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Abstract

The notions of homotopy and the homotopy equivalence are the central
concepts in Homotopy Theory. Unfortunately, given two spaces, it is very dif-
ficult to decide whether they are homotopic equivalents.

The approach to this problem through the use of combinatorial methods
applied to the study of simplicial complexes began in the 1930s and 1940s and
culminated (provisionally) in 1950 when JHC Whitehead introduced the idea
of elementary collapse of CW spaces and the simple homotopy type.

In 2012 Barmar and Minian return to the topic and develop the theory of
strong collapse of simplicial complexes, which has interesting applications to
collapsibility problems.

In this thesis we first review both concepts and a third one - edge collapse-
and explore their consequences on matroids (a special kind of simplicial com-
plexes). Secondly, we study a generalization of the idea of strong collapse to
(non-finite) Alexandroff spaces. Finally, we present several algorithms to fa-
cilitate the exploration of all these concepts in the case of finite simplicial
complexes and directed graphs.
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ABSTRACT



Objectives and hypotheses

The notion of beat point introduced by Stong in the context of finite spa-
ces can be generalized to Alexandroff spaces. So the principal objetive of this
thesis is:

To introduce and to study the new notion of dominated point in an Ale-
xandroff space as a generalization of beat points.

Secondly, I have another three objectives:

= To prove several new results on matroids, simplicidad complexes and
Alexandroff spaces, most related with the notion of collapsibility.

= To design useful algorithms to make easier study of the collapsibility of
a simplicial complex.

= To state some results and algorithms on directed graphs.
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XII

OBJECTIVES AND HYPOTHESES



Methodology

In this thesis I followed the classic methodology in basic research in mathe-
matics. Some standard tasks in this type of research are proposals for defini-
tions, conjectures of results that generalize others already known, or which can
be compared with them, and these arch for new examples that are significant
enough or have important applications in other areas of mathematics. To do
S0, it is necessary to carry out a preliminary and comprehensive study of the
topics to be addressed, and it is also very convenient to get in contact with
experts of other universities. Finally, the use of computers to perform symbolic
calculations was an essential tool in different parts of the thesis.

XIII
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METHODOLOGY



The state of the art

The notion of homotopy, homotopy equivalence and homotopy type are
the central concepts in Homotopy Theory. Unfortunately, given two spaces it
is very hard to decide whether they are or not homotopy equivalents.

In the 1930’s and 1940’s the approach to this problem was to use some kind
of combinatorial methods applied to symbolic simplicial complex (now knew as
abstrat simplicial complex). Following this approach and the formalism given
by Alexander in his paper (1926, Combinatorial Analysis Situs. ) Whitehead
in 1938 (Simplicial Spaces, nuclei and m-Groups) started a serie of very impor-
tant papers. In the first one he introduced the notion of elementary collapses
and the nucleus of a simplicial complex and he culminated the serie in 1950
by introducing the notion of simple homotopy type of CW spaces (that he
defined to scape from the technical problems he found working with simplicial
complexes).

In our history, 1966 is a very special year, because two seminal papers were
published. In the fist one, due to Stong (Finite Topological Spaces) it was
highlighted that it worth to study the finite spaces from the topological point
of view. In particular Stong remarked in his paper that given a finite topological
space, X, every point z € X has a minimal open set U, that contains it (the
intersection of every open set containing x) , this idea allowed him to introduce
a partial order on X and he introduced the definition of linear and colinear
points (now called beat points) as:

Definition (Stong 1966). Lat I be a finite space.
1. x € F s linear iof Jy > x such that if z > x then z >y

2. x € F is colinear if Jy < x such that if z < x then z <<y

XV
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Stong showed that the removal and inclusion of beat points generate all ho-
motopy equivalences between (pointed) finite spaces. That is, two finite spaces
are homotopy equivalent if and only if one can be obtained from another by
successively removing or adding beat points.

The other 1966’s paper that we are interested is due to McCord. In it,
the author related finite topological spaces to finite simplicial complex in a
functorial way. So he proved the following theorem

Theorem (McCord 1966). (i) For each finite topological space X there exist a
finite simplicial complex K(X) and a weak homotopy equivalence f :|K(X)|—
X. (ii) For each finite simplicial complex K there exist a finite topological space
X and a weak homotopy equivalence [ :|K(X)|— X.

But. the main idea for the correspondences in the above theorem was al-
ready contained in the paper 1937 in the paper where P. S. Alexandroff, intro-
duced the "Diskrete Raume"(discrete space), now knew as Alexandroff space
(A-space), as a topological space were the arbitrary intersection of open sets
is an open set. In particular, a finite topological space is an Alexandroff spa-
ce. I worth remark that 1966 was the publication year of the Spanier’s book
Algebraic topology"

In 2008 Barmak and Minian in his paper "simple homotopy type and finite
spaces"merged the ideas of Whitehead, Stong and McCord and presented a
new approach to simple homotopy theory of polyhedra using finite topological
spaces and generalized the Stong’s notion of beat point by introducing that
they called weak beat points.

Definition (Definition 3.2 Barmak-Minian 2008 ). Let X be a finite Ty-space.
We will say that v € X es a weak beat point of X (or a weak point for short)
if either U, is contractible or E, is contractible. In the first case we say that x
18 down weak point and in the second, that x is an up weak point.

where U, (F, ) denotes the points of X greater (lower) than z when we con-
sidered in X the pre-order given by the topology.

This new concept allowed them to introduced the concept of collapse of a
finite space and they proved that this new notion corresponds exactly to the
concept of a simplicial collapse introduced by Whitehead. More precisely, they
shown that a collapse X /Y of finite spaces induces a simplicial collapse
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K(X) N\ K(Y) of their associated simplicial complexes. Moreover, also they
proved that a simplicial collapse K \, L induces a collapse X (K) ~\, X (L) of
the associated finite spaces. In this way they established a one-to-one corres-
pondence between simple homotopy types of finite simplicial complexes and
simple equivalence classes of finite spaces.

But with this very good idea of weak points we get, by using combinatorial
methods, only a minimal part of the homotopy of the polyhedron when we
think they as topological spaces, so a new combinatorial idea has to be found.
We needn’t to wait much time because in 2012 both authors (Minian an Bar-
mak) succeed to introduced the concept of strong collapse, a particular kind
of simplicial collapse. The advantage of using strong collapses is the existence
and uniqueness of cores (property that the cores introduced by Whitehead in
1938 doesn’t have)

The principal purpose of my research is to understand these concepts and
to improve it as much I can. But, computational topology is another source of
interest in my research. Let me explain a little what is about.

It is obvious for any observer that the huge improvement of the technology
(computers, sensors and communications) in the last decades, produced a big
impact in mathematics. The are a lot of mathematicians working in data analy-
sis, Machine learning and related techniques. Surprisingly (or not) this impact
also reached something son abstract as algebraic topology. Since this century
begun there is an increasing interest in Topological Data Analysis and Compu-
tational Topology. To use computers to study topological spaces or clouds of
data with topological methods it is necessary to code them as a combinatorial
object and it seems the simplicial complex is the best mathematical object
for this. So we can associate to a cloud of points a simplicial complex and by
using persistent homology coded the cloud of point as a barcode.r a persisten
diagram that allows to extract an interesting information from the data.

But a simplicial complex associated to the data could be huge and the
computers hasn’t enough power to deal with, so collapses as we describe in
this thesis can be used to reduce the complexity of the problem.

Also, the computational techniques can help to understand a mathematical
concept or to make examples or éxperimental mathematics,.2nd in this sense I
designed several algorithms to help the researches to study several properties
of simplicial complex or graphs (a simplicial complex of dimension 1).
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Summary of Chapters Contents

We will explain with a little details the contents in each chapter.

In the first chapter we introduce some preliminaries about homotopy and
equivalence of homotopy. We study these two concepts over an interesting
structure called simplicial complex. We study simplicial complex in two ways:
firstly in a geometric way where a simplicial complex is a topological space
constructed by ‘gluing together"points, edges, triangles, and their n-dimensional
counterparts and secondly in a combinatorial one, where the abstract simpli-
cial complex which is a family of set, called simplices, that is closed under
taking subsets. We will study the relations between both definitions and how
we can pass from one to another. Also we will remember that spacial maps
called Simplicial maps between two (combinatorial) simplicial complex give
us continuous maps between the associated geometric simplicial complexes.
However it is impossible to fully translate the geometric notion of homotopy
into a combinatorics, but there are several approaches. We will see several of
these in this thesis. In this sense, we will recall in this chapter the notion of
classes of contiguity which gives a constructive form of homotopy applicable
to simplistic applications at the level of geometric realizations.

In the second chapter, we recall a procedure invented by J. H. C. Whi-
tehead in 1938, which is the first attempt to classify the simplicial complexes
in equivalent homotopy classes. His famous strategies was to minimize and
simplify finite simplicial complexes through a sequence of removing simplices
called free faces to reach a minimal complex called the core, this operation
called The Collapse, he assume that simplicial complexes belong to the same

XIX
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equivalent class if they have an isomorphic cores. But this attempt did not
success since there is many cores of the same complex depending on the steps
of removing the free faces and those cores are not unique up to isomorphisms,

In 2012 Barmak and Miniam success to apply this idea, to minimize and
simplify finite simplicial complexes using a strategy called strong collapse which
we will discuss in Section 2.2. depending on removing a dominated vertices.
A third procedure called edge collapse was initially studied on topology by
Walkup in 1970. In this chapter we will compare between the three types.

In Section 2.3 and Section 2.5, we will state two algorithms to partition
the maximal simplices which covers the simplicial complex into subcomple-
xes, each subcomplex can strong collapse/edge collapse to a point. the number
of these subcomplexs will be an upper bound of Gscat/Ecat. Each algorithm
shows a different strategy to perform the strong collapse, And each algorithim
is coded using Python program, some famouse examples are applied with the
programs.

The third chapter is dedicated to study the constructions of matroids. Re-
member that matroids were introduced and named by H. Whitney in 1935 as
an abstract generalization of matrices. its realization as simplcial complex is
very simple from the homotopic point of view since they are homotopy equi-
valent to wedges of spheres, but it is still interesting from the ’combinatorial
homotopic’ point of view. We proof in this chapter that the class of matroid
are closed under deletion a point or contracting an edge. Also we proof the
following

Theorem. if we have an empty intersection of the mazimals set of a
matroid, then we can not strong collapse this matroid.
Let B(M) = {F; : i € A} be the base for a matroid M. If gy Fi = ¢, then

M has no dominated vertices, that’s means M 1is a core.
Theorem 3.1.4.

Theorem. Let M be a matroid with the base B(M) = {F; : i € A} such
that |F;| = n, and let e be a vertex in V (M), then the following statement are
equivalent:
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a. e € (ea Fi-

b. M N\ A{e} (i,e, M collapse to e).

c. M\ {e} (i,e, M strong collapse to e.
d. There exist a free face.

e. There exist a dominated vertices.

So we conclude that every matroid is either a core or it is strong collapsible to
a point. In part d. for any mazimum F;, (F;, F;\e) generates a free face.

In Section 3.3 . we show that contracting an edge from a matroid yields to
a new matroid. then we show that Theorem 3.1.4 is not true for edge contrac-
tion. Then we state an algorithm to partition the maximals of matroid into
strongly collapsible submatroids.
Also this algorithm is coded using Python program.

Chapter four is the biggest one in this thesis and it is devoted to study co-
llapsibility on non-finite Alexandroff spaces. A binary reflexive and transitive
relation is called a preorder. A preorder is a partial order set or poset if it is
also antisymmetric. Also an Alezandroff topological space, is a topology where
the intersection of any family of open sets is open.

If we have any topological space, the inclusion gives a preorder relation over set
of open sets. If this topology is Alexandroff space, the preorder defined is called
spectalization preorder, and if the topology is a Tj space then its specialization
preorder is a poset. Actually there is an equivalence between preorders and
Alexandroff topologies. McCord shows to every poset , one can associate an
abstract simplicial complex called the order complex. And to every simplicial
complex, one can associate a poset that is weak homotopy equivalent to it.

Stong [35] state the concepts of removing special point called beat points from
the space with keeping its homotopy type, he introduced the concept of co-
res of finite spaces, then May and Kukiela generalized his result into infinite
Alexandroff space. they minimize the space through a sequence of steps, in
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each step we remove a single beat point. we call this operation by B-collapse.
Kukiela classified the class of infinite Alexandroff spaces and proved results
showing that some locally finite spaces can be strong deformation retracted to
a core.

Definition. Let (X,S) an Alexandroff space and a,b € X such that
ash

1. We say that a is p™dominated by b, if ¢ = a implies ¢ ~ b. In this case
we will denote A, the set {s € X :a < s < b}.

2. We say that b is p~dominated by a, if ¢ < b implies ¢ ~ a. In this case
we will denote A, the set {s € X :a < s = b}.

A subset A of X is called a contraction set if there exist two points a,b € X
such that a is p™dominated by b,hence A = A, or b is p~dominated by a,
hence A=A, .

In this definition we will extend the definition of beat points (where we
remove a single point in each step) to a new definition called p—dominated
(where we can in one step remove from the space the contraction set (maybe
infinite points)), we call this operation by P—collapse. The space with no
P—dominated points called P—core.

Theorem. Let (X,S) be an Alexandroff topological space, and suppose
that a is pTdominated by b, with a contraction set A}, then X — Al is a
strong deformation retract of X. Similarly, the retract generated from removing
p~dominated point and the retract generate from elementary P-expansion, both
are strong deformation retracts also.

In Section 4.3, we discuss relations between up-beat/down-beat points
and p+/p-dominated points through our main theorem which shows that P-
collapse and B-collapse operations are similar if the space contains only finite
chains:

Theorem. In Alezandroff space X. Every finite-chain contraction set
AT can be represented by sequences of BT -collapses in at most w steps, where
w is the first ordinal. Similarly, Every contraction set A~ can be represented
by sequences of B~ -collapses removing down-beat points.
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Moreover we state Example 4.3.5. to show a space contains infinite chains
that we can P-collapse a space to a point but we can not B-collapse some points
in this space. In Example 4.3.6. We show a space that we can P-collapse to a
point also we can B+-collapse it to a point, even if the space contains infinite-
chains, finally in Example 4.3.7. We show a space contains infinite chains and
we can P-collapse to a point. but the space not contains any up-beat or down-
beat points, so we can not start B-collapsing points, so the space is a core in
the sense of Stong.

Recall, C(X, Y ) denotes the space of all continuous maps from X to Y in
the compact-open topology. Kukiela introduce the classes of finite-paths and
bounded-paths spaces and state the following Theorem 4.4.5.

If a space is a C'—core finite-path space, then there is no map in C'(X,X)
homotopic to ¢dx other than idx.

We state in Definition 4.4.6. a space called finite-bounded spaces, under this
space we can generalize the previous Theorem

Theorem. Let X be a C-core bounded space, If one of the following
satisfies

= X s finite bounded.
» C(X, X) is Alexandroff.
there is no map in C(X, X) homotopic to idx other than idx.

Moreover, two finite-bounded spaces are homotopy equivalent if and only if
their cores are homeomorphic. Also we state more simply and extending proof.
In section 4.5 we discuss some ways to convert a topological space to a simpli-
cial complex and vice verse.

In Chapter 5 we will interested in a special kind of graphs called cyclic
graphs introduced by Adamaszek, Michael, and Henry Adams. In their work
they also state the the notion od -ve dominated verter. We state a correspon-
dence definition called +wve dominated vertex and we proof that If we have a
cyclic graph, then:

There exist a -ve dominated vertex < There exist a +ve dominated vertex.
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Moreover, the number of +ve dominated vertices is equal to the number of -ve
dominated vertices.
Then we call the definition of undirected graph which is actually a 1-dimension
simplicial complex, and study the relation between dominated vertices in both
directed and undirected graphs.
In Section 5.2 we show that if we have a directed graph we can construct a
preorder set by reachability, in the other direction, if we have a poset we can
construct a directed graph, then we study the relationship between dominated
vertices in directed graphs and the p-dominated points in the correspondence
preorders space and vice verse.

Cj'n In

Then we study the property of a special The directed graph denoted by
section 5.3 we state algorithms answer the following questions:

1. If we have a graph with an order on it vertices, how we can detect if this
order yield to a cyclic graph by using the adjacency matrix?

2. If we have any matrix with 0 or 1 entries, can we reorder this matrix to
detect if it can represent a cyclic graph or not?

3. How we can determine the dominated vertices from the adjacency ma-
trix? and then determine the core.



Conclusions

I introduce and study the notion of P-dominated point in an Alexandroff
space as a generalization of beat points (see Chapter 4) and I show that is
good generalization of beat points.

The other two objetives are reached by designing several algorithms (see
Chapter 2 and Chapter 3) and proving several results related with collapsibility
over simplicial complexes and matroids as you can see all the long of this thesis.
I also state some results and algorithms related to directed graphs.

Before explained this in more detail, I will like to remark that I considered the
most interesting is the results in Chapter 4.

XXV
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Chapter 1

Preliminaries

Geometric shapes as curves, surfaces or their higher dimensions generali-
zation are [continuous| which we cannot encode it directly using computers as
a finite discrete structure.

We need to find representations of these shapes that capture enough their
geometric structure and comply with the constraints inherent to the finiteness
and discreteness of the underling data structures by using a collection grow
large easily but it have a simple elements.

Another difficulty, If the only representation of the data sampled as point
clouds around unknown shapes, then we need to create a continuous space on
top of this data that can encode the geometry and the topology of the underl-
ying shape. Simplicial complexes give us a flexible solution to these difficulties.
There is two notation to defined simplicial complexes, both of this notations
can realised geometrically as a topological space.

In algebraic topology the notion of sameness usually represented by ho-
motopy equivalence: Topological spaces X and Y are homotopy equivalent if
there are maps f : X — Y and g : Y — X where the compositions f o g
and g o f are homotopic to identity maps on X and Y, respectively. The ho-
motopy equivalent spaces can be "deformed"from one to another. This notion
can apply on the realizations of simplicial complexes, if the realizations are
homotopy equivalent, then one of the simplicial complexes deformable into the
other. But, this deformation may not pass through simplicial complexes, that
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means during the homotopy may be there exist some ¢ € [0, 1] such that the
image of one of the compositions is not a simplicial complex.

So a homotopy equivalence may not always created naturally (as geometric
realizations) from a procedure in the category of abstract simplicial complexes.
So we need a construction over simplicial complexes which induces a homotopy
equivalence on its realizations in the best way, contiguous maps is created for
this purpose.

This chapter consists of four sections: Section 1, provides a brief discussion
of the required background in simplicial complex, we explain it in both abs-
tract and geometric. In Section 2, we define simplicial maps. In Section 3, we
introduce the concepts of homotopy and contiguous. In Section 4 we define the
concept of chain complex and it’s homology groups.

1.1. Simplicial Complex and Simplicial Maps

The term simplicial complex refers to two concepts. The first one is a
geometric simplicial complex, which is a geometric object in Euclidean spa-
ce consisting of shapes called simplices (polyhedrons) of various dimensions,
glued together according to certain rules. The second concept is that of an
abstract simplicial complex, which is a family of sets that is closed under de-
letion of elements. Both of the two concepts are closely related: For every
geometric simplicial complex, there is an underlying abstract simplicial com-
plex describing its combinatorial structure. Conversely, one may realize any
abstract complex as a geometric complex. In our study we are interested with
the abstract concept. For more details the reader can back to Munkres [36],
Hatcher [22], Spanier [42], Jonsson [26] and Tammo [50].

The 0-simplex represented by a point, a 1-simplex is an edge, a 2-simplex
is a triangle and a 3-simplex is a tetrahedron and so on. For completeness, we
give a formal definition as follows.

Definition 1.1.1. Geometric k-simplex A geometric k-simplex o is the con-
vex hull of any k+ 1 affinely independent points vy, vy, ...v;, in R? which means
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v1 — Vo, ...,V — Vg are linearly independent. Then, the simplex determined by
them is the set of points:

k
g = {Z Givi
1=0

We called k the dimension of o and v’s are its vertices.
A face of o is a subsimplex of o, namely, the simplex generated by a subset of
the o wvertices.

k
Zel:l and@izOfori:O,...,k}.
i=0

A geometric simplicial complex is a set of simplices that are glued nicely,
i.e. they only intersect each other at common faces.

Definition 1.1.2. Geometric simplicial complex A geometric simplicial
complex K = (V,5) consists of a set V, whose elements are called vertices,
and a collection S of finite non-empty geometric simplices over V' that satisfies
the following the axioms:

= Fuvery face o of a simplex 7 € K s also in K.

= The intersection of any two simplices of X, if non-empty, is a face of
each of them.

Example 1.1.3. The collection Kq is a simplicial complex consist of two 2-
simplices with a vertex in common, The simplicial complex Ko has a common
edge between its 2-simplices, but the collection K3 is not a simplicial complex.

J ] £

K

Figura 1.1: Simplicial complex.
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Note that the k-simplex have a finite number of vertices but the simplicial
complex not necessary to have finite number of simplices. A complex K is
finite if 'V is finite, and locally finite if each vertex is contained in a finite
number of simplices.

Remark 1.1.4. (Geometric realization of geometric simplicial complex) For
a finite simplicial complez K in R?, its geometric realization | K |C RY is the
union of the simplices of K. The topology of K is the topology induced on | K |
by the standard topology in R as a subspace. So we do not clearly make the
distinction between a complex in R and its geometric realization.

Later in Remark[1.1.8, we will discuss the infinite case, and that the topology
of an infinite geometric simplicial complexr K coincides with the topology of the
geometric realization |K|.

One is often interested in a geometric simplicial complex only for its ho-
meomorphism type and its combinatorial information, But as long we identify
a geometric simplicial complex with its set of simplices, also we can easily de-
termine any simplex by using its vertex set (the O-simplices). That means in
most cases, the geometric information embedding into euclidean space is not
necessary and one tends to be ignore it. This leads us to the following abstract
simplicial complex definition.

The most efficient description, containing all of the relevant information,
comes from labelling the vertices and then specifying which sets of vertices
together represent the vertices of simplices. If the set of vertices is countable,
we can label them vy, vy, vs,.... In general we can label by v;,i € I for any
indexing set I. Then if any set of vertices represent the vertices of a simplex,
we can label the simplex as v;,, vi,, ..., v;,.
Definition 1.1.5. Abstract stmplicial complexr A simplicial complex K =
(V,S) consists of a set V', called the set of vertices, and a set S of non-empty
subsets of V', which is called the set of simplices, A set o € S with k+1 elements
1s called a k-simplex of K and we say that its dimension is k. Satisfying the
following axioms:

1. {v} € S foreachv e V.
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2. If T €S and o C 7 is non-empty, then o € S.

By abuse of notation we will write v € K and 0 € K ifv € V and o0 € S.
The dimension of K is the maximum over all dimensions of faces of K. If this
mazximum is not exist (i.e, K contains an n-simplex for alln > 0), then we say
dim(K) = oco. If K is empty, its dimension is —1. a complex K is finite if it
has a finite number of simplices, and hence dim(K) will be finite. the converse
s not true, for example a graph with infinite number of vertices is an infinite
complex with dimension 1.

If a simplex o s contained in another simplex T, it is called a face of 7, and
called a proper face of T if dimension (1) = dimension (0)+1, i.e 7 = o\ {v}
for some v € 0.

A face o is a maximal face of K if there is no face 7 of K such that
o & 7. A simplicial complex is called pure (or homogeneous) if all its mazimal
sitmplices have the same dimension.

We will write ’complex’ or 'simplicial complex’ instead of abstract simplicial
complex. It is clear that any simplex ¢ has a finite number of faces, because
any face of a face of o is itself a face of o.

Example 1.1.6. Let V = {a,b,c,d}, we write, a to be the simplex {a}, ab
instead of {a,b}, and so on.

S ={0,a,b,c,d,ab,ac,be, abe, cd, ad}
The set K = (V,.S) form a simplicial complez.

Definition 1.1.7. A subcomplex of a simplicial complex K is a simplicial
complex L such that Vi, C Vi and S, C Sk.

For n > —1, the n-skeleton K™ of K is the subcompler of K obtained by
remouving all faces of dimension greater than n.

For example, the 1-skeleton of k is a graph.
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Abstract complex from geometric complex.

A geometric simplicial complex K in R? determines an abstract simplicial com-
plex K’ such that: the vertices of K’ are the same vertices of K. Every set of
vertices of the simplices of K is a simplex of K.

There is a canonical way to construct one kind of simplicial complex from
the other, and translating back then it yields an isomorphic construction. This
allow us to abuse the concept of geometric simplicial complex with the abs-
tract ones. So in our study we will interest in topological spaces generates by
simplicial complexes from the view of abstract only, as follows:

Definition 1.1.8. Geometric realizations of abstract simplicial com-
plexes [/2]. The abstract simplicial complexes are purely combinatorial objects.
However, one may realize a finite simplicial compler as a geometric object in
R™. There are various ways to choose the copies of the standard simplices and
glue them, but it turns out that they produce homeomorphic spaces.

The geometric realisation of finite K will be denoted as |K|, and |K| itself
18 a geometric simplicial complex and can have the induced standard topology.

The procedure for finite complexes is roughly the following:

For finite abstract simplicial complex K with verter set V. = {vy,vg,...,0,}
for some n, identify each vertex in K with a point in R™, such that V will
represent in R™ by {e1, ea, ..., e,}, where for any i € {1,...,n}, e; is the vector
whose coordinates are all 0 except the i-th one which is equal to 1.

For each edge ab, draw a line segment between the points realizing the ver-
tices a and b. Next, for each 2-simplex abe, fill the triangle with sides given by
the line segments realizing ab, ac, and be. Continue in this manner in higher
dimensions. For example, realize each 3-simplexr as a tetrahedron.

For any k <n, [e;, - ,e;] is a k-simplex of |K| if and only if [viy, -+ ,v;,] is
a simplex of K.

In general, we can associate to any abstract simplicial complex K = (V,S)
(finite or infinite) a topological space | K| called its geometric realization, define
|K| ={a:a:V —|[0,1]} satisfying the two conditions:
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» For any o, {v eV :a(v) >0} is a simplex in K.

» For any «, Za(v) = 1.

If K =0, we define |K| = 0.

A realising of K has two typical topologies, If K is locally finite, these topologies
are identical.

The first topology is the metric topology defined by the metric d on |K| as
following:

d(e, 8) = | [a(v) = B(v)]?

veV

The second topology on |K| is called the weak topology, Whitehead topology
or coherent topology whose closed sets are the sets that intersect each simplex
in a closed subset. that’s mean, U C |K| is closed (or open) in the coherent
topology if and only if U N|o| is closed (or open) in |o| for each o € K, where
|o| is called the closed (affine) simplex in the geometric realization | K| defined
by:

lo| ={a € |K|:alv)#0=v €}

and |o| is topologized so that this identification is a homeomorphism. The weak
topology is the largest topology showing that the inclusion |o| — |K| is conti-
nUOUS.

In [41] introduce a new topology to realise a simplicial complex called the
box topology which is finer than the metric topology and coarser than the
weak topology. Since the common topology used by most authors is the weak
topology, we will build the geometric realisation on this topology in our work.

Example 1.1.9. Here, the geometric realizations of the simplicial complexes
mn Example in R2. Since the label of each face is given by the vertices it
contains, so it suffices to only label the vertices in the realization.
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A D

C

Figura 1.2: Geometric realization of a simplicial complex

Definition 1.1.10. A topological space X is said to be triangulable if there
exists a simplicial complex K, and a homeomorphism f : |K| — X, (some
authors called X a polyhedron ).

A triangulable space can have more than one triangulation, as example,
S* has a triangulation as a complex K such that | K| is homeomorphic to the
boundary of an equal sided triangle; but also it can be triangulated by a sim-
plicial complex where |K| is a regular polygon with vertices in S'. Next we
will show one triangulation of a sphere.

Example 1.1.11. We can shortly determine a simplicial complex by its ma-
zimal sets, For example {abc, abe, aed, acd, Abc, Abe, Aed, Acd}, spanned the
stmplicial complex K contains siz 0-simplices, twelve 1-simplices and eight 2-
simplices (triangles).

On the left, the geometric realization of the this complex on the space R3. And
on the right a sub-complex of this complex K generates by removing one of its
mazimal faces (triangle) realise in R?.
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OamO
(&)

Figura 1.3: Simplicial complex.

The complex on the right, is an interested famous example of a simplicial
complex, which we will analysis its property in Chapter 2, and Chapter 3.

Theorem 1.1.12. If a simplicial complex K can realize in R", then K 1is
locally finite and countable with dim(K) < n. Conversely, if K is locally finite
and countable with dim(K) < n, then K can be realized in R*"*1.

Definition 1.1.13. [37/ A complex K is connected, if it cannot be represen-
ted as the disjoint union of two or more non-empty subcomplexes.

A geometric complex is path-connected if there exists a path made of 1-simplices
from any vertex to any other.

A simplicial complex is path-connected if and only if it is connected.
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1.2. Simplicial Maps

The appropriate notion of a morphism between two simplicial complexes is
the simplicial map, such that the image of vertices is a vertices and the images
of a simplex yields to a simplex. Simplicial maps induce continuous maps
between the underlying geometric realization of the simplicial complexes.

Definition 1.2.1. 35 Let K = (Vk,Sk) and L = (V, Sy) be two abstract
simplicial complexes. A simplicial map from K to L is a function ¢ : Vi — V,
such that, if {vo,v1, ..., v} is a simplex in Sk, then {p(vo), o(v1), ..., 0(v,)} is
a simplex in Sp.

A simplicial map ¢ : K — L induces a map of the underling topological
spaces,

o]+ [ K| — |L]
defined by linear extension of the map on points, such that x € |K| represented
as:
i=0 i=0
Then define,

[Pl(z) = 36 ()

Note, ¢ need not be an injection on vertices, || is always well-defined. Also
the composite of simplicial maps are simplicial maps.

Definition 1.2.2. (Isomorphism of abstract simplicial complezes.)

Let K = (Vk,Sk),L = (V1,SL) are two abstract simplicial complezes are
isomorphic, if there exists a bijection f : Vi — Vi such that {vy,--- ,vx} €
Sk if and only if {f(vo), -, f(vg)} € Sp. And we write K = L.

So a bijective simplicial map whose inverse is also a simplicial map is an
isomorphism. We have the following relations between simplicial complexes
and their realizations.
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Proposition 1.2.3. Let ¢ : K — L, induces a map between two simplicial
complezes, |p| : | K| — |L|, then:

1. If v is a simplicial map, then |p| is conlinuous.
2. If ¢ is injective, so is |p].
3. If v is an isomorphism, then || is a homeomorphism.

So, any two isomorphic abstract simplicial complexes generates a homeo-
morphism between their geometric realizations.
The underlying spaces of any two geometric realizations of the same abstract
simplicial complex are homeomorphic.
So it is common to relate the topological properties of these realisations spaces
to the finite complex itself. as example, If we claims that a finite abstract sim-
plicial complex K is homeomorphic or homotopy equivalent to a topological
space X, it is meant that | K| is homeomorphic or homotopy equivalent to X.

Example 1.2.4. An interesting examples of simplicial maps, which will be
critical for our development of minimize simplicial complex, are the simplicial
maps that collapse simplices, as an exampl:

Suppose we have K as a 3-simplex [vy, v1, Vo, v3], one of whose faces is the 1-
simplez (v, v1] as a subcomplex L. Assume the simplicial map f : K — L
determined by f(vo) = wo, f(v1) = v1, f(ve) = vy, f(vs) = vy, the 3-simplex
collapses down to the 1-simplex. The great useful of simplicial map and collapse
concepts (discuses in Chapter 2) is a way to preserve information so we can
still see the image of the 3-simplex hiding in the 1-simpler as a minimize
simplex and hence minimize the size of data in applied analysis. We will study
when this operation get a homeomorphism between the original complex and
the subcomple.

Definition 1.2.5. [22] A category € consists of three things:
1. A collection Ob(€) of objects.

2. Sets Mor(X,Y) of morphisms for each pair X,Y € Ob(€), including
the identity morphism id = idx € Mor(X, X) for each X.
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3. A composition of morphisms is a function o : Mor(X,Y)x Mor(Y,Z) —
Mor(X,Z) for each X,Y € Ob(€), such that foid= f,ido f = f, and
(fog)oh=fol(goh).

Definition 1.2.6. A functor F from a category € to a category ® assigns to
each object X in € an object F(X) in® and to each morphism f € Mor(X,Y)
in € a morphism F(f) € Mor(F(X),F(Y)) in D, such that F(id) = id and
F(fog)=F(f)oFlg).

Since the composition of simplicial maps is a simplicial map, the collection
of simplicial complexes forms a category denote SCom where the morphisms
are the simplicial maps. So the geometric realization is a functor:

|F| : SCom — Top.

1.3. Homotopy and Contiguous

Given topological spaces X and Y, the set of all continuous functions bet-
ween two topological spaces X and Y is typically quite large and complicated
even in simple cases. To classify this functions, and then restrict attention to
equivalence classes to study this function, the deepest and most useful equi-
valence relation is the concept of homotopy. Then we classify the topological
spaces in equivalence classes using the idea of homotopy equivalence.

Using homotopy concept we can put two functions in the same equivalence
class whenever we can continuously and smoothly transition from one to the
other as a parameter ¢ € [0, 1] move continuously from 0 to 1, and vice versa.

Definition 1.3.1. Let X, Y be topological spaces, and f,g : X — Y conti-
nuous maps. A homotopy from f to g is a continuous function

H: X x[0,1] — Y such that H(x,0) = f(x), H(z,1) = g(x)

for all x € X. We say that f is homotopic to g if such a homotopy exists, and
denote this by f ~ g.
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Some topological spaces X and Y can be transformed into one to another by
bending, shrinking and expanding operations, the following notation describe
these spaces:

Definition 1.3.2. A homotopy equivalence between topological spaces X and
Y is a continuous map f : X — Y which has a homotopy inverse, hence such
that there exists a continuous map g :Y — X and homotopies

go f~idx and fog~idy.

If such a pair f and g exists, then X andY are said to be homotopy equivalent,
or X and Y have the same homotopy type.

Being homotopy equivalent is evidently an equivalence relation. So homoto-
pies between functions can be used in order to produce an equivalence relation
on topological spaces as well. A homeomorphic spaces are always homotopy
equivalent, but the converse does not hold.

Definition 1.3.3. A topological space X is contractible if the identity map
on X is homotopic to some constant map, 1.e X 1s homotopy equivalent to a
one-point space.

Example 1.3.4. A solid triangle is an obvious example of contractible space
which can transformed smoothly to a point. Hatcher [22] introduce his example
of a 2-dimensional subspace of R3 known as Bing’s house with two rooms,
which is contractible but not in any obvious way, To check contractibilily, one
can imagine a deformation retraction of a solid cube onto Bing’s house.

you can push through the tunnel from the left and hollow out the down room
through the tunnel, and similarly for the upper room.

More interested features of Bing’s house, comes in Example Example
and Example [2.4.5.
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Figura 1.4: Bing’s house with two rooms.

A retraction r is a continuous mapping from a topological space X into
a subspace A C X (A called a retract), where r preserves the position of all
points in that subspace A. A deformation retraction is a homotopy between a
retraction 7 and the identity map on X, as follows.

Definition 1.3.5. A subspace A of X s called a deformation retract of X if
there is a homotopy F : X x I — X (called a deformation retraction) such
that for allz € X and a € A,

» F(z,0) =z,

» F(z,1) € A, and
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» F(a,1) =a.

A deformation retraction F s called a strong deformation retraction, if we
add the requirement that:
F(a,t) =a for allt € [0,1] and a € A.

So a deformation retraction is a special case of a homotopy equivalence.
And a strong deformation retraction fixed the points in A throughout the ho-
motopy.

The homotopy describes a continuous deformation of a function f into g, at
time 0 we have the function f, and at time 1 we have the function g. There is
two ways to describe the similar concept (The homotopy concept) in simplicial
complexes, The first one related to it’s geometric realization as follows:

Definition 1.3.6. Two simplicial complezes K and L are said to be homo-
topy equivalent, or have the same homotopy type, whenever their geometric
realizations | K | and | L | are homotopy equivalent in the sense of Definition

[1.3.2

Note that, for each dimension k£ > 0, the geometric realization of any k-
simplex is homotopy equivalent to a point (contractible).

The second way to describe the (Homotopy) as combinatorial way in sim-
plicial complex is the notion of contiguity classes of simplicial maps using
contiguous maps which are homotopic at the level of geometric realizations,
but this notion is strictly stronger than usual homotopy.

Definition 1.3.7. Suppose p, v : K — L are simplicial maps. Then ¢ and
Y are contiguous, if for every simplex o € K, p(o) U (o) is a simplex in L.
The equivalence classes of the equivalence relation generated by contiguity are
called contiguity classes. If two simplicial maps o, : K — L lie in the same
contiguity class, we will write p ~ 1.

Notice that when we use the idea of contiguity between simplicial complexes
we use this notation ~, and when we think of the usual notation of homotopy
between topological spaces we use this notation ~.
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Lemma 1.3.8. |8/ Let p,¢ : K — L be simplicial maps. Then ¢ and 1
are contiguous if and only if p and ¥ satisfy the contiguity property for every
mazimal simplex of K.

The idea of contiguity respect the composition as follows:

Lemma 1.3.9. If o1, : K — L and py,9s : L — M are simplicial maps
such that @1 ~ U1 and py ~ 1o, then pap1 ~ Ya1)y.

Definition 1.3.10. For a simplicial map ¢ : K — L, if there exists ¢ : L —»
K such that Yo ~ 1 and i ~ 15, we say that ¢ s a strong equivalence.
If there is a strong equivalence from K to L we say K and L are strongly
equivalent denoted by K ~ L. This relation ~ is an equivalence relation.

A complex K 1is strongly contractible if it is strongly equivalent to the single
vertex compler, i.e. if the identity map on K is contiguous to the constant map
sending K to one of its vertices.

Simplicial maps in the same contiguity class have homotopic topological
realization.

Theorem 1.3.11. (3] If ¢,v : K — L are contiguous, then ||, || : |K| —
|L| are homotopic.

Proof. Since both ¢ and v are simplicial maps, then by Proposition both
|p| and |¢| are continuous maps. Let H : |K| x I — |L| such that for any
x € |K]|

H(z,t) = (1 =1)lpl(x) + [¢[(2)
such that H(«,0) = |¢|(a), H(a,1) = |[¢|(a). For prove H is continuous,
follow Barmak [6]|Appendix A.1.2.] or May [30]. O

The converse of this theorem is not true, as the following example shows.
However, there is a partial converse of this theorem adding some conditions to
the complex. So the sense of contiguity is the best analogue of homotopy in
the world of abstract simplicial complexes.

Example 1.3.12. A standard ezamples is the contractible space, Bing’s house
with two rooms (see Example which can be exhibited as realizations as a
2-simplicial complezes that are not strongly equivalent to one vertexr complex.
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There is a functor from the contiguity category of simplicial complex to
the homotopy category of topological spaces which assigns to the complexes
K, L, their realization spaces |K|,|L|. And to the class of simplicial maps [¢]
the homotopy class [||] For more details, see Spanier [42] Corollary 3.5.3.

1.4. Chain Complex and Homology

Homology, is a central concept in algebraic topology and one of the most
important homotopical invariants of spaces. The construction of homology
proceeds in two stages: First one associates to a space a so-called chain complex.
Then the chain complex yields, by algebra, the homology groups. For more
details the reader can follow Munkres [36] [23|, [24] and [26].

Lets we start with a recall of chain complex and chain maps.

Definition 1.4.1. (Chain Complex) A chain complex C, = (C,,d,) is a
sequence of abelian groups {C,, : n € Z} along with homomorphisms

dn : Cn — Cn,1

such that
dnodn+1 - 0777/ c Z

We refer to d,, as a boundary map.
One typically illustrates a chain complex as a sequence with arrows between the
groups i the following manner:

Co + -+ dy Ch dy, C, d, Ch1 dy-
+2 +1 +1 1 1

An interested special case of chain complex will discuss next in Definition
1.4.6

Definition 1.4.2. (Chain map). A chain map between two chain complexes
fo : Co —> D, s a sequence of homomorphisms f, : C,, — D,, such that

fnflodn:dnofn

for all n.
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To define homotopies for chain complexes, we have a completely algebraic
definition for chain homotopies.

Definition 1.4.3. (Chain homotopy). A chain homotopy between chain maps
fosgo : Co —> D, is a sequence of homomorphisms h, : C, — D, such
that

Gn — Jn=dps10hy + hyp_y0d,.

Being chain homotopic is an equivalence relation on the set of chain maps.

For every simplicial complex we want to associate a chain complex, then
we will define the concept of homology. First we need to discuss the order over
a simplex vertices and the notation of orientation:

Definition 1.4.4. (Orientation) [36] |35] If we have an k-simplex of K repre-
sented as op = {vg,v1,...,vx} , we can order the elements of oy in (k + 1)!
different ways, two orderings said to be equivalent, if they differ from one to
another by an even permutation.

If dim(oy) = k > 0 the ordering over oy vertices falls in two equivalence
classes and each class called an orientation of oy. So every k-simplexr has two
orientations. A 0-simplex has only one ordering; its orientation is given by +1.

An oriented simplex is a simplex o together with an orientation of o denoted
by the equivalence class [vg, vy, -+, Ug].
A simplicial compler K is oriented simplicial complex if all its simplices are
oriented.

Technically, to give an orientation to a simplex, first we order its vertices
in all possible ways, then select an ordering class from the two possible clas-
ses. Now we move to the complex K, first take a partial ordering of the set
V' such that the set of vertices of each simplex is totally ordered, so we ob-
tain an ordering class (an orientation) for each simplex and hence K is oriented.

For example, one way to orient a finite simplicial complex is to order natu-
rally its vertices and let this ordering induce an orientation on all the simplices
of K.
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Definition 1.4.5. (Chains). Let K be an oriented simplicial complex. A n-
chain is a formal linear combination of finite number of n-simplices o; € K
with coefficients a; in some ring.

S
We define addition of n-chains:

Zaiai -+ Zblal = Z(al -+ bl)O'Z

7

Since the coefficients form an additive group, this gives us the group of n-chains

C, = Cyh(K).
We are interested in C,, = 0 for all n < —1 and for n = —1 define C_; = Z.

For n > 0, we define the notion of the boundary maps 9, over a simplicial
complexes which is the special case of the notation of the boundary maps d,,.

Definition 1.4.6. (Boundary Operator) Let K be a simplicial complex over
V. Let n and i be two integers such that 0 < i < n < 1. Then the boundary
operator O is the map defined by:

o Cp(K) — Chq(K)

]

817‘1([7)07 -"avn]) = [U07 "'7vi—1a1/}\iavi+1a “‘7'Un]a

where v; indicates that this i—th vertex is deleted from the sequence vy, - -+ , Uy,
so that a (n — 1)-simplex is obtained.
We might then wish to say that the boundary of the simplex (v, vy, -+ ,v,) IS

the sum of its various (n — 1) faces. So we define:

n

0n([vo,vl, s 7Un]) = Z(—l)i[l}o, ...,’l}i_l,l/)\i7’l}i+1, ...,’Un].

=0

Heuristically, the signs are inserted to take orientations into account, so that
all the faces of a stmplex are coherently oriented.
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In this document, we will focus on the simplicial chain compleres Co(K)
over a simplicial complex together with the boundary function 0. Which typi-
cally illustrates by the following sequence.

C.<K) : e an+2 Cn+1 8n+1 . Cn 871 N Cnfl 871,1

An important property of boundary maps is that the boundary of a boun-
dary is always zero (i.e. the composition 0, o 0,41 = 0 for each n) this yields
that the above sequence is a chain complex.

Definition 1.4.7. Let K, L be two simplicial complez, and let Co(K) = (C,, 0p),
Co(L) = (Dy,, 0,) be the corresponding simplicial chain complexes of K, L res-
pectively.

If there exist a simplicial map f : K — L, then we have an induced homo-
morphism f, : C, — D,, by defining it on oriented simplices as follows: For
a simplex [vg, vy, -, Vg

f(o)y-.oy flup)] if f(vo),..., f(vk) are distinct

0 otherwise

fallvo ..o ug]) = {

This map is well defined, the sequence of homomorphisms is called the
chain maps induced by the simplicial map f:

fo: Co(K) — Co(L)

The chain map induced by the composition gof : K — M of two simplicial
maps f: K — L and g : L — M is the composition of the chain maps
induced by these simplicial maps.

Theorem 1.4.8. If f,g : K — L are contiguous then there exist a chain
homotopy between f and g.
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Now, we are ready to define the Homology concept, for a boundary map
Op : Cp(K) — Cp_1(K) we have:

ker 0, = {z € Cy, : O,(2) = 0},
im0, ={beC,_1:FC,:b=0,(2)}

Definition 1.4.9. (Cycles) A n-cycle is a n-chain whose boundary is zero.
The group of n-cycles is

Zn = Zn(K) = ker 0,.

Definition 1.4.10. (Boundaries). A n-boundary is a n-chain that is the
boundary of some (n 4+ 1)—chain. The group of p-boundaries is

By, = Bp(K) 1= im Opy.

The collection of Z,,’s and B,’s together with addition form subgroups of
C,, while the property 9, o 9,41 = 0 shows that B, C Z,, C C,.

Definition 1.4.11. For the simplicial chain compler Co(K) associated to a
simplicial complex K, we define the simplicial homology H,(K) = H,(Ce(K))
in degree n of Co(K) to be the quotient

Zn(Cy) ker d,

H,(K) = = .
n( ) Bn(c.) m dn+1

The n-th Betti number of C,, denoted by B,(C,), is the rank of the n-th
homology group of C.

the n-th Betti number of an complex K measures the number of n holes
of K; to be more concrete, 3y measures the number of connected components,
(51 measures the number of 2-dimension hole, and the Betti numbers (3, with
n > 0, measure higher dimensional connectedness.

Example 1.4.12. The full simplex on a vertezx set V is the simplicial complex
2V of all subsets of V, writing d = |V| — 1.
If K is a full simplex for some d > 0, then H,(K) =0 for alln > 0.
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Theorem 1.4.13. A chain map fo induced by a simplicial maps f : K — L
fo: Co(K) — C(L)
duces a homomorphism:
fo: Hy(Co(K)) — H,(Co(L))
[e] = [f(c)]

Furthermore, if fo and ge are chain homotopic, then f. = g..

This theorem together with Theorem [1.4.§] yield to the following result

Lemma 1.4.14. If f,g : K — L are contiguous simplicial maps, then
fe=9«: Hy(K) — H,(L)
for all n.

Definition 1.4.15. /26/ For K a simplicial complex, define the n-th homology
group of the space |K| to be the n-th homology group of K, i.e.

H,(|K]) = Hy(K).

Theorem 1.4.16. 22/ If K and K’ are two simplicial complezes with ho-
motopy equivalent geometric realizations then their homology groups are iso-
morphic and their Betti numbers are equal.

Theorem 1.4.17. [37] If K1, ..., K, is the set of all connected components of
a compler K, then the homology group H,(K) is isomorphic to the direct sum
H,(K)) & - & H,(K,).

If K is a connected complex, then Hy(K) over Z is isomorphic to Z.

Theorem 1.4.18. If we have the direct sum of two chain compleres Cy =
C, @ CY, then
H,(Cs) = Hn(ci) D Hn<cil)

for every n.



Chapter 2

Comparison between 3 collapse
types

The first attempt to classify the simplicial complexes in an equivalent clas-

ses was made by whitehead in 1938 [47], his a famous strategies was to minimize
and simplify finite simplicial complexes through a sequence of removing simpli-
ces called free faces to reach a minimal complex called the core, this operation
called The Collapse, he assume that simplicial complexes belong to the same
equivalent class if they have an isomorphic cores. But this attempt did not
success since there is many cores of the same complex depending on the steps
of removing the free faces and those cores are not unique up to isomorphisms,
In 2012 Barmak [6] success to apply this idea, he minimize finite simplicial
complexes using strong collapse strategy which we will discuss in Section 2.
In this section, we will consider the relationship of homotopy equivalences in
finite simplicial complexes after collapsing and its realization as topological
spaces.
First we introduce, an important concept here is the notion of simple homo-
topy equivalence due to Whitehead which allows to move from a complex K
to another L through a sequence of complexes, each one generate by removing
and adding free faces to the previous one.

We define strong collapse in Section 2, edge collapse in Section 4, with
provides a brief discussion about homotopical and homological property for

23
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each concept. In Section 3, we create an algorithm to partition the maximal
simplices of a complex into strong collapse subcomplexes. Finally in Section 5,
we create another algorithm to partition the maximal simplices of a complex
into edge collapse subcomplexes, with provide a code for each algorithm in
Python.

2.1. Collapse concepts

The standard references for this section are Whitehead [48], [49] Cohen [14],
and Barmak [7]

Definition 2.1.1. Let K be a simplicial complex, let o and T be simplices of
K, we say a simplex o is a free face of 7 if the following hold:

» 7 is mazimal in K.

» 0 is a proper face of T, (dim(7) = dim(o) + 1).

= 7 1$ the unique simplex of K contains o.

It’s easy to show that the family K\{o,7} is a simplicial complex.

Definition 2.1.2. Related to the previous concept, we have the following defi-
nitions:

= The procedure of removing both simplices T and its free face o from K ca-
lled elementary collapse from K to K\{o, 1}, denoted by K \, K\{o, 7}.

= Adding a free face to the complex called an elementary expansion.

= We say there is a collapse from a simplicial complex K to its sub-complex
L (or an expansion L / K), if there exists a series of elementary
collapses from K to L, denoted as K \, L.

= A complexr K is collapsible if there is a collapse from K to a point.

s Two complexes K and L have the same simple homotopy type (or they
are simple homotopy equivalent) if there is a sequence K = Ky, Ko, ..., K,, =
L such that K; \  K; 11 or K; /" K; 1 for all 1.
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Example 2.1.3. The simplicial compler in Example [1.1.11| can elementary
collapse many times until we reach a point, as we clear in the following reali-
zation.

/

Figura 2.1: Collapse a simplicial complex

Theorem 2.1.4. Let K a finite simplicial complex, and we have an elementary

collapse K\ K\{o,7} = Ky then:

» the underlying geometric realization |Ky| is homotopy equivalent to |K|.
This homotopy equivalence fized the points in K\{o, T}, hence, collapse
18 a strong deformation retract.

» Moreover, If K collapse to L, there is a retraction map |r| : |K| — |L]
which 1s a strong deformation retraction.

Corollary 2.1.5. A collapsible finite simplicial complex is contractible

The converse of the previous corollary is not true, as the following example
shows.

Example 2.1.6. We show that Bing’s house in Example s contractible.
However, Bing house has a realizations as a simplicial complex, denote Kpg
that does not have any free face, hence it can not collapsible to a point.

But we can, through a sequence of expansions and collapses start with the Bing
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house realization Kg and then expansion it to a solid cube which can now
collapse to a point.

So we can say that Bing house is contractible with a not collapsible realization
Kg, but this realization Kpg have the same simply homotopy type to a point.

Whitehead, Barmak and McCord published many results to study the rela-
tions between collapsible simplicial complexes and contractible T finite space,
also they discuses the relation between collapse and homotopy or week homo-

topy

Theorem 2.1.7. If we have an elementary collapse K N\, K' := K \ {0, 7}.
For this mazimal simplex T, we can define a new chain complex Co(K") where

the only none zero groups are Cq(K") generated by 7, and Cyq1(K") generated
by O(1), and all other C,(K") are 0.

In this case, Co(K) splits as
Co(K) =Co(K") & Co(K").

Since Co(K") is a chain complex generated by a simplex have a zero ho-
mology, by applying Theorem [1.4.18| we have the following results

Theorem 2.1.8. [26] For any elementary collapse K \( K' = K\{o, 7}, we
have that H,(K) = H,(K') for all n.

Applying this theorem many times, we obtain the following important re-
sult.

Corollary 2.1.9. /20] If there is a collapse from K to L, then H,(K) = H, (L)
for alln.

Using the previous result, we have:

Corollary 2.1.10. If a complex K is collapsible, then H,(K) =0 for all n.

2.2. Strong Collapse and Homotopy

Deleting and minimise data are an important approach in topological data
analysis. In this section we introduce a famous strategies to minimize and
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simplify the finite simplicial complex through a sequence of deletion points,
keeping the “same homotopy” property for every complex in this sequence as
the original one, this procedure called strong collapse stated in Barmak [6].

Definition 2.2.1. (Link definition) Let o be a simplezx of the simplicial com-
plex K. The link of o in K s the simplicial complex

Lk(o)={re K:71Uoc € K,oNT = ¢}.

If K and L are two disjoint complezxes, the join K x L (or KL) is the complex
whose simplices are those of K, those of L and unions of simplices of K and
L. A simplicial cone is the join aK of a compler K and vertex a called apex,
not in K.

Geometrically, the cone aK can be thought of as increasing the dimension
of each simplex of |K| by joining all points of |K| to a common disjoint point
|a] by line segments.

Lemma 2.2.2. The geometric realisation of a simplicial cone is contractible.
Theorem 2.2.3. If K is a cone with apex a, then H,(K) =0 for every n.

Definition 2.2.4. (9] In a complex K, a vertezx v is said to be dominated by
a vertex w # v, if every mazximal simplex that contains v also contains w.
Other research equivalently, define a dominated vertex v, if the link of v is a
simplicial cone on w, that is Lk(v) = w x L where L is a sub-complex of K.

Recall, that the set spanned by deleting one vertex from a simplicial com-
plex is also a complex.

Definition 2.2.5. [6] Related to the concept of dominated vertices, we have
the following definitions:

» We denote the deletion of the vertex v by K\v, which is the full sub-
complex of K spanned by the vertices different from v.

= An elementary strong collapse is the process of deletion of a dominated
vertex v from K, denote with K \,\, K\v. The converse of this process
called elementary strong expansion.
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» There is a strong collapse from a simplicial complexr K to its sub-complex
L, if there exists a series of elementary strong collapses start from K to
L, denoted as K \,\y\ L or L " " K.

» We say K, L have the same strong homotopy type, if there is a sequence
of strong collapses and strong expansions that starts in K and ends in
L.

w In particular, if L = %, so, K have the same strong homotopy type the
of a point. If there is a sequence of elementary strong collapses from K
to a point, K is called strongly collapsible.

Example 2.2.6. In the following realization, the complex K strong collapse
through the sequence of subcompleres Ky, Ky and K3 = %, every step the
vertex w dominated by v, we color link(w) by green which is a cone in each
subcomplex. So K is strong collapsible.

w

w w

v v v
K Kl K2

Figura 2.2: Strong collapse a simplicial complex

Remark 2.2.7. The usual notion of collapse is weaker than the notion of
strong collapse, If K is a strong collapse to K \ v, then Ink(v) is collapsible,
and K collapse to K \ v.

The following example shows that the converse is not correct

Example 2.2.8. The simplicial complex realized in Example |1.1.11] dose not
have any dominated vertices, so it is a core. however, as we shown that K 1s
collapsible as well as contractible.
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It is not hard to see that isomorphic complexes have the same strong ho-
motopy type.

Recall from Definition [I.3.10, that K ~ L, means that K and L are strongly
equivalent.

Theorem 2.2.9. If we have a dominated vertex v in a complexr K, then K ~
K \wv. In particular, if K, L have the same strong homotopy type, then K ~ L,
Hence their geometric realization | K|, |L| are homotopy equivalent.

Applying this theorem, together with Theorem [1.4.16] we have the following
result

Corollary 2.2.10. If K and L have the same strong homotopy type, then their
homology groups are isomorphic and their Betti numbers are equal, so for all
n

Hn(K) = Hn(L)
In particular, if K is collapsible, then H, (L) = 0 for all n.

Definition 2.2.11. Let K be a simplicial complex. The core of K is the sub-
complex Ko C K such that, K "\, Ky, tn addition that Ky has no dominated
vertices.

This definition is justified by the following theorem for finite cases which
have been studied by Barmak [6].

Theorem 2.2.12. [6] Every finite simplicial complex has a core and it is
unique up to isomorphism. Two complexes have the same strong homotopy
type if and only if they have isomorphic cores.

The previous theorem guarantees that the order in which elementary strong
collapses are performed is irrelevant since each sequence of such moves must
yield the same core. So finally we have the following corollary follows Theorem
2.2.0

Corollary 2.2.13. Finite simplicial complexes K, L are strongly equivalent if
and only if they have the same strong homotopy type.
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In particular, a complex K is strongly collapsible to a vertex if and only if
it is strongly equivalent to a vertex. Hence |K| is strong deformation retracts
to the one-point space (contractible).

Conclusion: The notion of equivalence according to contiguous maps (strong
equivalence) is the same as that of equivalence according to strong collapses
(strong homotopy type). Since the two notions are the same, they have the
same effect when we applying the realization functor to the topological spaces.
So if there is a strong collapse/strong equivalence from K to a subcomplex L,
then there is homotopy equivalence between |K| and |L| (by Theorem [1.3.11)).
However, in fact this homotopy equivalence is a strong deformation retraction.
In the category of spaces, the terminology of (collapsiblility) over simplicial
complexes also agrees with (contractibility) over topological spaces.

2.3. Strong collapse Algorithm

In this sections, we will state an algorithms to partition the maximal simpli-
ces which covers finite simplicial complex into strong collapsible sub-complexes.
The idea of constructing this algorithm is to determined if the expansion is
possible or not, so we start with a special vertex v to be the first complex
Ko = {v}, and extend K through the maximal sets contains v, then we begin
to perform strong elementary expansions to add more simplices.

This can undone by performing elementary strong collapses in the reverse or-
der.

So, after a one full iteration for each such vertex v, we construct a sub-complex
U, which is strong collapsible.

Also with this algorithm, we can determine an upper bound for the following
number which defined in [17].

Definition 2.3.1. The simplicial geometric category gscat(K) of the simpli-
cial complex K is the least integer m > 0 such that K can be covered by m + 1
strongly collapsible sub-complexes. That s, there exists a cover Uy, --- ,U,, C
K of K such that, for all i € {0,--- ,m}, U; have the same strong homotopy
type of a vertex (i.e. U; ~ ).
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For instance, K is strong collapsible if and only if gscat(K) = 0.
We need to state the following definition to construct the algorithm.

Definition 2.3.2. Let K = (V,S) be a simplicial complex, and let Max(K)
be the set of all maximals simplices in K. We call v € V' a famous vertex to
be one of the most frequency vertices through the maximals simplices.

We mean by totally color that we color the simplex and all it’s faces with
the same color.
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Algorithm 1: Strong collapse algorithm.

Data: A non empty simplicial complex K = (V(K), S(K)).
1 U = ¢ and color red all simplices in K.

2 while K! = ¢ do
3 Set Max be the set of all current red maximal simplices.
4 Initialize ¢ = 0.
5 Set Uz = gb
6 Set W = {v : v is a famous vertex over Max}.
7 Pick a random vertex v € W, then totally color green all maximal
set containing v.
/* Next, we will search for more dominated vertices */
8 M, = {o € K : for some vertex w € 0,0 — w is color green, and w
color red}.
9 while M,! = ¢ do
10 Pick o € M,,.
11 Color green o and w.
12 M, = M, /x Redefine M, as Line 8, and repeat the While
loop. */
13 end
14 U; = {all currently green simplices}.
15 Color yellow all simplices in U; and turn off green.
16 | U=UU{U;}.
17 S(K) = S(K) - S(UZ) /* the rest of red simplices */

18 K spanned by the new set of simplices S(K).
19 t=1+ 1.
20 end
Result: U cover K.
Each U; € U is strongly collapsible sub-complex.
Partition the maximal simplices Max(K) covers K by the sets
UiN Max(K).
21 Print(U )
22 Print( gscat(K) < i)

We develop a code in Python program for this algorithm, see Listing 2.1

at the end of this section.
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Example 2.3.3. Firstly we totally color red the simplicial complex K shows
in the left figure. We have three famous vertices {v4, vs, v}, we pick vg, next
we totally color green all mazimals contains v (middle figure.)

Now through the simplex vivavs, the vertex vy is red and the edge vyvs is green,

s0 v1v4v5 € M,,, so we can extend greenness to this simplex as we shown in
the right figure.

K color red vy dominated

\/

Ve Ve \ Vg \
V3 V2 U3

vg & famous vetex by vy or vs

U1 U1

V2 U3 V2

Figura 2.3: Strong collapse algorithm, part 1.
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(%1 U1 U1

U4 Us
(O} (%

Ve

V2 U3 %) U3 Uy U3

cover — set : Uy cover — set : Uy

current — K

Figura 2.4: Strong collapse algorithm, part 2.

Now we do not have more red vertices, so we redefine M,, which is emptly
now, and we terminates the iteration of Uy which represented in left figure.
We redefine S(K) and redefine K to be the complex spanned by the current red
triangles viv9vy, V1U5v3, which shows in the middle figure .

We repeat again with the famous vertex vy to generate the cover set Uy shown
in the right figure.

This example is a famous example showing that the complex is collapsible
but not strong collapsible so gscat(K) > 0. Using the algorithm we have that
i =1, so gscat <1, hence gscat(K) = 1.

Example 2.3.4. We apply the previous example with Python, where the pro-
gram pick up vy as the first famous vertex instead of vg, and we also have
gscat(K) =1, see Listing 2.2.

Proposition 2.3.5. The algorithm gives us the results as we expected.
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Proof. First we will proof that (JU = K, let 0 € K, the algorithm terminate
only if all simplex change its color from red, so there exist U € U such that
o € U, done.

Now, we want to show that every U; € U are strong collapsible to a point.

In Line 7, any vertex v’ belong to those maximals is dominated by the vertex
v, since any maximal contains v is also contain v (all current green simplices
is actually represent a cone with apex v).

Going into Line 9. If M, = ¢ , we end the first iteration and we are done with
a strong collapsible subcomplex Uj.

Otherwise, we strong expansion U, with some red vertex w and a red simplex
o, the green proper face ¢ — w is currently equal to Lk(w).

And since 0 —w is a simplex in Uy so it is represented a cone where some apex
w' € 0 —w. So Lk(w) = 0 —w is a cone, so w dominated by the apex vertex
w’. We create an elementary strongly expansion and we add the simplex o to
U().

We repeat this strong expansion process until M, = ¢, and here we finish the
first iteration to construct U,, which is strong collapse to v when we reverse
the expansion steps. And so on, for all U;’s.

When we repeat a gain the While loop in Line 2, it dose not matter if the
new famous vertex is red or yellow (mention on the previous step), i.e. the
vertex v can color green several times but every maximal color green only once
time (Line 17), and this help us to partition the set of maximal simplices, This
will help to reduce the number of set in U to predict better gscat(K). ]
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Algorithm |1

L %"Select a famous vertex"

> def

famousPoint (bases) :
v_1st=1[]
for group in bases:
for v in group:
v_1lst.append(v)
v_1st.sort ()
#print (v_1st)
if len(v_1lst)==0:
return None
wc = Counter(v_1lst)
s max (wc.values ())
i list(wc.values ()).index(s)
print ('To find the currently famouse point:', wc)
return (list(wc.items ())[i][0])

cover (M) :
K= list (M)
Gset=1list ()
GPoints=1ist ()
1=0
while K!=[]:
Gset=1list ()
print ("The current maximals are:",bK)
F=famousPoint (K)
print ('The famouse point number',i,'is:',F)
if F !'= None:
#for item in points:
for item in K.copy():
if K'!=set ():
if F in item:
Gset .append(tuple(item))
K.remove (item)
for greenPoint in tuple(item)
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if not greenPoint in
GPoints:
GPoints .append(
greenPoint)
K=1list (set (K)-set (Gset))
print ("The new K is " ,K)
print ("Check for signle red point not in
Green Points: ",GPoints)
for item in K.copy():
if Kl=set():
redItemReallength=0
redItemTargetlLength=0
for x in item:
redItemTargetLength=1len(item)

-1
for g in GPoints:
if (x in g):
redItemReallLength=
redItemReallLength+1
#print (x)
redItemReallLength=
redItemReallength+1
if redItemReallength==
redItemTargetLength:
redItemReallength=0
Gset .append (tuple(item))
for greenPoint in tuple(item)
if not greenPoint in
GPoints:

GPoints.append(
greenPoint)
if item in K:
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K.remove (item)
#0ld set:
print ('Currently base set after expansion ','
is:',K)

print ('The cover set number', i, 'related to
the vertex',

F,'is:' ,Gset) #new set

i=i+1

print ()

print('*.* So the cover contains of',i,'sets and
the upper bound

of the category 'gscat" = ', i-1)

return

Listing 2.1: Algorithm 1. Strong collapse algorithm.
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Code for Example [2.3.3
. maximal_simplices = ['624','236"','653"',"'456"',"'421"' "'

145','135"']

> cover (maximal_simplices)

3 "RESULT : "

+ The Current maximals are: ['624', '236', '653', '456'
, '421', *145', '135']

5 To find the currently famouse point: Counter ({'4': 4,

'5': 4, '6': 4, '1': 3, '2': 3, '3': 3})
¢ The famouse point number 0 is: 4

+ The new K is ['653', '236', '135']

s Check for signle red point not in Green Points:

9 I:I6I I2I I4I I5I |1|:|

0w Currently base set after expansion is: K=['236', '135
']

11 The cover set number 0O related to the vertex 4 is:

12 I:(I6I l2| I4l) (l4| I5| I6l) (I4| I2! |1l)

1“))(I:I-I I4I I5I) (I6I I5I I3|):|

14

5 The maximals are: ['236', '135']

v To find the currently famouse point: Counter ({'3': 2,
"1 1,

7 '2': 1, '5': 1, '6': 1})

s The famouse point number 1 is: 3

v The new K is []

20 Check for signle red point not in Green Points:

oo ['6', t2', "4, '5', '1', '3']

»» Currently base set after expansion is: []

23 The cover set number 1 related to the vertex 3 is:
20 [Cr20, '3, '6'), ('1', '3', '5"')]

26 ¥, % S0 the cover contains of 2 sets and

27 the upper bound of the category '"gscat" = 1

Listing 2.2: Example: Partition the maximal set of simplicial complex
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2.4. FEdge Contraction

Removing edges or edge contractions usually used in computer graphics to
simplify surfaces (which mean a 2-complex). During this processes the complex
loses its non-trivial topological properties. So a local condition added to keep
preserving the topological type during contract edges from the space, this mean
that there is a homeomorphism connected between the underling space and the
original space.

Definition 2.4.1. [10] Let K = (V,5) be a simplicial complexe, we say that
we contract the edge ab € K if the vertex b is removed from the complex and
the link of the vertex a is augmented with the link of the vertex b.

Formally, we define the map f on the set of vertices V which maps b to a and
acts as the identity function for all other vertices:

f(x):{a r=>

x  otherwise

We then extend f to all simplices o = {uvg,...,ux} of K, setting f(o) =

{f(UO)7 B f(vk)}

The edge contraction ab — a is the operation that changes K to K' =
(V —5,5") where " ={f(0) : 0 € K}.

By construction, f is surjective and K’ is a simplicial complex. Note that
the edge contraction is well defined even when the edge ab does not belong to
K.

An edge contraction does not always preserve the homotopy type, but if
the link condition is verified, then it is a sufficient condition of preservation of
the homotopy type.

Theorem 2.4.2. |4/ (LINK CONDITION THEOREM). Let K be a simplicial
complex. The contraction of the edge ab € K preserves the homotopy type
whenever Lk(ab) = Lk(a) N Lk(b).
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Definition 2.4.3. If the edge contraction verify the link condition we call this
operation by edge collapse. A simplical compler K is edge collapsible if there
1s a series of edge collapses start from K and end to a point.

In [11] shows that if we have flag [clique] complex (which its simplices are
define as a complete subgraph) then removing a dominated vertex does not
affect the [flagness property| of the residual complex K’, but unfortunately
removing an edge by contraction affect the flagness as we show in the next
example.

We should rewrite the link condition, and suppose that Lk(ab) # ¢ to be
suitable with some type of simplicial complexes as flag complex.

Example 2.4.4. Assume the clique compler K = {a, b, ¢,d, ab,bc, cd, da} which
is not contractible complezx. Lk(a) = {b,d}, Lk(b) = {a,c} and

Lk(ab) = ¢ = Lk(a) N Lk(b).

But if we contract the edge ab we will get the triangle K' = {a, ¢, d, ac, cd, da}
which is not clique complex. We should add the simplex {abc} to the residual
complex K' to keep the "flagness”, but this addition generate a contractible
complez, so adding this triangle will not preserve the homotopy type.

Example 2.4.5. We can not edge collapse the Bing house (Figure , there
18 no edges satisfy the link condition.

In the following example, we can elementary collapse an edge ab, but it is
not necessary that we can also edge collapse ab.

Example 2.4.6. We have the free face (abd, ab) so we can elementary collapse
the edge ab. But ¢ € LK(a) N LK(b) and ¢ ¢ LK(ab), so we can not edge
collapse ab.
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Figura 2.5: Collapse but not edge collapse.

Now we will state the following theorem which discuss the relation between
strong collapse a vertex and edge collapse.

Theorem 2.4.7. If we have a dominated vertices in a simplicial complex then,
we can make an edge collapse.

Proof. Suppose we have a simplicial complex K, and a vertex b dominated
by a vertex a. First we will show that Lk(a) N Lk(b) C Lk(ab), so let o €
Lk(a) N LEk(D), that’s mean aUo € K, bUo € K and a,b ¢ 0. Let ¢’ be the
maximal set containing b U o, by dominated property a also belongs to ¢’. So
we have that a Ub U o € ¢’. Hence the face a U b U o belongs to the complex
K with abno = ¢. So o € Lk(ab).

Finally take o € Lk(ab), so abU o € K and the edge abN o = ¢ and then
we have that the face a U o belongs to K and so on ¢ € Lk(a), with a ¢ o.
Similarly for o € Lk(b). So Lk(ab) C Lk(a) N Lk(b) and the link condition is
satisfied , we can edge collapse the edge ab. O]

The converse of this theorem is not true in general we will give a counter
example showing this.

Example 2.4.8. As shown in the graph below, we have a simplicial complex
generates by the mazimal sets {{abd}, {bcd},{ae}}, with Lk(a) generates by
{bd, e}, Lk(b) generates by {ad, cd} and Lk(ab) = {d} = Lk(a) N Lk(b), so we
can edge collapse the edge ab.

But we have the mazimal simplex {ae} contains a but not b, and the triangle
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{bdc} which is a mazimal simplex containing b but not a, so neither a nor b
dominated by the other.

Figura 2.6: Edge collapse but not strong collapse.

Later, in Example [3.2.2] we also will show that using the edge collapse
process we can reduce the complex with keeping its homotopy type more than
reducing it by the strong collapse process.

The following notation represent a consequence of elementary strong co-
llapse and edge contraction, as follows:

Definition 2.4.9. [12] Let K = (V,S) be a simplicial complex, with some
vertex v € V' and some k—simplex o € S where k = dim(o).

We say o is dominated by the vertex v, if the link of o is a cone in K, (i.e
Lk(o) = v« L, for some sub-complex L).

Equivalently, every mazimal simplices of K that contain o also contain v.

If K’ be the complex generate by removing the dominated k-simplex o from
K, indeed the simplices which contains o also removing from K.

Definition 2.4.10. v [f o is a simplex in K, denote Stp(o) to be the co-
llection of simplices of K contain o as a face.

= The action of removing a dominated k-simplex o is called an elementary
k-collapse from K to K\ Sti(o).
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w A simplicial complex is k-collapsible if it k-collapses to a point.
» A simplicial complex is non-evasive if it is k-collapsible for some k > 0.
w [f the complex is not non-evasive, it will be called evasive.
By definitions, a 0-collapse is actually an elementary strong collapse.
Lemma 2.4.11. Any elementary collapse of a k-simplex o is a k-collapse.

Proof. 1f we have an elementary collapse for a free face {0, 7} in K, by defini-
tion o is a proper face of 7 and 7 is the only maximal contains o, so there exist
a vertex v € V where 7 = v U 0. By the previous definition, o is dominate by
the vertex v. O

Conversely, any k—collapse can be decomposed into a sequence of elemen-
tary collapses, as we will show next:

Theorem 2.4.12. (18] Let K be a simplicial complex and let o be a simplex of

K. If 0 is a dominated simplex, then there is a sequence of elementary collapses
from K to K\ Stk(o)

Hence, by Theorem the there is strong deformation retraction between
|K| and |K \ Stk (o)|.
So a non-evasive complex is collapsible.

Lemma 2.4.13. A I-collapse is edge collapse.

The proof of this lemma similar to the proof in Theorem [2.4.7] The converse
is not true. For example, in the complex spanned by {abe, abd}, we can edge
collapse ab since Lk(ab) = {c,d} = Lk(a) N Lk(b).

But we can not 1-collapse the simplex ab, since Lk(ab) is not a cone.
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2.5. Edge collapse Algorithm

Algorithm 2: Edge collapse algorithm [Functions part.|

Data: A non empty simplicial complex
1 Function StrongCollapse(RedMax, GrnSim):

2 GrV = {all green vertices belongs to green simplices}
3 for (v in GrnV ) {
4 Cone, = {0 : 6 red maximal simplex contains v }
5 for ( Cone,! =¢ ) {
6 Pick 6 € Cone,
7 if 0 contains unique green face which is v then
8 Color totally green ¢
9 GrnSim = GrnSim U Cone,
10 RedMax = RedMax — Cone, /* if cone, is a maximal
*/
11 else
12 Cone, = { 0(0) : 0 in Cone,}/* all boundary for all
simplices in Cone, */
13 = all proper faces for every 6 € Cone,
14 end
15 }
16 }

17 return RedMazx, GrnSim
18

Function EdgeCollapse(RedMax, GrnSim):

19 for ( § in RedMazx ) {

20 RdEdg = {ab: ab a red edge in 4},

21 while RdFEdg! = ¢ do

22 Pick one edge ab from RdFEdg

23 if ab is not a mazrimal. And all: a, b, d —a, 6 — b are green
24 then

25 Color 9 totally green

26 RedMax = RedMax — 0

27 GrnSim = GrnSim + 6 break While
28 else

29 ‘ RdEdg = RdEdg — ab

30 end

31 end

32 }

33 return RedMax, GrnSim
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Algorithm 3: Edge collapse algorithm [Main algorithm].

33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50

51
52

53
54

Data: A non empty simplicial complex K = (V(K), S(K)).
Set U = ¢. // The cover set

Color red all the simplices in K;

Initial z = 0.;

for (K!=9¢) {

Let RedMax be the set of all current red maximal simplices in K;
Ui = ¢;
FamV = {v : v is a famous vertex over the current set RedMax};
Pick a random vertex v € FamV’;
Color v blue.;
Color green all maximal set containing v with all their faces.;
Set U, = {current green simplices};
Set GrnSim = { all the current green simplices with all their
faces} /* all green compinations */
Function StrongCollapse(RMax, GrnSim) ;
Function EdgeCollapse(RMax, GrnSim)
Add all new green simplex to U;;
Color every simplex in U; black and turn off green;
U=UUU;;
S(K) = S(K) — S(Ui). /* the rest of red simplices
RMax = RMazx — U; */
K spanned by the new set of simplices S(K).;
1 =14 1;
/* Go to line 36 */

Result: U cover K and partition the maximal simplexes, such that

each U; € U is an edge collapsible sub-complex.

Print(U );
Print( Ecat(K) <)




48 CHAPTER 2. COMPARISON BETWEEN 3 COLLAPSE TYPES

In this section, first we will state Fcat definition related to edge collapse
concept, on the way of gscat definition. Then we will create an algorithm to
determine an upper bound to Fcat by partition the maximals simplices of the
complex to generate edge collapsible subcomplexes.

Through this algorithm, we provide another strategy to determine domina-
ted vertices, differ than the previous strategy of Strong collapse algorithm in
Section 3.

Definition 2.5.1. Let K be a simplicial complex. The simplicial edge category
Ecat(K) is the least integer m > 0 such that K can be covered by m + 1 edge
collapsible subcomplexes.

For instance, K is edge collapsible if and only if Ecat(K) = 0.
This algorithm coded using Python program, as we will show at the end of
this section.

In the algorithm, we denote ¢ = || — 1, which represent an upper bound
of the of the category Ecat(K).
Next we will state the following example to explain the algorithm steps and
introduce its proof.

Example 2.5.2. Suppose we have the simplicial complex represented in the
following figure, first of all we color red all simplices as shown.
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P1o

Figura 2.7: Edge collapse algorithm, part 1.

We have here a unique famous vertices which is v, color it blue. Next we
will add more simplices and vertices whose can strong or edge collapse to this
point v. This will be the first edge collapsible cover set, denote U,.
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b3

y2 Ds
DPe
P1o

D2

b1 a P11

DP9

Figura 2.8: Edge collapse algorithm, part 2.

In figure 2.8, we color green all maximal simplices contains v, add all those
sitmplices to the cover set U,.
Nezxt, the idea is to extend this U,, by making elementary strong expansion (the
converse of strong collapse).
This will happen through the currently green points {po, p1, P2, P3, s} by adding
all red cones which have a unique green face which is one of these vertices, tho-
se vertices will represent the apex for the cones, For example:
For the point pg it can be an apex for the red triangle {po, ps, b}, but we cannot
extend through the triangle {po, p1,b} since it is include another green face the
edge {po,p1}-
Simillarly, we extend U, through the green vertez py by adding the cone {p1, py, a}.
And through ps to the cone {ps, p10}-
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P1o

Figura 2.9: Edge collapse algorithm, part 3.

After determine all such cones, now color green all those cones and add
them to U,, so we have the Figure2.9.
Note the red cons should be red (all its faces are red expect the green apex), so
we will be sure that this adding satisfies the strong collapse condition and we
avoid having holes.

Now we will repeat this step (Line 3) over the new green points to extend
U, by strong expansions as the following Figure 2.10 shows. where we extend
through the red cone {b, ps, pr} with a green apex b.
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b3

y2 Ds
Ps

P1o
v @ p7

D2
b1 a b1

DP9

Figura 2.10: Edge collapse algorithm, part 4.

After color green the triangle, {b, ps, p7}, we repeat Line 3, to extend U, by
strong expansion the green point p; to the cone {p7,p11}-
Now we can not extend any more the subcomplex U, ( the green simplices in
Figure 2.10) by strong expansions process, so we will move to EdgeCollapse
function. Here we will extend U, by edge expansions, as follows:
We pick a red edge ab contains in a red mazimal 6 such that a, b, 6 —a, 0 — b
all are green, those conditions agrees with the Link condition. The red edge bp,
together with the red simplex bpop1 are the only simplices satisfies the condi-
tions, we color both green. And we have the Figure 2.11.

Here we finish the first iteration related to the first famous vertex, we color
black all greens simplices and we perform the first cover set Uy € U.
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b3
y2 Ds
Ps

P1o

v @ p7
Po b

D2
b1 a b1

P9
Figura 2.11: Edge collapse algorithm, part 5.

Following the conditions in EdgeCollapse, we can not extend through the red
edge ab nor the edge apy this avoids us to include the hole in the first cover set
U;, we explain this as follows:

During elementary edge collapse we contract only one edge each time, So ad-
ding the triangle abp; [where we will add two red edge] is not an elementary
edge expansion.

Also in the currently green complex in Figure 2.11, if we want to add the edge
ab with the triangle abps.

Ink(a) spanned by {pipy, bpz}, and Lk(b) spanned by {pop1, pops, P71, a7},
the intersection Lk(a) N Lk(b) = {p1,p7} but py ¢ Lk(ab).

We repeat again the iteration on the currently red complex to perform U,
which 1s the triangle abp;. next we terminate the algorithm since no more red
simplices exist.

Note that from the algorithm Ecat(K) < 1. And we can not edge collapse
any of ab, apy,bp; and we have a hole so Ecat(K) # 0, so Fcat(K) = 1.
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We compute the cover set of this example using the code in Python program as
following:

### input #H###

[(['v', 'pO', 'p1'1l, ['v', 'pi', 'p2'1, ['v', 'p2', '
p3'l, ['v', 'p3', 'p4'l, ['v', 'p4', 'p0'l, ['p0',
‘pt', 'b'l, ['p0', 'p&s', 'b'], ['b', 'p6', 'p7']l, [
'b', 'p7', 'a'l, ['p2', 'pto', 'p3']l, ['pl', 'p9',
‘a'l, ['p7', 'pi1']]

### cover set number 1: ###

{'famous': 'v',

'set': [['v', 'pO', 'pl'],
'v', 'pl', 'p2'],

v', 'p2', 'p3'],

', 'p3', 'p4'l],

', 'p4d', 'p0'],

0', 'p5', 'b'l,

1', 'p9', 'a'l,

', 'p6', 'p7'],

['p7', 'pll'],

['p2', 'pl0'],

['pO', 'pl', 'b'],

['p2', 'pl0', 'p3']11}

r ### cover set number 2: ###
s {'famous': 'b', 'set': [['b', 'p7', 'a'll}

The maximals can partition into [2] edge-collapsible
sets

1 gscat <= 1:

Listing 2.3: Edge collapse Algorithm. Example 1

Proposition 2.5.3. The algorithm gives us the results as we expected.

Proof. First we will proof that | JU = K, let 0 € K, the algorithm terminate
only if all simplex change its color from red to black so there exist U € U such
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that o € U, done.
Now by induction we want to show that every U € U is edge collapsible to a
point.

We start from the famous blue vertex v, let {o7, 09, -+ ,0,.} be all maximal
simplices containing v. For any vertex w in these ¢’s, all maximal contain w
also contain v, So w dominated by v. And by Theorem we can collapse
the edge vw. So all the subcomplex generated by {oy,09,---0,} can edge co-
llapsible to the blue point.

Similarly, in the Function StrongCollapse, we add cones to the currently com-
plex, the apex of these cones is a green point so any red point belongs to these
new cones is dominated by this green vertex (apex), so this process represents
strong expansions, and hence edge expansions (The reverse of edge collapse).

We repeat this For loop -searching for cones could be edge collapsed - until
we add all possible cones, we start with cones of the highest dimension (maxi-
mals), and then we check all cones with the lower dimensions (proper faces of
the previous cones) as shown in Line 11.

Secondly, In Function EdgeCollapse, we construct edge expansions as follows:

We want to proof that the Link condition is satisfied through this Function, let
K’ be the current simplicial complex ( the green simplices), pick a red edge ab
belongs to a red maximal o, which satisfies that that {a,b,0 —a,0 — b} € K’
(they are green).

Claim, the edge ab satisfies the link condition

Lk(a) N Lk(b) = Lk(ab)

Remember K’ is strong\ edge collapsible to the point v. Then we can strong\
edge expand v to a sub-complex K” of K’ where K" = {a,b,0 — a,0 — b}.
Then we add the red simplices o and ab to K”. So, we have Lk(a) N Lk(b) =
{0 —{a,b}} = Lk(ab). Hence, ab satisfies the link condition.

K'~\\ {v} "M K"={a,b,0c —a,0c —b} /" {o}

Repeat this step to add all possible edges whose satisfies the link condition.
In this Function, we add the condition that ab is not maximal to avoid having
the complex K" = {a,b} which is not connected and not collapsible, we also
avoid the case Lk(a) N Lk(b) = 0.

m
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Example 2.5.4. Here, we will apply the algorithm for the Example |1.1.11)
Recall this complex is not strong collapsible.

L #EH Tnput #EHEE
2[['6', 151’ /1/]’ [15/’ /3/’ /1/]’ [131’ /2/’ /11],

[121’ '6', /1/], [141’ /3/) /2/]’ [141) '6', /2/]’
[151’ 141, /6/]]

s ### cover set number 1: ###

16

s {'famous': '6',

'set’: [['6', '5', '1'],
['2', '6', '1'],
foao, 565, 93°J,
['s', '"4', '6'J],
['4', '3'1,
['4', '3', '2']]}

s ### cover set number 2: ###

{’fa,mous’: 13/’ 'set ': [[/51, 131’ 11/], [/3/’ /2/’ !
111}

s ### The mazimals can partition into [2] edge-

collapsible sets ###
### gscat <= 1: ###

Listing 2.4: Edge collapse Algorithm. Example 2

Remark 2.5.5. We state two different algorithm to predict the strong ez-
pansion, In Strong collapse algorithm each time we add one red vertex which
dominated with v. In Edge collapse algorithm (the StrongCollapse function) we
strat with a green vertex v, then add many red vertices in one step such that
all this vertices belongs to a cone with apex v, and so dominated by v.

Since the complex induced by the family of maximal simplices, it follows
that it will take at most the number of maximals iterations of the algorithms
to find our cover and terminate.

Future work, state an algorithm for collapsible cover "free face".
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Partition the maximal set of simplicial complex into edge collapsible sub-
complexes Algorithm 2.
This code developed by IslamTaha-0X |[1]

> from collections import Counter
s from itertools import combinations
+ from pprint import pprint

%"Select a famous vertex"

 def get_famous_point (data):

8 list_of_points = [point for inner_list in data
for point in inner_list]

9 return Counter (list_of_points).most_common ()

(0] [0]

2 %"To get all maximal simplices contains the famous

vertex"

1w def get_green_list_of_lists(point, data):

14 green_list_of_lists = [inner_list for inner_list
in data if point in inner_list]

15 return green_list_of_lists

%"The set of all currently green points"
o def convert_green_list_of_lists_to_set(
green_list_of_lists):
20 set_of_green_points = list(set([point for
inner_list in green_list_of_lists for point in
inner_list]))
return set_of_green_points

00

21 %"Search for green points"
»; def check_unique_green(set_of_green_points,
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red_list_of_lists_with_green):
green_unique_list_of_lists = []

for inner_list in red_list_of_lists_with_green:

counter = 0

if len(inner_list) == 1:
if inner_list[0] not in
set_of_green_points:
counter = 1
elsel:
for point in set_of_green_points:
if point in inner_list:
counter += 1

if counter == 1:
green_unique_list_of_lists.append(

inner_list)

return green_unique_list_of_lists

- % "To redefine the green sets and red sets"
; def update_lists(green_unique_list_of_lists,

green_list_of_lists, red_list_of_lists):
for _list in green_unique_list_of_lists:
green_list_of_lists.append(_list)
red_list_of_lists.remove(_list)

for inner_list in list(red_list_of_lists):
if not has_red_point(inner_list,
green_list_of_lists):

red_list_of_lists.remove(inner_list)

return green_list_of_lists, red_list_of_lists
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s« %"To check if there is a red point belongs to a

def

spesific simplex"

has_red_point (check_list, g_list_of_lists):
for point in check_list:
if point not 1in

convert_green_list_of_lists_to_set(g_list_of_lists)

return True
else:
return False

%"To get all faces in a specific simplex"

def

def

get_all_combinations(list_of_lists):
tmp = []
for r_list in list_of_lists:
if len(r_list):

_tmp = [list(combination) for combination
in combinations(r_list, len(r_list) -1)]

if _tmp not in tmp:

tmp.extend (_tmp)

return tmp

remove_duplicate (list_of_lists):
tmp = []
for _list in list_of_lists:
if _list not in tmp:
tmp.append(_list)
return tmp
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«o def logic(point, green, red):

90 if green:

o1 set_of_unique_points =
convert_green_list_of_lists_to_set (green)

02 else:

03 set_of_unique_points = [point]

94

95 red_with_green_points = get_green_list_of_lists(
point, red)

96 g_unique_list_of_lists = check_unique_green/(

set_of_unique_points, red_with_green_points)

o7 if len(g_unique_list_of_lists):

o8 update_lists(g_unique_list_of_lists, green,
red)

10 HERBHAFAAHARBRBHAHAHHHRY

02 %"Here we start the main code using the previous
functions ,"

s h"where we will determine the famous point with its
simplices ,"

1 %"then we operate the strong expansion"

s print ('### input #### ')

s print (inputs)

wr results = []

108

00 while True:

110 g_list_of_lists = []

11 r_list_of_lists = list(inputs)

11

113 # init

114 famous_point = get_famous_point (inputs)

115 logic (famous_point, g_list_of_lists,
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r_list_of_lists)

117 while r_list_of_lists:

118 has_been_checked = []

119 while sorted(has_been_checked) != sorted(
convert_green_list_of_lists_to_set(g_list_of_lists)
)

120 # while r_list_of_lists:

121 check_1list =
convert_green_list_of_lists_to_set(g_list_of_lists)

122 for _point in check_list:

123 if _point not in has_been_checked:
124 logic(_point, g_list_of_lists,
r_list_of_lists)

125 has_been_checked.append (_point)

12¢

127 tmp = []

128 for r_list in r_list_of_lists:

129 if len(r_list):

130 tmp.extend([list (combination) for
combination in combinations(r_1list, len(r_list) -
11

13 r_list_of_lists = tmp

134 r_list_of_lists = [inner_list for inner_list in
inputs if inner_list not in g_list_of_lists]
135 # print(r_list_of_lists)

137 no_way_to_move_to_g = []
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143
e f"Here is the second part of the main code where we
operate all possible edge expansions"

145

146 while r_list_of_lists:

147 _g_compinations = get_all_combinations(
g_list_of_lists)

148 _tmp = g_list_of_lists + _g_compinations

149 g_list_of_lists_compinations =

remove_duplicate (_tmp)

151 for r_list in list(r_list_of_lists):
152 if len(r_list) <= 2:

153 no_way_to_move_to_g.append(r_list)

154 r_list_of_lists.remove(r_list)

155 break

156 g_points =
convert_green_list_of_lists_to_set(g_list_of_lists)

157 exiting_g_points = []

158 for g_point in g_points:

159 if g_point in r_list:

160 exiting_g_points.append(g_point)

162 if len(exiting_g_points) < 2: # this
r_list doesnt have two g points

163 no_way_to_move_to_g.append(r_list)

164 r_list_of_lists.remove(r_list)

1€

166 else:

167 for g_vector in [list(combination)
for combination in combinations(exiting_g_points,
2)]:

168 if g_vector in inputs:
169 no_way_to_move_to_g.append/(
r_list)
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point in r_list if point != g_vector [0]]

point in r_list if point != g_vector[1]]

63

r_list_of_lists.remove(r_list

break
else:

tmp_r_list_0 = [point for

tmp_r_list_1 = [point for

if (tmp_r_list_0 in
g_list_of_lists_compinations) and (tmp_r_list_1 in
g_list_of_lists_compinations):

g_list_of_lists.append(

r_list)

r_list_of_lists.remove (

r_list)

for

break

else: # no vector can solve it
no_way_to_move_to_g.append(r_list

r_list_of_lists.remove(r_list)

results.append (
{"set": g_list_of_lists,
"famous": famous_point}

inputs = list(no_way_to_move_to_g
if len(no_way_to_move_to_g) == O:
break

index in range (0, len(results)):

print (f"### cover set number {index+1}:

pprint (results [index])

#H## ")
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s print (f"### The maximals can partition into [{index
+1}]

100 edge-collapsible sets ### ")

20 print (£"### gscat <= {indexl}: ### ")

Listing 2.5: Algorithm 2. Edge collapse algorithm

One can find this code in GitHub. The link:
https://gist.github.com/0OxIslamTaha/3379086c2f870b29adf953bb16c6b774


https://gist.github.com/0xIslamTaha/3379086c2f870b29adf953bb16c6b774

Chapter 3

Matroid

3.1. Preliminaries

Mathematical systems called matroids were introduced and named by H.
Whitney [51] in 1935, as an abstract generalization of matrices. In this part
we want to show that in the case of matroid, the two definition of elementary
collapse and strong collapse turn out to be equivalent, more over it is sufficient
to find one dominated vertex to collapse all the matroid to a point. Also we
show that every matroid is either a core or strong collapsible to a point. We
will assume here that all simplicial complexes are finite and connected (the
zero homology group equal one).

Definition 3.1.1. [21] A finite matroid is a pair M = (V,ZI) of a finite set V
and I C 2V is a non void simplicial complex satisfying the following property
which 1s called the Exchange property:

If 1,1, € T and |I3| < |I1|, then 3 i € [;\Is such that. iU I, € T.

For a matroid M = (V,I),

V(M) =V is called the ground set of M,

The sets in Z(M) := T is called an independent sets of M,

FEvery mazimal independent set B € I called base and the bases set denoted

by B(M).

65
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We call A C V submatroid of M, if we can defined a matroid on A by con-
sidering a subset of A to be independent if and only if it is independent of
M.

The Exchange property defined equivalently in [40] as the following:
If I, I, € T and |I] = |Io| + 1, then 3 i € I;\I» such that ¢ U I, € 7.

Every matroid is pure that’s mean, every maximal set is maximum, (i.e. all the
maximals set have the same number of vertices). If we have the set of maximal
sets B(M) we can generate the matroid M by adding all faces for each set in
B(M).

Example 3.1.2. Let E be a finite set and k a natural number. One may define
a matroid on E by taking every k-element subset of E& to be a basis. This is
known as the uniform matroid.

For more examples, using SageMath [an open-source mathematics software
system]|, see Listing

Theorem 3.1.3. Let B(M) = {F; : i € A} be the base for a matroid M. If
ﬂB(M) F;, = ¢, then M has no dominated vertices, that’s means M is a core.

Proof. Assume to contrary that there is two vertices v and w such that v is
dominated by w, so by definition any maximal set contains v also contains w.
We will construct a maximal (maximum) set containing v but not w. Since
w ¢ (N Ly there exist a maximum set ' = {f, : @ € I'} such that
w ¢ F soalsov ¢ F, and |v| < |F| by exchange property there exist f
rename by f; € F\{v} such that {vf,} € M. Now repeat with the set {vf}
to construct the set {vf;fo} and continue to get the set {vfifs...fn_1} with

H{vfifao.fue1}| = |F| which is a maximum set containing v but not w since
w # fo Ya . So v is not dominated by w and hence there is no dominated
vertices and M is a core. O]

We need the following lemma to show that elementary strong collapse dose
not affect on the structure of a matroid.

Lemma 3.1.4. Matroids are closed under deletion a point from independent
sets.
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Proof. Let M = (V,Z) be a matroid, choose a vertex e € V belong to some
independent set in Z and let M be the simplicial complex generate by the
deletion M \ e . For any I, J € M such that |I| = |J|+ 1, they are represented
by two sets I, J € M. Now we have four cases:

s IfecTandec J, then |I| = eUI| =|eUJ|+1=|J|+1, so there
exist 4 € I'\ J such that iU J € M. Note that this i # e(since i € I'\ J.
Soiel\JandiUJeM

s IfecTande¢ J, then [I| = |eUl| = |eUJ]|+1=|eUJ]|+1=|J]]|+2,
so [I'\e|=|J[+1,now Fi € {1\ e}\ J such that iU J € M, since i # e,
soiel\JandiUJ e M

= Ife¢ Tande € J, then |I| = |eUI|—1 = |eUJ| = |J|, but |7] = | ]\e|+1,
so Ji € I\ {J\ e} such that iU J\e € M, and i #e,s0i € [\ J and
JuJeM

= The last case where [ = f, J = J is trivial.

So the exchange property satisfied and M is a matroid. O

So, if we strong collapse a matroid M N\, M7 '\ - - - \\( M., all these
subcomplexs whose generate by deleting a dominated vertices are submatroids.
unfortunately this is not true in the case of usual collapse as we will discuss in
Example Now we can construct the following equivalent statement.

Theorem 3.1.5. Let M be a matroid with the base B(M) = {F; : i € A} such
that |F;| = n Vi, and let e be a vertex in V (M), then the following statement
are equivalent:

a. e € (en Fi-
b M NN\ {e).
c. M N {e}.

There exist a free face.

B

e. There exist a dominated vertices.
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So we conclude that every matroid is either a core or it is strong collapsible to
a point. In part d. for any mazimum F;, we have the free face {F;, F;\e}.

This Theorem has been developed in a code. See Listing at the end of
this section.

Proof. .

a.= b. Consider a.
Step 1, since M is pure and e belong to every base set (maximal), so
any vertex w € M can be dominated by e, strong collapse M and delete
w, we have M N\, M\{w}. Now by previous lemma M\{w} is also a
matroid.
We have new set of maximals {F;,i € A} C B(M) with e in the in-
tersection and |F;| = n. Repeat to get a series of matroids generate by
removing a dominated vertex from maximals belong to B(M). We stop
when every set in the base B is collapsed.
Step 2. Now we have a new matroid M"~! with dimension = dimension(M)—
1 = n —1 whose maxials (denote by P;’s, j € J) are proper faces of F}’s.
Claim: e € N;P;.
In the original matroid M, all proper faces of the F;’s contains e except
the proper faces {F;\e : ¢ € A}. Fix i, F;\e contains one of the domi-
nated vertices which we already collapsed in step 1, so the dimension of
F;\e over the currently matroid M™! is n-2; so it is not a maximal in
M™1) s0 e € N;P;. Now repeat step 1 for the matroids with dimension
n—1.
Step 3. Repeat step 2 for each dimension n, n-1, ...,0. We have M \\,

{e}-

b. = c. Remark shows that every strong collapsible complex is a collapsible
complex.

a. = d. Now assume [d.| but not [a.], suppose there is a free face {J, 7} where 7
is a maximal, so it is one of the maximums F}’s and there exist a vertex
e such that ¢ = 7 — e and there is no other maximal contain ¢. For any
maximum F # 7, |F| = |7| = |o| + 1, by exchange property there exist
f € F\o such that f Uo € M which is a maximum containing o, so
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fUo =7and e= f € F. Since F is arbitrary, so e € (), F;. So |d.| =

.
b. = e. Clear.
e. = a. By Theorem [3.1.3]
[l

Unfortunately, removing a free face -in general- dose not generate a matroid
-see the following example- But since the existence of a free face in a matroid
(as a simplicial complex) yields to collapse the matroid to a single point which
is also a matroid.

We can avoid this problem by using a series of elementary strong collapse
instead of the elementary collapse so we will still having a matroid in each
point deletion.

Example 3.1.6. Assume the matroid generate by the base

B(M)= {{123},{145},{124},{135}}. Note that ({145},{45}) is a free face,
if we apply the elementary collapse over this face we reproduce the simplicial
complex {{123}, {124}, {135} } which is not a matroid.

But the intersection over B(M) is not empty, so using the proposition this
matroid strong collapse to a point.

Example 3.1.7. The simplicial complex generates by B(M) = {{12},{23},{13}}
18 an example of a non collapsible matroid.

The uniform matroid is collapsible when & = |E| and otherwise it is a core.
Now we want to show how evasiness (Definition [2.4.10) affects if the com-
plex is a matroid.

Proposition 3.1.8. A matroid is evasive if and only if it is a core.

Proof. If we have an evasive matroid then it is not k-collapsible for all k, choose
k =0, we get that the matroid is a core.

Now if we have a core matroid, by it is also is not collapsible. Since if
there exist any k—collapse, it can be decomposed into a sequence of elementary
collapses, which is not exist in M, so we have an evasive matroid. O
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We use a matroid package called {sage.matroids.
advanced}

s from sage.matroids.advanced import x*

EmptyMatroid = BasisMatroid ()

s empty

#Matroid on O elements with 1 bases

"Now we can define a matroid using its bases [the
maximal sets]"
"There is two ways:"

MO = BasisMatroid(groundset='abcd', bases=['ab', 'ac'
, 'ad', 'bec', 'bd', 'cd'l)
M1 = Matroid(['ab', 'ac', 'ad', 'bc', 'bd', 'cd'])
> MO == M1
: # True
sorted (M1.bases ())
s #[frozenset ({'a', 'b'}),
# frozenset({'a', 'c'}),
# frozenset({'b', 'c'}),
s # frozemnset({'a', 'd'}),
# frozenset({'b', 'd'}),
# frozenset({'c', 'd'})]

> "To count number of basis"
; len(M1.bases ())

# 6

s "Here a famous example of matroid called {The uniform

matroid}"

: "For example: vertex set{1,2,3,4,5} and the base are

all compinations of two elements"
M2 = BasisMatroid(matroids .Uniform(2, 5))
M2
#Matroid of rank 2 on 5 elements with 10 bases
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s1 sorted (M2 .bases ())

2> # [frozenset ({0, 1}), frozemnset ({0, 23}),
frozenset ({1, 23}), frozenset ({0, 3}),
frozenset ({1, 3}), frozenset ({2, 3}),
frozenset ({0, 4}), frozenset ({1, 4}),
frozenset ({2, 43}), frozenset ({3, 4})]

Listing 3.1: Examples of matroids

33

34

35

H OB H=

36

71
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In the following code, we will test if a given structure collection represent
a matroid or not.

M3 = BasisMatroid (groundset='abcd', bases=['abc',
bcd'])

> M3.is_valid ()
s # True

s M4 = BasisMatroid(groundset='1234"', bases=[12,24]) "

not a matroid"

s M4 .is_valid ()

# Erorr

sorted (M3.groundset ())
#[|a|, Ibl, 'C', |d|]

> "This function return the intersection from a set of

lists:"

; def getIntersection(s):

i = set(s[0])
for x in s[1:]:

i =1 & set(x)
return i

getIntersection(sorted (M3.bases ()))

A#{Ibl’ 'C'}

Listing 3.2: Test a collection is a matroid

Algorithm for Theorem [3.1.5]

1 After determine the intersection of all basis sets,

we test:

> If the intersection is not empty, then the matroid

is strong collapsible.



3
3

3.1. PRELIMINARIES

If the intersection is empty, then the matroid is a

core and there is no any vertices to collapse.

def Test(Mat):
if Mat.is_valid()== True:
s= sorted(Mat.bases ())
print ('This is a matroid')
if getIntersection(s)!= set():
print ('The matroid is contractible')
else:
print ('The matroid is not contractible
and it is a core')
else:
print ('This is not a matroid')
return

Test (M1)
#This is a matroid
#The matroid is not contractible and it is a core

Test (M2)
#This is a matroid

; #The matroid is not contractible and it is a core

Test (M3)
#This is a matroid
#The matroid is contractible

Test (M4)
#This 1is not a matroid.

Listing 3.3: Algorithm 3. Test if a matroid is a core

73
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3.2. [Edge collapse and Matroids

The class of matroid are closed under edge contraction as we show in the
next proposition.

Proposition 3.2.1. Contracting an edge from a matroid yields to a new ma-
troid.

Proof. Let M be a matroid, and M be the matroid generates from M by
contracting the edge ab to a point ¢. Assume I,J € M, |I| = |J| + 1, and let
I and J be the original corresponding sets in M. The proof contains 4 cases,
we will discuss one of them as an example.

If ¢ ¢ I and ¢ € J. Firstly if both a,b € J, so |I| = |I| = [J|+1 = |J] =
|J\a| 4+ 1, there exist ¢ € I\{J\a} and i U J\a € M, since b € J\a then J\a
contract to j, soiUJ € M.

Secondly, if only one of a, b, say a, belongs to J, so |I| = |J|+1and i € I\J,
iUJEM,andsinjEM. O

Now, we want state the following example shows that we can’t include the
edge collapse operation in Proposition [3.1.5] as we done with both collapse and
strong collapse.

Also this example shows that, if we have a core matroid [there is no strong
collapse|, so we can reduce more the matroid [or simplicial complex| by an edge
collapse.

Also the same simplicial complex shows that an edge collapse is unnecessary
obtain an elementary collapse .

But [16] shows that, if we have an edge collapse, then we can structure a
finite sequence of simplicial complexes between K and K’ = K\ab such that
for every two consecutive complexes obtained from the other by an elementary
collapse or an elementary expansion (i.e, K, K’ have the same homotopy type).

Example 3.2.2. Suppose we have the simplicial complex showing in the left
graph which generate by the mazimal sets {al2,a23,a34,al4,b12,023,034,b14}
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Figura 3.1: Simplicial complex (matroid) can be edge collapsed but not collapse
nor strong collapse.

Since every edge in the complex included in two triangles (maximal sets),
so we can say that there is no free faces in this complex. Also we can check
that there is no dominated vertices, since for every two vertices there exist two
different maximal sets separates them.

We can easily concludes this from Theorem[3.1.5 since this simplicial complex
18 a matroid, where the intersection of all its base sets is empty, so by theorem
it is a core

But we can reduce this simplicial complex keeping preserve its homotopy type
using the definition of edge collapse, Lk(1) = {a,b,2,4,a2,a4,b2,b4}, Lk(2) =
{a,b,1,3,al,a3,b1,b3} and Lk(12) = {a,b}, we have that Lk(12) = Lk(1) N
Lk(2), so we can collapse the edge {12} as shown in the right complex. Note
that we can’t edge collapse more edges from the reduce complex on the right

figure.
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3.3. Algorithm: Partition of matroid’s base

In this section, we want to partition the bases set of a matroid into family
of subsets, each subset generates a new collapsible matroid, first we need the
following theorems.

Theorem 3.3.1. A pure simplicial complex with dimension n is a matroid if
it satisfies the following:

If F' a mazimal simplex and A any simplex such that |A| = n — 1, then 3
i € F\ A such that iU A € M. where

that is, to determine if a pure simplicial complex is a matroid, its enough
to check if the exchange property satisfies over all maximal simplices with
dim = n together with all of their proper faces with dim =n — 1.

Proof. Let S be a simplex with dimension n — 1 and S’ be a simplex with
dimension n — 2.

There exist a maximal F' contains S as its proper face, we can write F' = sU S
for some s.

Also, there exist a maximal F” contains S’ as a face, and there exist a vertex
s’ € F’" such that s U S’ € F’ and hence s’ U S’ € K. with dimension n — 1.
Now apply the hypothesis over F' together with s’ U S’, so there exist f €
F\ {s"US'} such that fUs US € K.

But F=sUS,if f € .5, done.

If not, then f = s,s0 sUs'US’ € K, take the face sUS’ where its dimension is
n — 1. Apply the hypothesis again over F' and s U S’, we have that there exist
avertex f'€ F\{sUS} and ffUsUS" € K. Sure f' # s,s0 f' € S, done.
So the exchange property is satisfied over all simplices of dimension n — 1
together with simplices of dimension n — 2.

We can complete for lower dimensions with the same way to show that the
exchange property satisfied over the simplicial complex which is a matroid. [

We will use this result to proof next theorem.

Theorem 3.3.2. Let M = (V,I) be a matroid with bases set B, e € V. Let
U, C B be the set contains all mazimal sets containing the vertex e, then U,
represent a base of a new matroid.
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Proof. We can suppose that U, is a pure simplicial complex. Choose any ma-
ximal sets I,.J € U, and let J = J|v for arbitrary vertex v € J. We will show
that the exchange property satisfied over all maximals together with all their
proper faces.

First, ife € j7 and since M is a matroid then 37 € ]\j such that iU.J € M,
but e € iU J belongs to U..
Second, if e ¢ J, but e € J, then v = e and we get e U J = J € U.. Now we
apply Theorem to prove that U, satisfy the exchange property. ]

Note that every U, represent a strong collapsible matroid by Theorem [3.1.5]
so with this strategy we can cover the original matroid M by collapsible sub-
matroids U, Uey, Ue,, - - -. To reduce the number of sets in this cover we can
choose the first vertex e; to be a famous vertex, and so on.

Listing shows how to determine the famous vertices of a matroid using
Python program. After we pick this vertex from V', we start to build a collap-
sible submatroid starting from this vertex.
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Algorithm 4: Edge collapse algorithm for matroids.

Data: A non empty matroid M with a base set B(M).

1 SetU = ¢

2 Set i =0

3 while B! = ¢ do

4 For each vertex v, count its frequently over B and denote the

number by N,.

5 W = {v: N, is a maximum over the current base B}.

6 if W! = ¢ then

7 Pick one vertex v € W

8 U, = {[ ceB:ve [} /* The set U, generates a submatroid  */
9 U=U+{U,}

10 B=B-U,

11 i=i+1

12 end
13 end

Result: U covers M and partition the base B(M), such that each
U, € U is strongly collapsible submatroid to v.

Print(U )

Print( gscat(K) <)

1
1

[, S

i = |U| — 1 represent an upper bound for gscat.
This algorithm has been developed on Python program, See Listing 3.5 at the
end of this section.

Proposition 3.3.3. The algorithm gives us the results as we expected.

Proof. We use Theorem to show that every U, represents a sub-matroid
and we use Proposition shows that any U, obtains in the algorithm is
strong collapsible. So we just need to show U = M, so let ¢ € M, there is
a bases set in B containing o, but the algorithm terminate only if B = ¢, so
U = M, that is U covers M. O

Example 3.3.4. A coded example see Listing 3.6.

Example 3.3.5. Suppose we have the matroid stated in Example[3.2.9
Using the code - see Listing 3.7- the cover set of the matroid containing two
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submatroids, and gscat < 1.
Bul we shown that this matroid is not strong collapsible so gscat > 0 and it s
exactly equal 1.

Finding the famous point in the currently base.

> from sage.matroids.advanced import *
s from collections import Counter

s "convert all bases data to signle string to check the

maximum occurrence of char and get the first one"

+ def famousPoints (L) :

> Matroid = BasisMatroid(groundset='abcd'

cs=""
for i in L:
for ¢ in 1i:
cs+=cs.join(str(c))
print (cs)
if len(cs)==0:
return None

wc = Counter (cs)

s = max(wc.values ())

i = list(wc.values()).index(s)
print (wc)

return (list(wc.items ())[i][0])
HHE#HAHH A H S E R RS H A S EH R HHAEH

, bases=["'abc'
, 'bed'])

23 Matroid.is_valid ()

#True

- 8= sorted(Matroid.bases ())

points=famousPoints (s)

: print (points)



80 CHAPTER 3. MATROID

23 #cbacdb

2 #Counter ({'c': 2, 'b': 2, 'a': 1, 'd': 13})
30 #cC

3 HEHHSHAHHAHAHBH GBS AR HHSARS

Listing 3.4: Finding the famous points.

Algorithm []

. def cover (M) :
"To test if this is a matroid or not?"
: print (M.is_valid (), 'matroid"')
1 print ()
5 s= sorted(M.bases ())
6 print ('Matroid bases:', s)

7 print ()

8 i=0

9 while s!=[]:

10 newS=set ()

1 points=famousPoints (s)

12 print ('The famouse point number',i,'is:',
points)

13 if points !'= None:

14 "For item in points:"

15 for _s in s.copy():

16 if s!=set():

17 if points in _s:

18 "NewS [points] = newS.add(_s)"

19 newS.add (tuple(_s))

20 s.remove (_s)

21 "The old set:"

22 print ('Currently base set after collapsing to
',points, 'is:"',s)

23 print ('The cover set number', i, 'related to
the vertex',
24 points, 'is:',newS) #new set

25 i=i+1
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print ()
print('*.* So the cover contains of',i,
'sets and the upper bound of the category '"gscat"
= ', i-1)
return

Listing 3.5: Algorithm 4. Partition of matroid base

Example |3.3.4

' M1 = BasisMatroid(groundset='abcd', bases=['ab', 'ac'

, 'ad', 'bc', 'bd', 'cd'l)

> cover (M1)

=

#RESULT :

s True matroid

©

10

Matroid bases: [frozenset({'a', 'b'}), frozenset({'a'
'c¢'}), frozenset({'b', 'c¢'}), frozenset({'a', 'd’

}), frozenset({'d', 'b'}), frozenset({'d', 'c'})]

To find <currently famous point: Counter({'a':3, 'b'

:3, 'c':3, 'd':3})
The famous point number 0 is: a

. Currently base set after collapsing to a is:

[frozenset ({'b', 'c¢'}), frozenset({'d', 'b'}),
frozenset ({'d', 'c'})]

3 The cover set number O related to the vertex a is:

{(lal’ ldl)’ (lal’ ICI)’ (lal’ lbl)}

» To find the currently famous point: Counter({'b': 2,

'¢': 2, 'd': 23})

 The famouse point number 1 is: b
« Currently base set after collapsing to b is: [

frozenset ({'d', 'c'})]

v The cover set number 1 related to the vertex b is:{('

bl,lcl), (Idl’lbl)}
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21 To find the currently famouse point: Counter({'c': 1,
'd': 13})

2> The famouse point number 2 is: c¢

>3 Currently base set after collapsing to c is: []

22 The cover set number 2 related to the vertex c¢ is: {(
'd', 'c¢')}

26 *.*% So the cover contains of 3 sets and the upper
bound of the category "gscat" = 2 "

Listing 3.6: Example 1. Partition of matroid base.

Example [3.3.5

1 "The following matroid represent Example 3.2.2}"

s M6 = BasisMatroid(groundset='ab1234', bases=['al4',6 '
a43','a32','al2', 'bl4', 'b43','b32','b12'])

1+ cover (M5)

s "RESULT : "

 True matroid

Matroid bases:

w [frozenset({'a','2','1'}), frozenset({'b','2','1'}),
1 frozenset({'a','2','3'}), frozenset({'b','2','3'}),

» frozenset({'a','1','4'}), frozenset({'b','1','4'}),

13 frozenset({'a','3','4'}), frozenset({'b','3"','4'})]

» To find the currently famouse point: Counter ({'1': 4,
'2': 4, '3': 4, '4': 4, 'a': 4, 'b': 4})
s The famous point number 0 is: 1
17 Currently base set after collapsing to 1 is:
1s [frozenset({'a', '2', '3'}), frozenset({'b', '2', '3
}), frozenset({'a', '3', '4'}), frozenset({'b', '3
, '4'P)]



3.3. ALGORITHM: PARTITION OF MATROID’S BASE

20 The cover set number 0 related to the vertex 1 is:
{C'b', '2', *1'), ('b', *1', *4'), ('a', '2', '1'),

2 (a', "1, "4}

22 To find the currently famouse point:

25 Counter ({'3': 4, '2': 2, '4': 2, ‘'a': 2, 'b': 2})

26 The famouse point number 1 is: 3

»7 Currently base set after collapsing to 3 is: []

25 The cover set number 1 related to the vertex 3 is:

» {C'b', '2', '3'), ('a', '2', '3'), ('a', '3', '4'),

so ("B, '3', '4')}

> ¥, * S0 the cover contains of 2 sets and the upper
bound of the category "gscat" = 1

Listing 3.7: Example 2. Partition of matroid base
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Chapter 4

Preorder and P-dominated point

Topological space can be associated to a preorders relation. If the topolo-
gical space X satisfies the Tj separation axiom, it can be viewed as partially
order set (poset). We can use a space with its preorder to construct a simpli-
cial complex called the order complex. Also given a simplicial complex we can
define an associated space with a preorder.

Stong [44] is the first who introduces the concept of cores in T} finite space
which generate by removing special points called beat points and keeping the
homotopy type. Then May [30] generalizes Stong concept into infinite spaces.
Kukiela |28| characterize pairs of spaces X,Y such that the compact-open topo-
logy on C(X,Y) is Alexandroff, give a homotopy type classification of a class of
infinite Alexandroff spaces and prove some results concerning cores of locally
finite spaces. Barmak [6] associates A Tj finite topological space with its poset
to a finite simplicial complex, and he studied the relations between the beat
points in the topological space and the dominated vertices in the simplicial
complex.

In this part we want to extend their result to more general cases, as follows:

= We aim to generalize previous results over infinite preorders instead of
finite posets.

= First we will extend the definition of beat point in a topological space to
a new definition called p—dominated.
Instead of removing one beat point in each step point, the new con-

85
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cept allows us to remove a set of points (maybe infinite). We call both
operations B-collpase and P-collapse respectively.

= We show that removing this set of point which called a contraction set
keeps the homotopy type of the space.

= In section 4.3, we gives some conditions where P-collapse agrees with
B-collapse. And also we gives examples show spaces which is P-collapse
but not B-collapse.

= In Section 4.4, we defined P-core space and state Theorem 4.4.10. which
generalizes some previous result

So we will re-discuss the previous work on the view of the new general definition
of a removable point in a space, and during our work we will try to extend the
condition over the space as we can.

4.1. Alexandroff space and preorder prelimina-
ries
In this section, we will introduce some concepts of preorder and Alexandroff

topological space, for more details reader can follow Chen [15], Kukiela [2§]
and Timothy [43].

Definition 4.1.1 (Preorder concept). Suppose we have P C X X X be a
binary relation over a set X. For any x,y € X, the notation x < y means that
(x,y) € P. We denoted P = (X, ), then:

» P is reflexive, if Ax C P where Ax :={z <z : z € X}.

» P is transitive, if for all x,y,z € X such that x < y and y < z, then we
have x < z.

» P is antisymmetric, if x <y and y < x implies x = .

A preorder P is a reflexive and transitive relation. And a preorder is a partial
order set (poset) if it is antisymmetric. We will say that x,y € P are compa-
rable if x <y ory < x, denote as v ~ y. In other case we will say x and y
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are tncomparable, denote as x ~ y.

We say P is totally preorder, if x ~ y for all x,y. A chain is a totally ordered
subset of P. An antichain is a set of pairwise incomparable elements.

An element x in P is said to be maximal, if x < y implies y = x. A preorder
has a maximum if and only if there is a unique mazimal element. The notions
of minimal and minimum point are dually defined.

Define the neiborhood of a point © by N[z] = {y : * ~ y}, and N(x) =
Nlo]\ {a).

Topological spaces are closed for arbitrary union of open sets, but they are
only closed for finite intersections of open sets. In 1937, Pavel Alexandrov [5]
introduce a new kind of topological spaces as follows:

Definition 4.1.2 (Topological concepts). A topological space (X, T) is called
Alexandroff space if the arbitrary intersection of open sets is an open set.

If (X, 7) a topological space, denote U, to be the minimal open set contains
x € X which is not always exist in the topological space in general.

Note that in Alexandroff topology (., U = U,. So X is an Alexandroff
space if and only if for all x € X, the minimal open set contain x, U, is always
exist.

Note, Any finite space is an Alexandroff space.

Lemma 4.1.3. If a space X is Alexandroff and Y C X, then the subspace Y
of X is also Alexandroff space, such that for y € Y the minimal set contains
y is Y (U, where U, is the minimal set contain y in X.

Also the intersection of Alexandroff spaces is an Alexandroff space.

Recall that a topology (X, 7) generated by a set of subsets § called the
basis such that for a subset O C X, O belongs to 7 if for every point z € O,
there exist B € [ such that x € B C O. Equivalently, a set O is in 7 if and
only if it is a union of sets in .

Theorem 4.1.4. [45] Let B be a collection of subsets of X, such that for each
x € X there is a minimal set m(z) € B containing x, then [ is a basis for a

topology on X and X s an Alexandroff space with this topology. In addition,
Uy = m(x).
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In the other hand, we have the following result

Theorem 4.1.5. If (X, 7) is an Alezandroff space, then the set {U, : v € X}
18 a basis for 7. Moreover, this basis is the unique minimal basis of X.

The proof is clear.

Definition 4.1.6. A topological space X is a Ty-space, if for any two points
of X, there is an open set contains one but not contains the other. That s, the
topology distinguishes points. We say X is a Ti-space, if each point of X is a
closed subset.

Now we will discuss the relationship between preorder sets and Alexandroff
spaces as follows:
In general, If we have a topological space we have a preorder over the open
sets which is the inclusion.
If (X, 7) is an Alexandroff space we can define a relation < over X such that
for two point x,y € X,

rSy<=ucvel, < U, CU,

To show that this relation is a preorder, we have U, C U,, so © < x and the
relation is reflexive. Also for x,y, 2z € X such that z < y and y < z, we have
U, CU, C U, and hence = < z, so the relation is transitive.

this preorder called specialization preorder and denote by P(X).

If X is T then its specialization preorder is a poset.
To show this, Let z,y belongs to X such that x < y and y < z, assume there
is an open set O, contains z without y, so x € U, C O,. Since y < x, then
y e U, C U, C O,, a contradiction. Similarly there is no open set contains y
only without z, so we have x = y and the relation is antisymmetric.

In the other direction, for each preorder (P, <), we may associate a topo-
logical space X(P) whose elements are those of P and whose open sets are
precisely the sets {y : y < x} for every x € P with respect to the preorder.
This topology is an Alexandroff topology.

If the relation < is a poset, then X' (P) is Ty Alexandroff space.
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Lemma 4.1.7. A function between two Alexandroff spaces is continuous if and
only if it is order-preserving between its specialization preorder (i.e increasing
function).

Proof. If f is continuous, and let y < x in X, since Uy, is open in Y, by
continuity f~(Up(y)) is open in X which contains 2. but the minimal open set
which contains x is U, so we get

Yy é MRS Ua: g f_l(Uf(x))

and so f(y) € Up, hence f(y) < f(z), done.

Conversely, to prove that f: X — Y is continuous, let V' be an open set
in Y, we need to show f~1(V) is open. So let x € f~!(V), hence f(z) € V.
But V' is open, by Theorem f(x) € Upy C V.
Now for any y € U,, we have y < x, since [ preserving the order f(y) < f(z).
By definition f(y) € Upny) € V,s0 y € f~1(V). Hence U, C f~'(V), and so
f7YV) can be written as a union of open sets in X, So f~*(V) is open in X
and f is continuous. O

Example 4.1.8. The category of all Alexandroff spaces and continuous maps,
denoted by AL Its subcategory of all Ty Alexandroff spaces and continuous
maps, denoted by TyAL

The category of all preorders and order preserving maps, denoted by Preorder.
Its subcategory of all posets and order preserving maps, denoted by Poset.

Example 4.1.9. The association X from the Preorder category to the AI
category and The association P from the AI categoryto the Preorder cate-
gory are functors.

Moreover they are mutually inverse functor. Dually the same hold if we ex-
change AI with ToAI and Preorder with Poset.

Hence the Alexandroff space topologies on X are in bijective corresponden-
ce with the preorders on X. The topology is T} if and only if the relation < is
a poset. Also X is T then its specialization order is an antichain. And X is
T, but without Ty, if and only if its specialization preorder is an equivalence
relation.
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So for the remainder of this paper, we will not make a difference between an
Alexandroff space and its preorder and every space X is assumed to be an
Alexandroff spaces.

Relationship between preorder and poset

Using T} spaces is more convenience than ordinary space. The notation and
definitions are cleaner when we don’t have to deal with points that are topo-
logically indistinguishable. On the other hand, we don’t loose very much by
limiting the results to T; spaces. Since any topological space has the homotopy
type of a Ty space (Proposition 2.5 [29]).

Recall that if ~ is a relation on a topological space X, then the quotient
topology on X/ ~ is the final topology with respect to the quotient map
q: X — X/ ~. In other words, U C X/ ~ is open if and only if ¢=*(U) is
open in X.

Proposition 4.1.10. [32] There exist a correspondence that assigns to each
Alexandroff space a Ty homotopy equivalent space which is the quotient space
X/ ~ Ty and the quotient map q : X — X/ ~ is the homotopy equivalence
map.

Thus, we can restrict ourselves to Ty-spaces, and the results on homotopy
types of posets may be translated to preorders.
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4.2. P-domination definition

In this section, we recall Stong [44] definition of beat point in a finite space,
which generalized over infinite Alexandroff spaces by May [30]. After that we
introduce our main concept the p-dominated points in an Alexandroff space
which is a generalization of beat points. Also we will proof some interested
results.

Definition 4.2.1 (May definition [30] ). Let (X, =) be an Alexandroff space,

1. A point a € X is up-beat if and only if 3b = a such that for all ¢ Z a
we have ¢ 2 b,

2. A point a € X is down-beat if and only if 3b S a such that for all ¢ S a
we have ¢ < b.

Linear/colinear point of Stong [44] are the up-beat/down- beat point, also
Kukiela 28] denote this point as up-irreducible/down-irreducible point, in our
work we will following the notation of May’s [30]. Now we will define our new
concepts, then we will analysis some results due to this new concepts in the
rest of this chapter.

Definition 4.2.2. Let (X, <) an Alexandroff space and a,b € X such that
ash

1. We say that a is pTdominated by b, if ¢ = a implies ¢ ~ b. In this case
we will denote A, the set {s € X :a < s < b}.

2. We say that b is p~dominated by a, if ¢ < b implies ¢ ~ a. In this case
we will denote A, the set {s € X :a < s = b}.

A subset A of X is called a contraction set, if there exist two points a,b € X
such that a is p*dominated by b, hence A = A}, or b is p~dominated by a,
hence A= A,.

In the previous notation we put the letter -p- as a short-cut says that we
are working over Preorder/ Poset relation, also to be short-cut says that we
removing Point, so we can distinguish between the dominated points in a topo-
logical space and the dominated vertices in a simplicial complex in Definition
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224

Since every subset of Alexandroff space is Alexandroff, so we have that the
space X — A%, is also an Alexandroff space. Now we will introduce our new
concept of cover points:

Definition 4.2.3. Let (X, =) be an Alezandroff space, a,b € X and a S b, we
will say that:

1. The point b is an up-cover of a if Ve 2 a, we have ¢ 2 b or c < b
2. The point a is down-cover of b if Ve S b, we have ¢ < a or ¢ » a.

If both b,b" are two different up-covers for the same point, clearly that
b~ b, dually for the down-covers.
Note that a point is up-beat if it has unique one up-cover, dually the point is
down-beat if it has unique one down-cover.

By definitions the following lemma is clear.

Lemma 4.2.4. Any up-beat point is a p*dominated, dually any down-beat
point is a p~ dominated.

So our definition is an extension for Stong definition of beat points.
The next lemma is a way to define p-dominated point by using the characte-
rising of neighbourhood.

Lemma 4.2.5. Let (X, <) be an Alexandroff space, and let a,b € X such that
a = b, ais ptdominated by b if and only if N[a] C NIb].
and b is p~dominated by a if and only if N[b] C Nla.

Proof. Let a is pTdominated by b, and let € Nla], so z ~ a
If x < a, by transitivity we have < b, hence x € NJb].
If x 2 a, and by the definition of p*dominated, we have that x ~ b, done. [J

Without loss of generality, from now we will discuss the results over the
ptdominated points, by dual the same is true for p~dominated points, and
the result may be proved for p~dominated points the same way it is done for
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ptdominated points.

If (X, <) be an Alexandroff space, we have the following two lemmas:

Lemma 4.2.6. If a is p*dominated by b, so for all s € A},, we have that s is
ptdominated by b.

Proof. For each s € A, if ¢ 2 s by transitivity ¢ 2 a, since a is pTdominated,
we have ¢ ~ b, so s is p"dominated by b. O

Lemma 4.2.7. If a point a is p™dominated by b and b is p™dominated by c
then a is ptdominated by c (transitive).

Proof. If a is p*dominated by b, and b is pTdominated by ¢, so a £ b < ¢, so
a < ¢ by transitivity of <.

Now let x 2 a, since a is dominated by b, we have that x ~ b. If z < b, then
z < ¢, done.

If x =2 b and since b is dominated by ¢, we have x ~ ¢. So a is p*dominated by
c. 0

Now we will extend over infinite Alexandroff space the Barmak [7] method
of removing a beat point over T finite spaces. Barmak defined elementary
Bt -collapse/B™-collapse to be the operation which removes up-beat/down-
beat point from the space, respectively.

We state the general definition, which is removing p* \ p~dominated points as
follows:

Definition 4.2.8. Let (X, <) be an Alexandroff space, and let a,b € X such
that a S b

a. If a is ptdominated by b, The retraction define by r : X — X — A,

r X i
’T‘(fL‘): { ¢Aab

b xe A,

is called an elementary PT-collapse from X to X — Al if we have the
retraction
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b. Similarly we have elementary P~ -collapse when we retract the contrac-
tion set A, to the point a.

c. There is a P-collapse from X to a subspace Y (or a P-expansion from

Y to X) if there exists a sequence of elementary P-collapses starting in
X and finishing in' Y. We denote this operation by X \PY orY /, X.

» Since every up\down-beat point is a p* \ p~ dominated point respectively,
we define Barmak concepts (Elementary BT -collapse, Elementary B~ -
collapse, B-collapse and B-expansion) as the same way.

Note that due to Barmak, If a point is an up-beat, then the elementary
BT -collapse will remove only one point for each step.
But in our definition, P-collapse will remove in one step a set of points (the
contraction set Ag,) which maybe contain infinite number of points.

In the next theorem, we will show that the retract generated from an ele-
mentary P-collapse is a strong deformation retract.

Theorem 4.2.9. Let (X, <) be an Alexandroff topological space, and suppose
that a is p™dominated by b, with a contraction set A, then X — A}, is a strong
deformation retract of X.

Similarly, the retract generated from removing p~ dominated point and the re-
tract generate from elementary P-expansion, both are strong deformation re-
tracts also.

Proof. First we want to prove that r : X — X — A, is continuous, or by
Lemma [4.1.7] r preserve the order.
Let v,w € X such that w < v, we have the following four cases showing that
r(w) < r(v).

» if w e Al v e A, then r(w) =b=r(v).

» Ifwég Al v ¢ A then r(w) = w < v =r(v).

» fwé Al ve A, then r(w) =w S v <b=r(v).

ab’
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» Ifwe Al v ¢ A, then r(w) = b and 7(v) = v, since a £ w < v and a
is prdominated by bso v ~ b. If v < b we have a < v < b, hence v € A},
a contradiction. So we only have that v = b, hence r(w) =b < v =r(v),

SO 7 1S continuous.

Secondly, let F': X x [0,1] — X such that:

. x t#1

F(x,t) = idx(w) t#£1_ ), t=1,z¢ A}
riw) t=1 b t=10¢c A"

- ab

If F' is continuous, then r is homotopic to the identity by a homotopy fi-
xing X —A,, with F(x,0) = idx(z) and F(z,1) = r(z) and this ends the proof.

Claim: F'is continuous.

As we shown in Theorem the topology over X has as base the set
g = {U, : x € X}, so to show that F' is continuous it sufficient to show
that F~(U,) is an open set in X x [0, 1] for all z € X. Now choose z € X we
have one of the following cases depending on the relation between a and z:

» If a £ 2 S b which mean z € A7,. Note U, N Af, #0
and F(X x {1}) = X — A},. So we have

FAUU,) = U, x [0, ) U(U. N (X — 43)) x {1}
— U x [0, ) U(U. — A4%) x {1}
= U, x [0,1)J(U. — A5) x [0, 1]

For every z € A, the set U, — A}, is open in X, to show this let z €
U,— A}, sox < zand x ¢ A, also x € U,, it is clear that U, C U,.
Now suppose to contrary Jy € U, and y € Ay, so we have a Sy S o <
z S bsox € A}, a contradiction. Hence U, subset of the complement of
Al

So we have z € U, C U, — Af,, so U, — AY, is open in X. And F~(U,)
is open set in X x [0, 1].

S 2 = b oso FOI(UL) = U. x [0,1)UJ(U. U A% U {b}) x {1}. But for
ally € Af,, y S b <z, andy € U, s0o Af, C U, also b € U,. So
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FYU,) = U, x [0,1)JU, x {1} = U, x [0,1] Which is open set in
X x [0,1].

» If 2SS a,s0U,NAYL =0, and F~Y(U,) = U, x [0,1] is an open set in
X x [0,1].

» Finally, if z = a, so F~}(U,) = U, x [0,1] is an open set in X x [0, 1].
[

We can prove the second part in the proof (showing that r and idy are
homotopic) by using the following result from |28, since r < idx and they are
equal over AY,.

But we keep our proof because we think our proof is direct, shorter and interest
by itself.

Recall C'(X,Y) denotes the space of all continuous maps X — Y in the
compact-open topology.

Theorem 4.2.10. (28] Let X, Y be Alexandroff spaces. If f,g € C(X,Y) are
such that f(xz) «~ g(x) for all x, then f is homotopic to g by a homotopy that
is constant on the set {z € X : f(z) = g(x)}.

In the next section we will show that, in T} finite spaces, both B-collapse
and P-collapse are closely related (both can yield to the same subspace A
after both ways of collapsing), so if we assume that X is Tj finite we can
proof Theorem using a result in Barmak [6] which states: A finite space
X is B-collapses to A C X if and only if A is a strong deformation retract of X.

Now we will state the following corollary following Theorem [4.2.9]

Corollary 4.2.11. If a space X contains a distinguished point p such that p is
a maximum point or a minimum point, then X is a P-collapsible to this point,
and so p s strong deformation retract of X.

In general, If all maximal chains in X contain p as a common point, then X
18 contractible to p.
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Proof. To proof the general case, let p be a common point between all maximal
chains in X, select any point z, it will belong to some maximal chain C, so
T P

If x £ p, and for all y 2 x we have that y « p, so z is ptdominated with p.
Similarly, if = p, then z is p~dominated by p, and X is P-collapsible to p.
And hence X is contractible to p. O

Example 4.2.12. If X is an Alexandroff space which is totally preorder, X is
homotopy equivalent to a point, because every two elements are comparable.

Future work

Barmak proof the following lemma:

Lemma 4.2.13. A finite space X is contractible if and only if one can remove
beat points from X one at a time to obtain a space consisting of only one point.

We want to extend this result over infinite spaces using p-dominated con-
cept as follows:

Lemma 4.2.14. Any Alexandroff space (finite or infinite) X is contractible if
and only if one can remove contraction sets one at a time to obtain a space
consisting of only one point.

We proof the second direction by Theorem [£.2.9 and we seek to proof the
first direction.
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4.3. Relationship between P-collapse and B-collapse

Now we will discuss relations between up-beat/down-beat points and
p*/p~dominated points through our main theorem which shows that P-
collapse and B-collapse operations are similar if the space contains only finite
chains.

Hasse diagrams is a useful way to represent Tj-spaces, that makes easy to
recognize beat points and p-dominated points looking into the diagram of the
space, for more details follow Barmak [6].

We can define Hasse diagram for preorder space, but to avoid the two
direction edges we define Hasse diagram over poset space.

Definition 4.3.1. The Hasse diagram of a poset X is a directed graph whose
vertices are the points of X and whose directed edge are the ordered pairs (x,y)
such that y is an up-cover of x. A point x is lower than y if we can move through
continuous sequence of directed edges starting at x and ending at y.

Example 4.3.2. The following Hasse diagram, represents a space X = {a, b, c,d}

with preorder P defines as: a S ¢, b<c,c<d, a<d, and b =< d. Also P is
reflecive relation. This space have a mazimum d so it is contractible.

@
>m—m
®

Figura 4.1: Hasse diagram

Definition 4.3.3. An Alexandroff space (or subspace) is finite-chain, if and
only if it contains only finite chains.

In this example we will show a not finite space which is finite-chain space.
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Example 4.3.4. Let X =: {(n,i) e Nx N:i <n}J{a}U{b}
We denote the point (n,i) by ni.

define the preorder relation by:

(1.) ni < mj if and only if m <n and i < j

(2.) For any point ni, a < ni < b.

The following is the Hasse diagram.:

-
~
-~
~ -
-
-~

Figura 4.2: Infinite space which is a finite-chain space

Clearly every point ni is ptdominated by b. Also a is ptdominated by b,

hence X equal to the contractions set AY, |J{b}, and this contraction set is
elementary P-collapsible to the maximum point b.
Following the next more general theorem we show that this infinite space X
which elementary P*-collapsible to a point only on one operation, is also B*-
collapsible to a point (in the sense of Barmak) but passing through infinite
sequences of BT-collapse operations.

Theorem 4.3.5. In Alezandroff space X. If we have the contraction set A},
as a subspace with property that every chain in A, is finite.

Then the operation of elementary P*-collapse the set A}, can be represented
by sequences of BT -collapses in at most w steps, where w 1s the first ordinal.
Similarly, Elementary P~ -collapse a contraction set A~ can be represented by
sequences of B~ -collapses removing down-beat points.
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Proof. Assume that a is pTdominated by b with a contraction set AY,.

If AT, = {a}, then it is easy to show a is a up-beat point under b.

If {a} C A}, we can construct a decreasing sequence of sets {Y; : Y; C
A% J{b}}, which decreasing by inclusion Yy C Yy C - -+ such that:

L. Yb = Az_b U{b}a

2. Assume we have Y; defined for every ¢ < n + 1, and we will define
Y11 =Y, — D, where D,, = {x € Y, : v # a, By € Y,, — {b} such that
r Sy S b} (in other words, D,, contains all the down-cover points of b
in the currently set Y,).
For each step ¢, we define a retract, the map r; : Y; — Y; 1 to collapse
the set D; to the point b, in the following way:

(&) = {b x € D;

x elsewhere

3. Since for every finite step ¢, Y; 1 C Y;, we can defined the first infinite
step w as Y,, = [, Y;. Note for all 4, {a,b} € Y; so {a,b} € Y.

By Lemma [4.1.3] we have for all 7, Y; and Y, are also Alexandroff spaces.

Firstly, we need to show whenever Y; — {a,b} # ) for a fixed ¢, then D; # (.
Assume to contrary that D; = (), we can construct an infinite strictly increa-
sing sequence (chain) (a;), in the following way:

we start with ag = a, let a; € Y; — {a,b}, so a9 S a1 S b. Since a1 ¢ D; so
there exist ay € Y; such that a1 S as S b and as ¢ D;. Continue to construct
(a;) such that for every a; we can find a;+1 € Y; such that a; S a;41 S b, this
sequence infinite, contradict that X is finite chain space.

Secondly, we want to show that for every x € A, — {a}, there exist some
step 4, such that x € Y;, x ¢ Y;; and x is a up-beat under b in Y; hence x
collapsed by r;, that is equivalent to prove A, — {a} =, D;.

So suppose to contrary we have a point ¢ € Af, — {a} — U, D;, so for all 1,
¢ ¢ D;, so there exist ¢; € Ay, such that @ S ¢ S ¢; S b. And we have the
following:
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1. For a fixed step ¢« and d € D;, by definition of D; we have no point
greater than d in Y; — {b}, since all points € Ay, d S o < b is already
collapsed with some map r;, where j < i. So c is not greater than d for
any d € |J D;.

2. Also, ¢ is not smaller than d for all d € |J D;.
Hint: If there exist d € D; for some step j such that ¢ < d, we will show
the contradiction by constructing a chain start with d and end with c,
this chain will be finite and each point will be down-cover for the pre-
vious point, so ¢ will belongs to some D; which is a contradiction.

Now starting with the chain Cy = {c,d} in Y}, let ¢p = d.

If ¢ is down-cover of d done.

if not, this mean 3z € Yj such that ¢ S = < d, we add z to Cp. We
continue add elements to the chain Cj as follows:

for any two consequent points in Cy, say z,v,

If x is down-cover of y, done.

If not, then Jy € Y; such that x S 2z S y and add z to Cp, we repeat this
process until we get a point 3’ which is a down-cover of y and we rename
Y = Cm, Y = ¢y for some m.

Continue adding points to Cj until we construct a chain C" C X such
that every point is a down-cover to the next point. Because X is finite-
chain, every chain is finite, so there is a moment that we cannot add
more points to this chain. So we can write the finite chain C' as C =
{¢;: ¢r11 < ¢y < n for some n}. Now every point in C' will belongs to
some D; where j <i <n+j,soc=c, €Dj, A contradiction since

c ¢ U; D

3. Step 1. and Step 2. show that ¢ = d, for all d € D;. But there exist
1 € Aw, ¢ S 1 S b Since ¢ « ¢, then ¢ also not belong to |J D; [ If
c1belongs to some D;, so ¢; = d € D;, then ¢ < ¢; = d a contradiction
as we show in Step 2|, so also ¢; = d,Vd. Now we can repeat this step
infinity many time to construct an infinity strictly increasing sequence
(¢;), A contradiction becouse X finite-chain space.

So ¢ have to belong to |J, D;. Since Ay, — {a} = |J; Di, we have that Y, =
NY; = Aw — U; Di + {b} = {a,b} and at the step w the point a is up-beat
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point under b.

Finally, for all d € D;, d is up-beat point under b over Y;, we want to show
that d also is up-beat point under b over the currently space X [Y; after i
steps of collapses. Suppose to contrary the converse, for some ¢, let D; contains
a non up-beat point s, so s have at least two up-cover, the point b is one of
these covers, let & be another up-beat of s that means b < I/, but a < s < ¥V
so by domination of a by b, we have b «~ b, So Vi, and Vo € D;, x is up-beat
point in the currently space X (Y; (note that this space is also Alexandroff
space).

For the contraction set Agp, the number of up-beat points in Ay, = |Ags-
m

So in a finite-chain space X both operation P-collapse and B-collapse can
reduce the space to homotopy equivalent subspaces Xp and Xpg respectively,
where both are strong deformation retract of X, But applying the P-collapse
over X, we reach Xp more faster.

Now we will present several examples to clearify the difference between P-
collapse and B-collapse.

Our first example shows a P-collapsible contraction set AJ, contains an
infinite chain. For this space we start B-collapse the space with the points
which is the down-cover of b as a beat points. But there is some points can not
B-collapse in any step. So A, is P-collapsible but not B-collapse. We conclude
that P-collapse differs from B-collapse.

Next we show that in some cases the set A, have infinite chain but we can
B-collapse all the set (starting B-collapse the points which is currently a down-
cover of b until we reach a). So this space is B-collapsible also.

Finally we show example that we never have any beat points to start the
B-collapse operation over AY,  so this space can collapsed only in our sense
and we can not operate any elementary B-collapse.
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Example 4.3.6. This counter example shows a space -with infinite chains-
which is not BT -collapsible but it is a P-collapsible to a point. The following
1 the Hasse diagram:

0,0 u

Figura 4.3: P-collapsible, but not B*-collapsible space.

Let

X = {(1,1),(a,0), (b,0), (0,0)} |_J{(a,1/n), (b, 1/n) : n € N}.

With the preorder spanned as: (0,0) a minimum, and (1,1) a mazimum point
Vn, (a,1/(n+1)) < (a,1/n),(a,1/(n+ 1)) < (b,1/n)

)
vn, (b, 1/(n +1)) = (a,1/n), (0, 1/(n+ 1)) = (b,1/n)
n,(a,0) = (a,1/n),(a,0) = (b,1/n)
vn, (b,0) < (a,1/n),(b,0) < (b,1/n)
The point (0,0) is p*tdominated by (1,1) with contraction set A(+07

the space X = A(oo an YL 1)}, such that X NP {(1,1)}.

As the previous theorem, Yo = Aoy1,1) U {(1, 1)} has only two up-beat points,
where we can start the sequence of BT -collapse under (1,1) as follows:
(a,1/2) is up-beat point, so we can elementary B -collapse it to the point (1,1),
then repeat the same for the point (b,1/2), and we have the subspace Y.

0)(1.1)" So
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In second step, the point (a,1/3) and (b,1/3) become a new up-beat points in
Y1, so we can BT -collapse them in two different steps and replace them by
(1,1), and so on - --.

But the point (a,0) will never be an up-beat point under any point x in any
step n, to show this, fived any subspace Y;, pick any point x = (a,1/n) 2 (a,0)
we have (a,1/n) 2 (a,1/{1 +n}) 2 (a,0).

And if v = (b,1/n) 2 (a,0), we have (b,1/n) = (b,1/{1+n}) = (a,0).

So in this example, we show that X is P-collapsible to a point in one step
only. But in the sense of removing up-beat points, we have infinitely steps
of elementary BT -collapses. Moreover, there exist two points (a,0),(b,0) in

AZB 0)(1.1) which never be an up-beat point.

Example 4.3.7. We show a contraction set with infinite-chains, this P -
collapsible set can represented by sequences of BT -collapse, we can start the
BT - collapse steps with the up-beat points which is the down-cover of b, until
we Bt -collapse every point in X. The following is the Hasse diagram:

Figura 4.4: P-collapsible and BT -collapsible space.

X ={0,1}U{xl/n:neN,n#1},
The preorder spanned as: £1/n < £1/m iff n > m,
a =0 as a minimum point, b =1 as a maximum point.
Note X = Ay U{1} which have infinite chain {1/n : n € N}. Following the
notation of proof Theorem D, ={z €Y, :a#x==x1/n}, (i.e. the only
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up-beat points in step n are the two point located as a down-cover of the point
1), and Ay — {0} = U,, Dn. The last BT -collapse step is Y, =), Yo, = {0,1}
and now 0 s up-beat of 1 and we elementary B-collapse 0.

Example 4.3.8. We show a contraction set Ay, contains infinite chains and
no point is up-beat or down-beat, so we can not start B-collapsing points under
b. But the space is P-collapsible to a point. The following is the Hasse diagram:

Figura 4.5: P-collapsible space with no elementary BT -collapse

Aw ={0,1} U{(z,£1) : 2 € {a,b},n € N — {1}},
Let m < n and x, 2’ € {a,b}, the preorder spanned as:
(I7 %) é (:LJ7 %) and (l’, _%) é (xlv _L)

m
a =0 as a minimum point, and b =1 as a mazximum point.

Stong [44] states many results of beat points and B-collapse over finite
spaces, Kukiela [28] generalize this result to infinite X with some finiteness
conditions.

We can apply results from Stong, May, Kukiela and Barmak to our definition
(p-dominated points and P-collapse), if the space is chain-finite, using Theorem
4.3.51
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4.4. Homotopic spaces and their core

Kukiela |28] stated some finiteness condition over the space that will allo-
wed to construct a special subset of X calling (Core) and studied the relations
between the cores of two homotopic spaces, In this section we state his defini-
tions and merge the idea of P-domination, then we will extend his main theo-
rems using the P-domination concepts. Our main Result is Theorem
now we start by recall several concepts

Definition 4.4.1. Let X be an Alexandroff space. A retractionr: X — A C
X is called:

1. a comparative retraction, if r(z) « x for every x € X,
2. an up-retraction, if r(z) > x for every r € X,
3. a down-retraction, if r(x) < x for every x € X,

4. a retraction removing a contraction set, if exists a point a € X such that
a is pTdominated point under some u,, or a is p~ dominated point over
some d, and such that

a At d, A
u(z) = o L€ Aay, d(z) = ve ada
x x¢ Al v w¢ A,

aug,

5. a retraction removing a beat point, if exists a point a € X being an up-
beat point under some u,, or a down-beat point over some d, and such

that
() — Uy T =0 Az — d, r=a
() {m T #a (=) r T#a

Follows from Lemmal4.2.4] that retractions removing a beat point is a special ca-
se of retraction removing a contraction set which is an up- or down-retractions.
All of them are comparative retraction. Moreover, every comparative retraction
may be written as a composition of an up-retraction and a down-retraction
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Definition 4.4.2. (28] In the category of Alexzandroff spaces, let C denote
the class of all comparative retractions, U and D classes of, respectively, up-
and down-retractions, P the class of retractions removing contraction set of a
p-dominated point. and B the class of retractions removing a beat point.

Definition 4.4.3. A non empty Alezandroff space X is said to be a C-core if
there is no retraction r : X — r(X) in C other than identity idx. Also, we
defined P-core if there is no p* /p~-dominated point, and B-core if there is no
up-beat/down-beat point.

From the definitions, every C-core is a P-core. and every P-core is a B-core
since every up/down beat point is a p*/p~ dominated point.
Kukiela proof that every finite-chain B-core is a C-core. We will proof later
in Corollary that a P-core is a C-core, if the space satisfies a condition
called bounded space.
Stong [44] state cores are required to be strong deformation retracts of the
finite space they are contained in.

We call the following definition and theorem from Kukiela
Definition 4.4.4. (28] In an Alexandroff space X, we say:

n A sequence {z, :n € AC X} of elements of X is s-path, if x; # z; for
i # 7 and x;_1 ~ x; for all i > 0.

» X is a finite-paths space (fp-space), if every s-path of elements of X is
finite,

= X s chain-complete, if every chain has both a supremum and an infi-
mum.

We recall the following main theorem from Kukiela which is a generalization
of Stong result over a finite space.

Theorem 4.4.5. (28] If X is a C-core fp-space, then there is no map in
C(X, X) homotopic to idx other than idy.
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Since every fp-space satisfies the chain-finite property, and not every P-core
is a C-core. So using Theorem we can generalize this theorem for P-core
fp-space.

Through Kukiela proof he use the idea of absence the beat points to proof
the result on a finite-paths (fp-space). We will defined the bounded space then
we will improve Theorem which is over fp-space to generalize it over
bounded space using the idea of absence the P-dominated points to state more
simply and extending proof.

First we introduce the definition of bounded spaces.

Definition 4.4.6. Let X an Alexandroff space, denote max(X) the set of all
mazximal point in X and the set min(X) to be the set of al minimal point in
X, then X is called:

Up-bounded space, if for every x € X, there exist m € max(X) such
that m 2 x.

Down-bounded space, if for every x € X, there exists n € min(X) such
that n < x.

Bounded space, if X both up-bounded space and down-bounded space.

Finite-bounded space, if X is bounded space and both sets max(X) and
min(X) are finite.

This example shows the differ between finite-bounded space and fp-space

Example 4.4.7. In Ezample The space X — {(1,1),(0,0)} have the
following Hasse representation.

Where the set mazx(X) = {(a,1/2),(b,1/2)} and min(X) = {(a,0), (b,0)}.
We can find an infinite s-path. So X is an infinite P-core which is finite-
bounded space, but not a fp-space.
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b,0] =eeenn ' [b,l/n+1]—)[b,1/n] ----- [b,l/B]—)[b,l/Q]

Figura 4.6: Finite bounded but not fp-space.

Now we state and proof the following three results:
Theorem 4.4.8. Let X is a P-core, and let f: X — X a continuous map.
» If X up-bounded space and [ 2 idx, then [ = idx.
» If X down-bounded space and f < idy, then [ = idx.
s That is if X bounded and f ~ idx, then f =idy.

Proof. If f 2 idx, for every m € max(X) we have f(m) = idx(m) = m, So
f(m) = m. Now let y € X such that for all z 2 y, f(x) =2z and f(y) = y.
Since y is not maximal and X is a P-core then ¥ is not a pT-dominated point
and so there exist another up-cover point of y differ than f(y), say z € X,
f(y) = z =2 y, Since f is continuous and hence preserving order, so we have
z=f(z) 2 f(y) and f(y) ~ z. A contradiction.

Similarly, if f < idx then f = idx. O

Corollary 4.4.9. Every bounded P-core is a C-core.

Proof. 1f X is bounded P-core, so every comparative retraction r(z) «~ x for
every r € X equal to the identity idx. Hence X is C-core O

Now we state an improvement of Theorem [4.4.5 also we state more simply
and extending proof:
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Theorem 4.4.10. Let X be a C-core bounded space, If one of the following
satisfies

= X s finite bounded.
» O(X, X) is Alezandroff.
There is no map in C(X, X) homotopic to idx other than idy.

To proof Theorem [4.4.10, we state this following concepts to simplify the
idea of the proof.

Proposition 4.4.11. (28] Let X,Y be Alexandroff spaces. The family
{lz,U)] : x € X,y € Y} where [z,U,] ={f: X — Y|f(x) < y} is a subbasis
for the compact-open topology on C(X, Y ).

Lemma 4.4.12. |28 Let X be an Alexandroff space, Y an arbitrary topological
space. Maps f,g : X — Y are homotopic if and only if they belong to the
same path component of C(X,Y).

Lemma 4.4.13. Let X be C-core bounded space, if x is not mazimal point,
then at least two different mazximal points m,m are greater than x.
Similarly, if © not minimal, then In,n € min(X),n S x,n Sz, andn = n

Proof. Suppose to contrary that there exist one maximal say m, = x. For any
y = x, if m, is any maximal greater than y, then it is also a maximal of z, so
m, = my, hence y < m, and so x is p*dominated by m,. But X is a C-core,
which is a P-core with no p-dominated points, a contradiction. O

This example to clarify the previous lemma

Example 4.4.14. The following sketch represent a preorder set, where every
mazximum point (the m’s point) have two down-cover point and every minimal
(the n’s point) have two up-cover point, so there is no p-dominated points and
the space is a P-core. Moreover the space have no up-beat or down beat points,
which is B-core.
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my \

Figura 4.7: B-core and P-core space

Construction If X is a C-core bounded space, then for every x € X we
can construct a B-core subspace A, where x € A, C X, as follows:
Let x € X and fix it,

» If  is not a maximal, so by previous lemma 3m,, m, € max(X), and if
x is not a minimal, so In,, 1, € min(X), Add x, m,, m,, n,, 1, to A,.
Now for the currently A,, we will add the following points together with
the following relations.

e If the point is a maximal point in A,, say m, so there exist a € A,
such that a < m. Also m is not p~dominated in by a X, so Ja €
X,a~a,a<m,add atoA,.

e If the point is a minimal in A,, say n, there exist a € A, such that
a < n. Also n is not pTdominated by a so 3a € X,a ~ a, n < a,
add a to A,.

e If a € A,, not a maximal and not a minimal in A,, so there exist a
maximal point or minimal point in A, comparable with a. From X
we select maximal and minimal points and add them to A, in order
to let the point a having two maximals and two minimals in A,.
Note that the two maximal m,, m, represent two up-cover of a,
so a is not up-beat. Moreover, since m, is maximal then a is not
ptdominated by m, nor m,. And the two minimals represent two
down-cover of a.

Note that the preorder in A, describe only in the previous steps,
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and we not import from X all relations between the elements, so
we guarantee that A, is a B-core.

In the same way we can show that every point in A, is not up-beat nor
down-beat. We continue in the same steps to construct a sequences of
points belong to A, which is B-core, since the inner points (not maximals,
not minimals) are not comparable together in A,.

» If z is a maximal point, which is not down-beat , da,a down-cover of x
and then we can construct A, = A, U Az,

» Similarly if z is a minimal point.

Whenever max(X) and min(X) are finite, we will stop adding points to A, in
the moment which we add a point a € A, such that both maximals and both
minimals of a are repeated in A,, so A, is finite.

Theorem |4.4.10 proof. = First for every x € X, we construct A, which is
P-core

s If f € Nyea, v, Uy, then fla, =ida,.
To show this, suppose the converse, that is, da € A, such that f(a) < a,
so a is not a minimal point so there exist a minimal point n € A,,n <
a, f(a) = n.Since n € A, so f(n) < n, and n is minimal, so f(n) = n. by
continuity of f, f(n) £ f(a). We have the contradiction n = f(n) < f(a)
but f(a) »~ n.

» For every z, the set [z, u,] is an open neighbourhood of idy in C(X, X)
by Corollary 4.4.11. We have the following two cases guarantee that the

set (),ca, [y, uy] is open.

1. If X is finite bounded spase, then A, is finite and the set (), 4 [y, 1,
is a finite intersection of open set which is open in C(X, X).

2. If C(X, X) is Alexandroff space, then any intersection of open sets
is open, so ﬂyeAw [y, u,] is open even if A, infinite set.
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= To show (,c4, [y, u,] is a closed set, let g & [, c4 [y, uyl, this mean
g¢{feCX,X), fly) <y, Yy € A}, so Ja € A, such that g(a) = a

or g(a) » a. We have:

e If g(a) 2 a, so a is not a maximal so Im € max(X),m 2 a,
g(a). If g(m) < m, by continuity of g, we have m = g(a) < g( )
m a contradiction, so g(m) ;E m.

[IA %

But m is a maximal then m i g(m).
Hence g(m) ~ m. Now take O the open set [m, Uy

o If g(a) » a, take O the open set [a, Uy

When O = [m, Uy ], suppose to contrary that there exist

feC(X,X), f€m Ul () lv:U))

so f(m) < g(m). And Yy € A,, f(y) = y (as we proof above). But
)

me A, so_ f(m) = m, we have the contradiction m < g(m) » m. So

i, Ug(m)] () [v. T) = ¢
So
€ [m, Uy(m)] € ([ [y, Uy))°

yEAL

Similarly for the case O = [a, Uy(q)).
So g €0 C (Nyea,lv, Uy And ﬂyeA ly,U,] is clopen set in X.

= The connected component of id, is subset of the the quasi component of
idx (= the intersection of all clopen sets containing idy). It follows that
the quasi-component which is contained in (,cx ,ea, [¥; uy] = idx. by
Lemma [£.4.12] there is no map in C'(X, X) homotopic to idx other than

ZdX
[

Theorem 4.4.15. Suppose X and Y are Alexandroff spaces, and suppose that
they both have finite bounded C-cores X¢ and Y¢ . Then X is homotopy equi-
valent to Y if and only if X is homeomorphic to Y.
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Proof. Suppose that X, Y are homotopy equivalent, also from Theorem [4.2.9
X, X¢ are homotopy equivalent and Y, Y¢ are homotopy equivalent, so X,
Y® are homotopy equivalent and hence there exist two continuous function
f: XY —Y%and g:YY — X% such that fog~idyc and go f ~ idxc.
Since X¢ is finite bounded C-core and fog: X¢ — X%, by Theorem m
fog=1idyc and similarly f o g = idyc, so we have the homeomorphism.

Conversely, suppose X¢ and Y¢ are homeomorphism, and every homeomorphism
is a special case of homotopy equivalent, and every space is homotopy equiva-
lent to it’s P-core, so X homotopy equivalent to Y. O

4.5. Between topological spaces and simplicial
complex

McCord [32] investigated the relationship between Alexandroff spaces and
simplicial complexes, as the following.

s If we have an Alexandroff space X, the associated simplicial complex
K(X) called order complex which it’s simplices are the non-empty finite
chains of X, so points of X represent vertices in the complex IC(X).

= Conversely, If we have a simplicial complex K, we define the associated
finite space X (K) as the preorder of simplices of K ordered by inclusion.
Since if we have two simplices 0,7 € K such that ¢ C 7,7 C ¢ then
o =T, so this preorder over X(K) is a poset.

Example 4.5.1. Let the following Hasse diagram represent a finite space.
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I

Figura 4.8: Finite Alexandroff space X.

Then the associated complex IC(X) spanned by {v.vq0p, VgUaVp, Vv, }

Uq Ve

Vq

Up

Figura 4.9: The associated simplicial complex KC(X).

Starting with the simplicial complex K(X), if we want to construct the

associated finite space X' = X(K(X)) for this complex, we will not have the
original space X, as follows:

The simplices in the complex will represented as points in the space X' ordered
by inclusion.
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Figura 4.10: The associated finite space X (IC(X)).

Theorem 4.5.2. Let X and Y be finite Ty-spaces.

If f : X — Y is an order preserving map, then f induces a simplicial map
K(f) between K(X) and IC(Y') which coincides with f on vertices.

If two maps f,g : X — Y homotopic, then the simplicial maps K(f),K(g) :
K(X) — K(Y) lie in the same contiguity class. In particular [IC(f)|, |K(g)]
are homotopic.

In the other direction, we have the following result.

Theorem 4.5.3. |7/ Let K and L be finite simplicial complezxes.

A simplicial map ¢ : K — L induces a continuous map X(p) : X(K) —
X (L), where X(p)(0) = p(0) for every simplex o of K.

Let p,1p : K — L be simplicial maps which lie in the same contiguity class.
Then X (p) ~ X ().

T. Osaki [38] is the first mathematician who investigated the relationship
between finite spaces and simplicial complexs with the same simple homotopy
types, he proofed the following.

Theorem 4.5.4. Let X be finite Ty-space, if v € X is a beat point, then we
can elementary collapse K(X).

Moreover, if two finite Ty-spaces, X andY are homotopy equivalent, their asso-
ciated simplicial complezes, K(X) and IC(Y'), have the same simple homotopy

type.
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Next, we show similar result for strong collapse.

Lemma 4.5.5. Let X be finite Ty-space, if x € X is a beat point, then we can
elementary strong collapse KC(X).

Proof. Let a,b € X, and a an up-beat point under the b, by definition for
every point ¢ comparable with a, c is also comparable with b, so if any chain
C' contains a, we have that C'U {b} also a chain.

Now let we construct the associated simplicial complex K(X), and Let v,, v, be
the correspondence vertices in (X)) of a,b € X. We have that any maximal
simplex in K(X) (chain in X) which contains v, also contains v,, so v, is
dominated by v, and IC(X) N\, K(X) \ v,. O

More relations between both concepts simplicial complexes and finite spaces
will be given in next theorems.

Theorem 4.5.6. s [If two finite Ty-spaces X, Y are homotopy equivalent,
their associated complexes K(X), K(Y) have the same strong homotopy

type.

s [ftwo complexes K, L have the same strong homotopy type, the associated
finite spaces X(K) and X (L) are homotopy equivalent

w Let K and L be two simplicial complezes. If X(K) and X (L) are homo-
topy equivalent, then K and L have the same strong homotopy type.

s Let X be a finite Ty-space. Then X is a B-core finite space if and only iof
K(X) is a core complex.

Since two finite Ty-spaces are homotopy equivalent if and only if one of them
can be obtained from the other just by removing and adding beat points. Thus,
the notion of B-collapse of finite spaces that would follow from the notion of
strong collapse coincides with the usual notion of homotopy types.

Many other results have been stated in [6], [32] and [30], which discuses more
relations between a finite space X and the associated simplicial complex IC(X)
also between X and the geometric realization |[K(X)|, and visa verse.
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Future work

Remark 4.5.7. We are trying to develop more results, which will publish soon,
where we are trying to generalize some results over infinite space using P-
collapse concepts, instead of finite space, we discuss the following:

1. If we have an infinite Alexandroff space X, we discuss the existence of
P-core, under some conditions.

2. For a fixed point a € X, we define the upper p-dominated point and lower
p-dominated point, where both of them is unique for every point a, also
we define the maximum contraction set for a point a.

3. we develop an algorithm to find the upper p-dominated point and the
lower p-dominated point for every point a € X.

4. In an Alexandroff space X, if a point a p™dominated by b with the con-
traction set A%, = {s : a < s S b}, then we discussed the relations
between vy, vy and vy for all s € A;rb. which are the corresponding vertices

in K(X).

Similarly, starting with a simplicial complex K, we trying to determi-
ne the relations between points in X (K) corresponding to free faces and
dominated vertices in K, also edges which can edge collapsed in K.



Chapter 5

Directed graph and Directed cyclic
graph

5.1. Preliminaries

In this chapter we interest in a special kind of graphs called cyclic graphs
introduced by Adamaszek, Michael, and Henry Adams |2]| In their work they
also state the the notion -ve dominated vertex. We will state a correspondence
definition called +wve dominated vertex, and study their relations, then in sec-
tion two, we will study the relations between cyclic graph and preorders and
the domination in both concepts. In section three, we state some algorithms
to determine cyclic graphs and determine -ve dominated vertices using the
adjacency matrix of the graph.

Definition 5.1.1. [2/ a directed graph is a pair a = (V,E) with V the set
of vertices and E C 'V XV the set of directed edges. The edge (v, w) from v to
w will denoted by v — w, such that the edge v — v not belong to E (no loops)
and if v —w € E, then w — v & E (no edges oriented in both directions).
For a vertexr v € V', we denote:

N+(8,v):{w:v—>w}, N_(a,v):{w:w—mj}.
N[ o] = {w:v— wlU o), N[C,0]={w:w— v}U{v}

119
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Definition 5.1.2. A directed graph 8 is called cyclic if its vertices can be
arranged in a cyclic order vo < --- < v,_1 subject to the following condition:
if there is a directed edge v; — v;, then either j = (i + 1) mod n or there are
directed edges

Vi = V(j—1) mod n and V(i+1) mod n —7 Vj-

In the future all arithmetic operations on the vertex indices are understood
to be reduced modulo n; for instance we will write simply vix for v(itx) mod n-

Example 5.1.3. We show on the left a cycle directed graph. The graph on
the middle is not cyclic neither in the order shown, nor in the 4! other orders
generated by the same edges with changing the order in vertices. Note that it’s
not necessary to check all of these orders, since we can reduce these 24 orders
to 41/4 orders because the indexes of vertices are reduced modulo n=/.

Figura 5.1: Cyclic and not cyclic graphs

On the right another order of vertices for the graph on the middle, but we can
wgnore this order, since both graphs represent the same order modulo n.

For instance, we want to denote the directed graph by 8, and use G to
denote the undirected graph induced from G by removing the orientations.
We mean by an induced subgraph of a graph G that is another graph, formed

from a subset of the vertices of G and all of the edges connecting pairs of
vertices in that subset.
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Lemma 5.1.4. [2] Suppose 8 18 a cyclic graph with n vertices in cyclic order
vy < -+ < Up_1. Then:

1. For everyi=0,--- ,n — 1, there exist p(i),e(i) > 0 such that:
N+[87Ui} = {%Uiﬂ, e 7Up(i)}7 N_[aﬂh'] = {Ue(i)7 e ,Uzel,vz‘}-
2. For everyt=0,...,n — 1, we have inclusions
Nﬂa,vi) C N*[a,viﬂ], N*(a,viﬂ) C N*[a,vi]

3. Bvery induced sub-graph of 8 18 a cyclic graph.

4. If 8 contains a directed cycle then v; — vy for alli=0,--- ,n—1.

Next we show that each of condition 1 and 2 in the previous lemma is
equivalent to let 8 be cyclic.

Proposition 5.1.5. The following are equivalent:
] 8 15 cyclic.
= Condition (1) in Lemmal[5.1.4
» Condition (2) in Lemmal[5.1.4)

Proof.

- I G s cyclic, then condition(1) and condition (2) follow directly from
the definition

» Suppose that condition(1) holds, such that for every i = 0,--- ,n — 1,
there exist p(i), e(i) > 0 such that:

N+[87 UZ'] = {Ui7vi+17 e 7Up(i)}7 N7[87 Ui] = {Ue(i)u c 5, Vi, Ui}

First, it is possible to order all vertices in 8 using the orders over each
N[v,] for all i together.
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Let v; — v; in a directed graph 8 Since v; € N*[a,vi], soj =i+t
such that i < i+t < p(i). If t = 1, then it is done.
Ift>1,theni<i+t—1<p@i)—1<pi),so

Vj—1 = Ujpg—1 € N+[8uvi]7

and v; — v;_;. Similarly, since v; € N’[a, v;], we get that j =i+ 1 or
Vit1 — Vj. S0 8 is cyclic.

» Suppose that condition(2) satisfies, such that for every i = 0,...,n — 1,
we have inclusions

N*(G o) € NY G v, N7(Guoi) € N7[Cu)

after ordering the vertices in V, let v; — v; in a directed graph 8
If j =4+ 1, then it’s done. If j — 1 # 4, then

vy € NH(G,v) € NY[G, vipl,
SO Vi1 — v;. Also
v € N~(G,v;) C N7 [G,v;.1),

so v; — vj_1, and 8 is cyclic.

m
So we can use the two conditions to characteristic the cyclic graph.
Lemma 5.1.6. If we have that i < j < k and v; — vi, then v; — v; — vg.
Proof. Since v € NT[v;] = {vi, Vig1,- -+ ,0j,-++ , U, }, then v; — v;, simi-
larly v; € N~ [vg], so v; = vy. O

Definition 5.1.7. Suppose 8 15 a cyclic graph with vertex ordering vy < --- <

Un—1-

1. A vertex v; is called +ve dominated by v;_1 (or just +ve dominated ) if
N*[G,v] = N* (T viy).
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2. A vertex v; is called -ve dominated by v,y (or just -ve dominated ) if
Nﬁ[aavi] = N7(87vi+1)-

In [2] the authors defined the -ve dominated vertex, and we state the de-
finition of +ve dominated vertex. In the following we will proof that both of
those definitions are correlative.

Example 5.1.8. For the cyclic graph shown, we have vy is +ve dominates by
vy and vy 1s -ve dominates by vs.

4 1

Figura 5.2: Cyclic graph includes a +ve and -ve dominated vertex.

We denote the induced sub-graph generates by removing a vertex v from a
—
graph 8 by G — v.
And If v; is +ve dominated % v;_1, we denote 8\1}1 the graph removing v;
by the map f : 3 — 8\%, given by:

) = { 7

Vi—1 J=t

vertex from the cyclic graph

We re-arrange the cyclic order of the vertices in the new graph 8\@1 for all
k > 1, such that the order over 8 \ v; vertices is inherit from the order over
V(a) and f preserve the order.

The graph G \ v;41 is an induces sub-graph so using Condition (3) in Lemma

5.1.4) G\v; is also a cyclic graph. Similarly for -ve dominated vertices.

Proposition 5.1.9. Ifa 15 a cyclic graph, then:
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There exist a -ve dominated vertex < There exist a +ve dominated vertex.

Moreover, the numberg +ve dominated vertices is equal to the number of -ve
dominated vertices in G .

Proof. Let v; be -ve dominated by v;,1, so N‘[a, v = N‘(a, vi+1). By Lem-
ma [5.1.4| for any j = 0,---,n — 1, N*[G,v;] = {vj,vj41, -+ ,vpj)}, where
p(]) S {07 = 1}'

Since Vv, v — v; then v — v;41, there is no vertex v; such that p(j) = i.
Then | {p(j) : v; € G} |<| V(G) |. So 3, v, such that p(l) = p(r); let it call
X,

Assume without loss of generality | < r, then by Lemma [5.1.6

NJF[B,W] ={u, 00 0 Nﬂa,vr} ={vp, 0,0}

Now it’s easy to show that for any element v; such that [ <j—1<j <r, we
have N+[8,vj} ={v;, -, v}

Hence N*[G,v;] = NT(G,v;_1), that is vj4; +ve dominated by v; when
[<j—1<j<r,

Similarly, if we have a +ve domination vertex we can construct a -ve domina-
tion.

Secondly, we should minimize the graph through finite steps -since V' is finite-
by removing in each step a one +ve dominated vertices v; together with a one
-ve dominated vertices corresponding to v;. In each step we get a new induced
subgraph which is also cyclic.

Claim: Let the vertex v; +ve dominated by v;_; in 8 . And for 5 # i, modn,
let the vertex v; is also +ve dominated in G. Then after removing the vertex

v; from 8, the vertex v; is still +ve dominated in the induced subgraph Zf\w

To show this, it is enough to test the case when j = ¢ + 1, where we have

in 8 that:
The vertex v; +ve dominated by v;_;, so N T [8, v = N*(B, Vio1).
And v; = v;41 +ve dominated by v;, so N*[G,v;41] = N*(a,vi). So

N vi] = NH(C,0) = N4 0] — v = NH(C o) — v
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Now after collapsing v; and reorder the indices of vertices in B\Ui, the vertex
v;+1 Will be the 7;h vertex, and we have :

N*[C\vs, 03] = N*(G\ws, vi1)

So, the number of +ve dominated vertices is equal to the number of -ve domi-
nated vertices in 8 O

The undirected graph is actually a 1-dimension simplicial complex.

Definition 5.1.10. /52 In an undirected graph G, and a two vertices v, w
we denote v ~ w if they are connected with an edge in G, and we denote
N ={u:v~u}U{v}.

We say, the vertex v dominated by the vertex w, if N[v] C Nw].

In the directed cyclic graph, using the order over vertices it will be easy
to check if the graph have any dominated vertices or it’s a minimal graph.
Since it’s enough to check if v; dominates only the next vertex v;;; but in the
undirected graph we need to check every vertex v with all vertices in N[v]—{v}.

Lemma 5.1.11. Ifv is +ve or -ve dominated vertex in a cyclic graph 8, then
v 1s dominated verter in G.

Proof. If v;41 is +ve dominate by v;, then N+t [8, Vit1] = N*(a,vi).
Also by Lemma m N*(a,viﬂ) - N*[a,vz-].
So N[G, Ui+1] =N+ [8, UH—I] U Ni( ,UZ‘+1) - N[G, Ui] O

The converse of the Lemma is not true as we show in the following two
examples.

Example 5.1.12. This counter example shows that if we have the cyclic graph
v — vy — v3 —> vy as a directed cycle graph. The undirected graph G contains

a dominated vertices. But 8 dose not contain any dominated vertices, because
Jor all i =1,2,3, we have ]N*[a,viﬂ]]: 2 and ]N“L(B,vi)]: L.

Also if 8 is not a cyclic graph containing a +ve or -ve dominate vertex, it
is not necessary for this vertex to be dominate in the undirected graph.
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Example 5.1.13. The following graph is not cyclic, since N*(1) € NT[2]
(using the second equivalent characteristic for cyclic graph).

4 1

Figura 5.3: Not cyclic graph.

Now, N‘[a, 1] =41, 3}, N‘(8,2) = {1, 3}, so 1 is -ve dominate by 2 in
. But in G, we have that N[1] = {1,2,3,4} € N(2).

Definition 5.1.14. /2] Suppose 8 and ﬁ are cyclic graphs, and a vertex

map f: G —

We say f is a homomorphism of directed graphs, if for every edge v — w in
either f(v) = f(w) or there is an edge f(v) — f(w) in H.

Lemma 5.1.15. Ifa is a cyclic graph and v; is +ve dominated by v;_1, then
the map f : 8 — G \v;, given by:

fwy) = { 7

Vi—1 J =1

>
s a homomorphism of directed graphs. The composition G — v; — 8 ER
\ v; is the identity.

Example 5.1.16. For the following cyclic graph 8 in the middle, we have v
1s -ve dominated by vy also vs is +ve dominated by vy, so we can remove vs in

JERREN
both cases. And by previous lemma, the composition G — vz — 3 EN 8 \ v3
18 the identity.
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Uy U1 V4 U1 (% U1

(% U3 (% Uy

Figura 5.4: Cyclic graph with a dominated vertex.

On the left G — vs, on the middle 8, on the right f(a) = 8\1}3.

In general, If the vertex v; is not a dominated vertex, So it is not true that

R
the composition G — v; — 8 i> 8 \ v; is the identity. We state the following
counter example.

—
Example 5.1.17. For this cyclic graph 8, the composition G — v3 — 8 ER
f(a) is not the identity.

U4 U1 Uy U1 Vg

U1

V2 (%] V2 V4

Figura 5.5: Cyclic graph without dominated vertices.

On the left G — vs, on the middle 8, and on the right f(a)

Remark 5.1.18. Let 8 be a cyclic graph, such that v;11 is +ve dominated by
v; in 8, Then 8 contains at least four vertices.
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Ifa consists of 3 vertices, as we shown in Example this cyclic graph

vy — vy — v3, could not contain both any +v or -ve dominated vertices v;.
Also we will avoid the following oriented edges in G\ v;:

Vi—1 — Uy — Vi1 — Vj—1

Lf

—
Vi41 — Vj—1.

So 3 contains at least 4 different vertices, and the image of f will contain at
least 3 vertices, (without oriented edges).

5.2. Relationship between directed graphs and
preorders

If we have a finite directed graph 8 = (V, E), we can construct a binary
relation < over V, by reachability, that means v < w if we can start at the
vertex v and reach the vertex w through a sequence of edges v — ... = w in

(a path), and we denote v < w by v ~ w.
This relation is reflexive since we can reach the vertex from itself by zero edges,
and transitive by reachability, so it is a preorder, denote it by X (G ) = (V, 2),
where the set of points in X (G) is the same of the set of vertices in @ which
is V.
Recall a path forms a cycle if the starting vertex of its first edge equals the
ending vertex of its last edge.
If G have no cycle so the reachability ~~ is antisymmetric and we have that
X(a) is a poset.
Now we study some relations between 8 and X(a)

Lemma 5.2.1. Let 8 be a cyclic graph with verter ordering vg < --- < v,. If
i <j <k, andv; ~ vy in X(G), then v; ~ vj ~ vy.
Proof. We have that v; ~ vy, so there is a set of vertices W = {v;, : 0 <t <

r} C 8, with a sequence of edges such that:

Ui:’UiO—>""UZ't—>Uit+l—>"'—>UiT:”Uk
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If v; = v;, for some t, done.
If not, and since ¢ < j < k, so we can find an index ¢ such that

i <iy <j<ip <k

and v, v.41 belongs to W, represent the ends vertices for an edge in this path
V; ~ V.

Now we have v;, — v;,,, and ¢, < j < 'iz1. Apply Lemma we get
Vi = Vjy =+ — Uy, —>’Uj—>1)it+l — = Vg, = U
S0 V; ~ Vj ~ Vg N

Theorem 5.2.2. If 8 1s a connected directed cyclic graph, then X(B) can
P-collapse to a point.

Proof. For any v;, v;, such that v; < v;, let vy = v;, By the order on V' and the
previous lemma,

if 7 <k then v; ~ vj ~» vy, s0 v; < vy

If k < j we have v; ~» v ~> v;, and vy, < vj.

So vg, « v; and v; is p*dominated by v;. Now by connectedness of 8, all points

in X(a) can P-collapse to a point.
]

Moreover, if 8 contains a directed cycle, so by Lemma v; = vy for
all 7, and hence each v; is an up-beat point in X (G).
As an example, the cyclic graph 8 contains of two vertices and no edge, is

not connected graph, and generates the preorder space X (G') which is not
P-collapsible space.

In the other direction, if we have a poset (X, <), we can construct a direc-
ted graph 8()% where the set of vertices equal X such that v — w if v S w.

And v =win G(X) if v =w € X to a void the existence of a loop.
We suppose that X should be a poset, since the antisymmetric property gran-
tees that G (X) do not include an oriented edges in both direction. So every
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poset can generate a directed graph.

Moreover, this directed graph have no directed cycle, suppose we have a
cyclev — ... > w — ... > vin G(X), that mean v < ... Sw < ... Sovin X,
by transitivity of £ we have v < w and w < v, by antisymmetric v = w in X,
so both X and 8()() contain of a single element.

If we want to construct a directed cyclic graph over a finite poset (X, <),
then the vertices in X needed to be arranged in a cyclic order vy, vy, --. So

first we will order the set X, and show that the directed graph 8()( ) with
this order on the vertices generates a directed cyclic graph.

For a poset (X, =), construct a linear order < on X, such that

» For any z,y € X, x £ y implies © = v; and y = v; such that i < j

» For any i < k < j, v; £ v; implies that v; < v, < v;.

Theorem 5.2.3. Let (X,=S) be a finite poset. The directed graph 8()() with
the previous order over X is cyclic.

Proof. Let v; = v; be a directed edge in B(X), so v; S vj in X where i < j.
If j =7+ 1 done.

If not we have i < k < j for some k, and so, v; < vy < v;. Since X is finite
we can repeat this step finitely repetition to get the chain v; < v;1; < ... <
vj_1 S v; in X, implies v; < v;_; and v;4; < v;. Now, since i # j + 1 we have

v; = vj_1 and vy — v, so G (X) is cyclic. O

The directed graph C?L

Definition 5.2.4. For integers n and k, with 0 < 2k < n, the directed graph
denote Cy, whose has a vertex set {vg,--- ,vn—1}, and edges v; — V(i1q) for
alli=0,--- n—1lands=1,--- k.

Also define the undirected graph C* with 0 < k < n and edges v; ~ V(its) With
s=1,--- k.
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We have three cases as follows:

cF

' since we

case 1. If 2k +1 > n, we could not construct the directed graph
have edges oriented in both direction.
But we construct C*, and all vertices are all-to-all connected, so every
two consequence vertices dominates each other.
If we remove one dominated vertex, we generate C* |, but 2k +1 >n >
n — 1, so we can dominate more vertices, we continue until we have a

vertex graph.

—

case 2. If 2k +1 = n, we can construct C¥, and this directed graph is cyclic and
dose not contain any +ve or -ve dominated vertices, because for all ¢,
INF[C, via]|= k + 1, and [N*(G,v5)|= k.
But the undirected graph C* contains dominated vertices because for
all i, N[v;] = {vig, -+, v, -+ ,vigx} so [N[v]] = 2k +1 = n =|CF|,
and thus all vertices are all-to-all connected. As case 1. we can continue
removing points until we reach a single vertex graph.

case 3. If 2k +1 < n, then both 675 and C* will not have any dominated vertices
(in this case the graph is called as a minimal graph or a core).

Similarly as Case 2. we can proof that C) is minimal graph.
Also the undirected graph C* is minimal, since v;_j, ¢ N[v;y1] Vi, and
hence

N[Uz’] = {Ui—kza Vigl—ks " 5 Vgm0 7Ui+k} SZ N[Ui+1] = {Uz’+l—k> T 5 Ui U st ,Uz'+1+k}-
It is easy to proof the following Lemma.

Lemma 5.2.5. Let 8 be a cyclic graph
—
(a.) If Vi, |N+[8,vi}| =k, where k is a constant, then q =~ C’(“G'

—
(b.) If Vi, |N‘[8,vi}| =k, where k is a constant, then a =~ C(‘CG|

Definition 5.2.6. We say a cyclic graph 8 dismantles to an induced subgraph
if there is a sequence of graphs = Gy, Gy, ...,G4 = such that G; is
obtained from G;_y by removing a +ve or -ve dominated vertex fori=1,...,s.
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In next proposition, The first statement (a.) is proved in |2], we will gene-
ralise it for the +ve dominated vertices in (b.), then we show the relation in

(c.).
Proposition 5.2.7. Let 8 be a cyclic graph

(a.) 8 without -ve dominated vertex is isomorphic to Cﬁn for some 0 < 2k <
n. As a consequence, every cyclic graph dismantles to an induced subgraph

of the form Cﬁn 12/,

—>
(b.) 8 without a +ve dominated vertex is isomorphic to C! for some 0 <
2l <m. As a consequence, every cyclic graph dismantles to an induced

subgraph of the form C! .

Since the number of +ve dominated vertices is equal to the number of -ve
dominated vertices as we shown in Proposition [5.1.9} so we have n = m.

5.3. Adjacency matrix and algorithims

We can represent any graph by an adjacency matrix with entry (i,7) = 1
when the vertex ¢ — 7, and zero entries elsewhere. So the row ¢ show all
vertices j such that ¢ — j and the column j show all vertices ¢ such that
1 — j. Now we want to answer the following:

Q1 If we have a graph with an order on it vertices, how we can detect if this
order yield to a cyclic graph by using the adjacency matrix?

Q2 How we can determine the dominated vertices in a cyclic graph using the
adjacency matrix?

If we have an adjacency matrix represent a directed graph 8 = (V, FE) with n
orderd vertices, and we want to check if the chosen order -represented in this

matrix- will give us a cyclic graph, the matrix should agree with the following:

1. For any row say i, the entry (i,7) must be zero.
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2. If there exist 1’s in row ¢, this 1’s must start from the second entry
(7,7 + 1), since if the vertex i go to some other vertices then firstly it
must go to the vertex ¢ + 1.

3. When we permute this row to start from the first one in the entry (7, 7+1),
all 1’s must be consecutive (without gabs)

Similar way for every column.

The proof depends on Proposition that gives the following characte-
ristic for cyclic graph
For every i = 0,--- ,n — 1, there exist p(i), e(i) > 0 such that:

N*[B,vi] = {vi, Vig1, -+~ ,Up(z‘)}~
N[O 0] = {0e(d), - s vs1, 01},

The result about rows follows from the first equation, and the result about
columns follows from the second equation.

Next we state an algorithm to translate this result and determine if an
adjacency matrix can represent a cyclic graph or not.
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Algorithm 5: Determine if an adjacency matrix can represent a cyclic
graph

© 0 N O ok W N =

Lo e e i e e = T S = S Y
© ® N O bk Wy = O

20

21
22

23
24

Data: Adjacency matrix M of a directed graph

n= number of rows in M
initialize i = 0
Error =0
while i <n and Error =0 do
N*[i] = {j: M(i,7) # 0}
pli] = Length N*[{]
if p[Z] > (0// Test: the i-th row satisfy the cyclic condition
then
for (je{l,---,pli}) {
Let t = (i + j) %n // modulo n
if M[i,t]! =1 then
‘ Error = Error +1
end
}
i=1i+1
else
| it
end
end

Result: 8 is cyclic or not cyclic
if Error= 0 then

‘ Print(a is a cyclic graph)
else

‘ Print(a is not a cyclic graph)
end

1’s

We can make changes on the matrix to generate a cyclic graph by adding
in some entries to fill the gaps as we show in the next example.
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Example 5.3.1. In this matriz we can observe that it can’t represent a cyclic
graph for two reasons.

Row 1, which is (0,1,0,1) have a non consecutive 1°s.

Row 2, which is (0,0,1,0), the first 1 not in the entry (i,i+ 1).

But we can convert this matriz to represent a cyclic graphs by filling both red
gaps by ones.

end point
start point L1234
1 0]1(0]1
2 000 |1
3 110101
4 00| 010

Cuadro 5.1: Adjacency matrix.

To answer Question 2. and if we have a adjacency matrix represent a di-
rected graph without ordering it’s vertices, we want to rewrite this matrix to
detect if there is an order over the vertices makes the graph cyclic Through
the following algorithm, first we select any vertex to be the first one in the
new order, we can start with an arbitrary vertex since the order is modulo n.
We will search in N*(v) for the next vertex by test which vertex w € NT(v)
is the next one, that’s happens if:

INT(0) A NT(w)| = [NT(v)] =1

This clear from Proposition 5.1.5 because N (v) C N*[w], if v is the followed
directly by w in the order.

Then we repeat this steps to trying order all vertices, otherwise we will
have an Error.

If we success to order all the vertices, then we will apply Algorithm 1. to
check if the new order over the vertices represent a cyclic graph
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Algorithm 6: Reorder a adjacency matrix to check if it can represent
a directed cyclic graph. Main Part.

Result: Determine a matrix have a cyclic order?

Data: Adjacency matrix M of a graph.

Set Vertices = all vertices of the graph in the original positions.
Denote O(x) to be the new position of the vertex x.

Set N*(z) ={y: M[z,y] =1}

Set N~ (z) ={y: M[y,z] =1}

Pick v € Vertices // to start with it

Set ()(v) =0 // We can permute the order mod n to start with an

S Uk W =

arbitrary vertex.
Let x =v
s while x in Vertices do

9 if N*(z)! = ¢ then

N

10 ‘ Apply Function Search in the row x.
11 end
// If we do not find yet the next vertex and Vertices didn’t
change
12 if N~ (z)! = ¢ then
13 ‘ Apply Function Search in the column x
14 end
15 end
16 if Vertices=¢ then
17 ‘ Print {all vertices are ordered}.
18 else
19 ‘ Print {Erorr. This matrix cannot represent a cyclic graph}.
20 end

21 Now apply Algorithm [5(. to check if this matrix over the new order represent
a cyclic graph empty from gaps and permutation of edges
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Algorithm 7: Reorder an adjacency matrix to check if it represent a
directed cyclic graph Function 1.
Result: Reordering the vertices in a cyclic order.
Data: Adjacency matrix M
/* We search in row x for the next vertices i,e finding v, — v. */
25 Function Search in the row x (z, Vertices, O):

26 Original(z) = ;

27 Let t = O(x);

28 | Let N=NT(x);

29 for ( vin N and v not in Verlices // to avoid ordering a vertex

ordered before and to break the loop.

so | ) {

31 Is NN N*t(v)| == |N|—1;

32 if yes then

33 O(v) =t+ 1// ordering v.

34 Vertices= Vertices—{v}// So v will not ordered again.

35 T = v// Change x to v

36 N = N+(ZL’)// we will search for the next vertex of the
new .

37 Repeat the For loop from the beginning with the new data;

38 else

39 L Complete the for loop to test the next v.

40 if Vertices = ¢// all vertices ordered

41 then

42 ‘ Break.;

43 else

44 Set x = Original(x)// Then we will test the previouse element

L of x in the next step, i,e finding v,v — x.
45 return z, Vertices, O;
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Algorithm 8: Reorder an adjacency matrix to check if it represent a
directed cyclic graph Function 2.
Result: Reordering the vertices in a cyclic order.
Data: Adjacency matrix M.
/* Now, we are trying to order vertices in the column of z */
25 Function Search in the row x (z, Vertices, O):

26 Let t = O(x);

27 Let N =N — (z);

28 for ( v in N and v not in Vertices // To avoid ordering a vertex

ordered before and to break the loop.

w | )

30 Is  NNN~(v)] == |N|—1;

31 if yes then

32 O(v) =t —1// ordering v.

33 Vertices= Vertices—{v}// So v will not ordered again.

34 T = v// Change z to v.

35 N = N_(J?)// We will search for the next vertex of the
new x.

36 Repeat the For loop from the beginning with the new data;

37 else

38 L Complete the for loop to test the next v;

39 Break, if Vertices = ¢// all vertices ordered.

40 return x, Vertices, O;
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To answer the third question. Firstly, we will detect if an adjacency matrix
of cyclic graph contain a +ve or -ve dominated vertices, then we will dismantle
the cyclic graph
We will check if two consequence rows 7,72 — 1 have their last ones lying in the
same column, then we have that the vertex ¢ is +ve dominated by the vertex

1 — 1, and we remove 7 from G.

N*[, i) = N*(C,i—1)
Or we will check if two consequence columns 7,7 + 1 have their first ones lying

in the same row, then we have that the vertex 7 is -ve dominated by the vertex
1+ 1, and we remove ¢ from G'.

N-[Gi]=N-(C,i+1)

So if we want to detect the +ve dominated points, we check the rows. And to
test the -ve dominated point, we check the column.

Secondly, we will dismantle the graph, for example if we find a vertex v; +ve
dominated vertices by v;_; we will delete the i-th row.

Also we will delete the i-th column, we can do this because N‘(B,i) -

N[G.i—1].

end point albleldlts
start
a 0/1{0]01]0
b 001|110
¢ 0j]0]0]1]0
d 0/]0[0]0 |1
f 110(0] 010

Cuadro 5.2: Adjacency matrix.

Example 5.3.2. In Table 2, the vertex ¢ +ve dominated by b since the last
ones in both ¢ row and b row lies on the same column.
The column c, d start their one’s entry at the same rows, so ¢ -ve domination
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by d.
We dismantle the graph by removing the point c, so we delete the column and
the row label with c.
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Algorithm 9: How to determine the dominated vertices in a directed
cyclic graph and then minimise the graph

/* Detect the +ve dominated vertices by check the rows */

Result: Determine 671 by dismantles 8
Data: Adjacency matrix M of a directed cyclic graph

1 n= number of rows in M

2 Set 7 =0 // counter for rows

3

4 for ( 1€[0,n] ) {

s | N[i]={j: M(i,j) # 0}

6 | L[i] = Length NJi]

7 if L >0 then

8 M[(i+1) méd n, (i + L[i] + 1) méd n] =0 // finding a
dominated vertex

9 Print (i + 1 is +ve dominated by )

10 Redefine M by deleting row ¢ + 1 and column ¢ + 1 // minimize
the matrix

11 1 =1 // To check the vertex i with its new next vertex in the
new matrix

12 else

13 ‘ 1=1+1

14 end

15 }
16 k= L[O]// Now, the Length for all rows is the same.

ch

n

17 8 dismantles to an induced sub graph of the form
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Apéndice A

Resumo

A.1. Antecedentes

As nocions de homotopia, equivalencia de homotopia e tipo de homotopia
son os conceptos centrais na Teoria da Homotopia. Desafortunadamente, dados
dous espazos, é moi dificil decidir se son ou no homotépicamente equivalentes.

Nas décadas de 1930 e 1940, o enfoque deste problema era aplicar algin tipo
de método combinatorio aos complexos simpliciais simbolicos (agora conecido
como complexos simpliciais abstractos). Seguindo este enfoque e o formalismo
dado por J. W. Alexander no seu artigo Combinatorial Analysis Situs de 1926,
en 1938 J.H.C. Whitehead iniciou, co seu traballo Simplical Spaces, nuclei
and m-Groups, unha serie de artigos moi importantes neste area. No primeiro
introduciu a nocién de colapso elemental e ntcleo dun complexo simplicial
e culminou a sua serie en 1950 introducindo a nocién de homotopia simple
dun tipo de espazos chamados CW, que definiu para solventar os problemas
técnicos que atopou traballando con complexos simpliciales.

Na nosa historia, 1966 é un ano moi especial, porque se publicaron dous
artigos seminales. No primeiro, debido a R. E. Stong Finite Topological Spaces
destacouse que vale a pena estudar os espazos finitos desde o punto de vista
topoloxico. En particular, Stong comentou no seu artigo que dado un espazo
topoloxico finito, X, cada punto z € X ten un conxunto aberto minimo U,
que o contén (a interseccion de cada conxunto aberto que contén ), esta idea
permitiulle introducir unha orde parcial en X e definir os puntos lineais e

151
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colineales (agora chamados beat points) como:
Definition (Stong 1966). Seza F' un espazo topoldzico finito.

(i) x € F ¢é lineal se Jy > x tal que se z > x entdn z >y

(i) x € F ¢é colineal se Iy < x tal que if z < x entdn z <y

Stong demostrou que a eliminacion e inclusiéon de beat points xera todas as
equivalencias de homotopia entre espazos finitos (punteados). E dicir, dous
espazos finitos son homotopicamente equivalentes se e s6 se podense obter un
doutro eliminando ou engadindo sucesivamente beat points.

O outro artigo de 1966 que nos interesa débese a Michael C. McCord (Sin-
gular Homology Groups And Homotopy Groups of Finite Topological Spaces).
Nel, o autor relacionou espazos topoloxicos finitos co complexo simplicial finito
dun xeito funtorial. Entén demostrou o seguinte teorema

Theorem (McCord 1966).

(i) Para cada espazo topoldzico finito X existe un complexo simplicial finito
K(X) e unha equivalencia débil de homotopia f :|K(X)— X.

(ii) Para cada complexo simplicial finito K existe un espazo topoldzico finito
X e unha equivalencia débil de homotopia f :|K(X)|— X.

Cabe soulinar que a idea principal das correspondencias no teorema ante-
rior xa estaba contido nun artigo de 1937 onde P. S. Alexandroff, introduciu
o "Diskrete Raume" (espazo discreto), agora conecido como espazo de Alexan-
droff (A-espazo), que no é mais que un espazo topoloxico onde a interseccion
arbitraria de conxuntos abertos ¢ tamén un conxunto aberto. En particular, un
espazo topoloxico finito é un espazo de Alexandroff. Cabe destacar que 1966
foi tamén o ano de publicacion do libro de Spanier "Topoloxia alxebraica", un
dos libros mais leidos e citados na area.

En 2008, Jonathan Ariel Barmak, Elias Gabriel Minian no seu artigo "Tipo
de homotopia simple e espazos finitos"fusionaron as ideas de Whitehead, Stong
e McCord e presentaron unha nova aproximacion 4 teoria de homotopia simple
de poliedros utilizando espazos topoloxicos finitos e introducindo a siguinte
nociéon de weak beat points como una xeneralizacién da nocion de Stong de
beat points.
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Definition (Definicion 3.2 Barmak-Minian 2008 ). Sexa X un espazo Ty finito.
Diremos que x € X un weak beat point de X (ou un weak point para abreviar)
se U, é contraible ou F, é contraible. No primeiro caso dicimos que x € un
down weak point e no sequndo, que x € un up weak point.

onde U, (F, ) indica os puntos de X maiores (menores) que z cando conside-
ramos en X a orde previa dada pola topoloxia.

Este novo concepto permitiulles introducir o concepto de colapso dun es-
pazo finito e demostraron que esta nova nocion corresponde exactamente ao
concepto de colapso simplicial introducido por Whitehead. Mais precisamente,
demostraron que un colapso X \, Y de espazos finitos induce un colapso sim-
ple K(X) N\ K(Y) dos seus complexos simpliciais asociados. Ademais, tamén
demostraron que un colapso simple K \, L induce un colapso X (K) \, X (L)
dos espazos finitos asociados. Deste xeito estableceron unha correspondencia
un a un entre os tipos simples de homotopia de complexos simpliciais finitos e
as clases de equivalencia simple de espazos finitos.

Pero con esta idea moi boa dos puntos débiles (weak points), ao usar méto-
dos combinatorios, obtemos s6 unha minima parte da homotopia dos poliedros
cando pensamos que son espazos topoldxicos, polo que hai que atopar unha
nova idea combinatoria. Non houbo que esperar moito tempo porque en 2012
ambos os autores (Minian e Barmak) conseguiron introducir o concepto de
colapso forte, un tipo particular de colapso simple. A vantaxe de usar colapsos
fortes é a existencia e a unicidade dos nucleos (propiedade que non tefien os
niicleos introducidos por Whitehead en 1938)

O obxectivo principal, pero non o Gnico, da mina investigacion é compren-
der estes conceptos e melloralos na medida do posible. A topoloxia compu-
tacional a mina outra fonte de interese nesta tesis. A continuaciéon explicarei
un pouco de que se trata.

E obvio para calquera observador que a enorme mellora da tecnoloxia (or-
denadores, sensores e comunicacions) nas ultimas décadas, produciu e esta a
producir un gran impacto nas matematicas. Hai moitos matematicos que tra-
ballan na analise de datos, aprendizaxe automatica e técnicas relacionadas.
Sorprendentemente (ou non) este impacto tamén chegou a algo tan abstracto
como a topoloxia alxébrica. Dende que comezou este século XXI hai un intere-
se crecente na Andlise Topoloxico de Datos e na Topoloxia Computacional.
Para usar ordenadores para estudar espazos topoléxicos ou nubes de datos
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con métodos topoloxicos é necesario codificalos como un obxecto combinatorio
e o mellor candidato é o complexo simplicial é. Asi podemos asociar a unha
nube de puntos un complexo simplicial e mediante a homoloxia persistente
codificar a nube de puntos como un cé6digo de barras ou un diagrama de
persistencia que permite extraer unha informacién interesante dos datos.

Pero un complexo simplicial asociado aos datos pode ser enorme e as
computadoras non tefien o poder suficiente para xestionalo polo que os co-
lapsos, como os que describimos nesta tese, pédense usar para reducir a com-
plexidade do problema.

Asi mesmo, as técnicas computacionais poden axudar a comprender un
concepto matemético ou a facer exemplos ou matematicas experimentales", e
neste sentido nesta tesis desenei varios algoritmos para axudar 4s investigacions
a estudar varias propiedades do complexo simplicial ou de grafos (un complexo
simplicial de dimensién 1).

Istos eran os dous temas que me interesban cando comecei a mina tese e
tina os seguintes obxectivos e hipoteses.

A.2. Obxectivos e hipoteses

A nocién de beat point introducida por Stong no contexto de espazos
finitos podese xeneralizar aos espazos de Alexandroff. Polo tanto, o obxectivo
principal desta tese é:

Introducir e estudar a nova nociéon de punto dominado nun espazo de
Alexandroff como xeneralizacién dos beat points.

En segundo lugar, teno outros dous obxectivos:

1. Probar varios novos resultados sobre matroides, complexos simpliciais e
espazos de Alexandroff, a maioria relacionados coa nocién de colapsibi-
lidade.

2. Desenar algoritmos tutiles para facilitar o estudo da colapsibilidade dun
complexo simplicial o nun grafo.
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A.3. Metodoloxia

Nesta tese utilicei o método tradicional de investigacion en matematicas.
Nunha primeira etapa estudamos en profundidade o que est& publicado relacio-
nado co tema de interese. Desta forma adquirese a destreza e as inspiracions dos
expertos no tema. A continuacion, coas destrezas adquiridas, téntase mellorar
os resultados de acordo cos obxectivos que un se propuxo. E un proceso longo
e complexo, con avances e retrocesos debidos aos erros detectados nas novas
demostracions ou no inadecuado dos novos conceptos que se quere introducir.
Este debate interno contrastase e modula coa opinion do director da tese dou-
toral e outros matemaéticos interesados no tema. Aos poucos vaise construindo
unha pequena teoria matematica como a que plasmo neste documento.

A.4. Conclusiones

Introduzo e estudo a nocién de punto P-dominado nun espazo de Alexan-
droff como unha xeneralizacion dos beat points (ver capitulo 4) e demostro
que é unha boa xeneralizacién dos dito concepto.

Os outros dous obxectivos conséguense desefiando varios algoritmos (vease
os capitulos 2, 3 é 4) e probando varios resultados relacionados coa colapsibili-
dade, os espazos de Alexandroff e os matroides como podedse ver ao longo desta
tese. A continuacion explicase con mais detalle as conclusions presentadas en
cada capitulo.

A.5. Resumo dos contidos por capitulos

No primeiro capitulo introduciremos algtins preliminares sobre a homo-
topia e o tipo de homotopia. Estudaremos estes dous conceptos sobre unha
estrutura interesante chamada complero simplicial. Estudaremos o complexo
simplicial de dias formas: en primeiro lugar de forma xeométrica onde un com-
plexo simplicial é un espazo topoloxico construido "pegando"puntos, arestas,
tridngulos e as stias contrapartes n-dimensionais e en segundo lugar nunha com-
binatoria, onde o complexo simplicial abstracto é unha familia de conxuntos,
chamados simplices, que esta pechada baixo a acciéon de tomar subconxuntos.
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Estudamos as relacions entre ambas as definicions e como pasamos dunha a
outra. Tamén lembraremos que certas aplicacions chamados simplicial maps
entre dous complexos simpliciais (combinatorios) dannos aplicacions continuas
entre os complexos simpliciais xeométricos asociados. Usando o concepto de
homotopia podemos poner duaas funciéns entre espazos topoloxicos na mesma
equivalencia clase, esta idea podese transferir a complexos simpliciais usando a
nocion de clases de contigiiidade que da unha forma construtiva de homotopia
aplicable a mapas simpliciais a nivel de realizacidons xeométricas.

No segundo capitulo, lembramos un procedemento inventado por J. H. C.
Whitehead en 1938, que é o primeiro intento de clasificar homotopicamente
os complexos simpliciais en clases equivalentes. A sta famosa estratexia foi
minimizar e simplificar complexos simpliciais finitos mediante unha secuencia
de simples eliminando chamada caras libres para acadar un complexo minimo
chamado o niicleo, esta operacion chamado O Colapso, asume que os complexos
simples pertencen ao mesmo clase equivalente se tefien nicleos isomorficos.
Pero este intento non éxito xa que hai moitos nticleos do mesmo complexo
dependendo dos pasos de eliminar as caras libres e eses niicleos non son tinicos
salvo isomorfismo,

En 2012, Barmak e Miniam lograron aplicar esta idea, para minimizar e sim-
plificar complexos simpliciais finitos usando unha estratexia chamada colapso
forte que trataremos na Seccion 2.2. dependendo de eliminar un vértices domi-
nados. Un terceiro procedemento chamado contraccions de aresta foi estudado
inicialmente en topoloxia por Walkup en 1970. Neste capitulo compararemos
os tres tipos.

Para terminar el capitulo na seccién 2.3 e na secciéon 2.5, indicaremos dous
algoritmos para particionar os simples maximos que cobren o complexo simpli-
cial en subcomplexos, cada subcomplexo pode colapsar forte/colapso de bordo
ata un punto. o nimero destes subcomplexos serd un limite superior de Gsca-
t/Ecat. Cada algoritmo mostra unha estratexia diferente para realizar o colap-
so forte, e cada algoritmo estd codificado usando o programa Python, algtns
exemplos famosos aplicanse cos programas.
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O terceiro capitulo esta dedicado a estudar as construcions do capitulo dous
nos matroides. Lembre que os matroides foron introducidos e nomeados por H.
Whitney en 1935 como xeneralizacién abstracta de matrices. A sta realizacion
como complexo simplcial é moi sinxela desde o punto de vista homotopico
xa que son homotdpicos equivalentes a cunas de esferas, pero segue sendo
interesante dende o punto de vista "homotdpico combinatorio". Demostramos
que as clases de matroides estan pechadas ao borrar un punto ou contraer una
aresta. Tamén demostramos o seguinte

Theorem. Se a interseccion do conzunto de mdximales dun matroide é
non valeira, enton non podemos colapsar de manera fuerte dicho matroide.
Sexa B(M) = {F; : i € A} a base dun matroid M. Si (g Fi = ¢, enton M

no ten vértices dominados, o que significa que M é un nicleo.

Theorem. Sexa M un matroide con base B(M) = {F; : i € A} tal que
|| = n, e sexa e un vértice in V (M), enton as sequintes afirmacions son
equivalentes:

a. e € ea Fi-

b. M N\ {e}.

c. M N, {e}.

d. Existe unha cara libre.

e. Ezisten vértices dominados.

Polo tanto, chegamos d conclusion de que cada matroide é un nicleo ou é
fortemente colapsable ata un punto. Na parte d. para calquera F; mdximo,
(F;, Fi\e) zera unha cara libre.

No Teorema 3.1.4. demostramos que as seguintes afirmaciéons son equiva-
lentes:

a. A interseccion dos conxuntos maximais non estd baleira, digamos e, per-
tence a esta interseccion.
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b. O matroide pode colapsar ata o punto e

¢. O matroide pode colapsar forte ata o punto e
d. Existe unha cara libre.

e. Existe un vértice dominado.

No apartado 3.3. mostramos que ao contraer unha aresta dun matroide
déase un novo matroide. entén mostramos que o teorema 3.1.4 non é certo para
0 7’edge contractiéon". terminaremos con un algoritmo para particionar os mé-
ximos de matroides en submatroides fortemente colapsables.

Tamén este algoritmo esta codificado usando o programa Python.

O capitulo catro é o mais grande desta tese e estd dedicado a estudar a
colapsibilidade en espazos de Alexandroff non finitos. Unha relaciéon binaria
reflexiva e transitiva é chamada unha preorde. Unha pre orde é unha orde
parcial se ademais € antisimétrica. Chamaremos (poset a un conxunto con
unha preorder Tamén un espazo topoldzico de Alexandroff é unha topoloxia
onde a intersecciéon de calquera familia de conxuntos abertos é aberta.

Se temos algin espazo topoloxico, podemos asociar unha relaciéon de preorde
sobre o conxunto dos abertos (e decir sobre a sua topoloxia) usando a inclusion.
Se esta topoloxia é espazo de Alexandroff, a preorde definida chamase preorde
de especializacion, e se a topoloxia é un espazo Ty entén a stia preorder é un
poset. En realidade, hai unha equivalencia entre as preordes e as topoloxias de
Alexandroff. McCord mostra a cada poset, pdédese asociar un complexo sim-
plicial abstracto chamado o complexo da orde. E a cada complexo simplicial
podese asociar un poset que é débilmente homotopico equivalente a el.

Stong [35] expon os conceptos de eliminar un punto especial chamado beat
points do espazo mantendo o seu tipo de homotopia, introduciu o concepto
de nicleos de espazos finitos, entéon May e Kukiela xeneralizan o seu resultado
nun espazo infinito de Alexandroff. Minimizan o espazo mediante unha secuen-
cia de pasos, en cada paso eliminan un tnico ’ beat point". Chamamos a esta
operacion un B-collapse. Kukiela clasifica a clase de espazos infinitos de Ale-
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xandroff e demostra os resultados que mostran que algtins espazos localmente
finitos podense deformar por retracciéon e de maneira forte a un ntcleo.

Definition. Sexa (X,S) un espazo de Alexandroff e a,b € X tal que
ash

1. dicimos que a estd pTdominado por b, se ¢ = a implica ¢ ~ b. Neste caso
denotaremos A%, o conzunto {s € X : a < s < b}.

2. dicimos que b estd p~dominado por a, se ¢ < b implica ¢ ~ a. Neste caso
denotaremos A, o conzunto {s € X :a < s = b}.

Un subconzunto A de X chdmase conxunto de contraccion se existen dous
puntos a,b € X tal que a é pTdominado por b, polo tanto, A = Al, ou b é
p~dominado por a, polo tanto A=A, .

Nesta definicion ampliaremos a definicion de ’ beat points" (onde elimina-
mos un s6 punto en cada paso) a unha nova definicion chamada p—dominado
(onde podemos eliminar nun paso do espazo o conxunto de contraccions (qui-
zais infinitos puntos)), chamamoslle a esta operacion P—colapso. O espazo sen
puntos dominados por P— chamado P—naicleo.

Theorem. Sexa (X, <) un espazo topoloxico de Alexandroff, e suponia
que a é pTdominado por b, cun conzunto de contraccion A}, enton X — A,
€ unha forte retraccion de deformacion de X. Do mesmo zeito, a retraccion
zerada ao eliminar p~punto dominado e a retraccion rerada pola expansion P

elemental, ambos son tamén retraccions de forte deformacion.

Na seccion 4.3, discutimos as relacions entre os beat points superior /abaixo
e os puntos dominados por p-+/p a través do noso teorema principal que mostra
que as operacions de colapso P e B-colapso son similares se o espazo s6 contén
cadeas finitas:

Theorem. No espazo de Alexandroff X. Cada conzunto de contraccion
de cadea finita AT pode representarse mediante secuencias de BT -colapsos en
pasos de w como mdzximo, onde w € o primeiro ordinal. Do mesmo xeito, cada
conzunto de contraccion A~ pode representarse mediante secuencias de B~ -
colapsos eliminando os "down beat points”.
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Ademais indicamos o exemplo 4.3.5. para mostrar un espazo contén cadeas
infinitas que podemos colapsar P un espazo a un punto pero non podemos
colapsar B algtins puntos deste espazo. No exemplo 4.3.6. Mostramos un espazo
no que podemos colapsar P a un punto e tamén podemos colapsar B+ ata un
punto, ainda que o espazo contena cadeas infinitas, finalmente no exemplo
4.3.7. Mostramos que un espazo contén cadeas infinitas e podemos colapsar P
ata un punto. pero o espazo non contén puntos ascendentes ou descendentes,
polo que non podemos iniciar puntos de colapso B, polo que o espazo é un
ntcleo no sentido de Stong.

Lembre, C(X, Y ) denota o espazo de todos os mapas continuos de X a Y
na topoloxia compacta-aberta. Kukiela presenta as clases de caminos finitos e
espazos de caminos acotados e indica o seguinte teorema 4.4.5.

Se un espazo é un C'—espazo de camino finito central, enton non hai mapa
C(X, X) homotopico a idx distinto de idx.

Denunciamos na Definicion 4.4.6. un espazo chamado espazos limitados, baixo
este espazo podemos xeneralizar o teorema anterior

Theorem. Sexa X un espazo acotado de C-niicleo, se un dos sequintes
cumpre

= X ten un limite finito.
» C(X,X) é Alezandroff.
non hai mapa en C(X, X) homotdpico a idy distinto de idx.

Ademais, dous espazos finitos son homotépicamente equivalentes se e so se
os seus nicleos son homeomorficos. Tamén indicamos unha proba méis sinxela
e general.

En la seccion 4.5 discutimos algunas formas de convertir un espacio topologico
en un complejo simplicial y viceversa.

No capitulo 5 interesarémonos nun tipo especial de grafos chamados grafos
ciclicos introducidos por Adamaszek, Michael, e Henry Adams. No seu traballo
introducen a nocion de -vértice dominado. Enunciamos unha definicién casi
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analoga chamada +wve vértice dominado e demostramos que If temos un grafo
ciclico. Se temos un grafico ciclico, enton:

Existe un vértice dominado -ve < Existe un vértice dominado +ve.

Ademais, o nimero de vértices dominados +ve é igual ao niimero de -ve vértices
dominados.

entén chamamos 4 definicion de grafo non dirixido, que en realidade ¢ un
complexo simplicial de 1 dimension, e estudamos a relacién entre os vértices
dominados tanto nos grafos dirixidos coma nos non dirixidos.

Na seccion 5.2 mostramos que se temos un grafo dirixido podemos construir
un conxunto de preorde por alcanzabilidade, na outra direccién, se temos un
poset podemos construir un grafo dirixido, enton estudamos a relacion entre
os vértices dominados. en gréaficos dirixidos e os puntos dominados por p no
espazo de ordes previas de correspondencia e viceversa.

enton estudamos a propiedade dunha grafoa especial denotada por (77% Na
seccion 5.3 indicamos que os algoritmos responden s seguintes preguntas:

1. Se temos unha grafo cunha orde nos vértices, como podemos detectar se
isto ordenar o rendemento a un grafo ciclico usando a matriz de adxa-
cencia?

2. Se temos algunha matriz con 0 ou 1 entradas, podemos reordenar esta
matriz para detectar se pode representar un grafo ciclico ou non?

3. Como podemos determinar os vértices dominados a partir da matriz de
adxacencia? e enton determina o nicleo.
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In 1950 when JHC Whitehead introduced the idea of elementary
collapse of simplicial complex space and the simple

homotopy type. In 2012 Barmak and Minian return to the topic
and develop the theory of strong collapse of simplicial
complexes, which has interesting applications to collapsibility
problems.

In this thesis we first review both concepts and a third one -
edge collapse- and explore their consequences on matroid (a
special kind of simplicial complexes). Secondly, we study a
generalization of the idea of strong collapse to (non-finite)
Alexandroff spaces. Finally, we present several algorithms to
facilitate the exploration of all these concepts in the case of
finite simplicial complexes and directed graphs.
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