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Chern degree functions and

Prym semicanonical pencils

Ph.D. Thesis

Author: Andrés Rojas

Advisors: Mart́ı Lahoz and Joan Carles Naranjo

Tutor: Joan Carles Naranjo

September 2021





Mart́ı Lahoz Vilalta

Investigador del Programa Ramón y Cajal a la Universitat de Barcelona
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Abstract

Abelian varieties are projective algebraic varieties endowed with a group structure. Over the field

of the complex numbers, they are obtained as complex tori Cg/Λ admitting an embedding into

some projective space.

Throughout the last decades, abelian varieties have been the object of an intensive research, playing

a fundamental role in some of the most notable advances in Algebraic Geometry. This study has

been performed from a twofold perspective. On the one hand, abelian varieties are interesting on

their own right, as they are varieties possessing a rich geometry; on the other hand, their study is

useful to understand other algebraic varieties.

In this thesis we investigate two problems motivated by the study of abelian varieties, which some-

how reflect this dualism. Whereas in the first problem the picture is dominated by abelian surfaces

(even if natural generalizations to arbitrary surfaces arise and may deserve attention), the second

problem lies in the interplay between algebraic curves and abelian varieties, and has consequences

on the geometry of cubic threefolds as well.

The first problem under consideration is that of understanding cohomological rank functions on

abelian surfaces. The cohomological rank functions hiF,L associated to a coherent sheaf (or more

generally, a bounded complex of coherent sheaves) F on a polarized abelian variety (A,L) were

introduced by Jiang and Pareschi in [JP20], as a generalization of the continuous rank functions

defined by Barja, Pardini and Stoppino in [BPS20b]. For every x ∈ Q, using the multiplication

maps on A the number hiF,L(x) makes sense of the i-th (hyper)cohomological rank of F twisted

with (the general representative of) the fractional polarization xL.

The main results of Jiang and Pareschi about these functions are proved via an extensive use of

the Fourier-Mukai transform on the abelian variety A. The Fourier-Mukai transform is an explicit

equivalence between the derived categories of A and its dual abelian variety; it is induced by the

Poincaré line bundle (namely the universal family of topologically trivial line bundles on A).

Among other applications, cohomological rank functions provide a more general context in which

positivity notions like GV or M-regularity for coherent sheaves (resembling the usual Castelnuovo-

Mumford regularity) can be considered. These notions were already introduced by Pareschi and

Popa around twenty years ago ([PP03, PP11]), also by means of Fourier-Mukai techniques, and

iii



iv

received several important applications to the geometry of abelian and irregular varieties (see for

instance [PP04, PP08, BLNP12, JLT13, PS14, CJ18]).

In the case of elliptic curves, it is well known that the cohomological rank functions of a coherent

sheaf F can be described through its Harder-Narasimhan filtration (with respect to Mumford’s slope

stability). This filtration decomposes F into semistable factors of decreasing slope. Nevertheless,

for higher-dimensional abelian varieties only a few concrete examples of functions are known, and

a general structure is far from being understood.

On the other hand, Bridgeland ([Bri07]) defined new notions of stability on the derived category

Db(X) of a smooth projective variety X, which generalize and make more flexible the preceding

notions for sheaves. Their definition includes a technical condition (support property), which allows

to give the structure of a complex manifold to the space Stab(X) of stability conditions. In other

words, Bridgeland stability conditions can be deformed.

The region of Stab(X) where an object F ∈ Db(X) (or several of them) is semistable turns out

to be an important invariant, providing interesting information about F . These regions behave

following a wall and chamber structure, and their study (via wall-crossing techniques) has become

in the recent years a powerful tool to attack many concrete geometric problems.

In the particular case of a smooth polarized projective surface (X,L), one can consider a stabi-

lity condition σα,β for every (α, β) ∈ R>0 × R, as first observed by Bridgeland for K3 and abelian

surfaces ([Bri08]) and generalized to arbitrary surfaces by Arcara and Bertram ([AB13]). In the cor-

responding region of stability conditions, often called the (α, β)-plane, the wall-crossing behaviour

is very well understood.

When α = 0, this construction may no longer produce stability conditions; even so, for β ∈ Q
there exist Harder-Narasimhan filtrations with respect to the slope induced by σ0,β. This defines

a so-called weak stability condition, which (after several verifications) may be thought of as a limit

of nearby stability conditions with α > 0.

The information provided by these weak stability conditions is indeed weaker than the one provided

by all the stability conditions in the (α, β)-plane, but still useful. In the first part of the thesis we

aim to classify this information by defining, for every object F ∈ Db(X), Chern degree functions

chdkF,L : Q→ Q≥0

determined by the Harder-Narasimhan filtrations of F for the weak stability conditions along the

line α = 0.

These functions admit local expressions and satisfy properties of continuity similar to those proved

by Jiang and Pareschi. We also describe their differentiability in terms of stability. Our arguments

make a systematic use of wall-crossing and may be of independent interest, especially for those

surfaces where α = 0 lies in the boundary of the stability manifold.

In the particular case of abelian surfaces, we prove that the Chern degree functions recover the
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cohomological rank functions of Jiang and Pareschi. This establishes a clear analogy with the

case of elliptic curves, since we obtain that cohomological rank functions on abelian surfaces are

determined by stability. This Fourier-Mukai-free approach gives, in many situations, a clear picture

for properties like differentiability or rationality of critical points.

In addition, this new presentation is also useful for the computation of particular examples. The

most relevant one is the ideal sheaf of one point, from which we will obtain new results on the

syzygies of polarized abelian surfaces.

Syzygies are a notion of great interest to understand embedded projective varieties, since they

essentially contain all the information that can be extracted from the equations in the ambient

space. As such, they are in general very difficult to control; for integers p ≥ 0, the properties (Np)

are requirements of simplicity for these syzygies. Roughly speaking, (Np) means that the first p

steps of the minimal graded free resolution of the homogeneous ideal of the variety are linear.

Green ([Gre84]) proved the fulfilment of the property (Np) for curves embedded by line bundles

of sufficiently high degree, generalizing in a unified way previous results of Castelnuovo, Mattuck,

Fujita and Saint-Donat. Furthermore, he stated a famous conjecture relating the Clifford index

with the failure of (Np) for canonical curves, solved by Voisin for general curves ([Voi02, Voi05]).

In the case of abelian varieties, Lazarsfeld conjectured the fulfilment of the property (Np) for

powers Lm (m ≥ p + 3) of any ample line bundle L, as a generalization of previous results of

Koizumi, Mumford and Kempf. Pareschi ([Par00]) gave a proof in characteristic zero. In arbitrary

characteristic, this was recently proved by Caucci ([Cau20]), as an application of a criterion relating

the cohomological rank functions hiI0,L and the properties (Np). In virtue of Caucci’s criterion (and

some refinements by Ito [Ito21]), our explicit computations of hiI0,L for abelian surfaces lead to new

effective results on their syzygies.

The second problem treated in this thesis deals with double étale covers of curves with a semica-

nonical pencil, and their Prym varieties. Prym varieties are principally polarized abelian varieties

(ppav ’s in the sequel) associated to double étale covers of curves. They were already considered

from an analytic viewpoint by Wirtinger in the late XIX century, but it was Mumford in his seminal

work [Mum74] who established their current denomination (in honour of the German mathemati-

cian Friedrich Prym) and presented them in a modern algebraic language for the first time.

Since then, they have become an important tool in Algebraic Geometry, as they form a broader

class of ppav’s than Jacobians. For instance the Prym map Pg : Rg → Ag−1, which assigns to

every double étale cover of a smooth curve of genus g its (g−1)-dimensional (principally polarized)

Prym variety, is dominant for g ≤ 6. This is the reason why ppav’s are reasonably well understood

up to dimension 5.

In fact, as in the case of Jacobians much information about the geometry of Pryms can be obtained

from the geometry of curves. For instance, Mumford’s work classified the singularities of the

theta divisor of a Prym variety into stable and exceptional ones. The most elementary example of
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exceptional singularity arises from double étale covers C̃
f−→ C satisfying the following conditions:

• The curve C has a semicanonical pencil, namely a line bundle L of degree g − 1 on C such that

L2 ∼= ωC and h0(C,L) is even and positive.

• The number h0(C̃, f∗L) is even.

We will call such a line bundle L an even semicanonical pencil for the cover f . In case that it

exists, the corresponding Prym variety belongs to the divisor θnull ⊂ Ag−1 of ppav’s whose theta

divisor contains a singular 2-torsion point.

In his paper [Bea77a], Beauville proved that the Andreotti-Mayer locus N0 ⊂ A4 (of principally

polarized abelian fourfolds with a singular theta divisor) is the union of two irreducible divisors: the

(closure of the) Jacobian locus J4 and θnull. An essential tool was the extension of the Prym map

to a proper map P̃g : R̃g → Ag−1, by considering admissible covers of (possibly nodal) curves. In

the case g = 5, this guarantees that every 4-dimensional ppav is a Prym variety (i.e. the dominant

map P5 is replaced by the surjective map P̃5).

One of the key points in Beauville’s work was the identification of the covers having Prym variety

in θnull; he showed that

T e = (closure of) {[f : C̃ −→ C] ∈ R5 | The cover f has an even semicanonical pencil}

is irreducible and equals P̃−1
5 (θnull). Indeed, the proof of the irreducibility of θnull relied on the

irreducibility of T e, and started by noticing that the locus T ⊂ M5 of genus 5 curves with a

semicanonical pencil is an irreducible divisor of the moduli space M5.

Now, we consider the following situation: for a fixed genus g ≥ 3, let Tg ⊂ Mg be the locus of

smooth genus g curves admitting a semicanonical pencil, which is well known to be a divisor of the

moduli space Mg. The general element of Tg has a unique such semicanonical pencil L, and hence

the pullback of Tg to Rg decomposes as a union T eg ∪ T og according to the parity of h0(C̃, f∗L).

In view of Beauville’s work, it seems natural to ask whether T eg and T og are irreducible divisors, and

to ask about the behaviour of the restricted Prym maps Pg|T eg and Pg|T og (or P̃g|T eg and P̃g|T og , if

one considers the closures of T eg and T og in R̃g). These are the two questions treated in the second

part of the thesis.

With respect to the first question, the divisor Tg ⊂Mg was studied by Teixidor in [TiB88]. Using

the theory of limit linear series developed by Eisenbud and Harris, she proved the irreducibility of Tg
and computed the class of its closure in the Deligne-Mumford compactificationMg. Following this

approach, we have obtained natural analogues of these results, namely: T eg and T og are irreducible

divisors of Rg, and we have computed the classes in Pic(Rg)Q of their closures, where Rg stands

for the Deligne-Mumford compactification.

Whereas we will only use these classes as a tool to understand the second question, it is worth

mentioning that the computation of classes of effective divisors has been largely applied to study
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the birational geometry of certain moduli spaces. This point of view started with the pioneering

work [HM82] of Harris and Mumford for Mg; the reader is referred to [Far09, Section 1] for an

historical account of this problem, and to [FL10] for results in the case of Rg.

Regarding the second question we point out that, apart from the aforementioned analysis of T e5
by Beauville, Izadi [Iza95] showed the surjectivity of the restricted Prym map P̃5|T o5 . As we will

prove, this is a general phenomenon in the range 3 ≤ g ≤ 5: whereas T eg equals the preimage of

θnull ⊂ Ag−1, the map P̃g|T og is surjective. Furthermore, in those cases we give an explicit description

of the general fibers of P̃g|T og , which are geometrically significant; for instance, our analysis of the

general fiber of P̃5|T o5 has a surprising application to the geometry of cubic threefolds.

Cubic threefolds have been largely investigated since the beginnings of Algebraic Geometry; for

instance, their unirationality was already known by Max Noether. At the beginning of the XX

century they were studied by Fano, in an attempt to prove their irrationality and hence to give a

negative answer to the Lüroth problem. Their irrationality was finally proved by Clemens and Grif-

fiths in their celebrated paper [CG72], by studying a ppav (the intermediate Jacobian) associated to

every cubic threefold. Later work of Mumford, Tjurin, Beauville, Donagi, Smith, Casalaina-Martin

and Friedman (among many others) provided more precise information about the intermediate

Jacobian and its theta divisor, thanks to its presentation as a Prym variety.

Returning to our problem, the general fiber of the Prym map P̃5 : R̃5 → A4 was described by

Donagi ([Don92]) as a double étale cover of the Fano surface of lines F (V ) of a general cubic

threefold V . In this context, the general fiber of P̃5|T o5 arises as an irreducible curve, which is a

partial desingularization of

Γ = {l ∈ F (V ) | There exist a 2-plane π and a line r ∈ F (V ) with V · π = l + 2r} ⊂ F (V )

This curve Γ remains largely unexplored, in contrast to its natural counterpart (the curve Γ′ formed

by lines of the second type) that was studied in [CG72] among many other works.

Our main contribution with respect to Γ is the computation of its numerical class in F (V ), for

which the expression of the class of T o5 in Pic(R5)Q plays a crucial role. The numerical class of Γ is

surprisingly high in relation to that of Γ′; combining with an explicit analysis of the singular locus

of Γ, we obtain enumerative results for lines contained in cubic threefolds.





Resum en català

Les varietats abelianes són varietats algebraiques projectives dotades d’una estructura de grup.

Sobre el cos dels nombres complexos, s’obtenen com a tors complexos Cg/Λ que admeten una

immersió en un espai projectiu.

Al llarg de les últimes dècades, les varietats abelianes han estat objecte d’una recerca intensiva,

jugant un paper fonamental en alguns dels avenços més notables en la Geometria Algebraica.

Aquest estudi ha tingut lloc des d’una perspectiva doble. D’una banda, les varietats abelianes són

objectes interessants per ells mateixos, com a varietats que tenen una geometria rica; per altra

banda, el seu estudi resulta útil per entendre altres varietats algebraiques.

En aquesta tesi investiguem dos problemes motivats per l’estudi de les varietats abelianes, que

en certa manera reflecteixen aquesta dualitat. Mentre que en el primer problema la situació ve

dominada per les superf́ıcies abelianes (tot i que apareixen generalitzacions naturals a superf́ıcies

arbitràries que poden ser mereixedores d’atenció), el segon problema se situa al nexe entre les corbes

algebraiques i les varietats abelianes, a més de tenir conseqüències en la geometria dels sòlids cúbics.

El primer problema considerat és el de comprendre les cohomological rank functions en superf́ıcies

abelianes. Les cohomological rank functions hiF,L associades a un feix coherent (o més en general,

a un complex acotat de feixos coherents) F en una varietat abeliana polaritzada (A,L) van ser

introdüıdes per Jiang i Pareschi a [JP20], com a generalització de les continuous rank functions

definides per Barja, Pardini i Stoppino a [BPS20b]. Per cada x ∈ Q, mitjançant els morfismes de

multiplicació en A el nombre hiF,L(x) dóna sentit al i-èsim rang de (hiper)cohomologia de F torçat

amb (el representant general de) la polarització fraccionària xL.

Els resultats principals de Jiang i Pareschi sobre aquestes funcions van ser demostrats amb un

ús exhaustiu de la transformada de Fourier-Mukai a la varietat abeliana A. La transformada de

Fourier-Mukai és una equivalència expĺıcita entre la categoria derivada d’A i la de la seva varietat

abeliana dual, que ve indüıda pel fibrat de Poincaré (i.e. la famı́lia universal de fibrats de ĺınia

topològicament trivials en A).

Entre altres aplicacions, les cohomological rank functions proporcionen un context més general on

considerar nocions de positivitat com GV o la M-regularitat per feixos coherents (anàloga a la

regularitat de Castelnuovo-Mumford habitual). Aquestes nocions ja havien estat introdüıdes per
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Pareschi i Popa fa uns vint anys ([PP03, PP11]), també mitjançant la transformada de Fourier-

Mukai, i van donar lloc a importants aplicacions a la geometria de les varietats abelianes i irregulars

(per exemple [PP04, PP08, BLNP12, JLT13, PS14, CJ18]).

En el cas de les corbes el·ĺıptiques, és ben conegut que les cohomological rank functions d’un feix

coherent F es poden descriure a través de la seva filtració de Harder-Narasimhan (respecte de

l’estabilitat de Mumford). Aquesta filtració descomposa F en factors semiestables de pendent

decreixent. No obstant això, per varietats abelianes de dimensió superior només es coneixen uns

pocs exemples de funcions, i la seva estructura general està lluny de ser ben entesa.

D’altra banda, Bridgeland ([Bri07]) va definir noves nocions d’estabilitat en la categoria derivada

Db(X) d’una varietat projectiva llisa X, que generalitzen i flexibilitzen les nocions precedents per

feixos. La seva definició inclou una condició tècnica (la support property), que permet dotar l’espai

Stab(X) de condicions d’estabilitat amb una estructura de varietat complexa. En altres paraules,

les condicions d’estabilitat de Bridgeland es poden deformar.

La regió de Stab(X) on un objecte F ∈ Db(X) (o diversos) és semiestable resulta ser un invariant

que proporciona informació interessant sobre F . Aquestes regions es comporten seguint una estruc-

tura de murs i cambres, i el seu estudi (via tècniques de wall-crossing) s’ha convertit els darrers

anys en una eina potent per atacar molts problemes geomètrics concrets.

En el cas particular d’una superf́ıcie projectiva llisa polaritzada (X,L), es pot considerar una

condició d’estabilitat σα,β per cada (α, β) ∈ R>0 × R, com primer va observar Bridgeland per

superf́ıcies K3 i abelianes ([Bri08]) i van generalitzar Arcara i Bertram a superf́ıcies arbitràries

([AB13]). En la regió corresponent de condicions d’estabilitat, que rep el nom de (α, β)-plane, el

comportament del wall-crossing està molt ben entès.

Per α = 0, aquesta construcció pot no produir més condicions d’estabilitat; tanmateix, per β ∈ Q
existeixen filtracions de Harder-Narasimhan respecte del pendent indüıt per σ0,β. Això defineix una

anomenada condició d’estabilitat feble, que pot ser pensada (després de diverses comprovacions) com

un ĺımit de condicions d’estabilitat properes amb α > 0.

La informació que proporcionen aquestes condicions d’estabilitat febles és en efecte més feble que

la que proporcionen totes les condicions d’estabilitat en el (α, β)-plane, però encara resulta útil.

En la primera part d’aquesta tesi pretenem classificar aquesta informació definint, per cada objecte

F ∈ Db(X), Chern degree functions

chdkF,L : Q→ Q≥0

determinades per les filtracions de Harder-Narasimhan de F respecte de les condicions d’estabilitat

febles al llarg de la recta α = 0.

Aquestes funcions admeten expressions locals i satisfan propietats de continüıtat similars a les

obtingudes per Jiang i Pareschi. També descrivim la seva derivabilitat en termes d’estabilitat. Els

nostres arguments fan servir sistemàticament el wall-crossing i poden ser interessants de manera

independent, especialment en aquelles superf́ıcies X per les quals la recta α = 0 se situa en la



xi

frontera de la varietat Stab(X) de condicions d’estabilitat.

En el cas particular de les superf́ıcies abelianes, demostrem que les Chern degree functions recuperen

les cohomological rank functions de Jiang i Pareschi. Això estableix un paral·lelisme amb el cas de

les corbes el·ĺıptiques, ja que obtenim que les cohomological rank functions en superf́ıcies abelianes

venen determinades per l’estabilitat. Aquest acostament al problema, sense transformades de

Fourier-Mukai, dóna en moltes situacions una descripció clara de propietats com la derivabilitat o

la racionalitat de punts cŕıtics.

A més, aquesta nova presentació també resulta útil per calcular exemples particulars. El més

rellevant és el feix d’ideals d’un punt, a partir del qual obtenim nous resultats sobre syzygies de

superf́ıcies abelianes polaritzades.

Les syzygies són una noció de gran interès per entendre una varietat projectiva immersa, ja que

bàsicament contenen tota la informació que es pot extreure de les equacions a l’espai ambient. Com

a tals, en general són molt dif́ıcils de controlar; per enters p ≥ 0, les propietats (Np) són condicions

de senzillesa per aquestes syzygies. A grans trets, la propietat (Np) significa que els primers p

passos de la resolució lliure graduada minimal de l’ideal homogeni de la varietat són lineals.

Green ([Gre84]) va demostrar que la propietat (Np) se satisfà en corbes immerses per fibrats de ĺınia

de grau suficientment alt, tot generalitzant de manera unificada resultats anteriors de Castelnuovo,

Mattuck, Fujita i Saint-Donat. A més, va enunciar una famosa conjectura relacionant l’́ındex de

Clifford amb el no-compliment de (Np) per corbes canòniques, que va ser resolta per Voisin per

corbes generals ([Voi02, Voi05]).

En el cas de les varietats abelianes, Lazarsfeld va conjecturar el compliment de la propietat (Np)

per potències Lm (m ≥ p + 3) de qualsevol fibrat de ĺınia ample L, com a generalització de

resultats anteriors de Koizumi, Mumford i Kempf. Pareschi ([Par00]) va donar una demostració en

caracteŕıstica zero. En caracteŕıstica arbitrària, Caucci va donar recentment una prova ([Cau20]),

com a aplicació d’un criteri relacionant les cohomological rank functions hiI0,L amb les propietats

(Np). D’acord amb el criteri de Caucci (i alguns refinaments d’Ito [Ito21]), els nostres càlculs

expĺıcits per hiI0,L en superf́ıcies abelianes condueixen a nous resultats efectius sobre les seves

syzygies.

El segon problema tractat en aquesta tesi aborda els recobriments dobles no ramificats de corbes

amb un semicanonical pencil, i les seves varietats de Prym. Les varietats de Prym són varietats

abelianes principalment polaritzades (vapp’s a partir d’ara) associades a recobriments dobles no

ramificats de corbes. Des d’un punt de vista anaĺıtic ja havien estat considerades per Wirtinger

a finals del segle XIX, però va ser Mumford al seu treball fonamental [Mum74] qui va establir el

nom actual (en honor al matemàtic alemany Friedrich Prym) i les va presentar en un llenguatge

algebraic modern per primera vegada.

Des d’aleshores, han esdevingut una eina important en la Geometria Algebraica, ja que formen

una classe de vapp’s més general que no pas les Jacobianes. Per l’exemple l’aplicació de Prym
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Pg : Rg → Ag−1 que associa a cada recobriment doble no ramificat d’una corba llisa de gènere g

la seva varietat de Prym (principalment polaritzada) de dimensió g − 1, és dominant per g ≤ 6.

Aquesta és la raó per la qual les vapp’s de fins a dimensió 5 són ben enteses.

En efecte, com en el cas de les Jacobianes la geometria de corbes permet extreure molta informació

sobre la geometria de les Pryms. Per exemple, el treball de Mumford va classificar les singulari-

tats del divisor theta d’una varietat de Prym en singularitats estables i singularitats excepcionals.

L’exemple més elemental de singularitat excepcional té lloc per recobriments dobles no ramificats

C̃
f−→ C que satisfan les següents condicions:

• La corba C té un semicanonical pencil, és a dir, un fibrat de ĺınia L de grau g − 1 en C tal que

L2 ∼= ωC i h0(C,L) és parell i positiu.

• El nombre h0(C̃, f∗L) és parell.

Un tal fibrat de ĺınia L l’anomenarem un semicanonical pencil parell pel recobriment f . En cas que

existeixi, la corresponent varietat de Prym pertany al divisor θnull ⊂ Ag−1 de vapp’s amb divisor

theta contenint un punt singular de 2-torsió.

Al seu article [Bea77a], Beauville va demostrar que el lloc d’Andreotti-Mayer N0 ⊂ A4 (de vapp’s

de dimensió 4 amb divisor theta singular) és la unió de dos divisors irreductibles: (la clausura de)

el lloc Jacobià J4 i θnull. Una eina essencial va ser l’extensió de l’aplicació de Prym a una aplicació

pròpia P̃g : R̃g → Ag−1, considerant recobriments admissibles de corbes (possiblement nodals). En

el cas g = 5, això garanteix que tota vapp de dimensió 4 és una varietat de Prym (és a dir, es

reemplaça el morfisme dominant P5 per l’epimorfisme P̃5).

Un dels punts clau del treball de Beauville és la identificació dels recobriments que tenen varietat

de Prym a θnull; Beauville demostra que

T e = (clausura de) {[f : C̃ −→ C] ∈ R5 | El recobriment f té un semicanonical pencil parell}

és irreductible i igual a P̃−1
5 (θnull). En efecte, la demostració de la irreductibilitat de θnull es basa

en la irreductibilitat de T e, i comença amb l’observació que el lloc T ⊂ M5 de corbes de gènere 5

amb un semicanonical pencil és un divisor irreductible en l’espai de moduli M5.

Ara considerem la següent situació: per un gènere fixat g ≥ 3, sigui Tg ⊂Mg el lloc de corbes llises

de gènere g que admeten un semicanonical pencil, que correspon a un divisor en l’espai de moduli

Mg com és ben conegut. L’element general de Tg té un únic semicanonical pencil L, i per tant la

preimatge de Tg a Rg descomposa com una unió T eg ∪ T og d’acord amb la paritat de h0(C̃, f∗L).

D’acord amb el treball de Beauville, sembla natural preguntar-se si T eg i T og són divisors irreductibles,

i també preguntar-se sobre el comportament de les aplicacions de Prym restringides Pg|T eg i Pg|T og
(o P̃g|T eg i P̃g|T og , si hom considera les clausures de T eg i T og en R̃g). Aquestes dues preguntes són

l’objecte de la segona part de la tesi.

Respecte de la primera pregunta, el divisor Tg ⊂ Mg va ser estudiat per Teixidor a [TiB88]. Fent

servir la teoria de limit linear series desenvolupada per Eisenbud i Harris, Teixidor va demostrar
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la irreductibilitat de Tg i va calcular la classe de la seva clausura a la compactificació de Deligne-

Mumford Mg. Seguint aquest enfocament, hem obtingut anàlegs naturals d’aquests resultats, és

a dir: T eg i T og són divisors irreductibles de Rg, i hem calculat les classes de les seves clausures en

Pic(Rg)Q, on Rg denota la compactificació de Deligne-Mumford.

Mentre que nosaltres només farem servir aquestes classes com a eina per atacar la segona pregunta,

val a dir que el càlcul de classes de divisors efectius ha estat molt aplicat a l’estudi de la geometria

birracional de certs espais de moduli. Aquest punt de vista va començar amb el treball pioner

[HM82] de Harris i Mumford per Mg; el lector pot trobar a [Far09, Section 1] una śıntesi de caire

històric sobre aquest problema, i resultats pel cas de Rg a [FL10].

Respecte de la segona pregunta cal assenyalar que, a part de la ja comentada anàlisi de T e5 per part

de Beauville, Izadi [Iza95] va demostrar l’exhaustivitat de l’aplicació de Prym restringida P̃5|T o5 .

Com veurem, aquest és un fenòmen general quan 3 ≤ g ≤ 5: mentre que T eg és la preimatge de

θnull ⊂ Ag−1, l’aplicació P̃g|T og és exhaustiva. A més, en aquest casos descrivim expĺıcitament la

fibra general de P̃g|T og , que tenen una geometria rellevant; per exemple, la nostra anàlisi de la fibra

general de P̃5|T o5 presenta una aplicació sorprenent a la geometria dels sòlids cúbics.

Els sòlids cúbics han estat objectes molt investigats des dels inicis de la Geometria Algebraica; per

exemple, la seva uniracionalitat ja era coneguda per Max Noether. A principis del segle XX van ser

estudiats per Fano, en un intent de demostrar la seva irracionalitat i per tant de donar una resposta

negativa al problema de Lüroth. La irracionalitat va ser demostrada finalment per Clemens i Grif-

fiths al seu cèlebre article [CG72], estudiant una ppav (la Jacobiana intermèdia) associada a cada

sòlid cúbic. Resultats posteriors de Mumford, Tjurin, Beauville, Donagi, Smith, Casalaina-Martin

i Friedman (entre molts altres) van donar informació més precisa sobre la Jacobiana intermèdia i

el seu divisor theta, a través de la seva presentació com a varietat de Prym.

Tornant al nostre problema, Donagi ([Don92]) va descriure la fibra general de l’aplicació de Prym

P̃5 : R̃5 → A4 com un recobriment doble no ramificat de la superf́ıcie de Fano de rectes F (V ) d’un

sòlid cúbic general V . En aquest context, la fibra general de P̃5|T o5 és una corba irreductible, que

és una desingularització parcial de

Γ = {l ∈ F (V ) | Existeixen un 2-pla π i una recta r ∈ F (V ) tals que V · π = l + 2r} ⊂ F (V )

Aquesta corba Γ roman molt poc explorada, a diferència de la seva contrapartida natural (la corba

Γ′ formada per les rectes de segon tipus), que va ser estudiada a [CG72] entre molts altres treballs.

La nostra contribució principal respecte de Γ és el càlcul de la seva classe numèrica a F (V ), pel

qual l’expressió de la classe de T o5 a Pic(R5)Q juga un paper crucial. La classe numèrica de Γ és

sorprenentment alta en relació a la de Γ′; juntament amb una anàlisi explicita del lloc singular de

Γ, obtenim resultats enumeratius per rectes en sòlids cúbics.
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Introduction

This thesis splits into two independent parts; each of them corresponds to the study of a problem

concerning abelian varieties. The subsequent pages introduce the two problems separately and

report on the main results obtained.

Chern degree functions

The results obtained in this first part can be found in the preprints [LR21] and [Roj21].

In the context of irregular varieties, Barja, Pardini and Stoppino [BPS20b] introduced the conti-

nuous rank function associated to a line bundle, a continuous function defined on a line in the space

of R-divisor classes with similar properties to those of the volume function. Shortly after, in [JP20]

Jiang and Pareschi generalized this notion to the cohomological rank functions hiF,L associated to a

coherent sheaf (or more generally, a bounded complex of coherent sheaves) F on a polarized abelian

variety (A,L).

These functions have received several applications. For instance, they have been used to prove

new Clifford–Severi inequalities, i.e. geographical lower bounds of the volume of a line bundle and

characterize the polarized varieties where the bound is attained (see [BPS20a, Jia21]). They have

been also applied to the study of syzygies of abelian varieties, as we will specify later.

Given x ∈ Q, the number hiF,L(x) makes sense of the (generic) i-th cohomological rank of F twisted

with the fractional polarization xL, thanks to the multiplication maps on A. The two main results

of Jiang and Pareschi about the general structure of these functions, a priori only defined over the

rational numbers, can be summarized as follows:

(1) [JP20, Corollary 2.6] Every x0 ∈ Q admits a left (resp. right) neighborhood where the function

hiF,L is given by an explicit polynomial P− (resp. P+) depending on x0.

(2) [JP20, Theorem 3.2] The functions extend to continuous real functions of real variable.

These results were proved via an extensive use of the Fourier-Mukai transform on the abelian

variety, which also justifies the need to extend the definition of the cohomological rank functions

to arbitrary objects in the derived category of coherent sheaves.

In the case of elliptic curves, it is well known that the Harder-Narasimhan filtration of a coherent

1
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sheaf F provides a precise description of its cohomological rank functions (see Proposition I.2.3

for details). Nevertheless for higher-dimensional abelian varieties only a few concrete examples of

functions are known, and their general structure is far from being understood. For instance, the

question of whether cohomological rank functions are always piecewise polynomial remains open

(see [JP20, Remark 2.8]).

The first part of the present thesis investigates the relation between the functions and stability in

the case of surfaces, from a twofold perspective: not only that of obtaining a better understanding

of cohomological rank functions on abelian surfaces, but also that of proposing similar invariants

on arbitrary (i.e. not necessarily abelian) polarized surfaces. This can be done in a unified way,

by means of the Chern degree functions that we attach to objects in the derived category Db(X)

of any smooth polarized surface (X,L). These functions are our main object of study in this first

part, and their definition relies on a certain set of (weak) stability conditions on Db(X).

More precisely, let (X,L) be a smooth polarized surface. Since the seminal work of Bridgeland

[Bri08] (for K3 surfaces), then extended by Arcara and Bertram ([AB13]) to arbitrary smooth

surfaces, one can consider a Bridgeland stability condition σα,β = (Zα,β,Cohβ(X)) for every (α, β) ∈
R>0 × R, where Cohβ(X) is the heart of a bounded t-structure on Db(X). In the corresponding

(α, β)-plane of stability conditions, the wall-crossing behaviour is very well understood. A similar

construction holds in positive characteristic as well, thanks to work of Koseki [Kos20] (even though

the cases we will consider were already covered by the work of Langer [Lan16]).

When α = 0, one cannot ensure in general that σ0,β is a Bridgeland stability condition. Roughly

speaking, this depends on whether the classical Bogomolov inequality for slope-semistable sheaves of

slope β is sharp or not. In case of non-sharpness, the construction of Bridgeland stability conditions

can be extended to a larger region containing σ0,β in its interior, as explained in the recent work

[FLZ21, section 3].

Regardless of whether σ0,β is a Bridgeland stability condition or not, for every β ∈ Q one can

at least ensure the existence of Harder-Narasimhan filtrations with respect to the tilt slope ν0,β

induced by σ0,β: this defines a weak stability condition. For instance, in the literature σ0,0 has also

received the name of Brill-Noether stability condition ([Li19, Definition 2.11]).

The Chern degree functions may be thought of as a way of classifying the information provided

by these (possibly weak) stability conditions. Basically, to every object E ∈ Db(X) we associate

nonnegative functions

chdkE,L : Q→ Q≥0

for every k ∈ Z, related by the identity
∑

(−1)k · chdkE,L(x) = ch−x2 (E). For instance, if F ∈
Cohβ(X) then only chd0

F,L and chd1
F,L are nonzero at −β, and

chd0
F,L(−β) = chβ2 (F̃ ),

where F̃ is the maximal subobject F̃ ⊂ F in Cohβ(X) with the property that any quotient of F̃

has positive tilt slope ν0,β (see section II.1 for the general definition).
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Our first main result about these functions is:

Theorem A. Let (X,L) be a smooth polarized projective surface over an algebraically closed field

K. If charK > 0, assume that X is neither of general type nor quasi-elliptic with κ(X) = 1.

Then, for every object E ∈ Db(X) and k ∈ Z the following hold:

(1) (Theorem II.2.21) Every rational number x0 ∈ Q admits a left (resp. right) neighborhood where

the function chdkE,L is given by an explicit polynomial P− (resp. P+) depending on x0, satisfying

P−(x0) = chdkE,L(x0) = P+(x0).

(2) (Corollary II.3.3) The function chdkE,L extends to a continuous real function of real variable.

Let us specify that, even in the case where F ∈ Cohβ0(X), the local polynomial expressions for

chd0
F,L at −β0 are not necessarily ch−x2 (F̃ ). For instance, the polynomial expression in a left

neighborhood of −β0 is given by ch−x2 (G), where G ⊂ F̃ is a certain subobject in Cohβ0(X)

satisfying Z0,β0(F̃ /G) = 0 and appearing in the Harder-Narasimhan filtration of F with respect to

σ0,β for all small enough β > β0.

In consequence, in order to control the local polynomial expressions one is led to determine the

Harder-Narasimhan filtrations of F with respect to σ0,β as β tends to β0; we call such filtrations

the weak limit filtrations of F at β0 (see Definition II.2.9 for details). Their study requires a

good understanding of Bridgeland limit filtrations as a first step; these are Harder-Narasimhan

filtrations with respect to the (honest) Bridgeland stability conditions σα,β as α tends to 0 (see

Definition II.2.1).

These auxiliary notions may be of independent interest to study the boundary of the stability

manifold (see also Remark II.1.7); as a tool for Theorem A.(1), we prove their existence for objects

without Harder-Narasimhan factors of vanishing tilt slope.

Theorem B. Let β0 ∈ Q and F ∈ Cohβ0(X) be an object having no Harder-Narasimhan factor

with respect to σ0,β0 of vanishing tilt slope ν0,β0. Then,

(1) (Theorem II.2.8) F admits a Bridgeland limit Harder-Narasimhan filtration at β0.

(2) (Theorem II.2.14) F admits a weak limit Harder-Narasimhan filtration at β0.

Theorem A.(1) almost follows from Theorem B.(2); the proof is completed after considering the ob-

jects with a Harder-Narasimhan factor of tilt slope 0. The treatment of these exceptional situations,

as well as the proof of Theorem B, entails a systematic exploitation of wall-crossing.

On the other hand, the extension to continuous real functions (i.e. Theorem A.(2)) is obtained

by integration after using the local polynomial expression to bound the derivative, following the

approach of [JP20] for the cohomological rank functions.

Once the continuity is settled, it is natural to study the rational critical points (that is, rational

points where the Chern degree functions are not of class C∞). In particular we obtain the following
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result characterizing the rational points where the functions are not of class C1, as a corollary of

our characterization of the critical points in terms of stability (see Proposition II.3.4).

Proposition C. Let β ∈ Q. If F ∈ Cohβ(X), then the Chern degree functions of F are not

differentiable at −β if and only if F has a Harder-Narasimhan factor (with respect to σ0,β) of

vanishing tilt slope.

We must point out that the Chern degree functions seem to be especially nontrivial for polarized

surfaces on which σ0,β fails to be a Bridgeland stability condition for every β ∈ Q. Indeed, in

those cases we do not know how to conclude from Theorem A that the Chern degree functions are

piecewise polynomial, as one would expect.

Among these polarized surfaces, it is well known that one finds abelian surfaces. As we explain in

Example I.1.15, this is also the case for surfaces with finite Albanese map (and polarization pulled

back from the Albanese variety), which in particular covers polarized irregular surfaces with Picard

rank 11. In such cases of irregular (non-abelian) surfaces, the relation of the Chern degree functions

to the original continuous rank functions, or more generally to the cohomological rank functions of

the push-forwarded object via the Albanese map, remains mysterious.

On the opposite side, for regular surfaces such as K3 surfaces, the Chern degree functions are

clearly piecewise polynomial, since their stability manifold is certainly larger than the (α, β)-plane.

This indicates that these functions may not be the most challenging ones for regular surfaces; in

Remark II.1.7 we propose a variant (explicitly for K3 surfaces of Picard rank 1).

While for arbitrary polarized surfaces these functions (and variants) may be the object of future

work, in the case of abelian surfaces the Chern degree functions recover the cohomological rank

functions of Jiang and Pareschi. This establishes a natural analogue with the structure of cohomo-

logical rank functions on elliptic curves:

Theorem D (Theorem II.4.3). Let (X,L) be a polarized abelian surface. Then, the Chern degree

function chdkE,L equals the cohomological rank function hkE,L for every object E ∈ Db(X) and k ∈ Z.

Note that this shows that cohomological rank functions are determined by stability. Basically,

the cohomological rank functions of an object at −β split into simpler pieces, corresponding to

its Harder-Narasimhan factors with respect to σ0,β. Conversely, knowing the cohomological rank

functions of an object one has certain constraints on its behaviour with respect to stability (the

easiest case being an object that never destabilizes, see Proposition II.5.1).

This new presentation turns out to be significantly useful to understand cohomological rank func-

tions on abelian surfaces. For instance, Proposition C (and more generally Proposition II.3.4)

characterizes their differentiability at rational critical points, which in [JP20, Proposition 4.4] was

1This provides new examples (X,L) where the Le Potier function ΦX,L is explicitly known, which may be of

independent interest since allows to describe their Bridgeland stability manifold (cf. [FLZ21, Section 3]).
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settled a sufficient condition to control the dimension of certain jump loci. Observe also that,

thanks to Theorem A.(2), we obtain that cohomological rank functions extend to continuous real

functions in positive characteristic as well (a case not covered by Jiang and Pareschi).

Furthermore, the stability viewpoint is fruitful for the computation of particular examples, when

one exploits the wall-crossing behaviour in the (α, β)-plane. This is particularly affordable for

Gieseker semistable sheaves, since they are semistable objects for large values of α (at the so-called

Gieseker chamber).

For them, we propose a method based on successive destabilizations along the (α, β)-plane; in many

concrete situations, it gives an explicit description of chd0
F,L as a piecewise polynomial function. We

illustrate this method with two geometric examples: the ideal sheaves of 0-dimensional subschemes

of low length on principally polarized abelian surfaces, and the ideal sheaf of one point for abelian

surfaces endowed with a polarization of arbitrary type.

The cohomological rank functions of the ideal sheaf of one point have recently received considerable

attention as a tool to understand syzygies of abelian varieties. For a polarized abelian variety (A,L)

(of arbitrary dimension) and a point q ∈ A, Jiang and Pareschi already observed in [JP20, Section 8]

that the basepoint-freeness threshold

ε1(L) = inf
{
x ∈ Q | h1

Iq ,L(x) = 0
}

(independent of the choice of q) encodes interesting positivity properties of the polarization L:

(1) ε1(L) ≤ 1, with equality if and only if any line bundle representing L has base points.

(2) [JP20, Corollary E] If ε1(L) < 1
2 , then any line bundle representing L is projectively normal.

Subsequent work of Caucci generalized (2) to higher syzygies, proving that every line bundle repre-

senting L satisfies the property (Np) as long as ε1(L) < 1
p+2 ([Cau20, Theorem 1.1]). Roughly, the

property (Np) means that we have a very ample line bundle, with certain conditions of simplicity

on the syzygies of the homogeneous ideal of the embedded variety. For instance, (N0) is equivalent

to the embedding being projectively normal, and (N1) also requires that the homogeneous ideal is

generated by quadrics.

As a consequence, Caucci obtained a proof of Lazarsfeld’s conjecture in arbitrary characteristic:

any m-th power (m ≥ p + 3) of an ample line bundle on an abelian variety satisfies the property

(Np). This conjecture had originally been proved in char(K) = 0 by Pareschi ([Par00]).

Caucci’s criterion has also been applied to understand the syzygies of abelian varieties endowed

with a primitive polarization (i.e. a polarization which is not a multiple of another one), by means

of upper bounds for the basepoint-freeness threshold (see [Jia20, Ito20a, Ito20b]). Furthermore, for

p ≥ 1 the hypothesis ε1(L) < 1
p+2 ensuring (Np) has recently been slightly weakened by Ito ([Ito21,

Theorem 1.5]).

In the case of abelian surfaces, our stability approach allows to give explicit expressions for the

cohomological rank function h0
Iq ,L (which is enough for determining h1

Iq ,L and hence ε1(L)). We do
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this for a certain class of polarized abelian surfaces which includes those with Picard rank 1. More

precisely, we prove the following (see Theorem III.2.2 and Corollary III.3.2):

Theorem E. Let (X,L) be a (1, d)-polarized abelian surface over an algebraically closed field K,

and let q ∈ X be a (closed) point. Assume that D · L is a multiple of L2 for every divisor class D.

(1) If d is a perfect square, then the cohomological rank function h0
Iq ,L reads

h0
Iq ,L(x) =

{
0 x ≤

√
d
d

dx2 − 1 x ≥
√
d
d

In particular, ε1(L) =
√
d
d .

(2) If d is not a perfect square, then the function h0
Iq ,L is either that of (1) or

h0
Iq ,L(x) =


0 x ≤ 2ỹ

x̃+1
d(x̃+1)

2 x2 − 2dỹ · x+ x̃−1
2

2ỹ
x̃+1 ≤ x ≤

2ỹ
x̃−1

dx2 − 1 x ≥ 2ỹ
x̃−1

where (x̃, ỹ) is a nontrivial positive solution to Pell’s equation x2 − 4d · y2 = 1. In particular,

if (x0, y0) is the minimal positive solution to this equation, then ε1(L) ≤ 2y0

x0−1 .

(3) Under the hypothesis of (2), assume also that char(K) divides neither x2
0 nor x2

0 − 1. Then the

expression for h0
Iq ,L is the one corresponding to either the minimal solution (x0, y0) or to the

second smallest positive solution (x1, y1). In particular, ε1(L) ∈ { 2y0

x0−1 ,
2y1

x1−1}.

The key point for the proof of (1) and (2) is the fact that potential destabilizing walls for Iq are in

correspondence with positive solutions to Pell’s equation x2− 4d · y2 = 1 (see Lemma III.2.1). The

absence of such solutions when d is a perfect square shows (1), whereas for d not a perfect square

one obtains (2).

The corresponding upper bounds for the basepoint-freeness threshold refine those given by Ito for

general complex abelian surfaces ([Ito20b]). In addition, the expressions of (1) and (2) reveal the

differentiability of h0
Iq ,L at certain rational points; this is relevant with regard to syzygies, since it

enables us to apply Ito’s refined version of Caucci’s criterion. As a result, we obtain new effective

statements for syzygies on abelian surfaces:

Corollary F (Corollary III.2.5). Let (X,L) be a (1, d)-polarized abelian surface over an alge-

braically closed field K, such that D · L is a multiple of L2 for every divisor class D.

(1) If d ≥ 7, then any ample line bundle representing L is projective normal.

(2) If d > (p+2)2 for p ≥ 1, then any ample line bundle representing L satisfies the property (Np).

For K = C, we point out that Corollary F.(1) recovers a well-known result of Iyer ([Iye99], see also

[Laz90] for some cases previously covered), and the case p = 1 of Corollary F.(2) recovers a result
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of Gross and Popescu ([GP98]). For arbitrary p, Corollary F.(2) improves the bound ensuring the

property (Np) that was given recently by Ito in [Ito20b, Corollary 4.5].

On the other hand, for d not a perfect square Theorem E.(3) establishes that only two of the

potential functions described in Theorem E.(2) may occur (modulo certain arithmetic restrictions

on char(K)): those corresponding to the two smallest positive solutions of Pell’s equation.

The proof of Theorem E.(3) relies on the explicit construction of curves containing all the torsion

points of an unexpectedly high order (see Proposition III.3.1); for this construction, we require the

classical theory of theta groups developed by Mumford in [Mum66].

It is worth noting that, for all the non-perfect squares d for which we know the exact value of

ε1(L), the equality ε1(L) = 2y0

x0−1 holds. We expect this to be true in general; it would follow

from a small refinement of Proposition III.3.1, that at present we do not know how to prove (see

Remark III.3.3.(2) for details).

Structure of the first part. This first part of the thesis consists of three chapters. Chapter I in-

troduces, mostly without proofs, preliminary theory concerning stability conditions, cohomological

rank functions on abelian varieties and theta groups of ample line bundles on abelian varieties.

Chapter II constitutes the core of this first part, as it studies Chern degree functions in the general

context of a smooth polarized surface. First we define the functions and prove some elementary

properties in section II.1. Then an important part of the work is contained in section II.2, which

is devoted to find the local polynomial expressions (Theorem A.(1)): we introduce the notions of

Bridgeland and weak limit filtrations, and prove their existence (Theorem B) along the way.

The proof of Theorem A.(2) occupies the first part of section II.3. The rest of section II.3 addresses

the characterization of rational critical points and their differentiability, which leads to Proposi-

tion II.3.4 (and in particular, to Proposition C). In section II.4 we prove the equivalence with

cohomological rank functions on abelian surfaces (Theorem D). Finally, section II.5 discusses the

structure of Chern degree functions of (twisted) Gieseker semistable sheaves, as well as methods

for their computation.

In chapter III we compute new examples of cohomological rank functions, by means of our stability

approach. In section III.1 we treat the ideal sheaves of finite subschemes on principally polarized

abelian surfaces; then the rest of the chapter is devoted to the ideal sheaf of one point. In sec-

tion III.2 we study upper bounds for the basepoint-freeness threshold and their consequences on the

syzygies of abelian surfaces (in particular, we prove Corollary F and most of Theorem E). The proof

of Theorem E is completed in section III.3, where we find lower bounds for the basepoint-freeness

threshold using the theory of theta groups.
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Prym semicanonical pencils

The results obtained in this second part can be found in the preprints [MPR21] and [LNR21].

Let Tg ⊂ Mg be the divisor of (isomorphism classes of) complex, smooth, irreducible curves C of

genus g ≥ 3 with a semicanonical pencil, that is, with a theta-characteristic L ∈ Picg−1(C) such

that h0(C,L) is even and positive. This divisor was studied in [TiB88], where Teixidor proved its

irreducibility and computed the class of its closure in the rational Picard group of the Deligne-

Mumford compactification Mg.

The pullback of Tg to the moduli space of smooth Prym curves

Rg = {(C, η) | [C] ∈Mg, η ∈ JC2 \ {OC}}/ ∼=

(i.e. of double étale irreducible covers of smooth curves) via the forgetful map breaks up into two

divisors. Indeed, since the general element of Tg admits a unique semicanonical pencil and the

parity of theta-characteristics remains constant in families, the pullback of Tg is the union of the

following divisors:

T eg =
{

(C, η) ∈ Rg | C has a semicanonical pencil L with h0(C,L⊗ η) even
}

T og =
{

(C, η) ∈ Rg | C has a semicanonical pencil L with h0(C,L⊗ η) odd
}

We will call T eg (resp. T og ) the divisor of even (resp. odd) semicanonical pencils. For simplicity,

we use the same notation for the divisors in Rg and for their closures in the Deligne-Mumford

compactification Rg.

This second part of the dissertation investigates the divisors T eg and T og from two different view-

points. On the one hand, we are interested in the geometry of T eg and T og , and their relation to

other divisors of Rg (and Rg). On the other hand, we aim to understand their interplay with the

geometry of abelian varieties via the Prym map Pg : Rg → Ag−1 (and Beauville’s extension P̃g to

a proper map).

The Prym map has well-known generic fibers for g ≤ 6 and is generically injective for g ≥ 7;

nonetheless, its restriction to divisors is often far from being understood. For instance, the re-

striction of P̃g to the divisor of Beauville admissible covers of nodal curves has recently received

attention, since its study is equivalent to that of the so-called ramified Prym map (see [MP12] and

[NO19]).

The problem we are facing up can be found in the literature for genus 5 in two very remarkable

works. The even case T e5 was considered by Beauville in [Bea77a], where he proved that T e5 is

irreducible and equals the preimage of θnull ⊂ A4 via P̃5; in this way, he obtained the irreducibility

of θnull. Furthermore, Izadi proved that T o5 dominates A4 (see [Iza95, Proof of Theorem 6.14],

where T o5 is denoted by θnull 2).

With regard to the first question, the analysis of Tg performed by Teixidor in [TiB88] relies on the

theory of limit linear series developed by Eisenbud and Harris. Following her approach, we have
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described the intersection of T eg and T og with the boundary divisors of covers of reducible curves

(Proposition V.1.2), and have obtained natural analogues of Teixidor’s results for T eg and T og :

Theorem G (Theorem V.1.1). Let g ≥ 5 and let [T eg ], [T og ] ∈ Pic(Rg)Q denote the classes of (the

closures in Rg of) the divisors T eg and T og . Then, the following equalities hold:

[T eg ] = aλ− b′0δ′0 − b′′0δ′′0 − bram0 δram0 −
bg/2c∑
i=1

(biδi + bg−iδg−i + bi:g−iδi:g−i),

[T og ] = cλ− d′0δ′0 − d′′0δ′′0 − dram0 δram0 −
bg/2c∑
i=1

(diδi + dg−iδg−i + di:g−iδi:g−i),

where

a = 2g−3(2g−1 + 1), c = 22g−4,

b′0 = 22g−7, d′0 = 22g−7,

b′′0 = 0, d′′0 = 22g−6,

bram0 = 2g−5(2g−1 + 1), dram0 = 2g−5(2g−1 − 1),

bi = 2g−3(2g−i − 1)(2i−1 − 1), di = 2g+i−4(2g−i − 1),

bg−i = 2g−3(2g−i−1 − 1)(2i − 1), dg−i = 22g−i−4(2i − 1),

bi:g−i = 2g−3(2g−1 − 2i−1 − 2g−i−1 + 1), di:g−i = 2g−3(2g−1 − 2g−i−1 − 2i−1).

Theorem H. For every g ≥ 3 the divisors T eg and T og are irreducible.

We must point out that Theorem G has been independently proved by Maestro during his doctoral

research ([MP21]). The techniques are similar in both cases, and consist in the intersection of T eg
and T og with certain test curves. This has given rise to the joint publication [MPR21].

On the other hand, the proof of Theorem H for g ≥ 5 combines monodromy arguments with the

intersection of T eg and T og with the boundary divisor ∆1 of Rg. The case g = 3 is rather elementary,

whereas the case g = 4 follows from our analysis of the Prym map on T e4 and T o4 .

Aside from their independent interest, these results (especially Theorem G) constitute an important

tool for our study of the Prym map, in which we extend the analysis of Beauville and Izadi to other

values of g. Additionally, in the case of T o5 , we provide a more detailed description with unexpected

connections to the geometry of cubic threefolds.

Let us first consider the even cases T eg . According to Mumford’s description [Mum74] of the

singularities of the theta divisor of a Prym variety, it is well known that Pg maps T eg to the divisor

θnull ⊂ Ag−1 of principally polarized abelian varieties whose theta divisor contains a singular

2-torsion point. Combining this with results of Teixidor on the loci of curves with unexpected

theta-characteristics ([TiB87]), we prove item (1) and part of (3) in the following theorem, whereas

(2) is essentially a consequence of Recillas’ trigonal construction:
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Theorem I. The divisors T eg of even semicanonical pencils satisfy:

(1) T eg = P−1
g (θnull) for 3 ≤ g ≤ 5.

(2) The fiber of P4 on a general hyperelliptic Jacobian JX ∈ A3 is birationally equivalent to its

Kummer variety.

(3) For g ≥ 6, T eg is the divisorial component of P−1
g (θnull) and the restricted Prym map Pg |T eg is

generically finite onto its image. In particular, deg(P6 |T e6 ) = 27.

By contrast, the behaviour of the Prym map on the divisors T og of odd semicanonical pencils is

considerably different to that of the even cases. Indeed, for low values of g (as long as dim T og ≥
dimAg−1), T og dominates Ag−1.

The following theorem summarizes our results on the divisors T og . For the case g = 5, let us recall

that Donagi [Don92] established a birational map between A4 and the set RC+ of pairs (V, δ),

where V ⊂ P4 is a smooth cubic threefold and δ ∈ JV2 is a 2-torsion point of its intermediate

Jacobian with a certain parity condition.

Theorem J. The divisors T og of odd semicanonical pencils satisfy:

(1) The map P3 |T o3 : T o3 −→ A2 is dominant, and its general fiber is isomorphic to the complement

in the projective plane of six lines and a smooth conic. In particular, T o3 is rationally connected.

(2) The map P4 |T o4 : T o4 −→ A3 is surjective, and the fiber of a general Jacobian JX is the

complement in the projective plane of the union of the canonical model of X and its 28 bitangent

lines. In particular, T o4 is rationally connected.

(3) (Izadi) The restricted Prym map P̃5 |T o5 is dominant, and the fiber at a general (V, δ) ∈ RC+

is a partial desingularization of the curve Γ ⊂ F (V ) defined by

Γ = {l ∈ F (V ) | There exist a 2-plane π and a line r ∈ F (V ) with V · π = l + 2r} .

(4) For every g ≥ 6 the restricted Prym map Pg |T og is generically finite onto its image.

Observe that after (4) two natural questions come out: the computation of the degree of Pg |T og
(for g ≥ 6, but especially for g = 6) and an intrinsic description of the divisor P6(T o6 ) in A5. Our

analysis includes a partial answer to the first question: we prove that the degree of P6 |T o6 is strictly

smaller than 27 (which shows once again differences between the even and the odd cases). In

addition, we propose a natural geometric description for P6(T o6 ), based on a close relation between

T og and the locus of Prym curves (C, η) for which the Brill-Noether locus V 2(C, η) is singular.

The main tool for our reproof of (3) is the class of T o5 in Pic(R5)Q, provided by Theorem G. Simul-

taneously, this cohomological approach reveals interesting properties of a general cubic threefold

V ⊂ P4, which a priori seem difficult to detect via more direct techniques. Indeed, Donagi’s descrip-

tion of the general fiber of P̃5 ([Don92]) realizes (a double cover of) the Fano surface of lines F (V )

as a subvariety of R5, where the rational Picard group and the canonical class are well understood.

This enables us to prove:
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Theorem K. For every smooth cubic threefold V ⊂ P4, the curve Γ ⊂ F (V ) is numerically

equivalent to 8KF (V ). Furthermore, for V general, Γ is irreducible and its singular locus consists

of 1485 nodes.

As far as we know, the numerical class of Γ had never been computed before. On the contrary, its

natural counterpart

Γ′ = {r ∈ F (V ) | There exist a 2-plane π and a line l ∈ F (V ) with V · π = l + 2r}

(namely the curve formed by lines of the second type) had been largely explored in the literature

(see e.g. [CG72, Section 10]). Theorem K has immediate consequences on the enumerative geometry

of lines on a cubic threefold. For instance, the geometric interpretation of the nodes of Γ and the

intersection points of Γ with Γ′ establishes the following result:

Corollary L. For a general smooth cubic threefold V ⊂ P4, the following statements hold:

(1) (Corollary VI.4.7) There are exactly 1485 lines l ⊂ V for which there exist 2-planes π1, π2 ⊂ P4

and lines r1, r2 ⊂ V satisfying V · πi = l + 2ri (i = 1, 2).

(2) (Corollary VI.4.8) There are exactly 720 lines l ⊂ V for which there exist 2-planes π1, π2 ⊂ P4

and lines r1, r2 ⊂ V satisfying V · π1 = l + 2r1 and V · π2 = 2l + r2.

Structure of the second part. This second part is also divided into three chapters. Chap-

ter IV gathers all the preliminar results on Prym varieties and the moduli spaces Rg and R̃g, and

introduces the two divisors of Prym semicanonical pencils.

Chapter V consists of two parts. In section V.1 we prove Theorem G, whereas in section V.2 we

determine the irreducibility of T eg and T og for g 6= 4, which almost gives Theorem H.

Chapter VI is the core of this second part and examines the Prym map on T eg and T og . In section VI.1

we determine P−1
g

(
θnull

)
, which proves Theorem I.(1) and part of Theorem I.(3). The rest of the

chapter essentially deals with the odd cases, and the study of each genus occupies a section.

Section VI.2 is devoted to Theorem J.(1), whose proof is based on Mumford’s results on Prym

varieties of covers of hyperelliptic curves. In section VI.3 we study the case of genus 4. Using invo-

lutions on certain moduli spaces, we prove that T o4 corresponds under Recillas’ trigonal construction

to smooth genus 3 curves endowed with a non-complete g1
4 linear series, which gives the arguments

for proving Theorem J.(2). In this section, we also prove Theorem I.(2) and the irreducibility of

T e4 and T o4 (which completes the proof of Theorem H).

Section VI.4 addresses the case of genus 5. As explained above, we prove Theorem J.(3) using a

cohomological approach. A more detailed analysis also gives Theorem K and several enumerative

consequences, including Corollary L as well as a more precise description of the desingularization

appearing in Theorem J.(3) (see Corollary VI.4.9). Finally, in section VI.5 we study the cases of

genus g ≥ 6; after proving Theorem J.(4) and the rest of Theorem I.(3), we propose a natural

geometric description for the divisor P6(T o6 ) ⊂ A5.
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Chapter I

Preliminaries

This first chapter gives a brief account of the preliminary material needed for the first part of the

thesis. Unless otherwise stated, throughout all this first part we will work over an algebraically

closed field K of arbitrary characteristic. As usual, a point of a variety will be called general if it

lies outside a nontrivial Zariski-closed subset.

I.1 Preliminaries on stability conditions

In this section, we review the definitions and basic properties of (possibly weak) stability conditions,

with a special view towards the (α, β)-plane defined by a polarization on a smooth projective surface

as developed in [Bri07, Bri08, AB13]. We follow the notations of the excellent survey [MS17].

Weak and Bridgeland stability conditions

Let A be an abelian category with Grothendieck group K0(A).

Definition I.1.1. A stability function (resp. weak stability function) on A is a group homomor-

phism Z : K0(A)→ C such that every F ∈ A \ {0} satisfies

=Z(F ) ≥ 0, and =Z(F ) = 0 =⇒ <Z(F ) < 0 (resp. =Z(F ) = 0 =⇒ <Z(F ) ≤ 0)

Given a (possibly weak) stability function Z on A, one can define a slope for objects F ∈ A as

µ(F ) = −<Z(F )
=Z(F ) , with the convention µ(F ) = +∞ whenever =Z(F ) = 0.

Definition I.1.2. An object F ∈ A \ {0} is called (semi)stable if, for every nonzero subobject

E ( F , the inequality µ(E) < (≤) µ(F/E) holds.

Remark I.1.3. Equivalently, F is semistable if and only if µ(E) ≤ µ(F ) for every nonzero E ( F .

The same holds (with strict inequality) for stability of F , whenever Z is a stability function. But

17
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if Z is strictly weak, then F may be stable and admit subobjects with µ(E) = µ(F ); indeed, if

Z(F/E) = 0 then µ(E) = µ(F ) < +∞ = µ(F/E) does not contradict stability for F .

The following lemma is certainly well known, and will be used throughout the first part of the

thesis:

Lemma I.1.4. Let F,G ∈ A\{0} be semistable objects with respect to a weak stability function Z.

If µ(F ) > µ(G), then Hom(F,G) = 0.

Now we give the definition of stability conditions on the bounded derived category Db(X) of a

smooth projective variety X (more generally, the same definition applies in the context of trian-

gulated categories). To this end, we fix a finite rank lattice Λ together with a group epimorphism

v : K0(X)� Λ, where K0(X) denotes the Grothendieck group of Db(X).

Definition I.1.5. A Bridgeland stability condition (resp. weak stability condition) on Db(X) is a

pair σ = (Z,A), where:

(1) A is the heart of a bounded t-structure on Db(X), and Z : K0(X) → C (central charge) is a

stability function (resp. weak stability function) on A factoring through v.

(2) Every object F ∈ A \ {0} has a Harder-Narasimhan (HN for short) filtration: there exists a

(necessarily unique) chain of subobjects

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fr−1 ⊂ Fr = F

with the HN factors Fi/Fi−1 being semistable and µ(F1) > µ(F2/F1) > . . . > µ(F/Fr−1).

(3) The support property is satisfied: Let Λ0 ⊂ Λ be the saturation of the subgroup generated by

classes v(F ) of objects F ∈ A such that Z(v(F )) = 0. Then there exists a quadratic form Q

on (Λ/Λ0) ⊗ R, such that Q(v, v) < 0 for every nonzero v ∈ (Λ/Λ0) ⊗ R with Z(v) = 0, and

Q(v(F ), v(F )) ≥ 0 for every semistable object F ∈ A.

Example I.1.6. For (X,L) a polarized smooth projective variety of dimension n, the pair σ =

(Z,Coh(X)) (where Z = −Ln−1 · ch1 +iLn · ch0) defines a weak stability condition on Db(X)

(the usual µL-stability) with respect to the epimorphism v : K0(X) � Z2 given by v(E) = (Ln ·
ch0(E), Ln−1 · ch1(E)). The support property is guaranteed by the quadratic form Q = 0.

Let StabΛ(X) be the set of Bridgeland stability conditions on Db(X) (with respect to Λ and v).

The support property may be thought of as a technical condition allowing to give StabΛ(X), when

endowed with a certain topology, the structure of a complex manifold. This result is usually known

as Bridgeland’s deformation theorem ([Bri07], see also [Bay19]). The main consequence is that the

regions where objects of a fixed class are (semi)stable behave following a locally finite wall and

chamber structure (see [BM11, Proposition 3.3] for further details).
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The (α, β)-plane of a polarized surface

Let X be a smooth projective surface over an algebraically closed field K; if charK > 0, we will

assume that X is neither of general type nor quasi-elliptic with κ(X) = 1. For a fixed polarization

L ∈ NS(X) on X, we review the construction of the stability conditions forming the so-called

(α, β)-plane of L. This is a slice of the connected component of the stability manifold Stab(X)

constructed by Bridgeland ([Bri08]) in the case of K3 surfaces, and generalized to arbitrary surfaces

in [AB13].

For the rest of this section we fix the lattice Λ = Im(v), where v : K0(X) → Z2 ⊕ 1
2Z is the map

defined by

v(E) = (L2 · ch0(E), L · ch1(E), ch2(E)).

Given β ∈ R, consider the full subcategories

Fβ := {E ∈ Coh(X) | µ+
L (E) ≤ β}, Tβ := {E ∈ Coh(X) | µ−L (E) > β}

of Coh(X), where µ+
L (resp. µ−L ) denotes the maximum (resp. minimum) slope of a HN factor in

µL-stability. They form a torsion pair, and thus according to [HRS96] their tilt

Cohβ(X) :=
{
E ∈ Db(X) | H−1(E) ∈ Fβ, H0(E) ∈ Tβ, Hi(E) = 0 for i 6= 0,−1

}
is the heart of a bounded t-structure on Db(X); in particular Cohβ(X) is abelian, with short exact

sequences in Cohβ(X) corresponding to distinguished triangles in Db(X).

Remark I.1.7. If an object E ∈ Db(X) satisfies Hi(E) = 0 for i 6= 0,−1, then E ∈ Cohβ(X) is

equivalent to µ+
L (H−1(E)) ≤ β < µ−L (H0(E)). In particular, as a condition on β ∈ R, E ∈ Cohβ(X)

is open on the right.

For every (α, β) ∈ R>0 × R, we define a central charge Zα,β : K0(X)→ C by

Zα,β(E) = −
(

chβ2 (E)− α2

2
L2 · chβ0 (E)

)
+ i
(
L · chβ1 (E)

)
where chβ = e−βL · ch is the Chern character twisted by βL, namely:

chβ0 = ch0, chβ1 = ch1−βL · ch0, chβ2 = ch2−βL · ch1 +
β2

2
L2 · ch0

Note that Zα,β factors through v. We will denote by να,β the tilt slope defined by the central charge

Zα,β.

The main result of this part, for which we adopt the version in [MS17, Theorems 6.10 and 6.13],

strongly relies on the classical Bogomolov inequality for µL-semistable sheaves (see [Lan16, Theorem

1.3] for positive characteristic):
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Theorem I.1.8 ([Bri08, AB13]). For every (α, β) ∈ R>0 × R, the pair σα,β = (Cohβ(X), Zα,β)

is a Bridgeland stability condition on Db(X), satisfying the support property with respect to the

quadratic form ∆ := (L · ch1)2 − 2(L2 · ch0) ch2.

Remark I.1.9. In the recent work [Kos20] Koseki proved a modified version of the Bogomolov

inequality in positive characteristic, for surfaces of general type and quasi-elliptic surfaces with

κ = 1. This enables him to construct (a smaller region of) Bridgeland stability conditions in such

cases, that we will not consider.

Given a class v ∈ Λ, a numerical wall for v is the region of R>0 × R determined by an equation of

the form να,β(v) = να,β(w), where w ∈ Λ is a class non-proportional to v. An actual wall for v is a

subset of a numerical wall, along which the set of semistable objects of class v changes.

The structure of the walls in this (α, β)-plane is well understood. Items (1)–(6) of the following

theorem are called Bertram’s Nested Wall Theorem, and were proved in [Mac14]. The last item is

a consequence of [BMS16, Lemma A.7], as part of a systematic study of the support property in

terms of the quadratic form.

Theorem I.1.10. Let v ∈ Λ be a class with ∆(v) ≥ 0.

(1) All numerical walls for v are either semicircles centered on the β-axis or lines parallel to the

α-axis.

(2) The numerical walls defined by classes u,w ∈ Λ intersect if and only if v, u, w are linearly

dependent. In such a case, the two walls are identical.

(3) If v0 6= 0, there is a unique vertical wall with equation β = v1
v0

. At each side of this vertical

wall, all semicircular walls are strictly nested (see Figure I.1).

(4) If v0 = 0, there is no vertical wall and all numerical walls are strictly nested semicircles (see

Figure I.2).

(5) The curve Hv : να,β(v) = 0 intersects every semicircular wall at its top point. This curve is an

hyperbola (if v0 6= 0 and ∆(v) > 0), a pair of lines (if v0 6= 0 and ∆(v) = 0) or a single vertical

line (if v0 = 0).

(6) If a numerical wall is an actual wall at some of its points, then it is an actual wall at all of its

points.

(7) If an actual wall is defined by a short exact sequence 0 → E → F → Q → 0 of semistable

objects (with v(F ) = v), then ∆(E)+∆(Q) < ∆(F ). In particular, if ∆(v) = 0 then semistable

objects F with v(F ) = v can only be destabilized at the vertical wall.

Remark I.1.11. Item (7) allows to prove that any vertical line of rational β-coordinate intersects

finitely many actual walls (see [Sch20, Appendix]); in particular, this gives the existence of a largest

actual wall, and reproves the local finiteness of actual walls in the region with α > 0. However,

actual walls may accumulate towards irrational points of Hv ∩ {α = 0} (see [Mea12, Chapter 4]).
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Hv Hv

β = v1
v0

Hv Hv

β = v1
v0

Figure I.1: Numerical walls for v when v0 6= 0

Hv : β = v2
v1

Figure I.2: Numerical walls for v when v0 = 0

Remark I.1.12. If F ∈ Cohβ(X) for some β ∈ R, then L · chβ1 (F ) ≥ 0 gives β ≤ µL(F ) (resp. β ≥
µL(F )) if ch0(F ) > 0 (resp. ch0(F ) < 0). There is no condition on β, if ch0(F ) = 0.

Thus in the study of a particular object F , one is led to consider just one of the regions separated

by the vertical wall (if exists). Such a region is divided into two parts by a component of Hv(F );

abusing of notation, this component will be called hyperbola of F and denoted by HF . Note that

at the left-hand (resp. right-hand) side of HF , F has positive (resp. negative) tilt slope. The

β-coordinate of the intersection point of HF with α = 0 will be denoted by pF .

The next result, originally due to Bridgeland, motivates the name of Gieseker chamber for the

chamber above the largest wall, in the case of a class with positive rank:

Proposition I.1.13 ([Bri08], [MS17, Exercise 6.27]). Let v ∈ Λ be a class with ∆(v) ≥ 0 and

v0 > 0, and let β < v1
v0

. Then an object F ∈ Cohβ(X) of class v(F ) = v is σα,β-semistable for every

α� 0 if, and only if, F is a twisted (L,−1
2KX)-Gieseker semistable sheaf.

When α = 0 one cannot ensure in general that this construction gives Bridgeland stability condi-

tions. This is due to the fact that for β ∈ Q the central charge Z0,β may send to 0 certain objects

of Cohβ(X), as we describe in the following proposition:

Proposition I.1.14. If β ∈ Q, then an object F ∈ Cohβ(X) satisfies:

(1) L · chβ1 (F ) = 0 if and only if the following hold:

• H−1(F ) is either 0 or a µL-semistable torsion-free sheaf with µL = β.

• H0(F ) is either 0 or a sheaf supported in dimension 0.

(2) Z0,β(F ) = 0 if and only if F = S[1], where S is a twisted (L,−1
2KX)-Gieseker semistable vector

bundle with µL(S) = β and ∆(S) = 0.
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Proof. The first item is an easy consequence of H−1(F ) ∈ Fβ and H0(F ) ∈ Tβ. We explain how to

check the “only if” part of (2), the converse implication being immediate.

Note that Z0,β(F ) = 0 implies L · chβ1 (F ) = 0, so H−1(F ) and H0(F ) must be as stated in (1).

If it were H0(F ) 6= 0, then Z0,β(H0(F )) ∈ R<0; this would force Z0,β(H−1(F )[1]) ∈ R>0, which

contradicts that Z0,β is a weak stability function on Cohβ(X).

Therefore F = H−1(F )[1]. If H−1(F ) were not locally free, then H−1(F )∗∗/H−1(F ) would be a

nontrivial subobject of F (in Cohβ(X)) satisfying Z0,β(H−1(F )∗∗/H−1(F )) ∈ R<0, a contradic-

tion. The maximal destabilizing subobject of H−1(F ) with respect to twisted (L,−1
2KX)-Gieseker

stability, if different from H−1(F ), would give a similar contradiction.

Finally, ∆(H−1(F )) = 0 immediately follows from chβ2 (H−1(F )) = 0 = L · chβ1 (H−1(F )).

Example I.1.15. For β ∈ Q, the fact that σ0,β is a Bridgeland stability condition depends on the

sharpness of the Bogomolov inequality for µL-semistable sheaves of slope β, which is encoded by

the Le Potier function

ΦX,L(β) := sup

{
ch2(E)

L2 · ch0(E)
| E is µL-semistable with µL(E) = β

}
(see [FLZ21, Definition 3.1] for its extension as a real function). This function depends on the

particular geometry of the surface:

(1) If X is a complex abelian surface, the vector bundles S of Proposition I.1.14 are semihomoge-

neous. This is a consequence of [Kob87, Theorem IV.4.7] and [Yan89, Theorem 5.12].

Conversely, for X an arbitrary abelian surface and for every β ∈ Q there exist semihomogeneous

vector bundles S with ch1(S)
rk(S) = βL ∈ NS(X)Q by [Muk78]; for such bundles S, one has S[1] ∈

Cohβ(X) and Z0,β(S[1]) = 0. Therefore, σ0,β fails to be a Bridgeland stability condition for

every β ∈ Q.

(2) More generally, let X be a surface whose Albanese map a : X → A is finite onto its image,

endowed with a polarization L = a∗L̃ pulled back from a polarization L̃ on A. Then, for every

β ∈ Q one can find objects F ∈ Cohβ(X) with Z0,β(F ) = 0, for instance F = a∗S[1] for simple

semihomogeneous vector bundles S with ch1(S)
rk(S) = βL̃ ∈ NS(A)Q.

The equality Z0,β(a∗S[1]) = 0 being straightforward, let us check that a∗S[1] ∈ Cohβ(X). Since

µL(a∗S) = β, we need to prove that a∗S is µL-semistable; by [HL10, Lemma 3.2.2], it suffices

to check that S|a(X) is slope semistable with respect to L̃|a(X).

And indeed, according to [Muk78, Proposition 7.3], there exists an isogeny π : B → A and a

line bundle M on B with π∗S = M⊕ rkS . This description implies that π∗S|π−1(a(X)) is slope

semistable with respect to π∗L̃|π−1(a(X)), and therefore the semistability of S|a(X) again follows

from [HL10, Lemma 3.2.2].

In particular, this shows that ΦX,L(x) = x2

2 for every x ∈ R adding an instance to [FLZ21,

Remark 3.3].
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(3) If X is a simply connected complex surface and Z0,β(F ) = 0 for F ∈ Cohβ(X), then β ∈ Z
and the vector bundle S of Proposition I.1.14 satisfies S = (Lβ)⊕ rkS ; this follows from [Kob87,

Theorem IV.4.7 and Corollary I.2.7].

In terms of the Le Potier function, this means that ΦX,L(x) = x2

2 if and only if x ∈ Z.

In any case, Z0,β is a (possibly weak) stability function on Cohβ(X) for every β ∈ Q; since

Cohβ(X) is Noetherian, the existence of HN filtrations with respect to the tilt slope ν0,β is

guaranteed (see [Bri07, Lemma 2.4] or [MS17, Proposition 4.10 and Remark 4.14]). Therefore,

σ0,β = (Cohβ(X), Z0,β) is a (possibly weak) stability condition on Db(X)1.

We finish this section describing the behaviour of semistable objects under the derived dual. This is

certainly well known to the experts but we include it for easy reference. For an object E ∈ Db(X),

we write E∨ = RHom(E,OX).

Proposition I.1.16. For β ∈ R, let F ∈ Cohβ(X) be an object such that ν+
α,β(E) < +∞ for every

α ≥ 0 (i.e. F contains no subobject with L · chβ1 = 0). Then:

(1) F∨[1] ∈ Coh−β(X).

(2) For every α ≥ 0, F is σα,β-(semi)stable if and only if F∨[1] is σα,−β-(semi)stable.

Proof. The first item is the particular case for surfaces of the more general result [BLMS17,

Lemma 2.19.a]. As a consequence of it, the contravariant functor ∨[1] induces a bijection be-

tween subobjects of F (in Cohβ(X)) and quotients of F∨[1] (in Coh−β(X)). Taking into account

the Chern character of the derived dual as well, item (2) is immediately checked.

Remark I.1.17. A combination of Proposition I.1.13 and Proposition I.1.16 describes the semistable

objects above the largest wall, for classes with negative rank.

I.2 Cohomological rank functions on abelian varieties

In this section we recall the definition of cohomological rank functions given by Jiang and Pareschi

in [JP20], together with some of their most important properties. We also recall their relation to

syzygies of abelian varieties.

Let (A,L) be a g-dimensional polarized abelian variety over K, and let M ∈ Pic(A) be any ample

line bundle representing the polarization L. We will denote by

ϕL : A→ Pic0(A), p 7→ t∗pM ⊗M−1

the corresponding isogeny, where tp stands for the translation by p ∈ A.

1If Z0,β is a stability function, the support property for the Bridgeland stability condition σ0,β holds as explained

in [FLZ21, Remark 3.5]; otherwise, the quadratic form Q = 0 guarantees the support property for the weak stability

condition σ0,β .
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Given an object F ∈ Db(A) and i ∈ Z, the cohomological rank function hiF,L : Q→ Q≥0 is defined

as follows: given a rational x0 = a
b with b > 0, then

hiF,L(x0) :=
1

b2g
hi(A,µ∗bF ⊗Mab ⊗ α)

for general α ∈ Pic0(A), where µb : A→ A is the multiplication-by-b isogeny.

Since µ∗bL = b2L (hence µ∗b(x0L) = abL) and degµb = b2g, the number hiF,L(x0) gives a meaning

to the (hyper)cohomological rank hi(A,F ⊗ Lx0) of F twisted with a general representative of the

fractional polarization x0L. Note that, by semicontinuity and base change, these cohomological

ranks are related by the equation∑
i∈Z

(−1)i · hiF,L(x0) = χF,L(x0),

where χF,L is the Hilbert polynomial of F with respect to L.

Remark I.2.1. The definition in [JP20] is given under the assumption charK = 0, but the same

definition works in arbitrary characteristic as observed in [Cau20, Section 2].

The main results of Jiang and Pareschi about these functions can be summarized as:

Theorem I.2.2. Let F ∈ Db(A) be an object and i ∈ Z. Then:

(1) [JP20, Corollary 2.6] For every x0 ∈ Q, there exists a left (resp. right) neighborhood of x0 where

the function hiF,L is given by a polynomial. Explicitly, there exists ε > 0 such that

hiF,L(x) =
(x0 − x)g

χ(L)
· χϕ∗LRiΦP (µ∗bF⊗Mab),L

(
1

b2(x− x0)

)
for x ∈ (x0 − ε, x0] ∩Q

hiF,L(x) =
(x− x0)g

χ(L)
· χϕ∗LRg−iΦP∨ ((µ∗bF⊗Mab)∨),L

(
1

b2(x− x0)

)
for x ∈ [x0, x0 + ε) ∩Q

(2) [JP20, Theorem 3.2] If charK = 0, the function hiF,L extends to a continuous function of real

variable hiF,L : R→ R≥0.

It is expected (see [JP20, Remark 2.8]) that these real functions are piecewise polynomial; in other

words, that their critical points (i.e. the points where they are not of class C∞) do not accumulate

towards an irrational number.

In the case of elliptic curves, this is true thanks to a precise description admitted by the functions

in terms of µL-stability. The key point of this description is that µL-semistable coherent sheaves

have trivial functions, that is, the support of any of its functions is disjoint with the support of all

the other functions. This is certainly well known to the experts, but we include a proof since we

could not find a published reference.
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Proposition I.2.3. Let (E,L) be an elliptic curve endowed with a polarization of degree 1.

(1) If F ∈ Coh(E) is a µL-semistable coherent sheaf, then it has trivial functions

h0
F,L(x) =

{
0 χF,L(x) ≤ 0

χF,L(x) χF,L(x) ≥ 0
h1
F,L(x) =

{
−χF,L(x) χF,L(x) ≤ 0

0 χF,L(x) ≥ 0

where χF,L(x) = rk(F ) · x+ deg(F ) is the Hilbert polynomial of F with respect to L.

(2) Let 0 = F0 ↪→ F1 ↪→ . . . ↪→ Fr = F be the HN filtration of a coherent sheaf F . Then the

functions of F can be recovered from those of its HN factors:

h0
F,L(x) =

r∑
k=1

(
h0
Fk/Fk−1,L

(x)
)

=
∑

χFk/Fk−1,L
(x)≥0

(
χFk/Fk−1,L(x)

)

h1
F,L(x) =

r∑
k=1

(
h1
Fk/Fk−1,L

(x)
)

=
∑

χFk/Fk−1,L
(x)≤0

(
−χFk/Fk−1,L(x)

)
(3) For any F ∈ Db(E) and i ∈ Z,

hiF,L(x) = h0
Hi(F ),L(x) + h1

Hi−1(F ),L(x).

Proof. Item (1) is clear if F is torsion, since in that case h0
F,L(x) = χF,L(x) = length(F ) for every

x ∈ Q. Hence we may assume that F is a vector bundle.

Let x = a
b ∈ Q. If χF,L(x) < 0 (resp. χF,L(x) > 0), then we consider a non-decreasing (resp. non-

increasing) sequence {xn = an
bn
}n ⊂ Q converging to x, such that for every n the multiplication

isogeny µbn : E → E is an étale morphism2.

We claim that for every degree 1 line bundle M and every n ∈ N, one has

0 = Hom(M−anbn , µ∗bnF ) = H0(µ∗bnF ⊗M
anbn)

(resp. 0 = Hom(µ∗bnF,M
−anbn) = Ext1(M−anbn , µ∗bnF )∗ = H1(µ∗bnF ⊗M

anbn)∗ )

Indeed, µ∗bnF is µL-semistable (we can apply [HL10, Lemma 3.2.2], since µbn is a separable isogeny)

as well as M−anbn . Thus the claim follows from the inequality

µL(M−anbn) = −anbn > b2nµL(F ) = µL(µ∗bnF )

(resp. µL(M−anbn) = −anbn < b2nµL(F ) = µL(µ∗bnF )).

Therefore h0
F,L(xn) = 0 (resp. h1

F,L(xn) = 0) for every n, which by Theorem I.2.2.(1) implies

h0
F,L(x) = 0 (resp. h1

F,L(x) = 0). This proves (1).

2Of course, if b is not divisible by charK (e.g., if charK = 0) one can take xn = x for every n
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Item (2) follows by induction on the length r of the HN filtration of F , the initial case being nothing

but (1). Let x = a
b ∈ Q. For the induction step one uses the long exact sequence in cohomology

associated to

0→ µ∗bFr−1 ⊗Mab → µ∗bFr ⊗Mab → µ∗b(Fr/Fr−1)⊗Mab → 0

for every line bundle M of degree 1, together with the observation that

χFk/Fk−1,L(x) > (<)0⇐⇒ x > (<)− µL(Fk/Fk−1)

for any k ∈ {1, . . . , r} and the inequalities −µL(F1) < . . . < −µL(Fr/Fr−1).

For the proof of (3), write x = a
b ∈ Q and let M be any line bundle of degree 1. Considering the

distinguished triangle in Db(E) obtained by truncation of µ∗bF ⊗Mab

µ∗b(τ≤i−1F )⊗Mab → µ∗bF ⊗Mab → µ∗b(τ≥iF )⊗Mab

and the corresponding long exact sequence of hypercohomology groups

. . .→ Hi−1(µ∗b(τ≥iF )⊗Mab)→ Hi(µ∗b(τ≤i−1F )⊗Mab)→ Hi(µ∗bF ⊗Mab)→

→ Hi(µ∗b(τ≥iF )⊗Mab)→ Hi+1(µ∗b(τ≤i−1F )⊗Mab)→ . . .

the result becomes a consequence of the following immediate equalities:

Hi−1(µ∗b(τ≥iF )) = 0, Hi(µ∗b(τ≤i−1F )⊗Mab) = H1(µ∗b(Hi−1F )⊗Mab),

Hi(µ∗b(τ≥iF )⊗Mab) = H0(µ∗b(HiF )⊗Mab), Hi+1(µ∗b(τ≤i−1F )⊗Mab) = 0

Nevertheless, for higher-dimensional abelian varieties not only a general structure for cohomological

rank functions is far from being understood, but also the computation of particular examples often

becomes a difficult problem.

Consider for instance the functions hiIq ,L of the ideal sheaf of a (closed) point q ∈ A; by independence

of q, we fix q to be the origin 0 ∈ A. It immediately follows from the long exact sequence of

cohomology associated to

0 −→ I0 −→ OA −→ O0 −→ 0

that the only nonzero functions of I0 are:

h0
I0,L(x) =

{
0 x ≤ 0

? x ≥ 0
, h1

I0,L(x) =

{
1 x ≤ 0

? x ≥ 0
, hgI0,L(x) =

{
(−1)gχ(L) · xg x ≤ 0

0 x ≥ 0

As explained in the introduction, Jiang and Pareschi observed that h0
I0,L and h1

I0,L encode inter-

esting properties about the basepoint-freeness and the projective normality of the polarization L;

subsequent work of Caucci and Ito extended this relation to higher syzygies. In order to state

these results, we briefly recall the definition of the property (Np); for further details, the reader is

referred to [Laz04].
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Let L be a very ample line bundle on a smooth projective variety X, defining an embedding of X

in P = P(H0(X,L)∨). Consider the homogeneous coordinate ring S = Sym H0(X,L) of P, and the

graded S-algebra RL =
⊕
H0(X,Lm).

Definition I.2.4. Let L be an ample line bundle on a smooth projective variety X. We say that

L satisfies the property (Np) if it is very ample, and the first p+ 1 steps of the minimal graded free

resolution of RL are of the form

... −→ S(−p− 1)⊕ap −→ ... −→ S(−3)⊕a2 −→ S(−2)⊕a1 −→ S −→ RL −→ 0

Example I.2.5.

(1) (N0) holds if, and only if, the natural map S −→ RL is surjective. In other words, if X is

projectively normal in P: any divisor of a complete linear system |Lm| is the intersection of X

with an hypersurface of degree m in P.

Note that, in such a case, the properties (Np) (p ≥ 1) are conditions on the first p steps of the

minimal resolution of the homogeneous ideal IX/P = ker(S −→ RL) of X in P.

(2) (N1) holds if, and only if, X is projectively normal in P and IX/P is generated by quadrics.

(3) (N2) holds if, and only if, X satisfies (N1) and the relations between the quadrics generating

IX/P are generated by linear ones.

Theorem I.2.6 ([JP20, Cau20, Ito21]). For a polarized abelian variety (A,L), the following state-

ments hold:

(1) I0〈L〉 is a GV-sheaf, and it is IT(0) if and only if any ample line bundle representing L is

basepoint-free.

(2) If I0〈12L〉 is IT(0), then any ample line bundle L is projectively normal.

(3) If I0〈 1
p+2L〉 is M-regular for some p ≥ 1, then any ample line bundle representing L satisfies

the property (Np).

The reader is referred to [JP20, Section 5] for the definitions of a Q-twisted coherent sheaf F 〈x0L〉
being IT(0), M-regular or a GV-sheaf. In the particular case F = I0 we will use the following

characterization, which is an immediate consequence of [JP20, Proposition 5.3]:

Lemma I.2.7. Let x0 ∈ Q be a positive rational number.

(1) I0〈x0L〉 is a GV-sheaf if and only if h1
I0,L(x0) = 0.

(2) I0〈x0L〉 is M-regular if and only if h1
I0,L(x0) = 0 and h1

I0,L is of class C1 at x0.

(3) I0〈x0L〉 is IT(0) if and only if there is ε > 0 such that h1
I0,L(x) = 0 for all x ∈ (x0 − ε, x0).

In particular, the basepoint-freeness threshold

ε1(L) := inf
{
x ∈ Q | h1

I0,L(x) = 0
}
,

satisfies ε1(L) ≤ 1, with equality if and only if the polarization L has base points. In consequence,

the functions hiI0,L (i = 0, 1) are unknown only in the interval (0, 1).
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I.3 The theta group of an ample line bundle

Let L ∈ Pic(A) be an ample line bundle on an abelian variety A. We give a quick review of the

representation of the theta group G(L) on H0(A,L), explicitly described by Mumford in [Mum66].

Assume that char(K) does not divide h0(L) = χ(L). This guarantees that the polarization isogeny

ϕL : A → Pic0(A), of degree χ(L)2, is separable. We will write K(L) := ker(ϕL); for instance, if

L is very ample embedding A in P(H0(A,L)∨), then the points p ∈ K(L) are those for which the

translation tp on A extends to a projectivity of P(H0(A,L)∨).

This projective representation comes from the aforementioned representation of the theta group

G(L) := {(x, ϕ) | x ∈ K(L), ϕ : L
∼=−→ t∗xL}, (y, ψ) · (x, ϕ) = (x+ y, t∗xψ ◦ ϕ)

on H0(A,L). Note that G(L) fits into a short exact sequence

1→ K∗ → G(L)→ K(L)→ 0,

but it is far from being abelian. Indeed, there is a well-defined pairing

eL : K(L)×K(L)→ K∗, (x, y) 7→ x̃ · ỹ · x̃−1 · ỹ−1

(here x̃, ỹ are arbitrary lifts of x, y to G(L)) measuring the noncommutativity of G(L). This pairing

is skew-symmetric and non-degenerate (see [Mum66, Page 293]).

The representation of G(L) on H0(A,L) is defined as follows: every (x, ϕ) ∈ G(L) induces

U(x,ϕ) : H0(A,L)→ H0(A,L), s 7→ t∗−x(ϕ(s))

Theorem I.3.1 ([Mum66]). With the notations above, the following statements hold:

(1) K(L) = A(L)⊕B(L), where A(L), B(L) ⊂ K(L) are maximal totally isotropic subgroups with

respect to eL. Moreover, if L is of type δ = (d1, ..., dg), then A(L) ∼= Z/d1 ⊕ ... ⊕ Z/dg and

B(L) ∼= Â(L) = HomZ(A(L),K∗) via the pairing eL.

(2) As a group, G(L) is isomorphic to G(δ) := K∗ ×A(L)× Â(L) with the operation

(α, t, l) · (α′, t′, l′) = (αα′ · l′(t), t+ t′, l · l′)

(3) The representation of G(L) on H0(A,L) is isomorphic to the representation of G(δ) on

V (δ) = {K-valued functions on A(L) = Z/d1 ⊕ ...⊕ Z/dg}

given, for (α, t, l) ∈ G(δ) and f ∈ V (δ), as follows:

((α, t, l) · f) (x) = α · l(x) · f(t+ x)
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(4) Assume that char(K) 6= 2 and L is totally symmetric: namely, there exists an isomorphism

L ∼= i∗L, acting as +1 simultaneously on all the fibers L(p) of 2-torsion points p ∈ A2. Then

the inversion map i : A→ A extends to a projectivity of P(H0(A,L)∨); under the isomorphism

H0(A,L) ∼= V (δ) of (3), this projectivity is obtained from

ĩ : V (δ)→ V (δ),
(̃
i · f

)
(x) = f(−x)

The main advantage of this description is the existence of a canonical basis for V (δ), which allows

an explicit treatment of the endomorphisms U(x,ϕ) and ĩ in coordinates. We will use this approach

in section III.3 to obtain lower bounds for the basepoint-freeness threshold ε1(L).





Chapter II

Chern degree functions

This chapter constitutes the core of this first part of the thesis. We introduce the notion of

Chern degree funtions on a polarized surface, and in section II.2 we construct local polynomial

expressions for them, which allows to understand their continuity and differentiability (section II.3).

After proving the equivalence between Chern degree functions and cohomological rank functions

on abelian surfaces (section II.4), in section II.5 we treat the case of (twisted) Gieseker semistable

sheaves, for which the Chern degree functions turn out to have a simpler structure.

II.1 Chern degree functions

In the next three sections, (X,L) will be a fixed polarized smooth projective surface over K; in

positive characteristic, we will assume that X is neither of general type nor quasi-elliptic with

κ(X) = 1. We present now our main objects of study in this first part of the thesis.

Definition II.1.1. Let β ∈ Q be a rational number.

(1) If F ∈ Cohβ(X) is an object with HN filtration 0 = F0 ↪→ F1 ↪→ . . . ↪→ Fr = F with respect to

σ0,β, we define

chd0
F,L(−β) :=

∑
ν0,β(Fi/Fi−1)≥0

chβ2 (Fi/Fi−1)

chd1
F,L(−β) :=

∑
ν0,β(Fi/Fi−1)<0

− chβ2 (Fi/Fi−1)

(2) More generally, for an arbitrary object E ∈ Db(X) and any integer k ∈ Z, we define the number

chdkE,L(−β) using the cohomologies of E with respect to the heart Cohβ(X):

chdkE,L(−β) := chd0
Hkβ(E),L

(−β) + chd1
Hk−1
β (E),L

(−β)

31



32 Chapter II. Chern degree functions

This rule defines, given E ∈ Db(X) and k ∈ Z, a function chdkE,L : Q → Q≥0 that we will call the

k-th Chern degree function of E. From the definition, it directly follows that∑
k∈Z

(−1)k · chdkE,L(x) = ch−x2 (E).

so the Chern degree functions are a positive alternate decomposition of the second twisted Chern

character.

Remark II.1.2. Thinking of σ0,β in terms of slicings (see [Bri07] or [MS17, Sections 5.1 and 5.2]),

the definition of chdkE,L(−β) involves all the objects in the HN filtration of E ∈ Db(X) with phase

in the interval
[

1
2 − k,

3
2 − k

)
.

Example II.1.3. To determine the Chern degree functions of OX , observe that for every β < 0

OX ∈ Cohβ(X); moreover, combining Proposition I.1.13 and Theorem I.1.10.(7) we have that OX
is σα,β-semistable for every α > 0, hence for every α ≥ 0. A similar situation holds for OX [1] when

β ≥ 0, so the nonzero Chern degree functions of OX are

chd0
OX ,L(x) =

{
0 x ≤ 0

L2

2 x
2 x ≥ 0

and chd2
OX ,L(x) =

{
L2

2 x
2 x ≤ 0

0 x ≥ 0.

Given F ∈ Cohβ(X), we can also define chd0
F,L(−β) in terms of a unique subobject. Namely, if

0 = F0 ↪→ F1 ↪→ . . . ↪→ Fs−1 ↪→ Fs ↪→ Fs+1 ↪→ . . . ↪→ Fr = F

is the HN filtration of F with respect to σ0,β0 , with the inequalities

ν0,β0(F1) > . . . > ν0,β0(Fs/Fs−1) > 0 ≥ ν0,β0(Fs+1/Fs) > . . . > ν0,β0(F/Fr−1),

then observe that chd0
F,L(−β) = chβ2 (Fs).

Definition II.1.4. The index s = s(F ) is called the switching index of F (with respect to σ0,β).

Note that ν−0,β(F ) > 0 is equivalent to Fs = F , and ν+
0,β(F ) ≤ 0 is equivalent to Fs = 0.

These functions satisfy the following properties, analogous to those that are natural from the

viewpoint of cohomology:

Proposition II.1.5. If E ∈ Db(X) and x ∈ Q, the following properties hold:

(1) (Serre vanishing) If E ∈ Coh(X), then for x� 0 one has chdkE,L(x) = 0 for every k 6= 0.

(2) (Serre duality) We have chdkE,L(x) = chd2−k
E∨,L(−x) for every k ∈ Z.

Proof. To prove the first item we note that any sheaf E satisfies E ∈ Cohβ(X) for every β < µ−(E);

in particular, chdkE,L(x) = 0 for every x > −µ−(E) and k 6= 0, 1. Thus it only remains to show

vanishing for chd1
E,L.
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To this end, we consider the HN filtration of E with respect to twisted (L,−1
2KX)-Gieseker stability

(if E is not itself torsion-free, we create this filtration using the torsion filtration). By Proposi-

tion I.1.13, this is the HN filtration of E ∈ Cohβ(X) with respect to ν0,β-stability, for β � 0. There-

fore, for β � 0 all the HN factors of E have positive slope ν0,β, which proves that chd1
E,L(x) = 0

for x� 0.

For the second item, we will check the equality assuming that E ∈ Coh−x(X); the general statement

follows from considering the cohomologies of E with respect to the heart Coh−x(X).

For simplicity, we write β = −x. Let

0 = E0 ↪→ E1 ↪→ . . . ↪→ Er−1 ↪→ Er = E

be the HN filtration of E with respect to σ0,β, where the first HN factor E1 is assumed to have

slope ν0,β = +∞ (if this does not occur, simply write E1 = 0 and let the rest of the filtration be

that of E). By definition:

chd0
E,L(−β) = chβ2 (E1) + chd0

E/E1,L
(−β), chd1

E,L(−β) = chd1
E/E1,L

(−β)

Moreover, we have a triangle 0→ (E/E1)∨[1]→ E∨[1]→ E∨1 [1]→ 0 in Db(X), where:

• (E/E1)∨[1] ∈ Coh−β(X), having (E/Er−1)∨[1],. . . ,(E2/E1)∨[1] as HN factors with respect to

ν0,−β. This is a consequence of Proposition I.1.16.

• It is not difficult to check that E∨1 [2] ∈ Coh−β(X) and it is σ0,−β-semistable (with slope +∞).

It follows that E∨[1] has two cohomologies with respect to Coh−β(X), namely

H0
−β(E∨[1]) = (E/E1)∨[1], H1

−β(E∨[1]) = E∨1 [2]

whose HN factors are known in terms of those of E. This gives the desired relations

chd0
E,L(−β) = chd1

E∨[1],L(β), chd1
E,L(−β) = chd0

E∨[1],L(β).

The following technical lemma, which will be useful later on, is also natural from the same coho-

mological viewpoint:

Lemma II.1.6. Let 0 → E → F → Q → 0 be a short exact sequence in Cohβ(X) (β ∈ Q). If

chd0
Q,L(−β) = 0 and Q has no subobject Q̃ ⊂ Q in Cohβ(X) with Q̃ ∈ ker(Z0,β), then the equality

chd0
E,L(−β) = chd0

F,L(−β) holds.

Proof. Let 0 = F0 ↪→ F1 ↪→ . . . ↪→ Fs ↪→ Fs+1 ↪→ . . . ↪→ F be the HN filtration of F with respect

to σ0,β, so that ν0,β(Fs/Fs−1) > 0 ≥ ν0,β(Fs+1/Fs). That is, chd0
F,L(−β) = chβ2 (Fs).

By chd0
Q,L(−β) = 0 and our extra assumption on ker(Z0,β), we know that every subobject of Q has

ν0,β0 ≤ 0. This implies that the morphism Fs → F → Q must be 0, and thus Fs ⊂ E.

It turns out that Fs ⊂ E is the part of the HN filtration of E corresponding to HN factors of

positive slope. Therefore, chd0
E,L(−β) = chβ2 (Fs) = chd0

F,L(−β).
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Remark II.1.7. In view of the results in [FLZ21, Section 3] extending the construction of (geomet-

ric) Bridgeland stability conditions to a region enlarging the (α, β)-plane, it would be interesting

to consider functions defined via weak stability conditions on the “boundary” of this bigger region.

More precisely, Fu–Li–Zhao construct a Bridgeland stability condition

σ̃a,β =
(

Cohβ(X), Z̃a,β = (− chβ2 +aL2 · ch0) + i(L · chβ1 )
)

for every (a, β) ∈ R2 with a > ΦX,L(β)− β2

2 , where ΦX,L(β) is the Le Potier function (see [FLZ21,

Definition 3.1] and Example I.1.15). In particular, the Bridgeland stability conditions in the (α, β)-

plane are recovered as σ̃α2

2
,β

= σα,β for every α > 0.

The function f(x) := ΦX,L(x)− x2

2 being upper-semicontinuous, its discontinuities form a meagre

set. Since the complement of a meagre set is dense thanks to the Baire category theorem, it turns

out that the points where f is continuous form a dense subset AX,L of R.

Henceforth, one could define functions on AX,L ∩Q via the HN filtrations with respect to the weak

stability conditions
{
σ̃f(β),β | β ∈ AX,L ∩Q

}
. Clearly, in the cases where f ≡ 0 (e.g. surfaces with

finite Albanese map, as seen in Example I.1.15) this is nothing but our Chern degree functions. In

general, to extend these functions to the whole R, one could try to follow the same approach of

section II.2; however, while we expect that the existence of Bridgeland limit filtrations (i.e. The-

orem II.2.8) could be proven following similar arguments, the existence of weak limit filtrations

(i.e. Theorem II.2.14) seems a much more obscure problem.

Consider for instance a polarized K3 surface (X,L) with Pic(X) = Z ·L and L2 = 2e. In that case,

the existence of spherical objects shows that

AX,L ∩Q = Q \
{ c
r
∈ Q : r|e(c2 + 1)

}
and f ≡ − 1

2e on this subset. For β ∈ AX,L ∩ Q, one can consider the central charge of σ̃− 1
2e
,β,

which is given by

Z̃− 1
2e
,β = −vβ2 + i(L · vβ1 )

for (vβ0 , v
β
1 , v

β
2 ) = v · e−βL the twisted Mukai vector. Accordingly, if F ∈ Cohβ(X) has HN filtration

0 = F0 ↪→ F1 ↪→ . . . ↪→ Fr = F with respect to σ− 1
2e
,β, we may define for example

vdeg0
F,L(−β) :=

∑
ν− 1

2e ,β
(Fi/Fi−1)≥0

vβ2 (Fi/Fi−1).

In this particular case we could call such functions Mukai degree functions.

Observe that in general one cannot expect to extend the Mukai degree functions to continuous

functions in the whole R mimicking Corollary II.3.3, since discontinuities may arise at certain

points of Q \AX,L, as one easily sees with the function of OX .

In any case, it would be interesting to know if, fixed an object of Db(X), there are finitely many such

discontinuities and the Mukai degree functions encode information of geometrical or cohomological

type.
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II.2 Local expressions for the Chern degree functions

This section is devoted to prove that, in a neighborhood of every rational number, the Chern degree

functions are piecewise polynomial. The result is analoguous to Theorem I.2.2.(1) for cohomological

rank functions, which follows from a transformation formula with respect to the Fourier-Mukai

transform. In our case, the proof follows a completely different path, by describing the behaviour

of HN filtrations around weak stability conditions σ0,β0 (β0 ∈ Q). This description may be of

independent interest, especially when σ0,β0 lies in the boundary of the (geometric) stability manifold

(see Example I.1.15 and Remark II.1.7).

Along this section, we keep fixed a rational number β0 = a
b with a and b coprime integers (b > 0).

Bridgeland limit HN filtrations

Our first goal is to control HN filtrations with respect to the Bridgeland stability conditions σα,β0 ,

for small values of α > 0. In particular, we want to understand whether these filtrations remain

constant:

Definition II.2.1. Given F ∈ Cohβ0(X), if there exists α0 > 0 such that F has the same HN

filtration with respect to all the Bridgeland stability conditions σα,β0 with α ∈ (0, α0), we will call

this HN filtration the Bridgeland limit HN filtration of F at β0.

In case the Bridgeland limit HN filtration exists, the HN filtration of F at σ0,β0 can be recovered

by identifying those limit HN factors with the same tilt slope at α = 0.

The first result of this section is that Bridgeland limit HN filtrations exist for σ0,β0-semistable

objects with nonzero tilt slope:

Proposition II.2.2. Any σ0,β0-semistable object F ∈ Cohβ0(X) with ν0,β0(F ) 6= 0 admits a Bridge-

land limit HN filtration at β0.

The case L · chβ0
1 (F ) = 0 being trivial (in this case F is semistable along the whole line β = β0),

we will assume that L · chβ0
1 (F ) > 0 (i.e. ν0,β0(F ) 6= +∞). Thanks to the duality functor ∨[1] and

Proposition I.1.16, we may restrict ourselves to the case ν0,β0(F ) < 0.

The proof is then based on two lemmas:

Lemma II.2.3. Let F ∈ Cohβ0(X) be σ0,β0-semistable, with L · chβ0
1 (F ) > 0 and ν0,β0(F ) < 0.

(1) The set of subobjects

SF =
{
E ∈ Cohβ0(X) : E ⊆ F, ν0,β0(E) = ν0,β0(F ), ∆(E) ≥ 0

}
with the same slope and non-negative discriminant is non-empty.

(2) The expression L2·ch0

L·chβ0
1

is bounded from below on SF .
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Before proving this first lemma, we note the following:

Remark II.2.4. By the assumption β0 = a
b , every F ∈ Cohβ0(X) with ν+

0,β0
(F ) < +∞ satisfies{

L · chβ0
1 (G) : G ⊂ F in Cohβ0(X)

}
⊆ 1

b
· Z>0,

{
ν0,β0(G) : G ⊂ F in Cohβ0(X)

}
⊆ 1

kF
· Z

where kF = 2b
(
bL · chβ0

1 (F )
)

! ∈ Z>0 (it depends only on F ). Indeed, since 2b2 chβ0
2 (G) ∈ Z and

bL · chβ0
1 (G) ∈ (0, bL · chβ0

1 (F )] ∩ Z, then ν0,β0(G) =
2b2 ch

β0
2 (G)

2b
(
bL·ch

β0
1 (G)

) ∈ 1
kF
· Z.

Proof of Lemma II.2.3. To prove (1), assume that the set SF is empty; in particular ∆(F ) < 0, so

F is nonsemistable for every Bridgeland stability condition σα,β0 with α > 0. If n ∈ Z>0, let Gn

be the maximal destabilizing subobject of F with respect to σ 1
n
,β0

.

Observe that ν0,β0(Gn) ≤ ν0,β0(F ), by the σ0,β0-semistability of F ; the emptiness of SF guarantees

a strict inequality. Therefore, ν0,β0(Gn) ≤ ν0,β0(F ) − 1
kF

(by Remark II.2.4). Combining with

ν 1
n
,β0

(Gn) > ν 1
n
,β0

(F ), we get

ν0,β0(F )− 1

2n2
· L

2 · ch0(F )

L · chβ0
1 (F )

= ν 1
n
,β0

(F ) < ν 1
n
,β0

(Gn) ≤ ν0,β0(F )− 1

kF
− 1

2n2
· L

2 · ch0(Gn)

L · chβ0
1 (Gn)

which gives

−L
2 · ch0(Gn)

L · chβ0
1 (Gn)

>
2

kF
n2 − L2 · ch0(F )

L · chβ0
1 (F )

=⇒ −L
2 · ch0(Gn)

L · chβ0
1 (Gn)

→ +∞ as n→∞

But on the other hand, for every n we have L · chβ0
1 (Gn) > 0 and hence

0 ≤ ∆(Gn) =
(
L · chβ0

1 (Gn)
)2
(

1− 2
L2 · ch0(Gn)

L · chβ0
1 (Gn)

· ν0,β0(Gn)

)
,

which yields

0 ≤ 1− 2
L2 · ch0(Gn)

L · chβ0
1 (Gn)

· ν0,β0(Gn) < 1− 2
L2 · ch0(Gn)

L · chβ0
1 (Gn)

· ν0,β0(F )

for every n such that −L2·ch0(Gn)

L·ch
β0
1 (Gn)

> 0. Since ν0,β0(F ) < 0, this contradicts the limit above and

concludes the proof of (1).

To prove (2), let E ⊆ F be a subobject with ν0,β0(E) = ν0,β0(F ) and ∆(E) ≥ 0. Then

0 ≤ ∆(E) =
(
L · chβ0

1 (E)
)2
(

1− 2
L2 · ch0(E)

L · chβ0
1 (E)

· ν0,β0(F )

)

implies, under the assumption ν0,β0(F ) < 0, that

L2 · ch0(E)

L · chβ0
1 (E)

≥ 1

2ν0,β0(F )
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The elements E ∈ SF satisfy L2·ch0(E)

L·chβ0
1 (E)

∈ 1

(bL·ch
β0
1 (F ))!

Z. Hence by Lemma II.2.3.(2), we can consider

an element E ∈ SF with minimum L2·ch0

L·ch
β0
1

among the objects of SF ; by noetherianity of Cohβ0(X),

we may assume as well that E is maximal with this property.

Remark II.2.5. A priori, it is not obvious that E must be unique. This will follow from the proof

of Proposition II.2.2, where we will see that E is the first step in the Bridgeland limit HN filtration

of F (recall that HN filtrations are unique).

Lemma II.2.6. There exists α0 > 0 such that E is σα,β0-semistable for every α ∈ [0, α0).

Proof. The statement is clear for α = 0: σ0,β0-semistability of E (actually of any element in SF )

trivially follows from that of F .

Now consider α > 0 such that E is not σα,β0-semistable, and let G ( E be a maximal destabilizing

subobject. Note that 0 < L · chβ0
1 (G) (since E is σ0,β0-semistable) and L · chβ0

1 (G) < L · chβ0
1 (E).

Moreover, ν0,β0(G) < ν0,β0(E). Indeed, an equality would imply (since να,β0(G) > να,β0(E)) that

G has smaller L2·ch0

L·chβ0
1

than E, contradicting our hypothesis on E. Therefore

chβ0
2 (G) < chβ0

2 (E) · L · ch
β0
1 (G)

L · chβ0
1 (E)

< 0

(note that chβ0
2 (E) < 0 because ν0,β0(E) = ν0,β0(F ) < 0).

Now, since ∆(G) ≥ 0 and chβ0
2 (G) < 0, we have

(
L · chβ0

1 (G)
)2
≥ 2

(
L2 · ch0(G)

)
chβ0

2 (G), so

1 ≥ 2L2 · ch0(G)

L · chβ0
1 (G)

· ν0,β0(G)

and
−L2 · ch0(G)

L · chβ0
1 (G)

≤ −1

2ν0,β0(G)
<

−1

2ν0,β0(E)
< −(L · chβ0

1 (E))2

2
b chβ0

2 (E)
,

where in the last inequality we have used that L · chβ0
1 (E) > 1

b . Therefore,

ν0,β0(E)− α2L2 · ch0(E)

2L · chβ0
1 (E)

= να,β0(E) < να,β0(G) = ν0,β0(G)− α2L2 · ch0(G)

2L · chβ0
1 (G)

< ν0,β0(G)− α2(L · chβ0
1 (E))2

4
b chβ0

2 (E)
≤ ν0,β0(E)− 1

kE
− α2(L · chβ0

1 (E))2

4
b chβ0

2 (E)
,

which gives the inequality

α2

2

(
(L · chβ0

1 (E))2

−2
b chβ0

2 (E)
+
L2 · ch0(E)

L · chβ0
1 (E)

)
>

1

kE

Using ∆(E) ≥ 0, one can check that the factor multiplying α2

2 is positive. Since this factor and kE

only depend on E, this yields a lower bound for those α for which E is not σα,β0-semistable.
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Proof of Proposition II.2.2. Consider the subobject E ⊆ F defined below the proof of Lemma II.2.3;

applying an inductive process (now to F/E, and so on) yields a chain of subobjects of F , which is

finite by the noetherianity of Cohβ0(X).

This chain is a HN filtration for F , for all σα,β0 with α > 0 small enough. Indeed, on the one hand

the semistability of the factors is guaranteed by Lemma II.2.6; on the other hand, the inequalities

of tilt slopes follow from the properties imposed to the subobjects taken at each step.

As a first consequence of Proposition II.2.2, we obtain that σ0,β0-(semi)stability keeps some prop-

erties from Bridgeland stability:

Corollary II.2.7. Let F ∈ Cohβ0(X) be an object.

(1) If F is σ0,β0-semistable, then ∆(F ) ≥ 0.

(2) (Openness of stability) If F is σ0,β0-stable with ν0,β0(F ) 6= 0, then there exists α0 > 0 such that

F is σα,β0-stable for every α ∈ [0, α0).

(3) If F is σ0,β0-semistable with ν0,β0(F ) 6= 0, there exists a region of Bridgeland stability conditions

in the (α, β)-plane for which F is semistable.

Proof. Note that property (1) is trivially satisfied when chβ0
2 (F ) = 0. If chβ0

2 (F ) 6= 0, according to

Proposition II.2.2 the σ0,β0-semistable object F has a Bridgeland limit HN filtration

0 = F0 ↪→ F1 ↪→ . . . ↪→ Fr−1 ↪→ Fr = F

valid for all σα,β0 with sufficiently small α > 0. Of course each HN factor has ∆(Fk/Fk−1) ≥ 0,

and by construction of the filtration the equalities ν0,β0(Fk/Fk−1) = ν0,β0(F ) hold. Hence, the

numbers Z0,β0(Fk/Fk−1) are in a ray of the complex plane and [BMS16, Lemma A.7] gives ∆(F ) ≥
∆(Fr−1) ≥ . . . ≥ ∆(F1) ≥ 0.

To prove (2), note that the result is trivial when L · chβ0
1 (F ) = 0 (in this case, the σ0,β0-stability of

F is equivalent to F being a simple object of Cohβ0(X)).

If F is σ0,β0-stable with L · chβ0
1 (F ) > 0, no subobject E ∈ SF \ {F} (notation as in Lemma II.2.3)

destabilizes F for α > 0. Indeed, since F is σ0,β0-stable we must have Z0,β0(F/E) = 0, so

να,β0(E) < να,β0(F ) < +∞ = να,β0(F/E)

for every α > 0.

By the construction of Proposition II.2.2, all the potential σα,β0 destabilizers of F (for α sufficiently

small) are in SF \ {F}; hence the strict inequalities actually imply that F is σα,β0-stable (for α

sufficiently small), which proves (2).

In (3), there is nothing to prove if F is σα,β0-semistable for small values of α > 0 (in particular,

this covers the case where L · chβ0
1 (F ) = 0).
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For the rest of proof, we assume without loss of generality that ν0,β0(F ) > 0 thanks to the duality

functor (recall Proposition I.1.16). If F1, F2/F1, . . . , F/Fr−1 denote the factors of the Bridgeland

limit HN filtration of F at β0, by construction we have:

ν0,β0(F1) = ν0,β0(F2/F1) = . . . = ν0,β0(F/Fr−1) = ν0,β0(F ).

Thus by Bertram’s Nested Wall Theorem I.1.10, each factor Fi/Fi−1 defines the same (numerical)

wall W for F : this wall is a semicircle whose left intersection point with the line α = 0 is (0, β0).

Since the factors F1, F2/F1, . . . , F/Fr−1 are σα,β0-semistable when α ≥ 0 is small enough, it turns

out that they are Bridgeland semistable along the wall W . Hence F is also semistable along W ,

since it is a (succesive) extension of semistable objects with the same slope.

Now we are ready to improve Proposition II.2.2, showing the existence of Bridgeland limit HN

filtrations for objects without HN factors of vanishing tilt slope.

Theorem II.2.8. Let β0 ∈ Q and F ∈ Cohβ0(X) be an object having no HN factor with respect to

σ0,β0 of vanishing ν0,β0. Then, F admits a Bridgeland limit HN filtration at β0.

Proof. The result follows from induction on the length of the HN filtration of F with respect to

σ0,β0 ; the initial case is nothing but Proposition II.2.2.

If 0 = F0 ↪→ F1 ↪→ . . . ↪→ Fr−1 ↪→ Fr = F is the HN filtration of F with respect to σ0,β0 , by

induction hypothesis we may assume that both Fr−1 and F/Fr−1 admit a Bridgeland limit HN

filtration at β0.

Then, we can glue these filtrations to form that of F . Indeed, if Fr−1/A and B/Fr−1 respectively

denote the last and the first limit HN factors of Fr−1 and F/Fr−1, the inequality

ν0,β0(Fr−1/A) = ν0,β0(Fr−1/Fr−2) > ν0,β0(F/Fr−1) = ν0,β0(B/Fr−1)

guarantees this gluing, since we can take α0 small enough so that να,β0(Fr−1/A) > να,β0(B/Fr−1)

for every α ∈ (0, α0).

Weak limit HN filtrations

Even if we are interested in semistability at the line α = 0, Bridgeland limit HN filtrations allow us

to work in the (α, β)-plane of Bridgeland stability conditions, where the wall-crossing phenomenon

is well understood.

Following this strategy, already used in the proof of Corollary II.2.7.(3), now we want to study HN

filtrations at σ0,β for (rational) values of β close to β0:

Definition II.2.9. Given F ∈ Cohβ0(X), if there exists ε > 0 such that F has the same HN

filtration with respect to all the weak stability conditions σ0,β with β ∈ (β0, β0 + ε) ∩ Q, we will
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call this HN filtration the right weak limit HN filtration of F at β0. Its factors will be called right

weak limit HN factors.

Analogously we define the left weak limit HN filtration of F at β0.

Lemma II.2.10. If F ∈ Cohβ0(X) is an object with ν+
0,β0

(F ) < 0, then F admits a right weak

limit HN filtration at β0 all of whose right weak limit factors have tilt slope ν0,β0 < 0.

Proof. Denote by

0 = F0 ↪→ F1 ↪→ . . . ↪→ Fr−1 ↪→ Fr = F

the Bridgeland limit HN filtration of F constructed in Theorem II.2.8. We will see that this is the

desired right weak limit HN filtration for F . Recall that when α = 0 (possibly) some of the HN

factors get identified, if they have the same slope.

By assumption ν0,β0(Fi/Fi−1) < 0 for every i, so the point (0, β0) lies on the right-hand side of the

hyperbolas Hi of the objects Fi/Fi−1. In particular, if we study the locus in the (α, β)-plane where

these HN factors Fi/Fi−1 become non-semistable, we find that any such wall contains a segment of

the line β = β0 in its interior (see Figure II.1).

W2 W3 W1

H3

H1

H2 β = β0

Figure II.1: One hyperbola and at most one semicircular wall for each HN factor Fi/Fi−1

This proves that, for all β in a sufficiently small right neighborhood of β0, the objects Fi/Fi−1

are σ0,β-semistable. Shrinking if necessary this neighborhood, the inequalities ν0,β(Fi/Fi−1) >

ν0,β(Fi+1/Fi) will be preserved, no matter if these HN factors were merged in the HN filtration for

σ0,β0 .

Finally, Remark I.1.7 guarantees that, possibly after another shrinking, the chain of inclusions

0 = F0 ↪→ F1 ↪→ . . . ↪→ Fr−1 ↪→ Fr = F

also holds in Cohβ(X), for all β in this neighborhood. Summarizing, we have proved that this chain

is the right weak limit HN filtration at β0.

When the object is semistable, the same holds for positive tilt slope:
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Lemma II.2.11. If F ∈ Cohβ0(X) is σ0,β0-semistable with ν0,β0(F ) > 0, then F admits a right

weak limit HN filtration at β0.

Proof. We start by assuming L · chβ0
1 (F ) > 0, so that β = β0 is not a vertical wall for F . According

to Corollary II.2.7.(3) and its proof, the object F is Bridgeland semistable along the (uniquely

determined) semicircleW ′ satisfying: W ′ is centered at the β-axis, its top point lies on the hyperbola

HF and its left intersection point with the β-axis is (0, β0). This is true regardless of whether W ′

is a numerical wall for F or not.

Let p = (α, β) denote the top point of W ′, i.e. its intersection point with HF . Local finiteness for

Bridgeland stability conditions (see, e.g., [BM11, Proposition 3.3.(b)]) ensures us that, for some

ε′ > 0, the HN filtration of F is constant for all the stability conditions σα,β with β ∈ (β − ε′, β).

This implies that, in a sufficiently small annulus inside W ′, the HN filtration of F stays constant

(see Figure II.2).

W ′

HF

p

β = β0

Figure II.2: Semicircle W ′ and annulus inside it

This constant filtration is the right weak limit HN filtration of F at β0, as claimed.

It only remains to check the case when L · chβ0
1 (F ) = 0. The strategy is similar. In this case,

F is Bridgeland semistable along the whole vertical wall β = β0. Local finiteness for Bridgeland

stability conditions gives that, inside {α > 0, β ≥ β0}, the HN filtration of F remains constant for

all the stability conditions in a certain open neighborhood of β = β0.

Using that objects with ∆ = 0 never get destabilized, it is not difficult to check that this holds in

a “tubular” neighborhood of the form (0,+∞) × [β0, β0 + ε), for a certain ε > 0. This gives the

desired HN filtration of F with respect to σ0,β, when β lies in a right neighborhood of β0.

In view of Lemma II.2.10 and Lemma II.2.11, we would like to conclude the existence of right weak

limit filtrations at β0 ∈ Q, at least for objects F ∈ Cohβ0(X) having no HN factor of tilt slope

ν0,β0 = 0.

Nevertheless, if our object F has more than one HN factor at σ0,β0 with positive slope, the way of

gluing their right weak limit HN filtrations is not trivial. Roughly, this is caused because not all

the weak limit HN factors in a limit HN filtration approach the same slope as β → β+
0 , since σ0,β0

is not a proper stability condition.
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In order to solve this problem, we collect some information in the following lemma, which in

particular introduces the notion of core subobject :

Lemma II.2.12. Let F ∈ Cohβ0(X) be a σ0,β0-semistable object with ν0,β0(F ) > 0. Then:

(1) There exists a (possibly trivial) subobject F ′ ⊂ F in Cohβ0(X) such that Q = F/F ′ ∈ ker(Z0,β0).

Moreover, F ′ can be taken minimal satisfying this property. We call it a core subobject of F .

(2) If Q 6= 0, then its tilt slope is discontinuous with respect to β, i.e,

ν0,β0(Q) = +∞, lim
β→β+

0

ν0,β(Q) = 0.

(3) If F ′ 6= 0, then the tilt slope ν0,β of every right weak limit HN factor of F ′ has limit ν0,β0(F ′)

as β → β+
0 .

(4) The right weak limit HN filtration of F at β0 consists of the right weak limit HN filtration of

F ′ together with the quotient Q = F/F ′. In particular, the core subobject F ′ is unique.

Proof. The existence of F ′ is clear, since we allow F ′ = F . If F ′ 6= F , then by Proposition I.1.14

Q[−1] is a twisted (L,−1
2KX)-Gieseker semistable vector bundle with µL = β0 and ∆ = 0. There-

fore we can consider F ′ minimal satisfying Q = F/F ′ ∈ ker(Z0,β0), because if

. . . ⊂ F ′2 ⊂ F ′1 ⊂ F

is a chain of subobjects with this property, then one has 0 ≤ . . . < ∆(F ′2) < ∆(F ′1) < ∆(F ).

Now, a simple computation shows (2). In order to prove (3), note that Lemma II.2.11 guarantees

the existence of a right weak limit HN filtration for F ′ at β0.

If L · chβ0
1 (F ′) > 0, by construction this is the HN filtration in an annulus inside the wall for F ′

passing through (0, β0). It is easy to check, under the assumption of minimality on F ′, that no

right weak limit HN factor of F ′ has β = β0 as a vertical wall. Hence every right weak limit HN

factor has L · chβ0
1 > 0, which shows the continuity of its tilt slope in a neighborhood of (0, β0).

If L · chβ0
1 (F ′) = 0, then every right weak limit HN factor of F ′ either has tilt slope ν0,β = +∞ for

every β, or has ∆ > 0 and β = β0 as a vertical wall. In both cases, the tilt slope ν0,β approaches

ν0,β0(F ′) = +∞ as β → β+
0 . This finishes the proof of (3).

Finally, observe that Q ∈ Cohβ(X) is semistable for every σα,β with α ≥ 0 and β ≥ β0; this is due

to the description of Proposition I.1.14 and Remark I.1.17. Thus (4) becomes a consequence of (3)

(all the right weak limit HN factors of F ′ approach the slope ν0,β0(F ′) = ν0,β0(F ) > 0 as β → β+
0 )

and (2).

Note that if the object F ′ is non-trivial (i.e. F ′ 6= 0, F ), then F may simultaneously be σ0,β0-stable

and σ0,β-nonsemistable for every β → β+
0 . We can visualize the situation in Figure II.3.
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W

HQHF
HF ′

β = β0

Figure II.3: The wall W is defined by 0→ F ′ → F → Q→ 0.

Proposition II.2.13. If F ∈ Cohβ0(X) is an object satisfying ν−0,β0
(F ) > 0, then F admits a right

weak limit HN filtration at β0. Furthermore, all of its right weak limit HN factors satisfy

lim
β→β+

0

ν0,β ≥ 0

with equality for at most the last weak limit HN factor.

Proof. Let 0 = F0 ↪→ F1 ↪→ . . . ↪→ Fs = F be the HN filtration of F at σ0,β0 . We construct

inductively a chain of subobjects G1 ⊂ . . . ⊂ Gs (with Gi ⊂ Fi) as follows:

• G1 = F ′1 is the core subobject of F1 (throughout this proof we use the notation of F ′ to denote

the core of F , as defined in Lemma II.2.12.(1)).

• For i > 1, we define Gi in such a way that (Fi/Gi−1)′ = Gi/Gi−1.

We will prove, by induction on s, that F admits a right weak limit HN filtration whose last limit

HN factor is F/Gs, and that every weak limit HN factor of Gs has positive limit tilt slope. Note

that the case s = 1 follows from Lemma II.2.12.

For the induction step, one could assume that the statement is true for Fs−1. Nevertheless, it is

possible that the right weak limit filtrations of Fs−1 and Fs/Fs−1 do not glue directly, since it may

happen

lim
β→β+

0

ν0,β(Fs−1/Gs−1) = 0 < lim
β→β+

0

ν0,β(first limit HN factor of Fs/Fs−1).

Then, the strategy consists on replacing Fs−1 by Gs−1. We are allowed to do this because the HN

filtration of Gs−1 with respect to σ0,β0 has length ≤ s− 1. Indeed, Gs−1 has the same HN polygon

as Fs−1, as a consequence of the equality Z0,β0(Gi) = Z0,β0(Fi) for every i (see [Bay19, Section 3]

or [MS17, Section 4] for the definition and the properties of the HN polygon).

Now, on the one hand by induction hypothesis the right weak limit HN filtration of Gs−1 exists,

and it satisfies

lim
β→β+

0

ν0,β(last weak limit HN factor of Gs−1) = ν0,β0(Gs−1/Gs−2)
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On the other hand, we claim that Fs/Gs−1 admits a right weak limit HN filtration; this is not

obvious at all, since Fs/Gs−1 is not σ0,β0-semistable (it contains the subobject Fs−1/Gs−1 with

slope ν0,β0 = +∞) and we cannot apply directly Lemma II.2.11.

So to see this, we consider the wall W in the (α, β)-plane defined by the short exact sequence of

Cohβ0(X)

0→ Fs−1/Gs−1 → Fs/Gs−1 → Fs/Fs−1 → 0

The left intersection point of W with α = 0 is (0, β0); the picture is similar to that of Figure II.3,

simply replacing HQ, HF , HF ′ by HFs−1/Gs−1
, HFs/Gs−1

, HFs/Fs−1
(respectively).

Note that Fs/Gs−1 is σα,β-semistable for all the Bridgeland stability conditions (α, β) ∈ W with

α > 0, since it is an extension of σα,β-semistable objects of the same slope. Then, as in the proof

of Lemma II.2.11, local finiteness ensures that the HN filtration of Fs/Gs−1 is constant for all

the stability conditions in a small annulus inside W . This gives the desired right weak limit HN

filtration for Fs/Gs−1.

Every factor of this right weak limit HN filtration for Fs/Gs−1 satisfies

0 < lim
β→β+

0

ν0,β(every limit HN factor of Fs/Gs−1) = ν0,β0(Fs/Gs−1) = ν0,β0(Fs/Fs−1)

< ν0,β0(Fs−1/Fs−2) = ν0,β0(Gs−1/Gs−2) = lim
β→β+

0

ν0,β0(last limit HN factor of Gs−1)

with the only possible exception of the last weak limit HN factor for Fs/Gs−1, which may have tilt

slope of limit 0. Using the induction hypothesis, one easily checks that this last weak limit HN

factor for Fs/Gs−1 is precisely Fs/Gs.

This allows to glue the right weak limit filtrations of Gs−1 and Fs/Gs−1 to produce that of Fs,

which proves the assertion.

Now we are ready to prove the main existence result of this subsection, namely the existence of right

weak limit HN filtration for objects without HN factors of vanishing tilt slope (see Remark II.2.15

for the left filtrations).

Theorem II.2.14. Let β0 ∈ Q and F ∈ Cohβ0(X) be an object having no HN factor with respect

to σ0,β0 of vanishing ν0,β0. Then, F admits a right weak limit HN filtration at β0.

Proof. Denote by 0 = F0 ↪→ F1 ↪→ . . . ↪→ Fs ↪→ Fs+1 ↪→ . . . ↪→ Fr = F the HN filtration of F with

respect to σ0,β0 , so that

ν0,β0(F1) > . . . > ν0,β0(Fs/Fs−1) > 0 > ν0,β0(Fs+1/Fs) > . . . > ν0,β0(F/Fr−1)

On the one hand, by Lemma II.2.10 F/Fs admits a right weak limit HN filtration. It turns out

that, if R is a weak limit HN factor of F/Fs (corresponding to a weak limit HN factor of Fi/Fi−1
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for some i = s+ 1, . . . , r), then

lim
β→β+

0

ν0,β(R) = ν0,β0(Fi/Fi−1) < 0

On the other hand, according to Proposition II.2.13, Fs has a right weak limit HN filtration, with

all its weak limit HN factors satisfying limβ→β+
0
ν0,β ≥ 0.

A standard glueing of the right weak limit filtrations for Fs and F/Fs finishes the proof.

Remark II.2.15. Under the same hypothesis on F ∈ Cohβ0(X), the existence of a left weak limit

HN filtration at β0 follows from the preservation of stability by the derived dual (see Proposi-

tion I.1.16).

The main difference is that for β → β−0 the object F may have two nontrivial cohomologies with

respect to Cohβ(X), namely

H−1
β (F ) = H−1(F1), H0

β(F ) = F/(H−1(F1)[1])

where F1 is a first step in the HN filtration of F with respect to σ0,β0 , satisfying ν0,β0(F1) = +∞.

The left weak limit filtration of F is thus obtained by applying ∨[1] to the right weak limit

filtration at −β0 of H0
−β0

(F∨[1]) = (F/F1)∨[1] and H1
−β0

(F∨[1]) = F∨1 [2].

Local piecewise polynomial expressions

As an immediate consequence of the right weak limit HN filtrations constructed in Theorem II.2.14,

we have:

Corollary II.2.16. If F ∈ Cohβ0(X) is an object with all its HN factors with respect to σ0,β0

having slope ν0,β0 6= 0, then there exists ε > 0 such that the functions chd0
F,L, chd1

F,L are (piecewise)

polynomial along the interval (−β0 − ε,−β0).

More explicitly, let 0 = F0 ↪→ F1 ↪→ . . . ↪→ Fs ↪→ Fs+1 ↪→ . . . ↪→ Fr = F be the HN filtration of F

with respect to σ0,β0 , so that

ν0,β0(F1) > . . . > ν0,β0(Fs/Fs−1) > 0 > ν0,β0(Fs+1/Fs) > . . . > ν0,β0(F/Fr−1)

Consider the chain G1 ⊂ . . . ⊂ Gs in Cohβ0(X) (with Gi ⊂ Fi) inductively defined by the rules G1 =

F ′1 and Gi/Gi−1 = (Fi/Gi−1)′ (where F ′ denotes the core of F as defined in Lemma II.2.12.(1)).

Then, for all (rational) x in a left neighborhood of −β0 we have

chd0
F,L(x) = ch−x2 (Gs), chd1

F,L(x) = − ch−x2 (F/Gs).

Remark II.2.17. Along the interval where the right weak limit HN filtration of F at β0 remains

constant, the functions chd0
F,L, chd1

F,L may still change their polynomial expression. This happens

if the last right weak limit HN factor of Gs acquires tilt slope 0.
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Observe that the chain G1 ⊂ . . . ⊂ Gs of the proof of Corollary II.2.16 encodes the Chern degree

functions of F in a left neighborhood of −β0. For easy reference, we fix the following terminology

(adopted for all objects F ∈ Cohβ0(X), including those with a HN factor of tilt slope 0 as well):

Definition II.2.18. Let F ∈ Cohβ0(X) and let F1, . . . , Fs/Fs−1 be the HN factors of F having

slope ν0,β0 > 0, that is, s = s(F ) is the switching index of F . The core filtration of F at β0

is the chain G1 ⊂ . . . ⊂ Gs in Cohβ0(X) (with Gi ⊂ Fi) inductively defined by G1 = F ′1 and

Gi/Gi−1 = (Fi/Gi−1)′, where F ′ denotes the core of F as defined in Lemma II.2.12.(1).

Now we want to conclude that for every F ∈ Cohβ0(X) the function chd0
F,L admits the (piecewise)

polynomial expression ch−x2 (Gs) in a left neighborhood of −β0, where Gs is the last object appearing

in the core filtration of F at β0. For this, we need to treat the case of HN factors with slope ν0,β0 = 0;

we will not find a weak limit HN filtration for them, but the following result will be enough for our

purposes.

Proposition II.2.19. If F ∈ Cohβ0(X) is σ0,β0-semistable with ν0,β0(F ) = 0, then chd0
F,L(−β) = 0

for every rational number β > β0 such that F ∈ Cohβ(X).

Proof. Suppose, for the sake of a contradiction, that β̃ > β0 is a rational number with F ∈ Cohβ̃(X)

and chd0
F,L(−β̃) 6= 0. This means that F has a subobject E ⊂ F in Cohβ̃(X) satisfying chβ̃2 (E) > 0.

We may assume that E is the first HN factor F1 of F with respect to σ
0,β̃

; to see this, we only need

to exclude that chβ̃2 (F1) = 0. And indeed, since ν
0,β̃

(F1) > 0 the equality chβ̃2 (F1) = 0 would imply

that F1 ∈ ker(Z
0,β̃

); thus by Proposition I.1.14 H−1(F1) would be a (twisted Gieseker semistable)

sheaf of slope β̃. But then the inclusion H−1(F1) ⊂ H−1(F ) would contradict the hypothesis

F ∈ Cohβ0(X) (recall Remark I.1.7).

Replacing E by the first step of its Bridgeland limit HN filtration at β̃ (Theorem II.2.8), we may

also assume that E is σ
α,β̃

-semistable for some positive values of α.

Consider the distinguished triangle E → F → Q in Db(X) inducing the inclusion E ⊂ F in

Cohβ̃(X). On the one hand, note that E ∈ Cohβ0(X) as well; indeed, the inequality µ+
L (H−1(E)) ≤

β0 follows from H−1(E) ⊂ H−1(F ) (recall Remark I.1.7). Moreover, by Remark I.1.12 ν
0,β̃

(E) > 0

is equivalent to β̃ < pE ; hence β0 < pE holds, which gives ν0,β0(E) > 0.

On the other hand, it is possible that Q /∈ Cohβ0(X), so Q may have two nontrivial cohomologies

with respect to the heart Cohβ0(X), namely H−1
β0

(Q) and H0
β0

(Q). In particular, H−1
β0

(Q) is a

subsheaf of H−1(Q) such that µ+(H−1
β0

(Q)) ∈ (β0, β̃].

Therefore the distinguished triangle yields an exact sequence

0→ H−1
β0

(Q)→ E → F → H0
β0

(Q)→ 0

in Cohβ0(X). Recall that F is σ0,β0-semistable with ν0,β0(F ) = 0, and ν0,β0(E) > 0.
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If E is σ0,β0-semistable, we already have the desired contradiction. In fact, under this assumption

we have Hom(E,F ) = 0 and thus H−1
β0

(Q) = E; but this would imply E /∈ Cohβ̃(X) by our previous

description of H−1
β0

(Q).

Therefore, to finish the proof it suffices to check that E may be assumed to be σ0,β0-semistable. This

is essentially due to the support property for Bridgeland stability conditions in the (α, β)-plane.

Recall that E is σ
α,β̃

-semistable for small enough values of α > 0. Hence, if E is not σ0,β0-

semistable, there exists a short exact sequence E1 ↪→ E � R1 destabilizing E along a wall W1 in

the (α, β)-plane, whose left point (0, β̃1) in the β-axis satisfies β0 < β̃1 < β̃:

HE1

HEHR1 HF

β̃β0 β̃1
pE

W1

Figure II.4: Wall W1 along which E destabilizes

We can assume, without loss of generality, that E1 is the first step of the Bridgeland limit HN

filtration of E at β̃1. Hence E1 is σ
α,β̃1

-semistable for small enough values of α > 0.

At this point, observe that the support property (in the form of Theorem I.1.10.(7)) guarantees

∆(E1) + ∆(R1) < ∆(E) (in particular, ∆(E1) < ∆(E)). Moreover, we have an inclusion E1 ⊂ F in

Cohβ̃(X) (since E1 ⊂ E holds along the whole wall W1). Let E1 → F → Q1 be the distinguished

triangle in Db(X) defining this inclusion.

Then, the same arguments as before show that E1 ∈ Cohβ0(X) and give an exact sequence

0→ H−1
β0

(Q1)→ E1 → F → H0
β0

(Q1)→ 0

in Cohβ0(X). Moreover, ν0,β0(E1) > 0 since (0, β0) lies on the left-hand side of HE1 .

If E1 were σ0,β0-semistable, by reasoning as in the case of E σ0,β0-semistable we would obtain a

contradiction. Otherwise, we destabilize E1 along a wall W2 via a short exact sequence 0→ E2 →
E1 → R2 → 0 with the same properties.

This finishes the proof, since this process must stop after a finite number of destabilizations thanks

to the inequalities

0 ≤ . . . < ∆(E2) < ∆(E1) < ∆(E)

Corollary II.2.20. If F ∈ Cohβ0(X), there exists ε > 0 such that the functions chd0
F,L and chd1

F,L

are (piecewise) polynomial along the interval (−β0 − ε,−β0).
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Proof. We assume that F has a HN factor with respect to σ0,β0 of slope ν0,β0 = 0, otherwise we

are in the situation of Corollary II.2.16. Thus let

0 = F0 ↪→ F1 ↪→ . . . ↪→ Fs−1 ↪→ Fs ↪→ Fs+1 ↪→ . . . ↪→ Fr = F

be the HN filtration of F with respect to σ0,β0 , so that ν0,β0(Fs+1/Fs) = 0; in particular, s = s(F ) is

the switching index of F . We claim that chd0
F/Fs,L

(−β) = 0 for all β in a certain right neighborhood

of β0. To see this, we apply Lemma II.1.6 to the short exact sequence

0→ Fs+1/Fs → F/Fs → F/Fs+1 → 0

in Cohβ(X), taking into account:

• That F/Fs+1 has no subobject belonging to ker(Z0,β): otherwise, H−1(F/Fs+1) would have a

subsheaf of slope β, contradicting F/Fs+1 ∈ Cohβ0(X).

• The vanishings chd0
Fs+1/Fs,L

(−β) = 0 (by Proposition II.2.19) and chd0
F/Fs+1,L

(−β) = 0 (by

Lemma II.2.10).

Now, for all β > β0 in a certain right neighborhood of β0, we use the vanishing chd0
F/Fs,L

(−β) = 0

to apply Lemma II.1.6 again, in this case with the short exact sequence 0→ Fs → F → F/Fs → 0.

We obtain the equality chd0
F,L(−β) = chd0

Fs,L(−β) in a right neighborhood of β0.

This proves the result for chd0
F,L, since chd0

Fs,L is (piecewise) polynomial in (a shrinking of) this

neighborhood by Corollary II.2.16. The assertion for chd1
F,L is simply a consequence of the relation

chd1
F,L(x) = chd0

F,L(x)− ch−x2 (F ).

Now we are ready to prove in full generality the existence of left and right polynomial expressions

for Chern degree functions:

Theorem II.2.21. Let E ∈ Db(X) and k ∈ Z. Then, every rational number x0 ∈ Q admits

a left (resp. right) neighborhood where the function chdkE,L is given by an explicit polynomial P−

(resp. P+) depending on x0, satisfying P−(x0) = chdkE,L(x0) = P+(x0).

Proof. The left polynomial expression for chdkE,L at x0 is a consequence of Corollary II.2.20 ap-

plied to the cohomology objects Hk−x0
(E) and Hk−1

−x0
(E). The right polynomial expression can be

obtained from the left polynomial expression of chd2−k
E∨,L at −x0, thanks to the Serre duality of

Proposition II.1.5.(2).

Remark II.2.22. If β0 ∈ R \ Q is an irrational number at which F admits a Bridgeland limit

filtration, then the same conclusion of Corollary II.2.20 holds. Indeed, under this assumption F

admits a HN filtration

0 = F0 ↪→ F1 ↪→ . . . ↪→ Fs−1 ↪→ Fs ↪→ Fs+1 ↪→ . . . ↪→ Fr = F

with respect to σ0,β0 , so that ν0,β0(Fs+1/Fs) = 0 (we take Fs+1 = Fs if F has no HN factor of tilt

slope 0). Then:
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(1) The same arguments of Lemma II.2.10 provide a right weak limit filtration for F/Fs+1.

(2) The arguments of Lemma II.2.11 together with induction on s, provide a right weak limit

filtration for Fs. Indeed, Z0,β0 is a stability function on Cohβ0(X) since β0 /∈ Q; hence all the

technical construction in Lemma II.2.12 and Proposition II.2.13 can be avoided. In particular,

the core filtration of F at β0 directly gives F1 ⊂ . . . ⊂ Fs.

Combining these right weak limit filtrations with Proposition II.2.19 (also valid under the assump-

tion β0 ∈ R \ Q) applied to Fs+1/Fs, we obtain the polynomial expression chd0
F,L(x) = ch−x2 (Fs)

for all x in a left neighborhood of −β0.

In all the cases we know, objects have a Bridgeland limit filtration also at irrational numbers (see

for instance the examples in section II.5), but we do not know how to prove this in general. This

would imply that the Chern degree functions are piecewise polynomial, which cannot be directly

deduced from Theorem II.2.21.

II.3 Continuity and differentiability of the functions

Extension as continuous real functions

In this section we extend the Chern degree functions chdkF,L to continuous functions of real variable.

A similar result first appeared in [BPS20b, section 4] for the continuous rank functions, and was

later generalized to the study of cohomological rank functions in [JP20, section 3].

We essentially follow this second approach, namely: one bounds the derivative of the functions,

and then argues by integration. Whereas our arguments to express the functions around rational

numbers (section II.2) were much longer than the ones in [JP20], the control of the derivatives for

this part is easier in the stability framework.

Following the strategy of section II.2, we first consider the case of objects in the hearts Cohβ(X):

Theorem II.3.1. Let F ∈ Cohβ(X) for some β ∈ R. Then, the functions chd0
F,L and chd1

F,L

extend to continuous functions on the interval IF = (−µ−(H0(F )),−µ+(H−1(F ))].

Proof. Notice that IF is (minus) the interval of Remark I.1.7 delimiting where F belongs to the

heart; we have reversed signs for coherence with the definition of the functions.

First of all, we claim that we may restrict ourselves to the case where IF is bounded (i.e. the

numbers µ+(H−1(F )) and µ−(H0(F )) are both finite).

This follows from the Serre vanishing of Proposition II.1.5.(1). Indeed, on the one hand, if IF =

(−µ−(H0(F )),+∞) is unbounded from the right, then F is a coherent sheaf since H−1(F ) is always

torsion-free. By Serre vanishing, there exists x0 ∈ Q so that

chd1
F,L(x) = 0, chd0

F,L(x) = ch−x2 (F )
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for every rational x ≥ x0. The extension of the functions is thus clear along the whole [x0,+∞),

so the problem is reduced to extend along (−µ−(H0(F )), x0].

On the other hand, if IF = (−∞,−µ+(H−1(F ))] is unbounded from the left, then H0(F ) is torsion

(or 0). This implies that the complex F∨ has at most two cohomology sheaves, which will be its

cohomologies with respect to the heart Cohβ(X) for all β � 0:

H1
β(F∨) = H1(F∨), H2

β(F∨) = H2(F∨).

If x0 ∈ Q is a bound ensuring Serre vanishing for the functions of the sheaves H1(F∨) and H2(F∨),

by Serre duality Proposition II.1.5.(2) we have

chdiF,L(x) = chd2−i
F∨,L(−x) = chd0

H2−i(F∨),L(−x) = chx2(H2−i(F∨))

for i = 0, 1 and every rational x ≤ −x0. Hence we only need to extend the functions along

(−x0,−µ+(H−1(F ))].

Now take β0 ∈ Q such that F ∈ Cohβ0(X) (equivalently, −β0 ∈ IF ∩Q), and let

0 = F0 ↪→ F1 ↪→ . . . ↪→ Fs−1 ↪→ Fs ↪→ Fs+1 ↪→ . . . ↪→ Fr = F

be the HN filtration of F with respect to σ0,β0 , where s = s(F ) is the switching index of F .

Consider the subobject Gs ⊂ Fs, where G1 ⊂ . . . ⊂ Gs is the core filtration of F at β0. Then, for

all x ∈ Q in a left neighborhood of −β0 the function chd0
F,L is polynomially expressed as

chd0
F,L(x) = ch−x2 (Gs).

Therefore, L · chβ0
1 (Gs) is the left derivative of chd0

F,L at −β0. Since this is the rank of Gs in the

heart Cohβ0(X), it turns out that 0 ≤ D− chd0
F,L(−β0) ≤ L · chβ0

1 (F ).

Summing up, the function chd0
F,L has a left (and right) derivative at every x ∈ IF ∩ Q (actually

at every x ∈ IF ∩ U , where U ⊂ R is an open subset containing Q), and both derivatives coincide

almost everywhere. Moreover, these derivatives are non-negative and bounded from above. By

integration, it follows that chd0
F,L extends to a continuous function on the whole interval IF .

The result for chd1
F,L follows directly by defining chd1

F,L(x) = chd0
F,L(x)− ch−x2 (F ) for x ∈ IF .

Remark II.3.2. It follows from the proof that the function chd0
F,L (resp. chd1

F,L) is non-decreasing

(resp. non-increasing) along the interval IF . This (a posteriori) explains Proposition II.2.19.

From this basic case we can easily obtain the extension as continuous real functions for arbitrary

objects of Db(X):

Corollary II.3.3. Let E ∈ Db(X) and k ∈ Z. Then, the function chdkE,L extends to a continuous

real function of real variable.
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Proof. Using the definition of chdkE,L this becomes an immediate consequence of Theorem II.3.1,

provided that chdkE,L is continuous at the (finitely many) points x = −β where the cohomologies

Hiβ(E) change.

And this continuity is guaranteed by Theorem II.2.21, since such points of change are rational (they

correspond to µL-slopes of Harder-Narasimhan factors of cohomology sheaves of E).

Critical points

Let β0 ∈ Q. Now we want to study when the functions chdkF,L attached to an object F ∈ Db(X)

are not of class C∞ at −β0; following the terminology of Jiang–Pareschi ([JP20, Section 4]), we will

say that −β0 is a critical point.

For the sake of simplicity, we will assume F ∈ Cohβ0(X); in the general case one has to consider

all the cohomologies of F with respect to the heart Cohβ0(X).

Let 0 = F0 ↪→ F1 ↪→ . . . ↪→ Fr = F be the HN filtration of F with respect to σ0,β0 , satisfying

+∞ = ν0,β0(F1) > . . . > ν0,β0(Fs/Fs−1) > 0 = ν0,β0(Fs+1/Fs) > . . . > ν0,β0(F/Fr−1),

that is, s = s(F ) is the switching index of F . We write F1 = 0 (resp. Fs = Fs+1) if F has no HN

factor of tilt slope +∞ (resp. tilt slope 0). Then:

• As dictated by Remark I.1.7, F ∈ Cohβ(X) for all small enough β > β0. This means that F will

only have two nonzero functions in a left neighborhood of −β0, namely chd0
F,L and chd1

F,L.

• For big enough β < β0, F may have two nontrivial cohomologies in Cohβ(X). More precisely,

recall that by Proposition I.1.14 H−1(F1) is a µL-semistable sheaf of slope β0, and H0(F1) is a

0-dimensional sheaf. Therefore, we have distinguished triangles

0 // H−1(F1)[1] //

��

F1

��

// F

��
H−1(F1)[1]

\\

H0(F1)

\\

F/F1

\\

with H−1(F1),H0(F1), F/F1 ∈ Cohβ(X) for β < β0. This tells us that H−1
β (F ) = H−1(F1) and

H0
β(F ) = F/(H−1(F1)[1]) (where this quotient is taken in Cohβ0(X)).

Moreover, note that the only nonzero Chern degree functions of F in a right neighborhood of

−β0 may be chd−1
F,L, chd0

F,L and chd1
F,L.

Now we consider the polynomial expressions for the functions in a left and a right neighborhood of

−β0, that we found in section II.2. Explicitly, there exists ε > 0 such that
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chd−1
F,L(x) =

{
0 −β0 − ε ≤ x ≤ −β0

− chx2
(
H−1(F1)∨[1]/P

)
−β0 ≤ x ≤ −β0 + ε

chd0
F,L(x) =

{
ch−x2 (Gs) −β0 − ε ≤ x ≤ −β0

chx2(P )− chx2 ((F/F1)∨[1]/Rs+1) + length(H0(F1)) −β0 ≤ x ≤ −β0 + ε

chd1
F,L(x) =

{
− ch−x2 (F/Gs) −β0 − ε ≤ x ≤ −β0

chx2(Rs+1) −β0 ≤ x ≤ −β0 + ε

(II.3.1)

where:

• The chain G1 ⊂ . . . ⊂ Gs (with Gi ⊂ Fi) is the core filtration of F at β0.

• P =
(
H−1(F1)∨[1]

)′
is the core subobject of H−1(F1)∨[1] at −β0.

• The chain Rr−1 ⊂ . . . ⊂ Rs+1 in Coh−β0(X) (with Ri ⊂ (F/Fi)
∨[1]) is the core filtration

of (F/F1)∨[1] at −β0. It is inductively constructed by letting Rr−1 = ((F/Fr−1)∨[1])′ and

Ri/Ri+1 = ((F/Fi)
∨[1]/Ri+1)′.

A critical point for chd−1
F,L arises whenever the objectH−1(F1)∨[1]/P is nonzero. Since the regularity

of chd0
F,L can be deduced from that of chd−1

F,L and chd1
F,L, we are left to compare the polynomial

expressions for chd1
F,L. To this end we will use that chx2(Rs+1) = − ch−x2 (R∨s+1[1]), and we will

exhibit a chain of morphisms connecting R∨s+1[1] with F/Gs.

By construction, there is a short exact sequence

0→ Rs+1 → (F/Fs+1)∨[1]→ Q→ 0

in Coh−β0(X) with Q ∈ ker(Z0,−β0); hence the object Q is of the form Q = S[1] for a µL-semistable

vector bundle S with µL(S) = −β0 and ∆(S) = 0. Dualizing, this yields a short exact sequence

0→ S∨ → F/Fs+1 → R∨s+1[1]→ 0

in Cohβ(X), for big enough values of β < β0. Consequently, we have obtained a sequence of

morphisms

F/Gs → F/Fs → F/Fs+1 → R∨s+1[1]

for which there exists ε′ > 0 satisfying: F/Gs → F/Fs is a surjection in Cohβ(X) for β ∈ [β0, β0+ε′),

F/Fs → F/Fs+1 is a surjection in Cohβ(X) for β ∈ (β0 − ε′, β0 + ε′) and F/Fs+1 → R∨s+1[1] is a

surjection in Cohβ(X) for β ∈ (β0 − ε′, β0).

With all this information, we get the following result:

Proposition II.3.4. Let F ∈ Cohβ0(X) and we keep the notation of (II.3.1).

(1) The function chd−1
F,L has a critical point at x = −β0 if and only if P ( H−1(F1)∨[1] in

Coh−β0(X). In such a case, the function chd−1
F,L is of class C1 at x = −β0.
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(2) The function chd1
F,L has a critical point at x = −β0 if and only if F/Gs 6= R∨s+1[1]. This is

equivalent to one of the following conditions holding:

(a) Fs 6= Fs+1, namely F has a HN factor (with respect to σ0,β0) of slope ν0,β0 = 0.

(b) Gs 6= Fs

(c) F/Fs+1 6= R∨s+1[1]

Furthermore, chd1
F,L is of class C1 at x = −β0 unless condition (a) holds.

(3) The function chd0
F,L has a critical point at x = −β0 if and only if chd−1

F,L or chd1
F,L has a

critical point. In such a case, chd0
F,L is of class C1 at x = −β0 unless (a) holds.

Remark II.3.5. Intuitively, we may think that the functions have critical points at x = −β0 if

and only if the hyperbola of one of its (possibly weak limit) HN factors at β0 passes through the

point (0, β0) of the (α, β)-plane.

For instance, condition (b) is equivalent to Fs having a left weak limit HN factor with tilt slope

ν0,β tending to 0 as β → β+
0 .

HFs+1/Fs (a)

HFs/Gs (b)HS∨ (c)

(0, β0)

Figure II.5: Hyperbolas through (0, β0) producing a critical point for chd0
F,L and chd1

F,L.

(1) The case (1) is certainly exceptional, in the sense that it requires a (nontrivial) condition on one

of the (finitely many) points where the cohomologies of F with respect to the hearts Cohβ(X)

change.

On the other hand, whereas the case (a) is naturally described in terms of σ0,β0-stability,

condition (b) (resp. condition (c)) requires the nontriviality of the core filtration of Fs (resp. the

core filtration of (F/Fs+1)∨[1]) at β0 (resp. −β0). In particular, (b) and (c) require that σ0,β0

is not a Bridgeland stability condition.

(2) The possibilities (a), (b) and (c) producing critical points in the function chd1
F,L may not be

mutually exclusive. Indeed, we will see in chapter III an example (Example III.1.5) where (a)

and (c) hold simultaneously. It would be interesting to know whether conditions (b) and (c)

may hold at the same time or not.

We point out that the same study can be applied when β0 is an irrational number, at which F

admits a Bridgeland limit HN filtration (recall Remark II.2.22).
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In such a case, F ∈ Cohβ(X) for some values β < β0 as well, so chd−1
F,L is identically 0 in an open

neighborhood of −β0. Moreover, possibilities (b) and (c) must be excluded since Z0,β0 (resp. Z0,−β0)

is a stability function on Cohβ0(X) (resp. Coh−β0(X)) when β0 /∈ Q. Therefore, the only possibility

for a critical point is (a), which gives a point where the functions chd0
F,L and chd1

F,L are not

differentiable.

II.4 The case of abelian surfaces

In this part we will prove that the Chern degree functions chdkF,L attached to any object F ∈ Db(X)

on a polarized surface (X,L) recover, in the case where X is an abelian surface, the cohomological

rank functions hkF,L of Jiang and Pareschi. By abuse of notation, we will also denote by L an ample

line bundle on X representing the polarization.

The key point of the proof are the following two lemmas. The first one is the analogue to the fact

that a coherent sheaf on an elliptic curve only may have h0 and h1 as nonzero functions.

Lemma II.4.1. If F ∈ Cohβ(X) for a number β ∈ Q, then hiF,L(−β) = 0 for every i 6= 0, 1.

Proof. Since F is a complex with at most two nontrivial cohomology sheaves (namely H−1(F ) and

H0(F )), it turns out that hiF,L(−β) = 0 for every i /∈ {−1, 0, 1, 2}. Moreover, we have

h−1
F,L(−β) = h0

H−1(F ),L(−β), h2
F,L(−β) = h2

H0(F ),L(−β)

so it suffices to check that h2
E,L(−β) = 0 whenever E ∈ Tβ, and h0

G,L(−β) = 0 whenever G ∈ Fβ.

To prove the first vanishing, we consider a non-decreasing sequence of rational numbers βn = an
bn

converging to β, such that µbn is a separable isogeny for every n. Let 0 = E0 ↪→ E1 ↪→ . . . ↪→ Er = E

be the HN filtration of E with respect to µL-stability. Since torsion sheaves are always µL-semistable

(they have slope µL = +∞), it follows from [HL10, Lemma 3.2.2] that

0 = µ∗bnE0 ↪→ µ∗bnE1 ↪→ . . . ↪→ µ∗bnEr = µ∗bnE

is a HN filtration for µ∗bnE with respect to µL-stability, for every n. Observe that we have

µL(µ∗bn(Ei/Ei−1)) = b2nµL(Ei/Ei−1) > b2n · βn = anbn

for every i ∈ {1, . . . , r}, thanks to the condition E ∈ Tβn inherited from E ∈ Tβ. Therefore

0 = Hom(µ∗bn(Ei/Ei−1), Lanbn) = Ext2(Lanbn , µ∗bn(Ei/Ei−1))∗ = H2(µ∗bn(Ei/Ei−1)⊗ L−anbn)∗

for every i, and the equality h2
E,L(−βn) = 0 follows from an easy induction on the length r of the

HN filtration. This is enough to prove h2
E,L(−β) = 0, thanks to Theorem I.2.2.(1).

For the second vanishing, we will check that h0
G,L(x) = 0 for every rational number x = c

d with

x < −β. Again, this is more than enough for our purposes thanks to Theorem I.2.2.(1).
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We approach x by a non-decreasing sequence xn = cn
dn

of rational numbers such that the multiplica-

tion µdn is étale. As before, the HN filtration 0 = G0 ↪→ G1 ↪→ . . . ↪→ Gr = G of G in µL-stability

induces the HN filtration 0 = µ∗dnG0 ↪→ µ∗dnG1 ↪→ . . . ↪→ µ∗dnGr = µ∗dnG of µ∗dnG, for every n.

The hypothesis G ∈ Fβ says that

µL(µ∗dn(Gi/Gi−1)) = d2
nµL(Gi/Gi−1) ≤ d2

nβ < −d2
nxn = −cndn

for every i, which implies

0 = Hom(L−cndn , µ∗dn(Gi/Gi−1)) = H0(µ∗dn(Gi/Gi−1)⊗ Lcndn)

The equality h0
G,L(xn) = 0 is again obtained by induction on r, and then h0

G,L(x) = 0 follows.

The second lemma is the analogue of Proposition I.2.3.(1), namely that at a fixed point, at most

one function is nonzero for a semistable sheaf on an elliptic curve:

Lemma II.4.2. If F ∈ Cohβ(X) (β ∈ Q) is σ0,β-semistable, then h1
F,L(−β) = 0 (resp. h0

F,L(−β) =

0) if ν0,β(F ) ≥ 0 (resp. if ν0,β(F ) ≤ 0).

Proof. First of all, observe that the same arguments of [BMS16, Proposition 6.1] yield that µ∗bF ∈
Cohb

2β(X) and it is a σ0,b2β-semistable object, for every b ∈ Z>0 such that µb is a separable isogeny1.

Moreover, we have

ν0,b2β(µ∗bF ) = b2ν0,β(F )

as follows from ch(µ∗bF ) = (ch0(F ), b2 ch1(F ), b4 ch2(F )).

If ν0,β(F ) ≥ 0, we will prove that h1
F,L(x) = 0 for every x ∈ Q with x > −β; then, h1

F,L(−β) = 0

will follow again from Theorem I.2.2.(1). To this end, we approach x by a non-increasing sequence

xn = cn
dn

such that µdn is separable.

Observe that the condition cn
dn
> −β reads −cndn < d2

nβ. Therefore, L−cndn [1] is σ0,d2
nβ

-semistable

with ν0,d2
nβ

(L−cndn [1]) < 0 ≤ ν0,d2
nβ

(µ∗dnF ), which gives

0 = Hom(µ∗dnF,L
−cndn [1]) = Ext1(µ∗dnF,L

−cndn) = Ext1(L−cndn , µ∗dnF )∗ = H1(µ∗dnF ⊗ L
cndn)∗

and thus h1
F,L(xn) = 0. It follows that h1

F,L(x) = 0, as desired.

If ν0,β(F ) ≤ 0, following the same strategy it suffices to check that h0
F,L(x) = 0 for every rational

x = c
d with x < −β and µd étale. And indeed, cd < −β reads −cd > d2β, so L−cd is σ0,d2β-semistable

with ν0,d2β(L−cd) > 0 ≥ ν0,d2β(µ∗dF ). This implies

0 = Hom(L−cd, µ∗dF ) = H0(µ∗dF ⊗ Lcd)

and therefore h0
F,L(x) = 0.

1The condition β ∈ Q is required at this point, to ensure the existence of HN filtrations with respect to σ0,β and

σ0,d2β .
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We are now ready to prove that, on abelian surfaces, cohomological rank functions are recovered

by Chern degree functions:

Theorem II.4.3. Let (X,L) be a a polarized abelian surface. Then, the Chern degree function

chdkF,L equals the cohomological rank function hkF,L for every object F ∈ Db(X) and k ∈ Z.

Proof. It suffices to prove the equality chdkF,L(−β) = hkF,L(−β) for every β ∈ Q.

We start with the basic case where F ∈ Cohβ(X) is σ0,β-semistable. Assume that ν0,β(F ) ≥ 0. On

the one hand, by definition of the functions chdkF,L, we have chdkF,L(−β) = 0 for every k 6= 0 and

chd0
F,L(−β) = chβ2 (F ). On the other hand, Lemma II.4.1 and Lemma II.4.2 give hkF,L(−β) = 0 for

every k 6= 0, and thus h0
F,L(−β) = χF,L(−β).

Since ch−x2 (F ) equals χF,L(x) as a polynomial (in x), it follows that chdkF,L(−β) = hkF,L(−β) for

every k.

If F ∈ Cohβ(X) is σ0,β-semistable with ν0,β(F ) ≤ 0, then the same arguments yield chdkF,L(−β) =

0 = hkF,L(−β) for k 6= 1 and chd1
F,L(−β) = − chβ2 (F ) = h1

F,L(−β).

When F ∈ Cohβ(X) is an arbitrary object (not necessarily σ0,β-semistable), the result follows by

induction on the length of the HN filtration of F with respect to σ0,β, arguing similarly to the proof

of Proposition I.2.3.(2).

To prove the result for a general F ∈ Db(X), we approach −β by a non-decreasing sequence

−βn = an
bn

of rational numbers such that the multiplication maps µbn are étale. If τβn≤k−1, τβn≥k denote

the truncation functors of the bounded t-structure defined by Cohβn(X), then one immediately

checks (again, using [BMS16, Proposition 6.1.a]) that

τ
b2nβn
≤k−1 ◦ µ

∗
bn = µ∗bn ◦ τ

βn
≤k−1, τ

b2nβn
≥k ◦ µ∗bn = µ∗bn ◦ τ

βn
≥k

for every n. Therefore, we have a distinguished triangle in Db(X)

µ∗bn(τβn≤k−1F )⊗ Lanbn → µ∗bnF ⊗ L
anbn → µ∗bn(τβn≥kF )⊗ Lanbn

Arguing with its associated long exact sequence of hypercohomology groups as in the proof of

Proposition I.2.3.(3) (and using that the assertion has already been proved for objects of Cohβn(X)),

we obtain chdkF,L(−βn) = hkF,L(−βn) for every n. Then the equality chdkF,L(−β) = hkF,L(−β) is a

consequence of Theorem II.2.21 and Theorem I.2.2.(2).

This description of cohomological rank functions on abelian surfaces establishes a clear analogy with

the case of elliptic curves. In particular, the proof shows that the cohomological rank functions

of an object F ∈ Db(X) at x = −β split into simpler pieces, corresponding to its HN factors

with respect to σ0,β. The main difference is that, in the case of elliptic curves, the study via µL-

stability is actually global and proves that cohomological rank functions are piecewise polynomial,

with all their critical points being rational. In dimension 2 the study is strictly local as we saw in

section II.2, which makes the situation much richer.
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To finish this section, it is worth mentioning the following immediate consequence of this new

presentation in terms of Chern degree functions, which is a refinement of [JP20, Lemma 6.1] for

the case of abelian surfaces:

Corollary II.4.4. If (X,L) is a polarized abelian surface and F ∈ Db(X), any local polynomial

expression of the cohomological rank function hkF,L has integral coefficients.

II.5 Chern degree functions of Gieseker semistable sheaves

In order to illustrate with examples the previous account, in this section we discuss briefly some

properties of Chern degree functions of ((L,−1
2KX)-twisted) Gieseker semistable sheaves. With a

view towards the examples of chapter III, we will mainly focus on Gieseker semistable sheaves on

abelian surfaces, where these properties will become properties of the corresponding cohomological

rank functions.

So we fix a polarized surface (X,L) and a torsion-free Gieseker semistable sheaf F . Note that

F ∈ Cohβ(X) (resp. F [1] ∈ Cohβ(X)) for every β < µL(F ) (resp. β ≥ µL(F )), hence chd2
F,L(x) = 0

(resp. chd0
F,L(x) = 0) for x ≥ −µL(F ) (resp. x ≤ −µL(F )).

Moreover, if β < µL(F ) then F is σα,β-semistable for all α� 0 (Proposition I.1.13), so the problem

of computing chd0
F,L and chd1

F,L in (−µL(F ),+∞) consists of studying how the trivial HN filtration

of F in the Gieseker chamber varies as we reach the line α = 0.

Trivial Chern degree functions

We will call a Chern degree function trivial if its support is disjoint with the support of all the

other functions attached to the same object. In terms of stability, this reads as the simplest possible

situation:

Proposition II.5.1. The function chd0
F,L is trivial if, and only if, F is σα,β-semistable for every

α > 0 and β < µL(F ). In such a case,

chd0
F,L(x) =

{
0 x ≤ −pF

ch−x2 (F ) x ≥ −pF

where −pF is the largest root of the Chern degree polynomial ch−x2 (F ) (recall also Remark I.1.12).

Proof. If the semistability assumption on F is fulfilled, F is σ0,β-semistable for every β < µL(F )

and thus chd0
F,L(−β) is simply defined according to the sign of the tilt slope ν0,β(F ).

Conversely, assume that the function chd0
F,L is trivial. If F is not σα,β-semistable for every α > 0

and β < µL(F ), there exists an actual wall W (intersecting HF at its top point) along which F

destabilizes. Let 0→ E → F → Q→ 0 define this wall.
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Then, for every β ∈ (pF , pE) E is a subobject of F in Cohβ(X) with ν0,β(E) > 0, which gives

chd0
F,L(x) > 0 for x ∈ (−pE ,−pF ). This is a contradiction to the triviality of chd0

F,L, since for every

−µL(F ) < x < −pF we have chd1
F,L(x) > 0 as a consequence of the relation chd0

F,L(x)−chd1
F,L(x) =

ch−x2 (F ) < 0.

Example II.5.2. Let us give some examples of trivial Chern degree function chd0
F,L.

(1) Gieseker semistable sheaves with ∆(F ) = 0. These are the only examples of Gieseker semistable

sheaves where the function chd0
F,L is trivial and of class C1 at their critical point −pF , according

to Proposition II.3.4 (see also Proposition C).

(2) Gieseker semistable sheaves with ∆(F ) + CL(L · ch1(F )) = 0, where ∆ = (ch1)2 − 2 ch0 · ch2

and CL is the constant of [BMS16, Lemma 3.3].

These objects are more general than the objects considered in (1). For example, for abelian

surfaces (where one can choose CL to be zero) the objects in (1) only recover semihomoge-

neous vector bundles with determinant proportional to L, while here we are considering all

semihomogeneous vector bundles.

(3) The ideal sheaf Iq of a point q on a principally polarized abelian surface is well known to have a

trivial h0 function, according to the analysis in [JP20, section 8]. Conversely, Iq has no actual

wall for β < 0 as observed in [Mea12, section 4.1].

(4) Let i : C ↪→ X be an Abel-Jacobi embedding of a smooth curve C of genus 2 inside its

(principally polarized) Jacobian X = JC, and let F = i∗M for a line bundle M of odd degree

on C.

In this case F is torsion, but the same analysis works as in the torsion-free case (see [BL17,

Proposition 3.1]). As explained in [JP20, Example 4.3], the function h0
F,L is trivial; hence it

follows from Proposition II.5.1 that F is semistable on the whole (α, β)-plane.

Chern degree functions of semistable sheaves of low discriminant

There are other situations in which chd0
F,L, even if not trivial, can be explicitly described. To this

end we consider the minimal discriminant, defined as the positive generator m of the ideal of Z
generated by {∆(v) | v ∈ Λ}.

Note that the quantity m essentially depends on the intersection pairing of NS(X). For instance,

if NS(X) = Z · L (or more generally, if L2|D · L for every divisor class D) then m is a multiple of

L2. Of course, in full generality one can only assert m ∈ Z≥1.

Let us assume now that ∆(F ) = m. Then by Theorem I.1.10.(7) either the function chd0
F,L is

trivial (as happens in Example II.5.2.(3)-(4)), or F destabilizes along an actual wall W defined by

an exact sequence 0→ E → F → Q→ 0 with ∆(E) = 0 = ∆(Q) (see Figure II.6).

In the latter case, E and Q can only be destabilized at their vertical walls β = pE and β = pQ, so it

follows that E and Q are the σ0,β-HN factors of F for all β ∈ (pQ, pE). Clearly F is σ0,β-semistable



II.5. Chern degree functions of Gieseker semistable sheaves 59

W

HQHFHE

pQ pEpF

Figure II.6: Actual wall W defined by 0→ E → F → Q→ 0, for F of minimal discriminant

for β ≤ pQ and pE ≤ β < µL(F ), so whenever nontrivial the function chd0
F,L reads

chd0
F,L(x) =


0 x ≤ −pE

ch−x2 (E) −pE ≤ x ≤ −pQ
ch−x2 (F ) x ≥ −pQ

and, according to the description of Proposition II.3.4, the function is C1 at −pE and −pQ.

Example II.5.3. Let (X,L) be a (1, 2)-polarized abelian surface with NS(X) = Z ·L. Under these

assumptions the linear system |L| has exactly four base points, that are identified under the isogeny

ϕL : X → Pic0(X). In other words, for every q ∈ X there exists a unique α ∈ Pic0(X) such that

H1(Iq ⊗ L⊗ α) 6= 0. This allows us to destabilize Iq, which has minimal discriminant.

Indeed, by Serre duality there is a non-trivial extension 0→ L−1 ⊗ α−1 → E → Iq → 0. Rotation

of the triangle yields a destabilizing short exact sequence for Iq, so that h0
Iq ,L reads

h0
Iq ,L(x) =


0 x ≤ 1

2

χE,L(x) = 4x2 − 4x+ 1 1
2 ≤ x ≤ 1

χIq ,L(x) = 2x2 − 1 x ≥ 1.

Now assume ∆(F ) = 2m. If chd0
F,L is not trivial, then F destabilizes along a wall W . We can

choose a destabilizing sequence 0 → E → F → Q → 0 defining the HN filtration of F in a small

annulus just below W . We have to distinguish several possibilities.

If ∆(E) = ∆(Q) = 0, then E and Q are semistable for all the stability conditions in the interior of

W . Thus the function chd0
F,L admits the same description as the one given in the case ∆(F ) = m,

i.e. it has critical points −pE and −pQ (see section III.1 for an example).

The other possibility is that either E or Q has positive discriminant, say ∆(E) = m and ∆(Q) = 0.

Note that Q is semistable in the whole interior of W . If this is the case for E as well, then

chd0
F,L again has −pE and −pQ as its critical points (the function being not differentiable at −pE).
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Otherwise, E destabilizes along a wall WE inside W , defined by a sequence 0→ E1 → E → E2 → 0

with ∆(E1) = 0 = ∆(E2):

W

WE

HQHFHE1 HE HE2

pQ pE1pE2

Figure II.7: Successive destabilizations for F of twice the minimal discriminant

Clearly, both E1 and E2 are semistable in the whole interior of WE . With this information, it is

easy to describe the HN filtrations of F for all the σ0,β with β < µL(F ), and one obtains

chd0
F,L(x) =


0 x ≤ −pE1

ch−x2 (E1) −pE1 ≤ x ≤ −pE2

ch−x2 (E) −pE2 ≤ x ≤ −pQ
ch−x2 (F ) x ≥ −pQ

(with the function being differentiable at its three critical points).

More generally, one may try to apply this philosophy for an arbitrarily big ∆(F ) as follows. If

chd0
F,L is not trivial, then F destabilizes along a wall W . We keep track of its HN filtration

0 = F0 ↪→ F1 ↪→ . . . ↪→ Fr−1 ↪→ Fr = F

for Bridgeland stability conditions in a (sufficiently small) annulus just below W , which necessarily

satisfies ∆(F1) + ∆(F2/F1) + . . .+ ∆(F/Fr−1) < ∆(F ).

Now, it is possible that some HN factors Fi/Fi−1 are not semistable in the whole region inside W ,

so they destabilize along a wall Wi. For each such Fi/Fi−1, again we keep track of its HN filtration

for stability conditions just below Wi

0 ↪→ Fi,1/Fi−1 ↪→ . . . ↪→ Fi,ri−1/Fi−1 ↪→ Fi,ri/Fi−1 = Fi/Fi−1

which satisfies ∆(Fi,1/Fi−1)+∆(Fi,2/Fi,1)+ . . .+∆(Fi,ri/Fi,ri−1) < ∆(Fi/Fi−1). Proceeding induc-

tively, we must finish in a finite number of steps thanks to the strict inequalities on discriminants.

The process yields a tree, in which the final vertices correspond to objectsG that are semistable in an

open neighborhood of (0, pG) in the (α, β)-plane. By construction, we can consider a lexicographical

order on the final vertices:
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Definition II.5.4. We say that the tree is well ordered if G1 < G2 implies pG1 ≥ pG2 for any two

final vertices G1 and G2.

Example II.5.5. Assume that ∆(F ) = 2m. In the stability situation of Figure II.7 F has the

following tree, which is well ordered since pE1 > pE2 > pQ:

F

E

Q

E1

E2

If the tree of F is well ordered with final vertices G1 < ... < Gk, it is not difficult to recover

the Bridgeland limit filtration (and thus the σ0,β-HN filtration) of F at every β < µL(F ). The

corresponding function chd0
F,L is piecewise polynomial, and their critical points are the points −pGi

for the final vertices Gi of the tree. More precisely,

chd0
F,L(x) =


0 x ≤ −pG1

i∑
j=1

(
ch−x2 (Gj)

)
−pGi ≤ x ≤ −pGi+1 (1 ≤ i ≤ k − 1)

ch−x2 (F ) x ≥ −pGk

Furthermore, since ∆(Gi) is the discriminant of the Chern degree polynomial ch−x2 (Gi), some

interesting properties about the critical points −pGi can be read in terms of ∆(Gi):

• Rationality: The critical point −pGi is rational if and only if ∆(Gi) is a perfect square.

• Differentiability: The function chd0
F,L is differentiable at the critical point −pGi if and only if

∆(Gi) = 0.

Even if we do not expect every Gieseker semistable sheaf to have a well-ordered tree, in many con-

crete situations this is the case, and thus the previous description of Chern degree functions applies.

The examples in the next chapter (especially those of section III.1) illustrate this phenomenon for

cohomological rank functions on abelian surfaces.





Chapter III

Examples of functions on abelian

surfaces

This chapter is devoted to the computation of two examples of cohomological rank functions on

abelian surfaces. On the one hand, ideal sheaves of finite subschemes on principally polarized

abelian surfaces illustrate many of the phenomena explained in chapter II (especially the method

of section II.5). On the other hand, the ideal sheaf of one point is geometrically interesting in its

own right, and has direct implications on the syzygies of abelian surfaces.

III.1 Finite subschemes on principally polarized abelian surfaces

Along this section, (X,L) will be a principally polarized complex abelian surface with NS(X) = Z·L.

By abuse of notation, L will also denote a symmetric line bundle representing the polarization.

Under these assumptions, the minimal discriminant is m = 4 and X is the Jacobian of a genus 2

curve C; after embedding C in X by means of one of its Weierstrass points, we fix C ∈ |L| as a

symmetric theta divisor.

We want to compute h0
IT ,L for ideal sheaves IT of 0-dimensional subschemes T on X. If n = h0(OT )

denotes the length of T , we have: ch(IT ) = (1, 0,−n), χIT ,L(x) = x2−n (in particular, pIT = −
√
n)

and ∆(IT ) = 4n (i.e. ∆(IT ) is n times the minimal discriminant).

Case n = 2

In order to understand geometrically the destabilization of the ideal sheaf of a length two 0-

dimensional subscheme T , we first need to control the translates of C that contain T . This is

the (scheme-theoretic) support of the sheaf ϕ∗LR
2ΦP∨((IT ⊗L)∨), which in the language of Jiang–

Pareschi controls h0
IT ,L in a right neighborhood of x = 1 (recall Theorem I.2.2.(1)).

63
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Lemma III.1.1. If T ⊂ X is a 0-dimensional subscheme of length 2, then the locus{
α ∈ Pic0(X) | h0(IT ⊗ L⊗ α) > 0

}
parametrizing translates of C containing T , with its natural scheme structure as support of the sheaf

R2ΦP∨((IT ⊗ L)∨), is a 0-dimensional subscheme Γ ⊂ Pic0(X) of length 2.

Proof. When X consists of two distinct points p and q, the translates of C passing through p and q

are parametrized by the (scheme-theoretic) intersection (C+p)∩(C+q). If this intersection is trans-

verse (which happens for a generic pair (p, q)), there are exactly two translates of C containing X.

In case of non-transverse intersection, there is only one (proper) translate C̃ of C containing p and

q: moreover, the tangent direction to C̃ at p and q is the same (under the canonical identifications

of tangent spaces via translations).

If T is non-reduced consisting of a point p ∈ S and a tangent direction w ∈ P(TpX), the translates

of C containing T are parametrized by the locus of points in C + p having w as tangent direction.

If we denote the Gauss map of C + p by

G : C + p −→ P1 = P((T0X)∗)

the locus we are looking for is the preimage G−1(w′), where w′ ∈ P((T0X)∗) is the element corre-

sponding to w. Since the Gauss map can be identified with the canonical map of C + p, the result

follows; clearly, Γ will be reduced or not depending on whether w′ is a branch point of G or not.

To illustrate the strategy outlined in section II.5, we consider the first possible destabilizing wall

W for the Chern character (1, 0,−2), which has center −3
2 and radius 1

2 . Indeed, it can be defined

by the following combinations of Chern characters1:

(1,−L, 1) ↪→ (1, 0,−2)� (0, L,−3), (2,−2L, 2) ↪→ (1, 0,−2)� (−1, 2L,−4).

It is an actual wall for IT , and the first step in the HN filtration of IT after crossing W has Chern

character (2,−2L, 2). Let us see how to construct this subobject.

Let Γ ⊂ Pic0(X) be the subscheme of Proposition VI.4.5, and let π : X × Pic0(X) −→ X and

σ : X × (−Γ) −→ X denote the first projection maps. Then E = σ∗(π
∗(L−1) ⊗ P|S×(−Γ)) is a

semihomogeneous vector bundle of rank 2 on S with ch(E) = (2,−2L, 2), coming with a natural

epimorphism of sheaves E � IT .

For instance, if Γ is reduced (i.e. there are two distinct translates C1, C2 of C containing T ), then

the short exact sequence attached to E � IT is nothing but the Koszul complex of the complete

intersection T = C1 ∩ C2.

In any case, taking the short exact sequence of sheaves and rotating the triangle, we obtain a short

exact sequence in Coh−
√

2(X) defining the HN filtration of IT just below W . Since both HN factors

1One can use Schmidt’s implementation [Sch20, Appendix] to find the potential walls.
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have discriminant 0, they are semistable in the whole interior of W and our tree is well ordered.

Thus we obtain the following cohomological rank function for IT :

h0
IT ,L(x) =


0 x ≤ 1

χE,L(x) = 2(x− 1)2 1 ≤ x ≤ 2

x2 − 2 x ≥ 2.

Case n = 4

For the cases n ≥ 3, we will use the following result in [Mea12] describing the stability of IT along

the vertical line β = −2:

Lemma III.1.2 ([Mea12, Lemma 3.3.6]). Let T ∈ Hilbn(X).

(1) If n 6= 5: the object IT is destabilized at the vertical line β = −2 if, and only if, T contains a

collinear (i.e. contained in a translate of C) subscheme of colength m, for some 0 ≤ m < n−2
2 .

In such a case, the destabilizing subobject in Coh−2(X) is L−1⊗IT ′⊗α, for some T ′ ∈ Hilbm(X)

and α ∈ Pic0(X).

(2) If n = 5: IT can also be destabilized at β = −2 by K, where K is a slope-stable locally free

sheaf with ch(K) = (2,−3L, 4).

This destabilization takes place if, and only if, every subscheme of T with length 4 is non-

collinear and contains a unique collinear subscheme of length 3.

Now assume that T is a length four 0-dimensional subscheme. We consider two subcases.

If no translate of C contains T , then IT has trivial cohomological rank function:

h0
IT ,L(x) =

{
0 x ≤ 2

x2 − 4 x ≥ 2.

Indeed, by Lemma III.1.2 IT remains semistable along the vertical line β = −2. Since pIT = −2,

this means that IT is semistable in the whole region β < 0.

Now assume that T is a collinear subscheme (i.e. it is contained in a translate C1 of C). To simplify

the notation and illustrate the strategy, we restrict ourselves to the case where T = {p, q, r, s} is

reduced.

Consider any two points of T : there is another translate of C containing them, unless C1 has the

same tangent direction at these points (see the proof of Proposition VI.4.5). Since the Gauss map

of C1 has degree 2, it follows that (possibly after reordering the points of X) there are two distinct

translates of C passing through p and q (resp. through r and s) simultaneously; being C1 one of

them, we denote by C2 (resp. C3) the other one.

We take also α, β, γ ∈ Pic0(X) such that C1 ∈ |L⊗ α|, C2 ∈ |L⊗ β| and C3 ∈ |L⊗ γ|.
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Figure III.1: Translates C1, C2 and C3 of C

The Chern character (1, 0,−4) has a unique possible wall W , of center −5
2 and radius 3

2 . Since T

is collinear, we can destabilize IT (as predicted by Lemma III.1.2) via the exact sequence

0 −→ L−1 ⊗ α−1 ·s1−→ IT −→ OC1(−p− q − r − s) −→ 0

where s1 ∈ H0(L⊗ α) defines C1. This sequence gives the HN filtration of IT just below W .

The subobject E = L−1 ⊗ α−1 is everywhere semistable since ∆(E) = 0. The quotient Q =

OC1(−p− q − r − s) has ∆(Q) = 4, and destabilizes along a wall inside W defined by a sequence

0 −→ L−2 ⊗ β−1 ⊗ γ−1
·s2s3|C1−→ OC1(−p− q − r − s) −→ (L−3 ⊗ α−1 ⊗ β−1 ⊗ γ−1)[1] −→ 0

where s2 and s3 are sections defining C2 and C3.

Both Q1 = L−2⊗β−1⊗γ−1 and Q2 = (L−3⊗α−1⊗β−1⊗γ−1)[1] have ∆ = 0, so it is not necessary

to study further destabilizations. We obtain a well-ordered tree with final vertices E, Q1 and Q2,

which gives the following cohomological rank function:

h0
IT ,L(x) =


0 x ≤ 1

χE,L(x) = (x− 1)2 1 ≤ x ≤ 2

χE,L(x) + χQ1,L(x) = (x− 1)2 + (x− 2)2 2 ≤ x ≤ 3

x2 − 4 x ≥ 3

Remark III.1.3. For T collinear and nonreduced we obtain the same function, as easily follows

from semicontinuity arguments. Nevertheless, in that case the second destabilization does not

admit such a simple presentation.

Case n = 3

If T is a length three 0-dimensional subscheme, we consider first the case where T is collinear,

where the cohomological rank function of IT is

h0
IT ,L(x) =


0 x ≤ 1

(x− 1)2 1 ≤ x ≤ 2

x2 − 3 x ≥ 2.



III.1. Finite subschemes on principally polarized abelian surfaces 67

Indeed, if C1 ∈ |L ⊗ α| is the translate of C containing T , then IT destabilizes along the wall W

defined by the short exact sequence

0 −→ L−1 ⊗ α−1 ·s−→ IT −→ OC1(−T ) −→ 0

where the section s ∈ H0(L⊗ α) defines C1. This was already predicted by Lemma III.1.2.

The subobject L−1 ⊗ α−1 is obviously semistable everywhere inside W ; the same happens for the

quotient OC1(−T ), since it is a line bundle of odd degree on a genus 2 Abel-Jacobi curve (recall

Example II.5.2.(4)). This completes the tree and we obtain the desired cohomological rank function.

If T is not collinear, then according to Lemma III.1.2 IT remains semistable along the whole line

β = −2. The next possible wall W ′ has center −7
4 and radius 1

4 ; let us describe the destabilization

of IT along this wall, under the assumption that T = {p, q, r} is reduced and every pair of points

on T is contained in two distinct translates of C.

Let C1 = C+ t1 ∈ |L⊗α| and C̃1 = C+ t̃1 ∈ |L⊗ α̃| be the two translates of C passing through the

points p and q. Among all the translates of C passing through r, we take two curves C2 = C + t2

and C̃2 = C + t̃2 such that t2 − t̃2 = t1 − t̃1. This is possible because the subtraction morphism

C × C −→ S is surjective (the curve C being non-degenerate).

Writing C2 ∈ |L⊗β| and C̃2 ∈ |L⊗β⊗ α̃⊗α−1| (according to the condition t2− t̃2 = t1− t̃1), it is

easy to check that h0(IX ⊗ L2 ⊗ β ⊗ α̃) ≥ 2 and thus h1(IX ⊗ L2 ⊗ β ⊗ α̃) ≥ 1. By Serre duality,

the last condition reads Ext1(IX , L−2 ⊗ β−1 ⊗ α̃−1) 6= 0. A (rotated) nontrivial extension gives a

short exact sequence, destabilizing IT along W ′.

By repeating this process (starting with the two curves through p and r, and the two curves

through q and r) and taking direct sum, it is possible to destabilize IT via a short exact sequence

0→ E → IT → Q→ 0 corresponding to the HN filtration of IT just below W ′.

Since ch(E) = (4,−6L, 9) and ch(Q) = (−3, 6L,−12), both E and Q have ∆ = 0 and thus the

construction of the tree has no more steps. The corresponding function h0
IT ,L is

h0
IT ,L(x) =


0 x ≤ 3

2

4x2 − 12x+ 9 3
2 ≤ x ≤ 2

x2 − 3 x ≥ 2.

Case n = 5

The Chern character (1, 0,−5) has three possible walls intersecting the vertical line β = −2, namely:

• A wall W1 of center −3 and radius 2.

• A wall W2 of center −5
2 and radius 1

2

√
5.

• A wall W3 of center −7
3 and radius 2

3 .

Let us see how each of these three walls corresponds to one of the special geometric situations
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described in Lemma III.1.2. In these three special situations, the usual method constructs the

well-ordered tree of IT and hence recovers h0
IT ,L.

Example III.1.4 (Wall W1). If T is collinear and C1 ∈ |L ⊗ α| is a translate of C containing it,

then there is a short exact sequence

0 −→ L−1 ⊗ α−1 ·s1−→ IT −→ OC1(−T ) −→ 0

destabilizing IT along the wall W1, where s1 is a section defining C1.

The subobject E = L−1 ⊗ α−1 does not destabilize, and the same happens for the quotient Q =

OC1(−T ): again, we have a line bundle of odd degree supported on an Abel-Jacobi curve. This

allows us to recover the cohomological rank function as

h0
IT ,L(x) =


0 x ≤ 1

χE,L(x) = (x− 1)2 1 ≤ x ≤ 3

x2 − 5 x ≥ 3.

Example III.1.5 (Wall W2). Assume that T itself is not collinear, but contains a collinear sub-

scheme Y of length 4. In this case IT gets destabilized along the wall W2, and the function h0
IT ,L

presents a remarkable peculiarity which illustrates a special situation in our characterization of

critical points (Proposition II.3.4).

Assume for simplicity that T = {p1, p2, p3, p4, p5} is reduced. If Y = {p1, p2, p3, p4} and C1 ∈ |L⊗α|
is the translate of C containing Y , then

0 −→ Ip5 ⊗ L−1 ⊗ α−1 ·s1−→ IT −→ OC1(−p1 − p2 − p3 − p4) −→ 0

is the exact sequence destabilizing IT along the wall W2. It is also the HN filtration of IT for

stability conditions just below W2. Since both HN factors have ∆ = 4, we have to study possible

further destabilizations:

• E = Ip5 ⊗ L−1 ⊗ α−1 is semistable everywhere inside W2, according to Example II.5.2.(3).

• The sheaf Q = OC1(−p1− p2− p3− p4) destabilizes as described in the case of 4 collinear points

(see section III.1). This destabilization takes place along a wall WQ of center −5
2 and radius 1

2 .

Both the subobject Q1 and the quotient Q2 inducing this wall have ∆ = 0, so we are done.

Figure III.2 shows the position of walls and hyperbolas in the (α, β)-plane:

Again our tree (with final vertices E,Q1, Q2) is well ordered, but in this case we have an overlap

pE = pQ1 = −2. In the terminology of Proposition II.3.4, this implies that x = 2 is a critical point

where conditions (a) and (c) are simultaneously fulfilled.

The cohomological rank function h0
IT ,L can be recovered as

h0
IT ,L(x) =


0 x ≤ 2

χE,L(x) + χQ1,L(x) = 2(x− 1)(x− 2) 2 ≤ x ≤ 3

x2 − 5 x ≥ 3.
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Figure III.2: Walls and hyperbolas involved in the tree of IT

Example III.1.6 (Wall W3). Assume that every subscheme of T with length 4 is non-collinear

and contains a unique collinear subscheme of length 3.

Under this assumption, T must be non-reduced (otherwise T would contain too many length 4

subschemes to satisfy the hypothesis). Moreover, it is easy to check that such configurations are

possible for subschemes T supported at four or less distinct points:

Figure III.3: Possible configuration for a subscheme T supported at four distinct points

According to [Mea12], IT destabilizes along the wall W3 via a distinguished triangle

0 −→ K −→ IT −→ Q −→ 0

where K is a slope-stable locally free sheaf with ch(K) = (2,−3L, 4). Both the subobject and the

quotient are semistable everywhere:

• Even if ∆(K) = 4, the Chern character of K has no actual walls.

• The quotient Q, with Chern character ch(Q) = (−1, 3L,−9), has ∆ = 0.

Therefore, we obtain the cohomological rank function

h0
IT ,L(x) =


0 x ≤ 2

χK,L(x) = 2(x− 1)(x− 2) 2 ≤ x ≤ 3

x2 − 5 x ≥ 3

which is exactly the same as that of Example III.1.5. Hence it is worth noting that stability

distinguishes between two configurations of points that cannot be distinguished via cohomological

rank functions.
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Finally, let us consider the case where T satisfies none of the special geometric conditions studied

in the previous examples. The next possible wall W for IT has center −9
4 and radius 1

4 . According

to [Mac12, Theorem 10.2], the locus

Γ̃ = {α ∈ Pic0(X) | h0(IT ⊗ L2 ⊗ α) > 0}

(with its natural scheme structure as support of the sheaf R2ΦP∨((IT ⊗ L2)∨)) is a 0-dimensional

subscheme of length 5. In other words, among all the translated linear systems |L2⊗α| there exist

exactly five curves (counted with multiplicities) that contain T .

Similarly to the case n = 2, one can use these five curves to destabilize IT along W . The tree of

IT consists of this single step and the cohomological rank function reads

h0
IT ,L(x) =


0 x ≤ 2

5(x− 2)2 2 ≤ x ≤ 5
2

x2 − 5 x ≥ 5
2 .

III.2 The basepoint-freeness threshold (I): Upper bounds

In this section, we will perform explicit computations of the function h0
I0,L (and hence of h1

I0,L), as

an another instance of the techniques described in section II.5. As explained in section I.2, this is

relevant with regard to syzygies of abelian surfaces (a problem that is not formulated in terms of

derived categories). Indeed, we will obtain new effective results in this direction (Corollary III.2.5),

as a combination of our computations with the criteria of Jiang-Pareschi, Caucci and Ito.

In the rest of this chapter, we will work again over an arbitrary algebraically closed field K. Let

(X,L) be a (1, d)-polarized abelian surface, such that L2 divides D · L for every divisor class D.

Note that this includes the case where X has Picard rank 1.

First of all, observe that I0 is a Gieseker semistable sheaf with v(I0) = (L2, 0,−1) (in particular,

µL(I0) = 0), χI0,L(x) = dx2 − 1 and pI0 = −
√
d
d .

Moreover, ∆(I0) = 2L2(= 4d, by Riemann-Roch) takes the minimal positive value; indeed, by our

assumptions on (X,L) we have 4d|∆(v(E)) for every E ∈ Db(X). Recall that this is a strong

constraint, which guarantees either that I0 is σα,β-semistable for every β < 0 and α > 0 (in

which case h0
I0,L is trivial), or I0 destabilizes along a wall W defined by a short exact sequence

0→ E → I0 → Q→ 0 in Coh−
√
d
d (X), with ∆(E) = 0 = ∆(Q).

Lemma III.2.1. Let 0→ E → I0 → Q→ 0 be a destabilizing short exact sequence as above. Then

v(E) = (d(x̃+1),−2dỹ, x̃−1
2 ) and v(Q) = ((1− x̃)d, 2dỹ,− x̃+1

2 ), where (x̃, ỹ) is a positive nontrivial

solution to Pell’s equation x2 − 4d · y2 = 1.

Proof. By the assumption 2d = L2|D ·L for every divisor class D, we may write v(E) = (2dr, 2dc, χ)
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and v(Q) = (2d(1− r),−2dc,−1− χ) for certain integers r, c and χ. The condition ∆(E) = ∆(Q)

is easily checked to read as r = χ+ 1.

Imposing now ∆(E) = 0 gives χ(χ + 1) − dc2 = 0, which after multiplying by 4 and adding 1 at

both sides, becomes (2χ + 1)2 − 4d · c2 = 1. Therefore, (2χ + 1, c) is a solution to the equation

x2 − 4d · y2 = 1. Note that this solution must be non-trivial: otherwise, either E or Q would have

class v = (0, 0,−1), which is impossible.

Finally, we have to determine the signs of the solution (2χ + 1, c) to Pell’s equation. On the one

hand, since E is a subobject of the torsion-free sheaf I0 in the category Coh−
√
d
d (X), it follows that

E is a sheaf with r = ch0(E) > 0 (hence 2χ+ 1 > 0).

On the other hand, the right intersection point of W with the β-axis equals pE = µL(E) = c
r by

the condition ∆(E) = 0; since W is an actual wall for I0, it lies entirely in the region with β < 0,

which gives c < 0 and finishes the proof.

This explicit description of the potential destabilizing walls of I0 leads to the following expressions

for the function h0
I0,L:

Theorem III.2.2. Let (X,L) be a (1, d)-polarized abelian surface such that D · L is a multiple of

L2 for every divisor class D.

(1) If d is a perfect square, then the cohomological rank function h0
I0,L reads

h0
I0,L(x) =

{
0 x ≤

√
d
d

dx2 − 1 x ≥
√
d
d

(III.2.1)

In particular, ε1(L) =
√
d
d and h0

I0,L is not differentiable at
√
d
d .

(2) If d is not a perfect square, then the cohomological rank function h0
I0,L is either (III.2.1) or

h0
I0,L(x) =


0 x ≤ 2ỹ

x̃+1
d(x̃+1)

2 x2 − 2dỹ · x+ x̃−1
2

2ỹ
x̃+1 ≤ x ≤

2ỹ
x̃−1

dx2 − 1 x ≥ 2ỹ
x̃−1

where (x̃, ỹ) is a nontrivial positive solution to Pell’s equation x2 − 4d · y2 = 1. In particular,

if (x0, y0) is the minimal positive solution to this equation, then ε1(L) ≤ 2y0

x0−1 .

Proof. If d is a perfect square (equivalently, 4d is a perfect square), then Pell’s equation involved in

Lemma III.2.1 admits only trivial solutions, so I0 is σα,β-semistable along the whole region β < 0.

Therefore, the function h0
I0,L is trivial by Proposition II.5.1, which leads to the expression (III.2.1).

Now assume that d is not a perfect square. If I0 destabilizes (equivalently, h0
I0,L is not trivial),

then by Lemma III.2.1 the destabilizing wall corresponds to a positive nontrivial solution (x̃, ỹ) of

x2−4d ·y2 = 1, for which the classes v(E) and v(Q) are known. Once more, we are in the situation

of a well-ordered tree for I0, which gives the stated expression for h0
I0,L.
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Finally, observe that in the same way as the quotients ỹ
x̃ converge to

√
d

2d , the potential destabilizing

walls for I0 accumulate towards the point pI0 = −
√
d
d in the β-axis:

ec1

β = 0β = − 2y0
x0+1

β = − 2y0
x0−1 β = −

√
d
d

HI0

Figure III.4: Possible walls for I0 parametrized by solutions to Pell’s equation

It follows that the largest possible wall is associated to the minimal solution (x0, y0), and hence the

inequality ε1(L) ≤ 2y0

x0−1 holds.

Remark III.2.3. Upper bounds for ε1(L) have been given by Ito for general abelian surfaces over

C, using completely different techniques (see [Ito20b, Proposition 4.4]). When d is a perfect square,

he already obtained the equality ε1(L) =
√
d
d (and thus the expression for h0

I0,L).

On the other hand, for d not a perfect square our upper bound refines the one given by Ito. Indeed,

both bounds coincide for several values of d, but in general the inequality ε1(L) ≤ 2y0

x0−1 is stronger

as one can check in the following table of upper bounds (see d = 7, 11, 13, 19, 21, 22). The equalities

denote exact values for ε1(L), obtained by Ito via lower bounds; we will come back to this question

in section III.3.

d 2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22

Ito =1 =2
3 =1

2 =1
2

3
7

3
8

1
3

1
3 =1

3
4
13 =2

7 = 4
15

1
4

1
4

1
4

1
4

5
21

5
22

2y0

x0−1 1 2
3

1
2

1
2

8
21

3
8

1
3

10
33

1
3

5
18

2
7

4
15

1
4

1
4

170
741

1
4

2
9

3
14

Table III.1: Comparison of bounds for ε1(L) when d is not a perfect square

One of the advantages of our approach is that it controls the differentiability of the function

h0
I0,L, which is meaningful in terms of M-regularity. Indeed, as an immediate consequence of

Theorem III.2.2 and Lemma I.2.7 we directly obtain:

Corollary III.2.4. Let (X,L) be a (1, d)-polarized abelian surface such that D ·L is a multiple of

L2 for every divisor class D.

(1) If d is a perfect square, then I0〈
√
d
d L〉 is a GV-sheaf which is not M-regular.
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(2) If d is not a perfect square, then I0〈 2y0

x0−1L〉 is M-regular.

In particular, for m ∈ Z>0 I0〈 1
mL〉 is M-regular if and only if m <

√
d (i.e. m2 < d).

We point out that this gives an affirmative answer, in the case of abelian surfaces, to a question

posed by Ito ([Ito21, Remark 6.4]). By means of Corollary III.2.4, we prove the following result on

the syzygies of primitively polarized abelian surfaces:

Corollary III.2.5. Let (X,L) be a (1, d)-polarized abelian surface such that D ·L is a multiple of

L2 for every divisor class D.

(1) If d ≥ 7, then any ample line bundle representing L is projective normal.

(2) If d > (p+2)2 for p ≥ 1, then any ample line bundle representing L satisfies the property (Np).

Proof. Under the assumptions on (X,L), I0〈12L〉 is IT (0) for every d ≥ 7, as an immediate ap-

plication of Lemma I.2.7 and the upper bounds for ε1(L). Thus the first assertion follows from

Theorem I.2.6.(2).

If d > (p + 2)2 for some p ≥ 1, then I0〈 1
p+2L〉 is M-regular by Corollary III.2.4. Hence Theo-

rem I.2.6.(3) guarantees the property (Np) for representatives of L.

III.3 The basepoint-freeness threshold (II): Lower bounds

Let d be a positive integer which is not a perfect square, and let (x0, y0) be the minimal positive

solution to x2−4d ·y2 = 1. In the sequel, we will assume that char(K) divides neither x2
0 nor x2

0−1

(in particular, char(K) 6= 2).

This section is devoted to prove that only two of the potential functions described in Theo-

rem III.2.2.(2) may happen: those corresponding to the two smallest positive solutions of Pell’s

equation. In particular, we will obtain lower bounds for ε1(L).

Our approach is based on the following result (which is actually valid without the hypothesis of

Theorem III.2.2):

Proposition III.3.1. Let (X,L) is a (1, d)-polarized abelian surface, and let L also denote a

symmetric representative of it. Then h0(X,µ∗x0
I0⊗L2x0y0) ≥ x2

0; in other words, the linear system

of curves |L2x0y0 | has at least x2
0 independent elements that contain all the x0-torsion points of X.

Proof. Since the subgroup T ∼= (Z/x0)
4 of x0-torsion points is contained in

K(L2x0y0) ∼= (Z/2x0y0 ⊕ Z/2dx0y0)× ̂(Z/2x0y0 ⊕ Z/2dx0y0),

we will use the representation of the theta group G(L2x0y0) on H0(X,L2x0y0) to understand how

translation by points of T acts on the linear system |L2x0y0 |.
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We consider the isomorphism of Theorem I.3.1.(3), which in particular identifies G(L2x0y0) with

K∗ ×K(L2x0y0) (with a noncommutative group operation), and H0(X,L2x0y0) with

V (2x0y0, 2dx0y0) = {K-valued functions on Z/2x0y0 ⊕ Z/2dx0y0}.

Denote by {δj,k | (j, k) ∈ Z/2x0y0 ⊕ Z/2dx0y0} the canonical basis of V (2x0y0, 2dx0y0), that is:

δj,k(l,m) = 1 if (j, k) = (l,m), and δj,k(l,m) = 0 otherwise.

Moreover, let {a1, a2, a3, a4} be the following basis of T inside K(L2x0y0):

• a1 = (2y0, 0), a2 = (0, 2dy0) in Z/2x0y0 ⊕ Z/2dx0y0.

• a3, a4 ∈ HomZ(Z/2x0y0 ⊕ Z/2dx0y0,K∗) are the homomorphisms given by

a3(1, 0) = ξ, a3(0, 1) = 1, a4(1, 0) = 1, a4(0, 1) = ξ,

where ξ is a primitive x0-th root of 1.

Consider the lifts (1, ai) ∈ G(L2x0y0) of ai (for i = 1, 2, 3, 4) to the theta group. According to the

representation described in Theorem I.3.1.(3), they induce the endomorphisms

ã1 : δj,k 7→ δj−2y0,k , ã2 : δj,k 7→ δj,k−2dy0 , ã3 : δj,k 7→ ξjδj,k , ã4 : δj,k 7→ ξkδj,k

on H0(X,L2x0y0). Recall that the projectivization of ãi on the linear system |L2x0y0 | corresponds

to (the dual of) the projectivity tai : P(H0(X,L)∨) → P(H0(X,L)∨) extending the translation

tai : X → X.

Observe that ã3, ã4 are diagonalizable endomorphisms that commute (as corresponds to a3, a4

generating a totally isotropic subgroup of K(L2x0y0)). This implies that every eigenspace of ã3 is

an invariant subspace for ã4, and conversely.

Therefore, we can find a decomposition

H0(X,L2x0y0) =
⊕

l,m∈{0,...,x0−1}

E(l,m),

where E(l,m) is a subspace of eigenvectors for both ã3 and ã4 (of eigenvalue ξl for ã3, and eigenvalue

ξm for ã4). Explicitly, we have

E(l,m) = 〈δj,k | j ≡ l and k ≡ m (mod x0)〉,

so every subspace E(l,m) has dimension 2y0 · 2dy0 = 4dy2
0 = x2

0 − 1.

The projectivization of E(l,m) represents a (x2
0 − 2)-dimensional linear system Ll,m ⊂ |L2x0y0 |,

formed by curves which remain invariant under translation by points of the subgroup 〈a3, a4〉 ⊂ T .

In particular, any curve of Ll,m containing 〈a1, a2〉 ⊂ T will automatically contain all of T .

Moreover, since gcd(x0, 2dy0) = 1, it follows from the above description of ã1, ã2 that the subgroup

〈(1, a1), (1, a2)〉 ∼= (Z/x0)
2 ⊂ G(L2x0y0) acts transitively on the set {E(l,m)}. Thus for our purposes it
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suffices to find a curve C ∈ L0,0 containing the x2
0 points of 〈a1, a2〉 ⊂ T . Indeed, the set of x2

0 curves

will be formed by one curve in each Ll,m, obtained from C by translation with the corresponding

point of 〈a1, a2〉.

Since L2x0y0 is totally symmetric, we may consider the involution of H0(X,L2x0y0)

ĩ : δj,k 7→ δ−j,−k,

whose projectivization extends the inversion i : X → X to a projectivity of P(H0(X,L2x0y0)∨).

The subspace E(0,0) is clearly invariant by this endomorphism, and the restriction ĩ|E(0,0)
satisfies:

• The subspace E1
(0,0) ⊂ E(0,0) of eigenvectors of eigenvalue 1 has dimension 2dy2

0 + 2 =
x2

0−1
2 + 2.

Explicitly, a basis of E1
(0,0) is given by

δsx0,tx0 + δ(2y0−s)x0,(2dy0−t)x0

for s ∈ {0, ..., y0}, and t ∈ {0, ..., 2dy0 − 1} (if s 6= 0, y0) or t ∈ {0, ..., dy0} (if s = 0, y0).

• The eigenspace E−1
(0,0) ⊂ E(0,0) of eigenvalue −1 has dimension 2dy2

0 − 2, with basis

δsx0,tx0 − δ(2y0−s)x0,(2dy0−t)x0

for s ∈ {0, ..., y0}, and t ∈ {0, ..., 2dy0 − 1} (if s 6= 0, y0) or t ∈ {1, ..., dy0 − 1} (if s = 0, y0).

The projectivization of E1
(0,0) defines a (

x2
0−1
2 + 1)-dimensional linear system L1

0,0 ⊂ L0,0, formed

by symmetric curves that remain invariant under translation by points of 〈a3, a4〉 ⊂ T .

Since x0 is odd, the only 2-torsion point of 〈a1, a2〉 ∼= (Z/x0)
2 is the origin of X; accordingly, points

of 〈a1, a2〉 impose at most
x2

0−1
2 + 1 independent conditions on L1

0,0. It is thus possible to find a

curve of L1
0,0 containing all the points of 〈a1, a2〉 ⊂ T , which finishes the proof.

Corollary III.3.2. Let (X,L) be a (1, d)-polarized abelian surface satisfying the hypothesis of

Theorem III.2.2, where d is not a perfect square.

Then the expression for h0
I0,L is the one corresponding to either the minimal solution (x0, y0) or to

the second smallest positive solution (x1, y1), providing that char(K) divides neither x2
0 nor x2

0 − 1.

In particular, ε1(L) ∈ { 2y0

x0−1 ,
2y1

x1−1}.

Proof. Proposition III.3.1 shows (via Serre duality and cohomology and base change) that the

sheaf R2ΦP∨((µ∗x0
I0 ⊗ L2x0y0)∨) is nonzero. In virtue of the explicit expression for h0

I0,L given in

Theorem I.2.2.(1), this implies that h0
I0,L(x) is positive for x > 2y0

x0
.

On the other hand, since x1 = x2
0 + 4dy2

0 and y1 = 2x0y0, the equality 2y0

x0
= 2y1

x1+1 holds.

Therefore, by Theorem III.2.2.(2) we conclude that only two expressions for h0
I0,L are possible (those

corresponding to the solutions (x0, y0) and (x1, y1)). In particular, ε1(L) ∈ { 2y0

x0−1 ,
2y1

x1−1}.
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Remark III.3.3.

(1) It follows, at least when char(K) = 0, that ε1(L) is rational under the assumption of Theo-

rem III.2.2. It would be interesting to know whether this holds true for every polarized abelian

surface (or more generally, for every polarized abelian variety).

(2) There are several examples of non-perfect squares d where ε1(L) is known for a general (1, d)-

polarized (complex) abelian surface (X,L) (see [Ito20b, Example 5.11] and Table III.1). For

all of them there is an equality ε1(L) = 2y0

x0−1 , so it seems reasonable to expect this for every

non-perfect square d.

Assume the equality ε1(L) = 2y1

x1−1 holds. According to the expression for h0
I0,L given by

Theorem III.2.2, for every x > 2y1

x1+1 small enough we have

h0
I0,L(x) =

d(x1 + 1)

2
x2 − 2dy1 · x+

x1 − 1

2
= dx2

0

(
x− 2y0

x0

)2

.

Then, an elementary manipulation of the expression given in Theorem I.2.2.(1) shows that

R2ΦP∨((µ∗x0
I0 ⊗ L2x0y0)∨) is a 0-dimensional sheaf of length x2

0.

But note that Proposition III.3.1 precisely shows that, if R2ΦP∨((µ∗x0
I0 ⊗ L2x0y0)∨) is 0-

dimensional, then it has length ≥ x2
0. Hence a slightly stronger version of Proposition III.3.1

(with x2
0 + 1 independent curves on |L2x0y0 |, or with a curve in a translated linear system

|L2x0y0 ⊗α| containing also T ) would yield a contradiction, leading to a proof of ε1(L) = 2y0

x0−1 .
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Chapter IV

Further preliminaries

This chapter establishes the preliminaries for our study of Prym semicanonical pencils. Throughout

this second part of the thesis, we will work over the field of the complex numbers.

By a very general point in a variety we will mean a point lying outside a union of countably

many nontrivial Zariski-closed subsets. Given an abelian variety A, A2 will denote its subgroup of

2-torsion points. The genus of a curve will refer to its arithmetic genus.

IV.1 The moduli spaces Rg and R̃g

In this section we give a brief review of Beauville’s partial compactification R̃g by admissible

covers, the Deligne-Mumford compactification Rg and its boundary divisors. We essentially follow

the presentation of [FL10, Section 1], where the reader is referred for further details.

LetMg be the moduli space of smooth curves of genus g, and letMg be its Deligne-Mumford com-

pactification by stable curves. Following the standard notations, we denote by ∆i (i = 0, . . . , bg/2c)
the irreducible divisors forming the boundary Mg \Mg, that is:

• The general point of ∆0 is an irreducible curve with a single node.

• The general point of ∆i (for i ≥ 1) is the union of two smooth curves of genus i and g− i, which

intersect transversely at a point.

The classes δi of the divisors ∆i, together with the Hodge class λ, are well known to form a basis

of the rational Picard group Pic(Mg)Q (see for instance [AC87, Section 2]).

We will denote by Rg the moduli space of double étale irreducible covers of smooth curves of genus

g. In other words, Rg parametrizes isomorphism classes of pairs (C, η), where C is smooth of genus

g and η ∈ JC2 \{OC}. It comes with a natural forgetful map π : Rg →Mg which is étale of degree

22g − 1. Then, the Deligne-Mumford compactification Rg is obtained as the normalization of Mg

79
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in the function field of Rg. This gives a commutative diagram

Rg //

π

��

Rg

��
Mg

//Mg

where Rg is normal and the morphism Rg →Mg (that we will denote by π as well) is finite. The

variety Rg parametrizes isomorphism classes of Prym curves of genus g:

Definition IV.1.1. A Prym curve of genus g is a triple (X, η, β), where:

(1) X is a quasi-stable curve of genus g, i.e. X is semistable and any two of its exceptional com-

ponents are disjoint1.

(2) η ∈ Pic0(X) is a nontrivial line bundle of total degree 0, such that η
∣∣
E

= OE(1) for every

exceptional component E ⊂ X.

(3) β : η⊗2 → OX is generically nonzero over each non-exceptional component of X.

Then the morphism π : Rg →Mg sends (the class of) (X, η, β) to (the class of) the stable model

st(X), obtained by contraction of the exceptional components of X.

Remark IV.1.2. In case that β is clear from the context, by abuse of notation the Prym curve

(X, η, β) will be often denoted simply by (X, η).

The moduli space Rg contains the partial compactification of Rg by admissible covers, which was

introduced by Beauville ([Bea77a]) in order to compactify the Prym map (see section IV.3).

Definition IV.1.3. Let C̃ be a stable curve of genus 2g−1 endowed with an involution τ : C̃ → C̃.

We say that C̃ → C := C̃/〈τ〉 is an admissible cover if the following conditions are fulfilled:

(1) All the fixed points of τ are singular points of C̃, where the branches are not exchanged.

(2) The number of nodes exchanged under τ equals the number of irreducible components ex-

changed under τ .

Under these assumptions, the curve C is stable of genus g. We will denote by R̃g the moduli space

of admissible covers, which admits a natural inclusion into Rg.

Example IV.1.4.

(1) (Wirtinger covers) Let X be a smooth curve of genus g − 1, and let p, q ∈ X be two distinct

points. We consider the cover of the nodal curve C := Xp∼q constructed as

C̃ := (X1 tX2)p1∼q2,p2∼q1

1Recall that a smooth rational component E ⊂ X is called exceptional if #E ∩X \ E = 2, namely if it intersects

the rest of the curve in exactly two points.
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where X1, X2 are isomorphic copies of X. This cover is admissible, since the corresponding

involution on C̃ has no fixed point, exchanges the two irreducible components of C̃ and also

exchanges its two nodes.

(2) (Non-admissible covers) Let (X̃,X) ∈ Rg−1 a double étale cover of a smooth curve X of genus

g − 1. For two distinct points p, q ∈ X we consider pi, qi (i = 1, 2) their preimages in X̃. Then

the curves

C̃ := X̃p1∼q1,p2∼q2 , C := Xp∼q

define a cover which is not admissible, since the curve C̃ is irreducible and the corresponding

involution exchanges the two nodes.

(3) (Beauville covers) Let X̃ → X be a double cover of a smooth curve X of genus g− 1, branched

at two points p, q ∈ X. If p̃, q̃ ∈ X̃ are the ramification points, then

C̃ := X̃p̃∼q̃, C := Xp∼q

define an admissible cover. Indeed C̃ is irreducible, its node is the unique fixed point of the

involution and branches are not exchanged there.

Using pullbacks of the boundary divisors of Mg, the boundary Rg \ Rg of the Deligne-Mumford

compactification admits the following description (see [FL10, Examples 1.3 and 1.4]):

(1) Let (X, η, β) be a Prym curve, such that st(X) is the union of two smooth curves Ci and

Cg−i (of respective genus i and g − i) intersecting transversely at a point P . In such a case

X = st(X), and giving a 2-torsion line bundle η ∈ Pic0(X)2 \ {OX} is the same as giving a

pair (ηi, ηg−i) ∈ (JCi)2 × (JCg−i)2 with ηi 6= OCi or ηg−i 6= OCg−i .

Then the preimage π−1(∆i) ⊂ Rg decomposes as the union of three irreducible divisors (denoted

by ∆i, ∆g−i and ∆i:g−i), which are distinguished by the behaviour of the 2-torsion bundle. More

concretely, their general point is a Prym curve (X, η), where X = Ci ∪P Cg−i is a reducible

curve as above and the pair η = (ηi, ηg−i) satisfies:

• ηg−i = OCg−i , in the case of ∆i.

• ηi = OCi , in the case of ∆g−i.

• ηi 6= OCi and ηg−i 6= OCg−i , in the case of ∆i:g−i.

(2) Let (X, η, β) be a Prym curve, such that st(X) = Cp∼q is the irreducible nodal curve obtained

by identification of two points p, q on a smooth curve C of genus g − 1.

If X = st(X) and ν : C → X denotes the normalization, then the short exact sequence

1 −→ C∗ −→ Pic0(X)
ν∗−→ JC −→ 0

tells us that η ∈ Pic0(X)2 is determined by the choice of ηC = ν∗(η) ∈ JC2 and an identification

of the fibers ηC(p) and ηC(q).
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• If ηC = OC , there is only one possible identification of OC(p) and OC(q) giving a nontrivial

η ∈ Pic0(X)2, which is identification by −1. In other words, we have

Γ(U, η) = {f ∈ Γ(ν−1(U),OC) | f(p) = −f(q)}

for every open subset U ⊂ X. The corresponding element (X, η) is a Wirtinger cover of X.

• If ηC 6= OC , for each of the 22g−2 − 1 choices of ηC there are two possible identifications of

OC(p) and OC(q). The 2(22g−2 − 1) corresponding Prym curves (X, η) are non-admissible

covers of X.

If X 6= st(X), then X is the union of C with an exceptional component E passing through p

and q. The line bundle η ∈ Pic0(X) must satisfy η
∣∣
E

= OE(1) and η
∣∣
C

⊗2
= OC(−p− q), which

gives 22g−2 possibilities. The corresponding Prym curves (X, η) give Beauville covers of st(X).

It follows that π−1(∆0) = ∆′0 ∪∆′′0 ∪∆ram
0 , where ∆′0 (resp. ∆′′0, resp. ∆ram

0 ) is an irreducible

divisor whose general point is a non-admissible (resp. Wirtinger, resp. Beauville) cover. More-

over, ∆ram
0 is the ramification locus of π.

In terms of rational divisor classes, we have the equalities

π∗(δi) = δi + δg−i + δi:g−i (1 ≤ i ≤ bg/2c), π∗(δ0) = δ′0 + δ′′0 + 2δram0

where δi, δg−i, δi:g−i and δ′0, δ
′′
0 , δ

ram
0 are the classes of the boundary divisors of Rg. These boundary

classes, together with the pullback (also denoted by λ) of the Hodge class of Mg, form a basis of

the rational Picard group Pic(Rg)Q for g ≥ 5 (see [MP21, Remark 2.1.23] for an explanation).

Remark IV.1.5. By abuse of terminology, the class of a divisor in Pic(Mg)Q or Pic(Rg)Q will

often be called its cohomology class.

IV.2 Divisors of Prym semicanonical pencils

If C is a smooth curve of genus g, by a semicanonical pencil on C we mean an even, effective

theta-characteristic; in the literature, this is also frequently referred to as a vanishing theta-null.

By dimension of a theta-characteristic L we mean the (projective) dimension h0(C,L) − 1 of the

linear system |L|.

The locus of smooth curves admitting a semicanonical pencil is known to be a divisor Tg ⊂ Mg,

whose general element C admits a unique semicanonical pencil L and satisfies h0(C,L) = 2 (see

[TiB87, Theorem 2.17]). The irreducibility of Tg was proved in [TiB88, Theorem 2.4]; in the same

paper, the cohomology class of its closure in Mg was also computed.

Since the parity of theta-characteristics remains constant in families ([Mum71]), the pullback of Tg
by the forgetful map π : Rg →Mg decomposes as π−1(Tg) = T eg ∪ T og , where

T eg =
{

(C, η) ∈ Rg | C has a semicanonical pencil L with h0(C,L⊗ η) even
}

T og =
{

(C, η) ∈ Rg | C has a semicanonical pencil L with h0(C,L⊗ η) odd
}



IV.2. Divisors of Prym semicanonical pencils 83

Note that both T eg and T og have pure codimension 1 in Rg, since their union is the pullback by a

finite map of an irreducible divisor. Furthermore, the restriction

π
∣∣
T eg

: T eg −→ Tg (resp. π
∣∣
T og

: T og −→ Tg)

is surjective and generically finite of degree 2g−1(2g + 1) − 1 (resp. of degree 2g−1(2g − 1)). This

follows from the fact that a general element of Tg has a unique semicanonical pencil, as well as from

the number of even and odd theta-characteristics on a smooth curve.

Remark IV.2.1. Abusing of notation, we will use interchangeably the notation T eg and T og for the

divisors in Rg and also for their closures in the Deligne-Mumford compactification Rg or in the

partial compactification R̃g by admissible covers. Similarly, Tg will also denote the closure of this

divisor in Mg.

Even if it will be clear from the context what of the notions is being considered at every moment,

for the sake of clarity we point out that:

• Along chapter V, T eg and T og (resp. Tg) will denote the closures in Rg (resp. Mg).

• Along chapter VI, T eg and T og are in general considered in Rg for g 6= 5, whereas for g = 5

(section VI.4) we will work in R̃5. The only exception to this rule is the use of cohomological

arguments, for which we take closures in Rg.

Example IV.2.2. When g = 3, a semicanonical pencil is the same as a g1
2, and thus the divisor T3 ⊂

M3 equals the hyperelliptic locus H3. Of course, the semicanonical pencil on every smooth curve

C ∈ T3 is unique. The 63 non-trivial elements of JC2 can be represented by linear combinations of

the Weierstrass points R1, . . . , R8 as follows:

• Those represented as a difference of two Weierstrass points, η = OC(Ri − Rj), form a set of(
8
2

)
= 28 elements. Observe that in this case the theta-characteristic g1

2⊗η = OC(2Rj+Ri−Rj) =

OC(Ri +Rj) is odd.

• Those expressed as a linear combination of four distinct Weierstrass points, η = OC(Ri + Rj −
Rk − Rl), form a set of

(8
4)
2 = 35 elements2. According to the number of odd and even theta-

characteristics on a genus 3 curve, in this case g1
2 ⊗ η is even.

Hence we obtain

T o3 = {(C, η) ∈ R3 | C hyperelliptic, η = OC(Ri −Rj)}

T e3 = {(C, η) ∈ R3 | C hyperelliptic, η = OC(Ri +Rj −Rk −Rl)}

and, since monodromy on hyperelliptic curves acts transitively on Weierstrass points, it turns out

that both divisors T o3 and T e3 are irreducible.

2Division by 2 comes from the fact that any two complementary sets of four Weierstrass points induce the same

two-torsion line bundle.
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IV.3 Prym varieties

The Prym map

We recall some basic facts on Prym varieties (most of them coming from the seminal work [Mum74])

and the Prym map.

Given a smooth Prym curve (C, η) ∈ Rg, denote by f : C̃ −→ C the étale, smooth, irreducible

double cover associated to η. The kernel of the norm map Nmf : JC̃ −→ JC breaks into two

connected components; the Prym variety P = P (C, η) of (C, η) is the component containing the

origin of JC̃.

Equivalently, if σ : C̃ → C̃ denotes the involution exchanging sheets of f (as well as the induced

involution on JC̃), one may define P := Im(Id− σ) = ker(Id + σ)0.

The following properties will be used several times in chapter VI:

Lemma IV.3.1 ([Mum74, Section 3]).

(1) The 2-torsion subgroup P2 of the Prym variety fits into a short exact sequence

0 −→ 〈η〉 −→ 〈η〉⊥ f∗−→ P2 −→ 0 ,

where 〈η〉⊥ ⊂ JC2 denotes the orthogonal of 〈η〉 with respect to the Weil pairing on JC2.

(2) The equality f∗(JC) = ker(Id− σ) holds.

Furthermore, the principal polarization on JC̃ restricts to twice a principal polarization on P ,

giving rise to the so-called Prym map

Pg : Rg −→ Ag−1.

This map was extended by Beauville ([Bea77a]) to a proper map

P̃g : R̃g −→ Ag−1

by considering Prym varieties of admissible covers. The idea behind this construction is that Pg is

extended to a rational map

Pg : Rg 99K Ag−1

(where Ag−1 is a toroidal compactification of Ag−1), and then the moduli space of admissible covers

R̃g ⊂ Rg is the open subset of covers whose Prym variety lies in Ag−1.

It has been known since work of Friedman and Smith ([FS86]) that Pg does not extend to a mor-

phism defined on the wholeRg, for any toroidal compactificationAg−1 (see for instance [CMGHL17]

for recent progress in the study of the indeterminacy locus). In any case, Pg is a morphism on the

open subset of Rg which lies over the locus inMg of stable curves with at most one node; further-

more, this open subset is mapped to the semiabelian varieties of torus rank ≤ 1. This information

will be more than enough for our purposes.
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Prym varieties and the Andreotti-Mayer locus

As before, let (C, η) ∈ Rg be a smooth Prym curve with associated double étale cover f : C̃ −→ C.

Mumford ([Mum74, Section 6]) described the singularities of a theta divisor Ξ representing the

principal polarization of the Prym variety as follows. Let

P+ = {M ∈ Pic2g−2(C̃) | Nmf (M) = ωC and h0(C̃,M) is even}

be a “canonical presentation” of the Prym variety P in Pic2g−2(C̃) = Picg(C̃)−1(C̃), and let Θ
C̃
⊂

Pic2g−2(C̃) denote the canonical theta divisor of JC̃. Then P+ ·Θ
C̃

= 2Ξ+, where

Ξ+ = {M ∈ P+ | h0(C̃,M) ≥ 2}

is a canonical presentation of the theta divisor of P , and singularities of Ξ+ may arise in two

different situations:

• Points of P+ which have a high multiplicity in Θ
C̃

, namely M ∈ Ξ+ with h0(C̃,M) ≥ 4. Such

singularities are usually called stable.

• Points M at which P+ and Θ
C̃

are tangent, namely the tangent space TM (P+) is contained

in the tangent cone TCM (Θ
C̃

). Such singularities are of the form M = f∗L ⊗ A ∈ Ξ+, with

h0(C,L) ≥ 2 and h0(C̃, A) > 0. They are usually called exceptional : indeed, they do not occur

for (C, η) ∈ Rg general.

An elementary example of exceptional singularity is given by f∗L, where L is a semicanonical pencil

on C such that h0(C̃, f∗L) = h0(C,L) + h0(C,L⊗ η) is even (i.e. h0(C,L⊗ η) is even). Therefore

Pg(T eg ) ⊂ N0, where N0 ⊂ Ag−1 denotes the Andreotti-Mayer locus of principally polarized abelian

varieties (ppav ’s in the sequel) whose theta divisor has singularities.

More precisely one has Pg(T eg ) ⊂ θnull, where θnull ⊂ Ag−1 is the divisor of ppav’s whose (symmet-

ric) theta divisor contains a singular 2-torsion point. This follows from the fact that the symmetric

models of the theta divisor in P ⊂ Pic0(C̃) are obtained when (P+,Ξ+) is translated by a theta-

characteristic lying in P+; in particular, the 2-torsion points of P in the canonical model P+ are

the theta-characteristics of C̃ lying in P+.

Note that N0 = θnull = A1 × A1 in A2, and N0 = θnull ⊂ A3 is the divisor of hyperelliptic

Jacobians. For g ≥ 5, the Andreotti-Mayer locus of Ag−1 is the union of two irreducible divisors

([Mum83, Deb92]):

N0 = θnull ∪N ′0.

Whereas the theta divisor of the general element of θnull has a unique singular point (which is

2-torsion), the theta divisor of a general element of N ′0 has exactly two singular (opposite) points.

Using this fact, Mumford computed the multiplicity of each component (see [Mum83]), proving the

following equality as cycles: N0 = θnull + 2N ′0.
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For g = 5 this was already proved in [Bea77a], where Beauville used the surjective, proper map

P̃5 : R̃5 −→ A4 to show that N0 ⊂ A4 has two irreducible components: the Jacobian locus and the

divisor θnull.

Brill-Noether loci on Prym varieties

In contrast to the even case, an odd semicanonical pencil L for a smooth Prym curve (C, η) does

not provide singularities in the canonical theta divisor Ξ+, since the pullback f∗L lands in the

other component of Nm−1
f (ωC):

P− =
{
M ∈ Pic2g−2(C̃) | Nmf (M) = ωC and h0(C̃,M) is odd

}
.

To understand the situation, following Welters [Wel85] we consider the Brill-Noether-Prym loci

V r(C, η) :=
{
M ∈ Pic2g−2(C̃) | Nmf (M) = ωC , h

0(C̃,M) ≥ r + 1, h0(C̃,M) ≡ r + 1(mod 2)
}

with the scheme structure defined by P+ ∩W r
2g−2(C̃) (r odd) or P− ∩W r

2g−2(C̃) (r even).

Example IV.3.2. The first cases of Brill-Noether-Prym loci are:

(1) V −1(C, η) = P+ and V 0(C, η) = P−.

(2) V 1(C, η) = Ξ+ and V 3(C, η) ⊂ Ξ+ is the locus of stable singularities.

(3) Assume that C is not hyperelliptic and fix a point x0 ∈ C̃. Then the Abel-Prym map

jx0 : C̃ −→ P, x 7→ O
C̃

(x− x0 − σ(x)− σ(x0))

is an embedding ([BL04, Corollary 12.5.6]), and for g ≥ 4 the scheme-theoretic equality

V 2(C, η) = T (C̃) holds ([LN13, Theorem A]). Here the theta-dual T (C̃), equipped with an

appropriate scheme structure, parametrizes the translates of C̃ ⊂ P contained in the theta

divisor (see [PP08, Section 4]).

Note that the embedding of C̃ in P is not canonical, and moreover T (C̃) ⊂ P and V 2(C, η) ⊂
P− lie in different models of P . Hence the equality V 2(C, η) = T (C̃) must be understood up

to translation.

Observe that for (C, η) ∈ T og with an odd semicanonical pencil L, we have f∗L ∈ V 2(C, η). More-

over, f∗L is a singular point of V 2(C, η) thanks to the following result, which is essentially an

application of [Hoe12, Lemma 3.1]:

Lemma IV.3.3. Let (C, η) ∈ Rg be a non-hyperelliptic Prym curve of genus g ≥ 5. If M ∈
V 2(C, η) \ V 4(C, η), then M is a singular point of V 2(C, η) if and only if M = f∗L ⊗ A, for line

bundles L and A satisfying h0(C,L) ≥ 2 and h0(C̃, A) > 0.

Proof. Since V 2(C, η) has pure dimension g−4 (see [LN13, Lemma 4.1]), the “only if” part is exactly

the statement of [Hoe12, Lemma 3.1] for r = 2. Following that proof the converse statement is

obtained as well, if one uses that every element of
∧2H0(C̃,M) is decomposable by the assumption

h0(C̃,M) = 3.



IV.3. Prym varieties 87

Trigonal and tetragonal constructions

We close this chapter of preliminaries with a quick review of the trigonal and the tetragonal con-

struction, which are instances of the polygonal constructions detailed by Donagi in [Don92, Sec-

tion 2]. We will restrict ourselves to the case of double étale covers of smooth curves, even if both

constructions can be applied under more general assumptions.

The trigonal construction was studied by Recillas ([Rec74]). It associates to every tower

C̃
f−→ C

3:1−→ P1

(where f is a double étale cover of a genus g smooth curve C) a smooth curve X of genus g − 1

with a morphism X
4:1−→ P1, such that P (C̃, C) ∼= JX as ppav’s. More precisely, one has

(f (3))−1(P1) = X tX //

��

C̃(3)

f (3)

��
P1 = g1

3
// C(3)

where the two connected components of (f (3))−1(P1) are exchanged by the natural involution σ(3)

of C̃(3) (induced by the involution σ of C̃ associated to the double cover f).

Assuming that the g1
4 on X contains no divisor of the form 2p+ 2q or 4p, this construction can be

reversed; we will deal explicitly with this inverse construction in section VI.3.

The tetragonal construction is due to Donagi ([Don81]), and associates to every tower

C̃
f−→ C

4:1−→ P1

two further towers C̃i
fi−→ Ci

4:1−→ P1 (i = 0, 1) with the property P (C̃, C) ∼= P (C̃0, C0) ∼= P (C̃1, C1)

as ppav’s. This allowed Donagi to prove the non-injectivity of the Prym map in every genus;

he actually conjectured that all the non-injectivity of the Prym map comes from the tetragonal

construction, but this was disproved by Izadi and Lange ([IL12]).

The construction is obtained from the diagram

(f (4))−1(P1) = C̃0 t C̃1
//

��

C̃(4)

f (4)

��

C0 t C1

��
P1 = g1

4
// C(4)

where the two covers C̃i −→ Ci (i = 0, 1) are defined by the involution σ(4) of C̃(4) (which leaves

invariant C̃0 and C̃1). This construction is a triality: for instance, when applied to C̃0
f0−→ C0 −→ P1

it returns the towers C̃
f−→ C −→ P1 and C̃1

f1−→ C1 −→ P1.
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Lemma IV.3.4. There is a bijection between the following two sets of data:

(1) Triples (R,L,W ), where R ∈Mg+1 is a trigonal curve, L is a g1
3 on R and W = {0, µ1, µ2, µ3} ⊂

JR2 is a totally isotropic subgroup with respect to the Weil pairing.

(2) A tetragonally related triple (Ci, ηi,Mi) (i = 1, 2, 3) with (Ci, ηi) ∈ Rg and Mi a g1
4 on Ci.

For a proof of this result, the reader may consult [Don92, Lemma 5.5]. It establishes a relation

between the trigonal and the tetragonal construction, since the bijection is explicitly given as

follows:

• Every element (R,L, µi) corresponds to (Ci,Mi) under Recillas’ trigonal construction.

• The 2-torsion point ηi ∈ (JCi)2 is defined by µj ∈ 〈µi〉⊥ ⊂ JR2 for j 6= i (recall Lemma IV.3.1.(1)).



Chapter V

Study of the divisors of Prym

semicanonical pencils

In this chapter we focus on the following two aspects of the divisors of Prym semicanonical pencils:

their cohomology classes in Rg (section V.1) and their irreducibility (section V.2).

V.1 Cohomology classes

This section is entirely devoted to prove the following result:

Theorem V.1.1. Let g ≥ 5 and let [T eg ], [T og ] ∈ Pic(Rg)Q denote the cohomology classes in Rg of

(the closures of) the divisors T eg and T og . Then, the following equalities hold:

[T eg ] = aλ− b′0δ′0 − b′′0δ′′0 − bram0 δram0 −
bg/2c∑
i=1

(biδi + bg−iδg−i + bi:g−iδi:g−i),

[T og ] = cλ− d′0δ′0 − d′′0δ′′0 − dram0 δram0 −
bg/2c∑
i=1

(diδi + dg−iδg−i + di:g−iδi:g−i),

where

a = 2g−3(2g−1 + 1), c = 22g−4,

b′0 = 22g−7, d′0 = 22g−7,

b′′0 = 0, d′′0 = 22g−6,

bram0 = 2g−5(2g−1 + 1), dram0 = 2g−5(2g−1 − 1),

bi = 2g−3(2g−i − 1)(2i−1 − 1), di = 2g+i−4(2g−i − 1),

bg−i = 2g−3(2g−i−1 − 1)(2i − 1), dg−i = 22g−i−4(2i − 1),

bi:g−i = 2g−3(2g−1 − 2i−1 − 2g−i−1 + 1), di:g−i = 2g−3(2g−1 − 2g−i−1 − 2i−1).

89
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First of all, observe that the pullback of the class [Tg] ∈ Pic(Mg)Q (computed in [TiB88, Proposi-

tion 3.1]) expresses [T eg ] + [T og ] as

π∗[Tg] = 2g−3

(2g + 1)λ− 2g−3(δ′0 + δ′′0 + 2δram0 )−
bg/2c∑
i=1

(2g−i − 1)(2i − 1)(δi + δg−i + δi:g−i)

 .

This relation, together with the linear independence of the basic classes considered in Rg, simplifies

the computations: if we know a coefficient for one of the divisors, then we also know the coefficient

corresponding to the same basic class for the other divisor. Keeping this in mind, the coefficients

of Theorem V.1.1 can be determined by essentially following three steps:

(1) The pushforward π∗[T eg ] easily gives the coefficient a (hence c), as well as a relation between

b′0, b
′′
0 and bram0 (hence between d′0, d

′′
0 and dram0 ).

(2) We adapt an argument of Teixidor [TiB88] to compute the coefficients bi, bg−i and bi:g−i for

every i ≥ 1: first we describe the intersection of T eg with the boundary divisors ∆i,∆g−i and

∆i:g−i, and then we intersect T eg with certain test curves.

(3) Finally, d′0 and d′′0 are obtained intersecting T og with test curves contained inside ∆′0 and ∆′′0
respectively. The relation obtained in (1) determines dram0 as well.

For step (1), note that on the one hand

π∗[T eg ] = deg(T eg → Tg) · [Tg] = (2g−1(2g + 1)− 1)2g−3
(
(2g + 1)λ− 2g−3δ0 − . . .

)
where . . . is a expression involving only the classes δ1, . . . , δbg/2c. On the other hand

π∗[T eg ] = aπ∗λ− b′0π∗δ′0 − b′′0π∗δ′′0 − bram0 π∗δ
ram
0 −

bg/2c∑
i=1

(biπ∗δi + bg−iπ∗δg−i + bi:g−iπ∗δi:g−i)

and, since π∗λ = π∗(π
∗λ) = deg π · λ and the divisors ∆′0,∆

′′
0 and ∆ram

0 of Rg have respective

degrees 2(22g−2 − 1), 1 and 22g−2 over ∆0 ⊂Mg, we obtain

π∗[T eg ] = a(22g − 1)λ− (2(22g−2 − 1)b′0 + b′′0 + 22g−2bram0 )δ0 + . . .

where . . . again denotes a linear combination of δ1, . . . , δbg/2c.

Using that λ, δ0, . . . δbg/2c ∈ Pic(Mg)Q are linearly independent, we can compare the coefficients of

λ and δ0. Comparison for λ yields

a =
(2g−1(2g + 1)− 1)2g−3(2g + 1)

22g − 1
= 2g−3(2g−1 + 1),

therefore c = 22g−4 due to the relation a+ c = 2g−3(2g + 1).

Comparison for δ0 gives

(22g−1 − 2)b′0 + b′′0 + 22g−2bram0 = 22g−6(2g−1(2g + 1)− 1),



V.1. Cohomology classes 91

or equivalently

(22g−1 − 2)d′0 + d′′0 + 22g−2dram0 = 23g−7(2g − 1).

In step (2), the key point is the following description of the intersection of T eg and T og with the

preimages π−1(∆i). It is nothing but an adaptation of [TiB88, Proposition 1.2]:

Proposition V.1.2. For i ≥ 1, the general point of the intersection T eg ∩ π−1(∆i) (resp. T og ∩
π−1(∆i)) is a pair (C, η) where:

(1) The curve C is the union at a point P of two smooth curves Ci and Cg−i of respective genera

i and g − i, and satisfies one of these four conditions (j = i, g − i):

αj) Cj has a 1-dimensional (even) theta-characteristic Lj. In this case, the 1-dimensional

limit theta-characteristics on C are determined by the aspects |Lj | + (g − j)P on Cj and

|Lg−j + 2P |+ (j − 2)P on Cg−j, where Lg−j is any even theta-characteristic on Cg−j.

βj) P is in the support of an effective (0-dimensional) theta-characteristic Lj on Cj. The

aspects of the 1-dimensional limit theta-characteristics on C are |Lj + P | + (g − j − 1)P

on Cj and |Lg−j + 2P |+ (j − 2)P on Cg−j, where Lg−j is any odd theta-characteristic on

Cg−j.

(2) η = (ηi, ηg−i) is a non-trivial 2-torsion line bundle on C, such that the numbers h0(Ci, Li⊗ ηi)
and h0(Cg−i, Lg−i ⊗ ηg−i) have the same (resp. opposite) parity.

Proof. First of all, note that item (1) describes the general element of the intersection Tg ∩∆i in

Mg: this is exactly [TiB88, Proposition 1.2].

Moreover, if (C, η) ∈ T eg ∩π−1(∆i) (resp. (C, η) ∈ T og ∩π−1(∆i)) is general, then there exists (a germ

of) a 1-dimensional family (C → S,H,L) of Prym curves (Cs, Hs) endowed with a 1-dimensional

theta-characteristic Ls, such that:

(1) For every s 6= 0, (Cs, Hs) is a smooth Prym curve such that Ls ⊗ Hs is an even (resp. odd)

theta-characteristic on Cs.
(2) The family (C → S,H) specializes to (C, η) = (C0, H0).

The possible aspects of the 1-dimensional limit series of L on C = C0 are described by item (1).

Now the result follows from the fact that, on the one hand, the aspects of the limit series of L⊗H
on C = C0 are the same aspects as the limit of L, but twisted by η = H0; and on the other hand,

the parity of a theta-characteristic on the reducible curve C is the product of the parities of the

theta-characteristics induced on Ci and Cg−i, by Mayer-Vietoris.

Remark V.1.3. Fixed a general element C of the intersection Tg∩∆i (i.e. a curve C satisfying the

condition (1) above), the number of η = (ηi, ηg−i) such that (C, η) ∈ T eg can be easily computed.
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Indeed, the number of η giving parities (even,even) is the product of the number of even theta-

characteristics on Ci and the number of even theta-characteristics on Cg−i:

2i−1(2i + 1)2g−i−1(2g−i + 1) = 2g−2(2i + 1)(2g−i + 1).

Similarly, the number of η giving parities (odd,odd) is

2i−1(2i − 1)2g−i−1(2g−i − 1) = 2g−2(2i + 1)(2g−i − 1).

From all these, we have to discard the trivial bundle (OCi ,OCg−i). Hence the number of η is

2g−2(2i + 1)(2g−i + 1) + 2g−2(2i + 1)(2g−i − 1)− 1 = 2g−1(2g + 1)− 1,

which indeed coincides with the degree of T eg over Tg. Of course the configuration of the fiber

π
∣∣
T eg
−1

(C) along the divisors ∆i, ∆g−i and ∆i:g−i will depend on whether C satisfies αj) or βj).

Lemma V.1.4. If C is a smooth curve of genus g and η ∈ JC2 is a non-trivial 2-torsion line

bundle, then there are exactly 2g−1(2g−1 − 1) odd theta-characteristics L on C such that L ⊗ η is

also odd.

Proof. This can be checked using the theory of syzygetic triads (see for instance [Dol12, Sec-

tion 5.4.1]). Note that three odd theta-characteristics L,M,N form a syzygetic triad if and only if

the theta-characteristic L⊗M ⊗N−1 is odd.

Fix an odd theta-characteristic N such that M = N ⊗ η is also odd (i.e. N is a fixed solution to

our problem); then the required odd theta-characteristics L are those extending the pair M,N to

a syzygetic triad. The number of such L (different from M and N) is

2(2g−1 + 1)(2g−2 − 1) = 2g−1(2g−1 − 1)− 2

(see [Dol12, Proposition 5.4.3]); to this number we add, of course, the two solutions M and N .

Now, given an integer i ≥ 1, we proceed to compute the coefficients bi, bg−i and bi:g−i of the

cohomology class [T eg ]. We follow the argument in [TiB88, Proposition 3.1].

Fix two smooth curves Ci and Cg−i of respective genera i and g − i having no theta-characteristic

of positive dimension, as a well as a point p ∈ Ci lying in the support of no effective theta-

characteristic. We denote by F the curve (isomorphic to Cg−i itself) in ∆i ⊂ Mg, obtained by

identifying p with a variable point q ∈ Cg−i. This curve has the following intersection numbers

with the basic divisor classes of Mg:

F · λ = 0, F · δj = 0 for j 6= i, F · δi = −2(g − i− 1)

(for a justification of these intersection numbers, see [HM82, page 81]).
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Since the curve F ⊂ Mg does not intersect the branch locus of the morphism π, it follows that

the preimage π−1(F ) has 22g − 1 connected components; each of them is isomporhic to F , and

corresponds to the choice of a pair η = (ηi, ηg−i) of 2-torsion line bundles on Ci and Cg−i being not

simultaneously trivial.

Let F̃i be one of the components of π−1(F ) contained in the divisor ∆i of Rg; it is attached to an

element η = (ηi,OCg−i), for a fixed non-trivial ηi ∈ (JCi)2.

On the one hand, clearly δi is the only basic divisor class of Rg that intersects F̃i. The projection

formula then says that the number F̃i · δi in Rg equals the intersection F · δi = −2(g − i − 1) in

Mg. Therefore,

F̃i · [T eg ] = F̃i · (aλ− b′0δ′0 − . . .) = 2(g − i− 1)bi.

On the other hand, according to Proposition V.1.2 an element (C, η) ∈ F̃i belongs to T eg if and only

if the two following conditions are satisfied:

• The point q ∈ Cg−i that is identified with p lies in the support of an effective theta-characteristic.

That is, C satisfies βg−i).

• The odd theta-characteristic Li of Ci, when twisted by ηi, remains odd.

This gives the intersection number

F̃i · [T eg ] = (g − i− 1)2g−i−1(2g−i − 1)2i−1(2i−1 − 1),

where we use Lemma V.1.4 to count the possible theta-characteristics Li.

Comparing both expressions for F̃i · [T eg ], it follows that bi = 2g−3(2g−i − 1)(2i−1 − 1).

With a similar argument (considering a connected component of π−1(F ) contained in ∆g−i or

∆i:g−i), one can find the numbers

bg−i = 2g−3(2g−i−1 − 1)(2i − 1), bi:g−i = 2g−3(2g−1 − 2i−1 − 2g−i−1 + 1).

Now we proceed with step (3). We will determine the constants d′0, d
′′
0, d

ram
0 of the class [T og ] by

using the test curve of [HM98, Example 3.137].

Fix a general smooth curve D of genus g − 1, with a fixed general point p ∈ D. Identifying p with

a moving point q ∈ D, we get a curve G (isomorphic to D) which lies in ∆0 ⊂ Mg. As explained

in [HM98], the following equalities hold:

G · λ = 0, G · δ0 = 2− 2g,G · δ1 = 1, G · δi = 0 for i ≥ 2,

where the intersection of G and ∆1 occurs when q approaches p; in that case the curve becomes

reducible, having D and a rational nodal curve as components.

Combining this information with the known class [Tg] in Mg, we have

G · [Tg] = 2g−3((g − 3) · 2g−2 + 1).
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In order to compute d′′0, let G̃′′ be the connected component of π−1(G) obtained by attaching to

every curve C = Dp∼q the 2-torsion line bundle e = (OD)−1 (i.e. OD glued by -1 at the points

p, q). Indeed e is well defined along the family G, so G̃′′ makes sense and is isomorphic to G.

Then:

• By the projection formula, G̃′′ · λ = 0.

• Again by projection, G̃′′ · (π∗δ0) = 2− 2g. Actually, since G̃′′ ⊂ ∆′′0 and G̃′′ intersects neither ∆′0
nor ∆ram

0 , the following equalities hold:

G̃′′ · δ′′0 = 2− 2g, G̃′′ · δ′0 = 0 = G̃′′ · δram0 .

• We have G̃′′ · (π∗δ1) = 1, with G̃′′ · δ1 = 1 and G̃′′ · δg−1 = 0 = G̃′′ · δ1:g−1.

Indeed, the intersection G∩∆1 occurs when p = q; for that curve, the 2-torsion that we consider

is trivial on D but not on the rational component. Hence the lift to G̃′′ of the intersection point

G ∩∆1 gives a point in G̃′′ ∩∆1.

• It is clear that G̃′′ · δi = G̃′′ · δg−i = G̃′′ · δi:g−i = 0 for i ≥ 2.

• Since twisting by e changes the parity of any theta-characteristic in any curve of the family G

by [Har82, Theorems 2.12 and 2.14], it follows that all the intersection points of G and Tg lift to

points of G̃′′ ∩ T og .

All in all, we have

2g−3((g − 3) · 2g−2 + 1) = G̃′′ · [T og ] = (2g − 2)d′′0 − 2g−3(2g−1 − 1)

and solving the equation we obtain d′′0 = 22g−6.

For the computation of d′0, we consider G̃′ = π−1(G) ∩ ∆′0 in Rg. Note that for an element

(C = Dpq, η) ∈ G̃′, η is obtained by gluing a nontrivial 2-torsion line bundle on D at the points

p, q. Then:

• G̃′ · λ = 0 by the projection formula.

• Again by projection, G̃′ · (π∗δ0) = deg(G̃′ → G)(G · δ0) = 2(2− 2g)(22g−2 − 1). Moreover, since

G̃′ ⊂ ∆′0 intersects neither ∆′′0 nor ∆ram
0 it follows that

G̃′ · δ′0 = 2(2− 2g)(22g−2 − 1), G̃′ · δ′′0 = 0 = G̃′ · δram0 .

• G̃′ · (π∗δ1) = deg(G̃′ → G)(G · δ1) = 2(22g−2 − 1). We claim that G̃′ · δ1 = 0 and G̃′ · δg−1 =

22g−2 − 1 = G̃′ · δ1:g−1.

Indeed, G ∩∆1 occurs when p = q; when such a point is lifted to G̃′, the 2-torsion is nontrivial

on D (by construction). This gives G̃′ · δ1 = 0.

Moreover, triviality on the rational nodal component will depend on which of the two possible

gluings of the 2-torsion on D we are taking; in any case, since G̃′ = π−1(G) ∩ ∆′0 considers

simultaneously all possible gluings of all possible non-trivial 2-torsion line bundles on D, we have

G̃′ · δg−1 = G̃′ · δ1:g−1. This proves the claim.
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• Of course, G̃′ · (π∗δi) = G̃′ · δg−i = G̃′ · δi:g−i = 0 whenever i ≥ 2.

• Finally, we use again that the parity of a theta-characteristic on a nodal curve of the family G is

changed when twisted by e = (OD)−1. Since the two possible gluings of a non-trivial 2-torsion

bundle on D precisely differ by e, the sets G̃′ ∩ T eg and G̃′ ∩ T og will have the same number of

points, with the union of both giving the lift of G ∩ Tg to G̃′. That is,

G̃′ · [T eg ] = G̃′ · [T og ] = (22g−2 − 1) · 2g−3((g − 3) · 2g−2 + 1).

Putting this together with the coefficients dg−1 = 22g−5 and d1:g−1 = 2g−3(2g−2 − 1) obtained in

step (2), we get

(22g−2 − 1) · 2g−3((g − 3) · 2g−2 + 1) = G̃′ · [T og ] =

= 2(2g − 2)(22g−2 − 1)d′0 − 22g−5(22g−2 − 1)− 2g−3(2g−2 − 1)(22g−2 − 1)

and therefore d′0 = 22g−7.

Finally, to compute dram0 we simply combine the relation

(22g−1 − 2)d′0 + d′′0 + 22g−2dram0 = 2g−1(2g − 1)22g−6

obtained in step (1) with the coefficients d′0, d
′′
0 just found, to obtain dram0 = 2g−5(2g−1 − 1). This

concludes step (3) and hence the proof of Theorem V.1.1.

V.2 Irreducibility of T eg and T og

In this section we study the irreducibility of the divisors T og and T eg . We make no claim of originality

about the arguments: essentially we adapt those of Teixidor in [TiB88, Section 2], used to prove

the irreducibility of Tg in Mg. Our main result of this part is:

Theorem V.2.1. For every g 6= 4 the divisors T eg and T og are irreducible.

The result is valid also for g = 4: in that case, the irreducibility of T o4 and T e4 will be obtained

from an analysis of the Prym map P4 restricted to these divisors (see Corollary VI.3.6 and Corol-

lary VI.3.8).

When g = 3, we already saw in Example IV.2.2 that the divisors T o3 and T e3 are irreducible.

For the general case (g ≥ 5), we are going to intersect T og and T eg with the boundary divisor

∆1 ⊂ Rg (this intersection being described by Proposition V.1.2). Before that, we need some

previous considerations:

Remark V.2.2. In a neighborhood of a given point, the irreducibility of T og (resp. T eg ) is implied

by the irreducibility of the scheme Xo (resp. Xe) parametrizing pairs ((C, η), L), where (C, η) is a

Prym curve and L is a semicanonical pencil on C such that L⊗ η is odd (resp. even). This follows

from the surjectivity of the forgetful map Xo → T og (resp. Xe → T eg ).



96 Chapter V. Study of the divisors of Prym semicanonical pencils

Lemma V.2.3. Let D ⊂ Rg be a divisor, where g ≥ 5. Then the closure D ⊂ Rg intersects ∆1

and ∆g−1.

Proof. We borrow the construction from [MNP16, Section 4], where (a stronger version of) the

corresponding result for divisors in Mg is proved.

Fix a complete integral curve B ⊂Mg−2, two elliptic curves E1, E2 and a certain 2-torsion element

η ∈ JE1 \ {0}. If Γb denotes the smooth curve of genus g − 2 corresponding to b ∈ B, one defines

a family of Prym curves parametrized by Γ2
b as follows.

If (p1, p2) ∈ Γ2
b is a pair of distinct points, glue to Γb the curves E1 and E2 at the respective points

p1 and p2 (this is independent of the chosen point on the elliptic curves). To this curve attach a

2-torsion bundle being trivial on Γb and E2, and restricting to η on E1.

To an element (p, p) ∈ ∆Γb ⊂ Γ2
b , we attach the curve obtained by gluing a P1 to Γb at the point p,

and then E1, E2 are glued to two other points in P1. Of course, the 2-torsion bundle restricts to η

on E1, and is trivial on the remaining components.

Moving b in B, this construction gives a complete threefold T =
⋃
b∈B

Γ2
b contained in ∆1∩∆g−1. Let

also S =
⋃
b∈B

∆Γ2
b

be the surface in T given by the union of all the diagonals; it is the intersection

of T with ∆2. Then, the following statements hold:

(1) δ1|S = 0 and δg−1|S = 0 (the proof of [MNP16, Lemma 4.2] is easily translated to our setting).

(2) λ
∣∣
∆

Γ2
b

= 0 for every b ∈ B, since all the curves in ∆Γ2
b

have the same Hodge structure.

(3) If a ∈ Q is the coefficient of λ for the cohomology class [D] ∈ Pic(Rg)Q, then a 6= 0. Indeed,

22g−1a ∈ Q is the coefficient of λ for the cohomology class [π(D)] ∈ Pic(Mg)Q; then [MNP16,

Remark 4.1] proves the claim.

These are the key ingredients in the original proof of [MNP16, Proposition 4.5]. The same arguments

there work verbatim in our case and yield the analogous result: [D]
∣∣
T
6= m · S for every m ∈ Q.

In particular, the intersection D ∩ T is non-empty (and not entirely contained in S).

Remark V.2.4. Let C be a smooth hyperelliptic curve of genus g, with Weierstrass points

R1, . . . , R2g+2.

Then, it is well-known that the theta-characteristics on C have the form r · g1
2 + S, r being its

dimension (with −1 ≤ r ≤ [g−1
2 ]) and S being the fixed part of the linear system (which consists

of g − 1− 2r distinct Weierstrass points).

In addition, we will use the following observation: given a 2-torsion line bundle of the form η =

OC(Ri − Rj), the theta-characteristics changing their parity when twisted by η are exactly those

for which Ri, Rj ∈ S (the dimension increases by 1) or Ri, Rj /∈ S (the dimension decreases by 1).

Proposition V.2.5. For g ≥ 5, the divisor T og is irreducible.
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Proof. According to Proposition V.1.2, the intersection T og ∩ ∆1 consists of two pieces α and β.

The general point of each of these pieces is the union at a point P of a Prym elliptic curve (E, η)

and a smooth curve Cg−1 (with trivial line bundle) of genus g − 1, such that:

• In the case of α, the curve Cg−1 has a 1-dimensional theta-characteristic, i.e, Cg−1 ∈ Tg−1 in

Mg−1. There is no assumption on (E, η): η will be the theta-characteristic on E induced by the

1-dimensional limit theta-characteristic on Cg−1 ∪P E. By irreducibility of Tg−1, we may assume

that α is irreducible.

• In the case of β, P is in the support of a 0-dimensional theta-characteristic on Cg−1. Again,

there is no condition on (E, η): the induced theta-characteristic on E is OE .

Now we consider a reducible Prym curve (C, η) ∈ ∆1 constructed as follows: C is the join of an

elliptic curve E and a general smooth hyperelliptic curve C ′ of genus g − 1 at a Weierstrass point

P ∈ C ′, whereas the line bundle η is trivial on C ′. Note that (C, η) is the general point of the

intersection H̃g ∩∆1, where H̃g ⊂ T og is the locus of pairs formed by an hyperelliptic curve and a

difference of two Weierstrass points on it.

Of course (C, η) belongs to α and β; we claim that it actually belongs to any component of β.

Indeed, the rational map between a component of β andMg−1 is generically surjective. As argued in

[TiB88, Remark 1.3], the reason is that the locus inMg−1 of curves with an odd theta-characteristic

of dimension ≥ 2 has codimension 3.

Thus we can assume that every component of β contains a Prym curve which is the union of C ′

(with trivial 2-torsion) and a Prym elliptic curve (E′, η′) at a Weierstrass point Q ∈ C ′. Since

the monodromy on hyperelliptic curves acts transitively on the set of Weierstrass points, we may

replace Q by our original point P without changing the component of β. Using that R1 is connected

we can also replace (E′, η′) by (E, η). This proves the claim.

Now, to prove the irreducibility of T og we argue as follows: since T og has pure codimension 1, we

know by Lemma V.2.3 that each of its components intersects ∆1. As our point (C, η) belongs to all

the irreducible components of T og ∩∆1, it suffices to check the irreducibility of T og in a neighborhood

of (C, η).

To achieve this, in view of Remark V.2.2 we will check the irreducibility of the scheme Xo. In other

words, we need to study the limit semicanonical pencils on C changing parity when twisted by η.

We do this in the rest of the proof.

Let R1, R2, R3 be the points on E differing from P by 2-torsion, and let R4, . . . , R2g+2 be the

Weierstrass points on C ′ that are different from P : reordering if necessary, we assume η
∣∣
E

=

OE(R1−R2). Note that R1, . . . , R2g+2 are the limits on C of Weierstrass points on nearby smooth

hyperelliptic curves, since they are the ramification points of the limit g1
2 on C.

With this notation, arguing as in the proof of Proposition V.1.2, the possible aspects on E of a

limit semicanonical pencil changing parity on (C, η) are:
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• Those of type α have aspect on E differing from the even theta-characteristic η by (g − 1)P ,

hence OE(R3 + (g − 2)P ) = OE(R1 +R2 + (g − 3)P ).

• Those of type β have aspect differing from the odd theta-characteristic OE by (g − 1)P , hence

OE((g − 1)P ) = OE(R1 +R2 +R3 + (g − 4)P ).

Given a family of semicanonical pencils changing parity on nearby smooth curves of H̃g, we can

distinguish the type of its limit on C by knowing how many of the g − 1 − 2r fixed Weierstrass

points in the moving theta-characteristic specialize to E. If this number is 0 or 3 (resp. 1 or 2) our

limit is of type β (resp. of type α).

Hence, after using monodromy on smooth hyperelliptic curves to interchange the (limit) Weierstrass

point R3 with an appropriate (limit) Weierstrass point on C ′, we obtain that monodromy on

H̃g ⊂ T og interchanges any limit semicanonical pencil changing parity of type β with one of type α.

The only possible exception is a limit of g−1
2 · g

1
2 when g ≡ 3(mod 4), since in that case there are

no fixed points to interchange with R3.

By irreducibility of α, monodromy on α acts transitively on the set of limit semicanonical pencils

changing parity of type α. Therefore to conclude the proof of the irreducibility of X near (C, η)

it only remains to show that, if g ≡ 3 (mod 4), the monodromy on T og interchanges the limit of
g−1

2 · g
1
2 with a limit of theta-characteristics of lower dimension.

This can be achieved exactly with the same family of limit theta-characteristics as in [TiB88,

Proposition 2.4] for certain reducible Prym curves CX (which in this case, have non-trivial 2-torsion

only on the component E). This moves the limit of g−1
2 · g

1
2 as desired.

Remark V.2.6. In the case of T eg , the intersection T eg ∩∆1 consists only of the piece α and the

irreducibility of T eg follows in a much simpler way.
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The Prym map on T eg and T og

In this chapter we study the Prym maps restricted to T eg and T og . This connects the geometry of

curves, which appeared in chapter V, with the geometry of abelian varieties (and cubic threefolds).

First we specify the covers whose Prym variety lies in θnull ⊂ Ag−1 and their relation to T eg
(section VI.1). Then we concentrate on the rich geometry of the odd cases T og for 3 ≤ g ≤ 5; each

genus occupies a section. Finally, in section VI.5 we study the Prym map on T eg and T og for g ≥ 6,

with a special view towards T o6 .

VI.1 Even semicanonical pencils and the theta-null divisor

In this first section we describe the preimage of θnull ⊂ Ag−1 under Pg : Rg → Ag−1. In general,

this preimage will consist of T eg and other irreducible components of higher codimension, for which

we include a few comments.

Proposition VI.1.1. For every g ≥ 3,

P−1
g

(
θnull

)
= T eg ∪

{
(C, η) ∈ Rg

∣∣∣∣∣ C has an odd theta-characteristic L such that

h0(C,L) ≥ 3 and L⊗ η is also odd

}
.

Proof. Let C̃
f−→ C be the double étale cover defined by (C, η) ∈ Rg, and let σ : C̃ → C̃ be the

induced involution exchanging sheets. Throughout this proof, we consider the canonical presenta-

tion (P+,Ξ+) in Pic2g−2(C̃) of the Prym variety; recall that the 2-torsion points of P correspond

to theta-characteristics of C̃ lying in P+.

We already know that the inclusion T eg ⊂ P−1
g (θnull) holds. Moreover, if C has an odd theta-

characteristic L with h0(C,L) ≥ 3 and L⊗ η odd, then

h0(C̃, f∗L) = h0(C,L) + h0(C,L⊗ η) ≥ 4

99
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and is even, hence f∗L is a theta-characteristic on C̃ defining a stable singularity of Ξ+.

Therefore, to finish the proof it suffices to check that if (C, η) ∈ P−1
g

(
θnull

)
\ T eg , then C has an

odd theta-characteristic L with h0(C,L) ≥ 3 and L ⊗ η odd. So let M ∈ Ξ+ be a singular point,

corresponding to a theta-characteristic on C̃.

If h0(C̃,M) = 2, then the singularity M is exceptional with M = f∗L ⊗ A and h0(C,L) = 2,

h0(C̃, A) > 0. Let us check that this cannot happen under the assumption (C, η) /∈ T eg .

Indeed, if degL = g − 1 then A = O
C̃

and M = f∗L. Since ωC = Nmf (M) = L2, it follows that

L is an even semicanonical pencil for the cover f , which is a contradiction. If degL < g − 1, then

under the assumption M2 = ω
C̃

we have

f∗L2 ⊗A⊗ σ(A) = f∗(Nmf (M)) = f∗ωC = ω
C̃

= M2 = f∗L2 ⊗A2

and therefore A is invariant by the action of the involution σ. In virtue of Lemma IV.3.1.(2), this

implies that we can express M = f∗(L′) for a line bundle L′ of degree g − 1, which again leads to

a contradiction.

Now assume that M ∈ Ξ+ is defining a stable singularity, namely h0(C̃,M) ≥ 4. There is a chain

of equalitites

M2 = ω
C̃

= f∗ωC = f∗Nmf (M) = M ⊗ σ(M)

giving M = σ(M), hence M = f∗L for a line bundle L of degree g − 1 on C. Moreover, the

condition Nmf (M) = ωC reads as L being a theta-characteristic on C, for which

4 ≤ h0(C̃, f∗L) = h0(C,L) + h0(C,L⊗ η).

By the assumption M ∈ Ξ+ both summands must have the same parity, and cannot be even since

(C, η) 6∈ T eg . It follows that the summands must be odd, which finishes the proof.

Corollary VI.1.2. The divisor of even semicanonical pencils T eg satisfies:

(1) For every 3 ≤ g ≤ 5, the equality T eg = P−1
g

(
θnull

)
holds.

(2) For every g ≥ 6, T eg is the divisorial component of P−1
g

(
θnull

)
. Any other irreducible component

of P−1
g

(
θnull

)
has codimension 3 in Rg.

Proof. A smooth curve C of genus g ≤ 4 has no theta-characteristic L with h0(C,L) ≥ 3 (otherwise

it would contradict Clifford’s theorem). When g = 5, such a theta-characteristic is necessarily a g2
4,

so C must be hyperelliptic (it has Clifford index 0). This proves (1), since covers of hyperelliptic

curves are contained in T eg for g ≥ 4.

Item (2) is a direct consequence of Proposition VI.1.1 and [TiB87, Theorem 2.17].

Remark VI.1.3. Let (C, η) ∈ Rg be a general point of any codimension 3 component of P−1
g (θnull).

Again by [TiB87, Theorem 2.17], there exists a unique odd theta-characteristic L on C with

h0(C,L) ≥ 3, which satisfies h0(C,L) = 3 and h0(C,L ⊗ η) = 1. Let C̃
f−→ C denote the dou-

ble étale cover associated to (C, η). Then:
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• On the one hand, the 2-torsion point M = f∗L ∈ Ξ+ is a stable singularity since h0(C̃,M) = 4

(i.e. M has multiplicity 4 in the canonical theta divisor Θ
C̃

of JC̃).

• On the other hand, following the analysis in [Mum74, Section 6] it is easy to check that the

tangent space to P+ at M is contained in the tangent cone to Θ
C̃

at M (one can take a basis

s1, ..., s4 of H0(C̃,M) pulled back from bases of H0(C,L) and H0(C,L ⊗ η), so that all the

differentials ωij = 〈si, sj〉 ∈ H0(C̃, ω
C̃

) will be symmetric).

Combining these two facts, we obtain that M is a point of multiplicity ≥ 3 in Ξ+.

Let us illustrate this phenomenon of 2-torsion points of high multiplicity, by describing a codimen-

sion 3 component of P−1
6 (θnull):

Example VI.1.4. Let JV be the intermediate Jacobian of a smooth cubic threefold V ⊂ P4. Recall

that its (canonical) theta divisor has multiplicity 3 at the origin, which is its unique singularity

(see [CG72] and [Bea82]). Hence we can consider inside θnull ⊂ A5 the 10-dimensional locus of

intermediate Jacobians of smooth cubic threefolds.

The fiber P−1
6 (JV ) under the Prym map P6 is 2-dimensional, given by (an open subset of) the

Fano surface of lines on V ([DS81, Part V]). Indeed, for a line l ⊂ V one fixes a supplementary

P2 in the ambient space P4, and considers the conic bundle structure given by the projection

BllV −→ P2 from l. The discriminant curve is a quintic Ql ⊂ P2, coming with a natural double

cover (Ql, η) ∈ R6 such that h0(Ql,OQl(1) ⊗ η) is odd (conversely, the Prym of any cover of a

smooth quintic with this parity condition is the intermediate Jacobian of a cubic threefold).

It follows that the preimage P−1
6 (θnull) contains

RQ− =
{

(Q, η) ∈ R6 | Q is a smooth plane quintic, h0(Q,OQ(1)⊗ η) is odd
}

as a 3-codimensional irreducible component, since RQ− is not contained in T e6 (a general quintic

admits no semicanonical pencil).

VI.2 Genus 3 and hyperelliptic Prym curves

This section is the devoted to study the restricted map P3 |T o3 . Recall that the divisors T e3 and T o3
in R3 are disjoint, and their union are the double étale covers of smooth hyperelliptic curves; in

addition, T e3 and T o3 are easily described in terms of the number of Weierstrass points needed to

express the 2-torsion line bundle, as we saw in Example IV.2.2.

The Prym map (on smooth covers) P3 : R3 → A2 is surjective. When we consider its restriction

to T e3 and T o3 , two distinct behaviours arise. On the one hand, T e3 = P−1
3 (θnull) as we saw in

Corollary VI.1.2.(1), where θnull = A1×A1 ⊂ A2 is the locus formed by products of elliptic curves.

On the other hand P3 |T o3 is dominant, and its general fiber can be described as follows:
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Theorem VI.2.1. The Prym map P3 |T o3 is dominant, and its general fiber is isomorphic to the

complement in the projective plane of six lines and a smooth conic.

Proof. Let C ′ be a smooth curve of genus 2. Since C ′ is hyperelliptic, by [Mum74, page 346]

expressing JC ′ as the Prym of a cover of a genus 3 hyperelliptic curve C is equivalent to the

construction of a diagram

C̃

��   
C

p   

C ′

p′~~
P1

where: the double cover p is branched at the six branch points of p′ and two extra points, and C̃

is the normalization of C ×P1 C ′. This proves the dominance of P3 |T o3 .

In order to determine the fiber, we consider a curve C ′ which is general in the following sense:

if p1, . . . , p6 are the branch points of the double cover p′ : C ′ → P1, then there is no nontrivial

projectivity of P1 mapping four points of {p1, . . . , p6} to (possibly other) four points of {p1, . . . , p6}.
Under this assumption, the fiber P3 |−1

T o3
(JC ′) parametrizes all the possible choices of two non-

repeated points in P1 \ {p1, . . . , p6}, according to the previous description.

Consider the natural isomorphism (P1)(2) ∼= (P2)
∗

identifying a pair of points on a smooth plane

conic with the line joining them. Under this identification (P1 \ {p1, . . . , p6})(2) is isomorphic to

the complement in (P2)∗ of six lines (no three of them concurring), since we are considering lines

passing through none of the six marked points of the conic.

To finish the description of the general fiber P3 |−1
T o3

(JC ′), simply note that we are avoiding lines

that are tangent to the conic as well, since we are considering pairs in (P1 \ {p1, . . . , p6})(2) formed

by two distinct points.

Remark VI.2.2. Since the the divisors T e3 and T o3 are disjoint in R3 and the equality P−1
3 (θnull) =

T e3 holds, it follows that P3 |T o3 is dominant but not surjective. Indeed, P3(T o3 ) = A2 \ θnull.

Furthermore, since a variety which dominates a rationally connected variety with rationally con-

nected generic fibers is rationally connected ([GHS03]), from Theorem VI.2.1 we obtain:

Corollary VI.2.3. The divisor T o3 is rationally connected.

Remark VI.2.4. Alternatively, one can directly prove that both divisors T e3 and T o3 are rationally

connected using their description in terms of Weierstrass points. Indeed, any two smooth Prym

curves of T e3 (resp. T o3 ) can be connected by a chain of (at most five) rational curves contained in

T e3 ⊂ R3 (resp. T o3 ⊂ R3); basically, each rational curve parametrizes hyperelliptic Prym curves

with all but one of its branch points remaining constant.
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VI.3 Genus 4 and Recillas’ trigonal construction

In this section, we carry out an analysis of the case of genus 4. More precisely, we prove that P4 |T o4
is dominant; we determine its general fiber, and also that of P4 |T e4 . This enables us to show the

irreducibility of T e4 and T o4 , which were the only pending cases after Theorem V.2.1.

Roughly, the idea for our arguments is the following. Recillas’ trigonal construction provides an

isomorphism between two moduli spaces, each of them equipped with a natural involution. Then

we will exploit the fact that these involutions are compatible with Recillas’ construction, and the

fact that the divisors T o4 and T e4 are contained in the locus of fixed points of one of these involutions.

First of all, recall that a smooth hyperelliptic curve C of genus 4 has ten distinct semicanonical

pencils, corresponding to the sum of the g1
2 as movable part with a Weierstrass base point. A

non-hyperelliptic C is embedded by the canonical map C → P3 as the complete intersection of a

quadric Q and a cubic surface S.

If Q is smooth, then the curve C has exactly two g1
3, which parametrize the intersection of S with

the lines in each of the rulings of Q. Observe that the sum of both g1
3 is the canonical divisor of C

and the curve C has no semicanonical pencil. Instead, if the quadric Q is singular, then C has a

unique g1
3 which is a semicanonical pencil; moreover, the g1

3 is given by the intersections of S with

the system of lines in Q containing the singular point.

It follows that H4 ⊂ T4 ⊂M4 (for H4 the hyperelliptic locus), and T4 is the closure of the locus of

non-hyperelliptic curves whose canonical model is contained in a singular quadric. Moreover, since

the semicanonical pencil of a non-hyperelliptic curve of T4 is unique, we have T e4 ∩ T o4 = RH4,

where RH4 = π−1(H4) ⊂ R4 are the hyperelliptic Prym curves.

Now we address the problem of understanding the restriction of the Prym map P4 : R4 → A3 to

the divisors T e4 and T o4 . Consider the following moduli spaces:

RG 1
4,3 = {(C, η,M) | (C, η) ∈ R4 \ RH4 and M is a g1

3 on C}/ ∼=

G 1
3,4 = {(X,L) | X ∈M3 and L is a (not necessarily complete) base-point-free g1

4 on X}/ ∼=

That is, RG 1
4,3 parametrizes (isomorphism classes of) covers of non-hyperelliptic genus 4 curves

endowed with a g1
3, and G 1

3,4 parametrizes genus 3 curves endowed with a base-point-free g1
4. Both

moduli spaces have projection maps forgetting the linear series:

• The projection RG 1
4,3

ϕ−→ R4 \ RH4 is generically finite of degree 2. Moreover, RG 1
4,3 carries a

natural involution σ defined by

σ(C, η,M) = (C, η, ωC ⊗M−1), (VI.3.1)

which exchanges the two sheets of the open subset of RG 1
4,3 where ϕ is finite.

• Let us study the fiber of the projection G 1
3,4

ψ−→M3 over a curve X ∈M3. First of all, note that

the scheme G1
4(X) of g1

4 linear series on X is easily identified with the blow-up of Pic4(X) at the
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canonical sheaf ωX . This scheme carries a natural involution, given by L 7→ ω2
X ⊗ L−1; indeed,

this involution, defined outside the exceptional divisor of G1
4(X), extends as the identity on the

exceptional divisor as proved in [FNS20, Proposition 6.1].

If X is non-hyperelliptic and we regard it as a quartic plane curve, the g1
4’s on X with base points

are exactly those given by pencils of lines through points of X. Linear series with base points

are thus parametrized by X, and are contained in the exceptional divisor of G1
4(X).

If X is hyperelliptic, tetragonal series with base points are those of the form g1
2 +p+ q and hence

the open subset of G1
4(X) parametrizing series without base points is the complement of a copy

of X(2).

According to this description, it follows that for any smooth curve X the open subset of G1
4(X)

formed by base-point-free tetragonal series remains invariant by the involution. Since this involu-

tion is compatible with the automorphisms of X as well, we obtain an involution τ : G 1
3,4 → G

1
3,4

defined by

τ(X,L) = (X,ω2
X ⊗ L−1). (VI.3.2)

In this situation, Recillas’ trigonal construction yields a morphism R : RG 1
4,3 −→ G

1
3,4 making

commutative the following diagram:

RG 1
4,3

R //

ϕ

��

G 1
3,4

ψ

��
R4 \ RH4

P4 $$

M3

Torelli}}
A3

More precisely, R provides and isomorphism of RG 1
4,3 with the open set (G 1

3,4)
o ⊂ G 1

3,4 of tetragonal

pairs (X,L) with the property that the g1
4 L contains no divisor of the form 2p + 2q or 4p (see

[Don92, Theorem 2.9]). This open set dominates M3.

Note that G 1
3,4 is clearly irreducible, since M3 and all the fibers of the projection G 1

3,4 →M3 are

so. Therefore (G 1
3,4)

o
and RG 1

4,3 are also irreducible.

Now our purpose is to prove that Recillas’ construction commutes with the natural involutions σ

and τ (defined in (VI.3.1) and (VI.3.2)), namely:

Proposition VI.3.1. The equality R ◦ σ = τ ◦R holds.

By irreducibility, it is enough to check that σ ◦ R−1 = R−1 ◦ τ on an open set U . We define U to

be the intersection of (G 1
3,4)

o
with the open set of pairs (X,L) where X is non-hyperelliptic and L

is not contained in the canonical bundle of X.
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Hence let X ∈ M3 be non-hyperelliptic, regarded as a quartic plane curve, and consider L ∈
Pic4(X) \ {ωX} a complete g1

4 on X such that the linear system |L| contains no divisor of the form

2p+ 2q or 4p; this is true for L ∈ Pic4(X) \ {ωX} general.

The element R−1(X,L) ∈ RG 1
4,3 can be explicitly described as follows: the curve

C ′L = {p+ q ∈ X(2) | h0(L(−p− q)) 6= 0}

is smooth of genus 7, with a fixed-point-free involution iL sending p + q to the unique divisor

r + s ∈ |L(−p− q)|. The quotient CL = C ′L/〈iL〉 has genus 4 and naturally comes with a degree 3

map to P1, corresponding to a g1
3 that we denote by ML. Then

R−1(X,L) = (CL, ηL,ML)

where ηL ∈ (JCL)2 defines the étale cover C ′L → CL.

Now we denote L̃ = ω2
X ⊗ L−1, so that τ(X,L) = (X, L̃). Then Proposition VI.3.1 boils down to

prove that

(CL, ηL, ωCL ⊗M
−1
L ) = σ(R−1(X,L)) = R−1(τ(X,L)) = (C

L̃
, η
L̃
,M

L̃
),

which will be a consequence of the following two lemmas:

Lemma VI.3.2. There is an isomorphism C ′L
ρ−→ C ′

L̃
such that ρ ◦ iL = i

L̃
◦ ρ.

Proof. For a point p + q ∈ C ′L, we let ρ(p + q) ∈ X(2) be the residual intersection of X with the

line pq (this line being the tangent line to X at p, if p = q). Writing r + s = iL(p + q), then

the eight points obtained by intersection of X with the lines pq and rs give a divisor in |ω2
X |.

This implies |ρ(p + q) + ρ(r + s)| ∈ |L̃|, which gives ρ(p + q) ∈ C ′
L̃

(i.e. ρ is well defined) and

i
L̃

(ρ(p+ q)) = ρ(r + s) = ρ(iL(p+ q)).

To finish the proof, simply note that ρ is an isomorphism since it has an obvious inverse.

It follows that (CL, ηL) = (C
L̃
, η
L̃

) as elements of R4. To finish the proof of σ(R−1(X,L)) =

R−1(τ(X,L)), we only need to check that the isomorphism CL → C
L̃

induced by ρ (that we denote

by ρ as well, abusing of notation) sends ωCL ⊗M
−1
L to M

L̃
.

Lemma VI.3.3. ρ∗(ωCL ⊗M
−1
L ) = M

L̃
.

Proof. Since CL (hence C
L̃

) is a non-hyperelliptic curve of genus 4, by the discussion at the be-

ginning of this subsection it turns out that CL has at most two g1
3 (namely ML and ωCL ⊗M

−1
L ).

Therefore, it suffices to check that ρ∗ML 6= M
L̃

.

Take D = p1 + p2 + p3 + p4 ∈ |L|. Then, ML is the line bundle on CL represented by the divisor

{p1 + p2, p3 + p4}+ {p1 + p3, p2 + p4}+ {p1 + p4, p2 + p3}
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and therefore ρ∗ML on C
L̃

is represented by the divisor

{a12 + b12, a34 + b34}+ {a13 + b13, a24 + b24}+ {a14 + b14, a23 + b23}

where for i, j ∈ {1, 2, 3, 4} the points aij , bij are the residual intersection of X with the line pipj .

We may take D with p1, p2, p3, p4 distinct, and such that for every i 6= j we have aij 6= bij .

If the equality ρ∗ML = M
L̃

were true, then we would have equalities in X(4)

a12 + b12 + a34 + b34 = a13 + b13 + a24 + b24 = a14 + b14 + a23 + b23

with this divisor representing the line bundle L̃. But these equalities are easily seen to imply that

the points p1, p2, p3, p4 are aligned, which is a contradiction since L 6= ωX .

This finishes the proof of Proposition VI.3.1. As a consequence of it, we deduce that τ leaves

invariant the image of R, and the fixed points of both involutions correspond by R.

First, let us study the fixed points of σ. If (C, η,M) ∈ RG 1
4,3 with C non-hyperelliptic, then

M ∼= ωC ⊗M−1 if and only if M is the unique g1
3 on C, namely C ∈ T4 and M is the semicanonical

pencil of C. Therefore, the locus of fixed points of σ consists of two pieces:

(A1) Triples (C, η,M) ∈ RG 1
4,3 with (C, η) ∈ (T e4 ∪ T o4 ) \ RH4 and M the semicanonical pencil on

the curve C.

(A2) The set of (C, η,M) ∈ RG 1
4,3 with (C, η) /∈ T e4 ∪ T o4 having a nontrivial automorphism

exchanging the two g1
3’s on C.

The locus of fixed points of τ is formed by the following pieces:

(B1) The union of the exceptional divisors in G1
4(X) moving X in M3, that is:⋃

X∈M3

(|ωX |∗ \X) /Aut(X)

(B2) Pairs (X,L) ∈ G 1
3,4 with X hyperelliptic. Indeed, the hyperelliptic involution on X exchanges

any L ∈ Pic4(X) with ω2
X ⊗ L−1.

(B3) The set of pairs (X,ωX ⊗ η) with X ∈ M3 and η ∈ JX2 \ {OX}. This set is naturally

identified with R3.

(B4) The (closure of) the set of pairs (X,L) ∈ G 1
3,4 with X non-hyperelliptic, having a nontrivial

automorphism sending L to ω2
X ⊗ L−1.

Essentially, we will prove that the part ϕ−1(T o4 ) of (A1) corresponds (under Recillas’ construction)

to the piece (B1), and the part ϕ−1(T e4 ) of (A1) corresponds to the piece (B2).

Remark VI.3.4. The piece (B3) corresponds, under R−1, to the irreducible component of (A2)

formed by covers of bielliptic curves of genus 4.
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Indeed, consider (X,L) with X a quartic plane curve and L = ωX ⊗ η, η ∈ JX2 \ {OX}. We can

express L = θ1 ⊗ θ2 for two distinct odd theta-characteristics θ1 and θ2; namely, |L| has a divisor

given by the contact points of two distinct bitangent lines. Moreover, using the theory of syzygetic

triads ([Dol12, Section 5.4.1]) it is easy to check that |L| exactly contains six such “distinguished”

divisors (i.e. formed by contact points of two bitangent lines).

Then, the curves CL and C
L̃

are equal by definition. Moreover, the natural isomorphism ρ : CL →
C
L̃

= CL of Lemma VI.3.2 is an involution with exactly six fixed points (which lie over the six

distinguished divisors of |L|). It follows that CL is a bielliptic curve, and the bielliptic involution ρ

exchanges the two g1
3’s on CL by Lemma VI.3.3.

Conversely, Recillas’ trigonal construction applied to a cover of a bielliptic curve is well known to

give an element of the piece (B3), see [Dol08, Section 3].

Keeping all this construction in mind, we are now ready to prove that P4 |T o4 is surjective and

describe its general fiber:

Theorem VI.3.5. The Prym map P4 |T o4 : T o4 → A3 is surjective, and the fiber of a general

Jacobian JX ∈ A3 is the complement in the projective plane of the union of the canonical model

of X and the 28 lines that are bitangent to it.

Proof. We will first prove that P4 |T o4 is dominant, by describing the fiber of a general Jacobian

JX ∈ A3 (in particular, showing its non-emptiness). To this end, we take a non-hyperelliptic

curve X ∈M3 without automorphisms, and denote G1,o
4 (X) = ψ−1(X) ∩ (G 1

3,4)
o
. That is, G1,o

4 (X)

parametrizes g1
4 linear series on X with no divisor of the form 2p+ 2q or 4p.

Observe that, since the whole fiber P−1
4 (JX) is contained in R4 \ RH4, according to Recil-

las’ diagram the fiber P4 |−1
T o4

(JX) equals ϕ
(
R−1(G1,o

4 (X))
)
∩ T o4 . The latter is isomorphic to

R−1
(
G1,o

4 (X)
)
∩ϕ−1(T o4 ), since the restriction ϕ |ϕ−1(T o4 ) is an isomorphism; note that the intersec-

tion R−1
(
G1,o

4 (X)
)
∩ ϕ−1(T o4 ) lies in the piece (A1) of the locus of fixed points of σ.

On the other hand, by our assumptions on X, the intersection of G1,o
4 (X) with the locus of fixed

points of τ consists of a 2-dimensional irreducible component (intersection with the piece (B1)) and

finitely many points (intersection with the piece (B3)). Therefore, the intersection of R−1
(
G1,o

4 (X)
)

with the locus of fixed points of σ consists of finitely many points of the piece (A2) and a 2-

dimensional component.

We claim that this 2-dimensional component must be R−1
(
G1,o

4 (X)
)
∩ϕ−1(T o4 ). Indeed, if this were

not the case then the piece (B1) would correspond to (A2); hence (A2) would be 8-dimensional,

which is absurd since the locus of (non-hyperelliptic) curves of genus 4 with automorphisms is well

known to have lower dimension (see [Cor87]).

All in all, we obtain that the fiber is isomorphic to the intersection of G1,o
4 (X) with the locus (B1)

of the fixed locus of τ . This intersection reads as the set of all the non-complete, base-point-free
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g1
4 on X containing no divisor of the form 2p+ 2q or 4p. Such a g1

4 is defined by the pencil of lines

through a fixed point of P2, outside the curve X and lying in no bitangent line to X.

Finally, we proceed to prove that the map P4 |T o4 : T o4 → A3 is not only dominant, but also

surjective. For this, note that we have shown that ϕ−1(T o4 ) is mapped via R to the locus (B1); it

follows that Jacobians JX ∈ A3 of non-hyperelliptic curves X with automorphisms lie in the image

of P4 |T o4 as well. In addition, every element of θnull (i.e. an hyperelliptic Jacobian or product of

Jacobians in A3) can be obtained as the Prym variety of a cover in RH4 ⊂ T o4 ; this follows from

Mumford’s description on Prym varieties of covers of hyperelliptic curves ([Mum74, Page 346]),

that we already used in section VI.1.

As a consequence of this description, we get the irreducibility of T o4 :

Corollary VI.3.6. The divisor T o4 is irreducible and rationally connected.

Proof. In Theorem VI.3.5 we have proved that P4 |T o4 : T o4 → A3 is surjective, with all the fibers

of elements in A3 \ θnull being irreducible of the same dimension. Moreover, since P−1
4 (θnull) = T e4

by Corollary VI.1.2.(1), we have P4 |−1
T o4

(θnull) = T o4 ∩ T e4 = RH4.

Thus if T o4 were not irreducible, it would have RH4 as an irreducible component, contradicting the

equidimensionality of T o4 .

Finally, the rational connectedness of T o4 follows again from the results in [GHS03].

We finish this section by determining the fiber P−1
4 (JX) ⊂ T e4 of a general hyperelliptic Jacobian

JX ∈ θnull. As a consequence, we obtain that T e4 is irreducible.

Theorem VI.3.7. The fiber P−1
4 (JX) ⊂ T e4 of a general hyperelliptic Jacobian JX ∈ θnull ⊂ A3

is birationally equivalent to its Kummer variety.

Proof. Take a general genus 3 hyperelliptic curve X (in particular, having the hyperelliptic invo-

lution as its only nontrivial automorphism). The intersection P−1
4 (JX) ∩ RH4 can be described

following Mumford’s trick for covers of hyperelliptic curves, as we did in the case of genus 3: this

intersection is the complement in P2 of the union of eight lines and a conic.

Now, we proceed to describe the “non-hyperelliptic” part of the fiber P−1
4 (JX). As usual, denote

by G1,o
4 (X) = ψ−1(X)∩ (G 1

3,4)
o
; due to the action of the hyperelliptic involution on G1

4(X), G1,o
4 (X)

is birationally equivalent to the Kummer variety of JX.

According to the commutative diagram given by Recillas’ construction, P−1
4 (JX) \ RH4 equals

ϕ(R−1(G1,o
4 (X))), which is isomorphic to R−1(G1,o

4 (X)) since the restriction ϕ |ϕ−1(T e4 ) is an isomor-

phism. It follows that P−1
4 (JX) \ RH4 is birational to the Kummer variety of JX.

Finally, since P−1
4 (JX) \ RH4 is 3-dimensional and P−1

4 (JX) ∩ RH4 is 2-dimensional, the whole

fiber P−1
4 (JX) must be irreducible (otherwise, T e4 would not be equidimensional).
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Corollary VI.3.8. The divisor T e4 is irreducible.

VI.4 Genus 5 and cubic threefolds

Similarly to the cases g = 3 and g = 4, the behaviour of the Prym map on T o5 is quite different

from the behaviour on T e5 ; indeed, T o5 dominates A4 as already observed by Izadi in [Iza95, Proof

of Theorem 6.14]. In this section we first give a brief different proof of this fact, by means of the

cohomology classes of T o5 and T e5 (Proposition VI.4.1); then we study in more detail the general

fiber of P̃5|T o5 , whose geometry reveals enumerative properties of cubic threefolds.

We start by recalling Donagi’s description [Don92, Section 5] of the general fiber of the (proper,

surjective) Prym map P̃5 : R̃5 → A4. There is a birational map

κ : A4 99K RC+

where RC+ denotes the moduli space of pairs (V, δ) with V ⊂ P4 a smooth cubic threefold and

δ ∈ JV2 an even 2-torsion point (i.e. δ /∈ ΘV for the canonical choice of the theta divisor ΘV ⊂ JV ).

In [Iza95] Izadi gave an explicit geometric realization of this birational map, and described an open

subset of A4 on which κ is an isomorphism.

Then the fiber of κ ◦ P̃5 over a general (V, δ) is isomorphic to the double étale cover F̃ (V ) of the

Fano surface of lines F (V ) defined by δ (recall that Pic0(F (V )) ∼= JV ).

Proposition VI.4.1. The restricted Prym map P̃5|T o5 : T o5 → A4 is dominant.

Proof. For A ∈ A4 general, we write (V, δ) = κ(A) and let F̃ (V ) = (P̃5)−1(A) be its fiber by P̃5. If

ι : F̃ (V ) ↪→ R̃5 ↪→ R5 denotes the inclusion, then the pullback map

ι∗ : Pic(R5)Q → Pic(F̃ (V ))Q

annihilates the classes δ′0, δ
′′
0 , δ1, δ2, δ3, δ4, δ1:4 and δ2:3.

Indeed, the general element of the divisors ∆i (i = 1, . . . , 4) and ∆i:5−i (i = 1, 2) is an admissible

cover whose Prym variety is a decomposable ppav; hence P̃5(∆i ∩ R̃5) and P̃5(∆i:5−i ∩ R̃5) have

positive codimension in A4, so ∆i∩R̃5 and ∆i:5−i∩R̃5 are disjoint with the general fiber F̃ (V ). On

the other hand ∆′′0 is formed by Wirtinger covers, so P̃5(∆′′0∩R̃5) is contained in the Jacobian locus,

which is a divisor in A4; this again implies that ι∗(δ′′0) = 0. Finally, ι∗(δ′0) = 0 since F̃ (V ) ⊂ R̃5

and the general element of ∆′0 is a non-admissible cover.

Since T e5 is mapped by P̃5 to θnull ⊂ A4, the divisor T e5 does not intersect the generic fiber F̃ (V ).

Hence, by Theorem V.1.1 we obtain

0 = ι∗[T e5 ] = 68ι∗λ− 17ι∗δram0
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which implies the relation ι∗δram0 = 4ι∗λ.

Now, the restriction of T o5 to the fiber F̃ (V ) has class

ι∗[T o5 ] = 64ι∗λ− 15ι∗δram0 = 4ι∗λ,

which is clearly nonzero since the Hodge structure cannot remain constant along the (open) subset

of F̃ (V ) formed by smooth covers. Therefore, the restriction of T o5 to the general fiber is not trivial

and T o5 dominates A4.

In the previous proof, observe that the class ι∗[T o5 ] equals ι∗δram0 . This is consistent with the fact

that the involution j : F̃ (V )→ F̃ (V ) (induced by the double étale cover) exchanges T o5 ∩ F̃ (V ) and

∆ram
0 ∩ F̃ (V ). In order to understand this, we need to recall the geometric description of j given

also by Donagi in [Don92, Section 5].

Given a smooth cover (C, η) ∈ F̃ (V ), there exists a unique representation JC = P̃6(Q, ν) as

the Prym of a cover of a plane quintic Q (the theta-characteristic OQ(1) ⊗ ν on Q being even).

More explicitly, (Q, ν) is the double cover induced by the involution −1JC on the symmetric curve

W 1
4 (C) ⊂ JC.

Consider the short exact sequence

0→ 〈ν〉 → 〈ν〉⊥ → JC2 → 0

of Lemma IV.3.1.(1); here 〈ν〉⊥ ⊂ JQ2 is the orthogonal for the Weil pairing on JQ2. Then the

preimage of 〈η〉 ⊂ JC2 is a totally isotropic subgroup of four elements 0, ν, σ and σ ⊗ ν; moreover,

the theta-characteristics OQ(1)⊗ σ and OQ(1)⊗ σ ⊗ ν on Q have opposite parities.

Say OQ(1) ⊗ σ ⊗ ν is even. Then P̃6(Q, σ ⊗ ν) is the Jacobian of a genus 5 curve C ′, and ν ∈
〈σ ⊗ ν〉⊥ ⊂ JQ2 induces a nonzero element η′ ∈ (JC ′)2; one has j(C, η) = (C ′, η′).

This picture beautifully closes with the observation that P̃6(Q, σ) ∼= JV as ppav’s and the even 2-

torsion point δ ∈ JV2 is induced by ν ∈ 〈σ〉⊥ ⊂ JQ2. In particular, the double cover F̃ (V )→ F (V )

sends (C, η) to the line l ∈ F (V ) having Q as discriminant curve for the conic bundle structure

defined by l.

Remark VI.4.2. In [Iza95, Section 3], Izadi gave an alternative description of the involution j.

Given a smooth cover (C̃, C) = (C, η) ∈ R5, the theta-dual T (C̃) = V 2(C, η) ⊂ P−(C, η) is a

symmetric curve (when properly translated to P (C, η)). If C ′ is the quotient of T (C̃) by −1, then

the cover (T (C̃), C ′) corresponds to (C̃, C) under the involution j.

For any smooth cubic threefold V ⊂ P4, we consider the set

Γ = {l ∈ F (V ) | ∃ a 2-plane π and a line r ∈ F (V ) with V · π = l + 2r}

parametrizing the lines l ∈ F (V ) whose conic bundle structure has a singular discriminant curve

(see [Bea77b, Proposition 1.2]). In other words, Γ parametrizes presentations of JV as the Prym

variety of an (admissible) cover of a singular (plane quintic) curve.
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The set Γ is well known to have pure dimension 1 and it is irreducible for a general cubic threefold

V ; assuming the irreducibility of Γ (which will be proven in Proposition VI.4.5), let us determine

the behaviour of the general fiber of P̃5|T o5 under the involution j of F̃ (V ).

Proposition VI.4.3. For a general (V, δ) ∈ RC+, the preimage Γ̃ ⊂ F̃ (V ) of Γ by the double étale

cover consists of two irreducible components, namely T o5 ∩ F̃ (V ) and ∆0
ram ∩ F̃ (V ). These two

components are exchanged by the involution j.

Proof. By irreducibility of Γ, Γ̃ has at most two irreducible components. Thus for the first statement

it suffices to check that both T o5 ∩ F̃ (V ) and ∆0
ram ∩ F̃ (V ) are contained in Γ̃.

On the one hand, if (C, η) ∈ T o5 ∩F̃ (V ) with C smooth, then the associated quinticQ = W 1
4 (C)/〈±1〉

is singular; indeed, the semicanonical pencil on C is a point of W 1
4 (C) fixed by the involution.

On the other hand, given a general element (C, η) ∈ ∆0
ram the expression of the (non-abelian)

variety JC as a Prym variety necessarily comes from a non-admissible cover (Q, σ). In particular,

Q is singular as well.

The fact that j exchanges the components of Γ̃ is nothing but [Iza95, Lemma 3.14]. This is also

immediately observed from Remark VI.4.2, and the fact that for smooth covers (C̃, C) = (C, η) ∈ T o5
the theta-dual T (C̃) = V 2(C, η) is singular by Lemma IV.3.3.

Corollary VI.4.4. The fiber of P̃5|T o5 at a general (V, δ) ∈ RC+ is a curve dominating Γ.

In the rest of this section, we concentrate on the geometry of both curves Γ and T o5 ∩ F̃ (V ); in

particular, in Corollary VI.4.9 we will be more precise, by proving that T o5 ∩ F̃ (V ) is a partial

desingularization of Γ.

To this end, we consider for any smooth cubic threefold V ⊂ P4 the curve

Γ′ = {r ∈ F (V ) | ∃ a 2-plane π and a line l ∈ F (V ) with V · π = l + 2r}

formed by lines of second type. In contrast to Γ, this curve has received considerable attention in

the literature. For instance:

(1) ([CG72, Proposition 10.21]) Γ′ has pure dimension 1 and, as a divisor in the Fano surface F (V ),

is linearly equivalent to twice the canonical divisor KF (V ).

(2) In [Mur72, Corollary 1.9], it is stated that Γ′ is smooth for every V . Nonetheless, what Murre’s

local computations really show is that singularities of Γ′ correspond to lines r ∈ F (V ) for which

there exists a 2-plane π satisfying V · π = 3r.1

An easy count of parameters shows that, for a general V , such lines do not exist (namely the

curve Γ′ is smooth).

1For the interested reader, the linear polynomial l appearing in equation (13) of [Mur72, Page 167] not only

depends on the variables u and v, but also on the variable x.
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For every r ∈ Γ′, there exist a unique 2-plane π and a unique l ∈ F (V ) such that V · π = l + 2r

(see [NO19, Lemma 2.4]). This naturally defines a surjective morphism Γ′ → Γ. Even if one would

be tempted to think that it defines an isomorphism between Γ′ and Γ, this is not the case2:

Proposition VI.4.5. For a general smooth cubic threefold V , the following hold:

(1) Γ′ is smooth and irreducible.

(2) Γ is irreducible and singular, with only nodes as singularities.

(3) The map Γ′ → Γ is birational (i.e. Γ′ is the normalization of Γ).

Proof. The smoothness of Γ′ being known by the discussion above, for the irreducibility of Γ′

(and hence that of Γ) one argues as in the proof of [NO19, Proposition 2.6]. In particular, the

irreducibility of Γ completes the proof of Proposition VI.4.3.

In order to prove that Γ′ → Γ is birational, we need to prove that a general l ∈ Γ has a unique

preimage in Γ′. Note that the preimages of a line l ∈ Γ correspond to nodes on the discriminant

(plane quintic) curve Ql of the conic bundle structure defined by l.

Fix an even 2-torsion point δ ∈ JV2 (such that the pair (V, δ) ∈ RC+ is general), and denote by

ϕ : F̃ (V ) → F (V ) the double étale cover defined by δ. If (C, η) ∈ R̃5 denotes a Prym curve lying

in both T o5 and ϕ−1(l), then by Proposition VI.4.3 the nodes of Ql are also in correspondence

with the semicanonical pencils on the curve C ∈ T5. Since the general curve of T5 has a unique

semicanonical pencil, the birationality of Γ′ → Γ follows.

Now we proceed to prove that the curve Γ is always singular. For this, it suffices to check that there

exist points of Γ with (at least) two preimages in Γ′. Namely, that there exist lines l ⊂ V such

that there are two distinct 2-planes π1, π2 and lines r1, r2 ⊂ V with the property V · πi = l + 2ri

(i = 1, 2).

Take a reference system in P4 so that l ∩ r1 = [0 : 0 : 0 : 1 : 0], l ∩ r2 = [0 : 0 : 0 : 0 : 1],

[0 : 1 : 0 : 0 : 0] ∈ r1 and [0 : 0 : 1 : 0 : 0] ∈ r2. Denoting by x, y, z, u, v the homogeneous

coordinates in this reference system, a cubic threefold V will satisfy V ·πi = l+ 2ri (i = 1, 2) if and

only if it admits an equation of the form

F (x, y, z, u, v) = x ·Q(x, y, z, u, v) + λ15y
2z + λ16yz

2 + λ17yzu+ λ18yzv + λ19yv
2 + λ20zu

2

with Q a quadratic polynomial. This family of equations forms a 20-dimensional linear variety in

the projective space P34 of cubic equations in five variables (up to constant).

On the other hand, the projectivities leaving invariant the lines l, r1, r2 depend on ten projective

parameters. Therefore, the moduli space of cubic threefolds V for which there exist lines l, r1, r2 ⊂ V
and 2-planes π1, π2 as asserted is 10-dimensional. In other words, every smooth cubic threefold V

admits such a configuration.

2In particular, this fixes an inaccuracy in the original published version of [NO19, Proposition 2.6], already

corrected in the arXiv version arXiv:1708.06512.v3.

https://arxiv.org/abs/1708.06512
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A similar parameter count shows that for a general cubic threefold V :

• There are no lines l ∈ Γ admitting three or more preimages in Γ′.

• There are no lines l ∈ Γ admitting two distinct preimages r1, r2 ∈ Γ′ with the property l ∩ r1 =

l ∩ r2.

This shows that, for a general cubic threefold V , the curve Γ is singular and its singular points are

of multiplicity 2. Hence to finish the proof, it only remains to check that such singular points are

ordinary. We will prove the following: for any singular point l ∈ Γ, the tangent directions to Γ′ at

the two preimages r1, r2 ∈ Γ′ of l are mapped to independent directions in the tangent space to

F (V ) at l. We will use the local analysis of Γ′ performed by Murre ([Mur72, Section 1A]).

According to our discussion, singularities of Γ correspond to lines l ⊂ V for which there exist two

distinct 2-planes π1, π2 and (disjoint) lines r1, r2 ⊂ V such that V · πi = l + 2ri (i = 1, 2). Taking

coordinates as before, we let

F (x, y, z, u, v) = λ0x
3 +λ1x

2y+λ2x
2z+λ3x

2u+λ4x
2v+λ5xy

2 +λ6xyz+λ7xyu+λ8xyv+λ9xz
2

+λ10xzu+λ11xzv+λ12xu
2+λ13xuv+λ14xv

2+λ15y
2z+λ16yz

2+λ17yzu+λ18yzv+λ19yv
2+λ20zu

2

be the equation defining V . Observe that λ19 6= 0 and λ20 6= 0, otherwise V would contain one of

the 2-planes π1 : x = z = 0, π2 : x = y = 0 and hence V would be singular.

In the Grassmannian G(1, 4) of lines in P4, we take local coordinates x′, x′′, y′, y′′, z′, z′′ for lines l′

around l, given by

l′ ∩ {v = 0} = [x′ : y′ : z′ : 1 : 0], l′ ∩ {u = 0} = [x′′ : y′′ : z′′ : 0 : 1].

Since F can be written as F = x · f(x, y, z, u, v) + y · g(x, y, z, u, v) + z · h(x.y, z, u, v) with

f(x, y, z, u, v) = λ12u
2 + λ13uv + λ14v

2 + terms of lower degree in u, v,

g(x, y, z, u, v) = λ19v
2 + terms of lower degree in u, v,

h(x, y, z, u, v) = λ20u
2 + terms of lower degree in u, v,

following [Mur72, Section 1A] the tangent plane TlF (V ) to F (V ) at l is described by the four

independent equations

λ12x
′ + λ20z

′ = λ13x
′ + λ12x

′′ + λ20z
′′ = λ14x

′ + λ13x
′′ + λ19y

′ = λ14x
′′ + λ19y

′′ = 0.

Since λ19, λ20 6= 0, observe that the coordinates x′, x′′ are independent in this tangent plane.

Similarly, we take local coordinates a′, a′′, b′, b′′, c′, c′′ for lines r′ around r1 in G(1, 4), where

r′ ∩ {u = 0} = [a′ : 1 : b′ : 0 : c′], r′ ∩ {y = 0} = [a′′ : 0 : b′′ : 1 : c′′].

Following again [Mur72, Section 1A], Tr1F (V ) is described by the independent equations

λ5a
′ + λ15b

′ = λ7a
′ + λ5a

′′ + λ17b
′ + λ15b

′′ = λ12a
′ + λ7a

′′ + λ20b
′ + λ17b

′′ = λ12a
′′ + λ20b

′′ = 0,
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which are equivalent to a′ = a′′ = b′ = b′′ = 0. Therefore, we may take c′, c′′ as coordinates in the

tangent plane Tr1F (V ), which is naturally identified with the set of lines contained in the 2-plane

π1 (and avoiding the point [0 : 0 : 0 : 0 : 1] ∈ π1).

Under our assumptions of generality on V , the analysis in [Mur72, Section 1A] shows that Γ′ is

smooth at r1, with tangent line

Tr1(Γ′) : (λ7λ20 − λ12λ17)c′ + (λ12λ15 − λ5λ20)c′′ = 0

(again, λ7λ20 − λ12λ17 and λ12λ15 − λ5λ20 are not simultaneously zero by smoothness of V ).

Let us assume that λ7λ20 − λ12λ17 6= 0. Given c′′ ∈ C, we denote by r1,c′′ ∈ Tr1(Γ′) the line

r1,c′′ =
[
0 : 1 : 0 : 0 :

λ5λ20 − λ12λ15

λ7λ20 − λ12λ17
c′′
]
∨ [0 : 0 : 0 : 1 : c′′].

Using the description in [Mur72, 1.3], elementary (but tedious) calculations show that the first

order deformation r1,c′′ of r1 along Γ′ yields a first order deformation of the 2-plane π1 given by

π1,c′′ = r1,c′′ ∨
[ λ19λ20

λ7λ20 − λ12λ17
c′′ : 0 : − λ12λ19

λ7λ20 − λ12λ17
c′′ : 0 : 1

]
,

and thus it yields a first order deformation lc′′ of l along Γ given by the following local coordinates

around l:

x′(lc′′) = 0, y′(lc′′) = − λ13λ20

λ7λ20 − λ12λ17
c′′, z′(lc′′) = 0,

x′′(lc′′) =
λ19λ20

λ7λ20 − λ12λ17
c′′, y′′(lc′′) = − λ14λ20

λ7λ20 − λ12λ17
c′′, z′′(lc′′) = − λ12λ19

λ7λ20 − λ12λ17
c′′.

In other words, the first order deformation of r1 along Γ′ defines the tangent direction x′ = 0 to Γ

at l. A similar analysis shows that the first order deformation of r2 along Γ′ induces the tangent

direction x′′ = 0 to Γ at l. Since both directions are distinct, it turns out that l is a node of the

curve Γ, which finishes the proof.

In view of the existence of singularities of Γ and their geometric significance, it seems natural to

ask about the number of nodes of the curve Γ for a general cubic threefold V .

Let us recall that for V very general, the Fano surface F (V ) has Picard rank 1 (see [Rou11,

Section 1.3]). The (numerical) Néron-Severi group NS(F (V )) ∼= Z is generated by the class L of

the incidence divisor

Cs = (closure of) {l ∈ F (V ) | l ∩ s 6= ∅, l 6= s} ⊂ F (V )

of lines intersecting a given line s ∈ F (V ) (note that Cs ⊂ JV is the Abel-Prym curve for the Prym

presentation of JV using the conic bundle structure defined by s).

We have L2 = 5, as this is the number of lines on a smooth cubic surface intersecting two given

skew lines on it. Moreover, KF (V ) = 3L in NS(F (V )) and Γ′ is linearly equivalent to 2KF (V ) (see

[CG72, Section 10]).
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Theorem VI.4.6. For every smooth cubic threefold V , the curve Γ is numerically equivalent to

8KF (V ) in F (V ).

Proof. Since both Γ and KF (V ) are the restriction to V of divisors in the universal Fano variety of

lines in cubic threefolds, it is enough to prove the result when V is very general.

Pick an even 2-torsion point δ ∈ JV2, and consider the double étale cover ϕ : F̃ (V ) → F (V )

defined by δ. Recall from Proposition VI.4.3 that Γ̃ = ϕ−1(Γ) has T o5 ∩ F̃ (V ) and ∆ram
0 ∩ F̃ (V ) as

irreducible components (exchanged by the natural involution on F̃ (V )).

Let us write mL for the class of Γ in NS(F (V )). Recall from the proof of Proposition VI.4.1 that,

if ι∗ : Pic(R5)Q → Pic(F̃ (V ))Q is the natural pullback map, then ι∗([T o5 ]) = ι∗(δ0
ram) = 4ι∗λ and ι∗

annihilates any other basic divisor class of Pic(R5)Q. Therefore, we have an equality

mϕ∗L = ϕ∗Γ = 8ι∗λ

in NS(F̃ (V ))Q. Now we will compare the classes ϕ∗L and ι∗λ by means of the canonical divisor

K
F̃ (V )

of F̃ (V ).

On the one hand, note that F̃ (V ) ⊂ R̃5 is the general fiber of the rational map P5 : R5 99K A4 (here

A4 denotes any toroidal compactification of A4). It follows that K
F̃ (V )

= ι∗(KR5
) in Pic(F̃ (V ))Q.

Using the expression for the canonical class KR5
given in [FL10, Theorem 1.5], we obtain

K
F̃ (V )

= ι∗
(
13λ− 2(δ′0 + δ′′0)− 3δram0 − . . .

)
= 13ι∗λ− 3ι∗δram0 = ι∗λ.

On the other hand, applying the Hurwitz formula to the double étale cover ϕ yields an equality

K
F̃ (V )

= ϕ∗KF (V ) = 3ϕ∗L

in NS((̃F (V )). Comparing both expressions for K
F̃ (V )

, we find the equality ι∗λ = 3ϕ∗L in

NS((̃F (V ))Q, and hence

mϕ∗L = ϕ∗Γ = 8ι∗λ = 24ϕ∗L

from which we deduce that m = 24.

Now we can answer the question above, namely, count the number of nodes in the curve Γ for

a general cubic threefold V . Indeed, this number arises as the difference between the arithmetic

genus and the geometric genus of Γ.

The geometric genus g(Γ) of Γ is that of its normalization Γ′. Since ωΓ′ = OΓ′(Γ
′ + KF (V )) by

adjunction, we have

2g(Γ′)− 2 = 6L · (6L+ 3L) = 54L2 = 270

from which the equality g(Γ′) = 136 follows.
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On the other hand, since Γ = 24L in NS(F (V )) by Theorem VI.4.6, again by adjunction the

arithmetic genus of Γ satisfies

2pa(Γ)− 2 = 24L · (24L+ 3L) = 648L2 = 3240

and thus pa(Γ) = 1621. Therefore, Γ has exactly 1485 nodes.

Geometrically these nodes translate as follows:

Corollary VI.4.7. A general smooth cubic threefold V ⊂ P4 contains exactly 1485 lines l ⊂ V for

which there exist 2-planes π1, π2 ⊂ P4 and lines r1, r2 ⊂ V satisfying V · πi = l + 2ri.

Another consequence of Theorem VI.4.6 is a good control of the intersection of Γ and Γ′, which

reads geometrically as:

Corollary VI.4.8. A general smooth cubic threefold V ⊂ P4 contains exactly 720 lines l ⊂ V with

the following property: there exist 2-planes π1, π2 ⊂ P4 and lines r1, r2 ⊂ V such that V ·π1 = l+2r1

and V · π2 = 2l + r2.

Coming back to our description of the general fiber of the restricted Prym map P̃5|T o5 , we find:

Corollary VI.4.9. For a general (V, δ) ∈ RC+, the following hold:

(1) T o5 ∩ F̃ (V ) is a partial desingularization of Γ, with exactly 765 nodes.

(2) The intersection of T o5 ∩ F̃ (V ) and ∆ram
0 ∩ F̃ (V ) is transverse, and consists of 1440 points.

Proof. As usual, let us denote by ϕ : F̃ (V ) → F (V ) the double étale cover induced by δ, whose

associated involution exchanges the two components T o5 ∩ F̃ (V ) and ∆ram
0 ∩ F̃ (V ) of Γ̃ = ϕ−1(Γ).

Since the morphism ϕ : Γ̃ → Γ is étale and Γ has only nodes as singularities, it follows that

T o5 ∩ F̃ (V ) and ∆ram
0 ∩ F̃ (V ) have only nodes as singularities, and intersect transversely.

Conversely, the preimage of a node of Γ must consist of:

• Either a node of T o5 ∩ F̃ (V ) and a node of ∆ram
0 ∩ F̃ (V ).

• Or two intersection points of T o5 ∩ F̃ (V ) and ∆ram
0 ∩ F̃ (V ) (where the intersection is transverse).

Therefore the proof is reduced to compute the intersection number [T o5 · ∆0
ram]

F̃ (V )
. Using the

projection formula and Theorem VI.4.6, we deduce that

2[T o5 ·∆0
ram]

F̃ (V )
= [T o5 ·∆0

ram]
F̃ (V )

+ [T o5 · T o5 ]
F̃ (V )

= [T o5 · ϕ∗Γ]
F̃ (V )

=

= [ϕ∗(T o5 · ϕ∗Γ)]F (V ) = [Γ · Γ]F (V ) = 2880

(the first equality follows from the fact hat T o5 and ∆0
ram have the same class in F̃ (V )).

It turns out that [T o5 · ∆0
ram]

F̃ (V )
= 1440. According to the previous description, these 1440

intersection points form the preimage by ϕ of 720 nodes of Γ. The remaining 765 nodes of Γ lift to

nodes of T o5 ∩ F̃ (V ) and ∆ram
0 ∩ F̃ (V ).
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VI.5 Genus at least 6

In this final section we examine the restricted maps Pg |T eg and Pg |T og for g ≥ 6. First part we prove

that they are generically finite onto their image, and we pay special attention to their degrees for

g = 6. In the second part, we propose a geometric characterization of P6(T o6 ) as a divisor in A5.

Generic finiteness on T eg and T og

Our first purpose is to prove that, for g ≥ 6, the restrictions Pg |T eg and Pg |T og are generically finite

onto their image. This result is actually valid for restrictions to arbitrary divisors when g ≥ 8,

whereas in the cases g = 6, 7 the use of specific cohomology classes is required in our approach:

Theorem VI.5.1. For every g ≥ 6 the restricted Prym maps Pg |T eg and Pg |T og are generically

finite onto their image.

Proof. It is well known (see the proof of the main theorem and the remark in [Nar96]) that, if

(C, η) ∈ Rg is a point where the differential dPg fails to be injective, then Cliff(C) ≤ 2. According

to classical results of Martens ([Mar80, Beispiel 7 and 8]), this means that either C has a g1
4 or C

is a plane sextic; of course the latter may only happen if g = 10.

If g ≥ 8, the locus in Mg of tetragonal curves has codimension at least 2, whereas the locus of

plane sextics inM10 has codimension 8. It turns out that, for g ≥ 8, dPg is injective at the general

point of any divisor D ⊂ Rg and hence Pg |D is generically finite onto its image.

If g = 7, the Brill-Noether number ρ(7, 1, 4) equals −1. This implies (see [EH89]) that the Brill-

Noether locus M 1
7,4 of tetragonal curves in M7 is an irreducible divisor, whose class in Pic(M7)Q

is known up to scalar:

[M 1
7,4] = c

(
10λ− 4

3
δ0 − 6δ1 − 10δ2 − 12δ3

)
,

for some c ∈ Q. On the other hand, the class of T7 ⊂M7 is

[T7] = 16(129λ− 16δ0 − 63δ1 − 93δ2 − 105δ3)

(see [TiB88]). Comparing both expressions we conclude that the general elements of T e7 and T o7
are not covers of tetragonal curves.

For the case g = 6, we use [Far12, Section 8]. There, by an analysis of the syzygies of Prym-canonical

curves, the locus in R6 where the infinitesimal Prym-Torelli theorem fails is characterized as a

divisor U6,0 ⊂ R6
3, which is nothing but the ramification divisor of the generically finite map P6.

3The divisor U6,0 is a particular case of the loci U2i+6,i ⊂ R2i+6 of Prym curves whose Prym-canonical model has

a nonlinear i-th syzygy. According to the Prym-Green conjecture, every U2i+6,i is expected to be a divisor in R2i+6;

see [Far12, Section 8] for more details.
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The cohomology class of U6,0 in Pic(R6)Q is given by the following formula (see [FL10, Theorem 0.6]

and [Far12, Theorem 8.6]):

[U6,0] = 7λ− 3

2
δram − δ′0 − . . .

Furthermore, the divisor U6,0 is irreducible (see [FGSMV14, Theorem 0.4], where this ramification

divisor is denoted by Q). By comparison against the classes of Theorem V.1.1, it follows that the

supports of T e6 and T o6 are different from that of U6,0, which finishes the proof.

In the sequel, we will focus on the case g = 6. Recall that the Prym map P6 : R6 → A5 is dominant

and generically finite of degree 27 ([DS81]). Moreover, the correspondence induced on a general

fiber by the tetragonal construction is isomorphic to the incidence correspondence on the 27 lines

of a smooth cubic surface ([Don92, Section 4]).

Therefore, from Corollary VI.1.2 and Theorem VI.5.1 one immediately deduces that P6 |T e6 is gener-

ically finite of degree 27; in particular, this indicates that T e6 remains invariant under the tetragonal

construction. And in fact, we have:

Proposition VI.5.2. Let (Ci, ηi,Mi) (i = 1, 2, 3) be a tetragonally related triple of smooth Prym

curves (Ci, ηi) ∈ R6 with a g1
4 Mi on Ci.

(1) If (C1, η1) ∈ T e6 is general, then (C2, η2), (C3, η3) ∈ T e6 as well.

(2) If (C1, η1) ∈ T o6 is general, then JC2, JC3 ∈ P7(T o7 ).

Proof. According to Lemma IV.3.4, giving the tetragonally related triple (Ci, ηi,Mi) is equivalent

to giving a trigonal curve R ∈ M7 and a subgroup W = {0, µ1, µ2, µ3} ⊂ JR2 (totally isotropic

with respect to the Weil pairing), in such a way that:

• (R,µi) corresponds to (Ci,Mi) under Recillas’ trigonal construction.

• The 2-torsion point ηi ∈ (JCi)2 is defined by µj ∈ 〈µi〉⊥ (j 6= i).

Fix a general (C1, η1) ∈ T e6 (resp. a general (C1, η1) ∈ T o6 ), and consider any g1
4 M1 on C1. By

generality, C1 admits a unique theta-characteristic L1 with h0(C1, L1) ≥ 2, which is a semicanonical

pencil with h0(C1, L1) = 2 and L1 ⊗ η1 even (resp. odd).

Let R ∈M7 be the trigonal curve and let W ⊂ JR2 be the totally isotropic subgroup defining the

tetragonally related triple. Since P7(R,µ1) = JC1 ∈ θnull ⊂ A6, it follows from Corollary VI.1.2

and Remark VI.1.3 that (R,µ1) ∈ T e7 , so R has a semicanonical pencil LR such that h0(R,LR⊗µ1)

is even. Moreover, if f1 : R1 → R is the cover determined by (R,µ1) ∈ R7, then the 2-torsion

singular point L1 of the canonical theta divisor ΘC1 ⊂ Pic5(C1) corresponds to f∗1LR under the

identification of (P+(R,µ1),Ξ+(R,µ1)) with
(
Pic5(C1),ΘC1

)
.

Now we want to determine the parity of the theta-characteristics LR ⊗ µ2 and LR ⊗ µ3. Ob-

serve that both parities are equal, since the Riemann-Mumford relation (see [Mum71] or [Har82,

Theorem 1.13]) reads as follows:

h0(R,LR) + h0(R,LR ⊗ µ1) + h0(R,LR ⊗ µ2) + h0(R,LR ⊗ µ3) ≡ 〈µ1, µ2〉 ≡ 0 (mod 2),
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(here we use that µ3 = µ1 ⊗ µ2).

Following [Don92, Theorem 1.5] and the notations therein, this means that for i ∈ {2, 3} we have

LR ⊗ µi ∈ (µ1)⊥
′
, and hence:

h0(R,LR ⊗ µi) ≡ qJR(LR ⊗ µi) ≡ qP (R,µ1)(f
∗
1 (LR ⊗ µi))

≡ qJC1(L1 ⊗ η1) ≡ h0(C1, L1 ⊗ η1) (mod 2).

If (C1, η1) ∈ T o6 , then L1⊗η1 is an odd theta-characteristic on C1, and hence we obtain (R,µi) ∈ T o7
for i ∈ {2, 3}. Therefore JCi = P7(R,µi) ∈ P7(T o7 ), which proves (2).

If (C1, η1) ∈ T e6 , then L1 ⊗ η1 is an even theta-characteristic on C1 and thus (R,µ2), (R,µ3) ∈ T e7 .

For i ∈ {2, 3} this gives JCi = P7(R,µi) ∈ θnull ⊂ A6, namely Ci ∈ T6 admits a (unique, by

generality) semicanonical pencil Li.

Therefore, to finish the proof of (1) we only have to check that (Ci, ηi) ∈ T e6 , namely that Li ⊗ ηi
is even. This is again a consequence of [Don92, Theorem 1.5]:

h0(R,LR ⊗ µ1) ≡ qJR(LR ⊗ µ1) ≡ qJCi(Li ⊗ ηi) ≡ h0(Ci, Li ⊗ ηi) (mod 2).

At present, we lack an interpretation for the Jacobian of a curve C ∈ M6 being the Prym variety

of a trigonal cover in T o7 . This prevents us to completely understand the tetragonal construction

applied to elements of T o6 , and hence to describe the (divisorial) components of P−1
6 (P6(T o6 )).

Another natural question would be to find the degree of the map P6 |T o6 .

In this direction, partial information is obtained from cohomology classes. This reveals once again

differences between the odd and the even case:

Proposition VI.5.3. P−1
6 (P6(T o6 )) contains other divisorial components apart from T o6 . In par-

ticular, the degree of the generically finite map P6 |T o6 is strictly smaller than 27.

Proof. Let us denote by P : R6 99K A5 the rational Prym map in genus 6. Here A5 stands for

the perfect cone compactification of A5, whose rational Picard group Pic(A5)Q is generated by the

Hodge class L and the class D of the irreducible boundary divisor.

According to [FGSMV14, Theorem 7.4], the pushforwards of the basic divisor classes of R6 are:

P∗λ = 18 · 27L− 57D, P∗δram0 = 4(17 · 27L− 57D), P∗δ′0 = 27D,

P∗δ′′0 = P∗δi = P∗δg−i = P∗δi:g−i = 0 for 1 ≤ i ≤ [g/2]

On the other hand, the pullback map P∗ : Pic(A5)Q → Pic(R6)Q satisfies

P∗L = λ− 1

4
δram0 , P∗D = δ′0

(see [GM14, Theorem 5]). The boundary divisors δ′′0 , δi, δg−i, δi:g−i do not appear since they are

contracted by P.
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Using the cohomology class [T o6 ] ∈ Pic(R6)Q dictated by Theorem V.1.1, we have

P∗[T o6 ] = 10584L− 1320D

Observe that this class equals d · [P6(T o6 )], where d = deg(P6 |T o6 ) and [P6(T o6 )] ∈ Pic(A5)Q is the

class of (the closure in A5 of) P6(T o6 ). Pulling back we obtain

P∗P∗[T o6 ] = 10584λ− 1320δ′0 − 2646δram0

Since these coefficients are not proportional to the corresponding ones in [T o6 ], it follows that T o6
cannot be the unique divisorial component of P−1

6 (P6(T o6 )).

T o6 and singular surfaces of twice the minimal class

In this final subsection we give the first steps towards an intrinsic description of the locus P6(T o6 )

in A5, with the help of Brill-Noether loci on Prym varieties. In order to be consistent with the

notation in the proof of Theorem VI.5.1, we denote by U6,0 ⊂ R6 the ramification divisor of P6.

Recall that the Andreotti-Mayer locus N0 in A5 is the union of two irreducible divisors θnull and

N ′0. The theta divisor of a general element of θnull has a unique singular point (which is 2-torsion),

whereas the theta divisor of a general element of N ′0 has exactly two singular (opposite) points.

The relation between P6 and the component N ′0 of the Andreotti-Mayer locus in A5 is described

in [FGSMV14, Sections 6 and 7]. In particular, the following statements hold:

(1) The divisor N ′0 ⊂ A5 is the branch divisor of P6.

(2) The preimage P−1
6 (N ′0) has two divisorial components: the ramification divisor U6,0 and an

antiramification divisor U . As cycles, there is an equality

P∗6N ′0 = 2U6,0 + U .

(3) U6,0 is the set of (C, η) ∈ R6 for which V 3(C, η) 6= ∅ (i.e. the theta divisor of P (C, η) has a

stable singularity), and is mapped six-to-one to N ′0 (see [Don81, Corollary 2.3]).

(4) U = π∗(GP 1
6,4 ) is the pullback to R6 of the Gieseker-Petri locus

GP 1
6,4 =

{
C ∈M6 | ∃L ∈W 1

4 (C) such that the Petri map µ0,L is not injective
}

and is mapped fifteen-to-one to N ′0.

As usual, for (C, η) ∈ R6 let us denote by f : C̃ → C the corresponding double étale cover, and by

σ : C̃ → C̃ the involution exchanging sheets.

Proposition VI.5.4. If (C, η) ∈ R6 is a non-hyperelliptic Prym curve with V 4(C, η) = ∅, then

V 2(C, η) is singular if and only if (C, η) ∈ U ∪ T o6 .
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Proof. According to Lemma IV.3.3, singular points M ∈ V 2(C, η) are exactly those of the form

M = f∗L⊗A

with h0(C,L) ≥ 2 and h0(C̃, A) > 0. In order to prove the statement, we distinguish the possible

values of d = degL allowing the existence of such an M .

For d ≤ 4, this condition is equivalent to the existence of L ∈ W 1
d (C) and A effective satisfying

h0(C̃, f∗L⊗ A) = 3 and ωC = L2 ⊗ Nmf (A). This happens if and only if there exists L ∈ W 1
d (C)

with ωC ⊗ L−2 effective: the “only if” part being clear, if ωC ⊗ L−2 is effective then Mumford’s

parity trick ([Mum83, bottom of page 186]) allows to find A effective with Nmf (A) = ωC ⊗ L−2

and h0(C̃, f∗L⊗A) = 3.

If there exists L ∈ W 1
3 (C), then one immediately checks that ωC ⊗ L−2 is effective. Moreover,

take x ∈ C such that ωC ⊗ L−2(−x) is effective. Since Cliff(C) ≥ 1 by assumption, one has

h0(C,L(x)) = 2 and the kernel of the Petri map

µ0,L(x) : H0(C,L(x))⊗H0(C,ωC ⊗ L−1(−x)) −→ H0(C,ωC)

is ker(µ0,L(x)) ∼= H0(C,ωC⊗L−2(−x)) 6= 0 by the base-point-free pencil trick ([ACGH85, page 126]).

In other words, both statements Sing V 2(C, η) 6= ∅ and (C, η) ∈ U hold whenever C is trigonal.

Now assume that C is not trigonal. We claim that the existence of L ∈ W 1
4 (C) with ωC ⊗ L−2

effective is equivalent to C ∈ GP 1
6,4 , namely to (C, η) ∈ U . Indeed, if one can write ωC = L2(a+ b)

for points x, y ∈ C, then ωC ⊗ L−1 = L(x + y) and thus the Petri map µ0,L fails to be injective.

Conversely, if the Petri map

µ0,L : H0(C,L)⊗H0(C,ωC ⊗ L−1) −→ H0(C,ωC)

of a certain L ∈ W 1
4 (C) has nonzero kernel, then the line bundle ωC ⊗ L−2 is effective since

ker(µ0,L) ∼= H0(C,ωC ⊗ L−2) by the base-point-free pencil trick.

Now we can assume that there exists no L ∈ W 1
4 (C) with ωC ⊗ L−2 effective. It only remains to

check the case d = 5: the condition reads f∗L ∈ V 2(C, η), which is equivalent to the existence of a

theta-characteristic L on C with

h0(C,L) + h0(C,L⊗ η) = 3.

Under our assumption on W 1
4 (C), this is equivalent to either L or L⊗η being an odd semicanonical

pencil for the cover f , namely to (C, η) ∈ T o6 .

Remark VI.5.5.

(1) If V 4(C, η) 6= ∅, then V 2(C, η) is automatically singular at points M ∈ V 4(C, η) (this is an

immediate application of [ACGH85, Proposition IV.4.2]).

On the other hand, forM ∈ V 4(C, η) one immediately deduces from Mumford’s parity trick that

M(x− σ(x)) ∈ V 3(C, η) for every x ∈ C̃. As a consequence, V 3(C, η) is at least 1-dimensional

whenever V 4(C, η) 6= ∅ (in particular, (C, η) ∈ U6,0).



122 Chapter VI. The Prym map on T eg and T og

(2) Let C ∈ GP 1
6,4 be general, so that there is a unique L ∈W 1

4 (C) and unique x, y ∈ C satisfying

L2(x + y) = ωC . If x̃, σ(x̃) (resp. ỹ, σ(ỹ)) are the two points of C̃ lying over x (resp. over y),

then the four candidates to define a singularity of V 2(C, η) are:

f∗L(ã+ b̃), f∗L(σ(ã) + b̃), f∗L(ã+ σ(̃b)), f∗L(σ(ã) + σ(̃b)).

By Mumford’s parity trick, these line bundles can be divided into two pairs (namely f∗L(ã+

b̃), f∗L(σ(ã)+σ(̃b)) and f∗L(σ(ã)+b̃), f∗L(ã+σ(̃b))) according to the component of Nm−1(ωC) =

P+ ∪ P− in which they live.

Since (C, η) /∈ U6,0 by genericity (and thus V 3(C, η) = ∅), it follows that two of them satisfy

h0 = 2 and the other two satisfy h0 = 3. In other words, for a general (C, η) ∈ U the theta

divisor Ξ+ has two exceptional singularities (as corresponds to P (C, η) ∈ N ′0) and the Brill-

Noether locus V 2(C, η) has two singular points.

Let us recall that, for a non-hyperelliptic Prym curve (C, η) = (C̃, C) ∈ Rg, the Brill-Noether

locus V 2(C, η) (when properly translated to P (C, η)) is a subvariety of twice the minimal class (see

[DCP95, Theorem 9] and [LN13, Corollary 4.4]). Moreover V 2(C, η) is symmetric in P (C, η), if the

translation is performed with a theta-characteristic of C̃ lying in P−.

Combining this observation with Proposition VI.5.4 and Remark VI.5.5, it is tempting to propose

the following analogue of the decomposition of the Andreotti-Mayer locus:

Question VI.5.6. Let V ⊂ A5 be (the closure of) the locus of ppav’s (A,Θ) containing an integral

surface S with the following properties:

(1) The cohomology class of S is twice the minimal class: [S] = 2 [Θ]3

6 in H6(A,Z).

(2) S is symmetric.

(3) S has singular points.

Then V decomposes as the union of two irreducible divisors: the closure of P6(T o6 ) (whose general

element contains at least one such surface S with a unique singular point, which is 2-torsion) and

N ′0 (whose general element contains fifteen such surfaces S, with two singular opposite points each).
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