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Resumen

Motivación

El tema de esta tesis se inspira en el hecho de que en el mundo actual se han de tomar
decisiones basadas en datos, tal y como ocurre en muchas aplicaciones, incluyendo la
operación de sistemas de energía eléctrica, la logística, las finanzas, etc. Estos problemas
de toma de decisiones basadas en datos pueden formularse como programas matemáticos
de optimización que están sujetos a importantes incertidumbres, ya que los modelos de
optimización se construyen a partir de datos ruidosos e inciertos.

Hoy en día se genera una gran cantidad y variedad de datos que, puestos a dis-
posición del decisor, constituyen un valioso recurso en los problemas de optimización.
Estos datos, sin embargo, no están exentos de incertidumbre sobre el contexto físico,
económico o social, sistema o proceso del que proceden; incertidumbre que, por otra
parte, el decisor debe tener en cuenta en su proceso de toma de decisiones. El obje-
tivo de esta tesis es desarrollar fundamentos teóricos e investigar métodos para resolver
problemas de optimización en los que existe una gran diversidad de datos sobre fenó-
menos aleatorios. De forma muy general, el objetivo de la toma de decisiones bajo
incertidumbre es encontrar soluciones óptimas correspondientes a problemas de opti-
mización en los que existe (o se supone) un fenómeno aleatorio. Frecuentemente, en la
toma de decisiones bajo incertidumbre, el decisor tiene disponible datos históricos sobre
el fenómeno aleatorio subyacente al problema y, posteriormente, realiza un proceso de
estimación/predicción. El esquema de este enfoque puede representarse como:

datos −→ estimación/predicciones −→ decisiones

De hecho, en cierto modo, el decisor está tratando de resolver un problema de
inferencia, ya que quiere inferir una solución óptima basada en la distribución de prob-
abilidad de los datos, que es desconocida e incierta, y, en consecuencia, también lo es el
valor objetivo que se pretende optimizar.

Sin embargo, se plantea la siguiente cuestión: ¿Un buen estimador de la verdadera
distribución de la que proceden los datos conduce necesariamente a un buen estimador de
la decisión óptima? Aunque a primera vista pueda parecer lógico que así sea, la realidad

VI



VII

es que este enfoque natural puede ser superado por métodos en los que las decisiones son
directamente inferidas de los datos disponibles, según el siguiente esquema simplificado:

datos −→ decisiones

El paso intermedio en el que se infiere una distribución de probabilidad a través de
los datos supone añadir una fuente de error innecesaria, ya sea por el error de calibración
de la distribución de probabilidad elegida como generadora de los datos o por el error
intrínseco al propio proceso de inferencia. Este hecho se conoce en la literatura como
la maldición del optimizador y es una reminiscencia del fenómeno del sobreajuste en el
aprendizaje estadístico.

Los problemas de toma de decisiones bajo incertidumbre han sido abordados por
diferentes comunidades científicas desde varios paradigmas distintos, que difieren en el
tratamiento y la representación de los fenómenos aleatorios. A continuación, discutimos
los más destacados y relevantes para esta disertación.

Programación Estocástica

En la Programación Estocástica se suele suponer que la incertidumbre sigue una dis-
tribución de probabilidad conocida [125]. Típicamente, un problema de Programación
Estocástica se puede formular como sigue:

inf
x∈X

EQ[f(x, ξ)] = inf
x∈X

∫
Ξ
f(x, ξ)Q(dξ) (1)

donde el objetivo es calcular la decisión óptima x∗ dentro del conjunto factible X que
minimiza el valor esperado de una cierta función (real) de coste objetivo f , EQ[f(x, ξ)],
con respecto a la distribución de probabilidad Q de la variable aleatoria ξ soportada en
Ξ [125]. Aunque en esta sección, en la ecuación (1) se minimiza el valor esperado, E, se
puede considerar alternativamente una medida del riesgo, como puede ser, por ejemplo,
el valor en riesgo condicional.

Las características clave de este paradigma son:

• La Programación Estocástica normalmente lleva a tener que resolver programas
de optimización a gran escala.

• Si la distribución de la incertidumbre es desconocida, como suele ser el caso, en-
tonces el problema de optimización bajo incertidumbre no puede resolverse. Sin
embargo, aunque a veces la distribución de probabilidad sea desconocida para el
decisor, ésta podría estimarse o sustituirse por una distribución nominal predeter-
minada utilizando información previa conocida por el decisor. Una elección común
para esta distribución nominal sería la distribución empírica estimada a partir de
algunas muestras de datos de entrenamiento o una estimación paramétrica de
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la verdadera distribución generadora de los datos consistente con la información
disponible para el decisor. No obstante, aunque un programa estocástico fuera
calibrado a un conjunto de datos fijo con parámetros de distribución insesgados,
el resultado de la optimización podría estar sesgado de forma optimista (de nuevo,
esto se conoce como la maldición del optimizador).

• Incluso en el caso de que la distribución de la incertidumbre sea totalmente cono-
cida, la evaluación del coste de una decisión factible fija requiere el cálculo de una
integral multidimensional, lo que se sabe que es computacionalmente difícil [71].

Optimización Robusta

La Optimización Robusta surge como un paradigma alternativo a la Programación
Estocástica que se basa en resolver un problema minimax donde el decisor se protege
frente a la realización del peor caso/escenario de la incertidumbre dentro de un conjunto
Ξ conocido como conjunto de incertidumbre [12], esto es,

inf
x∈X

sup
ξ∈Ξ

f(x, ξ) (2)

Las características clave de este paradigma son:

• El problema minimax definido en (2) debe admitir una reformulación tratable,
lo que depende de las hipótesis sobre la función de coste f y la estructura del
conjunto de incertidumbre Ξ.

• El conjunto de incertidumbre Ξ debe definirse adecuadamente para cubrir todas
las posibles realizaciones de la incertidumbre. Además, el “tamaño”del conjunto de
incertidumbre debe reflejar el grado de conservadurismo adoptado por el decisor,
mientras que la “forma” del mismo determina el conocimiento previo sobre la
distribución de probabilidad de la incertidumbre.

• Mientras que la Programación Estocástica adopta un punto de vista optimista
sobre la toma de decisiones, al considerar que se conoce perfectamente la distribu-
ción de probabilidad de la incertidumbre, la Optimización Robusta adopta un
enfoque pesimista, al trabajar con la peor realización posible de la incertidumbre,
lo que puede conducir a tomar decisiones demasiado conservadoras.

Optimización Distribucionalmente Robusta

Aunque el paradigma de la Optimización Distribucionalmente Robusta no es novedoso,
sino que surgió en los años 50 en el entorno de la optimización estocástica de inventarios,
es en esta década cuando ha crecido sustancialmente como área activa de investigación
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(véase [85, 117, 124]). La Optimización Distribucionalmente Robusta puede consid-
erarse como una metodología a medio camino entre la optimización estocástica y la
optimización robusta. En este caso, se supone que existe un fenómeno aleatorio que
sigue una distribución de probabilidad prescrita/fija. Sin embargo, el decisor desconoce
de qué distribución se trata (es decir, es ambigüa), ya que no dispone de información
completa, por lo que trata de protegerse contra la peor distribución dentro un determi-
nado conjunto de distribuciones de probabilidad (el llamado conjunto de ambigüedad).

Un problema distribucionalmente robusto genérico con conjunto de ambigüedad U
puede formularse como:

inf
x∈X

sup
Q∈U

EQ [f(x, ξ)] (3)

La Optimización Distribucionalmente Robusta ofrece un marco unificado. En particu-
lar, si el conjunto de ambigüedad U es unipuntual (esto es, está formado por una única
distribución de probabilidad), entonces el problema (3) se reduce al problema de Pro-
gramación Estocástica definido en (1). Por el contrario, si U es el conjunto de todas
las distribuciones soportadas en Ξ, entonces el problema (3) se reduce al problema de
Optimización Robusta definido en (2).

Un punto clave es que el conjunto de ambigüedad determina el problema. Si bien
es habitual en la literatura encontrar diversas formas de especificar el conjunto de am-
bigüedad, bien sea basándose en momentos o bien por medio de hipótesis paramétricas,
en esta tesis nos centramos en conjuntos de ambigüedad definidos por métricas o dis-
tancias de probabilidad. En este sentido, la distancia de Wasserstein, íntimamente
relacionada con el problema del transporte óptimo, ha resultado tener bastante éxito
debido a sus buenas propiedades estadísticas [99]:

Definición 1 (Distancia de Wasserstein de orden p). Sea p ∈ [1,∞). Dadas
dos medidas de probabilidad P,Q con p-ésimo momento finito soportadas en Ξ, esto es,
P,Q ∈ Pp(Ξ), la distancia de Wasserstein de orden p entre P y Q, Wp

(
P,Q

)
, se define

como el valor (
inf

π∈Π(P,Q)

{∫
Ξ2

∥ξ1 − ξ2∥p π(dξ1, dξ2)
})1/p

donde Π(P,Q) denota el conjunto de todas las distribuciones conjuntas de ξ1 y ξ2 con
marginales P y Q, respectivamente.

La popularidad y el atractivo de los modelos de optimización distribucionalmente
robustos en los últimos años es debido a las siguientes razones (véase [30, 87, 99]):

• Fidelidad: Los modelos de optimización distribucionalmente robustos reconocen
la existencia de incertidumbre distribucional (esto es, ambigüedad en la distribu-
ción generadora de las observaciones) y, con ello, son capaces de proteger al decisor
frente a la magnitud y el tipo de error de medición o estimación.
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• Tratabilidad computacional: Los modelos de optimización distribucionalmente
robustos suelen poder reformularse (o ser aproximados) como programas convexos
finitos computacionalmente tratables.

• Garantías de rendimiento: Para conjuntos de ambigüedad adecuadamente
calibrados, el coste óptimo esperado en el peor de los casos que proporciona el
problema de optimización distribucionalmente robusto ofrece una cota superior
del coste real de las decisiones calculadas mediante el modelo distribucionalmente
robusto bajo un cierto nivel de confianza (garantía de muestra finita o cota de
generalización). La otra garantía se conoce como consistencia asintótica: Cuando
el número de muestras de entrenamiento tiende a infinito y el conocimiento sobre
la distribución de probabilidad es revelado, las decisiones óptimas del problema
de optimización distribucionalmente robusto convergen a una decisión óptima del
problema estocástico con información perfecta.

• Regularización y robustez distribucional: Se ha demostrado la conexión
entre los modelos de aprendizaje con regularización y algunos modelos de opti-
mización distribucionalmente robustos (ver [87]). Esto es otra prueba más de
la analogía que se puede establecer entre la maldición del optimizador en Opti-
mización Estocástica y el fenómeno del sobreajuste en el Aprendizaje Estadístico.

• Anticipación a los “cisnes negros": Los modelos de optimización distribu-
cionalmente robustos pueden prevenir futuras realizaciones de la incertidumbre
que pueden tener consecuencias devastadoras.

• Optimalidad: Se ha demostrado que, en cierto sentido, los modelos de opti-
mización distribucionalmente robustos son “óptimos” cuando el decisor trata de
obtener buenas decisiones directamente de los datos (véanse [130, 131]).

Optimización con restricciones probabilísticas

Si consideramos un problema de optimización en el que algunas restricciones contienen
parámetros aleatorios, una forma conservadora de garantizar factibilidad ante tal in-
certidumbre, sería plantear un número infinito de restricciones (lo que se conoce como
Programación Semi-infinita), calculando la solución óptima que satisface cualquier re-
alización de la incertidumbre.

No obstante, es posible que algunas realizaciones aumenten significativamente el
coste de una solución factible. Si se descartaran tales realizaciones “perjudiciales” o
“dañinas”, el coste de la solución podría reducirse considerablemente, manteniendo una
alta garantía de factibilidad. La optimización con restricciones probabilísticas considera
problemas de optimización en los que algunas restricciones implican parámetros aleato-
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rios que deben satisfacerse con un umbral de probabilidad preestablecido (denominado
fiabilidad).

La optimización con restricciones probabilísticas presenta algunos desafíos:

• Comprobar la factibilidad de una solución requiere un procedimiento de inte-
gración multidimensional. Además, es poco frecuente contar con información per-
fecta acerca de la distribución de la incertidumbre, lo que nos lleva a un problema
de optimización con restricciones distribucionalmente robustas.

• En general, el conjunto factible determinado por las restricciones probabilísticas
es no convexo e incluso disconexo y, por lo tanto, los modelos con restricciones
probabilísticas son computacionalmente difíciles de resolver. Por ello, en la liter-
atura técnica se han propuesto aproximaciones convexas [81, 105], donde la más
popular es la basada en el valor en riesgo condicional :

Definición 2 (Valor en riesgo condicional, CVaR [118]). El valor en
riesgo condicional a nivel ϵ ∈ (0, 1) de una variable aleatoria real bajo la medida de
probabilidad Q, Q−CVaRϵ(ω), se define como el valor infτ∈R

{
τ + 1

ϵEQ[(ω − τ)+]
}

y cuando el ínfimo se alcanza, τ representa el valor en riesgo con nivel de confianza
1− ϵ.

Objetivos

En esta tesis pretendemos desarrollar, en el ámbito de la Optimización Distribucional-
mente Robusta basada en el problema de transporte óptimo, una metodología puramente
basada en datos que explote cierta información extra/previa sobre el fenómeno aleatorio.
Esta información extra cristaliza en dos ejes o focos sobre la naturaleza del fenómeno
aleatorio: en primer lugar, alguna información previa sobre, por ejemplo, la forma y/o
estructura de la distribución de probabilidad; en segundo lugar, alguna información pre-
via condicional como la dada por algunas covariables que ayudan a explicar el fenómeno
aleatorio subyacente al problema de optimización sin recurrir a técnicas de regresión
previa. Los desafíos a la hora de abordar la inclusión de información extra o previa en
problemas de optimización distribucionalmente robustos por medio de un conjunto de
ambigüedad son fundamentalmente el modelado, la derivación de “buenas” propiedades
teóricas y la disponibilidad de reformulaciones que sean tratables computacionalmente.
Si bien en la literatura técnica existe una gran cantidad de trabajos (véanse, por ejem-
plo, [70, 89] y referencias posteriores) donde se han propuesto conjuntos de ambigüedad
que incluyen información extra acerca, por ejemplo, de la forma de la distribución de
probabilidad que gobierna la incertidumbre, esto generalmente conduce a una comple-
jidad computacional mayor que la del problema distribucionalmente robusto original
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debido al modelado. En esta tesis, se pretende aplicar el uso de conos de orden, am-
pliamente utilizados en inferencia estadística con restricciones o en regresión isotónica
[126], como herramienta de modelado sencilla para incorporar información previa sobre
la distribución de la incertidumbre en problemas de Optimización Distribucionalmente
Robusta.

Sin embargo, la literatura técnica es escasa en cuanto a problemas de Optimización
Distribucionalmente Robusta que incluyan cierta información condicional sobre la in-
certidumbre, ya que básicamente se han tratado problemas puramente estocásticos o
robustos en los que la información condicional está determinada por ciertas covariables
(véanse, por ejemplo, [17, 19, 9]).

Por otra parte, el uso de métricas probabilísticas para la toma de decisiones bajo
incertidumbre ha crecido notablemente con el auge de la Optimización Distribucional-
mente Robusta, y en particular, gracias al trabajo seminal [99] donde se muestra la
potencia y beneficios del uso de la métrica de Wasserstein, ya que goza de buenas
propiedades estadísticas [109]. La extensión del enfoque propuesto en [99] a problemas
de toma de decisiones bajo incertidumbre condicionales no es para nada trivial. De he-
cho, en nuestro trabajo publicado [53] se prueba que, en general, la aplicación directa de
la metodología propuesta en [99] conduce a un problema mal planteado. La formulación
usando la métrica de Wasserstein requiere considerar la introducción de recortes de
probabilidades, íntimamente relacionados con problemas de transporte óptimo parciales.
Éste carácter parcial permite una formulación rigurosa de un problema de optimización
distribucionalmente robusto con información condicional con una métrica probabilística
bajo condiciones muy generales. De hecho, dadas sus bondades y su aplicabilidad prác-
tica, en el trabajo [53] nos centramos en el uso de la métrica de Wasserstein. Aunque el
uso de los recortes de probabilidades ha sido aplicado con asiduidad en el campo de la Es-
tadística (véase [2] y referencias posteriores a este artículo), salvo mayor conocimiento,
no ha sido usado en el campo de la toma de decisiones bajo incertidumbre. Un objetivo
de esta tesis es mostrar la potencia y versatilidad del uso de recortes de probabilidad
en el campo de la toma de decisiones bajo incertidumbre (en nuestro trabajo [53] se
muestra, por ejemplo, una aplicación del marco propuesto a problemas de optimización
bajo incertidumbre con muestras contaminadas). Otro objetivo es la formalización rig-
urosa y la extensión de garantías teóricas propuestas en [99] al caso condicional, lo
que ha requerido un profundo análisis y desarrollo teórico. Asimismo, hemos querido
dotar de robustez distribucional a la metodología propuesta en un trabajo previo sobre
Programación Estocástica Prescriptiva o con información contextual [17].

Por último, se han aplicado las técnicas desarrolladas a varios problemas de interés
eminentemente práctico procedentes de los ámbitos de las finanzas, la operación de
los sistemas eléctricos o la gestión de inventarios. Hemos considerado el problema del
vendedor de periódicos y el problema de selección de carteras, que son comúnmente
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utilizados en optimización bajo incertidumbre como problemas test o de referencia con
los que comparar diferentes modelos o alternativas existentes en la literatura. Más allá
de estos problemas de referencia clásicos, también hemos aplicado nuestra metodología
al campo de la operación de los sistemas eléctricos, donde la creciente integración de en-
ergías renovables como la eólica introduce una alta componente aleatoria. En particular,
se ha desarrollado una metodología capaz de explotar cierta información previa o extra
para el operador del sistema eléctrico. El objetivo de este último es obtener decisiones
de operación más rentables satisfaciendo la fiabilidad del sistema protegiéndose frente a
eventos imprevistos derivados de la ambigüedad de la distribución de la incertidumbre.

Contribuciones

Las principales contribuciones de esta tesis son:

1. La revisión de los principales retos teóricos y de modelización de los problemas de
toma de decisiones basados en datos que están sujetos a aleatoriedad y ruido.

2. La ilustración de los beneficios de usar información previa/extra para enriquecer
el conjunto de ambigüedad de un modelo de optimización distribucionalmente
robusto utilizando resultados empíricos y simulados.

3. La formulación de un enfoque distribucionalmente robusto para modelar cierta
información estructural sobre la distribución de probabilidad de la incertidumbre.
Esta se modela a través de un enfoque basado en una partición del soporte ex-
plotando el problema del transporte óptimo y las restricciones de conos de orden.
Además, se proporcionan reformulaciones tratables, que son el resultado de la
capacidad de modelar información de forma (como puede ser la multimodalidad)
sin incrementar la complejidad del problema de optimización distribucionalmente
robusto por medio de la inclusión de restricciones lineales.

4. La formulación de versiones distribucionalmente robustas de programas estocás-
ticos condicionales explotando el concepto de conjunto de recortes de probabil-
idad, el problema del transporte óptimo parcial y una métrica de probabilidad.
Además, la metodología propuesta puede verse como una extensión natural de
la Optimización Distribucionalmente Robusta estándar basada en la métrica de
Wasserstein al caso con información condicional.

5. El desarrollo de un marco distribucionalmente robusto utilizando recortes de prob-
abilidad para abordar problemas de toma de decisiones con muestras contami-
nadas.
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6. La obtención de versiones distribucionalmente robustas de algunos métodos locales
de predicción no paramétrica, como la regresión kernel de Nadaraya-Watson y
el método de los K vecinos más cercanos, que se utilizan frecuentemente en la
optimización estocástica contextual o Programación Estocástica Prescriptiva.

7. Las garantías de rendimiento teórico de los marcos distribucionalmente robustos
que proponemos se exponen y discuten formalmente. En particular, para los dos
marcos distribucionalmente robustos desarrollados en esta tesis, se proporcionan
garantías de muestra finita y consistencia asintótica. Además, la introducción de
los recortes de probabilidad en Optimización Distribucionalmente Robusta abre
la puerta a su aplicación en otros ámbitos del campo de la toma de decisiones
bajo incertidumbre.

8. El desarrollo de un modelo del problema del Flujo Óptimo de Cargas con restric-
ciones probabilísticas y robusto desde el punto de vista de la distribución que es
capaz de explotar la información contextual. Además, a través de un conjunto
de ambigüedad basado en recortes de probabilidad se proporciona una reformu-
lación tratable utilizando la conocida aproximación basada en el valor en riesgo
condicional.

9. El análisis de los modelos y metodologías de optimización distribucionalmente
robustos propuestos en esta tesis mediante ejemplos ilustrativos y estudios de casos
realistas en finanzas, gestión de inventarios y operación de sistemas de energía
eléctrica.

Estructura de la tesis

Los capítulos de esta tesis se esquematizan de la siguiente manera:

• El Capítulo 2 contiene una visión general de los principales fundamentos de la
toma de decisiones bajo incertidumbre. En concreto, introducimos la Progra-
mación Estocástica, Robusta, Distribucionalmente Robusta y con restricciones
probabilísticas. Asimismo, se introducen en este capítulo definiciones y conceptos
que son usados a lo largo de esta tesis, tales como el valor en riesgo condicional
y la conocida métrica o distancia de Wasserstein. Se incluye aquí también una
revisión de la literatura sobre Optimización Distribucionalmente Robusta.

• Los Capítulos 3 y 4 proporcionan el núcleo principal de esta tesis. En concreto,
se desarrollan dos marcos distribucionalmente robustos para abordar problemas
de toma de decisiones basados en datos bajo ambigüedad sobre su distribución de
probabilidad:



XV

– El Capítulo 3 discute el primer marco, que se construye a partir de alguna
información previa o extra sobre la distribución de probabilidad de la in-
certidumbre. Más concretamente, la información extra o previa considerada
es cierto conocimiento estructural de la distribución, por ejemplo, sobre su
forma. Por medio de un enfoque que combina un procedimiento basado en el
problema del transporte óptimo usando particiones del soporte y restricciones
de conos de orden proponemos una metodología de modelado de la forma o
tendencia de la subyacente distribución de probabilidad generadora de los
datos. Además, probamos que la metodología propuesta conduce a la resolu-
ción de problemas tratables desde un punto de vista computacional y pro-
porcionamos resultados teóricos de garantía de rendimiento. Finalmente, se
incluyen unos experimentos numéricos para ilustrar la metodología propuesta
a través de dos aplicaciones. En primer lugar, nos centramos en el problema
del vendedor de periódicos, donde asumimos que se posee cierta información
previa acerca de la distribución de probabilidad de los datos. Se incluye una
discusión y comparativa con otros enfoques alternativos disponibles en la lit-
eratura técnica. En segundo lugar, se presenta el problema de una empresa
estratégica que compite à la Cournot en un mercado donde cierta informa-
ción estructural sobre la distribución de la incertidumbre está disponible para
el decisor.

– El Capítulo 4 elabora el segundo marco, que se se construye a partir de
alguna información condicional disponible para el decisor. Esta informa-
ción condicional viene dada por medio de un evento medible genérico. Este
evento proporciona a su vez cierta información contextual que podría venir
dada por medio de algunas covariables (también conocidas como variables
exógenas, características o atributos). Estas covariables pueden ser mode-
ladas por medio de un vector aleatorio que se presupone que presenta un
cierto poder predictivo acerca de la incertidumbre y que afecta al valor de
la decisión del problema de optimización. Un caso particularmente relevante
es aquel en que la información condicional se proporciona en términos de un
conjunto de confianza para las covariables; o más concretamente, cuando se
reduce a un valor predicho de las mismas. Así pues, en este último caso, la
decisión óptima estaría parametrizada en función de este valor predicho y
proporcionaría la mejor respuesta en términos de coste (esperado) habiendo
predicho u observado dichas covariables. En primer lugar, establecemos el
problema estocástico condicional y hacemos una revisión y comparativa de
las metodologás existentes en la literatura técnica. Seguidamente, introduci-
mos el concepto de recorte de una distribución de probabilidad y haciendo
uso de la conexión existente entre los recortes y el problema del transporte
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parcial proporcionamos teóricamente la justificación del uso de los recortes
en problemas estocásticos condicionales. Además, se proporcionan resultados
teóricos que muestran que la metodologá propuesta satisface buenas garantás
de rendimiento y convergencia asintótica. También se proporciona una refor-
mulación tratable del problema con la misma complejidad que el problema
distribucionalmente robusto basado en la métrica de Wasserstein que ig-
nora la información condicional. Asimismo, se demuestra que la metodología
propuesta puede aplicarse en problemas estocásticos donde hay presencia de
datos contaminados. Finalmente, se incluyen tres aplicaciones que ilustran
la metodología propuesta a través de una serie de experimentos numéricos:
en primer lugar, se aborda el problema del vendedor de periódicos en el caso
en que se tiene disponible cierta información contextual. En segundo lugar,
se aborda el problema de selección de carteras utilizando la metodología dis-
tribucionalmente robusta basada en recortes que hemos desarrollado. Por
último, se discute en profundidad una aplicación del marco propuesto al
problema del Flujo Óptimo de Cargas donde se asume que el operador del
sistema eléctrico tiene disponible cierta informacón contextual sobre la in-
certidumbre. En concreto, formulamos el problema como un problema dis-
tribucionalmente robusto con restricciones probabilísticas y explotamos como
información contextual la producción predicha para el conjunto de centrales
eólicas del sistema. Se proporciona una reformulación tratable del problema
de optimización resultante y se ilustra todo ello en un caso de estudio realista
bajo dos escenarios de penetración eólica en el sistema.

• El Capítulo 5 concluye esta tesis y proporciona sugerencias sobre posibles trabajos
futuros de investigación.

• El Apéndice A proporciona pruebas teóricas y resultados complementarios al
marco desarrollado en el Capítulo 3.

• El Apéndice B contiene material teórico adicional a la metodología desarrollada
en el Capítulo 4. En particular, la Sección B.1 de dicho apéndice incluye nociones
y resultados teóricos de probabilidad y topología relacionados con la métrica de
Wasserstein; una reformulación tratable, bajo hipótesis débiles, del problema de
optimización considerado como un programa finito convexo; y un procedimiento
constructivo de obtención de una distribución dentro del conjunto de ambigüedad
que maximiza el supremo sobre el que se formula el problema de optimización dis-
tribucionalmente robusta que se postula. La Sección B.2 contiene las principales
pruebas teóricas correspondientes al Capítulo 4. Finalmente, en la Sección B.3 se
prueba la consistencia asintótica de la metodología propuesta usando un enfoque
basado en técnicas de vecinos más cercanos.
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• Por último, el Apéndice C enumera la notación y proporciona otros conceptos,
demostraciones teóricas y experimentos adicionales sobre el problema del Flujo
Óptimo de Cargas que se discute en la Sección 4.4 del Capítulo 4.

Conclusiones

Muchos problemas de toma de decisiones en el mundo real se construyen a partir de
parámetros que se corresponden con datos que son aleatorios y ruidosos. Es habitual
formular estos problemas como programas matemáticos de optimización bajo incer-
tidumbre, en los que dichos parámetros se tratan como variables aleatorias. No tener
en cuenta esta incertidumbre puede conducir a decisiones infactibles/subóptimas. En la
actualidad, los decisores no sólo recogen observaciones de las incertidumbres que afectan
directamente a sus procesos de decisión, sino que también reúnen cierta información pre-
via sobre la distribución generadora de los datos de la incertidumbre. Esta información
previa es utilizada por el decisor para prescribir un conjunto más preciso de posibles
distribuciones de probabilidad, el llamado conjunto de ambigüedad en la Optimización
Distribucionalmente Robusta. La información previa estudiada en esta tesis puede ser:

• Información estructural, que puede venir dada por algún conocimiento experto
del problema de optimización a resolver. Esta información estructural puede ser
información de forma como la multimodalidad o unimodalidad de la distribución
generadora de los datos. En particular, la introducción de restricciones de cono
de orden permite el modelado de esta información estructural de un modo sencillo
sin ańadir complejidad.

• Información condicional dada en términos de un evento genérico medible. Este
evento puede transmitir alguna información contextual ligada, por ejemplo, a co-
variables (también conocidas como variables exógenas, características o atributos).

En esta tesis, se desarrollan varios modelos de optimización distribucionalmente
robustos haciendo uso de herramientas de análisis convexo, teoría de la probabilidad,
estadística y optimización bajo incertidumbre. Los contenidos de esta tesis se recogen
en los artículos publicados [55], [53] y el preprint [51]:

• En nuestro artículo [55], se presenta un nuevo marco para la Optimización Dis-
tribucionalmente Robusta basada en la teoría del transporte óptimo en combi-
nación con restricciones de conos de orden para aprovechar información previa
o extra sobre la verdadera distribución generadora de los datos. Motivados por
el exceso de conservadurismo del enfoque tradicional distribucionalmente robusto
basado en la métrica de Wasserstein, se formula un conjunto de ambigüedad capaz
de incorporar información sobre el orden entre las probabilidades que la verdadera
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distribución de los parámetros inciertos del problema asigna a algunas subregiones
del soporte. Nuestro enfoque es capaz de modelar una amplia gama de información
sobre la forma (como la relacionada con la monotonicidad o la multimodalidad) de
forma práctica e intuitiva. Además, bajo hipótesis débiles, el problema resultante
de optimización distribucionalmente robusto puede, de hecho, reformularse como
un problema convexo finito en el que la información extra (expresada a través
de las restricciones del cono de orden) se presenta como restricciones lineales, a
diferencia de las formulaciones con mayor complejidad computacional que existen
en la literatura. Además, nuestro enfoque está respaldado por garantías teóricas
de rendimiento y es capaz de convertir la información proporcionada en solu-
ciones con mayor fiabilidad y mejor rendimiento, como ilustran los experimentos
numéricos efectuados sobre el conocido problema del vendedor de periódicos y el
problema de una empresa estratégica que compite à la Cournot en un mercado
de producto homogéneo.

• En nuestro trabajo [53], se explota la conexión entre los recortes de probabilidad
y el transporte parcial de masa para proporcionar una forma fácil, pero potente
y novedosa, de extender la Optimización Distribucionalmente Robusta estándar
basada en la métrica de Wasserstein al caso de los programas estocásticos condi-
cionales. Nuestro enfoque produce decisiones que son distribucionalmente robus-
tas frente a la incertidumbre en el proceso de inferir la medida de probabilidad
condicional de los parámetros aleatorios a partir de una muestra finita procedente
de la verdadera distribución conjunta generadora de los datos. A través de una
serie de experimentos numéricos construidos sobre el problema del vendedor de
periódicos de un solo artículo y un problema de selección de carteras, se demues-
tra que nuestro método alcanza un rendimiento notablemente mejor fuera de la
muestra que algunas alternativas existentes. Hemos apoyado estos resultados em-
píricos con un análisis teórico, mostrando que nuestro enfoque goza de atractivas
garantías de rendimiento.

• En nuestro preprint [51], se desarrolla un modelo de Flujo Óptimo de Cargas con
restricciones probabilísticas, robusto desde el punto de vista de la distribución,
que es capaz de explotar la información contextual a través de un conjunto de
ambigüedad basado en recortes de probabilidad. Hemos proporcionado una refor-
mulación de este modelo como un programa lineal continuo utilizando la conocida
aproximación basada en el valor en riesgo condicional. Mediante una serie de
experimentos numéricos realizados en una red eléctrica modificada de 118 nodos
con incertidumbre eólica, se demuestra que, explotando la dependencia estadís-
tica entre la predicción de la producción eólica y su error de predicción asociado,
nuestro enfoque puede identificar soluciones de despacho que, satisfaciendo la fi-
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abilidad requerida del sistema, conducen a un ahorro de costes de hasta varios
puntos porcentuales con respecto a las soluciones del problema del Flujo Óptimo
de Cargas proporcionadas por un método distribucionalmente robusto alternativo
que ignora dicha dependencia estadística.

Trabajo futuro

A continuación, se enumeran las posibles futuras líneas de investigación resultantes del
trabajo realizado en esta tesis:

1. El desarrollo de métodos de descomposición para resolver problemas a gran escala
de optimización distribucionalmente robustos basados en la métrica de Wasser-
stein. Esto es un problema fundamentalmente derivado de la dependencia del
número de restricciones con respecto al tamaño de la muestra de entrenamiento.

2. Se requiere desarrollo teórico en profundidad para intentar eliminar la dependencia
de la dimensión de la incertidumbre en las garantías de muestra finita en el ámbito
de la optimización estocástica condicional. El uso de otras métricas probabilísticas
es otra potencial futura línea de investigación.

3. Es necesario el desarrollo de procedimientos de calibración (basados, por ejemplo,
en validación cruzada o remuestreo) para elegir adecuadamente los parámetros de
robustez de los modelos de optimización distribucionalmente robustos presentes
en esta tesis.

4. La aplicación de los recortes de probabilidades en los problemas de Programación
Estocástica en dos etapas requiere un estudio adicional.

5. Es necesario estudiar procedimientos basados en datos para calibrar adecuada-
mente los parámetros de robustez en nuestro modelo del Flujo Óptimo de Cargas
distribucionalmente robusto con restricciones probabilísticas de acuerdo con las
preferencias de riesgo del operador del sistema (por ejemplo, recurriendo a la
validación cruzada o al remuestreo). También, es muy interesante la extensión
de este modelo para tener en cuenta restricciones intertemporales, lo que, entre
otras cosas, implicaría la adaptación de nuestro conjunto de ambigüedad basado
en los recortes de probabilidades para tratar con procesos estocásticos y datos
provenientes de series temporales.
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Abstract

Nowadays, a large amount of varied data is being generated which, when made avail-
able to the decision maker, constitutes a valuable resource in optimization problems.
These data, however, are not free from uncertainty about the physical, economic or
social context, system or process from which they originate; uncertainty that, on the
other hand, the decision maker must take into account in his/her decision making pro-
cess. The objective of this PhD dissertation is to develop theoretical foundations and
investigate methods for solving optimization problems where there is a great diversity
of data on uncertain phenomena. Today’s decision makers not only collect observations
from the uncertainties directly affecting their decision-making processes, but also gather
some prior information about the data-generating distribution of the uncertainty. This
information is used by the decision maker to prescribe a more accurate set of potential
probability distributions, the so-called ambiguity set in distributionally robust optimiza-
tion. Our intention, therefore, is to develop a purely data-driven methodology, within
the scope of distributionally robust optimization based on the optimal transportation
problem, which exploits some extra/prior information about the random phenomenon.
This extra information crystallizes in two axes on the nature of the random phenomenon:
first, some prior information about, for example, the shape/structure of the probability
distribution; second, some conditional information such as that given by various covari-
ates, which help explain the random phenomenon underlying the optimization problem
without resorting to prior regression techniques.

We propose a formulation of a distributionally robust approach to model certain
structural information about the probability distribution of the uncertainty. This is
given in terms of a partition-based approach, exploiting the optimal transport problem
and order cone constraints. In addition, tractable reformulations are provided, and
by the same token, the power of modeling shape information (such as multimodality),
without jeopardizing the complexity of the distributionally robust optimization problem
by adding linear constraints.

Moreover, by leveraging probability trimmings and their connection with the partial
optimal transport problem, we formulate a distributionally robust version of conditional
stochastic programs. The theoretical performance guarantees of the distributionally

XXI
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robust frameworks we propose are also formally stated and discussed. In addition, we
show that the proposed methodology based on probability trimmings can be applied to
decision-making problems under uncertainty with contaminated samples.

Furthermore, we develop a distributionally robust chance-constrained Optimal Power
Flow model that is able to exploit contextual/side information through an ambiguity
set based on probability trimmings, providing a tractable reformulation using the well-
known conditional value-at-risk approximation.

Finally, we test, analyze, and discuss the proposed optimization models and method-
ologies developed in this PhD dissertation through illustrative examples and realistic
case studies in finance, inventory management and power systems operation.





Contents

1 Introduction 2
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Essentials of decision-making under uncertainty 7
2.1 Stochastic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Robust optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Distributionally robust optimization . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Improving the specification of the ambiguity set with prior infor-
mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Chance-constrained programming . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Leveraging structural information via optimal transport and order
cone constraints 20
3.1 Methodology and theoretical foundations . . . . . . . . . . . . . . . . . . 21

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Tractable reformulations . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Separable objective function . . . . . . . . . . . . . . . . . . . . . 25
3.1.4 Order cone constraints . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.5 On convergence and out-of-sample performance guarantees . . . . 28

3.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Application I. Newsvendor problems . . . . . . . . . . . . . . . . 34

The single-item newsvendor problem . . . . . . . . . . . . . . . . 34
The multi-item newsvendor problem . . . . . . . . . . . . . . . . 37

3.2.2 Application II. The problem of a strategic firm competing à la
Cournot in a market . . . . . . . . . . . . . . . . . . . . . . . . . 38

XXIV



Contents XXV

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Conditional stochastic programs: A distributionally robust solution
approach based on probability trimmings 42

4.1 Methodology and theoretical foundations . . . . . . . . . . . . . . . . . . 43

4.1.1 Preliminaries and motivation . . . . . . . . . . . . . . . . . . . . 43

4.1.2 The Partial Mass Transportation Problem and Trimmings . . . . 45

4.1.3 Tractable reformulation of the partial mass transportation problem 50

4.1.4 Finite sample guarantee and asymptotic consistency . . . . . . . 51

Case Q(Ξ̃) = α > 0. Applications in data-driven decision making
under contaminated samples . . . . . . . . . . . . . . . 52

The case of unknown Q(Ξ̃) = α > 0. . . . . . . . . . . . . . . . . 55

The case Q ≪ λd and Q(Ξ̃) = α = 0. . . . . . . . . . . . . . . . . 56

4.2 Application I. Newsvendor problem . . . . . . . . . . . . . . . . . . . . . 60

4.3 Application II. Portfolio allocation problem . . . . . . . . . . . . . . . . 65

4.3.1 Case Q(Ξ̃) = α = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Case Q(Ξ̃) = α > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Application III. Optimal Power Flow problem . . . . . . . . . . . . . . . 74

4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.2 DC-OPF under uncertainty: Mathematical Formulation . . . . . 76

Variables and constraints . . . . . . . . . . . . . . . . . . . . . . 77

Dealing with uncertainty in the DC-OPF problem: Joint chance
constraints, Distributionallly Robust Optimization and
contextual information . . . . . . . . . . . . . . . . . . . 78

4.4.3 A tractable and conservative CVaR-based approximation of the
distributionally robust joint chance constraints . . . . . . . . . . 80

4.4.4 An exact tractable reformulation of the worst-case expected cost 81

4.4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.6 Evaluation of the out-of-sample performance via re-optimization 84

4.4.7 A 118-bus case study . . . . . . . . . . . . . . . . . . . . . . . . . 85

Medium wind penetration case . . . . . . . . . . . . . . . . . . . 86

High wind penetration case . . . . . . . . . . . . . . . . . . . . . 89

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Conclusions and future work 94

5.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Directions for future research . . . . . . . . . . . . . . . . . . . . . . . . 96



XXVI Contents

A Proofs of Chapter 3 97
A.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2 Proof of Corollary 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.3 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.4 Proof of Theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.5 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.6 Proof of Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B Additional material to Chapter 4 103
B.1 Complementary definitions and technical results . . . . . . . . . . . . . . 104

B.1.1 Concepts from measure theory and the Wasserstein metric . . . . 104
B.1.2 Concepts and technical results from probability trimmings . . . . 105
B.1.3 Topological properties of the ambiguity set . . . . . . . . . . . . 106
B.1.4 Tractable reformulation and maximizer of problem (SP2) . . . . 107

B.2 Proofs of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.2.1 Proof of Lemma 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.2.2 Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . 109
B.2.3 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.2.4 Proof of Proposition 4.2 . . . . . . . . . . . . . . . . . . . . . . . 112
B.2.5 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.2.6 Proof of Lemma 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.2.7 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.2.8 Proof of Proposition 4.3 . . . . . . . . . . . . . . . . . . . . . . . 114
B.2.9 Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.2.10 Proof of Lemma 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.3 Asymptotic consistency under a nearest neighbors lens . . . . . . . . . . 115

C Additional material to Section 4.4 129
C.1 Notation used in Section 4.4 . . . . . . . . . . . . . . . . . . . . . . . . 129

C.1.1 Sets, numbers and indices . . . . . . . . . . . . . . . . . . . . . . 129
C.1.2 Parameters and functions . . . . . . . . . . . . . . . . . . . . . . 129
C.1.3 Random variables and uncertain parameters . . . . . . . . . . . . 130
C.1.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.1.5 Other symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

C.2 Proof of Proposition 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
C.3 Proof of Proposition 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
C.4 Real-time re-dispatch problem . . . . . . . . . . . . . . . . . . . . . . . . 133
C.5 Illustrative example (3-bus system) . . . . . . . . . . . . . . . . . . . . . 134
C.6 Data for the illustrative example (3-bus system) . . . . . . . . . . . . . . 141



Contents XXVII

References 142



List of Figures

3.1 Single-item newsvendor problem: (Approximate) true data-generating
distribution, order quantity and performance metrics . . . . . . . . . . . 36

3.2 Multi-item newsvendor problem: Performance metrics . . . . . . . . . . 38

3.3 Strategic firm problem: (Approximate) true data-generating distribution,
optimal solution and performance metrics . . . . . . . . . . . . . . . . . 40

4.1 Probability simplex (in blue) corresponding to the trimming set R0.5(Q̂N ) 47

4.2 Newsvendor problem with features: True distributions, quantile estimate
and performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Portfolio problem with features: Performance metrics . . . . . . . . . . . 67

4.4 Impact of the robustness parameter with 200 training samples, KN =

⌊N/(log(N + 1))⌋ and δ = 0.5, λ = 0.1 . . . . . . . . . . . . . . . . . . . 68

4.5 Portfolio problem with features: Varying context under an optimal se-
lection of the robustness parameters, KN = ⌊N/(log(N + 1))⌋ and δ =

0.5, λ = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Portfolio problem with features: Performance metrics. Case α > 0 and
δ = 0.5, λ = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Case α > 0, impact of the robustness parameter with 200 training sam-
ples and δ = 0.5, λ = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 Portfolio problem with features: Performance metrics under an optimal
selection of the robustness parameters. Case α > 0 and δ = 0.5, λ = 0.1 74

4.9 Medium level of wind penetration, N = 100 and ϵ = 0.1: Total downward
and upward reserve capacity and performance metrics . . . . . . . . . . 87

4.10 Medium level of wind penetration, N = 300 and ϵ = 0.1: Total downward
and upward reserve capacity and performance metrics . . . . . . . . . . 88

4.11 High level of wind penetration, N = 100 and ϵ = 0.1: Total downward
and upward reserve capacity and performance metrics . . . . . . . . . . 91

4.12 High level of wind penetration, N = 300 and ϵ = 0.1: Total downward
and upward reserve capacity and performance metrics . . . . . . . . . . 92

XXVIII



List of Figures XXIX

C.1 Heat map of the true joint distribution and kernel estimate of the true
conditional density given z∗ = 30 MW . . . . . . . . . . . . . . . . . . . 135

C.2 Three-bus system, sample size N = 30 and ϵ = 0.1: Total downward and
upward reserves and performance metrics . . . . . . . . . . . . . . . . . 136

C.3 Three-bus system, sample size N = 30 and ϵ = 0.1: Generators’ dispatch
and participation factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

C.4 Three-bus system, sample size N = 2000 and ϵ = 0.1: Total downward
and upward reserves and performance metrics . . . . . . . . . . . . . . . 138

C.5 Three-bus system, sample size N = 2000 and ϵ = 0.1: Generators’ dis-
patch and participation factors . . . . . . . . . . . . . . . . . . . . . . . 139



List of Tables

3.1 Single-item newsvendor problem: Values for parameters ε, ρ in DROC
and ρ in DROW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Multi-item newsvendor problem: Values for parameters ε, ρ in DROC
and ρ in DROW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Medium level of wind penetration, summary data for total expected cost
[$] under the optimal value of the robustness parameter for methods
DROW and DROTRIMM. . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 High level of wind penetration, summary data for total expected cost
[$] under the optimal value of the robustness parameter for DROW and
DROTRIMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C.1 Generators’ location, power output limits and reserve capacity costs . . 141
C.2 Slopes (ms) and intercepts (ns) of the generators’ piecewise linear cost

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.3 Transmission line parameters . . . . . . . . . . . . . . . . . . . . . . . . 141

XXX





Chapter 1

Introduction

The subject matter of this thesis is inspired by the fact that today’s world is guided
by data-driven decisions, given that they appear in many applications, such as energy
systems operation, logistics, and finance. These decisions have to be made to accom-
modate the world’s uncertain nature efficiently. These data-driven decision-making
problems can be formulated as mathematical optimization programs containing noisy
and/or uncertain data. This first chapter discusses the motivation behind the methods
developed and formally states the main contributions of this thesis. The outline of the
thesis is also provided, and the published papers are listed.

1.1 Background and Motivation

Nowadays, a large amount of varied data is being generated which, when made available
to the decision maker, constitutes a valuable resource in optimization problems. These
data, however, are not free of uncertainty about the physical, economic or social context,
system or process from which they originate; uncertainty that, on the other hand, the
decision maker must take into account in his/her decision making process. The objective
of this thesis is to develop theoretical foundations and investigate methods for solving
optimization problems where there is a great diversity of data on uncertain phenomena.
In a very general way, the objective of decision making under uncertainty is to find
optimal solutions corresponding to optimization problems where a random phenomenon
exists (or it is assumed). To date, decision-making problems under uncertainty have
been addressed by different scientific communities from several, distinct paradigms,
which differ in the treatment and representation of the uncertain phenomena.

Traditionally, in decision making under uncertainty, the decision maker collects his-
torical data on the random phenomena underlying the problem and subsequently per-
forms an estimation/prediction process. The scheme of this approach can be represented
as:

2
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data −→ estimation/predictions −→ decisions

In fact, in a way, the decision maker is trying to solve an inference problem since
she wants to infer an optimal decision using the limited information on the probabil-
ity distribution of the uncertain phenomena that is conveyed by the input data and,
consequently, given the inherited uncertainty in the decision’s value.

However, the following question arises: Does a good estimator of the true data-
generating distribution necessarily lead to a good estimator of our optimal decision vari-
able? Although at first glance, it might seem logical that it does, the reality is that this
natural approach can be superseded by methods in which decisions are directly inferred
from data according to the following simplified scheme:

data −→ decisions

The intermediate step in which a probability distribution is inferred through the data
involves adding an unnecessary source of error, either due to the calibration error of the
probability distribution chosen as the data generator or due to the error intrinsic to the
inference process itself. This is known in the literature as the optimizer’s curse and is
reminiscent of the phenomenon of overfitting in statistical learning.

When making a decision under uncertainty, it is usually assumed that the uncer-
tainty follows a known probability distribution in stochastic programming. In contrast,
robust optimization has emerged as an alternative paradigm to stochastic programming
relying, as it does, on hedging against the worst-case realization of the uncertainty. Al-
though the distributionally robust optimization (DRO) paradigm is not novel (it emerged
in the 1950s in the environment of stochastic inventory optimization), it is in this decade
that it has grown substantially as an active area of research. Distributionally robust
optimization can be seen as a methodology which bridges the gap between stochas-
tic programming and robust optimization. In this case, it is assumed that there is a
random phenomenon that follows a prescribed probability distribution. However, the
decision maker does not know which distribution that is, as s/he does not have complete
information and therefore seeks to protect against the worst distribution in a certain
set of probability distributions (the so-called ambiguity set). The key point is that the
ambiguity set determines the problem. While it is common in the literature to find
various ways of specifying the ambiguity set, such as moment-based sets or parametric
assumptions, in this thesis, we focus on ambiguity sets defined by probability metrics
or distances. In this sense, the Wasserstein metric, intimately related to the optimal
transport problem, has proved to be quite successful due to its good statistical proper-
ties. In this particular case, as in all extreme cases, it is clear that if the ambiguity set
is reduced to a single element, we would end up working with stochastic programming
and, to the contrary, if the ambiguity set contains all probability distributions with a
given support, then we would find ourselves with the case of robust optimization.
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In this thesis, we intend to develop, within the scope of distributionally robust opti-
mization based on the optimal transportation problem, a purely data-driven methodo-
logy that exploits some extra/prior information about the random phenomenon. This
extra information crystallizes in two axes on the nature of the random phenomenon:
first, some prior information about, for example, the shape/structure of its probabil-
ity distribution; second, some conditional information such as that given by some co-
variates, which help to explain the random phenomenon underlying the optimization
problem without resorting to prior regression techniques.

This thesis intends to delve deeper into this line by applying the methodology to be
developed to several problems of eminently practical interest taken from the realms of
finance, power systems or inventory management.

1.2 Contributions

The main contributions of this thesis are:

1. The review of the major theoretical and modeling challenges of data-driven de-
cision making problems originating from a large amount of data subject to ran-
domness and noise.

2. The illustration of the prior information used to improve the specification of the
ambiguity set of a distributionally robust optimization model using both empirical
and simulated results.

3. The formulation of a distributionally robust model to factor in some structural
information about the probability distribution of the uncertainty. This is given in
terms of a partition-based approach, exploiting the optimal transport problem and
order cone constraints. In addition, we provide tractable reformulations and inves-
tigate the power of modeling shape information (such as multimodality) without
jeopardizing the complexity of the DRO problem by adding linear constraints.

4. The formulation of distributionally robust versions of conditional stochastic pro-
grams exploiting probability trimmings, the partial optimal transport problem and
probability metrics.

5. The development of a distributionally robust framework using probability trim-
mings to address data-driven decision-making problems under contaminated sam-
ples.

6. The use of probability trimmings to produce distributionally robust versions of
some local nonparametric predictive methods, such as Nadaraya-Watson kernel
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regression and K-nearest neighbors, which are often used in contextual stochastic
optimization/prescriptive stochastic programming.

7. Theoretical performance guarantees of the distributionally robust frameworks we
propose are formally stated and discussed.

8. The development of a distributionally robust chance-constrained Optimal Power
Flow (OPF) model that is able to exploit contextual/side information through an
ambiguity set based on probability trimmings, providing a tractable reformulation
using the well-known Conditional Value-at-Risk approximation.

9. The analysis and testing of the proposed optimization models and methodolo-
gies through illustrative examples and realistic case studies in finance, inventory
management and power systems operation.

1.3 Thesis Outline

The chapters of this thesis are outlined as follows:

• Chapter 2 provides an overview of the main essentials of decision making under
uncertainty.

• Chapter 3 provides theoretical foundations and applications of a distributionally
robust framework that exploits some prior information about the characteristics
of the probability distribution of the uncertainty via optimal transport and order
cone constraints.

• Chapter 4 lays out the theoretical foundations and discusses applications of a dis-
tributionally robust framework that exploits some conditional information avail-
able to the decision maker through partial optimal transport and probability trim-
mings.

• Chapter 5 concludes this thesis and provides suggestions for future work.

• Appendix A provides theoretical proofs and complementary results to the frame-
work developed in Chapter 3.

• Appendix B compiles supporting theoretical material to the framework developed
in Chapter 4. More specifically, Section B.1 in this appendix provides notions and
theoretical results in probability and topology related to the Wasserstein metric;
a tractable reformulation, under weak assumptions, of the distributionally robust
optimization approach we propose as a finite convex program; and a constructive
procedure for obtaining a distribution within the ambiguity set that maximizes
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the supremum that leads to our DRO problem. Section B.2 contains the main
theoretical proofs to the framework developed in Chapter 4. Finally, Section B.3
provides a proof of the asymptotic consistency of the proposed methodology using
a nearest neighbors lens.

• Lastly, Appendix C lists the notation and provides other concepts and additional
experiments about the Optimal Power Flow problem studied in Chapter 4.

1.4 List of Publications

• Esteban-Pérez, A., Morales, J.M. Partition-based distributionally robust opti-
mization via optimal transport with order cone constraints. 4OR-Q J Oper Res
(2021).

• Esteban-Pérez, A., Morales, J.M. Distributionally robust stochastic programs with
side information based on trimmings. Math. Program. (2021).

• Esteban-Pérez, A., Morales, J. M. Distributionally Robust Optimal Power Flow
with Contextual Information. arXiv preprint arXiv:2109.07896. (2021).



Chapter 2

Essentials of decision-making under
uncertainty

Contents
2.1 Stochastic programming . . . . . . . . . . . . . . . . . . . . . 8

2.2 Robust optimization . . . . . . . . . . . . . . . . . . . . . . . . 9
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2.3.1 Improving the specification of the ambiguity set with prior
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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2.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Many real-world decision-making problems involve input data that are random and
noisy. It is customary to formulate these problems as mathematical optimization pro-
grams under uncertainty, whose parameters are treated as random variables. Disre-
garding this uncertainty may lead to infeasible/suboptimal decisions. To date, decision-
making problems under uncertainty have been addressed by different scientific commu-
nities from several, distinct paradigms, which differ in the treatment and representation
of the uncertain phenomena. This chapter introduces some of these paradigms, in par-
ticular, those that are the most relevant to the primary purpose of the research in this
thesis, and briefly describes the main types of prior information that can be used to
improve the specification of the ambiguity set in distributionally robust optimization.
The chapter concludes with the main notation employed throughout the dissertation.

7
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2.1 Stochastic programming

In the realm of stochastic programming, a full and accurate knowledge about the prob-
ability distribution of the random phenomena ξ (defined over a given probability space)
in the optimization problem ([125]) is assumed. Essentially, a typical stochastic program
can be formulated as follows:

inf
x∈X

EQ[f(x, ξ)] = inf
x∈X

∫
Ξ
f(x, ξ)Q(dξ) (2.1)

where the goal is to compute an optimal decision x∗ within a feasible set X which mini-
mizes the expected value of a given objective cost function (real-valued) f , EQ[f(x, ξ)],
with respect to the probability distribution Q of the random variable ξ with support set
Ξ. Although, in this section, in Eq. (2.1) we minimize the expectation, E, it can be re-
placed with an alternative risk measure like, for example, the Conditional Value-at-Risk,
CVaR:

Definition 2.1 (Conditional Value-at-Risk, CVaR [118]). The CVaR at level
ϵ ∈ (0, 1) of a univariate random variable ω under the probability measure Q, Q −
CVaRϵ(ω), is defined as the value infτ∈R

{
τ + 1

ϵEQ[(ω − τ)+]
}

and when the infimum
is attained, τ represents the Value-at-Risk with confidence level 1− ϵ.

However, stochastic programming has some drawbacks (see [99]):

• It typically requires having to solve large-scale optimization programs.

• If the distribution Q is unknown, as is often the case, then problem (2.1) cannot
be solved. However, sometimes the unknown probability distribution Q could be
estimated/replaced with a predetermined nominal distribution using some prior
information known by the decision-maker. The common choice for this nomi-
nal distribution is the empirical distribution estimated from some training data
samples or a parametric estimate of Q consistent with the aforementioned infor-
mation. Nevertheless, although a stochastic program were calibrated to a fixed
dataset with unbiased distributional parameters, the optimization output could
possibly be optimistically biased. This phenomenon is known as optimizer’s curse
or optimization bias and is reminiscent of the well known overfitting problem in
Statistical Learning.

• Even in the case that the probability Q is fully known, evaluating the cost of
a fixed feasible decision requires a multidimensional integration process that is
known to be computationally difficult [71].



2.2. Robust optimization 9

2.2 Robust optimization

Robust optimization, and its adoption of the worst-case perspective, emerges as an al-
ternative paradigm to stochastic programming. This paradigm relies on hedging against
the worst-case realization of the uncertainty supported in a given set called the uncer-
tainty set [12]. This framework leads to the following minimax program:

inf
x∈X

sup
ξ∈Ξ

f(x, ξ) (2.2)

The key features of this paradigm are:

• The minimax program (2.2) should admit a tractable reformulation. A computa-
tionally tractable reformulation depends on assumptions about the cost function
f and the structure of the uncertainty set Ξ.

• The uncertainty set Ξ should be defined suitably to cover all the possible realiza-
tions of the uncertainty ξ. In addition, the size of Ξ should reflect the degree of
conservatism adopted by the decision-maker, while the shape of Ξ determines the
prior knowledge about the probability distribution of ξ.

• While stochastic programming adopts the optimistic angle of knowing with per-
fect information the probability distribution of ξ, robust optimization takes a
pessimistic view on the uncertainty ξ, which can lead to over-conservative deci-
sions.

2.3 Distributionally robust optimization

Distributionally robust optimization (DRO) emerges as an alternative paradigm to
bridge the gap between the explicitness and optimism of stochastic programming and
the conservatism and pessimism of robust optimization. It seeks to compute the optimal
decision which minimizes the worst-case expectation over any probability distribution
within the so-called ambiguity set, that is, a set of potential probability distributions con-
sistent with the given prior knowledge about the uncertainty. We refer to [85, 117, 124]
for recent surveys on DRO and optimization under uncertainty.

A generic DRO model with ambiguity set U can be stated as follows:

inf
x∈X

sup
Q∈U

EQ [f(x, ξ)] (2.3)

DRO offers a unified framework as, in the case that the ambiguity set U reduces to a
singleton, then problem (2.3) reduces to the stochastic program (2.1). In contrast, if
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U collects all the distributions supported in Ξ, then problem (2.3) collapses into the
robust optimization problem (2.2).

The ambiguity set U is a key ingredient of any distributionally robust optimization
model and can be constructed in a data-driven manner based on N training samples, in
which case we explicitly denote the dependence of U on N by UN . A good ambiguity set
should be rich enough to contain the true data-generating distribution Q of ξ with a high
confidence level, but at the same time not too large, so that unrealistic/pathological
distributions can be excluded, thereby avoiding over-conservative decisions. Moreover,
ideally, the ambiguity set should be easily parametrized from data and computationally
tractable reformulated, so that it can be solved by off-the-shelf optimization software.
It is no wonder, therefore, that much effort has been expended on this issue, resulting
in several ways to specify and characterize the ambiguity set, namely:

1. Moment-based approach: The ambiguity set is defined as the set of all probability
distributions whose moments satisfy certain constraints; see [42, 64, 93, 92, 98,
102, 139, 145], to name just a few.

2. Dissimilarity-based approach: The ambiguity set is defined as the set of all proba-
bility distributions whose dissimilarity to a prescribed distribution (often referred
to as the nominal distribution) is lower than or equal to a given value. Within
this category, the choice of the dissimilarity function leads to a wealth of distinct
variants:

(a) Optimal-transport-based (OTP) approach: Here, we include the work in [29,
28, 63, 99, 122], among many others, all of which use, as the dissimilarity
function, the well known Wasserstein distance:

Definition 2.2 (p-Wasserstein distance). For any p ∈ [1,∞), given
two probability measures P,Q with finite p-th moment supported on Ξ, that is,
P,Q ∈ Pp(Ξ), the Wasserstein metric of order p between P and Q, Wp

(
P,Q

)
,

is given by the value(
inf

π∈Π(P,Q)

{∫
Ξ2

∥ξ1 − ξ2∥p π(dξ1, dξ2)
})1/p

where Π(P,Q) denotes the set of all joint distributions of ξ1 and ξ2 with
marginals P and Q, respectively.

The Wasserstein metric exhibits some nice statistical convergence properties
(see [109] and references therein).

(b) ϕ-divergences-based approach: This class comprises all those approaches which
use ϕ-divergences (such as the Kullback-Leibler divergence) as a quantifier
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of dissimilarity, for instance, [11, 13, 103]. We also include in this group the
likelihood-based approaches, proposed by [47] and [135].

(c) Other measures of dissimilarity: This category includes all other dissimilarity-
based procedures for constructing ambiguity sets than those already men-
tioned, such as the ones that utilize the family of ζ-structure probability
metrics (for example, the total variation metric, the Bounded Lipschitz met-
ric ...), see, for instance, the work in [116] and [142], and the Prokhorov
metric [49].

3. Hypothesis-test-based approach: The ambiguity set is made up of all those prob-
ability distributions which, given a data sample, pass a certain hypothesis test
with a prescribed confidence level; see, for example, the work in [15, 16, 36].

The popularity and attractiveness of distributionally robust optimization models in
recent years is due to the following reasons (see [30, 87, 99]):

• Fidelity: DRO models agree and benefit from the existence of distributional
uncertainty and the magnitude and type of measurement/estimation error, re-
spectively.

• Computational tractability: DRO models can usually be reformulated (or
approximated by) as computationally tractable finite convex programs.

• Performance guarantees: For suitably calibrated data-driven ambiguity sets,
the worst-case optimal expected cost delivered by problem (2.3) offers an upper
confidence bound on the out-of-sample expected cost attained by the optimizers
of (2.1) (finite sample guarantee or generalization bound). To be more precise:

Definition 2.3. A data-driven solution for problem (2.1) is a feasible solu-
tion x̂N ∈ X which is constructed from the sample data, and its out-of-sample
performance is defined as EQ[f(x̂N , ξ)].

Definition 2.4 (Finite sample guarantee [99]). Given a data-driven solu-
tion x̂N , a finite sample guarantee is a relation in the form

QN
[
EQ[f(x̂N , ξ)] ⩽ ĴN

]
⩾ 1− β (2.4)

where ĴN is a certificate for the out-of-sample performance of x̂N (i.e., an up-
per bound that is generally contingent on the training dataset), β ∈ (0, 1) is a
significance parameter with respect to the N -fold product of distribution Q, i.e.,
QN , on which both x̂N and ĴN depend. Moreover, we refer to the probability on
the left-hand side of (2.4) as the reliability of (x̂N , ĴN ) and can be understood
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as a confidence level. Similarly, we say that a data-driven method built to ad-
dress problem (2.1) enjoys a finite sample guarantee, if it produces pairs (x̂N , ĴN )

satisfying a relation in the form (2.4).

The other guarantee is known as asymptotic consistency : When the number of
training samples grows to infinity and the knowledge about Q is revealed, the
optimizers of (2.3) converge to an optimizer of (2.1).

• Regularization and distributional robustness: The connection between learn-
ing models with regularization and some DRO models can be proved (see [87]).
This further emphasizes the connection between the optimizer’s curse in optimiza-
tion and overfitting in Statistical Learning.

• Foreseeing black swans: DRO models can prevent future realizations of the
uncertainty that can have cataclysmal consequences.

• Optimality: It has been shown that, in some sense, DRO models are “optimal”
when the decision-maker tries to retrieve good decisions directly from data (see
[130, 131]).

2.3.1 Improving the specification of the ambiguity set with prior in-
formation

Today’s decision makers not only collect observations of the uncertainties directly af-
fecting their decision-making processes, but may also have available some prior infor-
mation about the probability law generating those observations. That information can
be exploited for data-driven decision making using distributionally robust optimization
(DRO).

The ambiguity set U in (2.3) is as a set of distributions consistent with the informa-
tion about Q and serves as a confidence set. Ideally, one would like to have the smallest
ambiguity set that contains the true data-generating distribution Q in problem (2.3).
In this vein, if we have available some prior information about Q, we should use it to
discard all those other distributions that do not conform with that information from the
ambiguity set. That information used to strengthen the specification of the ambiguity
set can be, for example:

• Dependence information: Some dependence structure about ξ can be exploited
using copula theory. This may occur when there is available some prior knowledge
of the marginal distributions of Q. This has been applied in conjunction with a
Wasserstein-based DRO model in references [6, 64].

• Shape/structural information: Structural information can result from expert
knowledge of the problem. This information about Q may be, e.g., symmetry,
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unimodality or multimodality, and has been considered in [55, 72, 90, 91], among
others. In our work [55] we propose an optimal transport-based DRO model
exploiting some prior information on the order among the probabilities that Q
assigns to some regions of its support set. This type of order is enforced by means
of order cone constraints and can encode a wide range of information on the shape
of the probability distribution of the uncertain parameters such as information
related to monotonicity or multi-modality. The authors in [90, 91] propose a
moment-based ambiguity set where unimodality is considered as prior information
for solving chance-constrained DRO problems. The advantage of our proposed
methodology in [55] over other alternative approaches is that the inclusion of
such prior information does not jeopardize the computational tractability of the
underlying mathematical program (as it translates into adding linear constraints).
Chapter 3 contains the main core of our work [55].

• Conditional information: Some information is available to the decision maker
in terms of a (measurable) event ξ ∈ Ξ̃. Hence, problem (2.1) turns into the
following conditional stochastic program:

J∗ := inf
x∈X

EQ

[
f(x, ξ) | ξ ∈ Ξ̃

]
= inf

x∈X
EQ

Ξ̃
[f(x, ξ)] (2.5)

where Q
Ξ̃

is the Q-conditional distribution of ξ given ξ ∈ Ξ̃. It is notable that
since Q is rarely known, its conditional version, Q

Ξ̃
, is even less known.

The generic event ξ ∈ Ξ̃ can represent contextual/side information delivered by
some covariates (also known as exogenous variables, features or attributes). In
this setting, we have ξ := (z,y) with z being a random vector modeling features
that may have some predictive power over the uncertainty y that affects the value
of the decision x. A marked case is when the conditional information is given in
terms of a set Z (which could be a confidence set for z); or more specifically, when
it reduces to a singleton, i.e. Z := {z∗}. Thus, in the latter case, the optimal
decision delivered by problem (2.5) is parametrized on z∗ and provides the best-
response in terms of expected cost having predicted/observed z = z∗. This side
information acts by changing the probability measure of the uncertainties. In
fact, if the joint distribution of the features and the uncertainties Q were known,
this measure change would correspond to conditioning that distribution on the
side information given. Unfortunately, in practice, the decision maker only has an
incomplete picture of such a joint distribution in the form of a finite data sample.

The development of optimization methods capable of exploiting the side infor-
mation to make improved decisions, in a context of limited knowledge of its
explanatory power on the uncertainties, defines the ultimate purpose of the so-
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called Prescriptive Stochastic Programming or Conditional Stochastic Optimiza-
tion paradigm. This paradigm has recently become very popular in the technical
literature, see, for instance, [9, 17, 112] and references therein. More specifically,
a data-driven approach to address the newsvendor problem, whereby the deci-
sion is explicitly modeled as a parametric function of the features, is proposed
in [9]. This approach thus seeks to optimize said function. In contrast, the au-
thors in [17] formulate and formalize the problem of minimizing the conditional
expectation cost given the side information, and develop various schemes based
on machine learning methods (typically used for regression and prediction) to get
data-driven solutions. Their approach is non-parametric in the sense that the
optimal decision is not constrained to be a member of a certain family of the
features’ functions. The inspiring work in [17] has been subject to further study
and improvement in two principal directions, namely, the design of efficient algo-
rithms to trim down the computational burden of the optimization [45] and the
development of strategies to reduce the variance and bias of the decision obtained
and its associated cost (the pairing of both interpreted as a statistical estimator).
In the latter case, we can cite the work in [22], where they leverage ideas from
bootstrapping and machine learning to confer robustness on the decision and ac-
quire asymptotic performance guarantees. Similarly, the authors in [18] and [112]
propose regularization procedures to reduce the variance of the data-driven solu-
tion to the conditional expectation cost minimization problem which is formalized
and studied in [17]. A scheme to robustify the data-driven methods introduced in
this work is also proposed in [19] for dynamic decision-making.

A different, but related thrust of research focuses on developing methods to con-
struct predictions specifically tailored to the optimization problem that is to be
solved and where those predictions are then used as input information. Essentially,
the predictions are intended to yield decisions with a low disappointment or re-
gret. This framework is known in the literature as (smart) Predict-then-Optimize,
see, e.g., [8, 46, 48, 101], and references therein.

The methodology we propose, which is described in [53] and developed in Chap-
ter 4 is built, in contrast, upon Distributionally Robust Optimization. Accord-
ingly, we address problem (2.3) by way of the following DRO formulation condi-
tional on the event ξ ∈ Ξ̃:

inf
x∈X

sup
Q

Ξ̃
∈U

Ξ̃

EQ [f(x, ξ)] (2.6)

where U
Ξ̃

is an ambiguity set for Q
Ξ̃
.

Nevertheless, the technical literature on the use of DRO to address Prescriptive



2.4. Chance-constrained programming 15

or Conditional Stochastic Programming problems is still relatively scarce. We
highlight papers [19, 38, 69, 82, 84, 106, 107], with [107] being a generalization of
[106]. In [38], they resort to a scenario-dependent ambiguity set to exploit feature
information in a DRO framework. However, their objective is to minimize a joint
expectation and consequently, their approach cannot directly handle the Condi-
tional Stochastic Optimization setting we consider here. In [69], the authors deal
with a stochastic control problem with time-dependent data. They extend the idea
of [74] to a fully dynamic setting and robustify the control policy against the worst-
case weight vector that is within a certain χ2-distance from the one originally given
by the Nadaraya-Watson estimator. In the case of [19], the authors propose using
the conditional empirical distribution given by a local predictive method as the
center of the Wasserstein ball that characterizes the DRO approach in [99]. This
proposal, nonetheless, fails to explicitly account for the inference error associated
with the local estimation. In [82, 84], the authors develop a two-step procedure
whereby a regression model between the uncertainty and the features is first esti-
mated and then a distributionally robust decision-making problem is formulated,
considering a Wasserstein ball around the empirical distribution of the residuals.
Finally, the authors in [107] also consider a Wasserstein-ball ambiguity set as in
[19, 82, 84], but centered at the empirical distribution of the joint data sample
of the uncertainty and the features. In addition, they further constrain the am-
biguity set by imposing that the worst-case distribution assigns some probability
mass to the support of the uncertainty conditional on the values taken on by the
features.

Unlike the modeling approaches discussed above, ours constitutes a general frame-
work to handle conditional stochastic programs within the DRO paradigm. In
particular, our DRO framework is based on a new class of ambiguity sets that
exploits the close and convenient connection between probability trimmings and
the partial mass problem to immunize the decision against the error incurred in
the process of inferring conditional information from joint (limited) data. We
refer the reader to Chapter 4 for a full description and analysis of our proposal.

2.4 Chance-constrained programming

If we consider an optimization problem where some constraints involve random param-
eters, e.g., g(x, ξ) ≤ 0, one conservative way to deal with randomness would be to state
the following semi-infinite constraint:

g(x, ξ) ≤ 0, ∀ξ ∈ Ξ (2.7)
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which is equivalent to the robust constraint supξ∈Ξ g(x, ξ) ≤ 0. Nevertheless, a small
number of samples in Ξ can significantly increase the cost of a feasible solution x.
Disregarding such “harmful” samples can result in a considerably reduced solution cost,
maintaining high reliability. Chance-constrained programming considers optimization
problems where some constraints involve random parameters which need to be satisfied
with a pre-fixed probability threshold 1− ϵ (reliability). This may be formulated by the
following single (or individual) chance/probabilistic constraint:

Q (g(x, ξ) ≤ 0) ≥ 1− ϵ (2.8)

Remark 2.1. If g(x, ξ) ≤ 0 in (2.8) is replaced by K constraints, gk(x, ξ) ≤ 0, ∀k =

1, . . . ,K, then the respective chance-constraint would be the following joint chance con-
straint:

Q (gk(x, ξ) ≤ 0,∀k = 1, . . . ,K) ≥ 1− ϵ (2.9)

which can be recast equivalently as the following single chance constraint:

Q
(

max
k=1,...,K

gk(x, ξ) ≤ 0

)
≥ 1− ϵ

Chance-constrained programming inherits some difficult challenges:

• Checking the feasibility of a solution x in (2.8) requires a multidimensional integra-
tion procedure. Furthermore, having a full knowledge of Q is rare, and therefore,
the decision-maker is rather interested in solving the following distributionally
robust version of (2.8):

Q (g(x, ξ) ≤ 0) ≥ 1− ϵ,∀Q ∈ U ⇐⇒ inf
Q∈U

Q (g(x, ξ) ≤ 0) ≥ 1− ϵ (2.10)

where U is an ambiguity set for Q.

• Usually, the feasible set given by (2.8) is non-convex and even disconnected, and
hence, chance-constrained models are hard to solve and convex approximations
have been proposed in the technical literature ([81, 105]). The most popular is
the one based on the CVaR. In particular, by definition of CVaR, the following
holds:

Q

(
g(x, ξ) ≤ Q−CVaRϵ(g(x, ξ))

)
≥ 1− ϵ (2.11)

Therefore,

Q−CVaRϵ(g(x, ξ)) ≤ 0 =⇒ Q (g(x, ξ) ≤ 0) ≥ 1− ϵ (2.12)

which implies that
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sup
Q∈U

Q−CVaRϵ(g(x, ξ)) ≤ 0 =⇒ inf
Q∈U

Q (g(x, ξ) ≤ 0) ≥ 1− ϵ (2.13)

being U an ambiguity set for Q.

2.5 Notation

Next, we introduce the main notation used in this dissertation. Other notation is defined
as required throughout the main text.

We use R to denote the extended real line, and adopt the conventions of its associated
arithmetic. Furthermore, R+ denotes the set of non-negative real numbers. We employ
lower-case bold face letters to represent vectors and bold face capital letters for matrices.
We use diag(a1, . . . , am) for a diagonal matrix of size m ×m whose diagonal elements
are equal to a1, . . . , am. Moreover, given a matrix M, its transpose matrix will be
written as M⊤. We define e as the array with all its components equal to 1. The inner
product of two vectors u,v (in a certain space) is denoted ⟨u,v⟩ = u⊤v. Given any
norm ∥·∥ in the Euclidean space (of a given dimension d), the dual norm is defined as
∥u∥∗ = sup∥v∥⩽1⟨u,v⟩. Given a function f : Rd → R, we will say that f is a proper
function if f(x) < +∞ for at least one x and f(x) > −∞ for all x ∈ Rd. Additionally,
the convex conjugate function of f , f∗, is defined as f∗(y) := supx∈Rd⟨y,x⟩−f(x). It is
well known that if f is a proper function, then f∗ is also a proper function. Given a set
A ⊆ Rd, we denote its interior (resp. relative interior) as int(A) (resp. relint(A)), and
its indicator function IA(a) is defined through IA(a) = 1 if a ∈ A; = 0. The support
function of set A, SA, is defined as SA(b) := supa∈A⟨b,a⟩. The dual cone C∗ of a cone C
is given by C∗ := {y / ⟨y,x⟩ ⩾ 0, ∀x ∈ C}. We use the symbol δξ to represent the Dirac
distribution supported on ξ. In addition, we reserve the symbol “̂” for objects which
are dependent on the sample data. The Lebesgue measure in Rd is denoted as λd. The
K-fold product of a distribution Q will be denoted as QK . The symbols E and P denote,
respectively, “expectation” and “probability.” Finally, for the rest of the dissertation we
assume that we always have measurability for those objects whose expected values we
consider.

2.6 Summary

This chapter has introduced the essentials of the different paradigms to hedge against
the uncertainty in decision-making problems. Moreover, we have presented the general
formulations of a classical stochastic program, a robust optimization model, a distribu-
tionally robust optimization model and the chance-constrained setting. Additionally,
we have described the principal types of prior information that can be used to improve
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the specification of the ambiguity set in distributionally robust optimization. Finally,
we have presented the main notation used throughout this dissertation and introduced
several concepts relevant to this thesis such as the Wasserstein metric and the CVaR.
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3.1 Methodology and theoretical foundations

This section elaborates on the theoretical core of our work [55]. We begin by introducing
the mathematical formulation of the distributionally robust optimization problem we
propose to solve.

3.1.1 Introduction

In an attempt to avoid overly conservative solutions of the program (2.3), we seek to
sharpen the specification of Wasserstein ambiguity sets with prior information on the
true probability distribution of the problem’s uncertain parameters. We represent this
information in the form of order cone constraints on the probability masses associated
with a partition of the sample space. Problem (POC) below formulates the data-driven
distributionally robust optimization (DDRO) framework we propose.

(POC) inf
x∈X

sup
Q∈Q

EQ [f(x, ξ)] (3.1a)

s.t. PQ [ξ ∈ Ξi] = pi,∀i ∈ I (3.1b)

c̃(p− p̂) ⩽ ρ (3.1c)∑
i∈I

piC(Qi, Q̂i) ⩽ ε (3.1d)

Qi ∈ Qi, ∀i ∈ I (3.1e)

p ∈ Θ (3.1f)

where X ⊆ Rn is the set of feasible decisions, ξ : Ω → Ξ ⊆ Rd is a random vector defined
on the measurable space (Ω,F) with σ-algebra F , and Q is the set of all probability
distributions over the measurable space (Ω,F). Moreover, for each i ∈ I, Qi is the
conditional distribution of Q given ξ ∈ Ξi, that is Qi = Q(ξ | ξ ∈ Ξi) ∈ Qi, with
Qi being the set of all conditional probability distributions of Q given ξ ∈ Ξi. In
this setting, I is the set of regions Ξi with pairwise disjoint interiors into which the
support set Ξ is partitioned, that is,

⋃
i∈I(Ξi) = Ξ and int(Ξi)

⋂
int(Ξj) = ∅, ∀i, j ∈

I, i ̸= j. Furthermore, we assume that Q(Ξi ∩ Ξj) = 0,∀i, j ∈ I, i ̸= j, where Q
is the true data-generating distribution. This is equivalent to stating that {Ξi}i∈I
constitutes a Q-packing (see a formal definition of this concept in page 50 of [66]) and
will allow us to unequivocally assign samples from Q to the partitions Ξi, i ∈ I. Finally,
constraint (3.1c) defines the set of all probability vectors p that differ from the nominal
empirical probability vector p̂ in at most ρ according to the cost function c̃. This is
a function that quantifies how dissimilar two probability vectors p and q are. For
this purpose, we require that c̃ be a non-negative jointly convex lower semicontinuous
function such that if p = q, then c̃(p,q) = 0. As mentioned further on, function c̃
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could, for example, take the form of a norm or a ϕ-divergence. To ease the notation
and the formulation, we use ξ to represent either the random vector ξ(ω), with ω ∈ Ω

or an element of Rd. Note that we can consider the probability measure induced by
the random vector ξ, if we choose the corresponding Borel σ-algebra B on Ξ. Thus, we
can see Q as a set of probability measures defined over (Ξ,B), so we write Q = Q(Ξ).
We define the uncertainty set P for the probability vector p ∈ R|I|, with |I| being the
number of partitions, as the intersection of Θ and the set defined by constraint (3.1c).
The support set Θ, which includes the order cone constraints on the probability masses
p, is given by:

Θ = {p ∈ R|I| : ⟨e,p⟩ = 1,p ∈ R|I|
+ ,p ∈ C} (3.2)

where C is a proper (convex, closed, full and pointed) cone. Hence, Θ is a convex com-
pact set.

In constraint (3.1d), C is the optimal transport cost defined as

C(P,Q) = inf
π∈Π(P,Q)

{∫
c(x, y)π(dx,dy)

}
where Π(P,Q) is the set of all joint distributions of x and y with marginals P and
Q, and c is a measurable cost function with c(x, y) representing the cost of moving a
unit of mass from location x to location y. We assume that this cost function c is a
non-negative jointly convex lower semicontinuous function such that if x = y , then
c(x, y) = 0. In the remainder of the thesis we take for granted that we have existence
and uniqueness of the optimal transport problem (see, for example, Theorem 4.1 in
[133]). Note that if the cost function c is given by a norm, we recover the 1-Wasserstein
metric introduced in Definition 2.2 of Section 2.3.

In problem (POC), ρ and ε are non-negative parameters, to be tuned by the decision
maker, which control the size of the ambiguity set defined by equations (3.1b)–(3.1f).

We represent this set as Uρ,ε(Q̂), where Q̂ is a nominal distribution expressed in
terms of p̂ and Q̂i as

Q̂ =
∑
i∈I

p̂iQ̂i (3.3)

where
p̂i =

Ni

N + |I ′| (3.4)

and

Q̂i =
1

Ni

Ni∑
j=1

δ
ξ̂ i
j

(3.5)

Further, I ′ = {i ∈ I such that partition i does not contain any data from the sample},
ξ̂ i
j ∈ {ξ̂ i

1 , . . . , ξ̂
i
Ni
} and Ni is the number of atoms in region Ξi. Here we set Ni = 1 and
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ξ̂ i
1 := arg supξ∈Ξi

f(x, ξ) for those i ∈ I ′. Implicitly, we assume that this supremum
is attained. We remark that this modeling choice protects the decision maker in those
cases where there is a total absence of information on the conditional distributions
Qi, i ∈ I ′. Indeed, by introducing the “artificial” data point ξ̂ i

1 := arg supξ∈Ξi
f(x, ξ)

in a partition Ξi with no samples, we are considering the worst-case form that the true
conditional distribution Qi could possibly take, that is, a Dirac distribution supported
on ξ̂ i

1 .

Finally, we note that the ambiguity set defined by constraints (3.1b)–(3.1f) is un-
equivocally determined by specifying the partitions Ξi, i ∈ I, the nominal distribution
Q̂, the budgets ρ and ε, and the order cone constraints p ∈ C in (3.2). In fact, if these
constraints are removed and we set ρ = ε = 0, then we have pi = p̂i and Qi = Q̂i, ∀i,
and therefore, Q = Q̂.

The following theorem shows that problem (POC) can be reformulated as a single-
level problem.

Theorem 3.1 (Reformulation based on strong duality). For any non-negative
values of parameters ε, ρ, problem (POC) is equivalent to the following:

(POC-0) inf
x,λ,µ,η p̃,θ,t

λρ+ η + θε+ λc̃∗p̂


(

1
Ni

∑Ni
j=1 ti,j

)
i∈I

+ µ− ηe+ p̃

λ


s.t. ti,j ⩾ sup

ξ∈Ξi

[
f(x, ξ)− θc(ξ, ξ̂ i

j )
]
, ∀i ∈ I, j ⩽ Ni (3.6)

x ∈ X,λ ⩾ 0,µ ∈ R|I|
+ , η ∈ R, p̃ ∈ C∗, θ ⩾ 0

ti,j ∈ R, ∀i ∈ I, j ⩽ Ni

where c̃∗p̂(·) is the convex conjugate function of c̃p̂(·) := c̃(·, p̂), with p̂ fixed, and(
1
Ni

∑Ni
j=1 ti,j

)
i∈I

is the vector with the |I| components 1
Ni

∑Ni
j=1 ti,j.

Moreover, in the case that the cost function c̃(·, ·) is given by a norm, we have
c̃p̂(p) = ∥p− p̂∥. The next corollary deals with this particular case.

Corollary 3.1. If the cost functions c(·, ·) and c̃(·, ·) are given by norms, then for
any non-negative values of parameters ε, ρ, problem (POC) is equivalent to the following
one

(POC-1) inf
x,λ,µ,η p̃,θ,t

λρ+ η + θε+
∑
i∈I

p̂i

 1

Ni

Ni∑
j=1

ti,j + µi − η + p̃i


s.t. ti,j ⩾ sup

ξ∈Ξi

[
f(x, ξ)− θ

∥∥∥ξ − ξ̂ i
j

∥∥∥] , ∀i ∈ I, ∀j ⩽ Ni (3.7)



24 Chapter 3. DRO via optimal transport and order cone constraints

∥∥∥∥∥∥
 1

Ni

Ni∑
j=1

ti,j + µi − η + p̃i


i∈I

∥∥∥∥∥∥
∗

⩽ λ

x ∈ X,λ ⩾ 0,µ ∈ R|I|
+ , η ∈ R, p̃ ∈ C∗, θ ⩾ 0

ti,j ∈ R,∀i ∈ I,∀j ⩽ Ni

Remark 3.1. Our data-driven DRO framework (POC) can be easily understood as
a generalization of other popular DRO approaches. To see this, first we need to remove
the order cone constraints on the probabilities associated with each subregion into which
the support Ξ has been partitioned, that is, the condition p ∈ C, and then proceed as
indicated below:

1. If we set ε = 0, |I| = N , with every partition containing a single and different
data point from the sample, and use a ϕ-divergence to build the cost function, i.e.,
c̃p̂(p) =

∑
i∈I p̂iϕ

(
pi
p̂i

)
and hence, c∗p̂(s) =

∑
i∈I p̂iϕ

∗(si), then our data-driven
DRO approach boils down to that of [11] and [13].

2. On the contrary, if we set |I| = 1 and C is given by the 1-Wasserstein metric, we
get the model of [99].

Finally, we remark that constraint (3.6) for each i ∈ I ′ is equivalent (under the
assumptions we make on the transportation cost function) to ti,1 ⩾ supξ∈Ξi

f(x, ξ).

3.1.2 Tractable reformulations

In this section we provide nice reformulations of our DRO model (POC) under mild
assumptions. For this purpose, we make use of the theoretical foundations laid out
in [99]. Likewise, some extensions to our model, such as the extension to two-stage
stochastic programming problems, are omitted here for brevity and because they can
be easily derived in a similar way as done in [99] for the data-driven DRO approach
they develop.

We start our theoretical development with the following assumption.

Assumption 3.1. We consider that Ξi, for each i ∈ I, is a closed convex set, and
that f(x, ξ) := maxk⩽K gk(x, ξ), with gk, for each k ⩽ K, being a proper, concave and
upper semicontinuous function with respect to ξ (for any fixed value of x ∈ X) and not
identically ∞ on Ξi.

Theorem 3.2 below provides a tractable reformulation of problem (POC-1) as a finite
convex problem. For ease of notation, we suppress the dependence on the variable x

(bearing in mind that this dependence occurs through functions gk, k ⩽ K).
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Theorem 3.2. If Assumption 3.1 holds and if we choose a norm (in Rd) as the
transportation cost function c, then for any values of ρ and ε, problem (POC-1) is
equivalent to the following finite convex problem:

(POC-1’) inf
x,λ,η,µ, p̃,zijk,vijk,θ,t

λρ+ η + θε+
∑
i∈I

p̂i

 1

Ni

Ni∑
j=1

ti,j + µi − η + p̃i


s.t. ti,j ⩾ [−gk]

∗(zijk − vijk) + SΞi(vijk)− ⟨zijk, ξ̂ i
j ⟩

∀i ∈ I,∀j ⩽ Ni, ∀k ⩽ K

∥zijk∥∗ ⩽ θ,∀i ∈ I,∀j ⩽ Ni,∀k ⩽ K∥∥∥∥∥∥
 1

Ni

Ni∑
j=1

ti,j + µi − η + p̃i


i∈I

∥∥∥∥∥∥
∗

⩽ λ

x ∈ X,λ ⩾ 0, θ ⩾ 0, η ∈ R,µ ∈ R|I|
+ , p̃ ∈ C∗,

zijk,vijk ∈ Rd,∀i ∈ I,∀j ⩽ Ni,∀k ⩽ K

ti,j ∈ R, ∀i ∈ I, ∀j ⩽ Ni

where [−gk]
∗(zijk − vijk) is the conjugate function of −gk evaluated at zijk − vijk

and SΞi is the support function of Ξi.
We note that Asummption 3.1 covers the particular case where functions gk, k ⩽ K,

are affine and, as a result, f is convex piecewise linear. The single-item newsvendor
problem, which we illustrate in Section 3.2.1, constitutes a well-known example of this
case.

3.1.3 Separable objective function

Now we extend the results presented above to a class of objective functions which
are additively separable with respect to the dimension d. We assume here that ξ =

(ξ1, . . . , ξd), where ξl ∈ Rp, for each l = 1, . . . , d. Furthermore, we consider the sepa-
rable norm ∥ξ∥d :=

∑d
l=1 ∥ξl∥ associated with the base norm ∥·∥ (on Rp). Finally, we

assume that the function f is given as follows:

f(x, ξ) =
d∑

l=1

max
k⩽K

glk(x, ξl) (3.8)

In this case, the complexity of the resulting DRO problem is linear with respect to
the number N of samples. The multi-item newsvendor problem, which we illustrate in
Section 3.2.1, constitutes a popular example of this case.

Theorem 3.3. If f(x, ξ) =
∑d

l=1maxk⩽K glk(x, ξl), {glk}k⩽K satisfy Assumption
3.1 for all l ⩽ d, and Ξi, for each i ∈ I, is given by the Cartesian product of closed
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convex sets (that is, Ξi :=
∏d

l=1D
i
l , with Di

l a closed convex set), and if we choose the
norm ∥·∥d as the transportation cost function c, then for any values of ρ and ε, problem
(POC) is equivalent to the following finite convex problem:

(POC-2) inf
x,λ,η,µ, p̃,zijkl,vijkl,θ,ω

λρ+ η + θε+
∑
i∈I

p̂i

 1

Ni

Ni∑
j=1

d∑
l=1

ωijl + µi − η + p̃i


(3.9)

s.t. ωijl ⩾ [−glk]
∗(zijkl − vijkl) + SDi

l
(vijkl)− ⟨zijkl, ξ̂ i

jl⟩,
(3.10)

∀i ∈ I,∀j ⩽ Ni, ∀k ⩽ K,∀l ⩽ d

∥zijkl∥∗ ⩽ θ,∀i ∈ I,∀j ⩽ Ni,∀k ⩽ K,∀l ⩽ d (3.11)∥∥∥∥∥∥
 1

Ni

Ni∑
j=1

d∑
l=1

ωijl + µi − η + p̃i

∥∥∥∥∥∥
∗

⩽ λ (3.12)

x ∈ X,λ ⩾ 0, θ ⩾ 0, η ∈ R,µ ∈ R|I|
+ , p̃ ∈ C∗, (3.13)

ωijl ∈ R,∀i ∈ I,∀j ⩽ Ni,∀l ⩽ d (3.14)

zijkl,vijkl ∈ Rp, ∀i ∈ I, ∀j ⩽ Ni, ∀k ⩽ K,∀l ⩽ d (3.15)

3.1.4 Order cone constraints

To account for a-priori knowledge about the probability distribution of the random pa-
rameter vector ξ (for example, the decision maker may have some information about the
shape of this distribution), we propose to convey this knowledge using order constraints
on the probability masses pi associated with each subregion Ξi into which the support
Ξ of ξ is partitioned. These order constraints are based on order cones, which, in turn,
can be represented in the form of graphs. We can build order cones from graphs that
allow for the comparison of all probabilities pi. In that case, we say that the graph,
and the associated cone, establish a total order. If, on the contrary, the graph only
allows some of those probabilities to be compared, we talk about partial order. For
more details about order cones we refer the reader to [104].

Below, we present some common choices of order cones.

• Simple order cone (monotonicity):

C = {p ∈ R|I| : p1 ⩾ . . . ⩾ p|I|}

• Tree order cone:

C = {p ∈ R|I| : pi ⩾ p|I|, i = 1, . . . , |I| − 1}
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• Star-shaped cone (decrease on average):

C =
{
p ∈ R|I| : p1 ⩾

p1 + p2
2

⩾ . . . ⩾
p1 + . . .+ p|I|

|I|
}

• Umbrella cone (unimodality):

C = {p ∈ R|I| : p1 ⩽ p2 ⩽ . . . ⩽ pm ⩾ pm+1 ⩾ . . . ⩾ p|I|}

An order cone is a polyhedral convex cone and as such, can be algebraically expressed
in the form C = {p ∈ R|I| : Ap ⩾ 0}, with A being a matrix of appropriate dimensions.
Its dual C∗ can, therefore, be easily computed as C∗ = {p̃ = A⊤ν : ν ⩾ 0} (see, for
instance, Corollary 3.12.9 in [126]). Notwithstanding, our DRO approach can be equally
applied under other types of support sets, as long as the problem

sup
p∈Θ

〈p,
 1

Ni

Ni∑
j=1

ti,j


i∈I

〉
− λc̃(p, p̂)

 (3.16)

admits a strong dual (we refer the interested reader to [13] for a list of types of support
sets under which strong duality holds).

As compared to other approaches available in the technical literature, order cones
provide a straightforward way of encoding modality information in the ambiguity set of
the DRO problem. For instance, [70] indirectly introduces multi-modality information
by imposing first and second moment conditions on the different ambiguous components
of a mixture with known weights. Their approach, however, results in a semidefinite pro-
gram. Unlike [70], the authors in [89] explicitly incorporate modality information into
their ambiguity set through moment and generalized unimodal constraints. Nonethe-
less, they still need to solve a semidefinite program and their DRO approach overlooks
the data-driven nature of those constraints. In [36], they construct an ambiguity set
made up of those absolutely continuous probability distributions whose density function
is bounded by some bands with a certain confidence level. Their approach can be used
to impose monotonicity or unimodality of the probability distributions, but can only be
applied to the univariate case.

Beyond modality, the order cone constraints on the partition probabilities that char-
acterize our DRO approach equip the decision maker with a versatile and intuitive frame-
work to exploit information on the shape of the ambiguous probability distribution. For
example, as we do in the numerical experiments in this chapter, we can construct an
order cone that constrains the ratios among the partition probabilities, which can be
seen as a discrete approximation of encoding “derivative” information on the ambiguous
probability distribution (if this admits a density function). Likewise, other order cones
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could be used to bestow some sense of “convexity” on this distribution.

3.1.5 On convergence and out-of-sample performance guarantees

In this section, we show that our DRO approach (POC) naturally inherits the con-
vergence and performance guarantees of that introduced in [99]. Following [99], the
training data sample, {ξ̂i}Ni=1 ⊆ Ξ, can be seen as a random vector governed by the
probability distribution QN := Q×· · ·×Q (N times) supported on ΞN (with the respec-
tive product σ-algebra). Ideally, we strive to develop a method capable of identifying a
highly reliable data-driven solution with a certificate as low as possible.

The data-driven DRO approach that we propose to address the problem defined by
(2.1) accounts for the uncertainty about the true data-generating distribution Q, while
taking advantage of some a-priori order information that the decision maker may have
on some probabilities induced by Q over a partition of the support set Ξ.

Below, we claim that the pair (x̂N , ĴN ) provided by our distributionally robust op-
timization problem (POC) features performance guarantees in line with those discussed
in [99]. More specifically, for a suitable choice of the ambiguity set, the optimal value
ĴN of problem (POC) constitutes a certificate of the type (2.4) providing a confidence
level 1 − β on the out-of-sample performance of the data-driven solution x̂N . This
can be formally stated under some assumptions about the underlying true conditional
probability distributions.

To this end, we first provide probabilistic guarantees on the partition probabilities pi,
∀i ⩽ |I|. In this vein, note that the empirical probability p̂i, defined as in Equation (3.4),
can be modeled as a binomial distribution with success probability p∗i , divided by the
total number of trials. Consequently, by the Strong Law of Large Numbers (SLLN), p̂i
converges to p∗i almost surely.

Now suppose that we choose a ϕ-divergence as c̃, where ϕ is a twice continuously
differentiable function around 1 with ϕ′′(1) > 0. Then, take βp > 0. If we choose as ρ

the value
ρ(βp) := (ϕ′′(1)/(2N))χ2

|I|−1,1−βp
(3.17)

we get a confidence set of level 1 − βp on the true partition probabilities p∗ (see [13]
and [11]).

If, alternatively, we choose the total variation distance as c̃, we can use Equation
(19) in [68] to take ρ as

ρ(βp) := (|I|/
√
N)(2 +

√
2 log(|I|/βp)) (3.18)

and obtain a confidence set of level 1− βp on p∗.

Next we establish a concentration tail inequality of the probability weighted Wasser-
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stein metric of order 1 between each conditional distribution and its respective true con-
ditional distribution. For this purpose, we first need to make the following assumption:

Assumption 3.2 (Light-tailed Conditional Distributions). For each i ∈ I,
there exist ai, γi ∈ R, with ai > 1 and γi > 0 such that

EQi

[
exp(γi∥ξ∥ai)

]
=

∫
Ξi

exp(γi∥ξ∥ai)Qi(dξ) < ∞. (3.19)

The following theorem provides a tail concentration inequality for the weighted
sum of the Wasserstein metrics of order 1 between the true and empirical conditional
distributions.

Theorem 3.4 (Concentration Inequality for Conditional Distributions ). If
Assumption 3.2 holds, for each i ∈ I, given βi ∈ (0, 1] we have that ∀Ni ⩾ 1, dim(ξ) ̸= 2

and for all ε >
∑

i∈I piεNi(βi), for any values pi, i ∈ I such that pi ⩾ 0 and
∑

i∈I pi = 1,
the following holds

P

[∑
i∈I

piW(Qi, Q̂i

)
⩽ ε

]
⩾ 1−

∑
i∈I

βi (3.20)

where

εNi(βi):=


(
log(Biβ

−1
i )

CiNi

)1/max{dim(ξ),2}
if Ni ≥ log(Biβ

−1
i )

Ci
,(

log(Biβ
−1
i )

CiNi

)1/ai
if Ni <

log(Biβ
−1
i )

Ci
.

(3.21)

Theorem 3.4 sets the probabilistic bound
∑

i∈I piεNi(βi) on the weighted Wasser-
stein metric of order 1 between each conditional distribution and its respective true
conditional distribution, with at least confidence level 1−∑i∈I βi. We remark that, if
the partitions are compact, stronger results like those in Theorem 2 of [79] could be used
to choose the radii of the Wasserstein balls. More specifically, the result in Theorem 2
of [79] depends on the diameter of the compact support set (i.e., the maximum distance
between two elements of that set). The result stated in our theorem, in contrast, is valid
for unbounded partitions, as it only requires the true conditional distribution associated
with each partition be light-tailed. The next theorem states the finite-sample guarantee
performance of the proposed DRO method we develop in this thesis:

Theorem 3.5 (Finite sample guarantee). Suppose that Assumption 3.2 holds
and that we have chosen as ρ the value given by Equation (3.17) or (3.18). Then, the
finite sample guarantee (2.4) holds with at least confidence level (1− βp)(1−

∑
i∈I βi).

Remark 3.2. In practice, proper values for the hyperparameters ε and ρ are set by
way of data-driven procedures like bootstrapping or cross-validation, as we illustrate in
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the numerical experiments in Section 3.2.2 (see also [35], [40], [99], [122], and [136] for
more examples). These procedures allow the decision maker to tune those parameters
as a function of the sample size N in order to get reliable decisions without giving up
too much on out-of-sample performance. Following this line, and as noted in Remark 5
in [87], the requirement to include the true distribution inside the ambiguity set is only
a sufficient, but not necessary condition to ensure a finite sample guarantee. Indeed,
this guarantee can be sustained even if the parameters of the ambiguity set are reduced
below the lowest values for which the ambiguity set represents a confidence set for the
true distribution.

Furthermore, recall that the partition probabilities p belong to the support set
Θ defined by the order cone constraints. Since we assume that these constraints are
coherent with the true distribution Q, we do not need to explore those probability
measures Q in the Wasserstein ball BρN (β) that do not comply with them. Consider,
for example, the case in which the worst-case distribution in the ball BρN (β) does not
satisfy the order cone constraints. One could expect, therefore, that, in practice, our
approach could benefit from this fact to produce a data-driven solution x̂N as reliable
as that given by the method of [99], but with a tighter certificate ĴN . This is precisely
what we observe in the numerical experiments that we present in Section 3.2.1 and
Section 3.2.2.

We conclude this section with some remarks on the convergence and asymptotic
consistency of our DRO approach: We have that, as the number N of samples grows to
infinity,

(x̂N , ĴN ) → (x∗, J∗) (3.22)

where x∗ (resp. J∗) is an optimizer (resp. the optimal solution value) of problem defined
by (2.1).

Indeed, assume that Theorem 3.6 in [99] holds, then take a confidence level 1 − β,
and choose ε and ρ by way of Theorem 3.4 and Equations (3.17) (or (3.18)), respectively.
When N grows to infinity, we have, on the one hand, that the conditional distributions
converge (in the Wasserstein metric) to their respective true conditional distributions
and the probability weights converge a.s. by the SLLN to their respective true values.
Therefore, both ε and ρ tend to zero as N increases to infinity. Consequently, our
ambiguity set only contains the empirical distribution Q̂N , which converges almost
surely to the true distribution Q.

3.2 Numerical experiments

The purpose of this section is to provide additional insights into the computational
aspects and the performance guarantees of our proposed distributionally robust opti-
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mization scheme with order cone constraints. For this purpose, we consider two test
instances: the (single and multi-item) newsvendor problem and the problem of a strate-
gic firm competing à la Cournot in a market, which will be discussed in detail in
Section 3.2.1 and Section 3.2.2, respectively. These two problems have been intention-
ally selected, because they are qualitatively different when addressed by the standard
Wasserstein-metric-based DRO approach proposed in [99]. In effect, the former features
an objective function f(x, ξ) whose Lipschitz constant with respect to ξ is independent
of the decision x. Consequently, as per Remark 6.7 in [99], the standard Wasserstein-
metric-based DRO approach renders the same minimizer for this problem as the sample
average approximation, whenever the support of the uncertainty ξ is unbounded. This
is, in contrast, not true for the problem of a strategic firm competing à la Cournot in a
market, which is characterized by an objective function with a Lipschitz constant over
ξ that is a function of x. This allows us to highlight the differences of our approach
with regard to [99] in two distinct settings.

All the numerical experiments have been implemented in Python. The optimization
problems have been built using Pyomo and solved with CPLEX 12.10 on a PC with
Windows 10 and a CPU Intel (R) Core i7-8550U clocking at 1.80 GHz and with 8 GB of
RAM. The statistical methods that have been used for the numerical experiments have
been coded by means of the module Scikit-learn (see [114]). In what follows we provide
some implementation details regarding the proposed model. The numerical experiments
have been designed under the following assumptions:

1. A-priori information. Given a fixed and known partition of the sample space Ξ,
we can construct an order cone that is consistent with the true probability dis-
tribution. That is, the probability masses that the true distribution assigns to
each partition verify the order cone constraints. In practice, this a-priori informa-
tion is determined by the nature of the problem and the random phenomena, and
is assumed to be known by the decision maker based on experience and expert
knowledge. Furthermore, in the case that the decision maker has no full certainty
about the a-priori information, s/he may resort to statistical hypothesis testing
to assess the confidence that the partition probabilities belong to a given order
cone (see, for instance, [23] and references therein).

In our numerical experiments, we specifically apply the following approach: Given
a fixed number of partitions (later we explain how the partition set is obtained),
we consider that the decision maker knows a total order between the probabil-
ity masses associated with each of the regions into which the sample space Ξ is
split. Furthermore, s/he also knows their ratios approximately, within a certain
tolerance (which, in the subsequent experiments, we set to 0.1).

For instance, suppose we have three partitions with (true) probability masses of
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p∗1 = 0.6, p∗2 = 0.3 and p∗3 = 0.1. The decision maker only knows their relative
ratios with a tolerance error of 0.1, that is:

p1 ⩾ (0.6/0.3− 0.1)p2

p2 ⩾ (0.3/0.1− 0.1)p3

This way, we get the following order cone constraints:

p1 ⩾ 1.9p2

p2 ⩾ 2.9p3

2. Support set Ξ. The support set is the Cartesian product of closed intervals (that
is, an hypercube, whose size is indicated in each example) and, therefore, is a
closed convex set.

3. True distribution. For simulation and analysis, the data-generating distribution
is approximated by a certain number of data points (15 000 in the newsvendor
setting and 10 000 in the problem of the Cournot producer) drawn from a mixture
of three normal distributions, whose characteristics are specified in each of the
two examples we consider in the following subsections. Furthermore, those data
points that fall outside the support set Ξ are discarded.

4. Construction of partitions Ξi, i = 1, . . . , |I|: In order to construct the partitions,
we proceed as follows.

(a) Clustering phase: Firstly, we employ the K-means clustering technique to
group the total number of data points that approximate the true data distri-
bution into K clusters. The number K of clusters is decided upon using the
well-known Elbow’s method (see, for example, [41]). It is based on the value
of the average distortion produced by different values of K. If K increases,
the average distortion will decrease and the improvement in average distor-
tion will diminish. The value of K at which the improvement in distortion
decreases the most is called the elbow. At this value of K, we should stop
dividing the data into further clusters and choose this value as the num-
ber of clusters. In addition, we assign a label to identify each of the K

clusters. In all the numerical experiments that are presented next, the true
data-generating distribution is constructed as a mixture of three (univariate
or multivariate) normal distributions. We assume that the decision maker
has a good estimate of the number of components of this mixture and thus,
we consider, for example, four clusters, i.e., K = 4.
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(b) Decision-tree classifier phase: Once all the clusters have been labelled, we
use the aforementioned total number of data points to train a decision-tree
multi-classifier with a maximum number of leafs equal to K. The tree will
be then used to allocate new data points into one of the K clusters, which,
in effect, is equivalent to having a partition of the support set in K disjoint
regions.

5. Comparative analysis: We compare three different data-driven approaches to ad-
dress the solution to problem infx∈X EQ [f(x, ξ)], namely, our approach (DROC),
the one of [99] (DROW) and the sample average approximation (SAA). Recall that
we denote x∗ ∈ argminx∈X EQ [f(x, ξ)] and J∗ = EQ [f(x∗, ξ)], which, in prac-
tice, are unknown to the decision maker, but, for analysis purposes, we estimate
using the total number of data points that approximate the true data-generating
distribution. Moreover, in all numerical experiments, we consider the 1-norm as
the functions c and c̃. To compare the three data-driven approaches we consider,
we use two performance metrics, specifically, the out-of-sample performance of the
data-driven solution (which we also refer to as its actual expected cost) and its out-
of-sample disappointment. The former is given by EQ [f(x̂m

N , ξ)], while the latter
is calculated as EQ [f(x̂m

N , ξ)]− Ĵm
N , where m = {DROC, DROW, SAA} and Ĵm

N

is the objective function value yielded by the data-driven optimization problem
solved by method m. We stress that a negative out-of-sample disappointment
represents a favourable outcome. As EQ [f(x̂m

N , ξ)] and Ĵm
N are random variables

(they are direct functions of the sample data), we conduct a certain number of
runs, each with an independent sample of size N . This way we can provide (visual)
estimates of the expected value and variability of the out-of-sample performance
and disappointment for several values of the sample size N . These estimates are
illustrated in the form of box plots in a series of figures. In these figures, the
dotted black horizontal line corresponds to either solution x∗ or to its associated
optimal cost J∗ with complete information (i.e., without ambiguity about the true
data distribution).

For the sole purpose of conducting a comparison as fairly as possible, parameters
ε and ρ in both DROC and DROW are tuned so that the underlying true distri-
bution of the data belongs to the corresponding ambiguity set with, at least, a
pre-fixed confidence level of probability. In the case of the newsvendor examples,
we guarantee this by trial and error for simplicity. In practice, however, these
parameters should be calibrated by way of a (statistical) procedure that uses the
data available to the decision maker, for example, through cross-validation or
bootstrapping, as we illustrate in Section 3.2.2 with the problem of a strategic
firm competing à la Cournot in a market for a homogeneous product.
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Finally, we stress that, in our approach, caution should be exercised when selecting
ε and ρ, as they should be such that problem (POC) has at least one feasible
solution. This is not guaranteed in the case that the empirical distribution Q̂

does not satisfy the order cone constraints on the probability masses associated
with each subregion Ξi of the support set Ξ. Intuitively, in this case, optimization
problem (POC) must have enough “budget” (i.e., ε and ρ must be high enough)
to “transport” the empirical distribution to another one that complies with the
a-priori information. In other words, the ambiguity set of problem (POC) must
be sufficiently large to contain at least one probability distribution that assigns
probability masses verifying the order cone constraints to the partitions.

3.2.1 Application I. Newsvendor problems

In this section, we illustrate the proposed DRO formulation on the popular newsvendor
problem (also known as the newsboy problem). Many extensions and variants of this
problem have been considered since it was first posed in the 50s (see, for example, the
work in [5], [39], [61], [111], and references therein). According to [110],

The newsboy problem is probably the most studied stochastic inventory model in in-
ventory control theory and the one with most extensions in recent years. This problem
reflects many real-life situations and is often used to aid decision making in both man-
ufacturing and retailing. It is particularly important for items with significant demand
uncertainty and large over-stocking and under-stocking costs.

The single-item newsvendor problem

In the single-item newsvendor model, the decision maker has to plan the inventory level
for a certain product before the random demand ξ for that product is realized, facing
both holding and backorder costs. The newsvendor problem can be formulated as

inf
x⩾0

EQ[h(x− ξ)+ + b(ξ − x)+]

where x is the order quantity, and b, h > 0 are the unit holding cost and the unit
backorder cost, respectively. It is known that the solution to the single-item newsvendor
problem is equivalent to that of a quantile regression problem, where the goal is to
estimate the quantile b/(b + h) of the distribution of the uncertainty y, with h and b

being the unit holding and backorder costs, respectively. Here we have assumed that
h = 4 and b = 2.

The demand for the item (unknown to the decision maker) is assumed to follow
a mixture (with weights ω1 = 0.1, ω2 = 0.35 and ω3 = 0.55) of the three normal
distributions N1(0.2, 0.05), N1(0.5, 0.1), and N1(0.8, 0.05), truncated over the unit
interval [0, 1]. Figure 3.1a provides a visual illustration of the resulting mixture. Recall
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that, in the numerical experiments that follow, we have used 15 000 samples drawn from
this mixture of Gaussian distributions to approximate the true distribution of the item
demand and to partition its support set [0, 1] into four regions, based on the two-phase
procedure we have previously described. In fact, what we show in Figure 3.1a is the
histogram of those 15 000 data points and its corresponding kernel density estimate.

For the sole purpose of conducting a comparison as fairly as possible, parameters ε

and ρ in both DROC and DROW are tuned so that the underlying true distribution of
the data belongs to the corresponding ambiguity set with at least 95% of probability. We
check whether this condition holds or not a posteriori (by trial and error), by counting
the number of runs (out of the one thousand we perform) for which the out-of-sample
disappointment is negative.

The values we have used for the parameters ε and ρ in DROC and DROW are
collated in Table 3.1. We insist that these parameters have been adjusted so that at
most 50 out of the 1000 runs we have conducted for each sample size N deliver a
positive out-of-sample disappointment (that is, to achieve and maintain a similar level
of reliability for the data-driven solutions given by DROC and DROW). As expected,
therefore, the values of both ε and ρ decrease as the sample size N grows.

Table 3.1: Single-item newsvendor problem: Values for parameters ε, ρ in DROC and
ρ in DROW.

N
DROC DROW
ε ρ ρ

2 0.9 0.9 1
5 0.8 0.8 0.9
10 0.7 0.7 0.8
20 0.4 0.6 0.6
50 0.15 0.25 0.4
100 0.1 0.2 0.25
200 0.01 0.15 0.05

Figures 3.1b, 3.1c, and 3.1d show the box plots corresponding to the order quantity,
the out-of-sample disappointment and the actual expected cost delivered by each of
the considered data-driven approaches for various sample sizes. The shaded areas have
been obtained by joining the whiskers of the box plots, while the associated solid lines
link their medians. Interestingly, whereas the medians of the order quantity estimators
provided by SAA are very close to the optimal one x∗, their high variability results
in (large) disappointment with very high probability. On the contrary, the median of
the order quantity delivered by DROW is significantly far from the optimal one (with
complete information) for small sample sizes, but it manages to keep the out-of-sample
disappointment below zero in return. To do so, however, DROW tends to produce costly
(overconservative) solutions on average, as inferred from their actual expected cost in
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Figure 3.1d. In plain words, DROW pays quite a lot to ensure a highly reliable/robust
order quantity. The proposed approach DDRO, however, is able to leverage the a-
priori information on the partition probabilities (pi)

|I|
i=1 to substantially reduce the cost

to pay for reliable data-driven solutions, especially for small sample sizes. Intuitively,
this information enables DROC to identify highly reliable solutions that are myopically
deemed as non-reliable and, therefore, discarded by DROW. Logically, this is contingent
on the quality of the a-priori information that is supplied to DROC in the form of order
cone constraints on (pi)

|I|
i=1.
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(a) Data generating distribution (kernel density es-
timate)
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(c) Out-of-sample disappointment
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Figure 3.1: Single-item newsvendor problem: (Approximate) true data-generating dis-
tribution, order quantity and performance metrics
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The multi-item newsvendor problem

In this section, we carry out an analysis similar to that of Subsection 3.2.1, but for the
multi-item newsvendor problem, which can be formulated as follows:

inf
x⩾0

EQ

d∑
l=1

[hl(xl − ξl)
+ + bl(ξl − xl)

+]

where xl is the order quantity for the l-th item, Q is the joint probability distribution
governing the demands for the d items, and bl, hl > 0 are the unit holding cost and the
unit backorder cost for the l-th item, respectively.

To illustrate our approach in a higher dimensional setting, we consider twenty items,
i.e., d = 20. We consider the following parameters: h1 = . . . = h10 = 2, h11 = . . . =

h20 = 4, b1 = . . . = b10 = 4; and b11 = . . . = b20 = 2. The demands for the twenty items
are assumed to follow a mixture of three multivariate normal distributions N20(µ1,Σ1),

N20(µ2,Σ2), and N20(µ3,Σ3), where µ1 = [3, . . . , 3] ∈ R20, Σ1 = diag(1, . . . , 1) ∈
R20×20; µ2 = [5, . . . , 5] ∈ R20, Σ2 = diag(0.5, . . . , 0.5) ∈ R20×20; and µ3 = [7, . . . , 7] ∈
R20, Σ3 = diag(0.1, . . . , 0.1) ∈ R20×20. The weights of the mixture are ω1 = 0.1, ω2 =

0.65 and ω3 = 0.25, respectively. Furthermore, the mixture has been truncated on the
hypercube [0, 10]20.

The values we have used for the parameters ε and ρ in DROC and DROW are
collated in Table 3.2.

Table 3.2: Multi-item newsvendor problem: Values for parameters ε, ρ in DROC and ρ
in DROW

N
DROC DROW
ε ρ ρ

2 5 2 60
5 5 2 50
10 4.5 1.5 40
20 4 1 20
50 2.5 0.6 10
100 1.75 0.5 8
200 1.25 0.35 4

Again, for a meaningful and fair comparison, these parameters have been tuned by
trial and error in such a way that at most 50 out of the 1000 runs we have carried
out for each sample size N yield a positive out-of-sample disappointment. The values
for the parameters, which we need to this end, diminish as we gain more information
(i.e., as the sample size N grows). Note that, for small sample sizes, for which the
available data provide very little information about their true distribution, a great deal
of robustness is required to produce highly reliable data-driven solutions. Consequently,
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it is little wonder that the selected values for ρ in DROC are equal to two, which is
the maximum value that the total variation distance between P and P̂ can take on. In
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Figure 3.2: Multi-item newsvendor problem: Performance metrics

the same fashion as in the case of the previous example of the single-item newsvendor
problem, Figures 3.2a and 3.2b show, for various sample sizes, the box plots pertaining
to the out-of-sample disappointment and the actual expected cost associated with each
of the considered data-driven approaches, in that order. The results conveyed by these
figures confirm our initial conclusions: The ability of our approach DROC to exploit
a-priori knowledge of the order among some partition probabilities permits identifying
solutions that perform noticeably better out of sample with the same level of confidence.
We underline that, in terms of the out-of-sample disappointment, the decision maker
seeks a data-driven method m that renders an estimate Ĵm

N that results in a positive
surprise (i.e., negative disappointment) with a high probability, but that is as close as
possible to the cost with full information J∗. Consequently, the large negative out-of-
sample disappointment that the solutions given by DROW feature can be attributed to
its over-conservativeness.

In terms of computational time, solving DROC for this instance of the multi-item
newsvendor problem, with 20 items, four partitions and a sample size of 200, takes less
than a second with CPLEX 12.10 running on a Windows 10 PC with a CPU Intel (R)
Core i7-8550U clocking at 1.80 GHz and 8 GB of RAM.

3.2.2 Application II. The problem of a strategic firm competing à la
Cournot in a market

In this section, we illustrate the proposed DRO formulation considering the problem of
a strategic firm competing à la Cournot in a market for an undifferentiated product.
This could be the case, for instance, of the electricity market (see, e.g., [60, Ch. 3] and
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[119]). Suppose the firm can produce up to one per-unit amount of product at a cost
given by a2x

2+a1x+a0, where x is the per-unit amount of product eventually produced
and a0, a1 and a2 are known parameters taking values in R+. Furthermore, assume an
inverse residual demand function in the form λ = α−βx, where λ is the market clearing
price for the product, and α, β ∈ R+ are unknown and uncertain parameters. The firm
seeks, therefore, to minimize its cost (a2x2 + a1x+ a0)− λx subject to x ∈ [0, 1]. After
some basic manipulation, the problem of the firm can be posed as

inf
x∈[0,1]

EQ[(−x)ξ + x2]

where ξ = α−a1
β+a2

.
The most interesting feature of this example is that, unlike in the aforementioned

newsvendor problems, the Lipschitz constant of the objective function f(x, ξ) := (−x)ξ+

x2 with respect to ξ is dependent on the decision variable x.
We consider that ξ follows a (true) probability distribution given by 10 000 points

sampled from a mixture of three Gaussian distributions with variances all equal to 0.3

and means µ1 = 0, µ2 = 1.2 and µ3 = 2.5. The weights of the mixture are ω1 = 0.5, ω2 =

0.2 and ω = 30.3. Furthermore, the mixture has been truncated over the interval
[−1.8, 3]. Figure 3.3a plots the kernel estimate of the data-generating distribution.

As in the previous Newsvendor problem experiments, we have divided the support
[−1.8, 3] into four partitions, using the procedure described at the beginning of Sec-
tion 3.2. However, in a different way to what we did in the newsvendor examples, here
we select parameters ε and ρ following a procedure that solely relies on the available
data, similarly to what is done in [99] .

Essentially, given a desired confidence level (1 − β) for the finite-sample guarantee
(set to 0.85 in our numerical experiments), we need to estimate, using the data sample
available only, the parameters ε and ρ that deliver, at least, this confidence level while
yielding the best out-of-sample performance. To this end, we use bootstrapping. The
estimator of those parameters is denoted as paramm

N (β), underlining that the number
and type of parameters to be estimated depend on the method m. The estimation
procedure is carried out as follows for each sample of size N (in the experiments we
have considered 300 independent data samples for each size N):

1. We construct kboot resamples of size N (with replacement), each playing the role
of a different training dataset. Moreover, take those data points that have not
been resampled to form a validation dataset (one per resample of size N). In our
experiments below, we have considered kboot = 50.

2. For each resample k = 1, . . . , kboot and each candidate value for param, get a
DRO solution from method j with parameter (or pair of paramaters) param on
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the k-th resample. The resulting optimal decision is denoted as x̂j,kN (param) and
its associated objective value as Ĵ j,k

N (param). Subsequently, we compute the out-
of-sample performance J(x̂j,kN (param)) of the data-driven solution x̂j,kN (param)

over the k-th validation dataset.

3. From among the candidate values for param such that Ĵ j,k
N (param) exceeds the

value J(x̂j,kN (param)) in at least (1 − β) × kboot different resamples, take the

one with the lowest
∑kboot

k=1 J(x̂j,k
N (param))

kboot (that is, with the highest out-of-sample
performance averaged over the kboot resamples).

4. Finally, compute the solution given by method j with parameter paramβ,j
N , x̂jN :=

x̂jN (paramβ,j
N ) and the respective certificate Ĵ j

N := Ĵ j
N (paramβ,j

N ).
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Figure 3.3: Strategic firm problem: (Approximate) true data-generating distribution,
optimal solution and performance metrics

As for the newsvendor examples, Figures 3.3b, 3.3c, and 3.3d show, for various sam-
ple sizes, the box plots pertaining to the optimal decision, the out-of-sample disappoint-
ment and the actual expected cost associated with each of the considered data-driven
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approaches, in that order. Once again, the results conveyed by these figures confirm our
previous conclusions: Our approach DROC is able to leverage a-priori knowledge of the
order among some partition probabilities to deliver solutions that perform significantly
better out of sample for the same level of confidence. Furthermore, we see that the de-
cision computed by the proposed method DROC converges to the true optimal solution
(with complete information) faster than the solutions provided by the other methods.

3.3 Summary

In this chapter, we have presented a novel framework for data-driven distributionally
robust optimization (DRO) based on optimal transport theory in combination with
order cone constraints to leverage a-priori information on the true data-generating
distribution. More specifically, motivated by the reported over-conservativeness of the
traditional DRO approach based on the Wasserstein metric, we have formulated an
ambiguity set able to incorporate information about the order among the probabilities
that the true distribution of the problem’s uncertain parameters assigns to the events
within a partition of its support set. Our approach can accommodate a wide range
of shape information (such as that related to monotonicity or multi-modality) in a
practical and intuitive way. Moreover, we have shown that, under mild assumptions,
the resulting DRO problem can be, in fact, reformulated as a finite convex problem
where the a-priori information (expressed through the order cone constraints) are cast
as linear constraints as opposed to the more computationally challenging formulations
that exist in the literature. Furthermore, our approach is supported by theoretical
performance guarantees and is capable of turning the provided information into solutions
with increased reliability and improved performance, as illustrated by the numerical
experiments we have prepared based on the well-known newsvendor problem and the
problem of a strategic firm competing á la Cournot in a market for a homogeneous
product.
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In this chapter, we propose a general framework for data-driven distributionally ro-
bust optimization with conditional information that relies on two related tools, namely,
the optimal mass transport theory and the concept of trimming of a probability mea-
sure. We first introduce some preliminaries that help motivate our proposal and then
lay out the theoretical foundations that support it, which can also be found in our
work [53]. Finally, we discuss some computational experiments and applications of the
proposed framework. For ease of reading, all the proofs of the theoretical results that
are presented next have been moved to the appendices.

4.1 Methodology and theoretical foundations

This section develops the theoretical basis that underpins our proposal. Before that,
though, we begin with some preliminaries that will serve us to build and motivate
the distributionally robust optimization approach we propose to address conditional
stochastic programs.

4.1.1 Preliminaries and motivation

We start this section by providing a generic formulation of a conditional stochastic
program. For this purpose, let x ∈ X ⊆ Rdx be the decision variable vector and y,
with support set Ξy ⊆ Rdy , the random vector that models the uncertainty affecting
the value of the decision. Let z, with support set Ξz ⊆ Rdz , be the (random) feature
vector and denote the objective function to be minimized as f(x, ξ), where ξ := (z,y).

Given a new piece of information in the form of the event ξ ∈ Ξ̃, the decision maker
seeks to compute the optimal decision that minimizes the (true) conditional expected
cost:

J∗ := inf
x∈X

EQ

[
f(x, ξ) | ξ ∈ Ξ̃

]
= inf

x∈X
EQ

Ξ̃
[f(x, ξ)] (4.1)
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where Q is the true joint distribution of ξ := (z,y) with support set Ξ ⊆ Rdz+dy and Q
Ξ̃

is the associated true distribution of ξ conditional on ξ ∈ Ξ̃. Hence, we implicitly assume
that Q

Ξ̃
is a regular conditional distribution and that the conditional expectation (4.1)

is well defined.

An example of Ξ̃ would be Ξ̃ := {ξ = (z,y) ∈ Ξ : z ∈ Z}, with Z ⊆ Ξz

being an uncertainty set built from the information on the features. We note that this
definition includes the case in which Z reduces to a singleton z∗ representing a particular
realization of the features.

Unfortunately, when it comes to solving the conditional stochastic program (4.1),
neither the true distribution Q nor —even less so— the conditional one Q

Ξ̃
are generally

known to the decision maker. Actually, the decision maker typically counts only on a
data sample consisting of N observations ξ̂i := (ẑi, ŷi) for i = 1, . . . , N , which we
assume are i.i.d. Therefore, the solution to problem (4.1) per se is, in practice, out of
reach and the best the decision maker can do is to approximate the solution to (4.1)
with some (probabilistic) performance guarantees. Within this context, Distributionally
Robust Optimization (DRO) emerges as a powerful modeling framework to achieve that
goal. In brief, the DRO approach aims to find a decision x ∈ X that is robust against all
conditional probability distributions that are somehow plausible given the information
at the decision maker’s disposal. This is mathematically stated as follows:

inf
x∈X

sup
Q

Ξ̃
∈ÛN

EQ
Ξ̃
[f(x, ξ)] (4.2)

where ÛN is a so-called ambiguity set that contains all those plausible conditional distri-
butions. This ambiguity set must be built from the available information on ξ, which,
in our case, comprises the N observations {ξ̂i}Ni=1. The subscript N in ÛN is intended to
underline this issue. Furthermore, the condition Q

Ξ̃
(Ξ̃) = 1 for all Q

Ξ̃
∈ ÛN is implicit

in the construction of that set. In our setup, however, problem (4.2) poses a major
challenge, which has to do with the fact that the observations {ξ̂i}Ni=1 pertain to the
true joint distribution Q, and not to the conditional one Q

Ξ̃
. Consequently, we need to

build an ambiguity set ÛN for the plausible conditional distributions from the limited
joint information on Q provided by the data {ξ̂i}Ni=1.

At this point, we should note that there are several approaches in the technical lite-
rature to handle the conditional stochastic optimization problem (4.1) for the particular
case in which Ξ̃ is defined as Ξ̃ := {ξ = (z,y) ∈ Ξ : z = z∗}. For example, the authors
of [17] approximate (4.1) by the following conditional estimate

inf
x∈X

N∑
i=1

wi
N (z∗)f(x, (z∗, ŷi)) (4.3)
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where wi
N (z∗) is a weight function that can be given by various non-parametric ma-

chine learning methods such as K-nearest neighbors, kernel regression, CART, and ran-
dom forests. Formulation (4.3) can be naturally interpreted as a (conditional) Sample-
Average-Approximation (SAA) of problem (4.1).

The authors in [18] extend the work in [17] to accommodate the setting in which
the outcome of the uncertainty y may be contingent on the taken decision x. For this
purpose, they work with an enriched data set comprising observations of the uncertainty
y, the decision x and the covariates z, and allow the weights in (4.3) to depend on x

too. Besides, they add terms to the objective function of (4.3) to penalize estimates
of its variance and bias. The case in which the weight function (4.3) is given by the
Nadaraya-Watson (NW) kernel regression estimator is considered in [74, 112]. In [112],
in addition, they leverage techniques from moderate deviations theory to design a reg-
ularization scheme that reduces the optimistic bias of the NW approximation and to
provide insight into its out-of-sample performance. The work in [22] focuses on con-
ditional estimators (4.3) where the weights are provided by the NW or KNN method.
They use DRO, based on the relative entropy distance for discrete distributions to get
decisions from (4.3) that perform well on a large portion of resamples bootstraped from
the empirical distribution of the available data set.

Finally, the authors in [19] provide a robustified version of the conditional estima-
tor (4.3), which takes the following form

inf
x∈X

N∑
i=1

wi
N (z∗) sup

y∈U i
N

[f(x, (z∗,y))] (4.4)

where U i
N := {y ∈ Ξy : ∥y − ŷi∥p ⩽ εN}. This problem can be seen as a robust SAA

method capable of exploiting side information and has also been used in [20, 21].

In our case, however, we follow a different path to address the conditional stochastic
optimization problem (4.1) by way of (4.2). More precisely, we leverage the notion of
trimmings of a distribution and the related theory of partial mass transportation.

4.1.2 The Partial Mass Transportation Problem and Trimmings

This section introduces some concepts about trimmings and the partial mass trans-
portation problem that help us construct the ambiguity set ÛN in (4.2) from the sample
data {ξ̂i}Ni=1. For simplicity, we restrict ourselves to probability measures defined in Rd.

If Q(Ξ̃) = α > 0 (our analysis, though, will also cover the case α = 0 later in
Section 4.1.4), problem (4.1) can be recast as

J∗ := inf
x∈X

1

α
EQ
[
f(x, ξ)I

Ξ̃
(ξ)
]

(4.5)
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which only requires that EQ
[
|f(x, ξ)I

Ξ̃
(ξ)|

]
< ∞ for all x ∈ X (see [67, Eq. 6.2]).

Now we introduce the notion of a trimming of a distribution, which is at the core
of our proposed DRO framework.

Definition 4.1 ((1−α)-trimmings, Definition 1.1 from [10]). Given 0 ⩽ α ⩽ 1

and probability measures P,Q ∈ Rd, we say that Q is an (1 − α)-trimming of P if Q
is absolutely continuous with respect to P , and the Radon-Nikodym derivative satisfies
dQ
dP ⩽

1
α . The set of all (1− α)-trimmings (or trimming set of level 1− α) of P will be

denoted by R1−α(P ).

Remark 4.1. As extreme cases, we have that for α = 1, R0(P ) is just P , while, for
α = 0, R1(P ) is the set of all probability measures absolutely continuous with respect to
P . Given a probability P on Rd, if α1 ⩽ α2, then R1−α2(P ) ⊂ R1−α1(P ). Especially
useful is the fact that a trimming set is a convex set, which is, besides, compact under
the topology of weak convergence. We refer the reader to [3, Proposition 2.7] for other
interesting properties about the set R1−α(P ).

For ease of understanding, we provide below an example of a (1 − α)-empirical
trimmings set.

Example 4.1. Consider the empirical joint measure Q̂N :=
∑3

i=1 δξ̂i = 1
3(δ(1,0) +

δ(0,5) + δ(2,3)) (N = 3). If α = 0.5, then 1
Nα = 1

3·0.5 = 2
3 . Therefore, the 0.5-trimmings

set of Q̂N (see Figure 4.1) is given by

R0.5(Q̂N ) :=

{
3∑

i=1

biδξ̂i : 0 ≤ bi ≤
2

3
,∀i = 1, . . . , 3;

3∑
i=1

bi = 1

}
The following statements hold thus true:

Q̂N =
1

3
(δ(1,0) + δ(0,5) + δ(2,3)) ∈ R0.5(Q̂N )

Q =
2

3
δ(1,0) +

1

3
δ(0,5) ∈ R0.5(Q̂N )

P = δ(1,0) ̸∈ R0.5(Q̂N ) (the trimming must retain one point and a half at least)

S =
2

3
δ(1,0) +

1

6
δ(0,5) +

1

6
δ(2,3) ∈ R0.5(Q̂N )

V =
3

4
δ(1,0) +

1

12
δ(0,5) +

2

12
δ(2,3) ̸∈ R0.5(Q̂N ) (because b1 > 2/3)

Consider now the following minimization problem:

inf
Q∈R1−α(P )

D(Q,R) (4.6)

where D is a probability metric.
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Figure 4.1: Probability simplex (in blue) corresponding to the trimming set R0.5(Q̂N )

Problem (4.6) is known as the (D, 1 − α)−partial (or incomplete) mass problem
[10]. While there is a variety of probability metrics we could choose from to play the
role of D in (4.6), here we work with the space Pp(Rd) of probability distributions
supported on Rd with finite p-th moment and restrict ourselves to the p−Wasserstein
metric, Wp, for its tractability and theoretical advantages. In such a case (i.e., when
D = Wp), problem (4.6) is referred to as a partial mass transportation problem and
interpolates between the classical optimal mass transportation problem (when α = 1)
and the random quantization problem (when α = 0).

Intuitively, the partial optimal transport problem goes as follows. We have an excess
of offer of a certain quantity of mass at origin (supply) and a mass that needs to be
satisfied at destination (demand), so that it is not necessary to serve all the mass
(demand= α×supply). In other words, some (1− α)-fraction of the mass at origin can
be left non-served. The goal is to perform this task at the cheapest transportation cost.
If we represent the demand at destination by a target probability distribution R, we
can model the supply at origin as P

α , where P is another probability distribution and
the mass required at destination is α times the mass at origin. This way, a partial
optimal transportation plan is a probability measure Π on Rd × Rd with first marginal
in R1−α(P ) and with second marginal equal to R, which solves the following cost
minimization problem:

Wp(R1−α(P ), R) := min
Q∈R1−α(P )

Wp(Q,R)

The following lemma allows us to characterize the connection between the joint
distribution Q and the conditional distribution Q

Ξ̃
in problem (4.1) above in terms of

the partial mass problem.

Lemma 4.1. Let Q be a probability on Rd such that Q(Ξ̃) = α > 0 and let Q
Ξ̃
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be the Q-conditional probability distribution given the event ξ ∈ Ξ̃. Also, assume that
for a given probability metric D, R1−α(Q) is closed for D over an appropiate set of
probability distributions. Then, Q

Ξ̃
is the unique distribution that satisfies Q

Ξ̃
(Ξ̃) = 1

and D
(
R1−α(Q), Q

Ξ̃

)
= 0.

By way of Lemma (4.1), we can reformulate Problem (4.1) as follows:

inf
x∈X

sup
Q

Ξ̃

EQ
Ξ̃
[f(x, ξ)] (4.7a)

s.t. Wp
p (R1−α(Q), Q

Ξ̃
) = 0 (4.7b)

Q
Ξ̃
(Ξ̃) = 1 (4.7c)

which now presents a form which is much more suited to our purpose, that is, to get to
the DRO-type of problem (4.2) we propose. The change, nonetheless, has been essen-
tially cosmetic, because problem (4.7) still relies on the true joint distribution Q and
therefore, is of no use in practice as it stands right now. To make it practical, we need
to rewrite it not in terms of the unknown Q, but in terms of the information available
to the decision maker, i.e., the sample data {ξ̂i}Ni=1. For that purpose, it seems sensible
and natural to replace Q in (4.7b) with its best approximation taken directly from the
data, namely, the empirical measure of the sample, Q̂N . Logically, to accommodate the
approximation, we will need to introduce a budget ρ̃ in equation (4.7b), that is,

(P) inf
x∈X

sup
Q

Ξ̃

EQ
Ξ̃
[f(x, ξ)] (4.8a)

s.t. Wp
p (R1−α(Q̂N ), Q

Ξ̃
) ≤ ρ̃ (4.8b)

Q
Ξ̃
(Ξ̃) = 1 (4.8c)

Hereinafter we will use ÛN (α, ρ̃) to denote the ambiguity set defined by constraints
(4.8b)–(4.8c). Under certain conditions, this uncertainty set enjoys nice topological
properties, as we state in Proposition B.1.3 in Appendix B.

Now we define what we call the minimum transportation budget, which plays an
important role in the selection of budget ρ̃ in problem (P).

Definition 4.2 (Minimum transportation budget). Given α > 0 in problem
(P), the minimum transportation budget, which we denote as ϵNα, is the p-Wasserstein
distance between the set Pp(Ξ̃) and the (1 − α)-trimming of the empirical distribution
Q̂N that is the closest to that set, i.e., inf{Wp(P,Q) : P ∈ R1−α(Q̂N ), Q ∈ Pp(Ξ̃)},
which is given by

ϵNα =

 1

Nα

⌊Nα⌋∑
k=1

dist(ξk:N , Ξ̃)p +

(
1− ⌊Nα⌋

Nα

)
dist(ξ⌈Nα⌉:N , Ξ̃)p

 1
p

(4.9)
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where ξk:N is the k-th nearest data point from the sample to set Ξ̃ and dist(ξj , Ξ̃) :=

inf
ξ∈Ξ̃ dist(ξj , ξ) = inf

ξ∈Ξ̃ ||ξj − ξ||. If α = 0, then ϵN0 = dist(ξ1:N , Ξ̃).

Importantly, the minimum transportation budget to the power of p, i.e., ϵpNα, is the
minimum value of ρ̃ in (P) for this problem to be feasible. Furthermore, ϵNα is random,
because it depends on the available data sample, but realizes before the decision x is to
be made. It constitutes, therefore, input data to problem (P).

We note that, if the random vector y takes values in a set that is independent of
the feature vector z, i.e., for all z∗ ∈ Ξz, {y ∈ Ξy : ξ = (z∗,y) ∈ Ξ} = Ξy, then
dist(ξj , Ξ̃) = inf

ξ∈Ξ̃ ||ξj − ξ|| = inf
ξ=(z,y)∈Ξ̃ ||zj − z||.

Furthermore, in what follows, we assume that dist(ξj , Ξ̃) (interpreted as a random
variable) conditional on ξj /∈ Ξ̃ has a continuous distribution function. This ensures
that, in the case Q(Ξ̃) = 0, which we study in Section 4.1.4, there will be exactly K

nearest data points to Ξ̃ with probability one.
Next we present an interesting result, which deals with the inner supremum of

problem (P) and adds more meaning to this problem by linking it to an alternative
formulation more in the style of the Wasserstein data-driven DRO approach proposed
in [99], where, however, no side information is taken into account. In fact, the distri-
butionally robust approach to conditional stochastic optimization that is proposed in
[107] is based on this alternative formulation (see Proposition A.4 in that work)1.

Proposition 4.1. Given N ⩾ 1, Q(Ξ̃) = α > 0, and any positive value of ρ̃, problem
(SP2) is a relaxation of (SP1), where (SP1) and (SP2) are given by

(SP1)


supQ EQ

[
f(x, ξ) | ξ ∈ Ξ̃

]
s.t. Wp

p (Q, Q̂N ) ⩽ ρ̃ · α
Q(Ξ̃) = α

, (SP2)


supQ

Ξ̃
EQ

Ξ̃
[f(x, ξ)]

s.t. Wp
p (R1−α(Q̂N ), Q

Ξ̃
) ⩽ ρ̃

Q
Ξ̃
(Ξ̃) = 1

and where by “relaxation” it is meant that any solution Q feasible in (SP1) can be mapped
into a solution Q

Ξ̃
feasible in (SP2) with the same objective function value.

Moreover, if Q̂N (Ξ̃) = 0 or α = 1, then (SP1) and (SP2) are equivalent.

Among other things, Proposition 4.1 reveals that parameter ρ̃ in problem (SP2),
and hence in problem (P), can be understood as a cost budget per unit of transported
mass. Likewise, parameter α can be interpreted as the minimum amount of mass (in
per unit) of the empirical distribution Q̂N that must be transported to the support Ξ̃.
This interpretation of parameters ρ̃ and α will be useful to follow the rationale behind
the DRO solution approaches that we develop later on.

On the other hand, despite the connection between problems (SP1) and (SP2) that
Proposition 4.1 unveils, the latter is qualitatively more amenable to further generaliza-

1Proposition 4.1 in our work published in [53] predates the release of preprint [107].
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tion and analysis. Examples of this are given by the relevant cases α = 0, for which
problem (SP1) is ill-posed, while problem (SP2) is not, and α unknown, for which the
use of trimming sets in (SP2) allows for a more straightforward treatment. We will deal
with both cases in Section 4.1.4. Before that, we provide an implementable reformula-
tion of the proposed DRO problem (P).

4.1.3 Tractable reformulation of the partial mass transportation pro-
blem

In this section, we put the proposed DRO problem (P) in a form more suited to tackle its
computational implementation and solution. For this purpose, we first need to introduce
a technical result whereby we characterize the trimming sets of an empirical probability
measure.

Lemma 4.2. Consider the sample data {ξ̂i}Ni=1 and their associated empirical mea-
sure Q̂N = 1

N

∑N
i=1 δξ̂i. If α > 0, the set of all (1− α)-trimmings of Q̂N is given by all

probability distributions in the form
∑N

i=1 biδξ̂i such that 0 ≤ bi ≤ 1
Nα , ∀i = 1, . . . , N ,

and
∑N

i=1 bi = 1. Furthermore, if α = 0, the set R1−α(Q̂N ) of (1−α)-trimmings of Q̂N

becomes R1(Q̂N ) = {∑N
i=1 biδξ̂i such that bi ⩾ 0, ∀i = 1, . . . , N , and

∑N
i=1 bi = 1}.

In short, Lemma 4.2 tells us that trimming a data sample of size N with level 1−α

involves reweighting the empirical distribution of such data by giving a new weight less
than or equal to 1

Nα to each data point.
Therefore, Applying Lemma 4.2, we can recast constraint Wp

p (R1−α(Q̂N ), Q
Ξ̃
) ⩽ ρ̃

in problem (P) as

min
bi,∀i⩽N

Wp

(
N∑
i=1

biδξ̂i , QΞ̃

)
⩽ ρ̃1/p

s.t. 0 ⩽ bi ⩽
1

Nα
, ∀i ⩽ N

N∑
i=1

bi = 1

We are now ready to introduce the main result of this section.

Theorem 4.1 (Reformulation based on strong duality). For α > 0 and any
value of ρ̃ ⩾ ϵpNα, subproblem (SP2) is equivalent to the following one:

(SP2′) inf
λ⩾0;µi,∀i⩽N ;θ∈R

λρ̃+ θ +
1

Nα

N∑
i=1

µi

s.t. µi + θ ⩾ sup
(z,y)∈Ξ̃

(f(x, (z,y))− λ ∥(z,y)− (ẑi, ŷi)∥p), ∀i ⩽ N
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µi ⩾ 0, ∀i ⩽ N

Surely the most important takeaway message of Theorem 4.1 is that problem (P)
is as tractable as the standard Wasserstein-metric-based DRO formulation proposed in
[87] and [99]. In these two papers, conditions under which the inner supremum in (SP2′)

can be recast in a more tractable form are provided. As an example, in Appendix B.1.4
we provide a more refined reformulation of (SP2′), whereby the problems we solve in
this chapter can be directly handled.

In the following section, we show that problem (P) works, under certain conditions,
as a statistically meaningful surrogate decision-making model for the target conditional
stochastic program (4.1).

4.1.4 Finite sample guarantee and asymptotic consistency

Next we argue that the worst-case optimal expected cost provided by problem (P)
for a fixed sample size N and a suitable choice of parameters (α, ρ̃) (dependent on
N) leads to an upper confidence bound on the out-of-sample performance attained
by the optimizers of (P) (finite sample guarantee) and that those optimizers almost
surely converge to an optimizer of the true optimal expected cost as N grows to infinity
(asymptotic consistency). Recall that we say that a data-driven method built to address
problem (4.1) enjoys a finite sample guarantee, if it produces pairs (x̂N , ĴN ) satisfying
a relation in the form

QN
[
EQ[f(x̂N , ξ) | ξ ∈ Ξ̃] ⩽ ĴN

]
⩾ 1− β (4.10)

Our analysis relies on the lemma below, which immediately follows from setting
P1 := Q̂N , Q := Q

Ξ̃
, P2 := Q in Lemma 3.13 on probability trimmings in [1].

Lemma 4.3. Assume that Q
Ξ̃
,Q ∈ Pp(Rd), and take p ⩾ 1, then

Wp(R1−α(Q̂N ),Q
Ξ̃
) ⩽Wp(R1−α(Q),Q

Ξ̃
) +

1

α1/p
Wp(Q̂N ,Q) (4.11)

We notice that the term Wp(R1−α(Q),Q
Ξ̃
) in (4.11) is not random and depends

exclusively on the true distributions Q
Ξ̃
, Q, and the trimming level α. It is, therefore,

independent of the data sample (unlike the other two terms involved). Inequality (4.11)
reveals an interesting trade-off. On the one hand, the distance Wp(R1−α(Q),Q

Ξ̃
) di-

minishes as α decreases to zero, because the trimming set R1−α(Q) grows in size. On
the other, the term 1

α1/pWp(Q̂N ,Q) becomes larger as α approaches zero. As we will
see later on, controlling this trade-off is key to endowing problem (P) with performance
guarantees. To this end, we will make use of the assumption and proposition below.
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Assumption 4.1. The true joint probability distribution Q is light-tailed, i.e., there
exists a constant a > p ⩾ 1 such that EQ [exp(∥ξ∥a)] < ∞.

Proposition 4.2 (Concentration tail inequality). Suppose that Assumption 4.1
holds. Then, there are constants c, C > 0 such that, for all ϵ > 0, α > 0, and N ⩾ 1, it
holds

QN
[
Wp

(
R1−α(Q̂N ),Q

Ξ̃

)
⩾Wp(R1−α(Q),Q

Ξ̃
) + ϵ

]
⩽ βp,ϵ,α(N) (4.12)

where

βp,ϵ,α(N)=I{ϵ⩽1/α1/p}C


exp(−cN α2 ϵ2p) if p > d/2,

exp(−cN(αϵp/ log(2 + 1/αϵp))2) if p = d/2,

exp(−cN αd/p ϵd) if p ∈ [1, d/2), d > 2

(4.13)

+ C exp(−cN αa/p ϵa)I{ϵ>1/α1/p}

with d = dz + dy.

Assuming p ̸= d/2 , if we equate β to βp,ϵ,α(N) and solving for ϵ we get:

ϵN,p,α(β):=



(
log(Cβ−1)

cN

)1/2p
1

α1/p if N ≥ log(Cβ−1)
c , p > d/2,(

log(Cβ−1)
cN

)1/d
1

α1/p if N ≥ log(Cβ−1)
c , p ∈ [1, d/2), d > 2(

log(Cβ−1)
cN

)1/a
1

α1/p if N < log(Cβ−1)
c

(4.14)

In what follows, we distinguish three general setups that may appear in the real-life
use of Conditional Stochastic Optimization, namely, the case Q(Ξ̃) = α > 0 with α

known, the case Q(Ξ̃) = α > 0 with α unknown, and the case Q ≪ λd with Q(Ξ̃) =

α = 0.

Case Q(Ξ̃) = α > 0. Applications in data-driven decision making under
contaminated samples

When Q(Ξ̃) = α > 0 and known, we can solve the following DRO problem:

(P(α,ρ̃N)) inf
x∈X

sup
Q

Ξ̃

EQ
Ξ̃
[f(x, ξ)] (4.15a)

s.t. Wp
p (R1−α(Q̂N ), Q

Ξ̃
) ≤ ρ̃N (4.15b)

Q
Ξ̃
(Ξ̃) = 1 (4.15c)

As we show below, problem P(α,ρ̃N ) enjoys a finite sample guarantee and produces
solutions that are asymptotically consistent, i.e., that converge to the true solution
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(under complete information) given by problem (4.1). This is somewhat hinted at by
the connection between problems (SP1) and (SP2) highlighted in Proposition 4.1.

Theorem 4.2 (Case α > 0: Finite sample guarantee). Suppose that the as-
sumptions of Proposition 4.2 hold and take p ̸= d/2. Given N ⩾ 1 and α > 0, choose β ∈
(0, 1), and determine ϵN,p,α(β) through (4.14). Then, for all ρ̃N ⩾ max(ϵpN,p,α(β), ϵ

p
Nα),

where ϵpNα is the minimum transportation budget as in Definition 4.2, the pair (x̂N , ĴN )

that is solution to problem
(
P(α,ρ̃N )

)
enjoys the finite sample guarantee (4.10).

We point out that, in the case α > 0, data points may fall into the set Ξ̃. Logically,
the contribution of these points to the minimum transportation budget ϵpNα is null and
their order (the way their tie is broken) is irrelevant to our purpose.

Now we state that the solutions of the distributionally robust optimization problem(
P(α,ρ̃N )

)
converge to the solution of the target conditional stochastic program (4.1) as

N increases, for a careful choice of the budget ρ̃N . This result is underpinned by the
fact that, under that selection of ρ̃N , any distribution in ÛN (α, ρ̃N ) converges to the
true conditional distribution Q

Ξ̃
. This is formally stated in the following lemma.

Lemma 4.4 (Case α > 0: Convergence of conditional distributions). Sup-
pose that the assumptions of Proposition 4.2 hold. Choose a sequence βN ∈ (0, 1),
N ∈ N, such that

∑∞
N=1 βN < ∞ and limN→∞ ϵN,p,α(βN ) → 0. Then,

Wp(Q
N
Ξ̃
,Q

Ξ̃
) → 0 a.s.

for any sequence QN
Ξ̃

, N ∈ N, such that QN
Ξ̃

∈ ÛN (α, ρ̃N ) with ρ̃N = max(ϵpN,p,α(βN ), ϵpNα).

Once the convergence of QN
Ξ̃

to the true conditional distribution Q
Ξ̃

in the p-
Wasserstein metric has been established by the previous lemma, the following asymp-
totic consistency result, which is analogous to that of [99, Theorem 3.6], can also be
derived.

Theorem 4.3 (Asymptotic consistency). Consider that the conditions of Theo-
rem 4.2 hold. Take a sequence ρ̃N as in Lemma 4.4. Then, we have

(i) If for any fixed value x ∈ X, f(x, ξ) is continuous in ξ and there is L ⩾ 0 such
that |f(x, ξ)| ⩽ L(1 + ∥ξ∥p) for all x ∈ X and ξ ∈ Ξ̃, then we have that ĴN → J∗

almost surely when N grows to infinity.

(ii) If the assumptions in (i) are satisfied, f(x, ξ) is lower semicontinuous on X for
any fixed ξ ∈ Ξ̃, and the feasible set X is closed, then we have that any accu-
mulation point of the sequence {x̂N}N is almost surely an optimal solution of
problem (4.1).

In the following remark, we show how problem P(α,ρ̃N ) can be used to make distri-
butionally robust decisions in a context where the data available to the decision maker
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is contaminated.

Remark 4.2 (Data-driven decision-making under contaminated samples).
Suppose that the dataset ξ̂i := (ẑi, ŷi) for i = 1, . . . , N is composed of correct and
contaminated samples. The decision maker only knows that a sample is correct with
probability α and contaminated with probability 1−α, but does not know which type each
sample belongs to. Thus, the data have been generated from a mixture distribution given
by P = αQ∗ + (1− α)R, where Q∗ is the correct distribution and R a contamination.

In our context, this is equivalent to stating that Q∗ ∈ R1−α(P ), which, in turn, can
be formulated as Wp(R1−α(P ), Q∗) = 0. Since we only have limited information on P

in the form of the empirical distribution P̂N , we propose to solve problem P(α,ρ̃N ), that
is,

inf
x∈X

sup
Q

EQ [f(x, ξ)] (4.16a)

s.t. Wp
p (R1−α(P̂N ), Q) ≤ ρ̃N (4.16b)

where we have assumed that the correct distribution Q∗, the contamination R and the
data-generating distribution P are all supported on Ξ.

The decision maker can profit from the finite sample guarantee that the solution to
problem (4.16a)–(4.16b) satisfies as per Theorem 4.2, with ρ̃N ⩾ ϵpN,p,α(β), β ∈ (0, 1),
since ϵpNα = 0 in this case. Furthermore, if we choose a summable sequence of βN ∈
(0, 1), N ∈ N, such that limN→∞ ϵN (βN ) = 0, then we have that

P∞
(

lim
N→∞

Wp

(
R1−α(P̂N ), Q∗

)
= 0

)
= 1 (4.17)

In plain words, for N large enough, the decision vector x is being optimized by way
of problem (4.16a)–(4.16b) over the “smallest” ambiguity set that almost surely contains
the correct distribution Q∗ of the data (in the absence of any other information on
Q∗). In fact, this means our DRO approach deals with contaminated samples in a way
that is distinctly more convenient than that of [34] and [58]. Essentially, they suggest
optimizing over a 1-Wasserstein ball centered at P̂N of radius ρ̃, that is,

inf
x∈X

sup
Q

EQ [f(x, ξ)] (4.18a)

s.t. W1(P̂N , Q) ≤ ρ̃ (4.18b)

under the argument that for ρ sufficiently large, the Wasserstein ball contains the true
distribution of the data Q∗ with a certain confidence level. For instance, the author of
[58] uses the triangle inequality and the convexity property of the Wasserstein distance
to establish that W1(P̂N , Q∗) ⩽W1(P̂N , P )+(1−α)W1(R,Q∗), so that the extra budget
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(1 − α)W1(R,Q∗) would ensure that Q∗ is within the Wasserstein ball with a given
confidence level (a similar argument is made in [34]). In practice, though, this extra
budget as such cannot be computed, because neither the correct distribution Q∗ nor the
contamination R are known to the decision maker. However, our approach naturally
encodes it in the ambiguity set (4.16b). Indeed, for N large enough, result (4.17) tells
us that the correct distribution Q∗ belongs, almost surely, to the (1 − α)-trimming set
of the empirical distribution P̂N . It follows precisely from this and Proposition B.2, in
Appendix B, page 106, that Wp(P̂N , Q∗) → Wp(αQ

∗ + (1− α)R,Q∗) ⩽ αWp(Q
∗, Q∗) +

(1− α)Wp(R,Q∗), i.e., Wp(P̂N , Q∗) ⩽ (1− α)Wp(R,Q∗).

In short, our approach offers probabilistic guarantees in the finite-sample regime and,
in the asymptotic one, naturally exploits all the information we have on Q∗, namely,
Q∗ ∈ R1−α(P ), to robustify the decision x under contamination.

The case of unknown Q(Ξ̃) = α > 0.

In this section, we discuss how we can use the proposed DRO approach to deal with
the case in which Q(Ξ̃) = α > 0 is unknown. For this purpose, we first introduce a
proposition that will allows us to design a distributionally robust strategy to tackle
problem (4.1) by means of problem (P).

Proposition 4.3. Suppose that Q(Ξ̃) = α > 0. Take 0 < α′ < α and any positive
value of ρ̃. Given N ⩾ 1, the following problem

(SP3) sup
Q

Ξ̃

EQ
Ξ̃
[f(x, ξ)]

s.t. Wp
p (R1−α′(Q̂N ), Q

Ξ̃
) ⩽ ρ̃

Q
Ξ̃
(Ξ̃) = 1

is either fully equivalent to (SP2), if 1
N ⩾ α or a relaxation otherwise.

Based on Proposition 4.3, we could use the following two-step safe strategy to handle
the case of unknown Q(Ξ̃) = α > 0:

1. First, solve the following uncertainty quantification problem (see [63, 99] for fur-
ther details),

αN := inf
Q∈BϵN

(Q̂N )
Q(ξ ∈ Ξ̃) = 1− sup

Q∈BϵN
(Q̂N )

Q(ξ /∈ Ξ̃) (4.20)

where the radius ϵN of the Wasserstein ball has been chosen so that αN represents
the minimum probability that the joint true distribution Q of the data assigns to
the event ξ ∈ Ξ̃ with confidence 1− βN , βN ∈ (0, 1).
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2. Next, solve problem (P(αN ,ρ̃N )), that is,

inf
x∈X

sup
Q

Ξ̃

EQ
Ξ̃
[f(x, ξ)] (4.21a)

s.t. Wp
p (R1−αN (Q̂N ), Q

Ξ̃
) ≤ ρ̃N (4.21b)

Q
Ξ̃
(Ξ̃) = 1 (4.21c)

with ρ̃N ⩾ ϵpN (βN )/αN .

Now suppose that Q ∈ BϵN (βN )(Q̂N ) and therefore, αN ⩽ α (this is a random event
that occurs with probability at least 1− βN ). According to Lemma 4.3, we have

α1/pWp

(
R1−α(Q̂N ),Q

Ξ̃

)
⩽Wp

(
Q̂N ,Q

)
⩽ ϵN (βN )

Wp
p

(
R1−αN (Q̂N ),Q

Ξ̃

)
⩽Wp

p

(
R1−α(Q̂N ),Q

Ξ̃

)
⩽

ϵpN (βN )

α
⩽

ϵpN (βN )

αN
= ρ̃N

Hence, Q
Ξ̃

∈ ÛN (αN , ρ̃N ) with probability at least 1 − βN . In other words, the
two-step procedure here described does not degrade the reliability of the DRO solution.
Furthermore, the minimum transportation budget ϵNαN

that makes problem (P(αN ,ρ̃N ))

feasible is always zero here, if the event ξ ∈ Ξ̃ has been observed at least once. This
is so because the uncertainty quantification problem of step 1 ensures that αN is lower
than or equal to the fraction of training data points falling in Ξ̃. Moreover, when N

grows to infinity, this uncertainty quantification problem reduces to computing such a
fraction of points, which, by the Strong Law of Large Numbers converges to the real
α, i.e., αN → α with probability one. Therefore, in the asymptotic regime, this case
resembles that of known α > 0.

Remark 4.3. We notice, however, that, in practice, setting ρ̃N ⩾ ϵpN (βN )/αN may
result in too large budgets ρ̃N , and thus, in overly conservative solutions, because, as
ϵN is increased, αN decreases to zero. For this reason, in Section 4.3.2, we provide
an alternative data-driven procedure to address the case α > 0, in which we simply set
αN = Q̂N (Ξ̃) in problem (P(αN ,ρ̃N )) and use the data to tune parameter ρ̃N .

The case Q ≪ λd and Q(Ξ̃) = α = 0.

Suppose that the true joint distribution Q governing the random vector ξ := (z,y)

admits a density function with respect to the Lebesgue measure λd, with d = dz + dy.
Without loss of generality, consider the event ξ ∈ Ξ̃, where Ξ̃ is defined as Ξ̃ = {ξ =

(z,y) ∈ Ξ : z = z∗}. This means that Q(Ξ̃) = α = 0.

Therefore, our focus in this case is on the particular variant of problem (4.1) given
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by
J∗ := inf

x∈X
EQ [f(x, (z,y)) | z = z∗] (4.22)

Problem (4.22) has become a central object of study in what has recently come to be
known as Prescriptive Stochastic Programming or Conditional Stochastic Optimization,
(see, e.g., [9, 18, 19, 17, 22, 45, 112, 121], all of which have been discussed in Chapters
2 and 4). Devising a DRO approach to problem (4.22) using the standard Wasserstein
ball Wp(Q̂N , Q) ⩽ ε is of no use here, because any point from the support of Q̂N with
an arbitrarily small mass can be transported to the set Ξ̃ at an arbitrarily small cost in
terms of Wp(Q̂N , Q). This way, one could always place this arbitrarily small particle at a
point (z∗,y′) ∈ argmax

(z,y)∈Ξ̃
f(x, (z,y)). In contrast, problem (P), which is based on partial

mass transportation, offers a richer framework to seek for a distributional robust solution
to (4.22). To see this, consider again the inequality (4.11). If we could set α = 0, the
term Wp(R1−α(Q),Q

Ξ̃
) would vanish, because we could take random variables ξ ∼ Q

Ξ̃
,

ξm ∼ Qm ∈ R1(Q),m ∈ N, such that Wp(Qm,Q
Ξ̃
) → 0. Unfortunately, fixing α to zero

is not a real option due to the term 1
α1/pWp(Q̂N ,Q) in the inequality. Therefore, what

we propose instead is to solve a sequence of optimization problems in the form

(
P(αN ,ρ̃N )

)
inf
x∈X

sup
Q

Ξ̃

EQ
Ξ̃
[f(x, ξ)] (4.23a)

s.t. Wp
p (R1−αN (Q̂N ), Q

Ξ̃
) ≤ ρ̃N (4.23b)

Q
Ξ̃
(Ξ̃) = 1 (4.23c)

with both αN and ρ̃N tending to zero appropriately as N increases. Next we show that,
under certain conditions, problem

(
P(αN ,ρ̃N )

)
enjoys a finite sample guarantee and is

asymptotically consistent.

Assumption 4.2 (Condition (3.6) from [57]). Let B(z∗, r) := {z ∈ Ξz : ||z −
z∗|| ⩽ r} denote the closed ball in Rdz with center z∗ and radius r. The random vector
ξ := (z,y) has a joint density ϕ that verifies the following for some r0 > 0.

1. It admits uniformly for r ∈ [0, r0] and y ∈ Rdy the following expansion:

ϕ(z∗ + r u,y) = ϕ(z∗,y)
[
1 + r⟨u, ℓ1(y)⟩+O(r2ℓ2(y))

]
(4.24)

where u ∈ Rdz with ||u|| = 1, and where ℓ1 : Rdy → Rdz and ℓ2 : Rdy → R satisfy∫
(||ℓ1(y)||2 + |ℓ2(y)|2)ϕ(z∗,y)dy < ∞.

2. The marginal density of z is bounded away from zero in B(z∗, r0).

Assumption 4.3 (Regularity and boundedness). We assume that
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1. There exists C̃ > 0 and r0 > 0 such that P(∥z∗ − z∥ ⩽ r) ⩾ C̃rdz , for all
0 < r ⩽ r0.

2. The uncertainty y is bounded, that is, ∥y∥ ⩽M a.s. for some constant M > 0.

We note that Assumption 4.3.1 is automatically implied by Assumption 4.2, but
we explicitly state it here for ease of readability. Furthermore, under the boundedness
condition established in Assumption 4.3.2, Assumption 2 is satisfied, for example, by a
twice differentiable joint density ϕ(z,y) with continuous and bounded partial derivatives
in B(z∗, r)×Ξy and bounded away from zero in that set. These are standard regularity
conditions in the technical literature on kernel density estimation and regression [112].

Theorem 4.4 (Case α = 0: Finite sample guarantee). Suppose that Assump-
tions 4.2, 4.3 and those of Proposition 4.2 hold. Set α0 := C̃rdz0 . Given N ⩾ 1, choose
αN ∈ (0, α0], β ∈ (0, 1), and determine ϵN,p,αN

(β) through (4.14).
Then, for all

ρ̃N ⩾ max
[(

ϵN,p,αN
(β) +O

(
α
min{1, 2/p}/dz
N

))p
, ϵpNαN

]
(4.25)

we have that the pair (x̂N , ĴN ) delivered by problem
(
P(αN ,ρ̃N )

)
with parameters ρ̃N and

αN enjoys the finite sample guarantee (4.10).

Remark 4.4. There are conditions on the smoothness of the true joint distribution
Q around z = z∗, other than those stated in Assumptions 4.2 and 4.3, for which we can
also upper bound the distance Wp(R1−α(Q),Q

Ξ̃
). We provide below two examples of

these conditions, which have been invoked in [83, 84] and [19], respectively, and neither
of which requires the boundedness of the uncertainty y.

Example 4.2. Suppose that the true data-generating model is given by y = f∗(z)+e,
where f∗(z) := E[y | z = z∗] is the regression function and e is a zero-mean random
error. Furthermore, suppose that Assumption 4.3.1 holds and there exists a positive
constant L such that ∥f∗(z′)− f∗(z)∥ ⩽ L∥z′ − z∥, for all 0 ⩽ ∥z′ − z∥ ⩽ r0.

Take α(r) = C̃rdz , for all 0 < r ⩽ r0 and set α0 := α(r0). With abuse of notation,
we can write for any event within B(z∗, r)× Ξy

QB(z∗,r)×Ξy
(dz, dy) =

1

P(B(z∗, r))
Q(dz, dy) =

1

Qz(B(z∗, r))
Qz=z′(dy)Qz(dz

′)

where Qz is the probability law of the feature vector z and Qz=z′ is the conditional
measure of Q given that z = z′.

Since QB(z∗,r)×Ξy
∈ R1−α(r)(Q) for all 0 < r ⩽ r0, by the convexity of the Wasser-

stein distance, we have

Wp(R1−α(Q),Q
Ξ̃
) ⩽Wp(QB(z∗,r)×Ξy

,Q
Ξ̃
)
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⩽
∫
B(z∗,r)

[
∥z′ − z∗∥+Wp(Qz=z′ ,QΞ̃

)
] Qz(dz

′)
Qz(B(z∗, r))

=

∫
B(z∗,r)

[
∥z′ − z∗∥+Wp(f

∗(z′) + e, f∗(z∗) + e)
] Qz(dz

′)
Qz(B(z∗, r))

⩽
∫
B(z∗,r)

[
∥z′ − z∗∥+ ∥f∗(z′)− f∗(z∗)∥

] Qz(dz
′)

Qz(B(z∗, r))

⩽ (1 + L)

∫
B(z∗,r)

∥z′ − z∗∥ Qz(dz
′)

Qz(B(z∗, r))
= (1 + L)O(r) = O(α1/dz)

for all 0 < α ⩽ α0.

Example 4.3. Take p = 1. Suppose that there exists a positive constant L such that

W1(Qz=z′ ,Qz=z∗) ⩽ L∥z′ − z∗∥, for all 0 ⩽ ∥z′ − z∥ ⩽ r0

and that Assumption 4.3.1 holds. Following a line of reasoning that is parallel to that
of the previous example, we also get

W1(R1−α(Q),Q
Ξ̃
) = O(α1/dz) for all 0 < α ⩽ α0, with α0 := α(r0).

Equation (4.25) and Examples 4.2 and 4.3 reveal that our finite sample guarantee
is affected by the curse of dimensionality. Recently, powerful ideas to break this curse
have been introduced in [62] under the standard Wasserstein-metric-based DRO scheme.
In our setup, however, we also need distributional robustness against the (uncertain)
error incurred when inferring conditional information from a sample of the true joint
distribution. This implies increasing the robustness budget in our approach by an
amount linked to the term Wp(R1−α(Q),Q

Ξ̃
). Consequently, we might need stronger

assumptions on the data-generating model to break the dependence of this term with
the dimension of the feature vector and thus extend the ideas in [62] to the realm of
conditional stochastic optimization.

Now we state the conditions under which the sequence of problems
(
P(αN ,ρ̃N )

)
,

N → ∞, is asymptotically consistent.

Lemma 4.5 (Convergence of conditional distributions). Suppose that the sup-
port Ξ of the true joint distribution Q is compact and that Assumptions 4.2 and 4.3.1
hold. Take (αN , ρ̃N ) such that αN → 0, Nα2

N
log(N) → ∞, and ρ̃N ↓ ϵpNαN

, where ϵNαN
is

the minimum transportation budget as in Definition 4.2. Then, we have that

Wp(Q
N
Ξ̃
,Q

Ξ̃
) → 0 a.s.

where QN
Ξ̃

is any distribution from the ambiguity set ÛN (αN , ρ̃N ).

Remark 4.5. The compactness of the support set Ξ is assumed here just to simplify
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the proof. In fact, in Appendix B, Section B.3, we use results from nearest neighbors
to show that the convergence of conditional distributions can be attained under the less
restrictive condition NαN

log(N) → ∞ even in some cases for which the uncertainty y and
the feature vector z are unbounded. In addition, we also make use of those results to
demonstrate that distributionally robust versions of some local nonparametric predictive
methods, such as Nadaraya-Watson kernel regression and K-nearest neighbors, naturally
emerge from our approach.

Remark 4.6. The convergence of conditional distributions allows us to establish
an asymptotic consistency result analogous to that of Theorem 4.3, by simply replacing
“Theorem 4.2”, “ρ̃N ” and “Lemma 4.4” with “Theorem 4.4”, “(αN , ρ̃N )” and “Lemma 4.5”,
respectively.

Remark 4.7. Suppose that the event Ξ̃ on which we condition problem (4.1) is given
by Ξ̃ := {ξ = (z1, z2,y) ∈ Ξ : z1 = z∗1, z2 ∈ Z2}, with Q(Ξ̃) = 0 and P(z2 ∈ Z2) > 0.
Let QZ2 be the probability measure of (z1,y) conditional on z2 ∈ Z2. If we have that
there is C̃ > 0 and r0 > 0 such that P(∥z∗1 − z1∥ ⩽ r) ⩾ C̃rdz1 , for all 0 < r ⩽ r0, and
that QZ2 satisfies the smoothness condition invoked in either Theorem 4.4, Example 4.2
or Example 4.3, then the analysis in this section extends to that type of event by setting
α(r) = C̃rdz1 · P(z2 ∈ Z2) and noticing that QB(z∗1,r)×Z2×Ξy

∈ R1−α(r)(Q), 0 < r ⩽ r0,
where QB(z∗1,r)×Z2×Ξy

is the probability measure of (z1, z2,y) conditional on (z1, z2,y) ∈
B(z∗1, r)×Z2 × Ξy.

In the following sections, we discuss three applications of the methodology intro-
duced in Section 4.1 in order to provide additional insights into the computational
aspects and the performance guarantees of the DRO framework with side information
that we propose. First, we consider the newsvendor problem, which was first introduced
in Chapter 3, Section 3.2.1, but considering side information. As a second application,
we consider a portfolio allocation problem considering some side information under two
scenarios: the case Q(Ξ̃) = α = 0 and the case Q(Ξ̃) = α > 0. Finally, the application
of the proposed methodology to a chance-constrained DRO problem is illustrated using
a real-life problem within the realm of power systems, the so-called Optimal Power
Flow problem. In all the numerical experiments, we take the p-norm with p = 1 and,
accordingly, we use the Wasserstein distance of order 1. This choice allows us to recast
all the optimization problems that we solve as linear programs.

4.2 Application I. Newsvendor problem

The newsvendor problem with side information has received a lot of attention lately
(see, for example, [9, 77] and references therein). For the particular instance of this
problem that we analyze next, we have considered h = 1 and b = 10. Further-
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more, the true joint distribution of the data ξ̂i := (ẑi, ŷi), i = 1, . . . , N is assumed
to follow a mixture (with equal weights) of two normal bivariate distributions with

means µ1 = [0.6, 0.75]⊤, µ2 = [0.5,−0.75]⊤ and covariance matrices Σ1 =

[
0.5 0

0 0.01

]
,

Σ2 =

[
0.0001 0

0 0.1

]
, respectively. Therefore, the support set of this distribution is the

whole space Rdz+dy , with dz = dy = 1. In addition, we consider as Z the singleton
{z∗ = 0.44}, with Ξ̃ being the real line R as a result. Figure (4.2a) shows a heat map
of the true joint distribution, together with a kernel estimate of the probability density
function of the random variable y conditional on z∗. Moreover, the white dotted curve
in the figure corresponds to the optimal order quantity as a function of the feature z.
Note that this curve is highly nonlinear around the context z∗. Also, the demand may
be negative, which, in the context of the newsvendor problem, can be interpreted as
items being returned to the stores due to, for example, some quality defect.

We compare five data-driven approaches to address the solution to this problem:
A Sample Average Approximation method based on a local predictive technique, in
particular, the KN nearest neighbors, which we refer to as “KNN” (see [17] for further
details); this very same local predictive method followed by a standard Wasserstein-
metric-based DRO approach to robustify it, as suggested in [19, Section 5], which we
call “KNNDRO”; the robustified KNN method (4.4), also proposed in [19], which we
term “KNNROBUST”; and our approach, i.e., problem P(αN ,ρ̃N ) with αN = KN/N ,
which we denote “DROTRIMM”. The rule αN = KN/N is a natural choice that guar-
antees a fair comparison of the four methods and turns DROTRIMM into a distribu-
tionally robust KN -nearest neighbors as per Corollary B.3 in Appendix B.3. Finally,
the fifth method we analyze is the machine learning algorithm proposed in [9], which
was especially designed for the newsvendor problem with features. In this algorithm,
a polynomial mapping between the optimal order quantity (i.e., the optimal quantile)
and the covariates is presumed. We denote this latter approach as ML from “Machine
Learning”.

We clarify that KNNDRO uses the KN nearest neighbors projected onto the set Ξ̃

as the nominal “empirical” distribution that is used as the center of the Wasserstein
ball in [99]. Indeed, the newsvendor problem features an objective function with a
Lipschitz constant with respect to the uncertainty that is independent of the decision
x. Consequently, as per [99, Remark 6.7], KNNDRO renders the same minimizer for this
problem as that of KNN whenever the support set Ξ̃ is equal to the whole space. This
is, in contrast, not true for the portfolio allocation problem which will be considered in
Section 4.3, which has an objective function with a Lipschitz constant with regard to
the uncertainty that depends on the decision x.

We consider a series of different values for the size N of the sample data. Unless
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Figure 4.2: Newsvendor problem with features: True distributions, quantile estimate
and performance metrics

stated otherwise in the text, for each N , we choose as the number of neighbors, KN ,
the value ⌊N/ log(N + 1)⌋, where ⌊·⌋ stands for the floor function.

We estimate x∗ ∈ argminx∈X EQ
Ξ̃
[f(x, ξ)] and J∗ = EQ

Ξ̃
[f(x∗, ξ)] using a discrete

proxy of the true conditional distribution Q
Ξ̃
. In this newsvendor problem, said proxy

is made up of 1085 data points, resulting from applying the KNN method (with the
logarithmic rule) to 10 000 samples from the true data-generating joint distribution.

To compare the five data-driven approaches under consideration, we use two perfor-
mance metrics, specifically, the out-of-sample performance of the data-driven solution
and its out-of-sample disappointment. The former is given by J = EQ

Ξ̃
[f(x̂m

N , ξ)], while
the latter is calculated as J−Ĵm

N , where m = {KNNROBUST, DROTRIMM, KNNDRO,
KNN} and Ĵm

N is the objective function value yielded by the data-driven optimization
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problem solved by method m. We note that a negative out-of-sample disappointment
represents a favorable outcome.

Since EQ
Ξ̃
[f(x̂m

N , ξ)] and Ĵm
N are functions of the sample data, we conduct a certain

number of runs (400 for this instance of the newsvendor problem) for every N , each run
with an independent sample of size N .

This way we can get (visual) estimates of the out-of-sample performance and disap-
pointment for several values of the sample size N for different independent runs. These
estimates are illustrated in the form of box plots in a series of figures, where the dotted
black horizontal line corresponds to either the optimal solution x∗ or to its associated
optimal cost J∗ with complete information.

As is customary in practice, we use a data-driven procedure to tune the robustness
parameter of each method. In particular, for a desired value of reliability 1− β ∈ (0, 1)

(in our numerical experiments, we set β to 0.15), and for each method j, where j =

{KNNROBUST, KNNDRO, DROTRIMM}, we aim for the value of the robustness pa-
rameter for which the estimate of the objective value Ĵ j

N given by method j provides
an upper (1 − β)-confidence bound on the out-of-sample performance of its respective
optimal solution (see Equation (4.10)), while delivering the best out-of-sample perfor-
mance. As the optimal robustness parameter is unknown and depends on the available
data sample, we need to derive an estimator paramβ,j

N that is also a function of the
training data. We construct paramβ,j

N and the corresponding reliability-driven solution
as follows:

1. We generate kboot resamples (with replacement) of size N , each playing the role
of a different training set. In our experiments we set kboot = 50. Moreover, we
build a validation dataset determining the KNval

-neighbors of the Nval data points
of the original sample of size N that have not been used to form the training set.

2. For each resample k = 1, . . . , kboot and each candidate value for param, we com-
pute a solution by method j with parameter param on the k-th resample. The
resulting optimal decision is denoted as x̂j,kN (param) and its corresponding objec-
tive value as Ĵ j,k

N (param). Thereafter, we calculate the out-of-sample performance
J(x̂j,kN (param)) of the data-driven solution x̂j,kN (param) over the validation set.

3. From among the candidate values for param such that Ĵ j,k
N (param) exceeds the

value J(x̂j,kN (param)) in at least (1 − β) × kboot different resamples, we take as
paramβ,j

N the one yielding the best out-of-sample performance averaged over the
kboot validation datasets.

4. Finally, we compute the solution given by method j with parameter paramβ,j
N ,

x̂jN := x̂jN (paramβ,j
N ) and the respective certificate Ĵ j

N := Ĵ j
N (paramβ,j

N ).
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Recall that, in our approach DROTRIMM, the robustness parameter ρ̃N must be
greater than or equal to the minimum transportation budget to the power of p, that is,
εpNαN

(we point out again that we have taken p = 1). Hence, if we decompose ρ̃N as
ρ̃N = εpNαN

+∆ρ̃N , what one really needs to tune in DROTRIMM is the budget excess
∆ρ̃N . Furthermore, for the same amount of budget ∆ρ̃N , our approach will lead to more
robust decisions x than KNNDRO, because the worst-case distribution in KNNDRO
is also feasible in DROTRIMM. Consequently, in practice, the tuning of one of these
methods could guide the tuning of the other.

All the simulations have been run on a Linux-based server using up to 116 CPUs
running in paralell, each clocking at 2.6 GHz with 4 GB of RAM. We have employed
Gurobi 9.0 under Pyomo 5.2 to solve the associated linear programs.

The set of candidate values from which the robustness parameters in methods KN-
NROBUST, KNNDRO and DROTRIMM have been selected is the discrete set com-
posed of the thirty linearly spaced numbers between 0 and 2. Last but not least, the
degree of the polynomial used by ML is tuned in a way analogous to how the robustness
parameters of KNNROBUST, KNNDRO and DROTRIMM are tuned using the boot-
strapping procedure described above. Nevertheless, we have only considered polynomial
mappings up to the fourth degree.

Figures (4.2b), (4.2c), and (4.2d) illustrate the box plots corresponding to the quan-
tile estimators (i.e., the optimal solution of the problem), the out-of-sample disappoint-
ment and the out-of-sample performance delivered by each of the considered data-driven
approaches for various sample sizes and runs, in that order. The shaded color areas have
been obtained by joining the 15th and 85th percentiles of the box plots, while the as-
sociated bold colored lines link their means. The true optimal quantile (with complete
information) and its out-of-sample performance are also depicted in Figures (4.2c) and
(4.2b), respectively, using black dotted lines.

Interestingly, whereas the quantile estimators provided by DROTRIMM, KNNDRO
and KNNROBUST all lead to negative out-of-sample disappoinment in general, KN-
NDRO and KNNROBUST exhibit substantially worse out-of-sample performance both
in expectation and volatility. Recall that KNNDRO delivers the same solutions provided
by KNN for this problem. Its behavior is, therefore, influenced by the bias introduced
by the K-nearest neighbors estimation, which is particularly notorious for small-size
samples in this case, given the shape of the true conditional density, see Figure (4.2a).
Actually, for some runs, the K-nearest neighbors, and hence KNNDRO, lead to negative
quantile estimates, while the true one is positive and greater than 0.5. By construction,
both KNNDRO and KNNROBUST are mainly affected by the estimation error of the
conditional probability distribution incurred by the local predictive method. On the
contrary, our approach DROTRIMM offers a natural protection against this error and
a richer spectrum of data-driven solutions. Indeed, DROTRIMM is able to identify
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solutions that lead to a better out-of-sample performance with a negative out-of-sample
disappointment.

Finally, both ML and DROTRIMM exhibit a notorious stable behavior against the
randomness of the sample. The order quantity provided by the former, however, does
not converge to the true optimal one, because the relationship between the true optimal
order and the feature z is far from being polynomial. Note that ML is a global method
that seeks to learn the optimal order quantity for all possible contexts by using a
polynomial up to the fourth degree. However, the (true) optimal order curve (that is,
the white line in Figure 4.2a) is highly nonlinear within a neighborhood of the context
z∗ = 0.44, but practically constant outside of it.

4.3 Application II. Portfolio allocation problem

4.3.1 Case Q(Ξ̃) = α = 0

We consider in this section an instance of the portfolio optimization problem that is
based on that used in [18] and [22]. The instance corresponds to a single-stage portfolio
optimization problem in which we wish to find an allocation of a fixed budget to six
different assets. Thus, x ∈ R6

+ denotes the decision variable vector, that is, the asset
allocations, and their uncertain return is represented by y ∈ R6. In practice, these
uncertain returns may be influenced by a set of features. First, the decision maker
observes auxiliary covariates and later, selects the portfolio. We consider three different
covariates that can potentially impact the returns and that we denote as z = (z1, z2, z3).
The decision maker wishes to leverage this side information to improve his/her decision-
making process in which the goal is to maximize the expected value of the return
while minimizing the Conditional Value-at-Risk (CVaR) of the portfolio, that is, the
risk that the loss (−⟨x,y⟩)+ := max(−⟨x,y⟩, 0) is large. Using the reformulation of
the CVaR (see [118] and [22]) and introducing the auxiliary variable β′, the decision
maker aims to solve the following optimization problem given the value of the covariate
z∗(= (1000, 0.01, 5) in the numerical experiments):

min
(x,β′)∈X

E
[
β′ +

1

δ

(
−⟨x,y⟩ − β′)+ − λ⟨x,y⟩ | z = z∗

]
(4.26)

where the feasible set of decision variables of the problem, that is, X is equal to {(x, β′) ∈
R6
+ × R :

∑6
j=1 xj = 1}. We set δ = 0.5 and λ = 0.1 to simulate an investor with a

moderate level of risk aversion. The parameter λ ∈ R+ serves to tradeoff between risk
and return, and δ refers to the (1−δ)-quantile of the loss distribution. We take the same
marginal distributions for the covariates as in Section 5.2 of [22], i.e., z1 ⇝ N (1000, 50),
z2 ⇝ N (0.02, 0.01) and log(z3) ⇝ N (0, 1). Furthermore, we follow their approach to
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construct the joint true distribution of the covariates and the asset returns. In particular,
we take

y/(z = (z1, z2, z3))⇝ N6(µ+0.1 · (z1−1000) ·v1+1000 ·z2 ·v2+10 · log(z3+1) ·v3,Σ)

with v1 = (1, 1, 1, 1, 1, 1)⊤, v2 = (4, 1, 1, 1, 1, 1)⊤, v3 = (1, 1, 1, 1, 1, 1)⊤, and with
µ,Σ1/2 given in [22, 54].

We employ the analytic form of the conditional distribution Q
Ξ̃

provided above to
construct a 10 000-data-point approximation. We use this aproximation to assess the
out-of-sample performance of the data-driven methods KNN, KNNROBUST, KNNDRO
and DROTRIMM, all of which were introduced in the single-item newsvendor problem
of Section 4.2. Similarly to the case of the single-item newsvendor problem, we consider
a series of different values for the size N of the sample data. Unless stated otherwise
in the text, for each N , the number of neighbors, KN , is chosen among the values
⌊N/ log(N +1)⌋, ⌊N0.9⌋ and ⌊

√
N⌋ to assess the impact of the number of neighbors on

the out-of-sample performance of the four methods we compare.

Note that, unlike in [22], not all the features affect equally all the asset returns.
Moreover, feature z3 is log-normal and therefore, Assumption 4.1 does not hold. Nonethe-
less, as we show below, DROTRIMM performs satisfactorily, which reveals that the
conditions we derive to guarantee that our approach performs well are sufficient, but
not necessary. Indeed, the condition Q

Ξ̃
∈ ÛN (αN , ρ̃N ) is not required to ensure per-

formance guarantees [62, 87]. For all the methods, we have standardized the covariates
z and the asset returns y using their means and variances. In all the simulations, the
robustness parameter each method uses (i.e., εN in KNNROBUST, the radius of the
Wassertein ball, ρN , in KNNDRO, and the budget excess ∆ρ̃N in DROTRIMM) has
been chosen from the discrete set {b · 10c : b ∈ {0, . . . , 9}, c ∈ {−2,−1, 0}}, following
the data-driven tuning procedure described for the newsvendor problem in Section 4.2.

Similarly to the case of the single-item newsvendor problem, Figure 4.3 shows, for
various sample sizes and 200 runs, the box plots pertaining to the out-of-sample dis-
appointment and performance associated with each of the considered data-driven ap-
proaches. Each of the three pairs of subplots at the top of the figure has been obtained
with a different rule to determine the number KN of nearest neighbors. Increasing this
number seems to have a positive effect on the convergence speed of all the methods
for this instance, although KNNROBUST (and KNNDRO to a lesser extent) has some
trouble ensuring the desired reliability level, with the 85% line above 0 for the largest
values of N we represent. In contrast, DROTRIMM manages to keep the disappoint-
ment negative. This is, in addition, accompanied by an important improvement of the
out-of-sample performance (in line with the criterion for selecting the best portfolio
that we have established). In fact, DROTRIMM produces boxplots that appear to be
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(a) KN = ⌊N/(log(N + 1))⌋
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(b) KN = ⌊N/(log(N + 1))⌋
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(c) KN = ⌊N0.5⌋
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(d) KN = ⌊N0.5⌋
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(e) KN = ⌊N0.9⌋
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(f) KN = ⌊N0.9⌋
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(g) Tuned KN
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(h) Tuned KN

Figure 4.3: Portfolio problem with features: Performance metrics
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Figure 4.4: Impact of the robustness parameter with 200 training samples, KN =
⌊N/(log(N + 1))⌋ and δ = 0.5, λ = 0.1

shifted downward, i.e., in the direction of better objective function values. On the other
hand, the KNN method substantially improves its performance by employing a larger
number of neighbors. However, it is way too optimistic in any case.

The results shown in the pair of subplots at the bottom of Figure 4.3 correspond
to a number KN of neighbors that has been tuned jointly with the robustness param-
eter and for each method independently. For this purpose, we have selected the best
value of KN for each approach from the discrete set {N0.1, N0.2, . . . , N0.9} following
the bootstrapping-based procedure previously described. The data-driven tuning of the
number KN of neighbors appears not to have a major effect on the performance of
the different methods, especially in comparative terms. We do observe that the out-of-
sample performance of KNNROBUST and KNNDRO is slightly improved on average.
This improvement in cost performance is, however, accompanied by an increase in the
number of sample sizes for which these methods do not satisfy the reliability require-
ment, particularly in the case of KNNROBUST and small sample sizes.

To facilitate the analysis of the results shown in Figure 4.3, we also provide Fig-
ure 4.4, which illustrates the (random) performance of the methods KNNROBUST,
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DROTRIMM and KNNDRO as a function of their respective robustness parameter,
estimated over 200 independent runs. Again, the shaded areas cover the 15th and 85th
percentiles, while the bold colored lines correspond to the average performance. The
various plots are obtained for N = 30 and N = 400, with the number of neighbours
given by the logarithmic rule. These plots are especially informative, because they are
independent of the specific validation procedure used to tune the robustness parameters
of the methods and thus, provide insight into the potential of each method to identify
good solutions. Note that the out-of-sample performance of all the three methods stabi-
lizes around the same value as their respective robustness parameters grow large enough.
This phenomenon is analogous to that discussed in [99, Section 7.1]. However, the value
we observe here does not correspond to the “equally weighted portfolio,” because we have
standardized the data on the asset returns. As a result, the “robust portfolio” that de-
livers this out-of-sample performance depends on and is solely driven by the standard
deviations of the different assets. Very interestingly, DROTRIMM is able to uncover
portfolios whose out-of-sample performance features a better mean-variance trade-off,
in general. Furthermore, it requires a smaller value of the robustness parameter to
guarantee reliability. All this is more evident (and useful) for the case N = 400, as
we explain next. When N = 30, all the considered methods need large values of their
robustness parameter to ensure reliability, so they all tend to operate close to the “ro-
bust portfolio” we mentioned above. DROTRIMM can certainly afford lower values of
∆ρ̃ in an attempt to improve performance, but this proves not to be that profitable
for such a small sample size, for which the robust portfolio performs very well. As N

increases, the robust portfolio loses its appeal, since its performance gradually becomes
comparatively worse. DROTRIMM is then able to identify portfolios that perform sig-
nificantly better in expectation, while providing an estimate of their return such that
the desired reliability is guaranteed. For their part, KNNDRO and KNNROBUST are
also able to discover solutions with an actual average cost lower than that of the robust
portfolio (albeit with a worse expectation and a higher variance than those given by
DROTRIMM). However, they are more prone to overestimate their returns.

Finally, we study the behavior of the different methods under other contexts. For
this, we consider several values of N , one random data sample for each N , and 200
different contexts z∗ sampled from the marginal distributions of the features. The per-
formance metrics (i.e., the out-of-sample disappointment and performance) are plotted
in Figures 4.5a and 4.5b, respectively, under an optimal selection of the robustness
parameters (that is, for each method we use the value of the robustness parameter
that, while ensuring a negative disappointment, delivers the best out-of-sample perfor-
mance). We observe that DROTRIMM systematically performs better, with an actual
cost averaged over the 200 contexts that is lower irrespective of the sample size.
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Figure 4.5: Portfolio problem with features: Varying context under an optimal selection
of the robustness parameters, KN = ⌊N/(log(N + 1))⌋ and δ = 0.5, λ = 0.1

4.3.2 Case Q(Ξ̃) = α > 0

In this section, we present and discuss some numerical results for the case Q(Ξ̃) = α > 0.
For this purpose, we use the same portfolio allocation problem described before. To this
end, we assume instead that the feature vector lives in an uncertainty set Z such that
Q(Ξ̃) > 0. In particular, we consider Z := {z ∈ R3 : ∥z̃∥∞ ⩽ r}, with z̃ being the
standardized feature vector. Thus, we have that Ξ̃ is given by

Ξ̃ := {(z,y) ∈ R3+6 : ∥z̃∥∞ ⩽ r}

We take r = 0.6 for the simulation experiments.
We draw 50 000 samples from the true joint data-generating distribution through

the explicit form of y/z given in Section 4.3.1. We then use the conditional empirical
distribution made up of those samples falling within Ξ̃, specifically, 7306 data points,
as a proxy of the true conditional distribution Q

Ξ̃
. Consequently, we have that Q(Ξ̃) ≈

0.14612. We wish to solve the following optimization problem

min
(x,β′)∈X

E
[
β′ +

1

δ

(
−⟨x,y⟩ − β′)+ − λ⟨x,y⟩ | (z,y) ∈ Ξ̃

]
(4.27)

with the rest of the parameters being equal to the values taken in the instance α = 0.
We also compare here four data-driven approaches to solve problem (4.27), namely:

• Our two approaches, i.e., problem P(α,ρ̃N ) with α := Q(Ξ̃) called “DROTRIMM1”
and problem P(αN ,ρ̃N ), where αN := Q̂N (Ξ̃) is an estimate of α. We refer to this
approach as “ ‘DROTRIMM2.” In principle, this would be the natural approach
that a decision-maker with no knowledge of α would use.

• A sample average approximation (SAA) method that works with the samples
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falling in Ξ̃.

• The aforementioned SAA method followed by a standard Wasserstein-metric-
based DRO approach to robustify it, which we call “SAADRO”.

As in the previous numerical experiments, we employ a similar bootstrapping pro-
cedure based on the available data sample to tune the robustness parameter that each
method j, with j ∈ {DROMTRIMM1, DROTRIMM2, SAADRO}, uses. More specif-
ically, for each j ∈ {DROMTRIMM1, DROTRIMM2, SAADRO} and a given value of
reliability 1−β ∈ (0, 1) (in our numerical experiments, we set β to 0.15), we seek an es-
timator paramβ,j

N that leads to the best out-of-sample performance, while guaranteeing
the desired level of confidence 1 − β. For each sample of size N , we use the following
algorithm to derive paramβ,j

N and the corresponding portfolio solution:

1. We construct kboot resamples (with replacement) of size N , each playing the role
of a different training dataset. In our experiments we use kboot = 50. Moreover,
we build a validation dataset (per resample) from those data points from the
original sample of size N that fall in Ξ̃, but which have not been involved in the
resample. We only consider resamples from which we can build a validation set of
at least one data point. Furthermore, unlike DROTRIMM1 and DROTRIMM2,
SAADRO can only be implemented if we have at least one data point falling
within Ξ̃ in the training set (the same occurs with SAA). Thus, we implicitly
assume that the source sample has no fewer than two data points in Ξ̃.

2. For each resample k = 1, . . . , kboot and each candidate value for param (taken
from the discrete set {b · 10c : b ∈ {0, . . . , 9}, c ∈ {−3,−2,−1, 0}}), we com-
pute a solution by method j with parameter param on the k-th resample. The
resulting optimal decision is denoted as x̂j,kN (param) and its corresponding ob-
jective value as Ĵ j,k

N (param). Thereafter, we calculate the out-of-sample perfor-
mance J(x̂j,kN (param)) of the data-driven solution x̂j,kN (param) over the validation
dataset.

3. From among the candidate values for param such that Ĵ j,k
N (param) exceeds the

value J(x̂j,kN (param)) in at least (1 − β) × kboot different resamples, we take
as paramβ,j

N the one yielding the best cost performance averaged over the kboot
resamples.

4. Finally, we compute the solution given by method j with parameter paramβ,j
N ,

x̂jN := x̂jN (paramβ,j
N ) and the respective certificate Ĵ j

N := Ĵ j
N (paramβ,j

N ).

Figure 4.6 shows the box plots pertaining to the out-of-sample disappointment and
performance associated with each of the considered data-driven approaches for various
sample sizes. The box plots have been obtained from 200 independent runs per sample
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size N . The SAA method provides portfolios that, in expectation, perform reasonably
well, especially when the sample size is large enough. However, SAA definitely fails
to ensure the desired level of reliability. As for the three approaches that incorporate
robustness in the decision-making, DROTRIMM1 and DROTRIMM2 seem to system-
atically identify reliable portfolios with a better expected performance than those given
by SAADRO.
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Figure 4.6: Portfolio problem with features: Performance metrics. Case α > 0 and
δ = 0.5, λ = 0.1

To investigate the ability of SAADRO, DROTRIMM1 and DROTRIMM2 to identify
good portfolios, we provide Figure 4.7, which is analogous to Figure 4.4 in the case
α = 0. Observe that both DROTRIMM1 and DROTRIMM2 guarantee reliability for
smaller values of their robustness parameter than SAADRO. This gives the former a
competitive advantage over the latter, essentially because it appears that a better out-of-
sample performance (in expectation) is, in general, aligned with a lower distributional
robustness (this finding is consistent with the fact that the unreliable SAA solution
performs fairly well in terms of the weighted mean-risk asset returns). To be more
precise, taking a small sample size N (say 50) and an equal value for each of their
robustness parameters, DROTRIMM1 and DROTRIMM2 deliver portfolios with an
actual expected cost (and variance) that is lower than or approximately equal to that
of the portfolios provided by SAADRO. They do so for any value of their robustness
parameter. Furthermore, when N is increased, even though there exists a range of
values of the robustness parameter for which SAADRO also identifies portfolios with a
good performance out of sample, these are discarded by the method because they do
not comply with the reliability specification. For instance, take N = 400. SAADRO
needs a radius larger than 0.2-0.3 to ensure reliability. However, for these values of the
Wasserstein-ball radius, the portfolios given by SAADRO result in an actual expected
cost above −70. On the other hand, DROTRIMM2 guarantees reliability with a value of
its robustness parameter above 0.003-0.004, for which, in addition, it provides solutions
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with an actual expected cost below −77.
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Figure 4.7: Case α > 0, impact of the robustness parameter with 200 training samples
and δ = 0.5, λ = 0.1

To further support this finding, we conclude this section with Figure 4.8, which is
similar to Figure 4.6. However, Figure 4.8 has been obtained through a different ex-
periment, in which the value of the robustness parameter that each method uses has
been optimally selected from the previously indicated discrete set. In other words, the
results shown in that figure are those a decision-maker would obtain in the hypothetical
case that the true conditional distribution Q

Ξ̃
could be used to tune the robustness

parameters of the DRO methods. Therefore, these results correspond to the best so-
lutions that can be obtained from SAADRO, DROTRIMM1 and DROTRIMM2, and
confirm that our approaches (especially, DROTRIMM2) can potentially identify portfo-
lios that significantly outperform those delivered by SAADRO under the same reliability
requirement.
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Figure 4.8: Portfolio problem with features: Performance metrics under an optimal
selection of the robustness parameters. Case α > 0 and δ = 0.5, λ = 0.1

4.4 Application III. Optimal Power Flow problem

This section discusses a realistic application of the proposed methodology taken from the
realm of Power Systems, namely, the Optimal Power Flow problem with side/contextual
information. The content of this section is, therefore, based on our preprint [51]. This
application requires a more extensive treatment and elaboration than the two applica-
tions presented above for the following two reasons at least: (i) The Optimal Power
Flow problem is modeled as a chance-constrained program, and hence, it does not fall
into the standard conditional stochastic program that is introduced in Section 4.1; (ii)
The Optimal Power Flow problem translates into a much more intricate optimization
model that requires more notation and a more careful presentation than in the cases of
the newsvendor and the portfolio allocation problems considered before.

4.4.1 Introduction

The Optimal Power Flow (OPF) is a fundamental problem in power system operations.
Traditionally, the goal of the OPF problem is to minimize the cost of the power genera-
tion dispatch that supplies the electricity demand while complying with some physical
and engineering constraints. The growing penetration of electricity generation sources
like wind and solar power, which are intrinsically uncertain, has led power system engi-
neers to account for randomness in OPF analyses. Hence, the OPF is to be formulated
today as an optimization problem under uncertainty.

A common way to cope with uncertainty in the constraints of an optimization pro-
blem and, in particular, of an OPF model is by way of the so-called chance constraints,
which allow the modeler to impose the constraint satisfaction with a certain probabil-
ity only. Accordingly, chance-constrained Optimal Power Flow models (CC-OPF) have
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been developed to control the violation probability of, for instance, line and generation
capacity limits. In particular, references [80, 113, 134] consider joint chance constraints,
by which the system operator enforces that all constraints must simultaneously hold
with a probability greater than or equal to 1− ϵ, where ϵ ∈ (0, 1) is a pre-fixed accept-
able tolerance of dispatch infeasibility. This is opposed to single chance constraints,
whereby the probability of constraint satisfaction is imposed on each constraint of the
OPF separately. Although single chance constraints have been considered in the tech-
nical literature of CC-OPF models due to their attractive tractability properties (see,
e.g., [25, 96, 141] and references therein), satisfying all multiple individual constraints
does not provide strong guarantees on the security of the entire power system, and leads
to costly and over-conservative dispatch solutions to achieve joint feasibility [113].

In any case, one of the main challenges in solving CC-OPF problems is that the un-
derlying probability distribution of the random variables affecting the OPF constraints
is generally unknown. In fact, in practice, only past historical observations of those
variables are available to the system operator. No wonder, therefore, that a variety of
distributionally robust chance-constrained Optimal Power Flow (DRCC-OPF) models
has been proposed in recent years. These models seek the optimal dispatch such that all
the model constraints are satisfied with a pre-fixed confidence level for all the probability
distributions within the ambiguity set built either by means of the Wasserstein metric
([6, 7, 108, 144]), using moments ([88, 90, 91, 137]), or by way of a discrete probability
distribution with probability masses and locations varying within a box [78].

Unfortunately, the consideration of joint chance constraints in a DRO framework
([73, 138]) renders an intractable optimization problem in general. For this reason,
researchers have considered DRO-OPF models based on the well-known conservative,
but far more tractable approximation given by the concept of Conditional-Value-at-
Risk (CVaR), see, for example, [6, 78, 108] and references therein. The authors in
[37] show that the CVaR offers a tight convex approximation of the chance constraints
under the DRO framework, which justifies its popularity. On top of that, by way of
CVaR-based chance-constraints, the power system operator can control not only the
violation probability, but also the violation magnitude, which can be important from
the standpoint of power system operations.

Yet another key issue is that the system operator is able to not only tune the ro-
bustness of the resulting chance-constrained DRO model by adjusting the probability
of constraint violation, but also, and very importantly, through the specificity degree
of the ambiguity set. In this regard, some previous approaches have focused on pro-
ducing more meaningful ambiguity sets by incorporating structural information on the
underlying true probability distribution (see, e.g., [6, 7, 88, 90, 91]). More specifically,
the authors in [6] introduce a DRCC-OPF model with single chance constraints, which
considers all distributions within a Wasserstein ball that conform to a given copula-
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based dependence structure among the random variables. The authors in [7] propose
an iterative algorithm for solving a bilinear exact reformulation of a DRCC-OPF model
with single chance constraints considering some support information. The authors of
[88] and [90] provide and study DRCC-OPF models where some moment and unimodal-
ity information is included in the ambiguity set. Both aforementioned approaches are
extended in [91] to allow for misspecified modes.

Ideally, one would like to have the smallest ambiguity set that contains the true
data-generating distribution. In this vein, if we have some information on the true
distribution, we should use it to discard all those other distributions that do not conform
with that information from the ambiguity set. As mentioned already in this thesis, that
information can be, for example, some dependence structure via copulas [6], support
information [7] or shape information (such as unimodality) [90, 91]. Our aim is also to
leverage a more informed ambiguity set, but, for the first time to our knowledge, that
information refers to a given context. As discussed in this chapter, this side/contextual
information is related to outcomes of random variables that may have predictive power
on the OPF’s uncertainties. Accordingly, we make use of an ambiguity set that accounts
for the possible dependence between the uncertainties and these explanatory variables.
Thus, the contextual information allows us to discard implausible distributions.

More specifically, in the work we present here, we exploit the contextual information
provided by the point forecasts of those uncertainties. Indeed, it is well known in
the energy forecasting community that the power forecast error of a wind farm highly
depends on the wind power forecast itself [31, 56]. Within the context of DRCC-OPF,
this means that the wind power point forecast constitutes valuable information to build
a proper ambiguity set for the wind power forecast error.

To our knowledge, this work is thus the first to tackle a chance constraint system
with a distributionally robust approach that accounts for contextual information.

The reader is referred to Appendix C.1 for a complete list of the notation we use to
formulate the DRCC-OPF model we introduce next.

4.4.2 DC-OPF under uncertainty: Mathematical Formulation

The DC-OPF problem under uncertainty is formulated here as a distributionally robust
version of the joint chance-constrained DC-OPF model described in [113], where we
have also accounted for the procurement of reserve capacity and its associated cost,
as in [90, 91]. Nonetheless, unlike in [113], where the generators’ cost functions are
assumed to be quadratic, here we model those costs as convex piecewise linear functions.
Furthermore, there exists a number of different variants of the distributionally robust
chance-constrained DC-OPF problem (e.g., [7, 78, 90, 108, 144]), which essentially differ
in the treatment of the chance constraints (single vs. joint), the cost structure of
generators that is assumed, and the ambiguity set used. What makes our formulation
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unique among those variants is its ability to exploit contextual information.

Variables and constraints

Consider a power system with a set L of transmission lines, a set B of buses, a set
W of wind power plants (or, more generally, weather-dependent renewable generators),
and a set G of conventional generators (i.e., dispatchable units that are not weather-
dependent). For ease of formulation, power loads are assumed to be deterministic. Next
we introduce each of the main components of the DC-OPF problem.

1. Wind power plants. For each wind power plant m ∈ W, the random power output
is modeled as fm + ωm, where fm is the predicted power output and ωm is the
(random) wind forecast error at wind power plant m. We denote the system-wise
aggregate wind power forecast error as Ω, i.e., Ω :=

∑
m∈W ωm = ⟨1,ω⟩. Let

f := (fm)m∈W ,ω := (ωm)m∈W be the array of predicted power outputs and wind
power prediction errors, respectively.

2. Generators: For each j ∈ G, the actual power output of generator j, g̃j(ω), is
expressed as the sum of the scheduled generation, gj , and the (random) adjusted
power r̃j(ω) (also known as deployed reserve). As customary, we assume an affine
control policy to counterbalance the wind forecast errors by deploying generators’
reserves [25], that is,

g̃j(ω) := gj + r̃j(ω) = gj − βjΩ = gj − βj⟨1,ω⟩, ∀j ∈ G (4.28)

where βj is the participation factor of generator j. Denote by β := (βj)j∈G ,g :=

(gj)j∈G the array of non-negative participation factors and scheduled generation,
respectively. Let g̃(ω) := (g̃j(ω))j∈G , r̃(ω) := (r̃j(ω))j∈G = (−βj⟨1,ω⟩)j∈G be
the array of actual power outputs and deployed reserves, in that order.

The following constraints determine the provision of reserve capacities:

− rD ⩽ r̃(ω) ⩽ rU (4.29)

with rD, rU being the arrays of downward and upward reserve capacity provided
by the generators, respectively.

Naturally, the following technical constraints, which link the generation dispatches
and the provision of reserve capacities, must hold:

g + rU ⩽ gmax, (4.30)

g − rD ⩾ gmin (4.31)
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where gmin,gmax are the arrays of minimum and maximum power output of the
generators, respectively.

3. Network constraints. The total power generation must equal the total system
demand (power balance constraint), that is,

⟨1, g̃(ω)⟩+ ⟨1, f + ω⟩ = ⟨1,L⟩ (4.32)

where L := (Lb)b∈B denotes the array of nodal loads. Using (4.28), Eq. (4.32) is
equivalent to:

⟨1,g⟩+ ⟨1, f⟩ = ⟨1,L⟩ (4.33)

⟨1,β⟩ = 1, β ⩾ 0 (4.34)

which guarantee the power balance both in the dispatch and the real-time stages,
respectively.
Finally, we assume that the power flow through the lines is given by a linear
function of the nodal power injections, that is, MG(g̃(ω)) +MW(f +ω)−MBL,
based on the DC power flow approximation, where MG ,MW and MB are the
matrix for generators, wind plants and loads given by the DC power transfer
distribution factors [128], in that order. Hence, the constraints

−Cap ⩽MG(g̃(ω)) +MW(f + ω)−MBL ⩽ Cap (4.35)

enforce the transmission capacity limits where Cap := (Capℓ)ℓ∈L denotes the
array of transmission line capacities.

Dealing with uncertainty in the DC-OPF problem: Joint chance constraints,
Distributionallly Robust Optimization and contextual information

In practice, it is often the case that the random vector of forecast errors ω shows some
statistical dependence on some features/covariates, which we can model, in general,
by some random vector z. In fact, the forecast wind power output f serves in itself
as an obvious explanatory random vector for the subsequent forecast error ω. In this
approach, we want to exploit this statistical dependence to identify a better power
generation dispatch and provision of reserve capacity.

Let z := (zm)m∈W be the random vector modeling the features and let Q be the
probability measure of the joint distribution of z and ω, which is supported on Ξ. For
convenience, we define ξ := (z,ω). Given the array of forecast wind power outputs,
f := (fm)m∈W , set the contextual information ξ := (z,ω) ∈ Ξ̃ defined by the event
(z = f ; ω ∈ Ξ̃ω), with Ξ̃ω being the support of ω conditional on z = f . The errors



4.4. Application III. Optimal Power Flow problem 79

of forecasting the power output of a wind farm are naturally bounded. Their lower
bound is the forecast value itself, while their upper bound is given by the difference of
the capacity of the wind farm and the predicted value. Therefore, Ξ̃ω is the hypercube∏

m∈W [−fm, Cm − fm], where Cm represents the capacity of wind farm m. Note that
the optimal dispatch is, therefore, parametrized on the predicted wind power outputs
{fm}m∈W .

In real life, however, neither the joint distribution Q, nor the conditional one Qω/z=f ,
are known. The system operator only has access to a finite set of samples of size N (i.e.
the training set) of the true joint distribution Q, which we denote as Ξ̂N

ω := {ξ̂i}Ni=1 =

{(ẑi, ω̂i)}Ni=1. In our context, Ξ̂N
ω is made up of N past observations of the predicted

wind power outputs and their associated errors. Hence, the system operator needs to
infer or construct a proxy of Qω/z=f from the sample Ξ̂N

ω , so that this proxy can be used
to compute a reliable and cost-efficient OPF solution. However, the limited information
that Ξ̂N

ω conveys on Qω/z=f makes this inference process ambiguous, and as such, we
propose employing the following distributionally robust chance-constrained OPF model
to protect the system operator’s decision against this ambiguity:

min
x∈X

sup
Q

Ξ̃
∈Û

EQ
Ξ̃

[
C(g̃(ω)) + ⟨cD, rD⟩+ ⟨cU , rU ⟩

]
(4.36)

s.t. inf
Q

Ξ̃
∈Û

Q
Ξ̃

(
−rD ⩽ r̃(ω) ⩽ rU

−Cap ⩽MG(g̃(ω)) +MW(f + ω)−MBL ⩽ Cap

)
⩾ 1− ϵ (4.37)

where X stands for the deterministic feasible set for the array of decision variables
x = (g,β, rD, rU ) defined by the constraints (4.30), (4.31), (4.33) and (4.34).

The set Û in (4.36)-(4.37) represents an ambiguity set for the true conditional dis-
tribution Qω/z=f . Here we use the ambiguity set based on probability trimmings and
optimal transport introduced in Section 4.1.2 (taking p = 1), ÛN (α, ρ), which allows us
to exploit the side information within a DRO framework in a fully data-driven sense.

Objective function (4.36) minimizes the expected total operational cost over the
worst-case distribution from the ambiguity set Û , including the sum of the (random)
total generation cost, C(g̃(ω)), and the (deterministic) cost of providing up- and down-
reserve capacities, ⟨cD, rD⟩ + ⟨cU , rU ⟩. The total generation cost function C(·) is as-
sumed to be given by the sum of |G| convex piecewise linear cost functions with Sj

pieces/blocks, i.e., C(g̃(ω)) :=
∑

j∈G maxs=1,...,Sj{mjsg̃j(ω)+njs}, where mjs, njs stand
for the slope and the intercept of the s-th piece for generator j, respectively. Param-
eters cD, cU are the arrays of downward and upward reserve procurement cost of the
generators, respectively. Note that the wind power production cost is assumed to be
zero. Finally, constraint (4.37) establishes a tolerance ϵ in terms of the joint violation
probability of the OPF constraints under any conditional probability distribution Q

Ξ̃

for ω (given some contextual information) within the ambiguity set Û .
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Remark 4.8. In order to account for contextual information in a DRO framework,
the authors in [19] propose an ambiguity set Û different to the one based on probability
trimmings (i.e., ÛN (α, ρ)) that we advocate here. More specifically, the ambiguity set
they suggest is a Wasserstein ball centered at the discrete distribution supported on the
ω̂-coordinates of the K data points from the sample Ξ̂N

ω that are the closest to Ξ̃. This
results in the data-driven decision-making model KNNDRO that we have described and
analyzed in the previous two applications. For completeness, in Appendix C.5, we use
an example based on a small three-node system to illustrate that our trimmings-based
ambiguity set also delivers better dispatch solutions in terms of expected cost and system
reliability than the one introduced in [19] (i.e., KNNDRO) for the DC-OPF problem
under uncertainty.

In the next section, we introduce a tractable and conservative approximation of the
distributionally robust joint chance constraints (4.37) using the notion of Conditional
Value-at-Risk (CVaR). As previously mentioned, the use of the CVaR to this end in
the context of the chance-constrained distributionally robust OPF is very popular in
the technical literature (see, for example, the recent publications [78] and [108]).

4.4.3 A tractable and conservative CVaR-based approximation of the
distributionally robust joint chance constraints

The distributionally robust joint chance constraints (4.37) can be written equivalently
as the following distributionally robust single chance constraint, where we have already
replaced the generic Û with the ambiguity set based on probability trimmings ÛN (α, ρ):

inf
Q

Ξ̃
∈ÛN (α,ρ)

Q
Ξ̃

(
max
k≤K

⟨a1k,ω⟩+ a2k ⩽ 0

)
⩾ 1− ϵ (4.38)

Functions ⟨a1k,ω⟩ + a2k, k ≤ K, represent the OPF constraints involved in the joint
chance constraint (4.37) expressed as inequalities lower than or equal to zero. These
constraints are all linear with respect to the random vector ω.

In practice, the system operator is not only concerned about the joint violation of
the OPF constraints, but also about the magnitude of this violation. Indeed, the joint
chance constraint (4.38) does not offer guarantees on how positive maxk≤K⟨a1k,ω⟩+a2k

is. This is one of the main reasons to adopt a risk-averse approach to handle the joint
chance constraint via the well-known concept of Conditional-Value-at-Risk (CVaR),
which quantifies the conditional expectation of maxk≤K⟨a1k,ω⟩+a2k on its right ϵ-tail.

In lieu of (4.38), we consider the following tractable (convex) approximation:

sup
Q

Ξ̃
∈ÛN (α,ρ)

Q
Ξ̃
−CVaRϵ

(
max
k≤K

⟨a1k,ω⟩+ a2k

)
⩽ 0 (4.39)
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which is, in addition, conservative, because (4.39) implies (4.38).
Constraint (4.39) can be equivalently reformulated as follows [108], [118]:

inf
τ∈R

τ +
1

ϵ
sup

Q
Ξ̃
∈ÛN (α,ρ)

EQ
Ξ̃

[(
max
k≤K

⟨a1k,ω⟩+ a2k − τ

)+
] ⩽ 0 (4.40)

The next proposition states a tractable reformulation of (4.40). For ease of exposition,
we first need to recast function (maxk≤K⟨a1k,ω⟩+ a2k − τ)+ as(

max
k≤K

⟨a1k,ω⟩+ a2k − τ

)+

:= max
k⩽K+1

⟨a1k,ω⟩+ a′2k (4.41)

where a′2k = a2k − τ for k ≤ K, a1K+1 = 0 and a′2K+1 = 0.

Proposition 4.4 (Reformulation of the CVaR-based distributionally robust
joint chance constraints). Set α > 0. Then, for any value of ρ ⩾ ϵNα, the CVaR-
based distributionally robust joint chance constraints defined by (4.39) can be equivalently
reformulated as follows:

inf
τ∈R,λ2⩾0,µi⩾0,θ2∈R,γik,vik

{
τ +

1

ϵ

[
λ2ρ+ θ2 +

1

Nα

N∑
i=1

µi

]}
⩽ 0 (4.42a)

s.t. µi + θ2 + λ2∥z∗ − ẑi∥1 ⩾ a′2k + S
Ξ̃ω

(vik)

− ⟨γik, ω̂i⟩,∀i ⩽ N, ∀k ⩽ K + 1 (4.42b)

γik − vik = −a1k, ∀i ⩽ N, ∀k ⩽ K + 1 (4.42c)

∥γik∥∞ ⩽ λ2, ∀i ⩽ N, ∀k ⩽ K + 1 (4.42d)

where S
Ξ̃ω

(·) stands for the support function of Ξ̃ω and ⟨·, ·⟩ represents the dot product
(see Appendix C.1.5).

Once we have reformulated the CVaR-based distributionally robust joint chance
constraint (4.39), we only need to reformulate the DRO problem defined by the inner
supremum in (4.36). Since this requires a careful and independent analysis, we consider
it in the following section.

4.4.4 An exact tractable reformulation of the worst-case expected
cost

In what follows, we provide an exact and tractable reformulation of the objective func-
tion (4.36) as a continuous linear program.

The term

C(g̃(ω)) =
∑
j∈G

max
s=1,...,Sj

{
mjs [gj − βjΩ] + njs

}
(4.43)
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is a sum of a maximum of univariate linear functions in terms of Ω, which is, moreover,
convex in Ω. This observation is key to reformulating (4.36) in a tractable way. In
fact, the ambiguity set ÛN (α, ρ) for the worst-case probability distribution in the inner
supremum of (4.36) can be equivalently replaced with the following one, which is also
expressed in terms of Ω only:

ÛΩ
N (α, ρ) := {P

Ξ̃Ω
: W1(R1−α(P̂N ), P

Ξ̃Ω
) ≤ ρ, P

Ξ̃Ω
(Ξ̃Ω) = 1} (4.44)

where P̂N := 1
N

∑N
i=1 δ(ẑi,Ω̂i)

is the empirical distribution supported on the samples

(ẑ, Ω̂i), i = 1, . . . , N ; and Ξ̃Ω stands for the event

(z = f ; Ω ∈ [Ω,Ω]), with [Ω,Ω] =

[
−
∑
m∈W

fm,
∑
m∈W

(Cm − fm)

]

The interval [Ω,Ω] is the conditional support for the random variable Ω (that is, the
support set for the system-wise aggregate wind power forecast error, given the predicted
power outputs of the wind farms). Essentially, what we have done above is to map the
original probability space for the random vector (z,ω) onto a new probability space for
the random vector (z,Ω) by the linear map ω 7→ ∑

m∈W ωm, Ω =
∑

m∈W ωm, which
leaves the objective cost function unaltered. In doing so, the inner supremum in (4.36)
can be fully recast in terms of Ω only as follows:

sup
P
Ξ̃Ω

∈ÛΩ
N (α,ρ)

EP
Ξ̃Ω

∑
j∈G

max
s=1,...,Sj

{
mjs [gj − βjΩ] + njs

}
+ ⟨cD, rD⟩+ ⟨cU , rU ⟩

 (4.45)

The proposition below presents a tractable reformulation of (4.45) as a continuous linear
program.

Proposition 4.5 (LP reduction of the worst-case expected cost). Set α > 0

and assume that ∥(z,Ω)∥ := ∥z∥+ |Ω| for some norm ∥ · ∥ in Rdz. Then, for any value
of ρ ⩾ ϵNα, the DRO problem defined by (4.45) can be reformulated as the following
continuous linear program:

inf
λ⩾0;θ∈R,µi,ti,tij ,tij ,t̂ij∀i⩽N, ∀j∈G

λρ+ θ +
1

Nα

N∑
i=1

µi + ⟨cD, rD⟩+ ⟨cU , rU ⟩ (4.46a)

s.t. µi + θ + λ∥z∗ − ẑi∥ ⩾ ti,∀i ⩽ N (4.46b)

ti ⩾
∑
j∈G

tij − λ(Ω− Ω̂i), ∀i ∈ I (4.46c)

ti ⩾
∑
j∈G

tij − λ(Ω− Ω̂i), ∀i ∈ I (4.46d)
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ti ⩾
∑
j∈G

tij + λ(Ω− Ω̂i), ∀i ∈ I (4.46e)

ti ⩾
∑
j∈G

tij + λ(Ω− Ω̂i), ∀i ∈ I (4.46f)

ti ⩾
∑
j∈G

tij − λ(Ω− Ω̂i), ∀i ∈ I (4.46g)

ti ⩾
∑
j∈G

tij + λ(Ω− Ω̂i), ∀i ∈ I (4.46h)

ti ⩾
∑
j∈G

t̂ij , ∀i ∈ I (4.46i)

µi ⩾ 0, ∀i ⩽ N (4.46j)

tij ⩾ mjs [gj − βjΩ] + njs, ∀i ⩽ N, ∀j ∈ G, ∀s ⩽ Sj (4.46k)

tij ⩾ mjs

[
gj − βjΩ

]
+ njs, ∀i ⩽ N, ∀j ∈ G, ∀s ⩽ Sj (4.46l)

t̂ij ⩾ mjs

[
gj − βjΩ̂i

]
+ njs, ∀i ⩽ N, ∀j ∈ G, ∀s ⩽ Sj (4.46m)

where I := {i ∈ {1, . . . N} : Ω̂i < Ω}, I := {i ∈ {1, . . . N} : Ω̂i ∈ [Ω,Ω]}, and I := {i ∈
{1, . . . N} : Ω̂i > Ω}.

4.4.5 Numerical results

In this section, we present and discuss results from a series of numerical experiments that
have been run on a modified version of the IEEE 118-bus system considered in [78]. All
the data and codes needed to reproduce those experiments are available for download in
the GITHUB repository [52]. The experiments have been carried out on a Linux-based
server using up to 13200 CPUs running in paralell, each clocking at 2.6 GHz with 200
GB of RAM. We have employed CPLEX 20.1.0 under DOcplex Python Modeling API to
solve the associated continuous linear programs with the barrier algorithm using up to
22 threads. In addition, we have set the CPLEX parameter preprocessing_dual to 1.

We solve the CC-DRO OPF problem (4.36)–(4.37) using the CVaR-based approx-
imation stated in Section 4.4.3, but with different ambiguity sets, namely: (i) The
ambiguity set based on probability trimmings, introduced in [53], which we refer to as
DROTRIMM; and (ii) a Wasserstein ball centered at the empirical distribution sup-
ported on the ω̂-coordinates of the N samples in Ξ̂N

ω , i.e., {(ẑi, ω̂i)}Ni=1. This leads to
the distributionally robust chance-constrained OPF model proposed in [108], which we
call DROW. Importantly, this is a DRO model that fully ignores the contextual infor-
mation, since the center of the Wasserstein ball it uses is made up of all past samples
of wind power forecast errors (regardless of the current wind power point predictions).
Roughly speaking, DROTRIMM also works with all the past N samples of wind power
forecast errors, but only those that lead to the worst-case conditional distribution of
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the prediction errors are moved onto the conditional support. However, this movement
must entail a transportation cost smaller than or equal to a given budget ρ and the com-
putation of that cost is directly contingent on the current context (that is, the current
wind power point forecasts).

In addition, we benchmark the previous two distributionally robust methods with
an alternative approach that is commonly used in the technical literature for solving
optimization problems with probabilistic constraints, known as the scenario approach,
but adapted to account for contextual information. We have taken the required adap-
tation from [86, Chapter 4], which, in our setting, involves solving a DC-OPF problem
in which the uncertain constraints are enforced for the wind power forecast errors as-
sociated with the K samples nearest to the context. We refer to this adaptation of the
popular scenario approach as SCENA.

The training data consist of a set of pairs {(ẑi, ω̂i)}Ni=1, from which we can directly
obtain the collection of pairs {(ẑi, Ω̂i)}Ni=1, where Ω̂i :=

∑
m∈W ω̂i,m. For ease of com-

putation and to simplify the analysis below, we have considered the same radius or
transportation budget for the two ambiguity sets in both the objective and the chance
constraints of the DRO OPF problem (4.36)–(4.37).

4.4.6 Evaluation of the out-of-sample performance via re-optimization

Given a context (in the form of point forecasts of the power outputs of the wind farms), a
training dataset, and a robustness parameter ρ, each method met (either DROTRIMM
or DROW in our case) provides a forward generation dispatch and reserve capacity
provision ymet := (g, rD, rU ). To evaluate the actual or out-of-sample performance of
that ymet, we draw a sample of wind power forecast errors ω̂j from a test dataset, and
the vector of recourse variables r (that is, the real-time power adjustments) is computed
by solving the deterministic Optimal Power Flow available in Appendix C.4. In this
deterministic OPF problem, wind spillage (with a cost equal to 0) and involuntary
load curtailment (with a cost equal to $500/MWh) are considered as feasible recourse
actions, aside from the deployment of reserves by generators. In this way, the out-
of-sample performance of a method met, which produces the forward dispatch ymet,
J(ymet), is computed by the empirical out-of-sample cost averaged over the test set
formed by a certain number of samples of Qω/z=f . In addition, in order to measure
the reliability of a solution (that is, if ymet is feasible or not in real time), the violation
probability is estimated over the test set. In this estimation, we count as a violation
every time a recourse action involving load curtailment or wind spillage is to be taken
in real time to restore the power balance. This is equivalent to counting (over the test
set) the number of times a constraint is violated in the original affine-policy-based OPF
model.



4.4. Application III. Optimal Power Flow problem 85

4.4.7 A 118-bus case study

As previously mentioned, we consider a modified version of the IEEE 118-bus system
used in [78]. The system includes 54 conventional generators and eight wind power
plants that we have added and placed at buses 2, 16, 33, 37, 55, 67, 83, and 116. In
addition, the piecewise linear cost functions of all generators are comprised of three
pieces or blocks. All the data pertaining to the network, generators, and transmission
lines are available at the GITHUB repository [52].

We analyze two scenarios, which differ in the level of wind power penetration in
the system. Below we explain how we have generated samples for the joint distribution
of the wind power forecast and its error at each wind power plant. The so generated
samples are also available online at the GITHUB repository [52]:

1. Let f̃m be the per-unit point forecast of the power output at wind plant m ∈ W. A
sample of f̃m, for all m ∈ W, is randomly drawn with replacement from a collection
of 16 694 p.u. wind power data recorded in several zones and made available by
the Global Energy Forecasting Competition 2014 [76]. We have selected zones
1, 2, 3, 4, 5, 6, 9, and 10 of the aforementioned data set and assigned them to
the eight wind power plants located at buses 16, 116, 83, 2, 55, 67, 33, and 37,
respectively.

2. For each wind farm m ∈ W, we have assumed that the (nominal, normalized)
random variable Wm, which represents the nominal actual power generated at
wind plant m, follows a Beta distribution with mean f̃m and standard deviation
σ. This standard deviation depends on both physical parameters and the quality
of the forecasting model, following the model proposed in [56]. For simplicity, in
all numerical experiments, given f̃m, we determine σ as the value of the following
function σ(f̃m) := 0.2f̃m + 0.02, empirically obtained in [56] for the case of a
lead time of six hours. Therefore, the actual wind power production, and hence,
the forecast error are conditional on the forecast power output issued. More
specifically, the forecast error is given as the difference of a realization Ŵm of the
r.v. Wm ∼ Beta(A,B) and the point forecast f̃m, where A,B > 0 are the solution
(if it exists) of the following system of non-linear equations:

f̃m =
A

A+B
(4.47a)

σ2(f̃m) =
AB

(A+B)2(A+B + 1)
(4.47b)

To ensure that this non-linear system of equations has a solution, the samples f̃m
from the dataset that are less than or equal to 0.05 p.u. are set to 0.05, and the
ones greater than or equal to 0.95 p.u. are set to 0.95. Thus, for each wind power
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plant, the per-unit point forecast lies in the interval [0.05, 0.95].

3. To work with MW, we multiply the per-unit realized power output and the point
prediction f̃m by the wind plant capacity Cm, thus getting a pair of predicted
power output and its error (Cmf̃m, Cm(Ŵm − f̃m)) for wind farm m.

4. Steps 1, 2 and 3 are repeated N times to get the desired sample size.

Each independent run in our simulations involves repeating the above process.

Finally, the test set used to compute the out-of-sample performance of a data-driven
solution via re-optimization (i.e., the actual probability of violating the uncertain OPF
constraints and the actual expected operational cost) is constructed by drawing 1000
samples from the wind-power-data generating model based on the beta distribution
presented above, with mean equal to the point prediction acting as the selected con-
text. Therefore, this test set constitutes a discrete approximation of the forecast error
distribution conditional on a given context, which will be specified later. Importantly,
the shape and size of the ambiguity set that DROTRIMM uses is to be changed with
the sample size N (which is indicative of the amount of information on the joint dis-
tribution of (z,ω) we have). Consequently, the trimming level α defining this set is to
be dependent on N . Accordingly, we have set αN := KN/N , where KN is the number
of nearest neighbors used by SCENA. We have specifically taken KN := ⌊N0.9⌋ so that
the resulting αN is consistent with the convergence results in Lemma 4.5 . Again, both
α and K have been augmented with the subscript N to make their dependence on the
sample size explicit.

Medium wind penetration case

In this case, all eight wind farms in the system have a capacity of 200 MW and the
context is given by z∗ = 180 · 1 MW, that is, the point forecast is 180 MW for all the
wind power plants. Hence, the level of wind power penetration in the system (i.e., the
ratio of the predicted system-wise wind power production to the total system demand)
is approximately 63%.

Figures 4.9 and 4.10 illustrate the box plots corresponding to the total downward and
upward reserve capacity that is scheduled, the violation probability and the expected
cost delivered out of sample by SCENA, DROTRIMM and DROW as a function of
their corresponding robustness parameter for sample sizes N = 100 and N = 300,
respectively. Naturally, the results provided by SCENA do not change along the x-axis
in the plots, because this method is not based on distributional robustness. The box
plots have been obtained from 200 independent runs for each sample size. We have
set ϵ = 0.1. The robustness parameter of DROW is the radius of the Wasserstein ball,
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Figure 4.9: Medium level of wind penetration, N = 100 and ϵ = 0.1: Total downward
and upward reserve capacity and performance metrics

while the robustness parameter for DROTRIMM is the budget excess over the minimum
transportation budget (see Definition 4.2) .

The color-shaded areas have been obtained by joining the minimum and maximum
edge cases of the box plots, while the associated bold colored lines link their means.
These figures allow us to check which of the methods provides the most cost-efficient
dispatch solutions on average without exceeding the threshold ϵ. As expected, the
reliability of the OPF solution given by DROW and DROTRIMM increases as the
value of their robustness parameter is augmented, because more reserve capacity is
procured. In turn, as more reserve capacity is scheduled, the magnitude and frequency
of expensive load shedding events tend to diminish, which explains why the expected
system operating cost may also decrease with the robustness parameter. This justifies
the use of Distributionally Robust Optimization to tackle the chance-constrained OPF
problem. However, when said parameter reaches a large enough value, the expected
cost starts to grow quickly, because the cost of procuring additional reserve capacity
no longer compensates for the cost savings entailed by the reduction in the amount of
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Figure 4.10: Medium level of wind penetration, N = 300 and ϵ = 0.1: Total downward
and upward reserve capacity and performance metrics
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curtailed load.
While SCENA provides OPF solutions that are competitive in terms of expected

cost, these solutions do not comply with the specified reliability threshold in many of
the runs. In addition, the performance of the OPF solutions obtained from SCENA
exhibit a high variability, which is clearly due to the fact that this method is a non-
robust approach and as such, is highly negatively affected by the uncertainty associated
with the conditional inference it must perform.

On the other hand, when comparing DROW and DROTRIMM, whereas the former
needs a lower value of the robustness parameter to attain the desired level of solution
reliability, DROTRIMM gets to identify OPF solutions that are also reliable, while
systematically cheaper on average. This phenomenon becomes even more evident when
we increase the sample size N from 100 to 300. Indeed, a richer joint data sample
contains more information on the statistical dependence of the wind power forecast
error on the associated point prediction, which our approach manages to take advantage
of. To give some numbers, if we just consider the range of values for the robustness
parameters for which the violation probability is kept below the tolerance ϵ, the average
expected cost savings of DROTRIMM with respect to DROW go from 0.82%, when
N = 100 to 1.82%, when N = 300. From a technical point of view, DROW tends
to produce OPF solutions with a higher cost because it underestimates the amount
of upward reserve capacity that should be procured, clearly because this method is
oblivious to the context and therefore, plans for the marginal distribution of the wind
power forecast errors and not for the conditional one.

To elaborate further on the differences among the three methods, Table 4.1 includes
the maximum, average, and minimum out-of-sample expected cost2 under the value of
the robustness parameter that is optimal for methods DROW and DROTRIMM, i.e.,
which leads to reliable OPF solutions with the minimum average expected cost for each
of these two approaches. The standard deviation of this cost is also provided in the last
row of Table 4.1. When N = 100, the (exacerbated) robustness of DROW produces OPF
solutions with low average cost and variance, although DROTRIMM manages to find
OPF solutions that are more economical in expectation. When N = 300, DROTRIMM
clearly beats DROW on all metrics, because the excessive robustness of DROW (which
is the result of ignoring the context) no longer pays off. Again, SCENA provides the
cheapest OPF solutions on average, but these are useless because they do not satisfy
the reliability requirement.

High wind penetration case

In this alternative setting, all the wind farms have a capacity of 250 MW and the context
is given by z∗ = 225 · 1 MW. Hence, the level of wind power penetration in the system

2These statistics are computed over the 200 independent runs.
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Table 4.1: Medium level of wind penetration, summary data for total expected cost
[$] under the optimal value of the robustness parameter for methods DROW and
DROTRIMM.

N = 100 N = 300
DROTRIMM DROW SCENA DROTRIMM DROW SCENA

max 24790 24388 25795 23250 23972 24160
avg 23068 23258 22493 22826 23250 22588
min 22511 22649 21325 22443 22728 21602
std 300 295 742 159 246 496

is approximately 80%.
Figures 4.11 and 4.12, and Table 4.2 are analogous to Figures 4.9 and 4.10, and Ta-

ble 4.1 of the previous case, respectively. The higher level of wind power penetration in
this new instance implies a higher level of uncertainty in the system. This accentuates
the difference in performance between DROW and DROTRIMM when N = 100, that
is, in a small sample regime. More specifically, the relative difference between the out-
of-sample average expected cost achieved by DROW and DROTRIMM increases from
0.82% in the previous case to 2.27% in this new one. It is true, though, that DROW
offers reliable OPF solutions with the lowest variance in expected cost when N = 100,
provided that its robustness parameter is optimally tuned, see Table 4.2. However, its
superiority in this respect ends when N grows to 300, at which point DROTRIMM
provides the most cost-efficient OPF solutions in every respect3. Again the reason for
this difference in performance has to do with the different provision of upward and
downward reserve capacity that DROW and DROTRIMM prescribe.

For its part, the SCENA method keeps on providing cheap, but unreliable OPF
solutions under a higher level of wind power penetration. In fact, the variability in
cost, violation probability and reserves of the OPF solutions given by this method is
remarkably high in contrast with that of DROTRIMM and DROW, even higher than
in the case of a medium wind power penetration level (compare the range of the box
plots in Figure 4.12).

We conclude this section with a remark on computational time. DROTRIMM and
DROW have the same complexity (essentially, the number of constraints grows linearly
with the sample size N). The continuous linear program that results from tackling
the chance-constrained DRO OPF problem by way of DROTRIMM and the CVaR

approximation takes around 15 minutes to be solved on average, for a sample size
N = 300, using CPLEX 20.1.0 on a Linux-based server with 22 CPUs clocking at 2.6
GHz and 200 GB of RAM in total.

3Note in Table 4.2 that, while the standard deviation of the expected cost is a bit higher under
DROTRIMM than under DROW when N = 300, the maximum and minimum values reached by the
expected cost under each method reveals that DROTRIMM produces a distribution of the expected
cost displaced towards cheaper OPF solutions.
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Figure 4.11: High level of wind penetration, N = 100 and ϵ = 0.1: Total downward and
upward reserve capacity and performance metrics

Table 4.2: High level of wind penetration, summary data for total expected cost [$]
under the optimal value of the robustness parameter for DROW and DROTRIMM.

N = 100 N = 300
DROTRIMM DROW SCENA DROTRIMM DROW SCENA

max 19794 18804 21699 18101 18255 19863
avg 17334 17737 16483 17025 17274 16779
min 16490 16795 15040 16486 16703 15639
std 488 381 1093 296 292 767
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Figure 4.12: High level of wind penetration, N = 300 and ϵ = 0.1: Total downward and
upward reserve capacity and performance metrics
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4.5 Summary

In this chapter, we have exploited the connection between probability trimmings and
partial mass transportation to provide an easy, but powerful and novel way to extend the
standard Wasserstein-metric-based DRO to the case of conditional stochastic programs.
Our approach produces decisions that are distributionally robust against the uncertainty
in the whole process of inferring the conditional probability measure of the random pa-
rameters from a finite sample coming from the true joint data-generating distribution.
Through a series of numerical experiments built on the single-item newsvendor problem
and a portfolio allocation problem, we have demonstrated that our method attains
notably better out-of-sample performance than some existing alternatives. We have
supported these empirical findings with theoretical analysis, showing that our approach
enjoys attractive performance guarantees. Finally, we have developed a distributionally
robust chance-constrained OPF model that is able to exploit contextual information
through an ambiguity set based on probability trimmings. We have provided a refor-
mulation of this model as a continuous linear program using the well-known CVaR

approximation. By way of a series of numerical experiments conducted on a modified
118-bus power network with wind uncertainty, we have shown that, by exploiting the
statistical dependence between the point forecast of the wind power outputs and its
associated forecast error, our approach can identify dispatch solutions that, while sat-
isfying the required system reliability, lead to costs savings of up to several percentage
points with respect to the OPF solutions provided by an alternative DRO method that
ignores said statistical dependence.



Chapter 5

Conclusions and future work

In this closing chapter, the thesis is summarized, conclusions are drawn and directions
for future research are given.

5.1 Summary and conclusions

Many real-world decision-making problems involve data parameters that are random
and noisy. It is customary to formulate these problems as mathematical optimization
programs under uncertainty, whose parameters are treated as random variables. Disre-
garding this uncertainty may lead to infeasible/suboptimal decisions. Today’s decision
makers not only collect observations of the uncertainties directly affecting their decision-
making processes, but also gather some prior information about the data-generating
distribution of the uncertainty. This prior information is used by the decision maker to
prescribe a more accurate set of potential probability distributions, the so-called ambi-
guity set in distributionally robust optimization. The prior information that has been
studied in this thesis can take the form of:

• Structural information, which can be given by some expert knowledge of the op-
timization problem to solve. This structural information could be, for example,
shape information such as multimodality.

• Conditional information given in terms of a generic measurable event. This event
may convey some conditional information which serves as contextual/side informa-
tion and could be delivered by some covariates (also known as exogenous variables,
features or attributes).

In this thesis, we have developed several distributionally robust optimization models
by making use of tools of convex analysis, probability theory, statistics, and optimization
under uncertainty. The contents of this thesis are included in the published papers [55],
[53] and the preprint [51]:

94
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• In our paper [55], we present a novel framework for data-driven distributionally ro-
bust optimization (DRO) based on optimal transport theory in combination with
order cone constraints to leverage a-priori information on the true data-generating
distribution. Motivated by the reported over-conservativeness of the traditional
DRO approach based on the Wasserstein metric, we formulate an ambiguity set
able to incorporate information about the order among the probabilities that the
true distribution of the problem’s uncertain parameters assigns to some subregions
of its support set. Our approach can practically and intuitively accommodate a
wide range of shape information (such as that related to monotonicity or multi-
modality). Moreover, under mild assumptions, the resulting distributionally ro-
bust optimization problem can be, in fact, reformulated as a finite convex problem
where the a-priori information (expressed through the order cone constraints) is
cast as linear constraints as opposed to the more computationally challenging for-
mulations that exist in the literature. Our approach is supported by theoretical
performance guarantees and is capable of turning the information provided into
solutions with increased reliability and improved performance, as illustrated by
our numerical experiments. These are based on the well-known newsvendor pro-
blem and the problem of a strategic firm competing á la Cournot in a market for
a homogeneous product.

• In the article [53], we exploit the connection between probability trimmings and
partial mass transportation to provide an easy, but powerful and novel way to
extend the standard Wasserstein-metric-based DRO to the case of conditional
stochastic programs. Our approach produces decisions that are distributionally
robust against the uncertainty in the whole process of inferring the conditional
probability measure of the random parameters from a finite sample taken from
the true joint data-generating distribution. Through a series of numerical ex-
periments built on the single-item newsvendor problem and a portfolio allocation
problem, we demonstrate that our method attains a notably better out-of-sample
performance than some existing alternatives. We support these empirical findings
with theoretical analysis, showing that our approach enjoys attractive performance
guarantees.

• In our preprint [51], we develop a distributionally robust chance-constrained Op-
timal Power Flow (OPF) model that is able to exploit contextual information
through an ambiguity set based on probability trimmings. We provide a reformu-
lation of this model as a continuous linear program using the well known CVaR

approximation. By way of a series of numerical experiments conducted on a mod-
ified 118-bus power network with wind uncertainty, we show that, by exploiting
the statistical dependence between the point forecast of the wind power outputs



96 Chapter 5. Conclusions and future work

and its associated forecast error, our approach can identify reliable dispatch so-
lutions that are significantly cheaper than those provided by an alternative DRO
method that ignores said statistical dependence.

5.2 Directions for future research

Directions for future research resulting from the study carried out in this thesis are
listed below:

1. The development of decomposition methods to solve large-scale distributionally
robust optimization programs based on the Wasserstein metric.

2. Theoretical analysis is required to investigate if, and under which conditions, it
is possible to break the dependence of the finite-sample guarantees on the uncer-
tainty dimension in the realm of conditional stochastic optimization.

3. Further research is needed into how to properly extend the use of probability
trimmings to conditional multi-stage stochastic programs.

4. Data-driven schemes for appropriately tuning the robustness parameter in our
distributionally robust chance-constrained OPF model in accordance with the risk
preferences of the system operator (for instance, by resorting to cross-validation
or bootstrapping) must be studied. Moreover, this model has to be extended to
account for intertemporal constraints, which, among other factors, will involve
adapting our probability-trimming-based ambiguity set to deal with stochastic
processes and time series data.
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Proofs of Chapter 3
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A.1 Proof of Theorem 3.1

Recall that we have assumed that regions Ξi are disjoint. Thus, using the law of total
probability, we can rewrite problem (POC) as follows:

inf
x∈X

sup
p∈P

G(x,p) (A.1)

where we have considered the subproblem (SPOC):

(SPOC) G(x,p) = sup
Qi∈Qi,∀i

∑
i∈I

piEQi [f(x, ξ)] (A.2a)

s.t.
∑
i∈I

piC(Qi, Q̂i) ⩽ ε (A.2b)

The probability distribution Q̂i is defined as Q̂i =
1
Ni

∑Ni
j=1 δξ̂ i

j
, with Ni being the

number of data points in Ξi and ξ̂ i
j ∈ {ξ̂ i

1 , . . . , ξ̂
i
Ni
}.

Note that the structure of problem (A.1) does not fit in the general ambiguity set
proposed in [38].
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Equivalently, we can recast the subproblem (SPOC) as

(SPOC) =



sup
Qi∈Qi,Πi,∀i

∑
i∈I

pi

∫
Ξi

f(x, ξ)Qi(dξ)

s.t.
∑
i∈I

pi

∫
Ξ2
i

c(ξ, ξ′)Πi(dξ, dξ
′) ⩽ ε{

∀ i, Πi is a joint distribution of ξ and ξ′

with marginals Qi and Q̂i, respectively

(A.3)

=



sup
Q̃i

j ,∀i∈I,j⩽Ni

∑
i∈I

pi
Ni

Ni∑
j=1

∫
Ξi

f(x, ξ)Q̃i
j(dξ)

s.t.
∑
i∈I

pi
Ni

Ni∑
j=1

∫
Ξi

c(ξ, ξ̂ i
j )Q̃

i
j(dξ) ⩽ ε∫

Ξi

Q̃i
j(dξ) = 1, ∀i ∈ I, j ⩽ Ni

(A.4)

where reformulation (A.4) follows on from the fact that the marginal distribution of ξ′

is the discrete uniform distribution supported on points ξ̂ i
j , j = 1, . . . , Ni. Thus, Πi is

completely determined by the conditional distributions Q̃i
j = Πi(ξ, ξ

′|ξ′ = ξ̂ij), ∀i ⩽ Ni,
that is, Πi(dξ, dξ

′) = 1
Ni

∑Ni
j=1 δξ̂ i

j
(dξ′)Q̃i

j(dξ) [99].

The mathematical program (A.4) constitutes a generalized moment problem over
the normalized measures Q̃i

j , for which strong duality holds (see, for example, [123]).
We can, therefore, dualize the ε-budget constraint on the transport cost, thus obtaining:

inf
θ⩾0

sup
Q̃i

j ,∀i∈I,j⩽Ni

θε+
∑
i∈I

pi
Ni

Ni∑
j=1

∫
Ξi

[
f(x, ξ)− θc(ξ, ξ̂ i

j )
]
Q̃i

j(dξ) (A.5)

s.t.
∫
Ξi

Q̃i
j(dξ) = 1, ∀i ∈ I, j ⩽ Ni (A.6)

= inf
θ⩾0

θε+
∑
i∈I

pi
Ni

Ni∑
j=1

sup
Q̃i

j

∫
Ξi

[
f(x, ξ)− θc(ξ, ξ̂ i

j )
]
Q̃i

j(dξ) (A.7)

s.t.
∫
Ξi

Q̃i
j(dξ) = 1, ∀i ∈ I, j ⩽ Ni (A.8)

= inf
θ⩾0

θε+
∑
i∈I

pi
Ni

Ni∑
j=1

sup
ξ∈Ξi

[
f(x, ξ)− θc(ξ, ξ̂ i

j )
]

(A.9)

= inf
θ,tij ,∀i∈I,j⩽Ni

θε+
∑
i∈I

pi
Ni

Ni∑
j=1

ti,j (A.10)

s.t. ti,j ⩾ sup
ξ∈Ξi

[
f(x, ξ)− θc(ξ, ξ̂ i

j )
]
, ∀i ∈ I, j ⩽ Ni (A.11)
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θ ⩾ 0 (A.12)

where the second equality derives from the fact that we can choose a Dirac distribution
supported on Ξi as Q̃i

j .

Now, dualizing the ρ-budget constraint on the transport cost in the inner supremum
of problem (A.1), we obtain:

inf
λ⩾0

λρ+ sup
p∈Θ

[G(x,p)− λc̃(p, p̂)] (A.13)

Thus,

inf
λ⩾0

λρ+ sup
p∈Θ

[G(x,p)− λc̃(p, p̂)] (A.14)

= inf
λ⩾0

λρ+ sup
p∈Θ

 inf
θ⩾0,(ti,j) s.t.(A.11)

θε+
∑
i∈I

pi
Ni

Ni∑
j=1

ti,j − λc̃(p, p̂)

 (A.15)

Since function θε +
∑

i∈I
pi
Ni

∑Ni
j=1 ti,j − λc̃(p, p̂) is upper semicontinuous and concave

in p on the compact convex set Θ (recall that c̃ is nonegative, lower semicontinuous,
and convex in p), and linear in θ and ti,j on the convex set defined by θ ⩾ 0 and (A.11),
we can apply Sion’s min-max theorem ([127]) and in this way, interchange the innest
infimum with the outer supremum. Then, by merging the two infima, we arrive at

inf
λ⩾0,θ⩾0,(ti,j)

λρ+ θε+ sup
p∈Θ

∑
i∈I

pi
Ni

Ni∑
j=1

ti,j − λc̃(p, p̂)


s.t. ti,j ⩾ sup

ξ∈Ξi

[
f(x, ξ)− θic(ξ, ξ̂

i
j)
]
, ∀i ∈ I, j ⩽ Ni

We focus now on the inner supremum,

sup
p∈Θ

〈p,
 1

Ni

Ni∑
j=1

ti,j


i∈I

〉
− λc̃(p, p̂)

 (A.16)

where we have written
∑

i∈I
pi
Ni

∑Ni
j=1 ti,j as

〈
p,
(

1
Ni

∑Ni
j=1 ti,j

)
i∈I

〉
. This is a concave

maximization problem (be aware that ⟨p,H(x)⟩ − λc̃(p, p̂) is a concave function with
respect to p and Θ is a convex compact set; furthermore, notice that we have H(x) =(

1
Ni

∑Ni
j=1 ti,j

)
i∈I

in our particular case). Consequently, strong duality holds if a Slater

condition is satisfied, that is, if there exists a point p∗ ∈ relint(R|I|
+ ) such that ⟨e,p∗⟩ =

1, and p∗ ∈ int(C) (see, for example, [32]). Using a standard duality argument, we
dualize the constraints p ∈ R|I|

+ , ⟨e,p⟩ = 1 and p ∈ C, with associated multipliers
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µ ∈ R|I|
+ , η ∈ R and p̃ ∈ C∗, respectively. Thus, we obtain the following problem:

inf
η∈R,µ∈R|I|

+ , p̃∈C∗
sup
p


〈
p,

 1

Ni

Ni∑
j=1

ti,j


i∈I

〉
− λc̃(p, p̂) + ⟨µ,p⟩+ η(1− ⟨e,p⟩) + ⟨p̃,p⟩

 =

inf
η∈R, µ∈R|I|

+ ,p̃∈C∗
η + sup

p


〈
p,

 1

Ni

Ni∑
j=1

ti,j


i∈I

+ µ− ηe+ p̃

〉
− λc̃(p, p̂)

 =

inf
η∈R, µ∈R|I|

+ ,p̃∈C∗
η + λ sup

p


〈
p,

(
1
Ni

∑Ni
j=1 ti,j

)
i∈I

+ µ− ηe+ p̃

λ

〉
− c̃(p, p̂)

 =

inf
η∈R, µ∈R|I|

+ ,p̃∈C∗
η + λc̃∗p̂


(

1
Ni

∑Ni
j=1 ti,j

)
i∈I

+ µ− ηe+ p̃

λ


where c̃∗p̂(·) is the convex conjugate function of c̃(·, p̂), with p̂ fixed.

Therefore, problem (A.1) can be equivalently reformulated as follows:

(POC-0) inf
x,λ,µ,η p̃,θ,t

λρ+ η + θε+ λc̃∗p̂


(

1
Ni

∑Ni
j=1 ti,j

)
i∈I

+ µ− ηe+ p̃

λ


s.t. ti,j ⩾ sup

ξ∈Ξi

[
f(x, ξ)− θc(ξ, ξ̂ i

j )
]
, ∀i ∈ I, j ⩽ Ni (A.17)

x ∈ X,λ ⩾ 0,µ ∈ R|I|
+ , η ∈ R, p̃ ∈ C∗, θ ⩾ 0

ti,j ∈ R,∀i ∈ I, j ⩽ Ni

A.2 Proof of Corollary 3.1

We use the following Lemma to put problem (POC-0) in a better shape.

Lemma A.1. Let c̃p̂(p) = ∥p− p̂∥, where p̂ ∈ R|I| is a fixed vector and ∥·∥ a norm
in R|I|. Then, it holds that the convex conjugate function of c̃p̂(p) is as follows

c̃∗p̂(s) =

{ ∑
i∈I p̂isi if ∥s∥∗ ⩽ 1

∞ if ∥s∥∗ > 1

Proof. The claim of the Lemma follows from Proposition 5.1.4. (vii) and Example
5.1.2 (b) of [97].
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Therefore, problem (POC-0) reduces to

(POC-1) inf
x,λ,µ,η p̃,θ,t

λρ+ η + θε+
∑
i∈I

p̂i

 1

Ni

Ni∑
j=1

ti,j + µi − η + p̃i


s.t. ti,j ⩾ sup

ξ∈Ξi

[
f(x, ξ)− θ

∥∥∥ξ − ξ̂ i
j

∥∥∥] , ∀i ∈ I, ∀j ⩽ Ni (A.18)∥∥∥∥∥∥
 1

Ni

Ni∑
j=1

ti,j + µi − η + p̃i


i∈I

∥∥∥∥∥∥
∗

⩽ λ

x ∈ X,λ ⩾ 0,µ ∈ R|I|
+ , η ∈ R, p̃ ∈ C∗, θ ⩾ 0

ti,j ∈ R, ∀i ∈ I, ∀j ⩽ Ni

A.3 Proof of Theorem 3.2

In essence, the complexity of problem (POC-1) depends on our ability to reformulate the
supremum in constraint (3.7) in a tractable manner. This is possible under Asummp-
tion 3.1, following similar steps to those in the proof of Theorem 4.2 in [99], to which
we refer.

A.4 Proof of Theorem 3.3

The proof runs in a similar way to that of Theorem 6.1 in [99].

A.5 Proof of Theorem 3.4

Given Assumption 3.2, for all i ∈ I, we deduce from Theorem 2 in [59] that

P
[
W(Qi, Q̂i) ⩽ εNi(βi)

]
⩾ 1− βi.

Thus, we have that

P

[∑
i∈I

piW(Qi, Q̂i) ⩽
∑
i∈I

piεNi(βi)

]
⩾ P

[⋂
i∈I

(
piW(Qi, Q̂i) ⩽ piεNi(βi)

)]
(A.19)

=1− P

[⋃
i∈I

(
piW(Qi, Q̂i) > piεNi(βi)

)]
(A.20)

⩾ 1−
∑
i∈I

P
[
piW(Qi, Q̂i) > piεNi(βi)

]
(A.21)
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⩾ 1−
∑
i∈I

βi (A.22)

A.6 Proof of Theorem 3.5

The claim follows from Theorem 3.4 and Equations (3.17) and (3.18), which imply that
P(Q ∈ Uρ,ε(Q̂)) ⩾ (1− βp)(1−

∑
i∈I βi). Hence,

EQ[f(x̂N , ξ)] ⩽ sup
Q∈Uρ,ε(Q̂)

EQ[f(x̂N , ξ)] = ĴN

with probability at least (1− βp)(1−
∑

i∈I βi).
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Notation. The recession cone of a non-empty set A ⊆ Rd is given by {b ∈ Rd / a+λb ∈
A, ∀a ∈ A, ∀λ ⩾ 0}.

B.1 Complementary definitions and technical results

This section contains some theoretical results which are complementary to the theory
developed in the manuscript. First, we introduce a few preliminary concepts and def-
initions about measure theory and the Wasserstein metric. Second, we present some
definitions and technical results related to probability trimmings. Third, we state the
topological properties of the ambiguity set ÛN (α, ρ̃) in problem (P). Finally, we intro-
duce a tractable reformulation of our DRO approach, which is similar to that in [87,
Theorem 8].

B.1.1 Concepts from measure theory and the Wasserstein metric

This section compiles some definitions and results from the measure theory that under-
pins our research. It starts with concepts related to the weak convergence of measures
and compactness. Subsequently, some known facts in connection with the topology
generated by the Wasserstein metric Wp are presented. We denote the set of all Borel
probability measures supported on X as P(X ). Although some of the following con-
cepts and results are still true in the more general setting of Polish spaces, we restrict
ourselves here to X ⊆ Rd. Similarly, we denote the p-Wasserstein space as Pp(X ), that
is, the set of all Borel probability measures supported on X with a finite p-th moment.
It is well known that the p-Wassertein metric defines a metric in Pp(X ) [132, Theorem
7.3].

Definition B.1 (Weak convergence of probability measures). Given a se-
quence of probability measures {QN}N ⊆ P(X ), we say that it converges weakly to Q

if

lim
N→∞

∫
X
ℓ(ξ)QN (dξ) =

∫
X
ℓ(ξ)Q(dξ) (B.1)

for all bounded and continuous function ℓ on X .

Definition B.2 (Tightness). A given set K ⊆ P(X ) is tight if for all ε > 0, there
is a compact set Xε ⊂ X such that infQ∈K Q(Xε) > 1− ε. If K reduces to a singleton,
then we refer to the “tightness of a probability measure”.

Definition B.3 (Closed sets). A given set K ⊆ P(X ) is closed (under the topology
of weak convergence) if for all sequence {QN}N ⊂ K such that QN converges weakly to
Q, we have Q ∈ K.

The following theorem, which is known as Prokhorov’s Theorem, connects the no-
tions of weak compactness and tightness.
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Theorem B.1 (Prokhorov’s Theorem). A set K ⊆ P(X ) is tight if and only if
the closure of K is weakly compact in P(X ).

Definition B.4 (Weak compactness). A set K ⊆ P(X ) is weakly compact if for
all sequence of probability measures {QN}N ⊂ K, there exists a subsequence {QN ′}N ′

that converges weakly to Q ∈ K.

Definition B.5 (p-uniform integrability). A set K ⊆ P(X ) is said to have p-
uniformly integrable moments if

lim
t→∞

∫
{ξ/∥ξ∥>t}

∥ξ∥pQ(dξ) = 0 uniformly w.r.t. Q ∈ K (B.2)

Finally, we introduce a proposition that connects some of the aforementioned con-
cepts with the Wasserstein metric. More concretely, this proposition establishes the
topological properties of the Wasserstein space.

Proposition B.1. Given p ⩾ 1 and X ⊆ Rd a closed set, we have: Pp(X ) endowed
with Wp is a Polish space. A closed set K ⊆ Pp(X ) is weakly compact if and only if it
has p-uniformly integrable moments (and hence tight). Specifically, given a sequence of
probability measures {QN}N ⊆ Pp(X ), the following statements are equivalent:

1. Wp(QN , Q) → 0.

2. QN converges weakly to Q and {QN}N has p-uniformly integrable moments.

3. QN converges weakly to Q and the following holds∫
X
∥ξ∥pQN (dξ)

N→∞−→
∫
X
∥ξ∥pQ(dξ).

4. For any L > 0 and any continuous function ℓ : X → R such that verifies |ℓ(ξ)| ⩽
L(1 + ∥ξ∥p) for all ξ, the following holds∫

X
ℓ(ξ)QN (dξ)

N→∞−→
∫
X
ℓ(ξ)Q(dξ).

Remark B.1. Proposition B.1 compiles results from Prop. 7.1.5 in [4] and Th. 7.12
in [132]. It implies that the topology generated by Wp and the weak topology do coincide
on any subset K which has p-uniformly integrable moments. We note that assertion 2 in
Proposition B.1 is reduced to weak convergence if X is a compact set (see, for example,
[109, Corollary 2.2.2 ]).

B.1.2 Concepts and technical results from probability trimmings

This section compiles some definitions and technical results which complement the the-
oretical core of this chapter.
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Definition B.6 (Contamination of a distribution). Given two probabilities P,Q
on Rd, we say that P is a (1 − α)-contaminated version of Q, if P = αQ + (1 − α)R,
where R is some probability. A (1− α)-contamination neighbourhood of Q is the set of
all (1− α)-contaminated versions of Q and will be denoted as F1−α(Q).

Proposition B.2 (Section 2.2. from [2] and p.18 in [1]). Let P , Q be proba-
bilities on Rd and α ∈ (0, 1], then

Q ∈ R1−α(P ) ⇐⇒ P = αQ+ (1− α)R ⇐⇒ P ∈ F1−α(Q) (B.3)

for some probability R. Moreover, if D is a probability metric such that R1−α(P ) is
closed for D over an appropriate set of probability distributions, then (B.3) is equivalent
to D(Q,R1−α(P )) = 0.

Remark B.2. As a particular case, if we consider D = Wp over the set of probability
distributions with finite p-th moment, Pp, we have that, if P , Q ∈ Pp, then Q ∈ R1−α(P )

if and only if Wp(Q,R1−α(P )) = 0.

B.1.3 Topological properties of the ambiguity set

The following proposition formally establishes the topological properties of our ambi-
guity set:

Proposition B.3. Given Q ∈ Pp(Rd), α > 0, and ρ̃ ⩾ ϵpNα, the ambiguity set of
problem (P), ÛN (α, ρ̃), is non-empty, tight, weakly compact, and p-uniformly integrable.

Proof. Proof The set ÛN (α, ρ̃) is non-empty, because ρ̃ ⩾ ϵpNα. We can equivalently
rewrite ÛN (α, ρ̃) as{

Q
Ξ̃
∈ P(Ξ̃) : Wp

p (R,Q
Ξ̃
) ⩽ ρ̃ for some R ∈ R1−α(Q̂N )

}
.

If α > 0, then the trimming set R1−α(Q̂N ) is tight and weakly compact, see [33,
Lemmas 2 and 3]. Furthermore, ÛN (α, ρ̃) is a subset of

K :=
{
Q

Ξ̃
∈ P(Rd) : Wp

p (R,Q
Ξ̃
) ⩽ ρ̃ for some R ∈ R1−α(Q̂N )

}
which is tight and weakly compact by [115, Proposition 3]. The tightness of ÛN (α, ρ̃) is
trivially guaranteed, since any subset of a tight set is also tight. Hence, by Prokhorov’s
theorem, to demonstrate that ÛN (α, ρ̃) is also weakly compact, it suffices to show that
it is closed. For this purpose, let {QN

Ξ̃
}N be a sequence of probability measures in

ÛN (α, ρ̃) that converges weakly to Q. We need to show that Q is in ÛN (α, ρ̃) too. In
turn, since ÛN (α, ρ̃) is a subset of K, which is closed, this boils down to proving that
the weak limit satisfies the condition Q ∈ P(Ξ̃), that is, Q(Ξ̃) = 1. Given that the
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sequence {QN
Ξ̃
}N converges weakly to Q and the support set Ξ̃ is closed, Portmanteau’s

theorem (see [26, Theorem 2.1]) tells us that lim supN→∞QN
Ξ̃
(Ξ̃) = 1 ⩽ Q(Ξ̃). This

implies that Q(Ξ̃) = 1.

Finally, the p-uniform integrability of our ambiguity set follows from Proposition
B.1. To apply this proposition, we only need to check whether any distribution of
ÛN (α, ρ̃) has a finite p-th moment. From [3] (see p. 363 for the the case p = 2,
although the proof works similarly for any p ⩾ 1), we know that R1−α(Q̂N ) ⊂ Pp(Rd)

if Q ∈ Pp(Rd). Now, assume that there is a distribution Q
Ξ̃

in ÛN (α, ρ̃) that does not
have a finite p-th moment. If this were the case, we would have Wp(QΞ̃

, R) = ∞ for
some R ∈ R1−α(Q̂N ), which is in contradiction with the fact that Wp(QΞ̃

, R) must be
less or equal to a finite ρ̃1/p.

B.1.4 Tractable reformulation and maximizer of problem (SP2)

Next we provide a more manageable reformulation of problem (SP2), which can be used
directly to address the decision-making problems considered in our numerical experi-
ments. However, we omit its proof, as it runs in parallel with that of [99, Theorem
4.2] and [87, Theorem 8]. See also [143]. Said reformulation relies on the following
assumption.

Assumption B.1. The region Ξ̃ is a closed convex set, and f(x, ξ) := maxk⩽K gk(x, ξ),
with gk, for each k ⩽ K, being a proper, concave and upper semicontinuous function
with respect to ξ (for any fixed value of x ∈ X) and not identically ∞ on Ξ̃.

Theorem B.2. Let p, q ⩾ 1 such that 1
p + 1

q = 1. If Assumption B.1 holds, then
for any value of ρ̃ ⩾ ϵpNα, subproblem (SP2) is equivalent to the following finite convex
problem:

(SP2′′) inf
λ,µi,θ,vik,v

′
ik,wik,w

′
ik

λρ̃+ θ +
1

Nα

N∑
i=1

µi

s.t. µi ⩾[−gk]
∗((vik,wik)− (v′

ik,w
′
ik))

+ S
Ξ̃
((v′

ik,w
′
ik))− ⟨(vik,wik), (ẑi, ŷi)⟩

+ φ(q)λ

∥∥∥∥(vik,wik)

λ

∥∥∥∥q
∗
− θ, ∀i ⩽ N, ∀k ⩽ K

λ ⩾ 0

µi ⩾ 0, ∀i ⩽ N

where [−gk]
∗((vik,wik)−(v′

ik,w
′
ik)) is the conjugate function of −gk evaluated at (vik,wik)−

(v′
ik,w

′
ik) and S

Ξ̃
is the support function of Ξ̃. Moreover, φ(q) = (q−1)q−1/qq if q > 1,
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and φ(1) = 1. If λ = 0, then 0

∥∥∥∥(vik,wik)

0

∥∥∥∥q
∗
:= limλ↓0 λ

∥∥∥∥(vik,wik)

λ

∥∥∥∥q
∗
.

In problem (SP2′′), we have suppressed the dependence of functions gk on x for ease
of notation.

The following theorem serves to construct a maximizer (i.e., a worst-case distribu-
tion) of problem (SP2). Again, we omit its proof, as it is analogous to the proof of [99,
Theorem 4.4] and [87, Theorem 9].

Theorem B.3 (Worst-case distributions). Under the assumptions of Theorem B.2,
the worst-case expectation in (SP2) is equal to the optimal objective value of the following
finite convex optimization problem

sup
γik,qik

N∑
i=1

K∑
k=1

γikgk
(
ξ̂i − qik

γik

)
s.t.

N∑
i=1

K∑
k=1

γik

∥∥∥qik
γik

∥∥∥p ≤ ρ̃

N∑
i=1

K∑
k=1

γik = 1

K∑
k=1

γik ⩽
1

Nα ∀i ≤ N

γik ≥ 0 ∀i ≤ N, ∀k ≤ K

ξ̂i − qik
γik

∈ Ξ̃ ∀i ≤ N, ∀k ≤ K

where 0gk(ξ̂i − qik
0 ) is interpreted as the value which makes the function γikgk(ξ̂i − qik

γik
)

upper semicontinuous at (qik, γik) = (qik, 0). Also, the constraint ξ̂i−qik/0 ∈ Ξ̃ means
that qik is in the recession cone of Ξ̃, and 0 ∥qik/0∥p is understood as limγik↓0 γik ∥qik/γik∥p.

Moreover, if we assume that p > 1 or that Ξ̃ is bounded (with p ⩾ 1), then if
(γ∗ik,q

∗
ik) maximizes the problem above, we have that the discrete probability distribution

Q
Ξ̃

defined as

Q
Ξ̃
=

N∑
i=1

K∑
k=1

γ∗ikδξ∗ik

where ξ∗ik := ξ̂i− q∗
ik

γ∗
ik

∈ Ξ̃, represents a maximizer of the worst-case expectation problem.

B.2 Proofs of Chapter 4

B.2.1 Proof of Lemma 4.1

We will prove the lemma by contradiction. Suppose there are two different probability
distributions Q

Ξ̃
and Q′

Ξ̃
such that

D
(
R1−α(Q), Q

Ξ̃

)
= D(R1−α(Q), Q′

Ξ̃
) = 0
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and Q
Ξ̃
(Ξ̃) = Q′

Ξ̃
(Ξ̃) = 1.

Because D
(
R1−α(Q), Q

Ξ̃

)
= D(R1−α(Q), Q′

Ξ̃
) = 0, we know by Proposition B.2

above that Q
Ξ̃
, Q′

Ξ̃
∈ R1−α(Q). Therefore, again applying Proposition B.2, we have

Q = αQ
Ξ̃
+ (1− α)R

Q = αQ′
Ξ̃
+ (1− α)R′

for some probabilities R and R′ with R(Ξ̃) = R′(Ξ̃) = 0.
Since, by hypothesis, Q

Ξ̃
and Q′

Ξ̃
are different, there must exist an event A ⊂ Ξ̃

such that Q
Ξ̃
(A) ̸= Q′

Ξ̃
(A). We take that event and compute Q(A) as follows:

Q(A) = αQ
Ξ̃
(A) + (1− α)R(A) = αQ′

Ξ̃
(A) + (1− α)R′(A),

which renders a contradiction given that R(A) = R′(A) = 0.

B.2.2 Proof of Proposition 4.1

First of all, we need the following preliminary results:

Corollary B.1 (Corollary 3.12 from [1]). Given two probabilities P,Q ∈ Pp(Rd)

and α ∈ (0, 1), there exists P1−α ∈ F1−α(Q) such that P1−α = αQ + (1 − α)R1−α for
some R1−α ∈ Rα(P ) and Wp(P, P1−α) = minR∈F1−α(Q)Wp(P,R).

Proposition B.4 (Proposition 3.14 from [1]). Take P,Q ∈ Pp(Rd). If α ∈
(0, 1), then

Wp
p (P,F1−α(Q)) = αWp

p (R1−α(P ), Q)

Moreover, if P̂1−α ∈ R1−α(P ) is such that Wp(P̂1−α, Q) = Wp (R1−α(P ), Q), then if
we construct the probability measure P̃1−α = 1

1−α

(
P − αP̂1−α

)
, we have that P1−α :=

αQ+ (1− α)P̃1−α ∈ F1−α(Q) and Wp (P, P1−α) = Wp (P,F1−α(Q)).

We begin by proving the first claim of Proposition 4.1.
We show that every feasible solution of (SP1) can be mapped into a feasible solution

of (SP2) with the same objective function value. To this end, take Q as a feasible
solution of (SP1) and let Q

Ξ̃
be the Q-conditional probability measure given ξ ∈ Ξ̃.

Take Q̂N and Q
Ξ̃

as the two probabilities in Corollary B.1 with α ∈ (0, 1). There
exists Q1−α ∈ F1−α(QΞ̃

) such that Q1−α = αQ
Ξ̃
+ (1− α)Q̃1−α, with Q̃1−α ∈ Rα(Q̂N )

and Wp(Q̂N , Q1−α) = Wp(Q̂N ,F1−α(QΞ̃
)). Furthermore, it automatically follows from

Proposition B.4 that

Wp
p (Q̂N ,F1−α(QΞ̃

)) = αWp
p (R1−α(Q̂N ), Q

Ξ̃
)
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Since Q ∈ F1−α(QΞ̃
), we deduce that Wp

p (Q̂N ,F1−α(QΞ̃
)) ⩽ Wp

p (Q̂N , Q) ⩽ ρ̃ · α.
Hence, it holds that Wp

p (R1−α(Q̂N ), Q
Ξ̃
) ⩽ ρ̃. In other words, Q

Ξ̃
is feasible in (SP2).

Besides, since Q
Ξ̃

is the Q-conditional probability measure given ξ ∈ Ξ̃, we have that

EQ

[
f(x, ξ) | ξ ∈ Ξ̃

]
=

1

α
EQ

[
f(x, ξ)I

Ξ̃
(ξ)
]
= EQ

Ξ̃
[f(x, ξ)] a.s.

Next we prove the second claim of the proposition. To this end, first we show that,
if Q̂N (Ξ̃) = 0, then every feasible solution of (SP2) can also be mapped into a feasible
solution of (SP1) with the same objective function value. To this end, take Q

Ξ̃
feasible in

(SP2) and consider Q̂1−α ∈ R1−α(Q̂N ) such that Wp(Q̂1−α, QΞ̃
) = Wp(R1−α(Q̂N ), Q

Ξ̃
).

Fix Q̃1−α = 1
1−α(Q̂N − αQ̂1−α). By Proposition B.4, we have

Q1−α = αQ
Ξ̃
+ (1− α)Q̃1−α = αQ

Ξ̃
+ Q̂N − αQ̂1−α ∈ F1−α(QΞ̃

)

Hence, Q1−α(Ξ̃) = α, because Q̂N (Ξ̃) gives zero measure to Ξ̃ and so does any of its
(1− α)-trimmings. Besides, we have that

Wp
p (Q̂N , Q1−α) = Wp

p (Q̂N ,F1−α(QΞ̃
)) = αWp

p (R1−α(Q̂N ), Q
Ξ̃
) ⩽ αρ̃.

Therefore, Q1−α is feasible in (SP1) and Q
Ξ̃

is the Q1−α-conditional probability measure
given ξ ∈ Ξ̃.

Finally, if α = 1, then R1−α(Q̂N ) = Q̂N , EQ

[
f(x, ξ) | ξ ∈ Ξ̃

]
= EQ [f(x, ξ)] and

the mapping is direct, namely, Q = Q
Ξ̃
.

B.2.3 Proof of Theorem 4.1

Thanks to Lemma 4.2, the subproblem (SP2) can be written equivalently as follows:

(SP2) sup
Q

Ξ̃
; b∈∆(αN )

EQ
Ξ̃
[f(x, ξ)]

s.t. Q
Ξ̃
(Ξ̃) = 1

Wp

(
N∑
i=1

biδξ̂i , QΞ̃

)
⩽ ρ̃1/p

where ∆(αN ) stands for the set of constraints {0 ⩽ bi ⩽ 1
NαN

, ∀i ⩽ N,
∑N

i=1 bi = 1}.
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which, in turn, can be reformulated as

sup
Q

Ξ̃
; Π; b∈∆(αN )

∫
Ξ̃
f(x, (z,y))Q

Ξ̃
(dz, dy)

s.t. ∫
Ξ̃
Q

Ξ̃
(dz, dy) = 1(∫

Ξ̃×Ξ

∥∥(z,y)− (z,y)′
∥∥pΠ(d(z,y), d(z,y)′))1/p

⩽ ρ̃1/p{
Π is a joint distribution of (z,y) and (z,y)′

with marginals Q
Ξ̃

and
∑N

i=1 biδξ̂i , respectively

(B.4)

=



sup
Qi

Ξ̃
; b∈∆(αN )

N∑
i=1

bi

∫
Ξ̃
f(x, (z,y))Qi

Ξ̃
(dz, dy)

s.t.
∫
Ξ̃
Qi

Ξ̃
(dz, dy) = 1, ∀i ⩽ N

N∑
i=1

bi

∫
Ξ̃
∥(z,y)− (ẑi, ŷi)∥pQi

Ξ̃
(dz, dy) ⩽ ρ̃

(B.5)

where reformulation (B.5) follows from the fact that the marginal distribution of (z,y)′

is the discrete distribution supported on points (ẑi, ŷi), with probability masses bi,
i = 1, . . . , N . Thus, Π is completely determined by the conditional distributions Qi

Ξ̃
of

(z,y) given (z,y)′ = (ẑi, ŷi), i = 1, . . . , N , that is,

Π(d(z,y), d(z,y)′) =
N∑
i=1

biδ(ẑi,ŷi)(d(z,y)
′)Qi

Ξ̃
(d(z,y))

Now we split up the supremum into two:

sup
b∈∆(αN )

sup
Qi

Ξ̃
,∀i⩽N

N∑
i=1

bi

∫
Ξ̃
f(x, (z,y))Qi

Ξ̃
(dz, dy) (B.6a)

s.t
∫
Ξ̃
Qi

Ξ̃
(dz, dy) = 1, ∀i ⩽ N (B.6b)

N∑
i=1

bi

∫
Ξ̃
∥(z,y)− (ẑi, ŷi)∥pQi

Ξ̃
(dz, dy) ⩽ ρ̃ (B.6c)

If we set λ as the dual variable of constraint (B.6c), then using standard duality argu-
ments, we can equivalently rewrite the inner supremun as

sup
b∈∆(αN )

inf
λ⩾0

sup
Qi

Ξ̃
,∀i⩽N

λρ̃+
N∑
i=1

bi

∫
Ξ̃
(f(x, (z,y))− λ ∥(z,y)− (ẑi, ŷi)∥p)Qi

Ξ̃
(dz, dy)

(B.7)
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s.t
∫
Ξ̃
Qi

Ξ̃
(dz, dy) = 1, ∀i ⩽ N (B.8)

= sup
b∈∆(αN )

inf
λ⩾0

λρ̃+
N∑
i=1

bi sup
(z,y)∈Ξ̃

(f(x, (z,y))− λ ∥(z,y)− (ẑi, ŷi)∥p) (B.9)

= inf
λ⩾0

sup
b∈∆(αN )

λρ̃+
N∑
i=1

bi sup
(z,y)∈Ξ̃

(f(x, (z,y))− λ ∥(z,y)− (ẑi, ŷi)∥p) (B.10)

= inf
λ⩾0;µi,∀i⩽N ;θ∈R

λρ̃+ θ +
1

Nα

N∑
i=1

µi (B.11)

s.t. µi + θ ⩾ sup
(z,y)∈Ξ̃

(f(x, (z,y))− λ ∥(z,y)− (ẑi, ŷi)∥p) , ∀i ⩽ N

(B.12)

µi ⩾ 0, ∀i ⩽ N (B.13)

where we have swapped the supremum and the infimum in (B.9) by appealing to Sion’s
min-max theorem [127], given that the objective function in (B.9) is linear in the bi, i =

1, . . . , N , over a compact convex set, and a positively weighted sum of convex functions
in λ.

Remark B.3 (Limiting case α = 0). If α = 0, R1(Q̂N ) = {∑N
i=1 biδξ̂i such

that bi ⩾ 0, ∀i = 1, . . . , N , and
∑N

i=1 bi = 1}. Therefore, dual variables µi, ∀i ⩽ N ,
do not appear in (B.11)–(B.13) in this case. Similarly, if 1

Nα ⩾ 1, the constraints
bi ⩽ 1

Nα , ∀i ⩽ N , become redundant and hence we can set µi = 0, ∀i ⩽ N .

B.2.4 Proof of Proposition 4.2

Because of Lemma 4.3 we have

QN
(
Wp(R1−α(Q̂N ),Q

Ξ̃
)−Wp(R1−α(Q),Q

Ξ̃
) ⩾ ϵ

)
⩽ QN

(
Wp

p

(
Q̂N ,Q

)
⩾ αϵp

)
where the right-hand side of this inequality is upper bounded by (4.13) according to
[59, Theorem 2].

B.2.5 Proof of Theorem 4.2

For problem
(
P(α,ρ̃N )

)
to be feasible, we must have ρ̃N ⩾ ϵpNα. Furthermore,

Wp(R1−α(Q),Q
Ξ̃
) = 0

in (4.12) because of Lemma 4.1. Hence, Proposition 4.2 ensures that

QN
(
Q

Ξ̃
∈ ÛN (α, ρ̃N )

)
⩾ 1− β for any ρ̃N ⩾ ϵpN,p,α(β)
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It follows then

EQ[f(x̂N , ξ) | ξ ∈ Ξ̃] = EQ
Ξ̃
[f(x̂N , ξ)] ⩽ ĴN := sup

Q
Ξ̃

{
EQ

Ξ̃
[f(x̂N , ξ)] : Q

Ξ̃
∈ ÛN (α, ρ̃N )

}
with probability at least 1− β.

B.2.6 Proof of Lemma 4.4

Take N large enough and let Q̂
N/Ξ̃

be the conditional probability distribution of Q̂N

given ξ ∈ Ξ. We have

Wp(Q
N
Ξ̃
,Q

Ξ̃
) ⩽Wp(Q

N
Ξ̃
, Q̂

N/Ξ̃
) +Wp(Q̂N/Ξ̃

,Q
Ξ̃
)

We show that the two terms on the right-hand side of the above inequality vanish with
probability one as N grows to infinity. We start with Wp(Q̂N/Ξ̃

,Q
Ξ̃
).

Let I denote the subset of observations ξ̂i := (ẑi, ŷi) for i = 1, . . . , N , such that ξ̂i ∈
Ξ̃. It follows from the Strong Law of Large Numbers that Q̂N (Ξ̃) = |I|

N = αN → α almost
surely. Besides, since the sequence βN , N ∈ N is summable and limN→∞ ϵN (βN ) → 0,
the Borel-Cantelli Lemma and Proposition 4.2 implies

Wp

(
R1−α(Q̂N ),Q

Ξ̃

)
→ 0 a.s.

Then, from Lemma 4.1, we deduce that Wp(Q̂N/Ξ̃
,Q

Ξ̃
) → 0 with probability one.

We can deal with the term Wp(Q
N
Ξ̃
, Q̂

N/Ξ̃
) in a similar fashion, except for the subtle

difference that, in this case, we require ρ̃N = max(ϵpN,p,α(βN ), ϵpNα), so that, for all
N ∈ N, problem P(α,ρ̃N ) delivers a feasible QN

Ξ̃
in the sequence. Hence, in order to

prove that Wp(Q
N
Ξ̃
, Q̂

N/Ξ̃
) → 0 almost surely, we need to show that limN→∞ ϵNα = 0

with probability one. This is something that can be directly deduced from the definition
of ϵNα, namely,

ϵpNα := Wp
p (R1−α(Q̂N ),Pp(Ξ̃)) = min

Q′∈Pp(Ξ̃)
Wp

p (R1−α(Q̂N ), Q′) (B.14)

⩽Wp
p

(
R1−α(Q̂N ),Q

Ξ̃

)
→ 0 a.s. (B.15)

Remark B.4. Note that, by Equation (4.9) in Definition 4.2, we have that ϵNα > 0

if and only if

⌈Nα⌉ > |I| ⇔ ⌈Nα⌉
N

>
|I|
N

= αN = Q̂N (Ξ̃) ⇔ α > αN
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B.2.7 Proof of Theorem 4.3

We omit the proof, because it is essentially the same as the one in [99, Theorem 3.6],
except that, since we are working with p ⩾ 1, we additionally require that f(x, ξ) be
continuous in ξ so that we can make use of Theorem 7.12 from [132].

B.2.8 Proof of Proposition 4.3

The proof of the proposition is trivial and directly follows from the fact that R1−α(Q̂N ) ⊂
R1−α′(Q̂N ), if α′ ⩽ α, and that R1−α(Q̂N ) = R1−α′(Q̂N ) if, besides, 1

Nα ⩾ 1.

B.2.9 Proof of Theorem 4.4

For problem
(
P(αN ,ρ̃N )

)
to be feasible, we need ρ̃N ⩾ ϵpNαN

.
The proof essentially relies on upper bounding the term Wp(R1−α(Q),Q

Ξ̃
) that

appears in Equation (4.12) of Proposition 4.2. To that end, define α(r) = C̃rdz , for
all 0 < r ⩽ r0. Set α0 := α(r0). Let QB(z∗,r)×Ξy

be the probability measure of (z,y)
conditional on (z,y) ∈ B(z∗, r)× Ξy and let QB(z∗,r) be its y-marginal. Note that, by
Assumption 4.3.1, QB(z∗,r)×Ξy

∈ R1−α(r)(Q) provided that 0 < r ⩽ r0.
Furthermore, according to Theorem 3.5.2 in [57], there exists a positive constant A

such that
Hell(QB(z∗,r),QΞ̃

) ⩽ Ar2

uniformly for 0 < r < r0, where Hell stands for Hellinger distance.
From Equation (5.1) in [120] and Assumption 4.3.2 we know that

Wp(QB(z∗,r),QΞ̃
) ⩽M

p−1
p W1(QB(z∗,r),QΞ̃

)1/p

In turn, from [65] we have that W1(QB(z∗,r),QΞ̃
) ⩽M ·Hell(QB(z∗,r),QΞ̃

). Hence,

Wp
p (QB(z∗,r),QΞ̃

) ⩽MpHell(QB(z∗,r),QΞ̃
)

Wp(QB(z∗,r),QΞ̃
) ⩽MA1/pr2/p, 0 < r ⩽ r0

Thus,
Wp(QB(z∗,r)×Ξy

,Q
Ξ̃
) ⩽ r +MA1/pr2/p, 0 < r ⩽ r0

Since QB(z∗,r)×Ξy
∈ R1−α(r)(Q) for all 0 < r ⩽ r0, it holds

Wp(R1−α(r)(Q),Q
Ξ̃
) ⩽Wp(QB(z∗,r)×Ξy

,Q
Ξ̃
) ⩽ r +MA1/pr2/p

which we can express in terms of α as

Wp(R1−α(Q),Q
Ξ̃
) ⩽

α1/dz

C̃1/dz
+A1/pM

α2/(pdz)

C̃2/(pdz)
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Wp(R1−α(Q),Q
Ξ̃
) = O

(
αmin{1, 2/p}/dz

)
provided that 0 < α ⩽ α0.

B.2.10 Proof of Lemma 4.5

First, we need to provide conditions under which Wp

(
R1−α(Q̂N ),Q

Ξ̃

)
→ 0 a.s. Since

Ξ is compact and Wp−1

(
R1−α(Q̂N ),Q

Ξ̃

)
⩽Wp

(
R1−α(Q̂N ),Q

Ξ̃

)
, we can take p > d/2

and αN such that Nα2
N

log(N) → ∞, so that the probabilities (4.12) becomes summable over
N for any arbitrarily small ϵ. In this way, we can choose a sequence βN ∈ (0, 1), N ∈ N,
such that

∑∞
N=1 βN < ∞ and limN→∞ ϵN,p,αN

(βN ) → 0. With this choice, we have

Q∞
[

lim
N→∞

Wp

(
R1−αN (Q̂N ),Q

Ξ̃

)
−Wp

(
R1−αN (Q),Q

Ξ̃

)
= 0

]
= Q∞

[
lim

N→∞
Wp

(
R1−αN (Q̂N ),Q

Ξ̃

)
= 0

]
= 1

because Wp

(
R1−αN (Q),Q

Ξ̃

)
= O

(
α
2/pdz
N

)
→ 0 for αN → 0.

Since, Q
Ξ̃
∈ R1−αN (Q̂N ) a.s. in the limit and, by definition, Q

Ξ̃
(Ξ̃) = 1, we have

that Q
Ξ̃
∈ ÛN (αN , ρ̃N ) for N sufficiently large, with both αN , ρ̃N → 0.

For its part, because QN
Ξ̃

∈ ÛN (αN , ρ̃N ), this means that Wp

(
R1−αN (Q̂N ), QN

Ξ̃

)
⩽

ρ̃N . Take N large enough, set ρ̃N arbitrarily close to ϵpNαN
and notice that ÛN (αN , ϵpNαN

)

boils down to one single probability measure, the one made up of the NαN data points
of Q̂N that are the closest to Ξ̃. In addition, we have ϵpNαN

→ 0 with probability one.
To see this, take K := ⌈NαN⌉ and note that

ϵpNαN
⩽ dist(ξ̂K:N , Ξ̃) → ∥ẑK:N − z∗∥ → 0

almost surely provided that αN → 0 (see [24, Lemmas 2.2 and 2.3]), where ẑK:N is
the z-component of the K-th nearest neighbor to z∗ after reordering the data sample
{ξ̂i := (ẑi, ŷi)}Ni=1 in terms of ∥ẑi − z∗∥ only.

Therefore, it must hold that Wp(Q
N
Ξ̃
,Q

Ξ̃
) → 0 a.s.

B.3 Asymptotic consistency under a nearest neighbors lens

In this section, we show that the asymptotic consistency of our DRO framework for the
case Q ≪ λd with Q(Ξ̃) = α = 0 can also be proved using a nearest-neighbors approach.

If the density of Q is sufficiently smooth, it is known that Q
Ξ̃

can be inferred from
information on Q within a neighborhood of z = z∗. This essentially means that the
portion of mass from the empirical distribution Q̂N that is the closest to Ξ̃ is statistically
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representative of the conditional distribution Q
Ξ̃
. Inspired by popular data-driven local

predictive methods such as K nearest neighbours and kernel regression, we can solve
problem (P) for a series of pairs (αN , ρ̃N ), both of which tend to zero appropriately as N
increases. Indeed, we will demonstrate that, in doing so, problem

(
P(αN ,ρ̃N )

)
naturally

produces distributionally robustified versions of those popular methods when applied
to solve problem (4.1). Next, we formalize these ideas.

Remark B.5. Throughout this section, we will assume that dist(ξ̂i, Ξ̃) = ∥ẑi − z∗∥.
This assumption is standard in the technical literature. The geometry of the joint support
set Ξ is expected to have a negligible impact on the asymptotic performance of problem(
P(αN ,ρ̃N )

)
(i.e., for large samples), because, under a smoothness condition on Q and

K/N → 0, it holds that dist(ξ̂K:N , Ξ̃) → ∥ẑK:N − z∗∥ → 0 almost surely (see [24,
Lemmas 2.2 and 2.3]), where ẑK:N is the z-component of the K-th nearest neighbor to
z∗ after reordering the data sample {ξ̂i := (ẑi, ŷi)}Ni=1 in terms of ∥ẑi − z∗∥ only.

Here, we show that the solutions of the distributionally robust optimization problem(
P(αN ,ρ̃N )

)
converge to the solution of the targeted conditional stochastic program (4.1)

as N increases, for a careful choice of parameters αN and ρ̃N . This result is underpinned
by the fact that, under that selection of parameters αN and ρ̃N , any distribution in
ÛN (αN , ρ̃N ) converges to the true conditional distribution Q

Ξ̃
.

Assumption B.2 (Lipschitz-regularity). We assume that there exists an inte-
grable function ℓ : Rdy → R+ such that for all y ∈ Rdy

∣∣ϕy/z=z′(y)− ϕy/z=z∗(y)
∣∣ ⩽ ℓ(y)∥z′ − z∗∥, ∀z′ such that ∥z′ − z∗∥ ⩽ r0 (B.16)

where ϕy/z=z′(·) stands for the density function of y conditional on z = z′.

Lemma B.1 (Convergence of transported trimmed distributions). Suppose
that Assumptions 4.3 and B.2 hold. Take (αN , ρ̃N ) such that αN → 0, NαN

log(N) → ∞,
and ρ̃N → 0 a.s., with ρ̃N ⩾ ϵpNαN

, where ϵNαN
is the minimum transportation budget

as in Definition 4.2. Then, we have that

Wp(Q
N
Ξ̃
,Q

Ξ̃
) → 0 a.s.

where QN
Ξ̃

:=
∑N

i=1 b
N
i δ(z∗,ŷi) ∈ ÛN (αN , ρ̃N ) is the distribution that results from trans-

porting the distribution
∑N

i=1 b
N
i δ(ẑi,ŷi) in the trimming set R1−αN (Q̂N ) onto Ξ̃.

Proof. Proof Since y is bounded, we only need to prove that QN
Ξ̃

converges weakly
to Q

Ξ̃
. For this purpose, take a continuous and bounded function h and let m(z∗) =

E[h(y) | z = z∗]. We have
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∣∣∣∣∣
N∑
i=1

bNi h(ŷi)−m(z∗)

∣∣∣∣∣ ⩽
∣∣∣∣∣
N∑
i=1

bNi h(ŷi)−
N∑
i=1

bNi m(ẑi)

∣∣∣∣∣+
∣∣∣∣∣
N∑
i=1

bNi m(ẑi)−m(z∗)

∣∣∣∣∣
We deal with each of the terms in the inequality above one by one. First, we use

[44, Lemma 6] to get

P

(∣∣∣∣∣
N∑
i=1

bNi h(ŷi)−
N∑
i=1

bNi m(ẑi)

∣∣∣∣∣ > ε | ẑ1, . . . , ẑN

)
⩽ 2 exp

( −(NαN )ε2

4 ∥h∥∞ (2 ∥h∥∞ + ε)

)

Given that

P

(∣∣∣∣∣
N∑
i=1

bNi (h(ŷi)−m(ẑi))

∣∣∣∣∣ > ε

)
= E

[
P

(∣∣∣∣∣
N∑
i=1

bNi (h(ŷi)−m(ẑi))

∣∣∣∣∣ > ε | ẑ1, . . . , ẑN

)]

we have

P

(∣∣∣∣∣
N∑
i=1

bNi h(ŷi)−
N∑
i=1

bNi m(ẑi)

∣∣∣∣∣ > ε

)
⩽ 2 exp

( −(NαN )ε2

4 ∥h∥∞ (2 ∥h∥∞ + ε)

)
(B.17)

Now let ℓ be an integrable function satisfying condition (B.16). Hence, for any z′

such that ∥z′ − z∗∥ ⩽ r0

|m(z′)−m(z∗)| ⩽ ∥h∥∞ ∥ℓ∥1 ∥z′ − z∗∥ =: L ∥z′ − z∗∥ (B.18)

In addition,∣∣∣∣∣
N∑
i=1

bNi m(ẑi)−m(z∗)

∣∣∣∣∣ =
∣∣∣∣∣
N∑
i=1

bNi (m(ẑi)−m(z∗))

∣∣∣∣∣ ⩽
N∑
i=1

bNi |m(ẑi)−m(z∗)|

Let J be the number of samples such that their distance from the set Ξ̃ is smaller
than or equal to r0. We can write∣∣∣∣∣

N∑
i=1

bNi m(ẑi)−m(z∗)

∣∣∣∣∣ ⩽
J∑

i=1

bNi:N |m(ẑi:N )−m(z∗)|+
N∑

i=J+1

bNi:N |m(ẑi:N )−m(z∗)|

⩽ L
J∑

i=1

bNi:N ∥ẑi:N − z∗∥+ 2 ∥h∥∞
N∑

i=J+1

bNi:N

⩽ L W1

(
QN

Ξ̃
,

N∑
i=1

bNi δ(ẑi,ŷi)

)
+ 2 ∥h∥∞

N∑
i=J+1

bNi:N
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⩽ L Wp

(
QN

Ξ̃
,

N∑
i=1

bNi δ(ẑi,ŷi)

)
+ 2 ∥h∥∞

N∑
i=J+1

bNi:N

⩽ L (ρ̃N )
1
p + 2 ∥h∥∞

N∑
i=J+1

bNi:N

Next we upper bound the second term in right-hand side of the last inequality.

N∑
i=J+1

bNi:N ⩽ sup
0⩽bNi:N⩽

1
NαN

,∀i

{
N∑

i=J+1

bNi:N ,
N∑
i=1

bNi:N = 1;
N∑
i=1

bNi:N ∥ẑi:N − z∗∥p ⩽ ρ̃N

}

= inf

{
1

NαN

N∑
i=1

µi:N + θ + λρ̃N , µi:N + θ + λ ∥ẑi:N − z∗∥p − γi:N = 0, ∀i = 1, . . . , J ;

µi:N + θ + λ ∥ẑi:N − z∗∥p − γi:N = 1, ∀i = J + 1, . . . , N ; λ ⩾ 0; γi:N , µi:N ⩾ 0, ∀i
}

It suffices to take a feasible solution. In particular, we consider µi:N = 0, ∀i, θ = 0,
and λ = 1/rp0, which renders

N∑
i=J+1

bNi:N ⩽
ρ̃N
rp0

Hence, ∣∣∣∣∣
N∑
i=1

bNi m(ẑi)−m(z∗)

∣∣∣∣∣ ⩽ L (ρ̃N )
1
p +

2 ∥h∥∞
rp0

ρ̃N

Consequently, we essentially need that limN→∞ ρ̃N = 0 with probability one. To show
this, as ρ̃N ⩾ ϵpNαN

, we decompose ρ̃N into ϵpNαN
plus ∆ρ̃N and use (ϵpNαN

+∆ρ̃N )1/p ⩽

ϵNαN
+ (∆ρ̃N )1/p to recast the expression above as∣∣∣∣∣
N∑
i=1

bNi m(ẑi)−m(z∗)

∣∣∣∣∣ ⩽ L ϵNαN
+

2 ∥h∥∞
rp0

ϵpNαN
+ L (∆ρ̃N )

1
p +

2 ∥h∥∞
rp0

∆ρ̃N

Importantly, the budget ∆ρ̃N is under the decision-maker’s control, who simply
needs to guarantee that ∆ρ̃N → 0 so that the last two terms on the right-hand side of the
previous inequality vanishes. Group these two terms into aN (∆ρ̃N ), set K := ⌈NαN⌉
and note that ϵNαN

⩽ ∥ẑK:N − z∗∥.

Thus, for any arbitrary ε > 0,

P

(∣∣∣∣∣
N∑
i=1

bNi m(ẑi)−m(z∗)

∣∣∣∣∣− aN (∆ρ̃N ) > ε

)
⩽ P

(
L ∥ẑK:N − z∗∥ >

ε

2

)
+ P

(
2 ∥h∥∞

rp0
∥ẑK:N − z∗∥p > ε

2

)
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In turn,

P
(
L ∥ẑK:N − z∗∥ >

ε

2

)
= P

(
∥ẑK:N − z∗∥ >

ε

2L

)
P
(
2 ∥h∥∞

rp0
∥ẑK:N − z∗∥p > ε

2

)
= P

(
∥ẑK:N − z∗∥ > r0

(
ε

4 ∥h∥∞

) 1
p

)

Furthermore, due to the first point in Assumption 4.3, it holds that

P (∥ẑK:N − z∗∥ > η) ⩽ exp

(
− C̃

8
Nηdz

)

for any 0 < η ⩽ r0 and provided that K
N ⩽

C̃
2 η

dz (see [95, formula (34)], which is an
application of the lower-tail of Chernoff’s bound).

Therefore, in that case,

P

(∣∣∣∣∣
N∑
i=1

bNi m(ẑi)−m(z∗)

∣∣∣∣∣− aN (∆ρ̃N ) > ε

)
⩽ exp

(
− C̃

8
N
( ε

2L

)dz)

+ exp

(
− C̃

8
Nrdz0

(
ε

4 ∥h∥∞

) dz
p

)

whenever
K

N
⩽ min

{
C̃

2

( ε

2L

)dz
,
C̃ rdz0
2

(
ε

4 ∥h∥∞

) dz
p

}
which we guarantee, for N large enough, by enforcing αN → 0.

This way, for any arbitrarily small ε > 0, we finally have

P

(∣∣∣∣∣
N∑
i=1

bNi h(ŷi)−m(z∗)

∣∣∣∣∣− aN (∆ρ̃N ) > ε

)
⩽ 2 exp

(
−(NαN ) (ε/3)2

4 ∥h∥∞ (2 ∥h∥∞ + ε/3)

)

+ exp

(
− C̃

8
N
( ε

3L

)dz)

+ exp

(
− C̃

8
Nrdz0

(
ε

6 ∥h∥∞

) dz
p

)
(B.19)

The last two terms on the right-hand side of (B.19) are summable over N , while the
first one is summable if NαN

log(N) → ∞. Consequently, the Borel-Cantelli Lemma allows
us to conclude that

P

(
lim

N→∞

∣∣∣∣∣
N∑
i=1

bNi h(ŷi)−m(z∗)

∣∣∣∣∣− aN (∆ρ̃N ) = 0

)
= P

(
lim

N→∞

∣∣∣∣∣
N∑
i=1

bNi h(ŷi)−m(z∗)

∣∣∣∣∣ = 0

)
= 1
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given that aN → 0 when ∆ρ̃N → 0. Thus, QN
Ξ̃

converges weakly to Q
Ξ̃

almost
surely.

The following corollary extends the convergence to any distribution in the proposed
ambiguity set (apart from the transported trimmings of the empirical distribution).

Corollary B.2 (Convergence of conditional distributions). Suppose that the
conditions in Lemma B.1 hold. Then, it follows that

Wp(Q
N
Ξ̃
,Q

Ξ̃
) → 0 a.s.

where QN
Ξ̃

is any distribution from the ambiguity set ÛN (αN , ρ̃N ).

Proof. Proof This corollary is an immediate result of the previous lemma. With some
abuse of notation, let

∑N
i=1 b

N
i δ(ẑi,ŷi) be the distribution in the trimming set R1−αN (Q̂N )

such that Wp

(
R1−αN (Q̂N ), QN

Ξ̃

)
= Wp

(∑N
i=1 b

N
i δ(ẑi,ŷi), Q

N
Ξ̃

)
.

By the triangle inequality, we have

Wp(Q
N
Ξ̃
,Q

Ξ̃
) ⩽Wp

(
QN

Ξ̃
,

N∑
i=1

bNi δ(ẑi,ŷi)

)
+Wp

(
N∑
i=1

bNi δ(ẑi,ŷi),QΞ̃

)
(B.20)

where Wp
p

(
QN

Ξ̃
,
∑N

i=1 b
N
i δ(ẑi,ŷi)

)
⩽ ρ̃N , because QN

Ξ̃
∈ ÛN (αN , ρ̃N ). We again use the

triangle inequality to upper bound the second term on the right-hand side of (B.20).

Wp

(
N∑
i=1

bNi δ(ẑi,ŷi),QΞ̃

)
⩽Wp

(
N∑
i=1

bNi δ(ẑi,ŷi),

N∑
i=1

bNi δ(z∗,ŷi)

)
+Wp

(
N∑
i=1

bNi δ(z∗,ŷi),QΞ̃

)

where
∑N

i=1 b
N
i δ(z∗,ŷi) is the distribution with support on Ξ̃ that is the closest (in p-

Wasserstein distance) to
∑N

i=1 b
N
i δ(ẑi,ŷi). Therefore,

Wp
p

(
N∑
i=1

bNi δ(ẑi,ŷi),
N∑
i=1

bNi δ(z∗,ŷi)

)
⩽Wp

p

(
N∑
i=1

bNi δ(ẑi,ŷi), Q
N
Ξ̃

)
⩽ ρ̃N

That is,
∑N

i=1 b
N
i δ(z∗,ŷi) is in ÛN (αN , ρ̃N ) and is precisely one of the transported trimmed

distributions to which Lemma B.1 refers.
Hence,

Wp(Q
N
Ξ̃
,Q

Ξ̃
) ⩽ 2(ρ̃N )

1
p +Wp

(
N∑
i=1

bNi δ(z∗,ŷi),QΞ̃

)

Since both ρ̃N → 0 and Wp

(∑N
i=1 b

N
i δ(z∗,ŷi),QΞ̃

)
→ 0 a.s. by Lemma B.1, the

claim of the corollary follows.

Finally, the following theorem formally states the asymptoptic consistency guarantee
of our model.
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Theorem B.4 (Asymptotic consistency). Suppose that the assumptions in Corol-
lary B.2 hold. Then, we have

(i) If for any fixed ξ ∈ Ξ̃, f(·, ξ) is continuous on X, and for any fixed value x ∈ X,
f(x, ξ) is continuous in ξ and there is L ⩾ 0 such that |f(x, ξ)| ⩽ L(1+ ∥ξ∥p) for
all x ∈ X and ξ ∈ Ξ̃, then we have that ĴN → J∗ almost surely when N grows to
infinity.

(ii) Let XN , X∗ be the set of optimal solutions of problems
(
P(αN ,ρ̃N )

)
and (4.22),

respectively. If the assumptions in (i) are satisfied, the feasible set X is closed and
XN , X∗ are non-empty, then we have that any accumulation point of the sequence
{x̂N}N is almost surely an optimal solution of problem (4.22).

Proof. Proof Set vN (x) = sup
Q

Ξ̃
∈ÛN (αN ,ρ̃N )

EQ
Ξ̃
[f(x, ξ)] and v(x) = EQ

Ξ̃
[f(x, ξ)]. Let

F be the class of random functions defined as follows

F := {f(ξ) := f(x, ξ) continuous such that x ∈ X

and ∃L ⩾ 0 with |f(x, ξ)| ⩽ L(1 + ∥ξ∥p), ∀x ∈ X,∀ξ ∈ Ξ̃}
(B.21)

and let D be the pseudometric between two probability measures P and Q given by

D(P,Q) := sup
f∈F

|EP [f ]− EQ[f ]|

For two sets of probability measures U1 and U2, define the excess of U1 over U2 as

D(U1,U2) := sup
P∈U1

inf
Q∈U2

D(P,Q)

First, we show that vN (x) < ∞ for all x ∈ X. Fix x ∈ X and define

V := {EQ
Ξ̃
[f(x, ξ)]} and VN := {EQ

Ξ̃
[f(x, ξ)] : Q

Ξ̃
∈ ÛN (αN , ρ̃N )}.

The function f satisfies the following uniform-integrability-type condition for all x,

lim
t→∞

sup
Q

Ξ̃
∈ÛN (αN ,ρ̃N )

∫
{Ξ̃:|f(x,ξ)|⩾t}

|f(x, ξ)|Q
Ξ̃
(dξ) = 0

due to the limitation on the maximum growth of f established in point (i) and the
p-uniform integrability of ÛN (αN , ρ̃N ). Furthermore, the set ÛN (αN , ρ̃N ) is also tight.
Consequently, using [129, Proposition 1], we deduce that the set VN is compact (and
hence bounded). Thus, vN (x) < ∞.

Let aN := infv∈VN
v, bN := supv∈VN

v and c := infv∈V v = supv∈V v. Now, denote
the Hausdorff distance between the respective convex hulls of the sets V and VN as
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H(convV, convVN ). We have

H(convV, convVN ) = H(V, convVN ) = max{|bN − c|, |c− aN |}

where
bN − c = max

Q
Ξ̃
∈ÛN (αN ,ρ̃N )

EQ
Ξ̃
[f(x, ξ)]− EQ

Ξ̃
[f(x, ξ)]

c− aN = EQ
Ξ̃
[f(x, ξ)]− min

Q
Ξ̃
∈ÛN (αN ,ρ̃N )

EQ
Ξ̃
[f(x, ξ)]

On the other hand, by [75, Proposition 2.1 (c)] and the definition of the Hausdorff
distance, the following holds

H(V, convVN ) ⩽ H(V,VN ) = max(D(V,VN ),D(VN ,V)) = D(VN ,V)

where

D(VN ,V) = max
v′∈VN

d(v′,V) = max
v′∈VN

min
v∈V

|v′ − v|

= max
Q

Ξ̃
∈ÛN (αN ,ρ̃N )

∣∣∣EQ
Ξ̃
[f(x, ξ)]− EQ

Ξ̃
[f(x, ξ)]

∣∣∣
⩽ max

Q
Ξ̃
∈ÛN (αN ,ρ̃N )

sup
x∈X

∣∣∣EQ
Ξ̃
[f(x, ξ)]− EQ

Ξ̃
[f(x, ξ)]

∣∣∣
= max

Q
Ξ̃
∈ÛN (αN ,ρ̃N )

D(Q
Ξ̃
,Q

Ξ̃
)

= D(ÛN (αN , ρ̃N ),Q
Ξ̃
)

Note that D(ÛN (αN , ρ̃N ),Q
Ξ̃
)

N→∞−→ 0, because, for any f ∈ F , we have that

EQ
Ξ̃
[f ]

N→∞−→ EQ
Ξ̃
[f ] under Corollary B.2 and Proposition B.1. Thus,

H(V, convVN ) ⩽ H(V,VN ) = D(VN ,V) ⩽ D(ÛN (αN , ρ̃N ),Q
Ξ̃
)

Therefore,

|vN (x)− v(x)| ⩽ H(V, convVN ) ⩽ D(ÛN (αN , ρ̃N ),Q
Ξ̃
)
N→∞−→ 0

Hence, since the inequality above is independent of the value of x, we have
limN→∞ supx∈X |vN (x)− v(x)| = 0 a.s.

Now, we show that the functions vN (x) and v(x) are continuous in x ∈ X: Fix
an arbitrary x ∈ X and consider a sequence (xN )N such that xN → x as N grows to
infinity. We want to prove that vN (xN ) → vN (x) and v(xN ) → v(x). First, there exist
QxN , Qx ∈ ÛN (αN , ρ̃N ) such that vN (xN ) = EQxN

f(xN , ξ) and vN (x) = EQxf(x, ξ).
For any ε > 0, there exists N ′ > 0 sufficiently large such that for N ⩾ N ′ the following
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holds:

|vN (xN )− vN (x)| = |EQxN
f(xN , ξ)− EQxf(x, ξ)|

⩽ |EQxN
f(xN , ξ)− EQxN

f(x, ξ)|+ |EQxN
f(x, ξ)− EQxf(x, ξ)|

⩽ ε/2 + ε/2 = ε

since |EQxN
f(xN , ξ)− EQxN

f(x, ξ)| < ε/2 because f is continuous in x and

|EQxN
f(x, ξ)− EQxf(x, ξ)| ⩽ D(QxN , Qx) ⩽ D(QxN ,QΞ̃

) +D(Q
Ξ̃
, Qx)

N→∞−→ 0,

because D(ÛN (αN , ρ̃N ),Q
Ξ̃
)
N→∞−→ 0. As ε > 0 is arbitrary, this implies that the function

vN (x) is continuous in x ∈ X. Similarly, since f is continuous in x, we have that the
function v(x) is continuous in x ∈ X. Finally, as vN (x) and v(x) are continuous in
x ∈ X and limN→∞ supx∈X |vN (x) − v(x)| = 0 a.s., we deduce from [140, Lemma 3.4]
that ĴN → J∗ a.s. and the proof of (i) is complete.

The proof of (ii) is given by the application of [94, Lemma 3.8].

Remark B.6. The theoretical framework underpinned by Lemma B.1, Corollary B.2
and B.4 leaves the decision maker with considerable freedom to choose the values for αN

and ρ̃N . In the following two corollaries, we show that our framework naturally produces
distributionally robust variants of popular non-parametric regression techniques such as
the K-nearest neighbors and the Nadaraya-Watson kernel regression. This could serve
to guide the selection of αN and ρ̃N .

Corollary B.3 (Distributionally robust K-nearest neighbors). Let KN be the
number of nearest neighbors, chosen such that KN → ∞, KN/N → 0 and KN

logN → ∞
when the sample size N grows to infinity. This defines a standard KNN regression
method.

Take problem
(
P(αN ,ρ̃N )

)
, set αN := KN/N and compute the minimum transporta-

tion budget ϵKN
as in Definition 4.2. Problem

(
P(αN ,ρ̃N )

)
for any sequence of ρ̃N ,

N ∈ N, such that ρ̃N = ϵpKN
+∆ρ̃N with ∆ρ̃N ↓ 0 is a distributionally robust variant of

that KNN method.

Proof. Proof The proof of this claim directly follows from the fact that all the condi-
tions in Lemma B.1 are satisfied if we choose αN = KN/N . Actually, if we set ρ̃N = ϵpKN

,
the ambiguity set consisting of all distributions QN

Ξ̃
such that QN

Ξ̃
∈ ÛN (αN , ρ̃N ) is re-

duced, for each N ∈ N, to the singleton QN
Ξ̃

:=
∑KN

i=1
1

KN
δ(z∗,ŷi:N ), where ŷi:N represents

the y-coordinate of the data point in the sample that is the i-th nearest neighbor. The
decision maker can thus use the extra budget ∆ρ̃N to control the degree of robustness
of the KNN solution.

Corollary B.4 (Distributionally robust Nadaraya-Watson kernel regres-
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sion). Consider a Nadaraya-Watson (NW) kernel regression method with bandwidth
hN such that hN → 0 and NhdzN / log(N) → ∞ when N grows to infinity. Also, assume
that the non-negative Kernel K of the NW method satisfies that there exist positive
numbers c1, c2 and r such that c1I{∥v∥⩽r} ⩽ K(v) ⩽ c2I{∥v∥⩽r}.

Let wi, i = 1, . . . , N be the weights given by the NW method to the data points in a
certain sample of size N and let wmax := maxiwi. Compute

ρ̃NW
N =

N∑
i=1

wi dist
(
(ẑi, ŷi), Ξ̃

)p
.

The choices αN := 1/(Nwmax) and ρ̃N := ρ̃NW
N + ∆ρ̃N with ∆ρ̃N ↓ 0 produce an

asymptotically consistent and distributionally robust Nadaraya-Watson kernel regression
method.

Proof. Proof To prove this corollary, we will use the following lemma, which appears
in [43].

Lemma B.2 (Lemma 4.1 from [43]). If n is a binomial random variable with
parameters N and p̂, then

∞∑
N=1

E [exp (−s n)] < ∞, for all s > 0

whenever Np̂/ logN → ∞.

Define Ai as the event (∥ẑi − z∗∥ ⩽ rhN ). Then, n =
∑N

i=1 IAi is a binomial
random variable with parameters N and p̂ = P(∥ẑi − z∗∥ ⩽ rhN ) that represents the
number of samples that are given a weight different from zero by the NW method. By
Assumption 4.3, it follows that p̂ ⩾ C̃rdzhdzN , when rhN < r0. Furthermore, by the
way the weights are constructed in this method and the choice of αN , we have that
ρ̃NW
N ⩾ ϵpNαN

, provided that n ⩾ 1. In that case, it also holds 1/n ⩽ wmax ⩽ c2/(c1 n)

and thus, (c1 n)/c2 ⩽ NαN ⩽ n. Note that the event (n = 0) can happen only in
a finite number of instances as N increases. Indeed, for N sufficiently large, P(n =

0) = (1− p̂)N ⩽ exp (−Np̂) ⩽ exp
(
−NC̃rdzhdzN

)
, which is summable over N , because

NhdzN / log(N) → ∞. Therefore, in practice, the bandwidth of the NW method could
be occasionally augmented in those specific instances so that n ≥ 1, without affecting
the convergence of the method.

Thus, we have

ρ̃NW
N ⩽

c2
c1 n

N∑
i=1

∥ẑi − z∗∥p IAi ⩽
c2r

phpN
c1

→ 0

because hN tends to 0 as N grows to infinity.
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Now, we need to revisit Equation (B.17), since NαN is random here (contingent on
the training sample). In particular, we have

P

(∣∣∣∣∣
N∑
i=1

bNi h(ŷi)−
N∑
i=1

bNi m(ẑi)

∣∣∣∣∣ > ε | ẑ1, . . . , ẑN

)
⩽ 2 exp

( −(NαN )ε2

4 ∥h∥∞ (2 ∥h∥∞ + ε)

)
⩽ 2 exp

( −(c1 n/c2)ε
2

4 ∥h∥∞ (2 ∥h∥∞ + ε)

)
for any arbitrary ε > 0.

Hence,

P

(∣∣∣∣∣
N∑
i=1

bNi h(ŷi)−
N∑
i=1

bNi m(ẑi)

∣∣∣∣∣ > ε

)
⩽ E

[
2 exp

( −(c1 n/c2)ε
2

4 ∥h∥∞ (2 ∥h∥∞ + ε)

)]

The summability with respect to N of the expectation on the right-hand side of the
inequality above is ensured by Lemma B.2, given that, for N large enough, Np̂/ logN ⩾

C̃rdzNhdzN / log(N) → ∞. The Borel-Cantelli lemma does the rest to conclude the proof.

While not explicitly required in this proof, it is easy to check that αN → 0 almost
surely as well. Note that c1 n

c2 N
⩽ αN ⩽ n

N , with E
[
n
N

]
= p̂ → 0, since hN → 0. Using

[44, Lemma 6], we get, for any ε > 0,

P
(∣∣∣ n

N
− p̂
∣∣∣ > ε

)
= P

(∣∣∣∣∣
N∑
i=1

1

N
(IAi − p̂)

∣∣∣∣∣ > ε

)
⩽ 2 exp

(
− Nε2

2(1 + ε)

)

which is summable with respect to N . Thus, limN→∞ n
N = p̂ = 0 with probability one

(as expected) and consequently, αN → 0 a.s.

Similarly as before, the extra budget ∆ρ̃N can be used by the decision-maker to
robustify the NW solution. Nevertheless, in this case, as ρ̃NW

N ⩾ ϵpNαN
, the ambiguity

set is not necessarily a singleton, meaning that our DRO approach already confers some
degree of robustness on the decision vector x even if we set ρ̃N = ρ̃NW

N .

We conclude this section with a corollary that extends Lemma B.1 to the case of
unbounded uncertainty y under certain conditions. This extension guarantees that the
solution to problem

(
P(αN ,ρ̃N )

)
is asymptotically consistent also for this case.

Corollary B.5 (Extension of Lemma B.1 to unbounded y). Suppose that
Assumptions 4.3.1 and B.2 hold. Consider the true data-generating distribution Q of
the random vector ξ := (z,y) with support Ξ := Ξz × Rdy and define m(z∗) = E[∥y∥a |
z = z∗], for some a ⩾ p.

Assume that there exists a constant m > 0 such that m(z) < m for almost all z ∈ Ξz,
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and that there are non-negative numbers (σ, ν) such that

logE [exp {t(∥y∥a −m(z))} | z = z∗] ⩽ σ2t2/2, |t| ≤ 1/ν,

for almost all z∗ ∈ Ξz. Then, if the sequence (αN , ρ̃N ), N ∈ N, meets the conditions
stated in Lemma B.1, we have that the convergence result stated in that lemma, also ap-
plies in the following two cases: i) a = p and function ℓ : Rdy → R+ in Assumption B.2
is such that

∫
∥y∥pℓ(y)dy < R < ∞; and ii) a > p.

Proof. Proof Since the weak convergence of distributions is guaranteed by way of
Lemma B.1, we just need to prove that

∫
Ξ̃
∥y∥pdQN

Ξ̃
→
∫
Ξ̃
∥y∥pdQ

Ξ̃
(i.e., convergence of

the p-th moment, see Proposition B.1). For this purpose, we will use different strategies
in cases i) and ii).

• Case i): Here we follow a similar strategy to that used to prove Lemma B.1.

We have∣∣∣∣∣
N∑
i=1

bNi ∥ŷi∥p −m(z∗)

∣∣∣∣∣ ⩽
∣∣∣∣∣
N∑
i=1

bNi ∥ŷi∥p −
N∑
i=1

bNi m(ẑi)

∣∣∣∣∣+
∣∣∣∣∣
N∑
i=1

bNi m(ẑi)−m(z∗)

∣∣∣∣∣
To upper bound the first term on the right-hand side of the above inequality,
we exploit the subexponential character of ∥ŷi∥p, i = 1, . . . , N (understood as
random variables). To this end, we employ the following technical result, which
corresponds to Theorem 2.51 in [14].

Theorem B.5 (Theorem 2.51 from [14]). Let Z1, . . . , Zn be a finite se-
quence of independent and centered random variables such that, for all 1 ⩽ k ⩽ n,
the random variable Zk satisfies logE[exp(tZk)] ⩽ l(t) for any t ⩾ 0, with l(t)

being a function from [0,∞) to [0,∞] with a concave derivative such that l(0) =
l′(0) = 0.

Denote SN = b1Z1 + . . . + bNZN for some positive real numbers b1, . . . , bN . For
any positive ε,

P(SN ⩾ ε) ⩽ exp

(
−∥b∥21
∥b∥22

l∗
(

ε

∥b∥1

))
where l∗ stands for the convex conjugate of l.

By assumption, we have

logE [exp{t(∥y∥p −m(z∗))}/z = z∗] ⩽
σ2t2

2
for 0 ⩽ t ⩽ 1/ν and for almost all z∗ ∈ Ξz

We take then l(t) := σ2t2

2 , if 0 ⩽ t ⩽ 1/ν, and l(t) := ∞, if t > 1/ν. Therefore,
l∗(s) = s2

2σ2 , if 0 < s ⩽ σ2/ν and l∗(s) = s
ν − σ2

2ν2
, if s > σ2/ν.
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Thus, for any arbitrary ε > 0,

P

(∣∣∣∣∣
N∑
i=1

bNi ∥ŷi∥p −
N∑
i=1

bNi m(ẑi)

∣∣∣∣∣ ⩾ ε | ẑ1, . . . , ẑN
)
⩽ 2 exp

(
−∥b∥21
∥b∥22

l∗
(

ε

∥b∥1

))

It holds ∥b∥1 = 1, ∥b∥22 ⩽ 1/NαN , and s
ν − σ2

2ν2
> s

2ν , if s > σ2/ν. Hence,

P

(∣∣∣∣∣
N∑
i=1

bNi ∥ŷi∥p −
N∑
i=1

bNi m(ẑi)

∣∣∣∣∣ ⩾ ε

)
⩽ 2 exp

(
−NαNε2

2σ2

)
I(ε⩽σ2/ν)

+ 2 exp

(
−NαNε

2ν

)
I(ε>σ2/ν)

which is summable with respect to N because NαN
log(N) → ∞.

To deal with the term
∣∣∣∑N

i=1 b
N
i m(ẑi)−m(z∗)

∣∣∣, we first note that

∣∣∣∣∣
N∑
i=1

bNi m(ẑi)−m(z∗)

∣∣∣∣∣ ⩽
N∑
i=1

bNi |m(ẑi)−m(z∗)|

where

|m(ẑi)−m(z∗)| =
∣∣∣∣∫ ∥y∥p ϕy/z=ẑi(y)dy −

∫
∥y∥p ϕy/z=z∗(y)dy

∣∣∣∣
⩽
∫

∥y∥p
∣∣(ϕy/z=ẑi − ϕy/z=z∗)(y)

∣∣dy
⩽ ∥ẑi − z∗∥

∫
∥y∥p ℓ(y)dy

⩽ R ∥ẑi − z∗∥

for any ẑi such that ∥ẑi − z∗∥ ⩽ r0.

We finish the proof of case i) here, because, from this point on, the process is the
same as in Lemma B.1, just replacing L and 2 ∥h∥∞ with R and m, respectively.

• Case ii): Based on the corollary to [27, Theorem 25.12], it suffices to show that

sup
N

∫
Rdy

∥y∥adQN
Ξ̃

< ∞

We first compute the integral for a fixed N .

∫
Rdy

∥y∥adQN
Ξ̃

=

N∑
i=1

bNi ∥ŷi∥a =

N∑
i=1

bNi (∥ŷi∥a −m(ẑi)) +

N∑
i=1

bNi m(ẑi)
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≤
∣∣∣∣∣
N∑
i=1

bNi (∥ŷi∥a −m(ẑi))

∣∣∣∣∣+m

By Theorem B.5, we have, for any arbitrary ϵ > 0,

P

(∣∣∣∣∣
N∑
i=1

bNi ∥ŷi∥a −
N∑
i=1

bNi m(ẑi)

∣∣∣∣∣ ⩾ ε

)
⩽ 2 exp

(
−NαNε2

2σ2

)
I(ε⩽σ2/ν)

+ 2 exp

(
−NαNε

2ν

)
I(ε>σ2/ν)

which is summable with respect to N , because NαN
log(N) → ∞. Take ε := ε0 > 0,

there must then exist a sufficiently large N0 such that∣∣∣∣∣
N∑
i=1

bNi (∥ŷi∥a −m(ẑi))

∣∣∣∣∣ < ε0

for N ⩾ N0 with probability one.

Therefore, ∫
Rdy

∥y∥adQN
Ξ̃
⩽ ε0 +m

for large enough N ⩾ N0.

Thus,

sup
N

∫
Rdy

∥y∥adQN
Ξ̃
⩽ max

{
sup

N<N0

∫
Rdy

∥y∥adQN
Ξ̃
, ε0 +m

}
< ∞ a.s.

Remark B.7. The proof of Corollary B.5 is considerably simplified if it holds

|m(z)−m(z∗)| ⩽ R ∥z− z∗∥

for almost all z ∈ Ξz and some R > 0. In this case, for instance, we do not need the
almost-everywhere boundedness condition on random variable m(z).



Appendix C

Additional material to Section 4.4

C.1 Notation used in Section 4.4

The main notation used throughout the Section 4.4 is stated below for quick reference.
Other symbols are defined as required.

C.1.1 Sets, numbers and indices

B Set of buses, indexed by b.

L Set of lines, indexed by ℓ.

G Set of generators (dispatchable units), indexed by j.

W Set of wind power plants, indexed by m.

C.1.2 Parameters and functions

f Array of forecasted power outputs [MW].

f̃ Array of nominal (p.u.) forecasted power outputs.

L Array of loads [MW].

gmin,gmax Array of upper and lower capacity limits of generators [MW].

Cap Array of line capacities [MW].

C Array of installed capacities of the wind power plants [MW].

MG/W/B Matrix of DC power transfer distribution factors, which maps nodal power
injections to line flows for generators/wind farms/loads.

cD, cU Array of downward and upward reserve capacity costs [$/MW].

129
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C(·) Total production cost function, which is given by the sum of |G| convex
piecewise linear cost functions with Sj pieces for generator j, i.e.,

C(g̃(ω)) :=
∑
j∈G

max
s=1,...,Sj

{mjsg̃j(ω) + njs},

where mjs, njs are the slope and the intercept of the s-th piece for generator
j, respectively [$].

C.1.3 Random variables and uncertain parameters

z Random vector of features/covariates.

ω Random vector representing the wind power forecast errors of the |W| wind
power plants [MW].

ξ Random vector representing the pair of features/covariates and the wind
power forecast errors of the |W| wind farms, that is, ξ := (z,ω).

Wm Actual power output at wind power plant m ∈ W in per unit.

Ξω Support set of the random vector ω.

Ξ̃ω Support set of the random vector ω conditional on z = f , which is given by
the hypercube

∏
m∈W [−fm, Cm − fm].

Ξ Support set of the random vector (z,ω).

Ξ̃ Contextual information, that is, the event (z = f ; ω ∈ Ξ̃ω).

Ω Random variable defined as
∑

m∈W ωm, which describes the system-wise ag-
gregate wind power forecast error [MW].

Ξ̃Ω Contextual information linked to the random vector (z,Ω), that is, the event
(z = f ; Ω ∈ [Ω,Ω]), with [Ω,Ω] =

[
−∑m∈W fm,

∑
m∈W(Cm − fm)

]
.

g̃(ω) Array of power generation outputs of generators (random vector) [MW].

r̃(ω) Array of reserves deployed by generators (random vector) [MW].

EQ Expectation operator with respect to the probability measure Q.

δξ Dirac distribution at ξ.
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C.1.4 Variables

g Generators’ power dispatch [MW].

β Array of generators’ participation factors.

rD, rU Array of downward/upward reserve capacities provided by generators [MW].

x Vector of decision variables, that is, x := (g,β, rD, rU ).

y Vector of first-stage decision variables (power dispatch and reserve capacity
provision), that is, y := (g, rD, rU ).

C.1.5 Other symbols

1 Array of ones (of appropriate dimension).

0 Array of zeros (of appropriate dimension).

|A| Cardinal of a set A.

(x)+ Positive part of x, i.e., max{x, 0}.

⌊x⌋ Floor function of x, given by max{m ∈ Z / m ⩽ x}.

⟨·, ·⟩ Dot product.

W1 1-Wasserstein distance.

P1(Ξ),P1(Ξ̃) The set of all probability distributions with finite first moment supported
on Ξ, Ξ̃, respectively.

R1−α(P ) The set of all (1− α)-trimmings of the probability distribution P .

ρ Robustness parameter.

ϵNα Minimum transportation budget.

SB Support function of a set B ⊆ Rd, defined as SB(a) := supb∈B⟨a, b⟩.

Q−CVaRϵ(ϕ(ω)) Conditional Value at Risk at level ϵ ∈ (0, 1) of ϕ(ω) under the
probability measure Q; that is, the value infτ∈R{τ + 1

ϵEQ[(ϕ(ω)− τ)+]}.



132 Appendix C. Additional material to Section 4.4

C.2 Proof of Proposition 4.4

The proof of this proposition is a direct application of [50, Theorem 1], after noticing
that the inner supremum in constraint (4.40) involves a maximum of linear functions.
Variables vik and γik in optimization problem (4.42) are auxiliary variables that result
from the dualization of the inner supremum that appears in the CVaR approximation
of the chance constraint system, that is, in (4.39). This dualization is critical to the
reformulation of (4.39) as a tractable mathematical program, see [50, Theorem 1].

C.3 Proof of Proposition 4.5

Based on [50, Theorem 1], the DRO problem defined by (4.45) can be reformulated as
follows:

inf
λ⩾0;µi,∀i⩽N ;θ∈R

λρ+ θ +
1

Nα

N∑
i=1

µi + ⟨cD, rD⟩+ ⟨cU , rU ⟩ (C.1)

s.t. µi + θ + λ∥z∗ − ẑi∥ ⩾ sup
Ω∈[Ω,Ω]

∑
j∈G

max
s=1,...,Sj

{
mjs [gj − βjΩ] + njs

}

−λ|Ω− Ω̂i|
)
, ∀i ⩽ N (C.2)

µi ⩾ 0, ∀i ⩽ N (C.3)

Now, constraint (C.2) is equivalent to the following ones:

µi + θ + λ∥z∗ − ẑi∥ ⩾ ti, ∀i ⩽ N (C.4)

ti ⩾ sup
Ω∈[Ω,Ω]

∑
j∈G

max
s=1,...,Sj

{
mjs [gj − βjΩ] + njs

}
− λ|Ω− Ω̂i|, ∀i ⩽ N (C.5)

In order to reformulate the supremum on the right-hand side of (C.5), we resort to the
following partition of the set {1, . . . N}:

I := {i ∈ {1, . . . N} : Ω̂i < Ω} (C.6)

I := {i ∈ {1, . . . N} : Ω̂i ∈ [Ω,Ω]} (C.7)

I := {i ∈ {1, . . . N} : Ω̂i > Ω} (C.8)
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In this way, because of the convexity of the sum of a maximum of affine functions,
constraint (C.5) can be replaced by the following set of constraints:

ti ⩾
∑
j∈G

max
s=1,...,Sj

{
mjs [gj − βjΩ] + njs

}
− λ(Ω− Ω̂i), ∀i ∈ I (C.9)

ti ⩾
∑
j∈G

max
s=1,...,Sj

{
mjs

[
gj − βjΩ

]
+ njs

}
− λ(Ω− Ω̂i), ∀i ∈ I (C.10)

ti ⩾
∑
j∈G

max
s=1,...,Sj

{
mjs [gj − βjΩ] + njs

}
+ λ(Ω− Ω̂i), ∀i ∈ I (C.11)

ti ⩾
∑
j∈G

max
s=1,...,Sj

{
mjs

[
gj − βjΩ

]
+ njs

}
+ λ(Ω− Ω̂i), ∀i ∈ I (C.12)

ti ⩾
∑
j∈G

max
s=1,...,Sj

{
mjs

[
gj − βjΩ

]
+ njs

}
− λ(Ω− Ω̂i), ∀i ∈ I (C.13)

ti ⩾
∑
j∈G

max
s=1,...,Sj

{
mjs [gj − βjΩ] + njs

}
+ λ(Ω− Ω̂i), ∀i ∈ I (C.14)

ti ⩾
∑
j∈G

max
s=1,...,Sj

{
mjs

[
gj − βjΩ̂i

]
+ njs

}
, ∀i ∈ I (C.15)

Introducing epigraphical auxiliary variables tij , tij and t̂ij , we finish the proof. .

C.4 Real-time re-dispatch problem

This appendix contains the optimization program used to evaluate the out-of-sample
performance of a given solution of the chance-constrained DC-OPF problem. Given N ,
a data-driven solution yN := (g, rD, rU )N and a realization of the forecast error ω̂i, the
operator of the system solves the following deterministic linear program:

min
r,∆d,∆ω

C(gN + r) + ⟨cshed,∆d⟩+ ⟨cD, rDN ⟩+ ⟨cU , rUN ⟩ (C.16)

s.t. 0 ⩽∆d ⩽ L (C.17)

0 ⩽∆ω ⩽ f + ω̂i (C.18)

− rDN ⩽ r ⩽ rUN (C.19)

⟨1, r⟩+ ⟨1,∆d⟩+ ⟨1, ω̂i −∆ω⟩ = 0 (C.20)

− Cap ⩽MG(gN + r) +MW(f + ω̂i −∆ω)−MB(L−∆d) ⩽ Cap (C.21)

where r, ∆d and ∆ω are the deployed reserves, load shedding and wind spillage vector
of decision variables; and the parameter cshed

b is the load shedding cost at bus b. The
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objective function in (C.16) minimizes the total operational cost of the system, which
comprises the electricity generation cost, the load shedding cost and the total cost of
up- and down-reserve capacities. The latter is known and constant and thus, does not
intervene in the minimization. Constraints (C.17) and (C.18) limit the amount of load
involuntarily curtailed and the amount of wind power unused to the actual realizations
of the load and the wind power production, respectively. Constraint (C.19) ensures that
the deployed reserves are kept within the reserve capacities scheduled in the forward
stage. Constraint (C.20) constitutes the real-time power balance equation and, finally,
constraints (C.21) enforce the transmission capacity limits.

C.5 Illustrative example (3-bus system)

In this appendix, we use a small three-node system to illustrate how our DRO framework
based on probability trimmings, named DROTRIMM, compares to that proposed in
[19], which we refer to as KNNDRO. This other approach is based on a local inference
method (specifically, a K-nearest neighbors), to construct, from the joint data sample,
the conditional empirical distribution at which a Wasserstein ball is centered. We also
compare DROTRIMM with the DROW approach introduced in Section 4.4.5 of the
main text. Actually, DROW becomes equivalent to KNNDRO when taking K = N .

The topology of the three-bus system has been taken from [100]. It includes three
lines connecting buses 1–2, 2–3, and 1–3, three generators located at nodes 1, 2 and 3,
and a 200-MW load connected to bus 3. The production cost of the three generators
is modeled as a piecewise function consisting of three pieces. Further details on the
generators’ and network’s parameters can be found in Appendix C.6.

We consider one wind power plant placed at bus 2 with an installed capacity of
C1 = 60 MW. Its predicted power output is assumed to be z∗ = f1 = 30 MW in this
example. We also assume that the system operator has a series of data pairs given by
past point forecasts of the power output at the wind farm and their associated forecast
error. Figure C.1 shows a heat map of the true bivariate joint distribution of the forecast
power output and its error, together with a kernel estimate of the probability density
function of the random forecast error ω conditional on z∗ = 30 MW. The joint support
set Ξ is polyhedral, and recall that the conditional support varies with the value of z
(see the red line in Figure C.1).

The box plots corresponding to the total downward and upward reserve capacity
that is procured, the violation probability and the expected cost delivered out of sam-
ple by each of the considered CC-DRO OPF models is depicted in Figures C.2 and C.4
as a function of their respective robustness parameter, estimated over 200 independent
runs for a fixed sample size N = 30 and N = 2000, respectively. Similarly, the plots in
Figures C.3 and C.5 pertain to the generators’ dispatch and their participation factors.
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Figure C.1: Heat map of the true joint distribution and kernel estimate of the true
conditional density given z∗ = 30 MW

The robustness parameter of KNNDRO and DROW corresponds to the radius of the
Wasserstein ball these methods use as the ambiguity set. For its part, the robustness
parameter for DROTRIMM is to be greater than or equal to the minimum transporta-
tion budget (see Definition 4.2). Therefore, what the system operator really needs to
tune in DROTRIMM is the budget excess as done in Section 4.2. This is what we
represent in the x-axes of the aforementioned figures for this method.

As in the case study in Section 4.4.5 of the main text, the color-shaded areas have
been obtained by joining the minimum and maximum edge cases of the box plots, while
the associated bold colored lines link their means. The number of neighbors KN we have
considered for KNNDRO is given by the logarithmic rule, that is, if N is the sample size
of the joint data, then the number of neighbors is computed as KN = ⌊N/(log(N+1))⌋.
To ensure a fair comparison, we have also taken αN = KN/N for DROTRIMM. Figures
C.2–C.5 provide information on the ability of each method to discover good dispatch
solutions, that is, scheduling plans for power production and reserve capacity provision
that are cost-efficient in expectation while guaranteeing the desired system reliability.
We consider two settings, namely, the case of a small sample size (N = 30), for which
the available joint data is expected to carry little information on the true conditional
distribution of the wind power forecast error (Figures C.2 and C.3), and another one
where the sample size is notably higher, specifically N = 2000 (Figures C.4 and C.5).

Figure C.2 shows that, for a value of the robustness parameter equal to or greater
than 102, DROTRIMM recovers the robust dispatch, that is, the dispatch that performs
the best under the worst-case value of the forecast error, having predicted 30 MW of
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Figure C.2: Three-bus system, sample size N = 30 and ϵ = 0.1: Total downward and
upward reserves and performance metrics
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Figure C.3: Three-bus system, sample size N = 30 and ϵ = 0.1: Generators’ dispatch
and participation factors
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Figure C.4: Three-bus system, sample size N = 2000 and ϵ = 0.1: Total downward and
upward reserves and performance metrics
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Figure C.5: Three-bus system, sample size N = 2000 and ϵ = 0.1: Generators’ dispatch
and participation factors
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wind power production. On the contrary, KNNDRO and DROW recover the uncon-
ditional robust dispatch needing a substantially higher amount of reserves than the
ones required by DROTRIMM. This is so because the probability distributions in the
Wasserstein balls that DROW and KNNDRO use are not necessarily supported on the
red line shown in Figure C.1. Additionally, note that DROTRIMM achieves a violation
probability that is always lower than or equal to that attained by KNNDRO. Moreover,
if we consider values of the robustness parameter smaller than 10−1 in Figure C.2c,
many of the dispatch solutions delivered by DROTRIMM, DROW, and KNNDRO lead
to a violation probability higher than the threshold ϵ = 0.1, which highlights the value
of distributional robustness in the OPF problem under uncertainty.

When N = 30, DROW exhibits a remarkably robust behavior in the sense that the
OPF solutions that this method delivers exhibit comparatively lower variance in terms
of both expected cost and reliability. However, like DROTRIMM, DROW also needs
a value of its robustness parameter around 10−1 (or greater) to ensure that almost
none of the dispatch solutions it provides violate the reliability threshold ϵ = 0.1. In
fact, it is within a neighborhood of that value for the robustness parameter where
the three methods provide reliable OPF solutions with the best cost performance on
average. Nevertheless, DROTRIMM is able to identify dispatch solutions that are
about 1% cheaper in expectation than those given by DROW and KNNDRO. In this
regard, Figure C.3 reveals that DROTRIMM achieves this percentage point in expected
cost savings through a slightly different generators’ dispatch and participation factors.
Indeed, see how close to one another the colored bold lines in that figure are for a value
of the robustness parameter around 10−1. Nonetheless, it is also noteworthy that from
10−1 onward, the OPF solutions given by DROTRIMM start to diverge from those
provided by DROW and KNDDRO in a noticeable way.

DROTRIMM’s solutions are systematically more cost-efficient on average and vari-
ance (and even more reliable) than those of KNNDRO. The reason for this is that
KNNDRO does not explicitly protect the dispatch against the potential conditional
inference error incurred by the local predictive method it relies on.

When the sample size is high enough, e.g., N = 2000, Figure C.4c shows that all
the methods provide reliable dispatch solutions (i.e., power dispatches that ensure the
threshold ϵ = 0.1) for any value of their respective robustness parameter. Moreover,
the three methods provide the best OPF solutions in terms of expected cost for low
values of this parameter. However, the solutions given by DROW are about 2.3% more
expensive, because this method procures far more upward reserve capacity than needed
(see Figures C.4b). For this, as can be seen in Figure C.5, DROW provides a dispatch
for the generators and values for their participation factors that are starkly different
from those given by the other two methods. On the other hand, the performance of
DROTRIMM and KNNDRO tends to be similar in a large-sample regime. Indeed,
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both are able to disclose dispatches that result in similar system operating costs while
guaranteeing the reliability of the system, although DROTRIMM is still comparatively
better (see Figures C.4c and C.4d in the range of the robustness parameter between
10−5 y 10−3). This result is hardly surprising because, as the sample data grows in size,
the uncertainty intrinsic to the conditional inference diminishes.

Since we have detected in our numerical experiments that DROTRIMM always
provide dispatches with a performance similar or superior to those given by KNNDRO,
we have not discussed the latter in the case study of Section 4.4.5.

C.6 Data for the illustrative example (3-bus system)

This appendix compiles data pertaining to the illustrative example that has been pre-
sented and discussed in C.5.

Generator index Bus index cDj cUj gmin
j gmax

j

1 1 6 3 0 120
2 2 2 5 0 80
3 3 4 8 0 100

Table C.1: Generators’ location, power output limits and reserve capacity costs

Generator index Slopes ms Intercepts ns

piece 1 piece 2 piece 3 piece 1 piece 2 piece 3
1 22 26 30 0 -173 -493
2 29 37 45 0 -231 -658
3 38 55 71 0 -601 -1715

Table C.2: Slopes (ms) and intercepts (ns) of the generators’ piecewise linear cost
functions

index from bus to bus X (reactance p.u.) Cap (MW)
1 1 2 0.13 100
2 1 3 0.13 100
3 2 3 0.13 100

Table C.3: Transmission line parameters
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