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Resumen

Motivación

Los sistemas eléctricos son unas de las estructuras ingenieriles más complejas y colosales
en la sociedad actual, cuya operación requiere de la coordinación de multiples unidades
de generación para garantizar un suministro de energía seguro y fiable. Esta coordi-
nación implica considerar varios aspectos técnicos de los generadores, tales como los
límites en los niveles de producción y en las rampas, así como diversos aspectos del
sistema eléctrico como las restricciones de red.

En las últimas décadas, se han producido cambios significativos en los sistemas
eléctricos de numerosas regiones del mundo con el propósito de transitar a sistemas
sostenibles con cero emisiones netas de gases de efecto invernadero. En particular, la
integración de fuentes de energía renovable ha planteado desafíos en la operación de los
sistemas eléctricos debido a su naturaleza inherentemente incierta y el cambio producido
hacia un sistema eléctrico geográficamente más disperso [1]. Además, la transición hacia
la sostenibilidad implica que la operación de los sistemas eléctricos se enfrente a futuros
retos como la integración de pequeños recursos energéticos distribuidos en los sistemas de
distribución, el desarrollo de un enfoque centrado en el usuario final donde se garantice la
participación activa de los consumidores junto con el conocimiento de las necesidades de
los sistemas eléctricos, las transacciones locales de energía y la integración a gran escala
de los sistemas de almacenamiento de energía [2]. Esto exige el desarrollo de nuevas
vías de investigación para acelerar la transición mediante la mejora de la operación de
los sistemas de energía.

En este contexto, esta tesis aborda dos de los problemas más relevantes en la op-
eración de los sistemas eléctricos, como son el problema de la programación horaria de
centrales eléctricas (conocido por sus siglas en inglés UC, unit commitment) y el flujo
de cargas óptimo (conocido por sus siglas en inglés OPF, optimal power flow). Estos
dos problemas representan una pieza fundamental en los mercados eléctricos en todo el
mundo [3–5].

El UC y el OPF constituyen problemas de optimización cuya solución supone un
gran reto computacional por numerosas razones. En esta tesis, nos centramos en dos
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retos específicos: el primero es la necesidad de usar en el UC variables binarias para
modelar el estado de encendido/apagado de cada generador, lo que conlleva un proceso
combinatorio de toma de decisiones incurriendo en una gran carga computacional. El
segundo reto, más relacionado con el OPF, es la incorporación de factores aleatorios,
como la demanda eléctrica y la generación renovable, que necesitan de modelos más
sofisticados donde se pueda capturar su impacto en la fiabilidad de la operación de los
sistemas eléctricos. Además, la solución de ambos problemas se complica sustancial-
mente al modelar las leyes físicas que regulan el flujo de potencia a través de las líneas de
transporte. Esta tarea es particularmente ardua tanto en la versión de corriente alterna
(conocida por sus siglas en inglés AC, alternating current), como en su aproximación
lineal (conocida por sus siglas en inglés DC, direct current) [6].

Dado el papel crítico de estos problemas en los mercados eléctricos, cualquier mejora
en sus algoritmos va a tener un impacto económico sustancial, implicando grandes
beneficios. En esta tesis, presentamos mejoras a los modelos de optimización de ambos
problemas en términos de una carga computacional reducida y un mejor equilibrio entre
coste y fiabilidad del sistema.

A lo largo de esta tesis, todas las formulaciones de los problemas UC y OPF se de-
sarrollan como programas enteros mixtos (conocidos por sus siglas en inglés como MIPs,
mixed-integer programs), es decir, estas formulaciones incorporan variables binarias o
enteras además de variables continuas. Los esfuerzos en la literatura reciente se han
dirigido a mejorar el rendimiento de las formulaciones MIP centrándose en dos aspectos
clave: el ajuste y la compacidad [7]. El ajuste de una formulación MIP mide la
extensión del espacio de búsqueda que el solucionador de problemas de optimización
necesita para explorar con el objetivo de identificar soluciones óptimas dentro del do-
minio entero. Una formulación más ajustada implica un espacio de búsqueda menor,
lo que acelera la solución. Lograr formulaciones más ajustadas incluye modificar con-
stantes (límites) y coeficientes (que multiplican a las variables binarias o enteras), o
incorporar restricciones adicionales que reducen el espacio de búsqueda, llamadas de-
sigualdades válidas. Por otro lado, la compacidad de una formulación MIP se refiere a
su tamaño, que está influenciado por el número de variables, restricciones y elementos
distintos de cero. Así, una formulación es más compacta si su tamaño es menor, lo que
se traduce en una aceleración del tiempo de cálculo. La mejor forma de compactar una
formulación es a través de la eliminación de restricciones o variables superfluas, sin las
cuales la solución óptima del problema no cambia. Por lo tanto, la investigación llevada
a cabo en esta tesis se ha centrado en encontrar modelos de optimización novedosos,
ajustados y compactos para estos problemas con el objetivo de representar mejor la
operación de sistemas eléctricos, a la vez que se reduce su carga computacional.
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Programación Horaria de Centrales Eléctricas

La solución del UC corresponde a la programación horaria de las centrales eléctricas más
económica posible, y viene dada por sus estados de encendido/apagado y sus niveles
de producción. El UC se ejecuta con un día de antelación, ya que algunas centrales
eléctricas necesitan de varias horas para arrancar. El objetivo del problema UC es
minimizar los costes de operación del sistema, mientras se satisfacen restricciones físicas
e ingenieriles, como los niveles mínimos/máximos de producción, límites de rampa,
tiempos mínimos de encendido y apagado o restricciones de red [8].

Matemáticamente, el problema UC es típicamente formulado como un problema
MIP de gran escala, que pertenece a la clase de problemas que no se resuelven en
tiempo polinómico (conocido como NP-difícil), incluso para un solo período de tiempo
[9]. Por esta razón, el desarrollo de estrategias para solucionar este problema hasta
optimalidad de una forma computacionalmente eficiente ha sido y aún es un tema
actual de investigación [10].

Es bien sabido que i) tratar con las restricciones de red en la formulación del UC
complica considerablemente la obtención y certificación de una solución óptima, y ii) en
muchos sistemas eléctricos la mayoría de las líneas de transporte están sobredimension-
adas (bajo un estado de precontingencia), por lo tanto, raramente congestionadas. Por
esta razón, los esfuerzos de investigación se han centrado en estrategias para conseguir
formulaciones del UC más reducidas, es decir, compactas, mediante la eliminación de
restricciones de líneas superfluas [11], lo que acaba acelerando su solución. Como se
señala en [12], el proceso de cribado se basa en identificar restricciones de línea redun-
dantes e inactivas que pueden ser eliminadas con seguridad del UC sin afectar a su
solución óptima.

Hay una amplía literatura sobre eliminación de restricciones para problemas opera-
cionales en sistemas eléctricos. Por ejemplo, inspirados por el reciente auge del apren-
dizaje automático y la inteligencia artificial, un gran número de estragegias basadas
en datos han sido propuestas para detectar muy rápido restricciones redundantes e in-
activas aprendiendo de instancias del problema resueltas previamente [12–17]. Aunque
computacionalmente no son costosos, los métodos de cribado de restricciones puramente
basados en aprendizaje automático conllevan un riesgo de idenfiticación errónea y, por
lo tanto, pueden dar lugar a problemas reducidos que no son equivalentes a la formu-
lación original. Esto significa que, por construcción, existe una probabilidad no nula de
que la solución del problema reducido sea subóptima o infactible en el problema origi-
nal. Estas infactibilidades pueden ser eliminadas combinando el método de aprendizaje
automático con un algoritmo de generación de restricciones, como propone [12], a coste
de aumentar el tiempo computacional.

Por otro lado, la literatura técnica también incluye una familia de métodos de cribado
de restricciones que buscan reducir el modelo del UC tanto como sea posible asegurando
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la equivalencia entre el modelo reducido y el original. Para este propósito, estos métodos
generalmente incluyen, de una forma u otra, alguna forma de optimización y por lo
tanto, son en general más exigentes desde el punto de vista computacional. Quizás, el
método más conocido dentro de esta familia es un procedimiento iterativo basado en la
generación de restricciones, [18]. En este método, las restricciones violadas del problema
UC original se añaden gradualmente al reducido hasta que la solución de este último
es factible en el primero. Este procedimiento se ha utilizado, por ejemplo, en [19, 20]
para aligerar la carga computacional del problema UC con restricciones de seguridad
(conocido por sus siglas en inglés SCUC, security constrained UC), cuyo objeto es ser
robusto ante el fallo de alguna línea de transporte. La principal desventaja de los
métodos basados en la generación de restricciones es que pueden llegar a ser costosos
computacionalmente, si el número de iteraciones que se necesitan para garantizar la
factibilidad de la solución es demasiado grande.

Existe otro grupo de métodos basados en optimización que se concentra en identi-
ficar las restricciones redundantes, también denominadas en inglés non-umbrella en [21].
Estas son las restricciones que, si se eliminan, la región de factibilidad del problema UC
original se preserva. La idea básica de estos métodos es, por tanto, comprobar si las
restricciones candidatas a ser eliminadas se violan o no sobre una relajación lineal de
esta región. Si no se violan, pueden descartarse con seguridad. En general, esta com-
probación requiere optimización, ya que suele traducirse en la resolución de una serie
de problemas de acotación sobre la región factible relajada y, lógicamente, tiene sen-
tido siempre que estos problemas de acotación sean mucho más fáciles de resolver que
el problema de optimización objetivo. Ejemplos de trabajos que siguen este modus
operandi para resolver el problema UC son [22–25]. Estos métodos basados en cálculos
de cotas pretenden eliminar tantas restricciones redundantes como sea posible de la for-
mulación UC completa. Sin embargo, incluso si todas las restricciones redundantes se
identifican con éxito y se eliminan, todavía puede quedar un número de restricciones en
el problema de UC reducido que no son necesarias porque no afectan a la minimización
del coste de operación del UC. En otras palabras, es la función objetivo del problema
UC, y no su región factible, la que hace superfluas dichas restricciones. Utilizamos el
calificativo de “inactivas” para referirnos a estas restricciones. Se han utilizado ideas
análogas en el contexto del problemas de flujo de cargas óptimo en su versión DC con
restricciones de seguridad; véase, por ejemplo, [21,26] y sus referencias.

En esta tesis, proponemos un procedimiento para aumentar sustancialmente las
restricciones de línea que son filtradas por los métodos basados en optimización sin
poner en peligro su atractiva capacidad de preservar la factibilidad. Nuestro enfoque
se basa en reforzar la relajación lineal que utiliza el método basado en la optimización
con una desigualdad válida relacionada con la función objetivo del problema UC y, por
tanto, de naturaleza económica. El resultado es que el método basado en optimización
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es reforzado e identifica no sólo las restricciones de línea redundantes, sino también las
inactivas, lo que conduce a formulaciones de UC más reducidas y, por lo tanto, más
fáciles de resolver.

Flujo de Cargas Óptimo

El problema OPF trata de determinar el despacho de los generadores más económico
para satisfacer la demanda (neta) del sistema, respetando los límites técnicos de la
producción y del equipamiento de la red [27]. Este problema suele utilizar como infor-
mación de entrada el estado de encendido/apagado de los generadores que resulta del
UC descrito anteriormente. El OPF es ampliamente aplicable, y su solución es requerida
por el operador del sistema con frecuencias que varían desde un día hasta cada cinco
minutos antes de la entrega de energía. La utilidad del OPF trasciende tanto las redes
de transporte como las de distribución.

La creciente integración de las fuentes de energía renovables en los sistemas eléctricos
aumenta la variabilidad y la incertidumbre en la generación y los flujos de potencia de las
líneas de transporte, que ya eran originidas previamente debido a los patrones dinámicos
de la demanda eléctrica. Comprender y cuantificar el impacto de esta incertidumbre
en los problemas de toma de decisiones como el OPF es crucial para garantizar el
funcionamiento seguro de los sistemas eléctricos de potencia [28].

El problema OPF puede transformarse en un problema de optimización estocástica
para integrar la incertidumbre en los valores predichos de la demanda eléctrica y la
generación renovable, lo que se conoce como problema OPF estocástico (conocido por
sus siglas en inglés SOPF, stochastic OPF). El objetivo del SOPF es minimizar el coste
de operación esperado y evitar la violación de las restricciones, teniendo en cuenta la
incertidumbre asociada a sus parámetros aleatorios. Los trabajos existentes tratan la
incertidumbre en el SOPF utilizando diferentes enfoques como la programación estocás-
tica multietapa [29], la optimización robusta [30–32] o la programación con restricciones
probabilistas [33–40]. El mayor reto consiste en diseñar un modelo que capte el riesgo
de violación de las restricciones y refleje con precisión el funcionamiento de los sistemas
eléctricos, manteniendo al mismo tiempo la tratabilidad computacional.

Un aspecto crítico en la resolución del SOPF es el equilibrio entre fiabilidad y coste.
Garantizar un funcionamiento seguro y fiable de los sistemas eléctricos en todo el es-
pectro de posibles realizaciones de la incertidumbre suele conducir a una planificación
de la operación conservadora y cara. Como alternativa, una práctica habitual y más
económica consiste en modelar el problema del SOPF descartando el cumplimiento de las
restricciones técnicas en circunstancias altamente improbables y críticas, por lo tanto,
costosas. Para lograrlo, los trabajos existentes hacen uso de restricciones probabilistas
individuales o conjuntas para abordar la satisfacción de una restricción o de un grupo de
restricciones con un nivel aceptable de probabilidad de violación [41]. La programación
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con restricciones probabilistas se adapta a aplicaciones donde se toman decisiones en
función de parámetros aleatorios. En estas situaciones, es deseable garantizar la via-
bilidad del sistema de forma casi segura, pero apenas hay decisiones que la garanticen
en caso de sucesos extremos o circunstancias inesperadas. En este contexto, la versión
probabilística del OPF (conocida por sus siglas en inglés CC-OPF, chance-constrained
OPF) trata de minimizar el coste de operación esperado imponiendo el cumplimiento
de las restricciones técnicas para un nivel de probabilidad especificado (alto). De este
modo, una mayor probabilidad aceptable de violación (determinada por el operador del
sistema) implica una reducción en el coste de operación, al mismo tiempo que disminuye
la seguridad del sistema eléctrico ante sucesos extremos.

Para abordar el problema CC-OPF, varios trabajos de la bibliografía (por ejem-
plo, [42]) trabajan directamente con restricciones probabilistas individuales para cada
restricción técnica. Sin embargo, el principal inconveniente de este enfoque de mod-
elización es que, incluso en aquellos casos en los que la probabilidad de violar cada
restricción individual parece más que tolerable, el riesgo conjunto resultante (es de-
cir, la probabilidad de que se infrinja cualquiera de las restricciones técnicas) puede
seguir siendo excesivo e inadmisible. Esta es la motivación clave que subyace al uso
de una restricción probabilista conjunta para abordar el problema CC-OPF (véase, por
ejemplo, [39]).

La versión del OPF con una restricción de probabilidad conjunta (conocida por
sus siglas en inglés JCC-OPF, joint CC-OPF) ha ganado más adeptos en los últimos
años, ya que permite al operador equilibrar la seguridad y el coste de manera eficaz
ajustando la probabilidad de violación aceptable del conjunto restricciones técnicas, y,
además, esta opción es intuitiva en términos de modelado. Sin embargo, sigue siendo
un problema complejo que requiere una investigación continua, ya que no existe una
reformulación finita y tratable del mismo. En la literatura, se han propuesto diversos
enfoques para aproximar la región factible determinada por estas restricciones. Sin
embargo, las formulaciones resultantes a menudo sufren de una disyuntiva entre ser
manejables o conservadoras. Por ejemplo, Vrakopoulou et al. [34] adoptan un enfoque
basado en escenarios para aproximarse a la solución del JCC-OPF, mientras que Chen
et al. [43] proponen un método heurístico basado en datos que implica hacer cumplir la
satisfacción de las restricciones técnicas para un conjunto de incertidumbre rectangular.
Este conjunto se infiere mediante técnicas de aprendizaje automático. Hou y Roald [38]
proponen un algoritmo iterativo de tuneo de parámetros para resolver una reformulación
robusta del problema JCC-OPF. Esteban-Pérez y Morales [40] introducen un modelo
JCC-OPF distrubucionalmente robusto que tiene en cuenta información contextual uti-
lizando un conjunto de ambigüedad basado en recortes de probabilidad. Para hacer
su modelo tratable, recurren a la conocida aproximación basada en el valor en riesgo
condicional (conocido por sus siglas en inglés CVaR, conditional value-at-risk) de la
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restricción probabilista conjunta.

En esta tesis, resolvemos el problema JCC-OPF adoptando una reformulación deter-
minista basada en datos, concretamente la aproximación por media muestral (conocida
por sus siglas en inglés SAA, sample average approximation), que ha demostrado ofrecer
un mejor rendimiento en términos de costes en comparación con las otras aproximaciones
de la literatura. Sin embargo, esta aproximación plantea un gran reto computacional
porque requiere el uso de variables binarias, transformando el problema en un MIP
mediante el uso de grandes constantes (demominadas en inglés big-M ). Cabe destacar
que a mayor valor de la big-M, más pobre es el rendimiento computacional del MIP,
por esta razón, ser preciso en la determinación de su valor es crucial. Lejeune y De-
hghanian [44] proponen una metodología para resolver el SAA del JCC-OPF, pero sin
incluir las ecuaciones de flujo de potencia en la restricción de probabilidad conjunta.
Hasta donde sabemos, el trabajo en esta tesis constituye el primer intento de resolver
el problema JCC-OPF mediante el enfoque SAA, utilizando una reformulación MIP
e incluyendo las arduas restricciones de flujo de potencia. En concreto, en esta tesis,
desarrollamos una metodología basada en un procedimiento iterativo, que ajusta las
big-Ms eliminando a la vez restricciones redundantes, y desigualdades válidas. Esto
conduce a un modelo ajustado y compacto que resuelve eficientemente la aproximación
SAA del problema JCC-OPF.

Tradicionalmente, en los modelos JCC-OPF, la incertidumbre se incorpora asum-
iendo que los errores en la predicción de la demanda eléctrica o de la generación ren-
ovable se balancean mediante el despliegue de reservas de generación y, en particular,
mediante sistemas como el control automático de generación (conocido por sus siglas
en inglés AGC, automatic generation control) [45]. Una ventaja de modelar el balance
del sistema mediante AGC es que se representa de forma natural como una regla de
decisión afín, en concreto, los generadores responden proporcionalmente al error global
de predicción del sistema, lo que también simplifica la solución del problema de opti-
mización. En consecuencia, estos modelos utilizan AGC para lidiar con los errores de
predicción al tiempo que garantizan que las restricciones técnicas se cumplan con una
alta probabilidad. Sin embargo, este tipo de planificación operativa no tiene en cuenta
la factibilidad en escenarios poco probables, pero altamente perjudiciales, que exponen
al sistema a posibles vulnerabilidades. Por otro lado, garantizar la satisfacción de las
restricciones técnicas para cualquier realización de incertidumbre utilizando AGC im-
plica un mayor coste de operación, ya que restringe mucho las posibles soluciones del
problema.

La aplicación de estos enfoques se ve dificultada porque proporcionan una repre-
sentación insuficiente e inexacta de la operación del sistema eléctrico. De hecho, en
situaciones extremas, en las que usar AGC podría poner en peligro la fiabilidad del
sistema o acarrear costes significativos de operación, los operadores del sistema pueden
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optar por interrumpir el uso de AGC y establecer manualmente nuevos puntos de op-
eración de los generadores. Para resolver este problema, en esta tesis proponemos un
nuevo modelo SOPF que distingue explícitamente entre “funcionamiento normal”, en el
que usar AGC es suficiente para garantizar la seguridad del sistema, y “funcionamiento
adverso”, en el que el operador del sistema debe tomar medidas adicionales, por ejem-
plo, el despliegue de reservas manuales. Este modelo proporciona soluciones más seguras
que las formulaciones JCC-OPF estándar, pero menos costosas que las soluciones que
garantizan una factibilidad robusta solo con AGC.

Contribuciones

Las principales contribuciones de esta tesis son:

1. La revisión de los principales retos de modelado del problema UC y los métodos
para acelerar su solución eliminando restricciones de línea superfluas;

2. El desarrollo de un método de optimización basado en costes para eliminar las
restricciones de flujo de potencia redundantes e inactivas de la formulación del
UC, a diferencia de los métodos de optimización estándar que sólo identifican
restricciones redundantes. Por otra parte, la idea de esta técnica basada en costes
se utiliza para ajustar aún más las constantes big-M para las formulaciones OPF
implementadas a lo largo de esta tesis, lo que resulta en modelos más ajustados y
compactos;

3. El método propuesto para la eliminación de restricciones basado en costes puede
resolverse de manera eficiente para horizontes temporales extensos, al considerar
un conjunto variado de demandas netas. Esto se consigue modelando la demanda
neta como una combinación convexa de instancias históricas, en contraste con las
restricciones rectangulares utilizadas convencionalmente en la literatura. Como
resultado, este enfoque aumenta la capacidad de eliminación del método, mejo-
rando así su eficacia;

4. El método de eliminación basado en costes se evalúa en un ejemplo ilustrativo y
en un sistema eléctrico realista, que incluye condiciones extremas. Los resultados
revelan que el método propuesto supera a los métodos convencionales basados
en optimización, al tiempo que es más fiable que los algoritmos de aprendizaje
automático. El enfoque propuesto reduce el número de restricciones que se impo-
nen y el tiempo de resolución un 15% y un 45%, respectivamente, comparado con
métodos convencionales de cribado de restricciones.

5. Una revisión exhaustiva de los problemas SOPF, los programas con restricciones
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de probabilidad, la reformulación SAA y los problemas CC-OPF, así como sus
principales retos de modelización;

6. Una metodología para resolver eficientemente la reformulación SAA del JCC-OPF.
Nuestro método da como resultado un modelo ajustado y compacto que resuelve
la reformulación MIP hasta optimalidad. Más concretamente, esta metodología
consiste en:

(a) Un algoritmo iterativo que ajusta las constantes Big-M. Además, este algo-
ritmo se mejora para filtrar restricciones redundantes;

(b) El desarrollo de desigualdades válidas para reforzar la reformulación MIP
basada en la aproximación SAA del JCC-OPF. Además, estas desigualdades
válidas, combinadas con el procedimiento de ajuste de big-Ms y eliminación
de restricciones, reducen significativamente la carga computacional.

7. La metodología propuesta se evalúa mediante amplios estudios computacionales
utilizando cinco sistemas eléctricos estándar disponibles en la literatura rela-
cionada. La combinación de las desigualdades válidas con el ajuste de las Big-Ms
y el cribado de restricciones nos permite resolver eficazmente hasta optimalidad
instancias que no se resuelven con la formulación SAA original, ya que la com-
binación de ambas técnicas reduce ostensiblemente su tamaño y dificultad. La
metodología propuesta es capaz de lograr factores de aceleración entre 8.5x y
1470x. Nuestro enfoque también se compara con aproximaciones del estado del
arte, proporcionando el mejor rendimiento en términos de coste en tiempos com-
putacionales competitivos.

8. Una nueva formulación del SOPF que integra varias acciones de reserva empleadas
en la operación actual de los sistemas eléctricos, como AGC y la reserva manual;

9. El uso de una restricción probabilista conjunta para restringir la probabilidad
de que se produzcan ajustes manuales en los generadores del sistema, en lugar
de limitar la probabilidad de violación de las restricciones técnicas como se hace
tradicionalmente en los problemas con restricciones de probabilidad. De ahí que
se considere un escenario más realista en el que la reserva AGC funciona en condi-
ciones ordinarias del sistema y los ajustes manuales, que no son automáticos, se
aplican en escenarios adversos;

10. El modelo SOPF propuesto se analiza en profundidad utilizando un ejemplo ilus-
trativo y un sistema eléctrico estándar. El enfoque propuesto ofrece soluciones
más fiables que el JCC-OPF convencional, pero menos costosas que los enfoques
que garantizan una factibilidad robusta solo usando AGC.
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Estructura de la tesis

Los capítulos de esta esta tesis se resumen a continuación:

• El Capítulo 1 expone la motivación de esta tesis y sus antecedentes.

• En el Capítulo 2, se describe la formulación del UC y los métodos estándar basa-
dos en optimización para el cribado de restricciones superfluas de flujo de potencia
en líneas. Además, introduce una mejora en los métodos tradicionales basados en
optimización mediante la incorporación de información de la función objetivo a
través de una desigualdad válida que sobreestima el coste del UC. Mediante dos
casos de estudio, exploramos la viabilidad del método basado en costes para elim-
inar restricciones de línea superfluas en contraste con los enfoques convencionales.
Además, verificamos su aplicabilidad en condiciones desfavorables.

• El Capítulo 3 comienza con la formulación JCC-OPF, junto con su reformulación
SAA. Posteriormente, se profundiza en la aplicación de un algoritmo iterativo
para ajustar las constantes big-M y eliminar restricciones redundantes. Además,
se introducen nuevas desigualdades válidas para reforzar la reformulación SAA
aprovechando la estructura de la matriz de restricciones. El capítulo concluye con
un caso de estudio exhaustivo, en el que la metodología propuesta se prueba en
cinco sistemas de potencia estándar, y su rendimiento se compara con métodos
alternativos disponibles en la bibliografía existente.

• El Capítulo 4 empieza con una formulación ampliada y realista del JCC-OPF,
que posteriormente se mejora integrando reservas automáticas y manuales, equili-
brando así fiabilidad y coste. Por último, se evalúa la eficacia de nuestra propuesta
en términos de coste y fiabilidad en un sistema eléctrico estándar.

• El Capítulo 5 concluye esta tesis y ofrece sugerencias para futuros trabajos.

Conclusiones

El UC y el OPF son herramientas fundamentales para la operación de los sistemas
eléctricos, ampliamente utilizadas en las rutinas de funcionamiento de los mercados
eléctricos. El UC y el OPF son problemas de optimización computacionalmente desafi-
antes por varias razones y, dado su papel crítico en los mercados eléctricos, cualquier
mejora de los mismos puede resultar en beneficios significativos. En esta tesis, nos
centramos en abordar los siguientes retos:

1. Carga computacional del problema UC. El estado de encendido/apagado
de los generadores se modela como variables binarias que dan lugar a un proceso
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combinatorio de toma de decisiones que requiere un tiempo de cálculo consider-
able.

2. Incorporación de la incertidumbre asociada con la demanda eléctrica y
la generación renovable en el problema OPF. Cuantificar con precisión el
impacto de la incertidumbre es esencial en el OPF para garantizar la operación
segura de los sistemas eléctricos. En consecuencia, surgen modelos estocásticos
del OPF (SOPF) que presentan dificultades a la hora de establecer un equilibrio
entre fiabilidad y coste, además de ser tratables.

Para hacer frente a estos problemas, en esta tesis se han estudiado varios temas y
herramientas:

• Compactación de la formulación del UC. Se sabe que las restricciones de
red complican la solución del problema UC. En los sistemas eléctricos actuales,
la mayoría de las líneas de tranporte están sobredimensionadas (bajo un estado
de precontingencia), lo que hace que las restricciones que imponen sean redun-
dantes. En esta tesis, profundizamos en métodos que aceleran la solución del UC
eliminando restricciones de transporte superfluas.

• OPF con restricciones probabilistas conjuntas (JCC-OPF). Este modelo
reduce el coste de operación esperado al descartar la satisfacción de las restric-
ciones técnicas para un porcentaje determinado de realizaciones de incertidumbre,
garantizando la seguridad del sistema para el resto. Cabe destacar la adaptabil-
idad y practicidad del modelo, ya que el operador del sistema puede ajustar la
proporción de escenarios violados, influyendo así tanto en la fiabilidad del sistema
como en los costes de operación. Como inconveniente, este problema de opti-
mización carece de una reformulación finita y tratable. Entre las aproximaciones
existentes, esta tesis se centra en investigar la aproximación SAA, que ofrece el
rendimiento menos conservador en términos de coste. El inconveniente de la re-
formulación SAA es que requiere de un tiempo computacional significativo debido
a la presencia de variables binarias, es decir, requiere resolver un MIP.

• Integración de varios tipos de reserva. En los modelos SOPF, en particular
en los problemas JCC-OPF, es habitual suponer que los errores de predicción de la
demanda eléctrica y la generación renovable se balancean mediante el despliegue
de reservas, como el control automático de la generación (AGC). La reserva AGC
se modela como una regla de decisión afín, por lo que su implementación simplifica
la solución del problema de optimización. Sin embargo, en escenarios extremos,
el uso de AGC puede poner en peligro la fiabilidad del sistema o incurrir en
costes significativos. En la práctica, en esos casos, los operadores del sistema
pueden recurrir a recursos adicionales, por ejemplo, la reserva manual. Por ello,
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estudiamos la integración del uso de AGC y reserva manual como herramienta
para equilibrar fiabilidad y coste en problemas SOPF.

En esta tesis, hemos desarrollado varios modelos de optimización ajustados y com-
pactos para problemas UC y OPF que contribuyen a estos retos de investigación. Los
contenidos de esta tesis se incluyen en los artículos [46], [47] y [48].

• En el artículo [46], presentamos una metodología para reducir el tiempo computa-
cional del UC eliminando restricciones de línea superfluas. Los métodos basados
en optimización propuestos en la literatura solo eliminan restricciones redundantes
y, por tanto, suponen un ahorro computacional moderado. Este trabajo presenta
una nueva metodología de cribado de restricciones que elimina tanto restricciones
redundantes como inactivas y reduce aún más la carga computacional de este prob-
lema. Al igual que los enfoques existentes, el que proponemos se basa en el cálculo
de lo máximos flujos de potencia a través de las líneas en una relajación LP del
UC. Como característica destacada de nuestro trabajo, proponemos ajustar esta
relajación LP para excluir las condiciones de operación no económicas. De este
modo, nuestra metodología es capaz de filtrar un mayor número de restricciones
de línea. Los resultados de la simulación con una red de 2000 nodos muestran
que nuestra propuesta reduce el número de restricciones retenidas y el tiempo de
solución en un 15% y un 45%, respectivamente, en comparación con los métodos
de referencia existentes. Además, la tasa de cribado de restricciones de nuestro
enfoque permanece bastante similar cuando se consideran cambios topológicos de
la red.

• En el trabajo [47] proponemos una novedosa técnica de resolución exacta para
la reformulación SAA del problema JCC-OPF. Nuestra metodología incluye un
método de cribado para eliminar restricciones superfluas basado en un proced-
imiento iterativo para ajustar las Big-Ms presentes en el MIP. Estos procedimien-
tos se combinan con la adición de desigualdades válidas basadas en la estructura
especial de la matrix de restricciones. Dichas desigualdades refuerzan su relajación
lineal y permiten un filtrado adicional de restricciones. De este modo, el modelo
resultante es más compacto y más ajustado. En el caso de estudio, probamos
sistemas eléctricos de diferentes tamaños y se demuestra que, en comparación
con el modelo de referencia SAA, nuestra metodología proporciona resultados no-
tables en términos de la cota de la relajación lineal, memoria RAM necesaria
para resolver las instancias y el tiempo total de cómputo. En concreto, nues-
tra metodología resuelve de forma óptima todas las instancias generadas para los
grandes sistemas, la mayoría de las cuales no se resuelven en 10 horas utilizando el
SAA tradicional. Además, el número medio de restricciones eliminadas de todas
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las instancias con nuestra metodología supera siempre un 95% de las mismas, y
la cota inferior del MIP se incrementa notablemente con la inclusión de desigual-
dades válidas, lo que demuestra los excelentes resultados de la combinación de
los métodos desarrollados. La comparación de nuestros resultados con los propor-
cionados por los métodos aproximados y exactos existentes muestra que nuestro
enfoque es computacionalmente muy competitivo para instancias pequeñas y me-
dianas, proporcionando siempre los mejores resultados en términos de coste. Para
las instancias grandes abordadas, si bien los métodos aproximados nos superan
en términos de tiempo computacional (como era de esperar), nuestra estrategia
de solución exacta no sólo proporciona un certificado de optimalidad, sino que
además devuelve la solución óptima dentro del límite de tiempo establecido. Por
último, somos capaces de acelerar la resolución de la instancia más grande unas
cuatro veces incorporando información de la función objetivo durante el prepro-
ceso. Esto se consigue mediante el uso de un heurístico propuesto que permite
obtener una cota superior del coste óptimo.

• En artículo [48] presentamos un nuevo modelo SOPF. Los enfoques existentes para
resolver el SOPF son o bien excesivamente conservadores y caros, o bien dejan
el sistema vulnerable a sucesos de baja probabilidad y alto impacto. La nueva
formulación del SOPF distingue entre condiciones de operación “normales”, en las
que las desviaciones de potencia se equilibran únicamente con el uso de AGC, y
condiciones de operación “adversas”, en las que se requieren acciones manuales
de redespacho. Como resultado, nuestro enfoque ofrece soluciones más fiables y
menos conservadoras que los enfoques existentes en la literatura. Nuestro modelo
se formula como un programa con una restricción de probabilidad conjunta que
limita la probabilidad de que los operadores ajusten manualmente el nivel de pro-
ducción de los generadores. En el caso de estudio, los resultados obtenidos demues-
tran que la metodología propuesta es capaz de producir decisiones de despacho
que mantienen niveles de seguridad casi idénticos y siendo un 18% más baratas
que los enfoques que persiguen la factibilidad con solo AGC para cualquier re-
alización de la incertidumbre. Como contrapartida, la carga computacional de
nuestra propuesta es elevada debido al modelado de las acciones manuales de re-
despacho. Sin embargo, también sugerimos un heurístico para resolver el modelo
propuesto y verificamos que el tiempo computacional se acorta drásticamente sin
causar una disminución significativa del rendimiento. Por último, proponemos
incorporar información económica en la etapa de preprocesamiento, obteniendo
una estimación del coste óptimo mediante el heurístico empleado. Este enfoque
conduce a una formulación más ajustada y da lugar a una aceleración del tiempo
de cómputo.
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Trabajo Futuro

A continuación, se enumeran las posibles direcciones para futuras investigaciones derivadas
del estudio realizado en esta tesis:

1. Aplicación del método de cribado de restricciones basado en costes a formulaciones
del UC multiperiodo que incluyen restricciones intertemporales como límites de
rampa y tiempos mínimos. En este caso, los retos son dos: i) construir una
relajación lo suficientemente ajustada del UC multiperiodo para que el método
propuesto tenga un poder de cribado razonable, y ii) diseñar un conjunto adecuado
de demandas netas y encontrar una estimación robusta y aproximada del coste de
operación del sistema para un horizonte temporal dado.

2. Una prometedora vía de investigación futura de la metodología propuesta para
resolver el problema JCC-OPF basado en el SAA consiste en el desarrollo de un
conjunto generalizado de desigualdades válidas que combinen variables de pares o
subgrupos de líneas y generadores.

3. El novedoso SOPF propuesto en esta tesis tiene el potencial de mejorarse mediante
la integración de tecnología puntera, en lugar de depender de los ajustes manuales
de los generadores para garantizar el equilibrio y la fiabilidad del sistema en esce-
narios extremos de baja probabilidad. Entre las opciones más prometedoras para
la integración de nuevas tecnologías se incluyen conexiones de corriente continua
de alta tensión y transformadores de desplazamiento de fase. La integración de
estas tecnologías añade flexibilidad al funcionamiento de los sistemas eléctricos,
lo que se traduce en una reducción significativa de los costes de operación.
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Abstract

Power systems are among the most complex and colossal engineering structures in mod-
ern society, whose operation implies a challenge due to the coordination of multiple
generating units to ensure a safe and dependable energy supply. In the last decades,
significant changes have occurred in power systems globally with the purpose of tran-
sitioning to sustainable systems. In particular, the integration of renewable energy
sources has brought about new challenges in power system operations due to the in-
herent uncertain nature of these sources and the shift towards a more geographically
dispersed power system.

In this context, this thesis tackles two of the most significant problems in power
system operations, namely, the unit commitment (UC) and the optimal power flow
(OPF), widely used in electricity markets. Both UC and OPF constitute optimization
problems that pose considerable computational challenges. This thesis focuses on two
specific challenges within these problems, and given their critical role in electricity
markets, improving their algorithms is expected to lead to significant benefits.

Firstly, UC requires the use of binary variables to model the on/off state of generat-
ing units, resulting in a combinatorial decision-making process that incurs a significant
computational burden. Furthermore, addressing network constraints escalates the com-
plexity of attaining an optimal solution. Leveraging the fact that most of transmission
lines are oversized in today’s power systems (under a pre-contingency state), this the-
sis introduces a cost-driven optimization approach aimed at eliminating superfluous
network-constraints, what leads to a notable reduction in the computational burden
associated with UC.

Secondly, OPF problems often involve the incorporation of stochastic factors like
electricity demand and renewable generation, demanding a sophisticated modeling ap-
proach to capture their impact on power system operation reliability, namely, stochastic
OPF. In line with a current trend, we resort to the joint chance-constrained OPF
model that improves the power systems operation disregarding system’s security in low
probable, high impact uncertainty realizations. In the absence of a finite, tractable
reformulation, we use the sample average approximation which produces a data-driven
reformulation taking the form of a mixed-integer problem cursed by big-Ms. To solve

XXI
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it efficiently, in this thesis, we propose a novel methodology based on a tightening-and-
screening procedure and valid inequalities.

Most of the existing joint chance-constrained OPF models provide a limited vision
of power systems operation, since, under extreme circumstances, these approaches may
leave the system vulnerable. Otherwise, ensuring the system’s security for the whole
spectrum of uncertainty realizations would result in excessive operating costs. To cir-
cumvent such a caveat, we introduce a novel stochastic OPF model that integrates
both automatic and manual reserves, thereby yielding economical and highly reliable
solutions.
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Notation

The main notation used throughout this thesis is stated below for quick reference. Other
symbols are defined as required in the text.

Sets

G Set of generating units, indexed by g.

L Set of transmission lines, indexed by l.

N Set of nodes, indexed by n.

Gn Set of generating units connected to the node n.

T Set of time periods, indexed by t.

Parameters

c2g/c
1
g/c

0
g Quadratic/Linear/Constant coefficient of the operating cost function of gen-

erating unit g [e/MWh].

cdg/c
u
g Downward/Upward reserve capacity cost of generating unit g [e/MW].

c−g /c
+
g Downward/Upward reserve cost of generating unit g [e/MWh].

Bln Power transfer distribution factor (PTDF) of transmission line l with respect
to node n.

dn Forecasted net demand at node n [MW].

d̃n Actual net demand at node n [MW].

f l Maximum capacity of transmission line l [MW].

p
g
/pg Minimum/Maximum output of unit g [MW].

rdg/r
u
g Ability of generator g to provide downward and upward reserves [MW].

ωn Error of the predicted net demand at node n [MW].
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Notation XXIX

Variables

pg Power output dispatch of unit g [MW].

rg(ω) Reserve deployed by unit g [MW].

r−g (ω)/r+g (ω) Downward/Upward reserve deployed by unit g [MW].

rdg/r
u
g Downward/Upward reserve capacity of unit g [MW].

rMg (ω) Manual adjustment of power output dispatch at unit g [MW].

ug Commitment of generating unit g.

βg Participation factor of unit g.
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4 Chapter 1. Introduction

This thesis deals with the operation of today’s power systems, with the ultimate
goal of providing consumers with cost-effective electricity supply while maintaining the
reliability of the grid. The modeling of power system operations has become increas-
ingly complicated in recent years as a result of the transition towards sustainable energy
systems. This transition requires the utilization of more sophisticated models that inte-
grate the uncertainty associated with the new system agents. This first chapter describes
the motivation for the developed methods and formally states the main contributions
of this thesis. The outline of the thesis is provided and the published papers are listed.

1.1 Background and Motivation

Power systems are among the most intricate and colossal engineering structures in
modern society, necessitating the coordination of multiple generating units to ensure
a safe and dependable energy supply. This coordination involves the consideration of
various technical aspects of generating units, such as power-output or ramping limits,
as well as diverse aspects of power systems, including network constraints.

In the last decades, significant changes have occurred in power systems of numerous
regions around the world with the purpose of transitioning to sustainable systems with
zero net greenhouse gas emissions. In particular, the integration of renewable energy
sources has brought about challenges in power system operations due to the inherent
uncertain nature of these sources and the shift towards a more geographically dispersed
power system [1]. In addition, the transition towards sustainability implies that the
operation of power systems confronts several upcoming questions such as the integration
of small distributed energy resources in distribution systems, the development of an
end-user centric approach where it is ensured active participation of consumers along
with the awareness of the needs of power systems, local energy transactions and the
large-scale integration of energy storage systems [2]. This calls for the development of
new research avenues to streamline the transition by enhancing the operation of power
systems.

In this context, this thesis tackles two of the most significant problems in power
system operations, namely, the unit commitment (UC) and the optimal power flow
(OPF). These two problems are mostly considered in electricity markets around the
world [3–5].

UC and OPF constitute optimization problems, the solution of which presents a
computationally challenging task for numerous reasons. In this thesis, we concentrate
on two specific challenges: Firstly, the need in UC for binary variables to model the
on/off state of generating units, which renders a combinatorial decision-making process
that incurs a significant computational burden. Secondly, mostly in OPF problems, the
incorporation of stochastic factors, like electricity demand and renewable generation,
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which calls for a sophisticated modeling approach whereby we can capture their impact
on the reliability of the power system operation. Furthermore, the solution of both
problems is significantly hindered by the modeling of the physical laws that regulate
power flow through transmission lines. This is particularly arduous in both their al-
ternating current (AC) version, which is non-convex and non-linear, and their direct
current (DC) version, which is a linear approximation [6].

Given the critical role of these problems in electricity markets, any improvement
in their algorithms is expected to have a substantial economic impact, resulting in
significant benefits. In this thesis, we present enhancements to the optimization models
of both problems in terms of reduced computational burden and improved trade-off
between cost-efficiency and system reliability.

Throughout this thesis, all formulations for UC and OPF problems are developed as
mixed-integer programs (MIPs), that is, these formulations incorporate binary or inte-
ger variables in addition to continuous variables. Efforts in recent literature have been
directed towards enhancing the performance of MIP formulations by focusing on two
key aspects: tightness and compactness [7]. The tightness of a MIP formulation
measures the extension of the search space that the solver needs to explore in order to
identify an optimal solution within the integer domain. A tighter formulation implies a
smaller search space which results in expediting the solution. Achieving tighter formu-
lations involves modifying constants (bounds) and coefficients (that multiply binary or
integer variables), or incorporating additional constraints that reduce the search space,
called valid inequalities. On the other hand, the compactness of a MIP formulation
refers to its size, which is influenced by the number of variables, constraints, and non-
zero elements. Thus, a formulation is more compact if its size is smaller, resulting in a
speedup of the computational time. The most effective approach to achieving compact
formulations is through the elimination of superfluous constraints or variables, without
which the problem’s optimal solution remains unchanged. Therefore, the efforts of this
thesis are focused on finding novel, tight, compact optimization models for these prob-
lems in order to better represent the operation of power systems, whilst reducing their
computational burden.

Unit Commitment

The solution to the UC problem corresponds to the most economically efficient op-
erating schedule, given by the on/off status and production levels of the generating
units. The UC is run one day in advance since some generating units require sev-
eral hours for start-up. The objective of the UC problem is thus to minimize system
operation costs, whereas physics and engineering constraints are satisfied, such as min-
imum/maximum production levels, ramping limits, minimum up- and down-times or
network constraints [8].
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Mathematically, the UC problem is typically formulated as a large-scale MIP, which
belongs to the class of NP-hard problems, even for a single period [9]. For this reason,
the development of strategies to solve this problem to optimality in a computationally
efficient manner has been and is still a popular research topic [10].

Given the well-known facts that i) dealing with network-constraints in the UC for-
mulation considerably complicates obtaining and certifying the optimal UC plan, and ii)
in many systems most transmission lines are oversized (under a pre-contingency state)
and thus are seldom congested, recent research efforts have been put on strategies to
get reduced, more compact UC formulations by eliminating superfluous line-flow con-
straints [11], what results in speeding up the solution. As pointed out in [12], the
reduction process rests on identifying redundant and inactive power flow constraints.
The former can be eliminated without modifying the feasible region of UC. The latter,
despite defining the feasible region, can be eliminated since they are not binding at the
optimal solution. Thus, redundant and inactive line-flow constraints can be prudently
eliminated from the targeted UC problem without impacting its optimal solution.

Both machine-learning and optimization-based methods have been proposed to re-
duce the full UC formulation by removing as many superfluous line-flow constraints
as possible. While the elimination strategies based on machine learning are fast and
typically delete both redundant and inactive constraints, they may be over-optimistic
and result in infeasible UC solutions. For their part, optimization-based methods seek
to identify redundant constraints in the full UC formulation by exploring the feasibility
region of an LP-relaxation.

In this thesis, we propose a procedure to substantially increase the line-flow con-
straints that are filtered out by optimization-based methods without jeopardizing their
appealing ability to preserve feasibility. Our approach is based on tightening the LP-
relaxation that the optimization-based method uses with a valid inequality related to
the objective function of the UC problem and hence, of an economic nature. The result
is that the so strengthened optimization-based method identifies not only redundant
line-flow constraints but also inactive ones, thus leading to more reduced UC formula-
tions.

Optimal Power Flow

The OPF problem seeks to determine the least-costly dispatch of thermal generating
units to satisfy the system’s (net) demand while complying with the technical limits of
production and network equipment [27]. This problem often uses as input information
the on/off status of the generators that are the result of the UC described above. The
OPF is widely applicable, with its solutions sought by system operators at frequencies
that range from daily to every five minutes. The utility of the OPF transcends both
transmission and distribution networks.
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The escalating integration of renewable energy sources into power systems amplifies
the variability and uncertainty in power generation and associated power flows, which
were already present due to dynamic patterns of electricity demand. Understanding
and quantifying the impact of this uncertainty on decision-making problems such as the
OPF is crucial to ensure the secure operation of power systems [28].

The OPF problem can be transformed into a stochastic optimization problem to
integrate unpredictability in the estimated quantities of demand and renewable gener-
ation, and this is known as the stochastic OPF (SOPF) problem. The SOPF aims to
minimize expected operational cost and avoid constraint violations while considering the
uncertainty in its random parameters. Existing works deal with uncertainty in SOPF
using different approaches such as multi-stage stochastic programming [29], robust or
worst-case optimization [30–32] or chance-constraints [33–40]. The major challenge is
to design a model that captures the risk of constraint violations and accurately reflects
the operation of power systems while maintaining computational tractability.

A critical aspect in solving the SOPF is to balance between reliability and cost.
Ensuring secure and reliable operation of power systems over the entire spectrum of
possible uncertainty realizations often leads to a conservative and costly operational
planning. Alternatively, a prevalent practice is to model the OPF problem in a cost-
effective manner by disregarding the fulfillment of technical constraints under highly
improbable and critical circumstances. To achieve this, existing works leverage sin-
gle and joint chance constraints to address the satisfaction of a singular or a group of
constraints with an acceptable level of violation probability [41]. Chance-constrained
programming suits applications in areas where decisions have to be made dealing with
random parameters. In these situations, it is desirable to ensure feasibility of the system
almost surely, but there is hardly any decision which would guarantee it under extreme
events or unexpected random circumstances. In this context, the chance-constrained
OPF (CC-OPF) seeks to minimize the expected operating cost by enforcing technical
constraints to be satisfied for a specified (high) probability level. Thus, a larger accept-
able violation probability (determined by the system operator) reduces the operating
cost while decreasing the system’s preparedness for extreme events.

This variant of SOPF problem has gained more traction in recent years, as it enables
the operator to balance security and cost-effectively by incorporating the acceptable vi-
olation probability, and is also intuitive in terms of modeling. However, it continues
to be a complex problem that necessitates continued research as there exists no finite,
tractable reformulation. A diverse array of approaches have been proposed to approx-
imate the feasible region determined by these constraints. Nevertheless, the resulting
formulations often suffer from a trade-off between being either tractable or conservative.

In this thesis, we solve the joint chance-constrained OPF (JCC-OPF) problem
adopting a data-driven deterministic reformulation, namely the sample average ap-
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proximation (SAA), which has been demonstrated to yield better cost performance
compared to other approaches in the existing literature. However, this approach poses
computational challenges because it requires the use of binary variables, transforming
the problem into a MIP by means of big-Ms. We develop a methodology based on a
tightening-and-screening procedure and valid inequalities that leads to a tight, compact
model that efficiently solves the SAA.

Traditionally, in JCC-OPF models, uncertainty is accommodated by assuming that
errors in forecasting electricity demand or renewable generation are balanced by the
deployment of generation reserves, and in particular, by systems such as the auto-
matic generation control (AGC) [45]. A benefit of modeling system balancing through
AGC is that it is naturally represented as an affine control policy, which also simplifies
the solution of the optimization problem. Consequently, these models utilize AGC to
handle forecast errors while ensuring technical constraints are met with a high proba-
bility. However, such operational planning disregards feasibility in unlikely, but highly
detrimental scenarios, and, therefore, the system is exposed to potential vulnerabilities.
Conversely, guaranteeing the satisfaction of technical constraints for any uncertainty
realization using AGC implies a higher operating cost.

The application of these approaches is impeded because they provide an insufficient
and inaccurate representation of power system operations. Indeed, under severe situ-
ations, where AGC could imperil system reliability or entail significant costs, system
operators may choose to discontinue AGC and manually set new operating points. To
address this issue, in this thesis, we propose a novel SOPF model that explicitly dis-
tinguishes between “normal operation”, in which AGC is sufficient to guarantee system
security, and “adverse operation”, in which the system operator is required to take addi-
tional actions, e.g., manual reserve deployment. This model provides solutions that are
more secure than standard JCC-OPF formulations, yet less costly than solutions that
guarantee robust feasibility with only AGC.

1.2 Contributions

The main contributions of this thesis are:

1. The review of the major modeling challenges of UC problem and methods to speed
up its solution removing superfluous line-flow constraints;

2. The development of a cost-driven pre-processing optimization-based method to
screen out redundant and inactive line-flow constraints from the UC formula-
tion, unlike standard optimization-based methods that only identify redundant
constraints. Moreover, the basis of this cost-based technique is used to further
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adjust the big-M constants for the OPF formulations implemented throughout
this thesis, resulting in more tight, compact models;

3. The proposed cost-driven screening method is solved offline over a diverse set of net
demands. This is achieved by modeling the net demand as a convex combination
of historical instances, in contrast to the box constraints conventionally utilized
in the literature. As a result, this approach enhances the screening capability of
the technique, thereby improving its efficacy;

4. The cost-driven screening method is examined in an illustrative example and a
realistic power system, including extreme conditions. The findings reveal that
the proposed method outperforms conventional optimization-based methods in
the removal of constraints, whilst being more reliable than machine learning al-
gorithms. The proposed approach reduces the number of retained constraints
and the solution time by 15% and 45%, respectively, compared to conventional
constraint-screening methods.

5. A comprehensive review of SOPF problems, chance-constrained programs, SAA
reformulation, and CC-OPF problems, and their major modeling challenges;

6. A methodology to efficiently solve the SAA reformulation of the JCC-OPF. Our
method results in a tight, compact model that solves the MIP reformulation to
optimality. More specifically, this methodology consists of:

(a) The adoption of an iterative algorithm that tightens big-M constants. Fur-
thermore, this algorithm is upgraded to screen out redundant constraints;

(b) The development of valid inequalities to strengthen the MIP reformulation
of the JCC-OPF. In addition, these valid inequalities, combined with the
tightening-and-screening procedure, reduce significantly the computational
burden;

7. The proposed methodology is tested through extensive computational results using
five standard power systems available in the related literature. The combination
of the valid inequalities with the tightening of the Big-Ms and the screening proce-
dure allows us to efficiently solve to optimality instances that are not solved with
the original MIP formulation, since the combination of both techniques ostensibly
reduces their size and difficulty. The proposed methodology is able to achieve
speedup factors between 8.5x and 1470x. Our approach is also compared with
state-of-the-art approximations, providing the best performance in terms of cost
in competitive computational times.

8. A novel formulation of SOPF that integrates various reserve actions employed in
actual power systems operations, such as AGC and manual reserve;
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9. The use of a joint chance constraint to restrict the probability of manual ad-
justments occurring, instead of limiting the probability of violation of technical
constraints as traditionally done in chance-constrained programs. Hence, it is
considered a more realistic setting where the automatic generation control oper-
ates under ordinary system conditions and the manual adjustments, which are not
automatic, are implemented under adverse scenarios;

10. The novel SOPF model is deeply analyzed using an illustrative example and a
standard power system. colorblackThe proposed approach yields solutions that
are more reliable than the conventional JCC-OPF, yet 18% cheaper than those
approaches that guarantee robust feasibility.

1.3 Thesis Outline

The chapters of this thesis are outlined as follows:

• Chapter 2 describes the UC formulation and delineates standard optimization-
based methods for screening out superfluous line-flow constraints. Further, it
introduces an enhancement to the traditional optimization-based methods by in-
corporating information from the objective function via a valid inequality that
overestimates the UC cost. By means of two case studies, we explore the viability
of the proposed cost-driven method in eliminating superfluous line-flow constraints
in contrast to conventional approaches. Additionally, we verify its applicability
under unfavorable conditions.

• Chapter 3 begins with the JCC-OPF formulation, along with its SAA reformu-
lation. Subsequently, it delves into the application of an iterative algorithm to
tighten the big-M constants and eliminate redundant constraints. Additionally,
novel valid inequalities are introduced to strengthen the SAA reformulation by
leveraging the structure of the matrix constraint. The chapter concludes with a
comprehensive case study, wherein the proposed methodology is tested on five
standard power systems, and its performance is benchmarked against existing
literature.

• Chapter 4 starts with an extended and realistic formulation of the JCC-OPF,
which is subsequently improved by integrating automatic and manual reserves,
thus balancing reliability and cost. Ultimately, the efficacy of our proposal in
terms of cost and reliability is evaluated on a standard power system.

• Chapter 5 concludes this thesis and provides suggestions for future work.
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The unit commitment (UC) problem constitutes a fundamental task in the operation
of power systems [3]. Its solution corresponds to the most economical operating sched-
ule, as determined by the on/off status and production levels of power generating units.
Consequently, UC seeks to minimize operational expenses to meet the electricity (net)
demand whilst ensuring the satisfaction of physical and engineering constraints [8].

Notwithstanding the above, due to the inclusion of binary variables pertaining to the
on/off status of generating units, this problem is formulated as a mixed-integer program
(MIP) and classified as an NP-hard problem [49].

As outlined in Chapter 1, while dealing with network constraints makes it diffi-
cult to identify and validate an optimal UC plan, the vast majority of transmission
lines are oversized (under a pre-contingency state). As a result, research efforts have
concentrated on expediting UC solution via the removal of superfluous transmission
constraints, specifically those that are redundant and inactive.

This chapter presents a cost-based optimization technique to eliminate redundant
and inactive line flow constraints from the UC formulation, thereby yielding a significant
reduction in the associated computational burden. The contents of this chapter are
based on the publication [46].

2.1 Introduction

There is a wealth of literature about constraint screening for operational problems in
power systems. For instance, spurred by the recent boom of machine learning and
artificial intelligence, a number of data-driven strategies have been proposed to detect
redundant and inactive constraints very fast by learning from previously solved problem
instances. Different strategies to learn the set of active constraints have been applied to
the economic dispatch problem [13], the optimal power flow [14–16] and the unit com-
mitment problem [12,17]. While computationally inexpensive, the constraint-screening
approaches purely based on machine learning carry a risk of constraint misidentifica-
tion and therefore, may render reduced problems which are not equivalent to the target
ones. This means that there exists, by construction, a nonzero probability that the
solution to the reduced problem be suboptimal or even infeasible in the original one.
These infeasibilities can be removed by combining the machine-learning method with
a constraint-generation algorithm, as proposed in [5], at the expense of increasing the
computational time.

On the other hand, the technical literature also includes a family of constraint-
screening methods that seek to reduce the UC model as much as possible while ensuring
the equivalence between the reduced and original UC problems. For this purpose, these
methods usually involve, in one way or another, some form of optimization and conse-
quently, are computationally more demanding in general. Perhaps, the most well-known
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method within this family is an iterative procedure based on constraint generation, [18].
In this method, the violated constraints from the original UC problem are gradually
added to the reduced one until the solution to the latter is feasible in the former. This
procedure has been used, for example, in [19, 20] to lighten the computational burden
of the security constrained UC (SCUC) problem by filtering out post-contingency con-
straints. The main disadvantage of the methods based on constraint generation is that
they can become computational costly if the number of iterations that are needed to
guarantee solution feasibility is too large.

There is another group of optimization-based methods that concentrates on identi-
fying redundant constraints, also referred to as non-umbrella constraints in [21]. These
are the constraints that, if removed, the feasibility region of the original UC problem
remains unchanged. The basic idea behind these methods is thus to check whether the
constraints that are candidates to be removed are violated or not over a relaxation of
this region. If they are not violated, then they can be safely ruled out. In general, this
check requires optimization, as it typically translates into solving a series of bounding
problems over the relaxed feasible region and, logically, makes sense provided that these
bounding problems are much easier to solve than the target optimization problem. Ex-
amples of works that follow this modus operandi to solve the UC problem are [22–25].
These bounding-based methods aim to remove as many redundant constraints as possi-
ble from the full UC formulation. Nevertheless, even if all the redundant constraints are
successfully identified and screened out, there may still remain a number of constraints
in the so reduced UC problem that are not needed because they do not oppose to the
minimization of the UC cost. In other words, it is the objective function of the UC pro-
blem, and not its feasible region, what makes such constraints superfluous. We use the
qualifier “inactive” to refer to these constraints. Analogous ideas have been used within
the context of the security-constrained DC optimal power flow, see, for instance, [21,26]
and references therein.

In this chapter, we propose a strategy to endow bounding-based methods with the
ability to detect, and thus discard, not only redundant but also inactive constraints. On
the contrary, the proposed approach retains both active and quasi-active constraints, as
defined in [12]. For this purpose, we build bounding problems that do not only account
for technical aspects of the UC problem but also economic ones. To our knowledge,
only the recently published paper [50] is in the spirit of our proposal, although they
do not follow the trail of bounding-based methods. More specifically, they propose
a heuristic algorithm that runs as follows: First, they address the UC without the
network, the solution to which they call cost-based schedule. Then, they perturb this
cost-based schedule by shifting a percentage α of the total generation output (referred
to as the adjustment coefficient) to the nodes with the highest or lowest Power Transfer
Distribution Factors (PTDFs) for a given line. Finally, they check whether the so
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perturbed solution congests that line. If it does not become congested, this line is
classified as inactive.

Against this background, we develop a bounding approach with the ability to screen
out both redundant and inactive constraints. To this end, in the linear programs that
compute bounds on the line power flows, we introduce a valid inequality representing a
cost budget, i.e., an upper bound on the UC solution cost. In this way, power dispatches
that are implausible because of their high cost are made infeasible in the bounding
problems. In addition, we combine the cost-budget constraint with a set of plausible
nodal net demands that is a convex combination of historically observed values, so that
unlikely nodal allocations of the system net demand are discarded. All this together
increases the constraint-screening ability of our approach. Finally, we run a series
of numerical experiments where we compare the performance of our proposal and its
variants with alternative data-driven procedures and bounding techniques for constraint
screening.

This chapter is organized as follows. Section 2.2 presents the mathematical formu-
lation of UC utilized throughout this chapter. Section 2.3 elaborates on the proposed
procedure and explains the methodology used to benchmark our approach. Section 2.5
discusses simulation results from an illustrative and a more realistic case study. Finally,
conclusions are duly drawn in Section 2.6.

2.2 Mathematical Formulation

This section introduces the UC formulation used throughout this chapter. The vast
majority of existing papers that propose methods to screen out network constraints
consider single-period problems [12–16, 21–24, 26]. We follow suit and focus on the
single-period UC problem (with no inter-temporal constraints) where the power system
consists of a set of buses (nodes), lines and generators which we denote by N , L and G,
in that order. We use indexes n, l and g to refer to elements in these sets, respectively.
Furthermore, Gn represents the set of generators connected to node n. Besides, we
consider nodal net demands, i.e., electricity demand minus renewable generation, where
negative nodal net demands are plausible if renewable generation is greater than the
electricity demand. The mathematical formulation of the single-period UC is stated
below.

min
ug ,pg

∑
g∈G

c1g pg (2.1a)

s.t.
∑
g∈Gn

pg −
∑
n∈N

dn = 0 (2.1b)

ug pg ≤ pg ≤ ug pg, ∀g ∈ G (2.1c)
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− f l ≤
∑
n∈N

Bln

∑
g∈Gn

pg − dn

 ≤ f l, ∀l ∈ L (2.1d)

ug ∈ {0, 1}, ∀g ∈ G. (2.1e)

The objective function (2.1a) minimizes the total production cost. For simplicity, in
this work, we consider linear operating costs, but the proposal can be easily extended
to quadratic or piecewise linear functions. Constraint (2.1b) corresponds to the power
balance. Constraints (2.1c) and (2.1d) enforce the limits on the power output of the
generating unit g and the power flow through the transmission line l, respectively. Note
that the power flows through the transmission network are modeled using a DC ap-
proximation, where Bln in constraint (2.1d) stands for the Power Transfer Distribution
Factor (PTDF) of line l at node n. Expressions (2.1e) set the binary character of the
commitment variables.

2.3 Screening of Network Constraints

In this section, we present the proposed methodology and discuss how it compares with
existing ones. To this end, first, a general formulation of optimization-based methods
to screen out redundant constraints is presented in Section 2.3.1. Subsequently, the
proposed approach is introduced in Section 2.3.2, which is based on imposing an upper
bound to the operating cost to discard uneconomical dispatches. Moreover, a further
improvement is brought forward by considering a range of net demands that is a convex
combination of past instances.

2.3.1 Existing Optimization-based Screening Approaches

Problem (2.1) can be made significantly easier to solve if those constraints (2.1d) with
no effect on the optimal unit-commitment plan are removed [25]. As discussed in the
introductory section of this chapter, several optimization-based approaches aim at re-
moving redundant line capacity constraints, in particular, [22, 24]. To do so, these
methods check, for each line, whether there is no feasible UC plan under which the line
capacity is hit or surpassed. If that is indeed the case, then the corresponding line-flow
constraint can be safely screened out because it is essentially redundant. For compu-
tational tractability, however, these methods do not work with the feasibility region of
the original UC problem, but with that of an LP relaxation that can be swiftly solved
using commercially available optimization software. In general, for each transmission
line l′, the following two optimization problems are solved:

max
ug ,pg ,dn

/ min
ug ,pg ,dn

fl′ =
∑
n∈N

Bl′n

∑
g∈Gn

pg − dn

 (2.2a)
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s.t. (2.1b)− (2.1c) (2.2b)

0 ≤ ug ≤ 1, ∀g ∈ G (2.2c)

− f l ≤
∑
n∈N

Bln

∑
g∈Gn

pg − dn

 ≤ f l, ∀l ∈ L, l ̸= l′, (2.2d)

d ∈ D. (2.2e)

Problem (2.2) seeks to maximize/minimize the power flow through line l′ (denoted
as fl′) over an LP relaxation of the feasible region of the UC problem (2.1), in which the
generated quantities are allowed to take values between zero and the respective genera-
tor’s capacity pg. Furthermore, the vector of net nodal demands d = (dn)n∈N is turned
into a vector of decision variables belonging to the set D. If the minimum and maxi-
mum values of fl′ determined by (2.2) lie between −f l′ and f l′ , then the corresponding
constraints (2.1d) are identified as redundant in problem (2.1) for any d ∈ D.

Depending on the specific LP relaxation that is used in problem (2.2) and the
specific set D that is considered, different methods for identifying redundant line-flow
constraints can be derived. For instance, if the line-capacity limits (2.2d) are eliminated
from (2.2) and the set D is reduced to a singleton, namely, the predicted net demand
for the hour in question, then we get the screening method proposed in [22]. Of course,
enforcing the power flow constraints (2.2d) in (2.2) improves the screening ability of this
problem at the expense of increasing its computational burden. Further, if the set D
is such that the net nodal demands dn are not fixed to a given value but vary within
a predefined range, i.e., dn ≤ dn ≤ dn, then we get the method suggested in [24]. The
advantage of using a full-dimensional set D in (2.2) is that the line-flow constraints that
are filtered out by this problem are, in fact, superfluous for a whole range of predicted
nodal net demands, i.e., operating conditions. This allows us to reduce the frequency
with which we need to solve the set of problems (2.2). For example, if the set D covers
all the possible realizations of the predicted net nodal demands over the upcoming year,
the line-flow constraints that are flagged as redundant by problem (2.2) can be removed
from the series of UC problems (2.1) that are to be solved throughout that period of
time. The downside of this approach is that, in general, the larger the size of D, the
lower the number of redundant line-flow constraints that are detected by the collection
of problems (2.2). Throughout this chapter, we use the method proposed in [24] as
benchmark (BN).

A relevant drawback of the LP relaxation (2.2) is that it only accounts for aspects of
the UC problem that are purely technical. That is, it completely ignores the economics
behind the UC problem, which is embodied in the minimization of the production costs.
As a result, the series of problems (2.2) are only able to screen out redundant constraints
but fail to identify constraints that are inactive at the optimum. To illustrate this,
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consider the two-node network depicted in Fig. 2.1 with an expensive generator in n1,
a cheap generator in n2, a line with a capacity of 100 MW, and a net load d2 that varies
between 80 MW to 120 MW. Note that line l1 never becomes congested since d2 would
be first satisfied by the cheaper unit connected to the same node and the maximum
production of the expensive unit would be 20 MW without any network congestion.
However, if problem (2.2) is solved for l1 with D being the interval 80 ≤ d2 ≤ 120,
the possible maximum power flow through this line would reach 100 MW by fully
dispatching g1 and therefore, the capacity limit constraint would not be removed. In
fact, such a constraint would be kept regardless of the marginal generating cost assigned
to each of the two units.

n1 n2

g1 g2

l1 (100MW)

d2

50 e/MWh
100 MW

10 e/MWh
100 MW

Figure 2.1: Two-node illustrative example

2.3.2 Proposed Cost-driven Constraint Screening

To overcome the drawback of existing optimization-based screening approaches and
reduce even further the UC problem (2.1), we propose to tighten the LP relaxation
used in the set of problems (2.2) by including a valid inequality on the optimal objective
function of (2.1). More specifically, we propose to find the maximum power flow through
each line l′ by solving (2.3), where constraint (2.3c) imposes an upper bound on the total
production cost. Thus, inactive but non-redundant constraints can also be screened out
depending on the cost of the unit-commitment plan. This methodology is denoted as
UB in this chapter.

max
ug ,pg ,dn

/ min
ug ,pg ,dn

fl′ =
∑
n∈N

Bl′n

∑
g∈Gn

pg − dn

 (2.3a)

s.t. (2.2b)− (2.2e) (2.3b)∑
g∈G

c1g pg ≤ C. (2.3c)

Coming back to the illustrative example in Section 2.3.1, if d2 never exceeds 120 MW,
then the maximum generation cost would be equal to e2000. Solving problem (2.3) for
l1, the range 80 ≤ d2 ≤ 120, and constraint (2.3c) formulated as 50pg1 + 10pg2 ≤ 2000

yields a maximum power flow through that line below its capacity, since g1 cannot be
dispatched above 30 MW. Consequently, the capacity constraint of this line can be
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safely removed for these particular values of the units’ marginal production costs.
Taken from a more realistic system, Fig. 2.2 displays an example of the total oper-

ating cost as a function of the aggregated net demand for 200 past instances of problem
(2.1), with Cmax being the highest observed cost. As expected, similar aggregated net
demand values may lead to different operating costs due to distinct allocations of such
a demand among network buses. Obviously, fixing C = Cmax in (2.3) would be a too
conservative strategy. Indeed, such an upper bound would be much higher than the
actual operating cost for low net demand values and therefore, constraint (2.3c) would
be too loose and useless for our purpose. In other words, the constraint-screening ability
of problems (2.3) would not be any better than that of (2.2) in this case. Accordingly,
to take full advantage of the valid inequality (2.3c), we make C dependent on the net
demand vector d, i.e. C = C(d). In doing so, tighter upper bounds can be obtained for
all net demand levels and a larger number of line capacity constraints can be screened
out.

D1 D1 = D2 D2

Aggregate Net Demand

O
pe

ra
ti

ng
C

os
t

Cmax

Figure 2.2: 1-quantile piecewise linear regression

We justify next our modeling choices to estimate the function C(d). First, to reduce
model complexity and the risk of overfitting, we make the upper-bound C dependent
on the aggregated net demand D =

∑
n∈N dn only, as opposed to using all nodal net

demands as explanatory variables. Nevertheless, for systems with a high penetration of
renewable generation, the operating cost may be better explained by using two explana-
tory variables, namely, the aggregate demand and the aggregate renewable generation.
Second, in order to keep problems (2.3) manageable and computationally tractable, we
approximate the relation between the upper-bound C and the aggregate net demand D

through a piecewise linear function. Third, we resort to τ -quantile regression, with
0 ≤ τ ≤ 1, [51]. More particularly, for each segment, we use 1-quantile regression in
order to ensure that the approximated upper bound is higher than the operating cost
of all observed instances. The solid line in Fig. 2.2 represents the 1-quantile piecewise
linear function for this illustrative data set.
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The quantile piecewise linear regression we propose is then characterized by a set
of segments S, indexed by s. We can resort to well-established procedures in Statistics
to decide on the number of segments. For instance, we can borrow the popular elbow
criterion from the realm of data clustering to this end. According to this criterion,
we compute and plot the quantile loss as a function of the number of segments and
the elbow of the curve is taken as a good value for the number of pieces to be picked.
The idea is to choose the number of segments from which the implied reduction in the
quantile loss starts to diminish rapidly. The choice of the number of segments could also
be based on even simpler procedures such as the visual inspection of the data scatter
plot “net demand vs. cost” (see Fig. 2) and/or more sophisticated tuning techniques
based on bootstrapping and cross-validation.

The minimum and maximum aggregate net demand for each segment is denoted by
Ds and Ds, and we introduce a binary variable ys per segment, which is equal to 1 if
Ds ≤ D ≤ Ds, and to 0 otherwise. For illustration, Fig. 2.2 includes Ds and Ds for
the two segments considered. The upper bound for an aggregate net demand D can be
thus computed as:

C(D) =
∑
s∈S

ys(ρs + νsD)

where ρs and νs are the intercept and slope of the linear function corresponding to
segment s. Under this approximation, problem (2.3) can be recast as:

max
ug ,pg ,dn,ys,D

/ min
ug ,pg ,dn,ys,D

fl′ =
∑
n∈N

Bl′n

∑
g∈Gn

pg − dn

 (2.4a)

s.t. (2.2b)− (2.2e) (2.4b)∑
g∈G

c1g pg ≤
∑
s∈S

ys (ρs + νsD) (2.4c)

D =
∑
n∈N

dn (2.4d)∑
s∈S

ysDs ≤ D ≤
∑
s∈S

ysDs (2.4e)∑
s∈S

ys = 1 (2.4f)

ys ∈ {0, 1}, ∀s ∈ S. (2.4g)

Constraint (2.4c) is identical to (2.3c), except that the constant upper bound is replaced
with the piecewise linear function obtained from the 1-quantile regression. Equation
(2.4d) computes the aggregate net demand D. Constraints (2.4e) impose segment-
dependent minimum and maximum bounds on the aggregate net demand, in that order.
Therefore, if ys = 1, then Ds ≤ D ≤ Ds. Expression (2.4f) ensures a one-to-one map-
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ping between the aggregate net demand segment and the cost piece. Finally, constraints
(2.4g) set the binary character of the decision variables ys. The product of binary and
continuous variables, ysD in (2.4c), can be easily linearized by using integer algebra re-
sults [52] so that (2.4) can be formulated as a mixed-integer linear optimization problem
and solved using commercial optimization software.

A second drawback of LP relaxation (2.2) relates to the choice of set D. For instance,
the method proposed in [24] defines D as the Cartesian product of the intervals [dn, dn].
Under this assumption, the solution of problems (2.2) may render an implausible net
demand profile d = (dn)n∈N , which does not conform at all with the observed spatial
correlations among the net nodal loads. For this reason, in this chapter, we also explore
defining D as the set of net demand profiles d = (dn)n∈N that are a convex combination
of the observed ones. This is imposed as follows:

dn =
∑
t∈T

αtd̂tn (2.5a)

αt ≥ 0, ∀t ∈ T (2.5b)∑
t∈T

αt = 1, (2.5c)

where d̂tn denotes the net demand at node n in past time period t. We remark that
we may allow the sum of the scalars αt in (2.5c) to be equal to a number greater than
one, if we want to increase the probability of not making a mistake when removing a
particular line-flow constraint. However, based on the rationale that demand patterns
do not change quickly, our choice of D as (2.5) offers a good compromise between risk of
mistake and constraint-screening power of the bounding problem (2.2) for UC instances
that are to be solved in the near future. Furthermore, the convex hull of past net
demand observations we use as D can be frequently enriched with new data points as
we move forward in time.

Naturally, the performance of the proposed approach requires that the set T includes
a sufficiently high number of past time periods that characterize the variability of the
system operating conditions. Defining D through (2.5) instead of as the Cartesian
product of the intervals [dn, dn] results in a more constrained problem (2.2) and a
higher number of removed constraints. In this chapter, this modeling choice is denoted
as CC (which stands for convex combination).

In summary, methods UB and CC shrink the feasible space of generation and net
demand variables in problems (2.2), respectively, to leave out unrealistic operating con-
ditions. We also advocate for the synergistic use of UB and CC, that is, for the constraint
screening method UB+CC, which exploits an upper-bound function on the total oper-
ating cost over a convex combination of the net demand profiles. For clarity, Table 2.1
compiles the optimization problems solved by each of the approaches that are considered
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in this chapter.

2.4 Evaluation Procedure

The procedure to measure the performance of the approaches described in Section 2.3.2
to screen out line capacity constraints and reduce the computational burden of the UC
problem runs as follows:

1) Use historical information on past unit commitment instances to adjust some of
the parameters of the screening optimization problems. For instance, in BN, this
information can be used to adjust the range of each nodal net demand that defines
the set D, while, in UB, this data is employed to estimate the parameters of the
1-quantile piecewise linear regression. Similarly, imposing the convex combina-
tion of net demands in CC requires past net demand profiles. Finally, UB+CC
uses historical information to compute both the regression parameters and convex
combinations of demands.

2) Depending on the approach, solve the optimization problem listed in Table 2.1 for
each of the lines of the network and determine the set of line capacity constraints
that can be removed from the original UC problem. In particular, if the maximum
(minimum) flow of line l determined by the screening optimization problem is
below (above) the limit f l (−f l), then constraint fl ≤ f l (−f l ≤ fl) can be
screened out.

3) Solve a reduced unit commitment problem similar to (2.1) without including the
line capacity constraints (2.1d) that have been filtered out in step 2).

4) Fix the binary commitment decisions to those obtained in step 3) and solve the
unit commitment problem including all constraints.

5) Measure the performance of the screening approach in terms of i) the average
number of line capacity constraints that are filtered out in step 2), ii) the average
computational time required to solve the reduced UC problem of step 3) with
respect to the full UC formulation, and iii) the average optimality loss of the
obtained solution with respect to that of the full UC problem.

2.5 Numerical Experiments

This section presents numerical results on two power systems. The first one is a small-
size system especially designed for illustrative purposes. The second one is based on a
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Table 2.1: Constraint screening approaches

Approach Screening optimization problem
BN (2.2a) s.t. (2.2b) - (2.2e)
UB (2.2a) s.t. (2.2b) - (2.2e), (2.4c)-(2.4g)
CC (2.2a) s.t. (2.2b) - (2.2e), (2.5a)-(2.5c)
UB+CC (2.2a) s.t. (2.2b) - (2.2e), (2.4c)-(2.4g), (2.5a)-(2.5c)

realistic power system from Texas. All experiments have been carried out on a Linux-
based server with CPUs clocking at 2.6 GHz, 1 thread and 16 GB of RAM. The con-
straint screening approaches presented in Table 2.1 have been modeled using Pyomo
5.7.1 [53] and solved with CPLEX 20.1 [54]. The number of segments of the 1-quantile
piecewise linear regression has been set to one in Section 2.5.1 (illustrative example)
and to three in Section 2.5.2 (realistic case study). In the latter case, our choice is
motivated by the visual inspection of the data scatter plot net demand vs. cost. The
breakpoints have been found with the Python library PWLF.

2.5.1 Illustrative Example

Next we illustrate the most salient features of our approach using the five-node system
represented in Figure 2.3. This small system includes three thermal units whose linear
operating costs and minimum/maximum power limits are indicated in the figure. For
simplicity, the five lines in this small system have the same susceptance of 1 p.u., while
their capacity limits are also provided in said figure. Finally, Table 2.2 contains historical
unit commitment information including the net demand profile, the optimal operating
cost and the congested lines for three times periods.

Due to the capacity limit of line l4, which connects nodes n4 and n5, the operating
costs may significantly change depending on how the total net demand is distributed
among d4 and d5. For instance, in periods t1 and t2, all net demand is located at n4

and can thus be satisfied by the cheaper units g2 and g3 without involving network con-
gestion. Conversely, in period t3 all net demand is at n5, which leads to the congestion
of l4 and a higher operating cost due to the commitment of the expensive unit g1.

Table 2.2: Historical data – Illustrative Example

Time period d4 (MW) d5 (MW) Cost (e) Congested lines
t1 55 0 275.0 -
t2 75 0 575.0 -
t3 0 69 772.5 l4
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n1

n2

n3

n4n5

l1 (20 MW)

l2 (30 MW)

l3 (60 MW)

l4 (30 MW)

l5 (40 MW)

g1

g2

g3

d5 d4

e20/MWh

[5− 50] MW

e15/MWh

[20− 50] MW

e5/MWh

[10− 55] MW

Figure 2.3: Five-node system

Now consider a new time period t4 with a demand profile of (d4, d5) = (58, 13.8)MW.
Solving the complete unit commitment (2.1) for period t4 yields an operating cost of
e611. For such a demand profile, the power flow through l1 is 7 MW, which is below
its limit and thus, the capacity constraint of this line is not binding. However, if such a
constraint were removed, the obtained solution would become infeasible since the power
flow through l1 would end up exceeding 20 MW. This type of constraint is referred to as
quasi-active in [12]. Therefore, to obtain the same solution as the full unit commitment
problem, the line capacity constraint of l1 must be enforced.

Table 2.3 shows the line capacity constraints that are retained in the unit commit-
ment problem for time period t4 using the different approaches described in Section
2.3. For the BN approach, problems (2.2) are solved for the five lines considering that
demands can vary between the minimum and maximum observed values, that is,

0 ≤ d4 ≤ 75 (2.6a)

0 ≤ d5 ≤ 69 (2.6b)

The results obtained by the BN approach indicate that three out of the ten line capacity
constraints are redundant and therefore, the reduced unit commitment problem includes
seven line capacity constraints.

To illustrate the UB approach, Fig. 2.4 plots the operating cost as a function of the
aggregate net demand of time periods t1, t2 and t3. The continuous line represents the
1-quantile regression described in Section 2.3 for a single segment, whose expression is
C(D) = −1679.5 + 35.5D. This linear function allows us to estimate an upper bound
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Table 2.3: Retained capacity constraints in the UC problem at time period t4 – Illus-
trative Example

BN UB CC UB+CC

−f l1 ≤ fl1 x

fl1 ≤ f l1 x x x x

−f l2 ≤ fl2

fl2 ≤ f l2 x x x

−f l3 ≤ fl3

fl3 ≤ f l3 x x

−f l4 ≤ fl4 x x x x

fl4 ≤ f l4 x x x x

−f l5 ≤ fl5 x x x

fl5 ≤ f l5

# Retained constraints 7 6 5 3

on the operating cost for new values of the aggregate net demand as follows:

20pg1 + 15pg2 + 5pg3 ≤ −1679.5 + 35.5(d4 + d5) (2.7)

The upper bound corresponding to t4 is equal to e872, which is higher than the actual
cost of e611. Considering such an upper bound on the operating cost avoids that the
power flow through line l1 reaches its minimum value and therefore, UB yields a reduced
problem that includes six line capacity constraints.

Following the CC approach, the set D formulated in (2.6) is replaced by (2.8) so
that d = (d4, d5) is guaranteed to be a convex combination of the data in Table 2.2. In
this case, CC retains the five line capacity constraints indicated in Table 2.3.

d4 = α1 · 55 + α2 · 75 + α3 · 0 (2.8a)

d5 = α1 · 0 + α2 · 0 + α3 · 69 (2.8b)

α1 + α2 + α3 = 1 (2.8c)

Finally, the UB+CC approach screens out line capacity constraints by considering both
the upper bound on the operating cost computed in (2.7) and the convex combination of
net demand profiles formulated in (2.8). In doing so, this approach is able to successfully
restrict the search space of problems (2.2) so that it takes into account information on
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both the feasible region and the objective function of the UC problem. In this way, the
UB+CC approach states that only three line capacity limits are to be retained in the
unit commitment problem.
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Figure 2.4: Upper-bound Estimation – Illustrative Example

The four approaches compared in this illustrative example correctly retain the max-
imum capacity limit of line l1 and hence, all of them obtain the same UC solution as
that of the full UC problem. On the other hand, the number of retained constraints
significantly vary between the different approaches. The BN method proposed in the
literature is the most conservative one and only removes three constraints. The other
three approaches screen out a higher number of constraints by solving problems (2.2)
with a feasible region that has been tightened using a cost budget and/or a shrunk net
demand set D. The UB+CC approach screens out the largest number of constraints
(seven out of ten), which would result in the highest computational savings.

2.5.2 Realistic Case Study

In this section, we consider a realistic power system from Texas, [55]. The network
consists of 2000 buses and 3206 lines. Hence, the associated UC problem includes 6412

line capacity constraints. To work with more challenging UC instances, the minimum
generating capacity limit, p

g
, has been set as the maximum between the nominal value

given in [55] and the 10% of the unit’s capacity, as done in [12, 24]. In addition, the
marginal costs of the generators c1g have been modified so that they vary in the range
e[0, 40]/MWh. The line capacities, f l, are also reduced to have a more congested
network. Finally, we synthetically generate the nodal net demands for 8640 time periods
as follows. First, a demand value L for each period is randomly sampled from an uniform
distribution in the range [50, 70] GW. Second, the net demand at node n is also randomly
sampled from a uniform distribution in the range [0.95Lξn, 1.05Lξn], where ξn are the
nodal allocation factors of the total system net load taken from [55]. All the data used
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in this case study is available for download at [56]. Of the 8640 values of nodal net loads
we produce, 7200 are used for training and parameter fitting, and the remaining 1440
for testing and performance comparison. In particular, the training data is employed
to conduct the quantile regression on which method UB relies.

Our numerical evaluation consists of four different, but related experiments, which
we describe and discuss in the following.

Experiment 1 – Fixed load

Firstly, we consider the setup in which the demand set D in (2.2e) is reduced to a single-
ton. Specifically, the only element in D is the vector of nodal net demands in the hour in
question (which is assumed to be known or predicted). In this way, we can compare the
bounding-based constraint-screening methods BN and UB with the data-driven method
of [12], where the authors propose a k-nearest neighbors to identify redundant and inac-
tive constraints, and the heuristic proposed in [50], detailed in Section 2.1. Notice that,
when D is a singleton, methods CC and UB+CC become correspondingly equivalent
to BN and UB. In the case of the data-driven constraint-screening method in [12], here
we report results for 50 neighbors only (which is why we have denoted it as DD50).
Nevertheless, similar empirical findings are obtained for a number of neighbors equal to
5 and 500. As for the heuristic constraint-screening method introduced in [50], which
we denote as H, the tuning parameter on which this method depends has been set to
3% as the authors in [50] suggest.

The main results from this first experiment are collated in Table 2.4. In this table,
as in the subsequent ones, we provide the following performance metrics: The average
percentage of retained constraints with respect to the full UC formulation (Retained
constraints), the number of infeasible or suboptimal instances (#Infeasibilities or #Sub-
optimal), the average cost error of the optimal solution with respect to the original UC
cost (Cost error), the time needed to solve the screening algorithm (Screening time),
the solution time of the reduced UC formulation (Reduced UC time), and the computa-
tional burden of each method with respect to the original UC problem (Computational
burden). The heuristic method turns out to be the most conservative one, in the sense
that it is the one retaining the largest number of line-flow constraints in the reduced UC
formulation. Consequently, it leads to the highest solution time. At the other end of the
spectrum is the data-driven constraint-screening method DD50, which only keeps 4.8%
of the line-flow limits, thus featuring the lowest computational burden by far. However,
its remarkable speed comes at a significant cost. Indeed, the daring nature of DD50
results in UC plans that are infeasible in a few instances and suboptimal in many of
them, with an average cost error of 0.022%. From among the four methods analyzed in
Table 2.4, UB is the one showing a more balanced performance. In fact, the cost-based
valid inequality this method utilizes gets to reduce the number of retained constraints
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in more than eight percentage points as compared to BN, which, in turn, means a two-
times speedup with respect to this one. Most importantly, these improvements come
without delivering infeasible or suboptimal UC plans.

Table 2.4: Results – Fixed load

DD50 BN UB H
Retained constraints (%) 4.8 18.5 10.2 23.5
#Infeasibilities 4 0 0 0
#Sub-optimal solutions 540 0 0 0
Cost error (%) 0.022 0.000 0.000 0.000
Screening time (s) 0.05 0.15 0.18 0.02
Reduced UC time (s) 0.39 3.10 1.50 3.34
Total time (s) 0.45 3.25 1.68 3.36
Computational burden (%) 3.9 28.2 14.5 29.1

Experiment 2 – Base Case

We now consider the alternative setup in which the net demand set D is not a singleton,
but spans a subset of R|N |. In the case of BN and UB, this subset is given by the
Cartesian product of the intervals [dn, dn], n ∈ N , where the bounds dn and dn are
respectively taken as the minimum and maximum values of net load at node n that are
observed in the training data set. In the case of CC and UB+CC, the set D corresponds
to the convex combination of the net demand vectors that make up the same training
data. This experiment excludes the constraint-screening methods DD50 and H, because
these are designed to work with a fixed net load only. In effect, these methods are not
intended to filter out line-flow constraints that are superfluous for a (wide) range of net
load values. Consequently, unlike BN, UB, CC and UB+CC, methods DD50 and H are
to be rerun every hour or every day, that is, every time the predicted vector of nodal
net loads is updated.

The first important observation to be made is that the three proposed methods (UB,
CC, UB+CC) provide, for the 1440 time periods in the test set, the same optimal UC
cost as that obtained by the benchmark approach. Consequently, the performance of
these methods, which is summarized in Table 2.5, is assessed and compared in terms of
the average percentage of retained constraints and the average computational burden
relative to the computational time required to solve the full UC problem. This compu-
tational burden does not include the time of the screening procedure, which is assumed
to be run offline only once, since the network constraints that are screened out by these
approaches can be left out of the UC problem for a wide range of operating conditions.
The average computational times of the screening problems to be solved under methods
BN, UB, CC and UB+CC amount to 2.9s, 9.7s, 122.4s, and 350.4s, respectively.
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Results in Table 2.5 show that method UB involves slight reductions in both the
number of retained constraints and the computational burden. Imposing a convex com-
bination of the nodal demand through method CC reduces the retained constraints
and computational time by 9% and 29%, respectively. Relevantly, it is the synergistic
effect of UB and CC, i.e., the proposed approach UB+CC, which involves the largest
improvement. Indeed, this method obtains reduced UC problems with 15% fewer con-
straints than BN with a computational time 45% lower on average. As pointed out in
Section 2.3, these results demonstrate that the estimated cost-budget function C(D)

is most effective when combined with a consistent feasible demand set D, like the one
used in CC.

Table 2.5: Results – Base Case

BN UB CC UB+CC
Retained constraints (%) 33.8 33.0 24.9 18.9
#Infeasibilities 0 0 0 0
#Sub-optimal solutions 0 0 0 0
Cost error (%) 0.000 0.000 0.000 0.000
Reduced UC time (s) 8.62 8.15 5.28 3.42
Computational burden (%) 74.6 70.5 45.7 29.6

Despite the fact that there are no infeasibilities or suboptimal solutions, these could
appear when the cost budget function is underestimated or the unseen net nodal demand
vector d does not belong to the set D, i.e., when no enough data have been used in
the screening procedure. Nonetheless, in this experiment, we have not encountered
infeasible or suboptimal solutions.

Experiment 3 – Worst Case

Now we evaluate the performance of the proposed method in an out-of-range situation.
To do so, the time periods of the training and test sets are not randomly selected.
Instead, we deliberately include the 1440 time periods with the highest aggregate de-
mand values in the test set, and the remaining time periods in the training set. In this
manner, we artificially construct an unlikely situation that is, however, very adverse
to the methods and, in particular, to UB+CC (which is the one that relies the most
on the training data of the four constraint-screening approaches we consider in this
experiment).

Similarly to Table 2.5, we provide the results of this out-of-range analysis in Ta-
ble 2.6. As in the base case, the proposed UB+CC is the method that screens out the
largest number of line-flow constraints by far, thus producing reduced UC problems that
can be solved in around one fifth of the time that is needed to solve the full UC formula-
tion. However, unlike in the base case, UB+CC leads to UC solutions that are infeasible
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or slightly suboptimal in a few instances. Interestingly, both UB and CC are able to
deliver feasible and optimal UC plans in all instances of the test set under this very
adverse situation. This reinforces the idea that the proposed cost-based valid inequality
is only really effective, i.e., it has screening power, when combined with a demand set
D that does not contain values of the nodal net demands that are too different from the
observed ones. This is so because, for a demand value that is too dissimilar from the
observations, the upper bound may be too loose or even wrong. Therefore, the design of
the set D is key to the performance of the proposed UB+CC, as this “worst-case setup”
reveals.

Table 2.6: Results – Worst Case

BN UB CC UB+CC
Retained constraints (%) 34.0 31.9 24.1 12.9
#Infeasibilities 0 0 0 22
#Sub-optimal solutions 0 0 0 55
Cost error (%) 0.000 0.000 0.00 0.008
Reduced UC time (s) 6.48 5.99 4.76 1.86
Computational burden (%) 61.2 57.3 45.5 17.8

Experiment 4 – Topological changes

We conclude this case study by assessing the resilience of the proposed constraint-
screening approach, i.e., UB-CC, against topological changes. To this end, we have
picked 34 corridor lines connecting automatic generation control areas of the 2000-bus
system [55] and assumed that any of these lines (which are specified in [56]), but only
one at the same time, can be out of service. This leads to 34 + 1 possible system
configurations, where the “+1” corresponds to the base case analyzed and discussed in
Experiment 2.

Now, for each of those 35 possible topological configurations, we have run UB-CC
following steps 1) and 2) of the procedure described in Section 2.4, with each of these
runs delivering a set of superfluous line-flow constraints. We have then computed the
intersection set, that is, the set of the line-flow constraints that, according to UB-CC,
can be safely removed from the original UC formulation under any of those 35 possible
configurations (these are the constraints that are detected as dispensable by UB-CC in
all the 35 runs of the screening method).

As indicated in Table 2.5, UB-CC identifies that 81.1% of the line-flow constraints
are superfluous in the base case with no topological changes. This percentage slightly
drops (as should be expected) to 79.5%, which shows that the screening rate of UB-CC
remains high even under topological changes. This result suggests that our approach is
resilient against this type of changes.
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2.6 Summary and Conclusions

The computational time of the unit commitment problem can be significantly reduced
by screening out line capacity constraints. However, the optimization-based methods
proposed in the literature only remove redundant constraints and thus, involve moderate
computational savings. This chapter presents a novel constraint screening methodology
that removes both redundant and inactive constraints and further reduces the compu-
tational burden of this problem.

As existing approaches, the one we propose is based on computing the maximum
line power flows on an LP-relaxation of the UC formulation. As a salient feature of
our work, we propose to tighten this LP-relaxation to exclude uneconomical operating
conditions. In doing so, our methodology is able to filter out a higher number of
line capacity constraints. Simulation results using a 2000-bus network show that our
proposal reduces the number of retained constraints and the solution time by 15%
and 45%, respectively, if compared with existing benchmark methods. Furthermore,
the constraint-screening rate of our approach remains quite unaltered when topological
changes of the network are considered, which suggests that our approach is resilient
against this type of changes. Finally, even though the cost inequality we use to increase
the constraint-screening power of our method is data-driven, our numerical analysis
reveals that the solution to the reduced UC problem we produce is generally feasible
and optimal in the original UC formulation, if enough data are available.
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The optimal power flow (OPF) problem is a routine at the core of important tools
for power system operations [27]. This problem seeks to determine the production
levels of generating units that satisfy the power (net) demand at minimum cost while
complying with some technical constraints imposed by those units and the grid. The
demand and renewable generation are factors that increase the uncertainty in power
systems operation, and ignoring it can lead to unsafe operating conditions.

As discussed in Chapter 1, the OPF problem can be reformulated as a stochastic
optimization problem, to account for the inherent uncertainty associated with demand
and renewable generation. Over time, various methodologies have emerged in the lite-
rature to tackle this challenging problem. The fundamental focus of these models lies
in finding an appropriate trade-off between reliability and cost. A current prevailing
practice is to rule out the satisfaction of the technical constraints for improbable and
extreme events by using chance constraints. Thus, this approach is designed to reduce
the system’s operation cost while guaranteeing its security with high probability.

Dealing with chance constraints in optimization problems presents a formidable
challenge due to the absence of a finite, tractable reformulation. To cope with this
issue, we utilize the sample average approximation (SAA) method, which enables us to
generate a data-driven deterministic reformulation of the problem. This reformulation
has demonstrated superior performance in terms of cost compared to existing approxi-
mations documented in the literature. However, SAA is computationally expensive due
to the presence of binary variables.

In this chapter, we propose a methodology, based on a tightening-and-screening
procedure and valid inequalities, that leads to a tight, compact model that efficiently
solves the SAA reformulation of the OPF’s probabilistic version. The contents of this
chapter rely on the manuscript [47].

3.1 Introduction

Chance-constrained programming suits applications in areas where decisions have to
be made dealing with random parameters [41]. In these situations, it is desirable to
ensure feasibility of the system almost surely, but there is hardly any decision which
would guarantee it under extreme events or unexpected random circumstances. In
the context of the OPF, chance-constrained programming can be used to minimize
the expected operating cost whilst guaranteeing that the system withstands unforeseen
peaks of electrical load due to stochastic demand or uncertainty in power generation
[33]. The chance-constrained OPF (CC-OPF) problem addresses this uncertainty and
pursues to ensure the safe operation of a power system with a high level of probability.
Under a linear approximation of the power flow equations, the CC-OPF problem can be
formulated as the following chance-constrained problem (CCP) with joint linear chance
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constraints and random RHS and LHS:

min
x

f(x) (3.1a)

s.t. x ∈ X (3.1b)

P
{
aj(ω)⊤x ≤ bj(ω), ∀j ∈ J

}
≥ 1− ϵ. (3.1c)

In (3.1), x ∈ R|I| is a vector of continuous decision variables, X ⊆ R|I| is a polyhe-
dron that represents a set of deterministic constraints, and f : R|I| −→ R is a convex
function. Uncertainty is represented through the random vector ω taking values in Rd

and giving rise to a technology matrix with random rows aj(ω) ∈ R|I|, j ∈ J and
random bj(ω) ∈ R, j ∈ J . P is a probability measure, and ϵ is a confidence or risk
parameter, typically near zero, so that the set of constraints (3.1c) are satisfied with
probability at least (1 − ϵ). Apart from power systems, applications of CCPs include
supply chain, location and logistics [57–59], risk control in finance [60, 61], and health-
care problems such as operating room planning [62] or vaccine allocation [63], among
others.

When the probabilistic constraint corresponds to (3.1c), the CCP has joint chance
constraints (JCC) and is hence classified as a joint CCP (JCCP), in contrast with
single CCPs (SCCPs), i.e. CCPs with individual or single chance constraints (SCC) of
the form P

{
aj(ω)⊤x− bj(ω) ≤ 0

}
≥ 1 − ϵj , ∀j ∈ J . JCCPs are suitable for contexts

where all constraints need to be simultaneously satisfied with a high probability, and
the dependence between random variables makes them clearly harder. Both SCCPs and
JCCPs have been extensively studied (see [33,64] and the references therein).

There are a number of reasons why general CCPs are challenging. The first one is
the non-convexity of the feasible set. In general, the feasible region of a CCP is not
convex in the original space even when x is continuous, there is only RHS uncertainty
and the constraints inside the probability in (3.1c) result in a polyhedral region [65].
To circumvent this problem, several approaches have been proposed. Some methods
(e.g., [66–68]) give convexity results and investigate the conditions under which the
feasible region of problem (3.1) is convex. In another line of research, various convex
approximation schemes such as quadratic [69] or Bernstein approximation [70], have
been proposed in the literature. The CVaR approximation has gained a lot of popularity
since its introduction [71, 72], and remains one of the most used methods to deal with
stochastic problems. Nonetheless, the solutions to the approximated problems err on the
side of over-conservatism. In this context, some iterative schemes such as ALSO-X have
been recently proposed to identify tighter inner convex approximations of the CCP at
the expense of a higher computational cost [73,74]. Finally, other works suggest convex
approximations for non-linear CCPs. For instance, Hong et al. [75] propose to solve
the JCCP by a sequence of convex approximations followed by a gradient-based Monte
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Carlo method, whereas Peña-Ordieres et al. [76] introduce a smooth sampling-based
approximation.

The second difficulty of CCPs is that checking the feasibility of a given solution is
not, in general, an easy task. For instance, even if the uncertainty follows a known
continuous distribution, calculating the joint probability requires a multi-dimensional
integration, which becomes increasingly difficult with the dimension of the random
vector ω. On top of that, in most cases the distribution P is not fully known. To cope
with these two obstacles at once, in this work we make use of SAA, which in practice
boils down to dealing with a finite discrete distribution. The application of SAA may
be seen as the result of approximating a general known distribution via the generation
of independent Monte Carlo samples of the random vector ω [77,78] or as a data-driven
approach that works with observations of ω that are available to the decision-maker
even if the distribution is unknown.

SAA allows for a deterministic reformulation of the problem, and the resulting model
is a mixed-integer problem (MIP). For the resolution of CCPs using MIP reformulations,
we refer the reader to [65]. When there is only RHS uncertainty (i.e. the technology
matrix is fixed), a reformulation of the problem leads to a MIP with a set of constraints
that form a mixing set and that have been extensively studied, alone or in combination
with the knapsack constraint that also appears in the formulation [79–81]. Alternative
reformulations like the ones proposed by [82, 83] rely on the concept of (1− ϵ)-efficient
points. The case when the technology matrix is random, while the RHS is not, has been
studied e.g. in [84]. As for the general case, it has also been addressed in the literature.
Specifically, a large line of research has focused on the development of quantile cuts,
a particular type of valid inequality that can be viewed as a projection of a set of
mixing inequalities for the MIP onto the original problem space. These cuts and the
associated quantile closure have been recently studied in [85–88] and successfully applied
to computational experiments of CCPs in [73,89], among others.

To address the CC-OPF problem (the interested reader in this topic is referred to the
survey paper [90]), several works in the literature, e.g., [42], directly work with SCCs.
However, the main drawback of this modeling approach is that, even in those cases
where the probability of violating each individual constraint seems more than tolerable,
the resulting joint risk (that is, the probability that any of the technical constraints
be violated) may still be excessive and inadmissible. This is the key motivation behind
the use of JCCs to tackle the CC-OPF problem (see, e.g., [39]). It is also true that
there are ways to guarantee the satisfaction of the joint chance-constraint system by
way of SCCs. Unfortunately, the success of this strategy depends on the non-trivial
task of how to allocate the joint risk of the system among the single constraints. For
example, based on Bonferroni’s inequality, distributing the joint risk evenly across all
individual constraints ensures that the joint chance constraint is met. However, this
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results in a rather conservative solution in general. To reduce the conservatism of this
solution approach, Baker and Bernstein [91] propose a learning algorithm to filter out
redundant constraints and, thus, increase the risk of the non-redundant ones, whereas
Jia et al. [92] devise a non-parametric iterative framework to allocate the joint risk. In
contrast to these works, we explicitly model and deal with the joint chance constrained
version of the problem.

In this vein, there are several approaches in the literature to solve the joint CC-
OPF (JCC-OPF) problem. Vrakopoulou et al. [34] adopt the scenario approach (SA)
to approximate the solution of the JCC-OPF, while Chen et al. [43] propose a heuristic
data-driven method that involves enforcing the satisfaction of the technical constraints
for a box of the uncertainty. This box is inferred using one-class support vector clus-
tering and its size is contingent on the system’s desired reliability. Hou and Roald [38]
propose an iterative tuning algorithm to solve a robust reformulation of the JCC-OPF
problem. Esteban-Pérez and Morales [40] introduce a distributionally robust JCC-OPF
model that considers contextual information using an ambiguity set based on prob-
ability trimmings. To make their model tractable, they resort to the widely known
CVaR-based approximation of the JCC.

The aforementioned SAA method is another effective way to solve JCCPs and has
the potential to identify OPF solutions with a better cost performance than that of the
more conservative solutions delivered by the previous approaches. However, solving the
JCC-OPF problem using SAA is challenging due to the presence of binary variables,
the number of scenarios required and the size of the power systems. Lejeune and
Dehghanian [44] propose a methodology to solve the SAA of the JCC-OPF without
including the power flow equations into the joint chance-constraint system. To the best
of our knowledge, we are the first to efficiently solve the JCC-OPF problem by means
of the SAA approach, using a MIP reformulation and including the arduous power flow
constraints. Furthermore, unlike the sample-based approach introduced in [39], which
is based on a smooth nonlinear approximation of the JCC-OPF, ours offers optimality
guarantees.

The performance of SAA is, nonetheless, directly contingent on the number of sam-
ples available. In particular, we refer the reader to the article by [93], where relations are
established between the empirical acceptable probability of violation and the number
of samples such that the SAA-based solution be feasible in the JCCP with a predefined
confidence level. Statistical considerations apart, the main aim of this work is to prove
that the proposed methodology leads to a substantial reduction of the computational
burden of JCPPs addressed by a MIP SAA-based reformulation.

The main contribution of our work is the introduction of a new methodology to
efficiently solve the SAA reformulation of the JCC-OPF. Our method solves the MIP
to optimality, and is based on the combination of a tightening-and-screening procedure
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with the development of valid inequalities to obtain a formulation which is compact and
tight at a time. We begin with a description of an iterative algorithm to strengthen
the Big-Ms present in the mixed-integer reformulation of the JCC-OPF. Interestingly,
although the procedure is not new (see [85]), we complement it with a screening pro-
cedure that allows us to eliminate an enormous percentage of the line and generator
inequalities of the MIP. The screening procedure is possible due to the special features
of our model, decisive to speed up the resolution of the instances proposed and, to the
best of our knowledge, has not been applied to other CCPs before. Next, we introduce
a new set of valid inequalities designed to strengthen the linear relaxation of the model.
As for their structure, each valid inequality is developed using quantile information and
avoiding the use of Big-M constants, which are known to lead to weak linear relaxation
bounds.

Finally, we test our resolution method through extensive computational results using
standard power systems available in the related literature. The combination of the valid
inequalities with the tightening of the Big-Ms and the screening procedure allows us
to effectively solve to optimality instances that are not solved with the initial MIP
formulation, since the combination of both techniques ostensibly reduces their size and
difficulty. We also compare our resolution approach with state-of-the-art convex inner
approximations of CCPs, in particular, the CVaR-based approximation, ALSO-X, and
ALSO-X+ [74].

The chapter is organized as follows. In Section 3.2 we introduce the main notation
and the formulation of the JCC-OPF, the core problem of this work. Section 3.3 in-
volves the reformulation of the problem into a MIP using the SAA approach and the
proposed methodology: Subsection 3.3.1 describes the tightening and screening pro-
cedures, whereas Subsection 3.3.2 introduces the valid inequalities and the necessary
algorithms to compute them. In Section 3.4 we present a case study, testing our results
to solve instances of the OPF available in the literature. Section 3.5 points further
research topics and includes some concluding remarks.

3.2 Mathematical Formulation

This section presents a standard and well-known formulation of the JCC-OPF problem.
To do so, we introduce the following notation and modeling choices:

1. Power system: A power system consists of a set of buses (nodes), lines and gen-
erators which we denote by N , L and G, in that order. We use indexes n, l and
g to refer to elements in these sets, respectively. Furthermore, Gn represents the
set of generators connected to node n.

2. Nodal net demands: The (uncertain) electricity net demand at node n, d̃n, is
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given by d̃n = dn − ωn, where dn is the predicted value and ωn is the forecast
error with a change of sign. This error is modeled as a random variable with zero
mean which follows an unknown continuous probability distribution.

3. Generation: The system-wide aggregate forecast error, which is given by Ω =∑
n∈N ωn, is balanced by the dispatchable generators through the deployment

of reserve. The reserve deployment follows an affine control policy, modeling
the actions of the automatic generation control (AGC). According to this policy,
the reserve provided by the generator g is given by rg(ω) = −βgΩ, where βg is
the participation factor of unit g; and, consequently,

∑
g∈G βg = 1. Thus, the

generators’ power output is adjusted in the following way:

p̃g = pg − βgΩ, ∀g ∈ G,

where pg is the power output dispatch of generating unit g, respectively (see,
e.g., [36, 38–40]). The minimum and maximum power capacity of generator g is
denoted by p

g
and pg, respectively.

4. Power balance: Given the affine control policy of the previous point, the power
balance equation takes the following form:∑

g∈G
p̃g −

∑
n∈N

d̃n =
∑
g∈G

(pg − βgΩ)−
∑
n∈N

(dn − ωn) = 0.

Hence, to ensure the power balance for any realization of the forecast errors
(ωn)n∈N , it must hold: ∑

g∈G
pg −

∑
n∈N

dn = 0

∑
g∈G

βg = 1.

5. Power flows: Line flows are modeled using the well-known approximation based
on the power transfer distribution factors (PTDFs), Bln, l ∈ L, n ∈ N , which sets
a linear relation between the power flow through line l and the power injected at
node n. The maximum capacity of line l is denoted by f l.

6. Power production cost : The cost function of each generating unit is assumed to
be quadratic and, as a result, the total power production cost is given by∑

g∈G
c2g (pg − Ωβg)

2 + c1g (pg − Ωβg) + c0g,
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where c2g, c1g, c0g are the coefficients defining the quadratic cost function of gener-
ating unit g. On the assumption that ωn, for each n ∈ N , is a random variable
with zero mean, we have (see, for instance, [39])

E

∑
g∈G

c2g (pg − Ωβg)
2 + c1g (pg − Ωβg) + c0g

 =
∑
g∈G

c2g p
2
g + c1g pg + c0g + V (Ω) c2g β

2
g ,

where V(Ω) denotes the variance of the random variable Ω.

With the above ingredients, the JCC-OPF problem that we tackle in this chapter
is formulated as follows:

min
pg,βg

∑
g∈G

c2g p
2
g + c1g pg + c0g + V (Ω) c2g β

2
g (3.2a)

s.t.
∑
g∈G

βg = 1 (3.2b)

βg ≥ 0, ∀g ∈ G (3.2c)∑
g∈G

pg −
∑
n∈N

dn = 0 (3.2d)

p
g
≤ pg ≤ pg, ∀g ∈ G (3.2e)

− f l ≤
∑
n∈N

Bln

∑
g∈Gn

pg − dn

 ≤ f l, ∀l ∈ L (3.2f)

P


p
g
≤ pg − Ωβg ≤ pg, ∀g ∈ G

−f l ≤
∑
n∈N

Bln

∑
g∈Gn

(pg − Ωβg) + ωn − dn

 ≤ f l, ∀l ∈ L

 ≥ 1− ϵ. (3.2g)

The objective (3.2a) is the minimization of the expected total generation cost. The
constraints (3.2b), (3.2c) and (3.2d) enforce the power balance in the system, whereas
constraints (3.2e) and (3.2f) ensure a feasible power dispatch which corresponds to
an error-free scenario, i.e., to a realization of the net-load forecast errors such that
ωn = 0, ∀n ∈ N . Finally, expression (3.2g) constitutes the joint chance-constraint
system by which the decision-maker states that the OPF solution must be feasible with
a probability greater than or equal to 1− ϵ. Accordingly, parameter ϵ is the maximum
allowed probability of constraint violation set by the user. Formulation (3.2) is quite
standard and has been used before by [36,38,39], among others.

Problem (3.2) can be written in the form of (3.1), i.e., as a CCP with linear JCC and
random RHS and LHS. To see this, define the vector of continuous decision variables
x in (3.1) as x := (pg, βg)g∈G , and group all these variables by means of the set I
with elements i running from 1 to |I| = 2|G|. In this way, we have that x ∈ R|I|

+ ,
the set X ⊆ R|I| represents the polyhedron defined by the deterministic constraints
(3.2b)–(3.2f), and f : R|I| −→ R is the convex function providing the expected total



3.3. Solution via Sample Average Approximation 43

generation cost (3.2a). Likewise, if we collect all the constraints involved in the joint
chance-constraint system (3.2g) into the set J (hence |J | = 2|G| + 2|L|), this system
can be represented by way of a technology matrix with random rows aj(ω) ∈ R|I|,
j ∈ J , and random RHS bj(ω) ∈ R, j ∈ J , where the uncertainty is again represented
through the random vector ω taking values in R|N |.

3.3 Solution via Sample Average Approximation

As discussed in Section 3.1, the CCP (3.2) can be easily reformulated into a MIP using
SAA. Thus, we assume that ω has a finite discrete support defined by a collection of
points {ωs ∈ R|N |, s ∈ S} and respective probability masses P(ω = ωs) =

1
|S| , ∀s ∈ S =

{1, . . . , |S|}. Accordingly, ωns and Ωs are realizations of the respective random variables
under scenario s. We define q = ⌊ϵ|S|⌋, the vector y of binary variables ys, ∀s ∈ S,
and the large enough constants M1

gs,M
2
gs,M

3
ls,M

4
ls. Thus, the MIP reformulation of

problem (3.2) writes as follows:

min
pg,βg,ys

∑
g∈G

c2g p
2
g + c1g pg + c0g + V̂ (Ω) c2g β

2
g (3.3a)

s.t. (3.2b)− (3.2f) (3.3b)

pg − Ωsβg ≥ p
g
− ysM

1
gs, ∀g ∈ G, s ∈ S (3.3c)

pg − Ωsβg ≤ pg + ysM
2
gs, ∀g ∈ G, s ∈ S (3.3d)

∑
n∈N

Bln

∑
g∈Gn

(pg − Ωsβg)− dn + ωns

 ≥ −f l − ysM
3
ls, ∀l ∈ L, s ∈ S (3.3e)

∑
n∈N

Bln

∑
g∈Gn

(pg − Ωsβg)− dn + ωns

 ≤ f l + ysM
4
ls, ∀l ∈ L, s ∈ S (3.3f)

∑
s∈S

ys ≤ q (3.3g)

ys ∈ {0, 1}, ∀s ∈ S. (3.3h)

Constraints (3.3c)-(3.3f) represent the sample-based reformulation of the joint chance
constraint (3.2g). For a given scenario s ∈ S, inequalities (3.3c)-(3.3f) guarantee that
all the original constraints are satisfied when ys = 0. If ys = 1, some of the original
constraints can be violated for scenario s. Finally, the inequality (3.3g) ensures that
the probability of the JCC is met and the binary character of variables ys is declared
in (3.3h).

For simplicity and ease of notation, we reformulate model (3.3) as

min
x

f(x) (3.4a)

s.t. x ∈ X (3.4b)
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a⊤jsx ≤ bjs +Mjsys, ∀j ∈ J , s ∈ S (3.4c)∑
s∈S

ys ≤ q (3.4d)

ys ∈ {0, 1}, ∀s ∈ S, (3.4e)

where x := (pg, βg)g∈G , the deterministic feasible set X represents constraints (3.2b)-
(3.2f), and constraint (3.4c) is a generalization of constraints (3.3c)-(3.3f). Using the
generic formulation (3.4), we present in Subsection 3.3.1 a procedure to properly tune
the values of the large constants Mjs. We also explain in this subsection how the inter-
mediate results of the tightening procedure can be efficiently used to remove constraints
from set (3.4c) that are superfluous, thus making model (3.4) more compact. Finally, we
introduce in Subsection 3.3.2 a set of valid inequalities that makes the linear relaxation
of (3.4) remarkably tighter.

3.3.1 Tightening and Screening

It is well-known that the linear relaxation of a Big-M formulation tends to provide weak
lower bounds in general [94]. This is even more so when the Big-Ms are chosen too loose.
Constants Mjs in (3.4c) should be set large enough for the corresponding constraints
to be redundant when the associated binary variables ys are equal to 1, and as small
as possible to tighten the MIP formulation. To this end, Qiu et al. [85] provide an
algorithm called “Iterative Coefficient Strengthening” that has been successfully applied
to other CCPs [89]. A customization of this procedure for the joint chance-constrained
formulation (3.4) is detailed in Algorithm 3.1.

Algorithm 3.1 Iterative Coefficient Strengthening
Input: The LHS and RHS vectors {ajs}j∈J ,s∈S and coefficients {bjs}j∈J ,s∈S , respectively,
parameter q related to the allowed violation probability, the deterministic feasible set X, and
the total number of iterations κ.
Output: The large constants Mjs,∀j ∈ J , s ∈ S.

Step 1. Initialization, k = 0, M0
js =∞,∀j ∈ J , s ∈ S.

Step 2. For each j ∈ J and s ∈ S update Mk+1
js as follows: If Mk

js < 0, then Mk+1
js = Mk

js.
Otherwise,

Mk+1
js = max

x,ys

a⊤jsx− bjs (3.5a)

s.t. x ∈ X (3.5b)

a⊤jsx− bjs ≤Mk
jsys, ∀j ∈ J , s ∈ S (3.5c)∑

s∈S
ys ≤ q (3.5d)

0 ≤ ys ≤ 1, ∀s ∈ S. (3.5e)

Step 3. If k + 1 < κ, then k = k + 1 and go to Step 2. Otherwise, stop.
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The output of Algorithm 3.1 is the tuned Big-Ms that are input to the MIP re-
formulation (3.4). This algorithm produces Big-Ms whose value either decreases or
remains equal at each iteration. There is, in fact, a number of iterations beyond which
the resulting Big-Ms converge. To reduce the computational burden of running Algo-
rithm 3.1, all problems (3.5) in Step 2 can be solved in parallel. Hereinafter, we use
the short name “T(κ)” (from “Tightening”) to refer to the solution of model (3.4) using
the Big-M values given by the “Iterative Coefficient Strengthening” algorithm with κ

iterations.
Equally important, Algorithm 3.1 can be easily upgraded to delete constraints (j, s)

in (3.4c) that are redundant, and therefore, can be removed from problem (3.4). Indeed,
if Algorithm 3.1 delivers a large constant Mjs ≤ 0, then constraint j in scenario s

can be deleted from (3.4) without altering its feasible region or its optimal solution.
This is so because a non-positive Mjs means that there is no x satisfying (3.5b)–(3.5e)
such that the constraint takes on a value strictly greater than zero. Consequently,
the constraint is redundant in (3.4), since the feasibility region of (3.5) is a relaxation
of (3.4). This upgrade of method T not only makes formulation (3.4) tighter through
coefficient strengthening, but also more compact by screening out redundant constraints.
Naturally, the tightening and screening power of algorithm T increases at each iteration.
From now on, we use the short name “TS(κ)” (from “Tightening and Screening”) to refer
to the strategy whereby model (3.4) is solved without the constraints (3.4c) for which
the value of Mjs provided by Algorithm 3.1 after κ iterations is lower than or equal to
0.

While strengthening the parameters Mjs is a common strategy in the technical
literature to reduce the computational burden of CCPs, this is the first time, to our
knowledge, that intermediate results of Algorithm 3.1 are used to eliminate superfluous
constraints from model (3.4). We stress that the screening process itself comes at
no cost from Algorithm 3.1, while removing superfluous constraints from (3.4) may
substantially facilitate its solution. As we show in Section 3.4, this is particularly true
for the JCC-OPF.

Apart from making formulation (3.4) more compact, the screening of superfluous
constraints can also be used to accelerate the “Iterative Coefficient Strengthening” pro-
cess at each iteration. To do so, it suffices to modify Algorithm 3.1 so that (3.5c) only
includes the constraints for which Mk

js > 0. Thus, the number of constraints of model
(3.5) is significantly reduced and so is its solution time.

3.3.2 Valid inequalities

In this section, we propose valid inequalities that apply to JCCPs with a special struc-
ture as the OPF problem (3.2). Indeed, each row aj(ω) in the technology matrix of (3.1)
can be rewritten as aj(ω) = a0j + Ωj(ω)âj , with a0j , âj ∈ R|I| and where Ωj(ωs) = Ωjs



46 Chapter 3. Joint Chance-constrained Optimal Power Flow

is a real-valued function whose domain includes the support of ω. In other words, we
derive a set of valid inequalities to make the linear relaxation of problem

min
x,ys

f(x) (3.6a)

s.t. x ∈ X (3.6b)

Ωjsâ
⊤
j x− bjs + x⊤a0j ≤Mjsys, ∀j ∈ J , s ∈ S (3.6c)∑

s∈S
ys ≤ q (3.6d)

ys ∈ {0, 1}, ∀s ∈ S (3.6e)

tighter. Note that we do not make any assumptions on the sign of â⊤j , bjs and a0j .
Furthermore, these valid inequalities can also be added to the constraint set (3.5) of Al-
gorithm 3.1, thus dramatically increasing the tightening and screening power of TS. To
facilitate the comparative analysis carried out in Section 3.4, the so upgraded algorithm
is named “TS+V(κ)” (from “Tightening and Screening with Valid inequalities”).

To derive the set of valid inequalities for problem (3.6), we define the real variables
zj ∈ R as zj := â⊤j x, and let zdj = infx∈X â⊤j x, zuj = supx∈X â⊤j x denote the lower
and upper bounds on z induced by the polyhedral feasibility set (3.6b). Let us also
define the function Ljs : fjs(zj) = Ωjszj − bjs for zj ∈ [zdj , z

u
j ] and the set of functions

Lj := {Ljs, ∀s ∈ S}. The valid inequalities we propose are heavily supported by the
concepts of k-lower and k-upper envelopes, which we define in the following.

Definition 3.1. For a given line Ljs, we say that the point (z̃, t̃) ∈ R2 lies below, on or
above function Ljs depending on whether t̃ < Ωjsz̃−bjs, t̃ = Ωjsz̃−bjs or t̃ > Ωjsz̃−bjs,
respectively. Naturally, we also say that function Ljs lies above, contains, or lies below
point (z̃, t̃) in these cases. We also say that a point (z̃, t̃) belongs to the set of lines Lj
if there exists a line Ljs ∈ Lj that contains the point (z̃, t̃).

Definition 3.2. For a set of lines Lj, the lower (resp. upper) score of a point is the
number of lines in Lj that lie below (resp. above) that point. The k-lower (resp. k-upper)
envelope of a set of lines Lj is the closure of the set of points that belong to Lj and that
have lower (resp. upper) score equal to k − 1. The k-lower envelope is also known as
k-level.

For the sake of illustration, Figure 3.1 shows in bold the 5-upper envelope of a set
of 8 lines. Clearly, the k-envelopes of sets Lj can be seen as piece-wise linear functions
on zj .

Proposition 3.1. For a fixed j ∈ J , let U q+1
j (·) be the (q+1)-upper envelope of the

set of lines Lj, with q = ⌊ϵ|S|⌋. Then the inequality

U q+1
j (â⊤j x) + x⊤a0j ≤ 0, x ∈ X (3.7)



3.3. Solution via Sample Average Approximation 47

Figure 3.1: In bold, the 5-upper envelope (4-lower envelope, 4-level) of a set Lj of 8
lines in the plane. In dotted, the lower hull of the 5-upper envelope

is valid for problem (3.6).

Proof 3.1. Let x̄, ȳ be any feasible solution of problem (3.6) with z̄j = â⊤j x̄ ∈ [zdj , z
u
j ],

and suppose that U q+1
j (z̄j) + x̄⊤a0j > 0. By definition of k-upper envelope, there exist

q + 1 lines in Lj, Ljsi : fjsi(zj) = Ωjsizj − bjsi ∀i ∈ {1, . . . , q + 1} such that fjsi(z̄j) =
Ωjsi z̄j − bjsi ≥ U q+1

j (z̄j). Then for i ∈ {1, . . . , q + 1} it holds that Ωjsi z̄j − bjsi +

x̄⊤a0j > 0. Substituting in constraint (3.6c), we obtain that ȳsiMsi > 0 ⇒ ȳsi = 1,
for i ∈ {1, . . . , q + 1}. But then constraint (3.6d) is not satisfied, since

∑
s∈S ȳs ≥∑q+1

i=1 ȳsi = q+1 > q. This is, however, in contradiction with our initial statement that
x̄, ȳ is a feasible solution of problem (3.6).

The technical literature already includes references that propose methodologies to
determine the k-envelope of a set of linear functions. For instance, the authors of
[95] give a basic algorithm for constructing k-envelopes called the Rider Algorithm.
Essentially, this algorithm is based on the fact that the k-envelope is an unbounded
polygonal chain that can be described by a sequence of vertices, which are intersections
of lines of the set. In fact, every point in the k-envelope is contained in a given line. In
this chapter, we adapt the algorithm proposed in [95] to the particular case in which
zdj , z

u
j are finite. Algorithm 3.2 describes our procedure in detail for a general set of

the type Lj . To facilitate its comprehension, Fig. 3.2 offers, by means of a flowchart, a
more intuitive explanation of how Algorithm 3.2 works.

The LHSs of the valid inequalities (3.7) are piece-wise linear functions not necessarily
convex. Therefore, the inclusion of these inequalities into model (3.6) would require a
significant amount of additional binary variables, which, in turn, is expected to increase



48 Chapter 3. Joint Chance-constrained Optimal Power Flow

Algorithm 3.2 Rider Algorithm to construct the k-upper envelope of Lj (adapted to
the bounded case)

To describe the k-upper envelope of a set of lines Lj , we derive the sequence of vertices of
the polygonal chain (intersections of lines in Lj) ((z0, t0), . . . , (zR, tR)) with (zdj = z0 < · · · <
zR = zuj ).

Step 1. Set r = 0. Let {(zdj ,Ωjsz
d
j−bjs),∀s ∈ S}, be the intersections of the lines Ljs ∈ Lj

with the vertical line z = zdj , and assume w.l.o.g. that all the points have different
upper scores. Let s0 ∈ S be such that the intersection (zdj ,Ωjs0z

d
j − bjs0) has

upper score equal to k − 1. Then (z0, t0) = (zdj ,Ωjs0z
d
j − bjs0).

Step 2. Compute the value of zj for which the line Ljsr intersects the rest of the lines
Ljs ∈ Lj as intz(s, sr) =

bjs−bjsr
Ωjs−Ωjsr

. If ∃ s′ : zr < intz(s′, sr) < zu, go to Step 3.
Otherwise, go to Step 4.

Step 3. Find the line that intersects Ljsr at the leftmost point to the right of zr,
that is, find sr+1 = argmins {intz(s, sr) : intz(s, sr) > zr}. Set (zr+1, tr+1) =
(intz(sr+1, sr),Ωjsr intz(sr+1, sr)− bjsr ), update r = r + 1 and go to Step 2.

Step 4. Set (zR, tR) = (zuj ,Ωjsrz
u
j − bjsr ).

Given j, calculate the intersections of
Lj with the vertical line at z = zdj

Identify the line L∗
js ∈ Lj in which the

intersection has an upper score equal to k − 1

Store the coordinates of this intersection

Find the line that intersects L∗
js at the

leftmost point to the right of the intersection

is this new intersection to the right of zuj ? The intersecting
line becomes L∗

js

Store the intersection between L∗
js

and the vertical line at z = zuj

The set of stored intersections
forms the k-upper envelope

no

yes

Figure 3.2: Flowchart representation of Algorithm 3.2
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the computational burden of this problem even further. Alternatively, we compute the
lower hull of the k-upper envelope of Lj , which takes the form of a convex piece-wise
linear function. From this lower hull, we can extract a set of linear valid inequalities (the
linear extensions of the pieces) that can be seamlessly inserted into model (3.6) without
the need of any extra binary variables. In doing so, we are able to tighten model (3.6),
which can thus be solved more efficiently by available optimization software. Before
presenting the set of valid inequalities, the following definition is required.

Definition 3.3. Let Z be the convex hull of a set of points P . The upper (resp. lower)
hull of P is the set of edges of Z that lie on or above (resp. on or below) every point
in P .

Corollary 3.1 presents the set of linear valid inequalities (3.8) given by the lower hull
of the k-upper envelope of Lj .

Corollary 3.1. Let {(zr, tr)}, r ∈ {0, . . . , R}, be the ordered set of vertices obtained
by applying Algorithm 3.2 to set Lj, and let {(zr′ , tr′)}, r′ ∈ {0, . . . , R′} ⊆ {0, . . . , R},
be the ordered subset of vertices such that the associated polygonal chain is the lower
hull. Then the following linear inequalities

tr
′+1 − tr

′

zr′+1 − zr′
(â⊤j x− zr

′
) + tr

′ ≤ −x⊤a0j , x ∈ X, r′ ∈ {0, . . . , R′ − 1} (3.8)

are valid for problem (3.6).

Proof 3.2. The proof is straightforward, since for each x ∈ X it holds tr
′+1−tr

′

zr′+1−zr′
(â⊤j x−

zr
′
) + tr

′ ≤ U q+1
j (â⊤j x) ≤ −x⊤a0j , by hypothesis and using (3.7).

There exist plenty of algorithms of convexification of a set of points in the plane.
Two of the most well-known are the Jarvis march and the Graham scan [96]. Here, we
give a simplified version of the former where we make use of special features of our set
of points and only compute the lower hull. In particular, we assume that we have a set
of presorted points {(zr, tr)}, r ∈ {0, . . . , R} whose first and last points always belong
to the hull. To speed up the process, we can find the point (zr̄, tr̄) from the previous set
with the lowest t-coordinate (which always belongs to the lower hull), and then apply the
algorithm to the subsets {(z0, t0), . . . , (zr̄, tr̄)} and {(zr̄, tr̄), . . . , (zR, tR)}. Algorithm
3.3 describes in detail the proposed convexification procedure.

Algorithm 3.2 constructs the k-upper envelope of L in O(nk log
2 |L|) time and

O(nk|L|+ |L|) space, where nk denotes the maximum number of edges of the k-upper
envelope of any set with |L| lines (see [97]). An upper bound on nk = O(|L|k 1

2 ) can be
found in [98]. Authors of [99–101] have subsequently improved the upper bound of the
complexity of this problem by studying a closely related problem, the k-set problem, in
the two-dimensional case. As for the Jarvis March Algorithm, in the two-dimensional
case presented here it has running time O((R+ 2)(R′ + 1)) [96].
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Algorithm 3.3 Jarvis March Algorithm to obtain the lower hull of a set of presorted
points P

Let P = {(zr, tr)}, r ∈ {0, . . . , R} be a set of points with z0 < · · · < zR. The algorithm
derives a subset P ′ = {(zr′ , tr′)}, r′ ∈ {0, . . . , R′} ⊆ {0, . . . , R}, which constitutes the lower
hull of the first set.

Step 1. Initially, set P ′ = {(z0, t0)}.
Step 2. Assume (zr

′
, tr

′
) is the last point included in P ′. If r′ = R, the lower

hull of P is given by the set of points P ′. Otherwise, let r′ + 1 :=

argminr

{
tr−tr

′

zr−zr′ : (zr, tr) ∈ P with zr > zr
′
}

. Update P ′ = P ′∪{(zr′+1, tr
′+1)}.

Repeat Step 2.

Valid inequalities (3.7) and Algorithms 3.2 and 3.3 can be generalized to work with
finite discrete distributions with unequal probabilities. Observe that the definition of
the (q+1)-lower (resp. (q+1)-upper) envelope is based on satisfying constraint (3.6d).
In this extension, constraint (3.6d) is replaced with

∑
s∈S γsys ≤ ϵ, where γs is the

probability of scenario s. Hence, it suffices to redefine the lower (resp. upper) score of a
point as the probability of the lines that lie below (resp. above) that point, and modify
the definition of k-lower (resp. upper) envelope and Step 3 of Algorithm 3.2 accordingly,
so that this more general constraint is satisfied.

3.4 Numerical Experiments

This section discusses a series of numerical experiments with which we evaluate the
different approaches presented in Section 3.3 to solve the SAA-based MIP reformulation
of the JCC-OPF. In particular, we compare the performance of approaches T, TS and
TS+V using five standard power systems widely employed in the technical literature
on the topic, namely the IEEE-RTS-24, IEEE-57, IEEE-RTS-73, IEEE-118, and IEEE-
300 test systems. All data pertaining to these systems are publicly available in the
repository [102] under version 21 and their main features are listed in Table 3.1. All
optimization problems have been solved using GUROBI 9.1.2 [103] on a Linux-based
server with CPUs clocking at 2.6 GHz, 6 threads and 32 GB of RAM. In all cases, the
optimality GAP has been set to 10−9 and the time limit to 10 hours.

Table 3.1: Short Description of Test Power Systems

IEEE-RTS-24 IEEE-57 IEEE-RTS-73 IEEE-118 IEEE-300
# Nodes 24 57 73 118 300
# Generators 32 4 96 19 57
# Lines 38 41 120 186 411

Similarly to [39], we assume that the error of net loads is normally distributed, i.e.,
ω ∼ N(0,Σ), where 0 and Σ represent, respectively, the zero vector and the covariance
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matrix. We also assume that the standard deviation of ωn at node n is proportional
to the net nodal demand dn according to a parameter ζ between 0 and 1. Thus, this
parameter controls the magnitude of net demand fluctuations. Under these assumptions,
the procedure to model uncertainty proposed in [39] runs as follows. First, we compute
the positive definite matrix C = ĈĈ⊤ where each element of matrix Ĉ is a sample
randomly drawn from a uniform distribution with support in [−1, 1]. Then, to obtain a
positive definite matrix Σ in which the diagonal elements are equal to (ζdn)

2, we define
each of its entries (σnn′) as follows:

σnn′ = ζ2
cnn′√
cnncn′n′

dndn′ , ∀n, n′ ∈ N .

where cnn′ denotes the element of matrix C in row n and column n′. To avoid generating
infeasible instances of the JCC-OPF problem, the parameter ζ has been set to 0.15 for
the four smallest systems and to 0.05 for the IEEE-300 system. To characterize the net
demand uncertainty, we consider 1000 scenarios and a tolerable probability of violation
of the joint chance constraint of 5% (i.e., ϵ = 0.05 and q = 50). Finally, each solution
strategy is run for ten different sets of randomly generated samples. Accordingly, in
this section we provide tables with figures averaged over these ten instances.

Table 3.2 includes the results of solving the mixed-integer quadratic optimization
model (3.3) if the large constants M1

gs, M2
gs, M3

ls and M4
ls are set to a high enough

arbitrary value, specifically 104. Despite being remarkably computationally expensive,
this approach has been used in the technical literature (e.g., [104]), and thus we refer
to it as benchmark approach (BN). Table 3.2 includes the number of constraints in
the model (#CON), the linear relaxation gap (LR-GAP) calculated using the optimal
solution of each instance, the optimality gap given by the difference between the best
lower bound and the best integer solution found by the MIP solver (MIP-GAP), the
number of instances solved to global optimality in less than 10 hours (#OPT) and the
solution time in seconds (Time). As expected, the computational time needed to solve
the OPF with the Big-M model (3.3) increases significantly with the size of the instances.
While the 10 instances from systems IEEE-RTS-24, IEEE-57 and IEEE-37 are solved
in less than 10 hours, none of the instances for systems IEEE-118 and IEEE 300 are
solved to global optimality within that time limit, and the average MIP-GAP after 10
hours amounts to 0.29% and 0.27%, respectively. Interestingly, despite the fact that the
LR-GAP is relatively low for the IEEE-RTS-73 system, the average computational time
required to solve this case is particularly high compared to the two smaller systems.

3.4.1 Impact of Tightening Big-Ms

As discussed in the technical literature, a proper tuning of the Big-Ms makes model (3.3)
tighter and generally easier to solve [85] by the MIP routine. Therefore, we evaluate
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Table 3.2: Benchmark approach (BN): Results

IEEE-RTS-24 IEEE-57 IEEE-RTS-73 IEEE-118 IEEE-300
#CON 140143 168171 432435 410413 936939
LR-GAP 1.756% 0.623% 0.061% 0.956% 1.114%
MIP-GAP (#OPT) 0.00% (10) 0.00% (10) 0.00% (10) 0.29% (0) 0.27% (0)
Time (s) 1121.3 103.2 11161.2 36000.0 36000.0

the computational performance of the “Iterative Coefficient Strengthening” Algorithm
and provide the corresponding results in Table 3.3. In particular, T(1), T(2) and T(3)
represent the results obtained by solving model (3.3) with the Big-M values provided by
Algorithm 3.1 with κ = 1, 2 and 3, respectively. Table 3.3 includes the average values
of LR-GAP and MIP-GAP, the number of instances solved to optimality in less than
10 hours (#OPT), and the speedup factor with respect to the benchmark approach in
those systems where all instances are solved in less than 10 hours. Note that the speedup
factor considered is conservative since the IEEE-118 and IEEE-300 systems would spend
more than 10 hours to be solved. To determine this factor, we have considered that the
total computational time of approach T is given as the sum of the time required to run
Algorithm 3.1 κ times to determine the Big-Ms plus the time it takes to solve problem
(3.3).

Table 3.3: Coefficient tightening approach (T): Results

IEEE-RTS-24 IEEE-57 IEEE-RTS-73 IEEE-118 IEEE-300

LR-GAP
T(1) 1.755% 0.510% 0.061% 0.711% 0.472%
T(2) 1.662% 0.330% 0.055% 0.522% 0.324%
T(3) 1.386% 0.255% 0.029% 0.434% 0.264%

MIP-GAP
(#OPT)

T(1) 0.00% (10) 0.00% (10) 0.00% (10) 0.27% (0) 0.16% (0)
T(2) 0.00% (10) 0.00% (10) 0.03% (2) 0.16% (0) 0.09% (0)
T(3) 0.00% (10) 0.00% (10) 0.00% (10) 0.12% (0) 0.07% (0)

Speedup
factor

T(1) 0.22x 0.07x 0.61x - -
T(2) 0.17x 0.13x - - -
T(3) 0.48x 0.24x 0.66x - -

Since reducing the Big-M values makes model (3.3) tighter, the results in Table 3.3
show lower values of LR-GAP with respect to BN. Furthermore, this effect grows with
the number of iterations since Algorithm 3.1 ensures that the Big-Ms never increase
between iterations. Although decreasing the values of the Big-Ms leads to tighter MIPs
for all the test systems, the numerical results in Table 3.3 clearly indicate that com-
putational savings are not guaranteed in all cases. Indeed, while the ten instances are
solved by BN in less than 10 hours for the IEEE-RTS-73 system, T(2) only provides
the optimal solution for two instances. On top of that, the speedup factors for the three
smaller systems are always lower than 1, which means that the computational times ac-
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tually increase in these cases. On the contrary, the average MIP-GAP of the two largest
systems is significantly decreased with respect to BN. Therefore, we conclude that, due
to the heuristics implemented in current commercial MIP solvers, the computational
advantages that one could expect a priori from “Iterative Coefficient Strengthening” are
not always guaranteed and are contingent on the structure and data of the problem.

3.4.2 Impact of Removing Redundant Constraints

Next, in Table 3.4 we provide the computational results related to the TS method, in
which Algorithm 3.1 is extended to remove redundant constraints from model (3.3).
Here, #CON is provided as the percentage of the number of constraints of the reference
model BN (indicated in Table 3.2) that are retained by TS in each iteration. Table 3.4
also includes the average MIP-GAP, the number of instances solved to optimality and
the average speedup factor in relation to BN when all instances are solved in less than
10 hours.

Table 3.4: Tightening and Screening (TS): Results

IEEE-RTS-24 IEEE-57 IEEE-RTS-73 IEEE-118 IEEE-300

#CON
TS(1) 23.9% 2.8% 26.0% 8.9% 12.7%
TS(2) 23.3% 2.2% 23.8% 6.3% 9.1%
TS(3) 23.1% 2.1% 23.0% 5.6% 8.0%

MIP-GAP
(#OPT)

TS(1) 0.00% (10) 0.00% (10) 0.00% (10) 0.15% (0) 0.08% (0)
TS(2) 0.00% (10) 0.00% (10) 0.00% (10) 0.03% (2) 0.04% (0)
TS(3) 0.00% (10) 0.00% (10) 0.00% (10) 0.01% (6) 0.01% (4)

Speedup
factor

TS(1) 1.5x 1.8x 4.7x - -
TS(2) 1.5x 3.8x 2.6x - -
TS(3) 3.8x 4.4x 15.1x - -

Table 3.4 shows that the upgraded Algorithm 3.1 screens out a huge percentage
of the constraints in model (3.3), only retaining between 2% and 26% of them. The
results in this table demonstrate that combining the tightening of the Big-Ms and the
elimination of superfluous constraints leads to significant computational savings. For
instance, the speedup factor for the three smallest systems ranges now between 1.5x
and 15.1x. In addition, TS(3) is able to solve six and four instances to optimality for
systems IEEE-118 and IEEE-300, respectively, in less than 10 hours, and the average
MIP-GAP is reduced to 0.01% in these two largest power systems. Therefore, the com-
putational performance of model (3.3) has been drastically improved by combining the
strengthening of the Big-Ms (making model (3.3) tighter) and the removal of redundant
constraints (making model (3.3) more compact). Equally important, the elimination of
superfluous constraints largely reduces the need of the MIP solver for RAM memory,
which decreases from around 100 GB in T to 32 GB in TS.
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3.4.3 Impact of Valid Inequalities

We continue the numerical experiments by evaluating the impact of including the valid
inequalities derived in Section 3.3.2 into model (3.3). The so obtained results are collated
in Table 3.5. In what follows, this approach is called BN+V for short. The results in
Table 3.5 comprise, in order and following the previous notation, the average number
of constraints, the average values of LR-GAP and MIP-GAP, the number of instances
solved to optimality, and the average speedup factor with respect to the BN approach
of Table 3.2 for those systems where all instances are solved before the time limit is
reached.

Table 3.5: Tightening by valid inequalities (BN+V): Results

IEEE-RTS-24 IEEE-57 IEEE-RTS-73 IEEE-118 IEEE-300
#CON 101.0% 101.2% 101.2% 101.6% 101.5%
LR-GAP 0.3374% 0.2038% 0.0001% 0.4784% 0.3192%
MIP-GAP (#OPT) 0.00% (10) 0.00% (10) 0.00% (10) 0.03% (1) 0.08% (0)
Speedup factor 46.4x 13.8x 65.2x - -

As can be seen, our valid inequalities only increase the total number of constraints by
1.0-1.6%. However, the LR-GAP is significantly reduced compared to that obtained by
BN. This effect is particularly noticeable for the IEEE-RTS-73 system with an average
value of the linear relaxation gap equal to 0.0001%, meaning that the linear relaxation
of problem (3.3) with the proposed valid inequalities is very tight and its solution very
close to the actual solution of that problem. Furthermore, the inclusion of the valid
inequalities lead to average speedup factors that range between 13.8x and 65.2x for the
three smallest systems. For the two largest systems, the time limit is reached in most
instances, but the average MIP-GAP is reduced to 0.03% and 0.08%, respectively.

Finally, we present similar simulation results for the setup in which the valid in-
equalities are also used to boost the tightening and screening power of Algorithm 3.1
(that is, the valid inequalities are also included in problem (3.5)), leading to method
TS+V. Table 3.6 provides the average number of constraints, the average values of
LR-GAP and MIP-GAP, and the average speedup factor of TS+V with respect to BN
in Table 3.2. Since increasing the number of iterations of Algorithm 3.1 barely affects
the performance of TS+V, all the data shown in Table 3.6 correspond to κ = 1.

The comparison of the results in Tables 3.4, 3.5 and 3.6 yields the following obser-
vations. First, including the valid inequalities in Algorithm 3.1 strengthens the Big-Ms
even further, which in turn remarkably reduces the linear relaxation gap and increases
the number of constraints identified as redundant in model (3.3). Indeed, the total
number of constraints eventually retained by TS+V ranges between 1.61% and 3.84%
if compared with BN. Second, TS+V can solve the 10 instances to global optimality in
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Table 3.6: Tightening and screening with valid inequalities (TS+V): Results

IEEE-RTS-24 IEEE-57 IEEE-RTS-73 IEEE-118 IEEE-300
#CON 3.49% 1.61% 3.84% 2.68% 3.30%
LR-GAP 0.3365% 0.1519% 0.0001% 0.2821% 0.1603%
MIP-GAP (#OPT) 0.00% (10) 0.00% (10) 0.00% (10) 0.00% (10) 0.00% (10)
Speedup factor 706.8x 35.3x 1470.0x 23.1x 8.5x

less than 10 hours for the five test systems considered in these numerical experiments.
In fact, the optimal solutions obtained by TS+V are the ones we use to compute the
values of the linear relaxation gap throughout these simulations. Third, TS+V is able
to achieve speedup factors between 8.5x and 1470.0x depending on the test system. All
in all, TS+V features the best computational performance in terms of resolution time
and MIP-GAP among all the methods tested so far.

3.4.4 Comparison with an Exact Approach

In this section, we compare our solution approach with the one proposed in [105]. This
author presents an exact approach to solve the SAA reformulation of CCPs based on
the addition of quantile cuts in a so-called lazy fashion to a relaxation of the pro-
blem (3.3) that only includes the deterministic constraints. In this way, at each node
of the branching tree we seek for a violated constraint from a scenario s with ys = 0.
Using the coefficients of this violated constraint, a valid inequality is derived by means
of the resolution of |S| linear separation subproblems. These strengthened cuts contain
binary variables associated to several scenarios and are obtained by applying the star
inequalities of [106].

We have implemented the procedure including, at each iteration, both the initial or
base violated inequality and the strengthened one, since this approach delivered the best
results. The comparison between our approach and the one proposed in [105] (which
we name BCD for short, from branch-and-cut decomposition) is shown in Table 3.7. As
can be seen, a similar number of constraints are generated in the BCD approach (that
includes the deterministic constraints and the cuts generated dynamically). Further-
more, our procedure clearly outperforms the BCD approach in terms of computational
time. One possible explanation, already pointed out in the paper, is that the generation
of the cuts requires solving 1000 subproblems at each iteration. In the particular appli-
cation presented in [105], however, this potential bottleneck is overcome by leveraging
the specific structure of the subproblem to develop a closed-form expression of its solu-
tion, thus avoiding the need to optimize over all the scenario sets. With that said, we
remark that the times provided in Table 3.7 under the acronym BCD-P correspond to a
parallel implementation of the BCD algorithm, in which only the time required to solve
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the most time-consuming subproblem out of the 1000 to be solved at each iteration is
added to the final solution time reported. For completeness and because the parallel
implementation of BCD using off-the-shelf optimization solvers is not trivial at all, we
also report in Table 3.7 the speedup factor that is attained by a serial implementation
of BCD, termed BCD-S in the table. As can be seen, this implementation is, however,
far from being competitive in all cases.

Table 3.7: Comparison of the proposed TS+V approach and the BCD approach

IEEE-RTS-24 IEEE-57 IEEE-RTS-73 IEEE-118 IEEE-300

#CONS TS+V 3.49% 1.61% 3.84% 2.68% 3.30%
BCD 11.37% 2.69% 3.58% 2.46% 1.53%

Speedup
factor

TS+V 706.8x 35.3x 1470.0x 23.1x 8.5x
BCD-P 10.12x 2.05x 69.00x 9.24x 4.74x
BCD-S 0.12x 0.04x 0.30x 1.45x 0.42x

3.4.5 Comparison with Conservative Approximations

Next, in Table 3.8 the results of TS+V are contrasted with those provided by state-of-
the-art approximations of joint chance-constraints available in the literature. In partic-
ular, we consider the CVaR-based and ALSO-X conservative approximations, including
the improved version ALSO-X+, all described in [74]. Furthermore, inspired by ALSO-
X, we propose a heuristic which works with the tighter and compacter formulation that
TS+V produces and which is able to quickly identify good feasible solutions of pro-
blem (3.3). As ALSO-X, our heuristic works iteratively: It first relaxes the integrality of
y and then enters a loop whose core step is to perform a bisection search over parameter
q. A pseudocode of this heuristic is provided in Algorithm 3.4.

Algorithm 3.4 Iterative heuristic
Input: Stopping tolerance parameter δ

Require: Relax the integrality of y in (3.3)
q ← 0, q ← ⌊ϵ|S|⌋
while q − q ≥ δ do

Set q = (q + q)/2 and compute an optimal solution y∗ to (3.3).
Set q = q if P (y∗ = 0) ≥ 1− ϵ; otherwise, q = q

end while
Output: A feasible solution of model (3.3).

Table 3.8 provides the average cost increase in percentage with respect to the op-
timal cost and the speedup factor with regard to BN for the different methodologies
compared. As expected, the CVaR-based approximation leads to conservative results
and involves average cost increases that range between 0.49% and 2.88%. Interestingly,
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TS+V computes the optimal solution and involves a higher speedup factor than the
CVaR-based approach for two of the five systems. Compared with the two ALSO-X
approximations, TS+V obtains the global optimal solution in all cases with speedup
factors that are still tantamount to those of these approximate methods. Finally, the
heuristic method achieves solutions that are close to the two ALSO-X approximations
while significantly outperforming them in terms of speed.

Table 3.8: Comparison of the proposed TS+V approach and existing approximate
methods

IEEE-RTS-24 IEEE-57 IEEE-RTS-73 IEEE-118 IEEE-300

Average
cost
increase

TS+V 0.00% 0.00% 0.00% 0.00% 0.00%
CVaR 2.88% 0.53% 1.71% 0.57% 0.49%
ALSO-X 0.80% 0.08% 0.41% 0.08% 0.05%
ALSO-X+ 0.53% 0.07% 0.12% 0.05% 0.04%
Heuristic 0.68% 0.10% 0.13% 0.09% 0.05%

Speedup
factor

TS+V 706.8x 35.3x 1470.0x 23.1x 8.5x
CVaR 387.1x 117.0x 265.1x 4045.5x 779.7x
ALSO-X 17.2x 1.2x 19.7x 143.1x 11.0x
ALSO-X+ 7.7x 0.7x 6.4x 48.7x 3.6x
Heuristic 15.7x 454.2x 187.5x 6569.2x 484.2x

3.4.6 Cost-driven Pre-processing

Based on the results obtained in Chapter 2 of this thesis, in this section, we propose
to add economic information from the objective function (3.3a) to Algorithm 3.1 in
addition to the valid inequalities of Section 3.3.2. To do so, we need to estimate an
upper bound on the optimal objective function value of problem (3.3). This can be
done, for instance, by way of the heuristic proposed in the previous section. We refer
to this approach as TS+V+C, since we are adding cost information to TS+V. For
illustration, we run this experiment for the IEEE-300 system, which is the largest system
and the most expensive in computational terms. Table 3.9 collects the results of this
experiment as a comparison with TS+V. Note that the speedup factor of TS+V+C
accounts for the computational time of running the heuristic described in the previous
section, of running Algorithm 3.1 with the upper-bound cost inequality and of solving
problem (3.3).

While the strengthening of Algorithm 3.1 with the cost-based inequality slightly im-
proves the LR-GAP, the number of retained constraints is reduced since both redundant
and inactive constraints are removed thanks to the upper bound on the cost. Although
these improvements may be small, the impact on the speedup factor is more significant,
becoming almost four times higher.
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Table 3.9: Comparison of TS+V and TS+V+C

Method IEEE-300

#CON TS+V 3.30%
TS+V-C 2.40%

LR-GAP TS+V 0.1603%
TS+V-C 0.1596%

Speedup factor TS+V 8.5x
TS+V-C 31.7x

3.5 Summary and Conclusions

In this chapter, we propose a novel exact resolution technique for a MIP SAA-based re-
formulation of the JCC-OPF problem. Our methodology includes a screening method to
eliminate superfluous constraints based on an iterative procedure to repeatedly tighten
the Big-Ms present in the MIP. These procedures are combined with the addition of valid
inequalities based on the special structure of the model. Said inequalities strengthen its
linear relaxation and allow for additional screening of constraints. The resultant model
is thus compact and tight.

In the case study, we show that, in comparison with the benchmark model, our me-
thodology provides remarkable results in terms of the linear relaxation bounds, the RAM
memory needed to solve the instances, and the total computational time. Specifically,
our method TS+V solves to optimality all of the instances generated for the IEEE-
RTS-118 and the IEEE-RTS-300 test systems, the majority of which are not solved
within 10 hours of computational time using the benchmark approach. Furthermore,
the average number of constraints eliminated from all instances with TS+V always
exceeds 95% of them, and the lower bound is markedly increased by the inclusion of the
valid inequalities, showing the outstanding results of the combination of the methods
developed. We remark that the inclusion of valid inequalities makes the model tighter,
but less compact. However, this a-priori potential loss of model compactness is clearly
counterbalanced by augmenting the screening rate of superfluous constraints within the
tightening-and-screening procedure.

The comparison of our results with those provided by existing approximate and
exact methods shows that our approach is computationally very competitive for small
and medium-sized instances, always providing the best results in terms of cost. For the
large instances addressed, while outperformed by the approximate methods in terms
of computational time (as expected), our exact solution strategy not only provides a
certificate of optimality but also returns the optimal solution within the set time limit.
Finally, we are able to speed up the resolution of the largest instances about four times
by incorporating information from the objective function during the pre-processing step.
This is achieved through the use of a heuristic that delivers a good upper bound on the
optimal OPF cost.
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Typically in joint chance-constrained OPF (JCC-OPF) problems, it is common to
assume that forecast errors in demand and renewable generation are balanced by the
deployment of generation reserves, and in particular, by systems such as the automatic
generation control (AGC) [45], as it is done in Chapter 3. Modeling power balancing
through AGC offers the advantage of being expressed as an affine control policy, which
eases the solution of the optimization problem.

Through the utilization of AGC, JCC-OPF problems can effectively manage fore-
cast errors and ensure system security with a high probability. However, it proves
inadequate for low probable, high-impact scenarios, leaving the system susceptible to
potential vulnerabilities. Conversely, ensuring robust feasibility exclusively through
AGC is excessively expensive.

The issues encountered with these models are attributed to their incomplete repre-
sentation of the operator’s actions in adverse scenarios. For instance, in the event of a
scenario where the AGC may jeopardize the reliability of the system or incur significant
costs, the operator may elect to discontinue its operation and instead manually adjust
the production level of the units. To circumvent such a caveat, in this chapter, we
propose a novel stochastic OPF model that differentiates between two distinct operat-
ing scenarios: “normal operation”, where AGC ensures system security, and “adverse
operation”, where the system operator must undertake extra measures, such as manual
reserve deployment. The contents of this chapter are based on the article [48].

4.1 Introduction

The common AGC models implemented in the literature typically assume that all gen-
erators contribute reserve power according to an affine policy, even for large uncertainty
deviations. In reality, generator output will saturate (or stop increasing/decreasing as
the deviation grows larger) when they hit their lower or upper generation limit. Fur-
thermore, operators generally take additional actions to manage both balancing and
congestion in situations with very large deviations. For example, the North American
Reliability Corporation (NERC) [107] standard for regulating the use of AGC, BAL-
005, states that if the AGC becomes inoperative or may impair the reliability of the
interconnection, the system operator must use manual controls to adjust generation in
order to guarantee balance.

While a limited number of studies have shown that modeling generation satura-
tion [108] or accounting for manual reserve activation during large deviations [109]
leads to better operating conditions, these models are often computationally expensive.
Thus, a more common approach is to apply the affine control policy, but explicitly
disregard constraint satisfaction in a fraction of the most severe operating conditions.
This is typically done by introducing chance constraints, as it is shown in Chapter 3,
which allow violations in a (typically small) percentage of scenarios [33,34,36–41], or by
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solving robust optimization formulations where the uncertainty set has been designed
to contain a certain probability mass [110]. Unfortunately, by failing to model the im-
pact of the worst scenarios (those for which the constraint satisfaction is discarded),
a chance-constrained formulation may leave the system vulnerable to large disruptions
that include generator and line outages, or load shed. As discussed in [36], there could
be instances where the combination of generators and renewable outputs collude to pro-
duce power flows that significantly exceed the nominal line ratings, even in the absence
of a large total power deviation. When the maximum rating of a line is exceeded, this
line becomes more likely to trip, leaving the network vulnerable to cascading failures
and associated load shed.

To address this issue, in this work we propose a new SOPF formulation where, in
the worst-case scenarios, operators account for additional reserve to reduce their im-
pact. The proposed formulation distinguishes between two different operating regimes:
normal operation and adverse operation. In normal operation, AGC is sufficient to main-
tain the system balance, while in adverse operation, the system operator may need to
implement additional actions, such as manual adjustments, to preserve system security.

Unlike the standard joint chance-constrained OPF (JCC-OPF), which limits the
joint probability of violation of technical constraints, our formulation uses a joint chance-
constraint to control the probability of utilizing different reserve actions. Thus, we can
impose that AGC alone is to be sufficient with a high probability, while additional cor-
rective actions are only to be implemented for the most adverse scenarios. In doing so,
we reduce the need for frequent manual intervention by operators (computational expen-
sive), while also guaranteeing that additional resources are available to handle adverse
operating conditions, e.g., by scheduling more reserve capacity for manual deployment.

To demonstrate the suitability of our proposed formulation, we conduct a compu-
tational experiment that compared it to two state-of-the-art approaches. The former
is the standard JCC-OPF, whose drawback is to leave the power system vulnerable
to severe events, e.g., by dispatching insufficient generation capacity or giving up on
alleviating congestion. The second approach guarantees robust feasibility using AGC
only, which results in conservative solutions with increased operating costs, for instance,
due to inefficient and oversized generation capacity. Our novel formulation results in
decisions that are more reliable than the former approach and more cost-efficient than
the latter.

This chapter is organized as follows. Section 4.2 describes the proposed SOPF for-
mulation, which is derived from two traditional approaches in the literature. Section 4.3
describes the reformulation and algorithm used to make our proposal tractable and com-
putationally efficient. Section 4.4 explains the methodology we use to benchmark our
approach, while Section 4.5 discusses experimental results from a case study. Finally,
conclusions are duly drawn in Section 4.6.
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4.2 Mathematical Formulation

We start this section by extending the formulation of the JCC-OPF problem (3.2). This
extended formulation will serve us as a basis to construct and motivate our proposal
immediately after.

4.2.1 Extended Joint Chance-constrained Optimal Power Flow

This extended formulation distinguishes between upward or positive reserve, r+g (ω), and
downward or negative reserve, r−g (ω), with rg(ω) = r+g (ω)− r−g (ω), whose costs in the
objective function are c+g and c−g , respectively. Furthermore, we explicitly model the
upward and downward reserve capacity provided by the dispatchable generator g and
respectively represented by rug and rdg , with costs cug and cdg in that order. This reserve
capacity is procured by the system operator before the forecast errors ω are known.

With this notation in place and the notation described in Section 3.2, the joint
chance-constrained DC-OPF problem used in this chapter can be formulated as follows:

min
Ξ

∑
g∈G

c1g pg + cugr
u
g + cdgr

d
g + E

[
c+g r

+
g (ω)− c−g r

−
g (ω)

]
(4.1a)

s.t.
∑
g∈G

βg = 1 (4.1b)

∑
g∈G

pn −
∑
n∈N

dn = 0 (4.1c)

p
g
+ rdg ≤ pg ≤ pg − rug , ∀g ∈ G (4.1d)

− f l ≤
∑
n∈N

Bln

∑
g∈Gn

pg − dn

 ≤ f l, ∀l ∈ L (4.1e)

0 ≤ rdg ≤ rdg, ∀g ∈ G (4.1f)

0 ≤ rug ≤ rug , ∀g ∈ G (4.1g)

r+g (ω)− r−g (ω) = −Ωβg, ∀g ∈ G (4.1h)

P


−rdg ≤ −Ωβg ≤ rug , ∀g ∈ G

−f l ≤
∑
n∈N

Bln

∑
g∈Gn

(pg − Ωβg)− dn + ωn

 ≤ f l, ∀l ∈ L

 ≥ 1− ϵ (4.1i)

βg, r
+
g (ω), r−g (ω) ≥ 0, ∀g ∈ G, (4.1j)

where Ξ = (pg, r
+
g (ω), r−g (ω), rdg , r

u
g , βg) is the set of decision variables.

The three terms of the objective function (4.1a) to be minimized correspond to the
power dispatch cost, the cost of procuring reserve capacity, and the expected cost re-
lated to the actual deployment of that capacity, respectively. For ease of explanation,
we consider linear cost functions, but it can be easily extended to quadratic or piece-
wise linear functions. The power balance in the system is guaranteed for all possible
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realizations of ω through equations (4.1b) and (4.1c). Note that, by requiring βg ≥ 0 in
(4.1j), we enforce that reserve is deployed only to counterbalance the forecast errors and
not to redispatch generators to counter congestion too. Constraints (4.1d) ensure that
the power produced by dispatchable generators is within their minimum and maximum
power output limits, i.e., p

g
and pg, respectively, considering the reserve capacity the

system operator procures from them. Expressions (4.1e) ensure a feasible power flow
under the error-free scenario. Constraints (4.1f) and (4.1g) set a limit on the maximum
reserve capacity each generator is willing or able to provide. Equation (4.1h) models the
affine control policy for reserve deployment (AGC) we discussed in Section 3.2. Expres-
sion (4.1i) constitutes the joint chance-constraint system by which the system operator
states that the reserves deployed and the line flows must be within their bounds with
a probability greater than or equal to 1− ϵ. Accordingly, parameter ϵ is the maximum
allowed probability of constraint violation set by the operator. Finally, (4.1j) imposes
the positive character of decision variables βg and random functions r+g (ω) and r−g (ω)

for all g. Note that the probability in (4.1i) is computed over the probability space of
ω and that the equality (4.1h) and the inequality (4.1j) must hold for almost all ω.

The popularity of the joint chance-constrained formulation (4.1) stems from its abil-
ity to reduce the expected system operating cost substantially by allowing the violation
of reserve capacity constraints and/or line flow limits under a small ϵ-percentage of
realizations of ω. These realizations, or scenarios, are thus the most detrimental to
the system in terms of cost. Parameter ϵ in (4.1) controls the level of risk aversion
of the system operator (the lower, the more risk averse), to the point that if ϵ is set
to 0, formulation (4.1) becomes robustly feasible, meaning that all the constraints and
variable limits are to be satisfied with probability one.

Nonetheless, the critical nature of power systems practically forces operators to
guarantee robust feasibility. In this regard, formulation (4.1), even if ϵ = 0, offers
an incomplete picture of how power systems are actually operated. Indeed, in those
very few ω-scenarios for which AGC is unable or too costly to ensure the system’s
integrity, the operators can still take over the affine control policy and manually set
new operating points for some generators in the system, those needed to guarantee the
satisfaction of the system’s constraints ideally at the minimum cost. The fact that
formulation (4.1) ignores the possibility of a manual control taking over AGC (albeit
with a low occurrence) causes it to underestimate the operating cost when ϵ > 0 or
overestimate it when robust feasibility is pursued (ϵ = 0). The ultimate result is that
formulation (4.1) may produce uneconomical or suboptimal affine control policies.

To illustrate our point, we use an example based on the small power system depicted
in Fig. 4.1. The system includes two thermal generating units with the linear production
costs, reserve capacity costs and maximum power limits indicated in the figure. For
simplicity, the susceptances of all lines are assumed to be 1 p.u. and the capacity of
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each line is also specified in the figure. A single net demand of 60 MW is located at node
n3. We assume that the associated (random) forecast error can take on three different
values only, namely, 20, 10, and −20 MW, corresponding to three equally probable
realizations or scenarios 1, 2 and 3, in that order. The costs of deploying upward and
downward reserve, i.e., c+n and c−n , are 1.2 and 0.8 times the generator’s linear operating
cost, respectively.

n1 n2

n3

g1 g2

l1 (5MW)

l2 (80MW)

l3 (80MW)

d = 60 MW

c1 = 2 e/MWh

cd = 2 e/MW
cu = 1 e/MW

p = 50 MW

c1 = 1 e/MWh

cd = 1 e/MW
cu = 2 e/MW

p = 50 MW

Figure 4.1: Three-node illustrative example

Results from problem (4.1) when ϵ = 1/3 and ϵ = 0 are collated in the first two rows
of Table 4.1. These results include the optimal power dispatch, participation factors
and procured reserve capacities, together with the optimal expected operating cost.
Unsurprisingly, the results are quite sensitive to ϵ. For example, when this is set to zero
(to achieve robust feasibility), much more reserve capacity is to be procured than when
we allow the system’s constraints to be violated under one of the scenarios, in particular,
scenario 3. Accordingly, the cost increases from e95 to e137.5, when ϵ goes from 1/3
to 0. In contrast, if we take the solution delivered for ϵ = 1/3 and scenario 3 actually
occurs, meaning that the net demand forecast error takes on the value −20MW, the
AGC requires generator g2 to increase its production up to 65MW, that is, above its
maximum output limit, while exceeding the maximum capacity of line l1 too. But what
is more important from a practical point of view is that, under such a scenario, the
solution to problem (4.1) when ϵ = 1/3 does not allow for any manual re-dispatch that
can restore system feasibility immediately after, because no upward reserve capacity
has been procured beforehand.

Table 4.1: Results – Illustrative Example

Method p1 p2 β1 β2 ru1 ru2 rd1 rd2 Cost (e)
model (4.1) (ϵ = 1/3) 15 45 0 1 0 0 0 20 95
model (4.1) (ϵ = 0) 12.5 47.5 0.625 0.375 12.5 7.5 12.5 7.5 137.5
model (4.3) (ϵ = 1/3) 15 45 0 1 20 0 0 20 123
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4.2.2 Balancing Cost and Reliability

The previous example illustrates that formulation (4.1) may be too risky or too costly.
Instead, we propose next a novel joint chance-constrained formulation of the DC-OPF
problem that does account for the possibility of resorting to a manual re-dispatch in this
ϵ-percentage of events in which the implementation of AGC is too expensive or even
infeasible. To provide a more technical description of our proposal, Fig. 4.2 illustrates
how the mentioned approaches respond to an uncertain scenario. Our approach involves
the use of manual adjustments to balance and ensure reliability under extreme condi-
tions, while model (4.1) with ϵ = 0 only employs AGC and model (4.1) with ϵ > 0 does
not consider any corrective measures for adverse scenarios. To obtain our formulation,
we replace the set of constraints (4.1h)–(4.1i) in (4.1) with the following ones:∑

g∈G
rMg (ω) = 0 (4.2a)

r+g (ω)− r−g (ω) = −Ωβg + rMg (ω), ∀g ∈ G (4.2b)

− rdg ≤ −Ωβg + rMg (ω) ≤ rug , ∀g ∈ G (4.2c)

− f l ≤
∑
n∈N

Bln

∑
g∈Gn

(
pg − Ωβg + rMg (ω)

)
− dn + ωn

 ≤ f l, ∀l ∈ L (4.2d)

P
(
rMg (ω) = 0, ∀g ∈ G

)
≥ 1− ϵ, (4.2e)

where rMg (ω) is a random variable that represents the manual adjustment of the power
output of the generator g.

Equation (4.2a) is required for the implemented power adjustments to preserve the
power balance. Equation (4.2b) is analogous to (4.1h), but including the manual ad-
justment requested by the system operator. Inequalities (4.2c) and (4.2d) enforce that
the use of AGC in combination with manual re-dispatch guarantees that the system’s
constraints are satisfied under any realization of ω. Finally, in our proposal, chance-
constrained programming is employed for a different purpose than that in (4.1) whereby
the violation probability of system’s constraints is limited. Specifically, the joint chance-
constraint (4.2e) seeks to characterize the use of manual control as an occassional re-
course action, thus ensuring that AGC is the standard control policy. Thereby, the
system operator is capable to guarantee robust feasibility, that is, system’s security.
Again, constraints (4.2a)–(4.2d) are to be satisfied for almost all ω. The underlying
concept behind the performance of this set of constraints can be explained as follows:
AGC is employed to mitigate system imbalances, and if a technical constraint, be it
(4.2c) or (4.2d), is violated or enforcement entails significant costs (with a probability
less than ϵ), variable rMg (ω) assumes a non-zero value for any generator g to ensure fea-
sibility or to reduce the expensive operating cost associated with the restrictive nature
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Figure 4.2: Actions planned over the spectrum of uncertainty realizations to mitigate
imbalances and ensure the reliability of the power system. A: model (4.1) with ϵ = 0,
B: model (4.1) with ϵ > 0, C: Proposal.

of this affine control policy.
Our proposal can thus be formulated as follows:

min
Ξ

∑
g∈G

c1g pg + cugr
u
g + cdgr

d
g + E

[
c+g r

+
g (ω)− c−g r

−
g (ω)

]
(4.3a)

s.t. (4.1b)− (4.1g), (4.2a)− (4.2e), (4.1j). (4.3b)

Coming back to our example, results from (4.3) are also included in the last row of
Table 4.1. Observe that the system operating cost is significantly reduced with respect
to that of formulation (4.1) with ϵ = 0. Furthermore, as in the case of formulation (4.1)
with ϵ = 1/3, our proposal also renders a solution for which, if scenario 3 occurs, the
implementation of AGC violates the maximum output limit of generator g2 and the
capacity of line l1. However, unlike the solution to (4.1), the one delivered by our
proposal procures 20 MW of upward reserve capacity from generator g1 so that the
system operator can release this generator from AGC and manually dispatch it at 20

MW under scenario 3.
In the following section, we discuss how we solve formulations (4.1) and (4.3).

4.3 Solution Methodology

Chance-constrained programs such as (4.1) and (4.3) belong to the class of NP-hard
problems. In general, there is no finite, tractable reformulation of the chance-constraint
(4.1i) or (4.2e). As a result, a wide variety of different approaches have been proposed to
approximate the feasible region determined by these constraints, namely, distribution-
ally robust optimization (DRO) [111], the scenario approach (SA) [78], sample average
approximation (SAA) [93], and the inner convex approximations based on the condi-
tional value-at-risk (CVaR) [70] or ALSO-X [74].

In this chapter, we resort to SAA boosted with the bounding, tightening and valid
inequalities proposed in Chapter 3. To do that, as in Chapter 3, we assume that ω
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has a finite discrete support defined by a collection of atoms {ωs ∈ R|N |, s ∈ S} and
respective probability masses P(ω = ωs) = 1

|S| , ∀s ∈ S = {1, . . . , |S|}. Accordingly,
ωns and Ωs are realizations of the respective random variables under scenario s, and
the decisions rMgs , r+gs and r−gs for the dispatchable unit g may vary for each scenario s.
We define q = ⌊ϵ|S|⌋, the vector y of binary variables ys, ∀s ∈ S and the large enough
constants Mgs, Mgs. Thus, the MIP reformulation of problem (4.3) writes as follows:

min
Θ

∑
g∈G

c1g pg + cugr
u
g + cdgr

d
g +

1

|S|
∑
s∈S

c+g r
+
gs − c−n r

−
gs (4.4a)

s.t. (4.1b)− (4.1g) (4.4b)∑
g∈G

rMgs = 0, ∀s ∈ S (4.4c)

r+gs − r−gs = −Ωsβg + rMgs , ∀g ∈ G, s ∈ S (4.4d)

− rdg ≤ −Ωsβg + rMgs ≤ rug , ∀g ∈ G, s ∈ S (4.4e)

− f l ≤
∑
n∈N

Bln

∑
g∈Gn

(
pg − Ωsβg + rMgs

)
− dn + ωns

 ≤ f l, ∀l ∈ L, s ∈ S (4.4f)

− ysMgs ≤ rMgs ≤ ysMgs, ∀g ∈ G, s ∈ S (4.4g)

βg, r
+
gs, r

−
gs ≥ 0, ∀g ∈ G, s ∈ S (4.4h)∑

s∈S
ys ≤ q (4.4i)

ys ∈ {0, 1}, ∀s ∈ S, (4.4j)

where the set of decision variables is Θ = (pg, r
−
gs, r

+
gs rdg , r

u
g , ys, r

M
gs , βg).

Constraints (4.4g)–(4.4j) represent the sample-based MIP reformulation of the joint
chance-constraint (4.2e). For a given scenario s ∈ S, the inequalities (4.4g) establish
that a manual adjustment to the production of the dispatchable unit g in scenario s

can only be done when ys = 1. Otherwise, if ys = 0, the power forecast error must
be handled by the AGC. Expression (4.4i) ensures that the probability of the joint
chance-constraint is met and (4.4j) enforces the binary character of variables ys. A MIP
reformulation for the sample average approximation of (4.1) can be found in Section 3.3.
Note that (4.1) is an extension of (3.2), but the procedure to reformulate the joint chance
constraint is equivalent.

Chapter 3 demonstrates the importance of setting the values of Mgs and Mgs as
small as possible in order to tighten problem (4.4) and speed up its solution. To do so,
we adapt Algorithm 3.1 from Section 3.3.1 to tune these constants. The adaptation can
be found in Algorithm 4.1.

The output of Algorithm 4.1 are the tuned big-Ms, which are input for the MIP re-
formulation of (4.3). Note that, at each iteration, the big-M values decrease or remain
equal. In our experience, one iteration is enough to get a tight formulation of problem
(4.4). To reduce the computational burden of Algorithm 4.1, Step 2 is solved in par-
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Algorithm 4.1 Iterative Tuning of Mgs and Mgs

Input: Constraints (4.4b)-(4.4f), (4.4h)-(4.4i), parameter q related to the allowed violation
probability and the total number of iterations κ.
Output: The large constants Mk

gs,M
k

gs,∀g ∈ G, s ∈ S.

Step 1. Initialization, k = 0, M0
gs = rdg, M

0

gs = rug ,∀g ∈ G, s ∈ S.

Step 2. For each g ∈ G and s ∈ S update Mk+1
gs and M

k+1

gs as follows: If Mk
gs < 0, then

Mk+1
gs = Mk

gs, likewise for M
k+1

gs . Otherwise,

−Mk+1
gs /M

k+1

gs = min
Θ

/max
Θ

rMgs (4.5a)

(4.4b)− (4.4f), (4.4h)− (4.4i) (4.5b)

− ysM
k
gs ≤ rMgs ≤ ysM

k

gs, ∀g ∈ G, s ∈ S (4.5c)

0 ≤ ys ≤ 1, ∀s ∈ S. (4.5d)

Step 3. If k + 1 < κ, then k = k + 1 and go to Step 2. Otherwise, stop.

allel. Furthermore, as outlined in Section 3.3.1, if the computed big-M value in Step 2
is strictly lower than zero, then the corresponding constraint of (4.4g) can be safely
removed in problem (4.4), since the feasibility region of (4.5) is a relaxation of that in
(4.4). In addition, this improvement can be implemented in Algorithm 4.1, speeding it
up if the identified redundant constraint of (4.5c) is removed at the next iteration.

Moreover, we introduce the valid inequalities developed in Section 3.3.2 to tighten
the relaxed LP formulation of (4.4). These inequalities ensure that constraints (4.4e)
and (4.4f) are individually satisfied by the deployment of AGC in at least (1 − ϵ)-
percentage of scenarios. Thus, they are also valid in problem (4.4). To further tighten
the large constants Mgs and Mgs, we include these valid inequalities to the constraint
set (4.5) of Algorithm 4.1.

As seen in Chapter 2 and, indirectly, in Chapter 3, line constraints can significantly
increase the computational burden of problem (4.4). To mitigate this issue, we propose
to eliminate redundant line constraints (4.4f) from (4.4). To do so, we compute the
minimum and maximum power flow for each line and scenario using two optimization
problems. Mathematically, these optimization problems can be expressed as follows:

min
Θ

/max
Θ

fls =
∑
n∈N

Bln

∑
g∈Gn

(
pg − Ωsβg + rMgs

)
− dn + ωns

 , ∀l ∈ L, s ∈ S (4.6a)

s.t. (4.4b)− (4.4i) (4.6b)

0 ≤ ys ≤ 1, ∀s ∈ S. (4.6c)

Note that problem (4.6) is built on a relaxation of problem (4.4). Then, if the com-
puted power flow, fls, is strictly smaller (greater) than the line capacity f l (−f l), the
≤-constraint (≥) in (4.4f) can be safely removed. Additionally, we remark that the
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identified redundant line constraints (4.4f) can be also removed from problem (4.5) to
expedite Algorithm 4.1.

Alternatively, we implement a heuristic (see Algorithm 4.2) based on Algorithm 3.4
of Section 3.4.5. This heuristic identifies good, feasible solutions of problem (4.4) with
a low computational burden.

Algorithm 4.2 Iterative heuristic
Input: Stopping tolerance parameter δ

Require: Relax the integrality of y in (4.4)
q ← 0, q ← ⌊ϵ|S|⌋
while q − q ≥ δ do

Set q = (q + q)/2 and compute an optimal solution y∗ to (4.4).
Set q = q if P (y∗ = 0) ≥ 1− ϵ; otherwise, q = q

end while
Output: A feasible solution of model (4.4).

To illustrate the procedure we have described throughout this section, we summarize
each step in Algorithm 4.3 below.

Algorithm 4.3 Procedure to efficiently solve (4.4)
This algorithm demonstrates the steps carried out to solve the tight and compact version of
problem (4.4)

Step 1. Solve problem (4.6), ∀l ∈ L, s ∈ S, to identify redundant line flow con-
straints (4.4f) in problem (4.4), which can be safely removed, resulting in a more
compact model (4.4).

Step 2. Run Algorithm 4.1 including the valid inequalities proposed in Section 3.3.2 and
removing the redundant line constraints identified in previous step to strengthen
problem (4.4) tightening its big-M constants, i.e., Mgs and Mgs. In this chapter,
parameter κ is set to 1 as we have experienced similar results for greater values.

Step 3. Solve the resulting tight and compact mixed-integer model of problem (4.4). This
can be done in two ways:

(a) Directly solve the resulting mixed-integer program using off-the-shelf solvers.
(b) Use the heuristic proposed in Algorithm 4.2.

If we run Algorithm 4.3 choosing Step 3b, we can obtain an initial estimate of the
optimal cost of problem (4.4) with hardly any computational resources. This estimate
can then be included as an upper-bound constraint of the operating cost in Step 1 and/or
Step 2, as discussed in Chapters 2 and 3, to tighten and simplify the formulation (4.4),
thus efficiently solving it in Step 3a.

4.4 Evaluation Procedure

In this section, we outline the procedure for evaluating the performance of the two
approaches compared in this chapter, namely:
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• The joint chance-constrained problem with automatic generation control only for-
mulated in (4.1) and denoted as AGC-ϵ hereinafter. For ϵ = 0, the constrains
must be satisfied for all scenarios and model (4.1) is formulated as a linear pro-
gram. For ϵ ̸= 0, model (4.1) is reformulated as a MIP problem and efficiently
solved using the procedure described in Chapter 3.

• The joint chance-constrained problem with both automatic and manual generation
control formulated in (4.3) and denoted as AMGC-ϵ. Notice that for ϵ = 0, the
results obtained by AGC-0 and AMGC-0 are the same. For ϵ ̸= 0, model (4.3)
is reformulated as the MIP model (4.4) and solved using the procedure described
in Section 4.3, i.e., running Algorithm 4.3 choosing Step 3a. The approach that
solves model (4.4) using Step 3b in Algorithm 4.3 is denoted as AMGC-H-ϵ.

First, let (p∗g, r
d,∗
g , ru,∗g , β∗

g ) denote the optimal dispatch and reserve capacity decisions
delivered by AGC-ϵ, AMGC-ϵ or AMGC-H-ϵ with the in-sample scenario set S. We
evaluate the performance of these decisions on an out-of-sample scenario set denoted by
S ′ and indexed by s′, with |S| ≪ |S ′|. Each out-of-sample scenario s′ is characterized by
the realization of the forecast errors ωns′ and the system-wise aggregate forecast error
Ωs′ , with Ωs′ =

∑
n∈N ωns′ . For each scenario s′, we formulate the following real-time

operation problem:

min
Ψ

∑
g∈G

c1g p
∗
g + cugr

u,∗
g + cdgr

d,∗
g + c+g r

+
gs′ − c−g r

−
gs′ + P

∑
n∈N

(∆+
ns′ +∆−

ns′) (4.7a)

s.t.
∑
g∈G

rMgs′ +
∑
n∈N

∆+
ns′ −∆−

ns′ = 0, (4.7b)

r+gs′ − r−gs′ = −Ωs′β
∗
g + rMgs′ , ∀g ∈ G (4.7c)

− rd,∗g ≤ −Ωs′β
∗
g + rMgs′ ≤ ru,∗g , ∀g ∈ G (4.7d)

− f l ≤
∑
n∈N

Bln

(∑
g∈Gn

(
p∗g − Ωs′β

∗
g + rMgs′

)
− dn + ωns′ +∆+

ns′ −∆−
ns′

)
≤ f l, ∀l ∈ L (4.7e)

r+gs′ , r
−
gs′ ≥ 0, ∀g ∈ G (4.7f)

∆+
ns′ ,∆

−
ns′ ≥ 0, ∀n ∈ N . (4.7g)

Note that Ψ = (r+gs′ , r
−
gs′ , r

M
gs′ ,∆

+
ns′ ,∆

−
ns′) where ∆+

ns′ and ∆−
ns′ are two slack variables

that quantify the positive and negative power deviations at each node n, respectively.
These deviations are penalized in the objective function through parameter P , which is
to be set large enough so that scenario s′ is counted as infeasible if any of the correspond-
ing slack variables takes on a strictly positive value. For each scenario s′, model (4.7)
determines the reserve deployments to keep the network balanced at the minimum
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cost. Note that constraints (4.7b)-(4.7g) are equivalent to constraints (4.4c)-(4.4h) but
with the addition of the slack variables ∆+

ns′ ,∆
−
ns′ , which guarantee the feasibility of

model (4.7) for any scenario realization.

Using the solution to model (4.7), we split the out-of-sample scenario set S ′ into three
subsets as follows. First, we solve model (4.7) with variables rMgs′ , ∆

+
ns′ and ∆−

ns′ fixed to
0, that is, enforcing that forecast errors can only be handled by AGC. If the problem is
feasible, the scenario s′ belongs to subset S ′A and the real-time operation cost is denoted
by Cs′ . If this problem is infeasible, we solve model (4.7) without fixing any variable. If
max(∆+

ns′ ,∆
−
ns′) = 0, then the forecast errors can be offset using automatic and manual

reserves, and scenario s′ is included in subset S ′M. Finally, if max(∆+
ns′ ,∆

−
ns′) > 0,

then automatic and manual reserves are not enough to maintain the power balance and
power deviations occur during the real-time operation. In that case, scenario s′ belongs
to the subset S ′D. In the next section, we evaluate the performance of the different
approaches by comparing the percentage of scenarios that belong to each subset as well
as the expected cost of the real-time operation.

4.5 Numerical Experiments

In this section, we compare the performance of the different approaches presented in
Section 4.2 using a modified version of the IEEE-118 test system widely employed in the
technical literature on the topic. The IEEE-118 test system has 118 nodes, 19 generators
and 186 transmission lines, and the original data pertaining to this system are publicly
available in the repository [102]. We assume that six generators can provide reserves,
and their corresponding data is collated in Table 4.2. Notice that units 2, 11 and 19 have
a much higher production cost than units 7, 10 and 17. For these six units, the reserve
deployment costs are computed as c−g = 0.8 c1g and c+g = 1.2 c1g, and the reserve capacity
costs are cdg = cug = 0.2c1g. Besides, we add 25 wind power plants throughout the system
as suggested in [112]. Given that the variability in the load is relatively small compared
to that of wind power, we only consider forecast errors in the latter. We consider that
the wind power forecast error is normally distributed, i.e., ω ∼ N(0,Σ), where 0 and
Σ represent, respectively, the zero vector and the covariance matrix. We also assume
that the standard deviation of ωn at node n is a 15% of the wind power forecast. The
uncertainty pertaining to the renewable generation of the wind farms is characterized
using 1000 scenarios, that is, |S| = 1000. Finally, the penalty cost P due to deviations
is twice the production cost of the most expensive generator. All data of this modified
118-bus system is available at [113].

To provide meaningful statistics, each method is run for ten different sets of ran-
domly generated scenarios. Accordingly, we report results averaged over these ten in-
stances. All optimization problems have been solved using GUROBI 9.1.2 [103] on a
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Table 4.2: Generators with capability to provide reserve.

g c1g c−g c+g cdg/c
u
g rdg/r

u
g

2 124.6 99.7 149.5 24.9 85
7 16.7 13.3 20.0 3.3 223
10 16.1 12.8 19.3 3.2 195
11 100.0 80.0 120.0 20.0 441
17 12.6 10.1 15.1 2.5 653
19 110.0 88.0 132.0 22.0 79

Linux-based server with CPUs clocking at 2.6 GHz, 6 threads and 16 GB of RAM. In
all cases, the optimality GAP has been set to 10−4 and the time limit to 10 hours.

4.5.1 Out-of-sample Performance

We compare the different approaches following the out-of-sample evaluation procedure
described in Section 4.4 with 100 000 different scenarios drawn from the same distribu-
tion, that is, |S ′| = 100 000. Table 4.3 collates the results of four different approaches,
namely: i) AGC-0, which corresponds to model (4.1) with ϵ = 0% (i.e., all scenarios must
be satisfied); ii) AGC-5, which is model (4.1) with ϵ = 5% (that is, 50 scenarios may
have violated constraints); iii) the proposed AMGC-5 approach, which is model (4.3)
with ϵ = 5% (50 scenarios may use manual adjustments to re-dispatch generators), and
iv) AMGC-H-5, which corresponds to a heuristic procedure to solve AMGC-5. These
results include the percentage of (i) the number of scenarios in which the forecast errors
are handled using automatic generation control only |S ′A|, (ii) the number of scenarios
in which manual re-dispatch is required to keep power balance throughout the network
|S ′M|, (iii) the number of scenarios in which automatic and manual reserves are not
enough to offset power imbalances and therefore, power deviations are inevitable and
the system security is compromised |S ′D|, and (iv) the total expected cost.

Table 4.3: Out-of-sample performance comparison.

|S ′A| |S ′M| |S ′D| E[Cs′ ] (ke)
AGC-0 99.56% 0.16% 0.28% 73.65
AGC-5 94.12% 0.17% 5.71% 53.04
AMGC-5 94.30% 5.41% 0.29% 60.15
AMGC-H-5 94.77% 4.98% 0.25% 61.05

As expected, AGC-0 gives very conservative and expensive solutions in which power
imbalances are handled using AGC in 99.56% of the scenarios. Conversely, AGC-5
obtains OPF solutions that are 28% cheaper on average than those of AGC-0. How-
ever, these solutions are not able to offset power imbalances with both types of reserves
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in 5.71% of the scenarios, thus compromising the safety of the system. The proposed
AMGC-5 approach is able to compute dispatch solutions taking into account both auto-
matic and manual reserves. Indeed, imbalances are compensated with AGC in 94.30% of
the scenarios, and manual reserves are only required in 5.41% of them. Note that these
percentages are very close to the desired values of 95% and 5%. Although deviations
still exist in 0.29% of the scenarios, the proposed methodology reduces the expected
cost by 18% with respect to AGC-0 for similar reliability levels. Finally, the results of
AMGC-H-5 are slightly more conservative and expensive than those of AMGC-5, but
certainly these results confirm that Algorithm 4.2 is able to provide a good feasible
solution to the proposed formulation (4.4).

Table 4.4: Comparison of decisions made by AGC and AMGC.

Cheap Generators Expensive Generators
β rd ru β rd ru

AGC-0 0.77 533.6 538.5 0.23 160.1 162.5
AGC-5 1.00 509.4 364.5 0.00 0.0 0.0
AMGC-5 0.99 684.7 386.3 0.01 7.9 314.7
AMGC-H-5 0.96 675.7 395.3 0.04 16.9 305.6

To give more details on the out-of-sample performance of the different approaches,
Table 4.4 gathers a summary of the OPF decisions β∗

g , r
d,∗
g and ru,∗g . For conciseness, we

aggregate the units providing reserves into cheap and expensive generators. Interest-
ingly, AGC-0 yields more conservative OPF decisions since both cheap and expensive
generators are dispatched to provide AGC. Conversely, the other methods mainly al-
locate AGC to cheap generators only. Notice that in the case of AGC-5, the values
of β, rd and ru are 0 for expensive generators, which means that these units will not
be available for manual reserve during the real-time operation of the power system
and therefore, the probability of incurring dangerous power deviations increases. Con-
versely, both AMGC-5 and AMGC-H-5 procure more reserve capacities so that cheap
and expensive generators can be effectively and efficiently redispatched to minimize the
real-time operation cost while reducing power deviations.

To further illustrate the differences between the methods compared in this section,
we compute for each out-of-sample scenario s′ the total deviation ∆s′ as follows:

∆s′ =
∑
n∈N

(
∆+

ns′ +∆−
ns′
)

Figure 4.3 plots the average value of ∆s′ for the 5% scenarios with largest deviations
(∆̄5%) versus the expected cost for each of the 10 independent samples. As observed,
AGC-0 involves very low deviation levels but the highest expected cost. Under AGC-
5, the expected cost is decreased at the expense of increasing the system deviations.
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Figure 4.3: Expected cost vs. the average deviation of the %5 scenarios with the largest
deviations.

Finally, the two methods proposed in this chapter manage to maintain the low levels of
deviations featured by AGC-0 at a significantly lower cost.

4.5.2 Computational Study

To conclude this case study, we assess the computational performance of the different
approaches. AGC-0 is formulated as a linear programming problem and takes an av-
erage of 6.1s to be solved. With the efficient solution procedure proposed in Chapter
3, AGC-5 can be solved in 14.3s. However, the proposed AMGC-5 requires extra vari-
ables to properly model the deployment of manual reserves, which increases its average
computational time to 3288.5s. Nevertheless, the heuristic procedure described in Sec-
tion 4.3, i.e., running Algorithm 4.3 choosing Step 3b, can reduce this time to 73.6s
with a very slight impact on the performance of AMGC-5. Note that all computational
times include the pre-processing step, which can be parallelized (we take the maximum
time of all optimization problems), if necessary.

Since AMGC-H-5 is 44.7 times faster than AMGC-5, we suggest to use the former
to include an upper-bound cost constraint in the Step 1 and/or Step 2 of Algorithm
4.3, in the spirit of what we have proposed and discussed in the previous chapters of
this thesis. This upper-bound cost constraint can be exploited in both the screening
of line constraints of Section 4.3, i.e., Step 1 of Algorithm 4.3, and in the application
of Algorithm 4.1 to tune the big-M constants, i.e., Step 2 of Algorithm 4.3, replicating
what is done in Section 3.4.6. It is important to note that Mgs and Mgs are related
to the deployment of manual reserves, which affects the cost. Therefore, by imposing
a maximum cost, these constants can be further tightened. For that reason, in this
chapter we only use the cost-based inequality to obtain tighter big-Ms, that is Step 2
of Algorithm 4.3, and not to further screen out superfluous line constraints, although
the latter is possible. By incorporating the cost-based inequality into Algorithm 4.1,
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the cost of the root relaxation of problem (4.4) increases on average from e59370 to
e59619, although without eliminating any superfluous constraints, i.e., the resulting
Mgs and Mgs are always greater than zero. This slight improvement results in an
average reduction of the computational time by up to 2000s approximately. Note that
the time of executing the heuristic is included in the total solution time. Hence, this fact
demonstrates once again the potential of adding cost information in the pre-processing
step.

4.6 Summary and Conclusions

Existing approaches to solving the stochastic OPF are either overly conservative and
expensive, or leave the system vulnerable to low-probability, high-impact events. To
address this issue, we present a novel stochastic optimal power flow formulation that
distinguishes between “normal” operation conditions in which power deviations are bal-
anced with AGC only, and “adverse” operation under which manual re-dispatch actions
are required. As a result, our approach yields solutions that are more reliable and less
conservative than existing approaches in the literature.

Our model is formulated as a joint chance-constraint program that limits the prob-
ability that operators manually adjust the power output of the generators. To assess
the contributions of our proposal, we compare it with existing approaches using an
illustrative 3-bus network and a more realistic 118-bus system. The obtained results
for the larger system demonstrate that the proposed methodology is able to yield dis-
patch decisions that maintain almost identical security levels, but are 18% cheaper than
approaches that pursue feasibility with AGC actions only under any uncertainty realiza-
tion. As a counterpart, the computational burden of the proposed approach increases
due to the modeling of the manual re-dispatch actions. However, we also suggest a
heuristic algorithm to solve the proposed model and verify that the computational time
is drastically shortened without causing a significant decline in performance. Finally,
we propose incorporating economic information into the big-M tightening algorithm by
first solving a heuristic. This approach leads to a tighter formulation and results in a
significant computational speedup.
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In this closing chapter, the thesis is summarized, conclusions are drawn and direc-
tions for future research are given.

5.1 Summary and Conclusions

The unit commitment (UC) and optimal power flow (OPF) are fundamental tools at the
core of power systems operation and are widely used in electricity markets. The UC and
OPF are optimization problems that translate into computationally challenging tasks
for several reasons and, given their critical role in electricity markets, any enhancement
of them may result in significant benefits. In this thesis, we focus on addressing the
following challenges:

1. Computational burden of the UC problem. The on/off status of generat-
ing units are modeled as binary variables which render a combinatorial decision-
making process incurring a significant computational time.

2. Incorporating uncertainty of electricity demand and renewable gener-
ation in the OPF problem. Accurately quantifying the impact of uncertainty
is essential in OPF to ensure the secure operation of power systems. Conse-
quently, stochastic OPF (SOPF) models emerge, but they present the difficulties
of trading-off between reliability and cost, and being tractable.

To cope with these issues, several topics and tools have been studied in this thesis:

• Compacting UC formulation. It is well-known that network-constraints com-
plicate the solution to the UC problem. In today’s power systems, most transmis-
sion lines are oversized (under a pre-contingency state), making their constraints
superfluous. In this thesis, we delve into methods that speed up the solution of
UC by removing superfluous transmission constraints.

• Joint chance-constrained OPF (JCC-OPF). This model reduces the ex-
pected cost of operation by ruling out the satisfaction of technical constraints
for a specified percentage of uncertainty realizations, ensuring the security of the
system for the rest. The adaptability and practicality of the model is notewor-
thy, as the system operator can adjust the proportion of scenarios violated, thus,
influencing both system reliability and operating costs. As a drawback, this op-
timization problem lacks a finite, tractable reformulation. Among the existing
approximations, this thesis focuses on investigating the sample average approxi-
mation (SAA), which yields the least conservative performance in terms of cost.
The shortcoming of the SAA reformulation is that it takes significant computa-
tional time due to the presence of binary variables, thus leading to a mixed-integer
program (MIP).



80 Chapter 5. Closure

• Integration of various reserve actions. In SOPF models, in particular JCC-
OPF problems, it is common to assume that the forecast errors of electricity
demand and renewable generation are balanced by the deployment of reserve,
such as automatic generation control (AGC). The AGC is modeled as an affine
control policy, thus its implementation simplifies the solution of the SOPF. How-
ever, under extreme scenarios, AGC can jeopardize the system reliability or incurs
significant costs. In practice, in those cases, system operators may resort to addi-
tional resources, e.g., manual reserve. For that reason, we study the integration
of AGC and manual reserve as a tool to balance reliability and cost in SOPF
problems.

In this thesis, we have developed several tight and compact optimization models for
UC and OPF problems that contribute to these research challenges. The contents of
this thesis are included in the published papers [46,47], and the preprint [48]:

• In our paper [46], we present a methodology to reduce the computational time of
the UC by screening out superfluous line capacity constraints. The optimization-
based methods proposed in the literature only remove redundant constraints and
thus, involve moderate computational savings. This paper presents a novel con-
straint screening methodology that removes both redundant and inactive con-
straints and further reduces the computational burden of this problem. As ex-
isting approaches, the one we propose is based on computing the maximum line
power flows on an LP-relaxation of the UC formulation. As a salient feature of
our work, we propose to tighten this LP-relaxation to exclude uneconomical op-
erating conditions. In doing so, our methodology is able to filter out a higher
number of line capacity constraints. Simulation results using a 2000-bus network
show that our proposal reduces the number of retained constraints and the so-
lution time by 15% and 45%, respectively, if compared with existing benchmark
methods. Furthermore, the constraint-screening rate of our approach remains
quite unaltered when topological changes of the network are considered, which
suggests that our approach is resilient against this type of changes. Finally, even
though the cost inequality we use to increase the constraint-screening power of
our method is data-driven, our numerical analysis reveals that the solution to the
reduced UC problem we produce is generally feasible and optimal in the original
UC formulation, if enough data are available.

• In the work [47], we propose a novel exact resolution technique for a MIP SAA-
based reformulation of the JCC-OPF problem. Our methodology includes a
screening method to eliminate superfluous constraints based on an iterative pro-
cedure to repeatedly tighten the Big-Ms present in the MIP. These procedures are
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combined with the addition of valid inequalities based on the special structure of
the model. Said inequalities strengthen its linear relaxation and allow for addi-
tional screening of constraints. The resultant model is thus compact and tight.
In the case study, we show that, in comparison with the benchmark model, our
methodology provides remarkable results in terms of the linear relaxation bounds,
the RAM memory needed to solve the instances, and the total computational
time. Specifically, our method TS+V solves to optimality all of the instances
generated for the IEEE-RTS-118 and the IEEE-RTS-300 test systems, the ma-
jority of which are not solved within 10 hours of computational time using the
benchmark approach. Furthermore, the average number of constraints eliminated
from all instances with TS+V always exceeds 95% of them, and the lower bound
is markedly increased by the inclusion of the valid inequalities, showing the out-
standing results of the combination of the methods developed. It is worth noting
that the addition of the valid inequalities enhances the tightness of the model but
compromises its compactness, albeit this trade-off is counterbalanced by augment-
ing the filtering rate of constraints within the tightening-and-screening procedure.
The comparison of our results with those provided by existing approximate and
exact methods shows that our approach is computationally very competitive for
small and medium-sized instances, always providing the best results in terms of
cost. For the large instances addressed, while outperformed by the approximate
methods in terms of computational time (as expected), our exact solution strategy
not only provides a certificate of optimality but also returns the optimal solution
within the set time limit. Finally, we are able to speed up the resolution of the
largest instances about four times by incorporating information from the objec-
tive function during the pre-processing step. This is achieved through the use of
a heuristic that delivers a good upper bound on the optimal OPF cost.

• In the preprint [48], we present a novel SOPF model. Existing approaches to
solving the SOPF are either overly conservative and expensive, or leave the system
vulnerable to low-probability, high-impact events. The novel SOPF formulation
distinguishes between “normal” operation conditions in which power deviations
are balanced with AGC only, and “adverse” operation under which manual re-
dispatch actions are required. As a result, our approach yields solutions that
are more reliable and less conservative than existing approaches in the literature.
Our model is formulated as a joint chance-constraint program that limits the
probability that operators manually adjust the power output of the generators. In
the case study, the obtained results demonstrate that the proposed methodology is
able to yield dispatch decisions that maintain almost identical security levels, but
are 18% cheaper than approaches that pursue feasibility with AGC actions only
under any uncertainty realization. As a counterpart, the computational burden
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of the proposed approach increases due to the modeling of the manual re-dispatch
actions. However, we also suggest a heuristic algorithm to solve the proposed
model and verify that the computational time is drastically shortened without
causing a significant decline in performance. Finally, we propose incorporating
economic information into the Big-M tightening by first solving a heuristic. This
approach leads to a tighter formulation and results in a significant computational
speedup.

5.2 Limitations of the Conducted Research

The findings garnered from the research subject of this thesis provide noteworthy con-
tributions within the realm of power system operation. Nonetheless, this study encom-
passes certain limitations that necessitate further investigation to bolster the contribu-
tions raised in this thesis. The following are the delineated limitations:

1. The cost-driven screening method is based on a single-period version of the UC.
This poses a practical limitation, as the UC problem entails a 24-hour time horizon
including supplementary ramping limits and minimum down- and up-time con-
straints. An extended formulation of the UC brings about additional challenges
to be addressed in the screening method, such as deriving a tight multi-period
UC relaxation, and defining a proper net demand set as well as estimating a sys-
tem operating cost that accurately represents an upper bound of the optimal one
within the specified time horizon.

Furthermore, the cost-driven screening relies on imposing an upper bound on the
operating cost, thus discarding uneconomical operating conditions and increas-
ing the screening power. This upper bound cost is estimated through statistical
regression where pairs of historical data on optimal UC cost and aggregate net de-
mand are needed. Similarly to other machine learning techniques, in cases where
an ample amount of data is accessible, the likelihood of misidentifying redundant
or inactive constraints is minimal, as we demonstrate through the numerical ex-
periments carried out in this thesis. Nonetheless, our data-driven approach does
not provide performance guarantees, thus implying the possibility of erroneously
identifying superfluous constraints that may result in suboptimal or infeasible
solutions.

2. The proposed methodology for solving the SAA-based JCC-OPF, which is based
on deriving strong valid inequalities, exhibits the limitation of being tailored
towards a particular form of the matrix constraint. Specifically, the derived
valid inequalities in this thesis are built on linear constraints and rely on a two-
dimensional k-envelope framework, which becomes impractical when extended to
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higher-dimensional cases.

Moreover, the valid inequalities are individually derived for each constraint in the
joint-chance constraint system. In doing so, these valid inequalities do not capture
potential dependencies among the constraints. For example, certain constraints
may dominate others, such that the satisfaction of those constraints that are
dominant inherently guarantees the satisfaction of the remaining constraints. If
such an approach were undertaken, it would yield stronger valid inequalities. This
issue can be remedied by formulating valid inequalities that merge variables from
subgroups of constraints within the joint-chance constraint system. However, it is
worth noting that as the degree of combination increases, so does the associated
computational cost.

3. The novel SOPF introduced in this work, which integrates both automatic and
manual reserves, regards thermal generating units as the sole recourse for ad-
dressing deviations from the predicted net demand. However, while this approach
expands the repertoire of actions available to system operators traditionally used
in the literature, it could be further enhanced by incorporating cutting-edge tech-
nologies already deployed in corrective control mechanisms.

Viable options of cutting-edge technology are high voltage direct current connec-
tions (HVDC) and phase shifting transformers (PST). These technologies are
typically managed by the system operator and offer cost-efficient solutions, as
it extends the range of potential solutions. In contrast, resorting to generation
re-dispatching, which interferes with the market operation and entails substan-
tial expenses, can be avoided. These technologies are already considered in some
works, as [114], where they are implemented to effectively address system contin-
gencies and respond to uncertainty.

5.3 Outlook

Directions for future research resulting from the study carried out in this thesis are
listed below:

1. Application of the cost-driven screening method to multi-period unit commitment
formulations that include inter-temporal constraints such as ramping limits and
minimum times. In this case, the challenges are twofold, namely, i) building a
sufficiently tight relaxation of the multi-period UC to produce an algorithm with
a reasonable screening power, and ii) designing a proper set of net demands and
finding a tight upper bound on the system operating cost for a given time horizon.
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2. A promising future research avenue for the proposed methodology to solve the
SAA-based JCC-OPF problem consists of the development of a generalized set
of valid inequalities that combine variables from pairs or subgroups of lines and
generators.

3. The novel SOPF proposed in this thesis has the potential to be enhanced through
the integration of cutting-edge technology, rather than relying on manual adjust-
ments of generators to ensure system balance and reliability for extreme, low prob-
able scenarios. Promising options for new technology integration include HVDC
and PST. The integration of such technologies enables greater flexibility in the
operation of power systems, leading to significant reductions in operating costs.
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