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PHD PROGRAM IN SCIENCE

DEPARTMENT OF PHYSIC AND MATHEMATICS

Affine Equivalences, Similarities, and Symmetries
of Special Types of Curves and Surfaces

Ph.D.THESIS

Presented by

Emily Nazareth Quintero de D’Alessio

2021



PHD PROGRAM IN SCIENCE

DEPARTMENT OF PHYSIC AND MATHEMATICS

Ph.D.THESIS

Affine Equivalences, Similarities, and Symmetries
of Special Types of Curves and Surfaces

Presented by

Emily Nazareth Quintero de D’Alessio

Advised by

Juan Gerardo Alcázar Arribas
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Resumen

El tema central de este trabajo es detectar y calcular equivalencias afines entre

dos curvas y/o superficies biracionalmente parametrizadas con propiedades espećıficas.

En el Caṕıtulo 1, proveemos un estado del arte sobre el tema, haciendo una

revisión de publicaciones recientes que abordan este problema tanto para curvas como

para superficies algebraicas definidas impĺıcita o paramétricamente.

En el Caṕıtulo 2 desarrollamos un método para calcular todas las equivalen-

cias afines entre dos superficies racionales regladas, definidas por parametrizaciones

racionales y propias (inyectivas en casi todo punto), sin calcular ni hacer uso de sus

ecuaciones impĺıcitas. La idea fundamental es encontrar la forma de la transformación

de Cremona equivalente en el espacio de parámetros, y se basa en la resolución de

sistemas polinómicos.

En el Caṕıtulo 3, describimos un algoritmo eficiente para detectar si dos cur-

vas trigonométricas dadas, es decir, curvas paramétricas cuyas componentes son series

truncadas de Fourier, en cualquier dimensión, son af́ınmente equivalentes. En este caso

abordamos tanto equivalencias exactas, como aproximadas. En el caso exacto el algo-

ritmo se reduce al cálculo de un máximo común divisor univariado, mientras que en

el caso aproximado, donde los coeficientes de las parametrizaciones están dados con

precisión finita, es necesario calcular un gcd aproximado.

Finalmente, en el Caṕıtulo 4 estudiamos la detección de semejanzas entre dos cur-

vas paramétricas acotadas y planas con un enfoque particular para curvas cerradas. El

algoritmo es válido para parametrizaciones completamente generales, no sólo racionales,

y también se considera en el caso aproximado. La estrategia se basa en el cálculo de

los centros de gravedad y tensores de inercia de las curvas o de las regiones planas

encerradas por las curvas. Tanto los centros de gravedad como los tensores de inercia

tienen buenas propiedades cuando se les aplica una semejanza. En particular, un centro

de gravedad es enviado en el otro y las matrices que representan los tensores de inercia
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satisfacen una relación simple. Utilizando ambas identidades, y salvo en ciertos casos

patológicos, las semejanzas pueden determinarse.



Abstract

The central topic of this thesis is the detection and computation of affine equiva-

lences between two curves or surfaces with specific properties.

Chapter 1 provides a state-of-the-art on the topic, based on recent publications

regarding this problem for projective and affine transformations, similarities, and isome-

tries between algebraic curves and surfaces either implicitly or parametrically defined.

In Chapter 2, we develop a method for computing all the affine equivalences

between two rational ruled surfaces defined by rational parametrizations without com-

puting or using their implicit equations. The problem is translated into the parameter

space, where the general form of the underlying Cremona transformation is discovered,

and relies on polynomial system solving.

In Chapter 3, we describe an efficient algorithm to detect whether two given

trigonometric curves, i.e., two parametrized curves whose components are truncated

Fourier series, in any dimension, are affinely equivalent. In this case, we also deal

with approximate affine equivalences. In the exact case, the algorithm boils down to

univariate gcd computation, so it is efficient and fast. In the approximate case, where

the coefficients of the parametrizations are given with finite precision, the univariate

gcd computation is replaced by the computation of approximate gcds.

Finally, in Chapter 4, we provide an algorithm to compute the similarities between

two bounded, planar parametrized curves with a particular approach on the case when

the curves are closed. The algorithm is valid for completely general parametrizations,

not only rational, and the approximate case is also considered. The strategy is based

on the computation of centers of gravity and inertia tensors of the considered curves

or of the planar regions enclosed by the curves, which have good properties when a

similarity transformation is applied: the centers of gravity are mapped onto each other,

and the matrices representing the inertia tensors satisfy a simple relationship. Using

both properties, and except for certain pathological cases, the similarities can be found.
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INTRODUCTION

This thesis addresses the problem of detecting when two objects are related by an

affine equivalence, in the case of surfaces and curves with specific structures. Particular

instances of this problem are similarity and symmetry detection. This question is of

interest in applied fields like Computer Aided Geometric Design, Pattern Recognition,

and Computer Vision. It has been broadly treated, mainly for objects with a rela-

tively weak structure (e.g., cloud points, images with or without occluded parts, solids,

polygons, and polyhedrons). In our case, however, we address objects with a strong

structure and use their structure to provide efficient algorithms relying on symbolic and

symbolic-numeric methods.

In fields like Pattern Recognition or Computer Vision, recognizing objects up to

a certain transformation is important since quite often, the object that one is analyzing

has undergone some kind of deformation. In Computer Vision, the picture of an object

is the image of the initial object under a projective transformation. In Pattern Recog-

nition, one needs to compare an image with other images stored in a database, but the

object to recognize is often placed in a different position or has a different scale than

the objects in the database; this implies that a similarity is relating both. In Computer

Aided Geometric Design, symmetry computation is important to reduce the amount of

memory needed to store an image and certify that the geometry of the object is correct

i



ii INTRODUCTION

since symmetries are essential elements of the shape.

As a result, in the literature, there is a wide variety of techniques approaching

these problems. The list is very long; to quote just a few: affine moments and algebraic

invariants [62, 103, 104, 111], B-splines [62], differential invariants [36, 40, 115], Fourier

descriptors [98], spherical harmonic analysis [76], statistics [32, 35, 78, 88, 52, 71, 77],

spectral analysis [74], extended Gauss images [105], discrete methods [23, 38, 64, 72].

However, until recent years in most of the references on the topic, there were

very few assumptions on the structure of the objects to analyze. Some exceptions

are [112, 116, 117] and [70, 69, 107], where algebraic curves are considered, sometimes

working with a complex representation of the curves. In 2014 Alcázar et al. started a

series of papers [2, 12, 11, 13, 9, 14, 1, 15, 10], first regarding symmetries, then moving

to similarities, where this topic was explored for planar and space rational curves, some

specific types of rational surfaces, and implicit algebraic curves, where a strong use of

the structure of the variety was made. These papers were followed by works by other

authors, e.g., [33, 34, 56, 57, 63, 94], extending the problem to affine and projective

equivalences for rational curves in any dimension, rational surfaces, and implicit curves

and surfaces. In all these references, in contrast to works more focused on applied fields,

tools from symbolic and symbolic-numeric computation are massively used, as well as

notions and results from Algebraic Geometry.

This thesis follows the path of the references in the previous paragraph, sometimes

exploiting results developed in some of those papers, and addresses three questions

related to the computation of affine equivalences and similarities:

(i) Exact affine equivalences between two rational ruled surfaces.

(ii) Exact and approximate affine equivalences between two trigonometric curves in

any dimension, i.e., parametrized curves whose components are truncated Fourier

series.

(iii) Approximate similarities between two bounded, parametric, planar curves, de-

fined by non-necessarily rational parametrizations, using the notions, well-known

in Mechanics, of center of gravity and inertia tensor.
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In more detail, the structure of this thesis is the following. The first chapter,

Chapter 1, is introductory and recalls some basic notions related to projective space,

affine and projective equivalences, similarities, symmetries, rational curves and surfaces,

and state of the art on the topic. In particular, we review the works published on the

topic in detail since 2012, which follow approaches close to the one in this thesis.

In Chapter 2, we provide an algorithm to compute the affine equivalences between

two ruled rational surfaces. To do this, we first discover the structure of the Cremona

transformation, which is associated, in the parameter space (the plane), to any affine

equivalences between the surfaces. Using this and taking advantage of ideas in [56],

where the problem of computing projective equivalences between rational curves is ad-

dressed, we provide an algorithm to solve the problem. For isometries and symmetries,

the algorithm has extra advantages, which we analyze. Furthermore, we also show the

efficiency of the method in an abundance of examples.

In Chapter 3, we study the computation of exact and approximate affine equiva-

lences between two trigonometric curves, namely parametric curves whose components

are truncated Fourier series, widely used in applications. By using a well-known trick,

these curves admit a rational parametrization. However, this parametrization has spe-

cial properties that can be used to improve the computation, compared to the more

general method suggested in [56]. As in Chapter 2, any affine equivalence between the

curves has an underlying transformation in the parameter space (the line, in this case),

which is a Möbius transformation. However, we show that this transformation has a

very special form. From here, we present an algorithm that resorts to univariate GCDS.

In the approximate case, GCDS are replaced by approximate GCDS. The algorithm is

efficient, and evidence of this efficiency is provided through numerous examples. The

extension to more general parametrizations (e.g., non-rational) using truncations of

their Fourier expansions is also discussed; however, this idea, although natural, is not

really efficient.

In Chapter 4, we address the computation of similarities between two parametric,

bounded, planar curves defined by parametrizations that are not necessarily rational.

The algorithm we provide uses the center of gravity and inertia tensor, well-known in
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Mechanics, and their properties under similarities. Although the approach is presented

for planar curves, it can be generalized to curves in any dimension and even to surfaces.

The main idea is that under a similarity, the centers of gravity are mapped to each other,

and the inertia tensors obey the transformation law of Euclidean tensors; by using this,

a superset of the similarities between the curves can be computed. If additionally,

the curves are closed, then we have extra tools that we also discuss. In the presence

of inaccuracies, we use approximate GCDS to solve the problem. Again, we provide

examples to show the performance of the algorithm.

The thesis closes with a section containing some ideas for further work.

The results in this thesis have given rise to the following publications [17, 18, 19,

20]; the last three correspond to papers published in journals included in the Journal

of Citation Reports:

(1) Alcázar J.G., Quintero E. (2018), Computing Symmetries of Ruled Rational Sur-

faces, Actas de los Encuentros de Álgebra Computacional y Aplicaciones 2018.

Monograf́ıas de la Real Academia de Ciencias. Zaragoza. Vol. 43, pp. 35–38.

ISSN: 1132-6360.

(1) Alcázar J.G., Quintero E. (2020), Affine equivalences, isometries and symmetries

of ruled rational surfaces, Journal of Computational and Applied Mathematics

Vol. 364, 112339.

(2) Alcázar J.G., Quintero E. (2020), Affine Equivalences of Trigonometric Curves,

Acta Applicandae Mathematicae Vol. 170, pp. 691–708.

(3) Alcázar J.G., Quintero E. (2020), Exact and approximate similarities of non-

necessarily rational planar, parametrized curves, using centers of gravity and in-

ertia tensors, International Journal of Algebra and Computation, to appear.

Furthermore, the results in this thesis have also been presented by the author in

the following conferences:

• 2018: First BYMAT Conference: “Bringing Young Mathematicians Together”.

ICMAT, Madrid, Spain. Title of the talk: “Computing Symmetries of Ruled
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Rational Surfaces”.

• 2019: Second BYMAT Conference: “Bringing Young Mathematicians Together”,

ICMAT, Madrid, Spain. Poster: “Affine equivalences, isometries and symmetries

of ruled rational surfaces”.

• 2020: 5th EACA International School on Computer Algebra and its Applications.

Basque Center for Applied Mathematics (BCAM), Bilbao, Spain. Title of the talk:

“Affine equivalences of trigonometric curves”.

• 2020: Third BYMAT Conference: “Bringing Young Mathematicians Together”,

ICMAT, Madrid, Spain. Title of the talk: “Affine equivalences of trigonometric

curves”.



CHAPTER 1

AFFINE AND PROJECTIVE EQUIVALENCES,

SIMILARITIES AND ISOMETRIES

This chapter provides preliminary concepts regarding projective and affine trans-

formations, from which isometries and similarities are particular instances. Further-

more, the chapter accounts for the state of the art of the problem treated in this thesis.

1.1 Projective space

The projective space Pn(R) (see for instance [44]) is defined as the set of equiva-

lence classes of ∼ on Rn+1\{0},

Pn(R) = (Rn+1\{0})/ ∼,

where (a1, a2, . . . , an+1) ∼ (b1, b2, . . . , bn+1) if and only if there exists λ ∈ R\{0} such

that (a1, a2, . . . , an+1) = λ(b1, b2, . . . , bn+1). Given (x1, . . . , xn+1) ∈ Rn+1\{0}, its cor-

responding equivalence class in Pn(R) is denoted as [x1 : x2 : · · · : xn+1]; the numbers

x1, . . . , xn+1 are called the homogeneous coordinates of the point [x1 : x2 : · · · : xn+1] ∈
Pn(R). Notice that since [x1 : · · · : xn+1] and [λx1 : · · · : λxn+1], with λ ∈ R − {0},

1
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represent the same point in Pn(R), the elements of Pn(R) can be seen geometrically as

lines in Rn+1 through the origin.

Additionally, if xn+1 6= 0 the projective point [x1 : · · · : xn : xn+1] coincides with[
x1
xn+1

: · · · : xn
xn+1

: 1
]
, which can be identified with the affine point

(
x1
xn+1

, · · · , xn
xn+1

)
. In

particular, Rn ⊂ Pn(R). If xn+1 = 0 we say that [x1 : · · · : xn : 0] is a point at infinity.

Thus, Pn(R) is the union of Rn and the hyperplane xn+1 = 0, which is the hyperplane

consisting of the points at infinity.

1.2 Affine and projective equivalences

A projective transformation, also called a projectivity, is a mapping f̂ : Pn(R) →
Pn(R), where f̂(x̂) = Qx̂ with

Q =


a1,1 . . . a1,n a1,n+1

... . . .
...

...

an,1 . . . an,n an,n+1

an+1,1 . . . an+1,n an+1,n+1

 (1.1)

a nonsingular matrix, and x̂ = [x1 : · · · : xn : xn+1]. Notice that f̂ corresponds to a

mapping f : Rn → Rn of the type f(x) = (f1(x), . . . , fn(x)) with

fi(x) = fi(x1, . . . , xn) =
ai,1x1 + · · ·+ ai,nxn+, ai,n+1

an+1,1x1 + · · ·+ an+1,nxn + an+1,n+1

, (1.2)

for i = 1, . . . , n.

An affine transformation, also called an affinity, is a mapping f : Rn −→ Rn,

f(x) = Ax + b, x ∈ Rn, (1.3)

with b ∈ Rn and A ∈ Rn×n a nonsingular square matrix. Obviously, every affinity is a

projectivity, but the converse is false. Notice also that affinities preserve the hyperplane

at infinity.
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Isometry Similarity Affine Equivalence

Proyective Equivalence Proy. Equiv. breaking topology

Figure 1.1: Different transformations

Definition 1.1. Let V1,V2 ⊂ Rn. We say that V1,V2 are projectively (resp. affinely)

equivalent if there exists a projectivity (resp. affinity) f such that f(V1) = V2. Further-

more, we say that f is a projective (resp. affine) equivalence between V1 and V2.

Affine transformations model smooth deformations, so they preserve topology.

However, this is not necessarily true for projective transformations, since affine points

can be mapped to points at infinity, and viceversa. Figure 1.1 shows, in green, the image

of a four-leaved rose, in purple, under different affine and projective transformations.

In particular, the right-most picture in the second row of Fig. 1.1 corresponds to the

image of the four-leaved rose under a projective transformation that maps the four-fold

singularity of the rose onto a point at infinity, which breaks the topology of the curve

(in this case, the image of the rose is a curve with four connected components). In the

first row of Fig. 1.1, the purple curve and the green curve are affinely (and therefore

also projectively) equivalent. In the second row of Fig. 1.1, the purple curve and the

green curve are projectively, but not affinely, equivalent.

Fig. 1.1 also shows two special cases of affine transformations, namely isometries

and similarities, which have extra metric properties: isometries preserve distances and
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similarities preserve angles, although similarities do not necessarily preserve distances.

In more detail:

(i) If the matrix A in Eq. (1.3) is orthogonal, i.e., ATA = I where I is the identity

n × n matrix, we say that f defines an isometry. In this case, det(A) = ±1.

An isometry is said to be direct if it preserves the orientation, in which case

det(A) = 1, and is called opposite when it reverses the orientation, in which case

det(A) = −1. Isometries preserve Euclidean distances and are also called rigid

motions. An isometry f : Rn −→ Rn is an involution if f ◦ f = idRn . In this case,

A2 = I is the identity matrix and b ∈ ker(A + I).

(ii) If A = λQ with Q an orthogonal matrix and λ > 0, we say that f defines a

similarity. Similarities form a group under composition from which isometries

are a subgroup. Observe that a similarity is the composition of a rigid motion

and a homothety; thus, two objects related by a similarity only differ in position

and scaling.

Two objects V1,V2 ⊂ Rn are isometric (resp. similar) when there exists an

isometry (resp. similarity) f such that f(V1) = V2. If V1 = V2 = V , and if f : V −→ V
defines an isometry, we say that V is symmetric, and that f is a symmetry of V .

When n = 2, i.e., for V ⊂ R2, notable symmetries are rotations around a point and

reflections in a line. When n = 3, i.e., for V ⊂ R3, notable symmetries are reflections in

a plane, rotations about an axis, and central inversions (symmetries with respect to a

point or central symmetries). Rotations by an angle of π are called half-turns or axial

symmetries. Furthermore, central symmetries, reflections, and axial symmetries are

involutions; rotations, in general, are not. Also, rotations are direct isometries, while

reflections and central symmetries are opposite.

Fig. 1.2 shows some examples of planar and space symmetries. In the first row of

Fig. 1.2 we have curves with rotational symmetry (left; the center of rotation is plotted

in red, and the angles of rotation are π
2
, π, 3π

2
) and reflectional symmetry (right; the

reflection axis is plotted in red). In the second row of Fig. 1.2 we have surfaces with

axial symmetry (left; the axis is plotted in red), planar symmetry (middle; the reflection
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Rotational symmetry Reflection (line) symmetry

Axial symmetry Mirror symmetry Central symmetry
(Rotation of π)

Figure 1.2: Plane and space symmetries

plane is shown) and central symmetry (right; the center of symmetry is plotted in red).

1.3 Brief review of rational curves and surfaces

We say that V ⊂ Rn is algebraic, if V is the common set of zeroes of finitely

many polynomials f1(x1, . . . , xn), . . . , fp(x1, . . . , xn), which implicitly define V . When

n = 2 a nonconstant polynomial f(x, y) implicitly defines the algebraic curve f(x, y) =

0. Similarly, when n = 3 a nonconstant polynomial f(x, y, z) implicitly defines the

algebraic surface f(x, y, z) = 0. We can have algebraic curves in any dimension (as

algebraic sets of dimension one); in order to implicitly define a curve in Rn we need at
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least n− 1 polynomials without common factors.

A rational function is a quotient of relatively prime polynomials. We say that

an algebraic curve C ⊂ Rn is rational if it admits a rational parametrization, i.e., a

parametrization

x(t) = (x1(t), . . . , xn(t)) (1.4)

where each xi(t) is a rational function. Likewise, an algebraic surface S ⊂ R3 is rational,

if it has a rational parametrization

x(t, x) = (x(t, x), y(t, s), z(t, s)) (1.5)

where x(t, s), y(t, s), z(t, s) are rational functions. Notice that if a variety admits

a rational parametrization then it admits infinitely many rational parametrizations:

indeed, every composition of a parametrization with a rational function provides a new

parametrization. Thus, rational parametrizations are not unique.

The rational parametrization x(t) in Eq. (1.4) is said to be proper if it has a

rational inverse t = t(x1, . . . , xn); in particular, this means that x(t) is invertible, so

that there are just finitely many pairs (t, t̄), t 6= t̄, satisfying that x(t) = x(t̄). The same

notion extends to rational parametrizations of surfaces. In other words, the notion of

properness implies that x−1 exists and is rational.

For curves, there are efficient algorithms (see [97]) to check whether a given

parametrization like Eq. (1.4) is proper, and to properly reparametrize it in case it

is not proper. Additionally, if x̃(t), x(t) are proper parametrizations of a same curve

then there exists a Möbius transformation verifying that x̃ = x ◦ ϕ. Recall that a

Möbius transformation is a mapping

ϕ : R −→ R, ϕ(t) =
at+ b

ct+ d
, with ∆ := ad− bc 6= 0. (1.6)

The same problem, i.e., checking properness and proper reparametrizing, for ra-

tional surfaces is harder, and not completely solved yet. One can check [83, 84] and the

references therein for further details.
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1.4 State of the art

Detecting symmetries, similarities and, with more generality, affine or projective

equivalences between two objects is a classical problem that has received much attention

in the literature. Many references concerning this problem have been provided in the

Introduction. In this section, we account for the state of the art of recent approaches

to the problem using tools from Symbolic Computation, and assuming that the objects

involved in the computation have a strong structure, namely that they are algebraic

(mostly curves and surfaces). We consider first the case of rational curves, then rational

surfaces, and finally implicit algebraic curves and surfaces.

1.4.1 The case of rational curves

In this subsection we review the literature on the problem for rational curves.

The first paper in this direction, under the approach we are considering here, was [2],

published in 2014. In [2] the problem of computing the symmetries of a polynomially

parametrized planar curve C ⊂ R2, parametrized by x(t), is addressed. The main idea,

which will be generalized later to other situations, is the following. Suppose that the

polynomial parametrization x(t) is proper; this is a key assumption. If x is proper,

then x−1 exists and is a rational mapping. Now if f : C → C is a symmetry of C, then

there exists a function ϕ that makes commutative the diagram below:

C f
// C

C

x

OO

ϕ
// C

x

OO (1.7)

Indeed, ϕ = x−1 ◦ f ◦ x. This commutative diagram is absent in [2], but it will come

up in subsequent publications on the matter of the same author, and is somehow at the

core of [2].

Observe that the function ϕ in Eq. (1.7) is rational, because it is the composition

of three rational functions. Furthermore, ϕ−1 = x−1 ◦f−1 ◦x exists, so ϕ is a birational
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mapping of the complex line. However, the only birational mappings of the complex

line (see [97]) are the Möbius transformations.

Thus, from Eq. (1.7), in order to find the symmetries f of C we need to find the

Möbius transformations ϕ such that

f(x(t)) = x(ϕ(t)). (1.8)

Moreover, because of Eq. (1.8) and since x(t) is polynomial we deduce that ϕ must be

linear, i.e., ϕ(t) = at+ b. Now for each type of symmetry (rotational, reflectional) Eq.

(1.8) leads to a triangular system from which the parameters a, b and the symmetry

itself are derived. Furthermore, the results in [2] provide several general results on the

existence of symmetries of polynomial curves and some prohibitions. Also, the algo-

rithm derived from the main results of [2] to compute the symmetries of a polynomial

curve is high-speed and allows to compute the symmetries of a polynomial curve with

high coefficients and degree > 50 in just a few seconds.

The ideas in [2] were later generalized in [12] to compute the symmetries of ratio-

nal, not necessarily polynomial, planar and space curves. Again, the idea is to exploit

the commutative diagram in Eq. (1.7), which is, in fact, valid for rational curves in

any dimension whenever they are defined by a proper parametrization x. The key is to

first find the Möbius transformation ϕ in Eq. (1.7), although now ϕ is not necessarily

linear anymore. In order to do this, since f is a symmetry, Eq. (1.8) is written as

Ax(t) + b = x(ϕ(t)),

with A an orthogonal matrix. Differentiating once and twice and using the fact that A

is orthogonal, i.e., that A preserves the Euclidean norm of a vector, the parameters of

ϕ are written in terms of just one of them, and a univariate equation for this parameter

is derived. Thus, ϕ is computed, and A, b are derived from ϕ. The method is valid

for computing the symmetries of planar rational curves and the involutions of space

rational curves; however, in general the method in [12] is not enough to compute all

the rotational symmetries of space rational curves.
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The method of [12] for space rational curves is improved in [13]. The algorithm

in this paper is valid for computing all the symmetries of the curve, and makes use of

the fact that the curvature and the torsion of a space rational curve

κx =
‖x′ × x′′‖
‖x′‖3

, τx =
〈x′ × x′′,x′′′〉
‖x′ × x′′‖2

are pointwise invariant under a symmetry, except perhaps for the sign in the case of

the torsion. In other words, for a symmetry f we have

κf◦x = κx, τf◦x = ±τx

where the sign in the case of τ depends on whether f preserves or reverses the orien-

tation. Observe that κx is a rational function; τx is not, but however τ 2
x is a rational

function. Furthermore, for a Möbius function ϕ,

κx◦ϕ = κx, τx◦ϕ = τx.

Thus, setting κ(t) = κ(s) and τ 2(t) = τ 2(s), we get two bivariate polynomials. Then,

the existence of “Möbius-like” factors F (t, s) = (ct+ d)s− (at+ b) in the gcd of these

two polynomials allows to compute the Möbius functions, and in turn, the symmetries

of the curve. The proof of this fact relies heavily in the Fundamental Theorem of

Space Curves, which states that the curvature and torsion functions characterize a

space curve up to rigid motions. The complexity of the resulting algorithm is O(d4),

where d represents the maximum degree in the numerators and denominators of the

parametrization.

The preceding ideas to detect symmetries are generalized in [11] and [14] for

detecting the similarities between two rational planar and space curves, respectively,

C1 and C2, properly parametrized by rational parametrizations x1 and x2. Because of

the properness of the parametrizations, we also have a commutative diagram with a

Möbius transformation ϕ at the bottom
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C1
f
// C2

R

x1

OO

ϕ
// R

x2

OO
(1.9)

where f is a similarity between the curves. The commutative diagram implies that

f ◦ x1 = x2 ◦ ϕ.

In [11], the parametrizations are treated as complex numbers depending on the param-

eter of the curves, and the above relationship is exploited to write all the parameters

of the Möbius function in terms of just one of them. Then an algorithm using univari-

ate gcds is obtained. The complexity of the algorithm is analyzed; this complexity is

Õ(d4), where Õ represents the complexity neglecting logarithmic factors, and d is the

maximum degree of the numerators and denominators of the parametrizations.

In [14], similarities between space rational curves are addressed; the strategy also

involves the curvature and torsion of the curves, although the special case of helical

curves, i.e., curves where the quotient κ/τ is constant, arises as a special situation, also

investigated in the paper. Furthermore, in both [11] and [14] the methods are general-

ized to Bézier curves, and to B-spline curves and NURBS curves with the same knot

vectors and same weights. In fact, in these cases it suffices to compute the similarities

between the corresponding control polygons.

However, the commutative diagram in Eq. (1.9) works not only for similarities,

but in fact for any invertible transformation f . This observation is somehow present in

the generalization done by Hauer et al. in [56] of the ideas in the preceding papers, to

compute affine and projective equivalences between two properly parametrized rational

curves C1 and C2 in any dimension. In [56], the authors consider projective parametri-

zations x1,x2 of C1 and C2, where

x1(t) = (p0(t0, t1), p1(t0, t1), . . . , pd(t0, t1)), with pi(t) =
n∑
j=0

cj,it
n−j
0 tj1
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and

x2(t) = (p′0(t0, t1), p′1(t0, t1), . . . , p′d(t0, t1)), with p′i(t) =
n∑
j=0

c′j,it
n−j
0 tj1

and the pi, p
′
i are homogeneous polynomials of degree n (notice that p′i does not represent

here the first derivative of pi). Denoting the coefficient vectors of both parametrizations

by

cj = (cj,0, cj,1, . . . , cj,d), c′j = (c′j,0, c
′
j,1, . . . , c

′
j,d),

with j = 0, . . . , n, the authors, first, explore the effect on a coefficient vector, say cj,

of applying a Möbius transformation. Denoting the new coefficient vector by ĉj(α),

where α denotes the 4-tuple defined by the parameters of a Möbius transformation,

it is shown that if C1, C2 are related by a projective transformation f defined by a

non-singular matrix M , then

Mc′j = ĉj(α), j = 0, . . . , n. (1.10)

This provides a polynomial system in the entries of the matrix M , and the parameters

of the Möbius transformation. However, the system is linear in the entries of M , which

allows to solve for the entries of M in terms of α. One just needs some equations

of the system to do this, so the remaining equations are used, after substituting the

expressions of the entries of M in terms of α, to derive a polynomial system in α only.

The paper [56] includes a detailed analysis of the polynomial system in Eq. (1.10), as

well as three different strategies to solve it whose efficiency depends on the degree of the

curves, and the dimension of the curves. The case of affine transformations is analyzed

separately, since it has extra advantages.

We end this subsection with a different approach for computing projective equiv-

alences between two rational curves in any dimension, provided in [33]. A first obser-

vation in [33] is that projective transformations between two sets of four points in the

complex projective line P1(C) preserve the cross-ratio. From here, a natural algorithm

to detect whether two finite sets of points in the complex projective line are projectively

equivalent is given. The algorithm is then extended to sets of points in the complex pro-

jective line which are given as roots of polynomials. For rational curves, it is observed
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that a rational curve in Pn(C) has finitely many stall points, which are the points where

the osculating hyperplane has a contact of order higher than expected. If we consider

a projective parametrization x̂(t, ω) of the curve, with ω an homogenization variable,

stall points are given by the condition

∆x̂(t, ω) = det

[
∂nx̂(t, s)

∂tn
,
∂nx̂(t, ω)

∂tn−1ω
, . . . ,

∂nx̂(t, ω)

∂ωn

]
= 0.

Stall points are always finite, and projective transformations map stalls to stalls. Thus,

in order to compute the projective equivalences between two curves, one computes first

the stall points of each curve, and then finds the projective equivalences between the

(finite) sets of stall points.

1.4.2 The case of rational surfaces

The strategy in the previous section can be generalized to the case of rational sur-

faces up to a certain extent. However, the difficulty is higher, because while birational

transformations of the complex line have a closed form, birational transformations of

the complex plane do not. These transformations are called Cremona transformations,

and are known to be generated by quadratic and linear projective transformations.

Thus, in this case symmetries, similiarites, affine and projective transformations also

lead to commutative diagrams like the ones we had in the preceding section, but in

general we do not know how the function ϕ at the bottom of the diagram looks like.

Nevertheless, by introducing certain hypotheses on the surfaces, we can get partial

results. A first step in this sense is the paper [9], where an algorithm for computing the

involutions of a surface S ⊂ R3 polynomially and properly parametrized by x(t, s) =

(x(t, s), y(t, s), z(t, s)), with (t, s) ∈ R2, is given. However, it is also assumed that the

parametrization is surjective, which is a strong hypothesis. Under these assumptions,

we again have a commutative diagram
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S
f
// S

R2

x

OO

ϕ
// R2

x

OO (1.11)

where ϕ is proved to be a linear affine mapping, i.e., ϕ(t, s) = (at+ bs+ c1, ct+ds+ c2),

satisfying that ϕ◦ϕ = idR2 . This condition, together with the relationship f ◦x = x◦ϕ,

is exploited to write all the parameters of ϕ(t, s) in terms of just two of them. In order

to do this, the fact that the first fundamental form of the surface is pointwise preserved

by an isometry is used. Thus, the method leads to bivariate polynomial systems, from

which the involutions of the surface are derived. Symmetries, not only involutions, of

algebraic surfaces of revolution are also addressed in [9].

A step forward is given in the paper [57], where an algorithm for computing projec-

tive and affine symmetries and equivalences between rational surfaces is provided. The

paper requires the parametrizations to be proper and without projective base points,

which is, again, a quite strong hypothesis. Under these assumptions and using Elimi-

nation Theory, the authors prove that the function ϕ at the bottom of the commutative

diagram in Eq. (1.11) must be linear projective, i.e.,

ϕ(t, s) =

(
a1t+ b1s+ c1

a3t+ b3s+ c3

,
a2t+ b2s+ c2

a3t+ b3s+ c3

)
.

Then the approach in [56] is generalized to the surface setting. Again, we have a

relationship as in Eq. (1.10), and the method relies on polynomial system solving.

Some authors of [57] generalize their results to the case of rational surfaces with

projective base points in [63]. In [63], the authors reduce the problem of computing

projective equivalences between two rational surfaces to finding projective isomorphisms

between surfaces that are covered by lines or conics, and that belong to five possible

different types. However, computational or efficiency issues are not discussed in [63].

We finish with some references for equivalences between special types of rational

surfaces.
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• Projective equivalences between ruled rational surfaces are considered in [33],

where the computation of projective equivalences between rational curves is also

addressed (see the previous subsection). The main idea is that a ruled rational

surface can be seen as a rational curve in the Plücker quadric, i.e., the Grass-

manian G(1, 3). Thus, the problem of computing projective equivalences between

rational ruled surfaces can be translated to the problem of relating rational curves

of a higher dimension, and higher degree.

• Canal surfaces are surfaces obtained as the envelope of a family of spheres whose

centers lie on a curve, the spine curve, and whose radii are variable. The spine of

a canal surface is unique except for Dupin cyclides, which can be generated in two

different ways, i.e., with two different spine curves. The symmetries of rational

canal surfaces, with rational spine and rational radius function are treated in

[3]. In [3], symmetries of canal surfaces are reduced to the computation of the

symmetries of the spine curve, when it is unique, or the isometries between the two

spine curves, for the special case of Dupin cyclides, which are compatible with the

invariance of the radius function. In fact, it is the radius function that provides

a very fast algorithm, relying on factoring of bivariate polynomials, to detect the

symmetries. Furthermore, in [3] a complete classification of the symmetries of

Dupin cyclides, following from the general algorithm, is given.

• Surfaces of translation, or translational surfaces, are surfaces generated by sliding

a space curve onto another one: if a(t) and b(s) represent two different parame-

trizations of space curves, then

x(t, s) = a(t) + b(s)

is the surface of translation generated by a(t) and b(s). Affine equivalences be-

tween rational surfaces of translation, with rational generators, are addressed in

[16]. The main idea is that the computation of the affine equivalences between

two rational surfaces of translation can be reduced to computing the affine equiv-

alences between the generators of the surfaces, thus taking the problem from

rational surfaces to rational curves. This can be applied to minimal surfaces as
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well, which can be seen as surfaces of translation. Minimal surfaces are the sur-

faces with zero mean curvature, and enjoy a very notable optimization property,

namely that they span a given space curve with minimal area. Since Lie and

Weierstrass it is known that a minimal surface is in fact a surface of translation

with complex conjugate generators. Additionally, in [16] several properties of the

symmetries of rational minimal surfaces are given, and the symmetries of a special

family of minimal surfaces, Enneper surfaces, are computed. A method to create

minimal surfaces with certain prescribed symmetries is also given.

1.4.3 Implicit case

Compared to the rational case, implicit curves and surfaces have been much less

considered in the literature. In fact, the problem for implicit surfaces is still open.

Nevertheless, we can mention some contributions.

Symmetries of plane algebraic curves are studied in [70]. Given a planar curve C
implicitly defined by f(x, y) = 0, the authors consider the complex substitution

(x, y)→
(

(z + z)

2
,
(z − z)

2i

)
,

where z = x + iy and i2 = −1, obtaining the implicit complex form of the curve

F (z, z) = 0. This expression has a certain matrix form, and the properties of the

matrix form of a curve admitting rotational or reflectional symmetries are analyzed.

The analysis benefits from the fact that such symmetries have a simple expression

when working over the complex numbers, and leads to an algorithm to detect the

symmetries of the curve. The algorithm is fast for rotational symmetries around the

origin and reflections in lines through the origin, and requires some more effort for

general rotations and reflections. This matrix form is later recovered in [34] in order

to address the case when the coefficients in the implicit equation of the curve are given

with finite precision.

The implicit complex form is also used in [5] to detect whether two planar curves

C1, C2, implicitly given by f1(x, y) = 0, f2(x, y) = 0, are similar. Since a planar
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similarity corresponds to an affine transformation of the complex plane h(z) = az + b

or h(z) = az + b (for orientation-reversing similarities), it is observed that certain

parameters of the similarity can be derived by comparing the forms of highest degree

of f1(x, y) and f2(x, y). After computing these parameters, in order to compute the

similarities in general we need to solve a bivariate polynomial system with complex

coefficients, although with the advantage of having a univariate equation in one of the

variables. For the case of symmetries, one just needs to compute univariate gcds of

polynomials with complex coefficients.

Symmetries and similarities between implicit planar algebraic curves are also stud-

ied in [15]. The crucial fact that is exploited here is that the Laplacian operator com-

mutes with orthogonal transformations. Thus, if f(x, y) = 0 defines a curve C, φ is a

symmetry of the curve, and ∆ denotes the Laplacian operator, then

∆(f ◦ φ) = ∆f ◦ φ.

If ∆f is not identically zero, this implies that any symmetry of f is also a symmetry of

∆f , which is a polynomial of degree deg(f)−2. For a similarity φ with scaling constant

λ,

∆(f ◦ φ) = λ2(∆ ◦ φ),

and we have a similar phenomenon. By repeateadly applying this, we get a Laplacian

chain that ends with either a quadratic polynomial, or a linear polynomial, or a har-

monic polynomial, i.e., a polynomial h such that ∆h = 0. This reduces the problem of

computing symmetries and similarities to conics and harmonic polynomials and some

special cases, easy to treat. The most complicated part is the analysis for harmonic

polynomials. For such a polynomial h, we consider the singular points of the vector

field

~v(x, y) = (hx,−hy).

When written in complex form, ~v(x, y) = hx− ihy. Using Cauchy-Riemann conditions,

it turns out that ~v is in fact a polynomial g(z) in the complex variable z; the singular

points of ~v are the zeroes of this polynomial in z. It is shown that the symmetries of
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h are, in fact, symmetries of the set of singular points of ~v, which can be efficiently

computed and admit a closed form in terms of the coefficients of g(z). For similarities,

one checks that the similarities between two harmonic polynomials are also similarities

between the singular point sets of the vector fields associated with the polynomials.

The derived algorithms are very fast.

Finally, in [33] some hints on affine equivalences between implicit algebraic curves,

and on symmetries and similarities of implicit algebraic surfaces are given. As in [5], it

is observed that part of the information on symmetries and similarities can be computed

by just analyzing the form of highest degree of an implicit curve f(x, y) = 0, or the form

of highest degree of an implicit surface f(x, y, z) = 0. In the first case, the zeroes of the

form of highest degree of f(x, y) give finitely many points (the points at infinity) of the

curve, so one can take advantage of the algorithms for computing symmetries, affine

and projective equivalences of finite sets of points, which are also addressed in [33]. For

surfaces, one intersects the surface defined by the form of highest degree fd(x, y, z) of

the surface with the absolute conic x2 + y2 + z2 = 0. This provides finitely many points

(at infinity), and, again, one reduces the search of candidates for potential symmetries

or similarities to this finite set of points.



CHAPTER 2

AFFINE EQUIVALENCES OF RULED RATIONAL

SURFACES

This chapter describes an algorithm for computing the affine equivalences between

two rational ruled surfaces. Isometries and symmetries are treated as special cases

enjoying extra advantages. The ideas are also applied to computing certain types of

symmetries of an implicit algebraic surface under additional hypotheses.

The main question is to reduce the problem, as it is also done in many works

reviewed in the previous chapter, to computing the mapping corresponding to each

affine equivalence in the parameter space, which is now two-dimensional. However,

this problem is harder, because such mapping, which is a birational transformation of

the plane, does not have, unlike birational transformation of the line, a simple and

universal form. However, in this case we can guess and make precise the structure of

this mapping, and from here recover the affine equivalences.

Furthermore, here we also take advantage of several ideas of [56], where projective

mappings between rational curves in any dimension are studied. Indeed, when seen

projectively, our problem has a certain correspondence with projective equivalences

between certain curves, related to the directions of the rulings of the surfaces involved.

18
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The problem we treat here has also been addressed by other authors in the last

few years. We briefly provide a comparison with these works.

2.1 Rational ruled surfaces

Definition 2.1. An algebraic surface S ⊂ R3 is ruled if for every point p ∈ S there

exists a line Lp through p, completely contained in S. The lines Lp are called the rulings

of S. Furthermore, if D ⊂ S is a curve contained in S which intersects all the rulings,

we say that D is a directrix of S.

Here we will consider rational ruled surfaces, i.e., surfaces S ⊂ R3 admitting a

rational parametrization x(t, s). We say that S is parametrized in standard form if

xxx(t, s) = ppp(t) + s·qqq(t), (2.1)

where ppp(t) and qqq(t) are rational parametrizations. Notice that ppp(t) defines the directrix

curve, while qqq(t) defines the direction of the ruling through each point ppp(t). In [87] it

is proved that any rational ruled surface can be brought into standard form, although

the parametrization might not be real (e.g., quadrics). An algorithm to do it is also

provided in [87].

If all the rulings of S intersect at a point p0, we say that S is conical, and that p0

is the vertex of S. In this case, we have

xxx(t, s) = p0 + s·qqq(t). (2.2)

If all the rulings of S are parallel to a vector v̄ ∈ R3, i.e., they intersect at a point

at infinity, we say that S is cylindrical. In this case, we have

xxx(t, s) = ppp(t) + s · v̄. (2.3)
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2.2 Affine equivalences of ruled surfaces

2.2.1 Assumptions on the surfaces.

Let S1, S2 be real ruled surfaces, defined by parametrizations x1,x2, where

xxxi(t, s) = pi(t) + s · qi(t), (2.4)

and pi(t), qi(t) are rational for i = 1, 2. In this subsection we will precise some addi-

tional hypotheses that we will require on the surfaces S1, S2.

First, we will assume that S1, S2 are not cylindrical. Cylindrical surfaces are

addressed in Subsection 2.3.3. Thus, the qi(t) are not multiples of constant vectors

v̄i ∈ R3.

Furthermore, we will also assume that no Si is not doubly-ruled, i.e., that there are

not two different families of rulings contained in Si. It is well-known that the doubly-

ruled surfaces are planes, hyperbolic paraboloids, and single-sheeted hyperboloids (see

[59, §I.3]), so all of them are either planes or quadrics. For paraboloids and hyperboloids,

one can study affine equivalences by first computing the implicit equation, which is easy

to do for quadrics, and then applying matrix methods.

Additionally, we will suppose that for i = 1, 2, xi(t, s) is proper in the sense of

Sec. 1.3.

Finally, we will assume that each qi(t) is polynomial. One can always achieve this.

Indeed, observe first that if qi is not polynomial, we can multiply it by µi(t) =
µ1,i(t)

µ2,i(t)
,

where µ1,i(t) is the least common multiple of the denominators of the components of

qi(t), and µ2,i(t) is the greatest common divisor of the numerators of the components of

qi(t). Now since µi(t)qi(t) is parallel to qi(t) for all t, the parametrizations pi(t)+sqi(t)

and pi(t)+s ·µi(t)qi(t) define the same surface Si, because both of them have the same

rulings. In other words, when moving to pi(t) + s ·µi(t)qi(t) we are changing the norm

of the vector parallel to each ruling of Si, but not its direction.

However, one needs to check that this last assumption is compatible with the
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other assumptions; in particular, with the assumption on the properness of the para-

metrizations (the others are obvious). In order to see this, we set

q̂i(t) := µi(t)qi(t), µi(t) =
µ1,i(t)

µ2,i(t)
, (2.5)

and

ŝ := s/µi(t). (2.6)

This way, the parametrization

x̂xxi(t, s) = pi(t) + ŝ · q̂i(t),

defines the same surface Si. The following lemma guarantees that this new parameter-

ization is still proper.

Lemma 2.1. Let S be a rational ruled surface parametrized by xxx(t, s) as in Eq. (2.4).

If xxx(t, s) is proper, then x̂xx(t, s) is also proper.

Proof. Assume that x̂xx(t, s) is not proper. Then a generic point P0 ∈ S is generated

via x̂xx(t, s) by at least two distinct pairs (t1, s1) and (t2, s2). But then P0 is reached via

xxx(t, s) by (t1, s1·µ(t1)) and (t2, s2·µ(t2)) since

P0 = x̂xx(t1, s1) = p(t1) + s1·µ(t1)q(t1) = x(t1, µ(t1)· s1),

and

P0 = x̂xx(t2, s2) = p(t2) + s2·µ(t2)q(t2) = x(t2, µ(t2)· s2).

From the two previous equations, since x(t, s) is proper, we get that t1 = t2 and

µ(t1)· s1 = µ(t2)· s2. But since t1 = t2, and µ(t) is not identically zero, we deduce

that s1 = s2. Thus, the pairs (t1, s1) and (t2, s2) are equal, contradicting our initial
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hypothesis that they were distinct.

�

2.2.2 Main theorems

Let S1, S2 be real rational ruled surfaces parametrized by x1,x2 as in Eq. (2.4),

satisfying that: (1) xi(t, s) is proper; (2) qi(t) is polynomial with relatively prime

components; (3) Si is not doubly-ruled; (4) Si is not cylindrical. Our goal in this

subsection is to develop some results that will lead to a method to detect whether S1, S2

are affinely equivalent, and in the affirmative case to compute the affine equivalences

between S1, S2.

The following result is crucial for us.

Theorem 2.1. Let S1, S2 be two rational real ruled surfaces properly parametrized by

x1,x2 as in Eq. (2.4). A mapping f : R3 → R3, f(x) = Ax+b, with A ∈ R3×3, b ∈ R3

and A nonsingular, satisfies f(S1) = S2, so that S1, S2 are affinely equivalent, if and

only if there exists a birational transformation ϕ : R2 → R2, such that the diagram

S1
f
// S2

R2

xxx1

OO

ϕ
// R2

xxx2

OO
(2.7)

is commutative. In particular, for a generic point (t, s) ∈ R2 we have

f ◦ x1 = x2 ◦ ϕ. (2.8)

Proof. (⇒) Since x2 is proper by hypothesis, x−1
2 exists and is rational. Therefore,

ϕ = x−1
2 ◦ f ◦x1 is birational, because ϕ is the composite of birational transformations.

(⇐) Since f ◦ xxx1 = xxx2 ◦ ϕ, whenever x1(t, s) and (x2 ◦ ϕ)(t, s) are well-defined (f ◦
x1)(t, s) ∈ S2, so f(S1) ⊂ S2. Since f is nonsingular, f(S1) defines a rational surface,

i.e., f(S1) does not degenerate into a curve. Additionally f(S1), S2 are both rational,
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and therefore irreducible; since f(S1) ⊂ S2 and f(S1), S2 are irreducible, f(S1) = S2,

i.e., S1, S2 are affinely equivalent. �

Additionally, from Eq. (2.8) one can easily see that each affine mapping f is

associated with a different ϕ. Indeed, let f1, f2 be two different affine equivalences

between S1 and S2, and let ϕ1, ϕ2 be the birational planar transformations associated

with f1, f2 according to Eq. (2.7). Since the diagram is commutative, we have ϕi =

x−1
2 ◦ fi ◦ x−1

1 . Thus, f1 6= f2 implies that ϕ1 6= ϕ2.

Remark 2.1. It can happen that at a base point only one of the sides of Eq. (2.8) is

defined. For instance, let S be the conical surface parametrized by

x(t, s) = s· (−t4 − 6t2 + 3, 8t3, (t2 + 1)2).

One can check that this surface is invariant by a rotation of 2π
3

degrees about the z-axis

given by f(x, y, z) = A· (x, y, z), i.e., f(S) = S, where

A =

 −
1
2
−
√

3
2

0
√

3
2
−1

2
0

0 0 1

 .

Furthermore, one can also check that in this case f ◦ x = x ◦ ϕ, with

ϕ(t, s) =

−√3t− 3

3t−
√

3
,

9

16
s

(
t−
√

3

3

)4
 , (2.9)

holds for a generic point (t, s) of the parameter space. Now take (t0, s0) =
(√

3
3
, 1
)

, so

x(t0, s0) =
(

8
9
, 8
√

3
9
, 16

9

)
and

(f ◦ x)(t0, s0) = f

(
8

9
,
8
√

3

9
,
16

9

)
=

(
−16

9
, 0,

16

9

)
.

In particular, the left hand-side of Eq. (2.8) is well defined. However, for (t0, s0) =
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(
√

3
3
, 1) the denominator of the first component of ϕ(t0, s0) is zero, and (x ◦ϕ)(t0, s0) is

not defined. One can check that in this case, the symmetry f maps the point (8
9
, 8
√

3
9
, 16

9
),

generated by (t0, s0), to the point (−16
9
, 0, 16

9
), which is a point of S missed by the para-

metrization x, i.e., not generated by x for any pair (t, s).

If we consider the situation in a projective setup, we observe that Eq. (2.8) fails

at the projective point corresponding to (t0, s0) = (
√

3
3
, 1). Indeed, let us represent by

[t : s : ω] the elements of the parameter space, which is now P2(R) (the last coordinate

corresponds to the homogenization variable). Then the point [
√

3
3

: 1 : 1] of the parameter

space, corresponding to the affine point (t0, s0) = (
√

3
3
, 1), maps to [576 : 0 : 0], which is

a base point of

x̂(t, s, ω) = [s(−t4 − 6t2ω2 + 3ω4) : 8st3ω : s(t2 + ω2)2 : ω5],

the parametrization of the projective closure Ŝ of S. Thus, the left hand-side of Eq.

(2.8) is [−16
9

: 0 : 16
9

: 1], while the right hand-side of Eq. (2.8) is [0 : 0 : 0 : 0].

From Theorem 2.1 we observe that ϕ is a birational transformation of the plane,

i.e., a Cremona transformation. Since Cremona transformations do not have a generic

closed form, in order to describe ϕ we need to make use of the properties of the surfaces

we are investigating; in this case, of the fact that they are ruled. The following result

provides a first clue in this direction.

Proposition 2.1. Let S1, S2 be rational ruled surfaces properly parametrized as in Eq.

(2.4), which are not doubly ruled. Let f(x) = Ax + b be a nonsingular affine mapping

satisfying f(S1) = S2, and let ϕ : R2 → R2 be the birational transformation making the

diagram in Eq. (2.7) commutative. Then

ϕ(t, s) = (ψ(t), a(t)· s+ c(t)), (2.10)

where ψ(t) is a Möbius transformation and a(t), c(t) are rational functions.

Proof. Since f is an affine mapping, f maps rulings of S1 onto rulings of S2. Let

ϕ(t, s) = (ϕ1(t, s), ϕ2(t, s)). A generic ruling of Si, with i = 1, 2 is defined by xxxi(tai , s),
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where tai is a constant. Since S2 is not doubly ruled, the ruling parametrized by

xxx1(ta1 , s) is mapped by f onto the ruling parametrized by xxx2(ta2 , s). Using Eq. (2.8),

we get

f(x1(ta1 , s)) = x2(ϕ(ta1 , s)) = x2(ϕ1(ta1 , s), ϕ2(ta1 , s)),

so ϕ1(ta1 , s) = ta2 , i.e., ϕ1(ta1 , s) does not depend on s. Since this independence happens

for a generic ta1 , we deduce that ϕ1(t, s) = ϕ1(t). Since ϕ is birational, ϕ1 is birational

as well; in particular, we deduce that ϕ1 is a birational transformation of the line, so ϕ1

must be a Möbius transformation, which we represent by ψ(t). From Eq. (2.8), taking

into account that f(x) = Ax + b we have

A·p1(t) + b + s·A· q1(t) = p2(ψ(t)) + ϕ2(t, s)·qqq2(ψ(t)).

Writing this expression in components, we get ϕ2(t, s) = a(t)· s + c(t), for a(t), c(t)

rational.

�

Let us now investigate the structure of the function a(t) in Eq. (2.10). Recall that

xxxi(t, s) = pi(t) + s· qi(t), where qi(t) = (qi,1(t), qi,2(t), qi,3(t)), each qi,j(t) is polynomial

and gcd(qi,1, qi,2, qi,3) = 1. Also, let

ni = max{deg(qi,1(t)), deg(qi,2(t)), deg(qi,3(t))}, (2.11)

and let us write

a(t) =
A(t)

B(t)
, ψ(t) =

αt+ β

γt+ δ
,

where A,B ∈ R[t], gcd(A,B) = 1, and αδ − βγ 6= 0. Combining Eq. (2.10) and Eq.

(2.8) with f(x) = Ax + b, we have
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A·x1(t, s) + b = x2(ϕ(t, s))

A·p1(t) + s·A· q1(t) + b = p2(ψ(t)) + (a(t)· s+ c(t))· q2(ψ(t))

= p2(ψ(t)) + s· a(t)q2(ψ(t)) + c(t)· q2(ψ(t)).

Comparing the coefficients of s, we get

A·p1(t) + b = p2(ψ(t)) + c(t)· q2(ψ(t)), (2.12)

and

A· q1(t) = a(t)· q2(ψ(t)). (2.13)

Since qi(t), i = 1, 2, is polynomial, the left hand-side of Eq. (2.13) is polynomial as

well, so the right hand-side of Eq. (2.13) must also be polynomial. This observation

yields the following results; here, we denote the entries of the matrix A by Aij.

Lemma 2.2. (γt+ δ)n2 divides A(t).

Proof. From Eq. (2.13), for i = 1, 2, 3 we get

Ai1· q1,1(t) + Ai2· q1,2(t) + Ai3· q1,3(t) = a(t)· q2,i(ψ(t)), (2.14)

where q2,i(t) = a`it
`i + a`i−1t

`i−1 + · · ·+ a0, with `i ≤ n2 for i ∈ {1, 2, 3}. Furthermore,

`i = n2 for at least one i ∈ {1, 2, 3}. Additionally,

q2,i(ψ(t)) =
a`i(αt+ β)`i + a`i−1(αt+ β)`i−1(γt+ δ) + · · ·+ a0(γt+ δ)`i

(γt+ δ)`i
. (2.15)

Since γt + δ does not divide αt + β, the numerator and denominator of q2,i(ψ(t)) are

relatively prime. Since the left hand-side of Eq. (2.14) is a polynomial, a(t)· q2,i(ψ(t))

must be a polynomial as well, so (γt + δ)`i divides A(t). Since `i = n2 for some
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i ∈ {1, 2, 3}, the statement follows. �

Lemma 2.3. B(t) is a constant.

Proof. Recall that gcd(q2,1, q2,2, q2,3) = 1. Let Ni(t) be the numerator of q2,i(ψ(t)).

Since the left hand-side of Eq. (2.14) is a polynomial, B(t)|Ni(t) for i = 1, 2, 3. Thus,

B(t)|G(t), where G = gcd(N1, N2, N3). Now suppose that G(t) is not constant. Then

N1, N2, N3 have a common root t0. Moreover, since the numerators and denominators

of the q2,i(ψ(t)) are relative prime, γt0 + δ 6= 0. Therefore, ψ(t0) is well defined and

ψ(t0) is a common root of the q2,i(t), because q2,i(ψ(t0)) = Ni(t0)

(γt0+δ)`i
. But this contradicts

the fact that gcd(q2,1, q2,2, q2,3) = 1. Thus, G(t) is constant and since B(t)|G(t), B(t)

must be a constant. �

Finally, we get the following proposition about the form of the function a(t).

Proposition 2.2. The function a(t) satisfies a(t) = k· (γt+ δ)n2, where k is a nonzero

constant.

Proof. From the two previous lemmas we have a(t) = k(t)· (γt+ δ)n2 for some polyno-

mial k(t). Additionally, from Eq. (2.13) and lemma 2.2,

A· q1(t) = k(t)· (γt+ δ)n2· q2(ψ(t)). (2.16)

Taking Eq. (2.15) into account, we observe that (γt + δ)n2· q2(ψ(t)) is polynomial. If

k(t) is not a constant, then the components of A · q1(t) are not relatively prime, i.e.,

A · q1(t) = r(t)q?1(t), with r(t) nonconstant, and q?1(t) a polynomial parametrization

with relatively prime components. However, since A is nonsingular, in that case we

have q1(t) = r(t)A−1q?1(t), which implies that the components of q1(t) are not relatively

prime either. Since by hypothesis the components of q1(t) are relatively prime, k(t)

must be a constant k. Finally, since A is nonsingular, from Eq. (2.16) we get that

k 6= 0. �

Taking Proposition 2.2 and Eq. (2.16) into account, we get the following corollary.
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Corollary 2.1. If S1, S2 are affinely equivalent, then n1 = n2.

We summarize the previous results in the following theorem. In the rest of the

chapter, we denote, according to Corollary 2.1, n1 = n2 = n.

Theorem 2.2. Let S1, S2 be two rational ruled surfaces, which are not doubly ruled,

properly parametrized as in Eq. (2.4). Let qi(t) = (qi,1(t), qi,2(t), qi,3(t)), with qi,j(t) ∈
R[t] for i = 1, 2 and j = 1, 2, 3, and n1 = n2 = n. Let f(x) = Ax + b, with A

nonsingular, such that f(S1) = S2, and let ϕ : R2 → R2 be the birational transformation

making the diagram in Eq. (2.7) commutative. Then

ϕ(t, s) = (ψ(t), k· (γt+ δ)n· s+ c(t)), (2.17)

where ψ(t) is a Möbius transformation, k is a constant, and c(t) is a rational function.

Moreover,

A· q1(t) = k· (γt+ δ)n· q2(ψ(t)). (2.18)

Eq. (2.18) can be interpreted in geometric terms. In order to do this, it is prefer-

able to write Eq. (2.18) projectively. Let q̃i(t, ω) = [qi,1(t, ω) : qi,2(t, ω) : qi,3(t, ω)] ∈
P2(R), where i = 1, 2 and ω is a homogenization variable. Then Eq. (2.18) can be

written as

A · q̃1(t, ω) = k · q̃2(αt+ βω, γt+ δω). (2.19)

This means that the projective curves defined by q̃1(t, ω) and q̃2(t, ω) are projectively

equivalent, and even more, that A defines a projectivity mapping the projective curve

defined by q̃1(t, ω) onto the projective curve defined by q̃2(t, ω) (or k · q̃2(t, ω), since

projectively q̃2(t, ω) and k · q̃2(t, ω) can be identified). This observation makes perfect

sense from a geometric point of view: affine equivalences map rulings of S1 onto rulings

of S2, as observed in the proof of Proposition 2.1, and q̃1(t, ω), q̃2(t, ω) define the

directions of these rulings. The matrix A defines the map sending the direction of each

ruling of S1 onto the direction of a ruling of S2.

Projective equivalences between curves in any dimension and particular systems

of equations like Eq. (2.19) (and therefore Eq. (2.18)) are studied in great detail in
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[56]. We will benefit from the study carried out in [56] in the next section, where we

address the computation of the affine equivalences between S1, S2.

We will see how to exploit Eq. (2.18) and Eq. (2.12) in the next section.

2.3 Computation of the affine equivalences

The computation of the affine equivalences between S1, S2 is based on the following

result, which in turn follows from the results of the previous section.

Proposition 2.3. The affine equivalences f(x) = Ax + b between S1, S2 correspond to

the A ∈ R3×3, b ∈ R3 satisfying Eq. (2.18) and Eq. (2.12), where det(A) 6= 0, k 6= 0,

ψ(t) = αt+β
γt+δ

and αδ − βγ 6= 0.

Notice that since the components of q2(t) are polynomials of degree at most n, Eq.

(2.18) involves only polynomials, and provides equations which are linear in the entries

Aij of the matrix A. Furthermore, the coefficients of the Aij in these linear equations

are constants, while the constant terms of these linear equations depend on α, β, γ, δ

and k. However, Eq. (2.12) involves rational functions, i.e., polynomial denominators.

2.3.1 Reducing the numbers of coefficients of ϕ

Since αδ−βγ 6= 0 we can always either assume that αδ−βγ = 1, or separate the

analysis in two different cases, namely the case γ = 1, and the case γ = 0, δ = 1. This

last possibility allows us to perform the computation with fewer variables (although

twice).

More precisely, if n is odd, or n is even and k ≥ 0, we have that

k· (γt+ δ)n = [
n
√
k(γt+ δ)]n = (

n
√
kγt+

n
√
kδ)n.

On the other hand,
αt+ β

γt+ δ
=

n
√
kαt+ n

√
kβ

n
√
kγt+ n

√
kδ
.
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Now, if n is even and k < 0, then

k· (γt+ δ)n = −|k|(γt+ δ)n = −[ n
√
|k|(γt+ δ)]n = −( n

√
|k|γt+ n

√
|k|δ)n,

and
αt+ β

γt+ δ
=

n
√
|k|αt+ n

√
|k|β

n
√
|k|γt+ n

√
|k|δ

.

So renaming the coefficients, we finally have that

ϕ(t, s) =

(
αt+ β

γt+ δ
,±s· (γt+ δ)n + c(t)

)
. (2.20)

In both cases we still have αδ−γβ 6= 0 since
n
√
k2αδ− n

√
k2γβ =

n
√
k2(αδ−γβ) 6= 0.

We might take a(t) as k· (γt+δ)n or as ±(γt+δ)n. In our implementations we observed

that it is more efficient to use the expression involving the constant k. Now if we take

a(t) = k· (γt+ δ)n, we can leave out one of the variables α, β, γ or δ, let us take γ. We

consider two cases here:

• If γ = 0, then we can set δ = 1, and after renaming the coefficients, we have

ϕ(t, s) = (αt+ β, s· k + c(t)) . (2.21)

• If γ 6= 0, then

ϕ(t, s) =

(
αt+ β

γt+ δ
, s· k· (γt+ δ)n + c(t)

)
=

(
α
γ
t+ β

γ

t+ δ
γ

, s· k· γn
(
t+

δ

γ

)n
+ c(t)

)
.

Again, renaming the coefficients, we have
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ϕ(t, s) =

(
αt+ β

t+ δ
, s· k· (t+ δ)n + c(t)

)
. (2.22)

The computation of the affine equivalences proceeds in three different steps, (A),

(B), (C). Let us describe these steps in detail.

Step (A): Writing A in terms of α, β, γ, δ, and k.

At this step we exploit Eq. (2.18), which has been studied in great detail in

Section 3 of [56]. Writing Eq. (2.18) in components, we get


A11· q1,1(t) + A12· q1,2(t) + A13· q1,3(t) = k(γt+ δ)nq2,1(ψ(t)),

A21· q1,1(t) + A22· q1,2(t) + A23· q1,3(t) = k(γt+ δ)nq2,2(ψ(t)),

A31· q1,1(t) + A32· q1,2(t) + A33· q1,3(t) = k(γt+ δ)nq2,3(ψ(t)).

(2.23)

Since the q2,j(t) have degree at most n, the expressions on the right hand-side of

Eq. (2.23) are, in fact, polynomials. Equating the coefficients of t`, for ` = 0, 1, . . . , n,

on both sides of Eq. (2.23), we get a system L, linear in the Aij, where the coefficients

of the Aij are constant numbers, and where the constant terms are polynomials in

α, β, γ, δ and k. Let us write q1(t) as

q1(t) = v0 + v1t+ · · ·+ vnt
n, (2.24)

where v` ∈ R3, for ` = 0, . . . , n, is a numeric row vector whose components are the

coefficients in t` of q1,1(t), q1,2(t) and q1,3(t). Then the system L has the form:
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

v0

...

vn

v0

...

vn

v0

...

vn


︸ ︷︷ ︸

A

·



A11

A12

A13

A21

...

A33


=



•1

...

•n+1

...

•2(n+1)

...

•3(n+1)


(2.25)

Here we see that A ∈ R3(n+1)×9 is a block matrix with three nonzero blocks of

size (n+ 1)× 3, consisting of the row vectors v0, . . . ,vn. The constant terms •j, where

j = 1, . . . , 3(n+1), are products of k by a homogeneous polynomial in α, β, γ, δ of degree

n, a structure observed in Section 3.2 of [56]. Notice also that the number 3(n + 1) of

the equations is in agreement with the observations raised in Section 3 of [56] (compare

to Table 2 in Section 3 of [56], taking into account that we are dealing with projective

curves, defined by q̃1, q̃2, in the projective plane).

Let r = rank(v0, . . . ,vn); notice that since v` ∈ R3, we get r ≤ 3. Furthermore,

if r = 2 then the directions of all the rulings of S1 are parallel to a plane. If r = 1 then

all the rulings of S1 are parallel to a same vector v, i.e., S1 is a cylindrical surface; this

special case is much easier to solve, see Subsection 2.3.3.

Now by the structure of the matrix A we get rank(A) = 3r. Let us address the

cases r = 3 and r = 2. The case r = 3 is analyzed in detail in Section 3.2 of [56]; here

we adapt several results of [56] to our case. However, the case r = 2 is, apparently, not

addressed in [56].

(1) Case r = 3: since rank(A) = 3r, for r = 3 we get rank(A) = 9, so we can

solve the system L and write the Aij in terms of α, β, γ, δ and k. Additionally,

applying the Gauss-Jordan method to the system L, we get 3(n+1)−3r additional
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conditions on α, β, γ, δ and k that must hold for L to be consistent. When r = 3,

we get 3n− 6 conditions of this type. Each such condition is a product of k by a

homogeneous polynomial in α, β, γ, δ. Since k 6= 0, we can factor out k and get

3n−6 homogeneous conditions on α, β, γ, δ alone, of degree n. Since αδ−βγ 6= 0,

one can add the extra condition αδ − βγ = 1.

This way we get a polynomial system PA in α, β, γ, δ: if this polynomial system

is not consistent, the surfaces S1, S2 are identified as non-affinely equivalent, and

the computation stops. Otherwise we can get either tentative values for α, β, γ, δ

that may or may not give rise to an affine equivalence between S1, S2 (this must

be tested later), or a number of relations between the α, β, γ, δ. If these relations

allow writing some of these parameters in terms of the others, we can reduce the

number of parameters in the subsequent computations.

Notice that when n = 2, we get 3n− 6 = 3 · 2− 6 = 0, so no extra conditions in

α, β, γ, δ are generated. However, we can still write the Aij in terms of α, β, γ, δ

and k.

(2) Case r = 2: in this case, since r = 2 applying the Gauss-Jordan method to the

system L we get 3(n + 1) − 3 · 2 = 3n − 3 additional conditions on α, β, γ, δ, k

that must hold for L to be consistent, with the same properties as in the previous

case. As before, we denote the collection of all these polynomial conditions by

PA. However, since rank(A) = 6 is less than the number of Aij, we cannot, in this

case, write all the Aij only in terms of α, β, γ, δ, k, i.e., three of the Aij must be

considered as parameters as well. This observation makes sense from a geometric

point of view: if r = 2 then q1(t), q2(t) parametrize projective lines, and there are

infinitely many projective transformations mapping a projective line onto another

projective line.

Observe that when the components of q1(t) are linear we are always either in the

case r = 1, or in the case r = 2. In this last case, we do not get any extra conditions

on α, β, γ, δ, because since n = 1 the number 3n− 3 of extra conditions vanishes.

Summarizing, at this step we write either all the Aij, when r = 3, or only six of the
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Aij, when r = 2, in terms of α, β, γ, δ, k. Furthermore, except in the case r = 3, n = 2

and the case n = 1, we get polynomial conditions on α, β, γ, δ, which may help either

to detect that the surfaces are not affine equivalent (when these conditions are not

compatible), or to reduce the number of parameters.

(B) Writing b in terms of α, β, γ, δ, and k, and computing c(t).

Writing Eq. (2.12) in components, we get


A11· p1,1(t) +A12· p1,2(t) +A13· p1,3(t) + b1 = p2,1(ψ(t)) + c(t)q2,1(ψ(t)),

A21· p1,1(t) +A22· p1,2(t) +A23· p1,3(t) + b2 = p2,2(ψ(t)) + c(t)q2,2(ψ(t)),

A31· p1,1(t) +A32· p1,2(t) +A33· p1,3(t) + b3 = p2,3(ψ(t)) + c(t)q2,3(ψ(t)),

(2.26)

where we assume that the Aij, or some of the Aij, have already been written in terms

of α, β, γ, δ, k. Now we proceed as follows:

(i) Eliminating c(t) between the first and second equations of Eq. (2.26) provides an

equation E1 linear in b1, b2, with coefficients that are rational functions of t.

(ii) Proceeding in the same way with the second and third equations, we get an

equation E2, linear in b2, b3.

(iii) Evaluating E1 and E2 at several random t-values we get a linear system in b1, b2, b3,

whose solution provides b in terms of k.

(iv) Finally, we compute c(t) from any equation of Eq. (2.26).

We will refer later to this procedure as “the steps (i)-(iv)”.

(C) Deriving a polynomial system S, and computing the affine equiva-

lences.

Substituting the expressions for A, b and c(t) computed in steps (A) and (B) into

Eq. (2.8), we get a polynomial system S. If r = 3, the unknowns of S are, at most,

k, α, β, γ, δ, and we can have fewer unknowns if the polynomial conditions PA in step

(A) allow us to write some of these variables in terms of the others. If r = 2, we
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can have at most three more unknowns besides k, α, β, γ, δ, namely three of the Aij.

Again, the polynomial system PA may help reduce the total number of parameters, and

therefore of unknowns in S. Thus, the number of unknowns in S is ≤ 5, if r = 3, and

≤ 8, if r = 2.

The solutions of this polynomial system provide the affine equivalences between

S1, S2. We summarize the whole procedure to find the affine equivalences between S1, S2

in Algorithm Affine-Eq-Ruled.

Algorithm 1 Affine-Eq-Ruled

Require: Two ruled surfaces S1, S2, properly parametrized by xi(t, s) = pi(t)+sqi(t),
i = 1, 2, where each qi(t) is polynomial with relatively prime components of degree
≤ n.

Ensure: The affine equivalences f(x) = Ax + b between S1, S2.
1: Compute the system L in Eq. (2.25).
2: Apply the Gauss-Jordan method on the system L.
3: if r = 3 and n ≥ 3, or r = 2 and n ≥ 2 then
4: solve the polynomial system PA in α, β, γ, δ.
5: if PA is not consistent then
6: return S1 and S2 are not affinely equivalent, and stop
7: end if
8: end if
9: Solve the system L

10: Write the solutions of L with as few variables as possible, using, if any, the solutions
of PA

11: Follow steps (i)-(iv) to write b in terms of the variables in step 10, and to compute
c(t)

12: Substitute A, b, c(t) and the ϕ in Eq. (2.17) into Eq. (2.8)
13: Derive from the preceding substitution a polynomial system S in the parameters

appearing in step 9
14: if no solution is found then
15: return S1 and S2 are not affinely equivalent.

16: else
17: for each solution found do
18: compute the corresponding mapping f(x) = Ax + b
19: end for
20: end if
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Example 2.1. Let S1 and S2 be the rational ruled surfaces parametrized by x1x1x1(t, s) =

p1p1p1(t) + s · q1q1q1(t) and x2x2x2(t, s) = p2p2p2(t) + s · q2q2q2(t), where

p1(t) = (t4 + t2 + t, t6 + t3, t5 + t3 + t2 + 3t),

q1(t) = (t3 + t, t5, t4 + t2 + 3),

p2(t) = (5t4 + 5t2 + 5t− 1, 3t5 + 3t3 + 3t2 + 9t+ 5,−t6 + t4 − t3 + t2 + t),

q2(t) = (5t3 + 5t, 3t4 + 3t2 + 9,−t5 + t3 + t) .

In this case, n = 5. Furthermore, when we write q1(t) as in Eq. (2.24), we observe that

we fall in the case r = 3. The surfaces S1, S2 are shown in Fig. 2.1.

In order to check whether S1, S2 are affinely equivalent, we apply Algorithm 1.

The polynomial system PA in this case is given by:

• 10α3δγ− 15α2βδ2 + 15α2βγ2− 30αβ2δγ− 20αδ3γ + 20αδγ3− 5β3γ2− 30βδ2γ2 +

5βγ4 = 0.

• 3α4δ+12α3βγ−18α2β2δ−3α2δ3+9α2δγ2−12αβ3γ−18αβδ2γ+6αβγ3−9β2δγ2−
90δ3γ2 + 45δγ4 = 0.

• −5α4β+ 2α3δγ+ 10α2β3− 3α2βδ2 + 3α2βγ2− 6αβ2δγ− 4αδ3γ+ 4αδγ3− β3γ2−
6βδ2γ2 + βγ4 = 0.

Since αδ−βγ 6= 0, we add the equation (αδ−βγ)u−1 = 0. Using these equations

together with the 3 · (5 + 1) = 18 equations of the system L we obtain expressions for

α, β, γ, δ depending only on k; the same thing happens with b and c(t).

In particular, going back to Eq. 2.16 we get two sets of possible expressions for

the entries Aij in terms of k, namely

Sol1 = {A11 = 5k,A12 = A13 = A21 = A22 = 0,A23 = 3k,A31 = k,A32 = −k,A33 = 0},

Sol2 = {A11 = −5k,A12 = A13 = A21 = A22 = 0,A23 = 3k,A31 = −k,A32 = k,A33 = 0}.

From Sol1, applying step (B) we get
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E1 =
3b1t

4 − 5b2t
3 + 3t4 + 3b1t

2 + 25t3 − 5b2t+ 45kt+ 3t2 + 9b1 − 20t+ 9

15t(t2 + 1)(t4 + t2 + 3)
,

E2 =
b2t

5 − 3kt5 + 3b3t
4 − 2t5 − b2t

3 − 9kt3 + 3b3t
2 + 14t3 − b2t+ 9kt+ 9b3 − 4t

3t(t4 + t2 + 3)(t4 − t2 − 1)
.

Evaluating E1 and E2 in t = −± 1, 3 we get

b1 =

(
−1, 1

2
+

9

2
k,

3

62
− 3

62
k

)T
,

c1(t) =
62kt6 − 62t6 − 62kt4 + 62kt3 + 62t4 − 62kt2 − 62t3 − 62kt+ 62t2 + 3k + 62t− 3

62t(t4 − t2 − 1)
.

Replaicing the entries of A, b1 and c1(t) into Eq. (2.8), with ϕ as in Eq. (2.17),

we get a system S given by

S = {−15k+ 15,−310k+ 310,−27k+ 27, 279k− 279, 93k− 93,−837k+ 837,−9k+ 9},

whose solution is k = 1. Here ϕ1(t, s) = (t, s).

From Sol2 we have

E1 = −3b1t
4 + 5b2t

3 + 3t4 + 3b1t
2 − 25t3 + 5b2t− 45kt+ 3t2 + 9b1 + 20t+ 9

15t(t2 + 1)(t4 + t2 + 3)
,

E2 =
b2t

5 − 3kt5 − 3b3t
4 − 2t5 − b2t

3 − 9kt3 − 3b3t
2 + 14t3 − b2t+ 9kt− 9b3 − 4t

3t(t4 + t2 + 3)(t4 − t2 − 1)
.

Using again t = ±1, 3 we get the same expression for vector b as above, and
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c2(t) =
62kt6 + 62t6 − 62kt4 + 62kt3 − 62t4 − 62kt2 − 62t3 − 62kt− 62t2 + 3k + 62t− 3

62t(t4 − t2 − 1)
.

Here we get the same linear system S in k. Hence, in this case we also obtain

k = 1 but this time with ϕ(t, s) = (−t, s+ 2t).

In conclusion, we get two ϕ’s corresponding to affine equivalences, namely

ϕ1(t, s) = (t, s), ϕ2(t, s) = (−t, s+ 2t).

The mapping ϕ1(t, s) corresponds to the affine mapping f1(x) = A1x + b1, where

A1 =

 5 0 0

0 0 3

1 −1 0

 , b1 =
(
−1 5 0

)T
. (2.27)

The mapping ϕ2(t, s) corresponds to the affine mapping f2(x) = A2x + b2, where

A2 =

 −5 0 0

0 0 3

−1 1 0

 , b2 =
(
−1 5 0

)T
. (2.28)

Therefore, S1, S2 are related by two affine mappings f1, f2. Notice that this result

is consistent with the fact that S1 has a non-trivial symmetry (axial with respect to the

z-axis); in fact, one can check that f2 = f1 ◦f0, where f0 represents the axial symmetry

of S1.

2.3.2 The special case of conical surfaces

Recall that S is a conical surface if all the rulings of S intersect at a point p0 ∈ S,

called the vertex, which can be computed by using the results in [7]. By applying a
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Figure 2.1: S1 (left) and S2 (right).

translation if necessary, we can always assume that p0 is the origin. In this case, S is

parametrized by x(t, s) = s · q(t), where q(t) is polynomial.

Now given two rational conical surfaces S1, S2 parametrized by xi(t, s) = s ·qi(t),
with qi(t) polynomial for i = 1, 2, any affine equivalence between S1, S2 has the form

f(x) = Ax, so b = 0. Since p1(t), p2(t) are identically zero and f ◦ xxx = xxx ◦ ϕ, we have

A· s·qqq1(t) = [a(t)· s+ c(t)]·qqq2(ψ(t)) = s· a(t)·qqq2(ψ(t)) + c(t)·qqq2(ψ(t)).

Thus, c(t)·qqq2(ψ(t)) must be equal to zero, and then the function c(t) is identically

zero as well.

Therefore Eq. (2.12) is reduced to 0 = 0. Thus, the computation of the affine

equivalences between S1, S2 reduces to solving Eq. (2.18). Notice that the system

derived from Eq. (2.18) is homogeneous in k and the entries of the matrix A, which

implies that A is defined only up to a multiplicative constant. This observation makes

perfect sense since any conical surface is invariant by homotheties where the homothety
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center is the vertex of the surface.

We summarize all this in the proposition below.

Proposition 2.4. Let S1, S2 be rational conical surfaces, not doubly ruled, properly

parametrized by xi(t, s) = s · qi(t). Let f(x) = Ax be a nonsingular affine mapping

satisfying f(S1) = S2, and let ϕ : R2 → R2 be the birational transformation making the

diagram in Eq. (2.7) commutative. Then

ϕ(t) = (ψ(t), s · k · (γt+ δ)n), (2.29)

where ψ(t) is a Möbius transformation.

2.3.3 The special case of cylindrical surfaces

Under the assumption that q1(t), q2(t) are polynomials with relatively prime com-

ponents, S1, S2 are cylindrical iff the qi(t) are constant vectors. These vectors define

the directions of all the rulings of S1, S2. Then in order to check whether S1, S2 are

affinely equivalent, it suffices to check whether the planar curves C1, C2, obtained by

intersecting S1, S2 with planes Π1,Π2 respectively normal to q1(t), q2(t), are affinely

equivalent. This can be done, for instance, by using the algorithm in [56]. Notice that

the affine equivalences of S1, S2 are, in this case, the affine equivalences of the plane

sections followed by any translations along the direction of the rulings of S2, and any

dilatation in the same direction.

2.3.4 Computing isometries and symmetries

Let us address now the case when the affine mapping f(x) = Ax + b is an

isometry, that is, A is an orthogonal matrix. For finding the isometries between S1, S2

we can certainly apply Algorithm Affine-Eq-Ruled, with the extra condition that A

is orthogonal. However, in this case, we have additional conditions, which may be an

advantage for simplifying the computation. Indeed, since orthogonal mappings preserve

norms, taking norms in Eq. (2.13), with k a constant, we get the condition
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‖q1(t)‖2 − k2 · (γt+ δ)2n · ‖q2(ψ(t))‖2 = 0. (2.30)

Equating to zero all the coefficients in t at the left hand-side of Eq. (2.30), we get a

polynomial system P of 2n+ 1 equations, each one consisting of a homogeneous poly-

nomial of degree 2n in the variables α, β, γ, δ multiplied by k2, plus a constant. These

equations have a higher degree than the equations of the polynomial system PA, all of

degree n. However, collecting the equations in PA and P provides a bigger polynomial

system in α, β, γ, δ, k, which may help to reduce the total number of parameters in the

polynomial system S, and/or the number of tentative values for α, β, γ, δ, k. In partic-

ular, in the cases r = 3, n = 2 and n = 1 applying Algorithm Affine-Eq-Ruled does

not provide extra conditions on α, β, γ, δ, k; however, Eq. (2.30) does.

If S1 = S2 = S, the isometries leaving S invariant are the symmetries of S.

We can find the symmetries of S by proceeding as before with S1 = S2. However,

recall from Section 2.1 that certain notable symmetries, like central symmetries, axial

symmetries and reflections in a plane, are affine involutions, i.e., affine mappings f

satisfying f ◦ f = idR3 . If we are interested only in affine involutions (isometric or

non-isometric) we can improve the computation as follows. First, from Eq. (2.8) one

can see that f ◦ f = idR3 iff the corresponding ϕ satisfies ϕ ◦ ϕ = idR2 . By Theorem

2.2, one has

ϕ(t, s) = (ϕ1(t, s), ϕ2(t, s)) = (ψ(t), s · k(γt+ δ)n + c(t)),

and the condition (ϕ ◦ ϕ)(t, s) = (t, s) introduces two constraints:

(i) (ϕ1 ◦ ϕ1)(t, s) = t, i.e., (ψ ◦ ψ)(t) = t. In turn, this constraint implies that

α2 − δ2 = 0, β(α + δ) = 0, γ(α + δ) = 0.

Therefore, either α = −δ, or α + δ 6= 0 and α = δ, β = γ = 0.
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(ii) ϕ2(ϕ1(t), ϕ2(t, s)) = s, which implies

[s · k(γt+ δ)n + c(t)] · k ·
[
γ · αt+ β

γt+ δ
+ δ

]n
+ c(ψ(t)) = s.

Comparing coefficients of s, we deduce that

k2 ·
[
γ(α + δ)t+ (γβ + δ2)

]n
= 1,

which in turn yields

γ(α + δ) = 0, k2(γβ + δ2)n = 1.

Thus, either α = −δ and k2(γβ + δ2)n = 1, or α = δ, γ = 0 and k2δ2n = 1.

Putting (i) and (ii) together, we get the following result, which allows decreasing

the total number of parameters, and therefore of unknowns in the polynomial system

S. Notice that this result is applicable to any affine involution (in particular, isometric

involutions).

Theorem 2.3. Let S be a rational ruled surface, which is not doubly ruled, properly pa-

rametrized as in Eq. (2.4). Let q(t) = (q1(t), q2(t), q3(t)), with qi(t) ∈ R[t] for i = 1, 2, 3,

and

n = max{deg(q1(t)), deg(q2(t)), deg(q3(t))}.

Finally, let f(x) = Ax + b, with A ∈ R3, b ∈ R3, be an affine involution leaving S

invariant. With the notation of Theorem 2.2, one has:

(I) α = −δ and k2(γβ + δ2)n = 1, in which case

ϕ(t, s) =

(
αt+ β

t− α
,±s· (t− α)2√

(β + α2)n
+ c(t)

)
,

or

(II) ϕ(t, s) = (t,−s+ c(t)), with c(t) a rational function.

So we need to deal with a bivariate system at most.
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Observe that in case (II) f fixes each line of the ruling and acts on these lines as

an affine involution.

Remark 2.2. Since any similarity can be written as f(x) = λQ+b, where λ 6= 0 is the

scaling constant, taking norms in Eq. (2.13), with k a constant, we get the condition

λ2‖q1(t)‖2 − k2 · (γt+ δ)2n2 · ‖q2(ψ(t))‖2 = 0. (2.31)

The analysis, in this case, is very similar to that of isometries, although the polynomial

system has one more variable, namely λ.

Example 2.2. In this example we computed all the symmetries of the ruled surface S

(shown in Fig. 2.2) parametrized by

x(t, s) =

(
2t8 − 10t6 − 10t4 + 5t2 + 1

t2 + 1
,− t

9 − 6t7 + 6t3 + t2 − 3t+ 1

t2 + 1
, t7 + 3t5 + 3t3 + t+ 5

)
+s · (2t5 − 12t3 + 2t, (−t2 + 1)(t4 − 6t2 + 1), (t2 + 1)3).

• The function ϕ(t, s) = (−t,−s) corresponds to the symmetry with respect to the

axis [t+ 2,−1, 5],

• the function ϕ(t, s) =

(
1

t
,−st6 − t8 + 1

t

)
corresponds to the symmetry with

respect to axis [2, t− 1, 5],

• the function ϕ(t, s) =

(
−1

t
, st6 +

t8 + 1

t

)
corresponds to the symmetry with

respect to the axis [2,−1, t+ 5],

• the function

ϕ(t, s) =

(
t− 1

t+ 1
,−s(t+ 1)6

8
− 1

8

t8 + 7t7 + 21t6 + 35t5 + 35t4 + 21t3 + 7t2 + 9t− 8

t+ 1

)

corresponds to a rotation of
π

2
with respect to the axis [2,−1, t+5] plus a reflection

on the plane [t+ 2, s− 1, 5],
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Figure 2.2: Surface S.

• the function

ϕ(t, s) =

(
−t+ 1

t+ 1
,
s(t+ 1)6

8
+

1

8

t8 + 7t7 + 21t6 + 35t5 + 35t4 + 21t3 + 7t2 + 9t− 8

t+ 1

)
corresponds to a symmetry with respect to the plane [t+ 2,−t− 1, s+ 5],

• and the function

ϕ(t, s) =

(
t+ 1

t− 1
,
s(t− 1)6

8
+

1

8

t8 − 7t7 + 21t6 − 35t5 + 35t4 − 21t3 + 7t2 − 9t− 8

t− 1

)
corresponds to a symmetry with respect to the plane [t+ 2, t− 1, s+ 5].

Example 2.3. Let S1 and S2 be the rational ruled surfaces parametrized by x1x1x1(t, s) =

p1p1p1(t) + s · q1q1q1(t) and x2x2x2(t, s) = p2p2p2(t) + s · q2q2q2(t), where

p1(t) =

(
t+

3

4
, 4t2 + 3, t

)
,

q1(t) = (t3 + 2t2 + 1,−t3 + t2 + t,−t3 + t2 + t),

p2(t) =

(
(
√

3 + 1)t

2
+

3
√

3

8
− 1

2
, 4t2 + 5,

(
√

3− 1)t

2
−
√

3

2
− 3

8

)
,
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and

q2(t) =

(
(
√

3− 1)t3

2
+

(√
3 +

1

2

)
t2 +

t

2
+

√
3

2
,−t3 + t2 + t,

−

(√
3 + 1

2

)
t3 +

(√
3

2
− 1

)
t2 +

√
3

2
t− 1

2

)
,

Here, n = 3. Furthermore, when we write q1(t) as in Eq. (2.24), we observe that

we are in the case r = 2.

In this case, we analyze the isometries mapping S1 onto S2. There is only one

isometry, associated with ϕ(t, s) = (t, s), defined by f(x) = Ax + b, where

A =


√

3

2
0

1

2
0 1 0

−1

2
0

√
3

2

 , b =

(
−1

2
2 −

√
3

2

)T
, (2.32)

corresponding to a rotation of
π

6
around the y-axis. Applying Algorithm 1 with the

additional equations corresponding to Eq. (2.30), we need to test only two tentative

solutions. If, instead of Eq. (2.30), we use the orthogonality conditions on the columns

of the matrix A, we need to test four tentative solutions, and the computation time is

higher. The surface S1 is shown in Fig. 2.3.

2.4 Experimentation and performance of the method

We have implemented the methods described in Section 2.3 in the computer alge-

bra system Maple 18, and we have tried the examples in an Intel(R) Core(TM) i5-7500,

CPU 3.40 GHz and 32 Gb RAM. We have analyzed affine equivalences, isometries, and

symmetries. For isometries, we used the conditions derived from Eq. (2.30), because

this tends to speed up the computation.
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Figure 2.3: Surface S1 from two points of view.

The results for affine equivalences of some representative examples are summarized

in Tables 2.1 and 2.2. When the surfaces are affinely equivalent, the second surface is

the result of applying to the first surface an affine equivalence with matrix −1/2 −1 0

0 1 1

0 2 3

 .

For each example, we have included: (1) a picture of the surface S1, (2) the degree (deg.)

of the parametrization, i.e., the maximum power of t appearing in the numerators and

denominators of p(t), q(t), (3) the computation time (in CPU seconds) of the method

for all the affine mappings, and the computation time using the implicit equation of the

surfaces (in red), (4) the number of affine equivalences between the two surfaces and

(5) the parametrizations of both S1, S2.

The examples with more than one affine equivalence correspond to surfaces with

symmetries. Furthermore, in some cases, we identify infinitely many equivalences, im-

plying that the surfaces are invariant under infinitely many affine mappings. In the

column of timings, we highlight in red the worst time between our method and the

naive method mentioned in the Introduction using the implicit equation. This last
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timing does not include the time for computing the implicit equation, i.e., we assume

that the implicit equation is already known. Only in one of the examples shown, where

the implicit equation is straightforward (F (x, y, z) = x3 − 27yz2), and for the case of

symmetries, is the method using the implicit equation faster.

The results for symmetries and isometries for several representative examples are

summarized in Tables 2.3 and 2.4: for each example, we include data also included in the

affine equivalences table, plus the computation time (in CPU seconds) of our method

for computing all the symmetries of the surface (“all sym.”), for computing only the

involutive symmetries of the surface (“involutions”), and for computing the isometries

(“isometries”) between each surface and its image under an orthogonal transformation

with associated matrix

 0 1 0

4/5 0 −3/5

3/5 0 4/5

 . (2.33)

In tables 2.3 and 2.4 only the parametrization of surface S1 is shown. We have

observed that almost all the time is spent solving the polynomial system P , arising from

Eq. (2.30). We used the Maple instruction solve to find the solutions of this system.

The complexity of the method is dominated by the solution of the polynomial system

P . We have also observed that P is usually zero-dimensional. A recent, polynomial,

bound for solving a zero-dimensional polynomial system is given in [37]. Although the

case when P is not zero-dimensional is much less frequent, it can happen as well, for

instance, when the components of q(t) are linear. In this case, up to our knowledge,

there is no algorithm other than Gröbner bases to solve the problem; the best-known

complexity, in this case, is exponential [26].

Compared to our approach, computing the implicit equation of the surface and

applying the naive method mentioned in the Introduction to the paper provides worse

timings, even if the time to compute the implicit equation is not considered. In fact, in

many of the examples, Maple cannot find the solution of the polynomial system derived
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from the naive method in a reasonable amount of time.

We also include the type of symmetries found. In some cases, the symmetries

detected are composites of rotations and reflections, denoted as “rotation+reflection”.
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Picture of S1 deg. computation time (secs.)/imp. Affine equivalences

5 1.453 /> 90 2

x̃1(t, s) =

(
t2

t2 + 1
,

t4

t2 + 1
,

t5

t2 + 1

)
+ s · (t, t3, 1)

ỹ1(t, s) =

(
−1

2

t2(2t2 + 1)

t2 + 1
,
t4(t+ 1)

t2 + 1
,
t4(3t+ 2)

t2 + 1

)
+ s ·

(
−1

2
(2t2 + 1)t, (t+ 1)(t2 − t+ 1), 2t3 + 3

)

2 7.125 /> 90 ∞

x̃2(t, s) = (4, 1, t) + s · ((t+ 1)2, t+ 1, 1)

ỹ2(t, s) = (−3, t+ 1, 3t+ 2) + s ·
(
−1

2
(t+ 3)(t+ 1), t+ 2, 2t+ 5

)

3 1.297 /> 90 ∞

x̃3(t, s) = s · (3(t+ 1)2(t− 1), (t− 1)3, (t+ 1)3)

ỹ3(t, s) = s ·
(
−1

2
(t− 1)(5t2 + 2t+ 5), 2t(t2 + 3), 5t3 + 3t2 + 15t+ 1

)

3 1.562 /> 90 2

x̃4(t, s) = (t3 + t, t2 − 3, t3 + t) + s · (−t3, t2 − 8, 2t3 − t)

ỹ4(t, s) =

(
t3

2
− t

2
− t2 + 3, t3 + t2 + t− 3, 3t3 + 2t2 + 3t− 6

)
+s ·

(
t3

2
− t2 + 8, 2t3 + t2 − t− 8, 6t3 + 2t2 − 3t− 16

)
.

Table 2.1
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Picture of S1 deg. Computation time (secs.)/imp. Affine equivalences

4 1.641 /> 90 2

x̃5(t, s) = (t4 + t2, t2 − 3, t3 + t) + s · (−t4 + 2, t2 − 8, 2t)

ỹ5(t, s) =

(
− t

4

2
− 3t2

2
+ 3, t3 + t2 + t− 3, 3t3 + 2t2 + 3t− 6

)
+ s

(
t4

2
− t2 + 7, t2 + 2t− 8, 2t2 + 6t− 16

)

3 4.078 /> 90 1

x̃6(t, s) =

(
t3 + t

t2 + 1
,−3, t+ t2

)
+ s · (−t3, t2 − 8, t2 − t)

ỹ6(t, s) =

(
3− t

2
, t2 + t− 3, 3t2 + 3t− 6

)
+ s ·

(
−t2 + 8 +

t3

3
, 2t2 − t− 8, 5t2 − 3t− 16

)
4 1.578 /> 90 2

x̃7(t, s) =

(
t4 + t2

t2 + 3
,
t2 − 3

t2 + 3
,
t3 + t

t2 + 3

)
+ s · (−t4 + 2, t2 − 8, 2t)

ỹ7(t, s) =

(
−1

2
· t

2(t2 + 5)

t2 + 3
,
t3 + t2 + t− 3

t2 + 3
,
3t3 + 6t2 + 3t+ 6

t2 + 3

)
+ s ·

(
1

2
t4 − t2 + 7, t2 + 2t− 8, 2t2 + 6t− 16

)

7 4.516 /> 90 2

x̃8(t, s) =
(
t6 − 6t4 + t2 + 2t,−t7 + 6t5 − t3 + t2 + t, t3 + t

)
+s ·

(
t5 − 6t3 + t,−t6 + 6t4 − t2 + 1, t2 + 1

)
ỹ8(t, s) =

(
t3 − 3

2
t2 − 2t− 1

2 t
6 + 3t4 + t7 − 6t5,−t7 + 6t5 + t2 + 2t,−2t7 + 12t5 + t3 + 2t2 + 5t

)
+s ·

(
3t3 − 1

2
t+ t2 − 1 + t6 − 6t4 − 1

2
t5,−t6 + 6t4 + 2,−2t6 + 12t4 + t2 + 5

)

4 1.032 /> 90 0

S1 S2 x̃9(t, s) =

(
1

t4
, t, 1

)
+ s · (1, t, t3)

ỹ9(t, s) =

(
− 2

t4
, 4, 3t

)
+ s

(
1

2
, t3 + t, 3

)
Table 2.2
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computation time (secs.) Symmetries
Picture of S1 deg. all sym. / involutions / and isometries

isometries / implicit

3 axial
9 4.781 / 3.422 / 2 mirror

4.891 /> 90 2 rot. + reflect.
8 isometries

x1(t, s) =

(
2t8 − 10t6 + 3t2 − 1

t2 + 1
,
t9 − 6t7 + 6t3 − 3t

t2 + 1
, t(t2 + 1)3

)
+s · (2t(t4 − 6t2 + 1),−t6 + 7t4 − 7t2 + 1, (t2 + 1)3)

7 4.981 / 2.391 / 1 reflect.
4.016 /> 90 2 isometries

x2(t, s) =

(
− t

7 + 7t5 + 3t3 − t2 − 3t+ 1

t2 + 1
,
2t(4t5 + 4t3 + 1)

t2 + 1
, t(t2 + 1)2

)
+s · (−t4 − 6t2 + 3, 8t3, (t2 + 1)2)

7 1.046 / 1.109 / 1 reflect.

1.172 /> 90 2 isometries

x3(t, s) = (t6 − 6t4 + t2 + 2t,−t7 + 6t5 − t3 + t2 + t, t3 + t)

+s · (t5 − 6t3 + t,−t6 + 6t4 − t2 + 1, t2 + 1)

5 0.906 / 0.969 / 1 reflect.

1.140 /> 90 2 isometries

x4(t, s) =

(
t2

t2 + 1
,

t4

t2 + 1
,

t5

t2 + 1

)
+ s · (t, t3, 1)

5 reflect.
5 axial sym.

6 2.015 / 1.641 / 1 central
5.250 /> 90 2 rot. sym.

2 rot. + reflect.
16 isometries

x5(t, s) = s · (2t(t4 − 6t2 + 1), (−t2 + 1)(t4 − 6t2 + 1), (t2 + 1)3)

Table 2.3
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Computation time (secs.) Symmetries
Picture of S1 deg. all sym. / involutions and isometries

isometries /implicit

2 1.704 / 1.703 / 1 axial sym.

2.203 /23.671 2 isometries

x6(t, s) = (4, 1, t) + s · ((t+ 1)2, t+ 1, 1)

central
3 0.531 / 0.703 / 1 reflection

1.469 /0.156 1 axial sym.
4 isometries

x7(t, s) = s · (3(t+ 1)2(t− 1), (t− 1)3, (t+ 1)3)

7 1.016 / 0.938 / central

1.219 /> 90 2 isometries

x8(t, s) =

(
t3

t2 + 1
,

t5

t2 + 1
,

t7

t2 + 1

)
+ s · (−t5 + t, 3t7,−2t3)

6 0.906 / 1.032 / 1 axial

1.110 /> 90 2 isometries

x9(t, s) = (t4 + t2 + t, t6 + t3, t5 + t3 + t2 + 3t) + s · (t3 + t, t5, t4 + t2 + 3)

4 reflect.
17 4.406 / 3.329 / 1 axial sym.

4.969 /> 90 2 rotational
8 isometries

x10(t, s) =
(
− t17−6t15+6t11−6t7+6t3−t2−t+1

t2+1 , 2t(t15−5t13−5t11+t9+t7−5t5−5t3+t+1)
t2+1 , t(t2 + 1)3(t8 + 1)

)
+s · (−t6 + 7t4 − 7t2 + 1, 2t(t4 − 6t2 + 1), (t2 + 1)3)

Table 2.4
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2.5 Application to implicit algebraic surfaces under

certain conditions

In this section, we will see how to apply the method developed in the previous

sections to find the reflections and rotational symmetries (in particular, axial symme-

tries) of an implicit algebraic surface under certain conditions. Let F (x, y, z) define an

irreducible, implicit algebraic surface S of total degree N , and let

F (x, y, z) = FN(x, y, z) + FN−1(x, y, z) + · · ·+ F0(x, y, z),

where Fi(x, y, z) denotes the homogeneous form of F (x, y, z) of degree i = 0, 1, . . . , N .

Thus, Fi(x, y, z) is a homogeneous polynomial of degree i. In particular, we refer to

FN(x, y, z) as the highest order form of F (x, y, z).

Let x = (x, y, z), and let f(x) = Ax + b be a symmetry of S. The following

two lemmas show the connections of the problem treated in this section with the ideas

developed in previous sections.

Lemma 2.4. Let f(x) = Ax+b be a symmetry of the surface S defined by F (x, y, z) =

0, where F is irreducible. Then f̃(x) = Ax is a symmetry of the surface defined by

FN(x, y, z) = 0.

Proof. Since F (x, y, z) is irreducible by hypothesis, if f(x) = Ax + b is a symmetry of

S then

F (Ax + b) = λF (x, y, z) = λFN(x) + λFN−1(x) + · · ·+ λF0(x),

with λ a constant. Since

F (Ax + b) = FN(Ax) + FN−1(Ax + b) + · · · ,

we conclude that FN(Ax) = λFN(x), and the result follows. �
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Lemma 2.5. The surface FN(x, y, z) = 0 is a conical surface, with vertex at the origin.

Proof. Since FN(x, y, z) is a homogeneous polynomial, for any constant β we have

FN(βx, βy, βz) = FN(βx) = βNFN(x, y, z). Thus, for any point (x, y, z) of the surface

FN(x, y, z), the line connecting (x, y, z) with the origin is included in the surface. �

Thus, the matrices A defining the symmetries f̃(x) = Ax of FN(x, y, z) = 0

provide a superset for the matrices A defining the symmetries f(x) = Ax + b of

F (x, y, z) = 0.

Now we can make precise the conditions under which the ideas in previous sections

can be applied to the problem in this section. Whenever FN(x, y, z): (1) is irreducible

and (2) defines a real, rational surface, from Lemma 2.5 we know that FN(x, y, z) = 0 is a

conical surface SN , with vertex at the origin, whose symmetries can, therefore, be found

by applying the method in this paper (in particular, using Prop. 2.4). Additionally, if

FN(x, y, z) = 0 defines a rational surface, since SN is a conical surface the intersection of

the surface with a generic plane is a rational curve that we can parametrize rationally

with well-known methods. As a consequence, a parametrization of SN of the type

x(t, s) = sA(t) can be computed. In turn, the symmetries of SN can be obtained by

applying our methods; taking Lemma 2.4 into account, the rotational symmetries and

reflections in planes of S can be found from here. The next lemma sheds some light on

this last step.

Lemma 2.6. (1) If f(x) = Ax + b represents a rotational symmetry about an axis

A, then f̃(x) = Ax represents a symmetry of the same kind, with axis A′ parallel

to A through the origin.

(2) If f(x) = Ax+b represents a symmetry with respect to a symmetry plane Π, then

f̃(x) = Ax represents a symmetry with respect to a symmetry plane Π′ through

the origin.

Proof. We prove (1); the proof of (2) is similar. Let A be the rotational axis corre-

sponding to f , let P0 be a point on the axis A, and let ~v ∈ R3 be a vector parallel to
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A. Since f leaves A invariant, for any λ ∈ R we have f(P0 + λ~v) = P0 + λ~v. Since

f(x) = Ax + b, we get

f(P0 + λ~v) = A · (P0 + λ~v) + b = A · P0 + λA · ~v + b = P0 + λ~v.

Since the above equality holds for any λ, we conclude that A ·~v = ~v. Thus, f̂(β~v) = β~v

for any β ∈ R, i.e., f̂ leaves the line A′ parallel to A through the origin invariant.

Since the nature of the symmetry depends upon the eigenvalues of A, and this matrix

is common to f and f̂ , the result follows. �

Recall that an axial symmetry is nothing else than a rotational symmetry of angle

π, so Lemma 2.6 includes axial symmetries as well. Therefore, whenever FN(x, y, z)

satisfies the hypotheses mentioned before, we can proceed as follows:

(1) Compute a parametrization x(t, s) = sA(t) of the surface SN defined by FN(x, y, z) =

0.

(2) Compute the rotational symmetries and reflections of x(t, s) = sA(t).

(3) [rotational] Let A′ be the axis of rotational symmetry of SN , and let f̂(x) = Ax

be the corresponding symmetry.

(i) Apply a rigid motion to the surface S defined by F (x, y, z) = 0, so that A′

is the z-axis.

(ii) If there exists b ∈ R3 such that f(x) = Ax + b is a rotational symmetry of

S about an axis A, parallel to A′, then for a generic plane Πz0 , normal to

the z-axis, the intersection curve S ∩ Πz0 exhibits central symmetry around

the point P0 = A ∩ Πz0 . Central symmetry of S ∩ Πz0 can be detected with

the algorithm in [15].

(iii) Check whether or not S has rotational symmetry with respect to the line A
parallel to A′ through P0.

(4) [planar] Let Π′ be a symmetry plane of SN , and let f̂(x) = Ax be the correspond-

ing symmetry.
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(i) Apply a rigid motion to the surface S defined by F (x, y, z) = 0, so that Π′

is the xz-plane.

(ii) If there exists b ∈ R3 such that f(x) = Ax + b is a reflection in a plane

Π, parallel to Π′, then for a generic plane Πz0 , normal to the z-axis, the

intersection curve S ∩ Πz0 exhibits axial symmetry with respect to the line

` = Π∩Πz0 . Axial symmetry of S ∩Πz0 can be detected with the algorithm

in [15].

(iii) Check whether or not S is symmetric with respect to the plane parallel to

Π through `.

Remark 2.3. If the surface SN defined by FN(x, y, z) = 0 is a surface of revolution, not

a sphere, SN has an axis A of revolution and has also infinitely many symmetry planes

intersecting at A. Whenever we apply an orthogonal change of coordinates mapping A
to the z-axis, the proposed method is also valid in this case.

Example 2.4. Let S be an algebraic surface implicitly defined by F (x, y, z) = x6 +

y5z+6x5 +14x4 +16x3 +8x2 +z2. The highest order form of S is FN(x, y, z) = x6 +y5z.

The polynomial FN(x, y, z) is irreducible and defines a rational surface (in fact, a conic

surface with vertex at the origin), which can be parametrized, for instance, as(
x, y,

−x6

y5

)
.

In order to compute a parametrization of the form x(t, s) = sA(t), we intersect SN

with the plane y = 2. This yields the planar curve

{x6 + 32z = 0, y = 2},

which can be parametrized as
(
t, 2,− 1

32
t6
)
. In turn, SN can be parametrized as x(t, s) =

s
(
t, 2,− 1

32
t6
)
. Using the method in Section 3, one can check that SN has symmetries

with respect to the plane x = 0, and with respect to the x-axis.

To check whether S is symmetric with respect to a plane parallel to x = 0, we
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Figure 2.4: Symmetry plane and symmetry axis of F (x, y, z) = x6 + y5z+ 6x5 + 14x4 +
16x3 + 8x2 + z2 = 0.

intersect S with the plane z = 3. The resulting curve is

{x6 + 6x5 + 3y5 + 14x4 + 16x3 + 8x2 + 9 = 0, z = 3}.

To analyze the symmetries of this curve, we use the method in [15] which shows that

it is symmetric with respect to the line x = −1. Finally, we can easily check that S is

certainly symmetric with respect to the plane x+ 1 = 0.

Similarly, we check that S is symmetric with respect to the x-axis; in fact, one

can straightforwardly check this observing that F (x, y, z) is invariant when we apply

the transformation {x := x, y := −y, z := −z}.

One can observe the symmetries of this surface in Figure 2.4. The symmetry axis

is shown in black; the solid sphere corresponds to the intersection point of the symmetry

axis and the symmetry plane.

The method proposed here, however, does not allow to find the central symmetries

of the surface. For instance, one can check that the surface in Example 2.4 is symmetric

with respect to the origin, but we cannot read this from FN(x, y, z); in fact, the form of
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the highest degree of any polynomial in x, y, z defines a surface symmetric with respect

to the origin (since it is a conic surface with vertex at the origin).

2.6 Observations on the computation of projective

equivalences

Projective equivalences between S1, S2 correspond to rational mappings f(x) from

R3 to R3 satisfying f(S1) = S2, where the components of f have the form

ai1x+ ai2y + ai3z + bi
a41x+ a42y + a43z + b4

, (2.34)

for i = 1, 2, 3. Whenever f is invertible, Theorem 2.1 is also valid for this case,

so each projective equivalence between S1, S2 has an associated mapping ϕ(t, s) =

(ϕ1(t, s), ϕ2(t, s)) in parameter space. Additionally, projective mappings are collineations,

i.e., they map lines to lines. Thus, we can argue as in the first part of Proposition 2.1

to conclude that ϕ1(t, s) = ψ(t), where ψ(t) is a Möbius transformation. However, in

general, the form of ϕ2(t, s) is not the same as in Proposition 2.1. Indeed, using Eq.

(2.34) one has that

ϕ2(t, s) =
ξ1(t) + sξ2(t)

ξ3(t) + sξ4(t)
,

where the ξj(t) are polynomials. As a consequence, the remaining results of Section

2.2.2, and in particular the form of ϕ predicted by Theorem 2.2, cannot be easily

generalized. Therefore, an approach analogous to the one in this paper for projective

equivalences requires further work.

2.7 Comparison with other works

In this section we compare our results with the results in other related works.

There are three papers that we need to consider here: [57], which appeared before our

results were made public, [33], which was developed independently and was made public

almost simultaneously to our own results, and [63], which was recently uploaded to the
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ArXiv.

The paper [57] provides an algorithm for computing the projective and affine

equivalences between two rational surfaces without projective base points. Notice that

the algorithm in [57] is, however, not applicable to the case of ruled surfaces. Indeed,

the components of a rational parametrization of a ruled surface in standard form can

be written, using projective coordinates, as

A(t, ω) + sB(t, ω),

where A,B are homogeneous polynomials (with ω as the homogenization variable).

Thus, [0:1:0] is always a base point of the surface, so rational ruled surfaces in standard

form always have base points.

The paper [63] addresses projective equivalences between special types of algebraic

varieties, and includes the case of ruled rational surfaces. While the paper treats a more

general problem compared to ours (projective equivalences versus affine equivalences),

it is unclear whether the algorithm in [63] has a better or worse performance. The idea

in [63] is to reduce the computation of projective equivalences between ruled surfaces to

exploring the relationship between the rational curves corresponding to these surfaces

in the Plücker quadric, i.e., in five-dimensional projective space. Thus, we move to a

higher dimension, and the degrees of the curves to analyze are also higher compared

to the degrees in the original parametrizations. In [63] there are no details on the

algorithm and no timings are given, so it is difficult to compare their results with ours.

The results in [63], recently uploaded to the ArXiv, however, are applicable to our

case. Nevertheless, the algorithm in [63] seems difficult to implement. Although the

algorithm is certainly very general, no timings are given, and again the comparison of

the performance of their algorithm with the algorithm in this chapter is unclear.



CHAPTER 3

AFFINE EQUIVALENCES OF TRIGONOMETRIC CURVES

In this chapter, we provide an efficient algorithm to detect whether two parame-

trized curves whose components are given as finite linear combinations of sines and

cosines, i.e., truncated Fourier series, in any dimension, are affinely equivalent. If the

coefficients of the parametrizations are exact (the exact case), the solutions are obtained

by computing univariate gcds. If the coefficients of the parametrizations are known as

floating-point numbers (the approximate case), we need to compute approximate gcds.

In some references [60, 61], these curves receive the name of trigonometric curves

or generalized trigonometric curves. In other, more applied, references (see for instance

[119]), these curves are called elliptic Fourier descriptor (EFD) representations and are

often used to describe closed planar and space curves (see, for instance, the references

in [119]).

In particular, for these curves one can compute shape descriptors (see [46, 47, 53],

among many others), which are invariants that can be computed from the parametri-

zation, and that can be used for curve recognition, in particular similarity recognition.

However, the approach that we use to solve the affine equivalence problem for trigono-

metric curves is similar to the approach used in papers like [11, 13, 56], that we discussed

60
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in previous chapters. In these papers, involving rational curves, the main idea is to re-

duce the computation to finding a Möebius transformation from which the problem is

solved.

For trigonometric curves, it is a well-known trick to compute a rational parame-

trization depending on one complex parameter taking values in the unit circle, and thus

the techniques of the papers [11, 13, 56] are applicable. However, the rational parame-

trization of a trigonometric curve has special properties that one can exploit, resulting

in more advantageous algorithms. In particular, we can prove that the associated

Möebius transformation has a predictable shape only depending on one parameter,

so that the final computation reduces to computing the greatest common divisor of

univariate complex polynomials.

In the presence of floating-point numbers, due to numerical inaccuracies, this

greatest common divisor can be constant, and thus the method must be adapted. Be-

cause of this, we replace greatest common divisors with approximate common divisors

(see, for instance, [28, 65, 82, 81, 122]); in our experiments, we use the MATLAB

implementation for computing approximate gcds provided in [123].

Furthermore, we explore the possibility of computing approximate affine equiva-

lences between non-necessarily rational parametric curves, replacing the components of

the curves by truncated Fourier series of high degree.

3.1 Preliminaries on trigonometric curves

A trigonometric curve C ⊂ Rn, following [61], is a parametric curve whose com-

ponents are truncated Fourier series, i.e.,

x(t) = (x1(t), . . . , xn(t)), (3.1)

where

xi(t) =

mi∑
`=0

[a
(i)
` cos(`t) + b

(i)
` sin(`t)], t ∈ [0, 2π], i = 1, . . . , n. (3.2)
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We refer to a parametrization of this kind as a trigonometric parametrization.

A proper trigonometric parametrization x(t) (see Sec. 1.3) is also called simple; for

instance, (sin(t), cos(t)) is a simple parametrization of a circle, while (sin(2t), cos(2t))

is not.

We will assume that at least one of the mi is different from 1 since otherwise

the curve is an ellipse. Affine equivalences between ellipses can be detected from their

implicit equations.

Furthermore, a trigonometric parametrization x̂(t) is a simplification of another

trigonometric parametrization x(t), if x̂(t) is simple and both x(t), x̂(t) parametrize a

same curve C ⊂ Rn; we also say that x̂(t) is the result of simplifying x(t). In [61] it

is shown (see Theorem 2.1 in [61]) that for a given trigonometric curve, there always

exists either a trigonometric or a polynomial simplification. Furthermore, algorithms

for simplifying a trigonometric curve are also provided in [61].

Given C,D ⊂ R2 trigonometric curves, if there exists a polynomial simplification

for C,D then we can use the results in [56] to find the affine equivalences between them.

Notice that if there exists a trigonometric simplification for C and a polynomial one for

D, then they cannot be affinely equivalent. Hence, we will only consider trigonometric

curves with simple parametrizations.

We will assume that C is not contained in a hyperplane of Rn since in that case

the problem can be reduced to a lower dimension. Additionally, for n = 2 we will

assume that C is not a conic; the problem for conics is easy and can be reduced to

matrix operations.

Any trigonometric curve admits infinitely many simplifications. However, the

following result, which is a reformulation of Theorem 2.5 in [61], shows that all the

simplifications of the same trigonometric curve are related by an explicit type of trans-

formation.

Lemma 3.1. Let x1(t),x2(t) be two simple trigonometric parametrizations of a same

trigonometric curve C ⊂ Rn. Then x2 = x1 ◦ ψ, where ψ(t) = α± t.
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When dealing with trigonometric curves, a common technique is to use a rational

parametrization of the curves employing the change z = eit, where i2 = −1 and z

belongs to the unit circle S1 (see for instance [60, 61, 119]). Since eit = cos t + i sin t,

and taking into account that for z ∈ S1 the conjugate z satisfies that z = 1
z
, we deduce

that

cos t =
z2 + 1

2z
, sin t =

z2 − 1

2iz
, cos(Mt) =

z2M + 1

2zM
, sin(Mt) =

z2M − 1

2izM
, (3.3)

where M ∈ N. Substituting these relationships into Eq. (3.2), we get a rational

complex parametrization (i.e., a parametrization whose components are quotients of

polynomials)

x̃(z) = (x̃1(z), . . . , x̃n(z)), (3.4)

where each component satisfies that

x̃i(z) =
Pi(z)

zmi
, i = 1, . . . , n, (3.5)

with Pi(z) complex polynomials of degree 2mi, such that gcd (P1(z), · · · , Pn(z), zm) = 1,

with m = gcd(m1, . . . ,mn) and z ∈ S1.

We refer to x̃(z) as the rational complex parametrization associated with x(t).

Denoting N = max{mi|i = 1, . . . , n}, we say that the degree of x̃(z) is 2N . Observe

that not every Pi(z) has degree 2N , but there always exists i ∈ {1, . . . , n} such that

the degree of Pi(z) is 2N .

Remark 3.1. One can easily see that

Pi(z) =
1

2

mi∑
`=0

[A`z
mi+` +B`z

mi−`]

where A` = a
(i)
` −ib

(i)
` , B` = a

(i)
` +ib

(i)
` . In particular, since ami

, bmi
are real and nonzero,

then Bmi
6= 0, so no cancellation in x̃i(z) = Pi(z)

zmi
is possible.

Remark 3.2. An alternative possibility to work with trigonometric curves is to apply
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the classical rational change of variables

(cos(t), sin(t))→
(

1− s2

1 + s2
,

2s

1 + s2

)
. (3.6)

However, this produces parametrizations with more terms and higher coefficients. For

instance, consider the function

f(t) = cos(t) + 3 cos(2t)− 2 cos(3t) + 4 cos(5t)− cos(8t).

While the change in Eq. (3.6) produces

−s16 − 74s14 + 1758s12 − 8306s10 + 12780s8 − 7838s6 + 1842s4 − 166s2 + 5

s16 + 8s14 + 28s12 + 56s10 + 70s8 + 56s6 + 28s4 + 8s2 + 1
,

the change in Eq. (3.3) yields

4z16 + z14 + 2z12 − 2z10 + 4z6 − 1

z16
,

which is a simpler expression, with smaller coefficients and fewer terms.

Since for t ∈ [0, 2π] the mapping z = eit : [0, 2π] → S1 is invertible, and since

we are assuming that Eq. (3.1) is a simple trigonometric parametrization, we get that

x̃(z) in Eq. (3.4), seen as mapping from S1 to C, is proper. Furthermore, we get the

following result as a corollary of Lemma 3.1.

Corollary 3.1. Let x̃1(z), x̃2(z) be two rational parametrizations of a same trigonomet-

ric curve C ⊂ Rn, associated with two simple trigometric parametrizations x1(t),x2(t)

of C. Then x̃2 = x̃1 ◦ ξ, where ξ(z) = kz or ξ(z) =
k

z
, and k, z ∈ S1.

Proof. From Lemma 3.1, x2 = x1 ◦ (α ± t). Since xj = x̃j ◦ eit for j = 1, 2, we get

x̃2 ◦ eit = x̃1 ◦ eit ◦ (α± t). Thus,

x̃2 ◦ eit = x̃1 ◦ (eiα · e±it).
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Calling k = eiα and since z = eit, the result follows. �

Notice that ϕ(z) = kz and ϕ(z) = k
z

are, in particular, Möbius transformations of

S1. Moreover, we also have the following corollary of Lemma 3.1, which follows from

Corollary 3.1.

Corollary 3.2. Let x̃1(z), x̃2(z) be two rational parametrizations of a same trigonomet-

ric curve C ⊂ Rn, associated with two simple trigometric parametrizations x1(t),x2(t)

of C. Then the degrees of both x̃1(z), x̃2(z) are the same.

3.2 Affine equivalences of trigonometric curves

Recall that two trigonometric curves C,D are affinely equivalent if there exists a

nonsingular affine mapping f : Rn −→ Rn,

f(x) = Ax + b, x ∈ Rn, (3.7)

with b ∈ Rn and A ∈ Rn×n a nonsingular square matrix, such that f(C) = D.

Henceforth, we will consider trigonometric curves C,D defined by simple parame-

trizations

x(t) = (x1(t), . . . , xn(t)), y(t) = (y1(t), . . . , yn(t)) (3.8)

where xi(t), yi(t) are as in Eq. (3.2). We denote by x̃(z), ỹ(z), with z ∈ S1, the rational

parametrizations associated with x(t),y(t), so the components of x̃(z), ỹ(z) are as in

Eq. (3.5). Our goal is to detect whether C and D are affinely equivalent, i.e., to check

whether they are related by a mapping like Eq. (3.7), and in the affirmative case to

find the affine equivalences between C and D. We first need the following lemma.

Lemma 3.2. Let x(t) be a simple trigonometric parametrization as in Eq. (3.1), let

x̃(z) be its associated rational parametrization, and let 2N be the degree of x̃(z). Let

f(x) = Ax + b, x ∈ Rn, with b ∈ Rn and A ∈ Rn×n a nonsingular square matrix.

(1) x?(t) = Ax(t) + b is a simple trigonometric parametrization, with associated

rational complex parametrization x̃?(z) = Ax̃(z) + b.
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(2) The degrees of x̃(z) and x̃?(z) are the same.

Proof. Let us see (1). Since the components of x?(t) are linear combinations of the

components of x(t), it is clear that x?(t) is trigonometric. Furthermore, since A is

regular, f is an injective mapping. Thus, x?(t) is simple because it is the composition

of a simple trigonometric parametrization with an injective mapping. Finally, since

x̃? = x? ◦ eit, we easily deduce that x̃?(z) = Ax̃(z) + b.

Now let us see (2). It is clear that the degree of x̃?(z) cannot be greater than 2N ;

so let us see that the degree of x̃?(z) cannot be less than 2N . Following the notation in

Eq. (3.2), for i = 1, . . . , n let a
(i)
N , b

(i)
N denote the coefficients of cos(Nt), sin(Nt) in the i-

th component of x(t), xi(t). Of course a
(i)
N , b

(i)
N are zero when mi < N . Notice, however,

that since the degree of x̃(z) is 2N , not all the a
(i)
N , b

(i)
N can vanish. The coefficients of

cos(Nt), sin(Nt) in the i-th component of x?(t) are

Ai1a
(1)
N + Ai2a

(2)
N + · · ·+ Aina

(n)
N ,

Ai1b
(1)
N + Ai2b

(2)
N + · · ·+ Ainb

(n)
N .

Now if the degree of x̃?(z) is less than 2N , then the above expressions must vanish for

all j = 1, . . . , n. Since not all the a
(i)
N , b

(i)
N are zero, this implies that there exists v ∈ Rn,

v 6= 0, such that A · v = 0. But this is impossible because A is a regular matrix. �

Then we have the following result.

Theorem 3.1. Let C,D ⊂ Rn be two trigonometric curves, defined by rational complex

parametrizations x̃(z), ỹ(z), with z ∈ S1, associated with simple trigonometric para-

metrizations x(t),y(t). Let f : C → D be an affine mapping f(x) = Ax + b, where

x ∈ Rn, with b ∈ Rn and A ∈ Rn×n a nonsingular square matrix, such that f(C) = D.

Then there exists k ∈ S1 and ϕ(z) = kz or ϕ(z) = k
z
, such that the diagram

C f
// D

S1

x̃

OO

ϕ
// S1

ỹ

OO (3.9)
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is commutative, i.e., for z ∈ S1 we get that f ◦ x̃ = ỹ ◦ ϕ, or equivalently

Ax̃(z) + b = ỹ(ϕ(z)). (3.10)

Furthermore, the degrees of x̃(z) and ỹ(z) are the same.

Proof. Since f(C) = D and by statement (1) of Lemma 3.2, x?(t) = Ax(t) + b is

also a simple trigonometric parametrization of D. Furthermore, also by statement (1)

of Lemma 3.2, the rational complex parametrization x̃?(z) associated with x?(t) is

x̃?(z) = Ax̃(z) + b. Then the results follow from Corollary 3.1, Corollary 3.2 and the

statement (2) of Lemma 3.2. �

Theorem 3.1 provides the following corollary on the involutional symmetries of a

trigonometric curve C.

Corollary 3.3. In the hypotheses of Theorem 3.1, if C = D and f is a nontrivial

involutional symmetry (i.e., different from the identity) then ϕ(z) = −z or ϕ(z) = k
z

with k ∈ S1.

Proof. From Theorem 3.1, assuming C = D we get ϕ = x̃−1◦f ◦x. Thus, if f ◦f = idRn

then ϕ ◦ϕ = idRn as well, so ϕ is an involution of S1. Now from Lemma 3.1, ϕ(z) = kz

or ϕ(z) = k
z
. The mapping ϕ(z) = k

z
is always an involution. However, ϕ(z) = kz is an

involution only when k = ±1. Since ϕ(z) = z implies that f is the identity, the result

follows. �

Theorem 3.1 can be exploited in order to find the affine equivalences between

C and D. The general idea is to write first the entries Aij of the matrix A and the

components of the vector b as rational functions of k by using Eq. (3.10), and then

find, if any, the values k ∈ S1 such that Eq. (3.10) is satisfied. In particular, we get

polynomial conditions in the variable k that must have a common root, belonging to

S1, for C,D to be affinely equivalent.
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The following result shows that under our hypotheses, in particular by excluding

the possibility that C lies in a hyperplane, writing the Aij and the components of b in

terms of k by using Eq. (3.10) is always possible.

Lemma 3.3. If C is not contained in a hyperplane, Eq. (3.10) allows to write the Aij

and b in terms of k.

Proof. We focus on proving that the entries Aij of A can be written as rational functions

of k. Once this is done, from Eq. (3.10) we get b = ỹ(ϕ(a))−Ax̃(a) for any a ∈ S1.

A possibility to write A in terms of k is to choose n+ 1 distinct complex numbers

z0, z1, . . . , zn ∈ S1, and then consider the matrix equations Ax̃(zi) + b = ỹ(ϕ(zi)),

i = 0, 1, . . . , n. By subtracting the first equation from the last n equations, we get n

matrix equations of the form

A(x̃(zi)− x̃(z0)) = ỹ(ϕ(zi))− ỹ(ϕ(z0)). (3.11)

Let W be the n × n matrix whose columns are the vectors vi = x̃(zi) − x̃(z0), for

i = 1, . . . , n, and let Z be the matrix whose columns are the vectors wi = ỹ(ϕ(zi)) −
ỹ(ϕ(z0)). From Eq. (3.11), we get the matrix equation A ·W = Z. If the vi are linearly

independent, then W−1 exists, and A = Z ·W−1; thus, all the Aij can be written as

rational functions of k.

So the only possibility for not succeeding in writing the Aij in terms of k, is that

we fail to find n vectors vi which are linearly independent. In this case, for any choosing

of distinct complex numbers z0, z1, . . . , zn−1 ∈ S1, the vector x̃(z) − x̃(z0) is linearly

dependent with the vi = x̃(zi)− x̃(z0), for i = 1, . . . , n− 1. In turn, this implies that

there exist functions λ1(z), . . . , λn(z) such that

λ1(z)v1 + . . .+ λn−1(z)vn−1 + λn(z)(x̃(z)− x̃(z0)) = 0

for z ∈ S1. But then x̃(z) belongs to the hyperplane through x̃(z0), spanned by

v1, . . . ,vn−1, i.e., C is contained in a hyperplane. �



3.2. AFFINE EQUIVALENCES OF TRIGONOMETRIC CURVES 69

The proof of Lemma 3.3 suggests a strategy to write A, and then b, in terms of

k by substituting random values z ∈ S1 in Eq. (3.10). However, in order to write A, b

in terms of k we can proceed directly from Eq. (3.10). To make the process more clear,

let us write

x̃(z) =

(
P̂1(z)

zN
, . . . ,

P̂n(z)

zN

)
. (3.12)

The P̂i(z) are polynomials of degree at most 2N , although there must be some i

for which the degree of P̂i(z) is precisely 2N . For this reason, some of the P̂i(z), but

not all of them, can have z as a factor, with some multiplicity. Also, let us write

ỹ(z) =

(
Q̂1(z)

zN
, . . . ,

Q̂n(z)

zN

)
. (3.13)

Again, the Q̂i(z) are polynomials of degree at most 2N , and not all of them

can have z as a factor with some multiplicity. Furthermore, by Theorem 3.1 we have

ϕ(z) = kz or ϕ(z) = k
z
. Thus, we get

ỹ(ϕ(z)) =

(
Q1(k, z)

zN
, . . . ,

Qn(k, z)

zN

)
, (3.14)

where the Qi(k, z) are polynomials in z, of degree 2N , with coefficients polynomially

depending on k, regardless of whether ϕ(z) = kz or ϕ(z) = k
z
. Also, for i = 1, . . . , n let

us write

P̂i(z) = α
(i)
0 + α

(i)
1 z + . . .+ α

(i)
N z

N + · · ·+ α
(i)
2Nz

2N ,

Qi(k, z) = β
(i)
0 (k) + β

(i)
1 (k)z + . . .+ β

(i)
N (k)zN + · · ·+ β

(i)
2N(k)z2N ,

(3.15)

where the coefficients of Qi(k, z), seen as a polynomial in z, are polynomials in k of

degree at most 2N .
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Now Eq. (3.10) can be written as

A ·

(
P̂1(z)

zN
, . . . ,

P̂n(z)

zN

)T

+ b =

(
Q1(k, z)

zN
, . . . ,

Qn(k, z)

zN

)T
. (3.16)

Multiplying by zN , we get

A ·
(
P̂1(z), . . . , P̂n(z)

)T
+ zNb = (Q1(k, z), . . . , Qn(k, z))T . (3.17)

From Eq. (3.17), equating the coefficients of the terms in z`, ` 6= N , at both sides

of the equation, we get linear equations

Ai1α
(1)
` + · · ·+ Ainα

(n)
` = β

(i)
` (k) (3.18)

where i = 1, . . . , n, ` = 0, 1, . . . , N − 1, N + 1, . . . , 2N . Thus, we reach 2Nn linear

equations of this type. Additionally, also from Eq. (3.17), equating the coefficients of

the terms in zN at both sides of the equation we get linear equations

Ai1α
(1)
N + · · ·+ Ainα

(n)
N + bi = β

(i)
N (k) (3.19)

where i = 1, . . . , n. We get n linear equations of this type. Putting together the

equations Eq. (3.18) and Eq. (3.19), we obtain a linear system S, whose unknowns

are the n2 entries Aij of the matrix A, and the n coordinates of the vector b, that

must be consistent for some values k ∈ S1 in the event that the curves C,D are affinely

equivalent. We refer to S as the linear system associated with Eq. (3.10). Moreover,

the coefficient matrix A of the system S has the following block structure:

A =

[
B1 0

B2 1

]
(3.20)

The block B1 is a block diagonal 2Nn×n2 matrix, and consists of n copies of the
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2N × n submatrix


α

(1)
0 · · · α

(n)
0

...
. . .

...

α
(1)
2N · · · α

(n)
2N

 (3.21)

where the row corresponding to the subindex N is missing. The block B2 is also block

diagonal with dimension n× n2 and consists of n copies of the row matrix

[
α

(1)
N · · · α

(n)
N

]
. (3.22)

The block 0 is corresponds to a 2Nn × n null matrix, and the block 1 is the

identity matrix of dimension n.

In particular, notice that the number of linear equations we get is 2Nn + n =

(2N + 1)n, and the number of unknowns is n2 + n, so A ∈M(2N+1)n×(n2+n).

Lemma 3.4. If C is not contained in a hyperplane, then rank(A) = n2 + n.

Proof. We know that A ∈M(2N+1)n×(n2+n). Furthermore, since by hypothesis C is not

contained in a hyperplane, by Lemma 3.3 the system S is consistent and determined.

Since S has n2 + n unknowns, then rank(A) = n2 + n. �

Since A ∈ M(2N+1)n×(n2+n), Lemma 3.4 implies that (2N + 1)n ≥ (n2 + n), i.e.,

2N ≥ n. The next result shows that this is exactly what happens in the case when C
is not contained in a hyperplane.

Lemma 3.5. If C is not contained in a hyperplane, then 2N ≥ n.

Proof. The vector x̃(z) is parallel to the vector

x̃?(z) = zN x̃(z) = (P̂1(z), . . . , P̂n(z)).
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In turn, we can write x̃?(z) as

x̃?(z) = a0 + a1z + · · ·+ a2Nz
2N ,

where aj ∈ R2N for j = 0, . . . , 2N . If 2N < n, then x̃?(z), and therefore, for every

z ∈ S1, x̃(z) belongs to a subspace of Rn of dimension less or equal than n− 1. Thus,

C is contained in a hyperplane. �

Since A ∈M(2N+1)n×(n2+n) and rank(A) = n2 +n by Lemma 3.4, all the columns

of A are linearly independent. However, using the structure of the matrix A (see

Eq. (3.20)), we can also find the rows of A which are linearly independent. Indeed,

observe that all the rows of A corresponding to the block B2 are linearly independent.

Furthermore, no linear combination of rows of A corresponding to B2 and B1 can

produce the zero vector. So linear combinations of rows of A leading to the zero vector

must come from the rows corresponding to B1 only, and in fact from rows corresponding

to the same block of B1. By the structure of A and since B1 is block diagonal, it suffices

to find the rows L1, ..., Lp of the submatrix in Eq. (3.21) which are linearly independent:

all the rows of A corresponding to the Lj (notice that by the block structure of A,

there are n rows of A for each Lj) must also be linearly independent. Since there are

n blocks of the submatrix in Eq. (3.21), this yields p · n independent rows, plus the

n rows corresponding to B2. Since p · n + n = n2 + n, we deduce that p = n, so the

submatrix in Eq. (3.21) must have full rank.

Thus, in practice, in order to solve the system S it suffices to perform Gaussian

elimination on the submatrix in Eq. (3.21), which has full rank. This way we can

identify L1, ..., Ln. The n2 equations of S corresponding to L1, ..., Ln, plus the equations

of S corresponding to the last n rows of the matrix A, yield the linearly independent

equations of the system S. We denote by S0 the set of these linear equations. Then,

solving S0 allows one to write the entries of A and the elements of b in terms of k.

Thus, we have the following result.

Proposition 3.1. Assume that C ⊂ Rn is not contained in a hyperplane. Then S0 is a

set of linearly independent n2 + n linear equations, and the solution set of S0 coincides
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with the solution set of the system S.

Notice also that since the system S has (2N + 1)n equations, after solving the

system S0 we still have (2N + 1)n− (n2 +n) = (2N −n)n linear equations of S that we

have not used. Substituting the entries of the matrix A and the vector b in terms of k,

into these remaining equations, we get polynomial conditions in k. We denote by r the

number of nonzero polynomial conditions that we get by proceeding this way; when r

is greater than zero, we denote these polynomial conditions by

g1(k), . . . , gr(k). (3.23)

Then we have the following result.

Proposition 3.2. Assume that C ⊂ Rn is not contained in a hyperplane. The linear

system S associated with Eq. (3.9) provides 0 ≤ r ≤ (2N − n)n nonzero polynomial

conditions in k, of degree bounded by 2N .

Proof. From preceding considerations it is clear that (2N + 1)n− (n2 +n) = (2N −n)n

is an upper bound for r, where 2N − n ≥ 0 because of Lemma 3.5. Since the constant

terms of S, i.e., the β
(i)
` (k) (see Eq. (3.18) and Eq. (3.19)), are polynomials in k

of degree ≤ 2N , by Cramer’s rule the Aij and the components of b are polynomials

of degree ≤ 2N . Thus, when substituted in the remaining equations of S, we get

polynomials in k of degree ≤ 2N . �

Finally, we have the following theorem.

Theorem 3.2. Let C,D ⊂ Rn be two trigonometric curves, none of them contained in

a hyperplane.

(1) If r = 0, the curves C,D are related by infinitely many affine transformations.

(2) If r > 0, the curves C,D are affinely equivalent if and only if the polynomials

g1(k), . . . , gr(k) have a common root k ∈ S1, i.e., if and only if the greatest

common divisor gcd(g1(k), . . . , gr(k)) is not constant, and has a root k ∈ S1.
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Proof. Let us see (1) first. If r = 0, after solving S0 we can write A and b in terms of

k, and Eq. (3.10) is satisfied for all values of k. Hence, every affinity f(x) = Ax + b,

with A = A(k) and b = b(k), maps C onto D. Statement (2) follows from Theorem

3.1 and all the preceding constructions. �

Corollary 3.4. Any two trigonometric curves C,D in Rn defined by rational complex

parametrizations of degree N with 2N = n, not contained in a hyperplane, are related

by infinitely many affine equivalences.

Proof. Since 2N = n, by Proposition 3.2 the number r of polynomial conditions is

r = 0. Then the result follows from statement (1) in Theorem 3.2. �

The preceding ideas are summarized in Algorithm Affine-Trigonometric.

The complexity of Algorithm Affine-Trigonometric is provided in the following

proposition. Here we use the standard Big O notation O for the time complexity

analysis, and the Soft O notation Õ to ignore logarithmic factors.

Proposition 3.3. Let C,D ⊂ Rn be two trigonometric curves of degree N , not con-

tained in a hyperplane. The complexity of Algorithm Affine-Trigonometric is Õ(N3).

Proof. Writing A, b in terms of k implies solving the linear system S stemming from

Eq. (3.10). This can be done by applying Gaussian Elimination to the system S. The

coefficient matrix of this system is A ∈ M(2N+1)n×(n2+n). Since 2N ≥ n because of

Lemma 3.5, the rank of A is bounded by (2N + 1)n and thus the complexity of Gaus-

sian Elimination on S is O(N3n3) (see for instance [27]). Computing the polynomials

g1(k), . . . , gr(k) does not increase the complexity. The degrees of the gi(k) are bounded

by 2N , and thus computing the gcd of the gi(k) can be done in Õ(N) time (see Corol-

lary 11.6 in [113]). The roots of the gcd can be computed in Õ(N3) time (see [29]), so

we get an overall complexity of Õ(N3). �

Notice that Proposition 3.3 refers to arithmetic operation counts rather than bit

complexity, i.e., it treats coefficient arithmetic as constant-time.
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Algorithm 2 Affine-Trigonometric

Require: Two trigonometric curves C,D ⊂ Rn, defined by simple parametrizations
x(t),y(t), of the same degree 2N .

Ensure: The affine equivalences f(x) = Ax + b between C,D.
1: Compute the rational complex parametrizations x̃(z), ỹ(z) associated with the

curves.
2: Set ϕ(z) = kz
3: Solve the linear system S0, i.e., write A, b in terms of k.
4: Substitute A, b in terms of k into the remaining equations of S, to find the number
r of nonzero polynomial conditions.

5: if r = 0 then
6: return C and D are related by infinitely many affine equivalences.

7: else
8: Compute the polynomial conditions g1(k), . . . , gr(k)
9: Compute the complex roots k ∈ S1 of the greatest common divisor of

g1(k), . . . , gr(k).
10: return, if any, the affine equivalences corresponding to the k found in the step

before
11: end if
12: Set ϕ(z) = k

z
, and repeat steps (3-11)

13: if no value k ∈ S1 has been found, and r 6= 0 in both cases ϕ(z) = kz and ϕ(z) = k
z

then
14: return C and D are not affinely equivalent.

15: end if
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Example 3.1. Let C andD be the plane trigonometric curves parametrized by x(t),y(t)

respectively, with t ∈ [0, 2π], where

x1(t) = −1

3
sin(3t) +

2

3
cos(t),

x2(t) = − sin(5t)− 2 sin(t)− 1

3
cos(t),

y1(t) = −1

6
sin(5t) +

1

4
sin(3t)− 1

3
sin(t)− 5

9
cos(t) + 4,

y2(t) = −
√

3

2
sin(5t) +

2

15
sin(3t)−

√
3 sin(t)− 8 + 5

√
3

30
cos(t)− 2.

The curves C and D are shown in Fig. 3.1.

The associated rational complex parametrizations are

x̃(z) =

(
iz6 + 2z4 + 2z2 − i

6z3
,
3iz10 − (1− 6i)z6 − (1 + 6i)z4 − 3i

6z5

)
,

ỹ(z) = (ỹ1(z), ỹ2(z)),

where

ỹ1(z) =
6iz10 − 9iz8 − (20− 12i)z6 + 288z5 − (20 + 12i)z4 + 9iz2 − 6i

72z5
,

ỹ2(z) =
15i
√
3z10 − 4iz8 − (5

√
3 + 8− 30

√
3i)z6 − 120z5 − (5

√
3 + 8 + 30

√
3i)z4 + 4iz2 − 15

√
3i

60z5
.

Here N = 5. We consider first the case ϕ(z) = kz.

Step 8 of Algorithm 2 provides the 12 polynomials below:
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g1(k) = −(18 + 168i)k10 + (27 + 54i)k8 − (156− 12i)k6 + (156 + 12i)k4 − (27− 54i)k2 + 18 + 36i,

g2(k) = −(54− 6i)k10 + (81 + 315i)k8 − (128 + 168i)k6 + (128− 168i)k4 − (81− 9i)k2 + 54 + 6i,

g3(k) = −(36− 174i)k10 + (54− 45i)k8 + (28− 180i)k6 − (28 + 180i)k4 − (54− 261i)k2 + 36− 30i,

g4(k) = (36 + 30i)k10 − (54 + 261i)k8 − (28− 180i)k6 + (28 + 180i)k4 + (54 + 45i)k2 − 36− 174i,

g5(k) = (54− 6i)k10 − (81 + 9i)k8 + (128 + 168i)k6 − (128− 168i)k4 + (81− 315i)k2 − 54− 6i,

g6(k) = (18− 36i)k10 − (27 + 54i)k8 + (156− 12i)k6 − (156 + 12i)k4 + (27− 54i)k2 − 18 + 168i,

g7(k) = −
√
3(45 + 420i)k10 + (12 + 24i)k8 − (48 + 120

√
3 + (24− 165

√
3)i)k6

+ (48 + 120
√
3− (24− 165

√
3)i)k4 − (12− 24i)k2 + 4

√
3 + 90

√
3i,

g8(k) = −
√
3(135− 15i)k10 + (36 + 140i)k8 − (8 + 275

√
3 + (72 + 15

√
3)i)k6

+ (8 + 275
√
3− (72 + 15

√
3)i)k4 − (36− 4i)k2 + 135

√
3 + 15

√
3i),

g9(k) = −
√
3(90− 435i)k10 + (24− 20i)k8 + (40− 155

√
3− (48 + 180

√
3)i)k6

− (40− 155
√
3 + (48 + 180

√
3)i)k4 − (24− 116i)k2 + 90

√
3− 75

√
3i),

g10(k) =
√
3(90 + 75i)k10 − (24 + 116i)k8 − (40− 155

√
3− (48 + 180

√
3)i)k6

+ (40− 155
√
3 + (48 + 180

√
3)i)k4 + (24 + 20i)k2 − 90

√
3− 435

√
3i),

g11(k) =
√
3(135− 15i)k10 − (36 + 4i)k8 + (8 + 275

√
3 + (72 + 15

√
3)i)k6

− (8 + 275
√
3− (72 + 15

√
3)i)k4 + (36− 140i)k2 − 135

√
3− 15

√
3i),

g12(k) =
√
3(45− 90i)k10 − (12 + 24i)k8 + (48 + 120

√
3 + (24− 165

√
3)i)k6

− (48 + 120
√
3− (24− 165

√
3)i)k4 + (12− 24i)k2 − 45

√
3 + 420

√
3i).

The gcd of all of them is k2 − 1. Thus, we get k = ±1, i.e., ϕ1(z) = z, ϕ2(z) = −z.

The mapping ϕ1(z) corresponds to the affine mapping f1(x) = A1x + b1, where

A1 =

 −
3

4

1

6

−2

5

√
3

2

 , b1 =

(
4

−2

)
. (3.24)
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Figure 3.1: C (left) and D (right).

The mapping ϕ2(z) corresponds to the affine mapping f2(x) = A2x + b2, where

A2 =


3

4
−1

6
2

5
−
√

3

2

 , b2 =

(
4

−2

)
. (3.25)

When ϕ(z) =
k

z
we obtain no solution. Therefore, we conclude that C,D are

related by two affine mappings f1, f2. Notice that both C,D have a nontrivial symmetry

τ with respect to a point, which is the reason why we get two affine equivalences.

Example 3.2. Let C and D be the space trigonometric curves parametrized by xxx(t) =

(x1(t), x2(t), x3(t)) and yyy(t) = (y1(t), y2(t), y3(t)) respectively, with t ∈ [0, 2π], where

x1(t) = cos(2t)− 2 sin(2t) + 1,

x2(t) = − cos(2t)− sin(2t),

x3(t) = 2 cos(t) + 2 sin(t),

y1(t) =
9

5
cos(2t)− 21

5
sin(2t)− 6 cos(t)− 6 sin(t) + 3,

y2(t) = − cos(2t) + 2 sin(2t)− 8 cos(t)− 8 sin(t)− 1

y3(t) = −2 cos(2t)− 11 sin(2t) +
√

2 cos(t) +
√

2 sin(t) + 4.
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In this case, N = 2. The curves C,D are shown in Fig. 3.2.

With ϕ(z) = kz, step 8 of Algorithm 2 provides three quadratics polynomials in

k giving rise to

ϕ1(z) = z, ϕ2(z) = −z.

Hence, here we get two affine equivalences between C and D, more precisely:

• ϕ1(z) corresponds to the affine equivalence f1(x) = A1x + b1, where

A1 =


2

1

5
−3

−1 0 −4

3 5

√
2

2

 , b1 =

 1

0

1

 .

• ϕ2(z) corresponds to the affine equivalence f2(x) = A2x + b2, where

A2 =


2

1

5
−3

−1 0 −4

3 5 −
√

2

2

 , b2 =

 1

0

1

 .

With ϕ(z) =
k

z
, step 8 of Algorithm 2 also provides three quadratic polynomials. This

time the gcd is k2 + 1, and thus k = ±i. So we have

ϕ3(z) =
i

z
, ϕ4(z) = − i

z
.

• ϕ3(z) corresponds to the affine equivalence f3(x) = A3x + b3, where
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A3 =



4

5

13

5
−3

−1

3
−4

3
−4

13

3

7

3

√
2

2

 , b3 =


11

5

−2

3

−1

3

 .

• ϕ4(z) corresponds to the affine equivalence f4(x) = A4x + b4, where

A4 =



4

5

13

5
3

−1

3
−4

3
4

13

3

7

3
−
√

2

2

 , b4 =


11

5

−2

3

−1

3

 .

If we consider only the symmetries of C, i.e., we directly apply the algorithm with

C = D, we get that C has three symmetries; in particular:

• ϕ2(z) corresponds to a symmetry with respect to the xy-plane.

• ϕ3(z) corresponds to the axial symmetry f5(x) = A5x + b5, where

A5 =


1

3

4

3
0

2

3
−1

3
0

0 0 1

 , b5 =


2

3

−2

3

0

 .

• ϕ4(z) corresponds to the axial symmetry f6(x) = A6x + b6, where

A6 =


1

3

4

3
0

2

3
−1

3
0

0 0 −1

 , b6 =


2

3

−2

3

0

 .
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Figure 3.2: Curve C (left), curve D (middle) and C,D together (right).

Remark 3.3. In some cases, it can be computationally cheaper to solve the system S
directly, which is polynomial in k although linear in the entries of A and the elements

of b, rather than computing the g1(k), . . . , gr(k), and find the roots of the gcd of these

polynomials.

3.3 Observations on the computation of projective

equivalences

We consider now the detection of projective equivalences f : C −→ D between

trigonometric curves C,D ⊂ Rn, where f is as in Eq. (1.2). We present some considera-

tions and results on this question, but we must say that we could not find any example,

other than conics, of two trigonometric curves related by a projectivity that is not an

affinity. In fact, we have tried to prove, although we have not succeeded, that two

trigonometric curves, not conics, related by a projectivity must be affinely equivalent.

This is somehow supported by the fact that, unlike affine transformations, the image

of a trigonometric parametrization under a projectivity that is not an affinity is not

trigonometric itself.

Regardless, we include two results that, we hope, may help in the future to either

prove that projective equivalence implies affine equivalence in this case, or to produce
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a counterexample of this statement.

First, we can prove that for projectivities Eq. (3.10) also holds.

Proposition 3.4. Let C,D ⊂ Rn be two trigonometric curves, defined by two simple

trigonometric parametrizations x(t),y(t), with associated rational complex parametri-

zations x̃(z), ỹ(z), and let f : C → D be a projective transformation with components as

in Eq. (1.2), such that f(C) = D. Then the relationship Eq. (2.18) holds, with ϕ(z) a

Möbius transformation, i.e., ϕ(z) = az+b
cz+d

, |ad−bc| 6= 0, with ϕ(S1) = S1. Furthermore,

the degrees of x̃(z), ỹ(z) must coincide.

Proof. Let η be a Möbius transformation mapping S1 into the real line. This transfor-

mation is invertible, and η−1 is also a Möbius transformation. Since f, x̃(z), ỹ(z) are

invertible and their inverses are also rational transformations, the diagram

C f
// D

S1

x̃

OO

ϕ
// S1

ỹ

OO

R
η−1

OO

ψ
// R
η−1

OO

(3.26)

is commutative, and ψ is a birational mapping of the real line, and therefore, a Möbius

transformation. Since ϕ = η−1◦ψ◦η, then ϕ is a composition of Möbius transformations,

and therefore ϕ is a Möbius transformation itself. By the commutativity of the diagram,

we get f ◦ x̃ = ỹ ◦ ϕ.

Finally, let us see that the degrees of x̃(z), ỹ(z) must coincide. In order to see

this, we observe that the mappings x̃◦η−1 and ỹ◦η−1 are injective for almost all points

(because they are composites of two mappings which are also injective for almost all

points). Since the degree of the composition of two rational functions is multiplicative

[21] and the degree of η−1 is one, the degree of x̃ ◦ η−1 is 2N . Since projectivities

preserve the degree, we deduce that the degree of ỹ ◦ η−1, and therefore the degree of

ỹ(z), must be 2N as well. �
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In this case, we were not able to prove that ϕ(z) = kz or ϕ(z) = k
z

as it happens

for affinities. However, the following result shows that if indeed ϕ(z) is of these types,

then the projectivity must be an affinity.

Proposition 3.5. Let C,D ⊂ Rn be two trigonometric curves, not contained in hy-

perplanes, defined by two simple trigonometric parametrizations x(t),y(t), with asso-

ciated rational complex parametrizations x̃(z), ỹ(z). Let 2N be the degree of x̃, and

let f : C → D be a projective transformation with components as in Eq. (1.2). If

the Möbius function ϕ(z) in Proposition 3.4 satisfies that ϕ(z) = kz or ϕ(z) = k
z
, for

k ∈ S1, then f is an affine transformation.

Proof. Let us write x̃(z), ỹ(z) as in Eq. (3.12) and Eq. (3.13). If ϕ(z) = kz or ϕ(z) = k
z

then ỹ(ϕ(z)) can be written as in Eq. (3.14). Since by Proposition 3.4 the degrees of

x̃(z), ỹ(z) coincide, we get

ai1P̂1(z) + · · ·+ ainP̂n(z) + biz
N

an+1,1P̂1(z) + · · ·+ an+1,nP̂n(z) + bn+1zN
=
Qi(k, z)

zN
(3.27)

for i = 1, . . . , n. From Eq. (3.27) we get

an+1,1P̂1(z) + · · ·+ an+1,nP̂n(z) + bn+1z
N = zN . (3.28)

If an+1,1, . . . , an+1,n are not all of them zero, then Eq. (3.28) implies that

an+1,1
P̂1(z)

zN
+ · · ·+ an+1,n

P̂n(z)

zN
+ bn+1 − 1 = 0,

which means that C is contained in the hyperplane an+1,1x1+. . .+an+1,1xn+bn+1−1 = 0.

However, by hypothesis this cannot happen, and we conclude that an+1,1 = · · · =

an+1,n = 0, i.e., f is an affinity. �

3.4 Approximate affine equivalences

In this section we consider the case when the curves C and D are defined by means

of simple trigonometric parametrizations xxx(t), yyy(t) as in Eq. (3.1) and Eq. (3.2), but
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where the coefficients of xxx(t) and yyy(t) are given with finite precision, i.e., as floating-

point numbers. We denote them here by C̃, D̃. In this case, and even if the curves C̃
and D̃ are very close to being related by an affinity, applying the same procedure as

in the exact case yields polynomial conditions g1(k), . . . , gr(k) with a constant gcd, so

even though these polynomials have some roots which are very close to each other, no

common root of g1(k), . . . , gr(k) is computed.

Thus, here we focus not on the affine equivalences between C̃ and D̃, but on approx-

imate affine equivalences. In order to do it, we proceed as in the exact case to compute

g1(k), . . . , gr(k), and then we find the approximate common roots of g1(k), . . . , gr(k).

A possibility to do this is to compute an approximate gcd of g1(k), . . . , gr(k).

Definition 3.1. Given two polynomials p̃(k), q̃(k), we say that ξ(k) is an approximate

gcd or an ε-gcd of p̃(k), q̃(k), if ξ(k) is the exact gcd of two polynomials p(k), q(k),

where ‖p− p̃‖ and ‖q − q̃‖ are both less than ε, with ε close to zero and ‖ • ‖ a certain

norm. The value ε is called the tolerance, and must be fixed in advance.

This definition can be easily generalized to the case of three or more polyno-

mials. Other versions of this definition can be found, for instance, in [68]. Fur-

thermore, there are methods to evaluate how close two polynomials p(k), q(k) are

to having a nontrivial approximate gcd: see for instance [30, 31], and the command

distanceToCommonDivisors of the package SNAP in Maple. The bibliograhy on

the computation of approximate gcds is vast; one can check, among many others,

[68, 65, 81, 82, 121, 122]. In our case, we use the uvGCD method described in [122];

one can find a publicly available MATLAB implementation of this method in [123].

When there are more than two polynomials, we can compute the gcd of only

two of them and then check which of these solutions correspond to approximate roots

of the remaining polynomials. Further refinement can be performed using numeric

optimization (see also [122]), although we did not use this in our experiments.

The whole procedure is given in Approximate-Affine-Trigonometric; this al-

gorithm is essentially equal to the algorithm Affine-Trigonometric, replacing exact

gcds by approximate gcds.
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Algorithm 3 Approximate-Affine-Trigonometric

Require: Two trigonometric curves C̃, D̃ ⊂ Rn, given by approximate parametrizations
x(t),y(t), of the same degree 2N , and a tolerance ε.

Ensure: The approximate affine equivalences f̃(x) = Ãx + b̃ between C̃, D̃.
1: Compute the rational complex parametrizations x̃(z), ỹ(z) associated with the

curves.
2: Set ϕ(z) = kz
3: Solve the linear system S0, i.e., write A, b in terms of k.
4: Substitute A, b in terms of k into the remaining equations of S, to find the number
r of nonzero polynomial conditions.

5: Compute the polynomial conditions g1(k), . . . , gr(k)
6: Use the uvGCD method with the tolerance ε to compute the approximate complex

roots k ∈ S1 of the approximate gcd of g1(k), . . . , gr(k).
7: return, if any, the approximate affine equivalences corresponding to the k found in

the step before.
8: Set ϕ(z) = k

z
, and repeat steps (3-7)

9: if no approximate gcd has been found, and r 6= 0 in both cases ϕ(z) = kz and
ϕ(z) = k

z
then

10: return There are not approximate affine equivalences between C̃ and

D̃.
11: end if
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Of course, the remaining question is how to choose the tolerance ε. We tried

to derive a bound for ε from a bound on the error in the coefficients, but we did not

succeed. This is therefore left here as an open problem.

The following examples illustrates the method.

Example 3.3. Let us consider the space trigonometric curves C and D parametrized

by

xxx(t) = (5 sin(t),− cos(t) + sin(3t), cos(3t)− 2 sin(4t))

and yyy(t) = (y1(t), y2(t), y3(t)), with t ∈ [0, 2π], where

y1(t) = 6 sin(4t)− 3 cos(3t) + 5 sin(3t)− 5 cos(t)− 30 sin(t) + 1,

y2(t) = −8 sin(4t) + 4 cos(3t)− 5 sin(t),

y3(t) = −2 sin(3t) + 5 sin(t) + 2 cos(t) + 1.

Its complex forms are given by

x̃(z) =

(
−5i(z2 − 1)

2z
,−z

6 + z4 + z2 − i

2z3
,
2iz8 + z7 + z − 2i

2z4

)
and ỹ(z) = (ỹ1(z), ỹ2(z), ỹ3(z)) where

ỹ1(z) = −6iz8 + (3 + 5i)z7 + (5− 3i)z5 − 2z4 + (5 + 3i)z3 + (3− 5i)z − 6i

2z4
,

ỹ2(z) =
8iz8 + 4z7 + 5iz5 − 5iz3 + 4z − 8i

2z4
,

ỹ3(z) =
2iz6 + (2− 5i)z4 + 2z3 + (2 + 5i)z2 − 2i

2z3
.

Here, N = 4. The curves C,D are shown in Fig. 3.3 and are related by one affine

equivalence, namely f1(x) = A1x + b1 corresponding to ϕ1(z) = z, where
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Figure 3.3: C1 (left) and C2 (right).

A1 =


−6 5 −3

−1 0 4

1 −2 0

 , b1 =

 1

0

1

 .

Now we apply a random perturbation of order 10−4 to all the coefficients of the

parameterizations xxx(t), yyy(t), and we seek approximate affine equivalences between the

resulting curves C̃ and D̃. Proceeding as in Algorithm 1, for ϕ(z) = kz we get 9

polynomial equations in k of degree 8, two of them are

g1(k) ≈ −3.000029k8 + (2.9999973 + 4.999936i)k7 − (15.000037 + 2.50001i)k5

+ (15.000037− 2.50001i)k3,

g2(k) ≈ 3.999956k8 − 3.99996k7 − 2.50002k5 + 2.50002k3,

whose approximate gcd, using the uvGCD method and with a tolerance ε = 10−5,

is
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ξ(k) ≈ (6 · 10−10 − 2.53 · 10−9i)k4 + (9.3 · 10−10 + 3.9 · 10−10i)k3(1.4 · 10−9 − 2.2 · 10−9i)k2

+ (2.474073− 1.298621i)k − 2.474077 + 1.298614i.

Thus, we get four values for k, but only k ≈ 0.99999985+0.00000247i corresponds

to an approximate solution. Notice that his modulus is close to one. This value of k

give rise to one approximate affine equivalence, namely, f̃(x) = Ãx + b̃, where

Ã ≈


−6.00002− 3.35 · 10−5i 4.99992 + 6.78 · 10−5i −3.000027− 2.96 · 10−5i

−1.000009− 4.93 · 10−7i 0.000009 + 4.77 · 10−6i 3.99995 + 3.94 · 10−5i

1.000008− 5.42 · 10−6i −2.00003− 1.48 · 10−5i 0

 ,

b̃ ≈

 0.9999061779

0

0.9999050456

 .

Here we have that
‖b− b̃‖
‖b‖

≈ 0.000094 and
‖A− Ã‖2

‖A‖2

≈ 0.000015 where ‖ · ‖

is the Euclidean norm of vectors and ‖ · ‖2 is the spectral norm (the largest singular

value) of matrices.

With ϕ(z) = k/z we get no solution.

3.4.1 Computing the distance between f̃(C̃) and D̃

Now, after proceeding as before, we have tentative approximate similarities f̃ , but

we still need to test whether the curves C̃ and D̃ are approximately similar. In order

to do this, given a tentative similarity f̃ we must evaluate whether f̃(C̃) is close to D̃.

The best way to do this is to compute the Hausdorff distance between f̃(C̃) and D̃.
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Definition 3.2. The Hausdorff distance between two given objects O1,O2 ∈ Rn (see

[22, 50]) is given by

DH(O1,O2) = max{max
P∈O1

min
Q∈O2

‖P −Q‖,max
Q∈O2

min
P∈O1

‖P −Q‖}.

However, an algorithm to compute the Hausdorff distance between non-rational

curves is absent, and even for rational curves the computation is complicated and slow

(see [50]). So, instead, we present a different, heuristic approach to evaluate the distance

between the curves. We work from the rational complex parametrizations.

We proceed in the following way to evaluate the closeness between f̃(C̃) and D̃:

• We consider a uniform distribution on the interval [0, 2π], and then pick a random

sample S. Let n be the size of S.

• We substitute each t ∈ S into z = eit. Let P be the set of all the points obtained

after each substitution. Notice that this is equivalent to computing a partition of

S1.

• If f̃(C̃) is close to D̃, then for z ∈ P , the point Ãx̃(z) + b̃ should be close to

the point ỹ(ϕ(z)). Hence, for each zi ∈ P we compute the distance di between

Ãx̃(zi) + b̃ and ỹ(ϕ(zi)) for i = 1, . . . , n.

• Finally, we consider the arithmetic mean of all the di, and we divide it by the

length of D̃, in order to compare its value with the size of the curve; we represent

by ν the resulting number.

For instance, in Ex. 3.3, the distance between f̃(C̃) and D̃ is ν ≈ 1.3 · 10−6 using

a sample of 100 points.

3.4.2 Experimentation for the approximate case

We have implemented the method described above with the help of the computer

algebra systems MATLAB R2020b and Maple 18, using a tolerance for the computation

of approximate gcds of ε = 10−5. In Fig. 3.4 we show the CPU time in seconds for
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some representative examples of growing degrees. One can observe that for these data

the quadratic polynomial P (N) = 0.1517N2 − 0.4645N + 6.3948 fits very well, with a

coefficient of determination (R2) equal to 98.72 %.

The features of some of the examples used in Fig. 3.4 using the uvGCD method

are provided in Table 3.1. In all these examples we considered two curves C,D where

D was the result of applying to C the affine transformation f(x) = Ax + b, where

A =


2 1/5 −3

−1 0 −4

3 5
√

3

 , b =

 3

1

−2

 ,

and introducing afterwards a perturbation of order 10−4. The transformation

computed by our method is denoted by f̃(x) = Ãx + b̃.

In Table 3.1 we can see the degree N , and the values of
‖A− Ã‖2

‖A‖2

and
‖b− b̃‖
‖b‖

for each example, which measure the relative error in each case.

Figure 3.4: CPU time versus degree
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Degree N
‖A− Ã‖2

‖A‖2

‖b− b̃‖
‖b‖

CPU time (secs.) ν

3 0.00004 0.0006 6.0837 2.8 · 10−6

5 0.00001 0.0002 8.6786 1.1 · 10−6

8 0.0003 0.001 13.6119 9.8 · 10−6

9 0.00003 0.0004 15.0914 1.8 · 10−6

10 0.00007 0.001 17.8637 7.9 · 10−7

12 0.00005 0.0004 25.4754 6.1 · 10−7

14 0.00002 0.0003 35.0920 3.3 · 10−7

15 0.00001 0.0002 40.9761 1.1 · 10−7

17 0.000007 0.0002 45.1100 6.9 · 10−8

20 0.000005 0.0002 65.1659 5.9 · 10−8

Table 3.1

3.5 Application to more general types of curves us-

ing Fourier series decomposition

We have explored the possibility of applying the method described in the previous

section to more general bounded curves with non necessarily trigonometric parametri-

zations. In order to do this, and assuming that the components of the parametriza-

tions have sufficiently good properties, we replace these components by their truncated

Fourier series, up to a certain (high) order.

Recall that if a function f(t), t ∈ R, is integrable on the interval

[
t0 −

T

2
, t0 +

T

2

]
,

then
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f(t) ≈ a0

2
+

n∑
m=1

[
am cos

(
2mπ

T
· t
)

+ bm sin

(
2mπ

T
· t
)]

, (3.29)

where a0, am and bm are the fourier coefficients

a0 =
2

T

∫ T/2

−T/2
f(t)dt,

am =
2

T

∫ T/2

−T/2
f(t) cos

(
2mπ

T
· t
)
dt,

bm =
2

T

∫ T/2

−T/2
f(t) sin

(
2mπ

T
· t
)
dt.

In general the approximation is better when n is large. Notice in particular that

if we take T = 2π, Eq. (3.29) provides a trigonometric parametrization as in Eq.(3.2).

We have tried this idea for four examples shown in Table 3.2. In each case, the

curve Di is the result of applying to each Ci the affine equivalence with matrix A and

vector b as follows:

A =

(
−4 1

3 −1/2

)
, b =

(
4

−2

)
. (3.30)

The CPU time is given in minutes (min). The results are good, but the main

difficulty is that in order to get good approximations, we need a large n, which implies

time-consuming computations, as one can deduce from the timings in Table 3.2. In our

case we needed n ≥ 100. So even though the idea is natural, the performance is not

satisfactory.
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x1(t) =

(
sin(t)

(
ecos(t) − 2 cos(t)− sin5

(
t

3

))
, cos(t)(esin(t) + cos(4t))

)
n = 100

C1
‖A−A1‖2
‖A‖2 ≈ 2.7 · 10−7, ‖b−b1‖‖b‖ ≈ 1.2 · 10−16

ν ≈ 8.7 · 10−7 (with 100 points)

CPU time (min): 8.5010

x2(t) =

(
2t

23t + 4
,

22t

24t + 2

)
n = 150

C2
‖A−A1‖2
‖A‖2 ≈ 1.5 · 10−7, ‖b−b1‖‖b‖ ≈ 1.9 · 10−7

ν ≈ 7.4 · 10−7 (with 100 points)

CPU time (min): 26.7515

x3(t) =

(
t

t4 + 2
,

t2 + 1

et · t2 + 1

)
n = 150

C3
‖A−A1‖2
‖A‖2 ≈ 1.2 · 10−7, ‖b−b1‖‖b‖ ≈ 3.8 · 10−9

ν ≈ 7.8 · 10−8 (with 100 points)

CPU time (min): 27.7606

x4(t) =

(
e3t+5 + e−(3t+5) − 12

6
,
et+4 + e−(t+4) + 18

2

)
n = 150

C4
‖A−A1‖2
‖A‖2 ≈ 3.1 · 10−10, ‖b−b1‖‖b‖ ≈ 5.3 · 10−8

ν ≈ 2.7 · 10−17 (with 100 points)

CPU time (min): 26.1986

Table 3.2



CHAPTER 4

SIMILARITIES OF NON-NECESSARILY RATIONAL

CURVES

In this chapter, we employ two notions of Mechanics, namely those of center of

gravity and inertia tensor, in order to compute the exact or approximate similarities

between two parametric, not necessarily rational, bounded curves. For simplicity, we

develop our results for planar curves. However, some of the strategies that we present

here are generalizable to curves in any dimension.

In Mechanics (see [24, 48, 25]), the center of gravity of a rigid body is the point

where the total weight of the body is assumed to be concentrated. If the body has

a uniform density, i.e., if the body is homogeneous, the center of gravity matches the

geometric center or centroid. On the other hand, while the mass of a body describes

the resistance of the body to move under the action of a certain force, the inertia tensor

represents, roughly speaking, the resistance of the body to rotate around the axes of

a coordinate system centered at the center of gravity. Therefore, the inertia tensor

depends on the directions of the axes, and has a tensorial nature (see [6, 91, 101] for

the notion of tensor): this means that the inertia tensor, which is represented by a

square matrix, changes in a precise way when the orthonormal basis describing the

94
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system of coordinates changes.

These two notions are intrinsic, i.e., they depend on the geometry of the object,

and therefore they are preserved (in the case of the inertia tensor, up to a certain extent)

when a similarity is applied. Thus, if two objects are similar, the similarity relating

them maps the center of gravity of the first object onto the center of gravity of the

second object. Additionally, when we consider the same coordinate system, centered

at the center of gravity, for both objects, the inertia tensors are related by the law

that describes how a tensor changes when an orthonormal change of coordinates is

applied. These two relationships provide a method to compute the similarities relating

two objects, if any.

We require the curves we work with to be bounded since otherwise, the center

of gravity and the inertia tensor are not well-defined. Additionally, for curves finding

the center of gravity or the components of the inertia tensor amounts to computing

certain univariate integrals. Therefore, we demand that the parametrizations of the

curves have sufficiently good properties (e.g., differentiability) so that the integrals

exist. In the case of planar closed curves, we can also consider the curves as borders

of solid objects, i.e., planar regions, and compute the similarities between these planar

regions instead. This is useful in the case of closed rational curves and trigonometric

curves without self-intersections because after Green’s Theorem, we can compute these

integrals by using the Residues’ Theorem, which is simpler and more efficient.

If the integrals can be computed exactly, then we can compute exact similarities.

However, in most cases the integrals need to be computed numerically. In those cases

we seek not exact, but approximate similarities. We do this by using approximate gcds.

Additionally, the relationships between the center of gravity and the inertia tensors

of the curves allow us to compute a superset of tentative similarities. However, they

are not sufficient to guarantee that the objects we are analyzing are similar. Thus,

once we have computed the tentative (exact or approximate) similarities, we need to

test whether they actually are similarities between the objects. In order to do this, we

present a heuristic strategy to assess the closeness between both objects.



96 CHAPTER 4. SIMILARITIES OF NON-NECESSARILY RATIONAL CURVES

4.1 Center of gravity and inertia tensor

In Mechanics, the center of gravity of a rigid body [54] is the point where the

entire mass of an object is assumed to be concentrated so that the total weight of the

object, as a force, is exerted at this point. If the body has a uniform distribution of

mass, the center of gravity coincides with the geometric centroid. In particular, if the

body is symmetric with respect to a point, i.e., if the body has central symmetry, the

center of gravity coincides with the center of symmetry. If the body has an axis of

symmetry, the center of gravity lies on this axis.

In this subsection, we will consider a bounded planar curve C ⊂ R2. If C is,

additionally, closed (i.e., it encloses a finite area), then C is the border of a planar

region that we will denote by ∆, i.e., ∂∆ = C. Furthermore, we will assume that C
can be parametrized by x(t) = (x1(t), x2(t)), with t ∈ I ⊂ R, where I is an interval

(possibly infinite). We will also assume that for i = 1, 2 the first derivatives of the

functions xi(t) are continuous, so that all the univariate integrals that we will be using

in this chapter exist.

Under these assumptions, the center of gravity of C is defined as the point G =

(x1,x2), where

xi =
1

L

∫
I

xi(t)ds, (4.1)

for i = 1, 2, ds =
√
x′21 (t) + x′22 (t) = ‖x′(t)‖dt, and L =

∫
I
ds is the total length of C;

the symbol ‖ • ‖ denotes the Euclidean norm.

If C is closed, in some cases we will also consider the center of gravity G? = (x?1,x
?
2)

of the planar region ∆ whose border is C. In this case, for i = 1, 2 we have

x?i =
1

A

∫∫
∆

xidA, (4.2)

where dA = dx1dx2 and A =
∫∫

∆
dA is the total area of ∆.

Notice that in general, G and G? do not need to coincide: in the case of G, all

the mass is evenly distributed over C only; however, in the case of G? the mass is evenly
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2r
π

G

r

G?

4r
3π

Figure 4.1: Centers of gravity of a semicircle and its border

distributed over the planar region ∆ enclosed by C. For instance, the center of gravity

of a half circle of radius r is placed on its axis of symmetry, at a height equal to 4r
3π

from its center (see Fig. 4.1, right). In contrast, the center of gravity of the border of

the half circle (the union of a half circumference and a segment) is also placed on its

axis of symmetry, but at a height equal to 2r
π

from its center (see Fig. 4.1, left).

Furthermore, also in Mechanics, the moment of inertia of an object around an

axis represents the resistance of the object to rotate around the axis; we refer the

interested reader to [66] for further reference on the notion of moment of inertia and

related concepts from Mechanics alluded to in this section. Moments of inertia are the

main ingredients of the inertia tensor, which allows describing the rotational kinetics

of an object. In more detail, let C ⊂ R2 be a curve parametrized by (x1(t), x2(t)), with

t ∈ I as before, and assume, perhaps after a translation, that the center of gravity of

C is the origin. The inertia tensor of C in the frame {O, x, y}, where O represents the

origin and x, y represent the coordinate axes, is the tensor of order two defined by the

matrix

T =

[
Ixx −Ixy
−Ixy Iyy

]
=

1

L


∫
I

x2
2(t)ds −

∫
I

x1(t)x2(t)ds

−
∫
I

x1(t)x2(t)ds

∫
I

x2
1(t)ds

 . (4.3)

The elements in the first diagonal of the matrix in Eq. (4.3) are the moments of inertia

Ixx, Iyy with respect to the x-axis and the y-axis. The element in the second diagonal

of the matrix in Eq. (4.3) is minus the product of inertia Ixy. The matrix T satisfies
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that ~M = T~ω, where ~M is the angular momentum, and ~ω is the angular velocity; both

vectors ~M, ~ω are related to the rotational kinetics of C.

If C is closed and we consider the planar region ∆ whose border is C, i.e., if we

assume that the inside of C is solid and not hollow, then the expression of the inertia

tensor becomes

T? =
1

A


∫∫

∆

x2
2dA −

∫∫
∆

x1x2dA

−
∫∫

∆

x1x2dA

∫∫
∆

x2
1dA

 . (4.4)

If C is a closed curve, as it happens with the center of gravity, the inertia tensor

needs not be the same when we consider C only, or the area ∆ enclosed by C. Consider

for instance the case of an ellipse E with a = 2 and b = 1 paremetrized by x(t) =(
2(1− t2)

t2 + 1
,

2t

t2 + 1

)
. When we consider the border of E (see Fig. 4.2 left), the inertia

tensor is

T ≈

0.5799 0

0 1.6803

 . (4.5)

However, when we consider ∆ with ∂∆ = E , the inertia tensor is

T? =

0.25 0

0 1

 . (4.6)

Notice that the matrix representing the inertia tensor is diagonal in both cases

because of the symmetry of the object, which makes that the integrals in the second

diagonal vanish. Furthermore, notice the different values of the inertia moments Ixx, Iyy:

intuively, if a > b then Ixx < Iyy because it is easier to rotate the ellipse around the

x-axis, compared to the y-axis.

The example of the ellipse in Fig. 4.2 allows us to make an observation that will

be important later. Because of the intrinsic nature of the inertia tensor, if we apply a
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Figure 4.2: Elipse E on left and the area ∆ enclosed by E on the right

rigid motion f to the ellipse (see for instance Fig. 4.3, where we have applied a rotation

f of π
4

radians with center in the origin to the ellipse in Fig. 4.2), and x′, y′ are the

images of the x-axis and the y-axis under f , the inertia tensor of f(E) with respect to

the x′-axis and the y′-axis coincides with the inertia tensor of E with respect to the

x-axis and the y-axis. Thus, in Fig. 4.3 the inertia tensor of the red ellipse, f(E),

with respect to the axes x′, y′ (which are the result of rotating x, y), coincides with the

inertia tensor of E with respect to x, y.

But one can also wonder what the inertia tensor of f(E) with respect to x, y (and

not x′, y′) would be. In fact, this question amounts to wondering about the relationship

between the inertia tensors of E and f(E) in the axes x, y. This is related with the

tensorial nature of the inertia tensor, which is recalled in the next subsection; in fact,

in the next subsection we will come back to this question about Fig. 4.3.

4.1.1 Brief review of tensors

In Physics, given a vector space V of dimension M , a tensor is, intuitively, an

entity defined with respect to a basis of V that changes in a certain way when the basis

changes (see [6, 91, 101]). A tensor depends on several indexes, each one of two possible
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Figure 4.3: Ellipse f(E) after a rotation of π
4
.

different natures, contravariant or covariant, and can be seen as a multiarray. In

Mathematics, tensors are defined as multilinear forms going from the cartesian product

of a certain numbers of copies of V and a certain number of copies of the dual V ?, to

the field where V is defined. Interestingly, for our purposes is more useful to consider

the point of view of Physics.

Let us provide some more details, already adapting the situtation to our case. A

contravariant vector in V , according to [6], is an entity T = {ti}, i = 1, . . . ,M , such

that when an orthonormal change of basis represented by an orthogonal square matrix

Q = (Qs
r) is applied, the components of T change according to the rule

t̂i =
∑

r=1,...,M

Qi
r · tr.

On the other hand, a covariant vector is an entity T = {tj}, with j = 1, . . . ,M ,

whose components tj transform by the rule

t̂j =
∑

s=1,...,M

(Q−1)sj · ts =
∑

s=1,...,M

(QT )sj · ts
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when an orthogonal change of basis defined by a square matrix Q = (Qs
r) is applied.

Both contravariant and covariant vectors correspond to tensors of order one, since they

refer to entities depending on just one index. The nature of a tensor of order one can

be contravariant or covariant, depending on the transformation rule.

With more generality, also following [6], an n-contravariant and m-covariant

tensor is a multidimensional array T = {ti1,...,inj1,...,jm
}, where ip, jq ∈ {1, . . . ,M} for

p = 1, . . . , n, q = 1, . . . ,m whose components, under an orthogonal change of basis

defined by Q = (Qr
i ), transform into t̂i1,...,inj1,...,jm

as

t̂i1,...,inj1,...,jm
=

M∑
r1=1

· · ·
M∑
rn=1

M∑
s1=1

· · ·
M∑

sm=1

(QT )i1r1 · · · (Q
T )inrn ·Q

s1
j1
· · ·Qsm

jm
· tr1,...,rns1,...,sm

. (4.7)

Notice that the behavior of the first n indexes and the last m indexes is different:

while the first ones have a contravariant behavior, the second ones have a covariant

behavior. We say that this is an (n,m)-tensor, and that its order is N = n + m.

However, when working in the Euclidean space, as it will be our case, the nature of the

indexes is the same (see Section 10.2 in [91]), so we keep the value of N and we need

not worry about n,m; we will be assuming this from now on.

Second order tensors, i.e., tensors of order N = 2, can be represented by matrices.

Furthermore, in this case Eq. (4.7) corresponds to

T′ = QT ·T ·Q, (4.8)

where Q is the matrix defining the orthonormal change of basis.

In particular, the inertia tensor introduced in the previous section is a tensor of

order two. Furthermore, the law in Eq. (4.8) is essential for our purposes. In order

to illustrate this, let us go back to the question, regarding Fig. 4.3, that we asked

ourselves before starting this subsection: the relationship between the inertia tensor of

the red ellipse of Fig. 4.3 in the x, y axes, and the inertia tensor of the black ellipse in
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the x, y axes. To answer this question, we recall the observation that the inertia tensor

of the red ellipse in the axes x′, y′ coincides con the inertia tensor of the black ellipse in

the axes x, y, that we denote by T. Now let T′ be the inertia tensor of the red ellipse

in the x, y axes. If Q represents the orthogonal transformation taking (x, y) to (x′, y′),

then QT represents the orthogonal transformation taking (x′, y′) to (x, y). Thus, using

Eq. (4.8) and replacing Q by QT , we get

T′ = (QT )−1 ·T ·QT = Q ·T ·QT . (4.9)

One can verify this in the case of Fig. 4.3. The inertia tensor T of E is given in

Eq. (4.5); this is also the inertia tensor of f(E) in the axes x′, y′. On the other hand,

the inertia tensor of the transformed (rotated) ellipse f(E) in x, y is

T′ ≈

 1.1301 0.55019

0.55019 1.1301

 , (4.10)

and we can verify that T′ = Q ·T ·QT where Q is the rotation matrix given by

Q =

 √2/2
√

2/2

−
√

2/2
√

2/2

 . (4.11)

The idea behind Eq. (4.9), motivated by the example in Fig. 4.3, will be used in

the next section.

4.2 Similarities

Let C1, C2 ⊂ R2 be two bounded planar curves (possibly equal). We will assume

that C1, C2 are respectively parametrized by x(t) = (x1(t), x2(t)), with t ∈ I1 and I1 an

interval, y(t) = (y1(t), y2(t)), with t ∈ I2 and I2 also an interval, and where x1(t), x2(t)

and y1(t), y2(t) are bounded functions with continuous first derivatives. Additionally,
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if C1, C2 are closed curves we will represent the bounded planar regions they enclose by

∆1,∆2, i.e., ∂∆i = Ci for i = 1, 2. We do not request the xi(t), yi(t) to be rational

functions; in particular, the method is valid for non-rational, parametric curves in the

required conditions.

Our goal is to develop methods, using the notions of center of gravity and inertia

tensor, to check whether C1, C2 are similar. In other words, we want to check whether

there exists

f(x) = λQx + b, (4.12)

with Q orthogonal, λ > 0, satisfying that f(C1) = C2. Notice that since Q is orthogonal,

Q =

 α β

−β α

 , or Q =

α β

β −α

 , (4.13)

with α, β ∈ R, α2 + β2 = 1.

In order to do this, first we need to know how gravity centers and inertia tensors

behave when a similarity is applied. The following result will be needed.

Lemma 4.1. Let C1, C2 ⊂ R2 be two bounded planar curves related by a similarity, and

for i = 1, 2 let Li denote the total length of Ci. Then

L2 = λL1. (4.14)

Furthermore, if C1, C2 are closed curves enclosing planar regions ∆1,∆2, with areas

A1, A2, then

A2 = λ2A1. (4.15)

Proof. Let us see Eq. (4.14) first. In order to do that, let x(t), t ∈ I, be a parametriza-

tion of C1, and let f : C1 → C2 be a similarity as in Eq. (4.12). Since f(C1) = C2,

z(t) = λQx(t) + b, t ∈ I, parametrizes C2. Therefore,

L2 =

∫
I

‖z′(t)‖dt =

∫
I

‖λQx′(t)‖dt = λ

∫
I

‖Qx′(t)‖dt.
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Since Q is orthogonal, Q preserves norms, so ‖Qx′(t)‖ = ‖x′(t)‖, and we get Eq.

(4.14). To prove Eq. (4.15), it suffices to observe that the determinant of the Jacobian

matrix of f is equal to λ2 · det(Q). Since Q is orthogonal det(Q) = ±1. Thus, the

absolute value of the determinant of the Jacobian is equal to λ2, and Eq. (4.15) follows

from the Change of Variables Theorem for double integrals. �

Corollary 4.1. Let C1, C2 ⊂ R2 be two bounded planar curves whose centers of gravity

lie at the origin, and let ∆1,∆2 be the bounded regions enclosed by C1, C2 in the case

when both curves are closed. Let f(x) = λx, λ > 0, and assume that f(C1) = C2.

Finally, let T1,T2 be the inertia tensors of C1, C2, and let T?
1,T

?
2 be the inertia tensors

of ∆1, ∆2. Then

(1) T2 = λ2T1.

(2) T?
2 = λ2T?

1.

Proof. (1) follows from Eq. (4.3), taking Eq. (4.14) into account. (2) follows from Eq.

(4.4), taking Eq. (4.15) into account. �

In particular, Lemma 4.1 provides the tentative value of λ of any similarity map-

ping C1 onto C2. Now the following result shows the behaviour of the center of gravity

under a similarity.

Theorem 4.1. Let C1, C2 ⊂ R2 be two bounded planar curves related by a similarity

f . Furthermore, if both C1, C2 are closed, let ∆1,∆2 be the bounded regions enclosed by

C1, C2, i.e., for i = 1, 2, ∂∆i = Ci. And for i = 1, 2, let Gi (resp. G?
i ) be the center of

gravity of Ci (resp. ∆i). Then (1) f(G1) = G2; (2) f(G?
1) = G?

2.

Proof. We prove it for curves, first. By assumption, C2 = f(C1), so z(t) = λQx(t) + b,

t ∈ I1, parametrizes C2. Then, in compact notation, using Eq. (4.14) in Lemma 4.1
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and the fact that Q is orthogonal (which implies that ‖Qx′(t)‖ = ‖x′(t)‖), we get

G2 =
1

L2

∫
I1

z(t)‖z′(t)‖dt

=
1

λL1

∫
I1

(λQx(t) + b)λ‖x′(t)‖dt

=
1

L1

∫
I1

(λQx(t) + b)‖x′(t)‖dt.

Since

1

L1

∫
I1

(λQx(t) + b)‖x′(t)‖dt = λQ
1

L1

∫
I1

x(t)‖x′(t)‖dt+ b

(
1

L1

∫
I1

‖x′(t)‖dt
)

︸ ︷︷ ︸
= 1

L1
·L1=1

,

we get (1).

Now for regions, i.e., for (2), the result follows from Eq. (4.2), using Eq. (4.15)

in Lemma 4.1 and the fact that, because Q is orthogonal, the jacobian of the transfor-

mation f(x) = λQx + b is λ2. �

Furthermore, the following result shows the behavior of the inertia tensor under

a similarity. In order to follow the proof, it is illustrative to recall the discussion about

Fig. Fig. 4.3 that we made at the end of Subsection 4.1.1.

Theorem 4.2. Let C1, C2 ⊂ R2 be two bounded planar curves, and let ∆1,∆2 be the

bounded regions enclosed by C1, C2 in the case when both curves are closed.

(1) If for i = 1, 2 the center of gravity of Ci is the origin O, and C2 = f(C1) with

f(x) = λQx, λ > 0 and Q orthogonal, then the relationship between the inertia

tensors T1,T2 of C1 and C2 in the frame {O;x, y} is

T2 = λ2Q ·T1 ·QT . (4.16)

(2) If for i = 1, 2 the center of gravity of ∆i is the origin O, and C2 = f(C1) with
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f(x) = λQx, λ > 0 and Q orthogonal, then the relationship between the inertia

tensors T?
1,T

?
2 of ∆1 and ∆2 in the frame {O;x, y} is

T?
2 = λ2Q ·T?

1 ·QT . (4.17)

Proof. We address (1); (2) is completely analogous. Let x′, y′ be the images of the axes

x, y under f(x). Assume first that λ = 1, in which case f(x) defines a rigid motion.

Because of the intrinsic nature of the inertia tensor, the inertia tensor T′2 of C2 = f(C1)

with respect to the axes x′, y′ coincides with the inertia tensor T1 of C1 with respect to

the axes x, y. Now observe that the tensor T2 is in fact the inertia tensor of C2 with

respect to the axes x, y. Thus, we just need to relate the inertia tensors T′2 and T2.

The key observation now is that since f(x) = λQx, the change of basis mapping x′, y′

to x, y has Q−1 = QT (because Q is orthogonal) as change of basis matrix. Thus,

T2 = Q ·T′2 ·QT = Q ·T1 ·QT .

For λ 6= 1, the result follows from Corollary 4.1. �

Since after perhaps an appropriate translation, we can always assume that G1

and G2, or G?
1 and G?

2, coincide and are placed at the origin of the coordinate system,

we have the following corollary of Theorem 4.1 and Theorem 4.2.

Corollary 4.2. Let C1, C2 ⊂ R2 be two bounded planar curves, and let ∆1,∆2 be the

bounded regions enclosed by C1, C2 in the case when both curves are closed.

(1) If G1 = G2 = (0, 0) and C1, C2 are related by a similarity f , then f(x) = λQx,

where λ,Q satisfy Eq. (4.14) and Eq. (4.16).

(2) If G?
1 = G?

2 = (0, 0) and C1, C2 are related by a similarity f , then f(x) = λQx,

where λ,Q satisfy Eq. (4.15) and Eq. (4.17).

Thus, applying Corollary 4.2 we get tentative values for λ,Q. Unfortunately, the

conditions in Corollary 4.2 are necessary for two planar curves to be similar but are not

sufficient. The reason behind this is that the inertia tensor does not characterize the
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Figure 4.4: The converse of Corollary 4.2 is not true

shape of the curve, i.e., there can be two different curves with the same inertia tensor.

For instance, the inertia tensors of a circle centered at the origin and of an astroid

curve (see Fig. 4.4, right) whose centroid is the origin, for symmetry reasons, are both

defined by matrices that are multiples of the identity matrix. Thus, we can find λ and

Q (the identity) satisfying Eq. (4.14) and Eq. (4.16). However, a circle and an astroid

curve are not similar (see Fig. 4.4).

Since the conditions of Corollary 4.2 are not sufficient, we must test the tentatives

Q to check whether or not they correspond to similarities mapping one curve onto the

other. We provide more details in the next sections.

4.2.1 Computation of the similarities

In this subsection we develop in more detail a strategy, based on statement (1) of

Corollary 4.2, to compute the similarities, if any, between two bounded curves C1 and

C2. This strategy can be generalized to curves in higher dimensions. We request our

curves to be bounded, but not necessarily closed. Notice that whenever the Ci are exact

and the integrals defining the centers of gravity and inertia tensors can be computed

exactly, we get exact similarities as well. Here we will assume that this is the case: we

will deal with inaccuracies (what we call the approximate case) later.

Now the tentative value of the scaling constant λ is computed from Eq. (4.14),

and the centers of gravity of C1 and C2 are computed by means of Eq. (4.1). After that,

we can apply a translation so that the centers of gravity of the resulting curves are the

origin in both cases. Then the inertia tensors T1,T2 of the translated curves can be
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computed by using Eq. (4.3). From statement (1) in Theorem 4.2, T1,T2 sastisfy Eq.

(4.16). Since the matrix Q is orthogonal, Eq. (4.16) gives rise to T2Q = λ2QT1, which

in turn provides two linear systems S1,S2 in α, β (see Eq. (4.13)), depending on which

expression of Q in Eq. (4.13) we consider. Writing

T1 =

 t
(1)
11 t

(1)
12

t
(1)
12 t

(1)
22

 , T2 =

 t
(2)
11 t

(2)
12

t
(2)
12 t

(2)
22

 ,

for i = 1, 2 the linear system Si can be written as

Bi · [α, β]T = 0, (4.18)

where the Bi are the following 4× 2 matrices:

B1 =


t
(2)
11 − λ2t

(1)
11 −t(2)

12 − λ2t
(1)
12

t
(2)
12 − λ2t

(1)
12 t

(2)
11 − λ2t

(1)
22

t
(2)
12 − λ2t

(1)
12 −t(2)

22 + λ2t
(1)
11

t
(2)
22 − λ2t

(1)
22 t

(2)
12 + λ2t

(1)
12

 , B2 =


t
(2)
11 − λ2t

(1)
11 t

(2)
12 − λ2t

(1)
12

−t(2)
12 − λ2t

(1)
12 t

(2)
11 − λ2t

(1)
22

t
(2)
12 + λ2t

(1)
12 t

(2)
22 − λ2t

(1)
11

−t(2)
22 + λ2t

(1)
22 t

(2)
12 − λ2t

(1)
12

 . (4.19)

Recall also that α2 + β2 = 1. Then we have the following proposition.

Proposition 4.1. Let C1, C2 ⊂ R2 be two bounded planar curves, whose centers of

gravity G1,G2 lie at the origin. If C1, C2 are similar then there exists i ∈ {1, 2} such

that rank(Bi) ≤ 1.

Proof. If C1 and C2 are similar, Eq. (4.18) must have a non-trivial solution. Thus,

rank(Bi) 6= 2 for some i ∈ {1, 2}. �

Additionally, we have the following result.

Lemma 4.2. The following statements are equivalent:
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(1) The matrix B1 is the zero matrix.

(2) The matrix B2 is the zero matrix.

(3) T1,T2 are multiples of the identity matrix.

Proof. (1) ⇒ (2) follows directly since the entries of B2 are the same entries of B1 up

to a change of position and sign.

In order to see that (2) ⇒ (3), we first note that if all the entries of B2 are 0,

then, in particular,

t
(1)
12 =

t
(2)
12

λ2
= −t

(2)
12

λ2
, t

(1)
11 =

t
(2)
11

λ2
= t

(1)
22 .

From here we get t
(1)
12 = 0. Therefore,

T1 =
1

λ2

 t
(2)
11 0

0 t
(2)
11

 =
t
(2)
11

λ2

 1 0

0 1

 ,

and similarly for T2.

Finally, if both T1,T2 are multiples of the identity matrix, then

t
(1)
11 = t

(1)
22 , t

(1)
12 = 0 = t

(2)
12 , t

(2)
11 = t

(2)
22 .

Besides, Eq. (4.16) would imply that

T1 =
1

λ2

 t
(2)
11 0

0 t
(2)
11

 .

Thus, t
(1)
11 =

t
(2)
11

λ2
. Since all the non-zero entries of Bi, in this case, reduce to ±(t

(2)
11 −

λ2t
(1)
11 ), we conclude that (3)⇒ (1). �
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The case in Lemma 4.2 can certainly happen (see for instance Fig. 4.4). In this

situation, Corollary 4.2 does not provide finitely many similarities to test, so we will

exclude this possibility from our study. Thus, we are left with the case when some of

the Bi has rank 1. Assuming this, an obvious way to solve the systems in Eq. (4.18) is

to choose a nonzero row of Bi, write α in terms of β (or conversely), and then use that

α2 + β2 = 1. Notice that in this case we get at most four similarities.

This last observation leads to an unexpected result about the inertia tensors of

curves with self-similarities. In order to develop this result, one observes first that the

number of similarities between two curves is higher than one if and only if the curves

are self-similar: indeed, if f1 and f2 are two different similarities between two curves

C1, C2, then f1 ◦ f−1
2 is a self-similarity of C1, and f−1

1 ◦ f2 is a self-similarity of C2;

conversely, if g is a self-similarity of, say, C1, and f is a similarity between C1, C2, then

f ◦ g is also a similarity between C1, C2. Then we have the following result.

Proposition 4.2. Let C ⊂ R2 be a bounded planar curve. If the number of non-trivial

self-similarities of C is ≥ 4, then the inertia tensors T,T? are multiples of the identity

matrix.

Proof. Let C1 = C, and let C2 = f(C), where f is a similarity of the plane. Since

composing any self-similarity of C with f yields a similarity between C1 and C2, we get

that the number of similarities between these two curves is at least 5. Since C1 and C2

are similar, by Proposition 4.1 we have rank(Bi) ≤ 1. However, if rank(Bi) = 1 for

i = 1, 2 then the number of similarities is at most 4, so rank(Bi) = 0. Thus, the result

follows from Lemma 4.2. �

In the case of algebraic curves, self-similarities must be isometries (see Proposition

2 in [11]), so self-similar algebraic curves are symmetric. However, for non-algebraic

curves, non-isometric self-similarities are possible (e.g., spirals). In particular, Propo-

sition 4.2 implies that the method does not work when the curves C1 and C2 are similar

and have more than three self-similarities (e.g., symmetries), since in that case, the

inertia tensors are multiples of the identity matrix.
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Now by using Eq. (4.18) we get tentative similarities f between the curves C1

and C2, but we still need to check whether f(C1) = C2. Notice that if f(C1) = C2, then

f(x(t)) parametrizes C2, but it does not need to coincide with y(t), since a change of

parameters may be involved. For a general parametrization (for instance, with analytic

functions), checking whether two different parametrizations define the same curve is, in

practice, an unsolved problem. A possibility is to check whether the Hausdorff distance

(see Definition (3.2) in Chapter 3) of the curves defined by both parametrizations is zero,

but computing the Hausdorff distance is difficult (see also [50]). There are, however,

two important cases where the problem of checking whether f(C1) = C2 define the same

curve is solvable:

(i) Rational curves: if x(t) is rational, we can check whether another rational para-

metrization x̃(t) = (x̃1(t), x̃2(t)) defines the same curve as x(t). In order to do

this, we need both x(t), x̃(t) to be proper (see Section 1.3 in Chapter 1). Assuming

that, x(t), x̃(t) both define the same curve iff there exists a Möbius function ϕ

such that x = x̃◦ϕ (see also Section 1.3 in Chapter 1). This amounts to checking

whether the polynomials obtained after clearing denominators in x1(t) − x̃1(u),

x2(t)− x̃2(u) and factoring out the factor t− u, have a common gcd of the form

u(ct+ d)− (at+ b) with ad− bc 6= 0.

(ii) Trigonometric curves: given two trigonometric parametrizations x(t), x̃(t), they

can be transformed into rational complex parametrizations y(z), ỹ(z) following

Eq. (3.5). Besides, from lemma 3.1 and corollary 3.1 we get that ỹ = y ◦ϕ where

ϕ(z) = kz or ϕ(z) = k
z
. Thus, ỹ will be rational and we can apply the criterion

in (i).

For other cases, we provide in Section 4.3 a heuristic criterion to evaluate how

close two curves are.

Finally, one can observe that the integrals in Eq. (4.1) and Eq. (4.3) include ds,

which in general involves the square-root of a function. There is an important class

of curves, Pythagorean hodograph (PH) curves (see [91] for instance), very useful in

CAGD, where this square-root is simplified. In more detail, a planar curve C ⊂ R2
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parametrized by x(t) = (x1(t), x2(t)) is a PH curve if there is a function σ(t) such that

[x′1(t)]2 + [x′2(t)]2 = ‖x′(t)‖2 = [σ(t)]2. (4.20)

Thus, ds = ‖x′(t)‖dt = σ(t)dt. Furthermore, the image of a PH curve under a similarity

is also a PH curve. For these curves, the integrals in Eq. (4.1) and Eq. (4.3) can be

simplified. If x(t) is, additionally, rational, these integrals become (improper) rational

integrals, so they can be computed by using the Residues’ Theorem (see Chapter 7 of

[39]). In more detail, an integral ∫ ∞
−∞

f(t)dt

where f(t) = p(t)
q(t)

with p, q relatively prime, is equal to
k∑
i=1

Res(f, zi), where the zi are

the complex roots of q with positive complex part, and Res(f, zi) denotes the residue

of f at z = zi. Recall that if zi is a complex root of multiplicity mi of zi, and φ(t) =

f(t)(t− ti)mi , then

Res(f, zi) =
φmi−1(zi)

(mi − 1)!
,

where φmi−1(zi) is the derivative of φ(t) of order mi−1 at t = zi. Example 4.1 illustrates

the computation of the similarities between two PH curves.

Example 4.1. Let the curves C1, C2 be parametrized by

x(t) =

(
−2(12t4 − 56t3 + 75t2 − 39t− 23)

(4t2 − 24t+ 37)(t2 + 1)2
,

4(4t3 − 9t2 + 6t+ 5)

(4t2 − 24t+ 37)(t2 + 1)2

)
,

y(t) =

(
4(4t6 − 24t5 + 45t4 + 24t3 − 84t2 + 84t+ 127)

(4t2 − 24t+ 37)(t2 + 1)2
,

4t6 − 24t5 − 387t4 + 1968t3 − 2622t2 + 1380t+ 865

(4t2 − 24t+ 37)(t2 + 1)2

)
.

One can check that both parametrizations correspond to PH curves. In more detail,

we get that
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‖x′(t)‖2 = [σ1(t)]2 =
36(8t5 − 32t4 + 54t3 + 7t2 − 74t+ 19)2

(t2 + 1)6(4t2 − 24t+ 37)2
,

‖y′(t)‖2 = [σ2(t)]2 = 324 · [σ1(t)]2,

so

ds1 = σ1(t) =
6(8t5 − 32t4 + 54t3 + 7t2 − 74t+ 19)

(t2 + 1)3(4t2 − 24t+ 37)
, ds2 = σ2(t) = 18 · σ1(t). (4.21)

Now the poles of the components of x(t),y(t) are ±i and 3 ± i

2
, although in order to

compute the integrals by means of the Residues’ Theorem, it is sufficient to consider

the poles i and 3 + i
2
, which belong to the upper half-plane. Using this, we get that

L1 =
9743377π

2700000
and L2 =

9743377π

150000
. Hence,

According to Eq. (4.1), the componenents of the gravity center is given by
1

L

∫
I

xi(t)ds.

For
∫
I
xi(t)ds, the pole i has order 5 and the pole 3 + i

2
has order 2. Using the Resiue’s

Theorem we get that the centers of gravity of C1 and C2 are

G1 =

(
− 927359

2605500
,
197291

144750

)
, G2 =

(
1823869

72375
,−1361609

144750

)
.

We translate the curves so that the centers of gravity lie at the origin. Using again

the Residues’ Theorem we get that

T1 =

112086007207
339431512500

9566739442
28285959375

9566739442
28285959375

− 96523502657
905150700000

 , T2 =

−96523502657
2793675000

38266957768
349209375

38266957768
349209375

112086007207
1047628125

 .
Thus, we get a similarity between the curves given by

A =

 0 18

18 0

 = 18

 0 1

1 0

 , b =

(
2/3

−3

)
. (4.22)
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Figure 4.5: Curves C1 (yellow) and C2 (blue)

4.2.2 Similarities computation of closed curves without self-

intersections

An alternative for computing the similarities between two curves C1, C2, useful in

the case when C1, C2 are both closed and do not have self-intersections, is to see them

as borders of planar regions ∆1,∆2 respectively, and use statement (2) of Corollary

4.2, which leads to linear systems analogous to Eq. (4.18). In this case we need to

compute double integrals over the planar regions ∆1,∆2. However, whenever Ci does

not have self-intersections, we can use Green’s Theorem to compute the integrals in

Eq. (4.2) and Eq. (4.4). Recall that Green’s Theorem states that for a simple (i.e.,

without self-intersections) curve C enclosing a planar region ∆, i.e., ∂∆ = C, and two

vector functions P = P (x1, x2), Q = Q(x1, x2) with continuous partial derivatives, then

it holds that ∫∫
∆

(
∂Q

∂x1

− ∂P

∂x2

)
dA =

∮
C
(Pdx1 +Qdx2), (4.23)

where the integral at the right-hand side of Eq. (4.23) is the circulation of the vector

field (P (x1, x2), Q(x1, x2)) around C, positively oriented.

For instance, if C is parametrized by x(t) = (x1(t), x2(t)) with t ∈ I, taking P = 0



4.2. SIMILARITIES 115

and Q = x1 we get the following expressions for the area A enclosed by C:

A =

∫
I

x1(t)x′2(t)dt. (4.24)

Also, using appropriate expressions for P,Q we get that the center of gravity

G? = (x?1,x
?
2) of ∆ can be computed, for instance, as

x?1 =
1

2

∫
I

[x1(t)]2x′2(t)dt

A
, x?2 = −1

2

∫
I

[x2(t)]2x′1(t)dt

A
. (4.25)

The expression is not unique, since other expressions for P,Q are also possible.

Additionally, after translating G? into the origin and using appropriate expres-

sions for P,Q, the inertia tensor can be computed, for instance, in the following way:

T? =
1

A

 −
1

3

∫
I
[x2(t)]

3x′1(t)dt
1

2

∫
I
[x1(t)]

2x2(t)x
′
2(t)dt

1

2

∫
I
[x1(t)]

2x2(t)x
′
2(t)dt

1

3

∫
I
[x1(t)]

3x′2(t)dt

 . (4.26)

In particular, this approach has the advantage that no square roots appear in the

integrals of Eq. (4.25) or Eq. (4.26). Furthermore, two special cases, that also appeared

in Section 4.2.1, should be mentioned here:

(i) Rational curves (without self-intersections): in this case, all the integrals we need

to compute are rational integrals. In turn, these integrals can be computed using

the Residues’ Theorem. Notice that, unlike the previous subsection, in this case

this is applicable not only to PH curves, but for all rational compact curves

without self-intersections.

(ii) Trigonometric curves (without self-intersections): if, as it is common, the param-

eter t lies in [0, 2π], the integrals we need to compute can be reduced to integrals

of the type ∫ 2π

0

F (sin t, cos t)dt.

Again, these integrals (see Chapter 7 of [39]) can be computed using the Residues’
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Theorem. In more detail,∫ 2π

0

F (sin t, cos t)dt =

∮
C

F

(
z + z−1

2i
,
z − z−1

2

)
dz

iz
, (4.27)

where C is the border of the unit circle, positively oriented. Furthermore, this

last integral can be computed by the Residues’ Theorem. Notice, first, that in

fact Eq. (4.27) amounts to performing the transformation in Eq. (4.30). Thus,

the integral in the right-hand side of Eq. (4.27) is the circulation of a rational

function, whose denominator is a power of z. Therefore, the rational function in

the integrand has just one pole, namely z = 0, so the integral can be computed

exactly. Hence, we have the following result.

Lemma 4.3. Let C be a trigonometric curve parametrized by x(t) = (x1(t), x2(t)), with

t ∈ [0, 2π] and xi(t) as in Eq. (3.2) for i = 1, 2, without self-intersections. Let ∆ ⊂ R2

be a planar region satisfying that ∂∆ = C, and let G? be the center of gravity of ∆,

and T? the inertia tensor of ∆. If the coefficients a
(i)
k , b

(i)
k ∈ K, with K a field, then the

coordinates of G? and the components of T? also lie in K.

Example 4.2. Let C1 and C2 be the curves parametrized by

x(t) = (2 cos(4t) + 27 cos(t)− 2 sin(2t)− 6 sin(t),

cos(t)− sin(4t) + 0.5 sin(3t) + sin(2t)− 3 sin(t)) ,

y(t) = (12 cos(t)− 12 sin(4t) + 6 sin(3t) + 12 sin(2t)− 36 sin(t)− 1,

−24 cos(4t)− 324 cos(t) + 24 sin(2t) + 72 sin(t)− 4) ,

and let ∆1,∆2 be the planar regions enclosed by C1, C2. Here we have A1 = 83π and

A2 = 11952π. Hence, from Eq. (4.15) we have

λ =

√
A2

A1

= 12.

The curves C1 and C2 are shown in Fig. 4.6. Notice that the coefficients of x(t) and

y(t) belong to Q. After performing the change in Eq. (4.30), we get complex rational

parametrizations, whose components have the pole z = 0 with order four.
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By using the Residues’ Theorem, we get the coordinates of the centers of gravity

G?
1,G

?
2 of ∆1,∆2,

G?
1 =

(
−115402830925126961583675

24497276129886284546048
,
3836922767331586958025

48994552259772569092096

)
,

G?
2 =

(
−47518812733875807710925
24497276129886284546048

,
−46338221113158396339225
765539879058946392064

)
.

After translating the curves so that the centers of gravity are moved to the origin,

the inertia tensors can be computed, again using the Residues’ Theorem. The entries

of the matrices defining these tensors belong to Q, but their expressions are long, so we

provide floating point approximations:

T?
1 ≈

 −150.4751 −11.3433

−11.3433 −4.9668

 , T?
2 ≈

 −715.2132 1633.4379

1633.4379 −21668.4178

 . (4.28)

Solving the system analogous to Eq. (4.18) but using T?
1 and T?

2 instead (with

exact coefficients), we get one solution, which corresponds to a similarity between the

curves:

A =

 0 12

−12 0

 , b =

(
−1

−4

)
. (4.29)

4.3 Computation of approximate similarities

The previous sections are useful when: (1) the curves C1 and C2 are defined by

exact coefficients (e.g., rational, or belonging to an algebraic extension); (2) C1 and C2

are related by an exact similarity; (3) the integrals appearing can be computed exactly.

However, in applications, these conditions are rarely satisfied: curves are often defined

by floating-point coefficients and are not exactly similar, but close, at most, to being
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Figure 4.6: C1 (left) and C2 (right) of Ex. 4.2

similar. In this situation, which we call the approximate case, the approaches in the

previous sections must be adapted.

The main consequence of the failure of one or several conditions (1), (2), (3) is that

the ranks of the matrices in Eq. (4.18) are equal to two, so the linear systems defined

by the matrices in Eq. (4.18), or the corresponding matrices in the case of the approach

in Section 4.2.2, only have the trivial solution. In order to address the approximate

case, it is useful first to consider an alternative method to computing similarities in the

exact case. The method is as follows: since α2 + β2 = 1, we can parametrize α, β as

α =
a2 − 1

a2 + 1
, β =

2a

a2 + 1
. (4.30)

Then, for each i = 1, 2, Eq. (4.18), or the equivalent system in the approach of Sec-

tion 4.2.2, provides four quadratic polynomials Rj(a), j = 1, . . . , 4, that must have a

common nontrivial gcd R(a) for the curves to be similar. The real roots a` of R(a)

provide the tentative similarities.

In the approximate case, we still compute the polynomials Rj(a) as in the exact

case, but because of numerical inaccuracies the exact gcd of the R(a) will be constant.

So we replace the exact gcd R(a) by the approximate gcd R̂(a) of the Rj(a), as in Sec.

3.4. Certainly, the problem is how to choose ε, which depends on the innacuracies due
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to the conditions (1), (2), (3) described at the beginning of the section. In Subsection

4.3.2 we will address this problem assuming that conditions (1) and (2) hold, but (3)

fails, i.e., that the only source of innacuracy is the fact that the integrals providing the

gravity centers and the inertia tensors have been computed numerically.

The next examples illustrate these ideas.

Example 4.3. Let C1 and C2 be the curves parametrized by

x(t) =

(
52t + 2t− 4

54t + t2 + 6
,
3t − 5t

33t + 8t2

)
,

y(t) =

(
3(52t + 2t− 4)

4(54t + t2 + 6)
− 3
√
3(3t − 5t)

4(33t + 8t2)
+ 2,

3
√
3(52t + 2t− 4)

4(54t + t2 + 6)
+

3(3t − 5t)

4(33t + 8t2)

)
.

The centers of gravity of C and D are respectively

G1 ≈ (−0.54247, 0.98405), G2 ≈ (0.31483, 0.03335).

We translate the curves and find their inertia tensor matrices which in this case

are given by

T1 ≈

 0.453975 0.076403

0.076403 0.060162

 , T2 ≈

 0.208009 0.2977297

0.2977297 0.948801

 . (4.31)

The curves C1 and C2, shown in Fig. 4.7, are related by the (exact) similarity

given by
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Figure 4.7: C1 (left) and C2 (right).

A1 =
3

2

 1/2 −
√

3/2
√

3/2 1/2

 ≈
 0.75 −1.2990381

1.2990381 0.75

 ,

b1 =

(
2

0

)
.

(4.32)

Let us perturb the parametrizations above; the new curves C1 and C2 are

x(t) =

(
52t + 2.000016t− 3.999899

54t + 0.99998t2 + 5.99997
,

3t − 4.99991t

33t + 8.0000101t2

)
,

y(t) =

(
3.000012(52t + 1.99997t− 4.00012)

3.99989(54t + 1.0000025t2 + 5.99991)
− 2.9999994

√
3(3t − 4.99998t)

4.0000015(33t + 7.999801t2)
+ 1.999902,

2.999918
√
3(52t + 2.0000101t− 4)

3.999899(54t + t2 + 6.00003)
+

3.0001012(3t − 5.00004t)

4.00007(33t + 8.0001004t2)

)
.

From Eq. (4.18) we get the following four polynomial equations:

−0.469644a2 + 1.6269146a + 0.469644 ≈ 0,

−0.07264187a2 + 0.25165869a + 0.07264187 ≈ 0,

−0.07264353a2 + 0.25165869a + 0.07264353 ≈ 0

0.469644a2 − 1.62691796a− 0.4696440 ≈ 0.
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Applying the uvGCD method with a tolerance of 10−5, we get the aprroximate gcd

R̂(a) ≈ 0.222182707719528a2 − 0.769674334584299a− 0.222182707719528,

with two solutions for a, namely,

a1 ≈ −0.267945918844864, a2 ≈ 3.732096403300630.

The lower bound for the approximate gcd is 3.2593 · 10−6. Finally, we get the

solutions below for α and β :

α ≈ ±49999470978778656, β ≈ ±0.8660284580683403,

which give rise to the approximate similarity defined by

A2 ≈

 0.750012903 −1.29907878

1.29907878 0.750012903


b2 ≈

(
1.9999048583326

−0.00000414266776

)
.

Example 4.4. Let us consider the curves C1, C2, parametrized by

xxx(t) = (2 cos(t) + cos(2t), 4 sin(t)− sin(4t))

and yyy(t) = (y1(t), y2(t)), with t ∈ [0, 2π], where

y1(t) = −39
√

10

10
sin(4t) +

13
√

10

10
cos(2t) +

13
√

10

5
cos(t) +

78
√

10

5
sin(t)− 1,

y2(t) =
13
√

10

10
sin(4t) +

39
√

10

10
cos(2t) +

39
√

10

5
cos(t)− 26

√
10

5
sin(t) + 3.
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The curves C1, C2 are related by

A1 = 13

 √
10

10
3
√

10
10

3
√

10
10

−
√

10
10

 , b1 =

(
−1

3

)
,

A2 = 13

 √
10

10
−3
√

10
10

3
√

10
10

√
10

10

 , b2 =

(
−1

3

)
.

Now, we apply a random perturbation of order 10−6 to all the coefficients of the

parameterizations xxx(t), yyy(t).

The centers of gravity of C1 and C2 are respectively

G?
1 ≈ (0.375, 2.1229), G?

2 ≈ (0.5416, 7.6248).

We translate the curves and find their inertia tensor matrices which in this case

are given by

T?
1 ≈

 0.85937 0

0 5.5000009

 , T?
2 ≈

 851.0735 −235.2797

−235.2797 223.6609

 . (4.33)

We also get λ ≈ 13.0000023314. We apply uvGCD method with a tolerance of 10−5

and we get four solutions for a, namely,

a1,2 ≈ ±6.162283129064051, a3,4 ≈ ±0.162277516150395.

The lower bound for the approximate gcd is approximately 0.00014. Finally, we

get the solutions below for α and β :
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Figure 4.8: C1 (left) and C2 (right) of Example 4.4

α ≈ ±0.316227499773, β ≈ ±0.948683386798,

which give rise to the similarities below

A1 ≈

 4.110956796573 12.33288192694

12.33288192694 −4.110956796573


A2 ≈

 4.110956796573 −12.33288192694

12.33288192694 4.110956796573


b ≈

(
−0.9999997

2.9999989

)
.

The relative errors with respect to the original similarity are around 3.3 · 10−7.

The curves C1, C2 are shown in Fig. 4.8.

The suggested method provides tentative approximate similarities f between C1

and C2. However, in order to test each f , we need to check whether f(C1) and C2 are

“close”. This is difficult, and several observations on this matter were already made in

the previous chapter. In our case, we developed a heuristic procedure to check closeness,

that works as follows:
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• Take a partition of points {P1, . . . , Pn} in the curve f(C1). If the interval I1 where

the parameter of C1 takes values is finite, we can consider a uniform distribution

on I1, and then pick a random sample so that the Pi are the images under f of the

points in the sample. If I1 is infinite, we consider the stereographic projection π :

S1 → R from the unit circle S1 onto the real line, consider a uniform distribution

on S1, pick a random sample on S1, map the points to I1, and proceed as in the

case where I1 is finite.

• If Pi is close to C2, then the normal line Li to f(C1) at Pi should be almost normal

to C2.

• We intersect Li with C2, compute the closest point to Pi in Li ∩ C2, and compute

the distance di between this point, that we denote by Qi, and Pi.

• Finally, we consider the arithmetic mean of all the di, and we divide it by the

length of C2, in order to compare its value with the size of the curve; we represent

by ν the resulting number.

For instance, applying this method in Ex. 4.3 we get ν = 0.0326.

4.3.1 Algorithm and experimentation

In Algorithm Similar-Plane-Curves we summarize the ideas given in Subsection

4.2.1 and Section 4.3. Here we do not include the ideas about closed curves without

self-intersections, since they are more suited for specific cases; nevertheless, we have

also tested these other ideas in appropriate examples. Both the exact and approximate

versions are included in Algorithm Similar-Plane-Curves.

The whole procedure has been implemented in MATLAB. In Table 4.1 we sum-

marize the performance of the algorithm on 12 representative examples; the parame-

trizations of the curves C1 are provided in Table 4.2. In each case, C2 is the result of

applying to the curve C1 the similarity f(x) = Ax + b defined by
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Algorithm 4 Similar-Plane-Curves

Require: Two bounded curves C1, C2 ⊂ R2, parametrized by x(t),y(t).
Ensure: The similarities f(x) = λQx + b (approximate in some cases) between C1, C2.

1: Compute the total lengths L1, L2 of C1, C2 and use Eq. (4.14) to compute the value
of λ.

2: Compute the gravity centers of both C1, C2 using Eq. (4.1).
3: Translate C1, C2 so that their gravity centers are at the origin.
4: if the coefficients of the parametrizations are given exactly then
5: compute the inertia tensor matrices of the translated curves using Eq. (4.3).
6: solve the systems S1,S2 derived from Eq. (4.18) in each case, together with the

equation α2 + β2 = 1 to find the entries α, β of the posible matrices Q, using the
uvGCD method when necessary.

7: else
8: compute the inertia tensor matrices of the translated curves using Eq. (4.35).
9: use the uvGCD method to solve the systems S1,S2, this time using the parametriza-

tion of the circle α2 + β2 = 1 given by Eq. (4.30) to find the entries α, β of Q.
10: end if
11: Verify how close f(C1) and C2 are by computing the distance ν.

A = λ

 3/5 4/5

−4/5 3/5

 , b =

(
−1/2

1/3

)
, (4.34)

with λ a positive random constant, plus a perturbation in the coefficients of order

of magnitude less than 10−6. For each curve, in Table 4.1 we include: the type of

the curve; the method used to compute the integrals; the total CPU time in seconds;

the relative errors between the matrix Ã and the vector b̃ defining the approximate

similarity f̃(x) = Ãx + b̃ we get, compared to the matrix A and the vector b in Eq.

(4.34), measured as NA =
‖A− Ã‖2

‖A‖2

and Nb =
‖b− b̃‖
‖b‖

, where ‖ • ‖2 represents the

2-norm; and the number ν to measure the geometric distance between the given curve

C2 and the obtained curve f(C1).
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Type of curve Par.
Method CPU time

Norms ν
used (secs.)

Trigonometric with
x1(t)

Numeric
2.1792

NA ≈ 2.3 · 10−6

0.0178
1 autointersection integration Nb ≈ 1.2 · 10−6

Trigonometric with
x2(t)

Numeric
2.5315

NA ≈ 8.3 · 10−8

0.0138
10 autointersections integration Nb ≈ 1.6 · 10−6

PH curve with
x3(t)

Residue
5.0199

NA ≈ 3.6 · 10−8

0.00000022
2 autointersections Theorem Nb ≈ 4.6 · 10−8

Rational with
x4(t)

Numeric
3.3001

NA ≈ 8.5 · 10−8

0.000000064
3 autointersections integration Nb ≈ 3.1 · 10−5

Radical x5(t)
Numeric

2.6718
NA ≈ 5.4 · 10−7

0.0043
integration Nb ≈ 1.4 · 10−6

Exponential x6(t)
Numeric

2.8619
NA ≈ 1.2 · 10−6

0.02996
integration Nb ≈ 2.1 · 10−7

Exponential x7(t)
Numeric

2.7409
NA ≈ 2.3 · 10−6

0.106008052
integration Nb ≈ 4.7 · 10−5

Logarithmic x8(t)
Numeric

2.7590
NA ≈ 9.1 · 10−6

0.00625
integration Nb ≈ 6.2 · 10−5

Expo-trigonometric x9(t)
Numeric

2.8081
NA ≈ 2.6 · 10−6

0.02645
integration Nb ≈ 1.4 · 10−6

Rational with
x10(t)

Residue and
5.4636

NA ≈ 1.4 · 10−6

0.00000049
no autointersections Green’s Theorems Nb ≈ 8.5 · 10−8

Trigonometric with
x11(t)

Residue and
2.7412

NA ≈ 1.9 · 10−7

0.014156
no autointersections Green’s Theorem Nb ≈ 1.5 · 10−5

Trigonometric with
x12(t)

Residue and
2.9124

NA ≈ 7.1 · 10−8

0.01736
no autointersections Green’s Theorem Nb ≈ 1.5 · 10−5

Table 4.1
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List of the parametrizations in Table 4.1

x1(t) = (cos(t)− 3 sin(2t), 2 cos(t)− sin(t))

x2(t) =

(
5 sin(5t)− 1

2
cos(2t) + sin(2t) + cos(t)− 3 sin(t)− 7,

sin(4t)− 8 cos(3t)− 8 cos(2t)− sin(2t) + 9 cos(t)− 2 sin(t))

x3(t) =

(
−24t4 − 112t3 + 150t2 − 78t− 46

(t2 + 1)2(4t2 − 24t+ 37)
,

16t3 − 36t2 + 24t+ 20

(t2 + 1)2(4t2 − 24t+ 37)

)
x4(t) =

(
28t5 + 2t4 − 3t3 + 3t− 19

2t8 + t2 + 1
,
37t6 + 8t5 + 9t4 − 4t3 + 6

2t8 + t2 + 1

)
x5(t) =

( √
t

t4 + 1
,
94
√
t+ 1

18t2 + 2

)
x6(t) =

(
2t

23t + 4
,

23t

24t + 2

)
x7(t) =

(
et

t6et + 2
,
t3 − t+ 1

t6 + 2

)
x8(t) =

(
− ln(t2 + 1)

t4 + 4
,
t2 − 2t− 4

t4 + 4

)
x9(t) =

(
sin(t)

(
ecos(t) − 2 cos(t)− sin5

(
t

3

))
, cos(t)(esin(t) + cos(4t))

)
x10(t) =

(
t5 + 5t4 + 2t3 − t2 + 2t

(25t2 + 9)2(t2 + 14t+ 50)3
,
t6 + 9t5 + 0.5t3 − 3t2 + 4t

(25t2 + 9)2(t2 + 14t+ 50)3

)
x12(t) = (sin(4t)− 2 cos(3t)− 3 cos(2t) + 4 sin(2t)− 8 cos(t)− 7 sin(t) + 5,

− 2 cos(4t) +
4

3
sin(3t)− 17 sin(2t) + 2 cos(t)− 13 sin(t)− 1

)
x11(t) = (2 cos(3t)− 3 cos(2t) + 4 sin(2t)− 6 cos(t)− 7 sin(t),

sin(3t)− sin(2t) + 2 cos(t)− 3 sin(t) + 3)

Table 4.2
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4.3.2 Error analysis for curves with exact coefficients and ex-

act similarities

In this subsection, we will assume that the curves C1 and C2 are given exactly and

are related by an exact similarity, but that the integrals that we need to calculate are

computed numerically, with an error bounded by δ (which depends on the numerical

solver). Additionally, we will address the case when C1 and C2 are considered as hollow

so that the integrals that we need to compute are univariate; the analysis for closed

curves and areas is completely analogous.

Under these assumptions, the question is how to choose the value of ε to compute

the ε-gcd of the polynomials Rj(a). In order to do this, we consider the following

notation:

• The exact gravity center Gi = (x
(i)
1 ,x

(i)
2 ) of each curve Ci satisfies that Gi =

(x̃
(i)
1 + δ1,(i), x̃

(i)
2 + δ2,(i)), where G̃i = (x̃

(i)
1 , x̃

(i)
2 ) is the approximate gravity center

that we actually compute, and δ1,(i), δ2,(i) are numerical errors bounded by δ.

• The exact length Li of Ci satisfies that Li = L̃i + δ3,(i), where L̃i is the approx-

imate length that we actually compute, and δ3,(i) is the numerical error of this

computation, which is also bounded by δ.

• The exact inertia tensors Ti satisfy that Ti = T̃i + Ei, where Ei is a matrix

storing the numerical errors in the computation of the elements of the tensor.

Notice that the errors in the computation of the inertia tensors are linked to the

errors in the computation of the centers of gravity and the lengths of the curve,

so Ei is a matrix whose entries must be derived. We will consider this problem

later in the section. The entries t
(i)
k` of Ti satisfy that t

(i)
k` = t̃

(i)
k` + δk`,(i), where

δk`,(i) denotes the error in the computation of t
(i)
k` .

In the exact case, we apply a translation to each curve Ci so that its center of

gravity coincides with the origin, and then we compute the inertia tensor according

to Eq. (4.3). However, in the approximate case, it is better to work with the general

expression for the inertia tensor of a body whose center of gravity is G = (x1,x2) (not
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necessarily the origin), which is

T =
1

L


∫
I
(x2(t)− x2)

2ds −
∫
I
(x1(t)− x1)(x2(t)− x2)ds

−
∫
I
(x1(t)− x1)(x2(t)− x2)ds

∫
I
(x1(t)− x1)

2(t)ds

 . (4.35)

Considering G∗ (not as the origin) the inertia tensor is given by

T? =
1

A

 −1

3

∫
I
[x2(t)− x∗2]

3x′1(t)dt
1

2

∫
I
[x1(t)− x∗1]

2[x2(t)− x∗2]x
′
2(t)dt

1

2

∫
I
[x1(t)− x∗1]

2[x2(t)− x∗2]x
′
2(t)dt

1

3

∫
I
[x1(t)− x∗1]

3x′2(t)dt

 . (4.36)

Using these expressions for the inertia tensors of C1, C2, Theorem 4.2 also holds.

Now the polynomials whose approximate gcd we must compute stem from Eq.

(4.18), writing α, β as in Eq. (4.30). For instance, the first polynomial is (recall that

the variable is a)

R1(a) =
(
t
(2)
11 − λ2t

(1)
11

)
a2 + 2

(
t
(2)
12 − λ2t

(1)
12

)
a−

(
t
(2)
11 − λ2t

(1)
11

)
. (4.37)

The above expression is written in terms of exact quantities. So we need to study

how the constant λ and the elements of the inertia tensors are affected by the numerical

errors in the computation of the centers of gravity and the lengths of the curves, and

by the numerical errors of the integrals themselves. In order to do this, we will assume

that δ � L̃i. Under this assumption, we have

1

Li
=

1

L̃i + δ3,(i)

=
1

L̃i

(
1 + δ3,(i)/L̃i

) ≈ 1

L̃i
. (4.38)
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Furthermore, we also have that

λ =
L2

L1

=
L̃2 + δ3,(2)

L̃1 + δ3,(1)

≈ L̃2

L̃1

= λ̃. (4.39)

Now we consider the element t
(1)
11 of the inertia tensor Ti. It holds that

t
(1)
11 =

1

L1

∫
I1

(x1 − x1)2ds =
1

L1

∫
I1

(x1 − x̃1 − δ1,(1))
2ds

Using Eq. (4.38) and developing (x1− x̃1−δ1,(1))
2 = (x1− x̃1)2−2(x1− x̃1)δ1,(1) +δ2

1,(1),

we get that

t
(1)
11 ≈ t̃

(1)
11 − 2δ2

1,(1) + δ2
1,(1) = t̃

(1)
11 − δ2

1,(1). (4.40)

One can obtain similar expressions for the remaining t
(i)
k` . Next, using Eq. (4.37), we

get that

R1(a) ≈ R̃1(a)− δR̃1(a), (4.41)

where

δR̃1(a) = (δ2
1,(2) − λ̃2δ2

1,(1))a
2 + 2(δ1,(2)δ2,(2) + λ̃2δ1,(1)δ2,(1))a + (δ2

1,(2) − λ̃2δ2
1,(1)) (4.42)

and R̃1(a) corresponds to R1(a), but replacing t
(i)
k` by t̃

(i)
k` , and λ by λ̃; thus, R̃1(a)

is the polynomial that we actually compute, and δR̃1(a) measures the error in the

computation of this polynomial. Notice that the 1-norm of δR̃1(a) is bounded by

4(1 + λ̃2)δ2, where δ is the bound for the numerical error in the computation of the

integrals.

We can proceed similarly for the other polynomials stemming from Eq. (4.18). In

all the cases, we get the same result, i.e., in each case, we get an error term corresponding

to a polynomial whose 1-norm is bounded by 4(1 + λ̃2)δ2. Thus, we conclude that in

the computation of the ε-gcd we can use ε = 4(1 + λ̃2)δ2, whenever we consider the

infinity norm.



4.4. GENERALIZATIONS OF THE METHOD 131

The following proposition summarizes the preceding ideas.

Proposition 4.3. Let C1 and C2 two parametric bounded curves with exact coefficients,

related by an exact similarity. Let Li be the total length of Ci, for i = 1, 2, and let δ

be a bound for the numerical error of the integrals involved in the computation of their

centers of gravity and inertia tensors. If δ � Li then the polynomials Rj(a) have a

nontrivial ε-gcd, with ε ≤ 4(1 + λ̃2)δ2.

Additionally, given two polynomials p̃1 and p̃2 there are algorithms [30, 31], im-

plemented in Maple (see the command DistanceToCommonDivisors) to evaluate how

close p̃1, p̃2 are to having a nontrivial gcd. More precisely, and denoting deg(p̃1) = m,

deg(p̃2) = n,, we define

d(p̃1, p̃2) := inf{‖(p̃1− p∗1, p̃2− p∗2)‖ : (p∗1, p∗2) have a common root,deg(p∗1) ≤ m,deg(p∗2) ≤ n}.

Here, ‖(f, g)‖ denotes the maximum of ‖f‖1, ‖g‖1; recall that the polynomial norm

‖ • ‖1 is the sum of the absolute values of the coefficients of •. Methods to compute

a lower bound τ for d(p̃1, p̃2) are given in [30, 31]. In particular, if p̃1, p̃2 are coprime,

whenever they undergo perturbations smaller than τ , they will remain coprime. Thus,

the value of ε so that p̃1, p̃2 have a nontrivial ε-gcd must be, at least, τ .

Applying this to the polynomials R̃1(a) and R̃2(a), and calling B = 4(1 + λ̃2)δ2

to the bound in Proposition 4.3, we get that

τ ≤ ε ≤ B.

In particular, if B < τ , no similarity exists.

4.4 Generalizations of the method

The algorithm stemming from Subsection 4.2.1 can be generalized to bounded

curves in Rn. In this case, the center of gravity of C ⊂ Rn parametrized by
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x(t) = (x1(t), x2(t), . . . , xn(t))

is G = (x1,x2, . . . ,xn), where

xi =
1

L

∫
I

xi(t)ds, (4.43)

with i = 1, 2, . . . , n, ds =
√
x′21 (t) + x′22 (t) + · · ·+ x′2n (t) = ‖x′(t)‖dt, and L =

∫
I
ds.

The inertia tensor in this case is the second order tensor defined by the matrix

T = 1
L
· T̃, where T̃ is given by



∫
I

[x2
2(t) + · · ·+ x2

n(t)]ds −
∫
I

x1(t)x2(t)ds · · · −
∫
I

x1(t)xn(t)ds

−
∫
I

x1(t)x2(t)ds

∫
I

[x2
1(t) + x2

3(t) + · · ·+ x2
n(t)]ds · · · −

∫
I

x2(t)xn(t)ds

...
...

. . .
...

−
∫
I

x1(t)xn(t)ds −
∫
I

x2(t)xn(t)ds · · ·
∫
I

[x2
1(t) + · · ·+ x2

n−1(t)]ds


.

The results can also be generalized to surfaces, at the cost of computing double

integrals. If S ⊂ R3 is a surface parametrized by

x : ∆ ⊂ R2 −→ R3, x(t, s) = (x1(t, s), x2(t, s), x3(t, s)),

then surface area of S is given by

A(S) =

∫∫
∆

dS =

∫∫
∆

∥∥∥∥∂x(t, s)

∂t
× ∂x(t, s)

∂s

∥∥∥∥ dtds, (4.44)

the center of gravity is G = (x1,x2,x3), where

xi =
1

A(S)

∫∫
∆

xi(t, s)dS, i = 1, 2, 3, (4.45)
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and the inertia tensor is represented by the (3, 3)-matrix given by

T =
1

A(S)



∫∫
∆

[x2
2(t, s) + x2

3(t, s)]dS −
∫∫

∆

x1(t, s)x2(t, s)dS −
∫∫

∆

x1(t, s)x3(t, s)dS

−
∫∫

∆

x1(t, s)x2(t, s)dS

∫∫
∆

[x2
1(t, s) + x2

3(t, s)]dS −
∫∫

∆

x2(t, s)x3(t, s)dS

−
∫∫

∆

x1(t, s)x3(t, s)dS −
∫∫

∆

x2(t, s)x3(t, s)dS

∫∫
∆

[x2
1(t, s) + x2

2(t, s)]dS

 .
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We have presented algorithms to compute affine equivalences, similarities and

symmetries between special types of curves and surfaces. For surfaces, we have fo-

cused on rational ruled surfaces, and we have presented an algorithm for computing

affine equivalences between two such surfaces. For curves, we have considered affine

equivalences between parametric curves whose components are truncated Fourier se-

ries (called trigonometric curves), and similarities between parametric curves which are

parametrized by non-necessarily rational functions using the notions of center of gravity

and intertia tensor. All the algorithms have been tested in Maple or MATLAB, and

show a good performance.

A first question is whether our ideas can be extended to projective equivalences.

In the case of ruled surfaces, this does not seem likely. In the case of trigonometric

curves, it is not clear yet whether two trigonometric curves (not conics) which are not

affinely equivalent may be projectively equivalent: we could not find an example of

this situation, but we could not find a proof of impossibility, either, so this is an open

question. Also, extending the approach leaning on centers of gravity and inertia tensor

to the case of affine or projective equivalences does not seem possible since tensors do

not behave well for these kinds of transformations.

134
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A second question is concerned with floating-point inputs, and in general approx-

imate computations. In the algorithm of the approximate case presented in Chapter

3, we suggest using ε-gcds to compute approximate affine equivalences. However, the

question of relating ε with a bound of the precision of the input is still pending. The

problem here is that it is difficult to trace the effect of the error in the coefficients of the

input on the polynomials whose approximate gcd must be found. Furthermore, even if

we could solve that problem, there is still a second problem, namely evaluating whether

the obtained affine equivalence is really “good” or not, i.e., to check whether the image

of the first curve under the computed affine equivalence is close to the second curve.

These problems arise again in the algorithm of Chapter 4 since ε-gcds and closeness

evaluation are also needed here. In Chapter 4, we provide a criterion to choose ε when

the only source of inaccuracy is the numeric evaluation of integrals. However, in the

case of approximate inputs, it is also difficult to relate the precision of the input and

the value of ε.

These open questions and difficulties suggest potential lines of research, that we

enumerate below.

(1) Projective and affine equivalences of rational surfaces: Although there has been

recently uploaded an ArXiv paper that addresses this question with great gen-

erality (see [63]), it is not clear whether the suggested approach is efficient. It

would be interesting to look for specific algorithms for special surfaces that could

exploit the properties of the surface. Some particular types of surfaces that could

be addressed are Steiner surfaces, translational surfaces (affine equivalences have

been attacked in [16], but projective transformations are still open), affine rota-

tion surfaces, which are generalizations of the well-known surfaces of revolution

(see for instance [8]), or monoid surfaces.

(2) Approximate equivalences: the general problem of computing approximate equiv-

alences between curves defined up to a certain precision is almost absent in the

literature. The only contributions so far are those of this thesis, and the pa-

per [34], where approximate symmetries of planar implicit algebraic curves are

considered. For surfaces the problem is completely open. These questions are
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really challenging, and the difficulty has to do with the fact that Algebra and

Geometry do not always agree: even if Algebra suggests that two objects are

close, this might be false. Take for instance the curves f1(x, y) = x2 − 1 = 0

and f2(x, y) = x2 + 0.01y2 − 1 = 0; the implicit equations of both objects are

pretty close, however, the first equation represents the lines x = −1, x = 1, while

the second equation represents an ellipse centered at the origin whose major and

minor axes are a = 1 and b = 10. Thus, there are enormous differences between

both objects from the geometric point of view.

Another example of the problem is the notion of ε-point, see for instance [85, 86].

Essentially, an ε-point of a variety of codimension 1 (see [85, 86] for a formal

definition) is a point p that yields a number very close to zero when the polynomial

implicitly defining the variety is evaluated at p. Intuition suggests that this means

that the point is very close to the variety, but this is not always true. Somehow,

the key question is to distinguish between ill-conditioned and well-conditioned

problems: for instance, the case of f1(x, y) = x2 − 1 = 0 and f2(x, y) = x2 +

0.01y2 − 1 = 0 seems to be ill-conditioned, and however, f1(x, y) = 1.01x2 +

0.01y2 − 1 = 0 and f2(x, y) = x2 + 0.01y2 − 1 = 0 seem to be well-conditioned.

(3) Measuring distances: the problem of evaluating how close two objects are has

to do with determining the Hausdorff distance between these two objects (see

Subsection 3.4.1 in Chapter 3), but this computation is not easy. Although there

have been several contributions to this question (see [50, 67, 93] and the references

in this last paper), there seems to be still space for improvement. On the one

hand, existing algorithms are for algebraic curves or surfaces, and it would be nice

to address more general objects. On the other hand, in general, the computation

is challenging, and it would be interesting to focus on bounds for the Hausdorff

distance that could be more easily derived.

Additionally, one can also consider the more general problem of determining the

minimal distance between two algebraic objects. Again, the brute-approach to

this problem, especially for implicit varieties (e.g., using Lagrange’s multipliers),

is time-consuming, and it would be desirable to have efficient methods for deriving
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upper and lower bounds for the distance.

Furthermore, although this thesis mainly focuses on certain parametric varieties,

the computation of equivalences and symmetries for implicit curves and surfaces is still

very open and suggests other potential research lines. Thus, we add a fourth item to

the previous list:

(4) Implicit case: for curves, exact symmetries and similarities can be considered as

solved since the algorithm in [5] is very efficient. Affine equivalences are consid-

ered in [33], but projective equivalences are not. For algebraic space curves, no

contributions, up to our knowledge, have been made yet. A possibility to explore

in this case, at least for symmetries and affine equivalences, is that the points at

infinity of the curves should be mapped to each other; this opens up the possibility

of using the techniques in [33] for finite collections of points.

For algebraic surfaces, the fact that the surfaces defined by the highest degree

forms must be mapped to each other could also be a starting point. In fact,

these surfaces are conic, so any advance on the solution of the problem for conic

surfaces could be used in the general case. Other interesting observation is that

the highest degree form is a homogeneous polynomial, and there is a one-to-one

correspondence between homogeneous polynomials, and tensors (see Section 2.2

of [6]). In particular, any homogeneous polynomial of degree N corresponds to

a tensor of order N . Thus, recognizing whether two surfaces defined by homoge-

neous polynomials are similar, is equivalent to recognizing a same tensor, written

in two different bases. This problem is very well understood for tensors of order

two, i.e. matrices, and it amounts to, for instance, diagonalizing. However, the

same problem for high order tensors is much more difficult, and apparently still

open. Therefore, the approach from multilinear algebra might also be interesting.

Moreover, certain particular types of implicit surfaces with additional properties

could also be investigated. For instance, it is well-known that cubic surfaces

contain a certain number of lines, which should be mapped to each other by

any affine or projective equivalence. Affine rotation surfaces also have a specific
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structure in their implicit equation that could be exploited. Furthermore, of

course, approximate problems are entirely open as well.

All these potential lines of research are certainly attractive, and might be pursued

in the future.
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[5] Alcázar J.G., Dı́az Toca G.M., Hermoso C. (2019), The problem of detecting when

two implicit plane algebraic curves are similar, International Journal of Algebra

and Computation Vol. 29, No. 05, pp. 775–793.
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[19] Alcázar J.G., Quintero E. (2020), Affine Equivalences of Trigonometric Curves,

Acta Appl Math Vol. 170, pp. 691–708.
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[34] Bizzarri M., Lávička M., Vršek J. (2020), Approximate symmetries of planar alge-

braic curves with inexact input, Computer Aided Geometric Design Vol. 76, 101794.

[35] Bokeloh M., Berner A., Wand M., Seidel H.P., Schilling A. (2009), Symmetry

detection using line features, Comput. Graph. Forum Vol. 28, No. 2, pp. 697–706.

[36] Boutin M. (2000), Numerically Invariant Signature Curves, International Journal

of Computer Vision Vol. 40, No. 3, pp. 235–248.

[37] Brand C., Sagraloff M. (2016), On the Complexity of Solving Zero-Dimensional

Polynomial Systems via Projection, Proceedings ISSAC 2016, pp. 151–158.

[38] Brass P., Knauer C. (2004), Testing congruence and symmetry for general 3-

dimensional objects, Comput. Geom. Vol. 27, pp. 3–11.



BIBLIOGRAPHY 143

[39] Brown J., Churchill R. (1996), Complex variables and applications, Mc Graw Hill.

[40] Calabi E., Olver P.J., Shakiban C., Tannenbaum A., Haker S. (1998), Differential

and numerically invariant signature curves applied to object recognition, Interna-

tional Journal of Computer Vision Vol. 26, No. 2, pp. 107–135.

[41] Carmichael R.D. (1910), On r-fold symmetry of plane algebraic curves, Amer.

Math. Monthly Vol. 17, No. 3, pp. 56–64.

[42] Chen F., Zheng J., Sederberg T.W. (2001), The µ-basis of a rational ruled surface,

Computer Aided Geometric Design Vol. 18, pp. 61–72.

[43] Chen F., Wang W. (2003), Revisiting the µ-basis of a rational ruled surface, Journal

of Symbolic Computation Vol. 36, pp. 699–716.

[44] Cox D. A., Little J., O’Shea D. (2015), Ideals, Varieties and Algorithms (4th

edition), Springer.

[45] Coxeter H. S. M. (1969), Introduction to Geometry (2nd edition), John Wiley &

Sons Inc.

[46] Crimmins T. (1982), A complete set of Fourier descriptors for two-dimensional

shapes, IEE Transactions on Systems, Man and Cybernetics Vol. 12, pp. 848–855.

[47] Dalitz C., Brandt C., Goebbels S., Kolanus D. (2013), Fourier descriptors for

broken shapes, Journal on Advances in Signal Processing Vol. 161.

[48] Davidovits P. (2013), Appendix A - Basic Concepts in Mechanics, Physics in Biol-

ogy and Medicine, Fourth Edition, pp. 275–287.
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[114] Vršek J., Lávička L. (2015), Determining surfaces of revolution from their implicit

equations, J. Comput. Appl. Math. 290. pp. 125–135.

[115] Weiss I. (1993), Noise-resistant invariants of curves, IEEE Transactions on Pat-

tern Analysis and Machine Intelligence Vol. 15, No. 9, pp 943–948.

[116] Wolowich W., Unel M. (1998), The determination of implicit polynomial canonical

curves, IEEE Trans. Pattern Anal. Mach. Intell. Vol. 20, No. 10, pp. 1080–1089.



150 BIBLIOGRAPHY

[117] Wolowich W., Unel M. (1998), Vision-based system identification and state es-

timation, The Confluence of Vision and Control, Lecture Notes in Control and

Information Systems, Springer-Verlag, New York.

[118] Xiao S. G., Shang C. C. (1992), On the Parameterization of Algebraic Curves,

Journal of Applicable Algebra in Engineering, Communication and Computing, 3,

pp. 27-38.

[119] Yalcin H., Unel M., Wolowich W. (2003), Implicitization of Parametric Curves by

Matrix Annihilation, International Journal of Computer Vision 54, pp. 105-115.

[120] Yang Z., Cohen F. (1999), Image Registration and Object Recognition Using Affine

Invariants and Convex Hulls, IEEE Transactions on Image Processing Vol. 8, No.

7, pp. 934–946.

[121] Zeng Z. (2004), The approximate gcd of inexact polynomials. Part I: a univariate

algorithm, Proceedings of the 2004 International Symposium on Symbolic and

Algebraic Computation (ISSAC), ACM, (2004), pp. 320–327.

[122] Zeng, Z. (2011), The Numerical Greatest Common Divisor of Univariate Polyno-

mials. Contemporary Mathematics Vol. 556, pp. 187–217.

[123] Zeng, Z. (2012), http://homepages.neiu.edu/∼zzeng/naclab.html



LIST OF ALGORITHMS 151

List of Algorithms

Algorithm Affine-Eq-Ruled: Computation of the affine equivalences between two rational

ruled surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Description:

Input: Two ruled surfaces S1, S2, properly parametrized by xi(t, s) = pi(t) + sqi(t),

i = 1, 2, where each qi(t) is polynomial with relatively prime components.

Output: The affine equivalences f(x) = Ax + b between S1, S2.

Algorithm Affine-Trigonometric: Computation of the affine equivalences between two

trigonometric curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Description:

Input: Two trigonometric curves C,D ⊂ Rn, defined by simple parametrizations x(t),y(t).

Output: The affine equivalences f(x) = Ax + b between C,D.

Algorithm Approximate-Affine-Trigonometric: Computation of the approximate affine

equivalences between two trigonometric curves, defined by simple parametrizations . . . . 85

Description:

Input: Two trigonometric curves C,D ⊂ Rn, given by approximate parametrizations

x(t),y(t), and a tolerance ε.

Output: The approximate affine equivalences f̃(x) = Ãx + b̃ between C,D.

Algorithm Similar-Plane-Curves: Computation of the similarities between two bounded

curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Description:

Input: Two bounded curves C1, C2 ⊂ R2, not necessarily rational, parametrized by

x(t),y(t).

Output: The similarities f(x) = λQx + b (approximate in some cases) between C1, C2.
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