecure software. Organized in chapters and projects all over the

world, it develops documentation, tools and open source standards (GPL, GFDL, and GPL).

It is open to anyone. On its website, they mentioned:

"Everyone is free to participate in OWASP and all of our materials are available under a

free and open software license. You'll find everything about OWASP here on or linked from

our wiki and current information on our OWASP Blog. OWASP does not endorse or

recommend commercial products or services, Allowing our vendor neutral community To

Remain With The collective wisdom of the best minds in security software worldwide. We

104

ask That the community look out for Inappropriate use of the OWASP brand Including use

of our name, logos, project names and other trademark issues ".

The OWASP project list is extensive [Owasp, 2103], covering all aspects of web

application security, security tools, methodologies, good safety practices, benchmarking,

etc.

The purpose of WASC [Wasc, 2013] is, as quoted on their website:

"The Web Application Security Consortium (WASC) is 501c3 nonprofit made up of an

international group of experts, industry practitioners, and organizational Representatives

who produce open source and Widely Agreed upon best-practice security standards for the

World Wide Web. As an active community, WASC Facilitates the exchange of thoughts and

Organizes several industry projects. WASC consistently releases technical information,

Contributed articles, security guidelines, and other useful documentation. Businesses,

Educational Institutions, Governments, application developers, security professionals, and

software vendors all over the world Use our materials to assist with the challenges

presented by web application security. Volunteering to Participate in WASC related

activities is free and open to all. "

WASC has many interesting projects related to web application security that can and should

be taken into account when implementing an application. Those are the consulting projects:

- Distributed Open Proxy Honeypots

- Script Mapping

- Static Analysis Tool Evaluation Criteria

- The Web Security Glossary

- Web Application Firewall Evaluation Criteria

- Web Application Security Scanner Evaluation Criteria

- Web Application Security Statistics - Web Hacking Incidents Database

105

- WASC Threat Classification

MITRE CWE [Mitre, 2013]. It addresses areas such as security analysis of the code,

applications, systems evaluation, training or risk management. All safety related systems

and applications. But mainly provides a dictionary of international public use that provides

a unified measure of a set of software weaknesses that can lead to security vulnerabilities.

The difference between the CVE (Common Vulnerabilities and Exposures) definition and

CWE is that the CWE (Common Weakness Enumeration) list includes software errors that

can lead to software vulnerabilities. The list of CVE vulnerabilities are specific software

errors detected in a given system (e.g. CVE 1999-0005 Arbitrary command execution via

IMAP buffer overflow in authenticate command) that can be directly used by an attacker to

gain access to a system.

Other definitions for weakness exist as bug, flaw, vulnerability, defect, error, etc. In this

work, therefore all these definitions refer to a weakness actually CWE.

SANS [Sans, 2013]. The SANS Institute was established in 1989 as a cooperative research

and education organization. Its programs now reach more than 165,000 security

professionals around the world. The main concern in the face of this work is its ranking of

the top 25 security errors or problems (weaknesses), which are clearly identified in the list

of MITRE CWE [Mitre, 2013]. They can occur in web applications and among them are the

most important problems of Web applications, such as XSS, SQLI, CSRF, REDIRECT

OPEN, CROSS PATH, etc. In reference SANS access can find multiple resources on how

to remove these categorization errors SANS TOP 25.

NIST [Nist, 2013]. NIST is the U.S.A. National Institute for Standards and technology of

Many guidelines can be found in NIST mainly on security platforms, environments and

applications and services that can be a good starting point to address the secure

configuration of many parts of a system or application. NIST covers many fields of science

106

and one of them is information technology that addresses the following areas as mentioned

in its official website:

- Biometrics

- Computer Forensics

- Computer Security

- Conformance Testing

- Cybersecurity

- Data Mining

- Data and Informatics

- Health IT

- Imaging

- Information Delivery Systems

- Networking

- Scientific Computing

- Software Testing Metrics

- Telecommunications / Wireless

4.2. SECURE SOFTWARE DEVELOPMENT LIFE CYCLE

(SSDLC)

A Secure Software Development Life Cycle (SSDLC) for applications is the basis for

developing secure applications. It uses different human processes and technological

artifacts, like derivation methods for security requirements, risk analysis methods, security

checklists, security analysis tools, security functional test, penetration test, etc. All artifacts

working together in its SDLC corresponding phase have as objective obtaining an

application with the least possible number of security vulnerabilities. The purpose of this

107

section is to collect and present overview information about existing processes, standards,

life cycle models, frameworks, and methodologies that support or could support secure

software development. Where applicable and possible, some evaluation or judgment are

provided for particular life cycle models, processes, frameworks, and methodologies.

According to technical note of Carnegie Mellon University CMU-SEI-2005-TN-024

[Davis, 2005] on Secure Software Development Life Cycle Processes, a number of existing

processes, process models, and standards identify the following four SDLC focus areas for

secure software development:

1. Security Engineering Activities include those activities needed to engineer a secure

solution. Examples include security requirements elicitation and definition; secure

design based on design principles for security, use of static analysis tools, secure

reviews and inspections, and secures testing methods.

2. Security Assurance Activities include verification, validation, expert review, artifact

review, and evaluations.

3. Security Organizational and Project Management Activities include organizational

policies, senior management sponsorship and oversight, establishing organizational

roles, and other organizational activities that support security. Project management

activities include project planning and tracking, resource allocation and usage to ensure

that the security engineering, security assurance, and risk identification activities are

planned, managed, and tracked.

4. Security Risk Identification and Management Activities There is broad consensus in

the community that identifying and managing security risks is one of the most

important activities in a secure SDLC, and, in fact, is the driver for subsequent

activities. Security risks in turn drive the other security engineering activities, the

project management activities, and the security assurance activities.

108

Also existing Capability Maturity Models (CMM) provide a reference model of mature

practices for a specified engineering discipline. An organization can compare their practices

to the model to identify potential areas for improvement. The CMMs provide goal-level

definitions for and key attributes of specific processes (software engineering, systems

engineering, security engineering), but do not generally provide operational guidance for

performing the work. This work analyzed several approximations of SSDLC and CMMs:

- Microsoft SDL [Microsoft-SDL, 2013]

- OWASP CLASP [Owasp-CLASP, 2013]

- SDLC Touchpoints [McGraw, 2006]

- Building Security in Maturity Models (BSIMM) [Bsimm, 2013]

- Open Software Assurance Maturity Model [OpenSAMM, 2013]

- CMMI [Cmmi, 2013]

- FAA-iCMM [FAA-iCMM, 2013]

- SEE-CMM [SEE-CMM, 2013]

- T-CMM/TSM [Kara, 2012]

- CC (Common Criteria) [Kara, 2012]

and this section describes briefly some of them that focus on the use of security automatic

analysis tools to discover the security vulnerabilities that a building application have. Also

this section will mention several comparisons references between SSDLC and/or CMM.

4.2.1. Microsoft SDL

The Security Development Lifecycle (SDL) [Microsoft-SDL, 2013] is a security assurance

process focused on software development. As a company-wide initiative and a mandatory

policy since 2004, the SDL has played a critical role in embedding security and privacy in

software and culture at Microsoft. Combining a holistic and practical approach, the SDL

109

aims to reduce the number and severity of vulnerabilities in software. The SDL introduces

security and privacy throughout all phases of the development process (figure 23).

Figure 23. Microsoft SDL [Microsoft-SDL, 2013]

Regarding to the use of automatic security analysis tools in the implementation and

verification phases, SDL uses static analysis tools and black-box analysis tools and

white-box appverifier tool to examine the compatibility of the application with Windows

OS platform. Therefore SDL do not use dynamic white-box security analysis tool in the

verification phase. Neither SDL use Hybrid tools of static and dynamic tools.

4.2.2. OWASP CLASP

Comprehensive, Lightweight Application Security Process [Owasp-CLASP, 2103] is an

activity-driven, role-based set of process components whose core contains formalized best

practices for building security into an existing or new-start software development lifecycles

in a structured, repeatable, and measurable way.

According to CLASP official site, “is the outgrowth of years of extensive field work in

which system resources of many development lifecycles were methodically decomposed in

order to create a comprehensive set of security requirements. These resulting requirements

form the basis of CLASP’s best practices which allow organizations to systematically

address vulnerabilities that, if exploited, can result in the failure of basic security services

e.g., confidentiality, authentication, and access control” [Owasp-CLASP, 2103].

110

This section provides an overview of CLASP’s structure and of the dependencies between

the CLASP process components and is organized as follows:

- CLASP Views

- CLASP Resources

- Vulnerability Use Cases

Figure 24 shows the CLASP Views and their interactions:

Figure 24. OWASP CLASP Views [Owasp-CLASP, 2013]

The CLASP process is presented through five high-level perspectives called CLASP Views.

These views are broken down into activities which in turn contain process components.

111

This top-down organization by View > Activity > Process Component allows you to

quickly understand the CLASP process, how CLASP pieces interact, and how to apply them

to your specific software development lifecycle. These are the CLASP Views:

- Concepts View

- Role-Based View

- Activity-Assessment View

- Activity-Implementation View

- Vulnerability View

With respect to the use of automatic security analysis tools in the implementation and

verification phases, CLASP focuses more on white box testing (Activities 7.1.2 and

7.1.3). CLASP also suggests the integration of security analysis into source management

(Activity 6.1), in order to automate the implementation-level security analysis and metrics

collection through the use of dynamic and/or static analysis tools.

4.2.3. SDLC Touchpoints

SDLC Touchpoints process [McGraw, 2006] provides a set of best practices that have been

distilled over the years out of the extensive industrial experience of its proposer. Most of the

best practices, named activities from here on, are grouped together in seven so-called touch

points. The software security touchpoints are designed to be process agnostic. That is, the

touchpoints can be applied no matter which software process used to build your software.

As long as minimal set of software artifacts are being producing some, it can apply the

touchpoints. Here are the touchpoints, in order of effectiveness (figure 25):

1. Code review

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security tests

112

5. Abuse cases

6. Security requirements

7. Security operations

Regarding the use of automatic tools for testing applications Touchpoints emphasizes the

importance of security testing, three out of seven touch points covered deal with security

testing. A difference in focus does exist, as Touchpoints stresses the importance of risk

based security testing (Activity 7.1.1). The main characteristic of Touchpoints is the

emphasis on code reviews. In particular, the use of automated tools is suggested (and

examples provided).

Figure 25. SDLC Touchpoints [McGraw, 2006]

4.2.4. SDL, CLASP, SDLC Touchpoints TESTING COMPARISON

Examining the paper “On the Secure Software Development Process: CLASP, SDL and

Touchpoints Compared” [De win, 2009] not surprisingly, all analyzed processes stress the

importance of security testing. A closer look to the documentation reveals that they all

provide thorough, good-quality guidance in describing the testing-related activities.

However, different flavors can be identified. SDL has a predominant black-hat approach to

113

testing, i.e., activities focus on fuzz testing and penetration testing. CLASP is mostly white-

hat, as illustrated by activities like resource driven testing, testing of security attributes (e.g.,

privileges), integration and automation of security testing with the commit procedure of the

software repository and with the build process. Touchpoints is in between: some activities

are mainly white-hat oriented, e.g., security functionality testing, while the black-hat

component is still very present, for instance, pentesting is a touch point in its own.

Concerning the stakeholders that are involved in this phase, the implementers and the

testers are center stage in all process. However, we observe that SDL goes a bit further.

Significant attention is devoted to provide the project managers with test results in order to

track the project status (security-wise). As a final consideration, the use of both formal

notations and the code generation techniques (e.g., MDA) do not find the proper space in

any of the processes under study.

4.2.5. ADDITIONAL SSDLC,s and CMM,s SURVEY

The technical note of Carnegie Mellon University CMU-SEI-2005-TN-024 [Davis, 2005]

on Secure Software Development Life Cycle Processes provides a briefly survey of

following Capabilities Maturities models:

- Capability Maturity Model Integration (CMMI)

- Federal Aviation Administration integrated Capability Maturity Model (FAA-

iCMM)

- Trusted CMM/Trusted Software Methodology (T-CMM/TSM)

- Systems Security Engineering Capability Maturity Model (SSE-CMM)

Another more recent work of Mehmet Kara [Kara, 2012] has the goal of evaluating and

comparing Microsoft SDL, SSE-CMMI, OpenSAMM and CC secure software development

approaches. CC is hardware/software security evaluation standard which is used for security

testing, security requirements definition another secure system issues. In this paper

114

Common Criteria is used as secure software development guidance and compared with

Microsoft SDL, SSE-CMMI, and OpenSAMM. Table 16 shows a brief comparison for

security development processes.

Table 16

 SSDLC,s and CMM,s comparison [Kara, 2012]

4.3. WHITE BOX SECURITY ANALYSIS: STATIC ANALYSIS

TOOLS

Static Applications Security analysis Tools (SAST) analyze both source code and

executable, as appropriate according to its availability, for finding security vulnerabilities in

 Common

Criteria

SSE-

CMM

Microsoft-

SDL

Open-

SAMM

Security Training and Awareness x ok ok ok

Physical and Logical Security ok ok x x

Secure Configuration Management ok ok x x

Law, policy and procedure compliance x ok x ok

Threat Modeling ok ok ok ok

Risk Analysis ok ok ok ok

Security Requirements Definition ok ok ok ok

Security Architecture ok ok ok ok

Secure Design ok ok ok ok

Source Code Analysis x x ok ok

Vulnerability Analysis x ok ok ok

Security Verification ok ok ok ok

Vulnerability Management ok ok ok ok

Secure Development Techniques and

Applications

x ok ok ok

Operational Environment Security ok ok ok ok

Secure Integration with Peripheral ok ok ok ok

Secure Delivery ok ok x ok

115

the code of applications. The no availability of source code for software of third parties

make these tools can perform a white box analysis of entire application. Basically the

difference between a tool for source code and for executable code is that the last one must

first make a disassembly of the executable code to extract the source code and then act as

the other source static tools, they have a pre-conversion executable code in source code.

This section about SAST tools resumes:

- Characteristics.

- Categories of static tools.

- Survey of availability of Static tools

4.3.1. SAST TOOLS CHARACTERISTICS

This paragraph shows a brief description of concepts, architecture, using, problems,

categories and availability of commercial and open source static tools.

Architecture. SAST tools take the source or executable code as input and transform it in an

intermediate representation or model of source code, as appropriate, and then analyze it

against a set of rules defined in the tools, to generate the corresponding security

vulnerability report.

Figure 26. Static analysis tools process [Díaz, 2013]

116

As Figure 26 shows, according to Chess and West [Chess, 2007], the code is transformed

using a combination of different techniques as lexical and semantic analysis, abstract syntax

and parsing. The program model is analyzed using intraprocedural (local) analysis for

examination of individual functions and interprocedural (global) analysis for the interaction

between functions, using tracking control flow and data flow, pointer aliasing, etc.

Depending on the selected tool these rules are fixed or can be extended. The set of rules can

be increased in many cases by the user, who can define your own, to suit the particular

application being analyzed. An example of rule specification language PQL (Program

Query Language) for defining security flaws for java language can be found in [Livshits,

2005].

The majority of these tools work either by applying SAT solvers [Moskewicz, 2001],

abstract interpretation [Cousot, 1996], by performing model checking [Aoki, 2010], or by

performing Taint Analysis [Tripp, 2013], [Tripp, 2009] for local analysis and using function

summaries along with SAT solvers, model checking or theorem provers [Detlefs. 2005]

algorithms for global analysis. The global analysis can be:

- Context-sensitive. Determining the context of a function when called.

- Path sensitive. Explore the routes based on information flow control.

- Path insensitive. Explore all the routes. Very expensive.

- Based on Function summaries. Using the call context summaries of functions, more

flexible than the previous one, can be more or less inaccurate.

SAST tools for executable code. According to the Veracode report volume 5 [Veracode,

2012], where initial security checks of third-party software are accomplished, the result,

shown in Figure 7 (section 2.1), is that the security of third-party software is not acceptable

by 75% .The same report showed the interesting observation, that almost a third of the

development volume comes from third-party development, commercial and open source.

117

These approaches analyze machine code directly from a simplification of the same for

constructing a flow control diagram and calls. In [Hanov 2005], addresses various problems

that can present the machine code decompilation and describes the evolution of the various

techniques used. Cifuentes [Cifuentes, 1997] developed a technique known as “program

slicing”, for determining the set of statements of a program that potentially affect the value

of a variable at some point in the program. This analysis is useful in the decoding phase

machine code instructions from reverse engineering tools such as binary translators,

disassemblers and debuggers. Relative to Java language, a technical analysis of java

bytecode [O'Donoghue, 2002] can be consulted. Regarding to web applications, there are

several commercial implementations for various languages and on-demand software service

platforms SaaS (software as a service) companies as Veracode [Veracode, 2013]. Its

services are available for J2EE, C / C + +. NET, C #, PHP, ColdFusion.

False Negatives & False Positives. Static tools exhibits a classical problem that the act of

determining if a program reaches its final state, or not, is an undecidable problem, the

halting problem [Turing, 1936]. In this context, a false positive, is a problem discovered

in a program when there is actually no problem. The notion of using an algorithm to

analyze other is part of the origins of computing. For further reading on the computational

theory, Sipser's Introduction to the Theory of Computation, Second Edition [Sipser, 2005]

is recommended. Therefore, SAST tools can suffer from false negatives and false positives.

A false negative is defined as a security vulnerability in the code which is not detected

by the tool. A false positive is a reported security vulnerability in an application that is not

really a vulnerability. The best tool is that is capable of making the best balance between

false negatives and false positives due to its algorithms efficiency. Usually a tool that has

more false positives, it has a less number of false negatives depending obviously of the

efficiency of its algorithms. The objective of having more or less false positives really

determines distinct tools categories. Companies interested on acquiring a SAST tool should

118

take into account the time that security teams have to perform the audit of a tool that usually

reports many false positives. But they must also take into account that maybe it is more

important having the less possible number of false negatives. Conclusion: The penalty

associated with a false negative is much greater because the vulnerability will remain in the

code but also the task of revising a report with many false positives can be very arduous.

Other discussion about the balance of false negatives and false positives can be found in

[Chess, 2007] and [Díaz, 2013]. Also in a Systematic Mapping Study of Static tools [Lobo,

2013] the authors try identifying current state-of-the-art static analysis techniques and tools

as well as the main approaches that have been developed to mitigate false positives. Among

the retrieved studies, there was a lack of works on the types of false positive errors and the

tools that generate them. This kind of research would help developers identify the tools that

best serve their needs. The mapping also revealed studies that use hybrid approaches, which

combine static and dynamic analyses techniques. Furthermore, a combination of different

static analysis approaches proved more efficient than their isolated use.

One of the most important advantages of SAST tools is that they analyze the entire

application and attack surface of the application covering all inputs. They are

considered the most important safety activity within a SSDLC by [McGraw, 2006] and the

same also appears from the statistics discussed above on WASC vulnerabilities [WASC-

statistics, 2008]. The results in the security report, Veracode volume 3 [Veracode, 2011] are

also relevant, showing the analysis accomplished with DAST and SAST techniques: 635

SAST detections vs. 29 DAST. SAST provides an extensive knowledge of application and

DAST only test accessible parts from the outside. Static analysis tools check all code

thoroughly and consistently, without any tendency Sometimes programmers could put more

attention on revising some parts of the code that might be more "interesting" from a security

perspective or parts of the code that may be easier to perform the dynamic tests. A valuable

analysis should be as unbiased as possible. Examining the code completely and thoroughly

119

is a good feedback on the application knowledge digging deeper in the knowledge of the

security.

Examining the code itself, static analysis tools can indicate the root cause of a security

issue, not just one of its symptoms. This is particularly important to ensure that

vulnerabilities are corrected properly. Static analysis can find errors early in the

implementation phase of development, even before the program is executed for the first

time. The early finding of an error does not only reduce the cost to fix the error, but also

produces a rapid feedback cycle that can help directing the work of a programmer: a

programmer has the opportunity to correct errors he was not aware of before. Attack

scenarios and code information used by static analysis tools act as a means of knowledge

transfer.

Audit. The existence of false positives and false negatives forces a subsequent audit of the

tool reports, needed to eliminate the false positives and find the false negatives (much more

complicated). This implies adequate training in the defects that can occur in the code for a

particular programming language, which can be more or less "friendly" in terms of the error

trace facilities a specific tool provide. Tools such as SCA, PREVENT or INSIGHT

[Bermejo, 2009] are good examples of tools that provide a very good information for, above

all, eliminate false positives.

There are available commercial and open source SAST tools for:

- Source and executable code.

- All types of applications: non-web, web (traditional web applications, web services

or rich internet applications as Ajax) or mobile applications for blackberry, android

and iphone platforms.

- Majority of languages and development technologies as J2EE or .NET.

120

4.3.2. SAST TOOLS CATEGORIES

Different schemes exist to categorize static security analysis tools according to [McGraw,

2006]. The classification can be made attending to:

- Languages and development technologies (web services, javascript, ajax, etc.)

- Kind of applications analyzed (non-web, web, and mobile).

- Algorithms and techniques of security vulnerabilities searching used as Model

Checking [Aoki, 2010], Boolean Satisfiability [Moskewicz, 2001] or Taint Analysis

ANDROMEDA tool [Tripp, 2013] and TAJ tool [Tripp, 2009].

- Different limits of false positives rates and false negatives as objective in the

application analysis.

A relevant taxonomy for the purpose of this work is shown in [Chess, 2007]. This taxonomy

refers to the general purpose of the tools and differentiates between:

- Style checking

- Program understanding

- Program verification and property checking

- Bug finding

- Security review

Style checking. These earlier tools as lint tool [Johnson, 1977] in Unix or PMD [Pmd,

2013] for java language usually enforce a more selective and more superficial set of rules

than a type checker. They perform checks based on lexical and syntactic analysis (earlier

generation of static analysis) to discover problems as inconsistencies in function calls,

return values in some places and not in others, functions called with varying numbers of

arguments, function calls that pass arguments of other types or detecting the use of certain

dangerous functions. This analysis has limitations, when compared with other types

mentioned afterwards, not making an analysis based on simulating what happens in

121

runtime. In comparison with any compiler, these tools perform only an additional lexical

and syntactic check of the using of certain dangerous functions in the code.

Program understanding. These tools are designed for helping users to make sense of a

project code. They are included in many Integrated Development Environments and are

designed to help programmers to gain insight into the way a program works. They help the

reviewer who performs security analysis to understand the code and discover vulnerabilities

but, in any case, this is a manual review of all code and it is time consuming. An example is

the Fujaba Tool [Fujaba, 2013].

Program verification and property checking. These tools accept a specification and a

body of code and then attempt to prove that the code is a correct implementation of the

specification. If the specification is a complete description of everything the program should

do, the program verification tool can perform equivalence checking to make sure that the

code and the specification exactly match. More commonly, verification tools check

software against a partial specification that details only part of the behavior of a program.

This endeavor sometimes goes by the name property checking. Many property checking

tools focus on temporal safety properties. A temporal safety property specifies an ordered

sequence of events that a program must not carry out. An example of a temporal safety

property is “a memory location should not be read after it is freed.” Most property checking

tools enable programmers to write their own specifications to check program-specific

properties. When a property checking tool discovers that the code might not match the

specification, it traditionally explains its finding to the user by reporting a counterexample:

a hypothetical event or sequence of events that takes place within the program that will lead

to the property being violated. Some examples are CBMC [Clark. 2004], Polyspace

[Mathworks, 2013], Codesonar [Grammatech, 2013], or Satabs [Clark, 2005].

122

Bug finding. These tools simply warn about places in the code where the program is going

to act in a different way, not necessarily insecure, to the one desired by the programmer.

These tools contain a predefined set of rules describing patterns in code that can indicate

security vulnerabilities. This set can be extended in many tools by the user to adapt to the

nature of a particular code.

Most “bug finding” tools are also designed to produce a low number of false positives for

analyzing applications with a high number of lines of code, in the order of hundreds of

thousands or millions of lines of code.

Vulnerabilities tracks are provided after the execution of the tools, showing a possible

sequence of events in the code, once a suspicious vulnerability is identified allowing the

possibility of checking the veracity of the discover vulnerability.

A number of these tools is available as, for example, FindBugs [Findbugs, 2103], a general

tool for identifying vulnerabilities in Java code or Prevent, a commercial tool from Coverity

[Coverity, 2013], available for C/C++, Java, J2EE and C#. Prefast [Prefast, 2013], which is

able to check common coding error in C and C++ languages. Finally Klocwork offers

Insight [Klocwork, 2013]; available also for C/C++, Java, J2EE and C #, a product suite

that allows graphical exploration of programs with hundreds of thousands or millions of

lines of code.

Security review. These tools combine many of the techniques of the previous tools with the

goal of identifying security vulnerabilities applying these techniques differently. Their

design implements in fact a combination of property checkers and “bug finding” class of

tools techniques, because many security properties can be expressed briefly as program

properties. The designers of these tools prefer the cautious side of the balance between false

positives and negatives, the better a security tool is, the better job it will do at minimizing

“dumb” false positives without allowing false negatives to creep in. These tools prefer to

123

show many points in the code that should be manually reviewed after the execution of the

tool, producing more false positives when compared with “bug finding” tools.

Two of the most relevant “security review” tools are IBM Appscan source, [Appscan, 2013]

and SCA (Source Code Analyzer) from HP Fortify Software [Hp-Fortify, 2013]. SCA is

able to analyze code of different languages, as C/C++, C#, ASP NET, VB.NET, COBOL,

CFML, HTML, Java, JavaScript, AJAX, JSP, PHP, PL/SQL, Python, Visual Basic,

VBScript and XML.

4.3.3. SAST TOOLS AVAILABILITY SURVEY

This section is a review about available commercial and open source SAST tools showing

their most important characteristics and skills. Chapter 5 will show several assessments

processes for non-web and web applications SAST tools with objective results to allow

selecting the tools according to the best performance, usability and the number and range of

covered vulnerabilities for relevant commercial and noncommercial SAST tools.

There are available commercial and open source tools. As we will demonstrate (see chapter

5) commercial ones have support for more languages, have a larger vulnerabilities

coverage, better usability and trace help for discarding false positives. They are also the best

candidates for being included in a process of code security review in a company.

Open source tools offer their complete code and documentation. This is an advantage

because we can understand better their limitations. Generally almost all open source tools

are research projects from Universities, or in some cases from companies, and usually their

vulnerabilities coverage is. Also their usability, human interfaces and warning trace

capabilities are much more reduced than commercial tools. Some tools as MAGIC [Chaki,

2004], Blast [Beyer. 2007], Splint [Evans, 2002] or CQUAL [Foster, 1999], can require

code annotations to enhance the results, making them not useful for analysis of projects

124

with several hundreds of thousands or millions of lines of code. Other tools as ITS4 [Viega,

2000], UNO [Holzmann, 2002], Lint [Jhonson, 1977], RATS [Nazario, 2002] or Flawfinder

[Nazario, 2002] belong to an earlier generation of tools based only in lexical and syntactic

analysis. Table 17 resumes the reviewed open source tools and the considerations observed.

SAST tools for other languages, platforms and technologies:

- Non-Web applications

 C/C++: MAGIC, Blast, Splint, CQUAL, SATURN [Aiken, 2006], BOOP

[Boop, 2013], ITS4, UNO, Lint, RATS, Clang, Smatch, CppCheck

[CppCheck, 2013] or Flawfinder

 Java: PMD [Pmd, 2013], ESC [Esc, 2013], Java PathFinder [Pathfinder,

2103]

- Web applications,

 PHP: Rips [Rips, 2013]

 J2EE; LAPSE+ [Lapse+, 2013], Findbugs [Findbgs, 2103]

 .NET: FxCop [FxCop, 2013] CAT.NET [Cat, 2013]

 C/C++, C#, VB, Java and PL/SQL: VisualCodeGrepper [Grepper, 2013]

 Multilanguage: Yasca [Yasca, 2013]

Table 17

Open source SAST tools

TOOLS CHARACTERISTICS AND CONSIDERATIONS

UNO, RATS,

FLAWFINDER, ITS4,

LINT

C/C++. Earlier tools limited to lexical-syntactic analysis and only for a

reduced subset of vulnerabilities. All of them preprocess and tokenize

source files (the same first steps a compiler take) and then match the

resulting token stream against a library of vulnerable constructs.

BOON C/C++. Applies integer range analysis. It can’t model interprocedural

dependencies, and it ignores pointer aliasing

CQUAL C/C++. Type-based analysis, requires annotations in the code

BLAST C/C++. Model checking tool, with the option of adding assertions in the

125

code

SPLINT C/C++. Enhanced version of Lint. Requires annotations in the code

SATURN C/C++. Boolean satisfiability and summary based tool. Only limited to

memory leaks, lock problems and null dereferences vulnerabilities.

BOOP C/C++. Abstraction and model checking tool. Not maintained anymore.

The formalization of C expressions is incomplete and not all C constructs

are covered.

SATABS C/C++. Program verification tool with Model checking, that implements

a predicate abstraction refinement loop using a SAT-solver. This allows

the model checker to handle the semantics of the ANSI-C standard

accurately.

CBMC C/C++. Program verification tool with Bounded Model Checking new

tool research. In CBMC, the transition relation for a complex state

machine and its specification are jointly unwound to obtain a Boolean

formula, which is then checked for satisfiability by using a SAT

procedure

MAGIC C/C++. Bounded Model Checking tool that require specifications in the

code to accomplish an analysis

SMATCH C/C++. Simple scripts look for problems in simplified representation of

code. primarily for Linux kernel code

CLANG C/C++, objective C. Resports dead stores, memory leaks, null pointer

deref, and more. Uses source annotations like "nonnull".

CPPCHECK C/C++. pointer to a variable that goes out of scope, bounds, classes

(missing constructors, unused private functions, etc.), exception safety,

memory leaks, invalid STL usage, overlapping data in sprintf, division

by zero, null pointer dereference, unused struct member, passing

parameter by value, etc. Aims for no false positives.

PMD Java. Questionable constructs, dead code, duplicate code.

JAVA

PATHFINDER

Java. Its primary application has been Model checking of concurrent

programs, to find defects such as data races and deadlocks

ESC Java. Provides programmers with a simple annotation language with

which programmer design decisions can be expressed formally. Check

code for nulls, race conditions, non init vars, exceptions and other.

JLINT Java. inconsistencies, and synchronization problems

FINDBUGS WEB APPLICATIONS. J2EE. ANALYZES BYTECODE. Null pointer

deferences, synchronization errors, SQLI, XSS, etc.

126

FINDSECURITYBUGS WEB APPLICATIONS. J2EE. ANALYZES BYTECODE. Extends

FindBugs with more security detectors (Command Injection, XPath

Injection, SQL/HQL Injection, Cryptography weakness and more).

LAPSE+ WEB APPLICATIONS. J2EE. is a security scanner for detecting

vulnerabilities of untrusted data injection in Java EE Applications. It has

been developed as a plugin for Eclipse

FXCOP WEB APPLICATIONS. .NET. ANALYZES BYTECODE. Microsoft

free tool. FxCop analyzes the compiled object code

RIPS WEB APPLICATIONS. PHP.

YASCA WEB APPLICATIONS. Java, C/C++, JavaScript, ASP, ColdFusion,

PHP, COBOL, .NET. aggregator of other tools, including: FindBugs,

PMD, JLint, JavaScript Lint, PHPLint, CppCheck, ClamAV, RATS, and

Pixy.

VISUALCODEGREPPER WEB APPLICATIONS. C/C++, C#, VB, Java and PL/ SQL.

CAT.NET WEB APPLICATIONS. .NET (MICROSOFT) ANALYZES BINARY

CODE

Commercial tools have a much more limited support for researchers. For example, all of

them give a list of the vulnerabilities they claim to detect, but this list doesn’t follow a

specific standard. Each tool provides its own list with its own format, although all of them

present also its vulnerabilities list in CWE format. Also all of them provide a limited set of

documentation, explaining the internal design (algorithms, heuristics, etc.) they use, but

without details and, of course, without access to the code.

Table 18 resumes the properties of commercial SAST tools relative to languages,

vulnerabilities coverage and availability for web, non-web or mobile applications.

- WEB/NON-WEB/MOBILE applications.

 SCA(HP-FORTIFY) [HP-Fortify, 2013]

 SECURITY APPSCAN SOURCE (IBM) [Appscan, 2013]

 INSIGHT (KLOCWORK) [Klocwork, 2013]

127

 VERACODE SaaS (VERACODE) [Veracode, 2013]

 CXSUITE (CHECKMARX) [Checkmarx, 2013]

- WEB APPLICATIONS

 CODESECURE (ARMORIZE) [Armorize, 2013]

 BUGSCOUT (BUGUROO) [Buguroo, 2013]

- NON-WEB APPLICATIONS

 SAVE (COVERITY) [Coverity, 2013]

 GOANNA (RED LIZARD) [RedLizard, 2013]

 PC-LINT (GIMPEL) [Gimpel, 2013]

 CODESONAR (GRAMMATECH) [Grammatech, 2013]

 POLYSPACE (MATHWORKS) [Mathworks, 2013]

 .TEST / jTEST / DOTTEST [Parasoft, 2013]

Table 18

Commercial SAST tools

TOOLS CHARACTERISTICS AND CONSIDERATIONS

SCA

(HP FORTIFY)

WEB/NON-WEB/MOBILE APPLICATIONS. Leader security review tool.

100% coverage of table 1 vulnerabilities categories. Covers 18 different

languages.

SECURITY

APPSCAN

SOURCE (IBM)

WEB/NON-WEB/MOBILE APPLICATIONS. Leader security review tool.

Large coverage of languages and vulnerabilities categories.

K8-INSIGHT

(KLOCWORK)

WEB/NON-WEB/MOBILE APPLICATIONS. Java, J2EE, C and C#. Bug

finding tool.

VERACODE SaaS

(VERACODE)

WEB/NON-WEB/MOBILE APPLICATIONS. C, C++, .NET (C#, C++/CLI,
VB.NET, ASP.NET), Java, JSP, ColdFusion, PHP, Ruby on Rails, and

Objective-C, including mobile applications on the Windows Mobile,

BlackBerry, Android, and iOS platforms.

CHECKMARX

CX-ENTERPRISE

(CHECKMARX)

WEB/NON-WEB/MOBILE APPLICATIONS Bug finding tool. It covers 15

different languages.

SAVE

(COVERITY)

NON-WEB APPLICATIONS. Java, C and C#. Bug finding tool.

GOANNA (RED

LIZARD)

NON-WEB APPLICATIONS. Bug finding tool for C and C++. Without

injection vulnerabilities coverage

128

PC-LINT

(GIMPEL)

NON-WEB APPLICATIONS. Tool for C and C++. Without injection

vulnerabilities coverage.

CODESONAR

(GRAMMATECH)

NON-WEB APPLICATIONS. Program verification tool for C/C++ and Java, It

does not check for the most severe vulnerabilities, such as SQL injection and

cross-site scripting.

POLYSPACE

(MATHWORKS)

NON-WEB APPLICATIONS. Program verification tool for ADA, C/ C++.

Proves the absence of overflow, divide-by-zero, out-of-bounds array access,

and run-time errors. It was not possible getting it for evaluation, no response

received.

.TEST / jTEST /

DOTTEST

(PARASOFT)

NON-WEB APPLICATIONS. Security and Quality analysis tool C, C++, Java,

C#, and .NET. It focuses more in quality than security.

CODEPEER

(ADACORE)

NON-WEB APPLICATIONS. ADA. Detects uninitialized data, pointer misuse,

buffer overflow, numeric overflow, division by zero, dead code, concurrency

faults (race conditions), unused variables, etc.

CODESECURE

(ARMORIZE)

WEB APPLICATIONS. ASP.NET, VB.NET, C#, Java/J2EE, JSP, EJB, PHP,

Classic ASP and VBScript. Powerfull tool for web applications with wide

coverage of vulnerabilities.

BUGSCOUT

(BUGUROO)

WEB APPLICATIONS. Java, PHP, ASP and C#

Several other SAST tools lists for commercial and non-commercial tools and diversity of

languages and platforms can be consulted from diverse sites as:

- WASC [SAST-wasc, 2013]

- SAMATE NIST [SAST-samate, 2103]

- WIKIPEDIA [SAST-wiki, 2013]

- OWASP [SAST-owasp, 2013]

4.4. BLACK BOX SECURITY ANALYSIS: DYNAMIC ANALYSIS

TOOLS

Dynamic Application Security Testing (DAST) tools act as black box type tools, executing

the tool against the running application performing a penetration test and trying to cover the

129

entire surface of attack (all possible inputs to the application) to find vulnerabilities that

may exist. Several examples of this type of tools for web applications are WebInspect [HP-

Fortify, 2013], PAROS [Paros, 2013] or CENCIZ [Cenciz, 2013]. Such tools relative to

web applications are more commonly called Web Application Automatic Vulnerabilities

Scanners. Bau et al. [Bau, 2010] assess the current state of the art analyzing eight leading

tools and carried out a study of: the class of vulnerabilities tested by these scanners, their

effectiveness against target vulnerabilities, and the relevance of the target vulnerabilities to

vulnerabilities found in the wild.

This section about DAST tools resumes:

- Characteristics and architecture.

- Survey of availability of DAST tools

4.4.1. DAST TOOLS CHARACTERISTICS

According to Elizabeth Fong, in two interesting articles about DAST tools [Fong, 2007]

[Fong, 2008], they should:

- Be able to identify a subset of acceptable security vulnerabilities of web

applications.

- Generate a report for each vulnerability detected, indicating an action or set of

actions that suggest the aforementioned vulnerability.

- Have an acceptable false positive rate, which of course can also have these tools

An automated vulnerability scanner acts as shown in Figure 27: the scanner is between the

administrator and the web application tool to launch attacks against the application,

performing a penetration test, injecting malicious data and code to detect vulnerabilities.

130

Figura 27. Web application vulnerability scanner schema [Samate, 2013]

Automatic scanners have the following advantages:

- They can detect vulnerabilities in the final version of the product in the phase prior

to its distribution.

- They simulate the behavior of a malicious user, carrying out attacks and analyzing

test results in a very near as would a real attacker.

- They are independent of the coding language. A web scanner itself can deal with

applications coded in different languages.

However, DAST tools also have a number of weaknesses and limitations that must be

taken into account:

- Being based on trial and error techniques, they cannot cover 100% of web

application code, and parts of it may be untested.

- There are problems that cannot be found, especially related to the logic of the

application, as they are oblivious to it. For example, scanners cannot determine if

131

somewhere there is information that should not be, or if an user really has

permission to view the received item.

- To cover all possible attack vectors of a vulnerability is difficult. The scanners have

certain predefined attack patterns, but they will never be as imaginative as a real

attacker.

- The knowledge we have about the behavior of the different dynamic elements like

JavaScript or Flash, is limited. Therefore scanners cannot determine whether its

behavior is correct.

- Black box scanners should be extended to handle AJAX requests. In fact, any

interaction with the web application always contains a request and response,

however the content of the response is no longer an HTML page. Thus, DAST tools

could extend our notion of a “page” to typical response content, end of AJAX calls,

such as JSON or XML. A way to handle AJAX would be to follow a Crawljax

approach [Doupé, 2012] and convert the dynamic AJAX calls into static pages.

Vulnerabilities coverage. Covering the entire surface application of attack is difficult; the

degree to which this is achieved also determines the effectiveness of the tool. It's hard,

because the person that performs a manual penetration test or the automatic scanner tool

must try all entrances to the application and all user roles, each parameter of each request

and each response pattern to find a vulnerability. The possibilities and weaknesses of a

scanner must be well understood to make the best possible interpreting their results

[SAMATE, 2013]. The automatic scanners have limitations and can detect only a set of

vulnerabilities due to their nature. For example, a scanner can detect vulnerabilities as

[Stuttard, 2008]:

- Reflected cross-site scripting vulnerabilities arise when user-supplied input is

echoed back in the application’s responses without appropriate sanitization.

132

Automated scanners typically send test strings containing HTML markup, and

search the responses for these strings, enabling them to detect many of these flaws.

- Some SQL injection vulnerabilities can be detected via a signature. For example,

submitting a single quotation mark may result in an ODBC error message, or

submitting the string ‘; waitfor delay ‘0:0:30’-- may result in a time delay.

- Some path traversal vulnerabilities can be detected by submitting a traversal

sequence targeting a known file such as boot.ini or /etc/passwd and searching the

response for the appearance of this file.

- Some command injection vulnerabilities can be detected by injecting a command

that will cause a time delay, or will echo a specific string into the application’s

response, and others as file inclusion, xpath injection or http response spliting.

- Straightforward directory listings can be identified by requesting the directory path

and looking for a response containing text that looks like a directory listing.

- Vulnerabilities like frame injection, liberally scoped cookies, and forms with

autocomplete enabled can be reliably detected by reviewing the contents of client-

side code.

- Items not linked from the main published content, such as backup files and source

files, can often be discovered by requesting each enumerated resource with a

different file extension.

Because of these scanners perform syntactic parsing of the web application, they cannot

understand the semantics of various parameters as a whole, that can hide an attempted

attack. Therefore it is difficult the detection of other vulnerabilities as:

- Broken access controls, which enable a user to access other users’ data, or a low-

privileged user to access administrative functionality. A scanner does not

understand the access control requirements relevant to the application, nor is it able

133

to assess the significance of the different functions and data that it discovers using

any particular user account.

- Attacks involving the modification of a parameter’s value in a way that has meaning

within the application, for example, a hidden field representing the price of a

purchased item, or the status of an order. A scanner does not understand the

meaning that any parameter has within the application’s functionality.

- Other logic flaws, such as beating a transaction limit using a negative value, or

bypassing a stage of an account recovery process by omitting a key request

parameter.

- Vulnerabilities in the design of application functionality, such as weak password

quality rules, the ability to enumerate usernames from login failure messages, and

easily guessable forgotten password hints.

- Session hijacking attacks in which a sequence can be detected in the application’s

session tokens, enabling an attacker to masquerade as other users. Even if a scanner

can recognize that a particular parameter has a predictable value across successive

logins, it will not understand the significance of the different content that results

from modifying that parameter.

- Leakage of sensitive information such as listings of usernames, and logs

containing session tokens.

False positives. As with SAST tools, it is very important to check the false positives

produced by these tools. As described below, a good tactic can be to correlate the results of

static analysis and automated scanners of web applications to assist in discarding false

positives. Another approach is to use static analysis results to generate test cases for

automatic scanners, improving the accuracy of the existence of the vulnerability reported by

static analysis.

134

In the WASC website [Wasc, 2103], the Web application scanners project evaluation

criteria can be consulted. It provides a document on criteria to be considered for the

evaluation of these tools and many other resources and interesting information.

4.4.2. AVAILABILITY SURVEY OF DAST TOOLS

Table 19 shows some of the most common vulnerability DAST tools. Commercial and also

open source tools can be found.

Table 19

DAST tools [Owasp, 2013]

Name Owner Licence Platforms

Acunetix WVS Acunetix Commercial / Free (Limited

Capability)

Windows

AppScan IBM Commercial Windows

Burp Suite PortSwiger Commercial / Free (Limited

Capability)

Most platforms supported

GamaScan GamaSec Commercial Windows

Grabber Romain Gaucher Open Source Python 2.4, BeautifulSoup and

PyXML

Grendel-Scan David Byrne Open Source Windows, Linux and Macintosh

Hailstorm Cenzic Commercial Windows

IKare ITrust Commercial N/A

N-Stealth N-Stalker Commercial Windows

Netsparker MavitunaSecurity Commercial Windows

NeXpose Rapid7 Commercial / Free (Limited

Capability)

Windows/Linux

Nikto CIRT Open Source Unix/Linux

NTOSpider NT OBJECTives Commercial Windows

ParosPro MileSCAN Commercial Windows

QualysGuard Qualys Commercial N/A

Retina eEye Digital

Security

Commercial Windows

ScanDo KaVaDo Inc Commercial Windows

SecurityQA

Toolbar

iSec Partners Commercial Windows

http://www.acunetix.com/
http://www-01.ibm.com/software/rational/offerings/websecurity/
http://www.portswigger.net/suite/
http://www.gamasec.com/Gamascan.aspx
http://rgaucher.info/beta/grabber/
http://sourceforge.net/p/grendel/code/ci/c59780bfd41bdf34cc13b27bc3ce694fd3cb7456/tree/
http://www.cenzic.com/
http://www.ikare-monitoring.com/
http://www.nstalker.com/
http://www.mavitunasecurity.com/
http://www.rapid7.com/products/nexpose-community-edition.jsp
http://www.cirt.net/nikto2
http://www.ntobjectives.com/ntospider
http://www.milescan.com/hk/
http://www.qualys.com/products/qg_suite/was/
http://www.eeye.com/Products/Retina/Web-Security-Scanner.aspx
http://www.kavado.com/
https://www.isecpartners.com/SecurityQAToolbar.html
https://www.isecpartners.com/SecurityQAToolbar.html

135

Securus Orvant, Inc Commercial N/A

SecPoint

Penetrator

SecPoint Commercial Windows, Unix/Linux and

Macintosh

Sentinel WhiteHat

Security

Commercial N/A

Vega Subgraph Open Source Windows, Linux and Macintosh

Wapiti Informática

Gesfor

Open Source Windows, Unix/Linux and

Macintosh

WebApp360 nCircle Commercial Windows

WebInspect HP Commercial Windows

OpenVAS OpenVAS Open Source Windows / Linux

WebKing Parasoft Commercial Windows / Linux / Solaris

Trustkeeper

Scanner

Trustwave

SpiderLabs

Commercial SaaS

WebScanService German Web

Security

Commercial N/A

Websecurify GNUCITIZEN /

Websecurify

Commercial / Free Windows, Mac OS, Linux and

others

Wikto Sensepost Open Source Windows

Zap OWASP Open Source Windows, Mac OS, Linux

Ironwasp Ironwasp Open Source Windows, Mac OS, Linux

4.5. WHITE BOX SECURITY ANALYSIS: REAL-TIME ANALYSIS

TOOLS

Real-Time/Interactive Application Security Testing (RAST/IAST) tools operate in much the

same way as a profiler or a debugger. Because they have the ability to see inside the process

space of the running application, RAST tools can observe and record information about

requests made to the application, the code the application executes as a result, and the

values of variables inside the running program. Furthermore they can make this information

available to the analyzer while an attack is taking place. RAST is similar to SAST in that it

employs a collection of rules that define vulnerable behavior in terms of code-level

http://www.orvant.com/
https://www.secpoint.com/penetrator.html
https://www.secpoint.com/penetrator.html
http://www.whitehatsec.com/home/services/services.html
http://www.subgraph.com/products.html
http://wapiti.sourceforge.net/
http://www.ncircle.com/index.php?s=products_webapp360
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-200%5e9570_4000_100__
http://www.openvas.org/
http://www.parasoft.com/jsp/solutions/soa_solution.jsp?itemId=86
https://www.trustwave.com/external-vulnerability-scanning.php
https://www.trustwave.com/external-vulnerability-scanning.php
http://www.german-websecurity.com/en/products/webscanservice/product-details/overview/
http://www.websecurify.com/
http://www.sensepost.com/research/wikto/
http://code.google.com/p/zaproxy/
http://ironwasp.org/

136

interfaces, and yet it also has DAST’s ability to observe a concrete execution of the

program.

4.5.1. ARCHITECTURE AND CHARACTERISTICS

RAST tools act directly on the executable code, observing the execution environment of the

processes, how they work, their content in memory variables and application state in

general. They also note the requests that are made to the web application and receive

responses. This allows detecting vulnerabilities in the input fields to a concrete application

in real time because it follows the operations of the application. Once detected the

vulnerability some tools can take one of three actions:

- Generate a report after detecting no more vulnerabilities. HP FORTIFY

SECURITYSCOPE [HP-Fortify, 2013] is an example of this type. AcuSensor also

[Acunetix, 2013] as added functionality to Acunetix, which, as noted in the previous

section, is an automated vulnerability scanner web application.

- Block the attempted attack, as does HP FORTIFY RTA [HP-Fortify, 2013]. RTA

is the previous version of HP FORTIFY SECURITYSCOPE, so it has many

similarities in architecture. They differ in the concept of what to do when a

vulnerability is detected: blocking or reporting

- Clean up the malignant request to the web application, correcting the input to the

application. SANER is an example of this type [Balzarotti, 2008].

The thesis of Benjamin Livshits "Improving software security with static and runtime

analysis required" [Livshits 2006], can be consulted to understand better the functionality

of RAST tools. This work concluded that the real-time analysis advantage is that these tools

can detect all attacks (for attacks categories the tool is designed) because the tools are able

of keeping track of how data flows through the application in run (real) time, analyzing if

137

the data can be an attack source. The thesis mentions the following characteristics about

RAST tools:

- RAST tools do not have false positives, because of the complete historical

information of each data type they manage.

- In addition RAST tools can recover from an attack by a vulnerability that can be

exploited, by sanitizing the data input to the application when it is necessary.

- RAST tools detect vulnerabilities using a vulnerability specification or rule, by

example, written in a language called PQL (program query language), which is

translated into a finite state automaton non-deterministic (NFAs). When application

is running, the generated NFAs running along with the application it is collecting

information on relevant events. The tool try to find the automata reproduced during

real-time analysis. When an NFA reaches an accepting state several actions can be

taken. If there is a clause replaces, the unsafe action is replaced by another to

recovery. If instead there is a clause executes, RAST will run the code in this clause

to generate a vulnerability report. Briefly, finding consultations PQL contained in

the application involves 3 steps:

1. PQL translation to NFAs.

2. Code is inserted to monitor the application to record events related to NFAs

which is being investigated at a given time in the application.

3. Use a comparator to interpret query all states through which passes a NFAs

to find all instances in the application.

In the same thesis [Livshits 2006] several other interesting considerations are discussed, in

terms of the increasing overload that may involve applying a real-time analysis in an

application. Adding code to monitor events provokes an overload of total application

execution. One way to reduce this overload it is proposed: to use the results of static

138

analysis to reduce the monitoring code, eliminating sentences that cannot refer to objects

involved in any "match" of a query. Reduction monitoring code using this technique can be

97% in the case of the application roller used as a benchmark. In other application

benchmark such a webgoat overload is reduced by half with the optimized version. Figure

28 shows a comparison of overload of both versions, optimized with static analysis and non

optimized, for 5 different applications.

Figura 28. Run-time Overload comparison. [Livshits 2006]

In the same line as the mentioned thesis there are some other interesting works: [Lam.

2008], [Monga, 2009] or [Saxena, 2011]. Other different approach is that of [Wassermann,

2008] , in which they propose an algorithm for automated test generation, that uses data

input and runtime values to analyze the code dynamically, semantic models of string

operations, and handles operations whose argument and return values may not share a

common type.

139

The joint use of source code static analysis and real-time analysis introduces the following

section on hybrid security analysis tools that combine two or more of the types of static

analysis, automated vulnerability scanners and real-time analysis.

Classification of RAST tools. It is difficult to establish a classification of these tools,

taking into account that commercial tools do not give information about the techniques used

in its building and architecture. RAST tools can be classified attending to:

- Purpose of the tool:

1. Runtime security protection (report, block or sanitize attacks). HP

WEBINSPECT REALTIME (SECURITYSCOPE) and HP FORTIFY

RUNTIME (RTA) [HP-Fortify, 2013].

2. Runtime security analysis on testing penetration phase (report attacks).

[Quotium, 2013]

- Technique of building:

1. Shadow memory for taint analysis [Nagarajan, 2009]. Tools as TainTrace

[Cheng, 2006] and Flextaint [Venkataramani, 2008] for C/C++ languages.

The objective is to perform a taint analysis of input data to find out if data

can make up an attack form [Newsome, 2005], [Cheng, 2006], [Tripp, 2009]

or [Haldar, 20]. This technique keeps track of the propagation of untrusted

(tainted) data during program execution. Tainted data may represent sources

such as user input, packets from the network, or data read from specific files

and devices. Taint tracing is based on a program's dynamic behavior. Unlike

virus scanners that require known attack signatures, dynamic taint tracing

can defend against future attacks. Another example of dynamic taint

analysis for PHP is ARDILLA [Kiezun, 2009], that presents an automatic

technique for creating inputs that expose SQLI and XSS vulnerabilities. The

140

technique generates sample inputs, symbolically tracks taints through

execution (including through database accesses), and mutates the inputs to

produce concrete exploits. Ours is the first analysis of which we are aware

that precisely addresses second-order XSS attacks.

2. Compiler techniques [Wilander, 2003] pushes a tag into the stack and

checks the stack to see if the tag is still there unchanged; if so, it continues -

the normal execution flow, and if not, it aborts the program and gives an

error message. StackGuard [Cowan, 1998] for C/C++ languages.

3. Hardware defense mechanism. Hardware modules can be included in the

system to provide defense, with no modification of the program and with no

destruction of the integrity of the pipeline. Heapdefender [Li, 2012],

Heapbound [Devietti, 2008] for C/C++ languages.

4.5.2. RAST (IAST) TOOLS AVAILABILITY SURVEY.

There are RAST (IAST) tools for web and non-web applications, available commercially

and also as open source.

Non-web applications. C/C++ languages:

- VALGRIND [Valgrind, 2013] is an open source instrumentation framework for

building dynamic analysis tools. There are Valgrind tools that can automatically

detect many memory management and threading bugs, and profile your programs in

detail. Valgrind is Open Source / Free Software, and is freely available under the

GNU General Public License, version 2.

- INSURE++ [Insure, 2013] is a runtime memory analysis and error detection

commercial tool for C and C++ that automatically identifies a variety of difficult-to-

track programming and memory-access errors, along with potential defects and

inefficiencies in memory usage. Errors such as memory corruption, memory leaks,

141

access outside of array bounds, invalid pointers, and the like often go undetected

during normal testing, only to result in application crashes in the field. Insure++ will

help you find and eliminate such defects in your applications to ensure the integrity

of their memory usage.

- PURIFY [Purify, 2013] When a program is linked with Purify, corrected

verification code is automatically inserted into the executable by parsing and adding

to the object code, including libraries. That way, if a memory error occurs, the

program will print out the exact location of the error, the memory address involved,

and other relevant information. Purify also detects memory leaks. By default, a leak

report is generated at program exit but can also be generated by calling the Purify

leak-detection API from within an instrumented application.

Web application tools:

- HP FORTIFY RUNTIME (REAL-TIME ANALYZER) [HP-Fortify, 2013]. It

identifies root security causes in deployed software, it provides accuracy defence

without tuning, it enables customized attack responses and it delivers sophisticated

protection out of the box.

 It automatically blocks attacks for common vulnerabilities from inside

applications and monitor Java and .NET applications and get data on actual

attacks.

- IBM SECURITY APPSCAN STANDARD with GLASS BOX agent [IBM-

Appscan, 2013]. It scans and tests for the latest threats with a desktop solution that

offers:

 A broad coverage of emerging threats, including Web 2.0 application

vulnerabilities.

142

 Advanced dynamic application security testing, also known as black-box

analysis (DAST).

 Glass-box testing, also known as runtime analysis or integrated application

security testing (IAST).

 Cross-Site Scripting (XSS) Analyzer for cutting-edge XSS detection and

exploitation and JavaScript Security Analyzer for static taint analysis of

client-side security issues

- SEEKER [Quotioum, 2013]. For testing processes, Seeker analyzes the application

code and data as it runs, in response to simulated attacks. Seeker monitors

application behavior and data flow across modules, components, tiers and servers to

accurately identify application threats.

- ACUNETIX+ACUSENSOR [Acunetix, 2013]. It is a security technology with

feedback from sensors placed inside the source code, while the source code is

executed. Black box scanning does not know how the application reacts and source

code analyzers do not understand how the application will behave while it is being

attacked, see figure 29. When AcuSensor Technology is used, it communicates with

the web server to find out about the web application configuration and the web

application platform (for PHP and .NET) configuration. Once triggered from the

ACUNETIX WVS scanner, the sensor gets a listing of all the files present in the

web application directory, even of those which are not linked to through the

website. It also gathers a list of all the web application inputs. Since it knows which

kind of inputs the application expects, it can launch a broader range of tests against

the application.

143

Figure 29 Acunetix+Acusensor. [Acunetix, 2013]

- ASPECT SECURITY [Aspect, 2013]. For java applications, this company develop

the SaaS (Software as a service) CONTRAST tool that works by inserting passive

sensors across the entire application stack. Events are fed into a powerful engine

which detects vulnerabilities automatically and accurately.

- WHITEHAT SENTINEL [WhiteHat2, 2103] offers basic IAST capabilities through

a vulnerability discovered by static analysis is correlated with DAST results, and also

uses IAST within its mobile testing capabilities. WhiteHat Security provides only

cloud-based testing as a service; no product option is available.

4.6. HYBRID ANALYSIS TOOLS

4.6.1. INTRODUCTION

A number of efforts of building hybrid security analysis tools or combinations of SAST,

DAST or IAST tools are appearing, to leverage the individual characteristics of each type of

tool and getting a hybrid tool which enhances the individual capabilities to increase the

number of vulnerabilities detection and to decrease the false positive rate. As a result a

hybrid tool can be more efficient as a whole.

144

As explained in detail before, two of the most effective automated vulnerability detection

techniques available today are Dynamic Application Security Testing (DAST) and Static

Application Security Testing (SAST). However, each method also has its weaknesses.

DAST must explore the attack surface to launch a successful attack, but its knowledge of

potential attack pathways is sometimes incomplete, inhibiting its ability to fully test an

application. Additionally, DAST is able to detect only the symptoms of vulnerability, not its

underlying cause within the code. DAST also cannot observe an application’s internal

behavior. For example, if a DAST tool launched a successful SQL injection attack that

destroyed a database, the only symptom DAST might detect would be the appearance in

HTTP of a “404 – Page Not Found” error message, with no insight into the error’s cause. In

this scenario, and others like it, DAST might register the attack as meaningless or even

unsuccessful, and hence the underlying vulnerability would slip through undiagnosed. And

while SAST offers greater coverage and is extremely proficient at finding potential

vulnerabilities in source code, it does not produce concrete test cases to demonstrate the

exploitability of the vulnerabilities it finds. Hybrid tools can be classified in earlier tools

that correlated DAST and SAST tools results and the last hybrid tools that incorporate IAST

tools.

First-generation hybrid analysis: A vital first step that doesn’t go far enough the allure of

hybrid analysis is obvious: Combining the results from DAST and SAST holds the potential

to maximize the advantages of each the vulnerability substantiation of dynamic testing with

the application coverage, root-cause analysis, and line-of-code specifics of static testing.

The first hybrid analysis tools were introduced just a few years ago. They help enterprises

conduct more complete security testing, validate results through enhanced correlation, and

reduce the time and expense of resolving application security issues. And yet they do not go

far enough when it comes to realizing the full potential of hybrid analysis. One key reason

is that first generation hybrid tools work by correlating results only after testing is complete.

145

However a real hybrid tool combining black box and static analysis exists, as mentioned in

[Tripp, 2011], where they present a commercial-grade hybrid-analysis solution for

automated security assessment of client-side JavaScript code. This approach brings together

the advantages of the white-box and black-box methodologies while overcoming their

weaknesses. A black-box component interacts with the subject web application and collects

pages that contain client-side JavaScript code. The pages are then analyzed using static taint

analysis to detect security vulnerabilities. The black-box component provides URLs and

other pieces of dynamic information that contribute toward specializing the static analysis,

making it much more precise and effective than its baseline version, as the authors

demonstrate empirically in their work.

One of the limitations of first-generation hybrid tools is that, because vulnerability

correlation happens after attacks have occurred and testing is concluded, important

opportunities for more thorough analysis can be missed. Another issue is that it can be

difficult to readily align the results of DAST and SAST analysis because the two

technologies process two very different types of information under very different

circumstances. DAST examines web traffic while applications are under attack; its output is

oriented around HTTP traffic. In contrast, static analysis scrutinizes source code and

configuration files. Therefore, in order to match up results, the correlation algorithm must

track down how a given vulnerability described within the relevant HTTP traffic by DAST

links to a specific line of code or configuration file identified through SAST. This

correlation can be difficult to perform accurately, which undercuts the ability of hybrid to

make more rapid remediation possible. Additional concerns with first-generation hybrid

involve questions of accuracy and application coverage. By focusing on vulnerabilities

detected by DAST and SAST, and hence with a high degree of correlation between the two

techniques, first-generation systems may inadvertently downplay the potential risk from

vulnerabilities detectable by only one method or the other, but not by both. Moreover, as

146

mentioned previously, because a DAST tool lacks key information about the interior

landscape of an application, the attack surface it targets may be incomplete.

.

Figure 30. Hybrid analysis information flow [HP-fortify, 2013]

Let consider the introduction of RAST to the SQL injection scenario mentioned previously

(Figure 30). In this instance, RAST is able to detect that an input parameter contains SQL

metacharacters. It then observes the SQL statements the application assembles, and it can

recognize when a malicious query is about to be delivered to the database. It communicates

all of this information in real time to DAST, which is then able to capture and report the

incident as a vulnerability.

Second generation of hybrid analysis. RAST (IAST) technology provides the foundation

for the next generation of hybrid analysis, real-time hybrid analysis. Real-time hybrid

analysis significantly enhances code coverage and accuracy, while fully automating the

process of identifying, locating, organizing, and ranking the severity of vulnerabilities in

code. Using real-time hybrid analysis [Livshist 2006], [Artho, 2005], [Lam, 200],

[Monga, 2009], organizations can resolve their most critical software security issues faster

and more cost-effectively, than any other available analysis technology. The degree of

synergy between static and dynamic analysis is discussed in [Mock 2003], [Ernst 2003].

Key benefits include:

147

- Identification of more vulnerabilities: RAST technology enables analysis tools to

investigate more of an application’s attack surface because it is capable of observing

application details statically and at runtime. For example, RAST conveys critical

details about file systems and the contents of configuration files to enable it to target

areas of code it otherwise would not have known to attack.

- More accurate diagnosis: RAST also enhances vulnerability diagnosis by observing

code execution in response to an attack, enabling DAST to know whether an attack

has succeeded and therefore represents a vulnerability. SAST can reduce the amount

of instrumentation code to reduce overhead during runtime analysis [Livshist 2006].

IAST could check the results of SAST de [Artho, 2005].

- Faster remediation of critical issues: By offering an unprecedented view of

application behavior, made possible through RAST, real-time hybrid analysis does

not only provide details of an attack and their relative level of impact, it also exposes

a vulnerability’s root cause in code. With this explicit guidance, security and

development teams can rapidly address security issues.

- Better understanding of vulnerabilities by distilling common causes: One root

cause is often responsible for generating thousands of vulnerability symptoms. Real-

time hybrid analysis is able to group all symptoms (vulnerabilities) that share a

common root cause, enabling teams to quickly eliminate multiple reported

vulnerabilities by resolving a single underlying problem.

- Simplified software security management: Leveraging RAST, real-time hybrid

analysis generates a single unified report combining DAST and SAST analysis [HP-

Fortify, 2013] that greatly simplifies management and oversight of remediation

efforts, enabling teams to quickly determine which vulnerabilities to address first for

their particular circumstances. The report lists all discovered vulnerabilities,

organized by such traits as:

148

 Impact of an exploit

 Degree of correlation

 Common root causes

 Location in code

Figure 31. HP FORTIFY HIBRID ANALYSIS [HP-Fortify, 2013]

By example, figure 31 shows the HP FORTIFY HIBRID ANALYSIS composed by a IAST

tool (SecurityScope) that interchanges real-time attack information with a DAST tool

(Webinspect). After this, the results can be correlated with SAST analysis (SCA) to

decrease false positives and increase the number of detections or true positives.

4.6.2. HYBRID TOOLS TYPES.

Hybrid tools are appearing in the last recent years. This section is a survey of hybrid tools

types available as academic research, commercial tools implementations or open source

tools. Examining the academic research is very important to know the last tendencies on

techniques used in hybrid security analysis tools.

As commented in the previous section, the main objective of building hybrid security

analysis tools or combinations of SAST, DAST or IAST tools is to leverage the individual

149

characteristics each type of tool and getting a hybrid tool with enhance the individual

capabilities to increase the number of vulnerability detection, decrease the false positive rate

and to increase the total vulnerability coverage. As a result the hybrid tool can be more

efficient as a whole. The following types of hybrid tools can be found.

- SAST- DAST.

- SAST-RAST

- DAST-RAST

- SAST, DAST y RAST.

SAST- DAST. As mentioned in previous section the first generation of hybrid tools was

limited to correlate individual results obtained with each type of tool. There have no many

implementations of collaborative tools composed of SAST and DAST tools, for example

[Csallner, 2005], [Csallner, 2006] describe several implementation of this type of tools.

Despite its simplicity they can find bugs that would require complex static analysis efforts.

Check ’n’ Crash [Csallner, 2005] uses JCrasher as a post-processing step to the powerful

static analysis tool ESC/Java. JCrasher [Csallner, 2004] is a simple, mostly dynamic

analysis tool that generates JUnit test cases. As a result, Check ’n’ Crash is more precise

than ESC/Java alone and generates better targeted test cases than JCrasher alone. DSD-

Crasher [Csallner, 2006] adds a reverse engineering step to Check ’n’ Crash to rediscover

the program’s intended behavior. This enables DSD-Crasher to suppress false positives with

respect to the program’s informal specification.

Babic et al [Babic, 2011] present a new technique for exploiting static analysis to guide

dynamic automated test generation for binary programs, prioritizing the paths to be

explored. The technique is a three-stage process, which alternates dynamic and static

analysis. Preliminary experiments on a suite of benchmarks extracted from real applications

150

show that static analysis allows exploration to reach vulnerabilities it otherwise would not,

and the generated test inputs prove that the static warnings indicate true positives.

Omer Tripp et al [Tripp, 2011] present a commercial-grade hybrid-analysis solution for

automated security assessment of client-side JavaScript code. This approach brings together

the advantages of the white-box and black-box methodologies while overcoming their

weaknesses. A black-box component interacts with the subject web application and collects

pages that contain client-side JavaScript code. The pages are then analyzed using static taint

analysis to detect security vulnerabilities. The black-box component provides URLs and

other pieces of dynamic information that contribute toward specializing the static analysis,

making it much more precise and effective than its baseline version.

Veracode [Veracode, 2013] offers an online SaaS service to analyze the security of

applications using SAST, DAST and manual penetration testing correlating their results.

Open source tools as IRONWASP [Ironwasp, 2013] for the client side javascript code

(AJAX engines of RIA applications or javascript code generated on server side but executed

on client side) give the possibility of performing static analysis besides penetration testing.

Also GRABBER [Grabber, 2013] performs Hybrid analysis testing for PHP application

using PHP-SAT (PHP source code analyzer) and JavaScript source code analyzer with

JavaScript Lint.

SAST-RAST. These hybrid tools perform collaborative static white box and runtime white

box security analysis. The architectures and purposes of these tools can be focused from

different points of view.

SECURFLY is a first example of academic research SAST-RAST hybrid tool exposed in

the thesis of Benjamin Livshits [Livshits, 2006], where the advantage of real time analysis

is discussed. It can detect all attacks in a particular category because they follow the trail of

how data flows through the application. It has no false positives, because it has perfect

http://www.program-transformation.org/PHP/PhpSat
http://www.javascriptlint.com/

151

historical information of each data type. It can also recovers from an attack against

vulnerabilities before it can be exploited by cleaning up the data entry application when

necessary in a production time, by adding code to monitoring events increasing the total

web application overhead. SECURFLY minimizes the total overhead using the results of

previous static analysis to reduce the monitoring code, eliminating statements that cannot

refer to objects involved in any "match" of a given query. The monitoring code reduction by

this technique may be 97% when the application roller is used as a benchmark. Others

examples of SAST-RAST tools can be examined in [Halfond, 2006] [Artho, 2005]. In these

cases, the tools are used in test phase to discover security vulnerabilities while, in Livshits

solution real-time analysis, SAST is optimized for real-time protection, blocking the

attacks, with the application in production.

Figure 32. JNUKE architecture [Artho, 2005]

JNUKE [Artho, 2005] (figure 32) uses SAST to check for vulnerabilities detected,

generating test cases for each one, that are verified by RAST in a test analysis phase.

AMNESIA (Analysis and Monitoring for Neutralizing SQL-Injection Attacks), [Halfond,

2006] (http://www-bcf.usc.edu/~halfond/amnesia.html) is a tool that implements a

technique for detecting and preventing SQL INJECTIONS. AMNESIA uses a model-based

approach that is specifically designed to target SQLIAs and combines static analysis and

runtime monitoring. It uses static analysis to analyze the Web-application code and

automatically builds a model of the legitimate queries that the application can generate. At

152

runtime, the technique monitors all dynamically-generated queries and checks them for

compliance with the statically-generated model. When the technique detects a query that

violates the model, it classifies the query as an attack, prevents it from accessing the

database, and logs the attack information.

PHP VULNERABILITY HUNTER [Hunter, 2013] is a whitebox PHP web application

fuzzer, that scans for several different classes of vulnerabilities via static and dynamic

analysis. By instrumenting application code, PHP Vulnerability Hunter is able to achieve

greater code coverage and uncover more bugs.

WEBSSARI (Web application Security by Static Analysis and Runtime Inspection)

[Huang, 2004] acts as an extension to a language’s existing type system. It is implemented

as a framework for extending existing script languages with our system. Currently,

WebSSARI supports PHP, one the most widely used Web application programming

language. Given the corresponding grammar, WebSSARI can also support other languages

used for Web application programming. WebSSARI automatically inserts runtime guards in

potentially insecure sections of code, meaning that a piece of PHP code will be secured

immediately after WebSSARI processing even in the absence of programmer intervention.

Induced overhead is low because the number of insertions is reduced to a minimum when

information gathered from static analysis is utilized. Users can add annotations to further

reduce this number, possibly to zero.

F4F [Sridharan , 2011] is a novel solution that augments taint analysis engines with precise

framework support and allows for handling new frameworks without modifying the core

analysis engine. In F4F, a framework analyzer first generates a specification of an

application’s framework-related behavior in a simple language called WAFL (for Web

Application Framework Language). The WAFL specification is generated based on both

lightweight code analyses and information found in other relevant artifacts such as

153

configuration files. The taint analysis then uses the WAFL specification to enhance its

analysis of the application. The code analyses are implemented using the Watson Libraries

for Analysis WALA (http://wala. sourceforge.net).

JPREDICTOR [Chen, 2006] (http://fsl.cs.uiuc.edu/jPredictor/) is a tool for detecting

concurrency vulnerabilities in java programs. It is composed of two major components: the

program instrumentor and the trace predictor (Figure 33). The program instrumentor

instruments the program under testing with instructions that log the execution. To reduce

the runtime overhead caused by monitoring, only partial information is logged during

execution. The trace predictor analyzes the logged execution trace to predict potential bugs

using sliced causality.

 Figure 33. JPREDICTOR [Cheng, 2006]

If a possible bug is detected, JPREDICTOR generates an abstract execution trace leading to

it, which explains how the bug can be hit in a real execution. As shown in Figure 33, the

trace predictor consists of four stages: the pre-processor, the trace slicer, the VC calculator,

and the property checker. The role of the pre-processor is two-fold. First, it constructs a

more informative trace from the partially logged trace using static analysis on the original

program, providing a foundation for the subsequent analysis. Second, it identifies all the

shared locations in the observed execution, which are critical for a precise predictive

analysis. The slicer scans the re-constructed trace, producing a trace slice for every property

154

to check. The generated slices are fed into the VC calculator, which computes the sliced

causality. In the last stage, the property checker verifies the execution against the desired

property using the computed sliced causal with lock-atomicity.

PHAN [Monga, 2009] presents a hybrid analysis framework that blends together the

strengths of static and dynamic approaches for the detection of vulnerabilities in web

applications: a static analysis, performed just once, is used to reduce the run-time overhead

of the dynamic monitoring phase. PHAN is able to statically analyze PHP bytecode

searching for dangerous code statements; then, only these statements are monitored during

the dynamic analysis phase.

SANER [Balzarotti, 2008] analyzes the use of custom sanitization routines to identify

possible XSS and SQL injection vulnerabilities in web applications. In the context of this

work, any function that takes as input a (string) value and that can output a modified version

of this input is considered a possible sanitization routine. In particular, this includes

functions that replace or remove certain characters or substrings from their input (such as

the PHP functions str replace). This requires the system to model the ways in which these

functions can modify the application’s input. To this end, SANER uses a combination of

static and dynamic program analysis techniques. The core of the approach consists of a

static analysis component that uses data flow techniques to identify the flows of input

values from sources to sensitive sinks. This component is based on the open-source web

vulnerability scanner called Pixy. In its current form, Pixy only provides information about

the presence of data flows between sources and sinks. In addition, it can determine whether

built-in sanitization operations (such as html entities) are applied on all paths between a

source (input data) and a sink (instruction where exploit is executed). To achieve this, it is

sufficient to assign one of two types (or labels) to each program variable: tainted or

untainted. Whenever input is read from a user and stored in a variable, the variable initially

receives the label tainted. Once a variable is sanitized, its label is set to untainted.

155

Because the number of false positives can be large (depending on the application), authors

augment the static analysis with an additional dynamic analysis phase. The goal of the

dynamic phase is to examine all those program paths from input sources to sensitive sinks

that the static analysis has identified as suspicious. More precisely, using dynamic analysis,

we attempt to confirm the existence of a potential security vulnerability (reported by the

static analysis phase) by finding program inputs that can bypass the sanitization routines

and reach the sensitive sink. To this end, the dynamic analysis is used to simulate the effect

of the program operations on the input while it is propagated to the sensitive sink (in

particular, sanitization operations are of interest). Of course, the analysis is performed by

exercising the code with a large set of different input values, which contain many different

ways of encoding and hiding malicious characters. In some sense, the dynamic analysis

phase automates the actions of a programmer when a static analysis tool reports a warning.

See figure 34 with execution results of SANER against several applications.

 Figure 34. SANER results with application benchmarks. [Balzarotti, 2008]

Pranith Kumar D. [Pranith, 2009] presents another hybrid approach, which utilizes the

strength of both dynamic and static analysis to efficiently detect security vulnerabilities like

buffer overflow, dangling pointers and memory leaks. Executable is first instrumented using

PIN library, a instruction trace tool and memory profiling, [Keugh, 2005], to extract the

exact control flow and register bounds. Executable is disassembled then to get the assembly

156

code. Control flow and register bounds are then used in static analysis in which constraint

bound check is performed on the slice generated. Finally memory errors obtained as

discussed earlier are reported.

SANTE [Chevaro, 2012] (Static ANalysis and TEsting) combines value analysis, program

slicing and structural dynamic testing for the verification of C programs. SANTE is

implemented using Frama-C, an open-source framework for static analysis of C code, and

PathCrawler, a structural test generation tool.

Ruoyu Zhang et al. [Zhang, 2011] proposes a novel approach, and realizes it as a

framework. Moreover, we verify the practicality of the framework by building a

vulnerability discovery tool on it. Their contributions are summarized as follows:

- They propose SDCF (Static and Dynamic Combined Framework).

- They implement a tool to detect latent software vulnerabilities. They present and

evaluate LSVD (Low-overhead Software Vulnerability Detector), an SDCF based

tool to discover software vulnerabilities. LSVD cannot only detect software

vulnerabilities being exploited at runtime, but also find the unexecuted code

containing weak spots.

DAST-RAST. An example of this hybrid tool implementation is the approach of Andrey

Petukhov, Dmitry Kozlov [Petukhov, 2008] that incorporates advantages of penetration

testing and dynamic analysis. This approach effectively utilizes the extended Tainted Mode

model. The prototype implementation of our approach consists of three main components:

the dynamic analysis module, which is an extension of the Python interpreter that collects

traces of the executed application, the analyzer, which builds DDGs for the collected traces

and performs analysis thereof, and the penetration testing (Owasp Webscarab tool) module

that submits input data (both normal and malicious) to the web application. This proposal

157

combines dynamic analysis approach with penetration testing. Arguments lying behind it

are as follows:

- During penetration testing real attacking patterns are submitted to an application. By

combining penetration testing with dynamic analysis the scope of the web

application view is widened, so error suppression and custom error pages are not an

issue.

- By submitting real attacking patterns it is possible to test data validation routines for

correctness, not just trust them blindly.

- The dynamic analysis implementation knows the web application from inside, so

more accurate penetration test cases can be generated.

These kind of hybrid tools are mainly commercial solutions of leader software companies:

- IBM SECURITY APPSCAN STANDARD [IBM-Appscan, 2013], scans and tests

for the latest threats with a desktop solution that offers:

 Broad coverage of emerging threats, including Web 2.0 application

vulnerabilities.

 DAST Advanced dynamic application security testing, also known as black-

box analysis.

 IAST Glass-box testing, also known as runtime analysis or integrated

application security testing.

 Cross-Site Scripting (XSS) Analyzer for cutting-edge XSS detection and

exploitation.

 JavaScript Security Analyzer for static taint analysis of client-side security

issues.

- HP FORTIFY WEBINSPECT REAL TIME [HP-Fortify, 2013] is the combination

of HP WebInspect working in concert with HP Fortify SecurityScope. HP

158

WebInspect delivers core platform-independent dynamic security analysis, broad

security assessment and accurate web application security scanning results. HP

Fortify SecurityScope is an agent that is installed on a target application server and

is designed to detect when HP WebInspect scans the target, providing application

information that WebInspect otherwise could not obtain. When used together, HP

WebInspect Real-Time stimulates the application through automated, external

security attacks, and then gathers internal, code-level vulnerability information by

observing the attacks in the code as they happen. HP WebInspect Real-Time

improves the accuracy of scan results, improves application coverage, reduces the

time required to validate vulnerabilities and offers developers key information that

allows them to find and fix the vulnerabilities more easily.

- ACUNETIX+ACUSENSOR [Acunetix, 2013]. Is a security technology with

feedback from sensors placed inside the source code while the source code is

executed combining IAST and DAST analysis. Black box scanning does not know

how the application reacts and source code analyzers do not understand how the

application will behave while it is being attacked. See figure 25. When AcuSensor

Technology is used, it communicates with the web server to find out about the web

application configuration and the web application platform (for PHP and .NET)

configuration.

SAST-DAST-RAST(IAST). An example of this type of hybrid tool is the academic

research prototype SDAPT [Halfond, 2011].The authors propose a new approach to

penetration testing based on previous information gathering and the response analysis

phases. One of the key insights of this approach is that many of the limitations of the

previous approaches can be addressed by assuming that penetration testers have access to

the source code or executable of the web application. This assumption is realistic in the

context of in-house penetration testing and it is consistent with the best practices defined by

159

both OWASP and OSSTMM, which assume that potential adversaries have access to one or

more versions of an application’s source code. The proposed penetration testing approach

leverages several newly developed analyses that make use of the web application source

code. To improve the information gathering phase, the approach builds on a static analysis

technique for discovering inputs vectors that was developed by two of the authors in

previous work. The proposed approach also improves the response analysis phase by

incorporating the use of precise dynamic analyses to determine when an attack has been

successful. The dynamic analysis allows the approach to perform fully automated detection

of successful attacks. SDAPT is used in an extensive empirical evaluation of the proposed

approach. In this evaluation, the authors used SDAPT to perform penetration testing on nine

web applications, and SDAPT’s performance was compared with that of two state-of-the-art

penetration testing tools. The empirical results show that the approach was able to (i)

exercise the subject applications more thoroughly and (ii) discover a considerably higher

number of vulnerabilities than the traditional penetration testing approaches.

Figure 35. SDAPT tool. [Halfond, 2011]

As is shown in figure 35, SDAPT consists of:

- An approach for penetration testing based on improved input vector identification

and automated response analysis.

160

- An implementation of the approach in a prototype tool that targets SQL Injection

and Cross Site Scripting vulnerabilities.

SAST-DAST-RAST (IAST) hybrid tools are mainly commercial solutions of leaders

software companies:

- IBM SECURITY APPSCAN ENTERPRISE [IBM-Appscan, 2013] performs

Correlation and triage security testing results from dynamic black box testing and

IAST glass box solution along with static (white box) scans.

- HP FORTIFY HYBRID ANALYSIS [HP-Fortify, 2013] composed by a IAST tool

(SecurityScope) that interchange real-time attack information to a DAST tool

(Webinspect). After this the results can be correlated with SAST analysis (Fortify

SCA) to decrease false positives and increase the number of detections or true

positives.

- WHITEHAT SENTINEL [WhiteHat2, 2103] offers basic IAST capabilities through a

vulnerability discovered by static analysis is correlated with DAST results, and also

uses IAST within its mobile testing capabilities. WhiteHat Security provides only

cloud-based testing as a service; no product option is available.

161

4.7. METHODOLOGIES FOR TOOLS EVALUATION.

An adequate methodology is a necessary instrument to perform an assessment of any of the

different security tools categories. A well-defined and repeatable methodology allows an

evaluation of the performance of vulnerabilities detection capacity of security tools. The

methodology adopted should use a selected benchmark with a well-known set of security

vulnerabilities. A security tool has the best performance against a benchmark if it has the

best balance between detecting the highest number of true positives and having few false

positives. ”. In accordance with Gray [Gray, 1993] a benchmark must be “repeatable,

portable, scalable, representative, require minimum changes in the target tools and simple to

use. The main goal is to derive a particularized methodology for comparing the

performance of each categories of security tool described in previous sections as SAST,

DAST, IAST or HYBRID tools. The methodology searches their effectiveness mainly in

terms of the number of detected security vulnerabilities and uses a selected and widely

accepted set of metrics necessary to analyze the results and extract adequate conclusions

Several mayor methodologies initiatives can be considered first, in order to develop a

particularized methodology:

- The NIST SAMATE project [Samate, 2013]

- WASC Static Analysis Technologies Evaluation Criteria project

- WASC Web Application Security Scanner Evaluation Criteria project

NIST SAMATE project [Samate, 2013]. SAMATE includes a methodology to perform an

assessment of SAST tools. The methodology for using SAMATE is detailed in two

different documents. The first one, NIST SP 500-268 [NIST268, 2007], is the minimum

functional specification for source code security analysis tools and includes:

- Functional requirements that must have every source code analysis tool:

identifying a minimum set of software vulnerabilities in source code, reporting of

162

the vulnerabilities found, their type and location, a low number of false positives,

and producing a findings report.

- Tables with source code vulnerabilities, for web and non-web applications based

on Common Weakness Enumeration (CWE) from MITRE Corporation [Mitre,

2013]. Its CWE identification and a small description, organized by classes of

vulnerabilities. Each of them must be considered also for a different number of

cases, depending on code complexity a concept referred to the way of storing a

memory variable. A general list of these types of structures, adapted from

Kratkiewicz thesis [Kratkiewicz, 2005] is also provided. Each different code

complexity type, such as fixed or variable loops, memory indexing nested within

indexing, local vs. global scope, and others, may require additional analytical

capabilities.

The second document (NIST SP 500-270) [NIST260, 2009] specifies the test plan to

determine how well a particular source code security analysis tool conforms to the

requirements specified in the first document. It includes:

1. The tests implementation: installation, test selection, execution of the tool for every

case and how to interpret the obtained results.

2. The different test suites available for C, C++ and Java, including complete test-suites

for testing all the source code vulnerabilities of Table 1.

As SAMATE defines (NIST SP 500-270) [NIST270, 2009], “a test suite is a collection of

test cases explicitly selected for a special purpose”. Each test case contains an atomic

program that ensures that a specific functionality required by NIST SP 500-268 [NIST268,

2007] can be performed by the tool under testing. Test suites and their test cases are stored

in SAMATE Reference Dataset [Samate, 2013].

163

Also SAMATE has a publication about Software Assurance Tools: Web Application

Security Scanner Functional Specification Version 1.0. [NIST269, 2008]. It specifies the

functional behavior of one class of software assurance tool: the web application security

scanner tool. Due to the widespread use of the World Wide Web and proliferation of web

application vulnerabilities, application level web security and assurance requires major

attention. This specification defines a minimum capability to help software professionals

understand how a tool will meet their software assurance needs.

WASC Static Analysis Technologies Evaluation Criteria project (SATEC). [Wasc,

2103]. The goal of the SATEC project is to create a vendor-neutral set of criteria to help

guide application security professionals during the process of acquiring a static code

analysis technology that is intended to be used during source-code driven security

programs. This document provides a comprehensive list of criteria that should be

considered during the evaluation process. Different users will place varying levels of

importance on each feature, and the SATEC project provides the user with the flexibility to

take this comprehensive list of potential criteria, narrow it down to a shorter list which

contains the most important or most relevant set of criteria, assign weights to each criterion,

and conduct a formal evaluation to determine which scanning solution best meets the user's

needs.

The aim of this document is not to define a list of requirements that all static code analysis

vendors must provide in order to be considered a "complete" solution. In addition,

evaluating specific products and providing the results of such an evaluation is outside the

scope of the SATEC project. Instead, this project provides criteria and documentation to

enable anyone to evaluate static code analysis tools and services and choose the product that

best fits their needs. The purpose of this document is to develop a set of criteria that should

be taken into consideration while evaluating static code analysis tools or services for

164

security testing. The vendor-neutral criteria defined in this document are selected using a

consensus-driven review process comprised of volunteer subject matter experts. Every

organization is unique and has a unique software development environment, this document

aims to help organizations achieve their application security goals through acquiring the

most suitable tool for their own unique environment. The document will strictly stay

away from evaluating or rating vendors. However, it will focus on the most important

aspects of static code analysis technologies that would help the target audience identify the

best technology for their environment and development needs.

Taking a decision regarding the best static code analysis tool or service to acquire could be

a daunting task. However, preparation for such a task could be very helpful. Every

technology is unique so as your corporate environment. The following is a set of

information you need to gather which could make the decision much easier to take. In its

appendix A, SATEC recommends to prepare a cheat sheet:

- A list of the programming languages used in the organization.

- A list of the frameworks and libraries used in the organization.

- Who will be tasked to perform the scan

- How the tool or service will be integrated into the Software Development Lifecycle

- How will the developers see the scan results

- Budget allocated to the technology purchase including the hardware to run the

machine (if any)

- A decision on whether the code (or the binaries) is allowed to be scanned outside

the organization.

The project covers many aspects relational to SAST tools as:

- Deployment:

165

- Technology Configuration Support:

- Technology Support

- Scan, Command and Control Support

- Testing Capabilities

- Industry Standards Aided Analysis

- Product Signature Update

- Triage and Remediation Support

- Reporting Capabilities

- Enterprise Level Support

WASC Web Application Security Scanner Evaluation Criteria project (WASSEC)

[Wasc, 2103]. This methodology is a set of guidelines to evaluate web application scanners

on their ability to effectively test web applications and identify vulnerabilities. It covers

areas such as crawling, parsing, session handling, testing, and reporting.

The goal of WASSEC is to create a vendor-neutral document to help guide web application

security professionals during web application scanner evaluations. This document provides

a comprehensive list of features that should be considered when conducting a web

application security scanner evaluation. Different users will place varying levels of

importance on each feature, and the WASSEC provides the user with the flexibility to take

this comprehensive list of potential scanner features, narrow it down to a shorter list of

features that are important to the user, assign weights to each feature, and conduct a formal

evaluation to determine which scanning solution best meets the user's needs.

The aim of this document is not to define a list of requirements that all web application

security scanners must provide in order to be considered a "complete" scanner, and

evaluating specific products and providing the results of such an evaluation is outside the

scope of the WASSEC project. Instead, this project provides the tools and documentation

166

to enable anyone to evaluate web application security scanners and choose the product that

best fits their needs. The project covers the major aspects a web application scanner tools

should be meet (NIST Special Publication 500-269, "Software Assurance Tools: Web

Application Security Scanner Functional Specification Version 1.0" [NIST269, 2008],

contains minimal requirements for mandatory and optional web application scanner

features): protocol support, authentication, session management, crawling, parsing, testing

command and control, reporting and advice for conducting a scanner evaluation in each

phase of the evaluation process.

This work uses a derived, particularized and enhanced methodology based on commented

previous projects. It compiles a suite of synthetic benchmarks with support for

multiplatform and for the C/C++, java, J2EE and PHP languages, with coverage for most of

vulnerabilities categories. The methodology used will be detailed in the next section.

167

4.8. BENCHMARKS FOR TOOLS SECURITY EVALUATION.

The methodology used to perform a security tools assessment should select a benchmark

with a well-known set of security vulnerabilities. A tool has the best performance against a

benchmark if it has the best balance between detecting the highest number of true positives

and having few false positives. As said before, the benchmark must be ‘‘repeatable,

portable, scalable, representative, require minimum changes in the target tools and simple to

use’’, in accordance with Gray [Gray, 1993].

Elisabeth Fong et al., established a procedure for evaluating web applications [Fong, 2008]

and described the design of a test suite for thorough evaluation of web application

scanners (DAST). This approach allows us to develop an extensive test suite that can be

easily configured to switch on and off vulnerability types and select a level of defense. The

experiments suggest that the test suite is effective at distinguishing the tools based on their

vulnerability detection rate; in addition, its use can suggest areas for tool improvement.

As in many other disciplines, a benchmark is needed for comparing tools. A benchmark

should serve to agree in the way to compare the results, trying to reach a consensus for a

trade-off between false positives and false negatives. According to Martin and Barnum in

[Martin, 2008] maybe this benchmark could also motivate its use as a referential standard

by community players as, for example, OWASP (Open Web Application Security Project),

the SANS (SysAdmin, Audit, Networking, and Security) Institute, CERIAS (Center for

Education and Research in Information Assurance and Security) and many others.

As mentioned and following Gray [Gray, 1993], a good benchmark must have a number of

characteristics:

- Its cost should be comparable to the value of the results.

- To be credible, a benchmark for vulnerability detection tools must report similar

results when run more than once over the same tool. It must be easily portable, as

168

must allow the comparison of different tools in a given domain. In practice, the

workload is the component that has more influence on portability, as it must be able

to exercise vulnerability detection capabilities of a set of tools in the domain.

- For reporting relevant results, a benchmark must represent real world. The

representativeness must be based on realistic code and must include a realistic set of

vulnerabilities and it should be scalable to increase the representativeness.

- A benchmark must require minimum changes in the target tools evaluated.

- Finally a benchmark must be as easy to implement and run as possible. Ideally, the

benchmark should be provided as a computer program ready to be used or, if that is

not possible, as a document specifying in detail how the benchmark should be

implemented and executed. In addition, the benchmark execution should take the

smallest time possible.

Taking into account that a false positive is a reported vulnerability in a program that is

not really a security problem and a false negative is a vulnerability in the code which is

not detected by the tool. When analyzing the results for test suite 46 (SAMATE

REFERENCE DATASET (SRD), [Samate, 2013]) we must remind that each test case is

usually a fixed case, corresponding to a test in test suite 45. If the tool detects a

vulnerability, this is a false positive. For example, the following code in figure 36,

shows the test case 1898 (part of test suite 46), related with a resource injection CWE,

but corrected by using a function (allowed), that uses a white listing of file names, to

validate the inserted filename. If the function allowed() does not exist, the argument

argv[1] could be any file with any valid path. If one of the tools detects a “resource

injection” vulnerability at the corresponding line in the code, this is a false positive

(figure 36).

#include <string.h>
#include <stdlib.h>

#include <stdio.h>
const char *whitelist[5] = {

169

 “users_site.dat”,
 “users_reg.dat”,
 “users_info.dat”,

 “admin.dat”,
 “services.dat.cxx”
};
int allowed(const char *_str) {
 for (unsigned i = 0; i < 5; i++)
 {
 if (!strcmp(whitelist[i], _str))
 return 1;

 }
 return 0;
}
void printLine(const char *fileName)
{
 FILE *fp = (FILE *)NULL;
 if ((fp = fopen(fileName, “r”)))
 {

 char buff[512];
 if (fgets(buff, 512, fp))
 {
 printf (“%s\n”, buff);
 }
 fclose(fp);
 }
}
int main(int argc, char *argv[])

{
 if (argc > 1)
 {
 if (allowed(argv[1]))

 printLine(argv[1]);
 }
 return 0;
}

 Figure 36. SAMATE test case 1898 of test suite 46.

The test case 1897 is the test case associated for the previous 1898 test case. The test case

1897 is designed with resource injection vulnerability (figure 37). The argument argv[1]

could be any file with any valid path.

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

void printLine(const char *fileName)

{

 FILE *fp = (FILE *)NULL;

 if ((fp = fopen(fileName, "r")))

 {

 char buff[512];

 if (fgets(buff, 512, fp))

 {

 printf ("%s\n", buff);

170

 }

 fclose(fp);

 }

}

int main(int argc, char *argv[])

{

 if (argc > 1)

 {

 printLine(argv[1]);

 }

 return 0;

}

Figure 37. SAMATE test case 1897 of test suite 45.

Figure 38 shows how Fortify SCA find a path manipulation vulnerability in the test case

1897 (resource_injection_basic.c) in line 21. The tool shows the analysis evidence in the

left frame and other information about examples and how an auditor can remediates the

vulnerability.

171

Figure 38. Analysis of SAMATE test case 1897 of test suite 45 with Fortify SCA.

172

For security tools evaluation process two distinct benchmarks approachs can be used

mainly:

1. Test suites collections composed of test cases for specific languages. There are test

suites for detect false positives and test suite for vulnerability detection (true

positive).

2. Application benchmarks with specific vulnerability design to perform a security

analysis for vulnerability detection.

Next we try to reflect the state of art of benchmarking taking into account the described

previous characteristics .

4.8.1. TEST SUITES COLLECTIONS BENCHMARKS.

SAMATE REFERENCE DATASET (SRD). [Samate, 2013]. It provides a wide number of

tests suites for different languages, designed to check if a tool detect some (or all) of these

vulnerabilities. If, for example, the objective is to know if a static tool detects a particular

software vulnerability we must select the corresponding test. Then, the static tool is

executed against the code in the test and we can see if the tool really detects it or not.

SAMATE SRD provides also some ‘‘test-suites’’ that cover many (or all) of the selected

vulnerabilities. SAMATE SRD makes all possible efforts to become a benchmark reference

and its use is recommendable for sharing the information obtained when applied to static

analysis tools. Although not so detailed as our study, these tests have been used before as a

reference. Cifuentes and Scholz in [Cifuentes, 2008] used a subset of the SAMATE tests,

only those that are for C code and that relate to buffer overflow and ‘‘read outside the

bounds of an array’’, for evaluating the design of the Parfait tool. Some SAMATE tests

have been used also to perform a study to understand the coverage of the security rules in

the Motorola coding standards [Krishnan, 2008]. The NIST SAMATE project conducted

173

also the third Static Analysis Tool Exposition NIST SP 500-297 [NIST297, 2012] in 2012

to advance research in static analysis tools that find vulnerabilities in source code. The main

goals of SATE were to enable empirical research based on test sets, encourage

improvements to tools, and promote broader and more rapidly adoption of tools by

objectively demonstrating their use on production software. The master thesis of Jayesh

Shrestha [Shrestha, 2013] used SAMATE SRD to evaluate several static analyzers security

tools.

SECUREBENCH MICRO. [Securebench, 2103] Securebench Micro is a series of small test

cases designed to exercise different parts of a static security analyzer (SAST). Each test

case in Securebench Micro comes with an answer, which simplifies the comparison process.

All test cases included in this release can be installed on a standard application server such

as Apache Tomcat and be used to compare the effectiveness of runtime techniques such as

penetration testing tools (DAST) or IAST. This test suite has been used by Benjamin

Livshits and Monica S. in their work “Finding Security Vulnerabilities in Java Applications

with Static Analysis” [Livshits, 2005] and Benjamin Livshits in “Improving software

security with precise static and runtime analysis” [Livshits, 2006].

U.S. DEPARMENT of HOMELAND SECURITY [Homeland, 2014]. It includes 23 test

samples designed specifically for SCA tools testing. These example programs demonstrate

flaws that may be detected by security scanners for C/C++ software. The examples are

small, simple C/C++ programs, each of which is meant to evaluate some specific aspect of a

security scanner's performance.

WAVSEP PROJECT [Wavsep, 2104].This evaluation platform contains a collection of

unique vulnerable web pages in J2EE technology that can be used to test the various

properties of web application scanners (DAST) or static analyzers (SAST). WAVSEP has

174

been used in DAST evaluation performed by SECTOOLMARKET benchmarking tool

evaluation project [SEC, 2012]

4.8.2. APPLICATION BENCHMARKS.

Apart from test suites benchmarks there are insecure application benchmarks designed with

known vulnerabilities to perform security tool assessments. Assessment of false positives

and true positives can be performed with these types of applications. This section presents

deliberately insecure applications benchmarks for using in web application assessments:

MOTH (http://www.bonsai-sec.com/en/research/moth.php) is a VMware image with a set

of vulnerable Web Applications and scripts, that people may use for:

1. Testing Web Application Security Scanners

2. Testing Static Code Analysis tools (SCA)

3. Giving an introductory course to Web Application Security

The main objective of this tool is to give the community a testbed for web application

security tools. It is possible to find a test script available in MOTH for almost every web

application vulnerability that exists in the wild.

NOWASP (MULTIDAE) (http://www.irongeek.com/i.php?page=mutillidae/mutillidae-

deliberately-vulnerable-php-owasp-top-10) is a free, open source web application provided

to allow security enthusiast to pen-test and hack a web application. NOWASP (Mutillidae)

can be installed on Linux, Windows XP, and Windows 7 using XAMMP making it easy for

users who do not want to install or administrate their own webserver. It is already installed

on Samurai WTF. Simply replace existing version with latest on Samurai. NOWASP

contains dozens of vulnerabilities and hints to help the user exploit them; providing an easy-

to-use web hacking environment deliberately designed to be used as a hack-lab for security

175

enthusiast, classroom labs, and vulnerability assessment tool targets. NOWASP has been

used in graduate security courses, in corporate web sec training courses, and as an "assess

the assessor" target for vulnerability software.

NOWASP has been tested/attacked with Cenzic Hailstorm ARC, W3AF, SQLMAP,

Samurai WTF, Backtrack, HP Web Inspect, Burp-Suite, NetSparker Community Edition,

and other tools.

HACME SERIES FROM FOUNDSTONE (http://www.mcafee.com/us/downloads/free-

tools/index.aspx). Foundstone has put out a whole series of venerable web applications

practitioners can learn from and test your skills against:

- Hacme Travel (http://www.foundstone.com/us/resources/proddesc/hacmetravel.htm)

Platform: Windows XP, Microsoft .NET Framework v1.1, C++

- Hacme Bank (http://www.foundstone.com/us/resources/proddesc/hacmebank.htm)

Platform: Windows, IIS, .Net 1.1:

- Hacme Shipping

(http://www.foundstone.com/us/resources/proddesc/hacmeshipping.htm)

Platform: Windows XP, Microsoft IIS, Adobe ColdFusion MX Server 7.0 for

Windows, MySQL (4.x or 5.x with strict mode disabled)

- Hacme Casino (http://www.foundstone.com/us/resources/proddesc/hacmecasino.htm)

Platform: Ruby on Rails

- Hacme Books (http://www.foundstone.com/us/resources/proddesc/hacmebooks.htm)

Platform: J2EE application, Java Development Kit

WIVET (https://code.google.com/p/wivet/) is a benchmarking project that aims to

statistically analyze web link extractors. In general, web application vulnerability scanners

fall into this category. These web application vulnerability scanners, given a URL(s), try to

176

extract as many input vectors as possibly they can to increase the coverage of the attack

surface. WIVET provides a good sum of input vectors to any extractor and presents the

results. In order an input extractor to run meaningfully, it has to provide some kind of

session handling, which nearly all of the decent crawlers do. It has been used in DAST

evaluation performed by SECTOOLMARKET benchmarking tool evaluation project [SEC,

2011].

4.9. CONCLUSIONS.

This chapter has reviewed the main Secure Software Development Life Cycle

implementations to find out how and when (phase) they use automatic security tools. It also

has described the main projects about security standards, about security tool assessments,

benchmarks and evaluation methodologies. The state of the art knowledge of security tools

and benchmarks is necessary to select the most adequate to accomplish a security tool

assessment. Also, the state of the art of assessment methodologies, as for example

SAMATE, is the starting point to derive a new and repeatable methodology (see chapter 5),

one of the original contributions of this thesis, used in the security tool evaluations.

The main characteristics of all types of automatic or semi-automatic security tools have

been reviewed:

- SAST (Static Analysis Security Tools)

- DAST (Dynamic Analysis Security Tools)

- IAST(RAST) (Interactive-real Analysis Security Tools)

- HYBRID tools of the some previous types.

177

178

179

5. ASSESSMENT OF SECURITY ANALYSIS TOOLS

5.1. INTRODUCTION.

This chapter is dedicated to evaluate the type of semi-automated security tools revised in

previous sections to study their relative performance in terms of detection rates, false

positive rates and vulnerability coverage degree metrics. The evaluation process follows a

specific and repeatable methodology to allow getting the objectives proposed with a defined

procedure. This procedure consists in using selected benchmarks to run the selected tools

against them and analyze the results with a set of widely acceptable metrics. Each

evaluation process will permit to compare the performance of the analyzed security tools.

The following sections address the evaluation process of the security tools categories

considered in this thesis to perform security analysis of applications:

- Section 5.2: Methodology used to accomplish the assessments of security tools

categories considered in this work.

- Section 5.3: Set of metrics used for the analysis of the results of the assessments.

- Section 5.4: SAST assessment for C/C++ applications.

- Section 5.5: SAST assessment for web applications.

- Section 5.6: DAST-IAST-HYBRID assessment for web applications.

5.2. ASSESSMENT METHODOLOGY.

Section 4.7 was a survey of main methodologies available to accomplish assessment

processes or security tools as SAST, IAST or DAST. Based on that previous work, we

derived the proposed methodology.

180

The methodology process, shown in figure 39, consists on:

1. Benchmark selection. The benchmark state of art is examined (see section 4.8) to

select the most adequate to execute the tools against it. The benchmarks can be test

suites or application benchmarks. A benchmark is selected for each tool category

assessment (details below in this chapter).

2. Metrics selection. With the metrics selected we analyze the results to rank the tools

strictly. The metrics selected are widely accepted and explained in the following

section 5.3.

3. Tools selection. SAST, DAST, IAST and HYBRID tools state of art is revised (see

sections 4.3, 4.4, 4.5, 4.6) to select the most adequate for each type of assessment

performed.

4. Test execution: run tools against benchmarks. This execution provided a first set

of results that must be analyzed for each case and for each tool, using its trace help

for warnings (vulnerability detected), vulnerability documentation and background

references.

5. Computing the evaluation metrics for each tool executed against benchmark test

suites.

6. Analyzing the results for each for each tool using the computed metrics.

The analysis of these results allows getting the performance of the tools related with the

different accuracy for finding vulnerabilities and, as a consequence, also the false negative

and false positive ratios associated with each tool. The performance degree of tools allows

ranking them strictly.

181

Figure 39. Methodology process.

5.3. EVALUATION METRICS.

The evaluation metrics considered in this section will be used through all assessment

processes accomplished in the following sections.

The first metric to compute in relation to SAMATE test suites is the vulnerabilities

coverage percentage for each tool. A tool should be able of detecting at least the

vulnerabilities defined for each assessment process, according to the most dangerous

vulnerabilities published in standards as OWASP TOP TEN, SANS TOP 25 or SAMATE

project publications.

In previous section 4.1 the problems that static analysis tools suffer in relation to false

positives and negatives were exposed. The measurement of false positives and negatives

must be computed from the information collected after execution of each tool against the

benchmark test suites. The goal is to characterize vulnerability detection tools using the F-

Measure as shown in Information Retrieval [Rijsbergen, 1979], which is largely

independent of the way vulnerabilities are counted. In fact, it represents the harmonic mean

BENCHMARK
SELECTION:

METRIC
SELECTION:

Vulnerabilities

addressed

Recall

Precision

F-measure

TOOLS
SELECTION

TEST
EXECUTION

 :

Tool execution
against

benchmark

RESULTS
COLLECTION

ANALYSIS
OF RESULTS

by using
metrics

182

of two measures (precision and recall), which, in the context of vulnerability detection, can

be defined as:

- Precision: the ratio of correctly detected vulnerabilities to the number of all detected

vulnerabilities. Precision is also referred to as Positive predictive value (PPV):

 - Recall: a ratio of correctly detected vulnerabilities to the number of known

vulnerabilities. Recall in this context is also referred to as the True Positive Rate or

Sensitivity:

Where:

- TP (true positives) is the number of true vulnerabilities detected (i.e., vulnerabilities

that, in fact, exist in the code);

- FP (false positives) is the number of vulnerabilities detected that, in fact, do not

exist.

- FN (false negatives) is the total number of vulnerabilities not detected in the code.

- Harmonic mean is:

Where:

- n: number of variables.

- xn: value of variable n.

The formula for F-Measure is harmonic mean of precision and recall:

183

Two other commonly used F-measures are the F2-measure, which weights recall higher than

precision and the F0,5-Measure, which puts more emphasis on precision than recall. The

formula for Fβ-Measure is:

F-Measures will have ranges between 0 and 1 for a tool. A tool with 65% precision means

that a given warning has a 65% chance of being correct. A recall of 0.8 expresses that 80%

of all the known vulnerabilities are detected and that 20% are missed. In this case the F-

Measure is approximately 0.717. The three measures can be used to establish a ranking of

the performance of several tools depending on the purposes of the benchmark user.

5.4. SAST ASSESSMENT IN C-C++ APPLICATIONS.

Following the methodology exposed in section 5.2, we executed the selected tools

(described in following subsection 5.4.2) against a representative repeatable, portable and

scalable benchmark, described in subsection 5.4.1. The results are analyzed with widely

accepted metrics of section 5.3, to extract conclusions of their performance and

recommendations to their future using and improving.

Table 20, extracted from NIST SP 500-268 [NIST268, 2007] of SAMATE project, shows

the minimal set of vulnerabilities that a static security tool should be able to detect in C/C++

code.

Table 20

Set of source code vulnerabilities [NIST268, 2007]

NAME CWE ID Description

Input validation

Basic XSS (Cross-

Site Scripting)

80 Unfiltered input is passed to a web application that in
turn passes that data back to another client in the form

of a malicious script

184

Resource Injection 99 Unfiltered input is used in an argument to a resource

operation function.

OS Command

injection

78 Unfiltered input is used in an argument to a system

operation execution function.

SQL Injection 89 Unfiltered input is used in an argument to a SQL

command calling function.

Range Errors

Stack overflow 121 Input is used in an argument to the creation or copying

of blocks of data beyond the fixed memory boundary

of a buffer on the stack.

Heap overflow 122 Input is used in an argument to the creation or copying

of blocks of data beyond the fixed memory boundary

of a buffer in the heap portion of memory.

Format string

vulnerability

134 Unfiltered input is used in a string used to format data

in the printf() style of C/C++ functions.

Improper null

termination

170 The software does not properly terminate a string or

array with a null character or equivalent terminator

API Abuse

Heap Inspection 244 Using realloc() to resize buffers that store sensitive

information can leave the sensitive information

exposed to attack because it is not removed from

memory.

String

management

251 Some string manipulation functions can be exploited

through their input to produce buffer overflows.

Security features

Hard-coded

password

259 Hard-coded data is passed as an argument to a login

function.

Time and state

Time-of-check

Time-of-use race

condition

(TOC_TOU)

367 Between the time in which a given resource (or its

reference) is checked, and the time that resource is

used, a change occurs in the resource to invalidate the
results of the check.

Unchecked Error

Condition

391 No action is taken after an error or exception

condition occurs.

Code quality

Memory leak 401 Memory is allocated, but is not released after it has
been used.

Unrestricted

Critical Resource

Lock

412 A resource is “deadlocked” by obtaining an exclusive

lock or mutex, or modifying the permissions of a

shared resource.

Double Free 415 An attempt is made to free memory using an address

that has previously been used in a free () function call.

185

Use After Free 416 An attempt is made to access the same memory

address previously released by a call to the free()

function.

Uninitialized

variable

457 A variable is created without assigning it a value. It is

subsequently referenced in the program, causing

potential undefined behavior or denial or service.

Unintentional

pointer scaling

468 Improper mixing of pointer types in an expression

may result in references to memory beyond that

intended by the program.

Null Dereference 476 A pointer with a value of NULL is used as though it

pointed to a valid memory area.

Encapsulation

Leftover Debug

Code

489 Debug code can create unintended entry points in an

application.

5.4.1. BENCHMARK SELECTION.

The static analysis tools selected were executed against SAMATE Reference Dataset

[Samate, 2013] test suites 45 and 46 for C language. Test suite 45 includes test cases with

known vulnerabilities and test suite 46 is designed with specific vulnerabilities fixed. Each

test case is relative to a specific complexity, a concept referred to the way of storing a

memory variable [Kratkiewicz, 2005]. Each different code complexity type, such as fixed or

variable loops, memory indexing nested within indexing, local vs. global scope, and others,

may require additional analytical capabilities. This benchmark meets all the requirements

that a benchmark must have according to the section 4.8.

We did a detailed review process of the validity of all tests in SAMATE test suites 45 and

46. Thanks to this process, we have found eight non valid test cases in test suite 46. Four of

them correspond to “os command injection” test cases and the other four correspond to

“resource injection” test cases.

The study of test case 1931 is particularly relevant. This case is related with a command

injection CWE, but corrected by using a function (purify()) that, theoretically, validates the

variable storing the command. The truth is that the function in this test is insufficient to

prevent command injection, not checking important characters like pipes (|), backquotes (‘),

186

the dollar sign ($), i/o redirection (<, >), conditional shell operators (&&, ||) and others.

However, after executing all the tools against the modified test (including all these

characters) the results are almost identical. The only difference is with SCA, but it is a

minor change. With the corrected purify() function, SCA marks a “WARNING” (detecting a

vulnerability), instead of “HOT”, the old result, when executed against the SAMATE test

without corrections. So the results of the study remain the same, although this test case and

the three related ones must be changed.

The four “resource injection” test cases exhibit an error in the return of the allowed()

function: the two “return” sentences must be interchanged, see test cases 1896, 1898, 1900,

1902. However, the results of tools execution against tests, after fixing the four errors, were

the same for all tools.

5.4.2. SAST SELECTION.

The tools selected should allow comparing their performance, their usability and the

number and range of covered vulnerabilities for relevant commercial and open source tools.

From all the analyzed tools, two open source solutions and seven leading commercial

solutions were selected.

Commercial tools have advantages as:

- Support for more languages,

- Larger vulnerabilities coverage when compared with table 20,

- Better usability and trace help for discarding false positives.

- They are the best candidates for being included in a process of code security review

in a company.

187

These are the main reasons for the authors to select seven of most important commercial

tools to be included in the assessment.

Table 21 shows the reviewed commercial tools and the considerations observed to select the

tools for the assessment.

Table 21.

Analyzed commercial static analysis tools. [Díaz 2013]

TOOLS CHARACTERISTICS AND CONSIDERATIONS

SCA (HP

FORTIFY)

Leader security review tool. 100% coverage of table 1 vulnerabilities

categories. It covers 18 different languages

APPSCAN

SOURCE

EDITION (IBM)

Leader security review tool. Large coverage of languages and vulnerabilities

categories. It was not possible getting it for evaluation, no response received.

K8-INSIGHT

(KLOCWORK)

Bug finding tool for Java, J2EE, C and C#. 82.8% coverage of table 20

vulnerabilities categories

PREVENT

(COVERITY)

Bug finding tool for Java, C and C#. 92.4% coverage of table 20 vulnerabilities

GOANNA (RED

LIZARD)

Bug finding tool for C and C++. Without injection vulnerabilities coverage

PC-LINT

(GIMPEL)

Tool for C and C++. Without injection vulnerabilities coverage.

CHECKMARX

CX-ENTERPRISE

(CHECKMARX)

Bug finding tool. 91.4% coverage of table 20 vulnerabilities. It covers 15

different languages.

CODESONAR

(GRAMMATECH)

Program verification tool for C/C++ and Java, It does not check for the most

severe vulnerabilities, such as SQL injection and cross-site scripting.

POLYSPACE

(MATHWORKS)

Program verification tool for ADA, C/ C++. It proves the absence of overflow,

divide-by-zero, out-of-bounds array access, and run-time errors. It was not

possible getting it for evaluation, no response received.

C++TEST

(PARASOFT)

Security and Quality analysis tool C, C++, Java, C#, and VB.NET. It focuses

more in quality than security

Finally, the selected commercial tools were:

SCA version 4 is a product of Fortify Software [HP-Fortify, 2013], now a Hewlett-Packard

Company. SCA is a tool of the “security review” type. It uses lexical, syntactic and

semantic analysis, control flow and data flow analysis. It builds an intermediate model of

the code on which several specialized analyzers run, using many different security rules.

SCA covers C/C++, C#, ASP NET, VB.NET, COBOL, CFML, HTML, Java, JavaScript,

188

AJAX, JSP, PHP, PL/SQL, Python, Visual Basic, VBScript and XML. Fortify claims that

SCA provides details for more than 450 categories of vulnerability.

Prevent version 3.8 is a product of Coverity [Coverity, 2013]. Prevent is a tool of the “bug

finding” type. Prevent is able to analyze C/C++, Java and C# code.

K8-Insight version 8 is a product of Klocwork [Klocwork, 2013]. K8-Insight is another

leading “bug finding” tool that covers C/C++, Java, J2EE and C #code.

PC-lint version 8.00n is a Gimpel Software product [Gimpel, 2103]. Pc-lint is a style

checking tool. Their web site states the tool detects “vulnerabilities, glitches,

inconsistencies, non-portable constructs, redundant code for C/C++ programs”.

Goanna release 2.9.0-11916, a Red Lizard Software product [RedLizard, 2013]. Goanna is

a “bug finding” tool. It uses model checking techniques to keep false positives as low as

possible in C code. Its engine uses abstract interpretation algorithms.

Cx-enterprise version 6.20 is a product of Checkmarx [Checkmarx, 2013]. Cx-enterprise

is another bug finding tool for Java, C# / .NET, PHP, C, C++, Visual Basic 6.0, VB.NET,

Flash, APEX, Ruby, Javascript, ASP, Android and Perl languages with 92,4% of table 1

vulnerabilities coverage.

Codesonar version 3.7 is a Grammatech product [Grammatech, 2013]. Codesonar is a

program verification tool for C/C++ and Java (announced for next 3.8 version) languages,

which performs a unified dataflow and symbolic execution.

The other two tools we included in the assessment are open source tools. These are a set of

common characteristics about open source tools:

- Generally almost all open source tools are research projects from Universities, or in

some cases from companies,

189

- Usually their vulnerabilities coverage is limited to a short subset of those in table

20.

- Their usability, human interfaces and warning trace capabilities are much more

reduced than commercial tools.

- Some tools can require code annotations to enhance the results, making them not

useful for analysis of projects with several hundreds of thousands or millions of

lines of code.

Table 22 shows the reviewed open source tools and the considerations observed to select

the tools for the assessment.

Table 22

Analyzed open source static analysis tools [Díaz, 2013]

TOOLS CHARACTERISTICS AND CONSIDERATIONS

UNO, RATS,

FLAWFINDER,

ITS4, LINT

Earlier tools limited to lexical-syntactic analysis and only for a reduced subset of

vulnerabilities. All of them preprocess and tokenize source files (the same first

steps a compiler take) and then match the resulting token stream against a library

of vulnerable constructs.

BOON Applies integer range analysis. It can’t model interprocedural dependencies, and

it ignores pointer aliasing

CQUAL Type-based analysis, requires annotations in the code

BLAST Model checking tool, with the option of adding assertions in the code

SPLINT Enhanced version of Lint. Requires annotations in the code

SATURN Boolean satisfiability and summary based tool. Only limited to memory leaks,

lock problems and null dereferences vulnerabilities.

BOOP Abstraction and model checking tool. Not maintained anymore. The

formalization of C expressions is incomplete and not all C constructs are covered.

SATABS Program verification tool with Model checking, that implements a predicate

abstraction refinement loop using a SAT-solver. This allows the model checker to

handle the semantics of the ANSI-C standard accurately.

CBMC Program verification tool with Bounded Model Checking new tool research. In

CBMC, the transition relation for a complex state machine and its specification

are jointly unwound to obtain a Boolean formula, which is then checked for

satisfiability by using a SAT procedure

MAGIC Bounded Model Checking tool that require specifications in the code to

accomplish an analysis

190

 Finally, the selected open source tools were:

Satabs [Clarke, 2005] is a program verification tool for ANSI-C programs. It allows

verifying array bounds (buffer overflows), pointer safety, exceptions and control-flow

oriented user-specified assertions.

CBMC (C Bounded Model Checking) [Clarke, 2004] is a program verification tool

designed for ANSI C, it allows verifying array bounds (buffer overflows), pointer safety,

exceptions and user-specified assertions.

5.4.3. EXECUTION RESULTS.

The detailed execution results for test suites 45 y 46 are included, in tables 42 and 43

respectively, in Appendix B. Table 42 shows the percentage of detections for each

vulnerability category and tool in test suite 45. In last row detection percentage mean for

each tool is calculated. Table 43 shows the percentage of false positives for each

vulnerability category and tool in test suite 46. In last row false positive percentage mean

for each tool is calculated.

Table 23 summarizes the execution results of the security static tools against the 78 tests in

SAMATE test suite 45. “Fails” (false negatives) means that the tool should have detected

the specific vulnerability, because the tool was designed to detect it, but the tool did not do

so. “Good” (true positives) means that the tool has detected the vulnerability.

“Vulnerabilities not covered” means that the tool has not been designed to detect the

specific vulnerability. The absolute detection percentages, for each tool, are calculated by

excluding these cases each tool cannot detect (“vulnerabilities not covered”), and then

dividing the number of detected vulnerabilities by the number of vulnerabilities that the tool

is theoretically designed to detect. To normalize the result of detections, we computed the

percentage of detections for each type of vulnerability (recall) that each tool is designed for

191

detecting. Last column of table 23 shows also the arithmetic mean of detection percentage

for all types of vulnerabilities that each tool is able of detecting.

Table 23

Executions results for SAMATE test suite 45 [Díaz, 2013]

Test suite 45
results 78 cases

FAILS
(FN)

GOOD
(TP)

Vulnerabilities
not covered by a

tool

ABSOLUTE
DETECTION % OF
VULNERABLITIES

COVERED

DETECTION
PERCENTAGE MEAN

SCA 18 60 0 76.9 66.5

PREVENT 15 50 13 76.9 65.6

CX-ENTERPRISE 26 46 7 64.7 57.4

CODESONAR 21 34 23 61.8 55.6

K8-INSIGHT 23 42 13 64.6 52.7

GOANNA 24 29 25 54.7 49.4

CBMC 19 29 30 60.4 46

SATABS 20 28 30 58.3 43.6

PC-LINT 25 28 25 52.8 37.6

None of the tools detect all the SAMATE vulnerabilities in test suite 45. Indeed only SCA is

theoretically designed for detecting all of them.

Seven important vulnerabilities are not detected by any tool: the “unrestricted critical

resource lock” vulnerability, a dangerous vulnerability related with many kinds of DOS

(Denial of Service) attacks and well documented (CWE ID 412), the “incorrect pointer

scaling” (CWE ID 468) vulnerability and the five vulnerabilities of “basic XSS” cross-site

scripting (CWE ID 80). Only SCA and Codesonar detects one of three “Time-of-check,

Time-of-use race condition (TOCTOU)” (CWE ID 367), but only at the basic complexity

level. Only Cx-enterprise detects one of five possible vulnerabilities of “hard-coded

password” (CWE ID 259) at the basic complexity level. This behavior is an example of how

the detection depends on the level of code complexity of the test case.

Table 24 shows the summary of results for the execution of the nine tools against the 74

specific cases of SAMATE test-suite 46. The term “false positives” indicates the number of

false positives found and “good” (true negatives) means that the tool detected nothing,

being this the expected behavior of a good tool. The absolute percentages of false positives,

192

for each tool, are calculated by excluding again the cases that each tool cannot detect

(“vulnerabilities not covered”) and then dividing the number of false positives by the

number of vulnerabilities the tool can detect.

Table 24

Executions results for SAMATE test suite 46 [Díaz, 2013]

Test suite 46
results 74 cases

FALSE
POSITIVES

(FP)

GOOD (TN) Vulnerabilities
not covered by

a tool

% ABSOLUTE
FALSE

POSITIVES

 FP PERCENTAGE MEAN

PREVENT 4 57 13 6.5 5.3

K8-INSIGHT 7 54 13 11.4 9,5

CX-ENTERPRISE 15 53 6 22 21.9

GOANNA 8 43 23 15.6 22.6

CODESONAR 8 44 22 15.3 24.7

PC-LINT 18 33 23 35.2 29.2

SCA 27 47 0 36.4 32.1

SATABS 24 22 28 52.1 36.6

CBMC 29 17 28 63 43.7

To normalize the results authors calculate the percentage of false positives for each type of

vulnerability that each tool is designed for detecting. Last column of table 24 shows the

arithmetic mean of false positives percentage of all vulnerabilities types that each tool is

able to detect.

5.4.4. ASSESSMENT RESULTS.

Figure 40 shows the summary of the types and numbers of not covered vulnerabilities by

each tool for test suite 45 (summary for test suite 46 is similar) in comparison with

vulnerabilities of table 20. SCA is the only tool design to detect all vulnerabilities categories

of table 20.

193

Figure 40. Vulnerabilities types not covered by tools for test suite 45. [Díaz, 2013]

Table 25 shows the results for the different F-measure metrics, applied to absolute precision

and recall metrics:

Table 25

Metrics applied to test suites absolute results [Díaz, 2013]

METRICS
APPLIED TO

RESULTS

% Vul.
COVERED

TP FP PRECISION

RECALL F0.5-
MEASURE

F2-
MEASURE

F-MEASURE

PREVENT 82.8 50 4 0.925 0.769 0.888 0.795 0.839

K8-INSIGHT 82.8 42 7 0.857 0.646 0.804 0.679 0.736

SCA 100 60 27 0.689 0.769 0.703 0.751 0.726

CODESONAR 70.3 34 8 0.809 0.618 0.761 0.648 0.700

CHECKMARX 91.4 46 15 0.754 0.633 0.726 0.653 0.686

GOANNA 68.4 29 8 0.783 0.547 0.720 0.582 0.644

PC-LINT 68.4 28 18 0.608 0.528 0.590 0.542 0.565

SATABS 61.8 28 24 0.538 0.583 0.546 0.573 0.559

CBMC 61.8 29 29 0.500 0.604 0.517 0.579 0.547

Table 26 shows the results for the different F-measure metrics applied to weighted precision

and recall metrics:

0 5 10 15 20 25 30 35

CBMC

SATABS

PC-LINT

GOANNA

CODESONAR

K-8 INSIGHT

PREVENT

CX-ENTERPRISE

SCA

NUMBER OF VULNERABILITIES NOT COVERED CLASSIFIED BY TYPE
* Included in SANS TOP 25

TO
O

LS

NULLDER

XSS*

HARDPASS*

SQLI*

COMI

OSCOMI*

RESI

TOCTOU

LDEBUG

FSTRING*

194

- Recall mean is calculated as the arithmetic mean of all vulnerabilities types recall

got by each tool.

- TP mean is a value obtained from recall mean. For example, for Prevent, TP mean

is:

recall mean X vulnerabilities covered = 0.656 x 65

- FP mean is a value obtained from % FP mean. For example, for Prevent, FP mean

is:

% FP mean X vulnerabilities covered / 100 = 5.3 x 61 / 100

 Table 26

 Metrics applied to test suites weighted results [Díaz, 2013]

METRICS
APPLIED TO

RESULTS

% Vul.
COVERED

TP
(mean)

FP
(mean)

PRECISION

RECALL
(mean)

F0.5-
MEASURE

F2-
MEASURE

F-MEASURE

PREVENT 82.8 42.6 3.2 0,930 0.656 0,858 0,697 0,769

SCA 100 51.8 23.7 0.685 0.665 0.680 0.668 0.674

 K8-INSIGHT 82.8 34.2 5.7 0,857 0.527 0,761 0,570 0,652

CHECKMARX 91.4 40.7 14.8 0.732 0.574 0.693 0.599 0.643

CODESONAR 70.3 30.5 12.8 0,704 0.556 0,668 0,580 0,621

GOANNA 68.4 26.1 11.5 0.694 0.494 0.642 0.524 0.579

SATABS 61.8 20.9 14.8 0.554 0.436 0.525 0.455 0.487

CBMC 61.8 22 20.1 0.523 0.460 0.509 0.471 0.481

PC-LINT 68.4 19.9 11.5 0.621 0.376 0.549 0.408 0.469

F-measure metric allows obtaining a strict ranking of the analyzed tools’ performance.

Prevent obtained the best result for F-measure, indicating a very good balance between

false and true positives (65.6% of detections and 5.3% of false positives). SCA, K8-insight,

Cx-enterprise and Codesonar obtained a similar result of F-measure. Pc-lint obtained the

worst result score of 0.469. F-measure metric allows obtaining a strict ranking of the

analyzed tools’ performance.

5.4.5. CONCLUSIONS.

The main conclusions of this section are:

195

1. The methodology applies widely known metrics based on rates of true and false

positives and vulnerabilities coverage degree of tools, producing a strict scale for the

performance of static analysis tools. Then, a company can choose a tool by analyzing

the precision, recall, F-measure and vulnerabilities coverage metrics obtained against

SAMATE test suites.

2. Commercial tools (as Prevent, SCA, K8-Insight, Cx-enterprise and Codesonar) show

a better performance, usability and vulnerabilities coverage than the other analyzed

tools. However, all the analyzed tools obtain different results for different types of

vulnerabilities and cover different subsets of them.

3. Only one tool (SCA) covers all vulnerability categories in test suites 45 and 46 (see

figure 40). The other tools do not cover important vulnerability categories as XSS,

SQLI, CMDI, OSCMDI or Hardcoded password. Besides none tool detects some

vulnerability categories though they are designed to detect it. Unintentional pointer

scaling and unrestricted critical resource lock (see table 42 in appendix B) are two

vulnerabilities not detected by any tool.

4. A simple execution of many of these tools against a piece of code is not enough to get

reliable results, and raw results (results from the first execution) must be reviewed. Of

course the automatic execution of tools gives a formidable first step, especially for

analyzing lengthy code, but this is not enough. A careful analysis of the results by an

experienced user or team (with security skills and experience in the language used in

the target code) is always necessary.

5. The use of tools for static source code analysis to search security vulnerabilities must

be integrated as a part of the security policy of any development organization. But

current state of these tools does not allow indistinctly using them. The tools’ internal

designs and reporting output formats are different, so they produce substantially

different results.

196

Some recommendations easy to infer are:

- The need of standard output formats.

- Improving true and false positive rates and their balance is yet important.

- Take into account the time needed for performing the report audit of a static tool.

- Using several tools with different designs and with different detection

algorithms/heuristics to improve the analysis results when making a real analysis of

a big project

- Promote the use of SAMATE tests as a benchmark for objectively evaluating and

comparing the performance of static source code security analyzers

197

5.5. SAST ASSESSMENT IN WEB APPLICATIONS.

As commented in section 2.2.3, the volume of web applications developed exceeds 55% of

total developed applications. Web applications account for 75% of analyzed software.

Therefore, the number of threats that web applications may suffer is quite high and about

47% of all disclosed vulnerabilities were in web applications [IBM, 2012], according to

IBM X-Force 2012 Trend and Risk Report. This forces to make a security analysis of any

web application to avoid as many threats as possible.

Regarding to SAST, the range of solutions in this category must be analyzed to find out

which solutions are most appropriate to test the capacity of detecting the most important

and frequent security vulnerabilities. The tools’ performance includes:

- Calculating the average of true positive and false negatives and other metrics

detailed in section 5.3.

- Examining SAST aid to eliminate false positives and the possibility for the user of

making new detectors or rules for detecting other vulnerabilities.

- Studying how the tools can be combined to detect more vulnerabilities showing that

it is possible reaching rates of 95% of detections.

In this section we present the results of a comparative assessment between six SAST

commercial and open source tools for source and executable code (see section 5.2.2). SAST

tools are selected for J2EE technology, the most used technology in web developing

[Veracode. 2012]. Four source code static analysis tools are selected according to SAST

state of art for web applications (see section 4.4.3) and related work (see section 7.2) : K8

Insight, Lapse+, Fortify Sca, Cx-enterprise and two binary static analysis tools: Veracode

and Findbugs.

198

The methodology used in the assessment is the one exposed in section 5.2. We executed the

selected tools against a representative repeatable, portable and scalable benchmark. The

results are analyzed with the metrics of section 5.3, to extract conclusions of their

performance and recommendations to their future using and improving.

Table 27, shows the most dangerous security vulnerabilities in web applications, according

to SAMATE-NIST webapp scanner specification SP 500-269 document [NIST269, 2008],

their specification document to evaluate SAST, DAST, IAST or HYBRID tools.

Table 27

Most dangerous security vulnerabilities in web applications [NIST269, 2008]

Name
Description

Related terms CWE

Cross Site Scripting

(XSS)

A web application accepts user input (such

as client-side scripts and hyperlinks to an

attacker’s site) and displays it within its

generated web pages without proper

validation.

Reflected XSS,

persistent (stored)

XSS, DOM-based

XSS

79

SQL Injection Unvalidated input is used in construction of

an SQL statement.
Blind SQL injection 89

OS Command Injection Unvalidated input is used in an argument to

a system operation execution function.

XML Injection Unvalidated input is inserted into an XML

document.
XPath injection,

XQuery injection

91

HTTP Response

Splitting

Unvalidated input is used in construction of

HTTP response headers.
CRLF injection 113,

93

Malicious File

Inclusion

Unvalidated input is used in an argument to

file or stream functions.
File inclusion,

Remote code

execution,

Directory traversal

98

Insecure Direct Object

Reference

Unvalidated input is used as a reference to

an internal implementation object, such as a

file, directory, or database key.

Parameter

tampering, Cookie

poisoning, Path

manipulation

233,

73,

472

Cross Site Request

Forgery (CSRF)

An application authorizes requests based

only on credentials that are automatically

submitted by the browser. A CSRF attack

forces a logged-in victim’s browser to send

a request to a vulnerable application, which

then performs the chosen action on behalf of

Session riding,

One-click attacks,

Hostile Linking

352

199

the victim, to the benefit of the attacker.

Information Leakage Disclosure of sensitive information or the

internal details of the application.
File and directory

information leaks,

System information

leak.

538,

200,

497

Improper Error

Handling

Error message may display too much

information that is useful in exploring a

vulnerability.

Error message

information leaks,

Detailed error

handling

388,

209,

390

Weak Authentication

and Session

Management

Lack of proper protection of account

credentials and session tokens through their

lifecycle.

 287

Session Fixation Authenticating a user without invalidating

any existing session identifier. This gives an

attacker the opportunity to steal

authenticated sessions.

 384

Insecure

Communication

Transmitting sensitive information (e.g.,

session tokens, credit card numbers or

health records) without proper encryption

(e.g., SSL).

Unrestricted URL

Access

Missing or insufficient access control for

sensitive URLs and functions.
Predictable resource

location, security

by obscurity

425

5.5.1. BENCHMARK SELECTION.

After analyzing all benchmark initiatives summarized in section 4.8, SAMATE-NIST test

suite Juliet 2010 (SAMATE Juliet, 2010) has been considered the most representative and

adequate to accomplish this assessment. It has 13782 test cases and covers all weaknesses

categories in OWASP top ten 2010 and SANS 25 and therefore satisfies the objectives of

this comparative with regard to weakness categories coverage. In SAMATE-NIST test suite

Juliet 2010, each test case contains a bad function with a particular vulnerability and one

(1), two (2) or four (4) good versions of the bad function, depending on the case, with

different ways of correcting the vulnerability directly validating the input source to the

200

application (goodsource) or validating where vulnerability specifically occurs (goodsink).

Also, for each vulnerability versions of test cases with different complexities of code (flow)

[Kratkiewicz, 2005] are provided and, for each type of code complexity, there are different

versions of test cases with different input source type, such as tcpip connections, console

input, database, file, cookies, requests input parameters, etc. For example in each test case

for vulnerability relative_path_transversal CWE 23, the following description is

mentioned:

* @description

* CWE: 23 Relative Path Traversal

* BadSource: connect_tcp Read data using an outbound tcp connection

* GoodSource: A hardcoded string

* BadSink: readFile no validation

* Flow Variant: 09 Control flow: if(IO.static_final_t) and if(IO.static_final_f)

*

* */

Each test case has a function called bad() with an input source that is not validated,

badsource, and a point in the code not validated where the vulnerability materializes,

badsink. The variation of code complexity, flow variant [Kratkiewicz, 2005] is also

indicated. Each test case can have versions of good functions with good source input,

goodsource, or good sink, goodsink.

The wide range of vulnerability categories with a great number of test cases with different

code complexities available in the benchmark SAMATE Juliet 2010 makes necessary to

select the most frequent and dangerous ones, according to statistics from vulnerabilities

shown in chapter 3. They are distributed in two groups of categories of vulnerabilities:

201

Vulnerabilities Group 1. This group contains twelve weakness categories that almost all

the selected tools are able to detect by design, with some exceptions in two tools that cannot

detect any of the categories. This group contains the most dangerous categories given in

web applications according OWASP top ten 2010. For each vulnerability some variants in

complexity and source are selected, at least one variant of each input source to the

application. Table 28 shows the vulnerabilities in group 1.

Table 28

Group 1. Most dangerous vulnerabilities of SAMATE Juliet 2010 test suite.

 [Bermejo, 2011]

CWE DESCRIPTION Nº TEST CASES

23 Relative_Path_Traversal 11

36 Absolute_Path_Traversal 9

78 Command_Injection 10

80 XSS 11

81 XSS_Error_Message 13

83 XSS_Attribute 8

89 SQL_Injection 19

90 LDAP_Injection 11

113 HTTP_Response_Splitting 32

352 Cross_Site_Request_Forgery 7

566 Access_Through_SQL Primary 10

601 Open_Redirect_Servlet 11

TOTAL TEST

CASES

 154

Vulnerabilities Group 2. This group includes other dangerous categories in MITRE CWE

and SANS TOP 25. These ones include disclosure vulnerabilities, cryptographic procedures

vulnerabilities, unsynchronized shared data or weak random numbers using. Group 2 is a

complement to group 1 for assessment of tools vulnerabilities coverage degree. Table 29

shows the vulnerabilities categories for group 2. There are 32 vulnerabilities categories,

each one with two different test cases except for two vulnerabilities categories that has one

test case.

202

Table 29

Group 2. Complement vulnerabilities of SAMATE Juliet 2010 test suite.

 [Bermejo, 2011]

CWE DESCRIPTION Nº TEST CASES

209 Information_Leak_Error 2

256 Plaintext_Storage_of Password 2

257 Storing_Password Rec._Format 2

259 Hard_Coded_Password 2

293 Using_Referer_Field_for Auth. 2

315 Plaintext_Storage_in_a Cookie 2

319 Plaintext_Tx_Sensitive_Info 2

321 Hard_Coded_Cryptographic Key 2

327 Use_Broken_Crypto 2

328 Reversible_One_Way_Hash 2

330 Insufficiently_Random Values 2

336 Same_Seed_in_PRNG 2

338 Weak_PRNG 2

367 TOC_TOU 2

378 Creation_of_File_with Insec_Per 2

413 Insufficient_Resource Locking 1

476 NULL_Pointer_Dereference 2

489 Leftover_Debug_Code 2

497 Information_Leak_SystemData 2

523 Unprotected_Cred_Transport 2

547 Hardcoded_Security Constants 2

549 Missing_Password_Masking 2

567 Unsynchronized_Shared_Data 1

572 Call_Thread_run_Instead start 2

598 Information_Leak QueryString 2

603 Client_Side_Authentication 2

613 Insufficient_Session Exp. 2

614 Sensitive Cookie Without Secure 2

615 Info_Leak_By_Comment 2

643 Unsafe_Treatment_XPath Input 2

759 Unsalted_One_Way_Hash 2

760 Predictable_Salt_One_Way Hash 2

TOTAL TEST

CASES

 62

5.5.2. SAST SELECTION.

The next step was the selection of commercial and open source security static analysis tools

for source or executable code. They must detect vulnerabilities in web applications

203

developed using the J2EE specification, that it is the most used developing technology,

according to section 2.3.2.

According to previous comparatives in related work section (see section 7.2) and analyzing

the available commercial tools (see section 4.3.3., table 18), we selected six tools. Coverity

Prevent (actually Coverity SAVE) [Coverity, 2103] is not considered because it is designed

for no web java applications, not for J2EE applications. It was not possible to obtain

CodeSecure from Armorize [Armorize, 2103]. Parasoft mainly focuses on application

quality, with a lesser focus on security.

Finally, the selected tools were three commercial tools for source code (Checkmarx

CxEnterprise, Fortify SCA and Klocwork INSIGHT), VERACODE SaaS for executable

code and two open source (LAPSE+ for source code and FINDBUGS for executable code).

Their main characteristics are:

1. Fortify SCA. v. 5.10.0.0102 [HP-Fortify, 2013]. It supports 18 distinct languages,

the most extended OS platforms and it also offers SaaS (Software as a service). IHP

claims that the tool detects more than 479 weaknesses (FORTIFY weakness). It

presents very complete reports, classifying detections according to four severity

levels (HIGH-CRITICAL-MEDIUM-LOW) and industry vulnerability

classifications, as OWASP top 10, SANS 20, MITRE CWE and others. It allows the

addition of new custom rules defined by the user, to adapt the tool to peculiarities

that may require a particular Web application. Regarding to the track information of

a detected vulnerability, SCA is very complete. It allows integrating and correlating

the results with those of another open source tool like FINDBUGS.

2. Checkmarx CxEnterprise v. 5.5.0 [Checkmarx, 2103]. It supports JAVA, JSP, C#,

ASP, VB.NET, VB6, C++, PHP, APEX, JAVASCRIPT and VBSCRIPT languages.

It supports the Windows OS platforms, eclipse plugin, and it offers SaaS and a wide

204

set of vulnerabilities. It presents very complete reports classifying detections

according to three severity levels HIGH--MEDIUM-LOW and industry

vulnerability classification as OWASP top 10, SANS 25 or MITRE CWE. The track

information of a vulnerability detected by the tool is very complete. It doesn´t allow

the definition of new rules by the user to detect additional vulnerabilities.

3. Klocwork INSIGHT (v. SOLO JAVA 8.1.2v011) [KLOCWORK, 2103]. It support

JAVA-J2EE, C#, C/C++ languages and WINDOWS, UNIX, MAC, ANDROID OS

platforms and eclipse plug-in. It detects a wide set of vulnerabilities

(http://www.klocwork.com/products/documentation/current/CWE_IDs_mapped_to_

Klocwork_Java_issue_types). It allows the addition of new custom rules defined by

the user to adapt the tool to peculiarities a particular Web application requires.

Regarding to the track information of a vulnerability detected it is a very complete

tool.

4. VERACODE SaaS. [VERACODE, 2103]. It offers only SasS (software as a

service) static analysis for executable code service. Veracode no allow downloading

the tool. It support languages as Java, J2EE-J2ME, CC++, C#, ASP.NET, VB.NET,

PHP, ColdFusion (compiled as Java), BLACKBERRY and it covers a wide set of

vulnerabilities.

5. LAPSE + v. [Lapse+, 2103]. (open source). Lapse was a tool developed by

Benjamin Livshits as part of the Griffin Software Security Project (Securebench

Micro). Lapse + is a new version developed by the laboratory eValues the

University Carlos III of Madrid. It supports any platform if Java Runtime

Environment is available and integrated in Eclipse plugin. It detects a reduced set of

vulnerabilities but they are the most important according to OWASP top ten 2010. It

not classifies the report of vulnerabilities by severity and its information trace of a

205

given vulnerability is not adequate and it not has possibility of adding new detecting

vulnerabilities by the user.

6. FindBugs. 1.3.9 [Findbugs, 2013] (open source). It supports only java-J2EE

language and it can be integrated in eclipse. It supports a reduced set of

vulnerabilities, therefore it is not enough for an exhaustive and complete analysis.

Its reports of vulnerabilities give few trace information and not classifies them by

severity degrees. It permits to the users the addition of new detectors.

5.5.3. EXECUTION RESULTS.

In this section we show the results obtained when the selected tools are executed against the

two groups of test cases defined in section 5.2.We only took into account, for each test

execution, the vulnerabilities detected for which each test case is designed. Next, the

metrics selected in section 5.4 are applied to obtain the most appropriate measures to

promote good interpretation of the results and to draw the best conclusions.

Vulnerabilities Group 1 has the main objective of testing the most dangerous categories

given in web applications as XSS, SQLI, CSRF or HTTP response splitting. Table 30

accounts for the number of vulnerabilities detected (true positives), with exception of

Checkmarx that is not designed for path traversal and FINDBUGS not designed for

command injection. Veracode SaaS send the analysis of vulnerabilities groups requested but

XSS test cases were no analyzed. The total of test cases analyzed was 154.

To normalize the result of detections we calculate the percentage of detections for each type

of vulnerability (recall) that each tool is designed for detecting. Last file of table 30 shows

also the arithmetic mean of detection percentage for all types of vulnerabilities that each

tool is able of detecting.

206

Table 30

Vulnerabilities detection for Group 1. True positive ratio [Bermejo, 2011]

ND: Tool not designed for a vulnerability

NA: Vulnerability not analyzed

Table 31 shows a summary of results in the total of 329 false positive test cases. There are

more test cases than in table 30 because the bad function of each test case has several good

versions (see appendix C for detailed results) .

To normalize the results we calculate the percentage of false positives for each type of

vulnerability that each tool is designed for detecting. Last file of table 31 shows the

arithmetic mean of false positives percentage of all vulnerabilities types that each tool is

able to detect

CWE VULN. Nª TC Checkmarx SCA Klocwork Lapse+ Veracode Findbugs

23 Relative Path

Traversal

11 ND 11

 (100%)

9

(81,8%)

11

 (100%)

7

 (63,6%)

1

(0.9%)

36 Absolute Path

Traversal

9 ND 9

 (100%)

7

 (77,7%)

9

 (100%)

4

(36,3)

1

 (0,11%)

78 Command

Injection

10 4

(40%)

10

(100%)

6

 (60 %)

10

(100%)

4

(40%)

ND

80 XSS

11 1

 (0,9%)

6

(54,5%)

7

(63,6%)

11

 (100%)

NA 1

 (0,9%)

81 XSS Error

Message

13 10

 (76,9%)

5

 (38,4%)

6

 (46,1%)

6

(46,1%)

NA 0

(0%)

83 XSS Attribute

8 0

 (0%)

4

 (50%)

6

(75%)

7

 (87,5%)

NA 0

 (0%)

89 SQL Injection

19 19

 (100%)

19

(100%)

14

 (73,6%)

19

(100%)

12

(63,1%)

5

(23,6%)

90 Ldap Injection 11 8

 (72,7%)

11

(100%)

5

 (45,4%)

5

 (45,4%)

0

 (0%)

ND

113 http Response

Splitting

32 15

 (46,8%)

16

 (50%)

10

 (31,2%)

18

 (56,2%)

12

 (37,5%)

3

(0,09%)

352 CSRF

7 7

 (100%)

7

(100%)

5 (71,4%) 7 (100%) NA 0 (0%)

566 Access

Through SQL

Primary

10 10

 (100%)

10

(100%)

0

(0%)

10

(100%)

0

(0%)

0

(0%)

601 Open Redirect

Servlet

11 7

(63,6%)

6

(54,5%)

9

(81,8%)

11

 (100%)

7

 (63,6%)

3

(27,2%)

TP 81/124 114/154 84/154 123/154 46/115 14/133

% TP mean 60 78,9 58,9 86,2 38 5,3

207

Table 31.

Vulnerabilities detection for Group 1. False positive ratio [Bermejo, 2011]

ND: Tool not designed for a vulnerability

NA: Vulnerability not analyzed

Vulnerabilities Group 2 has the goal of analyzing the coverage degree of vulnerabilities in

each tool as well the true and false positives ratio. This group includes disclosure

vulnerabilities, weaknesses in cryptographic procedures, synchronization variables, weak

random numbers uses and others described in table 9. Table 32 shows a test execution

summary of the second group vulnerabilities.

CWE VULN. Nº TEST

CASES

Checkmarx SCA Klocwork Lapse+ Veracode Findbugs

23 Relative Path

Traversal

18 ND 15

(83,3%)

13

 (72,2%)

18

(100%)

6

(30%)

1

(0,05%)

36 Absolute Path

Traversal

14 ND 11

(78,5%)

8

(57,1%)

14

(100%)

2

(14,2%)

0

(0%)

78 Command

Injection

16 5

(31,2%)

15

(93,7%)

8

(50%)

16

(100%)

4

(25%)

ND

80 XSS

15 0

(0%)

6

(40%)

8

(53.3%)

15

(100%)

NA 2

(13,3%)

81 XSS Error

Message

23 18

(78,2%)

6

(26%)

8

(34,7%)

8

(34,7%)

NA 0

(0%)

83 XSS Attribute

13 0

(0%)

4

(30,7%)

6

(46,1%)

12

(92,3%)

NA 0

 (0%)

89 SQL Injection

58 50

(86,2%)

50

(86,2%)

39

(67,2%)

54

(93,1%)

26

(44,8%)

11

(18,9%)

90 ldap Injection

17 9

(52,9%)

15

(88,2%)

7

(41,1%)

7

(41,1%)

0

(0%)

ND

113 http Response

Splitting

88 35

(39,7%)

41

(46,5%)

19

(21,5%)

49

(55,6%)

16

(18,1%)

6

(0,06%)

352 CSRF

20 17

(85%)

18

(90%)

11

(55%)

18

(90%)

NA

(0%)

0

(0%)

566 Access

Through SQL

Primary

30 28

(93,3%)

27

(90%)

0

(0%)

28

(93,3%)

0

(0%)

0

(0%)

601 Open Redirect

Servlet

17 9

(52,9%)

7

(41,1%)

12

(70,5%)

17

(100%)

6

(35,2%)

0

(0%)

FP 171/297 215/329 148/329 256/329 54/276 20/296

% FP mean

51,9

66,1

47,4

83,3

20,6

3,2

208

Table 32

Group 2. Vulnerabilities coverage and TRUE/FALSE positive ratio [Bermejo, 2011]

5.5.4. ASSESSMENT RESULTS.

Vulnerabilities Group 1 result. The assessment of execution results against the benchmark

is accomplished applying the following metrics of section 5.3 to the vulnerability group 1.

- False positive percent

- Recall

- Precision

- F-measure

Precision metric indicates the best relation between true positive and false positive score.

Usually a tool has a direct proportionality between their true and false positives results. A

good tool should break this direct proportionality. In a new version of a tool, it should not

have more false positives if the tool detects more vulnerabilities. A tool with better

precision indicates it has a better relationship between true and false positives.

The classification order is determined by F-measure metric because it normalizes precision

and recall metrics, see table 33.

GROUP 2 – VULNERABILTIIES COVERAGE – 32 V. CATEGORIES – 62 VULNERABILITIES

METRIC / TOOL

checkmarx SCA Klocwork Lapse+ Veracode Findbugs

TOTAL TRUE POSITIVES

14
(22%)

23
(37%)

15
(24%)

4
(6%)

15
(15%)

1
(1%)

TOTAL FALSE POSITIVES

20

(32%)

36

(58%)

18

(29%)

8

(12%)

19

(30%)

1

(1%)

NUMBER OF VULN.
CATEGORIES WHICH A TOOL IS
DESIGN TO DETECT.

12
(37%)

32
(100%)

9
(32%)

1
(3%)

13
(40%)

1
(3%)

NUMBER OF VULN. NOT
DETECTED NONE TOOL

30 (total: 62 vulnerabilities)

209

- Recall mean is calculated as the arithmetic mean of all vulnerabilities types recall

got by each tool. Table 30 shows how recall mean is calculated.

- TP mean is a value obtained from % TP mean (recall x 100). For example, for SCA,

TP mean is:

% TP mean X vulnerabilities covered /100 = 78,9 x 154 /100 = 121,5

- FP mean is a value obtained from % FP mean. For example, for SCA, FP mean is:

% FP mean X vulnerabilities covered / 100 = 66,1 x 154 / 100 =101,7

Table 33

Assessment results computing the selected metrics [Bermejo, 2011]

TOOL TP

mean

FP

mean

PRECISION RECALL

mean

F-MEASURE

FORTIFY SCA 121,5 101,7 0,542 0,789 0,642

LAPSE+ 132,7 128,2 0,508 0,862 0,639

KLOCWORK 90.7 72,9 0,554 0,589 0,570

CHECKMARX 74,4 64,3 0,536 0,60 0,566

VERACODE 47,1 23,6 0,666 0,38 0,483

FINDBUGS 7 4,2 0,625 0,053 0,100

Vulnerabilities Group 2 results:

- The true and false positive percentages.

- The number of categories of vulnerabilities that a tool does detects with respect to

the total of 62 categories of vulnerabilities that are tested in group 2.

- The number of vulnerabilities categories not detected by any tool: 30 corresponding

to 15 vulnerability categories (table 34).

 Table 34

 Vulnerabilities categories not detected by any tool. [Bermejo 2011]

Vulnerabilities categories CWE

Storing_Password Rec._Format 257

Hard_Coded_Password 259

Using_Referer_Field_for Auth. 293

Plaintext_Tx_Sensitive_Info 319

210

Same_Seed_in_PRNG 336

TOC_TOU 367

Insufficient_Resource Locking 413

Unprotected_Cred_Transport 523

Hardcoded_Security Constants 547

Missing_Password_Masking 549

Information_Leak QueryString 598

Insufficient_Session Exp. 613

Client_Side_Authentication 603

Unsalted_One_Way_Hash 759

Predictable_Salt_One_Way Hash 760

Information_Leak_Error 209

The correlation of results of the six tools together gives a total of 147 detections this is a

95% of the 154 possible vulnerabilities.

Table 35 shows the correlation results of tools by pairs. This option can be more economic

with respect to the better results obtained than the other one obtained by only tool.

FINDBUGS doesn´t appear in tables, due to its poor detection results that make it not worth

making an effort to combine it with another tool.

Table 35

Results correlation of detections (true positives) between pair of tools [Bermejo, 2011]

RESULTS CORRELATION OF DETECTIONS (True Positives) BETWEEN PAIR OF TOOLS,

154 TEST CASES

CHECKMARX – LAPSE+ 142

LAPSE+ – KLOCWORK 139

FORTIFY SCA - LAPSE+ 133

FORTIFY SCA - KLOCWORK 130

FORTIFY SCA - CHECKMARX 127

CHECKMARX – KLOCWORK 123

VERACODE - FORTIFY SCA 99

VERACODE – LAPSE+ 99

VERACODE- CHECMARKX 83

VERACODE – KLOCWORK 71

Table 36 shows the results of test execution in group two (2) with 62 category weakness,

give a good idea of coverage degree in the vulnerabilities categories included in that group.

211

Table 36.

Vulnerabilities categories coverage for group two (2)

TOOL Nº CATEGORÍES COVERED

FORTIFY SCA 32

VERACODE 13

CHECKMARX 12

KLOCWORK 9

LAPSE+ 1

FINDBUGS 1

5.5.5. CONCLUSIONS.

The main conclusion from the analysis of the results of this assessment is that the use of

static tools source and executable code is very useful within the SSDLC for web

applications. Very high vulnerability detections percentages are achieved reaching in some

cases to exceed 80% in isolation. The average ratio of precision for all tools is 0.571 and the

average ratio of recall is 0,545. The tools cover the most dangerous vulnerabilities, but they

do not cover any other also important vulnerabilities categories (See table 32).

The number of false positives, high in general, in four cases over 50%, must be reduced in a

subsequent audit the results. All tools, except FINDBUGS, have good error trace facilities

to accomplish an adequate post audit. The subsequent performing of the audit requires

adequate preparation about vulnerabilities knowledge in the code language that is being

audited.

The tools are consistent across all test cases in the sense of when they no detect a real

vulnerability, they don’t give false positive warnings in the corrected versions of the

functions for analysis of false positives. In classification of table 33, by f-measure metric,

FORTIFY SCA has the best score followed by LAPSE+, followed by KLOCWORK,

CHECKMARX and VERACODE with similar score.

212

Combining two or more tools may improve the outcome of total detections reaching more

than 92% (142) using an open source tool as LAPSE+ with another commercial tool as

CHECKMARX. Note that by combining the six tools we reached just over 95% (147), but,

by selecting only two of them, the same result can be obtained. With five tools of this

comparison very good results are obtained combining them by pairs. Four of the tools,

SCA, CHECKMARX, KLOCWORK y LAPSE+ combined between them by pairs, obtain

percentages of detections between 80% and 92%.

It is also important to consider the possibility of using a SAST for executable code. A

company has not source code for commercial web applications and the average percentage

of commercial software is about 22% and almost 75% of them does not have acceptable

conditions of security [Veracode 2012].

The degree of coverage of vulnerabilities from the second group test is bad for open source

tools, which focus on the most frequent vulnerabilities of the first group with the exception

of some information disclosure vulnerabilities. If LAPSE+ would expand the degree of

weaknesses coverage, it could significantly raise its category. The degree of coverage is

higher for commercial tools (Fortify SCA covers all categories of vulnerabilities). It is quite

acceptable covering the most frequent and important, however, almost all of them have

wide field for improving.

In general, the detections in the categories of vulnerabilities of the second group are related

to disclosure of information in the code, weak cryptographic protocols and weak random

numbers. All tools obtain worse ranking results in second group than in the first group with

30 of 62 potential vulnerabilities not detected by any tool. In general all tools analyzed

except Fortify SCA need to increase the vulnerability coverage. The changing nature and

evolution of the categories of vulnerabilities over time, requires a continuous study to adapt

the tools to this development to have them always adapted to the time of use.

213

Finally, let’s note that there are not many more chances in the open source market and,

therefore, and given the importance of these tools, it is necessary to promote and enhance

their development and research to extend and improve them and include them in a SSDLC

of web applications. The frequency and dangerous trend of vulnerabilities changes over

time. This involves the analysis of security vulnerabilities trends and attacks to exploit the

vulnerabilities. The study of vulnerabilities trends is necessary to adapt the tools. Also new

benchmarks development for all type of tools and for mores languages are essential for

accomplishing new assessments that aid companies and developers make the best election.

5.6. DAST, IAST AND HYBRID ASSESSMENT IN WEB

APPLICATIONS.

Other types of security automatic tools that can be used to analyze the security of a web

application are DAST, IAST or HYBRID tools (see sections 4.4, 4.5, 4.6) that combine

some of SAST, DAST, IAST or HYBRID tools. In this section several known tools are

compared to evaluate their performance about vulnerability detections, false positive ratio

and vulnerability coverage degree. The tools are evaluated following the methodology of

section 5.2 and metrics of section 5.3. The metrics applied to the results allow

accomplishing an exhaustive analysis and rank the performance degree of tools and extract

conclusions about their usability and recommendations for their using by companies or

organizations.

214

5.6.1. BENCHMARK SELECTION.

To evaluate DAST or IAST tools the most adequate benchmarks are always application

because these tools are dynamic and analyze an application in runtime.

WAVSEP application is the benchmark selected from the analysis of benchmarks

applications in section 4.8. Project WAVSEP includes the following test cases:

1. For detection of vulnerabilities:

- Path Traversal/LFI, CWE 22: 816 test cases, implemented in 816 jsp pages (GET &

POST).

- Remote File Inclusion (XSS via RFI) CWE 73: 108 test cases, implemented in 108

jsp pages (GET & POST).

- Reflected XSS, CWE 79: 66 test cases, implemented in 64 jsp pages (GET &

POST).

- Error Based SQL Injection, CWE 79: 80 test cases, implemented in 76 jsp pages

(GET & POST).

- Blind SQL Injection, CWE 79: 46 test cases, implemented in 44 jsp pages (GET &

POST).

- Time Based SQL Injection, CWE 79: 10 test cases, implemented in 10 jsp pages

(GET & POST).

2. False Positives:

- 7 different categories of false positive Reflected XSS vulnerabilities (GET &

POST)

- 10 different categories of false positive SQL Injection vulnerabilities (GET &

POST)

215

- 8 different categories of false positive path traversal/LFI vulnerabilities (GET &

POST)

- 6 different categories of false positive remote file inclusion vulnerabilities (GET &

POST)

The selected tools have been executed against above WAVSEP test cases. WAVSEP, as

analyzed in section 4.8.1, is a test suite with 1126 different test cases for vulnerabilities

detection checks and 31 test cases for false positive checks. The vulnerabilities set of this

application benchmark are between the most dangerous and frequents according to

Veracode report volume 5 [Veracode, 2012]. In this report, XSS, SQLI, RFI and LFI

vulnerabilities are the 65% percent of total vulnerabilities found in all applications

analyzed.

5.6.2. DAST, IAST, HYBRID TOOLS SELECTION.

After examining these types of security tools in sections 4.4, 4.5 and 4.6, and according to

the tools availability, the tools selected for the assessment are the following 11 DAST,

IAST AND HYBRID tools:

- HP-WEBINSPECT (DAST). V. 9.30 [HP-Fortify, 2013]. HP-WebInspect will trace

and record code paths through JavaScript-Ajax, Adobe Flash, anti-CSRF support,

Web Service requests and WSDL crawler. HP WebInspect can integrate dynamic

and real-time analysis to find more vulnerabilities and fix them faster. It works in

concert with HP Fortify SecurityScope to observe attacks at the code level during

dynamic scans. It identifies and crawls more of an application to expand the

coverage of the attack surface and detect new types of vulnerabilities. It provides

stack traces and line-of-code detail to confirmed vulnerabilities.

216

- NETSPARKER (DAST) v. 2.3 [Mavituna, 2013]. Netsparker incorporates a

JavaScript engine that can parse, execute and analyze the output of JavaScript and

VBScript. This allows Netsparker to crawl and interpret web applications that rely

on client-side scripting, including custom code execution, AJAX operations or page

content that is dynamically created using frameworks such as jQuery. It has also

support for anti-CSRF.

- BURP SUITE (DAST) v. 1.4.10 [Portswigger, 2013]. Burp Scanner identifies

vulnerabilities such as SQL injection, cross-site scripting and file path traversal. It

has support for CSRF tokens.

- W3AF (DAST) v. 1.2 [W3AF, 2103]. It is an open source tool with support for

AJAX and Web application firewall integration.

- OWASP-ZAP (DAST) v. 2.2.2 [OWASP, 2103]. It is an open source OWASP

7987project scanner with support for AJAX, XML, JSON or CSRF tokens.

- IRONWASP (DAST) v. 0.9.7.1 [Ironwasp, 2013]. It includes Javascript static

analysis with support for SAP analysis and anti-CSRF support. It detects XSS,

SQLI, RFI, LFI, XPATH, OPEN redirect, LDAP injection and others.

- ARACHNI (DAST) v. 2.2.1 [Arachni, 2013]. Wapiti is an open source tool that can

detect the vulnerabilities as LFI, RFI, XSS, SQLI, CRLF Injection, HTTP Response

Splitting, CSRF, LDAP injection or XPATH injection.

- ACUNETIX (DAST-IAST) v. 9 [Acunetix, 2013]. Acunetix-Acusensor is a security

technology with feedback from sensors placed inside the source code, while the

source code is executed (IAST). It has support for AJAX, WSDL and their results

217

can now be imported into a Web Application Firewall (WAF). Acusensor is an

option for PHP and .NET applications (not J2EE).

- IBM SECURITY APPSCAN STANDARD (DAST-IAST) v. 8.5 [IBM-Appscan,

2013] performs correlation and triages security testing results from dynamic black

box testing and IAST glass box solution scans and JavaScript Security Analyzer for

static taint analysis of client-side security issues.

- SEEKER (IAST) v. 2.6 [Quotium, 2013]. Seeker analyzes the application code and

data as it runs, in response to simulated attacks. Seeker monitors application

behavior and data flow across modules, components, tiers and servers to accurately

identify application threat. Seeker detects all OWASP top ten 2010 and 2103

vulnerabilities. Seeker’s BRITE (Behavioral Runtime Intelligent Testing Engine)

conducts runtime analyses of the application code and of memory and data flow

based on the application behavior by using agents on each of the application servers.

Seeker tracks code-flow through multiple tiers in distributed architectures and in

different code modules. By assimilating into the application environment it learns

its behavior and identifies application security vulnerabilities.

- HP FORTIFY HYBRID ANALYSIS (SAST-DAST-IAST) v. 3.20 [HP-Fortify,

2013]. It is composed by a IAST tool (SecurityScope) that interchanges real-time

attack information to a DAST tool (Webinspect). After that, the results can be

correlated with SAST analysis (Fortify SCA) to decrease false positives and

increase the number of detections or true positives.

Tables 37 and 38 summarize the vulnerability coverage of DAST, IAST and HYBRID

tools selected.

218

Note:  covered,  not covered.

Table 37

Vulnerability coverage of DASD, IAST and HYBRID tools selected (1)

Table 38

Vulnerability coverage of DASD, IAST and HYBRID tools selected (2).

 CWE SEEKER HP-HYBRID W3AF ARACHNI ZAP IRONWASP

SQLI 89      

XSS 79      

LFI 22      

RFI 73      

CMDI 78      

OPEN REDIRECT 601      

CLRF 113      

LDAPI 90      

XPATHI 643      

XMLI 91      

Buffer O. 120      

Integer O. 190      

 CWE WEBINSPECT APPSCAN ACUNETIX NETSPARKER BURP

SQLI 89     

XSS 79     

LFI 22     

RFI 73     

CMDI 78     

OPEN

REDIRECT

601     

CLRF 113     

LDAPI 90     

XPATHI 643     

XMLI 91     

Buffer O. 120     

Integer O. 190     

FMT 134     

XXE 611     

SESSION 384     

CSRF 352     

219

FMT 134      

XXE 611      

SESSION 384      

CSRF 352      

5.6.3. EXECUTION RESULTS.

The tools are executed against WAVSEP test suite. The 1126 test cases correspond to XXS

(66), SQLI(136), LFI(816) and RFI(108) vulnerabilities. Table 39 shows the benchmark

detection results and table 40 shows the false positive results, where:

ND: Non designed for detecting a vulnerability.

TC: Test Case.

TP: True positive.

FP: False positive

Table 39

WAVSEP Benchmark detection results.

ND: Non designed for detecting a vulnerability

 XSS

(66 TC)

SQLI

(136 TC)

RFI

(108 TC)

LFI

 (816 TC)

TOTAL

DETECTIONS

TP %

Mean

Seeker 66 (100%) 136 (100%) ND 816 (100%) 1018 100

HP-Fortify

Hybrid

66 (100%) 136 (100%) 85 (78.7%) 446 (54,6%) 733 83,32

Appscan 66 (100%) 136 (100%) ND 396 (48,5%) 598 82,83

Burp 60 (90,9%) 136 (100%) ND 436 (53,4%) 632 81,43

Webinspect 66 (100%) 135 (99.3%) 66 (61,11%) 406 (49,75%) 673 78,78

Ironwasp 50 (75,7%) 136 (100%) 108 (100%) 288 (35,2%) 582 77,72

Nestparker 64 (96,9%) 136 (100%) 48 (44,4%) 453 (55,5%) 701 74,20

ZAP 66 (100%) 103 (75,7%) ND 342 (42%) 511 72,56

Acunetix 66 (100%) 136 (100%) 48 (44,4%) 262 (32,11%) 512 69,12

220

Arachni 136 (100%) 65 (98,5%) 48 (44,5%) 168 (20,6%) 417 65,90

W3AF 20 (30,3%) 81 (59,5%) 12 (11,1%) 469 (57,8%) 582 39,6

IAST (Sekeer) and HYBRID (HP-Fortify hybrid and Appscan) tools obtain the best results.

Notes about the results summarized in table 39:

- Tools have been ordered by their vulnerabilities percentage average of detections

(TP % Mean).

- TP % Mean is the mean of vulnerabilities detection percentages.

- The TP percent mean normalizes the vulnerability detections.

- The vulnerabilities not designed to be detected by a tool have not been considered.

Table 40

WAVSEP Benchmark false positive results.

ND: Non designed for detecting a vulnerability

 XSS

(7 TC)

SQLI

 (10 TC)

RFI

(6 TC)

LFI

 (8 TC)

TOTAL

FP

FP %

Mean

Acunetix 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 0

Burp 0 (0%) 0 (0%) ND 0 (0%) 0 0

Seeker 0 (0%) 0 (0%) ND 0 (0%) 0 0

HP-Fortify

Hybrid

0 (100%) 3 (30%) 0 (0%) 0 (0%) 3 0

Nestparker 0 (0%) 3 (30%) 0 (0%) 0 (0%) 3 0,75

Appscan 0 (0%) 3 (30%) ND 0 (0%) 3 0,75

Webinspect 0 (0%) 3 (30%) 0 (0%) 1 (12,5%) 4 10,62

Arachni 0 (0%) 5 (50%) 0 (0%) 0 (0%) 5 12,5

ZAP 0 (0%) 5 (50%) ND 4 (50 %) 9 25

W3AF 3 (42,8%) 3 (30%) 1 (16,6%) 1 (12,5%) 8 25,4

Ironwasp 0 (100%) 5 (50%) 0 (0%) 1 (12,5%) 6 40,6

221

The worst results are obtained by open source DAST tools.

Notes about the results summarized in table 40:

- Results have been ordered by FP percent mean (FP % Mean).

- FP % mean is the average of vulnerabilities false positive percentages.

- The FP percent main normalizes the vulnerability false positive results.

- The vulnerabilities no designed to be detected by a tool have not been considered.

5.6.4. ASSESSMENT RESULTS.

The next step is to apply the metrics of section 5.3 to the results of previous section to

obtain a strict ranking of the tools based in F-measure metric that normalizes the precision

and recall results.

The metrics (see section 5.3) shown in table 41 are:

- % Vulnerabilities covered.

- TP mean. TP mean is a value obtained from % TP mean in table 39. For example,

for Appscan, TP mean is:

% TP mean X vulnerabilities covered = 82,8 x 1018 / 100

- FP percent mean. FP mean is a value obtained from % FP mean calculated in table

40. For example, for Appscan, FP mean is:

% FP mean X vulnerabilities covered / 100 = 0,75 x 1018 / 100

- Recall.

- Precision.

- F-measure.

222

Table 41

Metrics applied to WAVSEP test suites weighted results

METRICS

APPLIED TO

RESULTS

% Vul.

COVERED

Tables 37, 38

TP

(mean)

FP

(mean)

PRECISION

RECALL

(mean)

F-MEASURE

Seeker 87,5 % 1018 0 1 1 1

HP-Fortify Hybrid 100 % 943,5 0 1 0,833 0,908

Appscan 93,7 % 842,9 7,63 0.991 0,828 0,902

Burp 31,2 % 828,6 0 1 0,814 0,897

Nestparker 56,2 % 835,4 8,44 0,989 0,742 0,847

Webinspect 87,5 % 886,1 119,3 0,881 0,787 0,831

Acunetix 68,7 % 778,0 0 1 0,691 0,817

Arachni 56,2 % 742,0 140.7 0,840 0,659 0,738

ZAP 31,2 % 738,0 281,5 0,721 0,725 0,722

Ironwasp 62,5 % 874,9 457,1 0,656 0,772 0,709

W3AF 81,2 % 445,8 286 0,609 0,396 0,479

5.6.5. CONCLUSIONS.

Table 41 ranks the tools performance according to F-measure metric. The tools score for F-

measure are good for almost all tools selected.

The vulnerabilities of WAVSEP benchmark are adequate to test DAST. These

vulnerabilities can be detected by using almost any DAST tool as can be seen in section 4.4.

This is the main reason for DAST good results. DAST must be tested against a benchmark

according to the DAST possibilities. WAVSEP vulnerabilities are between the most

dangerous in OWASP top ten 2013 or SANS top 25. The results obtained by tools are very

good, with detection percentages from 65% to 83% for all tools except for W3AF. DAST

tools have more problems to detect the LFI vulnerability. DAST tools generally exhibits

good rates of false positives (see table 40). Acunetix, Burp and Appscan obtain false

positive ratios < 1%. Open source tools as Arachni, ZAP and Ironwasp and W3AF

commercial tool obtain higher false positive ratio. Their false positive alerts vary from 5 to

9 of 31 in total

223

The analysis performed against WAVSEP benchmark shows the crawling capacity to find

the complete structure and links of an application is higher for commercial DAST tools than

open source tools.

Some IAST tools, as SEEKER, have been tested with very good results as shown in table

41. This a white box tool for runtime testing of web applications. Seeker gives also the

possibility of manual crawling and performs a test of all input sources it finds in their

analysis and it also permits using its crawling tool or another external crawling tool. Seeker

IAST tool has zero false positive alerts confirming the few false positives alerts for IAST

tools based in runtime white box testing.

Also HYBRID tools as HP-Fortify hybrid and APPSCAN standard edition (DAST-IAST).

Acunetix is a DAST and IAST solution (PHP and .NET). IAST is not available for J2EE.

HP-Fortify hybrid IAST (SecurityScope) confirm the test attack results of DAST

(Webinsptect) and their result are correlated along with SAST (SCA). HP-Fortify hybrid

obtains a F-measure score of 0,908. APPSCAN is also a DAST-IAST tool where IAST is

used to confirm the test results of DAST. Many of the results (SQLI and XSS) of DAST

(Webinspect) have been confirmed by IAST (SecurityScope).

Open source DAST tools obtain worse results than commercial tools but their results are

good. The f-measure score for three tools are higher of 0,700. Commercial tools also have

more features for web 2.0 analyses as AJAX, HTML5, JAVASCRIPT or WEB SERVICES.

Today is a requisite that a tool can perform client side code in rich internet applications.

Moreover commercials tools have better vulnerabilities coverage degree (tables 37 and 38).

However some commercial tools as Seeker, Burp and Appscan do not cover the RFI

vulnerability (see tables 37 and 38) included in the assessment with WAVSEP test suites.

Another vulnerabilities for web services as XMLI, XPATH and XXE are not covered by

some commercial and open source tools. Also CSRF, Buffer overflow and Integer overflow

224

are no covered by some commercial and open source tools. The requisite of testing web

service applications make necessary improving the vulnerability coverage of the tools.

DAST tools are incorporating additional utilities to improve their performance as:

- Static analyzers for javascript code for server side or client side code (AJAX

applications) as Appscan or Ironwasp by example.

- The posibilitiy of analizing web services as Acunetix, HP-Webinspect or Appscan.

- The possibility of incorporate a IAST tool to comfirm the veracity of the

vulnerabilities (false positives) as HP-Webinspect (Secutityscope) or Appscan

(Glassbox).

- The possibility of incorporte an IAST tool to discover additional vulnerabilities as

Acunetix with Acusensor option for .NET and PHP languages only.

- Supplying the information of analysis to a WAF to configure more precise rules to

protect a Web application in production phase.

HP-Fortify hybrid tool requires correlating the results of its component SAST-DAST-IAST

tools. This correlation implies the confirmation of many true positives and makes easier

checking if an alert is a false positive in the posterior auditory. The false positive ratio

obtained is 0% (3 alerts) for FP % mean (see table 40).

Actually there are no many commercial implementations of Hybrid tools that incorporate

SAST, DAST and IAST integrated tools. Only enterprises as HP and IBM (it has not been

possible to obtain IBM Security Appscan Enterprise for the assessment) offer Hybrid

solutions and Whitehat Security offers the SaaS Whitehat Sentinel product. The open source

Hybrid solutions are mainly academic research. As can be seen in section 4.6.2, there are

other hybrid implementations SAST-DAST (Check ’n’ Crash [Csallner, 2005]), SAST-

IAST (PHP VULNERABILITY HUNTER [Hunter, 2013], AMNESIA [Halfond, 2006]) or

DAST-IAST (Acunetix-acusensor, IBM Security Appscan Standard). In our opinion,

225

Hybrid solutions have a large field for development and investigation and they can be

object of future works.

5.7. ASSESSMENT CONCLUSIONS.

The methodology is repeatable and applies widely known metrics based on rates of true and

false positives and vulnerabilities coverage degree of tools, producing a strict scale for the

performance of static analysis tools. Then, a company can choose a tool by analyzing the

precision, recall, F-measure and vulnerabilities coverage metrics.

Following we summarize the main conclusions of the assessments accomplished in this

section about SAST, DAST, IAST and HYBRID security tools. They have been organized

in three groups:

- SAST assessment for C/C++ applications. The obtained results against SAMATE

test suites demonstrate that commercial tools (as Prevent, SCA, K8-Insight, Cx-

enterprise and Codesonar) show a better performance, usability and vulnerabilities

coverage than the other analyzed tools. However, all the analyzed tools obtain

different results for different types of vulnerabilities and cover different subsets of

them.

A simple execution of many of these tools against a piece of code is not enough to get

reliable results, and raw results (results from the first execution) must be reviewed. Of

course the automatic execution of tools gives a formidable first step, especially for

analyzing lengthy code, but this is not enough. A careful analysis of the results by an

experienced user or team (with security skills and experience in the language used in

the target code) is always necessary.

226

The use of tools for static source code analysis to search security vulnerabilities must

be integrated as a part of the security policy of any development organization. But

current state of these tools does not allow indistinctly using them. The tools’ internal

designs and reporting output formats are different, so they produce substantially

different results.

- SAST assessment for J2EE web applications. Very high vulnerability detections

percentages are achieved reaching in some cases to exceed 80% in isolation. The

average ratio of precision for all tools is 0.571 and the average ratio of recall is 0,545.

The tools cover the most dangerous vulnerabilities, but they do not cover any other

also important vulnerabilities categories (See table 32). The number of false positives,

high in general, in four cases over 50%, must be reduced in a subsequent audit the

results. Combining two or more tools may improve the outcome of total detections

reaching more than 92% (142 detections)

It is also important to consider the possibility of using a SAST for executable code. A

company has not source code for commercial web applications and the average

percentage of commercial software is about 22% and almost 75% of them does not

have acceptable conditions of security [Veracode 2012].

The degree of coverage of vulnerabilities from the second group test is bad for open

source tools, which focus on the most frequent vulnerabilities of the first group with

the exception of some information disclosure vulnerabilities. The degree of coverage

is higher for commercial tools (Fortify SCA covers all categories of vulnerabilities).

It is quite acceptable covering the most frequent and important, however, almost all

of them have wide field for improving.

In general, the detections in the categories of vulnerabilities of the second group are

related to disclosure of information in the code, weak cryptographic protocols and

weak random numbers. All tools obtain worse ranking results in second group than

227

in the first group with 32 of 62 potential vulnerabilities not detected by any tool. The

changing nature and evolution of the categories of vulnerabilities over time, requires

a continuous study to adapt the tools to this development to have them always

adapted to the time of use.

- DASD, IAST and HYBRID tools for J2EE web applications. The tools score for

F-measure are very good for almost all tools selected. The vulnerabilities of

WAVSEP benchmark are adequate to test DAST. DAST must be tested against a

benchmark according to the DAST possibilities (see section 4.5). DAST only perform

syntactic analysis and can detect a limited set of vulnerabilities [Sttutard, 2008].

WAVSEP vulnerabilities are between the most dangerous in OWASP top ten 2013 or

SANS top 25. There are important vulnerabilities as RFI not covered by four

commercial tools. The using of new IAST and HYBRID tools must be promoted to

achieve better detections results. Seeker is a IAST tool that obtains excellent results in

WAVSEP assessment. Different approximations of HYBRID tools are appearing and

we think they are yet in the beginning of their development.

The assessments show that all types of evaluated tools must improve the detection, false

positive and vulnerability coverage ratios. These assessments allow establishing a strict

rank between the tools involved in each evaluation according their performance, showing

their capabilities about additional features and vulnerability coverage degree. The

performance degree of tools is calculated with F-measure, recall and precision metrics

obtained from execution results against selected benchmarks.

228

229

6. DISCUSSION

Following the methodology, for the assessments performed in sections 5.4, 5.5, 5.6, this

chapter tries to answer a number of research questions that complement our study:

1- Which is the true positives / false positives balance for the analyzed tools?

2- Which is the usability level of the tools? After executing each tool, do the output of the

tool needs interpretation?, and to what degree?, by an experienced user? In other words, is

any user able to interpret properly the output of the tools and correct the vulnerabilities

found in code? Or do we need people with information security skills?

3- Which is the degree of adequacy of benchmarks within the proposed methodology?

4- How static, dynamic and hybrid tools must be integrated in SSDLC?

6.1. RESEARCH QUESTION 1: Which is the true positives /

false positives balance for the analyzed tools?

For the case of SAST tools assessment in C-C++ applications, the results in table 26 for F-

measure metrics normalize the different number of test cases that each vulnerability type

has in test suites 45 and 46. In our opinion this weighted value is probably the best option to

rank the tools based on the precision and recall metrics with normalized results for each

vulnerability category. F-measure expresses the performance degree and the balance

between true positive and false positive ratios. F2-measure, which weights recall higher than

precision, and the F0,5-Measure, which puts more emphasis on precision than recall, are

shown to give other additional point according with organizations preferences on detections

and false positives rates.

230

Perhaps the best criterion to select a tool could be the combination of F-measure and

vulnerability coverage metrics. When F-measure (table 33) is combined with the percentage

of vulnerabilities covered, SCA has the best result.

The large difference in results among the analyzed tools proves that many efforts must yet

be done to standardize the behavior of static analysis tools.

SAST for web applications assessment. The results for F-measure metrics (table 33)

normalize the different number of test cases that each vulnerability type has in SAMATE

Juliet test suites for J2EE applications. The F-measure results of SAST tools for web

applications are generally worse than SAST tools for C/C++. By example, the results of

HP-Fortify SCA are:

- SCA for C/C++:0,674.

- SCA for J2EE: 0,642

- KLOCWORK for C/C++: 0,652

- KLOCWORK for J2EE: 0,570

Precision metric normalizes TP (true positives) and FP (false positives). Findbugs and

Veracode have the best results for precision metric. They have few false positives but also

very few true positives. The goal of F-measure is to normalize precision and recall metrics

to obtain the definitive ranking of the tools (section 5.5.4). Finally Findbugs and Veracode

have the worst rank for F-measure metric.

DAST, IAST, HYBRID assessment. These tools have a very good balance of true

positives and false positives alerts taking into account that:

- The application benchmark used is designed with the common vulnerabilities that

DAST tools can detect.

- DAST tools have less false positives than SAST tools by design.

231

- IAST tools have also less false positives because it performs more precise runtime

whitebox analysis based on real variable and process information.

- HYBRID tools eliminate more false positives by correlating the individual

components or leveraging the feedback that individual components supply each

others.

- HYBRID tools detect more true positives adding the individual capabilities of

individual components.

Table 41 (section 5.6) shows the very good values for precision and F-measure metrics.

Eight tools have a F-measure value higher than 0,817.

6.2. RESEARCH QUESTION 2: Which is the usability level of the

tools?

For the case of SAST tools assessment for C/C++ applications, SCA, Prevent, K8-insight,

Cx-enterprise and Codesonar are easy to install, use, and upgrade. They have a great

amount of user documentation and give the possibility to developers of learning quickly

with their interface help. This interface is designed also to make the audit more easily with

its help trace of warnings detections to investigate in the code a concrete vulnerability. The

background and code knowledge provided by these tools help the developer to learn

quickly. Goanna must improve its trace warnings help and the other analyzed tools do not

have these features, therefore the audit of a report scan will be always a manual code

review.

SCA, Codesonar and Cx-enterprise give the option of reporting vulnerabilities in different

standards formats, as those of OWASP TOP 10, SANS TOP 25 or MITRE CWE. Prevent,

K8-Insight and Goanna have online documentation about vulnerabilities correspondence

232

with MITRE CWE standard. Pc-lint, Satabs and CBMC has no reports in OWASP, CWE or

TOP SANS 25 standards formats and they are more difficult to use. Satabs and CBMC has

no support to compile large projects, give only basic information about detected

vulnerabilities, has no trace help for eliminating false positives and for each detected

vulnerability, only report its type and code line where it occurs.

SAST for web applications assessment. HP-Fortify SCA and K8-Insight usability skills

have been commented in the previous paragraph of SAST tools assessment for C/C++

applications.

Checkmarx Cx-Enterprise permits to select a set of vulnerabilities for an adapted analysis. It

presents complete reports that can be correlated with OWASP TOP TEN or SANS TOP 25,

classifying the vulnerabilities in 3 degrees of dangerousness. The trace information for the

audits is adequate, with flow graphs to better understand the vulnerability occurrence. It

does not permit the addition of rules for new vulnerabilities by the users.

Veracode SaaS classifies the vulnerabilities in 5 dangerousness degrees and supplies good

flow graphs and trace information to audit the vulnerabilities.

Lapse+ and findbugs do not have acceptable trace information to audit the vulnerabilities

and do not classify the vulnerabilities by degrees of dangerousness.

DAST, IAST, HYBRID assessment. Analyzing these types of tools we can classify their

usability skills in two groups: commercial and open source tools. It is important to see that

DAST open source tools have a higher level of performance (detection ratio, false positive

ratio and vulnerability coverage), functionality and usability than SAST tools when

comparing with DAST and SAST commercial tools respectively.

However, the usability skills of commercial tools for performing analysis are also better

than the ones of open source tools:

233

- They incorporate more individual utilities to perform manual analysis to check the

veracity of alerts reported by an automatic analysis. For example Acunetix,

Appscan and HP-Webinspect have tools as HTTP editors, HTTP Sniffers, HTTP

Fuzzers and Authentication Testers to perform manual checks.

- Their interface is friendlier and the reports are more complete and easier to

understand and classify the vulnerabilities.

- Their analysis speed is higher to analyze large projects.

Seeker IAST tool has a very good interface with many information about vulnerabilities

found based on the code. It provides videos explaining how many of the vulnerabilities

found can be exploited based on the analysis performed of a web application.

HP-Fortiy hybrid tool has an audit tool (auditworkbench) that allows correlating the results

of individual tools components. Figure 41 shows an example of a vulnerability correlation

found by HP-Fortify SCA and Securityscope tools. The correlation function allows the

fusion of the results to optimize the global results.

234

Figure 41. Vulnerability correlation with auditworkbench.

235

6.3. RESEARCH QUESTION 3: Which is the degree of

adequacy of the selected benchmarks within the

proposed methodology?

SAST for C/C++ applications assessment. A questionable restriction of our study is the

selection of the SAMATE test suites as a benchmark. We believe the vulnerabilities

selected by NIST [NIST, 2013], the common used format, the CWE of MITRE [Mitre,

2013], and the code complexity variations of Kratkiewicz [Kratkiewicz, 2005] added are a

wise selection. However, as mentioned at chapter 5, eight test cases in test suite 46,

designed for evaluating false positives, must be changed.

Also, SAMATE is not really a standard and some other groups could use their own schemes

to do a similar evaluation. SAMATE defines only minimum functional requirements of

tools. These requirements could be upgraded to include additional ones, as more languages

support, reporting capabilities, product signatures updates, the information provided around

a finding (explanation of the vulnerability, recommendations, accuracy level) and the

relevance of the actual finding. Other potential improvements are adding the ability to

merge assessments, the ability to diff assessments or remediation advise customization.

The main contribution of SAMATE in our opinion is its great number of test suites

available for several languages and test cases with code complexity variety.

SAST for web applications assessment. The benchmark used, SAMATE Juliet 2010 is a

very complete test suite with more than 13000 test cases for J2EE web applications, with a

wide vulnerabilities coverage (106 CWE vulnerabilities) and a great variety of source

inputs (such as tcpip connections, console input, database, file, cookies, requests input

parameters, etc.) and code complexity (see section 5.5.1) [Kratkiewicz, 2005]. We think

SAMATE Juliet 2010 is the most adequate benchmark to analyze the security of a web

236

application and meets all requisites that a benchmark must have, according to Gray [Gray,

1993], that the benchmark must be ‘‘repeatable, portable, scalable, representative, requires

minimum changes in the target tools and simple to use’’. Actually SAMATE has delivered

the new version SAMATE Juliet 2013 for J2EE and C/C++ languages with more

vulnerabilities coverage.

DAST, IAST, HYBRID assessment. The selected benchmark WAVSEP, as analyzed in

section 4.8.1, is an application benchmark with a test suite composed of 1126 different test

cases for vulnerabilities detection checks and 31 test cases for false positive checks. The

vulnerabilities categories of this application benchmark are between the most dangerous and

frequents according to Veracode report volume 5 [Veracode, 2012]. In this report, XSS,

SQLI, RFI and LFI vulnerabilities are the 65% percent of total vulnerabilities found in all

applications analyzed. WAVSEP is a web application benchmark and it is the best suitable

for the assessment of DAST tools due to the vulnerabilities categories of WAVSEP that can

be detected by DAST tools.

Also WAVSEP is adequate to test IAST and HYBRID tools to compare their results with

DAST ones. However, in our opinion, WAVSEP should be improved with more test cases

corresponding to additional vulnerabilities categories. A new version of WAVSEP has been

delivered in the beginning of 2014 with new test cases for open redirect and Old, Backup

and Unreferenced Files [OWASP, 2013] vulnerabilities. Old, Backup and Unreferenced

Files vulnerabilities permit to find unreferenced and/or forgotten files that can be used to

obtain important information about either the infrastructure or the credentials. Most

common scenarios include the presence of renamed old versions of modified files, inclusion

files that are loaded into the language of choice and can be downloaded as source, or even

automatic or manual backups in form of compressed archives. Backup files can also be

generated automatically by the underlying filesytem your application is hosted on, a feature

237

usually referred to as "snapshots". All these files may grant the pentester access to inner

workings, backdoors, administrative interfaces, or even credentials to connect to the

administrative interface or the database server.

6.4. RESEARCH QUESTION 4: How static, dynamic and

hybrid tools must be integrated in SSDLC?

The SSDLC models analyzed in section 4.2 incorporate SAST and DAST tools in the

implementation and test phases respectively. However, actually IAST or HYBRID tools are

not mentioned in these models. As we have shown in previous section 5.6, there are

IAST and HYBRID tools implementations that can be considered to be introduced in

a SSDLC process. These tools get the best score in the comparative assessment performed

in section 5.6 with DAST tools for penetration testing of web applications. Seeker and HP

Fortify Hybrid obtain the best results in the assessment.

Regarding to HP Fortify Hybrid, the SAST tool component (HP Fortify SCA) finds

additional true positives to the findings of DAST component (HP Webinspect). Their

correlated true positive results are better than their individual ones. IAST (Securityscope)

tool component of HP Fortify Hybrid confirms many of the findings of DAST and SAST

components (HP Webinspect and HP-Fortify hybrid). In HP Fortify Hybrid, IAST is

installed between DASD (HP Webinspect) and the application to confirm in runtime

analysis the findings of DAST. When correlating the results of SAST-DAST-IAST

components of HP-Fortify hybrid tool:

- IAST Securityscope confirms the 60% of DAST findings for XSS and SQLI

vulnerabilities but does not confirm any of LFI and RFI vulnerabilities. As

238

Securityscope depends on HP-Webinspect attacks, it cannot find additional

vulnerabilities.

- The SAST component (HP-Fortify SCA) confirms 100% of DAST component (HP-

Webinspect) findings for XSS and SQLI vulnerabilities and 10% of findings for RFI

and LFI vulnerabilities.

- SCA finds additional vulnerabilities for SQLI (1), LFI (40) and RFI (19) (see table

39).

It is very improbable that vulnerabilities found by the three components of HP-Fortify

hybrid tool be false positives, mainly because Securityscope confirms the vulnerabilities in

runtime analyzing variables in the real process environment.

HYBRID tools can be used together in test phase analyzing the application by correlating

the results obtained by each different tool. Also HYBRID tools could integrate several types

of analysis leveraging the synergies between different types of tools without necessity of

correlating results because it presents a integrated result (See section 4.6 for PHP

Vulnerability Hunter tool by example).

With respect to IAST tools, they should be incorporated at test or deployment phases

depending on their work mode. By example Seeker tool or Fortify Securityscope (see

section 4.6) must be used only in test phase because they perform a white box analysis of

the application with the objective of reporting the vulnerabilities they find. Other tool as

Fortify RTA (see section 4.6) can be used as a firewall in deployment phase because it can

block an attack attempt exploiting a vulnerability in runtime.

Figure 42 represents where in a SSDLC each type of tool can be used in order to

incorporate new tendencies in white box, black box and HYBRID analysis tools. Based on

this framework, an organization must choose the most appropriate tools according to the

characteristics of their applications, their development policy, security policy and their code

239

revision process. Following a SSDLC model (section 4.2) an organization should have

adequate type tools for each phase of SSDLC. At least it should have a SAST tool and a

DAST and/or IAST tool.

Figure 42. Security tools integration in a Secure Software Development Life cycle.

Actually, new HYBRID tools solutions of various types are appearing while the debate

between static and dynamic tools continues. Therefore, it is necessary to continue studying

and investigating SAST, DAST, IAST and HYBRID tools possibilities to determinate

adequate conclusions about:

1. Languages coverage, vulnerabilities coverage, false positives and false negatives

ratios and other similar complementary metrics obtained from available and public

assessments or performing the assessment by the organization.

2. Usability, knowledge degree of the tool required and vulnerability trace facilities of

the vulnerabilities found to aid eliminating false positives.

Requirements Design Implementation
Test &

Deployment

Production
& Security

OPS

SECURITY
REQUIREMENTS

ABUSE CASES

RISK ANALYSIS SAST

HYBRID

DAST

IAST

 IAST

WAF

240

3. Phase of development life cycle to apply the tool according to its type and purpose.

The type of tools determines the phase or phases where it can be used.

4. Adequate knowledge (web weakness, secure languages considerations…) of

developing personal to handle the tools and perform the audit and vulnerability

correlations of the application analysis.

5. The economic possibilities of acquiring the tools by a company. The organization

must evaluate the availability and most adequate tools to be included in the SSDLC

process according to the tool capabilities and economic possibilities.

6.5. Conclusions.

This chapter has discussed the answers to research questions that complement our study by

using the results of the assessments of the different types of tools and benchmarks selected

to perform a security analysis of an application. The research questions try to cover aspects

of the tools as:

- Balance between vulnerabilities detection and false positive ratios.

- Usability and reports.

- Posterior audit of the tool reports.

- The integration of the different types of tools in the phases of the SSDLC.

The study of all these possibilities and characteristics for a security analysis tool is required

to make the best election to evaluate the security of an application inside of the SSDLC.

241

242

243

7. RELATED WORKS

This chapter reviews and discusses previous relative assessments and comparative

evaluations of SAST, DASD, IAST and HYBRID tools used to audit any type of

applications. It also compares their results with those obtained in this dissertation. The

section is organized in three subsections, according to the assessments performing in this

work in sections 5.4, 5.5 and 5.6:

- Works related with SAST assessments for C/C++ applications.

- Works related with SAST assessments for web applications.

- Works related with DAST, IAST and HYBRID assessments for web

applications.

7.1. SAST assessments for C/C++ applications related works.

The thesis of Kratkiewicz [Kratkiewicz, 2005] evaluates five tools against 291 buffer

overflow test cases in C code. The details of this work shows that Polyspace [MathWorks,

2013], the only commercial tool in the comparison, obtains a detection rate of 99% (recall

of 0.99) and a false alarm rate of 2.4% with a precision value of 0.976. The results, in the

same work, for the open source tool Archer [Yichen, 2005], obtains a detection rate of 90%

and a false alarm rate of 0,0%. The others tools (UNO [Holzmann, 2002], Splint [Evans,

2002] and BOON [Wagner, 2000]), obtain worse results. This work is also complete with

respect to code complexity variety. The code complexity concept refers to variants in the

code, which can lead to a concrete vulnerability: directly in main body, in a called function,

in a loop, array, pointer, etc. Tools sometimes may not detect a concrete vulnerability

244

when the code complexity changes, therefore a benchmark should include code

complexity diversity for each vulnerability.

However, the tool Archer got worse results with other vulnerabilities related with strings

operations in C code, as demonstrated in another tool comparison results in [Zitser, 2004],

also with Polyspace, UNO, BOON and Splint studies, These works compare open source

tools with few exceptions. Moreover in many cases the available comparisons are on earlier

open source tools, based only on lexical and syntactic analysis, with poor results and only

searching for a reduced set of vulnerabilities.

The results in Emanuelsson and Nilsson [Emanuelsson, 2008] of a technical comparison of

three commercials tools, Polyspace, Prevent [Coverity, 2013] and K7 Insight [Klocwork,

2013], indicate that Prevent and K7 Insight find largely disjoint sets of vulnerabilities. This

study concluded that Prevent and K7 Insight are prepared to sacrifice finding all

vulnerabilities in favor of reducing the number of false positives while PolySpace has a

high rate of false positives. Results for Prevent and K8-Insight tools in our comparison (see

section 5.4) are consistent with those in Emanuelsson and Nilsson [Emanuelsson, 2008],

with older versions, showing a large percentage of disjoint found vulnerabilities. We agree

with these authors in that, although the documentation offered by both companies claims

the same mechanisms and objectives, there must be significant differences in their analysis

algorithms.

 A study by Hofer [Hofer, 2010] presents a comparison of 12 static analysis tools, eleven of

them open source. The metrics in the study are: “installation process”, “configuration”,

“support”, “reports understand”, “vulnerabilities coverage degree” and “support for

handling projects”. Although interesting, the study lacks of execution metrics that allow a

correct comparison of the tools’ performance detecting security vulnerabilities.

245

O.V. Pomorova and D.O. Ivanchyshyn [Pomorova, 2103] performed an assessment of

several static analyzers for C/C++ code. They used SAMATE test suites and U.S.

Department of Homeland Security test suites. It includes 23 test samples designed

specifically for static tools testing as a benchmark and recall, precision and the F-measure

metrics for analyzing the results. The tools analyzed were CppCheck, PVS-Studio, Goanna

and PC-Lint. The tools were executed against three test suites:

1. 23 Homeland Security test cases.

2. 14 SAMATE test cases for buffer overflow and memory leak vulnerabilities.

3. 10 SAMATE test cases for null pointer dereference CWE 476.

Figure 43 shows the summary of results computing the F-measure metric (F-score).

Figure 43. F-score metric results of Pomorova assessment of SCA tools

[Pomorova, 2103]

In the case of PVS-Studio and Goanna Studio analyzers, the precision metric is equal to 1

for all test sets. Recall metric shows opposite results. It characterizes small percentage of

defects detection. Figure 43 shows that F-measure changes depending on the test set. For

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

CppCheck PVS-studio Goanna PC-Lint

Test set 1

Test set 2

Test set 3

246

the first test set effectiveness of SAST tools analyzed varies significantly. CppCheck is the

most effective in this case. Static analyzer allows to detect the vast majority of defects

present in test samples and to generate small percentage of false positives. Values are

similar for the second and third sets. The F-measure value is the same for three analyzers in

test set 3 for F Null Pointer Dereference vulnerability. The result for CppCheck tool is

slightly different. Thus, the metric F-measure reflects effectiveness of SCA. The

conclusions of the authors were:

- The study found that the effectiveness of static analysis is a complex measure that

depends on the complexity and implementation details of the testing source code.

- The value of the F-measure metric is useful for comparison of the results for only

single target software.

- The high results for particular project do not guarantee a similar result for any other

software.

In our opinion the study of Pomorova [Pomorova 2013] analyzes test cases for a reduced set

of vulnerabilities to be properly representative. Three of the static tools are commercial and

Cpp-check is an open source tool. The F-measure metric of the test set 3 (null derrefence

CWE 476) is over 0,65 for the four tools in the comparison. The F-measure metric for the

test set 2 is over 0,3 for the four tools. Cpp-check obtains the best result with a F-measure

metric of 0,74. The F-measure results for test set 3 are similar to the one obtained in our

assessment detailed in section 5.4. For example, the F-measure results for Goanna and PC-

Lint are 0,67 in Pomorova comparison. In our assessment of section 5.4 Goanna and PC-

Lint were also included and their F-measure results were 0,64 and 0,56 respectively.

However the results of Pomorova comparison for test sets 1 and 2 are lower than the one of

our comparison. Cpp-check is an open source tool that obtains good results when compared

with commercial solutions as Goanna or PC-lint involved also in the SAST comparison of

this thesis (see section 5.4). We think that more studies about commercial solutions are

247

necessary to understand all possibilities they offer. This study agreed with the Pomorova

[Pomorava, 2103] conclusions.

7.2. SAST assessments for web applications related works.

The work of [Rutar et al, 2004] analyzed a number of open source SAST tools for java,

(Findbugs, PMD, SC/java, JLINT and FLAG) and their results show that the tools find

non-overlapping vulnerabilities. Authors proposed a meta-tool to allow developers to

identify the different classes of vulnerabilities. The different vulnerabilities findings of the

tools are confirmed by our comparison results of section 5.5. Also our investigations about

SAST tools possibilities in section 5.5 confirm that only Findbugs, of all evaluated tools, is

valid to analyze J2EE applications.

Wagner, Jrjens, Koller and Trischberger [Wagner, 2005] compared three different open

source static analysis tools: FindBugs, PMD and QJ Pro. They were executed against five

industrial projects and one development project from a university environment, which were

in use or in the final testing phase. Their results showed again very different results for

the three tools. Our assessment (see section 5.5) confirms that the SAST tools obtain also

different results. Therefore SAST tools can be combined to obtain better results (see section

5.5).

The comparison of Secologic [SECOLOGIC 2006] is an assessment of open source static

analysis tools for security testing of java web applications. It focuses on web application

vulnerabilities. The most important conclusion is pointing that there is no open source tool

that is involved in the comparative test with enough support to security. Of the tools

analyzed, Findbugs is the best performing and would be the best choice for safety tests. It

highlights that commercial tools like HP-FORTIFY SCA, COVERITY Prevent

[Coverity, 2013] available on the market, can provide better and more sophisticated

possibilities about vulnerabilities detection, interfaces and reports. Findbugs covers

248

only some of the most important major vulnerabilities of web applications, but gives the

possibility to expand the development of new vulnerabilities detectors. Findbugs obtains

bad results when comparing with the results obtained in our assessment of section 5.5.

Findbugs is the tool with the worst result in the comparison of section 5.5.

Another comparison analyzed is that of Michael S. Ware, J. Christofher Fox [Ware et al,

2008] “Securing Java Code: Heuristics and an Evaluation of Static Analysis Tools”. It

concludes that, of the total of nine tools involved, only two are valid tools for J2EE web

applications: Findbugs [Findbugs, 2013] and HP-FORTIFY SCA [HP-Fortify, 2013]. One

interesting finding obtained is that, from the total of 115 different vulnerabilities (not J2EE),

only 50 were identified by summing all the detections of the 9 tools. The best result is

achieved by HP-FORTIFY SCA that identifies 27 vulnerabilities. Lastly the authors

mention the need for a subsequent audit results. HP-FORTIFY SCA obtains good

performance results in our comparison of section 5.5. It finds the 78,9% of the total

vulnerabilities.

249

Figure 44. Gartner magic quadrant for static analysis [Gartner, 2010]

Gartner research, in its publication of December 13, 2010, Magic Quadrant for Static

Application Security Testing, [Gartner, 2010], analyzes the market for static analysis of

security according to their business vision and technology (see figure 44). The study claims

that by 2015, over 60% of companies will use in their processes static analysis tools for

application development. This report discusses advantages and disadvantages of the tools

involved and examine them to have an approximation of their quality. Figure 44 shows the

tools skills about completeness of vision and ability of executing. SAST commercial tools

250

from HP-FORTIFY, IBM, VERACODE or CHECKMARX have the best consideration.

The tools of Gartner study, from HP-FORTIFY, VERACODE, CHECKMARX and

KLOCWORK are also investigated in our comparison of section 5.5. Our results confirm

the Gartner position of HP-FORTIFY, CHECKMARX and KLOCWORK about their

performance (78,9%, 60%, 58,9 of detections respectively) and usability but VERACODE

SaaS does not obtain good results (38% of detections) in our comparison of section 5.5.

Finally, the master thesis of Jayesh Shrestha [Shrestha, 2013] studies the state-of-art of open

source static analysis tools. This study was focused to research on C/C++ and Java based

static analyzers, which are open sourced. It also uses the recall and precision metrics (see

section 5.3) and the SAMATE Juliet benchmark used in our assessment for SAST in web

applications. In particular, Shrestha work studies Findbugs, analyzes the results and

compares it with Parasoft Jtest commercial tool. The work shows that the overall

performance of Findbugs found to be relative good enough in comparison to the result

obtained from Jtest focused more in quality errors (see section 4.3.3). Findbugs detects a

20% of vulnerabilities and Jtest detects only a 0.05% of vulnerabilities in SAMATE Juliet

test suites. But, since Findbugs generates high number of false positives, its performance

can be questionable. Most often Findbugs was not able to distinguish the sanitized lines of

code in the good methods and points to the same location where there is a flaw in the bad

method. It becomes crucial when true bugs get lost in the false positive. So, there seems

to be still a room for improvement with Findbugs. In fact, Findbugs was not found to be

complete and sound tool. The results of Findbugs in Jayesh Shrestha [Shrestha, 2013]

master thesis are consistent with the results obtained in this work, detailed in section 5.5.

Only three commercial tools (HP-FORTIFY SCA, Coverity Prevent and Parasoft Jtest)

were included in the related comparisons examined. Regarding to SAST open source tools,

the previous assessments confirm their poor results detecting web vulnerabilities.

251

The number of commercial SAST tools available for analyzing web applications is reduced,

see WASC static analysis tools evaluation project [SAST-wasc, 2013] and table 18.

The related work examined does not analyze the SAST coverage degree of vulnerabilities

categories according to vulnerabilities in tables 28 and 29 of section 5.5.1.

7.3. DAST, IAST and HYBRID assessments for web

applications related works.

The Magic quadrant for application security testing [Gartner, 2013] shows a review of

commercial solutions for SAST, DAST, IAST and HYBRID capabilities. The Evaluation

Criteria is about two aspects:

- Ability to Execute:

o Product/Service

o Overall Viability (Business Unit, Financial, Strategy and Organization)

o Sales Execution/Pricing

o Market Responsiveness and Track Record

o Customer Experience.

- Completeness of Vision:

o Market Understanding

o Sales Strategy

o Offering (Product) Strategy

o Innovation

o Geographic Strategy

It also remarks the major trends shaping the market are summarized below.

252

- Expansion of Application Testing as a Service

- The Importance of Testing Client-Side Code (Rich Internet applications)

- The Importance of Testing Mobile Applications

- SDLC Integration

- The Importance of Comprehensive Application Discovery

- IAST

- Web application firewall integration

Figure 45 shows the security solutions position in a schema based in the topics analyzed

mentioned above. Vendors of IAST products and subscription services were considered for

this Magic Quadrant if their offerings:

- Provided a dedicated static or dynamic application security testing capability — a

tool, subscription service or both

- Had at least $2 million in specific revenue from AST-related products or services

- Were generally available (not beta) before 1 January 2013

- Vendors must also be determined by Gartner to be significant players in the market,

because of market presence or technology innovation.

253

 Figure 45. Gartner magic quadrant for application security testing

The assessment of Nuno Antunes and Marco Vieira [Antunes, 2009] compares how

effective are SAST and DAST tools on the detection of SQL Injection vulnerabilities in

web services code. To understand the strengths and limitations of these techniques, they

used several commercial and open source tools to detect vulnerabilities in a set of

vulnerable web services. Results suggest that, in general, static code analyzers are able to

detect more SQL Injection vulnerabilities than penetration testing tools. Another key

observation is that tools implementing the same detection approach frequently detect

different vulnerabilities. Finally, many tools provide a low coverage and a high false

positives rate, making them a bad option for programmers. The SAST tools analyzed were

FINDBUGS, YASCA and Intellij IDEA and the DAST tools were HP-Webinspect, IBM-

appscan, Acunetix and a tool proposed by the authors. For the results presentation we have

CHALLENGERS LEADERS

NICHE PLAYERS VISIONARIES

254

decided not to mention the brand of the commercial scanners to assure neutrality and

because licenses do not allow, in general, the publication of evaluation results. Figures 46

and 47 (VSx are DAST tools and SAx are SAST tools) compare the detection and the false

positive ratios for the tools tested in the present work. As we can see, in general, the static

code analyzers present better coverage results than the penetration testing tools. The only

exception is SA3 that has a detection coverage lower than VS1. The other two static

analyzers achieved a detection ratio much higher than any of the penetration testers.

However, all the static code analyzers reported many more false positives than any of the

penetration testing tools. The difference is in fact high (more than 10%), even if we

compare the analyzers with VS1, which is the penetration-testing tool with higher rate of

false positives (but it is also the one with higher coverage).

Figure. 46. Vulnerability detection percentage for Antunes comparison

[Antunes, 2009]

255

Figure 47. Vulnerability false positive percentage for Antunes comparison

[Antunes, 2009]

In the paper “Defending against vulnerabilities in web applications” Nuno Antunes and

Marco Vieira [Antunes, 2012] analyzes the SAST, DAST, IAST and HYBRID capabilities

for web application security testing within a SSDLC and concluded that achieving better

results and improved effectiveness requires new techniques to overcome the intrinsic

limitations of vulnerability-detection tools. However, overcoming these limitations is not

easy because it requires shifting from traditional approaches to disruptive methods. The key

is to relax some constraints and combine different methods to overcome individual

limitations. The results of Nuno Antunes and Marco Vieira [Antunes, 2009], [Antunes,

2011] and Web Application Security Statistics project 2008, [Wasc-Statistics, 2008]

confirm that SAST tools obtain better detection results and higher false positive rates than

DAST tools. White box analysis (static analysis with audit) can detect 91% of

vulnerabilities per web application and black box only 3% according WASC statistics

project.

AnantaSec perform an interesting comparison with DAST and HIBRID tools [AnantaSec,

2009]. The tools included in this report were:

- Acunetix WVS 6.0 (Build 20081217) (DAST)

256

- Acunetix WVS 6.0 (Build 20081217) (DAST) + acusensor (IAST)

- IBM Rational AppScan 7.7.620 Service Pack 2 (DAST)

- HP WebInspect 7.7.869 (DAST)

The testing procedure was testing 13 web applications as benchmark (some of them

containing a lot of vulnerabilities), 3 demo applications provided by the vendors

(testphp.acunetix.com, demo.testfire.net, zero.webappsecurity.com) and also some tests

were done to verify Javascript execution capabilities. In total, 16 applications were tested.

The goal was to cover all the major platforms with applications in PHP, ASP, ASP.NET

and Java. The report included vulnerabilities like SQL injection, Local/Remote File

Inclusion and XSS. The results are shown in figure 48. Acunetix+acusensor DAST-IAST

hybrid tool obtains the best result in the comparison with better performance in 7 of 12

applications tested.

257

Figure 48. AnantaSec comparison results [AnantaSec, 2009]

258

The increased accuracy is achieved by combining black box scanning techniques with

feedback from sensors placed inside the source code while the source code is executed.

Black box scanning does not know how the application reacts and source code analyzers do

not understand how the application will behave while it is being attacked. Therefore

combining these techniques together achieves more relevant results than using source code

analyzers and black box scanning independently. The DAST, IAST, HYBRID assessment

of this work (see section 5.6) results confirms that HYBRID tools can obtain better results

by leverage the individual capabilities and synergies of members tools.

Another interesting comparative about DAST by Larry Suto [Suto, 2010] shows the

capabilities of seven commercial important tools. This paper is intended as a follow-on

study to the October 2007 study of the same author, “Analyzing the Effectiveness and

Coverage of Web Application Security Scanners.” The execution against benchmarks are

in mode “point and shoot” with no any configuration and “trained” with some configuration

providing known users. This paper focuses on the accuracy and time needed to run, review

and supplement the results of the web application scanners (Accunetix, Appscan by IBM,

BurpSuitePro, Hailstorm by Cenzic, WebInspect by HP, NTOSpider by NT OBJECTives)

as well as the Qualys managed scanning service. NTOSpider found over twice as many

vulnerabilities as the average competitor having a 94% accuracy rating, with Hailstorm

having the second best rating of 62%, but only after additional training. Appscan had the

second best 'Point and Shoot' rating of 55% and the rest averaged 39%. One of the most

surprising results was the findings for market share leader WebInspect, which consistently

landed at the bottom of the pack in its ability to crawl the sites and find vulnerabilities; it

missed approximately half of the vulnerabilities on its own test site. Figures 49 and 50 show

the results of the test execution.

259

Figure 49. DAST tools comparison detection results [Suto, 2010]

Figure 50. DAST tools comparison false positive/negative results [Suto, 2010]

The application benchmarks selected in Larry Suto comparison [Suto, 2010] contains

vulnerabilities types that can be detected by DAST tools. Most of the vulnerabilities

categories in the applications are SQLI, XSS. The other vulnerabilities are HTTP response

splitting, local file inclusion, OS command injection, XPATH injection and remote file

include. NTObjectives had a result of 92% of detections. The other tools detection results

are about 40%. The assessment confirms that the false positive ratio of the tools is low. The

260

worst false positive ratio was 5,8% for Hailstorm tool. The low false positive ratios are

according the assessment of this work performed in section 5.6. The true positive ratio for

Acunetix, Appscan and Webinspect are worse than the one obtained by these tools in our

comparison (section 5.6) where the tools have an additional average of 35% of true

positives. It is important to see that the benchmarks used are not the same and there are

some differences in the vulnerabilities that they take into account. Anyway, our comparison,

performed two and a half years later, suggests that maybe the tools have improved their

detection performance

Adam Doupe and Marco Cova [Bau, 2010] present the evaluation of eleven black-box web

vulnerability scanners. The results of the evaluation clearly show that the ability to crawl a

web application and reach “deep” into the application’s resources is as important as the

ability to detect the vulnerabilities themselves. It is also clear that although techniques to

detect certain kinds of vulnerabilities are well-established and seem to work reliably, there

are whole classes of vulnerabilities that are not well-understood and cannot be detected by

the state-of-the-art scanners. They found that eight out of sixteen vulnerabilities were

not detected by any of the scanners. The vulnerabilities not detected are session fixation,

parameter manipulation, stored SQL injection, logic flaws, bypassing the authentication

logic, directory traversal, design vulnerabilities, weak password and stored XSS. They have

also found areas that require further research so that web application vulnerability scanners

can improve their detection of vulnerabilities. Deep crawling is vital to discover all

vulnerabilities in an application. Improved reverse engineering is necessary to keep track of

the state of the application, which can enable automated detection of complex

vulnerabilities.

The Sectoolmarket web site [Sectoolmarket, 2014] shows price and feature and

performance data of many commercial and open source Web Application Scanners

(DAST). The current information is updated on 06/02/2014 and sorted in an ascending

261

order according to the scanner audit features, various prices, benchmark results with

Wavsep application (version 1.5) [Wavsep, 2014]. The prices presented might be different

in reality due to special offers, bundles, discounts, negotiations or other reasons.

7.4. Conclusions.

This section is a review of related works about assessments and evaluation of the types of

automatic security tools to perform an analysis of an application.

The review confirms that:

- There are yet few tools available of IAST and HYBRID types. Therefore there are

yet few comparative assessments with IAST and HYBRID tools.

- There are more comparative assessments with SAST and DAST tools.

- There are more SAST tools implementations for C/C++ languages than for web

applications.

- The comparisons analyzed about SAST tools for C/C++ applications are mainly for

open source tools. However, our comparison in 5.4 section, mainly focused in

leaders commercials tools,confirms their better results.

- The comparisons analized about SAST tools for web applications confirm the bad

results obtained by open source tools. Our comparison in section 5.5 confirms the

bad results for open source tools and includes commercial tools that obtain better

results in true positive detections but they generally obtain worse false positive

results that the one obtained by SAST tools comparison for C/C++ applications

(section 5.4).

- Regarding to DAST, the related works revised confirm that these tools are capable

of detect a concrete set of vulnerabilities due to these tools only perform a syntactic

analysis of the applications (see section 4.4.1). However these sets of vulnerabilities

are among the most dangerous ones, according to standards as SANS TOP 25:

262

 Reflected XSS

 SQL injection

 Path traversal

 Command injection

 Directory listings

 Frame injection

 Backup files discovery

Because of these scanners perform syntactic parsing of the web application, they

cannot understand the semantics of various parameters as a whole that can hide an

attempted attack. Therefore it is difficult the detection of other vulnerabilities as:

 Broken access controls,

 Parameter manipulation

 Logic flaws

 Vulnerabilities in the design.

 Session hijacking

 Leakage of sensitive information

- The comparisons about DAST tools analyzed and our DAST assessment of section 5.6

confirm that the ratio of false positive is lower than the one of SAST tools. All the

studies, including our study, confirm that SAST tools find more true positives than

DAST tools.

- The only HYBRID tool analyzed in Anantasec comparison [AnantaSec, 2009],

Acunetix+Acusensor obtains the best result than the other DAST tools in the

comparison.

263

- The HYBRID tool HP-FORTIFY Hybrid obtains also better results than the all DAST

tools analyzed test in our comparison of section 5.6. It also includes an IAST tool,

Seeker, that obtains the best results in the comparison.

264

265

8. CONCLUSIONS AND FUTURE WORKS

As in many other real life situations, the most desirable mean to avoid vulnerabilities in

applications code is prevention. Developers should have been trained in security

programming to avoid making "mistakes" involving programming vulnerabilities. Even

when a very good training of programmers exists, there will always be vulnerabilities in the

code and it will be difficult finding these vulnerabilities once the first version of the

application is developed. Software engineers must consider a variety of strategies to build

secure software before release. Achieving this goal is only possible by using various

techniques and automatic tools to ensure security in all phases of SSDLC.

This dissertation has developed a repeatable methodology to evaluate the performance

detecting security vulnerabilities of automatic security analysis tools. This methodology

allows to accomplish several different assessments of the different types of available

automatic security analysis tools. This final chapter summarizes the results of our research,

highlights the main contributions and briefly describes some other areas that deserve future

research.

8.1. Research summary.

This dissertation examines the state of art of last tendencies in applications development

and architectures, applications security problems, assessment methodologies of security

analysis tools and benchmarks for testing. It also examines the state of the art of all

automatic security analysis tools categories available to perform a security process in a

SSDLC:

- Static Application Security Testing (SAST). White box tools that perform a static

analysis of source or executable code of the application.

266

- Dynamic Application Security Testing (DAST). Black box tools that perform a

dynamic analysis of the application.

- Real time Application Security Testing (RAST) or Interactive Application Security

Testing (IAST). White box tools that perform a runtime analysis of the application.

- Hybrid tools SAST-DAST, SAST-DAST-RAST, SAST-RAST, and DAST-RAST.

- How all types of tools can integrate in the SSDLC.

This work has conducted also several studies to analyze and define the real capabilities of

the security analysis tools types to perform an efficient and complete vulnerability analysis

of an application. The study is based on three comparative assessments:

1. Static analysis security tools (SAST, static white box analysis) for C/C++

applications.

2. Static analysis security tools (SAST, static white box analysis) for J2EE web

applications.

3. Dynamic analysis security tools (DAST, Black box analysis), Interactive analysis

security tools (IAST, runtime white box analysis) and Hybrid security tools

(HYBRID).

The assessments show that all types of tools evaluated must improve the detection, false

positive and vulnerability coverage ratios. These assessments allow also establishing a strict

rank between the tools involved in each evaluation, according to their performance,

showing their capabilities about additional features and vulnerability coverage degree. The

performance degree of tools is calculated with F-measure, recall and precision metrics

obtained from execution results against selected benchmarks.

267

Besides, we have used the results of the assessments to study how the tools can better be

integrated in a Secure Software Development Life Cycle.

8.2. Assessment Methodology.

The developed methodology applies widely known metrics, based on rates of true and false

positives, and vulnerabilities coverage degree of tools, producing a strict scale for the

performance of the different types of analysis tools. Then, a company can choose a tool by

analyzing the precision, recall, F-measure and vulnerabilities coverage metrics obtained

against selected benchmarks for each assessment in the study.

A common conclusion for all types of semiautomatic tools analyzed in this work is that they

requires a posterior auditory to confirm all vulnerabilities alerts and classify them as

true or false positives.

8.3. Conclusions of SAST assessment for C/C++ applications.

The study provides objective evidence of the performance of static analysis tools, using a

well defined benchmark test suite and a repeatable methodology, and provides results from

the analyzed state-of-the-art tools.

The present study demonstrates objectively that some commercial tools (Prevent, SCA, K8-

Insight, Cx-enterprise and Codesonar) show a better performance, usability and

vulnerabilities coverage than the other analyzed tools. However, all the analyzed tools

obtain different results for different types of vulnerabilities and cover different subsets of

them.

268

The vulnerability coverage of tools must be improved to detect important and dangerous

vulnerabilities of SAMATE test suites 45 and 46, based on the vulnerabilities of table 20

[NIST268, 2007], and the included in OWASP TOP TEN 2013 and SANS TOP 25.

A simple execution of many of these tools against a piece of code is not enough to get

reliable results, and raw results (results from the first execution) must be reviewed. Of

course the automatic execution of tools gives a formidable first step, especially for

analyzing lengthy code, but this is not enough. A careful analysis of the results by an

experienced user or team (with security skills and experience in the language used in the

target code) is always necessary.

We strongly agree that the use of tools for static source code analysis to search security

vulnerabilities must be integrated as a part of the security policy of any development

organization. But current state of these tools does not allow indistinctly using them. The

tools’ internal designs and reporting output formats are different, so they produce

substantially different results.

8.4. Conclusions of SAST assessment for J2EE web

applications.

Web applications can have all the vulnerabilities that can have C/C++ applications and

other specific vulnerabilities as XSS, CSRF, CLRF, etc. These additional vulnerabilities

make web applications and web services more dangerous than other applications types.

Very high vulnerability detections percentages are achieved by some of the analyzed tools,

reaching in some cases to exceed 80% in isolation. The average ratio of precision for all

analyzed tools is 0.571 and the average ratio of recall is 0,545. The analyzed tools cover the

most dangerous vulnerabilities, but they do not cover other also important vulnerabilities

269

categories (See table 32). The number of false positives, high in general, in four cases over

50%, must be reduced in a subsequent audit of the results. Combining two or more tools

may improve the outcome of total detections reaching more than 92% (142 detections out

of 147)

It is also important to consider the possibility of using a SAST for executable code. A

company has not the source code for commercial web applications and the average

percentage of commercial software is about 22% and almost 75% of them do not have

acceptable conditions of security [Veracode 2012].

The degree of vulnerabilities coverage is analyzed in the second group test suite (see table

29). The vulnerabilities included in this group are less frequent and dangerous than the

vulnerabilities included in the first group. The vulnerability coverage is bad for open source

tools, which focus on the most frequent vulnerabilities of the first group (table 28) with the

exception of some information disclosure vulnerabilities. The degree of coverage is higher

for commercial tools (Fortify SCA covers all categories of vulnerabilities). It is quite

acceptable, covering the most frequent and important ones. However, almost all of these

tools can yet improve very much their performance. In general, the detections in the

categories of vulnerabilities of the second group are related to disclosure of information in

the code, weak cryptographic protocols and weak random numbers. All tools obtain worse

ranking results in second group than in the first group with 32 of 62 potential vulnerabilities

not detected by any tool. The changing nature and evolution of the categories of

vulnerabilities over time, requires a continuous study to adapt the tools to this development

to have them always adapted to the time of use.

The results of SAST assessment for web applications show that the tools analyzing

web applications have a higher ratio of false positives than the tools analyzed in the

270

comparison of SAST tools for C/C++ applications. This is even more relevant if we see

that two of the tools (HP-Fortify SCA and K8-Insight) were in both assessments.

8.5. SAST tools recommendations.

As a consequence of the analysis of the results in this study, we propose some

recommendations for improving the use of static analysis tools:

- Their rates of true and false positives, and their balance, must be improved.

- The set of vulnerabilities and languages coverage must be increased, to allow

accomplishing a thorough security analysis.

- If it is needed to select only one tool for a project, a good criterion is attending to its

classification: “security review”, “bug finding” and “program verification”. As

demonstrated by the results of this work, “security review” tools have less false

negatives with more false positives than “bug finding” or “program verification”

ones. A company should also take into account the time needed for performing the

report audit of a static tool.

- The use of several tools with different designs and with different detection

algorithms/heuristics can improve the analysis results when making a real analysis

of a big project. However, taking into account the high prices of some of the

commercial tools, this solution will be valid only for professional development

teams, but not for individual users.

- The use of SAMATE tests as a benchmark for objectively evaluating and comparing

the performance of static source code security analyzers should be promoted. When

deciding which tool to use for a particular project, SAMATE can be used as a

reliable baseline for comparing tools. However, SAMATE can be improved by

adding new test suites, with new vulnerabilities, with more code complexity variety.

271

The functional requirements document could also be improved to cover more

requirements.

- The definition of a common output format for the results of the execution of the

tools, based on a comprehensive set of standard vulnerabilities, will allow better and

more reliable comparisons of static analysis tools. Another helpful idea is to add

result modes that normalize the number of reports for each fundamental problem.

For instance, if a buffer overflow occurs in a function, all tools could report that as a

single problem, instead of listing each vulnerable call as a separate result.

- More studies are needed to compare static analysis tools as one of the foundations

for consolidating a reliable industry. We hope that our study will help improve

further similar studies.

Some of these recommendations are complementary and closely related with those of the

two “Static Analysis Tool Exposition (3)” workshops [NIST297, 2012] conducted by the

NIST SAMATE project. In these workshops participating tool makers ran their tools on a

set of selected programs written in C and Java languages, including only a small number of

SAMATE tests. Researchers led by NIST performed a partial analysis of tool reports.

Many efforts must be still done by software industry to obtain a reliable index of the

trustworthiness of software. Some of these efforts are promising as, for example, a work

based on SAMATE initiative, (NIST Interagency Report 7755, 2010) [NIST7755, 2010]

that proposes a preliminary framework for assessing the trustworthiness of software.

8.6. Conclusions of DAST, IAST and HYBRID assessment for

J2EE web applications.

Taking into account that WAVSEP benchmark is designed with vulnerabilities that DAST

tools detect by design, the F-measure score ranks the performance of tools (DAST, IAST

272

and HYBRID) and is generally good for almost all tools selected. All tools except for

W3AF have a recall metric higher than 0,772. Seeker IAST tool and HP-Fortify hybrid have

the best rank in the comparison. DAST, IAST and HYBRID tools have less false positives

than SAST tools. IAST tools perform runtime analysis examining the process environment

and have very few false positives. Seeker is a IAST tool that obtains excellent results in

WAVSEP assessment (see section 5.6). HYBRID tools correlation of the results of

individual tools components also permits reducing the false positive ratio. DAST tools have

more false positive ratio than IAST and HYBRID tools.

Different approximations of HYBRID tools are appearing and we think they are yet in the

beginning of their development.

Commercial DAST tools have obtained better F-measure score than open source tools. The

analysis performed against WAVSEP benchmark shows that crawling capacity to find the

complete structure and links of a web application of commercial DAST tools is higher than

the one of open source tools.

DAST tools perform a syntactic analysis of the application. Therefore the coverage degree

of vulnerabilities is more reduced (see section 4.4.1). IAST tools can perform a more real

analysis, analyzing the environment of processes in runtime and increasing the

vulnerabilities coverage. Also HYBRID tools leverage the combination of several types of

tools to increase the vulnerability coverage. There are important vulnerabilities, as RFI, not

covered by the four commercial tools. Vulnerabilities for web services, as XMLI, XPATH

and XXE, are not covered by some commercial and open source tools. The requisite of

testing web service applications makes necessary improving the vulnerability coverage of

the tools. Commercial tools have better vulnerabilities coverage degree (tables 37 and 38)

than open source tools.

273

The usability skills of DAST commercial tools for performing analysis are better than the

ones of open source tools, with respect to scanning speed, quality of reports, utilities for

checking false positives and integration of IAST tools or SAST tools for hybrid analysis.

The output formats of tools are improving because they are increasingly using MITRE

CWE, OWASP TOP TEN 2013 and SANS TOP 25 standards to formatting the reports.

The vulnerabilities of WAVSEP benchmark are adequate to test DAST tools. WAVSEP

vulnerabilities are between the most dangerous in OWASP top ten 2013 or SANS top 25.

Finally we have confirmed that the level of performance of the DAST open source tools on

detection ratio, false positive ratio, vulnerability coverage, functionality and usability is

closer to commercial versions than SAST open source tools with respect to SAST

commercial versions.

8.6.1. DAST, IAST and HYBRID Recommendations.

As a consequence of the analysis of the results in this study, we propose some

recommendations for improving the use of DAST, IAST and HYBRID analysis tools:

- The selection of a tool for security analysis of an application must be based on a

good comparative study of the capabilities of tools taking into account the economic

possibilities.

- The different designs of the tools with different detection findings makes interesting

combining several tools or use an HYBRID tool to increase the results performance

and obtain more true positives and eliminating more false positives.

- DAST tools must improve the detection ratio of vulnerabilities. By example DAST

tools have problems to detect the LFI vulnerability.

274

- DAST tools must increase the vulnerability coverage degree for important

vulnerabilities of web services, RFI and other important vulnerabilities.

- The IAST and HYBRID tools’ performance results are very good in this study but it

is important to develop new implementations to obtain more objective results about

their performance. Also future studies and assessments are necessary to improve

this particular field.

- It is necessary to make efforts for standardization of formats of reports (SANS TOP

25 or MITRE CWE) and improving the vulnerability trace skills incorporating

utilities to check false positives to perform the required posterior auditory.

- WAVSEP is an adequate application benchmark but must be improved with new

test cases for new vulnerabilities (recently two new vulnerabilities have been

included [Wavsep, 2014]).

8.7. Integration of tools in SSDLC.

The SSDLC models analyzed in section 4.2 incorporate SAST and DAST tools into their

SSDLC in the implementation and test phases respectively. However, actually IAST or

HYBRID tools are not mentioned in these SSDLC processes. We think that there are

enough arguments to introduce IAST and HYBRID tools in a SSDLC process, as

supported by our results. Seeker and HP Fortify Hybrid obtain the best results in this

assessment.

HYBRID tools can be used in test phase analyzing the application by correlating the results

obtained by each different component tool. Also HYBRID tools could integrate several

types of analysis, leveraging the synergies between different types of tools (next generation

of HYBRID tools) without necessity of correlating results because they present an

integrated result (See section 4.6 for PHP Vulnerability Hunter tool by example).

275

With respect to IAST tools, they must be incorporated at test or deployment phases

depending on their work mode. By example Seeker tool or Fortify Securityscope (see

section 4.6) must be used only in test phase because it performs a white box analysis of the

application with the objective of reporting the vulnerabilities it finds. Other tool as Fortify

RTA (see section 4.6) can be used as a firewall in deployment phase because it can block an

attack attempt exploiting a vulnerability in runtime.

This dissertation has shown (figure 42) where each type of tool can be used in order to

incorporate new tendencies in white box, black box and HYBRID analysis tools. Based on

this framework, an organization must choose the most appropriate tools according to the

characteristics of their applications, their development policy, security policy and their code

revision process. Following a SSDLC model an organization should have adequate type

tools for each phase of SSDLC. At least it should have a SAST tool and a DAST and/or

IAST tool. Actually, new HYBRID tools solutions of various types are appearing while the

debate between static and dynamic tools continues.

A first premise to take into account is that SAST is probably the most important type of tool

according to their capabilities, and existing comparatives between static and dynamic tools

analyzing their effectiveness and width of surface attack application and weakness

coverage. SAST tools finds more true positives because DAST tools only can check the

parts of web application externally accessible. The starting point must be a good choice

of SAST tool.

A second premise is that HYBRID tools have the possibility of correlating or combining

same or different types of tools exploiting their potential synergies in order to minimize

false positives and false negatives ratios. A good HYBRID tool could entirely cover the

security analysis requisites.

276

The organization must adopt a specific existing SSDLC model or design a new adapted

model to the organization characteristics about type of applications, time of development

for a project, availability of personal.

All SSDLC implementations must be cyclic, that is, the cycle must be iterated the

necessary times required to achieve an application the most secure possible. Several

strategies can be adopted for each SSDLC iteration:

1. Audit the application at implementation phase with a SAST tool and fix in the code

the true positives found. Following in test phase audit the application with DAST,

IAST or some HYBRID tool and fix the true positives found in the code. If a

HYBRID with a SAST tool is used, a second audit with static analysis will be

performed in the same SSDLC iteration.

2. Audit the application at implementation phase with a SAST tool and fix in the code

the true positives found. Following in test phase audit the application with DAST,

IAST or some HYBRID tool (with no SAST) and fix the true positives found in the

code.

This cycle would end when the application has achieved an acceptable security level

according to the criteria of the development and security teams performing the application

analysis. Also the available time or/and economics possibilities can determine the end of the

SSDLC iterations. It is mandatory to schedule all projects and applications to develop in the

organization.

The organizations have a compromise on the choice of who performs the analysis: the

programmers, the security team or both, this choice depends on the several factors [Chess,

2007]: team compositions, knowledge level of programmers, analysis time available or

number and scope of applications.

277

8.8. Future work.

It is necessary to develop new implementations of SAST, DAST, IAST and HYBRID tools

that improves performance, functionality and usability of the actual implementations.

Our future work will be evaluating the performance and other necessary skills of SAST,

DAST, IAST and HYBRID tools to determinate adequate conclusions about:

1. Languages coverage, vulnerabilities coverage, false positives and false

negatives ratios and other similar complementary metrics obtained from

available and public assessments or performing the assessment by the

organization.

2. Usability, required knowledge degree of the tool and vulnerability trace

facilities of the vulnerabilities found to aid eliminating false positives.

3. Phase of development life cycle to apply the tool according to its type and

purpose.

4. Adequate knowledge (web vulnerabilities, secure languages considerations…)

of developing personal to handle the tools and perform the audit and

vulnerability correlations of the application analysis.

5. The economic prices of acquiring the tools by a company. The organization

must evaluate the availability and most adequate tools to be included in the

SSDLC process according to the tool capabilities and economic possibilities.

Actually I am promoting and advising the implementation of a software security analysis

project in the Marañosa Institute of technology of Spanish Defense Ministry, with the

purpose of analyzing the security of source code software and performing the test phase

security activities of all projects belonging to the Defense Ministry.

278

279

BIBLIOGRAPHY

[Acunetix, 2013] Acunetix official site. URL last accessed online on August 2013.

http://www.acunetix.com/websitesecurity/rightwvs/

[Aerts, 2003] Aerts A.T.M., Goossenaerts J.B.M., Hamer and D.K., Wortmann

J.C., Architectures in context: on the evolution of business,

application software, and ICT platform architectures. Journal

Information and Mangement, Volume 41 Issue 6, July 2004,

Pages 781–794, Elsevier Science Publishers, doi

10.1016/j.im.2003.06.002.

[Aiken, 2006] Aiken A., Bugrara S., Dillig I., Dillig T., Hackett B. and Hawkins

P. The Saturn program analysis system. 2006, URL last accessed

online on May 2013. http://saturn.stanford.edu

[Ajax, 2013] Ajax: A New Approach to Web Applications. URL last accessed

online on May 2013, http://www.adaptivepath.com/ideas/ajax-

new-approach-web-applications

[AnantaSec, 2009] AnantaSec DAST-HYBRID tools comparison. URL last accessed

online on January 2014. http://anantasec.blogspot.com.es/

[Antunes, 2009] Antunes N., Vieira M., Comparing the Effectiveness of

Penetration Testing and Static Code Analysis on the Detection of

SQL Injection Vulnerabilities in Web Services. 2009 15th IEEE

Pacific Rim International Symposium on Dependable Computing

[Aoki, 2010] Aoki, Y., Matsuura, S., A Method for Detecting Defects in Source

Codes Using Model Checking Techniques.

http://www.acunetix.com/websitesecurity/rightwvs/
http://saturn.stanford.edu/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://anantasec.blogspot.com.es/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Aoki,%20Y..QT.&searchWithin=p_Author_Ids:37711466300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Matsuura,%20S..QT.&searchWithin=p_Author_Ids:38472646400&newsearch=true

280

Computer Software and Applications Conference (COMPSAC),

2010 IEEE 34th Annual. Digital Object Identifier:

10.1109/COMPSAC.2010.61. Page(s): 543 – 544

[Appscan, 2103] IBM security appscan products official site. URL Last accessed

online on August 2013.

http://www-03.ibm.com/software/products/us/en/appscan/

[Arachni, 2013] Arachni official site. Last accessed online on august 2103.

http://www.arachni-scanner.com/

[Armorize, 2103] Armorize products official site. Last accessed online on august

2103.

http://www.armorize.com/codesecure/

[Aspect, 2013] Aspect Security official site. URL Last accessed online on august

2103.

https://www.aspectsecurity.com/contrast/

[Artho, 2005] Cyrille A., Armin B., Preliminary Version Combined Static and

Dynamic Analysis. Electronic Notes in Theoretical Computer

Science (ENTCS). Volume 131, May, 2005

Pages 3-14.

[Babic, 2011] Domagoj B., Martignoni L., McCamant S., Song D., Proceeding

ISSTA '11 Proceedings of the 2011 International Symposium on

Software Testing and Analysis. Pages 12-22.

[Balzarotti, 2008] Balzarotti D., Cova M., Felmetsger V., Jovanovic N., Kirda E.,

Kruegel C., Vigna G., Saner: Composing Static and Dynamic

Analysis to Validate Sanitization in Web Applications. IEEE

http://www-03.ibm.com/software/products/us/en/appscan/
http://www.arachni-scanner.com/
http://www.armorize.com/codesecure/
https://www.aspectsecurity.com/contrast/

281

Symposium on Research on Security and Privacy, Oakland, CA.

May 2008.

[Bau, 2010] Jason B., Bursztein E., Gupta D., Mitchell J., State of the Art:

Automated Black-BoxWeb Application Vulnerability Testing.

IEEE Symposium on Security and Privacy, 2010.

[Bermejo, 2009] Bermejo J.R., Secure Coding Application: Analysis, design and

development without security vulnerabilities. Final degree Project

for Computer Engineering. 2009. UNED. Madrid.

[Bermejo, 2011] Bermejo J.R., Study of automatic analysis techniques security

vulnerability in web application. 2011. Final degree master.

UNED. Madrid.

 [Beyer, 2007] Beyer D., Henzinger T. A., Jhala R. and Majumdar R., The

software model checker BLAST. Applications to software

engineering, International Journal Software Tools for Technology

Transfer (2007) 9:505–525

[Black, 2007] Black E., Software Assurance with SAMATE reference dataset,

tool standards and studies, Proc. 26th IEEE/AIAA Digital

Avionics Systems Conference, Dallas, Texas, Oct. 2007

[Boop, 2013] Boop static tool official site. URL last accessed online on May

2013, http://boop.sourceforge.net

[Bsimm, 2013] The Building Security In Maturity Model official site. URL last

accessed online on May 2013, http://bsimm.com/

http://boop.sourceforge.net/
http://bsimm.com/

282

[Buguroo, 2013] Buguroo products official site. URL last accessed online on May

2013. https://buguroo.com/productos/bugscout/

[Cat, 2013] Microsoft CAT.NET SAST tool official site. URL last accessed

online on May 2013. http://www.microsoft.com/en-

us/download/details.aspx?id=19968

[Chevaro, 2012] Chebaro O., Kosmatov N., Giorgetti A., and Julliand J., Program

Slicing Enhances a Verification Technique Combining Static and

Dynamic Analysis. In SAC 2012, 27-th ACM Symposium On

Applied Computing, Trento, Italy, pages 1284--1291, March

2012.

[Cenciz, 2013] Cenciz Vulnerability scanner official site.

http://www.cenzic.com/index.html URL last accessed online on

May 2013.

[Chaki, 2004] Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H., Modular

verification of software components in C. IEEE Trans. Softw.

Eng. 30(6), pages 388–402. Wiley. 2004.

[Checkmarx, 2013] Checkmarx products official site. URL last accessed online on

May 2013. http://www.checkmarx.com/technology/cxsuite/

[Chen, 2008] Chen F., Serbanuta T. F. and Rosu G., JPredictor: a predictive

runtime analysis tool for java. ICSE, page 221-230. ACM, 2008.

[Cheng, 2006] Cheng W., Zhao Q., Yu B.and Hiroshige S., TaintTrace: Efficient

Flow Tracing with Dynamic Binary Rewriting. In Proocedings of

the 11th IEEE Symposium on Computers and Communications,

2006.

https://buguroo.com/productos/bugscout/
http://www.microsoft.com/en-us/download/details.aspx?id=19968
http://www.microsoft.com/en-us/download/details.aspx?id=19968
http://www.cenzic.com/index.html
http://www.checkmarx.com/technology/cxsuite/

283

[Chess, 2007] Secure Programming with Static Analysis, By Brian Chess and

Jacob West. Addison-Wesley Software Security Series. ISBN: 0-

321-42477-8.

[Cheswick, 2003] Cheswick W. R., Bellovin S. M., Rubin A., Firewalls And

Internet Security Repelling The Wily Hacker. 2 Rev Ed. Pearson

Education 2003. ISBN: 9780201634662. ISBN-10: 020163466X.

[Csallner, 2004] Csallner C. and Smaragdakis Y., JCrasher: An automatic

robustness tester for Java. Software—Practice & Experience,

34(11):1025–1050, Sept. 2004.

[Csallner, 2005] Csallner C. and Smaragdakis Y., Check ’n’ Crash: Combining

static checking and testing. In Proc. 27th International Conference

on Software Engineering (ICSE), pages 422–431. ACM, May

2005.

[Csallner, 2006] Csallner C. and Smaragdakis Y., DSD-Crasher: A hybrid analysis

tool for bug finding. In Proc. ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA), pages

245–254. ACM, July 2006.

[Cifuentes, 1997] Cifuentes C. and Fraboulet A., Intraprocedural static slicing of

binary executables. Software Maintenance, 1997. Proceedings.,

International Conference on, pages 188–195, 1997.

[Cifuentes, 2008] Cifuentes C. and Scholz B., Parfait – Designing a Scalable Bug

Checker, SAW '08: Proc. of the 2008 workshop on Static

analysis, pp. 4-11, June 2008.

284

[Clarke, 2004] Clarke E., Kroening D. and Lerda F., A Tool for Checking ANSI-

C Programs, Tools and Algorithms for the Construction and

Analysis of Systems (TACAS 2004), Lecture Notes in Computer

Science, Springer Verlag, 2004

[Clarke, 2005] Clarke E., Kroening D., Sharygina N. and Yorav K., SATABS:

SAT-Based Predicate Abstraction for ANSI-C, Tools and

Algorithms for the Construction and Analysis of Systems

(TACAS 2005), Lecture Notes in Computer Science, Springer

Verlag, 2005

[Cmmi, 2013] CMMI for application development official site, URL last

accessed online May 2013.

http://cmmiinstitute.com/resource/security-by-design-with-cmmi-

for-development-version-1-3/

[Connolly 2008] Connolly G. M.; Akin M., Goyal A.; Howlett R.. and Perrins M.,

Building Dynamic Ajax Applications Using WebSphere Feature

Pack for Web 2.0. Publisher: IBM Redbooks Date: November 06,

2008. Part Number: SG24-7635-00 Print ISBN-10: 0-7384-3173-

7 Print ISBN-13: 978-0-7384-3173-4.

[Cousot 1977] Cousot P. and Cousot R., Abstract interpretation: A unified lattice

model for static analysis of programs by construction or

approximation of fixpoints. In Conference Record of the Sixth

Annual ACM SIGPLAN-SIGACT Symposium in Principles of

Programming Languages, POPL ’77, 1977, pp. 238–252.

[Coverity, 2013] Coverity products official site. Last accessed on august 2013.

http://www.coverity.com/products/coverity-prevent.html

http://cmmiinstitute.com/resource/security-by-design-with-cmmi-for-development-version-1-3/
http://cmmiinstitute.com/resource/security-by-design-with-cmmi-for-development-version-1-3/
http://www.coverity.com/products/coverity-prevent.html

285

[Cowan, 1998] Cowan C., Pu C., Maier D., Walpole J., Bakke P., Beattie S.,

Grier A., Wagle P., Zhang Q., Hinton H., StackGuard: Automatic

adaptive detection and prevention of buffer-overflow attacks, in:

Proceedings of the 7th USENIX Security Conference, San

Antonio, Texas, January 1998, pp. 63-78.

[CppCheck, 2013] CppCheck SAST official site. . Last accessed online on august

2013. http://cppcheck.sourceforge.net/

[CVE, 2013] Mitre Common Vulnerabilities and Exposures official site. URL

last accessed online on May 2013. http://cve.mitre.org/

[Davis, 2005] Secure Software Development Life Cycle Processes: A

Technology Scouting Report. Noopur Davis. 2005. Technical

Note CMU/SEI-2005-TN-024.

[Detlefs et Ne. 2005] Detlefs D., Nelson G, and Saxe J. B., Simplify: A Theorem

Prover for Program Checking, Hewlett-Packard. Journal of the

ACM, Vol. 52, No. 3, May 2005, pp. 365–473.

[Devietti] Devietti J., Blundell C., Martin M. K., Zdancewic S., HardBound:

Architectural support for spatial safety of the C programming

language, in: Proceedings of the International Conference on

Architectural Support for Programming Language and Operating

Systems (ASPLOS‟08), Seattle, USA, March 2008, pp. 1-12.

[De win, 2009] On the Secure Software Development Process: CLASP, SDL and

Touchpoints Compared. Bart De Win, Riccardo Scandariato,

Koen Buyens, Johan Gr´egoire, Wouter Joosen. Information and

http://cppcheck.sourceforge.net/
http://cve.mitre.org/
http://www.sciencedirect.com/science/journal/09505849

286

Software TechnologyVolume 51, Issue 7, July 2009, Pages 1152–

1171

[Diaz, 2013] Díaz G., Bermejo J. R., Static analysis of source code security:

Assessment of tools against SAMATE tests. Information and

Software Technology, Volume 55, Issue 8, August 2013, Pages

1462-1476,

[Doupe, 2012] Doupé A., Cavedon L., Kruegel C., Vigna G.. Enemy of the

State: A State-Aware Black-Box Web Vulnerability Scanner.

Proceedings of the USENIX Security symposium. 2012.

[Ernst, 2003] Ernst M. D., Static and dynamic analysis: synergy and duality. In

WODA 2003: ICSE Workshop on Dynamic Analysis, (Portland,

OR), May 9, 2003, pp. 24-27

[Esc, 2013] ESC SAST official site. URL last accessed on august 2013.

http://kindsoftware.com/products/opensource/ESCJava2/downloa

d.html

[Evans, 2002] Evans D., Larochelle D., Improving Security Using Extensible

Lightweight Static Analysis, IEEE Software Jan/Feb 2002

[Lapse+, 2103] Lapse+ SAST official site. URL last accessed on December 2103.

http://www.evalues.es/?q=node/14

[Emanuelsson, 2008] Emanuelsson P. and Nilsson U., A Comparative Study of

Industrial Static Analysis Tools (Extended Version), Technical

reports in Computer and Information Science. Report number

2008:3, January 7 2008.

http://kindsoftware.com/products/opensource/ESCJava2/download.html
http://kindsoftware.com/products/opensource/ESCJava2/download.html
http://www.evalues.es/?q=node/14

287

[Evans, 2002] Evans D., Larochelle D., Improving Security Using Extensible

Lightweight Static Analysis, IEEE Software Jan/Feb 2002

[FAA-iCMM, 2013] Federal Aviation Administration Integrated Capability Maturity

Model. URL online last accessed on May 2013,

http://www.faa.gov/about/office_org/headquarters_offices/aio/libr

ary/media/v2-mapsupplement_web.pdf

[Findbugs, 2013] SAST tool official site. Last accessed online on August 2103.

http://findbugs.sourceforge.net/

[Flame, 2012] Flame virus. Aaccessed online on May 2013.

http://www.symantec.com/connect/blogs/flamer-highly-

sophisticated-and-discreet-threat-targets-middle-east

[Flash, 2103] Adobe flash official site. URL last accessed on May 2013,

 http://www.adobe.com/es/products/flash-builder.html,

http://www.adobe.com/es/products/flash.html

[Fong, 2007] Fong E. and Okun V., Web Application Scanners: Definitions and

Functions, 40th Annual Hawaii International Conference on

System Sciences (HICSS'07), p. 280b, 2007.

[Fong, 2008] Fong E., Gaucher R., Okun V., Black P. E. and Dalci E., Building

a Test Suite for Web Application Scanners, Hawaii International

Conference on System Sciences (HICSS'08), to appear.

[Foster, 1999] Foster J., Fahndrich M. and Aiken A., A theory of type qualifiers,

ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’99), pages 192.203, May 1999

http://www.faa.gov/about/office_org/headquarters_offices/aio/library/media/v2-mapsupplement_web.pdf
http://www.faa.gov/about/office_org/headquarters_offices/aio/library/media/v2-mapsupplement_web.pdf
http://findbugs.sourceforge.net/
http://www.symantec.com/connect/blogs/flamer-highly-sophisticated-and-discreet-threat-targets-middle-east
http://www.symantec.com/connect/blogs/flamer-highly-sophisticated-and-discreet-threat-targets-middle-east
http://www.adobe.com/es/products/flash-builder.html
http://www.adobe.com/es/products/flash.html

288

[Fujaba, 2013] Fujaba Tool suite official site. URL Last accessed online on

September 2013. http://www.fujaba.de/

[FxCop, 2013] Fxcop SAST Microsoft official site. URL Last accessed online

on september 2013.

http://www.microsoft.com/en-us/download/details.aspx?id=6544

[Gartner, 2010] Gartner static, 2010. Magic cuadrant for static application

security testing, URL last accessed online on May 2013.

https://www.fortify.com/ssa-basics/Gartner2010MQ_SAST.html ,

[Gartner, 2013] Gartner static, 2010. Magic cuadrant for static application

security testing, URL last accessed online on May 2013.

http://www.gartner.com

[Gimpel, 2103] Gimpel products official site. Last accessed online on august

2013. http://www.gimpel.com/html/index.htm

[Grabber, 2013] Grabber product official site. Last accessed online on october

2103. http://rgaucher.info/beta/grabber/

[Grammatech, 2013] SAST tool Codesonar official site. Last accessed online on august

2103. http://www.grammatech.com/products/

[Gray,1993] Gray J., The Benchmark Handbook. Morgan, Kaufmann

Publishers, San Francisco, CA, USA, 1993.

[Grepper, 2013] VisualCodeGrepper SAST official site. Last accessed online on

august 2013. http://sourceforge.net/projects/visualcodegrepp/

http://www.fujaba.de/
http://www.microsoft.com/en-us/download/details.aspx?id=6544
https://www.fortify.com/ssa-basics/Gartner2010MQ_SAST.html
http://www.gartner.com/
http://www.gimpel.com/html/index.htm
http://rgaucher.info/beta/grabber/
http://www.grammatech.com/products/
http://sourceforge.net/projects/visualcodegrepp/

289

[Haldar, 2005] Haldar V., Chandra D. and Michael Franz M., Dynamic Taint

Propagation for Java. Proceeding ACSAC '05 Proceedings of the

21st Annual Computer Security Applications. Pages 303 – 311.

[Halfond, 2006] W. G. J. Halfond and Orso A., Preventing SQL injection attacks

using AMNESIA. Proceeding ICSE '06 Proceedings of the 28th

international conference on Software engineering. Pages 795-798

[Halfond, 2011] Halfond W. G. J., Choudhary S. R. and Orso A., Improving

penetration testing through static and dynamic analysis. Softw.

Test. Verif. Reliab. (2011) Published online in Wiley Online

Library (wileyonlinelibrary.com). DOI: 10.1002/stvr.450

[Hanov 2005] Hanov S., Static Analysis of Binary Executables. University of

Waterloo 200 University Avenue West Waterloo, Ontario,

Canada N2L 3G1. Personnal web page. Last accessed online on

August 2013. http://stevehanov.ca/cs842_project.pdf

[Hofer, 2010] Hofer T., Evaluating Static Source Code Analysis Tools. Ecole

Polytechnique Federale de Lausanne. 2010. URL Last accessed

online on August 2013,

http://infoscience.epfl.ch/record/153107?ln=en

[Holzmann, 2002] Holzmann G., UNO: Static Source Code Checking for

UserDefined Properties. In 6th World Conf. on Integrated Design

and Process Technology, IDPT ’02

[Homeland, 2014] Build Security In [Electronic resource]. Source Code Analysis

Tools Example Programs. Last accessed online on August 2013:

http://stevehanov.ca/cs842_project.pdf
http://infoscience.epfl.ch/record/153107?ln=en

290

https://buildsecurityin.us-cert.gov/bsi/articles/tools/code/498-

BSI.html

[Howard, 2003] Howard M, LeBlanc D.. Writing Secure Code. 2nd ed.

PUBLISHED BY Microsoft Press. ISBN 0-7356-1722-8.

[HP-Fortify, 2013] HP Fortify products official site. URL last accessed online on

August 2103. http://www8.hp.com/us/en/software-

solutions/software.html?compURI=1338812#tab=TAB2

[HP-report, 2012] HP ciber risk report 2012, URL last accessed online on May 2013

http://www.hpenterprisesecurity.com/register/guarding-against-a-

data-breach-hp.com

[HTML5, 2013] HTML5 official site, URL last accessed online on May 2013,

http://www.w3schools.com/html/html5_intro.asp

[Huang, 2004] Huang Y. W., Yu F., Hang C, Tsai C. H., Lee D. T., Kuo S. Y.,

Securing Web Application Code by Static Analysis and Runtime

Protection. In Proceedings of the 13th international conference on

World Wide Web (2004), pp. 40-52.

[Hunter, 2013] PHP VULNERABILITY HUNTER official product 2103. URL

last accessed online on November 2013.

https://phpvulnhunter.codeplex.com/

[IBM, 2012] IBM x-force 2012 mid-year trend and risk report. URL last

accessed online on May 2013. http://www-

03.ibm.com/security/xforce/downloads.html

https://buildsecurityin.us-cert.gov/bsi/articles/tools/code/498-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/tools/code/498-BSI.html
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1338812#tab=TAB2
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1338812#tab=TAB2
http://www.hpenterprisesecurity.com/register/guarding-against-a-data-breach-hp.com
http://www.hpenterprisesecurity.com/register/guarding-against-a-data-breach-hp.com
http://www.w3schools.com/html/html5_intro.asp
https://phpvulnhunter.codeplex.com/
http://www-03.ibm.com/security/xforce/downloads.html
http://www-03.ibm.com/security/xforce/downloads.html

291

[IBM-Appscan, 2013] IBM Appscan products official site, URL last accessed online on

May 2013,

http://www-03.ibm.com/software/products/us/en/appscan/

[IETF, 1999] IETF, Site Security Handbook. RFC 2196., URL last accessed

online on May 2013. http://www.ietf.org/rfc/rfc2196.txt

[Insure, 2013] Insure product official site. URL last accesed online on October

2103. http://www.parasoft.com/jsp/products/insure.jsp/

[Ironwasp, 2013] IRONWASP product official site. URL last accesed online on

October. http://ironwasp.org/

[Klocwork, 2013] Klocwork products official site. URL last accessed online on

May 2013.

 http://www.klocwork.com/products/insight/?source=feature

[JavaFX, 2013] JavaFX official site. URL last accessed online on May 2013.

http://docs.oracle.com/javafx/

[Javascript, 2013] Javascript language. URL last accessed online May 2013

http://es.wikipedia.org/wiki/JavaScript

[Johnson, 1977] Johnson S., Lint, a C program Checker. Computer Science

Technical Report 65, Murray Hill, NJ: Bell Laboratories,

December 1977.

[JQuery, 2013] JQuery official site. URL last accessed online on May 2013

http://jquery.com/

[J2EE, 2013] J2EE official site. URL last accessed online on May 2013

http://www.jcp.org/en/jsr/detail?id=151

http://www-03.ibm.com/software/products/us/en/appscan/
http://www.ietf.org/rfc/rfc2196.txt
http://www.parasoft.com/jsp/products/insure.jsp/
http://ironwasp.org/
http://www.klocwork.com/products/insight/?source=feature
http://docs.oracle.com/javafx/
http://es.wikipedia.org/wiki/JavaScript
http://jquery.com/
http://www.jcp.org/en/jsr/detail?id=151

292

[Kara, 2012] Mehmet K. Review on Common Criteria as a Secure Software

Development Model. International Journal of Computer Science

& Information Technology (IJCSIT) Vol 4, No 2, April 2012.

[Keugh, 2005] Luk C. K., Cohn R., Muth R., Patil H., Klauser A., Lowney G.,

Wallace S., Janapa V., and Hazelwood R. K., Building

customized program analysis tools with dynamic

instrumentation. In Programming Language Design and

Implementation, pages 190–200. ACM Press, 2005.

[Kiezun, 2009] Kieyzun, A., Guo, P.J., Jayaraman, K., Ernst, M.D., Automatic

Creation of SQL Injection and Cross-Site Scripting AttacksICSE

'09 Proceedings of the 31st International Conference on Software

Engineering.

[Klocwork, 2013] Klocwork Insight SAST official site. URL last accessed online on

August 2013. http://www.klocwork.com/products/insight/

[Kratkiewicz, 2005] Kratkiewicz K., Evaluating Static Analysis Tools for Detecting

Buffer Overflows in C Code, Master’s Thesis, Harvard

University, 2005. URL last accessed online on August 2013.

http://www.ll.mit.edu/mission/communications/ist/publications/K

ratkiewiczThesis.pdf

[Krishnan, 2008] Krishnan R., Nadworny M. and Bharill N., Static Analysis Tools

for Security Checking in Code at Motorola, SIGAda Ada Letters,

vol. 28 issue 1, April 2008.

[Lam, 2008] Lam M., livshits B., Waley J., Securing Web Applications with

Static and Dynamic Information Flow Tracking. PEPM '08

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jayaraman,%20K..QT.&searchWithin=p_Author_Ids:37312602200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ernst,%20M.D..QT.&searchWithin=p_Author_Ids:37274100700&newsearch=true
http://www.klocwork.com/products/insight/
http://www.ll.mit.edu/mission/communications/ist/publications/KratkiewiczThesis.pdf
http://www.ll.mit.edu/mission/communications/ist/publications/KratkiewiczThesis.pdf

293

Proceedings of the 2008 ACM SIGPLAN symposium on Partial

evaluation and semantics-based program manipulation.

[Lapse, 2013] Lapse+ SAST official site. Last accessed online on August 2013.

http://evalues.es/?q=node/14

[Li, 2012] Li D., Liu Z., Zhao Y., HeapDefender: A mechanism of

defending embedded systems against heap overflow via

hardware, in: Proceedings of the International Conference on

Ubiquitous Intelligence and Computing and International

Conference on Autonomic and Trusted Computing (UIC-ATC),

Fukuoka, Japan, September 2012, pp. 851-856.

[Livshits, 2005] Livshits B. and Lam M. S., Finding Security Vulnerabilities in

Java Applications with Static Analysis. Computer Science

Department. Stanford University. Technical ReportSeptember 25,

2005.

[Livshits 2006] Livshits B. Doctoral Dissertation. Improving software security

with precise static and runtime analysis. Stanford University

Stanford, CA, USA ©2006. ISBN: 978-0-542-98404-4.

[Lobo, 2013] Lobo V., Rodrigues C., Soares F. A., Leonardo C., Rizzo A. M.

Static Analysis Techniques and Tools: A Systematic Mapping

Study. ICSEA 2013: The Eighth International Conference on

Software Engineering Advances.

[Long, 2005] Long F.. Software Vulnerabilities in Java. CERT Technical note

CMU/SEI-2005-TN-044. URL last accessed online on May 2013

http://evalues.es/?q=node/14

294

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1427&cont

ext=sei

[Martin, 2008] Martin R. A., and Barnum S., Creating the Secure Software

Testing Target List. Proc. of the 4th annual workshop on Cyber

security and information intelligence research: developing

strategies to meet the cyber security and information intelligence

challenges ahead, CSIIRW, Vol. 288, article no. 33, 2008.

[Mavituna, 2013] Mavituna security products official site. URL last accessed online

on December 2103. https://www.mavitunasecurity.com/

[McGraw 2006] McGraw G., Software Security: Building Security In. Publisher:

Addison Wesley Professional. Print ISBN-10: 0-321-35670-5.

[MathWorks, 2013] SAST tool Polyspace official site. URL last accessed online on

August 2013. http://www.mathworks.es/products/polyspace/

[Microsoft, 2013] Applications architecture and design by Microsoft. URL last

accessed online onMay 2013 http://msdn.microsoft.com/en-

us/library/ee658086.aspx

[Microsoft-SDL, 2013] Microsoft SDL official site. URL last accessed online on August

2013. http://www.microsoft.com/security/sdl/default.aspx

[Mitre, 2013] Mitre CWE official site. URL last accessed online on May 2013.

http://cwe.mitre.org/

[Mobile, 2013] Mobile application development. URL last accessed online May

2013,

http://en.wikipedia.org/wiki/Mobile_application_development

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1427&context=sei
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1427&context=sei
https://www.mavitunasecurity.com/
http://www.mathworks.es/products/polyspace/
http://msdn.microsoft.com/en-us/library/ee658086.aspx
http://msdn.microsoft.com/en-us/library/ee658086.aspx
http://www.microsoft.com/security/sdl/default.aspx
http://cwe.mitre.org/
http://en.wikipedia.org/wiki/Mobile_application_development

295

[Monga, 2009] Monga M., Paleari R. and Passerini E., A hybrid analysis

framework for detecting web application vulnerabilities

Universit_a degli Studi di Milano. Milano, Italy. SESS'09:

Proceedings of the 5th International Workshop on Software

Engineering for Secure Systems.

[Moskewicz, 2001] Moskewicz M. W., Madigan C. F., Zhao Y., Zhang L., Malik S.

Chaff: Engineering an Efficient SAT Solver., DAC '01

Proceedings of the 38th annual Design Automation Conference.

Pages 530-535. ACM New York, NY, USA ©2001.

[Nagarajan, 2009] Nagarajan V., Gupta R., Architectural support for shadow

memory in multiprocessors, in: Proceedings of the ACM

Conference on Virtual Execution Environments (VEE‟09),

Huston, USA, March 2009, pp. 1-10.

[Nazario, 2002] Nazario J. Source Code Scanners for Better Code. linuxJournal,

see last accessed on August 2013.

http://www.linuxjournal.com/article/5673?page=0,0

 [.NET, 2013] J2EE official site. URL last accessed online on May 2013.

http://www.microsoft.com/net

 [Newsome, 2005] Newsome J. and Song D.. Dynamic taint analysis for automatic

detection, analysis, and signature generation of exploits on

commodity software. In 12th Annual Network and Distributed

System Security Symposium, 2005.

http://www.linuxjournal.com/article/5673?page=0,0
http://www.microsoft.com/net

296

[Nicholson, 2012] SCADA security in the light of Cyber-Warfare, A. Nicholson,

S.Webber, S. Dyer, T. Patel, H. Janicke. Computer and

Security, volume31, issue 4, June 2012, pages 418-436

[Nist, 2013] National Institute of Standards and Technologies from U.S.

Department of commerce official site. URL last accessed online

on http://www.nist.gov/index.html

[NIST268, 2007] NIST Special Publication 500-268, Source Code Security

Analysis Tool Functional Specification Version 1.0, 2007. URL

accessed online on September 2013.

http://samate.nist.gov/docs/source_code_security_analysis_tool_s

pec_05_07_07.pdf

[NIST269, 2008], NIST Special Publication 500-269, webapp scanner specification

2008. URL accessed online on September 2013.

http://samate.nist.gov/docs/webapp_scanner_spec_sp500-269.pdf

[NIST270, 2009], NIST SP 500-270, NIST Special Publication 500-270, Source

Code Security Analysis Tool Test Plan, 2009. URL accessed

online on September 2013.

http://samate.nist.gov/docs/source_code_security_analysis_test_p

lan_01_09_08.pdf

[NIST297, 2012] NIST SP 500-283, NIST Special Publication 500-297, 2012,

“Static Analysis Tool Exposition (SATE) 2012”, URL last

accessed online on September 2013.

http://samate.nist.gov/SATE4.html

http://www.nist.gov/index.html
http://samate.nist.gov/docs/source_code_security_analysis_tool_spec_05_07_07.pdf
http://samate.nist.gov/docs/source_code_security_analysis_tool_spec_05_07_07.pdf
http://samate.nist.gov/docs/webapp_scanner_spec_sp500-269.pdf
http://samate.nist.gov/docs/source_code_security_analysis_test_plan_01_09_08.pdf
http://samate.nist.gov/docs/source_code_security_analysis_test_plan_01_09_08.pdf
http://samate.nist.gov/SATE4.html

297

[NIST7755, 2010] NIST Interagency Report 7755, 2010, “Toward a Preliminary

Framework for Assessing the Trustworthiness of Software”, URL

last accessed online on September 2013

http://samate.nist.gov/docs/toward-1119.pdf

 [Nsa, 2013] U.S. National security agency official site. URL last accessed

online on July 2013. http://www.nsa.gov/

[Oasis, 2103] Organization for the Advancement of Structured Information

Standards official site. URL last accessed online on July 2013.

https://www.oasis-open.org/org

[O’Donoghue 2002] O’Donoghue, A. Leddy, J. Power, and J. Waldron., Bigram

analysis of Java bytecode sequences PPPJ '02/IRE '02

Proceedings of the inaugural conference on the Principles and

Practice of programming, pages 187–192.

[Oissg, 2013] Open Information Systems Security Groups official site. URL last

accessed online on July 2013. http://www.oissg.org/

[OPenLaszlo, 2013] OPenLaszlo official site, URL last accessed online on May 2013

http://www.openlaszlo.org/

[OpenSAMM, 2013] Open Software Assurance Maturity Model official site, URL last

accessed online on May 2013. http://www.opensamm.org/

[Osvdb, 2013] Open Sourced Vulnerability Database official site. URL last

accessed online on July 2013. http://www.osvdb.org/

http://samate.nist.gov/docs/toward-1119.pdf
http://www.nsa.gov/
https://www.oasis-open.org/org
http://www.oissg.org/
http://www.openlaszlo.org/
http://www.opensamm.org/
http://www.osvdb.org/

298

[Owasp, 2013] OWASP TOP TEN 2013 security vulnerabilities classification,

URL last accessed online on May 2013

https://www.owasp.org/index.php/Top_10_2013

[Owasp-CLASP, 2013] OWASP CLASP project official site. URL last accessed online

on May 2013.

https://www.owasp.org/index.php/Category:OWASP_CLASP_Pr

oject/es

[Palmieri, 2012] Palmieri M., Inderjeet S., Antonio Cicchetti A., Comparison of

Cross-Platform Mobile Development Tools. 2012 16th

International Conference on Intelligence in Next Generation

Networks.

[Parasoft, 2013] Parasoft products official site. URL Last accessed online on

august 2013. http://www.parasoft.com/jsp/home.jsp

[Paros, 2013] Paros official site. Last accessed online on august 2013.

http://sourceforge.net/projects/paros/

[Pathfinder, 2013] Java Pathfinder SAST official site. Last accessed on August

2013.

http://kindsoftware.com/products/opensource/ESCJava2/downloa

d.html

[Pmd, 2013] PMD SAST tool official site. Last accessed online on August

2013. http://pmd.sourceforge.net/

[Portswigger, 2013] Portswigger official site. Burp suite tool. URL Last accessed on

August 2013. http://portswigger.net/burp/successstories.html

https://www.owasp.org/index.php/Top_10_2013
https://www.owasp.org/index.php/Category:OWASP_CLASP_Project/es
https://www.owasp.org/index.php/Category:OWASP_CLASP_Project/es
http://www.parasoft.com/jsp/home.jsp
http://sourceforge.net/projects/paros/
http://kindsoftware.com/products/opensource/ESCJava2/download.html
http://kindsoftware.com/products/opensource/ESCJava2/download.html
http://pmd.sourceforge.net/
http://portswigger.net/burp/successstories.html

299

[Pranith, 2009] Kumar D. P., Nema A. and Kumar R., Hybrid Analysis of

Executables to Detect Security Vulnerabilities. ISEC '09

Proceedings of the 2nd India software engineering conference.

Pages 141-142. 2009.

 [Purify, 2013] IBM purify product official site. URL Last accessed online on

october 2013.

 http://www-03.ibm.com/software/products/us/en/rational-purify-

family

[Quotium, 2013] Quotium official site. URL last accessed online on August 2013.

http://www.quotium.com/prod/security.php

[Petukhov, 2008] Petukhov A., Kozlov D., Detecting Security Vulnerabilities in

Web Applications Using Dynamic Analysis with Penetration

Testing, OWASP-AppSecEU08, Belgium, 2008.

[Pomorova, 2103] Pomorova, O.V. and Ivanchyshyn, D.O., Assessment of the

source code static analysis effectiveness for security requirements

implementation into software developing process. Intelligent Data

Acquisition and Advanced Computing Systems (IDAACS), 2013

IEEE 7th International Conference on (Volume:02). 12-14 Sept.

2013. Berlin. Pags. 640–645. ISBN 978-1-4799-1426-5.

10.1109/IDAACS.2013.6663003

[Prefast, 2013] Prefast Analysis Tool official site. URL Last accessed online on

August 2013. http://msdn.microsoft.com/en-

us/library/ms933794.aspx

http://www-03.ibm.com/software/products/us/en/rational-purify-family
http://www-03.ibm.com/software/products/us/en/rational-purify-family
http://www.quotium.com/prod/security.php
http://msdn.microsoft.com/en-us/library/ms933794.aspx
http://msdn.microsoft.com/en-us/library/ms933794.aspx

300

[RedLizard, 2013] RedLizard products official site. URL last accessed online on

August 2013. http://redlizards.com/

[Rijsbergen, 1979] Rijsbergen V., Cornelis J., "Keith" (1979); Information Retrieval,

London, GB; Boston, MA: Butterworth, 2nd Edition, ISBN 0-

408-70929-4

 [Rips, 2013] Rips SAST official site. URL Last accessed online on August

2013. http://sourceforge.net/projects/rips-scanner/

[Samate, 2013] Nist-Samate official site. URL Last accessed online on august

2013. http://samate.nist.gov/Main_Page.html

[Sans, 2013] SANS TOP 25 security vulnerabilities classification, URL last

accessed online on May 2013. http://www.sans.org/top25-

software-errors/

[SAST-samate, 2103] NIST-Samate project official site, list of SAST tools (static

analysis). URL Last accessed online on August 2013.

http://samate.nist.gov/index.php/Source_Code_Security_Analyze

rs.html

[SAST-wasc, 2013] Wasc official site, list of SAST tools. URL Last accessed online

on August 2013.

http://projects.webappsec.org/w/page/61622133/StaticCodeAnaly

sisList

[SAST-wiki, 2013] Wikipedia official site, list of SAST tools. URL Last accessed

online on August 2013.

http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analys

is

http://redlizards.com/
http://sourceforge.net/projects/rips-scanner/
http://samate.nist.gov/Main_Page.html
http://www.sans.org/top25-software-errors/
http://www.sans.org/top25-software-errors/
http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://projects.webappsec.org/w/page/61622133/StaticCodeAnalysisList
http://projects.webappsec.org/w/page/61622133/StaticCodeAnalysisList
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

301

[SAST-owasp, 2013] Owasp official site, list of SAST. URL Last accessed online on

August 2013.

 https://www.owasp.org/index.php/Static_Code_Analysis

[Saxena, 2011] Saxena P., Molnar D. and Livshits B., SCRIPTGARD: automatic

context-sensitive sanitization for large-scale legacy web

applications. CCS '11 Proceedings of the 18th ACM conference

on Computer and communications security. 2011.

[SEC, 2012] Web Application Scanners (DAST) evaluation project official

site. URL last accessed online on November 2013.

http://www.sectoolmarket.com/

[Securebench, 2103] Securebench micro project official site. URL last accessed online

on November 2013

http://suif.stanford.edu/~livshits/work/securibench-micro/

[Shrestha, 2013] Shrestha J., Static Program Analysis. Degree of Masters of

Information System Jayesh Shrestha. Uppsala University.

September, 2013. URL last accessed online on November 2013.

http://www.diva-

portal.org/smash/get/diva2:651821/FULLTEXT01.pdf

[Sipser, 2005] Sipser M., Introduction to the Theory of Computation, Second

Edition. New York, NY: Course Technology, 2005.

[SSE-CMM. 2013] Systems Security Engineering Capability Maturity Model Official

site, URL last accessed online on May 2013,

https://www.owasp.org/index.php/Static_Code_Analysis
http://www.sectoolmarket.com/
http://suif.stanford.edu/~livshits/work/securibench-micro/
http://www.diva-portal.org/smash/get/diva2:651821/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:651821/FULLTEXT01.pdf

302

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail

_ics.htm?csnumber=44716

[Silverlight, 2013] Microsoft Silverlight official site. URL last accessed online on

May the 22. http://www.microsoft.com/silverlight/

[Smutny, 2012] Smutny P., Mobile development tools and cross-platform

solutions. 2012 13th International Carpathian Control Conference

(ICCC).

[Schneier, 2010] Schneier, B., Stuxnet, URL last accessed online on December

2103,

http://www.schneier.com/blog/archives/2010/10/stuxnet.html

[SP-800-82, 2011] Guide for securing SCADA and ICS special publications of

NIST. URL accessed last online on May.

http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-

final.pdf

[Sridharan , 2011] Sridharan M., Artzi S., Pistoia M., Guarnieri S., Tripp O. and

Berg R., F4F: Taint Analysis of Framework-based Web

Applications. OOPSLA'11: ACM Conference on Systems,

Programming, Languages and Applications.

[Sttutard, 2008] Stuttard D. and Pinto M., The Web Application Hacker’s

Handbook: Discovering and Exploiting Security Flaws Published.

Copyright © 2008 Published by Wiley Publishing, Inc.,

Indianapolis, Indiana. ISBN: 978-0-470-17077-9

[Suto, 2010] Suto, L.: Analyzing the Accuracy and Time Costs of Web

Application Security Scanners. 2010. URL accessed September

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=44716
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=44716
http://www.microsoft.com/silverlight/
http://www.schneier.com/blog/archives/2010/10/stuxnet.html
http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf
http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf

303

2013.

http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&

cd=1&ved=0CDIQFjAA&url=http%3A%2F%2Fha.ckers.org%2

Ffiles%2FAccuracy_and_Time_Costs_of_Web_App_Scanners.p

df&ei=oLoRU5DFPMuO7QbKi4HIBQ&usg=AFQjCNFtZlz1PS

7DIAEUWiG2E3sE0K-INQ&bvm=bv.62286460,d.Yms

[Tripp, 2009] Tripp O., Pistoia M., Fink S., Sridharan M., and Weisman O.,

TAJ: Effective Taint Analysis of Web Applications. PLDI'09:

ACM Conference on Programming Language Design and

Implementation.

[Tripp, 2011] Omer Tripp O. and Weisman O., Hybrid Analysis for JavaScript

Security Assessment. ESEC/FSE'11: ACM Conference on the

Foundations of Software Engineering.

[Tripp, 2013] Tripp O., Pistoia M., Cousot P., Cousot R. and Salvatore

Guarnieri S., Andromeda: Accurate and Scalable Security

Analysis of Web Applications. FASE'13: ETAPS Conference on

Fundamental Approaches to Software Engineering.

[Trustwave, 2013] Trustwave Global Security Report 2013. URL last accessed online

on July 2013.

http://www2.trustwave.com/rs/trustwave/images/2013-Global-

Security-Report.pdf

[Turing 1936] Turing A., On computable numbers, with an application to the

Entscheidungsproblem, Proceedings of the London Mathematical

Society, Series 2, 42 (1936), pp 230-265. Turing defines Turing

http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDIQFjAA&url=http%3A%2F%2Fha.ckers.org%2Ffiles%2FAccuracy_and_Time_Costs_of_Web_App_Scanners.pdf&ei=oLoRU5DFPMuO7QbKi4HIBQ&usg=AFQjCNFtZlz1PS7DIAEUWiG2E3sE0K-INQ&bvm=bv.62286460,d.Yms
http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDIQFjAA&url=http%3A%2F%2Fha.ckers.org%2Ffiles%2FAccuracy_and_Time_Costs_of_Web_App_Scanners.pdf&ei=oLoRU5DFPMuO7QbKi4HIBQ&usg=AFQjCNFtZlz1PS7DIAEUWiG2E3sE0K-INQ&bvm=bv.62286460,d.Yms
http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDIQFjAA&url=http%3A%2F%2Fha.ckers.org%2Ffiles%2FAccuracy_and_Time_Costs_of_Web_App_Scanners.pdf&ei=oLoRU5DFPMuO7QbKi4HIBQ&usg=AFQjCNFtZlz1PS7DIAEUWiG2E3sE0K-INQ&bvm=bv.62286460,d.Yms
http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDIQFjAA&url=http%3A%2F%2Fha.ckers.org%2Ffiles%2FAccuracy_and_Time_Costs_of_Web_App_Scanners.pdf&ei=oLoRU5DFPMuO7QbKi4HIBQ&usg=AFQjCNFtZlz1PS7DIAEUWiG2E3sE0K-INQ&bvm=bv.62286460,d.Yms
http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDIQFjAA&url=http%3A%2F%2Fha.ckers.org%2Ffiles%2FAccuracy_and_Time_Costs_of_Web_App_Scanners.pdf&ei=oLoRU5DFPMuO7QbKi4HIBQ&usg=AFQjCNFtZlz1PS7DIAEUWiG2E3sE0K-INQ&bvm=bv.62286460,d.Yms
http://www2.trustwave.com/rs/trustwave/images/2013-Global-Security-Report.pdf
http://www2.trustwave.com/rs/trustwave/images/2013-Global-Security-Report.pdf

304

machines, formulates the halting problem, and shows that it (as

well as the Entscheidungsproblem) is unsolvable.

 [Yahoo, 2013] Yahoo hijacking of identities in Japón. URL last accessed online

on May the 22. http://www.csospain.es/Yahoo-Japon-confirma-

el-robo-de-22-millones-de-ID-de-usuario/seccion-

actualidad/noticia-132995

[Valgrind, 2013] Valgrind product official site 2013. URL last accessed online on

October 2103. http://valgrind.org/

[Veracode, 2010] Hybrid SAST and DASD correlation considerations. URL last

accessed online on August 2013

http://www.veracode.com/blog/2010/12/whitepaper-a-dose-of-

reality-on-automated-static-dynamic-hybrid-analysis/

[Veracode, 2011] State of Security Software report volume 3. Veracode official

site. URL last accessed online on May.

http://info.veracode.com/rs/veracode/images/soss-v3.pdf

[Veracode, 2012] State of Security Software report volume 5. Veracode official

site. URL accessed online on May.

https://info.veracode.com/state-of-software-security-report-

volume5.html

[Venkataramani, 2008] Venkataramani G., Doudalis I., Solihin Y. and Prvulovic M.,

Flexitaint: A programmable accelerator for dynamic taint

propagation, in: Proceedings of the the 14th International

Symposium on High-Performance Computer Architecture

(HPCA‟08), Salt Lake City, UT, Februrary 2008, pp. 173-184.

http://www.csospain.es/Yahoo-Japon-confirma-el-robo-de-22-millones-de-ID-de-usuario/seccion-actualidad/noticia-132995
http://www.csospain.es/Yahoo-Japon-confirma-el-robo-de-22-millones-de-ID-de-usuario/seccion-actualidad/noticia-132995
http://www.csospain.es/Yahoo-Japon-confirma-el-robo-de-22-millones-de-ID-de-usuario/seccion-actualidad/noticia-132995
http://valgrind.org/
http://www.veracode.com/blog/2010/12/whitepaper-a-dose-of-reality-on-automated-static-dynamic-hybrid-analysis/
http://www.veracode.com/blog/2010/12/whitepaper-a-dose-of-reality-on-automated-static-dynamic-hybrid-analysis/
http://info.veracode.com/rs/veracode/images/soss-v3.pdf
https://info.veracode.com/state-of-software-security-report-volume5.html
https://info.veracode.com/state-of-software-security-report-volume5.html

305

[Veracode, 2013] VERACODE static analysis official site. URL Last accessed

online on august 2013. http://www.veracode.com/security/static-

code-analysis

[Viega, 2000] Viega J., Bloch J., Khono Y., Mcgraw G., “ITS4: a static

vulnerability scanner for C and C++ code”. Computer Security

Applications, 2000. ACSAC '00. 16th Annual Conference.

[W3c, 2013] Web services guide. URL last accessed online on May 2013.

http://www.w3c.es/Divulgacion/GuiasBreves/ServiciosWeb

[Wagner, 2000] Wagner D., Foster J., Brewer E., Aiken A., A First Step Towards

Automated Detection of Buffer Overrun Vulnerabilities. In

Network and Distributed System Security Symposium (February

2000), pp. 3-17.

[Wapiti, 2013] Wapiti product official site. URL last accessed online on May

2103. http://wapiti.sourceforge.net/

[Wagner, 2005] Wagner S., Jrjens J., Koller C., and Trischberger P., Comparing

bug finding tools with reviews and tests, Proceedings 17th

International Conference on Testing of Communicating Systems,

volume 3502 of Lecture Notes in Computer Science, June 2005.

[Wasc, 2013] Web Application Security Consortium official site, URL last

accessed online on May 2103. http://www.webappsec.org/

[Wasc-Statistics, 2008] Web Application Security Statistics project 2008. URL accessed

online on May 2103.

http://projects.webappsec.org/w/page/13246989/Web%20Applica

tion%20Security%20Statistics

http://www.veracode.com/security/static-code-analysis
http://www.veracode.com/security/static-code-analysis
http://www.w3c.es/Divulgacion/GuiasBreves/ServiciosWeb
http://wapiti.sourceforge.net/
http://www.webappsec.org/
http://projects.webappsec.org/w/page/13246989/Web%20Application%20Security%20Statistics
http://projects.webappsec.org/w/page/13246989/Web%20Application%20Security%20Statistics

306

[Wasc-WAF 2013] WASC Web Application Firewalls Evaluation criteria. URL last

accessed online on January 2014.

http://projects.webappsec.org/w/page/13246985/Web%20Applica

tion%20Firewall%20Evaluation%20Criteria

[Wassermann, 2008]. Gary Wassermann G., Yu D. and Chander A., Dynamic Test

Input Generation for Web Applications. ISSTA '08 Proceedings

of the 2008 international symposium on Software testing and

analysis University of California.

[Wavsep, 2014] Wavsep web application benchmark. URL last accessed online on

January 2014. http://code.google.com/p/wavsep/

[Whid, 2103] Web hacking incident database official site. URL last accessed

online on May 2013.

https://www.google.com/fusiontables/DataSource?snapid=S2839

29Jw2s

[WhiteHat, 2013] Top Ten Web Hacking Techniques list, WhiteHat official site.

URL last accessed online on May 2013.

https://blog.whitehatsec.com/top-ten-web-hacking-techniques-of-

2012/#.Udvr_eibv4g

[WhiteHat2, 2013] WhiteHat Sentinel product official site. URL last last accessed

online on October 2013.

https://www.whitehatsec.com/sentinel_services/sentinel_services.

html

http://projects.webappsec.org/w/page/13246985/Web%20Application%20Firewall%20Evaluation%20Criteria
http://projects.webappsec.org/w/page/13246985/Web%20Application%20Firewall%20Evaluation%20Criteria
http://code.google.com/p/wavsep/
https://www.google.com/fusiontables/DataSource?snapid=S283929Jw2s
https://www.google.com/fusiontables/DataSource?snapid=S283929Jw2s
https://blog.whitehatsec.com/top-ten-web-hacking-techniques-of-2012/#.Udvr_eibv4g
https://blog.whitehatsec.com/top-ten-web-hacking-techniques-of-2012/#.Udvr_eibv4g
https://www.whitehatsec.com/sentinel_services/sentinel_services.html
https://www.whitehatsec.com/sentinel_services/sentinel_services.html

307

[Wilander, 2003] Wilander J. and Kamker M., A comparison of publicly available

tools for dynamic buffer overflow prevention, in: Proceedings of

the International Symposium on Network & Distributed System

Security, February 2003.

[W3AF, 2013] W3AF official site. URL last accessed online on May 2013.

http://w3af.org/

[Yasca, 2013] Yasca SAST official site. URL last accessed online on May 2013.

http://www.scovetta.com/yasca.html

[Yichen, 2005] Yichen X., Chou A., Engler D., ARCHER: using symbolic, path-

sensitive analysis to detect memory access errors. Proceedings of

the 9th European software engineering conference held jointly

with 11th ACM SIGSOFT International Symposium on

foundations on software engineering. 2003. Pags. 327-336.

[Zdi, 2103] The Zero Day Initiative (ZDI), official site, URL last accessed

online on July. http://www.zerodayinitiative.com/

[Zhang, 2011] Zhang R., Huang S., Qi Z. and Guan H., Static program analysis

assisted dynamic taint tracking for software. Vulnerability

discovery. Computers and Mathematics with Applications 63

(2012) 469–480. 2011.

[Zitser, 2004] Zitser M., Lippmann R. and Leek T., Testing Static analysis

Tools Using Exploitable Buffer Overflows from Open Source

Code., ACM SIGSOFT Software Engineering Notes, Vol.

29, Issue 6, November 2004.

http://w3af.org/
http://www.scovetta.com/yasca.html
http://www.zerodayinitiative.com/

308

309

APPENDIX A – CD CONTENTS.

1. Static analysis of source code security: assessment of tools against SAMATE tests.

Gabriel Díaz, Juan Ramón Bermejo. Information and Software Technology Volume

55, August (2013) 1462–1476. http://dx.doi.org/10.1016/j.infsof.2013.02.005.

2. NIST-SAMATE TEST SUITE 45

3. NIST-SAMATE TEST SUITE 46

4. NIST-SAMATE TEST SUITE JULIET 2010

5. WAVSEP APPLICATION BENCHMARK

http://dx.doi.org/10.1016/j.infsof.2013.02.005

310

311

APPENDIX B – SAMATE TEST SUITES 45 – 46

RESULTS.

This appendix shows the test suites 45 and 46 execution results. Table 42 shows the

percentage of detections for each vulnerability category and tool in test suite 45. In last row

detection percentage mean for each tool is calculated.

Table 42 shows test suite 45 execution results:

Table 42

Summary of results of execution against SAMATE Test suite 45 [Díaz, 2013]

ND: A tool is not designed to detect a vulnerability.

VULNERABILITY
DETECTION STATISTICS

CWE Nº TC SCA GOA PCL SAT CBMC CDS CX PRE K8I

basic XSS 80 5 0 ND ND ND ND ND 0 ND ND

command injection 78 1 100 ND ND ND ND ND 100 100 100

double free 415 5 100 80 20 100 100 100 80 100 100

format string 134 5 100 0 60 ND ND 60 80 80 40

hard-coded-password 259 5 0 ND ND ND ND ND 20 ND ND

heap inspection 244 1 100 0 0 0 0 0 100 0 0

heap overflow 122 5 100 60 80 80 80 40 100 100 60

improper null

termination
170 5 100 40 100 0 0 20 100 80 80

leftover debug 489 1 0 100 0 0 0 ND 0 100 0

memory leak 401 2 50 0 50 0 0 100 100 100 100

null dereference 476 4 100 75 50 100 100 100 ND 75 75

often missused string

management
251 5 100 100 40 40 40 60 100 100 100

os command injection 78 4 100 ND ND ND ND ND 75 75 100

resource injection 99 4 100 ND ND ND ND ND 100 100 0

SQL injection 89 3 100 ND ND ND ND ND 0 ND ND

stack overflow 121 9 100 66.6 77.7 77.7 77.7 55.5 66.6 77.7 66.6

TOCTOU 367 3 33 ND ND ND ND 33 ND 0 0

unchecked error

condition
391 1 0 100 0 100 100 100 0 0 0

uninitailized variable 457 3 100 100 66.6 33.3 66.6 66.6 66.6 100 100

unintentional pointer
scaling

468 1 0 0 0 0 0 0 0 0 0

unrestricted critical
resource lock

412 1 0 0 0 0 0 0 0 0 0

use after free 416 5 80 20 20 80 80 100 60 60 80

DETECTION PERCENTAGE
MEAN

 66.5 49.4 37.6 43.6 46 55.6 57.4 65.6 52.7

312

Table 43 shows the percentage of false positives for each vulnerability category and tool in

test suite 46. In last row false positive percentage mean for each tool is calculated.

Table 43

Summary of results of execution against SAMATE Test suite 46 [Díaz, 2013]

ND: A tool is not designed to detect a vulnerability.

FALSE POSITIVES
STATISTICS

CWE Nº TC SCA GOA PCL SAT CBMC CDS CX PRE K8

basic XSS 80 5 0 ND ND ND ND ND 0 ND ND

double free 415 4 25 25 0 50 50 0 0 50 0

format String 134 5 40 0 60 ND ND 0 0 0 0

hard-coded-password 259 4 0 ND ND ND ND ND 0 ND ND

heap overflow 122 6 83.3 66.6 66.6 83.3 83.3 33.3 50 16.
6

16.
6

improper null

termination
170 5 20 0 100 0 20 0 0 0 20

leftover debug 489 1 0 100 0 0 0 ND 0 0 0

memory leak 401 5 0 0 0 40 40 0 20 0 0

null dereference 476 4 50 25 25 100 100 50 ND 25 25

often missused string
management

251 5 0 0 20 40 100 0 0 0 0

os command injection 78 4 100 ND ND ND ND ND 100 0 100

resource injection 99 4 100 ND ND ND ND ND 100 0 0

SQL injection 89 4 100 ND ND ND ND ND 0 ND ND

stack overflow 121 8 25 0 37.8 62.5 75 12.5 25 0 0

TOCTOU 367 2 100 ND ND ND ND 50 ND 0 0

unchecked error

condition
391 1 0 100 0 0 0 100 100 0 0

uninitailized variable 457 1 0 0 0 0 0 0 0 0 0

unintentional pointer
scaling

468 1 0 0 100 0 0 0 0 0 0

unrestricted critical
resource lock

412 1 0 0 0 0 0 100 0 0 0

use after free 416 4 0 0 0 100 100 0 0 0 0

FP PERCENTAGE
MEAN

 32.1 22.6 29.2 36.6 43.7 24.7 21.9 5.3 9.5

313

314

315

APPENDIX C – SAMATE JULIET 2010 TEST SUITES SELECTION EXECUTION RESULTS.

This appendix shows the results of test cases execution for the SAST assessment of section 5.5.

Legend:

True positives:  detected;  not detected

False positives:  not alarm  alarm

Table 44. Test cases CWE 23 [Bermejo, 2011]

CWE DESCRIPTIÓN FLO

W

DATA SOURCE Checkmarx F360 Klocwork Lapse+ Veracode Findbugs

23 Relative_Path_Traversal 01 connect_tcp No   -   -   -   -   -

11 TEST CASES T. POSITIVES

18 TEST CASES F. POSITIVES

02 connect_tcp               
08 connect_tcp               
04 console_readline               
08 environment               
11 fromDB               
16 fromFile   -   -   -      -
41 getCookiesServlet   -   -   -   -   -
07 getParameterServlet               
45 getQueryStringServlet   -   -   -   -   -
09 listen_tcp               

TOTAL TRUE POSITIVES - 11 9 11 7 1
TOTAL FALSE POSITIVES - 15 13 18 6 1

316

Table 45. Test cases CWE 36 [Bermejo, 2011]

CWE DESCRIPCIÓN FLO
W

DATA SOURCE Checkmar
x

F360 Klocwork Lapse+ Veracode Findbugs

36 Absolute_Path_Traversal 03 console_readline no               
9 TEST CASES T. POSITIVES

14 TEST CASES F. POSITIVES

04 console_readline               
05 environment         -      
14 fromDB               
31 fromFile   -   -   -   -   -
13 getCookiesServlet               
42 getParameterServlet   -   -   -   -   -
19 getQueryStringServlet   -   -   -   -   -
12 listen_tcp   -   -   -   -   -

TOTAL TRUE POSITIVES 9 7 9 4 1
TOTAL FALSE POSITIVES 11 8 14 2 0

Table 46. Test cases CWE 78 [Bermejo, 2011]

CWE DESCRIPCIÓN FLOW DATA SOURCE Checkmarx F360 Klocwork Lapse+ Veracode Findbugs

78 Command_Injection 05 connect_tcp                NO

10 TEST CASES T. POSITIVES

16 TEST CASES F. POSITIVES
17 console_readline   -   -   -   -   -

05 Environment               

06 Environment               

11 Environment               

06 fromDB            -   

16 fromFile   -   -   -   -   -

10 getCookiesServlet               

19 getQueryStringServlet   -   -   -   -   -

45 listen_tcp   -   -   -   -   -

TOTAL TRUE POSITIVES 4 10 6 10 4

TOTAL FALSE POSITIVES 5 15 8 16 4

317

Table 47. Test cases CWE 80 [Bermejo, 2011]

CWE DESCRIPCIÓN FLOW DATA SOURCE Checkmarx F360 Klocwork Lapse+ Veracode Findbugs

80 XSS 08 servlet_connect_tcp             NO ANAL.   

11 TEST CASES T. POSITIVES

15 TEST CASES F. POSITIVES

41 servlet_console_readline   -   -       NO ANAL.   
31 servlet_environment   -   -   -   - NO ANAL.   -
07 servlet_fromDB             NO ANAL.   
08 servlet_fromDB             NO ANAL.   
31 servlet_fromDB   -          NO ANAL.   
17 servlet_fromFile   -   -   -   - NO ANAL.   -
01 servlet_getCookiesServlet   -   -   -   - NO ANAL.   -
08 servlet_getParameterServlet             NO ANAL.   
31 servlet_getQueryStringServlet   -   -   -   - NO ANAL.   -
16 servlet_listen_tcp   -   -   -   - NO ANAL.   -

TOTAL TRUE POSITIVES 1 6 7 11 1
TOTAL FALSE POSITIVES 0 6 8 15 2

318

Table 48. Test cases CWE 83 [Bermejo, 2011]

CWE DESCRIPCIÓN FLOW DATA SOURCE Checkmarx F360 Klocwork Lapse+ Veracode Findbugs

83 XSS_Attribute 10 servlet_connect_tcp             NO ANAL.   

8 TEST CASES T. POSITIVES

13 TEST CASES F. POSITIVES

42 servlet_console_readline   -   -   -   - NO ANAL.   -
08 servlet_environment             NO ANAL.   
14 servlet_fromDB             NO ANAL.   
06 servlet_fromFile             NO ANAL.   
11 servlet_getCookiesServlet             NO ANAL.   
12 servlet_getCookiesServlet   -   -   -   - NO ANAL.   -
42 servlet_getCookiesServlet   -   -   -   - NO ANAL.   -

TOTAL TRUE POSITIVES 0 4 6 7 0
TOTAL FALSE POSITIVES 0 4 6 12 0

319

Table 49. Test cases CWE 81 [Bermejo, 2011]

CWE DESCRIPCIÓN FLOW DATA SOURCE Checkmarx F360 Klocwork Lapse+ Veracode Findbugs

81 XSS_Error_Message 07 servlet_connect_tcp             NO ANAL. NO

13 TEST CASES T. POSITIVES

23 TEST CASES F. POSITIVES

04 servlet_console_readline             NO ANAL.
05 servlet_environment             NO ANAL.
08 servlet_fromDB             NO ANAL.
09 servlet_fromFile             NO ANAL.
10 servlet_fromFile             NO ANAL.
15 servlet_fromFile             NO ANAL.

11 servlet_getCookiesServlet             NO ANAL.
51 servlet_getParameterServlet   -   -   -   - NO ANAL.
10 servlet_getQueryStringServlet             NO ANAL.
14 servlet_listen_tcp             NO ANAL.
52 servlet_getParameterServlet   -   -   -   - NO ANAL.
41 servlet_listen_tcp   -   -   -   - NO ANAL.

TOTAL TRUE POSITIVES 10 5 6 6
TOTAL FALSE POSITIVES 18 6 8 8

320

Table 50. Test cases CWE 89 [Bermejo, 2011]

CWE DESCRIPCIÓN FLOW DATA SOURCE Checkmarx F360 Klocwork Lapse+ Veracode Findbugs

89 SQL_Injection 07 connect_tcp_execute             

 19 TEST CASES T. POSITIVES

 58 TEST CASES F. POSITIVES

01 connect_tcp_executeBatch                  
19 console_readLine_execute                  
02 console_readLine_executeQuery              
14 Environment_execute              
19 Environment_executeBatch                  
19 Environment_executeQuery                  
05 fromDB_execute              
51 fromDB_executeQuery                  
17 fromDB_executeUpdate                  
41 fromFile_execute                  
04 fromFile_executeUpdate             
04 getCookiesServlet_execute            
14 getCookiesServlet_executeBatch             
05 getCookiesServlet_executeUpdate             
13 getParameterServlet_execute            
14 getParameterServlet_execute             
16 getParameterServlet_execute                  
51 getParameterServlet_executeBatch                  

TOTAL TRUE POSITIVES 19 19 14 19 12 5
TOTAL FALSE POSITIVES 50 50 39 54 26 11

321

Table 51. Test cases CWE 90 [Bermejo, 2011]

CWE DESCRIPCIÓN FLOW DATA SOURCE Checkmarx F360 Klocwork Lapse+ Veracode Findbugs

90 LDAP_Injection 13 servlet_connect_tcp                NO
 11 TEST CASES T. POSITIVES

 17 TEST CASES F. POSITIVES

04 servlet_console_readline               
10 servlet_environment               
14 servlet_fromDB               
12 servlet_fromFile   -   -   -   -   -
13 servlet_getCookiesServlet               
16 servlet_getParameterServlet   -   -   -   -   -
15 servlet_getQueryStringServlet               
16 servlet_getQueryStringServlet   -   -   -   -   -
41 servlet_getQueryStringServlet   -   -   -   -   -
12 servlet_listen_tcp   -   -   -   -   -

TOTAL TRUE POSITIVES 8 11 5 5 0
TOTAL FALSE POSITIVES 9 15 7 7 0

322

Table 52. Test cases CWE 113 [Bermejo, 2011]

CWE DESCRIPCIÓN FLOW DATA SOURCE Checkmarx F360 Klocwork Lapse+ Veracode Findbugs

113 HTTP_Response_Splitting 06 connect_tcp_addCookieServlet                  

32 TEST CASES T. POSITIVES

88 TEST CASES F. POSITIVES
16 connect_tcp_addHeaderServlet                  

31 connect_tcp_sendRedirectServlet                  

07 connect_tcp_setHeaderServlet               

14 console_readLine_addCookieServlet                  

12 console_readLine_addHeaderServlet                  

16 console_readLine_sendRedirectServlet                  

41 console_readLine_setHeaderServlet                  

16 Environment_addCookieServlet                  

16 Environment_addHeaderServlet                  

51 Environment_sendRedirectServlet                  

15 Environment_setHeaderServlet                  

13 fromDB_addCookieServlet               

61 fromDB_sendRedirectServlet                  

07 fromFile_addCookieServlet                  

11 fromFile_addHeaderServlet                  

12 fromFile_sendRedirectServlet                  

16 fromFile_setHeaderServlet                  

06 getCookiesServlet_addCookieServlet               

12 getCookiesServlet_addHeaderServlet                  

14 getCookiesServlet_sendRedirectServlet             

05 getParameterServlet_addCookieServlet              

17 getParameterServlet_addHeaderServlet                  

19 getParameterServlet_sendRedirectServlet                  

51 getParameterServlet_setHeaderServlet                  

06 getQueryStringServlet_addCookieServlet               

17 getQueryStringServlet_addCookieServlet                 

19 getQueryStringServlet_addCookieServlet                  

11 getQueryStringServlet_addHeaderServlet               

15 getQueryStringServlet_sendRedirectServlet                

31 getQueryStringServlet_sendRedirectServlet                  

41 getQueryStringServlet_sendRedirectServlet                  

TOTAL VERDADEROS POSITIVOS 15 16 10 18 12 3

TOTAL FALSOS POSITIVOS 35 41 19 49 16 6

323

Table 53. Test cases CWE 352 [Bermejo, 2011]

CWE DESC FLOW DATA SOURCE Checkmarx F360 Klocwork Lapse+ Veracode Findbugs

352 Cross_Site_Request_Forgery 07 GetCookiesServlet              

7 TEST CASES T. POSITIVES

20 TEST CASES F. POSITIVES

16 GetCookiesServlet                  
17 GetCookiesServlet                  
14 getParameterServlet              
42 getParameterServlet                  
03 getQueryStringServlet               
71 getQueryStringServlet                  

TOTAL TRUE POSITIVES 7 7 5 7 0 0
TOTAL FALSE POSITIVES 17 18 11 18 0 0

Table 54. Test cases CWE 566 [Bermejo, 2011]

CWE DESC FLO
W

DATA SOURCE Checkmarx F360 Klocwork Lapse+ Veracode Findbugs

566 Access_Through_SQL Primary 01 servlet                  

10 TEST CASES T. POSITIVES

30 TEST CASES F. POSITIVES

03 servlet               
05 servlet               
07 servlet               
09 servlet               
12 servlet                  
14 servlet               
16 servlet                  
19 servlet                  
66 servlet                  

TOTAL TRUE POSITIVES 10 10 0 10 0 0
TOTAL FALSE POSITIVES 28 27 0 28 0 0

324

Table 55. Test cases CWE 601 [Bermejo, 2011]

CWE DESCRIPCIÓN FLOW DATA SOURCE Checkmarx F360 Klocwork Lapse+ Veracode Findbugs

601 Open_Redirect_Servlet 02 servlet_connect_tcp                  

11 TEST CASES T. POSITIVES

17 TEST CASES F. POSITIVES

45 servlet_console_readline   -   -   -   -   -   -
08 servlet_environment                  
11 servlet_fromDB                  
17 servlet_fromFile   -   -   -   -   -   -
13 servlet_getCookiesServlet                  
06 getParameterServlet                  -
19 getParameterServlet   -   -   -   -   -   -
31 getParameterServlet   -   -   -   -   -   -
45 getQueryStringServlet   -   -   -   -   -   -
14 lisen_tcp                  

TOTAL TRUE POSITIVES 7 6 9 12 7 3
TOTAL FALSE POSITIVES 9 7 12 17 6 0

325

CWE DESC FLOW DATA SOURCE Checkmarx F360 Klocwork Lapse+ Veracode Findbugs

209 Information_Leak_Error 54 PropertiesFile    ND ND ND

 61 PropertiesFile

256 Plaintext_Storage_of Password 66 PropertiesFile ND       ND    ND

 67 PropertiesFile            

257 Storing_Password Rec._Format 68 Servlet_connect_tcp ND ND ND ND ND

 71 Servlet_connect_tcp

259 Hard_Coded_Password 1 PasswordAuth ND ND ND

 2 PasswordAuth

293 Using_Referer_Field_for Auth. 3 Servlet ND ND ND ND ND

 4 Servlet

315 Plaintext_Storage_in_a Cookie 6 Servlet ND   ND ND   ND

 7 Servlet      

319 Plaintext_Tx_Sensitive_Info 7 Servlet ND ND ND ND

 8 Servlet

321 Hard_Coded_Cryptographic Key 10 Basic ND ND    ND

 11 Basic      

327 Use_Broken_Crypto 12 Basic   -    ND ND ND

 13 Basic      

328 Reversible_One_Way_Hash 13 Basic       ND ND ND ND

 14 Basic      

330 Insufficiently_Random Values 17 Basic ND   -   - ND   - ND

 19 Basic   -   -   -   -

336 Same_Seed_in_PRNG 01 basic ND ND ND ND ND

 02 basic

338 Weak_PRNG 05 Math ND       ND    ND

 06 Math            

367 TOC_TOU 17 basic ND ND ND ND

 19 basic

378 Creation_of_File_with Insec_Per 09 basic       ND    ND

 10 basic            

413 Insufficient_Resource Locking 01 console_reentrant_function_unsync ND ND ND ND ND

476 NULL_Pointer_Dereference 01 undefinedValueServlet ND   - ND ND ND

 02 undefinedValueServlet   

489 Leftover_Debug_Code 03 Servlet          ND

 04 Servlet            

497 Information_Leak_SystemData 17 leakPathServlet ND   -   - ND ND

 19 leakPathServlet   -   -

523 Unprotected_Cred_Transport 41 Servlet ND ND ND ND ND

 42 Servlet

547 Hardcoded_Security Constants 10 Basic ND ND ND ND

Table 56. Group 2 test cases for vulnerability coverage analysis. [Bermejo, 2011]

326

 11 Basic

549 Missing_Password_Masking 12 Servlet ND ND ND ND ND

 13 Servlet

567 Unsynchronized_Shared_Data 01 Servlet   - ND ND ND

572 Call_Thread_run_Instead start 16 Basic   -   -   - ND ND   -

 17 Basic   -   -   -

598 Information_Leak QueryString 07 Servlet ND ND ND ND ND

 08 Servlet

603 Client_Side_Authentication 07 Servlet ND ND ND ND ND

 08 Servlet

613 Insufficient_Session Exp. 17 Servlet ND ND ND ND ND

 19 Servlet

614 Sensitive Cookie Without Secure 13 Servlet       ND ND    ND

 14 Servlet      

615 Info_Leak_By_Comment 07 Servlet ND    ND ND ND ND

 08 Servlet   

643 Unsafe_Treatment_XPath Input 68 getQueryStringServlet       ND    ND ND

 71 getQueryStringServlet      

759 Unsalted_One_Way_Hash 12 Basic ND ND ND ND ND

 13 Basic

760 Predictable_Salt_One_Way Hash 66 Environment ND ND ND ND ND

 67 Environment

TOTAL TRUE POSITVES 14 23 15 4 15 1

TOTAL FALSE POSITIVES 20 36 18 8 19 1

 VULNERABILITY CATEGORIES A TOOL IS NDT DESIGNED TO DETECT (OF 32 VULNERABILITTY CATEGORIES) 20 0 23 31 18 31

NUMBER OF VULNERABILITIES ND DETECTED BY ANY TOOL 30 of 62 total vulnerabilities

327

