
UNIVERSIDAD DE CÁDIZ

TESIS DOCTORAL

Técnicas de Prueba Avanzadas para
la Generación de Casos de Prueba

Advanced Testing Techniques for Test
Case Generation

Autor:

Kevin Jesús Valle Gómez

Directores:
Dra. Inmaculada Medina Bulo

Dr. Pedro Delgado Pérez

Escuela Superior de Ingeniería
Programa de Doctorado en Ingeniería Informática

Fecha: 31 de enero de 2023

http://www.uca.es
https://ucase.uca.es/kevin
http://esingenieria.uca.es/

Conformidad de los Directores

Da María Inmaculada Medina Bulo y D. Pedro Delgado Pérez, profesores del Depar-

tamento de Ingeniería Informática de la Universidad de Cádiz, siendo Directores de la

Tesis titulada Técnicas de Prueba Avanzadas para la Generación de Casos de Prueba,

realizada por D. Kevin Jesús Valle Gómez y enmarcada en el Programa de Doctorado

en Ingeniería Informática, para proceder a los trámites conducentes a la presentación y

defensa de la tesis doctoral arriba indicada, informan que se autoriza la tramitación de

la tesis.

Los directores de tesis

Inmaculada Medina Bulo Pedro Delgado Pérez

Puerto Real, a 31 de enero de 2023.

ii

Agradecimientos

Qué difícil es mencionar a todas las personas que tengo en el pensamiento, que habéis

hecho que esta tesis doctoral sea posible. Tenéis mi más sincero agradecimiento, espe-

cialmente:

• Inmaculada y Pedro, mis directores y compañeros, grandes ejemplos en lo personal

y en la investigación. Confiasteis en mí a pesar de todas las dificultades y cambios

a los que nos hemos enfrentado. Gracias por vuestra paciencia y buen hacer.

• Mi madre y mi padre, por su incondicional apoyo y ayuda desde siempre. Me habéis

arropado en todas mis decisiones, y habéis hecho posible que sea quien soy ahora.

• Mi hermano, Abel, mi ingeniero por referencia. Siempre conmigo, intercambiando

memes, noticias interesantes y no siempre muy sensatas, y guiándome por mundos

nuevos. El mejor apoyo y aliado que se puede tener.

• Todos los miembros del grupo UCASE. En los buenos y en los malos momentos

habéis sido como mi segunda familia.

• Carmina, por ser mi compañera y mentora desde mis inicios en este mundo de la

investigación. Esto es un sitio mejor gracias a ti.

• Antonio García, por hacerme ver que este trabajo realmente era posible y servir

de guía con su paciencia infinita. Mi experiencia en Birmingham fue fundamental,

imprescindible para estar donde estoy ahora.

• Toda la gente que ha estado conmigo en la Universidad. Como David, a quien llevo

presente gracias a los desayunos y viajes “divulgativos” que hemos tenido. Juan

Carlos, quien día a día sigue ayudándome a tomar las mejores decisiones. Dani,

quien se ha ganado con creces su sitio, por todas las risas que hemos tenido juntos.

Y otros muchos, como Fernando y Damián, que hacen que volver al trabajo sea

mucho más agradable.

• Quien me aguanta personalmente día a día, con su cariño y paciencia. Sin darse

cuenta, ha aportado citas que quedarán para siempre reflejadas en este documento

de tesis. Lo mejor está por venir.

• Luna, cuyas siestas en mi mochila me recargaron el espíritu de energía.

Con todo mi corazón, a mis abuelos.

iv

Agradecimientos Institucionales

Este trabajo fue financiado por la beca para la realización de tesis doctorales en la

industria con referencia 2017-083/PU/EPIF-FPI-NAVANTIA/CP de la Universidad de

Cádiz y la empresa Navantia, así como los fondos FEDER a través de los proyectos

nacionales del Ministerio de Ciencia e Innovación con referencia TIN2015-65845-C3-3-

R, RTI2018-093608-B-C33, RED2018-102472-T, PID2021-122215NB-C33 y PDC2022-

133522-I00.

vi

“The saddest aspect of life right now is that science gathers knowledge faster than society

gathers wisdom.”

Isaac Asimov

Abstract

Software testing is a crucial phase in software development, particularly in contexts such

as critical systems, where even minor errors can have severe consequences. The advent of

Industry 4.0 brings new challenges, with software present in almost all industrial systems.

Overcoming technical limitations, as well as limited development times and budgets, is

a major challenge that software testing faces nowadays. Such limitations can result in

insufficient attention being paid to it.

The Bay of Cadiz’s industrial sector is known for its world-leading technological projects,

with facilities and staff fully committed to innovation. The close relationship between

these companies and the University of Cadiz allows for a constant exchange between

industry and academia.

This PhD thesis aims to identify the most important elements of software testing in

Industry 4.0, based on close industrial experience and the latest state-of-the-art work.

This allows us to break down the software testing process in a context where large teams

work on large-scale, changing projects with numerous dependencies. It also allows us to

estimate the percentage benefit that a solution could provide to test engineers throughout

the process.

Our results indicate a need for non-commercial, flexible, and adaptable solutions for

the automation of software testing, capable of meeting the constantly changing needs of

industry projects. This work provides a comprehensive study on the industry’s needs and

motivates the development of two new solutions using state-of-the-art technologies, which

are rarely present in industrial work. These results include a tool, ASkeleTon, which

implements a procedure for generating test harnesses based on the Abstract Syntax Tree

(AST) and a study examining the ability of the Dynamic Symbolic Execution (DSE)

testing technique to generate test data capable of detecting potential faults in software.

This study leads to the creation of a novel family of testing techniques, called mutation-

inspired symbolic execution (MISE), which combines DSE with mutation testing (MT)

to produce test data capable of detecting more potential faults than DSE alone. The

findings of this work can serve as a reference for future research on software testing in

Industry 4.0.

The solutions developed in this PhD thesis are able to automate essential tasks in soft-

ware testing, resulting in significant potential benefits. These benefits are not only for

the industry, but the creation of the new family of testing techniques also represents a

promising line of research for the scientific community, benefiting all software projects

regardless of their field of application.

Resumen

La prueba del software es una de las etapas más importantes durante el desarrollo de soft-

ware, especialmente en determinados tipos de contextos como el de los sistemas críticos,

donde el más mínimo fallo puede conllevar la más grave de las consecuencias. Nuevos

paradigmas tecnológicos como la Industria 4.0 conllevan desafíos que nunca antes se

habían planteado, donde el software está presente en prácticamente todos los sistemas

industriales. Uno de los desafíos más importantes a los que se enfrenta la prueba del

software consiste en superar las limitaciones técnicas además de los tiempos de desar-

rollo y presupuestos limitados, que provocan que en ocasiones no se le preste la atención

que merece. El tejido industrial de la Bahía de Cádiz es conocido por sacar adelante

proyectos tecnológicos punteros a nivel mundial, con unas instalaciones y un personal

totalmente implicado con la innovación. Las buenas relaciones de este conjunto de empre-

sas con la Universidad de Cádiz, sumadas a la cercanía geográfica, permiten que haya

una conversación constante entre la industria y la academia.

Este trabajo de tesis persigue identificar los elementos más importantes del desarrollo de

la prueba del software en la Industria 4.0 en base a una experiencia industrial cercana,

además de a los últimos trabajos del estado del arte. Esto permite identificar cada etapa

en la que se desglosa la prueba del software en un contexto donde trabajan equipos muy

grandes con proyectos de gran envergadura, cambiantes y con multitud de dependencias.

Esto permite, además, estimar el porcentaje de beneficio que podría suponer una solución

que ayude a los ingenieros de prueba durante todo el proceso.

Gracias a los resultados de esta experiencia descubrimos que existe la necesidad de solu-

ciones para la automatización de la prueba del software que sean no comerciales, flexibles

y adaptables a las constantes necesidades cambiantes entre los proyectos de la industria.

Este trabajo aporta un estudio completo sobre las necesidades de la industria en relación

a la prueba del software. Los resultados motivan el desarrollo de dos nuevas soluciones

que utilizan tecnologías del estado del arte, ampliamente usadas en trabajos académicos,

pero raramente presentes en trabajos industriales. En este sentido, se presentan dos

resultados principales que incluyen una herramienta que implementa un procedimiento

para la generación de arneses de prueba basada en el Árbol de Sintaxis Abstracta (AST)

a la que llamamos ASkeleTon y un estudio donde se comprueba la capacidad de la técnica

de pruebas Ejecución Simbólica Dinámica (DSE, por sus siglas en inglés) para generar

datos de prueba capaces de detectar fallos potenciales en el software. Este estudio deriva

en la creación de una novedosa familia de técnicas de prueba a la que llamamos mutation-

inspired symbolic execution (MISE) que combina DSE con la prueba de mutaciones (MT,

por sus siglas en inglés) para conseguir un conjunto de datos de prueba capaz de detectar

más fallos potenciales que DSE por sí sola.

Las soluciones desarrolladas en este trabajo de tesis son capaces de automatizar parte de

la prueba del software, resultando en unos beneficios potenciales importantes. No solo

se aportan beneficios a la industria, sino que la creación de la nueva familia de técnicas

de prueba supone una línea de investigación prometedora para la comunidad científica,

siendo beneficiados todos los proyectos software independientemente de su ámbito de

aplicación.

Contents

Conformidad de los Directores ii

Agradecimientos iv

Agradecimientos Institucionales vi

Abstract x

Resumen xi

List of Figures xvii

List of Tables xviii

Abbreviations xix

1 Introduction 1
1.1 Introduction and motivation . 1
1.2 Objectives . 4
1.3 Contributions . 6
1.4 Structure of the doctoral thesis . 7

2 Background and State of the Art 10
2.1 Software testing . 10
2.2 Automatic Test Generation in the literature 12
2.3 Software Testing Techniques . 13

2.3.1 Classification of software testing strategies 13
2.3.2 Mutation Testing (MT) . 15
2.3.3 Symbolic Execution . 16
2.3.4 Exploring the Benefits of Combining Dynamic Symbolic Execution

(DSE) with Mutation Testing (MT) 19
2.4 Abstract Syntax Tree (AST) . 22
2.5 Industry 4.0 . 25
2.6 Software testing in Industry 4.0 . 27

2.6.1 The transition of software testing to Industry 4.0 27

xiv

Contents xv

3 Software testing needs in industry 32
3.1 Motivation . 33
3.2 Test generation in industrial environments 34

3.2.1 Software testing challenges in Industry 4.0 34
3.2.2 Stages of industrial software testing 36
3.2.3 Current limitations in software testing 38
3.2.4 Benefits . 39

3.3 Chapter conclusions . 41

4 Automatic generation of test harnesses via AST 43
4.1 Motivation . 44
4.2 ASkeleTon: test harness generation from the AST 46
4.3 Test harness design . 47

4.3.1 BOOST as default test framework 48
4.3.2 Structure of ASkeleTon test harnesses 49

4.4 ASkeleTon: design and implementation . 51
4.4.1 SUT Requirements . 52
4.4.2 Generation of the AST . 53
4.4.3 Code analysis: AST Matchers . 53
4.4.4 Test code generation . 60

4.5 Resulting test harness . 68
4.6 Case Study: use of ASkeleTon . 70
4.7 Chapter conclusions . 73

5 Combining MT and DSE for test data generation 77
5.1 Motivation . 78
5.2 Combining MT and DSE . 79

5.2.1 Evaluating initial effectiveness of DSE-generated test cases for mutant
killing . 79

5.2.2 Case study: experimental setup . 80
5.2.3 Evaluation results . 86

5.3 Defining Mutation-Inspired Symbolic Execution (MISE) 89
5.3.1 Naive MISE : an initial combination of DSE and MT 90
5.3.2 Implementing naive MISE . 90

5.4 Future MISE implementations . 95
5.4.1 Reinforcing the threshold values approach 95
5.4.2 Modifying constraints . 97
5.4.3 Considering variables that directly affect the program output . . . 99

5.5 Chapter conclusions . 101

6 Results 104
6.1 Industrial experience . 104
6.2 ASkeleTon . 105
6.3 Mutation-Inspired Symbolic Execution (MISE) 106

6.3.1 First steps in the constraint modification approach 107
6.3.2 MuCPP and KQuery: equivalences between mutation operators . . 108
6.3.3 Discussion . 118

Contents xvi

7 Conclusions and Future Work 121
7.1 Conclusions . 121
7.2 Future work . 124
7.3 Publications . 126
7.4 Projects . 128

Bibliography 131

List of Figures

2.1 Example of an AST tree . 23
2.2 Industry 4.0 schema . 26

3.1 Interaction between different steps . 38

4.1 ASkeleTon general schema . 47
4.2 ASkeleTon workflow . 51
4.3 Structure of the files and directories generated by ASkeleTon 68

5.1 Evaluating mutation coverage from DSE execution on the original SUT. . 80
5.2 KLEE logo . 83
5.3 MuCPP logo . 85
5.4 Naive MISE: combining DSE and MT for improved mutation coverage. . . 90

xvii

List of Tables

2.1 Example of concrete execution . 17

5.1 Some of the most representative utilities of GNU Coreutils 81
5.2 Traditional mutation operators included in MuCPP 86
5.3 Killed mutants per program in the first evaluation 87
5.4 Mutants generated per mutation operator (excluding numfmt) 88
5.5 Percentage increment of killed mutants . 91
5.6 Example of detected crossfire mutants . 92
5.7 Illustrative set of mutants with the reasons identified for the limited mutant

detection of DSE. 93
5.8 Paths explored in Listing 5.3 with different values for the test cases. . . . 96

6.1 Mutation operator equivalence in the KQuery language 110
6.2 ARS and ARS behaviour in C/C++ . 112
6.3 ARU behaviour in C/C++ . 114
6.4 ADS behaviour in C/C++ . 115
6.5 COD behaviour in C/C++ . 116
6.6 LOR behaviour in C/C++ . 117

xviii

Abbreviations

DSE Dynamic Symbolic Execution

MT Mutation Testing

SUT Software Under Test

AST Abstract Syntax Tree

MISE Mutation-Inspired Symbolic Execution

IT Information Technology

TCE Trivial Compiler Equivalence

xix

Chapter 1

Introduction

“Don’t ask whether you can do something, but how to do it.”

Adele Goldberg

This introductory chapter presents a summary of the main aspects of the conducted

research. To this end, it sets out the motivation behind this research work, as well as

the objectives to be achieved. Then, this chapter presents the contributions produced

during the PhD thesis period and ends with a description of the structure of the rest of

the document.

1.1 Introduction and motivation

Software testing has always been a fundamental pillar during the development of any

software project. Nowadays it is common to find bugs in all kinds of devices that im-

plement software: from the simplest ones in consumer computing, such as errors in

video games [15] or smartphones that consume too much battery [72], to errors in more

complex systems like medical devices that apply radiation to people or military defence

systems [101], where a small software error can lead to catastrophic consequences. The

technological advances in all systems today add value to and complicate the entire soft-

ware testing process.

Regarding industrial systems, these projects are characterised by having hundreds of

thousands of lines of code developed by large teams, coordinated with external elements

1

Chapter 1. Introduction 2

such as devices whose availability may be limited. This type of development involves

additional integration work, both between program modules and with the devices that

will ultimately store and execute the various programs. All this has intensified with the

advent of Industry 4.0, a new paradigm that foresees the interconnection of all systems

through technologies such as IoT (Internet of Things) or Big Data. In such a context,

where the presence of errors should be minimal or non-existent, it is natural that the cost

of software testing skyrockets. For this reason, there is a need for the creation of new

testing techniques to reduce the total cost of projects while increasing the confidence in

the quality of the software.

Thanks to the good relations between the University of Cadiz and the business fabric

of the Bay of Cadiz, it is possible for both researchers and industrial technical staff to

get first-hand knowledge of the latest state-of-the-art techniques, as well as the current

industrial needs. In the first approach between both entities, the enormous personal

and economic effort that goes into the creation and execution of test cases in software

development projects stands out. We observe that part of the manual effort required in

the testing process could be replaced by automated techniques well established in the

research community.

This PhD thesis aims, with the help of these good relations, to identify the character-

istics and requirements of software projects in today’s industrial environment. We have

established two main research lines: the study of the needs of Industry 4.0 in terms of

software testing and the improvement of the test generation process.

For the first line, we rely on the experience of the business fabric of the Bay of Cadiz and

other related work in the literature. An exhaustive study of the state of the art in terms

of Industry 4.0 and the application of testing processes to projects related to it is carried

out. Afterwards, the stages of software testing in an industrial environment are identified,

as well as the benefits that applying good strategies and the latest technologies in each

stage entails in the economic, development quality and product quality areas. One of

the needs identified early on is based on the lack of an automated or semi-automated

process that facilitates the generation of test cases for test engineers. Current commercial

solutions do not fit the needs of this set of companies, not only because of their high

cost but also because of the integration and maintenance work involved. In addition,

Chapter 1. Introduction 3

their compatibility with future projects is not assured, forcing test engineers to perform

a great part of the testing process manually.

The latter motivates the second line of research. Currently, diverse powerful techniques

for test case generation exist in the literature that could be integrated into the testing

processes of the industry. Some techniques rely on the Abstract Syntax Tree (AST),

which translates the source code into a tree-like structure, facilitating its analysis for

the detection and generation of elements based on it. Another technique is Dynamic

Symbolic Execution (DSE), which is capable of traversing the source code without the

need for specific values, proposing a set of values that go to each branch of the source

code and, therefore, serving as effective test data in terms of structural coverage criteria

(coverage of lines, branches, etc.). Beyond structural coverage criteria, it is possible to

use more advanced test adequacy criteria to measure the quality of the generated tests,

such as Mutation Testing (MT), which introduces small changes in the source code that

simulate mistakes commonly made by programmers. The aim of this technique is to

evaluate the ability of the test cases to detect potential defects.

By applying these techniques and aided by industrial monitoring, two tools have been de-

veloped that implement these techniques for test generation. Firstly, we have developed

ASkeleTon, a tool that obtains and analyses the AST, being able to generate test har-

nesses ready for compilation and execution based on a code under test written in C or

C++. Secondly, we have conducted a comprehensive study on the ability of DSE to

detect faults based on MT. The results indicate that, in its current state, DSE is not as

effective in terms of mutant detection as it could actually be. Our research has uncovered

limitations in the generation of test data. To address these limitations, we propose a new

technique called mutation-inspired symbolic execution (MISE). This approach combines

DSE and MT to improve the generation of test data by incorporating the information

provided by MT into DSE. Finally, we have presented several different implementations

for MISE, to potentially obtain test data with a high capacity to detect mutants.

Chapter 1. Introduction 4

1.2 Objectives

This PhD thesis work pursues the following objectives.

Objective 1 (O1) - Complete review of the current state of Industry 4.0, with a special

focus on software development and testing. In order to achieve this objective, an analysis

of the most current works in the literature is performed. Furthermore, the collaboration

with part of the industrial fabric of the Bay of Cadiz allows us to observe first-hand

how they work in the different parts that comprise Industry 4.0. This makes it easier to

understand and document as much as possible the characteristics, benefits and limitations

associated with the software testing stage in these industrial environments.

Objective 2 (O2) - Literature review of techniques for the generation and validation of

test cases in any environment, either industrial or open source. To achieve this objective,

based on the results obtained in O1, it is necessary to identify and analyse the most

current state-of-the-art testing techniques. Specifically, we focus on AST for the analysis

and generation of test code, DSE for the generation of test data and MT for the evaluation

of the generated tests. This also allows us to identify which current tools are best suited

to industrial needs in order to design and implement a new and complete test generation

process.

Objective 3 (O3) - Design of a process for the complete generation of test harnesses.

To achieve this goal, the AST will be studied in depth to understand which elements are

useful and how they can be used for test case generation, with a special focus on the test

case structure.

Objective 4 (O4) - Implementation of a tool that incorporates each of the elements

studied in O3. This objective aims to develop a new tool that, based on the AST, is able

to generate a complete test harness ready for execution. With the help of the industrial

experience and the results of O1, several aspects that are worth taking into consideration

are identified and applied:

• Modularity: the development of the tool, as well as its results, will have a modular

perspective from the start, in order to be able to use its modules in future projects

and adapt to the constantly changing needs in the industry.

Chapter 1. Introduction 5

• Ease of use: the tool should not require a large configuration, making its integration

a simple task.

• Readability of results: the tool should produce elements such as logs, initial data

and test cases that are easily readable by the human eye.

• Ease of integration with other techniques: integration with data generation tech-

niques should be a simple task, making the tool valuable to both industry and the

research community.

Objective 5 (O5) - Conduction of a comprehensive study on the capacity of DSE

for the detection of potential faults in software. The good results when using DSE for

test generation in terms of structural coverage criteria are well known. However, in the

literature, the performance of this technique in relation to more advanced testing criteria

like MT is not so clear. To achieve this goal, we will take a set of real utilities and will

analyse the ability of tests generated with DSE in the detection of mutants.

Objective 6 (O6) - Design and implementation of a new test data generation process by

applying DSE. Based on the results obtained in O5, it is proposed to improve the current

DSE techniques and tools in order to improve their criteria for test case generation. To

achieve this goal, it is foreseen to include other techniques in an auxiliary way, forming a

new family of techniques that goes beyond what is offered by the current DSE solutions.

Objective 7 (O7) - Validation of the obtained results with open source case studies.

We postpone a complete industrial validation for the future; this validation is more

complex, challenging and, more importantly, the results cannot be fully disseminated

due to confidentiality clauses. Moreover, the correct accomplishment of all the steps of

an industrial validation is time-consuming, incompatible with the limited development

time of a PhD thesis. For these reasons, the aim is to validate all the products generated

using example codes or programs available as open source of diverse sizes.

Chapter 1. Introduction 6

1.3 Contributions

This PhD thesis provides several contributions, which are listed below.

• A complete and up-to-date state of the art on the most relevant topics covered in

this PhD thesis work. Specifically, software testing in general is reviewed, with a

special focus on the techniques for its automation and the existing tools. Addition-

ally, Industry 4.0 is reviewed, with a special focus on the role of software testing

in this new paradigm, where it becomes clear how current testing techniques will

have to be adapted. All of this is covered in Chapter 2.

• An elaborate study on the situation of software testing in industry based on the

literature and real experience with companies in the business fabric of the Bay

of Cadiz. Specifically, each of the stages of software testing carried out in large

industrial projects have been identified. In addition, the economic, product quality

and development quality benefits associated with an appropriate software testing

performance have also been identified. Finally, all this is discussed and leads to

the rest of the contributions of this PhD work. All of this is covered in Chapter 3.

• A new process, accompanied by a new tool, for the generation of test harnesses.This

new process is based, in part, on the experience and knowledge acquired from the

business fabric of the Bay of Cadiz. The tool, known as ASkeleTon, is based on

AST analysis for the generation of ready-to-run test harnesses. Its modular design

facilitates essential software quality factors such as maintenance and extension of

the tool as well as of the test harnesses it generates. The latter include templates in

their implementation, thereby separating the test data from the test cases. Hence,

it enables the inclusion of external test data, which can be manually provided by

experts in the software domain, or automatically generated by more advanced state-

of-the-art techniques. The result is a modular, easy-to-use and easy-to-integrate

tool. All of this is described in Chapter 4.

• A study on the ability of DSE, in its current state, to generate test cases capable of

detecting mutants introduced by MT. Starting from a set of open-source utilities

widely used in GNU operating systems, DSE is applied to produce a set of test

cases. A set of mutants is then generated for each of the utilities and then it is

checked whether the test cases can detect them. The results seem to indicate that

Chapter 1. Introduction 7

DSE is not able to kill a considerable number of mutants, thus requiring further

research work in this area. All of this is covered in Chapter 5.

• A complete analysis of the improvement opportunities detected in DSE to increase

its ability to kill mutants compared to its current state, including a study where

DSE is combined with MT to improve the results. Following the identified improve-

ment opportunities, we present MISE, a new family of techniques that combine

DSE with MT to generate test data capable of killing more mutants. We present

a prototype combining both techniques directly, where it is possible to see an im-

provement in the results. Finally, different implementations of MISE are proposed

to reduce some limitations of the prototype and lower the cost of the process. All

of this is covered in Chapter 5.

1.4 Structure of the doctoral thesis

This section outlines the structure of the PhD thesis document.

• Chapter 1 shows an introduction along with the motivation for the whole work.

This is followed by an enumeration and description of each of the objectives pur-

sued. Finally, it describes the main contributions and ends with the structure of

the document.

• Chapter 2 covers the background and state of the art of this PhD thesis. It begins

by defining the terms error, failure, and defect and their role in software testing.

The chapter then discusses the various definitions of software testing and the im-

portance of quality in this process. The chapter also examines the different stages

of software testing, including unit testing, integration testing, and acceptance test-

ing. Finally, it covers the challenges and limitations of software testing and the

need for techniques such as Dynamic Symbolic Execution (DSE) and Mutation

Testing (MT) to overcome these challenges and improve the quality of test data.

• Chapter 3 is an in-depth study of the current situation of software testing in in-

dustry. Based on the industrial experience of the business fabric of the Bay of

Cadiz, it begins with a motivation followed by a complete description of each of

the stages of software testing in this type of environment. Next, the benefits that

Chapter 1. Introduction 8

a solid software testing process produces are shown from different perspectives.

Finally, a discussion is established on the current and future state of software test-

ing in this field, identifying the elements that give rise to the development of the

following chapters.

• Chapter 4 shows the design and implementation of a new tool for the automatic

generation of test harnesses from the AST, known as ASkeleTon. After a descrip-

tion of the motivation and the main design decisions that guide the development

of the tool, there is a review of each of the elements of the tool. Specifically, we

highlight the modular design in both its design and its generated files, exposing

particularities and decisions taken during the development. Finally, a small case

study is shown with a test class, and the chapter ends with some conclusions.

• Chapter 5 shows a complete study where the initial ability of DSE to detect mutants

is evaluated. After initial results confirming that this technique is not capable

of obtaining strong test cases on its own, it is combined with MT, showing a

substantial improvement. This led to the emergence of a new family of techniques

called naive MISE, which consists of extending DSE to consider MT elements while

generating the tests. As the first implementation entails a high increase in cost, we

propose three different, more sophisticated implementations capable of performing

naive MISE at a lower cost.

• Chapter 6 is a review of the results obtained during the PhD work as a whole,

serving as a general discussion (please note that, when applicable, each chapter

already includes its own particular evaluation and discussion). In particular, an

extensive analysis of the results of MISE is conducted, where we have developed one

of the more sophisticated implementations proposed in the previous chapter. This

involves the implementation of specific mutation operators, resulting in promising

results and motivating the development of this family of techniques.

• Chapter 7 discusses the final conclusions of all the work done. It sets out some

lines of future work along which this PhD work can be further expanded. Finally,

there is a list of all scientific publications made during the PhD thesis period.

Chapter 2

Background and State of the Art

“Program testing can be used to show the presence of bugs, but never to show their

absence!”

Edsger W. Dijkstra

2.1 Software testing

Software engineering is a constantly evolving field. Topics such as software development

techniques, programming languages and hardware configurations undergo radical changes

every few years. As Myers, Sandler, and Badgett [58] discuss in their book, computers

are almost everywhere: smartphones, smartwatches, smart TVs, and so on. Computers

are more powerful than ever and are part of our daily lives. As software is everywhere,

it becomes more and more important that it has as few bugs as possible. This is where

software testing plays a major role, being an essential stage of software development.

In order for software testing to be carried out in the best possible way, it is important

to have a proper awareness of its definition. Throughout the bibliography it is possible

to find a variety of definitions.

Since the beginnings of software development, experts such as Dijkstra have pointed out

that the effectiveness of software testing lies in the sample of evidence that there are

bugs, but never in their absence [28]. This concept, whose quote heads this chapter,

serves as the basis for all modern definitions that have been proposed to date.

10

Chapter 2. Background and State of the Art 11

Hetzel [42] defines software testing as the activity of evaluating an attribute or capability

of a system to determine whether it meets the established requirements. In the same

work, the authors state that software testing is a measure of quality for programs. Craig

and Jaskiel [22] analyse some definitions available in the literature and conclude that

software testing is a concurrent lifecycle process of engineering, using and maintaining

tests with the goal of measuring and improving the quality of programs. Informally

speaking, it could be said to be any activity intended to obtain sufficient evidence that

the software performs its functions as expected.

If there is one thing that all definitions have in common, that is the concept of quality.

However, can we be sure that a project has sufficient quality after passing the software

testing stage? Going back to the work by Myers, Sandler and Badgett [58], they talk

about a psychological concept related to software testing. When testing a program, it is

best to start with the premise that it contains bugs and our goal will be to find as many

as possible. Therefore, the authors propose the following definition:"Software testing is

the process of running a program with the intention of finding bugs". Being clear about

this definition makes all the difference when constructing tests for software projects. If

our goal is to prove that programs work, we will instinctively build tests that are less

likely to show bugs. However, if we take a destructive approach, having as a premise to

find bugs, we will build more critical tests, capable of finding bugs in the program. This

is also why development and testing in projects are usually assigned to different teams.

When it is assumed that a software program has bugs —as it is usually the case—, it is

tested with the aim of finding those bugs.

In software testing, it is important to distinguish between different types of issues that

can arise in a software system. These issues are often referred to as errors, failures, bugs,

faults and defects. However, it is important to note that these terms are not always used

consistently and may be used interchangeably in different contexts. In this work, we

will define these terms as follows: an error is a deviation from the expected behaviour

of a software system, which can be caused by a flaw in its design, implementation, or

operation. A failure is the inability of a software system to perform its intended function,

which may be caused by one or more errors in the system. A bug is a mistake or flaw

in the software that causes it to behave incorrectly. A fault is a potential cause of an

error or failure in the software. A defect is a deviation from the specified requirements

of the software, which can be identified through testing and may be the result of a bug

Chapter 2. Background and State of the Art 12

or fault in the system. Besides these terms, we may also use the terms potential and

real to distinguish between issues that have the potential to cause errors or failures (but

have not yet been observed to do so) and those that have been observed to cause errors

or failures in the software. Throughout this document, we will refer to these terms as

necessary.

2.2 Automatic Test Generation in the literature

The high cost and effort involved in the testing process during software development

have made automatic test generation an active topic in the literature. Nevertheless,

there is a documented gap between academic and practitioner (e.g., industry) views

on such tools and techniques [77]. This is notably caused by the limitations that still

exist in this domain [6]. For instance, current solutions struggle to find real faults [5] and

engineers often reject automatically generated tests due to the difficult readability of such

tests [84]. However, some tools have demonstrated an exceptional ability to automate

the generation of test cases from different approaches and programming languages.

Two of the best known Java tools are EvoSuite and Randoop. The first one, Evosuite [34],

generates test cases specifically designed for object-oriented programming through an

evolutionary approach. It means that, during the automatic construction of the tests, it

uses a Search-Based Software Engineering approach by applying a genetic algorithm. Its

good results allowed it to win eight out of nine editions of the International Workshop

on Search-Based Software Testing (SBST) test generation tools competition [67, 93].

The second tool, Randoop, follows a completely different approach to generate tests:

feedback-oriented random testing. This technique not only generates random or semi-

random data (from a seed) for test execution, but also incorporates some knowledge of

the tester about the software under test. Thus, the generated tests are more readable

and effective than those generated by a purely random and automatic procedure. The

random testing technique has shown to be effective in finding real bugs in Microsoft .NET

code [65]. Randoop identified errors in the component that previous testing had missed,

completing the task significantly faster than a typical test engineer could, including

time spent reviewing the tool’s results. In addition, the tool enabled the test team to

uncover errors in other testing and analysis tools and deficiencies in previous best-practice

guidelines for manual testing.

Chapter 2. Background and State of the Art 13

Regarding the C and C++ language, one of the most widely used and supported tools in

recent years is KLEE [13], a tool that generates unit tests based on Dynamic Symbolic

Execution (DSE). Before running KLEE, the software under test is compiled in LLVM

bytecode with an appropriate compiler (e.g., Clang). It is also convenient to indicate

which variables will be symbolic, either by selecting them directly in the code or by

delegating this selection to the tool in those arguments received via the command line.

By using a variety of search strategies to guide the exploration of the entire code, KLEE

can check each of the conditional branches in it. More information about this tool, its

underlying technique and other tools that incorporate this technology are discussed in

Section 2.3.3.

2.3 Software Testing Techniques

Software testing techniques are methods and processes used to evaluate the functionality,

reliability, and performance of a software application. These techniques aim to identify

defects, bugs, and other issues that may impact the quality and effectiveness of the

software. There are various levels and objectives of software testing, including unit

testing, integration testing, system testing, acceptance testing, and performance testing.

Each level or objective has its own set of goals and is applied at different stages of the

software development life cycle. Effective software testing is crucial for ensuring the

overall quality and integrity of a software application, and it helps to improve the user

experience and reduce the risk of software failures.

2.3.1 Classification of software testing strategies

There are several classifications of software testing techniques [58], including black-box

and white-box testing, which refer to the level of visibility of the internal workings of

the software being tested [62]. Black-box testing involves testing the software from the

perspective of an external user with no knowledge of the internal implementation, while

white-box testing involves testing the software with knowledge of the internal imple-

mentation, including the source code. Other classifications of software testing techniques

include functional testing, which focuses on the intended functionality of the software,

and non-functional testing, which evaluates the performance of the software and other

Chapter 2. Background and State of the Art 14

quality properties such as usability and security [9]. Structural testing is a technique

that tests the internal structure of the software, and regression testing is used to ensure

that changes to the software have not introduced new defects [48]. We can also classify

software testing as either static testing, which involves analysing the software without

executing it, or dynamic testing, which involves executing the software and observing

its behaviour [41]. These various software testing techniques are essential for ensuring

the quality and effectiveness of a software application. In this work, we will focus on

black-box and white-box testing as they are two of the most widely used software testing

techniques related to this PhD thesis.

A well-known black-box testing technique is random testing [30]. This technique involves

generating random data for a specific set of test cases in an iterative or searching manner.

After a certain number of generations, which can be determined by the user or determined

by the rool, it is verified how many tests pass or fail. A variation of this technique

is adaptive random testing, which provides feedback to the random data generator to

somehow generate the data in a semi-random way and with a certain level of guidance,

aiming for better results [19]. If this information comes from the implementation of the

method under test, it could then be considered an evolution towards white-box testing.

This combination of black-box methods with a white-box part is known as grey-box

testing [46].

Another popular technique for test generation is the application of genetic algorithms [75].

This technique seeks to evolve the initial data in search of improved versions, capable of

obtaining effective results. It is a white-box technique when the algorithm uses inform-

ation from the source code, while it is a black-box technique when it uses information

from other sources, such as the requirements. Its use in automatic test generation has

led to good results in languages such as WS-BPEL [33] or Java [34].

Lastly, there are also two well-established techniques in the scientific literature that are

worth mentioning. One is metamorphic testing [83], a technique whereby new test suites

can be derived from existing ones, based on conditions that the method to be tested must

always meet, known as metamorphic relations. For example, if a method has to produce

the same result when given the same input even when the order of the input has changed,

a metamorphic relation can be created to test this condition. This technique is especially

useful for solving the oracle problem, where it is difficult to determine whether a system

Chapter 2. Background and State of the Art 15

under test has produced the correct output. Then, there is mutation testing [71], which

is a technique that introduces small modifications in the software to be tested in order

to evaluate the quality of the test cases. Later in this chapter, we will see in detail how

mutation testing works and how this technique can guide the improvement of an initial

set of test cases.

In the following, the two testing techniques used throughout the thesis project are presen-

ted: mutation testing and dynamic symbolic execution.

2.3.2 Mutation Testing (MT)

MT is a fault-based white-box technique [71] to evaluate the quality of test cases by

introducing slight changes, known as mutations. This technique was first presented as

a new approach to traditional software testing, aimed at helping programmers create

test cases that are able to detect more potential defects [25, 26]. The programs that

result from applying the mutations are called mutants. These changes are implemented

through mutation operators. Each mutation operator is a series of instructions that

describe the change made to the original program. Mutation operators are classified by

purpose (e.g., change of class modifiers or replacement of arithmetic operators). This

technique is usually applied with traditional mutation operators. These kinds of mutation

operators introduce simple changes in arithmetic and logical expressions or typical control

structures in structured imperative languages. It aims to replicate real coding mistakes

made by programmers. Listing 2.1 is an example of a mutant produced by an operator

called ARS, where the arithmetic operator ++ has been replaced by - -.

int exampleMT () {

int a = 10;

//a++;

/∗ ARS ∗/ a- -;

return a;

}

Listing 2.1: ARS mutation

operator example

A successful test suite should be able to detect the faults that might be present in the

code. According to this logic, at least one test case in the test suite should produce

Chapter 2. Background and State of the Art 16

a different output when run on the mutants that change the semantics of the original

program. When the test cases detect a mutant, it is said that the mutant has been killed,

otherwise, it is known as a surviving or alive mutant. The evaluation of the test cases is

done by means of the mutation score. This metric, which ranges from 0 to 1, correlates

with the ability of the test cases to kill mutants.

S =
K

M − E
(2.1)

Formula (2.1) shows how this score is calculated, with S being the mutation score, K

the number of killed mutants, M the total number of mutants, and E the number of

equivalent mutants. A mutant is equivalent when its behaviour does not differ from the

original program. It may happen that the mutation affects a piece of code that is never

reached, or that the semantics of the program remains intact. These are changes that

cannot be detected by test cases. Equivalent mutants can affect the reliability of the final

result [40], so great efforts are made to identify them before calculating the mutation

score. As for detecting equivalent mutants, one of the best-known techniques is Trivial

Compiler Equivalence (TCE) [70]. This is a technique that allows detecting equivalent

and duplicated mutants through the source code optimisations provided by the compiler.

Two or more mutants are duplicated when they are equivalent to each other, but not

necessarily to the original program.

There are many tools available for performing mutation testing in various program-

ming languages, such as the ones surveyed in [24, 50]. In this work, we will focus on

MuCPP [24], a mutation testing tool for the C and C++ languages that implements

different types of mutation operators. We will delve into the details of MuCPP and the

mutation operators it implements in Chapter 5.

2.3.3 Symbolic Execution

When analysing or testing the functionalities of a program, it is common to run its

functions and methods several times with different values. Normally, a specific set of

values runs a particular path of the code. Symbolic Execution is a technique that allows

more than one code path to be explored simultaneously. From its origin in the 1970s [49]

to the present day, this technique has been adapted in the field of code debugging and

Chapter 2. Background and State of the Art 17

software testing [7]. The inputs to the program are symbolic values. This representation

implies any value, without specifying a concrete one, which in practice is equivalent to

numerous concrete values. A symbolic execution engine handles this type of execution

via two fundamental elements: a formula with a set of restrictions to be met during the

execution and an index or dictionary that maps code variables to their symbolic values.

During the symbolic execution period, a solver [23, 79] checks that the properties of

the code are not broken and verifies whether the formula has a solution. Otherwise, it

discards the formula.

Listing 2.2 shows an example function written in C with two execution paths: one that

throws an exception (path 1) and another that returns a value (path 2). To make this

example as illustrative as possible, we will perform a theoretical analysis without relying

on any tool. A manual execution with concrete values would have the behaviour shown

in Table 2.1.

1 int example(int b) {

2 int a;

3 a = b ∗ 10;

4 if (a == 20) {

5 throw Exception(); //Path 1

6 } else return a; //Path 2

7 }

Listing 2.2: Example code

Input Output Path explored

b = 4 40 Path 2

b = 0 0 Path 2

b = 2 Exception Path 1

Table 2.1: Example of concrete exe-
cution

In this example, there is only one input value capable of throwing the exception: b = 2.

Any other input will cause the function to return its value multiplied by 10. An example

like this can be easily analysed at a glance; however, in more complex programs, it can

be difficult to realise that there is one value that triggers a different behaviour than the

others.

Execution with symbolic values acts differently. This symbolic value is assigned to b,

without being specified concretely. When the symbolic execution engine reaches line 4,

it performs two formula evaluations: ‘b * 10 == 20’ for the first path and ‘b * 10 !=

20’ for the second. Note that the formula is built up as each line of code is analysed.

This continues once the symbolic execution engine analyse line 4, as it will now have two

distinct formulas that can be further expanded according to the elements present in each

Chapter 2. Background and State of the Art 18

path. Eventually, it should be possible to solve both formulas to obtain concrete values

that run each path. The values in this case could be 2 and any value other than 2, such

as 4 or 0.

Symbolic Execution is a technique that allows test cases to be generated with several

values. However, it has some limitations, such as the possibility of generating unsolvable

formulas (due to, e.g. unavailable external dependencies) or an unmanageable path

explosion, where the time needed to solve the formulas is unmanageably long. Currently,

there are solutions that not only apply this technique but also focus on overcoming these

limitations [7] by providing solutions focused on the automatic generation of test cases.

These solutions include randomised path exploration and Dynamic Symbolic Execution

(DSE).

DSE combines traditional symbolic execution with concrete execution (actually running

the program with specific values), generating a set of values that can be used as test data.

Thus, it facilitates path exploration while maintaining strict control of the execution flow

in the code. This combination of techniques is also known as concolic execution (concrete

and symbolic execution). When applying DSE to generate test data, the path explosion

challenge is combined with the need to achieve a certain level of code coverage. Achieving

high code coverage is especially important when using DSE, as this technique generates

test cases by exploring different execution paths in the program. This can result in a

large number of test cases being generated, making it more difficult to ensure that they

all provide adequate coverage of the code. Unsolvable constraints, in this case, should

not be a major problem, as the symbolic execution engine will discard them and not

generate any test case. When automatically generating test cases, it is convenient to use

a metric to know the scope of the test cases in the software under test.

It is possible to find in the literature several works that use DSE as the main technique

for the automatic generation of test cases. One of the earliest works in this area is

DART [38], a technique that combines DSE with random testing, another well-known

testing technique. Combining these two techniques and including model checking tech-

niques, it is able to execute as many paths in the code as possible and generate a set of

unit tests for programs written in C with a high structural coverage. One of the most

used and updated tools in the research community over the last few years is KLEE [13]

(an evolution of EXE [14], another earlier tool), which applies DSE to generate unit tests

Chapter 2. Background and State of the Art 19

for C and C++ code. This tool uses the LLVM bytecode derived from the program and

a few small indications about which variables or inputs should be symbolic. Through

the use of search strategies to guide code exploration, KLEE generates a set of unit tests

with a high structural coverage. Proof of its effectiveness is that it has been the winner

of several testing tool competitions [11].

Other tools rely on the limitations of DSE (mainly path explosion and code coverage)

for the development of new solutions that overcome them. KLOVER [97] is a framework

for automatic test generation in industrial systems that integrates KLEE at its core.

These types of systems, which are often very large, tend to generate a number of paths

that hinder the application of DSE. KLOVER overcomes this limitation by selecting

and exploring those paths that are most likely to generate test cases, avoiding those

that have already been explored or do not lead to any new test data. Another tool to

alleviate the path explosion issue is Much [64]. It is a framework that combines DSE

with fuzzing [54], a technique that introduces invalid test data into the test cases to find

bugs. The combination of these techniques achieves greater code coverage than both

techniques alone.

There are several other tools dedicated to software testing via Symbolic Execution, such

as Manticore [57] for smart contracts, DeepState [39] for C and C++ programs and

mCute [3] for UML state machines.

2.3.4 Exploring the Benefits of Combining Dynamic Symbolic Execu-

tion (DSE) with Mutation Testing (MT)

In recent years, there have been several studies in the literature that combine DSE with

MT to achieve different goals. One of the first works that lays the foundations for the

combination of both techniques comprises the generation of test data using algebraic

constraints and mutants [27]. Specifically, the authors introduce a set of mutations in C

and Fortran programs along with a set of algebraic constraints that must be satisfied to

kill the mutants. Solving these constraints results in test data that, when used as inputs

to the program, are likely to have a high probability of killing the mutant. Although

this tool does not use DSE, it shares similarities with this technique, since in both cases

constraints or formulas are solved to get test data. The differences with this PhD thesis

are notable, as they rely on an external program (Godzilla) to satisfy the algebraic

Chapter 2. Background and State of the Art 20

constraints and use a different set of mutation operators. Our proposal incorporates

DSE to automate the constraint generation and resolution process, applies to C and

C++ programs and incorporates current MuCPP mutation operators, getting results

that are more comparable with other more up-to-date works.

Another approach is to use DSE to improve other testing techniques, such as MT. In

fact, the combination of DSE and MT has been shown to be effective in improving the

quality of test cases [69]. In this work, the authors use DSE, among other techniques,

as auxiliary to introduce mutations in certain areas of the programmes under test. To

verify the feasibility of their proposal, the authors use three different test generation

techniques on a set of programs and check the mutation score of the tests generated

by each one. This score turns out to be low, despite obtaining good results in terms

of branch coverage, which coincides with part of the conclusions got later in this PhD

thesis. The authors then propose a technique to reduce the application of mutants to the

branches covered by the different test techniques, as well as a framework to introduce

weak mutation at these points. In their study, introducing mutants in the automatic

test generation process considerably increases the mutation score, coinciding with part

of the results of this work. Other authors use DSE as an auxiliary technique to classify

and detect equivalent mutants [37]. By focusing on a subset of mutation operators,

the authors achieve good results by automatically detecting equivalent mutants. The

difference with this PhD work is that the authors combine DSE with MT to improve the

application of MT, whereas our proposal involves improving DSE with the help of MT.

Other works aim to improve the automatic generation of test cases by combining DSE

with MT. The extension of DSE to generate test data focused on killing mutants is an

approach that achieves good results in killing most non-equivalent mutants [68]. In this

work, the authors develop a process that uses mutant schemata and control flow graphs

to produce conditions suitable for DSE to reach the mutation point more easily, getting

over 85% mutation coverage in their case study. The main difference with our PhD

work is that we combine DSE with MT without using external elements. From a basic

implementation where none of the techniques is modified, to possible more advanced

implementations that introduce MT elements in DSE, as shown later in Chapter 5. The

results are not comparable: while the authors select in their study five tools of small-

medium size (between 40 and 500 lines of code), in this PhD thesis we use a set of utilities

that, together, reach thousands of lines of code.

Chapter 2. Background and State of the Art 21

In addition, three tools that combine DSE and MT achieve good results in terms of test

generation: PexMutator [100], SEMU [18] and SAFL [94].

PexMutator [100] is a test generation tool that employs MT and DSE to create a meta-

program from the SUT and embed mutations within specific constraints. This allows

DSE to generate test cases that target the constraints and effectively kill most mutants.

In its case study, PexMutator can kill up to 80% of non-equivalent mutants. However,

this level of effectiveness cannot be directly compared to our study, as the authors use a

different set of mutation operators and test a limited set of 5 utilities drawn from a real

library ranging in size from 1 to 12 methods. In contrast to this study, we do not plan

to use meta-mutations in our approach. Instead, our aim is to integrate the concept of

MT into DSE, enabling it to run the original program and generate enhanced test suites

in terms of mutation coverage without incurring in the additional cost associated with

the generation and execution of mutants.

In SEMu [18], the authors aim to leverage surviving mutants (i.e., stubborn mutants)

to improve DSE, but at a lower cost than exhaustive exploration. To achieve this, they

implemented SEMu as an extension of KLEE, which combines various strategies to make

the process more efficient, such as the use of meta-mutation and a suite of heuristics to

reduce the number of paths to explore. Through the use of meta-mutation, paths shared

by the original program and the mutant are not explored again in each mutant. The

optimisation of the heuristic search allows for more efficient use of the search budget to

explore paths affected by the mutation. As their approach does not involve exhaustive

exploration, this increases the likelihood of finding an infected state that also propagates

to the outputs. There are some differences between their work and ours. For example,

SEMu mutates code at the bytecode level, whereas our MuCPP tool operates at the

source code level, and the authors of SEMu use test cases manually developed by the

authors of GNU Coreutils as a seed in the tool’s execution. The authors of SEMu

reported better results than KLEE to kill stubborn mutants in a selection of Coreutils

utilities. Like us, they also reported high costs and had to discard several Coreutils

utilities because of these costs. While their approach improves the performance of the

technique, the number of stubborn mutants still limits the overall time present. The

more exhaustive the configuration for the heuristic search, the more paths are explored

and the higher the computational cost becomes. Therefore, there is still potential for

Chapter 2. Background and State of the Art 22

improvement if we can take advantage of the information provided by mutants without

executing DSE for each mutant.

Finally, in SAFL [94], DSE is first used to generate some initial seeds, which will later feed

a mutation-based fuzzing process. SAFL proves to be an efficient tool that can explore

deep paths easier and earlier thanks to both its fuzzing algorithm and the classification

of seeds according to the path coverage. However, the data is fuzzed without being aware

of the exact mutations injected in the program, so the approach is in principle limited

for killing some more sophisticated mutants, especially in complex software systems

(e.g., those that require some specific values for different variables before reaching the

mutation). As with previous work, it is difficult to compare the set of tools used. We

should note, however, that they use DSE to get an initial set of qualified seeds instead

of random ones for the later fuzzing process, while we aim to employ DSE as the main

technique to generate test cases able to detect faults.

The aforementioned work has successfully showed the efficacy of combining DSE and

MT, which is an important step forward and motivates further development of these

techniques. These studies also serve as a complementary resource to advance the family

of techniques presented later in Chapter 5.

2.4 Abstract Syntax Tree (AST)

The Abstract Syntax Tree (AST) is a textual tree like representation of the source code

received by the compiler. The syntax is said to be abstract because it does not show all

the details appearing in the actual code, but it focuses on the structural content of the

code, as well as on different details related to variables and other similar elements.

Regardless of the language, the compiler performs a series of steps to transform the

source code into an executable file. The AST appears in the beginning of this process

after these two first steps [4]:

1. Lexical analysis: the compiler takes the source code (usually modified by the lan-

guage preprocessors), written in form of sentences. A lexical analyser is responsible

for decomposing this syntax into sets of lexemes, known as tokens, so that elements

such as comments, line breaks and whitespaces are removed. It is possible for the

Chapter 2. Background and State of the Art 23

lexical analyser to encounter an invalid token, generating an error at that moment.

As the lexical analyser checks that the tokens are valid, these are sent to the syntax

analyser, usually on its demand.

2. Syntax analysis: this is the step where the AST is created. The tokens received

from the previous step are organised in order to build the tree that represents

the actual structure of the code. It is a step similar to natural language, where

we connect a list of individual words (in this case tokens) into a structure that

represents ideas, such as sentences (in this case the tree). Similar to sentences,

where we identify the function and hierarchy of each word (verbs, adjectives, nouns,

etc.), the AST allows us to identify the purpose and hierarchy of each element of

the code (methods, functions, classes, variables, etc.).

Once we have the AST, is it not only possible to understand the structure of the code

more easily, but we can also manipulate it for any purpose, such as optimising the code

or finding bugs in early stages of development.

Figure 2.1 shows an example of what an AST looks like with a graphical interpretation.

The function in which it is based performs a sum between two values. It can be observed

that the root node is of type FunctionDeclaration, as it is a declaration of a function. The

three child nodes are the id, whose child in turn will be the name of the function, params,

whose children will be the parameters received by the function, and finally, body, whose

descendants form the body of the function. This interpretation allows us to observe at

a glance the structure of the code, its hierarchy and its dependencies.

FunctionDeclaration

id params body

sum a b
The AST continues

describing the body of
the function

JavaScript function

function sum(a, b){
 var c = a+b;
 return c;
}

Figure 2.1: Example of an AST tree

The AST is an intermediate component in the compilation of programs, regardless of

the programming language (although different compilers may use a different syntax to

Chapter 2. Background and State of the Art 24

represent the nodes of the tree). Its use, both to analyse and modify existing code as well

as to produce completely new code, is widespread in the literature for different purposes.

One of the most widespread uses of AST is the detection of similar code (commonly

known as clone, equivalent or plagiarised code). Different authors take advantage of the

characteristics of the AST to analyse the structure of the code and its elements, in order

to determine whether two pieces of code are similar.

Wang et al. [95] construct a graph to reflect syntactic and semantic information of the

ASTs generated from the codes to be compared. Specifically, the graph links the ASTs

with explicit details of the flow of information. With the help of graph neural networks,

they are able to compute a vector representation of the code, which finally allows them

to measure the similarity of the code pieces by comparing these vector representations.

Their experiments on real datasets show that the detection of code clones is improved

compared to the direct comparison of unmodified ASTs. This allows the code to be

optimised by identifying and eliminating similar code, reducing the number of final lines

to be compiled.

Situations such as the emergency caused by COVID-19 have made plagiarism detection

tools more valuable, as students, working from home, could be tempted to copy code

in the absence of direct teacher supervision. AST is useful in this regard, authors as

Fu et al. [36] propose WASTK (Weighted Abstract Syntax Tree Kernel), a method for

detecting code plagiarism that takes the AST as a fundamental part of the process. Their

method not only takes into account the similarity of two code pieces, but also considers

the context in which the programs are asked to be developed. In their experiments,

using a dataset composed of real submissions, they are able to detect plagiarism more

effectively than other solutions that do not use AST.

Other authors take this concept further and take advantage of AST features to find

clone code written in different languages [74]. Using a semi-supervised machine learning

model trained on the ASTs produced by the programs, they are able to detect whether

two code pieces have similar behaviour, even if they are written in different programming

languages. In their case study, they are able to detect clones written in Java and Python.

It is possible to make modifications to the AST, so it is not always necessary to use

the default AST as provided by the compiler. Zhang et al. [99] propose a modification

of AST known as AST-based Neural Network (ASTNN) so that the code, instead of

Chapter 2. Background and State of the Art 25

being represented by a single large AST, is represented by a sequence of smaller ASTs.

From this sequence, they use a bidirectional neural network model to produce a vector

representation of the source code, taking advantage of the naturalness of the sentences.

Finally, the authors evaluate this new representation of the AST using it for clone code

detection and code classification. The results show that this ASTNN improves the overall

performance compared to the classical AST, resulting in an interesting evolution of the

AST.

Other authors make use of the AST with different goals, such as intelligent code com-

pletion [96] to help programmers write code faster and with fewer typos, detection of

equivalent mutants [73] and even the incorporation of mutants in the program itself [98].

All these applications of AST serve as inspiration for its use in this work, where it will

make possible the analysis and generation of new code pieces in the field of software

testing.

2.5 Industry 4.0

Industry 4.0 is also known as the fourth industrial revolution. To comprehend this, it is

worth bearing in mind the evolution that industry has undergone through the industrial

revolutions over the course of history. Freeman and Louçã [35] describe in detail all the

stages of each industrial revolution, from the first, where new materials were introduced

(chiefly iron and steel), to the second, which changed the way of working in industry, and

the third, which introduced new information and communication technologies, through

the incorporation of the Internet and the development of renewable energies.

The concept of Industry 4.0 is presented for the first time during the Hannover Messe

in 2011 [45]. In this document the authors analyse the impact and evolution of current

systems in such a way that they see signs of a new industrial revolution that will mainly

affect the way industry interacts with people, the development of science and political

actions. Since then, many of these estimates have become a reality.

A few years later, already immersed in Industry 4.0, Lasi et al. [51] describe in great detail

the social, political and economic changes that the fourth industrial revolution is bring-

ing about. These changes include shorter development periods compared to traditional

Chapter 2. Background and State of the Art 26

development in manufacturing processes, product flexibility due to new production re-

quirements, decentralisation of processes through the reduction of hierarchies and greater

efficiency in the use of resources, thanks to the particular economic and ecological con-

text of the 21st century society. In terms of technology, all machines are moving to a

smart environment where data plays a fundamental role. The application of new tech-

nologies makes it possible to take decisions quickly and even predict the behaviour of

operations, thereby reducing the risk of defects. Industry 4.0 tries to integrate all the

elements in a safe, accessible and organised way through cyber-physical systems. These

are industrial automation systems that extend their functionality thanks to networking

and their access to other systems, so that their operation is affected by the surrounding

environment.

Figure 2.2 shows a summary of all the fields covered by this industrial revolution based

on compilation of Industry 4.0 works [55]. However, this PhD thesis focuses on the field

of software development, which is a transversal competence present in all stages.

INDUSTRY 4.0

BIG DATA

AUGMENTED
REALITY

CYBER
SECURITY

SIMULATION

ROBOTISATION
CLOUD

COMPUTING

SYSTEMS
INTEGRATION

INTERNET OF
THINGS

Figure 2.2: Industry 4.0 schema

Chapter 2. Background and State of the Art 27

Most of the elements involved in this industrial revolution have a software element em-

bedded in them. Therefore, software development necessarily plays a key role in the

implementation of the different technologies. Industrial software, unlike that developed

for traditional projects, faces a series of challenges caused by the very nature of Industry

4.0. For instance, the concept of Big Data is associated with the need for software capable

of handling huge amounts of data. In cybersecurity algorithms, software must be robust

to prevent unauthorised accesses or data leaks. Simulation applications, on the other

hand, must have efficient algorithms able to represent reality as faithfully as possible

in real time. Finally, software related to the Internet of Things (IoT) must be able to

operate in heterogeneous systems and transport information efficiently. These are just a

few examples of the situations that software engineers face in this new context.

All this software needs to work properly when it goes into production, as their malfunc-

tioning can have serious consequences. Software testing is one of the solutions proposed

to find defects that may be present in the software. In the context of Industry 4.0, with

an increasing number of interconnected subsystems, encompassing various technologies,

automation becomes essential. Automation allows the mechanisation of the testing of

large systems and subsystems, helping integration and validation before final delivery.

2.6 Software testing in Industry 4.0

This section discusses the role of software testing in Industry 4.0, based on the key

characteristics of Industry 4.0 information technology (IT) projects. It also shows how

the application of software testing can help to improve projects in every aspect.

2.6.1 The transition of software testing to Industry 4.0

It is known that software testing is an essential stage of any software development project.

The different techniques make it possible to be confident in the quality of the software

developed. However, the evolution of technologies driven by Industry 4.0 has led to the

emergence of testing needs that might not have been considered in a classic vision of

software development. It is worth considering the role of software testing in Industry

4.0 in order to understand how it should move forward to adapt to current and future

paradigms.

Chapter 2. Background and State of the Art 28

The role of software testing in Industry 4.0

There are numerous techniques that allow software testing to be applied to projects

in general. With regard to IT projects within the scope of Industry 4.0, even though

each one will have its own specific needs, there are a series of common characteristics

that should be met in order for the software to successfully reach the production phase.

It is possible to classify these characteristics into different fields of study [32]. In our

particular context, they can be divided as follows:

• Data collection, cleaning and analysis: it is essential to be able to acquire and

homogenise all the data generated in the production facilities. It is not only a

matter of collecting the raw data, but also of filtering and analysing it in real time.

This is where Big Data has its place [47]. This paradigm, inherent to Industry

4.0, requires software capable of digitising and formatting information, storing it

and making decisions swiftly and automatically. A defect in this kind of software

could lead to data loss or corruption and erroneous predictive models, thus directly

affecting decision-making in project management.

• Security of IT systems: related to the data collection feature, one of the new de-

velopments in Industry 4.0 concerns remote access to the information in factories.

This presents new challenges, as factors such as information access control, encryp-

tion and software updates must be addressed. Likewise, some well-known threats

are of particular relevance in this area. These include information theft, denial

of service (DDoS) attacks or the transmission of malicious software within factor-

ies [21]. Software testing can act as a safety net in its own right, by detecting and

correcting faults that could be exploited by attackers.

• Device management: interconnected devices must be able to include a routine

procedure for their initial configuration. After this process, there is a need for

regular checks, addition of new functionalities and, ultimately, disconnection and

deactivation of devices. Software testing must be able to detect the incorporation,

modification and deletion of new elements within Industry 4.0 projects. In this

way, it contemplates a flexible set of devices, adaptable to the new needs that arise

in the production processes.

Chapter 2. Background and State of the Art 29

• The digital twin: one of the key innovations of Industry 4.0 is factory simulation,

which allows an easy integration of all kind of technologies virtually instead of

physically. This makes it possible the digital simulation of the production and the

detection of opportunities for improvement without impacting the actual manufac-

turing. The creation and management of this virtual factory, known as a digital

twin [85], is done using specific process modelling and interaction software. The

testing of this software needs to be adapted to this new approach to be able to

check whether the simulations correspond to reality and, thus, allow for an effect-

ive decision-making.

We have seen how Industry 4.0 poses unforeseen situations in the management and

development of traditional IT projects. Loss of information, incorrect simulations or

security breaches are just a sample of the new challenges faced by software testing. Not

only that, but systems are growing at a very fast pace, considering that around 90% of

the data generated by companies has emerged in the last few years, and this amount is

expected to double in a very short period of time [82].

Software testing needs to be able to cope with such situations. Cryptography algorithms,

process simulations or the handling of sensitive data on a large scale represent further

challenges that naturally call into question whether current testing techniques are up to

the challenge.

Suitability of current testing techniques

There are more than a few existing testing techniques beyond what is seen in this work,

and it is possible to find different approaches. Their application is not limited to the

experimental field, but some of them are successfully used in industry. As an example,

we can see that search-based test generation, using Evosuite, has been evaluated in an

industrial context [5], detecting up to 56.40% of the identified faults in a financial soft-

ware. Random testing, using Randoop, has been applied to different industrial tools [78],

with success in finding bugs in most of them.

Despite the many studies concluding with promising results, it seems that industry may

be reluctant to integrate such tools into their development processes. As we can see in

another study [6], this reluctance is caused by several and diverse issues. Among them,

Chapter 2. Background and State of the Art 30

we can highlight that many of the tools proposed to the industry are commercial and

closed solutions, far from the open source philosophy. In general, these tools can involve

very high adaptation costs and limited support. Other problems are the poor readability

of the automatically generated tests, which makes test engineers reluctant to use them in

real projects. Ultimately, this paper identifies the need for more usable tools in industry.

We envisage that the constraints will intensify due to the challenges posed by Industry

4.0. When we talk about software testing, in any of its types, we find common constraints.

For example, the oracle problem [8], which consists on the lack of an agent capable of

determining the correct output for a given input. This is because, in such a dynamic

and changing environment, it can be complex to know with certainty what the expected

results are.

Chapter 3

Software testing needs in industry

“Pay attention to negative feedback and solicit it, particularly from friends. Hardly

anyone does that, and it’s incredibly helpful.”

Elon Musk

The good relationship between the University of Cadiz and the businesses in the Bay of

Cadiz is reflected in the various cátedras (chairs) [87–89] and successful joint projects [1].

This translates into good opportunities for both industry and academia. In terms of

research, it allows researchers to get closer to the real needs of the industrial environment

and provides use cases that allow them to test the viability of their research beyond closed

experimental environments. On the other hand, the industry benefits from cutting-edge

and up-to-date research, helping it to improve the production processes, which is reflected

in the creation and improvement of employment.

This chapter shows the needs of industry based on our experience with local companies

in the Bay of Cadiz. It serves as a basis and motivation for Chapters 4 and 5, whose

work arises from the experience described below.

32

Chapter 3. An in-depth study of software testing needs in industry. 33

3.1 Motivation

As we have seen in Section 2.5, Industry 4.0 is a transformation of the entire industrial

domain. Manufacturing and human-machine interaction are being shifted towards a

connected environment known as smart factories: plants that dynamically adapt to

changing industrial needs [43]. A necessary evolution in IT systems comes with this

transformation, bringing particular value to the quality assurance process of software

projects. Software testing tries to find as many defects as possible during software

development. Often, in industrial projects, this phase is linked to tight deadlines and

high costs. For this reason, in addition to the resources and expertise required, it may

sometimes not be given adequate attention [58].

On other occasions, we find companies with an exhaustive and highly mature Quality

Assurance System [60], where great efforts are dedicated to completing the stages of

the project validation and verification process. In the industrial fabric of the Bay of

Cadiz, we find companies dedicated to the construction of large means of transport,

such as vessels and aircraft. Such companies develop large software projects integrating

each of the components of the means of transport they manufacture. Based on our

experience with these companies, it is common to find situations in which the different

phases of software testing are conducted manually and in a repetitive manner, with

considerable human effort. This issue gets more relevant in critical systems, where there

is particular pressure in gaining confidence in the quality of the development, as any

failure can have fatal consequences. This adds considerably to the cost of projects,

which, based on their experience, can be as much as 40% of the total development

cost. Despite this, software testing is of great importance and cannot be disregarded.

Industry 4.0 introduces complex and interconnected systems that could face problems

never considered before, which promise to further increase the software testing needs.

Therefore, in order to reduce the high cost of a manual application of testing, there is

an increasing trend towards automation.

This chapter describes the knowledge acquired as part of the experience of collaboration

between companies in the Bay of Cadiz and the University of Cadiz. This experience

has been crucial in identifying and understanding the real needs of existing companies

and serves as the initial impulse for the work carried out in Chapters 4 and 5. The main

motivation lies in reducing the cost of industrial projects by automating the software

Chapter 3. An in-depth study of software testing needs in industry. 34

testing phase. Nowadays, there are different free and commercial applications; however,

none of them seem to be fully suited to the needs of the companies surveyed. One of the

main problems with the use of these applications is that there is no guarantee that the

integration with their systems will be maintained in the future, as well as the fact that

the purchase of licences often entails high additional costs. For this reason, companies

are looking for a customised solution, adapted to the changing needs of the industry.

3.2 Test generation in industrial environments

In this section we discuss the challenges that current software testing techniques face

in Industry 4.0 projects. Next, we describe two aspects related to the application of

software testing in industry: the stages of the industrial test generation process and

the potential benefits of its automation. This information is based on the knowledge

acquired from some of the projects studied in our experience with companies in the

Bay of Cadiz. Section 3.2.2 describes the aforementioned stages as well as it mentions

different technologies broadly known in research work but not so common in industrial

work and which could be used to improve the workflow. This collaboration aims to bring

the automation approach in line with the needs of Industry 4.0. In addition, unlike

other solutions with commercial products, which may have a specific, closed purpose,

this project looks for a modular and extensible solution that can be adapted to future

needs.

3.2.1 Software testing challenges in Industry 4.0

To understand how current testing techniques should be adapted to Industry 4.0, we will

consider the key challenges faced by any IT project in this paradigm.

In Industry 4.0 IT projects, there is usually a wide diversity of devices. The rise of

technologies such as the Internet of Things (IoT) and smart factories means that we find

systems dependent on a large number of different devices. While this may simply seem

a technical issue, it has significant consequences. For example, consider a smart factory

where we have a digital twin. This consists of several software applications installed

on a particular system that, based on its simulations, should be able to communicate

with the machines in the supply chain and the management team. At the same time,

Chapter 3. An in-depth study of software testing needs in industry. 35

the machines will be connected to other devices handling the information and making

it available to the people. With all of this information, the management team can then

make better decisions and share them with the development team, who will have their

own devices for this purpose. Normally, each of these elements has a software associated.

Even if the software is in a different environment, there is a need for an independent

software testing process, capable of adapting to the different situations that may arise.

Current testing techniques shall be able to adapt to these situations. When dealing with

Industry 4.0 projects, software testing needs to be done with a vision that goes beyond

finding possible defects in the functioning of the tools. Instead, let’s focus the testing

stage on two fundamental aspects of production: the production chain and the personnel.

• The production chain: software testing shall be adapted to a multi-platform and

multi-disciplinary environment. In addition to intensifying integration tests, it is

necessary to check for faults in the different platforms, making it necessary to

create complete test scenarios, where not only the project is tested but also its

operation with the configuration of the environment with which it interacts. The

ability to reproduce errors is particularly important when dealing with different

environments.

• Personnel : all the actors involved in IT projects are considered; the management

team, the development team and the final customers. Software testing shall be

adapted to take into account the different roles, simulating the different scenarios

in which the software can be put into operation. This will reduce the risk of

discrepancies between developers and their customers’ needs. It can also take a

more ‘negotiating’ role than in traditional development, serving as a communication

channel between the two. Developers will be able to obtain usage data for their

application in testing, without any detriment to customers.

These factors are directly influencing the emergence of new testing techniques, designed

to cover new needs not contemplated in traditional software development. A good ex-

ample of this is crowdtesting [53], which consists of the use of software under development

by a large group of users who provide information on all kinds of errors, vulnerabilities

or details for subsequent improvement. Its use in Industry 4.0 can bring great benefits,

as the development team will have access to information on usage and feedback from

Chapter 3. An in-depth study of software testing needs in industry. 36

customers. This makes it possible to detect and correct potential bugs faster, as well

as to adapt the development according to the customer’s needs in real time. The more

users participate in the tests, the more complete the information will be and the easier

it will be to advance in the development of the final product.

Crowdtesting, along with the modifications that traditional testing techniques may un-

dergo, are a direct effect of Industry 4.0, which, far from being a simple theoretical

paradigm, is increasingly present among us. Software testing is evolving to an approach

where the technical and personal aspects of IT projects are taken into account.

3.2.2 Stages of industrial software testing

Software testing in industrial environments is apparently similar to that of any other

kind of software, mainly differing in the size and granularity of the process. Interviews

with the surrounding companies referred to in this chapter allowed us to identify four

major activities to which they devote a large part of their resources: (1) source code

analysis, (2) test generation, (3) data generation and (4) industrial validation. These

activities are described below:

1. Source code analysis: this analysis consists of obtaining information from the source

code, either manually or using static analysis methods. The C and C++ languages

are well established in the industry and its projects, as they are well known for their

support for legacy code, their efficiency, ease of maintenance and code reusability.

It is common for this analysis to be performed manually, often by the developers

themselves, which can be a practice that introduces errors and a high workload

due to the large scale of projects. Therefore, this stage can benefit from the use

of automated and more robust analysis techniques, reducing the workload and

producing reliable and verifiable results.

2. Test harness generation: after the previous stage, test engineers are familiar with

the classes and methods in the code, so it is time to design the so-called test har-

nesses or test skeletons [63]. These test harnesses, normally accompanied by initial

data, allow the industry to define its test case strategy, subsequently allowing the

inclusion of data from external files, the reuse of test cases in different projects

Chapter 3. An in-depth study of software testing needs in industry. 37

and their maintenance by different work teams. Test harnesses can also be rep-

resented conceptually, so that the transition from one test framework to another

is straightforward. In this sense, the most popular testing frameworks for C and

C++ in the Bay of Cadiz industry are BOOST 1 and Google Test2. After a report,

the engineers try to fix any errors found until the team is satisfied. Again, these

tests are frequently designed in a manual way, based on the knowledge of the test

engineers. This stage could greatly benefit from test automation techniques, signi-

ficantly reducing the time and effort of the staff while resulting in a more robust

set of test cases.

3. Test data generation: after source code analysis and test harness generation, ef-

forts are mainly devoted to test data generation. One of the main advantages of

this approach is that the same test harness with different data can be reused to

test different functionalities of the code. This stage can be time-consuming and

labour-intensive, depending on the number of test cases and the methods used to

generate the test data. It is important to note that different techniques may be

used to generate test data, such as manual creation or automatic generation using

specialised tools. However, often test data generation is carried out more manually,

and, in general, the lack of a complete and suitable solution means that testing of-

ten represents a burden for the team, especially considering the size of the projects

being developed.

4. Industrial validation: consists of the complete testing of systems, both in real

and simulated environments. This is particularly important as a failure in the

system could have serious consequences. During industrial validation, various test

adequacy criteria can be applied to ensure that the tests are thorough and effective.

One example of such a criterion is mutation testing (MT). While these criteria can

be useful in ensuring the quality of tests, they are not commonly used in industry.

To sum up, our experience with the companies in the environment has allowed us to

identify a test development and execution stage divided into four different steps. The

first one, initially, analyses all the intrinsic details such as classes, their dependencies,

methods, etc. After this analysis, engineers develop test harnesses to design a more
1https://www.boost.org/doc/libs/1_66_0/libs/test/doc/html/index.html
2https://github.com/google/googletest

https://www.boost.org/doc/libs/1_66_0/libs/test/doc/html/index.html
https://github.com/google/googletest

Chapter 3. An in-depth study of software testing needs in industry. 38

robust test strategy, which they can then use as a basis for the choice of test data.

Throughout the process, industrial validation is present, which provides cross-cutting

information to improve the process as it occurs. Likewise, the phases of test harness

and test data generation can provide feedback to each other, in order to generate more

refined harnesses or data, respectively. Figure 3.1 represents the flow followed by the

feedback until the whole process is completed.

Source code analysis Test harness
generation Test data generation

Industrial validation

Figure 3.1: Interaction between different steps

3.2.3 Current limitations in software testing

All four stages are usually performed by different software solutions or even by different

team members in a distributed approach. It is common to see how, due to the size of

the projects, the four stages overlap and interact with each other, making the process

not completely linear in almost any case. In this section, we review some solutions that

aim to reduce the limitations and difficulties at each of the stages described above.

1. Source code analysis: in order to ease and improve the static code analysis, it is

possible to study the Abstract Syntax Tree (AST), a structure containing detailed

information about each element of the source code. In particular, we highlight the

AST generated by Clang [52], which is highly useful due to its similarity to the

written C++ language and compatibility with most versions of the languages in

the C family. Initially, the idea of using concrete syntax-based code processing was

considered. However, after some initial testing, this approach was discarded due

to the difficulty and potential for errors in pattern matching to cover all possible

cases. The AST provides a well-structured representation of the code, making it

easier to identify and analyse each element.

2. Test harness generation: thanks to the libraries implemented by Clang for source

code generation and the information obtained from the AST, it is possible to build

Chapter 3. An in-depth study of software testing needs in industry. 39

a set of test harnesses written in a specific test framework, as well as a small set of

initial test data (random or default depending on the type of data) that serve to

check the functionality and viability of these harnesses.

3. Test data generation: the techniques range from the most basic, such as ran-

dom testing [30], using random inputs for test harnesses, to more complex testing

methods, involving more sophisticated techniques like genetic algorithms [80] or

Dynamic Symbolic Execution (DSE) [12], which is an effective technique for gen-

erating comprehensive and high-quality test data, as it can automatically create

a large number of test data that can handle complex input domains and manage

dependencies between input data. In this sense it is interesting to explore the ex-

isting techniques and how they can be improved in order to find as many bugs in

the code as possible at early stages.

4. Industrial validation: beyond manual inspection and strict standards [44], there

are techniques for the evaluation of test cases such as mutation testing [71], which

to date has not been integrated into this kind of projects.

The implementation of these solutions as a whole is a major challenge. A successful

implementation brings considerable benefits to society as a whole, beyond those industrial

projects where these stages are identified, which serve as inspiration for the development

of the proposed solutions for automating software testing. Regarding industrial benefits,

the following section describes in more detail the areas where a potential improvement

is identified.

3.2.4 Benefits

Based on the close collaboration with the group of companies referred to in this chapter,

according to the results obtained and their estimation, the incorporation of state-of-the-

art technologies for automating software testing can be associated with three potential

benefits: economic benefits, product quality benefits, and benefits in the entire develop-

ment process. The following is a detailed description of these three benefits:

• Economic benefits: the overall cost reduction of projects is in the range of 6% to

13%. At first glance, this may seem a small percentage, but looking at the various

Chapter 3. An in-depth study of software testing needs in industry. 40

transparency portals [16, 61], it is common to find industrial projects costing up to

billions of euros. Of particular note is the contract between the company Navantia

and the Saudi Arabian government for the construction of five corvettes at an es-

timated cost of €1,800,000,000 [59]. Taking this well-known project as an example,

the estimated economic savings would be between €108,000,000 and €234,000,000.

A large part of this estimate is derived from the implementation of automatic test

generation software and validation processes. This makes it possible to reduce the

total time of the testing phase, detecting defects in less time, thus relieving the

workload of engineers and avoiding the particularly high cost of fixing problems in

the more advanced stages of development.

• Benefits in product quality : as a consequence of the economic benefits, there is an

associated benefit in the quality of the final product. Techniques such as mutation

testing automatically provide a numerical metric (mutation score) to estimate the

ability of tests to detect real faults. This estimation is beneficial for documentation

and comparison with other projects beyond knowing that the tests cover certain

lines of the code or the subjective opinion of the test engineers. In this sense,

projects will probably contain fewer defects upon delivery, producing a source code

that is better designed and documented.

• Benefits in the development process: development time and the well-being of en-

gineers are a clear benefit of automating software testing. Testing time applying

automated techniques is significantly reduced when compared to the manual craft-

ing of tests, making it easier to integrate other software components and software

engineers throughout the development process. In addition, this reduction in time

allows engineers to be able to take on a larger number of projects while reducing

the overall manual workload.

Chapter 3. An in-depth study of software testing needs in industry. 41

3.3 Chapter conclusions

The experience with the companies in the Bay of Cadiz has been fruitful in terms of

observation and information gathering. This close collaboration has resulted in a public-

ation at a national conference [90], a publication at an international conference [92] and

a book chapter [91].

Our experience allowed us to observe that the automation of software testing brings a

number of important economic and quality benefits that should be taken into account in

industrial software development projects. Although the stages of software testing in this

context are well defined, they still rely on a very high manual workload and are often

limited by external and uncontrollable factors such as deadlines or budget. Commercial

solutions are often very costly and their integration between projects is not guaranteed.

The evolution of the systems inherent to Industry 4.0 makes it impossible to overcome

this issue, which is why there is a need for a new solution that is open, general and easily

adaptable to the new circumstances.

After understanding the workflow described in Section 3.2.2, we note that normally the

generation of test harnesses and test data are separated. Depending on the size of the

project, they may be separated in time or by different teams. Although at first sight this

may seem an obstacle, this has many benefits, as both exchange information, resulting

in a generally more robust set of test cases than covering both stages at once. Therefore,

two separate lines of research have been identified, one for each of these two stages.

The following chapters describe the research work conducted for the two lines of re-

search. Chapter 4 presents a solution for the generation of test harnesses based on the

Abstract Syntax Tree (AST), while Chapter 5 describes a novel combination of testing

techniques for the generation of test data specially designed to find more potential defects

in software.

Chapter 4

Automatic generation of test

harnesses via AST

“Intelligence is the ability to avoid doing work, yet getting the work done.”

Linus Torvalds

Automatic test generation involves the generation of test cases from existing source code.

While it is true that test data can be obtained as a result of the conceptual analysis of the

SUT design itself, without the need to view the software as a white box, the test structure

itself (assertions, function calls, etc.) should be done based on the code syntax. From

the industrial experience described in Chapter 3, along with the review of other similar

works, it follows that the analysis of the AST is a natural solution for the generation of

the test structure, as it provides the necessary information without the need to analyse

the code implementation manually.

This chapter describes the development of a solution for the generation of test harnesses

based on the information contained in the AST. This solution is strongly inspired by the

industrial experience described in Chapter 3. As such, the product resulting from the

research conducted in this chapter serves as a lightweight test framework adaptable to

new projects and situations.

43

Chapter 4. Automatic generation of test harnesses via AST 44

4.1 Motivation

It seems evident that a significant gap exists between the views of academics and practi-

tioners in software development, especially at the software testing stage [77]. The good

relations between the University of Cadiz and the business fabric of the Bay of Cadiz,

as we have seen in Chapter 3, are an important source of inspiration for knowing and

understanding the development needs that current industry projects may have.

A test case generation process, either automatic or manual, involves the development of

two elements that, although closely related, are often separated: the test harness, which

consists of a set of test cases and the infrastructure needed to execute them and evaluate

the results, and the test data, which, while being part of the test harness, requires a

more specific analysis of the software and its domain. To obtain the former, we mainly

need structural information from the source code, while to obtain the latter, we need

more detailed information on the inner logic, which can be obtained even at a theoretical

level. Listing 4.1 shows an illustrative example.

1 class A {

2 public:

3 A(int value) : value(value) {}

4 int pow() { return value∗value; }

5 private:

6 int value;

7 }

Listing 4.1: SUT example

This class allows initialising objects from an integer and provides a method that returns

the value of the power of that number. If anyone were tasked with testing such a class,

they would most likely design test cases based on two sets of questions:

1. What are the constructors like? What methods and attributes does the class have?

Are they public or private? What are the input parameters, and what type of data

does each method return?

2. How does the mathematical power operation work? What values should I use to test

this mathematical function?

Chapter 4. Automatic generation of test harnesses via AST 45

To answer question (1) the programmer needs to have knowledge on the language rules

and the structure of the code. For example, how constructors work and what they consist

of, what the accessibility of the class methods is, how a function call is performed, etc.

These are trivial questions for any test engineer who has access to the source code

specification. However, question (2) requires mathematical knowledge, independent of

programming, in order to select a set of test data that we consider sufficient to be satisfied

with the operation of the program (although this is sometimes more of a philosophical

than a technical problem [58]). Of course, this does not mean that they are entirely

separate questions, as often, and especially in complex problems, the design of the code

helps to determine the test values.

A literature review in Chapter 2 highlights the importance of the AST in terms of

automatically gathering structural information from source code. This information can

be used to generate new pieces of code, which fits seamlessly with the creation of the

test structure, including the initialisation of the objects of a class, method calls, etc.

Moreover, the elements can be identified in a flexible way from the intermediate stage

of the compilation process. This means that it is possible to generate code for different

test frameworks with a single reading of the AST. Regarding test data generation, it is

possible to parse part of the AST to obtain an initial data set. However, there are other

powerful testing techniques that focus mainly on test data generation, fulfilling different

coverage criteria. The application of novel techniques in this area provides motivation,

as it will be later on discussed in Chapter 5.

Considering the experience described in Chapter 3 and the elements needed during the

creation of a test suite, we propose the creation of a new framework for the automatic

generation of test cases. This framework incorporates the AST to retrieve, in a fast,

simple and understandable way, structural information from the source code, producing

a set of test cases with calls to the different constructors and public methods available

in the classes of the code. This chapter shows the design and implementation of this

solution, as well as a brief case study to illustrate the viability of this proposal.

Chapter 4. Automatic generation of test harnesses via AST 46

4.2 ASkeleTon: test harness generation from the AST

This section introduces ASkeleTon, a tool for automatic generation of test harnesses for

SUT written in C/C++ based on the AST. ASkeleTon, like other popular tools [24, 29],

incorporates the Clang AST to obtain complete and easy-to-interpret information about

the source code structure. The result of applying this tool is a test suite organised and

identified by classes, with at least one generic call to each method and constructor in

the code, allowing test data to be changed or further calls to be generated quickly and

easily. ASkeleTon offers the following features:

• Automatic generation of test harnesses. Being the main purpose of the tool,

it is able to generate a set of directories and test files ready to be compiled and

executed with randomly generated default data.

• Generation of log files. While the AST is being analysed, the tool leaves a

record of which elements are found along with their location in the source code.

These elements, regardless of whether they are used in the tests or not, are useful

for test engineers to have a snapshot of the code structure available at a glance,

thereby facilitating the task of testing and subsequent maintenance.

• Use of templates for testing frameworks. ASkeleTon uses BOOST as a test

framework by default, however, it is extensible to any other framework designed for

testing C/C++ code. The use of templates detached from the source code makes

the incorporation of other test frameworks an elementary task, as it will be seen

later in this chapter.

• Separation between test cases and test data. The test cases contain refer-

ences to the test data found in external files, allowing the parameterisation of the

data in the test cases. Therefore, it is possible to work separately in the generation

of the test data, helping to incorporate new state-of-the-art techniques without the

need to modify the test harness or the code of ASkeleTon.

• Fully modular development. ASkeleTon has been designed so that each group

of functionalities can be found in a specific module. Specifically, and apart from the

main program, there is a module for generating code from templates and another

for analysing and obtaining information from the AST. The purpose of this design is

Chapter 4. Automatic generation of test harnesses via AST 47

to facilitate the maintenance and extension of tools, as well as the reuse of modules

in other tools, in line with the changing needs of projects in the industry.

Figure 4.1 presents a schematic depiction of the general operation of ASkeleTon. The

process begins with the specification of the requirements for the SUT to be met. Then, an

AST is generated. Subsequently, Matchers are applied to the AST to extract information

regarding the structure of the source code. The output of this process is then used to

construct the test harness, which is composed of a multitude of software components.

In the following section of this chapter, we will describe the various elements comprising

the test harness in greater detail.

ASKELETON TEST GENERATION

SUT Requirements

C or C++ code
Accessible dependencies
At least one accessible
function or method

The SUT must have:

Code analysis using AST Matchers

Function and method
declarations
Classes and constructors
Initial test data location

AST Matchers will locate:

Test code generation

Based on the matchers
results, ASkeleTon will
generate the test harness

Satisfied
requirements?SUT

yes

AST Matchers
results

Test harness

Templates
Initial test data
Logs
Information files
Makefile

Figure 4.1: ASkeleTon general schema

ASkeleTon is one of the results derived from the industrial experience described in

Chapter 3. Based on the needs observed in the development of the projects and the

valuable feedback received, this tool aims to provide a complete test harness that serves

as a basis for the accomplishment of the stages of software testing in any context. Its

application to open source projects shows promising results, obtaining not only the test

harness, but also valuable information for code maintenance and reuse.

4.3 Test harness design

This section illustrates the test harnesses that ASkeleTon is capable of generating. It

does not rely on any specific testing framework, but includes BOOST by default. In

Chapter 4. Automatic generation of test harnesses via AST 48

Section 4.3.1, we introduce BOOST as a testing framework. In Section 4.3.2, we provide

an illustrative example of the test harnesses generated by ASkeleTon.

4.3.1 BOOST as default test framework

BOOST [81] is a widely-used open-source library for C++ programming, offering a range

of algorithms and data structures, as well as compatibility with various platforms and

operating systems. It has become a popular choice among C++ developers and has

been employed in numerous projects, such as operating systems, web browsers, desktop,

and mobile applications. BOOST provides a variety of components for improving code

efficiency and productivity, including tools for handling strings, numbers, and complex

data structures, as well as algorithms for data processing and code optimisation.

A key component of BOOST is the BOOST Testing Framework, which assists in the

creation and execution of unit tests for C++ applications. The BOOST Testing Frame-

work provides a range of tools and features for creating and running unit tests efficiently,

including macros for value comparison and condition verification, as well as functions for

creating tests that run in various contexts and environments. It also includes a command-

line console for easy unit test execution and a test tracking tool for monitoring progress

and results. In conclusion, the BOOST Testing Framework is an invaluable resource for

ensuring the quality and reliability of C++ code.

Listing 4.18 is an example of using the BOOST testing framework to test a small function

that returns the larger of two integers:

1 #include <boost/test/unit_test.hpp>

2

3 int max(int a, int b) {

4 return (a > b) ? a : b;

5 }

6

7 BOOST_AUTO_TEST_CASE(test_max)

8 {

9 BOOST_CHECK(max(1, 2) == 2);

10 BOOST_CHECK(max(2, 1) == 2);

11 BOOST_CHECK(max(2, 2) == 2);

12 BOOST_CHECK(max(−1, 2) == 2);

13 BOOST_CHECK(max(1, −2) == 1);

Chapter 4. Automatic generation of test harnesses via AST 49

14 }

Listing 4.2: BOOST Testing Framework example

In this example, the BOOST_CHECK macro is used to verify that the max function is

returning the larger of two integers as expected. The BOOST_AUTO_TEST_CASE macro is

used to define a test case and all checks performed with BOOST_CHECK within that test

case will be considered part of the same test case. If any of the checks fail, the test case

will be considered failed.

4.3.2 Structure of ASkeleTon test harnesses

The modular design of ASkeleTon generates a range of files that together constitute the

test harness. This section presents the most significant elements to illustrate the concrete

output of ASkeleTon before examining each part in detail.

First, we will start with a function that will act as a SUT (see Listing 4.3). This is the

same example used in Section 4.3.1 above.

1 int max(int a, int b) {

2 return (a > b) ? a : b;

3 }

Listing 4.3: Max value function

A single execution of ASkeleTon generates the log shown in Listing 4.4. As it is a

small function with only one binary operator (the > operator) and one function, the log

contains only two lines. The first line indicates the presence of the binary operator, and

the second line indicates the presence of the function.

1 Found BinaryOperator at 2:13 − from function max

2 Found FunctionDecl at 1:1 − max in file Max

Listing 4.4: Log produced by ASkeleTon

Listing 4.5 shows the test file, also referred to as the Test Skeleton. It contains a test

case with an assertion that serves as a unit test. The values for this assertion are

Chapter 4. Automatic generation of test harnesses via AST 50

parameterised, meaning that they are not written directly in this file. Instead, they are

specified in an external file with a .cfg extension (as shown in Listing 4.6). The test case

reads these values from the .cfg file using auxiliary functions such as Read_int.

1 #include "Max_fixture.hpp"

2

3 BOOST_FIXTURE_TEST_CASE(Max_ReadParams, Fixture)

4 {

5 Date("Start");

6 BOOST_CHECK_EQUAL(max(Read_int("max.a"),Read_int("max.b")),Read_int("max.

return_int"));

7 //{assert}

8

9 Date("End");

10 }

Listing 4.5: BOOST Test Skeleton

Listing 4.6 shows the aforementioned .cfg file. It includes the data that is used to

populate the test cases. Particularly, it specifies the name of the function along with

its parameters and the expected return value for the test to be successful. This file is

in plain text, making it easy to edit either manually or with external data generation

techniques. ASkeleTon generates initial test data input randomly, but the expected

output must be filled in by the test engineer. In the current version of ASkeleTon, this

value is automatically filled in to allow for immediate test compilation, but it is expected

to be incorrect. It is the responsibility of the test engineer to provide the correct expected

output value for each test case in order to ensure that the tests are valid and effective in

finding defects in the software.

1 max:

2 {

3 a=−6;#int

4 b=8;#int

5 return_int=8;#int

6 };

Listing 4.6: Test data (.cfg file)

Besides these files, several auxiliary files are generated to facilitate the correct compilation

and execution of the test harness. These include the Fixture file, which contains the

Chapter 4. Automatic generation of test harnesses via AST 51

methods for reading data from the .cfg file and parametrising it in the test cases, the

information file (SupportedTypes.txt), which shows the test engineer which data types

are supported in the tests, and the Makefile, which allows for the compilation of the test

harness with a single command. We discuss the role and organisation of all these files in

detail in Section 4.4 below.

4.4 ASkeleTon: design and implementation

ASkeleTon has been designed to be user-friendly: starting from a SUT written in the

C/C++ language, one gets a test harness to start working on. This harness is perfectly

compilable and runnable right away. The main execution flow is shown in Figure 4.2.

Matchers results

Parser

Parsed Matchers
results

Generate
auxiliary files

Logs

Information file
(SupportedTypes.txt)

Makefile

Put results in
templates

Templates

Test Skeleton

Initial test data

Optional external
test data source

Combine
elements Test harness

Software Under
Test (SUT)

AST

Generate
Clang AST

Parse AST
applying
matchers

Test framework

Code analysis Test harness generation

Figure 4.2: ASkeleTon workflow

In short, by looking at Figure 4.2, it can be seen how ASkeleTon produces the test

harnesses. First, it obtains the AST from the Clang compiler. After that, a series of

specific functions known as Matchers are applied to extract the necessary information to

build the test cases. Finally, using the results of the Matchers and external templates, it

will generate a set of files that make up the test harness. This includes code for the test

Chapter 4. Automatic generation of test harnesses via AST 52

cases and some initial test data. This process is performed for each of the SUT classes,

as well as for those global functions that do not depend on any class.

The modular structure of ASkeleTon allows each step to be performed by a different

module in the application. One of the main purposes of this design is to facilitate the

maintenance, reuse and extension of the source code of both the test harness and ASkel-

eTon itself. In the following, each of the steps, as well as small parts of the implementation

and the results, are described in order to better understand how they work.

4.4.1 SUT Requirements

ASkeleTon receives as input the path to the file containing the SUT, which must meet a

number of requirements:

1. It must be C or C++ code, so file extensions should be among the following for

ASkeleTon to work as expected: {.c, .cpp, .h, .hpp}.

2. It must contain at least one accessible function or method that receives some param-

eter and returns a specific value. ASkeleTon bases its tests on assertion checking,

so it will not automatically generate tests for void functions that do not return any

value.

3. If the code is based on orient-objected programming, its classes must have at least

one public method. Assertions that test private parts of the class will not be

generated automatically, as the tests will not have access to them.

4. If the SUT has any specific compilation needs (dependencies, specific parameters,

optimisation levels, etc.) it is the responsibility of the test engineer to incorporate

the corresponding makefile into the final result.

Although testing with user-defined types is allowed, it is advisable to pay attention and

review the way they are incorporated in the tests, as they will be used with the default

values of the attributes of the class defining the object.

Once ASkeleTon receives —as a parameter in its main class— the path to the file to be

tested (e.g. /route/to/file.cpp), and, as long as this file contains C or C++ code,

Chapter 4. Automatic generation of test harnesses via AST 53

the log where the whole process is recorded will be created. At this point, the files are

opened and the start time is saved in the log, continuing with the next step, which would

be to obtain the AST.

4.4.2 Generation of the AST

Thanks to the Clang compiler, obtaining the AST can be done quickly and smoothly.

The main class of ASkeleTon contains two lines that will give the program immediate

access to the AST.

1 ClangTool Tool(OptionsParser.getCompilations(),

2 OptionsParser.getSourcePathList());

Listing 4.7: Getting the AST in the code

This particular AST has a syntax similar to that of C++, so a test engineer should be

able to read it without particular difficulty. However, for automatic processing, it is

preferable to make use of Matchers. These are predicates executing queries on the AST

node. One of the main features is that Matchers can be nested in the form of a tree,

adding constraints to the predicates, thus allowing to find concrete situations. In the

following, there is an example of how Matchers work, as well as those used internally by

ASkeleTon.

4.4.3 Code analysis: AST Matchers

The way Matchers work is relatively simple. For example, to obtain the methods declared

within the classes in C++, it would be enough with the Listing 4.8 statement.

1 DeclarationMatcher MD1 = cxxMethodDecl();

Listing 4.8: Obtaining method declarations

It is possible, as noted above, to nest the Matchers (they can be seen as constraints), so

that we get more specific elements. The example above can be modified, for example, so

that it only shows methods that have input parameters, as shown in Listing 4.9.

Chapter 4. Automatic generation of test harnesses via AST 54

1 DeclarationMatcher MD1 = cxxMethodDecl(

2 hasAnyParameter(...));

Listing 4.9: Obtaining method declarations

with parameters

The nesting of these restrictions has no limit and allows describing code situations in a

generic way (functions with parameters, classes with constructors, etc.). This facilitates

the creation of procedures to automate the analysis of the AST and thus obtain key

information for test case generation.

ASkeleTon implements six different Matchers, four of them to obtain structural elements

and other two that will be useful when generating test data. The following section

describes each of them. Please note that we apply Matchers to retrieve the elements of

the code required for the process of test generation; later, however, these elements are

further processed for their breakdown (obtaining lists of parameters, names, etc.).

Function and method declarations

The first two Matchers are used to obtain the functions and methods from the code.

Looking at Listings 4.10 and 4.11, it can be seen that not every element is captured, but

rather a series of restrictions is applied to retrieve only the most relevant data for the

generation of test cases.

Listing 4.10 will first capture the AST nodes of type functionDecl, i.e. function de-

clarations, excluding methods of classes. Within the call to functionDecl the following

restrictions are included:

• unless(isImplicit()) - It excludes from the result implicit functions, those

that the compiler assumes are defined or declared elsewhere. We have observed

that the compiler often includes functions in the files that are not defined by the

programmer. We are only interested in functions explicitly declared in the code,

which are obtained by applying this restriction.

– Breakdown of the instruction

∗ unless(): negation operator.

Chapter 4. Automatic generation of test harnesses via AST 55

∗ isImplicit(): returns true if the declaration has been implicitly gener-

ated. Conversely, if it has been explicitly written in the code, it returns

false.

• unless(returns(voidType())) - Exclude from the result those functions that

do not return anything, of type void.

– Breakdown of the instruction

∗ unless(): negation operator.

∗ returns(): returns true if the function or method returns a value of the

type specified as a parameter. Otherwise, it returns false.

∗ voidType(): returns true if the function or method is void (does not

return any value). Otherwise, it returns false.

• isExpansionInMainFile(): returns true if the function was expanded within the

main-file. This means that only the code of the file being analysed is considered,

excluding all results coming from the headers. This avoids generating duplicate

tests or testing other modules that need a separate analysis. Otherwise, it returns

false.

1 DeclarationMatcher FD1 =

2 functionDecl(

3 unless(isImplicit ()) ,

4 unless(returns(voidType())),

5 isExpansionInMainFile()

6) .bind("FD1");

Listing 4.10: AST Matcher for function declarations

Listing 4.11 is similar to Listing 4.10, only changing the functionDecl method to cxxMeth-

odDecl. In this way, the AST nodes corresponding to method declarations defined within

classes will be captured. Although both Matchers share the same constraints, this one

includes one more constraint due to the inherent characteristics of the methods.

• isPublic(): returns true if the visibility of the element is set to public. Otherwise,

it returns false.

Chapter 4. Automatic generation of test harnesses via AST 56

1 DeclarationMatcher MD1 =

2 cxxMethodDecl(

3 unless(isImplicit ()) ,

4 isPublic () ,

5 unless(returns(voidType())),

6 isExpansionInMainFile()

7) .bind("MD1");

Listing 4.11: AST Matcher for method declarations

With just these two Matchers, we have captured all the functions and methods available

for use in software testing. Next, two more Matchers are shown for obtaining typical

language constructs of C++ programs, not included in the ones presented so far.

Classes and constructors

Listing 4.12 and 4.13 show Matchers dedicated to obtaining structural information. Spe-

cifically, they seek to capture those structures of type struct, interface, class, union

and enum, as well as their constructors where appropriate. The constructors will be

treated as functions, although they will be given their specific functionality in the test

cases later.

Listing 4.12 captures all nodes of the AST of type cxxRecordDecl. This refers to all code

elements containing the keywords struct, interface, class, union and enum. In an

early version of ASkeleTon, five different Matchers were included to capture each of the

elements separately. However, the subsequent processing of the captured nodes makes it

possible to differentiate them, so we have finally opted for this single and more general

Matcher with two restrictions.

1 DeclarationMatcher CT1 =

2 cxxRecordDecl(

3 unless(isImplicit ()) ,

4 isExpansionInMainFile()

5) .bind("CT1");

Listing 4.12: AST Matcher for C++ struct/union/class

Chapter 4. Automatic generation of test harnesses via AST 57

Listing 4.13 is specifically designed to obtain the constructors of those elements, if neces-

sary. Certainly, with the elements obtained from the Matcher presented in Listing 4.12,

we could have obtained the constructors. However, this would require a more intensive

post-processing of the AST node in which we had to filter out constructs without con-

structors, as there are elements that cannot have a constructor, do not implement it or

it is not accessible. With this Matcher, all constructors that meet certain conditions are

captured quickly and easily to be used in software testing.

1 DeclarationMatcher CC1 =

2 cxxConstructorDecl(

3 unless(isImplicit ()) ,

4 isExpansionInMainFile()

5) .bind("CC1");

Listing 4.13: AST Matcher for constructors

The tests performed, as well as the external feedback received, show that with just these

four Matchers we can get enough structural information to generate a good initial test

suite. An illustrative example is shown below.

Example

Listing 4.14 shows an example class on which the Matchers described so far are applied.

Each of them will match the following AST nodes:

• Listing 4.10 will capture the function int externalFunction().

• Listing 4.11 will capture the method int pow().

• Listing 4.12 will capture the class AST.

• Listing 4.13 will capture the constructor AST(int value).

Therefore, the method void showMessage() will not be captured as it does not return

anything, and neither the method int getNumber() for being private.

Chapter 4. Automatic generation of test harnesses via AST 58

1 class AST {

2 public:

3 AST(int value) : value(value) {}

4 int pow() { return value∗value; }

5 void showMessage() {

6 std :: cout << "Hello there!";

7 }

8 private:

9 int getNumber() { return value; }

10 int value;

11 }

12

13 int externalFunction(int a) { return a∗a; }

Listing 4.14: SUT example for

Matchers

Potential test data location

We have previously seen that the generation of test data in ASkeleTon is separated from

the structural information of the tests. By default, this data is generated randomly.

In line with industrial experience, where it is common for software domain experts to

input data manually or use automated techniques, we chose to delegate the input of

more complex test data to an external source. During the development of ASkeleTon,

however, two Matchers have been created to locate conditional statements within the

code and the comparisons appearing in them. This allows identifying which variables

may be relevant when generating random values.

These patterns help detecting meaningful values that are worth considering in the testing

process. The results of these Matchers are directly shown in the logs. This allows the

test engineer to detect them at a glance and thus use the information to, for example,

prioritise these values when designing test data.

Listing 4.15 shows a Matcher capable of finding all relational operators. This time, the

constraints are a bit more particular, so they are defined below:

• functionDecl(): matches all function declarations.

Chapter 4. Automatic generation of test harnesses via AST 59

• forEachDescendant(): it explores the descendants of a specific node. Thus, the

constraints apply not only to the node being analysed, but to each of its descendant

nodes.

• binaryOperator(): returns true if the node represents a binary operator, false

otherwise. At the same time, this operator enables the use of internal constraints,

so that only the binary operators meeting certain conditions return true.

• anyOf(): returns true if any of the given statements returns true, otherwise re-

turns false. It is equivalent to the logical operator OR.

• hasOperatorName("opName"): returns true if the node represents an operator of

the specified type. It returns false otherwise.

• unless(isImplicit()): only matches operations explicitly defined by the pro-

grammer.

1 DeclarationMatcher DG1 =

2 functionDecl(

3 forEachDescendant(

4 binaryOperator(

5 anyOf(

6 hasOperatorName("=="),

7 hasOperatorName("!="),

8 hasOperatorName(">"),

9 hasOperatorName(">="),

10 hasOperatorName("<"),

11 hasOperatorName("<=")

12)

13) .bind("DG1")

14) ,

15 unless(isImplicit ())

16) .bind("DG1b");

Listing 4.15: AST Matcher for conditionals

The Matcher shown in Listing 4.15 consider all the conditional constructs provided by

the language, except for the switch type statements. For this reason, the Listing 4.16

Matcher has been designed to capture this type of elements.

1 DeclarationMatcher DG2 =

Chapter 4. Automatic generation of test harnesses via AST 60

2 functionDecl(

3 forEachDescendant(

4 switchStmt().bind("DG2")

5) ,

6 unless(isImplicit ())

7) .bind("DG2b");

Listing 4.16: AST Matcher for switch statements

Please note that Listings 4.15 and 4.16 are designed for nodes of type functionDecl.

The final ASkeleTon implementation includes another two analogous Matchers for class

methods, only changing functionDecl to cxxMethodDecl. As their operation is exactly

the same as described in Listings 4.15 and 4.16, a copy is not included in this document.

These last two Matchers have an informative purpose, so previous constraints such as

the visibility of the analysed methods are removed here. This is because the test engineer

might want to know, for example, when the attributes of a class are modified within a

private method. Whenever the Matcher finds a result, it will be recorded in the logs.

At this point, ASkeleTon has enough information from the SUT to generate test cases.

The output of the Matcher consists of ready-to-use structural information and can there-

fore be used to build test cases in any test framework.

4.4.4 Test code generation

ASkeleTon implements a template-driven modular design for the generation of test har-

nesses. There are templates in .tpl format that shape the test files, so that ASkeleTon

can replace a number of parameters with the information extracted from the AST. There

are modules, internally referred to as generators, which are responsible for processing and

inserting such information into the templates. Furthermore, a set of default files assists

in test compilation and provide useful information to test engineers.

Templates

ASkeleTon incorporates a .tpl template file for each test harness file to be generated

beyond those generated by default (described later in this section). In its default state,

Chapter 4. Automatic generation of test harnesses via AST 61

ASkeleTon incorporates a template for the generation of test cases with two main files:

a C++ file containing test cases in the BOOST framework and a Fixture file, which

contains all the methods necessary for the initialisation and parameterisation of the

test case. The BOOST Test library is a testing framework designed to automate the

most basic tasks found in most test cases (such as assertions, variable initialisation,

etc.) [81]. This easy-to-use library, which is well established in the industry, provides

all the necessary methods to perform complex validation tasks. Listing 4.17 shows the

template for the BOOST tests.

1 #include "{className}_fixture.hpp"

2

3 BOOST_FIXTURE_TEST_CASE({className}_ReadParams, Fixture)

4 {

5 Date("Start");

6 {pointerInitToken}

7 //{assert}

8 {pointerDestroyToken}

9 Date("End");

10 }

Listing 4.17: Boost template

The BOOST template is designed to be compact, simple and easy to understand. All

the complex methods for initialisation and data reading are contained in the Fixture

file (described below). It is convenient to differentiate between fixed and configurable

elements in the template, as configurable elements will define the specific behaviour of

the tests. It is possible to quickly identify them by the braces ({elementName}):

• {className}: the name of the class under test. There shall be at least one file for

each class. If the functions under test do not belong to any class, this parameter

shall be replaced by the name of the file to which they belong.

• {pointerInitToken}: when test cases include variables that require memory re-

servations (mainly in C programs), this element will be replaced to include them.

• {assert}: the assertions to be run in the test cases. ASkeleTon shall replace this

element by as many assertions as necessary to complete the test execution.

Chapter 4. Automatic generation of test harnesses via AST 62

• {pointerDestroyToken}: if the test case has required memory reservation, this

element shall be replaced by statements with the actions responsible for releasing

the reserved memory.

Note that the {assert} element is commented out, so at first glance it may seem to

have no effect on the code. However, this is merely an aid during the execution of

ASkeleTon. As the AST is traversed, as soon as any of the Matchers gets enough

information to generate an assert, ASkeleTon incorporates it into the result. To avoid

constant comparisons like: “is this the last possible assert in the test case?”, we chose to

always leave a commented assert block. Therefore, in the test harness, all the assertions

will be added together up to a last line, which will be the same as the one we see in the

template.

Within the assertions, there are three types depending on the case:

• BOOST_CHECK(new Object(...)); this assertion is generated once for each con-

structor defined in the class, if any. It checks that the object has been created

correctly.

• BOOST_CHECK_EQUAL(call_to_function, expected_output); this assertion is gen-

erated at least once for each function or method available in the code. It checks if

a call to a function with specific data generates the expected output.

• BOOST_CHECK(call_to_function == expected_output); BOOST_CHECK_EQUAL does

not support somewhat more complex data types such as C++ Standard Template

Library (STL) containers, user defined types, etc. Therefore, methods using these

types are identified and their assertion will be of type BOOST_CHECK, which allows

comparisons to be made by using logical operations.

As for the fixed elements, they are elements of the BOOST framework. Line 1 in List-

ing 4.17 includes the Fixture file, whose name will always match the name of the class or

file to be tested. Line 3 consists of the creation of a BOOST test case that uses Fixture,

and it is called as shown in Listing 4.18. Within the test case, besides the configurable

elements described above, there are two lines of type Date(“Start/End”). These calls

allow the programmer to know the start and end time of each test case.

Chapter 4. Automatic generation of test harnesses via AST 63

1 BOOST_FIXTURE_TEST_CASE(test_case_name, fixture_name)

Listing 4.18: Boost Test Case example

On the other hand, the template of the Fixture file in the initial version of ASkeleTon

contains 522 lines of code, as it includes everything necessary for the initialisation, reading

and parameterisation of the data during the execution of the tests. This code is mainly

composed of getters and setters specific to each data type, so we will focus only on the

configurable elements.

• {className}: the name of the class under test (same as in BOOST template).

• {classNameTest}: the name of the test case, which will consist of the name of

the class followed by the "test" keyword.

• {includes}: if the class under test needs to include a specific library, ASkeleTon

will include it in the Fixture. This parameter has been included following indus-

trial feedback, as there are projects where the access to libraries changes between

the test and production environment. Normally, the whole code is accessible, so

by including the class under test in the Fixture, it will not be necessary to add

additional libraries.

• {namespaces}: if the class under test needs to include a specific namespace,

ASkeleTon will include it in the Fixture.

• {readObject}: if the class under test uses an object of a specific class as an

attribute, and that class is accessible, a method shall be added to the Fixture to

facilitate reading and writing it during testing.

Once the files that make use of templates are created, it is time to generate the rest of

the files. ASkeleTon generates these files from scratch, being two of them based on the

AST: the .cfg file with the test data and the logs.

Generators: test data and logs

The test data is parameterised in a .cfg file. This file does not need to use templates,

as ASkeleTon will be able to generate them dynamically while the assertions are being

Chapter 4. Automatic generation of test harnesses via AST 64

generated. This file contains the data to be used by the test assertions, which have three

possible forms, as we can see in Listings 4.19, 4.20 and 4.21.

Listing 4.19 represents a call to a default constructor. Line 1 is the name of the class

which the object to be created belongs to. Then, nothing is included between the braces,

representing that there are no parameters.

1 className: { };

Listing 4.19: Test data for

empty constructors

Listing 4.20 represents a call to a constructor with parameters. Line 1, again, represents

the name of the class on which an object is to be created. After that, there is a list of

parameters. It is convenient to analyse each line of Listing 4.20 to better understand the

syntax of this file.

• className_1: the name of the class under test. The _NUMBER termination is

added by ASkeleTon automatically in case there is more than one constructor to

avoid naming conflicts when parameterising data.

• first_param=value;#type: the name, value and type of each input parameter.

– Breakdown of the instruction

∗ first_param: the name of the input parameter.

∗ value: the value of the input parameter.

∗ #type: a comment about the input data type. ASkeleTon uses this in-

formation to know which Fixture method should be used to parameterise

the data. As the .cfg file is a text file, this will be useful for parsing the

values.

1 className_1:

2 {

3 first_param=value;#type

4 second_param=value;#type

5 };

Listing 4.20: Test data for constructors

Chapter 4. Automatic generation of test harnesses via AST 65

The last of the elements that can be found in a .cfg file are the method and function

calls, as shown in Listing 4.21. There are some notable differences with respect to the

previous case:

• functionName: The name of the method or function under test. In the case of

methods, it is not necessary to specify the class, as ASkeleTon generates a file for

each class under test, so there is no conflict. As with constructors, ASkeleTon can

add the _NUMBER termination to provide different data for the assertions.

• first_param=value;#type: the same as the previous case.

• return_type=value;#type: at the end of each method or function call, there is a

parameter like the one in the example, which represents the expected output value.

1 functionName:

2 {

3 first_param=value;#type

4 second_param=value;#type

5 return_type=value;#type

6 };

Listing 4.21: Test data for methods and

functions

ASkeleTon is prepared to generate assertions using STL containers as well as user-defined

types. Listing 4.22 shows an extract of a .cfg file, which includes values for a vector and

a map parameter in the call to the functions vectorMethod and mapMethod, respectively.

1 vectorMethod:

2 {

3 v_param={−73,98,13,79,−54};#vector<int>

4 return_vector<int>={−57,78,39,52,−5};#vector<int>

5 };

6

7 mapMethod:

8 {

9 m_param={(68,−88),(18,66),(23,−49),(51,−93),(67,3)};#map<int, int>

10 return_map<int, int>={(37,24),(28,−20),(−82,−15),(−4,−42),(−16,−6)};#map<int, int>

11 };

Listing 4.22: CFG example using the STL

Chapter 4. Automatic generation of test harnesses via AST 66

Finally, regarding the AST information used by ASkeleTon, a log is generated with all

the usable elements during software testing. Listing 4.23 shows an extract with a log

that is saved, as well as displayed to the user during the execution, for a set of test files.

1 Found CXXRecordDecl (struct−customtype) at 15:1 − customType in file ASK.cpp

2 ...

3 Found FunctionDecl at 108:1 − conditionalMethod in file ASK.cpp

4 Found BinaryOperator at 118:6 − from function conditionalMethod

5 ...

6 Found CXXConstructorDecl at 25:3 − FirstClass from class FirstClass

7 Found CxxMethodDecl at 59:5 − iObtainAString from class FirstClass

8 ...

9 Found CxxMethodDecl at 92:3 − testPointer1 from class SecondClass

Listing 4.23: ASkeleTon log example

• Line 1 informs the user that a data type defined in the class has been found. The

name of the type is customType and is found in the ASK.cpp file.

• Line 3 informs the user that a function has been found on line 108 of the ASK.cpp

file. The name of the function is conditionalMethod. Line 4 also informs the user

that a conditional exists within that function.

• Line 6 informs the user that a constructor defined for the FirstClass class has been

found. In addition, line 7 informs the user that a method called iObtainAString

has been found in that case.

• Finally, line 9 informs of the existence of a method called testPointer1 belonging

to the SecondClass class.

This is just an extract of any log file containing the information on the AST nodes

scanned during the generation of the test harnesses. Although the size of these files will

logically depend on the size of the code, they are relatively easy to read.

Default files

Along with all the elements described up to this point, two auxiliary files are always

generated to facilitate the initial tasks of the test engineer: an information file and a

default makefile. These files are known as default files.

Chapter 4. Automatic generation of test harnesses via AST 67

• Information file (SupportedTypes.txt) This is a file containing information

on the data types supported by the automatically generated test harnesses. The

purpose of this file is to inform the test engineer which data may or may not be used

without modifying the Fixture file. By default, ASkeleTon supports all elementary

data types as well as STL-derived types. However, it also allows the use of user-

defined data types, which are detected and added automatically (both to the test

harness and to this file). To do this, ASkeleTon will use public constructors if they

exist to construct these data types, creating the corresponding ‘Read_<type>’

function in the Fixture file. If there are no public constructors, or if the data type

needs a specific procedure for initialisation, this is the responsibility of the test

engineers. At this point, the test engineer can check at a glance, for example,

whether more complex data types can be used in these test cases. Listing 4.24

shows an extract of a SupportedTypes.txt file, where you can see a list of types

supported by the test cases.

1 ...

2 float

3 double

4 long_double

5 std :: string

6 ...

Listing 4.24: SupportedTypes.txt

example

• Makefile A default makefile is included to compile the test harness along with

the SUT. As the test harness generation process involves the execution of the test

harness as part of the process, it is necessary to have access to the SUT code and,

if necessary, to the SUT compilation instructions. The purpose of this file is to

provide a simple method for the compilation of the more standard test harnesses,

which do not have excessive complexity or dependencies.

The inclusion of these files is entirely auxiliary. However, their inclusion facilitates

the task of test case execution and maintenance. In more complex SUTs, it will

be the responsibility of the test engineers to incorporate a compatible makefile

(usually the same as the SUT with minor modifications to include the compilation

of the test harness).

Chapter 4. Automatic generation of test harnesses via AST 68

4.5 Resulting test harness

In Section 4.4 we have seen the complete workflow of ASkeleTon. From the SUT re-

quirements, through the generation and analysis of the AST, to the generation of the

code that forms the test harness. The final result, as shown in Figure 4.3, is a set of

directories and files that form an initial test harness ready for execution.

UT File under
test

Class under
test 1

Class under
test 2

Fixture
(cpp)

Test
cases
(cpp)

Test data
(cfg)

Default
files

Contents of each folder

One folder for
each class

Figure 4.3: Structure of the files and directories generated by ASkeleTon

The test harness is stored in a directory called UT, whose content is made up of a series

of directories. Each of these directories contains the files generated to test the code of a

file or a class. Now, a closer look at Figure 4.3 reveals two types of directories:

• File under test: holds all files containing tests related to functions in the code

that are not associated with any class. There shall be one directory for each file

containing such functions and it shall have the same name as that file. For example,

if there is code under test in a file named test.cpp, the directory will be named test.

• Class under test: holds all files containing tests related to a class under test.

There will be one directory for each class and it will have the same name as that

class. For example, if a class under test called Thesis exists in a file called test.cpp,

the directory will be called Thesis.

It is possible to find name conflicts between directories under certain conditions. Mainly

when a file containing non-class functions shares a name with one of the SUT classes.

In this case, ASkeleTon resolves this by appending a number to the directory name (e.g.

Chapter 4. Automatic generation of test harnesses via AST 69

“FileUnderTest_1”). Please note that the name of the directories is purely informative,

so it will not alter the functioning of the test harness.

Finally, each of the directories contains the files for the execution of the tests. These are

described in Section 4.4, i.e. the test skeleton, some initial data, and the default files to

assist in the test case execution process.

The program will output a message for each failed test. This message informs the test

engineer that an error was encountered in a function call, where one output was expected,

but a different one was obtained. The test data is retrieved in real time, as evidenced by

the calls to Read_int, Read_float, etc. in Listing 4.26. This allows the data contained

in the .cfg file to be configurable, as seen in Listing 4.25, and re-running the tests with

different data without the need to re-compile the test harness. Those tests that pass

successfully will not provide any output.

1 sum:

2 {

3 a=2.0;#double

4 b=1.5;#double

5 return_double=4.0;#double

6 };

Listing 4.25: Test data file example

To run the test harness, all that is needed is to enter the directory and run the command

make. This will generate an executable named test, which will perform all the tests.

Running this executable will lead to an output similar to Listing 4.26.

1 Running 1 test case...

2 Calculator_test.cpp(10): error : in "Calculator_ReadParams": check Calculator_test.sum(Read_int(

"sum.a"), Read_int("sum.b")) == Read_float("sum.return_float") has failed [3.5 != 4.0]

Listing 4.26: Test harness execution example

Chapter 4. Automatic generation of test harnesses via AST 70

4.6 Case Study: use of ASkeleTon

In this section, we run ASkeleTon on an ordinary C++ class. Specifically, the Calculator

class (see Listing 4.27) is used as a base, which models a simple calculator with four

operations: addition, subtraction, product and division.

1 #include <iostream>

2 class Calculator {

3 public:

4 Calculator() {}

5 Calculator(double lastRes) : lastRes(lastRes) {}

6 double sum(double a, double b) {

7 double res = a+b;

8 setMem(res);

9 return res;

10 }

11 double sub(double a, double b) { return sum(a, −b); }

12 double prod(double a, double b) {

13 double res = a∗b;

14 setMem(res);

15 return res;

16 }

17 double div(double a, double b) {

18 if (b == 0) {

19 std :: cout << "DIVIDED BY ZERO, RETURNING 0" << std::endl;

20 setMem(0);

21 return 0;

22 } else {

23 setMem(a/b);

24 return a/b;

25 }

26 }

27 private:

28 double lastRes;

29 void setMem(double res) { lastRes = res; }

30 };

Listing 4.27: Class under test: Calculator.cpp

This class also incorporates a memory value that stores the last result obtained. This

value can be initialised when the object is built, as can be seen in the constructor on

Chapter 4. Automatic generation of test harnesses via AST 71

line 5, which complements the empty constructor. The use of this class is intended for

illustrative purposes, to help the reader better understand the operation and results of

ASkeleTon.

Listing 4.28 shows the result of the execution, which is also stored in the corresponding

log. We see how ASkeleTon has detected two constructors (CXXConstructorDecl), four

public methods (CxxMethodDecl) as well as a logical operation (BinaryOperator) inside

one of the methods. These elements are displayed by default, and they are precisely the

ones used for the creation of the test harnesses. Going back to Listing 4.27, we can see

that the class has indeed all the elements shown during the execution of ASkeleTon.

1 $./askeleton Calculator.cpp −−

2 Found CXXConstructorDecl at 6:5 − Calculator from class Calculator

3 Found CXXConstructorDecl at 7:5 − Calculator from class Calculator

4 Found CxxMethodDecl at 9:2 − sum from class Calculator

5 Found CxxMethodDecl at 15:2 − sub from class Calculator

6 Found CxxMethodDecl at 17:2 − prod from class Calculator

7 Found CxxMethodDecl at 23:2 − div from class Calculator

8 Found BinaryOperator at 24:10 − from function div

Listing 4.28: Running ASkeleTon

A quick look at the UT/Calculator directory generated by ASkeleTon shows a series of

files corresponding to each of the elements of the test harness.

• Test cases: Calculator_test.cpp, which includes the BOOST test files by default.

• Test fixture: Calculator_fixture.hpp, which is linked to the test cases and includes

all the initialisation and auxiliary methods.

• Test data: Calculator.cfg, which includes all data used by the test cases.

• Default files: makefile and log.txt, which allow the compilation of the test harness

and store the log generated by ASkeleTon, respectively.

1 $ ls

2 Calculator.cfg Calculator_fixture.hpp Calculator_test.cpp makefile log .txt SupportedTypes.txt

Listing 4.29: Test harness

Chapter 4. Automatic generation of test harnesses via AST 72

After compiling the test harness, it is ready to run. As the data generated by default

is random, a small adjustment has been made to the .cfg file to include data which

make the tests pass. As we can see in Listing 4.30, the test harness finishes its execution

successfully. Please note that, although the output says 1 test case..., it actually contains

all the necessary test cases represented by assertions, each acting as an independent unit

test.

1 $./test

2 Running 1 test case...

3

4 ∗∗∗ No errors detected

Listing 4.30: Test harness

Finally, we show what happens if a test, for whatever reason, does not pass successfully.

Listing 4.31 shows a small modification to the data of a test, where a wrong expected

result is intentionally included.

1 sum:

2 {

3 a=2.0;#double

4 b=1.5;#double

5 return_double=4.0;#double

6 };

Listing 4.31: Wrong .cfg file

Without the need to re-compile the test, it is run again and shows a failed test (see List-

ing 4.32), with all the necessary information for the test engineer to fix the corresponding

code piece. Ultimately, ASkeleTon has been able to generate a basic test harness, ready

to incorporate any test data.

Chapter 4. Automatic generation of test harnesses via AST 73

1 $./test

2 Running 1 test case...

3 Calculator_test.cpp(10): error : in "Calculator_ReadParams": check Calculator_test.sum(

Read_double("sum.a"),Read_double("sum.b")) == Read_double("sum.return_double") has

failed [3.5 != 4]

4

5 ∗∗∗ 1 failure is detected in the test module "Calculator_TEST"

Listing 4.32: Failed execution

4.7 Chapter conclusions

This chapter shows ASkeleTon, a tool for the generation of test harnesses for programs

written in the C/C++ language. ASkeleTon has been developed to be modular, so that

its functioning, its maintenance and extension is a simple task. Moreover, it is not tied

to any specific test framework (although BOOST is included by default). Therefore, the

creation of a module for the generation of test harnesses in other frameworks does not

require the modification of the main code of the tool.

The development of ASkeleTon has benefited from the industrial experience described

in Chapter 3. Therefore, the structure of the code, the generated test harnesses and

the analysis of the AST are strongly inspired by the continuous feedback received. The

results, although also supervised and approved by this entity, have been validated against

some illustrative and open source projects.

Considering the type of supervision ASkeleTon has had during its development, industrial

validation is a logical and natural step. In a software development process, it is common

to validate the process in intermediate phases with somewhat more illustrative pieces of

code (such as the one shown in Section 4.6). Once the tool has reached a certain maturity,

it is possible to start testing it with industry-wide projects, as well as distributing early

versions to test engineers for them to use and provide valuable feedback. However, this

type of validation has faced several obstacles.

The industrial projects studied have certain characteristics: they are large, often interact

with critical systems and are exposed to a strict confidentiality contract. The size of the

project, at first, is not a major issue, as ASkeleTon has shown to scale well when applied to

large-sized programs. However, this feature adds to the interaction with critical systems,

Chapter 4. Automatic generation of test harnesses via AST 74

so projects are often linked to external libraries that are either not accessible or need

an active physical element (such as a radar, a scanner, etc.). We have worked closely

to extract results from such projects, both ongoing and legacy, in order to improve

ASkeleTon and demonstrate its feasibility in the best possible way. However, the strict

confidentiality contract has led to severe limitations. Normally, access to source code

for research purposes requires authorisation from senior management, which can take

months to be granted. Until such authorisation is received, one does not know if the code

is complete or viable for use (i.e., if it has too many dependencies on external libraries or

other programming languages). This period of time to find a case study that produces

interesting results for the research community turned out to be difficult to reconcile with

the limited time available for conducting a PhD thesis, especially with the halt and

the new restrictions imposed by the COVID-19 pandemic. In this respect, moreover,

the strict confidentiality contract expressly prohibits the dissemination of results linked

to company projects. This is the main reason why, at the time of writing, there are

no publications describing ASkeleTon in detail or showing fragments of the industrial

projects examined. There are, on the other hand, publications that describe the industrial

collaboration without going into technical details [91, 92].

Up to this point in development, almost all of the feedback received had to do with the

structure of the test harnesses. Although the test data is generated randomly, this is

not a problem for test engineers working in this industrial context, where they often

need tests to include specifically calculated data. Thanks to the modular development

of ASkeleTon, as well as the separation of test data from the test structure, it is possible

to research and develop the data generation process in a different research line. For this

reason, and without leaving industrial validation behind, a new line of research arises

where the most advanced state-of-the-art techniques are combined to obtain test data

whose objective is the discovery of real faults in all kind of projects.

In conclusion, the use of ASkeleTon makes it possible to obtain a test harness ready for

execution. However, the steps involved in industrial validation are not compatible in

time with the period of development of the PhD thesis. Without leaving behind this

validation, which is still ongoing and will be continued as future work, a new method for

test data generation has been developed. This new method will be described in detail

in the following chapter. The modular design of ASkeleTon will allow it to be easily

integrated. Chapter 5, which follows, shows all the research work carried out for the

Chapter 4. Automatic generation of test harnesses via AST 75

development of this new technique, as well as the result of its application to a real set of

utilities.

Chapter 5

Combining MT and DSE for test

data generation

“Science makes people reach selflessly for truth and objectivity; it teaches people to

accept reality, with wonder and admiration, not to mention the deep awe and joy that

the natural order of things brings to the true scientist.”

Lise Meitner

The generation of test data is an important and challenging task, as it usually requires

knowledge of the problem domain. One of the techniques that stands out in this respect is

Dynamic Symbolic Execution (DSE) which, as seen in Chapter 2, produces good results

in terms of structural coverage criteria. In view of the industrial situation in Chapter 3

and the development of ASkeleTon in Chapter 4, there is a need to implement a test

data generation technique capable of detecting potential faults.

This chapter presents a comprehensive study on the ability of DSE to kill mutants and

thus detect possible real bugs in the software. To do so, using a set of utilities, we generate

test cases and mutants via DSE and MT tools, respectively. All test cases are then run

on the mutants to classify them as surviving or killed. First results indicate that there

are still several surviving mutants, so we propose combining both MT and DSE in a new

family of techniques known as MISE. In order to test the potential usefulness of MISE,

we perform a first basic implementation, which we call naive MISE. After performing

similar steps to the first experiment in this study, naive MISE applies DSE to generate

77

Chapter 5. Combining MT and DSE for test data generation. 78

new test cases for each surviving mutant. Naive MISE offers promising results, as the

incorporation of MT elements during the generation of test data with DSE makes the

mutation coverage increase significantly. Motivated by these results, we propose different

potential implementations to implement MISE in a more effective and efficient way than

naive MISE does.

5.1 Motivation

DSE is a well-established technique for the automatic generation of test cases, particu-

larly for achieving structural coverage criteria such as line or branch coverage. However,

DSE has several limitations that must be taken into account, including unsolvable con-

straints and path explosion, which can require significant computational effort to apply

to projects of a certain complexity. Despite its limitations, DSE is still a valuable tech-

nique for testing, and combining it with other techniques such as MT can help overcome

its limitations and partially solve other problems such as the detection of equivalent

mutants or even killing mutants that remain alive after numerous test phases. Over-

all, the implementation of DSE and other automation techniques can bring significant

benefits to software testing, including improved efficiency and reduced manual workload.

The incorporation of DSE as a test data generator in ASkeleTon is a promising approach,

given the good results reported in the literature for its use in various domains. However,

traditional coverage criteria may not be sufficient for detecting real bugs in programs.

Therefore, it is necessary to evaluate the ability of DSE to generate test cases that

can effectively detect these real bugs. To do so, we can use MT as a complementary

technique. MT is a powerful tool for assessing the quality of test cases because it allows

us to measure the mutation score, which indicates the percentage of mutants killed by

the tests. This metric provides a clear indication of the effectiveness of the test suite in

detecting defects and helps to identify areas where the test coverage may be insufficient.

By combining DSE with MT, we can obtain a more comprehensive view of the quality

and reliability of the test data generated by DSE.

Evaluating the ability of DSE to generate test cases that can effectively detect potential

defects is crucial in order to understand its strengths and weaknesses. If the results of

this study reveal any weaknesses, we can analyse these and work towards improving DSE

Chapter 5. Combining MT and DSE for test data generation. 79

in a more general way. This is important, as the industrial context often involves a wide

range of projects with different requirements. By improving DSE, we can contribute to

the automation of software testing, which brings numerous economic and quality benefits

to industrial software development projects. In addition, reducing manual workload and

improving the overall quality of software applications are important goals that can be

achieved through the improvement of DSE.

5.2 Combining MT and DSE

This section begins by outlining the limitations in terms of detecting potential defects

in software testing techniques that aim to cover structural coverage criteria. This is

followed by a case study, in which we outline the experimental setup (common to all the

experiments presented in this Chapter) as well as the results of combining MT and DSE.

5.2.1 Evaluating initial effectiveness of DSE-generated test cases for

mutant killing

Structural coverage criteria may not be sufficient to measure the ability of test cases

to detect potential defects in the code. For this reason, we will test the mutant-killing

capability of the test cases generated with DSE. A good set of test cases should be able

to kill a large number of non-equivalent mutants.

The process described in Figure 5.1 is proposed to determine the ability of DSE to kill

mutants. This process requires a software under test (SUT) and tools to apply both DSE

and MT. Figure 5.1 illustrates the process by generating a set of test cases with DSE

and a set of mutants from the SUT. The test cases are then run on the original version

of the program and its mutants, independently, to obtain their output. Finally, during

the ‘Mutant execution and classification’ step, we compare the outputs and classify the

mutants. If there is any difference between the output of the original program and its

mutant, the mutant is classified as killed. Otherwise, it is classified as surviving.

The process in Figure 5.1 is not subject to any particular language or tool, so its imple-

mentation will depend on the elements chosen in each case. This chapter shows a use case

with programs written in C/C++ (see Section 5.2.2), together with some results that

Chapter 5. Combining MT and DSE for test data generation. 80

Software Under
Test (SUT)

Generate mutants
using MT

Generate test
cases using DSE Test cases

Mutants

Run test cases over
the mutants and the

original program

Test cases output
(of the mutant)

Test cases output
(original program)

Compare outputs Is there any
difference?

no

yes

Mark mutant
as surviving

Mark mutant
as killed

Mutant execution and classification

Figure 5.1: Evaluating mutation coverage from DSE execution on the original SUT.

have motivated further work along these lines and, therefore, to propose a new family of

techniques (described in Section 5.3).

5.2.2 Case study: experimental setup

This study was fully carried out on virtual machines to improve reproducibility, divided

between Docker machines [10] and some others hosted in the Google Cloud platform1.

Mainly, the different utilities analysed have been distributed among different machines,

as on some occasions the execution of an utility can take several days (this is discussed

in further depth below). All the machines used are dual-core with 4GB of RAM and

Ubuntu 18.04 LTS.

SUT: GNU Coreutils

GNU Coreutils2 is a set of utilities available by default on most GNU operating systems.

These utilities, written in C, are open source and handle system properties, shell, the file

system and so on. This is why they are known as Coreutils, as they represent the main

core of the tools used by millions of users. This means that they have been in active

development for decades, and have been extensively tested.

We can find code corresponding to this set of utilities since 2001. GNU Coreutils is

a well-tested and widely used tool in several research works [13, 18, 56]. The reader

may find works with references to Fileutils, Shellutils and Textutils, whose utilities are
1https://cloud.google.com
2https://www.gnu.org/software/coreutils/

https://cloud.google.com
https://www.gnu.org/software/coreutils/

Chapter 5. Combining MT and DSE for test data generation. 81

included in GNU Coreutils since 2003. We can assume that research works using Fileutils,

Shellutils and/or Textutils are using a subset of GNU Coreutils utilities. Some of the

most representative GNU Coreutils utilities are presented in Table 5.1, while the full list

of utilities can be found online in the documentation3.

Utility Description

ls list a directory
cat copy file content to stdout
mkdir create directory
rmdir remove empty directory
rm remove files or directories
cp copy files or directories
mv move files or directories
ln make links
chown change file owner and group
chmod change file or directory permissions
dd convert and copy a file
df show file system disk space usage

Table 5.1: Some of the most representative utilities of GNU Coreutils

One of the main advantages of using this set of utilities as a case study is that they are

varied in length and complexity. For example, there are small utilities with less than

100 lines of code (see sync or whoami), medium-sized utilities with between 200 and 500

lines of code (see sum or touch) or large utilities with more than 500 lines of code (see

wc or numfmt).

For this case study we have selected 30 utilities from the total of those available in GNU

Coreutils, which can be seen in Table 5.3. In the experiments, the output of the original

program is stored together with that of the mutants for later cleaning (elements that differ

in each execution, such as the ID of the processes or the available disk space, are filtered

out), analysis and comparison. This allows the subsequent classification of the mutants

as surviving or killed. It is this output processing that makes it reasonable to limit the

utilities to a subset of them, in order to make the study more manageable and illustrative.

These 30 utilities have been selected during a brief preliminary experimentation, where

the rest of the utilities in the set were discarded because of the following situations:

• Overly long output: the execution of some of these utilities produce a consider-

able long output. Combined with each mutant, this results in the generation of files
3https://www.gnu.org/software/coreutils/manual/html_node/index.html

https://www.gnu.org/software/coreutils/manual/html_node/index.html

Chapter 5. Combining MT and DSE for test data generation. 82

larger than 1GB, quickly exhausting the available space on the virtual machines.

Some of these utilities are base64, tee, users, printf and factor.

• Strongly variable-dependent utilities: utilities whose output depends almost

exclusively on external variables which change according to time or system circum-

stances (this includes disk space or the current system date and time). Utilities

that have been discarded for this reason include uptime, df and date.

• Excessive number of mutants: the generation of mutants per se is a resource-

light process. However, compiling and executing them is not a simple task and

sometimes takes an unacceptable amount of time for experiments in this context.

In Coreutils, there are tools that take about an hour to run, which is multiplied by

the number of mutants, sometimes in the thousands. Utilities such as join and ls.

have been discarded for this reason.

• Alteration of vital system elements: some utilities are designed to modify sys-

tem permissions and properties, such as chmod, chgrp, rm, cp and mv. Modifying

these parameters leaves the virtual machine in an unstable state, causing invalid

results in many mutants and requiring manual reconfiguration of the machine to

continue experiments.

• Special cases: some utilities such as sleep and chgrp have been discarded due to

their behaviour not being carried over to the output in most cases. For example,

to evaluate the utility sleep we have to measure the execution time as well as

the output. However, this utility pauses program execution depending on the

parameter received, causing mutants to take days or even weeks to finish testing

simply because a parameter has paused the execution this long. Due to the nature

of these experiments and, having 30 tools available for exhaustive testing, these

tools have been discarded during the naive MISE experiments.

Chapter 5. Combining MT and DSE for test data generation. 83

DSE Tool: KLEE

Figure 5.2: KLEE logo

KLEE [13] is a popular DSE tool commonly used as a testing tool and code analysis

framework. According to its public repository4, it implements symbolic execution en-

gine, which runs LLVM bitcode modules with support for symbolic values. It works by

replacing certain parts of the code with symbolic values, which are then systematically

explored to generate test cases. For example, to generate test cases for a C program

called “example.c”, the following command can be used: klee example.c

KLEE will then execute the program symbolically, generating test cases that cover dif-

ferent paths through the program’s code. These test cases can be used to validate the

program’s behaviour and detect any potential bugs. In addition to generating test cases,

KLEE can also be used to perform code analysis and find potential defects or vulnerab-

ilities in a program.

Additionally, it includes several auxiliary modules that benefit software testing. For

example, there is a simple library for replaying tests previously generated, as well as a

more complicated library that includes entries generated by the POSIX/Linux emulation

layer. In this way, both closed and native programs (those which rely on the operating

system) can be handled in an environment that simulates test inputs, files, environment

variables, command line arguments, etc. One of the tools included as open-source with

KLEE is Kleaver, a custom constraint solver that uses a series of mathematical simplific-

ations to group constraints into independent subsets for later invoking an internal SMT

(satisfiability modulo theories) solver, which will determine whether the contraints are

satisfiable [13, 14, 66].

Both KLEE and Kleaver provide support for queries expressed in the KQuery language,

which is fundamental later in this work (KLEE uses them internally, while Kleaver

uses them as input). The KQuery language5 is a textual representation of constraint

expressions and queries resulting from symbolic execution, used as input to Kleaver and
4https://github.com/klee/klee
5https://klee.github.io/docs/kquery/

https://github.com/klee/klee
https://klee.github.io/docs/kquery/

Chapter 5. Combining MT and DSE for test data generation. 84

as an intermediate step in KLEE. This language is able to represent formulas on vectors

and arrays, offering support for all standard operations. Its design, compact and easy to

read and write, is strongly related to the C++ API for Expr, which can be consulted for

more information in [2].

The following is an example of how a query written in KQuery works. Listing 5.1 shows

a small function with three possible paths, while Listing 5.2 shows a query specifically

designed to traverse Path 2. In line 1, we see that an array of 4 elements is declared,

which will serve as a symbolic value. The query, in a simple way, asks the solver to

return a value whose restrictions are that the value must not be 0 (Eq false (Eq 0...))

and also, the value must be signed and less than or equal to 0 (Slt N0 0). Combining

both restrictions, the solver will return a value strictly less than 0. We can see that both

constraints can exist individually, but their combination returns the expected value.

1 int get_sign(int x) {

2 if (x == 0) return 0; //Path 1

3

4 if (x < 0) return −1; //Path 2

5 else return 1; //Path 3

6 }

Listing 5.1: Test function

1 array a [4] : w32 −> w8 = symbolic

2 (query [(Eq false

3 (Eq 0

4 N0:(ReadLSB w32 0 a)))

5 (Slt N0 0)]

6 false [] [a])

Listing 5.2: KQuery for path 2

In this research, we have used KLEE with a configuration similar to that of its authors

in previous work with GNU Coreutils [13], with some minor adjustments to adapt it

to our environment. The available memory has been increased to 4GB, although the

applications rarely exceed this limit. This memory also works well with the configuration

of the virtual machines. For the symbolic execution time, we have conducted a small

experiment to check the time consumed by each GNU Coreutils utility. In this way, we

have launched the utilities for 30 minutes, 1, 2 and 3 hours respectively, finding that most

of the applications in our subset consume all the time granted. Even so, the increase

in time rarely produced a significant improvement in the results, so it has been decided

to maintain the 1 hour limit of symbolic execution for all applications (similar to the

previous study mentioned at the beginning of this paragraph). Finally, regarding the

search strategy, we have opted for BFS (Breadth-First Search). This strategy has been

Chapter 5. Combining MT and DSE for test data generation. 85

used previously in similar studies [18] with good results, and consists of focusing search

efforts on those paths directly affected by the inputs. As our objective is the generation

of test cases, it fits well with our study.

MT Tool: MuCPP

Figure 5.3: MuCPP logo

MuCPP [24] is a tool for applying MT in C and C++ programs. While there are

other options for applying MT depending on the language or code environment [17,

20], it should be noted that our SUT is GNU Coreutils (written in C) and our tool

for applying DSE is KLEE (dedicated to C and C++ code), so MuCPP strongly fits

our needs. MuCPP implements mutation operators in a robust way and for different

levels of abstraction, incorporating from the most traditional mutation operators to class

level operators. This tool incorporates the changes directly into the source code. More

specifically, MuCPP generates mutants as it traverses the abstract syntax tree of the code

with the Clang API, while saving the mutants in branches of the Git version control.

This allows the user to save space, classify mutants, explore them and query for changes

efficiently. In addition, MuCPP incorporates some mechanisms to avoid the generation

of some duplicate mutants and mutants in system-specific headers, and facilitates the

entire process of compiling and running mutants and tests, without being tied to any

specific testing framework.

For this case study, and considering the characteristics of the GNU Coreutils utilities, it

has been applied a set of 12 traditional mutation operators implemented in MuCPP (see

Table 5.2, where these operators are described together with their internal ID for better

identification). More information about the inner workings of these and other operators

can be found in [24]. Furthermore, as a subsequent step after the application of MuCPP

to the utilities, we applied TCE [70] to the generated mutants with the aim of elim-

inating as many equivalent and duplicate mutants as possible. TCE (Trivial Compiler

Equivalence) is a technique that determines whether two pieces of code are equivalent

Chapter 5. Combining MT and DSE for test data generation. 86

in terms of their behaviour. This can be used to optimise the test generation process

by identifying and eliminating redundant test cases that do not provide any additional

coverage or reveal new defects. It is also possible to identify equivalent mutants, as their

behaviour should be exactly the same as the original program. TCE can be implemented

by comparing the output of the two pieces of code for a given input, or by analysing the

intermediate representation of the code to identify any differences in the way that the

code is executed. This intermediate representation comparison is actually the approach

we take to detect equivalent mutants using TCE. Specifically, we generate and compile

all mutants and compare their intermediate representation, discarding any equivalent or

duplicated mutants.

Operator (ID) Description

ARB (31) Arithmetic Operator Replacement
(Binary, Unary and Short-cut)ARU (32)

ARS (33)

AIU (34) Arithmetic Operator Insertion
(Unary and Short-cut)AIS (35)

ADS (36) Arithmetic Operator Deletion (Short-cut)

ROR (37) Relational Operator Replacement

COR (38) Conditional Operators
(Replacement, Insertion and Deletion)COI (39)

COD (40)

LOR (41) Logical Operator Replacement

ASR (42) Short-cut Assignment Operator Replacement

Table 5.2: Traditional mutation operators included in MuCPP

5.2.3 Evaluation results

This section presents the results obtained from applying the procedure shown in Sec-

tion 5.2, whereby we evaluate the initial ability of DSE-generated test cases to kill

mutants.

Table 5.3 is a complete outline of all the results obtained after the runs at this point. Each

row represents a different utility, whose name corresponds to the first column and its size

in the second column (LOC for Lines of Code). The third and fourth columns correspond

to the mutants before and after applying TCE, where as many duplicate and equivalent

mutants as possible are removed. This does not mean that there are no duplicate and

Chapter 5. Combining MT and DSE for test data generation. 87

equivalent mutants in the fourth column, as TCE is not an exact technique, but a large

number of them have been removed, giving more confidence to the results obtained. The

last two columns show the killed mutants and the mutation score respectively, which

is the objective data sought. Finally, it is important to emphasise that the last row,

separated from the rest in Table 5.3, corresponds to the total sum of the data (except

for the percentage of killed and alive mutants, which is the average of the values) to give

the reader an overall idea of the magnitude of the experiment and the results obtained

at a glance.

Program LOC Mutants
before TCE

Mutants
after TCE

Mutants
killed

Mutants
killed (%)

Mutants
alive (%)

basename 132 36 29 14 48.2% 51.8%
chcon 446 41 18 16 88.8% 11.2%
chgrp 249 23 22 22 100.0% 0.0%
chown 258 12 12 9 75.0% 25.0%
chroot 197 49 35 8 22.8% 77.2%
cksum 225 120 110 67 60.9% 39.1%
dirname 98 12 11 8 72.7% 27.3%
echo 213 29 21 7 33.3% 66.7%
expr 790 257 254 135 53.2% 46.8%
false 2 5 5 3 60.0% 40.0%
link 60 12 11 8 72.7% 27.3%
logname 56 12 11 8 72.7% 27.3%
md5sum 657 280 216 25 11.6% 88.4%
mkdir 224 111 63 27 42.9% 57.1%
nproc 94 12 11 8 72.7% 27.3%
numfmt 1,110 1,071 795 254 31.9% 68.1%
pathchk 297 38 21 18 85.7% 14.3%
pwd 263 268 260 18 6.9% 93.1%
realpath 221 25 24 17 70.8% 29.2%
rmdir 171 70 43 24 55.8% 44.2%
sleep 105 33 23 17 73.9% 26.1%
stdbuf 278 103 68 39 56.5% 43.5%
sum 200 157 146 83 56.9% 43.1%
sync 45 12 11 8 72.7% 27.3%
touch 313 111 78 49 62.8% 37.2%
truncate 335 165 164 65 53.2% 46.8%
tty 80 12 11 8 72.7% 27.3%
uname 281 116 57 42 73.7% 26.3%
wc 624 688 546 338 61.9% 38.1%
whoami 63 12 11 8 72.7% 27.3%

Total 8,087 3,892 3,087 1,353 59.9% 40.1%

Table 5.3: Killed mutants per program in the first evaluation

Some of the results shown in Table 5.3 are worth highlighting, as they are in line with

what was previously presented in Section 5.2.2. Firstly, we can see the variety of the size

of the utilities within GNU Coreutils in the LOC column. For example, utilities like sync

Chapter 5. Combining MT and DSE for test data generation. 88

(45 LOC), whoami (63 LOC) or false (2 LOC) represent small sized programs. Other

utilities such as chgrp (249 LOC), chown (258 LOC) or uname (281 LOC) represent

medium-sized programs. Finally, utilities like numfmt (1110 LOC) or expr (790 LOC)

represent larger programs. Note also that the number of mutants is not necessarily

proportional to the number of LOCs. For example, MuCPP generated 5 mutants in false

(2 LOCs), 280 mutants in md5sum (657 LOCs) and 268 mutants in pwd (263 LOCs).

In general, the number of mutants generated in a program depend on the features of

its source code. The latter is best understood by looking at the killed mutant results

together with Table 5.4.

Operator Mutants % Surviving

AIS 1,093 46.11%
AIU 343 53.94%
LOR 15 46.67%
ARS 38 57.89%
ARB 52 71.15%
ADS 22 59.09%
ROR 157 43.31%
COD 30 56.67%
COI 239 30.54%

Table 5.4: Mutants generated per mutation operator (excluding numfmt)

Table 5.4 shows the number of mutants generated by each mutation operator. Please note

that the numfmt utility has been removed from this table, as it presents a high number

of mutants (+1000) with a relatively homogeneous distribution of mutation operators,

altering the overall percentages and giving a misleading picture concerning the impact

of the mutation operators. The number of mutants is not uniformly distributed among

the set of mutation operators. For example, the AIS operator produces more than 1000

mutants while other operators generate hardly any mutants (LOR with 15 or ADS with

22, respectively). Note that this also depends on the behaviour of the mutation operators,

as insertion operators usually find more possibilities to incorporate a mutation into the

source code, while replacement or deletion operators need certain arithmetic or logical

operators to be present in the initial code.

Going back to the results in Table 5.3, the results are mixed. Some tools such as chcon,

chgrp or uname reach 70% mutation coverage, while others do not even reach 50%

coverage. On average, DSE is able to kill 59.9% of the set of mutants after applying

TCE. A manual analysis reveals that, with stronger test data, part of those mutants

Chapter 5. Combining MT and DSE for test data generation. 89

would have been killed. For example, many mutants, especially those generated by the

AIS operator, are still alive because their mutation affects a threshold value. These are

the values used to determine whether a condition is true or false, so a small variation in

these values will cause the program to take one path or the other. And it is in this small

variation that DSE has a weakness, as it uses values for the tests that are far from the

threshold values. A good example of this is a mutant that modifies the condition of a

loop whose condition “sp > suffix” becomes “sp >= suffix” (with our configuration, the

mutant is m37_3_1_basename). With the generated test data, it is the suffix variable

that acts as the threshold value. A value of suffix strictly less than sp will always evaluate

to true, both in the mutant and in the original program, so the mutant will remain alive.

The only test data that will detect the mutant in this case will be that where "sp ==

suffix".

Therefore, the conclusion is that there is ample room for improvement in terms of DSE’s

ability to kill mutants and, consequently, detect potential defects. Although the percent-

age of killed mutants is 59.9%, as DSE focuses its efforts on covering traditional coverage

criteria, we can say that there are many surviving mutants left to be killed (40.1% in our

case).

5.3 Defining Mutation-Inspired Symbolic Execution (MISE)

From the extensive work carried out to this point, it is evident that there is ample room

for improvement in terms of mutation coverage when using DSE. For this reason, we

propose the integration of DSE and MT to generate high quality test data for detect-

ing mutants. This proposal leads us to present Mutation-Inspired Symbolic Execution

(MISE), a new and sophisticated family of techniques relying on the combination of

both techniques. Thus, their integration can be undertaken in many ways depending

on the programming language in use, the tools, or the case studies. To evaluate the

potential of MISE, we present a technique whose implementation does not require the

alteration of any of the techniques or tools that compose it, which we will call naive

MISE.

Chapter 5. Combining MT and DSE for test data generation. 90

5.3.1 Naive MISE : an initial combination of DSE and MT

Naive MISE incorporates MT into the process by applying DSE to each non-equivalent

surviving mutant separately (see Figure 5.4). This technique goes one step further com-

pared to what was shown in Section 5.2, so that DSE is re-applied to each of the surviving

mutants with the goal of generating new test cases capable of killing new mutants. Even-

tually, new test cases should kill the mutant from which they are generated. The process

ends when there are no surviving mutants left, or all surviving mutants have been ana-

lysed with DSE. At this point, it is conceivable that the remaining surviving mutants

may be equivalent mutants or may require further study to see why they have not been

killed. Applying naive MISE will hopefully result on a set of test cases that will have a

higher potential mutation coverage than the initial results obtained from Sections 5.2.3.

Software Under
Test (SUT)

Generate mutants
using MT

Generate test cases
using DSE Test cases

Mutants

Run test cases over
the surviving mutants

Mutant execution
and classification

End of list of
surviving
 mutants?

no

yes

Run DSE over the
first surviving mutant

Push new test cases
(if any) in the set

Figure 5.4: Naive MISE: combining DSE and MT for improved mutation coverage.

Naturally, despite being a mainly illustrative technique, we cannot overlook the high

implementation cost involved. Because of the need to run DSE on each of the surviving

mutants, the computational cost will be multiplied by every surviving mutant. Therefore,

in Section 5.4 we propose a more refined set of ideas for its implementation.

5.3.2 Implementing naive MISE

Section 5.2.3 shows how there is still a considerable percentage of surviving mutants when

using exclusively DSE-generated test cases. What follows, therefore, is an experiment to

see if the percentage of killed mutants increases when DSE is applied on the surviving

mutants to generate new test cases. In this way, the effectiveness and feasibility of

combining MT with DSE can be proven straightforwardly.

This section shows the results obtained after implementing the steps described in Sec-

tion 5.3, using the same experimental setup shown in Section 5.2.2. Table 5.5 summarises

Chapter 5. Combining MT and DSE for test data generation. 91

the results, reflecting the changes in the killed mutants as a result of the newly generated

test cases (it does not include the utilities where no improvement was observed when

applying DSE on their surviving mutants). Naive MISE increases the mutation score

in 9 utilities. While in some utilities like realpath or basename only one more mutant

is killed, other utilities like cksum or md5sum increase the percentage of killed mutants

considerably.

Program Mutants killed
(initial tests)

New mutants
killed

Mutants killed
(%)

basename 48.2% +1 51.7%
cksum 60.9% +18 77.3%
expr 53.2% +6 55.5%
md5sum 11.6% +35 27.7%
numfmt 31.9% +3 32.3%
realpath 70.8% +1 75.0%
stdbuf 56.5% +4 63.2%
sum 56.9% +14 66.4%
touch 62.8% +10 75.6%

Table 5.5: Percentage increment of killed mutants

These results require to be contextualised to be interpreted properly. Looking at Table 5.3

again, we see how some of the utilities already had little room for improvement with only

2 or 3 surviving mutants (chcon, chown, dirname, link, logname, nproc, pathchk, sync,

tty and whoami). We also have to consider the possibility that some of the surviving

mutants in these utilities turn out to be equivalent mutants. However, the sheer number

of mutants makes it impractical the manual analysis of all of them to determine this

condition with certainty.

A manual analysis of the new test cases that kill mutants reveals the existence of cross-

fire mutants, which are those mutants killed by test cases initially designed to kill other

mutants [86] (i.e., those mutants killed by test cases generated by DSE from other

mutants). This has the side effect that the initial naive MISE time estimates (up to

one hour per mutant) may be subject to variations, as it is not necessary to apply DSE

on already killed crossfire mutants. Table 5.6 shows an illustrative example of crossfire

mutants present in the cksum and sum utilities, although this phenomenon is also present

in other utilities such as md5sum. The table shows the utility (first column), followed by

the name of the mutant that generates the test cases (second column) and ending with

a list of its crossfire mutants.

Chapter 5. Combining MT and DSE for test data generation. 92

Program Mutant Crossfire Mutants

cksum m34_1_2_cksum m33_1_2_cksum
m33_2_1_cksum
m33_2_2_cksum
m34_10_1_cksum
m34_16_1_cksum
m34_17_1_cksum

sum m35_11_2_sum m34_11_1_sum
m34_24_1_sum
m34_30_1_sum

Table 5.6: Example of detected crossfire mutants

Examining the different mutants has allowed us to identify several reasons why the test

cases generated from DSE are limited in terms of mutant detection (see Table 5.3). For

example, while the basename utility presents a low number of equivalent mutants, naive

MISE is able to kill only one more mutant. These reasons are shown below with an

acronym, along with some illustrative examples in Table 5.7.

R1 - The mutation is not analysed during the first symbolic execution. The fact that

KLEE is focused on traditional coverage criteria allows us to use line coverage in

an auxiliary and simple way thanks to the advances made by its authors6. We have

found some points where mutations are applied but which, however, are not covered

by KLEE when analysing the original program. In our case study, this phenomenon

is usually observed when the symbolic execution ends without evaluating concrete

conditions (either because the runtime is over or because the generated constraint

is too complex to be solved by the solver).

R2 - The initially generated values are too far from the conditional thresholds. It is

common to have mutation operators that insert a change in the conditions of the

source code, such as those present in conditional or loop statements. If we look

at the test values generated by DSE, these values are far away from the threshold

values that affect these conditions. This means that the mutants generated by

operators like ROR —which change relational operators, e.g., > to >=—, will hardly

be detected by those values.

R3 - The mutation does not affect the specific point where the condition checks are per-

formed. That is, it is applied at an earlier point in the code where it alters the result
6https://klee.github.io/tutorials/testing-coreutils/

https://klee.github.io/tutorials/testing-coreutils/

Chapter 5. Combining MT and DSE for test data generation. 93

of one or more variables that are used in a later condition, and this changes the

initial outcome. This is why this change is not always accounted when generating

test data.

All the cases described (R1-3) could be alleviated considerably if, instead of focusing

the generation of DSE test cases on traditional coverage criteria, mutation coverage was

targeted as well.

Reason Program Mutant Operator

R1 numfmt m37_10_1_numfmt ROR
cksum m34_18_1_cksum AIU

R2 basename m37_3_1_basename ROR

touch m35_4_3_touch AIS
m35_6_1_touch AIS

R3 sum m31_3_1_sum ARB

Table 5.7: Illustrative set of mutants with the reasons identified for the limited mutant
detection of DSE.

In cases in which the point where the mutation occurs is not analysed during the first

symbolic execution (see R1), it seems that certain variables are not accounted for during

the pre-analysis performed by the symbolic execution engine. This is primarily because

other variables manage to alter the paths with sufficient weight so that it is not necessary

to change others to traverse paths, thus maintaining fixed values for the variables with less

weight in the decision. When applying a mutation operator, the weight of the variables

changes, and there are situations in which the paths change drastically depending on the

value assigned to the variables affected by the mutation. For this reason, we can observe

that, when DSE is applied again on the mutants, this time this variable is taken into

account to generate test cases and, consequently, the number of killed mutants increases,

as shown in Table 5.5. On the other hand, the reasons identified as R2 and R3 are

related, as they both affect the conditions. However, looking at how symbolic execution

engines currently work, R2 is more solvable. This stems from the fact that it is easier to

know which variables are present in the conditions, as well as the values that affect the

paths rather than those that affect them indirectly. R3 presents a challenge that deserves

future in-depth analysis, as it needs to break down the code beyond how current DSE

solutions do it.

Chapter 5. Combining MT and DSE for test data generation. 94

As for the mutation operators that generate most of the new killed mutants, these belong

to the operators AIU, AIS and ROR. This is not surprising, since looking at Table 5.4,

we can see that these three operators generate a high number of mutants (AIS the

first, AIU is the second and ROR the fourth). Not only that, but the nature of these

operators (insertion and replacement) lead to the generation of mutants prone to cause

the situations described in R1-3. Specifically, the AIS and AIU operators introduce signed

and unsigned arithmetic operators (-, ++ and - -). This often causes small changes that

are difficult to detect if the test values have not been thought with them in mind, so it

is common to find the situations described in R2 and R3. The case of the ROR operator

is slightly different, since it is in charge of replacing the relational operators present in

the code. These replacements significantly affect the conditions, so we can easily find

situations like the ones described in R1 and R2.

If we explore a subset of surviving mutants, the AIU, AIS and ROR operators again stand

out due to their high incidence. Even so, this time the emergence of the COI (condition

negation) mutation operator is noteworthy, as the test cases generated by DSE barely

kill mutants of this type. Sometimes, when the symbolic execution engine scans the

paths, the negation of the condition is not affected, in the sense that it will still be able

to scan both paths with the same data set. In this case, the result will be the same

test suite, only changing the order of the test cases. For this reason, new test cases are

hardly generated when re-applying DSE on such mutants. This is again a consequence

of the fact that DSE focuses test case generation on structural coverage criteria and not

on mutation coverage.

Overall, naive MISE manages to generate new test cases capable of killing more mutants,

demonstrating that the combination of DSE with MT has potential benefits. These new

test cases not only kill the mutants from which they originate, but also cause the appear-

ance of crossfire mutants, thus increasing the percentage of killed mutants. However, it

is important to note that naive MISE comes at a high cost, so it serves as an inspiration

and guide for the creation of this new family of techniques (MISE).

Chapter 5. Combining MT and DSE for test data generation. 95

5.4 Future MISE implementations

The results achieved when applying the combination of DSE and MT to the case study

described in Section 5.2.2 are promising, as there is a substantial improvement in the

mutation score. However, both DSE and MT are very expensive techniques in them-

selves, making the implementation described in Section 5.3 very costly. As such, the cost

of applying DSE is multiplied approximately as many times as the number of surviving

mutants after the first symbolic execution. To overcome this high cost, we propose to

improve the inner workings of DSE in order to generate test cases whose main objective

is mutation coverage rather than structural coverage criteria. This is possible by incor-

porating elements specific to MT into the entire internal DSE process, with the aim of

obtaining a better set of test cases in terms of mutation coverage without the need to

apply DSE to each of the surviving mutants individually.

Considering the reasons outlined in Section 5.3.2, we have identified three clear oppor-

tunities for improvement in DSE to generate test cases without significantly comprom-

ising the cost of the technique: reinforcing the threshold values approach, modifying

constraints, and considering variables that directly affect the program output.

These three areas of improvement are described in detail below. The reader will note that

we do not use GNU Coreutils for the examples, but simplified source code fragments.

Even though the three cases described have been found in the utilities used for the

experiments up to this point, the intention of this section is to be as clear and descriptive

as possible, and we deem that the used examples will help to better illustrate these

situations.

5.4.1 Reinforcing the threshold values approach

A manual analysis of the test cases in the above case study reveals that commonly the

values generated by DSE are far away from the threshold values. For example, in the

case of int variables within a condition, we can see that sometimes they are assigned

values like 16843009 or -2147483648. If we bear in mind the branch coverage criterion,

these values are rather adequate, as they allow us to evaluate such condition as true or

false. Mutation testing, however, is a stronger criterion and the selected values should

be more specific to be able to kill the mutants. It requires more knowledge regarding the

Chapter 5. Combining MT and DSE for test data generation. 96

domain or values close to the boundary of the conditions [27]. A real situation can be

found in a mutant generated by the mutation operator ROR in the utility numfmt (line

477), where a < operator is changed to <=. As the test data is -2147483648, the mutant

is not killed by the initial test suite.

To better understand the scope of this approach, let’s look at the example of Listing 5.3.

1 int exampleSE (int b) {

2 int a;

3 a = b ∗ 10;

4 if (a == 20) {

5 throw Exception(); //Path 1

6 } else return a; //Path 2

7 }

Listing 5.3: Illustrative method

To traverse the two possible paths of Listing 5.3, the variable b must take two different

values, which the solver will produce as a result of two constraints: ‘b * 10 == 20’

and ‘b * 10 != 20’. Solving both constraints manually, we could say that ‘b = 2’ and

‘b = 3’ are sufficient to cover both paths. Now, suppose we apply the ROR mutation

operator at this point so that the condition ’==’ is changed to ‘<=’ in line 4. With

the two proposed values, the mutant would still be alive, and it is clear that it is not

an equivalent mutant. If we choose another value, such as ‘b = 1’, the change would be

noticeable, as it would result in a test case that explores the first path in the original

program, while it explores the second path in the mutant, thus making a difference in the

program output and detecting the mutant. Table 5.8 shows the paths that the execution

would follow according to the test values entered in the original program and the mutant.

Test cases

Version ‘b = 2’ ‘b = 3’ ‘b = 1’

Original Path 1 Path 2 Path 2

Mutant (== by <=) Path 1 Path 2 Path 1

Table 5.8: Paths explored in Listing 5.3 with different values for the test cases.

The proposed value (b = 1) corresponds to what is expected for killing mutants, as it

is a threshold value of the condition that allows for easy detection of changes in the

Chapter 5. Combining MT and DSE for test data generation. 97

condition. Therefore, incorporating the knowledge derived from the MT elements for

test case generation, rather than values far from the thresholds, allows this situation to

be solved. For this reason, it would be beneficial if DSE could be extended to generate at

least three different values in these terms: a threshold value, a smaller one and a higher

one. This is just one example of all the variations that can be introduced by mutation

operators, and there are other situations that would be beneficial, such as generating

small variations in text strings. Therefore, it would be necessary to generate more test

data for the test cases generated by DSE in its current state, which could help to kill

more mutants without the need to apply DSE several times as done in naive MISE.

5.4.2 Modifying constraints

It is possible to generate new test data from the constraints as they are being generated

in the symbolic execution, or after it is finished. In KLEE, two fundamental elements

allow this: the KQuery language and the Kleaver solver. In this section we propose the

modification of KQuery constraints for the generation of new test data. Specifically, the

approach consists of using a KQuery constraint initially generated by DSE and adding

small modifications based on the characteristic mutations of MT. These new constraints

will be sent as input to Kleaver, which will solve them and then produce potentially new

test data.

To show the feasibility of the proposal, observe the code snippet of Listing 5.4, which

is one of the functions distributed as an example with KLEE7. Two conditions apply:

‘x == 0’ and ‘x < 0’. After using KLEE with this function, three KQuery files are

generated with constraints that will return three different values: ‘x = 0’, ‘x < 0’ and

‘x > 0’.

1 int get_sign(int x) {

2 if (x == 0) return 0; //Path 1

3

4 if (x < 0) return −1; //Path 2

5 else return 1; //Path 3

6 }

Listing 5.4: Get Sign example

7https://github.com/klee/klee/blob/master/examples/get_sign/get_sign.c

https://github.com/klee/klee/blob/master/examples/get_sign/get_sign.c

Chapter 5. Combining MT and DSE for test data generation. 98

Listing 5.5 shows one of the KQuery queries that KLEE generates during the symbolic

execution of the code presented in Listing 5.4. This query generates a value specifically

intended to cover path 3. In this example, N0 is a symbolic value representing the variable

x in the code. In first place, this query restricts the value of N0 to be different from 0

(lines 2 and 3). Then, another restriction is added so that N0 is strictly greater than

0 (Slt stands for Signed less than, but it is negated). After executing this query in the

solver, the result is 16843009, a value that meets the two aforementioned conditions.

One of the most expensive parts of symbolic execution is the exploration of paths before

the generation of constraints like the one in Listing 5.5. Modifying already generated

KQuery constraints makes it possible to obtain new test data without the need to re-

apply DSE and thus dispense with the high cost of re-exploring paths. The following

is an example of how a modified KQuery constraint is able to generate test data to

execute other parts of the source code. Notice line 5 of Listing 5.5, where the value of

N0 is restricted to be strictly greater than 0 (technically, it could be equal to 0, but

this possibility is covered by the previous constraint). Removing the negation of this

constraint, as we see in Listing 5.6, now the value must be strictly less than 0. Solving

the KQuery of Listing 5.6 with Kleaver, results in the value -2147483648, which fulfils

the conditions for exploring path 2.

1 array a [4] : w32 −> w8 = symbolic

2 (query [(Eq false

3 (Eq 0

4 N0:(ReadLSB w32 0 a)))

5 (Eq false (Slt N0 0))]

6 false [] [a])

Listing 5.5: KQuery of a test case

1 array a [4] : w32 −> w8 = symbolic

2 (query [(Eq false

3 (Eq 0

4 N0:(ReadLSB w32 0 a)))

5 (Slt N0 0)]

6 false [] [a])

Listing 5.6: Modified KQuery

This example shows that it is possible to introduce small modifications to constraints in

a similar way as MT does in the source code in order to obtain new test data, resulting

in new test cases. The cost of solving these constraints is usually much lower than

the initial cost of generating them. Hence, we can generate new constraints in a single

symbolic execution, resulting in a larger set of test cases with a higher potential to kill

Chapter 5. Combining MT and DSE for test data generation. 99

mutants. This would avoid having to run DSE more than once, reducing the total cost

considerably.

5.4.3 Considering variables that directly affect the program output

As stated so far, DSE is designed to cover the structural coverage criteria, so the test

values are intended to cover all execution paths. Therefore, a variable will only be

addressed by DSE when the paths taken depend on its value. This implies that the rest

of the variables will not be taken into account for the constraints, even if they affect the

program output. This is a weakness of DSE and the reason why some mutants remain

alive.

This situation can be a little more difficult to understand, so we show a real situation

where it occurs. Listing 5.7 represents a small fragment of the sum utility. Specifically, it

is part of the m31_3_1_sum mutant, where the ARB mutation operator has replaced the

+ operator with the - operator in line 2. This mutant survives during the experiments

conducted in the case study.

...

checksum = (r & 0xffff) /∗ ARB ∗/ − (r >> 16);

printf ("%d %s", checksum,

human_readable (total_bytes, hbuf,

human_ceiling, 1, 512));

...

Listing 5.7: Sum example of variable

Looking closely at the code fragment of Listing 5.7, we can see how the value of the

variable r affects the output of the program through the variable checksum. While it

does affect the output, it never affects the program’s paths, since it is a line that is

always executed regardless of the value of its variables. The execution of DSE at this

point always assigns the same value to the variable r. The value assigned, although fixed,

will depend on the search strategy implemented. Since it is a subtraction in the case of

the mutant (or an addition in the case of the original program), it is logical to assign

it the neutral value of these operations r = 0, enough to cover the lines of Listing 5.7.

Chapter 5. Combining MT and DSE for test data generation. 100

However, a value that does not alter the output in any case, so the mutant will remain

alive. In fact, it is necessary for r >> 16 to produce a value other than 0 in order to

distinguish the mutant from the original program.

In their current state, tools such as KLEE do not have the ability to detect variables that

affect the output in such a way that certain different values are proposed. It is possible

to manually indicate variables, but this requires extensive manual analysis of each of the

mutants. Thus, we propose to extend KLEE to deal with variables in the context of

mutations, which poses two main challenges. The first challenge is to identify variables

that should be made symbolic, while the second challenge is to generate values that help

detect mutants by their output.

Identification of symbolic variables

The automatic identification of such variables is an important challenge that can be

tackled on several fronts. One option is to modify KLEE to be aware of functions that

affect the output, either because they return a value or because they display something

via any of the output streams. As a first approximation, in addition to the values returned

by the functions, it is possible to trace functions from the standard C library, such as

printf (C) or std::cout (C++). This would be useful in the Listing 5.7 example, since

checksum is used as an argument to printf; then, following its dependencies, we would

find r, a variable that affects the output of the program. This new functionality would

still need some limits imposed by the user, in order to keep the computational cost at

reasonable levels. Still, it would allow more mutants to be killed in a single symbolic

execution.

Generation of relevant values regarding mutants

As with the identification of variables, the generation of relevant values to be able to

detect more mutants can be done from several approaches. A first approach would

be for the solver to propose several random values for the identified variables, rather

than a single fixed value as is currently done. While this does not guarantee killing

mutants, it does increase the likelihood of finding them as there are more test values.

Another more sophisticated approach is to explore the subexpressions that affect the

Chapter 5. Combining MT and DSE for test data generation. 101

variables. Returning to the example of Listing 5.7, we can see that r is affected by

the subexpressions r & 0xffff and r >> 16. As we have seen before, a test case

where r >> 16 produces a value other than 0 would be enough to kill the Listing 5.7

mutant. Evaluating these subexpressions would help in finding new values, especially if

we had mechanisms that took into account the changes that mutation operators normally

introduce.

5.5 Chapter conclusions

This chapter contributes a comprehensive study on the ability of DSE to generate test

data capable of detecting potential defects in real software. It also studies the effect of

combining DSE with MT, resulting in a new family of testing techniques called mutation-

inspired symbolic execution (MISE). This family of techniques focuses on incorporating

elements of MT within DSE, specifically, in the automatic process of test case generation.

The study is divided into three parts:

1. An analysis of the initial mutant-killing capacity of test cases generated with DSE

based on a case study on a set of real utilities.

2. A case study where we apply DSE on the surviving mutants resulting from the first

part of the study, with the aim of obtaining new test cases capable of killing more

mutants. This is the study that results in MISE, thanks to the findings made after

the execution of a first approach to the proposal (naive MISE).

3. An analysis based on the results of the second experiment, where opportunities for

improvement are identified and three more sophisticated implementations of MISE

are proposed in the hope of obtaining better results.

In our case study, after eliminating a good number of equivalent mutants through TCE,

DSE (applied through the KLEE tool) is able to kill on average 59.9% of the mutants.

These results indicate that there is ample room for improvement, as there are still around

40% of surviving mutants. The most basic implementation of MISE is able to increase

the number of mutants killed by up to 16% in some of the utilities. While this is a

promising result, the combination of DSE and MT comes at a very high cost, as the

Chapter 5. Combining MT and DSE for test data generation. 102

cost of applying DSE is multiplied by the number of surviving mutants in the worst-

case scenario. In order to reduce this high cost, we propose three more sophisticated

implementations of MISE, which aim to increase the number of mutants killed while

maintaining a reasonable cost, ideally in the same order as running DSE once.

To conclude, we have identified a number of weaknesses of DSE when it comes to gen-

erating test cases to detect real defects. The proposed solutions involve modifying or

extending tools such as KLEE specifically for this purpose. The modification of this

type of tools and the elements that compose it is not something new, as other authors

have also considered or implemented modifications in KLEE to make it smarter in other

areas, such as the generation of more useful and readable strings in test cases (Yoshida

et al. [97]), or the generation of more complex values such as arrays and bit vectors

(Dustmann et al. [31]). Our proposal is to extend KLEE (or any DSE tool) to be able

to generate more constraints by including the improvements described throughout this

chapter. In this way, DSE tools would incorporate MT knowledge and would be able to

achieve similar results to those obtained with naive MISE in Section 5.3.2, but reducing

costs significantly by not needing more than one symbolic execution.

All MISE implementations are applicable to any kind of software system, as long as

the DSE and MT tools compatible with the environment are available. In particular, it

could be combined with ASkeleTon to obtain high quality test cases in terms of mutant

detection. A full design and implementation of the solutions proposed in this chapter is

part of the proposed future work, as they involve several promising but different lines of

research (research on tools, solvers, constraints, etc.). Even so, significant progress has

already been made in this regard, as shown below in Chapter 6.

Chapter 6

Results

“We’re having an information explosion, and it’s certainly obvious that information is

of no use unless it’s available.”

Mary Kenneth Keller

This chapter summarises the results derived from the research lines of this PhD thesis.

It concludes with a discussion of the results as well as of the integration and interaction

between each of the different lines of research.

6.1 Industrial experience

In the first line of research of this PhD work, we took advantage of our proximity to

the industrial environment of the Bay of Cadiz to understand its needs beyond what is

discussed in the literature. In an effort to reduce the gap between industry and academia,

we carried out a close collaborative work in which we identified two fundamental issues.

• The cost of software testing can account for up to 40% of the total cost of pro-

jects. In large-scale projects, which typically exceed millions of euros, this is a

considerable amount.

• Commercial solutions do not adapt to the changing needs of individual software

projects, which can take years to develop and involve different technologies.

104

Chapter 6. Results 105

During an industrial immersion experience with constant site visits and staff interviews,

we were able to identify up to four differentiated stages during the development of soft-

ware testing: source code analysis, test harness generation, test data generation and

industrial validation. Each of these phases is described in detail in Chapter 3. It is

worth noting that they are usually carried out by different teams working on different

projects, hence the effort and communication work is often substantial. Test automa-

tion, even if not complete, has a number of potential benefits associated with it, from

economic benefits (estimated savings of up to 13% in this context) to those associated

with quality, both in terms of product and workplace, where a more robust product can

be produced while employees work in a more relaxed environment.

It is clear from the knowledge acquired in this industrial experience that a solution for

the complete automation of the testing process is needed. Based on the need for cost

reduction, the development of modular tools, and the focus on separate testing stages for

increased flexibility, the rest of this PhD work presents a solution that addresses these

industrial needs and aims to improve the testing process through automation

6.2 ASkeleTon

As a result of the second line of research of this PhD work, we developed ASkeleTon,

a tool for automating the generation of test harnesses from a SUT. This tool is able

to automate the first two stages of test development identified during the industrial

experience: source code analysis and test harness generation (see Chapter 4). The source

code analysis stage allows for scalable search patterns to obtain information about the

code, while the test generation stage uses the results of this analysis to automatically

generate the test harness. Together, these stages form ASkeleTon, a tool for automating

the early stages of the testing process. Even though it is not its main goal, this framework

is also able to partially cover the third stage by generating initial test data for the test

harnesses.

ASkeleTon arised from the field work done during Chapter 3, so its main functions are

inspired by the observations and industrial feedback received. It stands out for its high

modularity, both in its source code and in the products generated, as it allows each of

Chapter 6. Results 106

the parts to be easily maintained and reused. In this way, its adaptation to the changing

needs of the industry could be more easily achieved.

This tool parses the source code into an AST out of which an analysis of its elements

is performed, resulting in a complete test harness ready for execution. As long as the

SUT does not require special configuration, it is possible to compile the test harnesses

right after their generation. The generation of test data can be delegated to an external

source, allowing the modification of the used test data at any time without the need to

recompile the tests or the SUT. This feature is essential for the maintenance of test data

and the incorporation of the latest state-of-the-art techniques for test data generation.

All the details of ASkeleTon, including its design, development and generated products

are described in detail in Chapter 4.

6.3 Mutation-Inspired Symbolic Execution (MISE)

The third line of this PhD work presents a comprehensive study that starts from evalu-

ating the effectiveness of the test cases generated with DSE to the presentation of a new

family of testing techniques. Consequently, we have obtained a variety of encouraging

results which motivate future work in this research line.

Firstly, and after highlighting the good results of DSE tools for test case generation

in terms of structural coverage criteria, we propose to assess the effectiveness of this

technique in terms of mutation coverage. Specifically, we set up a study with three main

elements: KLEE as a symbolic execution tool, MuCPP as a mutation testing tool and a

set of GNU CoreUtils utilities as SUT. The results show that the detection of mutants

is relatively low, suggesting that the quality of the tests generated with DSE is not as

good when using other more complex coverage criteria like MT as when using traditional

coverage criteria.

Secondly, we manually study the surviving mutants, finding that many of them are not

equivalent and can still be killed with the correct tests. After studying the possible

reasons why DSE failed to detect them in the first place, we propose to re-apply DSE

on the surviving mutants to see if new test cases capable of killing more mutants are

generated. The results indicate that up to 16% more of the total mutants are killed. This

Chapter 6. Results 107

confirms that combining the two techniques in the test generation process significantly

improves the initial results. However, this approach comes at a very high cost, as DSE, a

costly technique in itself, has to be applied to each surviving mutant independently. The

combination of the two techniques gives rise to a new family of test generation techniques

that we call MISE (Mutation-Inspired Symbolic Execution), with ‘naive MISE’ being the

basic implementation for the second experiment.

Finally, we study the surviving mutants resulting from the second experiment to identify

opportunities for improvement in the test generation process. In this regard, we present

three possible implementations of MISE that aim to obtain better results without com-

promising the already high cost of DSE. Among the three possible implementations, we

highlight the approach of modifying the constraints that DSE generates and whose res-

olution may result in new test cases. For this reason, we carry out an extensive study on

how to translate mutation operators implemented in MuCPP to the KQuery language.

This study arises as a result of the experiments for the combination of DSE with MT

and is presented in Section 6.3.1 below.

The full details of this new family of techniques, the tools and procedures involved, as

well as the final results are presented in Chapter 5.

6.3.1 First steps in the constraint modification approach

One of the MISE implementations proposed in Section 5.4 is the modification of symbolic

execution constraints. To do this, we focus on the language used by KLEE to express

the constraints, which is KQuery. A manual analysis of the results obtained during the

study in Chapter 5 reveals an interesting fact. In Section 5.3.2, when we used KLEE to

apply DSE on a surviving mutant and it generated a new test that killed the mutant,

we could observe that such mutant was directly represented in the KQuery constraint

associated to the new test case.

Listing 6.1 shows a fragment of one of the example programs distributed with KLEE. To

reach line 3 in this program, the input value given to x must be strictly 0. The KQuery

constraint shown in Listing 6.2 (which is a result from applying KLEE on Listing 6.1),

is responsible for generating the corresponding value, where we see that the symbolic

variable will take the value 0 (Eq 0 ...).

Chapter 6. Results 108

1 int get_sign(int x) {

2 if (x == 0)

3 return 0;

4 ...

5 }

Listing 6.1: Fragment of get_sign.c

example

1 array a [4] : w32 −> w8 = symbolic

2 (query [(Eq 0

3 (ReadLSB w32 0 a))]

4 false)

Listing 6.2: Generated KQuery

It is possible to apply the COI mutation operator negating the condition on line 2,

as we can see in Listing 6.3. An application of DSE on that mutant generates a new

KQuery query where the mutation operator is directly reflected, shown in Listing 6.4.

This KQuery constraint is very similar to the one generated by the original program, but

this time it looks for the result of the query negation.

1 int get_sign(int x) {

2 if (!(x == 0))

3 return 0;

4 ...

5 }

Listing 6.3: Fragment of mutated

get_sign.c example

1 array a [4] : w32 −> w8 = symbolic

2 (query [(Eq false

3 (Eq 0

4 (ReadLSB w32 0 a)))]

5 false)

Listing 6.4: Generated KQuery

As part of this PhD work, motivated by the observations presented in the introduction

to this section, we have made some first steps that will serve as a foundation for future

work in this line. This section presents a study on how the mutation operators that

MuCPP incorporates in C and C++ programs are reflected in KQuery queries.

6.3.2 MuCPP and KQuery: equivalences between mutation operators

The KQuery language is a simple language with a reduced grammar over which KLEE

performs a series of simplifications when generating the constraints to obtain the test

cases. For example, during the test generation process, KLEE automatically eliminates

variables that are not used to generate test data, and replaces complex expressions with

simpler expressions that produce the same result. This makes it easier to work with

Chapter 6. Results 109

KLEE and speeds up the test generation process, as fewer constraints are needed to

achieve the same results.

This approach proposes to modify the constraints at two possible points: during the

process of test generation or on the tests once they have been generated. If the constraints

are modified during test generation, automation is facilitated, as it allows KLEE to more

easily reach the desired testing goals by providing more specific guidance on the test

inputs, although it would be necessary to modify the KLEE source code. By contrast, if

the KQuery constraints are modified at the end of test generation, an external process

would be necessary to introduce the changes on them and send the modified constraints

to the corresponding solver. In either case, the expected result is a set of test cases that

can kill more mutants with a single run of KLEE. For this initial study, the modifications

are included manually at the end of the process, to verify the feasibility of this proposal.

However, future work includes modifying KLEE to include these changes while generating

the KQuery constraints.

It can be assumed, to a first approximation, that the implementation of changes in the

KQuery constraints should map directly to the behaviour of MuCPP mutation operators.

As the KQueries used are generated by KLEE, there are some rules that should be

considered:

• Constraints do not include negative values, regardless of the data type.

• No logical negation operators are used. Also, the operations ‘greater than’ and

‘greater than or equal to’ will not be included either, being replaced by their ana-

logues ‘less than’ and ‘less than or equal to’, respectively.

• Compound operations (+=, -=, *=, etc.) and increment and decrement operations

(++,- -) will not be included, being replaced by their elementary operations. For

example, if an increment (x++) appears in the C code, in KQuery it will be

represented by a sum of the value 1 (x = x + 1).

The simplistic nature of the KQuery language, along with the simplifications that KLEE

makes to the constraints, results in some overlap among the changes made by the muta-

tion operators. What in C and C++ were two or more distinct mutation operators, in

Chapter 6. Results 110

the KQuery language can be simplified to one. Table 6.1 shows the equivalences ob-

served in this study between the mutation operators implemented in MuCPP, with the

left column being a mutation operator that covers the behaviour of the operators listed

in the right column.

Mutation
operator

Sub-operator
(only in KQuery)

ARB ARS
ASR

AIU ARU

AIS ADS

COI COD

COR LOR

ROR none

Table 6.1: Mutation operator equivalence in the KQuery language

Each of these operators is shown below with their behaviour in both MuCPP and the

KQuery language, as well as an explanation of why certain mutation operators cover the

functionality of others.

ROR operator

This operator is the only one that has no equivalence with other operators when applied

to the KQuery language. Listing 6.5 shows how this operator works in MuCPP on

C++ code, while Listing 6.6 shows the changes that this operator produces in KQuery

constraints. To summarise, this mutation operator replaces some relational operators

with others.

> changes to >=

>= changes to >

< changes to <=

<= changes to <

== changes to !=

!= changes to ==

Listing 6.5: ROR - Changes made

by MuCPP (C/C++ programs)

Sle changes to Slt

Slt changes to Sle

Eq changes to Ne

Listing 6.6: ROR - Changes

observed in KQueries

Chapter 6. Results 111

It is striking, however, that MuCPP is able to make changes in up to six operators, while

in the KQuery language this is only reflected in three. In our observations we have found

that the operation is exactly the same, since only these three relational operators cover

the operation of all of them.

This is the meaning of the operators that appear in Listing 6.6:

• Sle: Signed less or equal.

• Slt: Signed less than.

• Eq: Equal.

• Ne: Not equal.

The rest of the relational operators implemented by the KQuery language, according to

the Klee::Expr1 documentation, are not used, so we will never find other operators of

this type in the constraints that result in the tests. Likewise, the only Boolean operation

that can involve a constant is the boolean not (== false), which is reflected in the

mutation operation as follows:

• Neither > nor >= operators (Sgt and Sge, respectively) are implemented. Instead,

it performs an optimisation corresponding to the following example:

C++ (a < 10) -> KQuery (Slt a 10)

C++ (a > 10) -> KQuery (Slt 10 a)

• The != operator (Ne) is not implemented, therefore the Eq operator is negated

when it appears (regardless of whether its origin is == or !=).

C++ (a == 10) -> KQuery (Eq a 10)

C++ (a != 10) -> KQuery (Eq false (Eq a 10))

The behaviour of this mutation operator is unique and no other mutation operator has

been observed to work in a similar way in this context.
1https://klee.github.io/doxygen/html/classklee_1_1Expr.html

https://klee.github.io/doxygen/html/classklee_1_1Expr.html

Chapter 6. Results 112

ARB operator

The ARB mutation operator, as seen in Listings 6.7 and 6.8, has a straightforward

application in its transition from C++ to KQuery. The only difference is that, in this

case, the KQuery language operators differentiate between signed and unsigned division.

Please note that Rem refers to the “remainder” operator, which returns the remainder

after division of one number by another.

+ changes to −

− changes to +

∗ changes to /

/ changes to ∗

Rem changes to /

Listing 6.7: ARB - Changes made

by MuCPP (C/C++ programs)

Add changes to Sub

Sub changes to Add

Mul changes to SDiv

SDiv changes to Mul

UDiv changes to Mul

SRem changes to SDiv

URem changes to UDiv

Listing 6.8: ARB - Changes

observed in KQueries

An example of direct application is shown below.

C++ (a = a * 4) => KQuery (Mul 4 a)

The operation is simple, but we are dealing with a mutation operator capable of modify-

ing 7 different arithmetic operators. As a consequence of the simplifications made in the

KQuery language, this operator covers both of the ARS and ASR mutation operators,

which we will call sub-operators in this context. Below is a description of the changes

these operators produce and why they are covered by the ARB mutation operator.

ARB sub-operators (ARS and ASR)

Operator Description Behaviour

ARS Arithmetic Operator Replacement (Short-cut) Replaces ++ and - -

ASR Short-cut Assignment Operator Replacement Replaces compound operators

Table 6.2: ARS and ARS behaviour in C/C++

Chapter 6. Results 113

The ARS mutation operator, in C++, swaps the increment (++) and decrement (- -)

operators when they appear. These operators are not implemented in KQuery and the

following simplification is made instead:

C++ (a++) -> KQuery (Add 1 a)

C++ (a--) -> KQuery (Sub 1 a)

This means that the increment and decrement operators are converted to arithmetic

additions and subtractions with the value 1 in the KQuery language. Therefore, the op-

eration of the ARS mutation operator translates into swapping the arithmetic operators

Add and Sub when they appear. This change has already been made by the operator,

which covers this case since, in the end, we are adding or subtracting a value to the

variable. Similarly, the ASR mutation operator, in C++, swaps compound operators

such as -= and +=, making the same swaps as the ARB operator. Since these operators

are not supported in the KQuery language, the code is simplified in a similar way as

shown below.

C++ (a += 10) -> KLEE (Add a 10)

In this respect, we have two differentiated situations. The ARS mutation operator can

be considered as a subset of the ARB mutation operator, since it only performs two

changes out of the seven possible with ARB. The ASR operator, however, has no place

in the KQuery language, since its implementation would be exactly the same as that of

the ARB operator. In any case, it is concluded that the ARB mutation operator covers

the operation of both ARS and ASR.

AIU operator

The AIU mutation operator introduces a negation operator on any positive variable or

constant where possible. None of the KQuery constraints generated during the experi-

ments in Chapter 5 had a negative value, so we did a small test to see how this language

behaves in this situation. We negated the value of a variable in any function within a

condition and the result was as follows:

Chapter 6. Results 114

C++ (a == 100) -> KQuery (Eq 100 a)

C++ (-a == 100) -> KQuery (Eq 4294967196 a)

The alteration in the constraint is not in the variable a, but in the constant 100. Appar-

ently, this value is transformed into another large value, mainly because it is not the int

type used in C++, but a 32-bit unsigned int type. By taking the value 4294967196

and transforming it from a 32-bit unsigned int to an int, we get the value -100,

which is exactly the value that appears in C++ and is therefore directly reflected in the

KQuery constraint.

Therefore, the application of the AIU mutation operator in the KQuery language is a

direct transformation of the behaviour of the same operator applied by the mutation tool.

To do this, it is sufficient to detect all those situations where variables and constants

appear (assignments, conditional statements, etc.) and negate their numerical value,

keeping in mind that it is a 32-bit unsigned int, applying the corresponding data

transformation.

Original KQuery (Eq 100 a) -> Mutated KQuery (Eq 4294967196 a)

AIU sub-operator (ARU)

Operator Description Behaviour

ARU Arithmetic Operator Replacement (Unary) Replaces + and -

Table 6.3: ARU behaviour in C/C++

In MuCPP, the ARU mutation operator replaces the unary operators + and - when they

appear in any variable or constant. Due to simplifications in the KQuery constraints,

neither of these arithmetic operators will be replaced, but the variable or constant will

simply be negated when it appears. In practice, the negative value (with the - operator)

is replaced by a positive value and vice versa. For this reason, the AIU mutation operator

in KLEE completely covers the functionality of the ARU mutation operator.

Chapter 6. Results 115

AIS operator

The AIS mutation operator inserts an increment (++) or decrement (- -) operator on

those variables where possible. As we have seen in previous examples, the KQuery

language does not implement these operators, but they are replaced by an addition or

subtraction of the value 1. This does not prevent the AIS mutation operator from having

a direct application in KQuery constraints, adding or subtracting 1 to variables within

the constraint tree. For example, with a being any variable:

Original KQuery (a) => Mutated KQuery ((Add 1 a))

Original KQuery (a) => Mutated KQuery ((Sub 1 a))

AIS sub-operator (ADS)

Operator Description Behaviour

ADS Arithmetic Operator Deletion (Short-cut) Removes ++ and - -

Table 6.4: ADS behaviour in C/C++

The application of the ADS mutation operator becomes more complex when it comes

to introducing it into the KQuery language. This operator, in MuCPP, removes the

increment (++) and decrement (- -) operators when they appear. We have seen that

the KQuery language does not implement these operators, but they are reflected by an

addition or subtraction of the value 1. In this way, it is impossible to differentiate when

an increment or decrement is being performed, or adding or subtracting the value 1 in

the C++ code. A small test has also been performed, showing that KLEE performs a

simplification on the KQuery constraint, as seen below.

Original C++ (a == 100) -> Original KQuery (Eq 100 a)

Mutated C++ (++a == 100) -> Mutated KQuery (Eq 99 a)

In a global application, where we apply all the operators as in the experiments in

Chapter 5, we can consider that the ADS mutation operator is subsumed by the AIS

mutation operator. This is because when the value 1 is added or subtracted to an op-

eration using the increment or decrement operator, it is overridden, so it is effectively

removed in practice.

Chapter 6. Results 116

COI operator

This mutation operator inserts the corresponding negation operator (‘ !’ in C and C++)

into the conditions to negate them. This change also carries over to the KQuery language

with ease, as we can insert the ‘Not’ operator to any condition. Its application is therefore

straightforward.

Original C++ (a == 100) -> Original KQuery (Eq 100 a)

Mutated C++ (!(a == 100)) -> Mutated KQuery (Not (Eq 100 a))

Please note that this change is not exactly the one reflected in the KQuery constraints

obtained during the experiments in Chapter 5. Instead, the following modification is

introduced:

Original C++ (a == 100) -> Original KQuery (Eq 100 a)

Mutated C++ (!(a == 100)) -> Mutated KQuery (Eq false (Eq 100 a))

The operation is exactly the same, since negating a condition or forcing the result of a

condition to be false makes no difference to the behaviour. Both changes are valid and

work well for generating test data, but we consider that the first option (inserting Not)

leads to a more readable constraint.

COI sub-operator (COD)

Operator Description Behaviour

COD Conditional Operator Deletion Removes ! and not

Table 6.5: COD behaviour in C/C++

The COD mutation operator, again, is tricky to incorporate into the KQuery language.

Simplifications in relational operators lead to confusing situations. The following example

shows a situation of a KQuery constraint from any C++ code. This has been manually

written for illustrative purposes.

C++ (a < 10) -> KQuery (Slt a 10)

C++ (a > 10) -> KQuery (Eq false (Sle 10 a))

Chapter 6. Results 117

If we just focus on the second KQuery constraint, we have no way of telling whether

the original condition was a > 10 or !(a <= 10). Although arithmetically it is the same

situation, this is not the case in the source code, as it is impossible to know if the negation

operator is being used.

Again, in a context such as the experiments in Chapter 5, where we apply all the mutation

operators, we can say that the operation of this mutation operator is covered by the COI

mutation operator. In this sense, all conditions appearing in the KQuery constraint are

negated indiscriminately. As a result, in case the negation operator had been applied in

the source code, it would be negated and, in practice, eliminated.

COR operator

&& changes to ||

|| changes to &&

Xor changes to ||

Listing 6.9: COR - Changes made

by MuCPP (C/C++ programs)

And changes to Or

Or changes to And

Xor changes to Or

Listing 6.10: COR - Changes

observed in KQueries

Listings 6.9 and 6.10 show that this mutation operator has a straightforward application,

so it is only necessary to translate this behaviour to the KQuery language without any

additional changes or considerations.

COR sub-operator (LOR)

Operator Description Behaviour

LOR Logical Operator Replacement Remplacement of (&, | and ˆ)

Table 6.6: LOR behaviour in C/C++

This mutation operator, in C and C++, replaces the unary logical operators. The

KQuery language does not support this type of operators. Instead, these operators are

translated as follows:

C++ (&) -> KQuery (And)

Chapter 6. Results 118

C++ (|) -> KQuery (Or)

C++ (^) -> KQuery (Xor)

Again, if we only look at the KQuery constraints, we have no way of knowing whether

the original code uses the binary or unary logical operators. The implementation of these

changes is therefore covered by the COR mutation operator.

6.3.3 Discussion

In this section, we have seen a first approximation of how mutation operators are reflected

in the KQuery language and we have defined a number of mutation sub-operators, whose

behaviour is fully covered without the need for an explicit implementation. However,

some of them only make sense if all traditional mutation operators are applied. From

the set of traditional operators, according to our observations, only the ARS mutation

operator could be implemented independently, since its operation is a small part of the

ARB operator. However, if we wanted to implement an individual version of the rest of

the sub-operators, further information would be required. Specifically, the ASR, ARU,

ADS and COD mutation operators would need additional information from the original

code to know if the changes would take place. The case of the LOR mutation operator

is special because it modifies operators nos supported by the KQuery language and,

therefore, its operation will always be equivalent to that of the COR mutation operator.

In any case, the application of all mutation operators makes sense in the context of

MISE, so these limitations would only exist in the case of focusing the study on a single

mutation operator. This study of mutation operators, which is a further result obtained

from the work done in Chapter 5, lays the foundation for future implementation during

the test generation process with KLEE. The simple nature of the KQuery language and

simplifications made during test generation make it easy in most cases to incorporate

mutation operators, which are designed with consideration of their behaviour in MuCPP

and the changes observed in KQuery constraints resulting from experiments in Chapter 5.

An initial contact test reveals that changes are easy to introduce, as only the plain-text

constraint needs to be modified. Resolution of the mutated KQuery constraints is trivial

for the solvers implemented by KLEE, allowing for quick generation of new test data

without the need to reapply DSE on each surviving mutant. Some tests have been

Chapter 6. Results 119

performed and the results are promising, as they allow for the generation of test data

that could previously only be obtained by applying DSE on surviving mutants. In this

case, only a single run of KLEE is needed, bringing us closer to the goal of generating

stronger test data while reducing run time considerably.

Chapter 7

Conclusions and Future Work

“I’m as proud of many of the things we haven’t done as the things we have done.

Innovation is saying no to a thousand things.”

Steve Jobs

This last chapter compiles the conclusions of the lines of research presented in this PhD

work. After discussing them, we propose a series of points that could be expanded as

future work. Finally, we show the set of scientific publications produced during the

doctoral period that complement the work presented in this document.

7.1 Conclusions

The overall goal of this PhD work is to identify the needs of the industry in terms of

the development of the software testing stage and to provide a flexible solution to reduce

the final cost without compromising the quality of the product. To achieve this goal, we

have worked closely with part of the business fabric of the Bay of Cadiz while studying

the most up-to-date work on the state of the art. This industrial experience has allowed

us to identify the development stages of software testing in this environment, as well as

the total cost of applying them. This cost can be considerably reduced by applying test

automation techniques, which has motivated us to develop two fundamental elements in

the generation of software tests: ASkeleTon, a tool for the generation of test harnesses,

121

Chapter 7. Conclusions and Future Work 122

and MISE, a new family of techniques that combines two well-known state-of-the-art

techniques to generate test data with a view to detecting possible more potential faults.

The good relationships with the companies in the Bay of Cadiz environment have allowed

us to carry out immersion experiences in the manufacturing plants, where we have seen

first-hand how the industry works. Thanks to this experience and the first-hand feedback

from industrial personnel, we identified four differentiated stages during the testing of

industrial software: source code analysis, test harness generation, test data generation

and industrial validation. While not much different from what is seen in traditional

software development, it is necessary to shift the perspective to large projects, with

hundreds of thousands of lines of code and dependencies, so it is common to find several

teams working on the different stages. With the exception of the industrial validation

stage, which inevitably requires manual intervention by expert personnel, the remaining

stages seem automatable from a state-of-the-art perspective. From the automation point

of view, it is mainly possible to help teams working in the two intermediate stages, i.e.

test harness generation and test data generation. Although source code analysis is an

initial stage, we can treat it as a cross-cutting stage in the two stages mentioned above,

as we will always need to take into account the original code when generating test cases

or test data sets.

As a result of this study, we have developed ASkeleTon, a tool for the complete generation

of test harnesses based on the AST. Given a SUT written in C or C++, the output after

executing this tool is an initial set of test cases ready for compilation and execution.

With the help of industrial feedback, the tool has been designed in a completely modular

way, both the modules of the tool itself and the resulting test harnesses. This modularity

has several advantages inspired by the needs of industry. As for ASkeleTon, this makes

maintenance, revision and extension of the tool a simpler task, adapting to the changing

needs of the industry and its projects. It could incorporate, for example, another testing

framework, a different code analysis technique or even extend the languages on which

test cases can be generated. In terms of the test harnesses, it facilitates teamwork and

encourages the reuse and expansion of tests, making it easier to manually incorporate

new tests. It also allows the inclusion of new techniques for the generation of test data

without the need to modify the source code of ASkeleTon or the test harnesses themselves.

In this PhD thesis we have presented a comprehensive study on the ability of DSE –a

Chapter 7. Conclusions and Future Work 123

well-known state-of-the-art technique for test generation– to produce test data able to

detect bugs in the code following the MT criterion, which measures the quality of the

tests with respect to this very purpose. The results show that DSE is not able to kill many

mutants, so we set up a second experiment where we combine both techniques, showing

that the results improve notably. The implementation of this combination consists in

executing DSE on each of the mutants remaining alive, a technique known as naive

MISE. However, the improvement in results is associated with a considerable increase in

cost, as the application of DSE on each of the surviving mutants can take up to an hour

to generate the tests. Motivated by this, we propose up to three different lines that try

to implement this combination of techniques in a more sophisticated way, giving rise to

a new family of techniques that we call MISE. In order to demonstrate the feasibility of

these new lines, mutation operators have been defined for the KQuery constraint, the

resolution of which gives rise to new test cases. The first results suggest that it is possible

to obtain test cases similar to those obtained with naive MISE by simply applying the

mutation operators to the constraints. In this way, we avoid having to apply DSE on

each of the mutants and, therefore, we can reduce the final cost significantly.

Overall, this work makes three important contributions to the literature: a comprehensive

industry study based on the state of the art and real industrial experience, a modular,

robust and flexible tool that implements a novel process for test harness generation, and a

new family of techniques for test data generation. Together, the three elements represent

a complete, flexible process for automatic test generation based on industry needs.

The seamless integration of all parts of this study has been severely affected by the emer-

gency situation caused by COVID-19. In addition to the inconvenience to the scientific

community as a whole, it has been an obstacle regarding integration with industry. New

safety protocols, changes in regulations and the strict confinement have meant that in-

dustrial validation and final testing with this kind of projects could not be compatible

with the limited time available for the completion of a PhD thesis. Industrial projects,

due to their confidential nature, require strict access protocols and can only be accessed

in person. Despite all the challenges and limitations mentioned, the research and col-

laboration with the business community in the Bay of Cadiz has continued. The close

collaboration and feedback from industry experts is expected to yield positive results in

the future. In fact, this research is expected to be part of a larger project [76] that is

specifically designed to address these issues and improve the software testing process in

Chapter 7. Conclusions and Future Work 124

the industrial environment. Even so, both ASkeleTon and MISE represent advances in

their respective research fields, being validated through open source case studies available

to everyone.

7.2 Future work

Promising lines of future work generated by this PhD thesis are described below.

Full integration of the presented lines as a whole

In Chapters 4 and 5 we introduce ASkeleTon and MISE, respectively. In their initial

state, one technique generates test harnesses and the other one generates test data, but

currently there is no interaction between them. Thanks to the modular design of the

outputs produced by ASkeleTon, the test data obtained with MISE can easily be used

as input for the test harnesses. However, the injection of those test data has to be done

manually. Work is underway to integrate the two solutions so that ASkeleTon offers the

test data generated by MISE by default, beyond random or manual data. This line not

only offers value to test engineers, who will be able to get a set of test harnesses including

high quality test data in a fully automated way, but also highlights the convenience and

relevance of the modular design of the ASkeleTon tool.

Industrial validation of the complete test generation process

Chapter 3 has described in detail the outcome of the industrial experience. As discussed

in Section 7.1, the COVID-19 pandemic has caused a number of difficulties that have

prevented the industrial validation of all lines as a whole against current large-scale

industrial projects. As the sanitary situation is returning to normal and the constraints

produced by the new regulations are addressed, it is planned to integrate the results of

this PhD work in an industrial context. In fact, we are currently working on a recently

granted proof-of-concept project (ASSENTER) [76], where one of the objectives is to

integrate tools like this directly into industry. Thanks to this, it will be possible to study

the real benefits and improve the procedure on the basis of the obtained results.

Chapter 7. Conclusions and Future Work 125

Integration of mutation operators in DSE tools

In Chapter 6, a set of mutation operators has been defined for the KQuery language with

the aim of generating test data that will potentially be able to kill more mutants than

the original KQuery contraints. These mutation operators are based on the traditional

mutation operators implemented by MuCPP. A first manual check allowed us to confirm

that it is possible to introduce changes to the KQuery constraints and obtain new results,

making the integration of mutation operators feasible. Open source DSE tools such

as KLEE are ideal for incorporating these mutation operators automatically into the

mechanics of the symbolic execution. A module is being developed to apply the mutation

operators during the test case generation process, so that we get a set of test cases capable

of killing more mutants in a single DSE run.

This improvement is not only about incorporating these changes into the test case gener-

ation process, but also about refining the process. For example, there are cases in which

mutation operators generate different constraints that produce the same result (hence

equivalent mutants). These are easier to remove than classical equivalent mutants, since,

when generating test data, it would only be necessary to discard duplicate data pro-

duced by those constraints. This and other difficulties that could arise will be taken into

account as the solution is implemented.

Design of mutation operators specific to the KQuery constraint language

In addition to traditional mutation operators, it is common to find in the literature

mutation operators designed for specific elements of programming languages (e.g., class

mutation operators for C++). The KQuery constraint language, as well as other con-

straint languages compatible with typical DSE solvers, pose a new challenge for the

design and implementation of new mutation operators. In this sense, work is being done

on new mutation operators that take into account different characteristics of this lan-

guage, focusing on its particular notation, its structure or elements that do not fit in

more complex programming languages and other KQuery-specific features. The imple-

mentation of this new set of mutation operators will make it possible to generate more

test cases, capable of detecting more mutants and, therefore, capable of detecting more

possible real faults.

Chapter 7. Conclusions and Future Work 126

Implementation of other ways to apply MISE

The three more sophisticated MISE implementations proposed in this document pose a

considerable challenge. Chapter 6 shows the initial development of one of them, as the

other two require in-depth study and development, leading to further work on a larger

scale. It is envisaged that MISE will be implemented in all three ways proposed in this

work, leading to new studies to compare these techniques, to combine them or directly

to create new ones based on this experience.

7.3 Publications

The work described in this document has resulted in several scientific publications in

different media, which are listed below.

International Journal

• Valle-Gómez, K. J., García-Domínguez, A., Delgado-Pérez, P., & Medina-Bulo, I.

(2022). Mutation-inspired symbolic execution for software testing. IET Software

16(5), 478–492 (2022), doi: 10.1049/sfw2.12063.

Book Chapter

• Valle-Gómez, K. J., Delgado-Pérez, P., Medina-Bulo, I., & Magallanes-Fernández,

J. F. (2020). La prueba del software como parte esencial en la industria 4.0. In

Diseño, energía y digitalización en proyectos de I D+ i (pp. 162-197). Editorial

UCA, ISBN: 9788498288438.

International Conference

• Valle-Gómez, K. J., Delgado-Pérez, P., Medina-Bulo, I., & Magallanes-Fernández,

J. (2019, May). Software Testing: Cost Reduction in Industry 4.0, 2019 IEEE/ACM

14th International Workshop on Automation of Software Test (AST), Montreal,

QC, Canada, 2019, pp. 69-70, doi: 10.1109/AST.2019.00018.

Chapter 7. Conclusions and Future Work 127

National Conferences

• Valle-Gómez, K. J., Delgado-Pérez, P., Medina-Bulo, I., & Garcıa-Dominguez, A.

(2022) Incorporación de mutaciones en la Ejecución Simbólica Dinámica. In Jor-

nadas de Ingeniería del Software y Bases de Datos (JISBD 2022). Goñi Sarriguren,

A.(ed.) Handle: http://hdl.handle.net/11705/JISBD/2022/7537

• Valle-Gómez, K. J., Delgado-Pérez, P., & Medina-Bulo, I. (2021). Técnicas avan-

zadas para la mejora de la prueba del software. In Actas de las Jornadas de

Investigación Predoctoral en Ingeniería Informática: Proceedings of the Doctoral

Consortium in Computer Science (JIPII 2021) (pp. 6-10). Universidad de Cádiz.

• Valle-Gómez, K. J., Delgado-Pérez, P., Medina-Bulo, I., & Garcıa-Dominguez, A.

(2021). Ejecución Simbólica y Prueba de Mutaciones: mejora de la generación

automática de casos de prueba. In Jornadas de Ingeniería del Software y Bases de

Datos (JISBD 2021). Abrahão. Gonzales, S.(ed.)

Handle: http://hdl.handle.net/11705/JISBD/2021/040

• Valle-Gómez, K. J., Delgado-Pérez, P., Medina-Bulo, I., & Fernández, J. M. (2019)

Reducción de costes en la Industria 4.0 a través de la prueba del software. In

Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2019). Handle:

http://hdl.handle.net/11705/JISBD/2019/024.

Other publications

During the PhD thesis period, there has been collaboration with directly related projects

and other research work. The following publications, although not a product of this PhD

work, are those in which the author has participated and are related to the theme of

the thesis. This list is not exhaustive and there are additional publications that are not

included here.

• Delgado-Pérez, P., Ramírez, A., Valle-Gómez, K. J., Medina-Bulo, I., & Romero,

J. R. (2022). InterEvo-TR: Interactive Evolutionary Test Generation with Read-

ability Assessment. IEEE Transactions on Software Engineering.

doi: 10.1109/TSE.2022.3227418.

http://hdl.handle.net/11705/JISBD/2022/7537
http://hdl.handle.net/11705/JISBD/2021/040
http://hdl.handle.net/11705/JISBD/2019/024.

Chapter 7. Conclusions and Future Work 128

• Delgado-Pérez, P., Ramírez, A., Valle-Gómez, K. J., Medina-Bulo, I., & Romero,

J. R. (2021). Mejora de la legibilidad en la generación de casos de prueba mediante

búsqueda interactiva. In Jornadas de Ingeniería del Software y Bases de Datos

(JISBD 2021). Abrahão. Gonzales, S.(ed.)

Handle: http://hdl.handle.net/11705/JISBD/2021/022

• Ramírez, A., Delgado-Pérez, P., Valle-Gómez, K. J., Medina-Bulo, I., & Romero,

J. R. (2021). Interactivity in the Generation of Test Cases with Evolutionary

Computation, 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków,

Poland, 2021, pp. 2395-2402, doi: 10.1109/CEC45853.2021.9504786.

• Delgado-Pérez, P., Medina-Bulo, I., Álvarez-García, M. Á., & Valle-Gómez, K.

J. (2021). Mutation Testing and Self/Peer Assessment: Analyzing their Effect

on Students in a Software Testing Course, 2021 IEEE/ACM 43rd International

Conference on Software Engineering: Software Engineering Education and Training

(ICSE-SEET), Madrid, ES, 2021, pp. 231-240,

doi: 10.1109/ICSE-SEET52601.2021.00033.

7.4 Projects

The work carried out in this thesis is part of numerous projects. In particular, it has

taken part in a research grant, in a research network and in a large number of projects

co-financed by European funds. The following is a list of them in Spanish in order to

keep the names of the different governmental organisations.

• Beca para la realización de tesis doctorales en la industria con referencia 2017-

083/PU/EPIF-FPI-NAVANTIA/CP, confinanciada por la Universidad de Cádiz y

la empresa Navantia.

• Proyecto ASSENTER con referencia PDC2022-133522-I00, de la convocatoria de

proyectos de “prueba de concepto” en el marco del Programa Estatal para impulsar

la Investigación Científico-Técnica y su Transferencia, del Plan Estatal de Invest-

igación Científica y Técnica y de Innovación 2021-2023, proyecto cofinanciado con

fondos FEDER.

http://hdl.handle.net/11705/JISBD/2021/022

Chapter 7. Conclusions and Future Work 129

• Proyecto AWESOME con referencia PID2021-122215NB-C33, proyecto de genera-

ción de conocimiento (PGC2021) en el marco del Programa Estatal para impulsar

la Investigación Científico-Técnica y su Transferencia, del Plan Estatal de Invest-

igación Científica, Técnica y de Innovación 2021-2023, proyecto cofinanciado con

fondos FEDER.

• Red de Investigación en Ingeniería de Software basada en Búsqueda con referen-

cia RED2018-102472-T, en el marco del Subprograma Estatal de Generación de

Conocimiento correspondiente al Programa Estatal de Generación de Conocimi-

ento y Fortalecimiento Científico y Tecnológico del Sistema de I+D+i, proyecto

cofinanciado con fondos FEDER.

• Proyecto FAME con referencia RTI2018-093608-B-C33, de la convocatoria de proyec-

tos de “retos de investigación” en el marco del Programa Estatal orietnada a los

retos de la sociedad, en el marco del Plan Estatal de Investigación Científica y

Técnica y de Innovación 2017-2020, proyecto cofinanciado con fondos FEDER.

• Proyecto DArDOS con referencia TIN2015-65845-C3-3-R, en el marco del Pro-

grama Estatal de Investigación, Desarrollo e Innovación orientada a los retos de la

sociedad, convocatoria 2015.

Bibliography

[1] Unidad de innovación conjunta Navantia-UCA - Foro Convergia. http://

foroconvergia.com/grupo/unidad-de-innovacion-conjunta-navantia-uca/.

[Accessed 01-Aug-2022].

[2] KLEE: KLEE::Expr Class Reference. http://formalverification.cs.utah.edu/

gklee_doxy/classklee_1_1Expr.html. [Accessed 18-Jul-2022].

[3] R. Ahmadi, K. Jahed, and J. Dingel. mCUTE: A Model-Level Concolic Unit

Testing Engine for UML State Machines. In 2019 34th IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 1182–1185, 2019.

doi: 10.1109/ASE.2019.00132.

[4] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: principles, tech-

niques, & tools. Pearson Education India, 2007.

[5] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds. An Industrial

Evaluation of Unit Test Generation: Finding Real Faults in a Financial Applica-

tion. In Proceedings - IEEE/ACM 39th International Conference on Software En-

gineering: Software Engineering in Practice Track, ICSE-SEIP, pages 263–272. In-

stitute of Electrical and Electronics Engineers Inc., jun 2017. ISBN 9781538627174.

doi: 10.1109/ICSE-SEIP.2017.27.

[6] A. Arcuri. An experience report on applying software testing academic results in

industry: we need usable automated test generation. Empirical Software Engin-

eering, 23(4):1959–1981, 2018. doi: 10.1007/s10664-017-9570-9.

[7] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi. A survey

of symbolic execution techniques. ACM Computing Surveys (CSUR), 51(3):1–39,

2018. doi: 10.1145/3182657.

131

http://foroconvergia.com/grupo/unidad-de-innovacion-conjunta-navantia-uca/
http://foroconvergia.com/grupo/unidad-de-innovacion-conjunta-navantia-uca/
http://formalverification.cs.utah.edu/gklee_doxy/classklee_1_1Expr.html
http://formalverification.cs.utah.edu/gklee_doxy/classklee_1_1Expr.html

Bibliography 132

[8] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The Oracle Problem

in Software Testing: A Survey. IEEE Transactions on Software Engineering, 41

(5):507–525, 2015. doi: 10.1109/TSE.2014.2372785.

[9] M. Binkhonain and L. Zhao. A review of machine learning algorithms for iden-

tification and classification of non-functional requirements. Expert Systems with

Applications: X, 1:100001, 2019.

[10] C. Boettiger. An introduction to Docker for reproducible research. ACM SIGOPS

Operating Systems Review, 49(1):71–79, 2015.

[11] C. Cadar and M. Nowack. KLEE symbolic execution engine in 2019. International

Journal on Software Tools for Technology Transfer, pages 1–4, 2020.

[12] C. Cadar and K. Sen. Symbolic execution for software testing: three decades later.

Communications of the ACM, 56(2):82–90, Feb. 2013. ISSN 0001-0782, 1557-7317.

doi: 10.1145/2408776.2408795.

[13] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: unassisted and automatic gen-

eration of high-coverage tests for complex systems programs. In OSDI, volume 8,

pages 209–224, 2008.

[14] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE:

Automatically generating inputs of death. ACM Transactions on Information and

System Security (TISSEC), 12(2):1–38, 2008.

[15] R. Casamayor, L. Arcega, F. Pérez, and C. Cetina. Bug Localization in Game

Software Engineering: Evolving Simulations to Locate Bugs in Software Models of

Video Games. In Proceedings of the 25th International Conference on Model Driven

Engineering Languages and Systems, MODELS ’22, page 356–366, New York, NY,

USA, 2022. Association for Computing Machinery. ISBN 9781450394666. doi:

10.1145/3550355.3552440.

[16] CEPSA. Compromiso de transparencia - Fundación Cepsa — fundacion.cepsa.com.

https://fundacion.cepsa.com/es/la-fundacion/transparencia. [Accessed 14-

Sep-2022].

https://fundacion.cepsa.com/es/la-fundacion/transparencia

Bibliography 133

[17] T. T. Chekam, M. Papadakis, and Y. Le Traon. Mart: A Mutant Generation Tool

for LLVM. In Proceedings of the 27th ACM Joint Meeting on European Software En-

gineering Conference and Symposium on the Foundations of Software Engineering,

ESEC/FSE 2019, page 1080–1084. ACM, Association for Computing Machinery.

ISBN 9781450355728. doi: 10.1145/3338906.3341180.

[18] T. T. Chekam, M. Papadakis, M. Cordy, and Y. L. Traon. Killing Stubborn

Mutants with Symbolic Execution. ACM Transactions on Software Engineering

and Methodology, 30(2), 2021. ISSN 1049-331X. doi: 10.1145/3425497.

[19] T. Y. Chen, H. Leung, and I. K. Mak. Adaptive random testing. In Annual Asian

Computing Science Conference, pages 320–329. Springer, 2004.

[20] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque. Pit: a Practical

Mutation Testing Tool for Java. In Proceedings of the 25th International Symposium

on Software Testing and Analysis, pages 449–452, 2016.

[21] A. Corallo, M. Lazoi, and M. Lezzi. Cybersecurity in the context of industry 4.0:

A structured classification of critical assets and business impacts. Computers in

industry, 114:103165, 2020.

[22] R. D. Craig and S. P. Jaskiel. Systematic software testing. Artech house, 2002.

[23] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In International

conference on Tools and Algorithms for the Construction and Analysis of Systems,

pages 337–340, 2008.

[24] P. Delgado-Pérez, I. Medina-Bulo, F. Palomo-Lozano, A. García-Domínguez, and

J. J. Domínguez-Jiménez. Assessment of class mutation operators for C++ with

the MuCPP mutation system. Information and Software Technology, 81:169–184,

2017. ISSN 0950-5849. doi: 10.1016/j.infsof.2016.07.002.

[25] R. A. DeMillo. Test Adequacy and Program Mutation. In Proceedings of the 11th

International Conference on Software Engineering, pages 355–356, Pittsburg, PA,

USA, 1989. IEEE Computer Society / ACM Press. doi: 10.1145/74587.74634.

[26] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Program Mutation: A New

Approach to Program Testing. Infotech State of the Art Report, Software Testing,

pages 107–126, 1979.

Bibliography 134

[27] R. A. DeMillo, A. J. Offutt, and Others. Constraint-Cased Automatic Test Data

Generation. IEEE Transactions on Software Engineering, 17(9):900–910, 1991.

[28] E. W. Dijkstra. Chapter I: Notes on Structured Programming. Academic Press

Ltd., GBR, 1972. ISBN 0122005503.

[29] E. B. Duffy, B. A. Malloy, and S. Schaub. Exploiting the Clang AST for analysis of

C++ applications. In Proceedings of the 52nd annual ACM southeast conference,

2014.

[30] J. W. Duran and S. C. Ntafos. An evaluation of random testing. IEEE transactions

on Software Engineering, (4):438–444, 1984.

[31] O. S. Dustmann, K. Wehrle, and C. Cadar. PARTI: a multi-interval theory solver

for symbolic execution. In Proceedings of the 33rd ACM/IEEE International Con-

ference on Automated Software Engineering, pages 430–440, 2018.

[32] Eclipse IoT Working Group. Open Source Software for Industry 4.0. 2017

(October):18, 2017. URL https://iot.eclipse.org/resources/white-papers/

EclipseIoTWhitePaper-OpenSourceSoftwareforIndustry4.0.pdf.

[33] A. Estero-Botaro, A. García-Domínguez, J. J. Domínguez-Jiménez, F. Palomo-

Lozano, and I. Medina-Bulo. A framework for genetic test-case generation for

WS-BPEL compositions. In IFIP International Conference on Testing Software

and Systems, pages 1–16. Springer, 2014.

[34] G. Fraser and A. Arcuri. EvoSuite: Automatic test suite generation for object-

oriented software. In SIGSOFT/FSE 2011 - Proceedings of the 19th ACM SIG-

SOFT Symposium on Foundations of Software Engineering, pages 416–419. ACM

Press. ISBN 9781450304436. doi: 10.1145/2025113.2025179.

[35] C. Freeman and F. Louçã. As time goes by: from the industrial revolutions to the

information revolution. Oxford University Press, 2001.

[36] D. Fu, Y. Xu, H. Yu, and B. Yang. WASTK: a weighted abstract syntax tree kernel

method for source code plagiarism detection. Scientific Programming, 2017, 2017.

[37] A. S. Ghiduk, M. R. Girgis, and M. H. Shehata. Employing Dynamic Symbolic

Execution for Equivalent Mutant Detection. IEEE Access, 7:163767–163777, 2019.

doi: 10.1109/ACCESS.2019.2952246.

https://iot.eclipse.org/resources/white-papers/Eclipse IoT White Paper - Open Source Software for Industry 4.0.pdf
https://iot.eclipse.org/resources/white-papers/Eclipse IoT White Paper - Open Source Software for Industry 4.0.pdf

Bibliography 135

[38] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.

In Proceedings of the 2005 ACM SIGPLAN conference on Programming language

design and implementation, pages 213–223.

[39] P. Goodman and A. Groce. DeepState: Symbolic unit testing for C and

C++. In NDSS Workshop on Binary Analysis Research, 2018. doi: 10.14722/

ndss.2018.23xxx.

[40] B. J. Grün, D. Schuler, and A. Zeller. The impact of equivalent mutants. In Inter-

national Conference on Software Testing, Verification, and Validation Workshops,

pages 192–199, 2009.

[41] M. Harman and P. O’Hearn. From start-ups to scale-ups: Opportunities and open

problems for static and dynamic program analysis. In 2018 IEEE 18th International

Working Conference on Source Code Analysis and Manipulation (SCAM), pages

1–23. IEEE, 2018.

[42] W. C. Hetzel. The complete guide to software testing. John Wiley & Sons, Inc.,

1990.

[43] E. Hofmann and M. Rüsch. Industry 4.0 and the current status as well as future

prospects on logistics. Computers in industry, 89:23–34, 2017.

[44] ISO/IEC/IEEE 29119-1:2022. Software and systems engineering — Software test-

ing. Standard, International Organization for Standardization, Geneva, CH, 2022.

[45] H. Kagermann, W.-D. Lukas, and W. Wahlster. Industrie 4.0: Mit dem Internet

der Dinge auf dem Weg zur 4. industriellen Revolution. VDI nachrichten, 13(1):

2–3, 2011.

[46] M. E. Khan and F. Khan. A comparative study of white box, black box and grey

box testing techniques. International Journal of Advanced Computer Science and

Applications, 3(6), 2012.

[47] N. Khan, A. Naim, M. R. Hussain, Q. N. Naveed, N. Ahmad, and S. Qamar. The

51 v’s of big data: survey, technologies, characteristics, opportunities, issues and

challenges. In Proceedings of the international conference on omni-layer intelligent

systems, pages 19–24, 2019.

Bibliography 136

[48] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tumeng. Test case prioritiza-

tion approaches in regression testing: A systematic literature review. Information

and Software Technology, 93:74–93, 2018.

[49] J. C. King. Symbolic execution and program testing. Communications of the ACM,

19(7):385–394, July 1976. ISSN 0001-0782. doi: 10.1145/360248.360252.

[50] M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, and N. Malevris. Analysing

and comparing the effectiveness of mutation testing tools: A manual study. In

2016 IEEE 16th International Working Conference on Source Code Analysis and

Manipulation (SCAM), pages 147–156. IEEE, 2016.

[51] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann. Industry 4.0. Business

& information systems engineering, 6(4):239–242, 2014.

[52] C. Lattner. LLVM and Clang: Next generation compiler technology. In The BSD

conference, volume 5, pages 1–20, 2008.

[53] N. Leicht, I. Blohm, and J. M. Leimeister. Leveraging the power of the crowd for

software testing. IEEE Software, 34(2):62–69, 2017.

[54] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang. Fuzzing: State of the Art. IEEE

Transactions on Reliability, 67(3):1199–1218, 2018. doi: 10.1109/TR.2018.2834476.

[55] Y. Lu. Industry 4.0: A survey on technologies, applications and open research

issues. Journal of industrial information integration, 6:1–10, 2017.

[56] K.-K. Ma, K. Yit Phang, J. S. Foster, and M. Hicks. Directed symbolic execution.

In International Static Analysis Symposium, pages 95–111. Springer, 2011.

[57] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brun-

son, and A. Dinaburg. Manticore: A user-friendly Symbolic Execution Framework

for Binaries and Smart Contracts. pages 1186–1189. 2019 34th IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE), 2019.

[58] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler. The art of software

testing, volume 2. Wiley Online Library, 2004.

[59] NAVANTIA. NAVANTIA signs a contract with Saudi Arabia for the con-

struction of 5 corvettes. https://www.navantia.es/en/news/press-releases/

https://www.navantia.es/en/news/press-releases/navantia-signs-a-contract-with-saudi-arabia-for-the-construction-of-5-corvettes/
https://www.navantia.es/en/news/press-releases/navantia-signs-a-contract-with-saudi-arabia-for-the-construction-of-5-corvettes/

Bibliography 137

navantia-signs-a-contract-with-saudi-arabia-for-the-construction-

of-5-corvettes/, 2018. [Accessed 14-Sep-2022].

[60] NAVANTIA. Calidad y Medio ambiente - Privado: Responsabilidad social cor-

porativa - Navantia. https://www.navantia.es/es/personas/buen-gobierno/

calidad-medio-ambiente/, 2022. [Accessed 01-Sep-2022].

[61] NAVANTIA. Transparencia económica - Contratos. https://www.navantia.es/

es/transparencia/economica/contratos/, 2022. [Accessed 14-Sep-2022].

[62] S. Nidhra and J. Dondeti. Black box and white box testing techniques-a literature

review. International Journal of Embedded Systems and Applications (IJESA), 2

(2):29–50, 2012.

[63] T. Nivas. Test harness and script design principles for automated testing of non-

GUI or web based applications. In Proceedings of the First International Workshop

on End-to-End Test Script Engineering, pages 30–37, 2011.

[64] S. Ognawala, T. Hutzelmann, E. Psallida, and A. Pretschner. Improving Func-

tion Coverage with Munch: a Hybrid Fuzzing and Directed Symbolic Execution

Approach. In Proceedings of the 33rd Annual ACM Symposium on Applied Com-

puting, pages 1475–1482, 2018.

[65] C. Pacheco, S. K. Lahiri, and T. Ball. Finding errors in .NET with feedback-

directed random testing. pages 87–95. ISSTA’08: Proceedings of the 2008 In-

ternational Symposium on Software Testing and Analysis, ACM Press. ISBN

9781605580500. doi: 10.1145/1390630.1390643.

[66] H. Palikareva and C. Cadar. Multi-solver support in symbolic execution. In Inter-

national Conference on Computer Aided Verification, pages 53–68. Springer, 2013.

[67] A. Panichella, J. Campos, and G. Fraser. EvoSuite at the SBST 2020 Tool Compet-

ition. In Proceedings of the IEEE/ACM 42nd International Conference on Software

Engineering Workshops, pages 549–552, 2020.

[68] M. Papadakis and N. Malevris. Automatic Mutation Test Case Generation via

Dynamic Symbolic Execution. In IEEE 21st International Symposium on Software

Reliability Engineering, pages 121–130, 2010. doi: 10.1109/ISSRE.2010.38.

https://www.navantia.es/en/news/press-releases/navantia-signs-a-contract-with-saudi-arabia-for-the-construction-of-5-corvettes/
https://www.navantia.es/en/news/press-releases/navantia-signs-a-contract-with-saudi-arabia-for-the-construction-of-5-corvettes/
https://www.navantia.es/en/news/press-releases/navantia-signs-a-contract-with-saudi-arabia-for-the-construction-of-5-corvettes/
https://www.navantia.es/en/news/press-releases/navantia-signs-a-contract-with-saudi-arabia-for-the-construction-of-5-corvettes/
https://www.navantia.es/es/personas/buen-gobierno/calidad-medio-ambiente/
https://www.navantia.es/es/personas/buen-gobierno/calidad-medio-ambiente/
https://www.navantia.es/es/transparencia/economica/contratos/
https://www.navantia.es/es/transparencia/economica/contratos/

Bibliography 138

[69] M. Papadakis and N. Malevris. Automatically Performing Weak Mutation with the

Aid of Symbolic Execution, Concolic Testing and Search-based Testing. Software

Quality Journal, 19(4):691, 2011. doi: 10.1007/s11219-011-9142-y.

[70] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon. Trivial Compiler Equival-

ence: A Large Scale Empirical Study of a Simple, Fast and Effective Equival-

ent Mutant Detection Technique. In IEEE/ACM 37th IEEE International Con-

ference on Software Engineering, volume Volume 1, pages 936–946, 2015. doi:

10.1109/ICSE.2015.103.

[71] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman. Mutation

Testing Advances: An Analysis and Survey. volume Volume 112 of Advances in

Computers, pages 275 – 378. Elsevier), 2019. doi: 10.1016/bs.adcom.2018.03.015.

[72] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is Keeping My

Phone Awake? Characterizing and Detecting No-Sleep Energy Bugs in Smart-

phone Apps. In Proceedings of the 10th International Conference on Mobile Sys-

tems, Applications, and Services, MobiSys ’12, page 267–280, New York, NY,

USA, 2012. Association for Computing Machinery. ISBN 9781450313018. doi:

10.1145/2307636.2307661.

[73] S. Peacock, L. Deng, J. Dehlinger, and S. Chakraborty. Automatic equivalent

mutants classification using abstract syntax tree neural networks. In 2021 IEEE

International Conference on Software Testing, Verification and Validation Work-

shops (ICSTW), pages 13–18. IEEE, 2021.

[74] D. Perez and S. Chiba. Cross-language clone detection by learning over abstract

syntax trees. In 2019 IEEE/ACM 16th International Conference on Mining Soft-

ware Repositories (MSR), pages 518–528. IEEE, 2019.

[75] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and J. R.

Woodward. Genetic improvement of software: a comprehensive survey. IEEE

Transactions on Evolutionary Computation, 22(3):415–432, 2017.

[76] PROYECTO ASSENTER. Referencia: PDC2022-133522-I00 (proyecto base:

FAME RTI2018-093608-B-C33). Título: Aplicación de técnicas avanzadas de pro-

cesamiento de datos y prueba en la industria. Convocatoria: "Prueba de concepto"

en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación

Bibliography 139

2021-2023, proyecto cofinanciado con fondos FEDER. Objetivo: persigue alcanzar

un TRL6 en productos software del ámbito de las ciudades Inteligente y de la in-

dustria y fomentar una mayor implantación de los nuevos avances de software por

parte de las empresas. Se llevarán a cabo 2 pruebas de concepto, una de ellas en la

empresa Navantia: Automatización de la fase de prueba de software para disminuir

el coste total y aumentar la calidad y fiabilidad de sus proyectos software, 2022.

[77] D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V. Mäntylä. Benefits and limita-

tions of automated software testing: Systematic literature review and practitioner

survey. In 2012 7th International Workshop on Automation of Software Test (AST),

pages 36–42, 2012. doi: 10.1109/IWAST.2012.6228988.

[78] R. Ramler, G. Buchgeher, and C. Klammer. Adapting automated test generation

to GUI testing of industry applications. Information and Software Technology, 93:

248–263, 2018.

[79] A. Reynolds and V. Kuncak. Induction for SMT solvers. In International Work-

shop on Verification, Model Checking, and Abstract Interpretation, pages 80–98.

Springer, 2015.

[80] D. S. Rodrigues, M. E. Delamaro, C. G. Corrêa, and F. L. Nunes. Using genetic

algorithms in test data generation: a critical systematic mapping. ACM Computing

Surveys (CSUR), 51(2):1–23, 2018.

[81] B. Schäling. The boost C++ libraries. Boris Schäling, 2011.

[82] K. Schwab. The fourth industrial revolution. Currency, 2017.

[83] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés. A survey on metamorphic

testing. IEEE Transactions on software engineering, 42(9):805–824, 2016.

[84] S. Shamshiri, J. M. Rojas, J. P. Galeotti, N. Walkinshaw, and G. Fraser. How do

automatically generated unit tests influence software maintenance? In 2018 IEEE

11th International Conference on Software Testing, Verification and Validation

(ICST), pages 250–261, 2018. doi: 10.1109/ICST.2018.00033.

[85] M. Singh, E. Fuenmayor, E. P. Hinchy, Y. Qiao, N. Murray, and D. Devine. Digital

twin: Origin to future. Applied System Innovation, 4(2):36, 2021.

Bibliography 140

[86] B. H. Smith and L. Williams. An empirical evaluation of the MuJava mutation

operators. In Testing: Academic and Industrial Conference Practice and Research

Techniques-MUTATION (TAICPART-MUTATION), pages 193–202, 2007.

[87] UCA. Cátedra Navantia - José Patiño Rosales. https://

catedranavantia.uca.es/. [Accessed 01-Aug-2022].

[88] UCA. Cátedra Acerinox. https://catedraacerinox.uca.es/, 2022. [Accessed

01-Aug-2022].

[89] UCA. Cátedra Fundación CEPSA. https://catedrafundacioncepsa.uca.es/,

2022. [Accessed 01-Aug-2022].

[90] K. J. Valle-Gómez, P. Delgado-Pérez, I. Medina-Bulo, and J. Magallanes-

Fernández. Reducción de costes en la Industria 4.0 a través de la prueba del

software. In Jornadas de Ingeniería del Software y Bases de Datos (JISBD), 2019.

URL http://hdl.handle.net/11705/JISBD/2019/024.

[91] K. J. Valle-Gómez, P. Delgado-Pérez, I. Medina-Bulo, and J. Magallanes-

Fernández. La prueba del software como parte esencial en la industria 4.0. In

A. P. Fernández, editor, Diseño, energía y digitalización en proyectos de I+D+i,

chapter 4, pages 166–201. Cádiz: Editorial UCA, Valencia: Asociación Española

de Dirección e Ingeniería de Proyectos, 2020. ISBN 9788498288438.

[92] K. J. Valle-Gómez, P. Delgado-Pérez, I. Medina-Bulo, and J. Magallanes-

Fernández. Software Testing: Cost Reduction in Industry 4.0. In 2019 IEEE/ACM

14th International Workshop on Automation of Software Test (AST), pages 69–70,

2019. doi: 10.1109/AST.2019.00018.

[93] S. Vogl, S. Schweikl, G. Fraser, A. Arcuri, J. Campos, and A. Panichella. EVO-

SUITE at the SBST 2021 Tool Competition. In 2021 IEEE/ACM 14th Interna-

tional Workshop on Search-Based Software Testing (SBST), pages 28–29. IEEE,

2021.

[94] M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao, and J. Sun. SAFL:

Increasing and Accelerating Testing Coverage with Symbolic Execution and Guided

Fuzzing. In Proceedings of the 40th International Conference on Software Engineer-

ing: Companion Proceeedings, page 61–64. Association for Computing Machinery,

2018. ISBN 9781450356633. doi: 10.1145/3183440.3183494.

https://catedranavantia.uca.es/
https://catedranavantia.uca.es/
https://catedraacerinox.uca.es/
https://catedrafundacioncepsa.uca.es/
http://hdl.handle.net/11705/JISBD/2019/024

Bibliography 141

[95] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin. Detecting code clones with graph neural

network and flow-augmented abstract syntax tree. In 2020 IEEE 27th International

Conference on Software Analysis, Evolution and Reengineering (SANER), pages

261–271. IEEE, 2020.

[96] Y. Wang and H. Li. Code completion by modeling flattened abstract syntax

trees as graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 35, pages 14015–14023, 2021.

[97] H. Yoshida, G. Li, T. Kamiya, I. Ghosh, S. Rajan, S. Tokumoto, K. Mun-

akata, and T. Uehara. KLOVER: Automatic Test Generation for C and C++

Programs, Using Symbolic Execution. IEEE Software, 34(5):30–37, 2017. doi:

10.1109/MS.2017.3571576.

[98] H. Yu, H. Gong, and Y. Wang. Design and implementation of fault injection based

on abstract syntax tree of C Program. In IOP Conference Series: Materials Science

and Engineering, volume 715, page 012034. IOP Publishing, 2020.

[99] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu. A novel neural

source code representation based on abstract syntax tree. In 2019 IEEE/ACM

41st International Conference on Software Engineering (ICSE), pages 783–794.

IEEE, 2019.

[100] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. De Halleux, and H. Mei. Test Gen-

eration via Dynamic Symbolic Execution for Mutation Testing. In IEEE Inter-

national Conference on Software Maintenance, pages 1–10, 2010. doi: 10.1109/

ICSM.2010.5609672.

[101] M. Zhivich and R. K. Cunningham. The Real Cost of Software Errors. IEEE

Security & Privacy, 7(2):87–90, 2009. doi: 10.1109/MSP.2009.56.

	Conformidad de los Directores
	Agradecimientos
	Agradecimientos Institucionales
	Abstract
	Resumen
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Introduction and motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Structure of the doctoral thesis

	2 Background and State of the Art
	2.1 Software testing
	2.2 Automatic Test Generation in the literature
	2.3 Software Testing Techniques
	2.3.1 Classification of software testing strategies
	2.3.2 Mutation Testing (MT)
	2.3.3 Symbolic Execution
	2.3.4 Exploring the Benefits of Combining Dynamic Symbolic Execution (DSE) with Mutation Testing (MT)

	2.4 Abstract Syntax Tree (AST)
	2.5 Industry 4.0
	2.6 Software testing in Industry 4.0
	2.6.1 The transition of software testing to Industry 4.0

	3 Software testing needs in industry
	3.1 Motivation
	3.2 Test generation in industrial environments
	3.2.1 Software testing challenges in Industry 4.0
	3.2.2 Stages of industrial software testing
	3.2.3 Current limitations in software testing
	3.2.4 Benefits

	3.3 Chapter conclusions

	4 Automatic generation of test harnesses via AST
	4.1 Motivation
	4.2 ASkeleTon: test harness generation from the AST
	4.3 Test harness design
	4.3.1 BOOST as default test framework
	4.3.2 Structure of ASkeleTon test harnesses

	4.4 ASkeleTon: design and implementation
	4.4.1 SUT Requirements
	4.4.2 Generation of the AST
	4.4.3 Code analysis: AST Matchers
	4.4.4 Test code generation

	4.5 Resulting test harness
	4.6 Case Study: use of ASkeleTon
	4.7 Chapter conclusions

	5 Combining MT and DSE for test data generation
	5.1 Motivation
	5.2 Combining MT and DSE
	5.2.1 Evaluating initial effectiveness of DSE-generated test cases for mutant killing
	5.2.2 Case study: experimental setup
	5.2.3 Evaluation results

	5.3 Defining Mutation-Inspired Symbolic Execution (MISE)
	5.3.1 Naive MISE: an initial combination of DSE and MT
	5.3.2 Implementing naive MISE

	5.4 Future MISE implementations
	5.4.1 Reinforcing the threshold values approach
	5.4.2 Modifying constraints
	5.4.3 Considering variables that directly affect the program output

	5.5 Chapter conclusions

	6 Results
	6.1 Industrial experience
	6.2 ASkeleTon
	6.3 Mutation-Inspired Symbolic Execution (MISE)
	6.3.1 First steps in the constraint modification approach
	6.3.2 MuCPP and KQuery: equivalences between mutation operators
	6.3.3 Discussion

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future work
	7.3 Publications
	7.4 Projects

	Bibliography

		2023-01-31T11:21:34+0100
	DELGADO PEREZ PEDRO - 44965478H

		2023-01-31T17:16:36+0100
	MEDINA BULO MARIA INMACULADA - 31856505X

