UNIVERSITY OF MALAGA

DOCTORAL THESIS

A Requirements-Driven Approach for
Building Architecture Projects of
Self-Adaptive Systems

Author: Supervisor:
Patricia ARAUJO DE OLIVEIRA Dr. Ernesto PIMENTEL
Dr. Francisco DURAN

A thesis submitted in fulfillment of the requirements
for the degree of Doctor from the University of Malaga

in the

ITIS Software
Languages and Computer Science Department

June 15, 2022

UNIVERSIDAD
DE MALAGA

AUTOR: Patricia Araujo de Oliveira

https://orcid.org/0000-0002-2233-9609

EDITA: Publicaciones y Divulgacion Cientifica. Universidad de Malaga

@O0

Esta obra estd bajo una licencia de Creative Commons Reconocimiento-NoComercial-
SinObraDerivada 4.0 Internacional:

http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Cualquier parte de esta obra se puede reproducir sin autorizacion

pero con el reconocimiento y atribucion de los autores.

No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras
derivadas.

Esta Tesis Doctoral estd depositada en el Repositorio Institucional de la Universidad de Malaga
(RIUMA): riuma.uma.es

http://orcid.org/0000-0002-2233-9609
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

>4 UNIVERSIDAD &
DE MALAGA -

ANDALUCIA TECH

Campus de Excelencia Internacional

DECLARACION DE AUTORIA Y ORIGINALIDAD DE LA
TESIS PRESENTADA PARA OBTENER EL TiTULO DE
DOCTOR

D./Dfia PATRICIA ARAUJO DE OLIVEIRA

Estudiante del programa de doctorado TECNOLOGIAS INFORMATICAS de la
Universidad de Malaga, autor/a de la tesis, presentada para la obtencién del
titulo de doctor por la Universidad de Malaga, titulada: A REQUIREMENTS-
DRIVEN APPROACH FOR BUILDING ARCHITECTURE PROJECTS OF SELF-
ADAPTIVE SYSTEMS

Realizada bajo la tutorizacion de ERNESTO PIMENTEL y direccién de Ernesto
Pimentel y Francisco Duran (si tuviera varios directores debera hacer
constar el nombre de todos)

DECLARO QUE:

La tesis presentada es una obra original que no infringe los derechos de
propiedad intelectual ni los derechos de propiedad industrial u otros,
conforme al ordenamiento juridico vigente (Real Decreto Legislativo 1/1996,
de 12 de abril, por el que se aprueba el texto refundido de la Ley de
Propiedad Intelectual, regularizando, aclarando y armonizando Ilas
disposiciones legales vigentes sobre la materia), modificado por la Ley
2/2019, de 1 de marzo.

Igualmente asumo, ante a la Universidad de Malaga y ante cualquier otra
instancia, la responsabilidad que pudiera derivarse en caso de plagio de
contenidos en la tesis presentada, conforme al ordenamiento juridico
vigente.

En Mdlaga, a 19 de febrero de 2022

Fdo.: Fdo.:
Doctorando/a Tutor/a

- e o)
EFQMm aENOR [N O3] e

7

UNIVERSIDAD &
DE MALAGA ==

ANDALUCIA TECH

Campus de Excelencia Internacional

Fdo.:
Director/es de tesis

E EFQM M AENOR [swi (A

Sobre la tesis doctoral con titulo "A REQUIREMENTS DRIVEN APPROACH FOR
BUILDING ARCHITECTURE PROJECTS OF SELF ADAPTIVE SYSTEMS", realizada
por Patricia Araujo de Oliveira, los profesores Ernesto Pimentel Sanchez y Francisco
Javier Duran Mufoz, del Departamento de Lenguajes y Ciencias de la Computacién de
la Universidad de Malaga:

e Confirman la idoneidad de la tesis para su presentacion,

e Afirman que las publicaciones que avalan la tesis no han sido utilizadas en tesis
anteriores, y

e Autorizan su lectura.

Ernesto Pimentel Sanchez Francisco Javier Duran Mufoz
(tutor y co-director de la tesis) (co-director de la tesis)

v

Acknowledgements

This work has been partially supported by Ministry of Science and Innovation and
FEDER projects PGC2018-094905-B-100, UMA18-FEDERJA-180, and UMA-CEIATECH-
08 by Universidad de Mélaga, Campus de Excelencia Internacional Andalucia Tech
and by funding agency CNPq of the Ministry of Science and Technology (MCT),
Brazil.

List of Figures

[3.1 Artefacts of the Palladio Component Model (extracted from |Palladio |

[Simulator Website]) e 16
[3.2 The Palladio-Bench (extracted from |Palladio Simulator Website)| 17
3.3 Creating a Component Repository (extracted from |Palladio Simulator

| Website]) | o e 18
[3.4 Creating a Service Effect Specification (extracted from |Palladio Simula-

| tor Website))| 18

3.5 Creating a System Model (extracted from |Palladio Simulator Website) | . 19
B.6 Creating a Deployment Model (extracted from Palladio Simulator Web- |

| Site]) | .. 19

B.7 Creating a Usage Profile (extracted from |Palladio Stmulator Website)) |. . 20

E.S ComEonents reEositorX 20

9 Components’SEFFs|. 21

B.10 Assemblymodell. 21

B.11 AllocationModell 22

B.12 UsageModel 22

B.13 Response time analysis by Palladio 23

B.14 SimuLizar Predictions (From Becker, Becker, and Meyer, 2013)]. 24
B.15 SimulLizar (a) System Type View,(b) Initial State View, and (c) Transi-

| tion state view. (From Becker, Becker, and Meyer, 2013 24

4.1 e-Motions Abstract Syntax Example: a Reconfigurable P2P Network
| (extracted from le-Motions Examples)) | 27
4.2 e-Motions Graphical Concrete Syntax Example: Peer and Registry
| Classes Picture of the P2P Network (extracted from le-Motions Exam- |
T Ies)] T 27
4.3 e-Motions behavior Rules Example: Five Rules and Two Helpers to
Model the Behavior of the P2P Network System (extracted from Je- |
Motions Examples) | 27
4.4 e-Motions Graph-Transformation Rules Example: The Rule Models
the Creation of a new Peer in a P2P Network, Registers it, and Links |
it with an Existing Peer (extracted from e-Motions Examples) | 28
k4.5 e-Motions Launcher Screenshot to Run a Simulation (extracted from
| le-Motions Examples)) | 28

Vi

4.6 Palladio Abstract Syntax Defined in e-Motions Example: Token Meta-

[model (extracted from le-Motions Examples|)| 29
4.7 Concrete Syntax of the Palladio in e-Motions Example: Start Action

| and Token SEFFicons|. 29
4.8 Concrete Syntax of the Palladio in e-Motions Example: Component

| Repository with Operation Interface and Basic Componenticons . . . 29
4.9 Concrete Syntax of the Palladio in e-Motions Example: System Model

| with Assembly Context and Provided Role Operationicons 30

.10 Concrete Syntax of the Palladio in e-Motions Example: Service Etfect
Specification with External Action, Internal Action, Resource Demand

and Probabilistic Branchicons| 30
.11 Concrete Syntax of the Palladio in e-Motions Example: Deployment
1 with R r ntainericon L. 30

{4.12 Concrete Syntax of the Palladio in e-Motions Example: Usage Profile
with OpenWorkload, ClosedWorkload, and Entry Level System Call

[decoms| 30
4.13 Start SEFF behavior is defined by graph transformation rules 31
4.14 Palladio Rules by Moreno-Delgado et al., 2014 (extracted from e-Motions

[Examples|) 32
4.15 Initial Activity Diagram of the Palladio behavior| 33
4.16 Palladio Usage Model Rules to Support Dynamism| 34
4.17 Palladio Component Specification Rules to Support Dynamism| 35
418 OpenWorkloadSpecrule| 36
419 OpenWorkloadSpecruleOld| 36
4.20 InternalActionSEFF rule 37
4.21 Artefacts and Processes Proposal| 39
4.22 Structure of theexample 39
423 ComponentModel| o 0oL 45
4.24 Allocation, Usage and Assembly Models 46
4.25 Internal Action SEFF rulel oL 47
426 AddNodeRulel 47
4.27 Resource Specification New NodeRule| 47
4.2 ntex Rulel 48
4.29 T.oad Balancer and New Node Connection Rule 48
430 Add New BranchRule| 48
4.31 CPU usage correlation with the number of servers scaled: TW 5, TBA 5| 49
4.32 Throughput and response time: TW5, TBAS5 49
4.33 CPU usage correlation with the number of servers scaled: TW 10, TBA'5 50
4.34 Quality metrics impact: TW 10, TBAS5 50
B.1 Scale up adaptationscheme| L 52
b.2 Scale out adaptationscheme|. 52

.................................. 53

4 Relation n rvers and monitors 55
5.5 CheckConditionsrule o o o o v e 56
5.6 Controllerscheme 56
p.7 A MAPE-K Loop interpretation of the approach 57
b.8 BNFgrammarof SYBL| 58
5.9 ControlMetamodell o 59
5.10 Palladio in e-Motions Activity Diagram/ 63
5.11 Transition to Internal Action Rulel. 64

vii

.12 Transition to External Action Rule 64
1 ified External ActionRulel 64
5.14 Container ChangerRule| 64
5.15 Transition Branch Rulel e 65
6.1 Procedural view of the approach using the BPMN standard| 67
6.2 Artefacts and processes of the approach| 67
0.3 Structure of theexample 68
6.4 Resource Environment without considering communication between
[containers| 71
S R rce Environment with communication n containers/. . . . 71
6.6 ComponentModel| 0L 72
6.7 ComponentsSEFFs| 73
0.8 AssemblyModel 0 0oL 74
9 Allocation Lo 74
6.10 UsageModel o 74
6.11 Screenshot Palladio into e-Motions Code Generationl. 75
[6.12 Resource usage queue, resource usage and response time and without
adaptationactions L Lo Lo 77
[6.13 Resource Environmentafter Annll 78
[6.14 resource usage queue, resource usage and response time with Anno-
tation Annlf 79
[6.15 Resource usage queue, resource usage and response time and with
Annotation Ann2 80
l6.16 Resource Environmentafter Ann2| 81
6.17 Assembly Model after Ann2 81

6.18 Component Model and Branch Action of the Controller SEFF after Ann2 82

6.19 Allocation Model after Ann2l. 82

[6.20 Resource usage queue and response time with Annotation Ann2 with
................................... 83

[6.21 Resource usage queue, resource usage and response time in both Ap-
plicatiomServer and DataBase components with scale up adaptation in |
DataBase component 84
[6.22 Resource Environmentafter Ann3| 85
6.23 Resource Environment after Simulation and Analysis| 86
6.24 Assembly Model after Simulation and Analysis|. 86
6.25 Models after Simulation and Analysis 86
6.26 Allocation Model after Simulation and Analysis| 87

[7.1 ~ A high-level description of the smart traffic light IoT worktlow appli-
cation. Extracted from Nardellietal.,2017/. 89
[72__IoT Scenario Schemel 90
7.3 Initial IoT Palladio Repository|. 92
7.4 Initial IoT Palladio Switch Branch/. 92
[25__Initial IoT Palladio Load Balancer Branch| 93
[7.6 Initial IoT Palladio Assembly Context 93
iti i ironment!. 93
7.8 Initial IoT Palladio Allocation Context/ 94
[7.9 IoT Scenario Scheme With Firewall Edge. 95
[7.10 IoT Palladio Switch Branch with Firewall Edge| 95
[7.11 ToT Palladio Repository with Firewall Edge| 95

viii

[712 IoT Palladio Firewall Branchl. 96
[7.13 1oT Palladio Assembly Context with Firewall Edge|. 96
[7.14 ToT Palladio Allocation Context with Firewall Edge| 96
7.15 ToT Scenario Scheme 2 DBl 97

.16 IoT Palladio Repository2DB 98
7.17 IoT Palladio Load Balancer Branch2DB 98

.18 IoT Palladio Assembly Context2DB 98
719 IoT Palladio Allocation Context2 DB|. 929
7.20 IoT Palladio R rce Environment2 DB L. 99
[7.21 IoT Scenario Scheme Edge and Cloud 99
[7.22 ToT Palladio Repository Edgeand Cloud]. 100
[7.23 ToT Palladio Switch Branch Edgeand Cloud 100
[7.24 ToT Palladio Assembly Context Edgeand Cloud] 100

[7.25 ToT Palladio Resource Environment Edge and Cloud]. 101

iX

List of Tables

2.1 Some resources used in MDE (Rodrigues da Silva, 2015) 10

3.1 Expected Characteristics for Modeling Self-Adaptive Systems 25

Contents
[Resumen (Abstract in Spanish)| xii
(I__Introduction 1
[L.L1 Summary of the Stateof the Art 2
[[.2" Motivation and Objectives| 3
12.1 General Objectives| 4
1.2.2 SpecificObjectives| 4
1.3 ethodology| 4
1.4 ntribution of this Thesis|. 5
1.5 OutlineofthisThesis| 5
2 Background| 7
2.1 Characterization of a Self-Adaptive System| 7
.2 Model-Driven Engineering (MDE)| 9
2.3 Component-Based Software Engineering (CBSE)] 11
24 Graph Transformation| 12

B Palladio Tool for Building Self-Adaptive System Projects| 14
B.1 ThePalladio Approach| 15

B.1.1 Palladio Component Model PCM) 15
3.1.2 ThePalladio-Bench|. 17

3.2 Arunningexample o o oo L oL 17
B.3 Simulizar. 22
B4 Results 24
{4 Flexibility in Modeling Self-Adaptive Systems 26
1 Thee- ionsTooll 26
4.2 Flexibilization as a New Path for Systems Modeling 29
4.3 PCMmodeledine-Motions| 32
4.4 Advances in the Modeling Palladio Behavior 33
4.4.1 Changes to the existing Definition of Palladio Rules in e-Motions 34
442 Creation of new Palladio rules in e-Motions|. 38

4.4.3 Artefacts and Processes Proposal| 38

45 Arunningexample o oo Lo o L 39

xi

4.5.1 Palladio Specification in the e-Motions System| 40
4.5.2 Adaptation Rulesine-Motions| 42
M6 Results 43
[5 Building Adaptation Mechanisms| 51
b.I Modeling of Adaptation Mechanisms| 51
b.2 Modeling of Non-Functional Requirements Control] 54
b3 Specifyinga SYBL Annotation, 57
5.4 SYBL Metamodell o oL 58
5.5 Modeling of Communication Channel| 59
5.6 Results 60
P.6.1 Adaptations Mechanisms Rules| 60
5.6.2 QoS Metrics Measurement Rules| 62
.6.3 Adaptation Control Rules| 62
{6 Modeling Process for Self-Adaptive Systems| 66
61 ProcessPhasesl. 66
6.2 Approach Framework 67
63 Results 68
6.3.1 Specification of the application| 68

6.3.2 Modeling an Application on the Palladio Bench to use in e-
[Motions| 70
[6.3.3 Analysisin DesignTime| 75
[7 Flexible System Modeling: An Example of Modeling of an Application for |
L Smart Cities| 88
[7.1 ~Understanding the Application Domain| 88
[71.1 Domain properties| 88
[7.1.2 Requirement and Adaptations Specifications| 90
..................................... 91
[7.2.1 Modeling of the Application 92
[72.2 Modeling of the Scenario| 92
723 BehaviorRules 93
724 Model Evolution| 94
8 Discussion of the Obtained Results| 102
9__Conclusions and Future Workl 104
9.1 Summary and Conclusions| 104
9.2 Publications| 105
03 FutureWork 106

Bibliograph 107

Xii

Resumen (Abstract in Spanish)

Motivacion

Un sistema adaptativo puede modificar su configuracién en tiempo de ejecucion
como respuesta a los cambios en su entorno operativo. Analizar este tipo de sistemas
en tiempo de disefio es una tarea dificil que requiere considerar el sistema junto con
las operaciones de adaptacion, y tener en cuenta cémo acttan dichas adaptaciones
sobre el sistema.

Para utilizar técnicas basadas en simulacién para el andlisis de tales sistemas, no solo
necesitamos modelos ejecutables precisos de los sistemas a analizar, sino también
capturar la semantica de sus mecanismos de adaptaciéon. Dada la amplia gama y
flexibilidad de las operaciones de adaptacién, necesitamos formas que permitan la
definicién de nuevas operaciones.

Esta tesis tiene como objetivo abordar el problema de la construccién de proyectos de
arquitectura para sistemas autoadaptativos que consideren la estructura general del
sistema, la asignacion, la funcionalidad, la comunicacién, la gestiéon del dinamismo y
las posibles modificaciones. Necesitamos considerar los cambios que pueden ocur-
rir a lo largo de su proceso de ejecucion a partir de los requisitos definidos en el
proyecto. Para reproducir estos cambios en la arquitectura en el momento del dis-
efo a partir del andlisis de los requisitos establecidos, consideramos el uso de la
transformacién de graficos y un conjunto de otras herramientas para ayudar al pro-
ceso.

Palladio para la construcién de proyectos de sistemas autoad-
aptativos

Palladio es una herramienta para la prediccion de las propiedades de calidad de
servicio (Quality of Service - QoS) de las arquitecturas de software basadas en com-
ponentes y puede usarse para modelar escenarios de diferentes dominios.

Hay cuatro aspectos importantes que se deben considerar en Palladio: (1) su pro-
ceso de desarrollo de software basado en componentes; (2) su metamodelo detal-
lado de arquitecturas de software basadas en componentes, el PCM (Palladio Compo-
nente Model); (3) su simulador de arquitectura de software; y (4) y el Palladio-Bench.
Con respecto a su proceso de desarrollo de software basado en componentes, el en-
foque permite contribuciones en el modelado de escenarios de desarrollo de soft-
ware basado en componentes. Este proceso de modelado usa el metamodelo PCM,
lo que permite la creacién de modelos de Palladio que pueden usar su simulador de
arquitectura de software para medir métricas que pueden usarse para enfoques com-
binados como analisis de rendimiento, confiabilidad, facilidad de mantenimiento y
prondstico de costos. La implementacioén de todos los aspectos mencionados ante-
riormente estd respaldada por la herramienta Palladio-Bench, que es extensible y
puede servir como base para nuevos enfoques.

Para este trabajo, se consideraron todos los aspectos de Palladio. El DSL utilizado
por Palladio es proporcionado por su metamodelo, el modelo de componentes de
Palladio (PCM) (Becker, Koziolek, and Reussner, 2007), que se implementa mediante

xiii

el marco de modelado de Eclipse (EMF). La arquitectura del software se captura en
PCM a través de la estructura estética, el comportamiento, la implementacién/asig-
nacién, el entorno de recursos/entorno de ejecucién y el perfil de uso. Asi, los
modelos de Palladio se componen de cuatro artefactos diferentes, proporcionados
por los papeles involucrados en un proceso de desarrollo de Ingenieria de software
basada en componentes (CBSE - Component Based Software Engineering) (Becker, Kozi-
olek, and Reussner,2009a): especificaciones de componentes (por desarrolladores de
componentes), modelo assembly (por arquitectos de software), modelo de asignacién
(por desarrolladores de sistemas), y modelo de uso (por expertos en dominios com-
erciales).

La herramienta Palladio permite el anélisis de modelos de sistemas estaticos, o sea,
no es posible aplicar cambios al modelo. El enfoque Palladio-Simulizar (Becker,
Becker, and Meyer, 2013) ha abierto la posibilidad de realizar andlisis predictivos
considerando cambios en el modelo inicial.

Los sistemas autoadaptativos modelados con SimulLizar pueden obtener predic-
ciones generales del tiempo de respuesta del sistema. En SimulLizar, las reconfigura-
ciones son transformaciones del modelo al modelo PCM, el elemento administrado
es el sistema autoadaptativo simulado modelado. Se monitorea el sistema simulado,
se analizan los resultados del monitoreo, se planifica la reconfiguracion y se realiza
una reconfiguracion en el sistema simulado si es necesario.

La herramienta Palladio es una de las opciones méds robustas para el modelado
de sistemas. Su extension para el andlisis predictivo de sistemas autoadaptativos,
Simulizar, hereda la robustez de Palladio, sin embargo, presenta algunas limita-
ciones que impiden que la herramienta cumpla con las principales caracteristicas
de un sistema autoadaptativo.

Flexibilidad en el modelado de sistemas autoadaptativos

La herramienta e-Motions (Rivera, Durdn, and Vallecillo, 2009) es un framework
grafico desarrollado para Eclipse que admite la especificacién, simulacién y analisis
formal de sistemas. Es una herramienta que proporciona una forma de modelar sis-
temas especificos de dominio utilizando tanto el metamodelo de sintaxis abstracta
como el metamodelo de sintaxis concreta, y le permite agregar reglas al metamodelo
por transformacién de grafos, posibilitando también el uso de OCL (Object Con-
straint Language), lo que proporciona una forma de especificar graficamente los
idiomas especificos del dominio (DSL). La sintaxis abstracta de un DSL se especi-
fica como un metamodelo Ecore, que define todos los conceptos relevantes y sus
relaciones en el lenguaje. Su sintaxis concreta viene dada por un modelo de Sin-
taxis Concreta Grafica (GCS), que adjunta una imagen a cada concepto del lenguaje.
Luego, su comportamiento se especifica con transformaciones de modelo.

La propuesta de integrar la robustez del metamodelo PCM,la flexibilidad visual y
facilidad de e-Motions se inici6 en el trabajo de Moreno-Delgado et al., 2014, que
proponia una reimplementacién parcial basada en un modelo modular de una es-
tructura de la arquitectura Palladio. El trabajo present6 la especificaciéon de los prin-
cipales DSL de Palladio en el sistema e-Motions, describiendo la semdntica basica de
simulacién como un conjunto de reglas de transformacién de gréficos. A partir de
este trabajo, se hizo posible que los modelos creados en Palladio-Bench se puedan
introducir directamente en el entorno de simulacién de e-Motions para su andlisis.

Xiv

La propuesta de la reimplementacién parcial de la arquitectura de Palladio abri6 el
camino para la flexibilizacién del modelado de sistemas. La propuesta es compatible
con las funciones principales de Palladio para definir modelos de uso y modelos
de componentes. Ademads, los modelos creados en Palladio se pueden introducir
directamente en el entorno de simulacién para su analisis.

Basado en la posibilidad de una configuracién flexible para el andlisis de sistemas,
este trabajo pasa a un enfoque dindmico considerando la reimplementacién parcial
de Palladio en e-Motions. La idea central es considerar la posibilidad de afiadir y re-
tirar recursos y componentes de forma dindmica, abriendo un camino para el mode-
lado y andlisis de sistemas autoadaptativos. Para ello, es necesario incorporar recur-
sos adicionales a la definiciéon de Palladio asi como comprender el comportamiento
de un sistema autoadaptativo para facilitar el modelado y analisis, posibilitando
asi la experimentacién de nuevas funcionalidades y soluciones personalizadas para
problemas especificos a un mismo nivel con el bajo costo de desarrollo.

Construccion de Mecanismos de Adaptacion

La definicién de comportamiento dindmico en este trabajo ocurre a través del avance
en el modelado del comportamiento de Palladio; en la modelizacién de mecanismos
de adaptacion; y en el modelado de control de requerimientos no funcionales. To-
dos estos pasos se construyeron utilizando la herramienta e-Motions. En e-Motions
unimos todo en un tnico metamodelo (avanzando en los metamodelos Palladio ex-
istentes) y separamos las reglas de comportamiento en: reglas Palladio (avanzando
en las reglas Palladio existentes), reglas de QoS, reglas de adaptacién y reglas de red.

En presencia de un comportamiento dindmico, tiene que haber alguna forma de es-
pecificar como se gestiona y controla la adaptacién. Este enfoque utilizé SYBL que,
aunque no fue disefiado para ser utilizado para el analisis predictivo, lo consider-
amos muy apropiado para nuestro propésito debido a su capacidad para describir
las limitaciones, el seguimiento y las estrategias de adaptacion. Otro avance signi-
ficativo de este trabajo a respecto a la implementacién de Palladio en e-Motions fue
el modelado de la comunicacién entre contenedores.

Los diferentes mecanismos de adaptacién disponibles se definen como reglas de
transformacion sobre el modelo del sistema bajo anélisis. Por lo tanto, dada la in-
formacién de monitoreo, los sistemas pueden adaptarse de diferentes maneras al
realizar diferentes operaciones.

Proceso de modelado para sistemas autoadaptativos

Propusimos un framework siguiendo diferentes fases de un proceso: Especificacion,
Modelado, Definicién y Andlisis de Comportamiento.

Enla fase de Especificacién, los requisitos no funcionales y las estrategias de adaptacién
se especifican utilizando el lenguaje SYBL (Copil et al., 2013). En la fase de Mode-
lado se modela en la herramienta Palladio el modelo inicial del sistema a analizar, en

el que se obtienen las diferentes vistas de la aplicacion. Este modelo se puede definir
de acuerdo con las especificidades de cada aplicacién a analizar.

En la fase de Definicién de Comportamiento se consideran las reglas definidas por la
transformacion de grafos en e-Motions. Estas reglas se refieren al comportamiento

XV

de los DSL. Hemos definido reglas que representan el comportamiento de Palladio,
reglas de adaptacion y reglas que definen el comportamiento de los mecanismos de
control de adaptacién considerando requisitos no funcionales. Todas estas reglas se
pueden modificar facilmente segiin sea necesario. Ademads, en esta fase se genera el
c6digo Maude que se obtiene mediante un proceso de transformacién de modelos
proporcionado por la herramienta e-Motions. La especificacion de Maude obtenida
puede ser utilizada para realizar la simulacién en la fase de Andlisis. La transforma-
cion de e-Motions toma como entrada: (1) el modelo inicial, definido en Palladio en
la fase de Modelado; (2) el metamodelo extendido del modelo de componentes de
Palladio (PCM); (3) la especificacién e-Motions de la definicién de comportamiento
de Palladio; (4) la definicién conductual de los mecanismos de adaptacién; y (5) la
definiciéon conductual del control para mecanismos de adaptacién y requisitos no
funcionales.

En la fase de Analisis se utiliza el sistema Maude para ejecutar las simulaciones de
los cédigos Maude generados en la fase anterior. Durante y al final de las simula-
ciones, es posible visualizar sus resultados, que contienen los datos relacionados con
el sistema simulado. Estos datos muestran los valores de la variacion de las métricas
de QoS monitoreadas durante la simulacién asi como, en su caso, las modificaciones
al modelo ocurridas luego de las adaptaciones realizadas. Estos datos permiten el
analisis y, posteriormente, los ajustes en el modelo inicial o en los pardmetros, segtn
sea necesario.

Desafios de la investigacion

El disefio de sistemas de software, cada vez mas grandes y complejos, se ha con-
vertido en un desafio debido a la necesidad de tener en cuenta no solo la estructura
general de los propios sistemas, sino también su asignacién, funcionalidad y la co-
municacién de sus componentes. En este sentido, la comunidad de Ingenieria del
Software debe concentrar esfuerzos en la construccion de enfoques que apunten a es-
tablecer las arquitecturas de los sistemas para su implementacion, pero que también
sean adecuadas para el anélisis de sus atributos de calidad, como el rendimiento.

Los estudios relacionados con el desemperio de los sistemas autoadaptativos se en-
cuentran entre los més recurrentes dentro de la comunidad académica en los tltimos
aflos y presentan una serie de desafios para la evaluacién de la calidad de los sis-
temas autoadaptativos en cuanto a arquitectura, complejidad, valores de referencia
y herramientas. Consideramos que los posibles caminos para superar estos proble-
mas se basan en el esfuerzo de construir soluciones en el momento del disefio (de
Sousa et al.,2019).

En relacién a la arquitectura, los desafios de no poder verificar todas las posibili-
dades de adaptacion (Criado et al., 2018|Criado et al., [2016) y la dificultad de eval-
uar diferentes arquitecturas (Chen et al., 2019) podrian tener como alternativa de
solucion en tiempo de disefio un conjunto de evaluaciones de rendimiento de dis-
efo de diferentes adaptaciones y arquitecturas simuladas en tiempo de disefio, que
ayudaria en la toma de decisiones en tiempo de ejecucion, ya que el sistema tendria
posibles caminos de adaptaciéon predefinidos y podria elegir las adaptaciones mds
apropiadas para un determinado situacién. Este camino facilitaria la construccién
de valores de referencia iniciales para ayudar en la interpretacion de los resultados,
lo que se sefiala como otro desafio (Edwards and Bencomo, 2018 Bezerra et al., 2018
Serral, Sernani, and Dalpiaz, 2017).

XVi

Sin embargo, estos posibles caminos de solucién nos llevan a otro desafio: la com-
plejidad de un sistema autoadaptativo debe ser considerada en simulaciones y ex-
iste una dificultad para reproducir estas condiciones en escenarios de aplicacién del
mundo real (Franco et al., 2016)) (Sanislav, Mois, and Miclea, 2015). Por lo tanto, las
lineas de investigacién que buscan avanzar en las dreas de andlisis de desempefio
de los sistemas autoadaptativos en el momento del disefio son fundamentales en un
intento de superar los problemas atin presentes en el drea. Los proyectos en esta
direccién deben considerar la complejidad tipica de estos sistemas y la propuesta de
herramientas para automatizar y ayudar en las tareas de pruebas y evaluaciéon de la
calidad.

De acuerdo con el andlisis presentado en Raibulet et al., 2017/ - en el que se real-
iz6 una revisién de algunos enfoques para la evaluacién de sistemas autoadapta-
tivos presentes en la literatura —, cuando se consideran atributos de calidad (como
rendimiento y confiabilidad) utilizados en de los trabajos consultados en su estudio,
el 95% de ellos se evaltan en tiempo de ejecucién y el 5% en tiempo de disefio. Los
autores también sefialaron que ninguno de estos enfoques asoci¢ estas evaluaciones
a una herramienta, lo que puede dificultar la parte evaluativa.

De hecho, se encuentran pocos estudios y herramientas en la literatura que aborden
la cuestion de evaluar el desempefio de los sistemas autoadaptativos en el momento
del disefio. En cuanto a las herramientas, la herramienta Palladio (Happe, Kozi-
olek, and Reussner, 2011), por ejemplo, es uno de los marcos de anélisis predictivo
mas exitosos en la actualidad y se usa ampliamente tanto en la industria como en
la academia. Aunque el Simulador de Palladio (SimuCom) (Becker, Koziolek, and
Reussner, 2009b) se puede utilizar para predecir las propiedades de calidad de servi-
cio (QoS) (rendimiento y confiabilidad) a partir de modelos de arquitectura de soft-
ware, se limita al andlisis de sistemas estédticos. SimulLizar, propuesto por Becker,
Becker, and Meyer, 2013} pretendia ampliar Palladio para el andlisis de rendimiento
de sistemas autoadaptativos en el momento del disefio. El enfoque es efectivo, el
comportamiento del sistema y las adaptaciones esta encapsulado en la plataforma,
lo que dificulta la insercion o modificacién de diferentes dominios de aplicacion (este
es un aspecto importante considerando la constante evolucién y cambio en la apli-
cacion de sistemas autoadaptativos).

Publicaciones principales

El desarrollo de esta tesis ha dado lugar a las siguientes publicaciones (clasificadas
por categoria y en orden cronolégico inverso):

Articulo en Revista

¢ ARAUJO-DE-OLIVEIRA, PATRICIA; DURAN, FRANCISCO; PIMENTEL, ERNESTO.
A procedural and flexible approach for specification, modeling, definition,
and analysis for self-adaptive systems. Softw Pract Exper. 2021;51:1387-1415.
https://doi.org/10.1002/spe.2962

Capitulo de Libro

e DE OLIVEIRA, PATRICIA ARAUJO; DURAN, FRANCISCO; PIMENTEL, ERNESTO.
Towards the Performance Analysis of Elastic Systems with e-Motions. In: Cerone

xvii

A., Roveri M. (eds) Software Engineering and Formal Methods. SEFM 2017.
Lecture Notes in Computer Science, vol 10729, p. 475-490. Springer, Cham.

e DEOLIVEIRA, PATRICIA ARAUJO; DURAN, FRANCISCO; PIMENTEL, ERNESTO.

An Approach to Predictive Analysis of Self-Adaptive Systems in Design Time.
In: Braubach L. et al. (eds) Service-Oriented Computing — ICSOC 2017 Work-
shops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797, p. 363-368.
Springer, Cham.

Conferencia Internacional

e DE OLIVEIRA, PATRICIA ARAUJO. Predictive Analysis of Cloud Systems
(Extended Abstract). In: International Conference on Software Engineering
(Companion Volume), 2017: 483-484. Buenos Aires, Argentina.

Conferencia Iberoamericana

e DEOLIVEIRA, PATRICIA ARAUJO; MORENO-DELGADO, ANTONIO; DURAN,

FRANCISCO; PIMENTEL, ERNESTO. Towards the predictive analysis of cloud
systems with e-Motions. In: Ibero-American Conference on Software Engi-
neering, 2017: 169-182. Buenos Aires, Argentina.

Conferencia Espafiola

e DE OLIVEIRA, PATRICIA ARAUJO.Towards the model-based predictive per-
formance analysis of Cloud adaptive systems with e-Motions. In: Jornadas
sobre PROgramacién y LEnguajes (PROLE), 2017, Tenerife. Jornadas de la
Asociacion de Ingenieria del Software y Tecnologias de Desarrollo de Software
(SISTEDES), 2017.

Conclusiones y contribuciones

Al considerar la escalabilidad, la elasticidad y la adaptabilidad de los sistemas, el
dinamismo y la autonomia son requisitos desafiantes, y considerarlos en el momento
del disefio sigue siendo una tarea dificil. Los comportamientos emergentes y las
interacciones oportunistas atin no se pueden predecir en el momento del disefio. Sin
embargo, estos esfuerzos deben centrarse principalmente en soluciones relacionadas
con el establecimiento de modelos que comprendan la naturaleza cambiante de estos
sistemas para que los proyectos modelen los servicios y sus adaptaciones de manera
mas eficiente. Estos modelos deben ser probados para que sea posible encontrar
lineamientos capaces de ayudar en la construccién de sistemas para que mitiguen
retrasos y fallas, y que no impacten directamente en la experiencia de los usuarios.
Estas directrices se refieren a un conjunto de decisiones en tiempo de disefio, como la
especificacion de requisitos que consideran restricciones, estrategias de seguimiento
y adaptacion, asi como el modelado de sistemas y su comportamiento, y el anélisis
del sistema en tiempo de disefio para construir modelos con mejores resultados de
calidad de servicio.

Este trabajo propone utilizar Palladio, e-Motions, Maude y SYBL de tal manera que
permite expresividad y flexibilidad en la especificacion, modelado, definicién de
comportamiento y andlisis de rendimiento de modelos autoadaptativos utilizando

xviii

un enfoque procedimental. Tal organizacién procedimental nos ha ayudado a com-
prender la formulacién de cada uno de los pasos, lo que hace que el enfoque sea
flexible y consistentemente reproducible.

Modelamos los mecanismos de adaptaciéon como reglas genéricas de adaptacion.
Hemos ilustrado nuestro enfoque modelando reglas que se activan en respuesta a
infracciones de restricciones. Especificamos los requisitos de elasticidad de los sis-
temas, permitiendo su ajuste. La verificacion de la especificacion y la adecuacién en
diferentes componentes del sistema nos permitié verificar que las estrategias previ-
amente especificadas pueden ser engafiosas y nuestro enfoque propone que el rea-
juste y andlisis se realice en tiempo de disefio. Con el desarrollo de las reglas de
comportamiento del canal de comunicacién, es posible considerar la variacién de
metrica de QoS y las adaptaciones considerando el enlace de comunicacion.

El procedimiento y la experiencia préctica nos han permitido validar nuestra hipéte-
sis. Las especificaciones iniciales, el modelo y las adaptaciones se probaron en tiempo
de simulacién, y los resultados obtenidos mediante su uso durante una simulacién
se sometieron a re-simulacién y reandlisis, lo que nos llevé a un diagnéstico més pre-
ciso del sistema y, eventualmente, a un reajuste hacia mejores resultados. Esto fue
posible gracias a la posibilidad de modificar el modelo durante el tiempo de simu-
lacién, la facilitacion de la escrita de las especificaciones de requisitos utilizando un
lenguaje sencillo como SYBL, y el posterior andlisis del impacto de las adaptaciones
en el sistema.

Introduction

Architectural projects are essential in Software Engineering since it is important to
recognize the common structures existing in different systems, as well as to under-
stand the relations between them and to reuse this knowledge in new systems. A
well-structured project allows us to analyze and describe the properties of a com-
plex system towards a general and complete overview, thus enabling the alternative
decision-making in the face of possible problems.

As the size and complexity of software systems have increased, software architec-
ture has become an essential element in building consistent systems. The necessity
to take into account not only the overall structure of the system itself but also the
allocation, functionality and communication of the software components became a
challenge for building software architecture projects. These definitions must estab-
lish the system structure consistently for implementations and are directly related
to quality attributes, such as reliability and performance (non-functional require-
ments). Providing services efficiently without delays or failures is crucial for any
software system, as it directly impacts the user experience.

In applications for the context of Smart Cities, for example, the proposal of using
heterogeneous architectures brought a way to dynamically manage applications and
consider their performance. The use of cloud computing and edge computing can
compose a heterogeneous architecture that seeks, in a self-adaptive way, to overcome
possible performance problems of this type of application (Nardelli et al., 2017).

Koziolek, 2010 and Balsamo et al., 2004 indicate that the predictive analysis of non-
functional requirements at design-time might mitigate development costs and fail-
ure risks. Indeed, discovering at late stages of the development process that a soft-
ware system does not meet certain non-functional requirements can be very harm-
ful. The late identification of these issues may require changes that can aggravate
the situation, both in terms of costs and risks.

The management of these characteristics in a Self-Adaptive System (SAS) is a chal-
lenge that, in addition to complexity, has dynamism as its main feature. It is nec-
essary to considerate possible modifications of its initial configurations in response
to changes in the context, which can compromise its functioning due to certain sit-
uations such as inconsistent context, poor performance and failures to adapt. This
makes the construction of these systems and the decision-making at design time
difficult tasks, since the initial model can take different forms and configurations
during the execution process.

Chapter 1. Introduction 2

1.1 Summary of the State of the Art

Studies related to the performance of SAS are amongst the most recurring ones
within the academic community in the last years, and they present a series of chal-
lenges for quality evaluation of self-adaptive systems regarding architecture, com-
plexity, reference values and tools. We consider that possible paths for overcoming
these issues rely on the effort to build solutions at design time (de Sousa et al., 2019).

In relation to architecture, the challenges of not being able to verify all the possibili-
ties for adaptation (Criado et al., 2018 Criado et al.,[2016) and the difficulty of evalu-
ating different architectures (Chen et al., 2019) could have as an alternative solution
at design-time a set of design performance evaluations of different adaptations and
architectures simulated at design-time, which would assist in decision-making at
runtime, since the system would have possible predefined adaptation paths and it
could choose the most appropriate adaptations for a given situation. This solution
would facilitate the construction of initial reference values to assist in the interpre-
tation of results, which is pointed out as another challenge (Edwards and Bencomo,
2018 Bezerra et al., 2018 Serral, Sernani, and Dalpiaz, 2017).

However, these possible solution paths lead us to another challenge: the complexity
of a SAS must be considered in simulations and there is a difficulty in reproducing
these conditions in real-world application scenarios (Franco et al., 2016/ Sanislav,
Mois, and Miclea, 2015). Thus, research paths that strive to advance in the areas
of performance analysis of self-adaptive systems at design-time are fundamental in
an attempt to overcome problems still present in the area. Projects in this direction
must consider the typical complexity of these systems and the proposal of tools to
automate and assist in the tasks of tests and quality assessment (also pointed out as
a challenge by Franco et al., 2016/ Bezerra et al., 2016).

According to the analysis presented in Raibulet et al., 2017/ - in which it was per-
formed overview of some approaches for the evaluation of self-adaptive systems
present in the literature —, when considered quality attributes (such as performance
and reliability) used in the consulted works in their study, 95% of them are evalu-
ated at runtime and only 5% at design-time. The authors also pointed out that none
of these approaches associated these evaluations to a tool, which may hamper the
evaluative part.

Indeed, few studies and tools are found in the literature that address the question
of evaluating the performance of self-adaptive systems at design-time. As for tools,
The Palladio tool (Happe, Koziolek, and Reussner, [2011) for instance is one of the
currently most successful predictive analysis frameworks, and is widely used both
in industry and academia. Although the SimuCom (Palladio Simulator) (Becker,
Koziolek, and Reussner, 2009b) can be used to predict Quality of Service (QoS) prop-
erties (performance and reliability) from software architecture models, it is limited
to the analysis of static systems. SimuLizar, proposed by Becker, Becker, and Meyer,
2013, was intended to extend Palladio for the performance analysis of self-adaptive
systems at design-time. Even though the approach is effective, the behavior of the
system and adaptations is encapsulated in the platform, which hinders the insertion
or modification of different application domains (this is an important aspect consid-
ering the constant evolution and change in the application of self-adaptive systems).

Saputri and Lee, 2020/ conducted a study that found that the application of machine
learning (ML) techniques in SAS has increased in recent years and this can be mainly

Chapter 1. Introduction 3

explained by the trend of using machine learning techniques in software engineer-
ing, which typically uses ML to detect software patterns and problems. In addition,
the authors point out the use of ML in studies of efficient methods of algorithms
to optimize systems. The authors pointed out as a result of their literature review
that the implementation of ML in primary studies presents highly reactive results,
that is, works that implement techniques that allow the system to change behavior
according to the current situation. Furthermore, the authors point to ML as capable
of supporting decision-making through the analysis and active learning of the infor-
mation collected. Thus, the authors claim that ML can deal with SAS uncertainties
by dynamically learning new adaptive rules and modifying existing ones. However,
most studies ignore its domain characteristics and available knowledge, and they do
not have a proper justification for choosing an ML technique. It is necessary, for ex-
ample, a performance validation of the adaptation mechanism. The authors point
out that guidelines are needed for the adoption of the ML technique to improve the
adaptation process in a SAS. In that regard,Casimiro et al., 2021 discusses a set of
causes for misbehaving ML components in a SAS and proposes necessary changes
to the MAPE-K loop for ML-based systems.

Casimiro et al., 2021 also points out that, despite the emergence of numerous ML
techniques that could be used as adaptation strategies in SAS Rabanser, Giinne-
mann, and Lipton, 2019, Pinto, Sampaio, and Bizarro, 2019, Huang et al., 2011}, Cao
and Yang, [2015, Miller et al., 2016, Wu, Dobriban, and Davidson, 2020, determining
when and how to take advantage of such strategies to make adaptations is not a
trivial task. The authors point out that ML-based components may not perform as
expected. Some problems still need to be overcome, such as the dataset shift caused
by changes in the operating environment, which can cause problems in the inputs
of the ML models Quionero-Candela et al., 2009, or even problems with attacks that
try to subvert the intended functionality of the system Gu et al., 2019,

1.2 Motivation and Objectives

This thesis aims to address the problem of building architecture projects for self-
adaptive systems that consider the general structure of the system, allocation, func-
tionality, communication, management of dynamism and possible modifications.
For the construction of architecture projects of self-adaptive systems we need to
consider the changes that may occur throughout their execution process from the
requirements defined in the project. In order to reproduce these changes in the archi-
tecture at design-time from the analysis of established requirements, we considered
the use of graph transformation and a set of other tools to assist the process. Thus,
the main research question addressed in this thesis is

RQ How to obtain an architectural design that considers the main characteristics of a self-
adaptive system and that takes into account possible changes from the design-time perfor-
mance analysis driven by the design requirements?

Some objectives have been derived from this research question and are exposed in
the following.

Chapter 1. Introduction 4

1.2.1 General Objectives

In order to answer the research question of this thesis, three main general objectives
were derived with respect to the techniques for discarding information and the er-
rors that may arise.

e Itisintended to facilitate the construction of architecture projects of self-adaptive
systems that consider the general structure of the system, allocation, function-
ality, communication, management of dynamism and possible modifications;
for this, one must consider the modeling of the system and its application sce-
nario, its behavior, its analysis and its modification at design-time;

* To consider the main characteristic of a self-adaptive system, it is intended to
build adaptation mechanisms that are easy to understand, that facilitate their
modification and addition of new mechanisms;

¢ Finally, we intend to build a guide to indicate the best practices for building
self-adaptive architectures at design-time considering requirements.

1.2.2 Specific Objectives

In addition, the following specific objectives were also derived from the research
question of this thesis:

¢ To build self-adaptive architectures, we need to understand the main existing
tools, and choose and/or modify the approach that meets our goals;

* Furthermore, we need to define how to model adaptation mechanisms that
respect intrinsic characteristics of self-adaptive systems and design require-
ments;

* Once the tool or method has been defined and the adaptation mechanisms
have been modeled, we will perform performance analyzes to understand
whether it is possible to contemplate the main characteristics of a self-adaptive
system at design-time, considering functional and non-functional requirements
and the use of different technologies and possible adaptations.

1.3 Methodology

As a starting point, we sought to understand tools for building architecture projects
of self-adaptive systems. A study of the Palladio tool and Simulizar (its version
for self-adaptive systems) was carried out. Then, the implementation proposal of
Palladio was carried out in depth using graph transformation in e-Motions.

For the construction of models that represent adaptive mechanisms, some self-adaptive
strategies were selected and modeled using graph transformation with the objective
of allowing a structure capable of being modifiable, scalable and elastic (characteris-
tics of a self-adaptive system) and that consider non-functional system requirements
for design-time adaptation.

From the study of the tools and the construction of models of adaptive mechanisms,
a proposal was built that incorporated the characteristics of self-adaptive systems
from the integration of Palladio, e-Motions and the SYBL elastic resource control
language. Thus, it was possible to outline the modeling of self-adaptive systems
that consider their main characteristics: general system structure, allocation, func-
tionality, communication, management of dynamism and possible modifications in
response to the analysis of requirements and performance evaluation at design-time.

Chapter 1. Introduction 5

. Finally, an architecture of a self-adaptive system was built considering functional
and non-functional requirements and the use of different technologies and possible
adaptations in order to illustrate how to model a complex self-adaptive system.

1.4 Contribution of this Thesis

In this thesis, we identified that the use of a flexible and procedural approach can in-
corporate changes in the model that are necessary for a self-adaptive system, being
useful to measure and model the unpredictability of these systems, since the compo-
sition and/or integration of different services require a detailed analysis of the adap-
tation choices. This approach differs from the others because it proposes the creation
of models that consider and understand the changing nature of self-adaptive sys-
tems, from the possibility of testing them considering the constant change of quality
parameters, requirements and context after adaptations occur, understanding that
they can affect the system as a whole, even if applied to a specific component. This
set of design-time decisions and modifications, such as specifying requirements that
consider constraints, monitoring and adapting strategies, as well as modeling sys-
tems and their behavior, and system analysis, can be used as a starting point for the
construction of systems with better quality of service results, since the behavior of
the application is understood even when adaptations occur, still in the design phase.

The main contributions of this work include the use of different concepts and defi-
nitions incorporated into existing tools in order to facilitate support for adaptability
control and the reformulation of established mechanisms by verifying the impact of
adaptations on the system model.

The use of different tools brought us the possibility of using existing, consolidated
and tested tools, which, however, do not meet the dynamic nature of self-adaptive
systems. Thus, each one of them was complementary so that we could propose the
approach of building and modifying adaptive models. In particular, the e-Motions
tool was a key piece, since it uses the Maude language to simulate the constructed
graph transformation models, as it is a high-performance language that supports
logical rewriting, provides executable semantics and can handle status and simulta-
neous calculations.

Finally, the use of Model-Driven Engineering (MDE), Component-Based Software
Engineering (CBSE) and Graph Transformation for specifying, modeling, defining
and analyzing self-adaptive systems at design time facilitates their modification and
understanding, in addition to making the approach more flexible.

1.5 Outline of this Thesis

This thesis is structured as follows: chapter[2 presents the background with the char-
acterization of self-adaptive systems, concepts and definitions of Model-Driven En-
gineering (MDE), Component-Based Software Engineering (CBSE) and graph trans-
formation; chapter (3| presents the Palladio Tool for building self-adaptive system
projects; chapter 4 shows flexibility in modeling self-adaptive systems; chapter
illustrates how to conduct the building of the adaptation mechanisms; chapter [6|

Chapter 1. Introduction 6

presents the modeling process for self-adaptive systems, considering the phases ap-
proach: specification, modeling, behavior definition and analysis; chapter [7] illus-
trates how the modeling process based on functional and non-functional require-
ments takes place using these tools applied to a very dynamic scenario which in-
volves Cloud and IoT services; chapter |8|discusses the obtained results; and, finally,
chapter 9] presents the conclusion of the thesis and discusses future works.

Background

Johnsen, Lin, and Yu, 2016/ propose a model-based prediction approach to compare
the effect, in terms of performance and accumulated cost, of selecting different in-
stance types of virtual servers from Amazon Web Services (AWS). In order to do this
comparison they use a highly configurable modeling framework for applications
running on Apache YARN, the ABS-YARN, using the executable semantics of Real-
Time ABS, defined in Maude, as a simulation tool. However, they do not model the
application but instead use values obtained from real measurements.

There are other approaches that propose different solutions for evaluating non-functional
properties using models, such as the one by Bernardi et al.,[2018 who propose the as-
sessment of non-functional properties using multi-formalism approaches, but they
do not address self-adaptive systems. In particular, they are proposing an inte-
grated model to combine performance and reliability models, which allows the con-
struction of models for performance analysis, and automated construction of multi-
formalism models with less effort. Our purpose follows a different path, integrating
models and languages in the e-Motions framework, which allows the performance
analysis of non-functional properties, specifically, on self-adaptive systems, thus in-
troducing an additional degree of advancement in the challenge of assessing non-
functional properties of systems models.

2.1 Characterization of a Self-Adaptive System

A self-adaptive system is one that has the ability to adapt to needs that arise during
its execution process, making changes autonomously and thus giving a dynamic
feature to the application. Such needs may be linked to changes in the execution
environment, the availability of resources or even changes related to the needs of
users.

The search for this autonomy and dynamism is not a trivial task, as it is necessary
to deal with uncertainties in behavior without interruptions in the system. The sys-
tem must collect data, manage itself, reconfigure itself when necessary and act on
changes.

In this work we propose a different look to modeling, allowing it to be done during
design-time for self-adaptive systems, which may help designers understand the

Chapter 2. Background 8

system before its implementation, deployment and execution. This was made possi-
ble through the advances in model-driven engineering research, which allowed the
flexibilization of modeling and the simulation of models at design-time. For this to
be possible, it is necessary to understand the behavior and the main features of a
self-adaptive system.

Weyns, 2020 establishes two basic principles that determine what a self-adaptive
system is, based on two interpretations most commonly found in the literature - this
characterization is fundamental for understanding how to deal with this type of sys-
tem. The first principle concerns the external aspect of a self-adaptive system, which
can adjust its behavior in response to changes and uncertainties autonomously, with-
out (or with the minimum) human intervention. The ability to deal with uncertain-
ties, which are traditionally the operators” tasks, makes this interpretation address
an essential feature of a self-adaptive system: to deal with external changes related
to the availability of resources, the increase or decrease of the workload and the de-
mands, and failures and/or threats - which makes the system also assume the role
of an external observer.

The second principle concerns internal aspects that are divided into two parts: the
first part deals with questions related to the application domain and the other deals
with questions related to adaptation. The second part monitors the first one and acts
if a violation of some pre-established criteria is identified, that is, that does not meet
the objectives of the users for whom the system was designed. This second interpre-
tation plays the role of the system engineer and aims to deal with self-adaptation by
analyzing it from the point of view of how the system was designed.

For more than two decades, researchers have been working to solve existing chal-
lenges when it comes to self-adaptation. Weyns, [2020| called "seven waves” the ef-
forts and research related to self-adaptive systems over time.

The first wave consists of the automation of tasks resulting in advances related to
the management of complex software systems, allowing modifications in the sys-
tems to deal with the variability of resources, changes in user needs and system
failures, without the need to paralyze its operation, giving software systems the
ability to be easily modifiable over their lifetime. The second wave consists of deal-
ing with self-adaptive systems from a systematic engineering perspective and was
called "architecture-based adaptation". The third wave arose with the need to think
about the complexity of a concrete project of these types of systems, dealing mainly
with runtime models as a design solution for self-adaptive systems (as presented in
Vogel and Giese, 2018), as they considered that only at runtime it is possible to know
the system uncertainties, and also to predict and plan the changes.

From the understanding of the need for requirements-driven adaptations, the fourth
wave seeks to understand the definition of requirements for self-adaptive systems,
also considering the feedback loops defined in architecture-based adaptations, in
which models and project goals are defined. The fifth wave focused efforts on re-
search related to solutions that sought guarantees in the face of uncertainties.

From the research carried out in the second and fifth waves, the sixth wave arose due
to the need for a theoretical framework for self-adaptation, using complexity to pro-
vide guarantees for control-based software adaptation. Finally, the seventh wave
joins efforts with the previous ones in search of learning from experience, dealing

Chapter 2. Background 9

with an increasing scale and increasingly complex levels of uncertainty. It is impor-
tant to state that the waves do not replace one another, but are, instead, different
developments of the research process.

All waves provided great advances in the perspective of software engineering for
self-adaptive systems. However, gaps still persist in some of these waves. For exam-
ple, in the third wave, there is a separation between traditional models and models
of self-adaptive systems, and the understanding that a self-adaptive system should
consider design models at runtime, due to the fact that models at design-time are
limited regarding uncertainties, prediction and self-adaptation planning.

This limitation is mainly due to the fact that models at design-time are static and
do not allow an analysis of the models in order to adapt autonomously to deal with
changing conditions. In this work we will discuss how we can advance research
related to design-time models that are capable of not only delivering models with
initial specifications for the development of software systems, but also being able to
deliver models at design-time with a perspective of adaptation actions that can be
performed at runtime.

One of the challenges related to the waves presented is to define domain-specific
modeling languages that incorporate knowledge of the domain and, consequently,
enable the conservation, reuse, and further development of knowledge and know-
how. We will discuss throughout this work how we can generate a domain specifica-
tion for a self-adaptive system from the definition of a specific domain language in a
graphic transformation tool that will allow us to carry out simulations and analysis.

2.2 Model-Driven Engineering (MDE)

With the advance in research in the Model-Driven Engineering (MDE) area, software
models started to have a greater importance in the development of solutions. They
stopped being just documentation artifacts and became software engineering arti-
facts, allowing the creation or automatic execution of software systems from models
and considering concepts and terms that are discussed, abstracted and understood
by the scientific community (Rodrigues da Silva, 2015).

In this way, MDE has become a key part for the development of domain-specific
software, since developing these systems requires not only an understanding of the
programming languages or technologies involved, but also the broad knowledge
and understanding of the solution and the application domain. Thus, MDE became
an outlet in these contexts since the development of applications based on the def-
inition of models moves away from the complexity of the platform and gives space
to be closer to the problem domain than to the implementation domain.

MDE can be understood as a software development methodology which Software
Developers (SDs) use to create abstract software descriptions and facilitate the gener-
ation of the implementation code (Combemale et al., 2016), focusing on the creation
and exploitation of domain models related to a specific problem (Koussaifi et al.,
2020). The Table 2.1| presents some resources used in MDE listed in Rodrigues da
Silva, 2015,

To allow SDs to work more directly with a domain, MDE makes use of modeling lan-
guages defined for a specific domain, called Domain-Specific Modeling Languages

Chapter 2. Background

10

TABLE 2.1: Some resources used in MDE (Rodrigues da Silva, 2015)

Resource

What it is

For what it is

Modeling language (ex. UML)

Defined as metamodels

Formalizing requests,
structures and behaviors of
the app in a specific domain

Formal rules

Rules added to the
metamodel to verify the
model and detect and
prevent errors before
generating the code

Checking if the instances

are in accordance with the

model (using for example

Object Constraint Language - OCL)

Abstract syntax
metamodeling

The abstract syntax

specifies the logical

relations of the language -
defined using metamodeling

Specifying the structure of
the modeled system (for
example: class diagram that
characterizes logical
structures of objects)

Concrete syntax
metamodeling

It defines how the language
is actually written

A substantial benefit of MDE
sets in model transformation
mechanisms that are used

to produce various types of
artifacts, such as source
code, deployment
descriptors, or other models

Possibility to define
Domain-Specific Languages
(DSLs)

A DSL is a dedicated
language (it can be used for
programming, modeling or
specification) for expressing
and solving problems in a
specific domain

By defining the actions that
can be taken by SDs, it
allows them to manipulate
and edit specific models

Model editors

‘ They can be graphic or textual ‘ Managing models

Chapter 2. Background 11

(DSMLs), which formalize the structure, behavior and requirements of the applica-
tion in specific domains, following the abstractions and semantics of the domain.
Thus, SDs can focus directly on the concepts and specificities of each domain con-
sidering three aspects: the concepts and domain rules (abstract syntax), the repre-
sentations of these concepts, whether graphic or textual (concrete syntax), and the
verification of the model, with formal rules of logical rewriting, for example (seman-
tics).

MDE allows for a higher level of abstraction and, combined with Component-Based
Software Engineering (CBSE), it can help to master the complexity and dynamics of
modern software systems (Ciccozzi et al., 2017) and it is used to support develop-
ment, deployment and adaptation at runtime of self-adaptive systems, also support-
ing the design of feedback loops and their execution at runtime (Vogel and Giese,
2018; Koussaifi et al., [2020).

MBDE has already established itself as a methodology to increase the productivity of
complex systems and to reduce the time to launch to the market, since the models
can be read and explored programmatically to simplify the design, implementation,
execution and evolution of software systems (Ciccozzi, Cicchetti, and Wortmann,
2020).

This work we used two MDE frameworks: Palladio and e-Motions. We use Palla-
dio (Happe, Koziolek, and Reussner, 2011) for the system modeling, and e-Motions
(Rivera, Durén, and Vallecillo, 2009) to specify Palladio’s operational semantics and
the adaptation of Palladio systems over time, what allows us to simulate and analyze
Palladio-like adaptive systems.

2.3 Component-Based Software Engineering (CBSE)

Component-Based Software Engineering (CBSE) came from the idea proposed by
Mcllroy et al., 1968 of producing commercial components similar to the ones found
in other branches of engineering. However, most research work on CBSE has emerged
in recent decades (Vale et al., [2016).

The main focus of CBSE is the reuse of components that can be incorporated into
different applications. cite Vale2016 indicated that among the most commonly men-
tioned objectives for the application of CBSE are: increasing productivity, saving
costs, increasing quality, increasing reuse, decreasing complexity, increasing mainte-
nance, increasing flexibility, decreasing risks, increasing efficiency, increasing adapt-
ability and optimizing evolution. Among the objectives, we highlight the issue of
decreasing complexity, increasing flexibility and increasing adaptability. The design
and development of complex systems, such as self-adaptive ones, require the defini-
tion of approaches and the development of methods to add, remove, replace, modify
and assemble components quickly and dynamically during operation, which makes
it necessary to build more flexible systems.

Both CBSE and MDE (section are considered as ways to try to reduce complex-
ity in the development of systems. MDE focuses mainly on the models as a way to
abstract the development process and bring it closer to the specific domain of the
application, and CBSE allows the division of the desired resources and their com-
plexity in smaller parts, allowing the construction of a system in an incremental and
flexible way.

Chapter 2. Background 12

In this work we consider the Palladio tool (Happe, Koziolek, and Reussner, 2011),
which, beyond being an MDE framework, is a tool that assumes a CBSE develop-
ment process, in which component developers specify and implement parametric
descriptions of components and their behavior. These descriptions are organized
in Palladio in different views: component developers provide component specifica-
tions; software architects provide assembly models; system developers provide allo-
cation models; and business domain experts provide usage models. We will present
more details on Palladio and its visions in section

2.4 Graph Transformation

Hundreds of computational problems are expressed in terms of graphs, and are of-
ten used to represent system states, diagrams and networks, such as flowcharts,
entity-relationship diagrams, Petri nets, etc. Graph transformation, also known
as graph rewriting or graph reduction, combines the potential and advantages of
graphs with arithmetic, syntactic and deduction rules, for example, in a single com-
putational paradigm (Andries et al.,1999).

The first graph transformation studies (such as Pfaltz and Rosenfeld, (1969/and Ehrig,
Pfender, and Schneider, 1973) mainly dealt with the generation, manipulation, recog-
nition and evaluation of graphs. Subsequently, different approaches related to the
application domain, pattern recognition, semantics of programming languages, de-
scription of compilers, implementation of functional programming languages, spec-
ification of database systems, specification of abstract data types and also specifica-
tion of distributed systems began to be introduced (Claus, Ehrig, and Rozenberg,
1979; Ehrig, Nagl, and Rozenberg, 1983; Habel, 1992; Plasmeijer, Van Eekelen, and
Plasmeijer, 1993; Rozenberg, 1997).

Graph transformation consists of the iteration of rules in a graph, in which each rule
application transforms one graph into another, replacing a part of it. For this, each
rule (r) contains a left side L and a right side R. The application of a graph G replaces
an occurrence of the left side L in G with the right side R. The transformation rules
may contain application conditions for that this substitution of L for R is done in a
controlled manner (Andries et al., [1999).

There are several graph transformation tools, such as Augur (Kénig and Kozioura,
2005), GraphEd (Himsolt, 1990), PLEXUS (Wanke, |1990), PROGRES (Miinch, 2000),
AGG (Lowe and Beyer, 1993), GMTE (Hannachi et al., 2013) and PLANED (Franck,
1976), the latter being one of the first visual programming languages based on graph
transformation. In this work we will use e-Motions (Rivera, Duran, and Vallecillo,
2009), which uses graph transformation rules to specify the behavior of a system and
represent its possible actions. These rules are of the form

[NAC]* x LHS — RHS

where NAC (negative application conditions), LHS (left-hand side) and RHS (right-
hand side) are model patterns that represent certain (sub-)states of the system. The
LHS and NAC patterns express the conditions for the rule to be applied (the def-
inition of NAC patterns is optional), whereas the RHS represents the effect of the
corresponding action if its conditions are satisfied. Thus, the action described in
RHS can be applied. lLe., a rule can be triggered if a match of the LHS is found in
the model and none of its NAC patterns occurs. An LHS may also have positive

Chapter 2. Background 13

conditions, which are expressed, as any expression in the rules, using the Object
Constraint Language (OCL).

If several matches are found, one of them is non-deterministically chosen and ap-
plied, giving place to a new model where the matching objects are substituted by
the corresponding instantiation of its RHS pattern. The transformation of the model
proceeds by non-deterministically applying the rules on sub-models, until no fur-
ther transformation rule is applicable. e-Motions combines different definitions to
allow the specification, simulation and analysis of systems, which we will see in
more detail in the section 4.5.1]

14

Palladio Tool for Building Self-Adaptive System Projects

Different approaches have been proposed for analysis of self-adaptation systems,
including techniques and tools based on queue networks(Arcelli, 2020), Petri nets
(Mian and Ahmad, 2017) stochastic models (Weyns and Iftikhar, 2016) Markov chain
(Monshizadeh Naeen, Zeinali, and Toroghi Haghighat, 2020) and graph transforma-
tion (Bucchiarone et al., 2015).

In order to mitigate the difference in static model development in contrast to dy-
namism during the operations, Heinrich’s iObserver project (Heinrich, 2016) pro-
poses a metamodel that allows the reuse of development models during the opera-
tion phase. The approach aims to bridge the differences between the component-
based design and its implementation, design and application configuration, and
static and dynamic content. Even though the project recognises the importance
of closer development models with the characteristics of dynamic systems, such
as cloud systems, it does not use a dynamic model approach. Indeed, iObserver
integrates design-time models, code generation, monitoring, analysis and run-time
model update.

Grassi, Mirandola, and Randazzo, 2009 proposed D-Klaper as a tool for model-
driven performance engineering that can be applied to self-adaptive systems. It
uses an intermediate language to provide software design models, which can then
be analysed. However, the D-Klaper language does not support the modeling of
adaptation rules, nor the transformation of input models. The work by Falkner,
Szabo, and Chiprianov, 2016|proposes an approach where the performance predic-
tion is made at the beginning of the life cycle. To do this, workloads are modelled by
estimating the resource consumption, capturing the CPU, memory and disk require-
ments. However, although they use models to represent the system, they are used
to generate executable code for specific hardware and middleware deployments,
and the results of the executions are presented to the expert through specific con-
text views indicating whether the design meets the performance requirements, and
cannot be considered a fully design time approach.

Abuseta and Swesi, 2015 propose an assistance tool for software adaptive-system
developers in order to reduce development time and ensure robust functionality of
the developed system. The framework is a reusable process of elements and system
components to simulate and test the activities that exist in the self-adaptive systems,
and aims at increasing the developers’ confidence on the robustness of their designs
prior to their deployment.

Chapter 3. Palladio Tool for Building Self-Adaptive System Projects 15

Becker, Becker, and Meyer, 2013 propose in SimuLizar a model-oriented approach to
model self-adaptive systems and analyse the performance of its transitory phases. It
is developed as an extension of Palladio for the performance analysis of self-adaptive
systems at design time. The simulation scope is limited to only a set of rules that
are triggered between the static environment models, which prevents it from test-
ing multiple possible reachable states of systems at simulation time. SimuLizar was
extended by Becker, Brataas, and Lehrig, 2017|to support scale up/down adapta-
tions, specifically the change in the number of replicas and the computation capac-
ity of a node. Krachand and Scheerer proposed a later extension SimuLizar NG
(New Generation) (Krach and Scheerer, 2018) with the goal of facilitating domain-
specific extensions, and allowing adaptations to the model interpretation semantics
through the reactive simulation in demanding scalability scenarios. As part of the
Descartes project, which also uses Palladio’s PCM for their design time phases, Hu-
ber et al., 2012/ propose a DSL to describe the behavior of self-adaptive systems based
on strategies, tactics and actions. It focuses on runtime performance analysis, not on
predictive analysis of applications at design time.

Of the existing tools, the one that presented us with the characteristics we need to
build self-adaptive systems was Palladio, which enables modeling, predictive anal-
ysis and, like the Simulate approach, allows analysis of self-adaptive systems. More
details on the tool will be presented in the next sections.

3.1 The Palladio Approach

Consolidated in both academia and industry, Palladio is an approach for the predic-
tion of Quality of Service (QoS) properties of Component-Based Software Architec-
tures and it can be used to model scenarios from different domains.

There are four important aspects that must be considered in Palladio’s approach to
academia: (1) its Component-Based Software Development process; (2) its detailed
Component-Based Software Architectures metamodel, the PCM (Palladio Compo-
nente Model); (3) its software architecture simulator; and (4) its tool holder, the
Palladio-Bench. With regard to its Component-Based Software Development pro-
cess, the approach allows for contributions in modeling component-based software
development scenarios. This modeling process uses the PCM metamodel, enabling
the creation of Palladio models that can use its software architecture simulator to
measure metrics that can be used for combined approaches such as performance
analysis, reliability, ease of maintenance and cost forecasting . The implementation
of all aspects mentioned above is supported by the Palladio-Bench tool, which is
extensible and can serve as a basis for new approaches.

For this work, all aspects of Palladio were considered. We will detail in this section
the PCM metamodel and its importance in the Component Based Software Develop-
ment process, as well as the Palladio-Bench tool and how to create Palladio models
that can use its simulator architecture for forecasting QoS properties.

3.1.1 Palladio Component Model (PCM)

The DSL used by Palladio is provided by its metamodel, the Palladio Component
Model (PCM) (Becker, Koziolek, and Reussner, 2007), which is implemented using
the Eclipse Modeling Framework (EMF). The software architecture is captured in

Chapter 3. Palladio Tool for Building Self-Adaptive System Projects 16

Component Software System Domain
Developers Architect Deployer Exp%err
J»

Eg E
FIGURE 3.1: Artefacts of the Palladio Component Model (extracted
from |Palladio Simulator Website|)

i -~ o
gl P L

PCM through static structure. This means that once the models are defined, the sim-
ulation will take place considering this initial definition, and any changes have to
be made by directly modifying the initially proposed model, without the possibility
of verifying this change in simulation time. These models are related to behavior,
deployment/allocation, resource environment/execution environment, and usage
profile. Thus, the Palladio models are composed of four different artefacts (Fig-
ure 3.1), provided by corresponding developer roles involved in a CBSE develop-
ment process (Becker, Koziolek, and Reussner, 2009a): component specifications (by
component developers), assembly model (by software architects), allocation model
(by system developers), and usage model (by business domain experts).

Component specifications. Component developers specify and implement para-
metric descriptions of components and their behavior. Components’ services are
described with Service EFFect specifications (SEFF), which abstractly model the ex-
ternally visible behavior of a service with resource demands and calls to required
services.

Assembly model. Software architects assemble components from the repository to
build applications.

Allocation model. System deployers model the resource environment and the allo-
cation of components from the assembly model to different resources of the resource
environment.

Usage model. Domain experts specify a system’s usage in terms of workload (i.e.,
the number of concurrent users), user behavior (i.e., the control flow of user sys-
tem calls), and parameters (i.e., abstract characterisations of the parameter instances
users utilise).

In addition to the description of the software in terms of components, the PCM uses
connectors, interfaces, models of individual service behaviors (which are referred to
as Service Effect Specifications - SEFF), containers, network, etc.

The PCM metamodel also allows the capture of elements that affect the non-functional
properties (for example, performance and reliability) of a software system. How-
ever, these non-functional properties to be analyzed and the semantics of the PCM
models are encapsulated in the respective transformations.

Chapter 3. Palladio Tool for Building Self-Adaptive System Projects 17

Stochastic Analysis

Regular Expr.
Comp.Dev. Palladio E
DSL Instance %Omponent an,;u* — .
- o wik naly s-.s 4
MO?E' “_w”.cu\‘-“‘ﬂ' Scheduling Tmulaten A
Soft. Arch. Pa : 1
DSL Instonce| -2y {f -
. I)‘} NS formation = S
P ‘tﬁ'_. ""‘---_._______’ ueueing miuilation
= &, Network A

Sys. Depl.

D51 Instance &/ Instance
&

Dom. Exp.

DSL Instance

Performance = _Execution +
Prototype | Pessurement ii

ko

Java Code Completion +
ompilation

Skeletons

FIGURE 3.2: The Palladio-Bench (extracted from |Palladio Simulator
Website)

In the specification of the Palladio models, the parameters specified are fixed and
cannot be changed along executions.

The PCM was developed with a high degree of parameterization, which makes its
instances become widely reusable, that is, if, for example, the usage profile of the
system changes, it is possible to adapt only the model of the usage profile and the
other specifications can be reused. Thus, in a simulation, Palladio considers the
impact of the new usage profile for analysis. However, the Palladio tool does not
consider that these changes can happen at the time of the simulation due to changes
in the context. This paved the way for our approach to propose that, from the use of
the PCM, these parameters be changed in simulation time.

3.1.2 The Palladio-Bench

Palladio-Bench is an integrated, open source modeling environment, based on the
Eclipse Rich Client platform. It was developed for developers to create instances
of the PCM model with graphic editors and conduct analyzes using analytical tech-
niques and simulations, making it possible, for example, to analyze the performance
and reliability metrics of the PCM models (Figure[3.2).

Using Palladio-Bench it is possible to model PCM instances, simulate models, view
simulation results and obtain software design optimizations. For this approach,
Palladio-Bench PCM instance modeling is the most important feature and it is the
one that will be used in this work. Figures and are screen-
shots of examples of creation of Component Repository (for component specifica-
tions by component developers), Service Effect Specification (for modeling individ-
ual service behaviors), System Model (for assembly model modeling by software
architects), Deployment Model (for allocation model modeling by system devel-
opers) and Usage Profile (for usage model modeling by business domain experts)
made in the Palladio-Bench and extracted from the screenshots available on the page
https://www.palladio-simulator.com/tools/screencasts/.

3.2 A running example

Component specifications. Component developers specify and implement para-
metric descriptions of components and their behavior. Fig. shows the Palla-
dio Component repository for this running example, with components LoadBalancer

https://www.palladio-simulator.com/tools/screencasts/

Chapter 3. Palladio Tool for Building Self-Adaptive System Projects

18

File Edt Reactor Digam Neagate Serh Projet Rum Widow Wep — -
neEe
Tahoma T B r|la~a-~. 2| B b s
 pacagecpos 51\ s o] = 0

=R

1 testPCM <<Provides=>

9 testPCM Repository repasitory
B 1estPCM Repository repository.disgram. © Databaze ’ &l Database
TE] o storeftrng name, sing forename)

T SEFF <store> B Basic Model 1, #| ===

O Interface
€

<<Requiress> %4 CompositeCom..

“Eweb %[Providedole

Ff SEFF <submit> |

Componentparsmetercompatree | i
(@ Passive Resource
8% Compenent
Parameter

D Propertes 5 Er=~=0
8 pository [ID; _K6_Kal DO3EDA]

Core Property Value

A0 l - 54:?:4 mvn:;mozt
BT |, X6 Kb an
Appeaance | pepositry Description =

B H sflia@

FIGURE 3.3: Creating a Component Repository (extracted from
| dio Simulator Website)

Fie Edi ffocor Dogm Nigte Serch Prjec Fun Window Hdp — =
in-E& ATBR L ATFLE $-0 -~ BHG~ @F H-F-wE-a- B ([T
'egoe UL zlB I |Ardr gy | B BB | 7| o N B | 100% -
L LUl Ty ST —
Qes " N MEd]
& testPCM
¥7 Databasestore seff_ciagram | [] S\ Zaor
& estPCM Repostanyepository [N T
8 testPCM_Repository.repository_diagram | = Actions
¥ Web.submit.seff_diagram

| 2 Control Flow
B Resoumce Demand
¢ Varisble Usage
. 8 VariableCharacte..
o Composite_#|
F{ ResourceDeman...
| §¢ Probabilistic
- BranchTransiion
|t GusrdedBranch...

D Properie £ Mr=--0

+ Edge 4001 <Edge> N
e Jr— Value

Appearsnce 3

FIGURE 3.4: Creating a Service Effect Specification (extracted from
Palladio Simulator Website))

Chapter 3. Palladio Tool for Building Self-Adaptive System Projects 19

"File Edie Refsctor - Disgram - Navigate - Seeh Prject —hum - Window ~Help —
NrEé Nose s AOHE $-0"A- BHG- O Lrireoro. o (@)
rr— e A R e AL IE A L= Al -

H Bacage e 2\ s Hemey] = | EETTES R

%|B% "~ = L1
S [y Select 1
¥ Database store seff_diagram e
1§ testPCM Repositoryepository e
B testPCM Repository repository_dagnm Brtesem s ot
[4) testPCM _System.system H systemRequired...
[testPCM_System.system_diagram 2 rovided,
ot el e s #{spdenbrovied..
Provided JWeb_ Web G(RequredDelegat..
= Required [Database Wr [e
+f* ProvidedDelegat...

] Assembly_Database <Database>
®{ Provided IWeb

Provided [Database_ Database

2]
I3
4 v

I Properties 27 Era- -0
«f# ProvDelegation Provided_IWeb -> Provided_IWeb_Web ctor> [ID: _KiF- V] |
o ! Property Value =
Appesnge | ChIdComponentContt Provded eegaton Comector] Assembly Web <Web> <Component: Web> <AssemblyContests [D: fuMcl SEQ2Res3rDO3EGA] I ‘
== Entity Neme 2 ProvDelegation Provided IWeb -> Provided IWeb, Ve il

] = _KiF-MI-6E2ResID0EIA ‘

Inner Provided Role Provided Delegation Connector { Provided_Web_Web <ProvidedRole> [ID: _bjVrwi-sEd2Res3zD03EdA] .

o i ¥ x|

i i e alB

FIGURE 3.5: Creating a System Model (extracted from Palladio Simu-

| lator Website))

File Edit Refactor

orEda g TS B0 Q- (BHGISP GO D o [§a)
[Tahoms o clBilAavHme s>~ Bieogvlne| 7| o ¥ 5| 00% -
 prctage o 507\ s o]~ 0 S ST =E
TEE S S Palette — » M1z
& testPCM [Ty Select —_—
¥7 Database.store.seff_diagram B Server &, Zoom
[tetPCM Allocation.llocation Note J
testPCM_Allocation.allocation_diagram Bl Accaiion AssenbH_Dafabase <Duisbases <Daabess]) AocationContex |
&) testPCM Repository repository.] Databace <Assembly,_Database <Databases> M
3 testPCM_Repository.repository_diagram
[testPCM S ’
&) testPCM_Systemayatem] Allocation_Assembly_Web <Web> <\Web>
[d] testPCM_System system_diagram & Web <Assembly_Web <Web>

¥ Web.submit.seff_diagram

3
‘ L, 'K *
[Properties 2 5? = =0
& Allocation _FVGaAI-SEd2Res3zDIIEDA
Core. Property. Value .
T Entity Name 2 defaultAliocetion
7] 1= _FVGQAI SEdZRes3D0IEIA B
APRESONE | (e icaton B System _0U-gBl SECDRes3zD03E4A
Target Resource Environment Allocation H3 Resource Environment
< n
e

FIGURE 3.6: Creating a Deployment Model (extracted from
| Simulator Website|)

Chapter 3. Palladio Tool for Building Self-Adaptive System Projects 20

e w————e—

& AOEE P | ATNTE $-0-Q BEE P oo £ [{ew)
Jo <lB A s | B BBt KB 0% -
 Packge Eplorer 5\ T8 Homrcy] = 5 o L
< [B% Y L
& testPCM
1 Database store. seff_diagram T =]
B testPCM Al Jiocat
0 estPCM _Allocation.liceation,_diagram e . <<ClosedWorkdosd>> [User Adtions # —
& testPCM_Repository.repository @ Fopulation: 1 g Start 3
& testP CM Repository.repsitory.diagram BihikTme10] @ stop | |
[testPCM_Resource resourceenvironment | § EntyLevetsyste..
(&) testPCM_Systemisystem e
] testPCM Systemisystem_diagram - | 3 Branch
14 testPCM_Usage usagemodel FASteCal - =
29 testPCM_Usage.usagemodel_diagram & Websubrmit Clinks]
¥T Web.submit seff_diagram P
| 8 VariableUsage
| 8 VarableCharacte..
(2 Intesmals »
¥ ScenarioBehaviour
. A BranchTransition
[] Covocsss»
3, OpenWorkioad
@) ClosedWorkload
@
<[. J 1< §]]+
[Properties 2 Bz 0O
1@ Closed Warkload 1 <ClosedWorkload> |
Core Property Value i
—‘ Papulation |
T H sEe®

FIGURE 3.7: Creating a Usage Profile (extracted from Palladio Simula-
| tor Website))

£ LoadBalancer =] ApplicationServer
¥ seFf cprocesshequests ﬂ SEFF <processRequests
PassiveResaurceCampartment Passive Re source Camgartment
CampananiParameterlamgarimeant CampaneniParamelerCompariment
<<Provides=» | ccpequiress> | <<Requiress> <<Provides»>

o lApplicationServer

E woid process Request()

FIGURE 3.8: Components repository

Chapter 3. Palladio Tool for Building Self-Adaptive System Projects 21

x adaptiveRandomLoadBalancing

5 delegateToServerl 5 delegateToServer2

4 Probability: 1 4 Probability: 0 O
'
¢ processData

é-(AssCtx_Nodel.processRequest é-(AssCtx_Node2.processRequest LEETETIEn e
_ _ 4300 <CcPU=>
InputVariableUsage InputVariableUsage
OutputVariableUsage OutputVariableUsage FailureOccurrenceDescriptions

InfrastructureCallsCompartment

(A) Load balancer (B) Server
node

FIGURE 3.9: Components’ SEFFs

LoadBalancerSystem

Provided_|ApplicationServer_ApplicationServer

= | ServerNode1

-f-

Provided_lApplicationServer_LoadBalancer

ll-[Provided_lApplicationServer H AC_LoadBalancer

: : AssCtx_Node1 Provided_|ApplicationServer_ApplicationServer
= | serverNode2

i
i

AssCtx_Node2

FIGURE 3.10: Assembly model

and ApplicationServer, and their dependencies. In it we can observe that there is an
interface implemented by two different components. The first one represents the
load balancer and the second one the component itself. Note that there are two Re-
quires relations between LoadBalancer and |ApplicationServer, which means that in the
system model, the node containing such component (the front-end node) has to be
connected to two nodes.

Components’ services are described with service effect specifications (SEFF), which
abstractly model the externally visible behavior of a service with resource demands
and calls to required services. Fig.[3.9shows the SEFFs of these components. Fig.[3.9a
shows that the control flow in the LoadBalancer component may branch into one of
two flows, each of them with an external call action to a different node. Each branch
can be associated with a particular branch probability to indicate the likelihood of a
particular branch being taken. This is the kind of information required to perform
execution-time analysis on the component’s behavior as is standard in software per-
formance engineering (see, e.g., Smith and Williams, 2002).

Assembly model. Software architects assemble components from the repository to

Chapter 3. Palladio Tool for Building Self-Adaptive System Projects 22

M| LoadBalancer

:E: Allocation_AC_LoadBalancer <LoadBalancer>

@ LoadBalancer <AC_LoadBalancer>

[serverNode1 (B serverNode?2
Allocation_Server1 <ApplicationServer> Allocation_Server2 <ApplicationServer>
E ApplicationServer <ServerNode1> @ ApplicationServer <ServerNode2>

FIGURE 3.11: Allocation Model

% overloadUsageScenario

® #*+ |ApplicationServer. processRequest ' %, Interarrival Time: Exp(3.9)

FIGURE 3.12: Usage Model

build applications. Fig.[3.10 shows how the components LoadBalancer and Applica-
tonServer are composed. The biggest square surrounding the boxes represents the
entire environment. For each provides relation in the repository model, a provided
role is created for the container containing such component.

Allocation model. System deployers model the resource environment and the allo-
cation of components from the assembly model to different resources of the resource
environment. Fig. @shows the allocation model for our case study, where we can
see how each of the components is allocated in a different node.

Usage model. Domain experts specify a system’s usage in terms of workload (i.e.,
the number of concurrent users), user behavior (i.e., the control flow of user sys-
tem calls), and parameters (i.e., abstract characterisations of the parameter instances
users utilise). Given the usage model definition in Fig. [6.10, tasks will arrive fol-
lowing an exponential probability distribution with rate parameter 3.9 time units
(Exp(3.9)), which means that tasks will arrive every ~ 0.256 time units in average.

3.3 Simulizar

The Palladio tool allows analysis of static system models. In the running example
of the previous section, it is only possible to verify the evolution of the systems, as
shown in the graph in Figure [3.13, and it is not possible to apply changes to the
model.

The analysis of this system with the Palladio Bench produces the graph in Fig. @,
producing a mean response time 4.0197 for 100 observations. Notice that with the
workload used the system get overloaded, producing increasingly bigger response
times as time passes. In the specification of the Palladio models, the parameters
specified are fixed, and cannot be changed along executions. For instance, the arrival
rate for work arrivals has been established in Exp(3.9), the demand of CPU for the

Chapter 3. Palladio Tool for Building Self-Adaptive System Projects 23

Time Series

FIGURE 3.13: Response time analysis by Palladio

processing of the internal action in the servers is set to 300, and the number of CPU
replicas in each server is 1.

The Simulate approach (Becker, Becker, and Meyer, 2013) opened the possibility
of performing predictive analysis considering changes in the initial model (Figure
@. A model of a self-adaptive system, in Simulate, consists of two viewpoints
with multiple views each. The first view is made up of three views: static view,
monitoring specification view, and allocation view. Second view consists of initial
state view and state transition view.

With Simulate PCM started to provide modeling views for monitoring view or state
transition view. In this way, Palladio Measurement Specification (PMS) is used,
which consists of a domain-specific language for viewing the monitoring specifi-
cation, and self-adaptation rules have been used to specify the state transition view.

With PMS it is possible to specify "sensors" for a self-adaptive system, that is, it is
possible to define where the monitoring will be carried out, the type of performance
metric to be used, the type of time interval and a statistical characterization. How-
ever, you can only choose between the pre-defined Palladio-Simulize options, not
being possible to insert new metrics, for example, in an easy and intuitive way.

Palladio-Simulate’s self-adaptation rules consist of a self-adapting condition and ac-
tion. A condition must reference a "sensor" and provide a boolean term, which if it
evaluates to true, the self-adapting action is triggered. The self-adapting action part
references elements in the PCM model.

Figure [3.15 illustrates the running example with the Simulate conditions and mon-
itoring that gave rise to the results of Figure 3.14. You can see the PCM allocation
visualization with measurement specifications, defined through the PMS. In the il-
lustration, the LoadBalancer component is implemented on an lbn node and can
vary its probability branch (which is initially set to 0.0, which means that all work-
load is initially handled by server node snl), adding 0.1 while condition "MRT" > 0.8
is true.

Self-adaptive systems modeled with SimuLizar can be simulated using Palladio-
SimulLizar’s MDSPE for self-adaptive systems tool to obtain overall system response
time predictions. In SimulLizar, reconfigurations are model transformations to the

Chapter 3. Palladio Tool for Building Self-Adaptive System Projects 24

- —self-adaptation
-=--sn1
—sn2

Predicted Response Time [s]

0 20 40 60 80 100 120 140
Time [s]

FIGURE 3.14: SimulLizar Predictions (From Becker, Becker, and
Meyer, 2013)

Ibn:LoadBalancerNode sn1:ServerNode |bn:LoadBalancerNode sni:ServerNode

i1-]

>0 51:Ser\rers:| —C

>0 :a1:5e.-\.rer{I —C o+ |h:|_nadaa|anc§ —(— -j"

O Ib:LuadBalanci:rl =+ _1| =

~

A

I |

I |

___ 1 I
<<monitoring=>> I |
MRT = mean resp.time | 91 a |
I |

I I

I |

[periodic, 20sec, sn2:ServerNode sn2:ServerNode
arith. mean] _ -
a=0.0
== pO—| s2:Server) —C 00<a<05 = =0 32:Serve?j —C

(a) system type viewpoint (b) initial state view

Ibn:LoadBalancerNode sn1:ServerNode

[Ib:LoadBalancg == ——1‘ S0— s1:5er\1e|‘sj —C

~

~

|
|
~ |
|
|
|

<<condition>> By ¢
MRT > 0.8

sn2:ServerNode
T I\ - -®
<<assign>>y — 7 |
W

(c) state transition view

FIGURE 3.15: SimulLizar (a) System Type View,(b) Initial State View,
and (c) Transition state view. (From Becker, Becker, and Meyer, 2013

PCM model, the managed element is the modeled simulated self-adaptive system.
The simulated system is monitored, monitoring results are analyzed, reconfiguration
is planned and a reconfiguration is performed on the simulated system if necessary.

3.4 Results

The Palladio tool is one of the most robust options for modeling systems. Its ex-
tension for predictive analysis of self-adaptive systems, Simulate, inherits Palladio’s
robustness, however, it has some limitations that prevent the tool from meeting the
main characteristics of a self-adaptive system. Table[3.1]presents a Palladio-Simulate
checklist regarding the characteristics of the system’s general structure, allocation,
functionality, communication, dynamic management and possible modifications.
Although the solution meets or partially meets most of the characteristics, it is still
necessary to advance with regard to the functionality and flexibility of modeling
self-adaptive systems.

Chapter 3. Palladio Tool for Building Self-Adaptive System Projects

25

TABLE 3.1: Expected Characteristics for Modeling Self-Adaptive Sys-

tems
Features Palladio-Simulizar
General system structure meets
Allocation meets
Functionality does not meet
Communication partially meets
Dynamism management partially meets
Modifications partially meets

Design Time

meets

Flexibility

does not meet

26

Flexibility in Modeling Self-Adaptive Systems

In this chapter we will present how to flexibly model a self-adaptive system, using
the e-Motions tool, PCM modeled in e-Motions, also considering the advances in
Palladio’s behavior modeling obtained by this work.

4.1 The e-Motions Tool

The e-Motions tool (Rivera, Duran, and Vallecillo, 2009) is a graphical framework
developed for Eclipse that supports the specification, simulation, and formal analy-
sis of systems. It is an MDE tool since it provides a way to model domain-specific
systems using both the abstract syntax metamodel and the concrete syntax meta-
model, and it allows you to add rules to the metamodel by graph transformation,
also making it possible to use OCL (Object Constraint Language).

It provides a way to graphically specify the Domain-Specific Languages (DSLs). The
abstract syntax of a DSL is specified as an Ecore metamodel (Figure [4.1), which de-
fines all relevant concepts and their relations in the language. Its concrete syntax
is given by a Graphical Concrete Syntax (GCS) model (Figure [4.2), which attaches
an image to each language concept. Then, its behavior is specified with (graphical)
in-place model transformations (Figure .

The in-place model transformations used to specify the behavior of systems are de-
fined by graph transformation rules, each of which represents a possible action of
the system (Figure [£.4). A model of time can be defined for these rules, supporting
features like duration, periodicity, etc., and mechanisms to state action properties (in
the Figure 4.4/ the rule spends one time unit on its execution and is triggered every
ten time units, i.e , every eleven time units, a new peer is created).

From the definition of the abstract syntax, of the concrete syntax, and the specifi-
cation of behavior by means of graph transformation rules, e-Motions generates an
executable Maude (Clavel et al., 2007) specification which can be used for simulation
(Figure . In this work we consider all of these aspects of e-Motions: the definition
of the abstract syntax and of the concrete syntax, the specification of behaviors and
the simulation capability of systems.

In simulation time several matches of rules can be found, and one of them is non-
deterministically chosen and applied, giving place to a new model where the match-
ing objects are substituted by the appropriate instantiation of its RHS pattern. The

Chapter 4. Flexibility in Modeling Self-Adaptive Systems 27

H p2P Metwork

0.* nodes

H Mode

i

registration

El peer 0.=

H Registry

FIGURE 4.1: e-Motions Abstract Syntax Example: a Reconfigurable
P2P Network (extracted from |e-Motions Examples)

Peer Reqistry

FIGURE 4.2: e-Motions Graphical Concrete Syntax Example: Peer and
Registry Classes Picture of the P2P Network (extracted from e-Motions
Examples))

InitModel
(D Tin[0,00
Mew

(D Tin[L1] 10

Kill
(D Tin[L1]

Random
(Y Tin[11] 5

III context Peer:execRandom(pl: Peer): Boolezan body: not(self.link_in - > includes(pl)) and not(self link_in - »size() »2) and not (pl.link_in - > size() » 2]

(D Tin[1,1] 5

[E] context PeerzexecSmart(pl : Peer): Boolean body: not{self.link_in -> includes(p1)) and not{self.link_in -> exists[p| p.link_in - > includes(p1))]

FIGURE 4.3: e-Motions behavior Rules Example: Five Rules and Two
Helpers to Model the Behavior of the P2P Network System (extracted
from e-Motions Examples)

Chapter 4. Flexibility in Modeling Self-Adaptive Systems

28

MNew
(Y Tin[1,1] 10

LHS |IRIEEB

NAC

= n : <action>
< unfinished >

p

|
£l
-
[
,

reqistration registration

i - =
gﬂon link_in ;

FIGURE 4.4: e-Motions Graph-Transformation Rules Example: The
Rule Models the Creation of a new Peer in a P2P Network, Registers
it, and Links it with an Existing Peer (extracted from e-Motions Exam-

ples)

Java -

Fle Edt Diagram Navigste Search Project eMotions Run Window Help

Tahoma 9 I

18 Pack 32 % Hiera | = O|(3 p2P.behavior_diagram £I

BE|e~
= P2PNetworks
& Behavier
-] P2Pbchavior
3 P2P.behavior_diagra)
1 P2Pbehaviormauds
Bl 2P
[P2P.ges_diagram
41 Images
J & Metamodel
&) P2PMM.ecore
1 P2PMM ecoremauc
&) P2PMM ccoreding

[0 context Peer:execRandomipl : Peer): Boclean body:

[contest Peer-enscsman(ol : Pesr): Boolean bodi

e g Fivodvis

B P2Pbehaviormaude |'E) P2PMM | [P2P.ges_diagram

[Tnithlodel
D Tin[0.0
&3 New
D TinfL1] 10

Behavior model " \FZPNetworks\Behavior\P2P. behavior

Metamadel *: \PZPNetworks\Metamodel\ P2PMM.ecore

Additional Metamodelis):

Initial model:
Time limie: 10
Defauittime elapse:

() = mandstory
7 Keep track o reslzed sctions

“ Lk Palette I

£ Atomic Rule
Ongoing Rule
5] Helper

FIGURE 4.5: e-Motions Launcher Screenshot to Run a Simulation (ex-

tracted from e-Motions Examples)

Chapter 4. Flexibility in Modeling Self-Adaptive Systems 29

fPCM MM B AbstractUserAction K token_ E SToken cToken
0.* T completed : EBoolean |

H AbstractAction token, H CToken 0.1

0.* | T completed : EBoolean

queue f

I ProcessingResourceSpecification !
{ordered} 0.*

o mm Em mm mm omm o= o=

o -

FIGURE 4.6: Palladio Abstract Syntax Defined in e-Motions Example:
Token Metamodel (extracted from |e-Motions Examples)

@ 'S

Start Action Token SEEF

FIGURE 4.7: Concrete Syntax of the Palladio in e-Motions Example:
Start Action and Token SEFF icons

transformation of the model proceeds by applying the rules on sub-models of it in
a non-deterministic order, until no further transformation rule is applicable. This
characteristic has opened the way for dynamically modifying models during simu-
lation time, enabling a simulation of self-adaptive systems, which is the focus of this
work.

4.2 Flexibilization as a New Path for Systems Modeling

The proposal to integrate the robustness of the PCM metamodel and the visual flexi-
bility and ease of e-Motions was initiated in the work of Moreno-Delgado et al., 2014,
which proposed a partial reimplementation based on a modular model of a Palladio
Architecture structure. The work presented the specification of Palladio’s main DSLs
in the e-Motions system, describing the basic simulation semantics as a set of graph
transformation rules. From this work it became possible that the models created in
the Palladio-Bench can be fed directly into the e-Motions simulation environment for
analysis. The Palladio DSL is provided by Palladio Component Model (PCM) and,
as for any DSL, the e-Motions definition of Palladio includes its abstract syntax (the
PCM) (Figure[4.6), its concrete syntax, and its behavior. Its concrete syntax uses the
same images found in Palladio-Bench to represent Palladio models’ concepts (there
are some examples in the Figures .10, .11 and {.12). Its behavior is
defined by graph transformation rules, thus becoming explicit at a very high level
of abstraction (the Figure [4.13 shows an example of the behavior of starting a SEFF
of the Palladio in the behavior rule in e-Motions).

1

Operation Interface

Component Repasitory :E

Basic Component

FIGURE 4.8: Concrete Syntax of the Palladio in e-Motions Example:
Component Repository with Operation Interface and Basic Compo-
nent icons

Chapter 4. Flexibility in Modeling Self-Adaptive Systems

30

=
S

Assembly Context

System Model *_[

Provided Role Operation

FIGURE 4.9: Concrete Syntax of the Palladio in e-Motions Example:
System Model with Assembly Context and Provided Role Operation

icons
#
— External Action
|
¥
&IT — Internal Action
Service Effect Specification 5]

— Resource Demand

&

e

— Probabilistic Branch

FIGURE 4.10: Concrete Syntax of the Palladio in e-Motions Example:
Service Effect Specification with External Action, Internal Action, Re-
source Demand and Probabilistic Branch icons

= — L

Deployment Madel Resource Container

FIGURE 4.11: Concrete Syntax of the Palladio in e-Motions Example:
Deployment Model with Resource Container icon

>F¥
— OpenWorkload

— ClosedWorkload
Usage Profile

3

Entry Level System Call

FIGURE 4.12: Concrete Syntax of the Palladio in e-Motions Example:
Usage Profile with OpenWorkload, ClosedWorkload, and Entry Level
System Call icons

Chapter 4. Flexibility in Modeling Self-Adaptive Systems 31

Figures/behaviorGTStartSEFF.png

FIGURE 4.13: Start SEFF behavior is defined by graph transformation
rules

The operational semantics of Palladio, i.e., its behavior, is given as a token-based
execution model, where each work that enters the system is modelled as a token
that moves around the different services of the system, and inside each service de-
scription, around the different tasks (start, stop, branch, loop, etc.) in its SEFF de-
scriptions. Each of the actions that may occur in the system are then specified by
e-Motions transformation rules.

The proposal of the modular model of the partial reimplementation of Palladio’s
architecture paved the way for the flexibilization of systems modeling. The proposal
supports Palladio’s main features for defining usage models (start, stop, delay and
entry-level system call) and component models (start, stop, branch with any number
of probabilistic branches, internal action and CPU specifications). In addition, the
models created in Palladio can be fed directly into the simulation environment for
analysis.

Based on the possibility of a flexible configuration for systems analysis, this work
moves to a dynamic approach considering the partial reimplementation of Palladio
in e-Motions. The central idea is to consider the possibility of adding and removing
resources and components dynamically, opening a pathway for the modeling and
analysis of self-adaptive systems. For this, it will be necessary to incorporate addi-
tional resources to the definition of Palladio as well as to understand the behavior of
a self-adaptive system to facilitate modeling and analysis, thus enabling the experi-
mentation of new features and customized solutions for specific problems at a very
low cost of development.

Chapter 4. Flexibility in Modeling Self-Adaptive Systems 32

OpenWorkloadSpec StartSEFF RTUsageModelBirth
T in [owRate owRate] Tin[0,0] é Tin[0,0]
S TPUsaqeModelBirth
E3 StartUsageModel iin|0i0) Tin[0,0]
Tin[0,0] InternaIActionSEFF RTSEEFEh
L; Tin[0,0]

9
StoplsageModel Tin [rTime rTime]
Tin[0,0] ActionSEFFTrans
. Tin[0,0
EntryLevelUsageModel 5 in[0,0]

i B4 IntActSEFFSchFCFS
Tin[0,0] e~
in [0,

ExitLevellsageModel
Tin[0,0]

BranchSEFF2TokenProb

DelaylUsageModel
Tin[0,0]
Tin [spec,spec]
Actionll ModalT TokenProb2ProbabiIisticBranch
ctionUsageModelTrans
: Tin[0,0]
% Tin[0,0]

TokenEnterlnABranch
Tin[0,0]

TokenExitBranch
Tin[0,0]

FIGURE 4.14: Palladio Rules by Moreno-Delgado et al., 2014 (ex-
tracted from e-Motions Examples)

4.3 PCM modeled in e-Motions

One of the main features of this approach is the use of explicit specifications of the
behavior of Palladio. Since these specifications are modifiable, users have absolute
control on the models and the operations available.

Figure £.14 shows all behavior rules of Palladio provided by the work of Moreno-
Delgado et al.,, 2014, The understanding of the Palladio metamodel, the rules of
behavior already modeled and their flow were one of the first steps of this work.
Figure .15 illustrates the activity diagram created in this work to facilitate the un-
derstanding and the visualization of the flow between the behavior rules initially
modeled. Based on this understanding, it was possible to advance in this proposal,
concerning the modeling of new rules or the redesign of the existing behavior rules
of Palladio.

The modeled rules represent the behavior of the Usage Model and the Service Effect
Specification (SEFF) of the Component Specification, which are central behaviors for
the execution of a complete workflow, since only Palladio’s Usage Model and Com-
ponent Specification views represent system actions. Therefore, only these views
were considered for modeling Palladio’s behavior in e-Motions. The other views of
Palladio are important for the modeling of the system and are represented in the ab-
stract and concrete syntaxes in e-Motions and its elements are used in the definition
of the Palladio’s rules of behavior.

The rules in Figure @were reused in our work, modified when necessary (without
changing the core of their operation) and other rules were inserted according to the
needs of our proposal. The RTUsageModelBirth, TPUsageModelBirth and RTSEFFBith
rules were separated from the behavior rules of Palladio and are now part of the set
of QoS rules. In addition to the Palladio rules and the QoS rules, we also have the
set of Adaptation rules and the set of Network rules, which interact with each other
to compose the performance analysis.

Chapter 4. Flexibility in Modeling Self-Adaptive Systems 33

(Resource
‘7Stan Usage Model—>‘ Usage Model EntryLevelSystemCall—p>| Demanding -
«—EXitLevelUsageModel { SEFF
A I -
Stop Uselge Model L<Transition>—’
P
C)

FIGURE 4.15: Initial Activity Diagram of the Palladio behavior

4.4 Advances in the Modeling Palladio Behavior

Palladio’s abstract and concrete syntax was already available in e-Motions from the
work of Moreno-Delgado et al., 2014, as well as some rules of behavior. This work
has advanced in defining some rules already available and created others as needed.

The available rules were basically divided into Usage Model rules and Component
Specification rules. It is worth mentioning that the rules in e-Motions that corre-
spond to the features present in Palladio represent the behavior of these features if
any of them are being used in a Palladio model used in e-Motions.

Figures[4.16 and [4.17 we present the progress made at in this work in relation to the
creation of new rules (which is available at https://www.scenic.uma.es/GTPAAS/)
and we illustrate an organization considering the aspects present in Palladio Bench
(version 3.5).

Regarding the Usage Model rules, we separated according to the groups of features
present in Palladio Bench 3.5: Actions, Actions Details and Workloads.

In Palladio’s Actions we have some features that can be used in creating a usage
model: Create New Start (StartUsageModel rule in e-Motions), Create New Stop
(StopUsageModel rule in e-Motions), Create New Delay (DelayUsageModel rule in
e-Motions), Create New Entry Level System Call (EntryLevelSystemCall and Ex-
itLevelUsageModel rules in e-Motions), Create New Loop (LoopToLoopTokenUM,
LoopStartTokenUM, LoopStop2StartUM and LoopStartTokenExitUM rules in e-Motions)
and Create New Branch (BranchUM2TokenProb rule in e-Motions)). The ActionUsage-
ModelTrans e-Motions rule (in *ActionTransitions) has no representation in Palladio

but is inserted because a rule is needed to control the Tokens of transition between
actions in the Usage Model.

Palladio’s Actions Details are all the details of the functionalities inserted in the
model. Create Branch Transition in Palladio is represented in e-Motions by the rules
TokenEnterInABranchUM and TokenExitBranchUM. The creation of the rule(s) for
the use of Variable in the Usage Model is still pending.

Workloads in Palladio are represented so far in e-Motions by the rules for Open-
Workload (OpenWorkloadSpec, DecreaseCountDown and RemoveTokenOb). The
creation of the rules that represent ClosedWorkload is still pending.

Regarding the Component Specification rules, we separated according to the Service
Effect Specification feature groups present in the Palladio Bench 3.5: Actions and
Actions Details.

https://www.scenic.uma.es/GTPAAS/

Chapter 4. Flexibility in Modeling Self-Adaptive Systems

34

UserActions

UserActionDetails

Branch BranchTransition

Workloads

OpenWorkload

StartUsageModel
StopUsageModel
gnn [0,0]

OpenWorkloadSped

BranchUM2TokenPro TokenEnterinABranchu
(Y Tin [0,0]

Tin [0,0] Tin [0,0]
DelayUsageModel ‘ DecreaseCountDown ‘

TokenExitBranchU
Tin [spec,spec] (0 Tin [0,0 T < st.countDown
EntryLevelSystemCall Variable RemoveTokenOb
(D Tin [0,0 () Tin [0,0
ExitLevelUsageModel
(Y Tin [0,0]

=

Closedworkload

Loop *ActionTransitions
LnaanL:mankenUNW A(tinnUsageMadelTraﬁ
Tin [0,0] Tin [0,0]

LoopStartTokenUM
LoopStop2StartUM
LoopStartTokenExitU

FIGURE 4.16: Palladio Usage Model Rules to Support Dynamism

In Palladio’s Actions we have some features that can be used in creating a SEFF: Cre-
ate New Start (StartSEFF rule in e-Motions), Create New Stop (StopSEFF rule in e-
Motions), Create New Internal Action (Internal ActionSEFF and IntActSEFFSchFCFS
rules in e-Motions), Create New External Call Action (EnterInExternalCallAction
and ExitOfAndExternalCallAction rules in e-Motions), Create a Set Variable Ac-
tion (SetVariableActionSEFF and ReturnVarExitCallAction rules), Create New Loop
Action (LoopToLoopTokenSEFF, LoopStartTokenSEFF, LoopStop2StartSEFF e Loop-
StartTokenExistSEFF in e-Motions), Create New Branch Action (TokenEnterInABranch-
SEFF and TokenExitFromBranchSEFF rules in e-Motions).

As with the Usage Model rules, the ActionSEFFTrans e-Motions rule (in *Action-
Transitions) has no representation in Palladio but is inserted because a rule is needed
to control the token transition between actions in the Component Specification SEFF.
In addition, it was necessary to insert a rule for behavior regarding the change
of containers after an External Action (ContainerChange in * Communcation) and
some rules to control the transition of Tokens in the External and Internal Actions,
and in the Branch (TransitionToEA, TransitionTolA and TransitionBranch).

The creation of the rules that represent the SEFF functionalities is still pending: Emit
Event Action, Acquired Action, Release Action, Collection Iterator Action, Fork Ac-
tion and Recover Action. So far these features have not been necessary for our work.

The SEFF Actions Details inserted were: Create New Probalistic Branch Transition
(BranchSEFF2TokenProb and TokenProb2ProbalisticBranch rules in e-Motions) and

Create New Guarded Branch Transition (EnterInBranchGuarded, GuardedBranch2TokenGuarded,
TokenGuarded2Guardedbranch, TokenEnterInABranchGuarded and TokenExitFrom-
BranchGuarded).

4.4.1 Changes to the existing Definition of Palladio Rules in e-Motions

Let us illustrate the e-Motions rules by showing two of the rules that define Palla-
dio’s behavior. The first one, in Figure |4_1.18, is the OpenWorkloadSpec rule, which
models the action of initiating a new execution. In it, we see how a usage scenario

Chapter 4. Flexibility in Modeling Self-Adaptive Systems 35

SEFFActions SEFFActicnDetails

SIartsere) ProbabilisticBranchTransition
Tin[0,0] LoopAction BranchAction

BranchSeFF2TokenProl

SLopSEFF TokenEnLerinABranchSEF i
LoopToLoopTokenSEF Tin[0,0
(T Tin [0, P F Tin [0,0] [o.]

Tin [0,0] m TokenProb2ProbabilisticBranc|
TokenExitFramBranchSEF

InternalAction | napstartTokenSFF . F‘ Tin[0.0]
I Tin|0,0]

InternalActionsEFF .
3 3 : GuardedBranchTransition
&) Tin [rTime,Time] ;l:up::.:plsl_dl LSEF *ActionsTransitions
in [0,
INEACESEFFSChFCFS - __
O Tin 0.0 LoopStartTokenExistSEF| ActionSEFFTrans EntrelnBranchGuarde
’ Tin[0,0] Tin [0,0] Tin[0,0]
Externalaction —— =1 GuardedBranchZTokenGuarde:
i ! ForkAction Tin [0,0]
EnterinExternalCallActio _
Tin[0,q] E ContainerChange TokenGuarded2GuardedBrandl
= - T in[0.0] RecoverAction .
ExitOfAnE)«ternalCallActicT Tin[0,0]
Tin[0,0] *TokenTransitions

EmitEventAction

TokenEnterinABranchGuarde
Tin [0,0]

SetVariableActi T

ervariabiendion glt.ar?glgr;mﬂ\ PR TnkenExitFrumBran(hGuarde

- - - n N cquiredAaction

= SewarlableActlenSEFj TIn [0,0]

Tin[o,q] =4 Iransition lolA

E— = v Tin [0,0]

Rttl.lrn‘!ar[xltCallActmT

Tin[o0,q]

ReleaseArtion

&2 TrensitionBranch
(B Tin [0,0] CollectionlteratorAction

FIGURE 4.17: Palladio Component Specification Rules to Support Dy-
namism

(usSc) is linked to a scenario behavior (scBeh) that defines the sequence of actions
to perform and a specification of the workload description. In this case, the usage
scenario is described by an open workload (ow), which has a timer associated. The
rule models the arrival of a new work into the system. Specifically, when the timer
comes to zero, a new token is associated to the start action of the scenario behavior.
The timer is set to the amount specified by the corresponding stochastic expression
— e.g., Exp(5.0) in our running example. Note the use of the owRate variable, which
temporarily holds the result of the evaluation of the given expression.

This rule is an example of one of the modifications made to the existing Palladio rules
(Figure [4.19). The first modification was the insertion of a Sand Timer in detriment
to the definition of the maximum and minimum duration (T in [owRate, owRate])
in the atomic rule, since the arrival time defined in the model concerns the time
interval between the arrival of works and not the time it takes to get the work done.
At intervals of time this had no impact on the execution of the simulations, however
it was modified to avoid problems in other scenarios. Instead of the time definition
in the atomic rule, an Ongoing rule "DecreaseCountDown" was created to account
for the passage of time, it has the sole function of counting down the time arrived
value (defined in the model) that was stored in the Sand Timer object.

Another modification made to the rule in Figure .18 in relation to the rule in Figure
[4.19 was the removal of the observer’s creation of the Time Stamp Token object.
This is because observers are treated more generally and are now linked to SYBL
monitors.

Figure[4.20 shows the e-Motions rule that specifies the execution of an InternalAction,
like the ones used in Figures and This rule represents a generic execution
of an internal activity by a component service, possibly using a resource, like a HDD

Chapter 4. Flexibility in Modeling Self-Adaptive Systems

OpenWorkloadSpec

Tin [0,0]
LHs 21 RHS
oW st st
" oW
2 sand Time - sandTime
35 £ -
- 25
et
g e = 4 countDow = owRate
ushc usSe

scBeh start " t
token
k|
-

IV owRate : Int = eMntions.parseF_:cp[nw.inter.hrri\'aITime_-DpenWDrkIDad.specificatiorl

T = Sand Timer

Usage Scenario

“@ = Usage Model Start @ =Token Usage Model

FIGURE 4.18: OpenWorkloadSpec rule

s OpenWorkloadSpec
D T in [owRate, owRate]
W LHS

Jizd RHS

%y = Scenario Behaviour

worklpad_UsageScenario

usSc

F §

scenarioBehaviour_UsageScenario
scBeh

Eay

actions_ScenarioBehaviour

workload_UsageScenario

us5c

#

scenarioBehaviour_UzageScenario

scBeh

Ea

actions_ScenarioBehaviour
start

. clk
. -

token

newTcken

RN

id = log.counter
completed = false
ts0b

tStamp = clktime

W owRate: Int = ow.interArrivalTime OpenWorkload.soecification tolnteaerlll

FIGURE 4.19: OpenWorkloadSpec rule Old

Chapter 4. Flexibility in Modeling Self-Adaptive Systems

Internal ActionSEFF

Tin [rTime,rTine]

[EICS REEH
PRS PRT PRD FPRS PRT PRD 1A . t
- - = - - =) L3 o
queue = PRS.queue->excluding(t] complekec = true
14
¢ clk
Sch ‘\”“
t Koo
o 4
completec = False tkab
h ts (04 a3sCtx
Scl =1
- g:!)"r'ﬁ clock = c!k.time)
processTime = rTime
id = 'FCFS' type = 'resource’
observers = Observer.allinstances()->select(0 | O.replica = tindex and O.resource = PR
replica = tindex
uim PRS. queue-=index0f(t) <= PRS.number0fReplica EStamp = ts.kStamp
Y tindex : Integer = PRS.queue-=indexOf(t]

[rTime : Integer = eMotions.parseExp(PRD. specification_ParametericResourceDemand specification, t.context) / eMotions. parseExp(PRS. processingRate]

i 0 = Resource (Specification or Type) + = Intemal Action $§ = Observer < = Scheduling Policy 1
i &2 = Resource Demand «» = Token SEFF = = Assembly Context ¢ = Token Observer

FIGURE 4.20: InternalActionSEFF rule

or CPU, following an FCFS (First Come First Served) strategy. In Palladio, these ex-
ecutions present a high level of abstraction, and the resource demands are described
as stochastic expressions. In the e-Motions rule, the LHS indicates that if there is an
internal action (IA) in the system linked to a token (t) with the completed attribute
with value false, the RHS will execute in time rTime, calculated using the expression
of the header of the rule (PRD / PRS), i.e., the duration of this action depends on
the corresponding Palladio elements, specifically on the PRD (Parametric Resource
Demand) and on the PRS (Processing Resource Specification). For instance, in our
example the IA was specified with PRD of 300 units of CPU (Figure [6.7d) — the re-
source type is defined in the object PRT (Processing Resource Type). The container
in which the component that specifies this IA was allocated presents the process-
ing rate (PRS) of 1000 units of CPU per time unit. Thus, each work will take 0.3 time
units to be executed. Tokens are served following an FCFS strategy by using a queue
associated to each resource type. Only the first PRS.numberOfReplicas tokens in the
queue PRS.queue get to be executed. Once an internal action is executed, its token is
removed from the queue (PRS.queue—excluding(t)), and marked as completed, be-
ing then ‘moved’ to the following task in the service description. Please, note the
indication of the assembly context, and the recording of the execution information
by the Observer Token object (tkOb), which will be used by the monitors.

Previous versions of this rule explicitly included the checks and actions associated to
required changes in the system. In our new approach, however, monitors gather all
the information on the metrics of interest, which will then be handled independently
by corresponding observers. In this way, new observers may be added at any time
without needing to modify these rules. With this modification, generic tokens were
created to store the values obtained in the simulation and subsequently update the
observers. This creates greater flexibility for the inclusion of new metrics for mea-
suring non-functional properties, as it eliminates the need to manipulate the rules
specifying the behavior of Palladio to change the requirements or adaptation mech-
anisms of specific systems. In summary, observer objects are in charge of collecting
information on non-functional properties with which the performance analysis will

Chapter 4. Flexibility in Modeling Self-Adaptive Systems 38

be carried out by monitors.

4.4.2 Creation of new Palladio rules in e-Motions

The new Usage Model rules present in e-Motions are: LoopToLoopTokenUM, Loop-
StartTokenUM, LoopStop2StartUM, LoopStartTokenExitUM and BranchUM2TokenProb
(in Actions); TokenEnterinABranchUM and TokenExitBranchUM (in Actions De-
tails); and, DecreaseCountDown and RemoveTokenOb (in Workloads).

LoopStartTokenUM, LoopStartTokenUM, LoopStop2StartUM and LoopStartTokenEx-
itUM relate to the set of behaviors required for the Loop action of a workflow.
BranchUM2TokenProb concerns identification of a Branch in a usage model, and
TokenEnterinABranchUM and TokenExitBranchUM concern the actions of entering
and leaving a Branch, respectively. DecreaseCountDown is an Ongoing rule cre-
ated to help control the time flow of users established in the model (previously this
control was in charge of the OpenWorkloadSpec rule). Finally, the RemoveTokenOb
rule was created so that Tokens created from created observers were deleted after
the completion of each work.

The new Component Specification rules present in e-Motions, are: EnterInExter-
nalCallAction, ExitOfAnExternalCallAction, SetVariableActionSEFF, ReturnVarEx-
itCallAction, LoopToLoopTokenSEFF, LoopStartTokenSEFF, LoopStop2StartSEFF, Loop-
StartTokenExistSEFF, ContainerChange, TransitionToEA, TransitionTolA and Tran-
sitionBranch (in Actions). EnterInBranchGuarded, GuardedBranch2TokenGuarded,
TokenGuarded2Guardedbranch, TokenEnterInABranchGuarded and TokenExitFrom-
BranchGuarded (in Actions Details).

EnterInExternalCallAction and ExitOf AnExternalCallAction are rules that establish
the behavior of the External Call Action, which is an important action of Palladio,
as it is responsible for the calls of other components. In defining this behavior, we
established that the components to be called can be located in the same node or in
a different node, and in this last option, the network that connects the nodes can
be considered or not. To make this possible, the ContainerChange rule was created,
which considers the information established in Communication Link Resource Spec-
ification, such as latency and throughput, in Palladio’s Resource Environment.

In addition, the TransitionToEA, TransitionTolA and TransitionBranch rules were
modeled, which have the role of controlling the transition between External and
Internal Actions and within a Branch. SetVariableActionSEFF and ReturnVarExit-
CallAction are the rules responsible for the action details variable usage that can
be defined in a SEFE. The LoopStartTokenSEFF, LoopStop2StartSEFF and LoopStart-
TokenExistSEFF rules are related to the set of behaviors necessary for the Loop ac-
tion of a SEFF. Finally, EnterInBranchGuarded, GuardedBranch2TokenGuarded, To-
kenGuarded2Guardedbranch, TokenEnterInABranchGuarded and TokenExitFrom-
BranchGuarded correspond to the set of actions necessary to establish the behavior
of a Guaded Branch action in SEFE.

4.4.3 Artefacts and Processes Proposal

With the objective of extending Palladio’s predictive capabilities to support dynamic
systems, we propose to use the e-Motions implementation of the Palladio Compo-
nent Model (PCM) described in Moreno-Delgado et al., 2014, and use the graph
rewriting approach used there to also model the elastic behavior of systems. Given

Chapter 4. Flexibility in Modeling Self-Adaptive Systems 39

) 4

Palladio Bench el i

-
*
PCM e 1 PCM* + 1 BehPaHadio I+ BehAdaptation !
Soft. Arch. T O [R Yy myyunyuy g ol P J
DSL Instance J
Sys. Depl. \ (A | =
()::sw:.m?(m /—»Mapp 1 Mapp 1 &—/WOEOM

—_——_ - = =

o)
»

Dom. Exp

DSL Instance / . \

FIGURE 4.21: Artefacts and Processes Proposal

Node 1
Node 0 s
Node n

FIGURE 4.22: Structure of the example

the metamodel of Palladio and its operational semantics expressed in terms of graph-
transformation rules, this implementation allows to analyze (static) systems mod-
eled in Palladio Bench. However, the relevance of this e-Motions specification is the
capability of integrating new adaptation rules, which extend the behavior of Pal-
ladio, making feasible the analysis of dynamic systems, and increasing its expres-
siveness. The facilities for the analysis of different metrics, including response time,
resource usage and throuhtput, and the facilities for the extension of the language,
present an optimal setting for the definition of the adaptation mechanisms and the
analysis of the performance of elastic systems thus defined.

The diagram in Figure[#.21 depicts the main elements in our proposal. In e-Motions,
a Domain Specific Language (DSL) is specified by its syntax (a metamodel) and a be-
havior (an operational semantics described as a set of graph transformation rules).
The systems to be analyzed are specified using Palladio, and specifically the Pal-
ladio Component Model (PCM). Models conforming to the PCM are composed of
four different submodels, which correspond to respective views of the system. The
Palladio language is specified in e-Motions by taking an extended PCM, denoted
PCM*, which includes definitions for tokens and dynamics of systems, and its be-
havior. As presented in Moreno-Delgado et al., 2014, static systems defined in the
Palladio Bench (models M,p, conforming to the PCM) can be loaded and analyzed
in e-Motions using the DSL PCM* + Behp,jjadio- In this work, to deal with adaptive
systems, the behavior to be used is extended with adaptation mechanisms, specified
as additional e-Motions transformation rules, Behagaptation- Then, a specific model
Mapp can be used to analyze the performance of the described elastic system using
the DSL PCM* + (BehPaIIadio + BehAdaptation)~

4.5 A running example

To illustrate the Palladio views, we present a very simple scenario with a single
server and a load balancer structure (depicted in Figure[.22). Then, we will use our
adaptation rules to add and remove nodes when necessary from this initial scenario.

Chapter 4. Flexibility in Modeling Self-Adaptive Systems 40

Figure shows the component repository for our example. It depicts two com-
ponents and their corresponding interfaces: ApplicationServer implements |Applica-
tionServer and LoadBalancer implements ILoadBalancer. There is one Requires relations
from the LoadBalancer component to the IApplicationServer interface, that offers the
processRequest() operation. As we can see in the assembly model in Figure [4.24a], the
front-end node, containing the LoadBalancer component, will invoke the processRe-
quest() operation provided by the |ApplicationServer interface. Components’ services
are described by service effect specifications (SEFF), which abstractly model the ex-
ternally visible behavior of a service with resource demands and calls to required
services. Figure shows the SEFF of the processRequest service, which models
the behavior of the server component. Such processing is very simple in our exam-
ple, it just consists in an internal action that consumes 300 units of CPU (CPU cycles).
Figure [4.23b shows the SEFF of the balancer() operation, which models the control
flow in the LoadBalancer component as a probabilistic branching. In our example, the
system starts with one server, we will see in the coming sections how the dynamic
extensions is in charge of adding and removing nodes as needed. Since there is only
one branch in this initial Palladio definition, the probabilistic branching initially has
one single branch, with probability 1, which has an external call action to the sin-
gle node of the model. As new nodes are added to the architecture, new branches
will be added to this action, thus modeling the distribution of works between the
existing servers handled by the load balancer.

Software architects assemble components from the repository to build applications,
represented by assembly models in Palladio. Figure shows how the services
of the LoadBalancer and ApplicationServer components are composed. The biggest
square surrounding the boxes represents the entire environment. For each ‘provides’
relation in the repository model (Figure £.23a), a provided role is created for the
container containing such component.

Allocation models are provided by system deployers, who model the resource en-
vironment and the allocation of components from the assembly model to different
resources of the resource environment. Figure 4.24b shows the allocation model for
our initial model, where we can see how each of the components is allocated in a
different node.

Finally, usage models are provided by domain experts, who specify a system’s usage
in terms of workload, user behavior, and parameters. Given the usage model def-
inition in Figure [6.10, in our case study, tasks will arrive following an exponential
probability distribution with rate parameter 4.9 time units (Exp(4.9)).

4.5.1 Palladio Specification in the e-Motions System

The e-Motions system Rivera, Duran, and Vallecillo, 2009 is a graphical framework
that supports the specification, simulation, and formal analysis of real-time systems.
It provides a way to graphically specify the dynamic behavior of DSLs using their
concrete syntax, making this task very intuitive. The abstract syntax of a DSL is spec-
ified as an Ecore metamodel, which defines all relevant concepts and their relations
in the language. Its concrete syntax is given by a GCS (Graphical Concrete Syntax)
model, which attaches an image to each language concept. Then, its behavior is
specified with (graphical) in-place model transformations.

Chapter 4. Flexibility in Modeling Self-Adaptive Systems 41

The e-Motions language provides a model of time, supporting features like dura-
tion, periodicity, etc., and mechanisms to state action properties. From a DSL def-
inition, the e-Motions tool generates an executable Maude Clavel et al., 2007 spec-
ification which can be used for simulation and analysis. For instance, we can per-
form reachability analysis, model checking, and statistical model checking of the
DSLs defined using e-Motions (see Rivera, Duran, and Vallecillo, 2009 and Durén,
Moreno-Delgado, and Alvarez-Palomo, 2016).

The in-place model transformations used to specify the behavior of systems are de-
fined by rules, each of which represents a possible action of the system. These rules
are of the form [NAC]* x LHS — RHS, where LHS (left-hand side), NAC (negative
application conditions) and RHS (right-hand side) are model patterns that represent
certain (sub-)states of the system. The LHS and NAC patterns express the conditions
for the rule to be applied, whereas the RHS represents the effect of the correspond-
ing action if its conditions are satisfied. Thus, the action described in RHS can be
applied, i.e., a rule can be triggered, if a match of the LHS is found in the model
and none of its NAC patterns occurs. An LHS may also have positive conditions,
which are expressed, as any expression in the RHS, using OCL (Object Constraint
Language). If several matches are found, one of them is non-deterministically cho-
sen and applied, giving place to a new model where the matching objects are sub-
stituted by the appropriate instantiation of its RHS pattern. The transformation of
the model proceeds by applying the rules on sub-models of it in a non-deterministic
order, until no further transformation rule is applicable.

Palladio is a DSL, and has been specified in Moreno-Delgado et al., 2014 using the
visual facilities of the e-Motions system Rivera, Durdn, and Vallecillo, 2009, As for
any DSL, the e-Motions definition of Palladio includes its abstract syntax (the PCM),
its concrete syntax, and its behavior. Its concrete syntax is provided in e-Motions by a
GCS model in which each concept in the abstract syntax being defined is linked to an
image. These images are used to graphically represent Palladio models in e-Motions,
which uses the same images that the PCM Bench to represent these concepts. Its
behavior is defined by graph transformation rules, thus becoming explicit at a very
high level of abstraction.

The operational semantics of Palladio, i.e., its behavior, is given as a token-based
execution model, where each work that enters the system is modeled as a token
that moves around the different services of the system, and inside each service de-
scription, around the different tasks (start, stop, branch, loop, etc.) in its SEFF de-
scriptions. Each of the actions that may occur in the system are then specified by
e-Motions transformation rules. For example, Figure [£.25 shows the e-Motions rule
that specifies the execution of an InternalAction, like the one shown in Figure 4.23¢|
This rule represents a generic execution of an internal activity by a component ser-
vice, possibly using some resources, like HDD or CPU. In Palladio, these execu-
tions present a high-level of abstraction, and the resource demands are expressed as
stochastic expressions. In the e-Motions rule, the LHS indicates that if there is an
internal action not completed in the system, the RHS will execute in time rTime. The
duration of this action depends on the corresponding Palladio elements, specifically
on the Parameter Resources Demanded (PRD) and on the Processing Resource Spec-
ified (PRS). For example, a PRS may have an initial specification of 300 work units
per second (PRS.processingRate) and 1 CPU replica (PRS.numberOfReplicas). Tokens
are served following an FCFS (First Come First Served) strategy by using a queue
associated to each resource type. Only the first PRS.numberOfReplicas tokens in the

Chapter 4. Flexibility in Modeling Self-Adaptive Systems 42

queue PRT.queue get to be executed. Once an internal action is executed, its token
is removed from the queue (PRT.queue—excluding(t)), and marked as completed,
being then ‘moved’ to the following task in the service description.

The behavior of Palladio’s core features has been specified by time-aware in-place
transformation rules, corresponding to the possible model changes. Once the whole
DSL has been defined, and given a model as initial state, it may be simulated by
applying the rules describing its behavior. However, this model does not collect
information on non-functional properties (NFPs), and therefore is not ready for per-
formance analysis. For this, an observer mechanism Troya et al., 2013 is used to
measure the non-functional properties of each of the components in the system. The
PCM metamodel is extended with a family of observer classes, and their semantics
is defined by appropriate definitions in the rules defining the behavior of Palladio.
In the rule of the Figure the rus object collects information about PRS resource
at run-time, which can then be used for quality informations both during the sim-
ulation or for post-simulation analysis. Since the PCM is used as metamodel in the
e-Motions definition of Palladio, models developed using the Palladio Bench can be
directly loaded into the e-Motions tool. The complete e-Motions definition of the
Palladio DSL is available at http://atenea.lcc.uma.es/e-Motions.

4.5.2 Adaptation Rules in e-Motions

In our approach, the different adaptation mechanisms are defined as transformation
rules on the model of the system under analysis. Thus, given monitoring infor-
mation on the different metrics under observation, systems may adapt in different
ways by performing different operations, like scale up/down (increase/decrease
of the amount of resources like computation capacity, memory, etc.), scale in/out
(adding/removing computation or storage nodes), etc. As usual, the monitoring of
metrics is stored in the observer objects, which allows us to consult current values,
windows of values of certain length, and complete histories of data. To illustrate
how our approach works, we focus on one of the most challenging of these opera-
tions: the scale out associated to a load balancer as the one in our example, scaling
out when the average usage of CPU in the last time window goes over 65%.

Adaptation rules operate on the structure defined in the Palladio models, which are
indeed used to provide the initial models for the simulations. The addition of a node
in any state of the system (see Figure will imply the modification of the models
of the different views in the Palladio description:

¢ In the component repository, when the addition of a node occurs, a Requires re-
lation between the LoadBalancer component and the IApplicationServer interface
should be created.

¢ In the balancer SEFF, which models the control flow in the LoadBalancer com-
ponent, a branch (with appropriate likelihood and corresponding external call
action) should be created.

* An assembly context should be created along with its communication with
load balance for each server added.

e The allocation model also is modified at runtime: for each node added, an
allocation of the ApplicationServer component should be added to this node.

All these actions, including balancing actions, are carried out by e-Motions rules in
Figures 4.26-@.30. Specifically, they model the addition of a new node, with the same
characteristics of the existing component in the system.

http://atenea.lcc.uma.es/e-Motions

Chapter 4. Flexibility in Modeling Self-Adaptive Systems 43

Since the Palladio models the e-Motions tool operates on, represent entire system
states, we can specify system adaptations in exactly the same way we model their
evolution.

The condition that triggers the application of a rule is provided by its LHS and con-
ditions, and its effect by its RHS (the pattern in the LHS is replaced with the pattern
in the RHS with the corresponding substitution).

The Add Node Rule (Figure @) is the main one firing the addition of the node.
It is in charge of creating action tokens that will fire and guide the execution of
the subsequent rules. The Add Node Rule is triggered when the attribute usPerc
of the observer ob indicates that the current value of the average resource usage
in the time window is over 65%. The RHS of the rules specifies that the action to
perform to react to such an event consist in the creation of a new node nNode in
the environment recEnv; in addition, a link is established with the computing lan
center linkRes, a token indicating the creation of a new node tNnode and a token of
the resource specification spec. After this rule, and fired by the reception of these
tokens, four additional rules are in charge of configuring and inserting the node in
the existing context.

Figure [£.27 shows the rule that creates the resource specification of the new node,
which is triggered when there is a token resource specification spec linked to a node
object nNode, the resource type rType and the scheduling policy sPolicy (both values
in the token specification spec) is in the model. In such a situation, this rule creates
the indicated specification for the new rule, removing the token specification spec
when the action is performed.

Figure [£.28 shows the establishment of the context of the new node. The action is
triggered when there is a new node token tNnode linked with a node object nNode.
The rule uses the context of the component to allocate the new node, associated to
the signature sign, Resource Demanding SEFF seffRD, Application Server reBasComp
(Basic Component), Operation Provided Role prov and Operation Interface reOpln-
terface. When applied, the rule allocates the component to the new node, creating a
new assembly context for it.

Figures [4.29 and [4£.30 are executed to conclude the process, creating a connection
with the Load Balancer component IbResBasComp and a new probabilistic branch
transition to the new node seffProbBranchTrans, respectively.

4.6 Results

As for static systems, we can now carry on performance analysis of system designs.
Specifically, we discuss here the analysis of the resource usage, response time and
throughput of the example specified using Palladio. This system is taken as input
initial model, on which adaptation transformation rules operate, together with the
rest of rules defining the operational semantics of the system. As a result we can
observe how the system behaves and evolves, what will allow us to study different
parameters, and take informed decisions on the best configurations and parameters
for it before its deployment.

To improve the presentation of the example, we have limited the possible adapta-
tions that operate on the example to scale up and down depending on the usage of
CPU. To allow a more stable evolution of the system, we have considered a time

Chapter 4. Flexibility in Modeling Self-Adaptive Systems 44

window of 10 units and a minimum time to repair (TBA) of 5 time units. Figure .31
shows evolution of the average CPU usage and the number of servers. The CPU
usage of each of the servers is also shown. In the graph we can observe how the
system starts with one servers (initial model provided in the Palladio specification),
and although the average CPU usage is 100% (the rate of incoming works clearly
overrates the capacity of the only server), a second server is not created until time 5
(the application of the first scale-out adaptation occurs at time 5.07). We can observe
an immediate drop in the average resource usage after the creation of this second
server. However, it is not quick enough, after 5 time units a new adaptation occurs,
and after 5 more a third adaptation leaves the system with 4 servers (at times 10.19
and 15.27). This configuration with 4 servers goes on until time 68.32, where the
average CPU usage goes below 35%, the threshold for a scale in. The works in the
queues produce a new scale out some time later, and one more scale in after some
more time. After this last adaptation the average CPU usage of the servers stays
within the established thresholds and the system stays with 3 servers.

The scale in operation is quite similar to the scale out one described in Section
In this case, the node is removed, the references to it are removed, and the probabil-
ities of the remaining nodes are redistributed. However, although no further works
are submitted to a node being removed, it is kept in operation until all the works
in its execution queue are processed. This explains the non-abrupt ending lines for
nodes being destroyed.

The chart in the Figure [4.32 shows the throughput (defined as the number of works
processes per time unit) and response time values compared with the adaptations
that have occurred over time. We can see the increase in the throughput as the num-
ber of servers increases. The impact on the response time can be noticed from time
10. Notice however that after the first server is added, in the time 5.07, there are
some works with response times above 4 time units and others with response time
below 1 time unit. This of course happens because the works are distributed be-
tween different servers, and the server that has just been added can handle new
works inmediately until it gets saturated. The response time stabilizes after some
time, staying below 2 time units after time 15.

Many things can be learnt from these graphs. For instance, for such a workload
we may very well start with three servers from the begining, since it seems to be
its stabilization point for the given parameters. Using a different size for the time
window may avoid the initial fluctuations, although it is not necessary the case. Fig-
ures 4.33 and [4.34 show the charts for time window 10 and minimum time between
adaptations 5.

Chapter 4. Flexibility in Modeling Self-Adaptive Systems

£] LoadBalancer =] ApplicationServer
¥ SEFF <balancer> ¥T SEFF <processRequest>
PassiveResourceCompartment PassiveResourceCompartment
ComponentParameterCompart... | ComponentParameterCompartment
<=Provides== <<Reguires>=> <<Provides>=>
€) lLoadBalancer @ ApplicationServer

|=| void balancer() ||| wvoid processRequest()

(A) Components repository

. ,'kl:ualancing .

_f;:\ delegateToServert
% Probability: 1

é{ AssChx_Mode1.processRequest
InputWariahlelUsage

QutputvariableUsage

(B) Balancer SEFF

¢ processData

ResourceDemands
L5300 <CPU=

FailureOccurrenceDescriptions

InfrastructureCallsCompartment

(C) Request SEFF

FIGURE 4.23: Component Model

Chapter 4. Flexibility in Modeling Self-Adaptive Systems

46

System
Provided_|ApplicationServer_ApplicationServer

Provided_|&pplicationServer_LoadBalancer

Z 1 ServerNodel
i | AC_LoadBalancer

(O—

%{ Provided ILoadBalancer AssCtx_Nodel
(A) Assembly Model

|H| LoadBalancer

&1 Allocation_AC_LoadBalancer <LoadBalancers

2] LoadBalancer =AC _LoadBalancer=

|H| serverNodel

= Allocation_Server! =ApplicationServer=

2] ApplicationServer =Servertodel=

(B) Allocation Model

¢% overloadUsageScenario

¢+ ILoadBalancer.balancer

£, Interarrival Time: Exp(4.9)

(c) Usage Model

FIGURE 4.24: Allocation, Usage and Assembly Models

Chapter 4. Flexibility in Modeling Self-Adaptive Systems

47

18 1Hs IREDS
A t 1 t
i
K s : st
£ completec = true
completec = false PRD
PRD [
(==}
PRT
PRT -
-
PRS
Sch — sch
PRS &
- -¢r queue = PRS queve-=excluding(t]
id = 'FCFS' resource
rus
rus n
! Luh
por)
T PRS.quaue->indexOfit) <= PRS.numberOfReplica
W rTime ; INteger = eMotions, parseExp(PRD. specification_ParameterncResourceDemand. specification, t.contert)
| eMotions.parseExp(PRS.processingRate_ProcessingResourceSpecification.specification, t.context)

FIGURE 4.25: Internal Action SEFF rule

HS IREGS
o Nod d b
recEnv reckny MNOde tNnode x
! -]
& = T a
Qﬂ entityName = 'ServerNode'.concat(contNum.toString()) = 4@&
type = "Quality” id = contNum.toString()
; token clk . spec
linkRes f\’,_\ linkRes token
X X 28] b Tar *
resourceType = 'CPU' lastAdaptation = clk.time
schedulingPolicy = 'First-Come-First-Serve' adaptTimes = token.adaptTimes->append(clk.time)
numberOfReplicas = 1
Wit ob.usPerc = 0.65 processingRate = 1000’
MTTF = 0.0
it clk.time - token.lastAdaptation = token.mttr MTTR = 0.0

[/ contMum : Int = recEnv.resourceContainer_ResourceEnvironment->size() |

FIGURE 4.26: Add Node Rule

entityName = spec.schedulingPolicy

LHS T5] RHS
nNode rType
nMNode spec =) -
L] T
rType
P newSpec - sPolicy
entityName = spec.resourceType 3 : +
numberOfReplicas = spec.numberOfReplicas
MTTF = spec.MTTF
. MTTR = spec.MTTR
sPolicy procRate
+ B

specification = spec.processingRate

FIGURE 4.27:

Resource Specification New Node Rule

Chapter 4. Flexibility in Modeling Self-Adaptive Systems

48

LHs

5] RHS

newAllCEx

)

nMode

=

tMnode
sign
E e
sefFRD reQplnterface prov
&

niMode

=

entityMame = 'Allocakion_Mode'.concat(nMode.id

newhssCEs

entityMame = 'Mode'.concat{nMode.id]

reBasComg

£]

enktityrMame = tMnode.component

tMnode
sign
E e
sefFRD reQplnterface prov
g o o
reBasComg
£]

FIGURE 4.28: Context New Node Rule

THS T3] RHS
opProv
opProv ol
LoR
newassConnLBNnode
reOplnterface tNnode newAssCtx reOpinterface newAssCtx &
e
o T! entityName = 'Connector AC_LoadBalancer -> Server'.concat(regNum.toStrina())
newReOpReqg
IbReBasComp IbAssCtx H IbReBasComp
i £ entityMame = 'AC_Server'.concat{regNum.toString(}) £]
entityName = 'LoadBalancer’
theads seffReDeSeff
seffReDeSeff T.
3
b=

[/ _regNum : Int = IbReBasComp.requiredRoles_InterfaceRequiringEntity->size() + 1

FIGURE 4.29: Load Balancer and New Node Connection Rule

18 LHS T2] RHS
tNnode reOpRe
seffReDeSeff Prieq
seffReDeSeff reOpReq ¥ H
£ Tw X
seffBranchaction i
\ & 5|g|n_‘ seffExCallac seffstart
seffBranchAction man = & i
~ E
[%/ num:int = seffBranchAction.branches Branch->size() +]| seffProcBranchTrans seffReDeBeh seffstop
¥ @
branchProbability = 0.0
entityName = 'branchProb'.concat{num.toString())

FIGURE 4.30: Add New Branch Rule

Chapter 4. Flexibility in Modeling Self-Adaptive Systems

49

100%6 N
u
20%6 m
c b
e 20%6 e
U r
70%
U o
s 60%06 f
a
g 50%6 s
e
e
40%6 .
% v
20%6 &
r
20%b6 - s
10%6 +
0% o
o 5 10 15 20 25 30 35 40 a5 50 55
Time
A CcPUU CPU Usage Server 2
—a— Average sage age CPU Usage Server 4 Risnberof Sonas
CPU Usage Server 1 CPU Usage Server 3 CPU Usage Server 5
FIGURE 4.31: CPU usage correlation with the number of servers
scaled: TW 5, TBA 5
Q N
u u
a m
I b
i e
t r
¥
o
M f
e
a S
s e
u r
r v
e e
m r
e s
n
t
Throughput Time
= Number of Servers
® Response Time

FIGURE 4.32: Throughput and response time: TW 5, TBA 5

Chapter 4. Flexibility in Modeling Self-Adaptive Systems

50

100%0
N
90%%6 u
c m
P 20% b
U e
TO%0 r
u
5 60%0 o
a f
g 509
e s
A40%b e
% 30% r
v
20% f
1096 S
0%
Time
== fverage CPU Usage CPU Usage Server 1 CPU Usage Server 3
e Number of Servers CPU Usage Server 2 CPU Usage Server 4
FIGURE 4.33: CPU usage correlation with the number of servers
scaled: TW 10, TBA 5
Q N
u u
a m
| b
i e
t r
Yy
o
M T
e
a S
s e
u r
r v
e e
m r
e s
n
t
Time
* Throughput ® Response Time = Mumber of Servers

FIGURE 4.34: Quality metrics impact: TW 10, TBA 5

51

Building Adaptation Mechanisms

The definition of dynamic behavior in this work occurs through the advancement
in modeling Palladio’s behavior; in the modeling of adaptation mechanisms; and in
the modeling of non-functional requirements control. All of these steps were built
using the e-Motions tool. In this section we will present the details of the modeling
of each one of them. In e-Motions we unite everything in a single metamodel (ad-
vancing in the existing Palladio metamodels) and separate the rules of behavior in:
Palladio rules (advancing in the existing Palladio rules), QoS rules, adaptation rules
and network rules.

5.1 Modeling of Adaptation Mechanisms

In this section, we describe how the adaptation rules can be modelle Although
other adaptation operations could be similarly specified, we focus here on what in
Cloud Computing is known as vertical and horizontal scaling. Vertical scaling is the
ability of resizing a server to increase or decrease its processing/storage capacity by
adding or removing the amount of resources provided. Vertical scaling is limited
by the amount of resources available. Horizontal scaling is the ability of a system
to change resource capability by adding or removing nodes (i.e., instances or vir-
tual machines), enabling the use of new resources, perhaps with better and larger
processing/storage capacity, or releasing them if they are not further necessary.

The linkage between the rules specifying the adaptation operations and the QoS
and SYBL rules of behavior happens thanks to the SYBL and the SYBL Annotation
classes created. In adaptation rules, the adaptation Strategy is represented by objects
of these classes.

Figures[5.1and [5.2show, respectively, sketches of the scale-up and scale-out adapta-
tions. Figure[5.T|illustrates a scale up operation on the number of replicas of the CPU
resource available in the Server Node. Given n replicas, its number can be increased
in any amount m. The increment is specified as one of the adaptation parameters. A
scale out consists on adding nodes, thus creating new containers and their resource
specification and allocating a component on them. Figure 5.2/ sketches the effect of a
scale out operation on our running example. Given some number of DataBase nodes
in some state of the system, each with a corresponding number of CPU resource

IThe rules is available at https: //www.scenic.uma.es/GTPAAS/.

https://www.scenic.uma.es/GTPAAS/

Chapter 5. Building Adaptation Mechanisms 52

Server Node
FontEnd %7 | | Application £
[Server
| CPU %
Scale Up Adaptation
Server Node
FrontEnd €3 | | Application ¥
[~ 7| Server
LCPU e Eymc

FIGURE 5.1: Scale up adaptation scheme

Scale Out Adaptation

DataBase Node 1

]
1 Data
DataBase Node 1 f Provider

a | U
1 Data i _Replicas
Provider

{Teru Ern]
DataBase Controller B oind E DataBase Controller

RS DataBase Node k

Data Access £ | [— Data Access £)
Control Control r *| Data
DataBase Node k Provider
Data | Replicas
Provider

FIGURE 5.2: Scale out adaptation scheme

replicas, the rule scheme represents the addition of a new application node, with the
specified initial number of replicas. Inverse operations — scale down to decrease the
number of resource replicas and scale in to remove nodes — are also available.

Let us consider one of these operations in some further detail. Specifically, let us fo-
cus on the most challenging of them, the scale out associated to a DataBase Controller
as the one in our example: when the average usage of CPU in the last time win-
dow goes over 65% a new node with the Database component has to be deployed.
Although presented for our running example, the operation can be performed on
any cluster of nodes upon the occurrence of the correspondent signal. Upon the val-
idation of a SYBL annotation’s constraint, a token command is released to trigger
the action specified in the corresponding strategy. Adaptation rules then operate on
the structure defined in the Palladio models. The addition of a node in any state of
the system will imply the modification of the models of the different views in the
Palladio description:

* In the component model:

— a Requires relation between the Controller component and the IDataBase
interface should be created;

— in the SEFF <control>, which models the control flow in the Controller
component, a branch (with appropriate likelihood and corresponding ex-
ternal call action) should be created;

¢ In the assembly model:

Chapter 5. Building Adaptation Mechanisms 53

AddNode
Tin [0,0]
LHS T3] =8
o clk nhode
recknv i clk linkRes s
o =
) 5 AT H
Moo E™3) entityName = ‘Node'.concaticontMum.toStringi}
— id = contNum.toStringl)
linkF)
'”u}: 5 recEnv
newobs thnode
resaurceSoec
(52 T, a
- L3 o
ode = ‘Node’concaticontNum taStringti ’x_’-
B companent = ann.componentName component = ann.componentName %
token token (x_’ metrics = ann.metrics specFinished = 0
* ng" timeWindow = ann.timeWindow idNewNode = contNum.toStringl)
i “ScaleO
ann
sy o
strategies i d
taken 5951_
ann
- 2 agaptlimes = sybl.adaptTimes->appendicls.time)
annotations sirlsed = sybl.strUsed->zppendistraction) waitlime = strwaitlime
5[551_ waitTime = strwsiiTime adeptTimes = ann.adaptTimes->appendiclktimel
strUsed = ann.strUsed->appendistr.action)
nodeAdzpted = ann.nodeAdapted- »append] Nods' concaticontum.toStringl}))

[\ contNum - int = recEnv.resourceContainer_ResourceEnvironment->sizef) |

FIGURE 5.3: AddNode rule

- an assembly context for the new node should be created along with its
communication with the Controller component;

¢ In the allocation model:

— an allocation of the DataBase component should be added to the new
node.

Instead of having one single complex rule modeling what is sketched in the scale
out adaptation depicted in Figure this operation is implemented by several e-
Motions rules taking care of the different actions. The AddNode rule, depicted in
Figure is the main one, triggering the addition of the node. Given an adaptation
token linked to a SYBL annotation strategy with a ScaleOut action, a new node nNode
is created in the environment recEnv, linked to the computing lan centre linkRes.
In addition, a token indicating the creation of a new node tNnode will guide the
triggering of subsequent rules, performing the rest of the necessary actions.

The

1.

scale out operation proceeds as follows:

As above explained, and depicted in Figure a scale out begins with the
creation of the node in the AddNode rule.

Then, the NewNodeContext rule creates assembly and allocation contexts for the
new node. The component for which the new context is created is indicated
in the annotation of the specification, as well as the operation signature and
the operation interface linked with it. When applying the rule, the new node
token is linked with the new assembly context, the operation signature, and the
operation interface, and receives the monitor list from the SYBL annotation.
The SpecResourceNewNode rule is responsible for configuring the specified re-
sources, as defined in the initial model, for the new node. This rule is applied
for each of the resources modelled in Palladio.

The ReqProvConnNewNode rule uses the assembly context, the operation signa-
ture and the operation interface to create the new assembly connector and the
new operation required in the component that has the external action call. This

Chapter 5. Building Adaptation Mechanisms 54

component can be either a load balancer or a database controller. The external
call is within a probability branch in a branch action.

5. The AddBranchNewNode rule adds a new probability branch, with the corre-

sponding external call action, and the signature as indicated by the new-node

token.

The IncBranchProbability rule balances the probabilities of all branches.

7. The CreatedRTOb and ResourceUsageOM rules create and link observers in ac-
cordance with what is specified in the monitors in the annotation.

8. The RemoveTokenNewNode rule is in charge of removing remaining operation
tokens once all monitors have been appropriately handled.

o

The scale in operation proceeds as follows:

1. The DecBranchProbability rule disconnects a probability branch from the branch
action, whose probabilities are rebalanced.

2. The RemoveBranch rule removes the probability branch object and the external
action linked to it.

3. The RemoveNode rule eliminates the node along with all its connections and
assembly context. This rule is triggered when all works present in the resource
usage queue of the node to be eliminated have already been completed.

4. The RemoveObservers and RemoveTokenRemove rules remove all observers when
it is certain that none still has any value that can be considered by a time win-
dow.

5.2 Modeling of Non-Functional Requirements Control

modeling the systems and the environments where they are going to be deployed is
not enough in the presence of dynamic behavior, once some kind of adaptation has
to be modelled as well. Indeed, we need some way of specifying how the adaptation
is managed and controlled.

The e-Motions observers proposed by Troya et al., 2013 use of metrics and adaptation
specifications defined directly on the behavior rules and linked to the object to be
analysed. In order to make the definition of quality metrics even more flexible, in
this work the management of the non-functional properties is performed by a series
of independent rules of behavior.

As the proposal of this work, SYBL Monitors work in an integrated way together
with e-Motions observers to collect monitoring information on the different metrics
being observed. Systems may then, depending on this gathered information, adapt
in different ways by performing different operations, like scale up/down, scale in-
/out, etc. Since the collected monitoring information is stored in the Observer ob-
jects, direct access to current values, windows of values of certain length, and com-
plete histories of data are provided through them. The monitoring infrastructure is
integrated with the e-Motions observers and runs on the different levels: for each
observer, a monitor is created, and a monitor can be associated to one or more ob-
servers (in the case of two or more replicas of resource, for example, one observer is
created for each replica). Moreover, a monitor can monitor another one. The monitor
which directly monitors an observer belongs to level one and the monitor of other
monitors belongs to level two. The metamodel proposed in Figure [5.9 along with
the definition of behavioral rules allow any quality metrics to be inserted.

Chapter 5. Building Adaptation Mechanisms 55

Metric 1 (Resource Usage - RU) Metric 2 (Response Time - RT)
= | Application Component Observer RU <H— Observers RU Monitor
g (Replica 1)
g i
Bl 0 Application Component Observer RT <+———— Observers RT Monitor
2 129 L (Replica 1)
i Monitors RU Monitor
-
<
§ (¢}
g for!
5 Monitors RT Monitor
=« 58
= Data Base Component Data Base Component
3 Observer RU Observer RT
[e) (Node 1) (Node 1)
2 A
< .
S :
N 8 18
2 Observers RU Observers RT
£ Monitor Monitor
2
& A A T A
l¢] (¢]
Lk Lk
Monitors RU Monitor Monitors RT Monitor

FIGURE 5.4: Relations between observers and monitors

The specific instantiation of observers and monitors for our running example is de-
picted in Figure For inserting a new metric, we just have to specify it in SYBL
and create, in the metamodel, a subclass Observer corresponding to it. The infor-
mation about each metric is saved and calculated during simulation time using the
monitors.

The SYBL specifications are used as a reference for controlling non-functional re-
quirements, which are evaluated using a set of rules integrated with the rules de-
fined for the adaptation control.

The CheckConditions rule in Figure 5.5, specifies the evaluation of the conditions as-
sociated to a specific SYBL annotation. The checkStatus and checkConstraint OCL
functionﬂ check the values of the restrictions established in the specification and
compare with the values obtained during the simulation by the observers managed
by the monitors. This rule checks whether a restriction is violated. If so, it cre-
ates a trigger for other rules to decide which adaptation strategy should be applied,
according to specification. This is done by releasing tokens that control the flow of
rules. The behavior rules checks whether an adaptation action is necessary, and if so,
it decides which strategy should be applied, according to specification, and releases
a token that indicates the action to be executed.

The management of non-functional properties and the adaptation operations in-
cludes rules for the management of controllers, monitors, observers, and time win-
dows. Figure 5.6/ depicts the procedure. The beginning of the scheme indicates the
first rule for the adaptation control and non-functional requirements. The CheckConditions
rule continuously verifies the specified constraints. This verification consists in the
comparison of the defined values in the SYBL specification to the values obtained
during the monitoring in simulation time. The scheme indicates that the monitoring

20CL (Object Constraint Language) auxiliary functions can be defined in e-Motions using e-
Motions Helpers.

Chapter 5. Building Adaptation Mechanisms 56

CheckCondition:
T

| ECE 5] RS

cond
cons cons

—T
N= nl
a LUJ

status = currentStatusConstrain

monitoredValu: = mon.currentValu

mon ann

WITH man currentvalue <> cond manitaredVs cansVialater = self.checkStatusicurrentStatusCanstraint, ann.consViolated, cons, ‘violatl

%/ currentStatusConstraint - String = self.checkConstrainticans, self.statusimon.currentvalue, cand.relationOperator, cond.r |

__

FIGURE 5.5: CheckConditions rule

I CheckConditions

CheckConstraintsSYBL constraint violated

AdaptationStrategy

OCL check N .
e S o

B n check time window

Monitoring token activates a strategy

Update Metric
Value rh AdaptationsActions|

Observer Observer

rh ObserversToken

FIGURE 5.6: Controller scheme

Create Adaptation
Token

Specified constraint

Observer

Update
Observer

values are obtained from the observers, which are updated by tokens that were in-
serted in the Palladio rules. The update of the monitoring values occur following a
pre-established time window.

If the CheckConditions rule identifies that a constraint was violated, the AdaptationStrategy
rule is triggered and it will indicate which adaptation should be applied, accord-

ing to the SYBL specification. The waiting time between adaptations is also pre-
established. Thus, if the time between adaptations overcomes the waiting time a

token is created and it will trigger the corresponding adaptation rule to the speci-

fied adaptation. The impact of the adaptation actions will be discussed in the next

section.

The control of the evolution of the systems can be seen as a typical MAPE-K (Monitor-
Analyse-Plan-Execute over a shared Knowledge) feedback loop.Sinreich, 2005 As
illustrated in Figure[5.7} in our case, the knowledge is represented by the set of spec-
ifications, models and behavior definitions — the Palladio Rules, the Palladio
Model, the Adaptations rules, the Non-Functional Requirements specification, and
the Control rules. In summary, the monitoring is carried out with the information
obtained by the tokens in the Palladio rules, and updated in the observers. The val-
ues obtained from the monitoring are often analysed by comparing them with the

Chapter 5. Building Adaptation Mechanisms 57

Analysis 4 y Planning
™, T

b . Knowledge
‘ Non-Functional

Requeriments
Palladin | [Falladio ‘ Conual |f
Rules Model

Tokens — & Adapration

Ry

Execution

.
*

Monitoring

FIGURE 5.7: A MAPE-K Loop interpretation of the approach

specified values of non-functional requirements. The control rules trigger the adap-
tation planning and, if necessary, they are executed when possible.

5.3 Specifying a SYBL Annotation

In the presence of dynamic behavior there has to be some way of specifying how the
adaptation is managed and controlled. This approach used SYBL which, although it
was not designed to be used for predictive analysis (but to connect different moni-
toring tools and cloud APIs, and to indicate elasticity mechanisms for different ser-
vices), we consider it very appropriate for our purpose due to its ability to describe
constraints, monitoring and adaptation strategies.

SYBL is a language for controlling elastic capabilities of cloud applications at run-
time, where elasticity is not only referred to resource scalability, but also to cost and
QoS properties. In this way, SYBL is capable of expressing conditions combining
these three dimensions. Another feature of SYBL is its ability to enable different
kinds of users (application developers, software providers, laaS/PaaS end-users or
cloud providers) to specify the elastic features of an application. The language was
designed to be API independent, and it provides a control service that can use dif-
ferent monitoring tools and cloud APIs, regardless of the technology used. Further-
more, SYBL was designed to be extensible, that is, it facilitates the involvement of
new concepts and allows to link metrics or syntactic entities of the language to ex-
ternal elements that can correspond to measurable variables or units in the system
being modelled.

The SYBL expressiveness concerns not only to the multi-dimensional elasticity (re-
sources, cost and quality) but also to the multi-level description possibilities. Thus,
it is possible to specify different elasticity constraints and strategies at the applica-
tion, component and programming levels, by means of the so-called directives. An
annotation is a set of different directives, and represents the requirement specifica-
tions for an application and each of their components. For each annotation, we need
to indicate: the specification level (application, component or programming), and a
label for defining the monitoring metrics, for describing the constraints to be taken
care of, and for establishing the strategies to apply when necessary. In addition,
other information could also be provided (identifier, component name, priorities of
constraint and strategies, etc.).

Chapter 5. Building Adaptation Mechanisms 58

(Constraint) := constraintName : CONSTRAINT ComplexCondition
(Monitoring) ;= monitoringName : MONITORING varName=MetricFormula

(Strategy) := strategyName : STRATEGY WHEN ComplexCondition : action(parameterList)
| strategyName : STRATEGY WAIT ComplexCondition
| strategyName : STRATEGY STOP
| strategyName : STRATEGY RESUME

{(MetricFormula) := metric | number | metricFormula MathOperator metric
| metricFormula MathOperator number

(ComplexCondition) := Condition | ComplexCondition BitwiseOQperator Condition
| (ComplexCondition BitwiseOperator Condition)

(Condition) :== metric RelationOperator number | number RelationOperator metric | Violated(name)
| Fulfilled(name)

(MathOperator) == + 1 — x|/
(BirwiseOperator) :== OR | AND | XOR | NOT

(RelationOperator) == <|>|>=|<=|==|!=

FIGURE 5.8: BNF grammar of SYBL

5.4 SYBL Metamodel

The grammar of the SYBL language, in Backus Naur Form (BNF), is shown in Fig-
ure 5.8 In our approach, to be able to use SYBL annotations textually specified using
this grammar, we have created in e-Motions the Control metamodel, which is shown
in Figure[5.9, in this metamodel Classes represent the expressions and terms that the
grammar defines.

The SYBLrequirements class relates to one or more REQUIREMENTSAnnotation classes,

has two attributes and indicates when SYBL annotation has been violated or ful-

filled. The REQUIREMENTSAnnotation class represents the built specification. Each an-
notation must contain the specification of the constraints (REQUIREMENTSComplexCondition),
the adaptation strategies (REQUIREMENTSComplexStrategy), the specification of the
monitors and their monitoring metrics (REQUIREMENTSMonitoring and REQUIREMENTSMetric).
SYBL Monitors work in an integrated way together with e-Motions observers (the
e-Motions observers was proposed by Troya et al.,[2013) to collect monitoring infor-

mation on the different metrics being observed.

The proposed metamodel, along with the definition of behavioral rules, allow any
quality metric to be inserted. For inserting a new metric, we just have to specify
it in SYBL, and create, in the metamodel, a subclass Observer associated to it. The
information about each metric is collected and calculated at simulation time using
these monitors.

The SYBL specifications are written according to the metamodel of Figure[5.9]and are
used as a reference for controlling non-functional requirements, which are evaluated
using a set of rules integrated with the rules defined for the adaptation control.

Chapter 5. Building Adaptation Mechanisms 59

SYBLrequirements REQUIREMENTSStrategy
+ violated:Boolean A +id:String
+ fulfilled:Boolean + violated:String

+ action:String

i v

REQUIREMENTSAnnotation REQUIREMENTSComplexCondition REQUIREMENTSCondition

+ componentlD:String 1.4
+ componentName: String

+ name:String | +id:String
+ priority:integer é + relationOperator: char
+ number:integer

REQUIREMENTSMonitoring REQUIREMENTSMetric

+id: String + metricName:String
9

Ja

Observer

+ values[]:double
+ times[]:double

5 7

ObResponseTime ObResourceUsage

FIGURE 5.9: Control Metamodel

5.5 Modeling of Communication Channel

Another significant advance of this work regarding the implementation of Palladio
in e-Motions was the modeling of the communication between containers. To clarify
the modeling, first we present the activity diagram that represents the operation of
Palladio in e-Motions (Figure [5.10), which already includes the contribution made
regarding the modeling of the "Link Resource".

The flow starts in the Usage Model whose role is to call each work to the system.
The first step of the system flow is to verify the Assembly model that will follow
the execution according to the proposed system modeling. The Assembly model
contains one or more Assembly contexts. The identification of Assembly contexts
is important because this is where the component models, which describe the SEFF
services, are encapsulated.

An Allocation context may contain one or more Assembly contexts. Each Alloca-
tion context, in turn, belongs to an Allocation model which is linked to the resource
environment that contains containers and the modeled link that allows the commu-
nication between each container. A new Assembly context is always created when
a "Scale Out" occurs, because a new node will be created that will perform a ser-
vice. SEEF services allow external calls that may be directed to services on the same
node or on another one. Initially, Palladio’s implementation in e-Motions did nott
consider the resource link. This implementation was made from this work.

Figure 5.11 represents the transition rule for an Internal Action and Figure[5.12 rep-
resents the transition rule for an External Action. This distinction was important

Chapter 5. Building Adaptation Mechanisms 60

since it is only in External Actions that calls are made to execute works on different
nodes.

The transition rule for External Action is more complex because it is necessary to
identify several elements, such as the Assembly context that makes the call and the
Assembly context that receives it, as well as the Allocation context that makes the
call and the one that receives it. In the Transition to External Action rule (Figure[5.12)
is also necessary to store possible variables inserted in the External Action modeling
and the information about the resource link that was defined in the modeling of
these contexts. The External Action rule was modified (Figure 5.11) to take into
account the latency of the link between containers.

Figure[5.14 shows the container change rule that is activated when a service is called
and is in a different container than the one that requests it. This call will then go
through the communication channel, and the network link settings must be consid-
ered. The rule checks the specified throughput and latency values.

Another important modeled rule is present in Figure[5.15, which represents the Tran-
sition Branch rule. It is responsible for identifying the branch type modeled on the
corresponding SEFF (it could be a probability branch or a Guarded branch, for ex-
ample). Modeling this rule was important to understand what kind of conditions
might be present in branches. Initially it was possible to carry out only probabilistic
transitions, but now the possibility of transitions with more complex conditions was
introduced using the Guarded branch, such as the verification of the lowest latency
between the nodes that allocate a certain service to choose which node to execute.

5.6 Results

5.6.1 Adaptations Mechanisms Rules

Different adaptation mechanisms available are defined as transformation rules on
the model of the system under analysis. Thus, given monitoring information on the
different metrics being observed, systems may adapt in different ways by perform-
ing different operations, so far, we have available the adaptations scale up/down
and scale in/out. The collected monitoring information is stored in the observer ob-
jects, giving direct access to current values, moreover, windows of values of certain
length, and complete histories of data are being used.

Scale Out Mechanism

Consists on adding computation or storage nodes, typically organised in a cluster.
The scale out operation proceeds as follows:

Add Node rule. The Add Node rule is the main one firing the addition of the node.
Given an adaptation token token linked to a SYBL annotation strategy with a Scale-
Out action, a new node nNode is created in the environment recEnv, linked to the
computing lan center linkRes. An observer object is created together with the node
to collect information on this new node. In addition, a token indicating the creation
of a new node tNnode will guide the firing of subsequent rules, performing the rest
of the necessary actions.

New Node Context rule. The New Node Context rule creates assembly and alloca-
tion contexts for the new node. The component for which the new context is created

Chapter 5. Building Adaptation Mechanisms 61

is indicated in the annotation of the specification, as well as the operation signature
and the operation interface linked with it. When applying the rule, the new node
token is linked with the new assembly context, the operation signature, and the op-
eration interface, and receives the monitor list from the SYBL annotation.

Resource Specification of the New Node rule. The Resource Specification of the
New Node rule is responsible for configuring the specified resources, as defined in
the initial model, for the new node. This rule is applied for each of the specified
resources, and a resource observer is created for each of them.

Required and Provided Connection of the NewNode rule. The Required and Pro-
vided Connection of the NewNode rule uses the assembly context, the operation
signature and the operation interface to create the new assembly connector and the
new operation required role in the component that has the external action call. This
component can be either a load balancer or a database controller. The external call is
within a probability branch transition in a branch action.

Add Branch New Node rule. The Add Branch New Node rule adds a new probabil-
ity branch transition, the branch action, with the corresponding external call action,
and the signature as indicated by the new-node token.

Increase Branch Probability rule. The Increase Branch Probability rule balances the
probabilities of all branches.

Created Response Time Observer rule. The Created Response Time Observer rule
create and link observers in accordance with the specified annotation monitors.

Created Resource Usage Observer rule. The CreatedResource Usage Observer rule
create and link observers in accordance with the specified annotation monitors.

Scale In Mechanism

Consists on removing computation or storage nodes, typically organised in a cluster.
The scale in operation proceeds as follows:

Decrease Branch Probability rule. The Decrease Branch Probability rule discon-
nects the probability branch transition and the branch action connected to the con-
straint violated that triggered the adaptation.

Load Balancer rule. The probabilities of the branch action are re-balanced.

Remove Branch rule. The Remove Branch rule removes the probability branch tran-
sition object and the external action linked to it.

Remove Node rule. Rule Remove Node rule eliminates the node along with all its
connections, assembly context, and observers. This rule is triggered when all works
present in the resource usage queue of the node to be eliminated have already been
completed.

Remove Observers rule. The Remove Observers rule remove all observers, making
sure that no one still has any value that can be considered by a time window.

Remove TokenRemove rule. The Remove TokenRemove rule remove the token re-
move.

Chapter 5. Building Adaptation Mechanisms 62

Scale Up and Scale Down Mechanisms
The scale up/down operations change the number of replicas available in an node.
Scale Up. The scale up rule increase the number of replicas of the resource specified.

Scale Down. The scale down rule decrease the number of replicas of the resource
specified.

5.6.2 QoS Metrics Measurement Rules

In this approach, the different adaptation mechanisms available are defined as trans-
formation rules on the model of the system under analysis. Thus, given monitoring
information on the different metrics being observed, systems may adapt in different
ways by performing different operations, like scale up/down, scale in/out, etc. The
collected monitoring information is stored in the observer objects, giving direct ac-
cess to current values, windows of values of certain length, and complete histories
of data.

5.6.3 Adaptation Control Rules

Modeling a system and the environment where it is going to be deployed is not
enough in the presence of dynamic behavior, when some kind of adaptation has to
be modelled as well. We use SYBL to describe elasticity requirements and strategies
to react upon the occurrences of given conditions in the environment.

63

Chapter 5. Building Adaptation Mechanisms

1X3IU0D UONED0||Y

13po
uoneso|y

Jaulejuo) 83inosay

'

juswuolinuzg
32IN0Ssay

99In0say BupuI]
SJaUMeIU0D 92IN0SaY
[SEIRENIele}

290In0say
Auii

IX2JU0D UOHBDO||Y IX3IU0D A|qUIassy

443S
Buipuewaq
22Inosay -——

jusuodwo)
pajejnsdesuy

1X9Ju0D
AlQwassy

[SPOA

jusuodwo)

443S 9dI\eS
paquasaq 10103uu0)d
uonebajag papinold

S0IAIBS [eUlRXT
8288 pa|[eD

8|0y papinold
uonesado

<uonisuel] > <uomisuel] >

1eD wasAs |ana Anug
9|0y papinoid

-t

]|
abesn

Elde]
d443s bt

Alquiassy

iagram

Activity Di

0ns

io in e-Moti

Pallad

FIGURE 5.10

Chapter 5. Building Adaptation Mechanisms

64

™ LHS

T RHS

pred : PCMseffAbstractAction
pred : PCMseffAbstractAction

L]

token
[s]
completed = true

tkia

S
assCkx

completed = false

token
[s]
completed = false

assCkx

FIGURE 5.11: Transition to Internal Action Rule

WHS TTRAS
pred : PCMseffAbstractAction pred : PCMseffAbstractAction tkvar
°
completed = if ECA.) call)= se end
refName = Ic . VariableU:
ECA ECA ECATK
tKSEFF # d
KSEFF completed = false
orr completed = true orr o
K K completed = false as5Ctx
ac assctx alicex
lalictx
« [ac callassctx o
« £
(almisctx allflx kT
°
completed = if allCtx.resourceContainer AllocationContext = callAllCtx.resourceContainer_AllocationContext then true else false
LAl send = if ECA i _ ion->size() =0 then i
callallcex ecaSpec = (ECA. . Call llect(C | C.variablec! R lect(v | \ Variablect
& thSpec = | Cvariablec! isation_Vari: lect(v | _Variablecl ificati
refName = (tkSEFF. 1 |c. :_Vari)
latency
datasize = 0.0
LHS TTRAS
sign eca
QD P ECATk sign eca ECATk
© 5] # ©
completed = False completed = true
calledsEFF calledBasicComp
tKECA calledSEFF .
£ ¥ calledBasicComp
linkTk B2 ts
d %
calledAssCtx completed = true ot calledAssCtx tStamp = clk.time
= start
start y
e
tSObEA
newToken
token L
completed = false
context = ECATK previ k nt a.inputVariableUsages_ CallAction) (calledAssCtx.c erUsages_ AssemblyContext)
[/ sTime : Float Tk.latency

FIGURE 5.13: Modified External Action Rule

LHS] RHS.
currentAllCtx linkTk callallcex linkTk
=] currentAllCtx callallctx
L) = o
completed = false completed = true
latency = latencySpec.specification.toReal()
currentContainer link callcontainer
= currentContainer link callContainer
obThr = 50 =
P
throughputSpec spec latencySpec
L 0 (3
throughputSpec latencySpec
um dataTosend <= throughputspec.specification.toReal() 8 8

[V dataTosend : Float = obThr.tkLink->append(ink TK}->collect{D | D.datasizel->sum(]

FIGURE 5.14: Container Changer Rule

Chapter 5. Building Adaptation Mechanisms

65

T LAS

T RAS

pred : PCMseffAbstractAction

[

token
L]

completed = true

assCtx

branchAction rd
A

FIGURE 5.15:

pred : PCMseffAbstractAction

[

token
(5]

completed = False

branchAction rd

& a4

tkBA

completed = false
BranchType = branchAction.branches_Branch->first()

Transition Branch Rule

66

Modeling Process for Self-Adaptive Systems

In this chapter we will present the modeling process for self-adaptive systems, con-
sidering the phases approach: specification, modeling, behavior definition and anal-
ysis. We will present the proposed framework following the illustration of each
phase of the process.

6.1 Process Phases

Figure|6.1|shows a process model for our approach using the |Business Process Model
and Notation (BPMN) — Version 2.0, in which we can see the role of each tool and the
different activities of the process: Specification, Modeling, behavior Definition and
Analysis.

In the Specification phase, the non-functional requirements and adaptation strate-
gies are specified using the SYBL language (Copil et al.,, 2013). In the modeling
phase, the initial model of the system to be analysed is modelled using Palladio tool.
As a result of the task, we obtain models of the different views of the application.
This model can be defined according to the specifics of each application to be anal-
ysed.

In the behavior Definition phase we consider the rules defined by graph transfor-
mation in e-Motions. These rules concern the behavior of DSLs. We have defined
rules that represent Palladio’s behavior, adaptation rules and rules that define the be-
havior of adaptation control mechanisms considering non-functional requirements.
All of these rules can be easily modified as needed. Furthermore, at this phase the
Maude code is generated (Model transformation [e-motions]). Itis obtained by
a model-transformation provided by the e-Motions tool. The Maude specification
obtained can then be used to carry out the simulation in the Analysis phase. The
e-Motions transformation takes as input: (1) the initial model, defined using Palla-
dio in the modeling phase; (2) the metamodel extended of the Palladio Component
Model (PCM); (3) the e-Motions specification of definition of the behavior of Palla-
dio; (4) definition of the behavior of the adaptation mechanisms; and (5) definition of
the behavior of the control for adaptation mechanisms and non-functional require-
ments.

Chapter 6. Modeling Process for Self-Adaptive Systems

67

T

5 Specification of
= non-functional [T T T T T T m e 1
i 1
= »| requirements and i
K adaptation strategies !
& [SYBL] :
i
1
o T 1
£ Specification of the m !
3 »| initial model to be component E
3 analysed [Palladio] model '
= I I '
1
i
r L) ;
Specification of the H
. y Model — ¢ H
> — i '
: adapta?:&;nﬁirr:g]amsms 4+ >—| tansformation + H
S [e-Motions] H
1
£ A SRR REEEEE EEREI
K i
o
5 Specification of the
2 control for the k
S -)
E] | adaptation mechanisms Maude
] and non-functional specif. of specif
requeriments Palladio P
[e-Motions]
H
1
1
1
et
1
\ Yy v Analysis of the variation of }
2 Simulations the QoS metric values -
%- Q_. X execution !den“fy
< [MAUDE] Analysis of the modifications adjustments
to the model after each

adaptation

FIGURE 6.1: Procedural view of the approach using the BPMN stan-

dard

In the Analysis phase, the Maude system is used to execute the simulations of the
Maude codes generated in the previous phase. During and at the end of the sim-
ulations, it is possible to view the its results, which contain the data related to the
simulated system. This data shows the values of the variation of the QoS metrics
monitored during the simulation as well as, if applicable, the modifications to the
model that occurred after the performed adaptations. This data allows the analysis
and, later, the adjustments in the initial model or in the parameters, as needed.

6.2 Approach Framework

The diagram in Figure|6.2|depicts the main elements in our proposal and how they
are integrated. The upper left square represents Palladio’s dual role. The first role

r

Palladio Bench

Comp. Dev.
DSL Instance

Soft. Arch.
DSL Instance

Sys. Depl.
DSL Instance ——p> M

Dom. Exp.
DSL Instance

CM

N\

app

u PCM* +1 BNpyago ¥ |Beh

Adaptation| |

FSYBL

Poyer 6

Maude

Annotations

©

|

&

FIGURE 6.2: Artefacts and processes of the approach

Chapter 6. Modeling Process for Self-Adaptive Systems 68

DataBase Node 1
- DataBase
Server Node Controller Node /’
|| Frontend €| | Application €| | | | Controller &) L k|
I~ Server B
Cu mer

H X ITI

CPU EE g@g DataBase Node k
- DataBase
R I

FIGURE 6.3: Structure of the example

is in building the system’s models to be analysed (M,,). Models conforming to the
PCM are composed of four different sub-models, which correspond to the respective
views of systems. The second role is the representation of its abstract syntax (the
PCM).

The lower left corner represents the description of the control of the execution, per-
formed by SYBL Annotations, which are written in Maude code to be interpreted in
the metamodel and in the adaptation rules modeled in e-Motions.

The right side represents the role of the e-Motions tool. Palladio is specified in e-
Motions both through its syntax — an extended PCM denoted PCM* — and through
its behavior — denoted Behp,jjadio. The static systems defined in Palladio (models
Mapp conforming to the PCM) can be loaded and analysed in e-Motions using the
DSL PCM* + Behp,jjagio- To deal with adaptive systems, the Palladio behavior was
extended, including adaptation mechanisms specified as additional e-Motions rules
(Behadaptation)- This allows us to use available Palladio models, or use the Palladio
tools to design them ourselves. SYBL is specified in e-Motions through of the meta-
model and by behavior rules Ctrlsyg . The combination M,p, + Ctrlsyg. conforms to
the DSL metamodel PCM* + (Behp,jiadio + Behadaptation), and they are all transformed
into Maude using the e-Motions tool. The generated Maude code can then be used
for simulation. Finally, the results obtained from the simulations may be used for
performance analysis.

6.3 Results

6.3.1 Specification of the application

In the specification phase, some steps are necessary to be followed. First, we need
to understand the application domain, defining the requirements. With this step
completed, it is necessary to specify the SYBL annotations, which will be used in the
following phases. In this section we will introduce these steps in detail.

Application Domain

To the first phase of the self-adaptive system modeling process, we first need to
understand the application domain. This requires the defining of the domain prop-
erties as well as specifying of the requirements.

Chapter 6. Modeling Process for Self-Adaptive Systems 69

Domain properties

Figure shows the structure that we are going to use as example with the fol-
lowing components: Front End represents the Web Server with the HTTP service;
Application Server represents the process request service; the Controller component
is responsible for the load balancer to the database; and the DataBase component,
with the data process service. The structure in Figure not only showed these
components, but it also showed their allocation. Each of the components is allocated
in its own node, with the exception of the FrontEnd and Application Server, which
will be allocated together in the Server node. The Figure |6.3|also includes informa-
tion on resources. The Server node only allows vertical scaling, that is, we can only
increase or decrease the processing capacity of its CPU resource. However, the Con-
troller and the DataBase nodes are allocated to cloud providers that allow to scale
not only vertically, but also horizontally (i.e., to add nodes and allocate components
on them).

To simplify the abstraction, we consider that all user requests will need the same de-
mand for resources. However, they will be different for the Application Server and
DataBase components. Of course the workload will change along the simulations.
As an initial model, we will have three nodes: Server, Controller and DataBase.

Requirement Specifications Example

For the example, let us consider the following requirements (R1-R4) which will be
used as a basis for the SYBL annotation that will be presented next:

R1: The response time for a user request should not be, on average, greater than
0.5 time units (t.u.).

R2: The percentage of resource usage for nodes should not be greater than 65%.

R3: If R1 is not met, that is, if the average response time is greater than 0.5 t.u.,
the system must restore an average response time of 0.5 t.u. or less as soon as
possible.

R4: If R2 is not met, that is, if the percentage of resource usage of the nodes is
greater than 65%, the system should re-adjust to decrease the workload on the
nodes as soon as possible.

SYBL Annotation

Listings and show samples of SYBL annotations with resource usage and
response time quality metrics, respectively. Both are component-level annotations,
which specify a ComponentID, its ComponentName, and the description of constraints,
monitoring and strategies. The constraints section of the annotations includes the
specification of conditions and their priorities. Each condition indicates the expected
threshold for certain monitoring metrics — conditions Col and Co2 on the CPU us-
age (cpuUsage) in Listing|[6.1} lines 4-5, and Co3 and Co4 on the response time (rt) in
Listing lines 4-5. Metrics referring to resources usage are given as percentages,
whereas those on time are expressed in time units. The strategies section provides
the actions to be performed when constraints are violated. The Stl strategy in List-
ing [6.T} line 9, will produce a scaling-up operation when the CPU usage is over 65%
(condition Col is violated), while the St2 strategy (line 10) will produce a scaling-
down operation when the CPU usage is under 30% (condition Co2 is violated). Sim-
ilarly, the strategy St3 in Listing |6.2| will produce a scaling-out operation when the
response time of the service offered by the DataBase component is greater than 0.5

Chapter 6. Modeling Process for Self-Adaptive Systems 70

LISTING 6.1: Component-level SYBL annotation for Application-
Server Component

OO OO Uk WN =

_

@SYBL_ComponentContext (

ComponentID = Component3;
ComponentName = ApplicationServer;
constraints = "Col: CONSTRAINT cpuUsageAPP < 65;

Co2: CONSTRAINT cpuUsageAPP > 30;
Priority(Col) = 2,
Priority(Co2) = 1,
monitoring = "Mol: MONITORING cpuUsageAPP = ObResourceUsage",
strategies = "Stl: STRATEGY WHEN Violated(Col): ScaleUp;
St2: STRATEGY WHEN Violated(Co2): ScaleDown)

LISTING 6.2: Component-level SYBL annotation for DataBase Com-

OO OO Uk WN -~

—_

ponent
@SYBL_ComponentContext (
ComponentID = Component4;
ComponentName = DataBase;
constraints = "Co3: CONSTRAINT rt < 0.51;

Co4: CONSTRAINT rt > 0.21;

Priority (Co3)

Priority (Co4)
monitoring = "Mo3: MONITORING rt = ObResponseTime",

St3: STRATEGY WHEN Violated(Co3): ScaleOut;

St4: STRATEGY WHEN Violated(Co4): ScaleIn")

(condition Co3 is violated) and the St4 strategy will produce a scaling-in operation
when the response time is under 0.2 (condition Co4 is violated).

6.3.2 Modeling an Application on the Palladio Bench to use in e-Motions

The static systems defined in Palladio (models M,,, conforming to the PCM) can
be loaded and analysed in e-Motions using the DSL PCM* + Behp,jjadio, Which was
initially proposed in (Moreno-Delgado et al., 2014).

To illustrate the Palladio views, we present the modeling of the scenario with previ-
ously specified (Figure [6.3). Figures[6.4{6.10 are snapshots of the specification of the
system defined using the Palladio Bench.

Figure shows a resource environment example modelled in Palladio in which
there are three containers with processing resources specifications of the CPU type.
In this model, the communication link between the containers is not considered. On
the other hand, Figure 6.5/ shows the same resource environment example modelled
in Palladio, however, the model considers different communication links between
containers, where latency and throughput are specified. Latency is defined as the
round trip time for a workload to go through that communication channel, and
throughput is defined as the maximum number of workload that can go through
that channel per time unit. The adaptations can act directly on theses containers,
whether by adding a new container or by changing the number of replicas of the
resource.

In Palladio, component models describe the components and interfaces in the sys-
tem and the relations between them. Figure shows the component repository
for our example. It depicts four components and their corresponding interfaces:
FrontEnd implements IFrontEnd, ApplicationServer implements |ApplicationServer, Controller

Chapter 6. Modeling Process for Self-Adaptive Systems

71

[H Servero

" CPU

Scheduling: First-Come-First-Serve
Number of Replicas: 1

Processing Rate: 1000

MTTF: 0

MTTR: 0

|=| Controller

A CPU

Scheduling: First-Come-First-Serve

Number of Replicas: 1
Processing Rate: 1000
MTTF: 0
MTTR: 0

1 ComputingLanCenter

& LAN

1000.0

0.0

= X

[Server1

" CPU

Scheduling: First-Come-First-Serve
Number of Replicas: 1

Processing Rate: 1000

MTTF: 0

MTTR: 0

FIGURE 6.4: Resource Environment without considering communi-

1 server0Controller

i LAN
0.002
50

0.0

[servero

A CPU

Scheduling: First-Come-First-Serve
Number of Replicas: 1

Processing Rate: 1000

MTTF: 0

MTTR: 0

cation between containers

= Controller

AT CPU

Scheduling: First-Come-First-Serve
Number of Replicas: 1

Processing Rate: 1000

MTTF: O

MTTR: 0

TH, ControllerServerl

T LAN
0.005
100

0.0

=] Servert

o CPU

Scheduling: First-Come-First-Serve
Number of Replicas: 1

Processing Rate: 1000

MTTF: 0

MTTR: 0

FIGURE 6.5: Resource Environment with communication between

containers

Chapter 6. Modeling Process for Self-Adaptive Systems 72

€] FrontEnd €] ApplicationServer €] Controller £] DataBase
¥ SEFF <HTTP> ¥{ SEFF <processRequest> ¥ SEFF <control> %1 SEFF <processData>
PassiveResourceCompartment PassiveResourceCompartment | PassiveResourceCompartment | PassiveResourceCompartment

ComponentParameterCompartment ComponentParameterCompartment ComponentParameterCompa... ComponentParameterCompartment

<<Provides>> <<Provides>> <<Provides>= <<Provides>>
<<Requires>> <<Requires>> <<Requires>>
© IFrontEnd © 1applicationServer © 1Controller © IDataBase
[Z]void HTTRQ | | [] void processRequest() [Z] void controlQ [Z] void processDatal)

FIGURE 6.6: Component Model

implements |Controller and DataBase implements IDataBase. Relations between com-
ponents are represented using Provides and Requires links. There are three Requires
relations: (1) from the FrontEnd component to the IApplicationServer interface, that
offers the processRequest() operation; (2) from the ApplicationServer component to the
|Controller interface, that offers the control() operation; and (3) from the Controller
component to the |IDataBase interface, that offers the processData() operation.

Components’ services are described by service effect specifications (SEFF), which
abstractly model the externally visible behavior of a service with resource demands
and calls to required services. Figure [6.7a shows the SEFF of the HTTP() service,
which models the behavior of the FrontEnd component that contains an external
call action to the ApplicationServer component. Figure [6.7b| shows the SEFF of the
processRequest() service, which models the behavior of the ApplicationServer com-
ponent, processes an internal action that consumes 200 units of CPU (CPU cycles),
then and carries out an external call action to the Controller component. Figure|6.7¢
shows the SEFF of the control() operation, which models the control flow in the
Controller component as a probabilistic branching. Figure [6.7d| shows the SEFF of
the processData() service, which models the behavior of the DataBase component —
such processing consists in an internal action that consumes 300 units of CPU (CPU
cycles).

The proposed in this work allows changes such as increasing/decreasing the re-
sources available, or adding/removing nodes as needed. Since there is only one
branch in this initial Palladio definition, the probabilistic branching of the Controller
component starts at 100%. This branch has an external call action to the DataBase
node of the model. As new nodes are added to the architecture, new branches will
be added to this action, thus modeling the distribution of works between the existing
servers handled by the controller. Note that this type of operations is not possible
neither in Palladio nor in its SimuLizar extension for adaptive systems.

Software architects assemble components from the repository to build applications,
represented by assembly models in Palladio. Figure [6.8 shows how the services of
components are organised. The biggest square surrounding the boxes represents the
entire environment. For each provides relation in the repository model (Figure M,
an assigned role is created for the container with such component.

Allocation models are provided by system deployers, who model the resource en-
vironment and the allocation of components from the assembly model to different
resources of the environment. Figure|6.9/shows the initial allocation model for our
example, where we can see how each of the components is allocated in the nodes.
The FrontEnd and the ApplicationServer components are allocated in the same node,
whereas the Controller and DataBase components are allocated in different nodes.

Chapter 6. Modeling Process for Self-Adaptive Systems 73

¢ processRequest
ResourceDemands
| 5200 <cPU>

1 FailureOccurrenceDescriptions

Ih?rastructu[eCalIsCompartment

}(Required_IApplicationServer_FrontEnd.processRequest f—

\ }{ Required_lController_ApplicationServer.control

InputVariableUsage
InputVariableUsage | ‘ P : 9 ‘

Ou'tputi\/iariiabieljsrageii | = EEEE— OutputVa;iableUsage =)

(A) FrontEnd (B) AppServer

. X,k controlling . .

;.;’:; delegateToServer1 ' |
% Probability: 1

n=->

) | ¢ processData

]
|
|
t

" ResourceDemands
—5 7 — %300 <CPU>
& Required_IDataBase_Controller.processData “‘FaiIureOccurrenceDescriptions
InputVariableUsage | o
OutputVariableUsage InfrastructureCallsCompartmen
J ‘ ‘
(c) DataBase Controller (D) DataBase

FIGURE 6.7: Components SEFFs

Finally, usage models are provided by domain experts, who specify a system’s us-
age in terms of workload, user behavior, and parameters. Given the usage model
definition in Figure[6.10, in our example, tasks will arrive following an exponential
probability distribution with rate parameter 5.0 (Exp(5.0)).

After modeling all the views in Palladio, we can then make the transformation to
Maude code in e-Motions, which can be used in simulations. For this, it is neces-
sary to indicate: the e-Motions files that correspond to the behavior rules and the
metamodel that will be used in the simulation; the files of each view of Palladio; a
simulation time; and where the generated files will be saved, as shown in Figure

6.1T.

The use of these Palladio models in our approach was facilitated by the work by

Chapter 6. Modeling Process for Self-Adaptive Systems

74

ShopDataSystem

Provided_|ApplicationServer_ApplicationServer

Provided_IFrontEnd_FrontEnd Provided_lApplicationServer_Controller .
Provided_DataBase_DataBase
&1Frontend =1ApplicationServer 3] Controller &1DataBase
#{ Provided_IFrontEnd
Required_lApplicationserver_FrontEnd Required_|DataBase_LoadBalancer

Required_ILoadBalancer_ApplicationServer

FIGURE 6.8: Assembly Model

= ServerQ = Controller
&]Allocation_FrontEnd <FrontEnd> llocation_Controller <Controller>
=] FrontEnd <FrontEnd> &] Controller <Controller>
[H| server1

Allocation_aApplicationServer <ApplicationServer>
£] Applicationserver <ApplicationServer>

Allocation_DataBase <DataBase>
2] DataBase <DataBase>

FIGURE 6.9: Allocation Model

29 overloadUsageScenario

@*> IFrontEnd.HTTP ‘

&, Interarrival Time: Exp(S.0)

FIGURE 6.10: Usage Model

Chapter 6. Modeling Process for Self-Adaptive Systems 75

® Palladio into e-Motions code generation

e-Motions files

a-Mntinnc heh | [flemotions-palladio-adaptation/en | | Browse
Meatamn | /emotions-palladio-adaptation/m¢| | Browse

Palladio files

lleane M: | /femotions-palladio-adaptation/ap | | Browse
Renncitarv 1| /emotions-palladio-adaptation/ap | | Browse
Swckem M | /emotions-palladio-adaptation/ap | | Browse
Allaratinn A | /emotions-palladio-adaptation/ap | | Browse

Recnurre Fnv | /emotions-palladio-adaptation/ap | | Browse

Simulation options

Advanred ar
Sustam Fime| 100

ififiite simulation Boplied mte'_s an‘d rules
W!Maude advisories

Output options

Onknutfa | femotions-palladio-adaptation/m¢| | Browse

Cancel OK

FIGURE 6.11: Screenshot Palladio into e-Motions Code Generation

Moreno-Delgado et al., 2014, which allowed the transformation of the Palladio sys-
tem models into Maude code, using the e-Motions tool. In this work, we did not
make changes regarding the model transformations.

6.3.3 Analysis in Design Time
System with no Adaptation

As a first step for analysis, we need to understand its behavior without any kind
of adaptation, to view the problems in the model configuration, as for example the
possibility of bottlenecks causing delays or if there is a problem related to the use of
resources in the node where one of the components is allocated.

First, we need to add a few additional parameters and assumptions. In our example,
three nodes were specified, and to simplify both the presentation of the model and of
the results, we consider that the nodes on which the components are allocated have
the same configuration. Each of these nodes is specified with CPU processing rate
of 1000, First-Come-First-Serve scheduling, and initially there is one CPU resource
replica for each of them.

The workload arrives first in the components allocated in ServerQ; then, after pro-
cessing in the two components allocated in ServerQ, the workflow goes to a request
in the component allocated in node Controller. To send this request the system goes
through a communication link of 0.002 t.u. of latency and 50 work per time unit of
throughput. The component allocated in node Controller, in turn, sends a request to
Serverl, and this request goes through a communication link of 0.005 t.u. of latency
and 100 work per time unit of throughput.

In the example, the ApplicationServer and DataBase components demand, respec-
tively, 200 and 300 CPU units. The demand of CPU of a specific service, the pro-
cessing rate of the node on which it operates give us its runtime. Thus, the service

Chapter 6. Modeling Process for Self-Adaptive Systems 76

of the ApplicationServer component — CPU resource demand 200 — is executed on a
CPU with processing rate 1000, which means that its execution takes 0.2 t.u. and the
service of the DataBase component — CPU resource demand 300 — is executed on a
CPU with processing rate 1000, which means that its execution takes 0.3 t.u

We use the Resource Usage (RU) and the Response Time (RT) metrics to obtain in-
formation on the ApplicationServer and DataBase components. The RU metrics will
be obtained from the monitoring of the use of the nodes where each of these com-
ponents is allocated. The RT of component ApplicationServer will indicate the total
running time of the system (0.5 t.u.) plus the latency of the communication chan-
nels (0.007 t.u.), and the RT of component DataBase will indicate the time it takes
for a work from its arrival to the completion of the data processing (0.3 t.u.) plus
communication channel latency from Controller node to Serverl node (0.005 t.u.). We
use a closed workflow with time between arrivals given by the stochastic expression
Exp(5.0), that is, tasks arrive after an exponential probability distribution with rate
parameter 5.0 t.u.

The observation of the metrics on the simulation of the system with these param-
eters produces the charts in Figure [p.12. Regarding resource usage (Figure [.12b),
we observe that the DataBase component’s node goes to using 100% of its resources
5 t.u. after the beginning of the simulation. The usage varies in the node of the Appli-
cationServer component in the range 60-100% for most of the time. In both cases, the
response time remained increasing throughout the simulation (chart in Figure6.12c).
In addition, the resource usage queue of the node of the ApplicationServer com-
ponent remains most of the time below 5. In contrast, the resource usage queue
shows a bottleneck of the node that allocates the DataBase. Remembering that the
throughput defined for the first link is 50 and for the second one is 100. With the data
presented from the resource usage queue, it is not possible to notice a considerable
number of users to consider an adaptation in the communication channels.

These charts tell us that the response time degrades along time, and possibly due to
an under allocation of resources, perhaps in the node of the ApplicationServer com-
ponent, but for sure in the DataBase component’s node.

Analysis with Annl: modifying the number of replicas in the ApplicationServer’s
node

Annotation Annl (Listing 6.3) specifies an adaptation on the ApplicationServer com-
ponent considering the resource usage of the node where the component is allocated.
Specifically, we define that adaptations must occur when the average in the resource
usage monitor is above 65% (scale up) and below 30% (scale down).

Figure|6.14 depicts the resource usage in components ApplicationServer and DataBase
in a simulation with the Ann1 elasticity specification. The vertical lines in the charts
show the times at which the adaptation operations get triggered. Thus, we observe
a scale up adaptation at time 0.4. Right after that time, the resource usage decreases
considerably for the ApplicationServer component, varying between 30% and 60% for
most of the simulation time. However, the change occurred only in the Application-
Server component’s node, which explains the change in its resource usage, while the
node where the DataBase component was allocated stayed with a resource usage of

INotice that due to their specificities, the FrontEnd and Controller components were modelled with
no CPU demand. Hence, we carry out the analysis of the quality metrics regarding the impact of the
workflow evolution on the ApplicationServer and DataBase components.

_

OO OO U WN -

Chapter 6. Modeling Process for Self-Adaptive Systems

77

workload

resource usage

P .‘_.u,.«--.,‘,-‘-“ o = =
RS T2 ORI L PR NERL YR b ol VKL WP
0 10 20 30 40 50 60 70 80 90 100
simulation time

0 10 20 30 40 50 60 70 80 90
simulation time

—————— ApplicatinnServer sosennnn DataBase
------ ApplicationServerQueue s DataBase
(A) Resource usage
queue without adaptation
actions

(B) Resource usage with-
out adaptation actions

25
20

15

10 :
e

response time

Al Ay e

pett
PORUA
Sl

0 10 20 30 40 50 60 70 80 90 100
simulation time

v 1w w1 ApplicationServer s DataBase
(C) Response time with-

out adaptation actions

FIGURE 6.12: Resource usage queue, resource usage and response
time and without adaptation actions

LISTING 6.3: Component-level SYBL annotation 1 for Application-
Server Component

100

@SYBL_ComponentContext (

ComponentID = Component3;
ComponentName = ApplicationServer;
constraints = "Col: CONSTRAINT cpuUsageAPP < 65;
Co2: CONSTRAINT cpuUsageAPP > 30;
Priority(Col) = 2,
Priority(Co2) = 1,
monitoring = "Mol: MONITORING cpuUsageAPP = ObResourceUsage",
strategies = "Stl: STRATEGY WHEN Violated(Col): ScaleUp;
St2: STRATEGY WHEN Violated(Co2): ScaleDown)

Chapter 6. Modeling Process for Self-Adaptive Systems 78

= Controller
#r CPU i ControllerServerl
51 ServerOController Scheduling: First-Come-First-Serve HLAN
T LAN Number of Replicas: 1
Processing Rate: 1000 0.005
0.002 MTTF: 0
MTTR: 0 100

50
0.0

0.0

B Server0 = server1

CPU

Scheduling: First-Come-First-Serve Scheduling: First-Come-FirstServe
Number of Replicas: 3 Number of Replicas: 1

Processing Rate: 1000 Processing Rate: 1000

MTTF: 0 MTTF:0

MTTR: 0 MTTR: 0

MM CPU

FIGURE 6.13: Resource Environment after Annl

100% during the most part of the simulation. Therefore, despite the improvement,
the response time values of both components stayed as the ones presented in the
simulation without adaptations, which can be explained by the fact that the Appli-
cationServer component depends on the DataBase component to finish its execution.
Le., not improving the response time of the DataBase component means that the re-
sponse time of the ApplicationServer component will not be altered. In the end of
the simulation using Ann1, the only modified model was the resource environment.
Figure [6.13 shows the final configuration of the model where the Server0 container
ends 3 CPU resource replicas.

As the value of resource usage metrics is obtained from monitoring the use of the
nodes on which each of these components is allocated, and as we use FCFS schedul-
ing for the resource usage, this value considers the time in the resource usage queue
plus the processing time (resource demand / node processing rate), the monitoring
of the resource usage queues may bring some insight. Figure shows that the
resource usage queue of the node of the ApplicationServer component remains most
of the time below 5 in the adapted scenario operated by Annl. The resource usage
queue of the node that allocates the DataBase component remains growing in both
scenarios, which shows a bottleneck yet. We considered that, to improve the re-
sponse time of our application, adaptations that focus on the DataBase component
should be a priority.

Analysis with Ann2: increasing the amount of nodes of the DataBase

Annotation Ann2 (Listing specifies an adaptation on the DataBase component
considering its response time, which refers to the delay time of a work to be con-
cluded by a component, from its request until its response. In accordance to the Ann2
specification, the adaptations occur when the average in the response time monitor
is below 0.2 t.u. (scale in) or above 0.5 t.u. (scale out).

Figure [6.15d shows the response time average of the components ApplicationServer
and DataBase in a simulation with the Ann2 adaptation specification. We observe the
application of scale out adaptation operations at times 2.3 and 7.3. After these op-
erations, the response time for both components decreased significantly, stabilizing
with the ideal average of 0.3 t.u. for the DataBase component and varying between

_

OO O UTWN -

Chapter 6. Modeling Process for Self-Adaptive Systems 79
100
90 R —
S -
30 N
70 08 .'1|
60 H
- .10 := . {\f\‘
£ 50 g Vs ~y -
g 20 3 < ‘-’\, " v AL 1
Chd g 04 'V ‘-' I
0 = et 3 -V ’
e I BT RIT e = T o2
10 . PR 28 =
0| i o e o P o e g = T s e s o s N o
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 40
simulation time simulation time
= ApplicationServer ssssssss DataBase I Adaptation — m ApplicationServer ssssssss DataBase I Adaptation
(A) Resource usage (B) Resource usage with
queue with Annl Annl
25
20
15
o
=
s 10
g‘ - rl-ﬂ‘hhﬂl""'-'-hﬂﬂ-\F"""'m"‘.
e 5 vt AT
™ <
-
0 ...n.nw“‘"
0 5 10 15 20 25 30 35 40
simulation time
= ApplicationServer =sssmass DataBase I Adaptation

(C) Response time with
Annl

FIGURE 6.14: resource usage queue, resource usage and response
time with Annotation Annl

LISTING 6.4: Component-level SYBL annotation 2 for DataBase Com-

ponent
@SYBL_ComponentContext (
ComponentID = Component4;
ComponentName = DataBase;
constraints = "Co3: CONSTRAINT rt < 0.51;

Co4: CONSTRAINT rt > 0.21;
Priority(Co3) = 2,
Priority(Co4) = 1",

monitoring = "Mo3: MONITORING rt = ObResponseTime",
strategies = "St3: STRATEGY WHEN Violated(Co3): ScaleOut;

St4: STRATEGY WHEN Violated(Co4): ScaleIn")

Chapter 6. Modeling Process for Self-Adaptive Systems 80

100
1 by -
90 . e
80 £y ! a0 TS K
08|+ Aaa -\ r
70 H =\ : Y
= % 'v'\ al /
60 ¢ 06 * 3 \AY SN
50 g % O] D W
3 g N4
8 40 £04 < -
3 g z .V
130 R % &
o 0.2 .":- o
10 B
?‘ - ~' .
0 P et ot 2 e 0 et O N N B 2 L 02 Y et 0 5 10 15 20 25 30 35 20
0 5 e L 20 & =0 a5 simulation time
simulation time
——— ApplicationServer s==ssssss DataBase] Adaptation ——w ApplicationServer ~ ssssssas DataBase 1 Adaptation
(A) Resource usage queue (B) Resource usage with
with Ann2 Ann2
25
20
15
g
3
5 10
g
g
5
0 e e e i s T U T T T LT e e T
0 5 10 15 20 25 30 35 40
simulation time
=== ApplicationServer ssesssss DataBase I Adaptation

(C) Response time with
Ann2

FIGURE 6.15: Resource usage queue, resource usage and response
time and with Annotation Ann2

1 t.u. and 0.5 t.u. for the ApplicationServer component. The adaptation occurred only
on the DataBase component, nevertheless, we notice the impact in the whole sys-
tem. The impact in the resource usage in both components was also observed, as
depicted in Figure[6.15b. The resource usage average in the nodes that allocate the
DataBase component dropped below 60%. Despite the lack of stability, the results
are promising, and show that an increase in the number of nodes that allocate the
components offers a significant improvement in both quality metrics. When looking
at the resource queues, we observe a decrease for both components: the Application-
Server component presented an average of two works in the queue and the DataBase
component presented an average of one work in the queue (Figure 6.15a).

In the end of the simulation using Ann2 four models were modified. Figure [6.16
shows the final configuration of the resource environment, where two new nodes
were added. The same values for the CPU resources and a communication link was
created for each new node (so that the link would not interfere with performance),
but it is possible to both create new nodes with different configurations and share
the communication link with other containers. The new node inserted reflects in
the assembly context. Figure[6.17 shows the Assembly Model after simulation with
Ann2, where two new assemblies context were added. Now, from the controller, the
workflow can go to one of the assembly contexts. In the component model (Figure
6.18) two «Requires» are added from Controller to IDataBase (DataBase component
interface). In the SEFF of the Controller component (Figure [6.18b), two probability
branch are added and a new probability setting is established (now each DataBase

Chapter 6. Modeling Process for Self-Adaptive Systems 81

1= server2
Controller
E " CPU
H Server0Controller £ CPU I Controllerserver2 Scheduling: FirstCome-FirstServe
LAN cheduling: First-Come-First-Serve Number of Replicas: 1
Scheduling: First-Come-First-S Han ber of Repli
Number of Replicas: 1 Processing Rate: 1000
0.002 Processing Rate: 1000 0005 MTTF: 0
MTTF: 0 MTTR: 0
50 MTTR: 0 100
00 00
= Server0 X ControllerServerl I ControllerServer3 Bl server3
arCPU HLAN Hian - cPu
Scheduling: First-Come-First-Serve sScheduling: First-Come-First-Serve
Number of Replicas: 1 0.005 0.005 Number of Replicas: 1
Processing Rate: 1000 Processing Rate: 1000
100 :
MTTF: 0 100 mgi‘;
MTTR: 0 00 00
Hservert

A CPU

scheduling: First-Come-First-Serve
Number of Replicas: 1

Processing Rate: 1000

FIGURE 6.16: Resource Environment after Ann2

g ShopDataSystem

Provided_DataBase_DataBase

£]DataBasel

Provided IApplicationserver_Controller Provided_DataBase_DataBase

Provided_IFrontend_Frontnd § §
Provided_IApplicationServer_ApplicationServer
Required| IDataBase_LoadBalancer
FrontEnd ApplicationServer Controller DataBase2

O—

#{provided_IFrontend Required_ILoadBalancer_Applicationserver Required_IDataBase_Controller
Required_lApplicationServer_FrontEnd Provided_DataBase_DataBase

Required_IDataBase_Controller &1DataBase3

FIGURE 6.17: Assembly Model after Ann2

component node has a 33% probability of being accessed). Finally, the Figure [6.19
shows what the new allocation model looks like.

Analysis with (extra) Ann3: modifying the number of replicas in the DataBase’s
node

Figure [6.20 presents the resource usage queue and response time metrics with an-
other scale to look in more detail at changes in metric values. Although there has
been an improvement in the response time using Annotation Ann2 (Section [6.3.3),
the response time of the application averaged 0.89 t.u., which is above what is spec-
ified in the non-functional requirements. To see how to improve this time, we have
specified a (extra) annotation (Listing — Annotation 3 (Ann3) — which inserts new
nodes with instances of the DataBase component, operates scale-up adaptations on
the DataBase component considering the response time.

Figure [6.21 shows the results obtained with the adjusted annotation. As we can ob-
serve, it brings an earlier stability in the response time of the DataBase component,
and an average of 0.71 t.u. in the application response time. The response time
with this SYBL annotation now satisfies the given requirements. The resource usage
queue, which had already performed well on Ann2, dropped further and resource
usage, which had also performed well on Ann2, was at 68% in the DataBase compo-
nent node.

Chapter 6. Modeling Process for Self-Adaptive Systems

82

&l FrontEnd £] ApplicationServer £] Controller &l DataBase
¥ SEFF <HTTP> ¥ SEFF <processRequest> ¥7 SEFF <control> ¥ SEFF <processData>
PassiveResourceCompartment PassiveResourceCompartment PassiveResourceCompartm.... PassiveResourceCompartment
ComponentParameterCompartment ComponentParameterCompartment ComponentParameterCom... | ComponentParameterCompartment
<<Providess> <<Provides>> <<Provides>> <<Provides>>

<<Requires>>

_ <<Requires>>
<<Requires>>

<<Requires>> <<Requires>>
O IFrontend @ |ApplicationServer © icontroller O IDataBase
[=] void HTTP() [5] void processRequest() [l void control() [void processData()

(A) Component Model after Ann2

[] s balancing
. delegateToServer1 #_delegateToServer2 % delegateToServer3
Probability: 0.33 #Probability: 0.33 #Probability: 0.33
H red I #{Required_IDataBase_Controller.processData #{Required_IDataBase_Controller.processData
Require —'tha‘i{‘;ﬁ—g“"&t”’ erprocessData InputvariableUsage InputvariableUsage
nputVariableUsage
° - o OutputvariableUsage OutputvariableUsage
OutputvariableUsage

(B) Branch Action of the Controller SEFF after Ann2

FIGURE 6.18: Component Model and Branch Action of the Controller
SEFF after Ann2

= ServerQ =/ Controller 5| serverz

Allocation_DataBase <DataBase>

=1 Allocation_FrontEnd <FrontEnd> 1 Allocation_Controller <Controllers
#] FrontEnd <FrontEnd> #] controller <Controller> €l DataBase <DataBase>

[H server1 [H server3

Allocation_ApplicationServer <ApplicationServers
£] ApplicationServer <ApplicationServer>

Allocation_DataBase <DataBase> & Allocation_DataBase <DataBase>
£] DataBase <DataBase> £] DataBase <DataBase>

FIGURE 6.19: Allocation Model after Ann2

LISTING 6.5: Component-level SYBL annotation 3 for DataBase Com-

ponent
1
2 | @SYBL_ComponentContext (
3 ComponentID = Component4;
4 ComponentName = DataBase;
5 constraints = "Co3: CONSTRAINT rt < 0.71;
6 Co4: CONSTRAINT rt > 0.21;
7 Priority(Co5) = 2,
8 Priority(Co6) = 1",
9 monitoring = "Mo3: MONITORING rt = ObResponseTime",
10 strategies = "Stl: STRATEGY WHEN Violated(Co5): ScaleUp;
11

St2: STRATEGY WHEN Violated(Co6): ScaleDown")

Chapter 6. Modeling Process for Self-Adaptive Systems 83

=

O Rk N W R OO N ® OO

E 2 1 o
B s 1 : \ NN m— i~
g T \l* 1"*_ £08 4 i l-" . ,r' “ ’/‘
|,‘ l‘ Eo6- Mo mms e e (W
Iy SN] -
e 2 osh M i 04 s O TRRRETE it =
A iw L e ——
....... .
5 0 5 10 15 20 25 30 35 40
simulation time simulation time
e e DetaBase] Adaptation ——— ApplicationServer ssssssss DataBase | Adaptation
(A) Resource usage (B) Response time
queue with Ann2 with Ann2 with scale
with scale 10 2

FIGURE 6.20: Resource usage queue and response time with Annota-
tion Ann2 with other scales

In the end of the simulation using the (extra) Ann3, the only modified model was
the resource environment. Figure 6.22 shows the final configuration of the model
where the Serverl container ends 4 CPU resource replicas.

Conclusions from our Analysis

We could continue with the experiments, but with the three annotations we were
able to define a final architectural model for our application. With the analysis of the
simulations we can establish the conclusions listed below and define a new Annota-
tion (Listing|6.6), containing all the possible adaptations for this application.

¢ The scale up adaptation strategy is added on the node where the Application-
Server component is allocated when the CPU usage is greater than 65%;

¢ Adaptations in the node in which the DataBase component is allocated have
priority over adaptations in the node in which the ApplicationServer component
is allocated,;

* Considering the average CPU usage obtained in the experiment with the ad-
justed specification, the new limit for the use of CPU on the nodes where
DataBase component is allocated is 68%;

¢ Considering the average response time obtained in the experiment with the
adjusted specification, the new response time limit for the application is 0.71
tu;

¢ The modeled communication channel did not cause any kind of interference in
the application’s response time, not needing to apply any kind of adaptation
using metrics related to it.

Figure[6.22 shows the proposed architecture model for the example application pre-
sented. The simulations showed that, in relation to the change in the initial model,
two increments in the number of repetitions in the CPU resource of the nodes were
sufficient in both cases (ApplicationServer and DataBase). These adaptations, com-
bined with at least one more node, will bring good quality of service results for the
example presented here. Thus, Figure[6.23 presents the final suggested resource en-
vironment for the example application. The assembly, component (and Controller
SEFF) and allocation models are shown, respectively, in the Figures [6.24, [6.25 and
6.26.

Chapter 6. Modeling Process for Self-Adaptive Systems 84

e
15}

1
i

EET, 4

0.8

0.6

workload

CRMNWE UGN

0.4

fesource usage

0.2

0

simulation time

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

m—w w ApplicationServer ssssssss DataBase I Adaptation simulation time
w—w w ApplicationServer ssssssss DataBase I Adaptation
(A) Resource usage (B) Resource usage
queue with scale up with scale up adap-
adaptation tation in DataBase
component
2
18
1.6
14
& 1:2
£ 4 .
g A G
s 08 g, o\ ri [B B L
% o6 U T W [V \.-,
0.4 g
0.2
0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
simulation time

= ApplicationServer wazsssss DataBase | Adaptation

(C) Response time

with scale up adap-

tation in DataBase
component

FIGURE 6.21: Resource usage queue, resource usage and response
time in both ApplicatiomServer and DataBase components with scale
up adaptation in DataBase component

The simulation and analysis procedure proposed and presented here proved to be
useful to verify adjustments, initial configurations and adequate types of adaptation
for the application being designed.

O OO Ul WN -~

Chapter 6. Modeling Process for Self-Adaptive Systems

85

= Controller
i, ServerOController ar CPU i, ControllerServerl
HLAN Scheduling: First-Come-First-Serve HLAN
Number of Replicas: 1
0.002 Processing Rate: 1000 0.005
MTTF: 0
50 MTTR: 0 100
0.0 0.0
[H Server0 = server1
A CPU M CPU
Scheduling: First-Come-First-Serve Scheduling: FirstCome-First-Serve
Number of Replicas: 1 Number of Replicas: 4
Processing Rate: 1000 Processing Rate: 1000
MTTF: 0 MTTF:0
MTTR: 0 MTTR: 0

FIGURE 6.22: Resource Environment after Ann3

LISTING 6.6: Component-level SYBL annotation for Application-
Server and DataBase Component after Simulation and Analysis

@SYBL_ComponentContext (

ComponentID = Component3;
ComponentName = ApplicationServer;
constraints = "Col: CONSTRAINT cpuUsageAPP < 65;

Co2: CONSTRAINT cpuUsageAPP > 30;
Priority(Col) = 6,
Priority(Co2) = 5,
monitoring = "Mol: MONITORING cpuUsageAPP = ObResourceUsage",
strategies = "Stl: STRATEGY WHEN Violated(Col): ScaleUp;
St2: STRATEGY WHEN Violated(Co2): ScaleDown)

@SYBL_ComponentContext (

ComponentID = Component4;
ComponentName = DataBase;
constraints = "Co3: CONSTRAINT rt < 0.71;

Co4: CONSTRAINT
Co5: CONSTRAINT
Co6: CONSTRAINT
Priority (Co3) =
Priority (Co4)
Priority(Co5) =
Priority (Co6) =
monitoring = "Mo3:

rt > 0.51;
cpuUsageDB < 68;
cpuUsageDB > 30;
3,

1,

4,

2",

MONITORING rt = ObResponseTime",

"Mo4: MONITORING cpuUsageDB = ObResourceUsage",

strategies = "St1l:

STRATEGY WHEN Violated (Cob5):

St2: STRATEGY WHEN Violated(Co6):
St3: STRATEGY WHEN Violated(Co3):
St4: STRATEGY WHEN Violated(Co4):

ScaleUp;
ScaleDown;
ScaleQOut;
ScalelIn")

Chapter 6. Modeling Process for Self-Adaptive Systems

IS server2
Controller
= a cru
H Server0Controller £ CPU I Controllerserver2 Scheduling: FirstCome-FirstServe
HLAN Scheduling: First-Come-First-Serve Hian Number of Replicas: 1
Number of Replicas: 1 Processing Rate: 1000
0.002 Processing Rate: 1000 0.005 MTTF:0
MTTE: 0 MTTR:0
50 MTTR: 0 100
00 00
= Server0 X ControllerServerl Sservert
arCPU HLaN cru
Scheduling: First-Come-First-Serve Scheduling: First-Come-First-Serve
Number of Replicas: 3 0.005 Number of Replicas: 3
Processing Rate: 1000 Processing Rate: 1000
MTTE: 0 100 MTTF: 0
MTTR: 0 MTTR 0
0.0

FIGURE 6.23: Resource Environment after Simulation and Analysis

§: ShopDataSystem

Provided_DataBase_DataBase
1DataBase1

provided_lApplicationserver_Controller
Provided_IFrontEnd_Frontnd

Provided_I|ApplicationServer_ApplicationServer
Required_IDataBase_Controller
- Provided_DataBase_DataBase
41Frontend 1 ApplicationServer 1 Controller - =
#1DataBase2
#{ Provided_IFrontEnd Required_ILoadBalancer_ApplicationServer
Required_IApplicationServer_Frontnd Required_IDataBase_Controller

FIGURE 6.24: Assembly Model after Simulation and Analysis

£] FrontEnd £] ApplicationServer £] Controller 4l DataBase
¥ SEFF <HTTP> ¥7 SEFF <processRequest> ¥ SEFF <control> ¥T SEFF <processData>
PassiveResourceCompartment

PassiveResourceCompartment PassiveResourceCompartm...

PassiveResourceCompartment
ComponentParameterCompartment ComponentParameterCom...

ComponentParameterCompartment ComponentParameterCompartment

<<Provides>> < <Provides>> <<Provides>> <<Provides>>

<<Requires>>
<<Requires>> <<Requires>> <<Requires>>
O IFrontEnd

@ |ApplicationServer
[=] void HTTP()

© icontroller
[=]void processRequest()

O IDataBase
[=] void control()

[=] void processData()

(A) Component Model after Simulation and
Analysis

s balancing

#.delegateToServer1

#_delegateToServer2
< Probabill

#(Probability: 0.5
H red | ¥ Required_IDataBase_Controller.processData
Required_IDataBase_Controller.processData InputVariableUsage
InputVariableUsage
OutputVariableUsage
OutputVariableUsage

(B) Branch Action of the Controller SEFF after
Simulation and Analysis

FIGURE 6.25: Models after Simulation and Analysis

Chapter 6. Modeling Process for Self-Adaptive Systems

87

[Server0 [=| Controller [E server2
llocation_FrontEnd <FrontEnds Allocation_Controller <Controllers ZiAllocation_DataBase <DataBase>
£] Frontend <Frontend> €] Controller <Controller> #] DataBase <DataBase1>

|E| server1
&1 Allocation_ApplicationServer <ApplicationServer>

£] Applicationserver <Applicationserver>

llocatien_DataBase <DataBase>|
#] DataBase <DataBase1>

FIGURE 6.26: Allocation Model after Simulation and Analysis

88

Flexible System Modeling: An Example of Modeling of an
Application for Smart Cities

One of the advantages of our approach is the flexibility regarding the possibility
of modeling different behaviors, adaptations and metrics. This is possible due to
the integration of different tools during the specification process. In this chapter,
we will illustrate how the modeling process based on functional and non-functional
requirements takes place using these tools applied to a very dynamic scenario which
involves Cloud and IoT services. In fact, we will model and define the behavior and
adaptation mechanisms of an application in the context of Smart Cities.

7.1 Understanding the Application Domain

In applications for the context of Smart Cities, large volumes of data can be a "threat"
to their performance. Thus, the proposal to use heterogeneous architectures brought
a way to dynamically manage Smart City applications and consider the use of differ-
ent technologies. The use of Cloud Computing and Edge Computing can compose a
heterogeneous architecture that seeks, in a self-adaptive way, to overcome possible
performance problems of this type of application.

The Cloud dynamics brings numerous benefits, among them we can highlight its
elasticity, which allows self-adaptation on demand. However, Edge architectures
still need to be more dynamic, just like Cloud architectures, and to allow dynamic
access to IoT devices to maintain good system performance. In a Smart City applica-
tion that considers a heterogeneous architecture, IoT devices (or Edge devices) can
move, connect, disconnect and send information to Edge servers and Cloud servers.

Modeling an application that uses this heterogeneous architecture is a challenging
task, but the possibility of modeling and analyzing its performance at design-time,
considering its dynamism, would be quite advantageous, since the complexity of the
architecture does not allow us to carry out sufficiently concise tests (and to consider
possible adaptations) before their implementation.

711 Domain properties

The use of Edge Computing, expanding a Cloud Computing environment, has been
pointed out as an alternative to overcome several challenges of Internet of Things
(IoT) applications (Nardelli et al., 2017), due to the fact that Edge nodes are closer

Chapter 7. Flexible System Modeling: An Example of Modeling of an App]icat‘iozé9
for Smart Cities

Smart traffc light [oT application

I Traffic lights state Traffic lights management |

e information
?_
I -_-—:(;Esﬂoﬂ I \
e O

Tramﬁ\dica‘tof I

L
Cloud computing
]\

Edge computing

FIGURE 7.1: A high-level description of the smart traffic light IoT
workflow application. Extracted from Nardelli et al., 2017

to the IoT devices, reducing latency, and due to the fact that they may be on the
user’s administrative premises, making the environment more secure. In this sense,
systems models and architectures for IoT must consider complex and heterogeneous
infrastructures capable of communicating with each other and adapting to different
needs.

Considering that one of the essential aspects of IoT applications is the communica-
tion medium in which they are inserted, in IoT applications it is also necessary to
consider the configuration and management of network services. Techniques such
as SDN (Software-Defined Networking) and VNF (Virtual Network Functions) can
allow network service providers to use software to install, configure and manage
network services automatically and dynamically.

Considering these specificities, we will propose a scenario considering several tech-
nologies based on the example presented in the article by Nardelli et al., shown
in[7.1} In the example we can identify two Edge elements, servers (edge computing)
and IoT devices (edge device).

From the example presented, we developed a scheme to represent the scenario. Fig-
ure [7.2| presents the IoT scenario scheme that will help us to model the application
in Palladio, in the construction of the behavior rules of the proposed technologies
and in the definition of possible adaptations for this application domain. The flow
of the scheme starts with IoT devices making requests to an SDN Switch. The Switch
will have a controller (which will be modeled using behavior rules) that, in this first

Chapter 7. Flexible System Modeling: An Example of Modeling of an Applicatioz& 0
for Smart Cities

SB_ Edge Device
| son £ || WebService £1) | VNF £ - |
E@ 7 switch T R ™1 LoadBalancer HT7="7 Data Base
0T Device Edge DataBase
1C

Edge Server

FIGURE 7.2: IoT Scenario Scheme

moment, will return the port to route. At the application modeling level, the flow to
the defined port will be possible using Palladio’s Guarded Branch.

Following the application flow, the Switch will make a request to the WebService,
which can be on an Edge server or on a Cloud server. The choice of one of the flows
will be done through adaptation rules using SYBL and the monitoring response will
define the appropriate port for the Switch. New instances of the WebService can be
created for both Edge and Cloud levels.

The application flow from the WebService can either go to a VNF Firewall or to a
VNF Load Balancer. The flow will be defined using Palladio’s Guarded Branch,
behavior rules that model the VNF provider and the requirements defined in SYBL.
The flow will go to a VNF Firewall if the SYBL definitions show the need to apply
security policies in case - for example, if there is a sudden increase in the workload.
If it is not necessary to go up the VNF Firewall, the flow will normally follow the
VNF Load Balancer, which will probabilistically choose which Data Base to access -
if there is more than one. The number of databases can increase or decrease if a scale
out or scale in adaptation is made. The scheme suggests a starting scene in darker
shades and solid lines and the possible scenarios in lighter shades and dotted lines.

7.1.2 Requirement and Adaptations Specifications

From the understanding of the domain and the definition of its properties, we can
define the functional and non-functional requirements that will guide its modeling
process and adaptation definitions.

Functional Requirements

We have defined the following functional requirements (FR1-FR4) which will be im-
portant to guide the behavior modeling process:

FR1: There will be an SDN Controller that must indicate to the SDN Switch the port
for routing of incoming packets or must indicate the discard of the packets;

OO OO Uk WN =

_

Chapter 7. Flexible System Modeling: An Example of Modeling of an Applicatioz@ 1
for Smart Cities

LISTING 7.1: Component-level SYBL annotation for Application-
Server Component

@SYBL_ComponentContext (
ComponentID = Componentl;
ComponentName = Switch;
constraints = "Col: CONSTRAINT rt < 1.0;
Co2: CONSTRAINT rt > 0.5;
Priority(Col) = 2,
Priority(Co2) = 1,
monitoring = "Mol: MONITORING cpuUsageAPP = ObResponseTime",
strategies = "Stl: STRATEGY WHEN Violated(Col): RouteToCloud;
St2: STRATEGY WHEN Violated(Co2): RouteToEdge)

FR2: The Switch will have a flow table that will contain a queue of incoming works;

FR3: There will be a VNF provider, linked to the WebService, which will store the
set of VNFs;

FR4: Initially there will be a Firewall type VNF and a Load Balancer type VNF;

FR5: The WebService should be monitored for the need to add security policies.

Non-Functional Requirements

We have defined the following non-functional requirements (NFR1-NFR4) which
will be used as a basis for the SYBL annotation:

NFR1: Average response time must be less than or equal to 1.0 time unit (t.u.);

NFR2: If NFR1 is not met, that is, if the average response time is greater than 1.0 t.u.,
the system should restore an average response time of 1.0 t.u. or less as soon
as possible;

NFR3: Resource usage queue must not exceed 5 works on average;

NFR4: If NFR3 is not met, that is,if the resource usage queue exceeds 5 works, the
system should activate security policies as soon as possible.

Adaptations Specified at SYBL Annotation

Considering the NFR2 requirement, we will specify an annotation to guarantee this
condition. For this case, we propose a route diversion adaptation, which will act on
the Switch. The Switch initially sends the work to the Edge server. If the NFR2 con-
dition is not met, it will divert the route to the Cloud server until the system returns
to the condition imposed in the non-functional requirements. To achieve the NFR4
requirement, we propose the adaption of adding VNF Firewall and remove it when
the requirement is satisfied again. Listings 7.1/ and |7.2|show the SYBL Annotation
resulting from these specifications.

7.2 Results

In this section we will present the modeling of the application and its scenario in
Palladio, as well as the definitions of behaviors needed using graph transformation,
and, finally, we will discuss how the model evolves with these definitions consider-
ing different perspectives.

U

= O 0 N Ul B WN =

Chapter 7. Flexible System Modeling: An Example of Modeling of an Applicat‘ioz@2
for Smart Cities

LISTING 7.2: Component-level SYBL annotation for DataBase Com-

ponent
@SYBL_ComponentContext (
ComponentID = Component2;
ComponentName = WebService;
constraints = "Co3: CONSTRAINT queueWS < 5;

Co4: CONSTRAINT queueWS > 2;
Priority(Co3) = 2,
Priority(Co4) = 1,
monitoring = "Mo3: MONITORING rt = ObResourcesUsage",
St3: STRATEGY WHEN Violated(Co3): AddFirewall;
St4: STRATEGY WHEN Violated(Co4): RemoveFirewall")

=] Webservice =] VNFLoadBalancer £] DataBase

¥{ SEFF <servers ¥ SEFF <balancer> ¥7 SEFF <processData>

PassiveResourceCompartment PassiveResourceCompartment PassiveResourceCompartment

CompenentParameterCompartment ComponentParameterCompartment ComponentParameterCompartment

<<Provides>> <<Provides=> <<Provides»»
£] switch <<Requires=>> <<Requires>>
. SEFF <branch=
p <<Provides==> u © \webservice © ILoadBalancer @ DataBase
© 15witch
PassiveResourceCompartment c<Requiress> N n .
Dvoid branch() q Dvold server() Dvold balancer() Dvold processData(

ComponentParameterCompartment

FIGURE 7.3: Initial IoT Palladio Repository

7.2.1 Modeling of the Application

Figure|7.3|represents the initial repository model, where we have four components:
Switch, WebService, VNFLoadBalancer and DataBase. The Switch and WebService
components have in their SEFFs a branch of the Guarded type (the example of a
Guarded branch is illustrated in Figure [7.4), the VNFLoadBalancer component has
in its SEFF a branch of the Probabilistic type (the example of a Probabilistic branch
is illustrated in Figure and the DataBase component has in its SEFF an Internal
Action with 100 CPU units of resource demand. Figure[7.6|presents the application’s
composition structure, which has the following assembly contexts: SDN_Switch,
Edge_WebService, Edge_ VNF_LoadBalancer and Edge_Database.

7.2.2 Modeling of the Scenario

Figure[7.7|presents the initial resources model, where we have three containers, with
their respective resource configurations and their communication links: EdgeDevice,

.)* switch .

ot alame

o Cond:

.}-(Required_|WebService_Switch.server
InputVariableUsage

OQutputVariableUsage

FIGURE 7.4: Initial IoT Palladio Switch Branch

Chapter 7. Flexible System Modeling: An Example of Modeling of an Applicatiog?)
for Smart Cities

i aName

3'-."\ aName
&7 Probability: 1

&(Required_IDataBase_VNFLoadBalancer.processData
InputVariableUsage
OutputVariableUsage

FIGURE 7.5: Initial IoT Palladio Load Balancer Branch

SmartTrafficLightloTWorkflowApplication

21 5DMN_Switch £ Edge_WebService 21 Edge_VNF_LoadBalancer

FIGURE 7.6: Initial IoT Palladio Assembly Context

£1Edge_DataBase

EdgeServer and EdgeDatabase. Each of these containers allocates one or more com-
ponents, as shown in Figure[7.8} the Edge Device container allocates the Switch com-
ponent, the EdgeServer container allocates the Edge_WebService and Edge_ VNF_LoadBalancer
components and the EdgeDataBase container allocates the Edge_DataBase compo-

nent.

7.2.3 Behavior Rules

Considering the specified functional requirements, a rule was defined to model the
FR1 requirement, which consists of the behavior of an SDN controller, which in-
dicates to the SDN Switch where to forward the work. For this, we will use the
Guarded branch, modeled on Palladio in the Switch component. The rule checks the
condition of each Guarded branch. These conditions are defined as the adaptation
strategies, defined using SYBL. The rule checks which strategy is active to forward
to one branch or another. The Switch object defined in the metamodel includes an

= EdgeDataBase
B EdgeDevice I EdgeDeviceEdgeserver | B EdgeServer X edgeserveredgens
i Lan HLan 7 CPU
4 CPU A CcPU
. . Scheduling: First-Come-First-Serve
Scheduling: First-Come-First-Serve Scheduling: First-Come-First-Serve 0.1
0.2 Number of Replicas: 1
Number of Replicas: 1 . Number of Replicas: 1
Processing Rate: 1000
Processing Rate: 100 Processing Rate: 500 50
20 MTTF: O
MTTF: O MTTF: O
MTTR: O
MTTR: 0 MTTR: O 0.0
0.0

FIGURE 7.7: Initial IoT Palladio Resource Environment

Chapter 7. Flexible System Modeling: An Example of Modeling of an Applicatioz@ 4
for Smart Cities

|E| EdgeDevice |E EdgeServer |H] EdgeDataBase

= e &1 Allocation_Edge WebService <WebService> 57 Allocation_Edge_VNF_LoadBalancer <VNFLoadBalancer>]

&1 Allocation_EdgeDataBase <DataBase>
£] Switch <SDN_Switch> #] WebService <Edge_WebService> £] VNFLoadBalancer <Edge_VNF_LoadBalancer>

£) DataBase <EdgeDataBase>

FIGURE 7.8: Initial IoT Palladio Allocation Context

attribute that corresponds to the flow table, which is linked to the resource usage
observer and checks the observer’s resource usage queue attribute, thus meeting the
FR2 requirement. To meet the FR3 requirement, a "VNF provider" object was created
in the metamodel, which is linked to the VINF object and the Palladio component of
the WebService type. The created VNF object has an attribute "type" to guarantee the
FR4 requirement. Finally, to fulfill the FR5 requirement, the object that corresponds
to the WebService component must be linked to a monitor and SYBL annotations.
In addition to the rules for meeting the defined requirements, for this application,
we created the following rules: remove and add external action from a branch, add
components and assign conditionals to a Guarded branch.

7.2.4 Model Evolution

In this section we will discuss three of the possible changes that can occur for the
evolution of the initial model to illustrate the expressive power of our approach:

1. Creation of a new component: to illustrate the adaptation we will use the
example of a VNF Firewall, which is activated according to security conditions
in the Edge environment (Figure ;

2. Creation of load-balanced components: we will illustrate an adaptation where,
in an Edge environment, the VNF Load Balancer can choose to store data either
in a Cloud Database or in an Edge Database (Figure[7.15);

3. Creation of replicas of components: we will show the adaptation of where the
SDN Switch can choose to send a job to the Cloud environment or to the Edge
environment (Figure[7.21).

Firewall

The first change we are considering is the activation of the Firewall (Figure [7.9), in
which, instead of the Switch sending the requests directly to the WebService, due
to an adaptation made, according to the specification, the works first go through a
Firewall that will indicate whether to drop or follow the workflow. Figures[7.11,[7.10,
[7.12,|7.13 and|7.14 show the changes made to the model when there is an adaptation
to add the Firewall.

The SEFF of the Switch component (Figure @) will have a branch that will forward
the works to the VNFFirewall component. Figure [7.11) shows the Repository which
presents the new component, the VNFFirewall, and its iFirewall interface. For this
new component there will be an external action which will have the role of forward-
ing requests to the iWebService interface of the WebService component. The SEFF of
the VNFFirewall component (Figure [7.12) will have a branch with security-related
conditionals. If the security conditions are favorable, the works will be forwarded to
the WebService component, otherwise, they will be discarded.

With the modifications made to the repository model, the assembly model (Figure
7.13) automatically changes, giving it an assembly context Edge_VNF_Firewall for
the VNFFirewall component. In the same way, the allocation model (Figure |7.14)

Chapter 7. Flexible System Modeling: An Example of Modeling of an Applicat1'01§5
for Smart Cities

S? Edge Device
WebService & VNE 5
SDN | _ i —
7 Switch = ™ LoadBalancer —T17="7 Daia Base
[0T Device ., i Edge DataBase

VNFFirewall 8]

Edge Server

FIGURE 7.9: IoT Scenario Scheme With Firewall Edge

s switch .

o aName
o Cond:

3 Required_IFirewall_Switch.check
InputVariableUsage

CutputVariableUsage

FIGURE 7.10: IoT Palladio Switch Branch with Firewall Edge

=] WebService =] VNFLoadBalancer & DataBase
¥ SEFF <server> %7 SEFF <balancer= %{ SEFF <processData>
PassiveRescurceCompartment PassiveResourceCompartment

PassiveResourceCompartment

ComponentParameterCompartment ComponentParameterCompartment ComponentParameterCompartment

<<Provides=> <<Provides=>> <<Provides=>

£] switch <<Requires== <<Requiress>
%7 SEFF <branchs

@ WebService © ILoadBalancer € IDataBase
PassiveResourceCompartment

© Iswitch <<Provides>>
’— void server() r void balancer() r void processData()

r void branch) ComponentParameterCompartment

<<Requires>>
<<Requires>>

© IFirewall
[Z] void check()

<<Provides>>

£] VNFFirewall
¥7 SEFF =check=
PassiveResourceCompartment

ComponentParameterCompartment

FIGURE 7.11: IoT Palladio Repository with Firewall Edge

Chapter 7. Flexible System Modeling: An Example of Modeling of an App]icatioz@ 6
for Smart Cities

S firewall
o alame ot alame
« Cond: « Cond:
@ Required_IwebService VNFFirewall.server
InputVariableUsage
OutputvariableUsage

FIGURE 7.12: IoT Palladio Firewall Branch

SmartTrafficLightloTWorkflowApplication

&1 SDN_Switch £} Edge_WebService £ Edge_VMF_LoadBalancer £} Edge_DataBase

O—

=1Edge VNF_Firewall

FIGURE 7.13: IoT Palladio Assembly Context with Firewall Edge

is modified, with the allocation of the VNFFirewall component in the EdgeServer
container.

DataBase

We could also apply another adaptation, the Scale Out one (Figure [7.15), in which
a DataBase is added to balance the load - this DataBase could be added in Cloud.
Figures[7.16,[7.17,[7.18,7.19 and [7.20 present the changes made to the model in case
a Scale Out adaptation occurred.

In addition to VNFFirewall component and its iFirewall interface, the DataBaseReplica
component and its iDataBaseReplica interface were added to the repository (Figure
[7.16), which receives requests from the VNFLoadBalancer component. With the ad-
dition of the DataBaseReplica component, the VNFLoadBalancer component now
has two branches with a probability of 50% each, that is, 50% of the works will be

|E| EdgeDevice |E EdgeServer [H| EdgeDataBase

ETswitch & Allocation_Edge WebService <WebService> £ Allocation_Edge_VNF_LoadBalancer <VNFLoadBalancers|

{7 Allocation_EdgeDataBase <DataBase>|
£] switch <SDN_Switchs| #] WebService <Edge_WebService> £] VNFLoadBalancer <Edge_VNF_LoadBalancer>

£] DataBase <EdgeDataBase>
£ Allocation_Edge VNF_Firewall <VNFFirewall>,

£] VNFFirewall <Edge VNF_Firewall>

FIGURE 7.14: IoT Palladio Allocation Context with Firewall Edge

Chapter 7. Flexible System Modeling: An Example of Modeling of an Applicat1'01§7
for Smart Cities

1 Data B =
o dla base
7

Cloud DataBase

Node 1
SB_ Edge Device |
WebService £ VNFE £
.| SDN] _ E
:|>_5"_ Switch — ™1 LoadBalancer —T17="7 Daia Base
{%} J
IoT Device \ | Edge DataBase
Y | VNFFirewall £
o
Edge Server

FIGURE 7.15: IoT Scenario Scheme 2 DB

sent to the DataBase component, in Edge, and other 50% will be sent to the new
DataBaseReplica component , in Cloud.

With the modifications made to the repository model, the assembly model (Figure
[7.18) automatically changes, giving it an assembly context Cloud_DataBase for the
DataBaseReplica component. In the same way, the allocation model (Figure [7.19)
and, in this case, the resource environment (Figure@) are modified. A new Cloud-
DataBase container is added, which will allocate the new DataBaseReplica compo-
nent.

Edge and Cloud

Another possible change we can discuss in the model is when applying the adapta-
tion specified in the Switch, making it start to route to the Cloud Server (Figure[7.21).
Figures[7.22,[7.23,[7.24 and [7.25 show the changes made to the case model when the
adaptation takes place.

In addition to the components already presented in the previous modifications, with
these changes, the new repository (Figure [7.22) gains new components: VNFFire-
wallReplica component and its iFirewallReplica interface, WebServiceReplica and
its iWebServiceReplica interface, and LoadBalancerReplica and its iLoadBalancer-
Replica interface. With the addition of the VNFFirewallReplica component, the
SEFF of the Switch component (Figure [7.23) has been modified and now has two
branches: one for the VNFFirewall component and another one for the VNFirewall-
Replica component.

The modifications of the repository model bring changes to the assembly model (Fig-
ure|7.24), which now has the assembly context of the new components: Cloud_VNF_Firewall,
Cloud_WebService and Cloud_VNF_LoadBalancer. In the same way, the allocation

model and also the resource environment (Figure @ are modified. A new Cloud-

Server container is added, which will allocate the replicas of the components.

Chapter 7. Flexible System Modeling: An Example of Modeling of an App]icatiozé 3
for Smart Cities

£] DataBaseReplica
%7 SEFF <processData>
PassiveResourceCompartment

ComponentParameterCompartment

<<Provides>>

© IDataBaseReplica
[=] void processData()

<<=Requires>=

2] WebService 2] VNFLoadBalancer £] DstaBase
¥ SEFF <servers %7 SEFF <balancers %[SEFF <processData>
PassiveResourceCompartment PassiveRescurceCompartment

PassiveResourceCompartment

ComponentParameterCompartment ComponentParameterCompartment ComponentParameterCompartment

<<Provides>> ==Provides>> <<Provides>>

£] switch <<Requiress> <<Requires>>
¥7 SEFF <branch>

PassiveResourceCompartment

<<Provides=> © webService € lLoadBalancer @ DataBase

O 15witch
Dvuid server() Dvuid balancer() Dvuid processData()

Dvmd branch() ComponentParameterCompartment

. <<Requires>>
<<Requires>>

Q IFirewall
|=] void check()

<<Provides>>

=] VNFFirewall
%7 SEFF <check=>
PassiveResourceCompartment

CompaonentParameterCompartment

FIGURE 7.16: IoT Palladio Repository 2 DB

Sy aName
7 Probability. 0.5 ¢ Probability: 0.5
@ Required_IDataBase_VNFLoadBalancer.processData
InputvariableUsage #{ Required_IDataBaseReplica VNFLoadBalancer.processData
OutputVariableUsage InputVariableUsage

CutputVariableUsage

FIGURE 7.17: IoT Palladio Load Balancer Branch 2 DB

SmartTrafficLightloTWorkflowApplication

Cloud_DataBase

SDIN_Switch

Edge_WebService dge_VNF_LoadBalancer Edge_DataBase

Edge VNF_Firewall

FIGURE 7.18: IoT Palladio Assembly Context 2 DB

Chapter 7. Flexible System Modeling: An Example of Modeling of an Applicat‘ioz@9
for Smart Cities

[H] CloudDataBase

location_Cloud_DataBase <DataBase>

#£] DataBase <Cloud_DataBase>

[H| EdgeDevice [H| EdgeServer

[EdgeDataBase
Elswitch

ETAllocation_Edge_VNF_Firewall <VNFFirewall>| &1 Allocation_Edge_VNF_LoadBalancer <VNFLoadBalancers|
£] switch <Switch>

£] VNFFirewall <Edge_VNF_Firewall>

llocation_Cloud_DataBase <DataBase>|

#£] VNFLoadBalancer <Edge VNF_LoadBalancer> £] DataBase <Cloud_DataBase>

] Allocation_Edge_WebService <WebService>|
£] WebService <Edge_WebService>

[H EdgeDevice

A CcPU

Scheduling: First-Come-First-Serve
Number of Replicas: 1

Processing Rate: 100

MTTF: O

MTTR: O

FIGURE 7.19: IoT Palladio Allocation Context 2 DB

1H EdgeDeviceEdgeServer

i Lan
0.2
20

0.0

] EdgeserverCloudDB

I Lan
0.3
100

0.0

[EdgeServer

A CcPU

Scheduling: First-Come-First-Serve
Number of Replicas: 1

Processing Rate: 500

MTTF: O

MTTR: O

|H| CloudDataBase

A CcPU

Scheduling: First-Come-
Number of Replicas: 1

Processing Rate: 1000

MTTF: O

MTTR: 0

1] EdgeserverdgeDs

THiLan
01
50

0.0

-First-Serve

i EdgeDBCloudDE
i Lan

0.3

100

0.0

|H| EdgeDataBase
A CPU

Scheduling: First-Come-First-Serve
Number of Replicas: 1

Processing Rate: 1000

MTTF: O

MTTR: 0

FIGURE 7.20: IoT Palladio Resource Environment 2 DB

VNFFirewall 1

Edge Device

Sﬁr

SDN
Switch

B

2]

[0T Device

I
i
WebService 1 || VNF £ —~—1=,%7 Data Base
" | LoadBalancer ;’
Cloud DataBase
Cloud Server Node 1 Node 1
|
WebService &] VNF £
1 LoadBalancer —T17="7 Daia Base
T

|
VNFFirewall €]

Edge Server

Edge DataBase

FIGURE 7.21: IoT Scenario Scheme Edge and Cloud

Chapter 7. Flexible System Modeling: An Example of Modeling of an App]icatiqz& 0

for Smart Cities

£] VNFFirewallReplica
T SEFF =check=
PassiveResourceCompartment
ComponentParameterCompartmen

<<=Requires>>
<<Provides>>

€ IFirewallReplica
|=] void check()
<<Requires>=>
2] switch
%7 SEFF <branch=

PassiveResourceCompartment

<<Provides=x>

@ 15witch
D woid branch()

CompenentParameterCompartment
<<Requires=>>

© IFirewall
D void check()

==Provides==

€@ WebService
D void server()

£] WebServiceReplica

¥ SEFF <server=
PassiveResourceCompartment

t ComponentParameterCompartment.

<<Provides>>

© IWebservicereplica
[~ | void server()

£] Webservice
¥ SEFF <servers
PassiveResourceCompartment

CompenentParameterCompartment

<=Provides=>=
<<Requires>>

==Requires=>

=] VMNFFirewall
Y7 SEFF <check=>

PassiveResourceCompartment

CompoenentParameterCompartment

¥7 SEFF <balancer>

ComponentParameterCompartment

==Requires>>

Q) ILoadBalancer
D void balancer()

£] VNFLoadBalancerReplica £] DataBaseReplica

%7 SEFF <processData>
PassiveResourceCompartment PassiveResourceCompartment
ComponentParameterCompartment
<<Provides>>
. ==Provides>>
<<Requires>>
©) |LoadBalancerReplica

[Z] woid balancer{)
@ |DataBaseReplica

<<Requiresss [Z] void processData()

=] VNFLoadBalancer
%7 SEFF <balancer>

PassiveResourceCompartment

=] DataBase
YT SEFF <processData>
PassiveResourceCompartment

ComponentParameterCompartment CompoenentParameterCompartment

<<Provides>> <<Provides>>

==Requires>>

€ IDataBase
D void processDatal)

FIGURE 7.22: IoT Palladio Repository Edge and Cloud

o2t allame
o Cond:

#1 Required_IFirewall_Switch.check

InputVariableUsage
OutputVariableUsage

% switch

o2t aName

o Cond:

}(Required_IFirewallReplica_Switch.check

InputVariableUsage
OutputVariableUsage

FIGURE 7.23: IoT Palladio Switch Branch Edge and Cloud

SmartTrafficLightloTWorkflowApplication

Cloud_VNF_Firewall Cloud_WebService Cloud_WNF_LoadBalancer Cloud_DataBase

Edge_WebService Edge_VMF_LoadBalancer EdgeDataBase

5 |Edge_VNF_Firewall

FIGURE 7.24: IoT Palladio Assembly Context Edge and Cloud

Chapter 7. Flexible System Modeling: An Example of Modeling of an App]icatiqz& 1
for Smart Cities

Clouds | CloudDataBase
B Cloudserver 1 serverDBCloud
7 CPU 1 LAN A CPU H] EdgeDBCloudDB
5 ahame Scheduling: First-Come-First-Serve Scheduling: First-Come-First-Serve I Lan
HLan Number of Replicas: 1 0.02 Number of Replicas: 1
Processing Rate: 1000 Processing Rate: 1000 0.3
03 MTTF: 0 100 MTTF: 0
: MTTR: 0 MTTR: 0 100
100 o
0.0
0.0
I EdgeServerCloudDB
I Lan
03
100
0.0
[H EdgeDevice HEdgeDevicews [H EdgeServer E%E::I:Sawarna 8 EdgeDataBase
cru HLan o CPU P
Scheduling: First-Come-First-Serve Scheduling: First-Come-First-Serve 0.1 Scheduling: First-Come-First-Serve
Number of Replicas: 1 0.2 Number of Replicas: 1 Number of Replicas: 1
Processing Rate: 100 Processing Rate: 500 50 Processing Rate: 500
MTTF: 0 20 MTTF: 0 MTTF: 0
MTTR: © MTTR: 0 0.0
0.0

MTTR: 0

FIGURE 7.25: IoT Palladio Resource Environment Edge and Cloud

102

Discussion of the Obtained Results

We have presented a design-time approach that allows us to adjust and remodel our
system specifications, their models, and even the behavior of systems, and can lead
to performance prediction once the results presented in the design-time analysis are
validated in real application runs.

Our approach allows us to conduct analysis of models of self-adaptive systems. This
thesis clarifies several points to be considered in order to conduct modeling and
analysis of models at design time that consider the dynamism of self-adaptive sys-
tems, that is, the need for dynamic change in the execution of analysis of models,
and the need for readjustments and reanalysis of the models executed. To proceed
with these steps, a structure capable of offering the possibility of modifying each
stage of the design of this type of system is necessary.

Building adaptation rules and a metamodel that is capable of acting on the simula-
tion of self-adaptive systems is not a trivial task: it requires time and development
effort. However, once done, it can contribute to the advancement of research in the
area, with the structure and initial modeling available. It is necessary to thoroughly
analyse the behavior to be modelled and identify the elements necessary for the
construction of each metamodel. This task can only be performed from a detailed
survey of functionalities and real behavior, either to model a system, such as Palla-
dio, or to model any type of adaptation, action or language that you want to include
in a simulation.

To model a complete or even complex self-adaptive system is not a trivial task to
be addressed at design time either. The approach presented in this thesis seeks to
provide ways to conduct the analysis of system components.

This approach represents a significant contribution and a qualitative gain for practi-
cal applications. Considering that, by anticipating instruments and mechanisms of
analysis and adaptation at design-time, it makes it possible to: (1) establish an un-
derstanding of the changing nature of self-adaptive systems through the modeling
of services and their adaptations, also enabling the simulation of these models; and
(2) establish guidelines capable of assisting in the construction of systems, facilitat-
ing the set of decisions at design-time, such as the specification of requirements that
consider restrictions, the monitoring and adaptation strategies, as well as the mod-
eling of the system and its behavior, and design-time analysis to build a model with
better quality of service results.

Chapter 8. Discussion of the Obtained Results 103

The results of the simulations using our procedural and flexible approach showed us
that it is possible to incorporate changes in models of adaptive systems and, mainly,
that our approach is useful to model and measure the unpredictability of these sys-
tems.

With the Covid-19 pandemic, the use of cyber-physical systems has become essential
for everyone’s daily lives. More and more systems were used to make everyday life
easier. What once consisted in solutions that were used by a small number of users
became demands by a variety of customers, with even some solutions developed
to meet new demands. An example of this was Brazil’s financial aid policy, which
was meant to mitigate the economic and social effects of the Covid crisis. The aid
would be made accessible for citizens through two applications initially designed to
serve 73 million people. Within weeks of the launch of the apps 95 million people
requested sign up, and that number rose to 107 million a few months later (article
available in: Brazil Financial Aid Program). However, the applications had problems
due to the high demand for simultaneous access. The users had to wait on "virtual
queues" (article available in: |Virtual Queues 'Caixa Tem’) in order to access the "Caixa
Tem" solution, since the developers had established a maximum access policy of
5,000 users per minute (article available in: |Access Policy 'Caixa Tem’). Developing
solutions that have the predictability of high demand can have benefits using self-
adaptive policies that are modeled and analyzed at design time. With our approach,
applications with this characteristic can not only reach the feasibility of foreseen
policies, but also verify unpredictability that can cause system unavailability, slow-
downs and long waiting time.

With the advent of the Smart Cities proposal, it is envisioned that solutions for cities
are accessed by a large number of users and that a large volume of data is gener-
ated daily. These characteristics can bring problems related to the non-functional
requirements of the solutions developed for this context. In an application for Smart
Cities that considers a heterogeneous architecture, Internet of Things - IoT devices
(or edge devices) can move, connect, disconnect and send information to both Edge
and Cloud servers. With the approach presented here, it is possible: to specify (phase
1) the non-functional requirements and adaptation strategies as well as the dynamic
context change (from Cloud to Edge or from Edge to Cloud as needed); to model a
system using Palladio (phase 2), considering its component, container, allocation
and communication link; to create rules in e-Motions (phase 3) that incorporate
changes from an Edge context to a Cloud context where a high demand for a service
can increase throughput impacting the latency of edge services or even create be-
havior rules with other paradigms such as SDN (Software-defined networking) and
VNF (Network Functions Virtualization) to deal with the demands of communica-
tion between containers and services; and finally, to analyze the system architecture
using Maude (phase 4).

104

Conclusions and Future Work

9.1 Summary and Conclusions

Designing software systems, which are becoming increasingly larger and more com-
plex, has become a challenge due to the need to take into account not only the over-
all structure of the systems themselves, but also their allocation, functionality, and
the communication of their components. In this regard, the Software Engineering
community should concentrate efforts on building approaches that aim to establish
the systems’” architectures for their implementation, but that are also suitable to the
analysis of their quality attributes, such as performance.

When considering the scalability, elasticity and adaptability of systems, dynamism
and autonomy are challenging requirements, and considering them at design-time
is still a difficult task. Emerging behaviors and opportunistic interactions cannot yet
be predicted at design-time. However, these efforts should focus mainly on solu-
tions related to the establishment of models that understand the changing nature of
these systems in order for projects to model services and its adaptations more effi-
ciently. These models must be tested so that it is possible to find guidelines capable
of assisting in the construction of systems so that they mitigate delays and failures,
and that do not directly impact the users” experience. These guidelines concern a
set of decisions at design-time, such as the specification of requirements that con-
sider constraints, monitoring and adaptation strategies, as well as the modeling of
systems and their behavior, and the system analysis at design-time in order to build
models with better quality of service results.

This work presented a proposal that uses Palladio, e-Motions, Maude and SYBL in
such a way that it enables expressiveness and flexibility in the specification, model-
ing, behavioral definition and performance analysis of self-adaptive models using a
procedural approach. Such procedural organisation has helped us to understand the
formulation of each of the steps, which makes the approach flexible and consistently
reproducible.

We model adaptation mechanisms as generic adaptation rules. We have illustrated
our approach by modeling in/out scale and up/down scale rules, triggered in re-
sponse to breaches of restrictions. We specify the elasticity requirements of the sys-
tems, allowing their adjustment. The verification of the specification and the adap-
tation in different components in the system allowed us to verify that previously

Chapter 9. Conclusions and Future Work 105

specified strategies may be misleading and our approach proposes that the read-
justment and analysis be carried out at design-time. With the development of the
communication channel behavior rules, it is possible to consider the latency varia-
tion and adaptations considering the communication link.

The procedure and the practical experience have allowed us to validate our hypothe-
sis. The initial specifications, model and adaptations were tested at simulation time,
and the results obtained through their use during a simulation were submitted for
re-simulation and reanalysis, which led us to a more precise diagnosis of the system
and, eventually, to a readjustment towards better results. This was possible thanks
to the possibility of modifying the model during simulation time, the facilitation of
the writing of the requirements specifications (constraints, monitoring and strate-
gies) using a simple language like SYBL, and the subsequent analysis of the impact
of the adaptations on the system.

9.2 Publications

The development of this thesis have given rise to the following publications (listed
by category and in reverse chronological order):

Journal paper

e ARAUJO-DE-OLIVEIRA, PATRICIA; DURAN, FRANCISCO; PIMENTEL, ERNESTO.
A procedural and flexible approach for specification, modeling, definition,
and analysis for self-adaptive systems. Softw Pract Exper. 2021;51:1387-1415.
https://doi.org/10.1002/spe.2962

Book chapters

e DE OLIVEIRA, PATRICIA ARAUJO; DURAN, FRANCISCO; PIMENTEL, ERNESTO.
Towards the Performance Analysis of Elastic Systems with e-Motions. In: Cerone
A., Roveri M. (eds) Software Engineering and Formal Methods. SEFM 2017.
Lecture Notes in Computer Science, vol 10729, p. 475-490. Springer, Cham.

e DE OLIVEIRA, PATRICIA ARAUJO; DURAN, FRANCISCO; PIMENTEL, ERNESTO.
An Approach to Predictive Analysis of Self-Adaptive Systems in Design Time.
In: Braubach L. et al. (eds) Service-Oriented Computing — ICSOC 2017 Work-
shops. ICSOC 2017. Lecture Notes in Computer Science, vol 10797, p. 363-368.
Springer, Cham.

International conference

e DE OLIVEIRA, PATRICIA ARAUJO. Predictive Analysis of Cloud Systems
(Extended Abstract). In: International Conference on Software Engineering
(Companion Volume), 2017: 483-484. Buenos Aires, Argentina.

Iberoamerican conference

e DE OLIVEIRA, PATRICIA ARAUJO; MORENO-DELGADO, ANTONIO; DURAN,
FRANCISCO; PIMENTEL, ERNESTO. Towards the predictive analysis of cloud
systems with e-Motions. In: Ibero-American Conference on Software Engi-
neering, 2017: 169-182. Buenos Aires, Argentina.

Chapter 9. Conclusions and Future Work 106

Spanish conference

e DE OLIVEIRA, PATRICIA ARAUJO.Towards the model-based predictive per-
formance analysis of Cloud adaptive systems with e-Motions. In: Jornadas
sobre PROgramacién y LEnguajes (PROLE), 2017, Tenerife. Jornadas de la
Asociacién de Ingenieria del Software y Tecnologias de Desarrollo de Software
(SISTEDES), 2017.

9.3 Future Work

We intend to advance the analysis of this approach by integrating the characteristics
of Cloud, Fog and Edge Computing to create a model to simulate Smart Cities sce-
narios, advancing in the proposal for modeling SDNs and VNFs. For this, it is neces-
sary to overcome technological limitations still present. The e-Motions tool leaves a
significant part of the computation on the conditions of rules. Although this greatly
simplifies the rules and their transformation, it results in a high computational price
during the simulations. Given the way in which these rules are executed, a signif-
icant number of rule matches are discarded when evaluating such conditions. This
may hamper the scalability of the proposal, and will need to be overcome if the tool
is to be applied on complex systems.

This approach can advance even further in modeling the paradigms Software-Defined
Networks (SDNs) or even the Virtualization of Network Functions (VNFs), but the
field itself still has challenges to be overcome, such as the pursuit of ways to model
an SDN that interacts with the model of a system in order to represent minimal be-
havior of a real network, or even, to model the behavior of a VNF in the best possible
way, since this is an NP-difficult problem and several proposals can be presented.

107

Bibliography

Abuseta, Yousef and Khaled Swesi (2015). “Towards a framework for testing and
simulating self adaptive systems”. In: 6th IEEE International Conference on Software
Engineering and Service Science (ICSESS). Ed. by M Surendra Prasad Babu and Wen-
zheng Li, pp. 70-76.

Access Policy 'Caixa Tem’. https : //economia . uol . com. br /noticias/redacao/
2020/05/31/auxilio-emergencial-r-600-caixa-tem-fila-de-espera.htm.
Accessed: 2021-10-05.

Andries, Marc et al. (1999). “Graph transformation for specification and program-
ming”. In: Science of Computer programming 34.1, pp. 1-54.

Arcelli, Davide (2020). “Exploiting Queuing Networks to Model and Assess the Per-
formance of Self-Adaptive Software Systems: A Survey”. In: Procedia Computer Sci-
ence 170, pp. 498 -505. DOI:110.1016/ j .procs.2020.03.108.

Balsamo, Simonetta et al. (2004). “Model-Based Performance Prediction in Software
Development: A Survey”. In: IEEE Trans. Software Eng. 30.5, pp. 295-310.

Becker, Matthias, Steffen Becker, and Joachim Meyer (2013). “SimulLizar: Design-
Time Modeling and Performance Analysis of Self-Adaptive Systems”. In: Software
Engineering 213, pp. 71-84.

Becker, Steffen, Gunnar Brataas, and Sebastian Lehrig (2017). Engineering Scalable,
Elastic, and Cost-Efficient Cloud Computing Applications. Springer.

Becker, Steffen, Heiko Koziolek, and Ralf Reussner (2009a). “The Palladio compo-
nent model for model-driven performance prediction”. In: . of Systems and Soft-
ware 82.1, pp. 3 -22.

— (2009b). “The Palladio component model for model-driven performance predic-
tion”. In: Journal of Systems and Software 82.1, pp. 3—22. 1SSN: 0164-1212. DOI: 10 .
1016/j . jss .2008.03.066. URL: http://www.sciencedirect . com/science/
article/pii/S0164121208001015.

Becker, Steffen, Heiko Koziolek, and Ralf H. Reussner (2007). “Model-Based Perfor-
mance Prediction with the Palladio Component Model”. In: 6th Intl. Workshop on
Software and Performance (WOSP). Ed. by Vittorio Cortellessa, Sebastidn Uchitel,
and Daniel Yankelevich. ACM, pp. 54-65.

Bernardi, Simona et al. (2018). “Towards a model-driven engineering approach for
the assessment of non-functional properties using multi-formalism”. In: Software
& Systems Modeling, pp. 1-24.

https://economia.uol.com.br/noticias/redacao/2020/05/31/auxilio-emergencial-r-600-caixa-tem-fila-de-espera.htm
https://economia.uol.com.br/noticias/redacao/2020/05/31/auxilio-emergencial-r-600-caixa-tem-fila-de-espera.htm
https://doi.org/10.1016/j.procs.2020.03.108
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1016/j.jss.2008.03.066
http://www.sciencedirect.com/science/article/pii/S0164121208001015
http://www.sciencedirect.com/science/article/pii/S0164121208001015

Bibliography 108

Bezerra, C. I. M. et al. (Sept. 2016). “DyMMer: a measurement-based tool to support
quality evaluation of DSPL feature models”. In: 20th International Systems and Soft-
ware Product Line Conference (SPLC). Ed. by Hong Mei. ACM, pp. 314-317. DOIL:
10.1145/2934466.2962730.

Bezerra, CarlaI. M. et al. (2018). “Aggregating Measures Using Fuzzy Logic for Eval-
uating Feature Models”. In: 12th International Workshop on Variability Modelling of
Software-Intensive Systems. Ed. by Rafael Capilla, Malte Lochau, and Lidia Fuentes.
ACM, 35-42. DOI1:/10.1145/3168365.3168375.

Brazil Financial Aid Program.https://feed.itsrio.org/brazils-auxilio-emergenc

and-caixa-tem-apps-6a4abde68468. Accessed: 2021-10-05.

Bucchiarone, Antonio et al. (2015). “Rule-based modeling and static analysis of self-
adaptive systems by graph transformation”. In: Software, services, and systems. Ed.
by Rocco De Nicola and Rolf Hennicker. Springer, pp. 582-601.

Business Process Model and Notation (BPMN) — Version 2.0. December 2011. OMG. URL:
\url{https://www.omg.org/spec/BPMN/}

Cao, Yinzhi and Junfeng Yang (2015). “Towards Making Systems Forget with Ma-
chine Unlearning”. In: 2015 IEEE Symposium on Security and Privacy, pp. 463—480.
DOI:/10.1109/SP.2015.35

Casimiro, Maria et al. (2021). “Self-Adaptation for Machine Learning Based Sys-
tems”. In: Proceedings of the 1st International Workshop on Software Architecture and
Machine Learning (SAML). Springer.

Chen, B. et al. (2019). “Architecture-Based Behavioral Adaptation with Generated
Alternatives and Relaxed Constraints”. In: IEEE Transactions on Services Computing
12.1, pp. 73-87.

Ciccozzi, Federico, Antonio Cicchetti, and Andreas Wortmann (July 2020). “Edito-
rial to theme section on interplay of model-driven and component-based software
engineering”. In: Software and Systems Modeling 19.6, pp. 1461-1463. DOI: 10.1007/
510270-020-00812-7. URL: https://doi.org/10.1007/s10270-020-00812-7.

Ciccozzi, Federico et al. (Mar. 2017). “Editorial to theme issue on model-driven en-
gineering of component-based software systems”. In: Software & Systems Modeling
18.1, pp. 7-10. DOI: 10. 1007 /s10270-017 - 0589-6. URL: https://doi.org/10.
1007/s10270-017-0589-6.

Claus, Volker, Hartmut Ehrig, and Grzegorz Rozenberg (1979). Graph-grammars and
their application to computer science and biology: international workshop, Bad Honnef,
October 30-November 3, 1978. Vol. 1. Springer Science & Business Media.

Clavel, Manuel et al. (2007). All About Maude. Vol. 4350. Lecture Notes in Computer
Science. Springer.

Combemale, Benoit et al. (Nov. 2016). Engineering Modeling Languages: Turning Do-
main Knowledge into Tools. Chapman and Hall/CRC, p. 398. URL: https://hal.
inria.fr/hal-01355374.

Copil, Georgiana et al. (2013). “SYBL: An extensible language for controlling elastic-
ity in cloud applications”. In: 13th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid). Ed. by Pavan Balaji, Dick Epema, and Thomas
Fahringer. IEEE, pp. 112-1109.

Criado, Javier et al. (2016). “Exploring Quality-Aware Architectural Transformations
at Run-Time: The ENIA Case”. In: 6th International Conference on Model and Data
Engineering (MEDI). Ed. by Ladjel Bellatreche et al. Vol. 9893. Lecture Notes in
Computer Science. Springer, pp. 288-302. DOI:'10.1007/978-3-319-45547-1_23.
URL: https://doi.org/10.1007/978-3-319-45547-1_23

ial-

https://doi.org/10.1145/2934466.2962730
https://doi.org/10.1145/3168365.3168375
https://doi.org/10.1109/SP.2015.35
https://doi.org/10.1007/s10270-020-00812-7
https://doi.org/10.1007/s10270-020-00812-7
https://doi.org/10.1007/s10270-020-00812-7
https://doi.org/10.1007/s10270-017-0589-6
https://doi.org/10.1007/s10270-017-0589-6
https://doi.org/10.1007/s10270-017-0589-6
https://hal.inria.fr/hal-01355374
https://hal.inria.fr/hal-01355374

Bibliography 109

Criado, Javier et al. (2018). “Quality-aware Architectural Model Transformations in
Adaptive Mashups User Interfaces”. In: Fundam. Inform. 162.4, pp. 283-309. DOI:
10.3233/FI-2018-1726. URL: https://doi.org/10.3233/FI-2018-1726.

de Sousa, Amanda Oliveira et al. (2019). “Quality Evaluation of Self-Adaptive Sys-
tems: Challenges and Opportunities”. In: XXXIII Brazilian Symposium on Software
Engineering (SBES). Ed. by Ivan Machado and Rodrigo Souza. ACM, 213-218. DOI:
10.1145/3350768. 3352455,

Durén, Francisco, Antonio Moreno-Delgado, and José M. Alvarez-Palomo (2016).
“Statistical Model Checking of e-Motions Domain-Specific Modeling Languages”.
In: 19th Intl. Conf. Fundamental Approaches to Software Engineering (FASE). Ed. by
Perdita Stevens and Andrzej Wasowski. Vol. 9633. Lecture Notes in Computer Sci-
ence. ETAPS. Springer, pp. 305-322.

e-Motions Examples. http : / / atenea . lcc . uma . es /projects/E-motions . html.
Accessed: 2021-10-05.

Edwards, R. and N. Bencomo (2018). “DeSiRE: Further Understanding Nuances of
Degrees of Satisfaction of Non-functional Requirements Trade-Off”. In: [IEEE/ACM
13th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). Ed. by Jesper Andersson and Danny Weyns, pp. 12-18.

Ehrig, Hartmut, Manfred Nagl, and Grzegorz Rozenberg, eds. (1983). Graph-Grammars
and Their Application to Computer Science. Springer Berlin Heidelberg. DOTI: 10 .
1007/b£b0000094. URL: https://doi.org/10.1007/bfb0000094.

Ehrig, Hartmut, Michael Pfender, and Hans Jiirgen Schneider (1973). “Graph-grammars:
An algebraic approach”. In: 14th Annual Symposium on Switching and Automata The-
ory (swat 1973). IEEE, pp. 167-180.

Falkner, Katrina, Claudia Szabo, and Vanea Chiprianov (2016). “Model-driven per-
formance prediction of systems of systems”. In: 19th Intl. Conf. on Model Driven
Engineering Languages and Systems. Ed. by Jorg Kienzle and Alexander Pretschner.
ACM/IEEE, pp. 44-44.

Franck, Reinhold (1976). “PLANZ2D - Syntactic Analysis of Precedence Graph Gram-
mars”. In: POPL '76. Atlanta, Georgia: Association for Computing Machinery,
134-139. 1SBN: 9781450374774. DOI:|10.1145/800168.811547. URL: https://doi.
org/10.1145/800168.811547.

Franco, Jodo M. et al. (May 2016). “Improving Self-Adaptation Planning through
Software Architecture-Based Stochastic Modeling”. In: J. Syst. Softw. 115.C, 42-60.
ISSN: 0164-1212. DOI:|10.1016/j . jss.2016.01.026, URL: https://doi.org/10.
1016/7.jss.2016.01.026.

Grassi, Vincenzo, Raffaela Mirandola, and Enrico Randazzo (2009). “Model-driven
assessment of QoS-aware self-adaptation”. In: Software Engineering for Self-Adaptive
Systems. Ed. by B.H.C. Cheng et al. Springer, pp. 201-222.

Gu, Tianyu et al. (2019). “BadNets: Evaluating Backdooring Attacks on Deep Neu-
ral Networks”. In: IEEE Access 7, pp. 47230-47244. DOI: |10 . 1109/ACCESS . 2019.
2909068.

Habel, Annegret (1992). “Hyperedge replacement: grammars and languages”. In:

Hannachi, Mohamed Amine et al. (2013). “GMTE: A Tool for Graph Transforma-
tion and Exact/Inexact Graph Matching”. In: Graph-Based Representations in Pat-
tern Recognition. Springer Berlin Heidelberg, pp. 71-80. DOI:|10.1007/978-3-642-
38221-5_8. URL: https://doi.org/10.1007/978-3-642-38221-5_8.

Happe, Jens, Heiko Koziolek, and Ralf Reussner (2011). “Facilitating Performance
Predictions Using Software Components”. In: IEEE Software 28.3, pp. 27-33. ISSN:
0740-7459.

https://doi.org/10.3233/FI-2018-1726
https://doi.org/10.3233/FI-2018-1726
https://doi.org/10.1145/3350768.3352455
http://atenea.lcc.uma.es/projects/E-motions.html
https://doi.org/10.1007/bfb0000094
https://doi.org/10.1007/bfb0000094
https://doi.org/10.1007/bfb0000094
https://doi.org/10.1145/800168.811547
https://doi.org/10.1145/800168.811547
https://doi.org/10.1145/800168.811547
https://doi.org/10.1016/j.jss.2016.01.026
https://doi.org/10.1016/j.jss.2016.01.026
https://doi.org/10.1016/j.jss.2016.01.026
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1007/978-3-642-38221-5_8
https://doi.org/10.1007/978-3-642-38221-5_8
https://doi.org/10.1007/978-3-642-38221-5_8

Bibliography 110

Heinrich, Robert (Feb. 2016). “Architectural Run-time Models for Performance and
Privacy Analysis in Dynamic Cloud Applications”. In: SIGMETRICS Perform. Eval.
Rev. 43.4, pp. 13-22. 1SSN: 0163-5999. DOI:|10. 1145/2897356 . 2897359. URL: http:
//doi.acm.org/10.1145/2897356.2897359.

Himsolt, Michael (1990). “GraphEd: An Interactive Tool For Developing Graph Gram-
mars”. In: Proceedings of the Fourth International Workshop on Graph-Grammars and
Their Application to Computer Science. Ed. by Hartmut Ehrig, Hans-Jorg Kreowski,
and Grzegorz Rozenberg. Vol. 532. Lecture Notes in Computer Science. Springer-
Verlag, pp. 61-65. ISBN: 3-540-54478-X. DOI:|10.1007/BFb0017378.

Huang, Ling et al. (2011). “Adversarial machine learning”. In: Proceedings of the 4th
ACM workshop on Security and artificial intelligence, pp. 43-58.

Huber, Nikolaus et al. (2012). “S/T/A: Meta-modeling run-time adaptation in component-
based system architectures”. In: 9th Intl. Conf. on e-Business Engineering (ICEBE).
Ed. by Kuo-Ming Chao. IEEE, pp. 70-77.

Johnsen, Einar Broch, Jia-Chun Lin, and Ingrid Chieh Yu (2016). “Comparing AWS
Deployments Using Model-Based Predictions”. In: 7th Intl. Symp. on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA). Ed. by Tiziana
Margaria and Bernhard Steffen. Vol. 9953. Lecture Notes in Computer Science.
Springer, pp. 482-496.

Konig, Barbara and Vitali Kozioura (2005). “Augur - A Tool for the Analysis of Graph
Transformation Systems”. In: Bull. EATCS 87, pp. 126-137.

Koussaifi, Maroun et al. (May 2020). Putting the End-User in the Loop in Smart Ambient
Systems: an Approach based on Model-Driven Engineering. Research Report IRIT/RR~-
2020-06—FR. IRIT - Institut de Recherche en Informatique de Toulouse. URL: https:
//hal.archives-ouvertes.fr/hal-03120776!

Koziolek, Heiko (2010). “Performance evaluation of component-based software sys-
tems: A survey”. In: Perform. Eval. 67.8, pp. 634-658.

Krach, Sebastian Dieter and Max Scheerer (2018). “SimulLizar NG: An extensible
event-oriented simulation engine for self-adaptive software architectures”. In: 9th
Symposium on Software Performance (SSP). Ed. by Holger Eichelberger and Klaus
Schmid.

Lowe, Michael and Martin Beyer (1993). “Agg — An implementation of algebraic
graph rewriting”. In: Rewriting Techniques and Applications. Ed. by Claude Kirchner.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 451-456.

Mcllroy, M Douglas et al. (1968). “Mass-produced software components”. In: Pro-
ceedings of the 1st International Conference on Software Engineering, Garmisch Pat-
tenkirchen, Germany, pp. 88-98.

Mian, Natash Ali and Farooq Ahmad (2017). “Modeling and Analysis of MAPE-K
loop in Self Adaptive Systems using Petri Nets”. In: Int.]. Comput. Sci. Netw. Secur.
17.12, pp. 158-163.

Miller, Brad et al. (2016). “Reviewer Integration and Performance Measurement for
Malware Detection”. In: Detection of Intrusions and Malware, and Vulnerability As-
sessment. Springer International Publishing, pp. 122-141. DOI: 10. 1007 /978- 3 -
319-40667-1_7. URL: https://doi.org/10.1007/978-3-319-40667-1_7.

Monshizadeh Naeen, Hossein, Esmaeil Zeinali, and Abolfazl Toroghi Haghighat
(2020). “Adaptive Markov-based approach for dynamic virtual machine consoli-
dation in cloud data centers with quality-of-service constraints”. In: Software: Prac-
tice and Experience 50.2, pp. 161-183. DOI: 10 . 1002/ spe . 2764. eprint: https :
//onlinelibrary .wiley.com/doi/pdf/10.1002/spe.2764. URL: https://
onlinelibrary.wiley.com/doi/abs/10.1002/spe.2764.

https://doi.org/10.1145/2897356.2897359
http://doi.acm.org/10.1145/2897356.2897359
http://doi.acm.org/10.1145/2897356.2897359
https://doi.org/10.1007/BFb0017378
https://hal.archives-ouvertes.fr/hal-03120776
https://hal.archives-ouvertes.fr/hal-03120776
https://doi.org/10.1007/978-3-319-40667-1_7
https://doi.org/10.1007/978-3-319-40667-1_7
https://doi.org/10.1007/978-3-319-40667-1_7
https://doi.org/10.1002/spe.2764
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2764
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2764
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2764
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2764

Bibliography 111

Moreno-Delgado, Antonio et al. (2014). “Modular DSLs for flexible analysis: An e-
Motions reimplementation of Palladio”. In: 10th European Conference on Modelling
Foundations and Applications, ECMFA. Ed. by Jordi Cabot and Julia Rubin. Vol. 8569.
Lecture Notes in Computer Science. STAF. Springer, pp. 132-147.

Miinch, Manfred (2000). “PROgrammed Graph REwriting System PROGRES”. In:
Applications of Graph Transformations with Industrial Relevance. Ed. by Manfred Nag],
Andreas Schiirr, and Manfred Miinch. Berlin, Heidelberg: Springer Berlin Heidel-
berg, pp. 441-448.

Nardelli, Matteo et al. (2017). “Osmotic Flow: Osmotic Computing + IoT Workflow”.
In: IEEE Cloud Computing 4.2, pp. 68-75. DOI:|10.1109/MCC. 2017 .22.

Palladio Simulator Website. https://www.palladio-simulator.com. Accessed: 2021-
10-05.

Pfaltz, John L. and Azriel Rosenfeld (1969). “Web Grammars”. In: Proceedings of the
1st International Joint Conference on Artificial Intelligence. IJCAI'69. Washington, DC:
Morgan Kaufmann Publishers Inc., 609-619.

Pinto, Fabio, Marco O. P. Sampaio, and P. Bizarro (2019). “Automatic Model Moni-
toring for Data Streams”. In: ArXiv abs/1908.04240.

Plasmeijer, Rinus, Marko Van Eekelen, and MJ Plasmeijer (1993). Functional program-
ming and parallel graph rewriting. Vol. 857. Addison-wesley Reading.

Quionero-Candela, Joaquin et al. (2009). Dataset Shift in Machine Learning. The MIT
Press. ISBN: 0262170051.

Rabanser, Stephan, Stephan Giinnemann, and Zachary Lipton (2019). “Failing loudly:
An empirical study of methods for detecting dataset shift”. In: Advances in Neural
Information Processing Systems 32.

Raibulet, Claudia et al. (Jan. 2017). “An Overview on Quality Evaluation of Self-
Adaptive Systems”. In: Managing Trade-offs in Adaptable Software Architectures. Ed.
by Ivan Mistrik et al. Morgan Kaufmann, pp. 325-352. DOI: 10.1016/B978-0-12-
802855-1.00013-7.

Rivera, Jose E, Francisco Duran, and Antonio Vallecillo (2009). “A graphical ap-
proach for modeling time-dependent behavior of DSLs”. In: IEEE Symp. on Visual
Languages and Human-Centric Computing (VL/HCC). Ed. by Robert DeLine, Mark
Minas, and Martin Erwig. IEEE, pp. 51-55.

Rivera, José Eduardo, Francisco Durdn, and Antonio Vallecillo (2009). “Formal Spec-
ification and Analysis of Domain Specific Models Using Maude”. In: Simulation
85.11-12, pp. 778-792.

Rodrigues da Silva, Alberto (2015). “Model-driven engineering: A survey supported
by the unified conceptual model”. In: Computer Languages, Systems Structures 43,
pp- 139-155. 1SSN: 1477-8424. DOI: https://doi.org/10.1016/j.c1.2015.06.001.
URL:https://www.sciencedirect.com/science/article/pii/S1477842415000408!

Rozenberg, Grzegorz (1997). Handbook of graph grammars and computing by graph trans-
formation. Vol. 1. World scientific.

Sanislav, Teodora, George Mois, and Liviu Miclea (Dec. 2015). “An Approach to
Model Dependability of Cyber-Physical Systems”. In: Microprocessors and Microsys-
tems 41. DOI:|10.1016/j .micpro.2015.11.021.

Saputri, Theresia Ratih Dewi and Seok-Won Lee (2020). “The Application of Machine
Learning in Self-Adaptive Systems: A Systematic Literature Review”. In: IEEE Ac-
cess 8, pp. 205948-205967. DOI:|10.1109/ACCESS . 2020 . 3036037.

Serral, Estefania, Paolo Sernani, and Fabiano Dalpiaz (Nov. 2017). “Personalized
adaptation in pervasive systems via non-functional requirements”. In: Journal of
Ambient Intelligence and Humanized Computing 9. DOI:|10.1007/s12652-017-0611-
4.

https://doi.org/10.1109/MCC.2017.22
https://www.palladio-simulator.com
https://doi.org/10.1016/B978-0-12-802855-1.00013-7
https://doi.org/10.1016/B978-0-12-802855-1.00013-7
https://doi.org/https://doi.org/10.1016/j.cl.2015.06.001
https://www.sciencedirect.com/science/article/pii/S1477842415000408
https://doi.org/10.1016/j.micpro.2015.11.021
https://doi.org/10.1109/ACCESS.2020.3036037
https://doi.org/10.1007/s12652-017-0611-4
https://doi.org/10.1007/s12652-017-0611-4

Bibliography 112

Sinreich, David (2005). An architectural blueprint for autonomic computing. Tech. rep.
IBM.

Smith, Connie U. and Lloyd G. Williams (2002). Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software. Object-Technology Series. Addison-
Wesley. I1SBN: 0-201-72229-1.

Troya, Javier et al. (2013). “Model-driven performance analysis of rule-based domain
specific visual models”. In: Information & Software Technology 55.1, pp. 88-110.

Vale, Tassio et al. (Jan. 2016). “Twenty-eight years of component-based software en-
gineering”. In: Journal of Systems and Software 111, pp. 128-148. DOI:|10. 1016/ j .
jss.2015.09.019, URL: https://doi.org/10.1016/5.jss.2015.09.019.

Virtual Queues 'Caixa Tem’. https : //oglobo . globo . com/economia/caixa-tem-
volta - funcionar - mas - usuarios - enfrentam- fila - virtual - 24786935. Ac-
cessed: 2021-10-05.

Vogel, Thomas and Holger Giese (2018). “Model-Driven Engineering of Self-Adaptive
Software with EUREMA”. In: CoRR abs/1805.07353. arXiv:/1805.07353. URL: http:
//arxiv.org/abs/1805.07353.

Wanke, Egon (1990). “PLEXUS: Tools for Analyzing Graph Grammars”. In: Graph-
Grammars and Their Application to Computer Science, 4th International Workshop, Bre-
men, Germany, March 5-9, 1990, Proceedings. Ed. by Hartmut Ehrig, Hans-Jorg Kre-
owski, and Grzegorz Rozenberg. Vol. 532. Lecture Notes in Computer Science.
Springer, pp. 68-69. DOI:|10.1007/BFb0017381. URL: https://doi.org/10.1007/
BFb0017381.

Weyns, Danny (2020). An Introduction to Self-adaptive Systems: A Contemporary Soft-
ware Engineering Perspective. John Wiley & Sons.

Weyns, Danny and Usman Iftikhar (2016). “Model-based simulation at runtime for
self-adaptive systems”. In: International Conference on Autonomic Computing (ICAC).
Ed. by Samuel Kounev, Holger Giese, and Jie Liu. IEEE, pp. 1-9.

Wau, Yinjun, Edgar Dobriban, and Susan B. Davidson (2020). “DeltaGrad: Rapid re-
training of machine learning models”. In: DOI: 10.48550/ARXIV.2006.14755, URL:
https://arxiv.org/abs/2006.14755.

https://doi.org/10.1016/j.jss.2015.09.019
https://doi.org/10.1016/j.jss.2015.09.019
https://doi.org/10.1016/j.jss.2015.09.019
https://oglobo.globo.com/economia/caixa-tem-volta-funcionar-mas-usuarios-enfrentam-fila-virtual-24786935
https://oglobo.globo.com/economia/caixa-tem-volta-funcionar-mas-usuarios-enfrentam-fila-virtual-24786935
https://arxiv.org/abs/1805.07353
http://arxiv.org/abs/1805.07353
http://arxiv.org/abs/1805.07353
https://doi.org/10.1007/BFb0017381
https://doi.org/10.1007/BFb0017381
https://doi.org/10.1007/BFb0017381
https://doi.org/10.48550/ARXIV.2006.14755
https://arxiv.org/abs/2006.14755

	Resumen (Abstract in Spanish)
	Introduction
	Summary of the State of the Art
	Motivation and Objectives
	General Objectives
	Specific Objectives

	Methodology
	Contribution of this Thesis
	Outline of this Thesis

	Background
	Characterization of a Self-Adaptive System
	Model-Driven Engineering (MDE)
	Component-Based Software Engineering (CBSE)
	Graph Transformation

	Palladio Tool for Building Self-Adaptive System Projects
	The Palladio Approach
	Palladio Component Model (PCM)
	The Palladio-Bench

	A running example
	Simulizar
	Results

	Flexibility in Modeling Self-Adaptive Systems
	The e-Motions Tool
	Flexibilization as a New Path for Systems Modeling
	PCM modeled in e-Motions
	Advances in the Modeling Palladio Behavior
	Changes to the existing Definition of Palladio Rules in e-Motions
	Creation of new Palladio rules in e-Motions
	Artefacts and Processes Proposal

	A running example
	Palladio Specification in the e-Motions System
	Adaptation Rules in e-Motions

	Results

	Building Adaptation Mechanisms
	Modeling of Adaptation Mechanisms
	Modeling of Non-Functional Requirements Control
	Specifying a SYBL Annotation
	SYBL Metamodel
	Modeling of Communication Channel
	Results
	Adaptations Mechanisms Rules
	QoS Metrics Measurement Rules
	Adaptation Control Rules

	Modeling Process for Self-Adaptive Systems
	Process Phases
	Approach Framework
	Results
	Specification of the application
	Modeling an Application on the Palladio Bench to use in e-Motions
	Analysis in Design Time

	Flexible System Modeling: An Example of Modeling of an Application for Smart Cities
	Understanding the Application Domain
	Domain properties
	Requirement and Adaptations Specifications

	Results
	Modeling of the Application
	Modeling of the Scenario
	Behavior Rules
	Model Evolution

	Discussion of the Obtained Results
	Conclusions and Future Work
	Summary and Conclusions
	Publications
	Future Work

	Bibliography

