
Unified Management of
Applications on Heterogeneous

Clouds

PhD Thesis

Jose Manuel Carrasco Mora

Programa de Doctorado de Tecnoloǵıas Informáticas

Departamento de Lenguajes y Ciencias de la Computación

ETS Ingenieŕıa Informática

Universidad de Málaga

Supervised by

Dr. Francisco Javier Durán Muñoz
Dr. Ernesto Pimentel Sánchez

May 2021

mailto:kiuby88@gmail.com
http://scenic.uma.es/
http://www.uma.es/

AUTOR: José Manuel Carrasco Mora

 https://orcid.org/0000-0002-2936-2713 

EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-
SinObraDerivada 4.0 Internacional: 
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode 
Cualquier parte de esta obra se puede reproducir sin autorización  
pero con el reconocimiento y atribución de los autores. 
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras derivadas. 

Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de Málaga
(RIUMA): riuma.uma.es

http://orcid.org/0000-0002-2936-2713
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

	
	

	

Escuela de Doctorado

Edificio Pabellón de Gobierno. Campus El Ejido.
29071

Tel.: 952 13 10 28 / 952 13 14 61 / 952 13 71 10
E-mail: doctorado@uma.es

-

	

DECLARACIÓN	DE	AUTORÍA	Y	ORIGINALIDAD	DE	LA	TESIS	PRESENTADA	
PARA	OBTENER	EL	TÍTULO	DE	DOCTOR	

	
	
	
D./Dña	JOSE	MANUEL	CARRASCO	MORA	
Estudiante	 del	 programa	 de	 doctorado	 TECNOLOGÍAS	 INFORMÁTICAS	 de	 la	 Universidad	 de	
Málaga,	 autor/a	 de	 la	 tesis,	 presentada	 para	 la	 obtención	 del	 título	 de	 doctor	 por	 la	
Universidad	 de	 Málaga,	 titulada:	 UNIFIED	 MANAGEMENT	 OF	 APPLICATIONS	 ON	
HETEROGENEOUS	CLOUDS	
	
Realizada	 bajo	 la	 tutorización	 de	 ERNESTO	 PIMENTEL	 SÁNCHEZ	 y	 dirección	 de	 FRANCISCO	
JAVIER	 DURÁN	MUÑOZ	 Y	 ERNESTO	 PIMENTEL	 SÁNCHEZ	 (si	 tuviera	 varios	 directores	 deberá	
hacer	constar	el	nombre	de	todos)	
	
	
	
DECLARO	QUE:	
	
La	tesis	presentada	es	una	obra	original	que	no	infringe	los	derechos	de	propiedad	intelectual	
ni	 los	 derechos	 de	 propiedad	 industrial	 u	 otros,	 conforme	 al	 ordenamiento	 jurídico	 vigente	
(Real	Decreto	Legislativo	1/1996,	de	12	de	abril,	por	el	que	se	aprueba	el	texto	refundido	de	la	
Ley	de	Propiedad	Intelectual,	regularizando,	aclarando	y	armonizando	las	disposiciones	legales	
vigentes	sobre	la	materia),	modificado	por	la	Ley	2/2019,	de	1	de	marzo.		
	
	
Igualmente	 asumo,	 ante	 a	 la	 Universidad	 de	 Málaga	 y	 ante	 cualquier	 otra	 instancia,	 la	
responsabilidad	que	pudiera	derivarse	en	caso	de	plagio	de	contenidos	en	la	tesis	presentada,	
conforme	al	ordenamiento	jurídico	vigente.	
	
	
	
En	Málaga,	a	27		de	MAYO	de	2021	
	
	
	
	
	
Fdo.:	JOSE	MANUEL	CARRASCO	MORA	

	
	

Sobre la tesis doctoral con título "Unified Management of Applications on Heterogeneous
Clouds", realizada por Jose Manuel Carrasco Mora, los profesores Ernesto Pimentel
Sánchez y Francisco Javier Durán Muñoz, del Departamento de Lenguajes y Ciencias de la
Computación d ela Universidad de Málaga:

● Confirman la idoneidad de la tesis para su presentación por compendio de
publicaciones.

● Afirman que ni las publicaciones que avalan la tesis, ni las que forman parte de la
misma, han sido utilizadas en tesis anteriores.

● Autorizan su lectura.

Málaga, 27 de mayo de 2021

Ernesto Pimentel Sánchez Francisco Javier Durán Muñoz
(tutor y co-director de la tesis) (co-director de la tesis)

Acknowledgements

We are grateful to our partners in the SeaClouds project, and in particu-
lar to our colleagues Alex Heneveld, Andrea Turli, and the rest of Cloud-
soft Inc., and Francesco D’Andria and Roi Sucasas from Atos Spain. This
work has been partially supported by EU project FP7-610531 SeaClouds;
Spanish MINECO/FEDER projects TIN2014-52034-R and TIN2015-67083-
R; Andalusian Gov project P11-TIC-7659; and Univ. Málaga, Campus de
Excelencia Internacional Andalućıa Tech.

Special Acknowledgements

Antes de comenzar me gustaŕıa mencionar a las personas que de alguna
manera me han ayudado a llegar hasta aqúı.

La tesis comenzó formalmente hace ya bastantes años, seis para ser exactos,
y la verdad es que llegados a este punto a mis directores, Paco y Ernesto,
solo puedo ofrecerles mi más sincero agradecimiento por haberme dedicado
todo el tiempo, la enerǵıa , la confianza y la paciencia que he necesitado para
completar este trabajo. Me gusta decir que ha sido un placer trabajar con
vosotros, pero en realidad lo que ha sido es un privilegio. Gracias.

La verdad es que esta tesis, supongo que como todas las demás, ha sido un
camino largo con muchos altibajos. Aqúı quiero agradecer una cosa a mis
padres, Jose y Loli, porque además de todo lo que me han dado, creo que me
han enseñado una de las armas más útiles que he tenido para enfrentarme
a este trabajo, la constancia. Sin vuestro apoyo esto no habŕıa sido posible.
Esto va también por el resto de mi familia, Jesús, Maŕıa, Pedro y Roćıo.

Hay una persona que ha vivido muy de cerca este proceso, Maŕıa Jesús, ha
visto cada paso, ha sufrido los quebraderos de cabeza que supońıan muchas
de las decisiones, me ha dado el mejor ánimo, el apoyo más tenaz, y los
mejores consejos que se pueden esperar. No sé cuánto de esto es tuyo, pero
creo que no es poco.

Llegado este punto no puedo olvidar a mi grupo de amigos, Paco, Esme,
José Francisco, Maricarmen, Pepe, Adriana, Alonso, Mari, Pedro, Rubén,
Mary, Álvaro, Alberto, Óscar e Inmi. Por suerte, para mı́, han aguantado
estoicamente todas las horas que he pasado contándoles como iba con la tesis,
ya sea porque ellos me hubiesen preguntado o porque yo recurrentemente
acabara hablando del tema.

Afortunadamente mi inicio en el camino de la investigación no fue en solitario,
esta aventura comenzó con mis amigos, Adrián, Antonio y Miguel, y a d́ıa
de hoy puedo decir que trabajar con ellos fue toda una suerte. También
me gustaŕıa agradecer al resto de miembros del equipo de SCENIC toda la
ayuda, y el soporte personal que me han prestado.

Mis amigos de la universidad, Javi, Alejandro, Antonio, Estefańıa, José,
Curro, Marcos, Javi Espinar, Hugo y Damián. Vuestra ayuda a lo largo de
los años ha sido indispensable para llegar hasta aqúı.

Durante todo este tiempo he encontrado otras tantas personas que se han
preocupado y me han enseñado much́ısimo en lo técnico y en lo personal,
Toni, Portero, Vı́ctor, Joaqúın, Pedro, Pedraza, Rafa, Carlos, Iván, Antonio
Jesús, Edu, Castor y Julio. Gracias.

No me puedo despedir sin agradecer a Sergio Gálvez todo el apoyo, los con-
sejos y el ánimo que me ha dado a lo largo de los años.

“A hombros de gigantes.”

— I. Newton
Carta a Robert Hooke, 1675

Contents

Contents ix

Resumen (in Spanish) 1

Chapter 1. Introduction 15

1.1 Motivations and challenges . 17

1.1.1 Portability and interoperability . 17

1.1.2 Runtime migration . 20

1.1.3 Lifecycle robust management . 21

1.1.4 Research challenges . 23

1.2 Contributions . 24

1.3 Outline . 26

Chapter 2. Published Work 27

2.1 List of research contributions . 27

2.2 Research execution . 29

2.3 Support Papers . 32

2.3.1 Bidimensional cross-cloud management with TOSCA and Brooklyn 35

2.3.2 Trans-cloud: CAMP/TOSCA-based bidimensional cross-cloud . . . 37

2.3.3 Component migration in a trans-cloud environment 39

2.3.4 Runtime migration of applications in a trans-cloud environment . 41

2.3.5 Live migration of trans-cloud applications 43

2.3.6 Robust management of trans-cloud applications 45

Chapter 3. Related Work 47

3.1 Standards . 48

3.2 Portability and interoperability . 51

3.2.1 Common API . 52

3.2.2 Federated clouds . 54

3.2.3 Broker-based solutions . 55

3.2.4 Cloud-coupled orchestrators . 56

3.2.5 Cloud-decoupled orchestrators . 59

3.2.6 Commercial orchestrators . 60

ix

x CONTENTS

3.2.7 Applications and platforms modeling 62
3.3 Migration . 63

3.3.1 Migration of legacy applications 64
3.3.2 Runtime migration . 66

3.4 Self-Healing . 68
3.4.1 Architecture and infrastructure . 69
3.4.2 Application self-healing . 71
3.4.3 Commercial solutions . 74

3.5 Containers, the vendor lock-in’s chimera 74
3.5.1 Portability of container-based applications 75
3.5.2 Runtime migration of container-based applications 78
3.5.3 Self-healing container-based applications 79

Chapter 4. Conclusions and Future Work 81
4.1 Conclusions . 81
4.2 Future work . 85

References 87

Resumen (in Spanish)

El concepto Cloud Computing o Computación en la Nube se ha descrito hasta la fecha
en términos de la evolución de la tecnoloǵıa que lo conforman (por ejemplo, la compu-
tación en Grid y Clustering), de los paradigmas en los que se basa (como Virtualization,
Client-Server-Model and Peer-to-Peer), sus caracteŕısticas (por ejemplo, elasticidad y
escalabilidad), o sus ventajas loǵısticas y económicas (como el uso y pago bajo demanda
de los recursos y servicios). Sin embargo, ubicuidad podŕıa ser la palabra más ilustrativa
para describir este concepto. La Computación en la Nube no es solo uno de los temas
más significativos y controvertidos en entornos empresariales y académicos, sino que la
influencia del Cloud transciende en la sociedad hasta tal punto que esta tecnoloǵıa se
utiliza cada d́ıa en el mundo entero mediante miles de aplicaciones, modificando las re-
laciones entre empresas y clientes, la forma en que las personas se conectan y comparten
información, y cómo esta información se produce, gestiona, procesa y consume.

Es innegable que la Computación en la Nube ha supuesto una revolución de las
Tecnoloǵıas de la Información y un cambio radical para la industria, que en muy poco
tiempo ha abandonado las soluciones del tipo cliente-servidor para usar y desarrollar
soluciones basadas en el Cloud. Como resultado, en los últimos años muchos proveedores
como Amazon, Google, Microsoft e IBM han construido plataformas cloud. Además, de
estos proveedores también han surgido un conjunto de plataformas de código abierto
como OpenStack1, Open Nebula2 y Cloud Foundry3. Aunque se ofrecen muchas des-
cripciones distintas y decenas de proveedores ofrecen sus propios servicios, es cierto que
en términos de forma, conceptualización, capacidades y uso, todos los proveedores y las
plataformas cloud comparten los mismos principios: el Cloud promueve el acceso bajo
demanda a una cantidad masiva de recursos que pueden ser aprovisionados y liberados
rápidamente desde cualquier parte del mundo a través de tres modelos de servicios prin-
cipales, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS).

Mientras que SaaS permite a los usuarios finales utilizar aplicaciones que se están
ejecutando en el cloud, IaaS y PaaS permiten desarrollar, configurar y ejecutar sistemas,
y aplicaciones. El nivel de IaaS proporciona acceso a la computación virtualizada, el
almacenamiento y los recursos de red. El nivel de PaaS va un paso más allá y simplifica

1OpenStak: https://www.openstack.org/.
2Open Nebula: https://opennebula.io/.
3Cloud Foundry: https://www.cloudfoundry.org/.

1

https://www.openstack.org/
https://opennebula.io/
https://www.cloudfoundry.org/

el consumo de la infraestructura bajo demanda para apoyar la gestión de aplicaciones.
IaaS parece más flexible desde el punto de vista de los desarrolladores, debido a que
ofrece un entorno sin restricciones en el que se puede instalar y configurar cualquier
tipo de software, mientras que PaaS puede llegar a ser más restrictivo, por ejemplo,
los vendedores proveen un Software Development Kit (SDK) espećıfico para diferentes
lenguajes y tecnoloǵıas para desarrollar y ejecutar aplicaciones.

No obstante, la instalación, configuración y mantenimiento de la tecnoloǵıa que se
ejecuta en IaaS puede llegar a ser una tarea tediosa, mientras que PaaS permite el uso
de toda la potencia de las plataformas cloud, monitorización, elasticidad y escalabilidad,
etc., con una configuración mı́nima y asistida. Además, el mantenimiento de los entornos
suelen ser transparentes, ya que la propia plataforma se encarga del mantenerlo actuali-
zado. Esto significa que la elección del cloud con la que trabajar va más allá de elegir en
qué proveedor se va ejecutar una aplicación, ya que tiene implicaciones en el desarrollo,
despliegue y mantenimiento de las aplicaciones y el entorno de ejecución. Por ejemplo,
en IaaS los mecanismos como el auto-escalado o el balanceo de carga se tienen que
añadir como parte de la arquitectura de las aplicaciones, incluyendo tecnoloǵıa espećıfi-
ca. Por otro lado en PaaS estas funcionalidades son inherentes a la propia plataforma y
se ofrecen de manera nativa, aśı que las aplicaciones pueden utilizarlas de manera casi
transparente con configuración mı́nima. Esto, por supuesto, tiene un impacto directo
en cómo se definen y ejecutan las tareas operacionales para desplegar y mantener el
entorno y las aplicaciones. Por ejemplo, el despliegue o actualización de una aplicación
en IaaS puede requerir operaciones espećıficas para ocuparse de la orquestación de un
cluster. Sin embargo, en PaaS la gestión del cluster vienen dada por la plataforma. De
modo, los clientes pueden utilizar las operaciones que este nivel de abstracción ofrece,
por ejemplo, para actualizar las aplicaciones, simplificando los procesos y minimizando
las posibilidades de error.

En esta tesis se estudia el impacto que la Computación en la Nube tiene en el ciclo
de vida de las aplicaciones que va desde cómo se desarrollan hasta cómo se ejecutan y
mantienen en el cloud utilizando los diferentes servicios.

Motivación

Debido a la tendencia y las expectativas de la Computación en la Nube, la tecnoloǵıa ha
evolucionado muy rápido durante los últimos años. Varios proveedores han implementado
sus propias soluciones, construyendo capas de servicios personalizados para exponer sus
recursos. Algunos de ellos se han centrado en proporcionar y optimizar diferentes tipos
de servicios, como Heroku1 y Open Shift2, que se centran en el nivel PaaS, ofreciendo
diferentes mecanismos de interacción, como bibliotecas, APIs REST y clientes de consola.
Otras plataformas han sido fusionadas o incluidas en soluciones más grandes, como
SoftLayer3 e IBM Cloud4. Además, muchos de estos proveedores proporcionan de forma

1Heroku: https://www.heroku.com/.
2Red Hat OpenShift: https://www.openshift.com/.
3Softlayer: http://www.softlayer.com/.
4IBM Cloud: https://www.ibm.com/cloud.

2

https://www.heroku.com/
https://www.openshift.com/
http://www.softlayer.com/
https://www.ibm.com/cloud

nativa soluciones integradas en sus plataformas, denominadas add-ons, que permiten a
las aplicaciones aprovechar servicios cŕıticos, como la mensajeŕıa, el almacenamiento o
la monitorización, con una configuración mı́nima, y delegando su mantenimiento en la
plataforma.

Como resultado, la mayoŕıa de estos proveedores ofrecen un conjunto de servicios si-
milares, en cuanto a funcionalidades y niveles de abstracción. Sin embargo, cada una de
estas soluciones siguen sus propias especificaciones. Por ejemplo, cada proveedor propor-
ciona sus propias APIs, especifica su propio Service Level Agreement (SLA), ofrece una
Quality of Service (QoS) diferente, soporta tecnoloǵıas concretas o proporciona servicios
ad-hoc.

La heterogeneidad y la proliferación de estas soluciones ha aumentado el número
de cuestiones que deben abordarse en el contexto de la Computación en la Nube. Los
desarrolladores diseñan sus aplicaciones para que se ejecuten en proveedores espećıficos,
pero si suceden cambios en los requisitos de las aplicaciones o en el proveedor cloud, los
desarrolladores pueden ver sus aplicaciones bloqueadas en las plataformas para las que
sus aplicaciones fueron diseñadas, ya que trasladarse a otras plataformas podŕıa no ser
factible debido a la complejidad y el coste que podŕıa llevar adaptar sus aplicaciones
a las condiciones de un nuevo proveedor. De hecho, los desarrolladores pueden verse
bloqueados en un nivel de abstracción concreto de un proveedor, IaaS o PaaS. Esta
problemática se denomina vendor lock-in o bloqueo del proveedor, y tiene un impacto
directo en la portabilidad e interoperabilidad, en la definición de las aplicaciones y en el
uso de los servicios.

En esta tesis se analiza los problemas relacionados con el vendor lock-in y se ofrece
una herramienta para mitigar su impacto en el ciclo de vida de las aplicaciones. Se estudia
la descripción portable de las aplicaciones para que se puedan desplegar en proveedores
diferentes minimizando el coste de adaptación. Además se plantea un mecanismo de
migración que permite a los desarrolladores reaccionar ante cambios en los proveedores
cloud que permite mover las partes afectadas de las aplicaciones a otros proveedores.
Todo esto teniendo en cuenta los posibles errores que pueden suceder en cada fase, como
por ejemplo, un error durante el despliegue. A continuación se muestran las cuestiones
que han guiado el trabajo que se desarrolla en esta tesis.

– ¿Se pueden desarrollar aplicaciones en la nube independientemente de los provee-
dores utilizados para ejecutarlas? En caso afirmativo, ¿se pueden desplegar estas
aplicaciones en servicios de diferentes proveedores?

– ¿Se puede gestionar el despliegue de las aplicaciones en función de sus componen-
tes, de modo que cada uno de ellos se despliegue usando servicios de proveedores
diferentes? ¿Pueden operar de manera homogénea los componentes desplegados en
diferentes tipos de servicios (IaaS y PaaS)?

– Si las aplicaciones pueden desplegarse en servicios de diferentes tipos, usando diferen-
tes proveedores, ¿podemos mover estos componentes en tiempo de ejecución? ¿Es-
tas aplicaciones podŕıan estar operativas mientras se migran? Y si es aśı, ¿podŕıa
minimizarse su tiempo de inactividad?

3

– Si un componente falla, ¿podemos recuperar una aplicación a su estado normal? ¿Y
si este fallo ocurre en el momento del despliegue?

– ¿Cómo se ve afectado el ciclo de vida de una aplicación si algo cambia?

– ¿Qué pasa si cambian los requisitos de una aplicación del proveedor en el que se está
ejecutando o el tipo de servicios utilizados?

– ¿Qué pasa suceden errores en una aplicación que se está ejecutando?

A continuación, analizamos los problemas del vendor lock-in y cómo afectan al ciclo
de vida de las aplicaciones, y resumimos los desaf́ıos que se abordan en esta tesis.

Portabilidad e interoperabilidad

Como ya se ha mencionado, la heterogeneidad de los proveedores es una de las causas
principales de la dependencia con las plataformas cloud, y las diferencias entre IaaS y
PaaS no hacen sino agravar el problema. Es cierto que ambos tipos de servicios permiten a
los desarrolladores desplegar sus aplicaciones y almacenar y gestionar datos, pero ofrecen
diferentes mecanismos para la configuración y el consumo de los servicios. En IaaS, se
ofrece a los desarrolladores un acceso casi total a la infraestructura, control sobre el
aprovisionamiento de la máquina virtual, gestión de las redes y del sistema operativo,
etc. En PaaS, los usuarios pierden toda capacidad de configuración de bajo nivel a
cambio de obtener entornos preconfigurados en los que pueden desplegar sus aplicaciones
y aprovechar bajo demanda caracteŕısticas útiles como la elasticidad y la escalabilidad.
Aśı que cada nivel de abstracción proporciona servicios para alcanzar objetivos similares,
pero se gestionan mediante mecanismos e interfaces diferentes.

Con el fin de mitigar esta heterogeneidad y encontrar una solución agnóstica para
la gestión de los diferentes proveedores cloud, han surgido herramientas y frameworks
independientes que integran bajo una sola interfaz los servicios de múltiples proveedores,
tanto públicos como privados proporcionando entornos de despliegue descentralizados si-
guiendo diferentes enfoques. Por ejemplo, algunas soluciones, como jClouds1 o Nucleus2

proporcionan interfaces que cubren las API de varios proveedores. Otras soluciones ocul-
tan la interacción directa con los proveedores finales. Un ejemplo son los cloud brokers
que integran servicios cloud diversos en una capa de interacción unificada, y sirven a los
clientes de una compatibilidad semántica entre plataformas, permitiendo el uso de servi-
cios de diferentes proveedores mientras que se oculta la heterogeneidad y la complejidad
de su uso.

En muy poco tiempo, estas plataformas han evolucionado de formas diferentes, per-
mitiéndole a los usuarios aprovechar los servicios cloud de multitud de proveedores para
desplegar y hacer funcionar sus sistemas. Términos como multi-cloud, cross-cloud, fe-
derated cloudso inter-cloudsse han utilizado para clasificar las distintas formas en las
que se integran los servicios de las plataformas y cómo se distribuyen las aplicaciones,

1Apache jClouds: https://jclouds.apache.org/.
2Nucleus: https://github.com/stefan-kolb/nucleus.

4

https://jclouds.apache.org/
https://github.com/stefan-kolb/nucleus

ofreciendo una solución a muchos de los problemas relacionados con la portabilidad e
interoperabilidad entre proveedores. Las principales diferencias entre estos enfoques ra-
dican en cómo se integran los servicios de terceros y en cómo se gestionan los módulos
desplegados en diferentes plataformas. Sin embargo, solo permiten operar simultánea-
mente con un único nivel de abstracción para desplegar las aplicaciones, es decir, todos
los componentes de una aplicación se despliegan en servicios IaaS o todos en servicios
PaaS.

Qué servicio elegir entre la multitud de servicios que existen en el cloud sigue siendo
un desaf́ıo para los usuarios. Además, una vez que se selecciona un servicio, son necesarios
mecanismos para asegurar que el proveedor elegido ofrece los recursos de acuerdo a la
especificación de requisitos definidas en el SLA y el QoS. La decisión no es, en efecto,
trivial, y el contexto y conocimiento pueden cambiar con el paso del tiempo, por lo
que puede tener un impacto inesperado. Por ejemplo, hoy podemos decidir que se va
a utilizar un proveedor de PaaS concreto para un módulo de una aplicación porque
es más rentable, o porque requiere menos esfuerzo de gestión, pero mañana nuestras
necesidades o modelo de negocio puede requerir más control sobre nuestras máquinas
virtuales (VM), por ejemplo, para mejorar la integración con la infraestructura de la
empresa, o porque necesitamos aumentar el nivel de seguridad de los servicios. Esto es
problemático, ya que este tipo de cambios requieren un esfuerzo de desarrollo. Cambiar
de un proveedor de PaaS a otro puede requerir un esfuerzo significativo, y adaptar una
aplicación y los procesos operacionales para que funcione en diferentes niveles, de IaaS
a PaaS o viceversa, puede ser simplemente prohibitivo. Desafortunadamente, este tipo
de problemas puede ser inevitable con el tiempo, debido a los cambios en los servicios
ofrecidos, los precios, las poĺıticas de seguridad, o simplemente porque un proveedor deja
de prestar sus servicios1.

Además, la mayoŕıa de las soluciones actuales, denominadas orquestadores, usan
modelos de topoloǵıas de las aplicaciones que describen los componentes de de las apli-
caciones, cómo estos se relacionan entre ellos y los recursos utilizados. De esta manera,
ofrecen un entorno portátil e interoperable en el que los desarrolladores pueden des-
cribir sus sistemas y seleccionar los recursos que mejor se adapten a sus necesidades,
sin preocuparse por los detalles técnicos relacionados con el uso de los servicios. Sin
embargo, muchas de estas soluciones proporcionan su propia especificación para la to-
poloǵıa que, además, suelen estar orientadas por la definición de sus propias APIs, por
lo que normalmente estas descripciones de topoloǵıa no suelen ser compatibles entre
ellas. Desafortunadamente, podemos ver esto como un problema recurrente. El uso de
estas especificaciones no hace más que trasladar el problema del vendor lock-in de los
proveedores finales a las capas intermedias de orquestación que se encargan de integrar
y consumir los servicios de los diferentes proveedores. Por ejemplo, supongamos que una
aplicación está modelada para ejecutarse en un entorno compuesto por más de un pro-

1 Varios servicios, incluso plataformas completas, como DotCloud o CloudBees, han si-
do clausurados por sus proveedores. DotCloud, el servicio cloud que dio origen a Doc-
ker, se cerró en febrero de 2016 (https://www.datacenterknowledge.com/archives/2016/01/26/
dotcloud-the-paas-cloud-provider-that-birthed-docker-sets-closing-date).

5

https://www.datacenterknowledge.com/archives/2016/01/26/dotcloud-the-paas-cloud-provider-that-birthed-docker-sets-closing-date
https://www.datacenterknowledge.com/archives/2016/01/26/dotcloud-the-paas-cloud-provider-that-birthed-docker-sets-closing-date

veedor, lo que se denomina multi-cloud, utilizando un orquestador cloud concreto, como
RoboconfAhora, supongamos que debido a cambios en los requisitos de la aplicación
(tecnoloǵıa, QoS, etc.), se necesita llegar a nuevos servicios en la nube que no están
soportados por el orquestador actual. Lamentablemente, el uso de nuevos proveedores
cloud pueden requerir adaptaciones que no sean sencillas de llevar a cabo. Por ejemplo,
las descripciones de las aplicaciones —la topoloǵıa— tendŕıan que ser modificadas para
adaptar los componentes al uso de los nuevos servicios. Además de las descripciones de
las aplicaciones, algunas soluciones también podŕıan requerir desarrollo de nuevos scripts
o extensión de las APIs para que las tareas de despliegue y mantenimiento soporten el
nuevo proveedor, lo que seŕıa necesario para que las aplicaciones sean gestionadas por el
ciclo de vida del orquestador.

Aqúı entran en juego los estándares que tratan de armonizar el Cloud proporcionan-
do especificaciones concretas para normalizar las topoloǵıas de aplicación y definiciones
de los recursos cloud utilizados. Además, los estándares también definen protocolos de
uso que detallan mecanismos de conexión e interacción con las plataformas. Han apare-
cido estándares que especifican mecanismos para gestionar entornos multi-cloud, lo que
permite a las aplicaciones aprovechar más de un proveedor, por ejemplo los estándares
TOSCA1 y OCCI2. Como resultado, algunas de las soluciones de integración de provee-
dores mencionadas anteriormente han basado en estándares las especificaciones de sus
topoloǵıas, lo que permite que las aplicaciones sean compatibles entre diferentes orques-
tadores, minimizando el esfuerzo de adaptación necesario. Sin embargo, como ya se ha
dicho, muchas de estas soluciones sólo pueden gestionar un único nivel de abstracción.

Debido a todo esto, en este trabajo se argumenta que los mecanismos para describir
aplicaciones portátiles e interactuar con diferentes niveles de abstracción, IaaS y PaaS,
de forma homogénea es un reto de investigación que permitiŕıa a los desarrolladores
ejecutar aplicaciones utilizando los recursos cloud que mejor se adapten a sus necesidades.
Además, las soluciones orientadas a estándares pueden ayudar a mitigar los problemas de
portabilidad y facilitar el análisis de las topoloǵıas de las aplicaciones para automatizar
los despliegues en el cloud.

Migración en tiempo de ejecución

Lamentablemente, el problema del vendor lock-in también afecta a otros aspectos del
mantenimiento de las aplicaciones. Incluso si existiese una solución perfecta para el des-
pliegue automático de aplicaciones, en la que cada componente se desplegara utilizando
el mejor servicio posible para que su calidad de servicio fuera la óptima, de acuerdo a
unos criterios, todav́ıa seŕıa necesario tratar uno de los problemas de bloqueo de pro-
veedores más importantes para la ejecución de aplicaciones: los cambios. Como ya se
ha mencionado, pueden producirse distintos tipos de cambios que afectan a las aplica-
ciones cloud. Por ejemplo, actualizaciones de las aplicaciones desplegadas, alteraciones
impredecibles en las cargas de trabajo, o en los servicios utilizados, como por ejemplo,

1TOSCA: https://www.oasis-open.org/committees/tosca/.
2OCCI: https://occi-wg.org/.

6

https://www.oasis-open.org/committees/tosca/
https://occi-wg.org/

cambios en los servicios ofrecidos, precios, poĺıticas de seguridad o incluso proveedores
que dejan de ofrecer servicio. Como resultado, habŕıa que mover las aplicaciones, o parte
de ellas, para utilizar otros servicios que pueden estar en otros proveedores o incluso en
un nivel de abstracción distinto. De hecho, según la tasa de cambio del cloud y las tec-
noloǵıas utilizadas, la migración de componentes individuales o aplicaciones completas
es inevitable a lo largo del tiempo.

Teniendo en cuenta las cuestiones relacionadas con el bloqueo de proveedores, ¿Es
posible migrar aplicaciones o algunos de sus componentes si es necesario? ¿Cuál es
el impacto? ¿Puede realizarse esa migración de manera que se garantice la fiabilidad
de las aplicaciones y al mismo tiempo se reduzcan al mı́nimo el inevitable tiempo de
inactividad?

Cambiar los proveedores sobre los que desplegar una aplicación ya se ha estudiado
anteriormente. Sin embargo, desde el punto de vista de la migración, estas soluciones se
limitan en su mayor parte a mover aplicaciones completas de un proveedor a otro. En
algunas de estas propuestas, como por ejemplo, en las que se soporta el cross-cloud, śı
soportan el redespliegue orientado a componentes.

No obstante, lo que proponen estas soluciones no puede llamarse migración en tiempo
de ejecución. Por ejemplo, con el fin de optimizar el coste de una aplicación en ejecución,
puede que queramos mover algunos de sus componentes a diferentes proveedores cloud.
Aplicando un proceso de migración en tiempo de ejecución, estos componentes debeŕıan
moverse mientras la aplicación sigue funcionando, minimizando el impacto en el sistema
en ejecución y deteniendo solo las partes necesarias de la aplicación mientras se man-
tiene su rendimiento tanto como sea posible. Sin embargo, en las soluciones comentadas
anteriormente la aplicación tendŕıa que detenerse completamente y volver a desplegar-
se, lo que tiene un impacto significativo en su rendimiento. Además, la mayoŕıa de las
soluciones existentes solo se ocupan de un único modelo de servicio, t́ıpicamente IaaS.

La migración en tiempo de ejecución es un tema que ha sido y está siendo estudiado
tanto por la academia como por la industria, pero que aún no se ha resuelto. De hecho,
hay varias cuestiones claves relacionadas con este tema que se deben tener en cuenta.
Por ejemplo, además de la heterogeneidad en el cloud, la gestión en tiempo de ejecución
de los componentes requiere un conocimiento exhaustivo de la topoloǵıa de la aplica-
ción. Para migrar los componentes es necesario orquestar todo el contexto de ejecución,
como los servicios y los recursos vinculados, para realizar el movimiento esperado de los
componentes, además de tener en cuenta los posibles problemas de interoperabilidad y
portabilidad. Además, los componentes no pueden operarse de manera aislada porque
el rendimiento de otras partes de la aplicación puede verse afectado. Solo una descrip-
ción completa de la topoloǵıa de la aplicación permite analizar sus componentes y su
estructura como parte del proceso de migración para poder determinar las operaciones
necesarias para la migración. Ya se han propuesto algunas soluciones para la migración
en vivo de los componentes de aplicaciones en ejecución que usan su topoloǵıa y se ocu-
pan del movimiento de los componentes entre diferentes proveedores. Sin embargo, estas
soluciones se limitan al nivel IaaS, y se basan en descripciones de aplicaciones que no
son compatibles entre proveedores ni orquestadores.

7

El desarrollo de una solución para el problema de la migración en tiempo de ejecución
por componentes parece una cuestión compleja que se agrava aún más si se consideran
los movimientos entre servicios de niveles de abstracción diferentes entre proveedores.
Sin embargo, esto permitiŕıa a los desarrolladores reaccionar ante los cambios en los
requisitos de las aplicaciones, cambios inesperados en los proveedores y servicios utili-
zados. Además, el análisis de la topoloǵıa permitiŕıa optimizar el proceso de migración
y minimizar el impacto de los movimientos en el rendimiento de los otros componentes
que continúan en ejecución.

Gestión robusta del ciclo de vida

Ya se ha mencionado cómo el vendor lock-in afecta a la elección de los recursos cloud
para una aplicación, el despliegue e incluso a la migración para reaccionar ante cambios.
Sin embargo, el impacto del vendor lock-in no se termina aqúı. Los errores en el cloud
pueden ocurrir durante todas las fases del ciclo de vida de una aplicación. Por ejemplo,
algo podŕıa salir mal al aprovisionar recursos durante el despliegue de la aplicación, como
por ejemplo, fallos en la instanciación de las máquinas virtuales.

Los errores no solo ocurren durante el despliegue. Una vez que las aplicaciones se
están ejecutando, pueden ocurrir problemas tanto en las aplicaciones como en los ser-
vicios cloud utilizados, como la sobrecarga de recursos o problemas de conectividad.
Además, los errores inesperados pueden desde parar una parte del sistema hasta detener
la aplicación por completo. Por lo tanto, los mecanismos de self-healing o auto-reparación
deben incluirse en las soluciones que gestionan los ciclos de vida de las aplicaciones en
entornos multi-cloud para detectar y gestionar errores.No obstante, para desarrollar es-
tos mecanismos, también es necesario abordar la heterogeneidad del cloud en lo que
respecta a la observabilidad para conocer el estado de los componentes y detectar los
errores, aśı como la ejecución de las operaciones necesarias para restaurar las partes de
las aplicaciones afectadas.

Desafortunadamente, el soporte actual de la gestión de fallos no está totalmente auto-
matizado. Por ejemplo, cuando un componente de una aplicación deja de dar servicio, en
una máquina virtual, el administrador de la aplicación normalmente tiene que analizar
manualmente y bajo demanda el sistema para encontrar la causa principal del inciden-
te y resolverlo. Esto puede requerir el reinicio los servicios afectados en la máquina, o
incluso el reinicio de la propia máquina. Puede darse el caso de que ocurra algún error
de infraestructura que no pueda ser recuperado, lo que requerirá la reconstrucción de la
máquina virtual.

En la mayoŕıa de los casos, estas soluciones consisten en desarrollos hechos a medida
para arquitecturas de aplicaciones espećıficas que deben actualizarse constantemente, de
acuerdo a los cambios en las aplicaciones y el entorno de ejecución, utilizando herramien-
tas de gestión, como por ejemplo, Chef1 o Puppet2. La automatización de estas tareas

1Chef es una herramienta de automatización para definir la infraestructura como código (https:
//www.chef.io).

2Puppet es una herramienta de gestión de configuración y despliegue de software de código abierto
(https://puppet.com/).

8

https://www.chef.io
https://www.chef.io
https://puppet.com/

conllevaŕıa una mejora significativa, por ejemplo en lo referente a las pruebas, y además
evitaŕıan operaciones manuales de configuración y mantenimiento de sistemas, que son
propensas a errores. Varios sistemas ofrecen soluciones automatizadas para gestionar in-
cidentes básicos comunes, aunque requieren de la intervención de expertos para resolver
cuestiones más complicadas.

De hecho, el self-healing sigue siendo un desaf́ıo que está siendo investigado tanto
por la academia como por la industria. Actualmente, algunas plataformas proporcionan
cierto apoyo a algunos mecanismos básicos de self-healing. Por ejemplo, AWS1, Google2

o Azure3 ofrecen soluciones basadas en agentes que permiten a un servicio de análisis
monitorizar el estado los servicios de las aplicaciones y definir poĺıticas para reemplazar
las instancias con errores si es necesario. Sin embargo, la capacidad de estas acciones son
limitadas: después de algún tiempo sin comunicación, los agentes marcan las instancias
con un estado desconocido, y se inicia un procedimiento de recuperación. Dependien-
do del tipo de servicios, se pueden aplicar diferentes planes de recuperación del error,
pero normalmente las operaciones soportadas son únicamente parar, reiniciar o recrear.
Los mecanismos de self-healing pueden aplicarse simplemente a una lista de tipos de
recursos reducidos, incluso puede que solo sean aplicables si se han desplegado y con-
figurado siguiendo algunas restricciones. Por ejemplo, las máquinas virtuales decoradas
con funciones de self-healing en AWS deben ser operadas a través de la consola de AWS
OpsWorks Stacks4. Además, como ya se ha mencionado, solo pueden realizarse ope-
raciones orientadas a la infraestructura, como el reinicio o la recreación de la máquina
virtual, por defecto no permite ejecutar operaciones espećıficas para gestionar los errores
concretos en las aplicaciones.

Como se ha visto en las secciones anteriores, la mayoŕıa de los orquestadores que
intentan mitigar los problemas relacionados con el vendor lock-in utilizan sus propios
modelos para especificar la topoloǵıa de las aplicaciones, y utilizan esta información pa-
ra orquestar el despliegue y el mantenimiento en entornos muti-cloud. En cuanto a la
detección de errores muchos de ellos incluyen mecanismos para comprobar el estado de
la aplicación. Otros van un paso más allá y ofrecen algún tipo de análisis del compor-
tamiento de la aplicación y sugieren algunos cambios, pero no proporcionan ninguna
capacidad de self-healing.

La extensibilidad de muchos orquestadores podŕıa soportar el desarrollo de las ope-
raciones de self-healing, como Brooklyn5, Terraform6 y Roboconf. No obstante, como
en escenarios anteriores, seŕıa necesario emplear recursos para desarrollar estos meca-
nismos. Además, en muchos casos podŕıan no ser soluciones agnósticas y requeriŕıan

1La información sobre las capacidades de self-healing de los servicios web de Amazon se puede en-
contrar en https://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autohealing.
html.

2La información sobre las capacidades de self-healing de los servicios web de Google se puede encon-
trar en https://cloud.google.com/compute/docs/instance-groups/autohealing-instances-in-migs.

3La información sobre las capacidades de self-healing de los servicios web de Azure se puede encontrar
en https://azure.microsoft.com/en-us/blog/service-healing-auto-recovery-of-virtual-machines.

4AWS OpsWorks Stacks: https://aws.amazon.com/opsworks/.
5Apache Brooklyn: https://brooklyn.apache.org/.
6Terraform: https://terraform.io/.

9

https://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autohealing.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autohealing.html
https://cloud.google.com/compute/docs/instance-groups/autohealing-instances-in-migs
https://azure.microsoft.com/en-us/blog/service-healing-auto-recovery-of-virtual-machines
https://aws.amazon.com/opsworks/
https://brooklyn.apache.org/
https://terraform.io/

modificaciones de la topoloǵıa, impactando en la portabilidad de las aplicaciones.
Otras soluciones se centran en la automatización basada en eventos, como por ejem-

plo, StackStorm1 o RunDeck2, ofreciendo un amplio conjunto de sensores, que permiten
definir disparadores de eventos sofisticados. Estas soluciones soportan una cantidad muy
variada de herramientas y tecnoloǵıas de ejecución, incluyendo la ejecución de servicios
REST, o incluso pueden conectarse a una máquina y ejecutar comandos, por ejemplo,
usando SSH. Sin embargo, como otras soluciones mencionadas anteriormente, el mante-
nimiento de estas tareas no está automatizado, y por lo tanto se necesita un esfuerzo de
adaptación y mantenimiento si algo cambia en la aplicación o en el entorno.

Desaf́ıos de la investigación

De acuerdo a las cuestiones descritas hasta ahora, el reto principal de esta tesis es ofrecer
una gestión homogénea de los servicios de IaaS y PaaS, y promover una metodoloǵıa
para describir las aplicaciones y los recursos cloud de los proveedores, proporcionando a
los desarrolladores mecanismos para mejorar la portabilidad e interoperabilidad de sus
aplicaciones. Además, estos mecanismos son las bases sobre las que se construyen las
soluciones para la migración y self-healing. Una descripción exhaustiva de la topoloǵıa
permite analizar la estructura de la aplicación a fin de orquestar un proceso de migración
en tiempo de ejecución para las aplicaciones en funcionamiento, mientras que una API
común hace transparente la gestión de los servicios cloud. Esto permite la optimización
orientada a componentes durante todo el ciclo de vida de la aplicación, incluyendo tanto
el despliegue como su ejecución. Los usuarios pueden elegir los recursos cloud cuyas
caracteŕısticas se adapten mejor a los requisitos de sus aplicaciones independientemente
de su nivel de abstracción, IaaS o PaaS. Por las mismas razones, una gestión robusta de
las aplicaciones es también factible. La API común permitirá conocer el estado de las
aplicaciones en ejecución mediante la unificación de los mecanismos de supervisión, de
manera que se puedan detectar los errores cuando se produzcan. Aśı pues, las técnicas de
control de fallos y recuperación de errores pueden integrarse directamente en el proceso
de orquestación de aplicaciones, de modo que su gestión se base completamente en el
conocimiento inferido de la topoloǵıa, evitando desarrollos ad-hoc para reaccionar ante
los errores.

Por lo tanto, con el fin de minimizar los efectos del vendor lock-in, este trabajo pre-
tende que los desarrolladores abstraigan sus aplicaciones de la complejidad del cloud,
proporcionando herramientas agnósticas para construir aplicaciones portátiles que faci-
liten la reacción ante cambios tanto en el cloud como en el de las aplicaciones, además de
ofrecer mecanismos para detectar y reparar errores automáticamente. A continuación,
se detallan los desaf́ıos principales que se abordan en esta tesis.

Descripción agnóstica de la topoloǵıa. Definir un marco agnóstico de modelado
basado en estándares para permitir la descripción completa de las aplicaciones y

1StackStorm es una herramienta de automatización basada en eventos (https://stackstorm.com/).
2Rundeck permite la configuración, monitorización, configuración de trabajos en centros de datos

(https://rundeck.com/).

10

https://stackstorm.com/
https://rundeck.com/

los servicios y recursos cloud utilizados (IaaS y PaaS). Concretamente, se propone
usar los estándares actuales, CAMP y TOSCA para permitir la portabilidad.

Heterogeneidad semántica del cloud. Desarrollar una API común que unifique los
servicios cloud independientemente de su nivel de abstracción, para IaaS y PaaS.

Gestión del ciclo de vida de las aplicaciones. Integración del modelado y la API
unificada para construir un marco que permita modelar y desplegar aplicaciones
portátiles de manera estandarizada. Proporcionar una orquestación completa de
las aplicaciones durante los despliegues utilizando tanto servicios IaaS como PaaS.

Portabilidad. Minimizar el impacto en la adaptación de las aplicaciones a nuevos pro-
veedores tanto en la descripción de las aplicaciones como en el uso de los recursos
cloud.

Migración en vivo. Proporcionar mecanismos para realizar operaciones de reconfigu-
ración en tiempo de ejecución, minimizando el impacto en los sistemas en ejecución.

Gestión robusta de las aplicaciones. Permitir una gestión robusta del ciclo de vi-
da de las aplicaciones, proporcionando mecanismos de detección de fallos y de
recuperación.

Despliegue de un prototipo funcional. Desarrollar un prototipo funcional de expe-
rimentación para alcanzar los objetivos anteriores y analizar el rendimiento de la
interacción con la nube.

Publicaciones principales

Esta tesis viene avalada por una serie de trabajos publicados en lo que se estudian las
cuestiones anteriores. A continuación se listan dichos trabajos en los que se analizan
cómo se relaciona el ciclo de vida de las aplicaciones con los recursos cloud, la resistencia
a los cambios de las aplicaciones cloud y cómo este se puede abordar minimizando el
impacto durante los despliegues o en aplicaciones que ya se están ejecutando.

– Jose Carrasco, Javier Cubo, Francisco Durán, and Ernesto Pimentel. “Bidimen-
sional cross-cloud management with TOSCA and Brooklyn”. In 2016 IEEE 9th
International Conference on Cloud Computing (CLOUD), pages 951–955. IEEE,
San Francisco, California, EE.UU, 2016.
DOI: 10.1109/CLOUD.2016.0143.

– Jose Carrasco, Francisco Durán, and Ernesto Pimentel. “Trans-cloud: CAMP/TOS-
CA-based bidimensional cross-cloud”. Computer Standards & Interfaces, 58:167–179,
2018. DOI: 10.1016/j.csi.2018.01.005.

– Jose Carrasco, Francisco Durán, and Ernesto Pimentel. “Component migration in
a trans-cloud environment”. In 7th International Conference on Cloud Computing
and Services Science (CLOSER), Revised Selected Paper, pages 286–307. Springer,
Oporto, Portugal, 2017. DOI: 10.1007/978-3-319-94959-8 15.

11

– Jose Carrasco, Francisco Durán, and Ernesto Pimentel. “Runtime migration of
applications in a trans-cloud environment”. In Adaptive Services-Oriented and
Cloud Applications (ASOCA) - Workshops of 15th International Conference on
Service-Oriented Computing (ICSOC), pages 55–66. Springer, Málaga, España,
2017. DOI: 10.1007/978-3-319-91764-1 5.

– Jose Carrasco, Francisco Durán, and Ernesto Pimentel. “Live migration of trans-
cloud applications”. Computer Standards & Interfaces, 69:103392, 2020. DOI: 10.10-
16/j.csi.2019.103392.

– Antonio Brogi, Jose Carrasco, Francisco Durán, Ernesto Pimentel, and Jacopo
Soldani. “Robust management of trans-cloud applications”. In 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD), pages 219–223. IEEE,
Milán, Italia, 2019. DOI: 10.1109/CLOUD.2019.00046.

Conclusiones y contribuciones

De acuerdo a las cuestiones mencionadas anteriormente, en esta tesis se estudia cómo
el vendor lock-in afecta al mantenimiento de las aplicaciones durante su ciclo de vida.
Con el fin de mitigar estos problemas, proponemos trans-cloud como una abstracción
de la gestión del cloud que, mediante una API unificada, ofrece a los desarrolladores
una única forma de operar de forma simultánea servicios cloud en IaaS y en PaaS de
proveedores diferentes, extendiendo aśı el concepto de cross-cloud. Esto permite construir
aplicaciones y procesos operacionales agnósticos que no dependen de plataformas cloud
concretas, lo que ofrece a los desarrolladores mecanismos que permiten reaccionar ante
cambios tanto en el cloud como en las aplicaciones. Además, la propuesta de trans-cloud
se utiliza como la base de soluciones que se proponen para migrar las aplicaciones en
tiempo de ejecución y para garantizar la solidez de la orquestación de las aplicaciones
durante su gestión.

A continuación se resumen las contribuciones principales de esta tesis:

1. Una descripción del entorno trans-cloud, que proporciona la base de una nueva
abstracción de los recursos cloud, incluyendo niveles de servicio de IaaS y PaaS.
Además se define un entorno para la gestión de las aplicaciones y los recursos
asociados basado en el modelado de su topoloǵıa.

2. Una API de unificación de IaaS y PaaS basada en CAMP. Se ofrece a los usuarios
un uso agnóstico y sencillo de diferentes servicios cloud permitiéndoles centrarse en
sus funcionalidades, mientras que la complejidad de usar e integrar sus interfaces
se abstrae mediante la API unificada.

3. Descripción de aplicaciones y servicios cloud portables basados en el estándar
TOSCA que permite que los usuarios elaboren descripciones completas de sus
aplicaciones, incluido todo el conocimiento sobre las capacidades, requisitos, tipos
de servicios para ejecutar las aplicaciones, etc., independientemente de los provee-
dores concretos sobre los que finalmente se desplegará la aplicación.

12

4. Un framework de trans-cloud basado en el orquestador de aplicaciones de Apache
Brooklyn. El framework proporciona un entorno que permite construir y desplegar
aplicaciones portátiles utilizando la API unificada de forma estandarizada, pro-
porcionando una gestión completa del ciclo de vida de la aplicación. La principal
contribución de esta parte es la portabilidad, ya que los servicios soportados por
la API unificada estarán disponibles para desplegar las aplicaciones modeladas sin
requerir ningún conocimiento sobre las interfaces concretas de los proveedores.

5. Una herramienta para migrar componentes de aplicaciones en ejecución que orques-
ta el ciclo de vida de los componentes y los recursos cloud utilizando la información
de la topoloǵıa.

6. Una extensión del framework de trans-cloud para incluir un orquestador de mi-
gración en tiempo de ejecución para automatizar un proceso de migración fiable,
eficiente y orientado a los componentes de las aplicaciones. Las migraciones pue-
den iniciarse con solo indicar los nuevos servicios de destino de los componentes,
ya sean IaaS o PaaS, sin necesidad de ninguna modificación o interacción con la
topoloǵıa, lo que tiene por objeto desligar las aplicaciones de los proveedores en
los que se ejecutan.

7. Mecanismos agnósticos de monitorización, como parte de la API basada en CAMP,
permiten comprobar el estado de la aplicación independientemente de los recursos
cloud sobre los que se ejecutan.

8. Una metodoloǵıa que soporta la gestión automatizada de fallos en el entorno trans-
cloud, mediante técnicas de detección de fallos y un procedimiento de recuperación
de errores. De esta manera, proporcionamos a los entornos trans-cloud la capaci-
dad de construir una orquestación robusta de aplicaciones y la interacción con los
proveedores cloud.

9. Una extensión del framework trans-cloud que integra un protocolo de gestión de
errores. Esto contribuye a la capacidad del usuario de automatizar las operaciones
para hacer frente de manera agnóstica a los fallos en el cloud. Además, ofrece una
visión aislada de las tareas operacionales, desacoplándolas de los recursos cloud
utilizados, contribuyendo a la automatización del proceso de migración de aplica-
ciones.

10. Se proporcionan casos de estudios complejos que se han utilizado para probar y
evaluar las soluciones desarrolladas y su aplicabilidad a diferentes aplicaciones y
entornos cloud.

13

14

Chapter 1. Introduction

Several definitions have been written of Cloud Computing in terms of evolution of tech-
nologies (as Grid and Clustering), based paradigms (as Virtualization, Client-Server-
Model, and Peer-to-Peer), its capabilities (as elasticity and scalability), or its economic
and logistic advantages. However, ubiquity may be the most illustrative word to describe
the concept. Cloud Computing is nowadays not only one of the most popular topics in
the enterprise and academia environments, but the term Cloud has transcended to such
an extent in society that people uses it every day by means of hundreds of applications,
modifying the relations between enterprises and customers, the way in which people
connect and share information, and how this information is produced, managed, pro-
cessed and consumed. It is undeniable that the Cloud has meant a revolution of IT
(Information Technology) and a radical change for the industry, which has moved from
client-server to cloud-based solutions in a very short time (cf. [36]). As a result, in recent
years many cloud platforms have been built by vendors such as Amazon, Google, and
Microsoft, and a set of open-source platforms, such as OpenStack, Open Nebula, and
Cloud Foundry, have also emerged.

Although several definitions have been written and dozens of cloud providers offer
their own services, in terms of shape, conceptualization, capabilities, and usage, all of
them share the same principles: the cloud promotes on-demand access to a massive
number of resources that can be rapidly provisioned and released from anywhere around
the world throughout three main service models, namely, Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) [61].

While SaaS offers running applications in the cloud to end-users, IaaS and PaaS
enable the capability of developing, configuring and running systems and applications in
the cloud. IaaS provides access to virtualized computing, storage, and network resources.
PaaS goes one step further and simplifies the consumption of on-demand infrastructure,
to support the management of cloud applications. On the one hand, IaaS may seem
more flexible from the developers’ point of view, since any software can be installed and
configured, while for PaaS the application development can be more restrictive, since,
for example, vendors provide specific SDKs, for different languages, to build and de-
liver applications. On the other hand, the configuration on IaaS can be tedious, while
PaaS allows to take advantage of powerful cloud capabilities, as monitoring, scalabil-
ity, and elasticity, with a minimal and assisted configuration, therefore simplifying the
maintenance and improving their robustness.

15

Then, the choice of cloud goes beyond where an application is run, but it has conse-
quently implications on how applications are developed, deployed, and maintained. For
example, in IaaS, mechanisms such as auto-scaling or load balancing require to be added
on-demand as part of the architecture of applications, by including specific technology,
considering these functionalities part of the infrastructure. On the other hand, in PaaS,
these functionalities are natively offered and can be used in applications after a little
configuration. This of course has a direct impact on how operational tasks are defined
and performed. The deployment or updating of an application in IaaS would require spe-
cific operations to deal, for example, with cluster orchestration. However, PaaS allows
to delegate the cluster management to the platform, so clients can use some available
operations to update the applications, thus simplifying the process. Moreover, it allows
to simplify the maintenance for running applications. For example, for a simple restart
on PaaS users delegate to the platform the management of the resources, to maintain
the cluster integrity and the service availability, what has implications on the application
readiness and error recovery tasks.

In summary, Cloud Computing has significant effects on the lifecycle of applications,
from how applications are built to how they are run and maintained in the cloud us-
ing different services. The main research questions that have led our research are the
following ones:

Question 1 – Can the development of cloud applications be carried out independently
of the cloud providers used to deploy them? If so, can these applications be deployed
on services of different providers?

Question 2 – Can this deployment be managed component-wise, so that each compo-
nent is deployed in services of different providers? Can components deployed on
different service types (IaaS and PaaS) be interoperated in a homogeneous way?

Question 3 – If applications can be deployed on services of different types, by different
providers, can we move these components at runtime? Could these applications be
operational while migrated? And if so, could their downtime be minimized?

Question 4 – If a component fails, can we recover the application to its normal state?
What if this failure occurs at deployment time? And if failures occur while recov-
ering from a previous failure?

Question 5 – How is the application lifecycle affected if something change?

Question 6 – What if application requirements, target cloud, or the kind of used ser-
vices change?

These are the questions we try to deal with in this work. In [25], [31], [30], [29], [32], and
[20] we analyze how applications’ lifecycle relates to cloud resources, the applications’
resilience to cloud changes, and how these changes can be addressed, minimizing the
impact on cloud applications during deployments and already running applications.

16

Chapter 1.

1.1 Motivations and challenges

Due to the aforementioned cloud hype, the landscape has evolved very fast during the
last years. Several vendors have implemented their own solutions, building their custom
service layers to expose their resources. Some of them focused on providing and opti-
mizing different kinds of services, such as Heroku1 and Open Shift,2 which focus on the
PaaS level, offering different mechanisms for interaction, such as libraries, REST APIs,
and shell clients. Other platforms have been merged or included into bigger solutions,
such as SoftLayer3 and IBM Cloud.4 Moreover, many of them natively provide solutions
that are integrated in their platforms, called add-ons, which allow applications to take
advantage of critical services, such a messaging, storage or monitoring, with a minimal
configuration, and delegating their maintenance to the platform.

As a result, most of these providers offer a set of similar services, regarding function-
alities, on top of similar abstraction levels. However, these solutions follow their own
specifications. For example, each one provides its own APIs, specifies its own Service
Level Agreement (SLA), offers different Quality of Service (QoS), supports concrete tech-
nologies, or provides ad-hoc services. Moreover each provider applies to these agreements
a different pricing model and billing customizations, such as described in the Customer
Agreement (CA) of each platform [52].

The proliferation of these solutions and their heterogeneity has also increased the
number of issues to be addressed in Cloud Computing. Developers design their applica-
tions to work with specific providers, and, if after some time, application requirements
or cloud capabilities change, they are locked with it because it is not feasible to move to
other platforms due to the high complexity and cost to adapt their applications to the
conditions of a new vendor. Indeed, developers can see themselves locked in a specific
abstraction level of a provider. These issues are known as vendor lock-in problems (see,
e.g., [3, 67]), which hamper the portability and interoperability in the definition and the
usage of services. As a result, developers lose their agility to adapt their applications to
the cloud resources that best satisfy their requirements.

Next, we analyze vendor-lock issues and how they impact the applications’ lifecycle
and summarize the challenges addressed in this work.

1.1.1 Portability and interoperability

As discussed in the previous section, the heterogeneity of providers is one of the main
causes of vendor lock-in, and the differences between IaaS and PaaS only aggravate the
problem. Both kinds of services allow developers to deploy applications and store and
manage data, but they offer different mechanisms for the configuration and the consump-
tion of services. In IaaS, developers are offered almost total access to the infrastructure,
with control over VM provisioning, management of networks and operating systems, etc.

1Heroku: https://www.heroku.com/.
2Red Hat OpenShift: https://www.openshift.com/.
3Softlayer: https://www.softlayer.com/.
4IBM Cloud: https://www.ibm.com/cloud.

17

https://www.heroku.com/
https://www.openshift.com/
https://www.softlayer.com/
https://www.ibm.com/cloud

1.1. Motivations and challenges

With PaaS, users lose any capability for low-level configuration in exchange for gaining
pre-configured environments where they can deploy their applications and easily take
advantage of useful features as on-demand elasticity and scalability. Thus, each abstrac-
tion level provides services to reach similar goals, but they have to be managed through
distinct mechanisms and interfaces, which users must know and understand.

In order to mitigate this heterogeneity and find a vendor-agnostic solution, indepen-
dent tools and frameworks have emerged with the goal of integrating, under a single
interface, the services of multiple public and private providers (see, e.g., [100], [109],
[57], and [95]), or providing decentralized deployment environments (see, e.g., [105]
and [86]) following different approaches. For example, some solutions, like jClouds1

or Nucleus [69], provide interfaces that cover APIs of several providers. Other solutions
hide the direct interaction with final clouds. For example, cloud brokers integrate di-
verse cloud services by means of a layer that offers to customers semantic compatibility
among vendors, allowing them to deal with heterogeneity and reach services of different
providers.

In a very short time, these platforms have evolved to adjust to different ways in
which users can take advantage of integrated cloud services to expose and run their
systems. Terms such as multi-cloud [75], cross-cloud [45], federated clouds [97], or inter-
clouds [58] have been used to describe the ability to distribute modules of an application
using services from different providers, addressing a significant part of the portability
and interoperability issues between providers. The main differences between these ap-
proaches lie on the different ways of handling the connections between modules deployed
on different platforms. However, in all these attempts, platforms allow operating simul-
taneously with a single level of service to deploy applications, i.e., all the components
of an application are deployed either at the IaaS level or all at the PaaS level (see, e.g.,
[60], [119], and [45]).

Which service to select from among the multitude of cloud services is still a challenge
for users (cf. [3], [86], [70], and [102]). Furthermore, once a service has been selected,
we need mechanisms to ensure that the chosen cloud provider is delivering the promised
computing resources (see, e.g., [102] and [121]). The decision is indeed non-trivial, and
the context and knowledge may change as time passes, and it could have an unexpected
impact. For example, we may decide today to use a PaaS provider for a particular
module because it is more cost-effective, or because it requires less management effort,
but tomorrow our needs or business model may require more control over our virtual
machines (VMs), e.g., for a better integration with our enterprise’s infrastructure, or
because we need to increase the security level of our services. This is problematic, since
changes in these decisions require development effort (see, e.g., [98] and [38]). Changing
from a PaaS provider to another may already require a significant amount of effort, and
adapt an application to run over different levels, from IaaS to PaaS or vice versa, may
be simply prohibitive. However, it may be unavoidable over time, because of changes
in the offered services, prices, security policies, or simply because a provider just stops

1Apache jClouds: https://jclouds.apache.org/.

18

https://jclouds.apache.org/

Chapter 1.

providing its services.1

Furthermore, most of the aforementioned solutions support the building of models
of the application topologies, including dependencies and used resources, independently
of the providers in which services will be executed. Thus, they offer a portable and
interoperable environment where developers can describe their systems and select the
resources that better fit their requirements, without worrying about technical details of
the services use, and focusing on the required features. However, many of these solutions
provide their own topology specification bounded by the definition of their own APIs, and
normally these topology descriptions are not compatible between different integration
solutions. We can see this as a recurrent problem. The usage of these specifications just
moves the lock-in problem from final providers to intermediate orchestration layers that
are in charge of dealing with cloud consumption. For example, suppose an application
is modeled to run in a multi-cloud environment using a concrete cloud orchestrator,
such as Roboconf [100]. Then, suppose that, due to changes of the requirements in
the application (technological, QoS, etc.), it was needed to reach new cloud services
which are not supported by the current orchestrator. Unfortunately, the usage of new
cloud providers may require some adaptation that would not be straightforward. For
example, applications’ descriptions — topology — would have to be operated to adapt
the components to use new services. In addition to the applications’ descriptions, some
solutions would also require some scripting effort to configure the delivery tasks and
enable the applications to be managed by the orchestrator’s lifecycle (see, e.g., [100]).

Standards try to harmonize cloud context by providing concrete specifications to
normalize from application topologies to cloud resource definitions, and provide specific
details on the way to perform the interaction between them. Moreover, several standards
specify mechanisms to manage multi-cloud environments, allowing applications to take
advantage of more than one cloud provider (see, e.g., [91] and [92]). As a result, some of
the solutions rely on standards to specify agnostic topologies and allowing applications
to be portable between different orchestrators, minimizing the needed adaptation effort.
However, as already said, many of these solutions can only manage one abstraction level
(see, e.g., [21], [72] and [90]).

Our claim is that mechanisms to describe portable applications and interact with
different abstraction levels, IaaS and PaaS, in a homogenous way is a research chal-
lenge that would allow developers to run applications using the cloud resources that
best fit their requirements. Moreover, standard-compliant solutions can help to miti-
gate portability issues and facilitate the analysis of application topologies to automatize
deployments over the cloud.

1 Several services (indeed complete platforms), such as DotCloud or CloudBees, have
been shut down by their providers. DotCloud, the cloud service that gave birth to
Docker, shut down in February 2016 (https://www.datacenterknowledge.com/archives/2016/01/26/
dotcloud-the-paas-cloud-provider-that-birthed-docker-sets-closing-date).

19

https://www.datacenterknowledge.com/archives/2016/01/26/dotcloud-the-paas-cloud-provider-that-birthed-docker-sets-closing-date
https://www.datacenterknowledge.com/archives/2016/01/26/dotcloud-the-paas-cloud-provider-that-birthed-docker-sets-closing-date

1.1. Motivations and challenges

1.1.2 Runtime migration

Unfortunately, the vendor lock-in issue also impacts other aspects of application main-
tenance. Even if we had a perfect solution for the automatic portable deployment of
applications, where each component of our applications is deployed using the best pos-
sible service so that its quality of service is the optimal one, according to your chosen
criteria, it is still needed to deal with one of the most important vendor lock-in problems
for running applications: change. As already mentioned, there can be changes of very
different nature that affect cloud applications. For example, there can be updates in
the deployed applications [84], unpredicted changes in the applications’ workloads or
contexts, or on the used services, namely, changes in the offered services, prices, security
policies, or discontinued providers. As a result, applications, or part of them, should
have to be migrated to use different providers and/or abstraction levels. Indeed, ac-
cording to the change rate of cloud and used technologies the migration of individual
components or entire applications is unavoidable over time.

Taking into account vendor-lock-in-related issues, Can applications or some of their
components be migrated in case of need? What about the impact? Can such migration be
performed so the reliability of the applications is ensured while minimizing the inevitable
downtimes?

As already mentioned, the possibility of changing decisions about what cloud providers
to chose to deploy an application has been widely studied. However, from the mi-
gration point of view, these solutions are mostly limited to moving full applications
from one provider to a different one. In some of these proposals, when cross-cloud de-
ployment is supported, the re-deployment may be performed component-wise. Indeed,
additional problems have to be considered (and solved) when different components of
the same application have to be moved to diverse datacenters, or even different cloud
providers [55, 12].

Nonetheless, what these solutions propose cannot be called runtime migration. For
example, in order to optimize the cost of some running applications, we may want to use
a different cloud for some of its components. By applying a runtime migration process,
these components should be moved while the application is still running, minimizing the
impact on the running system, and stopping only the required application parts while
maintaining application readiness as much as possible. However, in the above-mentioned
works, the applications must be completely stopped and re-deployed, what has a high
impact on the application’s performance. Furthermore, most of the existing solutions
only deal with one service model, typically IaaS.

As we discuss in Section 2.3.6, on related work, currently only container-based solu-
tions provide some support for runtime application migration. However, these proposals
move complete execution environments, and only containerized components. The only
currently-available way to handle these situations is using script languages, like Ansi-
ble,1 to manually control the actions to be performed. Of course, this task is error-prone,
and requires a significant amount of time and great expertise. It has to be maintained

1Ansible: https://www.ansible.com/.

20

https://www.ansible.com/

Chapter 1.

together with the application’s topology, and it is very dependent on the source and
target vendor and the kind of cloud resources used to deploy each of the application’s
components.

In summary, runtime migration is still an unresolved topic, which has been widely
studied by both academia and industry (see, e.g., [62, 120]).

Indeed, there are several key issues related to this topic that must be taken into
account. For example, in addition to cloud heterogeneity, the runtime handling of com-
ponents requires exhaustive knowledge about the application’s topology. To migrate
components, it is necessary to orchestrate the entire cloud context, such as services and
bound resources, to perform the expected movement of the components’ services, but
taking into account the possible interoperability and portability problems. Moreover,
components cannot be operated in an isolated way because the performance of other
parts of the application can be affected. Only a complete description of the topology of
the application would allow us to analyze the application’s components and their rela-
tions as part of the migration process to determine the operations required to perform
the migration. We can find several proposals for the live migration of cloud applications’
components in the literature (see, e.g., [42, 43, 14]). These proposals take into account
the application’s topology and deal with the movement of running application compo-
nents between different vendors. However, these solutions are limited to the IaaS level,
and are based on non-portable application descriptions.

The enabling of component-wise runtime migration seems challenging, and becomes
even more complicated if cross-abstraction-level movements are to be considered. How-
ever, it would allow developers to react to changes in the applications’ requirements or
unexpected changes in cloud scenarios. Moreover, the topology analysis would allow us
to optimize the process and minimize the impact of component movements on running
systems.

1.1.3 Lifecycle robust management

We have already discussed on how the vendor lock-in problem affects the choice of
cloud resources for an application and to the deployment — and migration — process.
However, the impact of the vendor lock-in problem does not stop here yet. Cloud
failures can happen during the different phases of an application’s lifecycle. For example,
something could go wrong when provisioning resources during application’s deployment,
as e.g., failures in the instantiation of VMs.

Furthermore, failures and other issues do not only happen during deployment. Once
applications are running, several problems can happen on both applications and the
cloud services they are deployed on (see, e.g., [16, 110]), such as resource overload or
connectivity issues. Also, unexpected errors can affect an application, from stopping one
part of the system to getting down the application entirely. Therefore, self-healing mech-
anisms, to detect and manage errors, have to be included on included in solutions that
manage applications’ lifecycles on multi-cloud environments [101]. However, to develop
these mechanisms, it is also needed to deal with cloud heterogeneity regarding observ-
ability, to know the components’ status and to detect the errors, and the performance

21

1.1. Motivations and challenges

of the needed operations to restore the impacted applications’ parts.

Moreover, the current support of failure management is not fully automated. For
example, when an application component ‘dies’ in a VM, the application administrator
typically has to operate on-demand to find the root cause of the incident and solve it.
Such a situation may require restarting the affected workloads on the machine, or even
restarting the machine itself. It may even be the case that some infrastructure error
happens that cannot be recovered, requiring the re-provisioning of the machine.

In most cases, these solutions are custom developments for specific application archi-
tectures, so they have to be constantly updated according to application and environ-
ment changes using management tools, as, e.g., Chef1 or Puppet.2 The automatization
of these tasks would mean a significant improvement, since they involve a considerable
amount of effort of configuration and maintenance. Several systems provide automa-
tized solutions to manage common basic incidents, although expert intervention should
be required to solve more complicated issues.

In fact, self-healing is still a challenge, being researched by both academia and indus-
try (see, e.g., [101, 76, 59]). Currently, some platforms provide some support for some
basic self-healing mechanisms, but they are very basic. For example, AWS,3 Google4 or
Azure5 offer an agent-based solution to communicate services with a monitor instance
health service and define policies to replacing failed instances if needed. However, these
actions are limited: after some time without communication, agents flag an unknown in-
stance status, and a recovery procedure is performed. Depending on the kind of services,
different plans can be applied to recover the failure, but normally the supported opera-
tions are just stop, restart or recreate. Self-healing mechanisms can just be applied to a
reduced list as resource types, and only if they were deployed and configured following
some restrictions. For example, virtual machines provisioned with self-healing features
in AWS must be operated through the AWS OpsWorks Stacks console.6 Moreover, as
already mentioned, only infrastructure-oriented operations can be performed, such as
VM restart or recreate, but specific operations to manage failures in running software
cannot be used by default.

As seen in previous sections, different approaches deal with the vendor lock-in prob-
lem by delegating the interaction with the cloud to an external orchestrator that con-
centrates the capability to operate with different providers. Most of them use their own
models to specify the applications’ topology, and they use this information to orches-
trate the deployments and migrations to different providers. Several of them also include

1Chef is an automation tool that provides a way to define infrastructure as code (https://www.chef.
io).

2Puppet is an open source software configuration management and deployment tool (https://puppet.
com/).

3Information on the self-healing capabilities of Amazon Web Services can be found at https://docs.
aws.amazon.com/opsworks/latest/userguide/workinginstances-autohealing.html.

4Information on the self-healing capabilities of Google Cloud can be found at https://cloud.google.
com/compute/docs/instance-groups/autohealing-instances-in-migs.

5Information on the self-healing capabilities of Microsoft Azure can be found at https://azure.
microsoft.com/en-us/blog/service-healing-auto-recovery-of-virtual-machines.

6AWS OpsWorks Stacks: https://aws.amazon.com/opsworks/.

22

https://www.chef.io
https://www.chef.io
https://puppet.com/
https://puppet.com/
https://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autohealing.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autohealing.html
https://cloud.google.com/compute/docs/instance-groups/autohealing-instances-in-migs
https://cloud.google.com/compute/docs/instance-groups/autohealing-instances-in-migs
https://azure.microsoft.com/en-us/blog/service-healing-auto-recovery-of-virtual-machines
https://azure.microsoft.com/en-us/blog/service-healing-auto-recovery-of-virtual-machines
https://aws.amazon.com/opsworks/

Chapter 1.

mechanisms to check the application’s status (see, e.g., [63]). Others go one step further
and offer some kind of analysis of the application’s behavior and suggest some changes
(see, e.g., [18]), but they do not provide any self-healing capacity.

The extensible capabilities of other approaches could support the development of
recovery tasks, such as Brooklyn,1 Terraform,2 and Roboconf [100]. However, as in pre-
vious attempts, an important effort would be needed to develop recovery mechanisms.
Moreover, in any case, they would not be very suitable in terms of portability and main-
tenance, since they would be attached to the application’s architecture, to its topology,
and to the kind of components and targeted cloud resources.

Other solutions focus on event-driven automation, as, e.g., StackStorm3 or Run-
Deck,4 offering a rich set of sensors, which allow to define elaborated triggers. These
solutions support an important amount of management tools, including the execution
of REST services, or even to step into a machine and run some commands, e.g., using
SSH. However, as other solutions discussed above, the maintenance of these tasks is not
automatized, and therefore an adaptation effort is needed if something changes in the
application.

1.1.4 Research challenges

Given the issues described in the previous sections, the main challenge of this work is
to offer a homogeneous management of IaaS and PaaS services and enable a method-
ology to describe applications and their required target cloud resources. This setting
provides developers with mechanisms to improve the portability and interoperability of
their applications. In addition, in this work, these mechanisms are considered as the base
upon which to address the rest of the stated problems. An exhaustive topology descrip-
tion allows the application structure to be analyzed in order to orchestrate a runtime
migration process for running applications, whereas a common API makes transparent
the cloud management. This allows the component-wise optimization during the entire
application’s lifecycle, including both the application deployment and execution. Users
can choose the cloud resources whose features best adapt to their applications’ require-
ments, using the PaaS or IaaS services that better fit their needs. Because of the same
reasons, robust application management is then also feasible. The common API will
allow to know the status of the running applications by the unification of monitoring
mechanisms, so that failures can be detected when they happen. Thus, failure control
and error recovery techniques can be integrated directly into the application orchestra-
tion process, so that the management of applications is based on their topology, and
therefore no ad-hoc development is needed to react to errors.

In summary, to minimize the effects of the vendor lock-in problems, this work aims at
challenging developers to abstract their applications from cloud complexity by providing

1Apache Brooklyn: https://brooklyn.apache.org/.
2Terraform: https://terraform.io/.
3StackStorm is an event-driven automation tool for auto-remediation (https://stackstorm.com/).
4Rundeck is runbook automation for incident management, business continuity, and self-service

operations (https://rundeck.com/).

23

https://brooklyn.apache.org/
https://terraform.io/
https://stackstorm.com/
https://rundeck.com/

1.2. Contributions

agnostic tools to build portable applications and facilitate the reaction to changes in both
the cloud and the application sides. In the following, we elaborate on the descriptions
of the main challenges addressed in this thesis.

Challenge 1 – Agnostic topology description. Define a standard-based agnostic
modeling framework to enable the full-detailed description of applications and the
used cloud (IaaS and PaaS) services and resources. Specifically, we propose using
current standards, CAMP and TOSCA to enable portability.

Challenge 2 – Cloud semantic heterogeneity. Develop a common API that uni-
fies cloud services independently of their abstraction level, for IaaS and PaaS.

Challenge 3 – Application lifecycle management. Integration of the modeling and
the unified API to build a framework to allow portable applications to be mod-
eled and deployed in a standardised manner. Providing a complete application
orchestration during deployments using both IaaS and PaaS services.

Challenge 4 – Portability. Minimizing the impact on the adaptation of applications
to new providers in both application description and cloud resources usage.

Challenge 5 – Runtime migration. Provide mechanisms to perform such reconfig-
uration operations at runtime, minimizing the impact on the running system.

Challenge 6 – Robust management of applications. Enable a robust management
of applications’ lifecycle, providing failure detection and recovery mechanisms.

Challenge 7 – Deployment of a functional prototype. Develop a functional pro-
totype in which to experiment with the accomplishment of the previous goals and
benchmarking the performance with cloud interaction.

1.2 Contributions

This thesis aims to investigate each of the aforementioned challenges related to the
vendor lock-in issues and how they affect the maintenance of applications during their
lifecycle. First, the heterogeneity problems are tackled by defining the trans-cloud in-
frastructure, with which the lock-in problems are minimized by looking at the problems
of portability, interoperability, and lack of standardization. Over this framework, the
other issues are addressed, and solutions to minimizing the impact of the vendor lock-in
problems when migrating applications at runtime and to ensure the robustness of the
orchestration of applications during their management are proposed.

In the following, we summarize the main contributions of this work and indicate how
the research questions presented in Section have been addressed:

1. A novel notion of trans-cloud environment, providing the basis to consider a new
resource abstraction that includes IaaS and PaaS service levels, and a methodology
for the management of applications and associated resources based on topology
models (Question 1).

24

Chapter 1.

2. A CAMP-based API for the unification of IaaS and PaaS. It offers users an ag-
nostic and simple usage of different cloud services, allowing them to focus on the
functionalities of these services, whilst the complexity of using and integrating
their interfaces is hidden behind the unified API (Question 1).

3. Description of portable applications and cloud services based on the TOSCA stan-
dard to allow users to build full-fledged descriptions of their applications, including
all the knowledge about the capabilities, requirements, kinds of services to run ap-
plications, etc., regardless of the concrete providers over which the application will
be finally deployed (Questions 1 and 6).

4. A trans-cloud framework is built on the Apache Brooklyn application orchestrator.
The framework provides an environment that allows portable applications to be
built and deployed using the unified API capabilities in a standardised manner,
providing a complete application lifecycle management. The main contribution
of this part is to portability, since services supported by the unified API will
be available to deploy the modeled applications without requiring any knowledge
about the concrete provider interfaces (Questions 2, 5 and 6).

5. A tool to migrate components of running applications that orchestrates the life-
cycle of applications’ components and cloud resources using topology descriptions
(Questions 3, 5 and 6).

6. An extension of the trans-cloud framework to include a runtime migration or-
chestrator that automates the reliable, efficient, and component-wise migration of
cloud applications. Migrations can be triggered just by indicating the new target
resources for components, without requiring any topology modification or interac-
tion, what aims to unlock applications with the providers they run on (Questions
3, 5 and 6).

7. Agnostic monitoring mechanisms, as part of CAMP-based API, allows to check
the application’s status independently of the cloud resources over which they are
executed (Questions 1 and 2).

8. A methodology to support the automated management of faults in the trans-
cloud environment, through failure detection techniques and an error recovery
procedure. In this way, we provide trans-cloud environments with the capability
to build robust orchestration of applications and interaction with cloud providers
(Questions 1 and 4).

9. An extension of the trans-cloud framework to integrate a fault-aware management
protocol. This contributes to the user’s capability to automatize the operations to
deal with failures in the cloud in an agnostic way. Moreover, it offers an isolated
view of the operational tasks, decoupling them from the used cloud resources and
contributing to the automation of the application migration process (Question 4).

25

1.3. Outline

10. Some non-trivial case studies have been used to test and evaluate the developed
solutions and their applicability to different applications and cloud environments
(Questions 1, 2, 3 and 4).

1.3 Outline

The remainder of the thesis is structured in three additional chapters as follows:

Chapter 2: Published Work. This chapter contains a list of the contributions re-
lated to this work. Moreover, it contains a description of the papers that support this
thesis, including a copy of them.

Chapter 3: Related Work. This chapter introduces the related work, grouping each
topic in a different section. In Section 3.1, the current status of cloud standards is dis-
cussed. Section 3.2 presents an analysis of the portability and interoperability issues,
including works both from academia and industria that have proposed different solu-
tions to deal with these problems. Section 3.3 introduces different kinds of application
migration that can happen in the cloud context. Section 3.4 describes the concept of
self-healing, discusses different kinds of solutions, and describes how commercial ven-
dors apply these techniques. Finally, Section 3.5 analyzes the previous problems in the
context of the container technologies.

Chapter 4: Conclusions and Future Work. This chapter discusses the main con-
tributions and results of this thesis. Conclusions are presented in Section 4.1 and Future
Work in Section 4.2.

26

Chapter 2. Published Work

During the development of this thesis we have published several research papers, both
in journals indexed in the Journal of Citation Report (JCR) and in international work-
shops and conferences, to present and disseminate our advances and incremental results
regarding portability and interoperability, migration, and self-healing of cloud applica-
tions.

2.1 List of research contributions

In this section we provide references to the publications with more impact authored (or
co-authored) by the candidate related to his thesis. From this list, six of them, namely
[25, 29, 30, 31, 20, 32], are included in the body of this thesis as mainly contributed by
the candidate.

Articles published in journals indexed in the JCR

– [32] Jose Carrasco, Francisco Durán, and Ernesto Pimentel. “Live migration of
trans-cloud applications”. Computer Standards & Interfaces, 69:103392, 2020.
DOI: 10.1016/j.csi.2019.103392.

– [31] Jose Carrasco, Francisco Durán, and Ernesto Pimentel. “Trans-cloud: CAMP/-
TOSCA-based bidimensional cross-cloud”. Computer Standards & Interfaces,
58:167–179, 2018. DOI: 10.1016/j.csi.2018.01.005.

Articles published in non-JCR journals

– [19] Antonio Brogi, Jose Carrasco, Javier Cubo, Elisabetta Di Nitto, Francisco
Durán, Michela Fazzolari, Ahmad Ibrahim, Ernesto Pimentel, Jacopo Soldani,
PengWei Wang, and Francesco D’Andria. “Adaptive management of applica-
tions across multiple clouds: The SeaClouds approach”. CLEI Electronic Journal,
18(1):1-15, 2015. DOI: 10.19153/cleiej.18.1.1.

– [21] Antonio Brogi, Ahmad Ibrahim, Jacopo Soldani, Jose Carrasco, Javier Cubo,
Ernesto Pimentel, and Francesco D’Andria. “SeaClouds: a European project on
seamless management of multi-cloud applications”. ACM SIGSOFT Software En-
gineering Notes 39(1):1-4, 2014. DOI: 10.1145/2557833.2557844

27

2.1. List of research contributions

Articles published in international conferences

– [20] Antonio Brogi, Jose Carrasco, Francisco Durán, Ernesto Pimentel, and Jacopo
Soldani. “Robust management of trans-cloud applications”. In 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD), pages 219–223. IEEE,
Milan, Italy, 2019. DOI: 10.1109/CLOUD.2019.00046

– [29] Jose Carrasco, Francisco Durán, and Ernesto Pimentel. “Component migra-
tion in a trans-cloud environment”. In 7th International Conference on Cloud Com-
puting and Service Science (CLOSER), Revised Selected Papers, pages 286–307.
Springer, Porto, Portugal, 2017. DOI: 10.1007/978-3-319-94959-8 15.

– [25] Jose Carrasco, Javier Cubo, Francisco Durán, and Ernesto Pimentel. “Bidi-
mensional cross-cloud management with TOSCA and Brooklyn”. In 2016 IEEE
9th International Conference on Cloud Computing (CLOUD), pages 951–955. IEEE,
San Francisco, California, USA, 2016. DOI: 10.1109/CLOUD.2016.0143.

– [17] Antonio Brogi, Jose Carrasco, Javier Cubo, Francesco D’Andria, Elisabetta
Di Nitto, Michele Guerriero, Diego Pérez, Ernesto Pimentel, and Jacopo Soldani.
“SeaClouds: An open reference architecture for multi-cloud governance”. In 10th
European Conference on Software Architecture (ECSA), pages 334–338. Springer,
Copenhagen, Denmark, 2016. DOI: 10.1007/978-3-319-48992-6 25.

– [18] Antonio Brogi, Jose Carrasco, Javier Cubo, Francesco D’Andria, Ahmad
Ibrahim, Ernesto Pimentel, and Jacopo Soldani. “EU project SeaClouds - adaptive
management of service-based applications across multiple clouds”. In 4th Inter-
national Conference on Cloud Computing and Service Science (CLOSER), pages
758–763. SciTePress, Barcelona, Spain, 2014. DOI: 10.5220/0004979507580763.

Articles published in international workshops

– [30] Jose Carrasco, Francisco Durán, and Ernesto Pimentel. “Runtime migra-
tion of applications in a trans-cloud environment”. In Adaptive Services-Oriented
and Cloud Applications (ASOCA) - Workshops of 15th International Conference
on Service-Oriented Computing (ICSOC), pages 55–66. Springer, Málaga, Spain,
2017. DOI: 10.1007/978-3-319-91764-1 5.

– [28] Jose Carrasco, Francisco Durán, and Ernesto Pimentel. “Towards a unified
management of applications on heterogeneous clouds”. In Advances in Service-
Oriented and Cloud Computing - Workshops of 5th European Conference on
Service-Oriented and Cloud Computing (ESOCC), Revised Selected Papers, pages
233–246. Springer, Vienna, Austria, 2016. DOI: 10.1007/978-3-319-72125-5 19.

– [6] Dionysis Athanasopoulos, Miguel Barrientos, Leonardo Bartoloni, Antonio Brogi,
Mattia Buccarella, Jose Carrasco, Javier Cubo, Francesco D’Andria, Elisabetta Di
Nitto, Adrián Nieto, Marc Oriol, Ernesto Pimentel, and Simone Zenzaro. “Sea-
Clouds: Agile management of complex applications across multiple heterogeneous

28

Chapter 2.

clouds”. In Projects Showcase - Workshop of Software Technologies: Applications
and Foundations 2015 federation of conferences (STAF), pages 54–61. CEUR-WS,
L’Aquila, Italy, 2015. URL: http://ceur-ws.org/Vol-1400/.

– [27] Jose Carrasco, Javier Cubo, and Ernesto Pimentel. “Towards a flexible deploy-
ment of multi-cloud applications based on TOSCA and CAMP”. In Advances in
Service-Oriented and Cloud Computing - Workshops of 3rd European Conference
on Service-Oriented and Cloud Computing (ESOCC), Revised Selected Papers,
pages 278–286. Springer, Manchester, UK, 2014. DOI: 10.1007/978-3-319-14886-
1 26.

Bibliometric data of the venues of the publications included in the thesis. In
what follows, we summarize the main bibliometric information on the venues on which
the papers that are part of the body of this thesis were published. Specifically, we include
here the journal Computer Standards & Interfaces, the IEEE International Conference
on Cloud Computing, the International Conference on Cloud Computing and Services
Science, and the Workshop on Adaptive Service-Oriented and Cloud Applications.

CS&I: The journal Computer Standards & Interfaces, published by Elsevier.

– 2019 Impact factor: 2.809 (Q1 / T1)

JCR Category: Computer Science, Software Engineering (25/108)

JCR Category: Computer Science, Hardware & Architecture (16/53)

– 2018 Impact factor: 2.441 (Q2 / T1)

JCR Category: Computer Science, Software Engineering (29/107)

JCR Category: Computer Science, Hardware & Architecture (17/53)

CLOUD: IEEE International Conference on Cloud Computing.
CLOUD is rated with A- in the GII-GRIN-SCIE (GGS) Conference Rating. This
rate comes from the following weighted rates: CORE:B, LiveSHINE:A, MA:A-.

CLOSER: The International Conference on Cloud Computing and Services Science
(CLOSER) is rated as “Work in Progress” in the GII-GRIN-SCIE (GGS) Confer-
ence Rating. This rate comes from the weighted rates: LiveSHINE:C, MA:C.

ASOCA: The Workshop on Adaptive Service-Oriented and Cloud Applications is not
rated in the GII-GRIN-SCIE (GGS) Conference Rating.

2.2 Research execution

This section summarizes the papers that support this thesis, and explains how the pro-
posed research challenges are addressed.

The trans-cloud approach is presented in [25] and [31] as a step forward on mech-
anisms related to the management of applications’ components on different providers.

29

http://ceur-ws.org/Vol-1400/

2.2. Research execution

The idea behind trans-cloud is that of being able to build applications by using services
and resources offered by different providers, at the IaaS or PaaS levels, indistinctly and
in combination, according to application requirements. Trans-cloud is based on three
main ideas: agnostic topology descriptions, a unified API, and target-service specifica-
tions. Regarding the homogenization of cloud services, trans-cloud relies on an agnostic
specification of applications’ topologies based on the TOSCA standard. This allows full-
detailed specifications of applications’ components and how they are related between
them, indistinctly using IaaS and PaaS services (see Challenge 1 and [31]).

The trans-cloud approach relies on a CAMP-based single interface that integrates
IaaS and PaaS abstraction levels under a common API (Challenge 2). The presented
prototype is based on Brooklyn, a CAMP-compliant application orchestrator that pro-
vides a common API that enables cross-computing features through a unified API for
IaaS components. In [31], the Brooklyn API is extended for the management of PaaS ser-
vices so that both IaaS and PaaS services can be orchestrated as part of the application’s
lifecycle.

As mentioned in previous sections, the lack of portability of application descriptions
is one of the main reasons why developers get lock into platforms. Decoupling the specific
vendor and the description of applications requires mechanisms to agnostically target
the cloud services to be used through a unified API. The trans-cloud approach uses
TOSCA’s placement policies as add-ons of the topology, so application descriptions can
be built in an independent way, without a direct dependency with used resources.

The trans-cloud environment processes application topologies, specified using TOSCA,
and uses a homogenization API to orchestrate their deployment and management over
IaaS and PaaS services (Challenge 3). As a result, only minimal information is needed
to specify target resources on which to deploy applications. Indeed, with our approach,
each application component may be deployed at one level or the other just by chang-
ing its location policy, enabling portability of applications while minimizing the needed
effort (Challenge 4).

Works [30], [29] and [32] present the evolution of a novel algorithm to migrate com-
ponents of cloud running applications (Challenge 5). In these works, a framework is
built over the previously described trans-cloud infrastructure, which has been extended
with a migration orchestrator. Taking advantage of the common API and the agnostic
topology descriptions, all issues related to resource allocation, credential handling, com-
ponent interconnection, etc., are handled by the already existing infrastructure. In fact,
one of the most promising features of the approach is the capability of analyzing topolo-
gies to get architectural information of applications, which is then used to orchestrate
the migration process using the common API.

Given an application already deployed using the trans-cloud framework, a migration
operation is requested with the set of target locations of the components to be migrated
as an input. That is, when a migration of individual components of an application is
requested, a number of cloud-agnostic processes are triggered by moving just the neces-
sary components to respective target services, independently of the target providers and
abstraction levels, either IaaS or PaaS. By relying on the trans-cloud infrastructure, op-

30

Chapter 2.

erations such as stop, re-start, move and re-connect are used in the necessary components
independently of the service level, the cloud technology or any other dependencies.

In [30], an extension of trans-cloud framework is presented with a first version of
the migration orchestrator. This approach enables the reaction to changes in the re-
quirements or cloud environment, and allows carrying out the movement of components
to mitigate them. However, this solution has a high impact on the application perfor-
mance, since, although changes could affect more than one component, this version only
provides support for the migration of one component at a time.

Then, an enhanced algorithm is presented in [29]. In this new version, several com-
ponents may be migrated simultaneously allowing a significant improvement in its ef-
ficiency. This paper explains how the migration orchestrator is integrated inside the
trans-cloud framework. Its performance is analyzed, and although this new version is
able to move components in batches, it uses a blocking-sequential scheduling, so the op-
erations to perform the migration cannot be parallelized and they are executed one after
another. As a result, long independent tasks, such as the provisioning of virtual ma-
chines, have to wait their turn to be executed. This has a high impact on the migration,
and long application downtimes occur due to the lack on the parallelization.

A new iteration of our solution for migration is presented in [32]. The new orches-
trator explores the management of the lifecycle of each application component inde-
pendently and in parallel. In this solution, the trans-cloud observability mechanisms
are also improved to ensure the observation of the real component status, which is key
to perform the necessary operations on the required components as soon as possible.
As experimentation shows (see [32] and Challenge 5), this new solution significantly im-
proves the performance of the algorithm and reduces the downtimes during the migration
process. This final version also provides a better orchestration of resources during the
migration to improve its performance and reduce the impact. For example, to reduce
downtimes, it postpones the deletion of old cloud resources until after the migration
process is delivered.

Trying to provide a better management of applications’ lifecycles we have also ex-
plored mechanisms for fault detection and recovery in the trans-cloud context (Chal-
lenge 6) in [20].

Taking advantage of the common API and agnostic topology, this proposal extends
the trans-cloud environment with the capability to react to errors while applications are
operated, and recover from them. For example, errors could happen in the resources
provisioning phase during an application deployment. In such an event, the error can
be detected, and then request the re-provisioning of affected resources. Moreover, inter-
relations between components can be reestablished, if needed, and failed cloud resources
can be deleted. As these mechanisms are developed on our trans-cloud framework, the
detection and recovery procedures work no matter the provider or abstraction level of
the specific used services.

In this extension for robustness, two new components are added to the trans-cloud
ecosystem, namely a model manager and an orchestrator. The model manager is a
custom implementation of the fault-aware management protocol presented in [16]. The

31

2.3. Support Papers

orchestrator manages applications by means of trans-cloud and handles the process by
checking the application’s current status in the cloud while they are operated. Then,
while the application is being managed, for example during a deployment, this informa-
tion is compared with the expected state of the system according to its model. When
differences are found, the orchestrator assumes that some error has happened, and asks
the model manager to calculate a recovery plan to reach the target application status
from the current one, and then instructing trans-cloud to achieve it.

From the first trans-cloud approach proposed in [31], every research step has come
with a functional prototype that materializes the goals of each phase of the work (Chal-
lenge 7). Moreover, different motivating examples and case studies have been used in
accordance to the requirements of the different solutions. These case studies have been
used to analyze the feasibility of each solution and to evaluate the performance and
quality of prototypes. Indeed, an extensive experimentation and evaluation of the dif-
ferent prototypes has been carried out, as can be learnt from the different papers that
are part of this thesis. For example, more than 2800 deployments were executed to ana-
lyze the performance and reliability of the tool for trans-cloud deployment (see [31] and
https://trans-cloud.firebaseapp.com). Similar procedures were followed to analyze
the migration and self-healing mechanisms. In this last case, support for monkey testing
was developed, which allowed us to carry on experiments in which running applications
were subjected to random failure injections for long periods of time.

2.3 Support Papers

This section includes the following research papers, which directly are part of the body
of the thesis:

– [25] Section 2.3.1, pages 37–37: Jose Carrasco, Javier Cubo, Francisco Durán,
and Ernesto Pimentel. “Bidimensional cross-cloud management with TOSCA and
Brooklyn”. In 9th International Conference on Cloud Computing (CLOUD), pages
951–955. IEEE, San Francisco, CA, USA, 2016. DOI: 10.1109/CLOUD.2016.0143.

– [31] Section 2.3.2, pages 39–39: Jose Carrasco, Francisco Durán, and Ernesto Pi-
mentel. “Trans-cloud: CAMP/TOSCA-based bidimensional cross-cloud”. Com-
puter Standards & Interfaces, 58:167–179, 2018. DOI: 10.1016/j.csi.2018.01.005.

– [29] Section 2.3.3, pages 41–41: Jose Carrasco, Francisco Durán, and Ernesto Pi-
mentel. “Component migration in a trans-cloud environment”. In 7th Interna-
tional Conference on Cloud Computing and Services Science (CLOSER), Revised
Selected Paper, pages 286–307. Springer, Porto, Portugal, 2017. DOI: 10.1007/978-
3-319-94959-8 15.

– [30] Section 2.3.4, pages 43–43: Jose Carrasco, Francisco Durán, and Ernesto
Pimentel. “Runtime migration of applications in a trans-cloud environment”. In
Adaptive Services-Oriented and Cloud Applications (ASOCA) - Workshops of 15th

32

https://trans-cloud.firebaseapp.com

Chapter 2.

International Conference on Service-Oriented Computing (ICSOC), pages 55–66.
Springer, Málaga, Spain, 2017 DOI: 10.1007/978-3-319-91764-1 5.

– [32] Section 2.3.5, pages 45–45: Jose Carrasco, Francisco Durán, and Ernesto
Pimentel. “Live migration of trans-cloud applications”. Computer Standards &
Interfaces, 69:103392, 2020. DOI: 10.1016/j.csi.2019.103392.

– [20] Section 2.3.6, pages 47–47: Antonio Brogi, Jose Carrasco, Francisco Durán,
Ernesto Pimentel, and Jacopo Soldani. “Robust management of trans-cloud appli-
cations”. In 12th International Conference on Cloud Computing (CLOUD), pages
219–223. IEEE, Milan, Italy, 2019. DOI: 10.1109/CLOUD.2019.00046.

33

2.3. Support Papers

34

Chapter 2.

2.3.1 Bidimensional cross-cloud management with TOSCA and Brook-
lyn

Title: Bidimensional cross-cloud management with TOSCA and Brooklyn
Authors: Jose Carrasco, Javier Cubo, Francisco Durán, and Ernesto Pimentel.
Publication: 2016 IEEE 9th International Conference on Cloud Computing (CLOUD),
pages 951–955. IEEE, San Francisco, California, USA, 2016.
DOI: 10.1109/CLOUD.2016.0143.
URL: https://ieeexplore.ieee.org/abstract/document/7820380.
Abstract: The diversity in the way different cloud providers offer their services, give
their SLAs, present their QoS, support different technologies, etc., complicates the porta-
bility and interoperability of cloud applications, and favors vendor lock-in. Standards
like TOSCA, and tools supporting them, have come to help in the provider-independent
description of cloud applications. After the variety of proposed cross-cloud application
management tools, we propose going one step further in the unification of cloud services
with a deployment tool in which IaaS and PaaS services are integrated into a unified
interface. We provide support for applications whose components are to be deployed on
different providers, indistinctly using IaaS and PaaS services. The TOSCA standard is
used to define a portable model describing the topology of the cloud applications and
the required resources in an agnostic, and providers- and resources-independent way. We
include in this paper some highlights on our implementation on Apache Brooklyn and
present a non-trivial example that illustrates our approach.

Proceedings

2016 IEEE 9th International Conference
on Cloud Computing

— CLOUD 2016 —

27 June–2 July 2016
San Francisco, California, USA

Edited by

Ian Foster and Nimish Radia

Los Alamitos, California
Washington • Tokyo

35

https://ieeexplore.ieee.org/abstract/document/7820380

2.3. Support Papers

36

Chapter 2.

2.3.2 Trans-cloud: CAMP/TOSCA-based bidimensional cross-cloud

Title: Trans-cloud: CAMP/TOSCA-based bidimensional cross-cloud
Authors: Jose Carrasco, Francisco Durán, and Ernesto Pimentel.
Publication: Computer Standards & Interfaces, 58:167–179, 2018.
DOI: 10.1016/j.csi.2018.01.005.
URL: https://www.sciencedirect.com/science/article/pii/S0920548917303185.
Abstract: The diversity in the way in which different cloud providers offer their ser-
vices, give their SLAs, present their QoS, or support different technologies complicates
the portability and interoperability of cloud applications, and favors vendor lock-in.
Trying to solve these issues, we have recently witnessed the proposal of unified APIs for
IaaS services, unified APIs for PaaS services, and a variety of cross-cloud application
management tools. We go one step further in the unification of cloud services, build-
ing on the TOSCA and CAMP standards, with a proposal in which the management
of IaaS and PaaS services, possibly offered by different providers, are integrated into a
unified interface. The TOSCA standard is used for the definition of portable models
describing the topology of cloud applications and the required resources in an agnostic,
providers-and-resources-independent way. Based on the CAMP standard, we abstract
from the particularities of specific providers. Indeed, to change the service on which any
of the modules of an application is to be deployed, whether it be IaaS or PaaS, we just
need to change its target location by picking from the catalog of supported locations.
We provide insights into our implementation on Apache Brooklyn, present a non-trivial
case study that illustrates our approach, and show some experimental results.

37

https://www.sciencedirect.com/science/article/pii/S0920548917303185

2.3. Support Papers

38

Chapter 2.

2.3.3 Component migration in a trans-cloud environment

Title: Component migration in a trans-cloud environment.
Authors: Jose Carrasco, Francisco Durán, and Ernesto Pimentel.
Publication: 7th International Conference on Cloud Computing and Services Science
(CLOSER), Revised Selected Paper, pages 286–307. Springer, Porto, Portugal, 2017.
DOI: 10.1007/978-3-319-94959-8 15.
URL: https://link.springer.com/chapter/10.1007/978-3-319-94959-8 15.
Abstract: The trans-cloud approach has recently been proposed to simplify the devel-
opment and operation of cloud applications, and to minimize the lock-in problem. The
three key ingredients of the trans-cloud approach are: agnostic topology descriptions, a
unified API, and mechanisms for the independent specification of providers’ services. We
build on the trans-cloud mechanisms to propose a solution for the migration of stateless
cloud components at runtime. In the context of our trans-cloud tool, we propose an al-
gorithm for the migration of cloud applications’ components between different providers,
possibly changing their service levels between IaaS and PaaS. We present an implemen-
tation of our proposed solution, and illustrate it with a case study and experimental
results.

39

https://link.springer.com/chapter/10.1007/978-3-319-94959-8_15

2.3. Support Papers

40

Chapter 2.

2.3.4 Runtime migration of applications in a trans-cloud environment

Title: Runtime migration of applications in a trans-cloud environment.
Authors: Jose Carrasco, Francisco Durán, and Ernesto Pimentel.
Publication: Adaptive Services-Oriented and Cloud Applications (ASOCA) - Work-
shops of 15th International Conference on Service-Oriented Computing (ICSOC), pages
55–66. Springer, Málaga, Spain, 2017.
DOI: 10.1007/978-3-319-91764-1 5.
URL: https://link.springer.com/chapter/10.1007/978-3-319-91764-1 5.
Abstract: Making an application independent of the cloud provider where it is going
to be deployed is still an open issue. In fact, cloud agnostic software development still
presents important challenges to be solved, and one of them is the problem of runtime
migration of components already deployed on a given provider to a different one. Even
more difficult is dealing with the interoperability issues when the migration also implies
a change of service level (i.e., from IaaS to PaaS, or vice versa). This paper presents an
algorithm for the parallel migration of cloud applications. The migration is performed
component-wise, in the sense that each component of the application to be migrated
may be deployed on a specific service on a specific provider, and be moved to a different
provider, possibly changing the service level between IaaS and PaaS of each of them
individually. Since the migration of components with state pose additional difficulties, we
only consider stateless components. Our solution relies on three of the key ingredients of
the trans-cloud approach: a unified API, agnostic topology descriptions, and mechanisms
for the independent specification of providers. We show how our approach solves some
of the current interoperability and portability issues of cloud environments, and allows
us to provide a solution for migration. We present an implementation of our proposed
solution and illustrate it with a case study and experimental results.

Lars Braubach · Juan M. Murillo
Nima Kaviani · Manuel Lama
Loli Burgueño · Naouel Moha
Marc Oriol (Eds.)

 123

ASOCA, ISyCC, WESOACS, and Satellite Events
Málaga, Spain, November 13–16, 2017
Revised Selected Papers

Service-Oriented
Computing –
ICSOC 2017 WorkshopsLN

CS
 1

07
97

Se
rv

ice
s S

cie
nc

e

41

https://link.springer.com/chapter/10.1007/978-3-319-91764-1_5

2.3. Support Papers

42

Chapter 2.

2.3.5 Live migration of trans-cloud applications

Title: Live migration of trans-cloud applications.
Authors: Jose Carrasco, Francisco Durán, and Ernesto Pimentel.
Publication: Computer Standards & Interfaces, 69:103392, 2020.
DOI: 10.1016/j.csi.2019.103392.
URL: https://www.sciencedirect.com/science/article/pii/S0920548919300984.
Abstract: The development of applications independent of the cloud providers where
they are going to be deployed is still an open issue. In fact, cloud agnostic software
development presents important challenges to be solved. One of these issues is the run-
time migration of components. Even more difficult is dealing with the interoperability
issues when the migration also implies a change of provider or service level. This paper
presents a solution for the component-wise migration of cloud applications. The migra-
tion is performed component-wise in the sense that each component of the application
to be migrated, which may be deployed on a specific service on a specific provider, may
individually be moved to a different one. Our solution relies on the three key ingre-
dients of the trans-cloud approach, where the CAMP and TOSCA standards play a
central role: a CAMP-based unified API, TOSCA-based agnostic topology descriptions,
and mechanisms for the independent specification of target service locations. The effort
and the time required for restoring the activity of applications are used as metrics to
evaluate the performance of the proposed migration orchestrator. Although the time
required for the migration operation is directly related to the topology of the applica-
tion, the affected components, and their previous and target locations, the downtimes
are significantly reduced. Moreover, thanks to the abstraction level at which it operates
and the automation provided, the effort needed from the user for a migration operation
is almost zero. We present an implementation of our proposed solution and illustrate it
with a case study and experimental results.

43

https://www.sciencedirect.com/science/article/pii/S0920548919300984

2.3. Support Papers

44

Chapter 2.

2.3.6 Robust management of trans-cloud applications

Title: Robust management of trans-cloud applications.
Authors: Antonio Brogi, Jose Carrasco, Francisco Durán, Ernesto Pimentel, and Ja-
copo Soldani.
Publication: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD),
pages 219–223. IEEE, Milan, Italy, 2019.
DOI: 10.1109/CLOUD.2019.00046.
URL: https://ieeexplore.ieee.org/document/8814490.
Abstract: The fault handling and recovery from runtime failures of cloud applications
should be done by taking into account the inter-dependencies occurring among their
components, and by dealing with the diverse and heterogeneous cloud offerings used to
host them. The latter is even harder in trans-cloud scenarios, i.e., when application
components are possibly deployed on different platforms and at different service levels
(IaaS or PaaS). In this paper, we propose a methodology to support the automated
management and recovery of (un)foreseen failures in a trans-cloud application, which
takes into account all interdependencies occurring among its components. We then
present a prototype implementation of our proposal, consisting of an orchestrator that
exploits a management framework for trans-cloud application deployments, together with
management protocols for the automated planning of the fault-aware administration of
applications.

— PROCEEDINGS —

2019 IEEE International Conference

on Cloud Computing

— IEEE CLOUD 2019 —

Part of the 2019 IEEE World Congress on Services

8–13 July 2019
Milan, Italy

45

https://ieeexplore.ieee.org/document/8814490

2.3. Support Papers

46

Chapter 3. Related Work

Cloud application interoperability and orchestration have generated a considerable amount
of interest in the literature (cf. [98, 106]). There have been numerous approaches to
cloud application orchestration, each with its advantages and limitations. Several ap-
proaches focus on the creation and use of standards, others on the use of libraries and
intermediate layers, while others exploit the semantics of models. To gain an appreci-
ation for how our approach compares to other related approaches, we present in this
chapter an analysis of the state of the art in the field the work lies on, relating the
solution proposed in this thesis with other proposals in its context, including standards,
other academic and industrial proposals, and open-source proposals.

First, without reviewing the history of cloud computing, let us place cloud computing
in context by relating it to grid computing, edge computing, and the Internet of Things
(IoT). Both cloud and grid computing provide network-based distributed computing re-
sources. Grid computing aims to accomplish tasks by dividing them into independent
subtasks, using a large number of interconnected computers to achieve the maximum
computing capacity. Cloud computing targets a similar goal, but in this case resources
are accessed via services over the internet, without direct access to such resources, and
with mechanisms to flexibly scaling the computing capacity in accordance with users’
requirements. The powerful cloud datacenters provide virtually unlimited computation
and data storage resources. However, they may suffer from limited bandwidth and net-
work latency. This is the case for IoT applications, where the amount of data generated
by mobile devices and sensors does not allow their upload to the cloud for their process-
ing. Edge computing consists in the use of computing and network resources that lay
between data sources and cloud datacenters. Thus, edge computing allows the process-
ing of the raw data before it is uploaded to the cloud. The combination of cloud and
edge computing enables organizations to store and process the big amount of valuable
data generated from IoT devices.

Although cloud computing has many benefits, it also presents several challenges,
mainly related to privacy and security concerns in public clouds, failure recovery, poor
performance in high-demand situations, and lack of interoperability between services.
Since the focus in this thesis is mainly on cloud interoperability, let us focus here on the
state of the art on this topic.

Many studies have addressed the service interoperability and the vendor lock-in prob-
lem. Solutions have been proposed based on standardization [44, 91, 90, 89, 40, 92], bro-

47

3.1. Standards

kering [99, 63], model-driven approaches [4], and semantic-based solutions [82, 63, 99, 3].
In the literature, we can find several surveys of the state of the art on service interoper-
ability (see, e.g., [96, 113, 58, 106, 85, 64, 13]). These surveys focus on different aspects
of interoperability. For instance, [113, 64] focus on interoperability related to the vendor
lock-in problem, mainly in the context of IaaS. Their conclusions are also quite diverse.
For instance, [96, 106] claim that standardization is the solution to the interoperability
problems.

In this chapter, we provide a brief summary on the state of the art on approaches in
cloud service interoperability, focusing on client-centric solutions, in order to highlight
the tendencies and the current trends. In what follows, we analyze work related to issues
achieved in this thesis. In Section 3.1 we focus on cloud standards and how they deal
with vendor-lock-in issues. We present in Section 3.2 different approaches to deal with
the cloud heterogeneity to solve portability and interoperability issues. In Section 3.3 we
present migration-related works, and in Section 3.4 we describe different approaches for
self-healing. Finally, although the current trans-cloud implementation does not support
container-based technologies, since they are a cloud alternative widely used in both
academy and industry, in Section 3.5 we analyze vendor-lock-in issues, migration, and
self-healing in the context of container-based solutions.

3.1 Standards

Cloud standardisation has been very active during the last years (see, e.g., [77, 96]).
Given the increased number of new providers, services, functionalities, and technologies,
relevant associations, such as IEEE,1 DMTF,2 and OASIS,3 are working on defining
standards to tackle portability and interoperability problems, promoting a normalization
of the usage of cloud solutions to deal with vendor lock-in-related issues. For example,
The Guide for Cloud Portability and Interoperability Profiles [94] is among the currently
active IEEE projects. In what follows, we summarize the main goals of the most relevant
efforts:

DMTF – Interoperable Clouds. Different approaches try to deal with different
sides of the problem. For example, DMTF (Distributed Management Task Force), an
organization participated by groups and companies which develops and promotes stan-
dards for IT on industrial environments, in their document “Interoperable Clouds - A
White Paper from the Open Cloud Standards Incubator” [39] defines Interoperable Cloud
and provides an analysis of the interoperability challenge. They list key aspects to con-
sider, such as protocols for the management of the resources, artifacts packaging, and
security mechanisms. They define interfaces to homogenize the interaction with services,

1Institute of Electrical and Electronics Engineers (IEEE): https://www.ieee.org/.
2Distributed Management Task Force (DMTF): https://www.dmtf.org/.
3Organization for the Advancement of Structured Information Standards (OASIS): https://www.

oasis-open.org/.

48

https://www.ieee.org/
https://www.dmtf.org/
https://www.oasis-open.org/
https://www.oasis-open.org/

Chapter 3.

and mechanisms to ensure similar functionalities, such as SLA adaptation, facilitating
the development and execution of applications.

CIMI. Also by DMTF, CIMI (Cloud infrastructure Management Interface) [40] is a
proposal that targets to unify the management and interaction among clouds at IaaS
level. It models every element of the platform and the interactions using an HTTP-based
interface (REST), and it specifies mechanisms to audit and discover available services in
the platforms, normalizing the interaction with the providers. Then, users can specify a
plan to describe how an application can be deployed on the cloud, in an agnostic way.
Moreover, the discovery mechanisms allow to find services with similar capabilities on
different providers, ensuring functional and non-functional requirements regardless of
the provider where the applications run.

OCCI. OCCI (Open Cloud Computing Interface) [92] is a standard managed by OGF
(The Open Grid Forum).1 It offers a full model of the interaction with platforms by
means of an HTTP protocol (RESTful), an API, which specifies services, resources,
artifacts, and networking. Like TOSCA (and therefore trans-cloud), the OCCI stan-
dard offers an exhaustive metamodel to specify the application’s architecture, allowing
to describe applications’ components, their relations, and how they interact with the
used services. As already mentioned, services can also be specified: The OCCI standard
defines the action concept, which defines the functionalities and capabilities of offered
services, adding some semantics to the common API. OCCI-compliant solutions can pro-
cess application models, and use the proposed API to provision the necessary resources
and distribute the application. The OCCI standard also provides some technical descrip-
tions about how the specification can be integrated on a platform, in fact, OCCI works
with open-code projects such as OpenStack and OpenNebula. About the scope of the
reachable services, OCCI defines an interface to reach different kinds of services, IaaS
and PaaS, and some orchestration processes, but it does not specify native mechanisms
to orchestrate cross-cloud deployments using services at different level.

OASIS – CAMP. Cloud Application Management for Platforms (CAMP) [90] is
one of the standards that inspired the trans-cloud solution. It is defined by OASIS,
an organization with members from both academia and industry with several working
groups to study different problems in the IT context. Like CIMI and OCCI, CAMP
defines a common API to be implemented by the different platforms, which allows to
describe every involved part in the vendor lock-in problem. It defines models for cloud
resources, services, and applications, and how all of them are related to the platform.
The API also models platforms’ services, such as those to deploy, update and delete
applications. Moreover, CAMP introduces a set of concepts which have been used in
the trans-cloud proposal. For instance, sensors and effectors [31] allow to audit the
status of the applications and the bounded resources and how interacting with them, to

1The Open Grid Forum: https://www.ogf.org/.

49

https://www.ogf.org/

3.1. Standards

enable the post-deployment management, e.g., the usage of elasticity policies and the
development of runtime migration techniques. Regarding portability issues, the standard
defines a custom packaging PDP (Platform Deployment Package) whose management
is part of the core of the standard. A PDP contains the artifacts to deploy and a
description of the required services and resources based on the generic API. PDP enables
some form of portability between CAMP-compliant solutions, since this standardized
packaging mechanism allows the specification of a deployment engine which is able to
orchestrate the deployment of an application by inferring a deployment plan using the
PDP specifications. However, unlike trans-cloud, the efforts in the CAMP standard
do not focus on getting a heterogeneous multi-cloud deployment, since an application is
managed and deployed by a specific platform. Trans-cloud goes one step further, because,
despite it also uses a generic API, while CAMP focuses on the PaaS abstraction level,
trans-cloud reaches both, IaaS and PaaS. Furthermore, CAMP does not provide a way
to specify the topology of applications.

OASIS – TOSCA. TOSCA (Topology and Orchestration Specification for Cloud
Applications) [91] is one of the most relevant standards in the current cloud context
(cf. [81]). TOSCA is a language to describe a topology of cloud-based web services, their
components, relationships, and the processes that manage them. The provisioning of
comprehensive descriptions of applications’ topologies is key in the trans-cloud approach,
and TOSCA is used to describe such topologies [27, 31]. The use of TOSCA topology
descriptions provides architecture-independent models of applications’ components and
how they are related between them and with the required cloud resources. Moreover, it
also offers a thorough description of capabilities, limits of each topology element, and a
description of non-functional requirements, as the minimum and maximum amounts of
required resources to work. As above mentioned, this description allows applications to
be distributed using different kinds of services and platforms, tackling the challenges of
an agnostic delivery system. Like CAMP, TOSCA also provides a normalized packaging
mechanism to address portability, the CSAR (Cloud Service ARchitecture), which can
be used to infer plans to distribute the applications. The TOSCA standard provides
generic interfaces to describe the topology’s components and their lifecycle operations,
but the standard does not define an API to unify the cloud management, and it dele-
gates the integrity and compatibility of the TOSCA-compliant solution to the providers
themselves. TOSCA’s complete topology descriptions enable the automatic manage-
ment of the application distribution, however, in TOSCA, the multi-cloud distribution
is a challenging task (cf. [108]), problem that has been tackled in our trans-cloud ap-
proach. Moreover, TOSCA defines a generic topology description, but the standard is,
like CAMP, mainly focused on one abstraction level, namely IaaS, which hinders having
an agnostic multi-level cloud management system.

Discussion. Like our trans-cloud proposal, previous solutions based on standardiza-
tion advocate an homogenization of the usage of platforms, but with some differences.
Our trans-cloud solution offers an orchestration process to manage applications which

50

Chapter 3.

is inferred from their topologies, but other solutions do not specify a topology to define
applications’ compositions, that we define as a key element of our proposal to have an
orchestration process for the deployment of applications [26, 27, 10]. Then, it is nec-
essary to write a plan description for each operation to be executed. For example, the
application distribution requires a detailed description about what and how required
operations are used. By taking advantage of the common API, the plan is portable,
so it allows distributing the application on different providers. Without this descrip-
tion, changes in the application’s topology would involve as well modifications on the
deployment plan. Moreover, these solutions are not level agnostic. For instance, Inter-
operable Clouds [39] defines generic and adaptable mechanisms to use different kinds
of services, but it does not specify a homogenous management of different abstraction
levels. Finally, these solutions have to be integrated directly on the platforms, which
would make its implementation very cumbersome. In fact, to date, none of them has a
full implementation.

In summary, each standard addresses a different kind of problem inside the more
general vendor lock-in context. Different approaches have been proposed. Some of them
define their own API, as CAMP and OCCI. Others, like TOSCA, strives on provid-
ing an exhaustive and flexible metamodel, to ensure interoperability. However, not only
resources and topologies are modeled, some of these standards also define a generic pack-
aging mechanism to allow, together with the topology, the deployable artifacts, and the
required services and resources specification. Each of these points solves part of portabil-
ity and interoperability context. Although there are some problems and limitations, the
good news is that some of these standards are in a continuous review and improvement.
For example, TOSCA added in its last revisions complete support to container-based
technologies. Indeed, as we will see in the following sections, it is difficult to identify and
deal with the problems related to cloud heterogeneity, and then provide a final and com-
plete solution. Our trans-cloud solution tries to address several of the aforementioned
questions and issues, such as the agnostic-level simultaneous deployment of components
on IaaS, PaaS and on-premise infrastructures, or the orchestration of the distribution
process, as well as questions on migration, which we analyze in Section 1.1.2. Of course,
these standards also try to answer many other questions. Topics such as artifacts pack-
aging or SLA-based service discovery are currently out of the trans-cloud proposal.

3.2 Portability and interoperability

Portability and interoperability are the main topics in the study of the vendor lock-
in problem. Several causes of this problem can be identified, but possibly the lack of
standard mechanisms is the main one. Indeed, dealing with cloud heterogeneity is the
most important challenge. As we have seen in the previous section, several standards
agree on the need for the unification of providers and normalized management, and on
the normalization of application descriptions. These ideas may indeed serve as a basis
for solutions for portability, deployment orchestration, discovery and adaptation of ser-
vices, etc. In most cases, platforms offer resources and services with similar capabilities

51

3.2. Portability and interoperability

and functionalities, but the different APIs to use these services and the mechanisms to
manage them hinder reaching an integration layer to provide a generic usage of services.
These differences prevent us from the possibility of finding solutions for more complex
problems, such as cross-deployment.

We can observe in the current state of the art that the problems of portability and
interoperability are subdivided into different challenges to solve. Indeed, most of the
works in the literature focus on specific subproblems, and try to face them by defining
their own scopes and using different mechanisms. For example, some of them unify
the management of abstraction levels, others try to address the orchestration of the
deployment process, others propose a full implementation of one standard, while others
just try to take advantage of concepts or contributions by some standard. In the following
sections, we discuss and classify the related works on portability and interoperability in
accordance to the approach followed to solve the problem common APIs, federating and
brokering clouds, cloud-coupled and -de-coupled orchestrators, commercial solutions,
and modeling for applications and platforms.

3.2.1 Common API

The unification of cloud providers’ interfaces is one of the key aspects of this thesis.
The trans-cloud mechanisms are built on the jClouds library to handle IaaS services.
Moreover, as part of the development of trans-cloud, support for the unified access to
PaaS services has been developed. In this section, we analyze some PaaS unification
approaches, namely COAPS, Nucleus, and PaaS-Manager.

COAPS. [109] and [60] describe COAPS, a generic API to manage PaaS services of
some providers, such as Google App Engine, Cloud Foundry, OpenShift, etc. They define
different models to represent application components and cloud services and how they
are related. Moreover, they offer a little overview about how the vendors heterogeneity
affects model composition. However, deploying an application using the COAPS API
requires the developer to provide the application’s source archive in the same format
that is required by the targeted PaaS platform. In the trans-cloud approach, we provide
a uniform interface, independent of the abstraction level, and which indeed allows us
to move components from IaaS to PaaS and vice versa just by selecting the target
service from the catalog of available services. Moreover, whereas COAPS focuses on the
management of PaaS services, we have proposed a solution solving the portability and
interoperability issues between multiple providers and abstraction levels.

Nucleus. In [69], Kolb and Wirtz provide a conceptual analysis and classification of
PaaS trends and contexts. Under the assumption that different PaaS offerings provide
different capabilities, they classify platforms’ approaches according to their capabilities
and the use of IaaS and SaaS services. Like in our trans-cloud proposal, they focus on a
concrete kind of generic platforms, providing different perspectives about the portability
and migration of systems between platforms. Based on the aforementioned information

52

Chapter 3.

and classification, they build a PaaS profile to describe, in a comparable and matchable
way, the core functional capabilities about offerings, providing a model, and a taxonomy
to represent the knowledge about platforms. As in our work, they research about the
portability of applications and how their dependencies should be described to ensure
such portability. In this aspect, we go one step further in our proposal, since we pro-
vide a standard-based application profiling to describe dependencies and ensuring their
automatic management. The authors of Nucleus claim that IaaS and PaaS manage-
ment should be treated separately in terms of portability, whereas we have attempted a
uniform solution to the portability management through IaaS and PaaS by means of a
common API. Their profile covers a significant number of features and services of many
different providers. Our trans-cloud proposal may benefit from their effort if a broader
number of providers and services is to be considered in the trans-cloud solution.

In [68], Kolb and Röck present an interface to unify core management functions of
cloud platforms, providing mechanisms for the management of application operations
and the cloud environment during the application lifecycle. They validate their pro-
posal with a reference implementation, Nucleus,1 for some cloud platforms (Heroku,
Cloud Foundry, etc.). In Nucleus, each provider is represented by a concrete adapter
which implements the unified API, and the generic interface allows the application to
be represented programmatically, deployed, and managed over the supported vendors.
However, in our approach we go one step further and we provide an environment to
define standard-based application topology descriptions. Furthermore, as already men-
tioned, our goal was to unify IaaS and PaaS, providing a unified set of operations and
lifecycle management for both contexts in a uniform way.

In [67], Kolb, Lenhard, and Wirtz study the effort of deploying applications across
different PaaS providers. They develop an automatic Docker-based deployment system
that uses a simple interface for the interaction with a cloud and a set of modules to
manage different PaaS vendors. This provides an isolated and reproducible deployment
process that allows to measure the interaction with PaaS providers. The integration of
each new provider inside their infrastructure requires the deployment of a new module
that has to implement the unified API by means of a set of bash files. These files
provide the API’s generic operations to interact with the cloud, but they have to be
added manually to each different application description to define how components are
deployed in the cloud. However, in our approach, the trans-cloud infrastructure offers
an isolated hierarchy to extend the supported providers (IaaS and PaaS) by adding new
locations, thus decoupling application descriptions and target locations.

PaaS-Manager. In [34], Cunha et al. also propose an abstraction layer, called PaaS-
Manager, to aggregate several relevant PaaS public offerings. As in [68, 67], the authors
expose a common API for developers and define a very illustrative modular architecture
for PaaS APIs unification. Cuhna, Neves, and Sousa develop an adaptable API archi-
tecture based on modules that can be extended to integrate both public and on-promise
platforms. Their approach addresses provider interoperability and application porta-

1Nucleus: https://github.com/stefan-kolb/nucleus.

53

https://github.com/stefan-kolb/nucleus

3.2. Portability and interoperability

bility to reduce the vendor lock-in problem, as we propose in our work. However, like
previous studies, it only considers PaaS offerings. Moreover, it just offers a program-
matical solution, with no application model, and therefore not being able to provide any
automatic management of the components. Regarding interfaces, their solution offers
APIs (as libraries) that allow the interaction with providers’ services. However, they do
not provide any logic to manage or orchestrate application’s lifecycle-based processing,
as the deployment or post-deployment operations. It must be the users of the libraries
who define agnostic-provider processes using those generic interfaces.

3.2.2 Federated clouds

Cloud Federations have gained momentum in the last years, with the idea of a platform
where users can select the infrastructure in which to deploy their software between a set
of third-party solutions. Federated clouds offer a solution for provider integration.

FraSCAti. In [97], Paraiso et al. define a federated platform which integrates external
services at IaaS and PaaS levels. Like in our approach, they believe that a principled
definition of heterogeneous services is the first step to deal with vendor lock-in. This
work also advocates for the normalization of application descriptions to address porta-
bility. They also use an OASIS standard, Service Component Architecture (SCA) [89],
to specify applications’ components, relations, communications, etc. Then, platforms
process the applications and enable the multi-cloud deployment of services in a network
of federated distributed nodes on IaaS and PaaS vendors. The framework is in charge
of the interconnection of related services according to the application’s specifications.
As our approach, this work provides mechanisms for the multi-cloud application de-
ployment orchestration based on a standard-based and unified provider management.
However, they require the previous deployment of federated nodes, while our solution
works directly on providers’ APIs, thus allowing more flexibility, for example, to in-
tegrate with on-premise infrastructure. Furthermore, we provide a topology-oriented
application knowledge, while they use a service-oriented one which focuses on service-
level information. This approach makes more difficult the post-deployment management
of applications.

PacificCloud. In [93], Carvalho et al. propose a decentralized and lightweight archi-
tecture based on microservices for multi-cloud interoperability called PacificClouds. In
their approach, users may choose the cloud in which to execute each microservice of the
application. The solution is based on the usual asynchronous microservices communi-
cation mechanisms. With this approach, they are able to address both horizontal and
vertical interoperability scenarios in IaaS and PaaS, providing an architectural solution
to have multi-cloud in federated clouds.

The Inter-Cloud Architecture framework. In [37], Demchenko et al. introduce
the Inter-Cloud Architecture (ICA) framework, a multilayer model for addressing in-

54

Chapter 3.

teroperability. The ICA solution is based on three main components: (1) a multilayer
cloud-services model to define the inter-layer interfaces between the cloud service mod-
els, (2) a plan for the inter-cloud management and control, and (3) a framework for
inter-cloud federation to enable the federation of independent clouds and their related
infrastructure components.

Cross-Cloud Federation Manager. In [33], Celesti et al. define a cross-cloud fed-
eration model based on three phases to enable the cloud interconnections to establish
the cloud federation: discovery of resources, matchmaking of services, and authenti-
cation between providers. As implementation of this model they propose Cross-Cloud
Federation (CCFM), a module that is added on top of each member federation’s cloud
infrastructure, which is in charge of the management of local resources, such as provi-
sioning and connecting with other federated resources. Multiple coordinated CCFMs
use a distributed strategy to discover services between them based on peer-to-peer con-
nections, enabling elasticity since members can be dynamically added or removed if
needed. A matchmaking module is in charge of finding the best set of resources to run
an application according to its requirements. Finally, an authentication module creates
a secure connection between providers, making transparent the cloud usage to the fed-
eration users.

These solutions provide vendor-side mechanisms to deal with different providers by
defining a federated cloud that homogenize the cloud management. However, these
solutions do not include application modeling, which is very useful to build portable ap-
plications and minimize the impact of changes in both the cloud side and the application
side.

3.2.3 Broker-based solutions

The mOSAIC project. The main goal of the mOSAIC project [99] is to offer access
to heterogeneous resources from multiple clouds. The mOSAIC open-source platform
integrates the management of cloud vendors to assist in the deployment process of appli-
cations, addressing portability and interoperability issues. Its authors propose a cloud
ontology to detail application knowledge. They specify the required cloud services and
resources via a common API that unifies the management of providers. Furthermore,
their ontology also allows to specify the non-functional requirements of applications,
what, combined with a multi-agent brokering mechanism and SLA service, enables a
negotiation which allows searching for services, matchmaking the applications’ requests,
and possibly composing the requested service if no direct hit is found. The mOSAIC
solution can manage only IaaS-based services, which are described using the ontology,
and managed by the unified APIs. These services are then offered as services in the mO-
SAIC PaaS layer, but it does not directly integrate external real-PaaS solutions. The
matchmaking capabilities of the trans-cloud solution rely on jClouds, which is currently
only available for IaaS resources.

55

3.2. Portability and interoperability

Cloud4SOA. Cloud4SOA [63] uses a broker-based architecture to address interoper-
ability between providers and facilitate the multi-PaaS deployment and the management
of applications’ lifecycles. The solution is based on a SOA architecture, and it can also
offer the best matches to their computational needs. Users can describe their Applica-
tion Profiles using a programmatically-oriented DSL that contains the data necessary
to carry out the matchmaking of the application component’s constraints, such as SLA
requirements, and find the best services to enable applications’ deployment. Like our
proposal, Cloud4SOA reduces the risk of vendor lock-in by taking advantage of a unified
management, by means of something that its authors call harmonized API and a seman-
tic layer. By means of this API, Cloud4SOA is able to manage multi-PaaS on public,
on-premise and hybrid platforms, and address interoperability between them.

PaaSport. PaaSport [7] also defines a cloud broker based on a PaaS ontology to re-
solve portability issues between PaaS providers. They define three different semantic
levels. The first one aims to describe functional and non-functional details of PaaS plat-
forms. The second one allows users to describe their applications and their requirements.
The last model allows detailing the SLA requirements for an application. The first and
second models are key to allow to infer and perform the needed operations to reach a
concrete PaaS platform, by means of a common API to operate with different providers.
In addition, PaaSport defines a recommendation algorithm that uses the application
information and SLA requirements for a matchmaking process, recommending the best
providers and services to optimize the distribution of applications. This project shares
some similarities with Cloud4SOA, since both of them try to solve issues in the PaaS
context using ontology and semantic models. In fact, PaaSport models are inspired
on Cloud4SOA research. However, Cloud4SOA presents a better management of the
application’s lifecycle, including capabilities to monitor applications and apply scaling
techniques if the workload variates. PaaSport however uses a more detailed modeling of
providers.

As our proposal, all of these solutions try to mitigate cloud heterogeneity using the
modeling of providers and applications, in these cases by means of ontologies, and use this
information to translate application’s needs to real actions to operate concrete providers.
However, they are bound to a concrete abstraction level, IaaS or PaaS, whereas our
trans-cloud solution offers an agnostic level environment to operate on both of them.
Moreover, they use their own models to describe applications and environments, instead
of using standard-oriented solutions.

3.2.4 Cloud-coupled orchestrators

We find in the literature several works which present platforms that integrate services
and providers via public APIs and allow customers to reach diverse providers dealing
with heterogeneity.

To manage heterogeneous services, some projects, as in our solution, use abstracted
or common interfaces to support different providers, thus decoupling application de-

56

Chapter 3.

scriptions and cloud integration. However, other more coupled solutions use an ad-hoc
description of the services management, or requires to modify the application topology
to reach new providers. In this section, we analyze different coupled solutions, whereas
decoupled approaches will be described in the following section.

Roboconf. Roboconf [100] is an open-source distributed-application orchestration frame-
work for multi-cloud platforms. It provides mechanisms based on the modeling of appli-
cations and resources using Domain Specific Language (DSL) techniques. This modeling
includes descriptions of application distribution and lifecycle management. It is mainly
focused on IaaS integration, but Roboconf provides a generic and extensible infrastruc-
ture where new providers, including PaaS, would be added by means of a set of config-
uration and DSL-based description files, to define the interaction with the provider. To
deploy applications, developers have to provide some DSL-based configuration files plus
some additional files, and artifacts to specify the necessary steps to deploy and execute
the application over the target providers. The application description and the target
services are very dependent, and therefore it is very complicated to modify the target
providers without affecting the application models. This is an important difference with
respect to our proposal, where just an agnostic TOSCA-based application description is
needed, which remains stable, avoiding laborious behavior and management specification
and allowing target providers to be easily managed by means of minor decorations of
the modeling. However, probably the most important difference is that our trans-cloud
solution offers modules that are designed to be indistinctly deployed on IaaS and PaaS.

OpenTOSCA. The OpenTOSCA ecosystem1 offers a modeling tool for TOSCA-
based cloud applications. Specifically, it offers a graphical topology modeling editor for
the TOSCA specification of systems, enabling a collaborative development of TOSCA-
based application topologies. The OpenTOSCA environment offers a container, namely,
OpenTOSCA [8, 71], which can process TOSCA-based applications. It offers a tool and
generic mechanisms to take advantage of the standard’s capabilities and flexibility. In
fact, it could support both IaaS and PaaS deployment levels, but it does not provide yet
a predefined set of Node Templates to easily represent and manage providers of different
abstraction levels. Therefore, the Service Templates must provide the required imple-
mentation artifacts that support the different vendors’ services. Furthermore, since the
container expects that the topologies use Node Templates to describe cloud resources, it
is necessary to modify the node templates of an application to select new target providers,
what means that new compatible Node Templates should be used for the application’s
components. In contrast, our approach takes advantage of statement policies (a.k.a.
deployment policies) to describe locations in an independent way (using policies), giv-
ing place to stable application topologies, and facilitating the modification of the target
cloud providers (IaaS and PaaS) without remodeling any topology element. As pre-
scribed by the TOSCA standard, an explicit plan specified in a workflow service, such
as BPEL (Business Process Execution Language) or BPMN (Business Process Model

1OpenTosca: https://www.opentosca.org/.

57

https://www.opentosca.org/

3.2. Portability and interoperability

and Notation), has to be provided together with the application, so that Open-TOSCA
can define the application orchestration. There has been some recent research on the
support of declarative plans in the OpenTOSCA ecosystems. In [65], a hybrid solution
based on provisioning policies is proposed following the concepts described in [15]. In
this approach, application topologies and provisioning policies are analyzed by Open-
TOSCA to generate an imperative plan, which is then used to operate the applications
and their cloud resources. Like in our trans-cloud approach, the description of locations
based on policies offers some flexibility, because the integration of the topology and the
used providers is limited to a few lines for the policies’ configuration. However, in [65]
the plans are coupled to the Node Types and used services because this information is
used to generate the custom imperative plans. Furthermore, they are not integrated
into the ecosystem yet. In contrast, thanks to its extended agnostic API, our trans-
cloud solution uses Brooklyn’s engine to manage the orchestration of applications using
declarative plans.

In [104], Rafique et al. present a middleware platform for the distribution and man-
agement of hybrid-cloud applications which enables, by means of a uniform API, the
portability over multiple services, such as data storage, asynchronous task execution or
interoperability, between PaaS platforms. The authors of [104] evaluate their middle-
ware using a multi-tenant SaaS application, for which they check the overhead and the
performance impact of its deployment on different providers. In all these cases, they
need to reimplement the portability driver for the desired platform. However, in our ap-
proach, the only change required to target different providers is to change the location
in the corresponding policies. Rafique et al.’s middleware can handle PaaS platforms,
and although it also supports, indirectly, IaaS clouds through the use of cloud-enabling
middleware, our trans-cloud solution offers a combination of services to manage directly
both levels, IaaS and PaaS, under a unique API. The authors of [104] do not define a
comprehensive and normalized topology, although they already abstract and integrate
services of the data-layer, such as NoSQL datastores and BLOB storage.

SAMOS. In [48], Fang et al. propose SAMOS, an ontology capable of modeling cloud
services regardless of the kind of service, vendor, and abstraction level (IaaS, PaaS
or SaaS) allowing both horizontal and vertical interoperability between levels. The
ontology provides a comprehensive modeling for operations, datatypes, and services.
Moreover, functional and non-functional requirements such as technologies, service level
agreements, offering vendors, or capabilities of the services can be detailed, what is very
useful to address service discovery. Indeed, with these models the SAMOS tool can be
used to reason and assist in the deployment and management of applications. Despite
its wide coverage of services, the usability of their approach is limited by the complexity
in the definition and use of the ontology classes for both cloud services and providers.
For example, using application and provider models, the system can be used to find the
best cloud target providers to distribute the application and define a plan to operate
providers and orchestrate the application management. Although our solution can also
infer deployment plans for the automatic distribution of applications, it is true that the

58

Chapter 3.

ontological modeling presents certain advantages in this regard, mainly associated to its
reasoning engine. However, in comparison with our solution, it is not easy in SAMOS
to add new providers and cloud services due to the complexity of asserting new cloud
operations as ontology classes. Furthermore, the SAMOS system does not use agnostic
application topologies. Instead, they use a programmatic description that formalizes all
the knowledge on the application and the required service operations, what can limit its
portability, since they must be modified if the application is to be deployed over different
providers.

3.2.5 Cloud-decoupled orchestrators

In this section we analyze approaches based on decoupled orchestrators, which allow us
to separate applications’ descriptions from their cloud management using models that
are totally agnostic or that only present minimal dependencies with their environment.

SeaClouds. SeaClouds [17] is a cloud orchestrator that focuses on the deployment and
management of complex multi-component applications over heterogeneous clouds. The
approach is based on the concept of service orchestration, and is designed to fulfil the
functional and non-functional requirements of applications. In addition, services can be
deployed, replicated, and administered using standard harmonized APIs. As our pro-
posal, it uses a custom Brooklyn as deployment engine, and uses a TOSCA-compliant
topology to model the application’s architecture and its functional and non-functional re-
quirements. As Cloud4SOA and REMICS (see above), SeaClouds provides mechanisms
for the matchmaking of cloud offerings, based on the requirements of a given application,
and the deployment of applications across multiple clouds. Indeed, the SeaClouds ini-
tiative goes one step further since it includes the auditing of SLAs and it uses Brooklyn
and MODAClouds’ monitoring features to inspect application and services’ status to
detect violations on the restrictions on the quality of services. When failures to satisfy
such SLAs are detected, SeaClouds initiates a reactive repairing process to find a better
cloud context according to the performance requirements defined by users. As in our
proposal, SeaClouds uses TOSCA for the description of applications and Brooklyn as
agnostic deployment orchestrator. However, in our case, Brooklyn has been customized
to manage both IaaS and PaaS services. Furthermore, while with trans-cloud we can
move application components between abstraction levels just by modifying the corre-
sponding location policy, SeaClouds does not support vertical portability. Moreover, in
Seaclouds, applications’ components have to be modeled in the topology for a concrete
abstraction level, either IaaS or PaaS.

The PaaSage project. As SeaClouds, the PaaSage project can also match applica-
tions’ requirements to platform features and assist in the deployment process by making
recommendations that are then run by its orchestrator. Although PaaSage can only
deal with PaaS resources, the main difference with our approach is that the application
description is neither topology-oriented nor DSL-oriented. The developers of PaaSage

59

3.2. Portability and interoperability

propose the use of CAMEL [107] as application profiling language, based on model-driven
languages with a strong DSL integration. Although it might seem that this implies an
agnostivity loss, authors argue that it brings the language to the target domain, there-
fore improving its expressiveness and capability, for example, for a better generation
and adaptation of application workflows with target services. In addition of agnosticity
differences, our work goes one step further since we try to maximize portability by using
an open standard to describe applications, regardless of the cloud resources integration.

CoMe4ACloud. The aim of the CoMe4ACloud project [23] is a generic and extensible
solution for the autonomic management of Cloud services. This approach takes advan-
tage of the most general concept of XaaS model (Anything-as-a-Service or Everything-
as-a-Service [41, 24]), to address portability and interoperability on the entire cloud
services stack, IaaS, PaaS, and SaaS, while our proposal does not integrate models for
SaaS services. However, CoMe4ACloud just offers horizontal portability, and to allow a
component to be run using a new kind of service it is necessary to introduce modifica-
tions on the topology. CoMe4ACloud proposes an extension of TOSCA to describe XaaS
systems, so that deployments in public and on-premise cloud and third party services can
be integrated in the topology and in the execution plans. As our trans-cloud solution,
CoMe4ACloud uses YAML profiles, but it does not take advantage of location-based
policies of the standard, nor any other mechanism to provide agnostic topologies and
minimize change when applications require new providers to run.

MODAClouds. MODAClouds is presented in [4]. It follows a Model-Driven ap-
proach that extends the REMIC project. MODAClouds delivers an open-source IDE for
the high-level design, cloud service selection, early prototyping, QoS assessment, semi-
automatic code generation, and multiple cloud applications automatic deployment. Like
SeaClouds, it monitors applications at runtime and detects error and non-functional-
requirements violations. It integrates PaaS management, but it does not provide an
agnosticity-level as our proposal.

3.2.6 Commercial orchestrators

All previous tools and proposals are from academia, however, there are several commer-
cial solutions worth mentioning, and we can expect more and more powerful solutions
in the near future. Flexiant1 can govern infrastructure-based services from different
providers. AppFormix2 supports several kinds of resources. It can manage public and
on-premise IaaS and PaaS services, bare-metal systems in private clouds, virtual ma-
chines in OpenStack, and containers in Kubernetes clusters. IBM Cloud Orchestrator3

offers an orchestrator to manage hybrid clouds by integrating the IBM cloud environ-
ment, SoftLayer, which includes both IaaS and bare-metal services, and Bluemix PaaS

1Flexiant: https://www.flexiant.com/.
2AppFormix: https://www.juniper.net/us/en/products-services/application-management-or-

chestration/appformix.
3IBM Cloud Orchestrator: https://www.ibm.com/ie-en/marketplace/deployment-automation.

60

https://www.flexiant.com/
https://www.juniper.net/us/en/products-services/application-management-or-
chestration/appformix
https://www.ibm.com/ie-en/marketplace/deployment-automation

Chapter 3.

services, with OpenStack- and CloudFoundry-based solutions. Morpheusdata1 supports
several IaaS providers, VMWare-based solutions, and container clusters. It is oriented
to continuous delivery management, assisting to create deployment pipelines and pro-
viding monitoring and analytics features. Rigscale2 provides and extensible API based
on plugins to reach both IaaS and PaaS services via HTTP. All these solutions provide
GUI-based dashboards to build applications and select the providers where to run them.
Then, an orchestrator can provision resources, deploy applications, and execute poli-
cies to carry out workload adaptations. However, this abstraction hides the application
topology, which cannot be manipulated by users. Only Rightscale offers an application
description, provided using a DSL, to configure needed plugins to deploy and govern
applications. However, it does not provide a full description of applications’ compo-
nents. As a result, these solutions allow users to deal with heterogeneous providers, but
it just results in moving the cloud lock-in problem to a different level: users would not
be able to extract the information concerning their applications if they needed to use
other providers.

Terraform. Terraform is currently one of the most popular orchestrators. It provides
a flexible abstraction of cloud resources, providers, and applications. Its models allow
to represent everything related to the deployment of applications, including physical
hardware, virtual machines, containers, and cloud resources, by means of an enriched
application description that has its own DSL (called interpolations). Although it mainly
focuses on its IaaS offering (such as AWS, Google Cloud, SoftLayer, and software vir-
tualization platforms such as vSphere), it also provides some support for PaaS services,
including AWS BeansTalk, Heroku, and CloudFoundry. It provides mechanisms for
the description of applications using a fully resource-based unified high-level syntax, in-
stead of requiring operators to use independent and non-interoperable tools for each IaaS
offering and service. Although this representation is adapted for PaaS services, the man-
agement of each of these PaaS services may require its own minor customization of its
configuration files. Like our proposal, Terraform defines its own internal representation
and infers the sequence of the steps to run the application. It supports cross-deployment
and takes advantage of the different cloud abstraction levels (IaaS, PaaS, and SaaS). Un-
fortunately, it does not consider the unification of IaaS and PaaS modeling, and does
not offer standard-based application descriptions.

Some commercial solutions have been envisioned like standards implementations.
Alien4Cloud3 offers a GUI for managing blueprints (TOSCA topologies) and monitor-
ing the deployment phase. It provides a drag-and-drop visual editor that helps in the
creation of node templates and relationships, which can then be composed for modeling
application topologies. Node operations can be defined and implemented by using im-
plementation artifacts, which are completely integrated in the application’s deployment
lifecycle. It manages several IaaS providers, such as AWS, GCP and OpenStack. It also

1Morpheusdata: https://www.morpheusdata.com/.
2Rightscale: https://docs.rightscale.com/.
3Alien4Cloud: https://alien4cloud.github.io/.

61

https://www.morpheusdata.com/
https://docs.rightscale.com/
https://alien4cloud.github.io/

3.2. Portability and interoperability

integrates BYON (Bring-your-own-nodes) locations and containers. Alien4Cloud may
then be used to deploy an application using its TOSCA definition. As our trans-cloud so-
lution, Alien4Cloud uses TOSCA on top of a generic API to hide the cloud management
by means of the policy locations, improving the portability of applications. Alien4Cloud
was one of the first to support the use of location policies. Indeed, as pointed out
in [31], the topology descriptions used by our trans-cloud solution are compatible with
Alien4Cloud’s in its version 1.3, since Alien4Cloud supported Brooklyn as an internal
orchestrator. Despite of this, Alien4Cloud does not support agnostic node type defini-
tions to be deployed on IaaS and PaaS, and therefore some changes are necessary when
components are moved between abstraction levels.

As pointed out in [25, 31], Brooklyn,1 developed as the first CAMP implementation,
also supports the TOSCA standard. In this work, Brooklyn has been extended to support
the agnostic cloud management envisioned by trans-cloud.

3.2.7 Applications and platforms modeling

The modeling of applications and cloud resources is key to deal with heterogeneity issues.
Knowledge regarding applications and cloud resources is key to perform matchmaking
and to automatize and orchestrate the needed operations to deploy applications on ven-
dors’ services [49]. There are already some standards which provide complete modeling
for these aspects. However, after their definition, these specifications have still to be-
come supported by engines or orchestrators that can process the modeled applications
and interact with cloud resources to deploy and manage the applications, what is not
always straightforward due to differences between the modeling goals and the capability
of the orchestrators. As a result, current solutions use their own formal or ad-hoc and
non-standardized applications’ descriptions, they use different concepts, granularity and
capabilities, increasing more the heterogeneity and complicating the portability between
solutions.

In [105], Rabanahu et al. present SCALES, an abstraction-driven approach to ad-
dress cloud application portability. The approach is based on an abstract language to
describe applications’ behaviors rather than their implementations. They use an ag-
nostic DSL with which to provide full-detailed specifications of applications, including
information on components, relationships, used and required services, technological re-
quirements, etc. A model-transformation-based procedure is applied to this specification
to translate generic descriptions to software components specific of a required provider.
This approach deals with the utilization of vendors’ services, what allows developers
not to worry about the specific requirements of vendors’ APIs and technologies. How-
ever, descriptions and transformations are focused on the application’s performance,
and application-deployable artifacts management, such as packaging mechanisms, are
not taken into account. Like in our approach, the use of an agnostic DSL allows users
to model their applications in an abstract way, and postpone the selection of target
providers. Both IaaS and PaaS abstraction levels are supported, including AWS EC2

1Brooklyn: https://brooklyn.apache.org/learnmore/theory.html.

62

https://brooklyn.apache.org/learnmore/theory.html

Chapter 3.

and Google App Engine. However, this solution does not support cross-orchestration,
since all modules must use the services of the same provider.

AWS CloudFormation1 allows to describe the composition of AWS resources in a
reusable template. AWS CloudFormation allows to describe applications and fully de-
tailed resources, such as zones, kinds, and some custom configurations such as security
and networking. These resources can be specified using either a programming language
or a simple text file, which is then used both to model and provision, in an automated
and secure way. Although services from other providers may be referenced and used,
CloudFormation can only manage IaaS AWS resources.

In a similar approach, Nguyen et al. [87] propose Blueprints as abstract descriptions
of cross-layer services, XaaS, which can reach IaaS, PaaS and even SaaS. The approach
provides a vendor-neutral blueprint templating mechanism in which users can specify
the required services, and QoS and policy profiles. QoS profiles can be used to describe
QoS characteristics of cloud resources. Moreover, the model is flexible and it can be
extended to use concrete functionalities and add-ons of a concrete provider, something
similar to what jClouds’s API offers. Like our proposal, this solution provides an agnostic
management of cloud resources regardless of the abstraction level, but it does not include
an orchestrator to operate final providers. They do not provide an agnostic decoupling
between application descriptions and the used resources.

Other projects and initiatives have developed their own descriptions. For example,
Ubuntu Juju2 is an orchestrator that includes its own application modeling language to
describe applications and the management of resources. Other platforms use well-known
solutions and include them in open platforms, such as Heat,3 which adds support for
CloudFormation to OpenStack. Although these solutions are quite popular, none of
them provide an agnostic management of cloud resources.

3.3 Migration

We can found different ways of understanding the term migration in the literature de-
pending on what kind of cloud services are involved and how they are managed (see,
e.g., [120, 55]): VM migration, migration of legacy applications, and the migration of
application components. The work proposed here clearly falls in this last group. VM
migration is clearly out of the scope of this thesis, since on this topic most works typ-
ically focus on memory-to-disc data transfer, optimization of CPU, network or energy
consumption, and similar low-level issues. We discuss in what follows several works on
the other two topics, since they are all related to portability and interoperability issues.

1AWS CloudFormation: https://aws.amazon.com/es/cloudformation/.
2Ubuntu Juju: https://jaas.ai/.
3OpenStack HEAT: https://wiki.openstack.org/wiki/Heat.

63

https://aws.amazon.com/es/cloudformation/
https://jaas.ai/
https://wiki.openstack.org/wiki/Heat

3.3. Migration

3.3.1 Migration of legacy applications

Most of the work on migration verse on the migration of legacy applications to the
cloud [55], where entire applications or some parts of them are moved to a cloud envi-
ronment in order to take advantage of the cloud features, such as elasticity and scalability,
payment strategies, or on-demand provisioning of services [5]. Migration processes and
techniques are classified in the literature in accordance to the usage of cloud resources
and what and how many parts of the applications are moved to the cloud. For exam-
ple, in [2], migration types are classified as (i) replacement, (ii) partial migration, (iii)
whole-stack migration, and (iv) cloudify. These categories go from the replacement of
one legacy component by services in the cloud to the refactoring of entire applications to
be cloud-compliant. Similar to this, in [73], Kratzke analyzes migration according to the
application maturity to be run in the cloud [74], identifying what kind of configuration
is needed to move an application or some of its components to the cloud.

In any of these cases, migration operations require some process to transform ap-
plications so that they become cloud-compliant. Several authors have analyzed the
challenges of moving legacy applications to the cloud, although typically using cloud
patterns to adapt applications to the restrictions of the cloud. Moreover, some of them
report on lessons learnt and formal mechanisms to adapt application architectures to
cloud environments (see, e.g., [62, 51]). For example, in [2], Andrikopoulus et al. offer
a complete guideline to develop and adapt applications to the cloud. They analyze the
impact of adapting application layers to different kinds of cloud services, in both IaaS
and PaaS. Moreover, they propose some design patterns to facilitate the migration of
legacy applications and even the development of new ones.

Other works present manual migration processes (see, e.g., [115, 114]), where they do
not only report technical problems regarding the adaptation of application architectures
to cloud environments, but they also describe the effort needed to adapt the delivery
processes to the cloud model and in the usage of cloud APIs and clients. In this line,
in [114], Tran et al. propose a novel formalization of the learned lessons by means of a
taxonomy for the tasks performed during the migration, with the goal of helping ongoing
migrations. This taxonomy can help to analyze legacy applications and the target cloud
to identify the needed transformations to adapt the applications, and the operations to
accomplish the migration process, such as how developing delivery services or how to
scale the moving of components.

Other works go one step further and propose some kind of automatization in the
adaptation of legacy applications. For example, in [12], Borgesa et al. propose Cloud
Restriction Solver (CRS), a semi-automatic approach to adapt legacy applications’ ar-
chitectures to PaaS environments to decouple developers of cloud restrictions. For this,
authors propose an assisted process with two steps. First, developers specify the restric-
tions of applications, and choose a target cloud environment. Then, with this informa-
tion, CRS checks whether the target environment is suitable for the application, and it
identifies the pieces of code that violate the restrictions on the chosen PaaS services. In
a second phase, once the violations have been found, some refactoring is recommended
to modify the code, and concrete cloud services can be suggested if it is necessary to

64

Chapter 3.

re-implement the affected parts of the application. In this same line, in [50], Frey et
al. present CloudMig, a model-driven approach to assist in the migration process. It
allows to model applications and evaluate their profile in concrete IaaS and PaaS cloud
environments to identify inconsistencies.

Besides the migration capabilities of these solutions, developers can evaluate the
needed effort to migrate an application to a concrete environment, what may help in the
decision of how to distribute an application in the cloud. Moreover, there are several
frameworks to assist in the decision of which cloud providers to use (see, e.g., [119, 54,
53]). However, the choice for the migration of legacy applications is not easy yet, since
it is not only necessary to find the cloud resources that best fit our needs, but it is also
necessary to adapt delivery processes to deploy them into de cloud.

In summary, migration assistants and design patterns try to provide users with com-
mon techniques to move applications to the cloud, facilitating the matchmaking with
cloud resources and hiding the cloud complexity as much as possible. It allows develop-
ers to decouple the model and the environment, identify the parts of the legacy system
which present problems for the cloud migration, and then propose solutions to manage
them in order to ensure the movement to the cloud. This is exactly the goal of solutions
described in Section 3.2. Common APIs such as jClouds, COAPS, Nucleus, etc., offer
a way to interact with providers during migration processes, as described in [60, 67],
minimizing the impact of changes and providing some capability to react to unforeseen
problems and reach new providers if needed. Standards like TOSCA, OCCI or CIMI
allow to describe applications and adapt to cloud requirements [9], and apply patterns to
facilitate the migration [88, 2]. Orchestrators such as Brooklyn, Terraform, SeaClouds,
Alien4Cloud, and CLOUD4SOA would be the best choices for accomplishing the mi-
gration. Developers can model every application part and delegate the management
of the application’s lifecycle and cloud resources to the engine, minimizing the impact
on applications. However, these solutions just assist on the deployment and mainte-
nance of applications, but they do not carry out the adaptation and refactoring process
needed to make applications cloud-compliant as previously described. Moreover, a com-
mon difference between our proposal and some of these solutions, such as SeaClouds,
CLOUD4SOA, and [53], is that they include some kind of analysis of application re-
quirements and cloud capabilities analysis to apply a matchmaking process to find the
most suitable distribution of the applications. However, this is out of the scope of this
thesis, since it is focused on providing a unification of the management of different ser-
vice levels and in the task of the migration itself and the problem related with it, such as
the optimization of resources during the migration and avoid wrong application status
and unexpected behavior.

In this line, CMotion [11] proposes an agnostic and holistic migration process to
move legacy application components to different providers. It provides an application
modeling to describe applications’ components and relations, containing all the needed
application artifacts. Then, the framework operates them to deploy the application on
different kinds of services, including both IaaS and PaaS. The idea behind CMotion
is to use adapters to transform application artifacts to be compatible with a concrete

65

3.3. Migration

technology. For example, let us suppose a Java application has to be migrated to AWS
Beanstalk. This would require specific configuration or adaptation of artifacts, what
is also known as vendor lock-in effect. Then, CMotion uses adapters to automatize
these transformations, making transparent the adaptation of applications for a concrete
cloud, hiding the vendor’s complexity. This follows the same principle that other works
described in previous sections. In summary, CMotion expedites the legacy migration
process, reducing the effort needed to adapt the applications to specific providers. It
supports Java, SQL-based dialects, and some on-premise infrastructure. However, cre-
ating adapters is a difficult task, since they require significant intrusive operations to
enable new artifacts, what is an important challenge [67].

3.3.2 Runtime migration

Runtime migration is the capability to operate on a running application to move one or
more of its components to a new environment, minimizing the impact on the application.
All the works discussed in the previous sections offer mechanisms to move an application
to the cloud, they allow to describe, transform, refactor and adapt applications’ archi-
tectures, technologies and delivery systems. However, only some of the reviewed works
support the migration of components of live applications. In fact, only a few works have
attempted the runtime reconfiguration of applications.

SeaClouds (see Section 3.2.5) offers a very novel approach to move one Java appli-
cation component. As our trans-cloud migration, users only need to point to a new
provider and request to start the migration process. However, the migration can only
happen in an abstraction level, between IaaS or PaaS providers, whereas our trans-cloud
solution aims to agnostic levels management, allowing the transitions between different
kinds of services. Moreover, the kind of migration supported by SeaClouds has a high
impact on the application performance, practically stopping the application, and oper-
ating each component one by one. Our works on trans-cloud present an evolution of the
migration techniques to, finally, identify the minimum part of the application that needs
to be operated to carry out the migration task and operate on nodes as soon as possible.

In [47], Erbel et al. present an OCCI-based model and an engine to apply mod-
ifications to application topologies at runtime. Starting from a running application,
whose topology is modeled using an extended-OCCI model, they propose to modify it
according to a new target status specification (which is also modeled using OCCI). Then,
developers can use the updated application description to request an application recon-
figuration. The runtime adaptation process extracts the current running application
model and compares it against the new application specifications, and then resources
and relations are analyzed in order to define the adaptation plan. The proposal by Erbel
et al. consists of three phases to operate the application to reach the new configura-
tion: (i) deprovisioning, (ii) updating, and (iii) provisioning. The first one allows the
decommission of resources that will not be used in the new configuration. In the second
phase, resources are updated. Finally, during the last phase, new cloud resources are
provisioned and components are redeployed.

The approach by Erbel et al. shares some features with trans-cloud runtime migra-

66

Chapter 3.

tion, such as the capability to delimit what application parts need to be modified to reach
the new configuration, information that is then used to minimizing the needed opera-
tions. However, our trans-cloud solution presents a different management of resources’
lifecycles that has a significant impact on the migration performance. The OCCI-based
solution deprovisions resources at the beginning of the process, so the depending ap-
plication’s components have to also be stopped, to avoid failures. Only when the new
resources have been provisioned, the stopped dependencies can be restarted. As de-
scribed in [32], this means that some application parts will be stopped during the most
timewise-expensive and error-prone operations, resulting in big delays to the migration
process in which the migrated application does not provide any service. Our trans-cloud
approach starts the migration by provisioning the new resources in background. Once
this task is finished, components’ connections are re-routed to use new resources. This
means that downtimes only happen during the reconnection phase, what has a significant
improvement on the process performance. Finally, when the application is back to nor-
mal operation, the old resources are also released in background tasks, without affecting
the running application. Moreover, the solution proposed in [47] does not support either
multi-cloud, component-wise migration of applications, nor agnostic level mechanisms,
what is one of the key features of our trans-cloud approach.

Terraform also allows some kind of runtime reconfiguration. As described in Sec-
tion 3.2.6, this orchestrator has its own models to describe applications and cloud re-
sources. Based on these descriptions, Terraform can infer declarative plans to provision
cloud resources and deploy application components. Thus, like [47], Terraform allows
users to modify these application descriptions and request them for a running reconfig-
uration. Then, Terraform compares the application models with the current one to find
differences and trace a plan to operate the application to reach the target configuration.
Like our trans-cloud solution, Terraform tries to identify the minimum application topol-
ogy region the migration process needs to operate on, to improve the performance of the
process. However, they do not provide either agnostic-level migration nor a standardized
approach. Moreover, like [47], Terraform deprovisions resources at the beginning of the
process, whereas our proposal deletes old resources at the end of the migration when
they are no longer useful. Despite these limitations, Terraform goes one step further
on its reconfiguration capabilities, since it allows the application topology structure to
be updated and modified, something that none of the works described above, nor our
proposal, can perform, since they can modify the target cloud resources, but not the
number of components or their relations. The Terraform’s reconfiguration mechanism
allows to add new components, to remove old ones, and can also manage the connections
between them.

In [43], Durán and Salaün specify a protocol to automatize reconfiguration tasks.
Like Terraform, this solution is based on an orchestrator, called Cloud Manager (CM),
which receives a migration request, and uses an application model to trace the needed op-
erations to perform the reconfiguration. However, it carries out a resource management
similar to the one of the previous solutions, removing cloud resources in early stages of
the protocol. Moreover, it only supports changes on IaaS, and the application profile is

67

3.4. Self-Healing

not based on any standard. The protocol proposed in [43] is however robust and fault-
tolerant, something that none of previous solutions can perform. The reconfiguration
process is not centralized in the CM orchestrator, but the components interact between
them to ensure that the connections are properly managed, stopped and reestablished,
during the removing, provisioning, and restarting operations. This approach allows the
agile reaction to failures during the reconfiguration process, and fixing them by applying
the needed operations.

In this context, in [14], Boyer et al. also provide a centralized robust configuration
algorithm to reconfigure applications. Although this solution is quite similar to the one
in [43], it does not allow to modify the configuration of cloud resources, as our trans-
cloud solution does, since it is based on a centralized orchestrator, that only can manage
the resources inside a unique virtual machine, where the application components are
running.

One of the things our proposal has in common with the mentioned solutions is all
of them propose their own mechanisms to manage the applications’ lifecycles and op-
erate them. This is key to allows manage multi-cloud applications and synchronize the
requested operations during a runtime migrations process. In fact. decouple the appli-
cation and its management of the clouds is one of the goals of this work. Cloud-native
applications[78] have been gaining importance during last years, since they allow to take
advantage of the cloud paradigm capabilities by applying different technologies, archi-
tectures, and patters [111]. Indeed, several of the work mentioned in Section 3.3.1, such
as [51, 2], discuss how to transform legacy systems to cloud-native applications during
the migration to the cloud. Although this kind of applications presents several advan-
tages, such as the transparent usage of scalability, they would increase the coupling with
the cloud, not only for the definition of the application itself, such as for the usage
of add-ons, but the management of application lifecycle, for example, the pipelines for
deployment and the definition of operational tasks. As result, as mentioned it would
lock the management of the application to a concrete platform, limiting the capability
to react to changes and move components if needed.

3.4 Self-Healing

In the last years the interest on self-healing in the cloud has been growing in both
academy and industry. This kind of systems were characterized by Dai et al. in [35] as
follows: “systems designed to be self-healing are able to heal themselves at runtime in
response to changing environmental or operational circumstances”. In this section, we
analyze different alternatives for self-healing proposed from both the infrastructure and
the application’s points of views. We close this section describing mechanisms to achieve
self-healing in public clouds.

68

Chapter 3.

3.4.1 Architecture and infrastructure

Several works propose architecture-oriented solutions to include self-healing mechanisms
into the cloud infrastructure.

Dai et al. were the first to formalize the terms self-diagnosed and self-healing in the
cloud computing context [35]. They propose a system based on consequence-oriented
diagnosis in which failures effects are diagnosed (predicted) from the failures in the
system (symptoms). A self-diagnostic system is able to detect errors and determine
their severity level. Then, according to these parameters, the self-healing system can
decide to apply different healing procedures for recovering. For example, minor errors
would require a report providing the diagnostic and the consequences of current errors.
Major or catastrophic failures would require actions with a bigger impact on the system,
such as a full reboot. Moreover, using Näıve Bayes Classifiers, Dai et al. propose a
system that can learn and predict errors before they occur, avoiding the degradation of
the system in the event of failures. This is the principal difference with our proposal,
which cannot predict system behaviors. However, Dai et al. do not clarify how the
healing mechanisms can be implemented on IaaS and PaaS services, or how intrusive it
would be in the application description to allow this infrastructure to register and to
learn and analyze applications.

In this same line, in [56], Singh Gill et al. present RADAR. RADAR is a complete
architecture that integrates cloud infrastructure with a comprehensive monitoring sys-
tem to detect and predict failures in the resources, together with mechanisms for the
execution of corresponding recovery processes. RADAR also includes mechanisms for
the monitoring of the behavior, the performance, and workload of an application and
its environment, detecting violations of QoS and SLA requirements. Thus, the self-
configuring system adapts the resources to the application’s requirements. RADAR can
analyze the workload of applications to reconfigure them in case of need and minimize
usage to optimize the costs. This is similar to what orchestrators such as SeaClouds
(see Section 3.2.5) can do. However, it is necessary to detail the characteristics and
restrictions of the application, which need to be updated when modifications of the ap-
plication, such as the usage of new resources or the migration of some components, take
place. This means that the automatic changes by the self-healing system and the manual
updates of these restrictions need to be synchronized. The decoupling of these two parts
in one of the main challenges addressed by our proposal.

In [112], Satck et al. present self-healing as a useful technique to achieve continuous
availability, since it requires failures detection, diagnostic, and recovering to maintain
working systems. They propose a distributed solution based on a master-slave archi-
tecture to enable flexibility and high availability for a cloud system. Low layers inspect
the status of the associated local components, such as cloud resources, and gather and
send their status (KeepAlive messages) using an asynchronous messaging system (e.g.,
RabbitMq). Then, the system status is received by a higher layer that analyzes this
information to detect failures. If errors are diagnosed, then recovery operations are
applied, such as destroying or reprovisioning VMs. This solution focuses on what its
authors call self-organization and self-management (SOSM), but this approach can only

69

3.4. Self-Healing

manage information and process the resources from an infrastructure’s point of view, it
cannot operate to solve errors maintaining the integrity of applications. Their proposal
is therefore limited to IaaS approaches.

These solutions typically come with evaluations in which cloud environments are
simulated, and using different workloads to evaluate their efficiency, reliability, and re-
silience, and how recovery plans allow them to react to foreseen failures. However, they
do not evaluate unforeseen errors in the infrastructure or application layers. We have
done so with no difficulty, since we use our trans-cloud monitoring system to automat-
ically trigger a recovery. Moreover, their system can only observe and detect failures
once applications have been deployed and they are running. Conversely, our proposal
covers the entire applications lifecycle, allowing to react and repair failures during the
deployment process as well, improving the robustness and fault-tolerance of application
management.

Apache Mesos [59] provides a scalable and efficient system to build large clusters
and deploy distributed and scalable frameworks, such as Hadoop, Kafka or even Ku-
bernetes, using a master-slave architecture. Master processes manage slave daemons
running on each cluster node, and frameworks that run tasks on these slaves. Thus, a
fault-tolerance system is critical to maintain the masters’ health and reliability, since all
the frameworks running depend on them. Mesos creates hot-standby masters managed
with Zookeeper, which are ready to recover the status of the cluster’s master when one
of them fails. When a failure occurs, Mesos notifies the framework’s scheduler to react
to it. For example, Kafka could require to update a slave process to ensure its own fault-
tolerance system. Like masters, slave resources are also constantly monitored, to detect
and react to failures. In the latest available version of Mesos, some periodic health-check
messages are broadcasted, and if failures are found, repairing policies are applied. The
repairing available operations go from the restarting to the re-provisioning of infrastruc-
ture resources. Mesos goes one step further than previous solutions since it can manage
foreseen and unforeseen failures in the infrastructure, like our proposal. Moreover, it
presents mechanisms to notify infrastructure errors to the application process. This al-
lows frameworks to become preventive systems, reacting to external failures and prevent
errors, instead of being passive approaches that wait for infrastructure anomalies that
will cause failures inside their own systems. Then, Mesos can react to errors in running
resources and even applications, since it provides support for frameworks to carry out
their own self-healing policies. However, this requires applications to be customized to
adapt to Mesos’ lifecycle.

Other solutions, such as the ones proposed in [117, 80], follow a less intrusive ap-
proach. Instead of improving the resource providers or managers and instrumentalize
the resources to check and share their status, they apply a passive inspection based on
log analysis. These solutions are not predictive and they can only react to errors that
have already happened, like our proposal, to apply some recovery operations. However,
logs analysis reduces the effort necessary for system analysis, since it does not require
adding to applications or to infrastructure custom status producer or collector to have
an overall view of the current system’s status. Moreover, it can delegate on well-known

70

Chapter 3.

systems, such as Splunk1 or Fluentd,2 to efficiently collect and index logs in distributed
systems. These solutions present a different scope than our proposal, since they are
designed to work with IaaS infrastructures, given that they have to inspect machines
to extract logs traces. In fact, they are suitable to be applied to on-premise infrastruc-
tures, but it seems difficult to deal with a multi-cloud environment, since a centralized
log collector would have to receive the log traces of the cross-cloud system, increasing
the traffic network and having a significant impact on its cost.

3.4.2 Application self-healing

In this section we discuss solutions that focus on providing self-healing mechanisms at
the application level.

In [1], Alhosban et al. argue that the generation of recovery plans at runtime is a
challenge due to the lack of capabilities of systems for self adaptation. They propose a
solution based on two techniques. The first one is what authors call pre-recovery, in which
behavior, reliability and utility of each service are intercepted, stored, and analyzed to
assess the likelihood of fault occurrences. It allows to predict failures and unexpected
situations, and then generate plans to prevent and recover possible errors. The second
technique is post-recovery. Before running, applications are analyzed to detect their
failure points, and BPEL recovery plans are generated and stored. When failures happen,
exception handlers capture the errors and their context and they apply the static plans.
If the fault is not fixed, dynamic recovery plans are generated. These plans may vary
from ignoring the error to replacing the service or creating a passive replication in which
a replication of the failing component is created and its connections are moved to the new
copy step by step, until the old component can be stopped and released. The application
of these plans is evaluated depending on the degree of criticality and the priority of the
impacted parts of the system. As a result, the system can self-repair different situations
of running applications, like our proposal. However, this solution presents a better
capability to predict and identify the different kinds of errors to evaluate the impact
of the recovery process and run more or less intrusive operations according to the need
of the application. It can even use predefined static plans, something that our trans-
cloud self-healing mechanisms do not support. On the other hand, our proposal is able
to repair errors during the deployment of application services, what is an error-prone
phase, since it is when cloud resources are provisioned. Moreover, it presents level-
agnostic recovery mechanisms, to deal with failures in both IaaS and PaaS, whereas the
proposal by Alhosban et al. can only handle IaaS environments.

In [79], Li et al. propose a framework to decouple the failures management of infras-
tructure and application layers. When an application is deployed, their component and
resources are registered in a Health Manager, which decides the necessary monitoring
rules to configure the monitor mechanisms. According to these rules, the Health Manager
receives the notifications regarding applications and their status, using this information

1Splunk: https://www.splunk.com/.
2Fluentd: https://www.fluentd.org/.

71

https://www.splunk.com/
https://www.fluentd.org/

3.4. Self-Healing

to find errors. When failures are detected, the Recovery Service is in charge of finding
and running a recovery plan. Following a general scheme, a solution for OpenStack is
provided, which uses a well-known enterprise monitor product to analyze and notify the
status of applications and their components. This architecture is similar to our proposal
in which the orchestrator is in charge of deploying and managing applications, what
allows us to observe the status of applications by means of our trans-cloud monitoring
mechanisms. Then, this information is processed by the orchestrator, and, if failures are
detected, a recovery plan is requested to the Analyzer Manager, which then sends the
needed repairing operations to the orchestrator. Taking advantage of the trans-cloud’s
monitoring capabilities, our proposal can observe the earliest stages of the applications’
lifecycle, such as provisioning, what allows to detect and then recover from failures even
before applications are completely deployed. Again, this is one of the key differences
with the proposal in [79]. Moreover, the proposed solution for OpenStack focuses on
management and recovery in IaaS, without considering PaaS, whereas our trans-cloud
solution covers both of them.

In [83], Magalhães et al. focus on self-healing in the web-application domain. They
present SHõWA, a framework that can detect performance anomalies in web-based ap-
plications and execute operations to repair them. Aspect-Oriented-Programming-based
sensors are added to the applications to intercept transactions and collect information
at two different granularity levels. The first one is what authors call user-transaction,
and it offers measures of the response times of servers and information on the status
of resources, memory, open files, and current threads. The second one is the profiling,
and it offers an abstract view of the behavior of applications, including a tracing profile
of transaction call-paths, transaction chaining, and interactions between the application
components. This is similar to the information provided in AppDynamics,1 where it is
called Business Transactions. Then, this information is collected and used to analyze
and find workload variations and performance anomalies in order to detect both failures
and performance-faulty scenarios, in which application components can provide correct
outputs but with a low performance. The detection and reparation of the performance
degradation cannot only prevent failures, but it can improves the elasticity of the system.
This solution can also be applied to other architectures, such as micro-services-oriented
applications, since transactions can be captured with non-intrusive mechanisms, as in
our trans-cloud approach. Magalhães et al. use on-premise infrastructure based on Open
Nebula in their test scenarios, but our guess is that the approach could also be applied
to multi-cloud environments. However, even if monitoring mechanisms were added to
the application, it seems complicated to extend the approach to PaaS because the use in
PaaS of push-oriented solutions makes difficult to provide information on transactions.
Moreover, the information on user transactions could be spread, since the PaaS infras-
tructure uses its own dynamic mechanisms to provision resources, e.g., container-based
solutions. This makes, a priori, very complicated the provision of reliable information
on user transactions.

The above mentioned approaches provide valuable solutions for self-healing that share

1AppDynamics: https://docs.appdynamics.com/display/PRO45/Business+Transactions.

72

https://docs.appdynamics.com/display/PRO45/Business+Transactions

Chapter 3.

some features with our trans-cloud solution. However, none of them is able to manage
both IaaS and PaaS services as our trans-cloud solution does. None of them uses profiles
to describe applications, what means that applications have to stick some specific struc-
ture or requirements set to allow self-healing solutions to be aware of applications and to
extract the needed knowledge to manage and repair them, which can reduce the appli-
cations portability. Our trans-cloud approach requires the use of a TOSCA description,
which allows avoiding vendor lock-in problems, and offers a transparent and agnostic
monitoring mechanisms. Furthermore, it also allows covering the complete application
lifecycle since our solution can apply its self-healing mechanisms at its earliest phases,
e.g., during application deployment.

We wrap up this section with a final comment on the orchestrator-based solutions dis-
cussed in Section 3.2. For example, SeaClouds allows users to describe applications and
their SLA and QoS requirements using TOSCA. Then, the orchestrator tries to discover
the best distribution in cloud environment to deploy applications. Moreover, observabil-
ity mechanisms inspect the performance of applications and resources, and if requirement
violations or failures are detected, a new distribution is proposed to re-deploy the appli-
cation to fit resources to requirements or solve errors. Similar mechanisms are proposed
in MODAClouds, since applications are monitored to detect anomalies in their behav-
ior. However, these solutions cannot be considered as self-repairing, since they require
of some human intervention to decide and approve the changes proposed by the orches-
trators. However, definitively they can deploy applications and monitor them to detect
failures and then proposing some repairing operations.

The last versions of TOSCA standard have included specifications for the definition
of reactive interfaces that can emit messages. Taking advantage of this, Node Types
can include observability-oriented interfaces to share the current status of components
and throw different kinds of messages when failures happen. Then, reactive and asyn-
chronous systems may receive these notifications and they can react to failures and
unexpected situations. As a result, imperative and declarative management plans can
identify and operate affected topology parts to recover applications. These features are
key to normalize self-healing mechanisms in a TOSCA-compliant orchestrator. How-
ever, this requires the instrumentalization of the application’s components to provide
the expected event behavior. Moreover, this technology has to be compatible with the
different cloud resources where the application’s components will run. The application’s
topology also needs to be modified, by including the Node Types’ extensions to support
the monitoring interfaces, which have to be compatible with the orchestrator’s notifica-
tion manager. The self-healing mechanisms proposed in this thesis try to deal with some
of these challenges by means of a decoupled and modular architecture. Monitoring tasks
are delegated to our trans-cloud’s observability infrastructure, which is able to inspect
resources in both IaaS and PaaS environments. Moreover, the orchestrator is in charge
of inspecting the application’s status, and if failures are detected, a recovery plan is
requested via HTTP to an external and agnostic manager, which only needs the agnos-
tic application model and the current status to plan the needed repairing operations.
These instructions are then sent to the orchestrator, which applies them to recover the

73

3.5. Containers, the vendor lock-in’s chimera

application. As conclusion, our proposal allows to define agnostic applications which do
not need to be aware of the adaptation facilities to take advantage of the self-healing
features.

3.4.3 Commercial solutions

Some of the current commercial clouds include mechanisms to detect failures in their
hardware, such as issues related to the network, disk or solid storage, and memory. The
different platforms use self-healing solutions to solve these problems, keeping users un-
aware of these problems, whose systems should not be affected. Furthermore, as already
mentioned, during recent years public clouds have incorporated self-healing mechanisms
to their public catalogs, what allows users to incorporate self-healing techniques to mon-
itor and repair their own applications running on such cloud platforms.

AWS offers several recovering mechanisms. It allows to set up CloudWatch1 alarms
based on a set of predefined EC2 instance metrics. With this mechanism active, users
are notified when events happen, or they can directly trigger recovery plans to repair
applications. However, the operations that can be performed are limited to stopping,
terminating, and rebooting the corresponding machines. Moreover, only specific kinds of
instances can be repaired, and they can only be operated through the AWS OpsWorks
console, what limits the possibility of external systems, like orchestrators or delivery
tools, to take advantage of such self-healing features. A new kind of self-repairing mech-
anism, called Host Recovery, was recently announced. It allows Amazon EC2 systems
to automatically restart instances on new hosts when unexpected hardware failures hap-
pen. However, this functionality is only available for a concrete kind of machines called
Dedicated Hosts.

Azure uses health checks to detect when instances fail, and then can apply recovery
operations. Moreover, Azure does not only react to failures, errors are stored and used to
learn about the system’s behavior. Then, heuristics can be applied to predict imminent
failures. This allows users to adopt more proactive approaches to deal with unforeseen
failures and repair them even before happening. Furthermore, diagnosis tools can also
help users to analyze the behavior of their systems over time in order to detect system
degradations and identify their root causes.

Google Cloud also uses health check mechanisms to determine if VM instances are
responding as expected. They are used to maintain the high availability of instance
groups, but they also allow detecting failures in VM instances and apply some repairing
operations. A similar solution is offered by Alibaba Cloud.

3.5 Containers, the vendor lock-in’s chimera

Container-based technologies are not supported by the current trans-cloud implemen-
tation. However, it is worth including them in the present discussion on related work.

1CloudWatch: https://aws.amazon.com/es/cloudwatch/.

74

https://aws.amazon.com/es/cloudwatch/

Chapter 3.

Although containers have emerged very recently, it is nowadays one of the most pop-
ular technologies, and offer significant progress on some of the issues related to the
vendor lock-in problem. In what follows, we discuss on how portability, migration, and
self-healing are handled on both domains.

3.5.1 Portability of container-based applications

Containers allow isolating applications and their functional dependencies as portable
pieces using a layered strategy over containers. They can be executed in any system
supporting the container technology, for example, Docker, ensuring that both the appli-
cation and its dependencies will be installed and properly configured. This is a real and
effective breakthrough in terms of portability, since container technologies are supported
practically by every computing resource or service. For example, Docker can be installed
in bare-metal or virtual machines in on-premise and cloud infrastructure (IaaS); even
some PaaS providers, such as Heroku, also support the deployment of Docker.

Moreover, its encapsulation and portability capabilities offer developers a repro-
ducible execution environment, which is an effective opportunity to build, run and test
applications as in production environments. As a result, the configuration effort to adapt
applications to different environments is reduced, simplifying the definition and main-
tenance of applications’ lifecycle procedures such as the deployment. Indeed, some of
the portability solutions described in previous sections integrate support for Docker, as
a way to maximize their portability — this is the case of jClouds and Brooklyn,1 and
OpenTOSCA.

A container represents a runnable unit, but normally cloud applications are not
monolithic systems (see, e.g., [108, 93]). This perfectly matches with containers, since the
idea behind this technology is to have each component, or a small set of them, isolated in
each container, what can improve the maintenance and performance of applications [118].
For instance, it allows to maintain a relation between delivery tasks and the different
parts of the system, simplifying the deployment and management processes. Moreover,
the different parts of the system can be configured according to their own requirements.
For example, some components or modules of the system would require more resources
or scalability than other parts, or they may need some specific security configuration to
provide their services.

As already said, container-based approaches might be a key step in the way to deal
with portability problems. However, current solutions still present some limitations
since the revisit problems regarding application’s components orchestration, as some
authors have already pointed out [22, 95, 103]. For example, Docker is able to run
portable application components, as containers that can be configured with complete
specifications, indicating, for example, open ports, volumes, and even commands to be
run. However, it is not easy to operate the component or components that a container
contains while it is being deployed. Moreover, although each container contains a part of
the application, the information on which components are allocated in each container is

1Clocker is a Brooklyn distribution to work with containers (http://www.clocker.io/).

75

http://www.clocker.io/

3.5. Containers, the vendor lock-in’s chimera

not explicit, which makes difficult to identify relations between containers to preserve the
relations of the application’s components. As Brogi et al. pointed out in [22], containers
are black-boxes. As a result, managing applications as a whole to deploy, update, audit
and configure them is still a challenge that is being currently studied.

Docker Compose1 allows an application to be specified as a set of containers that
are bounded by on-demand virtual network resources. However, although Docker Com-
pose analyzes the application’s descriptions and creates the containers that form an
application respecting their dependencies, its orchestration capacity is limited, since
the relations between the application’s components can only be expressed in terms of
containers’ bindings, what makes difficult the orchestration of application’s components.

Elastic container platforms solutions as Docker Swarm and Kubernetes offer solu-
tions for the management of containers, facilitating the orchestration and clustering of
applications. For example, Docker Swarm2 allows Docker containers to be created and
distributed along clusters of Docker hosts. Moreover, Swarm automatizes the replication
and coordination of Docker containers and it offers network and load balancing capabil-
ities to connect containers and expose services to make them available externally to the
Swarm cluster.

Kubernetes also offers network and load balancing and exposition features, but it
goes one step further than Swarm by offering a complete ecosystem for the orchestration,
automated scheduling, and management of application containers. Kubernetes defines a
set of new concepts, such as Pod, Deployment and Jobs, to group and run containers in
different ways. For example, a pod is the minimal unit in Kubernetes, which represents
one or more containers that are deployed and managed together. Deployments allow
pods to be run and replicated. A deployment can be exposed as a network service by
means of a Service, which also includes other features such as load balancing, and it
can centralize the handling of network issues as network policies. Kubernetes defines
a comprehensive model to describe different elements, which are written in files called
manifests. Manifests are key for container portability: a manifest can contain one or
more Kubernetes objects, and they can be deployed on any Kubernetes instance. Then,
since Kubernetes is available in practically every cloud vendor and it can be installed over
on-premise infrastructures, using for example OpenStack or Apache Mesos, applications
expressed and adapted to Kubernetes can be deployed practically everywhere.

Nonetheless, Kubernetes does not provide a way to orchestrate the deployment of
manifests, to maintain applications or other systems’ relations or dependencies. This
has to been handled by deployment tools such as Ansible or delivery pipelines such as
Bamboo3 and Jenkins4.

Different proposals try to solve these issues. For example, Helm5 defines a templating
and dependencies system to generate manifests and package them as Charts. So each
applications’ components can create its own charts to public their manifests. Moreover,

1Docker Compose: https://docs.docker.com/compose.
2Docker Swarm: https://docs.docker.com/engine/swarm.
3Bamboo: https://www.atlassian.com/software/bamboo.
4Jenkins: https://www.jenkins.io/.
5Helm: https://helm.sh/.

76

https://docs.docker.com/compose
https://docs.docker.com/engine/swarm
https://www.atlassian.com/software/bamboo
https://www.jenkins.io/
https://helm.sh/

Chapter 3.

charts can be related between them, so a chart can explicitly declare dependencies with
others. However, these relations are managed in terms of inclusions, similar to depen-
dencies between libraries: when a component has a dependency with another chart, the
manifest of the target chart is added as part of the manifest of the source component. At
the end, they only represent a potentially deployable application artifact that contains
all needed manifests of an application’s components, such as Deployments and Services.

Helm can run manifests on Kubernetes clusters, but charts gather their manifests and
their dependencies, and they do not offer an application model. As a result, Helm cannot
orchestrate manifests using an application’s topology and the components’ requirements.

As discussed in works like [22, 95, 103], Swarm, Kubernetes, and Docker Compose
have some limitations, since in them software components are packaged as containers,
and the extraction of runtime models of the topology of applications is cumbersome.
Indeed, it can be even more difficult when manifests are involved, what challenges tasks
such as the management of multi-component applications or multi-cloud runtime migra-
tion.

Some work is currently being carried out on these challenges. To deal with the lack
of topology in container contexts, some authors have proposed solutions relying on the
TOSCA standard. In [95], Pahl proposes a solution for the orchestration of complex ap-
plications’ stacks based on TOSCA, to create topologies independent of service suppliers,
cloud providers and agnostic topologies.

In [22], Brogi et al. envision a TOSCA-based combination with Docker like a method
to enhance the capability to extract the complete description of complex applications in
order to allow orchestrators to have a better management of multi-cloud environments.
They define new TOSCA types, nodes, artifacts, and relationships to support the con-
tainer domain in topology descriptions. All of these elements are supported by their
system TOSKER, an engine that can process application topologies to orchestrate ap-
plications’ components over Docker installations on different target providers. Moreover,
using their own management protocol, TOSKER is able to infer the needed operations
to generate declarative workflows.

Some other works try to use TOSCA models to improve Docker’s orchestration capa-
bilities [66, 116]. Indeed, the TOSCA standard itself has recently incorporated changes
in the profiling for the integration of container-based technologies.

None of these solutions supports the orchestration of Kubernetes manifests, which
currently is one of the most important Docker-based solutions. In 2019, the OAM stan-
dard1 emerged to try to provide a solution for this. Like TOSCA, OAM defines concepts
for components, application topology manifests and relations as part of its agnostic ap-
plication model, which is based on a YAML profile. In OAM, every Kubernetes cluster is
different, since they can use different object versions or even different object implementa-
tions, so the agnostic models allow developers to decouple their applications from these
environment details. The agnostic models are transformed into concrete application de-
scriptions according to the target Kubernetes cluster. OAM defines Traits in its model
as the way to specify environment requirements, properties, and characteristics, what

1OAM: https://oam.dev/.

77

https://oam.dev/

3.5. Containers, the vendor lock-in’s chimera

are used to generate final deployable resources. Although traits are also agnostic from
the developers’ point of view, they have to be included and supported by infrastructure
operators, to ensure that applications can be deployed in a concrete environment.

3.5.2 Runtime migration of container-based applications

Although, as discussed in Section 3.3.2, currently there is no solution for the runtime
migration of cloud applications, the use of containers may present some advances on this
topic.

Most of the current container-based solutions manage containers as isolated pieces
that are not part of an application’s topology, so they can easily be destroyed and
recreated in a Docker-based system. For example, orchestrators such as Kubernetes and
Swarm allow the runtime movement of containers, although with some limitations.

Kubernetes clusters are built over a set of hosts, which can be virtualized on phys-
ical machines, containers (see Apache Mesos), or instances hosted on different cloud
providers. Thus, a cluster installation can be built using different kinds of resources
running across different systems in the same time than using on-premise infrastructure
to running VM instances on different cloud providers.

Kubernetes allows hosts to be labeled, for example to separate resources according
to their different purposes. For, example, hosts could be reserved and labeled depending
on whether they are for internal operations of the cluster, for tests, or even for mon-
itoring purposes, while other kinds of hosts could be in charge of running production
applications. Then, these labels can be used by the manifests to indicate in which set
of hosts of the clusters the Kubernetes objects have to be deployed. For example, a
manifest can use these labels to deploy a job in the set of hosts for running production
applications. Thanks to this capability, it is possible to use hosts allocated on different
locations or even cloud providers. For example, a cluster could be formed by a set of
nodes in AWS and others in Azure, or even in on-premise infrastructure. Using labels,
users could indicate in their manifests in which cloud to deploy their applications, having
something similar to a multi-cloud environment.

Moreover, while pods are running, Kubernetes can be requested to re-create them
using different hosts to run the containers. Then, Kubernetes will create new pods and
delete old ones progressively, while routing the pods requests and maintaining the load
balancing. In this way, Kubernetes allows the migration of application components at
runtime. However, the decision is limited to current cluster’s hosts. For example, let us
suppose a cluster composed by VMs in AWS and Softlayer. If we needed to move some
deployed containers to a new provider, such as Google Cloud, some actions would be
required. First, new hosts have to be provisioned and configured in Google. Then, these
hosts should be added to the cluster, what requires some operational tasks, that has a
significant impact on the performance of the cluster. Because of this, an important effort
and non-agile process is needed to migrate containers to new providers in Kubernetes.

This possibility is exploited by Kratzke in [73]. This proposal provides a proto-
type tool to dynamically manage Swarm and Kubernetes clusters running in on-premise
OpenStack-based infrastructure to resize them, adding new resources of public vendors,

78

Chapter 3.

such as AWS EC2 and Google Compute Engine. Kratzke concludes that this process is
a complex and challenging engineering task. In fact, what is even more difficult is to
manually carry out the process due to the operational complexity of the tasks involved.

Moreover, it seems complicated to justify the need of adding hosts from a new ven-
dor to a Kubernetes cluster due to functional requirements. Kubernetes always offers
the same functionalities and the same isolated execution environment regardless of the
hosts or vendors the containers are running, decoupling the cluster’s behavior to spe-
cific functionality of a hosting system, such as clouds’ add-ons or other specific features.
However, non-functional-requirements could justify the use of a concrete set of nodes,
for example, to take advantage of solid-storage.

In [103], Quint et al. propose the use of applications’ agnostic topologies in the con-
tainer scope, separating topology descriptions from the specification of the container-
based platforms where they were to be deployed. For it, they define a complete DSL for
applications’ descriptions and propose an orchestrator to deploy applications on multi-
cloud environments independently of the used elastic container platforms. Using this
container-based framework, they provide support for the migration of runtime environ-
ments, that is, application migration between different providers in the container scope.
However, they only consider the migration of entire applications, not being able to mi-
grate individual components.

All previous solutions rely on the capabilities of current clusters such as Kubernetes
and Swarm. In [46], Elliott et al. propose a totally agnostic solution based on an
external orchestrator, that uses adapters to interact with Docker systems running on
cloud providers and form their own orchestrated clusters. The approach offers a custom
profiling to describe components inside containers. Once applications are running, the
orchestrator allows to perform live migration requests to move components between hosts
in the clusters. The migration protocol can move even stateful containers. However,
despite the novel approach and interesting ideas, it does not present a real orchestration
of containers, and no solution is provided for the addition of elements to clusters, what
is a critical part, as described in [73].

3.5.3 Self-healing container-based applications

Current container environments present useful features to develop self-healing mecha-
nisms. Containers contain a part of a system and the needed environment to run, and
current technologies allow to rapidly recreate them. So, if there would be a mechanism
to detect failures in containers, they could be easily recreated in order to fix such issues.

Current orchestrators such as Kubernetes and Swarm include observability hooks to
check the container status and to operate on them if needed. For example, the manifest
of a Kubernetes deployment allows to describe operations to check when the container
deployment has been completed (readiness) and check periodically if the container is
running correctly (liveness). Some retry or recreation policies can be specified if these
indicators show errors. In this case, Kubernetes will be in charge of checking the con-
tainers status and if failures happen during building, or once the application is running,
Kubernetes can remove the wrong container and create a new one.

79

3.5. Containers, the vendor lock-in’s chimera

Self-healing actions are part of manifests, what confirms the idea of manifests as
self-contained units that have all the needed information for containers to be executed.
However, as we have already seen, the lack of an application model to express applications
as a whole has also a significant impact here, since it makes difficult to identify what
containers or Kubernetes objects are connected and which are the relations between
them. As a result, manifests have the needed information to recover failures in a concrete
part of the system, but the impact on the rest of the application is not either measured
nor managed, what would have more complex implications. Indeed, this is one of the
questions we solved in the context of our work.

Once failures are detected, Kubernetes applies policies to easily carry out rolling-
restart or even roll-out operations. However, manifests must include the concrete op-
erations to check the containers status, what can go from an HTTP request to an ap-
plications’ endpoint to call some element inside the container, such as a descriptor file.
In summary, containers and applications’ components must provide information on the
way to be audited.

Orchestrators such as Kubernetes and Swarm can also react to failures in their own
infrastructure. These orchestrators check worker node’s liveness to monitor the cluster
status. Thus, if one of the worker hosts fails, its container may be recreated in another
worker node, or even restarted in the same worker after recovering from the failure in the
worker. This is a key improvement in the resilience of container orchestrators since they
can recover both application components and the environment where they are running.
Health check mechanisms are used internally to maintain the Kubernetes clusters, which
are offered to the clients in public clouds such as AWS and Google.

Orchestrators are not the only way to achieve recovery mechanisms, some standards
also incorporate them in their specifications. As discussed in Section 3.4, the TOSCA
standard provides ways to observe components status to react to failures and apply
recovery processes. These features can also be used to manage simple containers as part
of TOSCA application topologies. However, the problem is the same already mentioned
above: the development of recovery plans is difficult and it has to be maintained together
with the application’s topology. The OAM standard is also developing generic and
portable mechanisms to check the health of applications by means of Traits, but no
stable solution has yet been added to the specification of the standard.

80

Chapter 4. Conclusions and
Future Work

4.1 Conclusions

In this thesis we have analyzed the vendor lock-in problems and its impact on the
development and management of applications in the cloud. First, developers have to
choose a cloud, or even a set of them, according to their applications’ requirements,
what means that they have to drive the design of their applications to the restrictions
of the target clouds. Therefore, the heterogeneity of providers and the services they
offer make things very difficult, and applications end up being developed in agreement
to the restrictions of the concrete services chosen. Furthermore, the lack of services
normalization drastically limits the portability between providers. Indeed, portability
is a problem even between different abstraction levels inside the same platform, e.g.,
between EC2 and Elastic Beanstalk, the IaaS and PaaS offerings of AWS.

A tight relationship between applications and the cloud is necessary to run and
optimize applications, but it is also a limitation in their operation. Indeed, changes can
happen in applications and in the cloud environments they are deployed on, which may
require changes in the used cloud resources to restore their functional and non-functional
requirements. However, the effort and cost needed to carry out the modification of
applications to adapt to the changes required to use different services or new providers
can become very high. Sometimes developers cannot spend the needed resources to
satisfactorily adapt their applications, and, as a result, users cannot react on time,
having their systems locked in the cloud environments where they are running.

For all this, being agile and reacting to changes by using new cloud providers or new
kinds of services is not always easy for developers. Moreover, it is even more complicated
carrying on such changes when applications are already in production, because then it is
necessary to move components and re-deploy them using new services while applications
are in operation and offering their services.

To deal with these problems, in this thesis we have presented the trans-cloud ap-
proach as an abstraction for cloud management that hides the diversity and complexity
of the cloud and offers to developers a unique way to interact with cloud providers and
manage their applications. Trans-clouds extends the cross-cloud application deployment
and management by supporting the portability and interoperability of application mod-

81

4.1. Conclusions

ules between different providers and at different levels. We have done so by developing
of a common API to unify the management of IaaS and PaaS cloud services, making
their use completely uniform. The trans-cloud infrastructure allows us to isolate the
application development from cloud providers, allowing developers to develop portable
applications, that can be deployed on the IaaS and PaaS services of different vendors
without changing their applications, and without having to deal with the custom delivery
process of each specific platform.

We have proposed a TOSCA-based agnostic modeling of applications and cloud ser-
vices, which allows us to specify the characteristics and requirements of any system to be
deployed in the cloud. The have shown how the standardised description of applications
and cloud resources, and the homogenous service API, significantly reduce the portabil-
ity and interoperability issues related to the vendor lock-in, facilitating the reusability of
cloud services. Furthermore, having an agnostic model of our system greatly simplifies
migration and decision change. Indeed, with our approach, each component may be
deployed at one level or the other just by changing its location. It is worth noting that
the proposed thesis project is not an implementation exercise on an existing deployment
tool, but an innovative general approach to ease the cloud deployment of applications,
enforcing the independence of both cloud providers and cloud models.

We have developed an operational prototype built on the well-established Apache
Brooklyn tool in order to test our trans-cloud ideas. Brooklyn provides support for
a large number of IaaS providers by means of jClouds and a complex engine to man-
age the applications’ lifecycles in cloud contexts. Thanks to our efforts in integrating
Cloud Foundry into Brooklyn, it now also provides access to PaaS Cloud-Foundry-based
providers such as Pivotal Web Services and Bluemix. Developers can deploy their appli-
cations using IaaS and PaaS without modifying any of their delivery process configura-
tions, any cloud integration or any aspect of their applications. They only have to modify
the target locations in the TOSCA application descriptions, what means a significant
reduction of the effort in the adaptation to reach different providers and abstractions
levels.

Having an agnostic model of our system does not only greatly simplifies deploy-
ment, but it also simplifies the decision about what providers can be used to run an
application, since the limitation and the complexity of using different providers is dra-
matically reduced. Indeed, the decoupling between the application definition and the
target providers to use to deploy it that we have in our approach makes it possible to
specify the service type and provider on which each component is to be deployed inde-
pendently of the rest of the components just by specifying its target location. Then, the
underlying management tool is in charge of the required provisioning and interoperation.
The development and the results of our trans-cloud proposal are described in [25, 31].

Trans-cloud allows developers to react to change, by designing and deploying their
applications using different vendors and abstraction levels. However, being agile and
adapting systems become more difficult when applications are in production [29], In
these scenarios, we could deploy the new version of the entire application while the old
one is offering its services. Once all the components have been deployed and connected,

82

Chapter 4.

the new application instance would start providing its services. Then, the old application
may be released. This procedure minimizes downtimes, because the transition to the
migrated application only involves the final switching to use the new services. However,
this does not seem an optimal process, since it replicates the application entirely, which
implies the duplication of all the resources used by the application, even application
components that do not need to be migrated. To optimize its efficiency while minimizing
its downtime, we have proposed a procedure in which we detect the minimum part of
the application that needs to be handled to apply the required changes. Moreover,
we propose a unique generic process to manage applications and cloud providers, thus
facilitating the response if something changes. The key to this is that it does not need
a custom delivery-adaptation process to operate each application and cloud resources
when something changes.

As a solution to these problems, in this work we have developed a migration orches-
trator in the context of our trans-cloud framework, taking advantage of its management
of IaaS and PaaS. The orchestrator allows the concurrent migration of multiple com-
ponents of an application, and it only needs the target locations of the components to
be migrated, independently of the service level used both in the source and the tar-
get providers. Thus, the proposed component-wise migration orchestrator is vendor,
technology, and service-level agnostic.

The migration process is fully automated, and is available on an extended version of
Apache Brooklyn. As the rest of the trans-cloud framework, the orchestrator relies on a
TOSCA specification of the application being managed. Indeed, this specification is the
same one used for the initial deployment of the application. The only required external
intervention to carry out the migration is just a migration request to initialize the process
and the specification of the target locations of the components to be migrated.

As the analysis of the migration algorithm shows, it provides a migration mechanism
that fulfils the described goals. The effort of the user to perform a migration operation
is almost zero, just selecting the components to move and their target locations from
the catalog of available services. Notice that there is, of course, an initial effort for the
specification of the TOSCA description of the application.

In [30, 29, 32], we have presented the progression of our work, in consecutive steps
enabling parallelization to generalize and optimize the migration process. Moreover,
these works show that the application downtimes have been significantly reduced. Al-
though we cannot say that it has been reduced to its minimum, we have argued that the
algorithm was designed so that all operations that could be carried out in background,
either before or after the downtime, are. Furthermore, the migration algorithm ensures
the integrity of the application during its migration. At the same time, the generalization
and optimization of the process reduces the impact on the application’s performance,
allowing developers to be agile and react to changes in the cloud, minimizing the needed
effort in the operational tasks to reach new providers and kinds of services.

Neither the trans-cloud infrastructure nor its extension for migration were designed
to provide robustness to the applications it manages. However, the system was fur-
ther extended in [20] to provide self-healing mechanisms for trans-cloud applications

83

4.1. Conclusions

with the additional goal of doing so while minimizing downtimes and instability. This
work provides to users facilities that support the automated management of foreseen
and unforeseen failures, in scenarios where applications components may be running on
different platforms and abstraction levels (IaaS or PaaS).

The trans-cloud extension presented in [20] analyzes the status of the application
along its entire lifecycle, checking if its progression is the expected one. Upon the
occurrence of a failure, the trans-cloud infrastructure is able to recognize the error, and
recover the needed information about the current application status. Then, using this
information, the orchestrator is able to compose a plan with the needed operations to
fix the process to accomplish the expected goals.

This ensures that the different phases of the application lifecycle will be executed
with the expected results. For example, the deployment of an application always will end
with all the components running in the cloud, independently of the failures that happen
during the process, or if they are working on IaaS or PaaS. Moreover, the improvement in
fault tolerance has a positive impact on the predictability and quality of systems, because
it cannot only react to failures in the infrastructure, but it can also manage errors and
unexpected situations related to the application itself. For example, developers would
see how their systems react and they are operated to fix concrete failures, such as system
breakdowns due to overloads, or even cyclic errors related to design problems, such as
memory leaks in which the application will breakdown recurrently until the error is fixed.

All of the aforementioned characteristics of trans-cloud have been added to the pro-
totypes that have been used to check our work and analyze its viability and performance.
The implementation has been extensively tested, as you can see in the papers that sup-
port this thesis.

In conclusion, trans-cloud provides functionalities and capabilities to deal with many
issues related with vendor lock-in, providing users robust and flexible mechanisms to de-
ploy and manage their applications, react to changes, and ensure their systems’ behavior
in a heterogeneous cloud environment, decoupling them from vendor details and com-
plexity. Therefore, this decoupling offers to developers a way to deal with QoS and SLA
questions, and the flexibility of changing their applications to reach new providers if
some improvements or optimizations of the non-functional requirements are needed.

The unification of the management of cloud providers seems the correct way to deal
with vendor lock-in issues, what allows developers to get the most out of the cloud
capabilities. As discussed, this is something that has already been studied and carried
out in different proposals such as jClouds, Nucleus, etc., but each of them focuses on
a concrete abstraction level. We believe that the most important innovation of this
thesis is the unification of different abstraction levels to manage services and to describe
applications. This is possible thanks to the unification of the lifecycle’s of applications’
components, what is the basis on which the work on migration and self-healing is built.

84

Chapter 4.

4.2 Future work

In this work, we have presented the trans-cloud concept and its implementation as an
extension of Brooklyn. Indeed, there were several extensions: first to support the trans-
cloud deployment of applications, and then to support their migration and the definition
of robust processes. This progression is reflected in the papers that are part of the body
of this thesis, since all of them built on the previous ones. However trans-cloud is still
far from being finished, and much work remains ahead.

The first step of our plan is to analyze new providers in order to extend the supported
PaaS services and technologies. As a consequence, the current model will be extended
in order to integrate PaaS levels of new providers, such as Heroku and OpenShift. Due
to the providers heterogeneity, the new providers have to be carefully analyzed in order
to elaborate on how they should be added to our approach.

The current version is mainly focused on back-end components based on pure Java
technologies. It would be interesting to support other languages, such as Python or
Kotlin, or even going a step further and managing technologies such as PHP or C#.

We also plan to study the possibility of using the flexibility and scalability mecha-
nisms available for PaaS to develop management policies to react to applications’ events.
It would allow users to decouple the definition of the flexibility of their systems from
that of the cloud specification.

We have shown that the effort of changing location targets is almost zero if the
proposed CAMP interface offers the location in its catalog. Of course, if we wanted to
use a location not in the catalog, it should be added before using it. Its addition would
require some effort, either by the owners of the interface or their clients. It is a limitation
that we cannot avoid. As a result, some development is needed to add new providers.
We plan to explore mechanisms to alleviate the required effort.

One of the main drawbacks of our proposal is that it requires a TOSCA specification
of the application to be managed, which requires having a deep knowledge about the
CAMP interface and TOSCA. A wizard for the development of topology specifications
may greatly help users.

The possible improvements of our proposal are not only possible extensions, some
processes of our system could also be enhanced. For example, one of the most im-
portant goals of this work has been to reduce downtimes as much as possible, since
downtimes, however small, always have an impact on the performance and the behavior
of applications. The last version of the migration orchestrator drastically reduces the
downtimes during the process, however, different techniques could be used to further
reduce them. For example, once new instances of the application’s components are cre-
ated, load balancers or proxies could be used to route the traffic of the connections from
old components to the new ones, further reducing the downtimes. However, this may
have a direct impact on the migration process, since it would require dealing with the
management of these new traffic orchestrators.

Another limitation of our work is related to the mutability of the application topology.
Our process allows the movement of the application’s components between different

85

4.2. Future work

providers and levels, but the orchestrator assumes that the topology of an application
does not change. Components cannot be added to or deleted from the original topology.
We plan to explore the possibility of handling topology change.

Our migration solution also has limitations The main one is that it can only migrate
stateless components. The initial load of data and the transfer of data to and from the
cloud is a hot research topic. Our solution assumes that no state needs to be transferred,
what allows us to focus on the stop, re-connection, and start/re-start of components.
As future work, we plan to study the migration of components with state. However, it
does not seem easy since the management of statefull components requires ensuring data
integrity. Data are normally very close to the application which produces and manages
them, and therefore, the migration of the data would need to know the behavior of ap-
plications, and, depending on the nature of the data and the applications, different kinds
of processes would be required. Indeed, downtimes can become unavoidable. Since the
decoupling of data and applications do not seem to be a straightforward improvement,
this hinders the creation of a generic process for migration of statefull components. We
plan to analyze this kind of problems, and we also plan to study the migration of dis-
tributed cloud databases, such as Cassandra, and the mechanisms it already provides to
support such operations.

The self-healing extension of trans-cloud also has some possible improvements. Re-
garding the architecture of the solution, the interaction between the management planner
and the trans-cloud deployer can be greatly improved. The integration of two pre-existing
components through an orchestrator allowed us to show the feasibility of the proposal,
but a tighter integration would improve the response times. For example, the use of
reactive technologies would simplify the orchestrator and their interaction, as the anal-
ysis of the current status system and their reaction to perform the plans. This change
would possibly have a minimal improvement on the system’s behavior, on the delay of
the operations, and on the data recollection, but it would be useful to carry out future
extensions of this module.

Possibly, one of the most interesting extensions of our proposal is on the robustness
of the migration process. Currently, when an error occurs during a migration process,
the task is aborted. Since components are provisioned during migration, and most errors
related to the handling of cloud applications occur during the provisioning of resources,
the current orchestrator has a high failure rate. We plan to extend the support for
self-healing applications to the migration process.

Although not a perfect solution, container technologies present several improvements
on portability and interoperability that allow to integrate the management of multiple
providers. Moreover, these technologies present several mechanisms, for example, to
collect information about container status, what can be useful to design robust systems.
However, as described, these technologies have some limitations regarding topology de-
scriptions, what limits the possibility to have flexible mechanisms to accomplish a stable
and generic migration process. We plan to carefully analyze the use of container-based
technologies to improve the possibilities of our work.

86

References

[1] Amal Alhosban, Khayyam Hashmi, Zaki Malik, and Brahim Medjahed. Self-
healing framework for cloud-based services. In ACS International Conference on
Computer Systems and Applications (AICCSA), pages 1–7. IEEE, 2013.

[2] Vasilios Andrikopoulos, Tobias Binz, Frank Leymann, and Steve Strauch. How to
adapt applications for the cloud environment. Computing, 95(6):493–535, 2013.

[3] Darko Androcec, Neven Vrcek, and Peep Kungas. Service-level interoperability
issues of platform as a service. In 11th IEEE World Congress on Services (SER-
VICES), pages 349–356. IEEE, 2015.

[4] Danilo Ardagna, Elisabetta Di Nitto, Giuliano Casale, et al. MODAClouds: A
model-driven approach for the design and execution of applications on multi-
ple clouds. In 4th International Workshop on Modeling in Software Engineering
(MISE), pages 50–56. IEEE, 2012.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. A view of cloud computing. Communications of the ACM, 53(4):50–
58, 2010.

[6] Dionysis Athanasopoulos, Miguel Barrientos, Leonardo Bartoloni, Antonio Brogi,
Mattia Buccarella, Jose Carrasco, Javier Cubo, Francesco D’Andria, Elisabetta Di
Nitto, Adrián Nieto, Marc Oriol, Ernesto Pimentel, and Simone Zenzaro. Sea-
Clouds: Agile management of complex applications across multiple heterogeneous
clouds. In Projects Showcase - Workshop of Software Technologies: Applications
and Foundations 2015 federation of conferences (STAF), pages 54–61. CEUR-
WS.org, 2015.

[7] Nick Bassiliades, Moisis Symeonidis, Panagiotis Gouvas, Efstratios Kontopoulos,
Georgios Meditskos, and Ioannis Vlahavas. PaaSport semantic model: An ontol-
ogy for a platform-as-a-service semantically interoperable marketplace. Data &
Knowledge Engineering, 113:81–115, 2018.

[8] Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank Leymann,
Alexander Nowak, and Sebastian Wagner. OpenTOSCA–a runtime for TOSCA-

87

Bibliography

based cloud applications. In 11th International Conference on Service-Oriented
Computing (ICSOC), pages 692–695. Springer, 2013.

[9] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. Migration
of enterprise applications to the cloud. it Information Technology, 56(3):106–111,
2014.

[10] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. TOSCA:
Portable automated deployment and management of cloud applications. In Ad-
vanced Web Services, pages 527–549. Springer, 2014.

[11] Tobias Binz, Frank Leymann, and David Schumm. CMotion: A framework for
migration of applications into and between clouds. In 2011 IEEE International
Conference on Service-Oriented Computing and Applications (SOCA), pages 1–4.
IEEE, 2011.

[12] Marcos Borges, Erick Barros, and Paulo Henrique Maia. Cloud restriction solver:
A refactoring-based approach to migrate applications to the cloud. Information
and Software Technology, 95:346–365, 2018.

[13] Nour El Houda Bouzerzour, Souad Ghazouani, and Yahya Slimani. A survey on
the service interoperability in cloud computing: Client-centric and provider-centric
perspectives. Software: Practice and Experience, 50(7):1025–1060, 2020.

[14] Fabienne Boyer, Olivier Gruber, and Damien Pous. Robust reconfigurations of
component assemblies. In 35th International Conference on Software Engineering,
(ICSE’13), pages 13–22. IEEE, 2013.

[15] Uwe Breitenbücher, Tobias Binz, Kálmán Képes, Oliver Kopp, Frank Leymann,
and Johannes Wettinger. Combining declarative and imperative cloud application
provisioning based on TOSCA. In 2014 IEEE International Conference on Cloud
Engineering, pages 87–96. IEEE, 2014.

[16] Antonio Brogi, Andrea Canciani, and Jacopo Soldani. Fault-aware management
protocols for multi-component applications. Journal of Systems and Software,
139:189–210, 2018.

[17] Antonio Brogi, Jose Carrasco, Javier Cubo, Francesco D’Andria, Elisabetta
Di Nitto, Michele Guerriero, Diego Pérez, Ernesto Pimentel, and Jacopo Soldani.
SeaClouds: An open reference architecture for multi-cloud governance. In 10th
European Conference Software Architecture (ECSA), pages 334–338, 2016.

[18] Antonio Brogi, Jose Carrasco, Javier Cubo, Francesco D’Andria, Ahmad Ibrahim,
Ernesto Pimentel, and Jacopo Soldani. EU project SeaClouds - adaptive man-
agement of service-based applications across multiple clouds. In 4th International
Conference on Cloud Computing and Services Science (CLOSER), pages 758–763.
SciTePress, 2014.

88

Chapter 4.

[19] Antonio Brogi, Jose Carrasco, Javier Cubo, Elisabetta Di Nitto, Francisco Durán,
Michela Fazzolari, Ahmad Ibrahim, Ernesto Pimentel, Jacopo Soldani, PengWei
Wang, and Francesco D’Andria. Adaptive management of applications across mul-
tiple clouds: The SeaClouds approach. CLEI Electronic Journal, 18(1), 2015.

[20] Antonio Brogi, Jose Carrasco, Francisco Durán, Ernesto Pimentel, and Jacopo Sol-
dani. Robust management of trans-cloud applications. In 12th IEEE International
Conference on Cloud Computing (CLOUD), pages 219–223. IEEE, 2019.

[21] Antonio Brogi, Ahmad Ibrahim, Jacopo Soldani, José Carrasco, Javier Cubo,
Ernesto Pimentel, and Francesco D’Andria. SeaClouds: A European project on
seamless management of multi-cloud applications. ACM SIGSOFT Software En-
gineering Notes, 39(1):1–4, 2014.

[22] Antonio Brogi, Luca Rinaldi, and Jacopo Soldani. TosKer: A synergy between
TOSCA and docker for orchestrating multicomponent applications. Software:
Practice and Experience, 48(11):2061–2079, 2018.

[23] Hugo Brunelière, Zakarea Alshara, Frederico Alvares, Jonathan Lejeune, and
Thomas Ledoux. A model-based architecture for autonomic and heterogeneous
cloud systems. In 8th International Conference on Cloud Computing and Services
Science (CLOSER), pages 201–212. SciTePress, 2018.

[24] Zhicheng Cai, Xiaoping Li, and Jatinder ND Gupta. Heuristics for provisioning
services to workflows in XaaS clouds. IEEE Transactions on Services Computing,
9(2):250–263, 2016.

[25] Jose Carrasco, Javier Cubo, Francisco Durán, and Ernesto Pimentel. Bidimen-
sional cross-cloud management with TOSCA and Brooklyn. In 9th IEEE Interna-
tional Conference on Cloud Computing (CLOUD), pages 951–955. IEEE, 2016.

[26] Jose Carrasco, Javier Cubo, and Ernesto Pimentel. Propuesta de metodoloǵıa
de despliegue de aplicaciones en nubes heterogéneas con TOSCA. In 19th Span-
ish Conference on Software Engineering and Databases (JISBD), pages 321–334.
Sistedes, 2014.

[27] Jose Carrasco, Javier Cubo, and Ernesto Pimentel. Towards a flexible deploy-
ment of multi-cloud applications based on TOSCA and CAMP. In Advances
in Service-Oriented and Cloud Computing - Workshops of 3rd European Confer-
ence on Service-Oriented and Cloud Computing (ESOCC), Revised selected papers,
pages 278–286. Springer, 2014.

[28] Jose Carrasco, Francisco Durán, and Ernesto Pimentel. Towards a unified manage-
ment of applications on heterogeneous clouds. In Advances in Service-Oriented and
Cloud Computing - Workshops of 5th European Conference on Service-Oriented
and Cloud Computing (ESOCC), Revised Selected Papers, volume 707, pages 233–
246. Springer, 2016.

89

Bibliography

[29] Jose Carrasco, Francisco Durán, and Ernesto Pimentel. Component migration in a
trans-cloud environment. In 7th International Conference on Cloud Computing and
Services Science (CLOSER), Revised Selected Papers, pages 286–307. Springer,
2017.

[30] Jose Carrasco, Francisco Durán, and Ernesto Pimentel. Runtime migration of ap-
plications in a trans-cloud environment. In Adaptive Services-Oriented and Cloud
Applications (ASOCA) - Workshops of 15th International Conference on Service-
Oriented Computing (ICSOC), pages 55–66. Springer, 2018.

[31] Jose Carrasco, Francisco Durán, and Ernesto Pimentel. Trans-cloud:
CAMP/TOSCA-based bidimensional cross-cloud. Computer Standards & Inter-
faces, 58:167–179, 2018.

[32] Jose Carrasco, Francisco Durán, and Ernesto Pimentel. Live migration of trans-
cloud applications. Computer Standards & Interfaces, 69:103392, 2020.

[33] Antonio Celesti, Francesco Tusa, Massimo Villari, and Antonio Puliafito. How to
enhance cloud architectures to enable cross-federation. In 4th IEEE International
Conference on Cloud Computing (CLOUD), pages 337–345. IEEE, 2010.

[34] David Cunha, Pedro Neves, and Pedro Sousa. A platform-as-a-service API ag-
gregator. In Advances in Information Systems and Technologies (WorldCIST’13),
pages 807–818. Springer, 2013.

[35] Yuanshun Dai, Yanping Xiang, and Gewei Zhang. Self-healing and hybrid diag-
nosis in cloud computing. In 1st International Conference on Cloud Computing
(CloudCom), pages 45–56. Springer, 2009.

[36] C. Davis. Realizing software reliability in the face of infrastructure instability.
IEEE Cloud Computing, 4(5):34–40, 2017.

[37] Yuri Demchenko, Canh Ngo, Cees de Laat, Marc X. Makkes, and Rudolf J.
Strijkers. Intercloud architecture framework for heterogeneous multi-provider
cloud based infrastructure services provisioning. International Journal of Next-
Generation Computing, 4(2):1–18, 2013.

[38] Beniamino Di Martino. Applications portability and services interoperability
among multiple clouds. IEEE Cloud Computing, 1(1):74–77, 2014.

[39] DMTF. Interoperable clouds - A white paper from the open cloud standards
incubator. Standard, DMTF, 2009.

[40] DMTF. Cloud infrastructure management interface (CIMI) - model and RESTful
HTTP-based protocol - an interface for managing cloud infrastructure. Stan-
dard, DMTF, 2016. https://www.dmtf.org/sites/default/files/standards/
documents/DSP0263 2.0.0.pdf.

90

https://www.dmtf.org/sites/default/files/standards/documents/DSP0263_2.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0263_2.0.0.pdf

Chapter 4.

[41] Yucong Duan, Guohua Fu, Nianjun Zhou, Xiaobing Sun, Nanjangud C Naren-
dra, and Bo Hu. Everything as a service (XaaS) on the cloud: Origins, current
and future trends. In 8th IEEE International Conference on Cloud Computing
(CLOUD), pages 621–628. IEEE, 2015.

[42] Francisco Durán and Gwen Salaün. Robust reconfiguration of cloud applications.
In International ACM SIGSOFT Symposium on Component-Based Software En-
gineering (CBSE’14), pages 179–184. ACM, 2014.

[43] Francisco Durán and Gwen Salaün. Robust and reliable reconfiguration of cloud
applications. Journal of Systems and Software, 122:524–537, 2016.

[44] Andy Edmonds, Thijs Metsch, Alexander Papaspyrou, and Alexis Richardson.
Toward an open cloud standard. IEEE Internet Computing, 16(4):15–25, 2012.

[45] Yehia Elkhatib. Defining cross-cloud systems. ArXiv e-prints, 2016.

[46] David Elliott, Carlos Otero, Matthew Ridley, and Xavier Merino. A cloud-agnostic
container orchestrator for improving interoperability. In 11th IEEE International
Conference on Cloud Computing (CLOUD), pages 958–961. IEEE, 2018.

[47] Johannes Erbel, Fabian Korte, and Jens Grabowski. Comparison and runtime
adaptation of cloud application topologies based on OCCI. In 8th International
Conference on Cloud Computing and Services Science (CLOSER), pages 517–525.
SciTePress, 2018.

[48] Daren Fang, Xiaodong Liu, Imed Romdhani, and Claus Pahl. An approach to
unified cloud service access, manipulation and dynamic orchestration via semantic
cloud service operation specification framework. Journal of Cloud Computing,
4(1):1–20, 2015.

[49] Yong-Yi Fanjiang, Yang Syu, Shang-Pin Ma, and Jong-Yih Kuo. An overview and
classification of service description approaches in automated service composition
research. IEEE Transactions on Services Computing, 10(2):176–189, 2015.

[50] Sören Frey and Wilhelm Hasselbring. The CloudMIG approach: Model-based mi-
gration of software systems to cloud-optimized applications. International Journal
on Advances in Software, 4(3 and 4):342–353, 2011.

[51] Sören Frey, Wilhelm Hasselbring, and Benjamin Schnoor. Automatic conformance
checking for migrating software systems to cloud infrastructures and platforms.
Journal of Software: Evolution and Process, 25(10):1089–1115, 2013.

[52] José Maŕıa Garćıa, Octavio Mart́ın-Dı́az, Pablo Fernández, Carlos Müller, and
Antonio Ruiz-Cortés. A flexible billing life cycle for cloud services using augmented
customer agreements. IEEE Access, 9:44374–44389, 2021.

91

Bibliography

[53] Jesús Garćıa-Galán, Pablo Trinidad, Omer Farooq-Rana, and Antonio Ruiz-
Cortés. Automated configuration support for infrastructure migration to the cloud.
Future Generation Computer Systems, 55:200–212, 2016.

[54] Radhika Garg, Marc Heimgartner, and Burkhard Stiller. Decision support system
for adoption of cloud-based services. In 6th International Conference on Cloud
Computing and Services Science (CLOSER), pages 71–82. SciTePress, 2016.

[55] Mahdi Fahmideh Gholami, Farhad Daneshgar, Graham Low, and Ghassan Bey-
doun. Cloud migration process—A survey, evaluation framework, and open chal-
lenges. Journal of Systems and Software, 120:31–69, 2016.

[56] Sukhpal Singh Gill, Inderveer Chana, Maninder Singh, and Rajkumar Buyya.
Radar: Self-configuring and self-healing in resource management for enhancing
quality of cloud services. Concurrency and Computation: Practice and Experience,
31(1), 2019.

[57] Fotis Gonidis, Iraklis Paraskakis, and Anthony James Howard Simons. A devel-
opment framework enabling the design of service-based cloud applications. In
Advances in Service-Oriented and Cloud Computing - Workshops of 3rd European
Conference on Service-Oriented and Cloud Computing (ESOCC), Revised Selected
Papers, pages 139–152. Springer, 2014.

[58] Nikolay Grozev and Rajkumar Buyya. Inter-cloud architectures and application
brokering: Taxonomy and survey. Software: Practice and Experience, 44(3):369–
390, 2014.

[59] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Howard Katz, Scott Shenker, and Ion Stoica. Mesos: A platform
for fine-grained resource sharing in the data center. In 8th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), pages 22–22. USENIX
Association, 2011.

[60] Eman Hossny, Sherif Khattab, Fatma Omara, and Hesham Hassan. A case study
for deploying applications on heterogeneous PaaS platforms. In 2013 International
Conference on Cloud Computing and Big Data (CloudCom-Asia), pages 246–253.
IEEE, 2013.

[61] IEEE - C/CCSC - Cloud Computing Standards Committee. The NIST definition
of cloud computing. Technical report, 2011.

[62] Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Cloud migration research: A
systematic review. IEEE Transactions on Cloud Computing, 1(2):142–157, 2013.

[63] Eleni Kamateri, Nikolaos Loutas, Dimitris Zeginis, James Ahtes, Francesco
D’Andria, Stefano Bocconi, Panagiotis Gouvas, Giannis Ledakis, Franco Ravagli,

92

Chapter 4.

Oleksandr Lobunets, and Konstantinos Tarabanis. Cloud4SOA: A semantic-
interoperability PaaS solution for multi-cloud platform management and porta-
bility. In 2nd European Conference on Service-Oriented and Cloud Computing
(ESOCC), pages 64–78, 2013.

[64] Kiranbir Kaur, Sandeep Sharma, and Karanjeet Singh Kahlon. Interoperability
and portability approaches in inter-connected clouds: A review. ACM Computing
Surveys, 50(4):49:1–49:40, 2017.

[65] Kálmán Képes, Uwe Breitenbücher, Markus Philipp Fischer, Frank Leymann, and
Michael Zimmermann. Policy-aware provisioning plan generation for TOSCA-
based applications. In 11th International Conference on Emerging Security Infor-
mation, Systems and Technologies (SECURWARE 2017), pages 142–149. Xpert
Publishing Services, 2017.

[66] Kitti Klinbua and Wiwat Vatanawood. Translating TOSCA into docker-compose
YAML file using ANTLR. In 2017 8th IEEE International Conference on Software
Engineering and Service Science (ICSESS), pages 145–148. Springer, 2017.

[67] Stefan Kolb, Jörg Lenhard, and Guido Wirtz. Application migration effort in
the cloud. In 8th IEEE International Conference on Cloud Computing (CLOUD),
pages 41–48. IEEE, 2015.

[68] Stefan Kolb and Cedric Röck. Unified cloud application management. In 12th
IEEE World Congress on Services Computing (SERVICES), pages 1–8. IEEE,
2016.

[69] Stefan Kolb and Guido Wirtz. Towards application portability in platform as a
service. In 8th IEEE International Symposium on Service Oriented System Engi-
neering (SOSE), pages 218–229. IEEE, 2014.

[70] Stefan Kolb and Guido Wirtz. Data governance and semantic recommendation
algorithms for cloud platform selection. In 10th IEEE International Conference
on Cloud Computing (CLOUD), pages 664–671. IEEE, 2017.

[71] Oliver Kopp, Tobias Binz, Uwe Breitenbücher, and Frank Leymann. Winery–a
modeling tool for TOSCA-based cloud applications. In 11th International Confer-
ence Service-Oriented Computing (ICSOC), pages 700–704. Springer, 2013.

[72] Fabian Korte, Stéphanie Challita, Faiez Zalila, Philippe Merle, and Jens
Grabowski. Model-driven configuration management of cloud applications with
OCCI. In 8th International Conference on Cloud Computing and Services Science
(CLOSER). SciTePress, 2018.

[73] Nane Kratzke. About the complexity to transfer cloud applications at runtime
and how container platforms can contribute? In 7th International Conference on
Cloud Computing and Services Science (CLOSER), pages 19–45. Springer, 2017.

93

Bibliography

[74] Nane Kratzke. A brief history of cloud application architectures. Applied Sciences,
8(8):1368, 2018.

[75] Kyriakos Kritikos and Dimitris Plexousakis. Multi-cloud application design
through cloud service composition. In 8th IEEE International Conference on Cloud
Computing (CLOUD), pages 686–693. IEEE, 2015.

[76] Priti Kumari and Parmeet Kaur. A survey of fault tolerance in cloud computing.
Journal of King Saud University - Computer and Information Sciences, 2018.

[77] Grace A. Lewis. Role of standards in cloud-computing interoperability. In 46th
Hawaii International Conference on System Sciences (HICSS), pages 1652–1661.
IEEE, 2013.

[78] Frank Leymann, Uwe Breitenbücher, Sebastian Wagner, and Johannes Wettinger.
Native cloud applications: why monolithic virtualization is not their founda-
tion. In 6th International Conference on Cloud Computing and Services Science
(CLOSER), pages 16–40. Springer, 2016.

[79] Xinhui Li, Kai Li, Xudong Pang, and Yiping Wang. An orchestration based cloud
auto-healing service framework. In IEEE International Conference on Edge Com-
puting, (EDGE), pages 190–193. IEEE, 2017.

[80] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. Log
clustering based problem identification for online service systems. In 38th Interna-
tional Conference on Software Engineering Companion (ICSE-C), pages 102–111.
ACM, 2016.

[81] Paul Lipton, Derek Palma, Matt Rutkowski, and Damian Andrew Tamburri.
TOSCA solves big problems in the cloud and beyond! IEEE Cloud Computing,
5(2):37–47, 2018.

[82] Nikolaos Loutas, Vassilios Peristeras, Thanassis Bouras, Eleni Kamateri, Dim-
itrios Zeginis, and Konstantinos A. Tarabanis. Towards a reference architecture
for semantically interoperable clouds. In 2nd International Conference on Cloud
Computing (CloudCom), pages 143–150. IEEE, 2010.

[83] João Paulo Magalhães and Lúıs Moura Silva. A framework for self-healing and
self-adaptation of cloud-hosted web-based applications. In 5th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pages 555–
564. IEEE, 2013.

[84] Tariq Mahmood, Bharath Balasubramanian, Mithuna Thottethodi, Sanjay G.
Rao, and Kaustubh Joshi. ACCORD: Automated change coordination across in-
dependently administered cloud services. In 11th IEEE International Conference
on Cloud Computing (CLOUD), pages 770–777. IEEE, 2018.

94

Chapter 4.

[85] Ibrahim Ejdayid A. Mansour, Reza Sahandi, Kendra M. L. Cooper, and Adrian
Warman. Interoperability in the heterogeneous cloud environment: A survey of
recent user-centric approaches. In International Conference on Internet of Things
and Cloud Computing (ICC), pages 62:1–62:7. ACM, 2016.

[86] Ahmed Moustafa, Minjie Zhang, and Quan Bai. Trustworthy stigmergic service
composition and adaptation in decentralized environments. IEEE Transactions on
Services Computing, 9(2):317–329, 2016.

[87] Dinh Khoa Nguyen, Francesco Lelli, Yehia Taher, Michael Parkin, Mike P Papa-
zoglou, and Willem-Jan van den Heuvel. Blueprint template support for engineer-
ing cloud-based services. In 4th European Conference on Towards a Service-Based
Internet (ServiceWave), pages 26–37. Springer, 2011.

[88] Alexander Nowak, Tobias Binz, Christoph Fehling, Oliver Kopp, Frank Leymann,
and Sebastian Wagner. Pattern-driven green adaptation of process-based applica-
tions and their runtime infrastructure. Computing, 94(6):463–487, 2012.

[89] OASIS. SCA: Service Component Architecture. Standard, OASIS, 2011. http:
//www.oasis-opencsa.org/sca.

[90] OASIS. CAMP: Cloud Application Management for Platforms (Version 1.1).
Standard, OASIS, 2012. http://docs.oasis-open.org/camp/camp-spec/v1.1/
camp-spec-v1.1.html/.

[91] OASIS. TOSCA: Topology and Orchestration Specification for Cloud Applica-
tions (Version 1.0). Standard, OASIS, 2012. http://docs.oasis-open.org/tosca/
TOSCA/v1.0/.

[92] OASIS. OCCI: The Open Cloud Computing Interface. Standard, The Open Grid
Forum (OGF), 2016. http://occi-wg.org/.

[93] Juliana Oliveira de Carvalho, Fernando Trinta, and Dario Vieira. PacificClouds:
A flexible microservices based architecture for interoperability in multi-cloud en-
vironments. In 8th International Conference on Cloud Computing and Services
Science, (CLOSER), pages 448–455. SciTePress, 2018.

[94] The Guide for Cloud Portability and Interoperability Profiles. Standard, IEEE -
C/CCSC - Cloud Computing Standards Committee, 2011.

[95] Claus Pahl. Containerization and the PaaS cloud. IEEE Cloud Computing,
2(3):24–31, 2015.

[96] Claus Pahl, Li Zhang, and Frank Fowley. Interoperability standards for cloud
architecture. In 3rd International Conference on Cloud Computing and Services
Science (CLOSER), pages 123–126. SciTePress, 2013.

95

http://www.oasis-opencsa.org/sca
http://www.oasis-opencsa.org/sca
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html/
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/
http://occi-wg.org/

Bibliography

[97] Fawaz Paraiso, Nicolas Haderer, Philippe Merle, Romain Rouvoy, and Lionel Sein-
turier. A federated multi-cloud PaaS infrastructure. In 5th IEEE International
Conference on Cloud Computing (CLOUD), pages 392–399. IEEE, 2012.

[98] Dana Petcu. Portability and interoperability between clouds: Challenges and case
study. In 4th European Conference Towards a Service-Based Internet (Service-
Wave), pages 62–74. Springer, 2011.

[99] Dana Petcu, Beniamino Di Martino, Salvatore Venticinque, Massimiliano Rak,
Tamás Máhr, Gorka Esnal Lopez, Fabrice Brito, Roberto Cossu, Miha Stopar,
Svatopluk Šperka, and Vlado Stankovski. Experiences in building a mosaic of
clouds. Journal of Cloud Computing: Advances, Systems and Applications, 2(1):12,
2013.

[100] Linh Manh Pham, Alain Tchana, Didier Donsez, Noel De Palma, Vincent Zur-
czak, and Pierre-Yves Gibello. Roboconf: A hybrid cloud orchestrator to deploy
complex applications. In 8th IEEE International Conference on Cloud Computing
(CLOUD), pages 365–372. IEEE, 2015.

[101] Harald Psaier and Schahram Dustdar. A survey on self-healing systems: ap-
proaches and systems. Computing, 91(1):43–73, 2011.

[102] Lie Qu, Yan Wang, Mehmet A Orgun, Ling Liu, Huan Liu, and Athman Bouguet-
taya. CCCloud: Context-aware and credible cloud service selection based on sub-
jective assessment and objective assessment. IEEE Transactions on Services Com-
puting, 8(3):369–383, 2015.

[103] Peter-Christian Quint and Nane Kratzke. Towards a lightweight multi-cloud DSL
for elastic and transferable cloud-native applications. In 8th International Con-
ference on Cloud Computing and Services Science (CLOSER), pages 400–408.
SciTePress, 2018.

[104] Ansar Rafique, Stefan Walraven, Bert Lagaisse, Tom Desair, and Wouter Joosen.
Towards portability and interoperability support in middleware for hybrid clouds.
In IEEE International Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS), pages 7–12. IEEE, 2014.

[105] Ajith Ranabahu, E Michael Maximilien, Amit Sheth, and Krishnaprasad
Thirunarayan. Application portability in Cloud Computing: An abstraction-driven
perspective. IEEE Transactions on Services Computing, 8(6):945–957, 2015.

[106] Rajiv Ranjan. The cloud interoperability challenge. IEEE Cloud Computing,
1(2):20–24, 2014.

[107] Alessandro Rossini. Cloud application modelling and execution language
(CAMEL) and the PaaSage workflow. In Advances in Service-Oriented and Cloud
Computing — Workshops of 4th European Conference on Service-Oriented and
Cloud Computing (ESOCC), volume 567, pages 437–439, 2015.

96

Chapter 4.

[108] Karoline Saatkamp, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. Topol-
ogy splitting and matching for multi-cloud deployments. In 7th International
Conference on Cloud Computing and Services Science (CLOSER), pages 247–258.
SciTePress, 2017.

[109] Mohamed Sellami, Sami Yangui, Mohamed Mohamed, and Samir Tata. PaaS-
independent provisioning and management of applications in the cloud. In 6th
IEEE International Conference on Cloud Computing (CLOUD), pages 693–700.
IEEE, 2013.

[110] Jacopo Soldani, Damian A. Tamburri, and Willem-Jan Van Den Heuvel. The
pains and gains of microservices: A systematic grey literature review. Journal of
Systems and Software, 146:215–232, 2018.

[111] Josef Spillner, Yessica Bogado, Walter Beńıtez, and Fabio López-Pires. Co-
transformation to cloud-native applications - development experiences and exper-
imental evaluation. In 8th International Conference on Cloud Computing and
Services Science (CLOSER), pages 596–607, 2018.

[112] Paul Stack, Huanhuan Xiong, Dali Mersel, Maxime Makhloufi, Guillaume Terpend,
and Dapeng Dong. Self-healing in a decentralised cloud management system. In
1st International Workshop on Next generation of Cloud Architectures, pages 1–6,
2017.

[113] Adel Nadjaran Toosi, Rodrigo N. Calheiros, and Rajkumar Buyya. Interconnected
cloud computing environments: Challenges, taxonomy, and survey. ACM Comput.
Surv., 47(1):1–47, 2014.

[114] Van Tran, Jacky Keung, Anna Liu, and Alan Fekete. Application migration to
cloud: A taxonomy of critical factors. In 2nd International Workshop on Software
Engineering for Cloud Computing (SECLOUD), pages 22–28. ACM, 2011.

[115] Quang Hieu Vu and Rasool Asal. Legacy application migration to the cloud:
Practicability and methodology. In 8th IEEE World Congress on Services (SER-
VICES), pages 270–277. IEEE, 2012.

[116] Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann. Standards-based
devops automation and integration using TOSCA. In 7th IEEE/ACM Interna-
tional Conference on Utility and Cloud Computing (UCC), pages 59–68. IEEE,
2014.

[117] Yue Yuan, Wenchang Shi, Bin Liang, and Bo Qin. An approach to cloud execution
failure diagnosis based on exception logs in openstack. In 12th IEEE International
Conference on Cloud Computing (CLOUD), pages 124–131. IEEE, 2019.

[118] Uwe Zdun, Elena Navarro, and Frank Leymann. Ensuring and assessing architec-
ture conformance to microservice decomposition patterns. In 15th International

97

Bibliography

Conference on Service-Oriented Computing (ICSOC), pages 411–429. Springer,
2017.

[119] Dimitris Zeginis, Francesco D’Andria, Stefano Bocconi, Jesus Gorronogoitia Cruz,
Oriol Collell Martin, Panagiotis Gouvas, Giannis Ledakis, and Konstantinos A.
Tarabanis. A user-centric multi-PaaS application management solution for hybrid
multi-cloud scenarios. Scalable Computing: Practice and Experience, 14(1):17–32,
2013.

[120] Jun-Feng Zhao and Jian-Tao Zhou. Strategies and methods for cloud migration.
International Journal of Automation and Computing, 11(2):143–152, 2014.

[121] Zibin Zheng, Yilei Zhang, and Michael R Lyu. Investigating QoS of real-world web
services. IEEE Transactions on Services Computing, 7(1):32–39, 2014.

98

	Contents
	Resumen (in Spanish)
	Chapter 1. Introduction
	1.1 Motivations and challenges
	1.1.1 Portability and interoperability
	1.1.2 Runtime migration
	1.1.3 Lifecycle robust management
	1.1.4 Research challenges

	1.2 Contributions
	1.3 Outline

	Chapter 2. Published Work
	2.1 List of research contributions
	2.2 Research execution
	2.3 Support Papers
	2.3.1 Bidimensional cross-cloud management with TOSCA and Brooklyn
	2.3.2 Trans-cloud: CAMP/TOSCA-based bidimensional cross-cloud
	2.3.3 Component migration in a trans-cloud environment
	2.3.4 Runtime migration of applications in a trans-cloud environment
	2.3.5 Live migration of trans-cloud applications
	2.3.6 Robust management of trans-cloud applications

	Chapter 3. Related Work
	3.1 Standards
	3.2 Portability and interoperability
	3.2.1 Common API
	3.2.2 Federated clouds
	3.2.3 Broker-based solutions
	3.2.4 Cloud-coupled orchestrators
	3.2.5 Cloud-decoupled orchestrators
	3.2.6 Commercial orchestrators
	3.2.7 Applications and platforms modeling

	3.3 Migration
	3.3.1 Migration of legacy applications
	3.3.2 Runtime migration

	3.4 Self-Healing
	3.4.1 Architecture and infrastructure
	3.4.2 Application self-healing
	3.4.3 Commercial solutions

	3.5 Containers, the vendor lock-in's chimera
	3.5.1 Portability of container-based applications
	3.5.2 Runtime migration of container-based applications
	3.5.3 Self-healing container-based applications

	Chapter 4. Conclusions and Future Work
	4.1 Conclusions
	4.2 Future work

	References

