
Programa de Doctorado en Matemáticas
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Resumen

La mecánica de fluidos computacional constituye una valiosa herramienta en la simulación
de todo tipo de fenómenos naturales. En efecto, si bien las matemáticas nos permiten
describir la evolución de los fluidos mediante sistemas de ecuaciones en derivadas parciales,
la resolución exacta de los problemas planteados por lo general no es posible, lo que
hace necesaria la utilización de métodos numéricos avanzados para obtener soluciones
aproximadas adecuadas.

Los métodos numéricos tienen importantes aplicaciones en campos tan diversos como
la oceanograf́ıa, la bioloǵıa, la meteoroloǵıa, la climatoloǵıa y la aeronáutica, por citar
algunos de ellos. Para abordar el desarrollo de métodos eficaces es esencial contar con
un sólido entendimiento, tanto de las caracteŕısticas f́ısicas de los fluidos, como de las
propiedades matemáticas de los sistemas que los describen.

Una de las ĺıneas de investigación del grupo EDANYA (Ecuaciones Diferenciales,
Análisis Numérico Y Aplicaciones) de la Universidad de Málaga, dentro de cuya actividad
se ha desarrollado esta tesis doctoral, es la resolución numérica de sistemas de leyes de
equilibrio de carácter hiperbólico. Estos sistemas no lineales de ecuaciones en derivadas
parciales de evolución, que incluyen un flujo y un término fuente, se utilizan en la simulación
de numerosos problemas de la dinámica de fluidos. Es el caso de los modelos de aguas
someras, de fluidos multifásicos, de la dinámica de gases, de la magnetohidrodinámica, etc.

En esta tesis se abordan algunos problemas relacionados con la resolución numérica de
sistemas hiperbólicos de leyes de equilibrio. En particular, se tratan el sistema constituido
por las ecuaciones de aguas someras o aguas poco profundas, también encontradas
habitualmente en la literatura como ecuaciones de shallow water, y el sistema de Ripa,
que se corresponde a una variación del sistema de ecuaciones de aguas someras en que se
consideran de forma especial las variaciones de temperatura.

Las ecuaciones de aguas someras se obtienen a partir de las ecuaciones de Navier-Stokes,
que se utilizan en mecánica de fluidos para describir el movimiento de un fluido viscoso.
Las ecuaciones de Navier-Stokes describen las leyes f́ısicas de conservación de la masa, de
la cantidad de movimiento y de la enerǵıa, teniendo en cuenta una ecuación de estado que
relaciona presión, enerǵıa y densidad.

La derivación del sistema unidimensional de ecuaciones de aguas someras que aqúı
estudiamos se realiza a partir de las de Navier-Stokes mediante un procedimiento de
integración vertical en el que se asumen una serie de hipótesis:
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• El agua es homogénea e incompresible.

• La presión es hidrostática, lo que implica que aumenta con la profundidad.

• La única fuerza interna que actúa en el fluido es la presión, de modo que se desprecian
los efectos viscosos.

• El fondo sobre el que evoluciona el fluido se puede representar mediante una función
que depende únicamente de una de las variables horizontales, x, mientras que la
superficie libre lo hace de esa variable horizontal x y del tiempo t.

• La velocidad del fluido solo depende igualmente de x y de t, despreciándose las
variaciones verticales de las componentes horizontales de la velocidad.

El modelo unidimensional aśı obtenido, que fue deducido por primera vez en 1871 por el
ingeniero y matemático francés Adhémar Jean Claude Barré de Saint-Venant (véase [41]),
motivo por el que también se conoce bajo el nombre de ecuaciones de Saint-Venant,
representa el flujo de una capa delgada de fluido, en que la dimensión horizontal es
considerablemente mayor que la vertical.

Consideramos pues el sistema de aguas someras dado por las siguientes ecuaciones:
∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

(
hu2 + g

h2

2

)
= −gh∂xz,

donde h(x, t) representa el grosor de la capa de agua, u(x, t) es la velocidad horizontal
promediada en la dirección vertical, z(x) es una función suave conocida, que denota una
cierta topograf́ıa medida desde un nivel de referencia, y g > 0 es la constante gravitatoria.
La superficie libre suele denotarse por η y viene dada por η = h+ z. La primera ecuación
corresponde a la conservación de masa y la segunda, a la cantidad de movimiento.

En cuanto al modelo de Ripa, su derivación se basa en la consideración de modelos
oceánicos multicapa, integrando verticalmente la densidad, el gradiente horizontal de
presión y los campos de velocidad en cada capa (veáse [79, 80]). Este modelo incorpora el
efecto de los gradientes horizontales de temperatura. Las ecuaciones que lo conforman son
las siguientes: 

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

(
hu2 +

g

2
h2θ
)
= −ghθ∂xz,

∂t(hθ) + ∂x(hθu) = 0,

siendo θ(x, t) el campo de temperatura potencial.
Tanto el sistema de aguas someras como el sistema de Ripa pueden encuadrarse dentro

del marco de los sistemas de leyes de equilibrio, que responden a una expresión de la
siguiente forma:

Ut + f(U)x = S(U)Hx, (I. 1)
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en la que U es una función vectorial que toma valores en un abierto Ω ⊂ RN , f : Ω −→ RN

es una función conocida como la función de flujo y S(U)Hx es el término fuente. En
algunos casos H puede ser la función identidad. En el caso en el que S(U) = 0 o bien H
sea una función constante, estamos ante lo que se conoce como una ley de conservación:

Ut + f(U)x = 0. (I. 2)

Como ya se ha mencionado, en muchos casos resulta imposible resolver los sistemas
anteriores de manera exacta, por lo que para realizar simulaciones de flujos gobernados
por estas ecuaciones se hace necesario el uso de métodos numéricos adecuados. El objetivo
principal de esta tesis es el diseño de métodos numéricos de carácter impĺıcito para estos
sistemas. La ventaja de los métodos impĺıcitos con respecto a los expĺıcitos en este caso
tiene que ver con la eficiencia computacional en situaciones en las que el número de Froude
es bajo. El número de Froude es un número adimensional que relaciona el efecto de las
fuerzas de inercia y las fuerzas de gravedad que actúan sobre el fluido. En el caso de aguas
someras el número de Froude se define como Fr =

|u|√
gh
.

En efecto, los métodos numéricos expĺıcitos presentan mayores restricciones en la
elección del paso de tiempo para conseguir estabilidad numérica, mientras que la utilización
de métodos impĺıcitos nos permite considerar pasos de tiempo mayores y, con ello, menos
iteraciones temporales que cuando se consideran esquemas expĺıcitos.

Asimismo, nos preocuparemos especialmente de que los esquemas desarrollados sean
esquemas bien equilibrados o, utilizando la terminoloǵıa inglesa, esquemas well-balanced.
Esto es, esquemas que preserven en algún sentido las soluciones de equilibrio, también
denominadas estados estacionarios, que son aquellas que no dependen del tiempo, y que
por tanto satisfacen

f(U)x = S(U)Hx.

La importancia de la propiedad de buen equilibrado radica en el hecho de que,
en numerosos escenarios, los flujos que han de simularse surgen como resultado de la
perturbación de una solución en estado de equilibrio. Esto ocurre, por ejemplo, en el caso
particular de la simulación de tsunamis. Si los errores de discretización del propio método
numérico son del mismo orden que la perturbación inicial, seŕıa imposible diferenciar
entre las ondas generadas por la perturbación y aquellas provocadas por los errores de
discretización. Si bien los errores propios del método podŕıan reducirse refinando la malla
espacial considerada, esto puede llegar a resultar altamente costoso desde el punto de vista
computacional. Por este motivo, es crucial que los métodos numéricos considerados sean
capaces de preservar de manera precisa las soluciones de equilibrio, lo que permitirá llevar
a cabo una simulación adecuada en situaciones como las ya descritas.

En el caso en el que un método numérico preserva una cierta familia de estados
estacionarios diremos que es well-balanced, mientras que si preserva todos los posibles
estados estacionarios lo denominaremos fully well-balanced.

En el ámbito particular de los modelos de aguas someras, fue en el trabajo de Bermúdez
y Vázquez-Cendón [4] donde se introdujo por primera vez el desarrollo de métodos bien
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equilibrados, aśı como la propiedad C, consistente en preservar las soluciones estacionarias
de velocidad nula. Además de este, existen multitud de trabajos en los que se ha estudiado
esta propiedad y se han diseñado esquemas de este tipo. Algunos de ellos son, por ejemplo,
[61, 77, 51, 50, 7, 1, 38, 2, 9, 45, 49], en los que se preservan los estados estacionarios del
agua en reposo. También existen trabajos en los que se presentan esquemas que preservan
todos los estados estacionarios, como son [57, 20, 93, 92, 5, 6, 24, 74, 81, 8].

Para lograr que los métodos numéricos desarrollados en este trabajo sean bien
equilibrados se utiliza la estrategia descrita en [25], que ha sido empleada en distintos
modelos para desarrollar esquemas que preservan todas las soluciones estacionarias de
sistemas de leyes de equilibrio, cuando se cuenta con una representación expĺıcita o impĺıcita
de estas soluciones. Algunos ejemplos son el modelo de aguas someras (ver [24]), el modelo
de flujo de sangre en los vasos sangúıneos (ver [73]), el modelo de Ripa (ver [82]) o el
modelo de Euler con gravedad (ver [48, 65]).

El diseño de métodos numéricos impĺıcitos bien equilibrados se aborda en este trabajo
utilizando dos estrategias diferentes. Por un lado, en los Caṕıtulos 2 y 3 aplicaremos
la estrategia Lagrangiano-Proyectado, ya utilizada en otros trabajos como [23, 72, 33],
que consiste, en cada iteración temporal, en resolver primero el sistema en coordenadas
Lagrangianas, para proyectar a continuación la solución aśı obtenida en coordenadas
Eulerianas. Por otro lado, en el Caṕıtulo 4 aplicaremos técnicas de splitting y de relajación,
lo que resultará en la resolución de dos sistemas, en lugar de uno, en cada paso de tiempo.
Ambas estrategias nos permiten desacoplar los fenómenos acústicos y de transporte
presentes en nuestras ecuaciones, aśı como diseñar de forma natural esquemas impĺıcito-
expĺıcitos. Esto resulta especialmente útil en la aproximación de flujos subsónicos o de
número de Froude pequeño, en que la restricción CFL habitual debida a las ondas acústicas
conduce a pasos de tiempo muy pequeños. El uso de esquemas impĺıcitos para el sistema
de presión hace que la restricción CFL se reduzca al paso de transporte y se evite en el
paso acústico, más restrictivo.

En general, el procedimiento que seguiremos comenzará por considerar la discretización
espacial mediante el método de volúmenes finitos del sistema estudiado, particionando el
dominio del problema en una serie de celdas computacionales que conformarán nuestra
malla. Tras esto obtendremos un esquema semi-discreto en tiempo, que constituye un
sistema de ecuaciones diferenciales ordinarias. Finalmente, se aplicará un resolvedor en
tiempo a ese sistema de EDOs. Como se verá en el Caṕıtulo 1, en función del resolvedor que
se considere se obtendrá un tipo de esquema u otro: expĺıcito, impĺıcito o semi-impĺıcito.

Esta tesis se apoya en las siguientes publicaciones:

• C. Caballero-Cárdenas, M.J. Castro, T. Morales de Luna, and M.L. Muñoz-Ruiz.
Implicit and implicit-explicit Lagrange-projection finite volume schemes exactly
well-balanced for 1d shallow water system. Applied Mathematics and Computation,
443:127784, 2023.

• C. Caballero-Cárdenas, M.J. Castro, T. Morales de Luna, and M.L. Muñoz-Ruiz.
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Lagrange-projection exactly well-balanced finite volume schemes for the Ripa model.
SEMA/SMAI Springer series book, aceptado.

• C. Caballero-Cárdenas, M.J. Castro, C. Chalons, T. Morales de Luna, and M.L.
Muñoz-Ruiz. A semi-implicit fully well-balanced relaxation scheme for shallow water
system. Enviado para su revisión a una revista de alto impacto.

C. Caballero-Cárdenas ha disfrutado del contrato predoctoral FPI2019/087773
financiado por MCIN/AEI/10.13039/501100011033 y por FSE invierte en tu futuro.

A continuación se describe la organización en caṕıtulos de esta tesis, haciéndose un
breve resumen de sus contenidos.

Caṕıtulo 1: Preliminares

Este caṕıtulo inicial tiene como objetivo establecer las bases teóricas en que se asienta la
memoria.

En la primera sección se realiza un breve repaso de los métodos numéricos de tipo
volúmenes finitos para sistemas unidimensionales de leyes de equilibrio.

Se definen las leyes de equilibrio (I. 1) y las leyes de conservación (I. 2), y se introduce
el concepto de sistema hiperbólico en el marco de los sistemas de leyes de conservación,
aśı como el de campo caracteŕıstico linealmente degenerado y el de campo caracteŕıstico
genuinamente no lineal. Se define también el problema de Cauchy para una ley de
conservación, esto es, el problema de valor inicial dado por{

Ut + f(U)x = 0,

U(x, 0) = U0(x).
(I. 3)

De una función suficientemente regular U : R× [0,∞) −→ Ω que satisfaga (I. 3) diremos
que es una solución clásica del problema de Cauchy. Sin embargo, nos enfrentamos a una
dificultad, y es que se sabe que aunque la condición inicial U0 sea suave, el problema de
Cauchy anterior puede no tener solución en el sentido clásico. Es por ello que necesitamos
introducir el concepto de solución débil, para lo que se hace uso de la formulación variacional
del problema. Junto con esto se aportarán una serie de resultados teóricos relacionados
con las soluciones débiles de un problema (I. 3), como el establecimiento de la condición
de Rankine-Hugoniot para soluciones que presenten discontinuidades de tipo salto, que
nos aporta información acerca de la velocidad de propagación de la discontinuidad. Otro
de los problemas a los que nos enfrentamos al resolver (I. 3) es que en general la solución
débil no es necesariamente única, de modo que para seleccionar de entre todas las posibles
soluciones aquella con sentido f́ısico necesitaremos hacer uso de una condición de entroṕıa.

Los resultados anteriores se extenderán también al caso de sistemas de leyes de equilibrio,
de los que se presentan algunos ejemplos, como el de shallow water y el modelo de Ripa
que nos ocupan en esta memoria.
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Finalmente, se describe en qué consiste un método numérico de volúmenes finitos.
Para ello el espacio se discretiza usando un conjunto de celdas [xi−1/2, xi+1/2) con un paso
de malla ∆x, siendo xi+1/2 = i∆x y xi = (xi−1/2 + xi+1/2)/2 las interceldas y los centros
de las celdas, respectivamente, para i ∈ Z. De la misma manera, el paso temporal se
denota por tn = n∆t, con n ∈ N. Comenzamos considerando leyes de conservación y
finalmente comentamos cómo se procedeŕıa en el caso de leyes de equilibrio. Para leyes
de conservación, se comienza integrando (I. 2) en cada celda Ii, y denotando por Ui(t) la
aproximación del promedio de la solución en la celda Ii y en el tiempo t,

Ui(t) =

∫ xi+1/2

xi−1/2

U(x, t) dx,

podemos escribir un método numérico semi-discreto de la siguiente manera:

dUi(t)

dt
= − 1

∆x

(
F t
i+1/2 − F t

i−1/2
)
, (I. 4)

siendo F t
i+1/2 una aproximación del promedio del flujo en xi+1/2.

A continuación se introducen tres herramientas que serán clave en este trabajo: los
operadores de reconstrucción, los resolvedores de relajación y los integradores en tiempo.

En el apartado destinado a los operadores de reconstrucción se introduce su definición
y se utilizan para obtener el flujo F t

i+1/2 en (I. 4) de la siguiente manera:

F t
i+1/2 = F(U t

i+1/2−, U
t
i+1/2+), (I. 5)

siendo F el flujo numérico, evaluado en U t
i+1/2− y U t

i+1/2+, los estados reconstruidos en las
interceldas. Se describen además los operadores de reconstrucción que se utilizarán, que
son el operador constante para primer orden y el operador MUSCL en el caso del segundo
orden, sin olvidar el uso de los limitadores correspondientes para evitar oscilaciones en
el caso de presencia de discontinuidades. El uso de operadores de reconstrucción puede
ampliarse al caso de leyes de equilibrio, escribiendo el método numérico semi-discreto como

dUi(t)

dt
= − 1

∆x

(
F t
i+1/2 − F t

i−1/2
)
+

1

∆x
St
i , (I. 6)

donde el flujo numérico viene dado por (I. 5) y St
i corresponde a una aproximación de la

integral del término fuente en la celda i, es decir:

St
i ≈

∫ xi+1/2

xi−1/2

S(P t
i (x))Hx dx, (I. 7)

siendo P t
i un operador de reconstrucción.

En el apartado de resolvedores de relajación se describe en qué consisten estos métodos,
utilizados en trabajos como [63, 39, 3, 18, 32]. La idea de los esquemas de relajación
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consiste en considerar, para un sistema (I. 2) dado, otro sistema en una dimensión mayor
que el original, de modo que sea posible relacionar ambos mediante un operador lineal
tal que la solución del sistema relajado sea una aproximación de la solución del original,
siempre que se cumplan unas ciertas condiciones. Algunos esquemas de relajación bien
conocidos son el esquema HLL o el flujo de Rusanov. En este caso, nos centramos en los
sistemas de relajación de tipo Suliciu, considerados en [86, 87, 39, 18, 32, 3], por mencionar
algunos ejemplos. Para introducir el sistema de relajación de Suliciu, se consideran las
ecuaciones isentrópicas de dinámica de gases, dadas por{

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p(ρ)) = 0,

(I. 8)

donde ρ es la densidad, u la velocidad y p(ρ) la presión. Tras realizar unos sencillos
cálculos que se especifican en el Caṕıtulo 1 se llega al sistema de relajación

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + π) = 0,

∂t(ρπ) + ∂x(ρπu) + a2∂xu = 0,

(I. 9)

siendo π = p(ρ) y a una constante que debe satisfacer la condición subcaracteŕıstica, esto
es:

|λj(U)| ≤ a,

con λj(U) los autovalores del sistema original. La ventaja de resolver el sistema (I. 9) en
lugar de (I. 8) radica en la mayor facilidad de resolver el problema de Riemann para (I. 9),
al tener este último sistema todos los campos linealmente degenerados.

En el apartado correspondiente a los integradores temporales éstos se aplican para
aproximar la solución del sistema de EDOs (I. 6). Introduciremos integradores de tipo
expĺıcito, impĺıcito y semi-impĺıcito. En cada caso, consideraremos integradores de primer
y segundo orden. También presentaremos el conocido como Strang splitting, que será
utilizado en el Caṕıtulo 4 para obtener esquemas de segundo orden.

En la segunda sección del caṕıtulo introductorio nos centramos en el concepto de
métodos bien equilibrados, haciendo hincapié en la importancia de esta propiedad y
describiendo con detalle la estrategia que se seguirá para obtenerlos, basada en la idea que
se presenta en [25].

Esta estrategia consiste en la utilización de un operador de reconstrucción que sea
bien equilibrado, esto es, que cuando se aplica a los promedios de las celdas de una
solución estacionaria, las aproximaciones obtenidas deben coincidir con dicha solución
estacionaria. En general, los operadores de reconstrucción no tienen la propiedad anterior,
pero construiremos uno que śı la verifique a partir del proceso siguiente:

1. Se busca, si es posible, una solución estacionaria de forma que su promedio en la
celda coincida con el valor de nuestra aproximación en dicha celda.
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2. Se calculan las fluctuaciones en las celdas del stencil de un operador de reconstrucción
estándar de nuestra elección, esto es, las diferencias entre los promedios de la solución
y los de la solución estacionaria obtenida en el paso anterior. Se aplica a las
fluctuaciones el operador de reconstrucción estándar elegido.

3. Se suman la solución estacionaria obtenida en el primer paso y la reconstrucción del
segundo para obtener el operador de reconstrucción bien equilibrado.

El operador aśı obtenido es bien equilibrado y del mismo orden que el operador
de reconstrucción estándar utilizado en el segundo paso, supuesto que las soluciones
estacionarias son suficientemente regulares y que el operador de reconstrucción estándar
es exacto en el caso de funciones nulas.

Asimismo, hay que adaptar la escritura de la integral del término fuente de manera
que el esquema final que se obtiene sea bien equilibrado.

La última sección se dedica a introducir las coordenadas Lagrangianas, que serán
utilizadas en los Caṕıtulos 2 y 3. Dado que estas coordenadas siguen las trayectorias de
las part́ıculas del flujo, se considera una part́ıcula ξ y se definen las curvas caracteŕısticas

∂x

∂t
(ξ, t) = u(x(ξ, t), t),

x(ξ, 0) = ξ.

Además, dada una función en coordenadas Eulerianas (x, t) 7→ U(x, t), se define su
equivalente en coordenadas Lagrangianas como

U(ξ, t) = U(x(ξ, t), t).

Por último, se define también el Jacobiano de la aplicación Lagrangiana

L(ξ, t) =
∂x

∂ξ
(ξ, t),

y se derivan una serie de propiedades que relacionan las derivadas parciales en las distintas
coordendas. En esta sección se considera el caso de las ecuaciones de Euler, que se
reescriben en términos de las coordenadas Lagrangianas, y se particulariza finalmente en
el caso de las ecuaciones de aguas someras.

Caṕıtulo 2: Esquemas de volúmenes finitos Lagrangiano-Projectados impĺıcitos
e impĺıcitos-expĺıcitos exactamente bien equilibrados para las ecuaciones de
aguas someras unidimensionales

En este caṕıtulo se presenta el trabajo publicado en [22], en el que consideramos la técnica
Lagrangiano-Proyectado en el marco de esquemas de volúmenes finitos aplicados al sistema
de aguas someras. Como ya se ha mencionado, esta técnica consta de dos pasos: en
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primer lugar, se resuelve el sistema en coordenadas Lagranginas y, tras ello, el resultado
se proyecta a coordenadas Eulerianas. El primer paso se conoce como paso Lagrangiano y
el segundo, como paso de proyección o de transporte. El objetivo de volver a coordenadas
Eulerianas en cada paso es que el uso de coordenadas Lagrangianas puras y el seguimiento
de mallas en movimiento puede ser engorroso, y se pueden dar situaciones complejas para
la configuración de las celdas en movimiento, especialmente pensando en la extensión 2D.
Además, de este modo podemos desacoplar los fenómenos acústicos y de transporte, y aśı
diseñar esquemas impĺıcito-expĺıcitos y tomar pasos de tiempo grandes de manera natural.
Esto resulta interesante sobre todo en el caso de número de Froude pequeño, ya que al
utilizar esquemas impĺıcitos o impĺıcito-expĺıcitos, la restricción CFL se reduce únicamente
a las ondas de transporte lentas en lugar de a las acústicas, que son más restrictivas.

Se consideran dos versiones del esquema para el paso Lagrangiano: una impĺıcita no
lineal y otra impĺıcita-expĺıcita, basada en cómo se trata el término fuente geométrico.
El paso de transporte siempre se realiza de manera expĺıcita. Se presentan versiones
exactamente bien equilibradas de primer y segundo orden de los esquemas, en las que
se preservan las soluciones de agua en reposo. Para ello, se consideran operadores de
reconstrucción exactamente bien equilibrados construidos utilizando la estrategia descrita
en [25].

Tras llevar a cabo distintos tests numéricos, se concluye que el esquema en el que el
paso Lagrangiano se resuelve de manera impĺıcita-expĺıcita es más eficiente que el que es
impĺıcito no lineal, ya que en el último caso hay que resolver un sistema no lineal y son
necesarias varias iteraciones de un algoritmo de punto fijo. Además, como es de esperar,
los esquemas de primer orden son más difusivos que los de segundo orden. Por último,
se observa una mejora en la eficiencia de los esquemas en los que el paso Lagrangiano
se efectúa de manera impĺıcita (tanto no lineal como impĺıcita-expĺıcita) con respecto a
aquellos en los que se realiza de manera expĺıcita, en el caso de bajo número de Froude, ya
que en el caso impĺıcito se pueden tomar pasos de tiempo mucho mayores.

Caṕıtulo 3: Esquemas de volúmenes finitos Lagrangiano-Projectados impĺıcitos
bien equilibrados para el modelo de Ripa

En el tercer caṕıtulo proponemos una estrategia para resolver numéricamente el modelo de
Ripa aplicando, de nuevo, la técnica Lagrangiano-Proyectado. Esto es, en primer lugar se
resuelve el sistema de Ripa en coordenadas Lagrangianas y a continuación se proyecta la
solución en coordenadas Eulerianas. Al igual que en el Caṕıtulo 2, el sistema Lagrangiano
se resuelve impĺıcitamente mientras que el paso de proyección se hace de manera expĺıcita.

Se diseñan esquemas de volúmenes finitos de primer orden que son bien equilibrados
para este modelo, preservando los conocidos como estados estacionarios hidrostáticos, que
son los que corresponden a u = 0, y que satisfacen

∂xp = −2p∂xz
h

.
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Casos particulares de estos estados estacionarios son los que corresponden al agua en
reposo,

u = 0, h+ z = constant, θ = constant,

aśı como los estados estacionarios isobáricos, en los que la presión es constante y el fondo
es plano:

u = 0,
g

2
h2θ = constant, z = constant.

Puesto que en este caso las soluciones estacionarias quedan definidas fijando un perfil
para h o θ, resulta imposible diseñar esquemas numéricos exactamente bien equilibrados
para todas las soluciones hidrostáticas. Por eso hemos optado por usar una técnica de
aproximación, de forma que una vez elegido un perfil discreto para h, procedemos a la
aproximación de la presión utilizando para ello un método de colocación (ver [56]) para
aproximar las soluciones de la EDO

∂ξp = −2p∂ξz
h

.

Una vez recuperada la presión, y conocido el perfil discreto de h es posible recuperar
el perfil discreto estacionario de θ. Los esquemas que se obtienen son, por tanto, bien
equilibrados pero no exactamente bien equilibrados.

Se incluye una sección de tests numéricos en la que se compara el esquema propuesto
con otros dos esquemas de tipo Lagrangiano-Proyectado: uno no bien equilibrado y otro
exactamente bien equilibrado para los estados estacionarios de agua en reposo y los estados
estacionarios isobáricos, pero no para cualquier estado estacionario hidrostático.

Caṕıtulo 4: Esquemas de volúmenes finitos exactamente bien equilibrados
para las ecuaciones de aguas someras unidimensionales que preservan todas
las soluciones estacionarias

En este caṕıtulo, el objetivo es el diseño de esquemas de primer y segundo orden impĺıcitos
que preserven todas las soluciones estacionarias de las ecuaciones de aguas someras. Para
ello, se aplica una técnica de splitting mediante la cual se obtienen dos sistemas a resolver:
un sistema de presión y otro de transporte. A continuación se considera un sistema relajado
del sistema de presión. Este se resolverá de manera impĺıcita, mientras que el otro, el de
transporte, se resolverá expĺıcitamente. Es posible resolver primero el sistema de presión
seguido del de transporte o viceversa.

En el caso de segundo orden, se utiliza el conocido como Strang splitting junto con
reconstrucciones de segundo orden en espacio y primer orden en tiempo. Este splitting
consiste en efectuar un paso de uno de los sistemas con paso de tiempo ∆t/2, seguido
de un paso del segundo sistema con paso de tiempo ∆t y finalizando con un paso del
primer sistema con paso de tiempo ∆t/2. Por tanto, en el caso en el que se comience
por el sistema de presión, serán necesarios dos pasos impĺıcitos mientras que en el que se
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comience por el sistema de transporte únicamente el paso segundo será impĺıcito, por lo
que cabe esperar que este último sea más eficiente.

De esta manera, como en los caṕıtulos anteriores, se obtienen esquemas con los que es
posible realizar pasos de tiempo mayores que en el caso de un esquema expĺıcito, y que
por tanto, resultan más eficientes que los expĺıcitos en el caso de número de Froude bajo.

Al estudiar los resultados de los esquemas propuestos con varios tests y aumentar el
valor del CFL, se han observado distintos comportamientos en función de qué sistema se
resolv́ıa primero. En el caso del primer orden, se observa un mejor comportamiento en
el caso del esquema en el que se resuelve primero el sistema de presión, mientras que en
el segundo orden, la estabilidad es mejor en el esquema que comienza con el sistema de
transporte.

Además, se han efectuado tests en los que se consideran perturbaciones de una solución
subcŕıtica, aśı como de una solución transcŕıtica suave, observándose en ambos los casos
buenos resultados.

Caṕıtulo 5: Conclusiones y trabajo futuro

En esta sección final del documento se presentan las conclusiones derivadas de los resultados
obtenidos a lo largo de esta tesis.

En cuanto a los trabajos futuros, se plantean varios aspectos en los que se trabajará,
con el objetivo de aplicar lo desarrollado en esta tesis a otros problemas, como la extensión
al caso bidimensional, el diseño de esquemas de orden mayor que dos o la aplicación de las
estrategias estudiadas a otros sistemas.
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Introduction

Computational fluid mechanics is a valuable tool in the simulation of all kinds of natural
phenomena. Indeed, although mathematics allows us to describe the evolution of fluids by
means of systems of partial differential equations, the exact resolution of the problems
posed is generally not possible, which makes it necessary to use advanced numerical
methods to obtain suitable approximate solutions.

Numerical methods have important applications in fields as diverse as oceanography,
biology, meteorology, climatology and aeronautics, to name but a few. A solid
understanding of both the physical characteristics of fluids and the mathematical properties
of the systems that describe them is essential for the development of effective methods.

One of the research lines of the EDANYA group (Ecuaciones Diferenciales, Análisis
Numérico Y Aplicaciones) of the University of Málaga, within whose activity this PhD
thesis has been developed, is the numerical resolution of systems of hyperbolic balance laws.
These non-linear systems of evolution partial differential equations, which include a flux
and a source term, are used in the simulation of numerous fluid dynamics problems.
This is the case for shallow water models, multiphase fluid models, gas dynamics,
magnetohydrodynamics, etc.

This thesis deals with some problems related to the numerical resolution of hyperbolic
systems of balance laws. In particular, it deals with the shallow water equations system
and the Ripa system, which corresponds to a variation of the system of shallow water
equations in which temperature variations are considered in a special way.

The shallow water equations are derived from the Navier-Stokes equations, which are
used in fluid mechanics to describe the motion of a viscous fluid. The Navier-Stokes
equations describe the physical laws of conservation of mass, quantity of motion and
energy, taking into account an equation of state relating pressure, energy and density.

The derivation of the one-dimensional system of shallow water equations studied here is
carried out from the Navier-Stokes equations by means of a vertical integration procedure
in which a number of assumptions are made:

• The water is homogeneous and incompressible.

• The pressure is hydrostatic, which implies that it increases linearly with depth.

• The only internal force acting on the fluid is pressure, so viscous effects are neglected.
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• The bottom over which the fluid flows can be represented by a function that depends
only on one of the horizontal variables, x, while the free surface depends on that
horizontal variable x and on time t.

• The velocity of the fluid only depends on x and t, neglecting the vertical variations
of the horizontal components of the velocity.

The one-dimensional model thus obtained, which was first derived in 1871 by the French
engineer and mathematician Adhémar Jean Claude Barré de Saint-Venant (see [41]), which
is why it is also known as the Saint-Venant system, represents the flow of a thin layer of
fluid in which the horizontal dimension is considerably larger than the vertical one.

We therefore consider the shallow water system given by the following equations:
∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

(
hu2 + g

h2

2

)
= −gh∂xz,

where h(x, t) represents the thickness of the water layer, u(x, t) is the horizontal velocity
averaged in the vertical direction, z(x) is a known smooth function, denoting a certain
topography measured from a reference level, and g > 0 is the gravitational constant.
The free surface is usually denoted by η and is given by η = h + z. The first equation
corresponds to the conservation of mass and the second to the quantity of motion.

As for Ripa’s model, its derivation is based on the consideration of multilayer ocean
models, vertically integrating the density, the horizontal pressure gradient and the velocity
fields in each layer (see [79, 80]). This model incorporates the effect of horizontal
temperature gradients. The equations are the following:

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

(
hu2 +

g

2
h2θ
)
= −ghθ∂xz,

∂t(hθ) + ∂x(hθu) = 0,

where θ(x, t) is the potential temperature field.
Both the shallow water system and the Ripa system can be placed within the framework

of balance law systems, which respond to an expression of the following form:

Ut + f(U)x = S(U)Hx, (I. 10)

where U is a vector function that takes values in an open Ω ⊂ RN , f : Ω −→ RN is a
function known as the flux function and S(U)Hx is the source term. Note that in certain
situations H could be the identity function. In the case where S(U) = 0 or H is a constant
function, we have what is known as a conservation law:

Ut + f(U)x = 0. (I. 11)
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As already mentioned, the above systems cannot be solved exactly, so in order to
perform simulations of flows governed by these equations it is necessary to use appropriate
numerical methods. The main objective of this thesis is the design of implicit numerical
methods for these systems. The advantage of implicit methods over explicit ones in this
case has to do with computational efficiency in situations where the Froude number is
low. The Froude number is a dimensionless number that relates the effect of inertial forces
and gravity forces acting on the fluid. In the case of shallow water the Froude number is
defined as Fr =

|u|√
gh
. One can find numerous works concerning the design of semi-implicit

or IMEX schemes, such as, [67, 10, 70, 71, 44, 15, 16, 17].
Indeed, explicit numerical methods present greater restrictions in the choice of time

step to achieve numerical stability, while the use of implicit methods allows us to consider
larger time steps and thus fewer time iterations than when explicit schemes are considered.

We will also be particularly concerned that the developed schemes are well-balanced.
That is, schemes that preserve in some sense the equilibrium solutions, also called steady
states, which are those that do not depend on time, and which therefore satisfy

f(U)x = S(U)Hx.

The importance of the well-balanced property lies in the fact that, in many scenarios,
the flows to be simulated arise as a result of perturbation of an equilibrium solution. This
is the case, for example, in the particular case of tsunami simulation. If the discretisation
errors of the numerical method itself are of the same order as the initial perturbation,
it would be impossible to distinguish between the waves generated by the perturbation
and those caused by the discretisation errors. While the method’s own errors could be
reduced by refining the spatial grid under consideration, this can be computationally
expensive. For this reason, it is crucial that the numerical methods considered are capable
of accurately preserving the equilibrium solutions, which will allow an adequate simulation
to be carried out in situations such as those described above.

In the case in which a numerical method preserves a certain family of steady states we
will say that it is well-balanced, while if it preserves every possible steady state we will call
it fully well-balanced.

In the particular field of shallow water models, it was in the work of Bermúdez and
Vázquez-Cendón [4] that the development of well-balanced methods was first introduced,
as well as the C-property, which consists of preserving stationary solutions of zero velocity.
In addition to this, there are many other works in which this property has been studied
and schemes of this type have been designed. Some of them are, for example, [61, 77, 51,
50, 7, 1, 38, 2, 9, 45, 49], in which the steady states of water at rest are preserved. There
are also papers that present schemes preserving every steady state, such as [57, 20, 93, 92,
5, 6, 24, 74, 81, 8].

The main objective of this thesis will be the design of different well-balanced semi-
implicit finite volume schemes for the shallow water equations and for the Ripa system.
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This thesis addresses the problem of the design of first and second order finite volume
semi-implicit well-balanced schemes for the shallow water equations as well as for the Ripa
system.

To ensure the well-balanced character of the numerical methods developed, the approach
outlined in [25] has been adopted. This strategy, employed in various models, enables the
creation of schemes that preserve all stationary solutions of systems of balance laws when
an explicit or implicit expression of these solutions is available. Some examples are the
shallow water model (see [24]), the blood flow model in blood vessels (see [73]), the Ripa
model (see [82]) or the Euler model with gravity (see [48, 65]).

The design of well-balanced implicit numerical methods is addressed in this work
using two different strategies. On the one hand, in Chapters 2 and 3 we will apply the
Lagrange-Projection strategy, already used in other works such as [23, 72, 33], which
consists of, in each time iteration, first solving the system in Lagrangian coordinates and
then projecting the solution thus obtained in Eulerian coordinates. On the other hand, in
Chapter 4 we will apply splitting and relaxation techniques, which will result in solving two
systems, instead of one, at each time step. Both strategies allow us to decouple the acoustic
and transport phenomena present in our equations, as well as to design implicit-explicit
schemes in a natural way. This is especially useful in the approximation of subsonic or
small Froude number flows, where the usual CFL constraint due to acoustic waves leads
to very small time steps. The use of implicit schemes for the pressure system means that
the CFL constraint is reduced to the transport step and avoided in the more restrictive
acoustic step.

In general, the procedure we will follow will begin by considering the spatial
discretisation by means of the finite volume method of the system under study and
partitioning the problem domain into a series of computational cells that will conform our
grid. After this, we will obtain a semi-discrete scheme in time, which constitutes a system
of ordinary differential equations. Finally, a time integrator will be applied to the system
of ODEs. As will be seen in Chapter 1, depending on the integrator considered, a different
type of scheme will be obtained: explicit, implicit or semi-implicit.
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The organisation of this thesis into chapters is described below, with a brief summary
of its contents.

Chapter 1: Mathematical settings

The aim of this initial chapter is to establish the theoretical foundations on which the
thesis is based.

In the first section, a brief review of finite volume numerical methods for one-dimensional
systems of balance laws is given. The balance laws (I. 10) and the conservation laws (I. 11)
are defined, and the concept of hyperbolic system in the framework of conservation law
systems is introduced, as well as that of linearly degenerate characteristic field and that of
genuinely nonlinear characteristic field. The Cauchy problem for a conservation law is also
defined, i.e. the initial value problem given by{

Ut + f(U)x = 0,

U(x, 0) = U0(x).
(I. 12)

Given a sufficiently smooth function U : R× [0,∞) −→ Ω satisfying (I. 12), we will say
that it is a classical solution of the Cauchy problem. However, we face a difficulty, since it
is known that even if the initial condition U0 is smooth, the above Cauchy problem may
not have a solution in the classical sense. This is why we need to introduce the concept
of weak solution, for which we make use of the variational formulation of the problem.
Along with this, a series of theoretical results related to the weak solutions of a problem
(I. 12) will be provided, such as the establishment of the Rankine-Hugoniot condition
for solutions with jump discontinuities, which gives us information about the speed of
propagation of the discontinuity. Another problem we face when solving (I. 12) is that in
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general the weak solution is not necessarily unique, so in order to select from all possible
solutions the one with physical sense we will need to make use of an entropy condition.

The previous results will also be extended to the case of balance law systems, of which
some examples are presented, such as the shallow water and the Ripa model that we are
dealing with in this report.

Finally, a finite volume numerical method is described. For this, the space is discretised
using a set of cells [xi−1/2, xi+1/2) with a mesh step ∆x, where xi+1/2 = i∆x and xi =
(xi−1/2+xi+1/2)/2 are the intercells and cell centres, respectively, for i ∈ Z. In the same way,
the time step is denoted by tn = n∆t, with n ∈ N. We begin by considering conservation
laws and finally discuss how to proceed in the case of balance laws. For conservation laws,
we start by integrating (I. 11) in each cell Ii, and denote by Ui(t) the approximation of
the average of the solution in cell Ii and time t,

Ui(t) =

∫ xi+1/2

xi−1/2

U(x, t) dx.

We can then write a semi-discrete numerical method as follows:

dUi(t)

dt
= − 1

∆x

(
F t
i+1/2 − F t

i−1/2
)
, (I. 13)

where F t
i+1/2 is an approximation of the average flux at xi+1/2.

We then introduce three tools that will be key in this work: reconstruction operators,
relaxation solvers and time integrators.

In the subsection dedicated to reconstruction operators, their definition is introduced
and used to obtain the flux F t

i+1/2 in (I. 13) as follows:

F t
i+1/2 = F(U t

i+1/2−, U
t
i+1/2+), (I. 14)

where F is the numerical flux, evaluated at U t
i+1/2− and U t

i+1/2+, the reconstructed states
in the intercells. The reconstruction operators to be used are described, including the
constant operator for first order and the MUSCL operator for second order, with the
incorporation of appropriate limiters to prevent the appearance of spurious oscillations in
the presence of discontinuities. The use of reconstruction operators can be extended to
balance laws, expressing the semi-discrete numerical method as

dUi(t)

dt
= − 1

∆x

(
F t
i+1/2 − F t

i−1/2
)
+

1

∆x
St
i , (I. 15)

where the numerical flux is given by (I. 14), and St
i corresponds to an approximation of

the integral of the source term in cell i, that is:

St
i ≈

∫ xi+1/2

xi−1/2

S(P t
i (x))Hx dx, (I. 16)
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with P t
i being a reconstruction operator.

In the subsection on relaxation solvers, we describe what these methods, used in works
such as [63, 39, 3, 18, 32], consist of. The idea of relaxation schemes consists in considering,
for a given system (I. 11), another system in a higher dimension than the original one, so
that it is possible to relate the two by means of a linear operator such that the solution of
the relaxed system is an approximation of the solution of the original one, provided that
certain conditions are met. Some well-known relaxation operators are the HLL scheme or
the Rusanov flow. In this case, we focus on Suliciu-type relaxation systems, considered
in [86, 87, 39, 18, 32, 3], to mention some examples. To introduce the Suliciu relaxation
system, we consider the isentropic equations of gas dynamics, given by{

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p(ρ)) = 0,

(I. 17)

where ρ is the density, u the velocity and p(ρ) the pressure. After some simple calculations
specified in Chapter 1, we arrive at the relaxation system

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + π) = 0,

∂t(ρπ) + ∂x(ρπu) + a2∂xu = 0,

(I. 18)

where π = p(ρ) and a is a constant which must satisfy the subcharacteristic condition, i.e:

|λj(U)| ≤ a,

with λj(U) representing the eigenvalues of the original system, solving the system (I. 18)
instead of (I. 17) offers the advantage of easier resolution of the Riemann problem for
(I. 18). This arises from the fact that all the fields become linearly degenerate in the
relaxed system.

In the subsection dedicated to time integrators, they are applied to approximate the
solution of the system of ODEs (I. 15). Explicit, implicit, and semi-implicit integrators
are introduced in each case, considering both first and second-order integrators. The
well-known ”Strang splitting” is also presented, which will be used in Chapter 4 to derive
second-order schemes.

The second section of the introductory chapter focuses on the concept of well-balanced
methods, emphasizing the importance of this property and describing in detail the strategy
to achieve it, based on the idea presented in [25].

This strategy involves using a reconstruction operator that is well-balanced, meaning
that when applied to the cell averages of a stationary solution, the approximations obtained
should coincide with that stationary solution. Reconstruction operators do not possess
this property in general, but we construct one that does by following the process outlined
below:
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1. Seek, if possible, a stationary solution such that its average in the cell matches the
value of our approximation in that cell.

2. Calculate the fluctuations in the cells of the stencil of a standard reconstruction
operator of our choice, i.e., the differences between the averages of the solution and
those of the stationary solution obtained in the first step. Apply the chosen standard
reconstruction operator to these fluctuations.

3. Sum the stationary solution obtained in the first step and the reconstruction from
the second step to obtain the well-balanced reconstruction operator.

The obtained operator is well-balanced and of the same order as the standard
reconstruction operator used in the second step, assuming that stationary solutions
are sufficiently smooth and that the standard reconstruction operator is exact in the case
of zero functions.

Additionally, it is necessary to adapt the expression of the source term integral so that
the final scheme obtained is well-balanced.

The last section is dedicated to introducing Lagrangian coordinates, which will be used
in Chapters 2 and 3. Since these coordinates follow the trajectories of the flow particles,
consider a particle ξ and define the characteristic curves as

∂x

∂t
(ξ, t) = u(x(ξ, t), t),

x(ξ, 0) = ξ.

Moreover, given a function in Eulerian coordinates (x, t) 7→ U(x, t), its equivalent in
Lagrangian coordinates is defined as

U(ξ, t) = U(x(ξ, t), t).

Finally, the Jacobian of the Lagrangian mapping is defined as

L(ξ, t) =
∂x

∂ξ
(ξ, t),

and a series of properties relating the partial derivatives in different coordinates are derived.
This section considers the case of the Euler equations, which are reformulated in terms
of Lagrangian coordinates and are eventually particularised to the case of shallow water
equations.

Chapter 2: Implicit and implicit-explicit Lagrange-projection
exactly well-balanced finite volume schemes for 1D shallow water
system

This chapter presents the work published in [22], where the Lagrange-Projection technique
is considered within the framework of finite volume schemes applied to the shallow water
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system. As mentioned before, this technique consists of two steps: first, the system in
Lagrangian coordinates is solved, and then the result is projected to Eulerian coordinates.
These steps are known as the Lagrangian step and the projection or transport step,
respectively. The reason for returning to Eulerian coordinates in each step is that using
pure Lagrangian coordinates and tracking moving meshes can be cumbersome, especially
in two-dimensional configurations. Additionally, this methodology allows the decoupling
of acoustic and transport phenomena, allowing the design of implicit-explicit schemes and
enabling naturally larger time steps. This is particularly beneficial in the case of a small
Froude number, as using implicit or implicit-explicit schemes reduces the CFL restriction
to slow transport waves rather than acoustic ones, which are more restrictive.

In the Lagrangian step, two versions of the scheme are considered: a nonlinear implicit
version and an implicit-explicit version, based on how the geometric source term is treated.
The transport step is always performed explicitly. Exactly well-balanced first and second-
order versions of the schemes are presented, where water at rest solutions are preserved.
To achieve this, exactly well-balanced reconstruction operators are used, constructed using
the strategy described in [25].

After conducting various numerical tests, it is concluded that the scheme where the
Lagrangian step is solved implicitly-explicitly is more efficient than the nonlinear implicit
one, as the latter requires solving a nonlinear system and several iterations of a fixed-point
algorithm. Additionally, as expected, first-order schemes are more diffusive than second-
order ones. Finally, an improvement in the efficiency of schemes in which the Lagrangian
step is performed implicitly (both nonlinear and implicit-explicit) is observed compared to
those performed explicitly, especially in the case of a low Froude number, where implicit
schemes allow much larger time steps.

Chapter 3: Implicit Lagrange-projection well-balanced finite
volume scheme for the Ripa model

In the third chapter, we propose a strategy to numerically solve the Ripa model by
once again applying the Lagrange-Projection technique. This consists on solving the
Ripa system in Lagrangian coordinates first and then projecting the solution to Eulerian
coordinates. Similarly to Chapter 2, the Lagrangian system is solved implicitly, while the
projection step is done explicitly.

First order well-balanced finite volume schemes are designed for this model, preserving
the so-called hydrostatic steady states corresponding to u = 0, and satisfying

∂xp = −2p∂xz
h

.

Particular cases of these steady states include those corresponding to water at rest,

u = 0, h+ z = constant, θ = constant,
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as well as isobaric steady states, where pressure is constant and the bottom is flat:

u = 0,
g

2
h2θ = constant, z = constant.

Since in this case the stationary solutions are determined by setting a profile for h
or θ, it is impossible to design exactly well-balanced numerical schemes for all hydrostatic
solutions. That is why we have chosen to use an approximation technique, so that once a
discrete profile for h has been chosen, we proceed to approximate the pressure using a
collocation method (see [56]) to approximate the solutions of the ODE

∂ξp = −2p∂ξz
h

.

Once the pressure is recovered at the quadrature points, and the discrete profile of h is
known, it is possible to recover the stationary discrete profile of θ. The schemes obtained
are, therefore, well balanced but not exactly well balanced.

A section of numerical tests is included, comparing the proposed scheme with two
other Lagrangian-Projected schemes: one that is not well-balanced and another that is
exactly well-balanced for the water at rest steady states and the isobaric steady states but
not for any hydrostatic steady state.

Chapter 4: Semi-implicit fully exactly well-balanced finite volume
schemes for the 1D shallow water system

In this chapter, the goal is the design of implicit first and second order schemes that
preserve all steady state solutions of the shallow water equations. To achieve this, a
splitting technique is applied, resulting in two systems to solve: a pressure system and a
transport system. A relaxed system of the pressure system is then considered. This will
be solved implicitly, while the transport system will be solved explicitly. It is possible to
solve the pressure system first, followed by the transport system, or vice versa. Therefore,
for each order, two versions of the scheme are considered.

For second order, the well-known ”Strang splitting” is used along with second order
reconstructions in space and first order in time. This splitting involves taking one step of
one system with a time step ∆t/2, followed by a step of the second system with a time
step ∆t, and ending with a step of the first system with a time step ∆t/2. Therefore, in
the case where the pressure system is solved first, two implicit steps will be necessary,
while in the case where the transport system is solved first, only the second step will be
implicit, making the latter potentially more efficient.

Thus, as in the previous chapters, schemes that allow larger time steps than explicit
schemes are obtained, making them more efficient, especially for low Froude numbers.

When studying the results of the proposed schemes with various tests and increasing
the CFL value, different behaviors have been observed depending on which system is solved



xxx Abstract

first. For first order, better performance is observed in the scheme where the pressure
system is solved first, while for second order, stability is better in the scheme that starts
with the transport system.

Additionally, tests have been performed considering perturbations of a subcritical
solution, as well as a smooth transcritical solution, with good results observed in both
cases.

Chapter 5: Conclusions and future work

In this final section of the document, conclusions drawn from the results obtained
throughout this thesis are presented.

Regarding future work, several aspects are outlined for further exploration with the aim
of applying the developments in this thesis to other problems. These include extending
the methods to the two-dimensional case, designing schemes of order higher than two, and
applying the studied strategies to other systems.



Chapter 1

Mathematical settings

1.1 Finite volume numerical methods for 1D systems

of balance laws

In this section we will present a brief review on systems of balance laws, which provide
a framework for understanding numerous important phenomena within fluid dynamics.
Once we describe these systems and general finite volume methods for them, we will also
present the particular numerical strategies that will be used afterwards in the following
chapters.

1.1.1 Systems of balance laws

A system of balance laws in one space dimension takes the form

Ut + f(U)x = S(U)Hx, (1.1.1)

where U(x, t) is a vector function that takes values in an open set Ω ⊂ RN , called the
set of states, and f : Ω −→ RN is the flux function. The term on the right hand side,
S(U)Hx, is the source term, where S : Ω −→ R and H : R −→ R are known functions.
Note that function H could be the identity function.

In the particular case where S(U) = 0 or H is a constant function, system (1.1.1)
reduces to

Ut + f(U)x = 0, (1.1.2)

and it is called a system of conservation laws.

Note that a system of balance laws can be seen as a system of conservation laws with
a source term. Therefore, many of the concepts we introduce below refer initially to
conservation laws, and are later extended to equilibrium laws.
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Definition 1.1.1. The system (1.1.2) is said to be hyperbolic if for every U ∈ Ω, Jf (U),
the jacobian matrix of f , has N real eigenvalues

λ1(U) ≤ . . . ≤ λN(U),

with associated eigenvectors

R1(U), . . . , RN(U).

If all the eigenvalues are distinct, that is, if

λ1(U) < . . . < λN(U),

the system (1.1.2) is said to be strictly hyperbolic.

Let us now define when a characteristic field is linearly degenerate or genuinely
nonlinear:

Definition 1.1.2. The characteristic field Ri(U) is said to be linearly degenerate if

∇λi(U) ·Ri(U) = 0, ∀U ∈ Ω, (1.1.3)

where ∇λi(U) denotes the gradient of λi(U):

∇λi(U) =

(
∂λi

∂u1

, . . . ,
∂λi

∂uN

)
.

The characteristic field Ri(U) is said to be genuinely nonlinear if

∇λi(U) ·Ri(U) ̸= 0, ∀U ∈ Ω. (1.1.4)

In the following, we will suppose that the characteristic fields are of the type linearly
degenerate or genuinely nonlinear.

Let us now focus on Cauchy problems for conservation laws, which are represented as
follows: {

Ut + f(U)x = 0,

U(x, 0) = U0(x),
(1.1.5)

where we consider the particular case Ω = R.
In this context, a function U : R × [0,∞) −→ Ω that is C1 and satisfies (1.1.5) is

referred to as a classical solution of that Cauchy problem.

As (1.1.5) may not have a classical solution, the concept of weak solution is introduced
by means of a variational formulation:
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Definition 1.1.3. Let us consider the Cauchy problem (1.1.5) with initial condition
U0 ∈ L∞loc (R), where L∞loc denotes the space of locally bounded measurable functions. A
function U ∈ L∞loc (R× [0,∞)) such that U ∈ Ω almost everywhere is said to be a weak
solution of (1.1.5) if for any C1 test function Φ with compact support in R× [0,∞), one
has ∫ ∞

0

∫
R

(
U(x, t)Φt(x, t) + f(U(x, t))Φx(x, t)

)
dxdt+

∫
R
U0(x)Φ(x, 0) dx = 0. (1.1.6)

A weak solution satisfies the Cauchy problem (1.1.5) in the sense of the distributions
theory (see [54]). In the case in which the function U is piecewise C1, the following result
holds:

Theorem 1.1.1. Let C be a C1 curve in R2 defined by x = ξ(t), that cuts the open set
Ω ⊂ R2 in two open sets Ω− and Ω+, defined respectively by x < ξ(t) and x ≥ ξ(t). A
piecewise C1 function U : R × [0,∞) −→ Ω is a weak solution of the Cauchy problem
(1.1.5) if and only if:

• U is a classical solution of (1.1.5) in Ω− and in Ω+;

• the condition
σ(U+ − U−) = f(U+)− f(U−) (1.1.7)

is satisfied on C ∩Ω, where σ := ξ̇ is the speed of the propagation of the discontinuity
depending on U−, U+ which are, respectively, the left and right limit states of the
solution at the discontinuity.

The condition (1.1.7) is known as the Rankine-Hugoniot condition, and it is usually
written as

σ[U ] = [f(U)], (1.1.8)

where
[U ] = U+ − U−, [f(U)] = f(U+)− f(U−).

Since, in general, there isn’t a unique weak solution for (1.1.5), we require an entropy
condition to select physically meaningful solutions from the possible candidates. Specifically,
it is common to consider an entropy pair (η, q), where η : Ω −→ R is a convex function
referred to as the entropy, and q : Ω −→ R is a smooth function known as the entropy
flux. This pair should satisfy the following relationship:

∇η(U)TJf (U) = ∇q(U)T , ∀U ∈ Ω, (1.1.9)

being

∇η(U) =

(
∂η

∂u1

, . . . ,
∂η

∂uN

)T

.



4 Mathematical settings

It can be proved (see [66]) that smooth solutions of (1.1.2) satisfy the equation

η(U)t + q(U)x = 0, x ∈ R, t ∈ [0,∞). (1.1.10)

A weak solution of (1.1.2) is considered an entropy solution if the inequality

η(U)t + q(U)x ≤ 0 (1.1.11)

holds in the sense of distributions.

Additionally, for a piecewise C1 weak solution U of (1.1.2), condition (1.1.11) is satisfied
if and only if

σ[η(U)] ≥ [q(U)] (1.1.12)

holds across all the discontinuities.

Going back now to systems of balance laws (1.1.1) in which H is continuous, one can
extend the definition of weak solution for{

Ut + f(U)x = S(U)Hx,

U(x, 0) = U0(x),
(1.1.13)

as follows:

Definition 1.1.4. Let us consider the Cauchy problem (1.1.13) with initial condition
U0 ∈ L∞loc (R) and H be a continuous function. A function U ∈ L∞loc (R× [0,∞)) such that
U ∈ Ω almost everywhere is said to be a weak solution of (1.1.13) if for any C1 function
Φ with compact support in R× [0,∞), one has∫ ∞

0

∫
R

(
U(x, t)Φt(x, t) + f(U(x, t))Φx(x, t)

)
dxdt

−
∫ ∞
0

∫
R
S(U(x, t))Hx(x)Φ(x, t) dxdt+

∫
R
U0(x)Φ(x, 0) dx = 0.

(1.1.14)

1.1.2 Some systems of balance laws models

In this section we will introduce and briefly discuss the models that will be considered in
this thesis: the shallow water model, the Ripa model, the isentropic gas dynamics model
and the compressible Euler system. Even though we will only derive numerical methods
for the shallow water and the Ripa model, the other two systems will also be presented
here, since the isentropic gas dynamics one will be used to introduce how relaxation solvers
can be applied and the Euler equations will be used to introduce the use of Lagrangian
coordinates.
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The shallow water model

The shallow water model is a simplification of the Navier-Stokes one, obtained after
performing a vertical averaging of the Navier-Stokes equations under a set of assumptions:

• Water is homogeneous and incompressible.

• The pressure is hydrostatic, increasing with depth.

• The only internal force acting on the fluid is pressure, with viscous effects being
neglected.

• Both the bottom over which the fluid evolves and the free surface can be represented
by functions depending on one of the horizontal variables, x, in the case of the
bottom, ans on x and time t, in the case of the free surface.

• Fluid velocity depends only on x and t, with vertical variations of the horizontal
components of velocity being neglected.

The shallow water equations (SWE) describe the flow of liquids with a single thin layer,
i.e., when the horizontal dimension is considerably larger than the vertical dimension. In
the one-dimensional case, these equations are also known as the Saint-Venant equations,
as this French engineer and mathematician first derived them in 1871 (see [41]). The one
dimensional shallow water system is given by the following equations:∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

(
hu2 + g

h2

2

)
= −gh∂xz,

(1.1.15)

where h(x, t) is the thickness of the water layer, u(x, t) is the horizontally averaged velocity
in the vertical direction, z(x) denotes a certain smooth topography measured from a
reference level, and g > 0 is the gravitational constant. The free surface is usually denoted
by η and is given by η = h+ z. The first equation corresponds to mass conservation, and
the second one to the momentum equation.

As far as the eigenstructure of the shallow water system is concerned, the system is
strictly hyperbolic over the phase space Ω = {(h, hu)T ∈ R2 | h > 0} and it is composed
of two genuinely nonlinear fields associated with the eigenvalues u− c and u+ c, where
c =

√
gh is the sound speed. The regions where u2 < c2 (resp. u2 > c2) are called

subcritical (resp. supercritical). Defining the Froude number as

Fr =
|u|√
gh

, (1.1.16)

we can clearly relate the subcritical and supercritical regions with it as: if Fr < 1 (resp.
Fr > 1) the region is subcritical (resp. supercritical).
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Moreover, the equilibrium or steady states of the SWE are given by
d

dx
(hu)e = 0,

d

dx

(
hu2 + g

h2

2

)e

= −ghe z′.
(1.1.17)

In particular, smooth equilibria satisfy (hu)e = C1,
(ue)2

2
+ g(he + z) = C2,

(1.1.18)

where C1 and C2 are two real constants. Of course, when C1 = 0, we obtain the so-called
water at rest steady states, for which

qe = (hu)e = 0, ηe = he + z = cst. (1.1.19)

Remark that for any two fixed constants C1 and C2, system (1.1.18) is equivalent to
setting qe(x) = C1 and he(x) solution of the cubic equation

(he)3 +

(
z − C2

g

)
(he)2 +

C2
1

2g
= 0. (1.1.20)

Note that equation (1.1.20) does not always has a physical solution. It always has a
negative root, but it does not always have positive ones.

Moreover, for fixed values C1 and C2, one may define the function

fC1 : (0,∞] → R

h 7→ C2
1

2h2
+ gh,

and write (1.1.20) equivalently as

fC1(h) = C2 − gz.

Following the study done in [20], for any fixed value C1, fC1 has a global minimum at

hcrit(C1) =
|C1|2/3

g1/3
. (1.1.21)

Let us denote by ms(C1) = fC1(hcrit(C1)). Then one can find three different possibilities
when solving (1.1.20):

1. If C2 − gz < ms(C1), then there exists no real positive solution.

2. It C2 − gz = ms(C1), then there exist a unique real positive solution given by
h = hcrit(C1).

3. If C2 − gz > ms(C1), then there are exactly two positive solutions: the subcritical
one, that satisfies h > hcrit(C1) and the supercritical one, that verifies h < hcrit(C1).
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The Ripa model

The Ripa model was derived from the compressible Euler model in [79, 80] to incorporate
horizontal temperature gradients. The equations of the Ripa system are the following:

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

(
hu2 +

g

2
h2θ
)
= −ghθ∂xz,

∂t(hθ) + ∂x(hθu) = 0,

(1.1.22)

where θ is the potential temperature field.
This system is also strictly hyperbolic, with eigenvalues given by u− c, u, and u+ c,

where now c =
√
ghθ.

Among all the possible steady states of the Ripa system, which satisfy
∂x(hu)

e = 0,

∂x

(
hu2 +

g

2
h2θ
)e

= −g(hθ)e∂xz,
∂x(hθu)

e = 0,

(1.1.23)

we can highlight the hydrostatic steady states, that is, those steady states corresponding
to

u = 0,

which satisfy

∂xp = −2p∂xz
h

, (1.1.24)

with p = g
2
h2θ.

Particular cases of these steady states are the ones corresponding to ”water at rest”,

u = 0, h+ z = cst., θ = cst., (1.1.25)

as well as the isobaric steady states corresponding to constant pressure and flat topography,

u = 0,
g

2
h2θ = cst., z = cst. (1.1.26)

Euler equations

The Euler equations can be written in the one-dimensional case and assuming slab
symmetry as 

∂ρ

∂t
+

∂

∂x
(ρu) = 0,

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) = 0,

∂

∂t
(ρe) +

∂

∂x
((ρe+ p)u) = 0,

(1.1.27)
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where ρ is the density, u is the velocity, p is the pressure, e = ε + |u|2
2

is the specific
total energy and ε is the specific internal energy. They represent conservation of mass,
conservation of momentum and conservation of total energy, respectively.

An equation for the pressure, known as the equation of state, has to be added to
(1.1.27) to close the system. In general,

p = p(ρ, ε).

The eigenvalues of the previous system are given by u − c, u and u + c, where

c =
√

∂p
∂ρ

+ p
ρ
∂p
∂ε

is the sound speed.

The case of an isentropic gas, where p = p(ρ) is a particular one of special interest.
In that case it is enough to solve the equations of conservation of mass and momentum
(1.1.28).

Isentropic gas dynamics model

Isentropic gas dynamics refers to the study of the motion and behavior of gases with
constant entropy. The isentropic gas dynamics equations are given by{

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p(ρ)) = 0,

(1.1.28)

where ρ is the density, u the velocity and p(ρ) the pressure. Its eigenvalues are given by
u− c and u+ c, where now c =

√
p′(ρ).

1.1.3 Finite volume numerical methods

In this section, again, we will first talk about finite volume numerical methods for systems
of conservation laws (1.1.2) and after that, we will give the details about the case of
balance laws (1.1.1).

The aim is to obtain approximations of the solution of the equations by discrete
values Ui(t), i ∈ Z. To do that, space is discretized in a set of cells or finite volumes
Ii = [xi−1/2, xi+1/2) using a space step ∆x, where xi+1/2 = i∆x and xi = (xi−1/2+xi+1/2)/2
are, respectively, the cell interfaces and cell centers for i ∈ Z. Similarly, the time step is
denoted as ∆t and the instants are written as tn = n∆t, with n ∈ N. The approximation
of the averages at time tn will be denoted as Un

i . There exists a restriction on the time
step to prevent the blow up of the numerical schemes. This restriction, called the CFL
condition after Courant, Friedrichs and Levy (see [40]), is the following:

∆t ≤ ∆x · CFL
a

, (1.1.29)
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where a is an approximation of the speed of propagation. In the explicit cases, CFL ≤
1. However, in the implicit ones, CFL can take values greater than 1, allowing the
consideration of bigger time steps.

In a finite volume method, the discrete values Ui(t) are approximations of the averages
of the exact solution over the cells, that is:

Ui(t) ≈
1

∆x

∫ xi+1/2

xi−1/2

U(x, t) dx. (1.1.30)

Now, integrating (1.1.2) over every cell Ii gives

1

∆x

∫ xi+1/2

xi−1/2

Ut dx = − 1

∆x

∫ xi+1/2

xi−1/2

f(U)x dx. (1.1.31)

We can then write
dUi(t)

dt
= − 1

∆x

(
F t
i+1/2 − F t

i−1/2
)
, (1.1.32)

being F t
i+1/2 an approximation of the average of the flux at xi+1/2, called numerical flux,

which constitutes a semi-discrete finite volume conservative scheme for solving (1.1.2).
Consistency is as a fundamental prerequisite for a scheme to guarantee an appropriate

approximation of the equation. In the context of conservative schemes, consistency is
defined as follows:

Definition 1.1.5. The scheme (1.1.32) for system (1.1.2) is said to be consistent if the
numerical flux

F t
i+1/2 = F(Ui−q(t), . . . , Ui+p(t)),

where F is a Lipschitz continuous function satisfies

F(U, . . . , U) = f(U), ∀U ∈ Ω.

1.1.3.1 Reconstruction operators

We will now give a definition of what is known as a reconstruction operator, that will play
a fundamental role in the numerical methods that we consider:

Definition 1.1.6. A reconstruction operator of order p is an operator that, given a family
of cell values {Ui}, provides at every cell Ii a smooth function that depends on the values
at some neighbour cells whose indexes belong to the so-called stencil Si:

Pi(x) = Pi(x; {Uj}j∈Si
), (1.1.33)

so that, if the cell values are the averages of a smooth function U :

Ui =
1

∆x

∫ x
i+1

2

x
i− 1

2

U(x)dx, ∀i ∈ Z, (1.1.34)
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then
Ui+ 1

2
− = U(xi+ 1

2
) +O(∆xp), (1.1.35)

Ui− 1
2
+ = U(xi− 1

2
) +O(∆xp), (1.1.36)

being
Ui+ 1

2
− = Pi(xi+ 1

2
), (1.1.37)

Ui− 1
2
+ = Pi(xi− 1

2
), (1.1.38)

where the states Ui+ 1
2
− and Ui− 1

2
+ are the so called reconstructed states at the intercells.

We will consider that the value F t
i+1/2 in expression (1.1.32) is computed as

F t
i+1/2 = F(U t

i+1/2−, U
t
i+1/2+), (1.1.39)

so the numerical flux F is evaluated at the reconstructed states at the intercells.
In this thesis, first and second order reconstruction operators will be used. For the

first order case, a constant reconstruction operator is used. For the second order case a
MUSCL (Monotone Upwind Scheme for Conservation Laws) reconstruction operator has
been considered. This operator was introduced in [90] and is based on a piecewise linear
reconstruction of the form

Pi(x) = Ui +∆iU(x− xi), (1.1.40)

where ∆iU is an approximation of the first-order spatial derivative at xi, computed
by means of a limiter that avoids the appearance of spourious oscillations in case of
discontinuities. Two slope limiters have been used in this work: minmod and avg (see
[83]). Both limiters are computed componentwise. They are defined as follows:

• The minmod limiter is given by

∆iU = minmod

(
Ui+1 − Ui

∆x
,
Ui − Ui−1

∆x

)
, (1.1.41)

where

minmod(a, b) =


min(a, b) if a > 0, b > 0,

max(a, b) if a < 0, b < 0,

0 otherwise.

(1.1.42)

• The avg or harmod limiter is given by

∆iU = avg

(
Ui+1 − Ui

∆x
,
Ui − Ui−1

∆x

)
, (1.1.43)

where

avg(a, b) =


|a|b+ |b|a
|a|+ |b|

if |a|+ |b| > 0,

0 otherwise.
(1.1.44)
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Let us note that in view of (1.1.41) and (1.1.43), in the computation of (1.1.40), the
stencils are composed by two neighbour cells and, given a cell i, the reconstructed states
at the intercells are given by

Ui−1/2+ = Ui −
∆x

2
∆iU,

Ui+1/2− = Ui +
∆x

2
∆iU.

(1.1.45)

Now, supposing a H continuous function, we can proceed similarly for the resolution
of a system of balance laws (1.1.1), writing the semi-discrete numerical method as

dUi(t)

dt
= − 1

∆x

(
F t
i+1/2 − F t

i−1/2
)
+

1

∆x
St
i , (1.1.46)

where the numerical fluxes are defined as (1.1.39) and St
i stands for the following

approximation of the integral of the source term at cell i:

St
i =

∫ xi+1/2

xi−1/2

S(P t
i (x))Hx dx, (1.1.47)

where P t
i is a reconstruction operator corresponding to time t.

1.1.3.2 Relaxation solvers

We will now introduce the idea of relaxation solvers (see [19]), that will be applied in the
different methods presented in this thesis.

Let us start by presenting the so called approximate Riemann solvers in the sense of
Harten, Lax, Van Leer [62]. A Riemann problem for (1.1.2) consists on solving (1.1.5)
with initial condition

U0(x) =

{
Ul if x < 0,

Ur if x > 0,
(1.1.48)

where Ul and Ur are two constant states. It is not difficult to see that the solution can be
written as a function of x/t.

Definition 1.1.7. An approximate Riemann solver for (1.1.2) is a vector function
R(x/t, Ul, Ur) that is an approximation of the solution to the Riemann problem, satisfying

• Consistency relation:
R(x/t, U, U) = U.

• Conservativity identity:
Fl(Ul, Ur) = Fr(Ul, Ur), (1.1.49)
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where the left and right numerical fluxes are defined by

Fl(Ul, Ur) = f(Ul)−
∫ 0

−∞
(R(v, Ul, Ur)− Ul) dv, (1.1.50)

Fr(Ul, Ur) = f(Ur) +

∫ ∞
0

(R(v, Ul, Ur)− Ur) dv. (1.1.51)

Let us consider a sequence of cell averages {U0
i } of a function U0(x) that we suppose

constant in each cell Ii. The idea of the approximate Riemann solvers is to consider that
close to each interface a translated Riemann problem has to be solved. Therefore, the
approximate solution for U(x, t) is given by:

U(x, t) = R

(
x− xi+1/2

t
, U0

i , U
0
i+1

)
if xi < x < xi+1. (1.1.52)

The approximation of the solution at time t, Ui(t), is the average over the cell Ii of
this approximate solution at time t, and using the definitions of Fl and Fr (1.1.50)-(1.1.51)
and the conservativity assumption (1.1.49), the scheme writes as

dUi(t)

dt
= −∆t

∆x

(
F (U0

i , U
0
i+1)− F (U0

i−1, U
0
i )
)
.

The use of the consistency assumption implies that the scheme is conservative.

The exact resolution of the Riemann problem is excessively complex and costly,
particularly for systems of significant dimensions. Consequently, we opt for the use of
approximate solvers instead. Simple solvers and relaxation solvers will now be introduced.

Simple solvers

Definition 1.1.8. A simple solver is an approximate Riemann solver R(x/t, Ul, Ur) that
consists on a set of finitely many simple discontinuities, that is, there exists a finite number
m ≥ 1 of speeds

σ0 = −∞ < σ1 < . . . < σm < σm+1 =∞

and intermediate states

U0 = Ul, U1, . . . , Um−1, Um = Ur

that depend on Ul and Ur such that

R(x/t, Ul, Ur) = Uk if σk < x/t < σk+1. (1.1.53)
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Figure 1.1: Sketch of a simple Riemann solver

Using the conservativity identity (1.1.49) it is possible to check that a simple solver
satisfies:

m∑
k=1

σk(Uk − Uk−1) = f(Ur)− f(Ul).

Since in all the works presented in this thesis the relaxation method will be applied,
will now introduce the procedure to be applied.

Relaxation solvers

Relaxation methods have been used in plenty of previous works such us [63, 39, 3, 18, 32].
Here we keep following [19].

Definition 1.1.9. A relaxation system for (1.1.2) is another system of conservation laws
in higher dimension q > s,

∂tg + ∂x(A(g)) = 0, (1.1.54)

where g(x, t) ∈ Rq and A(g) ∈ Rq. This system is assumed to be hyperbolic.
The link between (1.1.2) and (1.1.54) is made by the assumption that we have a linear

operator
L : Rq → Rs

and for any U , an equilibrium M(U) such that

LM(U) = U, (1.1.55)

LA(M(U)) = f(U). (1.1.56)

Once system (1.1.54) has been solved, we define

U ≡ Lg. (1.1.57)

The idea of the relaxation schemes is that U = Lg should be an approximation of the
solution of (1.1.2) when g is a solution of (1.1.54) and is close to the equilibrium.
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There are many different well known relaxation solvers such as Rusanov flux or HLL
flux. Here we will focus on the Suliciu relaxation system, considered in works such as
[86, 87, 39, 18, 32, 3]. In order to introduce the Suliciu relaxation system we will consider
the isentropic gas dynamics equations given by (1.1.28). The first equation in (1.1.28) can
be written for smooth solutions as

∂tρ+ u∂xρ+ ρ∂xu = 0, (1.1.58)

and after multiplying by p′(ρ) we obtain

∂tp(ρ) + u∂xp(ρ) + ρp′(ρ)∂xu = 0. (1.1.59)

Finally, multiplying (1.1.58) by p(ρ) and (1.1.59) by ρ and summing, we obtain

∂t(ρp(ρ)) + ∂x(ρp(ρ)u) + ρ2p′(ρ)∂xu = 0. (1.1.60)

If we now define a new variable π = p(ρ) and we replace ρ2p′(ρ) by a constant a2, we
get the relaxation system 

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p(ρ)) = 0,

∂t(ρπ) + ∂x(ρπu) + a2∂xu = 0,

(1.1.61)

which has q = 3 unknowns with g = (ρ, ρu, ρπ) for s = 2 unknowns (ρ, ρu) for the original
system. Then, in this case

A(ρ, ρu, ρπ) =
(
ρu, ρu2 + π, ρπu+ a2u

)
, (1.1.62)

the linear operator is
L(g1, g2, g3) = (g1, g2) (1.1.63)

and the equilibrium is given by

M(ρ, ρu) = (ρ, ρu, ρp(ρ)) . (1.1.64)

The constant a has to verify the known as subcharacteristic condition (see [19]), that
consists on imposing that the eigenvalues of the original system lie between the eigenvalues
of the relaxation one, so

|λj(U)| ≤ a. (1.1.65)

The benefit of solving system (1.1.61) instead of (1.1.28) is that the exact resolution
of the Riemann problem for (1.1.61) is much simpler since it can be rewritten equivalently
as a transport system:

∂t(π + au) + (u+ a/ρ)∂x(π + au) = 0,

∂t(π − au) + (u− a/ρ)∂x(π − au) = 0,

∂t(1/ρ+ π/a2) + u∂x(1/ρ+ π/a2) = 0.

(1.1.66)
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1.1.3.3 Time integrators

Since the semi-discrete numerical method (1.1.46) is an ODE system, we will apply a
numerical solver in order to approximate its solution. In this work, different types of
solvers will be considered: explicit, implicit and semi-implicit. For each case we will focus
on first and second order solvers. We will also introduce here the idea of the Strang
splitting which will be used in the schemes proposed in Chapter 4.

Explicit time integrators

Let us suppose that we can write the semi-discrete scheme (1.1.46) as

dUi(t)

dt
= A(Ui(t)), (1.1.67)

where A(Ui(t)) represents the right-hand side of the scheme. Then, the first and second
order explicit schemes can be written as:

• First order:

Un+1
i = Un

i +∆tA(Un
i ), (1.1.68)

where Un
i and Un+1

i are the discrete averages approximations at time tn and tn+1,
respectively.

• Second order: Applying the mid-point quadrature rule we obtain

Un+1
i = Un

i +∆tA(U
n+1/2
i ). (1.1.69)

Here U
n+1/2
i represents the discrete averages approximations at time

tn+1/2 =
tn + tn+1

2
,

which are computed by applying an Euler step as

U
n+1/2
i = Un

i +
∆t

2
A(Un

i ).

Implicit time integrators

In the implicit case, we will give a first order solver and two different second order ones
applied to (1.1.46):

• First order:

Un+1
i = Un

i +∆tA(Un+1
i ). (1.1.70)
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• Second order (trapezoidal rule): applying the trapezoidal rule we obtain

Un+1
i = Un

i +
∆t

2

(
A(Un

i ) + A(Un+1
i )

)
. (1.1.71)

• Second order (DIRK): we can also obtain a second order integrator by using a DIRK
(Diagonally Implicit Runge-Kutta) scheme (see [76]), which in the second order case
has the following Butcher tableau:

γ γ 0
1 1− γ γ

1− γ γ,
(1.1.72)

where γ = 1−
√
2
2
. The numerical method then writes:

U1
i = Un

i +∆tγA(U1
i ),

Un+1
i = Un

i +
(1− γ)

γ
U1
i +∆tγA(Un+1

i ).
(1.1.73)

Semi-implicit time integrators

In the case in which the balance law (1.1.1) can be written as

Ut + f 1(U)x + f 2(U)x = S1(U)Hx + S2(U), (1.1.74)

being f 1 and S1 non stiff and f 2 and S2 stiff, we could write the semi-discrete numerical
method in the following way:

dUi(t)

dt
= A1(Ui(t)) + A2(Ui(t)), (1.1.75)

where A1 contains the non stiff terms and A2 the stiff ones. The semi-implicit time
integrators consist on treating the function A1 explicitly and the function A2 implicitly.

• First order: the non stiff terms are treated explicitly as in (1.1.68), and the stiff ones
are treated implicitly as in (1.1.70).

• Second order: for higher order one can use the IMEX methods (see [14], [12]). Here,
we consider the SSP2(2,2,2) IMEX scheme defined by the Butcher tableau (see [76]):

0 0 0
1 1 0

1
2

1
2

,
γ γ 0

1− γ 1− 2γ γ
1
2

1
2

, (1.1.76)

where γ = 1−
√
2
2
.
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Strang splitting

After having presented different explicit, implicit and semi-implicit time integrators that
will be used in the following, we will introduce another strategy, called Strang splitting,
that will be used in Chapter 4 and that can be applied explicitly or semi-implicitly, as we
will see.

Let us suppose that our equation can be written as

∂tU = SA(U) + SB(U). (1.1.77)

Then, instead of solving (1.1.77) directly we could consider a splitting that would
consist on solving each of the two systems

∂tU = SA(U), (1.1.78)

and

∂tU = SB(U), (1.1.79)

sequentially. We could either solve the system defined by SA first, followed by the one
defined by SB or vice versa, so we will have two different versions of the schemes depending
on the order we consider. Moreover, we could decide to solve each of the systems explicitly
or implicitly as we see fit.

Let us denote by Sτ
A, S

τ
B the approximate solution operators in the interval [t, t+ τ ] of

the corresponding exact solution operators to systems (1.1.78) and (1.1.79), respectively.
Then, the first version of a second order scheme can be written as

U(x, t+∆t) = S
∆t
2

A ◦ S
∆t
B ◦ S

∆t
2

A (U(x, t)), (1.1.80)

while the second version corresponds to

U(x, t+∆t) = S
∆t
2

B ◦ S
∆t
A ◦ S

∆t
2

B (U(x, t)). (1.1.81)

In each of the steps we need to consider second order approximations in space, while
the time stepping is just first order within the step, the second order in time being obtained
thanks to Strang method.

1.2 Well-balanced methods

In this section we will focus on the design of numerical methods that are well-balanced. Let
us consider a system of balance laws (1.1.1) that admits a non-trivial stationary solution
satisfying

f(U)x = S(U)Hx. (1.2.1)
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The solutions of (1.1.1) that satisfy the previous equation are called steady states or
stationary solutions. Numerical schemes that preserve a family of steady states (resp. all
steady states) are called well-balanced (resp. fully well-balanced). It is worth distinguishing
between exactly preserving the steady states or a discrete approximation of them. The
former are called exactly well-balanced while the latter are simply well-balanced schemes
(see [56]).

The need to use well-balanced methods comes from the fact that when standard
methods are used to solve (1.1.1) with an initial condition that reflects a perturbation to
a stable solution, the discretization errors perturb the steady state throughout the entire
computational domain from the very first time step. If these errors are approximately as
significant as the initial perturbation, it becomes impossible to differentiate between the
waves we intend to simulate and those that emerge as a consequence of the discretization
errors. Furthermore, even though we can reduce discretization errors by refining the mesh
or opting for higher-order methods, the resulting increase in computational expenses may
become prohibitive.

In the different works presented in this thesis we will apply the strategy proposed in
[25] for the design of well-balanced schemes. A brief review of it will now be presented.

Definition 1.2.1. Given a stationary solution U e of (1.1.1) a reconstruction operator is
said to be exactly well-balanced for U e if, for every cell index i, the following equality holds:

Pi(x) = U e(x), ∀x ∈ Ii,

where Pi is the approximation of U e obtained by applying the reconstruction operator to
the sequence of cell averages {U e

i } of U e:

U e
i =

1

∆x

∫ xi+1/2

xi−1/2

U e(x) dx.

It can be proved that the following result for exactly well-balanced reconstruction
operators holds:

Theorem 1.2.1. If the reconstruction operator Pi is exactly well-balanced for a continuous
stationary solution U e of (1.1.1), then the numerical method (1.1.46) with

St
i =

∫ xi+1/2

xi−1/2

S(P t
i (x))Hx(x) dx, (1.2.2)

is also exactly well-balanced for U e, i.e., the sequence of cell averages of U e is an equilibrium
of the ODE given by the numerical method (1.1.46) with (1.2.2), where P t

i is defined as
(1.1.33).

Proof. Let us consider a continuous stationary solution U e of (1.1.1) at time t and a
exactly well-balanced reconstruction operator P t

i applied to the cell averages {U e
i }. We

will prove that {U e
i } is an equilibrium of (1.1.46).



1.2 Well-balanced methods 19

Since Pi is exactly well-balanced, for every i we have:

P t
i (x) = U e(x) ∀x ∈ Ii,

and

U t
i+1/2− = P t

i (xi+1/2) = U e(xi+1/2),

U t
i+1/2+ = P t

i+1(xi+1/2) = U e(xi+1/2).

Therefore

F t
i+1/2 − F t

i−1/2 − St
i

= F(U t
i+1/2−, U

t
i+1/2+)− F(U t

i−1/2−, U
t
i−1/2+)−

∫ xi+1/2

xi−1/2

S(P t
i (x))Hx(x) dx

= F(U e(xi+1/2), U
e(xi+1/2))− F(U e(xi−1/2), U

e(xi−1/2))−
∫ xi+1/2

xi−1/2

S(U e(x))Hx(x) dx

= f(U e(xi+1/2))− f(U e(xi−1/2))−
∫ xi+1/2

xi−1/2

S(U e(x))Hx(x) dx = 0,

where in the last equality we have applied the consistency of the numerical flux and the
equation satisfied by the stationary solution (1.2.1).

Then, the numerical method (1.1.46) is exactly well-balanced for U e.

In view of Theorem 1.2.1, we will now focus on the design of reconstruction operators
that are exactly well-balanced, following the idea developed in [25]. To do so, we will start
from standard reconstruction operators that we will denote as

Qi(x) = Qi(x; {Uj}j∈Si).

We will now present an algorithm that allows the construction of exactly well-balanced
operators from standard ones:

Algorithm 1.2.1. Given a family of cell values {Ui}, at every cell Ii:

1. Find, if possible, a stationary solution U e
i (x) in the cells belonging to the stencil of

Ii, ∪j∈SiIj, such that:
1

∆x

∫ xi+1/2

xi−1/2

U e
i (x) dx = Ui. (1.2.3)

Otherwise, take U e
i ≡ 0.

2. Apply a standard reconstruction operator of order p to the cell values {Vj}j∈Si
, called

fluctuations, given by

Vj = Uj −
1

∆x

∫ xj+1/2

xj−1/2

U e
i (x) dx, j ∈ Si,

to obtain:
Qi(x) = Qi(x; {Vj}j∈Si).
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3. Finally, define

Pi(x) = U e
i (x) +Qi(x). (1.2.4)

The reconstruction operator defined in Algorithm 1.2.1 satisfies the following result:

Theorem 1.2.2. The reconstruction operator Pi in (1.2.4) is exactly well-balanced for any
stationary solution of (1.1.1) provided that Qi is exact for the zero function. Additionally,
Pi is conservative provided that Qi is conservative and it is high-order accurate provided
that the stationary solutions are smooth.

Since the cell averages are usually approximated by applying quadrature formulas,
Algorithm 1.2.1 can be updated by using the appropriate quadrature formulas when
needed.

As in this thesis we focus on first and second order schemes, we apply the midpoint
rule to approximate the integrals. Therefore:

1

∆x

∫ xi+1/2

xi−1/2

U(x) dx = U(xi) +O(∆x2), (1.2.5)

which means that we identify cell averages with centered point values up to second order.
The way to proceed would be to first compute the sequence of initial cell averages

{U0
i } defined by the initial condition U0, that is:

U0
i = U0(xi),

and then apply Algorithm 1.2.1 but now using the midpoint rule. Therefore, in the first and
second order case, the algorithm applied to obtain an exactly well-balanced reconstruction
operator would be:

Algorithm 1.2.2. Given a family of cell values {Ui}, at every cell Ii:

1. Find, if possible, a stationary solution U e
i (x) defined in the cells belonging to the

stencil of Ii, ∪j∈SiIj, such that:

U e
i (xi) = Ui, (1.2.6)

i.e., look for U e
i (x) in the cells of the stencil of Ii which solves the Cauchy problem{

f(U)x = S(U)Hx,

U(xi) = Ui.
(1.2.7)

Otherwise, take U e
i ≡ 0.
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2. Apply a standard reconstruction operator of first/second order to the fluctuations
given by

Vj = Uj − U e
i (xj), j ∈ Si,

to obtain:
Qi(x) = Qi(x; {Vj}j∈Si).

(Observe that Vi = 0).

3. Finally, define
Pi(x) = U e

i (x) +Qi(x). (1.2.8)

In our case, for the first order schemes the reconstruction operator used will be the
piecewise constant one. Therefore, we have

Qi(x) = Vi = 0,

and the exactly well-balanced reconstruction operator in this case would just be

Pi(x) = U e
i (x).

For the second order case, we consider the MUSCL reconstruction operator (1.1.40):

Qi(x) = Vi +∆iV (x− xi) = ∆iV (x− xi),

where ∆iV is an approximation of the spatial derivatives of the fluctuations computed
by means of a limiter (in our case, minmod or avg). Then, the exactly well-balanced
reconstruction operator can be written as

Pi(x) = U e
i (x) + ∆iV (x− xi).

Finally, we still have the issue of computing the integral of the source term

St
i =

∫ xi+1/2

xi−1/2

S(P t
i (x))Hx(x) dx. (1.2.9)

Applying quadrature formulas to approximate it could destroy the well-balance character
of the method and the way to avoid this is by rewriting the integral as∫ xi+1/2

xi−1/2

S(P t
i (x))Hx(x) dx = f

(
U t,e
i (xi+1/2)

)
− f

(
U t,e
i (xi−1/2)

)
+

∫ xi+1/2

xi−1/2

(
(S(P t

i (x))− S(U t,e
i (x))

)
Hx(x) dx,

(1.2.10)

where U t,e
i denotes again the stationary solution found in the first step of the exactly

well-balanced reconstruction procedure in Algorithm 1.2.1, at the cell Ii and at time t,
and P t

i is the reconstruction operator defined as (1.1.33).
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In the first and second order cases, applying the midpoint rule to (1.2.10) we obtain∫ xi+1/2

xi−1/2

S(P t
i (x))Hx(x) dx = f

(
U t,e
i (xi+1/2)

)
− f

(
U t,e
i (xi−1/2)

)
+∆x

(
(S(P t

i (xi))− S(U t,e
i (xi))

)
Hx(x) dx

= f
(
U t,e
i (xi+1/2)

)
− f

(
U t,e
i (xi−1/2)

)
,

since P t
i (xi) = U t,e

i (xi).

1.3 Systems in Lagrangian coordinates

The use of Lagrangian coordinates in fluid dynamics partial differential equations may be
of special interest since they are a good tool for tracking individual fluid particles as they
move through the flow and this can allow the design of schemes with interesting properties.

In this thesis we will use them in Chapters 2 and 3 for obtaining implicit and semi-
implicit schemes for the shallow water equations and the Ripa system.

We will introduce the Lagrangian coordinates through a simple example following [55]
and considering the equations of gas dynamics in Lagrangian coordinates.

In Eulerian coordinates, we can consider the Euler equations for a compressible inviscid
fluid (1.1.27).

We will now rewrite system (1.1.27) in Lagrangian coordinates, which follow the
trajectories of the particles within the flow. In particular, consider any ”fluid particle”, ξ,
and define the characteristic curves

∂x

∂t
(ξ, t) = u(x(ξ, t), t),

x(ξ, 0) = ξ.
(1.3.1)

Now, consider any function defined in Eulerian coordinates (x, t) 7→ U(x, t). We then
define by

U(ξ, t) = U(x(ξ, t), t)

its equivalent in the Lagrangian variables (ξ, t).
Moreover, we define

L(ξ, t) =
∂x

∂ξ
(ξ, t),

the Jacobian of the Lagrangian map, which satisfies

∂tL(ξ, t) = ∂ξu(ξ, t), (1.3.2)

L(ξ, 0) = 1, (1.3.3)

where ū(ξ, t) = u(x(ξ, t), t).
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Additionally, for all U we have the following relations between the partial derivatives:

∂ξU = L∂xU, (1.3.4)

∂tU = ∂tU + u∂xU. (1.3.5)

We can then rewrite system (1.1.27) as:
∂t(Lρ) = 0,

∂t(Lρu) + ∂ξp = 0,

∂t(Lρe) + ∂ξ(pu) = 0.

(1.3.6)

From now on we will suppress the overline notation for simplicity. From the first
equation of (1.3.6) we deduce that

Lρ = ρ0, (1.3.7)

where ρ0(ξ) = ρ(ξ, 0).
Let us now introduce the variable

τ =
1

ρ
, (1.3.8)

which represents the specific volume. Then,

L = ρ0τ (1.3.9)

and (1.3.2) is equivalent to
ρ0∂tτ − ∂ξu = 0. (1.3.10)

Using again (1.3.9), the equations of conservation of momentum and energy can be
written as:

ρ0∂tu+ ∂ξp = 0,

ρ0∂te+ ∂ξ(pu) = 0.

Finally, introducing a mass variable m such that

dm = ρ0dξ, (1.3.11)

we can write the equations of gas dynamics with slab symmetry in Lagrangian coordinates
as 

∂tτ − ∂mu = 0,

∂tu+ ∂mp = 0,

∂te+ ∂m(pu) = 0.

(1.3.12)
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As previously said, in the case of an isentropic flow it is enough to solve the system of
conservation of mass and momentum:{

∂tτ − ∂mu = 0,

∂tu+ ∂mp = 0,
(1.3.13)

which is usually called the p-system. This system has two real distinct eigenvalues

λ1 = −
√

(−p′) < λ2 =
√
(−p′)

and is strictly hyperbolic given that p′(τ) < 0.
In practice, instead of considering ∂m, we will write everything in terms of ∂ξ, so system

(1.3.13) will be written as {
∂tτ − τ0∂ξu = 0,

∂tu+ τ0∂ξp = 0,
(1.3.14)

where τ0 =
1
ρ0
.

Shallow water equations are actually equivalent to the particular case of Euler equations
in which the flow is isentropic, the density is identified with the fluid height ρ ≡ h and the
pressure takes the form p = 1

2
gh2. In this thesis we will mainly focus on these equations

in the non-flat topography case, which in Eulerian coordinates are given by (1.1.15).
Proceeding in a similar way to what has been done for the Euler equations, system

(1.1.15) can be written in Lagrangian coordinates, in a similar way to (1.3.6), as follows:{
∂t(Lh) = 0,

∂t(Lhu) + ∂ξp+ gh∂ξz = 0.
(1.3.15)



Chapter 2

Implicit and implicit-explicit
Lagrange-projection exactly
well-balanced finite volume schemes
for 1D shallow water system

In this chapter we will focus on the design of finite volume schemes for the one-dimensional
shallow water system. As discussed in Section 1.2, it is important that these schemes
satisfy the well-balanced property. In fact, this has been the subject of study in many
different works such as [4, 61, 77, 51, 1, 38, 7, 9, 2]. Here, we will focus on preserving the
so-called water at rest steady states given by (1.1.19). That is, we want our schemes to
preserve the steady states such that u = 0.

Nevertheless, when dealing with low Froude number situations, that is when Fr << 1,
the time step due to the CFL condition makes explicit schemes inefficient (see (1.1.29)).
Indeed, in such situations a large final time will be needed and performing small time steps
will require a lot of iterations. To overcome this difficulty, implicit or implicit-explicit
schemes allow the use of a larger time step and therefore less time iterations are needed. In
[27, 28, 29, 30] implicit-explicit methods are proposed for three-dimensional shallow water
flows. The extension into the DG framework to obtain high-order schemes is described
in [46]. The technique is also extended for bedload sediment transport in [52]. Another
possibility is to use implicit-explicit schemes (IMEX) which have successfully been applied
to hyperbolic systems (see for instance [14, 13]). In [9] an implicit-explicit scheme is
proposed for the shallow water flows in the low Froude number limit.

In this chapter, we propose the use of the so-called Lagrange-Projection decomposition
in order to construct exactly well-balanced implicit finite volume schemes for system
(1.1.15). A Lagrange-Projection type scheme is a two-step algorithm in which the system
is first solved in Lagrangian coordinates (see Section 1.3) and the results are then projected
into Eulerian coordinates. The first step is usually called the Lagrangian step and the
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second one is referred to as the Projection or transport step.

In some works such as [23], these two systems to be solved were interpreted as an
splitting of the original system. However, in later works such as [72] the authors consider
the first system as the writing in Lagrangian coordinates of the original system, which
facilitates obtaining properties such as high order or well-balancing. In addition, the
use of the Lagrangian formulation in the first step is interesting since it simplifies the
resulting scheme, which allows us to use simple Riemann solvers with good properties.
Moreover, the use of the relaxation technique together with the use of Riemann invariants
in the implicit system allows a simpler resolution of this step, avoiding the appearance of
non-linearities in the pressure term.

The main purpose of going back to Eulerian coordinates is that using pure Lagrangian
coordinates and keeping track of moving meshes may be cumbersome and many complex
situations may arise for the configuration of the moving cells, especially thinking on the
extension to 2D. Moreover, this strategy allows us to decouple the acoustic and transport
phenomena related to our equations and to design implicit-explicit and large time step
schemes in a natural way. Indeed it is very useful for approximating subsonic or low Froude
number flows, where the usual CFL time step driven by the acoustic waves can be very
restrictive. Using the implicit or implicit-explicit schemes means that the CFL restriction
reduces only to the slow transport step rather the more restrictive acoustic one. This way,
we will obtain implicit exactly well-balanced schemes for the shallow water equations that
outperform the explicit ones.

The strategy proposed here follows the lines of [23], where an explicit fully well-balanced
finite volume method is proposed in the Lagrange-Projection framework. In that case,
only the explicit case was studied and its extension to an implicit scheme was hinted as
future work. That strategy was then extended in [72] by proposing an explicit high-order
Lagrange-Projection scheme, but again for the explicit case. Those two papers set the
basis for this work, where we intend to describe implicit schemes based on such approach.
Let us recall that in [34, 35, 36] one can find implicit-explicit schemes in the Lagrangian
framework, where the source term is always treated explicitly. Those schemes were only
first order accurate. One of the objectives here will be to extend the technique to second
order implicit and implicit-explicit exactly well-balanced schemes. Moreover, we set the
basis for their extension to higher order and fully exactly well-balanced schemes.

This chapter is organized as follows: in Section 2.1 the main ideas concerning the
Lagrange-Projection techniques are introduced. Then, in Section 2.2 two new second
order numerical schemes are proposed for the Lagrangian step based on an implicit or
implicit-explicit approach. The schemes are exactly well-balanced for water at rest steady
states. Next, in Section 2.3 the projection step is described. Finally, some numerical
simulations are shown in Section 2.4 in order to study the accuracy and efficiency of the
new schemes. For the sake of completeness, we include the description of the explicit
scheme in 2.2.3.
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2.1 The Lagrange-Projection strategy

Let us consider the shallow water equations in Lagrangian coordinates presented in (1.3.15)
as well as the equivalent system (1.3.14). From the numerical point of view, it will be
useful to consider a relaxation approach of the Lagrangian system (1.3.14) (see [36, 23]):


∂tτ − τ0∂ξu = 0,

∂tu+ τ0∂ξπ + gτ0h∂ξz = 0,

∂tπ + a2τ0∂ξu = 0,

(2.1.1)

where a is a constant satisfying the subcharacteristic condition a > h
√
gh (see (1.1.65))

and π = p(τ).

Now, defining two new variables −→w = π + au and ←−w = π − au, system (2.1.1) can be
written as 

∂tτ − τ0∂ξu = 0,

∂t
−→w + aτ0∂ξ

−→w = −gaτ0h∂ξz,
∂t
←−w − aτ0∂ξ

←−w = gaτ0h∂ξz.

(2.1.2)

The introduction of these two new variables allows one to obtain a system in which the
second and third equations are just simple transport equations with a geometric source
term.

Moreover, we can easily recover π and u from −→w and ←−w :

π =
−→w +←−w

2
, u =

−→w −←−w
2a

. (2.1.3)

2.1.1 The Lagrange-Projection numerical algorithm

In order to state the Lagrange-Projection numerical scheme, we shall proceed as it is
usually done for finite volume schemes (see Section 1.1.3), although we distinguish here
between Lagrangian and Eulerian coordinates. Space (in Lagrangian framework) will be
discretized by means of a fixed space step ∆ξ. The cells Ii = [ξi−1/2, ξi+1/2] for i ∈ Z
are then considered and we define the set of times tn = n∆t for n ∈ N. In the Eulerian
framework, the same space discretization will be used.

The Eulerian and Lagrangian space discretization will be then related using the
following notation (see Figure 2.1):

x∗i (t) = x(ξi, t), x∗i+1/2(t) = x(ξi+1/2, t).
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Figure 2.1: Sketch of the relation between Eulerian and Lagrangian coordinates

Remark that at time t = 0 we then have x∗i (0) = ξi = xi and x∗i+1/2(0) = ξi+1/2 = xi+1/2.

Let U = (h, hu)T . Assume that the initial condition x 7→ U0(x) is given. Then, define
the discrete initial data U0

i , where

U0
i ≈

1

∆x

∫ xi+1/2

xi−1/2

U0(x)dx, i ∈ Z.

The objective is to compute the values

Un
i ≈

1

∆x

∫ xi+1/2

xi−1/2

U(x, tn)dx,

where x 7→ U(x, tn) corresponds to the solution of (1.1.15) at time tn, n ∈ N.
The Lagrange-Projection the consists on the following two-step process:

1. Lagrangian step: update Un
i to U

n+1

i by numerically solving (1.3.15);

2. Projection step: update U
n+1

i to Un+1
i by projecting back to Eulerian framework.

2.2 The Lagrangian step

At this step we need to solve the shallow water system in Lagrangian coordinates (1.3.15).
Although the aim here is to propose an implicit approximation of this system, we shall
introduce, for the sake of completeness, an explicit approximation as well in 2.2.3. We will
present first and second order schemes. For the implicit case, we will propose two versions
of the scheme: nonlinear implicit and implicit-explicit.
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Let us start by working on the second equation of system (1.3.15). The last term of
this equation may be rewritten as

gh∂ξz = gLh ∂xz = gh0∂xz, (2.2.1)

where we have used the first equation in (1.3.15) and denoted h0 = h|t=0 . Now, since z
does not depend on time,

∂xz(ξi, t) = ∂xz(x(ξi, t)) = z′(xi(t)),

where we have used the notation z′ for ∂xz. Therefore, the second equation in (1.3.15) is
equivalent to

∂t(Lhu) + ∂ξπ + gh0z
′(xi(t)) = 0.

Now, integrating (1.3.15) in the interval Ii = [ξi−1/2, ξi+1/2] we can write a semi-discrete
scheme for the system in Lagrangian coordinates (1.3.15):

(Lh)′i(t) = 0,

(Lhu)′i(t) = −
1

∆ξ

(
π∗i+1/2(t)− π∗i−1/2(t)

)
− 1

∆ξ

∫ ξi+1/2

ξi−1/2

gPi,h0(ξ)z
′(x(ξ, t))dξ,

(2.2.2)

where we set hi(0) = hn
i , and (hu)i(0) = (hu)ni as initial conditions. In this system,

π∗
i± 1

2

(t) ≈ π(ξi± 1
2
, t) and Pi,h0(ξ) is a reconstruction operator obtained from the sequence

of cell values {hn
i }:

Pi,h0(ξ) = Pi,h0(ξ; {hn
j }j∈Si),

being Si the set of indexes belonging to the stencil corresponding to the i-th cell.
Now we will consider a semi-discretization of the relaxed system (2.1.2), that will play

an important role in the definition of the discretization of the Lagrangian formulation of
the SWE, since the values −→w and ←−w will give us the approximations that we need for u∗

and π∗.
Using (2.2.1), system (2.1.2) can also be discretized in space using a first or second

order scheme as follows:

τ ′i(t) =
1

h0,i∆ξ

∫ ξi+1/2

ξi−1/2

Pi,u(ξ, t)dξ,

−→w ′i(t) = −
a

h0,i∆ξ

(−→w i+1/2(t)−−→w i−1/2(t)
)
− ga

∆ξ

∫ ξi+1/2

ξi−1/2

z′(x(ξ, t))dξ,

←−w ′i(t) =
a

h0,i∆ξ

(←−w i+1/2(t)−←−w i−1/2(t)
)
+

ga

∆ξ

∫ ξi+1/2

ξi−1/2

z′(x(ξ, t))dξ,

(2.2.3)
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with initial conditions τi(0) =
1

h0,i

, −→w i(0) =
1

2
gh2

0,i + au0,i and
←−w i(0) =

1

2
gh2

0,i − au0,i.

Pi,u(ξ, t) denotes the reconstruction operators of u defined from the cell values {ui(t)} on
a given stencil. Finally, −→w i+1/2(t) and

←−w i+1/2(t) are the numerical fluxes of the second
and third equations of system (2.1.2), for which we will consider the upwind numerical
fluxes given by:

−→w i+1/2(t) = Pi,−→w (ξi+1/2, t) =
−→w t

i+1/2−,
←−w i+1/2(t) = Pi+1,←−w (ξi+1/2, t) =

←−w t
i+1/2+,

where Pi,−→w and Pi,←−w are their respective reconstruction operators.

Note that there is no need to solve the first equation in (2.2.3), since the three equations
are decoupled and only the values of −→w and ←−w will be needed to perform the Lagrangian
and the projection step.

Finally, making use of the relations (2.1.3), we can define the following numerical fluxes
for π and u at the interfaces:

π∗i+1/2(t) =
Pi,−→w (ξi+1/2, t) + Pi+1,←−w (ξi+1/2, t)

2
, (2.2.4)

u∗i+1/2(t) =
Pi,−→w (ξi+1/2, t)− Pi+1,←−w (ξi+1/2, t)

2a
.

As an example, let us now consider a first order in space and time implicit finite volume
scheme for the SWE in Lagrangian coordinates that uses the previous formalism. In that
case, the system is written as

−→w n+1
i = −→w n

i −
a∆t

hn
i ∆ξ

(−→w n+1
i+1/2− −

−→w n+1
i−1/2−

)
− a∆t

∆ξ
gz′
(
x∗,n+1
i

)
, (2.2.5)

←−w n+1
i =←−w n

i +
a∆t

hn
i ∆ξ

(←−w n+1
i+1/2+ −

←−w n+1
i−1/2+

)
+

a∆t

∆ξ
gz′
(
x∗,n+1
i

)
,

where we set −→w n+1
i+1/2− = −→w n+1

i and←−w n+1
i+1/2+ =←−w n+1

i+1 . That is, the reconstruction operators

reduce to the standard cell values at time tn+1.

It should be noted that the presence of the source term requires the evaluation of z′ at
a point that we have denoted as x∗,n+1

i , which corresponds to a first order approximation
of x(ξi, t

n+1). Here we propose the following approximation

x∗,n+1
i = ξi +∆tu∗,n+1

i , (2.2.6)

where

u∗,n+1
i =

u∗,n+1
i−1/2 + u∗,n+1

i+1/2

2
(2.2.7)
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and u∗,n+1
i±1/2 can be defined using the relations (2.2.4) as follows:

u∗,n+1
i+1/2 =

−→w n+1
i −←−w n+1

i+1

2a
. (2.2.8)

Note that (2.2.5)-(2.2.8) define a coupled non-linear system to be solved. Here we use
a simple fixed-point algorithm where we first solve (2.2.5), fixing the value x∗,n+1

i and then
we update it by computing the velocity at the interfaces using (2.2.8). Observe that (2.2.5)
reduces to two uncoupled linear systems that are simple to solve when x∗,n+1

i is fixed. We
have no theoretical proof of the convergence of this fixed-point algorithm. However, as
it will be shown in the numerical results, no convergence problems have been found in
practice.

Once −→w n+1
i and ←−w n+1

i are computed, (Lhu)n+1
i would be obtained as follows:

(Lhu)n+1
i = (hu)ni −

∆t

∆ξ

(
π∗,n+1
i+1/2 − π∗,n+1

i−1/2

)
− g∆thn

i z
′ (x∗,n+1

i

)
, (2.2.9)

where π∗,n+1
i+1/2 is computed using the relations (2.2.4), which reduces to

π∗,n+1
i+1/2 =

−→w n+1
i +←−w n+1

i+1

2
(2.2.10)

for a first order numerical scheme.
Finally, we define

Ln+1
i = 1 +

∆t

∆ξ

(
u∗,n+1
i+1/2 − u∗,n+1

i−1/2

)
. (2.2.11)

Notice that we could avoid the solution of the non-linear system (2.2.5)-(2.2.8) by
considering the following explicit-implicit first order numerical scheme

−→w n+1
i = −→w n

i −
a∆t

hn
i ∆ξ

(−→w n+1
i+1/2− −

−→w n+1
i−1/2−

)
− a∆t

∆ξ
gz′ (xn

i ) , (2.2.12)

←−w n+1
i =←−w n

i +
a∆t

hn
i ∆ξ

(←−w n+1
i+1/2+ −

←−w n+1
i−1/2+

)
+

a∆t

∆ξ
gz′ (xn

i ) .

This way, we only have to solve one system for −→w n+1 and another one for ←−w n+1, avoiding
the use of fixed point iterations.

Once ←−w n+1
i and −→w n+1

i are computed, then (Lhu)n+1
i is obtained as follows:

(Lhu)n+1
i = (hu)ni −

∆t

∆ξ
(π∗,n+1

i+1/2 − π∗,n+1
i−1/2)− g∆thn

i z
′ (xn

i ) . (2.2.13)

Finally, Ln+1
i is updated using (2.2.11).

Fully explicit versions of the previous numerical scheme are straightforward and their
extension to second order is also possible (see Section 2.2.3).
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Let us remark that, in order to ensure stability, the parameter a must be chosen
sufficiently large according to the so-called subcharacteristic condition a > h

√
gh (see

(1.1.65)). Moreover, the explicit Lagrangian step is stable provided the following CFL
condition is satisfied

a∆t ≤ 1

2
h∆ξ. (2.2.14)

The use of an implicit approach for the Lagrangian step makes that condition (2.2.14)
is no longer required.

Unfortunately, neither the numerical scheme defined by (2.2.5)-(2.2.9) nor (2.2.12)-
(2.2.13) are well-balanced for the water at rest solution. In order to define exactly well-
balanced numerical schemes for the water at rest solution we follow the procedure described
in [25], detailed in Algorithm 1.2.2. More explicitly, at every cell Ii = [ξi−1/2, ξi+1/2] we look
for a steady state that matches with the given cell average. As we are interested in first and
second order schemes and we focus on water at rest steady states, this condition reduces
to defining an in-cell stationary water height he,n

i (ξ) such that he,n
i (ξi) = hn

i . Taking into
account the special expression of the water at rest solutions for the SWE, he,n

i (ξ) is given
by

he,n
i (ξ) = hn

i + z(ξi)− z(ξ). (2.2.15)

We also define πe,n
i as

πe,n
i (ξ) =

1

2
g (he,n

i (ξ))2 . (2.2.16)

Notice that he,n
i (ξ) exactly satisfies

∂ξπ
e,n
i + gLhe,n

i z′ = 0. (2.2.17)

Now, the second equation of (2.2.2) could be rewritten equivalently as follows:

(Lhu)′i(t) = −
1

∆ξ

(
π∗i+1/2(t)− π∗i−1/2(t)

)
+

1

∆ξ

(
πe,n
i (xi+1/2(t))− πe,n

i (xi−1/2(t)
)

(2.2.18)

− 1

∆ξ

∫ ξi+1/2

ξi−1/2

g (Pi,h0(ξ)− L(ξ, t)he,n
i (x(ξ, t))) z′(x(ξ, t))dξ,

where xi+1/2(t) = x(ξi+1/2, t).
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Proceeding analogously with the second and third equations of (2.2.3), one has:

−→w ′i(t) = − a

h0,i∆ξ

(−→w i+1/2(t)−−→w i−1/2(t)
)

+
a

h0,i∆ξ

(
πe,n
i (xi+1/2(t))− πe,n

i (xi−1/2(t))
)

− ga

∆ξ

∫ ξi+1/2

ξi−1/2

(
1− L(ξ, t)he,n

i (x(ξ, t))

Pi,h0(ξ)

)
z′(x(ξ, t))dξ,

←−w ′i(t) =
a

h0,i∆ξ

(←−w i+1/2(t)−←−w i−1/2(t)
)

− a

h0,i∆ξ

(
πe,n
i (xi+1/2(t))− πe,n

i (xi−1/2(t))
)

+
ga

∆ξ

∫ ξi+1/2

ξi−1/2

(
1− L(ξ, t)he,n

i (x(ξ, t))

Pi,h0(ξ)

)
z′(x(ξ, t))dξ.

(2.2.19)

Note that the semi-discrete scheme described in (2.2.18) and (2.2.19) is equivalent to
(2.2.2) and (2.2.3). Now, we need to describe the procedure to define the reconstructions
operators of the unknowns that are exactly well-balanced in the sense defined in [56].

2.2.1 Exactly well-balanced reconstruction operators

In the next paragraphs we describe the reconstruction procedure that we define in order
to achieve a numerical scheme that is exactly well-balanced for the water at rest solutions.

Let us suppose that {hn
i } and {(hu)ni } are known. We shall consider reconstruction

operator for variables h0,
−→w and ←−w denoted as Pi,h0 , P

n
i,←−w and P n

i,−→w and defined as follows:

Pi,h0(ξ) = he,n
i (ξ) +Qn

i (ξ; {h
n,f
j }j∈Si), (2.2.20)

where he,n
i (ξ) is given by (2.2.15), hn,f

j = hn
j − he,n

i (ξj), j ∈ Si, that is hn,f
j are the

fluctuations with respect to the steady state at the stencil, and Qn
i (ξ) is a standard first

or second order reconstruction operator. Note that as we are only interested in first and
second order numerical methods, the fluctuations are computed using punctual evaluations
at the cell centers. If order higher than two were required, then cell averages would be
computed with a quadrature formula.

Now, P n
i,−→w is defined equally as

P n
i,−→w (ξ) = πe,n

i (ξ) +Qn
i (ξ; {−→w

n,f
j }j∈Si), (2.2.21)

where −→w n,f
j is given by −→w n,f

j = −→w n
j −π

e,n
i (ξj), j ∈ Si, that is, they are again the fluctuations

with respect to the local steady state at the stencil. P n
i,←−w is defined analogously.
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Finally, P n
i,u is a standard first or second order reconstruction operator computed with

the cell values {un
i }. Note that as we are only interested in water at rest steady state, no

special care has to be taken for the reconstruction operator of u or hu. This would not be
the case for moving equilibria. Moreover, if order higher than two were required, then a
more sophisticated procedure should be used as the cell averages of u cannot be obtained

by simply setting un
i =

(hu)ni
hn
i

.

Observe that Pi,h0 , P
n
i,←−w , P

n
i,−→w and P n

i,u are exactly well-balanced operators in the sense

that if {hn
i } and {(hu)ni } are the cell averages of a given water at rest steady state that

are computed with the mid-point rule, that is hn
i = he(ξi), (hu)

n
i = 0, then

Pi,h0(ξ) = he(ξ)|Ii , P n
i,←−w (ξ) = P n

i,−→w (ξ) = πe(ξ)|Ii , and P n
i,u(ξ) = 0.

Given our interest in the definition of implicit solvers, we also need to provide a
reconstruction procedure for any value t ∈ [tn, tn+1] that is able to preserve water at
rest steady states. In particular we need to define Pi,←−w (ξ, t) and Pi,−→w (ξ, t). Let us define
Pi,−→w (ξ, t) and the definition of Pi,←−w (ξ, t) will be analogous. Pi,−→w (ξ, t) will be defined using
the exactly well-balanced reconstruction operator at time t = tn, P n

i,−→w , described previously,
and a standard reconstruction operator for the time fluctuations, that is:

Pi,−→w (ξ, t) = P n
i,−→w (ξ) + Q̃i(ξ, t), (2.2.22)

where Q̃i(ξ, t) is a standard reconstruction operator defined in terms of the time fluctuations,
that is

Q̃i(ξ, t) = Q̃i(ξ; {−→w t,f
j }j∈Si), where −→w t,f

j = −→w j(t)−−→w n
j , j ∈ Si.

Let us show a first order reconstruction operator for −→w at cell Ii for any value
t ∈ [tn, tn+1]

P o1
i,−→w (ξ, t) = P n,o1

i,−→w (ξ) + Q̃o1
i (ξ, t),

where Q̃o1
i (ξ, t) is the standard first order reconstruction operator at cell Ii, that is,

Q̃o1
i (ξ, t) = −→w t,f

i = −→w i(t) − −→w n
i . Now, taking into account the definition of P n

i,−→w (ξ), we
have that

P o1
i,−→w (ξ, t) = πe,n

i (ξ)− πe,n
i (ξi) +

−→w i(t). (2.2.23)

The second order reconstruction operator is defined in the same way, that is

P o2
i,−→w (ξ, t) = P n,o2

i,−→w (ξ) + Q̃o2
i (ξ, t), (2.2.24)

where Q̃o2
i (ξ, t) is a standard second order reconstruction operator defined in terms of the

time fluctuations {−→w t,f
i }j∈Si . Now, taking into account the definition of P n,o2

i,−→w we have that

P o2
i,−→w (ξ, t) = πe,n

i (ξ) +Qn,o2
i (ξ; {−→w n,f

j }j∈Si) + Q̃o2
i (ξ, t; {−→w t,f

j }j∈Si),



2.2 The Lagrangian step 35

where −→w n,f
j = −→w n

j − πe,n
i (ξj). In the previous expression, Qn,o2

i and Q̃o2
i are standard

second order reconstruction operators. In this case, to avoid the non-linear dependency of
the limiters at any time t, we consider here that both Qn,o2

i and Q̃o2
i use the same limiters

computed at time t = tn.
In particular, Qn,o2

i (ξ) is defined as follows:

Qn,o2
i (ξ) = −→w n

i − πe,n
i (ξi) + ∆n−→w n,f

i (ξ − ξi), (2.2.25)

where

∆n−→w n,f
i =

1

∆ξ

(
ϕn
i+

(−→w n,f
i −

−→w n,f
i−1

)
+ ϕn

i−

(−→w n,f
i+1 −

−→w n,f
i

))
, (2.2.26)

with ϕn
i− and ϕn

i+ slope limiters. Here we use the following:

ϕn
i− =


|di−|

|di−|+ |di+|
if |di−|+ |di+| > 0,

0 otherwise,

ϕn
i+ =


|di+|

|di−|+ |di+|
if |di−|+ |di+| > 0,

0 otherwise,

where
di− = −→w n,f

i −
−→w n,f

i−1, di+ = −→w n,f
i+1 −

−→w n,f
i .

Q̃o2
i (ξ, t) is defined as follows

Q̃o2
i (ξ, t) = −→w i(t)−−→w n

i +∆t−→w t,f
i (ξ − ξi),

where

∆t−→w t,f
i =

1

∆ξ

(
ϕ̃n
i−

(−→w t,f
i+1 −

−→w t,f
i

)
+ ϕ̃n

i+

(−→w t,f
i −

−→w t,f
i−1

))
,

with ϕ̃n
i± = ϕn

i±.

Taking into account the definitions of Qn,o2
i and Q̃t,o2

i , we obtain that

P o2
i,−→w (ξ, t) = πe,n

i (ξ)− πe,n
i (ξi) +

−→w i(t) + ∆n−→w n,f
i (ξ − ξi) + ∆t−→w t,f

i (ξ − ξi). (2.2.27)

2.2.2 Implicit and implicit-explicit exactly well-balanced La-
grangian schemes

We are now going to describe the implicit and implicit-explicit first and second order
exactly well-balanced Lagrangian schemes. In the implicit and implicit-explicit case we use
the mid-point rule for approximating the integrals in (2.2.18) and (2.2.19) and we obtain
the following semi-discrete formulation:
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(Lhu)′i(t) = −Li(t)− Gi(t) (2.2.28)

where

Li(t) =
1

∆ξ

(
π∗i+1/2(t)− π∗i−1/2(t)

)
(2.2.29)

Gi(t) = − 1

∆ξ

(
πe,n
i (xi+1/2(t))− πe,n

i (xi−1/2(t)
)

+g (Pi,h0(ξi)− Li(t)h
e,n
i (x(ξi, t))) z

′(x(ξi, t)) (2.2.30)

and 
−→w ′i(t) = −(L−→w )i(t)−

a

h0,i

Gi(t),

←−w ′i(t) = −(L←−w )i(t) +
a

h0,i

Gi(t),
(2.2.31)

where

(L−→w )i(t) =
a

h0,i∆ξ

(−→w i+1/2(t)−−→w i−1/2(t)
)

(2.2.32)

(L←−w )i(t) = − a

h0,i∆ξ

(←−w i+1/2(t)−←−w i−1/2(t)
)
, (2.2.33)

where we recall that xi±1/2(t) = x(ξi±1/2, t).
Now, we are ready to start the definition of first and second order exactly well-balanced

implicit and implicit-explicit schemes in Lagrangian coordinates. Here we suppose that
{hn

i } and {(hu)ni } are known and we integrate the system in the interval [tn, tn+1] to
compute the new states at tn+1.

We are going to consider first and second order schemes. In each case, implicit and
implicit-explicit schemes will be considered, in which the operators L and G will be
evaluated in each case at the appropriate time as shown in Section (1.1.3.3).

2.2.2.1 First order schemes

Implicit scheme Firstly, let us consider the definition of the first order implicit scheme.
In that case, the scheme reads as follows:

(Lhu)n+1
i = (hu)ni −∆t

(
Ln+1

i + Gn+1
i

)
, (2.2.34)

where

Ln+1
i =

1

∆ξ

(
π∗,n+1
i+1/2 − π∗,n+1

i−1/2

)
, (2.2.35)

and

Gn+1
i = − 1

∆ξ

(
πe,n
i (x∗,n+1

i+1/2)− πe,n
i (x∗,n+1

i−1/2)
)
+g
(
hn
i − Ln+1

i he,n
i (x∗,n+1

i )
)
z′(x∗,n+1

i ), (2.2.36)
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with Ln+1
i defined as in (2.2.11), x∗,n+1

i defined as in (2.2.6) and x∗,n+1
i±1/2 defined as

x∗,n+1
i±1/2 = ξi±1/2 +∆tu∗,n+1

i±1/2. (2.2.37)

We recall that π∗,n+1
i±1/2 and u∗,n+1

i±1/2 are defined by (2.2.4), that is,

π∗,n+1
i+1/2 =

P o1
i,−→w (ξi+1/2, t

n+1) + P o1
i+1,←−w (ξi+1/2, t

n+1)

2
=

−→w n+1
i+1/2− +←−w n+1

i+1/2+

2
(2.2.38)

and

u∗,n+1
i+1/2 =

P o1
i,−→w (ξi+1/2, t

n+1)− P o1
i+1,←−w (ξi+1/2, t

n+1)

2a
=

−→w n+1
i+1/2− −

←−w n+1
i+1/2+

2a
(2.2.39)

where

−→w n+1
i+1/2− = P o1

i,−→w (ξi+1/2, t
n+1) = πe,n

i (ξi+1/2)− πe,n
i (ξi) +

−→w n+1
i ,

←−w n+1
i+1/2+ = P o1

i+1,←−w (ξi+1/2, t
n+1) = πe,n

i+1(ξi+1/2)− πe,n
i+1(ξi) +

←−w n+1
i+1 .

(2.2.40)

Note that π∗,n+1
i±1/2 and u∗,n+1

i±1/2 are defined in terms of −→w n+1 and ←−w n+1, that are the
solutions of the non-linear system

−→w n+1
i = −→w n

i −∆t

(
(L−→w )n+1

i +
a

hn
i

Gn+1
i

)
,

←−w n+1
i =←−w n

i −∆t

(
(L←−w )n+1

i − a

hn
i

Gn+1
i

)
,

(2.2.41)

where
(L−→w )n+1

i =
a

hn
i ∆ξ

(−→w n+1
i+1/2− −

−→w n+1
i−1/2−

)
,

(L←−w )n+1
i = − a

hn
i ∆ξ

(←−w n+1
i+1/2+ −

←−w n+1
i−1/2+

)
.

(2.2.42)

In order to apply the previous numerical scheme, we first solve the non-linear system
(2.2.41), and then, (2.2.34) is updated using {−→w n+1

i } and {←−w n+1
i }.

The non-linear system (2.2.41) is solved by means of a fixed-point iteration where
{−→w n

i } and {←−w n
i } are given as initial guess. Here (2.2.41) is solved as follows: we fix the

values of x∗,n+1
i±1/2 and x∗,n+1

i in (Gw)n+1
i and then we solve the two linear systems in (2.2.41).

Next u∗,n+1
i±1/2 are updated as well as x∗,n+1

i±1/2 and x∗,n+1
i with the new computed values of

{←−w n+1
i } and {−→w n+1

i }.

Theorem 2.2.1. Given any water at rest stationary solution of system (1.1.15) with a
continuous bottom topography z, the scheme defined by (2.2.34) and (2.2.41) preserves it
and the scheme is exactly well-balanced.
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Proof. Let hn
i = he,n(ξi), πn

i = πe,n(ξi), un
i = 0. In the first iteration of the fixed-point

algorithm, x∗,n+1
i±1/2 = ξi±1/2, x∗,n+1

i = ξi. Let
−→w n+1,l

i be the result of the l-th iteration of the
fixed-point algorithm. Then,

−→w n+1,1
i = −→w n

i −
∆ta

hn
i ∆ξ

(
πe,n
i (ξi+1/2)− πe,n

i (ξi) +
−→w n+1,1

i − πe,n
i−1(ξi−1/2) + πe,n

i−1(ξi−1)−
−→w n+1,1

i−1
)

+
∆ta

hn
i ∆ξ

(
πe,n
i (ξi+1/2)− πe,n

i (ξi−1/2)
)
− ga

hn
i

(hn
i − Ln+1

i he,n
i (ξi))z

′(ξi)

= −→w n
i −

∆ta

hn
i ∆ξ

(
πe,n
i (ξi+1/2)− πe,n

i (ξi) +
−→w n+1,1

i − πe,n
i (ξi−1/2) + πe,n

i−1(ξi−1)−
−→w n+1,1

i−1
)

+
∆ta

hn
i ∆ξ

(
πe,n
i (ξi+1/2)− πe,n

i (ξi−1/2)
)

= −→w n
i −

∆ta

hn
i ∆ξ

(
−πe,n

i (ξi) +
−→w n+1,1

i + πi−1(ξi−1)−−→w n+1,1
i−1

)
,

where we have used that πe,n
i−1(ξi−1/2) = πe,n

i (ξi−1/2) and that Ln+1
i = 1 since in the first

iteration u∗,n+1
i±1/2 = 0. Note that at this point we are using that the bottom topography is

continuous what implies that he is continuous as well as πe, since we are considering a
water at rest situation.

It is clear that −→w n+1,1
i = πe,n

i (ξi),
−→w n+1,1

i−1 = πe,n
i−1(ξi−1) is a solution of the previous

equation and therefore, −→w n+1
i = −→w n

i = πe,n
i (ξi). The result for ←−w is analogous.

Once we know −→w n+1 and ←−w n+1, we need to compute π∗,n+1
i+1/2 and π∗,n+1

i+1/2 making use of

(2.2.38), (2.2.39) and (2.2.23) and we obtain

π∗,n+1
i+1/2 =

πe,n
i (ξi+1/2) + πe,n

i+1(ξi+1/2)

2
=

πe,n
i (ξi+1/2) + πe,n

i (ξi+1/2)

2
= πe,n

i (ξi+1/2),

u∗,n+1
i+1/2 =

πe,n
i (ξi+1/2)− πe,n

i+1(ξi+1/2)

2a
=

πe,n
i (ξi+1/2)− πe,n

i (ξi+1/2)

2a
= 0.

Then, using (2.2.11) and (2.2.37), we obtain Ln+1
i = 1 and x∗,n+1

i±1/2 = ξi±1/2. Therefore,

Ln+1
i =

1

∆ξ

(
πe,n
i (ξi+1/2)− πe,n

i (ξi−1/2)
)
,

Gn+1
i = − 1

∆ξ

(
πe,n
i (ξi+1/2)− πe,n

i (ξi−1/2)
)
+ g (hn

i − he,n
i (ξi)) z

′(ξi)

= − 1

∆ξ

(
πe,n
i (ξi+1/2)− πe,n

i (ξi−1/2)
)
.

Finally, (Lh)n+1
i = hn

i , (Lhu)
n+1
i = (hu)ni and, using the fact that Ln+1

i = 1, we get
that the scheme is exactly well-balanced.
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Implicit-explicit scheme We can also consider the following first order implicit-explicit
scheme:

(Lhu)n+1
i = (hu)ni −∆t

(
Ln+1

i + Gni
)
, (2.2.43)

where Ln+1
i is defined as in (2.2.35) and

Gni = − 1

∆ξ

(
πe,n
i (ξi+1/2)− πe,n

i (ξi−1/2)
)

(2.2.44)

since the second term of G evaluated at time tn is zero.

In this case, −→w n+1 and ←−w n+1 are the solutions of the following linear system
−→w n+1

i = −→w n
i −∆t

(
(L−→w )n+1

i +
a

hn
i

Gni
)
,

←−w n+1
i =←−w n

i −∆t

(
(L←−w )n+1

i − a

hn
i

Gni
) (2.2.45)

with (L−→w )n+1
i , (L←−w )n+1

i defined as in (2.2.42). Remark that now the solution of (2.2.45)
is straightforward and the fixed point iterations are avoided, making this implicit-explicit
version more efficient.

Theorem 2.2.2. Given any water at rest stationary solution of system (1.1.15) with a
continuous bottom topography z, the scheme defined by (2.2.43) and (2.2.45) preserves it
and the scheme is exactly well-balanced.

Proof. The proof is analogous to the previous one.

2.2.2.2 Second order schemes

Implicit scheme Let us now define the second order exactly well-balanced implicit
scheme. In this case, applying the trapezoidal rule

(Lhu)n+1
i = (hu)ni −

∆t

2

(
Ln

i + Ln+1
i + Gni + Gn+1

i

)
, (2.2.46)

where

Ln
i =

1

∆ξ

(
π∗,ni+1/2 − π∗,ni−1/2

)
,

Ln+1
i =

1

∆ξ

(
π∗,n+1
i+1/2 − π∗,n+1

i−1/2

)
,
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and Gni is computed as in (2.2.44) and Gn+1
i as in (2.2.36) where now we use the following

second order approximations

x∗,n+1
i±1/2 = xi±1/2 +

∆t

2

(
u∗,n+1
i±1/2 + u∗,ni±1/2

)
,

x∗,n+1
i = xi +

∆t

4

(
u∗,n+1
i+1/2 + u∗,n+1

i−1/2 + u∗,ni+1/2 + u∗,ni−1/2

)
,

Ln+1
i = 1 +

∆t

2∆ξ

(
u∗,n+1
i+1/2 − u∗,n+1

i−1/2 + u∗,ni+1/2 − u∗,ni−1/2

)
.

The values π∗,ni+1/2, π
∗,n+1
i+1/2 , u

∗,n
i+1/2, u

∗,n+1
i+1/2 can be obtained as follows

π∗,ni+1/2 =
P o2
i,−→w (ξi+1/2, t

n) + P o2
i+1,←−w (ξi+1/2, t

n)

2
=

−→w n
i+1/2− +←−w n

i+1/2+

2
(2.2.47)

π∗,n+1
i+1/2 =

P o2
i,−→w (ξi+1/2, t

n+1) + P o2
i+1,←−w (ξi+1/2, t

n+1)

2
=

−→w n+1
i+1/2− +←−w n+1

i+1/2+

2
(2.2.48)

u∗,ni+1/2 =
P o2
i,−→w (ξi+1/2, t

n)− P o2
i+1,←−w (ξi+1/2, t

n)

2a
=

−→w n
i+1/2− −

←−w n
i+1/2+

2a
(2.2.49)

u∗,n+1
i+1/2 =

P o2
i,−→w (ξi+1/2, t

n+1)− P o2
i+1,←−w (ξi+1/2, t

n+1)

2a
=

−→w n+1
i+1/2− −

←−w n+1
i+1/2+

2a
(2.2.50)

where in order to compute −→w n
i+1/2−,

−→w n+1
i+1/2−,

←−w n
i+1/2+ and ←−w n+1

i+1/2+ we use the

reconstruction proposed in (2.2.27).
Similarly, −→w n+1 and ←−w n+1 are the solutions of the following non-linear system

−→w n+1
i = −→w n

i −
∆t

2

(
(L−→w )ni + (L−→w )n+1

i +
a

hn
i

(Gni + Gn+1
i )

)
,

←−w n+1
i =←−w n

i −
∆t

2

(
(L←−w )ni + (L←−w )n+1

i − a

hn
i

(Gni + Gn+1
i )

) (2.2.51)

where in this case

(L−→w )ni =
a

2hn
i ∆ξ

(−→w n
i+1/2− −−→w n

i−1/2−
)
,

(L←−w )ni = − a

2hn
i ∆ξ

(←−w n
i+1/2+ −←−w n

i−1/2+
)
.

(L−→w )n+1
i =

a

2hn
i ∆ξ

(−→w n+1
i+1/2− −

−→w n+1
i−1/2−

)
,

(L←−w )n+1
i = − a

2hn
i ∆ξ

(←−w n+1
i+1/2+ −

←−w n+1
i−1/2+

)
(2.2.52)

and we use the second order reconstruction introduced in (2.2.27).
The equations in (2.2.51) define two systems with four diagonals each: the ones

corresponding to −→w i−2,
−→w i−1,

−→w i,
−→w i+1 in the case of the system for −→w n+1 and the ones

corresponding to ←−w i−1,
←−w i,
←−w i+1,

←−w i+2 in the case of the system for ←−w n+1.
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Theorem 2.2.3. Given any water at rest stationary solution of system (1.1.15) with a
continuous bottom topography z, the scheme defined by (2.2.46) and (2.2.51) preserves it
and the scheme is exactly well-balanced.

Proof. The proof is analogous to the previous one.

Implicit-explicit scheme Finally, the implicit-explicit second order scheme is obtained
by treating the function L implicitly and the function G explicitly, considering the
SSP2(2,2,2) IMEX scheme (see equation (1.1.76)).

Similarly to the implicit second order case, the systems that we have to solved for this
scheme have four diagonals each.

Note that the use of the IMEX scheme avoids the costly nonlinear system inversion.
A similar theorem as Theorem 2.2.3 is still valid in this case.

2.2.3 Explicit exactly well-balanced Lagrangian schemes

As previously said, even though our aim is the design of schemes that perform the
Lagrangian step implicitly, we will describe, for the sake of completeness, first and second
order explicit Lagrangian schemes.

2.2.3.1 First order explicit Lagrangian scheme

The first order explicit scheme can be written similarly to how it has been done for the
implicit schemes, with the difference that in this case functions L and G are evaluated at
time tn.

(Lhu)n+1
i = (hu)ni −∆t (Ln

i + Gni ) ,
where

Ln
i =

1

∆ξ

(
π∗,ni+1/2 − π∗,ni−1/2

)
,

and

Gni = − 1

∆ξ
(πe,n

i (xi+1/2)− πe,n
i (xi−1/2)).

Moreover,

Ln
i = 1 +

∆t

∆ξ

(
u∗,ni+1/2 − u∗,ni−1/2

)
.

The needed approximations of π∗,ni+1/2 and u∗,ni+1/2 are obtained as

π∗,ni+1/2 =
P o1
i,−→w (ξi+1/2, t

n) + P o1
i+1,←−w (ξi+1/2, t

n)

2
=

−→w n
i+1/2− +←−w n

i+1/2+

2

and

u∗,ni+1/2 =
P o1
i,−→w (ξi+1/2, t

n)− P o1
i+1,←−w (ξi+1/2, t

n)

2a
=

−→w n
i+1/2− −

←−w n
i+1/2+

2a
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where −→w n
i+1/2− = P o1

i,−→w (ξi+1/2, t
n) = πe,n

i (ξi+1/2)− πe,n
i (ξi) +

−→w n
i ,

←−w n
i+1/2+ = P o1

i+1,←−w (ξi+1/2, t
n) = πe,n

i+1(ξi+1/2)− πe,n
i+1(ξi) +

←−w n
i+1.

2.2.3.2 Second order explicit Lagrangian scheme

For the second order explicit case we propose using a mid-point quadrature rule in time in
order to obtain

(Lhu)n+1
i = (hu)ni −∆t

(
Ln+1/2

i + Gn+1/2
i

)
,

where

Ln+1/2
i =

1

∆ξ

(
π
∗,n+1/2
i+1/2 − π

∗,n+1/2
i−1/2

)
,

Gn+1/2
i = − 1

∆ξ
(πe

i (x
∗,n+1/2
i+1/2 ) + πe

i (x
∗,n+1/2
i−1/2 ))

+ g
(
hn
i − L

n+1/2
i he(x

∗,n+1/2
i )

)
z′(x

∗,n+1/2
i )

and

L
n+1/2
i = 1 +

∆t

2∆ξ
(u∗,ni+1/2 − u∗,ni−1/2).

The values π∗,ni+1/2 and u∗,ni+1/2 are approximated following the idea used for the implicit
schemes:

π∗,ni+1/2 =
P o2
i,−→w (ξi+1/2, t

n) + P o2
i+1,←−w (ξi+1/2, t

n)

2
=

−→w n
i+1/2− +←−w n

i+1/2+

2
,

u∗,ni+1/2 =
P o2
i,−→w (ξi+1/2, t

n)− P o2
i+1,←−w (ξi+1/2, t

n)

2a
=

−→w n
i+1/2− −

←−w n
i+1/2+

2a

where for the reconstructions −→w n
i+1/2−,

←−w n
i+1/2+ we use (2.2.27).

Once we have computed the previous values, we can obtain the approximations of the
position at time tn+1/2 of characteristic curves as

x
∗,n+1/2
i = ξi +

∆t

4

(
u∗,ni−1/2 + u∗,ni+1/2

)
,

x
∗,n+1/2
i±1/2 = ξi±1/2 +

∆t

2
u∗,ni±1/2.

2.3 The projection step

As part of the Lagrange-Projection algorithm, after solving the Lagrangian step, we shall
project the result back onto Eulerian coordinates. In other words, we must project the
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piece-wise constant approximations of LŪ(ξ, t) obtained after the Lagrangian step, onto
the Eulerian cells (xi−1/2, xi+1/2). This will always be done explicitly.

For doing so, we need to compute

Ui(t) =
1

∆x

∫ xi+1/2

xi−1/2

U(x, t)dx.

For any time T ≥ 0, let us define ξ̂i+1/2(T ) as the origin of the curve x(ξ̂i+1/2, t) which

at time t = T passes through xi+1/2 (see Figure 2.1), that is, given t ≥ 0 we define ξ̂i+1/2(t)
such that

x(ξ̂i+1/2(t), t) = xi+1/2.

Using this notation, we may write

Ui(t) =
1

∆x

∫ x(ξ̂i+1/2(t),t)

x(ξ̂i−1/2(t),t)

U(x, t)dx =
1

∆x

∫ ξ̂i+1/2(t)

ξ̂i−1/2(t)

L(ξ, t)U(ξ, t)dξ,

and we can split the integral as follows

Ui(t) =
1

∆x

∫ ξi−1/2(t)

ξ̂i−1/2(t)

L(ξ, t)U(ξ, t)dξ +
1

∆x

∫ ξi+1/2(t)

ξi−1/2(t)

L(ξ, t)U(ξ, t)dξ

+
1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2(t)

L(ξ, t)U(ξ, t)dξ.

Remark that the central integral corresponds to (LU)i(t), which is already known from
the previous Lagrangian step. Therefore,

Un+1
i = (LU)n+1

i +
1

∆x

∫ ξi−1/2

ξ̂i−1/2

L(ξ, tn+1)U(ξ, tn+1)dξ +
1

∆x

∫ ξ̂i+1/2

ξi+1/2

L(ξ, tn+1)U(ξ, tn+1)dξ.

(2.3.1)

The evaluation of the integrals in previous expressions is now required. To do so, first
and second order approaches will be presented.

2.3.1 First order projection scheme

The previous integrals can be approximated in the following way:

1

∆x

∫ ξ̂i+1/2

ξi+1/2

L(ξ, tn+1)U(ξ, tn+1)dξ =
ξ̂i+1/2 − ξi+1/2

∆x
(LU)n+1

i+1/2,



44 Implicit and implicit-explicit LP schemes exactly well-balanced for SWE

where

(LU)n+1
i+1/2 =

{
(LU)n+1

i for ξi+1/2 > ξ̂i+1/2,

(LU)n+1
i+1 for ξi+1/2 ≤ ξ̂i+1/2.

Moreover, using the approximation

ξ̂i+1/2 = xi+1/2 −∆tu∗i+1/2,

from (2.3.1) we get

Un+1
i = (LU)n+1

i − ∆t

∆x

(
u∗i+1/2(LU)n+1

i+1/2 − u∗i−1/2(LU)n+1
i−1/2

)
.

2.3.2 Second order projection scheme

For the second order case, the integrals (2.3.1) need to be computed with second order
accuracy. To do so, let us consider a piecewise linear reconstruction of averages of (LU)n+1

i

and, taking into account that the velocities u∗,n+1
i+1/2 are continuously defined at the intercells,

we use a continuous piecewise linear interpolation at the intercells.
It can be seen that we can write (2.3.1) again as

Un+1
i = (LU)n+1

i − ∆t

∆x

(
u∗i+1/2(LU)n+1

i+1/2 − u∗i−1/2(LU)n+1
i−1/2

)
,

where

(LU)n+1
i+1/2 =

{
(LU)n+1

i+1/2− for u∗i+1/2 > 0,

(LU)n+1
i+1/2+ for u∗i+1/2 ≤ 0,

and (
LU
)n+1

i+1/2− =
1

Ln+1
i

((
LU
)n+1

i
+

1

2

(
δLU

)n+1

i

(
∆x− ∆t

Ln+1
i

u∗,n+1
i+1/2

))
,

(
LU
)n+1

i+1/2+
=

1

Ln+1
i+1

((
LU
)n+1

i+1
+

1

2

(
δLU

)n+1

i+1

(
−∆x− ∆t

Ln+1
i+1

u∗,n+1
i+1/2

))
.

In the previous expressions,
(
δLU

)n+1

i
and

(
δLU

)n+1

i+1
are approximations of the derivatives

of LU at time tn+1 at xi and xi+1, respectively, that are computed by means of an avg
limiter (see (1.1.43)). (LU)n+1

i−1/2 is defined in a similar way.
The CFL condition associated with the transport step reads

∆tmax
j

{
(u∗j−1/2)

+ − (u∗j+1/2)
−} ≤ ∆x. (2.3.2)

Let us remark that this stability restriction always remains as this step, contrary to
the Lagrangian one, is performed explicitly.



2.4 Numerical results 45

Observe that this projection step does not destroy the exactly well-balanced character
of the scheme as we focus only on steady states corresponding to water at rest, where
u = 0, and we have shown that Li = 1, what makes the projection step trivial in that
particular case. A more interesting situation occurs when moving equilibria are considered.
In that case, the procedure described in Section 3 could be extended to moving equilibria
following [25], but the projection step must be modified in order to preserve those steady
states. The difficulty in this case is due to the fact that when u ≠ 0, smooth stationary
solutions depend on time in the Lagrangian framework. The idea presented in [72] for the
design of fully well-balanced schemes for the transport step consists on properly defining
the fluctuations and equilibria of LUi(t), denoting by LU e

i (t) the solution of the Lagrangian

system (2.2.2) applied to the stationary solution U e
i (x) and the fluctuation LU

f

i (t), which
is given by

LU
f

i (t) = LU i(t)− LU
e

i (t).

2.4 Numerical results

We now intend to test and compare the different numerical schemes introduced in this
chapter. In what follows, we shall use the following notation for the used schemes. First
and second order explicit schemes, which are described in 2.2.3, are denoted by EXP O1
and EXP O2 respectively. The first order implicit scheme given by (2.2.34)-(2.2.41) is
denoted by IMP-NL O1 while its second order extension (2.2.46)-(2.2.51) is denoted by
IMP-NL O2. Finally the first order (2.2.43)-(2.2.45) implicit-explicit scheme and its second
order extension by means of (1.1.76) are represented by IMP-IMEX O1 and IMP-IMEX
O2 respectively. In order to make a better assessment of the performance of our second
order schemes, in some of the tests we will also include the results obtained with a DIRK
(Diagonal Implicit Runge-Kutta) scheme [76] that we will represent by IMP-DIRK O2.

In what follows, CFL condition refers to the restriction needed to satisfy for the stability
of the explicit schemes, that is, ∆t is the minimum that grants the stability conditions
given by (2.2.14) and (2.3.2). Note that both the fully implicit and the IMEX schemes do
not need the restriction (2.2.14) and they are only limited by (2.3.2). This means that, in
situations where velocity is small compared to the sound speed, the stability condition
for the Lagrangian step (2.2.14) is very limiting when compared to the projection step
stability condition (2.3.2), which justifies the use of the implicit approach. Therefore,
we will see in the following test cases that CFL greater than 1 (when compared to the
stability criterion for the explicit scheme) may be chosen for the implicit schemes.
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2.4.1 Exactly well-balanced property test

This first test aims at assessing the well balanced property of the schemes. Let us propose
the water at rest solution given by:

u = 0, h+ z = C, with C ∈ R

where C = 0 and the bottom topography is a gaussian bump given by

z(x) = −1 + 1

2
e−x

2

, x ∈ [−5, 5]. (2.4.1)

The interval [−5, 5] is discretized using 200 cells and final time is set to t = 5. In Table
2.1 we show the L1 errors obtained at final time using CFL 0.5 for the explicit schemes
and CFL 2 for the implicit ones. As expected, all the exactly well-balanced schemes are
able to preserve the water at rest steady state.

Order 1 Order 2
EXP IMP-IMEX IMP-NL EXP IMP-IMEX IMP-NL

1.95e-14 8.57e-14 5.36e-14 1.67e-13 5.56e-14 6.66e-14

Table 2.1: L1 errors between the numerical solution at initial and final time t = 5 for
water at rest initial condition

2.4.2 Computational time vs error

The objective of this test is to show the better performance of IMEX schemes against the
fully implicit approach. To do so, we study the computational efficiency of these schemes.

Inspired by [4], we have considered a test case consisting in a channel of length
L = 14000m with a bottom topography defined by

z(x) = −
(
50.5− 40

L− x

L
+ 10 sin

(
π

(
4
L− x

L
− 1

2

)))
.

We then simulate a tidal wave of 0.5m amplitude by imposing the following initial and
boundary conditions:

h(x, 0) = −z(x) + 1,

q(x, 0) = 0,

h(L, t) = −z(L) + 1

2
+

1

2
sin

(
π

(
4t

86400
+

1

2

))
,

q(0, t) = 0.
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Let us recall that the computational advantage of the numerical approaches presented
in this work make sense especially in the case of low Froude number. Indeed, in such
situations the restriction of the usual CFL condition is mainly driven by the acoustic
waves, so that implicit schemes allow to avoid it. This is indeed the case of this tidal wave
test.

In Figures 2.2 and 2.3 we show the computational time needed to perform the simulation
and the error for an increasing number of cells for the different type of schemes. The error
has been obtained by computing a reference solution for a very fine mesh.

In all the numerical tests, a CFL value of 0.5 has been used in the case of explicit
schemes. As far as the implicit schemes are concerned, we consider two different approaches:
first, the simulations are performed using the same CFL restriction 0.5 as in the explicit
case (left-hand side pictures); second a CFL corresponding to 100 with respect to the
usual restriction is used (right-hand side pictures).

We can observe that for the low CFL value case, the explicit scheme is more efficient
than the implicit ones, as expected. It is in the case when large CFL numbers are used that
the implicit schemes outperform the explicit one. Indeed we see an important reduction
of computational time needed for the implicit schemes when compared to the explicit
one in order to obtain a similar error. For example, in the first order case, we see a
95% reduction in computational time for the IMP-IMEX scheme compared to the EXP
one for comparable errors. Similarly, in the second order case, the reduction found is
approximately 60%. This improvement in the efficiency is expected to be even bigger for
2D problems.

Moreover, when comparing IMP-IMEX and IMP-NL, the former seems to be more
efficient than the latter. This is due to the iterations of the fixed point scheme that are
needed. In Tables 2.2 and 2.3 we show the maximum number of iterations needed to
solve the nonlinear systems during the computation and the global number of fixed point
iterations required for the whole simulation. This is done for CFL equal to 0.5 and 100,
respectively, for the IMP-NL O2 and the IMP-DIRK O2 schemes. We can also remark that
the computational time required by the DIRK scheme is larger than in the IMP-NL O2
case when the CFL is set to 0.5 but it is a bit shorter when the CFL is 100. This can also
be explained by checking the total number of iterations in Tables 2.2 and 2.3. However,
the IMP-IMEX O2 scheme is faster than the IMP-NL and the IMP-DIRK schemes, since
only two linear schemes have to be solved.

Lastly, we could think that even though the implicit schemes are more efficient, the
errors should be greater than for the explicit schemes. However, with this initial condition
we are considering long waves, so the errors are not too big. To show this, in Figure 2.4
we have plotted the free surface for the different first and second order schemes using both
CFL 0.5 and 100 for the implicit ones. In the first order case, we observe that the implicit
schemes are more diffusive than the explicit one, but this is to be expected and the size
of the errors is not too large. When we analyse the results obtained for the second order
schemes we see that both the explicit and the implicit schemes with CFL 0.5 give almost
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identical results. Of course, when for the implicit schemes the CFL is increased to 100,
they are again more diffusive but not too big differences are seen.
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Figure 2.2: Computational time vs. error for an increasing number of cells using first order
schemes
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Figure 2.3: Computational time vs. error for an increasing number of cells using second
order schemes
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CFL 0.5 IMP-NL O2 IMP-DIRK O2
No. of cells Max Iter Total Iter Max Iter Total Iter

25 3 496 3 717
50 3 981 2 1342
100 3 1897 2 1682
200 3 3681 2 5366
400 3 6942 2 10736

Table 2.2: Maximum number of fixed point iterations to solve the nonlinear systems and
total number of iterations performed for different number of cells for the second order
nonlinear scheme and the DIRK scheme using a CFL equal to 0.5

CFL 100 IMP-NL O2 IMP-DIRK O2
No. of cells Max Iter Total Iter Max Iter Total Iter

25 2 2 1 1
50 7 9 6 7
100 7 21 7 18
200 7 39 6 34
400 7 82 6 73

Table 2.3: Maximum number of fixed point iterations to solve the nonlinear systems and
total number of iterations performed for different number of cells for the second order
nonlinear scheme and the DIRK scheme using a CFL equal to 100
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Figure 2.4: Free surface for the different first and second order schemes

2.4.3 Order test

Let us now check the order of the schemes. In order to do so, we consider as initial
condition a small perturbation flowing over a gaussian bump in a domain with length



50 Implicit and implicit-explicit LP schemes exactly well-balanced for SWE

L = 14000m. More explicitly, the bottom topography is given by

z(x) = −
(
50− exp

(
−(x− 7000)2

1000000

))
,

and the initial condition writes as q(x, 0) = 0 and

h(x, 0) = −z(x) +



0.05
(
1 + cos

(
2π(x−4750)

3500

))
if 3000 < x < 6500

0.05
(
−
(
1 + cos

(
2π(x−9250)

3500

)))
if 7500 < x < 11000

0 otherwise.

Free surface corresponding to this initial condition is shown in Figure 2.5. The errors
in L1 obtained for the different schemes are then shown in Tables 2.4, 2.5 and 2.6, where
we see that the expected accuracy is obtained.
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Figure 2.5: Free surface corresponding to the initial condition for the order test case

EXP - Order 1 EXP - Order 2
No. of h q h q
cells Error Order Error Order Error Order Error Order
25 3.49e-1 0.00 4.50e0 0.00 2.17e-1 0.00 1.58e0 0.00
50 1.88e-1 0.89 2.69e0 0.74 6.03e-2 1.85 6.89e-1 1.20
100 9.39e-2 1.00 1.35e0 0.99 1.68e-2 1.84 2.01e-1 1.77
200 4.21e-2 1.16 6.07e-1 1.16 4.17e-3 2.01 5.42e-2 1.89
400 1.44e-2 1.54 2.07e-2 1.54 8.50e-4 2.30 1.17e-2 2.21

Table 2.4: Dimensionless errors in L1 norm and convergence rates for the explicit LP
schemes with CFL value 0.5
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IMP-IMEX - Order 1 IMP-IMEX - Order 2
No. of h q h q
cells Error Order Error Order Error Order Error Order
25 7.03e-1 0.00 1.37e1 0.00 6.53e-1 0.00 3.60e0 0.00
50 5.25e-1 0.42 9.39e0 0.55 1.66e-1 1.97 3.55e0 0.02
100 3.78e-1 0.47 5.85e0 0.68 4.78e-2 1.80 1.16e0 1.61
200 2.18e-1 0.79 3.01e0 0.96 1.30e-2 1.87 3.21e-1 1.86
400 8.89e-2 1.30 1.16e0 1.37 3.22e-3 2.02 7.21e-2 2.16

Table 2.5: Dimensionless errors in L1 norm and convergence rates for the implicit IMEX
LP schemes with CFL value 3

IMP-NL - Order 1 IMP-NL - Order 2
No. of h q h q
cells Error Order Error Order Error Order Error Order
25 7.03e-1 0.00 1.37e1 0.00 4.57e-1 0.00 5.61e0 0.00
50 5.25e-1 0.42 9.39e0 0.55 1.60e-1 1.51 3.89e0 0.52
100 3.78e-1 0.47 5.85e0 0.68 5.46e-2 1.55 1.19e0 1.30
200 2.18e-1 0.79 3.01e0 0.96 1.68e-2 1.70 4.53e-1 1.80
400 8.89e-2 1.30 1.16e0 1.37 4.14e-3 2.02 1.06e-1 2.09

Table 2.6: Dimensionless errors in L1 norm and convergence rates for the implicit nonlinear
LP schemes with CFL value 3

The previous initial condition corresponds to a Froude number of order 10−9. By
changing the factor 0.05 in h to bigger values we obtain similar initial conditions with
different Froude numbers. We have then tested the errors and convergence rates of the
second order implicit schemes when other small Froude numbers are considered. These
errors and convergence rates are shown in Tables 2.7 and 2.8, showing second order
convergence as expected.
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IMP-IMEX - Order 2 IMP-NL - Order 2
No. of h q h q
cells Error Order Error Order Error Order Error Order
25 8.00e-3 0.00 1.37e-2 0.00 7.77e-03 0.00 1.26e-02 0.00
50 1.96e-3 2.02 4.95e-3 1.47 1.97e-03 1.98 8.72e-02 0.53
100 5.12e-4 1.94 1.65e-3 1.64 5.19e-04 1.93 3.18e-03 1.45
200 1.30e-4 1.98 3.81e-4 2.06 1.30e-04 1.99 7.76e-04 2.04
400 3.23e-5 2.00 9.85e-5 1.96 3.19e-05 2.03 1.78e-04 2.12

Table 2.7: Dimensionless errors in L1 norm and convergence rates for the implicit second
order IMEX and nonlinear LP schemes with CFL value 3 for the initial condition with
Froude number of order 10−7

IMP-IMEX - Order 2 IMP-NL - Order 2
No. of h q h q
cells Error Order Error Order Error Order Error Order
25 6.92e-02 0.00 1.36e-01 0.00 6.80e-02 0.00 1.21e-01 0.00
50 1.54e-02 2.17 4.94e-02 1.46 1.55e-02 2.13 8.49e-02 0.52
100 4.13e-03 1.90 1.58e-02 1.64 4.15e-03 1.90 3.07e-02 1.46
200 1.05e-03 1.98 3.60e-03 2.13 1.06e-03 1.97 7.36e-03 2.06
400 2.61e-04 2.00 8.04e-04 2.16 2.69e-04 1.98 1.36e-03 2.44

Table 2.8: Dimensionless errors in L1 norm and convergence rates for the implicit second
order IMEX and nonlinear LP schemes with CFL value 3 for the initial condition with
Froude number of order 10−5

2.4.4 Perturbation of water at rest

Let us consider z(x) given by (2.4.1) and the following initial condition, which is a
perturbation of the water at rest:

h(x) = −z(x) + 0.1e−x
2

, u(x) = 0.

This initial condition is shown in Figure 2.6.
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Figure 2.6: Perturbation of water at rest initial condition

In Figures 2.7, 2.8, 2.9 and 2.10 we can check the solutions obtained with the different
schemes at time t = 0.5 and t = 1 with 200 cells in the interval [−5, 5] for the free surface
η = h+ z and the discharge q. We include a reference solution that has been computed
with the first order explicit scheme using 1600 cells.
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Figure 2.7: Solution for η and q at t = 0.5 with 200 cells. Explicit: CFL=0.5, Implicit:
CFL=2
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Figure 2.8: Solution for η and q at t = 1 with 200 cells. Explicit: CFL=0.5, Implicit:
CFL=2
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Figure 2.9: Solution for η and q at t = 0.5 with 200 cells. Explicit: CFL=0.5, Implicit:
CFL=5
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Figure 2.10: Solution for η and q at t = 1 with 200 cells. Explicit: CFL=0.5, Implicit:
CFL=5

In general we see a good agreement of the numerical solutions when compared to
the reference solution. The first order implicit schemes are the most diffusive, which is
expected. Also, the second order implicit schemes present more diffusion when the CFL is
increased. Nevertheless, the greater CFL allowed by implicit schemes make them more
efficient.

2.4.5 Perturbed water at rest with shock waves

We now intend to study the behavior of the schemes, specially for second order, in the
presence of shocks. In such situation, the limiter will play an important role. We consider
z(x) given by (2.4.1) in [−5, 5] and we set the initial condition:

h(x) =


−z(x) if |x| ≥ 1

−z(x) + 0.1 if |x| < 1
, u(x) = 0.
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This initial condition, shown in Figure 2.11, presents two discontinuities at the interface
that generate two shock waves travelling in different directions. We consider a mesh
consisting on 200 cells and we perform the simulation up to time t = 1. For the explicit
schemes we have set the CFL value to be 0.5, and for the implicit ones it is set to be 2.

Figures 2.12, 2.13, 2.14 and 2.15 show the numerical solution obtained at times t = 0.1
and t = 1 seting the CFL value to be 2 and 5 for the implicit schemes. As in the previous
test, the reference solution has been computed by using the first order explicit scheme
with 1600 cells. We see that the schemes are able to correctly handle the initial condition,
although very small spurious oscillations are seen for the second order schemes at the
advancing front of the shock waves. These spurious oscillations are more pronounced
for the second order IMP-NL than for the IMP-IMEX. Nevertheless, in the CFL 2 case,
they are mostly suppressed thanks to the presence of the slope limiter. These oscillations
become bigger for larger CFL values. This drawback has been pointed out at least in [84]
or [59]. Some recent strategies that could be considered in order to reduce such oscillations
can be found in [78], [58] or [71].
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Figure 2.11: water at rest solution with a discontinuous perturbation on the surface
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Figure 2.12: Solution at t = 0.1 with 200 cells for a discontinuous perturbation of a water
at rest. Explicit: CFL=0.5, Implicit: CFL=2
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Figure 2.13: Solution at t = 1 with 200 cells for a discontinuous perturbation of a water at
rest. Explicit: CFL=0.5, Implicit: CFL=2
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Figure 2.14: Solution at t = 0.1 with 200 cells for a discontinuous perturbation of a water
at rest. Explicit: CFL=0.5, Implicit: CFL=5

4 2 0 2 4

0.02

0.00

0.02

0.04

0.06

0.08

0.10

t = 1.000

Reference
EXP O1
IMP-IMEX O1
IMP-NL O1

EXP O2
IMP-IMEX O2
IMP-NL O2
IMP-DIRK O2

(a) η = z + h

4 2 0 2 4
0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4
t = 1.000

Reference
EXP O1
IMP-IMEX O1
IMP-NL O1

EXP O2
IMP-IMEX O2
IMP-NL O2
IMP-DIRK O2

(b) q

Figure 2.15: Solution at t = 1 with 200 cells for a discontinuous perturbation of a water at
rest. Explicit: CFL=0.5, Implicit: CFL=5.
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2.4.6 Generation of subcritical steady state

Let us consider again the bottom topography (2.4.1) and a water at rest as initial condition
in the interval [−5, 5]:

η = h+ z = 0, u = 0.

At the left boundary, we impose a discharge given by q(x = −5, t) = 0.5 and at the
right boundary we fix the water height to h(x = 5, t) = 1, following the test proposed in
[60]. This boundary conditions are set using a ghost-cell technique. The results obtained
at time t = 2, t = 50 and t = 100 for the different methods with 200 cells, with CFL value
0.5 for the explicit schemes and CFL value 2 and for the implicit ones, can be seen in
Figures 2.16, 2.17, 2.18, 2.19, 2.20 and 2.21. Due to the imposed discharge on the left
boundary, a shock wave enters the domain and travels over the bump. The solution evolves
until a subcritical steady state is reached. We remark that the front of the advancing
shock is too diffusive for the first order schemes. Moreover, the location of the depression
on the surface at times t = 50 and t = 100 is slightly misplaced in the case of the implicit
first order schemes. The left water level is not the same as well. This is due to the higher
diffusion of the schemes, which is overcome when using a second order scheme.
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Figure 2.16: Generation of subcritical steady state a time t = 2. Explicit: CFL=0.5,
Implicit: CFL=2



58 Implicit and implicit-explicit LP schemes exactly well-balanced for SWE

4 2 0 2 4

0.4

0.3

0.2

0.1

0.0

0.1

0.2

t = 50.000

Reference
EXP O1
IMP-IMEX O1
IMP-NL O1

EXP O2
IMP-IMEX O2
IMP-NL O2

(a) η = z + h

4 3 2 1 0 1 2 3
0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600
t = 50.000

Reference
EXP O1
IMP-IMEX O1
IMP-NL O1

EXP O2
IMP-IMEX O2
IMP-NL O2

(b) q

Figure 2.17: Generation of subcritical steady state a time t = 50, Explicit: CFL=0.5,
Implicit: CFL=2
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Figure 2.18: Generation of subcritical steady state a time t = 100. Explicit: CFL=0.5,
Implicit: CFL=2
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Figure 2.19: Generation of subcritical steady state a time t = 2. Explicit: CFL=0.5,
Implicit: CFL=5
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Figure 2.20: Generation of subcritical steady state a time t = 50, Explicit: CFL=0.5,
Implicit: CFL=5
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Figure 2.21: Generation of subcritical steady state a time t = 100. Explicit: CFL=0.5,
Implicit: CFL=5
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Chapter 3

Implicit Lagrange-projection
well-balanced finite volume scheme
for the Ripa model

3.1 Introduction

The Ripa system given by (1.1.22) simulates shallow water flows in situations where
variations in temperature play a crucial role. This system was introduced in [79] and [80] for
modeling ocean currents. The derivation of the system is based on considering multilayered
ocean models, and vertically integrating the density, horizontal pressure gradient and
velocity fields in each layer. The model incorporates the horizontal temperature gradients,
which results in the variations in the fluid density within each layer. The simple case is
the one considered here, where only one single layer is considered. The steady states of
the 1D Ripa system satisfy (1.1.23). Here we are interested in the hyrostatic ones, that is
those corresponding to u = 0.

In the following we propose a strategy to numerically solve the Ripa model by applying
the Lagrange-projection approach as done in the previous chapter, following what has
been done previously in [23, 72, 43, 33, 42, 22].

Some well-balanced numerical methods for this system are available in the literature,
such as the central-upwind scheme in [37], in which steady states of the type (1.1.25) are
preserved, or the HLLC type scheme in [82], which preserves both (1.1.25) and (1.1.26),
and fits within the path-conservative schemes introduced in [75]. In this chapter we design
first order finite volume schemes that are well-balanced for every hydrostatic steady state,
that is, any steady states such that u = 0. These steady states satisfy (1.1.24).

We now consider the Lagrangian coordinates as introduced in Chapter 1.
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In the case of smooth solutions, from (1.1.22) we have
∂th+ u∂xh+ h∂xu = 0,
∂t(hu) + u∂x(hu) + hu∂xu+ ∂xp+ ghθ∂xz = 0,
∂t(hθ) + u∂x(hθ) + hθ∂xu = 0.

(3.1.1)

Mimicking what was done in Section1.3 for Euler equations, we obtain the following
system for Ripa model in Lagrangian coordinates:

∂t(Lh) = 0,

∂t(Lhu) + ∂ξp+ ghθ∂ξz = 0,

∂t(Lhθ) = 0.

(3.1.2)

The Lagrangian step can also be written (see [23]) in the following way:
∂tτ − τ0∂ξu = 0,

∂tu+ τ0∂ξp+ g
τ0
τ
θ∂ξz = 0,

∂tθ = 0,

(3.1.3)

where τ = 1/h is the covolume and τ0 = τ|t=0.
Now, using a relaxation approach for (3.1.3), we obtain the system

∂tτ − τ0∂ξu = 0,

∂tu+ τ0∂ξπ + g
τ0
τ
θ∂ξz = 0,

∂tπ + a2τ0∂ξu = 0,

∂tθ = 0,

(3.1.4)

where a is a constant that satisfies the subcharacteristic condition (1.1.65) and the variable
π corresponds to the relaxation of the pressure p = g

2
h2θ.

Proceeding similarly as in Chapter 2 and using the variables−→w = π+au and←−w = π−au,
we obtain 

∂tτ − τ0∂ξu = 0,

∂t
−→w + aτ0∂ξ

−→w + ga
τ0
τ
θ∂ξz = 0,

∂t
←−w − aτ0∂ξ

←−w + ga
τ0
τ
θ∂ξz = 0,

∂tθ = 0.

(3.1.5)

Let us recall that π and u can easily be recovered from −→w and ←−w using (2.1.3).
We consider a similar numerical discretization as in Chapter 2 to use again the Lagrange-

Projection approach, which we recall consists in, given discrete states Un
i = (h, hu, hθ)ni ,

i ∈ Z, corresponding to instant tn, computing the approximations corresponding to time
tn+1 in two steps:

1. Approximating the solution U
n+1

i of system (3.1.2) (Lagrangian step).

2. Going back to the Eulerian coordinates to obtain the values Un+1
i (projection step).
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3.2 The Lagrangian step

In order to solve system (3.1.2), we rewrite the source term as we did in (2.2.1), obtaining

ghθ∂ξz = gLhθ ∂xz = g(hθ)(0)∂xz,

with
∂xz(ξi, t) = ∂xz(x(ξi, t)) = z′(xi(t)).

Using this, we can write a semi-discrete scheme for the Lagrangian step as follows:
(Lh)′i(t) = 0,

(Lhu)′i(t) = −
1

∆ξ

(
π∗i+1/2(t)− π∗i−1/2(t)

)
− g(hθ)i(0)z

′(xi(t)),

(Lhθ)′i(t) = 0,

(3.2.1)

where π∗i±1/2(t) ≈ π(ξi±1/2, t).
Similarly, a semi-discrete scheme for the second and third equations of the relaxed

system (3.1.5) can be considered:
−→w ′i(t) = −

a

hi(0)∆ξ

(−→w i+1/2(t)−−→w i−1/2(t)
)
− gaθi(0)z

′(xi(t)),

←−w ′i(t) =
a

hi(0)∆ξ

(←−w i+1/2(t)−←−w i−1/2(t)
)
+ gaθi(0)z

′(xi(t)).
(3.2.2)

where −→w i+1/2(t) and
←−w i+1/2(t) are upwind numerical fluxes as those in (2.2.3).

Let us now focus on the well-balanced character of the scheme. In the case of a general
hydrostatic steady state, unlike what happens with the shallow water equations for zero
velocity steady states for which the steady states are explicitly determined by (1.1.19),
there are infinitely many possibilities. We then have to fix a profile for one of the variables
and obtain the other ones from it. For example, we can start by choosing a profile for h.
A natural choice for first order schemes would be

he
i (x) = hn

i , (3.2.3)

or
he
i (x) = hn

i + zi − z(x). (3.2.4)

In our case, we will work with (3.2.4). Then, we approximate π integrating (1.1.24) using
a collocation method as in [56]. Therefore, we can compute the values πe,n

i (xi±1/2) as

πe,n
i (xi±1/2) = πe,n

i (xi)∓∆x
πe,n
i (xi)

he,n
i (xi)

z′(xi) (3.2.5)

being

πe,n
i (xi) =

g

2
he,n
i (xi)(hθ)

e,n
i (xi). (3.2.6)
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Afterwards, we are able to recover the values of θ from the relation:

θ(x) =
2

g
h−2(x)π(x). (3.2.7)

This could have also be done similarly by fixing a profile for θ instead of doing it for h.
The fact that we are choosing a discrete profile for h and computing the other variables

from it using a collocation method implies that our scheme will be well-balanced and
not exactly well-balanced. That is, the steady states that are preserved are discrete
approximations of the exact ones.

As already done in the previous chapter, π∗,n+1
i+1/2 and u∗,n+1

i+1/2 are computed as:

π∗,n+1
i+1/2 =

−→w n+1
i+1/2− +←−w n+1

i+1/2+

2
,

u∗,n+1
i+1/2 =

−→w n+1
i+1/2− −

←−w n+1
i+1/2+

2a
,

where −→w n+1
i+1/2− = −→w n+1

i − πe,n
i (ξi) + πe,n

i (ξi+1/2),

←−w n+1
i+1/2+ = ←−w n+1

i+1 − πe,n
i+1(ξi) + πe,n

i+1(ξi+1/2).

Concerning system (3.1.2), note that, for stationary solutions, the second equation
reads

∂ξπ
e + ghθ

e
∂ξz = 0,

or equivalently,
∂ξπ

e + gLhθ
e
∂xz = 0. (3.2.8)

Using this equality, the second equation of system (3.1.2) for a general solution can be
written as

∂t(Lhu) + ∂ξ(π − πe) + g((hθ)(0)− Lhθ
e
)∂xz = 0. (3.2.9)

The same idea is used to rewrite the equations for −→w and ←−w .
So, following the procedure used in Chapter 2 we consider the following semi-discrete

formulation:
(Lhu)′i(t) = −Li(t)− Gi(t),

where

Li(t) =
1

∆ξ

(
π∗i+1/2(t)− π∗i−1/2(t)

)
,

Gi(t) =−
1

∆ξ

(
πe,n
i (xi+1/2(t))− πe,n

i (xi−1/2(t))
)

+ g
(
Pi,(hθ)0(ξi)− Li(t)(hθ)

e,n
i (x(ξi, t))

)
z′(x(ξi, t)),
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and 
−→w ′i(t) = −(L−→w )i(t)−

a

hi(0)
Gi(t),

←−w ′i(t) = −(L←−w )i(t) +
a

hi(0)
Gi(t),

being

(L−→w )i(t) =
a

hi(0)∆ξ

(−→w i+1/2(t)−−→w i−1/2(t)
)
,

(L←−w )i(t) =−
a

hi(0)∆ξ

(←−w i+1/2(t)−←−w i−1/2(t)
)
.

We will consider two different types of implicit schemes depending on how we treat
functions L and G:

• Nonlinear implicit schemes: both L and G are treated implicitly.

• Implicit-explicit schemes: L is treated implicitly while G is treated explicitly.

3.2.1 First order nonlinear implicit well-balanced Lagrangian
scheme

In the case in which we treat functions L and G implicitly, we consider

(Lhu)n+1
i = (hu)ni −∆t

(
Ln+1

i + Gn+1
i

)
,

with

Ln+1
i =

1

∆ξ

(
π∗,n+1
i+1/2 − π∗,n+1

i−1/2

)
,

Gn+1
i =− 1

∆ξ

(
πe,n
i (x∗,n+1

i+1/2)− πe,n
i (x∗,n+1

i−1/2)
)

+ g
(
(hθ)ni − Ln+1

i (hθ)e,ni (x∗,n+1
i )

)
z′(x∗,n+1

i ).

being
x∗,n+1
i±1/2 = ξi±1/2 +∆tu∗,n+1

i±1/2,

and

Ln+1
i = 1 +

∆t

∆ξ

(
u∗,n+1
i+1/2 − u∗,n+1

i−1/2

)
.

Moreover, in order to obtain −→w n+1
i and ←−w n+1

i we need to solve the non-linear systems
defined by 

−→w n+1
i = −→w n

i −∆t

(
(L−→w )n+1

i +
a

hn
i

Gn+1
i

)
,

←−w n+1
i =←−w n

i −∆t

(
(L←−w )n+1

i − a

hn
i

Gn+1
i

)
,
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where

(L−→w )n+1
i =

a

hn
i ∆ξ

(−→w n+1
i+1/2− −

−→w n+1
i−1/2−

)
,

(L←−w )n+1
i = − a

hn
i ∆ξ

(←−w n+1
i+1/2+ −

←−w n+1
i−1/2+

)
.

These systems are solved using a fixed point scheme as in Chapter 2. However, the
results obtained there show that implicit-explicit schemes have the advantage of being
more efficient as only linear systems need to be solved. Therefore from now on we focus
on implicit-explicit schemes.

3.2.2 First order implicit-explicit well-balanced Lagrangian
scheme

In order to treat L implicitly and G explicitly, we consider the scheme

(Lhu)n+1
i = (hu)ni −∆t

(
Ln+1

i + Gni
)
,

where

Ln+1
i =

1

∆ξ

(
π∗,n+1
i+1/2 − π∗,n+1

i−1/2

)
,

Gni =− 1

∆ξ

(
πe,n
i (ξi+1/2)− πe,n

i (ξi−1/2)
)
.

In this case, −→w n+1
i and ←−w n+1

i are the solution of the linear systems
−→w n+1

i = −→w n
i −∆t

(
(L−→w )n+1

i +
a

hn
i

Gni
)
,

←−w n+1
i =←−w n

i −∆t

(
(L←−w )n+1

i − a

hn
i

Gni
)
,

where

(L−→w )n+1
i =

a

hn
i ∆ξ

(−→w n+1
i+1/2− −

−→w n+1
i−1/2−

)
,

(L←−w )n+1
i = − a

hn
i ∆ξ

(←−w n+1
i+1/2+ −

←−w n+1
i−1/2+

)
.

Therefore, by using this implicit-explicit strategy we avoid the need to solve a nonlinear
system and to use fixed point schemes, obtaining a more efficient scheme similarly to what
was seen for the shallow water equations case in Chapter 2.
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3.3 The projection step

Once the Lagrangian step has been performed, we need to project the solutions back to
Eulerian coordinates as it was done in Section2.3, but considering now the appropriate
reconstructions of the variables.

3.4 Numerical results

Some tests will now be presented in order to check the behaviour of the schemes presented
in this chapter. We will consider three different Lagrange-Projection schemes:

• A non well-balanced scheme obtained by using an HLL scheme for the Lagrangian
step. This scheme should perform adequately in the isobaric steady state case since
when applying the Lagrange-Projection approach, the Lagrangian step (3.1.2) with
flat topography and constant pressure reduces to

∂t(Lh) = 0,

∂t(Lhu) = 0,

∂t(Lhθ) = 0,

and the projection step presents no issues, so any consistent scheme should do it
right. However, it should present difficulties with other type of steady states.

• An exactly well-balanced scheme that exactly preserves water at rest steady states
(1.1.25) and isobaric steady states (1.1.26). This one is also obtained by using an
HLL scheme for the Lagrangian step. Of course, it should not be able to preserve
general hydrostatic steady states. However, if a discrete steady state is considered,
it could present some errors of the order of the discrete approximation.

• Our implicit-explicit well-balanced scheme that is well-balanced for all the hydrostatic
steady states. Since it is not exactly well-balanced it could present some errors when
considering a exact steady state as initial condition, but it should converge to the
steady state when the mesh is refined. Moreover, if the discrete approximation of a
hydrostatic steady state is considered, it should exactly preserve it.

3.4.1 Isobaric steady state

In this first test we consider a flat topography

z(x) = 0.
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and the following initial conditions:

h(x, 0) = 1− 0.5e−x
2

,

u(x, 0) = 0,

θ(x, 0) = (1− 0.5e−x
2

)−2.

The ones corresponding to h and θ are plotted in Figure 3.1. The computational
domain is the interval [−5, 5] and the final time is T = 2.

The aim of this test is to check that our scheme preserves isobaric steady states, which
are the ones satisfying (1.1.26).
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(b) θ

Figure 3.1: Initial condition for an isobaric steady state

In Tables 3.1, 3.2 and 3.2 we find the errors for h, hu and hθ obtained with the non
well-balanced scheme, the exactly well-balanced one and our implicit-explicit well-balanced
scheme, respectively. As expected, in the absence of source term, the three schemes are
able to preserve the steady state.

No. of cells h hu hθ
100 2.77e-15 1.43e-15 3.73e-15
200 3.53e-15 1.35e-15 4.99e-15
400 5.83e-15 1.58e-15 7.12e-15

Table 3.1: Errors in L1 norm for the non well-balanced scheme for an isobaric steady state
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No. of cells h hu hθ
100 8.21e-16 8.42e-16 4.44e-16
200 6.55e-16 7.41e-16 1.77e-16
400 1.09e-15 8.71e-16 7.54e-16

Table 3.2: Errors in L1 norm for the exactly well-balanced scheme for an isobaric steady
state

No. of cells h hu hθ
100 8.65e-16 1.40e-15 5.32e-16
200 6.88e-16 7.19e-16 1.77e-16
400 1.15e-15 8.96e-16 8.43e-16

Table 3.3: Errors in L1 norm for the well-balanced scheme for an isobaric steady state

3.4.2 Water at rest case

We consider the non-flat bottom topography

z(x) = 0.5e−x
2

and the initial conditions
h(x, 0) = 1− 0.5e−x

2

,

u(x, 0) = 0,

θ(x, 0) = 1.

So, now the free surface h + z is constant and this is a water at rest type steady state,
satisfying (1.1.25). We will check if our scheme is well-balanced for this type of stationary
solution.

Again, the computational domain is [−5, 5] and the final time is T = 2.
On the one hand, the profiles of the free surface obtained with a non well balanced

scheme and with the proposed well balanced scheme are similar, as we can see in Figure
3.2. Moreover, no big differences are seen for the temperature either (see Figure 3.4). On
the other hand, the velocity obtained with the non well-balanced scheme is very far away
from the one that we should obtain, while for the well-balanced scheme we obtaine errors
of order 10−13 (see Figure (3.3). This behaviour can also be observed in Tables 3.4, 3.5 and
3.6, where we show the errors obtained with the non well-balanced scheme, the exactly
well-balanced one and our well-balanced scheme. The well-balanced scheme is, of course,
non exact, but the errors decrease when the mesh is refined, so it is expected to converge
to the stationary solution. In fact, the convergence rate is 2, as it can be deduced from
Table 3.7.
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Of course, the exactly well-balanced scheme perfectly fits this situation, while the
well-balanced scheme is not exact but it is better than the non well-balanced one, in
particular for approximating the discharge. In fact, if we had started from a discrete
stationary solution instead of an exact solution, the well-balanced scheme would have been
exact and we would have seen some small errors in the exactly well-balanced one.
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Figure 3.2: Free surface computed with well-balanced and non well-balanced schemes for
the water at rest steady state
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Figure 3.3: Velocity computed with well-balanced and non well-balanced schemes for the
water at rest steady state
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Figure 3.4: Temperature computed with well-balanced and non well-balanced schemes for
the water at rest steady state

No. of cells h hu hθ
50 6.64e-03 8.67e-01 6.64e-03
100 1.16e-03 5.80e-01 1.16e-03
200 4.04e-04 3.99e-01 4.04e-04
400 1.01e-04 2.81e-01 1.01e-04

Table 3.4: Errors in L1 norm for the non well-balanced scheme for the water at rest steady
state

No. of cells h hu hθ
50 7.54e-16 3.67e-15 7.54e-16
100 1.99e-15 5.14e-15 1.99e-15
200 3.63e-15 7.59e-15 3.63e-15
400 3.36e-15 4.41e-15 3.36e-15

Table 3.5: Errors in L1 norm for the exactly well-balanced scheme for the water at rest
steady state
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No. of cells h hu hθ
50 6.46e-03 2.23e-13 6.46e-03
100 1.16e-03 2.99e-13 1.16e-03
200 4.04e-04 1.55e-13 4.04e-04
400 1.01e-04 3.12e-13 1.01e-04

Table 3.6: Errors in L1 norm for the well-balanced scheme for the water at rest steady
state

No. of cells Order for h Order for hθ
100 2.47 2.47
200 1.52 1.52
400 2.00 2.00

Table 3.7: Convergence rates for the well-balanced scheme for the water at rest steady
state

3.4.3 A general hydrostatic steady state case

The topography considered now is

z(x) = 1− 0.5e−x
2

.

From the initial conditions

h(x, 0) = 1− 0.5e−x
2

,

u(x, 0) = 0,

π(x, 0) = (1− 0.5e−x
2

)−2

we deduce that the temperature θ is no longer constant, and this is a general steady state,
not a water at rest steady state or an isobaric one. Let us check if this general steady
state is preserved by our scheme.

Although we know the exact solution, we start from the discrete solution in order to
test our scheme (see Figure 3.5 and Table 3.8 to compare them). We use the same space
interval and final time of previous examples.
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Figure 3.5: Exact and discrete solution for θ for a general hydrostatic steady state case

No. of cells Error Order
50 1.61e-02
100 3.99e-03 2.01
200 1.00e-03 1.99
400 2.50e-04 2.00
800 6.25e-05 2.00

Table 3.8: Error and convergence rates in the approximation of the global discrete solution
for a general hydrostatic steady state case

In Figures 3.6, 3.7 and 3.8 we have the final states obtained for h, u and θ, and in
Tables 3.9, 3.10 and 3.11 the errors for the three considered schemes. Of course, the
errors in the exactly well-balanced case are smaller than in the non well-balanced one,
especially in the case of the discharge. However, our well-balanced scheme performs better,
preserving the discrete stationary solution up to machine precision.
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Figure 3.6: Error in h for the non well-balanced and exactly well-balanced schemes for a
general hydrostatic steady state case
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Figure 3.7: Error in u for the non well-balanced and exactly well-balanced schemes for a
general hydrostatic steady state case
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Figure 3.8: Error in θ for the non well-balanced and exactly well-balanced schemes for a
general hydrostatic steady state case

No. of cells h hu hθ
50 4.93e-02 6.52e-01 4.11e-02
100 2.15e-02 4.20e-01 1.72e-02
200 9.29e-03 2.82e-01 7.21e-03
400 6.53e-03 1.91e-01 6.49e-03

Table 3.9: Errors in L1 norm for the non well-balanced scheme for a general hydrostatic
steady state case

No. of cells h hu hθ
50 7.33e-03 1.37e-13 6.84e-03
100 1.69e-03 1.49e-13 1.18e-03
200 4.07e-04 1.00e-13 4.81e-04
400 4.97e-05 1.10e-13 1.22e-04

Table 3.10: Errors in L1 norm for the exactly well-balanced scheme for a general hydrostatic
steady state case
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No. of cells h hu hθ
50 4.47e-17 1.04e-15 1.22e-16
100 2.22e-16 1.04e-15 9.99e-17
200 1.22e-16 1.20e-15 1.24e-16
400 4.99e-17 1.94e-15 5.41e-17

Table 3.11: Errors in L1 norm for the well-balanced scheme for a general hydrostatic
steady state case

3.4.4 A general steady hydrostatic state with a perturbation

In this last test we add a small perturbation in h to the discrete solution of the previous
test. In particular, we consider the initial conditions

h(xi, 0) = he(xi) + 0.1e−16(xi−2)2 ,

(hu)(xi, 0) = 0,

(hθ)(xi, 0) = (hθe)(xi),

where the superscript e refers to those discrete stationary solutions of the previous test.
We consider open boundary conditions and let the simulation run until a stationary

solution is reached.
In Figure 3.9 we have plotted h at different times obtained with the well-balanced

scheme. Moreover, in Figures 3.10 and 3.11 we observe the final steady state obtained
with this scheme for variables h and θ, respectively. Lastly, in Figures 3.12 and 3.13 we
have plotted the differences between the non well-balanced and the well-balanced scheme
and the differences between the exactly well-balanced and the well-balanced scheme for
the variables u and θ.

On one hand, the well-balanced scheme generates from that initial condition another
hydrostatic solution different from the perturbed starting one, which is expected, since
there are infinitely many of that type and it goes to any one of those. On the other hand,
the exactly well-balanced scheme is only able to generate a stationary solution very similar
to the initial one, as it is not well balanced for the discrete stationary solution. Finally,
the non well-balanced scheme does not obtain a solution with zero velocity, but generates
a large perturbation in u, as expected.
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Figure 3.9: h at different times for the well-balanced scheme for a general hydrostatic steady
state case with a perturbation
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Figure 3.10: Final steady state for h for the well-balanced scheme for a general hydrostatic
steady state case with a perturbation
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Figure 3.11: Final steady state for θ for the well-balanced scheme for a general hydrostatic
steady state case with a perturbation
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Chapter 4

Semi-implicit fully exactly
well-balanced finite volume schemes
for the 1D shallow water system

4.1 Introduction

In Chapter 2 we presented first and second order implicit and implicit-explicit numerical
schemes that preserved water at rest steady states of the SWE. We now aim to design semi-
implicit schemes that are fully exactly well-balanced for the 1D shallow water equations,
that is, schemes that exactly preserve all the smooth steady states of the system.

Different techniques for the design of implicit or semi-implicit schemes for the shallow
water models have been developed since [26]. These approaches include the application
of finite volume methods in studies such as [9, 31, 91], a discontinuous Galerkin (DG)
approach as seen in the works [46, 53, 89, 64, 88], finite difference methods as explored
in Casulli’s earlier work [26, 29], and hybrid strategies, as demonstrated in studies like
those by [11, 21, 17]. In general, the idea consists on performing a splitting that allows
to separate the fast waves from the slow ones, and on combining explicit and implicit
schemes. However, to the best of our knowledge, no previous work has been presented in
which a semi-implicit scheme preserves all the steady states of the one-dimensional shallow
water equations.

In Chapter 2, the Lagrangian formalism was used in order to define semi-implicit
schemes that preserve water at rest stationary solutions for the shallow water equations.
The Lagrangian formalism was also used in [23] to define an explicit first order fully well
balanced scheme, while in [72] an explicit high order well-balanced scheme was presented.
Nevertheless, the use of the Lagrangian formalism complicates in excess the task of defining
high-order, semi-implicit and fully well-balanced schemes. Even in [23] particular care
had to be taken in the projection step in order to obtain a fully well-balanced scheme,
as a steady-state in Eulerian coordinates is not necessarily a steady-state in Lagrangian
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coordinates. Moreover, extending this technique to 2D cases could be cumbersome.
Therefore, we propose here a different approach that overcomes these difficulties.

We aim then to define a semi-implicit fully well-balanced scheme, specially adapted for
small Froude situations. To do so, a splitting strategy inspired on [47] combined with a
relaxation technique will be used, which will be described in Section 4.2, where we will also
be concerned with the design of schemes that are well balanced. In Sections 4.3 and 4.4,
the proposed first and second order schemes are presented, respectively. Finally, several
numerical experiments are shown in Section 4.5 in order to test the accuracy and efficiency
of the schemes presented.

4.2 Splitting and relaxation techniques

We will start by performing a splitting of the shallow water system (1.1.15). In order to
set the basic ideas that will be detailed afterwards, let us rewrite the system as

∂tU = SP (U, z) + ST (U),

where U = (h, hu)T ,

SP (U, z) =

[
0

−∂x
(
1
2
gh2
)
− gh z′

]
(4.2.1)

and

ST (U) =

[
−∂x(hu)
−∂x(hu2)

]
. (4.2.2)

The splitting strategy consists in solving each of the two systems

∂tU = SP (U, z), (4.2.3)

and

∂tU = ST (U). (4.2.4)

sequentially.

System (4.2.3) will be referred to as the pressure system, while system (4.2.4) will be
referred to as the transport system.

We could either solve the system defined by SP first, followed by the one defined by
ST or vice versa.

The advantage of applying this splitting approach is that it decouples the acoustic and
the transport phenomena. This way, the pressure system can be solved both explicitly
or implicitly, while the transport system will always be solved explicitly. Performing the
pressure step implicitly allows us to consider larger time steps since it involves a less
restrictive CFL condition. Indeed, for small Froude numbers, the main restriction on the
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time step is driven by the pressure term. The reason why this happens is that system
(4.2.3) has eigenvalues

λ = ±
√

gh, (4.2.5)

while system (4.2.4) has a double eigenvalue given by

λ = u. (4.2.6)

Furthermore, this strategy offers advantages compared to the Lagrangian-Projection
strategy, as it exclusively considers Eulerian coordinates, eliminating the necessity to deal
with steady states dependent on time.

Let us now describe in detail how each of the systems will be solved. First, we consider
the general framework of finite volume schemes, already described in the previous chapters:
the computational domain is discretized in a set of cells [xi−1/2, xi+1/2) for i ∈ Z using,
for the sake of simplicity, a constant volume length ∆x = xi+1/2 − xi−1/2. The values
xi+1/2 correspond to the intercells, while the centers of the volume cells will be denoted
by xi = (xi−1/2 + xi+1/2)/2. The time variable will be kept continuous for now and the
approximation of the cell averages will be denoted by

(hi(t), (hu)i(t))
T = Ui(t) ≈

1

∆x

∫ xi+1/2

xi−1/2

U(x, t)dx.

A semi-discrete finite volume scheme for systems (4.2.3)-(4.2.4) can be written ash′i(t) = 0,

(hu)′i(t) = −
1

∆x

(
π∗i+1/2(t)− π∗i−1/2(t)

)
+ Si(t),

(4.2.7)


h′i(t) = −

1

∆x

(
h∗i+1/2(t)u

∗
i+1/2(t)− h∗i−1/2(t)u

∗
i−1/2(t)

)
,

(hu)′i(t) = −
1

∆x

(
(hu)∗i+1/2(t)u

∗
i+1/2(t)− (hu)∗i−1/2(t)u

∗
i−1/2(t)

)
,

(4.2.8)

or in compact form as

d

dt
Ui(t) = SP i(t), (4.2.9)

d

dt
Ui(t) = ST i(t), (4.2.10)

where

SP i(t) =

(
0

− 1

∆x

(
π∗i+1/2(t)− π∗i−1/2(t)

)
+ Si(t)

)
,
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ST i(t) = −
1

∆x

(
U∗i+1/2(t)u

∗
i+1/2(t)− U∗i−1/2(t)u

∗
i−1/2(t)

)
.

Here, U∗i+1/2(t) = (h∗i±1/2(t), (hu)
∗
i±1/2(t))

T , being h∗i±1/2(t) and (hu)∗i±1/2(t)) approx-

imations at the interface of the height h and the discharge hu, that is, U∗i+1/2(t) ≈
(h(xi± 1

2
, t), (hu)(xi± 1

2
, t))T , while π∗

i± 1
2

(t) and u∗
i± 1

2

(t) are approximations at the interface

of the pressure π = g
2
h2 and the velocity u, respectively: π∗

i± 1
2

(t) ≈ π(xi± 1
2
, t) and

u∗
i± 1

2

(t) ≈ u(xi± 1
2
, t). The approximation of the source term is denoted by Si(t), that is,

Si(t) ≈
1

∆x

∫ xi+1/2

xi−1/2

gh(x, t)z′(x)dx.

In order to appropriately define the values π∗i±1/2(t) and u∗i±1/2(t) and solve system

defined (4.2.9), we will make use of relaxation techniques following the ideas presented in
1.1.3.2 as was done in Chapters 2 and 3 for the Lagrangian systems. More explicitly, we
propose a relaxed system for (4.2.3):

∂th = 0,

∂t(hu) + ∂xπ = −gh z′,
∂t(hπ) + a2∂xu = 0,

(4.2.11)

where a is a constant satisfying the subcharacteristic condition (1.1.65). In practice, this
means that

a ≥ h
√
gh. (4.2.12)

Now, using again the framework of finite volume methods and keeping the time variable
continuous, we shall define the semi-discrete scheme for (4.2.11):

h′i(t) = 0,

(hu)′i(t) = −
1

∆x

(
π∗i+1/2(t)− π∗i−1/2(t)

)
− Si(t),

(hπ)′i(t) = −
a2

∆x

(
u∗i+1/2(t)− u∗i−1/2(t)

)
.

(4.2.13)

To do so, as hi is constant through time, hi is frozen at t = t0. In practice it will be
frozen at the corresponding time step, every time the pressure system is solved. Now, if
first and second order finite volume schemes are considered and focusing on the equations
for u and π, we could write (4.2.13) as follows:

u′i(t) = −
1

hi(t0)∆x

(
π∗i+1/2(t)− π∗i−1/2(t)

)
− 1

hi(t0)
Si(t),

π′i(t) = −
a2

hi(t0)∆x

(
u∗i+1/2(t)− u∗i−1/2(t)

)
,

(4.2.14)
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where Si(t) is now such that

Si(t) ≈
1

∆x

∫ xi+1/2

xi−1/2

gPi,h(t, x)z
′(x)dx,

with Pi,h a reconstruction operator within the cell i for the variable h(t, x).
As h does not change in time in this step, Si(t) is no longer time dependent, so we

could consider

Si ≈
1

∆x

∫ xi+1/2

xi−1/2

gPi,h0(x)z
′(x)dx,

where Pi,h0(x) is a reconstruction of h|t=t0(x), to be determined.
In practice, (4.2.14) can be rewritten in terms of the Riemann invariants −→w = π + au

and ←−w = π − au as follows:
−→w ′i(t) = −

a

hi(t0)∆x

(−→w i+1/2(t)−−→w i−1/2(t)
)
− a

hi(t0)
Si,

←−w ′i(t) =
a

hi(t0)∆x

(←−w i+1/2(t)−←−w i−1/2(t)
)
+

a

hi(t0)
Si.

(4.2.15)

Here, the approximations at the intercells −→w i+1/2(t) ≈ −→w (xi+1/2, t) and ←−w i+1/2(t) ≈←−w (xi+1/2, t) will be computed using a reconstruction operator. The advantage of using
the Riemann invariants is that we manage to decouple the two equations, obtaining thus
two transport equations with source terms.

Let us recall that π and u can be easily recovered from the values of −→w and ←−w using
(2.1.3).

Therefore, once we have solved (4.2.15), we can define π∗i+1/2(t) and u∗i+1/2(t) as

π∗i+1/2(t) =
Pi,−→w (xi+1/2, t) + Pi+1,←−w (xi+1/2, t)

2
, (4.2.16)

u∗i+1/2(t) =
Pi,−→w (xi+1/2, t)− Pi+1,←−w (xi+1/2, t)

2a
, (4.2.17)

where Pi,−→w and Pi,←−w correspond to some reconstruction operators within the cell. Using
(4.2.16)-(4.2.17), we can compute the values π∗i+1/2(t) and u∗i+1/2(t) in (4.2.7) and (4.2.8).

Once the pressure system is approximated, we will use an upwind scheme in order
to solve the transport ODE system defined in (4.2.8). That is, the values U∗i+1/2(t) are
defined as

U∗i+1/2(t) =

PU,i(xi+1/2, t) if u
∗
i+1/2(t) ≥ 0,

PU,i+1(xi+1/2, t) if u
∗
i+1/2(t) < 0,

(4.2.18)

where PU,i denotes the reconstruction operator corresponding to U = (h, hu).
Although up to now the time variable is kept continuous, the time steps will be solved

afterward by means of an explicit or implicit scheme. In practice, the transport system
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will always be solved explicitly. Remark that, for the sake of simplicity, we have not dealt
yet with the well-balancing issue.

In order to achieve the exactly well-balanced character of the scheme we will follow
again the ideas described in [25], where the main ingredients are: a fully exactly well-
balanced reconstruction operator, a quadrature formula and a proper approximation of
the source term Si, that guarantees the exactly well-balanced character of the numerical
scheme. We will describe our choices for the first and second-order exactly well-balanced
reconstruction operators in Section 4.2.1. As we are interested in first and second order
numerical schemes, we will use the mid-point rule as quadrature formula. Finally, the
approximation of the source term Si is also done following the ideas described in [25].

More precisely, given a time t = t0, at every cell we compute the steady state (he,t0
i , ue,t0

i )
that satisfies (1.1.17) such that he,t0

i (xi) = ht0
i and ue,t0

i (xi) = ut0
i , or equivalently, the

solution of (1.1.18) with Ct0
1,i = (hu)t0i and

Ct0
2,i =

(ut0
i )

2

2
+ g

(
ght0

i + z(xi)
)
.

Now, integrating (1.1.17) over the cell [xi−1/2, xi+1/2] we have that

1

∆x

∫ xi+1/2

xi−1/2

ghe,t0
i (x)z′(x) dx

=
1

∆x

(
πe,t0
i (xi+1/2)− πe,t0

i (xi−1/2) + (hu)e,t0i

(
ue,t0
i (xi+1/2)− ue,t0

i (xi−1/2)
))

,

where πe,t0
i (x) = g

2
(he,t0

i )2(x). Taking into account the splitting procedure that we consider
here, we could rewrite systems (4.2.13) and (4.2.8) as

h′i(t) = 0,

(hu)′i(t) = − 1

∆x

(
π∗i+1/2(t)− π∗i−1/2(t)− πe,t0

i (xi+1/2) + πe,t0
i (xi−1/2)

)
− 1

∆x

∫ xi+1/2

xi−1/2

g(Pi,h0(x)− he,t0
i (x))z′(x)dx,

(hπ)′i(t) = − a2

∆x

(
u∗i+1/2(t)− u∗i−1/2(t)

)
,

(4.2.19)

and 
h′i(t) = − 1

∆x

(
h∗i+1/2(t)u

∗
i+1/2(t)− h∗i−1/2(t)u

∗
i−1/2(t)

)
,

(hu)′i(t) = − 1

∆x

(
(hu)∗i+1/2(t)u

∗
i+1/2(t)− (hu)∗i−1/2(t)u

∗
i−1/2(t)

)
− 1

∆x

(
−(hu)e,t0i (ue,t0

i (xi+1/2)− ue,t0
i (xi−1/2))

)
.

(4.2.20)
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However, given the previous semi-discrete systems, if we considered a steady state
initial condition, the third equation in (4.2.19) would not guarantee obtaining (hπ)′i(t) = 0.
The way to deal with this issue is to consider a modified relaxed system, that could be
seen as the relaxed system of the fluctuations:

∂th = 0,

∂t(hu) + ∂x(π − πe) = −g(h− he) z′,

∂t(hπ) + a2∂x(u− ue) = 0.

(4.2.21)

Now, applying the splitting we obtain

h′i(t) = 0,

(hu)′i(t) = −
1

∆x

(
π∗i+1/2(t)− π∗i−1/2(t)− πe,t0

i (xi+1/2) + πe,t0
i (xi−1/2)

)
− 1

∆x

∫ xi+1/2

xi−1/2

g(Pi,h0(x)− he,t0
i (x))z′(x)dx,

(hπ)′i(t) = −
a2

∆x

(
u∗i+1/2(t)− u∗i−1/2(t)− ue,t0

i (xi+1/2) + ue,t0
i (xi−1/2)

)
,

(4.2.22)

and (4.2.20).
System (4.2.22) can be written analogously in terms of the Riemann invariants:

−→w ′i(t) = − a

hi(t0)∆x

(−→w i+1/2(t)−−→w i−1/2(t)−−→w e,t0
i (xi+1/2) +

−→w e,t0
i (xi−1/2)

)
− a

hi(t0)∆x

∫ xi+1/2

xi−1/2

g(Pi,h0(x)− he,t0
i (x))z′(x)dx,

←−w ′i(t) =
a

hi(t0)∆x

(←−w i+1/2(t)−←−w i−1/2(t)−←−w e,t0
i (xi+1/2) +

←−w e,t0
i (xi−1/2)

)
+

a

hi(t0)∆x

∫ xi+1/2

xi−1/2

g(Pi,h0(x)− he,t0
i (x))z′(x)dx.

(4.2.23)

However, since we are considering schemes up to second order, we may apply the mid-point
rule and considering that the averages correspond to the values at the center of the cells.
Therefore, the source terms in (4.2.22) and (4.2.23) vanish, giving systems

h′i(t) = 0,

(hu)′i(t) = −
1

∆x

(
π∗i+1/2(t)− π∗i−1/2(t)− πe,t0

i (xi+1/2) + πe,t0
i (xi−1/2)

)
(hπ)′i(t) = −

a2

∆x

(
u∗i+1/2(t)− u∗i−1/2(t)− ue,t0

i (xi+1/2) + ue,t0
i (xi−1/2)

)
,

(4.2.24)

and
−→w ′i(t) = − a

hi(t0)∆x

(−→w i+1/2(t)−−→w i−1/2(t)−−→w e,t0
i (xi+1/2) +

−→w e,t0
i (xi−1/2)

)
←−w ′i(t) =

a

hi(t0)∆x

(←−w i+1/2(t)−←−w i−1/2(t)−←−w e,t0
i (xi+1/2) +

←−w e,t0
i (xi−1/2)

)
.

(4.2.25)
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4.2.1 Well-balanced variable reconstructions

Let us now focus on the reconstruction of our variables. To do so, we need to keep in mind
the well-balanced property and to adapt the general strategy presented in [25], combined
with the ideas introduced in Chapter 2.

Note that, in practice a quadrature formula will be used. As only first and second
order reconstruction operators are considered here, the integrals are approximated by the
mid-point rule.

We will now show how the reconstruction of variables is done, given in a general form
for a variable X that can be either −→w , ←−w , h or q.

First order reconstruction. The first order reconstruction can be written as

P o1
i,X(x, t) = Xe,t0

i (x) +Xi(t)−Xe,t0
i (xi), (4.2.26)

with Qi,X(x) being

Qi,X(x) = Xi(t)−Xe,t0
i (xi).

Second order reconstruction. For the second order schemes we consider the following
reconstruction:

P o2
i,X(x, t) = Xe,t0

i (x) +Xi(t)−Xe,t0
i (xi) + ∆X t,f

i (x− xi) + ∆X t0,f
i (x− xi), (4.2.27)

where

∆X t,f
i =

1

∆x

(
ϕ̃t0
i+(X

t,f
i −X t,f

i−1) + ϕ̃t0
i−(X

t,f
i+1 −X t,f

i )
)

with X t,f
i = Xi(t)−X t0

i and

ϕ̃t0
i− =


|di−|

|di−|+ |di+|
if |di−|+ |di+| > 0,

0 otherwise,

and

ϕ̃t0
i+ =


|di+|

|di−|+ |di+|
if |di−|+ |di+| > 0,

0 otherwise,

where di− = X t,f
i −X t,f

i−1 and di+ = X t,f
i+1 −X t,f

i , and

∆X t0,f
i =

1

∆x

(
ϕt0
i+(X

t0,f
i −X t0,f

i−1 ) + ϕt0
i−(X

t0,f
i+1 −X t0,f

i )
)
,
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being ϕt0
i± = ϕ̃t0

i± and

X t0,f
j = X t0

j −Xe,t0
i (xj)

for a given cell i.
Note that now Qi,X(x) is given by

Qi,X(x) = Xi(t)−Xe,t0
i (xi) + ∆X t,f

i (x− xi) + ∆X t0,f
i (x− xi).

Theorem 4.2.1. The schemes that result after considering the semi-discrete schemes
(4.2.24), (4.2.25), (4.2.20) and the previous reconstructions (4.2.26) and (4.2.27) are fully
well-balanced.

Proof. Let us suppose that the initial condition is stationary. Then, in the first order case

−→w i+1/2(t) = Pi,−→w (xi+1/2, t) =
−→w i(t)− πe,t0

i (xi)− aue,t0
i (xi) + πe,t0

i (xi+1/2) + aue,t0
i (xi+1/2)

= −→w e,t0
i (xi)− πe,t0

i (xi)− aue,t0
i (xi) + πe,t0

i (xi+1/2) + aue,t0
i (xi+1/2)

= πe,t0
i (xi+1/2) + aue,t0

i (xi+1/2) =
−→w e,t0

i (xi+1/2),

where in the second line we are considering that the averages correspond to the values
at the center of the cells. The same result holds for the other variables as well as for the
second order case, since ∆−→w t0,f

i = 0 and ∆−→w t,f
i = 0. The same would happen with the

reconstruction of ←−w , h and q.
Then, from (4.2.25) we obtain {−→w ′i(t) = 0,

←−w ′i(t) = 0,

and therefore, the pressure and transport semi-discrete systems (4.2.24) and (4.2.20) are
trivial, being both {

h′i(t) = 0,

(hu)′i(t) = 0.

Therefore, the stationary solution is preserved.

4.3 First order scheme

In this section we shall describe an exactly fully well-balanced first order scheme. Two
approaches will be considered: an explicit version, where both (4.2.3) and (4.2.4) are
solved explicitly, and a semi-implicit approach, where (4.2.3) is solved implicitly. As said
previously, the semi-implicit scheme will allow us to have less restrictive CFL condition in
subcritical regimes where velocity terms are smaller than the pressure terms.
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The time-stepping will be done as follows: given a set of cell averages at time tn, Un
i ,

we solve first system (4.2.3) in the time interval [tn, tn+1] obtaining the cell averages at
time tn+1 and denoted by superindex n+ 1−. Then, starting for these cell averages, we
solve system (4.2.4) in the time interval [tn, tn+1], obtaining the approximation of the
solution at the next time step, tn+1, denoted by superindex n+ 1.

The stationary solutions will be computed as discussed in Section 1.1.2 (see equation
(1.1.20)), by computing the constants C1 and C2 with the values at the center of the cells,
which in this case correspond to the averages. In the case in which two solutions of the
equation exist, we keep the subcritical one or the supercritical one so that it matches the
character of the cell.

4.3.1 Explicit scheme

In view of the semi-discrete scheme (4.2.24), we propose the following first order explicit
scheme for the pressure system:

hn+1−
i = hn

i ,

(hu)n+1−
i = (hu)ni −

∆t

∆x

(
π∗,ni+1/2 − π∗,ni−1/2 − πe,n

i (xi+1/2) + πe,n
i (xi−1/2)

)
.

(4.3.1)

where the values π∗,ni+1/2 are computed by means of a fully well-balanced reconstruction

operator for −→w and ←−w , given by (4.2.26). That is:

π∗,ni+1/2 =
P o1
i,−→w (xi+1/2, t

n) + P o1
i+1,←−w (xi+1/2, t

n)

2
,

Then, the transport system (4.2.20) is solved using (hn+1−
i , (hu)n+1−

i ) as initial
condition.

hn+1
i = hn+1−

i − ∆t

∆x

(
h∗,n+1−
i+1/2 u∗,n+1−

i+1/2 − h∗,n+1−
i−1/2 u∗,n+1−

i−1/2

)
,

(hu)n+1
i = (hu)n+1−

i − ∆t

∆x

(
(hu)∗,n+1−

i+1/2 u∗,n+1−
i+1/2 − (hu)∗,n+1−

i−1/2 u∗,n+1−
i−1/2

)
+

∆t

∆x

(
(hu)n+1−

i

(
u
e,tn+1−
i,i+1/2 − u

e,tn+1−
i,i−1/2

))
,

(4.3.2)

where u
e,tn+1−
i,i±1/2 = u

e,tn+1−
i (xi±1/2). Note that now, the values u∗,n+1−

i+1/2 and h∗,n+1−
i±1/2 and

(hu)∗,n+1−
i±1/2 must be determined. The values u∗,n+1−

i+1/2 are computed at each intercell by
means of a fully well-balanced first order reconstruction operator as follows:

u∗,n+1−
i+1/2 =

P o1
i,−→w (xi+1/2, t

n+1−)− P o1
i+1,−→w (xi+1/2, t

n+1−)

2a
.
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Finally the values h∗,n+1−
i±1/2 and (hu)∗,n+1−

i±1/2 are also computed using again the fully well-
balanced first order reconstruction operator and the upwind scheme, that is

X∗,n+1−
i+1/2 =


P o1
i,X(xi+1/2) if u∗,n+1−

i+1/2 ≥ 0,

P o1
i+1,X(xi+1/2) if u∗,n+1−

i+1/2 < 0,

where X = h, hu.
Remark that here we have used a splitting technique by solving first the system defined

by SP and then the one defined by ST . Nevertheless, nothing obliges to do the splitting in
that order and one could consider a variant of this explicit scheme by solving first (4.2.4)
and then (4.2.3).

4.3.2 Semi-implicit scheme

As previously said, in subcritical regimes where u2 << gh, the main restriction of the CFL
condition comes from the pressure terms. Therefore, in view of the eigenvalues of (4.2.3)
(see (4.2.5)) we consider an implicit version of the pressure system.

hn+1−
i = hn

i ,

(hu)n+1−
i = (hu)ni −

∆t

∆x

(
π∗,n+1−
i+1/2 − π∗,n+1−

i−1/2 − πe,n
i (xi+1/2) + πe,n

i (xi−1/2)
)
.

(4.3.3)

It can be seen that (hu)n+1−
i could be also obtained as

(hu)n+1−
i = hn

i u
n+1−
i = hn

i ·
−→w n+1−

i −←−w n+1−
i

2a
,

where −→w n+1−
i and ←−w n+1−

i are given by

−→w n+1−
i = −→w n

i −
a∆t

hn
i ∆x

(−→w n+1
i+1/2 −

−→w n+1
i−1/2 −

−→w e,n
i+1/2 +

−→w e,n
i−1/2

)
,

and
←−w n+1−

i =←−w n
i +

a∆t

hn
i ∆x

(←−w n+1
i+1/2 −

←−w n+1
i−1/2 −

←−w e,n
i+1/2 +

←−w e,n
i−1/2

)
,

where −→w n+1
i+1/2 is given by

−→w n+1
i+1/2 = P o1

i,−→w (xi+1/2, t
n+1) = −→w n+1

i − πe,n
i (xi)− aue,n

i (xi) + πe,n
i (xi+1/2) + aue,n

i (xi+1/2),

←−w n+1
i+1/2 is defined similarly, and

−→w e,n
i±1/2 =

1

2
g(he

i )
2(xi±1/2) + aue

i (xi±1/2).
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Next, the transport step is computed as in the explicit case.

As we have said for the explicit case, we may reverse the order of the splitting so that
we may first solve system (4.2.4) and then system (4.2.3). Of course, system (4.2.4) would
be solved explicitly and (4.2.3), implicitly.

4.4 Second order scheme

In order to obtain second order accuracy, the time-stepping will be done using a Strang
splitting method (see [85, 68, 69]), described in Section 1.1.3.3. More explicitly:

1. Perform a step of the first system with time step ∆t/2, obtaining an approximation

h̃n+1
i and (̃hu)

n+1

i .

2. Perform a step of the second system with time step ∆t, obtaining the approximation

denoted by ĥn+1
i and (̂hu)

n+1

i .

3. Perform a final step of the first system with time step ∆t/2, obtaining the
approximations hn+1

i and (hu)n+1
i at time tn+1.

Let us remark that there is no a priori restriction on which of the systems (4.2.3) or
(4.2.4) should go first.

This may be summarize in a compact form as follows:

Denote by Sτ
P , S

τ
T the approximate solution operators in the interval [t, t+ τ ] of the

corresponding exact solution operators to the pressure system SP and transport system
ST respectively. Then, the first version of the scheme corresponds to

U(x, t+∆t) = S
∆t
2

P ◦ S
∆t
T ◦ S

∆t
2

P (U(x, t)), (4.4.1)

while the second version corresponds to

U(x, t+∆t) = S
∆t
2

T ◦ S
∆t
P ◦ S

∆t
2

T (U(x, t)), (4.4.2)

Remark that in each of the steps we need to consider second order approximations in
space, while the time stepping is just first order within the step, the second order in time
being obtained thanks to Strang method.

In this second order case, the stationary solutions are again computed by applying
the discussion given in Section 1.1.2 and we keep the subcritical or the supercritical one
depending on the character of the cell in which we are computing the value, in the case in
which there are two solutions of the cubic equation (1.1.20).



4.5 Numerical experiments 93

4.4.1 Explicit scheme

We shall describe the case corresponding to (4.4.1). The second version given by (4.4.2) is
analogous.

In this explicit case, the solution of the first step is obtained by applying (4.3.1) with
time step ∆t/2. Afterwards, we solve the transport system using (4.3.2), and finally the
pressure system is solved again applying (4.3.1) with time step ∆t/2. Of course, in the
previous schemes, second order approximations in space are considered.

4.4.2 Semi-implicit scheme

As before, we will describe the case corresponding to (4.4.1). In this case, similarly as
done for the first order scheme, the steps corresponding to the operator SP are performed
implicitly. Therefore, we use the same procedure as in the second order explicit case but
now using for the pressure system the implicit scheme (4.3.3) instead of (4.3.1).

Remark that the semi-implicit second order scheme requires to solve linear systems
for the pressure step. Therefore, accounting for the computational cost, in this case it is
especially interesting to consider the second version of the scheme, where only one step
corresponds to the pressure system.

4.5 Numerical experiments

In this section, we consider a wide range of numerical experiments in order to test the
performance of the different schemes proposed here. We will denote by EXP the results
obtained by the fully explicit schemes and by IMP the semi-implicit ones. The accuracy
will be indicated as O1 or O2 for the first or second order respectively. Moreover, the
different versions of the schemes will be denoted by PT, TP, PTP and TPT, which indicate
the order in which the pressure (P) and the transport (T) system have been solved.

4.5.1 Fully well-balanced property

In order to check that the fully well-balanced property is satisfied, we consider the spatial
domain [−5, 5] and define as bottom topography a gaussian bump given by

z(x) = 0.5 exp(−x2). (4.5.1)

Then, a subcritical steady state is computed by setting C1 = hu = 0.1 and constant energy
level

C2 =
(0.1)2

2
+ g(1 + z(−5)),

which corresponds to the value obtained by imposing h = 1 at the left boundary. This
subcritical steady state is considered as initial condition for the schemes. Tables 4.1, 4.2,
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4.3 and 4.4 show the difference in L1 norm between the initial condition and the solution
obtained with the schemes at time t = 1 with N = 100 cells in the domain and setting
the CFL value to 1 for the explicit schemes and 5 for the implicit ones. As expected, the
steady state is preserved, obtaining errors of order 10−14.

EXP O1 PT EXP O1 TP
h hu h hu

5.83 · 10−14 5.80 · 10−14 4.54 · 10−14 6.57 · 10−14

Table 4.1: Difference in L1 norm between the initial condition and the solution obtained
at time t = 1 with each of the explicit first order schemes

IMP O1 PT IMP O1 TP
h hu h hu

8.14 · 10−14 9.97 · 10−14 6.82 · 10−14 7.58 · 10−14

Table 4.2: Difference in L1 norm between the initial condition and the solution obtained
at time t = 1 with each of the implicit first order schemes

EXP O2 PTP EXP O2 TPT
h hu h hu

4.01 · 10−14 6.87 · 10−14 3.44 · 10−14 5.74 · 10−14

Table 4.3: Difference in L1 norm between the initial condition and the solution obtained
at time t = 1 with each of the explicit second order schemes

IMP O2 PTP IMP O2 TPT
h hu h hu

5.41 · 10−14 8.41 · 10−14 4.80 · 10−14 8.13 · 10−14

Table 4.4: Difference in L1 norm between the initial condition and the solution obtained
at time t = 1 with each of the implicit second order schemes
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4.5.2 Accuracy test

Let us now check the order of the schemes by performing an accuracy test. To do so, we
consider as initial condition a small perturbation of a water at rest steady state:

h(x, 0) =



0.05
(
1 + cos

(
2π(x−4750)

3500

))
if 3000 < x < 6500

0.05
(
−
(
1 + cos

(
2π(x−9250)

3500

)))
if 7500 < x < 11000

0 otherwise

with q(x, 0) = 0 and bottom topography

z(x) = −
(
50− exp

(
−(x− 7000)2

1000000

))
.

The spatial domain corresponds to [0, 14000] and the final time is t = 0.5. Periodic
boundary conditions are considered. The considered reference solution has 6400 cells.

The errors are shown in Tables 4.6, 4.7 and 4.8. The expected order is reached either for
the explicit or semi-implicit version. We remark that, concerning the order of convergence,
no major differences are observed either if we begin with the pressure or the transport
system. Therefore, focusing exclusively in the order of accuracy, it would make sense
to start with the transport system for the second order semi-implicit scheme, since the
computational cost would be less.

EXP O1 PT (CFL 1) EXP O1 TP (CFL 1)
No. of h q h q
cells Error Order Error Order Error Order Error Order
100 2.82e+00 1.38e+00 2.82e+00 1.44e+00
200 7.50e-01 1.91 4.22e-01 1.71 7.50e-01 1.91 4.55e-01 1.66
400 2.28e-01 1.72 1.39e-01 1.60 2.28e-01 1.72 1.56e-01 1.55
800 7.93e-02 1.53 4.91e-02 1.50 7.93e-02 1.53 5.73e-02 1.44
1600 2.91e-02 1.45 1.75e-02 1.49 2.91e-02 1.45 2.12e-02 1.43

Table 4.5: Errors in L1 norm and convergence rates for the first order explicit schemes

4.5.3 Perturbation of water at rest

We propose now to closely study the behavior of the different schemes. Let us consider
the bottom topography given by (4.5.1) in the domain [−5, 5]. The following perturbation
of water at rest is considered as initial condition

h(x) = −z(x) + 0.1e−x
2

, u(x) = 0.
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IMP O1 PT (CFL 5) IMP O1 TP (CFL 5)
No. of h q h q
cells Error Order Error Order Error Order Error Order
100 2.82e+00 1.51e+00 2.82e+00 1.57e+00
200 7.51e-01 1.91 4.89e-01 1.62 7.51e-01 1.91 5.23e-01 1.59
400 2.29e-01 1.71 1.73e-01 1.50 2.29e-01 1.71 1.90e-01 1.46
800 7.98e-02 1.52 6.54e-02 1.40 7.98e-02 1.52 7.32e-02 1.37
1600 2.96e-02 1.43 2.47e-02 1.40 2.96e-02 1.43 2.81e-02 1.38

Table 4.6: Errors in L1 norm and convergence rates for the first order implicit schemes

EXP O2 PTP (CFL 1) EXP O2 TPT (CFL 1)
No. of h q h q
cells Error Order Error Order Error Order Error Order
100 3.05e+00 2.30e+00 3.05e+00 2.31e+00
200 7.64e-01 2.00 5.43e-01 2.08 7.64e-01 2.00 5.43e-01 2.09
400 1.91e-01 2.00 1.26e-01 2.11 1.91e-01 2.00 1.25e-01 2.12
800 4.73e-02 2.01 3.09e-02 2.02 4.73e-02 2.01 3.06e-02 2.03
1600 1.13e-02 2.06 7.80e-03 1.99 1.13e-02 2.06 7.97e-03 1.94

Table 4.7: Errors in L1 norm and convergence rates for the second order explicit schemes

In Figures 4.1 and 4.2 we can see the solution obtained with the first and second
order schemes at time t = 1 using 200 cells and CFL 0.8 for the explicit schemes and 2
for the implicit ones. In both figures we have also plotted a reference solution that has
been computed using the EXP O1 PT scheme with 1600 cells. Again, periodic boundary
conditions have been considered.
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Figure 4.1: Solution at time t=1 obtained with the first order schemes using 200 cells

As expected, the implicit schemes are more diffusive than the explicit ones. However,
this diffuseness is reduced when we consider second order schemes.
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IMP O2 PTP (CFL 5) IMP O2 TPT (CFL 5)
No. of h q h q
cells Error Order Error Order Error Order Error Order
100 3.05e+00 2.29e+00 3.05e+00 2.28e+00
200 7.64e-01 2.00 5.44e-01 2.07 7.64e-01 2.00 5.44e-01 2.07
400 1.91e-01 2.00 1.26e-01 2.11 1.91e-01 2.00 1.26e-01 2.11
800 4.73e-02 2.01 3.10e-02 2.03 4.73e-02 2.01 3.06e-02 2.04
1600 1.13e-02 2.06 7.44e-03 2.06 1.13e-02 2.07 7.26e-03 2.07

Table 4.8: Errors in L1 norm and convergence rates for the second order implicit schemes
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Figure 4.2: Solution at time t=1 obtained with the second order schemes using 200 cells

Let us now consider a bigger CFL number for the implicit schemes, which is shown
in Figure 4.3. We now remark a major difference whether we begin with the pressure or
transport system. As shown on the left-hand side image in Figure 4.3, with CFL=5, the
IMP O1 PT scheme performs better in terms of stability than the IMP O1 TP. Conversely,
on the right-hand side for the second order case, the IMP O2 TPT scheme shows better
performance than the IMP O2 PTP in terms of stability. Therefore, from now on, we will
just consider the IMP O1 PT and IMP O2 TPT versions of the semi-implict schemes.

4 3 2 1 0 1 2 3 4

0.00

0.01

0.02

0.03

0.04

t = 1.000

IMP O1 PT
IMP O1 TP
Reference

(a) First order schemes (CFL 5)
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Figure 4.3: Solution for η at time t=1 obtained using 200 cells when increasing the CFL
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4.5.4 Perturbation of water at rest with shock waves

Up to this point, the numerical tests considered corresponded to smooth solutions. We
want now to check the performance of the schemes in the presence of shocks. In order to
do so we consider the same bottom topography as in the previous test case, that is the
topography given by (4.5.1), and define the following initial condition in [−5, 5]:

h(x) =


−z(x) if |x| ≥ 1

−z(x) + 0.1 if |x| < 1
, u(x) = 0,

Periodic boundary conditions will be used.
Figures 4.4 and 4.5 show the solutions obtained at time t = 1 for the first and second

order schemes respectively. For the explicit schemes the CFL value has been set to 0.8
and for the implicit ones we have considered two cases: solution with CFL 2 and with
CFL 3. In order to compare the results, we include the reference solution computed with
the EXP O1 PT scheme and 1600 cells.

We observe that the schemes successfully handle the initial condition, not observing
important spurious oscillations for the second order schemes. This might be thanks to the
use of slope limiters in the reconstruction operators.
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Figure 4.4: Solution at time t=1 obtained with the first order schemes using 200 cells

4.5.5 Perturbation of a subcritical solution

We will now perform a test proposed in [56], in which a perturbation of a smooth subcritical
stationary solution is considered as initial condition. The initial condition will be given by
U0(x) = (h0(x), q0(x))

t for x ∈ [0, 3], where

h0(x) =


h∗(x) + 0.02 if 0.7 ≤ x ≤ 1,

h∗(x) otherwise,
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Figure 4.5: Solution at time t=1 obtained with the second order schemes using 200 cells

and q0(x) = q∗(x), being U∗(x) = (h∗(x), q∗(x))t, the solution of the following Cauchy
problem (1.1.17) with initial condition h(0) = 2, q(0) = 3.5. Moreover, the bottom
topography is given by

z(x) =


0.25(1 + cos(5π(x+ 0.5))) if 1.3 ≤ x ≤ 1.7,

0 otherwise.
(4.5.2)

This initial condition is plotted in Figure 4.6.
As boundary conditions, we impose the value of q on the left and the one of h on the

right.
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Figure 4.6: Perturbation of a subcritical solution initial condition

In Figures 4.7 we have plotted the difference between the result of the scheme and the
steady state at time t = 0.1 using N = 200 cells for the first and second order schemes
for the variable h. A reference solution has been computed using the first order explicit
scheme with 1600 cells. For the implicit schemes, the CFL value has been set to 5.
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We clearly observe the well-balanced character of the schemes, since they preserve the
stationary solution in the areas where the perturbation has not arrived yet.
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Figure 4.7: Difference between the result of the scheme and the steady state at time t=0.1
using N = 200 cells for the variable h

Moreover, in Table 4.9, we show the errors for h and the CPU times at time t = 10
for the different schemes using 100 cells. In the first order case, the semi-implicit scheme
takes some more seconds than the explicit one but the error is also lower than the others.
However, in the second order case we observe errors of the same magnitude and the CPU
time needed by the semi-implicit scheme is approximately 25% lower than the explicit
ones. Of course, if we increase the final time and the perturbation leave the domain, we
capture the steady state, as shown in Table 4.10.

Scheme Error for h CPU time
EXP O1 PT 1.31 · 10−3 40.79
EXP O2 TP 1.12 · 10−3 41.29
IMP O1 PT 7.75 · 10−4 45.47
EXP O2 PTP 1.62 · 10−3 126.82
EXP O2 TPT 1.64 · 10−3 129.70
IMP O2 TPT 1.22 · 10−3 96.62

Table 4.9: Error in L1 norm and CPU time for the different schemes at time t = 10 using
100 cells

4.5.6 Perturbation of a transcritical smooth solution

For this test, we will once again take into account a test proposed in [24] in which a
stationary solution with a transition at xcrit = 1.5 which is the solution of (1.1.17) with
constants C1 = 2.5 and C2 = 17.56957396120237, and the same depth funcion as in
previous tests, (4.5.2). A small perturbation of size ∆h = 0.02 is imposed in the interval
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Scheme Error for h
EXP O1 PT 3.94 · 10−13
EXP O2 TP 3.73 · 10−13
IMP O1 PT 2.86 · 10−13
EXP O2 PTP 3.86 · 10−13
EXP O2 TPT 2.14 · 10−13
IMP O2 TPT 2.93 · 10−13

Table 4.10: Error in L1 norm and CPU time for the different schemes at time t = 100
using 100 cells

[1.1, 1.2]. This initial condition is plotted in Figure 4.8. As boundary conditions, we
impose the value of q on the left and leave free bounday conditions on the right.

0.5 1.0 1.5 2.0 2.5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

t = 0.000

z

Figure 4.8: Perturbation of a transcritical smooth solution initial condition

In Figures 4.9 and 4.10, we have plotted the difference between the result of the different
schemes and the steady state at time t = 0.15 using 200 cells and CFL 5 for the implicit
schemes. Again, the reference solution has been computed by using the first order explicit
scheme with 1600 cells. It might look like in the implicit case the right wave is shifted
to the left with respect to the reference solution, but this is due to diffusion. To be sure
about this, for the first order case we have also computed a reference solution with the
implicit scheme by increasing the number of cells to 1600 and setting the CFL value to be
1, observing that the solutions converge to reference solution computed with the explicit
scheme. Moreover, the peak of the sonic point is not as pronounced as it appears to be.
In order to show this we have plotted the free surface for the different schemes in Figure
4.11, where no big differences are observed between the different schemes.
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Figure 4.9: Difference between the result of the first order schemes and the steady state at
time t = 0.15 using 200 cells
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Figure 4.10: Difference between the result of the second order schemes and the steady
state at time t = 0.15 using 200 cells
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Figure 4.11: Solution for the free surface at time t = 0.15 obtained using 200 cells



Chapter 5

Conclusions and future work

The aim of this thesis is the design of well-balanced schemes for the shallow water model
and for the Ripa one that allow to decouple the acoustic and the transport waves. This
is achieved for one-dimensional problems. The fact that we manage to decouple these
waves enables us to consider semi-implicit schemes which allow a bigger time step when
compared to explicit schemes, especially in the case of low Froude number, making these
schemes more efficient.

In Chapter 2 we propose first and second order semi-implicit schemes that exactly
preserve water at rest steady states for the SWE by applying the Lagrange-Projection
approach.

By applying this Lagrange-Projection strategy we also manage to obtain a first order
semi-implicit scheme for the Ripa system that is well-balanced for the hydrostatic steady
states, which is presented in Chapter 3. In this case, we face the additional difficulty that
the steady states are not explicitly determined as in the SWE case, so we choose to use a
collocation method to define a discrete approximation of them. Therefore, the resulting
scheme is well-balanced, but not exactly well-balanced.

The Lagrange-Projection approach has already been applied in multiple works and
it has been proven to be an interesting strategy to consider when we want to design
semi-implicit schemes. However, the use of Lagrangian coordinates can be challenging in
some cases. For example, if we want to design schemes that preserve moving equilibria,
since a steady-state in Eulerian coordinates is not necessarily a steady-state in Lagrangian
coordinates. This was the problem we faced when we wanted to design fully exactly
well-balanced schemes for the shallow water equations. For this reason, another strategy
was chosen to carry out this task, consisting on applying an appropriate splitting of the
system followed by a relaxation technique. This strategy is presented in Chapter 4.

To summarise, we have successfully managed to design well-balanced semi-implicit
schemes for different shallow flows that allow to separate low and fast waves, being
especially interesting in the case of subsonic regimes when compared to explicit schemes.
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As far as future endeavours are concerned, we aim to extend the schemes presented in
this thesis to dimension 2. However, applying the Lagrange-Projection strategy presented
in Chapters 2 and 3 for this expansion could pose some challenges, particularly in the
projection step. The main reason is that projecting the Lagrangian coordinates into
Eulerian coordinates within a two-dimensional mesh introduces complexities that may
make the procedure cumbersome.

Considering these facts, an alternative approach emerges from the strategy presented
in Chapter 4. We are optimistic that the application of the proposed splitting strategy
could give favorable results in the extension of our scheme to two dimensional systems.

Furthermore, our aspirations include the design of schemes of order higher than 2. The
main difficulty that we would face is that the schemes proposed in this thesis cannot be
directly extended to higher order, since when we make use of Riemann invariants, we are
applying a second order approximation when dividing by the water height. We would then
need to come up with an alternative strategy that does not involve the use of Riemann
invariants.

In order to obtain higher order schemes, it could also be interesting to consider an
IMEX formulation of the schemes. This could also reduce the diffusive aspect observed in
numerical results when solving the pressure equation implicitly.

Finally, it would also be interesting to apply the different strategies proposed in this
thesis to other type of systems that could benefit from the separation of fast and slow
waves. This is the case, for example, of the Euler system with gravity. Moreover, we could
also think of addressing other interesting scenarios such as turbidity currents or sediment
transport.
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