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Chapter 1

Introduction

1.1 Industry 4.0 and Current Issues

Industry 4.0 refers to the digitization of all components within the industry [4]. It is also called
the fourth industrial revolution, in reference to the technological modernization process that
is currently taking place in the Industrial Control Systems (ICS) and critical infrastructures.
Whereas the first revolution coincided with the introduction of steam engines in the 18th century,
the second revolved around the use of electricity in the late 19th century, before electronics were
introduced to automate manufacturing processes in 1970s, giving rise to the third industrial
revolution. Following with this tendency, the Industry 4.0 concept is not so mature due to a
lack of agreement on the set of technologies considered and the different interests of the actors
involved (e.g., researchers, standardization committees, governments) [5]. However, it can be
defined from a technical perspective as the combination of productive processes with leading
technologies of information and communications. This allows all the elements that conform
the productive processes (suppliers, plant, distributors, even the product itself) to be digitally
connected, providing a highly integrated value chain [4].

In this transition stage, we find that adapting the existing control processes during the
third industrial revolution to the new paradigm is one of the main challenges of Industry 4.0.
Traditionally, these industrial facilities and critical infrastructures have been governed by SCADA
(Supervisory Control and Data Acquisition) systems, which provide real-time data and remote
management of the devices that are deployed over the production cycle, such as Programmable
Logic Controllers (PLCs), Remote Terminal Units (RTUs), or field devices (i.e., sensors or
actuators). Nevertheless, these systems, henceforth referred to as Operational Technology (OT),
are now experiencing a growing interconnection with Information Technology (IT) to share data
and uptake new business processes. This is a consequence of the standardization of the software
and hardware used in control systems [6], mainly caused by the adoption of Ethernet or TCP/IP
networking and wireless technologies in an often critical and until recently isolated environment.
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While the integration of the IT and OT worlds has several major benefits, it has also facilitated
the emergence of several IT attack vectors in industrial systems (IS) [7]. We refer to attack vectors
such as denial of service, presence of malware in the control teams, exploitation of vulnerabilities
in communication protocols to intercept traffic, phishing and social engineering, etc. These can be
leveraged and combined to perpetrate sophisticated attacks such as an Advanced Persistent Threat
(APT) as the case of Stuxnet [8], that ultimately disrupts and damages critical infrastructural
operations with a severe impact, ranging from economic costs to pollution or even loss of human
lives. These issues have obligated researchers and security officials to seek for advanced defense
techniques to tackle complex attacks, which narrows down the focus of this dissertation. Namely,
this doctoral thesis aims to study and design security mechanisms capable of detecting and tracing
advanced cybersecurity threats and hence ensure the continuity of the production line at all times,
as it is expected that the number and impact of these cybersecurity threats will increase in future
industrial environments.

To address this problem, numerous solutions have emerged from the academic and commercial
point of view that are focused on the detection of intrusions in the industrial network, also known
as Intrusion Detection Systems (IDSs). Although the analysis of the algorithms underlying these
mechanisms has already been approached in depth [9, 10], it is necessary to prospectively analyze
the requirements that these systems have to satisfy with the evolution of the control systems in
the short, medium and long term, after the integration of the areas of Industry 4.0 and with them
the appearance of new threats of cybersecurity. However, and due to the lack of analyses on this
subject, this does not only include the analysis of security threats that affect the building blocks
of this novel approach in this setting, but also the potential vulnerabilities that might arise due
to the creation of novel industrial services in the upcoming years.

Therefore, we position our research in the analysis of advanced detection systems that
enable the traceability of APTs in the Industry 4.0 and also ease the deployment of effective
countermeasures. In this context, the Industry 4.0 paradigm usually collides with the concept of
Industrial Internet of Things (IIoT), which is incidentally addressed in this work and introduced
in the following sections. Whereas the latter is envisaged to interconnect industrial assets to the
Internet and the cloud with the aim to collect data and optimize processes, Industry 4.0 generally
adopts a wider scope by proposing a hyper-connected ecosystem model across several industrial
sectors, and it is enabled by the IIoT and other technologies [11]. In other words, Industry 4.0
can be considered as a bigger-picture framework that would not exist without the IIoT from a
technical perspective, even though both terms are frequently interchangeable in the literature, as
it is an unstable area where the multiple actors involved (international initiatives and consortia)
are continuously redefining both concepts and their technologies that comprise them. Likewise,
Industry 4.0 is often associated with the manufacturing sector, although both can be applied to
a plethora of industrial sectors (e.g., health, manufacturing, transport) that are also described
next. In this sense, for the interest of the analysis and to better characterize our research, we will
focus on industrial ecosystems for the generic industry, but contextualizing our findings on the
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systems in charge of the Smart Grid (SG), as a use case of traditional sector (i.e., the energy)
whose critical infrastructures meet the Industry 4.0 paradigm, by providing intelligence to the
electric grid in its entire value chain. Therefore, in the remainder of this introductory section, we
analyze the evolution of this paradigm and its enabling technologies, by firstly identifying the
stakeholders involved in the Industry 4.0, to lay the background of this doctoral thesis. Afterwards,
the challenges around the cybersecurity of Industry 4.0 elements and particularly the APTs will
be introduced.

1.1.1 International Initiatives and Consortia

Currently, a great effort is being made at the European and global level to promote the concept of
Industry 4.0. As introduced earlier, it is understood as the integration of cutting-edge information
and communication technologies in the industry, accompanied by a particularly intense work
on cybersecurity. The most important initiatives and consortia at the international level in this
direction are described below.

The industrial control systems that govern critical infrastructures (transport, nuclear, etc.)
have traditionally been isolated from external networks (such as the Internet), but in recent years
the trend is to incorporate modern technologies due to the drop in costs and the standardization
of software and hardware [6]. As a result, these environments are facing a substantial increase
in connectivity and complexity, which is making the traditional model of industry (rigid and
hierarchical) evolve towards a distributed model where the various actors involved in the production
process (e.g., suppliers, operators, customers) interact transparently, obtaining information without
interruption and optimizing the production cycle in all sectors and at all levels.

In order to guide that evolution under a sustainable development and following common
standards in the industry, different initiatives have emerged in the last years at international
level. The first reference to the concept of ‘Industry 4.0’ was originally coined by the German
government, after a series of projects aimed at promoting the digitalization of its production
processes that led to the establishment of the Plattform Industrie 4.0 program [12]. Following
this proposal, various initiatives were implemented at the national level throughout Europe,
in line with the objectives of the European Union H2020 strategy [13] and derived from the
original platform. For example, the initiative Smart Industry (Netherlands, Sweden), Catapult
(UK), Industrie du futur (France), Fabbrica Inteligente (Italy), and Made Different (Belgium).
In Spain, AMETIC (Asociación Multisectorial de Empresas de Tecnologías de la Información,
Comunicaciones y Electrónica) set up the Industry 4.0 commission [14], whose objectives are in
line with the objectives of the H2020 strategy, and which gave rise to the Industria Conectada
4.0 initiative [15], which is responsible for raising awareness of the Industry 4.0 concept at
national level between companies, promoting regional conferences, and providing information to
the AENOR standards group.
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The synergy between the multinationals and the strategies of the European Union in favour
of the digital transformation of the industry has also led to the formation of important consortia,
PPPs (Public-Private Partnerships) and working groups at international level. For instance, the
Factories of the Future (FoF), a PPP that emerged under the EU economic recovery plan and
involves industrial companies and academic institutions to implement the vision of Industry
4.0 [16]. As a result, 240 projects were carried out with the involvement of more than 2000
entities throughout Europe until 2017. Another PPP aligned with the EU’s industrial growth
initiatives is SPIRE (Sustainable Process Industry through Resource and Energy Efficiency),
which comprises industrial companies with innovative processes in all sectors and more than 130
research-related entities throughout Europe. Its agenda until 2050 includes the implementation of
good practices and innovative technologies in production systems, as well as an intense reduction
in CO2 emissions. Similar objectives are pursued by Energy Efficient Buildings (E2B), another
PPP emerged under the H2020 program, extending the digital transformation of the industry
to other domains such as intelligent cities, in this case seeking technological solutions for the
construction of districts and connected buildings [17].

There are also several important consortia of companies with great impact at European level
that join the efforts of entities and academic institutions from multiple disciplines, in order to
promote the new model of Industry 4.0. Examples include the European Technology Platform on
Smart Systems Integration (EPoSS, focused on the use of R&D with smart systems), the ARTEMIS
association (researching cyber-physical systems for industry) or AENEAS (with research into
new electronic systems and components). The members of these three are grouped under the
European Union PPP ECSEL (the Public-Private Partnership for Electronic Components and
Systems), which has a current capital of 2.6 billion euros in research projects in this area [18].
These associations include companies such as NXP, Hitachi, Intel and Airbus.

Beyond European borders, there are various government efforts and confluences of companies
that pursue the objective of promoting a model equivalent to that of the original German Industry
4.0, either independently or directly in collaboration with the German Industrie 4.0 program. For
example, the United States formed a national network for industry innovation with funding of
$1 billion in public funds to advance research in digital design and manufacturing [19], and $2.2
billion dollars to renew the American industry and compete with the large Chinese market [20],
in which a growth of 12.9% is expected for the year 2023. This US national network includes a
consortium of global scope oriented to the integration of IIoT and CPS technologies, the Industrial
Internet Consortium (IIC) [21]. Its primary objective is the integral automation of the industry
in different domains, critical infrastructures and applications. It contains different work groups
(including a specific one on cybersecurity) composed of four subgroups specialized in mobile
devices, applicability in real contexts, testbed and trust; and in which companies such as Dell,
Huawei, Cisco, General Electric or IBM collaborate.

With regards to China, the government launched in 2015 the strategies Made In China 2025,
Industrial Internet and Internet Plus, all of them keeping certain similarities to the German
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Industrie 4.0 program, not only to stay in the competing market but to position itself as the
number one leader in that competing market along with the United States and Germany. According
to the Made In China 2025 strategy, the goal is to significantly reduce inventory costs (20-50%),
increase automation and production (45-55%), and increase the precision and quality of production
(+85%), without forgetting cybersecurity in all areas of application. To this end, in 2015, the
Chinese Ministry approved 94 research projects [22], all within the theme of smart and safe
manufacturing, in addition to groups such as China Electronics Technology Group Corporation
(CETC) and China Shipbuilding Industry Corporation (CSIC) fostering smart manufacturing
initiatives to promote the above strategies and update all elements of the industrial ecosystems
in all areas (e.g., human capital, management, process optimization, quality control) and at all
levels (from low-level manufacturing to high-tech industry-related processes) [23]. It is expected
that by 2025 the exercise will be completed in all regions of China and all industrial sectors, with
a return on investment in the order of 46% or $32.3 billion in the future [24].

Finally, there are also national initiatives in other countries that were established following
the trail of the original vision of Industry 4.0 but incorporating specific needs at the national
level. For instance, in Japan, they collaborate bilaterally with Germany to address some relevant
aspects in the different perspectives of Industry 4.0. Specifically, in April 2016, the Japanese
Ministry of Economy, Trade and Industry (METI) and the German Federal Ministry for Economic
Affairs and Energy (BMWi) signed a Japan-German cooperation agreement on IoT/Industry 4.0
[25]. In this way, Japanese initiatives such as the Robot Roadmap Revolution Initiative, which is
related to the Value Chain Initiative (IVI), can benefit from incorporating Industry 4.0 elements
within their production chains [26]. Similarly, the Australian and German Ministries initiated
joint collaborations in 2015 by establishing the Australian-German Advisory Group [27]. One of
their initiatives was to invest in a $5 million pilot research program to explore the adaptation
of Industry 4.0 in Australia through five universities, which were made available to support
real-world installations as of September of 2018 [28].

From this panorama it can be deduced that, although the Industrie 4.0 program was born
as a German initiative with a mainly European scope, it has achieved a global reach due to
its influence on other programs and collaborations between various consortia. In this sense, the
IIC can be considered as the consortium with equivalent importance at an international level
but with American origin, mainly due both to its global reach and to its maturity and the
importance of its members. As aforementioned, this leads to one of the concepts that is frequently
related to Industry 4.0: the IIoT, initially promoted by American companies (AT&T, Cisco,
General Electric, IBM, and Intel) - although it currently has an international presence. Both
pursue similar objectives (the digitization of industry), but with slight differences. While Industry
4.0 focuses its efforts mainly on manufacturing processes, Industrial IoT also seeks integration
with various domains (e.g., critical infrastructure, smart cities). As an example, Industry 4.0
focuses on the processes related to the manufacturing of a car, while the IIoT also focuses on the
physical interaction between the car and infrastructures such as Smart Grid, vehicle networks,
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and others [29]. In addition, Industry 4.0 focuses more on hardware (production machinery and
communications protocols) and coordination of production processes, while the IIoT focuses more
on software (component integration) and the interaction between entities [30]. Even so, there
are points in common between both initiatives, and they are currently working to align their
two reference architectures, the Industrial Internet Reference Architecture (IIRA), developed
by the Industrial Internet consortium [31], and the Reference Architectural Model Industrie 4.0
(RAMI4.0), developed by the Platform Industrie 4.0 consortium [32]. Both references provide
two interoperable service-oriented architectures, which will combine IT and OT components
accessible through common interfaces, and interconnected through communication infrastructures
of various types [33], such as DDS (Data Distribution Service) and/or OPC UA (Open Platform
Communications Unified Architecture), an evolution of the OPC specification that includes better
semantic information modeling capabilities [34]. This would allow a transparent access to the
various resources from all processes and entities of the organization, thus achieving the digitization
of the network and the decentralized model pursued by the industry of the future.

Furthermore, it is worth mentioning that the scope of the aforementioned reference architec-
tures, IIRA and RAMI4.0, goes beyond purely industrial and manufacturing environments and
sectors, being applicable to several essential sectors in our economy such as electrical networks,
logistics and transport systems, digital health, intelligent environments (e.g., smart cities), and
many others. Precisely, there are several test benches where the capabilities of these architec-
tures are being studied, offering services such as the provision of Platform-as-a-Service (PaaS)
services in production lines, the creation of energy microgrids, the interaction between vehicles
through vehicle-vehicle (V2V) and vehicle-infrastructure (V2I) infrastructures, the definition of
an ecosystem for the remote monitoring of patients, intelligent baggage management in airlines,
and intelligent water supply in urban environments [35].

As a result, the Industry 4.0 ecosystem is especially varied and subject to various initiatives
that guide the research and development of the industry of the future. In the following section,
we delve into the actual principles and advantages of the 4.0 industry by analyzing the structural
changes they bring over traditional infrastructures, and presenting the building blocks that shape
this paradigm from a technological point of view.

1.1.2 Review of Innovations and Enabling Technologies

In order to better understand the innovations that Industry 4.0 introduces in the existing
infrastructures, we must pay attention to its architectural changes. The ISA-95 standard [36]
defines five levels of operations in the industrial automation, in the form of a pyramid, as illustrated
in Figure 1.1. This way, the productive process itself is located in the base (level 0), whereas
those devices that interact with it (i.e., PLCs) are set in level 1. On top of these (level 2), we find
the devices that control the production process such as SCADAs or Human-Machine Interfaces
(HMIs), and those that control the workflow, like Manufacturing Execution Systems (MESs), are
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Figure 1.1: ISA-95 pyramid and evolution towards Industry 4.0

represented at level 3. Lastly, the highest level contains the infrastructure of logistics, inventory,
and Enterprise Resource Planning (ERP).

In traditional industrial environments, the information processing infrastructure follows the
pyramidal structure reflected by this standard. One of the objectives of researchers in the field of
Industry 4.0 is to analyze how to change this pyramid to a model that provides a more dynamic
and reconfigurable decentralized infrastructure [37], as depicted in Figure 1.1. By creating well
defined services and interfaces, in which each element of the ecosystem has a specific functionality
and purpose, it would be possible to redefine the structure of an industrial environment through
various configurations, enhancing new services and optimizing existing ones [38]. The following is
a summary of the most common conceptual features that this new model would enable:

• Interoperability. The application of the technologies that belong to the Industry 4.0
would ensure an interoperability between each of the elements of the productive processes.

• Virtualization. Within industry 4.0, it would be possible to create a virtual copy of each
of its elements.

• Decentralization. Each of the elements of Industry 4.0 might be able to intelligently make
decisions for itself, in conjunction with other elements, or globally.

• Capabilities in real time. The ecosystem would allow the acquisition and analysis of
data in real time.

• Service orientation. The elements of Industry 4.0 would be able to abstract their func-
tionality into a service-oriented architecture, and would also be able to consume services
offered by other assets. In addition, these services would be indexed and easily accessible by
authorized entities.
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• Modularity. An Industry 4.0 environment would not function in a monolithic way, but
would allow adaptation to new requirements by integrating new modules and extending or
replacing existing modules.

• Interactivity. Industry 4.0 operators at all levels would be able to interact with various
physical and logical elements in a simple and effective way.

In addition, these advantages of Industry 4.0 have been identified by most potential stake-
holders:

• Flexibility. The adaptability of the production processes will allow greater flexibility during
the operations of the production system, such as when producing customized products.

• Efficiency. The productive processes will improve in efficiency, both from the energy point
of view and from the perspective of efficient use of the available assets, thanks to a better
decision making as a consequence of a greater data collection and analysis.

• Productivity. Due to the optimizations of the productive process, it will be possible not
only to increase the global efficiency of all the processes, but also to increase the speed of
order processing.

• Risk reduction. Thanks to the knowledge of potential problems within the productive
processes, it will be possible to reduce the risks in the use of the machinery, as well as to
increase the quality of the manufactured product.

• Decision making. The access to a large amount of information by the operators of the
Industry 4.0 will allow them to make better decisions. This information will go from the
long term production plans of the factory to real time information about the availability of
each product or relevant events in the production line.

This set of improvements aims to revolutionize the industry model in many fields. Although
Industry 4.0 has been traditionally oriented to production systems, it is possible to apply its
ideas and those of other related paradigms (e.g., Industrial Internet of Things) to other sectors
and critical infrastructures of society. The following is a list of potential markets, sectors and
critical infrastructures where Industry 4.0 and its related strategies can be applied:

• Production systems: the objective is that the productive processes can govern themselves,
taking corrective actions that avoid unplanned stops and readjusting the system components
in real time according to the needs.

• Energy: including electricity generation, transmission and distribution (i.e., the Smart
Grid), gas, oil, and nuclear industry.
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• Water: ranging from the provision of water to control of quality.

• Health: medical and hospital care, as well as medicine infrastructures, pharmaceuticals
and bio-laboratories.

• Food supply: including its safety and security

• Transport: whether by road, sea or air traffic, as well as border surveillance and trans-
portation of goods.

• Financial Systems: banking infrastructures, government financial assignments and pay-
ment services.

• Chemical industry: production, manipulation and storage of dangerous substances,
pipelines of dangerous goods.

It is important to emphasize that the concept of sector in this dissertation is too broad to
encompass all the underlying complexities of each of these infrastructures. That is why in this
work we focus on services, as well as on the information flows between physical and cyberphysical
entities in Industry 4.0, taking into account their function within society. From a more technical
point of view, all the principles and advantages of Industry 4.0 can be accomplished by a set of
enabling technologies that can be generally summarized into five main areas: Industrial Internet
of Things, cloud and fog computing, Big Data, blockchain and virtualization.

Firstly, the goal of the Internet of Things (IoT) paradigm is to massively interconnect the
objects that surround us – the ‘things’ – using standardized interfaces, allowing them to produce
and consume services [39]. Applied to the industrial context, the so-called Industrial Internet
of Things vertically integrates all the components within the architecture, ranging from control
systems to machines or even the product itself. Moreover, due to their interconnection capabilities,
all entities could interact with each other at a horizontal level, enabling decentralized interactions
such as monitorization (between human operators and machinery) and decision making (between
the machines themselves). There are other concepts that are related to the IoT and can also be
applied to this context, such as Cyber-Physical systems (CPS). This term was coined by Helen
Gill at the National Science Foundation in the United States, who defined it as ‘a new generation
of systems with integrated computational and physical capabilities that can interact with humans
through many new modalities’ [40]. Note that CPS focus on feedback between systems (i.e.,
looping) in a more local environment, while IIoT assumes a greater global connectivity.

Cloud computing can be considered as another of the pillars of Industry 4.0 for a variety
of reasons. On the one hand, it carries on the analytic procedures with the data provided by
the industrial process, retrieved by IIoT devices. On the other hand, it provides support for the
delegation of production processes and control to the cloud – enabling new productive processes
(e.g., product customization) and innovative services such as ‘cloud-based manufacturing’ [41].
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However, there are various situations, such as management of swarms of robots, where the cloud
might not the most suitable solution due to its inherent features (high latency and jitter, lack
of local contextual information). For this very purpose, it can be possible to apply emerging
paradigms such as fog computing [42], which focus on the deployment of cloud-like services at the
edge of the network.

Third, Industry 4.0 facilitates the evolution of industrial decision making processes, mainly
due to the multiple sources of information that are available to both human operators and
systems alike. In order to distill all this information and extract both business and operational
intelligence, it is necessary to conduct advanced data analytics procedures. This area includes
both the analysis of information at a more local level (e.g., the independent optimization of the
operation of a machine based on its interactions with other elements of the production line) and
the concept of Big Data - the processing of all information provided by entities of the industrial
ecosystem, looking for added value services such as monitoring the operation of the ecosystem
entities, process optimization, and the identification of anomalies.

Beyond the analysis of information, the integrity and security of data at rest in the long
term is also critical for uptaking auditing procedures, which can be enabled by the promising
Distributed Ledger Technologies (DLTs) such as a blockchain. These have been used in this
area as a transparent, tamper-proof and secure system that enables a plethora of business
applications, ranging from P2P energy trading in microgrids [43] to record keeping systems with
privacy protection [44]. A blockchain consists of a shared and distributed database that offers
the synchronization of immutable but linkable information sorted in chronological order. When
combined with smart contracts (i.e., user-defined programs executed in the ledger), it enables an
accurate traceability of events between the different devices and partners, ensuring the veracity
of data while also removing the need of intermediaries.

Lastly, we can highlight a group of technologies whose target is to change the way of designing
and interacting with the production chain, denoted here as virtualization. One of these consists in
the creation of virtual representations (e.g., 3D abstractions [45]) of all machines and components
involved in the production process. This is facilitated by the previously mentioned enabling
technologies, and it will allow the creation of novel services based on the concept of ‘digital
twins’, where it will be possible to conduct simulations to prevent failures and optimize the
production line. Aside from this paradigm, the introduction of modern HMIs can also be included
in this category, that make use of augmented and virtual reality devices that ultimately make
the operations easier and more flexible for the workers. In addition, the use of advanced robots
(autonomous, mobile, modular, multifunctional, etc.) also contribute to improve the performance
of certain tasks within the production chain.

Due to the technological particularities that often converge between Industry 4.0 and the
internet of industrial things (as explained above), and according to the intimate relationship with
the work presented in this thesis, we will now go a little deeper into the software and hardware

10



1.1. Industry 4.0 and Current Issues

that support the IIoT vision. This analysis is of special interest to understand the cybersecurity
problems that occur to all current industrial elements.

1.1.3 Hardware and Software in the Industrial Internet of Things

As previously stated, there are multiple actors that are defining the technologies that comprise the
Industry 4.0 and specifically the IIoT [46]. Such actors include various standardization groups and
several consortia such as the IIC [31] and the Platform Industrie 4.0 consortium [32]. As a result,
the IIoT technology ecosystem is very heterogeneous, ranging from standards that originated
from specific industry verticals to protocols that were designed for general-purpose use. These
technologies provide all the necessary components to build a functional IIoT infrastructure: from
hardware and software platforms to communication technologies at the lower and upper layers of
the networking stack.

From a hardware perspective, a ‘thing’ in the IIoT can be any sensing or actuating device
that interacts with the physical world and can be accessed through the Internet protocol suite –
either directly or indirectly. These entities range from existing industrial devices enhanced with
additional networking capabilities and high-level services (e.g., PLCs equipped with the MQTT
protocol [47]) to sensor/actuator devices equipped with wireless connectivity (e.g., WirelessHART
sensors forming a capillary network [48]). The capabilities of these devices in terms of memory
and computational power is also very heterogeneous, ranging from constrained nodes to more
capable devices.

From a software perspective, there are various reference architectures whose goal is to
provide additional services beyond the basic exchange of data, including operation, management,
business logic, and security. As introduced earlier, the most important reference architectures are
the IIRA and the RAMI4.0. Although as of 2020 there are no complete instantiations of these
reference architectures, the functionality of some of their components is being verified through the
use of testbeds. Moreover, certain major industry players, such as Siemens [49], already provide
basic IIoT solutions.

As for the communication technologies and protocols, they can be classified into two categories:
lower layer protocols and upper layer protocols. Lower layer protocols are deployed under the
network layer (the IP layer of the TCP/IP stack), and in the context of the IIoT all protocols
make use of a wireless transmission channel (cf. [46]). These protocols can be classified as:

• Wireless Personal Area Networks (WPAN). WPAN protocols used in IIoT solutions include
standards such as IEEE 802.15.4 [50] and Bluetooth. In most cases, due to the limited
resources available to constrained nodes, WPAN networks will not make use of the standard
IP layer (IPv4, IPv6) protocols, but different protocols – either standardized subsets of the IP
protocol (e.g., 6LowPAN [51], 6TiSCH [52]) or other proprietary protocols (WirelessHART,
ISA100.11a [53]). In all cases, it is mandatory to deploy a gateway between the WPAN
network and the industrial network. Such gateway will be deployed at the industrial premises.
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• Wireless Local Area Networks (WLAN). The family of 802.11 standards is the most common
WLAN technology used in industrial settings. As with WPAN protocols, the gateway that
connects the WLAN network with the industrial OT and/or IT networks will be deployed
at the industrial premises. It should be pointed out that in contrast with the majority
of WPAN networks, in industrial WLAN networks no routing is necessary between the
endpoint and the gateway.

• Cellular Networks and Low-Power Wide-Area Networks (LPWAN) This category includes
both general-purpose cellular technologies (e.g., 4G, 5G) and solutions specifically designed
for IoT devices (e.g., NB-IoT, Sigfox, LoRa [54]). Compared to WPAN and WLAN protocols,
the information firstly traverses the telecommunications network before reaching the specific
industrial network that consumes the information – which can be located on premises or in
the cloud.

In the context of industrial networks, the main difference between these technologies is the
location of the gateway with wireless connection with the industrial network. In WPAN and
WLAN, gateways can be deployed and controlled at the industrial premises, while in cellular
networks data must first traverse the telecommunications network before reaching the specific
industrial network that consumes the information – which can be located on premises or in the
cloud. Also, most WPAN networks make use of subsets of the IP standards (e.g., 6LowPAN) or
proprietary protocols (e.g., WirelessHART).

Upper layer protocols are deployed over the transport layer (TCP or UDP), and allow the
exchange of information in a shared data structure between participants. The most important
upper layer IIoT protocols as defined in Liao et al. systematic literature review [46] (which largely
correspond to the connectivity framework protocols presented in reference architectures such as
[31]) can be categorized as follows:

• Messaging and data-oriented protocols. This category includes protocols specialized in
providing asynchronous message queuing between various interested parties [55]. In the
context of the IIoT, the most commonly used protocol is MQTT, which provides a lightweight
publish-subscribe mechanism that is suitable for constrained nodes. Other actors have also
considered the integration of other, more complex data-centric protocols such as DDS,
AMQP [56], and XMPP [57].

• Web Services. Most IIoT web services rely on a RESTful style of architecture, where
resources are mapped to URIs, and HTTP requests are sent to perform operations in such
resources. Other, more complex web service frameworks like SOAP (Simple Object Access
Protocol) are less used in this context. Note that there are protocols like CoAP that do not
make use of HTTP, and are specifically designed to provide web services to constrained
nodes [58].
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Figure 1.2: Overview of the Industry 4.0 infrastructure model and its enabling technologies

• Specific frameworks. There are various frameworks that were specifically designed to fulfil
the needs of certain industry verticals (e.g., manufacturing, telecommunications), yet are
flexible enough to be applied to most IIoT scenarios. Examples of protocols used by
these frameworks include OPC UA and OneM2M (a service layer that provide efficient
communication between application endpoints [59]).

Altogether, these areas of technologies will allow the industry to flexibly model the operations
performed within the production life cycle, enhancing their efficiency based on the heterogeneous
information exchanged between all the components involved, that ultimately reduces risks and
achieves a better decision making. It is possible to perform a prospective analysis on the application
of the aforementioned technologies in the short (directly applicable), medium (existing proofs of
concept) and long term (nowadays limited to theoretical research):

• Short term: it includes communication protocols based on Ethernet or TCP/IP already
being applied, and those aiming to achieve a higher interoperability between different
systems, like IO-Link or OPC UA. It is also considerable some technologies that assist
the personnel within the organization: visualization of throughput, assets location, smart
inventory, etc.
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• Medium term: they mostly consist in an evolution of already available processes in the
short term, such as advanced assisting technologies (e.g., augmented reality, wearable devices).
On the other hand, it includes the integration of cloud computing and IoT technologies to
enable real-time communication and a deeper integration between all elements of the value
chain.

• Long term: Industry 4.0 makes use of virtualization and artificial intelligence to run
simulations and predictions of processes that ultimately deploy a fully decentralized, dynamic
and reconfigurable model.

Once we have introduced the enabling pieces of the Industry 4.0 from a hardware and software
perspective, we have a clear picture of the technological landscape that sets the background of this
dissertation. In this sense, an overall view of the Industry 4.0 infrastructure with the integration
of all these technologies is illustrated in Figure 1.2. In the following section, we will enumerate
and analyse the set of future cybersecurity threats that might appear in the industry environment
as a consequence of the introduction of the main technologies mentioned before.

1.2 Overview of Cybersecurity Challenges in the Industry 4.0

Several specialized consulting firms point out the need to allocate funds in cybersecurity in
order to increase confidence and ensure the adoption of Industry 4.0 technologies in all sectors.
Reports such as that of the International Data Corporation (IDC), which highlights that in 2018
24% of organizations conceive IIoT as a determining element for the transformation of their
business, contrast with other less hopeful statistics: among them, a report indicating that 70% of
manufacturing companies deal with sensitive information accessible over the Internet, despite the
fact that only 55% of them claim to employ encryption in communications [60]. Another example
is provided by Kaspersky with the proportion of industrial infrastructures attacked worldwide [1],
as shown in Figure 1.3.

This trend translates into millions of dollars in losses. In its 2017 survey of 254 major industries
in seven countries, Accenture estimated an average of $13 million in costs in 2018 resulting from
an increase of 12% in security breaches over 2017 [2], especially affecting critical infrastructure in
the financial sector, as shown in the graph in Figure 1.4.

Most of these security threats arise due to the particular characteristics of Industry 4.0
environments and the infrastructure model applied. As pointed out before, a gradual transition is
currently underway from the pyramidal model (which includes the integration of legacy systems
and their associated vulnerabilities) to a more decentralized architecture [61]. This trend is still
on the rise, as predicted by firms such as Gartner [62], which anticipate a Core modernization and
decentralization of cloud resources in the infrastructure models of all industrial sectors by 2021.
This tendency is favoring the emergence of collaborative spaces between industrial partners, such
as so-called cloud manufacturing [63]. However, this transition also brings a more heterogeneous
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Figure 1.3: Geographical distribution of cyber attacks against industrial systems up to the first
half of 2020 (percentage of resources affected in each country) [1]

Figure 1.4: Average cost generated by the increase in security breaches in 2018 in major interna-
tional industrial companies [2]
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and complex environment, where any element could interact and cooperate with any other element
in real time. This set of principles come enabled by a number of such disruptive technologies
in traditionally isolated environments as the IoT, cloud computing, data mining (or Big Data),
blockchain and virtualization, as introduced before.

In this sense, advanced interaction elements such as machine-human interfaces, ‘digital twins’
[64] or autonomous agents for the autonomous organization of the production chain [65] come
into play. These elements can exert a direct influence on the behavior of the other agents. If
the information collected by the agents is manipulated, or if the integrity of the agent itself is
breached, it is possible to launch various attacks aimed at extracting the flow of information
going to the agent and the information created by the agent itself, which can be spread by all the
other components surrounding it. An example of the security issues generated by this increase in
the complexity and heterogeneity of technologies is the statistic shown in Figure 1.5, which shows
the wide range of attack vectors up to mid-2020 [66].

Figure 1.5: Attack vectors in industrial environments in the first half of 2020 [1]

Consequently, we can see that all the traditional security properties can be jeopardized with the
new Industry paradigm due to the nature of the new threats [67] operating under different threat
modes [68] that have not been addressed before. From the point of view of availability, it would
be possible to launch a denial of service (DoS) attack from any element of the infrastructure itself.
In terms of integrity, the manipulation of Industry 4.0 technologies can enables an adversary to
manipulate not only local behavior, but also global behavior through distributed and cooperative
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decision processes. At the confidentiality level, the amount of sensitive information managed
by local entities will increase, with a consequent increase in the risk and impact of attacks.
Authentication suffers as barriers between different subsystems become blurred and technologies
such as Big Data and virtualization are integrated. Finally, privacy is also at risk, both at the
human level and at the level of the industrial sector companies themselves.

As a result, an industrial system becomes complex and critical, besieged by multiple attack
vectors that can be ultimately leveraged to perpetrate an APT [69, 70]. This represents a
sophisticated attack perpetrated by an expert adversary, and is characterized for its ability to
go undetected within the victim network for a certain period of time. Due to the complexity of
these attacks – which involve several steps – and the high amount of successful APT campaigns
perpetrated by malicious actors [71], it is crucial to understand what is the true scope and
detection capabilities of the first line of defense; that is, existing intrusion detection systems.
With respect to these, there are still some issues that need of further exploration as to develop
effective tools capable of detecting, tracing and deterring APTs. It is thereby our mission in this
thesis to explore the existing techniques and mechanisms that try to detect specific threat vectors
within an industrial context, making emphasis on the special case of APTs but without losing
sight of the future industrial paradigms.

This subject of research is particularly intense nowadays, and these safety issues have already
been identified and considered by both the scientific and industrial communities. To begin
with, there are numerous initiatives and working groups specifically focused on safeguarding
the resources of production processes in the face of the advancements made by the digitization
of industry. A notable example is the contractual PPP formed in 2016 between the European
Commission and the European Cybersecurity Organization (ECSO), allocating €450 million
with the aim of stimulating R&D work in this direction [72]. Among ECSO’s efforts, Working
Group 6 is in charge of managing cyber defense activities between the various cPPPs and
the EU, particularly addressing issues related to the integration of Industry 4.0 in industrial
environments, and their protection against advanced persistent threats. From a more technical
perspective, the attack phases that may be involved in these threats are extensively studied by
corporations such as IBM X-Force [73] or MITRE in their ATT&CK matrix (Adversarial Tactics,
Techniques & Common Knowledge) [74]. Also, associations such as the European Factories of
the Future Research Association (EFFRA), where funds are earmarked for the active integration
of cybersecurity processes and practices in manufacturing environments, through projects and
seminars, also in collaboration with ECSO, should also be taken into account.

On the other hand, ENISA is the European Union’s Network and Information Security Agency,
responsible for providing solutions and practical advice to the European public and private sectors,
as well as publishing reports and studies on cybersecurity issues that contribute to the creation
of new EU policies and legislation on network and information security. In terms of Industry
4.0, ENISA highlights in its latest report the need to develop solutions to solve the growing
connectivity and complexity of production systems, ensuring the integration of IT/OT domains
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and providing support for the incorporation of legacy systems in industry, among other needs
that are satisfied with the development of this platform [75].

Regarding initiatives beyond European borders, in the United States there are several ini-
tiatives that provide support to the national network for industry innovation mentioned above.
An example of these is the Department of Homeland Security, which through its strategic report
‘Strategic Principles for Securing the Internet of Things’ [76], and together with the ‘Cyberse-
curity Framework Manufacturing Profile’ defined by the National Institute of Standards and
Technology (NIST) [77], pursues the establishment of security policies and controls applicable to
any environment and industrial sector built under the umbrella of Industry 4.0. Aligned with
this, the H2020 project AEGIS (accelerating EU-US dialogue in Cybersecurity and Privacy) has
recently established in its ‘Policy Brief on Research and Innovation in Cybersecurity’ the five
technological and application priorities in international cooperation in the coming years with
the United States [78]. Among them, it is worth highlighting Cybersecurity in Industry 4. 0,
IoT and CPS, addressing issues related to trust, privacy and information security in all areas of
application, whether in manufacturing, seaports or healthcare.

From a international perspective, there are also various standards that help organizations
comply with security requirements and cope with future cyber threats scenarios. Specially, it
is worth mentioning the IEC 62351 [79], a reference framework in the industry and power
systems, that provides guidelines for introducing different security services concerning data
and communications. Another example is the ISA/IEC 62443. These are a series of standards
to provide a flexible framework that addresses and mitigates current and future threats and
vulnerabilities. It has been developed by the ISA99 committee as American National Standards
and adopted globally by the International Electrotechnical Commission [80].

On the whole, these standards and reference organizations are essential to pave the way for
future cybersecurity services in the Industry 4.0. The specific features of these environments will
bring new challenges that need to be understood and overcome when developing threat protection
and detection mechanisms, which is one of the goals of this research.

1.3 Goals and Contributions of the Thesis

In the previous sections, we have supported the initial motivation of this thesis, where we have
presented the challenges with respect to the detection and traceability of APTs in Industry 4.0
environments. This problem can be summed up in the absence of a single ‘silver bullet’ that can
address all potential threats described in Section 1.2. Yet it might be possible to combine various
solutions to provide an adequate level of protection against all kinds of attacks, including APTs.

When addressing these cybersecurity threats individually, the state of the art of cybersecurity
for critical infrastructures shows that it is possible to detect threats against the availability of
the system by detecting malicious network traffic and by mapping the behavior and location
of existing devices. Likewise, there are other detection mechanisms that are specialized in the

18



1.3. Goals and Contributions of the Thesis

detection of integrity threats: either directly, by detecting the presence of malicious entities, or
indirectly, by uncovering the attacks and side effects caused by such entities. Finally, various
techniques, such as in-depth traffic analysis, anomaly-based detection, and user monitoring can
help in the detection of malicious insiders that bypassed the AAA (Authentication, Authorization
and Accounting) infrastructure.

However, although the basic tools to detect and deter the attack vectors of an APT in a
modern industrial ecosystem have already been developed, there are still some issues that need
of further exploration. First, very few research works have made use of the existing research on
APT behaviour [71, 74] to validate their detection mechanisms. Then, it is extremely important
to facilitate the integration of holistic defense solutions in existing critical infrastructures, not
only in terms of detection but also in terms of usability (e.g., availability of tools to facilitate the
traceability of potential APT intrusions) and user training [81].

Based on this preliminary research, there are still certain aspects that require of more research
and validation in the area of intrusion detection, attack traceability and intrusion prevention
for the Industry 4.0. As discussed above, the integration of cutting-edge technologies such as
IIoT and cloud computing must be carefully considered. Also, as the number of elements and
business processes increases, the existence of misconfigured elements does so as well. Moreover,
the opportunities for collaboration also increase the amount of information that is available
to an adversary in case he/she controls a section of the system. Thus, it essential to assure
that all elements and evidence are properly monitored; making use, if possible, of lightweight
accountability mechanisms based on granular information in which it is required to identify what,
who and how these events were launched.

Therefore, we aim to approach the design of a framework for the detection and traceability of
APTs in Industry 4.0 environments and applications. It is aimed to fill the gap between classic
security mechanisms and APTs. The premise is to combine mechanisms capable of monitoring all
the devices (whether physical or logical) that are interconnected within the organization, retrieve
data about the production chain at all levels (e.g., alarms, network logs, raw traffic) and correlate
events in a distributed way to trace the attack stages throughout its entire life cycle. These
measures would provide the ability to holistically detect and anticipate attacks as well as failures
in a timely and autonomous way, so as to deter the attack propagation and minimize its impact.

To cope with this cybersecurity goals, the aforementioned framework extracts the advancements
of novel candidate solutions for IDSs in the Industry 4.0, such as the Opinion Dynamics [82]. These
alternatives propose to apply advanced correlation algorithms that analyze an industrial network
from a holistic point of view, leveraging data mining and machine learning mechanisms in a
distributed fashion. Altogether, the framework serves as guidelines for the design and development
of advanced detection systems that fulfill a set requirements for novel defense mechanisms in the
Industry 4.0, namely:
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• Coverage of all potential interactions and elements of an Industry 4.0 deployment, as well
as the ability to be easily upgraded with new detection algorithms.

• Intelligence to take into consideration the existence of novel attacks and incorporate more
advanced detection techniques such as behavioral analysis.

• Symbiosis with other protection mechanisms, such as prevention systems and authorization
policies, but also with other relevant Industry 4.0 services, such as ‘digital twins’.

1.3.1 Thesis Outline

This chapter has introduced the main motivation and research scenario of this thesis, about the
new cybersecurity challenges that appear on the Industry 4.0, and more specifically around the
detection and traceability of APTs. In order to better understand such an scenario, we have
reviewed the principal components introduced by this paradigm and introduced the main actors
and stakeholders involved from an international perspective, and including the cybersecurity
dimension. Based on the issues extracted, we determine that the goal of this thesis is to shed light
to the problem of APT traceability. For this, we formalize a framework that enables the design
and practical integration of such distributed mechanisms for the traceability of APTs, while also
comparing the features of the aforementioned solutions according to the cybersecurity needs of
the industry nowadays, both qualitatively and experimentally.

Before proceeding with the design of such framework, we review the main issues that menace
current industrial architectures in Chapter 2. The goal is to characterize the context and create a
taxonomy of attacks that may become part of an APT against current industrial assets and the
future Industry 4.0 deployments.

To address these threats, we need to find what are the detection mechanisms that can be
used as a first line of defense. For this purpose, in Chapter 3 we will provide an analysis of the
evolution and applicability of IDSs that have been proposed in both the industry and academia.
By this means, we can identify the areas that need of further research, regarding the applicability
and integration of proactive detection mechanisms, and its integration with the advent of the
Industry 4.0.

Based on the security and detection requirements extracted, Chapter 4 is devoted to defining
the framework for developing solutions that enable the distributed correlation of APT events.
This framework considers various network architectures, types of attack and data acquisition
models, to later define the inputs and outputs that traceability solutions should include to support
the aforementioned requirements. This lays the base for the development and comparison of
novel solutions in this context. Indeed, as a means to validate the proposed framework, we define
two novel protection mechanisms based on clustering and consensus, and carry out different
experiments to compare their accuracy when tracing different APTs based on realistic attack
models created from the analysis of threats conducted before.
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In Chapter 5, we assess the accuracy of some response techniques that take advantage of the
traceability features of the enabling correlation algorithms that meet our proposed framework.
Similarly, we conduct a study on the feasibility of these detection systems in various Industry 4.0
scenarios, with the Smart Grid (to deploy mechanisms to ensure the security of the network and
its authorization systems) and the Industrial Internet of Things being the most relevant.

In order to successfully validate all these findings, in Chapter 6 we perform the verification
and validation of the framework defined, the correlation algorithms and the response techniques
developed. On the one hand, this validation is conducted using theoretical demonstrations by
elaborating the correctness proof of every approach presented. On the other hand, we also validate
our detection approach from a practical point of view, by implementing a proof of concept of this
approach in a real testbed, that integrates several kinds of industrial devices and protocols.

Finally, Chapter 7 summarizes the main contributions of this thesis and discusses some lines
of future work and open research issues.
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Chapter 2

Cybersecurity in Industrial Ecosystems

To get into the problem of APT traceability, we firstly have to review the main cybersecurity
issues that industrial architectures of the Industry 4.0 face nowadays. These can be classified into
two types: intentional and unintentional threats. The former alludes to uncontrollable phenomena
which, while not directly affecting control and automation systems, can jeopardize the production
chain. For example, an incorrect use of USB keys may lead to a malware infection aiming to
disrupt the correct functioning of the system [8]. The unintended ones, to the contrary, are the
most influential in these types of critical contexts, and may come about from all those security
gaps originating with the intentional threats. Outsiders, for example, could take certain remote
actions, taking advantage of the architectural deficiencies of the information systems dedicated
to the control to interfere with the operational infrastructures that support the manufacturing
operations. The threat model, therefore, can be highly diverse where the attack vector and the
adversarial influence are dependent on the nature and kind of attacker [83][84][85].

In this chapter, we firstly carry out a review of the threats affecting industrial systems today.
Then, we analyze the cybersecurity issues presented by the technologies that enable Industry 4.0,
both separately and integrated into the services offered by this paradigm. Finally, we study how
these attack vectors can be part of the context of an advanced persistent attack, with the aim of
exposing the challenges of current detection solutions.

2.1 Traditional Threats in IS and ICS

After several years of being subject to a multitude of threats [86], today’s industry is still at risk.
According to the annual reports of ICS-CERT [84], IBM® X-Force® Research [87], and Sikich
[88], the number of threats has tended to rise annually in the manufacturing industry, either
because of unforeseen occurrences or through planned actions. Irrespective of the causes, the
consequences affect the normal performance of control and industrial process, thereby affecting the
expected production rate and the final distribution to end-users. This situation is unfortunately
aggravated when interconnecting traditional technologies and information systems to production
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environments. For the purposes of our analysis, both types of attack vectors that affect the
industrial environment (i.e., the ones inherited from the traditional industrial systems and those
arisen with the interconnection of IT technologies) can be classified following the taxonomy given
by the IETF standard RFC 7416 [89], in which the threats are grouped according to the attack
goals against the minimum security services [90] such as availability, integrity, confidentiality and
authentication.

Availability threats: apart from the typical subtraction of devices (e.g., PLC and RTU) or
communication infrastructures, it is essential to highlight the threats related to distributed denial
of services (DDoS) attacks, the techniques of which mainly focus on the routing (e.g., relay
attacks, selective forwarding, grey hole, black hole or botnets).

Integrity threats: includes from the typical sabotage of the industrial equipment to the injection
of malware [91] to slow down the operational performance, obtain sensitive information, modify
the operation of the devices, etc. These threats are also related to the alteration of the industrial
communication protocols and/or the real traffic values produced by field devices, controllers or
corporate network equipment. Impersonation of nodes and spoofing are also applicable to an
industrial context, due in part to the susceptibility to Man-in-the-Middle attacks and the existing
weaknesses of the industrial communication protocols. We also have to consider that the vast
majority of such protocols are still legacy protocols, in the sense that they were originally designed
to transfer control information without considering various cybersecurity requirements such as
authentication between peers, integrity of messages, or the confidentiality of the communication
channels.

Confidentiality threats: within this category the illicit disclose techniques through passive
traffic analysis (regarding topologies and routes) and theft of sensitive data (related to industrial
process, customers, administration) or configurations should be highlighted. An example of
information theft is that achieved by injecting code in the operational applications (often webs
through cross-site scripting (XSS) or SQL Injection) so as to obtain or corrupt the control
measurements/actions, the company and/or end-user privacy, or the security credentials.

Authentication/authorization threats: the authentication in this point includes those attack-
ers that generally try to escalate privileges by taking advantage of a design flaw or vulnerability in
the software in order to gain unauthorized access to protected resources. For example, according
to the IBM® X-Force® research report [87], 45% of all attacks registered in 2015 focused on
unauthorized accesses, followed by malicious code (29%) and sustained probe/scan (16%) attacks.
In order to carry out these attacks, attackers need to apply specific social engineering techniques
(e.g., phishing attacks, chain of spam letters) to collect strategic information from the system.
Apart from this, the easy mobility of in-plant operators and their interactions through the use of
hand-held interfaces (smart-phones, tablets, laptops) also lead to numerous security problems,
probably caused by mis-configurations or unsuitable access control, both at the logical (use of
simple passwords) and physical (access to equipment) level.
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2.2 Landscape of Cybersecurity Threats of Industry 4.0 Enabling
Technologies

Besides addressing the aforementioned security issues, it is necessary to envision a set of future
security threats that might appear, especially pertinent when integrating new trending technologies
such as IoT or cloud computing infrastructures. As explained earlier, these technologies are already
being applied to ICS and herald the so-called fourth Industrial Revolution, or Industry 4.0 [92].

There are various researchers that have identified the most impactful threats that affect current
industrial infrastructure ecosystems. Examples include social engineering, malware infection,
compromising Internet-connected components, and insider threats [93]. Still, while these threats
are also applicable to Industry 4.0 environments, it is necessary to understand the threats that
might arise due to the integration of the enabling technologies introduced in Section 1.1. For
this very purpose, this section will provide a taxonomy of such threats. The taxonomy described
here has also been created according to the IETF standard RFC 7416 [89], that proposes an
analysis of security issues whose classification is based on their effect on the main security services:
availability, integrity, confidentiality and authentication. Nevertheless, it is important to note that
many of the threats affect several of these services. An overall summary of the main threats of
each technology, which have been extracted from the current literature, is presented in Table 2.1.

2.2.1 Industrial Internet of Things Threats

IoT interconnects sensors and all kinds of devices with Internet networks, to gather information
about physical measures, location, images, etc. The IIoT specifically pursues a vertical integration
among all the components that belong to the industrial architecture, ranging from machines
to human operators or the product itself. With respect to security, the situation is further
complicated when we take into consideration the scarce autonomy and computational resources
that these devices have. Continuing with the IETF standard RFC 7416 [89], we can distinguish
the following range of threats:

Availability threats: comprises the disruption of communication and processing resources:
firstly, against the routing protocol [94], influencing its mode of operation (creating loops,
modifying routes, generating errors, modifying message delays, etc.) through different attacks,
which can be directly committed at the physical level through jamming or interferences.
Secondly, against the equipment itself, including the exhaustion of resources (processing,
memory or battery) exploitation of vulnerabilities in the software (as well as reverse
engineering) that govern control devices such as PLCs, in addition to running malicious
code or malware: viruses, Trojans, etc. [95]. Thirdly, we have to stress the data traffic
disruption, undermining the functionality of the routers in the network, causing a lack of
availability of certain services. It is caused by vectors such as selective forwarding, wormhole
or sinkhole attacks.
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Integrity threats: it means the manipulation of routing information to influence the traffic
and fragment the network, like a Sybil attack [96]. This becomes the gateway to other
attacks such as black hole or denial of service, causing the routes to pass through the more
congested nodes. The form of attack includes falsification of information (the node advertises
anomalous routes), routing information replay, physical compromise of the device or attacks
on the DNS (Domain Name System) protocol [97]. Node identity misappropriation can also
be taken into account, opening the door to other attacks that result in the modification of
data of all types.

Confidentiality threats: includes the exposure of information of multiple kinds: firstly, the
one related to the state of the nodes and their resources (available memory, battery, etc.).
One way is the so-called side channel attacks [98], where the electromagnetic emanations of
devices leak information about the execution of certain operations. Secondly, it also includes
the exposure of routing information and the topology, which constitutes rich information
for the attackers as it enables them to identify vulnerable equipment. Since this information
resides locally in the devices, attacks against the confidentiality of this information will
be directed at the device, either physically compromising it or via remote access. Lastly,
it is also possible to have the exposure of private data, usually collected by wearable
devices belonging to operators within the organization, which can reveal information about
their performance at work or their location. One attack vector could be the use of social
engineering or phishing.

Authentication threats: we can highlight the impersonation and introduction of dummy / fake
nodes, capable of executing code or injecting illegitimate traffic to potentially control large
areas of the network or perform eavesdropping. An attack vector consists of the forwarding of
digital certificates used in authentication protocols or physical or network address spoofing.
Escalation of privileges can also be faced as a consequence of a non-existent or poor access
control, when the attacker can take advantage of design flaws or vulnerabilities in IoT
devices to access protected resources without authorization.

2.2.2 Cloud Computing Threats

In recent years cloud computing has changed the way in which information technology is managed,
through an environment that provides on-demand resources over the Internet with a low cost of
investment and easy deployment. For our work, cloud computing acquires dual importance. On
the one hand, many organizations use the cloud to provide IoT services, acquiring sensor data
and sending commands to actuators. On the other hand, it is also necessary to take into account
the delegation of certain analysis and production processes to the cloud, in what is known as
cloud-based manufacturing [99]. The ultimate goal of this model is to enable customers to design,
configure and manufacture a product through a shared network of suppliers throughout its life
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cycle, enhancing the efficiency and reducing costs. In summary, these factors make it necessary to
analyse the full range of threats that cloud computing faces [100][101]:

Availability threats: This category includes the so-called service theft attack, which takes
advantage of the vulnerabilities and inaccuracies that exist in the scheduler component of
some hypervisors, where the service is charged considering the time spent running virtual
machines – instead of based on the CPU time in use. This can be exploited by attackers
in order to use services at the expense of other clients, making sure that the processes of
interest are not executed at each tick of the scheduler. We also contemplate denial of service
attacks: the attacker causes the service to become inaccessible for its legitimate users. This
is the most serious type of attack on cloud computing, because of the ease with which it
can be carried out and the difficulties in preventing them.

Integrity threats: the most important one comes with a malware injection attack, where the
attacker replicates the service instance that is provided to a client (a virtual machine, for
example) and replaces it with a manipulated one that is hosted again in the cloud. This
means that requests sent by the legitimate user are processed in the malicious service,
and the attacker can access the exchanged data. To do this, the most common way is to
appropriate access privileges or introduce malware into multiple format files, jeopardizing
the confidentiality and privacy of the data.

Confidentiality threats: firstly, side-channel attacks with virtual machines must be stressed,
in which the attacker, from his virtual machine, attacks others that are running on the same
physical hardware. This allows them to access their resources by studying the electromagnetic
emanations, the processor cache, etc. This information can be useful in choosing the most
attractive targets to attack. This category also includes attacks on shared memory systems:
they work as a gateway to other types of attacks such as malware or side-channel attacks,
and consist in analyzing the shared memory (cache or main memory) used by virtual and
physical machines to obtain technical information about the infrastructure, such as the
processes that are running, the number of users, or even the memory dump of virtual
machines.

Authentication threats: the attacker tries to obtain information from the clients of different
applications or trusted companies by posing as themselves. This is done through malicious
services with the same appearance as those are normally offered through a link sent by
email. Thus, the attacker can obtain sensitive information from his/her victims by entering
their data, such as passwords or bank cards. This way, the attacker can illicitly host services
in the cloud and access accounts of certain services.
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2.2.3 Big Data Threats

One problem that is closely related to cloud computing is that the data owner (i.e., the client)
hardly has control of where the data is located. Nowadays, Big Data is used in the industry to
process petabytes of information about their business, so it becomes critical to securely store and
manage this bulk of data by means of preventive, detective and administrative mechanisms [102].
The full range of threats that data analytics faces is discussed in the following:

Availability threats: they revolve around the inability to use computational resources or access
the information stored. Data is processed in a parallel way by a distributed network of
nodes in charge of running MapReduce operations [103]. It is hence difficult to know where
the computation takes place and equally tricky to ensure the security of all components
(e.g., databases, computing power, etc.), so a small weakness can bring down the entire
system. The data availability is also at risk if there is not any policy to create redundant
copies of files.

Integrity threats: data processed is characterized by its volume (huge amount), velocity (speed
of generation) and variety (multiple formats), so it is important to implement techniques
to prevent against its modification, insertion, deletion or replay. Due to the distributed
nature of Big Data, individual untrusted mappers (i.e., nodes in charge of acquiring and
elementary processing pieces of data) can fail, resulting in a corruption of the aggregated
data. Sometimes, such systems do not apply integrity measures in order to improve efficiency,
which jeopardizes the veracity of the information. Data input validation is also essential to
protect the information during its transmission from several sources (e.g., the corporate
network, field devices, the web, etc.).

Confidentiality threats: they are a major concern in Big Data. From a technical perspective,
the lack of real-time encryption over files and communications (usually to achieve perfor-
mance) leave all the sensitive data exposed in case a vulnerability is exploited, whose impact
is higher when all the data lies in distributed systems. On the other hand, Big Data also has
privacy implications when data is analysed massively, which can draw accurate conclusions
about the infrastructure or behaviour patterns of workers within the organization. As a
consequence, there should be a balance between privacy and security, by strong policies
and a new generation of encryption solutions.

Authentication threats: Big Data was designed for performance and scalability, without
security in mind at the level of tables, rows and cells. The many data flows involved in the
analytics make some companies deploy their private storage to hold the information. The
problem arises with the unauthorized access to sensitive data (by both insiders or external
attackers) spread over multiple nodes. Therefore, it is crucial to classify data based on
its criticality and establish granular access controls for all systems and applications. It is
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equally important to introduce a real time monitoring of devices, together with exhaustive
logging procedures to keep track of any action taken upon data.

2.2.4 Blockchain Threats

Distributed ledger solutions such as a blockchain can enables multiple business applications in the
Industry 4.0. These range from events auditing to authorization applications or energy trading
processes [104], by establishing a trusted network of peers. This is especially interesting for the
decentralization pattern exhibited by modern industrial infrastructures. When it comes to data
ownership and visibility, a Blockchain can be public (also known as permissionless) or private
(permissioned). If we are dealing with a public model, then all parties are granted access to read
past transactions. On the other hand, permissioned blockchain schemes oblige the partners to be
identified and authorized prior to participating in network operations, which reduces dramatically
the number of nodes compared to public blockchains [105]. The latter are based on a Proof of Work
(PoW) consensus between the partners, such as the Nakamoto algorithm (where the consensus
depends on demonstrating the resource consumption implied by solving a complex mathematical
problem), since there is no previous trust assigned to the rest of peers within the network (that in
turn offer a higher peer-to-peer scalability). In contrast to them, permissioned blockchains allow
the deployment of more efficient consensus algorithms featuring a higher transaction capacity
[106], which is essential not to impact the control performance. In the following, we classify the
cybersecurity challenges that this technology faces:

Availability threats: the most critical threat against the availability of a PoW-based blockchain
is posed by a so-called 51% attack. An adversary with high hashing power (i.e., having
at least 51% of the hash rate) could potentially insert invalid transactions into a block
and hence compromise the consensus protocol, gaining full control of the network and
denying the service to specific peers. Likewise, although the P2P characteristics of this
technology make it harder to disrupt than conventional architectures, DDoS attacks could
be also feasible at a network level by flooding the nodes with junk data. This causes long
delays when processing normal transactions, which would be critical in time-constrained
environments. This attack was reported against the Bitcoin network in 2014, when attackers
attempted to overflow it with requests [107].

Integrity threats: the integration of sequential hashing and cryptography, together with a de-
centralized structure, makes it harder to tamper with the information stored in a blockchain.
The main integrity issue arises with smart contracts: a bug in such programs or a vulnerable
development platform might end up with the theft of cryptocurrencies or injection of code,
which could have a domino effect on other parts of the network or leave the ledger in an
unpredictable state. For instance, in 2016 attackers managed to exploit a vulnerability in
the Go-based Ethereum client’s smart contract implementation that prevented peers from
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mining further blocks [108], and another attacker exploited a bug in a smart contract that
led to the theft of 60M Ether [109].

Confidentiality threats: blockchain built-in features already provide organizations with data
immutability and traceability. However, this may precisely pose a problem in public
blockchains when fitting with data privacy laws that oblige to implement the right to
be forgotten and hence erase sensitive information. One solution is to encrypt the data
written in the ledger or writing only the hash of transactions to it, while the transactions
themselves are stored outside. In this case, this leaves space for a confidentiality issue if
the security of the encryption key are compromised [110]. The injection of false data in the
ledger can also take place in the presence of dishonest oracles (i.e., entities that connect a
blockchain with off-chain data) [111]. In the case of private blockchains, it is fundamental to
protect the network and data access by means of effective authentication and authorization
controls.

Authentication threats: as mentioned before, private blockchains already offer out of the box
full encryption and AAA capabilities to make data inaccessible by unauthorized parties. The
main threat against the authentication property is represented by a wallet theft, this is, the
stole of the private key through social engineering or the compromise of uncommunicative
or intermittently active nodes within the blockchain. This may lead to Sybil attacks when
the attacker gains control of multiple nodes and manipulates the consensus process [112].

2.2.5 Virtualization Threats

The growing amount of virtualization technologies to simulate the product creation and assist
the workers in the process originates the need to create standards for the information exchange
between the physical assets and their virtual representation, while achieving interoperability
among all the interfaces. The secure integration of these services imposes several challenges:

Availability threats: the virtualization of actual components within the organization requires
gathering, storing and processing data from all sensors installed in the production system and
making it available to data consumers, mainly simulators and HMIs (e.g., augmented/virtual
reality glasses, smartphones). This multiplicity of devices (each one with its own vulnera-
bilities) and platforms complicates the assurance of fault-tolerance and the realization of
multi-platform user interfaces.

Integrity threats: the representation of the cyber-physical world for the purpose of param-
eterizing actual processes and monitoring their throughput implies the synchronization
of coherent data among virtual and real endpoints. These parameters often concern con-
trol commands and 3D coordinates for simulation models, which are evolving with the
production life cycle. It is therefore vital to safeguard the integrity of such data, since a
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Table 2.1: Main Cybersecurity threats of Industry 4.0 enabling technologies

IIoT Cloud/fog Big Data Virtualization Blockchain
Availability Exhaustion

of resources
(traffic, re-
quests)

Network flood-
ing, service
theft

Multiple
points of
failure

Multiple
points of
failure

Network flood-
ing, consensus
manipulation

Confidentiality Exposure
of sensitive
information

Data ac-
cesss by the
provider,
side-channel
attacks

Lack of cryp-
tography,
privacy is-
sues when
massively
analyzing
data

Simulations
information
leakage

Privacy is-
sues with
transactions
traceable to
users

Integrity Data or
routing in-
formation
manipulation

Malicious
VMs

Untrusted
mappers, lack
of integrity
measures

Disparity be-
tween physical
and virtual pa-
rameters

Vulnerable
smart con-
tracts, code
injection

Authentication Identity mis-
appropriation

Phishing Lack of fine-
grain access
controls to
nodes and
tables

Lack of AAA
services to ac-
cess data from
heterogeneous
devices

Identity or
node theft,
Sybil attacks

slight difference between models could lead in dysfunctions or incorrect predictions. It also
demands an operational training for workers of the setup of complex machines and the
associated simulation software.

Confidentiality threats: the increase of usability and accessibility of data for the operators
involved in the industry contrasts with the need to keep the intellectual property safe from
disclosure. Data used in simulations could also be leaked if the storage and memory of the
systems in charge of executing such programs are not properly updated. In addition, privacy
must be taken into account, since the mobility of workers should be tracked to provide
them with current information on-site.

Authentication threats: the dissemination of information over multiple platforms and the
virtualization of services (making use of cloud computing) blurs the barriers of data
protection and eases its access by unauthorized entities, which is aggravated with the
use of smartphones and similar devices that are easily breakable. It is thereby necessary
to establish trust management procedures when sharing critical information, as well as
strict control over data produced when a resource escalation or a new partner affiliation is
performed.
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2.3 Cybersecurity Threats in Industry 4.0 Innovative Services

In the previous section we have introduced the security threats that affect the main enabling
technologies of Industry 4.0. Yet it is also vital to review what are the threats that could affect
the most innovative services of this novel industrial ecosystem. The reason is simple: while these
services inherit the threats of their enabling technologies, there are also various novel threats that
arise due to their particular features. For this analysis, whose results have been obtained through
an expert review of the available Industry 4.0 state of the art, we will continue following the
IETF standard RFC 7416 [89]. We also provide an overall summary of the main threats of each
service in Table 2.2.

Novel infrastructures. The gradual transition to more decentralized architectures shown in
Section 1.1.2 is bringing a more heterogeneous and complex environment, where any element
could (theoretically) interact and cooperate with any other element. Besides the potential dangers
of unresponsive components, from the point of view of availability this transition means that not
only a malicious insider could target any element, but also that a DoS attack could be launched
from any element of the infrastructure. In terms of integrity, we need to consider that an adversary
can alter the overall global behaviour (e.g., process workflows) by tampering with local decision
makers. This is related to the confidentiality issues, where malicious attacks against local entities
might expose high-level behaviour. Finally, regarding authentication threats, as the barriers
between the different subsystems are blurred, it is necessary to deploy adequate security policies
that can limit the damage caused by unauthorized accesses. However, the expected complexity of
such policies will surely result on misconfigured systems, which can be exploited by adversaries.

Retrofitting. It is possible to bring the benefits of the Industry 4.0 to legacy systems by deploying
and connecting new technologies to older subsystems [113]. Still, these deployments also bring
additional security issues that need to be considered. The existence of a parallel subsystem
(e.g., a monitoring system) might bring certain availability and integrity issues: not only the
components that serve as the bridge between the old and the new can become a single point of
failure, but also the new technologies could be used to launch attacks against the legacy elements.
Confidentiality threats also exist, as the new technologies usually act as a “sensing layer” that can
expose information about the status and behaviour of the monitored industrial processes. As for
the impact of authentication threats, it mostly depends on the granularity of the integration of
the novel subsystems: black-box interfaces limit the amount of information that can be retrieved
from internal subcomponents.

Industrial data space. One of the goals the Industry 4.0 is to create common spaces for
the secure exchange of information between industrial partners [114]. The creation of such
cooperative spaces could bring additional threats from the point of view of availability and
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integrity : the existence of DoS attacks that interrupt the information flow at critical times, or
tainted components generating bogus data, will probably affect other elements – opening the
door to potential cascade effects. Confidentiality is also especially important in this context: it is
essential to assure that the information exchanged by partners does not facilitate the extraction
of competitive intelligence. Still, misconfigurations and other internal attacks might open the door
to more serious information leaks. Authentication threats are also aggravated in this cooperative
space, as unauthorized accesses can have a wider impact in the extraction of valuable information.

Cloud manufacturing. One of the tenets of this paradigm is the creation of cloud-based
industrial applications that take advantage of distributed manufacturing resources [115]. This
distribution of resources creates certain threats that have been already described in the context of
the novel digital architectures: from DoS attacks that can be launched from anywhere to anywhere
(Availability), to the manipulation of the distributed components (Integrity). The main difference
here is the nature of these threats, such as malicious VMs targeting the hypervisors, DoS against
the cloud/fog servers or the network connection, etc. Confidentiality threats also become more
critical, as the cloud infrastructure not only contains sensitive data, but also sensitive business
processes as well. Finally, the complexity in the management of these kinds of cloud-based
infrastructures also opens more opportunities for authentication attacks.

Agents. There are already various proof-of-concepts related to the integration of agents in
manufacturing, such as workflow planners to self-organising assembly systems [116]. But there are
dangers associated to the deployment of agents in an industrial environment, too. A malicious
agent can behave like a piece of malware, affecting the availability of other industrial elements.
Besides the integrity of the agents themselves, we also have to consider how other manipulated
elements can exert a (in)direct influence over the behaviour of the agents. By tampering with the
environment that surrounds the agent, or even the agent itself, it is possible to launch several
confidentiality attacks that aim to extract the information flow that goes to the agent, and the
information created by the agent itself. Finally, without a proper authentication infrastructure,
malicious/manipulated agents will tamper with the overall workflow.

Other enhanced interactions. As aforementioned, Industry 4.0 enabling technologies such as
virtualization allow the creation of novel services such as “digital twins” (virtual representations of
subsystems) and “digital workers” (interaction with advanced HMI). Yet there are certain threats
related to the actual usage of such technologies and services that need to be highlighted here.
These enhanced systems can be manipulated by their human operators, effectively increasing the
damage caused by an insider: a malicious digital worker could perform several attacks such as
launching DoS attacks (Availability), interfering with the decision making processes (Integrity),
extracting confidential information (Confidentiality), and executing privilege escalation attacks
(Authentication). On the other hand, these enhanced systems can become attackers themselves,
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Table 2.2: Main cybersecurity threats of Industry 4.0 innovative services

Dig. Arch. Retrofitting Data Space Cloud
Manuf.

Agents Others

Availability Wide attack
surface

Single point
of failure

Cascade
effects

Wide attack
surface

Agents as mal-
ware

Denial of ser-
vice

Confidentiality Global data in
local context

Exposure of
sensing layer

Information
leakage

Business pro-
cesses leakage

Agent data in
local context

Information
leakage

Integrity Behavior ma-
nipulation

Cross-cutting
attacks

Cascade
effects

Manipulation
of compo-
nents

Tampered
data / agents

Disrupt deci-
sion making
processes

Authentication Complexity
and Miscon-
figuration

Fake legacy /
sensing layers

Bigger scope
of attacks

Management
issues

Attacks
from/to
agents

Privilege esca-
lation

causing damage in subtle ways. For example, a malicious attacker could manipulate the HMI to
force the worker to perform an incorrect action – and pin the blame on him.

Altogether, many of these attack vectors (from both traditional and future threats in industrial
systems) are implemented in advanced persistent threats. This is a class of sophisticated attack
perpetrated against a particular organization, where attackers have significant experience and
resources. Such attackers infiltrate victim networks by taking advantage of a multitude of
vulnerabilities (often unknown, i.e., zero-day), and go unnoticed for a prolonged period of time
[69, 70]. Stuxnet was the first APT recognized by the industry in 2010 [8], but later many others
have appeared, such as Duqu, DragonFly, BlackEnergy, and ExPetr [117, 71], as presented in the
following.

2.4 Understanding Advanced Persistent Threats in Industry 4.0

The interconnection of industrial environments with modern ICT technologies has increased
the number of internal and external threats in this context, including those from traditional
IT systems (e.g., malware, spyware, and botnets). The APTs are a new class of sophisticated
attacks that are executed by well-resourced adversaries over a long period of time. They usually
go undetected because they leverage zero-day vulnerabilities and stealthy and evasive techniques
[70]. While APTs originally attacked military organizations, they are now targeting a wide range
of industries and governments with multiple purposes: economic (espionage, intellectual property),
technical (access to source code), military (revealing information) or political (destabilization
of a company) [118]. Their goal is to get through the organization network and take over the
industrial control systems.

Stuxnet was the first attack of this kind, reported in 2010, which sabotaged the Iranian
Nuclear Program by causing physical damage to the infrastructure and thereby slowed down
the overall process for four years. Ever since, the number of reported vulnerabilities concerning
Industrial Control Systems has been dramatically increasing, as the research community has
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become more involved and new attacks have been revealed. In total, 3253 vulnerabilities have
been reported by ICS-CERT between 2015 and 2019 (see Figure 2.1 showing this growth [119]).

Figure 2.1: Reported vulnerabilities from ICS-CERT

As Stuxnet, every APT follows multiple steps, beginning with an initial intrusion, commonly
using social engineering (e.g., by means of fraudulent e-mails containing Trojans). A successful
intrusion results in the installation of a backdoor from which the attackers connect to the target
network. Then, several exploits and malware are used to compromise as many computers in
the victim network as possible (which is known as lateral movements), to ultimately modify
the productive process or exfiltrate information back to the attacker domain. During the whole
process, the threat actors make use of multiple tools to avoid detection and encrypt the external
communication through publicly available services such as the Tor Anonymity Network [120].

On the whole, an APT is a meticulously planned attack adapted to the target infrastructure,
one whose complexity makes the use of traditional countermeasures (e.g., antivirus, firewalls)
insufficient to tackle them. Consequently, an additional effort is needed to mitigate the risks
posed by these threats, which implies the effective detection of APTs through traditional coun-
termeasures (e.g., intrusion detection systems, firewalls, antivirus) along with novel security
services in continuous evolution within the company, involving all the organization with effective
security awareness training and gaining knowledge from old use cases. Numerous surveys show
the evolution of awareness about this field in the industry. Specifically, we can highlight the
ISACA State of Cybersecurity 2020 report [121], that provides a view of the APT perception
from security professionals belonging to many industries, mostly technology services, financial,
military, telecommunications and manufacturing companies. Among all the statistics, it is worth
commenting an increase in cybersecurity attacks in the 32% of the entities surveyed compared to
2019, where APTs are the second most common type of incidents after social engineering attacks.
Additionally, 79% of respondents indicated some degree of likelihood that they would be attacked
next year.

The industry as a whole is aware of the problems posed by APTs, and there are already various
mechanisms that aim to facilitate their detection. Yet the solutions that are used in traditional
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industrial control and automation systems are not directly applicable to Industry 4.0 contexts, as
studied in the next chapter. The integration of Industry 4.0 principles, such as interoperability,
decentralization, service-oriented management, and interactivity, are fundamentally changing all
aspects of the industry: from the collaboration among supply chain partners, to the interactions
between operators and machinery at the factory floor [122]. Yet it will also exacerbate the risks
associated to APTs.

On the short term, industrial protocols like IO-Link and OPC UA will facilitate the inter-
action between existing and novel services. These and other technologies, like the Internet of
Things, recognition services, and location services, will allow all individuals – from operators to
administrators and executives – to access any relevant information anywhere at any time, helping
them to make better decisions. Yet this interconnected ecosystem not only increases the attack
surface, but also expands the influence that an APT can have in all actors once it has infiltrated
into the system.

The deployment of open integrated factories and the integration of intelligent, dynamic
processes are some of the medium and long-term goals of the Industry 4.0, respectively. Such
goals will enable the creation of flexible workflows and production processes, the deployment
of intelligent assistants using novel HMI interfaces (e.g., wearables, augmented reality), and
the advent of novel services such as the “digital twins” (maintenance and management through
simulation), amongst other benefits. Yet this flexibility and intelligence comes at a cost: APTs
will be able to influence over the behavior of factory processes in subtler ways.

Moreover, we also have to consider how the Industry 4.0 and the Internet will be closely linked.
Beyond the use of IoT devices, and the convergence of IT/OT infrastructures, there are novel
approaches, such as cloud manufacturing, that will allow traditional manufacturing components
to become virtualized and deployed in the cloud. These novel approaches will be surely become a
target of APTs.

To put in place accurate defense techniques in this context, it is necessary to study how the
precise attacks of an APT affect the detection of anomalies depending on their severity and the
criticality of the victim nodes, which influences the application of traceability solutions. For this
reason, in the following we review some of the most important APTs reported in recent years to
define the attack and defense models.

2.4.1 Review of Reported Cases

For the specification of our APT traceability framework, we need to provide an accurate repre-
sentation of APT attacks in the context of our network model. Therefore, here we firstly review
the most important APT threats and groups that have specifically targeted industrial control
systems. A more detailed review of these APTs – including exploited vulnerabilities, software
modules, etc – is available at [71].
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Stuxnet (2009). Stuxnet was one of the APTs that popularized this concept and brought it
to the limelight. Developed by a state agent, the main goal of this worm was to hinder the
enrichment of uranium in the Iranian nuclear facility of Natanz [123]. It is believed that its
primary infection vector, which was used to infiltrate the facility, was USB flash drives. Once the
malware was installed in the ‘patient zero’ computer, it also used other mechanisms (network
shares, infected project files) to spread through the internal network, searching for the computers
that directly controlled the uranium enriching centrifuges. Finally, the malware modified the code
that controlled the centrifuges in order to silently destroy them.

DragonFly group (2013-2014, 2015-). Active since 2010, this particular APT actor has always
focused on cyberespionage. On 2013, it started several campaigns against energy suppliers [124].
In its first wave of attacks, the main goal was to discover and map the existence of OPC SCADA
servers located in the attacked network. For this purpose, after the initial infection, the malware
queried the network in search of OPC servers using specific OPC DCOM (Distributed Component
Object Model) calls. Its second wave of attacks followed a more conservative approach: it retrieved
information mostly by extracting documents and screenshots from the infected computers.

BlackEnergy (2015-2016). The BlackEnergy malware, created by an APT actor known as
Sandworm, was used to attack the energy infrastructure of Ukraine in December 2015 [125].
After the initial infection, the first goal of the malware was to replicate to as much computers
as possible through Windows Admin Shares (e.g., through PsExec and remote file execution).
The second goal of the malware was to set up various connections to external command&control
networks. Using these networks, malicious operators were able to activate various components
(KillDisk, circuit breaker manipulator) that caused havoc in electricity distribution companies.

ExPetr (2017). ExPetr was a wiper disguised as ransomware, which targeted local administra-
tions and various industrial companies in Russia and Ukraine [126]. It used two primary infection
vectors: a modified version of the EternalBlue exploit used by WannaCry, and a Trojanized
version of the MEDoc tax accounting software. Once ‘patient zero’ was infected, this malware
used both the EternalBlue exploit and the BlackEnergy propagation mechanisms to propagate
over the local network. Immediately afterwards, the fake ransomware component of the malware
would be activated.

GreyEnergy (2018). GreyEnergy is the name of the group behind the APT which is considered
as the successor of BlackEnergy. It is believed to be active since 2015, targeting energy companies
and other critical infrastructure organizations in Central and Eastern Europe [127]. GreyEnergy
used more modern techniques than its predecessor, since the malware is built as a modular
framework that can adjust to different target infrastructures, mostly for reconnaissance and
information collection. Two infection vectors were used: compromising public-facing web servers
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connected to the internal network, and sending spear phishing emails with malicious attachments.
Then, the network mapping was performed and the malware was deployed.

Zebrocy (2018). This Trojan was developed by Sednit, a Russian-linked hacking group (also
known as Sofacy) which is also allegedly associated to GreyEnergy. The infection took place
using spear-phishing emails, and then a backdoor was installed on the victim computer to deploy
further capabilities. Its targets were widely spread across the Middle East, Europe and Asia, and
the first attacks were reported in Q3 2018. According to the first analysis, there are actually in
the wild multiple versions of this Trojan that are implemented using multiple languages, in order
to make them differ structurally and visually – and hence avoid their detection.

NewsBeef (2019). This is one of the aliases of the well-known APT33 Iranian group (also known
as Charming Kitten or Elfin Team), who targeted multiple organizations of the petroleum and
aviation industries in the Middle East, the US, and Asia. One of the attack waves was reported
in February 2019, when they attempted to exploit a known vulnerability in compressed files,
which were delivered via spear-phishing email. Once executed, the malware was able to download
further commands and run additional malware. To prevent against its traceability, the group used
several host layers to obfuscate its real command and control servers.

Hexane (2019). Associated with OilRig and CHRYSENE groups, this attack was reported
in August 2019 and targeted the oil, gas and telecommunication sectors in Africa, the Middle
East and Southwest Asia [128]. Its activity begun in September 2018, and their modus operandi
was simple: firstly, password spraying and brute-force attacks were leveraged to compromise
individual email accounts at the victim organization. Afterwards, those accounts were used to
send phishing emails containing documents with macros as droppers (i.e., software that secretly
installs malicious programs), following a trial-and-error process to search the best way to evade
detection. Then, the attackers made use of RATs to run additional malware on the systems and
finally conduct a DNS-based exfiltration to their command and control servers.

WildPreassure (2020). This is the name of a previously unknown APT campaign that dis-
tributed a Trojan called Milum written in C++. For their campaign infrastructure and to
distribute the Trojan, the attackers rented OVH and Netzbetrieb servers and a domain registered
with the Domains by Proxy anonymization service. Research studies concluded that this malware
had been used since early 2019 to jeopardize industrial organizations in the Middle East. Among its
features is the capability to control devices remotely as well as executing commands or collecting
sensitive information to later send it to the attackers servers.
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2.4.2 APTs Phases and Notations

Another element that is essential for the formalization of the behavior of APTs in our network
model is the definition of the different attack stages (i.e., intrusion kill chains) that are performed
by APTs. These attack stages have been extensively studied and described by various academic
and industrial researchers [74, 70, 129], and can be summarized in the following steps:

• Reconnaissance (R). Adversaries gather information about the targeted industrial network
to find exploitable vulnerabilities, and create an attacking plan to penetrate its defenses.

• Delivery . After choosing a set of vulnerable computers (‘patient zero’), adversaries establish
a communication (C) with the targeted industrial network and deliver the malware to those
computers, either directly (e.g., through spear phishing emails or vulnerable services) or
indirectly (e.g., contaminating websites of a third party such as a provider with malware)
[130].

• Compromise . At this stage, the malware is executed (E) in the target machine and takes
control of it, so that the first intrusion within the network is performed. This stage involves
several steps, such as privilege escalation, maintaining persistence, and executing defense
evasion techniques.

• Command and Control . Once the malware controls the ‘patient zero’, it opens a com-
munication channel with the remote attacker by installing backdoors, which will be used to
execute commands, extract information, etc. This phase may include the Tracking (T) of
zero-day vulnerabilities based on the information collected by the adversary.

• Lateral Movement . The concept of lateral movement encompasses the different steps that
the malware takes in order to achieve the propagation (P) of the attack to other areas of
the network. Lateral movement includes internal reconnaissance, compromise of additional
systems, and collection of sensitive information.

• Final Execution (F). The malware finally performs the attack against the targeted
industrial network. These attacks include the exfiltration to send sensitive data back to the
attacker domain (e.g., to later sell it in the black market) or the destruction of resources.

While this classification describes the most common attack path for industrial APTs, it is
necessary to point out that not all APTs need to follow this particular template from beginning to
end, or to implement all stages. For example, certain APTs only need to take control of a ‘patient
zero’, and then they may proceed to extract sensitive information. Other APTs (like BlackEnergy)
focus on creating a network of compromised nodes connected to the command&control centers,
which allows malicious operators to cripple all the elements of the targeted network (both hardware
and software) simultaneously.
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A complete overview of the present and future threats faced by an Industrial System is
summarized in Table 2.3, where all of them are linked with the APT stages introduced before.
As discussed in [68], the exploitation of these threats may occur during multiple stages of an
advanced persistent threat. More specifically, we can observe that most of these threats can be
potentially leveraged for the first intrusion and the subsequent execution of exploits. However,
the initial information gathering about points of entry and vulnerabilities is mainly performed
by analyzing metadata emanated from servers to sensors, and also by social engineering. As for
the final exfiltration of information, it normally requires that the attacker has taken over the
device to send data such that it resembles normal network traffic, making any detection attempts
challenging.

Even though most of these threats are in general inherited by IoT and cloud technologies,
they also pose new hazards to be addressed. Firstly, because the technical constraints that the
new devices and communication protocols feature create new vulnerabilities and attack vectors.
Secondly, due to the impact they cause in the assets within the organization, which comprise
control and corporate resources as well as end-users (e.g., clients or operators). Altogether, this
makes it necessary to find new defense solutions and tailor the current detection mechanisms, as
discussed in the following.
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Chapter 3

Detection of APTs in Industry 4.0:
State of the Art

After reviewing the surface of attacks that an APT can leverage in its sequence of stages, we
are now in position to study what are the detection mechanisms that can be leveraged as a first
line of defense. The goal of this chapter is to analyze the IDSs available commercially and in the
literature of ICS protection, to identify the areas that need of further research in the specific area
of Industry 4.0. Based on the knowledge extracted, we will be able to define an APT traceability
framework, which represents the core of this dissertation.

Part of the analysis carried out in this chapter summarizes the contributions of SADCIP [131],
an research project funded by the Spanish Ministry of Economy, Industry and Competitiveness.
It revolves around the provisioning and development of advanced detection systems capable of
dealing with sophisticated threats in the context of modern industrial ecosystems, and considering
the specific characteristics of Industry 4.0.

3.1 Classification of Intrusion Detection Systems

Due to the variety of attack vectors that an APT exposes, multiple security solutions must be
combined at different levels. In this sense, intrusion detection systems pose the first line of defense,
as they detect unauthorized access to the network or one of its systems, monitoring its resources
and the traffic generated in search of behaviors that violate the security policy established in the
production process.

There are many methods for performing intrusion detection. One possibility is the signature-
based IDS, which tries to find specific patterns in the frames transmitted by the network.
However, it is precisely for that reason that it is impossible for them to detect new types of
attacks whose pattern is unknown [132].

Another possibility is the anomaly-based IDS, which compares the current state of the
system and its generated data with the normal behavior of the system, to identify deviations
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present when an intrusion occurs. However, in the context of control systems, restrictions such
as the heterogeneity of the data collected in an industrial environment, the noise present in
the measurements, and the nature of the anomalies (attacks vs. faults) must be taken into
consideration.

For this reason, numerous detection techniques have been based on areas such as statistics or
artificial intelligence [133], each with a different level of adaptation depending on the scenario of
the application to be protected [134]:

Data mining-based detection: based on the analysis of an enormous amount of information
in search of characteristics that enable distinguishing if the data is anomalous. In this
category we find:

• Classification techniques : creation of a mathematical model that classifies data instances
into two classes: ‘normal’ or ‘anomalous’. This model is trained with already classified
example data.

• Clustering-based techniques : like the previous category, they seek to classify instances
of data but in different groups or clusters, according to their similarity. This is
mathematically represented by the distance in the space between the points associated
with that information.

• Association rule learning-based techniques : they process the data set to identify rela-
tionships between variables, in order to predict the occurrence of anomalies based on
the presence of certain data.

Statistical anomaly detection: in this approach, inference tests are applied to verify whether
a piece of data conforms or not to a given statistical model, in order to confirm the existence
of intrusions:

• Parametric and nonparametric-based methods : while the former are those that assume
the presence of a probability distribution that fits the input data to estimate the
associated parameters (which does not have to conform to reality), the second tries to
look for the underlying distribution. In general, both are accurate and noise-tolerant
models of missing data, which allow us to find confidence intervals to probabilistically
determine when an anomaly occurs.

• Time series analysis: they predict the behavior of the system by representing the
information it generates in the form of a series of points measured at regular intervals
of time. Although they are able to detect slight disturbances in the short term, they
are less accurate in predicting drastic changes.

• Markov chains: they consist of mathematical representations to predict the future
behavior of the system according to its current state. For this purpose, state machines
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are used with a probability associated with transitions. Its accuracy increases when
using complex multi-dimensional models.

• Information based techniques : they involve the observation of the information generated
(for example, the capture of the traffic) and its intrinsic characteristics in search of
irregularities associated with threats, packages for denial of service, messages to cause
attacks by buffer overflow, etc. They are generally efficient systems tolerant to changes
and redundancy in the information.

• Spectral theory-based techniques : these techniques use approximations of the data
to other dimensional sub-spaces where the differences between the normal and the
anomalous values are evidenced. They are usually complex and are used to detect
stealth attacks, those which are specially designed to circumvent detection techniques.

Knowledge-based detection: in this case, the knowledge about specific attacks or vulnera-
bilities is acquired progressively, ensuring a low rate of false positives, thereby resulting
in a system that is resistant to long-term threats. However, the security depends on how
often the knowledge base is updated, and the granularity with which information about new
threats is specified. Examples of these techniques include state transition-based techniques,
Petri nets or expert systems.

Machine learning-based detection: this type of technique bases the detection on the creation
of a mathematical model that learns and improves its accuracy over time, as it acquires
information about the system to be protected. In this category we find techniques of artificial
intelligence whose foundations are also closely linked to statistics and data mining:

• Artificial neural networks : they are inspired by the human brain and are able to detect
anomalies when dealing with a large data set with interdependencies. It allows the
data to be classified as normal or anomalous with great precision and speed, although
they need a long time to create the model, which prevents them from being applied in
real-time systems.

• Bayesian networks: events are represented in a probabilistic way through directed
acyclic graphs where the nodes represent states and the edges define the conditional
dependencies between them. The purpose is to calculate the probability of an intrusion
from the data collected.

• Support vector machines : this is a technique that classifies the data according to a
hyperplane that separates both classes (habitual and anomalous information). Since
it works with a linear combination of points in space (given by the input data), its
complexity is not high and its quality of precision is acceptable. However, it does not
behave accurately in presence of similar data, for which there is no hyperplane that
divides them correctly.
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• Fuzzy logic: rule-based structures are used to define a reasoning with inaccurately
expressed information, like humans do in everyday language (being able to differentiate
when a person is ‘tall’ or ‘short’ or something is ‘slightly cold’). Therefore it models
the behavior of complex systems without excessive accuracy (leading to speed and
flexibility), but obviously it means the accuracy of the anomaly detection is not high
either.

• Genetic algorithms : they simulate the phenomenon of natural selection to solve a
complex problem for which there is no clear solution. In the first phase, a set of
individuals of a population is randomly generated (representing the possible solutions
to that problem). From there, numerous iterations are carried out where successive
operations of selection, replacement, mutation and crossing are applied to ultimately
find an optimal solution. Although it is moderately applicable to the detection of
anomalies, it has been shown that it is unable to detect unknown attacks.

On the other hand, there are also specification-based IDSs [135]. The principle behind
them is similar to systems based on anomalies, in the sense that the current state of the system
is compared to an existing model. However, in this case the specifications are defined by experts,
which reduces the number of false positives to the extent that they are defined in detail. State
diagrams, finite automata, formal methods, etc. are often used. They are often combined with
signature-based and anomaly-based IDSs.

One alternative to IDS solutions are precisely Intrusion Prevention Systems (IPS). These
systems have the ability to (i) detect an anomaly within the system and (ii) mitigate the effect
of the threat. Cubix’s TippingPoint [136] is a clear example of IPS capable of detecting traffic
anomalies in VoIP infrastructures, routers and switches. Similarly, Extreme networks IPS also
ensures business continuity by monitoring the behavior and state of the operating systems such
as Windows [137]; and Corero Network Security offers in-line intrusion detection and automated
response by combining behavior-based and signature-based analysis [138].

However, the inclusion of these systems within complex infrastructures of critical nature is not
always feasible. The automation of response actions implies that we need to trust in the reliability
and accuracy of such actions; yet, depending on the situation, it is very probable that the actions
may not be so suitable for a critical context [139]. In addition, the false positive rates in the
detection processes can also significantly impact on the final response – and indirectly affect the
performance of the critical control systems [140]. These characteristics are widely reflected in the
state of the art, where there are multiple approaches and researches in the field and for general
contexts [141, 142], but not enough for critical contexts.

As specified in [143, 144], it is essential to provide customizable IPSs for critical environments,
or at least for those remote areas where no human operator with reactive capacity is available
– either remotely or on-site. This work evidently involves more research in the area, since it is
essential to find the sequences of parameters and actions that best suit a situation, searching the
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way to offer proactive measures that help respond to incidents or threats before major disruptions
may arise [143]. This protection property was also referenced by the NIST in [145].

Even though IDS (and IPS) represent a valid solution to address the first stages of an APT, it
becomes essential for security staff to introduce additional techniques and procedures to guarantee
a minimum impact on the infrastructure [70]. Some of them can be summarized as follows:

• Advanced detection of malware: for instance, the execution of processes and files from
suspicious provenance in sandbox mode, or the on-line malware analysis, in a non-intrusive
way.

• Data loss prevention: as the last line of defense, this software protects against the breach of
data by controlling access and use of sensitive information.

• Whitelisting: since the intruder intends to connect to an external server to set up a command
and control service and ultimately filtrate some data, a countermeasure to prevent it is
required. In this case, it would consist in the use of access control policies for the inbound
and outbound connections (e.g., specifying the exclusive set of URLs that each device can
access).

• Trusted computing: a secure environment is created by means of hardware modules that
guarantee the integrity and reliability of the software that is installed and used within the
industrial system. In this case, aspects of TPM (Trusted Platform Modules) [146] or TEE
(Trusted Execution Environments) [147] should be contemplated.

• Intelligence-driven Defense: based on the knowledge provided by experts and victims
of APTs, an intelligence feedback loop is created to identify patterns of intrusions and
understand the adversaries’ techniques, in order to accurately design and implement proper
countermeasures.

• Security awareness training: training and consciousness about the best security practices
becomes especially important to protect against APTs, since most intrusions are performed
with the use of social engineering techniques.

So as to give a more detailed vision of actual technologies that make use of these and other
mechanisms, a review of the state of the art of defense solutions in both the industry and academia
is given in the remaining sections.

3.2 Academic Research

As it is crucial to protect industrial control infrastructures against all kinds of attacks, including
advanced persistent threats, the scientific community has paid special attention to the development
of intrusion detection systems for this particular context. In these systems, all the defense
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Coverage 2013 2014 2015 2016 2017 2018 2019 2020
Field devices 2 - 3 15 9 8 10 6

Control networks – PLCs 4 8 9 5 9 9 10 5
Control networks 1 3 3 9 17 12 18 11
Complete system - 1 - 5 2 6 9 7

Table 3.1: Evolution according to detection coverage

Protocol 2013 2014 2015 2016 2017 2018 2019 2020
Fieldbus protocols 2 1 2 3 2 2 4 2

Communication protocols 2 3 10 14 8 8 9 7
Control & management protocols 1 - 1 1 1 2 3 2

Table 3.2: Evolution according to protocol analyzed

Mechanism 2013 2014 2015 2016 2017 2018 2019 2020
Signature-based detection - 3 - 4 5 6 4 5
Data mining mechanisms 2 2 4 5 6 7 10 6

Statistical anomaly detection - - 4 5 3 2 4 3
Knowledge based detection 1 1 2 1 - 4 5 4

Machine learning based detection 3 3 2 8 9 9 11 13
Specification-based detection 1 3 2 8 10 4 7 4

Other mechanisms - - 3 5 5 4 9 7

Table 3.3: Evolution according to detection mechanism

mechanisms described in Section 3.1 have been integrated to some extent, trying to cover all
the elements of an industrial control network: field devices, the interactions between the control
network and field controllers such as PLCs, the control network itself, and even the complete
system in a holistic way.

Tables 3.1, 3.2 and 3.3 provide a classification by categories (according to detection coverage,
protocol analyzed, and detection mechanism, respectively) of the number of articles published
in the field between years 2013 and 2020. Within this classification, we have included the most
relevant articles that appeared in international journals and/or conferences. This relevance has
been measured by factors such as the relevance of the corresponding journal or conference, and
the number of references per article.

3.2.1 Analysis: Detection Mechanisms

In recent years, all detection mechanisms described in Section 3.1 have been taken into account.
We can observe in Table 3.3 that research in the field has been growing over time. We can also
observe that the academia has been paying special attention to machine learning mechanisms.
Still, the importance of signature and specification-based detection techniques remains high.
One possible reason is that the elements of the control networks can behave in a more or less
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predictable way [148]. As such, these elements can be modelled through various sets of rules and
anticipate well-known attacks between the corporate network and the control network.

There are certain detection strategies, which will be highlighted here, that are still being
studied only within the academia. For example, in the last years, several authors have started
analyzing parameters such as industrial telemetry and response time. Mainly due to the behaviour
of control networks, these parameters are providing novel and exciting insights over the behaviour
of such control systems. For example, through indirect or direct analysis (e.g., via ICMP messages)
of these parameters, it is possible to detect variations in the traffic patterns that are indicative
of ongoing attacks [149], detect fake control devices [150], discover covert manipulations of
the controller device code [151], and even deduce the CPU load of PLCs [152]. There are also
researchers who have considered other less traditional parameters within the context of anomaly
and intrusion detection, such as the radio-frequency emissions emitted by the control devices [153],
or even their power consumption [154].

There are also other researchers that incorporate concepts such as the physical simulation of
the monitored system [155]. This simulation allows not only to predict the malicious intent of
a command, but also to predict an imminent system failure. In addition, within the context of
specification-based research, there are a large number of publications that seek to generate the
system behavior rules in an automatic or semi-automatic way. Various works, such as [156] [157],
retrieve this information by analyzing the configuration and system description files. Other
approaches, such as [158], extract the system states by analyzing the bursts of traffic that are
exchanged between the control network and the PLCs.

Another recurring trend in recent years is to design hybrid mechanisms, combining more
than one detection technique. This is particularly useful in application scenarios where data
from the control network must be processed before conducting anomaly detection. For instance,
[159] proposes a privacy-preserving method that filters sensitive data from power systems using
statistical approaches that perturbate the information prior to applying Gaussian mixture models.
Another example is provided in [160], where the authors propose a two-stage IDS that firstly
executes Ethernet/IP traffic prediction with time series forecasting and then applies a one class
support vector machine to detect malicious control instructions.

Besides, there are also other strategies whose goal is to identify and analyze the most critical
elements of a control network. An example of this is the system developed by Cheminod et
al. [161], which can identify the sequence of vulnerabilities that could affect an existing system by
(i) analyzing the elements of that system and (ii) analyzing vulnerability databases such as CVE
(Common Vulnerabilities and Exposures) [162]. Other research lines provide a support to the
aforementioned IDS/IPS technologies from a theoretical perspective, adopting a reactive policy
by means of recovery mechanisms when topological changes are detected. Their target is to ensure
the structural controllability of the network and achieve resilience [163], this is, the continuity of
the industrial process and the connectivity between nodes in presence of attacks [164]. For such
goal, graph theory concepts are leveraged. Finally, it should be mentioned that the vast majority
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of new signature-based detection systems use, in addition to the SNORT tool [165], the BRO [166]
tool and the SURICATA [167] tool to perform their analyses. These new tools are used because
they provide additional benefits. For example, the BRO tool provides a modular and extensible
framework that allows the generation and analysis of events through a Turing-complete language.

3.2.2 Analysis: Detection Coverage

Regarding the evolution of the coverage of detection systems developed in the academia, it is
worth commenting that in 2016 the mechanisms in charge of protecting the field devices increased
exponentially, and is still a very active area of research as of 2020. The reason is simple: these
mechanisms can detect attacks against the field devices at the very moment they occur, making
them a very useful last line of defense against APTs that aim to manipulate the field devices.
Direct monitoring is usually done by extracting the data directly from the sensors and actuators,
either through the machine’s own interfaces [168] [169], or through a ‘capillary network’ that
monitors the operation of the machinery through several types of external sensors [170][171]. On
the other hand, there are also mechanisms that integrate a hypervisor within the control devices
themselves (e.g., PLCs [172]). This hypervisor is then responsible for reviewing the behavior of
all control programs executed within the device, either through a set of rules [173][174] or by
modeling the different states of the program and checking for potential deviations [175].

Moreover, starting from 2016, various researchers have designed novel theoretical architectures
whose objective is to protect all the elements of an industrial production system in a holistic
way. This is achieved by deploying various detection components, both hardware and software,
which obtain information and process it at a local level. This information will then be sent to
a central system, which can more efficiently detect threats that affect several elements of the
system in a covert way [176]. For example, some architectures allow field devices to be fully
monitored alongside all other elements of the control system [170], while other architectures
improve the detection of anomalies whose impact is distributed to all elements of the system [177].
There are also architectures, such as [178][179], that divide the overall system into several logical
partitions, in order to facilitate the work of anomaly detection systems. Finally, some architectures
deploy host agents that are specifically designed to look for APT malware infections [180]. these
correlation systems can serve as a great inspiration for the development of holistic detection
techniques and the traceability of APTs, which is the goal of the framework proposed in this
thesis.

3.2.3 Analysis: Protocols Analyzed

Currently there are various scientific articles that have developed specific detection mechanisms
for communication protocols such as Modbus/TCP [181], Ethernet/IP [167] and S7comm [182].
These works focus mostly on two strategies: (i) defining and detecting attack signatures, and
(ii) analyzing the behavior of these communication protocols with the detection mechanisms
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described in Section 3.1. However, there are very few works that have studied the security of
control & management protocols such as OPC UA, although its interest is expected to rise. These
protocols are considered as one of the cornerstones of Industry 4.0 [183], and there are already
various commercial products that currently use these protocols in production environments [184].
Yet the amount of research that has been done in this area has been limited, and only a few
works exist [185][186]. It is extremely important to analyze and protect these specific protocols in
the near future.

Another important aspect related to the communication protocols is that many detection
mechanisms that analyze the integrity of fieldbus protocols are focused on the analysis of wireless
industrial IoT protocols such as WirelessHART [187] or Zigbee [188]. This is mainly because an
attacker can more easily manipulate a wireless network if he or she has the necessary information.
Namely, he or she can not only inject information from anywhere within the range of the network,
but he or she can also deploy a malicious element in a covert way. Finally, it is important to note
that there have been multiple developments in the area of anomaly detection systems for certain
industry-specific protocols, such as CAN bus (vehicular systems) [189] and IEC 61850 (electrical
substations) [190].

3.3 Industrial IDS Products

Defense Strategies Leading Companies
Zone-based Advenica, ARGUS, BAE Systems, Bayshore, Checkpoint,

Deep Secure, Distrix, Fortinet, Fox-IT, Icon Labs, Intel,
Moxa, Nexor, Paloalto Networks, Phoenix Contact,

Positive Technologies, Seclab, Sophos, Tofino Security,
Towersec, Waterfall Security

Configuration-based Verve, PAS, Nextnine, DL2C, AlgoSec, Sigmaflow,
Dragos Security, Amenaza Tech. LTD, Positive

Technologies
Signature-based Cisco, Cyberark, Cyberbit, Digital Bond, ECI, FireEye
Context-based AlertEnterprise, WurldTech (GE)

Honeypot-based Attivo Networks
Anomaly-based Control-See, CritiFence, CyberX, Darktrace, HALO

Digital, ICS2, Indegy, Leidos Nation-E, Nozomi, Claroty,
PFP Cybersecurity, RadiFlow, SCADAfence, SecureNok,

Sentryo, SIGA, ThetaRay

Table 3.4: Leading companies in the market

At present, there are various commercial solutions whose goal is to provide protection mechanisms
that can deter the attacks caused by APT actors. Such protection mechanisms not only include
the detection mechanisms described in Section 3.1, but also other solutions such as enhancing
user awareness, separating the industrial network into various protected zones, and analyzing the
configuration of the system. Most of these solutions are passive (i.e., do not affect the operation
of the system), transparent (i.e., almost invisible to the existing control systems), and easy to
deploy.

53



Chapter 3. Detection of APTs in Industry 4.0: State of the Art

Table 3.4 provides an enumeration of the leading companies in the market that provide such
protection mechanisms. In addition, a short summary of the main solutions available in the
market as of 2020 is provided in the next sections.

3.3.1 Zone Separation

These products focus on facilitating the separation of the industrial network into different security
zones, using traditional security solutions such as firewalls. The main challenge here is the structure
of industrial networks. Due to their complexity, it is necessary to consider the deployment of
various zones, such as the enterprise systems (e.g., ERP), the enterprise middleware (e.g., message
oriented middleware, enterprise service bus), the industrial control systems and the field device
networks, and the different demilitarized zones.

Beyond the integration of traditional firewall solutions that focus on IT networks and protocols,
there are various companies that provide specific solutions designed for industrial networks. One
example is the FortiGate platform developed by FortiNet [191], which has the capacity to analyze
multiple industrial protocols (e.g., Bacnet, DLMS, DNP3, EtherCAT, ICCP, IEC-60870.5.104,
Modbus/TCP, OPC, Profinet) and industrial devices (eg ABB, Rockwell, Schneider Electric,
Siemens, or Yokogawa). It is also important to note that, due to the manufacturing of extremely
complex interconnected systems such as smart cars, there are now specific firewalls that are
designed to protect these products beyond the assembly line, like the Harman Shield solution by
Harman [192].

On the other hand, there are several commercial products focused on controlling and filtering
the information exchanged between zones. Various platforms, such as Advenica ZoneGuard [193],
provide a bridge between IT and OT networks that implement various information exchange
policies. Other solutions, including Data Loss Prevention [194] and Nexor Border Gateway [195],
also allow the definition of policies for certain network interactions, such as outbound connections
and inbound email messages, respectively.

Besides, certain products implement the ‘data diode’ communication approach, which phys-
ically enforces a one-way flow of data. Some solutions, like Fox DataDiode [196], focus on the
integration of these diodes between IT and OT zones. Other solutions, like SecuriCDS Data
Diode [193], also implement additional defense mechanisms (e.g., dual power supplies) that avoid
the creation of covert data channels. Finally, there are some approaches, like Waterfall FLIP [197],
that actually implement reversible diodes, which can be activated by personnel on-site in case of
emergencies.

3.3.2 Secure Configuration

There are various products in the market whose goal is to provide a holistic view of the config-
uration of the overall system. For example, platforms like the ICS Shield platform developed
by Nextnine [198] focus on providing a centralized operations center for the management of

54



3.3. Industrial IDS Products

various security aspects of the system. They include the automatic discovery and classification of
the system assets, the retrieval of hardware/software state information and the management of
changes in this state, the management of passwords, the secure transfer of data, the management
of software updates and backups, the creation and application of security policies, and the
preparation of security reports, amongst others.

Other platforms revolve around the analysis of the system configuration, so as to manage and
verify existing security policies. For example, the AlgoSec Security Management Solution [199]
not only proactively assess existing network security policies related to firewalls and cloud
access, but also is able to intelligently design policy changes and implement them whenever
necessary. Continuing with the subject of verification, certain tools, such as NERC Compliance
by Sigmaflow [200], provide automated compliance monitoring of existing security and reliability
industrial standards. These tools not only analyze the documentation of the company in search
of discrepancies with existing standards, but also validate certain compliance data in real time,
such as security controls, local accounts, and logical access rights.

Finally, there are platforms whose goal is to analyze the configuration and the elements of the
system in search of vulnerabilities. Some vulnerability assessment systems, such as MaxPatrol, are
specifically designed for industrial settings. Due to their design, these tools can efficiently analyze
the system without interrupting its regular use, and are able to monitor even ERP systems such
as SAP [201]. On the other hand, there are some tools, such as SecurITree, that focus on the
theoretical analysis of attack models and attack trees [202]. These tools can create reports that
predict the most likely behaviour of attackers, and can help to identify risks that are otherwise
undetected.

3.3.3 Signature-based Solutions

These products consist mainly of devices that passively connect to the control network, accessing
the information flow. One of the pioneers in this field is Cisco Systems, which has a large database
of attack signatures on industrial environments [203]. Such attack signatures include not only
generic attacks on elements of the industrial network (e.g., denial of service in HMIs, buffer
overflows in PLCs), but also specific vulnerabilities in industrial protocols (e.g., CIP Or Modbus).
This database is easily upgradeable, and can be integrated into all Cisco intrusion detection
systems.

There are also other products on the market that, beyond the detection of attack signatures,
provide several value-added services. An example of this is the monitoring system of Cyberbit [204].
This system monitors the traffic of the network in order to map existing devices, giving the
operator a real-time view of the elements of a system. In addition, it is possible to take advantage
of information acquired from the device to identify elements that have known vulnerabilities.
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3.3.4 Context-based Mechanisms

One drawback of most products based on the detection of attack signatures and patterns is
the lack of correlation between the detected events, which could provide valuable information
regarding the actual scope of the attack behind those events. Another drawback is the absence of
an in-depth analysis based on the context of the system: the parameters of a command can be
valid in a given context, but harmful in another. As a consequence, there are several products that
perform correlation and/or in-depth analysis tasks which take into account the general context of
the system.

One example of these correlation systems is the Sentry Cyber SCADA software from Aler-
tEnterprise [205]. It combines and correlates events and alerts from various domains (physical,
IT and OT networks) and sources, with the aim of providing a complete security monitoring
tool for industrial systems. To achieve this objective, this solution allows integration with other
security tools, such as vulnerability scanners, SIEM (Security Information and Event Management)
systems, IDS/IPS systems or security configuration tools.

Finally, an example of in-depth analysis solutions is Wurldtech’s OPShield [206] system.
OPShield performs an in-depth analysis of the network traffic, including the syntactic and
grammatical structure of the protocols. Through these analyses, OPShield can inspect the
commands and parameters sent to the different components of the industrial system, and even
block those commands if the administrator has authorized OPShield to do so. Note that the
blocking or not of these commands is determined based on the context in which they have
been sent. Thus, it is possible to protect the system against seemingly valid and/or legitimate
commands that are potentially dangerous for the correct operation of the system if they are sent
outside the context for which they were defined.

3.3.5 Honeypot-based Techniques

Existing solutions based on honeypot systems usually create a distributed system, through which
they collect and analyze information related to the threat or attack. Thanks to the analysis and
correlation of the collected information, this type of IDS / IPS systems can be able to identify
the type of attack launched, the (malicious) activities carried out on the system, as well as the
existence of infected devices.

Within the current marketplace, one of the major existing honeypot-based detection platforms
is ThreatMatrix from Attica Networks, which is able to detect real-time intrusions in public
and private networks, ICS/SCADA systems, and even IoT environments. Its flagship product
is called BOTsink [207], and is able to detect advanced persistent threats effectively, without
being detected by the attackers. The client also can customize the software images that simulate
SCADA devices. Such customization allows the integration of both the software and the protocols
that are used in the production environment. As a result, fake SCADA devices can be made
almost indistinguishable from real SCADA devices.

56



3.3. Industrial IDS Products

3.3.6 Anomaly-based Solutions

As of 2020, there are a wide range of products that make use of deep packet inspection and/or
machine learning technologies to detect unusual behaviors or hidden attacks, of which there
is no already identified pattern. Such products are usually deployed as rack servers, although
many companies also provide virtualized solutions. Regarding the deployment location of these
commercial products, most of them operate on the operational network, accessing the information
flow through the SPAN ports of existing network devices. Other deployment strategies exist,
though. Some products, such as UCME-OPC from Control-See [208], retrieve system information
directly from the industrial process management layers. Other products make use of agents that
are distributed throughout all the elements – devices and networks – of the industrial system.
Finally, there are products in charge of monitoring the interactions with field devices, such as
those offered by SIGA [209]; or even systems embedded within the field devices themselves, such
as those offered by MSi [210], which are responsible for examining and validating the behavior of
field devices.

As for the specific techniques of anomaly modeling and detection, each commercial product
makes use of one or several of them. Some products, such as UCME-OPC from Control-See [208],
create a model of the system based on certain conditions/rules. Whenever those rules are not
fulfilled by the system parameters and values, a warning will be launched. Other products, such
as XSense from CyberX [211], base their operation on the classification of system states: if a
monitored system transitions to a previously unknown state, such state is classified as normal or
malicious depending on multiple signals and indicators. There are also products, such as HALO
Vision from HALO Analytics [212], which make use of statistical analysis.

Other products consider industrial control systems from a holistic point of view, and include
the behavior of various actors, including human operators, into their own detection systems. For
example, Darktrace’s Enterprise Immune System [213] makes use of a variety of mathematical
engines, including Bayesian estimates, to generate behavioral models of people, devices, and even
the business as a whole. There are also other products, such as Wisdom ITI from Leidos [214],
which offer a pro-active and real-time platform for internal threat detection. This platform not
only monitors system activity indicators, but also the behavior of human employees. Another
example of this is the Privilege Account Security Solution by CyberArk [215], which monitors
user activity to detect not only anomalous activity caused by abuse of existing privileges, but
also potential symptoms of compromised credentials.

Finally, it is necessary to point out that the majority of these products start with no knowledge
about the environment or industrial system that they aim to protect. As such, they need to be
trained, acquiring the knowledge they need mostly by monitoring the network traffic. Even so,
there are some products, like the suites marketed by ICS2 [216] or the products developed by
ThetaRay [217], that can acquire such behavior offline. For example, by loading and processing
training files, or by retrieving information provided by the manufacturer about the expected
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behaviour of the different system components. The aim of this is to reduce the time required for
the deployment and commissioning of these products.

3.4 Current Industry 4.0 Detection and Traceability Solutions

As with traditional IT systems, Industry 4.0 deployments can be attacked by malicious adversaries,
which could generate serious operation disruptions in critical infrastructures. In this context,
IDSs become a necessary defense layer to detect potential attacks against these infrastructures.
Even if the field of IDSs for Industry 4.0 technologies is not as developed as the field of IDSs for
traditional industrial ecosystems addressed before (cf. [218]), there is still a plethora of detection
approaches [67]. Some of these detection mechanisms focus on the integration of signature-based
IDSs and Deep Package Inspection (DPI) technologies [219], which try to find specific patterns
in the network frames. Other anomaly detection systems implement various machine learning
techniques, aiming to detect instances of data (exchanged from IIoT devices) that do not belong
to a learned class (i.e., a model that has been trained and validated).

Besides, there are several IDSs specifically designed for Industry 4.0. and IIoT deployments
that benefit from the unique characteristics of industrial networks (e.g., deterministic operation
procedures) compared to general IT networks [220]. According to the state of the art (cf. [221]),
these intrusion detection procedures mainly focus on the analysis of the communication patterns
and the protocols states to identify a deviation from a previously created specification. This leads
to two main detection strategies: specification based anomaly detection and physical state dynamic
estimation.

In the first strategy, specification based IDSs, human experts build a model that describes
the legitimate system behavior (e.g., protocols, programs, operations) to latter compare it with
the current state to detect anomalies. Some examples of this approach include [222], where
an advanced metering infrastructure is modelled to represent a legitimate activity profile at
various levels, and [223], where the specification is at protocol-level to model the Modbus TCP
communication patterns. The second strategy, physical state dynamic estimation, complements the
first strategy by modeling the physical dynamics of the operations performed in the production
chain. For example, in [224], the authors propose a resilience framework for cyber-physical systems
which permits to describe physical domains mathematically. Other examples include [225] and
[226], which models the physical constraints of a power grid infrastructure and a water distribution
network, respectively.

Regardless of the detection strategy used in the industrial premises, IDSs only pose a first line
of defense, and further post-incident analysis of the generated evidences (e.g., alarms, network
events) and raw traffic must be conducted all across the network to anticipate the effects of
sophisticated and persistent attacks such as the APTs [227]. This is carried out by traceability
and advanced correlation mechanisms, which provide information of the overall network health
status and facilitate the deployment of accurate response measures based on the threat evolution.
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This has been mostly addressed in traditional corporate environments, by means of proactive
techniques (evidences are analyzed as incidents occur) and reactive techniques (evidences are
studied once the events occur). Among the proactive techniques, [228] proposes a framework for
flow-based analysis of network traffic in near real time to detect APTs in cloud computing. Also,
in [229], researchers present a security framework for the analysis of high volumes of traffic to
identify data exfiltrations and suspicious activities in TCP/IP networks. Some other approaches
conduct advanced analytics with the outputs of external IDSs. For example, in [230], researchers
propose an approach entitled TerminAPTor, a theoretical supervision system capable of linking
multiple information flows from classical IDSs. In [231], the authors propose MLAPT, a machine
learning-based system to detect and predict APT attacks by correlating the outputs of different
detection methods. As the rest of approaches, it is experimentally validated in a corporate
infrastructure (using a dataset of attack scenarios against a campus network).

As for industrial ecosystems, traceability solutions are provided by means of context-awareness
solutions [232]. This process involves the monitoring of the physical devices that are interconnected
by a communication infrastructure, to retrieve data about the production chain at all levels (e.g.,
alarms, network events, raw traffic). However, the introduction of increasingly dynamic topologies
and the growing range of extremely localized attacks in the IIoT and Industry 4.0 complicate the
process of information acquisition [233]. Therefore, it is important for industrial ecosystems to set
up more than one detection solution to ensure the maximum detection coverage [218]. Moreover,
all solutions should coexist with advanced detection platforms that take the infrastructure from a
holistic perspective, correlate all events and track all threats throughout their entire life cycle
[234]. This holistic perspective is even more necessary in light of the existence of APTs. In this
sense, there is also the need to investigate holistic models of local and global information that
are capable of anticipating, detecting and responding to failures and attacks at all times and
autonomously. This implies the deployment of specialized techniques to prevent the extension of
security problems to other areas of the system and minimize their impact. These are also known
as situational awareness solutions [235].

In summary, to the best of our knowledge, all existing traceability approaches are designed
for generic IT networks, and have not explicitly discussed how they could be implemented and
validated using real attacks. Therefore, as the progress in the Industry 4.0 has not been significant
with respect to actual APT traceability solutions, it is the main motivation of this work to provide
a first step in this area. In this sense, the Opinion Dynamics approach [82] paves the way for a
new generation of solutions based on the deployment of distributed detection agents across the
network. The anomalies reported by these agents are correlated to extract conclusions about the
sequence of actions performed by the adversary, and also to identify the more affected areas of the
infrastructure. Such assessment can be conducted in a centralized entity or using a distributed
architecture of peers [236]. At the same time, it is open to integrate external IDSs to examine
anomalies in the vicinity of nodes, as well as the abstraction of diverse parameters such as the
criticality of resources or the persistence of attacks.
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Despite the many capabilities of this solution (explained in further sections), it is necessary
to define a more general detection model to lay the base for the precise application of more APT
traceability solutions in the Industry 4.0 paradigm. The reason is that the Opinion Dynamics
capabilities can be implemented modularly, they can be integrated into other correlation algorithms
and each one has a different effect on many security, detection, deployment and efficiency
constraints. These points will be addressed in the next section, where we define the security and
detection requirements involved, to later present the traceability framework in Chapter 4.

3.5 Detection and Security Requirements for the Industry 4.0

The analyses performed in the previous section have shown that Industry 4.0 threats are inherently
more complex than the threats that target traditional industrial environments. Since networks
and interactions are no longer compartmentalized, the attack surface increases – not only in
terms of vulnerable entities, but also in terms of potential attackers and attack strategies (e.g.,
behavioral attacks). Besides, as the number of elements and business processes increases, the
existence of misconfigured elements does so as well. Moreover, the opportunities for collaboration
also increase the amount of information that is available to an adversary in case he/she controls
a section of the system. These threats have considerable influence on how IDSs must be designed,
deployed and managed in these kinds of contexts. Given the threats described in the previous
sections, an IDS should comply with several requirements that are described below. They can be
classified into detection and security concerns.

(D1) Coverage. APTs make use of an extensive set of attack vectors that jeopardize organizations
at all levels. Therefore, the system must be able to assimilate traffic and data from
heterogeneous devices and sections of the network, while also incorporating the input of
external detection systems.

(D2) Holism. In order to identify anomalous behaviors, the system must be able to process all
the interactions between users, processes and outputs generated, as well as logs. This allows
to generate anomaly and traceability reports at multiple levels (e.g., per application, device
or portion of the network, as well as global health indicators).

(D3) Intelligence. Beyond merely detecting anomalous events within the network in a timely
manner, the system must infer knowledge (by correlating current events with past stages) and
should anticipate future movements of the attacker. Similarly, it should provide mechanisms
to integrate information from external sources – that is, cyber threat intelligence [237].

(D4) Symbiosis. The system should have the capability to offer its detection feedback to other
Industry 4.0 services, by means of well-defined interfaces. This includes access control
mechanisms (to adapt the authorization policies depending on the security state of the
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resources) or virtualization services (that permit to simulate response techniques under
different scenarios without interfering the real setup), among others.

On the other hand, we can also establish the following security requirements with regards to
the deployment of the detection solution over the network:

(S1) Distributed data recollection. It is necessary to find distributed mechanisms – such as
local agents collaborating in a peer-to-peer fashion – that allow the collection and analysis
of information as close as possible to field devices. The ultimate aim is to make the detection
system completely autonomous and resistant to targeted attacks.

(S2) Immutability. The devised solution must be resistant to modifications of the detection
data at all levels, including the reliability and veracity of data exchanged between agents
(e.g., through trust levels that weigh the received security information), and the storage
of such data (e.g., through unalterable storage mediums and data replication mechanisms
such as immutable databases or distributed ledgers).

(S3) Data confidentiality. Apart from the protection against data modification, it is mandatory
that the system provides authorization and cryptographic mechanisms to control the access
to the information generated by the detection platform and all the interactions monitored.

(S4) Survivability. Not only the system must properly function even with the presence of
accidental or deliberate faults in the industrial infrastructure, but also the system itself
cannot be used as a point of attack. To achieve this, the detection mechanisms must be
deployed in a separated network that can only retrieve information from the industrial
infrastructure.

(S5) Real-time performance. The system must not introduce operational delays on the
industrial infrastructure, and its algorithms should not impose a high complexity to ensure
the generation of real-time detection information. Network segmentation procedures and
separate computation nodes (e.g., fog/edge computing nodes) can be used for this purpose.

Notice that these requirements are also desirable for traditional industrial ecosystems, yet such
requirements are very difficult to enforce in those contexts – mainly due to the inherent industrial
features and necessary trade-offs (e.g., avoid false alarms that can put the production line in
jeopardy, minimize the impact of the IDS components in the operational network, etc. [238]).
Still, the cooperative, dynamic and complex nature of Industry 4.0 ecosystems requires that IDSs
subsystems must interact more closely with the industrial components, in order to detect attacks
before their impact becomes too severe.

Understandably, and also due to the specific features of industrial ecosystems, the actual state
of the art on IDSs for the current industrial ecosystems (cf. [238]) do not fully cover the previously
mentioned requirements. Besides, there are few or no components that search for anomalies in
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the behavior of Industry 4.0 essential protocols, such as OPC UA; and the concepts of symbiosis
and exchange of security information in this context are still in its infancy.

As for the creation of IDS mechanisms for the industry of the future, there is no need to start
from zero. There are various elements in the state of the art that can be adapted and/or enhanced
to fulfill the previously presented requirements. For example, there are various platforms that
provide event correlation and knowledge extraction from a holistic perspective, although most of
such platforms are based on a more centralized architecture, as studied before. Precisely, there
are also agent-based architectures that validate the behavior of the monitored systems [239].

Moreover, there are preliminary works that could serve as a foundation for the more advanced
features required by Industry 4.0 IDSs, such as the dynamic deployment of honeypots adapted
to the requirements of the system, the automatic identification of critical elements, and the
interaction with physical simulation systems in order to detect anomalies [155]. Based on these
premises, we aim to define a detection and traceability framework that eases the development of
appropriate solutions for the Industry 4.0 context, as explained in the following chapter.

62



Chapter 4

Detection and Traceability Solutions
based on Distributed Correlation

Based on the security and detection requirements extracted previously, this chapter is devoted to
defining the framework for developing solutions that allow the distributed correlation of APT
events. In the first place, we introduce some preliminary concepts about structural controllability
and graph theory that are necessary to define the aforementioned framework. Based upon these,
the APT traceability framework is presented, by specifying its infrastructure model along with
its inputs and outputs. Then, to illustrate the feasibility and effectiveness of this framework, we
identify correlation algorithms that satisfy its specification. Lastly, we carry out a qualitative and
quantitative comparison of those approaches, prior to experimentally applying them to Industry
4.0 scenarios in the next chapter.

4.1 Modelling Industry 4.0 Networks Using Graph Theory

In this section, we lay the theoretical base that permits the formal representation of Industry
4.0 infrastructures and actual APT attacks over a defined network, as well as the mathematical
background of the detection techniques presented in this chapter.

4.1.1 Structural Controllability

Considering the cost of the implementation of large control networks from a research point of
view, it becomes mandatory to model and simulate the problem through graph theory, taking
into account the network topology and the nature of its distribution. With the purpose of helping
the reader understand the underlying theoretical concepts of the attack and detection models,
topics related to structural controllability and power dominance are described here. The concept
of structural controllability was introduced by Lin in 1974 [163], which associates the control of a
network to a subset of nodes with the maximum capacity of dominance.
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Let G = (V,E) be a directed cyclic graph that represents the network topology, given by
its adjacency matrix, that is, a square binary matrix M with dimension |V | where M(i, j) = 1

whenever (vi, vj) ∈ E and zero otherwise. Through G(V,E), it is possible to characterize dynamic
control networks including loops and weighted edges that represent the interconnection of control
devices with field devices (e.g., sensors or actuators) to issue control commands and retrieve data.
These links contain the maximum capacity to conduct the main traffic between two points, which
is defined as the control load capacity (CLC).

To represent this traffic, we use the betweenness centrality (BC) [240], that gives an idea of
the connectivity that every node or edge experiences. It is an indicator that represents the sum of
the fraction of the shortest paths that pass through a given edge, so that edges with the highest
centrality participate in a large number of shortest paths. The result is a weighted matrix related
to G(V,E) whose weights are computed as follows:

BC(v) =
∑

s,t∈V

δ(s, t | v)
δ(s, t)

(4.1)

where δ(s, t) denotes the number of shortest (s,t)-paths and δ(s, t|e) the number of paths
passing through the node v. On the other hand, let the in-neighborhood N in

i of a node i be
the set of nodes vj , such that (vj , vi) ∈ E; while the out-neighborhood Nout

i is the set of nodes
vj such that (vi, vj) ∈ E. Consequently, let the in-degree dini of a node vi be the number of its
incoming edges, i.e., dini = |N in

i |, while the out-degree douti is the sum of its outgoing edges, i.e.,
di = |Nout

i |.

Algorithm 1 DS(G(V,E))
output (DS = {vi, ..., vk} where 0 ≤ i ≤ |V |)
local: BC(V ) representing betweenness centrality of V

Choose v ∈ V with highest BC
DS ← {v} and N(DS) ← {vi, ..., vk} ∀i ≤ j ≤ k \ (v, vj) ∈ E
while V − (DS ∪N(DS)) '= ∅ do

Choose vertex w ∈ V − (DS ∪N(DS)) with highest BC
DS ← DS ∪ {w}
N(DS) ← N(DS)

⋃
{vi, ..., vk} where ∀i ≤ j ≤ k \ (w, vj) ∈ E

end while

Taking these concepts and BC into account, the Dominating Set (DS) of a graph G can be
defined as the minimum subset of nodes D ⊆ V such that for each vertex vi '∈ D is adjacent to
at least one member of D, that is ∃vk ∈ D|(vk, vi) ∈ E. These nodes D with the highest control
capacity will be those with the highest edge betweenness centrality BC(v) for all their outgoing
edges. The creation of this set is explained in Algorithm 1. Related to this concept, the Power
Dominating Set (PDS) consists in an extension of the DS by including new driver nodes (denoted
by ND), those with the maximum capacity of dominance within the network. Even though we
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Figure 4.1: Observation rules for the election of the most dominating nodes

consider these sets for controllability purposes, it is important to note that they can be treated
as observation rules. Their original formulation was given by Haynes et al. in [241], and was later
simplified into two fundamental observation rules by Kneis et al. in [242]:

OR1 A driver node, nd in DN, observes itself and all its neighbors (i.e., the rest of nodes that
share a communication link with nd), which conforms the Dominating Set of nodes. This
implies that every node not in DN is adjacent to at least one member of DN.

OR2 If an observed vertex v of degree d+ ≥ 2 is adjacent to d−1 observed vertices, the remaining
unobserved vertex becomes observed as well. This also implies that OR1 ⊆ OR2 given that
the subset of nodes that comply with OR1 becomes part of the set of nodes that complies
with OR2, which conforms the Power Dominating Set.

An example of the election of these driver nodes is depicted in Figure 4.1. As explained
later, for the purpose of threat detection, the dominating nodes can play the role of agents that
detect topological changes in their surroundings that may be derived from an APT attack, and
potentially apply response techniques or establish backup links that ensure the continuity of the
network. All the three concepts introduced in this section and related to the network represented
with G = (V,E) are summarized in Table 4.1 for future reference in the following sections.

We now aim to extend the graph G = (V,E) to characterize its topology according to current
industrial standards. As discussed in Chapter 1, most industrial ecosystems are nowadays adopting
cutting-edge technologies into their production chain and monitoring systems. The counterpart of
the modernization of industrial technologies (which we have referred to as ‘operational technologies’
or OT) and its integration of IT (‘information technology’) in this context comes with the
appearance of new cybersecurity threats, as studied in Chapter 2. Some of them are inherited
from the IT paradigm and some other arise from the growing integration between IT and OT.
We are talking about attack vectors such as denial of service, presence of malware in the control
teams, exploitation of vulnerabilities in communication protocols, phishing and social engineering,
etc. For this reason, since there are several reported APTs that attempt to compromise resources
belonging to both the IT and OT parts of the industrial network, it makes sense that the
whole industrial topology can be split into these different sections: IT and OT, which will be
interconnected by firewalls.
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Table 4.1: Summary of structural controllability concepts

Term Concept Definition

BC Betweenness centrality holds the connectivity degree
of a node or edge within the
network

DS Dominating Set Minimum subset of nodes
within a graph that are ad-
jacent to the rest, comply-
ing with the OR1 observation
rule

PDS Power Dominating Set Minimum subset of nodes
within a graph that are ad-
jacent to the rest of nodes
and edges, complying with the
OR2 observation rule

Traditionally, the architecture of a typical control network has adopted the ISA-95 standard
[36], as stated in the introduction of this thesis. Following a rigid pyramidal architecture, the
manufacturing components (i.e., sensors and actuators) are located at the base (level 0), whereas
devices interacting with them (i.e., PLCs, RTUs) are set at level 1. Level 2 comprises those
devices that control the production process (i.e., SCADAs, HMIs), while those that manage the
workflow (i.e., MES) belong to level 3. Finally, the highest level contains the ERP or resource
management. However, due to the aforementioned integration of cyber-physical systems, this
architecture is evolving towards a distributed and decentralized model. Therefore, the lines that
separate every level are getting blurred, which is more noticeable in the highest level of the IT
section, where several entities (e.g., ERP, SCADA systems) can be flexibly deployed in the cloud,
as shown in Figure 4.2.

Due to this evolution of industrial topologies, the formalization of the proposed network
architecture using the graph G(V,E) can be further extended. We can assume this network
is composed by the IT and OT sections, which are respectively represented with subgraphs
G(VIT , EIT ) and G(VOT , EOT ). These sections are joined by a set of firewalls placed in between
(VFW henceforth), so that V = VIT ∪ VOT ∪ VFW .

In order to understand how these network sections are merged, we have to recall the DS
and PDS subsets explained before. In particular, the PDS will be used in the OT section of the
industrial topology to represent the set of devices that are connected to the firewalls that also
connect to the IT nodes, thereby merging both sections. The reason for such election is that
multiple kinds of devices coexist in an operational environment. However, apart from sensors and
actuators, PLCs and HMIs, only SCADA systems and high-level servers are actually connected to
external networks (i.e., the IT section or Internet). Therefore, these last nodes are the ones that
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Figure 4.2: Architecture of modern industrial organizations

hierarchically have more connectivity (and therefore they will be linked to the firewall nodes),
which is equivalent to the controllability concept introduced before. As for the IT section, since
most of the devices range from ERP to customer-end systems (whose computational capabilities
are not as restricted as OT devices), we assume that all nodes are connected to the firewalls and
thereby can access the operational area.

4.1.2 Topology Generators

Concerning the network topology of the IT and OT section, we must note that each of these
subnetworks (represented with subgraphs G(VIT , EIT ) and G(VOT , EOT )) is built with a different
network distribution. There are multiple topology generators available in the research community
whose function is to generate random networks for specific studies (e.g., routing protocols, network
recovery), imitate the hierarchical nature of real networks or reproduce their degree properties.
In this work, certain models have been studied and selected for their ease in the implementation
and their realism to produce replicas of real infrastructures. More specifically, we will make use of
different models depending on the network subsection or the characterization of an industrial
sector with particular connections or architectures (e.g., the IIoT).

For the moment and to lay the base of topology generators used in our theoretical simulations,
in this section we focus on the topology generators leveraged in a generic Industry 4.0 scenario, for
the two subsections introduced before. On the one hand, G(VOT , EOT ) follows a specific network
construction centered on power-law distributions of type y ∝ x−α, which is extensively used to
model the topological hierarchy of an electric power grid and their monitoring systems [243].
These networks are also known as scale-free and commonly contain substations, which are nodes
with high degree (i.e., the number of edges incident on the node) connected to nodes with lower
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Figure 4.3: Example of PLOD-generated network with 10 nodes, α = 0.1, β = 1.5

degree, such as sensors and actuators. We focus on this topology since the vast majority of critical
control systems follow these structures, which produce small sub-networks similar to current
control substations.

In greater detail, this generator considers the Power Law Out Degree (PLOD) algorithm to
guide the construction of the graph [244], having the following form:

degree = βx−α (4.2)

where x is a random number chosen in the interval [0,|V |]. This algorithm allocates a certain
number of degree credits to each vertex in the graph and creates edges between them by deducting
such credits, which are determined by α and β parameters. Whereas β controls the y-intercept of
the curve (so that increasing its value results in an increase in the average degree of vertices), the
value of α controls how steeply the curve drops off. Figure 4.3 shows an example of network with
10 nodes generated by the PLOD algorithm with α = 0.1 and β = 1.5. In our several simulations,
we will use random values for α uniformly chosen in the interval [0,1] and a β - 1.5, which
altogether generate hierarchical architectures similar to the figure, matching the desired control
networks.

On the other hand, the IT section (given by G(VIT , EIT )) is modelled according to a small-
world network distribution, that represents the conventional topology of TCP/IP networks [245].
In this category, the Watts-Strogatz is one of the most studied and implemented models. It was
designed as a simple random graph generator that produces networks with short average path
lengths and high clustering. A network features clustering if the probability that two nodes are
connected is higher when both of them have a neighbour in common. This is present in real
network topologies in Internet applications, where systems are assigned to private clusters or
subnetworks in a more heterogeneous way.
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Figure 4.4: Example of network with 10 nodes generated following the Watts-Strogatz model,
with p = 0.1 and degree = 4

To construct a graph with these properties, the Watts-Strogatz model receives as arguments
the total number of vertexes |V | for the desired network, a degree value that represents the mean
degree for all nodes and a probability p. Then, it generates a graph with |V |degree

2 edges, according
to the so-called rewiring process, which is outlined as follows:

1. Build a regular graph where each node has the same number of neighbours (the degree

value)

2. Rewire each edge (vi, vj) in the network to a random node v′j instead, where v′j is selected
uniformly at random from all nodes, as long as self-loops and link duplications are avoided.

In our case, we choose values close to 0 for the p parameter, since it generates highly clustered
networks. An example of network graph generated with this configuration and degree = 4 is
represented in Figure 4.4.

Once the graph has generated for the IT and OT sections, both subnetworks are merged
through firewalls following the process described in Section 4.1.1. Altogether, Figure 4.5 shows a
simple example of a network with five IT nodes and five OT nodes, which are merged through
two different firewalls.

Once we have established the architecture for the network, we are in position to not only
simulate attacks over the topology, but also to develop distributed detection systems, which is
the main contribution of our work.
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Figure 4.5: Example of network with five IT nodes and five OT nodes merged through two
firewalls

4.1.3 Representation of APT Attacks and Detection Probabilities

After reviewing the behavior of industrial APTs and the state of the intrusion detection mechanisms,
we can formalize a realistic attack and defense model for our network architecture, using graph
theory. Our attack model is simple: we assume that, given a certain goal (exfiltration and/or
destruction), adversaries are able to successfully perform an APT attack against the network
architecture defined above, using any set of the attack stages defined in Section 2.4.2. As for the
defense model, and given the state of the art in the area, we will assume that all the elements
of the network are covered by distributed anomaly detection mechanisms, which are extensively
investigated throughout this chapter. Compared to traditional detection mechanisms, these
approaches feature the ability to correlate anomalies throughout the network and hence trace the
location of attacks, also considering their severity and persistence. To achieve this, they securely
retrieve information from any host-based and network-based detection mechanism deployed in the
network defined by graph G(V,E). At this point, to better understand the formal representation
of APT attacks, we also assume that, as a result of the correlation of these detection mechanisms
that monitor the behavior of a node and its neighbours, every node will be assigned a certain
detection probability (i.e., probability of an attack taking place) for a given interval of time.

To formalize the attacker model, we can provide a representation of the intrusion kill chain
of APT attacks. Let attackStages be a set of potential attack stages that an APT can perform
against the industrial control network G(V,E) as defined in Section 2.4.2, such that attackStages
= {attack stage1, attack stage2 ..., attack stagen}. This set comprises the following elements:

• initialIntrusion(IT,OT,FW ). The initial access that affects a node n0 (known as ‘patient
zero’) of the IT network, OT network, and firewall, respectively.
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• compromise . The adversary takes control of a certain node ni, obtaining higher privileges,
maintaining persistence, and executing defense evasion techniques. Moreover, this stage also
includes the internal reconnaissance of the direct neighbourhood of ni, neighbours(ni).

• targetedLateralMovement(IT,OT,FW ). From a certain node ni, the adversary chooses a
FW, IT, or OT node nj from the set neighbours(ni), and executes a lateral movement to-
wards that node. Note that, in this model, the concept of lateral movement only encompasses
the delivery of malware towards the target node.

• controlLateralMovement . From a certain node ni, the adversary chooses the node nj from
the set neighbours(ni) with the highest betweenness (i.e., the node with more connectivity),
and executes a lateral movement towards that node.

• randomLateralMovement . From a certain node ni, the adversary chooses a random node
nj from the set neighbours(ni), and executes a lateral movement towards that node.

• exfiltration . From a certain node ni, the adversary establishes a connection to an external
command&control network, and extracts information using that connection.

• destruction . The adversary either destroys node ni, or manipulates the physical equipment
(e.g., uranium enriching centrifuges) controlled by node ni.

• idle . In this phase, no operation is performed.

Once the set attackStages is defined, it is possible to represent APT attacks that target our
particular network model G(V,E). In particular, for every APT, there can be an ordered set
attackSetAPT , composed by one or more elements of the attackStages set, that represent the
APT chain of attack actions. As an example, the attack set of Stuxnet [123] can be represented
as follows:

attackSetStuxnet = {initialIntrusionIT , compromise, exfiltration,

targetedLatMoveFW , compromise, targetedLatMoveOT ,

..., targetedLatMoveOT , idle, ..., destruction}

These particular instances are defined taking into consideration the overall goal of every
APT. For example, in the case of the Stuxnet malware, its goal is to find a particular node
nOT ′ ∈ VOT that manages an uranium enriching centrifuge. Therefore, after infecting patient zero
nIT 0 ∈ VIT , it seeks the location of a firewall node nFW ∈ VFW that connects the G(VIT , EIT )

and G(VOT , EOT ) regions. Afterwards, it moves inside the G(VOT , EOT ) region until it finds node
nOT ′ . Finally, after waiting for some time, the malware executes its payload, manipulating the
centrifuge.

Regarding how the different attack stages influence the calculation of the detection probabilities,
we need to consider that certain attack stages will generate more security alerts. This, in turn, will

71



Chapter 4. Detection and Traceability Solutions based on Distributed Correlation

increase the probability of detecting that particular attack stage. Therefore, we need to consider
the existence of different classes of detection probabilities. Here, we define Θ as an ordered set of
detection probabilities of size d, where Θ = {θ1, ..., θd} and θi = [0, 1], such that ∀θi, θi > θi+1.

initialIntrusion(n0) θ3
compromise(ni → neighbours(ni)) θ2 → θ5
∗LateralMovementIT,FW (ni → nj) θ5 → θ4
∗LateralMovementOT (ni → nj) θ5 → θ3

exfiltration(ni) θ4
destruction(ni) θ1

Table 4.2: Map of attackStages to Θ

Once Θ is defined, we can create a model that maps every element of the set attackStages to
the elements of Θ. Such model, where d = 5 and Θ = {θ1, θ2, θ3, θ4, θ5}, is described in Table 4.2.
The rationale behind this mapping is as follows:

• We assign θ1 only to the destruction stage, because any major disruption in the functionality
of a device (e.g., unavailable resources, device turned off) will trigger multiple high priority
alerts. Note that, as explained in our defense model, we assume that all field devices are
also covered by detection mechanisms, thus any attack (e.g., the Stuxnet final payload)
against these sensitive devices can be easily detected.

• θ2 is only assigned to the element at the left side of the compromise stage (ni →
neighbours(ni)). The reason of this is simple: the act of compromising and taking control
of ni will not only trigger various host alerts, but also multiple network alerts due to the
various discovery queries targeting all neighbours(ni). The correlation of all these events
will draw attention to the state of ni.

• For θ4, we consider the security alerts caused by combination of a single anomalous connection
to a node plus the delivery of malware to that node. As such, this θ covers all the elements
at the right side of the lateralMovement stages. Note, however, that in some particular
cases (like the initialIntrusion stage and the ∗LateralMovementOT stages), additional
anomalies will be detected: a potentially anomalous external connection, and a certain
instability in the otherwise stable OT communication environment, respectively. Therefore,
the θ assigned to the elements of those stages will be θ3.

• Finally, θ5 is assigned to those stages where the nodes produce or receive anomalous traffic
(e.g., a connection that deviates from what is considered as normal traffic). Again, in
situations where a connection with the outside world is made (e.g., exfiltration stage), as
the possibility of anomalous traffic will increase, the θ will be increased as well.
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After introducing and formalizing the key elements involved in the attacker model and
distributed detection, the background is set for the definition of a traceability framework that
eases the development of solutions to tackle the issue of APTs raised in this work.

4.2 APT Traceability Framework for the Industry 4.0

After reviewing some of the most representative methods for the intrusion detection in IIoT
environments and formalizing the infrastructure of Industry 4.0 and the behavior of APTs, in
this section we present the distributed traceability framework, which is the core of this work.
Compared to these aforementioned works, this approach does not limit to monitor the system
in specific points of the infrastructure in the seek of anomalous behaviors with specific machine
learning-based algorithms [218]. In turn, it proposes to aggregate the coverage of multiple detection
systems that are strategically deployed over the infrastructure, under a common distributed
framework that permanently correlates and learns from all the malware patterns detected and
individual anomalies measured. We can summarize its contributions as follows:

• To circumvent the heterogeneity of IDS solutions. The review of the state of the
art concludes that there is no ‘silver bullet’ that successfully addresses all the cybersecurity
threats in IIoT. Instead, there are mechanisms that focus on specific attacks or leverage
techniques that are tailored for specific sections of the control network. With this framework,
we want to combine various solutions to provide protection at all levels.

• To anticipate and accommodate new technologies and business scenarios. Tradi-
tionally, the elements of the control networks have behaved in a predictable way. However,
with the advent of the so-called Industry 4.0 technologies, new scenarios and services will
appear, such as flexible production lines or predictive maintenance systems, for instance.
These will allow the organizations, suppliers, users, etc. to collaborate under a fully inter-
operable model of industry. Therefore, it makes necessary to develop new detection systems
capable of analyzing these autonomous systems and their interactions. At the same time,
these systems are also expected to accommodate the integration of new technologies to the
infrastructure, that will also bring with them new vulnerabilities and exploitable attack
vectors. In this sense, our framework constitutes a fully adaptable solution.

• To ease the traceability of attacks and the precise application of response proce-
dures. In order for the operators to gain knowledge from intrusions and effectively improve
decision-making, the traceability framework facilitates the study of the evolution of these
attacks throughout their entire life cycle. This is more critical in the case of APTs, where
stealthy techniques are used to go unnoticed for a prolonged lapse of time, when the attacker
propagates over the network. In other words, we can obtain meaningful information that
correlates subtle events and evidences with actual attack stages and tactics, from a higher

73



Chapter 4. Detection and Traceability Solutions based on Distributed Correlation

strategic perspective (and beyond low-level alerts raised by traditional IDSs). This also
includes, for example, noise filtering and the reduction of false positives, potentially provoked
by misconfigured services or network overload. Altogether, this eases the deployment of
response procedures that permit to anticipate the next attack action and hence reduce the
impact of these threats.

After defining the detection and security requirements that a conceptual APT traceability
solution must fulfill, we now describe the guidelines for the design and construction of its
deployment architecture, the algorithms to be used, and the attacker model under consideration.

4.2.1 Network Architecture and Information Acquisition

As introduced before, the industrial network topology is modelled with the cyclic graph G(V,E),
where V represents the devices and E is the set of communication links between them. This way,
V can be assigned with parameters to represent, for instance, their criticality, vulnerability level
or the degree of infection; whereas the elements in E can be associated with Quality of Service
(QoS) parameters (e.g., bandwidth, delays), or compromise states that help to prioritize certain
paths when running resilient routing algorithms.

For the interest of theoretical analysis, these networks are frequently generated using the
random distributions introduced in Section 4.1.2, that model the architecture of real industrial
systems. As also mentioned, the topology is usually subdivided into multiple network segments
with different distributions [82], which is useful to study the effects of the attack and detection
mechanisms over the corporate section (containing IT elements) and the operational section
(OT, containing pure industrial assets), which can be connected by firewalls, so that V =

VIT ∪ VOT ∪ VFW .
Regardless of the topology configuration, the detection approach must acquire information

from the whole set of nodes V to fulfill requirement D1 (Coverage, c.f. Section 3.5), by using agents
that are in charge of monitoring such devices, complying with S1 (distributed data recollection).
These are deployed as a middleware on top of the physical infrastructure, inspired by FIPA
(Foundation for Intelligent Physical Agents) specifications to support the communication and
coordination between intelligent agents [246]. This standard facilitates the development of multi-
agent systems under a common definition of containers and interfaces for the agents, in order for
them to run in one or more systems. In our case, each of these agents follows a basic life cycle
whenever the traceability solution is executed, and consists in the retrieval of physical information
from the environment followed by the correlation of anomalies with the rest of agents. More
specifically, we can assume they are able to retrieve as much data as possible from their assigned
devices, which encompasses the following items:

1. Network parameters: it mostly comprises the set of communicating devices and the state
of every communication link in order to characterize the graph G(V,E).
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2. Communication information: low-level commands issued by the control and supervision
protocols of the industrial applications (e.g., reading values, actions executed).

3. Host-based information: computational usage of the monitored device and locally stored
information.

These data items are aimed to feed a correlation algorithm with inputs in the form of an
anomaly value for every device audited, which is formalized by vector x. This way, xi represents
the anomaly value sensed by the corresponding agent on device i, for all i ∈ 1, 2, ..., |V |, which is
represented in a scale from 0 to 1 of continuous values. Such value is calculated by each agent,
using two possibly simultaneous approaches: in an autonomous way (e.g., applying some machine
learning to determine deviations in every data item analyzed with respect to its value in normal
conditions) or leveraging an external IDS that is configured to retrieve the raw data as input
(including events triggered by vulnerability scanners or antivirus software), thereby conforming
to requirement D3 (Intelligence). Either way, the aim is to be open to include new anomaly
indicators that serve as an input to agents, to realistically analyze the security state of each node
and its neighborhood.

With this, we assume that the agent would have enough input data to compute a single
anomaly value for the security state of its monitored device. At this point, the effectiveness from
the use of specific ways to derive such value could be compared, which would strongly depend on
the actual network setup (e.g., topology, technologies, communication protocols) and it is not in
the scope of this work. Instead, we point out that the novelty and effectiveness of this approach
resides in the ability to correlate anomalies throughout the network and thereby get insight into
the location and severity of attacks. The way to uptake the individual anomaly detection is
customizable and reliant on the security scenario that we want to achieve, thereby working as a
framework.

From a deployment perspective, this leads to the question of where to locate the computation
of anomalies and their subsequent correlation, as to implement this mechanism in an industrial
infrastructure. In summary, these agents can be either logical or physical. Logical agents imply
that we assume that the status of individual devices can be retrieved from a centralized entity,
which consists of a computationally powerful node in charge of correlating the anomalies from
all agents, that are executed virtually. Ideally, this node would then apply protection measures
(e.g., data recovery, backup servers, honeypots) based on the security state of the network. In
practice, this can be easily implemented by using switches in port-mirroring mode, so that all
traffic from the nodes is relayed to a central correlator system, for instance. This setup model is
already applied by several commercial platforms, such as [247], whose goal is to provide support
for event correlation. These platforms can retrieve events and alerts from various domains (e.g.,
IT, OT networks) and from various sources (e.g., SIEM systems, vulnerability scanners) in a
distributed way.
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On the other hand, we could also consider that these agents can be physically deployed over the
network, in form of monitoring devices or integrated with the software of the industrial assets. In
other words, we assume that there is one agent attached to each node within the network (following
a 1:1 relationship), which would be ideal for S1 (cf. Section 3.5). Such agent should measure
the anomaly for itself and convey such value to its neighbors for the execution of a correlation
algorithm, communicating via the original topology in a fully distributed manner. However, this
option is not always feasible, since manufacturers and operators of critical infrastructures are
reluctant to introduce modifications in their hardware and software, which could also be privative
and hence not allow the execution of third party programs. Additionally, it is not always feasible
to physically integrate monitoring devices into industrial assets due to computational limitations.
Consequently, these processes may have to run in separate computational nodes.

However, we still want to achieve a close connection to field devices while avoiding a centralized
implementation. Two potential solutions are proposed for these cases. The first one is the election
of a subset of nodes within the control system to play the role of physical agents, depending
on how easy is their integration via software/hardware. This way, those agents (which should
be strategically dispersed over the network) would be the only ones in charge of detecting the
anomaly in their devices and also in those other surrounding devices that lack an agent. In this
regard, the concept of the Dominating Set introduced in Section 4.1.1 would be suitable for the
agent election.

Another solution is to leverage the concept of distributed data brokers to carry out a partially
distributed (or decentralized) implementation, assuming logical agents. These are independent
physical components that collect the data from a set of individual devices via port-mirroring
or network tapping, using data diodes to decouple agents from actual systems. This way, they
ensure that data transmission is restricted to one direction, thereby shielding the industrial assets
from outside access and complying with requirements S3 and S4.

Under this configuration, these data brokers can also convey the detection reports (i.e., the
anomalies sensed by its logical agents over the area where it is deployed) to other brokers in
order to execute the correlation in a collaborative way. Additionally, we could also contemplate
a last implementation model by enabling a distributed interconnection between data brokers
and existing physical agents within the network. Consequently, these broker entities should be
strategically deployed in a separate network such that there is at least one path between every
two brokers and the potential device agents.

These four interconnection models for the distributed acquisition and correlation of information
(assuming the implementation of either physical or logical agents) appear depicted in Figure
4.6. It is necessary to emphasize that the election of any of these agent implementations is
transparent for the anomaly correlation algorithm to be developed, so that it is conceived for any
distributed environment independently of the origin of the data. Due to this distributed nature,
the correlation algorithm can make use of two data models: replicated database, which assumes
that every agent has complete information of the whole network (through distributed ledgers or
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Figure 4.6: Agent implementations for information acquisition and correlation

using logical agents in a centralized entity), and distributed data endpoints, where the information
is fully compartmentalized and the cross-correlation is conducted at a local level. Both approaches
have their advantages and disadvantages. The replicated database provides all agents with a
vision of the network, although it imposes some overhead with respect to the synchronization
of information across agents. As for the distributed data endpoints, they reduce the number of
messages exchanged, yet the algorithm must deal with partial information coming from neighbour
peers.

After all, the ultimate election of the algorithm, data model and architectural design of
the agents responds to performance and overhead restrictions. These parameters determine the
detection mechanism at a physical layer, while at an abstract level it must also return a set of
security features, described in the following.
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4.2.2 Inputs and Outputs of the Traceability Solution

After introducing how the information from physical devices is collected by agents in practice
and how the anomalies can be calculated in theoretical terms for our simulations, we summarize
the set of inputs for traceability solutions as:

(I1) Quantitative input: expressed with vector x to assign every industrial asset with an
anomaly value prior to conducting the correlation. As previously mentioned, it can be
calculated by each associated agent or using external detection mechanisms integrated with
the data broker by taking an extensive set of data inputs to comply with D1 and D2. In
our simulations, this value is given by the attack phases executed on the network in a
probabilistic way, without the detection mechanism having any knowledge about the actual
stages.

(I2) Qualitative input: the previous values need to be enriched with information to correlate
events in nearby devices and infer the presence of related attack stages, according to Section
2.4.2. At the same time, we also need to prioritize attacks that report a higher anomaly
values. We assume that the resulting knowledge can be reflected in form of a weight wij ,
which is assigned by every agent i to each of its neighbours and represents the level of
trust given to their anomaly indications when performing the correlation (fulfilling S2).
This parameter can be subject to a threshold ε, which defines when two events should
be correlated depending on the similarity of their anomalies (e.g., two neighbor agents
that sense the same degree of anomaly due to communication delays would assign a higher
weight to each other since that event could be probably related to their shared connection).
Further criteria could be introduced to associate anomalies from different agents.

With respect to the outputs of the traceability solutions, they should include, but are not
limited to the following items:

(O1) Local result to determine whether the agent is generating an anomaly due to whether the
actual infection of the associated node, as a result of a security threat in a neighbour device
or a false positive.

(O2) Information at global level, to determine the degree of affection in the network and the
nodes that have been previously taken over, filtered by zones. This allows to distinguish what
set of devices are experiencing the same degree of anomaly produced by a particular attack.
This information is essential for applying effective response techniques and potentially
isolate the attack, while the rest of the areas can keep functioning as in normal conditions,
hence ensuring the continuity of the production.

(O3) Contextual information that permits to correlate past events and visualize the evolution
of the threat, but also anticipate the resources that are prone to be compromised (D3 & D4).
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Figure 4.7: APT distributed detection and traceability framework

This includes the events occurred to the network since the very first moment the intrusion
broke into it. In this sense, when it comes to APTs, we must also take the persistence of
attacks into special consideration at all times, since an advanced threat can go unnoticed
for months and suddenly perform a new attack. In terms of the traceability technique, this
implies that it is also necessary to keep track of old subtle anomalies noticed in the network,
to serve as feedback to the technique and correlate their relevance with current detected
anomalies, which may be part of a more ambitious threat.

This comprehensive analysis of the requirements and techniques defines a framework for the
development of distributed detection solutions for APTs in industrial scenarios, as depicted in
Figure 4.7. This diagram illustrates the data flow since its acquisition from end devices until the
correlation is computed, possibly going through the data brokers introduced in Section 4.2.1.
The following section presents some of the candidate solutions that implement them, and hence
achieve the APT traceability goals proposed so far.

4.3 Distributed Correlation Models

The proposed framework clearly defines an information acquisition model and interface configura-
tion that must be suited by enabling correlation algorithms. According to their mathematical
formulation and their application context, these may feature different ways to represent the
environmental inputs to carry out the correlation, under a unified black box-style specification.
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In this section, we present the candidate solutions for the traceability of APTs in a concise
way, before analyzing them in detail in next section. We begin by introducing a group decision
making technique based on consensus, to later instantiate distributed consensus using Opinion
Dynamics. Then, an alternative model based on Clustering is included, to finally conclude with a
brief discussion on the benefits and downsides of each proposal.

4.3.1 Consensus Model

Using graph theory as a foundation of group decision making models, the first approach considered
here is consensus. We will use this model to study its fitness with the framework and illustrate how
the underlying concept of consensus is appropriate to fulfill the correlation needs raised previously.
This is a classical problem in distributed computing and multi-agent systems, that studies how
a set of agents are able to obtain the same information in order to reach a common objective.
It has been extensively addressed in real-world applications such as clock synchronization, data
aggregation between nodes in a blockchain, or the coordination of autonomous robots, among
others.

Compared to autonomous systems for particular isolated purposes, it has been demonstrated
that a multi-agent deployment of systems operating in a coordinated fashion offers a greater
efficiency and operational capability. Nevertheless, these cooperation capabilities are dependant
on the coordination protocol used, which obliges each agent to share information about its state
and environment with the rest. This involves challenges around what is transmitted, when and
with whom, taking into consideration communication aspects like the bandwidth, the network
connectivity and the computational resources available, hence forming the consensus problem.

For these reasons, reaching information consensus in a network that may be noisy or time-
varying is critical for a successful coordination of tasks. To this end, a consensus protocol is
intended to provide a concise formalism to deal with the dynamic conditions of the network
and help agents communicate with each other so that all their information states converge to a
common value.

Depending on how the protocol copes with dynamic conditions and how the negotiation
process between agents works, we can distinguish between different types of consensus [248]. One
of the most popular approaches in distributed environments without time delays is the average
consensus, where the states of all agents converge to the average of their initial states. In formal
terms, these averaging algorithms are linear (a combination of the initial information states) and
iterative, so that they can be expressed as follows:

x(t+ 1) = W (t)x(t), t ∈ 0, 1, 2, ..., (4.3)
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where

x(t) =





x1(t)
...

xn(t)



 (4.4)

is the real vector that contains the values measured by each of the n agents in the network,
matching the notation introduced before with regards to the quantitative input of the traceability
solution that we aim to find. On the other hand, W (t) is the weighting matrix that satisfies that
if two agents vi and vj are not connected in the network defined by G(V,E) (i.e., they are not
neighbours), then [W (t)]j,k = 0. If we assume that G is a connected graph (i.e., there is a directed
path between any pair of distinct vertices to share their information state) and [W (t)]i,j = 1/n

for all agents i and j, then the consensus equilibrium is achieved in finite time t > 0, which is
equal to the average of the initial information states and is called average consensus. This way,
the information state xi(t) of every agent i is driven towards the states of its neighbours as t

increases, approaching the average, as shown in Figure 4.8.
This is the general average consensus model, which admits precise characterization to create

more specialized models. Firstly, depending on the components of this matrix, the average
consensus algorithms can be classified as deterministic (as the previous one, where W (t) is
symmetric and time-invariant) or randomized (where agents are connected at random intervals
and the weighting matrix hence changes). Another distinction is made whether the network
allows continuous communication between agents (i.e., linear consensus-time consensus) or if
the communication data arrives in discrete packets (i.e., linear discrete-time consensus). Also, in
contrast with the general model, when the communication topology is not connected, but in turn
has a directed spanning tree (i.e., a tree formed by the edges that connect all the vertices of the
graph G(V,E)), the consensus equilibrium is determined by the weighted average of the initial
states of those agents that have a direct path to all the rest of agents.

In addition to the different communication models for the consensus protocol, it can be
combined with special measurements to prevent against faulty agents and crash failures in the
communication. In particular, this makes reference to the classical FLP theorem [249], which was
named after the authors Michael J. Fischer, Nancy Lynch, and Mike Paterson and establishes
that no agreement can be guaranteed in an asynchronous system in the presence of failures. Thus,
it is well known that a consensus protocol tolerates halting failures when it satisfies the following
properties:

1. Termination: eventually, every agents calculates its value.

2. Integrity: all the agents process the same data from the network.

3. Agreement: every agent agrees on the same consensus value.
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Figure 4.8: Average consensus for three agents

Besides crash failures, the distributed set of agents may also undergo byzantine failures, which
are those that do not abruptly stop the protocol but still hinder the consensus process. They
include the presence of malicious agents that send conflicting data to others, which is certainly
harder to circumvent. In the literature, this is known as the Byzantine Generals problem [250]. It
has been demonstrated that for a system with n agents, of which f of them are Byzantine, there
is no consensus algorithm that solves the consensus problem for n ≤ 3f . Protocols that comply
with this property are called as byzantine fault tolerant.

On the whole, consensus poses a valid solution for distributed deployments where a common
solution must be found in a collaborative manner. For the interest of our analysis regarding threat
detection, we will represent the state of the agents in form of anomaly values. Having this, this
mechanism can provide us with an indicator of how healthy the entire network is at any given
time instant, based on the information provided by all agents after reaching a consensus. However,
the correlation does not return any information at a local level, to comply with the O2 output
desired for the traceability solution, as stated in Section 4.2.2. In other words, the consensus does
not generate any insight about the degree of affection of particular nodes and portions of the
network. As a consequence, potential countermeasures to be implemented would lack sufficient
accuracy as to solve attacks located in precise devices.

Although this limitation hardens the suitability of the average consensus for the proposed
traceability framework, we can tweak the original consensus concept to consider the presence of
more than one consensus, thereby adapting the approach to our needs. This is illustrated in the
following section with the Opinion Dynamics model.

4.3.2 Opinion Dynamics

In this section we describe a feasible method to allow the network to precisely locate subtle changes
in certain parts. In the consensus approach, a collection of agents cooperate to reach a common
objective by sharing information about their state and other environmental conditions [251].
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Such negotiation depends on the network topology, so it can be leveraged to collectively build a
global indicator of the entire network health at a given moment. Compared to this algorithm,
Opinion Dynamics proposes a model that admits the fragmentation of patterns. This way, the
aforementioned agents may differ in their opinions (i.e., their information states) during the
negotiation process [252]. Therefore, there could be consensus among the agents or a polarization
between them in multiple areas along the network, which makes it able to identify which areas of
the network are more affected by the action of a potential APT and to what extent.

This information is extracted by means of a distributed cooperative algorithm called Opinion
Dynamics [252], which originally models the influence among individuals in a group or the entire
society, where there is a wide spectrum of opinions. Each agent crafts its own opinion taking into
consideration the ones from the rest of agents to a certain extent. This process continues until
reaching a steady state in which the agents no longer change their opinion. At that point, the
opinions are distributed into several clusters, and it is possible to study their propagation. For
our purpose, it implies fragmenting the network according to the multiple changes that could
occur in separate areas, whose individual consensus value raises an indicator of the severity of
the attacks over that particular portion of the topology.

Note that this model has attracted the interest of researchers in sociological studies over
decades. Back in 1951, Asch and Guetzkow analyzed the effect of group pressure on social
dynamics [253], while the Opinion Dynamics was firstly conceived as such in 1956 by French [254].
Then, a continuous-time model was proposed by Abelson in 1964 [255], and the most well-known
model (and also one of the simplest) was established by DeGroot in 1974 [256]. Ever since, there
has been extensive discussion in the research community with the proposal of specialized models
for particular application scenarios, as it occurs with the consensus. These can be summarized in
the following categories [257]:

Continuous opinion space models: models in this category assume that the opinion space is
continuous, this is, each agents holds an opinion in the [0,1] interval, for instance.

• DeGrootian models: it is an iterative averaging model where the convergence is
equivalent to the consensus model if the network is connected [256]. Its major extension
is known as the Friedkin-Johnsen model [258], which introduces the idea of stubborn-
agents, by including a susceptibility degree for every agent to be influenced. Its
convergence and stability are studied in [259].

• Bounded confidence models: in these models, agents ignore the opinions that are too
different from their own. This is achieved by introducing a confidence threat to the
system. The opinions fluctuation can be calculated pairwise (like in the Deffuant-
Weisbuch model [260]) or in a synchronous way for the entire set of agents in the
network (such as the Hegselmann and Krause approach [252]).
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Discrete opinion space models: contrary to continuous opinion space models, these approaches
consider opinions that take discrete values (e.g., the binary value in 0,1).

• Galam model: it is the main work in this category that has inspired other researchers
to create applications in real life, with democratic voting or decision making as classic
use cases [261]. In particular, this model assumes a binary opinion space, and the
update rule for each agent work as follows: (1) agents are randomly assigned to groups
of a given size; (2) each group updates its opinion on the basis of the majority; (3)
agents are shuffled and the process starts again at step (1).

• Snajd model: this model considers that agents are sitting on a 1-dimensional lattice
with the opinion space O = −1,+1 [262]. This way, if oti represents the opinion of agent
i at time t, two neighbours i and i+1 are selected randomly at time t. If oti × oti+1 = 1,
then the preceding agent i− 1 and the subsequent agent i+ 1 adopt the direction of
agents i and i+1. Otherwise, each agent adopts the opinion of the immediate neighbor.
This way, the system reach equilibrium when all agents agree at either −1 or +1 or a
stalemate.

• Voter model: this subcategory comprises multiple variations that commonly assume a
binary opinion space. A random agent i is chosen at a given time t and then i chooses
another neighbour randomly, adopting its state. Sood and Redner [263] investigate
this model on a heterogeneous graph, whereas studies its convergence on a graph with
two cliques [264]. Also, the influence of external sources is explored in [265].

In specific, in this work we will focus on bounded confidence models, where agents ignore the
opinion that are too far from their own, which in our case helps to differentiate the anomalies
of separate attack stages across the network. Among these models, introduced before, the most
popular version is given by Hegselmann and Krause [252].

In the following, we formalize this multi-agent algorithm, which constitutes a light modification
of the approach proposed in [252]. We start with the notion introduced before. Let us suppose a
network defined by the directed graph G = (V,E) and represented by the adjacency matrix M, as
formalized in Section 4.1. We suppose the presence of n agents deployed over that network (so
that every node v in V has an associated agent). Our goal is to put into practice a distributed
cooperative algorithm among these agents to detect precise attacks in their neighborhood by
exchanging information on changes produced in their surroundings.

In this context, xi(t) represents the opinion of a fixed agent i at time t (ranging from zero to
one), where t refers to the iteration of the algorithm. The vector x(t) = (x1(t), ..., xn(t)) represents
the opinion profile at time t for all the agents. On the other hand, given an agent i, the weight
given to the opinion of any other agent j is denoted by wij , where

∑n
k=1wik = 1 (therefore, agent

i also takes its own opinion into account). These weights can change over time or by opinion,
so that an agent i adjusts its opinion in period t+ 1 by taking the opinion of each agent j into
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consideration at time t. Finally, the formation of the opinion for agent i in the next iteration
t+ 1 is described as follows:

n∑

j=1

xi(t+ 1) = wijxj(t)

In a matrix notation (as previously explained with the consensus model), it can be written as:

x(t+ 1) = W (t, x(t))x(t)

where the matrix W (t) = [wij ] is the square matrix that collects the weights, which summarizes
the relationships between the agents’ opinions. For simplicity, for a given agent, we assume in
the original model that the weight value assigned to its neighbors is uniformly divided into
those agents whose opinion is very close to its own value (we establish an epsilon value of 0.2 of
deviation between both opinions). This models the fact that agents close to each other with the
same degree of anomaly are likely to be detecting the same threat in their surroundings.

Consequently, every agent adjusts its opinion in period t+ 1 by taking a weighted average of
the opinions of the rest of agents. When t tends to infinity, consensus of opinions are formed (and
finally there are just a few opinions shared by clusters of agents), which can also be represented
visually. Altogether, the correlation is performed by every agent as a weighted sum of the closest
opinions, and such calculation can be performed by solely using the information from neighbouring
agents, thereby adapting to the distributed architecture based on data brokers (either replicating
data or not). Conversely, what we accomplish in this scenario is the representation of anomalies
detected by some of the agents installed within the network, so that clusters of agents returning
similar high values (provoked by the same threats) correspond to critically affected areas from a
high-level perspective.

Figure 4.9 shows the Opinion Dynamics algorithm for a network of 30 nodes and 17 agents
after suffering an APT comprising 10 attacks. The lines represent the evolution in the opinions for
each agent, so finally there is multiple consensus between them. In particular, there are only two
agents that indicate relatively large changes (more than 0.5 of anomaly). However, four agents
agree on a change of about 0.25 points around their zone of influence, and many of them indicate
a fault of approximately 0.1 in the zone governed by these nodes. As can be seen in the figure,
a µ value has been added to the plot, which holds the ratio of agents that find a consensus on
the amount of degree experienced. This value, together with the opinion about the changes in
the network, serves as the criticality indicator at a global and local level, complying with the
two first outputs imposed by our traceability framework. Also, as explained in Section 4.6, it is
possible to account for the evolution of these values over time to comply with the third output,
related to the analysis of historic and contextual information.
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Figure 4.9: Calculus of the Opinion Dynamics for a set of agents

4.3.3 Clustering Algorithms

Opinion Dynamics belongs to a set of dynamic decision models in complex networks whose aim is
to obtain a fragmentation of patterns within a group of interacting agents by means of multiple
consensus. This fragmentation process is locally regulated by the opinions and weights of the
nodes, that altogether abstract the effects of an APT dynamics on the underlying network. This
ultimately enables to take snapshots of the current state of the network and highlight the most
affected nodes, thereby tracing APT movements from anomaly events.

After all, the Opinion Dynamics simply divides a network into subgroups of devices that
present a similar anomaly, and relates areas that may have experienced the same attack. This
rationale can also be applied to different mechanisms with similar results, thereby fulfilling the
established traceability framework of Section 4.2. Here we propose to adapt clustering algorithms
as an alternative solution. These have been traditionally used as an unsupervised method for
data analysis, where a set of instances are grouped according to some criteria of similarity. In our
case, we have devices that are affected by correlated attacks (see Section 2.4.2) and show similar
anomalies, which results in the devices being grouped together.

There exist several clustering approaches, each one suited to a particular data distribution
[266], as illustrated in Figure 4.10:

• Centroid-based clustering: a simple division of the dataset into a predefined number k

of disjointed clusters, so that each point in the original set belongs to one of these subsets.
They are efficient and sensitive to outliers.

• Density-based clustering: in this type of approaches, a cluster is a dense region of objects
surrounded by a low-density region. It is usually used when noise is present in the data,
with the downside that it does not assign outliers to clusters.
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(a) Centroid-based clustering (b) Density-based clustering

(c) Distribution-based clustering (d) Hierarchical clustering

Figure 4.10: Different types of clustering approaches

• Distribution-based clustering: they work under the assumption that input data is
composed of distributions, such as Gaussian distributions. This way, the probability that a
point belongs to a cluster decreases as distance from its distribution center increases. As
such, it is not recommendable when distribution of data is unknown.

• Hierarchical clustering: if in partitioning grouping each cluster is allowed to have sub-
clusters, a hierarchical clustering is obtained. Therefore, clusters can be nested, so that they
are organized in tree form.

For our purposes, we are dealing with a dataset of anomalies (denoted by the vector x) whose
distribution is not known in advance. However, we are interested in allowing outliers and the
ability to group nodes into non-overlapping clusters, in accordance with separate attacks and
levels of severity across the infrastructure. As a result, clustering approaches based on centroids
are suitable for these needs. Classical methods such as K-means partition a dataset by initially
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selecting k cluster centroids and assigning each element to its closest centroid. Centroids are
repeatedly updated until the algorithm converges to a stable solution.

In the scenario of APT detection, the anomalies detected by the agents at some point play the
role of the data instances to be grouped into clusters. The relationship between anomalies will
determine which of those are grouped into the same cluster, which can be determined based on
multiple criteria. As explained in Section 4.2.2, this represents the qualitative input to the event
correlation solution. In the Opinion Dynamics, this is formally represented by the weight wij

assigned between agents, that regulates when two opinions are correlated. As for the clustering
approach, this is usually modelled in form of additional dimensions of the data points. For
example, further values with respect to the traffic or computational usage reported in a given
node (together with the x anomaly) would help to accurately isolate anomalies caused by the
same incident.

In this sense, it is especially interesting to look into the representation of the network
topology using a clustering approach. Whereas agents in Opinion Dynamics intrinsically take into
consideration the connectivity among nodes to exchange their opinions in a distributed manner,
clustering is conceived to be executed under a replicated database model, that assumes common
global information about the whole network (e.g., using a centralized entity), as introduced in
Section 4.2.1. These issues will be properly addressed in the following sections.

4.3.4 Discussion

With the introduction of candidate correlation techniques, the satisfaction of the traceability
framework has been partially illustrated, and some conclusions can be drawn in qualitative terms.

Firstly, it is necessary to highlight the similarities and differences between the three models
presented: average consensus, Opinion Dynamics and clustering approaches. Following the interface
of inputs and outputs established in Section 4.2.2, they all assume that agents deployed along the
network (either physical or logical) gather information from their respective devices and end up
calculating the vector x, which is the basic and quantitative input I1 to the correlation algorithm.
From there, the three techniques leverage a different procedure to discern which anomalies are
related, according to a different representation of the second input: the quantitative one (I2).

As for the average consensus and Opinion Dynamics, this piece of knowledge can be represented
with a weight assignation between agents. In both techniques, this weight also describes the
network topology, in such a way that agents associate zero influence to others if there is not a
direct link that connects them within the network. Additionally, the Opinion Dynamics accepts
further criteria to specify this influence value based on the closeness between opinions. On the
contrary, the clustering approaches do not usually take into account the network connectivity as
standalone techniques. A potential workaround is the modification of the own algorithms, or to
provide such information in form of additional data items before applying cluster analysis.
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In any case, once these data inputs have been preprocessed by agents, the three solutions
considered put into practice an iterative process of knowledge discovery until all anomalies are
correlated and the infrastructure resources are grouped into different alert levels. This way, we say
that the system reaches equilibrium when the agents converge after a set of iterations, resulting
in a consensus, polarization or fragmentation of the network. Formally speaking, a consensus
happens when there is a single value that represents the overall sentiment for all agents, as in
the average consensus model introduced previously. In contrast, the polarization is the state
that only presents two clusters of agents, whereas the fragmentation occurs when there are more
than two clusters. Altogether, this indicates the information represented with the first (O1) and
second output (O2) of the traceability solution, as we can not only identify whether a device
is actually compromised (and to what extent), but also check which devices are experiencing
the same threat. It is worthy of note that this is not completely doable in the case of average
consensus, as the algorithm only produces the arithmetic mean of the anomaly values measured
by the agents. Although this matches with O2 (since it provides information at a global level), it
offers no distinction between areas, which makes impossible to pinpoint the compromised nodes
and leave out all those that are unaffected. Nevertheless, the underlying consensus concept from
the original approach still poses much interest when instantiated in the Opinion Dynamics model,
allowing the fragmentation of opinions that are formed through different criteria.

For this reason, just the Opinion Dynamics and the clustering approaches stand out as
solutions that completely fit the specification of O1 and O2. The question remains as to how these
techniques are able to provide information to meet the third output argument, which allows the
assessment of the evolution of events and the study of the persistence of attacks. As addressed
in further sections, this functionality revolves around recording the fluctuation of the O1 and
O2 values over time. Prior to that, we require a detailed analysis of the Opinion Dynamics and
clustering approaches to deeply define how they can be instantiated for APT detection while
extending their algorithms to overcome their issues and accurately accommodate both outputs.
This is carried out in next section. At the end of this chapter, both techniques will be finally
compared in quantitative terms, to analyze their accuracy in different attack scenarios with a
theoretical model before applying them to real industrial scenarios.

4.4 Adapting the Opinion Dynamics Model

In terms of adapting this multi-agent algorithm to our particular scenario, the main question that
appears is with regards to the representation of the weight given by each agent to its respective
neighbors, in order to consider their influence on the opinion about the severity of the incidence
detected. The original approach is based on a simple criterion to choose the weight assigned
among agents, as explained in the previous section: the closer two opinions of two connected nodes
are (their values), the higher the weight assigned between them will be. This is known as the
homophily quality: agents are more open to be influenced by neighbours that hold similar opinions
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to themselves as opposed to others. In our approach so far, this means that, for every agent, the
weight given to its neighbors is uniformly divided into those agents whose opinion is very similar
to its own, considering a ε threshold for the difference between both values. Intuitively, this
simulates the fact that agents located nearby with the same degree of anomaly sensed are prone
to detect the same threat in their surroundings. Again, although this may be a valid criterion
to model the weight, it could be enhanced to realistically reflect other environmental conditions
involved (e.g., Quality of Service), as discussed in Section 4.3.2.

Note that some extensions of the Opinion Dynamics models in the literature already address
this problem, by regulating the opinion influence for specific use cases in sociology scenarios. In
the case of the Hegselmann-Krause model applied in this thesis, Chen et al. [267] extend it by
including the concept of biased agents, which results in their ‘Social-Similarity-Based HK model’.
In this version, for two agents that interact, they should not only hold a similar opinion, but also
meet a criteria of social similarity. This measure comprises other attributes that must be close as
well.

Here we will be inspired by this model to especially look into the security of the opinion
exchange, regardless of the method used for the anomaly detection. In this regard, the formal
approach does not provide details about how the agents transfer their opinions between them
(using the data brokers presented in Section 4.2.1) or to a central correlator. However, if the
same communication channels are used to deliver the Opinion Dynamics values, we must prevent
against an attacker being able to compromise these links and potentially forge malicious opinions.
Likewise, it would be also critical if the deployment of the Opinion Dynamics approach is fully
distributed across the network, and the agents are physically integrated in the own industrial
assets. In that case, besides assessing the security of each node, the algorithm could also take the
QoS of the communication links into consideration to safely send this information, as well as to
route other messages (e.g., commands or data) between the devices. Given this situation, in the
following we propose a modification of the weight calculation mechanism to consider the security
of the communication links and the confidence assigned to neighbors for the opinion transmission.

To begin with, we need to consider the original model: each agent i determines the weight
given to every neighbor j in its neighborhood Ni through this expression:

wij = 1/N ′
i (4.5)

where N ′
i is the subset of neighbors of Ni, whose difference in opinion with agent i is below ε.

Otherwise, wij becomes zero. Even though this is just a criterion to reflect the degree of similitude
between agents, it lacks much accuracy since it leaves behind several other aspects involved; in
this case, we want to introduce an additional factor to regulate this weight through considering
the QoS of the channel in the neighborhood.

Let S : E → R be a function that assigns QoS scores to communication links in the network
defined by G(V,E). The higher the score of S for a given link is, the more QoS it provides. For a
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j xj(0) S(eCj) wCj w′
Cj

A 0 0.9 0.25 0.26
B 0.6 0.8 0 0
C 0.22 0.55 0.25 0.5
D 0.5 0.75 0,25 0.21
E 0.12 0.1 0.25 0.03
F 0.9 0.2 0 0

Figure 4.11: Example of weight calculation by agent C

given i, we aim to fairly distribute wij by giving a higher value to those agents j whose S(eij) is
greater, where eij ∈ E represents the bidirectional communication link between i and j. This
methodology complies with the following three conditions:

• C1. The sum of weights given by agent i to the neighbors in N ′
i must be 1, also considering

threshold ε.
∑N ′

i
j=1wij = 1.

• C2. The own agent i must have a sensitive fixed weight assigned to itself. For instance, we
can assume wii = 0.5. The reason is that it is not fair that it associates a higher level of
confidence to any other agent, whose link of communication can be minimally compromised.

• C3. The rest of weight (1/2 in this case) assigned by agent i is distributed among neighbors
in N ′

i proportionally to the quality of their communication links. If we define q =
∑N ′i

j S(eij),
then the resulting weight value is defined by wij = (1− wii) ∗ S(eij)/q.

Example. The table in Figure 4.11 shows the calculation of wij for the node C in the example
graph (where i = C) following the proposed methodology, compared to the original one. The
weight value that is computed using the new methodology is denoted by w′

ij . In both cases, a
value of ε = 0.35 has been considered. As we can see, the new distribution of weight results more
equitable, where node C assigns a higher weight to nodes A and D, since their links show a better
quality and security (which is represented by the S(eCj) column).

4.5 Adapting the Clustering Models

As briefly introduced in Section 4.3.3, the clustering models present some constraints to adapt
the correlation to a scenario of distributed agents, to provide the same services as the Opinion
Dynamics solution. In specific, the parametrization of this kind of algorithm imposes two main
challenges to properly comply with the inputs and outputs of the APT traceability framework:

• The election of k. It is one classical drawback of the K-means, since that value has to
be specified from the beginning and it is not usually known in advance, as in this case.
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Numerous works in the literature have proposed methods for selecting the number of clusters
[268], including the use of statistical measures with assumptions about the underlying data
distribution [269] or its determination by visualization [270]. It is also common to study the
results of a set of values instead of a single k, which should be significantly smaller than the
number of instances. The aim is to apply different evaluation criteria to find the optimal k,
such as the Calinski and Harabasz score (also known as the Variance Ratio Criterion) [271],
that minimizes the within-cluster dispersion and maximizes the between-cluster dispersion.

• Representation of topological and security constraints. By applying K-means, we
assume the dataset consists of a set of multi-dimensional points. However, here we have
an one-dimensional vector of anomalies in the range [0,1]. Also, the clusterization of these
values is subject to the topology and the security correlation criteria which might determine
that, for example, two data points should not be grouped in the same cluster despite having
a similar anomaly value. Therefore, it becomes necessary to provide this knowledge to the
algorithm and reflect these environmental conditions as inputs (I1 and I2) to the correlation.
In this sense, some works have proposed a constrained K-means clustering [272], and specific
schemes have been developed to divide a graph into clusters using Spanning Trees or highly
connected components [273].

As for the first challenge, we can assume that the value of k is defined by the different classes
of nodes within the network depending on their affection degree, which corresponds to the number
of consensus between agents that Opinion Dynamics automatically finds. Here we can adopt
two methodologies: (1) a static approach where we consider a fixed set of labels (e.g., ‘low’,
‘medium’, ‘high’ and ‘critical’ condition) to classify each agent; or (2) a dynamic approach where
k is automatically determined based on the number and typology of attacks. In this case, we can
study the Variance Ration Criterion in a range of k values (e.g., k={1-5}) to extract the optimal
value with the presence of an APT.

This procedure needs further improvements to make the solution fully distributed, so that
each agent is in charge of locally deciding its own level of security based on the surrounding state,
instead of adopting a global approach for all nodes. This bring us to the second challenge. A first
naive solution would be to introduce additional dimensions to the data instances representing
the coordinates of every node, together with the anomalies in vector x. We call this approach
location-based clustering. However, this approach still needs to figure out an optimal value of k,
and does not take into account the presence of actual links interconnecting nodes in G(V,E).

To circumvent this issue while also adopting an automatic determination of the number of
clusters, we propose an accumulative anomaly clustering scheme, which is formalized in Algorithm
2. This algorithm begins by selecting the most affected node within the network and subsequently
applies the influence of their surrounding nodes. This is represented by adding an entire value
to the anomalies of such agents (initially from 0 to 1), which is proportional to the anomaly
of the influencing node (see max in the algorithm). This addition is performed as long as the
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Algorithm 2 Accumulative anomaly clustering
input: xi representing the initial anomaly value sensed by each agent i within the network,
where xi ∈ (0, 1)
output: zi representing the agents O1 output of each agent i after clustering
local: Graph G(V,E) representing the network, where V = VIT ∪ VOT ∪ VFW

max ← |V |, k ← 0
y ← x, x′ ← x sorted in descending order
for all i ∈ x′ do

anyNeighbourFound ← False
for all j ∈ neighbours(i, G) do

if yj ≤ 1 AND |yi − yj | ≤ ε then
yj ← yj +max ∗ 10
anyNeighbourFound ← True

end if
end for
yi = yi +max ∗ 10
if anyNeighbourFound then

k ← k + 1
end if
max ← max− 1

end for
clusters, centroid ← kmeans(y, k)
for all vi ∈ V do

c ← clusters(vi)
Zi ← IntegerPart(centroid(c))

end for

difference between both anomalies (i.e., the influencing and influenced node) does not surpass
a defined threshold ε, similar to the Opinion Dynamics approach in order to comply with I2.
Then, the algorithm continues by selecting the next one in the list of nodes inversely ordered by
the anomaly value, until all nodes have been influenced or have influenced others. At that point,
k is automatically assigned with the number of influencing nodes, and K-means is ready to be
executed with the modified data instances. The resulting values of each agent correspond to the
decimal part of their associated centroid. This is comparable to the ‘opinions’ in the Opinion
Dynamics approach.

The intuition behind this model of influence between anomalies (which can be enriched to
include extra security factors to specify I2) assumes that successive attacks raise a similar anomaly
value in the closest agents, as Opinion Dynamics suggests. At the same time, it addresses the
issue of selecting k and including topological information to the clusterization. It is validated
from a theoretical point of view in Section 6.1.

In the following, we give answer to the question raised before the analysis of the opinion
Dynamics and the clustering approaches, with respect to the fulfillment of the third output of the
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framework, related to the traceability of events by both proposals. Afterwards, the accuracy of these
two correlation approaches will be compared under different attack and network configurations.

4.6 Common Traceability Features

After formally representing the attack stages, plus their relation to the detection probabilities,
we can now use the proposed detection probabilities as inputs to the correlation algorithm, and
hence simulate its response in an industrial architecture when it faces a particular instance of
APT.

Algorithm 3 describes the life cycle of an APT composed by a set of attack actions against a
given network. Each of these attacks generates an anomaly that is detected by the corresponding
agents (and possibly by their neighbors), increasing their opinion in a value defined by the
previously introduced Θ. After this, as commented in earlier sections, we also introduce an
attenuation value on the quantitative input that represents the effect of old attacks in order to
reduce their influence when computing the current opinion. This ‘decay’ value, applied in the
UpdateOpinionsWithDecay function of Algorithm 3, depends on the attack stages suffered in
the past by the agent and the criticality of its monitored device: the more devastating the alert
generated is (during the detection phase), the longer its effect will take to disappear. Consequently,
we define Φ as an ordered set of decay values, where Φ = {φ1, ...,φd} and φi = [0, 1], such that
∀φi,φi < φi+1. Therefore, for all i ∈ d, φi is inversely proportional to the θi value, and both are
applied to the detected anomaly value after each stage. This procedure, explained in Algorithm 4,
is a way to account for the persistence when computing the correlation algorithms. It is important
to note that both the respective anomaly and decay addition or reduction implies a normalization
of the opinion value, from 0 to 1.

Once the x vector of opinions is updated with the new attack action (with θ) and attenuated
due to old stages (through Φ), the correlation algorithm (i.e., Opinion Dynamics or clustering-
based) is executed to identify the affected areas of nodes and the level of severity of these
attacks. However, although this gives insight of the location of threats (as it is visualized in the
experimentation section), it would be also necessary to obtain an overall value of the network
health. Therefore, we have created the so-called delta indicator, which represents a global anomaly
value and is computed in the ComputeDelta function. This value is calculated with the weighted
average of opinions by the amount of agents that hold the same detected abnormality, as described
in Algorithm 5. However, since this aggregated value is dependent on the number of agents to
calculate the average, in practice we can compute it over different sections of the network (i.e.,
IT or OT), thereby increasing its granularity. Using these values, we can quickly know the overall
anomaly degree of every portion of the network.

In the following, we present a test case for illustrating how we can apply the Opinion Dynamics-
based technique while representing an APT against a given IT/OT industrial topology, as described
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Algorithm 3 APT life cycle - anomaly calculation
output: δ representing the delta value
local: Graph G(V,E) representing the network, where V = VIT ∪ VOT ∪ VFW

input: attackSet ← attackStageAPTx , representing the APT chain of attack actions

x ← zeros(|V |) (initial opinion vector)
{performedAttacks ← 1}
{attack ← firstattackfromattackSet}
while attackSet '= 1 do

if attack == initialIntrusion(IT,OT, FW ) then
attackedNode ← random v ∈ V(IT,OT,FW )

x(attackedNode) ← x(attackedNode) + θ3
else if attack == compromise then

x(attackedNode) ← x(attackedNode) + θ2
for neighbour in neighbours(attackedNode) do

x(attackedNode) ← x(attackedNode) + θ5
end for

else if type(attack) == LateralMovement then
previousAttackedNode ← attackedNode
attackedNode ← SelectNextNode(G, attackedNode)
x(previousAttackedNode) ← x(previousAttackedNode) + θ5
x(attackedNode) ← x(attackedNode) + θ3,4

else if attack == exfiltration then
x(attackedNode) ← x(attackedNode) + θ4

else if attack == destruction then
x(attackedNode) ← x(attackedNode) + θ1

else if attack == idle then
No attack performed

end if

x ← UpdateOpinionsWithDecay(x, performedAttacks)
performedAttacks ← performedAttacks ∪ attack
mergedOpinions ← ComputeCorrelation(x)
δ ← ComputeDelta(mergedOpinions)
attackSet ← attackSet \ attack

end while
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Algorithm 4 Decay of anomaly values over time depending on the attack action

function UpdateOpinionsWithDecay(x,performedAttacks)
for attack in performedAttacks do

affectedNode ← getAffectedNode(attack)
if attack == initialIntrusionIT,OT,FW then

x(affectedNode) ← x(affectedNode)− φ3

else if attack == compromise then
x(affectedNode) ← x(affectedNode)− φ2

for neighbour in neighbours(affectedNode) do
x(affectedNode) ← x(affectedNode)− φ5

end for
else if type(attack) == LateralMovement then

origin ← getOriginOfMovement(attack)
x(origin) ← x(origin)− φ5

x(affectedNode) ← x(affectedNode)− φ3,4

else if attack == exfiltration then
x(affectedNode) ← x(affectedNode)− φ4

else if attack == destruction then
x(affectedNode) ← x(affectedNode)− φ1

end if
end for
return x

end function

Algorithm 5 Computation of delta value

function ComputeDelta(mergedOpinions)
opinionClusters ← uniqueValues(mergedOpinions)
frequencyV ector ← zeros(|opinionClusters|)
for i:=1 to size(opinionClusters) step 1 do

frequencyV ector(i) ← CountOccurrencesOfOpinion(opinionClusters(i),
mergedOpinions)

end for
δ ← 0
for j:=1 to size(opinionClusters) step 1 do

δ ← δ + frequencyV ector(j) ∗ uniqueV alues(j)
end for
δ ← δ/size(mergedOpinions)
return δ

end function
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i 1 2 3 4 5
θi 0.9 0.7 0.5 0.3 0.1
φi 0.01 0.025 0.05 0.075 0.1

Table 4.3: Detection probability and decay values used in the Stuxnet test case

before. For this test case, we have implemented the network topology and Algorithms 3, 4 and 5
in Matlab.

Let us assume that we have a topology composed by three OT nodes and three IT nodes
connected by a firewall, as explained in Section 4.1.1. We will consider Stuxnet for the attacker
model, since it is one of the most documented APTs in the literature. According to Section
4.1.3, it comprises a set of nine different attack actions that will be perpetrated against the
proposed network, where each node counts on an individual agent to monitor its anomalies.
If we execute the Opinion Dynamics algorithm after each stage, we can analyze the different
clusters of anomalies detected by sets of agents. Following the model presented in Section 4.1.3,
we have assigned values for each θ and φ according to the ordered set of probabilities in Table
4.3, considering a realistic scenario. We have also introduced a deviation of 0.1 to values in θ to
simulate a low level of noise or probability of detecting the corresponding anomaly after each
attack stage. Figure 4.12 visually represents the resulting values in each agent after the four of
the most representative stages, where (1) the attacker compromises the IT node and exfiltrates
information, (2) compromises the firewall and then (3) moves to the last OT of the network
and remains idle, right before the destruction of this node is performed (4). Four different idle
operations are performed in this point, with a total of twelve attack actions. Numbers by the
name of nodes represent the value of anomaly (opinions) that each agents holds.

As we can also see in Figure 4.12, the attacker traverses the whole network according to the
Stuxnet behavior (where the current attacked node appears rounded), while the agents and its
neighbors are able to detect the anomalies that consequently take place (the more red the node
is, the greater the detected anomaly is). At the same time, we see how attenuation of anomalies
also occurs, especially visible when the attacker leaves a node. In this example, the first IT node
compromised is the number 1 while the final one is the OT number 3; the former is gradually
attenuating its value as the attack evolves, according to the behavior explained in Section 4.6.

This ability to identify where the threat is active within the network is enabled by Opinion
Dynamics. If we have a look at its value in form of a plot in some point, we obtain the graph in
Figure 4.13. This corresponds to the execution of the algorithm (with 20 inner iterations) after
the second stage depicted in Figure 4.12, where the FW is compromised after attacking the first
IT nodes. As we can rapidly see in the resulting graph, there are two agents (the aFW and the
aIT node) that successfully detect the same level of critical abnormality in their area; this is
also detected by some of their neighbors mildly, which is represented with the central consensus.
Apart from these, the rest of nodes only detect a negligible value of anomaly.
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(a) Exfiltration (b) FW compromise (c) OT compromise (d) Destruction

Figure 4.12: Execution of the Opinion Dynamics after multiple stages of Stuxnet

Figure 4.13: Opinion dynamics after the second stage
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Figure 4.14: Evolution of the opinions over time to trace the APT stages

By this means, we can statically identify where the threat is located and which severity it
experiences. However, as commented in Section 4.2, it would be also necessary to trace all the
events of the APT and highlight the most affected nodes it has traversed. In this sense, if we
represent the succession of opinions agreed by agents over time for the Stuxnet attack described
previously, we easily have such information, which is represented with Figure 4.14.

As we can see there, the opinion profile for all agents evolves over the set of APT attack
actions, showing a more pronounced value in the IT section in earlier stages and the OT in
latter phases of the Stuxnet APT, as the attack aims to ultimately compromise a PLC by firstly
intruding the network through a IT node. A similar effect is seen when we study the change in the
delta value, which can be calculated either in the whole network or on any of its subnetworks (i.e.,
IT or OT). Figure 4.15 shows the progression of this indicator in each case, which also shows us
how IT delta decreases over time and its value in OT increases according to the chain of attacks.
In general, the value acquires the highest value when the last OT node is compromised, since
the network has suffered most of the attacks in the previous stages. Beyond that point, delta
decreases (due to the idle operations) and then it finally increases with the destruction of the
node.

4.7 Comparison of Models

After presenting some alternative solutions to Opinion Dynamics that fulfill the distributed
detection framework presented in Section 4.2, this section aims to put these approaches to the
test. More specifically, we consider the attacker model explained in Section 4.1.3, which is applied
against a network formalized by G(V,E), following the structure introduced in Section 4.1.1.

99



Chapter 4. Detection and Traceability Solutions based on Distributed Correlation

0 2 4 6 8 10 12

Attack actions

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

D
e

lt
a

 e
v
o

lu
ti
o

n

Global delta

IT delta

OT delta

Figure 4.15: Evolution of delta opinions over the network for the Stuxnet attack

These theoretical APTs generate a set of anomalies that serve as input to compare the traceability
capabilities of each correlation approach:

• Location-based clustering: as presented earlier, it consists of the K-means algorithm
taking the anomalies and coordinates of each node as data instances. These are grouped in
a number of clusters, k, which is selected in the range from 1 to 5 according to the Variance
Ratio Criterion.

• Accumulative clustering: as previously presented, it allows to distributedly locate the
infection while automatically determining the optimal k.

• Opinion Dynamics: is the approach that serves as inspiration for our framework and
serves for comparison with the novel detection methods introduced above.

These traceability solutions are simulated under different network and attack configurations,
as explained next. We start by running a brief attack test-case that illustrates the features
of each approach in a simple network scenario. Based on Algorithm 3, Figure 4.16 shows the
detection outputs (O1 and O3) of the three approaches when correlating the anomalies of an APT
perpetrated against a simple infrastructure. This network is modelled according to the concepts
introduced in Section 4.1.1, to include an IT and OT section of nodes connected by a firewall.
Concretely, the figure shows an snapshot of the detection state after the adversary has performed
a lateral movement from IT node 2 to compromise the firewall. The numeric value assigned to
each node represents O1, which will attenuate over time to highlight the most recent anomaly,
according to O3.

As noted in the figure, location-based clustering fails to accurately determine where the threat
is located and selects a wide affection area instead, which is composed by IT1, IT2 and FW1
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Figure 4.16: Network topology used in the test case

nodes (i.e., grouped in the same cluster due to the average anomaly in such zone). On the other
hand, the accumulative clustering and Opinion Dynamics show a similar result, and successfully
identify both IT2 and FW1 as the affected nodes in this scenario. As for the rest of nodes, they
agree on a subtle affection value due to the noise present in the network and the anomalies sensed
in the vicinity of the attacked nodes. As previously stated, this is modelled in a probabilistic way
[82].

We now execute these solutions with a more complex network and APT model in order to
study their accuracy. In the context of cluster analysis, the ‘purity’ is an evaluation criteria of the
cluster quality that is applicable in this particular scenario [274]. It holds the percentage of the
total number of data points that are classified correctly after executing the clustering algorithm,
in the range [0,1]. It is calculated according to the following equation:

Purity =
1

N

k∑

i=1

max|ci ∩ tj | (4.6)

where N is the number of nodes, k is the number of clusters, ci is a cluster in C and tj is
the classification that has the max count for cluster ci. In our case, by ‘correct classification’
we mean that a cluster ci has identified a group of nodes that have actually been compromised,
which is determined in the simulations (but not known by the traceability solutions). This value
can be calculated after a single execution of these three approaches to study how the results of
the initial test-case escalate to larger networks and more challenging APTs.

Specifically, we run 10 different APTs on randomly generated network topologies of 50, 100
and 150 nodes, respectively. For simplicity, we start by executing an individual instance of the
Stuxnet APT [82] according to the attacker model established in Section 4.1.3. This attack can
be formally defined by the following succession of stages:
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(a) Single APT (b) Two APTs

Figure 4.17: Purity average for the three test cases

attackSetStuxnet = {initialIntrusionIT , LateralMovementFW ,

LateralMovementOT , destruction}

At this point, it is worth mentioning that the lateral movement in the OT section is performed
three times to model the real behavior of this APT and its successive anomalies. The purity value
is then calculated after every attack stage of each of the ten APTs, to ultimately compute its
average with respect to the number of nodes that have been successfully detected and grouped in
the cluster with highest value of affection.

Figure 4.17(a) represents these average values in the form of boxplots, where each box
represents the quartiles of each detection approach given the different network configurations. As
it can be noted, the Opinion Dynamics stands out as the most accurate solution, closely followed
by the accumulative clustering approach. The purity of the location-based clustering falls behind,
and the three of them increase their value as the network grows in size due to the higher number
of nodes that are successfully deemed as healthy, and hence not mixed with those that are indeed
affected by the APT.

Similar results are obtained when we execute two APT attacks in parallel over the same
network configurations, as shown in Figure 4.17(b). In this case, the former APT is coupled with
another attack, which can be assumed to be part of Stuxnet or a completely different attack trace
within the network, composed by the following stages:

attackSetAnotherAPT = {initialIntrusionOT , LateralMovementFW ,

LateralMovementIT , destruction}

The second APT is located in a different area of the network so that it begins by sneaking
into the OT section to subsequently propagate towards the IT portion of the infrastructure. This
causes the spread of anomalies throughout the network hence putting location-based clustering to
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Figure 4.18: Evolution of the Rand Index for 10 APTs and 150 nodes

the test. Despite a subtle decline in the purity of the solutions (especially in the location approach
due to the anomaly dispersion), they still output an appreciable accuracy.

On the other hand, the superiority of Opinion Dynamics and accumulative clustering over the
first approach is also evident with the study of additional accuracy indicators, such as the Rand
Index [275]. It penalizes both false positive (FP) and false negative (FN) labeling of affected
nodes during clustering, with respect to true positive (TP) and true negative (TN) decisions,
according to the following formula:

Rand Index =
TP + TN

TP + FP + FN + TN
(4.7)

Figure 4.18 shows the Rand Index value after each of the ten APTs in the previous experiment
(each one composed of two parallel attack traces), for the largest network size (150 nodes). The
plot clearly shows a steady accuracy of the two latter approaches (close to 1), contrasting with
a lower value in the location-based approach, which faces a lack of precision when it comes to
correctly locating the affection areas, for the same reasons discussed before.

As a result of these tests, we can conclude that despite the fact that both techniques satisfy
the specification of our framework, it is the Opinion Dynamics algorithm that shows higher
accuracy in tracking complex attacks. As a consequence, we will use this technique in the next
chapter to assess the effectiveness of our framework in different Industry 4.0 security scenarios.
The main concepts, indicators and mathematical symbols related to the traceability framework
and the Opinion Dynamics solution are summarized in Table 4.4 for future reference.
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Table 4.4: Summary of concepts involved in the APT traceability framework

Term Concept Definition

α and β Parameters of the Power Law
Out Degree (PLOD) algorithm
to guide the construction of the
G(VOT , EOT ) graph

Whereas β controls the y-
intercept of the curve, the value
of α controls how steeply the
curve drops off.

Θ = {θ1, ..., θd} Ordered set of detection proba-
bilities of size d, where θi = [0, 1]

It defines how the d attack stages
in an APT influence the calcula-
tion of the detection probabilities

Φ = {φ1, ...,φd} Ordered set of decay values of
size d, where φi = [0, 1]

It defines how the d attack stages
in an APT attenuate their in-
fluence over time, depending on
their persistence

x vector x xi represents the anomaly value
sensed by the corresponding
agent on device i, where xi =
[0, 1] for all i ∈ 1, 2, ..., |V |

I1 Quantitative input of the trace-
ability framework

It assigns every industrial asset
with an anomaly value prior to
conducting the correlation (ex-
pressed with vector x)

I2 Qualitative input of the trace-
ability framework

It is assigned by every agent i to
each of its neighbours j to cor-
relate events in nearby devices
(expressed with weight wij).

O1 Local result of the traceability
framework

It determines the level of the in-
fection of the node

O2 Information provided by the
traceability framework at global
level

It determines the degree of affec-
tion in a zone of the network

O3 Contextual information provided
by the traceability framework

It permits to correlate past
events and visualize the evolu-
tion of the threat

µ µ indicator after executing the
traceability solution

It holds the ratio of agents that
find a consensus on the amount
of degree experienced

δ δ indicator after executing the
traceability solution

It holds the overall value of the
network health
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Chapter 5

Protecting Industry 4.0 Scenarios
against APTs and Use Cases

The APT traceability framework proposed in the previous chapter considers various network
architectures, types of attack and data acquisition models to later define the inputs and outputs
that solutions should include to support the detection and security requirements. This lays the
base for the development and comparison of novel solutions in this context. As a means to validate
the proposed framework, we have defined two novel protection mechanisms based on clustering
and Opinion Dynamics. According to our theoretical experiments, the latter features higher
accuracy for the traceability of events in a distributed setting.

In this chapter, we put into practice the detection mechanisms designed previously, so as to
look further into their precise application when applied to multiple scenarios of the Industry 4.0,
with particular interest in the support for response techniques that circumvent and diminish the
consequences of advanced persistent threats.

5.1 Ensuring the Survivability of the Network

As a means to check the usefulness of the APT traceability framework (via the Opinion Dynamics
algorithm), we firstly explore the implementation of secure routing protocols. Our goal is to take
advantage of the information about the security state of the network (and more specifically the
outputs O1 and O2 of the correlation technique) to guarantee the continuity of the infrastructure
in the presence of attacks.

More specifically, this functionality is designed and implemented through two response
techniques with different objectives. The first one (addressed in this section) assumes the presence
of an attacker who takes control of some network nodes, with the ability to intercept traffic
(jeopardizing the information confidentiality) or directly deny service on some communication links.
Based on this attacker model, we propose the deployment of a redundant network architecture,
which allows the effective sending of messages between any sender and recipient node.
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We can summarize our contributions as:

• Modeling the evolution of an APT composed of subtle attacks against the network topology
(i.e., their communication links).

• Implementation of a multi-agent system for the detection of an APT based on the topological
changes suffered in selected parts of the network, observed by hierarchically chosen nodes
in accordance with controllability criteria.

• Use of redundancy edges and random routing protocols to overcome the network deformation
provoked by the APT and to avoid compromised systems, ensuring the reachability between
nodes and the survivability of the network.

The remainder of this section is organized as follows: firstly, we describe the threat model
used for the APT. Then, the detection of these attacks is addressed by means of the Opinion
Dynamics correlation, which has been demonstrated to be the most effective solution in Chapter
4. Based on this mechanism, response techniques are implemented and subsequently analyzed
from a theoretical and experimental perspective.

5.1.1 Threat Model based on Topological Changes

Assuming a successful intrusion inside a network represented by a matrix M , we model an APT
with a succession of attacks perpetrated on its topology. Specifically, just as an actual APT works
(and inspired by findings described in Section 2.4.2), the attacker firstly selects one node and then
makes several lateral movements in order to find new nodes to compromise. Since we want to
provide realism in this model and consider a scenario of high criticality, we assume the attacker
always seeks those nodes with more controllability, that is, those belonging to the DS and hence
the ones with the highest betweenness centrality (whose concept was previously introduced in
Section 4.1.1).

In each of the steps in its life cycle, the APT can commit individual attacks on the topology,
i.e., changing the edges from the compromised node at a given time instant. This consequently
generates a new matrix M ′. The types of attacks can be:

* Removal of an incoming edge: given the vertex vi that represents the compromised
node such that vj exists and M(j, i) = 1, it implies setting M(j, i) = 0.

* Removal of an outgoing edge: given the vertex vi that represents the compromised
node such that vj exists and M(i, j) = 1, it implies setting M ′(i, j) = 0.

* Addition of an incoming edge: given the vertex vi that represents the compromised
node such that vj exists and M(i, j) = 0, it implies setting M ′(i, j) = 1.
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* Addition of an outgoing edge: given the vertex vi that represents the compromised
node such that vj exists and M(i, j) = 0, it implies setting M ′(i, j) = 1.

In a simple version of the APT, we suppose that the kind of the attack and the first node
compromised within the network are chosen randomly. From that moment on, the attack migrates
to the adjacent node with the highest betweenness centrality, simulating the fact that the attacker
can perform a reconnaissance of the network when looking for potential victims that deal with
higher loads of control traffic. The resulting attacker behavior is described in Algorithm 6. An
example of an APT with three attacks over a defined network topology is depicted in Figure 5.1,
where driver nodes are marked in black to show how the APT always migrates to vertices with
higher controllability. Firstly, node 4 is selected and an outgoing edge is added towards node 2.
Then, the attacker moves to node 6 and removes the edge coming from node 3. Then, since node
6 still has dominance, the attack stays there and removes the edge going to 7.

Algorithm 6 Advanced persistent threat based on topological changes
output: M ′ representing the resulting matrix
local: M representing G(V,E), numOfAttacks
attackedNode ← random vi ∈ E
M ′ ← M

for i:=1 to numOfAttacks step 1 do
attack ← randomAttack over attackedNode (edge addition or removal)
update M ′ based on attack
attackedNode ← SelectNewAttackedNode(M,attackedNode)
if attackedNode == null then

attackedNode ← random vi ∈ E
end if

end for

function SelectNewAttackedNode(M ,node)
childNodes ← vertexes vj |M(node, vj) = 1
parentNodes ← vertexes vk|M(vk, node) = 1
candidates ← childNodes ∪ parentNodes
maxCentrality := 0
attackedNode ← null
for vertex v in candidates do

centrality ← CalculateBetweennessCentrality(v)
if centrality > maxCentrality then

attackedNode ← v
end if

end for
return attackedNode

end function
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Figure 5.1: Example of APT with 3 attacks. 1st: Addition of edge from node 4 to node 2. 2nd:
Removal of edge from node 3 to node 6. 3rd: Removal of edge from node 6 to node 7.

5.1.2 APT Response using Opinion Dynamics

After introducing the attack model, we execute the Opinion Dynamics algorithm assuming that
xi(0) will be theoretically calculated for each agent i as follows: let us suppose that BC(vi)

represents the original betweenness centrality for each agent i that, as explained, works as an
indicator of the controllability of that particular node. If BC ′(vi) is the betweenness centrality
of the same agent after being victim of a particular attack of those defined in Section 5.1.1 or
another node in its neighborhood, we define the initial opinion xi(0) as

xi(0) =
|BC ′(vi)−BC(vi)|

BC(vi)
(5.1)

Consequently, xi(0) holds the ratio of change in the controllability of an agent i after an attack,
compared to its initial state (due to an increase or decrease of adjacent edges). We assume that
when the value was originally zero or the resulting ratio is greater than 1, the result is normalized
to the value of 1.

Altogether, if we have the vector x(0) concerning the initial opinion of all agents in the DS,
we can run the Opinion Dynamics algorithm to obtain a value of the change ratio of the network
after suffering an individual attack, making it possible to distinguish between different clusters
of agents with similar opinion. In this case, the closeness among opinions, which is represented
by the matrix W with the weights assigned for each agent, has been modelled according to the
difference in the degree of change (the individual opinion each agent holds): for two given agents
i and j, if the difference is below a determined epsilon value (e.g., 0.3), they increase the weight
given to each other; as explained in Section 4.3.2, this models the fact that agents that experiment
a similar degree of change in their surrounding topology must agree on the presence of an anomaly
in their respective area.

Once we have obtained a measure of the extent to which the network topology is at risk due
to the effect of an APT attack, we are in a position to adopt multiple response techniques, which
is also the aim of this section. We set the goal of preserving the connectivity for all those nodes in
charge of delivering control signals to the rest of nodes of the network. According to the different

108



5.1. Ensuring the Survivability of the Network

change ratios raised by the Opinion Dynamics algorithm, we can apply different techniques in
separate nodes of the network.

Specifically, we suppose a scenario where we wish to ensure that one node i belonging to the
DS wants to send control messages to another node j in the network. This is done in the presence
of an APT that can remove certain edges that originally enabled both nodes to communicate
over a defined path, traversing other points of the topology [276]. At the same time, we want
to avoid hopping over compromised nodes that may be victims of the APT and hence intercept
these sensitive packets, preserving confidentiality by this means. Moreover, it is desirable that
the communication pattern (i.e., the paths described by the messages when being transmitted
over the network) is as random as possible, so as to guarantee that the attacker cannot easily
determine the topology of the network. As a result, we have a security service that ensures the
continuity of the network until the APT has been successfully removed from the system. To sum
up, we seek these three objectives when designing a response technique:

(a) Ensure the presence of a path between node i and j when possible.

(b) Define a routing protocol that prevents determining the path.

(c) Introduce a mechanism to avoid the interception of messages.

To satisfy objective (a), we propose building an edge-redundant network with hidden edges
that are added to the original network topology, so these auxiliary links can be leveraged in the
event a path between two given nodes is lost after an APT attack. To accomplish this, we create
a parallel network from G = (V,E), which we name G′ = (V,E′), where E′ contains the same
edges as E and includes new ones from the DS nodes to recover the controllability of the network.
Specifically, we define and compare three different strategies:

• STG1: addition of redundant edges to all nodes in the network.

• STG2: addition of redundant edges only to DS nodes.

• STG3: addition of redundant edges only to nodes that are not included in the DS.

Our aim is to compare their level of response in terms of message loss and the overhead they
experience. Algorithm 7 describes the procedure by which redundancy is added depending on the
strategy selected. Namely, for each vertex, a set of candidates is created that includes the DS and
excludes its parents and the node itself. In the case it is empty, the DS with maximum out-degree
is selected as the new parent of the aforementioned vertex, creating a new edge by this means. It
is important to note that during the process, it is ensured that the resulting network G′ = (V,E′)

fulfills OR1 and OR2 conditions, as stated in Section 4.1.1.
On the other hand, to address objectives (b) and (c), we leverage a secret sharing scheme

[277]: a secret (i.e., a control message) is divided into n shares or shadows that are distributed
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Algorithm 7 hiddenTopology(G(V,E), DS, STGx)
output (G′ = (V,E′))
local: Dr ← ∅, E′ ← E

if STGx = 1 then
Dr ← V

else if STGx = 2 then
Dr ← DS

else if STGx = 3 then
Dr ← V −DS

end if

for vertex v in Dr do
F ← Fathersa(G(V,E), v)
Dc ← DS − (F ∪ v)
Candidates ← ∅
for vertex c in Dc do

D ← Childrenb(G(V,E), c) ∩DS
O ← Children(G(V,E), c)−D
comment: checking of OR1 and OR2 fulfillment
if v ∈ DS and ((|O| ≥ 2 and |D| ≥ 0) or (|O| = 0 and |D| ≥ 1) or (|D| = 0 and

|O| = 0)) then
Candidates ← Candidates ∪ c

else if v /∈ DS and ((|D| ≥ 0 and |O| ≥ 1) or (|D| = 0 and |O| = 0) then
Candidates ← Candidates ∪ c

end if
end for
if Candidates = ∅ then

Candidates ← MaxOutDegreec(G(V,E), DS)
end if
Arbitrarily select vertex c1 ∈ C
E′ ← E′ ∪ (c1, v)

end for
aSelection of fathers of v, those belonging to its in-neighborhood
bSelection of sons of c, those belonging to its out-neighborhood
cSelection of the DS node with maximum out-degree
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among the sender’s neighborhood nodes and follow independent routes, so that the recipient
cannot reconstruct the message until it collects, at least, a defined number k of them, where
1 ≤ k ≤ n. In the case we have k = 1, it can be considered as the basic level of security, as the
message in clear is sent over a determined path over the network. If we have k = n, then the
recipient must collect all the shares to reconstruct the original message. At this point, since our
aim is to provide a security mechanism that bases its robustness on the criticality of the attack
detected, the election of n will depend on the number of DS agents whose opinion is similar, for
which we make use of the µ value defined in Section 4.3.2. Namely, the maximum number of
shares to divide the original message into depends on the ratio of agents that have experienced
the same severity in the attacks against their surrounding nodes. This means that the greater the
number of DS that experience the same criticality, the greater the number of shares. However, the
k value can be random (ranging from 1 to n) in order to make the recovery method as stochastic
as possible and thereby not leak any information about the topology when analyzing the stream
of messages. The resulting methodology, to divide the messages into shares and send them over
the network when it has been attacked, and Opinion Dynamics has been executed, is described
in Algorithm 8. It is important to note that the respective shares are arbitrarily sent over the
original and redundant links, in order to make the protocol as misleading for the attacker as
possible. An example is shown in Figure 5.2, in which shares are divided and distributed over the
network leveraging a pathfinding algorithm (e.g., Dijkstra, Breadth-first search (BFS)) [278][279].
In that example, the secret is divided into three shares with k = 2.

Algorithm 8 SecretSharing(G(V,E′))
local: M representing the set of messages to be sent.
for message m in M do

agent ← GetRecipient(m)
mu ← GetMu(agent)
n ← mu ∗ |Nout

agent|
k ← generate random from 1 to n
S ← divideSecret(m,n, k)
send shares to n neighbours

end for

This way, we have modelled the behavior of an APT against a control network represented
with a graph, over which we have applied structural controllability concepts to define a dominance
set of nodes (i.e., the DS). These take the role of agents that make a distributed decision algorithm
determine the health of the network based on topological changes detected in their neighbourhood.
From this information, they can leverage a parallel hidden topology with redundant links, over
which they can continue to deliver their messages with enhanced privacy in the presence of the
APT.

In the next subsection, we offer experimental results to show how effective it is when ensuring
the continuity of the network.
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Figure 5.2: Secret sharing scheme and shares delivery

5.1.3 Experimental Analysis

After successfully detecting topological changes by using a distributed consensus algorithm and
consequently deploying a response technique to ensure the continuity and preserve privacy in the
network, our aim is to test these services in practice. We have conducted the implementation
in MATLAB of an APT that follows the behavior described in Algorithm 6. After each attack
of the sequence, Opinion Dynamics is executed on those agents belonging to the DS, which is
calculated based on Algorithm 1. If we run different test cases, we can check how the opinion of
agents evolve to reach a consensus with each other and form different clusters within the network.
Figure 5.3 shows how the total number of DSs of three different networks (of 100, 200 and 300
nodes) is divided into substantial sets depending on the degree of change they experience after
suffering a battery of 50 attacks. It is especially significant to note the presence of a big cluster in
each of the three test cases, which indicates an important effect of the APT (of approximately
0.35, 0.25 and 0.45 ratio of change).

Opinion dynamics influences the µ value that regulates the number of shares in which the
secret messages are divided and distributed from each DS node to the rest of the network to their
destination, as explained before.

To probe the effectiveness of our response technique that leverages a hidden topology comprising
additional edges, we have generated a set of 100 messages whose sender belongs to the DS and the
recipient is any other node within the network. Following the secret sharing scheme of Algorithm
8, each agent divides the message and gives each part to the corresponding neighbors, which are
responsible for the delivery by leveraging the BFS algorithm. The path is calculated at each hop
when traversing all nodes until the destination, since the topology can change over time, caused
by the APT. In the event that the recipient is unreachable from a certain node at a given time,
we consider that share to be lost. Consequently, taking into consideration the scheme, we deem a
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Figure 5.3: Opinion dynamics after 50 attacks

message to be lost if a number of its shares greater than k have been lost, since it is no longer
possible for the recipient to construct the message.

Figure 5.4 shows the ratio of errors (i.e., message loss due to the unavailability of control
paths) when using the normal and the hidden topology networks of STG1, STG2, and STG3. In
more detail, we have run three test cases with a network of 100, 200 and 300 nodes, against which
we perpetrate an APT of 50 attacks. Prior to executing it, we craft a set of 100 random messages
for which we ensure the availability of paths from the sender’s neighbors to the recipient. From
that point on, the attacks take place and we try to send the original messages after each one. As
a result, we can check how the loss ratio fluctuates as attacks occur. In this sense, based on the
plots, the original network presents a higher quota of lost messages, whereas applying STG1 (i.e.,
a redundant edge for all nodes) experiments the lowest ratio, as expected in principle. However,
we can see how redundancy in DS nodes (STG2) also achieves an acceptable degree of message
reachability, comparable with STG1 and even better at certain points when running the same
experiment in different topologies, as Table 5.1 indicates. This can be explained by the fact that
attacks always move to nodes that deal with more traffic and hence have higher controllability
(i.e., the DS nodes, as described in Section 4.1.1). Therefore, the addition of extra links to recover
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Figure 5.4: Message loss ratio with the different strategies, 100 messages and 50 attacks over a
network of 100, 200 and 300 nodes

the connectivity between DSs results in a robust response that, on the other hand, does not
introduce too much overhead because of the lower number of additional edges added.

The supremacy and higher connectivity of STG2 and especially STG1 are visible when ana-
lyzing the network global efficiency [280]. This measure indicates the efficiency of the information
exchange in the network and how resistant it is to failures. If the distance d(i, j) between any
two vertices i and j in the graph is defined as the number of edges in the shortest path between i

and j such that i '= j , the efficiency is expressed as 1/d(i, j). From this definition, the global
efficiency of a graph is the average efficiency over all i '= j. Figure 5.5 shows the evolution in this
indicator when performing an APT attack over the original and redundant topologies, for the
three test cases of 100, 200 and 300 nodes.

As a conclusion, we conclude that the Opinion Dynamics technique in combination with a
network redundancy policy yields significant results in protecting the delivery of information
throughout the infrastructure.
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Table 5.1: Message loss ratio after 50 attacks, 100 messages and multiple topologies

Nodes \Strategy Original network STG1 STG2 STG3
10 0.81 0.64 0.64 0.58
50 0.076 0.25 0.3 0.36
100 0.62 0 0.03 0.01
200 0.24 0.04 0.02 0.14
300 0.71 0.02 0 0.21
400 0.07 0.04 0.02 0.03
500 0.39 0.1 0.07 0.19
600 0.4 0.05 0.02 0.03
700 0.32 0.03 0.07 0.1
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Figure 5.5: Global efficiency with different strategies after 50 attacks
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5.2 QoS-Aware Routing protocol based on Opinion Dynamics

In the previous section, we have illustrated a practical example of how to represent the quantitative
input of the detection technique in form of anomalies detected in the topology of the network,
according to the framework description of Section 4.2.2. That information has been used to design
a simple message routing algorithm to ensure the reachability of nodes in presence of an attack,
using the information provided by the Opinion Dynamics algorithm and a secret sharing scheme.
In this section, we extend the aforementioned proposal to take into consideration the anomalies
caused by the compromise of both devices and communication links. The result is a new routing
technique for the secure transmission of information in networks with low reliability channels.

As argued in Section 4.4, the original approach based on Opinion Dynamics for the APT
detection required further improvement, especially to attain realism in the weight assignation
procedure and hence circumvent the issues of the approach presented in Section 5.1. First, the
aforementioned approach only focuses on the detection of topological changes over a graph-defined
network, where a subset of nodes of V (i.e., the Dominating Set) are in charge of exchanging
their opinions, which are represented with the ratio of change in their betweenness centrality
indicator. Accordingly, the attacker model just contemplates the compromise of nodes to perform
a removal of links. Even though this is valid to show the applicability of the algorithm using
graph theory, we must go beyond and come up with different ways to model such opinion value in
a real industrial ecosystem. For example, by considering QoS of communication links, as briefly
introduced in Section 4.4. The reason is that APTs comprise a wide range of attack vectors
besides the mere denial of service of nodes and communication channels, which pose a source of
different anomalies (mostly subtle), that are potentially measured and correlated by the agent
associated with the affected node. This lays the goal of this section.

5.2.1 Quality of Service Indicators for Routing Protocols

Critical infrastructures governed by industrial networks require to work at all times, even in the
presence of intruders. To do this, we propose the use of a routing protocol as a response technique
that uses the security information provided by a distributed detection system. However, in order to
guarantee the delivery performance, this protocol must also make resource reservation and excise
network control, in order to respond in a timely manner. Therefore, we plan to take the QoS of the
communication links into account for the weight calculation in the Opinion Dynamics algorithm,
so that the security of the communication links is considered for the opinion transmission, in the
event that a fully distributed deployment of the traceability technique is used (making use of
physical agents, as explained in Section 4.2.1).

In traditional data networks, routing protocols simply use shortest-path algorithms for the
path computation, based on a single metric like hop-count or delay. In turn, QoS-aware routing
protocols take into account further metrics to address the quality of service, in particular [281][282]:
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• Delay time. It measures the time taken to transfer data across the network from one node
to another. This value is often used to establish allowance limits for the communication links,
so as to select the fastest route. In real-time operations, jitter or packet delay variations are
used, measured with a sliding window of fractions of seconds. This is due to the dependence
on the application (e.g., isolated environment of sensors, Internet-enabled connection to
the SCADA system) or the network congestion, which could potentially slow down the
communications.

• Bandwidth. It holds the maximum rate of data that can be transferred from a source to a
destination per time unit. In order for the industrial devices to measure it, it is reasonable
to determine the maximum bandwidth available at a given time. However, the computation
of this value (along with delay) for routing purposes is a challenging problem since it can
frequently change, as well as delay [283]. Also, in presence of an APT, there could not be
any centralized control for allocating bandwidth among the nodes. For this reason, most
existing QoS-aware routing protocols in the literature assume that the available bandwidth
is known [284]. There are some others that estimate this value with carrier-sense capability
of the underlying protocols (e.g., IEEE 802.11) to measure the idle and busy time ratio,
and then adding this information to the route control packets.

• Packet loss. Packet loss can be used to measure availability, which represents the probability
that some recipient is reachable with the claimed quality at a given moment of time. The
packet loss is usually calculated as the ratio of lost packets or dropped connections in
connection-oriented systems (e.g., upon retrieval of information from sensors).

Based on the set of adequate metrics, QoS-aware routing protocols perform resource estimation
at each node and proceed with the route selection [285][286][287]. Routes are usually chosen to
maximize the available bandwidth while minimizing the delay and the loss probability. However,
finding a path that simultaneously satisfies more than one constraint is an NP-Problem. For this
reason, heuristic approaches resulting in more efficient algorithms are often used in the literature.
For example, [288] adopts three different criteria for the Optimized Link State Routing Protocol
[289]. Another efficient scalable heuristic applied in [290] is based on Lagrangian relaxation.
Another approach is based on the shortest-widest path algorithm [291], where a path with
maximum bandwidth is found using a variant of the Dijkstra shortest-path algorithm and if there
exists more than one such path then the one with the lowest delay is chosen.

Apart from these approaches, it is also possible to generate a single QoS metric from multiple
parameters of the communication links. For the sake of simplicity and with the aim of aggregating
different metrics (i.e., delay, bandwidth, packet loss ratio), our approach applies the following
QoS function [292]:

S(c) = B(c)

D(c)× L(c)
(5.2)
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where for a given communication link c, the metrics applied are the link’s bandwidth B, delay D

and packet loss L. Due to the reasons discussed before, the estimation of these metrics at each
node is out of the scope of this article.

The output of S(c), when evaluated for a given communication link, is directly proportional to
the quality of service that it experiences. This information can already be used for establishing a
priority when selecting the routes along the network. However, besides the QoS measures applied
to communication links, we will also introduce a security-based criterion for the selection of nodes
that are traversed by our routing protocol. This additional information is provided by the Opinion
Dynamics based detection system, explained in the following.

5.2.2 QoS-Aware Routing

In response to an APT, the combined opinions determined by the monitoring agents on the indus-
trial network with regard to the security of its nodes and the QoS aspects of their communication
links can subsequently be used to improve network routing. Here we present a novel approach
aiming to enhance routing algorithms used in industrial networks such that the probability of
packets being intercepted by potentially compromised network nodes is minimized while the
QoS of paths through which these packets are routed is maximized. This way, we can ensure the
confidentiality and reliability of the network until the threat is completely eradicated from the
infrastructure.

Note that our approach extends the initial response mechanism proposed in Section 5.1.
That proposal served as a first approach to enhance delivery of messages in presence of APT by
relying on a redundant non-compromised part of the network topology and using secret sharing
to split packets into chunks that are randomly dispatched over multiple paths. Still, it has a
number of shortcomings, as discussed in the following. First, their attack model is based on a
complete removal of communication links by compromised nodes, and does not consider a more
realistic scenario where such links may experience varying QoS levels as a result of an attack. As
observed in the recent years, many APT usually rely on zero-day vulnerabilities and make use of
stealthy techniques to go unnoticed for a prolonged period of time, until they finally exfiltrate
information or destroy the physical equipment. Therefore, it is necessary to consider a more
subtle behavior of the attacker who may not wish to fully disrupt the communication and be
detected. Second, the assumption on the existence of a redundant non-compromised topology
in industrial control networks may not always be realistic. The architecture of such networks
very frequently responds to a fixed configuration where all resources are rigidly connected with
each other and so installation of a separate network topology might require significant investment
and modifications of existing hardware devices. Third, the approach relies on the shortest-path
estimation for which sending network nodes are assumed to know the entire network topology
and has therefore limitations when used in combination with existing routing protocols that may
not require nodes to have this knowledge.
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The approach introduced now is more general and realistic. It aims at enhancing available
routing algorithms to take into account the anomalies determined by the monitoring agents for
the QoS levels of communication links and the security of network nodes when making routing
decisions rather than selecting an optimal route based on the shortest path only. To set the
background for our approach, we consider a typical architecture of an industrial network following
the ISA-95 standard [36], as already mentioned in this work. In practice, due to the modernization
of industrial technologies in recent years, these networks have evolved towards a more distributed
model. Control devices (i.e., PLCs or RTUs) govern the production cycle by retrieving data
from field devices (i.e., sensors and actuators), according to the information exchanged with
SCADA systems. These are evolving towards cloud-based solutions, that interconnect other
services within the organization. This way, we see how the network is divided into two main
sections: the industrial assets (which we have referred to as ‘operational technologies’, OT) and
the IT (Information Technologies).

Let G(E, V ) be the graph that describes the overall network topology, following the preliminary
concepts stated in Section 4.1.1. This graph is composed of the two subgraphs G(VIT , EIT )

and G(VOT , EOT ), which are interconnected by a set of intermediate firewalls VFW so that
V = VIT ∪ VOT ∪ VFW . More specifically, both are joined by the firewalls VFW , that have
connections with the nodes of VIT and VOT that belong to the PDS of those subnetworks. Again,
with respect to the network topology, each of these subnetworks has a different configuration. On
the one hand, G(VOT , EOT ) follows a power-law distribution of the type y ∝ x−α [243], which
models the hierarchical topology of an electric power grid and its high-level substations, which
are subsequently connected to nodes with less connectivity (e.g., sensors and actuators). On the
other hand, G(VIT , EIT ) presents a small-world distribution, that models the traditional topology
of TCP/IP networks on the Internet [245]. Note that these concepts were already introduced in
Section 4.1.2.

Over this distribution of nodes, there are two types of communication flows: information
about the production chain delivered from the lower layers to the managerial IT network and,
in reverse way, control commands issued from that section (e.g., the SCADA system) to the
industrial process. For both types of the communication flows we base our approach on the
Bellman-Ford algorithm [293] that is at the core of the Distance Vector Routing (DVR) [294]
protocol, which determines the path to remote nodes using hop count as a metric. Each node
holds a table that contains the distance to each node and the next hop in the route. This
information is exchanged periodically with the neighbors, to ultimately compute the path using
the Bellman-Ford algorithm. This contrasts to the Dijkstra’s path-finding algorithm [278] used in
the previous defense technique, that finds the shortest path by requiring all nodes to have overall
knowledge of the network topology and is at the core of the Link-State Routing (LSR) protocol
[295]. In this protocol, routers periodically flood the entire network to ensure that each node holds
a synchronized copy of the routing table. By choosing DVR over LSR we can compute paths
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locally without involvement centralized routers as communicating with such nodes in presence of
APT would impose additional risks.

The Bellman-Ford algorithm uses a weighted directed graph G(V,E). The shortest distance
from a node to the rest is determined by overestimating the true distance, following the principle
of relaxation. In our case, since we want to prioritize QoS and security for the chosen path over
the distance, we represent the weight assigned to each link eij ∈ E as

W (eij) =
Xt(j)

S(eij)
(5.3)

where Xt(j) is the final anomaly value of node j after executing the Opinion Dynamics as
specified in Section 4.4. We select j instead of i since we want to prevent the messages against
propagating to a node that is potentially compromised. On the other hand, S(eij) refers to
the QoS score of the communication channel eij , as specified in Section 5.2.1. The higher the
anomaly sensed by the agent in node j is, the greater the weight assigned to that link will be.
Correspondingly, the S score is inversely proportional to that value. By this means, we take into
consideration the security of devices and the quality of service of their links when deploying our
response technique in form of routing protocol.

Such DVR-based routing approach can be executed at any time of the production chain,
paired with a previous execution of the Opinion Dynamics algorithm for adapting the network
to the current security level, thereby achieving resilience. Therefore, we assume the process to
update the routes can be executed as frequently as the security scenario imposes, which would
not imply additional computing costs for the devices if we consider that the detection algorithm
is executed in a central correlator system separated from the industrial network. In the following,
we prove the effectiveness of our technique by simulating successive attacks against a network. In
Chapter 6, the approach is validated with game theory to consider dynamic attack behaviors and
additional defense solutions.

5.2.3 Simulation and Evaluation

In this section, our primary aim is to prove that the proposed QoS-aware routing approach
based on Opinion Dynamics can effectively minimize the interception of messages, avoiding paths
that contain compromised nodes while ensuring an acceptable level of quality. First, we define
the attack model used in our simulation that determines how the anomalies are generated over
the network and measured by the agents. Then, we execute the technique (i.e., the delivery
of messages and the QoS analysis) with different parametrization of the topology and attacks
performed. Finally, we evaluate the simulation findings.
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Attack Model: Simulation of Attacks and Anomalies

In order to define a more realistic attack model for our response technique, we assume an attacker
can break into the infrastructure by leveraging zero-day vulnerabilities and then use stealthy
techniques to propagate over the network, until information is filtered or disruption to the
infrastructure is caused.

Therefore, contrary to the approach based on the alteration of links, we consider an attack
model based on a succession of lateral movements over the network nodes (inspired by the findings
described in Section 2.4.2), aiming to infect as many devices as possible so that the security when
delivering messages is jeopardized. Let attackSet be this sorted set of attack stages that an APT
can perform against the industrial network, which is defined by G(V,E) and is composed by the
IT and OT sections, as explained in before. This set comprises a finite number of elements of the
following kind:

• attackITnode: the adversary initializes the APT or propagates the attack to a device in
the IT subnetwork.

• attackFWnode: the attacker compromises a firewall (when the previously compromised
node has connection with it), to propagate to the other section of the control network.

• attackOTnode: the intruder compromises a node in the industrial section of the network.

Every time the attacker takes over a new device, two main variables change:

1. From the security perspective, the agent associated with the compromised node notices
an increase in the anomaly level, that ranges from zero to one, as described before. If we
define x as the initial opinion vector for all agents, then xti is updated in the simulation after
attack number t. For simplicity, we assign a value that is randomly generated according
to a uniform distribution over (0, 1), simulating the existence of both subtle and evident
anomalies.

2. From the perspective of quality of service, the agent also senses a potential alteration
in the QoS experienced in the incoming or outgoing connections, as a consequence of the
attack. The value of S(eik) for all eik ∈ E in the simulations is originally chosen from a
uniform distribution over (0, 1), to represent the presence of channels with different QoS
levels. In the event of an attack, the value of S(eik) and S(eki) scores decreases (being zero
the minimum), where i is the attacked node and k refers to all neighbors of i such that
there exists eik ∈ E (since each connection is bidirectional). This decrease is represented by
δ. Since the attacker can leverage stealthy techniques to go unnoticed without affecting the
communications, this value is also chosen uniformly at random from (0, 1).

Algorithm 9 describes the proposed APT life cycle. For all the attack stages in the provided
attackSet parameter, the security of agents and the QoS score of the links is reevaluated, as
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Algorithm 9 Simple APT life cycle
output: X representing the final opinion value for all agents, S representing the QoS
scores of links
local: Graph G(V,E) representing the network, where V = VIT ∪ VOT ∪ VFW

input: attackSet ← attackStageAPTx , representing the APT chain of attacks

x ← zeros(|V |) (initial opinion vector)
{attack ← first attack from attackSet}
while attackSet '= 1 do

x(attackNode) ← U(0, 1), δ ← U(0, 1)
for neighbour in neighbours(attackNode) do

S(attackNode, neighbour) ← S(attackNode, neighbour)− δ
S(neighbour, attackNode) ← S(neighbour, attackNode)− δ

end for

X ← ComputeOpinionDynamics(x, S)
attackSet ← attackSet \ attack

end while

described before. Firstly, the attacked node (specified with attackNode) is assigned with a random
value of anomaly (i.e., the opinion of its agent) in the uniform (0,1) distribution. Then, each of
its ingoing and outgoing links are updated with a diminished QoS score, according to the value
of δ. Afterwards, Opinion Dynamics is executed to aggregate all opinions and calculate their
final values, which eases the identification of zones under the effect of the APT. Finally, this
information can be input to the routing protocol.

Reliable Message Delivery

Once the attack model has been defined, we can execute the defender’s code based on the routing
protocol in presence of an APT to firstly show that messages are successfully delivered in a
way that the probability of traversing a compromised node (i.e., with an opinion value greater
than zero) is lower than using the previously proposed approach. To simulate this, a set of
100 different messages are randomly generated, whose sender and recipient belong to the graph
G(V,E), making sure that more than one path exists between both nodes. Half of these messages
are control commands (i.e., sent from the IT section to one device in the lowest levels of the
infrastructure), while the other half are data packets, generated in the production chain and
dispatched to the IT subnetwork. Therefore, messages are delivered in both ways based on the
industrial topology defined in Section 5.2.2.

To assess the level of security experienced by the response technique and consequently compare
it with other solutions, we define the compromise level indicator for each of the messages sent.
This holds the sum of anomaly values (i.e., opinions calculated with the Opinion Dynamics
algorithm, represented with X in Algorithm 9), which are measured by the set of nodes that
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compose the path described by the message, in the route from the recipient to the destination.
The greater this value is, the highest probability for the message to be intercepted will be. For a
given number N of messages transmitted, we can determine the average compromise level as

∑N
i=1

∑|R|
j=1Xj

N
(5.4)

where Xj is the opinion of agent j, 1 ≤ j ≤ |R|, and R is the set of nodes that each message i

traverses. This overall value is calculated for our custom routing protocol and will be compared
with two other approaches: on the one hand, (a) the previously proposed mechanism
in Section 5.1, that is based on the Dijkstra’s shortest-path algorithm, without considering
the opinions of the agents; on the other hand, (b) the Dijkstra’s path-finding algorithm
parametrized with the opinion of agents as weights for the search of the optimal path (i.e.,
the route with a minimal compromise level). In other words, for the computation of the path
from sender to recipient in G(V,E), (a) uses a weighting function W for each edge eij ∈ such
that W (eij) = 1 if eij simply exists (so that the destination is reached in the minimum number of
hops). As for (b), W (eij) = Xj , hence prioritizing not to hop to a compromised node. Our aim is
to show how (c) our approach based on Bellman-Ford algorithm, that uses the weighting
function defined in Equation 5.3, achieves better security (i.e., the value of compromise level)
than (a), with closer results to (b).

In this experiment (carried out in Matlab), we have generated a random industrial network of
50, 100 and 200 nodes following the topology described in Section 5.2.2 (where the two halves of
nodes are respectively used for the IT and OT subnetworks and an extra firewall node is used
to merge them). Over these topologies, we have simulated the effect of an APT (according to
Algorithm 9) composed by 50, 100 and 200 attack actions, respectively. We have represented the
overall behavior of Stuxnet (which was deeply addressed in Chapter 2) at a basic level: the APT
begins by compromising one node from the IT network (originally using malicious USB flash
drives) and then spreads through the entire subnetwork until it finally breaks into the OT section,
where the threat propagates until it infects the target device (the uranium enriching centrifuges).

By making sure the number of attacks reaches the number of nodes, we represent the most
critical scenario when the APT takes over the entire network, thereby showing the effectiveness of
the algorithm at all times (although this validation process could be further optimized if attacker
and defender were part of a dynamically confronted competition with specific action rules, by
means of game theory). After each attack phase, the Opinion Dynamics algorithm is executed
and the set of 100 random messages are delivered, putting into play the three aforementioned
routing algorithms. Finally, the average of compromise is calculated. The plot in Figure 5.6 shows
the evolution of this value over the entire set of attacks for the three assessed solutions.

As we can see, the Dijkstra’s algorithm that uses the opinion of agents as weights to compute
the path serves as the baseline of the minimum compromise level that can be achieved. However,
our approach based on Bellman-Ford algorithm presents a similar result with a slight increment
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of anomaly experienced, that still remains far from the high value experienced by the Dijkstra’s
scheme proposed before, as we wanted to demonstrate. We will now prove that our approach also
provides better QoS requirements.

Quality of Service Experienced

After analyzing how our solution effectively experiences a lower level of compromise when routing
the messages, it is also necessary to prove that the paths generated by the protocol also achieve
an adequate quality of service, which is the main aim of this section. This would ensure a fast
and reliable communication, especially necessary when the computed paths impose several hops
to reach the recipient as a consequence of avoiding the effect of the attack.

Following the previous methodology, we aim to deliver a set of 100 messages over the network
G(V,E) in such a way that the number of hops is minimized and the QoS experienced is maximized.
This time, we define the QoS level indicator for each message sent as the sum of individual QoS
scores for all the successive edges that belong to the path (as explained in Section 5.2.1) divided
by the number of hops that this message performs. The greater this value is, the better QoS with
a lower number of nodes traversed will be. Given N messages transmitted, we can determine the
average QoS level as

∑N
i=1

∑|R|
j=1 S(e

j)

hopsi

N
(5.5)

where S is the QoS score function from Equation 5.2, ej refers to edges from the route R

which is taken by message i, and hopsi is the number of intermediate hops. This average QoS
value is calculated for our routing approach in presence of APT using the same topology and
attack scenarios as in the previous test case, and is compared with the two other approaches:
(a) the previously proposed mechanism in Section 5.1, that is based on the Dijkstra’s
shortest-path algorithm without accounting for any QoS implications; and (b) the Dijkstra’s
path-finding algorithm parametrized with the QoS score of the edges as weights for
the search of the optimal path (i.e., the route with a maximum quality). Thus, (a) uses an W

weighting function for each edge eij such that W (eij) = 1 if eij simply exists, while in (b) it uses
W (eij) = 1/S(eij), hence prioritizing the path with maximum QoS. In this case, our aim is now
to show how (c) our approach based on Bellman-Ford algorithm, that uses the weighting
function defined in Equation 5.3, achieves a better QoS level than (a), with closer results to (b).

The plot in Figure 5.7 represents the evolution in the average QoS levels. As the previous test
case, the QoS-aware Distance Vector Routing presents a QoS level per hop ratio similar to the
Dijkstra’s algorithm weighted with the QoS scores. As we can see, the three routing approaches
have their QoS levels diminished as the APT evolves (due to the attacks and consequent decrease
of the S scores, as explained in Algorithm 9), but our approach shows a higher QoS level, close
to the one experienced by the optimal Dijkstra’s solution. Therefore, we have demonstrated our
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reliable routing approach behaves in a nearly optimal way, more efficiently than the original
response technique. Figures 5.6 and 5.7 prove that QoS- or security anomaly-based routing alone
are not sufficient, since both criteria must be complied to ensure a delivery of messages balanced
with a decent level of security and QoS. In addition, table-driven routing algorithms like DVR
with the Bellman-Ford algorithm also ensure an ad-hoc selection of routes without any central
entities involved in the communications, which can help achieving a higher level of security while
alleviating the large amount of traffic that route updates like the original protocol can imply.
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Figure 5.6: Average compromise level
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Figure 5.7: Average QoS level

5.3 Applicability of Opinion Dynamics in the Industrial Internet
of Things

As described in the introduction of this work, the interconnected things in the IIoT mainly
consist in specific devices such as sensors, actuators or controllers that altogether enhance the
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Figure 5.8: Stages of the Opinion Dynamics framework in a IIoT network

productivity in multiple sectors. The other side of this increased connectivity comes with the
exposure of systems that were traditionally isolated to cyber attackers. This is reflected in the
increasing number of attacks that these environments can suffer, such as unauthorized accesses
(e.g., spoofing or phishing), data manipulation (e.g., man-in-the-middle attacks, packet injection),
DoS attacks and other kinds of malware. These were thoroughly addressed in Section 2.2.1.

As a consequence of the convergence between the IoT and the industrial world, these attacks
are similar to the ones in common IT systems, but their consequences in the IIoT are much
more critical. Here, they can endanger the safety of resources and generate serious operation
disruptions. Additionally, countermeasures that are usually deployed in IT environments (e.g.,
network segmentation, embedded security, encrypted communications, access control policies)
require a greater effort in an industrial scenario, in which we have a non-interruptive operation
restriction. Even so, these protection solutions could fail to prevent certain threats, such as insider
attacks or DDoS attacks. In this sense, intrusion detection systems are a defense to prevent
against unauthorized accesses, by finding patterns in the network data that does not match the
expected behavior.
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Given these problems, this section addresses the applicability of the APT traceability framework
in IIoT ecosystems, specifically using the Opinion Dynamics correlation. The procedure carried
out by the elements of this framework is presented in Figure 5.8, and its comprised by six
stages. In stage 1, data retrieval setup, the system extracts the outputs of multiple anomaly
detection mechanisms, vulnerability scanners or SIEM systems. In stage 2, agents creation, all
data associated to a particular entity or device is assigned to its corresponding virtual agent.
Note that raw data not extracted from existing IDSs, such as network traffic, can be used to
obtain additional features (e.g., traffic volume, type of connections established) in stage 3, Feature
extraction.

In stage 4, feature selection and opinion formation, each agent i combines all available data
into an opinion xi(t), which shows the opinion (i.e., anomaly value) of the agent at a given time
t (i.e., the security state of its monitored node, measured from 0 to 1). For this task, different
models can be applied to weigh each feature depending on the current security scenario and the
anomalies sensed. The evolution of these opinions over time is considered in stage 5, correlation
of opinions. In this phase, all opinions evolve by taking into consideration the opinions of the
surrounding agents xj(t) and a weight wij . In order to facilitate this process, in the current
incarnation of this framework, such correlation is executed in a central system (i.e., the centralized
implementation of agents described in Section 4.2.1). As explained in Section 4.3.2, all opinions
evolve using the following expression:

xi(t+ 1) = wi1x1(t) + wi2x2(t) + ...+ winxn(t)

As a result of this correlation, it is possible to extract additional indicators in stage 6,
computation of indicators. For example, all opinions can be grouped into clusters at any given
time, providing a representation of the segments of the network that are being affected by existing
attacks. Moreover, a global health indicator can also be calculated from the aggregation of all
opinions. This opinion model can be enhanced by taking into account other parameters such as
the criticality of the monitored resource, its historical events, or the persistence of the detected
attacks, as discussed in Section 4.6.

Nevertheless, further research is necessary to fully realize the APT traceability framework in
the IIoT domain, since there are several constraints and open questions to be solved. For example,
whether using a centralized entity as implementation model is a feasible solution in all scenarios,
or how to precisely instantiate these agents (e.g., IDSs, anomaly detection mechanisms) on a
physical infrastructure whose criticality may restrict the modifications of hardware and software.
Additionally, the potential overhead introduced in the communications, or the provisioning of
parallel network interfaces to gather and analyze network traffic are other open issues that we
aim to resolve in this section. More specifically, we will study the precise instantiation of the
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algorithm, making more emphasis on the earliest stages – as they revolve around the integration
of the algorithm with the IIoT network at low level.

5.3.1 Data retrieval

To start devising the integration of the framework over an IIoT scenario, the main question
that arises is the nature of the information that can be collected by the detection system. As
stated previously, we must provide the agents (regardless of where they are executed) with data
of interest about the state of the resource they are monitoring, as to finally output a single –
but aggregated – value of anomaly, that represents its opinion (stage 4). This process requires
of data that is retrieved in stage 1, either from raw information extracted from the low layer
and high layer protocols or from outputs of IDS solutions such as the ones described in Section
3.3. Here, we will especially focus on the former, as the existence of IIoT IDSs already proves
their feasibility as inputs to the framework. In general, the information that can be processed by
agents include, but are not limited to:

• Network parameters: involves two kinds of information, related to the topology and the
state of the network, to infer the presence of anomalies via traffic analysis (by comparing
the current value with the one learned in normal conditions):

1. A physical network mapping that contains every pair of devices connected through a
communication channel (in form of a graph, with the address of every node within the
topology). This can be easily determined from the number of packets per protocol and
recipient, which helps to tag frequent and non-frequent communications.

2. QoS indicators: they inform about the reliability of connections by means of metrics
like the delay time from one node to another, the bandwidth experienced and the
packet loss ratio in connection-oriented protocols.

• Communication information: it implies the analysis of the payload contained within
the exchanged packets and their frequency, which includes low-level commands issued from
one source to its destination (e.g., control commands to actuators), as well as quantitative
values from operations (e.g., readings from sensors). The former allows to detect suspicious
actions potentially performed by compromised devices, while the latter permits to create a
statistic model to later identify deviations in the values exchanged.

Going back to the early stages of the algorithm, the method for extracting these features
from the traffic in a IIoT network is highly dependent on the wireless transmission channel used,
its particular deployment architecture, and the application endpoint where data is consumed
(which is presumed to be the central correlator). The aim with stage 1 is to seamlessly gather the
aforementioned network information without interfering with the operations of the production
chain (i.e., additional computation and delays) and, whenever possible, without introducing extra
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physical equipment. This imposes several challenges, such as inferring a low-level network mapping
out of the application data received by upper layer protocols (e.g., when only a gateway is visible
for the industrial segment as an interface to the IIoT subnetwork) or estimate indicators through a
parallel communication channel when the primary one is inaccessible (e.g., in third-party cellular
networks).

Consequently, we must start by studying the amount and quality of data that can be potentially
collected from the IIoT network given a specific configuration. For the sake of clarity, we define
the concept of OT cell as a subsection of the entire industrial infrastructure where the same
underlying wireless technology is implemented. Thus, according to the classification of lower layer
protocols described in Section 1.1.3, we can draw some conclusions about the network parameters
that can be obtained:

• WPAN networks. Both classic Bluetooth and the low-energy specification (the latter
featuring the creation of a large-scale mesh of devices) support connectivity at IP-level
in certain nodes within a network, acting as bridges between the industrial domain and
the sensors at field level. As for IEEE 802.15.4 devices, gateways (e.g., coordinators in a
Zigbee network) often centralize the retrieval of data from the lower layers of the industrial
architecture. Therefore, the network-related information that is possible to extract in a OT
cell of this kind is the one retrieved by the gateway that interconnects it with the upper
levels of the infrastructure. This usually implies that the original information exchanged
by sensors/actuators using these lower layer protocols is translated by the gateway into
common industrial standards such as ModbusTCP, thereby losing granularity when studying
the precise topology and QoS indicators. Consequently, we have three alternatives: (1) to
deploy a capillary network that captures and relays the missing information through an
auxiliary network interface (introducing hardware in exchange); (2) to manually provide
the network mapping information at low level and establish the relationship with high level
packets (lacking the QoS information); (3) to rely on this aggregated data and carry out a
deep analysis of high level packets to infer the network mapping.

• Wireless Area Networks (WLAN). IEEE 802.11 standards, and in particular the latest
802.11ah standard, facilitate the creation of IIoT networks where a large number of devices
need to cover wider areas. In contrast with WPAN networks, this is achieved with a higher
power consumption, which enables the use of the IP protocol in all devices to cover areas
of up to 1000m in a single hop. In addition, Relay Access Points are used to extend the
connectivity to Access Points (APs), that transparently deliver the field level information to
the industrial network, without any routing between the endpoint and the gateway. From
the data acquisition perspective, this means that the network mapping and QoS indicators
are easily obtained by capturing and analyzing the exchanged traffic packets.
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• Cellular networks. When collecting low-level information in Cellular Networks, the
amount of packets that can be captured decreases dramatically due to the presence of a
public telecommunication network that processes all the traffic before it is consumed in the
industrial network. Thus, it is not possible to obtain QoS data while packets are relayed
through the multiple hops of the external infrastructure. Plus, the network mapping must
be inferred at logical level, by capturing application level traffic and accounting for every
source-destination pair within the industrial premises. This scarce amount of information
increases when an edge paradigm is leveraged (e.g., fog computing or mobile edge computing)
or when some of the cellular network infrastructure assets are controlled privately by the
company, instead of an external provider.

Wireless transmission
channel

Network parameters accesible
Network mapping QoS

WPAN
(IEEE 802.15.4,
Bluetooth)

Through an additional
capillary network,
analysing high-level data
from the gateway
or manually

From the IT/OT
network to the
gateway only

WLAN
(IEEE 802.11)

Yes, all data Yes, all indicators

Cellular Networks
and LPWAN

Logical network mapping,
unless external telecomm.
infrastructure or
edge network resources
are monitored

end-to-end indicators,
unless external telecom.
infrastructure or edge
network resources
are monitored

Table 5.2: Network parameters collected from the different IIoT cells

Table 5.2 summarizes the different methods for collecting low-level network information in
each IIoT cell. Still, stage 1 does not depend only on the information provided by lower layer
protocols – it also revolves around gathering information about the communications at application
level, as explained before. This can be classified into two classes: information about the production
chain from the field devices, and control commands issued from the IT section to the industrial
process. As for the former, the process of extracting the measured data from sensors is relatively
straightforward, depending on the upper layer protocol used to exchange data:

• In asynchronous message protocols and publish-subscribe mechanisms such as MQTT or
AMQP, the entity in charge of running the detection algorithm should be registered as
subscriber to receive the measurements from the broker (i.e., the intermediate gateway).
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• In RESTful architectures like CoAP or HTTP, the sensors readings would be accessed by
means of an API (published by a CoAP server executed on an intermediate gateway or
embedded in the own device on the field).

• In frameworks such as OPC UA and OneM2M, the retrieval of data requires additional
analysis of how it is generated and consumed by endpoints, since they respond to abstract
specifications of communication interfaces between services and components that are
integrated in specific domains. It usually implies reading values from a common server that
exposes a friendly API under a unified data model.

It is worth noting these communication channels very frequently use encryption measures to
ensure the confidentiality of data (e.g., CoAP is built on top of DTLS). This makes it necessary
that the entity that retrieves data from devices and executes the detection algorithm is allowed
to access the exchanged data and comply with the system access control policy.

On the other hand, we also should be able to retrieve the precise set of commands that are
issued from the managerial level of the industrial network, as explained before. According to the
architecture of a IIoT-based control system, this implies filtering the operations executed by a
PLC, which is hierarchically placed on top of an IIoT cell and ultimately issues commands to
sensors/actuators (potentially using intermediate IIoT gateways). These devices can operate with
a large range of protocols, ranging from open source standards like ModbusTCP or Ethernet/IP
to private alternatives such as S7 from Siemens. In this case, accessing to the commands executed
requires the development of dissectors for the particular protocol, which exceeds the scope of this
thesis. However, as there are numerous solutions available in the market that especially focus on
the analysis of these standards [218], it is possible to use external IDS results as inputs for our
system.

5.3.2 Correlation of Anomalies

In this section, we introduce the design of the rest of the stages of the Opinion Dynamics algorithm
to satisfy the APT traceability framework in IIoT networks. Note that we do not analyze stages
5 and 6, as these stages are independent from the underlying infrastructure once all necessary
information (e.g., opinions) is available. For this particular instantiation, we will make use of the
information extracted in Section 5.3.1, without resorting to external systems (i.e., existing IDS
systems). Note that, due to the nature of the framework, those IDSs can be integrated anytime.

The virtual agents created in stage 2 deal with the processing of data retrieved in stage 1 and
the features extracted from stage 3. From a physical point of view, this firstly means that the
central correlator that executes the Opinion Dynamics System must establish a communication
channel with every IIoT cell that is being monitored, so as to gather the network parameters
(e.g., a link to the gateway in a WPAN or to the AP in a WLAN network). Likewise, it must be
able to access the interfaces where data is published (e.g., the API in a CoAP based network).
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Then, from a logical perspective, this information in bulk is divided and assigned to virtual agents
created by the correlator.

As deeply explained in Section 4.2.1, these agents are threads in charge of individually
monitoring the security of an IIoT device within the topology to subsequently derive an opinion,
following a 1:1 relationship between devices and agents. Equivalently, an agent receives the traffic
(containing data and commands) that is exchanged by its assigned device, as well as the QoS
indicators of every connection that it shares with the rest of neighbours. At this point, the
physical network mapping conducted in stage 1 is essential for the central correlator to make such
assignment of information. Nevertheless, as discussed before, the knowledge about the physical
topology is not always accurate, due to the presence of intermediate gateways that aggregate
data from a mesh of constrained devices and hinder the retrieval of network parameters. In this
case, when the actual mapping cannot be determined by any of the methods presented in Table
5.2, we can assume the existence of agents that encompass a set of multiple devices.

Once agents are created and provided with the information that they need to process, they
perform an extraction and selection of features from that data in stage 3. These features refer to
variations in certain magnitudes or indicators, which evidence anomalies suffered as a consequence
of an attack. Some examples of features applicable to IIoT networks are:

• Number of connections established and devices accessed.

• Traffic load (total number of packets exchanged).

• Type of communication protocols used.

• Delay experienced in every communication channel.

• Ratio of lost/corrupted packets.

• Frequency and type of commands issued.

• Precise data values transmitted by sensors.

These features are monitored periodically (as often as the Opinion Dynamics is executed to
visualize the latest changes in the network). A model is created to represent the behavior of each
one so that it is updated in every period. Even though diverse alternatives could be proposed for
formalizing this model, here we conceptually propose a simple but accurate approach, which is
internally used in commercial IDSs: in the case of quantitative values (e.g., number of packets),
the average is calculated. As for discrete features (e.g., devices accessed or protocols used), the
model is represented with the set of occurrences for each value (e.g., number of packets sent to a
given recipient or using a certain protocol) and their corresponding average. Either way, the values
obtained for each feature are compared in each period with the existing model, which is assumed
to reflect the behavior of the system in normal conditions (therefore, a initial phase of training
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(b) Multiple Opinion Dynamics instances for features

Figure 5.9: Alternatives for the opinion formation in stage 4

is assumed). As a result, the standard deviation provides a value of anomaly for quantitative
features. In discrete ones, the value of anomaly can be determined by analyzing the individual
deviation in the number of occurrences. This way, the extraction of features would be complete
for each agent.

All of these features are closely related to intrinsic network aspects of the devices monitored.
A future work could involve the analysis of host-based parameters in the own IIoT devices as a
source of anomaly for the opinion computation. For instance, the usage of CPU and memory,
the processes running, and others. This would require the integration of capillary networks that
retrieve such information from the OT cells or using external detection systems. This is possible
due to the adaptable nature of the framework, which is open to include all kinds of features.
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The opinion formation in stage 4 is the last stage before the correlation of anomalies and
analysis of detection results. The opinion of each agent is formed at this point by deriving a
single value from the set of anomalies sensed in each feature, which implies making a selection or
aggregation. Diverse policies could be applied and compared, being the easiest to select the feature
whose anomaly value is the maximum as the opinion for a particular agent. This would make the
overall results of the Opinion Dynamics system very sensitive to changes, since a singular feature
from the complete set of indicators measured by an agent could influence a whole neighbourhood
of agents and raise risk alarms indicating the presence of a threat. Still, this approach could
be recommendable in highly critical infrastructures where a fine grained auditing is needed. An
alternative to selection is the aggregation of features, using the average of anomalies sensed for all
the indicators considered (as long as they are not zero), for instance. However, the drawback of
this approach is that greater anomalies measured in important features would be occulted to the
correlator due to the aggregation with lower anomalies in other features. In this case, a weighted
average of features would be interesting.

Lastly, there is one more way to implement this stage and avoid the loss of detail as a
consequence of a selection or aggregation. It consists in conducting a Opinion Dynamics correlation
per feature considered, in such a way that multiple instances of the detection algorithm are executed
in the centralized entity, where each one concerns on a specific indicator. In that case, the correlator
would take the anomalies in each feature as individual opinions for all the Opinion Dynamics
instances (equivalently, each device would have an agent per feature monitored). As a result,
it would be possible for a security administrator to visualize the state of connections, delays,
protocols, etc. with a deeper level of detail. All these three alternatives are summarized in Figure
5.9 and shown in the next section through a simple case study.

After the formation of opinions in all agents of the network, they can be correlated and
analyzed in stages 5 and 6 using the Opinion Dynamics algorithm to visualize the clusters of
agents that expose the same degree of anomaly measured in their surroundings. This information
is useful for computing health indicators for diverse areas and carry out a precise analysis of
the historical data to draw conclusions about the attack pattern and predict future actions, as
explained in Section 4.6.

5.3.3 Case Study

After the study of the applicability of the Opinion Dynamics in the IIoT, this section focuses on
showing the benefits of a conceptual deployment of this approach by means of a theoretical study
case. Additionally, the three aforementioned alternatives for conducting stage 4 are discussed. In
order to achieve these goals, we will follow the same methodology of Section 4.1.3 using graph
theory.

The formalization of the network is explained in the following. Firstly, we define a graph
that represents the physical interconnection of the Opinion Dynamics system with the multiple
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WS 1WS 2
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BA 1
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BA 5
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Opinion Dynamics Correlator

Figure 5.10: Example of network composed by two IIoT cells, using the Watts–Strogatz (WS)
and Barabási–Albert (BA) model

IIoT cells that are present in the infrastructure, from which data is retrieved. For this purpose,
we leverage the Watts-Strogatz [296] and the Barabási-Albert model [297]. Both distributions
permit to simulate the topology of an IIoT cell, being the former used for producing graphs with
small-world properties [298] and the latter for generating random scale-free networks [299], such
as the connection of devices on the Internet. Here, we generate two simple cells of seven devices,
which are accessed by a central correlator through the nodes which hierarchically have more
connectivity (the Power Dominating Set [241], as in [300]), in order to simulate the presence of
gateways, as explained in previous sections. The resulting network is depicted in Figure 5.10, that
illustrates the implementation of the Opinion Dynamics correlator and its connection to the rest
of nodes, which are labelled in each IIoT cell according to the model used.

Therefore, in this case study we assume the existence of a central correlator that is able to
gather the network parameters and the communication information from all devices across each
IIoT cell, using the strategies described in Section 4.2.1. Afterwards, the virtual agents located
in this central correlator will be able to extract features and subsequently form their opinions.
In order to show the impact of an attack over their computation, we use the same methodology
as in Section 4.1.3, to formalize the attacker model of APTs in a sequence of steps. Each step
has its own detection probability, which is quantitatively reflected in each agent to simulate a
certain degree of anomaly measured. In our case, we provide these agents with a minimum set of
anomaly detection rules based on two features: (1) the delay in their communication channels,
and (2) the data values transmitted through those links.

In this case study, we will perpetrate a simple two-step APT attack against the IIoT cell
based on the Watts-Strogatz model. These two steps are as follows: an initial intrusion against
node 2, and a lateral movement towards node 4. In this basic example, if we consider that this
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Figure 5.11: Opinion Dynamics clusters after a lateral movement in the IIoT cell

propagation makes use of a covert channel attack (which usually leverages delays introduced
arbitrarily in the packet transmissions [301]), then each affected agent should raise a level of
anomaly with respect to that feature. This would serve as input to ultimately execute the Opinion
Dynamics algorithm and narrow down the attack.

Figure 5.11 plots the result of the Opinion Dynamics correlation between the seven agents
that belong to the Watt-Strogatz cell. The lines represent every agent opinion, that ultimately
form two consensus after executing the algorithm with 10 iterations, as explained in Section
4.3.2. This means that the network is divided into two clusters of nodes that suffer two grades of
anomalies: one group of five agents (that sense a 10% of anomaly) and another one of two agents
with 90% that correspond to the nodes involved in the lateral movement. Here, stage 4 has been
carried out by selecting the feature whose anomaly value is higher, that in the case of node 2 and
3 is the delay. As for the rest of agents, the level of anomaly around 10% appears as consequence
of a negligible variation on their data values transmitted. In case that feature aggregation was
used instead of selection, an average of the anomalies in both features would be shown on the
figure, which only serves as indicator that a greater-than-zero anomaly is occurring. Otherwise, if
an individual Opinion Dynamics instance were used for each feature, the bottom of the plot in
Figure 5.11 would not appear in the delay one (since those nodes do not show any variation of
delay), whereas the top of the plot would not appear in the instance that concerns on the data
variation (and opinions of nodes 2 and 3 would also be merged into the bottom cluster due to a
low level of variation).

The next step of the framework execution would be to keep track of the multiple APT
anomalies over time, associate them with actual attack phases and create a map with the
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complete threat evolution throughout the network. This will be illustrated with a real setup
in Chapter 6. Altogether, this brief description of threat detection exhibits how a security
administrator could benefit from different correlation configurations to trace down the implicated
nodes of an attack and accurately filter the anomalies suffered across the topology at all levels.
This helps to identify the origin of the infection while anticipating further actions to introduce
effective response procedures.

5.4 Applicability of Opinion Dynamics in the Smart Grid

5.4.1 Resilient Architecture for Fault Detection

The traditional architecture of the electricity grid has evolved in great measure since its original
conception where the production and distribution of energy were supervised by a centralized
system. With the introduction of Internet communication technologies in this scheme, there
has been a shift towards a more interactive, interconnected and dynamic grid model of the
21st century, known as the Smart Grid. Its main benefit is the two-way flow of information,
through which the user (i.e., by means of a smart meter installed in the household) and the utility
company can communicate, making it possible to perform a fine-grain consumption metering,
whose information is accessible to both of them [302]. This allows the user to participate in
programs that aim to reduce electricity use when energy prices rise, and also allows him/her to
sell the electricity generated at home (e.g., using solar panels). The utility company can also
take advantage of this technology to improve demand response, by managing the generation and
delivery of electricity in real time, so that grid operators can rapidly anticipate high peaks of
demand and avoid power outages.

This metering model is put into practice through the Advanced Metering Infrastructure (AMI).
This comprises all the elements that collect and transfer the consumption data measured in the
home domain through many aggregation points until it reaches the utility provider end, where
the information is analyzed for billing and control purposes, by means of the so-called Meter
Data Management Systems (MDMS).

This data acquisition process requires both industrial and information technology equipment.
On the one hand, the industrial network is conformed by the SCADA systems that are leveraged
to remotely access the devices that sense the energy flow of many consumers in real time. These
include, for example, the RTUs and PLCs, that are present in the substations spread over the
WAN (Wide Area Network) or the Smart Grid. On the other hand, support for the MDMS
procedures by interconnecting these industrial assets with external networks (e.g., Internet) and
innovative technologies (e.g., cloud computing) to undergo further data analysis and support
demand response.

This growing interconnection of SCADA systems (which traditionally work in isolation) has
increased the number of cybersecurity threats in this context [303], favoring the appearance of
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sophisticated attacks which aim to stealthily compromise nodes within the control network over
a long period of time, as is the case with APTs. The presence of these attacks can damage the
infrastructure and jeopardize the availability of resources, which translates into the inability
to hold the power supply and potential blackouts in the grid [304]. By the same token, safety
measures must also be introduced to preserve the availability of the power supply against high
peaks of demand (that may also be provoked on purpose), hence avoiding outages.

For the aforementioned reasons, we firstly present the design and implementation of (1) a
defense mechanism based on the APT traceability framework to detect changes in the industrial
network arising as a consequence of these attacks. In addition to ensuring security, here we also
address the safety of the Smart Grid resources by implementing (2) a load balancing model that
permits a successful energy supply for the entire grid taking into consideration the prediction of
future consumption. Both safety and security measures are included in a novel architecture to be
easily integrated in the current Smart Grid conceptual model [305].

Architecture and Initial Assumptions

The architecture of our approach is presented in this section and has two main purposes: (i) to
predict high electricity peaks in comparison with the recent demand to uniformly distribute the
energy supply to the consumption areas, and (ii) protect the control from external attacks (e.g.,
APTs). To achieve both goals, and therefore, the contributions of the work presented here, an
architecture of two main networks is modelled: an energy network (Ne) and a communication
network (Nc). These two networks contain five independent but strongly interconnected subnet-
works, which are shown in Figure 5.12. Each subnetwork contains a set of Internet-enabled nodes
(e.g., meter concentrators, gateways, RTUs, etc.) capable of interconnecting by themselves with
other subnetworks. As for the energy network, the following subnetworks have been defined:

Ne
1 illustrates the customer’s premises, subdivided into several power distribution areas or

communities. In this case, each area characterizes a sub-part of a population, demanding
energy according to its needs, requirements and life quality.

Ne
2 represents the spinal column of the entire energy generation and distribution infrastructure,

which remains in a fixed and static deployment and configuration state.

In practice, electricity generators in Ne
2 are interconnected in the power grid with the con-

sumption areas in Ne
1 through rigid transmission and distribution lines. Besides these energy

subnetworks, we also deal with communication subnetworks that firstly transfer the energy usage
data from the consumers to the provider and secondly transmit the control commands from the
utility to adjust the generators according to the demand. In this sense, we define:

Nc
1 represents the set of smart meters that collect the measured energy usage data in the home

domain.
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Figure 5.12: Five subnetworks-based architecture

Nc
2 corresponds to the cloud computing-based communication system to centralize all the compu-

tation and the forecasting process in nodes with high capacity to estimate new and nearby
states, such as servers or proxies. In this way, it is possible to decouple the control processes
and the demand management from additional computational processes that are required
for the prediction.

Nc
3 embodies all the control and automation processes, required to protect the most critical

underlying systems, such energy distribution and transmission substations. In this context,
different cyber-physical elements are characterized such as acquisition and supervision
elements working as driver nodes (e.g., RTUs, PLCs or gateways), and observation and
control elements serving as sensory and reactive devices (e.g., sensors and actuators).

In real world, cloud resources belonging to Nc
2 aggregate the information received from the

users (via their smart meters embedded in Nc
1) and compute an estimation of future consumption.

According to this forecast, the generators of the production system are programmed by means of
the actuators placed in the Nc

3 subnetwork, which finally provide the electricity supply back to
the consumption areas.
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However, the conceptual construction of each of these subnetworks further entails working
with aspects associated with graph theory and other concepts, related to structural controllability
[306] and dominance [307]. For example, components of the subnetwork Ne

1 and Nc
2 are modelled

on the basis of a random pattern, where the greater part of Ne
1 is permanently linked to Ne

2

elements (due to the fixed deployment of the energy distribution infrastructure) whereas a few
nodes of Nc

2 are permanently connected to elements of each area in Nc
1 and driver nodes in Nc

3.
Nc

3, to the contrary, follow specific network constructions centered on power-law distributions
of type y ∝ x−α, introduced in Section 4.1.2. This constraint is due to the structural features
of real control infrastructures, which are based on multiple interconnected substations with a
few industrial nodes (e.g, RTUs, sensors, actuators). This conceptually follows a hierarchical
network architecture based on nodes with high degree (i.e., the number of edges incident on the
node) connected to nodes with lower degree; similar characteristics to the power-law distributions
as stated in [308] and [243]. The authors in [243], additionally, justify why other models are
not applicable for power grids, such as the small-world distributions. According to them, the
conditions given by, for example, Watts and Strogatz [245] are not satisfied by Power Grid samples
due to physical and economic issues.

Ne
2, in turn, is based on specific grid distributions of type IEEE 118-bus or IEEE 300-bus as

specified in [309], where we extract a subpart of these models to lead the practical case studies
and the experimental results presented later.

To formalize the problem, we characterize two graphs, one related to N e and another one
to N c. For N e, let Ge(V e, Ee) be a directed bipartite graph, such that V e is the union of the
nodes in Ne

1 and Ne
2, and the set of n customer areas in Ne

1 are connected to m grid generators of
Ne

2 through grid connections in Ee. For the resilience and load balancing, we assume that each
area is associated with δ generators, such that δ ≥ 2. Within N c, we consider Nc

3 to analyze the
adversarial influence on the operational processes. Let Gc

3(V
c
3 , E

c
3) be a directed graph, containing

the minimum set of driver nodes (referred to here as DN ) capable of injecting control signals into
the rest of the elements in V c

3 , also denoted here as the set of observed nodes (the set O), such
that DN and O ⊆ V c

3 , all of them connected through communication links in Ec
3.

Under these conditions, several threat assumptions should be considered during the modeling
and simulation of study cases. Firstly, the threats to be analyzed in this section are concentrated
in Ge(V e, Ee) and Gc

3(V
c
3 , E

c
3), where the adversarial model follows a weak approach, in which it

is also assumed the attacker has high mobility in both subnetworks (to perform attacks against
the power supply and the control network, respectively). The threats can be multiple and varied,
where the adversary may target nodes or edges, and depending on the network, the interests
may be very different. An attack in Ne

1 may, for example, focuses on producing concurrently
anomalous deviations in the real demand and potentially overloading the power grid, misusing the
energy during peak times. Contrarily, an attack in Gc

3(V
c
3 , E

c
3) may mean the constant removing

of a few random communication links in specific nodes, simulating a denial of service. In this case,
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the adversary’s goal would be to alter the structural controllability to strategically unprotect the
control itself and the functionality of Ne

2.
Given this and the interconnected nature of the electrical systems and the technologies for

the control and automation in real time, two independent, but narrowly related, approaches are
presented here. These are intended to protect the following: (1) the processes of production and
distribution of energy and (2) the control processes in response to unexpected changes which
may also have a (mild, severe or irreparable) rebound effect on the dependent subnetworks (e.g.,
outages in Ne

1, overloading in Ne
2) [310].

Consumption Prediction and Load Balancing

Taking into account the aforementioned architecture, the first task required for the cloud infras-
tructure in Nc

2 is the ability to provide load balancing support to the generators according to the
demand, for an effective electricity supply. Specifically, the main concern is the anticipation of
upcoming peaks of demand, which could also be caused on purpose to cause blackouts in certain
areas of the grid. By possessing this knowledge in advance it is possible to rapidly distribute the
existing demand, at a given moment, among all the generators available in the grid (located in
Ne

2), so that the affected consumption areas can keep receiving the requested energy and the
continuity of the service is ensured.

In order to test the proposed load balancing algorithm in practical terms, it is desirable to
firstly devise a way to simulate the generation of consumption data in real time. We intend
to imitate the demand response under normal conditions and in the presence of anomalies (by
introducing eventual outages in the data), with the aim of performing predictions that serve as
input for the load distribution. This way, we can check the effectiveness of the algorithm against
peaks and adverse conditions in a timely manner. For the sake of veracity when designing the
generation of the bulk data that is used to check the accuracy of predictions, we have based
our work on the datasets provided by the European Network of Transmission System Operators
for Electricity (ENTSO-E) [3]. This organization represents 43 electricity Transmission System
Operators (TSOs) from 36 countries across Europe, and provides hourly load values of all those
countries at monthly intervals. Specifically, we have designed a custom dataset comprising all the
hourly consumption values (in MW) of Spain from 2015, the last year for which data is available.
If we show all these samples in a window of 24 hours, we obtain the graph in Figure 5.13.

As we can see in the figure, all the daily consumption values over the 365 days are plotted,
resulting in a curve where most of the electricity demand is concentrated in the evening and
decreases during the night. Based on this information, we use the actual data to define a
mathematical function (henceforth the F function) that automatically generates consumption
values indefinitely. For that, we perform a non-linear regression using the Gauss-Newton algorithm
that finds a function of the type y = Asin(Bx+ C) +D that conforms to a set of data points
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Figure 5.13: Hourly load values of Spain in 2015 [3]

(xi, yi). For the sake of clarity and the purpose of showing the efficiency of the prediction and
load balancing method, we assume that the resulting consumption value only depends on the day
of the week and the time of the day at which we want to predict the usage value (as independent
variables of the function). Additionally, the month could be considered to analyze the influence
of seasons. However, to provide a degree of randomness in the data and avoid returning the
same value for a given set of input arguments (i.e., day of the week and hour), we consider
adding certain deviations, whose value is arbitrarily chosen from a uniform distribution U(−λ,λ),
where λ represents the maximum divergence value. In addition, we have included the possibility
of experiencing a peak of consumption (i.e., a considerable increase in certain values) under a
probability γ. We must also mention that the original electricity values from the datasets have
been divided by 100 to represent the conceptual consumption of a single area or province in Spain.
By doing this, the demand of multiple consumption areas over the grid is simulated, which is
accomplished through the execution of the aforementioned F function, in parallel, for several
instances. Apart from this function to simulate the consumption, we must find a way to predict
future values based on previous behavior. Altogether, this information will serve as input for the
load balancing algorithm executed in the Nc

2 systems, that is finally responsible for the prevision
of the energy supply for all areas within the grid.

Here, the prediction of the energy usage between neighborhoods is based on time series
forecasting [311]. Contrary to traditional machine learning methods, which also work with multiple
datasets but treat all the observations equally, time series adds an explicit order dependence to
all of them: the time dimension. This gives higher importance to the last observations rather than
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all data available, which is valuable for prediction. In addition, the analysis of time series can also
determine seasonal patterns, trends or the relationship with external factors. In our case, the aim
is to forecast future values of a time series, that is, the one described by the consumption curve.
Specifically, we use the statistical model ARIMA, which stands for AutoRegressive Integrated
Moving Average, and counts on three different components, expressed as ARIMA(p,d,q):

• Autoregression (AR): use of a dependent relationship between an observation and a
number of lagged observations, represented by the p parameter.

• Integrated (I): in order to make the time series stationary, it differentiates between raw
observations (e.g., subtracting an observation from an observation at the previous time
step). The number of times that the observations are differentiated is represented by d.

• Moving Average (MA): use of a dependency between an observation and a residual error
from a moving average model. The size of the moving average window is represented by q.

These parameters (p,d,q) are characterized according to the general ARIMA model:

Yt = −(∆dYt − Yt) + φ0 + Σp
i=1φi∆

dYt−i − Σq
i=1θiεt−i + εt (5.6)

where φ1, ...,φp are the parameters of the autoregressive part of the model and θ1, ..., θq belong
to MA, and the rest of parameters are part of the integration filter. Lastly, ε adds an error
margin. The parametrization and accuracy of the ARIMA model for our purposes are discussed
later, specifically in Section 5.4.1. The result of applying this model provides a set of future
energy readings, taking into account the last consumption reports. As explained, once we have
this information, the last step for load balancing consists in uniformly distributing the available
electricity supplied by the generation resources in the grid among all the consumption areas
at a given moment (which is represented with the graph Ge(V e, Ee)), taking into account the
forecasted value of the amount of requested energy by each of these areas.

In more detail, for the design of the load balancing algorithm, we have the following constraints.
Let us assume a set of generators G of Ne

2 that supply electricity for a set of areas A. Each
generator i has a maximum load denoted by gi, and each area j demands aj units of energy,
having 1 ≤ i ≤ |G| and 1 ≤ j ≤ |A|. As initial conditions, we accept that:

• C1: there does not exist any area j whose aj is higher than any gi, for all i ∈ G. This
ensures that every area can be supplied by at least one generator.

• C2: the sum of electricity requested by all the areas does not exceed the sum of electricity
supplied by the generators; formally,

∑|A|
j=1 aj ≤

∑|G|
i=1 gi. This ensures that all areas can be

provided with the requested energy.

Therefore, what we want to find is a relationship R ⊆ A x G between areas and generators,
such that each area is assigned with a generator and the sum of electricity requested by the
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areas associated with a generator, does not exceed its capacity. This can be modelled as a search
algorithm, since we explore a set of candidate solutions in the form of a tree, beginning with the
initial one (an area is assigned to a generator) and gradually adding associations in the search
for a valid solution, which is when all areas are assigned with a generator and C1 and C2 are
consistently satisfied.

More specifically, we have designed a novel algorithm that makes use of backtracking, which
is widely used for constraint satisfaction problems [312]. It incrementally builds candidates in the
solution, and discards each partial candidate as soon as it determines that it does not comply
with the proposed conditions, which makes it impossible for the candidate to be completed as a
valid solution. The resultant technique is explained in Algorithm 10.

Algorithm 10 Load Balancing (A, G)
output (R = {(aj , gi)} where 1 ≤ i ≤ |G| and 1 ≤ j ≤ |A|)
R ← {}
R ← SolveLoadBalancing(A,G,R)

function SolveLoadBalancing(A,G,R)
if |R| = |A| then

Found ← True return Ra

else
Found ← False
j ← 1
while not Found and area aj not assigned and j ≤ |A| do

i ← 1
while not Found and i ≤ |G| do

if energy assigned to generator i+ aj ≤ gi then
R′ ← R

⋃
(aj , gi)

SolveLoadBalancing(A,G,R’)
end if
i ← i+ 1

end while
j ← j + 1

end while
end if

end function
aA solution where an assignation has been found

In this case, a partial candidate represents a relationship R where not all areas are assigned
to a generator. As described, the algorithm begins by assigning one random area to one random
generator, and keeps iterating in the search for a valid solution, assigning new areas to generators
if their capacity still allows it and recursively calling the function (which is modelled by the inner
loop of the algorithm). Otherwise, the partial candidate is discarded and another area is assigned
in the first loop of the algorithm. Thus, the Found variable finally indicates whether, or not,
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there is a feasible relationship between areas and generators that successfully distributes the
energy, complying with C1 and C2 conditions.

Fault Detection and Control Protection

Together with the prediction and load balancing algorithm that ensures the safety of the power
supply infrastructure, the other task required for the resilient architecture consists in the security
of the control elements belonging to Nc

3, represented with the graph Gc
3(V

c
3 , E

c
3). We aim to secure

the structural controllability domain by applying a distributed decision algorithm that enables us
to detect subtle changes in the underlying network, that may be the result of an stealth attack.
If we assume a set of finite agents uniformly distributed over the industrial network (named
driver nodes in Section 4.1.1), it is possible to execute cooperative algorithms that allow them to
accurately identify which parts of the topology have suffered changes (i.e., playing the role of
agents). This, in turn, is determined by exchanging information about their surroundings with
each other. This information can be used to deploy effective recovery techniques to guarantee the
continuity of the service, as we have demonstrated with the APT traceability framework. In this
section, we propose a first approach for its applicability in a Smart Grid scenario, based on the
detection of topological changes, following a similar model to the one described in Section 5.1.
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Figure 5.14: Observation rules for the election of the driver nodes

In this applicability analysis we have considered that the correlation is conducted by a subset
of nodes within the topology (the driver nodes), implementing a distributed deployment of
physical agents. More specifically, the set of driver nodes (DN ∈ V c

3 ) can be selected according
to the following two rules, the OR1 and OR2 conditions, that were introduced in Section 4.1
and are represented in Figure 5.14. This means that every edge in Ec

3 is adjacent to at least one
member of DN.

Therefore, the detection algorithm between these agents is a light modification of the Opinion
Dynamics algorithm described earlier, processed by each driver node nd in Gc

3(V
c
3 , E

c
3) in discrete

time. This approach creates a fragmentation of the affected zones within the network once the
agents share information about their surrounding topology.

For the computation of Opinion Dynamics it is necessary to define a matrix W of size n

x n (with n = |V c
3 |) holding the weights that represent the confidence between the agents’
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opinions. Each agent assigns a weight to the rest of agents in its surroundings (particularly
those nodes sharing a communication link) based on the closeness between their opinions.
Altogether, the vector xnd(t) holds the opinion of each driver node such that it is updated by
xnd(t+ 1) = W (t, xnd(t))xnd(t), where t refers to another iteration of the algorithm. The logic
of this equation is equal to xnd(t + 1) = wi1xnd1(t) + wi2xnd2(t) + · · · + winxndn(t) such that
wij = 1. Each opinion is originally calculated according to the new state of the network with
respect to the original topology, which is computed with the difference in the node betweenness
centrality. This way of representing structural behaviors was introduced in 4.1.1 and characterizes
the principal control loads in Nc

3 [313], assuming that the main network control dynamics flow
through the shortest paths. Therefore, any topological variation impacts on BC and subsequently
on the new upgrading of xnd(t+ 1) in time t+ 1. Once we execute the Opinion Dynamics with t

tending to infinity (i.e., a high number of steps), it is possible to visualize the consensus between
clusters of agents about topological changes on different parts of the network. Opinions - 1 mark
topological changes within Nc

3 that are generally located in the surroundings of those local driver
nodes that detect the deviation. This also means that a persistent, yet subtle change, over time,
with values close to or exceeding 0.5 can mean the approximation of a structural change.

To prove the effectiveness when detecting such topological changes, we must simulate the
action of a stealth attack, taking its nature into consideration. Particularly, these mutations
appear as a consequence of the lateral movements taken to find new victim nodes and hence gain
influence within the network. These attacks have to be planned strategically instead of leading
arbitrary attacks, where the target must be focused on the control and its dynamics. Based on the
general attack behavior described in Section 5.1, we have defined three different attack models:

STG1: the attacker focuses on an arbitrarily chosen node within the network and performs a
change on any of its adjacent edges, to subsequently move to a neighbor node in a random
way.

STG2: the threat is concentrated on those driver hubs with the highest degree d+ and d−, where
the attack aims to randomly remove a few edges.

STG3: the adversary is able to attack the node with the highest influence over the control by
simply observing the traffic and its bandwidth. Through graph theory, this representation
is possible through the highest edge betweenness centrality of the neighborhood, as specified
in Section 5.1.

Taking into account these three threats, Algorithm 11 outlines the life cycle described by a
stealth intrusion like this. It takes the original network described with Gc

3(V
c
3 , E

c
3) and performs

a succession of individual attacks against the edges Ec
3 (i.e., either the addition or removal of

incoming or outcoming edges), resulting in the modified network represented with G′
3(V

c
3 , E

′
3).

After each edge modification, the attacker propagates to an adjacent node in accordance with
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one of the strategies presented before. At this point, the Opinion Dynamics algorithm can be
executed to detect the portions of the network that are affected by the attack.

Algorithm 11 Stealth attacks life cycle
output: G′

3 representing the resulting matrix M
local: Gc

3(V
c
3 , E

c
3), numOfAttacks, STGx

attackedNode ← random vi ∈ V c
3 ; G′

3 ← Gc
3

for i:=1 to numOfAttacks step 1 do
attack ← randomAttack over attackedNode (edge addition or removal)
update G′

3 based on attack
if STGx = 1 then

attackedNode ← random vi ∈ V c
3

else if STGx = 2 then
attackedNode ← NeighbourWithHighestDegree(M,attackedNode)

else if STGx = 3 then
attackedNode ← NeighbourWithHighestBetweenness(M,attackedNode)

end if
end for

Experimental Results and Discussions

After successfully designing mechanisms to firstly ensure the safety of the grid and also the
security of the control elements involved, our aim is to test these services in practice.

To start with, we have to implement the F function in charge of generating the consumption
plot that in conjunction with the information provided by the prediction process, serves as input to
the load balancing algorithm. As previously described, we have leveraged the annual consumption
dataset in Spain as of 2015 to adjust a nonlinear correlation of the data to create the F function.
This function simulates the consumption for a specified hour and a dayOfTheWeek, over which
we have also added some extent of randomness λ (here we assume λ = 15) and a potential peak
(a value of 50 has been considered) in the energy usage under a given probability γ. The result is
the following expression:

F = 100 ∗ cos(hour/3.82 + π/3) + 100

−8 ∗ dayOfTheWeek + λ+ peak
(5.7)

Where the output value is expressed in MW, and holds the value of consumption for certain
regions within the grid. For example, Figure 5.15 shows the result of executing the F function for
an entire week (i.e., showing the evolution over its 168 hours), with a peak probability of 5%.
Taking a close look, we can rapidly see the two peaks produced on Monday and Friday at night.
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Figure 5.15: Weekly consumption generated by F function

It is also clear that the overall progression evolves towards a lower consumption as the weekend
approaches.

Once we have modelled the F function and we are able to successively generate consumption
values over a time period, we move on to parametrize the ARIMA statistical model so as to treat
the consumption output as a time series and perform the forecasting. To find the optimal value for
the p, d, and q parameters, it is necessary to follow a formal methodology that estimates each one
by examining the AR or MA behavior of the series and testing with initial values to subsequently
analyze how the model fits the original data [314]. For this purpose, the Simple and Partial
Autocorrelation functions (AFC and PACF, respectively) are used. Once the appropriateness of
the model has been compared, its residual errors are checked with the Akaike Information Critera
(AIC). For our particular case of forecasting the consumption time series, we have automated this
process through the R forecast package [315], which enables the estimation of its coefficients and
also gives a ratio of likelihood. For example, if we gather the consumption values of ten days, it
determines that the ARIMA(3,0,1) model is suitable to fit the information, the value of which is
computed as follows (taking into account Equation 5.6):

Yt = a1Yt−1 + a2Yt−2 + a3Yt−3 + b1εt−1 + εt (5.8)

After defining the model, it is possible to perform the prediction of upcoming days. Figure 5.16
represents the forecast of two more days after a given period of time, which shows the accuracy
of the ARIMA when predicting the consumption curve, that follows the expected progression.
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Figure 5.16: Forecast after 10 days using ARIMA

Once we have the information about the future status of the grid at our disposal, we are
in a position to execute the load balancing algorithm that uniformly distributes the electricity
demand among all the generators available. Specifically, the energy usage prediction for all the
individual areas spread over the Smart Grid provide sufficient input to the utility to carry out
demand response. Recalling the concepts of the proposed architecture previously introduced, Ne

2

represents the energy distribution infrastructure, composed by the generators and substations
that supply the electricity to the consumption points (e.g., neighborhoods and electric vehicle
charge points). These assets are interconnected following the network described by the graph
Ge(V e, Ee), where we assume there are θ areas demanding energy to δ generators.

In the interest of veracity and taking into account that the aforementioned network remains
rigid in its topology and configuration state, we have considered the IEEE-14 and IEEE-57 bus
systems to carry out simulations based on a real-grid test case [316]. Both of them consist of
a simple approximation of the American Electric Power system as of the early 1960s. The first
system has 11 loads (assumed to be the areas of consumption for our purposes) connected to
5 generators, whereas the second model has 7 generators and 42 loads. A test case has been
defined for each one, with as many areas (θ) and generators (δ) as each system respectively
defines. We have supposed that every generator i in the G set has a maximum load gi that is
randomly selected in a defined interval, and each area j demands aj units of energy whose value
is, at most, the maximum value of capacity for a single generator. Taking these parameters into
consideration, Figure 5.17 shows the simulation of the load balancing algorithm for the IEEE-14
and IEEE-57 systems, where we can see how the consumption areas are accommodated to the
available generators. To simplify, we have considered a maximum of capacity per generator of
10MW and 15MW, respectively.
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Figure 5.17: Load balancing for the two proposed systems

So far, we have put into practice the mechanism that preserves the availability of the AMI
infrastructure in its safety dimension. As for security, we now show the effectiveness of the
intrusion detection technique based on Opinion Dynamics. For this, we have randomly created a
network of a power-law distribution composed by 100 nodes, where we have conducted a set of
50 topological attacks as described in Algorithm 11. If we run the Opinion Dynamics algorithm
over the set of 70 agents (which are driver nodes of Gc

3), we can check how the opinions evolve to
reach a consensus and create different clusters within the network. More specifically, Figure 5.18
shows how the total number of agents of the network are divided into substantial sets depending
on the degree of change, for the three attack strategies that we define in Section 5.4.1.

In these plots, each line represents the change in the opinion of the corresponding agent when
the algorithm is executed over 50 steps (t = 50 in the Opinion Dynamics algorithm). Altogether,
the presence of big clusters of opinions means a confident consensus of agents about a change
experienced in a particular area, whose level of criticality is higher as it approaches 1. This is
particularly evident in the STG3 test case, where most of the agents agree on a topological
attack in a specific part of the network, with approximately 60% of change. This behavior occurs
due to the attack model chosen: the attack in STG3 always propagates to nodes with higher
influence on the control (i.e., a higher betweenness centrality, this is, the driver nodes), which
makes it easier for the agents to locate the subtle changes (and is also the most realistic pattern,
since the attacker commonly aims to gain the control of the network). This result is somewhat
similar to STG2, because it is expected that those nodes with a higher degree are precisely the
ones that have greater hierarchy over the network. However, since STG1 focuses on propagating
the attack in a random way, it is harder for the agents to reach a consensus on the portions of
the network that are affected, resulting in a fragmentation of multiple opinions. On the whole,
this constitutes a valuable insight into deploying accurate response techniques to overcome the
effects of one of these threats.
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Figure 5.18: Opinion dynamics after 50 attacks

5.4.2 Context-awareness Manager for Authorization Policies

With the introduction of the latest information, communication and operational technologies,
the Smart Grid allows the utilities to accurately monitor energy consumption so they can adjust
generation and delivery in near real time. It also helps users get detailed consumption reports
which are useful to save money by adapting power usage to the price fluctuation. However,
the power grid is also exposed to multiple cybersecurity threats and privacy issues inherited
from the ICT sector, which might end up becoming part of an APT. This section highlights
the contributions of SealedGRID [317], an EU H2020 project which addresses the protection of
the SG against these and other sophisticated attacks, providing a scalable, highly trusted, and
interoperable SG security platform. It is applicable to modern industrial networks as well as
traditional control infrastructures like SCADA and telemetering systems, abiding the existing
standardization work.

One of the main cybersecurity challenges with the Smart Grid field nowadays is the need to
implement an Access Control Management Service to control the information within the grid.
These services are essential to manage permissions of users, peripheral devices or programs when
they request to use certain resources within the infrastructure. The integration of IT technologies
and especially the cloud hinders the application of conventional access control models in industrial
systems (and particularly in the Smart Grid), for different reasons. These can be summarized
in the sharing of information among heterogeneous entities with different degrees of sensitivity,
performance and regulations. In this complex scenario, access control mechanisms deployed (either
in field devices, PLCs or cloud resources) aim to restrict what each entity should be able to
access and the connections that can be accepted, having the ability to deal with a diversity of
devices [318]. Current solutions are still in their infancy, due to the need for a dynamic and
fine-grained mechanism that deals with several users and constrained resources. Therefore, it
becomes mandatory to analyze the full range of requirements that access control presents in the
upcoming scenario, in order to accurately tailor the available models and propose new approaches
that meet these conditions.
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Figure 5.19: Overview of the SealedGRID infrastructure

At the same time, it is also crucial to pair this control with the continuous assessment of
the network in terms of security, as to permit or deny the use of certain services in case of risk.
This is usually enabled by context-awareness mechanisms, which retrieve data about the
production chain in real time (e.g., network events, alarms, raw traffic). Here we will show how
the traceability system based on Opinion Dynamics can be applied to detect attacks against the
grid infrastructure and keep track of the such incidents over time, as to assist the authorization
systems in a holistic manner.

Authorization in the Smart Grid: Background and Terminology

Firstly, we need to lay the base for the subsequent sections, by proposing a common terminology
and set of requirements for the design and implementation of an access control mechanism that
takes into account the security of the power grid in real time. More specifically, we will establish
assumptions with respect to the types of devices, actors and resources involved in the SealedGRID
architecture:

• The Smart meter is responsible for collecting electricity consumption readings.

• The Aggregators are intermediate nodes between the collector and the smart meters,
which sum the individual readings received by the meters and transmit the result to the
collector.

• The Utility accumulates high-frequency aggregated values. It can either use these values
as is for demand response (e.g., control the electricity consumption in a specific area) or
sum them for billing purposes.
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These entities are represented in Figure 5.19. In SealedGRID, with respect to the internal
architecture of these entities, they embody different internal modules in charge of performing
the cryptographic operations (i.e., key management, authentication) as well as the authorization
procedures, which are coupled with privacy preserving techniques that ensure the security of the
overlaying applications running on top of these devices.

We also need to lay the base for the different components involved in the authorization
process. In the Smart Grid scenario, when different domains are interconnected to each other
and collaborate, it is common to apply authorization frameworks based on the presence of Policy
Information Points (PIPs), Policy Enforcement Points (PEPs) and Policy Decision Points (PDPs).
These are entities that uptake different responsibilities on the authorization procedure (i.e., the
decision of whether granting access to a resource that has been requested):

• Policy Information Points (PIPs): these are processes that are strategically located
everywhere across the Smart Grid (both in the household and the aggregators and utilities)
to gather as much information as possible for computing the access decision on the PDP.
This information is extracted continuously by the context-awareness module, which will
be later explained. In practice, all the sealedGRID components will be considered as PIPs,
since they provide information with the aforementioned module.

• Policy Enforcement Points (PEPs): these are the processes that perform the requests
to the rest of the SealedGRID devices when required. More specifically, these requests
are relayed to the corresponding PDP in charge of controlling the access to the protected
resources, together with the information gathered by local PIPs.

• Policy Decision Points (PDPs): these entities finally take the decision of whether
permitting or denying the access whose request has been received, applying the defined
control-access policy. At the same time, it also manages the authorization process.

For our particular concern, we will use a hierarchical architecture for the design and imple-
mentation of the authorization components (i.e., the PIPs, PEPs and PDPs). In that architecture,
there are multiple roles (e.g., users, operators, security administrators) spread over the topology,
which are studied when designing the actual control access policy. For our analysis, we can
assume that such policy is implemented through a hybrid access control mechanism based on
RBAC (Role-Based Access Control) and ABAC (Attribute-Based Access Control). For the actual
formalization of the access-control rules, the IEC 62351 standard can be used, in order to follow
a common framework of policies applied in the SG context. This is a reference in the sector to
address the security of industrial networks [79]. It is composed of eleven parts, where part 8 is
especially applied to control access mechanisms.

Here, we particularly focus on the assignation of PIPs, PEPs and PDPs to the infrastructure
components. On the one hand, all elements of this infrastructure can be considered as a PIPs
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Figure 5.20: Hierarchical architecture of the PEP and PDP entities

and PEPs, since all the SealedGRID devices embody a context-awareness module that provides
information at all times to ease the access control decision. At the same time, all the devices can
potentially submit an access request to the rest of elements within the same domain or others.
For instance, a smart meter could potentially access its local aggregator and then this device
could access its associated utility or other aggregators.

As for the decision points, different issues must be addressed. On the one hand, we aim to
enable multi-domain scenario where multiple utilities actively collaborate in a certain region
for the management of the power supply, which results in a federated grid that involves several
partners. In other words, we assume the existence of more than one utility interconnected. From
the authorization perspective, this leads to the necessity of creating a global access control policy
that applies rules for the secure and interoperable access between resources that belong to different
domains. As a consequence, the authorization component has to accommodate two classes of
PDPs: one global PDP to the entire system and another localized in the utility that allows it to
locally apply the policy to the regions that it controls.

At this point, it is the subject of study to implement the global PDP using a cloud computing
infrastructure. The reason is that we need to centralize the definition and readjustment of a global
access control policy to the whole set of utilities underneath. This way, by placing PDPs on the
individual utilities in a local way, we reduce the overhead introduced in the decision computation,
since all requests that involve the local access to resources within a domain can be effectively
resolved by the delegated utility. The use of utilities as intermediate PDPs with the global one
thereby allows them to periodically update their policy rules by fetching the new changes from the
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cloud. In addition, this procedure can be also carried out in a domain level, by placing low-level
PDPs in the precise aggregators when the requests concern devices in a localized area. For this
purpose, some computation nodes in the edge of the network or the fog computation technology
can be leveraged.

Therefore, we distinguish between two types of PDPs: a global PDP in the cloud (referred to
as ‘PDP-cloud’), and local PDP (denoted by ‘local PDPs’). Both are also illustrated in Figure 5.20,
which represents the hierarchical architecture of these PDP entities at all levels and shows how
remote stakeholders can gain access to resources by using PEP instances through the PDPs places
in the domain or leveraging the PDP-cloud. Altogether, this design simplifies the centralized
actions in the cloud and any occurrence of bottlenecks between domains.

For the interest of our analysis with respect to the use of Opinion Dynamics as a context
awareness mechanism in this scenario, we now describe the operational architecture of the Global
Policy Decision Point, that takes care of the security of all elements within the power grid.

Global Policy Decision Point (PDP-cloud)

As explained earlier, the global PDP is shaped in the cloud to mainly conduct two specific tasks
with respect to the authorization, which impose special requirements in terms of computation:

1. To receive information of the context from each PIP deployed in the Smart
Grid infrastructure. This means that the PDP-Cloud offers an overview of the security
state of the whole system at all times. Also, it allows to execute further accountability
and auditing procedures, in such a way that the current policies are continuously assessed
for the entire set of domains in order to readjust them in real time depending on special
conditions of security and network overload.

2. To define the global policy and roll out updates to the entire set of domains.
Eventually, the PDP-cloud performs individual access decisions that involve the use of
resources between different utilities.

As for the architectural design of this PDP entity, it is composed by two chief components,
which are also depicted in detail in Figure 5.21:

PDP manager: its main operation is to validate the authentication tokens provided by each
entity and perform the access decision based on the received request, the defined policy rules
and the information of the context (provided by the context awareness manager). In specific, it
comprises the following internal modules:

• Authentication module: this procedure is required to validate the identity of the entities
that submit the access request. It involves not only SealedGRID devices (that may perform
a local authentication), but also human operators, engineers or customers using mobile
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Figure 5.21: Architecture of components of the PDP cloud

devices, for which the use of some authentication mechanisms (e.g., OpenID protocol) might
be required. In general, this module accepts token that have previously signed with the
appropriate certificates of authority. Once they have been validated, the token is processed
with the access manager.

• Access manager: it is the core of the PDP manager, where the access decision is computed
taking into consideration the access token received and the information of the context
(which informs about the security state of the elements involved in the requested access).
These tokens contain information about the previous authentication process and specific
information generated by the PEP request; at least, the identity of the resource requested
and its corresponding domain, together with the action to be performed. Based on this
information and the policy defined (including roles and permissions), the access decision is
finally computed.

• Access prioritization manager: it is activated with higher priority to compute rapid
access decisions in the event that potential threats are detected by the context awareness
manager. For this reason, it receives feedback from the risk assessment manager. In any
other case, it provides input to the access manager by serving information about the security
state of the network in the zones concerned by the requested access, in order to compute a
decision.

• Policy readjustment: this module performs advanced analytics procedures to gain insight
from the previous access requests and data retrieved by the distributed context-awareness
modules within the Smart Grid infrastructure. Its aim is to redefine the policy rules based
on environmental and security conditions that may fluctuate over time. In this sense, we
address in the next section the possibility of integrating further auditing procedures, possibly
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using some DLT such as a blockchain network. It is important to note that the local PDP
lacks this policy readjustment module, as it is the responsibility of the PDP-cloud to define
the policy rules and notify the local PDPs about potential updates. Other than that, the
architecture of the local PDP is essentially the same, and the only difference lies in the
decisions of the latter being hierarchically lower within the grid.

Context awareness manager (PIP): it has the responsibility to retrieve and gather the
information provided by the distributed elements of the Smart Grid network, provided by
their embedded context-awareness modules (that implement the PIP functionality for all the
SealedGRID devices). The context awareness manager is structured into different modules:

• Context data normalizer: this element is in charge of gathering the data from the
local context awareness modules embedded on the SealedGRID devices, and normalize
this information to extract multiple indicators and filter out noise. The aim is to provide
profitable, useful and accessible information in real time to inform the rest of the PDP
modules about the security state of the network.

• Risk assessment manager: as early introduced, this module computes health indicators
to identify potential anomalies caused by sophisticated attacks, which are measured by the
context awareness modules of each device. This is represented with global and local health
indicators.

• Early warning manager and alert manager: their aim is to analyze the most critical
threats detected to rapidly alert the operators and activate protection mechanisms that
successfully reduce the impact on the system. At the same time, this information is loaded
in a database for future risk assessments, in which a set of parameters are evaluated, such
as the frequency of attacks, the criticality of the affected resources, etc.

In order to better explain the dynamic interaction between the modules of these two chief
components (PDP manager and context awareness manager), Figure 5.22 shows the sequence
diagram that represents the authorization flow in a general basis. Firstly, the remote PEP
generates a token that is signed with its own certificate of authority (i.e., using federated login),
which is validated once it reaches the PDP (through the Authentication module), and then
the token can be processed by the access manager. In order for it to compute a decision, it
firstly checks whether the request matches the system access control policy; at this point, if the
permissions are insufficient, the access cannot be granted and the decision token is returned to the
PEP. Otherwise, the security state of the network is checked for the resources to be accessed, for
which the context awareness manager is leveraged. More specifically, the Access manager queries
the Access prioritization manager, which is permanently fed with the information provided by
the Risk assessment, which is always assessing the security state of the network in real time.
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As depicted in Figure 5.21, this module receives input from the correlator, which analyses the
information provided by the local PIPs installed in every SealedGRID device. For this task, the
context awareness manager makes use of the Opinion Dynamics correlation algorithm studied
in this document. Back in the PDP manager, once the Access manager has the security-related
information about the concerned resources, it finally computes an access decision. This decision
is notified to the PEP by means of a token. Also, as an additional step, this decision is stored in
a historical database for accountability purposes, which helps to debug and enhance the current
security access control policy through advanced readjustment mechanisms, as explained in the
next section. Before that, we give some details on how to implement the Opinion Dynamics
approach in this Smart Grid environment.

Development of the context awareness manager

Based on the previous description, the PDPs grant access to the grid resources depending on
both static conditions (i.e., the access control policies) and the security state of the assets whose
access is requested. This information is provided at all times by a context-awareness module
embedded in every component of the grid infrastructure. This module hence implements the PIPs,
which permanently provide useful information for computing the access decision on the PDPs
(i.e., through the Risk Assessment manager). This information must comprise information about
the quality of service and the security status of the component in question (i.e., a smart meter,
aggregator or utility), which is also known as its context. In other words, they play the role of
the agents in charge of assessing the anomalies, as introduced in the traceability framework of
Section 4.2.1. In the following, we summarize the main set of aspects that should be measured by
the proposed context-awareness module embedded in every SealedGRID device:

• Current operation of the device: it implies accounting for the behavior of the analysed
component in real time. For example, keeping track of the number of energy usage readings
measured by a smart meter, the set of households controlled by an aggregator (together with
their current demand for control procedures), and detailed information about the utility
and all its branches, from a technical perspective (including every update on their systems,
databases or contractual arrangements that could be minimally required to correctly tailor
the access control mechanism). This can also be used for auditing purposes and conduct a
readjustment of policies over time based on data about the past, as addressed in further
sections.

• Quality of service information: it involves examining the throughput of the concerned
component at all levels:

– Host-based information: it encompasses the usage of computational resources
(CPU/RAM memory), electricity consumption, installation date, firmware version, etc.

159



Chapter 5. Protecting Industry 4.0 Scenarios against APTs and Use Cases

Figure
5.22:Sequence

diagram
for

the
authorization

flow
on

the
P

D
P

-cloud

160



5.4. Applicability of Opinion Dynamics in the Smart Grid

– Network-related aspects: communication protocol supported, types of commands
used, connections opened with other smart meters / aggregators in multiple regions, etc.
together with the QoS of every established communication channel (e.g., bandwidth,
delays, packet loss ratio)

• Security state information in real time: at this point, numerous solutions can be
put in place to assess the security of the component and detect potential threats, whose
information must be also retrieved by the context-awareness mechanism. It includes the
use of firewalls, antivirus, etc. and the parametrization of the security techniques in the
communications and exchanged data: encryption algorithms, key size, etc. Additionally, it
is especially interesting to extract profitable information about the real-time security of the
components by means of IDSs, which could be integrated in the grid to potentially find
anomalies with respect to their expected behavior.

• Intrinsic information about the SealedGRID embedded modules: in other words,
it is meta-information about the own modules that are executed alongside the context-
awareness mechanism on the same SealedGRID component. This may include, e.g., the
supervision of key management procedures, the aggregation of consumption values for
privacy purposes, etc.

Altogether, the goal of gathering information with this degree of heterogeneity is to create a
virtual representation of the whole grid infrastructure, containing as much knowledge as possible
for the different scenarios. It results in profitable information returned to the decision points, since
they have enough awareness as to perform complex access decisions based on dynamic criteria.
In practice, the particular implementation of a context awareness mechanism that fulfills these
requirements with respect to the heterogeneity of information spread over a fully distributed
network is not trivial whatsoever, as already discussed in Section 5.4.1. Here, we leverage Opinion
Dynamics to identify and trace sophisticated threats across a large infrastructure, by tracking and
correlating anomalies sensed by a plethora of ad-hoc analysis techniques and external intrusion
detection systems. These patterns can be visualized graphically and mapped into the different
regions of the network, as Figure 5.23 shows. The formal definition and features of this approach
have been deeply explained in Chapter 4.

Concerning the actual implementation of this approach on the grid proposed in the context
of SealedGRID, the context awareness mechanism based on Opinion Dynamics must execute a
set of phases, which involve the aforementioned modules of the context awareness manager (i.e.,
the Context data normalizer, the correlator, and the Risk Assessment manager). These phases
are equivalent to the steps needed to uptake the network information acquisition in the APT
traceability framework, explained in Section 4.2.1:

• Information gathering and data retrieval: first of all, every PIP individually measures
information of all kinds on the device it is monitoring (as explained before, regarding
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Figure 5.23: Network fragmentation due to Opinion Dynamics anomalies

the current device operation, QoS, security state and intrinsic information about the rest
of SealedGRID modules). This data is aggregated in a bundle that is retrieved by the
immediate PDP that periodically requests it to perform access control decisions, following
the authorization flow.

• Data recollection and normalization: once at the PDP context awareness manager,
the bulk data received by the complete set of devices that it is monitoring is normalized
(i.e., the noise is filtered and the set of aspects measured are accurately selected) and stored
for auditing purposes (i.e., the analysis of behaviors and patterns that lead to potential
changes on the access control policies).

• Detection: after the data has been gathered, the information is analysed with the Opinion
Dynamics algorithm, to detect intrusions and security issues that may pose a risk to the
organization or the grid infrastructure. For this goal, the bulk information can be divided
into different agents that are logically created (by means of parallel threads) or physically
deployed, to individually process the data from their respective physical devices. In specific,
the different aspects that are originally measured by the distributed PIPs are compared
with their expected behavior, using the accountability database. The ultimate aim for every
agent is to extract a single value that represents the degree of anomaly detected in the
context of its device (i.e., the agent opinion). For this task, additional IDSs and further
analysis procedures can be integrated to assess the different aspects measured (e.g., QoS,
security).

• Correlation: finally, all anomalies detected by the set of logical agents are finally correlated
using Opinion Dynamics. This results in a clusterization of opinions depending on the
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affected zones, which permits to compute different indicators of health, at different levels
(i.e., divided into zones, concerning the global infrastructure,etc.), as discussed in Chapter
4.

5.4.3 Readjustment of Intelligent Authorization Policies

From the previous section, we deduce that it is of paramount importance to introduce fine-grain
control over the custody of sensitive data along the grid, while ensuring the democratization of
the available infrastructure, by means of advanced authorization policies. The main challenge
here is the overwhelming complexity when managing the flow of data between all parties involved.
This heterogeneity of data is increased with the concept of microgrids, and the possibility that
users also become prosumers; that is, that they can consume and also sell electricity to the grid.
Added to this is the problem of privacy when analysing consumption data on a large scale (using
Big Data), so that it is possible to extract information on consumption habits that is particularly
useful for third parties. The latter is especially aggravated in federated SG environments, where
several electricity companies actively collaborate to manage resources in different geographical
areas.

On top of that, progress in telecommunications does not stop, and the industry is not unaware
of this progress. New communication technologies such as 5G and innovative computing paradigms
on the edge of the network (such as fog computing) are on the horizon [319]. Apart from them,
there are other disruptive technologies that we already live with, such as the Internet of Things or
the blockchain. At present, some of these mechanisms are already integrated in various industrial
sectors (including the Smart Grid), in what is already known as Industry 4.0.

Despite these issues, far from adding more complexity to the Smart Grid infrastructure, these
technologies can solve several of the problems we currently face. This ranges from increased
process automation to secure data transmission and storage at all levels, accompanied by almost
instantaneous transmission and analysis, with very high efficiency. Only in this way can we
understand future industrial scenarios where data ubiquity is achieved as well as optimal interaction
between all participants in the production chain.

However, these mechanisms can only be enabled by continuously monitoring all assets in
terms of cybersecurity, in order to anticipate risks, generate evidence transparently and ensure
the democratization of the available resources. As introduced in the previous section, all these
measures must be governed by advanced authorization policies capable of adapting to lively
environments with ever-changing technology and actors. By introducing ubiquitous processes that
permanently conduct context-awareness analysis over the entire infrastructure, the authorization
components are accurately fed with operational and cybersecurity inputs to improve decision
making and later enhance the established policies [320]. As explained in Section 5.4.2, these
processes act as the PIPs that are assigned with different tasks. Firstly, they retrieve contextual
information from a layer of devices to be monitored, which includes low-level operational inputs
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Figure 5.24: Smart Grid architecture for accomodating DTS in the long term

(e.g., energy readings, pricing data), host-based or network-related information (e.g., protocol
used, commands issued, bandwidth). Together with cybersecurity analysis executed ad-hoc or
leveraging external mechanisms (e.g., intrusion detection systems), this information helps to create
a virtual representation of the assets in a certain region. This enables an accurate assessment of
the current state of devices and the prediction of consequences derived from potential actions,
approaching the concept of Digital Twin.

A Digital Twin (DT) can be defined as a representation of a physical asset in virtual space,
enabled by a synchronized data acquisition about its structure, functionality and behavior. By
analyzing and simulating virtual states of such entity, it is possible to undertake real-time
monitoring and predictions, optimize processes and improve decision making [321]. Therefore,
they emerge as a solution to guide access control, by coordinating all security services within
the SG network in a holistic manner. In particular, these can transparently implement the PDP
components in charge of autonomously apply authorization at a regional or local level, carrying
out the context-awareness processes.

In the long-term roadmap of the Smart Grid, the gradual integration of Artificial Intelligence
(AI) solutions (like those implemented by Digital Twins) will be decisive for the ultimate goal of
having an autonomous, fully decentralized power grid. This is consistent with recent industrial
views that suggest that the landscape of DT evolution will fulfill a three-stage process: from mere
monitoring systems with limited analysis capabilities nowadays, going through semantic platforms
featuring prediction and optimisation over the next few years, until the future implementation of
fully semantic, self-learning, socio-technical platforms [322].
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Figure 5.24 shows the characterization of DTs in the upcoming SG architecture. This hyper-
connected and totally decentralized model assumes that the barrier between energy generation,
transmission and distribution assets are blurred, and all processes coexist with micro-grids and EV
infrastructures. Based on any application scenario, these resources are collaboratively used and
the information is compartmentalized and securely accessible by the corresponding stakeholders,
who have flexible control over the legislation, energy management and data acquisition. This
is achieved with techniques based on Network Function Virtualization (NFV) and Software
Defined Networking (SDN), with little or no change to the physical infrastructure: firstly, a
5G-based communication would allow the instantaneous connection of millions of IoT devices
with a distributed peer-to-peer (P2P) automation, aided by Mobile Edge Computing (MEC)
technologies. These bring the cloud computation closer to the proximity of users (i.e., the edge of
the network) to carry out data analytics, in orchestration with fog computing to deploy scalable
services across multiple domains. In a higher layer of abstraction over these physical devices,
there would be a blockchain-based authorization system to manipulate data while ensuring its
security at rest.

At this point, DLT solutions (such as a blockchain) can vouch for the data ownership and
provenance between all partners within a federated Smart Grid. By integrating a blockchain
network, access registers can be securely analyzed by external auditors to submit potential policy
updates to devices and components involved, favouring the creation of access control schemes
governed by Smart Contracts [323]. This way, these structures would be able to handle the access
to information and resource trading in communities, thereby avoiding the need for additional and
coupled PDP computation nodes.

Transversely to the end devices and the blockchain infrastructure deployed over the future
grid, the presence of DTs must be holistic to achieve a symbiosis between physical assets and their
virtualized entities. This means the authorization and the energy management processes must be
integrated around the DT agents to implement a fully distributed automation. This way, they
play the proactive role of controlling resources over the grid, compared to the passive behavior
(i.e., monitoring) presented in Section 5.4.2. This functionality is enabled by orchestrating MEC,
fog and cloud services at multiple architecture layers, which enables sensing of the physical and to
have full interaction with the blockchain and the production line. The functionality loop between
both worlds is provided by the data that connects them, so that the DT agents act as transparent
but operational proxies in this duality, as represented in Figure 5.24. It comprises four phases
that are executed permanently in high-frequency intervals:

1. Data collection: energy usage data and control information is retrieved in the proximity
of IoT and end devices, leveraging the B5G infrastructure to carry out context-awareness
procedures.
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2. Data processing and adjustment: as data is aggregated, further analysis and detection
is performed, to subsequently store such information in the ledger and execute additional
maintenance tasks to inform potentially affected stakeholders.

3. Information discovery: the DT subscribes to events on the blockchain that are related
to its monitoring area (e.g., pricing information, demand response) in order to accelerate
decision-making and anticipate potential security issues that may render changes in the
access to resources.

4. Control and management: as aforementioned, the DT agents that are hierarchically
spread over the SG infrastructure have full autonomy to manage its corresponding assets,
without the need of a vertical and centralized control.

Aside from sensors information and control commands, authorization requests and responses
pass through the intermediate DT agents located in the edge. These submit transactions to
the ledger and relay the outputs back to the field devices using 5G communication, based on
the existing policy and the cybersecurity state assessed by the agents (e.g., using the Opinion
Dynamics traceability model). Likewise, they can propose amendments to the access control
scheme based on repetitive behaviors and past perceptions.

The access control and authorization systems will acquire a greater influence from artificial
intelligence in the new DT prototypes for the Smart Grid. The provisioning of traditional policy
schemes in industrial sectors requires an initial static procedure to analyse the regulations applied,
engineer the roles involved, establish permissions and define rules for accessing resources and
performing actions, considering precise constraints and relationships between assets. At the same
time, these rules should be consistently declared to avoid conflicts, using an interoperable policy
language such as XACML (eXtensible Access Control Markup Language) [324]. However, such
mechanisms will have to face an unsteady environment where a huge set of actors fluctuate and
the information flow is massive. In consequence, policies will have to be continuously assessed
for the entire set of domains in order to readjust them in real time depending on a wide range
of social, economic, and security conditions to guarantee the continuity of the network [325].
Additionally, although decentralised authorization systems are more flexible than centralized
decision points in terms of efficiency, they are harder to manage.

Therefore, the administration of complex authorization systems is expected to progress towards
more automated processes with scarce manual intervention, as Figure 5.25 shows. In this trend,
we can classify the use of AI for intelligent authorization into two research lines:

• Automatic policy alteration. The aim is to gain insight from previous access requests
and the overall behavior of the system, in order to refine existing rules. Data mining and
classification algorithms are useful to identify discrepancies in policy specifications and infer
new properties. Also, such evaluation can be combined with time-constrained delegation
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Figure 5.25: DT authorization workflow in the long term

models and domain-specific rules to derive authorizations in unforeseen scenarios [326].
Altogether, they can help to automate conflict resolution and role assignment, as well as to
support implicit authorizations (i.e., accesses that are not explicitly specified or granted)
[327]. Simultaneously, the complexity of the explicit authorization set is reduced.

The logic behind the analysis and improvement of security policies could ideally be im-
plemented through smart contracts in the architecture shown in Figure 5.24. This way,
the DT agents distributed over the architecture would be in charge of auditing the policy
correctness, so that they would be able to submit transactions to propose upgrades to
certain access control functions, which would be then approved by the consortium after
being contrasted with other peer agents concerned.

• Rule learning. In this case, algorithms are trained to learn from data and infer policies
rules from scratch. The most significant solutions here are about reinforcement learning.
The traffic and events generated during the standard operation of the grid are studied to
identify target resources and infer trust relationships between users and assets, based on the
anomalies encountered [325]. Their counter-side is that the system is exposed to potential
security threats, as the learning process takes place progressively while accesses are made
and optimal policy rules are barely applied. As such, these solutions are more appropriate
in later stages of the authorization life cycle, when a base authorization model is enforced.
Other alternatives to guide the reinforcement learning consists in probabilistic policy reuse,
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which balances among the application of the dynamically learnt policy, the exploration of
random actions and the use of past policies.

Due to the differences between automatic alteration and rule learning, a dynamic authoriza-
tion system that is collaboratively maintained and upgraded by a decentralized architecture
of DTs must find a balance between these two approaches. Generally, the most common
rationale will be to apply rule learning over a minimal set of policy regulations defined in
the organization, to subsequently polish them with automatic alteration methods. Therefore,
this process must be coupled with context awareness and auditing procedures to feedback
the learning mechanisms and be fully integrated with the DT functionality loop described
before.
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Chapter 6

Verification and Validation

After showing the benefits of the APT traceability framework and applying the enabling solutions
to some Industry 4.0 scenarios, we now have to validate all these findings. In this chapter, we
perform the verification and validation of the framework defined, the correlation algorithms
and the response techniques developed. Both processes are different in their definition and goal.
According to the PMBOK guide, an standard adopted by the IEEE, validation refers to the
assurance that the system meets the needs of the customer and other identified stakeholders.
On the other hand, verification concerns the evaluation of whether the system complies with a
requirement or specification.

In our case, the verification is conducted using theoretical demonstrations to elaborate the
correctness proof of every approach presented in relationship with the detection and traceability
of threats. This includes the clustering-based detection (introduced in Section 4.3.3) and the
Opinion Dynamics-based technique to perform the traceability of APTs (presented in Section 4.6)
and ensure the survivability of the network (Section 5.1), by means of induction. Additionally,
the response against APTs using the information provided by the Opinion Dynamics solutions is
assessed through game theory. On the other hand, we also validate our detection approach from
a practical point of view, by implementing a proof of concept of this approach in a real testbed,
that integrates several kinds of industrial devices and protocols.

6.1 Clustering-based Detection Approach through Induction

This section presents the correctness proof of the clustering-based detection presented in Section
4.3.3, both the location and accumulative approach. This problem is solved when these conditions
are met:

1. The attacker is able to find an IT/OT device to compromise within the infrastructure.

169



Chapter 6. Verification and Validation

2. The traceability solution is able to identify an affected node, thanks to the clustering
mechanism and fulfilling the O1 output of the APT traceability framework, defined in
Section 4.2.2.

3. The detection can continuously track the evolution of the APT and properly finish in a
finite time (termination condition), complying with the O2 and O3 outputs.

The first requirement is satisfied under the assumption that the attacker breaks into the
network and then moves throughout the topology following a finite path, according to the model
explained in Section 4.1.3. An APT was defined as at least one sequence of attack stages against
the network defined by G(V,E). If we study each of these traces independently, and based on the
distribution of G, the attacker can either compromise the current node vi in the chain (as well as
performing a data exfiltration or destruction) or propagate to another vj ∈ V , whose graph is
connected by the means of firewalls, according to the interconnection methodology illustrated in
[82] and summarized in Section 4.1.1.

As for the second requirement, it is met with the correlation of anomalies generated by agents
in each attack phase. As presented with the attacker model, the value of these anomalies are
determined in a probabilistic manner, depending on two possible causes: (1) the severity of the
attack suffered and the criticality of the concerned resource; or (2) an indirect effect caused
by another attack in the vicinity of the monitored node. Either way, the O1 correlation helps
to actually determine whether the attack has been effectively perpetrated against that node,
or it belongs to another APT stage in its surroundings. This information is deduced from the
combination of I2 (the contextual information) together with these anomalies (i.e., I1), by using
K-means to group these nodes and associate them with actual attacks.

We can easily demonstrate the third requirement (i.e., the termination of the approach)
through induction. To do so, we specify the initial and final conditions as well as the base case:

Precondition: we assume the attacker models an APT against the network defined by graph
G(V,E) where V '= 1, following the behaviour explained in Algorithm 3. On the other
hand, the detection solution based on clustering can firstly sense the individual anomalies
in every distributed agent, hence computing I1 and I2.

Postcondition: the attacker reaches at least one node in G(V,E) and continues to execute all
stages until attackSet = 1 in Algorithm 3. Over these steps, it is possible to visualize the
threat evolution across the infrastructure, following the procedure described in Algorithm
2 in the case of accumulative clustering, and running K-means with both I1 and spatial
information, in the case of location-based clustering.

Case 1: the adversary intrudes the network and takes control of the first node vi ∈ V , and
both clustering approaches cope with the scenario of grouping healthy nodes apart from
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the attacked node. This is calculated by the K-means algorithm within a finite time, by
iteratively assigning data items to clusters and recomputing the centroids.

Case 2: the adversary propagates from a device node vi to another vj , so that there exist
(vi, vj) ∈ E. In this case, the correlation with K-means aims to group both affected nodes
within the same cluster, which can be visualized graphically. As explained before, this
is influenced by the attack notoriety and the closeness in the anomalies sensed by their
respective agents (i.e., the threshold ε in Algorithm 2), as well as extra information given
by I2.

Induction: if we assume the presence of k ≥ 1 APTs in the network, each one will consider
Case 1 at the beginning and will separately consider Case 2 until attackSet = 1 for all k,
ensuring the traceability of the threat and complying with the postcondition. Eventually,
these APTs could affect the same subset of related nodes in G, which is addressed by
the K-means to correlate the distribution of anomalies (again, attempting to distinguish
between attacked nodes and devices that may sense side effects), in a finite time.

This way, we demonstrate the validity of the approach, since it finishes and it is able to trace
the threats accordingly.

6.2 Opinion Dynamics-based Traceability through Induction

This section presents the correctness proof of the consensus-based detection and traceability
problem for APTs, which was introduced and explained in Section 4.6. This problem is solved
when the following conditions are met:

1. The attacker is able to find an IT/OT device in the system and attack it.

2. The detection system is able to trace the threat, thanks in part to the consensus (detection
and traceability).

3. The system is able to properly finish in a finite time (termination).

4. The algorithm is capable of terminating and providing advanced detection at any moment
(validity).

The first requirement is satisfied because we assume that the attacker is capable of (i) declaring
the chain of attacks in advance, such as scanning, lateral movement, exfiltration or destruction
(see Section 4.1.3), and (ii) identifying kinds of devices (e.g., IT/OT nodes and firewalls) by their
functionalities. The modus operandi of the attacker is systematic except when the attacker needs
to make a specific lateral movement, either through the selection of a new random neighbor node
within the network or the selection of the neighbor with the highest betweenness. To comply with
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the predefined attack patterns, the attacker firstly needs to identify the first target node, which
generally belongs to IT network − evidently, this characteristic depends on the type of attacker
(insider or outsider) and their skills. If the attacker is an outsider, his/her goal is to find a vITi ∈
VIT in order to penetrate by itself within the system, and to advance until reaching those nodes
serving as firewalls such that vFWi ∈ VFW . Once a vFWi is finally reached, the attacker tries to
gain access in the operative network to compromise the most critical devices, i.e., vOTi ∈ VOT .
If the attacker is an outsider, the compromises relies, in this case, on the pre-established APT
threat chain; i.e., on attackSet.

The second requirement is also found due to the software prevention agents, ai ∈ A, integrated
as part of vITi , vFWi and vOTi of G(V,E). These agents present capacities to detect anomalies
and trace the intrusive presence by means of opinion dynamic parameters, the values of the which
are attenuated according to time and aggressiveness of the threat (what we defined as the decay
factor in Section 4.6). This attenuation, dependent on Φi, does not means to completely forget
an incident in past. But rather, in remembering the most significant aftermaths of the previous
attacks in order to show the advance of the threat in real time, and therefore its traceability.

Through induction we demonstrate the third requirement, corresponding to termination of
the approach. To do this, we specify the initial and final conditions together with the base case.
Namely:

Precondition: by assumptions, we assume that the adversary is an advanced expert with skills
to reach the IT-OT communication channels belonging to G(V,E). However, this capacity
depends on the set attackSet defined in Algorithm 3, which defines threat chain such that
attackSet '= 1.

Postcondition: (i) the adversary reaches the network G(V,E) and compromises at least a
node in V such that attackSet = 1 after the loop in Algorithm 3. And (ii) the system
successful detects the threat such that δ > 0 and marks the traceability according to the
real consensus state of G(V,E), registered in the array vector x.

Case 1: attackSet '= 1, but | attackSet | = 1. In this case, the attacker needs to launch the
unique attack defined in attackSet. As mentioned, if the attack does not imply a lateral
movement, the success of the threat is concentrated on just one node in V , since the
following iteration of the loop implies that attackSet ← attackSet \ attack, and therefore
attackSet = 1. To the contrary, if the attack entails a lateral movement, then the attacker
has to select a new neighbor node, either from a random or target point of view.

Any attack in V means an impact on the attacked node with a significant influence in its
opinion dynamic (i.e., x(attackednode)). If, in addition, the decay factor is activated, the
system weakens, but does not delete, the aggressiveness of the threat to stress the current
trace of threat over the time. This computation is possible through Φi in Algorithm 4. Once
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x is updated, the system computes the δ value taking into account the weighted average of
the Opinion Dynamics of the entire system (see Algorithm 5).

Induction: if we assume that we are in step k (k ≥ 1) of the loop where attackSet '= 1, then
Case 1 is going to be considered each time. When k = | attackSet |, the system computes
Case 1 and ends the detection algorithm with δ > 0 since attackSet = 1, showing the
traceability of the threat through x and complying with the postcondition.

Finally, the latter requirement is also satisfied since the algorithm finalizes and detects the
threat through Opinion Dynamics (either individual or collective), and shows the traceability of
the threat over the time.

6.3 Opinion Dynamics-based Survivability through Induction

The correctness proof of the message recovery problem presented in Section 5.1 is solved when
the following requirements are satisfied: (1) the ratio of lost messages when facing an APT attack
decreases when using the redundant topology; (2) the algorithm that crafts the set of redundant
edges and sends the messages along the network is able to properly finish in a finite time (therefore
arriving to the termination of the algorithm).

We can show the termination of the algorithm through induction, where we first define the
initial and final conditions, and the base cases.

Precondition. We assume that the network described by G(V,E) is threatened by one or more
attacks, probably causing the removal of available routes from the sender to the destination.
In other words, there exists a share s belonging to a message m from sender v1 whose
recipient is vr for which it is not possible to find a sequence of vertices v1, v2, ..., vr such
that (vi, vi+1) ∈ E, ∀i ∈ 1, .., r.

Postcondition. given the aforementioned message share and redundant network G′(V,E′),
there exists a sequence of vertices v1, v2, ..., vr such that (vi, vi+1) ∈ E′, ∀i ∈ 1, .., r. The
availability of additional edges in E′ is subject to the redundancy strategy selected. Either
way, the new route is located by a pathfinding algorithm like BFS or Dijkstra.

Case 1. We have a message m that is divided into n shares, such that m = {s1, s2, ..., sn}. In
the first step, share s1 is sent to vertex v2 through (v1, v2) ∈ E.

Case 2. In an intermediate step of the path from sender to destination, the share s1 traverses
the node vl, and the pathfinding algorithm is evaluated to check the availability of a route.
According to Algorithm 8, three scenarios can be distinguished at this point:

-Recovery solution: it takes place when the destination is reachable only through the
redundant topology G′, that is, there exists a route vl, vl+1, ..., vr where (vl, vl+1) ∈ E′ but
(vl, vl+1) /∈ E.
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-Privacy solution: it occurs when multiple routes are available to reach the recipient of the
share, using either the original or the redundant topology. Namely, there exists, at least, a
route vl, vm, ..., vr where (vl, vm) ∈ E and another one vl, vl+1, ..., vr such that (vl, vl+1) ∈ E′

and (vl, vl+1) /∈ E. In this case, the share hops to vm or vl arbitrarily, with the aim of
making the route as confusing as possible, thereby dodging potentially compromised nodes
over which the attacker expects the traffic to flow. Note that the network may experience
some delays when delivering such shares (due to extra hops to reach the recipient), which
could be the subject of further research. However, since we are considering a critical scenario,
we prioritize availability rather than performance.

-Share loss: in the worst-case scenario, the redundant edges are not sufficient to find a
path from vl to vr and the original path is no longer available due to the APT. In these
circumstances, the share is lost and the algorithm terminates. Note, however, that the secret
sharing scheme is resistant to share losses with a given threshold, so the rest of shares
si with i '= 1 can still rebuild the message m. This depends on the n and k parameters:
specifically, the message m successfully reaches its recipient with a probability k

n . In this
regard, we must stress that the choice of n is based on the severity indicator µ, as explained
in Section 5.1.2.

Induction finally, after a finite number of steps where the different subcases of Case 2 have
been applied (except for a secret loss), the node vj before the last in the sequence holds the
share s1 and there exists an edge (vj , vr). The share is finally delivered and Algorithm 8
terminates, satisfying the postcondition of saving a portion of the messages from getting
lost, ensuring the validity of our algorithm.

We can also give a brief analysis of the computational complexity of the response algorithm,
which must be performed in two ways: for the secret sharing scheme and for the subsequent
delivery of shares over the network by using a pathfinding algorithm. As for the former, processing
a given message takes n steps, as many as the number of shares it has been split into (determined
by µ), having O(n) complexity. With respect to the communication mechanism, the complexity
must firstly consider the overhead invested by the pathfinding method, which in the case of BFS
is O(n+ e), where n ≈ |V | and e ≈ |E|. Secondly, it also implies the complexity associated with
the share delivery along the graph. Considering the worst-case scenario of the longest route, such
a transmission has a cost of O(n− 1+ e), since the share has to traverse all edges and every node
in the network but the sender.

6.4 Opinion Dynamics-based Response through Game Theory

Among the novel mechanisms introduced in Chapter 4, Opinion Dynamics stands out as a
multi-agent collaborative system that enables the traceability of the attack throughout its entire
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life cycle, by means of a distributed anomaly correlation. In this section, we propose a theoretical
but realistic scenario to prove the effectiveness of that approach under different types of attack
model, using concepts supported by the structural controllability field [163] and game theory [328].
For that goal, we develop TI&TO, a two-player game where attacker and defender compete for
the control of the resources within a modern industrial architecture. Both players have their own
movements and associated scores, according to the behavior of an APT and a detection system
based on Opinion Dynamics, respectively. This game is ultimately run in different simulations
that aim to show the algorithm capabilities, while also suggesting the optimal configuration of
the technique in conjunction with other defense solutions. Therefore, we can summarize our
contributions as:

• Formal definition of the TI&TO game, specifying the game board, each player’s goal and
the score rules.

• Design of an attacker model in form of a set of stages that flexibly represents the phases of
an APT, to represent the movements of the attacker, which are subject to a determined
score.

• Design of a defender model based on the use of Opinion Dynamics and response techniques
(i.e., local detection, redundant links, honeypots) to reduce the impact of the APT within
the network, which also implies an associated score in the game.

• Experiments carried out to validate the algorithm and recommend the configuration of the
defender that returns the best result.

In the context of industrial networks defense, researchers have been extensively exploring the
applicability of game theory [328]. In these networks, it is common to cope with many levels
of criticality, different network sizes, interconnectivity and access control policies. Therefore,
decisions in terms of security frequently fluctuate, which is harder in Industry 4.0 scenarios, where
many heterogeneous devices interact with each other and organizations exchange information
using the cloud, fog computing or DLT structures. In this sense, game theory offers the capability
of analyzing hundreds of scenarios, thereby enhancing the decision making. At the same time, it
also allows to validate the effectiveness of a given technique (e.g., Opinion Dynamics in our case)
if we analyze different strategies of use for all the scenarios examined.

Based on the information that each player has, there are different types of games: on the one
hand, in a perfect information game both players are aware of the actions taken by their adversary
at all times; on the other hand, a complete information game assumes that every player always
knows the strategy and payoffs of the opponent. As explained further, the approach presented
here (TI&TO) represents a two-player game with imperfect and incomplete information, since
no player (i.e., attacker and defender) knows the location of the adversary within the network
topology or his/her score. According to a second level of classification, this game can be considered
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as dynamic and stochastic, as both players take their actions based on the state of the network
and being exposed to events that affect them in a probabilistic way.

There are multiple researches in the literature that fall under these classifications. Concerning
complete perfect information games, Lye et al. [329] proposes a two-player game that simulates
the security of a network composed by four nodes that can be in 18 potential states, on which
both players can take up to 3 actions, that are observable at all times by the opponent. With
respect to complete imperfect information games, Nguyen et al. [330] propose ‘fictitious play
(FP)’, a game that considers the network security as a sequence of nonzero-sum games were both
players cannot make perfect observations of the adversary’s previous actions. Also, Patcha et.
al [331] propose a incomplete perfect information approach, for the detection of intrusions in
mobile ad-hoc networks. Whereas the attacker’s objective is to send a malicious message and
compromise a target node, the defender tries to detect it using a host-based IDS. Another related
work based on imperfect information is [332], where van Dijk et. al propose a simple game where
two players compete for the stealthy control of a resource without knowing the actual identity of
the owner until a player actually moves.

Many of these solutions have been successfully applied to the detection of threats. However,
most of the models are based on either static games or dealing with perfect and complete
information, aiming to find an optimal strategy when a steady state of the game is reached
(being the Nash equilibrium the most famous one) [328]. In contrast, a real control system faces a
dynamic interaction game with incomplete and imperfect information about the attacker, and the
proposed models of this category do not specify a realistic scenario with an extensive attack model
[332] [333]. This lays the base and inspiration for the design and implementation of our proposed
scheme. With TI&TO, we aim to get insight about how to effectively implement and configure a
defense strategy based on the use of Opinion Dynamics, under such stochastic conditions.

6.4.1 Proposed Network Architecture

As defined in next subsection, TI&TO focuses on a game where both attacker and defender fight
for the control of an infrastructure. The attacker tries to break into the network in a stealthy way
by taking over as many nodes as to complete the predefined kill chain of a specific APT. With
respect to the defender, he/she must recover those nodes until he/she completely eradicates the
threat from the network. Thus, this network infrastructure plays the role of the game board, and
must be designed realistically as to represent the topology of a modern industrial ecosystem.

For this reason, the network used in the game embodies cyber-physical resources of different
nature, ranging from operational devices (e.g., sensors/actuators, PLCs, SCADA systems, etc.) to
information technology devices from the managerial point of view (e.g., customer-end systems).
Following the methodology of Section 4.1, the board will be an infrastructure composed by
two sections with the same number of nodes: OT and IT, connected via firewalls to secure the
traffic. As already stated, the network is represented with graph G(V,E), so that V refers to
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the nodes connected with each other based on links contained in the E set. Thus, OT and IT
sections are represented with G(VOT , EOT ) and G(VIT , EIT ), respectively (having V = VIT ∪VOT

and E = EIT ∪ EOT ). Likewise, both sections are randomly generated following a different
network distribution to simulate different infrastructure setups. Whereas the IT section follows
a small-world network distribution, G(VOT , EOT ) is based on a power-law distribution of type
y ∝ x−α.

Once generated, both sections are connected by means of a set of intermediate firewalls VFW ,
so that V = VIT ∪ VOT ∪ VFW , as specified in Section 4.1.1. In the IT section, we want devices to
be able to access the OT section, since they are computationally capable nodes that commonly
control the production chain from the corporate network. This means that all nodes in VIT are
connected to VFW . However, on the OT side, only SCADA systems and other high-level servers
can access external networks, whereas the majority of them are sensors, PLCs and devices with a
restricted functionality. Consequently, the connected nodes will be those that have a maximum
connectivity (i.e., dominance in graph theory) within the power-law distribution network of the
OT section, given the concepts of structural controllability introduced in Section 4.1.1. Therefore,
for our concerned network infrastructure, the PDS of the OT section will be connected to the
firewalls that also connect to the IT nodes. In our simulations, we consider that 5% of the total
number of nodes in V are firewalls, to restrict the traffic between both sections in a realistic way.

In order to characterize the types of nodes within the architecture and enrich the network
model, it is also necessary to define some related concepts that will be useful to understand the
game dynamics:

Criticality of nodes. We define the criticality of a resource as the risk subject to that type
of device within the organization, and determines the impact of a given threat if the attack is
perpetrated at that point. For example, the criticality of a sensor is negligible compared to that
of the SCADA system, which implies dramatic consequences on the infrastructure in the event it
is disrupted. Likewise, resources in the OT section are also deemed as more critical than the IT
ones to ensure the continuity of the production chain. This will be also used by the defender to
assess which nodes should be healed in order to minimize the impact of an APT.

We formally define this concept taking into account the graph G(V,E) introduced before.
Firstly, let CRIT : V 4→ IR(0, 1) be a function that assigns a criticality degree to all nodes of
the network. To distinguish which devices present a higher hierarchy within the topology, we
additionally leverage the concept of DS and PDS introduced in Section 4.1.1. At the same time,
since the OT section is considered as especially critical, its devices will have to be associated with
a higher value. As a result, we define Ψ as an ordered set of criticality values of size d, where
Ψ = ψ1, ...,ψd and ψi = [0, 1], such that ∀ψi,ψi < ψi+1.

Once Ψ is defined, we can create a model that maps every element of the network (i.e., its
nodes) to the elements of Ψ. This model, where d = 6 and Ψ = ψ1,ψ2,ψ3,ψ4,ψ5,ψ6 to consider
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VIT −DSIT − PDSIT ψ1

VOT −DSOT − PDSOT ψ2

DSIT ψ3

DSOT ψ4

PDSIT ψ5

PDSOT ∪ FW ψ6

Table 6.1: Map of V to Ψ

all elements of both network sections (i.e., the OT and IT section, including its nodes and the DS
and PDS subsets), is likewise described in Table 6.1.

Vulnerability of nodes. Besides the criticality, the concept of vulnerability involves the ease of
a node to be compromised by the attacker. In this case, we will assume that this value is opposed
to the criticality, in the sense that field devices will be commonly equipped with lower security
protection measures, whereas high-level systems that control the industrial process will embody
advanced security services. Correspondingly, we can define V ULN : V 4→ IR(0, 1) as the function
that assigns a vulnerability degree to all nodes of the network. In the same way as criticality, Υ
is an ordered set that represents the vulnerability of each node type, where Υ = υ1, ..., υd and
υi = 1− ψi. The particular instantiation of these values for the simulations is carried out when
the network represented by G(V,E) is created, as explained in the experiments section.

Redundancy of links. In order for the OT subnetwork to be resilient against DoS attacks
located on their links, and due to the criticality of its resources, we also consider that this section
presents redundancy on its edges. This is a solution that was also proposed in Section 5.1 as a
response technique to enable the reachability of messages across the network. In our case, with
the use of auxiliary edges in E (referred to as ER, so that ER ⊂ E), we ensure that the detection
algorithm exchanges the opinion among agents even when some links are down as a consequence
of an APT. This may occur in the game when the attacker attempts the defender to lose track of
the anomalies in the affected nodes. This way, all nodes in VOT count on an additional channel
that interconnects them with another node, based on the strategy explained in [334]. It is worthy
to note that these redundant edges are just logical connections that only serve to transfer the
anomaly values between agents.

Based on these principles, Figure 6.1 conceptually shows an example of network topology,
together with the integration of the Opinion Dynamics correlator. In the diagram, the redundant
edges in the OT section are represented with dashed lines.

6.4.2 Rules and Scoring System

We now describe the game dynamics for both players and how each of their movements is measured
in quantitative terms. Since the final objective of this research is to assess the effectiveness of
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Figure 6.1: Example of network topology used in TI&TO

the Opinion Dynamics, we aim to analyze the best behavior of the defender for a realistic attack
model. Therefore, it becomes necessary to utilize a formal representation of the results while
following a fair methodology for both players, which have equivalent costs and rewards assigned
to their movements in the game.

We start by defining TI&TO in an informal way. As introduced before, both compete for the
control of the game board. The base of the scoring system works as follows: whereas the attacker
earns points as it spreads the threat across the infrastructure, the defender increases the score
when those infected nodes are recovered. However, this is just the number of points scored, which
serves as a reference of the throughput achieved by each player. There is a termination condition
that regulates who wins a given game: as for the attacker, the game is over when he/she manages
to successfully complete all the phases of the APT kill chain. Concerning the defender, the victory
is achieved when all nodes infected by the adversary return to their originally uncompromised
state. In the following, we give a formal definition of all the elements involved in TI&TO and the
notation used along this manuscript:

Players. There are two players: the attacker and the defender. For simplicity, they are denoted
by A and D, respectively.

Time. In our approach, time is split into discrete ticks for the interest of the analysis. The game
begins at time t = 0 and continues indefinitely as t → ∞. At a given t, A and then D has a
turn to play. They act sequentially adopting a Stackelberg game [335], where the attacker
is the leader and the defender acts depending on the resulting state of the board.
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Movement. It is performed by A or D and changes the board at time t according to their
respective attack and defense models. In brief, both players take actions to either take over
healthy nodes of the network (in the case of the attacker) or heal a compromised node (by
the defender). Therefore, every movement can alter the state of a node. It is denoted by
Mp(t)

Node State. It is a time-dependent variable N = N(t) that determines whether a node in V is
compromised (i.e., the attacker has reached it) or remains safe from the APT. For a given
node i (belonging to the IT or OT section), Ni(t) is equals to one if it is compromised at
time t, and zero otherwise. We assume that ∀v ∈ V,Nv(0) = 0.

Reward. Every movement performed by A or D generates a reward depending on the ultimate
goal that both of them chase, which determines the score. In this case, A receives one point
when a new node is compromised, whereas D obtains the same reward once a previously
compromised node has been successfully recovered. A reward for a player p at a time t is
denoted by Rp(t).

Cost. Besides a reward, every movement also implies a cost C for the player. This represents
the fact that the attacker can exploit vulnerabilities that in turn may cause its detection,
while the defender may stop the production chain to recover the security state of a critical
resource. It is formalized with Cp(t).

Utility. It is the total number of points scored by a player p at time t. It is calculated as the
reward minus the cost of the movement made by p, which is denoted by Up(t). The overall
goal for both players is to maximize the utility as t → ∞, until the game is over.

Strategy. We define a strategy S for a player p as the sequence of movements M(t) along time
for a given instance of game, represented by Sp = {Mp(0),Mp(1), ...,Mp(t)}. As explained
later on, this strategy changes as the game evolves: whereas the attacker seeks vulnerable
nodes throughout the network while avoiding its detection, the defender follows an adaptive
strategy based on the last movement of A (more specifically, on the new state of the affected
nodes).

Although we consider the utility as a reference for the performance of both players in a given
game instance, we define three different termination states:

(TS1) Attacker wins. It is reached when he/she successfully completes all the movements of the
strategy SA, where SA = {MA(0),MA(1), ...,MA(n)}. We assume there exists at least one
last node v that is compromised, so that Nv(n) = 1.

(TS2) Defender wins. It is accomplished when the defender manages to heal all nodes and
hence eradicate the effect of the attacker over the entire network, before the succession
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of movements in SA are completed. In other words, for a given attacker strategy SA =

{MA(0),MA(1), ...,MA(n)}, there exists t′ < n such that for all v ∈ V,Nv(t′) = 0.

(TS3) Draw. For the interest of the analysis, we define an additional third termination condition
that occurs when the attacker completes the strategy SA = {MA(0),MA(1), ...,MA(n)}
but the defender also performs a last movement that ultimately heals all nodes. In this case,
we have that for all v ∈ V,Nv(n) = 0. Even though this may be considered as an attacker
win (since he/she succeeds in the disruption of resources), the defender still finds the trace
to the threat in the end, which shows the accuracy of the detection technique going after
the infection.

With this, the dynamics of the game and the basic rules have been presented. However, we
have to describe the precise specification of the players’ movements. While the intruder puts into
practice a set of individual attack stages that represent an APT (i.e., a strategy of n movements),
the defender leverages the Opinion Dynamics algorithm to flexibly adapt to the threat propagation
over the network. In both cases, they can apply different actions to change the state of nodes and
obtain a score based on different conditions.

6.4.3 Attack and Defense Models

As introduced before, we aim to find a formal representation of an APT for the attacker model.
In this sense, the attacker model in TI&TO is inspired by the methodology of Section 4.1.3.
After the extensive review of the most important APTs reported in recent years, we came to
the conclusion that it is possible to specify one of these threats as a finite succession of attack
stages perpetrated against an industrial control network defined by the graph G(V,E), so that
attackStages = {attack stage1, attack stage2, ..., attack stagen}. This way, each attack stage
corresponds to a different movement performed by the attacker. In the following, we describe the
different types of stages considered in the game and explain their effect on the board. Then, the
reward and cost generated for this player are calculated. Lastly, the strategy creation is explained:

• initialIntrusion(IT,OT,FW ). After a phase of reconnaissance, the attacker breaks into the
network through a ‘patient zero’ v0 ∈ V , that can be a node from the IT or OT section. It
is the first movement of the attacker (MA(0)), so that Nv0(0) = 1.

• LateralMovement(IT,OT,FW ). Once a node vi has been compromised, the adversary chooses
a FW (if it is accessible), IT, or OT node vj from the set neighbours(vi) (i.e., those nodes
for which there exists one edge e = (vi, vj) such that e ∈ E). For the election of the node to
take over, we assume that the attacker scans the network in the seek for the most vulnerable
device (according to the V ULN function). We assume A can compromise a node that has
been previously healed by the defender, but its V ULN value is then reduced by half.
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• LinkRemoval . Once the attacker has perpetrated a lateral movement from vi towards vj ,
that communication channel can be disrupted to decoy the defender (and hence avoid the
Opinion Dynamics detection). As a result, the defender cannot exchange the opinion of the
agents assigned to vi and vj , since no anomaly information is transferred through that link,
as explained in the next section.

• Exfiltration of information and Destruction . It represents the final movement of the
attacker. The adversary destroys the node that has been previously compromised, after
possibly extracting information that is sent to an external command&control network.

Each of these movements results in a different cost and reward for the attacker, who determines
his or her utility after each turn of the game, so that the score can be compared with the defender.
As for the reward, and aiming to hold the symmetry between both players, they will receive one
point every time they gain control of a given node that previously belonged to the adversary. For
the attacker, it means that there exists one node v ∈ V at a time t such that Nv(t− 1) = 0 and
Nv(t) = 1 after MA(t), resulting in RA(t) = 1. For simplicity, we consider that all stages have
the same reward.

With respect to the cost of every attack stage, we have to recall the Opinion Dynamics
algorithm in relationship with the defender goals. We assume all the network resources are
monitored by anomaly detection mechanisms, outputs of which are retrieved by a Opinion
Dynamics correlation system. This allows the defender to potentially trace the movement of the
attacker along the network, since the different attack stages will generate various security alerts
that increase the probability of detection, which can be conceived as a cost. In Section 4.1.3, we
proposed a taxonomy of detection probabilities in form of an ordered set associated with each
attack stage. Following the same procedure, now we define Θ as the ordered set of detection
probabilities, where Θ = {θ1, ..., θn} and θi = [0, 1], such that ∀θi, θi < θi+1. This model, which
is illustrated in Table 6.2, maps every attack stage to the elements of Θ to represent their cost.
There are multiple reasons behind this mapping, that are summarized as follows:

1. We assign the lowest level of detection probability (θ1) only to the devices in the neighbour-
hood of the affected node in a lateral movement, since some discovery queries will normally
raise subtle network alerts.

initialIntrusion(v0) θ3
∗LateralMovementIT,FW (vi → vj), neighbours(vi) θ4 → θ2, θ1
∗LateralMovementOT (vi → vj), neighbours(vi) θ5 → θ2, θ1

∗LinkRemoval(vi → vj) θ5 → θ5
destruction(vi) θ6

Table 6.2: Map of attackStages to Θ
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2. The second lowest probability of detection (θ2) is linked to the elements that are the target
of a lateral movement, because these connections usually leverage stealthy techniques to go
unnoticed.

3. An initial intrusion causes a mild detection probability θ3, since the attacker either makes
use of zero-day vulnerabilities or social engineering techniques, which is a crucial stage for
the attacker to be successful at breaking into the network through the ‘patient zero’.

4. θ4 and θ5 are assigned to devices (from the IT and OT section, respectively) causing
the delivery of malware to establish a connection to an uncompromised node in a lateral
movement. In specific, since the heterogeneity of traffic is lower and the criticality of the
resources in that segment is greater, anomalies are likely to be detected when compared
to the IT section. On the other hand, θ5 is also assigned to the involved nodes in a link
removal stage, since it is an evident anomaly sensed by both agents.

5. The highest probability of detection (θ6) is assigned to the last stage of the APT, as it
usually causes major disruption in the functionality of a device or the attacker manages to
connect to an external network to exfiltrate information, which is easily detected.

The precise election of this taxonomy and quantitative instantiation of the θ values is further
explained in the experiments section.

As for the strategy applied for the attacker in TI&TO, SA will vary depending on the state
of surroundings nodes that are vulnerable at every time t of the game. The precise behavior to
define the chain of attack stages is the following: SA always starts with an initialIntrusion ,
which is randomly chosen from the IT or OT section (hence representing multiple kinds of
APTs [227]). Then, A attempts to make a LateralMovementFW movement to compromise a
firewall. This movement is straightforward on the IT section as every node is connected to them.
However, in case of the OT section, the attacker needs to escalate over the hierarchy of nodes
until reaching a PDS node and then the firewall, as explained in Section 6.4.1. Once there, A
penetrates the other section, where we assume he/she must complete a minimum succession
of σ = 3 LateralMovements (choosing the most vulnerable nodes) before finally executing
the Destruction of a resource. In that case, the game terminates complying with TS1 or TS3,
depending on the movements of D. In this sense, the defender can prevent this chain from
completing if he/she detects the attacker and successfully eradicates the infection from all nodes
(complying with TS2). In order for the attacker to avoid that situation, a LinkRemoval can be
executed. In TI&TO, A makes this movement when the defender manages to heal h = 3 nodes
in a row, which represents the situation where D is close behind the attacker on the board, as
explained in the next section.

This procedure to define the attacker strategy as the game evolves is formalized in Algorithm
12. Note that the attacker can always follow this chain of stages as long as he/she posses at least
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one node. In case one is healed, another node is chosen and the APT continues. Otherwise, if the
defender manages to heal all victim nodes, the game ends complying with TS2 or TS3.

As discussed before, the ultimate goal of this section is the analysis of the Opinion Dynamics
technique against the effects of a realistically-defined APT. As such, we assume that the set of
movements that the defender can leverage is summarized in the execution of the algorithm at
every turn of the game, followed by an optional node reparation, as described in Section 6.4.2.
Therefore, the defender adopts a dynamic behavior which allows us to analyze the effectiveness of
different protection strategies.

Algorithm 12 Attacker strategy creation

output: SA representing the attacker strategy
local: Graph G(V,E) representing the network, where V = VIT ∪VOT ∪VFW , gameState = 0
representing initial game state

SA ← {}, V ictims ← {}, numSteps ← 0
attackedNode ← random node in VIT ∪ VOT

SA ← SA ∪ initialIntrusion(attackedNode), V ictims ← V ictims ∪ attackedNode
while gameState == 0 do

if defender healed h nodes in a row and numSteps < σ then
SA ← SA ∪ LinkRemoval

else if attackedNode is in first section attacked then
SA ← SA ∪ LateralMovementFW (nextAttackedNode)
V ictims ← V ictims ∪ nextAttackedNode
attackedNode ← nextAttackedNode

else if attackedNode is in second section attacked and numSteps < σ then
SA ← SA ∪ LateralMovement(IT,OT )(nextAttackedNode)
V ictims ← V ictims ∪ nextAttackedNode
attackedNode ← nextAttackedNode, numSteps ← numSteps+ 1

else
SA ← SA ∪Destruction(attackedNode), gameState ← TS1

end if

if defender healed attackedNode then
V ictims ← V ictims \ attackedNode, numSteps ← 0
if V ictims is empty then

if gameState == TS1 then gameState == TS3

else
gameState ← TS2

end if
else

attackedNode ← random node in V ictims
end if

end if
end while
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We start with the basics. As mentioned in Section 6.4.2, the defender aims to locate the
attacker position across the whole network, keeping track of the anomalies suffered and their
persistence over each area of the network as the game evolves. This is enabled by the Opinion
Dynamics traceability, as proposed in [300]. Thus, the status of the network is checked by the
defender at each turn: then, the most affected node is selected and, based on the severity of the
anomaly, he/she finally decides to heal the node. Depending on the accuracy of this action, the
defender receives a determined utility. This process, which is henceforth referred to as ‘reparation’,
is described in Algorithm 13. It is repeated successively in each turn of the defender, until
all compromised nodes are repaired, complying with the defender-win condition (so that the
complexity of the defensive approach is linear) or the attacker completes its set of attack stages.
There are some aspects to point out here. Firstly, the defender can decide whether to repair
the most affected node or stay idle during each turn, which depends on a predefined threshold.
Namely, if the opinion given by the agent that monitors that node surpasses it, then the defender
opts to heal it. After executing the experiments, and since Opinion Dynamics is calculated as a
sum of weighted sum of opinions, this threshold is set to 0.5, which returns the best outcome for
the defender.

On the other hand, the reward is one as long as the defender succeeds at healing a node that
was in fact compromised; otherwise, the reward is zero. With respect to the cost, it is equivalent
to the criticality of the node that is healed (regulated with the CRIT function of Section 6.4.1),
in such a way that high-level resources are subject to a potential stop in the production chain
and usually need a greater effort in terms of security.

Algorithm 13 Reparation of nodes at time t

output: UD(t) representing the utility
local: Graph G(V,E) representing the network, where V = VIT ∪ VOT ∪ VFW

input: X representing the opinion vector of the network agents

candidateNode ← node in V with maximum x(t)
OldNodeState ← NcandidateNode(t), healThreshold ← 0.5
if xcandidateNode > healThreshold then

RepairNode(candidateNode)
end if
if OldNodeState == 1 then

NcandidateNode(t) ← 0, RD(t) ← 1
else

NcandidateNode(t) ← 0, RD(t) ← 0
end if
CD(t) ← CRIT (candidateNode), UD(t) ← RD(t)− CD(t)

The reparation procedure is the main movement of the defender. However, this reparation
strategy can also be influenced by three different configurations:
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• Local Opinion Dynamics. In practice, a global correlation of the Opinion Dynamics
agents in a synchronous way may not be feasible in a real industrial environment. Concretely,
we aim to demonstrate that the execution of the aforementioned correlation, but considering
a subset of nodes of the original network, is effective enough for the defender. Let G′(V ′, E′)

be the subgraph of G(V,E) so that V ′ ⊂ V and E′ ⊂ E. This subgraph is built including
a candidateNode and all its child nodes within graph G located at a distance of certain
number of hops (in our tests, a distance of one or two hops will be used). The graph G′ is
used for the computation of the Opinion Dynamics, as usually performed in the original
approach. The first election of candidateNode is established after MA(0), considering the
highest anomaly measured by the agents over the network. Afterwards, the defender is able
to locally compute the correlation and heal nodes in subsequent movements. Thus, at every
turn, the candidateNode is updated to the node in V ′ with the greatest opinion, which
implies moving the Opinion Dynamics detection zone.

• Redundancy of links. In Section 6.4.3, the link removal stage was introduced, that allows
the attacker to potentially remove links from the topology that make the defender lose track
of the threat position, by fooling the local Opinion Dynamics. At this point, we must recall
the subset of redundant links ER ⊂ E introduced in Section 6.4.1. These channels will be
used by the defender whenever the attacker destroys a link in E, so that opinions will be
transmitted using those links only in that case. Despite this may seem as an advantage for
the defender, those links can randomly cover pairs of nodes that may not be affected by a
link removal. Additionally, the disruption of a link from vi to vj in E′ does not make vj

inaccessible for the local Opinion Dynamics at all times, since there could be a third node
vk covered by the defender that has another connection (vk, vj) ∈ E′.

• Honeypots. For the interest of the analysis, the defender lastly features the possibility of
establishing honeypots. It implies modifying the network from the beginning to assign the
role of honeypot to specific nodes, which will be randomly chosen in the simulations. These
are used as a bait to lure the attacker to compromise them by exposing a higher degree
of vulnerability (which was regulated with the V ULN function of Section 6.4.1). If the
attacker attempts to compromise it, then a higher anomaly will be generated by that agent,
which would help the defender to rapidly find the position of the threat, eradicate the threat
at a given turn t and hence update the area of the local Opinion Dynamics detection. For
our tests, 5% of the total number of nodes have been considered as honeypots, which is a
minimal value to show the effectiveness of this response technique.

Table 6.3 summarizes the set of movements eligible for each player, indicating their reward
and cost. In the following, we run simulations with different configurations for the defender to
assess the Opinion Dynamics detection technique.
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Player Movements Reward Cost

Attacker

Initial Intrusion 1 θ3
Lateral Movement (vi → vj) 1 θ4 or θ5 + θ1*|neighbours(vi)|
Link Removal (vi → vj) 1 2 ∗ θ5
Destruction (vi) 1 θ6

Defender Node reparation (vi) 1 CRIT (vi)

Table 6.3: Summary of movements leveraged by attacker and defender

6.4.4 Simulations and Results

Once both attacker and defender have been described, this section presents the results of playing
games under different parameters of TI&TO. As explained, the aim of these experiments is to
find the best strategy for the defender given an APT perpetrated by attacker.

In specific, four test cases of games are conducted to assess incremental configurations for the
defender’ strategy: (1) a local Opinion Dynamics detection around 1 hop of distance from the
observed node; (2) local detection with 2 hops of distance: (3) the addition of redundant edges in
VOT ; and (4) the integration of honeypots within the topology. On the other hand, the attacker
follows the model explained in Section 6.4.3. Each test case is composed by 10 sets of 100 games,
where each set is based on a new generated board, following the network architecture introduced
in Section 6.4.1. At the same time, different sizes of network are considered in each test case: 100,
200 and 500 nodes.

Considering a realistic scenario and according to the methodology explained before, we have
assigned values for the detection probabilities represented with Θ, together with those of Ψ

and Υ sets, which regulate the criticality and vulnerability of resources in our simulations. This
instantiation of values is shown in Table 6.4. For the interest of realism and to represent a certain
level of randomness in the accuracy of the detection mechanisms that every agent embodies, these
values will also include a random deviation in the experiments, with a maximum value of ±0.1.

i 1 2 3 4 5 6
ψi 0.2 0.3 0.4 0.5 0.6 0.8
υi 0.8 0.7 0.6 0.5 0.4 0.2
θi 0.1 0.3 0.4 0.5 0.6 0.9

Table 6.4: Instances of the Ψ,Υ,Θ ordered sets used in the simulations

For each board and game set, the percentage of victories achieved by each player (in addition
to the ratio of draws) is calculated. These are shown in form of a boxplot, where each box
represents the quartiles for each player given the different configurations of size in each case.
Different conclusions can be drawn from these simulations, which are discussed in the following.

Test Case 1: local Op. Dynamics with 1 hop, no redundancy, no honeypots.
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In this case (and related to Figure 6.2), the attacker clearly experiences a high rate of victories
as he/she easily escapes from the defender detection, which only encompasses one hop of distance
from the affected node. Therefore, the best-case scenario for D occurs when he/she just manages
to follow the infection until it is eradicated in the last turn, resulting in a draw.

Figure 6.2: Test-case 1: Percentage of victories and draws

Test Case 2: local Op. Dynamics with 2 hops, no redundancy, no honeypots. With
the introduction of more nodes covered by the local detection (whose number is approximately
squared with respect to Test case 1), the percentage of defender wins increases significantly, which
shows the importance of applying Opinion Dynamics on a wide area, as shown in Figure 6.3.
However, the number of attacker victories and draws still remains moderate, since the defender
has not sufficient accuracy as to keep track of A when the removal of links is performed and the
detection is eluded.

Figure 6.3: Test-case 2: Percentage of victories and draws

Test Case 3: local Op. Dynamics with 2 hops, redundancy, no honeypots. The imple-
mentation of more defensive aids results in a higher number of wins for the defender (see Figure
6.4). Here, the redundancy makes D able to trace most of the attacker movements, including
when that player wants to get rid of the detection, which is more evident in smaller networks.
And yet, the defender must successfully heal all the compromised nodes across the network that
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may continue the attack and be far away from the current detection focus, which still returns a
mild number of attacker victories and draws.

Figure 6.4: Test-case 3: Percentage of victories and draws

Test Case 4: local Op. Dynamics with 2 hops, redundancy, honeypots. Lastly, the
addition of honeypots are a secure way for the defender to ensure the highest number of victories,
as shown in Figure 6.5. The presence of these devices triggers severe anomalies when the attacker
tries to compromise then. They are sensed by the defender to rapidly locate the current affected
node, as long as D covers a wide area that contains the position of the attacker at that time. In
this case, the use of these two tools (besides the redundancy) are enough as to win most of the
games. The rationale behind this result is simple: when the attacker attempts to compromise one
of this fake nodes, a great anomaly is generated which is detected by the defender, as long as he
or she manages to cover a wide area that contains the current position of the attacker (i.e., when
2 or more hops of distance are leveraged by the local Opinion Dynamics). This behavior is shown
in Figure 6.6. In this network, the attacker traverses the nodes and then they are immediately
healed (they are labeled with an ‘X’ when they are attacked and ‘H’ when they are healed, along
with the anomaly measured by Opinion Dynamics). In the last movement, the attacker attempts
to compromise a honeypot (depicted with a diamond shape) and the defender manages to locate
and eradicate the infection. Since the defender does not possess any other compromised node, the
game is over.

Figure 6.5: Test-case 4: Percentage of victories and draws
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Figure 6.6: Example of defender-win after the attacker compromises a honeypot

In general, we can deduce that solely by implementing Opinion Dynamics, the defender can
benefit from its detection to reduce the impact of the attacker over the network. The protection
improves with the introduction of additional measures such as redundancy or honeypots, and the
same results are obtained for different sizes of network.

We can also draw some analysis on the overall score in these test cases. Figure 6.7 plots the
average score of the defender and attacker for the four test cases presented before. At a glance,
we can see how D shows a superior throughput in all cases, and a slightly higher score when
using low-size networks, since he/she experiences greater accuracy in the reparation of nodes.
Also, the score decreases as test cases implement additional defense measures. On the one hand,
the attacker generates more anomalies (and hence more costs) due to the link removal attacks in
the attempt to dodge the detection. On the other hand, the defender has more candidates to heal
due to the increased number of anomalies, and does not always have a high accuracy in choosing
them.

To sum up, by means of game theory we have demonstrated that local Opinion Dynamics is
still valid for catching the compromised nodes of the attacker when it is applied with a minimally
wide detection area (i.e., two hops of distance from the observed node) and it is paired with
effective response techniques (i.e., where honeypots pose an effective measure) that precisely
make use of the provided detection information. The game approach itself is validated from a
theoretical point of view in the next section.
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Figure 6.7: Percentage of victories for each player in each test case

6.4.5 Theoretical Demonstration

This section presents the correctness proof of TI&TO for the different cases that may occur
during a certain game instance. This problem is solved when these conditions are met:

1. The attacker can find an IT/OT device to compromise within the infrastructure.

2. The defender is able to trace the threat and heal a node, thanks to the Opinion Dynamics
detection.

3. The game system is able to properly finish in a finite time (termination condition).

The first requirement is satisfied since we assume that the attacker can perform different
attack stages to define his/her strategy over the game board (assuming V '= 1), such as lateral
movements, links removal or destruction. The modus operandi of the attacker is systematic,
beginning with a random node v0 ∈ VIT ∪ VOT at t = 0 which is compromised (see Algorithm 12).
Then, A penetrates the infrastructure to ultimately gain control of the operational or corporate
network, where a certain node is finally disrupted (VOT ) after a set of σ lateral movements. In an
intermediate time t of the game, the attacker can execute a new stage as long as there is at least
one node va such that Nva(t) = 1, which becomes the new attackedNode in Algorithm 12. When
the state of all nodes is set to zero, the game terminates.

The second requirement is also met with the inclusion of intrusion detection solutions on every
agent ai ∈ A that facilitate the correlation of events. With the local execution of the Opinion
Dynamics correlation from t = 1 on the node that presents the greatest anomaly (using one or
two hops of distance), we ensure that the agents associated with the resulting subgraph of nodes
will have an opinion xi(t) ≥ 0. According to Algorithm 13, this means that D will heal the node
with the maximum opinion if that value surpasses the threshold (0.5, as explained in Section
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6.4.3), setting its state back to zero and updating the detection area. Otherwise, he/she will
remain idle during that turn.

We can demonstrate the third requirement (corresponding to the termination of the approach)
through induction. More precisely, we specify the initial conditions and the base case, namely:

Precondition: we assume the attacker models an APT perpetrated against the infrastructure
defined by graph G(V,E) where V '= 1, following the strategy explained in Algorithm
12. On the other side, the defender leverages Opinion Dynamics to visualize the threat
evolution across the infrastructure and eventually repair nodes, following the procedure
described in Algorithm 13.

Postcondition: the attacker reaches the network G(V,E) and compromises at least one node
in V such that SA '= 1 and continues to compromise more devices in the loop in Algorithm
12, to achieve numSteps = σ. Player D executes Opinion Dynamics to detect and heal
the most affected nodes after executing the correlation. The game evolves until any of the
termination states (see Section 6.4.2) are reached.

Case 1: numSteps = σ, but gameState is still set to zero. In this case, player A has suc-
cessfully traversed the network having V ictims '= 1. Therefore, he/she needs to launch
the Destruction movement over the attackedNode. This makes gameState comply with
TS1 termination condition temporarily until the defender moves. If D manages to heal
attackedNode and V ictims = 1, then the game also terminates, with TS3.

Case 2: numSteps < σ. In this case, the next stage in SA implies a lateral movement. If
the attacker is still in the first section where the first intrusion took place (whether IT
or OT), he/she must locate a firewall to perpetrate the other section before increasing
numSteps. After this, the defender can make his/her movement and potentially heal a node,
which can make the attacker remove a link in the following iteration. If the node healed is
attackedNode, the attacker must choose another node in V ictims, resetting numSteps = 0.
In the event that V ictims = 1, then the game terminates with state TS2.

Induction: if we assume that we are in step t (t ≥ 1) in the loop in Algorithm 12, then
Case 1 is going to be considered until A completes his/her strategy (TS1 or TS3). In any
other case, Case 2 applies until achieving numSteps = σ (hence applying Case 1 again) or
V ictims = 1. In this last case, the game finishes with TS2.

6.5 Validation in a Testbed

In this section we will go beyond the theoretical experiments described in the previous section,
and provide the experimental results of a proof of concept implementation of the APT traceability
framework with the Opinion Dynamics system. This proof of concept was integrated on a testbed
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that simulates an industrial environment using realistic hardware and protocols. For this proof of
concept, rather than integrating a full-fledged network-based and host-based intrusion detection
system as an input for the Opinion Dynamics algorithm, we deployed a set of simple heuristics
that searched for anomalies in the communication channel. The reason for this is simple: this
experiment aims to provide a baseline that shows how the Opinion Dynamics system can help to
provide the trace of a kill chain while using as an input only lightweight anomaly detection rules.

As for the structure of this section, firstly we present and provide the technical specifications
of the testbed used for the simulations (the so-called I4Testbed). Then, we explain how the
Opinion Dynamics system has been applied in this context. Finally, we describe the execution of
the different attacks cases, and analyze the results provided by the Opinion Dynamics system.

6.5.1 I4Testbed: An Industry 4.0 Testbed

The advent of the Industry 4.0 paradigm is basically a consequence of a plethora of technologies
that are being imported from the IT world (e.g., the Internet of Things, cloud computing, Big
Data) to industrial control systems, which have been working in an isolated way for decades.
This has also caused the appearance of new attack vectors against these infrastructures, which
has fostered the research of advanced cybersecurity solutions. Precisely, the I4Testbed testbed
has been developed in the University of Malaga to provide a realistic environment where novel
detection mechanisms can be assessed without facing the whole investment of deploying a complete
industrial infrastructure.

The overall architecture of the I4Testbed is depicted in Figure 6.8. It is designed to accommo-
date different industrial applications in a realistic fashion. For this particular case, we model a
solar, hydraulic and wind electricity generation system. Each of the three sources are virtually
simulated by using an open API that retrieves the climate conditions in Malaga in real time [336].
These values are then fed to the physical sensors, so that the turbines are ultimately activated
from the SCADA system depending on specific conditions of humidity and temperature.

As shown in Figure 6.8, different devices are placed in the lowest level of the topology, which
includes light indicators, emergency buttons, industrial sensors (using protocols such as IO-Link,
WirelessHART and ISA100.11a) and IoT sensors (TelosB using 6LoWPAN over IEEE 802.15.4).
These sensors are connected to their respective gateways which, along with other field devices
based on Intel Galileo Gen1, RevPi Core 3 and Raspberry Pi, gather the different measures
of the generation process and then relay them to three different PLCs: one SIMATIC S7-1200
(using Profinet) that governs the hydraulic generator, one PLC based on Raspberry Pi 3 (using
ModBus TCP) that controls the eolic and solar generator, and another one implemented purely
via software, that controls the AC system of the power transformer. These three PLCs are then
operated by the SCADA system (which is based on Linux with Python) and two different HMIs:
one SIMATIC KTP700 and another one implemented with a Raspberry Pi. This SCADA system,
that also works as HMI (as shown in Figure 6.9), and the IBH Link UA Gateway can be accessed
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Figure 6.8: Overall architecture of the I4Testbed testbed

by local entities through TCP/IP and OPC UA; and by external entities through a virtual private
network (VPN) connection. Additionally, the testbed also integrates a backup server, a corporate
computer and another one for development purposes.

As for the monitoring capabilities of the I4Testbed, the previously presented topology contains
a security server with high computational resources that is able to capture all the information
from the communication channels via a network switch in port mirroring mode. Despite the
logical topology, as all devices are physically connected through one switch, the security server
can retrieve all the traffic from the nodes. This way, the security server can also function as a
centralized entity (as discussed in Section 4.2.1), where we can deploy a virtual agent for each
physical node that must be monitored. Such agents will then perform the different computations
of the Opinion Dynamics algorithm.

6.5.2 Implementation of the Virtual Agents

Within the Opinion Dynamics system, every agent will process the traffic handled by its associated
physical node, and study the security state of its neighbourhood. As a result, it will create a
quantitative value (i.e., the opinion of that agent) which will be used as an input to the Opinion
Dynamics algorithm. For the purpose of our experiments, in this proof of concept implementation
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Figure 6.9: Interaction panel GUI on the SCADA system

we will make use of an heuristic to compute the unique anomaly value, which considers the
following characteristics:

• Variation of traffic volume: by analyzing the number of packets per protocol and device
connected with each channel: Enabling the detection of added/removed devices within the
topology, in addition to non-frequent communications.

• Variation of the commands received by the industrial protocols: through the analysis of the
number and type of commands, with the aim of detecting anomalous actions performed by
potentially compromised devices.

• variation of the delays experienced between received commands by the industrial protocols:
To infer the presence of anomalous processes running in each device.

For the computation of an unique anomaly value, the average and standard deviation of the
different characteristics monitored (e.g., number of connections, packets exchanged) are calculated
in normal conditions. For the sake of simplicity, we have assumed that, for a given characteristic,
a value sensed at any time is considered as anomalous when it exceeds the standard deviation of
such characteristic in normal conditions. Finally, the opinion of each agent is chosen as the highest
anomaly value for all the characteristics monitored. Even though this criteria is an adjustable
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parameter for the simulations, we have specifically considered the following equation to compute
the anomaly value for a given characteristic:

(
(NormalV alue− CurrentV alue)− 2 ∗ StdDev

StdDev
)2 ∗ 5 (6.1)

Then, the process is analyzed periodically to sense multiple anomalies across the entire
topology. For this test case, we have considered slots of 5 minutes: during this period, each pair
of devices that exchange information are considered as neighbours, and all characteristics of
the communications are gathered by each agent to compute its anomaly degree. Lastly, these
anomalies (i.e., the agents opinions) are correlated using Opinion Dynamics, to ultimately output
the health status of the industrial system.

In order to implement the virtual agents, we have deployed three different components (cf.
Figure 6.10) in the security server. These components are as follows:

1. A collector component retrieves the raw traffic from all devices of the testbed to generate
a list of events that are of interest for the analysis of the variation in each characteristic.

2. Then, the detector component creates one agent for each of the components that are
deployed over the network. This agent analyzes the different characteristics involved for its
monitored node and computes Equation 6.1 to finally obtain an opinion value.

3. Finally, a correlator executes the Opinion Dynamics algorithm to accurately identify the
most affected areas of the infrastructure, as explained in Section 4.3.2. In addition, the δ

value is also returned to represent the overall health status of the network.

For this particular experiment, these three components have been developed using Python
2.7.13. In order to capture the network traffic, we have also used the scapy library and several
dissectors such as scapy-cip-enip.

6.5.3 APT Test Case with I4Testbed

In this section we show how the Opinion Dynamics-based technique performs against a test case
of an APT composed by four different attack stages. The aim is to check how the different agents
that are spread over the topology sense the different anomalies caused by these vectors. As a
result of this analysis, the system should provide a trace of the whole attack, plus an aggregated
indicator of the health of all resources of the I4Testbed. In order to (i) achieve an acceptable
degree of realism, and (ii) provide as many sources of anomalies as possible, the entire kill chain
has been defined as a sequence of the following stages:

1. First intrusion: an initial access to the network is perpetrated. More specifically, the
adversary (potentially an insider) steals some access credentials (e.g., with social engineering)
and takes over the HMI/SCADA by accessing it from the IT network via SSH.
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Figure 6.10: Components of the Opinion Dynamics System

2. Network scanning and lateral movement: once higher privileges have been obtained
and the SCADA system has been compromised, the attacker performs a reconnaissance
of the node neighbourhood, seeking for vulnerable services running in each device. This is
achieved issuing a nmap command on Linux. At this point, we assume that a vulnerability
is found on the Raspberry Pi-based PLC and is exploited to take over that node.

3. Establishment of a covert-channel: after the PLC has been compromised, the adversary
establishes a covert-channel attack against the Modbus communication link. Through this
channel, the adversary sends a shutdown command that is expected to be executed in a
latter phase. This is perpetrated in a stealthy way, delaying the transmission of a Modbus
message, as explained in [301]. There are various publications available in the literature
that also explain potential implementations of this attack, such as [337] and [338].

4. Node disruption: finally, the PLC executes the shutdown command and closes the
communication links with the rest of devices.

In order to visualize how these attacks are detected and reported by the Opinion Dynamics
System, the experimentation has been carried out according to the following methodology: firstly,
the industrial system is left to work for an hour without taking any special action on the
testbed, except for computing the detection algorithm periodically every 5 minutes. This helps
the virtual agents (one per device) to compute the average and standard deviation of the different
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characteristics introduced before (traffic volume, number of connections and communication
commands, etc) in normal conditions. Afterwards, the entire kill chain is executed in sequence,
with a waiting time of approximately one hour between the various stages of the attack. During
the execution of the kill chain, the Opinion Dynamics system keeps being executed, so that we
can keep track of the multiple anomalies measured as attacks take place.

As a result, Figure 6.11 shows an abstract representation of the I4Testbed devices and their
connections, along with the respective correlated opinion of all virtual agents, which is computed
immediately after each individual attack. Note that, in our experiments, two devices are considered
as neighbours by the Opinion Dynamics as long as they exchange information during the last
period analyzed (i.e., every 5 minutes, as explained before). This way, the system can detect when
a device has been removed from the topology, which affects the anomaly calculation due to a
variation on the number of connections. Note also that, in Figure 6.11, dotted lines represent
connections that are not used frequently.
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Figure 6.11: Evolution of the Opinion Dynamics values over the test case attack stages

As we can see, the correlation of the different opinions of the virtual agents provide helpful
information that is of interest to network security mechanisms and services, as it provides an
accurate visualization tool to easily identify the most affected resources at all times. First, Figure
6.11(a) shows that an important anomaly was detected by the virtual agent assigned to the
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corporate PC when the SSH connection was opened to communicate with the HMI/SCADA,
since its notices an unexpected connection involving that target device. Besides, if host-based
IDSs were available, the virtual agent assigned to the HMI/SCADA would also have signalled the
existence of an anomaly. Note that this corporate PC is opted out for the Opinion Dynamics
computation after this first step because it will not have any more interactions with the rest of
the devices during the entire simulation. Then, as seen in Figure 6.11(b), the search for victim
devices within the network results in a mild increase in the opinion of most agents, since the
network is flooded with TCP connections.

Thirdly, the adversary establishes the covert-channel between the HMI / SCADA and the
Modbus PLC, with the aim to issue commands without firing any alert. However, this attack is
also detected when the variation of the packet delays is analyzed by the agents involved, which is
leveraged to embed the shutdown command for the target PLC; in other words, different clusters
of opinions appear as consequence of the correlation of similar opinions due to similar delays
experienced in their surroundings links. These are represented in orange in Figure 6.11(c). Lastly,
the attacker sends a shutdown command to the RPi3 PLC, paralyzing the production chain. As
expected, this generates a critical anomaly (cf. Figure 6.11(d)) that is measured by all devices that
work closely to that device. Such anomaly is a consequence of the variation in the traffic volume,
caused by delays and requests issued by the industrial devices; namely, the WirelessHART and
ISA100.11a gateways, the field devices, the HMI/SCADA system, and the Software PLC.

Figure 6.12: Evolution of delta opinions over the test case attack stages
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Apart from providing a detailed analysis of the security status of all devices, the Opinion
Dynamics System can also provide the health status for the entire network by calculating the δ

indicator, as introduced in Section 4.6. In particular, Figure 6.12 shows the resulting value of the
global anomaly (1 minus the delta indicator), calculated as the weighted average of all individual
opinions (also represented in the graph) during the entire simulation. In the figure, each mark
in the X axis represents a single computation of the Opinion Dynamics algorithm. There are
two important aspects that must be highlighted in this figure. First, as all agents run a training
phase to determine the normal conditions of the system, every event is considered as an anomaly
during that process until they stabilize around zero value. Second, the four different attack stages
are actually shown in the figure as peaks in the y-axis. As explained before, the highest peak
occurs with the ultimate disruption of the PLC, which results in a global anomaly of 68.83% (so
that δ=31.17%).
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Conclusions

This chapter recapitulates our efforts to achieve the goal of improving APT traceability techniques
in modern control systems with the advent of Industry 4.0. We begin by summarising the scope
of our research and the problems addressed in this thesis. We then present a brief description of
our contributions in this area and expand on possible lines of improvement. Finally, we introduce
some remaining challenges for the detection and traceability of these sophisticated threats.

7.1 Contributions

Today, most critical infrastructures in all industrial sectors (such as transport, the electricity grid
or telecommunications) base their management on SCADA control systems. These allow real-time
remote access to the devices that govern their production chain. In terms of cybersecurity, these
systems have traditionally been deprived of services to deal with external threats, since industrial
networks had to operate in isolation from other environments. However, in recent years there
has been a gradual interconnection of control systems with other networks (such as the Internet)
for the outsourcing of services or data storage, which has been preceded by cheaper equipment
and the standardisation of software used in industrial ecosystems. Added to this is the current
integration with new information technologies such as cloud computing, Big Data, virtualisation
and the Internet of Things. Consequently, the industry is evolving towards a more flexible model
where all parties (consumers, suppliers, operators) collaborate to streamline the production chain
more interactively, carry out productive maintenance of resources and reduce costs, in what is
already known as the fourth industrial revolution or Industry 4.0.

As a result of such evolution in process interoperability, there has also been an evident growth
in cybersecurity threats, as industrial systems are now also victims of IT problems, in addition
to the risks posed by new communication protocols and Industry 4.0 services. In short, we
have greater criticality and complexity in industrial systems, which must be supported by more
effective security services. Of particular interest is the implementation of mechanisms against so-
called advanced persistent threats. These are sophisticated attacks perpetrated against a specific
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organisation, where the perpetrator has considerable expertise and resources to penetrate the
victim’s network by exploiting a multitude of vulnerabilities and attack vectors, going undetected
for a prolonged period of time.

After contextualising the technological background of Industry 4.0 and carrying out a thorough
review of the state of the art, it is deduced that there is a lack of mechanisms that allow the
detection and effective monitoring of APTs in modern infrastructures, which is the main goal
of this thesis. To reach this conclusion, we first carried out a study of the threats to which an
industrial control system is exposed and which can form part of an APT. These include attack
vectors such as malware, denial of service, code injection, privilege escalation, etc. as well as
vulnerabilities in communication protocols and social engineering attacks (e.g., spoofing, phishing).
These were classified according to a more detailed taxonomy, grouping them according to the
traditional security services concerned: availability, integrity, confidentiality and authentication.
At the same time, a differentiation was made between threats that arise as a consequence of
weaknesses inherent to industrial systems and those that appear as a result of the integration
of IT technologies and Industry 4.0 services in these environments. In light of this taxonomy,
we researched solutions that would allow us to put in place a first line of defence in the form of
intrusion detection systems, which analyse assets within the organisation in search of anomalies and
attack patterns. Specifically, we surveyed more than 100 mechanisms proposed in the commercial,
academic and research fields, to classify them according to the type of techniques they use, their
level of coverage within the infrastructure, and the type of communication protocol they analyse.
From this study, we also deduced that little progress has been made in research into detection
techniques that allow us to monitor industrial resources in a holistic manner and simultaneously
detect a multitude of attacks, as is the case with APTs. In this sense, all solutions for traceability
of attacks in Industry 4.0 focus on specific attacks or have not been proven effective in realistic
environments.

For this reason, to close the gap between detection systems and APTs in Industry 4.0, we
distilled a set of detection and security requirements that new techniques in this field must meet.
These are specified in a traceability framework for the traceability of APTs, which also defines
the input interface, a deployment model and the services to be satisfied by potential anomaly
correlation algorithms in an industrial infrastructure for the precise traceability of an adversary’s
movements, which have also been specified. To this end, we conducted a study on the most
relevant APTs in the last decade and formalised a realistic attacker model. Then, to illustrate
the benefits of this framework, we designed three different techniques based on consensus and
clustering, which carry out the distributed correlation of anomalies detected by a set of agents
spread across the network. After an initial comparison of these solutions through experiments
that evaluate their accuracy in detecting a set of theoretically modelled APTs, we find that the
Opinion Dynamics technique is the most flexible and accurate. This algorithm simulates the
influence of opinions among a set of agents (which in our case represents the perceived anomaly
in their local environment) and their evolution over time. When these opinions are eventually
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grouped, we can extract valuable information to determine in which parts of the network the
attacker is located and associate aspects such as the persistence and criticality of the attacks,
thus fulfilling the requirements initially proposed.

Based on these findings, our objective below was to test the effectiveness of the traceability
framework (and therefore that of the solutions that satisfy it) in various Industry 4.0 scenarios
from a more practical point of view. For this purpose, we firstly devise response techniques that
use the information provided by the detection system to ensure the survivability of the network by
guaranteeing the continuity of communications in the presence of an APT. This was implemented
utilizing message routing protocols that make use of the information provided by the Opinion
Dynamics algorithm, and then they tested with various attack scenarios. On the other hand, its
application was also studied in the Industrial Internet of Things, which is a fundamental pillar
of Industry 4.0, and in Smart Grid, as use case of sector of the Industry. As for the former, the
deployment of the detection system in this industrial paradigm was addressed, studying data
extraction at all levels and proposing a theoretical prototype that illustrates the effectiveness
of intrusion detection when integrated with this technology. In the case of the Smart Grid, a
tool was developed that prevents against potential overloads within the network and monitors
anomalies to provide information on the security of resources. This data is then used to establish
access control policies based on the real-time status of the infrastructure.

It is worth noting that the effectiveness of each of these detection mechanisms and their derived
response techniques has been supported by mathematical proofs of the underlying algorithms. In
particular, our Opinion Dynamics-based solution was validated theoretically through game theory,
which also helped to draw several conclusions about the optimal defence strategy against certain
types of APTs. Similarly, this solution was successfully implemented in an industrial testbed,
demonstrating the deployment and traceability of events occurring in the context of an APT
composed of several attack phases against different industrial elements.

As a result, this research is of particular interest to raise awareness of this problem in the
critical infrastructures that will control our society in the coming decades. In particular, the
traceability framework provides useful information for the design of detection systems adapted to
the complexity and technological heterogeneity of these environments. This is evidenced by the
various experiments carried out, which highlight the accuracy and efficiency of these solutions.
Such is the case of Opinion Dynamics, where its contribution translates into better decision
making due to real-time monitoring of resources, risk prevention and ultimately the reduction of
impact (and therefore costs) thanks to the response services that make use of these innovative
solutions.

7.2 Challenges and Future Work

The security of critical infrastructures is a hot topic, and is the main obstacle to the adoption
of Industry 4.0 in all sectors of society. Proof of this are the numbers of reports that reveal the
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millions of dollars in losses caused by targeted attacks against all types of companies. In this
line, there are still many challenges and open problems that require aligning the standardization
efforts of these technologies with the knowledge of experts and the multidisciplinary collaboration
of governments, consortia and private entities. In particular, this thesis has focused on a very
specific type of problem (the detection and traceability of APTs) that by its nature encompasses
multiple areas of cybersecurity and, therefore, leaves room for a deeper analysis in each of them.

First of all, it is worth mentioning certain possible improvements and extensions of the
traceability framework and its enabling solutions. On the one hand, it would be interesting
to consider the assimilation of more input data that would result in a more accurate anomaly
correlation. At this point, we wish to illustrate in a practical way the automated (and real-
time) processing of external information sources (such as cyber-threat intelligence reports) to
maintain an updated knowledge base concerning event causation, which we have referred to
as the qualitative input. In the particular case of the Opinion Dynamics algorithm, this would
translate into an optimal and automatic allocation of weights among agents. So far we have left
the door open for these values to be established manually based on different rules, for example,
by measuring the quality of service in communications. However, it would be ideal if the platform
in question had the autonomous capability to acquire this knowledge and calculate the best
assignment, perhaps using machine learning or deep learning techniques. In general and in relation
to the latter, it would also be of particular interest to explore the influence of artificial intelligence
and machine learning algorithms in the correlation of anomalies, beyond the mechanisms based
on distributed consensus and clustering.

Similarly, it would be desirable for the traceability system to offer more output functionalities
beyond assessing the current state of the devices and identifying the most affected areas. For
example, we would like to study the possibility of making predictions with the data collected,
in order to anticipate with certainty the next movements of a stealthy attack within the victim
network. Again, this leads us to analyze in detail the machine learning tools applicable in this
area, which would operate on the basis of a database containing all the events occurring in the
infrastructure, thus fulfilling the traceability functionalities. In this sense, the integration of DLT
structures becomes relevant in critical environments to ensure the integrity and replication of
data in the long term, as we have incidentally addressed in this thesis for the case of the Smart
Grid. However, it is necessary to investigate how these technologies impact grid performance, and
how they could be integrated with sensing agents based on their distributed nature.

The deployment of the techniques that satisfy our framework also imposes several challenges
that need to be further addressed. In particular, while we have defined different models for
implementing the sensing agents physically or virtually (which determines how the information
extracted from the field devices is acquired and aggregated), we should also analyze how each of
these strategies affects the performance of the control systems, drawing conclusions about the
advantages and disadvantages of centralized or distributed correlation. At the same time, it is to
be expected that the algorithms that satisfy the traceability framework itself do not present a
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high complexity to jeopardize the real-time requirements imposed by these critical environments.
All of this is dependent on a set of performance requirements that are specific to the industrial
systems where these solutions would be applied, and which is different in each Industry 4.0 sector.
For space reasons, this thesis has addressed the case of the Smart Grid and the industrial internet
of things as a technological pillar of manufacturing infrastructures. However, we would like to
study the behavior of the Opinion Dynamics algorithm (along with other alternative solutions) in
additional environments such as the transport network or telecommunications, in order to identify
further parameters that could be contemplated by our framework to ultimately characterize our
solutions with a higher degree of accuracy.

This thesis has focused on analyzing the generic behavior of APTs based on the most important
cases that have been reported in recent years. However, it is expected that the new services offered
in the Industry 4.0 by new computing and communications paradigms (such as blockchain, 5G
or fog/edge computing) will remain on the rise, thus creating new attack vectors that will force
the renewal of existing techniques to cover a broader detection approach. It is therefore crucial
to continue researching adaptive detection mechanisms with an increasing degree of autonomy,
based on increasingly complex attacker models that are also recognized in academia. This must
be supported by new standards that integrate security by default throughout the Industry 4.0
life cycle (such as IIRA and RAMI4.0), to facilitate seamless integration with future traceability
solutions.
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Apéndice A

Resumen en español

Hoy en día, la mayoría de infraestructuras críticas de todos los sectores industriales (como
el transporte, la red eléctrica o las telecomunicaciones) están experimentando un proceso de
modernización tecnológica. Estos sistemas basan su gestión en los denominados sistemas SCADA
(Supervisory Control and Data Acquisition), que permiten el acceso remoto en tiempo real a los
dispositivos que gobiernan la cadena de producción. En lo que a ciberseguridad se refiere, estos
dispositivos han estado tradicionalmente desprovistos de servicios que hagan frente a amenazas
externas, puesto que las redes industriales debían funcionar de manera aislada a otros entornos.
Sin embargo, en la actualidad se está llevando a cabo una paulatina interconexión de los sistemas
de control con otras redes (como Internet) para la externalización de servicios o el almacenamiento
de datos, algo que viene precedido por el abaratamiento del equipamiento y la estandarización
del software empleado en los ecosistemas industriales. A ello se le suma la integración de estos
dispositivos (que podemos considerar tecnología operacional, en adelante OT por sus siglas en
inglés) con tecnologías de la información (IT) tan novedosas como el cloud computing, la blockchain,
el Big Data o el Internet de las Cosas. En consecuencia, estamos asistiendo a una evolución en el
modelo de industria donde todas las partes (consumidores, proveedores, operadores) colaboran
entre sí de forma distribuida para conseguir un mayor rendimiento con menor coste, en lo que ya
se conoce como la cuarta revolución industrial (o Industria 4.0).

Como resultado de tal evolución e interoperabilidad, también se ha producido un evidente
crecimiento de amenazas de seguridad, al ser ahora los sistemas industriales también víctimas de
los problemas que sufren las tecnologías de la información, además de los riesgos que entrañan los
nuevos protocolos de comunicación. En suma, tenemos una mayor criticidad y complejidad en los
sistemas industriales, que ha de ser respondida con servicios de seguridad más efectivos. Es de
especial interés la puesta en marcha de mecanismos contra las denominadas Amenazas Persistentes
Avanzadas (APT, del inglés Advanced Persistent Threats). Se trata de ataques sofisticados
perpetrados contra una organización en concreto, donde el responsable posee experiencia y recursos
considerables para penetrar en la red de la víctima aprovechando multitud de vulnerabilidades y
vectores de ataque, pasando desapercibido durante un prolongado periodo de tiempo.
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El foco de esta tesis se enmarca en el contexto de la exploración, diseño e implementación
de servicios de detección ante este tipo de amenazas relacionadas con los sistemas de control de
los entornos de Industria 4.0. Los esfuerzos de nuestro trabajo se centran en crear una base de
conocimiento que nos permita especificar una serie de requisitos de seguridad y de detección,
recogidos en un marco de trabajo que sirva como base para el desarrollo de soluciones de
trazabilidad de APT en estos entornos.

A.1 Marco de la tesis, objetivos y contribuciones

Para contextualizar nuestra investigación, es preciso considerar el marco industrial y las tendencias
actuales que configuran el paradigma de la Industria 4.0 o cuarta revolución industrial. Se le
acuña este nombre en referencia al proceso de modernización tecnológica que actualmente están
experimentando los sistemas de control industrial (ICS), tras la incorporación de la mecanización
con las máquinas de vapor, la electricidad y la automatización electrónica en las anteriores
revoluciones a lo largo de la historia. No obstante, el concepto de Industria 4.0 no está tan maduro
debido a la falta de acuerdo sobre el conjunto de tecnologías consideradas y a los diferentes intereses
de los actores implicados (incluyendo investigadores, comités de estandarización, empresas y
entidades gubernamentales) [5].

En este sentido, cabe destacar principalmente dos iniciativas a nivel internacional que guían
gran parte del progreso actual de la Industria 4.0: por un lado, el programa alemán Industrie 4.0,
que nació como una iniciativa de ámbito europeo, y que ha alcanzado un alcance global debido a su
influencia en otros programas y a las colaboraciones entre diversos consorcios. En el caso de España,
se ha visto implementado en la llamada Comisión de Industria 4.0 [14], dependiente de AMETIC
(Asociación Multisectorial de Empresas de Tecnologías de la Información, Comunicaciones y
Electrónica). Por otra parte y con una capacidad de influencia internacional equiparable, en el
ámbito estadounidense prevalece el denominado Industrial Internet Consortium (IIC)[21], cuyo
objetivo igualmente es el de automatizar la industria en multitud de dominios. Es precisamente
de la mano de IIC de donde surge uno de los conceptos que se relacionan frecuentemente con
la Industria 4.0: el Industrial Internet of Things (IIoT), promovido inicialmente por empresas
americanas (AT&T, Cisco, General Electric, IBM e Intel). Ambas persiguen objetivos similares,
pero con ligeras diferencias. Mientras que la Industria 4.0 centra sus esfuerzos principalmente en
los procesos de fabricación, el IIoT también busca la integración con diversos ámbitos industriales
(por ejemplo, infraestructuras críticas, ciudades inteligentes). Además, la Industria 4.0 se centra
más en el hardware y en la coordinación de los procesos de producción, mientras que el IIoT se
centra más en el software y en la interacción entre entidades [30]. Aun así, hay puntos en común
entre ambas iniciativas, y actualmente están trabajando para alinear sus dos arquitecturas de
referencia: la Arquitectura de Referencia de Internet Industrial (IIRA), desarrollada por el IIC [31],
y el Modelo Arquitectónico de Referencia Industrie 4.0 (RAMI4.0), desarrollado por el consorcio
Platform Industrie 4.0 [32]. Ambas referencias proporcionan dos arquitecturas interoperables
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Figura A.1: Evolución de la arquitectura industrial tradicional basada en el estándar ISA-95 y
evolución hacia la Industria 4.0

orientadas a servicios, que combinarán componentes de IT y OT accesibles a través de interfaces
comunes desde todos los procesos y entidades de la organización, logrando así la digitalización de
la red y el modelo descentralizado que persigue la industria del futuro.

Aunque el ecosistema de la Industria 4.0 es especialmente variado y está sujeto a varias de estas
iniciativas, se puede definir este paradigma desde una perspectiva técnica como la combinación
de procesos productivos con tecnologías punteras de la información y las comunicaciones. Tal
como aparece ilustrado en la Figura A.1, el objetivo es hacer evolucionar el modelo rígido de
industria tradicional basado el estándar ISA-95 [36]. Este modelo está compuesto por cinco
niveles en forma de pirámide, donde en la base se encuentra el proceso productivo y por encima
los dispositivos de control y los sistemas que controlan el flujo de trabajo, como Sistemas de
Ejecución de Manufactura (MES). Por último, la cúspide contiene la infraestructura de logística,
inventario y Planificación de Recursos Empresariales (ERP). Al cambiar esta pirámide hacia un
modelo que proporcione una infraestructura descentralizada más dinámica y reconfigurable (como
las mostradas en la Figura A.1), se potencia la creación de nuevos servicios optimizando los ya
existentes [38], propiciando una mayor productividad con una reducción de costes.

Desde un punto de vista más técnico, todas estas ventajas de la Industria 4.0 se pueden
conseguir mediante un conjunto de tecnologías que en esta tesis anticiparemos y resumiremos en
torno a cinco áreas distintas:

• Internet de las Cosas Industrial (IIoT): con objeto de integrar verticalmente todos
los componentes de la arquitectura, desde los sistemas de control hasta las máquinas o
los propios productos. A este paradigma se le unen otros modelos de computación en la
periferia de la red, como el Mobile Edge Computing (MEC) o el fog computing.
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Figura A.2: Visión general del modelo de infraestructura de la Industria 4.0 y sus tecnologías
asociadas

• Cloud computing: constituye un pilar fundamental para realizar procedimientos con los
datos recogidos de el sistema productivo, así como el despliegue de servicios entre clientes o
proveedores, en lo que se conoce como fabricación basada en la nube [41].

• Big Data: abarca el análisis de toda la información proporcionada por las entidades del
ecosistema industrial, buscando servicios de valor añadido como la supervisión del funciona-
miento de las entidades del ecosistema, la optimización de los procesos y la identificación
de anomalías.

• Blockchain: constituye un sistema transparente y seguro para almacenar datos, y que
permite una gran cantidad de aplicaciones empresariales, que van desde el comercio Peer-to-
Peer (P2P) con energía eléctrica en microrredes [43] hasta históricos de registros a prueba
de manipulaciones [44].

• Virtualización: supone un conjunto de tecnologías que permiten la representación virtual
de todas las máquinas y componentes que intervienen en el proceso de producción (también
denominados como "gemelos digitales"), para realizar simulaciones de cara a prevenir fallos
y optimizar la línea de producción.
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Una visión global de la infraestructura de la Industria 4.0 con la integración de todas estas
tecnologías se ilustra en la Figura A.2. En conjunto, estas tecnologías permitirán a la industria
modelar de forma flexible las operaciones que se realizan dentro del ciclo de vida de la producción.

Sin embargo, la desventaja principal de estos entornos reside en la ciberseguridad. Y es que
una infraestructura tan tecnológicamente heterogénea como esta incrementa la probabilidad
de exponerse a nuevas amenazas [67] que operan bajo diferentes modos de ataque [68] que no
han sido abordados anteriormente, poniendo en riesgo todos los servicios de seguridad. Desde
el punto de vista de la disponibilidad, sería posible lanzar un ataque de denegación de servicio
(DoS) desde cualquier elemento de la organización. Desde la perspectiva de la integridad, la
manipulación de las tecnologías de la Industria 4.0 puede permitir a un adversario manipular
no sólo el comportamiento local, sino también el comportamiento global a través de procesos
de decisión distribuidos y cooperativos. A nivel de confidencialidad, la cantidad de información
sensible gestionada por las entidades conectadas aumentará, con el consiguiente incremento del
riesgo y el impacto de los ataques. De igual modo, la autenticación se resiente a medida que se
difuminan las barreras entre los distintos subsistemas y se integran tecnologías como el Big Data
y la virtualización. Por último, la privacidad también está en riesgo, tanto a nivel humano como
a nivel de las propias empresas del sector industrial.

Como resultado, un sistema industrial de la Industria 4.0 es considerado cada vez más complejo
y crítico, y puede ser objetivo de múltiples vectores de ataque que pueden ser finalmente aprove-
chados para perpetrar una APT [69, 70]. Estamos hablando de ataques sofisticados perpetrados
por un adversario experto, y se caracterizan por su capacidad de pasar desapercibidos dentro de
la red de la víctima durante un cierto período de tiempo. Estos incidentes degeneran en pérdidas
millonarias para organizaciones industriales de todos los sectores, tal como ponen de relieve
numerosos informes. Un ejemplo es el realizado por la entidad Accenture [2], que aparece reflejado
en la Figura A.3. En ella se muestran los costes derivados de las brechas de seguridad en el año
2018, en un estudio donde consultado a 254 grandes industrias. Como resultado, se estimó una
media de 13 millones de dólares en costes, consecuencia de un aumento del 12 % en los incidentes
de seguridad con respecto al año anterior, afectando especialmente a las infraestructuras críticas
del sector financiero, como se muestra en el gráfico.

Debido a la complejidad y el impacto de estos ataques, es crucial entender cuál es el verdadero
alcance y las capacidades de detección de la primera línea de defensa ante APT; en otras palabras,
los Sistemas de Detección de Intrusiones (IDS) existentes en la actualidad. La motivación de
nuestra investigación aparece al explorar el estado del arte y concluir que aún hay cuestiones que
necesitan ser abordadas para desarrollar herramientas eficaces capaces de detectar, rastrear y
disuadir APT en estos entornos. En primer lugar, muy pocos trabajos hacen uso de la investigación
existente sobre el comportamiento de las APT [71, 74] para validar sus mecanismos de detección.
Por otro lado, aunque existan sistemas específicos con capacidad para detectar gran parte de
los vectores de ataque de una APT por separado, no hay única única solución que pueda hacer
frente a todas las amenazas potenciales. Por este motivo, es interesante estudiar la integración de
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Figura A.3: Promedio del coste generado por el incremento de brechas de seguridad en 2018 en
254 empresas consultadas internacionalmente [2]

soluciones de defensa holísticas en las infraestructuras críticas existentes, no solo en términos de
detección, sino también en términos de usabilidad. Por ejemplo, la disponibilidad de herramientas
para facilitar la trazabilidad de posibles APT y la formación de los usuarios [81]. Esto último
es extremadamente relevante en redes especialmente cambiantes donde se integran tecnologías
de vanguardia como las citadas anteriormente, y a medida que también aumenta el volumen de
información accesible para el atacante.

En base a esta problemática, en esta tesis se aborda el diseño de un marco de trabajo para la
detección y trazabilidad de APT en entornos y aplicaciones de la Industria 4.0. Su objetivo es
cubrir el hueco existente entre los sistemas de detección clásicos y los requisitos impuestos por
los APT. La premisa es combinar mecanismos capaces de monitorizar todos los dispositivos y
procesos que están interconectados dentro de la organización, recuperar datos sobre la cadena de
producción a todos los niveles (alarmas, registros de red, tráfico en bruto, etc.) y correlacionar
los eventos de forma distribuida para rastrear las etapas de uno de estos ataques a lo largo de
todo su ciclo de vida. Estas medidas proporcionarían la capacidad de detectar y anticipar de
forma holística los APT, así como los fallos, de manera oportuna y autónoma, a fin de impedir la
propagación del ataque y minimizar su impacto.

Para hacer frente a estos objetivos de ciberseguridad, el marco de trabajo extrae los avances
más importantes de las soluciones más novedosas del estado del arte en la Industria 4.0, como
el algoritmo de Opinion Dynamics [82]. Estas técnicas se basan en algoritmos avanzados de
correlación que analizan una red industrial de manera distribuida, aprovechando mecanismos de
minería de datos y aprendizaje automático. En conjunto, el marco resultante sirve de guía para
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el diseño y desarrollo futuro de sistemas de detección avanzados que cumplan con un conjunto
de requisitos de seguridad y detección alineados con los avances tecnológicos experimentados en
estos entornos.

Podemos resumir las contribuciones de esta tesis en torno a los siguientes puntos, abordados
en capítulos independientes del documento:

• En primer lugar, estudiamos los problemas de seguridad que amenazan a las arquitecturas
industriales actuales. El objetivo es caracterizar el contexto y crear una taxonomía de
ataques que pueden formar parte de una APT contra los activos industriales actuales y los
futuros despliegues de la Industria 4.0.

• A continuación, realizamos un análisis de la evolución y aplicabilidad de los IDSs que se han
propuesto tanto en la industria como en el ámbito académico. De este modo, identificamos
las áreas que necesitan más investigación, en cuanto a la aplicabilidad e integración de
mecanismos de detección proactiva y su integración en la Industria 4.0.

• A partir de los requisitos de seguridad y detección extraídos, definimos un marco de trabajo
formal para el diseño de soluciones que permitan la correlación distribuida de eventos
provocados por una APT. Este marco considera diversas arquitecturas de red, tipos de
ataque y modelos de adquisición de datos, para posteriormente definir las entradas y salidas
que deben incluir las soluciones de trazabilidad para cumplir con los requisitos mencionados.
De este modo, sentamos las bases para el desarrollo y la comparación de nuevas soluciones
en este contexto.

• Como medio para validar el marco propuesto, definimos dos mecanismos de protección basa-
dos en clustering y consenso distribuido. Tras esto llevamos a cabo diferentes experimentos
con objeto de comparar su precisión a la hora de rastrear diferentes APT, basándonos en
modelos de ataque realistas creados a partir del análisis de amenazas anterior.

• Posteriormente, evaluamos la efectividad de estos mecanismos para el despliegue de técnicas
de respuesta y su aplicabilidad en varios escenarios de la Industria 4.0, siendo los más
relevantes la Smart Grid (para desplegar mecanismos que garanticen la seguridad de la red
y sus sistemas de autorización) y el Internet de las Cosas Industrial.

• Realizamos la verificación y validación del marco de trabajo definido, los algoritmos de
correlación y las técnicas de respuesta desarrolladas. Para ello, empleamos distintas demos-
traciones teóricas además de un prototipo real en un banco de pruebas industrial.

• Por último, identificamos algunas cuestiones de investigación abiertas en esta tesis doctoral
y comentamos algunas líneas de trabajo futuro.
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Tabla A.1: Principales amenazas de ciberseguridad de las tecnologías de la Industria 4.0

IIoT Cloud/fog Big Data Virtualización Blockchain
Disponibilidad Agotamiento

de recursos
Inundación
de red, robo
de servicio

Múltiples
puntos de
fallo

Múltiples
puntos de
fallo

Inundación
de red, mani-
pulación del
consenso

Confidencialidad Exposición de
información
sensible

Acceso a
datos por el
proveedor
de servi-
cios, ataques
side-channel

Falta de medi-
das criptográ-
ficas, proble-
mas de priva-
cidad con el
análisis masi-
vo

Fuga de infor-
mación en si-
mulaciones

Privacidad
con tran-
sacciones
rastreables a
los usuarios

Integridad Manipulación
de los datos o
del encamina-
miento

Máquinas
virtuales
maliciosas

Servidores no
confiables, au-
sencia de me-
didas de inte-
gridad

Disparidad
entre los pará-
metros físicos
y virtuales

Contratos in-
teligentes vul-
nerables, in-
yección de có-
digo

Autenticación Apropiación
de identidad

Phishing Falta de con-
troles de ac-
ceso de grano
fino a nodos y
tablas

Falta de ser-
vicios AAA
para acceder
a los datos de
dispositivos
heterogéneos

Robo de iden-
tidad o de no-
dos, ataques
Sybil

A.2 Amenazas de ciberseguridad en la Industria 4.0

Para comenzar a adentrarnos en la problemática de la trazabilidad de las APT, en el Capítulo 2
estudiamos las amenazas de ciberseguridad a los que se enfrentan las arquitecturas industriales
actuales. Primero, revisamos las amenazas que afectan a los sistemas industriales tradicionales,
para luego analizar los problemas de ciberseguridad que presentan las tecnologías que permiten
la Industria 4.0, tanto por separado como en los propios servicios que ofrece este paradigma. Tras
ello, estudiamos cómo estos vectores de ataque pueden formar parte de una amenaza persistente
avanzada, con el objetivo de exponer los retos a los que se enfrentan las soluciones de detección
actuales.

Para llevar a cabo nuestro análisis, clasificamos las amenazas identificadas en la bibliografía
e informes específicos según la taxonomía recogida por el estándar RFC 7416 del IETF [89],
agrupándolas en función de los servicios de seguridad [90] que son objetivo del ataque: la
disponibilidad, la integridad, la confidencialidad y la autenticación.

Comenzando por los sistemas tradicionales, cabe mencionar los ataques de Denegación de
Servicio Distribuidos (DDoS, del acrónimo en inglés) como principal amenaza contra la disponibili-
dad. En términos de integridad, incluimos desde el sabotaje físico de los equipos industriales hasta
la inyección de malware, con objeto de alterar los protocolos de comunicación industrial y/o los
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valores reales de tráfico producidos por los dispositivos de campo, los controladores o los equipos
de la red corporativa. En cuanto a confidencialidad, es preciso destacar el robo y la divulgación
de información sensible del proceso industrial en cuestión, a menudo a través de ataques de
cross-site scripting (XSS) o SQL Injection contra páginas web. Por último, la autenticación estaría
en riesgo con vulnerabilidades en el software que permiten obtener un acceso no autorizado a
los recursos o una escalada de privilegios. Esto es frecuente cuando se combinan técnicas de
ingeniería social (por ejemplo, ataques de phishing o correos de spam) para recoger información
estratégica del sistema. A esto también se le une la fácil movilidad de los operarios en la planta y
sus interacciones mediante el uso de interfaces muy diversas (como teléfonos inteligentes, tabletas
u ordenadores portátiles) que también provocan problemas de seguridad causados por una mala
configuración o un control de acceso inadecuado, tanto a nivel lógico (uso de contraseñas simples)
como físico (acceso a los equipos).

En cuanto a las tecnologías que dan pie a la Industria 4.0 actual, un resumen de las principales
amenazas halladas queda recogido en la Tabla A.1. En ella aparecen clasificadas en torno a los
citados servicios de seguridad para las cinco tecnologías identificadas en la introducción de la
tesis doctoral: el IIoT, el Big Data, el cloud computing y la blockchain.

No obstante, estas tan solo son las amenazas que afectan a las principales tecnologías ha-
bilitadoras de la Industria 4.0 por separado. Como se ha mencionado ya, nuestro objetivo a
continuación es revisar cuáles pueden afectar a los servicios de los ecosistemas industriales de la
Industria 4.0 en su conjunto. La razón es sencilla: si bien estos servicios heredan las amenazas de
sus tecnologías habilitadoras, también existen diversas amenazas novedosas que surgen debido a
sus características particulares. Para este análisis, cuyos resultados se han obtenido a través de
una revisión experta del estado del arte disponible de la Industria 4.0, también hemos seguido
el estándar IETF RFC 7416 [89] para catalogar las amenazas. Tales servicios o mejoras quedan
resumidos de la siguiente manera, junto con sus amenazas principales:

Nuevas infraestructuras. La transición gradual hacia arquitecturas más descentralizadas está
trayendo consigo un entorno más heterogéneo y complejo, donde todos los elementos pueden
interactuar y cooperar entre sí. Desde el punto de vista de la disponibilidad, esta transición significa
que no sólo un insider malicioso podría atacar cualquier elemento, sino que también podría lanzarse
un ataque DoS desde cualquier elemento de la infraestructura. En términos de integridad, debemos
considerar que un adversario puede alterar el comportamiento global (por ejemplo, los flujos de
trabajo de los procesos) manipulando los sistemas locales. Esto está relacionado con los problemas
de confidencialidad, donde los ataques maliciosos contra las entidades locales podrían exponer el
comportamiento a nivel global. Por último, en lo que respecta a las amenazas de autenticación, al
difuminarse las barreras entre los distintos subsistemas es indispensable desplegar políticas de
seguridad adecuadas que puedan limitar los daños causados por los accesos no autorizados. No
obstante, la complejidad de esas políticas probablemente dan lugar a sistemas mal configurados,
que igualmente pueden ser explotados por un adversario.
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Modernización de maquinaria o ‘retrofitting’. Es posible llevar los beneficios de la Industria
4.0 a los sistemas heredados desplegando y conectando las nuevas tecnologías a los subsistemas
más antiguos [113]. Aun así, estos despliegues traen consigo problemas de seguridad adicionales a
considerar. La existencia de un subsistema paralelo (por ejemplo, un sistema de monitorización)
puede traer consigo ciertos problemas de disponibilidad e integridad : no sólo los componentes
que sirven de puente entre lo antiguo y lo nuevo pueden convertirse en un punto de fallo,
sino que también las nuevas tecnologías podrían utilizarse para lanzar ataques contra esos
elementos herederos (comúnmente conocidos como legacy). Además, también existen amenazas
de confidencialidad, ya que las nuevas tecnologías suelen actuar como una “capa de detección”
que puede exponer información sobre el estado y el comportamiento de los procesos industriales
monitorizados. En cuanto al impacto de las amenazas de autenticación, depende del grado de
integración de los nuevos subsistemas. En este sentido, sus interfaces pueden limitar la cantidad
de información que puede recuperarse de los subcomponentes internos.

Espacio de datos compartido. Uno de los objetivos de la Industria 4.0 es crear espacios
comunes para el intercambio seguro de información entre socios industriales [114]. La creación de
estos espacios cooperativos podría traer consigo amenazas adicionales desde el punto de vista de la
disponibilidad y la integridad : en particular, la existencia de ataques DoS que interrumpan el flujo
de información en momentos críticos, o de componentes comprometidos de proveedores maliciosos
que afecten a otros elementos, abriendo la puerta a posibles efectos en cascada dentro de la cadena
de suministro. Por otra parte, la confidencialidad también es especialmente importante en este
contexto de cara a asegurar que la información intercambiada por los socios no facilita la extracción
de datos para la competencia. Aun así, configuraciones anómalas y ataques internos podrían abrir
la puerta a fugas de información más graves. Por último, las amenazas de autenticación también
se agravan en este espacio de cooperación, ya que los accesos no autorizados pueden tener un
mayor impacto para la extracción de información valiosa.

Fabricación en la nube. Otro de los principios de este paradigma es la creación de aplicaciones
industriales basadas en el cloud que aprovechan recursos de fabricación distribuidos [115]. Esta
distribución de recursos crea ciertas amenazas que ya se han descrito en el contexto de las
nuevas infraestructuras digitales: desde ataques DoS que pueden lanzarse desde cualquier lugar
(disponibilidad), hasta la manipulación de los componentes distribuidos (integridad). La principal
diferencia aquí es la naturaleza de estas amenazas: máquinas virtuales maliciosas, ataques
DoS contra los servidores de la nube o la conexión de red, etc. De igual modo, las amenazas
contra la confidencialidad también se vuelven más críticas, ya que la infraestructura de la
nube puede contener información sensible sobre procesos empresariales que pueden quedar
expuestos al proveedor de servicios cloud. Por último, la complejidad en la gestión de este tipo
de infraestructuras basadas en la nube también abre más oportunidades para los ataques de
autenticación.
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Tabla A.2: Amenazas de ciberseguridad de los servicios de la Industria 4.0

Nuevas infr. Retrofitting Esp. Datos
comp.

Fab. en la
nube

Agentes Inter. avan-
zadas

Disponibilidad Amplia super-
ficie de ata-
ques

Único punto
de fallo

Efectos en
cascada

Amplia super-
ficie de ata-
ques

Agentes
malware

Denegación
de servicio

Confidencialidad Acceso a da-
tos comparti-
dos

Exposición
de datos
sensibles

Fuga de infor-
mación

Fuga de pro-
cesos empre-
sariales

Datos del
agente en
el contexto
local

Fuga de infor-
mación

Integridad Manipulación
del comporta-
miento

Ataques
transversales

Efectos en
cascada

Manipulación
de componen-
tes

Datos o agen-
tes manipula-
dos

Manipulación
de la toma de
decisiones

Autenticación Complejidad
y configura-
ción errónea

Sistemas
legacy ilegíti-
mos

Mayor alcan-
ce de los ata-
ques

Complicada
gestión de
credenciales

Agentes ata-
cados o ata-
cantes

Escalada de
privilegios

Agentes. Ya existen varias pruebas de concepto relacionadas con la integración de los llamados
agentes software en los procesos de fabricación, como los planificadores del flujo de trabajo o
los sistemas de montaje autoorganizados [116]. No obstante, también hay peligros asociados al
despliegue de agentes en un entorno industrial genérico. Y es que un agente malicioso puede
comportarse como una pieza de malware, afectando a la capacidad de otros elementos industriales.
Además de la integridad de los propios agentes, también hay que considerar cómo otros elementos
manipulados pueden ejercer una influencia (in)directa sobre el comportamiento de los mismos.
Por ejemplo, manipulando el entorno que rodea al agente o incluso el propio agente, de manera
que sea posible lanzar ataques de confidencialidad para extraer el flujo de información que este
procesa, lo que se ve agravado en escenarios sin una infraestructura adecuada de autenticación.

Interacciones avanzadas. Como se ha comentado ya, las tecnologías facilitadoras de la Industria
4.0 relacionadas con la virtualización permiten la creación de servicios novedosos como los
"gemelos digitales"(representaciones virtuales de subsistemas) y los "trabajadores digitales", que
proporcionan interacción con Interfaces Hombre-Máquina (HMI) avanzadas. Sin embargo, también
hay ciertas amenazas relacionadas con el uso real de tales tecnologías. Estos sistemas pueden ser
manipulados por operadores humanos, aumentando el daño causado por una persona que posea
información privilegiada. Como ejemplo, un trabajador digital malintencionado podría llevar a
cabo varios ataques, como el lanzamiento de ataques de denegación de servicio (disponibilidad),
la interferencia en los procesos de toma de decisiones (integridad), la extracción de información
confidencial (confidencialidad) y la ejecución de ataques de escalada de privilegios (autenticación).
Por otro lado, estos sistemas mejorados pueden convertirse ellos mismos en atacantes, causando
daños de forma sutil. Ejemplo de ello sería el de un atacante manipulando un HMI para que
obligue al trabajador a realizar una acción incorrecta, para culpabilizarlo a continuación.

Por su parte, las principales amenazas que atentan a cada uno de estos servicios aparecen
descritas en la Tabla A.2. En conjunto, muchos de estos vectores de ataque (tanto de las amenazas
tradicionales como de las futuras en los sistemas industriales) pueden ponerse en práctica en las
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denominadas APT o amenazas persistentes avanzadas. Tal como se introdujo con anterioridad,
estamos hablando ataques sofisticados perpetrados contra una organización concreta, en la que
los atacantes tienen una experiencia y unos recursos importantes. Estos atacantes se infiltran en
las redes de las víctimas aprovechando una multitud de vulnerabilidades (a menudo desconocidas,
es decir, de día cero), y pasan desapercibidos durante un periodo de tiempo prolongado [69, 70].
Si bien en un principio las APT atacaban a organizaciones militares, en la actualidad se dirigen
a un amplio abanico de industrias y gobiernos con el objetivo de apoderarse de los sistemas de
control y causar daños o extraer información suculenta.

Stuxnet fue el primer ataque de este tipo, denunciado en 2010, que saboteó el programa
nuclear iraní causando daños físicos en la infraestructura y ralentizando el proceso global durante
cuatro años. Desde entonces, el número de incidentes de este tipo ha aumentado drásticamente,
agravando el problema en entornos de la Industria 4.0, que favorecen la convergencia de todo tipo
de infraestructuras IT/OT y, por tanto, amplían la superficie de ataque de las infraestructuras
críticas. Por este motivo, y para poner en marcha técnicas de defensa precisas en este contexto, es
necesario estudiar cómo afectan las APT a la detección de anomalías y la aplicación de soluciones
de trazabilidad. Para tal fin, a continuación repasamos algunos de las APT más importantes de
los que se ha informado en los últimos años, con objeto de definir un modelo de atacante que se
ajuste al comportamiento de este tipo de amenazas.

De ese estudio extraemos una plantilla de APT compuesta por distintas fases de ataque
que son comúnmente aplicadas por el atacante, y que al mismo tiempo han sido ampliamente
estudiadas y descritas por varios investigadores del ámbito académico e industrial [74, 70, 129]. A
continuación, resumimos tales etapas:

• Reconocimiento (R). El adversario reúne información sobre la red objetivo para encontrar
vulnerabilidades explotables y crear un plan de ataque que penetre sus defensas.

• Envío. Después de elegir un conjunto de nodos vulnerables (el llamado "paciente cero"), el
atacante establece una comunicación (C) con la red y envía el malware a esos ordenadores,
ya sea directamente (por ejemplo, a través de correos electrónicos de spear phishing o
servicios vulnerables) o indirectamente (por ejemplo, contaminando los sitios web de un
tercero) [130].

• Ejecución . El malware se ejecuta (E) en la máquina objetivo y toma el control de la
misma, efectuándose la primera intrusión en la red. Esta etapa implica varios pasos, como
el escalada de privilegios, el mantenimiento de la persistencia y la ejecución de técnicas
evasivas.

• Command and Control . Una vez que el malware controla el "paciente cero", abre un
canal de comunicación con los dominios del atacante instalando puertas traseras, que serán
utilizadas para ejecutar comandos, extraer información, etc. de manera remota. Esta fase
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puede incluir el Rastreo (T) de las vulnerabilidades de día cero en base a la información
recogida por el adversario.

• Movimiento lateral . Engloba los diferentes pasos que da el malware para conseguir la
propagación (P) del ataque a otras zonas de la red. Esta etapa incluye el reconocimiento
interno, el control de sistemas adicionales y la recogida de información sensible.

• Ejecución final (F). El malware finalmente realiza el ataque contra la red industrial
objetivo. Esto incluye la exfiltración de datos sensibles o la destrucción de recursos.

Una vez tenemos visión completa de las amenazas presentes y futuras a las que se enfrenta un
sistema industrial, podemos relacionarlas con las etapas de una APT introducidas anteriormente,
tal como se ilustra en la Tabla A.3, donde también se especifica el impacto sobre cada uno de los
segmentos de la red industrial. Como se puede apreciar, la explotación de estas amenazas puede
darse en múltiples etapas de una amenaza persistente avanzada. Más concretamente, podemos
observar que la mayoría de las amenazas pueden ser potencialmente aprovechadas para la primera
intrusión y la posterior ejecución de exploits. Sin embargo, la recopilación inicial de información
sobre los puntos de entrada y las vulnerabilidades se realiza principalmente mediante el análisis
de los metadatos que emanan de los servidores a los sensores, y también mediante la ingeniería
social. En cuanto a la exfiltración final de información, normalmente se requiere que el atacante
se haya apoderado del dispositivo para enviar datos de forma que se asemejen al tráfico de red
normal, lo que dificulta cualquier intento de detección. Esta información es especialmente útil
para idear nuevas soluciones de defensa y adaptar los actuales mecanismos de detección, tal como
abordamos a continuación.
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A.3 Servicios de detección en los sistemas de control modernos

Después de estudiar con detenimiento las amenazas que puede aprovechar una APT en sus fases
de ejecución, concluimos que es necesario combinar múltiples soluciones de seguridad a diferentes
niveles debido a la variedad de vectores de ataque que pueden utilizar. Por esta razón, el Capítulo
3 de esta tesis doctoral lo dedicamos a analizar los mecanismos de detección que se pueden aplicar
como primera línea de defensa. Para ello, analizamos los IDS disponibles comercialmente y en el
ámbito académico, bajo la premisa de identificar las áreas que necesitan de mayor investigación.
A partir de los conocimientos extraídos en este estudio, definiremos el marco de trabajo que nos
permita desarrollar soluciones de trazabilidad ante APT, lo que representa el núcleo de nuestro
trabajo.

Debido al amplio espectro de soluciones disponibles en el terreno de los IDS, comenzamos
en primera instancia clasificándolos en función del método empleado para la detección. Una
posibilidad es el IDS basado en fimas , que trata de encontrar patrones específicos en las tramas
transmitidas por la red. Sin embargo, precisamente por eso les resulta imposible detectar nuevos
tipos de ataques cuyo patrón es desconocido [132]. Otra posibilidad son los IDS basados en
anomalías, que compara el estado actual del sistema y sus datos generados con el comportamiento
normal del sistema, para identificar las desviaciones presentes cuando se produce una intrusión.
En este punto, hay que tener en cuenta restricciones como la heterogeneidad de los datos recogidos
en un entorno industrial, el ruido presente en las mediciones y la naturaleza de las anomalías
(con objeto de distinguir ataques frente a fallos no intencionados).

Dentro de esta categoría se han desarrollado numerosas técnicas de detección basadas en áreas
como la estadística o la inteligencia artificial [133], cada una con un nivel de adaptación diferente
en función del escenario de la aplicación a proteger [134]. A continuación, se reseña cada una de
ellas:

• Detección basada en minería de datos: se analiza una enorme cantidad de información
en busca de características que permitan distinguir si los datos son anómalos. En esta clase
encontramos técnicas de clasificación, basadas en clustering o reglas de asociación.

• Detección estadística de anomalías: con este enfoque encontramos pruebas de inferencia
para verificar si un dato se ajusta o no a un modelo estadístico determinado, con el fin de
confirmar la existencia de intrusiones. Bajo esta categoría cabe mencionar técnicas basadas
en series temporales, cadenas de Markov o teoría espectral.

• Detección basada en el conocimiento: en este caso, la información sobre ataques o
vulnerabilidades específicas se adquiere de forma progresiva y se almacena en una base de
conocimiento. Ejemplos de estas técnicas son las redes de Petri o los sistemas de expertos.

• Detección basada en aprendizaje automático (machine learning): este tipo de
técnicas basan la detección en la creación de un modelo matemático que aprende y mejora
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su precisión a medida que adquiere información sobre el sistema. En esta categoría encon-
tramos técnicas de inteligencia artificial cuyos fundamentos están también muy ligados a la
estadística y a la minería de datos, como pueden ser redes neuronales, redes bayesianas,
lógica difusa, etc.

Por último, también existen IDS basados en especificación [135]. El principio es similar
al de los sistemas basados en anomalías, ya que el estado actual del sistema se compara con un
modelo existente. Sin embargo, en este caso las especificaciones son definidas manualmente por
expertos, lo que reduce el número de falsos positivos cuando se definen con detalle. A menudo se
utilizan diagramas de estado, autómatas finitos, métodos formales, etc. y pueden combinarse con
IDS basados en firmas y en anomalías.

Además del tipo de método empleado para realizar la detección, también es posible clasificar
los IDS según su cobertura de detección para las distintas secciones de una red industrial (ya sea
enfocados en los dispositivos de campo, los dispositivos de control o la red corporativa), según
la arquitectura de red especificada por el estándar ISA-95 [36] y reflejada en la Figura A.2. De
igual manera, también existen sistemas IDS especializados en el análisis de tráfico proveniente
de protocolos de comunicación específicos, lo que acota su grado de aplicación en entornos
especialmente heterogéneos.

Esta taxonomía tan diversa es palpable tras llevar a cabo el análisis del estado del arte de
soluciones IDS existentes en la bibliografía, que queda plasmado en las Tablas A.4, A.5 y A.6.
Estas ofrecen una clasificación por categorías (según la cobertura de detección, el protocolo
analizado y el mecanismo de detección, respectivamente) del número de artículos más relevantes
publicados en revistas y/o congresos internacionales en este campo entre los años 2013 y 2020.
Parte de este análisis se lleva a cabo como parte de SADCIP [131], un proyecto de investigación
financiado por el Ministerio de Economía, Industria y Competitividad. El proyecto gira en torno al
desarrollo de sistemas de detección avanzados capaces de hacer frente a amenazas sofisticadas de
los ecosistemas industriales modernos, considerando las características específicas de la Industria
4.0.

Cobertura 2013 2014 2015 2016 2017 2018 2019 2020
Dispositivos de campo 2 - 3 15 9 8 10 6
Dispositivos de control 4 8 9 5 9 9 10 5

Sistemas de control 1 3 3 9 17 12 18 11
Sistema completo - 1 - 5 2 6 9 7

Tabla A.4: Evolución de los IDS según su cobertura de detección

De este profundo análisis podemos extraer varias conclusiones interesantes. De cara a nuestra
investigación, cabe enfatizar el incremento del interés por los sistemas IDS basados en algún tipo
de aprendizaje automático, así como el auge de mecanismos que pretenden abordar la detección
de anomalías para un sistema industrial al completo, sin restringirse a dispositivos concretos.
Esto se consigue desplegando varios componentes de detección, tanto hardware como software,
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Protocolo 2013 2014 2015 2016 2017 2018 2019 2020
Protocolos de bus de campo 2 1 2 3 2 2 4 2
Protocolos de comunicación 2 3 10 14 8 8 9 7

Protocolos de control y gestión 1 - 1 1 1 2 3 2

Tabla A.5: Evolución de los IDS según el protocolo analizado

Mecanismo 2013 2014 2015 2016 2017 2018 2019 2020
Detección basada en firmas - 3 - 4 5 6 4 5

Minería de datos 2 2 4 5 6 7 10 6
Detección estadística - - 4 5 3 2 4 3

Detección basada en el conocimiento 1 1 2 1 - 4 5 4
Aprendizaje automático 3 3 2 8 9 9 11 13

Detección basada en especificación 1 3 2 8 10 4 7 4
Otros mecanismos - - 3 5 5 4 9 7

Tabla A.6: Evolución de los IDS según su mecanismo de detección

que obtienen información y la procesan a nivel local para todas los procesos de la infraestructura.
Esta información se enviará después a un sistema central, que puede detectar de forma más
eficiente las amenazas que afectan a varios elementos del sistema de forma encubierta [176].
Por ejemplo, algunas arquitecturas permiten que los dispositivos de campo estén totalmente
monitorizados junto a todos los demás elementos del sistema de control [170], mientras que
otras arquitecturas mejoran la detección de anomalías cuyo impacto se distribuye a todos los
elementos del sistema [177]. También hay arquitecturas, como [178][179], que dividen el sistema
global en varias particiones lógicas, con el fin de facilitar el trabajo de los sistemas de detección
de anomalías. Por último, algunas arquitecturas despliegan agentes que están específicamente
diseñados para buscar infecciones de malware provenientes de APT [180].

En particular, estos sistemas nos sirven de gran inspiración para el desarrollo de técnicas de
detección holística y para la trazabilidad de APT, que es el objetivo del marco propuesto en esta
tesis doctoral. El problema aparece al encontrarnos que, independientemente de la estrategia
de detección utilizada en las instalaciones industriales o su cobertura, estos IDS solo suponen
una primera línea de defensa, y no existe una solución única que nos permita detectar todo tipo
de amenazas con precisión. Además, es necesario realizar un análisis posterior de las evidencias
generadas (alarmas, eventos de red) y del tráfico en bruto en toda la red para anticiparse a los
efectos de ataques sofisticados y persistentes como las APT [227]. Esto se lleva a cabo mediante
mecanismos de trazabilidad y correlación avanzada, que proporcionan información del estado
de salud general de la red y facilitan el despliegue de medidas de respuesta precisas basadas
en la evolución de la amenaza. Aunque esto se ha abordado mayoritariamente en los entornos
corporativos tradicionales mediante técnicas proactivas (las evidencias se analizan a medida que
se producen los incidentes) o reactivas (las evidencias se estudian una vez que se producen los
eventos), aún queda extenso margen de mejora en el campo de los sistemas de control industriales.
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En los ecosistemas industriales tradicionales, estas soluciones de trazabilidad se han pro-
porcionado mediante soluciones de conciencia del contexto (o context awareness) [232]. Este
proceso implica la monitorización constante de los dispositivos para recuperar datos sobre la
cadena de producción a todos los niveles (por ejemplo, alarmas, eventos de red, tráfico bruto). Sin
embargo, la introducción de topologías cada vez más dinámicas y la creciente gama de ataques
extremadamente localizados en la IIoT y la Industria 4.0 complican este proceso de adquisición
de información [233]. Por lo tanto, es cada vez más necesario integrar más de una solución de
detección para garantizar la máxima cobertura [218]. Además, todas las soluciones deben coexistir
bajo una plataforma de detección avanzada que tome la infraestructura desde una perspectiva
holística, correlacionando todos los eventos y rastreando todas las amenazas a lo largo del ciclo
de vida de una APT [234].

Debido a que el progreso en la Industria 4.0 no ha sido significativo con respecto a estas
soluciones de trazabilidad de APT, es nuestra motivación la de proporcionar un primer paso
en este área. En este sentido, soluciones como el enfoque de Opinion Dynamics [82] abre el
camino a una nueva generación de soluciones basadas en el despliegue de agentes de detección
distribuidos por la red. Las anomalías reportadas por estos agentes se correlacionan para extraer
conclusiones sobre la secuencia de acciones realizadas por el adversario, así como para identificar
las áreas más afectadas de la infraestructura. Esta evaluación puede realizarse en una entidad
centralizada o utilizando una arquitectura distribuida de pares [236]. Al mismo tiempo, está
abierta la posibilidad de integrar IDSs externos para examinar anomalías en las proximidades de
los nodos, así como la abstracción de diversos parámetros como la criticidad de los recursos o la
persistencia de los ataques.

A pesar de las numerosas capacidades de esta solución (explicadas en secciones posteriores),
es necesario definir un modelo de detección más genérico que asiente las bases para la aplicación
de más soluciones de trazabilidad de APT en el paradigma de la Industria 4.0. Y es que las
capacidades de Opinion Dynamics pueden implementarse de forma modular, pueden integrarse en
otros algoritmos de correlación y cada una de ellos tiene un efecto diferente en diversos aspectos de
seguridad, detección, despliegue y eficiencia. En última instancia, esto influye considerablemente
en cómo deben desarrollarse y gestionarse los IDS en estos entornos. En base a esto y teniendo
en cuenta las características de los IDS actuales, podemos establecer una serie de requisitos de
detección y de seguridad sobre los que definir nuestra propuesta.

Por una parte, en cuanto a requisitos de detección contemplamos los siguientes:

(D1) Cobertura. Las APT hacen uso de un amplio conjunto de vectores de ataque que ponen
en peligro a las organizaciones a todos los niveles. Por ello, el sistema debe ser capaz de
asimilar el tráfico y los datos procedentes de dispositivos y secciones heterogéneas de la red,
al tiempo que incorpora el input de sistemas de detección externos.

(D2) Holismo. Para identificar comportamientos anómalos, el sistema debe ser capaz de procesar
todas las interacciones entre usuarios, procesos y salidas, así como registros producidos.
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Esto permite generar informes de anomalías y trazabilidad a múltiples niveles (por ejemplo,
por aplicación, dispositivo o porción de la red, así como indicadores de salud globales).

(D3) Inteligencia. Más allá de meramente detectar eventos anómalos en la red, el sistema debe
inferir conocimientos correlacionando los eventos actuales con las etapas pasadas y anticipar
los movimientos futuros del atacante. Del mismo modo, debe proporcionar mecanismos
para integrar la información procedente de fuentes externas, también denominadas cyber
threat intelligence [237].

(D4) Simbiosis. El sistema debe tener la capacidad de ofrecer su información de detección a otros
servicios de la Industria 4.0, mediante interfaces bien definidas. Esto incluye mecanismos
de control de acceso (para adaptar las políticas de autorización en función del estado de
seguridad de los recursos) o servicios de virtualización (que permitan simular técnicas de
respuesta bajo diferentes escenarios sin interferir la configuración real), entre otros.

Por otro lado, también podemos establecer los siguientes requisitos de seguridad con respecto
al despliegue de la solución de detección en la red:

(S1) Recolección de datos distribuida. Es necesario encontrar mecanismos distribuidos
(como agentes P2P) que permitan recoger y analizar la información lo más cerca posible
de los dispositivos. El objetivo final es que el sistema de detección sea completamente
autónomo y resistente a los ataques dirigidos.

(S2) Inmutabilidad. La solución ideada debe evitar las modificaciones de los datos de detec-
ción a todos los niveles. Esto incluye preservar la fiabilidad y la veracidad de los datos
intercambiados entre los agentes (por ejemplo, mediante niveles de confianza que ponderen
la información de seguridad recibida), y el almacenamiento de dichos datos (por ejemplo,
mediante medios de almacenamiento inalterables y mecanismos de replicación de datos
como bases de datos inmutables o libros de contabilidad distribuidos).

(S3) Confidencialidad de los datos Además de la protección contra la modificación de los
datos, es obligatorio que el sistema proporcione mecanismos criptográficos y de autorización
para controlar el acceso a la información generada por la plataforma de detección, así como
a todas las interacciones externas del sistema.

(S4) Supervivencia. El sistema debe funcionar correctamente incluso con la presencia de fallos
accidentales o deliberados en la infraestructura industrial, y al mismo tiempo no puede
ser utilizado como punto de ataque. Para lograrlo, los mecanismos de detección deben
desplegarse en una red aislada que sólo pueda recuperar información de la infraestructura
industrial.

(S5) Rendimiento en tiempo real. El sistema no debe introducir retrasos operativos en la
infraestructura industrial, y sus algoritmos no deben imponer una alta complejidad para
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garantizar la detección en tiempo real. Para ello, pueden utilizarse procedimientos de
segmentación de la red y nodos de computación separados (por ejemplo, usando fog o edge
computing).

Partiendo de estas premisas, pretendemos definir un marco de detección y trazabilidad que
facilite el desarrollo de soluciones adecuadas para el contexto de la Industria 4.0, como se resume
a continuación.

A.4 Diseño de un marco de trabajo para la detección y trazabili-
dad de ataques persistentes avanzados

A partir de los requisitos de seguridad y detección extraídos anteriormente, el Capítulo 4 de la
presente tesis doctoral se dedica a definir el marco de trabajo para el desarrollo de soluciones
que permitan la correlación distribuida de eventos provocados por una APT y, por tanto, llevar
a cabo su trazabilidad. En primer lugar, se introducen algunos conceptos preliminares sobre
controlabilidad estructural y teoría de grafos que son necesarios para definir formalmente dicho
framework. A partir de ellos, se presenta el marco de trazabilidad de APT, especificando su
modelo de infraestructura junto con sus entradas y salidas. Posteriormente, con objeto de ilustrar
la viabilidad y eficacia de nuestra propuesta, identificamos algunos algoritmos de correlación que
satisfacen esa especificación. Por último, realizamos una comparación cualitativa y cuantitativa de
estas técnicas para valorar su precisión detectando ataques, antes de aplicarlos experimentalmente
en escenarios de la Industria 4.0 en el siguiente capítulo.

A.4.1 Modelado de redes y ataques de la Industria 4.0 con teoría de grafos

En esta sección, establecemos la base teórica para la representación formal de las infraestructuras
de la Industria 4.0, el modelo de atacante de una APT sobre una red definida y las técnicas de
detección presentadas en este capítulo.

Comenzando por las infraestructuras de la Industria 4.0, asumiremos que toda red vendrá
formalmente definida por un grafo dirigido G = (V,E), donde V es el conjunto de vértices y E

alude al conjunto de aristas o conexiones entre los nodos de la red. A través de este grafo es
posible caracterizar las redes de control incluyendo la interconexión de los dispositivos de control
con los dispositivos de campo (por ejemplo, sensores o actuadores) para transmitir comandos de
control en un sentido y recuperar datos en el contrario.

Para representar el volumen de tráfico experimentado por cada dispositivo nodo utilizamos el
concepto de betweenness centrality (BC) [240], que da una idea de la conectividad experimentada
por cada nodo dentro del grafo. Este indicador adquiere un mayor valor en nodos con un mayor
número de caminos más cortos que pasan por ese vértice, de manera que aquellos con más
conectividad son precisamente los que participan en un gran número de caminos mínimos. Este
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Figura A.4: Elección de nodos dominantes en un grafo

concepto guarda relación con otra noción particularmente útil en nuestra investigación, la cual
está asociada con el conjunto dominante del grafo (DS, de Dominating Set). Este se define como
el subconjunto mínimo de nodos DS ⊆ V que son adyacentes a todo el resto de vértices dentro
del grafo. A su vez, el Power Dominating Set (PDS) es una extensión de este concepto que se
define como el subconjunto mínimo de nodos que son adyacentes a todo el resto de vértices y
aristas de G(V,E). Ambos conceptos fueron formulados originalmente por Haynes et al. en [241],
que fueron simplificados por dos reglas fundamentales de observación por Kneis et al. en [242].
Un ejemplo de la elección del DS y PDS en un grafo aparece ilustrado en la Figura A.4.

Por otra parte, y con la meta de dotar de realismo a nuestras simulaciones, también ca-
racterizamos la topología del grafo G(V,E) según las infraestructuras industriales actuales,
dividiendo la red en torno a dos secciones: IT y OT, interconectadas ambas secciones por fire-
walls intermedios. De esta manera, consideramos que la red está compuesta por los subgrafos
G(VIT , EIT ) y G(VOT , EOT ) unidos por un conjunto de cortafuegos (VFW en adelante), de forma
que V = VIT ∪ VOT ∪ VFW . Además, cada uno de estos subgrafos es construido aleatoriamente
por un generador de topologías con el fin de reproducir las características de una infraestructura
real. En concreto, G(VOT , EOT ) se construye en base a una distribución power-law del tipo
y ∝ x−α, que se utiliza ampliamente para modelar la topología jerárquica de los sistemas de
control industriales [243]. Por su parte, la sección IT (dada por G(VIT , EIT )) se modela según
una distribución de red del tipo small-world, que representa la topología convencional de las redes
TCP/IP [245]. Una vez generados los dos grafos, ambas secciones se unen de manera que todos
los nodos de la red IT se conectan a los elementos VFW , mientras que solo los PDS de la red
OT se interconectan con los firewalls. La razón es que mientras que los dispositivos IT poseen
amplias capacidades de cómputo y una conectividad más abierta, solo los sistemas SCADA y con
mayor jerarquía dentro de la red OT se comunican con la red corporativa. La Figura A.5 muestra
un ejemplo sencillo de una red con cinco nodos IT y cinco nodos OT, que se fusionan a través de
dos firewalls.

Una vez formalizada la arquitectura de red utilizada en nuestro análisis, también procedemos
con la formalización de un modelo de atacante basado en el comportamiento de una APT. Para
ello, nos valemos del estudio de amenazas realizado en el Capítulo 2 con respecto a las fases de
ataque de una amenaza persistente avanzada. Asumiremos que todos los elementos de la red están
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Figura A.5: Ejemplo de red con cinco nodos IT y cinco nodos OT fusionados a través de dos
firewalls

cubiertos por mecanismos distribuidos de detección de anomalías, anticipando los principios del
marco de trabajo propuesto en este capítulo. En comparación con los mecanismos de detección
tradicionales, estos mecanismos se caracterizan por la capacidad de correlacionar anomalías por
toda la red y, por tanto, de rastrear la ubicación de los ataques, teniendo en cuenta su gravedad
y persistencia. Para este objetivo, recuperarán de forma segura la información proveniente de
cualquier mecanismo de detección basado en el host y en la red desplegado en la infraestructura
anteriormente definida por el gráfico G(V,E). Llegados a este punto asumimos también que, como
resultado de la correlación de estos mecanismos de detección que monitorizan el comportamiento
de cada nodo y sus vecinos, a cada dispositivo se le asignará matemáticamente una determinada
probabilidad de detección (es decir, probabilidad de que se produzca un ataque) en un intervalo
de tiempo determinado.

De esta manera, el modelo de atacante vendrá representado por una cadena definida de fases
que la APT puede perpetrar contra la red G(V,E). Formalmente hablando, estas fases podrán ser
del siguiente tipo en nuestro análisis y simulaciones, en alusión a las etapas extraídas del análisis
de APT reales efectuado en el Capítulo 2:

• intrusionInicial(IT,OT,FW ). El acceso inicial infecta un nodo n0 (conocido como "paciente
cero") de la red IT, la red OT o el firewall, respectivamente.

• compromiso. El adversario toma el control de un determinado nodo ni, obteniendo mayores
privilegios, manteniendo la persistencia y ejecutando técnicas evasivas para eludir la defensa
de la red. Esta etapa también incluye el reconocimiento interno de la vecindad directa de
ni, denotada conmo neighbours(ni).
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• movimientoLateralDirigido(IT,OT,FW ). Desde un determinado nodo ni, el atacante elige
un nodo nj de la red IT, OT o el firewall del conjunto neighbours(ni), y ejecuta un
movimiento lateral hacia ese nodo. Nótese que, en este modelo, el concepto de movimiento
lateral sólo abarca el envío de malware hacia el nodo objetivo.

• movimientoLateralControl . A partir de un determinado nodo ni, el adversario elige el
nodo nj del conjunto neighbours(ni) con mayor betweenness centrality (es decir, el nodo
con más conectividad), y ejecuta un movimiento lateral hacia ese nodo.

• movimientoLateralAleatorio. Desde un determinado nodo ni, el adversario elige un
nodo aleatorio nj del conjunto neighbours(ni), y ejecuta un movimiento lateral hacia ese
nodo.

• exfiltración . Desde un determinado nodo ni, el adversario establece una conexión con un
command&control remoto y extrae información sensible.

• destrucción . El adversario inutiliza o destruye el equipamiento físico controlado por el
nodo ni.

• idle . En esta fase no se realiza ninguna operación. Incluimos esta etapa para representar el
transcurso de tiempo sin que el atacante efectúe ninguna acción.

Una vez formalizadas las fases, es posible representar una APT en forma de un conjunto
ordenado de estas fases, attackSetAPT . Por ejemplo, el conjunto de ataque de Stuxnet [123] puede
representarse de la siguiente manera:

attackSetStuxnet = {intrusionInicialIT , compromiso, exfiltración,

movimientoLateralDirigidoFW , compromiso,movimientoLateralDirigidoOT ,

...,movimientoLateralDirigidoOT , idle, ..., destrucción}

En cuanto a cómo influyen las diferentes etapas de ataque en el cálculo de las probabilidades
de detección, hay que tener en cuenta que ciertas etapas de ataque generarán más alertas de
seguridad. Esto, a su vez, aumentará la probabilidad de detectar esa etapa de ataque en particular.
Por consiguiente, tenemos que considerar la existencia de diferentes clases de probabilidades de
detección. Para ello definimos Θ como un conjunto ordenado de probabilidades de detección de
tamaño d, donde Θ = {θ1, ..., θd} and θi = [0, 1], tal que ∀θi, θi > θi+1.

En base a Θ podemos crear un modelo que asigne cada fase del conjunto attackStages a los
elementos de Θ. Dicho modelo, en el que d = 5 y Θ = {theta1, θ2, θ3, θ4, θ5}, se describe en la
Tabla A.7. El razonamiento tras esta asignación es la siguiente:

• Asignamos θ1 sólo a la fase de destrucción, ya que cualquier interrupción en la funcionalidad
de un dispositivo probablemente active múltiples alertas de alta prioridad.
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initialIntrusion(n0) θ3
compromise(ni → neighbours(ni)) θ2 → θ5
∗LateralMovementIT,FW (ni → nj) θ5 → θ4
∗LateralMovementOT (ni → nj) θ5 → θ3

spreadLateralMovement(ni → neighbours(ni)) θ5 → θ4
exfiltration(ni) θ4
destruction(ni) θ1

Tabla A.7: Asignación del conjunto attackStages a Θ

• θ2 sólo se asigna al nodo protagonista de la fase de compromiso (ni → neighbours(ni)).
La razón de esto es simple. El acto de comprometer y tomar el control de ni no sólo
desencadenará varias alertas de host, sino también múltiples alertas de red debido a las
diversas consultas de descubrimiento dirigidas a todos los nodos vecinos en neighbours(ni).
La correlación de todos estos eventos llamará la atención sobre el estado de ni.

• Para θ4, consideramos las alertas de seguridad causadas por la combinación de una única
conexión anómala a un nodo más la entrega de malware a ese nodo. Como tal, esta θ

cubre todos los elementos del lado derecho de las fases del tipo movimientoLateral. No
obstante, en algunos casos particulares (como la etapa intrusionInicial y la fase del tipo
movimientoLateralOT ), se detectarán anomalías adicionales. Por un lado, una conexión
externa potencialmente anómala. Por otro, una cierta inestabilidad en el entorno OT
(normalmente estable). En esas fases les asignaremos θ3.

• Por último, θ5 se asigna a aquellas etapas en las que los nodos producen o reciben tráfico
anómalo (por ejemplo, una conexión que se desvía de lo que se considera tráfico normal).
Nuevamente, en las situaciones en las que se produce una conexión con el exterior (por
ejemplo, la etapa de exfiltración), la posibilidad de tráfico anómalo y, por tanto, el valor
de θ aumentará.

En nuestras simulaciones, estos valores de Θ son asignados considerando un escenario de
ataque realista, y añadiendo cierto nivel de aleatoriedad para representar potenciales desviaciones
en la detección de anomalías. Con esto, hemos introducido formalmente los elementos clave que
intervienen en el modelo de atacante y la detección de anomalías distribuida, necesarios para
entender el marco de trazabilidad de APT ideado a continuación.

A.4.2 Especificación del marco de trabajo para la trazabilidad de APT

Tras estudiar los sistemas más representativos para la detección de intrusiones en entornos de la
Industria 4.0 y formalizar la infraestructura de estos entornos junto con el comportamiento de
una APT, presentamos en esta sección el núcleo de nuestro trabajo. El marco de trazabilidad
nace para agregar la cobertura de múltiples sistemas de detección que son desplegados de manera
distribuida por la red, bajo una especificación común que correlaciona anomalías y aprende

230



A.4. Diseño de un marco de trabajo para la detección y trazabilidad de ataques persistentes
avanzados

permanentemente de todos los patrones de malware detectados, adaptándose flexiblemente a las
tecnologías integradas y monitorizando el ciclo de vida de una APT.

En primer lugar, presentamos el modelo de adquisición de información proveniente de la
infraestructura, para la detección de anomalías. Suponemos que la red viene representada por un
grafo G(V,E) donde V = VIT ∪ VOT ∪ VFW , tal como se dispuso anteriormente. Con objeto de
cumplir con los requisitos de cobertura (D1, c.f. Sección 3.5) y recolección de datos distribuida
(S1), asumiremos que para cada uno de los dispositivos de la red existe un agente de detección
asociado, encargado de monitorizar en todo momento el estado del mismo (incluyendo información
del host, uso de recursos computacionales, parámetros de red o de las comunicaciones, así como
valores medidos o comandos ejecutados). Estos agentes pueden ser virtuales o físicos, según las
restricciones del despliegue por la red y la capacidad para integrar dispositivos de medición de
tráfico por la infraestructura, tal como se ilustra en la Figura A.6. Según se aprecia, podemos
considerar hasta cuatro modelos de despliegue distintos:

a) Implementación centralizada: suponemos que todo el tráfico de los dispositivos es
procesado por una entidad centralizada encargada de ejecutar un proceso por cada agente
virtual asociado a esos nodos.

b) Implementación distribuida: en este caso, los agentes son dispositivos físicos asociados
al equipamiento industrial o bien ejecutados sobre el propio hardware de control, siendo la
comunicación plenamente distribuida entre ellos.

c) Implementación centralizada con brokers de datos: se trata de una solución inter-
media donde estos dispositivos son colocados en puntos estratégicos de la red para captar el
tráfico y asociarlo a agentes de detección virtuales. Estos brokers son, además, desplegados
en una red aislada, para cumplir con los requisitos de inmutabilidad (S2), confidencialidad
(S3) y supervivencia (S4).

d) Implementación mixta: se trata de una solución híbrida, donde parte de los agentes son
dispositivos físicos que se comunican con otros implementados virtualmente en nodos con
una mayor capacidad de cómputo, como los ya citados brokers.

Independientemente del modelo de adquisición y despliegue, cada agente de detección es
capaz de derivar un valor de anomalía (un número real en el intervalo [0,1] que puede expresarse
porcentualmente) del dispositivo monitorizado en función de la información recabada tras aprender
su comportamiento (haciendo uso de técnicas de machine learning) o integrando técnicas de
IDS externas, cumpliendo así con el requisito D3 (inteligencia). Este valor de anomalía será
correlacionado con la de los agentes vecinos, siguiendo la topología de red descrita por la
infraestructura industrial. Por este motivo y dado que podemos encontrarnos con varios modelos
de despliegue de agentes, esa técnica o algoritmo de correlación podrá adoptar dos modelos de
datos distintos: (i) ya sea un modelo global donde consideramos que todos los agentes disponen de
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Figura A.6: Implementación de los agentes de detección para la adquisición de información y
correlación de anomalías

información completa acerca de la red, o bien (ii) asumiendo que solo disponen de información de
su contexto local. Esto afecta a cómo los agentes han de comunicarse para propagar la información
a lo largo y ancho de la red (en especial si disponemos de un modelo de datos global) o a la
sincronización de datos entre nodos distintos.

Al fin y al cabo, la elección final del algoritmo de correlación, el modelo de datos y el diseño
arquitectónico de los agentes responde a restricciones de rendimiento y de despliegue de la
infraestructura. En cualquier caso y para dar paso a la especificación del propio marco de trabajo,
ese algoritmo de correlación debe satisfacer una interfaz especifica de inputs o entradas de datos:

(I1) Input cuantitativo: lo expresaremos con el vector x para asignar a cada activo en la red
un valor de anomalía antes de realizar la correlación. Como se ha mencionado anteriormente,
puede ser calculado por cada agente asociado o utilizando mecanismos de detección externos,
tomando un amplio conjunto de entradas de datos para cumplir con los requisitos D1
(cobertura) y D2 (holismo). En nuestras simulaciones, este valor viene dado por las fases
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de ataque ejecutadas en la red de forma probabilística (es decir, el valor de Θ), sin que el
mecanismo de detección del agente tenga conocimiento de las fases reales.

(I2) Input cualitativo: los valores anteriores necesitan ser enriquecidos con información del
contexto que permita correlacionar eventos en dispositivos cercanos e inferir la ejecución de
etapas de ataque específicas que reportan un mayor valor de anomalía. Podemos suponer
que este conocimiento puede reflejarse en forma de un peso wij , que es asignado por cada
agente i a cada uno de sus vecinos para representar el nivel de confianza adjudicado a sus
indicaciones de anomalía al realizar la correlación.

En cuanto a los resultados de las soluciones de trazabilidad que se ajusten a este marco, deben
incluir, entre otros, los siguientes elementos u outputs:

(O1) Información local para determinar si el agente ha encontrado una anomalía provocada
por la infección real del nodo asociado, en base a un nodo vecino o si es debida a un falso
positivo.

(O2) Información a nivel global, para determinar el grado de afección de la red y los nodos
que han sido comprometidos, filtrados por zonas. Esto permite distinguir qué dispositivos
están experimentando el mismo grado de anomalía producido por una misma fase ataque,
lo cual es esencial para aplicar técnicas de respuesta efectivas y aislar el ataque mientras el
resto de las zonas pueden seguir funcionando como en condiciones normales.

(O3) Información contextual que permite correlacionar eventos pasados y visualizar la evolu-
ción de la amenaza, además de anticipar los recursos que pueden ser objetivo de la APT,
de acuerdo a los requisitos de inteligencia (D3) y simbiosis (D4). Esto incluye el registro
completo de eventos ocurridos en la red desde el momento en que la intrusión irrumpió en
ella. Para ello, hay que tener en cuenta la persistencia de los ataques en todo momento,
ya que una amenaza avanzada puede pasar desapercibida durante meses antes de ejecutar
una nueva acción. En lo que respecta al algoritmo de correlación, esto implica que también
es necesario hacer un seguimiento de las antiguas y sutiles anomalías detectadas en la red
para evaluar su relevancia con respecto a las anomalías actuales.

En conjunto, esta especificación define un marco para el desarrollo de soluciones de detección
distribuida de APT en escenarios industriales, tal y como se representa en la Figura A.7. Este
diagrama ilustra el flujo de datos desde su adquisición desde los dispositivos finales hasta la
correlación de anomalías, utilizando los brokers de datos introducidos con antelación. Tras esto,
presentamos ahora las soluciones candidatas que implementan este framework para lograr los
objetivos de trazabilidad de APT propuestos hasta ahora.
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Figura A.7: Especificación de entradas y salidas del marco de detección y trazabilidad de APT

A.4.3 Técnicas de correlación distribuida

El marco propuesto anteriormente define claramente un modelo de adquisición de información
y una interfaz de datos de entrada y salida que debe ser implementada por un algoritmo de
correlación. En esta sección, presentamos las soluciones candidatas para la trazabilidad de las
APT, antes de comparar su precisión en la siguiente sección.

Para la elección de estos algoritmos candidatos, procedimos primero a realizar una primera
exploración de algoritmos de consenso. Se trata de un área de especial interés en computación
distribuida y sistemas multiagente, que estudia cómo un conjunto de agentes son capaces de
colaborar y obtener la misma información para alcanzar un objetivo común [248]. Además, se
ha aplicado ampliamente en aplicaciones del mundo real como la sincronización de relojes, la
agregación de datos entre nodos de una blockchain o la coordinación de robots autónomos, entre
otras.

Aunque el despliegue de estos sistemas ofrece una mayor eficiencia y capacidad operativa que
sistemas autónomos y centralizados, el problema reside en que su principal función es precisamente
la consecución de una solución común de manera colaborativa. Traducido al contexto de detección
de APT, estos nos proporcionarían una herramienta para evaluar la salud de la red en su conjunto,
pero no nos arrojaría información útil a nivel local, con objeto de cumplir con el output O2

deseable para la solución de trazabilidad.

Ante esta problemática, aparece una alternativa basada en la presencia de más de un consenso
distribuido por la red, adaptándose, por tanto, a nuestra especificación. Se trata del algoritmo
de Opinion Dynamics [252], que permite modelar la influencia entre individuos de un grupo o
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sociedad, donde existe un amplio espectro de opiniones. Primero, cada agente elabora su propia
opinión teniendo en cuenta las del resto de agentes con cierto grado de influencia. Este proceso
continúa hasta alcanzar un estado estacionario en el que los agentes ya no cambian su opinión. En
ese momento, las opiniones se distribuyen en varios espectros, y es posible estudiar su propagación.
Para nuestros objetivos, esto significa poder fragmentar la red en función de las múltiples amenazas
que puedan tener lugar en zonas independientes, cuyo valor de consenso individual represente el
grado de severidad de los ataques sobre esa región concreta de la infraestructura.

A continuación, presentamos de manera resumida el algoritmo en cuestión, que constituye
una ligera modificación del enfoque propuesto en [252]. Para empezar, suponemos la presencia de
agentes desplegados por una red G(V,E), de modo que cada nodo v tiene un agente asociado. En
este contexto, xi(t) representa la opinión (que va de cero a uno) de un agente i en el intervalo
tiempo t, donde t se refiere a la iteración del algoritmo. Así, el vector x(t) = (x1(t), ..., xn(t))

representa las opiniones en el momento t para todos los agentes de la red, cumpliendo con la
especificación del input cuantitativo I1 de nuestro marco de trazabilidad. Por otra parte, dado
un agente i, el peso dado a la opinión de cualquier otro agente j se denota por wij , donde
∑n

k=1wik = 1 (por consiguiente, el agente i también tiene en cuenta su propia opinión). Estas
ponderaciones pueden cambiar con el tiempo o por opinión, de modo que un agente i ajusta su
opinión en el periodo t+ 1 teniendo en cuenta la opinión de cada agente j en el momento t. A su
vez esto representa el conocimiento para discernir qué anomalías están relacionadas, de acuerdo
al segundo input cualitativo (I2) del marco de trabajo definido.

Finalmente, la opinión para el agente i en la siguiente iteración t+ 1 se calcula así:

n∑

j=1

xi(t+ 1) = wijxj(t)

En una notación matricial, esta expresión se puede escribir como:

x(t+ 1) = W (t, x(t))x(t)

donde la matriz W (t) = [wij ] es la matriz cuadrada que recoge los pesos entre agentes. Según
el algoritmo original y por simplicidad, asumimos que, para un agente dado, el valor del peso
asignado a sus vecinos se divide uniformemente en aquellos agentes cuya opinión está muy cerca
de su propio valor, estableciendo un umbral ε entre ambas opiniones. Esto representa el hecho de
que los agentes cercanos con el mismo grado de anomalía probablemente acaben detectando la
misma amenaza en su entorno.
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Figura A.8: Cálculo de las opiniones para un conjunto de 30 nodos sometidos a 10 fases de ataque

Como conclusión, cada agente ajusta su opinión en el periodo t + 1 tomando una media
ponderada de las opiniones del resto de agentes, adaptándose así a una arquitectura distribuida.
Por un lado, esta opinión resultante arroja información acerca de si el dispositivo en cuestión
ha sido comprometido, en alusión al primer output del marco de trazabilidad (O1), relativo al
contexto local del agente. Por otra parte, cuando t tiende a infinito y la red entra en equilibrio,
se forman consensos de opiniones compartidas por grupos disjuntos de agentes que pueden
representarse visualmente. Véase a modo de ejemplo la Figura A.8, donde se ilustra la ejecución
de este algoritmo para una red de 30 nodos y 17 agentes tras sufrir una APT compuesto por 10
ataques. Las líneas representan la evolución en las opiniones para cada agente, teniendo finalmente
múltiples consensos entre ellos. Al gráfico se ha añadido además un valor µ, que contiene la
proporción de agentes que entran finalmente en consenso. De igual manera, esta información se
corresponde con el segundo output de nuestro framework, relacionado con la salud global de la
red en un momento determinado.

Con respecto al tercer output del marco de detección (O3), es preciso estudiar cómo este
algoritmo de correlación puede proporcionar información útil sobre la evolución de la amenaza.
Esta funcionalidad gira en torno a la fluctuación de los valores de O1 y O2 a lo largo del tiempo.
Y es que si llevamos un registro de las opiniones generadas por los agentes a lo largo del tiempo,
es posible identificar y representar visualmente la secuencia de fases de ataque efectuadas por
una APT y extraer indicadores de salud globales para la red, tal como se muestra en la Figura
A.9. En ella, se ilustra la evolución de las opiniones resultantes tras ejecutar el algoritmo de
Opinion Dynamics después de cada una de las fases de la APT Stuxnet que, como se describió
anteriormente, comienza comprometiendo recursos de la red IT para luego propagarse a la red
OT y destruir un PLC (Programmable Logic Controller).

En nuestras simulaciones, cabe señalar que el valor de anomalía medido por cada agente (y que
corresponde con su opinión en t = 0, es decir, antes de ejecutar el algoritmo para correlacionarla
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Figura A.9: Evolución de las opiniones a lo largo de las fases de ataque de Stuxnet

con la anomalía de los vecinos) es calculado según el valor de Θ previamente introducido, que es
más alto cuanto mayor es la gravedad de la fase APT en cuestión (o mejor dicho, su probabilidad
de detección). De igual modo, para simular el paso del tiempo a lo largo de las distintas fases
de ataque, esas anomalías se irán devaluando según un indicador de atenuación para reducir la
influencia de ataques antiguos a la hora de computar las nuevas opiniones de los agentes. Tal como
se describe en la Sección 4.6 de esta tesis doctoral, este decremento en el valor de las anomalías (el
valor del input I1) dependerá de la severidad del ataque y de la criticidad del dispositivo afectado:
cuanto más devastadora sea la alerta generada (durante la fase de detección), más tardará en
desaparecer su efecto.

Gracias al valor del output O3 del marco de trabajo es posible trazar los movimientos del
atacante y visualizar los nodos afectados en cada una de las fases de la APT, llevando a cabo
la ejecución sucesiva del algoritmo de correlación a partir de la información de detección que
extraen los agentes. Esto se puede apreciar en la Figura A.10, donde varias fases de la misma APT
explicada anteriormente son estudiadas de manera independiente monitorizando las opiniones de
todos los nodos en una red.

En esta sección presentamos, además, otra solución alternativa al algoritmo de Opinion Dyna-
mics, utilizando clustering (o de agrupamiento). Estas técnicas se han utilizado tradicionalmente
como método no supervisado para el análisis de datos, en el que un conjunto de datos se agrupa
según algún criterio de similitud. En nuestro caso, disponemos de dispositivos que se ven afectados
por ataques relacionados y que, por tanto, generan anomalías similares, pudiendo agruparlos en
base a este criterio. Al fin y al cabo, el algoritmo de Opinion Dynamics simplemente divide una
red en subgrupos de dispositivos que presentan una anomalía similar, y relaciona las zonas que
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Figura A.10: Ejecución de Opinion Dynamics tras varias fases de la APT Stuxnet sobre una red
sencilla

pueden haber experimentado el mismo ataque. Este razonamiento también puede satisfacerse con
mecanismos de clustering, cumpliendo el marco de trazabilidad establecido.

En más detalle, son los enfoques de clustering basados en centroides los que se adecuan a
esta especificación. Métodos clásicos como K-means dividen un conjunto de datos seleccionando
inicialmente k centroides de cluster y asignando cada elemento a su centroide más cercano. Los
centroides se actualizan repetidamente hasta que el algoritmo converge en una solución estable.
En el escenario de la trazabilidad de APT, son las anomalías detectadas por los agentes las que
desempeñan el papel de las instancias de datos que deben agruparse en conjuntos disjuntos (es
decir, el input cuantitativo I1). Por otra parte, la relación entre anomalías es la que determina
cuáles de ellas se agrupan en un mismo clúster, que puede determinarse en base a múltiples
criterios, representando el input cualitativo (I2) de la solución a desarrollar. Mientras que en el
algoritmo de Opinion Dynamics esto quedaba representado por el peso wij asignado entre agentes,
en el enfoque basado en clustering se puede modelar en forma de dimensiones adicionales de las
instancias de datos (el valor de las anomalías, en un principio unidimensionales).

No obstante, el problema principal al que se enfrenta este enfoque se puede resumir en estos
dos puntos:

• La elección del valor de k. Es un inconveniente clásico del algoritmo K-means, y es que
el número de conjuntos en que dividir las anomalías ha de ser especificado desde el principio
y no suele ser conocido de antemano. Algunas publicaciones sugieren determinar el valor
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más adecuado usando métodos estadísticos [269] o visualmente [270]. También es habitual
estudiar los resultados de un conjunto de valores en lugar de un único k, para elegir el más
óptimo en base a distintos indicadores.

• La representación de la topología de red en el algoritmo de correlación. Al aplicar
K-means, suponemos que el conjunto de datos está formado por un conjunto de puntos
multidimensionales. En nuestro caso, tenemos un vector unidimensional de anomalías en el
rango [0,1]. Sin embargo, la agrupación de estos valores está sujeta a la topología de red,
dado que pretendemos correlacionar anomalías similares entre agentes cuyos dispositivos
monitorizados están efectivamente conectados, tal como realiza implícitamente el algoritmo
de Opinion Dynamics. Por tanto, es necesario proporcionar este conocimiento al algoritmo y
reflejar estas condiciones del entorno como entradas (al margen de I1 e I2) a la correlación.
En este sentido, algunas propuestas sugieren un clustering con K-means sujeto a restricciones
[272], o esquemas específicos para dividir un grafo en clusters utilizando spanning trees o
componentes fuertemente conectados [273].

En el contexto de esta tesis doctoral, hemos optado por probar varias de las soluciones
propuestas. Entre ellas, barajamos un clustering basado en la localización de los nodos como
dimensión adicional que, sin embargo, seguía arrastrando el problema de la selección del valor de
k. Finalmente, nos quedamos con una técnica propia a la que hemos apodado como accumulative
anomaly clustering o clustering acumulativo. Este algoritmo comienza seleccionando el nodo más
afectado dentro de la red y, posteriormente, aplica su influencia a los nodos circundantes. Esto se
representa añadiendo un valor entero a las anomalías de dichos agentes (inicialmente de 0 a 1),
que es proporcional a la anomalía del nodo influyente. Esta influencia se ejerce siempre que la
diferencia entre ambas anomalías (es decir, la del nodo influyente y la del influido) no supere un
umbral definido ε, similar al enfoque de Opinion Dynamics para cumplir con I2. A continuación,
el algoritmo continúa seleccionando el siguiente en la lista de nodos ordenados inversamente por
el valor de la anomalía, hasta que todos los nodos hayan sido influenciados o hayan influido en
otros. En ese momento, k es asignado automáticamente con el número de nodos influyentes en la
red, y podemos ejecutar K-means con las instancias de datos modificadas. Los valores resultantes
de cada agente corresponden a la parte decimal de su centroide asociado, siendo comparable a las
opiniones del enfoque de Opinion Dynamics.

La idea tras esta técnica (que puede enriquecerse para incluir factores adicionales a I2) asume
que los ataques sucesivos generan un valor de anomalía similar en los agentes más cercanos, como
postula el algoritmo Opinion Dynamics. Al mismo tiempo, aborda la cuestión de la selección
de k y la inclusión de información topológica a la clusterización, tal como hemos explicado
anteriormente.
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(a) APT individual (b) Dos APT simultáneas

Figura A.11: Promedio de la pureza para las técnicas de correlación

A.4.4 Comparación de soluciones

Después de presentar las dos soluciones candidatas a cumplir con el marco de trabajo presentado
en el núcleo tesis (Opinion Dynamics y la técnica de clustering acumulativo), procedemos a poner
a prueba ambas técnicas para comparar su precisión ante diversas APT modeladas teóricamente,
siguiendo la formalización presentada en la Sección A.4.1.

Con objeto de evaluar sus capacidades de detección y trazabilidad, ejecutamos diez APT
generadas aleatoriamente como conjuntos de fases de ataque perpetrados contra una red represen-
tada en forma de grafo, con distintas instancias de 50, 100 y 150 nodos generadas aleatoriamente.
Las anomalías producidas por estos ataques (calculadas de manera probabilística tal como ya se
ha explicado) son monitorizadas constantemente por ambas técnicas de correlación. Tras cada
fase individual, se evalúa la precisión con la que ambas soluciones identifican los nodos que están
siendo atacados, haciendo uso de un indicador de "pureza", que es un criterio de evaluación
bastante extendido para medir la calidad de los algoritmos de clustering [274].

La Figura A.11 representa el promedio de pureza en esas simulaciones. Concretamente,
se ha estudiado su valor para la técnica de Opinion Dynamics y de clustering acumulativo,
incluyendo además la técnica de clustering basado en la localización mencionada anteriormente.
Adicionalmente, se ha llevado a cabo las mismas simulaciones pero incluyendo dos APT ejecutadas
simultáneamente sobre la red. En todos los casos, tal como podemos visualizar, el algoritmo
de Opinion Dynamics arroja mejores resultados, con una precisión ligeramente superior a la
reportada por la técnica de accumulative anomaly clustering. Esta superioridad también queda en
evidencia con el estudio de otros indicadores de precisión, como el Rand Index [275].

Como resultado de estas pruebas, podemos concluir que pese a que ambas técnicas se adoptan
fielmente a la especificación de nuestro framework, es el algoritmo de Opinion Dynamics el que
muestra una mayor precisión en el seguimiento de ataques complejos. Como consecuencia, será
esta técnica la que utilizaremos en el siguiente capítulo para probar la efectividad de nuestro
marco de trabajo en distintos escenarios de seguridad de la Industria 4.0.
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A.5 Casos de uso para la protección de la Industria 4.0

El marco de trazabilidad de APT tiene en cuenta diversas arquitecturas de red, tipos de ataque y
modelos de adquisición de datos, para posteriormente definir las entradas y salidas que deben
incluir las soluciones para cumplir con los requisitos de detección y seguridad. Esto sienta las
bases para el desarrollo y la comparación de nuevas soluciones en este contexto. Como medio
para validar este marco, hemos definido dos mecanismos de detección basados en clustering y
Opinion Dynamics. Según los experimentos teóricos descritos anteriormente, este último presenta
una mayor precisión para el seguimiento de amenazas.

En el Capítulo 5 ponemos en práctica este mecanismos de detección para profundizar en su
aplicación práctica en varios escenarios de la Industria 4.0. El objetivo es evaluar su efectividad
para la puesta en marcha de técnicas de respuesta que disminuyan el impacto de las amenazas
persistentes avanzadas. Un resumen de cada uno de estos análisis es ofrecido a continuación.

A.5.1 Protocolo de encaminamiento de mensajes seguro

Como medio para probar la utilidad del framework de trazabilidad de APT (por medio del
algoritmo de Opinion Dynamics), en primer lugar exploramos la implementación de protocolos
de encaminamiento seguros. El objetivo que nos proponemos es el de aprovechar la información
acerca del estado de seguridad de la red (y, más concretamente, los outputs O1 y O2) para
garantizar la continuidad de la infraestructura en presencia de ataques.

Esta funcionalidad es diseñada e implementada a través de dos técnicas de respuesta con
objetivos distintos. La primera de ellas asume la presencia de un atacante que toma el control
de algunos nodos de la red, con la capacidad de interceptar el tráfico (poniendo en jaque la
confidencialidad de la información) o directamente denegar el servicio en algunos enlaces de
comunicación. Ante este modelo de atacante, proponemos el despliegue de una arquitectura de red
redundante, que permita el envío efectivo de mensajes entre cualquier nodo emisor y destinatario.
Para ello seguimos tres estrategias (STG, del inglés strategy):

• STG1: añadir ejes redundantes a todos los nodos de la red.

• STG2: añadir ejes solo a aquellos nodos con mayor conectividad en la topología (los del
conjunto dominante o DS).

• STG3: añadir ejes redundantes a solo a los nodos que no son parte del DS.

Además de ello, para evitar la interceptación de mensajes en la red, implementamos un
protocolo de compartición de secretos. Esto permite dividir el mensaje original en n trozos de
manera que el atacante ha de reunir un número mínimo 1 ≤ k ≤ n para poder acceder a la
información (y al mismo tiempo evitamos que el receptor legítimo obtenga el mensaje aun cuando
algunas de esas partes se pierden debido a un ataque de denegación de servicio). Este valor será
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Figura A.12: Protocolo de compartición de secretos para el envío de mensajes

mayor para aquellos nodos que experimenten un valor de opinión más elevado según el algoritmo
de Opinion Dynamics (ya que están sujetos a un ataque). Un esquema del funcionamiento de este
protocolo queda ilustrado en la Figura A.12.

Para probar este sistema en la práctica, generamos en MATLAB diferentes topologías de red
de 100, 200 y 300 nodos, sobre las que ejecutamos un conjunto de 50 ataques contra los nodos
y aristas de la infraestructura generada. Para cada una de las tres estrategias de redundancia,
generamos un paquete de 100 mensajes a distribuir por la red con un par emisor-destinatario
aleatorio y, por último, contamos el porcentaje de paquetes perdidos. Como se aprecia en la
Figura A.13 (que condensa los resultados de tales experimentos), la combinación de la información
provista por Opinion Dynamics con una estrategia de redundancia (siendo suficiente con añadir
enlaces adicionales a los nodos del DS), proporciona resultados significantes para proteger el envío
de información de manera satisfactoria por la red.

Por otra parte, implementamos una segunda técnica en torno al encaminamiento de mensajes
aprovechando la salida del algoritmo de Opinion Dynamics. Se trata de una técnica de encamina-
miento para el envío fiable de información en redes cuyos canales poseen un Quality of Service
(QoS) variable. Dicho de otro modo, lo que queremos es enviar la información a través de aquellos
canales que ofrecen un mejor QoS (incluyendo ancho de banda, pocos retrasos, etc.) al mismo
tiempo que consideramos también la seguridad de los nodos, tal como hemos procedido antes.

De esta manera, dotamos al framework la capacidad de evaluar no solo las características
de seguridad de los nodos, sino también la calidad de servicio de los canales de comunicación.
Para este cometido, en primer lugar, ideamos un indicador para representar la fiabilidad de un
canal, en función del ancho de banda que posee, la cantidad de retrasos experimentados y la
de paquetes perdidos. En base a este indicador, caracterizamos cada uno de los enlaces de una
red representada por un grafo del tipo G(V,E) y enriquecemos el modelo original del algoritmo
de Opinion Dynamics para modificar el procedimiento de asignación de pesos entre agentes. Lo

242



A.5. Casos de uso para la protección de la Industria 4.0

0 5 10 15 20 25 30 35 40 45 50

Ataques

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

%
 M

e
n
s
a
je

s
 p

e
rd

id
o
s

Ratio mensajes perdidos

Sin redundancia

Redundancia en todos los nodos

Redundancia en los nodos DS

Redundancia en todos menos en DS

(a) 100 nodos

0 5 10 15 20 25 30 35 40 45 50

Ataques

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

%
 M

e
n
s
a
je

s
 p

e
rd

id
o
s

Ratio mensajes perdidos

(b) 200 nodos

0 5 10 15 20 25 30 35 40 45 50

Ataques

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

%
 M

e
n
s
a
je

s
 p

e
rd

id
o
s

Ratio mensajes perdidos

(c) 300 nodos

Figura A.13: Ratio de mensajes perdidos para las tres estrategias de redundancia, con 100
mensajes y 50 ataques sobre una red de 100, 200 y 300 nodos

que pretendemos es priorizar la correlación de anomalías entre aquellos agentes cuyos enlaces de
comunicación poseen una mayor fiabilidad, al margen de la similitud entre opiniones debido a
anomalías provocadas por problemas de seguridad. Con esto, la información resultante en torno
a la seguridad de los nodos (con el algoritmo modificado de Opinion Dynamics) y la calidad
de los enlaces (con el indicador mencionado anteriormente) es proporcionada a un protocolo de
encaminamiento inspirado en el algoritmo de Bellman-Ford [293]. Este asegura que todos los
agentes disponen de información sobre su vecindad, para luego determinar el camino descrito por
los datos entre un emisor y destinatario, priorizando la seguridad y la QoS de los nodos y los
enlaces intermedios.

Por último, llevamos a cabo distintas simulaciones con objeto de demostrar su efectividad en
el envío de información por una red sujeta a distintas APT como las descritas para el anterior
algoritmo de encaminamiento. El resultado es que el algoritmo efectivamente consigue maximizar
la seguridad y QoS en comparación con aquellos algoritmos que calculan el camino más corto
(como el de Dijkstra [278]) carentes de seguridad alguna, mientras que al mismo tiempo se acerca
a los valores óptimos que se obtendrían si tales algoritmos priorizaran la seguridad de los nodos o
la QoS de los enlaces por separado.

243



Apéndice A. Resumen en español

��
�
���




	��������������

	�
��
��

��
��

���
��

��
���

���������

�������������������


�
��

��

�


�
���

�

���

�


�
���

�

Figura A.14: Etapas para aplicar el framework de detección de APT

A.5.2 Despliegue a un entorno de Internet de las Cosas Industrial

Debido a la profunda relación que guarda este paradigma con el concepto Industria 4.0 desde un
punto de vista tecnológico y en cuanto a la problemática de seguridad, en la Sección 5.3 de la
presente tesis doctoral abordamos un estudio de la aplicabilidad del framework de trazabilidad
de APT a un entorno exclusivamente basado en el Internet de las Cosas Industrial. Este estudio
es especialmente interesante para analizar ciertas limitaciones y cuestiones que deben abordarse.
Por ejemplo, si el uso de una entidad centralizada como modelo de despliegue es una solución
viable en todos los escenarios, o cómo instanciar con precisión los agentes de detección en una
infraestructura física cuya criticidad puede restringir las modificaciones de hardware y software.
Además, la posible sobrecarga generada en las comunicaciones o el aprovisionamiento de interfaces
de red paralelas para recabar el tráfico de red son aspectos que resolvemos en este estudio.

Más concretamente, analizamos la instanciación del framework en una infrastructura IIoT,
haciendo hincapié en la integración del algoritmo con la red a bajo nivel. Para ello, dividimos
el proceso de aplicación de la técnica basada en Opinion Dynamics en seis etapas, tal como se
muestra en la Figura A.14.

En la etapa 1, configuración de la recuperación de datos, el sistema extrae el tráfico y las
salidas de posibles mecanismos de detección de anomalías. En este punto estudiamos cómo recoger
el tráfico procedente de redes inalámbricas de ámbito local (WPAN, del inglés Wireless Personal
Area Network) basadas en tecnologías como Bluetooth, de redes WLAN (Wireless Local Area
Network) como las basadas en el estándar IEEE 802.11 o de redes celulares. Sobre ellas nos
encontramos protocolos de comunicación IoT basados en MQTT (MQ Telemetry Transport)
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o basados en interfaces tipo REST (Representational State Transfer). El objetivo consiste en
procesar parámetros de red que nos permitan crear un modelo topológico de la infraestructura y
obtener información suficiente para alimentar el algoritmo de correlación.

En la etapa 2, creación de agentes, todos los datos asociados a un dispositivo concreto se
asignan a su correspondiente agente de detección (independientemente del modelo de despliegue
adoptado). A partir de los datos brutos no extraídos de los IDS existentes, como el tráfico de red,
se extraen diversas características (por ejemplo, el tipo de conexiones establecidas, número de
paquetes intercambiados o los comandos ejecutados) en la etapa 3, extracción de características.

En la etapa 4, selección de características y formación de opinión, cada agente i combina
en un momento dado t todos los datos disponibles en la opinión xi(t), (el estado de seguridad
de su nodo monitorizado). Para esta tarea consideramos diferentes modelos para ponderar cada
característica en función del escenario de seguridad actual y de las anomalías detectadas. Tras
esto, la correlación de opiniones se efectúa tras esto en la fase 5, siguiendo el funcionamiento del
algoritmo de Opinion Dynamics ya introducido.

Como resultado de esta correlación, obtenemos información del estado de seguridad en la etapa
6, cálculo de indicadores. Tal como se dispuso con la formalización del framework, esto incluye
una representación de los segmentos de red afectados por ataques además de la visualización de
la potencial APT a lo largo de su ciclo de vida.

En última instancia, para ilustrar la aplicabilidad este estudio y demostrar los beneficios de
un despliegue conceptual del framework en un entorno IIoT, implementamos un caso de uso
teórico mediante simulaciones. Para ello, formalizamos una red compuesta por distintas secciones
siguiendo la topología común de una red IIoT, empleando generadores de red específicos. El
tráfico generado por esta red es recogido por una entidad centralizada encargada de ejecutar el
algoritmo de correlación, que finalmente es capaz de hacer el seguimiento de una APT compuesta
por diversas fases de ataque sobre dicha infraestructura.

A.5.3 Aplicabilidad en la Smart Grid

Como parte del estudio de la aplicabilidad de nuestro marco de trabajo en distintos sectores de
la Industria 4.0, también hemos efectuado un estudio sobre las ventajas específicas que puede
aportar a la red eléctrica inteligente (o la bien conocida Smart Grid). Con la integración de
tecnologías de comunicación en estos entornos, se ha producido un cambio hacia un modelo de
red más interactivo, interconectado y dinámico. Su principal ventaja es el flujo de información
bidireccional entre los consumidores (a través de contadores inteligentes) y la compañía eléctrica,
que permite que los usuarios puedan reducir el consumo eléctrico con más flexibilidad, y al mismo
tiempo la empresa pueda mejorar su respuesta a la demanda de electricidad en tiempo real.

No obstante, un entorno tan heterogéneo como este (donde conviven muchos actores como
compañías eléctricas, plantas de generación, distribuidoras, o los propios clientes) existen varios
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Figura A.15: Arquitectura resiliente para la red eléctrica inteligente

problemas de seguridad asociados, tal como sucede en cualquier entorno de la Industria 4.0 como
los estudiados a lo largo de la tesis.

Nuestra primera contribución en este área consiste en la propuesta de una arquitectura
resiliente que permita hacer frente a APT en la Smart Grid. Esta arquitectura, ilustrada en la
Figura A.15, está basada en una infraestructura cloud capaz de realizar dos tareas: (i) la detección
de amenazas y (ii) el balanceo de carga en la red, para de esta forma garantizar la seguridad y
protección de la infraestructura ante fallos y ataques.

Esta arquitectura establece una división entre una red de comunicación y la propia red
de energía, de cara a proporcionar esos dos servicios. Por un lado, un mecanismo de defensa
capaz de detectar cambios a nivel hardware y software en los elementos de la red (véase smart
meters, sensores, agregadores, etc.) y correlacionar anomalías, haciendo uso del algoritmo de
Opinion Dynamics. Por otra parte, también se ofrece un servicio para el balanceo de carga
en los generadores de electricidad disponibles en la red en cada momento. Este mecanismo
permite hacer frente a potenciales picos de demanda que puedan provocar sobrecargas de la
red (o incluso apagones), a través de una predicción de consumo en tiempo real. Para este
cometido, se aplica un algoritmo de predicción basado en series temporales, que es entrenado
previamente con un conjunto de datos de consumo a nivel estatal en España, a lo largo de un año
completo (2015). De acuerdo al conocimiento obtenido, la predicción de consumo en un momento
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determinado es proporcionada a otro algoritmo de satisfacción de restricciones que finalmente
adjudica la carga eléctrica demandada entre un conjunto de generadores disponibles con su
capacidad asociada. Ambos servicios son probados satisfactoriamente en sendas simulaciones
que finalmente demuestran la efectividad del algoritmo de balanceo y la precisión a la hora de
detectar las anomalías provocadas por una amenaza externa, de acuerdo a un modelo de atacante
previamente definido y basado nuevamente en las fases de una APT.

Nuestra segunda contribución para la protección de la Smart Grid la proporcionamos con el
soporte a los sistemas de autorización y control de acceso a los recursos de la red. Parte de este
trabajo se realizó en el contexto de SealedGRID[317], un proyecto H2020 de la Unión Europea que
aborda la protección de la Smart Grid ante ataques sofisticados, proporcionando una plataforma
de seguridad escalable, de alta confianza e interoperable. En particular, aquí nos centramos en
los servicios para gestionar los permisos de los distintos usuarios, dispositivos o procesos cuando
solicitan acceder a los múltiples recursos dentro de la infraestructura. Y es que la integración de
las tecnologías de la información y el cloud dificulta la aplicación de los modelos convencionales
de control de acceso en los sistemas industriales (incluyendo la Smart Grid), debido al carácter
descentralizado entre entidades con diferentes requisitos de acceso, rendimiento y de normativas.
En este complejo escenario, los mecanismos de control de acceso desplegados han de restringir el
acceso a cada entidad y las conexiones a aceptar, teniendo en cuenta el estado de seguridad de la
red en todo momento.

Para este último propósito, ideamos un mecanismo de context awareness basado en el fra-
mework de trazabilidad de APT presentado en esta tesis. Siguiendo la idea original de recabar
tráfico proveniente de toda la infrestructura para correlacionar anomalías e identificar amenazas,
este mecanismo se integra en todos los puntos de decisión de políticas (PDP, en referencia a
Policy Decision Points). Estos nodos son los encargados de aplicar las políticas de seguridad
(expresadas en forma de reglas) de manera distribuida allí donde son desplegados, una vez los
Policy Enforcement Points (PEPs) solicitan acceso a los recursos en nombre de los diversos
dispositivos presentes.

En nuestro caso, lo que buscamos es proporcionar a los PDP la capacidad de llevar a cabo
decisiones basadas no solo en las políticas de control de acceso, sino también del estado de
seguridad de los nodos involucrados en tal acceso. Para ello consideramos el despliegue de un
conjunto de agentes de detección dispersos por la red de manera jerárquica que reportan la
información a sus respectivos PDP asignados, y que pueden abarcar regiones locales (para un
conjunto de viviendas con sus contadores inteligentes, por ejemplo) o tener un ámbito de aplicación
más global (para distintas ciudades o provincias a nivel estatal). Esta idea de agentes en este
entorno se alinea con los denominados PIP (Policy Information Points), que asumimos que
coexisten con los dispositivos de campo y suministran información acerca de los activos de la red
a los distintos PDP con objeto de aplicar las políticas. Como resultado, obtenemos información
útil acerca del estado de la red en función del algoritmo de Opinion Dynamics (mostrado en la
Figura A.16), que se puede aprovechar para implementar políticas de autorización flexibles.
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Figura A.16: Fragmentación de la Smart Grid en función de la información sobre amenazas
provista por el algoritmo de Opinion Dynamics

Yendo un paso más allá, en este estudio también investigamos el uso de técnicas de aprendizaje
para el refinamiento de las reglas de autorización dependiendo del comportamiento de la red en
términos de seguridad. Al mismo tiempo, exploramos tangencialmente el concepto de gemelo
digital, que nos permite generar un modelo virtual de todos los activos de la red al completo y
probar diversos comportamientos sin comprometer el funcionamiento de la infrastructura real.

A.6 Experimentación y validación de las soluciones propuestas

Después de evidenciar las ventajas del marco de trazabilidad de APT aplicando la solución
basada en Opinion Dynamics a algunos escenarios de la Industria 4.0, en el Capítulo 6 de esta
tesis doctoral llevamos a cabo la validación y verificación de todos estos resultados, incluyendo
los algoritmos de correlación y las técnicas de respuesta desarrolladas. Ambos procesos son
diferentes en su definición y objetivo: mientras que la validación se refiere a garantizar que el
sistema satisface las necesidades del cliente o del usuario, la verificación consiste en evaluar si el
sistema cumple con los requisitos impuestos originalmente (en nuestro caso, la especificación del
framework).

En primer lugar, la verificación se realiza mediante demostraciones teóricas de cada enfoque
presentado en esta tesis relacionado con la detección y trazabilidad de APT. Esto abarca la
detección basada en clustering y la técnica inspirada en Opinion Dynamics, así como las técnicas
de respuesta en forma de protocolos de encaminamiento seguros. Además de ello, evaluamos
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Figura A.17: Porcentaje de victorias para cada jugador en 100 partidas simuladas

distintas estrategias de respuesta contra las APT utilizando la información proporcionada por las
soluciones de Opinion Dynamics, a través de teoría de juegos (del inglés, game theory).

Para este último cometido, formalizamos la especificación de un juego de dos jugadores
(atacante y defensor) sobre un tablero que representa la red industrial, proporcionando un modelo
para los movimientos de ambos jugadores. Mientras que el atacante imita el comportamiento
definido por una APT (con distintos movimientos según la vulnerabilidad de los recursos y los
objetivos fijados), el defensor hace uso del algoritmo de Opinion Dynamics para identificar los
nodos comprometidos en la red y erradicar el ataque con diversas medidas de respuesta. Para
ello, puede valerse de mecanismos como redundancia en los enlaces de comunicación (en caso de
que el atacante realice una denegación de servicio contra ellos), la sustitución de nodos afectados
o el uso de honeypots dentro de la red que sirvan como señuelo para aprender las capacidades del
atacante.

Todas estas características quedan recogidas en un conjunto de reglas que formalizamos de
manera igualitaria para ambos jugadores, definiendo una puntuación asociada a cada uno de los
movimientos elegibles en el juego (basado en turnos) y varias condiciones de terminación para
decidir si el atacante gana la partida (en caso de ejecutar todas las fases de la APT), si el ganador
por contra es el defensor (si consigue exterminar la infección de la infraestructura antes de llevar
a cabo su fase de ataque final), o si en cambio hay un empate. Este escenario se produce cuando
la APT consigue efectuar satisfactoriamente todas sus fases, pero el defensor consigue llevar a
cabo el seguimiento de la amenaza en todo momento, sin perder su rastro.

Con esta premisa, ejecutamos diversos experimentos con numerosas partidas para evaluar la
efectividad del sistema de detección. La conclusión es que la solución de trazabilidad se postula
como una solución efectiva cuando se combina con técnicas de respuesta adicionales como las
presentadas anteriormente. Esto queda patente en las diversas estadísticas recabadas tras los
experimentos, como la media de victorias conseguidas por el defensor, que aparecen ilustradas
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Figura A.18: Diagrama de red del entorno de pruebas industrial I4Testbed

en la Figura A.17. Así, extraemos información valiosa para determinar la estrategia de defensa
óptima ante amenazas persistentes avanzadas.

Por otro lado, la validación del framework propuesto en esta tesis la realizamos desde un
punto de vista práctico, implementando una prueba de concepto en un entorno de pruebas real,
que integra varios tipos de dispositivos y protocolos industriales. Nos referimos a I4Testbed, una
testbed industrial implementada en la Universidad de Málaga que simula el proceso de generación
de electricidad en una central solar e hidroeléctrica, y que está provista de distintos dispositivos
como los que habitualmente se encuentran en una infraestructura actual de estas características,
tal como se muestra en la Figura A.18. Entre ellos, hay un servidor con capacidad computacional
suficiente como para ejecutar el sistema de detección basado en el algoritmo de Opinion Dynamics
haciendo uso de un modelo de despliegue centralizado.

En base a esta infraestructura, procedemos con la implementación y despliegue de los agentes
virtuales que conforman el marco de trabajo para la detección y trazabilidad de amenazas. En
primera instancia, redirigimos todo el tráfico de la red (por medio de un switch configurado en
modo port mirroring) a cada uno de los agentes de detección (ejecutados de forma concurrente en
el servidor mencionado anteriormente) para monitorizar la seguridad del dispositivo físico. Con
esto se computa el valor actual de distintos indicadores de host y de red (como el uso de CPU,
ancho de banda, conexiones establecidas con otros dispositivos, etc.) y se compara con el valor
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(b) Escaneo de red y movimiento lateral
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(c) Establecimiento de un canal de cobertura
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(d) Destrucción

Figura A.19: Evolución de los valores de Opinion Dynamics en las fases de ataque

obtenido en condiciones normales, que ha sido previamente computado y aprendido. Por último,
las opiniones de los agentes son correlacionadas haciendo uso del algoritmo de Opinion Dynamics,
lo que nos da información útil sobre las anomalías sufridas a lo largo y ancho de la red.

Para la visualización de estas anomalías con un caso de uso real, a continuación procedemos a
simular una APT de forma realista a través de distintas fases donde se perpetran ataques contra
varios dispositivos de la red. En concreto, desarrollamos cuatro fases de ataque:

1. Primera intrusión: se perpetra un acceso inicial a la red. El adversario (potencialmente
un insider) roba algunas credenciales de acceso (por ejemplo, con un ataque de ingeniería
social) y se apodera del HMI o el SCADA accediendo a él desde la red de IT a través de
SSH.

2. Escaneo de red y movimiento lateral: una vez obtenidos los privilegios y comprometido
el sistema SCADA, el atacante realiza un reconocimiento del entorno buscando los servicios
vulnerables que se ejecutan en cada dispositivo. Esto se consigue emitiendo un comando
nmap en Linux. En este punto, suponemos que se encuentra una vulnerabilidad en el PLC
basado en Raspberry Pi y se toma el control de ese nodo.
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3. Establecimiento de un canal de cobertura: después de comprometer el PLC, el
adversario establece un canal encubierto a través de la conexión Modbus. A través de
este canal, el adversario envía un comando de apagado transcurrido un tiempo.

4. Destrucción: finalmente, el PLC ejecuta la orden de apagado y se desconecta del resto de
dispositivos.

La Figura A.19 muestra una representación abstracta de los dispositivos involucrados en esta
APT y sus conexiones, junto con la respectiva opinión de todos los agentes virtuales tras ejecutar
cada una de estas fases de ataque. Nuevamente y esta vez comprobado en un entorno práctico,
esta correlación proporcionan información útil para los servicios de seguridad de la red, ya que
proporciona una herramienta de visualización precisa para identificar fácilmente los recursos más
afectados en cada momento.

A.7 Conclusiones y trabajo futuro

En esta tesis doctoral hemos abordado la detección y la trazabilidad de amenazas persistentes
avanzadas en la Industria 4.0. Esta problemática surge debido al incremento de tecnologías de la
información y de las comunicaciones en entornos industriales tradicionalmente desprovistos de
medidas de seguridad. Este nuevo modelo sugiere interconectar todas las entidades involucradas
en un proceso industrial para ganar flexibilidad en todo el proceso productivo, con el detrimento
de las numerosas amenazas de seguridad que aparecen en estos nuevos servicios y que demandan
soluciones cada vez más avanzadas. En particular, es de especial interés la implementación de
mecanismos contra las llamadas amenazas persistentes avanzadas, compuestas por ataques muy
sofisticados que desafían los sistemas de protección actuales.

En primer lugar, comenzamos explorando el contexto tecnológico de la Industria 4.0 para
estudiar el espectro completo de ataques a los que está expuesto un sistema de control industrial
y que pueden formar parte de una APT. A la luz de este estudio, se hizo un análisis del estado
del arte para identificar sistemas de detección de intrusiones que permitieran poner en marcha
una primera línea de defensa, tras lo que dedujimos que existe una carencia de mecanismos
que permitan la monitorización precisa de las APT en infraestructuras modernas. En especial,
pusimos el foco en la investigación de técnicas de detección que permitan monitorizar los recursos
industriales de forma holística y detectar simultáneamente multitud de ataques, como en el caso
de las APT.

Para atajar este problema, extraímos un conjunto de requisitos de detección y seguridad
que deben cumplir las soluciones de detección en este campo. Estos conforman un marco de
trazabilidad de APT que define la interfaz de entrada, los potenciales modelos de despliegue
y los servicios que deben satisfacer distintos algoritmos de correlación de anomalías en una
infraestructura industrial para conseguir detectar los movimientos de una APT, cuyo modelo de
atacante modelamos. Para esta tarea realizamos un estudio sobre las APT más relevantes de
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la última década y extraímos un modelo de comportamiento común basado en fases de ataque
genéricas. Después, para ilustrar las ventajas de este marco, desarrollamos dos técnicas diferentes
basadas en consenso distribuido y el clustering, y que llevan a cabo la correlación distribuida de
las anomalías detectadas por un conjunto de agentes desplegados por la red. Tras una primera
comparación de estas soluciones a través de experimentos que evalúan su precisión en la detección
de un conjunto de APT modeladas teóricamente, encontramos que la técnica Opinion Dynamics
es la más flexible y precisa. Este algoritmo simula la influencia de las opiniones entre un conjunto
de agentes (que en nuestro caso representa la anomalía percibida por cada uno en su entorno local)
y su evolución en el tiempo. Cuando estas opiniones son agrupadas y cada agente es influenciado
por sus vecinos, podemos extraer información valiosa para determinar en qué partes de la red
se encuentra el atacante y evaluar el estado de la infraestructura, cumpliendo así los requisitos
inicialmente propuestos.

Nuestro objetivo a continuación fue comprobar la eficacia del marco de trazabilidad (y, por
tanto, la de las soluciones que lo satisfacen) en diversos escenarios de la Industria 4.0 desde
un punto de vista más práctico. En primer lugar, ideamos técnicas de respuesta que utilizan
la información proporcionada por el sistema de detección para asegurar la supervivencia de
la red, garantizando la continuidad de las comunicaciones en presencia de una APT. Esto se
implementó utilizando protocolos de encaminamiento de mensajes que hacen uso de la información
proporcionada por el algoritmo Opinion Dynamics, y luego se probaron con varios escenarios de
ataque. Por otro lado, también se estudió su aplicación en un entorno de Internet de las Cosas
Industrial y en la Smart Grid, como caso de uso del sector de la Industria 4.0. Para esto último
se desarrolló una herramienta que previene contra posibles sobrecargas en la red y monitoriza
las anomalías para proporcionar información sobre la seguridad de los recursos. Estos datos
se utilizaron, además, para reforzar políticas de control de acceso basadas en el estado de la
infraestructura en tiempo real.

En consecuencia, esta investigación es de especial interés para concienciar sobre la problemática
de seguridad que rodea a las infraestructuras críticas que controlan nuestra sociedad. En particular,
este marco de trazabilidad proporciona una guía para el diseño de sistemas de detección adaptados
a la complejidad y heterogeneidad tecnológica de estos entornos. Así lo demuestran los diversos
experimentos realizados, que ponen de manifiesto la precisión y eficacia de estas soluciones para
la toma de decisiones, la prevención de riesgos y, en definitiva, la reducción del impacto (y, por
tanto, de los costes) provocado por las APT.

A pesar del trabajo desarrollado en esta tesis doctoral, todavía hay varios retos y problemas
abiertos que merece la pena explorar. Para empezar, sería factible ampliar el marco de trazabilidad
considerando el procesamiento de más datos de entrada, de forma que lleváramos a cabo una
correlación de anomalías más metódica y precisa. En este sentido, sería ideal abordar de forma
práctica el procesamiento automatizado (y en tiempo real) de fuentes de información externas
(como los informes de inteligencia sobre amenazas) para mantener una base de conocimientos
actualizada acerca de la causalidad de los eventos (referido como entrada cualitativa en el contexto
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del framework de trazabilidad). En el caso particular del algoritmo Opinion Dynamics, esto se
traduciría en una asignación óptima y automática de pesos entre los agentes. Hasta ahora hemos
dejado la puerta abierta a que estos valores se establezcan manualmente en base a diferentes
reglas; por ejemplo, midiendo la calidad del servicio en las comunicaciones. Sin embargo, sería
ideal que la plataforma en cuestión tuviera la capacidad autónoma de adquirir este conocimiento
y calcular la mejor asignación, quizás utilizando técnicas de machine learning. En general, y en
relación con esto último, sería interesante investigar la influencia de la inteligencia artificial en
la correlación de anomalías, más allá de los mecanismos basados en el consenso distribuido y el
clustering.

De igual manera, el sistema de trazabilidad podría ofrecer funcionalidades adicionaless más
allá de evaluar el estado actual de los dispositivos e identificar las zonas más afectadas. Por
ejemplo, nos gustaría estudiar la posibilidad de realizar predicciones con los datos recogidos, para
anticipar con certeza los próximos movimientos de una APT dentro de la red víctima. También es
indispensable examinar el impacto sobre el rendimiento de los diferentes modelos de despliegue,
para extraer conclusiones sobre las bondades de la correlación centralizada o distribuida. Al
mismo tiempo, es de esperar que los algoritmos que satisfacen el propio marco de trazabilidad
no presenten una alta complejidad, para no poner en peligro las restricciones de tiempo real
impuestos por estos entornos tan críticos. Todo ello depende de un conjunto de requisitos de
rendimiento que son específicos de los sistemas industriales donde se aplicarían estas soluciones, y
que es diferente en cada sector de la Industria 4.0. En esta investigación se ha abordado el caso
particular de la Smart Grid y entornos IIoT. Sin embargo, nos gustaría estudiar el comportamiento
del algoritmo Opinion Dynamics (junto con otras soluciones alternativas) en entornos adicionales
como la red de transporte o las telecomunicaciones, con el fin de identificar más parámetros que
podrían ser contemplados por nuestro marco para finalmente caracterizar nuestras soluciones con
un mayor grado de precisión.

Por último, es de esperar que los nuevos servicios de la Industria 4.0 habilitados por los
nuevos paradigmas de computación y de las comunicaciones (como la blockchain, el 5G o fog/edge
computing) sigan en aumento, propiciando la aparición de ataques que obliguen a renovar las
técnicas existentes para adquirir un enfoque de detección aún más amplio. En consecuencia, es
crucial seguir investigando mecanismos de detección adaptativos con un grado de autonomía
cada vez más elevado, basados en modelos de atacante cada vez más complejos reconocidos
en la industria y en el ámbito académico. Este proceso debe estar alineado con los estándares
que integren la seguridad por defecto en todo el ciclo de vida de la Industria 4.0 (como IIRA y
RAMI4.0), para facilitar la integración de las futuras soluciones de trazabilidad.
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