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RESUMEN EN ESPAÑOL

El objetivo de esta tesis es el estudio de la aplicabilidad de elementos de la teoría de
grafos y lógica borrosa a diversas tareas de gestión en una red de comunicación.
En una red de comunicación es esencial el establecimiento de conexiones seguras entre
los pares de nodos que garanticen la robustez de dicho sistema, dependiendo del objetivo
de su operación (funcionamiento máximo, pérdida mínima o retraso de la información
enviada, etc.). A la vez, es de crucial importancia garantizar un uso general adecuado de
los recursos de la red. Debe realizarse la gestión de caminos en las conexiones teniendo
en cuenta los cambios en la carga de tráfico, la duración del funcionamiento de los
nodos, conexiones y servidores, y las posibles interrupciones que pueden ocurrir en una
red. Por esta razón, el diseño, la construcción y la administración de la infraestructura
de la red y plataformas de servicios son tareas vitales y constituyen un excelente reto
para los expertos en esta área.
Dirigimos nuestro trabajo hacia dos grandes campos: las redes de comunicación y
la lógica borrosa con sus dos áreas fundamentales (inferencia borrosa y propiedades
aritméticas de los números borrosos). Además, definimos y tratamos cada problema
abordado sobre la base de la teoría de grafos. A partir de esta visión, a las redes
incluidas en nuestro desarrollo investigativo se les asocia un grafo, donde cada uno
de sus componentes son interpretados como elementos de dicho grafo. Intentamos
describir cada problema con un alto nivel de abstracción matemática y lo adaptamos
a la aplicación de problemas ingenieriles. Estos problemas están relacionados a la
selección del nodo servidor en una red Peer to Peer (P2P), la ruta óptima en una
red de comunicación genérica teniendo en cuenta distintas métricas definidas en sus
conexiones y, en un mismo sistema, la determinación de caminos arista-disjuntos entre
clientes y servidores. Las técnicas que usamos son, principalmente, heurísticas ad hoc
para un problema determinado y están basadas en la lógica borrosa.
En este sentido llevamos a cabo tres estudios:
Capítulo 3 La selección del nodo servidor de acuerdo a un índice de bondad en el

camino entre el servidor y el cliente en una red P2P.

Chapter 4 El análisis de la eficiencia de distintas funciones de costos en las conexiones
de una red de alta capacidad para optimizar la carga de tráfico entre dos nodos
servidor y cliente.

Chapter 5 La generación de un par de caminos arista-disjuntos usando costos bor-
rosos en los enlaces en una red de alta capacidad en situaciones de sobrecarga.

En el esquema 0-1 resumimos el objetivo fundamental de nuestro trabajo investigativo,
así como las diferentes áreas que conforman el trabajo de tesis.
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Figure 0-1: Esquema general de nuestro desarrollo investigativo

Nuestra intención es que los algoritmos y metodologías desarrolladas puedan apli-
carse en la optimización de los recursos o el tiempo en diferentes procesos realizados
por distintos tipos de redes. De esta forma, nuestras propuestas tendrían un impacto
económico debido al ahorro de los resursos, así como a la reducción de la compra de
dispositivos altamente costosos.

Capítulo 3. Algoritmo de Inferencia Borrosa aplicado a
una red P2P
En una red P2P, los compañeros (peers) son relativamente autónomos y pueden unirse
o dejar el sistema en cualquier momento. Esta es una red distribuida que, de manera
usual, puede llegar a tener un gran número de compañeros debido al almacenamiento
de datos, al procesamiento, y al ancho de banda de los compañeros autónomos.
Una de las limitaciones de las redes P2P en Internet radica en que la mayoría de los
nodos no usan una dirección IP permanente. Con el propósito de seleccionar el nodo
servidor, aplicamos un sistema de control borroso que brinda una solución para este
problema.
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La selección del nodo servidor en cada segmento de intercambio de información es una
tarea esencial en redes inhalámbricas, donde los recursos del ancho de banda son muy
limitados y se comparten entre todos los usuarios, conllevando al malgasto de recur-
sos. Este es un problema especialmente importante en redes inhalámbricas multihop,
debido a que, si un nodo que está distante hace función de cliente, la información debe
viajar por un gran número de nodos e incrementar así la probabilidad de interferir con
la transmisión de otros nodos.
Actualmente la estrategia más usada, en el caso donde todos los nodos son iguales,
está basada en una selección aleatoria del nodo servidor entre aquellos a los que se les
ha pedido la información. Esta estrategia es eficiente en algunas situaciones ya que
nunca usa el mismo nodo como servidor todo el tiempo, sino que distribuye la carga
aleatoriamente entre todos los nodos. Sin embargo, esta estrategia no siempre funciona
eficientemente, ya que no considera algunos factores de la red como son: la longitud de
cada camino, la carga de cada camino o el ancho de banda disponible.
Otro de los criterios para la selección del nodo servidor es la estrategia Min-Hop, la
cual usa como métrica el número de saltos. Esta estrategia es bastante eficiente en
redes homogéneas, donde el costo de cada salto se considera el mismo. Sin embargo,
no considera la sobrecarga en algunos nodos, por tanto no siempre es eficiente en redes
que no son homogéneas, como es el caso de redes con obstáculos.
Pensamos que una solución basada en la lógica borrosa para el problema de la selección
del nodo servidor podría ser adecuada. Esto se debe a que al usar la lógica borrosa, se
crea un compromiso entre los diferentes factores, cuyos efectos pueden ser evaluados en
el intervalo [0, 1] al aplicar inferencia borrosa. En nuestro análisis, los factores son la
calidad de los enlaces y la longitud del camino. Los caminos más cortos son interesantes
ya que con ellos se ahorran recursos que pueden ser usados en otros tráficos. Sin em-
bargo, a la vez es tambien necesario que el camino pueda ofrecer una alta probabilidad
de éxito en la transmisión de la información y así evitar retransmisiones futuras.
Nuestra propuesta es una versión mejorada del sistema borroso presentado en [Valdés
et al. 2013]. Realizamos una comparación del funcionamiento de nuestro sistema con
respecto a otras propuestas como son la selección aleatoria y la selección min-hop.
El algoritmo de inferencia borrosa que realiza nuestro sistema consta de cuatro com-
ponentes o módulos básicos:

1. Borrosificación de las variables de entrada

2. La base del conocimiento (base de reglas borrosas)

3. La toma de decisiones (maquinaria de inferencia borrosa)

4. Desborrosificación de la salida

Cada uno de los módulos antes mencionados así como la interconexión entre ellos se
muestran en la figura 0-2.

Las variables de salida de nuestro sistema son las siguientes:

• Número de saltos (NHops)

• valor de la métrica “Expected Transmission Count” (ETX)
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Figure 0-2: Esquema general de un controlador borroso

y la variable de entrada:

• Índice de bondad del camino entre el servidor y el cliente (GPath)

Definimos una base de reglas con 16 reglas del tipo “IF-THEN” con antecedentes com-
puestos mediante el conector “AND”. Como método de implicación usamos el Método
de Mamdani (o truncamiento) y como proceso de combinación empleamos el valor
máximo que resulta de la composición de las funciones de pertenencia de las salidas de
cada regla. Finalmente, usamos el método del centroide como el método de desborrosi-
ficación.
En nuestra etapa experimental, usamos una red inhalámbrica que está basada en la
extensión mallada inhalámbrica que existe en IEEE 802.11-2012, donde los mecanismos
de ruteo y envío son implementados en el nivel del enlace. El ambiente experimental
en todos los experimentos realizados consiste en una red cuadrada regular 8 × 8 (64
nodos). Sobre esta red simulamos las estrategias de selección aleatoria, Min-Hop e
Inferencia borrosa, esta última propuesta por nosotros. Analizamos dos escenarios de
transmisión diferentes: la red sin contener obstáculos y la red con obstáculos. En cada
simulación consideramos tres parámetros:

• tiempo de descarga que cada nodo emplea para obtener todos los segmentos de
la información (valores promedio y máximo),

• el número de bytes enviados por nodo a nivel de aplicación (valores promedio y
máximo),

• y el número de nodos enviados por nodo a nivel de red (valores promedio y
máximo).

Basándonos en estos parámetros, nuestro sistema de inferencia borrosa es comparado
con las otras dos estrategias.
En la red sin obstáculos, la estrategia de selección aleatoria es la menos eficiente, tanto
en lo que respecta al tiempo de descarga requerido como a la carga de tráfico a nivel de
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red. Debido a que usamos una red regular, no hay diferencias importantes entre Min-
Hop y nuestra estrategia, ya que Min-Hop es muy eficiente en este tipo de redes. Por
lo tanto, el impacto de la lógica borrosa no puede mostrarse completamente en este
experimento. Por otro lado, en la red con obstáculos, nuestro sistema de inferencia
borrosa produce los mejores resultados con respecto al tiempo de descarga de un nodo.
Además, en este escenario, la estrategia Min-Hop es la menos eficiente, ya que no
considera el estado real de la red, sino sólo el número de saltos.

Capítulo 4. Búsqueda del camino mínimo en una red de
comunicación usando funciones de costo borrosas
Un sistema de gestión de una red de comunicación toma las mediciones de sus variables
de estado en instantes específicos de tiempo, considerándolas constantes en el intervalo
entre dos mediciones consecutivas. De manera específica, debido al comportamiento
dinámico de una red de telecomunicación, su sistema de gestión usualmente calcula
los valores de las variables de estado de la red en un intervalo de tiempo dado, a
partir de las mediciones obtenidas en el intervalo de tiempo inmediatamente anterior.
Generalmente, los protocolos de ruteo actualizan el estado (costo) de los enlaces de dos
formas posibles:

(A) Por intervalos de tiempo: cada valor de costo (y por tanto las tablas de en-
rutamiento) se actualiza periódicamente con una periodicidad fija. Esta actuali-
zación es tanto a partir del valor del estado instantáneo al comienzo del período
(el comienzo del nuevo intervalo) o del valor medio de los costos durante el in-
tervalo de tiempo anterior.

(B) Por umbrales: Algunos umbrales de actualización se fijan para que la actuali-
zación de una variable de estado se realice cuando la diferencia entre su valor
real actual y el último determinado supera el umbral correspondiente.

Sin embargo, los métodos de actualización (A) y (B) introducen una incertidumbre en
las mediciones de los valores de costo, ya que existe una probabilidad real de que las
variables de estado cambien de un intervalo de tiempo a otro.
Para enfrentar este problema, consideramos el uso de elementos de la lógica borrosa
para introducir la incertidumbre que existe en la red. Para ello, modelamos la red de
comunicación como un grafo borroso de tipo V, donde los nodos y los enlaces se de-
scriben con precisión, pero los costos en los enlaces se asumen como números borrosos
triangulares. En particular, para representar los costos hemos usado la variable Ancho
de Banda Usado Normalizado [Ariza 2001].
Hemos propuesto un algoritmo de Dijkstra borroso (FDA en inglés). Este algoritmo
encuentra el camino más corto entre dos vértices en un grafo borroso de tipo V, donde
los costos en las aristas son números borrosos triangulares. Para la comparación de los
costos borrosos que realiza el algoritmo, aplicamos el método de ranking propuesto en
[Yu and l. Q. Dat 2014].
Hemos utilizado una red de 56 nodos basada en la topología de la red troncal de “Nip-
pon Telegraph and Telephone (NTT)”. En nuestra aplicación, se supone que todos los
enlaces tienen la misma capacidad de 1 Gb/s. Las conexiones utilizan la conmutación
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de etiquetas multiprotocolo (MPLS) [Rosen et al. 2001] de modo que, una vez que se
selecciona la ruta entre dos nodos, esta permanece sin cambios durante el tiempo de
conexión. Por otro lado, las conexiones se realizan sin reserva de recursos, lo que sig-
nifica que la conexión nunca se rechaza, pero puede haber una pérdida puntual de
información en los enlaces cuando se excede su capacidad.
En nuestro escenario de simulación, los nodos de origen y destino se seleccionan aleato-
riamente (con igual probabilidad) entre todos los nodos de la red. Por lo tanto, hay
varios pares activos de origen y destino simultáneamente. Nuestra magnitud de in-
terés en la red es el número total de bytes enviados y recibidos por cada nodo en cada
intervalo de simulación. A partir de los valores anteriores calculamos las siguientes
variables:

Tasa de entrega media, (MDR): Número total de bytes recibidos dividido por el
número total de bytes enviados a lo largo de un experimento. Este valor indica
la probabilidad de que finalmente se reciban los datos enviados.

Tasa de entrega global media, (GMDR): Media de la MDR en diez repeticiones
del experimento.

Intervalo de confianza: Calculado con una probabilidad de 0.95.

Para comparar la eficiencia del rendimiento de la red basada en lógica borrosa frente a
la basada en valores no borrosos, implementamos las funciones y estrategias de costos
más comúnmente utilizadas en la gestión de redes reales basadas en valores no bor-
rosos (crisp). Comparamos las estrategias crisp con otras similares basadas en nuestra
definición de costos borrosos. En particular, las funciones de costo usadas son las
siguientes:

• Ancho de Banda Usado Normalizado Instantáneo .

• Ancho de Banda Usado Normalizado Medio.

• Ancho de Banda Residual Medio.

Para cada una de las funciones de costo anteriores, hemos propuesto una variante
borrosa, donde se define la métrica como un número triangular borroso.
Estudiamos ocho estrategias donde aparecen las versiones borrosas o crisp de las fun-
ciones de costo antes nombradas. Estas son:

Estrategia 1: Aplicación del algoritmo de Dijkstra clásico usando el Ancho de Banda
Usado Normalizado Instantáneo en los enlaces. Para el cálculo del costo total
del camino encontrado por el algoritmo, usamos la suma del costo de los enlaces
que conforman dicho camino.

Estrategia 2: Aplicación del algoritmo de Dijkstra clásico usando el Ancho de Banda
Usado Normalizado Medio como función de costo en los enlaces.

Estrategia 3: Aplicación del FDA usando el Ancho de Banda Usado Normalizado
Borroso como función de costo. Esta estrategia es directamente comparable con
las estrategias 1 y 2.
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Estrategia 4: Aplicación del algoritmo “Shortest-Widest (SW)”
[Wang and Crowcroft 1996], usando el Ancho de Banda Residual Medio y el
algoritmo de Dijkstra clásico para encontrar el camino más corto.

Estrategia 5: Aplicación del algoritmo “Fuzzy Shortest-Widest (FSW)” usando el
Ancho de Banda Residual Borroso y el FDA para encontrar el camino más corto.
Esta estrategia es directamente comparable con la estrategia 4.

Estrategia 6: Aplicación del algoritmo “Widest-Shortest, (WS)”
[Guerin et al. 1997], usando el Ancho de Banda Residual Medio y el algoritmo de
Dijkstra clásico para encontrar el camino más corto.

Estrategia 7: Aplicación del algoritmo “Fuzzy Widest-Shortest, (FWS)” usando el
Ancho de Banda Residual Borroso y el FDA para encontrar el camino más corto.
Esta estrategia es directamente comparable con la estrategia 6.

Estrategia 8: Puede verificarse que mientras menor sea el ancho de banda usado
en un intervalo de tiempo (n − 1), mayor es el grado de incertidumbre en las
mediciones del ancho de banda usado del enlace que se realizan en el intervalo de
tiempo n. Por tanto, hemos redefinido el Ancho de Banda Usado Normalizado
Instantáneo Borroso al multiplicar este por un coeficiente crisp. De esta manera
hemos propuesto el Ancho de Banda Usado Normalizado Borroso Modificado y
hemos aplicado la estrategia 3 usando este como función de costo.

La gráfica 0-3 muestra los resultados de la GMDR para cada una de las estrategias, así
como sus respectivos intervalos de confianza.
Basado en el comportamiento de las estrategias que muestra la gráfica 0-3, resumimos

Figure 0-3: Diagrama de barras de la GMDR para cada estrategia

a continuación los resultados obtenidos una vez realizada nuestra experimentación:

(i) Los resultados muestran que la Estrategia 3 (borrosa) supera levemente a sus
análogas crips (estrategias 1 y 2) pero aún así de manera estadísticamente sig-
nificativa. El GMDR de la Estrategia 5 (fuzzy) supera a su equivalente borrosa

xi



(Estrategia 4), pero en este caso sus intervalos de confianza se superponen. Por lo
tanto, consideramos ambos resultados estadísticamente iguales. Las estrategias
6 y 7 tienen los mismos valores de GMDR con intervalos de confianza práctica-
mente iguales. Además, dado que estas estrategias buscan caminos con el mínimo
número de saltos, contribuyen a un menor flujo de información a través de la red.
Por tanto, las estrategias 6 y 7 se benefician del bajo consumo de recursos en
comparación con las Estrategias 1 a 5.

(ii) La Estrategia 8, propuesta por nosotros, es la más eficiente con una clara ventaja
sobre el desempeño del resto de estrategias, al obtenerse un valor de GMDR
cercano a 1. Esta ventaja proviene de la definición de una nueva función de costo
borrosa que incorpora nuestro conocimiento empírico acerca de los efectos de la
incertidumbre en la medición.

Capítulo 5. Búsqueda del par mínimo de caminos arista-
disjuntos en una red de comunicación. Visión borrosa.
La capacidad de supervivencia de las redes de comunicación es extremadamente im-
portante, debido a los diferentes servicios que las redes proporcionan a la sociedad y la
economía. La capacidad de supervivencia se puede definir como la capacidad de la red
para respaldar la Calidad de los Servicios (QoS) comprometida de forma continua en la
presencia de varios escenarios de fallos. Relacionado con la capacidad de supervivencia
se encuentra el concepto de “Self-Healing”, donde, en una situación de saturación, el
tráfico entre dos nodos puede organizarse dividiéndose éste entre dos caminos alter-
nativos. Esto reduciría las condiciones de saturación y mejoraría el ancho de banda
de ambos caminos. Por otro lado, la búsqueda de caminos alternativos mejora la se-
guridad de la comunicación de las fuentes de prioridad, ya que le resulta más difícil
a elementos externos capturar un mensaje completo. Para resolver estos problemas,
hemos propuesto una estrategia para encontrar el par mínimo de caminos, disjuntos en
sus enlaces, entre dos nodos servidor y cliente, considerando la incertidumbre presente
en la red.
No nos interesamos únicamente en que los caminos que forman el par no tengan en-
laces comunes, sino tambien nos proponemos que la suma de sus costos sea la mínima.
De esta manera, cuando ambos caminos sean empleados al mismo tiempo, estaríamos
optimizando el costo de enviar la información y contribuyendo a la reducción de la
saturación de la red.
Al igual que en el capítulo 4, asociamos la red a un grafo borroso de tipo V, cuyos
vértices y aristas corresponden a los nodos y enlaces de la red, respectivamente. Nos
enfrentamos a la incertidumbre en el sistema de gestion de la red al considerar el costo
de las aristas como números borrosos triangulares. Basándonos en el método de rank-
ing propuesto por [Yu and l. Q. Dat 2014], establecemos una condición necesaria para
que un camino sea el mínimo en un grafo borroso de tipo V.
El par mínimo de caminos aristas-disjuntos puede tener la estructura de cualquiera de
los dos pares de caminos que aparecen en la ecuación 1,{

S × P ′, P1 × P2
}

(1)
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donde S es el camino mínimo del grafo (el cual puede ser único o no), P ′ es un camino
que no tiene ninguna arista en común con S y los caminos Pi (i = 1, 2) tienen una o
varias aristas en común con S. Hemos inferido una fórmula para el costo total del par
de caminos, la cual usa el costo de ciertas aristas (“breaks” en inglés) que pertenecen
al camino S pero no son parte de ninguno de los caminos P1 ó P2.
Hemos propuesto un algoritmo (con siglas FSPPA en inglés) que encuentra un par de
caminos con cualquiera de las estructuras mostradas en la expresión 1. Este algoritmo
encuentra primeramente el camino S en el grafo original mediante la aplicación del
algoritmo FDA descrito en el capítulo 4. Posteriormente se hace una modificación en
las aristas que son parte del camino S, por lo que se obtiene un nuevo grafo que presenta
la misma borrosidad del original, pero es mixto. En particular, el nuevo grafo se define
como:

• El conjunto de vértices del nuevo grafo coincide con el del grafo original.

• Las aristas del camino S en el grafo original se sustituyen por arcos dirigidos
hacia el vértice servidor. El costo de estos arcos se define como el número borroso
complementario del costo borroso de sus aristas correspondientes, el cual es un
número borroso negativo. El resto de las aristas se mantienen invariantes.

Los costos de los arcos introducidos en el nuevo grafo son números borrosos triangulares
negativos. Por lo tanto, al aplicar el FDA, podríamos caer en ciclos cuyo costo total sea
un número borroso triangular negativo (ciclos negativos). Para la búsqueda del camino
mínimo sobre el nuevo grafo, el FSPPA aplica una modificación del FDA llamado
Algoritmo de Dijkstra Borroso Modificado (MFDA en inglés) tambien propuesto por
nosotros, el cual se aplica sobre un grafo borroso de tipo V que presenta arcos con
costos definidos como números borrosos triangulares negativos. Para la comparación
de los costos totales de los caminos, el MFDA utiliza el método de ranking propuesto
por [Yu and l. Q. Dat 2014]. Este método compara los números borrosos a través de
la comparación de sus integrales totales, siendo este un valor crisp que depende de un
índice, α, que representa el grado de optimismo al realizar la comparación. Por tanto,
podrían existir valores de α para los cuales el MFDA no convergería. Es por ello que
realizamos un análisis para encontrar el rango de valores que puede tomar este índice
tal que no existan ciclos negativos en el nuevo grafo definido. Para un valor de α dentro
del rango permitido, el MFDA encuentra el camino mínimo Paux en el nuevo grafo. Una
vez que se han obtenido los caminos S y Paux, el FSPPA elimina las aristas comunes
entre ambos, tambien conocidas como “breaks”. De esta forma, quedan establecidos
los caminos que forman el par mínimo de caminos arista-disjuntos P1 × P2. Note que,
de no haber “breaks” el par de caminos es de la forma S × P ′.
Como etapa experimental hemos realizado dos experimentos diferentes:

Experimento 1. (Validación del FSPPA): Realizamos el experimento 1 para val-
idar al FSPPA. Este experimento es una adaptación de la experimentación que
realizamos en el capítulo 4, en el cual nos hemos asegurado de que todos los no-
dos tengan al menos dos caminos alternativos. De esta manera, podemos aplicar
nuestro algoritmo cuando buscamos de forma aleatoria la comunicación entre dos
nodos cualquiera. En esencia, el experimento 1 consiste en aplicar el FSPPA para
todas las posibles combinaciones de pares de nodos servidor y cliente en una red.
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Debido al alto costo computacional al realizar una búsqueda exhaustiva, este
experimento no se puede realizar en redes de gran dimensión. Sin embargo, esta
prueba es suficiente para mostrar que nuestro algoritmo encuentra el par mín-
imo de caminos arista-disjuntos. Utilizamos para nuestra experimentación la red
formada por las principales ciudades de Estados Unidos. Simulamos un tráfico
en el que el sistema presenta condiciones de saturación muy altas. Los costos
de los enlaces varían con el tiempo y dependen del tráfico en cada intervalo de
tiempo. Usamos como la función de costo de cada enlace el Ancho de Banda
Usado Normalizado Borroso Modificado definido en la estrategia 8 descrita en el
capítulo 4. Realizamos una única repetición del experimento.

Experimento 2. (Búsqueda del par mínimo de caminos arista-disjuntos en
una red de alta funcionalidad con tráfico prioritario usando costos bor-
rosos): En este experimento usamos una red de 57 nodos inspirada en el Nip-
pon Telegraph and Telephone Corporation (NTT) [Varga 2001]. Ajustamos la
red original para que se pueda acceder a cada nodo por, al menos, dos caminos.
La simulación está orientada al flujo, es decir, solo se simulan dos eventos: el
inicio y el final de una “ráfaga”. Si tuviéramos que simular el envío de la infor-
mación como tal, no podríamos simular el envío utilizando pequeños paquetes
de información. Por lo tanto, se establece una única llamada para enviar toda
la información, y no se termina hasta que la operación se completa totalmente.
En otras palabras, enviamos toda la información como si fuera un bloque, por
lo que debemos observar el principio y el final del bloque o ráfaga. Además, el
almacenamiento no se simula mediante colas en los nodos. Si un nodo no tiene
la capacidad suficiente para transmitir la ráfaga, los datos se pierden hasta que
haya espacio libre o la ráfaga finalice, en cuyo caso se perderá por completo. Por
lo tanto, simulamos un sistema sin demoras. En consecuencia, la variable que
determinará la calidad de la red será la tasa de entrega de bytes, de forma tal
que sabremos si los datos se pierden o no.
El tiempo de simulación ha sido de 104 segundos y todos los enlaces tienen la
misma capacidad de 1 Gb/s. El tráfico se genera a través de llamadas con una
conexión. Es decir, una vez que se establece una llamada, la ruta elegida no cam-
bia durante toda la duración de la llamada. Estas llamadas no hacen reservas
de recursos, por lo que el establecimiento de llamadas nunca se rechazará, pero
puede haber una pérdida de datos en ellas. Esta restricción facilita la visual-
ización de la pérdida de datos debido a la saturación de los enlaces. Al igual que
en el experimento 1, usamos como indicador variable del costo de un enlace el
Ancho de Banda Usado Borroso Normalizado Modificado.
Realizamos diez repeticiones por experimento con diferentes semillas y todos los
flujos de información que se envían entre los nodos se realizan de acuerdo con
distribuciones de probabilidad. Cada nodo puede tener dos tipos de fuentes de
comunicación: la fuente F1 que siempre envía la información por la ruta más
corta entre la fuente y los nodos de destino, y la fuente F2 (fuente de mensaje
de prioridad) donde la información no solo puede enviarse por la ruta más corta
entre los nodos fuente y destino (fuente F1), sino tambien la información se envía
por las rutas que conforman el par de caminos que encuentra nuestro algoritmo
FSPPA.
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Medimos la calidad de la transmisión en la red mediante el radio de entrega de
bytes, (BDR en inglés) definido como el radio entre los bytes entregados y en-
viados. La fuente F1 se implementa en todos los nodos, mientras que la fuente
F2 solo se activa en un número limitado de nodos en cada experimento. Los
experimentos se llevaron a cabo para grupos de 5, 10, 15, 20, 25 y 30 nodos con
fuente F2. Para cada conjunto de nodos con la fuente F2, realizamos diez simula-
ciones en la que estos son escogidos aleatoriamente cada vez. Para los nodos con
fuente F2, generamos un tráfico donde la información se envía a través del par de
caminos encontrado por el FSPPA ó a través del camino mínimo encontrado por
el FDA. En cada caso, el valor medio del BDR (MBDR) se calcula tanto para
los nodos con fuente F1 como para los nodos con fuente F2. Posteriormente,
comparamos el rendimiento de ambos tráficos generados.
La figura 0-4 muestra los resultados del experimento 2.

Figure 0-4: Resultados de la simulación del experimento 2

Línea azul: Muestra el MBDR correspondiente al tráfico creado por la
fuente F1 cuando los nodos con la fuente F2 no aplican el FSPPA.
Línea amarilla: Corresponde al MBDR del tráfico de la fuente F1 cuando
los nodos con la fuente F2 aplican el FSPPA.
Línea naranja: Corresponde al MBDR del tráfico creado por los nodos con
la fuente F2 cuando estos no aplican el FSPPA.
Línea verde: Muestra la MBDR del tráfico creado por los nodos con fuente
F2 cuando estos aplican el FSPPA.
Comparación entre las líneas azul y amarilla: En caso de haber pocos nodos
con fuente F2, ambas líneas son muy similares. Sin embargo, a medida que
aumenta el número de nodos con fuente F2, la línea amarilla se separa
por debajo de la azul, es decir, los nodos con fuente F1 son afectados aún
más debido al aumento del tráfico (alcanzan el valor inadmisible de 0.75
aproximadamente).
Comparación entre las líneas verde y naranja: Debido al tráfico adicional
que enfrentan los nodos con la fuente F2, observamos la gran diferencia
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entre las líneas verde y naranja. El MBDR correspondiente a los nodos con
fuente F2 cuando estos aplican el FSPPA (línea verde) se mantiene muy
alto. Sin embargo, cuando estos nodos no aplican el FSPPA (línea naranja)
su MBDR alcanza el valor inadmisible de 0.72.
Comparación entre las líneas azul y naranja: Ambas líneas se comportan
de manera similar, aunque los nodos con fuente F2 disminuyen su MBDR
cuando no aplican el FSPPA. Por otro lado, observamos que el tráfico gen-
erado por los nodos con fuente F2 (línea naranja), a medida que el número
de estos aumenta, se acerca al tráfico creado por los nodos con fuente F1
(línea azul). Este es un comportamiento lógico ya que cuando no se aplica
el FSPPA, cuanto mayor sea el número de nodos con fuente F2, más regular
es el tráfico de la red.

Podemos decir que tener una estrategia donde la red tiene un número pequeño de
nodos “privilegiados” con fuente F2, donde la información se envía mediante un
par de caminos arista-disjuntos, es bastante interesante y efectiva. El algoritmo
propuesto por nosotros proporciona una solución para que esta estrategia, de
hecho, funcione.
Actualmente, en muchas redes de comunicación, los nodos que se seleccionan
como “privilegiados” forman una red por separado solamente formada por ellos,
significando esto un mayor costo de los recursos. Por lo tanto, otra ventaja de
nuestra estrategia es la no necesidad de crear una red separada para lograr altos
valores de la MBDR.

Como conclusión general, decimos que es cierto que en las redes actuales, las condiciones
de sobrecarga no son habituales, puesto que los operadores sobredimensionan la red
con un factor de seguridad elevado. Por otra parte, los métodos clásicos aplicados en
estas condiciones resuelven satisfactoriamente los problemas planteados. Por tanto,
nuestro objetivo no consiste tanto en confrontar la aplicación de técnicas borrosas con
las actuales, sino en estudiar su viabilidad. En cualquier caso, hemos visto que estas
resultan ser competitivas, ya que al menos en todos los casos hemos encontrado un
método borroso que funciona igual o mejor que el método clásico.
Los sistemas de gestión de redes son muy conservadores en cuanto a los métodos y
algoritmos empleados, y en la mayoría de los casos, las situaciones problemáticas están
bien cubiertas con duplicidad de recursos. Sin embargo, considerar la exploración de
otras técnicas alternativas, como las analizadas en este trabajo, puede ser interesante,
no solo desde un punto de vista teórico y matemático, sino también práctico en futuros
escenarios.
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SUMMARY

This thesis aims to study the applicability of graph theory and fuzzy logic elements to
various management tasks of a communication network.
We focus our work on two major fields: communication networks and fuzzy logic with
their two fundamental aspects (fuzzy inference and arithmetic properties of fuzzy num-
bers). Also, every addressed problem is defined and treated based on graph theory.
From this perspective, we include networks associated with graphs in our research,
where we interpret each of its components as graph elements. We intend to describe
each problem with a high mathematical abstraction level and specify them in engineer-
ing problems. They are related to selecting the server node in a P2P (Peer to Peer)
network, the optimal route in a generic communication network considering different
metrics defined on its links, and establishing the shorter edge-disjoint pair of paths be-
tween servers and clients. We apply mainly established ad hoc algorithms techniques
for a given problem and fuzzy logic-based.
We develop and propose solution to three problems in chapters 3, 4, and 5. In the
following, we summarize each of them:

Chapter 3: The server node selection according to a goodness index in the
server-client path in a Peer to Peer (P2P) Network

We discuss the complexity of implementing our fuzzy inference algorithm by
fuzzifying the input and output variables (in our case, given a server-node path,
the inputs are the number of hops and the Expected Transmission Count, and
the output is the goodness index of the path). We also examine the introduction
of the inference rules, the inference engine, and the defuzzification of the fuzzy
solution to convert it into a single crisp value.
We analyze two different transmission scenarios: a network without obstacles
and a network with obstacles between nodes. We compare our strategy with the
Random Selection of the server node, which is currently the most used, and the
Min-Hop strategy, which chooses the path with the minimum number of hops.
The Random Selection strategy is the least efficient in a network without ob-
stacles concerning the required transmission time and network-level traffic load.
There are no crucial differences between Min-Hop and our approach in a regular
system since the Min-Hop is very efficient in this kind of network, so the impact
of fuzzy logic cannot be shown entirely in this experiment.
On the other hand, our strategy produces the best results concerning the down-
load time for a node when obstacles are present. Also, in this scenario, the
Min-Hop strategy is the least efficient because it does not consider the network’s
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actual state but only the number of hops.

Chapter 4: Analysis of the efficiency of different cost functions in a high
capacity network links to optimize the traffic load between two nodes

A Communication Network Management System takes the measurements of its
state variables at specific times, considering them constant in the interval between
two consecutive measurements. Nevertheless, this assumption is not correct since
these variables evolve in real-time. Therefore, uncertainty in measures cannot
be efficiently managed using crisp variables or control based on fuzzy inference
models. We face this problem by modeling the communications network as a
type V fuzzy graph, where we defined the sets of nodes and links as crisp sets,
but we modeled each link’s cost as a triangular fuzzy number. We consider each
cost function’s crisp and fuzzy variant (fuzzy number) applied to the search for
the shortest path between two nodes.
We based the optimal search strategies on a Dijkstra algorithm adapted to the
fuzzy case where triangular fuzzy numbers are compared through their Total In-
tegrals.
We perform an experimental study using a 56-nodes network based on the topol-
ogy of the backbone network of Nippon Telegraph and Telephone Corporation
as a reference. In the network, we calculate the total number of received bits
divided by the total number of sent bits throughout an experiment (MDR). This
value indicates the probability that sent data is finally received. We compare
our functions and strategies with their crisp equivalents. We use for the com-
parison the Mean of the MDR in ten experiments. The results show that fuzzy
strategy 3 surpasses their analogous crisp ones (strategies 1 and 2) slightly but
in a statistically significant way. The GMDR of Strategy 5 (fuzzy) surpasses
its crisp equivalent (Strategy 4), but their confidence intervals are overlapped.
Thus we consider both results statistically the same. Strategies 6 and 7 have the
same GMDR values with practically equal confidence intervals. Also, since these
strategies search for paths with the minimum number of hops, they contribute
to a lesser flow of information through the network. Therefore, Strategies 6 and
7 benefits from the low consumption of resources compared to Strategies 1 to 5.
Finally, our new Strategy 8 (fuzzy), with a Global Mean Delivery Rate (GMDR)
very close to 1, has a wide superior performance compared to the rest of the
analyzed strategies.

Chapter 5 Search of the shortest pair of edge-disjoint paths using fuzzy
costs in a high-performance network with priority traffic

The communication network’s survivability is very important due to the systems’
different services for society and the economy. Survivability can be defined as
the network’s ability to continuously support the committed Quality of Services
(QoS) in the presence of various failure scenarios. The system must remain op-
erational regardless of whether a failure occurs (in a node or a line). Related to
survivability is the concept of Self-Healing, in which in a saturation situation, the
traffic between two nodes can be organized by dividing it between two alternative
paths. That would lower the saturation conditions and improve the bandwidth
of both paths. It is not our only interest that both paths are link-disjoint, but
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also the sum of their costs is minimal. In this way, when both paths are used
simultaneously, we would be optimizing the cost of sending the information and
reducing the network’s saturation. On the other hand, the search for alternative
paths improves the communication security of priority sources since it is more
challenging to capture a complete ordered message by external elements. The
difference with finding the shortest and backup paths is that using both paths
simultaneously (the pair of edge-disjoint paths whose total sum of their costs
is the minimum) reduces the probability of information losses and increases the
security (or privacy) of communications.
As in chapter 4, we associate the network to a type V fuzzy graph whose ver-
tices and edges correspond to the network’s nodes and links, respectively. We
face uncertainty in the network’s operating system by considering the edges’ cost
as triangular fuzzy numbers. First, we briefly provide the general configuration
that the shortest pair of paths should have and define a formula to compute the
pair’s total cost. Then, we describe an algorithm that finds the shortest pair of
edge-disjoint paths in the graph (FSPPA). The FSPPA uses a fuzzy adaptation
of the Modified Dijkstra algorithm (MFDA) as a sub-algorithm. We can apply
the MFDA in a mixed graph containing edges and some arcs whose costs are
negative triangular fuzzy numbers.
To illustrate the algorithm’s effectiveness, we apply FSPPA to a network with
a high traffic load. We carry out ten replications per experiment with different
seeds each, and all the information flows sent between the nodes are made accord-
ing to probability distributions. Each node can have two types of communication
sources: source F1 (regular sending of information), which always sends the data
by the shortest path between the source and destination nodes, and source F2
(priority message source), which sends the data throughout the paths of the
shortest pair of edge-disjoint paths. Note that a node with source F2 can ap-
ply the FSPPA and work as source F1. We measure the transmission quality
in the network through the Packet Delivery Ratio (ratio between delivered and
sent packets). Having a strategy with a small number of privileged nodes with
source F2 is quite interesting and useful. The algorithm proposed by us provides
a solution to make this strategy works.

Overload conditions are not common in current networks since operators oversize the
system with a high safety factor. On the other hand, classical methods applied in these
conditions effectively solve the problems posed. In any case, we have seen that these
are competitive since, at least in all cases, we have found a fuzzy method that works
the same or better than the classical ones. Therefore, this thesis aims to confront the
application of fuzzy techniques with current ones and study their viability.
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The following table describes the significance of various acronyms used throughout the
thesis. The page on which each one is defined or first used is also given.

Acronyms Meaning Page
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2.2 α-cuts of triangular and trapezoidal fuzzy numbers. . . . . . . . . . . . . 27
2.3 Types of N -zero fuzzy numbers. . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Example. Matching degrees for each rule . . . . . . . . . . . . . . . . . . 42

3.1 Ranges and linguistic terms determined for the input and output vari-
ables in our fuzzy system. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Fuzzy rule base in our system. . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Simulation conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Download time in every node (in seconds) to get all the information

segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Number of bytes sent by node . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Number of network-level sent bytes by each node, average and maximum 62
3.7 Download time in every node to get all the segments of the information. 63

4.1 Characteristics of the traffic used in the experiments. . . . . . . . . . . . 82
4.2 GMDR and Confidence Interval associated with each Strategy. . . . . . 83

xxvii



LIST OF ALGORITHMS

1 Dijkstra(G̃′, r, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3 Relaxation of v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4 Fuzzy-Dijkstra(G̃, r, t, α) . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5 Mod-FuzzyDijkstra(G̃′, r, t, α) . . . . . . . . . . . . . . . . . . . . . . . . 114
6 Relaxation of v in MFDA . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7 FSPPA(G̃, r, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8 Build-ModifiedGraph(G̃, r, t, S) . . . . . . . . . . . . . . . . . . . . . . . 115
9 Calc-TotalCost(G̃,M, S, Paux, C̃S , C̃Paux) . . . . . . . . . . . . . . . . . . 116

xxviii





CHAPTER 1
INTRODUCTION

1.1 Problem Statement and Motivation
The proper and efficient functioning of a computer network, telecommunication net-
work, and electrical power networks, among other factors, consists of the distribution
of sensory, measurement, or generator devices. This fact has significant economic im-
plications in the world nowadays. However, possible decision alternatives confront the
randomness of data and, in general, the imprecision of data. For instance, the signal
propagation’s speed transmitted through a specific link may vary according to traffic
density, external conditions, etc. On the other hand, there could be modifications in
the network topology caused by natural, technological, or social factors.
In a communication network, it is essential to establish secure connections between
pairs of nodes that guarantee such a system’s robustness, depending on the objective
of its operation (maximum performance, minimum loss or delay of sent information,
etc.). At the same time, it is crucial to guarantee the proper general utilization of
network resources. The management of paths in the connections between nodes must
be carried out, taking into account:

• Slow and fast changes in the traffic load,

• Long and short lifetimes of nodes, links and servers, and,

• Short and long-term interruptions in the network, where many nodes or links
may stop working simultaneously, or a critical server in the service platforms
may stop functioning.

Therefore, the design, construction, and administration of network infrastructure and
service platforms are vital tasks and represent a tremendous challenge for experts in
this area.
The research, development, and application of new algorithmic methods and models for
routing design in graphs under uncertainty and the possibility that the obtained results
can be directly applied to different types of real networks is a scientific need due to its
incredible relevance and importance. Thus, it is possible to use the resulting solutions
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and methodologies to resolve various applications in various science areas through fun-
damental mathematical research. It is worth mentioning that the search for solving
large systems’ optimization problems considering uncertainty is not a much-explored
area. We base our motivation for writing this thesis on these aspects, whose primary
goal, expressed in mathematical terms, is the study of heuristics and computational
intelligence techniques for solving the routing in graph-defined problems.
Recently, many scientists have focused on searching for efficient algorithms for solving
routing problems and optimal network design, assuming complete information about
network data. The computational complexity of these problems already imposes a chal-
lenge to searching for efficient and robust solutions in problems with large dimensions.
During my research, my attention has been addressed to obtain a methodology to deal
with routing problems defined on networks, considering uncertainty in the information
and network topology; and formulating the corresponding models and algorithmic pro-
posals to solve these problems.
The term fuzzy seems to have been first introduced in [Zadeh 1962]. Zadeh expressed
that “we need a radically different kind of mathematics, the mathematics of fuzzy or
cloudy quantities which are not describable in terms of probability distributions. Indeed
the need for such mathematics is becoming increasingly apparent even in the realms
of inanimate systems”. This paper was followed in 1965 by a technical exposition of
such mathematics, now termed the theory of fuzzy sets, [Zadeh 1965]. The reasons
supporting the representation of inexact concepts by fuzzy sets have been given by
[Goguen 1967]. Perhaps his most convincing argument is a Representation Theorem,
which states that any system satisfying certain axioms is equivalent to a system of
fuzzy sets. Since the axioms are intuitively plausible for the system of all inexact con-
cepts, the theorem allows us to conclude that fuzzy sets can represent vague concepts.
Moreover, the Representation Theorem is a precise mathematical result in the Theory
of Categories so that an exact meaning is given to the concepts “system”, “equivalent”,
and “represented”.

1.2 Contribution of the thesis
We focus our work on two major fields: communication networks and fuzzy logic. We
treat two fundamental aspects of fuzzy logic: fuzzy inference and arithmetic properties
of fuzzy numbers. Also, every addressed problem is defined and treated based on graph
theory. From this perspective, we include networks associated with graphs, where we
interpret each of its components as the elements of the graph. We intend to describe
each problem with a high mathematical abstraction level and specify them in applica-
tions to engineering problems. They are related to selecting the server node in a Peer
to Peer network, the optimal route in a generic communication network considering
different metrics defined on its links, and, in the same type of system, the establish-
ment of edge-disjoint paths between servers and clients. We apply established ad hoc
algorithms for a given problem and fuzzy logic-based techniques.
In general, we deal with three problems:

Problem 1 - In a Peer to Peer network (P2P), we intend to choose the server node
according to a goodness index in the server-client path. As a strategy, we propose
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a fuzzy-inference-based system. First, we have physical measurements with well-
defined values of the input variables. These values may have some errors in their
measurement, but we do not consider them. Then, by creating fuzzy inference
rules and applying the fuzzy engine existing in the system, we obtain precise
values of the output variables. We use the number of hops and the Expected
Transmission Count as input variables, and as output variable, the goodness
index of the server-client path. Then, we show that our fuzzy-inference-based
system produces better results than traditional strategies used as the “random
selection” and the “minimum number of hops”, especially when facing a network
with obstacles between nodes.

Problem 2 - To minimize information loss in high saturation conditions, we intend
to find the shortest path between the server node and each client node in a
communication network. We use different magnitudes or metrics defined on the
links, considering these as imprecise. In particular, we interpret the network’s
uncertainty from the fuzzy logic view, representing the cost of each link as a tri-
angular fuzzy number. In particular, in a backbone network of Nippon Telegraph
and Telephone Corporation, we analyze the behavior of different cost functions
in their fuzzy and crisp versions. Also, we propose a new fuzzy cost function
that incorporates how much increases the degree of uncertainty in the measure-
ments of the used bandwidth in a time interval when these measurements in
the previous time interval were small. In general, fuzzy solutions improve crisp
solutions but obtain values in the same confidence interval. In particular, the
solution provided by our new fuzzy cost function is superior to the others. In
this problem, we highlight the design and application of a fuzzy version of the
Dijkstra algorithm used to search for the shortest path in a type V fuzzy graph,
where fuzzy numbers are compared through their Total Integrals.

Problem 3 - In a similar network under the same conditions as in problem 2, we
focus on finding the pair of paths that disjoint in edges, whose total cost is the
minimum. Our interest is not only that both paths are link-disjoint, but that the
sum of their costs is minimal. Thus, when both paths are used simultaneously,
the information’s sending is optimized, and the network’s saturation is reduced.
Besides, using an alternative path in parallel for sending the information improves
the communication security of priority sources. We propose an algorithm that
finds the shortest pair of edge-disjoint paths in a graph associated with the
network. This algorithm uses a modification of the Fuzzy Dijkstra Algorithm
mentioned in problem 2. This new version of the Dijkstra algorithm finds the
solution in a mixed graph containing edges and some arcs whose costs are negative
fuzzy numbers. To illustrate our algorithm’s effectiveness, we apply this to a
network with a high traffic load. We simulate traffic, where each node can have
two types of communication sources: source F1 (regular sending of information)
and source F2 (priority sending of information). We measure the network’s
transmission quality through the Bytes Delivery Ratio (BDR), defined as the
ratio between delivered and sent bytes. Our algorithm provides a very good
solution in a network with a small number of nodes with privileged source.

We summarize the different areas and stages of our work in figure 1-1.
We intend that the developed algorithms and methodologies can be applied to optimize
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Figure 1-1: General overview of the research development

resources or time in different processes performed by different types of communication
networks. In this way, our approaches would have an economic impact, leading to
resource-saving and reducing the purchase of highly expensive measuring devices.

1.3 Thesis Structure
The structure of the thesis is as follows:
In Chapter 2, we provide a short review of the most interesting elements of the three
conceptual fields involved in the thesis: communications networks, graph theory, and
fuzzy logic. Thus, at first, we give a short overview of the main features of communi-
cation networks. In particular, we briefly describe the concept of the Internet Protocol
(IP) network and the interpretation of its traffic. We further discuss the modeling of
a communication network using graph theory elements, where we provide some con-
cepts of this extensive area in mathematics. At last, we discuss the role of fuzzy logic
for solving problems defined on networks. We provide some essential definitions and
properties of the fuzzy inference and arithmetics of fuzzy numbers. This chapter may
help facilitate the specific consultation of different concepts that appear throughout
the thesis by those readers who may be experts on one of the topics mentioned above
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but not in others. Consequently, we consider that the reading of this chapter can be
done independently of reading the central nucleus of the thesis, which is composed of
chapters 3, 4, 5, and 6.
In Chapter 3, we propose a fuzzy logic-based system applied to select the server node
in a P2P network. We discuss the complexity of implementing our fuzzy inference
algorithm by fuzzifying the input and output variables, introducing the inference rules
together with the inference engine, and the defuzzification of the fuzzy set given by the
system as the solution. We further discuss the experimental environment to validate
our approach.
In Chapter 4, we propose a fuzzy version of the Dijkstra algorithm to find the server-
client shortest path in a communication network. We consider the costs of the links
as triangular fuzzy numbers and describe different cost functions. To compare the ef-
ficiency of a communication network based on crisp and fuzzy costs, we give several
strategies (crisp and fuzzy) to search the path between the server and client nodes with
minimum cost. At last, we provide an experimental study where we perform a flow-
oriented simulation. We show and discuss the simulation results using each strategy
proposed.
In Chapter 5, we present a strategy to find the shortest pair of edge-disjoint paths
between two fixed nodes in a communication network. Once again, we face uncertainty
in the network’s operating system by considering the cost of the links as triangular
fuzzy numbers. At first, we describe the general structure of the shortest pair of edge-
disjoint paths and give a formula for its total cost. Further, we formulate an algorithm
that finds the pair of paths, which uses a modification of the Fuzzy Dijkstra Algorithm
proposed in chapter 4, converging in a mixed graph containing arcs with costs defined
as negative triangular fuzzy numbers. At last, in the experimentation stage, we per-
form the first experiment to verify our algorithm’s effectivity and a second experiment
designed to confirm if the parallel use of two edge-disjoint paths contributes to guar-
anteeing the quality of priority traffic in conditions of saturation.
Finally, in Chapter 6, we present the main conclusions and introduce some ideas for
future work.
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CHAPTER 2
PRELIMINARIES.

2.1 Introduction
From the initial overview of our work exposed in the introduction, we will provide this
chapter with a certain level of common ground, the essential concepts of the three cen-
tral topics to which we dedicate this thesis. Due to these topics being different between
them, it is foreseeable that experts’ knowledge in some areas is far from the others.
Therefore, we intend to understand all the areas addressed by explaining concepts that
an expert may find necessary with this chapter. These are: (a) central ideas about
the topology and functioning of communication networks; (b) some elements of graph
theory necessary for the modeling of a system; and (c) the essential concepts related to
the Fuzzy Logic that are used for the different views of the uncertainty that we consider
in the development of our research.

2.2 Communication network
Nowadays, people are increasingly connected, which gives us the feeling that the world
is getting smaller. It is essential to long-distance communication if we want a planet
to have significant coverage. Telecommunication has played a crucial role in estab-
lishing this world as connected and connecting telecommunication and data networks.
Being connected has profound effects on the dissemination of information. How we are
connected plays an essential role in the speed and robustness of such diffusion, among
other issues.
Communication networks are part of all the networks that many people are aware of.
What should immediately become clear is that networks are present in very different
scientific disciplines: economics, organizational studies, social sciences, biology, logis-
tics, among others.
Telecommunication networks were well established when people began to connect com-
puters and create data communication networks. Of course, the many existing net-
works, such as telegram, have already made it possible to send data. Nevertheless, the
new challenge was connecting these separate networks into a single one from a logical
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point of view, which computers could use using the same protocol. Thus, the idea
arises by building a communication system where large messages are split into smaller
units called packets. Each packet would be tagged with the address of its destination
and subsequently routed through the various networks. Notice that packets from the
same message could each follow their route to the destination, where they would then
be finally used to reassemble the original message.

2.2.1 Internet Protocol Network
A protocol is a set of rules governing how things work in a particular technology to
have some standardization ([Medhi and Ramasamy 2007]). Into the context of a com-
munication network, an Internet Protocol (IP) network is a set of rules that govern
how packets are transmitted over a network. An internet protocol describes how data
packets move through a system. Along with addressing, routing is one of the main
functions of the IP protocol. Routing consists of forwarding IP packets from source
to destination machines over a network based on their IP addresses. An IP address is
a unique address identifying a machine (a computer, a server, an electronic device, a
router, a phone, etc.) on a network, thus serving for routing and forwarding IP packets
from source to destination.
An IP network provides many services such as web and email. The Transmission Con-
trol Protocol (TCP) ensures reliability in a transmission. Thus, there is no packet loss,
the packets are in the proper order, the delay is to an acceptable level, and there is
no duplication of packets. When the TCP couples with IP, one gets the internet high-
way traffic controller. TCP and IP work together to transmit data over the internet
but at different levels. All this ensures that the data received is consistent, in order,
complete, and smooth. TCP bundles data into TCP packets before sending these to
IP, which encapsulates these into IP packets. More detailed, an application’s message
content is broken into smaller TCP pieces, called TCP segments, transmitted over the
IP network after including IP header information. The data entity at the IP level is
IP datagrams, while a packet is also a commonly used term. Thus, traffic in an IP
network is IP datagrams generated by various applications, without wondering which
applications are for.

Traffic in IP Network

When we talk about traffic volume on an IP network link, we are interested in knowing
the number of IP packets flowing on a link in a particular unit of time. Usually, the
time unit is considered in seconds. Thus, we can specify the traffic volume in IP packets
offered per second or packets per sec (PPS). On the other hand, another measure of
traffic volume is often used: raw data rate units such as Megabits per sec (Mbps) or
Gigabits per sec (Gbps).
A delay is a critical performance parameter in an IP network environment since we
are interested in ensuring that a packet generated from one end reaches the other end
as soon as possible. Interestingly, there is an analogy between road transportation
networks and IP networks. In road transportation networks, the delay depends on
the volume of traffic and the number of street lanes (and speed limit) imposed by the
system. Similarly, the delay in an IP network depends on the amount of traffic and the
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system’s capacity, i. e.

Delay = F (Traffic volume data rate, Capacity)

Specifically, the above relation is valid only in a single-link system. However, when
we consider a network where routing is also a factor, then a more general functional
relation is shown in equation 2.1

Delay = F (Traffic volume data rate, Capacity, Routing) (2.1)

2.3 Modeling a communication network
Understanding complex networks requires the right set of tools. For this purpose, we
will be using elements of graph theory in our work.
Graph theory is a field in mathematics that gained popularity in the 19th and 20th cen-
turies, mainly because it allowed the description of the phenomena from very different
areas: communication infrastructures, scheduling tasks, social structures, etc., where
there exists an interaction between elements of diverse nature. When we assign a graph
to such a scenario, we represent the elements by nodes, the connection between them
by edges and arcs, and the interaction of the elements by weights or costs. For instance,
in a road network, the nodes represent the cities, the edges are the roads between ev-
ery two cities, and the interaction or communication can be given by the distance or
driving time for a car between cities. In a communication network, the nodes represent
the signal emitting/receiving devices, the edge, or link, describes the communication
channel (electromagnetic signals, fiber optic, etc.), and the weight in edges represent
metrics such as the number of information packets sent from two specific sender and
receiver devices. We can also model an epidemic by using a graph: nodes represent
the beings affected by a disease (humans, animals, etc.), the edges can be the form of
contact between these beings, and the interaction represents the contagion, which can
have a determined probability of occurrence on each contact.
Using methods created on a graph representing a network makes the formulation of
various problems defined in such network. For instance, when assigning a graph to a
road network, a problem could be finding the shortest path between two cities in a road
network or in a city itself. Furthermore, in an epidemic network having an assigned
graph, it would be interesting to build a possible model of the evolution of such an
epidemic, making it possible to isolate the initial focus or cut its development. Finally,
and of great interest to us, when we assign a graph to a communication network, inter-
esting problems would be finding the path between two nodes with the lowest loss of
information and designing the network with the shortest number of nodes with certain
restrictions on the traffic quality.
We will restrict our attention to communication networks. Therefore, in a graph
G = (V,E, C) assigned to a communication network, V and E are the set of nodes
and links in the network, respectively; and C represents the set of costs assigned to
the links. Each link has an associated cost of transferring one unit of information (for
instance, the estimated time necessary for delivering an information packet) through
it. The cost can vary from one link to another. Notice that we can define whether the
graph is directed or undirected depending on the problem’s nature. In a direct graph,
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the edge eij represents the directed link connecting node i to node j, whereas eji rep-
resents the directed link connecting node j to node i, so that eij is used to transfer
the unit of information from node i to node j and eji is used to transfer the unit of
information from node j to node i.

2.3.1 Necessary elements of Graph Theory
To provide a clear explanation of the studies given in our work, we need to use ter-
minology that allows us to be precise. By adopting a “language" from graph theory,
we will formulate statements such as distance between two nodes in a network, among
others, accurately.
This section will refer to a few aspects of graph theory, giving some basic concepts and
notations and fundamental properties that characterize networks.

Graph and vertex degrees

We have introduced a network that is represented mathematically by a graph. Using a
formal notation, we define a graph in definition 2.3.1.

Definition 2.3.1. Graph
A graph G consists of a collection V of vertices and a collection of edges E, for which
we write G = (V,E). Each edge e ∈ E is said to join two vertices called its endpoints.
If the endpoints of an edge e are u and v, we write e = (u, v) or e = (v, u). Vertices
u and v, in this case, are said to be adjacent. Edge e is said to be incident with
vertices u and v, respectively.

Simply speaking, a graph is a collection of vertices that can be connected using
edges. In particular, each edge of the graph joins exactly two vertices. We denote the
number of vertices in graph G by n = |V | and the number of edges by |E|. A graph
for which every pair of distinct vertices defines an edge is called a complete graph.
In the remainder of this work, we will refer to the graph as defined in definition 2.3.1
with the following properties:

Simple graph: A graph that does not have loops or multiple edges.

Empty graph: An empty graph is a particular case where the graph has no vertices
and, consequently, no edges.

A convenient definition in graph theory concerns neighbors of a vertex v.

Definition 2.3.2. Neighbor Set
For any graph G = (V,E) and vertex v ∈ V , the neighbor set Γ (v) of v is the set of
vertices (other than v) adjacent to v, that is,

Γ (v) def= {u ∈ V | v 6= u, ∃e ∈ E : e = (u, v)} (2.2)

An essential property of a vertex is the number of edges that are incident with it.
This number is called the degree of a vertex.

9
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Definition 2.3.3. Degree of a vertex
In a graph G = (V,E), the number of edges incident with a vertex v is called the degree
of v and denoted as deg(v). Loops are counted twice.

Assuming |V | = n, the total sum of all the degrees satisfies the equation 2.3,
n∑
i=1

deg(vi) = 2|E| (2.3)

In a regular graph, every vertex has the same degree.

Simple Graph representation

There are different ways to represent graphs. When we consider their formal definition,
graphs are described in terms of vertices and edges. One of the most important ways
to represent a graph is using the adjacency matrix.

Definition 2.3.4. Adjacency Matrix
Consider a graph G with n vertices and m edges. The adjacency matrix of G is a
table A, with n rows and n columns with entry A[i, j], denoting the number of edges
joining the vertices vi and vj.

Some important properties of this type of matrix are:

• A is symmetric, that is, for all i, j, A[i, j] = A[j, i]. This property reflects that
an edge is represented as an unordered pair of vertices e = (vi, vj) = (vj , vi).

• A graph G is simple if and only if for all i, j, A[i, j] ≤ 1 and A[i, i] = 0. As we
stated above, there can be at most one edge joining vertices vi and vj and, in
particular, no edge joining a vertex to itself.

• the sum of values in row i equals the degree of vertex vi, that is, δ(vi) =
n∑
j=1

A[i, j].

The different representations of a graph (by its adjacency matrix, incidence matrix, or
edge list) are independent of how we draw it. However, if we properly attach labels
to vertices and edges, we will find their respective representations are the same. This
similarity is formalized through the term graph isomorphism.

Definition 2.3.5. Isomorphic graphs
Consider two graphs G = (V,E) and G′ = (V ′, E′). G and G′ are isomorphic if there
exists a one-to-one mapping φ : V → V ′ such that for every edge e ∈ E with e = (u, v),
there is a unique edge e′ ∈ E′ with e′ = (φ(u), φ(v)).

Stated differently, two graphs G and G′ are isomorphic if there is a one-to-one
correspondence between the vertices of G and the vértices of G′ such that the number
of edges joining any two vertices in G is equal to the number of edges joining the
corresponding two vertices in G′.
In many cases, checking whether two graphs are isomorphic is relatively simple as some
crucial requirements need to be fulfilled. That is the case that the graphs have the same
ordered degree sequence,

10
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Theorem 2.3.1.
If two graphs G and G′ are isomorphic, their respective ordered degree sequences should
be the same.

For the proof of theorem 2.3.1, we refer the reader to [van Steen 2010].
Theorem 2.3.1 gives only a necessary condition for two graphs to be isomorphic. Thus,
if two graphs have the same ordered degree sequence, that fact alone is insufficient to
conclude that they are also isomorphic. In fact, there are no known easy sufficient
conditions that tell us in general whether two graphs are isomorphic or not. Therefore,
once we have found all necessary conditions have been fulfilled, we will have to fall into
a trial-and-error method.

Connectivity.

The concept of connectivity in a graph is related to the availability of each vertex v to
be reached from any other vertex u through a chain of adjacent vertices between them.

Definition 2.3.6. Walk, Trail, Path, Cycle.
Given a graph G. A (u, v)−walk in G is a sequence 〈u, e1, v1, e2, v2, . . . vk−1, ek, v〉 of
alternating vertices and edges from G with ei = (vi−1, vi). In a closed walk, u = v. A
trail is a walk-in in which all edges are distinct; a simple path is a trail in which all
vertices are also distinct. A cycle o circuit is a closed trail where all vertices except u
and v are distinct.

In a simple graph, we can specify more simply a path or cycle
〈u, e1, v1, e2, v2, . . . vk−1, ek, v〉 by the sequence of vertices 〈u, v1, v2, . . . vk−1, v〉. Using
the notion of a path, we define a graph as connected when there is a path between each
pair of distinct vertices. Definition 2.3.7 formalizes the previous statement,

Definition 2.3.7.
In graph G, two distinct vertices u and v are connected if there is a path between them
in G. G is connected if all pairs of distinct vertices are connected.

The notion of connectivity is essential, notably when considering the robustness of
networks. Robustness means how well the system remains connected when removing
vertices or edges. For example, we can see the internet as a (huge) graph in which
routers form the vertices and communication links between routers the edges. In a
formal sense, the internet is connected. However, if it were possible to partition the
network into multiple components by removing only a single vertex (i.e., router) or
edge (i.e., communication link), we could hardly claim the internet to be robust. This
kind of network must sustain severe attacks and failures by which routers and links are
brought down, so connectivity is still guaranteed. In general, there are many networks
for which robustness plays a vital role in one way or another.

Subgraph

Definition 2.3.1 does not say anything that all vertices in a graph should be connected.
Intuitively, this means that a graph could also consist of a collection of components,
where each component is a connected subgraph.

11
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Definition 2.3.8.
A subgraph of G, denoted as H, is called a component of G if H is connected and not
contained in a connected subgraph of G with more vertices or edges.

We can obtain a proper subgraph H of G by removing a (nonzero) number of edges
and (or) vertices of G. The removal of a vertex necessarily implies removing every edge
incident to it. In contrast, removing an edge does not remove a vertex, although it
may result in one (or even two) isolated vertices.

Tree

A tree T is a connected graph containing no cycles. A tree where one vertex r, the
root, is distinguished is called a rooted tree T (r). Any vertex of degree one in a rooted
tree is called a leaf unless it is the root. Theorem 2.3.2 shows that there is one path
between any two vertices of a tree, among other properties.

Theorem 2.3.2.
If T is a tree with n vertices, then,

(i) Any two vertices of T are connected by precisely one path.

(ii) For any edge e, not in T , but connecting two vertices of T , the graph (T + e)
contains exactly one cycle.

(iii) T has (n− 1) edges.

The reader will find the detailed proof of theorem 2.3.2 in [Gibbons 1985].

These special types of graphs are essential to study for their standard and widespread
use in diverse fields of practice and science. Typical examples of the application of trees
are transportation networks, including communication and traffic networks. In many
cases, we need to solve the problem of minimizing transportation costs from source to
multiple destinations (or vice versa).
Trees play a prominent role in communication networks, whose main job is ensuring
that messages are sent from their source to their intended destination(s), also referred
to as message routing. How message routing is accomplished is laid down in a routing
protocol: a collection of specifications describing what to do when a node in a network
receives a message from source A sent to the destination node B. In general, a node in
a communication network can be viewed as consisting of several interfaces, where each
interface connects that node to precisely one other node in the system. Thus, we can
represent a communication network as a graph with nodes represented as vertices and
links between two nodes as edges. An interface is actually the endpoint of a link, and
its representation coincides with the vertex representing the node to which that link is
attached.

Directed graphs

It is natural to assign a direction to each graph’s edge in some applications. For
example,

12



CHAPTER 2. PRELIMINARIES

• When we model a street plan as a network, the one-way streets are represented
as a directed edge.

• In social networks, the “who knows whom” is also represented as a directed edge.

• In computer networks (especially wireless networks) where links between two
different nodes are often not symmetric in the sense that messages can generally
be successfully sent from station A to B, but not the other way around. Thus,
modeling these connections is more conveniently done using directed edges.

When we make a diagram of such graphs, an arrow represents each edge. Such a graph
is called a directed graph or digraph.

Definition 2.3.9. Digraph
A directed graph or digraph D consists of a collection of vertices V , and a collection
of directed edges or arcs A, for which we write D = (V,A). Each arc a = (−→u, v) is
said to join the vertex u ∈ V to another (not necessarily distinct) vertex v. Vertex u
is called the tail of a, whereas v is its head.

If a digraph contains the edge (u, v), it may or may not contain the edge (v, u). In
a symmetric digraph, there is an edge (vj , vi) for every edge (vi, vj). Every digraph
D has an underlying (undirected simple) graph G(D) obtained by replacing each arc
a = (−→u, v) with its undirected counterpart. Analyzing the underlying graph is often
more convenient than directly considering the original digraph. Conversely, we can
transform any undirected graph G into a directed one, D(G), by associating a direction
with each edge.

Weighted graphs

Besides adding a direction to an edge, we can also associate a weight with an edge,
representing some cost or distance. The weight is a real number associated with an
edge (or arc) in a graph. This extension is also natural in some applications where it is
necessary to model real-world networks as graphs. Thus, the weights describe distances
between vertices, travel time, links capacities, and in general, any metric measured in
the link between the end vertices.

Definition 2.3.10.
A weighted graph G = (V, E ,W) is a graph for which each edge e ∈ E has an associated
number w(e) ∈ W called its weight. For any subgraph H ⊆ G, the weight of H is
simply the sum of weights of its edges: w(H) =

∑
e∈E(H)

w(e)

Shortest path

It is often that the interest lies on a path (or cycle), in which case it may be appropriate
to refer to the length rather than the weight of the path (or cycle). However, it should
not be confused with the length of a path (or cycle) in an unweighted graph which we
defined earlier.
Among the uses of the weights, we can use them to determine the distance between
two vertices, which is formally defined as follows.
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Definition 2.3.11. Distance, Shortest Path
Consider an undirected graph G and two vertices u, v ∈ V . Let P be a (u, v)-path
having minimal weight among all (u, v)-paths in G. The weight of P is known as the
(geodesic) distance d(u, v) between u and v. Path P is called a shortest (u,v)-path,
or a geodesic between u and v.

Finding the shortest paths is a central problem in virtually all communication
networks. Several efficient algorithms solve the well-known problem of finding the
shortest path in a weighted graph. In this work, we will refer to one that stands out
for its efficiency and simplicity.

Dijkstra Algorithm

There are many different variants for the Dijkstra algorithm. Although the original
variant finds the shortest path between only two nodes r and t, a more common vari-
ant fixes a single node r as the "source" node and finds shortest paths from r to all
other nodes in the graph, creating a shortest-path tree T (r) that is said to be rooted at
r. In general, using this algorithm for a different vertex yields a different rooted tree.
Besides, there may be more than one shortest path between two vertices r and t. In
other words, there may be several (r, t)-paths, all having the same minimal weight.
Dijkstra algorithm forms the core of many so-called routing algorithms used on the
internet. This algorithm, created by the Dutch mathematician Edsger Dijkstra (1930
- 2002) in 1959, is undoubtedly one of the most important algorithms in modern com-
munication networks. It is an efficient algorithm for finding the shortest path between
a given pair of vertices. Also, this algorithm is valid for nonnegative graphs, and its
efficiency is O|V 2|, where O denotes the order of complexity of the algorithm. The
arrival of the Dijkstra algorithm was a significant development because most practical
applications involve nonnegative graphs. Over time, researchers from different scien-
tific areas have attempted to develop new algorithms, which are either modifications or
improvements valid for specific types of graphs. Some of our approaches in this work
are examples of what we previously stated.
Dijkstra algorithm solves the single-source shortest-paths problem on a weighted, di-
rected graph G = (V,E,W) for the case in which all edges weights are nonnegative
(w(u, v) ≤ 0, ∀(u, v) ∈ E). Consider a vertex r ∈ V , and the set S(r) of vertices whose
shortest path from r has already been found. Given the vertex x ∈ S(r), at each step,
the algorithm analyzes the vertices of the neighbor set of x (definition 2.3.2) that do
not belong to S(r) yet. Among these vertices, the closest to r is picked and then added
to S(r). In other words, the algorithm repeatedly selects the vertex u ∈ V −S(r) with
the minimum shortest path estimate, adds u to S(r), and relaxes all edges leaving u.
Algorithm 1 corresponds to the pseudo-code of the Dijkstra algorithm.
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Algorithm 1 Dijkstra(G̃′, r, t)
1: S(r)← {r};
2: d(r)← (r, 0); ∀v ∈ V : r 6= v, do d(v)← (−,∞);
3: while S(r) 6= V do
4: Select u ∈ V − S(r) where d(u) is minimal;
5: S(r)← S(r) ∪ {u};
6: for v ∈ Γ (u) do
7: dnew(v) := d(v) + w(u, v);
8: if dnew(v) < d(v) then
9: x(v) = u and d(v) = dnew(v); . x(v): predecessor of v in the

shortest path r-v path.
10: end if
11: end for
12: end while

2.4 The role of Fuzzy Logic
Fields of sciences, such as engineering, chemistry, or physics, construct exact mathe-
matical models of empirical phenomena and then use them to make predictions. Nev-
ertheless, some aspects of the "real world" always escape such precise mathematical
models, and usually, there is an elusive inexactness as part of the original model.
Essentially, fuzziness is a type of imprecision that stems from grouping elements into
classes that do not have sharply denned boundaries. Such classes, called fuzzy sets,
arise, for example, whenever we describe ambiguity, vagueness, and ambivalence in
mathematical models of empirical phenomena. Since certain aspects of reality always
escape such models, the strictly binary or ternary approach to treating physical phe-
nomena is inadequate to describe real-world systems. Besides, the attributes of the
system’ variables often emerge from an elusive fuzziness, a readjustment to context, or
an effect of human imprecision.
In our research, we deal with some issues within the telecommunication engineering
framework from the point of view of Fuzzy Logic. We intend to recreate a possible
realistic performance environment. Thus, we consider the uncertainty present in the
performance of a telecommunication network. For this, we focus our approaches mainly
on two important areas of fuzzy logic theory: Fuzzy inference and arithmetic properties
of fuzzy numbers. In particular, we try to give both a new interpretation and a more
efficient solution to some problems related to the traffic and distribution of information
in telecommunication networks (optical fiber, P2P, etc.) by using either the arithmetic
properties of fuzzy numbers or elements of fuzzy inference.

2.4.1 Necessary Basic Concepts
In this section, we introduce some basic concepts and terminology of fuzzy sets that,
either directly or indirectly, we will use in chapters 3 to 5. We refer to the latter as
crisp sets to distinguish between fuzzy sets and classical (nonfuzzy) sets.
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Fuzzy Set and Membership Function

Definition 2.4.1. Universe of discourse
A universal set (universe of discourse), A, is defined as a collection of objects having
all the same features.

Intuitively, a fuzzy set is a class that admits the possibility of partial membership
in it. Let A denote a space of objects. Then a fuzzy set Ã in A is a set of ordered pairs,

Ã = {(x, µA(x)), x ∈ A} (2.4)

where µÃ(x) ∈ [0, 1] is termed "the grade of membership of x in Ã".
The theory of fuzzy sets deals with a subset Ã of the universe of discourse A, where
the transition between full membership and no membership is gradual rather than
abrupt. Moreover, the fuzzy subset has no well-defined boundaries where the universe
of discourse covers a limited range of objects. These properties of fuzzy numbers can
be used to model many aspects of human activity when we intend to classify a set of
things or individuals into different categories -for example, size (high, medium, low);
speed (slow, medium, fast, extra fast); human attitude (nice, indifferent, unpleasant).
A fuzzy set can be defined mathematically by assigning each possible individual in the
universe of discourse a value representing its grade of membership in the fuzzy set. This
grade corresponds to the degree to which that individual is similar or compatible with
the concept represented by the fuzzy set. Thus, individuals may belong to a greater or
lesser degree in the fuzzy set, as indicated by a larger or smaller membership degree.
Definition 2.4.2 formalizes the above stated.

Definition 2.4.2. Membership function of a fuzzy set
Any fuzzy set Ã defined on A has an associated membership function µÃ that associates
all elements of A with a value in the interval [0, 1],

µÃ : A→ [0, 1] (2.5)

Larger values of µÃ denote higher membership degrees to Ã. The most commonly
used range of values of membership functions is the unit interval [0, 1]. In this case,
each membership function maps elements of a given universe of discourse A into real
numbers in [0, 1]. The membership function can also be generalized to take its values
in intervals [a, b] ∈ (0, 1).
In general, any function µ : A→ [0, 1] can be used as a membership function describing
a particular fuzzy set. From a practical standpoint, the term "membership function"
should reflect the problem from which the fuzzy set is defined.

α-cuts and support of a fuzzy set

Definition 2.4.3. Normality
The fuzzy set Ã is said to be normal (normalized) if and only if its membership function
fulfills the condition 2.6,

max
x∈A

µÃ(x) = 1 (2.6)
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A non-normal and non-empty fuzzy set 1 can be normalized by dividing each µÃ(x) by
the term max

x∈X
µÃ(x).

One of the most important concepts in fuzzy sets theory corresponds to the α-cut
and its variant, the strong α-cut. Both concepts can be viewed as a bridge connecting
fuzzy sets and crisp sets. When we want to exhibit an element x ∈ A that typically
belongs to a fuzzy set Ã, we may demand its membership degree to be greater than
some threshold α ∈ [0, 1].

Definition 2.4.4. α-cut and strong α-cut sets
The α-cut set of a fuzzy set Ã, denoted by Ãα, is a crisp set that contains all the
elements of A whose membership degree is greater than or equal to the specified value
α, i.e.:

Ãα = {x ∈ A| µÃ(x) ≥ α}, α ∈ [0, 1] (2.7)
The strong α-cut of A, denoted as Ãα+, is the crisp set containing all the elements of
A with membership function greater than α,

Ãα+ = {x ∈ A| µÃ(x) > α}, α ∈ [0, 1] (2.8)

Let Ã be a fuzzy set, and the real numbers α1 and α2 (α1, α2 ∈ [0, 1]):

If α1 ≤ α2 ⇒ Ãα2 ⊆ Ãα1

An important special case of α-cut is the support of a fuzzy set.

Definition 2.4.5. Support of Ã
The support of fuzzy set Ã within a universal set A is the crisp set that contains all the
elements of A that have nonzero membership degrees in Ã., i.e.:

supp(Ã) = {x ∈ A| µÃ(x) > 0} (2.9)

Definition 2.4.6. Level set of Ã
The value α ∈ [0, 1] explicitly shows the value of the membership function. The level
set of Ã, denoted as Λ, is defined as,

ΛÃ = {α | µÃ(x) = α, α ∈ [0, 1], x ∈ X} (2.10)

Convexity

Convexity is an essential property of fuzzy sets defined on R (for some n ∈ N). It is a
generalization of the classical concept of convexity of crisp sets.
The generalized convexity of fuzzy sets should be consistent with the classical definition.
Therefore, it requires that the α-cuts of a convex set are convex for all α ∈ (0, 1] in the
classical sense (0-cut is excluded here since it is always equal to Rn in this case, and
includes −∞ to +∞).
The definition of convexity for fuzzy sets does not mean that the membership function
of a convex fuzzy set is convex. Instead, the membership functions of convex fuzzy sets
are concave and not convex according to standard definitions.
Theorem 2.4.1 provides an alternative formulation of convexity of fuzzy sets restricted
to fuzzy sets on R.

1The fuzzy set Ã is empty if and only if ∀x ∈ A, µÃ(x) ≡ 0.
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Theorem 2.4.1. Convexity
The fuzzy set Ã is convex if its membership function satisfies the following condition:
∀ x1, x2 ∈ X and ∀λ ∈ [0, 1],

µÃ(λx1 + (1− λ)x2) ≥ min(µÃ(x1), µÃ(x2))

where min denotes the minimum operator.

2.4.2 Set-Theoretic Operations for Fuzzy sets
The concepts suggested by Zadeh in [Zadeh 1965] constitute a consistent framework
for the theory of fuzzy sets. The operations with fuzzy sets are defined via their
membership function. Two of the most used and intuitive operators for modeling the
intersection and union of fuzzy sets (also known as Zadeh’s t-operators) are the min
and max operators, respectively.

Definition 2.4.7. Intersection of two fuzzy sets
The membership function µC̃(x) of the intersection C̃ = Ã ∩ B̃ (operator AND) is
pointwise defined by,

µC̃(x) = min{µÃ(x), µB̃(x)} = µÃ(x) ∧ µB̃(x), ∀x ∈ X (2.11)

Definition 2.4.8. Union of two fuzzy sets
The membership function µD̃(x) of the union D̃ = Ã ∪ B̃ (operator OR) is pointwise
defined by,

µD̃(x) = max{µÃ(x), µB̃(x)} = µÃ(x) ∨ µB̃(x), ∀x ∈ X (2.12)

In [Bellman and Giertz 1973], the authors give an axiomatic justification about
why min and max operators are preferably used over others that are also valid. Their
statements are provided from a logical point of view, where the intersection is inter-
preted as “logical and”, and the union as “logical or”. Together with other operators
that have also been suggested, they are part of the two basic and classical operators,
referred to as triangular norms (t-norms) and conorms (t-conorms).

Definition 2.4.9. t-norm
The operator t defined as,

t : [0, 1]× [0, 1]→ [0, 1]
and, given µÃ(x), µB̃(x), µC̃(x) ∈ [0, 1] with x ∈ X, satisfies the conditions:

i) t(0, 0) = 0, t(1, 1) = 1, t(µÃ(x), 0) = 0, t(µÃ(x), 1) = µÃ(x) : boundary condition
ii) t(µÃ(x), µB̃(x)) = t(µB̃(x), µÃ(x)) : conmutativity
iii) If µB̃(x) ≤ µC̃(x) then t(µÃ(x), µB̃(x)) ≤ t(µÃ(x), µC̃(x)) : monotonicity
iv) t (t(µÃ(x), µB̃(x)), µC̃(x)) = t (µÃ(x), t(µB̃(x), µC̃(x))) : associativity

is a t-norm.

Definition 2.4.10. t-conorm
The operator t∗ defined as:

t∗ : [0, 1]× [0, 1]→ [0, 1]
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and, given µÃ(x), µB̃(x), µC̃(x) ∈ [0, 1] with x ∈ X, satisfies the conditions:

i) t∗(0, 0) = 0, t∗(1, 1) = 1, t∗(µÃ(x), 0) = µÃ(x), t∗(µÃ(x), 1) = 1 : boundary condition
ii) t∗(µÃ(x), µB̃(x)) = t∗(µB̃(x), µÃ(x)) : conmutativity
iii) If µB̃(x) ≤ µC̃(x) then t∗(µÃ(x), µB̃(x)) ≤ t∗(µÃ(x), µC̃(x)) : monotonicity
iv) t∗ (t∗(µÃ(x), µB̃(x)), µC̃(x)) = t∗ (µÃ(x), t∗(µB̃(x), µC̃(x))) : associativity

is a t-conorm.

In particular, the intersection operator holds the conditions for t-norm, and
the union operator holds the conditions for t-conorm.

2.4.3 Representation of Fuzzy Sets
The principal role of α-cuts and strong α-cuts is their capability to represent fuzzy
sets. Each fuzzy set can uniquely be represented by the family of all its α-cuts or
the family of all its strong α-cuts. These representations extend various properties
and operations on crisp sets to their fuzzy counterparts. In each extension, a given
crisp property or operation is required to be valid for each crisp set involved in
the representation.
Let us first recall the definition of Characteristic function of the α-cut of a fuzzy
set Ã.

Definition 2.4.11. Characteristic function of Ãα
Given the α-cut of the fuzzy set Ã. The application

χÃα : Ãα → {0, 1}

such that

χÃα(x) =
 1, if x ∈ Ãα

0, if x /∈ Ãα
(2.13)

is called the Characteristic function of Ãα.

The representation of a fuzzy set by its α-cut is universal, regardless of
whether it is based on a finite or infinite universal set.

Definition 2.4.12. Decomposition of Ã
The decomposition of a fuzzy set Ã is the representation of Ã in terms of a special
fuzzy set αÃ which is defined in terms of the α-cuts of Ã with membership function
defined as:

µ
αÃ

= α · χÃα , α ∈ [0, 1] (2.14)

Figure 2-1 shows an example of the special fuzzy set αÃ.
Theorems 2.4.2, 2.4.3, and 2.4.4 describe the different ways a fuzzy set can

be decomposed based on the special fuzzy set αÃ. F(X) denotes the family of
fuzzy sets having X as their universal set.
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Figure 2-1: Special fuzzy set αÃ

Theorem 2.4.2. First Decomposition Theorem
For every Ã ∈ F(X),

Ã =
⋃

α∈[0,1]
αÃ

where αÃ is defined by equation 2.14 and “∪” denotes the standard fuzzy union.

Theorem 2.4.3. Second Decomposition Theorem
For every Ã ∈ F(X),

Ã =
⋃

α∈[0,1]
α+Ã

where α+Ã denotes a special fuzzy set defined by µ
α+Ã

= α · χÃα+
.

Theorem 2.4.4. Third Decomposition Theorem
For every Ã ∈ F(X),

Ã =
⋃

α∈ΛÃ
αÃ

where ΛÃ is the level set of Ã.

2.4.4 Extension principle of Zadeh
The transformations of elements using functions are omnipresent. Generalizations
of these transformations are those between points involving sets transformations
between spaces and mappings of fuzzy sets between universes. Thus, point trans-
formations can be expanded to cover transformations involving fuzzy sets. One
of the mechanisms to transform fuzzy sets is the extension principle of Zadeh.
The intuitive idea can be described as “Given a function that goes from a par-
ticular domain X to image Y , the extension principle provides a mechanism for
transforming a fuzzy set defined on X in another fuzzy set defined in Y ”.
For an arbitrary number of sets X1, . . . , Xn, the set of all n-tuples (x1, . . . , xn)
such that x1 ∈ X1, . . . , xn ∈ Xn is called Cartesian product and is denoted by
X1 × . . .×Xn.
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Definition 2.4.13. Extension Principle between two fuzzy sets
Let F(X) and F(Y ) be the family of all the fuzzy sets defined in the universes of
discourse X and Y , respectively, and let f : X → Y , be a crisp function. f is
fuzzified when it is extended to act on fuzzy sets defined on X and Y . That is,
the fuzzified function, for which the same symbol f is usually used, has the form

f : F(X)→ F(Y )

such that if Ã is a fuzzy set in X, then its image under f is also a fuzzy set B̃ =
f(Ã) = {(y, µB̃(y))} in Y with membership function defined by equation 2.15,

µB̃(y) = max
x|y=f(x)

µÃ(x) (2.15)

The Cartesian product of n fuzzy sets is also a fuzzy set. We formalize this
concept in definition 2.4.14.

Definition 2.4.14.
Let X be the Cartesian product of universal sets, X1 × X2 × . . . × Xn, and
Ã1, Ã2, . . . , Ãn be n fuzzy sets in the universal sets X1, X2, . . . , Xn, respectively.
The Cartesian product of sets Ã1, Ã2, . . . , Ãn leads to the fuzzy set Ã1×Ã2× . . .×
Ãn on X defined by equation 2.16,

µÃ1×...×Ãn(x1, x2, . . . , xn) = min[µÃ1
(x1), . . . , µÃn(xn)] (2.16)

When a given function is defined on a Cartesian product, the extension prin-
ciple is still applicable.

Definition 2.4.15. Generalized Extension Principle
Given the Cartesian product Ã1 × Ã2 × . . . × Ãn defined in 2.4.14 and let f be
the function from X1 ×X2 × . . .×Xn to Y ,

f(x1, x2, . . . , xn) : X1 ×X2 × . . .×Xn → Y

Then the fuzzy set B̃ in Y can be obtained by the function f and the fuzzy sets
Ã1, Ã2, . . . , Ãn as follows:

µB̃(y) =


0, if f−1(y) = ∅

max
(x1,...,xn)∈f−1(y)

[
min(µÃ1

(x1), . . . , µÃn(xn))
]

if f−1(y) 6= ∅ (2.17)

where

• f−1 is the inverse of f .

• µB̃(y) is the membership degree of y = f(x1, . . . , xn) with (x1, . . . , xn) hav-
ing membership function µÃ1×Ã2×...×Ãn(x1, . . . , xn).

Fuzzy sets as B̃ defined in definition 2.4.15 are referred to as fuzzy relations.

21



CHAPTER 2. PRELIMINARIES

2.4.5 Fuzzy Relations
A crisp relation represents the presence or absence of association, interaction, or
interconnection between elements of two or more sets. Relations can be general-
ized to allow the presence of various degrees of association or interaction between
elements. Membership degrees can represent these degrees in a fuzzy relation in
the same way as degrees of set membership are represented in the fuzzy set. A
fuzzy relation generalizes a classical relation to one that allows partial member-
ship and describes a relationship that holds between two or more objects.

Definition 2.4.16. Fuzzy Relation
A fuzzy relation is a fuzzy set defined on the Cartesian product of crisp sets
X1, X2, . . . , Xn where tuples (x1, x2, . . . , xn) may have varying membership degrees
within the relation. The membership degree indicates the strength of the relation
present between the tuple elements.

Among n-dimensional relations, binary relations have a special significance
since they are, in some sense, generalized mathematical functions. Contrary to
functions from X to Y , binary relations R̃(X, Y ) may assign to each element of
X two or more elements of Y . Some basic operations on functions, such as the
inverse and composition, are also applicable to binary relations.

Definition 2.4.17. Binary fuzzy relation
A binary fuzzy relation R̃ between variables “x, y” is a fuzzy relation defined by
equation 2.18,

R̃ = {(x, y) | µR̃(x, y) ≥ 0, x ∈ X, y ∈ Y } (2.18)
where µR̃ : Ã× B̃ → [0, 1]

The membership function µR̃(x, y) is interpreted as the “strength” of the
relation between x and y. When µR̃(x1, y1) ≥ µR̃(x2, y2), we say that (x1, y1) is
more strongly related than (x2, y2).

Definition 2.4.18. Domain and Range of R̃(X, Y )
Given a fuzzy relation R̃(X, Y ), its domain is a fuzzy set on X, domR̃, whose
membership function is defined by

µdomR̃(x) = max
y∈Y

R̃(x, y)

for each x ∈ X.
The range of R̃(X, Y ) is a fuzzy relation on Y , ranR̃, whose membership function
is defined by

µranR̃(y) = max
x∈X

R̃(x, y)

for each y ∈ Y .
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Composition of fuzzy relations

The sup−i compositions of fuzzy relation are widely used in some applications
such as approximate reasoning and fuzzy control.
Definition 2.4.19.
Given a particular t-norm i and two fuzzy relations R̃1(X, Y ) and R̃2(Y, Z), the
sup−i composition of R̃1 and R̃2 is a fuzzy relation, R̃1

i◦ R̃2 on X × Y , defined
by,

µ
R̃1

i
◦R̃2

(x, z) = sup
y∈Y
−i[µR̃1

(x, y), µR̃2
(y, z)] (2.19)

for all x ∈ X, z ∈ Z.

When the t-norm i is the min operator, R̃1
i◦ R̃2 becomes the standard com-

position or max−min composition of R̃1 ◦ R̃2.

Definition 2.4.20. max−min composition of fuzzy relations
Given the fuzzy relations R̃1 and R̃2 defined on sets X, Y and Z. That is R̃1 ⊆
X × Y , R̃2 ⊆ Y × Z. The standard composition R̃1 ◦ R̃2 is expressed by the
relation from X to Z, and is defined by equation 2.20,

µR̃1◦R̃2
(x, z) = max

y∈Y

[
min(µR̃1

(x, y), µR̃2
(y, z))

]
= ∨y∈Y [µR̃1

(x, y) ∧ µR̃2
(y, z)] (2.20)

for (x, y) ∈ X × Y and (y, z) ∈ Y × Z.
Proposition 2.4.1 shows the basic properties that, under the standard fuzzy

union and intersection, follow directly from the corresponding properties of t-
norms,

Proposition 2.4.1.
Given fuzzy relations R̃1(X, Y ), R̃2(Y, Z) and R̃3(Z, V ), then

1. (R̃1 ◦ R̃2) ◦ R̃3 = R̃1 ◦ (R̃2 ◦ R̃3)

2. R̃1 ◦ (
⋂
j∈J

R̃j
2) ⊆

⋂
j∈J

(R̃1 ◦ R̃j
2)

3. (
⋂
j∈J

R̃j
1) ◦ R̃2 ⊆

⋂
j∈J

(R̃j
1 ◦ R̃2)

2.4.6 Fuzzy numbers
Among the various types of fuzzy sets, of particular significance are fuzzy sets
defined on the real line R. Membership functions of these sets, which have the
form:

µ : R→ [0, 1]
have a quantitative meaning. They capture the intuitive conceptions of approx-
imate numbers or intervals, such as “numbers that are closed to a given real
number b” or “numbers that are around a given interval of real numbers [b, c].”
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Definition 2.4.21. Fuzzy number
A fuzzy number is a fuzzy set with the following conditions,

• is convex

• is normalized

• its membership function is piecewise continuous

• it is defined in R

To qualify as a fuzzy number, a fuzzy set Ã on R must fulfill the following
three properties:

1. Ã must be a normalized fuzzy set

2. supp(Ã) must be bounded

3. Ãα must be a closed interval for every α ∈ [0, 1]

Given the real number b, due to the notion that a set of “real numbers close to b”
is fully satisfied by b itself, the membership degree of b in any fuzzy set satisfying
this notion (i.e., a fuzzy number) must be 1. The bounded support of Ã and
all its α-cuts for α 6= 0 must be closed intervals to define meaningful arithmetic
operations on fuzzy numbers in terms of standard arithmetic operations on real
closed intervals. Since the α-cuts of any fuzzy number are required to be closed
intervals for all α ∈ [0, 1], every fuzzy number is a convex fuzzy set.
Although the triangular and trapezoidal shapes of membership functions are the
most often used for representing fuzzy numbers, other shapes may be preferable in
some applications. Moreover, membership functions of fuzzy numbers do not need
to be symmetric. Figure 2-2 shows some commonly used membership function
shapes of fuzzy numbers. Cases (a) and (b) exemplify the bell-shaped membership
function in symmetric and asymmetric forms, respectively. Cases (c) and (d),
respectively, show membership functions that only increase or decrease, which
also qualify as fuzzy numbers. They capture the conception of a “large number”
or a “small number” in the context of each particular application.
Theorem 2.4.5 shows that membership functions of fuzzy numbers can be, in
general, piecewise-defined functions,

Theorem 2.4.5. fL − fR Membership function of a fuzzy number
Let Ã = (a, b, c, d) with a, b, c, d ∈ R be a fuzzy number. The membership function
of Ã is defined in equation 2.21,

µÃ(x) =



fL(x) a ≤ x ≤ b

1 b ≤ x ≤ c

fR(x) c ≤ x ≤ d

0 otherwise

(2.21)
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µ(x)

(a) Symmetric bell-shaped membership
function

1

x

µ(x)

(b) Asymmetric bell-shaped membership
function

1

x

µ(x)

(c) Increasing membership function

1

x

µ(x)

(d) Decreasing membership function

Figure 2-2: Basic types for the membership function of a fuzzy number.

where fL : [−∞, b] → [0, 1] is a monotonic increasing and continuous from the
right function, and such that fL(x) = 0 for x ∈ (−∞, a); and fR : [c,∞] →
[0, 1] is monotonic decreasing, continuous from the left function, and such that
fR(x) = 0 for x ∈ (d,∞).

We refer the reader to [Klir and Yuan 1995] for the proof of theorem 2.4.5.
Figure 2-3 shows a fuzzy number in a piecewise manner.

Triangular and Trapezoidal fuzzy numbers

Membership functions with linear functions fL and fR correspond to triangular
and trapezoidal shaped membership functions and are often used for representing
fuzzy numbers. Let Ã = (a, b, c, d) be a triangular or trapezoidal fuzzy number,
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Figure 2-3: General shape of the membership function of the fuzzy number Ã.

the functions fL(x) and fR(x) that form its membership function are defined as:

fL(x) =


0, x ∈ (−∞, a)

x− a
b− a

, a ≤ x ≤ b

fR(x) =


d− x
d− c

, c ≤ x ≤ d

0, x ∈ (d,∞)

(2.22)

Functions fL(x) and fR(x) as described in expression 2.22 correspond to the
membership function of a trapezoidal fuzzy number as long as a ≤ b < c ≤ d.
When b = c, Ã is a triangular fuzzy number.
Special cases of fuzzy numbers include ordinary real numbers and intervals of real
numbers. These have the characteristic function instead of the membership func-
tion. Table 2.1 shows the different adaptations of a fuzzy number in trapezoidal
and triangular and the crisp cases (real number and real interval) with graphic
representation shown in figure 2-4.

Fuzzy Number Triangular
(b = c)

Trapezoidal
(a ≤ b < c ≤ d)

Crisp Number Real Number
(a = b = c = d)

Real Interval
(a = b < c = d)

Table 2.1: Special adaptations of a fuzzy number Ã = (a, b, c, d).

The α-cuts of a fuzzy number Ã = (a, b, c, d) are obtained by the interception
of functions fL(x) and fR(x) with the line y = α with α ∈ (0, 1]. We summarize
the α-cuts of triangular and trapezoidal fuzzy numbers in table 2.2 and graphi-
cally represent them in figure 2-5.
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µ(x) •

(a) Real number

a b = c d
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x

µ(x)

(b) Triangular fuzzy number

a c

1

x

µ(x)

(c) Real interval

a b c d

1

x

µ(x)

(d) Trapezoidal fuzzy number

Figure 2-4: Representations of real and fuzzy numbers.

Fuzzy Number α-cut

TFN Ã = (a, b, c) Ãα = [a+ α(b− a), c− α(c− b)]

TrapFN Ã = (a, b, c, d) Ãα = [a+ α(b− a), d− α(d− c)]

Table 2.2: α-cuts of triangular and trapezoidal fuzzy numbers.

0

1

a b c

µÃ

x

α

Ãα

[

a + α(b− a)

]

c− α(c− b)

0

1

a b c d

µÃ

x

α

Ãα

[

a + α(b− a)

]

d− α(d− c)

Figure 2-5: α-cuts in triangular and trapezoidal fuzzy numbers.
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Arithmetic operations of Fuzzy Numbers

Arithmetic operations of fuzzy numbers are mainly based on two methods: the
extension principle method, by which operations on real numbers are extended to
operations on fuzzy numbers, and the interval arithmetic method, which is based
on the arithmetic operations of intervals [[Klir and Yuan 1995] and [Banerjee and
Roy 2012]]. We will assume that fuzzy numbers are represented by continuous
membership functions for the description of both methods. Notice that if X is a
set of real numbers bounded superiorly (that is, there is an M such that x ≤M ,
∀x ∈ X), then sup(X) is the least upper bound for X. If X has a maximum
element, then sup(X) = max(X).
Two essential properties for the arithmetic operations of triangular and trape-
zoidal fuzzy numbers are described below:

1. The results from addition and subtraction between triangular or trapezoidal
fuzzy numbers are also triangular o trapezoidal fuzzy numbers, respectively.

2. The results from multiplication or division as in maximum or minimum
operations are not a triangular or trapezoidal fuzzy number.

We will denote by ⊕, 	, ⊗ and � the operation on fuzzy numbers, extended
from the normal algebraic operations +, −, × and /, respectively.

Extension Principle Method: Classic fuzzy arithmetic is based on Zadeh’s Ex-
tension Principle, where, mainly, standard arithmetic operations on real
numbers are extended to fuzzy numbers by applying the Extension Princi-
ple described in section 2.4.4.
Let “~” denote any of the four basic arithmetic operations (⊕,	,⊗,�) and
let Ã and B̃ denote two fuzzy numbers. Assuming, in definition 2.4.15, the
function f as the operator “~”, where

f(x, y) : R2 → R

then the membership function of the fuzzy set (Ã~ B̃) on R is defined by
the equation 2.23,

µ(Ã~B̃)(z) = max
z=x∗y

min[µÃ(x), µB̃(y)] (2.23)

for all z ∈ R. More precisely,

µ(Ã⊕B̃)(z) = max
z=x+y

min[µÃ(x), µB̃(y)]

µ(Ã	B̃)(z) = max
z=x−y

min[µÃ(x), µB̃(y)]

µ(Ã⊗B̃)(z) = max
z=x·y

min[µÃ(x), µB̃(y)]

µ(Ã�B̃)(z) = max
z=x÷y

min[µÃ(x), µB̃(y)]

(2.24)
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Theorem 2.4.6, whose proof the reader can find in [Klir and Yuan 1995],
shows that more than a fuzzy set on R, (Ã ∗ B̃) is a fuzzy number for each
~ ∈ {⊕,	,⊗,�}.
Theorem 2.4.6.
Let ~ ∈ {⊕,	,⊗,�}, and let Ã,B̃ denote fuzzy number with continuous
membership functions. The fuzzy set (Ã ~ B̃) with membership function
defined in expression 2.23 is a fuzzy number with a continuous membership
function.

Interval Arithmetic Method: Using the Extension Principle for fuzzy arithmetic
is highly complicated, even for simple operations of two small fuzzy num-
bers. Also, this method does not work, in general, with membership func-
tions that do not intersect each other. This problem leads to some proposed
solutions and algorithms for fuzzy arithmetic, such as the Approximate
Methods of Extension [[Dubois and Prade 1980], [Ross 2004]]. Another
well-known is the Interval Arithmetic method, where the operations of fuzzy
numbers are reduced to the operations of ordinary intervals.
The following two properties of fuzzy numbers are based on the represen-
tation of a fuzzy set and the definition of the α-cut of a fuzzy set,

1. Each fuzzy set, and thus also each fuzzy number, can fully and uniquely
be represented by its α-cut.

2. α-cuts of each fuzzy number are closed crisp intervals for all α ∈ (0, 1].

These properties enable the definition of arithmetic operations on fuzzy
numbers in terms of the arithmetic operations of its α-cuts. The result of
an arithmetic operation on a closed interval is again a closed interval, as is
shown in proposition 2.4.2.
Proposition 2.4.2.
Let ∗ denote any of the four arithmetic operations on closed intervals, that
is, ∗ ∈ {+,−, ·,÷}. Then,

[a, b] ∗ [c, d] = {f ∗ g |a ≤ f ≤ b, c ≤ g ≤ d}
is a general property, except for the case [a, b] ÷ [c, d] which is not defined
when c ≤ 0 ≤ d.

The basic operations between the crisp intervals [a, b] and [c, d] are described
in expression 2.25,

Addition: [a, b] + [c, d] = [a+ c, b+ d]
Subtraction: [a, b]− [c, d] = [a− d, b− c]
Multiplication: [a, b] · [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

Division: [a, b]÷ [c, d] =
[
min

(
a

c
,
a

d
,
b

c
,
b

d

)
,max

(
a

c
,
a

d
,
b

c
,
b

d

)]
with 0 /∈ [c, d]

(2.25)
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Definition 2.4.22 provides the necessary elements to define the α-cut of the
fuzzy number (Ã ∗ B̃) by the α-cuts of the fuzzy numbers Ã and B̃.

Definition 2.4.22.
Let Ã and B̃ denote fuzzy numbers and let ∗ and ~ denote any of the
four basic arithmetic operations and their extension to fuzzy numbers, re-
spectively. Then we define a fuzzy number (Ã ~ B̃), by defining its α-cut,
(Ã~ B̃)α, as

(Ã~ B̃)α = Ãα ∗ B̃α

for any α ∈ (0, 1]. When ∗ = “÷′′, clearly, 0 /∈ B̃α ∀α ∈ (0, 1].

By definition 2.4.22, we can use the interval operations in 2.25 to find
(Ã~ B̃)α. On the other hand, due to theorem 2.4.2, we can write (Ã~ B̃)
as the union of the fuzzy numbers α(Ã~ B̃), i.e.:

Ã ∗ B̃ =
⋃

α∈(0,1]
α(Ã~ B̃)

According to definition 2.4.12, we can find the fuzzy number α(Ã ~ B̃)
by using χ(Ã∗B̃)α(x), the characteristic function of (Ã ~ B̃)α. Finally, we
can quickly compute the membership function of (Ã~ B̃) by applying the
definition of the union of fuzzy sets (definition 2.4.8), i.e.,

µ(Ã∗B̃)(x) = max
α∈(0,1]

{
α · χ(Ã∗B̃)α(x)

}

We propose the example 2.4.6.1 to clarify the above mentioned methods.

Example 2.4.6.1. Using the interval arithmetic method, we want to compute
Ã⊕B̃ where Ã = (−3, 2, 4) and B̃ = (−1, 0, 6) with membership functions defined
in expression 2.26 and shown in figure 2-6.

µÃ(x) =



0, x ≤ −3, x ≥ 4
x+ 15

5 , −3 ≤ x ≤ 2

4− x
2 , 2 ≤ x ≤ 4

µB̃(x) =


0, x ≤ −1, x ≥ 6

x+ 1, −1 ≤ x ≤ 0
6− x

6 , 0 ≤ x ≤ 6

(2.26)

The fuzzy number (Ã ⊕ B̃) is also a triangular fuzzy number. Therefore, we
will find µ(Ã⊕B̃)(x) following the Interval Arithmetic method.
The α-cuts of Ã and B̃ are Ãα = [5α − 3,−2α + 4] and B̃α = [α − 1,−6α + 6],
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Figure 2-6: Triangular fuzzy numbers Ã and B̃.

respectively. By applying the sum operation of ordinal intervals, described in
expression 2.25, between Ãα and B̃α, we obtain,

Ãα + B̃α = [6α− 4,−8α + 10]

We can define (Ã⊕ B̃)α, by definition 2.4.22, for any α ∈ (0, 1]. i.e.,

(Ã⊕ B̃)α = [6α− 4,−8α + 10]

According to First Decomposition Theorem,

(Ã⊕ B̃) =
⋃

α∈(0,1]
α(Ã⊕ B̃)

thus, the membership function of (Ã ⊕ B̃) can be computed by the definition of
the union and decomposition of fuzzy sets, i.e.,

µ(Ã⊕B̃)(x) = max
α∈(0,1]

{
µ
α(Ã⊕B̃)

}
= max

α∈(0,1]

{
α · χ(Ã⊕B̃)α(x)

}

where χ(Ã⊕B̃)α(x) =
{ 1, if x ∈ [6α− 4,−8α + 10]

0, if x < 6α− 4 or x > −8α + 10
We are now able to build µ(Ã⊕B̃)(x), i.e.,

x = 6α− 4 ⇒ α = x+ 4
6 ⇒

{ if α = 0 ⇒ x = −4
if α = 1 ⇒ x = 2

x = −8α + 10 ⇒ α = x− 10
8 ⇒

{ if α = 0 ⇒ x = 10
if α = 1 ⇒ x = 2

therefore,

µ(Ã⊕B̃)(x) =



x+ 4
6 , if − 4 ≤ x ≤ 2

10− x
8 , if 2 ≤ x ≤ 10

0, if x ≤ −4 or x ≥ 10
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which is the membership function of the triangular fuzzy number (Ã ⊕ B̃) =
(−4, 2, 10). Notice that (Ã ⊕ B̃) is obtained by (Ã ⊕ B̃)α for α = 0 and α = 1.
Figure 2-7 shows the membership functions of Ã and B̃ and the fuzzy number
(Ã⊕ B̃).

−4−3 −1 2 4 6 10

1

x

µ(x)
µÃ
µB̃

µ(Ã⊕B̃)

Figure 2-7: Triangular fuzzy numbers Ã, B̃, and (Ã⊕ B̃).

In summary, based on the interval arithmetic method, we can perform the
addition and difference of triangular and trapezoidal fuzzy numbers, also resulting
in triangular and trapezoidal fuzzy numbers, respectively, by using their α-cuts.
Ã, B̃ triangular fuzzy numbers:

Ã+ B̃ = (a1, b1, c1)⊕ (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2)
Ã+ B̃ = (a1, b1, c1)	 (a2, b2, c2) = (a1 − a2, b1 − b2, c1 − c2)

(2.27)

Ã, B̃ trapezoidal fuzzy numbers:

Ã+ B̃ = (a1, b1, c1, d1)⊕ (a2, b2, c2, d2) = (a1 + a2, b1 + b2, c1 + c2, d1 + d2)
Ã+ B̃ = (a1, b1, c1, d1)	 (a2, b2, c2, d2) = (a1 − a2, b1 − b2, c1 − c2, d1 − d2)

(2.28)
Studies on fuzzy numbers like those presented in [Dubois and Prade 1979] and
[Yager 1979] show that there are no opposite and reverse fuzzy numbers in the
sense of group structure. It is easy to see that, mathematically, for any fuzzy
number Ã, Ã + (−Ã) 6= 0 and Ã⊗ ( 1

Ã
) 6= 1. We summarize in definitions 2.4.23

and 2.4.24 negative and complementary triangular and trapezoidal fuzzy numbers.

Definition 2.4.23. Positive, nonnegative, and negative triangular fuzzy num-
bers.
A triangular fuzzy number Ã = (a, b, c) is a nonnegative triangular fuzzy number,
i.e., Ã ≥ 0 if and only if a ≥ 0. Ã is said to be a positive (negative) triangular
fuzzy number, i.e., Ã > 0 (Ã < 0) if and only if a > 0 (a < 0).

Definition 2.4.24. Complementary of a triangular fuzzy number.
Let Ã = (a, b, c) be a triangular fuzzy number. The complementary of Ã is a
triangular fuzzy number defined by −Ã = (−c,−b,−a).
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There is a special class of trapezoidal fuzzy numbers that do not satisfy the
criterion for both positivity and negativity. These fuzzy numbers are neither
positive nor negative and are interpreted as near-zero fuzzy numbers.

Definition 2.4.25. N-zero fuzzy number.
A fuzzy number Ã is called N-zero fuzzy number, if its membership function µÃ(x)
satisfies µÃ(0) = µÃ(0+) = µÃ(0−) = µÃ(0) 6= 0. In particular:

• A triangular fuzzy number Ã = (a, b, c) is a N-zero triangular fuzzy number
if and only if a < 0 < c.

• A trapezoidal fuzzy number Ã = (a, b, c, d) is a N-zero trapezoidal fuzzy
number if and only if a < 0 < d.

In table 2.3, we summarize the three types of N -zero triangular and trape-
zoidal fuzzy numbers:

N1-zero FN N2-zero FN N3-zero FN
Triangular

fuzzy number iff a < b < 0 < c iff a < 0 < c iff a < 0 < b < c

Trapezoidal
fuzzy number iff a < b ≤ c < 0 < d iff a << b < 0 < c < d iff a < 0 ≤ b ≤ c < d

Table 2.3: Types of N -zero fuzzy numbers.

The class of N-zero fuzzy numbers shares the same arithmetic expression for ex-
tended addition and subtraction as with nonnegative fuzzy numbers. However,
in the class of basic arithmetic functions, these numbers behave differently for
extended multiplication, division, and inverse.

2.4.7 Fuzzy Graphs
As we mentioned before, graph theory is an important tool to represent different
types of networks. Thus, solving problems defined on graphs has extensive appli-
cations in many real-world problems. However, due to the uncertainty or haziness
of the parameters of networks, it is becoming increasingly frequent not to repre-
sent these systems appropriately through a graph. This uncertainty motivated
to define the concept of fuzzy graph, where the union of graph and fuzzy set
concepts allowed to consider the uncertainty that is present in a problem defined
on a network. Thus, more realism is provided in applications of mathematics in
different areas of science and technology, obtaining greater precision and realism
in the results obtained. The applications of fuzzy graphs include networking,
communication, data mining, image segmentation, image capturing, clustering,
planning, scheduling, etc.
Although crisp and fuzzy graphs are structurally similar, the uncertainty on
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vertices and/or edges makes the fuzzy graphs particularly important. [Rosen-
feld 1975] first introduced the concept of fuzzy graphs, along with fuzzy analogs
of some basic concepts in graph theory like paths, cycles, trees, and connected-
ness, etc. Subsequently, many authors contributed to developing fuzzy graphs,
becoming this a vast research area. We refer the reader to [Li and Yi 2017] and
[Mordeson and Nair 2000], respectively, for a detailed exposition about different
concepts related to fuzzy graphs, together with theoretical and applied aspects
of fuzzy graphs.
From the general definition given by [Rosenfeld 1975], [Blue et al. 2002] proposes
a more extensive study about the classification of fuzzy graphs. In particular, in
[Blue et al. 2002] the authors presented a taxonomy of fuzzy graphs that treats
fuzziness in vertex existence, edge existence, edge connectivity, and edge weight.
Thus, the authors define five types of fuzziness possible in graphs, where each
can be effectively exemplified according to the problem’s nature at which it is
applied. For our purposes in this work, we only consider the type V fuzzy graph,
although we present in the following a brief description of each of them.

Type I: Fuzzy set of crisp graphs.
It consists of a fuzzy set G̃ of crisp graphs.

G̃ = {Gi, µGi}, i = 1, nG̃

This fuzziness is trivial and is not interesting unless the graphsGi have some
vertices or edges in common. Even in this case, the analysis is complicated
unless the commonality has a regular structure. The case of most interest
occurs when each of the crisp graphs has the same set of vertices, so the
presence and configuration of the edges are fuzzy for these graphs.

Type II: Crisp vertices set and fuzzy edge set.
The graph has known vertices but unknown edges. In this case, the vertices
set is crisp, and the edge set is fuzzy.

Type III: Crisp vertices and edges with fuzzy connectivity.
The graph has known vertices and edges but unknown edge connectivity.
The vertices and edges sets are crisp, but the edges have fuzzy heads and
tails.

Type IV: Fuzzy vertices set and crisp edges set.
The graph has unknown vertices but known edges. In this case, the vertices
set is fuzzy, and the edges set is crisp.

Type V: Crisp graph with fuzzy weights.
The graph has known vertices and edges but unknown weights on the edges.
In this case, only the weights are fuzzy. In particular, fuzzy numbers.

Definition 2.4.26. Type V fuzzy graph
The graph G̃ = (V,E,C) where,
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V : set of vertices
E : set of edges
C : set of fuzzy weights

is a type V fuzzy graph

This type of graph fuzziness is one of the more interesting and widely used.
Therefore, we will focus our interest in type V fuzzy graphs throughout our
work.

2.4.8 Elements of Fuzzy Logic and Fuzzy Inference
Linguistic Variable

In section 2.4.6, we gave a brief description and principal concepts about fuzzy
numbers. This particular case of fuzzy sets plays a fundamental role in formulat-
ing quantitative fuzzy variables, among others. These are variables whose states
are fuzzy numbers. Also, when the fuzzy numbers represent linguistic concepts,
such as very small, small, medium, etc., as interpreted in a particular context,
the resulting constructs are usually called linguistic variables.
A base variable is a variable in the classical sense, exemplified by any physi-
cal variable (e.g., temperature, speed, humidity, etc.) and any other numerical
variable (e.g., age, performance, salary, reliability, etc.). A linguistic variable is
defined in terms of a base variable.
Appropriate fuzzy numbers capture the linguistic terms representing approximate
values of a base variable in a linguistic variable relevant to a particular applica-
tion. Definition 2.4.27 gives a formal summary of the concept of a linguistic
variable.

Definition 2.4.27. Linguistic Variable
A linguistic variable is defined by the following quintuple,

Linguistic Variable = (x, T (x), X,G,m)

where:

x - the name of the variable

X - universal set which defines the characteristics of the variable.

T (x) - Set of linguistic terms of x that refer to a base variable whose values
range over a universal set X.

G - syntactic rule (a grammar), which produces terms in T (x)

m - a semantic rule that assigns to each linguistic term t ∈ T its “meaning”,
m(t), which is a fuzzy set on X (i.e., m : T → F(X))
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Example 2.4.8.1. Figure 2-8 shows an example of a linguistic variable called
Age. This variable expresses the age (which is the base variable in this example)
of an individual in a given context by five linguistic terms (very young, young,
adult young, middle age and old), as well as other linguistic terms (very very
young, very old, etc.) generated by a syntactic rule. The figure shows that each
linguistic term is assigned to one of the five fuzzy numbers by a semantic rule.
In this case, with the trapezoidal membership function, the fuzzy numbers are
defined in the interval [0, 100], which is the range of the base variable. Each of
them expresses a fuzzy restriction on this range.

Age

very young young adult young middle age old

10 18 30 35 40 45 60 65 100

1
Semantic

rule

Linguistic

variable

x (Base variable)

fuzzy

restrictions

Linguistic

terms (states)

Figure 2-8: An example of a linguistic variable.

Fuzzy Propositions and Fuzzy Rules

Propositions are sentences expressed in some language. Each sentence repre-
senting a proposition can be divided into a subject and a predicate. The main
difference between classical and fuzzy propositions lies in the range of their truth
values. In a classical proposition, the truth and falsity are expressed by values 1
and 0, respectively. On the other hand, in a fuzzy proposition, the truth’s degree
is represented by a number in the interval [0, 1]. In this way, we obtain what is
known as an unqualified and unconditional proposition defined in expression 2.29.

puu : x is Ã (2.29)

where x is a variable taking values in some universal set X, and Ã is a fuzzy set
representing a fuzzy predicate. Given a particular value of x (say, x0), this value
belongs to Ã with membership degree µÃ(x0). This membership degree is then
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interpreted as the degree of truth of proposition puu for each given particular
value x0 of variable x in proposition puu. Then, puu is a fuzzy set on [0, 1], which
assigns the membership degree µÃ(x0) to each value x0 of variable x.
An affirmation of type “x is Ã” is called simple since it only contains one propo-
sition, puu. However, the propositions can be interconnected, creating compound
affirmations. In logic, the connections are made by the following operators:

∧ for the connection AND,

∨ for the connection OR,

¬ for the connection NOT, and

→ for the implication connection (IF-THEN)

Given the simple propositions “x is Ã”, “y is B̃” and “z is C̃”. Connecting these
proposition using the operators ∧ and → we obtain the compound propositions
2.30 and 2.31,

if x is Ã then y is B̃ (2.30)
or
if x is Ã and y is B̃ then z is C̃ (2.31)

where Ã, B̃, and C̃ are linguistic values defined by fuzzy sets on the universes of
discourse X, Y , and C, respectively, and x, y, and z are variables in X, Y , and
Z, respectively.
The equation 2.30 shows a fuzzy if-then rule in its simple form, and the equa-
tion 2.31 shows a fuzzy if-then rule in its compound form. The if-part is called
antecedent or premise, and the then-part is called the consequence or conclusion.

Fuzzy Modus Ponens

In propositional logic, there are many schemes of reasoning called tautologies.
A widely used scheme is the so-called Modus Ponens and establishes that if an
implication and its premise are true, then it can be inferred that the conclusion
is also true.
In classical propositional logic, reasoning deals with always entirely true propo-
sitions (assigning the numerical value 1) or entirely false (assigning the value
0). This form of inference is very efficient from the mathematical point of view.
However, it rarely properly works when translated into the human language since
most propositions in ordinary human reasoning cannot be considered entirely true
or entirely false. Therefore, classical logic has problems with representing and
inferring imprecise knowledge. On the other hand, the classical implication using
fuzzy sets to represent vague knowledge does not satisfactorily solve the reasoning
process.
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It is appropriate to consider the classical implication process as a particular case
of the fuzzy implication process. Therefore, the inference models used in classical
logic can be extended to the fuzzy case. In particular, we define the Fuzzy Modus
Ponens as shown in the definition 2.4.28,
Definition 2.4.28. Fuzzy Modus Ponens (FMP)
Let us assume, without loss of generality, a fuzzy if-then rule in the form 2.30
and a fact in the form,

x is Ã
Then we can infer and obtain the new result,

y is B̃

Thus, the Fuzzy Modus Ponens reasoning is defined in expression 2.32,
Fact: x is Ã
Rule: if x is Ã then y is B̃
result: y is B̃

(2.32)

Mamdani Fuzzy Implication

In a fuzzy rule, the entry to the implication process is a number resulting from
evaluating the antecedent of the rule. On the other hand, the output is a fuzzy
set that constitutes the inference provided by the rule.
There is no loss of generality in assuming a fuzzy if-then rule in its simple form
(equation 2.30). To represent the membership function of the fuzzy set resulting
from the implication, µÃ→B̃(x, y), several methods based on the interpretations
of the Cartesian product and various T -norms and T -conorms can be formulated.

One of the most known is the Mamdani Fuzzy Implication (MFI). The MFI in-
terprets the fuzzy implication as the minimum operation. The fuzzy implication
function, proposed by Mamdani [[Lee 2005]], determine µR̃ according to equa-
tion 2.33,

µÃ→B̃(x, y) = µÃ(x) ∧ µB̃(y)
= min[µÃ(x), µB̃(y)]

(2.33)

In the inference model Modus Ponens, the “min” operator expresses that the
certainty value of the consequent cannot be higher than that of the antecedent.
Thus, given a fuzzy rule with form as in expression 2.32, the MFI truncates the
superior part of the membership function of the consequent with the larger cer-
tainty value. For example, figure 2-9 shows the Mamdani implication in a specific
rule with one fuzzy set as consequent represented by the membership function
µB̃(y). The resultant fuzzy set of the inference, µÃ→B̃(x, y), is the highlighted
area.

The decision about which operator to use depends on the specific problem
being addressed. Therefore, it is always convenient to run tests before applying
the implication operator.
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µ(y)

0 y

µB̃(y)
1

u0
µÃ→B̃(x, y)

Figure 2-9: Example of Mamdani operator

Results of inference in one rule with two inputs

Once we determine the implication method of our interest, we will describe the
result of inference in an FMP consisting of a single fuzzy if-then rule in the form
2.31 with two inputs and one output.
Given the fuzzy sets Ã, B̃, and C̃ with universes of discourse X, Y and, Z,
respectively. The FMP is defined by schema 2.34,

Fact: x is Ã and y is B̃
Rule: if x is Ã and y is B̃ then z is C̃
consequence: z is C̃

(2.34)

The antecedent of the rule 2.34 is composed through the AND connector by two
simple propositions. Thus, the membership degrees of each antecedent are related
by the “min" operator described in equation 2.11. This operation provides a
numerical value that defines the grade of truth (matching degree), α, which varies
according to the operator used and the values that the input variables take. The
matching degree of the sets Ã and B̃ for the values x0 and y0, respectively, is
defined in equation 2.35,

α(x0, y0) = min{µÃ(x0), µB̃(y0)} (2.35)

The inference result is then determined by the application of the MFI, i.e.,

µC̃′(z) = µ(Ã∩B̃)→C̃(z) = min{α(x0, y0), µC̃(z)} (2.36)

where α(x0, y0) is the matching degree defined in equation 2.35.
Figure 2-10 shows an example of the inference result for a fuzzy rule in the form
2.31

Rule Base

A knowledge system is often represented by a fuzzy rule base consisting of fuzzy if-
then rules. We will consider a rule base with two inputs and a single output, and
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•µÃ(x0)

x0

•
α(x0, y0)

y00 0x z

ÃµÃ µB̃ µC̃

0 y

•µB̃(y0)

B̃ C̃

C̃ ′

(Ã and B̃) → C̃

Figure 2-10: Result of inference in one rule with two inputs and a single output.

where the rules are compound by the AND connector. In the inference scheme,
the rule base will be based on the FMP. Expression 2.37 summarizes a fuzzy
system with the rule base previously described,

Fact : x is Ã and y is B̃
Rule 1 : if x is Ã1 and y is B̃1 then z is C̃1
Rule 2 : if x is Ã2 and y is B̃2 then z is C̃2

. . .

. . .
Rule n : if x is Ãn and y is B̃n then z is C̃n

consequence : z is C̃

(2.37)

where x, y, and z represent linguistic variables. For all i ∈ N, the fuzzy sets
Ãi ∈ F(X), B̃i ∈ F(Y ) and C̃i ∈ F(Z) are linguistic terms of x, y, and z in the
universes of discourse X, Y and Z, respectively.

Result of inference with two inputs/single output Rule Base)

We can now determine the result of inference in the fuzzy system 2.37. For
convenience, we ignore the connectives “also” and “else” between the rules since
they are not part of our approaches in this work.
After the implication process, each rule will produce a fuzzy set as output. These
sets are combined so that the fuzzy system provides an output resulting from
the global inference process. We aim to define the overall result of inference.
Thus, we treat the rules in 2.37 in either of two different ways, disjunctive and
conjunctive. The interpretation of the rules depends on their intended use and
how we obtain each rule i (i = 1, n). We address our attention to disjunctive
rules.

Rules treated as disjunctive: We obtain a conclusion for a given fact(s) whenever
the grade of truth is positive for at least one rule.
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Given this interpretation for the rules, we use one of the most popular combi-
nation methods: the maximum value that results from composing the fuzzy sets
output of each rule.

C̃ ′ =
n⋃
i=1

C̃ ′i (2.38)

µC̃′ = max
i∈[1,n]

{µC̃′i}

To gain clarity, we give an example of a fuzzy system with two rules where we
find the overall result after applying the inference process.

Example 2.4.8.2. Given the input variables x and y taking values in the uni-
verses of discourse X and Y , respectively. Also, consider the fuzzy sets Ã1 and
Ã2 defined on X, and B̃1 and B̃2 defined on Y corresponding to the variables x
and y, respectively (figures 2-11(a)-2-11(b)).

1 5 9

0.25

0.5

0.75

1

x

µÃ(x)
Ã1 Ã2

(a) Fuzzy sets Ã1 and Ã2

2 3 4

0.5

1

y

µB̃(y)
B̃1 B̃2

(b) Fuzzy sets B̃1 and B̃2

Figure 2-11: Fuzzy sets corresponding to input variables.

The output variable z takes values in the universe of discourse Z, i. e. its corre-
sponding fuzzy sets C̃1 and C̃2 are defined on Z, figure 2-12.

The rule base is defined in expression 2.39

Rule 1 : if x is Ã1 and y is B̃2 then z is C̃1

Rule 2 : if x is Ã2 and y is B̃1 then z is C̃2 (2.39)

Let us take x = 2 and y = 3.5. The antecedent of each rule in the rule base
is compound. Therefore, we will compute the matching degree α(2, 3.5) for each
rule according to equation 2.35. Table 2.4 summarizes the values of the matching
degrees (grade of truth) for each rule.
We can now apply the implication process (MFI operator) to each rule. The
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µC̃(z)
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Figure 2-12: Fuzzy sets corresponding to output variable.

Rule µÃi µB̃j α(2,3.5)

1 0.75 0.5 0.5

2 0.25 0.5 0.25

Table 2.4: Matching degrees for each rule

inference result for each rule is described in equation 2.40

µC̃1′ (z) = µ(Ã1∩B̃2)→C̃1(z) = min{0.5, µC̃1(z)}
µC̃2′ (z) = µ(Ã2∩B̃1)→C̃2(z) = min{0.25, µC̃2(z)} (2.40)

Finally, once the output fuzzy sets C̃1′ and C̃2′ are obtained from each rule, these
are combined according to expression 2.38 to determine the overall inference result
C̃ ′. Figure 2-13 shows the methods of implication and combination in the rule
given the values of the input variables.

In chapter 3, we propose a complete fuzzy inference process in a fuzzy system
applied to a specific problem in a P2P network. We will describe the different
steps that are part of this fuzzy reasoning in detail.
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Figure 2-13: Methods of implication and combination in the fuzzy system.
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2.5 Conclusions
In this chapter we provided the concepts that will be necessary to understand
the technical terms and approaches referred in chapters 3 to 5. In particular, we
showed the essential concepts of the three central areas we address in the thesis
work:

1. Topology and functioning of communication networks, where we presented
concepts like Protocol and Traffic.

2. Elements of Graph Theory, where we provided the basic definitions neces-
sary for the modeling of a communication network, to later declare problems
defined on this.

3. Elements of Fuzzy Logic, where we focuss our attention on Fuzzy Inference
System and arithmetic properties of fuzzy numbers.

We exposed each theoretical concept concisely. In this way, the chapter serves as a
reference when it is necessary for the reader to remember or verify the theoretical
foundations of some result.
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CHAPTER 3
FUZZY INFERENCE ALGORITHM APPLIED TO P2P

NETWORK

- L. Valdés, A. Ariza, S. M. Allende, R. Parada, G. Joya; “Study of alternative
strategies to the selection of peer in P2P wireless mesh networks”; In: Advances in
Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science. Springer
Berlin Heidelberg; Vol. 7902; pp. 124–132; (2013);
DOI: 10.1007/978-3-642-38679-4_11.

- L. Valdés, S. Montesinos, A. Ariza, S. M. Allende, G. Joya; “Peer selection in
P2P wireless mesh networks: comparison of different strategies”; In: Soft Computing,
Springer-Verlag Berlin Heidelberg; Vol. 19; pp. 2447–2455; (2015);
DOI: 10.1007/s00500-014-1572-6.

In this chapter, we study the use of various strategies for selecting the server node
in Peer to Peer networks, which are especially oriented networks with limited
resources such as wireless mesh networks based on WiFi technology. We exam-
ine three different strategies: Random, the currently most used one, in which
the server node is randomly chosen, Min-Hop, that selects the path with the least
number of hops, and Purely Fuzzy, where the selection is made from a fuzzy infer-
ence process using the number of hops and the ETX cost (Expected Transmission
Count) as fuzzy inputs. We analyze two different transmission scenarios: with-
out obstacles and with obstacles between nodes. Results show that the currently
more extended random strategy is the least efficient in most of cases, Min-Hop
and Purely Fuzzy have a very similar behavior in networks without obstacles, and
Purely Fuzzy is clearly more efficient in networks with obstacles. The study of
performance was carried out using a wireless network simulation tool for discrete
event simulation OMNeT++.

3.1 Introduction
The peers in a P2P network are relatively autonomous and can join or leave the
system at any time. As a result, they have been successfully used for sharing
computation, internet services, or data. A P2P system can usually scale up to
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many peers due to distributing data storage, processing data, or the presence of
bandwidth across autonomous peers.
Applications P2P are responsible for a significant percentage of total traffic gen-
erated on the Internet in recent years. Such applications were initially designed
to share information among multiple users, and in them, there is no clear distinc-
tion between client and server nodes. Instead, each node can act as both client
and server (peer network) [Buford et al. 2008].
P2P networks are highly efficient in information sharing, allowing quick dissem-
ination of information avoiding bottlenecks created on dedicated servers. The
network achieves its efficiency at first dividing data into segments. Then, these
segments are distributed in the network to maximize the number of nodes acting
as servers of that information. Figure 3-1 shows the evolution of the data distri-
bution in a P2P network in three-time instants. Initially, only node A has the
four segments that constitute the data, and this node serves a different segment
for each of the nodes that request. In stage 2, node A sends segments 3 and 4 to
nodes B and C, respectively, as long as they exchange segments 1 and 2. Finally,
nodes B and C exchange segments 3 and 4; thus, all nodes obtain all segments.
In this process, node A has sent every segment only once. In [Kang 2011] and
[Luo 2012], we can find two interesting surveys about P2P networks.
One limitation in Internet P2P networks is that most nodes do not use a per-
manent IP address. Depending on how this problem is solved, a classification of
P2P networks is established:

Centralized: All transactions are carried out based on a central server that stores
and distributes information about the contents of the nodes.

Hybrid: A central server manages some resources, but nodes are responsible for
maintaining the data.

Completely decentralized: There is no central server.

Selecting the server node in each information segment exchanging is an essential
question in wireless networks where bandwidth resources are minimal and shared
among all users since it can waste resources. This issue is especially critical in
multihop wireless networks because if a distant server node is serving a client,
the information must cross a large number of nodes, increasing the probability
of interfering with the transmissions of other nodes. Equation 3.1 shows the
probability BP of occurrence of an error in the information transmission in a
path P .

BP = 1−
∏
∀i∈P

(1−Bi) (3.1)

where i is the i-th hop in path P and Bi is the probability of error in the i-th
hop. Increasing the size of the route increases the chance of losing information.
Furthermore, each error Bi increases the total traffic in the network because the
link layer will retransmit the lost package several times until the package arrives
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Figure 3-1: An illustrative example of the evolution of data distribution in a P2P
network.

successfully or is considered lost. With this in mind, we conclude that in wireless
networks, the choice of server node must reply to criteria that minimize the
probability of error in the information provided, avoiding the need to retransmit
damaged packages.

3.2 Strategies for selecting the server node
When all nodes are equal, the most used strategy is based on a random selection
of the server node among those with the required information. This strategy can
be efficient in some situations because it never uses one node as a server all the
time, but it distributes the load between all the nodes randomly. However, this
strategy is not always efficient because it does not consider any network factors,
such as the length of every path, the load of every link, or the available band-
width.
Some other well-known criteria are used for server selection. The Min-Hop strat-
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egy uses the number of hops as a metric. This strategy is very efficient in ho-
mogeneous networks, where the cost of every hop can be considered the same.
However, it does not consider possible overload in some nodes, so it is not always
efficient in networks that are not homogeneous, such as those with obstacles.
The Expected Transmission Count (ETX) [[Couto 2004]] is an easily imple-
mentable metric that measures the guarantee to deliver a package in one link
successfully. Indeed, using this dynamic metric can introduce instabilities in the
network, so it is recommended to apply it with caution. These instabilities are
due to the modifications in the routing tables. When a link is overloaded, the
routing protocol modifies the paths excluding this link, which quickly becomes
unused. Thus, other links previously not overloaded will become overloaded. Fur-
thermore, due to this behavior, the traffic continuously balances between different
sections on the network, reducing the throughput.
We think that a fuzzy logic-based solution for the problem of selecting the server
node could be appropriate. Using fuzzy logic to solve this problem acts as a
compromise between different factors whose effect could be evaluated into a con-
tinuous [0, 1] interval when used in the inference system. Also, a fuzzy solution
will be less vulnerable to changes in the network.
In our study, the factors are the quality of the links and the length of the path.
Short paths are interesting because they save resources used by other traffic.
However, at the same time, it is necessary that the path can offer a high prob-
ability of success in the transmission of the information in order to avoid future
retransmissions. In summary, we aim to balance link quality and the length of
paths.

3.3 Related Works
Some studies using fuzzy logic to select the server node have also been developed.
In [[Arom-oon and Keeratiwintakorn 2007]], the authors present a fuzzy system
that takes the number of hops and the available energy in every node as inputs.
The system goes after selecting the path with the most energy capacity to extend
the time of life of the node, allowing fewer disconnections of the nodes. This as-
pect is good to consider, especially in ad-hoc sensor networks. However, it does
not provide an interesting solution to networks using WIFI [IEEE 2012] because
the consumption of their nodes is similar in both waiting and transmission states.
In [Li et al. 2009b], [Li et al. 2009a], authors use Fuzzy Cognitive Maps (FCM) as
the method of selection and analyze the following factors: level of energy in each
node, number of hops, SINR (Signal to Interference and Noisy Ratio), time of
connection, movement speed and security. The targets of these implementations
are reducing the transference time, [Li et al. 2009b], and recovering the path when
a node fails, [Li et al. 2009a]. The nodes do not present high mobility in current
wireless mesh networks, so movement speed is not critical. In addition, SINR can
change rapidly, so its use may produce some instabilities. In [Umezaki et al. 2012],
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authors propose a fuzzy system to select the server node depending on its degree
of trustworthiness for file sharing; it uses two fuzzy controllers: the first one uses
as inputs the number of jobs, the number of connections, and the connection
lifetime, whose output is the Actual Behavioral Criterion; the second controller
takes as inputs the Actual Behavioral Criterion and the Reputation of the node,
obtaining as output the Peer Reliability. This solution is especially interesting
when considering Wide Area Networks (WAN), where we can not control the
connected peers. However, in Local Area Networks (LAN), where control over
nodes is possible, it can be more interesting to prioritize other criteria that im-
prove the throughput. Moreover, the time required to get the information is the
most crucial parameter in a P2P network from a user perspective. Nevertheless,
the majority of the previous strategies do not consider this aspect.

3.4 Proposed strategy: Fuzzy Inference based
solution

We propose a fuzzy inference-based system to solve the problem of selecting the
server node in Local Area wireless mesh networks. In general, a fuzzy system
is any system whose at least some of its variables range over states that are
fuzzy sets. For each variable, the fuzzy sets are defined on the real line for
our application. Thus, the fuzzy sets are fuzzy numbers, and the associated
variables are linguistic variables (section 2.4.8). We use the fuzzy control, the
most successful application area of fuzzy systems.
A Fuzzy Logic Controller (FLC) is a special expert system. Expert systems are
computer-based systems that emulate the reasoning process of a human expert
within a specific domain of knowledge. They can be designed for various specific
activities, such as diagnosis, design, and planning. The core of any expert system
consists of

• a knowledge base, which contains general knowledge of the problem domain.
In the fuzzy expert system, the knowledge is usually represented by a set of
relevant fuzzy inferences rules connecting antecedents with consequences.
We use the if-then rules which are the most commonly used,

• a database whose purpose is to store data for each specific task of the expert
system. The data may be obtained through a dialog between the expert
system and the user. In addition, the inference of the expert system may
obtain other data,

• and an inference engine that operates on a serie of production rules and
makes fuzzy inferences.

Fuzzy controllers vary substantially according to the nature of the control prob-
lems they are supposed to solve. The main difference between fuzzy with classical
controllers lies in the capacity of the first for using knowledge elicited from human
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operators. This knowledge is crucial in control problems for which it is extremely
challenging to build precise mathematical models or for which the acquired mod-
els are difficult or expensive to use.
Our proposed fuzzy system is an improved version of the so-called Purely Fuzzy
system developed in [Valdés et al. 2013]. We compare the performance of our
system respect to other ones using the most extended criteria: random selection
and min-hop selection.

3.4.1 Description of the fuzzy strategy for server node
selection in a P2P network

As we previously explained, a fuzzy Inference System (FIS) is an intelligent sys-
tem that uses fuzzy set theory to map inputs to outputs according to a set of
inference rules described by experts. The configuration of an FLC consists of
four components:

• Fuzzification interface

• Knowledge base (fuzzy rule base)

• Decision-making logic (fuzzy inference engine)

• Defuzzification interface

Figure 3-2 shows a schema with the interconnections among the four modules
and the controlled process.

Controlled
Process

Defuzzification
module

Fuzzification
module

Fuzzy
inference
engine

Fuzzy
rule
base

Conditions

Fuzzy ControllerActions

Figure 3-2: General scheme of a Fuzzy Controller.

Our FLC operates by repeating a cycle of five steps: First, the crisp measurements
of the input variables are taken. The input and output variables are converted
into appropriate fuzzy sets to express the uncertainty measurements through the
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fuzzification process. Then, the knowledge of our fuzzy system is formulated by
the creation of fuzzy inference rules. The inference engine then uses the fuzzy
measurements to evaluate the control rules stored in the fuzzy rule base. The
result of this evaluation is also a fuzzy set defined on the universe of possible
actions. In the final step of the cycle (defuzzification), this fuzzy set is converted
into a single crisp value that is, in some sense, the best representative of the fuzzy
set.
In the following, we will describe our proposal of fuzzy system for the server node
selection in a P2P network.

Step 1: Fuzzification of input and output variables

The fuzzy system is designed to control a particular process. Therefore, we need
to determine the state variables that become input variables and the control
variables that become output variables. In every path, we take as inputs (state)
variables,

• Number of hops (NHops)

• ETX metric (ETX)

and as a single output (control) variable,

• Goodness index of the server-client path (GPath)

We perform the fuzzification once the numerical values of input variables (NHops0
and ETX0) are entered. This process transforms the range of values of the in-
put variables into the corresponding universe of discourse and selects meaningful
linguistic states for each variable to express them by appropriate fuzzy numbers.
Table 3.1 describes the ranges and linguistic terms for the inputs and output
variables in our fuzzy system.

Input Variables Output variable

Ranges NHops: [0, 13]
ETX: [0, 4] GPath: [0, 1]

Linguistic
terms

NHops: Low, Middle-Low,
Middle-High, High

ETX: Low, Middle-Low,
Middle-High, High

GPath: Low, Middle-Low,
Middle, Middle-High,
High

Table 3.1: Ranges and linguistic terms determined for the input and output variables
in our fuzzy system.
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We represent the linguistic terms by triangular and trapezoidal fuzzy numbers
equally spread over each range. Notice that, depending on specific applications,
other shapes of the membership functions might be preferable to triangular or
trapezoidal. Also, these shapes do not need to be symmetric nor equally spread
over the given ranges. Nevertheless, we choose triangular and trapezoidal shaped
membership functions as preliminary candidates due to their reasonable, intuitive
definitions.
We can now state the input and output variable as linguistic variables (sec-
tion 2.4.8):
Input variables:

{NHops, T (NHops), XNHops, GNHops,m}
where: NHops = Number of hops in the shortest “server-client” path

for a given server.
T (NHops) = {NHLow, NHMiddel1, NHMiddle2, NHHigh}
XNHops = [0, 14]
mETX = {µNHLow, µNHMiddle1, µNHMiddle2, µNHHigh}

{ETX, T (ETX), XETX, GETX,m}
where: ETX = ETX metric

T (ETX) = {ETXLow,ETXMiddle1,ETXMiddle2,ETXHigh}
XETX = [1, 4]
mETX = {µETXLow, µETXMiddle1, µETXMiddle2, µETXHigh}

The semantic functions, elements of m(t), for NHops and ETX values are de-
scribed in equation 3.2 and equation3.3, respectively.
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µNHLow(x) =


1, 0 ≤ x < 1

−0.25x+ 1.25, 1 ≤ x < 5
0, x ≥ 5

µNHMiddle1(x) =



0, 0 ≤ x < 1
0.25x− 0.25, 1 ≤ x < 5
−0.25x+ 2.25, 5 ≤ x < 9

0, x ≥ 9

µNHMiddle2(x) =



0, 0 ≤ x < 5
0.25x− 1.25, 5 ≤ x < 9
−0.25x+ 3.25, 9 ≤ x < 13

0, x ≥ 13

µNHHigh(x) =


0, 0 ≤ x < 9

0.25x− 2.25, 9 ≤ x < 13
1, x ≥ 13

(3.2)

µETXLow(x) =


1, 0 ≤ x < 1

−x+ 2, 1 ≤ x < 2
0, x ≥ 2

µETXMiddle1(x) =



0, 0 ≤ x < 1
x− 1, 1 ≤ x < 2
−x+ 3, 2 ≤ x < 3

0, x ≥ 3

µETXMiddle2(x) =



0, 0 ≤ x < 2
x− 2, 2 ≤ x < 3
−x+ 4, 3 ≤ x < 4

0, x ≥ 4

µETXHigh(x) =


0, 0 ≤ x < 3

x− 3, 3 ≤ x < 4
1, x ≥ 4

(3.3)

Figures 3-3 and 3-4 show the membership functions corresponding to input
variables.
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NHLow NHMiddle1 NHMiddle2 NHHigh

Input variable “NHops”
1 5 9 13

0.5

1

Figure 3-3: Fuzzy numbers corresponding to each linguistic term in T (NHops).

ETXLow

ETXM
iddle1

ETXM
iddle2 ETXHigh

Input variable “ETX”
1 2 3 4 16 x

0.5

1

Figure 3-4: Fuzzy numbers corresponding to each linguistic term in T (ETX).

Output Variable:

{GPath, T (GPath), XGPath, GGPath,m}
where: GPath = Goodness index of server-client path

T (GPath) = {GPLow,GPMiddleL,GPMiddle,GPMiddleH,GPHigh}
UGPath = [0, 1]
mETX = {µGPLow, µGPMiddleL, µGPMiddle, µGPMiddleH, µGPHigh}
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We describe the semantic functions for the output variable in equation 3.4,

µGPLow(x) =


1, 0 ≤ x < 0.2

−10x+ 3, 0.2 ≤ x < 0.3
0, 0.3 ≤ x

µGPMiddleL(x) =



0, 0 ≤ x < 0.2
10x− 2, 0.2 ≤ x < 0.3
−10x+ 4, 0.3 ≤ x < 0.4

0, 0.4 ≤ x

µGPMiddle(x) =



0, 0 ≤ x < 0.3
10x− 3, 0.3 ≤ x < 0.4

1, 0.4 ≤ x < 0.6
−10x+ 7, 0.6 ≤ x < 0.7

0, 0.7 ≤ x

µGPMiddleH(x) =



0, 0 ≤ x < 0.6
10x− 6, 0.6 ≤ x < 0.7
−10x+ 8, 0.7 ≤ x < 0.8

0, 0.8 ≤ x

µGPHigh(x) =


0, 0 ≤ x < 0.7

10x− 7, 0.7 ≤ x < 0.8
1, 0.8 ≤ x

(3.4)

Figure 3-5 shows the membership function of the output variable,

GPLow GPMiddleL GPMiddle GPMiddleH GPHigh

Output variable “Goodness index of the server-client path”
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

Figure 3-5: Fuzzy numbers corresponding to each linguistic term in T (GPath).
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Step 2: Formulation of fuzzy inference rules

With the fuzzy inference rules we formulate the knowledge of the problem. Suit-
able learning methods can determine the inference rules from experienced human
operators or empirical data.
The rule base of the two-inputs/single-output system (TISO) that we use con-
tains I fuzzy if-then rules whose antecedent is compound by the connector “AND”
(equation 2.31), i.e.,

RTISOi : ifx is Ã and y is B̃, then z is C̃ (3.5)

where i = 1, I, and Ã, B̃ and C̃ are fuzzy sets that represent the linguistic terms
NHLow, NHMiddel1, NHMiddle2, NHHigh; ETXLow, ETXMiddle1, ETXMid-
dle2 and ETXHigh, and GPLow, GPMiddleL, GPMiddle, GPMiddleH, GPHigh,
respectively.
We use state evaluation fuzzy control rules, where the state variables are in the
antecedent part of each rule, and the control variable is in the consequent part.
In linguistic terms, we interpret each rule as: if performance index x is Ãi and
index y is B̃i when a control command zi is C̃i, then this rule is selected, and the
control command C̃i is the controller’s output.
The number of linguistic terms in the input space determines the maximum num-
ber of fuzzy control rules. Since each input variable has four linguistic terms, the
total number of possible nonconflicting fuzzy inference rules is 42 = 16. We
use expert experience and control engineering knowledge (operating manual and
questionnaire) to obtain the rules. We represent the rules conveniently in a ma-
trix form in table 3.2.

NHops

GPath NHLow NHMiddle1 NHMiddle2 NHHigh

ETXLow GPMiddle-High

ETXMiddle1
GPHigh

GPMiddle
GPMiddle-Low

ETXMiddle2 GPMiddle-High GPMiddle-Low
ETX

ETXHigh
GPLow

Table 3.2: Fuzzy rule base in our system.

We also write the fuzzy rules in the if-then form,

1. If (NHops is Low) AND (ETX is Low) THEN (GPath is High)

2. If (NHops is Low) AND (ETX is Middle1) THEN (GPath is High)

3. If (NHops is Low) AND (ETX is Middle2) THEN (GPath is MiddleHigh)
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4. If (NHops is Low) AND (ETX is High) THEN (GPath is Low)

5. If (NHops is Middle1) AND (ETX is Low) THEN (GPath is MiddleHigh)

6. If (NHops is Middle1) AND (ETX is Middle1) THEN (GPath is Middle)

7. If (NHops is Middle1) AND (ETX is Middle2) THEN (GPath is MiddleLow)

8. If (NHops is Middle1) AND (ETX is High) THEN (GPath is Low)

9. If (NHops is Middle2) AND ETX is (Low) THEN (GPath is MiddleLow)

10. If (NHops is Middle2) AND (ETX is Middle1) THEN (GPath is MiddleLow)

11. If (NHops is Middle2) AND (ETX is Middle2) THEN (GPath is (Low)

12. If (NHops is Middle2) AND (ETX is High) THEN (GPath is Low)

13. If (NHops is High) AND (ETX is Low) THEN (GPath is Low)

14. If (NHops is High) AND (ETX is Middle1) THEN (GPath is Low)

15. If (NHops is High) AND (ETX is Middle2) THEN (GPath is Low)

16. If (NHops is High) AND (ETX is High) THEN (GPath is Low)

The matrix representation of rules 3.2 and the definitions of the linguistic terms
shown in figures 3-3, 3-4, and 3-5 form the fuzzy rule base of our fuzzy controller.
The connector “AND” composes the compound antecedent of each rule. There-
fore, at first, the domain change is made in each antecedent’s part separately,
and then both parts are related by the operator MIN. Then, the grade of truth
(matching degree) for each rule is calculated according to equation 2.35. The
matching degree for each rule Ri, with i = 1, 16, is calculated according to equa-
tion 3.6,

αi(NHops0,ETX0) = min {µÃ(NHops0), µB̃(ETX0)} (3.6)
At this point, our system is ready to perform the inference engine.

Step 3: Inference Engine

Implication: The purpose of the inference engine is to combine the numerical
values of the input variables of our fuzzy inference system (NHops0, ETX0)
with the fuzzy rules to make inferences regarding the output variable.
Once the compound antecedent of each rule Ri has provided its match-
ing degree αi, we apply the implication process. This method works on
the output fuzzy set, depending on the matching degree given by the an-
tecedent, to generate the result of each rule. In our case, we use the Mam-
dani method (truncating the output fuzzy set), whose formula corresponds
to equation 2.36. Thus, when applying the Mamdani method to each rule
Ri of our fuzzy system, we obtain the expression 3.7.

µC̃′i(GPath) = µ[(Ã∩B̃)→C̃]i(GPath) = min {αi(NHops0,ETX0), µC̃(GPath)}
(3.7)
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Combination: Once each rule Ri provides its output, this method combines the
rules to produce the total inference of the rule base, that is, to make a
decision. Let µC̃′i be the set of all the output functions created in the
Implication process of each rule. Since we interpret each rule as disjunctive
(we obtain a conclusion whenever the grade of truth is positive for at least
one rule), we use the maximum value resultant of composing the output
functions of each rule described in equation 3.8,

µC̃′ = max
i∈[1,16]

{
µC̃′i

}
(3.8)

Step 4: Defuzzification

The defuzzification is the last step of the design process. This process aims to
convert the output obtained by the inference engine, which is expressed in terms
of a fuzzy set, to a single real number. This numerical value is not arbitrary but
must, in some sense, summarize the elastic constraint imposed on possible values
of the output variable by the fuzzy set. There are three commonly used defuzzi-
fication methods proposed in the literature: Center of Area method (CoA), also
known as Centroid Method or Center of Gravity, Center of Maximum method
(CoM), and Mean of Maximum method (MoM).
Our analysis applies the CoA, the most frequently used in the simple fuzzy con-
troller. This method calculated z0, defined as the value within the range of the
variable GPath for which the area under the graph of membership function µC̃′
is divided into two equal subareas (center of gravity of µC̃′). In our case, z0 is
generated by the formula 3.9,

z0 =

1w

0

zµC̃′(z)dz

1w

0

µC̃′(z)dz
(3.9)

3.5 Experimental Environment
Using the framework inetmanet-2.2 [Ariza 2014], we simulate the strategies: ran-
dom selection of server node (Random), minimum number of hops between server
and client nodes (Min-Hop), and our fuzzy inference based system (Purely fuzzy).
We also simulate IP networks on OMNET++1 [Varga 2014]. Also, we developed
two dierent environments to compare the performance of the three strategies un-
der analysis: a network without obstacles between nodes and another one with
obstacles.
We start with a fixed number of server nodes containing all the information,

1OMNeT++ is an extensible, modular, component-based C++ simulation library and frame-
work, primarily for building network simulators.
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which provides a series of datum segments with a predetermined size, which has
to be distributed to all network nodes. Our simulations end when all nodes have
all segments. These segments may be further divided into smaller units to be in-
troduced into IP packets without fragmentation. To simplify the implementation
(without loss of generality), we assume that all nodes know the network’s status
at every moment and the information available in other nodes. This assumption
is reasonably viable in a small LAN.
When a client node has to choose among several server nodes, the analysis of
each one is carried out on the path with the minimum number of hops for each
server-client pair since this criterion forces stable routes throughout the time.
Thus, this factor has been explicitly forced to prevent the dynamic selection of
paths that influence our study.
We use a wireless network based on the wireless mesh extension present in the
IEEE 802.11-20122, where the routing and forwarding mechanisms are imple-
mented at link level [IEEE 2012]. Table 3.3 shows the simulation conditions.

The environment we use in both experiments consists of a regular 8x8 (64
nodes) squared network, in which we implemented the strategies for the server
node selection.

3.6 Simulation and results

3.6.1 Information distribution in a regular network with-
out obstacles

In this experiment, we consider a network without obstacles. We performed
three different simulations in which a different number of nodes (one node in the
first simulation, two nodes in the second one, and three nodes in the third one),
randomly selected, have all the information segments. Each client node starts
making requests in an instant of time randomly set. The simulation ends when
all the nodes get all the information segments. Each simulation is repeated ten
times with different seeds to select the initial server nodes.
In order to study the performance of the different strategies for server selection,
we analyzed three parameters in each simulation:

• the download time that every node spends to get all the segments of the
information (average and maximum),

• the number of bytes that are sent in the application-level by node (average
and maximum),

2IEEE 802.11 is used in most home and office networks to allow laptops, printers, smart-
phones, and other devices to communicate with each other and access the Internet without
connecting wires.
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Simulation area 1000 × 1000 m2

Nodes in the backbone network 64

Maximum transmission distance 130m

Propagation model Two ray
Separation between nodes in the
backbone network

80m

Simulation period Simulation end when all nodes have the
complete information

Interference model Additive

WIFI model 802.11g

Bit rate 54Mbit/s

Number of segments to be transmitted 10

Size of the segments 100000B

Maximum packet size 1000B
Number of repetitions with different
seeds

10

Confidence interval 95%

Routing protocol OLSR ([Clausen and Jacquet 2003])

Table 3.3: Simulation conditions.

• and the number of bytes sent by a node at the network level (average and
maximum).

Since the download time is a measure of the service quality perceived by the users,
we consider it the most important parameter. Furthermore, the number of bytes
sent by a server node at the application level measures the size of downloaded
data. Thus, it can give information about the punctual overload in some nodes.
Finally, the number of bytes sent by a node at the network-level is a measure of
the real total load traffic in the network, so it is an essential parameter for the
scalability of the network.
The results obtained from the different situations are very similar in value and
distribution. Therefore, we finally show the average of each. Table 3.4 and figure
3-6 show the numerical and graphical results of the download time, respectively.

According to these results we can realize that both the average time and the
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Random Min-hop Fuzzy
Avg. Download Time (in secs) 212.6 145.05 145.03
Confidence Interval ± 2.49 ± 3.05 ±3.01

Max. Download Time (in secs) 315.86 283.56 283.33
Confidence Interval ±10.06 ±9.91 ±9.98

Table 3.4: Download time in every node (in seconds) to get all the information seg-
ments.

Figure 3-6: Download time in every node (in seconds) to get all the information
segments.

maximal time required for nodes to get the information is clearly larger for the
Random strategy, whereas Min-Hop and Purely Fuzzy strategies do not present
relevant differences.
Table 3.5 and Figure 3-7 show the numerical and graphical results for the sent
bytes at the application level.

Random Min-hop Fuzzy
Sent Bytes (average) 1203768 1000860 1001271
Confidence Interval ± 18191 ± 1442 ±1446

Sent bytes (Maximum) 3873609 4926555 4808877
Confidence Interval ±321168 ±443056 ±516119

Table 3.5: Number of bytes sent by a node at the application-level.

We observe that the Random strategy reduces the maximal number of bytes
sent by a node. As a result, however, it produces a larger number of total sent
bytes. This result is reasonable since: on the one hand, a random selection does
not charge any particular node, but it distributes requests in an aleatory way; on
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Figure 3-7: Number of application-level sent bytes, average and maximum.

the other hand, the server-client paths are longer in this strategy, so enlarges the
number of lost packets and, consequently, the average number of sent bytes.
Table 3.6 and Figure 3-8 show numerical and graphical results for the sent bytes
at the network-level.

Random Min-hop Fuzzy
Avg. Sent Bytes 4231654 1295977 1299659
Confidence Interval ± 47147 ± 46817 ±47147

Max. Sent Bytes 12497080 5304649 5243647
Confidence Interval ±674741 ±506359 ±583006

Table 3.6: Number of network-level sent bytes by each node, average and maximum

Figure 3-8: Number of network-level sent bytes, average and maximum

These results show that the Random strategy is the least efficient because
its number of network-level sent bytes is the highest. Notice that this parameter
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represents the real traffic load in the network, where a packet sent from the server
to the client will be re-sent by each of the intermediate nodes in the path.
Summarizing the conclusion in the first set of experiments we have:
Random selection strategy is the least efficient concerning the required transmis-
sion time and network-level traffic load. We must consider that these parameters
are the most important ones for network users and administrators. There are no
crucial differences between Min-Hop and Purely Fuzzy strategies in our regular
network because the Min-Hop strategy is very efficient in this kind of network,
so the impact of fuzzy logic cannot be shown entirely in this experiment.

3.6.2 Distribution of information in a regular network
with obstacles

This experiment analyzes the effect on the network service quality for the three
analyzed strategies when we introduce an obstacle. This obstacle will force a
fixed packet lost probability.
We keep the same network structure from the previous experiment, but we ana-
lyze a specific situation in which two peers have all the segments (possible servers)
and one peer requests for these segments (client). One of the nodes with the in-
formation is located one hop from the client node behind the obstacle, and the
other node is located two hops from the client peer in a path without obsta-
cles. We studied this situation with three nodes instead of analyzing the entire
network because, in this last case, we would not appreciate the impact of the
obstacle properly. We do not consider the other nodes, so they do not request
any information from the simulation. We set to 50% the probability of losing a
packet in a link with an obstacle.
In this simulation, we analyze the time required for the client node to get the
complete information (the other parameters have been omitted because they are
not significant with a single client). Table 3.7 and Figure 3-9 show the numerical
and graphical results.

Random Min-hop Fuzzy
Download Time (in secs) 159 407.5 119.3
Confidence Interval ± 14.44 ± 25.15 ± 2.3

Table 3.7: Download time in every node to get all the segments of the information.

We observe that the Purely Fuzzy strategy produces the best results concern-
ing the download time for a node when obstacles are present. On the other hand,
we can also realize that, in cases in which obstacles appear, the Min-Hop strategy
is the least efficient because it does not consider the real state of the network but
only the number of hops.
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Figure 3-9: Download time in every node (in seconds) to get all the segments of the
information

3.7 Conclusions
This work is a considerable extension of the content and significance of a previous
study that we performed [Valdés et al. 2013]. We analyze the performance of three
strategies to select the server node in a wireless P2P network. The first one is
the random strategy which probably is the currently more often implemented one
and carries out the selection randomly regardless of the distance between client
and server. The second one, called the Min-Hop strategy, uses the minimum
number of hops as a selection criterion between server and client. Finally, the
third strategy, called Purely Fuzzy, is an improved version of that presented in
[Valdés et al. 2013], and it selects the best server using a fuzzy logic-based system
considering as input variables the Number of Hops and ETX of each path.
We perform the study using a wireless network simulation tool for discrete even
simulator OMNEeT++. We implemented an 8x8 node regular network in which
we consider two different scenarios: a network without obstacles and a network
with obstacles between nodes. We realize a significant number of simulations
to obtain results related to the download time and the traffic load at both the
application and network levels.
Based on the results that we obtain, we conclude that the Purely Fuzzy logic is
the most effective strategy because it adapts to all network situations (with and
without obstacles). Besides, although the random strategy works better than
Min-Hop in concrete circumstances, it is the least efficient in most cases because
it does not consider any factor of the network. Finally, we must consider that the
most important factor considered by users is the total download time; so, in this
aspect, we conclude that the fuzzy strategy is the most efficient one considering
the general conditions of networks.
We must assume that most of the parameters and hyperparameters intervening in
the definition of a FIS (parameters for the definition of the membership functions
of each fuzzy value, number of fuzzy values associated with each fuzzy variable,
set of rules, etc.) are chosen empirically. Hence, it isn’t easy to guarantee that the
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system will perform optimally. However, we are aware Fuzzy Inference Systems
are quite robust concerning these possible variations. Therefore, the behavior
shown by different reasonably defined models will probably give very similar
results in terms of efficiency.
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CHAPTER 4
SEARCH OF THE SHORTEST PATH IN A

COMMUNICATION NETWORK WITH FUZZY COST
FUNCTIONS

- Lissette Valdés, Alfonso Ariza, Sira M. Allende, Alicia Triviño, Gonzalo
Joya; “Search of the shortest path in a communication network with fuzzy cost func-
tions”; In: Symmetry. Manuscript ID: symmetry-1281387; Vol. 13(8); 1534; (2021);
https://doi.org/10.3390/sym13081534.

A Communication Network Management System takes the measurements of its
state variables at specific instants of time, considering them constant in the in-
terval between two consecutive measurements. This assumption is, nevertheless,
not valid since these variables evolve in real time. Therefore, uncertainty is in-
troduced into the measurements that cannot be efficiently managed using crisp
variables or using a control based on fuzzy inference models. In this chapter,
we face this problem by modeling the communications network as type V fuzzy
graph, where both the nodes and the links are described with precision, but the
cost of each link is modeled as a triangular fuzzy number. Different fuzzy cost
allocation functions and fuzzy optimization strategies are described and applied
to the search for the shortest path between two nodes. An experimental study has
been conducted using the backbone network of Nippon Telegraph and Telephone
Corporation as a reference, where our fuzzy cost functions and strategies have
been compared with the well-known crisp equivalents. The results show that,
the fuzzy alternatives surpass the crisp equivalents with statistically significant
values in all cases. Specifically, the so-called Strategy 8, proposed here for the
first time, presents the best throughput, significantly exceeding the performance
of all those evaluated, achieving a Global Mean Delivery Rate (GMDR) close to
1. The optimal search strategies are based on a Dijkstra algorithm adapted to
the fuzzy case where the comparison between triangular fuzzy numbers is made
through their total integrals.
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CHAPTER 4. SEARCH OF THE SHORTEST PATH IN A COMMUNICATION NETWORK
WITH FUZZY COST FUNCTIONS

4.1 Introduction
The management of a communication network mainly aims to maximize the ratio
between sent and received information for any pair of source-destination nodes,
reducing transmission delays. This objective is especially relevant in high occu-
pancy conditions. Of course, this concept can be extended to other networks
such as paths and commercial distributions. Necessary resources to achieve this
objective are algorithms and routing protocols, which seek to provide the opti-
mal path between any pair of source-destination nodes. It is crucial to know the
network’s state by assigning a cost to every link to evaluate the path’s goodness
level. In this way, we compute the cost of a particular path using variables such
as Used Bandwidth, Residual Bandwidth (non-used bandwidth), Packet Delivery
Ratio (ratio between delivered and sent packets), Packet Loss Ratio (1 - the Packet
Delivery Ratio), Packet Delay (time spent from the creation to the delivery of a
packet), etc. From this knowledge, we can establish the routing tables, which
contain the path communicating nodes for the demanded information transmis-
sion at each moment.
Because of the network’s dynamic behavior, and consequently, the high variabil-
ity in time of its performing conditions, the usual way of working is to compute
the state variables over a given time interval using measurements obtained in
the immediately previous time interval. So, typical routing protocols update the
state (cost) of links in two possible ways, [Ariza et al. 2000]:

(A) By time intervals: Each cost value (and, therefore, the routing tables) is
periodically updated with a fixed periodicity. This update is either from
the instantaneous state value at the beginning of the period (the beginning
of the new interval) or from the mean value of costs over the previous time
interval.

(B) By thresholds: Some update thresholds are fixed so that the actualization
of a state variable is carried out when the difference between its current
real value and the last determined exceeds the corresponding threshold.

It is evident that, although these used cost values are well-defined real numbers
(crisp numbers in our terminology), these procedures introduce a degree of un-
certainty about the current state due to the existence of a real probability that
variables have changed over the time interval. Consequently, we believe that
considering this uncertainty into the decision-making process on the manage-
ment should allow us to find better solutions. In this sense, some elements of
Fuzzy Logic, particularly the application of arithmetic operations and properties
of fuzzy numbers, can be helpful. We first interpret a triangular fuzzy number
as a triplet of real numbers as a first approach. The numbers at the ends delimit
the interval of values assigned to the fuzzy number, and the central number is
the value considered more probable.
An essential aspect of our work is representing the cost measurements using fuzzy
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numbers, which reasonably incorporate this uncertainty. For this objective, op-
tion (B) has the apparent advantage that, when fixing the thresholds, we are also
setting the upper and lower limits of the corresponding triangular fuzzy numbers.
However, the central value of this fuzzy number, which is theoretically considered
the more probable value, does not have a physical justification since it responds
to an instantaneous value from which we have no information about its feasibil-
ity. Also, if the central value is given, we compute the upper and lower values by
adding and subtracting the threshold. As a result, the crisp number correspond-
ing to this fuzzy cost function will always be constant and equal to the central
value. Therefore, the sense of fuzzification is lost.
On the other hand, option (A) does not directly provide the extreme values of
the normalized triangular fuzzy number. However, it allows us to define the tri-
angular fuzzy number by using statistical methods in some way consistent with
the physics of the problem. Thus, option (A) incorporates the fuzzy nature of
the problem.
Thus, in our case, the proposed fuzzy numbers for the time interval t are defined
as follows, the central value corresponds to the mean value of the costs over the
entire t − 1 time interval (most “probable” value). The extreme values are the
maximum and minimum cost measurements in the above-mentioned t − 1 time
interval.
Our proposal models the network as a non-directed and weighted type V fuzzy
graph, where nodes and links are established with clarity, but the cost functions
on links are defined as triangular fuzzy numbers. In particular, to represent these
costs, we use the variable called Normalized Used Bandwidth [Ariza 2001], which
is defined in equation 4.1,

bwij(t) = BWij(t)
Cij

Cmax

Cij
(4.1)

where BWij[t] is the used bandwidth in the link (i, j), Cij is the total capacity
(bandwidth) of the link (i, j), and Cmax is the link’s capacity with the larger
bandwidth in the network. Expression 4.1 weights the Used Bandwidth ratio,
taking into account the own capacity of each link.
At last, the application of a fuzzy version of the Dijkstra algorithm, like the
shortest path search algorithm, should give us the path between any pair of
source-destination nodes with the minimum cost. Moreover, this fuzzy version of
the Dijkstra algorithm can be considered classical since it does not incorporate
any uncertainty consideration on its execution, but in the value of the variables
(here considered as fuzzy) and in the definition of the mathematical operation
between them. Therefore, we are interested in highlighting the differences be-
tween this methodology and the Fuzzy Inference proposed in chapter 3 ([Valdés
et al. 2013], [Valdés et al. 2015] [Shamshirband et al. 2016]) where the measure-
ments are exact values, and the uncertainty lies in the decision process itself.
To summarize, the main contribution of this work is the presentation of a method-
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ology to optimize the search for the shortest path between two nodes during the
global management of a communication network. This methodology is character-
ized by modeling the network on a Non-directed Type V Fuzzy Graph and apply-
ing a fuzzy Dijkstra algorithm adapted to operate with fuzzy numbers ([Valdés
et al. 2021]). To show the goodness of our approach, we have two objectives:

i) To show the competitiveness of the methodology based on the fuzzy model
versus that based on the traditional model using crisp magnitudes. To do
this, we reconstruct the currently used classical cost functions and strategies
for searching the optimal path to the fuzzy model. Then, we compare both
visions (classical and fuzzy) in the same experimental environment. The
result shows that the fuzzy model is more efficient (or equal in the worst
case) with statistical validation.

ii ) To illustrate that the fuzzy model allows us to define new metrics that
take advantage of the experimental uncertainty mentioned above. Thus,
we provide a new strategy and its cost function (referred to as Strategy
8), which has no equivalent in the classic model and by far exceeds in
effectiveness all the other strategies analyzed.

Thus, the organization of this chapter is as follows: We devote section 4.2 to
compile some related works from the points of view of both the application in
the communication environment and the use of Fuzzy Logic. In section 4.3, we
describe the fuzzy model of the network and the definition of various types of
fuzzy numbers and their possible interpretation. Section 4.4 introduces our pro-
posal of the Fuzzy Dijkstra Algorithm applied on a network with fuzzy costs
using the Total Integral Method proposed in [Yu and l. Q. Dat 2014] as the
ranking procedure for fuzzy numbers. Section 4.5 presents the application of
these theoretical concepts to a communication network with a description of the
communication network used, the different cost functions used in the compar-
ison, and the different strategies to search the optimal path (with a particular
interest in Strategy 8). Section 4.6 deals with our experimental study, where the
reader finds the experimental results and their discussion. Finally, Section 4.7
summarizes the main and conclusive ideas of this work together with future lines
of work.

4.2 Related works
Concerning classic strategies (based on crisp magnitudes) used for the search of
the shortest (or more efficient) path in a communication network, we consider
some approaches to be among the most known and used at the moment. These
are the following: the Shortest-Widest (SW) strategy presented in [Wang and
Crowcroft 1996] searches for the path with the largest residual bandwidth path
(that is, the more efficient path). If there are two paths with the same resid-
ual bandwidth, the path with the minimum number of hops is selected. The
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Widest-Shortest (WS) strategy, explained in [Guerin et al. 1997], proceeds con-
trary to SW. WS searches for the path with the minimum number of hops, and in
case there are two paths with the same number, the one with maximum residual
bandwidth is selected. [Ma et al. 1996] and [Ma and Steenkiste 1997] describe the
Shortest Dist Path strategy using a hyperbolic cost function based on the inverse
of the residual bandwidth, where the authors perform an exhaustive comparison
between SW, WS, and Shortest Dist Path algorithm. In the case of traffic with
no reserve of resources, the Shortest dist Path algorithm is clearly advantageous,
especially under overload conditions. In [Tomovic et al. 2015], to find the opti-
mum path in the sense of reducing the Bandwidth Rejection Ratio (BRR), the
authors perform a comparison of cost functions applied to software-defined net-
works. Based on a cost function that uses a Shortest Dist Path algorithm variant,
the algorithm DORA 0.9 gives the best results in [Boutaba et al. 2002].
Other approaches to the optimal path search problem in a communications net-
work are based on the adaptation of control techniques based on fuzzy inference.
In this case, the values of the cost functions on the links are crisp, but the uncer-
tainty applies to the inference process itself. Thus, in [Valdés et al. 2015], authors
develop a fuzzy inference system using the Expected Transmission Time (ETT)
and the Number of Hops as input variables to find the best server node in a P2P
wireless mesh. The fuzzification of these variables and their introduction in the
fuzzy decision rules allow us to outperform the efficiency of traditional methods,
which select the server node based on a min-hop or random criteria. In [Umezaki
et al. 2012], the server node is selected using its degree of trustworthiness for file-
sharing as a control variable. In [Tian et al. 2017], the authors propose a fuzzy
inference system to find the path in a sensor network considering the remaining
energy, the minimum number of hops, and the node traffic load.
An alternative fuzzy approach to network modeling assumes that the uncertainty
lies in the value of the cost functions. This uncertainty can be modeled by using
fuzzy numbers. In these cases, the application of a classic path search algo-
rithm such as the Dijkstra Algorithm involves solving the problem of operating
with fuzzy numbers (e.g., adding up the fuzzy costs of the links in a path) and
comparing fuzzy numbers (e.g., the comparison between the total cost of two
paths). In [Chou 2003], the Graded Mean Integration Representation definitions
and the expression for the sum and product of two (triangular or trapezoidal)
fuzzy numbers are developed with particular mathematical rigor. The authors
use an integral representation allowing the operation and comparison of fuzzy
numbers. [Deng et al. 2012] and [Mullai 2016] use this representation to adapt
the Dijkstra algorithm to fuzzy costs in a generical transportation network.
We base our proposal on modeling the network by assigning a triangular fuzzy
number to the costs of the links. To compare triangular fuzzy numbers, we use
a generalized definition for the Total Integral of a fuzzy number, proposed in [Yu
and l. Q. Dat 2014], which is different from the above-mentioned Graded Mean
Integration Representation. The different metrics discussed above (WS, SW,
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Normalized Used Bandwidth) are adapted to the definition of triangular fuzzy
number and compared with the classic versions on the simulated environment
of a communication network, based on the topology of the NTT network. Our
fuzzy versions generally surpass or equal the crisp variants in all cases by a small
statistically significant margin. Also, a new cost function based on the general
model of the Total Integral of a triangular fuzzy number is developed and given
a physical explanation. Our optimization strategy based on this latter function
surpasses the other tested algorithms, resulting from a Delivery Bit Ratio close
to 1.

4.3 Fuzzy modeling of a communication network
Without loss of generality, we will refer to the cost to the weight of a link because
it makes more sense using this term in our application described in this chapter.
We assign a Type V fuzzy graph G̃ to our network. For the definition of a Type
V fuzzy graph, we refer the reader to section 2.4.7. The associated graph G̃ is
then defined as:

• G̃ = (V,E,C) is a triplet where,

– V is the set of vertices
– E is the set of edges
– C is the set of costs. C̃ij ∈ C: fuzzy cost of edge (i, j), i, j ∈ V

• G̃ is connected; that is, there is a path between each pair of different nodes
in G̃.

• To each edge eij = (i, j), i, j ∈ V , eij ∈ E corresponds a cost C̃ij ∈ C
defined as a triangular fuzzy number (in detail explained in section 2.4.6).
We refer to C̃ij as the fuzzy cost of edge eij. The cost of path P , denoted as
C̃P (fuzzy cost of path P ), is a function of the cost of its constituent edges,
i.e.:

C̃P = f(C̃eij), ∀eij ∈ P

4.4 Dijkstra Algorithm for type V fuzzy graph
We propose a Fuzzy Dijkstra Algorithm (FDA) applied to a type V fuzzy graph.
This algorithm finds the shortest path between the source vertex r and any
other vertex on G̃, and deals with the fuzzy costs defining these as triangular
fuzzy numbers. To introduce the FDA is essential to establish the arithmetic
operations and a ranking method for triangular fuzzy numbers. In section 4.4.1,
we will briefly explain the ranking method that we applied, and in section 4.4.2,
we will describe the Fuzzy Dijkstra algorithm for a type V fuzzy graph.
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4.4.1 Method for the arithmetic operations of normalized
triangular fuzzy numbers

To compare the fuzzy costs in the FDA, we use the ranking criterion proposed
by [Yu and l. Q. Dat 2014]. This method compares the Total Integral of fuzzy
numbers depending on a parameter α, called the index of optimism. This index
represents the degree of optimism of the decision-maker. For α taking values
greater than 0.5, the comparison between the fuzzy numbers gives priority to
numbers higher than the central value. The opposite occurs when α is lower
than 0.5.
Let C̃(u,v) = (a, b, d) be a triangular fuzzy number that represents the fuzzy cost
in a link (u, v). Then, for a fixed α, the Total Integral of C̃(u,v) is defined in
equation 4.2:

SαT (C̃(u,v)) = 1
2 [(1− α)a+ b+ αd]−Xmin (4.2)

where Xmin ≤ a. For simplicity, since every cost in G̃ is assumed to be a positive
fuzzy number in our study, we set Xmin = 0 without changing the analysis.
Notice that SαT (C̃(u,v)) is a crisp value. Thus, we can define an order relation of
fuzzy numbers from the standard order of real numbers. Let C̃1 and C̃2 be two
fuzzy costs (defined either in a link or a path), for α ∈ [0, 1], each C̃i, i = 1, 2
has total integral SαT (C̃i), then,

• If SαT (C̃1) > (<)SαT (C̃2) then C̃1 is greater (smaller) than C̃2, denoted as
C̃1 � (≺) C̃2

• If SαT (C̃1) = SαT (C̃2) and Me(C̃1) > (<)Me(C̃2) then C̃1 � (≺) C̃2

• If SαT (C̃1) = SαT (C̃2) and Me(C̃1) = Me(C̃2) then C̃1 = C̃2

where Me(C̃i) (i = 1, 2) denotes the median of the fuzzy number C̃i. To compute
the median of the fuzzy cost C̃i = (a, b, d) it is necessary first to identify if the
median is smaller or greater than the value b.

• If b−a ≥ d−a
2 then a ≤ Me(C̃i) ≤ b and Me(C̃i) = a+

√
(b−a)(d−a)

2 , figure 4-
1(a).

• If d− b ≥ d−a
2 then b ≤ Me(C̃i) ≤ d and Me(C̃i) = d−

√
(d−b)(d−a)

2 , figure 4-
1(b).

This relation is an order relation because it meets the antisymmetry, reflexivity,
and transitivity properties. On the other hand, since the Total Integral satisfies
the linearity property, we can apply it to compare the cost of two links and the
cost of two paths using the comparison between their Total Integrals.
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Figure 4-1: Median of a triangular fuzzy number C̃i = (a, b, d).

4.4.2 Fuzzy Dijkstra Algorithm
Let Ψ(r, v) denote the set of all paths between r and v (v, r ∈ V with v 6= r), and
P ∗ ∈ Ψ(r, v) be the shortest path between r and v. The cost of P ∗ is defined in
equation 4.3,

δ̃(r,v) = C̃P ∗(r,v) =


min

∀P∈Ψ(r,v)
{C̃(P (r,v))} if Ψ(r, v) 6= ∅

∞ if Ψ(r, v) = ∅
(4.3)

Then, for each vertex v ∈ V , the FDA defines an attribute d̃(v), which is an
upper bound on the cost of P ∗,

d̃(v) ≥ δ̃(r,v)

Given a vertex v ∈ V , we will denote by Γ (v) the set of neighbors of v, that is,
adjacent vertices to v. Moreover, we will denote by vertex w(v) the predecessor
of v in P ∗. The algorithm considers w(v) to be either a vertex of Γ (v) or NIL.
w(v) is the predecessor of v in the shortest path to v known so far during the
algorithm’s execution. Only when the algorithm has ended can we say that w(v)
is the predecessor of v by the shortest path from r to v.
Every vertex has got assigned a label, which adapts throughout the algorithm
execution. At each stage, the label of vertex v ∈ V contains its predecessor in
the (known so far) shortest path from r to v and the corresponding cost of this
path. We describe the label of a vertex v in equation 4.4,

Label(v) =
[
d̃(v), w(v)

]
with d̃(v) := d̃(w(v)) ⊕ C̃(w(v),v)

w(v) : predecessor vertex of v in the
provisional path P ∗(r, v)

(4.4)

where C̃(w(v),v) is the cost of link (w(v), v).

At the end of the algorithm, for each vertex v, d̃(v) will coincide with δ̃(r,v), and
w(v) will be its predecessor in P ∗(r, v).
The FDA contains two main sub-algorithms: Initialization and Relaxation.
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The Initialization (algorithm 2) assigns the label Label(v) to every vertex in G̃.
The cost of the provisional shortest path from r to any other vertex, d̃(v) ∀v ∈ V ,
is initialized as ∞, except for r, which is set to be equal to 0.

Algorithm 2 Initialization
1: function Initialize-single-source(G̃, r,C)
2: d̃(r)← (0, 0, 0)
3: w(r)← NIL
4: for each vertex v ∈ V − {r} do
5: d̃(v)←∞
6: end for
7: end function

The FDA proceeds by choosing and extracting vertices from a set, denoted
as H, initially defined as V . At each iteration, the algorithm selects the ver-
tex u with minimum cost in H according to the ranking method described in
section 4.4.1. Then, it analyzes the cost d̃ of the neighbors of vertex u in the Re-
laxation (algorithm 3). Thus, the algorithm updates the label of each neighbor
v ∈ Γ (u) if, at this point, the path from r to v with u = w(v) has the minimum
cost.

Algorithm 3 Relaxation of v
1: function Relaxation(u, v, C̃(u,v), α)
2: d̃new(v) := d̃(u)⊕ C̃(u,v)

3: if SαT (d̃(v)) > SαT (d̃new(v)) or
[
SαT (d̃(v)) = SαT (d̃new(v)) and Me(d̃(v)) >

Me(d̃new(v))
]
then

4: d̃(v)← d̃new(v)
5: w(v)← u
6: end if
7: end function

The algorithm ends when set H is empty. At this point, the label of each
vertex v contains the cost of P ∗(r, v) (δ̃(r,v)) with its predecessor w(v) on this
path. The shortest path between r and each vertex is found following a backward
procedure. Algorithm 4 shows the pseudocode of the FDA.
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Algorithm 4 Fuzzy-Dijkstra(G̃, r, t, α)
1: Initialize-single-source(G̃, r,C) . Initialization
2: H ← V
3: while H 6= ∅ do
4: u← t | d̃(t) = min

∀x∈H

{
d̃(x)

}
5: Update H ← H − {u}
6: if Γ (u) ∩H 6= ∅ then
7: for each vertex v ∈ Γ (u) ∩H do
8: Relaxation(u, v, C̃(u,v), α) . Relaxation of v
9: end for
10: end if
11: end while

4.5 Application to a communications network.
Fuzzy Functions and Strategies

4.5.1 Description of the communications network
We use a 56-nodes network based on the topology of the backbone network of the
Nippon Telegraph and Telephone (NTT). For the particular characteristics of the
network, we refer the reader to the examples of the use of the OMNeT ++ sim-
ulator [Varga 2001] (figure 4-2). In our application, links are all assumed to have
the same capacity of 1 Gbit/s. Furthermore, the connections use Multi-Protocol
Label Switching (MPLS) [Rosen et al. 2001] so that once the path between two
nodes is selected, it remains unchanged during the connection time. This prac-
tice is widely used in Networks of Quality of Service (QoS) to avoid unstable
networks when applying dynamic routing. On the other hand, the connections
are made without resource reservation, meaning that the system never rejects a
connection. Still, there can be a one-off loss of information in the links when
their capacity is exceeded. This way of proceeding is usual in IP networks (since
the management necessary for the resource reservation would have a very high
computational cost), resulting in a loss of performance. The model and source
code required to simulate this network is found in [Ariza 2015].
In the simulated network, we identify each node by an index i and the link

between nodes determined by the source-destination index pair ij. Also, the
capacity (or bandwidth) of link (i, j), (Cij) and its Used Bandwidth at time t,
([BW ]ij[t]) will be the primary magnitudes.

4.5.2 Description of cost functions and strategies
We describe in this section the different cost functions used in our experiments.
These functions are defined in their classic form (as crisp numbers) and their
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Figure 4-2: Topology used in our experiments, based on the backbone network of the
NTT.

fuzzy version as triangular fuzzy numbers, allowing us to compare both method-
ologies.
Additionally, as one of the main contributions of this chapter, we propose a new
fuzzy cost function that has no crisp equivalent since it is an empirical adaptation
of the generalized fuzzy number model described above. This new function will
be explained in detail when presenting strategy 8.
In short, the simulated classic cost functions simulated in a link (i, j) are the
following:

• Normalized Instantaneous Used Bandwidth, [Ch.Xin and He 2005],[Ariza 2001]:
It is the value of the bandwidth occupied in a link at the instant t, weighted
according to equation 4.5,

bwij(t) = BWij(t)
Cij

Cmax

Cij
(4.5)

where,

bwij(t) is the Normalized Instantaneous Used Bandwidth in link (i, j)
at the instant of adaptation t.
BWij(t) is the Instantaneous Used Bandwidth in link (i, j) at the
instant of adaptation t.
Cij is the capacity of link (i, j).
Cmax is the capacity of the link with the highest bandwidth in the
network.

This value will be updated in the routing tables with a predefined periodic-
ity. Therefore, it will be considered “fixed” or “constant” during the update
period.

• Normalized Mean Used Bandwidth, [Ariza 2001]:
It is the mean value of the Used Bandwidth in a particular link over a
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considered time interval. This value is normalized to the link’s capacity and
is weighted according to the ratio between the network’s larger capacity
and the current link capacity. Equation 4.6 shows the definition of the
Normalized Mean Used Bandwidth,

[bw]ij =
[BW ]ij
Cij

Cmax

Cij
(4.6)

where,

[bw]ij is the Normalized Mean Used Bandwidth in link (i, j) at a mea-
surement time interval.
[BW ]ij is the Mean Used Bandwidth in link (i, j) at the measured
period of time.
Cij and Cmax as defined above.

• Mean Residual Bandwidth associated with a link (or a path):
In a link (i, j), the Mean Residual Bandwidth (rij) is defined by the differ-
ence between the link capacity and [BW ]ij at the considered time interval,
as shown in equation 4.7,

rij = Cij − [BW ]ij (4.7)

The Mean Residual Bandwidth of a path (rP ) is given by the minimum
among the Mean Residual Bandwidths of the links that are part of the
path, that is, the Residual Bandwidth of the “worst” link.

Equations 4.5, 4.6, and 4.7 will be transformed into triangular fuzzy numbers. In
particular, in our experimental study, for each link (i, j) at the n-th time interval,
we will use triangular fuzzy numbers (a, b, c), where a and c are computed from
the minimum and maximum values of the variable measured at the (n − 1)-th
time interval, and b is computed from the mean value of the variable over the
(n− 1)-th time interval.
Once the cost functions previously defined are simulated for each link, we describe
the different strategies of cost assignment to search the shortest path using the
Dijkstra algorithm for crisp and fuzzy versions.

4.5.3 Strategies for the search of the path with minimum
cost

As was summarized in the Introduction, our first goal is to show the competi-
tiveness of the methodology based on the fuzzy model of the network versus that
based on the traditional model using crisp magnitudes when searching the best
communication path by the application of the Dijkstra algorithm. Therefore,
we compare both methodologies for different well-known optimization strategies,
regardless of performance on the absolute terms, considering only the relative
ones.
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Strategy 1: Application of Dijkstra algorithm using the Normalized Instantaneous
Used Bandwidth as the cost function (equation 4.5). This strategy aims to
find the path, P ∗, with the minimum sum of the Normalized Instantaneous
Used Bandwidths of their links, as shown in equation 4.8,

P ∗ : CP ∗ = min
∀P∈Ψ(r,v)

{CP} = min
∀P∈Ψ(r,v)

 ∑
(i,j)∈P

bwij(t)
 (4.8)

The instants at which we measure this magnitude will be given by t = t0 +
nT , where t0 is the instant of the first measurement, and the measured value
will be considered constant during T (time interval between measurements).
The total cost of a path is given by the algebraic sum of their links costs;
thus, this is a strategy of additive costs.

Strategy 2: Application of Dijkstra algorithm using the Normalized Mean Used
Bandwidth as the cost function (equation 4.6). With this strategy, we
intend to find the path that minimizes the sum of the Normalized Mean
Used Bandwidths of their links (equation 4.9),

P ∗ : CP ∗ = min
∀P∈Ψ(r,v)

{CP} = min
∀P∈Ψ(r,v)

 ∑
(i,j)∈P

[bw]ij

 (4.9)

In strategies 1 and 2, we consider the magnitudes as crisp numbers.

Strategy 3: Application of the FDA using the Fuzzy Normalized Used Bandwidth.
The cost function for link i, j at the n-th time interval is defined in equa-
tion 4.10, ˜[bw]ij =

(
[bw]min

ij , [bw]ij, [bw]max
ij

)
(4.10)

where [bw]min
ij and [bw]max

ij are the minimum and maximum values of the
Normalized Instantaneous Used Bandwidths measured in the (n−1)-th time
interval, respectively, and [bw]ij is the Normalized Mean Used Bandwidth in
the (n−1)-th time interval. In this instance, we apply the FDA considering
additive fuzzy costs. This strategy is directly comparable to strategies 1
and 2.

Strategy 4: (Shortest-Widest, SW) [Wang and Crowcroft 1996]. This strategy
search for the path with the maximumMean Residual Bandwidth. If several
paths have the same maximum value, the strategy chooses the path with
the minimum number of edges (hops). While bwij and [bw]ij are additive
magnitudes (the cost of the path is the sum of the costs of their links), the
Residual Bandwidth is concave (the cost of the path is the cost of the link
with minimum cost). Note that this metric is not properly a cost, but quite
the opposite; it is a metric that measures the goodness of a link. Therefore,
the goodness of a path is associated with the goodness of its worst link (link
with minimal residual bandwidth).
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Figure 4-3 helps understand how this strategy works. On each link appears
its Residual Bandwidth. According to the SW, paths PA and PC are first
chosen (paths with the maximum Residual Bandwidth in their “worst”
link), and between those two, the strategy chooses the path PC that is the
one with the minimum number of hops.
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Figure 4-3: SW applied to a 9-nodes network with explicit Mean Residual Bandwidth
in every link

Strategy 5: (Fuzzy Shortest-Widest, FSW). It is the same as strategy 4, but
defining the Fuzzy Mean Residual Bandwidth measurement of each link
(i, j) as a triangular fuzzy number defined in expression 4.11,

r̃ij = (rmin
ij , rij, r

max
ij ) where rmin

ij = Cij − [BW ]max
ij

rij = Cij − [BW ]ij
rmax
ij = Cij − [BW ]min

ij

(4.11)

We apply the FDA that finds the shortest path using r̃ij as the cost function
on each link (i, j). This strategy is directly comparable with strategy 4.

Strategy 6: (Widest-Shortest, WS) [Guerin et al. 1997]. WS consists of the inverse
process of the SW. First, WS searches for the path with the minimum
number of hops. In the case of several paths with the same number of hops,
the strategy searches for the one with the maximum Residual Bandwidth.
Figure 4-4 shows the application of WS to the same network as figure 4-
3. The paths with the minimum number of hops are PB and PD. Among
them, the strategy WS chooses the path PB because it has the maximum
Residual Bandwidth used bandwidth in its worst link.

Strategy 7: (Fuzzy Widest-Shortest, FWS) Using the same definition of the fuzzy
cost as strategy 5, we follow the same selection pattern as strategy 6. This
strategy competes with strategy 6.
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Figure 4-4: WS applied to a 9-nodes network with explicit Mean Residual Bandwidth
in every link

Finally, we propose a new strategy (strategy 8), which uses a new fuzzy cost
function with no crisp equivalent since it is an empirical adaptation of the gen-
eralized fuzzy number model described above. In the following, we explain this
new strategy and its cost function.

Strategy 8: It can be verified that the smaller the used bandwidth at the (n−1)-th
time interval, the higher the degree of uncertainty in the values considered
for the used bandwidth of a link at the n-th time interval. We can explain
the above as the following:
When a link has a very low used bandwidth in the (n− 1)-th time interval,
the dynamics of the network tend to increase the information transmitted
by that link. That is, it considerably increases the used bandwidth of the
link in the n-th time interval (an analogous situation occurs with the traffic
system in a city). In this case, the new connection will cause a high relative
variation and, therefore, a higher uncertainty in the value of the used band-
width in the n-th time interval. On the contrary, when the used bandwidth
is high in the n− 1-th time interval, the new connection will vary little in
the n-th time interval. Thus the uncertainty in the used bandwidth will be
lower in the n-th time interval.
These reasons lead us to redefine the fuzzy number that we describe in strat-
egy 3 (equation 4.10), which is now multiplied by a greater coefficient, the
smaller the used bandwidth is. In this way, we achieve a double objective:

a) we widen the extreme values of the fuzzy number representing the used
bandwidth when its measured value is small.

b) we shift the central value to the right, thus correcting the error in the
measurement of the used bandwidth.

Thus, theModified Fuzzy Normalized Used Bandwidth in link (i, j) is defined
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in equation 4.12.
C̃ostSt8 = A ∗B−[bw]ij ˜[bw]ij (4.12)

In practice, this operation produces a displacement to the right and a widen-
ing of ˜[bw]ij. In our experiments, we use the values A = 10 and B = 20.

4.6 Experimentation and results

4.6.1 Description of the experiment
We use the simulator OMNET ++ [Varga 2001] for the experimentation. The
code used for the experiment and the configuration files can be downloaded
from [Ariza 2015]. In addition, we perform a flow-oriented simulation to reduce
the execution time of each simulation (the alternative packet-oriented simulation
would require an execution time in the order of a thousand times greater).
Our data loss model simulates an Optical Burst Switching network (OBS) with-
out storage. If a burst does not have enough bandwidth on a link, we discard the
information (that is, information is lost) until there are enough resources. Also,
in the case that during the burst lifetime, there are not enough resources at any
time, we discard the complete burst.
To facilitate the reproduction of the experiments, we have carried out ten simu-
lations with different seeds for each of the different strategies, where every node
generates traffic with the same probability.
Table 4.1 indicates the traffic characteristics. 1 2 3

In the following, we describe each parameter listed in table 4.1,

Call rate: Mean number of connections requests.

Call duration: Time interval at which the connection is active once it is estab-
lished.

Type of traffic: Data is transmitted for a specific time (burst with constant band-
width) and not transmitted for another time interval.

Used bandwidth over an ON period: Resources required for a connection over an
ON period. Since we are considering an ON period of 5s and an OFF pe-
riod of 1s, the Mean Used Bandwidth for a connection is 25 Mb/s (the Used
Bandwidth of an Advanced Video Coding High Definition (AVCHD) con-
nection, approximately). We use this value intending to work in conditions
of saturation.

1The simulator can be downloaded at https://omnetpp.org/download/
2The source code of the model used can be downloaded in

https://github.com/aarizaq/flowsimulator
3The configuration for the running of the experiments can be downloaded in

https://github.com/aarizaq/configurationFuzzy/blob/master/omnetpp.ini
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Description of the parameter Value

Call rate Poisson Distribution with mean value 0.5 s

Call duration Exponential Distribution with mean
value µ = 120 s

Type of traffic ON/OFF

Used Bandwidth over an ON period 30 Mb/s

ON period Exponential Distribution with mean
value µ = 5 s

OFF period Exponential Distribution with mean
value µ = 1 s

Type of connection Symmetrical and bidirectional

Simulation time 10000 s

Table updating time interval 300 s

Number of replications with different seeds 10

Table 4.1: Characteristics of the traffic used in the experiments.

ON period: Transmission period. It is modeled by random distribution. In our
case, we use an exponential distribution with a mean of 5 s.

OFF period: Period without transmission, that is, without consumption of re-
sources. We use the same exponential function with a mean of 1 s. We
force an off period to guarantee the competition of the burst.

Connection type: Given a connection, both nodes can be source and destination
simultaneously with the same consumption of resources. Thus, the connec-
tion is symmetrical and bidirectional.

Simulation time: It is the simulated time assigned to each experiment (do not
confuse with the duration of the simulation)

Table updating time interval: Time interval used to measure the average occupa-
tion of links and update the routing tables. Higher values in this parameter
imply higher uncertainty in the measurements.

In our simulation scenario, source and destination nodes are randomly selected
(with equal probability) among all the nodes in the network. Thus, there are
multiple active source-destination pairs simultaneously.
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In the network, our magnitudes of interest are the total number of sent and
received bytes by each node at each simulation interval.
From the previous values, we calculate the following variables:

Mean Delivery Rate (MDR): Total number of received bits divided by the total
number of sent bits throughout an experiment. This value indicates the
probability that sent data is finally received.

Global Mean Delivery Rate, (GMDR): Mean of the MDR in ten experiments.

Confidence interval: (Computed with a probability of 0.95)

4.6.2 Results and discussion
We calculated the GMDR for each strategy with its respective cost function.
Table 4.2 shows these values together with the associated confidence intervals.
Figure 4-5 shows the same information in a bar diagram.

Conf. Interval [CImin,CImax]
Strategies GMDR Error

CImin CImax

Strategy 1 0.860 0.004 0,856 0,864

Strategy 2 0.861 0.0064 0,856 0,866

Strategy 3 0.870 0.004 0,866 0,874

Strategy 4 0.8500 0.015 0,835 0,865

Strategy 5 0.857 0.013 0,843 0,870

Strategy 6 0.966 0.0025 0,963 0,968

Strategy 7 0.966 0.0026 0,9632 0,9684

Strategy 8 0.9982 0.0004 0,9978 0,9986

Table 4.2: GMDR and Confidence Interval associated with each Strategy.

When applying Strategy 3, we observe that the value of the GMDR surpasses
its crisp equivalents (Strategies 1 and 2), although in a small percentage. In ad-
dition, we find that confidence intervals are not overlapping. From the statistical
point of view, the results are distinguishable so that the resulting comparison has
statistical validation.
Similarly, with Strategy 5, the value of the GMDR surpasses its crisp equivalent
(Strategy 4), but their confidence intervals are overlapped. Thus, we must con-
sider both results as equal from a statistical point of view.
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Figure 4-5: Bar diagram of the GMDR for each Strategy

Strategies 6 and 7 have the same GMDR values with practically equal confidence
intervals. We also observe that Strategies 6 and 7 are superior to the previous
ones (in the order of 10%). Our hypothesis in this regard is the advantage of
these strategies working in a network close to saturation. Because these strate-
gies search for paths with the minimum number of hops, they contribute a lesser
flow of information through the network. Therefore, Strategies 6 and 7 benefit
from the low consumption of resources compared to Strategies 1 to 5.
Finally, as the main result of our study, we verify that Strategy 8 (proposed for
the first time in this work) achieves widely superior performance to all the pre-
vious ones, with a value of GMDR close to 1.
Therefore, we summarize the obtained results with the following two statements:

1. Fuzzy versions of the classical strategies are more efficient (or practically
equal) than their corresponding crisp versions, although in a very narrowly.
Thus, we can say that our fuzzy modeling of a communications network
correctly incorporates the uncertainty in the measurement variables, being
therefore competitive.

2. Strategy 8, proposed by us, is the most efficient with a clear advantage over
the other strategies, having a GMDR close to 1. This advantage comes
from the definition of a new fuzzy cost function incorporating our empirical
knowledge about the effects of measurement uncertainty.

4.7 Conclusions
In this chapter, we addressed the problem of searching the shortest path (or more
efficient, in a more general sense) between two nodes in a communications net-
work, considering uncertainty in cost function measures of its connections.
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The above-referred uncertainty is inevitably caused by the network dynamics and
the impossibility of making decisions with the instantaneous measurement of the
state variables at each moment. Thus, in general, over a given time interval,
decisions on the routing of information are made using measurements obtained
in the previous time intervals, which, naturally, can differ from the current ones.
We associate the network to a Type V fuzzy graph to incorporate our fuzzy cost
functions and strategies into a communication network management system. In
this graph, nodes and links are located (without uncertainty), but a triangular
fuzzy number defines the cost for each connection. Moreover, a fuzzy version
of Dijkstra’s routing algorithm was developed and exhaustively described, called
Fuzzy Dijkstra Algorithm (FDA). Simulated experiments have shown its correct
operation and competitiveness.
It is essential to distinguish this approximation, where the uncertainty lies in
the value of the variables, from other approximations based on Fuzzy Inference,
where these values are considered crisp (precise data) and the uncertainty lies in
the decision rules used.
For our experimental study, we implemented the most commonly used cost func-
tions and strategies in the management of real networks based on crisp values
(e.g., these using the Instantaneous or Mean Used Bandwidth or Residual Band-
width as cost function, Shortest-Widest (SW), Widest-Shortest (WS)). We con-
fronted the strategies with similar ones based on our definition of fuzzy costs.
As an especially interesting contribution, we proposed a new fuzzy strategy (strat-
egy 8) which has no correspondence with a classic one. Strategy 8 adapts the
definition of the fuzzy cost to the fact that the smaller the Used Bandwidth at
the (n− 1)-th time interval (where the measures have been obtained), the more
significant uncertainty in the Used Bandwidth value considered in the n-th time
interval.
We did the experiments on a 56-nodes network based on the topology of the NTT
backbone network, whose particular characteristics can be found in the examples
of the use of OMNET ++ simulator.
Fuzzy strategy 3 surpasses their analogous crisp ones (strategies 1,2) slightly but
in a statistically significant way. In the fuzzy strategies 5 and 7, we observed that
they do not present statistically significant differences with their crisp analogous
strategies 4 and 6, respectively. However, our new fuzzy strategy (strategy 8),
with an effectiveness ratio very close to unity, clearly surpasses the rest of the
analyzed strategies.
We conclude that our methodology of introducing the inherent uncertainty to
the dynamic nature of the network in routing algorithms has been successful. On
the other hand, we must remember that our models, based on fuzzy numbers,
model the real uncertainty generated in a network management system. This
uncertainty is due to the imponderable fact that we use values of the system
variables that do not correspond to the real ones at each moment. As seen in
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our experimental study, our models, especially strategy 8, produce better results
than those methods that do not consider uncertainty. However, it is clear that
this uncertainty will always be present. Therefore, we cannot be sure that our
solution is optimal in each case, especially since we empirically find many of the
parameters used to define that uncertainty.
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CHAPTER 5
SHORTEST PAIR OF EDGE-DISJOINT PATHS IN A

COMMUNICATION NETWORK. A FUZZY
APPROACH

- L. Valdés, A. Ariza, S.M. Allende, G. Joya; “Searching the Shortest Pair of
Edge-Disjoint Paths in a Communication Network. A Fuzzy Approach.”; In: Advances
in Computational Intelligence. IWANN. Lecture Notes in Computer Science, Springer,
Cham.; Vol. 11507; pp. 640-652; (2019); DOI: 10.1007/978-3-030-20518-8_53.

Communication networks’ survivability is extremely important due to the different
services that the networks provide for society and the economy. Survivability can
be defined as the ability of the network to support the committed QoS continu-
ously in the presence of various failure scenarios. Related to survivability is the
concept of Self-Healing, wherein in a saturation situation, the traffic between two
nodes can be organized by dividing it between two alternative paths. In this
sense, we address the problem of finding the shortest pair of edge-disjoint paths
with fuzzy costs between two nodes in a communication network. We use a new
cost function named Modified Fuzzy Normalized Used-bandwidth, described as
a triangular fuzzy number, thus incorporating the uncertainty generated in cal-
culating this magnitude in a real network. The proposed algorithm uses as a
sub-algorithm an adaptation of a Modified Fuzzy Dijkstra algorithm applied in
a type V mixed fuzzy graph with arcs whose costs are negative triangular fuzzy
numbers. We prove its effectiveness by simulating traffic close to overload with
two types of communication sources: regular and priority sending of information.
The addressed problem presents a considerable interest in financial entities or
government services, where privacy and security against external attacks must be
considered.

5.1 Introduction
Survivability can be defined as the network’s ability to support the committed
QoS continuously in the presence of various failure scenarios. Communication
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networks’ survivability is extremely important due to the different services that
networks provide for society and the economy. Communication networks are used
by banking and finance entities and for government services. Thus, the survival
of these networks is essential in critical applications where, by contract or prior
requirement, they can not stop working. That is, there can be no loss of data
at any time. On the other hand, the survivability of the network becomes even
more crucial to face the unstoppable increasing impact and rate of failures due to,
among other causes, the intricate design that modern systems have. In particular,
the problem of the increased bandwidth of links. This issue is essential in fiber
optic networks since its sending speed is very high, and the loss of data originated,
while an alternative to the outage is found or repaired, is very high.
The network must remain operational regardless of whether a failure occurs (in a
node or a link). The network’s survival consists of two components: the analysis,
which understands failures and system functionality after failures, and the design,
which adopts network procedures and architecture to prevent and minimize the
impact of failures/attacks on network services.
Another concept related to the survivability of the network is the capacity of
Self-healing that can be associated with the redistribution of traffic in the system
by using alternative paths between two nodes when is appropriate. The traffic
between two nodes can be organized by dividing it between two alternative paths
in a saturation situation. That would lower the saturation conditions and improve
the bandwidth of both paths. When each path is close to saturation, possibly a
packet with a certain length cannot completely arrive if a single path sends it.
However, this packet could arrive if we divide it into two smaller packets sent
through two paths with no common links under the same bandwidth conditions.
That is, the bandwidth of each path can be sufficient for a segment of the packet
to be sent but not enough to send the entire packet.
In this chapter, to address the above problems, we propose to analyze the problem
of finding the shortest pair of paths, disjoint in links, between two origin and
destination nodes in a communication network. The pair of paths can have
different purposes:

(i) Deviate the information by one of the paths (replacement) when the other
suffers a failure. Thus, the network avoids losing information while repairing
the issue or looking for an alternative path.

(ii) Distribute the data sent between the two paths simultaneously when the
network is near saturation. In this case, possibly a packet of a specific
length cannot completely arrive if a single path sends it. However, this
packet could reach its destination if we divide it into two smaller pack-
ets transmitted through two paths with no mutual links under the same
bandwidth conditions.

(iii) Distribute the information in a not predictable way between both paths,
thus making it impossible to capture a complete message by an intruder.
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These tasks have a considerable interest in contexts such as financial entities or
government services, where privacy and security against external attacks have
to be considered, and in networks with a continuous increase in their trans-
mission speed, such as the optical ones. Thus, different works have addressed
one or several of them in the last two decades: [Gottschau et al. 2018], [He and
Rexford 2008], [Lou and Fang 2001], [R. Maaloul and Cousin 2018], [Yang and
Papavassiliou 2001], [D. Zhu 2002]. In most of these works, a common charac-
teristic is that a real number represents the cost of edges, and, in some cases,
this value is invariant in time. The authors do not simulate the real traffic in a
credible network and only present a mathematical and/or computational analysis
of the proposed methods. Their goal is not to find the shortest pair but only a
disjoint pair of paths.
In contrast with these characteristics, we start from the fact that a fuzzy number
represents the function that defines the edges’ weight (or cost). We justify this
hypothesis under the same terms as in chapter 4: the values of the cost functions
of edges measured and used over a time interval are calculated from the state of
the network in the previous time interval. Therefore, there is a high probability
of discrepancy between the value we compute and the real value at each moment.
A fuzzy number can model this uncertainty.
The network reliability can be characterized by parameters like the degree of each
node, the average distance between every pair of nodes, connectivity, saturation
level at each moment, available flow capacity, etc. We represent the network
as a set of nodes (switches, routers, satellites, base stations, etc.) and another
set of links between them (optical fibers, electrical wires, etc.) represented by
edges. To measure the network functionality, we will consider as a metric the
occupied bandwidth in the links at each moment, which we assume to be a fuzzy
value. From this perspective, we analyze the network reliability considering the
connectivity parameter by searching a pair of paths, disjoint by edges, between
two fixed nodes ([Valdés et al. 2019]).
In our work, we do not consider the possibility of designing the network to guar-
antee the duplicity of paths, but we start from a network already in use and
search for a pair of edge-disjoint paths if possible.

5.2 Problem statement
In the introduction, we refer to the importance of survival in a communication
network since it deals with its ability to continue operating, even when ruptures
and interruptions occur at specific points. A fundamental problem would be when
one or several links are damaged due to external or internal factors, disrupting
the sending of information between two network nodes. We can interpret this
situation as eliminating a path between the source and destination nodes. A
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solution to this problem would be the immediate replacement of the interrupted
path by a new one not containing any damaged link. In this way, the network can
maintain its operation uninterruptedly. On the other hand, another interesting
challenge occurs when in saturation conditions, the information sent from the
source node to the destination node is divided into two packets and transmitted
in parallel by two paths that do not have mutual links. In this case, it is not of
interest only that both paths are link-disjoint, but that the sum of their costs
is minimal. In this way, when both paths are used simultaneously, we would
optimize the cost of sending the information and reduce the network’s saturation.
The first problem is relatively simple to solve since after finding the shortest path
between the source and destination nodes, all its edges are eliminated, and a
new shortest path between both nodes is searched again. However, the second
problem presents a higher complexity in its resolution and is where we make a
greater focus.
We model the network by defining a type V fuzzy graph associated with the
system. We model the uncertainty generated by operating in the time interval t
with the values of the variables obtained in the t− 1 interval using cost functions
defined by triangular fuzzy numbers.
Let G̃ = (V,E,C) be a non-directed type V fuzzy graph where:

• We fix a pair of vertices as the source and destination vertices, denoted by
r and t, respectively.

• Let C̃e ∈ C, e ∈ E, be the cost of edge e. We define C̃e = (ae, be, ce) as
a positive triangular fuzzy number referred to the cost of edge e, which
is close to value be and is measured with an uncertainty bounded by the
values ae and ce. In the same way, the cost of a path P , C̃P = (aP , bP , cP ),
is also a positive triangular fuzzy number. We consider the cost of a link
an additive metric; therefore, in equation 5.1 we define the cost of the path
P ,

C̃P =
∑
∀ei∈P

C̃ei (5.1)

C̃P is referred to as “cost of path P , which is close to value bP .” In general,
when we do not use additive metrics, the total cost of a path will be a
function of the costs of all its edges.

• Each edge is equivalent to a pair of oppositely directed arcs whose costs
correspond to the length of the original edge and its complementary.

• The graph is connected.

• More than one path may exist between vertices r and t.

For short, we refer to “fuzzy cost” the cost of an edge or path when this is defined
as a triangular fuzzy number.
Our goal is to find the shortest pair of edge-disjoint paths (paths with no common
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edges) between the source and destination vertices r and t (pair of paths with no
common edges where the sum of the costs of both paths is minimum)
[Bhandari 1999] already proposes a solution to search for the shortest pair of
edge-disjoint paths in a graph with crisp and positive costs. In essence, this
proposal consists of the following steps:

1. Finding the shortest path of the graph, S, using the Dijkstra algorithm.

2. Modifying the original graph by replacing the edges of S with arcs op-
positely oriented, and whose costs are defined as the opposite (negative)
number of the costs of said edges (this new graph is called modified graph).

3. Finding the shortest path in the modified graph, Paux, by modifying the
Dijkstra algorithm to allow its convergence in a graph with negative costs.

4. Finally, the shortest pair of edge-disjoint paths is either (S, Paux) or another
pair of paths resultant from the combination of S and Paux.

Our algorithmic proposal, called Algorithm to find the Fuzzy Shortest Pair of
Edge-Disjoint Paths (FSPPA for short), constitutes an adaptation of the previous
strategy for a type V fuzzy graph. This new approach requires the change of the
operations involved in the original procedure, where we base our proposal on
adapting the crisp analysis to the fuzzy character of the cost functions of edges.
Therefore,

first, we must have a criterion of comparison of fuzzy numbers;

second, we must find a way to express the negative character of a triangular fuzzy
number necessary in the construction of the modified graph G̃′;

third, we must create a fuzzy adaptation and modification of the Dijkstra algo-
rithm that can be applied to the graphs G̃ and G̃′ (G̃′ is a type V fuzzy graph
containing arcs with costs defined as negative triangular fuzzy numbers).

These new operations are an essential part of our contribution, and we will briefly
explain them in detail in section 5.3.

5.3 Remarkable concepts involved in the FSPPA

5.3.1 Necessary conditions under which a path is the short-
est in G̃

Given the total cost of a path, C̃P = (aP , bP , cP ), we intend to find the condition,
based on the values aP , bP , and cP , which allows us to compare the cost of two
paths. As in chapter 4, we base the comparison of fuzzy costs on the ranking
criterium proposed in [Yu and l. Q. Dat 2014] (briefly described in section 4.4.1).
Let C̃P1 and C̃P2 be fuzzy costs of paths P1 and P2, respectively. Without loss of
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generality, we assume that path P1 is shorter in terms of its total cost than path
P2. Therefore, for a fixed α ∈ [0, 1] the inequality 5.2 holds,

SαT (C̃P1) < SαT (C̃P2) (5.2)

where SαT (C̃P1) and SαT (C̃P2) are the total integrals of P1 and P2, respectively.
We can rewrite the inequality 5.2 based on the definition of total integral,

⇒αSR(C̃P1) + (1− α)SL(C̃P1) < αSR(C̃P2) + (1− α)SL(C̃P2)

⇒
(
SR(C̃P1)− SL(C̃P1)

)
−
(
SR(C̃P2)− SL(C̃P2)

)
<

1
α

(
SL(C̃P2)− SL(C̃P1)

)
(5.3)

where SL(C̃) and SR(C̃) are the left and right integrals of the fuzzy number C̃,
respectively.
Assuming that C̃P1 and C̃P2 are triangular fuzzy numbers, the replacement of their
left and right integrals by their respective expressions leads us to equation 5.4,((

bP1

2 + cP1

2 −Xmin

)
−
(
aP1

2 + bP1

2 −Xmin

))
−
((

bP2

2 + cP2

2 −Xmin

)
−

−
(
aP2

2 + bP2

2 −Xmin

))
<

1
α

(
aP2

2 + bP2

2 −Xmin −
aP1

2 −
bP1

2 +Xmin

)

⇒cP1

2 −
aP1

2 −
cP2

2 + aP2

2 <
1
α

(
aP2

2 + bP2

2 −
aP1

2 −
bP1

2

)
⇒(1− α)aP1 + bP1 + αcP1 < (1− α)aP2 + bP2 + αcP2 (5.4)

where C̃P1 = (aP1 , bP1 , cP1) and C̃P2 = (aP2 , bP2 , cP2).
Equation 5.4 is an operational condition to compare two triangular fuzzy num-
bers. We summarize this result in proposition 5.3.1.

Proposition 5.3.1.
Let P1 and P2, be two paths from a source vertex r to a destination vertex t
on a type V fuzzy graph G̃ = (V,E,C) whose costs are triangular fuzzy numbers
C̃P1 = [aP1 , bP1 , cP1 ] and C̃P2 = [aP2 , bP2 , cP2 ], respectively. The comparison among
both paths is performed based on their total integrals, calculated as in [Yu and
l. Q. Dat 2014]. For a fixed α ∈ [0, 1], P1 is shorter (equal) than P2 if and only
if,

(1− α)aP1 + bP1 + αcP1 < (=)(1− α)aP2 + bP2 + αcP2 (5.5)

Based on proposition 5.3.1, for a fixed α ∈ [0, 1], we can establish the necessary
condition for being a path S the shortest path between the vertices r and t in G̃.
Let C̃S be the cost of the shortest path S where C̃S = [aS, bS, dS] is a triangular
fuzzy number defined as the sum of the costs of all edges contained in S. C̃S is
less than the cost of any other path P between r and t. Equation 5.6 expresses
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the said above and is considered a necessary condition for S to be the shortest
path in G̃,

(1− α)aS + bS + αdS ≤ (1− α)aP + bP + αdP , ∀S, P ∈ G̃ : P 6= S (5.6)
where C̃P = [aP , bP , dP ] is the cost of path P .

5.3.2 Risk of Suboptimality in search of the shortest pair
of edge-disjoint paths

A method to solve the search for the shortest pair of edge-disjoint paths in a
graph would be to apply twice the FDA (proposed by us in chapter 4) in a
type V fuzzy graph. This algorithm finds the shortest path for a fixed pair of
source and destination vertices in the graph. Then, the edges constituting the
path are eliminated, and in the resultant modified graph, the algorithm finds
a new shortest path when it is newly applied. This methodology solves the
problem created when some links get damaged, and the path containing them is
interrupted. Thus, the damaged path can not be used to search the other edge-
disjoint path. However, applying this algorithm could lead us to a suboptimality
when the problem is to find, besides the shortest path, an alternative one, so the
information is divided into two parts and sent simultaneously. In the following,
we show an example where we cannot get the optimal solution for the shortest
pair of edge-disjoint paths problem when applying the above described method..
Example 5.3.2.1.
Figure 5-1 shows a type V fuzzy graph G̃, where the costs on edges are triangular
fuzzy numbers and r and t are the source and destination vertices, respectively.
After the first run of the search algorithm, we base our approach on the algo-
rithm’s analysis but adapt this to the fuzzy character of the edges cost functions
for the comparison of paths. We find in G̃ the shortest path P1 = 〈r, v2, v3, v4, t〉
with cost C̃P1 = (1, 1, 1) + (1, 2, 3) + (1, 2, 3) + (1, 1, 1) = (4, 6, 8), (blue path). Re-
moving the edges of path P1 on G̃, we obtain a modified graph. In this new graph,
after applying once again the search algorithm, we verify that the shortest path
is P2 = 〈r, v6, v2, v7, t〉 with cost C̃P2 = (1, 1, 1) + (1, 1, 1) + (1, 2, 3) + (3, 4, 6) =
(6, 8, 11) (green path). Therefore, we obtain the pair of edge-disjoint paths (P1, P2)
with total cost C̃P1,P2 = C̃P1 + C̃P2 = (4, 6, 8) + (6, 8, 11) = (10, 14, 19).
Nevertheless, if we consider the pair (P3, P4) of edge-disjoint paths where P3 =
〈r, v6, v2, v7, v4, t〉 with C̃P3 = (1, 1, 1) + (1, 1, 1) + (1, 2, 3) + (1, 2, 4) + (1, 1, 1) =
(5, 7, 10) and P4 = 〈r, v2, v3, v5, t〉 with C̃P4 = (1, 1, 1) + (1, 1, 1) + (1, 2, 3) +
(1, 2, 4) = (4, 6, 9) (figure 5-2) we can easily verify that the total cost C̃P3,P4 =
C̃P3 + C̃P4 = (9, 13, 19) is smaller than C̃P1,P2.

The total integrals for the total costs of both pairs of paths C̃P1,P2 and C̃P3,P4,
depending on the index α are

SαT (C̃P1,P2) = 9
2α + 12 and SαT (C̃P3,P4) = 5α + 11
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r v2 v3 v4 t

v6 v7

v5

1 (1, 2, 3) (1, 2, 3) 1

(7, 8
, 11)

1 1

(2, 4, 6)

(1, 2, 3)

(1
, 2
, 4

)

(3,
4, 6

)

1
(1, 2, 4)

Figure 5-1: Graph G̃ with the pair of edge-disjoint paths (P1, P2).

r v2 v3 v4 t

v6 v7

v5

1 (1, 2, 3) (1, 2, 3) 1

(7, 8
, 11)

1 1

(2, 4, 6)

(1, 2, 3) (1
, 2
, 4

)

(3,
4, 6

)

1
(1, 2, 4)

Figure 5-2: Graph G̃ with the pair of edge-disjoint paths (P3, P4).

respectively. Thus, we can conclude that ∀α ∈ [0, 1], SαT (C̃P3,P4) < SαT (C̃P1,P2)
and, therefore, C̃P3,P4 ≺ C̃P1,P2. This means that the pair of edge-disjoint paths
(P1, P2) found is not an optimal solution.

Our goal is to find the pair of edge-disjoint paths whose sum of costs is the
minimum, so the solution obtained in the example is not optimal. Therefore, we
will dedicate ourselves to finding an algorithm that solves the stated problem and
avoids the risk of suboptimality.

5.3.3 General structure for the shortest pair of edge-disjoint
paths

This section briefly describes the appropriate structure that the shortest pair of
edge-disjoint paths should have. Assuming that S is the shortest path between
the pair of vertices r and t, the following notations are necessary to give the valid
configurations,

S: Set of all paths with some segments overlapping with path S,

S′: Set of all paths without any segment overlapping with path S,
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P : Path that belongs to S,

P ′: Path that belongs to S′,

where we will call a segment of a path to an edge or several consecutive edges
that belong to the path.
We denote γ1× γ2 as a pair of paths in G̃, where “×” stands for the combination
of individual paths γ1 and γ2. Due to the condition of edge-disjointness, γ1 × γ2
has one of the structures in expression 5.7,

(γ1 × γ2)edge-disjoint = {S × P ′, P1 × P2, P
′
1 × P ′2, P × P ′} (5.7)

For simplicity, we consider a pair of paths P1 × P2 where each path contains a
single (but different) segment of path S. From this condition, there exist three
possible cases about the paths Pi (i = 1, 2) and P ′:

(a) Only one of these two segments is at one of the endpoint vertices.

(b) Neither of the two segments is at an endpoint vertex.

(c) Each of these segments is at an endpoint vertex.

We also assume that the paths constituting the pair P1×P2 do not intersect each
other in any vertex.
In the following, we will analyze the appropriate topological structure of the
shortest pair of edge-disjoint paths, both when the shortest path S is unique and
when other paths have equal cost.

When path S is unique

When S is the only shortest path in G̃, neither configurations P ′1 × P ′2 or P × P ′
can be candidates to the shortest pair of edge-disjoint paths. It is easy to notice
that the total cost of each of these configurations will always be larger than the
cost of the configuration S × P ′ with the structure shown in figure 5-3.
Finally, the shortest pair of edge-disjoint paths have one of the two configurations

r v1 v2 v2 v2 vn t

v2

v2

v2 v2v2

v2 v2

S
P ′

Figure 5-3: Pair configuration S × P ′ where P ′ intercepts path S at certain number
of vertices and has no overlapping edges with S.
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in equation 5.8,
(γ1 × γ2) edge-disjoint

shortest pair
∈ {S × P ′, P1 × P2} (5.8)

where paths P1 and P2 compose the configuration P1 × P2 described in case (c).
A break is a segment of path S that does not belong to either of the paths forming
the pair of paths but is adjacent at each endpoint vertices to an edge of each path.
Figures 5-4(a) and 5-4(b) show a particular example of valid configurations for
the pairs P1 × P2 and S × P ′, respectively. Figure 5-4(a) shows the shortest
path S =< r, v1, . . . , v2, v3, . . . , v4, v5, . . . , v6, t > where the segments (v1, . . . , v2),
(v3, . . . , v4) and (v5, . . . , v6) are breaks. In figure 5-4(b), path S is one of the
paths that form the pair. The other path, P ′, does not contain any segment of
S but intersects it at the vertices v1, v2, and v3.

r v1 v2 v3 v4 v5 v6 t

v7 v8

v9 v10
S
P1
P2

(a) Configuration P1 × P2

r v1 v2 v3 t

v4 v5

v6 v7
S
P ′

(b) Configuration S × P ′

Figure 5-4: Valid configurations for the shortest pair of edge-disjoint paths when the
shortest path S is unique.

To summarize, the shortest pair of edge-disjoint paths when S is the only shortest
path in G̃ is among the valid configurations given in equation 5.8.

When path S is not unique

Let us assume there exist a path S ′ such that C̃S′ = C̃S. If S ′ is edge-disjoint with
S, then the shortest pair of edge-disjoint paths would be S×S ′. Throughout this
section, we will assume that, in addition to S, there is a second shortest path S ′
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with one or more common edges with S. In this case, besides the valid configu-
rations when the shortest path is unique (P1 × P2 as shown in figure 5-4(a) and
S × P ′ as shown in figure 5-4(b)), P × P ′ and additional configurations P1 × P2
(satisfying the cases (a) and (b) in section 5.3.3) are also valid.
Figure 5-5 shows an example where an additional configuration of type P1 × P2
that satisfies the case (a) is a valid configuration when S is not unique. Let
S = 〈r, v1, v2, v3, t〉 and S ′ = 〈r, v4, v1, v2, v3, t〉 be the shortest paths, represented
in black and pink lines, respectively. S and S ′ have common edges (v1, v2), (v2, v3)
and (v3, t). Let us consider the paths P1 and P3, represented in orange and green
lines in 5-5(a), respectively, and path P2 in a blue line shown in 5-5(b). The pair
P1 × P3 is edge-disjoint, and only P3 overlaps the shortest path S in the edge
(v3, t) (case (a)). On the other hand, the pair P2 × P3 is also edge-disjoint, but
both paths P2 and P3 overlap S in the edges (r, v1) and (v3, t), respectively (case
(c)). Since path S ′ has the same cost as S, P1×P3 has the same total cost as the
pair P2 × P3. Therefore, the pair P1 × P3, which satisfies case (a), is also valid
for the shortest pair of edge-disjoint paths.
Figure 5-6 shows an example of another valid configuration structured as in case

r v1 v2 v3 t

v4

v6

v5

S
S′

P1
P3

(a) Valid configuration P1 × P3 where only P3 overlaps S in
a segment at one of its endpoint vertices (case (a))

r v1 v2 v3 t

v4

v6

v5

S
S′

P2
P3

(b) Configuration P2 × P3 with the same structure as in
figure 5-4(a) and the same total cost as P1 × P3.

Figure 5-5: Example of an additional valid configuration satisfying the case (a) for
the pair of edge-disjoint paths when the shortest path S is not unique.

.
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(b) when S is not unique. S = 〈r, v1, v2, v3, v4, t〉 and S ′ = 〈r, v5, v1, v2, v3, v4, v8, t〉
are the shortest paths, both with the same cost and represented in black and pink
lines, respectively. Both paths have the common segment 〈v1, v2, v3, v4〉. In the
pair P1 × P2 shown in 5-6(a), with P1 and P2 in orange and green lines, respec-
tively, neither of the paths overlap S at its endpoint vertices (case (b)). On the
other hand, the pair P3×P4 shown in 5-6(b) is also edge-disjoint, but both paths
P3 and P4 overlap S in the edges (r, v1) and (v4, t), respectively (case (c)). Notice
that, since path S ′ has the same cost as S, P1 × P2 has the same total cost as
P3×P4. Therefore, the pair P1×P2, which satisfies case (b), is also valid for the
shortest pair of edge-disjoint paths.
Figure5-7 shows an example of a configuration P × P ′, which can also be

r v1 v2 v3 v4 t

v5

v6

v7

v8
S
S′

P1
P2

(a) Valid configuration P1 × P2 where neither of its paths overlaps S
in a segment at its endpoint vertices (case (b))

r v1 v2 v3 v4 t

v5

v6

v7

v8
S
S′

P3
P4

(b) Configuration P3 × P4 with the same structure as in figure 5-4(a)
and the same total cost as P1 × P2

Figure 5-6: Example of an additional valid configuration satisfying the case (b) for
the shortest pair of edge-disjoint paths when the shortest path S is not unique.

.

valid for the shortest pair of edge-disjoint paths when S is not unique. If path
P = 〈r, v1, v2, v3, v6, t〉 has the same cost as path S = 〈r, v1, v2, v3, v4, t〉, we can
define P as S ′. Then path S is not unique. Additionally, P has the common seg-
ment 〈v1, v2, v3〉 with S. Therefore, the pair P ×P ′, where path P ′ is represented
in blue lines, has the same total cost as the pair S × P ′. Notice that (S × P ′)
has the same structure as the valid configuration shown in figure 5-4(b) when S
is unique.
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To summarize, when S is not the only shortest path in G̃, besides the configu-

r v1 v2 v3 v4 t

v5

v7

v6

v8 S
S′ = P
P ′

Figure 5-7: Example of a valid configuration P × P ′ for the shortest pair of edge-
disjoint paths when S is not unique.

rations that are valid when S is unique (P1×P2 and S×P ′ shown in figure 5-3),
the pair P ×P ′ and additional configurations of type Pi×Pj, i, j ∈ N, i, j 6= 1, 2
also become authentic. However, the configuration P × P ′ is valid with equal
total cost as S × P ′, and any of the additional valid configurations Pi × Pj has
the same total cost as the pair P1×P2. Therefore, when S is not unique, we can
consider the configurations given in equation 5.8 as a sufficient solution for the
shortest pair of edge-disjoint paths. Section 5.3.4 provides a detailed explanation
of the total cost for the configurations P1 × P2 and S × P ′.

5.3.4 Total cost of the shortest pair of edge-disjoint paths
Once the topology of the shortest pair of edge-disjoint paths is given, we analyze
in this section the total cost of the pair of paths, whether it has the configuration
P1 × P2 or S × P ′. For this purpose, we must pay special attention to the fuzzy
character of the graph.
Given the configuration P1×P2, we will consider the coalescence of the endpoint
vertices at each break. We acknowledge that this transformation is not physically
possible, but from a formal or abstract perspective, we refer to it. For instance, in
the configuration P1×P2 shown in figure 5-4(a), segments (v1, . . . , v2), (v3, . . . , v4)
and (v5, . . . , v6) are the breaks of the pair of paths. Thus, the coalescence of ver-
tices v1 and v2, vertices v3 and v4, and vertices v5 and v6 lead us to the vertices
v1, v2, and v3 in the configuration S × P ′ in figure 5-4(b), respectively. Notice
that these vertices belong to path S and have, at least, degree 4. Therefore, let
us assume that both paths intercept in a vertex with degree 4 of path S by the
coalescence of the endpoint vertices at each break.
With the transformation exposed above, we intend to find a correct way to de-
scribe, only through the costs of the edges, the assumption of coalescence between
the endpoint vertices on breaks. To do this, we use the term complementary of
a triangular fuzzy number whose detailed definition the reader can find in chap-
ter 2.

99



CHAPTER 5. SHORTEST PAIR OF EDGE-DISJOINT PATHS IN A COMMUNICATION
NETWORK. A FUZZY APPROACH

Figure 5-8 shows the edges and vertices that belong to paths P1, P2, and S. We
replace each edge (i, j), i, j ∈ N in path S by two overlapped arcs with oppo-
site directions,

−−−−→
(vi, vj) and

−−−−→
(vj, vi). Thus, from a topological vision, besides S,

we obtain the auxiliary path Paux = 〈r, v7, v2, v1, v9, v4, v3, v8.v6, v5, v10, t〉. Notice
that each of the oppositely directed arcs in every break belongs to S and Paux,
respectively.

r v1 v2 v3 v4 v5 v6 t

v7 v8

v9 v10

C̃
(v

7 ,v
2 )

C̃
(v1 ,v9 ) C̃ (v9,

v4)

C̃ (v3,
v8) C̃

(v8 ,v6 )

C̃
(v5 ,v10 ) C̃

(v
10
,t

)

S
Paux

C̃(r,v1)

C̃(v2,v1)

C̃(v1,v2) C̃(v2,v3)

C̃(v4,v3)

C̃(v3,v4) C̃(v4,v5)

C̃(v6,v5)

C̃(v5,v6) C̃(v6,t)

Figure 5-8: Paths S and Paux are created after replacing the edges in S with oppositely
directed arcs.

In path S, the cost of each segment
−−−−→
(vi, vj) coincides with the cost of its corre-

sponding edge (vi, vj), and its opposed arc
−−−−→
(vj, vi) has a cost equal to the comple-

mentary of the cost of (vi, vj). For instance, lets take the segments (v1, . . . , v2),
(v3, . . . , v4) and (v5, . . . , v6) in figure 5-8. Notice that these segments are the
breaks for the valid configuration P1×P2 referred to in figure 5-4(a). Also, these
segments are, in fact, the common segments between the paths S and Paux. Due
to the arithmetic properties of fuzzy numbers, assuming the cost of edges in G̃ as
triangular fuzzy numbers, the sum of the costs of edges in a segment result in a
triangular fuzzy number. Therefore, without loss of generality, in the rest of this
section we will assume the segments (v1, . . . , v2), (v3, . . . , v4) and (v5, . . . , v6) as
single edges (v1, v2), (v3, v4) and (v5, v6), respectively, with cost defined as a trian-
gular fuzzy number. Denoting C̃(v1,v2) = (a1,2, b1,2, c1,2), C̃(v3,v4) = (a3,4, b3,4, c3,4)
and C̃(v5,v6) = (a5,6, b5,6, c5,6), their oppositely directed arcs will have the costs
described in equation 5.9,

C̃−−−−→(v1,v2) = C̃(v1,v2) = (a1,2, b1,2, c1,2) ⇒ C̃−−−−→(v2,v1) = −C̃(v1,v2)

= (−c1,2,−b1,2,−a1,2)
C̃−−−−→(v3,v4) = C̃(v3,v4) = (a3,4, b3,4, c3,4) ⇒ C̃−−−−→(v4,v3) = −C̃(v3,v4)

= (−c3,4,−b3,4,−a3,4)
C̃−−−−→(v5,v6) = C̃(v5,v6) = (a5,6, b5,6, c5,6) ⇒ C̃−−−−→(v6,v5) = −C̃(v5,v6)

= (−c5,6,−b5,6,−a5,6)

(5.9)

For each break (vi, vj), the sum of the costs of its corresponding opposite arcs
results in a new triangular fuzzy number described in equation 5.10,

C̃(vi,vj) +(−C̃(vi,vj)) = (ai,j−ci,j, 0, ci,j−ai,j), i = {1, 3, 5}, j = {2, 4, 6} (5.10)
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The fuzzy number (ai,j−ci,j, 0, ci,j−ai,j) belongs to the class of special triangular
fuzzy numbers called N-zero fuzzy number, defined in definition 2.4.25. More
precisely, it is an N2-zero fuzzy number since ai,j − ci,j < 0 < ci,j − ai,j. Due to
the interpretation of N-zero fuzzy numbers, we say that the sum of the costs of
both arcs is a “ value around zero”. Thus, the cancellation of the costs of both
arcs is also subjected to uncertainty.
The total cost of the pair S × Paux is defined in expression 5.11,

C̃S×Paux = C̃S + C̃Paux (5.11)

= C̃(r,v1) + C̃(v1,v2) + C̃(v2,v3) + C̃(v3,v4) + C̃(v4,v5) + C̃(v5,v6) + C̃(v6,t)+

+ C̃(r,v7) + C̃(v7,v2) + C̃−−−−→(v2,v1) + C̃(r,v7) + C̃(v7,v2) + C̃(v2,v1) + C̃(v1,v9)+

+ C̃(v9,v4) + C̃−−−−→(v4,v3) + C̃(v3,v8) + C̃(v8,v6) + C̃−−−−→(v6,v5) + C̃(v5,v10) + C̃(v10,t)

By the replacement of C̃−−−−→(v2,v1), C̃−−−−→(v4,v3), and C̃−−−−→(v6,v5) with their corresponding com-
plementary of the cost of the associated edge, C̃S×Paux contains the total cost
of the configuration P1 × P2, C̃P1×P2 , as shown in figure 5-9 and described in
equation 5.12.

r v1 v2 v3 v4 v5 v6 t

v7 v8

v9 v10

C̃ (r
,v

7
)

C̃
(v

7 ,v
2 )

C̃(v2,v1)

C̃
(v1 ,v9 ) C̃ (v9,

v4)

C̃ (v3,
v8) C̃

(v8 ,v6 )

C̃
(v5 ,v10 ) C̃

(v
10
,t

)

S
Paux
P1
P2

C̃(v2,v3) C̃(v6,t)C̃(r,v1) C̃(v4,v5)C̃(v1,v2)

C̃(v4,v3)

C̃(v3,v4)

C̃(v6,v5)

C̃(v5,v6)

Figure 5-9: The pair P1 × P2 is included in S × Paux configuration

C̃S×Paux = C̃(r,v7) + C̃(v7,v2) + C̃(v2,v3) + C̃(v3,v8) + C̃(v8,v6) + C̃(v6,t) + C̃(r,v1)+

+ C̃(v1,v9) + C̃(v9,v4) + C̃(v4,v5) + C̃(v5,v10) + C̃(v10,t)+

+ C̃(v1,v2) + (−C̃(v1,v2)) + C̃(v3,v4) + (−C̃(v4,v3)) + C̃(v5,v6) + (−C̃(v6,v5))

= C̃P1×P2 + C̃(v1,v2) + (−C̃(v1,v2)) + C̃(v3,v4) + (−C̃(v3,v4)) + C̃(v5,v6)+

+ (−C̃(v5,v6)) (5.12)

The remaining members in equation 5.12 correspond to the sum of the costs of
each pair of oppositely directed arcs in the breaks (v1, v2), (v3, v4), and (v5, v6).
The fuzzy number resulting from this summation has a structure corresponding
to the N2-zero triangular fuzzy numbers described in equation 5.10, as is shown
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in equation 5.13,

C̃S×Paux = C̃P1×P2 + (a1,2 − c1,2, 0, c1,2 − a1,2) + (a3,4 − c3,4, 0, c3,4 − a3,4)+

+ (a5,6 − c5,6, 0, c5,6 − a5,6)

= C̃P1×P2+

+
(
a1,2 + a3,4 + a5,6 − c1,2 − c3,4 − c5,6, 0, c1,2 + c3,4 + c5,6 − a1,2−

− a3,4 − a5,6

)
(5.13)

where a1,2 + a3,4 + a5,6 − c1,2 − c3,4 − c < 0 < c1,2 + c3,4 + c5,6 − a1,2 − a3,4 − a5,6

We can generalize the result in equation 5.13. Let us assume we have a pair
S × Paux where a valid configuration for the shortest pair of edge-disjoint paths
with structure P1 × P2 is included. Also, let us assume there are M breaks
between the paths P1 and P2. The cost of S × Paux is equal to the sum of the
total cost of P1×P2 and an N2-zero triangular fuzzy number, which corresponds
to the sum of the costs of the overlapping arcs associated with each break. When
there are no breaks (M = 0), the shortest pair of edge-disjoint paths is of type
S × P ′ and the cost of the pair S × Paux is exactly equal to the cost of S × P ′.

C̃S×Paux =


C̃P1×P2 +

M∑
m=1

(a− c, 0, c− a)m, if M 6= 0

C̃S×P ′ , if M = 0
(5.14)

By arithmetic properties of triangular fuzzy numbers, the sum of the N2-zero tri-
angular fuzzy numbers that correspond to each break is also an N2-zero triangular
fuzzy number, as is described in equation 5.15,

M∑
m=1

(a− c, 0, c− a)m =
(

M∑
m=1

(a− c)m, 0,
M∑
m=1

(c− a)m
)

=
(

M∑
m=1

am −
M∑
m=1

cm, 0,
M∑
m=1

cm −
M∑
m=1

am

)

= (AM − CM , 0, CM − AM) (5.15)

where AM =
M∑
m=1

am and CM =
M∑
m=1

cm.

To summarize, once we find the paths S and Paux, we calculate the total cost
of S × Paux and search for breaks. We perform the summation of the costs of
its corresponding oppositely directed arcs for each break, obtaining an N2-zero
fuzzy number. Then, we apply the equation 5.15, where the sum of the M N2-
zero triangular fuzzy numbers is implemented. At last, we calculate the total

102



CHAPTER 5. SHORTEST PAIR OF EDGE-DISJOINT PATHS IN A COMMUNICATION
NETWORK. A FUZZY APPROACH

cost of the shortest pair of edge-disjoint paths γ1×γ2 described in expression 5.8,
according to equation 5.16,

C̃γ1×γ2 =


C̃S×Paux − (AM − CM , 0, CM − AM) if M 6= 0

(γ1 × γ2 = P1 × P2)

C̃S×Paux
if M = 0

(γ1 × γ2 = S × P ′)

(5.16)

Returning to the example in section 5.3.2,

Example 5.3.4.1.
The shortest path of G̃ is S = 〈r, v2, v3, v4, t〉 with C̃S = (4, 6, 8). Replacing
each edge in S by its oppositely directed arc, we obtain the new shortest path
Paux = 〈r, v6, v2, v7, v4, v3, v5, t〉 with C̃Paux = (3, 7, 13). We observe that both paths
contain the oppositely directed arcs in the edge (v3, v4), making this a break.
Thus, we get the valid configuration P1 × P2 with P1 = 〈r, v2, v3, v5, t〉 and P2 =
〈r, v6, v2, v7, v4, t〉. Figure 5-10 shows the pairs S×Paux and P1×P2 and the costs
of each edge and arc.

r v2 v3 v4 t

v6 v7

v5

(7, 8
, 11)

(2, 4, 6)

(3, 4
, 6)

1
(1, 2, 4)

(1, 2, 3)1 (1, 2, 3) 1

1 1

(1, 2, 3) (1
, 2
, 4

)

(−3,−2,−1)

S
Paux
P1
P2

Figure 5-10: Graph G̃ with the paths S, Paux, P1 and P2.

Applying equation 5.16, we compute the total cost of P1 × P2,

C̃P1×P2 = C̃S×Paux −
[
C̃−−→(3,4) + C̃−−→(4,3)

]
(7, 13, 21)− (−2, 0, 2)

= (9,13,19)

P1 × P2 is the shortest pair of edge-disjoint paths already found by us in exam-
ple 5.3.2.1. We compute C̃P1×P2 using the pair S × Paux and the break (v3, v4)
included in the shortest pair of edge-disjoint paths.

103



CHAPTER 5. SHORTEST PAIR OF EDGE-DISJOINT PATHS IN A COMMUNICATION
NETWORK. A FUZZY APPROACH

5.3.5 Definition of the modified graph G̃′

From the analysis made in previous sections, finding the shortest pair of edge-
disjoint paths in G̃ requires, at first, the search of the shortest path S. Secondly,
it is necessary to find a second path Paux. Paux is the shortest path found in a new
mixed graph, denoted as G̃′ = (V,A′,C′), which is a modification of the original
G̃ and is defined as follows:

• Set V of vertices is the same as in the original graph.

• Edges and arcs in A′ are defined as: each edge (vi, vj) belonging to the path
S in G̃ is replaced by the arc

−−−−→
(vj, vi). The rest of the edges in G̃ remain the

same.

• Costs in C′ are defined as: the cost of each arc is the complementary of
the corresponding edge cost in G̃. The costs of the remaining edges are the
same as in G̃.

Under the conditions stated above, path Paux has segments overlapping with S
where:

(i) On the overlapped segments, the arcs of Paux in G̃′ are oriented towards r,
and the arcs of the shortest path S in G̃ are oriented towards t (oppositely
directed arcs).

(ii) We define the cost of each arc in Paux as the complementary of the original
cost (triangular fuzzy number) of its corresponding edge in G̃.

5.4 Algorithm to find the shortest pair of edge-
disjoint paths

This section proposes an algorithmic solution to searching the shortest pair of
edge-disjoint paths in a type V fuzzy graph. So far, we described the structure
that the pair of paths must have, together with its total cost. Also, to obtain the
pair of paths, it is necessary to find the path Paux on a new graph G̃′. This graph
is a modification of the original graph. We can now create an algorithm based
on our concepts capable of finding a solution to the problem.
We obtain the shortest pair of edge-disjoint paths with fuzzy costs by applying
twice an algorithm that searches for the shortest path in a type V fuzzy graph.
The first run is made on G̃, where we obtain the shortest path S. The second
run is performed on G̃′ and finds the path Paux that must satisfy the conditions
(i)-(ii). Once we complete both runs of the algorithm, the pair γ1×γ2 is obtained
by either of two cases: first, by deleting the overlapped segments between paths
S and Paux (breaks) resulting in the pair P1 × P2; and second, in case there are
no breaks, the pair is S × P ′ where P ′ = Paux.
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5.4.1 Conditions for the nonexistence of negative cycles
Since we define the cost of edges and arcs as triangular fuzzy numbers, in the
following, we will name this as triangular fuzzy cost without loss of generality.
Also, we will call the total cost of a cycle to the sum of the costs of its edges and
arcs.
The costs of the introduced arcs in G̃′ are negative triangular fuzzy numbers.
Thus, cycles whose total cost is a negative triangular fuzzy number (negative
cycles) could be possible. Let us assume that a standard algorithm for the search
of the shortest path in a graph is applied on G̃′, and for the comparison of the costs
of the paths, we use the ranking method proposed by [Yu and l. Q. Dat 2014].
Then, given an arbitrary α, if a path falls into a negative cycle, at every tour
made, chains with smaller fuzzy numbers could be created, leading to the non-
convergence of the algorithm. Therefore, our focus lies on finding the conditions
under which graph G̃′ has no negative cycles.
Any cycle in G̃′ is either:

Simple cycle: Cycle composed only of edges with non-negative triangular fuzzy
costs.

Mixed cycle: Cycle composed of arcs with negative triangular fuzzy costs replac-
ing the edges of the shortest path S in G̃ and edges of G̃′ with non-negative
triangular fuzzy costs. According to its total cost, a mixed cycle can be
either positive or negative.

Our goal is to find the conditions under which any mixed cycle in G̃′ is guaranteed
to be non-negative. In other words, under which circumstances the total cost of
every mixed cycle in G̃′ is a non-negative triangular fuzzy number.

Non-negative mixed cycle in G̃′

Figure 5-11(a) shows an example of a mixed cycle in G̃′ wherein its corresponding
original graph G̃ the shortest path is S = 〈r, . . . , v1, v2, v3, v4, v5, v6, . . . , t〉. Each
of the edges (v1, v2) and (v4, v5), since they belong to path S, are replaced by two
opposite directed arcs whose costs correspond to the value of the original edge
cost and the complementary of this value, respectively. The signs “+” and “-”
on edges and arcs represent a non-negative and negative triangular fuzzy cost,
respectively. Thus, the mixed cycle in figure 5-11(a) is equivalent to the set of
cycles in figure 5-11(b). Arcs

−−−−→
(v2, v1) and

−−−−→
(v5, v4) do not belong to the mixed

cycle; they are part of a new cycle called a sub-mixed cycle.

Sub-mixed cycle : Cycle composed of a set of contiguous arcs with non-negative
fuzzy cost, and another set of contiguous arcs, with negative fuzzy cost,
directed towards the source vertex.

In figure 5-11(b), arcs
−−−−→
(v2, v1),

−−−−→
(v3, v2),

−−−−→
(v4, v3),

−−−−→
(v5, v4), and

−−−−→
(v6, v5) are part of

the sub-mixed cycle (red cycle). On the other hand, arcs
−−−−→
(v1, v2) and

−−−−→
(v4, v5),
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both with positive triangular fuzzy costs, are part of simple cycles (green cycles).
Consequently, the mixed cycle in figure 5-11(a) contains a set of contiguous arcs
with negative triangular fuzzy cost included in a sub-mixed cycle and a set of
edges with positive triangular fuzzy cost which are part of simple cycles. In other
words, any mixed cycle in G̃′ is composed of a sub-mixed cycle and a set of edges
with positive triangular fuzzy costs that are not part of the sub-mixed cycle. To
guarantee the non-negativity of a mixed cycle, we will find under which conditions
the included sub-mixed cycle is non-negative.

r v1 v1 v2 v3 v4 v5 v6 v1 t

v1

v1 v1

+

−

+

−

+ +

− −−

++
+

+

Mixed cycle

(a)

r v1 v1 v2 v3 v4 v5 v6 v1 t

v1

v1 v1

+

−

+

−

+ +

− −−

+
+

+
+

Sub-mixed Cycle
Simple cycles

(b)

Figure 5-11: Mixed cycle in G̃′ composed of edges and arcs from a sub-mixed cycle
and edges from simple cycles.

Non-negative sub-mixed cycle G̃′

Let us consider a sub-mixed cycle in G̃′ with the structure shown in figure 5-
11(b), composed of J edges and I arcs, with I, J ∈ N.
Below, we define the total cost of the sub-mixed cycle.
The following paths are included in the sub-mixed cycle:

• S = S(vn,vm): subpath of S from vn to vm composed by I arcs.
We denote (aSi , bSi , dSi ) with i = 1, . . . I the cost of each arc in S. The total
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cost of S is defined in equation 5.17.

C̃S = C̃arc1 + C̃arc2 + . . .+ C̃arcI

= (aS1 , bS1 , dS1 ) + (aS2 , bS2 , dS2 ) + . . .+ (aSI , bSI , dSI )

=
(

I∑
i=1

aSi ,
I∑
i=1

bSi ,
I∑
i=1

dSi

)

=
(
AS , BS , DS

)
(5.17)

where AS =
I∑
i=1

aSi , BS =
I∑
i=1

bSi , DS =
I∑
i=1

dSi and AS ≤ BS ≤ DS .

• S− = S(vm,vn): subpath of S from vm to vn.
The total cost of S− is the complementary of C̃S as the result of the sum
of the complementary cost of each arc in S, this is,

C̃S− = (−dS1 ,−bS1 ,−aS1 ) + (−dS2 ,−bS2 ,−aS2 ) + . . .+ (−dSI ,−bSI ,−aSI )

=
(
−

I∑
i=1

dSi ,−
I∑
i=1

bSi ,−
I∑
i=1

aSi

)

=
(
−DS ,−BS ,−AS

)
= −C̃S (5.18)

• P(vn,vm): Path between the vertices vn and vm included in the sub-mixed
cycle that does not belong to S. Let J be the number of edges in P(vn,vm)
and (aPj , bPj , dPj ) the cost of each edge in P(vn,vm), the total cost of this path
is defined in equation 5.19,

C̃P(vn,vm) =
 J∑
j=1

aPj ,
J∑
j=1

bPj ,
J∑
j=1

dPj

 =
(
AP , BP , DP

)
,

with AP ≤ BP ≤ DP

(5.19)

Finally, the sub-mixed cycle is created by the paths S− and P(vn,vm), as fig-
ure 5-12 shows.

The total cost of the sub-mixed cycle is the sum of the total cost of the paths
S− and P(vn,vm), i.e.,

C̃

(
sub-mixed

cycle

)
= C̃P(vn,vm) + C̃S−

=
(
AP , BP , DP

)
+
(
−DS ,−BS ,−AS

)
=
(
AP −DS , BP −BS , DP − AS

)
(5.20)
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r vn vn v2 v3 v4 v5 vm v1 t

v1

+

−

+

−

+ +

+

−

+

−

+

−

S

S−

P(vn,vm)

Figure 5-12: Paths S− and P(vn,vm) form the sub-mixed cycle in graph G̃′.

where AP −DS < BP −BS < DP − AS .
As a remark we have that DP − AS ≥ 0:

Proof.
(Proof by contradiction)
Let us assume that DP − AS < 0
⇒ DP < AS

⇒ 0 ≤ AP ≤ BP ≤ DP <
(assumption)

AS ≤ BS ≤ DS

⇒ AP < AS

(I)
, BP < BS

(II)
and DP < DS

(III)

In order to obtain the expression of the Total Integral for C̃P(vn,vm) and C̃S ,

⇒ first, we multiply (III) by α ∈ [0, 1] and (I) by (1− α) ∈ [0, 1]
⇒ (1− α)AP ≤ (1− α)AS

(IV)
and αDP ≤ αDS

(V)

⇒
Performing the sum of the inequalities (II), (IV), and (V), we obtain the inequal-
ity 5.21,

(1− α)AP +BP + αDP < (1− α)AS +BS + αDS (5.21)
meaning that C̃P(vn,vm) ≺ C̃S .
However, S is the shortest path of G, then by theorem A.0.1 its subpath S is also
the shortest path from vn to vm. Therefore the inequality 5.21 does not hold.
Contradiction!
⇒ DP − AS ≥ 0

Therefore, C̃
(

sub-mixed
cycle

)
is either an N -zero triangular fuzzy number or
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a positive triangular fuzzy number, i.e.:

If AP −DS


< 0 and


BP −BS < 0 ⇒ N1-zero triangular fuzzy number
BP −BS = 0 ⇒ N2-zero triangular fuzzy number
BP −BS > 0 ⇒ N3-zero triangular fuzzy number

≥ 0 ⇒ positive triangular fuzzy number

N -zero fuzzy numbers are not characterized as positive or negative (Chapter 2).
Therefore, we need to establish a criterion to identify the total cost of the sub-
mixed cycle as non-negative. Definition 5.4.1 exposes the conditions under which
a sub-mixed cycle is non-negative.

Definition 5.4.1. Non-negative sub-mixed cycle
Given the type V fuzzy mixed graph G̃′, we say that a sub-mixed cycle with a
structure as shown in figure 5-12 is non-negative if the inequality 5.22 holds,

SαT

(
C̃

(
sub-mixed

cycle

))
≥ SαT ((0, 0, 0)) (5.22)

for, at least, one value of α ∈ [0, 1].

Following the above definition, we compute the Total Integral for the total
cost of a sub-mixed cycle and the real number 0 (which could also be written in
terms of a triangular fuzzy number as (0, 0, 0)), this is,

SαT

(
C̃

(
sub-mixed

cycle

))
= αSL

(
C̃

(
sub-mixed

cycle

))
+ (1− α)SR

(
C̃

(
sub-mixed

cycle

))

= α

(
BP −BS

2 + DP −AS

2 −Xmin

)
+

=(1− α)
(
AP −DS

2 + BP −BS

2 −Xmin

)

= α

(
DP −AS

2

)
+ BP −BS

2 + (1− α)
(
AP −DS

2

)
−Xmin

(5.23)

and

SαT ((0, 0, 0)) = α(0 + 0−Xmin) + (1− α)(0 + 0−Xmin) F

= −Xmin (5.24)

where Xmin = inf{(AP −DS), 0} ≤ 0 and α ∈ [0, 1].

Replacing the expressions of SαT
(
C̃

(
sub-mixed

cycle

))
and SαT ((0, 0, 0)) in 5.22, we
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obtain that any sub-mixed cycle in G̃′ is non-negative for the values of α that
make the inequality 5.25 to hold,

(1− α)(AP −DS) +BP −BS + α(DP − AS) ≥ 0 (5.25)

Given S(vn,vm) to be the shortest path from vn to vm, the inequality 5.26 is true:

C̃P(vn,vm) � C̃S(vn,vm) (5.26)

which can also be written in terms of the Total Integral for the cost of paths
P(vn,vm) and S(vn,vm), i.e.,

⇒ SαT
(
C̃P(vn,vm)

)
≥ SαT

(
C̃S(vn,vm)

)
for some α ∈ [0, 1]

⇒ (1− α)AP +BP + αDP ≥ (1− α)AS +BS + αDS

⇒ (1− α)AP +BP + αDP ≥ AS − αAS +BS + αDS

⇒ (1− α)AP − αDS + BP −BS + αDP − AS + αAS ≥ 01

⇒ (1− α)AP − αDS+2αDS −DS − 2αDS + DS + BP −BS+

+ αDP − AS + αAS ≥ 0, since DS ≥ 0

⇒ (1− α)AP + (αDS−DS)− 2αDS + DS + BP −BS+

+ αDP − AS + αAS ≥ 0

⇒
[
(1− α)AP − (1− α)DS

]
−2αDS + DS + BP −BS+

+ αDP − AS + αAS ≥ 0

⇒ (1− α)(AP −DS) + BP −BS + αDP − AS

+ αAS−2αDS+DS ≥ 0

⇒ (1− α)(AP −DS) + BP −BS + αDP − AS + αAS−2αAS+

+2αAS − 2αDS + DS ≥ 0, since AS ≥ 0

⇒ (1− α)(AP −DS) + BP −BS + (αDP − αAS)+2αAS − AS−

−2αDS + DS ≥ 0

⇒

(1− α)(AP −DS) + BP −BS + α(DP −AS) ≥ AS − 2αAS + 2αDS −DS

(5.27)

Note that the left term in 5.27 coincides with the left term in equation 5.25.
We are interested in searching for some α ∈ [0, 1] for which the left term in 5.27

1In green: wanted terms. In orange: auxiliary terms
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is non-negative. Thus, it is enough to consider only one of the following two
possible cases:

(a) When AS − 2αAS + 2αDS −DS ≥ 0

(b) When (1− α)(AP −DS) +BP −BS + α(DP −AS) ≥ 0 with AS − 2αAS +
2αDS −DS < 0

Considering the case (a), we isolate α in the inequality, i.e.:

⇒AS − 2αAS + 2αDS −DS ≥ 0 for some α ∈ [0, 1]

⇒ (AS −DS)− 2α(AS −DS) ≥ 0

⇒ (1− 2α)(AS −DS) ≥ 0, with AS −DS ≤ 0

⇒ 1− 2α ≤ 0

⇒ α ≥ 1
2

Thus, the term (1 − α)(AP − DS) + BP − BS + α(DP − AS) is non-negative
for ∀α ∈

[
1
2 , 1

]
. Therefore, as long as we use the ranking criterium proposed by

[Yu and l. Q. Dat 2014], if a sub-mixed cycle in G̃′ has a total cost defined as
in equation 5.20, the condition 5.25 is true, and therefore, the sub-mixed cycle is
non-negative for every α in the interval

[1
2 , 1

]
.

The results stated above are shown in figures 5-13(a) to 5-13(d). These figures
graphically show the total cost of the sub-mixed cycle in cases where it is N1-zero,
N2-zero, N3-zero, and a positive triangular fuzzy numbers, respectively. We com-
pare the total cost of the sub-mixed cycle with the real number 0 and illustrate the
Left and Right Integrals for both numbers in all cases. SL(0) and SR(0) are both

equal to the fixed Xmin = inf{C̃
(

sub-mixed
cycle

)
, 0} < 0. SL[C̃

(
sub-mixed

cycle

)
]

and SR[C̃
(

sub-mixed
cycle

)
] are the areas filled in violet and orange, respectively.

For the cases 5-13(a) to 5-13(c), if α < 1
2 , when computing SαT for both numbers,

the higher ponderation lies on SL. Therefore, we do the comparison giving more
priority to numbers lower than the value with the highest membership degree
(entirely negative values for the cases 5-13(a) and 5-13(b)). Note that SL(0) can

be greater than SL

(
C̃

(
sub-mixed

cycle

))
, and consequently, there is no guaran-

tee that the Total Integral for the total cost of the sub-mixed cycle has a value
greater than 0 for ∀α ∈

[
0, 1

2

)
. Therefore, we would need to find the values for

α ∈ [0, 1
2) for which SαT

[
C̃

(
sub-mixed

cycle

)]
> SαT [(0, 0, 0)]. On the other hand,

when α ≥ 1
2 , the higher ponderation is on the right integral, which considers the
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numbers to the left of the value with the highest membership degree and those
to the right of this value. Therefore, for these values of α, the total cost of the
sub-mixed cycle, represented as a triangular fuzzy number, is always greater than
(0, 0, 0).

Xmin

1

0

C̃T

Xmin

1

0

C̃T
SL(0) = SR(0)

SL

SR

SL(C̃T )
SR(C̃T )

(a) The total cost of the sub-mixed cycle as N1-zero triangular fuzzy number.

Xmin

1

0

C̃T

Xmin

1

0

C̃T

(b) The total cost of the sub-mixed cycle as N2-zero triangular fuzzy number.

Xmin

1

0

C̃T

Xmin

1

0

C̃T

(c) The total cost of the sub-mixed cycle as N3-zero triangular fuzzy number.

Xmin

1

0

C̃T

0Xmin

1 C̃T

(d) The total cost of the sub-mixed cycle as positive triangular fuzzy number.

Figure 5-13: Analysis of the non-negativity of the total cost of the sub-mixed cycle by
its comparison with the real number 0.

Consequently, the mixed cycle containing a sub-mixed cycle with a shape
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as 5-12 is non-negative for α ∈
[

1
2 , 1

]
. We summarize the previous results in

proposition 5.4.1,

Proposition 5.4.1.
Given the type V fuzzy mixed graph G̃′ = (V,A′,C′) defined in section 5.3.5 under
the following conditions:

• The costs in C′ are defined as triangular fuzzy numbers.

• The ranking method proposed by [Yu and l. Q. Dat 2014] is applied to com-
pare costs.

• Any mixed cycle in G̃′ is composed of sub-mixed cycles with a structure as
shown in figure 5-12 and positive cycles.

The following properties are satisfied:

(i) A sub-mixed cycle has a non-negative total cost if the parameter α, used for
the ranking method, takes any value in the interval [1

2 , 1].

(ii) Any mixed cycle is non-negative if every sub-mixed cycle included has a
non-negative total cost.

With proposition 5.4.1, we give a condition that guarantees the convergence
of an algorithm to search the shortest path in G̃′. In particular, we modify the
FDA proposed in Chapter 4 and incorporate it into our algorithmic proposal
discussed in section 5.4.2.

5.4.2 Algorithm to find the Fuzzy Shortest Pair of Edge-
Disjoint Paths

Modified Fuzzy Dijkstra Algorithm

The Modified Fuzzy Dijkstra Algorithm (MFDA) is a slight variation of the FDA
that finds the path Paux in G̃′. The term modified comes from the fact that it
converges to the feasible solution when applied in the graph G̃′ containing arcs
with negative triangular fuzzy costs.
We use the same terms and notations proposed in section 4.4.2. We show the
pseudo-code of the MFDA in algorithm 5,

113



CHAPTER 5. SHORTEST PAIR OF EDGE-DISJOINT PATHS IN A COMMUNICATION
NETWORK. A FUZZY APPROACH

Algorithm 5 Mod-FuzzyDijkstra(G̃′, r, t, α)
1: Initialize-single-source(G̃′, r) . Initialization
2: H ← V
3: while H 6= ∅ do
4: u← z|d̃(z) = min

∀x∈H

{
d̃(x)

}
5: Update H ← H − {u}
6: if u = t then -end while-
7: end if
8: if Γ (u) 6= ∅ then
9: for each vertex v ∈ Γ (u) do
10: if v 6= w(u) then
11: RelaxationMFDA(u, v, C̃(u,v), α) . Relaxation 2 of v
12: end if
13: end for
14: end if
15: end while

The initialization algorithm is the same as algorithm 2. In the case of the
Relaxation, we make a small variation to algorithm 3, as is shown in algorithm 6

Algorithm 6 Relaxation of v in MFDA
1: function RelaxationMFDA(u, v, C̃(u,v), α)
2: d̃new(v) := d̃(u)⊕ C̃(u,v)

3: if SαT (d̃(v)) > SαT (d̃new(v)) or
[
SαT (d̃(v)) = SαT (d̃new(v)) and Me(d̃(v)) >

Me(d̃new(v))
]
then

4: d̃(v)← d̃new(v)
5: w(v)← u
6: Update H ← H ∪ {v}
7: end if
8: end function

The MFDA guarantees the reentry to H of vertices previously labeled due
to G̃′ containing arcs with negative fuzzy costs. Each vertex v ∈ Γ (u), whose
label is updated, is added again to the set H if this does not contain it (step
6 in Algorithm 6), meaning that its label can be updated again. Consequently,
for each vertex u, all its neighboring vertices are analyzed, regardless of whether
they belong to set H or not (step 9 in Algorithm 5). These modifications are
redundant for non-negative type V fuzzy graphs but are essential for graphs with
the structure of G̃′ that we can find when searching the shortest pair of edge-
disjoint paths.
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Algorithm for the search of the fuzzy shortest pair of edge-disjoint
paths (FSPPA)

To search for the shortest pair of edge-disjoint paths in a type V fuzzy graph, we
propose the FSPPA, whose pseudo-code is shown in Algorithm 7. In the algo-
rithm, we look first for the shortest path of G̃, denoted as S, by the application
of the FDA (Algorithm 4). Then, we create a new graph G̃′ using the trans-
formations explained in section 5.3.5 (Algorithm 8). On the new graph, G̃′, we
apply the MFDA (Algorithm 5) to find the shortest path Paux. Once the paths S
and Paux have been obtained, their mutual edges, called breaks, are eliminated to
create a pair of paths, disjoint in edges, whose total sum of costs is the minimum.
Algorithm 9 calculates the total cost of the shortest pair of edge-disjoint paths.
According to the uniqueness of path S and the existence of breaks, the pair of
paths found by the FSPPA has the structure of pairs described in section 5.3.3.

Algorithm 7 FSPPA(G̃, r, t)
1: α = α0 . Setting α according to proposition 5.4.1
2: (S, C̃S) = Fuzzy-Dijkstra(G̃, r, t, α) . To apply FDA to G̃ to obtain S
3: (G̃′) = Build-ModifiedGraph(G̃, r, t, S) . Creating graph G̃′
4: (Paux, C̃Paux) = Mod-FuzzyDijkstra(G̃′, r, t, α) . To apply MFDA to G̃′ to

obtain Paux
5: M := {ei| ei ∈ S ∩ Paux} . M : set of breaks between S and Paux
6: if M = ∅ then
7: γ1 := S and γ2 := Paux . If M = ∅ the pair has the configuration of

figure 5-4(b)
8: else
9: (γ1, γ2) := (S ∪ Paux)− {M} . If M 6= ∅ the pair has the configuration of

figure 5-4(a)
10: end if
11: (C̃(γ1,γ2)) = Calc-TotalCost(G̃,M, S, Paux, C̃S, C̃Paux) . To calculate the total

cost of (γ1, γ2)

Algorithm 8 Build-ModifiedGraph(G̃, r, t, S)
� Creating graph G̃′

1: for each ei = (u, v)i ∈ S do
2: Update ei ←

−−−→
(v, u)i . Each edge of S is replaced by an unique arc

directed to r
3: Update C̃(v,u)i = −C̃(u,v)i . The cost of each arc is defined as the

complementary of the original edge cost
4: end for
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Algorithm 9 Calc-TotalCost(G̃,M, S, Paux, C̃S, C̃Paux)
� Computing the total cost of pair (γ1, γ2)

1: C̃(S,Paux) = C̃S + C̃Paux

2: AM = sum(aei | ei ∈M), CM = sum(cei | ei ∈M)
3: C̃(γ1,γ2) = C̃(S,Paux) − (AM − CM , 0, CM − AM)

5.5 Experimentation and Results
We apply the FSPPA in a network with a high traffic load. We intend to illustrate
the effectiveness of the algorithm when we want to find the shortest pair of edge-
disjoint paths where both paths can be used simultaneously to distribute the
information delivery and contribute to a decrease in network saturation. 2 3 4

5.5.1 Experiment 1. FSPPA validation
Experiment 1 applies the FSPPA for all the possible pairs of server and client
nodes. We focus on seeing that our algorithm always finds the shortest pair of
edge-disjoint paths with this experiment. It is an adaptation of the experimen-
tation we perform in Chapter 4, in which we have ensured that all nodes have
at least two alternative paths. In this way, we can apply our algorithm when we
randomly search for communication between any two nodes.
We can not perform this experiment in large networks due to the high computa-
tional cost of carrying out the exhaustive search. However, this test is sufficient
to show that our algorithm finds the shortest pair of edge-disjoint paths. We use
a network of 12 US cities whose graphical representation is shown in figure 5-14,
considering the costs of its links as triangular fuzzy numbers. On this network,
we simulate traffic in which the system presents very high saturation conditions.
The costs on links vary with time and depend on the traffic in each time interval
(the reader can find a more detailed explanation in Chapter 4). The variable
that we measure as the link’s cost is the modified fuzzy normalized used band-
width, already defined in Chapter 4. We perform a single repetition due to its
high computational cost.
For each node, we apply an algorithm to find the K-shortest paths between this
and any other node. If K is large enough, we ensure we have all possible paths
between both nodes. The costs of the paths found are calculated and sorted in
ascending order concerning their costs. Then, we choose the first path of the list
(shortest path) and continue searching through the list until finding the first path
that is disjoint in edges with the one chosen above. The total cost of the pair of

2The simulator can be downloaded at https://omnetpp.org/download/
3The source code of the model used can be downloaded in

https://github.com/aarizaq/flowsimulator
4The configuration for the running of the experiments can be found in

https://github.com/aarizaq/configurationFuzzy
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Figure 5-14: Network of 12 US cities

paths found is calculated and serves as a reference.
On the other hand, we apply the FSPPA algorithm to find the shortest pair of
edge-disjoint paths. Besides, we perform the exhaustive search described above
to find a second pair of edge-disjoint paths. Then we compare the total cost of
both pairs of paths. If both total costs match, the FSPPA has found an optimal
solution. Both pairs of paths do not have to contain the same paths; our interest
lies in finding the same total cost.
In conclusion, we verified that our algorithm finds the shortest pair of edge-
disjoint paths in all cases.

5.5.2 Experiment 2. A search of the shortest pair of edge-
disjoint paths using fuzzy costs in a high-performance
network with priority traffic

Once we show that our algorithm finds the shortest pair of edge-disjoint paths in
all cases, experiment 2 aims at checking whether the use of edge-disjoint paths
can help guarantee the quality of a given priority traffic in conditions of network
overload.
We understand as Priority traffic the one generated by a set of nodes to which,
for security reasons, a certain level of communication privilege is granted.
We emphasize that we do not refer to the problem whose solution is to find, at
first, the shortest path, then eliminate the edges of it, and, eventually, to find the
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shortest path on the modified network (backup path) again. Solving this problem
provides the possibility of having an alternative replacement path if the shortest
path fails (the backup path would be the second shortest path and would be
operational once the failure is detected). Thus, the only guarantee when solving
this problem is to ensure that the information is sent through the shortest path. If
this path suffers a failure, the second shortest path is the replacement. Conversely,
our goal is to find the shortest pair of edge-disjoint paths, that is, the pair of paths
with minimum total cost. Thus, it is clear that we are not merely looking for an
alternative redundant path, but a pair of paths, disjoint in edges, to use them
simultaneously to send the fractionated information through both paths. This
strategy improves the communication security of priority sources since it is more
challenging to capture a complete ordered message by external elements. Also,
it increases the transmission quality since it decreases the bandwidth necessary
in each connection of the edge-disjoint paths, reducing the probability of losses
in conditions close to saturation. Also, we could create redundant traffic, that
is, always sending the same message through two paths at once. This action
increases the network’s traffic, but the information nevertheless arrives by the
other path when one of the paths fails. To summarize, the difference between
finding the pair of edge-disjoint paths with the minimum total cost and finding the
shortest and backup paths consists of when using both paths simultaneously, we
reduce the probability of information losses and increase the security (or privacy)
of communications.
We use a 57-nodes network inspired by the NTT backbone network [Varga 2001].
We adjust the original network so that at least two paths can access each node.
The simulation is flow-oriented; we simulate only two events: the start and end
of a burst. If we had to simulate sending the information burst like this, we could
not simulate all the shipments in time using small information packets. Therefore,
a single call is established to send complete information, and it is not finished
until the operation ends. In other words, we send the complete information as
if it were a block, so we have to observe the beginning and end of the block or
burst. Also, the storage is not simulated by queues at the nodes. If a node does
not have sufficient capacity to transmit the burst, the data is lost until there is
free space or the burst ends, in which case it will be entirely lost. Therefore, we
are simulating a system without delays, except propagation, which could be seen
as an Optical Network without delay elements. Consequently, the variable that
will determine the quality of the network will be the byte delivery ratio. Thus,
we will know whether the data sent is lost or not.
The simulation time has been 104 seconds, and all links have the same capacity
(1Gb/s).
We generate the traffic through calls with a connection. Once a call is established,
the chosen path does not change during the entire duration of the call. These
calls do not make reservations of resources, so the establishment of calls will
never be rejected, but there may be a loss of data. This restriction facilitates the
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visualization of the data loss due to the saturation of links.
As in experiment 1, we use as the indicator variable of the cost of a link the
modified fuzzy normalized used bandwidth, which, to facilitate the reading, we
redefine in equation 5.28 for each link e = (i, j),

[b̃w]A,Bij = A ∗B−[bw]′ij [b̃w]′ij (5.28)

where [bw]′ij and [b̃w]′ij are defined in the expressions 4.6 and 4.10, respectively.
[b̃w]A,Bij is based on the cost function defined in strategy 8 explained in Chapter 4.
We consider this variable a triangular fuzzy number and weigh it with the values A
and B to achieve a displacement to the right and a widening of the fuzzy number.
As in the experiments performed in Chapter 4, we use the values A = 10 and
B = 20. We update the links every 300 secs. This interval is realistic in a 57-
nodes network and justifies using fuzzy numbers to measure the link costs due to
the high uncertainty in the variable’s value.
Traffic is of the ON/OFF type with the following parameters:

• We perform ten replications per experiment with different seeds each. In
each simulation, the seed is different, making the order in which the nodes
are activated and different the flow of information. On the other hand, the
flow of information sent between nodes is made according to probability
distributions.

• Each node can have two communication sources (or independent traffic
generators), F1 and F2. Both types of sources differ in the priority of
sending specific messages.

Source F1: corresponds to the regular sending of the information. It always
sends the information by a single path, precisely, by the shortest path
between the source and destination nodes.

Source F2: It is a priority message source; that is, it sends messages that
we treat with additional security (for example, when a bank or state
agency has a serie of priority messages, these are sent in different con-
ditions concerning the rest of the information transmitted). In nodes
with source F2, we can make the information travel by two alternative
paths. In particular, these are the paths forming the shortest pair of
edge-disjoint paths found by the FSPPA. Note that a node with source
F2 can apply the FSPPA and function as a node with source F1. Also,
the destination of a node with source F2 is always another node with
source F2. This procedure facilitates the delimitation of the possible
number of source-destination pairs in traffic F2.

Description of the simulation

We measure the transmission quality in the network through the BDR, defined
as the ratio between delivered and sent bytes.
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We performed the experimentation in a network with conditions very close to
saturation. The source F1 is implemented in all nodes, while the source F2 is
only active in a limited number of randomly selected nodes in each experiment.
We do the tests for sets of 5, 10, 15, 20, 25, and 30 nodes with source F2.
For each set of nodes with source F2, we perform ten simulations. We generate
trac for these nodes where the information is sent either by the pair of paths
that the FSPPA finds or the shortest path that the FDA finds. In each case, we
compute the MBDR, defined as the Mean of the Bytes Delivery Ratio, for the
nodes with source F2 and the nodes with source F1. We compare the performance
of both generated traffics.

Analysis of the results

Figure 5-15 shows the results of experiment 2. On the X-axis, the numbers
represent the size of the set of F2 source nodes used in the tests, and the Y-axis
represents the values of MBDR. Each line shows the MBDR of the network for
each repetition of the traffic simulations under different conditions.

Figure 5-15: Simulation results in Experiment 2

Blue Line: The blue line shows the MBDR corresponding to the traffic by source
F1 when the nodes with source F2 do not apply FSPPA. As the number
of nodes with source F2 increases, network traffic also increases, and as a
consequence, the MBDR decreases. This line represents the effect of the
system’s saturation and its inability to deal with it when the FSPPA is not
applied.

Yellow Line: The yellow line shows the MBDR corresponding to the traffic by
source F1 when nodes with source F2 apply FSPPA. As nodes with source
F2 increase, these nodes generate more traffic, which affects the nodes with
source F1. Thus, coherently, this traffic is the worst behaved with the rise
of nodes with source F2.
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Orange Line: The orange line shows the MBDR corresponding to the traffic by
nodes with source F2 when these do not apply the FSPPA.

Green Line: The green line shows the MBDR corresponding to the traffic by
nodes with source F2 when applying the FSPPA. Notice that, although the
number of nodes with source F2 increases to almost 50% of the total nodes,
the MBDR remains high (greater than 0.9).

Comparison between lines blue and yellow: We compare the traffic behavior by
source F1 according to the application of the FSPPA by nodes with source
F2. When there are few nodes with source F2, both lines are very similar.
However, as the number of nodes with source F2 increases, the yellow line
separates below the blue one. This separation means that the nodes with
source F1 are harmed even more due to the rise of the MBDR in traffic (they
reach the impermissible value of 0.75 approximately). Logically, the MBDR
of nodes with source F1 when the nodes with source F2 apply FSPPA is
lower than when the nodes with source F2 do not apply the FSPPA. This
difference increases as the number of nodes with source F2 applying FSPPA
increases.

Comparison between lines green and orange: We compare the traffic behavior by
source F2, whether when the nodes with source F2 apply FSPPA or not.
We recall that nodes with source F2 have additional traffic that they do not
use when not applying FSPPA. In such a case, the traffic capacity of these
nodes is saturated. Due to this extra traffic, we observe the high difference
between the green and orange lines. The MBDR corresponding to the green
line remains between 0.9 and 0.95, both very high values. However, when
these nodes do not apply FSPPA (orange line), the MBDR starts from 0.87
(for a small number of nodes with source F2) and reaches the impermissible
value of approximately 0.72 (for a large number of nodes with source F2).

Comparison between lines blue and orange: We compare the behavior of traffics
F1 and F2 when the FSPPA is not applied. For a small number of both
sources, the difference between their MBDR is significant (0.85 for traffic F2
and 0.9 for traffic F1). Still, we observe that their confidence intervals are
very large, indicating high variability in this case. This aspect is because
of the extra unused traffic that nodes with source F2 when not applying
FSPPA. On the other hand, notice that as the number of nodes with source
F2 increases, the MBDR of traffics in F1 and F2 sources are closer. This
behavior is logical because when nodes with source F2 do not apply the
FSPPA, the more nodes with source F2 are, the more regular the network
traffic is. Thus, the nodes with both sources use the same kind of traffic.

We conclude that having a strategy where the network has a small number of
privileged nodes with source F2 where a pair of paths sends the information is
very interesting and helpful. The algorithm proposed by us provides a solution
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to make this strategy works.
Currently, in many communication networks, the “privileged” nodes constitute
a separate system where only they are part of, which means a higher cost of
resources. Therefore, another advantage of our strategy is that it is unnecessary
to create a separate network to achieve high values of the MBDR.

5.6 Conclusions
In this chapter, we faced the problem of finding the shortest pair of edge-disjoint
paths in a communication network under uncertain conditions. We designed an
algorithm to solve the problem from the graph theory vision, and we described
the uncertainty in the network using elements of fuzzy logic. In particular, we as-
sociate the network to a type V fuzzy graph and propose an algorithm (FSPPA)
that finds the shortest pair of edge-disjoint paths in the graph.
We described the applications of the FSPPA to guarantee security in a com-
munication network. Thus, to illustrate the algorithm’s effectiveness, we apply
the FSPPA to a well-known network with a high traffic load, using a new fuzzy
cost function, also proposed by us. The results showed the competence of our
algorithm in communication networks with specific nodes having a “privileged”
traffic (nodes with source F2). In other words, our strategy makes it unnecessary
to achieve high values of the MBDR, to create a separate network with source
F2 nodes.
As a general conclusion, it is true that in current networks, overload conditions
are not common since operators over-size the network with a high safety factor.
On the other hand, the classical methods applied under these conditions satis-
factorily solve the presented problems. Therefore, our goal is not to compare the
application of fuzzy techniques with the current ones but rather to study their
feasibility. In any case, we have seen that these turn out to be competitive since,
at least in all cases, we found a fuzzy method that works equal to or better than
the classic method.
Network management systems are very conservative in terms of the methods and
algorithms used, and in most cases, problematic situations are well covered by
duplication of resources. However, exploring alternative techniques, such as those
analyzed in this work, can be interesting from a theoretical and practical point
of view in future scenarios.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

In this thesis, we approach the study of some tasks related to communication
networks’ management through graph theory and fuzzy logic. Based on these
techniques, we designed and applied different methodologies to search for the
optimal path between the server and client nodes in a communication network.
As a result, three main lines of work have been developed:

(i) The study of server node selection in a P2P network using a fuzzy inference-
based system.

(ii) The search of the shortest path in a communication network using different
fuzzy cost functions in the links. This hypothesis is quite viable because of
how updating the network parameters in each time interval.

(iii) The search of the shortest pair of links-disjoint paths using fuzzy costs in
a high-performance communication network in an overload situation.

Next, we will expose a summary of the conclusions extracted throughout our
investigative work:
Chapter 3

1. We have implemented a fuzzy inference algorithm to select the server node
in a P2P network. The input variables in the fuzzy system are the number of
hops and the ETX metric in each server-node path. On the other hand, the
output variable is the goodness index of the path. The rule base is composed
of fuzzy if-then rules with antecedent compound by the connector AND. We
apply the MFI as the implication method and the maximum value resultant
of composing the output functions of each rule as a combination process.
Lastly, we use the CoA as the defuzzification method.

2. We analyzed two different transmission scenarios: a network without obsta-
cles and a network with obstacles between nodes. In addition, we compared
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the fuzzy inference system with two other strategies: the Random Selection
of the server node and the Min-Hop.

3. In a network without obstacles, the Random Selection strategy is the least
efficient concerning the required transmission time and the network-level
traffic load. In a network with obstacles, the fuzzy inference system pro-
duces the best results concerning the download time for a node. Also, in
this scenario, the Min-Hop strategy is the least efficient because it does not
consider the real state of the network but only the number of hops. There
are no critical dierences between Min-Hop and our approach in a regular
network since the Min-Hop is very ecient in this kind of network, so the
impact of fuzzy logic cannot be shown entirely in this experiment.

Chapter 4

4. To search for the shortest path between two nodes, we analyzed and com-
pared the efficiency of different strategies with the crisp and their equivalent
fuzzy cost functions to improve the delivery rate. We face this problem by
modeling the communications network as a type V fuzzy graph. In the
graph, we describe both the nodes and the links with precision, but we
modeled each link’s cost as a triangular fuzzy number.

5. We proposed an FDA that finds the shortest path between two vertices
in a type V fuzzy graph where the costs in the edges are triangular fuzzy
numbers. To compare the fuzzy costs, we applied the ranking method
proposed in [Yu and l. Q. Dat 2014].

6. We were interested in comparing the network performance efficiency based
on fuzzy logic versus based on crisp values. Thus, we implemented the
most commonly used cost functions and strategies to manage real networks
based on crisp values (e.g., the instantaneous or mean used bandwidth
and residual bandwidth as cost functions and SW or WS strategies). We
confronted the crisp strategies with similar ones based on our definition of
fuzzy costs. We performed an experimental study using the NTT backbone
network as a reference, where we implemented each strategy.

7. As an interesting contribution, we proposed a new strategy (strategy 8),
which does not correspond with any classic one. In this fuzzy strategy, we
defined the Modified Fuzzy Normalized Used Bandwidth. This cost function
modifies the fuzzy normalized used bandwidth such that the smaller the
used bandwidth at the (n-1)-th interval (where the measurements have been
obtained), the higher uncertainty in the used bandwidth value considered
in the depth of the values in the (n+1)-th interval.

8. Fuzzy strategy 3 surpasses in a slightly but statistically significant way
their analogous crisp strategies 1 and 2. On the other hand, the fuzzy
strategies 5 and 7 do not present statistically substantial differences with
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their equivalent crisp strategies 4 and 6, respectively. Specifically, our new
fuzzy strategy (strategy 8) provides the best results, significantly exceeding
the performance of the rest of the strategies, achieving a GMDR close to 1.

Chapter 5

9. We described the possible applications of the shortest pair of edge-disjoint
paths: the capacity of the network to find an alternative path when part
of the system is affected by an external cause; the redistribution of traffic
when the network is under saturation conditions, where the information is
divided into two segments and sent at the same time by two paths with
no common links; and the communication security where the data travels
by two paths in parallel, so it is more challenging to capture a complete
message by external elements.

10. As in chapter 4, we associated the network to a type V fuzzy graph whose
vertices and edges correspond to the nodes and links of the network, re-
spectively. We faced uncertainty in the network’s operating system by
considering the cost of the edges as triangular fuzzy numbers.

11. We proposed an algorithm that finds the shortest pair of edge-disjoint paths
in the graph (FSPPA). The FSPPA uses a sub-algorithm, an adaptation
of the FDA, called the Modified Fuzzy Dijkstra Algorithm (MFDA). The
MFDA can find the shortest path in a mixed type V fuzzy graph containing
edges and some arcs whose costs are negative triangular fuzzy numbers.

12. Intending to illustrate the effectiveness of the algorithm, we applied the
FSPPA to a network with a high traffic load, using the new fuzzy cost
function defined in strategy 8 (chapter 4) as the indicator variable. We
simulated traffic with two types of communication sources: source F1 (reg-
ular sending of information) that always sends the data by the shortest
path between the source and destination nodes, and source F2 (priority
sending of information) which sends the data throughout the paths of the
shortest pair of edge-disjoint paths. We measured the transmission quality
in the network through the BDR (ratio between delivered and sent bytes).
Our algorithm provided a very efficient solution in a scenario where the
system has a relatively small number of nodes with priority communication
sources.

13. Currently, in many communication networks, the privileged nodes form
a separate network where only they are part of, meaning a higher cost
of resources. Therefore, another advantage of our strategy is that it is
unnecessary to create a separate network to achieve high BDR values.

Like the one we implemented in chapter 3, Fuzzy Inference Systems are quite ro-
bust concerning possible variations in the definition of the membership functions
that define the fuzzy values of their variables. However, it could be interesting
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to perform a systematic study of different models about the parameters of these
functions and their form, and different network configurations. In this way, it
would be possible to find more efficient models or, at least, study their applica-
bility in the field of teaching.
It is interesting to explore the applicability of the algorithms proposed in chap-
ter 4 to maximize the throughput of a communication network or to search for
optimal paths in other transportation networks. In particular, it can be very in-
teresting in the autonomous vehicle routing problem. In this context, the network
behaves very similarly to the communication networks that we studied because
the traffic conditions are updated periodically, generating uncertainty in the value
of each variable between two updates. In the case of vehicle transport networks,
this uncertainty is much more significant since the factors that can generate a
change in traffic conditions occur more chaotically.
Chapter 5 addressed the problem of finding the minimum pair of edge-disjoint
paths in a V-type fuzziness graph from a theoretical point of view and its ap-
plication to a communication network with two types of traffic from a practical
point of view. From a theoretical point of view, we consider that an interesting
future line of work would be to address the problem of finding the minimum pair
of node-disjoint paths.
In chapters 4 and 5, we have focused on using the Dijkstra algorithm. However, it
would be interesting to study the behavior of other complete search algorithms,
such as A* ([Peter E. et al. 1968]), which could provide a faster search of the
solution.

In general, network management systems are very conservative regarding the
methods and algorithms used, and in most cases, problematic situations are well
covered with duplication of resources. However, exploring other alternative tech-
nical techniques, such as the analytical ones in this work, can be interesting, not
only from a theoretical and mathematical perspective but also practical in future
scenarios.
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APPENDIX A
SUBPATH BETWEEN TWO VERTICES IN THE

SHORTEST PATH IN A TYPE V FUZZY GRAPH

Theorem A.0.1.
Let G̃ = (V,E, W̃ ) be a type V fuzzy graph with the weights defined as positive
triangular fuzzy numbers. Let S =< v1, v2, . . . , vk > be the unique shortest path
between the vertices v1 and vk and, for every i and j such that 1 ≤ i ≤ j ≤ k, let
Sij =< vi, vi+1, . . . , vj > be the subpath of S between vertices vi and vj. Then Sij
is the shortest path from vi to vj of G̃.

Proof. The length of the shortest path S is defined as

LS = LS1i + LSij + LSjk

= (aS1i , bS1i , dS1i) + (aSij , bSij , dSij) + (aSjk , bSjk , dSjk)
=
(
aS1i + aSij + aSjk , bS1i + bSij + bSjk , dS1i + dSij + dSjk

)
Lets assume that Sij is not the shortest path between vi and vj.
This means that there exist an alternative path, S ′ij, which length LS′ij = (aS′ij , bS′ij , dS′ij)
is less than the length of Sij, i.e.:

LSij � LS′ij

⇒ (1− α)aSij + bSij + αdSij > (1− α)aS′ij + bS′ij + αdS′ij ∀α ∈ [0, 1]

If we add the positive expressions (1−α)(aS1i+aSjk), (bS1i+bSjk) and α(dS1i+dSjk)
in the previous inequality, we obtain:

⇒ (1− α)(aS1i + aSij + aSjk) + bS1i + bSij + bSjk + α(dS1i + dSij + dSjk)
> (1− α)(aS1i + aS′ij + aSjk) + bS1i + bS′ij + bSjk + α(dS1i + dS′ij + dSjk)

Hence, path S ′ =< S1i, S
′
ij, Sjk > is a shortest path of G̃. But this is a contra-

diction with the hyphotesis of being S ′ the unique shortest path.
∴ Sij is the shortest path between the vertices vi and vj.
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