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Abstract
Since the early days of computer science researchers sought to devise a machine which could
automatically read text to help people with visual impairments. The problem of extracting and
recognising text on document images has been largely resolved, but reading text from images of
natural scenes remains a challenge. Scene text can present uneven lighting, complex backgrounds
or perspective and lens distortion; it usually appears as short sentences or isolated words and
shows a very diverse set of typefaces. However, video sequences of natural scenes provide a
temporal redundancy that can be exploited to compensate for some of these deficiencies. Here
we present a complete end-to-end, real-time scene text reading system on video images based on
perspective aware text tracking.

The main contribution of this work is a system that automatically detects, recognises and
tracks text in videos of natural scenes in real-time. The focus of our method is on large text
found in outdoor environments, such as shop signs, street names and billboards. We introduce
novel efficient techniques for text detection, text aggregation and text perspective estimation.
Furthermore, we propose using a set of Unscented Kalman Filters (UKF) to maintain each text
region’s identity and to continuously track the homography transformation of the text into a
fronto-parallel view, thereby being resilient to erratic camera motion and wide baseline changes
in orientation. The orientation of each text line is estimated using a method that relies on
the geometry of the characters themselves to estimate a rectifying homography. This is done
irrespective of the view of the text over a large range of orientations. We also demonstrate a
wearable head-mounted device for text reading that encases a camera for image acquisition and
a pair of headphones for synthesized speech output.

Our system is designed for continuous and unsupervised operation over long periods of time.
It is completely automatic and features quick failure recovery and interactive text reading. It
is also highly parallelised in order to maximize the usage of available processing power and to
achieve real-time operation. We show comparative results that improve the current state-of-the-
art when correcting perspective deformation of scene text. The end-to-end system performance
is demonstrated on sequences recorded in outdoor scenarios. Finally, we also release a dataset of
text tracking videos along with the annotated ground-truth of text regions.

xv





Chapter

1Introduction
The Virtual Acoustic Space Group, part of the Neurochemistry and Neuroimaging Laboratory,1
is a multidisciplinary Research and Development Team. Under the direction of Dr José Luis
González-Mora it has specialized in sensory substitution and, in particular, the perception of
the environment using sounds. Its charter is to develop devices which improve the quality of life
of people who are blind or visually impaired, enabling them to perceive and interact with their
environment in a richer capacity than what their disability allows them. In this context, it was
envisaged that a text reading assistant for people who are blind could be developed.

This work focuses on the computer vision aspects of the problem. It is an exploration of
the techniques needed to understand text in videos of natural scenes. At the University of La
Laguna, this PhD has been supervised by Dr José Francisco Sigut Saavedra from the Department
of Computer and Systems Engineering.2 Additionally, an important part the research was carried
out during my stay at the University of Bristol in collaboration with the the Visual Information
Laboratory3 and under the supervision of Prof Majid Mirmehdi.

This PhD is submitted by publication (“compendio de publicaciones”). Therefore, to comply
with the University’s regulations, the dissertation has the following structure: this chapter will
introduce the problem and establish the context by giving a brief – and by no means exhaustive
– background review, as this would be beyond the scope of the present work. Next, I will
describe the PhD’s scope and research objectives by outlining the work carried out for each one
of the articles published during the course of this project. These works have been edited into a
coherent narrative that covers their methodology and results in Chapters 2 and 3, respectively.
Chapter 4 will present the conclusions, open research lines and future work. Finally, as a reference,
Appendices A to E contain the full text copies of the articles published as a result of this PhD.

1.1. The problem of making a computer read
Accessing textual information in our environment is crucial for our daily lives. There is an obvious
need for technology that can automatically extract and process this information for the benefit of
humans that might have difficulties accessing it, for instance, assistance for blind people, tourist
aiding devices, or road sign detection. In fact, the first devices developed for automatic text
reading were aimed to assist blind people. Reading has become a second nature for many of us,
and the area of document analysis and recognition has been an important focus area in computer

1https://nf.ull.es
2http://www.departamentos.ull.es/view/departamentos/inginformatica/Inicio
3http://www.bris.ac.uk/vi-lab/
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Chapter 1. Introduction

vision and machine learning since the early days of computer science. What is more, the first
automatic text recognition attempts predate programmable computers.

But if we want to build a device to read, we first have to define what we consider reading. For
example, when looking at our surrounding, we could argue that reading involves understanding
where the text is and its context, in order to be able to communicate its contents. However, it
can also simply be defined as the translation of printed characters into a different representation.
How much understanding is needed and how important is the communication aspect? It is a
crucial question in order to develop an assistant device for blind people, as we want to provide an
useful interface with the real world. Ideally, we should aim towards a device that would behave as
closely as possible to a human assistant. This section will explore how far we have come towards
a true reading assistant, and how the definition of reading machine has evolved over the years up
to the current state-of-the-art.

1.1.1. The early reading machines

In 1914, Fournier d’Albe invented a reading device aimed at assisting people with visual impair-
ments. It was called the optophone [20] and can be considered the first reading machine in history.
The device converted characters to audio signals using a technique named sonification [32]. It
produced a characteristic, non-speech sound for each printed symbol that the users learnt to
associate back to the characters, and thus, with adequate training, they were able to read books,
newspapers, etc. This device did not recognise any letters as such, but simply mapped certain
characteristics of the letters to sound patterns. Thus, it was the user’s brain who carried out
the actual recognition. In 1929, Gustav Tauschek invented the first Optical Character Recogni-
tion (OCR) device. It was an electro-mechanical device that employed a drum engraved with
patterns of letters and a photoelectric cell that acted as a primitive matching mechanism between
the patterns and the images. By the late 1940s, the Radio Corporation of America (RCA)
had developed two different prototypes of reading machines for the assistance people with visual
impairment. One of them employed a pencil with an optical scanner that would match characters
one by one and translate them into the sound of each individual letter.

Some observations are apparent from these early mechanical or electro-mechanical devices.
The main application areas pursued by the inventors were (i) information extraction for automatic
transmission (i.e., telegraph) and (ii) blind people assistance. Secondly, these prototypes and the
interest in this kind of technology pre-date digital programmable computers. No commercially
viable product was made, but some of the initial techniques were explored, such as template
matching, which limited the recognition ability to one font in one size. And finally, the devices
required the user to perform numerous manual operation of the device: aligning the sensor
with the text or following the printed characters. In this case, “reading” was just the process of
translating individual characters to a different representation (sound).

1.1.2. The development of Optical Character Recognition (OCR)

With the advent of the digital programmable computer in the 1950s, and over the following three
decades, the OCR technology took off with commercially viable products. Intelligent Machines
Research Corporation made the first commercial OCR device in 1959 after almost a decade

2



1.1. The problem of making a computer read

of research [69, p. 12]. During this period, OCR evolved from single font specialized devices
that processed text printed on tape or cards to multi-font document processing systems. IBM
produced a few notable devices during this time (e.g., the IBM 141B, IBM 1975 or the IBM
1287), along with other corporations such as CDC or NCR. OCR also blossomed as a research
area and it required advances in a broad range of disciplines, from acquisition technology to image
processing. A detailed review of the OCR technology is out of the scope of this introduction, but
the interested reader can refer to the work by Mori et al. [52] for a description of the techniques
developed during this period.

The development of OCR and, simultaneously, advances in speech synthesis [70] allowed
the conception of more ambitious reading machines. In 1975, Ray Kurzweil developed a device
that used a flat CCD scanner, a computer unit with an omnifont OCR software and a Text-
To-Speech (TTS) synthesis system. It was named the Kurzweil’s Reading Machine [33], and it
was the size of a washing machine. Speech synthesis allowed the translation of whole words
and sentences from the scanned document. It was aimed at documents (e.g., books, magazines,
newspapers) and still required a great deal of operation from the user, for instance putting the
documents on the flat-bed scanner. However, reading had evolved from converting one symbol
at a time into encoded sounds to being able to produce a spoken translation. Several desktop
reading machines with a similar design are still widely available (such as the POET reader from
the Spanish ONCE,1 or the Exalibur reader from the Australian ROBOTRON2).

Nowadays, Optical Character Recognition (OCR) is a mature technology and is widely con-
sidered a solved problem. It is one of the most successful applications of Computer Vision and
Pattern Recognition and word recognition accuracies of +99% are expected from any modern
OCR engine operating on clean document images [35]. The discipline has evolved into what
is called Document Image Analysis (DIA) as the problem focus evolved from letters and words
recognition to the processing of whole documents, including layout and formatting analysis or
extraction of non-textual content. Some selected reviews of the recent evolution of OCR can be
found in [57, 68, 76].

1.1.3. Camera based scene text detection and recognition

In the late 20th century, as digital cameras started to become inexpensive, a new focus area for
document image analysis started to take shape: camera based document analysis. Initially, some
research effort looked into applying and adapting classical document image analysis techniques
to pictured documents as a way to replace digital scanners as the acquisition mechanism [49,
62, 82]. Yet, a logical step is not only to capture document images but to use cameras to try
to understand text in natural scenes or scene text [3, 10]. Natural scene images pose significant
challenges to text understanding, such as blurred or out of focus frames, uneven lighting, complex
backgrounds or perspective and lens distortion. Additionally, the text appearing in these images is
usually composed of short sentences or isolated words and showing a very diverse set of typefaces.
Figure 1.1 illustrates the difference between a document image and a scene text image. On
the other hand, when operating on video, a continuous stream of frames provides a temporal

1http://www.once.es
2http://www.sensorytools.com/
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(a) (b)

Figure 1.1. A comparison between a document image (a) and two natural scene images with text (b).

redundancy that can help address some of these drawbacks. For example, a blurred image can
be difficult or impossible to process on its own, but as part of a sequence some frames can be
ignored as there are chances that other frames in the sequence are clear.

The end-to-end problem of reading text in natural scenes has been approached by focusing
on the different stages of the pipeline at first: text detection, or the process of telling which areas
of the image contain text; text extraction, or selecting and post-processing those pixels of the
image that form part of the text; and finally text recognition, where the extracted text from the
image is mapped to sequences of characters. As a reflection of this focus, the main international
conference in the area of document analysis, the International Conference on Document Analysis
and Recognition (ICDAR) has organised a series of competitions, the ICDAR Robust Reading
Competitions [29, 37, 38, 71]. With subtasks focused on each one of these stages and publicly
accessible datasets and ground-truth data, they have become the standard baseline against which
to compare the performance of text detection, extraction or recognition algorithms.

A detailed review of the many publications in this area is beyond the scope of this introduction,
but some excellent reviews of the early works are [6, 27, 34] and [85], where more recent
approaches are also surveyed in [84] and [79]. However, I would like to highlight some significant
state-of-the-art techniques. The work by Epshtein et al. [17] introduced the Stroke-Width

4
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Transform (SWT) that obtains candidate text regions under the assumption that characters have
uniform stroke widths. It uses the Canny operator [5] to find edges on the image and then it
estimates the width of each stroke around them. Characters are then formed by grouping strokes
with similar widths. The SWT obtained state-of-the-art results on the ICDAR competitions,
and has been then successfully used and extended by other researchers, for instance in [7, 12,
53, 83]. In particular, Huang et al. [25] proposed an alternate operator: the Stroke Feature
Transform (SFT) which introduced additional cues based on pixels colours.

Another family of methods are based on Maximally Stable Extremal Regions (MSERs), and
its generalization as Extremal Regions (ER). Originally developed as a method to detect robust
image features [41], MSERs respond well to text regions, even in the face of complex back-
grounds or irregular lighting conditions. It has been used for license plate detection [14] and first
applied to scene text detection by Neumann and Matas [61]. One insight from [61] is to consider
all the partial hypothesis from the different stages of the detection and extraction pipeline at once,
instead of just cascading the results of each one of the steps. Neumann and Matas have further
developed their technique by introducing an improved text grouping scheme [60], and and a
more efficient ER filtering [59] that allowed them to attain real-time performance while keeping
competitive results on the ICDAR competitions. MSERs have inspired other approaches, such
as the ones by Huang et al. [26], who used a Convolutional Neural Network (CNN) as the text
region classifier, and notably by Chen et al. [7], who combined the SWT with MSER to improve
text detection on blurred images. In this work, we also explore our own text detection technique
based on MSERs [45].

The most recent works on scene text analysis have focused on providing end-to-end solutions
that are able to detect, extract and recognize the text. In some approaches the output of the text
detection stage is sent to an off-the-shelf OCR engine, e.g. [17]. Others attempt to apply text
classifiers on the output of the detection and aggregation stages directly. For example, Wang
et al. [81] consider words as normal objects where classical object recognition techniques could
be applied. Mishra et al. [51] combine bottom-up text detection operators with top-down lex-
icon based restrictions into a Conditional Random Field (CRF) used for word detection and
recognition. While the recognition results are promising, the main limitation of these methods
is that the list of words that can be recognized needs to be pre-populated. The work by Neu-
mann and Matas [61] also reports end-to-end recognition by using a character classifier trained
on synthetic images. However, modern OCR engines implement many additional techniques
besides character classification, and some evidence suggests that an OCR engine still provides a
superior recognition ability on properly binarised and rectified images of text [21].

On the area of reading machines, the use of cameras has allowed the reduction of the footprint
of these devices. For example, in the iCARE portable reader [24] the camera made document
manipulation less awkward than with flat-bed scanners. Chmiel et al. [8] proposed a device
comprising glasses with an integrated camera and a DSP-based processing unit which performed
the recognition and speech synthesis tasks. However, these devices were directed mainly towards
document reading. In the work by Ezaki et al. [18], a text detection software runs on a PDA
with a camera and aims to detect scene text in the user’s surrounding. Mancas-Thillou et al. [39]
built an assistant device specifically aimed at people with visual impairment that also ran on a
PDA with a camera. It was a multi-functional device that included the ability to recognize and
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communicate several types of inputs: general categories of objects, colour, text in documents,
and bank notes. The Classic knfbReader (which stands for Kurzweil-National Federation of
the Blind Reader) was a commercial device that had a similar design: a PDA with an OCR
software attached to a compact camera. More recently, mobile phones have further increased the
portability of reading machines. Several systems have been reported that run on smartphones, e.g.
[4, 16, 64, 71], and commercial products exist too, such as the latest version of the knfbReader,1
Google Goggles, or WordLens2 (acquired by Google in 2014).

However, little attention has been put into the reading problem, i.e., what to do when the
text has been detected or recognized. Even if we had a perfect text recognition system (i.e.,
a system that for every frame would output the list of all the texts present in the image, as
unicode character sequences), that would be hardly enough for an assistant device. Current
state-of-the-art scene text understanding methods lack temporal scene awareness. They treat
their input as a succession of unrelated images, attempting to segment and recognise the text in
them without taking advantage of the fact that the same text is invariably repeated across many
consecutive frames in a video sequence. Contrary to the degree of attention enjoyed by text
detection, extraction and recognition on single images, text tracking has hardly been investigated
considering its importance for a reasonable user interaction in any text detection system involving
ego or object motion.

Particle filtering was used by Tanaka and Goto [22, 75] and by Minetto et al. [48] for text
tracking. The former works described a wearable system for the blind where text was detected
using DCT-based features (on prior works by Goto and his co-workers [72, 74], a simple tracking
system was described based on block matching between frames). Tracking was performed by
generating particles on candidate text regions in new frames, and they were weighted according
to a similarity function between the regions based on cumulative histograms. No perspective
correction was performed, and only region identity and limited 2D motion was maintained by
this method.

In Minetto et al. [48], candidate text regions were initially segmented using a morphological
operator applied at different scales, then classified by means of a Support Vector Machine, and
grouped together based on their relative distances and sizes. For each text region, particles
were propagated in subsequent frames using a first order motion model. Particles’ weights were
proportional to a similarity coefficient between the histogram of oriented gradients (HOG)
descriptors of the respective image regions.

A different approach was used by Na and Wen [56] by tracking text directly using SIFT Lowe
[36]. A global motion between frames, modelled as a similarity transformation [23] was com-
puted by minimizing the least squares distance between the SIFT feature matches. In their work,
the authors did not specify how text regions were segmented. Furthermore, the computational
complexity of extracting SIFT descriptors from every frame precludes the real-time use of this
technique, and the simple motion model limits the usefulness of the method when applied to
outdoor hand-held camera scenarios. SIFT was also used in the work by Phan et al. [65] to
track and align text regions appearing in a sequence of frames. An integration of the aligned
text probability maps was then used to improve OCR accuracy. Their algorithm looks for text

1http://www.knfbreader.com
2http://questvisual.com/
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in adjacent frames either forwards or backwards, necessarily making it an offline process and
unsuitable for real-time operation. Additionally, the method requires a manual selection of the
initial text bounding box.

1.2. Our work: a natural scenes text reading machine
The general objective of the present work is to develop a text reading assistant that is automatic,
autonomous, interactive and operates continuously on video sequences. The ultimate goal is to
construct a system that behaves as closely as possible as if a human interpreter was reading the
text to the user. It would acquire video images from a camera and selectively translate the texts
in the surrounding environment into spoken phrases.

This work is focused first and foremost on video, and the aim of this research has been to
exploit the fundamental difference between a video sequence and a high resolution still image:
the temporal redundancy vs. the spatial resolution. The key insight of this approach is to consider
the input, not as a sequence of unrelated static images, but as a continuously changing view of
the world. This is achieved by tracking text regions, maintaining their identity across the video
sequence. In addition to the scene awareness, it also enables the utilisation of complex text
recognition algorithms in real-time: a fully fledged OCR engine can be run in the background
on the detected text regions while the real-time tracking keeps the region identity. When the
text recognition results are available, they can be linked to the tracked region, which also helps
in fulfilling another requisite for such a device, which is real-time operation. Intuitively, this
recognition-while-tracking mechanism is much closer to how humans read text: we do not look
at the world, memorise a static image and try to extract all the text in it, but we rather look for
text and read it sequentially while our brain is continuously tracking the environment. Tracking
would also provide the needed context awareness for an assistance device. For example, it would
know when a text has been already recognised with enough confidence or which texts have been
read back to the user, in order to not repeat them more than once. If the user is approaching
a text to see it better, or to avoid an obstruction or reflection, the system would realize that a
piece of text (that was previously unrecognisable) has now become readable. Image registration
of multiple frames can also be built on top of a tracking framework, for example, to achieve
super-resolution text as a preprocessing stage before OCR. This has been attempted before but
on single images [40].

In the rest of this section, I will outline the articles published during the course of this PhD and
the context in which they were produced. Of those, [46, 67] and [44] are the journal papers that
conform the PhD by publication, while [43] and [45] were presented at conference workshops,
but also cover significant parts of the research carried out during the PhD.

In our first approach [43]*, we presented a near real-time scene text tracking system based on
Particle Filtering (PF). This work also presented the first iteration of our Adaptive Thresholding
based text detection algorithm, and the text aggregation technique based on Delaunay graphs
and saliency filtering, which was aimed at forming text entities (i.e. words or groups of words
forming small sentences). Each text entity was assigned a Particle Filter (PF) tracker which

*[43] C. Merino and M. Mirmehdi. ‘A Framework Towards Realtime Detection and Tracking of Text’. In: Camera
Based Document Analysis and Recognition. 2007, pp. 10–17. The full text is available on Appendix A.
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maintained a set of features and a simple state (a 2D translation and an in-plane rotation). The
particles’ weights were computed as the number of matched features within a search area, where
the identity of individual features was established using SIFT [36] descriptors. A key aspect of
this method was the use of just a few high quality features for tracking – in this case, segmented
characters. This required a full text segmentation stage per frame (and thus demanded a very
fast text segmentation algorithm), but the advantage was that the trackers were more resilient
to big changes in orientation, occlusions and illumination changes. This early work, although
very useful as a proof of concept, was found to have certain drawbacks where some performance
improvement was necessary. For instance, over 80% of the frame processing rate was associated
with feature matching, i.e. SIFT, which is a computationally expensive operator. Additionally,
the number of SIFT descriptors produced by each feature (i.e. characters) was rather low, and
limited the ability to discriminate between measurements. SIFT is affine invariant but not
perspective invariant [47], and no estimation of the 3D spatial orientation of the text in the scene
was performed so the whole system was sensitive to wide baseline changes. This is also related
to the simple state model used, namely just a 2D translation and in-plane rotation, that traded
accuracy and robustness in favour of low computational complexity and hence better frame rate.

To overcome the limitations of our PF and SIFT based text tracker, I started exploring the
use of a different region matching technique. In this new approach image regions were matched
using just Normalised Cross Correlation (NCC), but the region extraction was coupled with
the state maintained by the tracking filter, thus being covariant with the state changes. The
tracker still used a simple 2D translation, scale and in-plane rotation state model (which also
limited the region matching to being covariant to the similarity transformation), but otherwise
it was a major rewriting of our tracking framework, as the objective was also to increase its
performance by making use of several processing cores in parallel. In this iteration, the system
was also capable of performing text recognition using an off-the-shelf OCR engine. The ongoing
progress of this effort was reported in [67]*. We still faced a fundamental challenge regarding
our tracking approach: the simple state model precluded its use in any but the most simple scene
text scenarios.

A concurrent work to the purely computer vision efforts was the construction of a reading
machine prototype. In [45]† we presented a wearable head-mounted device that encased a camera
inside a flat-cap. This is the reading hat, our prototype text reading machine. In this work we also
explored the use of MSERs as a distinguished text region detector, and introduced Hierarchical
MSER, a technique to efficiently prune a component tree of detected text regions. We presented
comparative text detection results against the ICDAR 2003 Robust Reading Competition image
database [37] which demonstrated the speed of our system, as measured against the published
state-of-the-art, although our precision and recall values were still inferior to the best performing
works.

*[67] A. Rodríguez-Hernández, C. Merino, O. Casanova, C. Modroño, M. Torres, R. Montserrat, G. Navarrete,
E. Burunat and J. González-Mora. ‘Sensory substitution for visually disabled people: Computer solutions’. In:
WSEAS Transactions on Biology and Biomedicine 7.1 (2010), pp. 1–10. The full text is available on Appendix B.

†[45] C. Merino-Gracia, K. Lenc and M. Mirmehdi. ‘A Head-Mounted Device for Recognizing Text in Natural
Scenes’. In: Camera Based Document Analysis and Recognition. Ed. by M. Iwamura and F. Shafait. Vol. 7139.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2012, pp. 29–41. The full text is available on
Appendix C.
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(a)

(b)

Figure 1.2. A projective transformation of text. A rectangle enclosing the text is seen as a quadrilateral
in the source image (a) and is mapped into a rectangle in the target image (b).

Once it became apparent that the major limitation of our text tracker so far was the limited
state model, I needed to reconsider the problem of text extraction, and in particular, the correc-
tion of text perspective distortions prior to the text tracking stage. Assuming text lies on a planar
surface, the process of perspective recovery of text can be modelled as a projective transformation
[23] between the source image and a target image. As the projective transformation preserves
linearities, a rectangle enclosing the text in its original plane and orientation is seen as a quadri-
lateral in the source image and would need to be mapped to a rectangle in the target image (see
Figure 1.2). This projective transformation or homography is represented by a 3 × 3 mapping
matrix:

p′ = H p , (1.1)

where p = [ x y 1 ]ᵀ and p′ = [ cx′ cy′ c ]ᵀ are homogeneous coordinate points in the source and
target images respectively and H is the homography matrix. The homography has 8 degrees of
freedom which can be decomposed into: translation and scale along each axis, Euclidean rotation,
shear and two perspective foreshortenings along each axis respectively.

The most relevant prior work specifically dealing with 3D scene text recovery was the one by
Myers et al. [54] whose method deals with individual or isolated text lines found in everyday
scenes, particularly outdoors. In that work, the text lines are rotated at various angle increments
and horizontal projection profiles for each angle are computed. By measuring the slope on
the sides of the projection profile, top and bottom angles can be estimated, allowing for the
estimation of the horizontal vanishing point and a partial rectification of the text by removing
the horizontal foreshortening.

Myers et al. [54] pointed out that some of the homography degrees of freedom affect recog-
nition more than others: OCR engines can deal with translation and scaling well, and rotation
(or skew) is also handled by current OCR systems (albeit for a limited range of angles). There-
fore, OCR-wise, the problem could be reformulated as correcting the distortions produced by
shear and the two perspective foreshortenings, or alternatively, as estimating the location of two
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vanishing points within the image plane [11]. Correcting shear and vertical foreshortening is a
challenging problem due to the difficulty of obtaining accurate vertical cues for text [9] – even
more so when only one text line is being considered. Myers et al.’s [54] view of this is that
a weak perspective deformation is expected in the vertical axis on natural scenes, as cameras
are usually oriented closely to the horizontal and, in the real-world, text is laid out on vertical
surfaces. Therefore, assuming that the vertical vanishing point lies at infinity, they estimate a
single shear angle for the whole line by also employing vertical projection profiles. However, they
also acknowledge that, when the perspective distortion is significant, their method of correcting
shear produces (after rectification) a line of text where the vertical strokes vary in angle with
respect to their horizontal position. This is more apparent when images obtained with hand-held
or wearable cameras are considered, since the camera could be pointing to text at more extreme
orientations. Furthermore, in Myers et al. [54], a large number of possible shear angles within an
interval have to be evaluated, which involves a whole image transformation and the computation
of a projection profile for each angle. This makes their method inefficient, or if the number of
evaluated angles is reduced, inaccurate.

In [46]*, we presented a novel technique for efficient perspective estimation of text which sig-
nificantly improved the existing state-of-the-art in both accuracy in terms of ranges of angles and
speed. It relies on the geometry of the characters themselves to estimate a rectifying homography
for every line of text, irrespective of the view of the text over a large range of orientations. The
horizontal perspective foreshortening is corrected by fitting two lines to the top and bottom of
the text, while the vertical perspective foreshortening and shearing are estimated by performing
a linear regression on the shear variation of the individual characters within the text line. We
also presented systematic comparative results that showed the improved recognition accuracy
across a larger range of angles against the work by Myers et al. [54]. An important aspect of this
work, that sets it apart from most other text rectification techniques in the literature, is the full
homography estimation, which is crucial in order to be able to use it as the state of a tracking
filter.

In our most recent work [44]†, I revisited the text tracking problem by looking at performing
perspective aware tracking, built on top of our previous works in the areas of text detection, ag-
gregation and perspective estimation. Each text region is independently tracked by an Unscented
Kalman Filter (UKF) that keeps an homography transformation of the text into a fronto-parallel
view. Tracking is performed on high level features (i.e. perspective corrected characters). Again,
this provides several advantages over low-level tracking of feature points, such as increased resili-
ency against orientation changes and occlusions. Tracking allows (i) to maintain region identity
across the sequence, (ii) to smooth the estimation of the region’s parameters (position and 3D
orientation) to reduce jitter. Both of these outcomes play a major role in facilitating scene aware-
ness, in reduction of false positive segmentations and increase in recognition accuracy, and in
better interactive communication of text in the environment to the user, e.g. by managing the
frequency of communicating text seen in the scene as an audio signal to a blind user.

*[46] C. Merino-Gracia, M. Mirmehdi, J. Sigut and J. L. González-Mora. ‘Fast perspective recovery of text
in natural scenes’. In: Image and Vision Computing 31.10 (2013), pp. 714–724. The full text is available on
Appendix D.

†[44] C. Merino-Gracia and M. Mirmehdi. ‘Real-time text tracking in natural scenes’. In: IET Computer Vision
8.6 (2014), pp. 670–681. The full text is available on Appendix E.
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1.3. Summary

The prototype presented in this work operates in real-time and it is autonomous, i.e. new
trackers are created when new text entities are found and their identity is kept for as long they
are in view; they are removed when the entities are no longer detected, given some resilience to
brief occlusions. Trackers are automatically selected for OCR – a process carried out in parallel
to tracking by an off-the-shelf OCR engine on the perspective corrected image patches extracted
from the input sequence. This demonstrates the role tracking plays, i.e. when a text recognition
result is available, the system is able to relate it to the original text entity even if the camera has
moved. Likewise, available recognition results are automatically selected for synthesising into
audio (using text-to-speech) and are played back to the user.

1.3. Summary
This chapter has described the problem, context and focus of this PhD. It has also outlined the
motivations and contributions of the publications produced as a result of this research. Next,
Chapter 2 will describe in detail the text reading system developed over the course of this PhD.
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Chapter

2
Description of the reading system
This chapter describes the proposed end-to-end text reading system and presents our wearable
text reading prototype. It is a summary of the methodology of the works presented as part of
this PhD by publication [43–46, 67] (the full text of these articles are included in Appendices A
to E). To give a general overview, the proposed end-to-end real-time text reading system is
illustrated in Figure 2.1. First, video images are acquired from a camera and the text regions
are detected. Section 2.1 explains our text detection technique and, in particular, Sections 2.1.1
and 2.1.2 introduce two text segmentation methods based on Adaptive Thresholding (AT) and
Maximally Stable Extremal Regions (MSERs) respectively. Then, text regions are aggregated
to form lines of text. A method for efficient multi-orientation perceptual text aggregation based
on Delaunay graphs is presented in Section 2.2. Next, the orientation of each line of text is
estimated. A fast method for perspective text rectification in natural scenes is described in
Section 2.3. Finally, text regions and their 3D orientations are tracked frame-to-frame using
Unscented Kalman Filters (UKFs), a process which is explained in Section 2.4. Those stages
represent the real-time components of our text reading prototype. Concurrently to them, Optical
Character Recognition (OCR) is performed on the tracked regions and speech synthesis on the
recognized text, a process that is covered in Section 2.5. To conclude the chapter, the reading hat,
our prototype text reading machine, is described in Section 2.6.

2.1. Text detection and segmentation

The first stage in our text reading system is text detection, in which each input image is segmented
to obtain a set of candidate text regions, containing possibly none, or one, or more characters.
Later, these regions will be used as measurements for the tracking filter, as well as serving as the
building blocks for text line aggregation and tracker creation. Our segmentation algorithm was
first presented in [43], and an alternate region detection mechanism based on MSER was later
presented in [45]. They are described in Sections 2.1.1 and 2.1.2 respectively.

2.1.1. Adaptive thresholding and hirerarchical filtering

Adaptive Thresholding (AT) is applied to binarize the input image and retrieve a set of Con-
nected Component (CC) regions. A tree is then constructed to represent the topological rela-
tionship between these CCs (see Figure 2.2). A key step of this algorithm is the hierarchical
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text entities

aggregation

perspective estimation OCR

Speech

headphones

filter prediction

feature projection
feature matching

filter update

tracker maintenance

camera

(a) observation

(b) tracking

(c) output

(d)

Figure 2.1. A schematic of the proposed end-to-end real-time text reading system. Video images are
captured and the text is first segmented and aggregated to form lines of text (a). Then, text regions
are tracked from frame to frame (b). Each tracked region will independently be run through OCR and
selectively synthesized into speech (c). These are played back to the user, who carries a wearable reading
hat (d).

filtering of the tree nodes, based on the assumption that in natural scene images with text, struc-
tural elements (such as sign borders, posters frames etc.) can be discarded purely based on their
hierarchical relationships with other text regions. The filtering works as follows. Once the tree is
built, it is walked depth-first and each node of the tree is classified as text or non-text during the
walk (Figure 2.3a) using a cascade of text region filters as described later below. When a node has
children already classified as text, it is discarded as non-text, despite the text classifying functions
might have marked it as text. This discards most of the non-text structural elements of the text
(Figure 2.3b). Additionally, the tree filtering approach allows for the segmentation of dark and
light text in one pass only. Figure 2.6a shows an example image and Figure 2.6b illustrates the
corresponding CCs (i.e. candidate text regions) detected at this stage.

To classify text regions we apply a series of tests in cascade, meaning that if a test discards a
region as non-text, no more tests are applied to it. Using a small number of tests is important
for real time processing; coarse but computationally more efficient tests are applied first, quickly
discarding obvious non-text regions, and slower, more discriminative tests are applied last, where
the number of remaining regions is fewer. The tests we apply are on size, aspect ratio, border
energy and an eigenvector based texture measure adapted from [77].
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Level 2
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Figure 2.2. A synthetic sample image and its corresponding tree of connected regions.

Size and aspect ratio Regions too big or too small are discarded. The thresholds here are set
to the very extreme. Very small regions are discarded to avoid noise. This may still drop
characters, but they probably would be otherwise impossible to recognise by OCR and
as the user gets closer, they are more likely to be picked up anyway. Large regions are
discarded because it is unlikely that a single character occupies very large areas (over half
the size) of the image. Additionally, regions that have really extreme aspect ratio (i.e., they
are either too tall or too wide) are also filtered.

Border Energy This is a measure of contrast against the background. It filters out regions with
low average edge response (from a Sobel operator (Sx, Sy)) around its boundary set of
points B, i.e., the region is valid only if its border energy exceeds a threshold e:

1

|B|
∑

(x,y)∈B

√
(Sx(x, y)2 + Sy(x, y)2) > e . (2.1)

This removes regions that usually appear in less textured and more homogeneous regions.

Texture measure The last filter in the sequence is a measurement of texture response, as text
regions usually contain high frequencies [50]. We found that the LU transform [77] yields
good response results when applied to text regions. It is a simple transformation based on
the LU decomposition of square image sub-matrices A around each interest point.

A = P L U , (2.2)

where L and U are lower and upper diagonal matrices and the diagonal elements of L are
equal to one. Matrix P is a permutation matrix. In the LU decomposition, the number of
zero diagonal elements of U is in direct proportion to the dimensionality of the null-space
of A.

The actual texture response LU(l, w) is calculated as the mean value of the diagonal values
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Figure 2.3. Depth first CC tree walking. (a) During the walk, each leaf node is classified as text or non
text. (b) Parent nodes are discarded when children are classified as text.

of the U matrix.

LU(l, w) =
1

w − l + 1

w∑

k=l

|ukk| , 1 < l < w , (2.3)

where w is the window size and l number of skipped lower frequency values. The texture
response for a candidate component is calculated as the mean LU transform value of a
sampled set of points (N) inside the bounding box of the region. The region is considered
text if the response is above a certain threshold t.

1

|N|
∑

p∈N
LU(l, w) > t . (2.4)

In the filters above, the thresholds were determined empirically and fixed in all our experiments
to: e = 40 and t = 1.9.

2.1.2. Hierarchical MSER text segmentation
Maximally Stable Extremal Regions (MSERs) [41] are regions of interest in an image which
present an extremal property of the intensity function around its contour. When applying a
varying threshold level to a grey scale image, Connected Component regions in the thresholded
image evolve: new regions appear at certain levels, regions grow and eventually join others.
Those regions which keep an almost constant pixel count (area) for a range of threshold levels are
called MSERs. This technique, originally proposed as a distinguished region detector [41], also
presents very desirable properties when applied to text detection, such as stability and multiscale
detection.

MSERs are related to the concept of the ‘component tree’ [58] of the image, as shown by
Donoser and Bischof [13]. The component tree is a representation of all the CCs which result
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(a) original (b) hierarchical MSER

Figure 2.4. Hierarchical MSER representation. Blue regions were obtained by the MSER+ pass and the
red regions by the MSER- pass. Darker regions represent upper tree nodes (closer to the root), while
brighter regions show lower nodes (closer to the leaves).

from applying a varying threshold level to a grey scale image. The CCs are laid out in a hierarchy
representing the topological relationship between them. MSERs can be obtained by filtering
the component tree: a stability factor – i.e. the rate of change in the area of the components –
is computed for each node in the tree. MSERs are identified as local minima of the stability
factor along paths in the tree towards the root. The component tree is used here as a tool to
efficiently compute the MSERs. However, the hierarchical layout of the MSERs as provided by
the component tree can also be exploited to drive a text/non-text region filtering, in a similar way
to our previous Adaptive Thresholding based technique (Section 2.1.1).

We use the efficient, linear time MSER algorithm by Nistér and Stewénius [63], which
crucially also constructs the component tree. We make two passes on the original image. First,
MSER+ regions are obtained by applying the MSER algorithm on the image. This produces
light regions inside dark ones. Then MSER- regions are obtained by applying the MSER
algorithm to the inverse (negative) of the original image which produces dark regions inside light
ones. The sets of regions returned by each pass are disjoint and both passes are needed to detect
light text on dark backgrounds and dark text on light backgrounds. The algorithm can be easily
modified to return a hierarchical MSER tree; an example output can be seen in Figure 2.4b, where
blue regions were obtained by the MSER+ pass and the red regions by the MSER- pass. Darker
regions represent upper tree nodes (closer to the root), while brighter regions show lower nodes
(closer to the leaves). With hierarchical MSER, we have the desirable properties of MSERs as
a distinguished region finder applied to text detection. Additionally, we keep the topological
relationship of the CCs, which provides context information for later text filtering stages.

The resulting hierarchical MSER tree is then pruned in two stages: (i) reduction of linear
segments and (ii) hierarchical filtering. The first stage identifies all the linear segments within the
tree where a linear segment is a maximum path between two tree nodes without any branches in
between. Likewise, it is a path starting with a node with only one child, and ending with a branch
node (a node with more than one child), or a leaf. Each linear segment is then collapsed into
the node along the path, as shown in Figure 2.5, which maximizes the border energy function
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Figure 2.5. Linear tree segments removal.

(see Equation 2.1). In the second stage, the tree is walked depth-first in a similar way to the
hierarchical tree filtering proposed in Section 2.1.1, and the filters applied are the same: size,
aspect ratio, border energy and texture measure.

2.2. Text aggregation

In order to be able to extract common clues for perspective estimation, for tracking and for the
purpose of text recognition by (off-the-shelf ) OCR, we need to group the CC regions together
to form text entities. The grouping is performed by first determining which CC regions are
closely associated by evaluating a visual saliency measure between each pair of regions, and
then by searching for dominant orientations to separate independent lines of text. The saliency
filtering technique (Section 2.2.1) was first presented in [43] and later refined with the addition
of histogram filtering (Section 2.2.2) in [46].

2.2.1. Saliency filtering

First, a Delaunay triangulation [1] to join the centre points of every CC is performed, with the
centre points being the centre of mass of each region. The Delaunay triangulation enables us
to efficiently construct a neighbour relationship graph between all the components. Figure 2.6c
shows the result of the Delaunay triangulation. For every edge of the resulting graph, which
represents a pair of adjacent CCs, a saliency measure is computed [66].

We use the two saliency operators introduced by Pilu [66]: the blob dimension ratio (BDR)
and the relative minimum distance (RMD). Given two CC regions, A and B, BDR evaluates the
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2.2. Text aggregation

(a) (b) (c) (d)

Figure 2.6. The result of the segmentation and grouping steps: (a) the original image, (b) the segmented
components, (c) the association graph (grey edges were removed during saliency filtering and red edges
were removed during histogram filtering; the green edges represent the segmented text lines), and (d) the
grouped text lines.

similarity in size between them, i.e.

BDR(A,B) = Amin +Amax

Bmin + Bmax
, (2.5)

where Amin, Bmin, Amax and Bmax are the minimum and maximum axes of regions A and B
respectively, while RMD evaluates the distance of the two CCs relative to their respective sizes,
i.e.

RMD(A,B) = Dmin

Amin + Bmin
, (2.6)

where Dmin is the minimum distance between two regions. The minimum and maximum axes
are extracted from the minimum enclosing box (rotated rectangle) around the regions, which can
be efficiently computed from the region’s convex hull. The combined saliency operator between
the two text regions is then:

P(A,B) = N(BDR(A,B), 1, 2) ·N(RMD(A,B), 0, 4) , (2.7)

where N(x, µ, σ) is a Gaussian distribution with mean µ and standard deviation σ (the paramet-
ers were determined experimentally by Pilu [66]). Edges with P(A,B) < 0.9 are removed from
the graph. In Figure 2.6c, edges removed during the saliency filtering are represented in grey.

2.2.2. Histogram filtering

After the saliency filtering, every remaining connected subgraph is a candidate text group, each
of them possibly containing one or more lines of text. The text groups are then evaluated to find
the dominant orientation and to separate the individual text lines.

The angle between each edge of the subgraph and the x-axis is computed and reduced to
the [ 0, π) interval. This angle interval is divided into 8 bins and then a histogram of angle
distribution of the graph edges is built. The histogram bin containing the highest number of
edges is selected. Every edge that does not belong to that bin or to any of its two adjacent bins is
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Figure 2.7. (a) Top, mid, bottom, left and right lines along with the formed quadrilateral. The outliers
of the line estimation are also illustrated here. (b) Top point estimation – on severely perspective distorted
characters the estimated top point and the actual top point might not correspond.

removed from the graph. The remaining edges belong to the dominant orientation of the text
line. After the removal of these graph edges, the original subgraph may be split into smaller
subgraphs since the original candidate text groups might have had multiple text lines that are now
separated. In Figure 2.6c, filtered edges at this stage are represented in red, and the remaining
connected subgraphs are represented in green. Finally, Figure 2.6d shows the result of the text
segmentation and grouping, in which each segmented text line is drawn in a different color.

Now every remaining connected subgraph contains only one text line. A text line is defined by
a set of N characters Ci, i = 1, . . . N , each character being a connected component. The next
stage, which is perspective estimation, relies on the character’s contour points and, for efficiency
reasons, the convex hull of each CC is used as the contour for the character. For the remainder
of this chapter, the unit of work is the text line.

2.3. Perspective estimation

At this stage of text recovery, we estimate a 3× 3 homography matrix transformation of a text
entity into a fronto-parallel representation. This technique was first introduced in [46]. Assum-
ing a pinhole camera model, the homography is the transformation that allows the modelling
of all possible orientation changes the text can undergo in an image without the need to have
calibrated cameras or an explicit 3D representation. The ability to quickly estimate the text
orientation makes high-level perspective-aware tracking possible, as well as the extraction of
perspective invariant feature descriptors.

The orientation detection is performed in two steps: parallel rectification and shear estimation.
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Figure 2.8. (a) Image partially rectified according to the top, bottom, left and right lines. The displace-
ment (δ2) for the second character is also shown. (b) Quadrilateral formed after computing the two shear
angles. Additionally, the upright shear angle (σC) for the second character is shown.

2.3.1. Parallel rectification

A line is fitted to the centre point of every character in the text line (the centre of mass already
computed before), using a least squares method, and named the mid-line. As used and defined
here, this line will not usually correspond to any conventional typography line in the text. Possible
errors or variations in the location of the characters’ centre points, and so the mid-line, will not
significantly affect the rectification, as it is used as an approximate guide of the direction of the
text line, allowing us to define which side of the text line is the ‘top’ and the ‘bottom’ respectively.

For every character, the farthest contour points on each side of the mid-line are gathered as
the top and bottom point sets respectively. On severely distorted characters, the estimated top
points (and likewise the bottom points) will not exactly correspond to the actual top (and bottom)
points of that character within its reference plane and orientation. It is, however, an adequate and
sufficient approximation for the estimation of the top and bottom lines (see Figure 2.7b). Again,
small variations on the location of the mid-line will not significantly affect the rectification.

A top line is then obtained by performing a least squares line fitting with RANSAC [19]
outlier removal on the computed top points. This process is repeated with the bottom points
to get a bottom line. The outliers discarded during the fitting will usually correspond to the
ascenders or descenders of those characters that have them (see Figure 2.7a).

Two additional lines are computed as follows: through every contour point of each character, a
line is projected perpendicular to the mid-line. Of all these projected lines, the left-most and the
right-most ones along the direction of the mid-line are kept and named the ‘left’ and ‘right’ lines.
The intersection of the four computed lines (top, bottom, left and right) forms a quadrilateral
with vertices A, B, C and D, labelled clockwise starting with the intersection of the left and top
lines, as in the example shown in Figure 2.7a.

A straightforward homography Hp from four pairs of matching points [23] is computed so
that the quadrilateral (ABCD; Figure 2.7a) is mapped to a rectangle (A′B′C′D′; Figure 2.8a).
The aspect ratio and size of the target rectangle are still unknown, but not significant as the OCR
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Figure 2.9. Shear estimation for one character.

engine is scale independent. The rectified image, however, needs to have enough resolution for
the OCR to operate. Hence, we define the dimensions of the target rectangle (w, h) as:

w = max(d(A,B), d(C,D)) , (2.8)
h = max(d(A,D), d(B,C)) , (2.9)

where d(a, b) is the Euclidean distance between two points.
This partial rectification will transform the top and bottom lines into being horizontal and

parallel, removing the distortion produced by the horizontal vanishing point. We refer to the
result at this stage as the parallel image.

2.3.2. Shear estimation

A shear effect still remains in the projected text line in the parallel image due to the vertical
vanishing point (this is clearly discernable in Figure 2.8a). Correcting the shear has always been
a challenging problem. We look at the shear angle variation of the characters within the line to
perform a linear regression of angle values and obtain an accurate estimation of two shear angles
at the edges of the text line, which will in turn implicitly define the vertical vanishing point.

First, the characters’ centre points are ordered along the x-axis in the parallel image. The
horizontal distance of each character’s centre point to the left-most one is called displacement δ.
For the sake of clarity, the character indexes used in this section and the referenced figures will
reflect this ordering. Consequently, the first character is the left-most one and its displacement
is zero (δ1 = 0). Figure 2.8a shows the displacement for the second character, i.e. δ2.

Next, an upright shear angle is computed for each character which is the shear value at which
the width of the character’s vertical projection is minimized. Most characters have a single angle
which minimizes this projection, and we refer to this as σC (see Figure 2.9a), however, some
characters have a range of angles, e.g. those with a triangular shape such as letters ‘A’ or ‘V’ (see
Figure 2.9b). In those cases, three candidate angles are considered: the left (σL), right (σR) and
central (σC) angles of the interval, with σC = (σL + σR)/2. Thus, after any character’s shear
estimation, the character has either one (σC) or three (σL, σC, σR) angle estimates. It is of note
that for some symbols (e.g. the forward slash – ‘/’) the width minimization produces an incorrect
upright shear angle estimate.

A set of 2D points comprising pairs of displacement and shear angle is constructed: (δi, σC
i),

(δi, σ
L
i) and (δi, σ

R
i), i = 1, . . . N . Again, linear regression is performed on these points,
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Figure 2.10. Shear angles estimation. From the alternative shear candidates of the first letter (σL
0, σC

0

and σR
0) the wrong ones (in red) are discarded as outliers by the RANSAC line fitting.

including RANSAC-based outlier removal which will discard those shear estimations that do
not fit with the shear angle variation within the text line. For example, in Figure 2.10 the first
letter ‘A’ has three angle estimates and two of them are discarded as outliers, while the rest of the
letters only have one angle estimation. The fitted line is then used to calculate two shear angles
at the ends of the text line (i.e. at δ1 and δN , as also illustrated in Figure 2.10).

On an implementational note, the upright shear angle can be efficiently computed using a
variation of the Rotating Calipers paradigm [78]. In its standard form, it is used to compute
the diameter of a convex polygon by minimizing the distance between two parallel lines that are
rotated around antipodal vertex pairs. Consequently, we operate on the character’s convex hull,
but we select the pair of lines with minimum horizontal distance (i.e. distance along the x-axis
direction). The angle of these lines with respect to the x-axis is the character’s upright shear
angle. In Figure 2.8b, the upright shear angle for the second character (i.e. σC

2) is shown along
with the parallel lines used to minimize the width. The estimated first and second shear angles
of the text line are also portrayed.

Once both shear angles are obtained, two lines can be defined on both sides of the text line.
They pass through the centre of the left-most and right-most characters respectively and forming
an angle with respect to the x-axis equal to the computed shear angles. These lines intersect the
rectified top and bottom lines defining a quadrilateral (A′′B′′C′′D′′, as shown in the example in
Figure 2.8b). A homography Hs mapping this new quadrilateral to a rectangle is computed. The
result of this transformation is the rectified image.

Thus, the full rectifying homography for the original image is the combination of both partial
rectifications:

H = Hs Hp . (2.10)

As a summary so far, Figure 2.11 illustrates the end-to-end text detection, grouping and
perspective rectification stages on an example image.
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(a) original image (b) segmented components

(c) association graph (d) grouped text lines

(e) top/bottom line estimation (f ) parallel image

(g) shear estimation (h) full rectification

Figure 2.11. Text segmentation and perspective estimation for an example image (a). First, for the
segmentation and aggregation stages: (b) the segmented components, (c) the association graph (grey
edges were removed during saliency filtering and red edges were removed during histogram filtering; the
green edges represent the segmented text lines), and (d) the grouped text lines. Then, for the perspective
estimation step: (e) the top and bottom lines estimation, (f) the parallel image and (g) the shear estimation.
Finally, (h) the full perspective rectification.
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Figure 2.12. Tracker representation, which keeps a set of features zi and the state of the UKF that
produces the homography H.

2.4. Text tracking

We now describe our proposed text tracking approach, which was first presented in [44]. Once a
text entity is identified, a tracker is created to follow the text region from frame to frame while
it is in camera view. The detailed process of tracker creation and removal is explained later in
Section 2.4.1. For now, for ease of exposition, we assume that a set of trackers already exists and
properly initialized to follow a corresponding set of text entities in the scene.

A tracker is characterized by a set of tracked features zi and a dynamic state xk, which is
updated by a predictive filter. The features zi correspond to the individual characters in the text
line and are used as the anchor points to be matched against image measurements during the
observation stage of the filter. They are stored in a fronto-parallel representation, in a coordinate
frame referred to as tracker coordinates (see Figure 2.12). Each feature is defined as

zi =
[
x y w h

]ᵀ
, i = 1, . . .M , (2.11)

where (x, y) is a feature’s centre point, (w, h) are the dimensions of the feature’s bounding box,
and M is the number of features. Additionally, each feature keeps a perspective corrected image
patch used during feature matching (as seen in Figure 2.12).

As previously outlined in Chapter 1, our first approach [43] used Particle Filtering [15] since
they model a non-linear system, such as our text tracking problem, well. However, in this work
we explore the use of the Unscented Kalman Filter (UKF) [80] for tracking because it provides
the uncertainty of the system’s state estimation via a Gaussian probability distribution, and it is
also more efficient, i.e., to achieve the same accuracy as the PF, it needs to use substantially fewer
sampling points. The UKF is derivative free and employs a deterministic sampling approach (the
Unscented Transform, UT) to propagate the density function across non-linear state changes.
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Chapter 2. Description of the reading system

The UT captures the non-linearities better than alternatives such as the Extended Kalman Filter
and is easier to implement.

We represent the filter state by a homography transformation H mapping the fronto-parallel
view of the tracked features in tracker coordinates to image coordinates (Figure 2.12). The
homography can be characterized by a vector h:

h =
[
tx ty θ sx sy σ lx ly

]ᵀ
, (2.12)

where (tx, ty) defines a translation, θ is an in-plane rotation angle, (sx, sy) is an anisotropic scale,
σ is a shearing, and (lx, ly) is a foreshortening around both axes. Given the homography, there
is a closed form unique solution for all the parameters [23] (refer to [44, , Appendix] for a for-
mulation of this solution) which we name, along with its inverse, the homography (de)composition
function H:

H = H(h) , (2.13)
h = H−1(H) . (2.14)

Although both representations are mathematically equivalent, with this decomposition the
filter deals directly with the underlying parameters that define the transformation, enabling the
direct estimation of the uncertainty in each parameter via the covariance matrices. The dynamic
model also benefits from this representation as we can define velocity vectors that affect only the
translation or rotation parameters of the transformation. For the rest of this section, when we
refer to the homography H, an implicit conversion will be assumed from the parameters vector
h to the homography using H(h). The only moment in which the inverse operation H−1(H) is
needed is for tracker creation, as explained in Section 2.4.1.

For the prediction stage of the filter, we use a constant velocity model, where we only consider
in-plane translational and angular velocities. We define the velocity vector v as

v =
[
vx vy ω

]ᵀ
, (2.15)

and the state vector of the filter at frame k as a stacking of the homography parameters and
velocity vectors

xk =

[
h

v

]
. (2.16)

The new state prediction is then

x̂k+1 =

[
h+

◦
v∆t

v

]
, (2.17)

where ◦
v =

[
vᵀ 0ᵀ

]ᵀ
is the velocity vector padded with zeros to the length of h and ∆t is

the elapsed time since the last frame.
The measurement function maps the tracked features to observable characteristics in the image
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correct estimation

alternate estimations

Figure 2.13. Homography estimation ambiguity if only the centre points of each character are considered.

(called measurements) using the filter state. However, as each tracker represents a line of text, the
centre points of all the characters are roughly aligned. If the centre points were the only points
of our measurement function, there would be a great deal of uncertainty for rotations around the
horizontal axis (i.e. elevation – see Figure 2.13 as an example). Since we have a good estimate of
the text orientation, and we know that all the points of a text line lie on a plane, our observation
model includes five points per tracked feature zi: the centre point ĉ0 and the four corner points
ĉj , j = 1, . . . 4 of the feature’s bounding box (as shown in Figure 2.14):

ẑi =
[
ĉ0

ᵀ ĉ1
ᵀ ĉ2

ᵀ ĉ3
ᵀ ĉ4

ᵀ
]ᵀ

, i = 1, . . .M . (2.18)

These are converted from tracker coordinates using the predicted state homography. For
example, ĉ0 is computed as the transformation of (x, y) to image coordinates, ĉ1 as the trans-
formation of (x− w/2, y − h/2), and likewise for c2 to c4.

The predicted observation is then a combination of all of the individual feature mappings:

ŷk =
[
ẑ0

ᵀ · · · ẑM
ᵀ
]ᵀ

. (2.19)

Finally, as the last part of the observation model, the tracked features need to be matched
against the segmented text regions or candidate measurements. To discriminate between the
candidates, each feature keeps an image patch, normalized to 50× 50 pixels. It is a perspective
corrected image patch, extracted using the four corner points of the feature from the frame in
which the tracker was created. Matching is performed using NCC and only on measurements
within a certain search radius around the predicted feature position. The search radius is obtained
from the filter’s state covariance matrix, as it represents the uncertainty in the new state’s pre-
diction. After matching, each feature has one measurement candidate. As with the observation
function, each measurement mi is defined by the centre point of the region and its four corner
points:

mi =
[
c0

ᵀ c1
ᵀ c2

ᵀ c3
ᵀ c4

ᵀ
]ᵀ

, i = 1, . . .M , (2.20)

where cj , j = 0, . . . 4, are the mapped centre and corner points, and are obtained from the
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ĉ1

ĉ4
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Figure 2.14. The observation model. First, a new location for the tracker features is predicted (a). Here
the 5 predicted observation points ĉi for the first feature are represented in the upper part. Then, from
the segmentation and perspective orientation stage, the actual measurement points ci are obtained (b).
Finally, the candidate measurements are matched using perspective corrected image patches which are
also shown (c).

orientation estimation stage. Hence, the observation used by the UKF is:

yk =
[
m0

ᵀ · · · mM
ᵀ
]ᵀ

. (2.21)

In Figure 2.14 the observation model is illustrated: the predicted observation, the actual
observation and the feature matching.

2.4.1. Tracker maintenance
Tracker maintenance refers to the set of mechanisms in which new trackers are created, new
features are added to existing trackers, and bad trackers are removed. This allows the automatic
continuous operation of the system.

At first we need to correlate the text entities produced in the text association stage to the
current set of trackers. The text association stage groups measurements as belonging to the
same text entity and the tracking stage may associate features to some of the measurements after
matching.

By correlating tracked features to measurements and then to text entities, several possibilities
arise: (i) a tracker has matched all the measurements belonging to a text entity – this is the
perfect tracking case and no further action is needed (Figure 2.15a); (ii) no tracker has matched
any of the measurements of a given text entity – the entity is then a candidate for tracker creation
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Figure 2.15. Tracker maintenance.

(Figure 2.15b); (iii) a tracker has matched some of the measurements inside an entity – the
remaining (unmatched) measurements are candidates for feature addition to that tracker (Fig-
ure 2.15c). Additionally, when a tracker matches most or all of its features it is considered a good
track. Likewise, if a tracker did not match any of its features (or only matched a low fraction of
them), it is considered a bad track or a mistrack. After a certain number of frames being a bad
track, a tracker is removed. These operations are further explained in the following.

Tracker creation When a text entity does not have any tracker matching any of its features, it
is considered an untracked entity, thus requiring a tracker to be created for it. Tracker
creation proceeds as follows: the perspective estimation stage returns a homography trans-
formation H′ of the measurements in the group to a fronto-parallel representation. All the
measurements are converted into features in the new tracker by applying this homography
transformation and then obtaining the centre point and dimensions of each text region in
the fronto-parallel view. Then, the filter state is initialized as:

x0 =
[
h0

ᵀ 0 0 0
]ᵀ

, (2.22)

with h0 = H−1(H0) and H0 = (H′)−1 being the initial homography estimation of the
transformation between the fronto parallel representation to image coordinates.
On creation, a tracker is marked as unstable. This means that it will not be considered
for feature addition, for recognition or transformation to speech, and it will not be shown
as a segmented region. It is only considered stable after it is tracked continuously for a
number of frames – in our case this was arbitrarily set to ten. As a text region is consistently
segmented in a sequence of frames, as opposed to noisy regions, this process cleans most
of the text segmentation false positives.

Feature addition When a stable tracker matches some of the measurements inside a text en-
tity, the remaining unmatched measurements are assumed to belong to the same entity.
Hence, they are added to the tracker as new features. The corner points of the created
feature are mapped to the tracker coordinates using the tracker’s state homography, and
the observation vector length is increased accordingly.

Tracker removal When a tracker has been regarded a bad track for a few frames because none or
too few of its features are matched, the tracker is removed. There is no long term registry
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of old trackers. If a tracker is removed (e.g., because it is no longer in view, or due to a
long occlusion), and afterwards the text entity it was tracking is detected again, it will be
added again as a new tracker. We find this to be an adequate compromise for efficient and
long periods of continuous operation.

Occlusions These mechanisms allow our system to deal with brief occlusions of the tracked text
regions. A full occlusion will produce bad tracks for the affected trackers. If the occlusion
is shorter than the number of frames needed to delete a tracker, when the text region is
in view again it will be recovered. The system will also be able to recover the track even
with big translations or wide baseline changes of orientation thanks to the use of high level
features. Partial occlusions of text regions will be also dealt with in the same fashion, and
even on tracker creation, due to the feature addition mechanism.

2.5. OCR and Speech Synthesis
When a tracker is considered stable, it is then a candidate for recognition. The image quad-
rilateral enclosing the tracked text entity is rectified to a fronto parallel view using the state
homography transformation and then sent to OCR. Recognition is performed in a parallel
processing task, so the tracking is maintained in real-time while the recognition runs alongside.
The decision on which tracker to recognize is weighted by several factors: whether or not there
is already any recognition available for this tracker, the OCR confidence value of previous recog-
nitions, and the elapsed time since the last recognition attempt. A tracker might be sent to OCR
for recognition several times, but if the returned confidence value of a new recognition is lower
than a previous one, the recognition result with higher confidence is kept.

Speech synthesis is the main user interface of the system, and the main intended communica-
tion with the user. Those text regions that have a high enough OCR confidence value and have a
stable text tracker are considered for being synthesized into speech. The text is sent to an speech
synthesis engine so the recognized text is played back to the user. The candidate texts are queued
and prioritised according to the distance to the centre of the image. Regions that stay in view
of the camera for long enough might be reproduced several times, but as the region identity is
maintained throughout the sequence, this delay can be adjusted for the convenience of the user,
i.e. by tracking the text we can avoid the system continuously repeating the same text over and
over.

2.6. Text reading prototype
This final section describes our prototype text reading machine and presents an overview of the
implementation details. Although the major focus of this work is the exploration of the computer
vision techniques to allow real-time scene text understanding on video, the construction of a text
reading prototype enabled us to use a platform where these techniques could be tested on real
life scenarios.

Our reading machine is composed of a camera mounted on a hat, a pair of headphones also
connected to the hat and a processing unit. Placing a camera in a hat is a logical choice as it is
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both an unobtrusive location and an ideal position in reference to where the eyes and head point
to. Mayol et al. [42] examined possible positions of wearable cameras and concluded that head
mounted cameras provide the best possible link with the user’s attention. The hardware shown
here allows its integration into many varieties of hats, here we have used an ordinary fashion
accessory – a flat-cap. A picture of the reading hat is shown in Figure 2.16a.

The prototype was designed with emphasis on serviceability and visual appearance. All the
electronic components are housed on a plastic plate bent to follow the shape of the flat-cap.
This plate is removable, easily allowing the replacement of the hat. To minimize the number
of cables, all the devices are connected to a generic USB hub which allows connecting the hat
to any USB-enabled computing device, from tablets to fully equipped laptop computers, with a
single cable. It is built out of commodity hardware, with a total cost of all the components under
100e: a high definition web camera with adjustable focus (Logitech Quickcam Pro 9000), an
USB sound card used for voice feedback to the user through a pair of connected headphones and
the USB hub. A view of the inner removable part of the hat with the electronic components is
shown in Figure 2.16b.

Regarding the software implementation, as one of the design objectives of our prototype is
real-time operation, the system is carefully paralellized to make the best possible use of available
processors. We use Intel’s Threading Building Blocks (TBB),1 which implements a task-based
parallelization paradigm. It features a high level C++ API for defining parallel constructions,
supports nested parallelism and provides automatic scalability. The algorithm steps in Figure 2.1
are implemented as separate stages of a processing pipeline. On multiprocessor machines, TBB
is able to schedule different stages on different processors so several frames might be simultan-
eously processed at any given moment. The system maintains a global state and a transient state.
The transient state is carried forward across the stages of the pipeline. At the end of a frame
processing, the transient changes are atomically combined in the global system state. This is
easily implemented as the library guarantees strict sequential ordering of the pipeline stages of
consecutive frames. OCR is spawned as a task outside the main processing pipeline and thus
it is scheduled concurrently with it. This allows to maintain real-time performance for the text
tracking while being able to perform longer running processes at the same time and without
under- or over-subscribing the available parallelism. We find this to be a superior design in terms
of portability and scalability when compared to other approaches (such as e.g., PTAM [31]) in
which explicit threads are defined with synchronization mechanisms between them. For OCR
we use Tesseract,2 an open-source OCR engine that provides an adequate API and recognition
accuracy.

2.7. Conclusion
This chapter has covered the main techniques developed during the course of this PhD: text
detection, aggregation, perspective recovery, tracking and other processing stages. In has also
presented our prototype wearable text reading machine. Chapter 3 focuses on the evaluation of
these techniques and discusses the experimental results.

1Threading Building Blocks: http://threadingbuildingblocks.org/
2Tesseract OCR [73]: http://code.google.com/p/tesseract-ocr/
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flat-cap

headphones

USB interface

camera

(a)

sound card web camera USB hub

(b)

Figure 2.16. The reading hat, our prototype text reading machine: (a) the external aspect of the hat and
(b) the internal removable components.
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3Results and discussion
In this chapter, the results obtained by the proposed system are described and discussed. It is
a summary of the results of the works produced over the course of this PhD [43–46, 67], and
whose full text is included in Appendices A to E. The chapter is structured as follows. First,
Section 3.1 shows the results of the text perspective recovery mechanism. Second, Section 3.2
shows the results of the text tracking mechanism. Finally, Section 3.3 shows performance figures
of the operation of the prototype.

3.1. Perspective recovery results

In this section, we evaluate the operation of the perspective recovery subsystem. In our first
set of experiments, we used synthetic images to systematically evaluate the performance of the
perspective rectification method along all possible viewpoint orientations. In the second set,
examples of natural scene images were used to illustrate and evaluate the proposed method
further. Throughout the experiments, we compare off-the-shelf OCR recognition accuracy on
the unrectified images, on images post-rectification by our proposed method, and on images
post-rectification by the method of Myers et al. [54]. The nomenclature we use for the axes is
illustrated in Figure 3.1: roll for in-plane rotation, elevation for the axis aligned with the text
line direction and azimuth for the vertical axis with respect to the text.

It should be noted that we did not use the ICDAR 2003 Robust Reading dataset [37] or the
Street View Text dataset [81], as neither contains text captured at perspective views; hence they
are ill-suited to our purpose here.

3.1.1. Comparative evaluation on synthetic data

Our synthetic images simulate text appearing at different orientations. As text segmentation is
error-free on the synthetic images, the result will not be affected by possible text localisation mis-
takes that would arise from using real-world images, and so we obtain an accurate performance
figure of the proposed perspective recovery method alone.

To provide a realistic sample of texts among those usually encountered in a typical city en-
vironment, we use all the words (with 3 or more characters) from the groundtruth dataset of
the ICDAR 2011 Robust Reading Competition (challenges 1 and 2) [28, 71], giving us a set
of 3225 short phrases and single words. These are rotated along all possible orientations in the
range [−90◦, 90◦] in 5◦ increments in each of the three axes, resulting in a total of over 162
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azimuth

roll

elevation

Figure 3.1. Axes for the rotations applied to text in our experiments.

million images; thus each image contains one phrase in a particular orientation. A selection of
the images generated is shown in Figure 3.4.

Every image is then rectified with our proposed perspective recovery method to obtain a fronto-
parallel image. For comparison purposes, Myers et al.’s method [54] is also implemented and
used to recover the image. An additional groundtruth baseline image is obtained by rectifying
the original image with the known groundtruth orientation data. Then, the original image, the
recovered images from each method respectively and the groundtruth baseline image are run
through an OCR engine.1 For each recognized text an accuracy measure is obtained, based
on the Levenshtein distance, which represents the difference between the groundtruth and the
recognized text normalized by the length of the groundtruth text, i.e.

accuracy(R,G) = 1− min (lev(R,G), #G)

#G
, (3.1)

where R is the text recognized by the method under examination, G is the groundtruth text,
lev(x, y) is the Levenshtein distance between two texts, and #x is the length of a text string.
With this measure, 0 is a complete miss and 1 is a perfect recognition.

For each possible orientation, the average accuracy over all the phrases is computed which
gives a rectification performance evaluation from the recognition point of view. The groundtruth
baseline helps get an indication of the recognition accuracy and optical resolution limit of the
OCR engine. Even with a perfect rectification, some non-dictionary words are never recognized
properly and, in extreme orientations, some resulting images might not have enough resolution
for the OCR to operate (see e.g. Figures 3.4i, 3.4m or 3.4p, where the side of the text is blurred).

In Figure 3.2, where the effect of roll is studied, Figure 3.2a shows the performance of the
recovery when only in-plane rotations are considered, while Figures 3.2b and 3.2c evaluate the
combination of roll with elevation and azimuth at 45◦ respectively. As shown in the results, our
method is not affected by text’s in-plane rotation, yielding a constant recognition accuracy for the
whole range of roll angles except when roll = 90◦. The case of roll = 90◦ is particular because
the mid-line is vertical (or close to) and the ‘up’ direction is not clear. Although the perspective
distortion is properly corrected, the text might be rectified upside down (see e.g. Figures 3.4l
or 3.6h), which produces an incorrect recognition. Upside down text could be easily detected
by performing two OCR recognitions: on the rectified image rotated at 0◦ and at 180◦, and

1Tesseract OCR [73]: http://code.google.com/p/tesseract-ocr/
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keeping the one with higher OCR confidence. As the focus of the evaluation in this section is on
the perspective rectification technique, we present the results as is, without this post-processing
correction step for this specific and extreme case.

The results in Figure 3.2 are consistent in our experiments for the full range of elevation
and azimuth values. Consequently, for ease of exposition and presentation, we will focus on
demonstrating the effect of azimuth and elevation changes only, and the following graphs will
all have roll fixed at 0◦.

Figure 3.3 studies the effect of azimuth and elevation against each other. The left column
portrays the variation of azimuth for fixed values of elevation (0◦, 30◦ and 45◦ – Figures 3.3a,
3.3c and 3.3e respectively) and likewise, the right column displays the variation of elevation for
fixed values of azimuth (0◦, 30◦ and 45◦ – Figures 3.3b, 3.3d and 3.3f respectively). Considering
each axis separately, any angle of roll, up to 50◦ in azimuth and up to 45◦ in elevation yield an
almost perfect average recognition accuracy of 0.96 after recovery. This recognition accuracy
is maintained for any combination of angles under 45◦. The method also achieves a very good
recognition accuracy (above 0.8) for any combination of angles up to 60◦. Compared to the
results reported by Myers et al. [54], our proposed method shows an increase in recognition
accuracy for a wider range of angles.

As expected, the OCR engine alone deals in a very limited way with perspective distortion.
Any changes in roll, azimuth or elevation quickly introduce recognition errors after around 20–
25◦. In our experiments, the method by Myers et al. [54] performs well (more than 0.9 accuracy)
with roll until 40◦, in azimuth up to 45◦ and in elevation up to 30◦, when each angle is studied
separately. The differences in the methods are more apparent when combined rotations are
introduced. For example, looking at elevation changes alone (Figure 3.3b), the three methods
perform similarly. However, when combined with azimuth (Figures 3.3d and 3.3f) the proposed
method retains the same accuracy (0.96 average accuracy up to 45◦), while the OCR fails quickly
and Myers et al.’s method accuracy degrades rapidly.

Another parameter that affects recognition accuracy after rectification is word length, meas-
ured as the number of non-whitespace characters of a given text line. The RANSAC algorithm
needs a certain ratio of inlier vs. outlier points to accurately estimate the top and bottom lines.
To establish the effect of word length in rectification accuracy, Figure 3.5 shows the average
recognition accuracy per word length, for all values of roll, azimuth and elevation under 45◦. The
proposed method performs best (with more than 0.98 average recognition accuracy) with words
of at least 6 characters. The recognition accuracy is also very good (above 0.9) with words as
short as 4 characters. As a reference, Table 3.1 illustrates the distribution of word lengths in the
set of words used in our experiment.

3.1.2. Natural scene images
The first experiment was designed to evaluate the accuracy of the rectification step alone, as-
suming a perfect text detection result. Real world images feature complex backgrounds, uneven
lighting and noise, which can confuse the text segmentation stage and occasionally produce
wrongly labelled text regions. To obtain a measure of the method performance for real, everyday
scenarios, a set of 120 natural scene images were used to evaluate the system. They contain
scene text from shop names and signs taken at various orientations, comprising several typefaces
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Proposedmethod Myers et al. [54] No rectification Ground truth baseline
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Figure 3.2. The effect of roll on recognition accuracy.
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Proposedmethod Myers et al. [54] No rectification Ground truth baseline
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Figure 3.3. The effect of azimuth and elevation on recognition accuracy.
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 3.4. A selection of the synthetic images used in the experiments, along with their estimated
orientation (red box) and corresponding rectified image.
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(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 3.4. A selection of the synthetic images used in the experiments, along with their estimated
orientation (red box) and corresponding rectified image. (cont.)
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length count length count
3 376 10 141
4 640 11 85
5 504 12 53
6 460 13 31
7 430 14 18
8 269 15+ 24
9 194 total 3225

Table 3.1. Word length distribution in the synthetic text dataset.
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Figure 3.5. The effect of word length on recognition accuracy.

(e.g. serif and sans-serif ) and dark and bright colours. Figure 3.6 shows several examples from
the image set after applying our proposed method, illustrating the resulting bounding boxes
obtained after the text detection stage (referred to in Section 2.1) and corresponding rectified
images. The images were manually annotated to obtain a groundtruth of the text present in them.
Table 3.2 shows a comparison of the average recognition accuracy, using (3.1), on the unrectified
images, and after rectifying with Myers et al.’s [54] method and the proposed method, with the
latter showing marked improvement.

Given the unconstrained way in which our method extracts the top and bottom lines, it
is specially well suited to correct any kind of text’s in-plane rotation, as seen in the results.
Furthermore, our shear angles computation (taking into account the variation of shear across
the whole line) allows us to correctly detect the orientation of words that end in non-square
letters (e.g. see the ‘Y’ in Figures 3.4g, 3.4i, 3.4o, 3.6a, 3.6d and 3.6f, the ‘T’ in Figures 3.4a, 3.6f
and 3.6g, or the ‘W’ in Figures 3.4k, 3.6f and 3.6q). In these cases, a naïve box fitting approach
would fail. Text lying on the ground, or far above the camera introduce big shear distortions
which are also properly corrected with this technique (as seen in Figures 3.6b, 3.6n and 3.6r).
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No rectification 0.25
Myers et al. [54] 0.40
Proposed method 0.87

Table 3.2. Average OCR recognition accuracy on the real-world image set.

3.2. Tracking results

In this section, the operation of text tracking mechanism is demonstrated and validated. At first
we present a quantitative analysis of the system based on standardized metrics and annotated
ground-truth data that help establish a performance baseline for comparative studies. Then, a
qualitative evaluation of the prototype’s operation in everyday scenarios is outlined to provide
an insight into the future improvements and requirements of a text reading system. For our
quantitative experiments, three challenging video sequences are used: HOSPITAL, MERCHANT
and QUEEN. These contain scene text in a city environment and suffer from hand-held erratic
camera motion, as well as blur and a great degree of perspective distortion. The sequences
were annotated to obtain a (i) ground-truth labelling of text, (ii) 3D bounding quadrilaterals,
and (iii) region identity between frames.1 To achieve these, tracking was applied in the video
sequences using a commercial match-moving software, with each video requiring extensive
manual adjustment of the tracked features. After that, 3D editing software was used to locate
rectangles in the 3D space around the projected positions of the text in the scene. When the
rectangles are projected back as quadrilaterals into the image plane, they perfectly fit the text as
seen in the image. The total number of annotated frames is 930. For the qualitative analysis,
a variety of example videos, showcasing different scenarios, were experimented with as shown
later.

3.2.1. Quantitative analysis of the tracking mechanism

Two distinct tests were performed to evaluate the two desired characteristics of a text tracking
system: (i) increase in segmentation accuracy and (ii) the ability to maintain region identity.
The first test is a frame-by-frame comparison of the text detection accuracy between the text
segmentation stage alone against the segmented text regions while tracking by our method. The
second test evaluates the tracking performance by measuring the detection accuracy along with
the region identity across the sequence as a whole.

Frame by frame evaluation

For our text segmentation evaluation, we use the precision and recall measures as introduced in
the ICDAR 2003 Robust Reading Competition [37], slightly adapted to operate on arbitrary
quadrilaterals instead of rectangles. The degree of match between two quadrilaterals q1 and q2

1The video sequences and the ground-truth labelling are available at http://nf.ull.es/q/texttrack
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(a) (b) (c)

(d) (e)
· · ·
(f )

(g) (h) (i)

Figure 3.6. A selection of real world images with scene text, along with the text’s estimated orientation
(red box) and rectified image.
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(m) (n)
· · ·
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(p) (q) (r)

Figure 3.6. A selection of real world images with scene text, along with the text’s estimated orientation
(red box) and rectified image. (cont.)
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Figure 3.7. Video sequence HOSPITAL. A selection of the frames with tracked text bounding quadrilater-
als is shown on top, and the frame by frame segmentation accuracy is shown on the bottom.

is defined as:
match(q1,q2) =

area(q1 ∩ q2)

area(q1 ∪ q2)
. (3.2)

When comparing a quadrilateral q against a set of quadrilateralsQ, the best match is computed
as:

bestmatch(q, Q) = max
q′∈Q

match(q,q′) . (3.3)

Then, the precision p, recall r and f measures for a certain frame are defined as:

p =

∑
q∈E bestmatch(q, G)

|E| , (3.4)

r =

∑
q∈G bestmatch(q, E)

|G| , (3.5)

f =
2

1/p+ 1/r
, (3.6)

where G is the set of quadrilaterals in the ground-truth and E is the set of quadrilaterals being
evaluated.

These measures were computed for each one of the frames in the sequences, comparing
the quadrilaterals produced by the text segmentation and orientation detection stages with the
quadrilaterals produced by the tracking stage. In our evaluations, we are only considering text
lines with 4 or more characters from the ground-truth, as this is the minimum length at which
the perspective estimator works reliably [46]. The results are shown in Figures 3.7 to 3.9, where,
for every frame in the sequences, the f measure for the segmentation and tracking outputs are
plotted in blue and red respectively.

In the HOSPITAL sequence (Figure 3.7), the camera approaches a road sign with strong per-
spective distortion being introduced gradually, and featuring a very textured tree background,
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Figure 3.8. Video sequence MERCHANT. A selection of the frames with tracked text bounding quadrilat-
erals is shown on top, and the frame by frame segmentation accuracy is shown on the bottom.
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Figure 3.9. Video sequence QUEEN. A selection of the frames with tracked text bounding quadrilaterals
is shown on top, and the frame by frame segmentation accuracy is shown on the bottom.
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(a) (b)

Figure 3.10. A comparison of the output of the (a) text segmentation and (b) tracking stages, for one
frame in the QUEEN sequence.

which makes text segmentation challenging, as can be seen in the performance of the text seg-
menter. The accuracy of the tracked regions is very good throughout the sequence even when the
perspective distortion is significant. The continuous change in perspective occasionally causes
the trackers to lose track as the filters converge into the new orientation. This can be seen in the
dips around frames 5, 20, and especially between frames 100–115 and at the end of the sequence.
Nevertheless, the region identity is never lost, and the trackers recover the lock on the text shortly
afterwards.

In the MERCHANT sequence (Figure 3.8), a street sign is panned laterally, with a wide baseline
change of orientation and a textured regular brick pattern in the background. Text region tracking
is accurate across most of the sequence, as shown in the results. Extreme camera shake is the
cause for some of the individual trackers to momentarily lose track, from frame 125 to the end.
The system does not produce a box for a text region that is not tracked with enough confidence,
thus the alternating and temporary disappearances of some of the boxes across the sequence.
Those are promptly recovered without losing the region identity. This is also the reason for the
dip in the graph around frame 40, where all the trackers are lost for just one frame.

Finally, the QUEEN sequence (Figure 3.9) features a walkabout towards a building sign which
is not visible from the start of the sequence, finishing with a close approach into the text. This
very challenging sequence also shows regular window and railing patterns. As can be seen in the
results, during the first part of the sequence – until frame 120 – the accuracy is 0 as there is no text.
When the text is completely visible, the tracking quickly locks on the text lines and this is clearly
shown in the graph between frames 120 and 280. Then, during a camera movement towards
the text, there are two brief camera blur events between frames 280–300 and 330–350 that cause
the segmentation to produce very few regions, and thus making the tracker to momentarily lose
track as there are no regions to track, especially at frame 345. The tracker promptly recovers the
track after these events. The ability to quickly recover from failures demonstrates the versatility
of the proposed method. To illustrate the effect that text tracking has on segmentation accuracy,
Figure 3.10 shows the output of the text segmentation stage, with a considerable number of false
positives, compared to the output of the tracking stage, where the spurious regions have been
discarded.
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Tracking evaluation

The characteristics of our prototype system preclude making a comparative study against any of
the few other published text tracking systems. For example, in the work in [55], the text regions
are manually selected prior to tracking or in the work in [30] text tracking was performed on
overlaid text. Furthermore, we are tracking 3D text quadrilaterals, as opposed to 2D rectangles,
which is a fundamental difference with any other published work (e.g., [22, 48]). With this
paper, we are also publishing our scene text tracking dataset and its associated ground-truth data
– something that has not been done before – in the hope that it will be useful to other researchers
and to enable future comparative studies.

However, we do present comparative results against our own previous work in [43]. To evaluate
the performance of the text tracking we adopt the CLEAR object tracking metrics as suggested
by Bernardin and Stiefelhagen [2] and Kasturi et al. [30]. The metrics are designed to evaluate
the detection and tracking performance across a sequence as a whole, and thus penalize false
positives and false negatives as well as region identity changes or losses. For every frame k, there
is a mapping Mk between the elements in the ground-truth and detected sets:

Mk = {(g, e), with g ∈ Gk and e ∈ Ek} , (3.7)

where Gk and Ek are the sets of ground-truth and detected quadrilaterals at frame k. Mappings
are unique for each element on each set. Our criteria for considering a candidate match between
two quadrilaterals is that they have some overlap (e.g. area(q∩q′) > 0). To select a unique match
between the candidates, we first consider the same match as in the previous frame if they still
overlap; otherwise the pair with maximum overlap is chosen (refer to [2] for the full explanation
and rationale of the matching strategy). Every detected quadrilateral that is not mapped is a
false positive; likewise, every unmapped ground-truth quadrilateral is a missed detection. If a
quadrilateral g ∈ Gk is matched to different quadrilaterals q, q′ ∈ Ek in consecutive frames, it is
considered an identity mismatch.

Two measures are defined, the multiple object tracking precision (MOTP) and the multiple object
tracking accuracy (MOTA):

MOTP =

∑
k

∑
(g,e)∈Mk

match(g, e)
∑

k |Mk|
, (3.8)

MOTA = 1−
∑

k (δk + φk + log10(ρk))∑
k |Gk|

, (3.9)

where δk, φk and ρk are the total number of missed detections, false positives and id mismatches
for frame k respectively.

Table 3.3 summarizes the results of our proposed method in comparison to our previous text
tracking technique using Particle Filters [43]. Our PF method had a simple 2D state model and
did not perform any perspective estimation and this is shown in the MOTP values, where the
proposed method consistently achieves very high values (0.89, 0.80 and 0.78 for the HOSPITAL,
QUEEN and MERCHANT sequences respectively) thanks to the enhanced state model. It also
produces high MOTA values (0.82, 0.70 and 0.59 for the MERCHANT, HOSPITAL and QUEEN
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Proposed method PF method [43]

Sequence MOTP MOTA MOTP MOTA

HOSPITAL 0.89 0.70 0.10 0.32
MERCHANT 0.78 0.82 0.16 0.24
QUEEN 0.80 0.65 0.10 0.13

Table 3.3. Whole sequence tracking evaluation.

sequences) due to the low number of false positives and id mismatches that the tracking produces.
As previously explained, the challenging sequences used in our experiments feature very erratic
camera motion, blur, and perspective distortion. Our MOTA evaluation is penalized on those
frames where the text is not tracked with enough confidence, in which our system does not
produce any box, getting counted as a missed detection.

3.2.2. Qualitative evaluation

We show more examples in Figure 3.11 to further illustrate the operation of the proposed method.
In the CLIFTON sequence (Figure 3.11a), the text is never in a fronto-parallel, horizontal orient-
ation with respect to the camera and undergoes a wide baseline change in orientation. This is
also true for the WOLFGANG sequence (Figure 3.11c), which also features a complex background
and very blurred frames due to camera vibrations. The HANNOVER sequence (Figure 3.11b)
contains regular, very contrasted tiles in the background which produce a great number of false
positives from the text segmentation stage. The BYRON PLACE sequence (Figure 3.11d) features
a change in orientation around elevation. Note, the text is not visible at the start of the sequence,
but as soon as it appears, the system is able to pick up the location of the various lines of text
and then track them continuously. As with previous sequences (i.e., MERCHANT and QUEEN),
camera shake is responsible for the momentary disappearance of tracked regions, after which the
tracker recovers without region identity loss. Finally, the UOB sequence (Figure 3.11e) features a
moving partial occlusion across the tracked text. As there are always enough visible features (i.e.,
characters) for each one of the text lines, the proposed method is able to keep the identity and
location of all the text regions in the scene. For all the sequences, the system is able to quickly
spot the text in its original orientation and maintain the region identity throughout the duration
of the video.

3.3. Performance results

In this final section some performance measures about the proposed system are discussed. The
experiments were run on a standard PC with an Intel Core 2 Quad Q6600 processor and 8Gb
of RAM. The system operates at video rate (average 25fps) on the video sequences used for our
experiments. A breakdown of the times spent by the algorithm on each of the stages is presented
in Table 3.4. The most expensive stage in terms of computation time is the tracking observation,
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(a) Sequence CLIFTON

(b) Sequence HANNOVER

(c) Sequence WOLFGANG

(d) Sequence BYRON PLACE

(e) Sequence UOB

Figure 3.11. Video sequences from the qualitative evaluation experiment.
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acquisition 5ms
segmentation 22ms
aggregation 5ms
perspective estimation 27ms
tracking: prediction 8ms
tracking: observation 42ms
OCR 250ms

Table 3.4. Time spent on each stage of the algorithm.

which includes the feature matching. The text segmentation and perspective estimation are also
major contributors to the time needed to process one frame, although, as a reference, perspective
estimation requires on average 0.1 ms per text line. Those stages are split into a pipeline and are
automatically distributed between the processor cores to achieve parallelism. The OCR task is
comparatively much slower than the rest of the stages together. This demonstrates one of the
benefits of text tracking: OCR runs on an independent thread and thus does not contest with
the main processing pipeline to achieve the desired frame rate. When the recognition results are
ready, the region identity maintained by the text tracking is used to assign the recognized text to
the correct text region.

3.4. Conclusion
In this chapter, the results obtained during this PhD have been presented and discussed. We have
shown that our method for text perspective recovery improves the previous state-of-the-art in
terms of ranges of angles and speed. We have also demonstrated the operation of our end-to-end
tracking system in outdoor scenarios. Finally, Chapter 4 concludes this dissertation and provides
the summary of the contributions of this work.
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Chapter

4Conclusions

This chapter concludes the dissertation and gives directions for future research. An itemised
summary of the contributions of this work is presented in Section 4.1.

We have presented a text reading system based on text tracking. Aimed at scene text, it focuses
on isolated words or short sentences, as found on billboards, posters, shop names, street signs,
etc. It operates autonomously and in real-time, automatically detecting and recognising new
text regions and discarding the old ones. The end-to-end text tracking system has required the
development of novel techniques for fast text detection, text aggregation, and text perspective
recovery. We have shown quantitative and qualitative analyses of the performance and capabilities
of our prototype including a detailed analysis of the perspective recovery stage which significantly
improves the previous state-of-the-art. We also released our scene text tracking dataset and its
associated ground-truth data to enable future comparative studies. Additionally, although it
has not been the primary focus of this PhD, we have also constructed a wearable text reading
prototype which can be used as a platform to showcase the operation of the developed system.

The area of text tracking is very young and there is still a lot to be accomplished. We think we
have presented a novel step towards fast text segmentation and perspective aware text tracking.
However, a number of shortcomings and newer goals are yet to be addressed. Our method is
focussed on larger text and is not suited to deal with smaller document texts. Also, as a matter of
trading accuracy for speed, we do not necessarily use state-of-the-art text segmentation. There
is also scope to improve our text grouping algorithm, aiming to achieve a better clustering of
candidate text regions into text lines. If the line formation was also to provide clues about
higher level structures, such as paragraphs, that information could also be used to improve the
understanding of the scene as a whole.

There are other avenues which could be explored. For example, the OCR results from multiple
frames could be combined to obtain a more accurate global recognition (e.g. to bypass reflections
and occlusions). Rectified images from several frames could be integrated to help construct
super-resolution and/or larger (by mosaicing) images. Moreover, we still have to study and un-
derstand how the tracking information can help build a better user interface for assistive devices.
Observing the patterns of movement and context in the surroundings is crucial for deciding when
and how to read text back to the user, enabling a more useful interaction experience. In order to
identify the aspects of the user interaction that can benefit from the framework presented here,
it is vital to conduct studies with people who have visual impairments.

Further research is needed to explore and evolve the technologies presented here.
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Chapter 4. Conclusions

4.1. Summary of contributions
Main contributions:

• A novel method for efficient scene text perspective recovery has been developed. Experi-
ments and comparative results show an increased accuracy in text recognition after recovery
compared to the current state-of-the-art 3D text recovery technique.

• A novel method for perspective aware scene text tracking has been developed. We have
shown quantitative and qualitative analysis of the performance and capabilities of our
prototype.

• We have released our scene text tracking dataset and its associated ground-truth data to
enable future comparative studies.

Additional contributions:

• A novel method for scene text detection based on the hierarchical filtering of Adaptive
Thresholding (AT) has been developed.

• A novel method for scene text detection based on the hierarchical filtering of Maximally
Stable Extremal Regions (MSERs) has been developed.

• A novel method for multi orientation text aggregation based on Delaunay graphs has been
developed.
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Appendix

A
A Framework Towards Realtime
Detection and Tracking of Text
This appendix includes the full text for the following article:

Title A Framework Towards Realtime Detection and Tracking of Text.

Authors Carlos Merino and Majid Mirmehdi

Type Conference proceedings

Conference Camera-Based Document Analysis and Recognition

Year 2007

Pages 10–17

URL http://www.imlab.jp/cbdar2007/proceedings/papers/O1-2.pdf

53

http://www.imlab.jp/cbdar2007/proceedings/papers/O1-2.pdf


54



A Framework Towards Realtime Detection and Tracking of Text

Carlos Merino
Departamento de Fisiologı́a
Universidad de La Laguna

38071 Santa Cruz de Tenerife, Spain
cmerino@ull.es

Majid Mirmehdi
Department of Computer Science

University of Bristol
Bristol BS8 1UB, England

majid@cs.bris.ac.uk

Abstract

We present a near realtime text tracking system capable
of detecting and tracking text on outdoor shop signs or in-
door notices, at rates of up to 15 frames per second (for
generous 640× 480 images), depending on scene complex-
ity. The method is based on extracting text regions using a
novel tree-based connected component filtering approach,
combined with the Eigen-Transform texture descriptor. The
method can efficiently handle dark and light text on light
and dark backgrounds. Particle filter tracking is then used
to follow the text, including SIFT matching to maintain re-
gion identity in the face of multiple regions of interest, fast
displacements, and erratic motions.

1. Introduction

Tracking text is an important step towards the identifica-
tion and recognition of text for outdoor and indoor wearable
or handheld camera applications. In such scenarios, as the
text is tracked, it can be sent to OCR or to a text-to-speech
engine for recognition and transition into digital form. This
is beneficial in many application areas, such as an aid to the
visually impaired or for language translation for tourists.
Furthermore, the ability to automatically detect and track
text in realtime is of use in localisation and mapping for
human and robot navigation and guidance.

A review [9] and some collections of recent works [2, 1]
in camera-based document analysis and recognition, high-
light substantial progress in both single image and multi-
frame based text analysis. Overall, there have been rela-
tively few works on general text tracking. Multiframe text
analysis has been mainly concerned with improving the text
in a super-resolution sense [12] or for continuous recogni-
tion of text within a stationary scene e.g. on whiteboards or
in slideshows [18, 20].

A directly related work in the area of general scene text
tracking is by Myers and Burns [13] which successfully

tracks scene text undergoing scale changes and 3D motion.
However, this work applies to tracking in batch form and is
not a realtime solution. Also in [13], the text detection is
done by hand, manually indicating a starting bounding box
for the tracking system to follow. Another work of inter-
est is Li et al.[8] in which a translational motion tracking
model was presented for caption text, based on correlation
of image blocks and contour based stabilisation to refine the
matched position. Less directly related, in [16], seven sim-
ple specific text strings were looked for by a roving camera
from a collection of 55 images in an application to read door
signs.

The focus of this paper is on the development of a re-
silient text tracking framework, using a handheld or wear-
able camera, as a precursor for our future work on text
recognition. The only assumption we make is that we are
looking for larger text sizes on shop and street signs, or in-
door office boards or desktop documents, or other similar
surfaces. Our proposed method is composed of two main
stages: candidate text region detection and text region track-
ing. In the first stage, regions of text are located using a
connected components approach combined with a texture
measure step [17] which to the best of our knowledge has
never been applied to text detection; this provides candi-
date regions or components which are then grouped to form
possible words. The method is highly accurate but not in-
fallible to noise, however, noisy or non-text candidate re-
gions are not detected as persistently as true text regions,
and can be rejected forthright during the tracking step. In
the second stage, particle filtering is applied to track the text
frame by frame. Each hypothesised system state is repre-
sented by a particle. The particles are weighted to represent
the degree of belief on the particle representing the actual
state. This non-linear filtering approach allows very robust
tracking in the face of camera instability and even vigorous
shakes. SIFT matching is used to identify regions from one
frame to the next. We describe the details of this framework
in the next few sections.
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2. Background

It should be noted that there is a significant body of work
on detecting (graphical) text that has been superimposed in
images and videos, as well as in tracking such text. Exam-
ple works are [10, 8]. In this work we concentrate solely on
text embedded in natural scenes.

Segmentation of text regions involves the detection of
text and then its extraction given the viewpoint. For exam-
ple, almost each one of the works published in [2, 1] present
one method or another for text segmentation, usually from a
fronto-parallel point of view. Example past works consider-
ing other viewpoints and recovering the projective views of
the text are [4, 14, 13]. Although in this work we engage in
both segmenting and tracking text involving varying view-
points, actual fronto-parallel recovery is not attempted. This
is a natural step possible from the tracking motion informa-
tion available and will be a key focus of our future work.

An issue of note is the problem of scale. Myers and
Burns [13] dealt with this by computing homographies of
planar regions that contain text, and when computationally
tractable, this could be useful for any (realtime) text track-
ing application. Here, we are detecting text dynamically,
hence at some smaller scales our detector will simply not
find it, until upon approach it becomes large enough.

3. Methodology

The text tracking framework proposed here is based
around the principle of a tracker representing a text entity
- a word or group of words that appear together in an im-
age as a salient feature, where each word comprises two or
more components or regions. Trackers are dynamically cre-
ated when a new text entity is detected; they follow the text
frame to frame, and they get removed when the text cannot
be detected anymore. Partial occlusion is dealt with, and
in cases of full occlusion, a new tracker starts once the text
is back in view. Our text tracking framework involves text
segmentation, text region grouping, and tracking, including
dynamic creation and removal of trackers.

3.1. Text segmentation

The text segmentation stage uses a combination of a con-
nected components (CC) approach and a region filtering
stage, with the latter involving the novel application to text
analysis of a texture measure. The resulting component re-
gions are then grouped into text entities.
3.1.1 Connected component labelling Following CC la-
belling in [7], León et al employed a tree pruning approach
to detect text regions. They thresholded the image at every
grey level, and built a Max-tree representation where each
node stored the CC of the corresponding threshold level.

Level 2 
White 

Level 3 
Black 

Level 1 
Black 

CC region finding
and tree building

Figure 1. A synthetic sample image and its
corresponding tree of connected regions.

The leaves of the tree represented the zones whose grey lev-
els were the highest in the image. For detection of dark text
over bright backgrounds, they built a different tree, a Min-
tree, where the leaves represented the zones with the lowest
grey levels in the image. This two pass treatment of bright
text and dark text is very common in text detection algo-
rithms.

We improve on the tree region labelling method in [7]
by introducing a simple representation that allows efficient,
one pass detection of bright text (white over black) and dark
text (black over white) in the same tree. Initially, simple lo-
cal adaptive thresholding is applied to the source frame. We
empirically fixed the local threshold window size to 17×17
throughout all our experiments. The threshold was the mean
grey level value of the window itself. Connected component
region labelling is then performed on the thresholded im-
age. This labelling builds a tree of connected regions, with
the outermost region the root of the tree and the innermost
regions the leaves. We allow the regions to toggle their label
value from black to white as we go down each level of the
tree. The tree represents the nesting relationship between
these regions. Each node of the tree keeps only the contour
around the border of the regions (see Figure 1).

Once the tree is built, it is walked depth-first with the
objective to filter out the regions that are not text. Each
node of the tree is classified as text or non-text during the
walk using region filtering as described later below.

Usually, on real-world images with scene text, structural
elements (such as sign borders, posters frames, etc.) can
exhibit characteristics of text, such as high contrast against
their backgrounds or strong texture response. These ele-
ments can be easily discarded (as long as they are not at a
leaf) using the nesting relationship present in the proposed
tree. When a node has children already classified as text,
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Discarded because
1, 2, 3, H, I, J

are below it

Discarded because
E, F, G are 

below it

Figure 2. Parent nodes are discarded when
children are classified as text.

it is discarded as non-text, despite the text classifying func-
tions may having marked it as text. This discards most of
the non-text structural elements of the text (Figure 2).
3.1.2 Region filtering To classify text regions we apply
three tests in cascade, meaning that if a test discards a re-
gion as non-text, no more tests are applied to it. This is
in a similar fashion to Zhu et al. [21] who used 12 classi-
fiers. In our case, the fewer tests are important for real time
processing, and coarse, but computationally more efficient
tests are applied first, quickly discarding obvious non-text
regions, and slower, more discriminative tests are applied
last, where the number of remaining regions is fewer. The
test we apply are on size, border energy, and an eigenvector
based texture measure.

Size - Regions too big or too small are discarded. The
thresholds here are set to the very extreme. Very small re-
gions are discarded to avoid noise. This may still drop char-
acters, but they probably would be otherwise impossible to
recognise by OCR and as the user gets closer, they are more
likely to be picked up anyway. Large regions are discarded
because it is unlikely that a single character occupies very
large areas (over half the size) of the image.

Border energy - A Sobel edge operator is applied to all
the points along the contour of each component region r
and the mean value is obtained:

Br =

∑Pr

i=1

√
(G2

ix +G2
iy)

Pr
(1)

where Pr denotes the number of border pixels in region r,
and Gx and Gy represent the Sobel gradient magnitudes.
This is referred to as the border energy and provides a
measurement of region to background contrast. Regions
with border energy value below a very conservatively fixed
threshold are discarded. This removes regions that usually
appear in less textured and more homogeneous regions.

Jiang et al [6] used a three level Niblack threshold [19]

Figure 3. Original image and its Eigen-
Transform response.

in their text detection technique with good results. This in-
troduces the local pixel values variance into the threshold
calculation. However, this involves computing the standard
deviation of local pixel values and we have found that do-
ing a simpler adaptive threshold and afterwards discarding
the noisy regions is faster. Also, the proposed tree walking
algorithm transparently manages bright-text and dark-text
occurrences on the same image without the need to apply a
three level threshold image.

Texture measure - For this final decision-making step we
apply a texture filter whose response at positions within the
region pixels and their neighbourhoods is of interest.

We have previously combined several texture measures
to determine candidate text regions, see [3]. These were
mainly tuned for small scale groupings of text in the form of
paragraphs. Although quite robust, the need for faster pro-
cessing precludes their combined use. Here, we introduce
the use of the Eigen-Transform texture operator [17] for use
in text detection. It is a descriptor which gives an indication
of surface roughness. For a square w×w matrix represent-
ing a pixel and its neighbouring grey values, the eigenval-
ues of this matrix are computed: ‖λ1‖ ≥ ‖λ2‖ ≥ . . . ‖λw‖.
The largest l eigenvalues are discarded since they encode
the lower frequency information of the texture. Then, the
Eigen-Transform of the central pixel is the mean value of
the w − l + 1 smaller magnitude eigenvalues:

Γ(l, w) =
1

w − l + 1

w∑

k=l

‖λk‖ (2)

The Eigen-Transform has a very good response to tex-
ture which exhibit high frequency changes, and we found
in our experiments that it responds to text very well for this
reason, see a simple example in Figure 3 where both the text
and the background texture are picked up well. It can, how-
ever, be a fairly slow operator, but fortunately we need only
apply it to the component region pixels. Indeed, we com-
pute the Eigen-Transform only on some regularly sampled
points inside the bounding box of each region of interest. A
key factor in (2) is the size of w. This is determined auto-
matically by setting it dynamically according to the height
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Steps of the text segmentation and
grouping. (a) Original image, (b) Adaptive
threshold, (c)–(e) result after filtering by size,
border energy and Eigen-transform measure,
(f) perceptual grouping.

of the region under consideration. Then l is set to be a frac-
tion of w.

The result of the text segmentation stage is a set of can-
didate regions with a high likelihood of being text. For each
region, the centre position of its bounding box is stored as a
component ci into the observation function yk of the parti-
cle filter (see section 3.2). As a result of the CC region tree
design, and taking into account only the contour and not
the contents, both inverted text (light on dark) and normal
text (dark on light) are detected in the same depth-first pass.
Figure 4 shows an example result highlighting each of the
text segmentation and grouping steps.
3.1.3 Perceptual text grouping - The text grouping stage
takes the regions produced by the text segmentation step
and makes compact groups of perceptually close or salient
regions. We follow the work by Pilu [14] on perceptual or-
ganization of text lines for deskewing. Briefly, Pilu defines
two scale-invariant saliency measures between two candi-
date text regions A and B: Relative Minimum Distance λ
and Blob Dimension Ratio γ:

λ(A,B) =
Dmin

Amin +Bmin
γ(A,B) =

Amin +Amax

Bmin +Bmax
(3)

where Dmin is the minimum distance between the two re-
gions, and Amin, Bmin, Amax and Bmax are respectively the
minimum and maximum axes of the regions A and B. Pilu’s

text saliency operator between two text regions is then:

P(A,B) = N(λ(A,B), 1, 2) ·N(γ(A,B), 0, 4) (4)

where N(x, μ, σ) is a Gaussian distribution with mean μ
and standard deviation σ whose parameters were deter-
mined experimentally in [14]. To reduce the complexity of
comparing all the regions against each other, we construct a
planar graph using Delaunay triangulation, with the region
centres as vertices. The saliency operator is then applied
to each edge of this graph, keeping only the salient ones
and removing the rest. This edge pruning on the graph ef-
fectively divides the original graph into a set of connected
subgraphs. Each subgraph with more than two vertices is
considered a text group. This additional filtering step re-
moves a number of isolated regions (see Figure 4(f)).

3.2. Text tracking

Particle filtering, also known as the Sequential Monte
Carlo Method, is a non-linear filtering technique that re-
cursively estimates a system’s state based on the available
observation. In an optimal Bayesian context, this means
estimating the likelihood of a system’s state given the ob-
servation p(xk|yk), where xk is the system’s state at frame
k and yk = {c1, . . . , cK} is the observation function.

Each hypothesised new system state at frame k is rep-
resented by a particle resulting in {x(1)

k ,x
(2)
k , . . . ,x

(N)
k },

where N is the number of particles. Each particle x
(n)
k

has an associated weight
{
(x

(1)
k , w

(1)
k ), . . . , (x

(N)
k , w

(N)
k )

}

where
∑s

i=1 w
(i)
k = 1. Given the particle hypothesis x(n)

k ,
the weights are proportional to the likelihood of the obser-
vation, p(yk|x(n)

k ). For a detailed explanation of particle
filter algorithms and applications, see e.g. [5].

Particle filtering is the ideal method given the instabil-
ity of the handheld or wearable camera in our application
domain. We build on the particle tracking framework de-
veloped in [15] for simultaneous localisation and mapping
(SLAM). Here we want to independently track multiple in-
stances of text in the image, with a simple state represen-
tation. Thus, each text entity is assigned a particle filter,
i.e. a tracker, responsible of keeping its state. The main
components to now deal with in a particle filter implemen-
tation are the state representation, the dynamics model and
the observation model.
3.2.1 State representation - The tracker represents the
evolution over time of a text entity. It has a state that tries
to model the apparent possible changes that the text entity
may experience in the image context. The model has to be
rich enough to approximate the possible transformations of
the text but at the same time simple enough to be possible
to estimate it in real time.
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The state of a tracker at frame k is represented by a
2D translation and rotation: xk = (tx, ty, α). We found
this simple state model provides sufficient accuracy given
the degree of movement within consecutive frames, but
is also important in computational savings towards a real-
time model1. This state defines a relative coordinate space,
where the x-axis is rotated by an angle α with respect to the
image, and its origin is at (tx, ty) in image coordinates.

Let’s say a text entity contains M components. Its
tracker preserves a list of M features Z = {z1, . . . , zM}
where each feature zi is a 2D position lying in the tracker’s
relative coordinate space. Each feature represents a text
component being tracked, and it is fixed during tracker ini-
tialization. We define the transformation function Ψ(zi,xk)
as the coordinate transform (translation and rotation) of a
feature position from the state’s coordinate space to image
coordinates. This is used during weighting. Additionally,
each feature is associated with a set of SIFT descriptors
[11] computed only once during the tracker initialization.
They give the ability to differentiate between candidate text
components, providing a degree of multiscale and rotation
invariance to the feature matching as well as resilience to
noise and change in lighting conditions2.

Figure 5 shows the current state representation xk of
a tracker at frame k which has M = 4 features Z =
{z1, z2, z3, z4}. For ease of exposition, all the features
are visualised to lie along the x-axis of the tracker’s co-
ordinate space. Further, the figure shows another particle
x
(1)
k representing an alternative state hypothesis. The four

features zi ∈ Z are mapped to the particle’s relative coor-
dinate space to show the same set of features from a dif-
ferent reference frame. The observation function yk, with
yk = {c1, c2, c3, c4} representing the center points of the
candidate text components is also shown.
3.2.2 Dynamics model - The dynamics model defines the
likelihood of a system state transition between time steps
as p(xk|xk−1). It is composed of a deterministic part -
a prediction of how the system will evolve in time, and a
stochastic part - the random sampling of the particles around
the predicted position. Examples of prediction schemes are
constant position, constant velocity and constant acceler-
ation. Examples of stochastic functions are uniform and
Gaussian random walks around an uncertainty window of
the predicted position.

The selection of an appropriate dynamics model is cru-
cial for a tracking system to be able to survive unpredictable
movements, such as those caused by wearable or hand-

1However, we intend to investigate more complex motion models in
future while ensuring the realtime aspects of the work are not compromised

2Note to Reviewers: We have found the SIFT matching to grossly slow
our system down. By the time of this Workshop we will have implemented
and hope to report faster invariant feature matching using e.g. the Hessian
Affine or MSER which will additionally give a greater degree of affine
invariancy

z4

z3

z1

z2

x k

x k
(1)

α

c1 c2 c3 c4

(t ,t )x y

z1 z2 z3 z4

Figure 5. State model of one tracker, xk =
(tx, ty, α), with 4 tracked features Z =

{z1, z2, z3, z4}. A particle, x(1)
k , shows a differ-

ent state hypothesis.

held camera movements. Pupilli [15] concluded that for
such scenarios a constant position prediction model with
a uniform or Gaussian random walk would provide better
results, due to the unpredictable nature of erratic move-
ments. Here, we follow this advice to use a constant po-
sition model with random Gaussian walk around the last
state, i.e. p(xk|xk−1) = N(xk−1,Σ). The covariance ma-
trix Σ defines the particle spread which is empirically set
to a generous size, and automatically reduced via an an-
nealling process as in [15].
3.2.3 Observation model - Given a particle state hypothe-
sis, the observation model defines the likelihood of the ob-
servation, p(yk|x(n)

k ). The weight of each particle is calcu-
lated based on the comparison from projected features’ po-
sitions and actual text components found in the image. An
inlier/outlier likelihood proposed by Pupilli [15] is used.

For each tracked feature zi ∈ Z, a set of candidate com-
ponents yki ⊆ yk {(z1,yk1), (z2,yk2), . . . , (zM ,ykM )}
is computed, based on their matching to the SIFT descrip-
tors previously stored for each feature. This reduces the
search space of the particles and gives robustness to the
tracking process.

The weight of a particle is proportional to the number of
observed candidate components inside a circular region of
radius ε around each tracked feature. First an inlier thresh-
old function τ(a,b) is defined:

τ(a,b) =

{
1 if d(a,b) < ε
0 otherwise (5)

where d(a,b) is the distance between two points. Then, the
likelihood is:

p(yk|x(n)
k ) ∝ exp

⎛
⎝∑

zi∈Z

∑

cj∈yki

τ
(
Ψ(zi,x

(n)
k ), cj

)
⎞
⎠

(6)
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where Ψ(zi,x
(n)
k ) is the transformation function defined in

subsection 3.2.1. Figure 6 shows the weighting process of
one feature z2 for two different hypothesis, x(1)

k and x
(2)
k .

The latter is nearer to the actual state of the system and
gets a greater weight. Note that for illustration purposes
we are considering here that the candidate group compo-
nents for feature z2 is all the observation: yk2 = yk =
{c1, c2, c3, c4}.

ε
inlier count = 2

ε
inlier count = 3

z2

z2

c1 c2 c3 c4

c1 c2 c3 c4

xk
(1)

xk
(2)

Figure 6. Inlier count of feature z2 for two dif-
ferent particles x

(1)
k and x

(2)
k .

3.2.4 Bounding box computation - Bounding box compu-
tation is crucial towards next possible stages such as extrac-
tion, recognition or superresolution. Thus, it is important
that it is as stable and tight as possible. Once a posterior
state is established by the particle filter, each feature zi ∈ Z
is assigned a Most Likely Estimate (MLE), that is the text
component cj ∈ yk that most likely matches it. In Figure
5, the MLE of each feature is marked with an arrow. Not all
tracked features will have a MLE each frame, as sometimes
they are not found due to blur, clutter or occlusion.

After perceptual text grouping, each observed text com-
ponent belongs to a group, and thus the MLE of each tracker
feature also belongs to a group. The Most Likely Group
(MLG) of a feature is the group to which this feature’s MLE
belongs to. Given this, the tracker’s bounding box is then
obtained by joining the bounding boxes of its MLGs.
3.2.5 Tracker creation and removal - Trackers are dynam-
ically created when new text is detected, and removed when
their associated text entity can no longer be found. After
the grouping stage, any text group detected is a potential
text entity to be tracked. But some of these groups may
belong to text entities already being tracked. The tracking
stage identifies the tracked components in the image via the
MLE and MLG mechanisms. After the tracking cycle, any
unidentified remaining groups are passed to a new tracker.

Newly created trackers must continuously track their text
for a number of frames to be considered stable. Trackers
that fail to comply with this are promptly removed. The
tracker removal mechanism is very simple. After a consec-
utive number of frames without a match, the track is con-
sidered lost and removed. Should the same text entity then
reappear, it will be assigned a new tracker.

4. Results

The system was tested on a variety of typical outdoor and
indoor scenarios, e.g. a hand-held camera while passing
shops or approaching notices, posters, billboards etc. We
present here the results from four typical scenarios. The
full video sequences along with other results, including a
sequence from [13], are also available online3.

The results shown are: Figure 7: ‘BORDERS’ - walk-
ing in a busy street with several shop signs overhead, Fig-
ure 8: ‘UOB’ - walking past a signboard including an
occlusion in a highly textured scene background, Figure
9‘ST. MICHAEL’S HOSPITAL’ - a traffic sign with both
bright and dark text, complex background and significant
perspective change, and Figure 10: ‘LORRY’ - with text
also undergoing viewpoint changes. All sequences were at
640 × 480 resolution recorded at 15 fps with a consumer
grade photo/video camera (Nikon Coolpix P2).

Table 1 shows the performance of the algorithm for the
different sample scenes on an Intel Pentium IV 3.2Ghz pro-
cessor. The results show the performance of the text seg-
mentation and grouping subsystem alone, and the whole
tracking process. Text segmentation is very fast. When
measured off-line, the system was able to compute the re-
sults faster than the actual frame rate of the sequences. With
the tracking, the performance of the system is close to 10
fps on average, depending on the complexity of the scene,
making it promisingly close to realtime. For a simple scene
with little background and one 5-character word, the system
could track it effortlessly at 15fps. While the particle filter-
ing framework is relatively fast, the SIFT matching of fea-
tures reduces the performance when the number of candi-
date regions is large, such as in very complex backgrounds,
e.g. in Fig. 8. A greater number of false positives (due
to the vegetation) produced during segmentation put more
stress on the tracking stage, which however rejected these
regions due to the instability and lack of longevity of their
trackers. Notice also in Fig. 8, the tracker survives the oc-
clusion by the lamppost.

4.1. Discussion

The focus of this paper has been on a framework to track
text as robustly and continuously as possible, bearing in

3Please see http://vision.cs.bris.ac.uk/texttrack/
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Figure 7. Example scene 1 - BORDERS - notice several BORDERS signs come along in the sequence.

Figure 8. Example scene 2 - UOB including occlusion, also with much other texture.

Figure 9. Example scene 3 - ST. MICHAEL’S HOSPITAL - two regions, dark over light and vice versa.

Figure 10. Example scene 4 - LORRY
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Table 1. Performance of the algorithm in
mean frames per second.

Text segmentation Full algorithm
Scene 1 31.9 fps 13.2 fps
Scene 2 21.3 fps 4.9 fps
Scene 3 30.7 fps 9.6 fps
Scene 4 32.0 fps 10.6 fps

mind that momentary loss of a text region is not disastrous
in terms of recognition. Once stable tracking is obtained af-
ter a few frames, the motion information could be used for
fronto-parallel recovery as well as generation of a super-
resolution representation for better OCR, e.g. as in [12]. In
our system, it is more likely that text is missed if it is at
sharp perspective viewpoints, than for a non-text region to
be tracked with significant stability. We had no such non-
text cases, but even if there were, one can assume that OCR
would reject it at the next stage.

Some shortcomings of our work are: (1) the robustness
of our tracker improves further, in terms of dropping a track
only to be picked up again instantly, when we use a more
complex motion model, but this means we move further
away from a realtime goal, (2) SIFT has limited robustness
to viewpoint variations, so big changes of point of view will
make the trackers lose the features, and it is by far the slow-
est part of the system, however we are at the time of writ-
ing experimenting with a new method, (3) Our results can
not be claimed to be fully realtime, however we are near
enough and believe we can achieve it in our future short-
term work, (4) even though our few thresholds are fixed they
naturally can affect the quality of the results; we aim to ad-
dress these by applying learning techniques to automate the
process where necessary.

5. Conclusion

In this paper we have presented a close to realtime tech-
nique to automatically detect and track text in arbitrary nat-
ural scenes. To detect the text regions, a depth-first search
is applied to a tree representation of the image’s connected
components, where each leaf in the tree is examined for
three criteria. Amongst these criteria is the use of the Eigen-
Transform texture measure as an indicator of text. This
stage of the algorithm detects both bright and dark text in
a single traversal of the tree. Following perceptual group-
ing of the regions into text entities, particle filtering is ap-
plied to track them across sequences involving severe mo-
tions and shakes of the camera. We have established a sig-
nificant framework and can start to improve its individual
components in our future work to better our results.
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Abstract: - Sensory substitution can be defined as a technical-scientific discipline which aims to provide sensory 
disabled people with information they cannot acquire from the disabled sense through their intact senses. We 
present here our team’s work in this R+D line for providing blind and severe visually impaired people with real 
time spatial and text environmental information through sounds. The objective is to model the real environment 
as a virtual space where the object's surface appears as if covered by small sound sources, which emit very 
locatable sounds in a continuous and near simultaneous way. It is based on the hypothesis that the brain, when 
provided with this highly rich spatial information, will generate a kind of visual-like perception of the 
surrounding world. In this paper we describe our approach to this field and the main results obtained, which have 
practical consequences in the field of sensory rehabilitation as well as on the theory of perception.  
 

Key-Words: Sensory substitution; Blindness; Sonification; HRTF; Computer vision; Brain plasticity. 

1  INTRODUCTION 
 
Once particular surrounding information has been 

identified as relevant for the sensory disabled 
persons, the sensory substitution approach firstly 
focuses on finding the optimal way of representing 
that information through the person’s remaining 
senses and subsequently implementing it [1]. 
Applications of this concept range from traditional 
substitution methods like the long cane and Braille 
and Sign languages to the most recent developments 
based on high technology for acquiring and 
presenting the information of interest. In our 
approach, we use three technologies: computer 
vision, virtual reality and 3D sound. 

Sensory substitution relies on the fact that 
environmental information is on many occasions 
available for a person throughout different sensory 
modalities. This is particularly certain for the spatial 
information. So, for example, the egocentric location 
of an object can be known by vision, audition, touch 
and even olfaction and the sense of temperature. This 
suggests that the brain may manage spatial 
information in an amodal way, that is, independently 

of the sensory modality that provides the information 
[2]. 

Several neurophysiologic studies support this 
notion. So, in the inferior Colliculus Nucleus of the 
Barn Owl, an early processing station at the auditory 
pathway of this predator species with an accredited 
ability for detecting and localizing relevant sounds, it 
has been found a topographic distribution of the 
auditory neurons sensitive to the location of the 
sound [3]. This distribution, although yet not found in 
higher cortical levels nor in humans,  reminds the 
retinotopic organization of the visual pathway, where 
contiguous neuronal areas process contiguous areas 
of the perceptual field,  showing that a very important 
feature for the visual spatial perception can be also   
developed for the auditory sense, in the form of a 
kind of “auditory retina” 

The Posterior Parietal Cortex of the brain contains 
different areas. These areas are the 7ª area, the Lateral 
Intraparietal area (LIP), the Temporal Medial 
Superior area (MST), the 7b area and the Intraparietal 
Ventral area. In particular, the LIP area receives a 
considerable amount of projections from visual areas 
[4, 5], what justifies the notion of the LIP as the 
“parietal visual field”. Nevertheless, the LIP area has 
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been later described as a receiver region of acoustic 
information which, in conjunction with the visual and 
the somatosensory one, contributes to generate the 
representational map of the three-dimensional space 
[6]. In this sense, it has been shown that the auditory 
response of the LIP neurons has the same preferential 
directionality than the visual response, what suggests 
that both sensory receptive fields, the auditory and 
the visual one, together with their respective sensory 
memory fields, overlap each other [7]. These multiple 
sensory inputs (visual, auditory, somatosensory and 
vestibular sense) to the LIP area are combined in a 
process of signal maximization for the coding of the 
spatial coordinates, what forms the basis of the 
surrounding spatial representations. In addition, these 
spatial representations at the posterior parietal cortex 
are related with high level neuronal cognitive 
activities, including attention. 

Regarding sensory substitution, the cue point is to 
know whether the information required to carry out a 
particular perceptual task can be or not provided by 
one or more intact senses. In this sense, we have 
developed a series of prototypes for blind people’s 
orientation, mobility and environmental perception, 
which provide the user with two types of real time 
information through sounds: information on the 
spatial volume occupied by the objects and surfaces 
located in front of him, and information on the 
written text present in the frontal scene (i.e., shop 
signs, advertisings, etc). The volume information is 
translated into a special sound code which is 
delivered through headphones in order to generate an 
auditory spatial representation coherent with the 
environment. The text information is presented as 
verbal spatial sound, as if a reading voice was coming 
from the area where the text is located. Then we 
follow a psychoacoustical approach in order to 
evaluate the users’ perceptual response to the vision 
inspired acoustic stimulation. This work is 
complemented with the study of the disabled people’s 
neurological substrate of the sensory substitution 
experience, through brain function registering 
techniques such as functional Magnetic Resonance 
Imaging (fMRI) and Event Related Potentials (ERP). 

 
 

2  APPROACH 
This section explains our approach to the problem 

of sensory substitution in blindness and severe visual 
impairment. We first pose our hypothesis regarding 
what particular information from the visual scene 
should, and then could, be acoustically provided to 
the listener so he will experience an auditory visual-
like image of such scene. Next, the key 

methodological steps and the main results will be 
summarized. Finally we outline the current state of 
the on real time environmental text reader system. 
 
2.1. The auditory code for the visual scene      

A sighted person perceives images as series of 
light rays coming from every point of objects and 
surfaces inside his field of view. In a similar way, a 
person can also obtain a tactile sequential 
representation of the objects by touching them 
coordinate by coordinate. The perceived spatial 
image of an object comes from the acquisition of very 
significant spatial information, i.e., the subject 
centered spatial coordinates which are occupied by 
the objects. Following on from this idea, the 
following hypothesis can be posed: a blind person is 
exposed to sound rays radiating from an object’s 
surface in such a way that his perceptual system can 
recover the whole set of relative spatial coordinates 
involved, similar to what happens in vision from 
perceiving light, will he be able to perceive some 
kind of crude visual-like image, similar perhaps to a 
3D visual image containing mainly low spatial 
frequencies?  

The literature reports several devices which offer 
auditory spatial information for the blind person’s 
orientation and mobility (see [8] for a review on the 
earlier developments).These devices mainly provide 
auditory information that indicates the presence and 
location of the detected objects in order to avoid or to 
use them as landmarks when navigating. Dr. Kay’s 
KASPA system is based on an ultrasonic sensor that 
calculates the obstacle distance from the time of 
flight of the emitted ultrasonic wave. This distance 
information is translated into a sound code which 
consists on a progressive change in the pitch of a pure 
tone as changes the detected distance. His system has 
later evolved to a version that includes wide-angle 
overlapping peripheral fields of view with a narrow 
central field superposed, what improves the  blind 
subjects’ auditory ability to resolve close objects [9]. 
Dr. Jack Loomis and his colleagues from UCSB were 
who first applied binaural technology for both 
representing the location of environmental landmarks 
and subsequently guiding the user’s steps towards 
them. In this case, GPS information is translated into 
spatial verbal and non-verbal sound indications [10]. 
More recently, Dr. Tiponut and his team from the 
Polytechnic University of Timisoara have developed 
an integrated multisensory device which provides 
both information on the location of obstacles and a 
pilot signal to indicate the direction of the movement 
to a target. This information is coded as spatial sound 
obtained from binaural technology [11].  
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 Some teams have also explored the human’s 
ability to recognize an object’s shape from both 
sound and tactile cues. Dr. Meijer’s The Voice 
system directly translates the position and level of 
gray of the pixels composing the image from a video 
camera into a sound code where the vertical 
dimension is represented by the pitch of a pure tone, 
the horizontal dimension by both binaural cues and 
the presentation time, and the level of gray by the 
amplitude of the sound [12]. Dr. Capelle and 
colleagues from Catholic U. of Louvain have 
explored a similar shape codification by also 
attaching a pure tone to every pixel of the image from 
a video camera, although in this case the sound 
representing any activated pixel is emitted in a 
continuous way and only black and white levels of 
gray are considered [13]. Dr. Lakatos found that 
normally sighted subjects show considerable ability 
in recognizing alphanumeric characters whose 
patterns are outlined acoustically through the 
sequential activation of specific units in a speaker 
array[14]. Dr Hong and Dr. Beilharz, from the 
University of Sidney, find that the shape of two 
concurrent graphic lines can be gathered from an 
auditory representation based on mapping the x-axis 
to time and the y-axis to MIDI notes. The 
performance is improved when the concurrent audio 
streams are presented as independent separated 
virtual sound sources [15]. 

Regarding the tactile devices, it is mandatory to 
cite the work of Dr. Bach-y-Rita and colleagues who, 
in the 60s of the past century, introduced the concept 
of sensory substitution and explored the human 
ability to perceive object’s shape and width from a bi-
dimensional tactile projection of the scene onto the 
user’s skin [16]. The image of single objects from a 
CCD camera is directly translated into a spatial 
pattern of vibro-tactile effectors which stimulate the 
corresponding coordinates on the user’s skin. Later, 
their work derived toward the development of an 
electro-tactile interface placed on the tongue [17]. 
Drs. Segond, Weiss and Sampaio have recently 
explored its possibilities for perceiving shape and 
spatial cues for navigation [18].    

The studies above suggest that spatial hearing, like 
vision and touch, has access to the mechanisms that 
give rise to the amodal spatial representations 
involved in the perception of the shape and width of 
the objects, that is, in the figure perception. In order 
to carry this argument one step further, we have 
explored what the perceptual effect of coding the 
environment with 3D sound is, i.e., coding the 
environment with sounds which are perceived 
coming from every occupied space coordinate. 

In this vein, we have focused on whether an image 
of a unitary whole object, broadened in the space as 
in the visual experience, can be generated in the blind 
person from the appropriate auditory stimulus [19, 
20, 21]. Figure 1 shows this approach: a sighted 
person sees the frame of a window as light rays 
coming from it. Then, a series of small loudspeakers 
are located occupying the same space location of the 
frame. We would expect the appropriate emission 
from that spatial configuration of loudspeakers to the 
blind person (third picture) to experience a spatial 
image of the frame which is spatially similar to the 
visual one. 

 

 
Fig.1. Visual to auditory sensory substitution 
 

According to this scheme, we first explored blind 
people’s ability to experience visual-like images from 
spatial patterns of real sound sources [19]. Figure 2 
shows the experimental set-up consisting on a 6x6 
array of small loudspeakers facing a point where the 
subject is placed to receive the emitted sound. Every 
loudspeaker is conveniently directed to the point 
where the subject’s head will be placed, given that 
otherwise part of the higher spectral content of the 
sound would not reach the subject’s ears, distorting 
the perceived elevation of the sound sources. 

 

 
Fig.2. Loudspeakers array inside the acoustically 
prepared experimental room 
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These experiments were conducted with both 
blind and normally sighted people in an acoustically 
optimized environment. The set of loudspeakers 
configuring a particular spatial pattern is sequentially 
activated in order to test the subject’s ability to 
recognize it as well as the spatial audio image being 
experienced. The presented figures are composed 
from, for example, the top and the bottom rows (two 
parallel horizontal lines), the left and the right 
columns (two parallel vertical lines), a C letter-form 
constructed with the left column and the top and 
bottom rows, the frame of a window, etc.  The tests 
show that blind people can recognize the presented 
spatial patterns and clearly note its physical 
distribution, whilst referring that a kind of auditory 
spatial image extended in the space with the shape of 
the presented spatial pattern can be perceived. 

Afterwards, a first augmented reality prototype 
was developed. This is a non portable laboratory 
prototype which first obtains the information of the 
spatial coordinates occupied by the objects in the 
scene, and then generates an auditory stimulus 
representing this information which is delivered to 
the user through headphones. This auditory stimulus 
is such that, in spite of being delivered through 
headphones, creates the illusion in the user that the 
previously detected object is covered by small 
emitting sound sources. This effect is obtained by 
combining computer vision techniques [22] for 
recognizing the environment with  3D sound 
techniques based on HRTF filtering (Head Related 
Transfer Function) [23, 24, 25], for creating the 
illusion of sound “externalization”. This initial 
version sums up the philosophy of the subsequent 
prototypes, a brief description and the main results 
obtained are as follows: 
 
2.1.1   The first device, Virtual Acoustic Space I: 

the validation of the idea. 

VAS I consists of two subsystems: the first one 
for acquisition and analysis of the scene (visual 
subsystem), and the second one for conversion of the 
information into sounds and playing them back to the 
subjects (acoustic subsystem)[19].  

Figure 2 shows a conceptual diagram of the 
technical solution we have chosen for the prototype 
development. 

Two miniature cameras are fixed on both sides 
of a pair of conventional spectacles, which will be 
worn by the blind person using the system. Different 
computer vision algorithms are applied to the 
captured images, such as the detection of geometric 
features or stereovision, in order to obtain a depth 
map. 

 

Fig.3. Prototype conceptual diagram 
 
The acoustic subsystem then plays a random 

sequence of short sounds, one for each position 
provided in the depth map. Each sound has been 
previously "spatialized" so, in spite of being heard by 
headphones, it seems to come from a certain position 
in the environment.  

The virtual sound generator uses the Head Related 
Transfer Function (HRTF) technique in order to 
obtain the spatial sounds [24]. For each position in 
space a set of two HRTFs are needed, one for each 
ear, so that the interaural time and intensity difference 
cues, together with the behavior of the outer ear are 
taken into account. In our case we are using a 
reverberating environment, so the measured impulse 
responses also include the information related to the 
echoes in the room. Individual HRTF’s are measured 
as the responses of miniature microphones (placed at 
the entrance of the auditory channel) to a special 
measurement signal (MLS) [26]. Also the transfer 
function of the headphones is measured in the same 
way, in order to equalize its contribution. 

Having measured those two functions, the HRTF 
and the Headphone Equalizing Data, properly 
selected or designed sounds can be filtered and 
presented to both ears, obtaining the same perception 
as if the sound source were placed in the position 
from where the HRTF was measured. 

The sound selected for encoding the object’s 
coordinates is a very short click without tonal quality. 
This type of sound is easily locatable in space and, 
given its short duration, it makes it possible to present 
a high number of coordinates within a short period of 
time. The perceptual effect of this stimulus could be 
described as hearing a large number of raindrops 
hitting the surface of a glass window. A field of view 
of 80° on the horizontal axis by 45° on the vertical 
axis is divided into in a number of x (horizontal), y 
(height) and z (distance) coordinates or stereopixels. 
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2.1.2.   Results summary 

The initial results were obtained in a controlled 
environment from a broad group of blind and visual 
impaired people [27], and they have been confirmed 
by multiple tests subsequently carried out with the 
more advanced versions of the device. These results 
support the hypothesis that, when using an auditory 
stimulus, as previously described, to represent large 
objects in a scene, it is possible to generate a 
perceptual experience in the user of a global and 
maintained presence of those different objects inside 
the field of view, which are perceived as occupying 
the space with their gross shape, dimensions and 
location. For example, two walls surrounding a path 
are perceived as sounding objects which are always 
present on both sides of the subject, with their 
vertical and depth dimensions. A central soundless 
space can be perceived, and the blind person can 
walk or “look” through it (Fig.2.).  
 

 
Fig.4. A participant signals the limits of the auditory 
spatial image corresponding to a hole in the wall 

 
In one of the tasks the blind person is asked to 

point to the figure and “draw it in the air” by moving 
the arm along the perceived extension of the sound 
image (Fig. 5).  

 

 
Fig.5. The participant is asked to move her arm 
through the area where she is perceiving that the 
sound seems to be extended through 

 
The arm is in a straight position and the person 

holds in the hand a magnetic sensor for registering 
the coordinates of the arm movement. In addition, a 
verbal description of the perceived extension of the 
sound image is collected for every figure.  

Blind people can discriminate a line of sounds 
from a single point of sound, introducing the concept 
of persistent broadened sound.  He or she can also 
recognize the horizontal, vertical or diagonal layout 
of this audible line by perceiving the extension of the 
spatial image of the line (Fig.6).  

Fig.6. Register of the hand signaling of different 
figures from visual (continuous line) and auditory 
(dotted line) information (scale in inches) 

 
These results are especially important in relation 

with the question of whether an auditory perception 
of objects similar to the visual one can be 
experienced or not. The scientific study of the spatial 
aspects of the auditory perception has mostly focused 
on the perception of isolated sound sources. This may 
be in relation with the fact that sounds are commonly 
perceived as coming from concrete isolated locations 
in the space. Nevertheless, sound sources are not 
single points but have a width. A spatial attribute of 
the spatial auditory image regarding to the “width of 
the sound” has been described, namely the sound 
broadness. Several acoustic parameters involved in 
this effect have been studied [28]. It is worth pointing 
out the references in these studies to the auditory 
spatial image that is experienced when hearing a 
multitude of close sound sources which are 
simultaneously radiating their respective sounds, for 
example, the rustling leaves and branches of a tree. 
Similarly, blind people who is asked about this 
question usually refers an auditory experience of 
sound broadness when perceiving the raindrops or the 
wind hitting diverse objects or surfaces in their 
surroundings. Somehow our approach operates on 
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these considerations and the results support the notion 
of auditory figure perception.  

Finally, it is worth pointing out the experience of a 
blind person who was able to detect and identify the 
different objects and surfaces presented to her when 
using the prototype inside an experimental room and 
without any previous knowledge of this environment 
(walls, a column, a window, the door and a small 
table). She was able to move between them, and to 
make a correct verbal and graphical description of the 
room and the relative position of every object and 
surface.  

As regards the neurological substrate of this 
perceptual activity, preliminary results using the 
functional Magnetic Resonance Imaging technique 
(fMRI) have shown that spatial sound processing in 
blind people occurs more in occipital cortical brain 
regions than in sighted people [29]. This suggests that 
blind people recruits the brain’s visual areas for 
spatial sound processing, which has important 
consequences when considering the blind person’s 
potential ability to use sensory substitution devices. 
Many other studies support also the notion of brain 
intermodal sensory plasticity (see for example [30]). 
 

 

2.1.3   Recent work 

The latest version of the prototype has been 
developed within a recent EUFP6 project whose 
name is CASBliP (Cognitive Aid System for Blind 
People-www.casblip.com). The CASBliP device 
acquires environmental information from two 
different independent subsystems: 1) a time-of-flight 
infrared sensor placed on the frame of a pair of 
glasses which acquires distance information from the 
objects in the frontal scene inside a range of 0.5m to 
5m for a horizontal plane at eye level; and 2) a pair of 
cameras placed at the top of a helmet. Segmentation 
and shape identification algorithms enable us to 
detect a moving object in a range of 5m to 15m. This 
information is presented in an auditory way basically 
according to the representation strategy outlined 
above. A series of tests have been conducted which 
show that a blind person can perform orientation and 
mobility tasks with a progressive improvement with 
learning (Fig.7).  

Here it is shown the performance (measured in 
seconds by meter) of ten blind persons who were 
asked to navigate, relying only on the sensory 
substitution portable system, through a 14 m long 
route, i.e. a path with 4 pairs of soft obstacles of 180 
cm height put up asymmetrically (Fig.8). 

The participants had to locate every pair of 
columns (1 m of separation between them) and detect 
the gap through which they might move without 

touching or knocking the objects over, and then go on 
to the next pair of columns. 
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Fig.7. Relative Walking Time (s/m) of ten blind 
persons who were asked to navigate through the 
obstacles shown in Fig.5. In blue the results of the 
first run test (RWT1) and in green the results of a 
second run test (RWT2) after a short period of 
intensive training 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8. 14 m long route with 4 pairs of soft obstacles 
of 180 cm height put up asymmetrically. A flat 
surface indicates to the participant where the end of 
the course is. The differences between both 
arrangements try to avoid a possible influence of 
memory on the performance of the orientation and 
mobility task 
 

The subjects had previously spent three sessions 
in order to become familiarized with the substitution 
stimulus, what required a mean time per subject of 75 

RWT1 RWT2
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min. After the first run test persons spent some time 
on the site with the mobility instructor to do training 
before they commenced a second test run, which one 
was carried out on a different arrangement of the 
obstacles. Relative Walking Time (RWT) scores from 
the post-training session show that results had 
significantly improved (t=4.36; p=0.002) [31]. 
 

A virtual reality simulator for blind and visually 
impaired people has been developed. It is called 
Virtual Reality Simulator for Sonification Studies, or 
VRS3 [32], and provides the user with a spatial 
auditory representation of the virtual environment 
previously designed. A 3D tracking system locates 
user’s head orientation and position, so the user can 
“walk through” the virtual environment while he or 
she perceives the environment through auditory 
information (Fig.9). 
 

 

Fig.9. The depth map of two virtual columns inside 
the simulator room is overlapped to the scene and 
represents a 64x48 pixels size map with a pseudo-
color depth scale 
 

The simulator has these main purposes: validation 
of sonification techniques, 3d sensor emulation for 
environment recognition and hardware integration; 
also for training and auditory perception experiments.
 This simulator can recreate any simple or complex 
scene and present it to the user as a 3D sound world. 
Then, it allows the researcher to surpass the need of a 
“sensor system” for studying the perception of the 
auditory representation of the scenes. Concretely, we 
use it for defining the representation strategy, that is, 
the way the scene information is coupled to a sound 
code. Then the studies are oriented to get a better 
understanding on the perceptual effects of several 
significant acoustic parameters, as the interclick time 
interval, the sound reverberation level or the tonal 
colour of the click sound. 

 We also study the effect of training on the quality 
of the auditory spatial image of the scene experienced 
by the user, which implies some research on learning 
protocols of sensory perception as well as researching 
on individual or group differences (by sex, age, and 
so). In this way we have obtained preliminary results 
showing some advantages of more complexes 
(spectrally rich) sounds for distance localization 
using a set of real sound sources located from 50 cm 
till 6 meters in front of the subject (submitted for 
publication). 

A robotic system has been developed that allows 
intensive measurement of both human and 
mannequin HRTFs in every spatial axe inside an 8 x 
4 x 4 m width acoustically isolated room, with a 
spatial resolution up to 1º. This system allows getting 
massive sets of spatial filters from both subjects and 
mannequins. We are currently studying the effects of 
training on the precision of auditory localization 
when using both individual and generic virtual spatial 
sounds. 

 
2.2   Development of a text reading system   

The objective of this research line is to develop a 
scene text reading system for blind people. It is 
widely accepted that Optical Character Recognition 
(OCR) for scanned documents is no longer a 
problem. There are several commercial and open 
source OCR engines available, with recognition rates 
of over 95% for clean, scanned documents. Text 
recognition of scene text extracted from a video 
camera is a much harder problem and remains largely 
unsolved. There has been great interest in recent 
years in this field among research groups all around 
the world. Some applications are automatic indexing 
and cataloging of video libraries, road sign driver 
assistance, mobile phone document scanning, or 
visually impaired assistance systems, etc. Advances 
in digital cameras, computing power and modern 
computer vision techniques are making real-time text 
extraction and document processing from video 
images and its application on blind people assistance 
possible. 

 
A system is being developed that detects, 

segments and tracks scene text such as shop signs, 
traffic signs, advertisements and billboards in nearly 
real-time (Fig.10).  

 
For demonstration purposes, a simple 

communication module with an OCR engine and a 
voice synthesizer were integrated into the system 
[33]. 
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Fig.10. Example of a text both detected and 
recognized by the portable version of the reading 
system (green letters inside the white box) 
 
 

3     CONCLUSION 
We present in this paper our R+D line in the field 

of sensory substitution for providing blind and 
visually impaired people with relevant visual 
environmental information through sounds. We 
mainly focus on exploring the hypothesis that 
perception of objects’ spatial attributes like shape, 
width and location, can be experienced by the blind 
users in a gross visual-like way through hearing, 
whenever the appropriate acoustic representation of 
those spatial features is provided. Our results support 
this idea and encourage to going on in order to define 
optimal acoustic representations of the real scene 
information. In addition, a series of progressively 
more sophisticated prototypes has been developed 
with the aim of obtaining a portable device 
susceptible to be added to the existing arsenal of 
rehabilitation aids for orientation, mobility and 
perception of the environment. 

Our group is currently continuing on with the 
improvement of the above-mentioned prototypes. We 

aim to develop an integrated portable prototype 
capable of acquiring, from the user's frontal scene, a 
robust 3D depth map segmented into objects, distant 
text information and both the identification and 
position of selected items, to immediately deliver this 
information as an adequate auditory representation 
based on spatial sound. The development of computer 
vision algorithms for video image segmentation, 
detection and labeling of the environment will enrich 
the depth map information provided by the 3D 

sensor. Concomitantly we study how different 
acoustic parameters affect the user’s spatial auditory 
image of the scene, in order to optimize his or her 
auditory representation of it. The question of using 
individual versus generic or semi-personal HRTFS in 
order to achieve an appropriate spatial sound 
perception is still unsolved. In this sense, we are 
currently addressing the role of learning on the 
calibration of the auditory system to a non individual 
collection of spatial sounds. 

Furthermore, the fact that blind people 
occasionally perceive spots of lights located at the 
spatial location of suddenly presented noises (which 
were reported as phosphenes in the decade of the 70’s 
of the last century [34,35]) points to the fact that the 
brain can mixture sound and vision in a unknown 
way. Then we are currently researching to elucidate 
the neurological substratum of the phosphene 
phenomenon (visual perception elicited by sound 
stimulation), and preliminary results have already 
been reported [36]. 

 
We feel that the sensory substitution approach, 

when supported by the advances in high technology 
and a progressively better knowledge of the human 
brain’s perceptual capabilities, opens up a wide field 
of applications in sensory rehabilitation. 
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Abstract. We present a mobile head-mounted device for detecting and
tracking text that is encased in an ordinary flat-cap hat. The main parts
of the device are an integrated camera and audio webcam together with
a simple remote control system, all connected via a USB hub to a laptop.
A near to real-time text detection algorithm (around 14 fps for 640×480
images) which uses Maximal Stable Extremal Regions (MSERs) for im-
age segmentation is proposed. Comparative text detection results against
the ICDAR 2003 text locating competition database along with perfor-
mance figures are presented.

Keywords: wearable device, text detection, text understanding, MSER.

1 Introduction

The area of wearable computing has seen relatively little growth over the last
few years after the initial wave of enthusiasm in the area, mainly due to the
miniaturisation of personal computing devices, such as mobile phones that need
not be worn, but carried, that perform most of our everyday needs. Also, the fo-
cus of recent advances in wearable computing have been in specific and specialist
areas, e.g. in health monitoring systems. Regardless of this, wearable devices for
everyday and general purpose use are still extremely important to help those
most in need of it, e.g. disabled users such as the blind, or those incapacitated
by language barriers, e.g. tourists!

In this work, we present a simple hat, with embedded camera, speaker, and
USB port (see Fig. 1) for an application that involves the real-time detection and
tracking of text. The camera provides real-time video, via a discreetly hidden
USB cable, to a small laptop (to be carried) where the number crunching occurs.
The results of text detection and recognition is returned to the hat via an audio
signal on the USB port to a speaker embedded in the hat (which can be used
with earphones if necessary). All electronic components are off-the-shelf and are
held in a part which is readily removable from the hat. This allows us to easily
extend the device in the future just by adapting the removable part, for example

M. Iwamura and F. Shafait (Eds.): CBDAR 2011, LNCS 7139, pp. 29–41, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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(a) (b)

Fig. 1. Developed device together with remote control (a-i) and its shape when used
(a-ii). Removable part (a-iii) is placed inside a hat (a-iv) in a metal framework which
is visualized in image (b). The device comprises a USB camera with auto focus (1), a
RC receiver (2) and a USB sound card (3) which are connected to a USB hub (4).

with an embedded computer which will be able to handle all the computation.
Since the device does not require units integrated with shades or spectacles, it
does not interfere with users who have some residual vision.

Helping visually impaired people to understand the scene in their surrounding
environment is a major goal in computer vision, with text detection and its com-
munication to the user a significant aspect of it. One of the earliest approaches
can be considered to be the assistive technology approach by Kurzweil’s reading
machine [8] in 1975 which enabled book reading for blind people using a flat
CCD scanner and computer unit with optical character recognition (OCR) and
text to speech synthesis (TTS) systems. Several desktop solutions with a similar
design are still widely available. This layout was improved using a camera, for
example in the iCARE portable reader [7] which made document manipulation
less cumbersome. In Aoki et al. [1], a small camera mounted on a baseball cap
was used for user navigation in an environment. Chmiel et al. [2] proposed a de-
vice comprising glasses with integrated camera and DSP-based processing unit
which performed the recognition and speech synthesis tasks. However, this de-
vice was directed mainly towards document reading for the blind. The SYPOLE
project [21] designed a tool primarily intended for reading text in the user’s
natural environment by taking snapshots of documents, e.g. banknotes, via a
camera mounted on a hand-held PDA device.

In the context of other application areas, detecting and recognizing text is
important for translation purposes, e.g. for tourists or robots. This is a subject
of interest for the Translation robot [22] which consists of a camera mounted on
reading glasses together with a head-mounted display used as the output device
for translated text.

Text detection has received increasing attention in recent years, with many
works surveyed in [9] and [24]. An example of a recent approach is Pan et al. [20]
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who combined classic region-based and connected components-based (CC) meth-
ods into a complex text detection system and achieved the best results on the
ICDAR dataset yet (used for performance measurement by many text detec-
tion algorithms). Their system binarized the image in the first stage based on
a text confidence map, calculated from classified gradient features of different
sized regions. Segmented CCs were then classified using learned condition ran-
dom field parameters of several unary and binary component features. Another
recent example is Epshtein et al. [5] who used the stroke-width transform to
obtain candidate text regions formed of CC pixels of similar stroke widths.

Contrary to the degree of attention enjoyed by text detection, text tracking
has been hardly investigated considering that it is very important for reasonable
user interaction in any text detection system involving ego or object motion. In
our previous work [15], we developed a real-time probabilistic tracker based on
particle filtering which is used in the proposed text detection system here. We
are only aware of one other work, Myers and Burns [16], who tracked text by
feature correspondence across frames by correlating small patches. While we have
developed our text tracking application beyond what we previously reported in
[15], the focus of the work presented here is on text detection and on the hat-
based communication device. Our most recent results on text tracking will be
presented in a future work.

In this paper we also examine the use of Maximally Stable Extremal Regions
(MSER) [13] for text detection. Originally developed as a method to detect ro-
bust image features, the method responds well to text regions. MSER has been
used for license plate detection [4] and more recently, Neumann and Matas [17]
used MSERs in a supervised learning system for text detection and character
recognition using SVM classifiers. Although this method yielded promising re-
sults it is computationally expensive. Our approach is based on MSER as a
candidate text region detector but we rely on the hierarchical relationship be-
tween detected MSERs to quickly filter through them (Section 3). Then a cas-
cade of text classifying filters is applied to candidate text regions. Using much
simpler text classification techniques allows us to provide a close to real-time im-
plementation. We present single image text detection performance results eval-
uated against the standard ICDAR 2003 text locating competition database.
Performance figures are provided to illustrate the efficiency of the algorithm
(Section 4)1.

2 Hardware Design

Placing a camera in a hat is a logical choice as it is both an unobtrusive location
and an ideal position in reference to where the eyes and head point to. Mayol
et al. [14] examined possible positions of wearable cameras and concluded that
head mounted cameras provide the best possible link with the user’s attention.

1 Additionally, example videos recorded using the hat can be downloaded from:
http://www.cs.bris.ac.uk/home/majid/CBDAR/
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The hardware proposed here allows its integration into many varieties of hats,
here we have used an ordinary fashion accessory – a flat-cap.

The hardware was developed with emphasis on robustness, serviceability and
visual appearance. Figure 1a shows the appearance of the completed device. It
is composed of a fixed part and a removable one. The fixed part is an aluminium
plate, bent into a shape that very loosely follows the curves of the hat, while
protecting the space used by the removable part. It has an opening in the front
side, protected by a glass cover, which fits onto the camera lens. This provides
dust and, to some degree, weather insulation. The removable part holds all the
electronic devices. It is built out of commodity hardware, with a total cost of
all the components under 100e: a high definition web camera with adjustable
focus (Logitech Quickcam Pro 9000), an USB sound card used for voice feedback
to the user through a pair of connected headphones, a RF transceiver and an
USB hub. A view of the inner part of the hat, with the removable part and the
electronic parts is shown in Fig. 1b.

The device is controlled by a hand-held remote control which acts like an
ordinary USB keyboard. To minimize the number of cables, all the devices are
connected to a generic USB hub which allows connecting the hat to any USB-
enabled computing device, from tablets to fully equipped laptop computers, with
a single cable.

3 Proposed System

A simplified schematic of the proposed system is shown in Fig. 2. Initially, we
detect candidate text regions in the image input stream using our MSER-based
approach. These regions are then tracked in consecutive frames and are eventu-
ally analysed using the open source Tesseract OCR2 engine integrated into our
software. Recognized text regions above a significant confidence measure deter-
mined by the OCR engine are then sent to a text-to-speech synthesis module
(Flite TTS3, also integrated into our software).

MSER

Region filtering

Grouping

OCR

TTS

Tracking

Images
Audio

Fig. 2. General structure of the text detector application

2 Tesseract OCR: http://code.google.com/p/tesseract-ocr/
3 Flite TTS: http://www.speech.cs.cmu.edu/flite/
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In our previous work on text detection and tracking [15] we used adaptive
thresholding to initially binarize the original image. Then a tree was constructed
representing the topological relationship between CCs in the binary image. A key
step of the algorithm was a hierarchical filtering of the tree nodes, which allowed
the rejection of many candidate regions without classification. After that, the
remaining tree nodes where filtered using a cascade of text classifiers.

The approach proposed here uses Maximally Stable Extremal Regions [13]
for image segmentation along with hierarchical filtering similar to our previous
work.

3.1 Image Segmentation

MSERs are regions of interest in an image which present an extremal property
of the intensity function around its contour. When applying a varying threshold
level to a grey scale image, CC regions in the thresholded image evolve: new
regions appear at certain levels, regions grow and eventually join others. Those
regions which keep an almost constant pixel count (area) for a range of threshold
levels are called MSERs. This technique, originally proposed as a distinguished
region detector, also presents very desirable properties when applied to text
detection, such as stability and multiscale detection.

MSERs can also be obtained by filtering the component tree of the source
image, as shown by Donoser et al. [3]. The component tree is a representation
of all the CCs which result from applying a varying threshold level to a grey
scale image. The CCs are laid out in a hierarchy representing the topological
relationship between them. A stability factor – i.e. the rate of change in the
area of the components – is computed for each node in the component tree.
MSERs are identified as local minima of the stability factor along paths in the
tree towards the root.

We use the efficient, linear time MSER algorithm by Nister et al. [18], which
crucially also constructs the component tree. We make two passes on the original
image. First, MSER+ regions are obtained by applying the MSER algorithm on
the image. This produces light regions inside dark ones. Then MSER- regions
are obtained by applying the MSER algorithm to the inverse (negative) of the
original image which produces dark regions inside light ones. The sets of regions
returned by each pass are disjoint and both passes are needed to detect light
text on dark backgrounds and dark text on light backgrounds. The algorithm
can be easily modified to return a hierarchical MSER tree; an example output
can be seen in Fig. 4b where blue regions were obtained by the MSER+ pass
and the red regions by the MSER- pass. Darker regions represent upper tree
nodes (closer to the root), while brighter regions show lower nodes (closer to the
leaves). With hierarchical MSER, we have the desirable properties of MSERs as
a distinguished region finder applied to text detection. Additionally, we keep the
topological relationship of the CCs, which provides context information for later
text filtering stages.

The resulting hierarchical MSER tree is then pruned in two stages: (1) reduc-
tion of linear segments and (2) hierarchical filtering. The first stage identifies

81



34 C. Merino-Gracia, K. Lenc, and M. Mirmehdi

High
est

 bo
rde

r e
ne

rgy

Li
ne

ar
 tr

ee
 se

gm
en

t

(a) Original tree (b) Reduced tree

(c) Segmented image detail

Fig. 3. Linear tree segments removal

(a) original (b) hierarchical MSER

(c) filtered MSER (d) grouping results

Fig. 4. Output from different stages of the text detection algorithm
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all the linear segments within the tree where a linear segment is a maximum
path between two tree nodes without any branches in between. Likewise, it is a
path starting with a node with only one child, and ending with a branch node (a
node with more than one child), or a leaf. Each linear segment is then collapsed
into the node along the path, as shown in Fig. 3, which maximizes the border
energy function (see below). In the second stage, the tree is walked depth-first,
and a sequence of text classifying filters is applied to leaf nodes. Any non-leaf
node without any descendant node classified as text is also tested with the text
classifying filters. This stage is similar to the hierarchical tree filtering we orig-
inally proposed in [15]. Figure 4 shows the output of several stages of our text
detection algorithm.

3.2 Region Filtering

During the tree walk, candidate regions are passed through a cascade of filters,
i.e. size, aspect ratio, complexity, border energy and texture. This arrangement
means that most of the regions will be discarded by the simpler filters, thus
reducing the number of regions examined by the more complex tests. Thus, for
a region i:

Size – the simplest condition filters out regions whose boundary length falls
outside an allowed interval (lmin; lmax). The interval limits are fixed as a function
of the image size:

lmin < |Bi| < lmax (1)

where Bi is the set of points around the region’s boundary.
Aspect Ratio – given width Wi and height Hi of candidate region i, this

condition rejects regions that are too wide or too narrow:

amin <
Wi

Hi
< amax (2)

Complexity – this is a simple measurement of region complexity. It measures the
ratio between the region boundary length and its area Ai. This criterion filters
out regions with a rough border, which are usually produced by noise:

|Bi|
Ai

< c (3)

Border Energy – this is a measure of contrast against the background. It filters
out regions with low average edge response (from a Sobel operator (Sx, Sy))
around its boundary set of points Bi, i.e. the region is valid only if its border
energy exceeds a threshold:

1

|Bi|
∑

(x,y)∈Bi

√
(Sx(x, y)2 + Sy(x, y)2) > e (4)

Texture Measure – the last filter in the sequence is a measurement of texture
response, as text regions usually contain high frequencies. We found that the LU
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transform [23] yields good response results when applied to text regions. It is a
simple transformation based on LU decomposition of square image sub-matrices
A around each interest point.

A = P L U (5)

where L and U are lower and upper diagonal matrices and the diagonal elements
of L are equal to one. Matrix P is a permutation matrix. In the LU decompo-
sition, the number of zero diagonal elements of U is in direct proportion to the
dimensionality of the null-space of A.

The actual texture response Ωp(l, w) is calculated as the mean value of the
diagonal values of the U matrix.

Ωp(l, w) =
1

w − l + 1

w∑

k=l

|ukk|, 1 < l < w (6)

where w is the window size and l number of skipped lower frequency values. The
texture response Ti of a region i is calculated as the mean LU transform value
of a sampled set of points (Ni) inside the bounding box of the region.

Ti =
1

|Ni|
∑

p∈Ni

Ωp(l, w) Ti > t (7)

Figure 5 shows the output of the of LU transform on an example image. In all
the filters above, the thresholds were determined empirically and fixed in all our
experiments to: amin = 0.1, amax = 5, c = 1.4, e = 40 and t = 1.9.

Fig. 5. LU transform output on an example image

3.3 Perceptual Text Grouping

After the image segmentation step, which produces a set of candidate text regions
(usually representing isolated letters), a perceptual grouping step is performed
to join them into candidate words and phrases. First, a planar Delaunay graph
is constructed joining the centre of gravity of every text region. Each vertex of
the graph represents a single text region, while the edges represent proximity
relationships. Next, each edge e is then filtered using a sequence of tests.
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Edge Angle – The first test looks at the angle between edges and the horizontal
axis (α(e)), such that,

− 45◦ < α(e) < 45◦ (8)

This is a strong limitation but the majority of text is horizontal or with a slight
slope. The angle of the text is also limited by the capabilities of the OCR engine
used, as for now we are not performing any perspective correction.

A WHi
Hj

Wi Wj

∆y

∆x

Fig. 6. Variables used for text grouping

Relative Position of Adjacent Tegions – The following criteria were inspired
by the work of Ezaki et al. [6]. Two letters appearing on the same text line are
usually close together. In this test we limit the allowed distance, relative to their
respective sizes.

Δx < rx max(Hi, Hj) Δy < ry max(Wi,Wj) (9)

where (Hi,Wi) and (Hj ,Wj) are the bounding box dimensions of both regions,
and (Δx,Δy) represents the distance between the centres of both regions’ bound-
ing boxes (Figure 6). (rx, ry) are the proximity coefficients.

Size of Adjacent Regions – Similarly to the last test, two letters laying on the
same line are assumed to have a similar size. This test limits the variance of
adjacent region sizes.

|Hi −Hj |
|Hi +Hj |

< rh
|Wi −Wj |
|Wi +Wj |

< rw (10)

where (rh, rw) are the size coefficients, also determined experimentally.
After the edge filtering stage every remaining connected subgraph represents

a text group. Text groups are tracked on consecutive frames and sent to the
OCR engine for recognition.
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4 Results

To facilitate comparative analysis, we measure performance on single image text
detection on the ICDAR 2003 text localisation competition ‘TrialTrain’ dataset
[10]. The same definitions for precision and recall were used as defined by the
competition. However, given that our algorithm detects whole sentences instead
of isolated words, we joined the bounding boxes of the ICDAR database words
into sentences, to be able to make fair evaluations. This is the same approach
that Pan et al. [19] employed.

The performance result4 of the proposed method is shown in Table 1 along
with the reported detection results from ICDAR 2003 and ICDAR 2005 text
location competitions (average, and winning entries), as well as our previous
method [15] and three other recent and state-of-the-art algorithms [19,17],
and [5].

Fig. 7. Example results for some of the ICDAR 2003 database images

The proposed method shows a recall value of 0.67, close to the currently best
performing algorithms, e.g 0.71 of [19], while not managing to obtain comparable
precision performance. This means that our algorithm overestimates the num-
ber of detected regions, but indeed, it is not missing many real text locations.
The lower precision rate can be compensated by the OCR engine discarding the
unrecognisable regions. The text tracking step can also help in discarding the

4 All results were obtained using an Intel Core 2 Duo T9300 CPU.
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false positives as these non-text regions are unstable, while text regions are more
consistently detected across several frames. In fact, by performing registration
and super-resolution on tracked text regions [12], recognition accuracy can be
increased. This is however beyond the scope of this paper and forms part of our
future work. Some example results are shown in Fig. 7.

Table 1. Text detection performance on the ICDAR 2003 database

Text localization prec. recall f time (s)

Ashida (2003 winner) [10] 0.55 0.46 0.50 8.5

ICDAR 2003 average [10] 0.32 0.32 0.31 5.3

Hinnerk Becker (2005 winner) [11] 0.62 0.67 0.64 14.4

ICDAR 2005 average [11] 0.39 0.46 0.39 4.25

Merino and Mirmehdi [15] 0.44 0.68 0.48 0.1

Neumann and Matas [17] 0.59 0.55 0.57 N/A

Epshtein et al. [5] 0.73 0.60 0.66 0.94

Pan et al. [19] 0.67 0.71 0.69 2.43

Proposed method 0.51 0.67 0.55 0.2

One key advantage of our implementation is its simplicity and speed, which
makes it feasible for real-time applications, including those involving text track-
ing. On the ICDAR database, it takes an average of 156 ms per image, but this is
not representative for a real-time video text processor as every ICDAR database
image has a different size and they are mostly high resolution still images. For
video sequences we are able to process 14fps on 640× 480 images and 9fps on
800× 600 images (see Table 2).

Table 2. Time consumptions of different stages of the text locator

MSER Filtering total

ICDAR database 134 ms 16 ms 156 ms
640× 480 video 49 ms 10 ms 61 ms 14 fps
800× 600 video 74 ms 15 ms 95 ms 9 fps

5 Conclusion

We have reported a wearable text recognition tool that employs MSERs as the
basis for real-time text detection. The proposed method refines our previous real
time algorithm by exploiting hierarchical structure obtained from MSERs to
yield more stable regions compared to the previous adaptive threshold method.
It outperforms other published approaches computationally while maintaining
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similar text detection performance on the ICDAR dataset. In our future work,
we plan to explore the introduction of a training stage for character recogni-
tion without reliance on third-party software, adding more cascading filters, and
improving precision and recall results in general.
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Cheap, ubiquitous, high-resolution digital cameras have led to opportunities that demand camera-based text un-
derstanding, such as wearable computing or assistive technology. Perspective distortion is one of the main chal-
lenges for text recognition in camera captured images since the cameramay often not have a fronto-parallel view
of the text. We present a method for perspective recovery of text in natural scenes, where text can appear as iso-
lated words, short sentences or small paragraphs (as found on posters, billboards, shop and street signs etc.). It
relies on the geometry of the characters themselves to estimate a rectifying homography for every line of text,
irrespective of the view of the text over a large range of orientations. The horizontal perspective foreshortening
is corrected by fitting two lines to the top and bottom of the text, while the vertical perspective foreshortening
and shearing are estimated by performing a linear regression on the shear variation of the individual characters
within the text line. The proposed method is efficient and fast. We present comparative results with improved
recognition accuracy against the current state-of-the-art.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Efficient and fast comprehension of text in our environment is an
important aspect of scene understanding for a variety of application
areas, e.g. for automatic and assisted navigation of robots and humans
respectively [1–4]. Images from a mobile camera, indoors or outdoors
pose considerable challenges to text understanding, such as blurred or
out of focus frames, uneven lighting, complex backgrounds, and lens
distortion. One of themain issues is perspective distortion as the camera
may not necessarily have a fronto-parallel view of the text. There have
been rare attempts to directly recognize characterswith perspective de-
formation, e.g. [5], but in general, even when the region of text can be
delineated reasonably well, the accuracy of OCR engines degrades
quickly with increasing perspective effects.

The focus of this work then is on perspective recovery of text in nat-
ural scenes. Our aim is to obtain a fronto-parallel reconstruction of an
image patchwith scene text that improves the text recognition accuracy
by off-the-shelf OCR software. The characteristics of scene text are
fundamentally different from those of document images with text
appearing in various orientations includingdiffering orientationswithin
the same image. Such texts usually appear in the form of isolated words
or short sentences in diverse typefaces.

Wewish to recover text (e.g. on posters, billboards, shops and street
signs) from imageswith enough resolution tomake the segmentation of
individual characters possible. We expect only a single frame – so no
temporal information – and no camera parameters, e.g. the focal length
would be unknown. The 3D orientation of the text should not matter
(except for extreme views), and the only assumption we make is that
the text is laid out in a straight line on a planar surface.

Themethod proposed here computes a rectifyinghomography to re-
construct a fronto-parallel image for a line of text that may have been
affected by perspective transformations, such as horizontal perspective
foreshortening, shearing, and vertical perspective foreshortening. We
correct horizontal perspective foreshortening by fitting two lines to
the top and bottom of the text. The shearing and vertical perspective
foreshortening are rectified by first estimating a shearing value for
each character to then perform a linear regression on the shear variation
across the text line.

Our experimental results include a systematic test of texts, obtained
from the ICDAR 2011 Robust Reading Competition datasets [6,7], syn-
thetically regenerated at various orientations to establish a ground
truth for performance comparison, followed by results on natural
scene images. We present performance evaluation showing significant
increase in recognition accuracy, across a wide range of viewing angles,
compared against the unrectified image and the scene text perspective
recovery technique by Myers et al. [8].

Next, in Section 2 the problem is formally defined and set in context
with respect to related works, followed by a detailed description of our
proposed method in Section 3. Experimental results are presented in
Section 4. We conclude our work in Section 5 and point to future
directions.

Image and Vision Computing 31 (2013) 714–724

☆ This paper has been recommended for acceptance by Cheng-Lin Liu.
☆☆ This work was carried out at Bristol University by Carlos Merino-Gracia, who is
funded by the SpanishMinisterio de Industria y Comercio (project TSI-020100-2010-346).

⁎ Corresponding author at: Neurochemistry and Neuroimaging Laboratory, University
of La Laguna, Spain. Tel.: +34 922 319363.

E-mail addresses: cmerino@ull.es (C. Merino-Gracia), majid@cs.bris.ac.uk
(M. Mirmehdi), sigut@isaatc.ull.es (J. Sigut), jlgonzal@ull.es (J.L. González-Mora).

0262-8856/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.imavis.2013.07.002

Contents lists available at SciVerse ScienceDirect

Image and Vision Computing

j ourna l homepage: www.e lsev ie r .com/ locate / imav is

93



2. Problem statement and related work

Before the emergence of camera based document acquisition, in-
plane rotation or skew was the main geometric correction that docu-
ment analysis systems had to deal with. Extensive literature exists in
the area of document skew estimation, for example for some surveys
see [9–11].

For camera based rectification of text, there aremore degrees of free-
dom to consider. Assuming text lies on a planar surface, the process of
perspective recovery of text can bemodeled as a projective transforma-
tion [12] between the source image and a target image. As the projective
transformation preserves linearities, a rectangle enclosing the text in its
original plane and orientation is seen as a quadrilateral in the source
image and would need to be mapped to a rectangle in the target
image (see Fig. 1). This projective transformation or homography is
represented by a 3 × 3 mapping matrix:

p′ ¼ Hp; ð1Þ

where p = [x y 1]⊤ and p′ = [cx′ cy′ c]⊤ are homogeneous coordinate
points in the source and target images respectively and H is the
homography matrix.

The homography has 8 degrees of freedom which can be
decomposed into: translation and scale along each axis, Euclidean
rotation, shear and two perspective foreshortenings along each axis
respectively. As pointed out by Myers et al. [8], some of the degrees
of freedom affect recognition more than others: OCR engines can
deal with translation and scaling well, and rotation (or skew) is
also handled by current OCR systems (albeit for a limited range of an-
gles). Therefore, OCR-wise, the problem can be reformulated as
correcting the distortions produced by shear and the two perspec-
tive foreshortenings, or alternatively, as estimating the location of
two vanishing points within the image plane.

Pilu [13] and Clark and Mirmehdi [14,15] were among the first to
look at perspective recovery of camera acquired document images. Pilu
[13] looked at the high level organization of text within documents as
a basis for extracting illusory visual clues and computing the vanishing
points to perform rectification. He employed a saliency measure be-
tween text connected components to form lines of text and estimate

the horizontal vanishing point. Then, he used a set of carefully chosen
rules of association between components in different lines to construct
a set of candidate vertical lines which defined the vertical vanishing
point. However, given that vertical clues are more scarce and difficult
to get, Pilu [13] acknowledged that his vertical vanishing point estima-
tion is not as reliable as the horizontal one. Clark and Mirmehdi [14]
proposed two distinct perspective correction techniques based on
extracting cues from higher level structures of text within document
images. In their first technique, they searched for quadrilaterals in the
image that would enclose text (e.g. paper borders, frames) and use it
to compute the projective transformation. In their second and more
complex approach, they considered the text itself only to infer the two
vanishing points. The horizontal vanishing pointwas estimated by com-
puting a projection profile for every possible vanishing point in a 2D
polar search space around the image center. Then, the vertical vanishing
point was obtained by projecting lines from the left and right margin
lines, which restricts this technique to fully justified paragraphs. This
process was later refined [15] to include left or right-only justified par-
agraphs by employing the spacing between lines in the computation of
the vertical vanishing point. In a similar fashion to the first technique of
[14], Cambra and Murillo [16] also looked for borders enclosing text
regions for rectification and implemented it on a mobile phone.

More recent works focused on document images include
Stamatopoulos et al. [17] and Liang et al. [18] where perspective re-
covery was considered along with dewarping. In [17], after a word
and line detection stage, text was rectified in two steps: a coarse cor-
rection to remove the global distortions of the image and a fine cor-
rection to restore the local deformations. The coarse rectification
proceeds by warping an area delimited by two curves fitted to the
top and bottom text lines of the document, along with the left and
right boundaries of the text. Another text detection stage precedes
the fine rectification step, in which a baseline is fitted to every
word and used to rotate and translate each of them independently
in the output image. Liang et al. [18] used the notion of texture flow,
where certain patterns in textured surfaces can give a sense of con-
tinuous flow. Two texture flow orientations (named major and
minor) were found in document images, aligned with the directions
of the text line and the vertical strokes respectively. The major tex-
ture flow was determined by applying projection profiles locally,
where directional filters were used to obtain the minor texture
flow. The method differentiates between flat and curved document
images, the latter involving not only rectification, but document
dewarping. In the case of flat documents, the lines projected by the
two texture flow directions converge into vanishing points that
were then used to compute the rectification.

Themethods described above cannot be applied to scene text, since,
to find orientation cues, they rely on how text is structured and orga-
nized within documents, i.e. as groups of lines. The most relevant
work, specifically dealing with 3D scene text recovery, is by Myers
et al. [8] whose method deals with individual or isolated text lines
found in everyday scenes, particularly outdoors. In that work, images
are first segmented and individual lines of text are extracted. The text
lines are rotated at various angle increments and horizontal projection
profiles for each angle are computed. By measuring the slope on the
sides of the projection profile, top and bottom angles can be estimated,
allowing for the estimation of the horizontal vanishing point and a
partial rectification of the text by removing the horizontal foreshortening.

As expressed earlier, correcting shear and vertical foreshortening is a
challenging problem due to the difficulty of obtaining accurate vertical
cues for text — even more so when only one text line is being consid-
ered. Myers et al.'s [8] view of this is that a weak perspective deforma-
tion is expected in the vertical axis on natural scenes, as cameras are
usually oriented closely to the horizontal and, in the real-world, text is
laid out on vertical surfaces. Therefore, assuming that the vertical
vanishing point lies at infinity, they estimate a single shear angle for
the whole line by also employing vertical projection profiles. However,

Fig. 1. A projective transformation of text. A rectangle enclosing the text is seen as a quadri-
lateral in the source image (a) and is mapped into a rectangle in the target image (b).
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they also acknowledge that, when the perspective distortion is signifi-
cant, their method of correcting shear produces (after rectification) a
line of text where the vertical strokes vary in angle with respect to
their horizontal position. This is more apparent when images obtained
with hand-held or wearable cameras are considered, since the camera
could be pointing to text at more extreme orientations. Furthermore,
in Myers et al. [8], a large number of possible shear angles within an in-
terval have to be evaluated, which involves a whole image transforma-
tion and the computation of a projection profile for each angle. This
makes their method inefficient, or if the number of evaluated angles is
reduced, inaccurate.

Several systems have been proposed where only an affine rectifica-
tion of text was performed. In thework by Chen et al. [19], text was seg-
mented using an edge detector combined with a Gaussian mixture
model (GMM) to separate the text from the background. Characters
were grouped together by means of a similarity function and a Hough
transform on the character's center points was used to detect linear dis-
tribution patterns. A minimum area rectangle was then fitted around
each character, aligned with the main direction of the character's
group. The most salient rectangle of each group – selected as the one
with maximum average edge intensity inside the rectangle – was used
to compute two (top and bottom) parallel lines for the group. Two addi-
tional parallel lines were also computed using the left- and right-most
character rectangles. With these lines an affine rectification of the text
group was then computed. Yamaguchi et al. [20] employed a two step
rectification for recognizing digits in natural scenes. They made the as-
sumption that the text plane is close to a fronto-parallel view from the
camera, thus considering that the vanishing points are far away or
close to infinity. Under these conditions, the text was rectified by apply-
ing two affine transformations in sequence: one to remove the skew (or
in-plane rotation) and a second to remove the slant (or shear). The skew
angle was obtained with a modified Hough transform on the center
points of each character. Then, rotated minimum area rectangles were
circumscribed to each character to obtain an average slant angle for
the whole line. Therefore, as a true projective transformation was not
being performed on either of these methods, they will also produce in-
correct rectifications when significant perspective distortions are in
play.

A completely different approach was employed by Li and Tan
[5] by recognizing characters with perspective distortion directly.
This technique was aimed at recognizing symbols (e.g. single char-
acters, traffic signs, logos). For this purpose they introduced an
image descriptor which is invariant to projective transformations.
The authors demonstrated the increased recognition accuracy of
their method over state-of-the-art image matching algorithms for
symbols with severe perspective deformations. However, when
considered for scene text recognition, this approach lacks all the
technical advances that current OCR engines apply besides character
recognition: joining or splitting of components to form characters,
text line and word formation, statistical dictionary search, etc. If these

techniques were to be adapted and applied directly on the unrectified
image, they would certainly benefit from having an estimation of the
true orientation of the text line.

In this work we perform a full perspective rectification of the text,
relying only on the geometry of the characters themselves. We do not
assume the vertical vanishing point to lie at infinity, thus allowing for
bigger variations of shear within the line of text, and our method deals
efficiently and accurately with a larger range of view angles.

3. Proposed method

Our full scene text extraction system comprises several stages: text
detection, text grouping and orientation detection. Since the focus of
our work here is on the latter two stages, which encompass our intro-
duction and evaluation of the proposed perspective rectification meth-
od, we only briefly review our initial detection stage to set the scene.
More details of our various text detection methods can be found in
[1,21]. Any other text detection technique, such as [22] or [23], which
output candidate regions of text can also be used as input to our per-
spective recovery method.

3.1. Text detection

The input image has to be segmented to obtain a set of regions
representing individual characters or small groups of them. For this
purpose, a text detectorwhichwepreviously developed [21] is employed.
A brief outline of the algorithm follows.

Adaptive thresholding is applied to binarize the input image and
retrieve a set of connected component regions (CCs). A tree is then

a) b) c) d)

Fig. 2. The result of the segmentation and grouping steps: (a) the original image, (b) the segmented components, (c) the association graph (gray edges were removed during saliency
filtering and red edges were removed during histogram filtering; the green edges represent the segmented text lines), and (d) the grouped text lines. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

mid line

estimated top point actual top point

Fig. 3. Top point estimation — on severely perspective distorted characters the estimated
top point and the actual top point might not correspond.
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constructed to represent the topological relationship between these
CCs. A key step of this algorithm is the hierarchical filtering of the tree
nodes, based on the assumption that on real-world images with scene
text, structural elements (such as sign borders, posters frames etc.)
can be discarded purely based on their hierarchical relationship with
other text regions. Additionally, the tree filtering approach allows for
the segmentation of dark and bright text in one pass only. The CCs are
then classified bymeans of a cascade of text filters that operate on char-
acteristics such as size and contrast against the background, and an ei-
genvector based texture measure adapted from [24]. Fig. 2a shows an
example image and Fig. 2b illustrates the corresponding CCs (or re-
gions) detected at this stage.

3.2. Text grouping

The CC regions detected above will be a fragmented representation
of the characters in words, and words in short sentences. We need to
group these together to reform words and sentences, in order to be in
a position to extract common clues for the perspective recovery of the
text. This reformation is performed by first determining which CC re-
gions are connected by evaluating a visual saliency measure between
each pair of regions, and then by searching for dominant orientations
to separate independent lines of text.

3.2.1. Saliency filtering
First, a Delaunay triangulation [25] joining the center points of every

CC is performed, with the center points being the center of mass of each
region. The Delaunay triangulation enables us to efficiently construct a
neighbor relationship graph between all the components. Fig. 2c
shows the result of the Delaunay triangulation. For every edge of the
resulting graph,which represents a pair of adjacent CCs, a saliencymea-
sure is computed.

We use the two saliency operators introduced by Pilu [13]: the blob
dimension ratio (BDR; γ) and the relative minimum distance (RMD; λ).
Given two CC regions, A and B, BDR evaluates the similarity in size be-
tween them, i.e.

γ A;Bð Þ ¼ Amin þAmax

Bmin þ Bmax
; ð2Þ

whereAmin,Bmin,Amax andBmax are theminimumandmaximumaxes of
regions A and B respectively, while RMD evaluates the distance of the
two CCs relative to their respective sizes, i.e.

λ A;Bð Þ ¼ Dmin

Amin þ Bmin
; ð3Þ

where Dmin is the minimum distance between two regions. The mini-
mum and maximum axes are extracted from the minimum enclosing
box (rotated rectangle) around the regions. The combined saliency op-
erator between the two text regions is then:

P A;Bð Þ ¼ N λ A;Bð Þ;1;2ð Þ � N γ A;Bð Þ;0;4ð Þ; ð4Þ

whereN(x, μ,σ) is a Gaussian distributionwithmean μ and standard de-
viation σ (the parameters were determined experimentally by Pilu
[13]). Edges with P A;Bð Þ b 0:9 are removed from the graph. In Fig. 2c,
edges removed during the saliency filtering are represented in gray.

3.2.2. Histogram filtering
After the saliency filtering, every remaining connected subgraph is a

candidate text group, each of them possibly containing one or more
lines of text. The text groups are then evaluated to find the dominant
orientation and to separate the individual text lines.

The angle between each edge of the subgraph and the x-axis is com-
puted and reduced to the [0, π) interval. This angle interval is divided
into 8 bins and then a histogram of angle distribution of the graph
edges is built. The histogram bin containing the highest number of
edges is selected. Every edge that does not belong to that bin or to any
of its two adjacent bins is removed from the graph. The remaining
edges belong to the dominant orientation of the text line. After the re-
moval of these graph edges, the original subgraph may be split into

Fig. 5. Image partially rectified according to the top, bottom, left and right lines. The
displacement (δ2) for the second character is also shown.

Fig. 6.Quadrilateral formedafter computing the two shear angles. Additionally, theupright
shear angle (σC) for the second character is shown.

Fig. 7. Axes for the rotations applied to text in our experiments.

A

C

BD

left line

top line

mid line

bottom line

outlier

outlier

right line

Fig. 4. Top, mid, bottom, left and right lines along with the formed quadrilateral. The out-
liers of the line estimation are also illustrated here.
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smaller subgraphs since the original candidate text groups might have
had multiple text lines that are now separated. In Fig. 2c, filtered
edges at this stage are represented in red, and the remaining connected
subgraphs are represented in green. Finally, Fig. 2d shows the result of
the text segmentation and grouping, in which each segmented text
line is drawn in a different color.

Now every remaining connected subgraph contains only one text
line. A text line is defined by a set of N characters Ci, i = 1,…N, each
character being a connected component. The perspective estimation re-
lies on the character's contour points and, for efficiency reasons, the
convex hull of each CC is used as the contour for the character. For the
remainder of this paper, the unit of work is the text line.

3.3. Orientation detection

The orientation estimation technique works on a single line of
text and the objective of this stage is to estimate a projective
transformation – a 3 × 3 homography matrix – of the original
image's region of interest to an area in which the candidate text
would be rectified. The orientation detection is performed in two
stages: parallel rectification and shear estimation.

3.3.1. Parallel rectification
A line is fitted to the center point of every character in the text line

(the center of mass already computed before), using a least squares
method, and named the mid-line. As used and defined here, this line

will not usually correspond to any conventional typography line in the
text. Possible errors or variations in the location of the characters' center
points, and so the mid-line, will not significantly affect the rectification,
as it is used as an approximate guide of the direction of the text line,
allowing us to define which side of the text line is the ‘top’ and the ‘bot-
tom’ respectively.

For every character, the farthest contour points on each side of
the mid-line are gathered as the top and bottom point sets respec-
tively. On severely distorted characters, the estimated top points
(and likewise the bottom points) will not exactly correspond to the
actual top (and bottom) points of that character within its reference
plane and orientation. It is, however, an adequate and sufficient ap-
proximation for the estimation of the top and bottom lines (see
Fig. 3). Again, small variations on the location of the mid-line will
not significantly affect the rectification.

A top line is then obtained by performing a least squares line
fitting with RANSAC outlier removal on the computed top points.
This process is repeated with the bottom points to get a bottom
line. The outliers discarded during the fitting will usually correspond
to the ascenders or descenders of those characters that have them
(see Fig. 4).

Two additional lines are computed as follows: through every contour
point of each character, a line is projected perpendicular to the mid-line.
Of all these projected lines, the left-most and the right-most ones along
the direction of the mid-line are kept and named the ‘left’ and ‘right’
lines. The intersection of the four computed lines (top, bottom, left and
right) forms a quadrilateral with vertices A, B, C and D, labeled clockwise
starting with the intersection of the left and top lines, as in the example
shown in Fig. 4.

A straightforward homography Hp from four pairs of matching
points [12] is computed so that the quadrilateral (ABCD; Fig. 4) is
mapped to a rectangle (A′B′C′D′; Fig. 5). The aspect ratio and size
of the target rectangle are still unknown, but not significant as the
OCR engine is scale independent. The rectified image, however,
needs to have enough resolution for the OCR to operate. Hence, we
define the dimensions of the target rectangle (w, h) as:

w ¼ max d A;Bð Þ; d C;Dð Þð Þ; h ¼ max d A;Dð Þ;d B;Cð Þð Þ; ð5Þ

where d(a, b) is the Euclidean distance between two points.
This partial rectificationwill transform the top and bottom lines into

being horizontal and parallel, removing the distortion produced by the
horizontal vanishing point. We refer to the result at this stage as the
parallel image.

3.3.2. Shear estimation
A shear effect still remains in the projected text line in the parallel

image due to the vertical vanishing point (this is clearly discernable in
Fig. 5). As previously stated, correcting the shear has always been a

sh
ea

r
(σ

)

displacement (δ)

first estimated
shear angle second estimated

shear angle

shear line fit

outlier

outlier

Fig. 9. Shear angle estimation— from the alternative shear candidates of the first letter (σL
0,σ

C
0 andσ

R
0) thewrong ones (in red) are discarded as outliers by the RANSAC line fitting. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

shear angle (σC)

width minimum width

a) one shear angle estimation
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width minimum width interval
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Fig. 8. Shear estimation for one character.
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challenging problem.We look at the shear angle variation of the charac-
ters within the line to perform a linear regression of angle values and
obtain an accurate estimation of two shear angles at the edges of the
text line, which will in turn implicitly define the vertical vanishing
point.

First, the characters' center points are ordered along the x-axis in the
parallel image. The horizontal distance of each character's center point
to the left-most one is called displacement δ. For the sake of clarity,
the character indexes used in this section and the referenced figures
will reflect this ordering. Consequently, the first character is the left-
most one and its displacement is zero (δ1 = 0). Fig. 5 shows the dis-
placement for the second character, i.e. δ2.

Next, an upright shear angle is computed for each character
which is the shear value at which thewidth of the character's vertical
projection is minimized. Most characters have a single angle which
minimizes this projection, and we refer to this as σC (see Fig. 8a),
however, some characters have a range of angles, e.g. those with a
triangular shape such as letter ‘A’ or ‘V’ (see Fig. 8b). In those cases,
three candidate angles are considered: the left (σ L), right (σR) and
central (σC) angles of the interval, with σC = (σ L + σR)/2. Thus,
after any character's shear estimation, the character has either one
(σC) or three (σ L, σC, σR) angle estimates. It is of note that for
some symbols (e.g. the forward slash — ‘/’) the width minimization
produces an incorrect upright shear angle estimate.

A set of 2D points comprising pairs of displacement and shear
angle is constructed: (δi, σC

i), (δi, σ L
i) and (δi, σR

i), i = 1,…N.
Again, linear regression is performed on these points, including
RANSAC-based outlier removal which will discard those shear esti-
mations that do not fit with the shear angle variation within the
text line. For example, in Fig. 9 the first letter ‘A’ has three angle
estimates and two of them are discarded as outliers, while the rest
of the letters only have one angle estimation. The fitted line is
then used to calculate two shear angles at the ends of the text line
(i.e. at δ1 and δN, as also illustrated in Fig. 9).

On an implementational note, the upright shear angle can be effi-
ciently computed using a variation of the Rotating Calipers paradigm
[26]. In its standard form, it is used to compute the diameter of a convex
polygon byminimizing the distance between two parallel lines that are
rotated around antipodal vertex pairs. Consequently, we operate on the
character's convex hull, but we select the pair of lines with minimum
horizontal distance (i.e. distance along the x-axis direction). The angle
of these lines with respect to the x-axis is the character's upright
shear angle. In Fig. 6, the upright shear angle for the second character
(i.e. σC

2) is shown along with the parallel lines used to minimize the
width. The estimated first and second shear angles of the text line are
also portrayed.

Once both shear angles are obtained, two lines can be defined on
both sides of the text line. They pass through the center of the left-
most and right-most characters respectively and form an angle
with respect to the x-axis equal to the computed shear angles.
These lines intersect the rectified top and bottom lines defining a
quadrilateral (A″B″C″B″, as shown in the example in Fig. 6). A
homography Hs mapping this new quadrilateral to a rectangle is
computed. The result of this transformation is the rectified image.

Thus, the full rectifying homography for the original image is the
combination of both partial rectifications:

H ¼ HsHp: ð6Þ

4. Experiments and results

In our first set of experiments, we used synthetic images to sys-
tematically evaluate the performance of our perspective rectification
method along all possible viewpoint orientations. In the second set,
examples of natural scene images were used to illustrate and evaluate
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Fig. 10. The effect of roll on recognition accuracy.
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the proposed method further. Throughout the experiments, we com-
pare off-the-shelf OCR recognition accuracy on the unrectified images,
on images post-rectification by our proposed method, and on images
post-rectification by the method of Myers et al. [8]. The nomenclature
we use for the axes is illustrated in Fig. 7: roll for in-plane rotation, ele-
vation for the axis aligned with the text line direction and azimuth for
the vertical axis with respect to the text.

It should be noted that we did not use the ICDAR 2003 Robust Read-
ing dataset [27] or the Street View Text dataset [28], as neither contains

text captured at perspective views, hence they are ill-suited to our
purpose here.

4.1. Comparative evaluation on synthetic data

Our synthetic images simulate text appearing at different orien-
tations. As text segmentation is error-free on the synthetic images,
the result will not be affected by possible text localization mistakes
that would arise from using real-world images, and so we obtain an
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accurate performance figure of the proposed perspective recovery
method alone.

To provide a realistic sample of texts among those usually en-
countered in a typical city environment, we use all the words
(with 3 or more characters) from the groundtruth dataset of the
ICDAR 2011 Robust Reading Competition (challenges 1 and 2)
[6,7], giving us a set of 3225 short phrases and single words. These
are rotated along all possible orientations in the range [−90°, 90°]
in 5° increments in each of the three axes, resulting in a total of
over 162 million images; thus each image contains one phrase in a
particular orientation. A selection of the images generated is shown in
Fig. 12.

Every image is then rectified with our proposed perspective recov-
ery method to obtain a fronto-parallel image. For comparison purposes,
Myers et al.'s [8] method is also implemented and used to recover the
image. An additional groundtruth baseline image is obtained by rectify-
ing the original image with the known groundtruth orientation data.
Then, the original image, the recovered images from each method re-
spectively and the groundtruth baseline image are run through an
OCR engine.1 For each recognized text an accuracymeasure is obtained,

1 http://code.google.com/p/tesseract-ocr/.

Fig. 12. A selection of the synthetic images used in the experiments, along with their estimated orientation (red box) and corresponding rectified image. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this article.)

721C. Merino-Gracia et al. / Image and Vision Computing 31 (2013) 714–724

100



based on the Levenshtein distance, which represents the difference be-
tween the groundtruth and the recognized text normalized by the
length of the groundtruth text, i.e.

accuracy R;Gð Þ ¼ 1−min L R;Gð Þ;#Gð Þ
#G

; ð7Þ

where R is the text recognized by the method under examination, G is
the groundtruth text, L(x, y) is the Levenshtein distance between two
texts, and #x is the length of a text string.With this measure, 0 is a com-
plete miss and 1 is a perfect recognition.

For each possible orientation, the average accuracy over all the
phrases is computedwhich gives a rectification performance evaluation
from the recognition point of view. The groundtruth baseline helps get
an indication of the recognition accuracy and optical resolution limit
of the OCR engine. Even with a perfect rectification, some non-
dictionary words are never recognized properly and, in extreme orien-
tations, some resulting images might not have enough resolution for
the OCR to operate (see e.g. Fig. 12i, m or p, where the side of the text
is blurred).

In Fig. 10,where the effect of roll is studied, Fig. 10a shows the perfor-
mance of the recovery when only in-plane rotations are considered,
while Fig. 10b and c evaluate the combination of roll with elevation
and azimuth at 45° respectively. As shown in the results, our method is
not affected by text's in-plane rotation, yielding a constant recognition
accuracy for the whole range of roll angles except when roll = 90°.
The case of roll = 90° is particular because the mid-line is vertical
(or close to) and the ‘up’ direction is not clear. Although the per-
spective distortion is properly corrected, the text might be rectified
upside down (see e.g. Fig. 12l or 14h), which produces an incorrect
recognition. Upside down text could be easily detected by
performing two OCR recognitions: on the rectified image rotated
at 0° and at 180°, and keeping the one with higher OCR confidence.
As the focus of this work is on the perspective rectification tech-
nique, we present the method as is, without this post-processing
correction step for this specific and extreme case.

The results in Fig. 10 are consistent in our experiments for the full
range of elevation and azimuth values. Consequently, for ease of exposi-
tion and presentation, we will focus on demonstrating the effect of azi-
muth and elevation changes only, and the following graphs will all have
roll fixed at 0°.

Fig. 11 studies the effect of azimuth and elevation against each other.
The left column portrays the variation of azimuth for fixed values of el-
evation (0°, 30° and 45° — Fig. 11a, c and e respectively) and likewise,
the right column displays the variation of elevation for fixed values of
azimuth (0°, 30° and 45° — Fig. 11b, d and f respectively). Considering
each axis separately, any angle of roll, up to 50° in azimuth and up to
45° in elevation yield an almost perfect average recognition accuracy
of 0.96 after recovery. This recognition accuracy is maintained for any
combination of angles under 45°. The method also achieves a very
good recognition accuracy (above 0.8) for any combination of angles
up to 60°. Compared to the results reported inMyers eta al. [8], our pro-
posed method shows an increase in recognition accuracy for a wider
range of angles.

As expected, the OCR engine alone deals in a very limited way with
perspective distortion. Any changes in roll, azimuth or elevation quickly
introduce recognition errors after around 20–25°. In our experiments,
the method by Myers et al. [8] performs well (more than 0.9 accuracy)
with roll until 40°, in azimuth up to 45° and in elevation up to 30°, when
each angle is studied separately. The differences in the methods are
more apparent when combined rotations are introduced. For example,
looking at elevation changes alone (Fig. 11b), the three methods per-
form similarly. However, when combined with azimuth (Fig. 11d and
f) the proposedmethod retains the same accuracy (0.96 average accura-
cy up to 45°), while the OCR fails quickly and Myers et al.'s method ac-
curacy degrades rapidly.

Another parameter that affects recognition accuracy after recti-
fication is word length, measured as the number of non-
whitespace characters of a given text line. The RANSAC algorithm
needs a certain ratio of inlier vs. outlier points to accurately esti-
mate the top and bottom lines. To establish the effect of word
length in rectification accuracy, Fig. 13 shows the average recogni-
tion accuracy per word length, for all values of roll, azimuth and
elevation under 45°. The proposed method performs best (with
more than 0.98 average recognition accuracy) with words of at
least 6 characters, The recognition accuracy is also very good (above
0.9) with words as short as 4 characters. As a reference, Table 1 illus-
trates the distribution of word lengths in the set of words used in our
experiment.

4.2. Natural scene images

The first experiment was designed to evaluate the accuracy of
the rectification step alone, assuming a perfect text detection re-
sult. Real world images feature complex backgrounds, uneven
lighting and noise, which can confuse the text segmentation stage
and occasionally produce wrongly labeled text regions. To obtain
a measure of the method performance for real, everyday scenarios,
a set of 120 natural scene images were used to evaluate the system.
They contain scene text from shop names and signs taken at vari-
ous orientations, comprising several typefaces. Fig. 14 shows sever-
al examples from the image set after applying our proposed
method, illustrating the resulting bounding boxes obtained after
the text detection stage (referred to in Section 1) and correspond-
ing rectified images. The images were manually annotated to ob-
tain a groundtruth of the text present in them. Table 2 shows a
comparison of the average recognition accuracy, using Eq. (7), on
the unrectified images, and after rectifying with Myers et al.'s [8]
method and the proposed method, with the latter showing marked
improvement.

Given the unconstrained way in which our method extracts the top
and bottom lines, it is specially well suited to correct any kind of text's
in-plane rotation, as seen in the results. Furthermore, our shear angle
computation (taking into account the variation of shear across the
whole line) allows us to correctly detect the orientation of words that
end in non-square letters (e.g. see the ‘Y’ in Figs. 12g, i, o, 14a, n, and
o, the ‘T’ in Figs. 12a, 14g, and o, or the ‘W’ in Figs. 12k, 14e, and o). In

Proposed method
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Fig. 13. The effect of word length on recognition accuracy.
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these cases, a naïve box fitting approach would fail. Text lying on the
ground, or far above the camera introduce big shear distortions which
are also properly corrected with this technique (as seen in Fig. 14b, f
and m).

4.3. Speed

In our implementation, text extraction, including segmentation,
grouping and perspective estimation, performed on an Intel Core

Fig. 14.A selection of realworld imageswith scene text, alongwith the text's estimated orientation (red box) and rectified image. (For interpretation of the references to color in thisfigure
legend, the reader is referred to the web version of this article.)
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i7-2600 processor, achieved real-time performance of 20 fps on
1280 × 720 video sequences. The orientation detection stage (as
explained in Section 3) requires, on average, 0.1 ms per text line. As a
reference, our implementation of Myers et al.'s [8] method needs
20 ms per text line.

5. Conclusion and future work

We presented here a technique for the perspective recovery of text
in natural scenes. Aimed at scene text, it focuses on isolated words or
short sentences, as found on billboards, posters, shop names, street
signs etc. It is a geometrical approach that relies exclusively on the con-
tours of segmented characters and thus does not depend on higher level
structures in the text such as borders or paragraphs. It is also fast,
allowing for a real-time implementation. Experiments and comparative
results show an increased accuracy in text recognition after recovery,
compared to the current state-of-the-art 3D text recovery technique.

The proposedmethod outperforms previous approaches in scene text
perspective recovery, however, its current limitations are mainly related
to the quality of the input into it, i.e. the earlier stage of text segmentation.
Noisy regions in the image,whichwould be incorrectly labeled as text can
confuse the top/bottom line estimation andupright shear angle computa-
tion. In extreme orientations, the available resolution of text in the image
is limited. Low resolution can cause the RANSAC line fitting method to
pick up the wrong combination of points for the top and bottom line es-
timation. This happens on words with false slopes, i.e. words or phrases
with uneven distributions of tall and short characters. For example, we
have found that the phrase ‘lifelines’ is specially challenging for ourmeth-
od, as the tall letters are all distributed at the beginning of the word. On
some orientations, the estimated top line can lie slanted between the
tops of the first ‘l’ and the last ‘s’ respectively, rendering the perspective
estimation incorrect. Yet, in many cases it is still recognizable by the OCR.

Our future plan is to address the current shortcomings of our
method. We will look into improving our text grouping algorithm,
aiming to achieve a better clustering of candidate text regions into
text lines. If the line formation was also to provide clues about
higher level structures, such as paragraphs, that information
could also be used to improve the understanding of the scene as
a whole.
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Table 1
Word length distribution in the synthetic text dataset.

length Count Length Count

3 376 10 141
4 640 11 85
5 504 12 53
6 460 13 31
7 430 14 18
8 269 15+ 24
9 194 Total 3225

Table 2
Average OCR recognition accuracy on the real-world
image set.

No rectification 0.25
Myers et al. [8] 0.40
Proposed method 0.87
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Abstract: The authors present a system that automatically detects, recognises and tracks text in natural scenes in real-time. The
focus of the author’s method is on large text found in outdoor environments, such as shop signs, street names, billboards and so
on. Built on top of their previously developed techniques for scene text detection and orientation estimation, the main contribution
of this work is to present a complete end-to-end scene text reading system based on text tracking. They propose to use a set of
unscented Kalman filters to maintain each text region’s identity and to continuously track the homography transformation of the
text into a fronto-parallel view, thereby being resilient to erratic camera motion and wide baseline changes in orientation. The
system is designed for continuous, unsupervised operation in a handheld or wearable system over long periods of time. It is
completely automatic and features quick failure recovery and interactive text reading. It is also highly parallelised to
maximise usage of available processing power and achieve real-time operation. They demonstrate the performance of the
system on sequences recorded in outdoor scenarios.

1 Introduction

Accessing textual information in the environment is crucial in
our daily lives and there is a clear need for technology that can
automatically extract and process such text for the benefit of
those who might have difficulty accessing it, for example,
for assisting the blind, for translating for tourists and for
devices that need to know, such as robots. Hence, in recent
years, there has been a significant increase in scene text
detection and recognition works, see for example [1–4].
The main focus of such works has been on text
segmentation in single images, with increasingly better
results as measured against the most widely used dataset
[5]. However, current state-of-the-art scene text recognition
methods, such as those above, and including those that
operate on video images and in real-time, for example, [3],
lack scene awareness. They treat their input as a succession
of unrelated images, attempting to segment and recognise
the text in them without taking advantage of the fact that
the same text is invariably repeated across many
consecutive frames in a video sequence.
Natural scene images pose significant challenges to text

understanding, such as blurred or out of focus frames,
uneven lighting, complex backgrounds or perspective and
lens distortion. On the other hand, a continuous stream of
frames provides a temporal redundancy that can help
address some of these drawbacks. For example, a blurred
image can be difficult or impossible to process on its own,
but as part of a sequence, a blurred frame can be ignored as
there are chances that other frames in the sequence are
clear. In addition, while the estimation of the
three-dimensional (3D) orientation of scene text from single
images is certainly possible [6, 7], the apparent changes

objects undergo in the scene as the camera moves can help
reduce the uncertainty in orientation estimation.
The main contribution of the work here is a text reading

prototype based on text tracking. Text tracking leverages
the main difference between flat-bed scanner and
camera-based document analysis (i.e. spatial resolution
against temporal redundancy) and allows us (i) to maintain
region identity across the sequence and (ii) to smooth the
estimation of the region’s parameters (position and 3D
orientation) to reduce jitter. Both of these outcomes play a
major role in facilitating scene awareness, in reduction of
false positive segmentations and increase in recognition
accuracy, and in better interactive communication of text in
the environment to the user, for example, by managing the
frequency of communicating text seen in the scene as an
audio signal to a blind user. Text regions are segmented
using an adaptive threshold-based technique [8], and their
3D orientation estimated by means of an efficient geometrical
algorithm [7]. Then, each text region is independently tracked
by an unscented Kalman filter (UKF). Our prototype operates
in real-time and it is autonomous, that is, new trackers are
created when new text entities are found and their identity is
kept for as long they are in view; they are removed when the
entities are no longer detected, given some resilience to brief
occlusions. Trackers are automatically selected for optical
character recognition (OCR) – a process carried out in parallel
to tracking by an off-the-shelf OCR engine. This
demonstrates the role tracking plays, that is, when a text
recognition result is available, the system is able to relate it to
the original text entity even if the camera has moved.
Likewise, available recognition results are automatically
selected for synthesising into audio (using text-to-speech) and
are played back to the user.
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This paper is organised as follows. Section 2 outlines
related works. The proposed system is described in detail in
Section 3 and in particular, Section 4 explains the text
tracking mechanism. We discuss the quantitative and
qualitative performance results of our system in Section
5. Finally, Section 6 concludes the paper.

2 Related work

There are very few works on text tracking, let alone natural
scene text tracking. Initial works in this area focused on
tracking graphically overlaid text in videos (e.g. in news or
sports reports), such as [9–11], and here we will not deal
with such works any further. In the area of scene text
tracking, we are only aware of these works [8, 12–18]. The
earliest work specifically dealing with scene text tracking is
that of Myers and Burns [12], where an offline system was
proposed to extract scene text at arbitrary orientations. They
first tracked a series of feature points across the whole
sequence, and then, with the assumption that all the points
belonging to a certain text area lie on the same plane, they
estimated the planar transformation of the points in multiple
frames simultaneously to extract a fronto-parallel
representation. As it stands, this technique is unsuitable for
online real-time operation.
In [8], we presented a near real-time (15 fps) scene text

tracking system-based on particle filtering (PF). The text
was first segmented using an adaptive threshold-based
technique. Segmented components were then grouped
together using a saliency filter to form text entities (i.e.
words or groups of words forming small sentences). Each
text entity was assigned a PF tracker which maintained a
set of features and a simple state (a 2D translation and an
in-plane rotation). The particles’ weights were computed as
the number of matched features within a search area, where
the identity of individual features was established using
scale invariant feature transform (SIFT) [19] descriptors. A
key aspect of this method was the use of just a few high
quality features for tracking – in this case, segmented
characters. This required a full text segmentation stage per
frame (and thus demanded a very fast text segmentation
algorithm), but the advantage was that the trackers were
more resilient to big changes in orientation, occlusions and
illumination changes. This early work, although very useful
as a proof of concept, was found to have certain drawbacks
where some performance improvement was necessary. For
instance, over 80% of the frame processing rate was
associated with feature matching, that is, SIFT, which is a
computationally expensive operator. In addition, the number
of SIFT descriptors produced by each feature (i.e.
characters) was rather low, and limited the ability to
discriminate between measurements. SIFT is affine invariant
but not perspective invariant, and no estimation of the 3D
spatial orientation of the text in the scene was performed so
the whole system was sensitive to wide baseline changes.
This is also related to the simple state model used, namely
just a 2D translation and in-plane rotation, that traded
accuracy and robustness in favour of low computational
complexity and hence better frame rate.
Particle filtering was also used by Tanaka and Goto [15,

16] and by Minetto et al. [18] for text tracking. The former
works described a wearable system for the blind where text
was detected using discrete cosine transform (DCT)-based
features (on prior works by Goto and his co-workers [13,
14], a simple tracking system was described based on block

matching between frames). Tracking was performed by
generating particles on candidate text regions in new
frames, and they were weighted according to a similarity
function between the regions based on cumulative
histograms. No perspective correction was performed, and
only region identity and limited 2D motion was maintained
by this method.
In Minetto et al. [18], candidate text regions were initially

segmented using a morphological operator applied at different
scales, then classified by means of a support vector machine,
and grouped together based on their relative distances and
sizes. For each text region, particles were propagated in
subsequent frames using a first-order motion model.
Particles’ weights were proportional to a similarity
coefficient between the histogram of oriented gradients
descriptors of the respective image regions.
A different approach was used by Na and Wen [17] by

tracking text directly using SIFT. A global motion between
frames, modelled as a similarity transformation [20] was
computed by minimising the least squares distance between
the SIFT feature matches. In their work, the authors did not
specify how text regions were segmented. Furthermore, the
computational complexity of extracting SIFT descriptors
from every frame precludes the real-time use of this
technique, and the simple motion model limits the
usefulness of the method when applied to outdoor
hand-held camera scenarios. SIFT was also used in [21] to
track and align text regions appearing in a sequence of
frames. An integration of the aligned text probability maps
was then used to improve OCR accuracy. Their algorithm
looks for text in adjacent frames either forwards or
backwards, necessarily making it an offline process and
unsuitable for real-time operation. In addition, the method
requires a manual selection of the initial text bounding box.
In the work by Mosleh et al. [22], text tracking is used to

separate overlaid text from scene text in order to
automatically remove the former (but not the latter) from
video sequences. A CAMSHIFT algorithm is used to infer
the text motion, assuming a few constraints on text
movement (i.e. movement along the vertical or horizontal
axis). Optical flow is then used to isolate the movement of
these regions from that of the background. Other recent text
detection works of note are [23–25], in which the focus is
not only on segmenting the text but also recognising it.
However, these approaches still lack the context and
temporal redundancy awareness that tracking provides. To
the authors’ knowledge, no other work exists on scene text
tracking which shows the scope, aim and performance of
the methodology proposed here.

3 Preparing to track: text segmentation and
perspective recovery

The proposed end-to-end real-time text reading system,
including its tracking and other processing stages, is
illustrated in Fig. 1. Text tracking is performed on high
level features (i.e. perspective corrected characters). This
provides several advantages over low-level tracking of
feature points, such as increased resiliency against
orientation changes and occlusions. However, the tracking
needs to be preceded by quick and efficient techniques for
text segmentation and perspective estimation, as these
operations have to be performed on every frame. Here, we
build on our previous work for real-time text detection,
grouping and perspective rectification [7, 8, 26] and for the
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sake of completeness, these fundamental stages are first
briefly summarised in Sections 3.1–3.3. Then, the main
focus of this work, that is, our text tracking mechanism, is
explained in detail in Section 4.

3.1 Text detection

Each input image is segmented to obtain a set of candidate text
regions, containing possibly none, or one, or more characters.
Later, these regions will be used as measurements for the
tracking filter, as well as serving as the building blocks for
text line aggregation and tracker creation.
A brief outline of our segmentation algorithm, first

presented in [8], is as follows. Adaptive thresholding is
applied to binarise the input image and retrieve a set of
connected component (CC) regions. A tree is then
constructed to represent the topological relationship
between these CCs. A key step of this algorithm is the
hierarchical filtering of the tree nodes, based on the
assumption that in natural scene images with text, structural
elements (such as sign borders, posters frames etc.) can be

discarded purely based on their hierarchical relationships
with other text regions. In addition, the tree filtering
approach we proposed in [8] allows for the segmentation of
dark and light text in one pass only. The CCs are then
pruned by means of a cascade of text filters that operate on
characteristics, such as size and contrast against the
background, and an eigenvector-based texture measure
adapted from [27]. Fig. 2a shows an example image and
Fig. 2b illustrates the corresponding CCs (i.e. candidate text
regions) detected at this stage.

3.2 Text aggregation

For the purpose of text recognition by (off-the-shelf) OCR,
we need to group the CC regions together in order to form
text entities (as we previously performed in [8]) for tracking
and to be able to extract common clues for perspective
estimation. The grouping is performed by first determining
which CC regions are closely associated by evaluating a
visual saliency measure between each pair of regions, and
then by searching for dominant orientations to separate

Fig. 1 Schematic of the proposed end-to-end real-time text reading system

Fig. 2 Text segmentation and perspective estimation for

a Example of original image
First, for the segmentation and aggregation stages
b Segmented components
c Association graph (dashed edges were removed during saliency filtering and thin edges were removed during histogram filtering; the thick edges represent the
segmented text lines)
d Grouped text lines
Then, for the perspective estimation step
e Top and bottom lines estimation
f Parallel image
g Shear estimation
Finally
h Full perspective rectification
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independent lines of text. First, a Delaunay triangulation [28]
to join the centre points of every CC is performed, with the
centre points being the centre of mass of each region. The
Delaunay triangulation enables us to efficiently construct a
neighbour relationship graph between all the components.
Fig. 2c shows the result of the Delaunay triangulation. For
every edge of the resulting graph, which represents a pair of
adjacent CCs, a saliency measure is computed [29]. Those
edges with a low saliency value are removed from the
graph. In Fig. 2c, edges removed during the saliency
filtering are represented in grey.
After the saliency filtering, every remaining connected

subgraph is a candidate text group, each of them possibly
containing one or more lines of text. A histogram of angle
distribution of the graph edges is constructed to find each
group’s dominant orientation, which is chosen to be the
histogram bin with highest element count. The edges of the
graph that do not belong to this dominant orientation are
removed, after which the original subgraph may be split into
smaller subgraphs separating the individual text lines. In
Fig. 2c, filtered edges at this stage are represented in red, and
the remaining connected subgraphs are represented in green.
Fig. 2d shows the result of the text segmentation and
grouping, in which each segmented text line is drawn in a
different colour. Every remaining connected subgraph
contains only one text line and is called a text entity. Text
entities are the basis of new tracker creation (as explained
later in Section 4.1).

3.3 Perspective estimation

At this stage of text recovery, we estimate a 3 × 3 homography
matrix transformation of a text entity into a fronto-parallel
representation [7]. Assuming a pinhole camera model, the
homography is the transformation that allows the modelling
of all possible orientation changes the text can undergo in
an image without the need to have calibrated cameras or an
explicit 3D representation. The ability to quickly estimate
the text orientation makes high-level perspective-aware
tracking possible, as well as the extraction of perspective
covariant feature descriptors.
The orientation detection is performed in two steps: parallel

rectification and shear estimation. At first we compute the
farthest character points on each side of the main axis of
the text line, which are used to fit a top and a bottom line
(Fig. 2e). As both lines are assumed to be parallel in the
real world, they are used to rotate and partially rectify the
text entity leaving only a remaining shearing effect (Fig. 2f ).
Then, we estimate a shear value for every character by

minimising the distance between two parallel lines that
rotate around antipodal vertices of the character’s contour
(this is a variation of the Rotating Calipers paradigm [30]).
With a shear value for each character, a linear shear
variation across the whole line can be obtained and used to
compute the full rectifying homography of the text entity,
as illustrated in Fig. 2g. Fig. 2h shows the rectified image.

4 Proposed text tracking

We now present our proposed text tracking approach. Once a
text entity is identified, a tracker is created to follow the text
region from frame to frame while it is in camera view. The
detailed process of tracker creation and removal is
explained later in Section 4.1. For now, for ease of
exposition, we assume that a set of trackers already exists

and properly initialised to follow a corresponding set of text
entities in the scene.
A tracker is characterised by a set of tracked features zi and

a dynamic state xk, which is updated by a predictive filter. The
features zi correspond to the individual characters in the text
line and are used as the anchor points to be matched against
image measurements during the observation stage of the
filter. They are stored in a fronto-parallel representation, in
a coordinate frame referred to as ‘tracker coordinates’ (see
Fig. 3). Each feature is defined as

zi = x y w h
[ ]T

, i = 1, . . . , M (1)

where (x, y) is a feature’s centre point, (w, h) are the
dimensions of the feature’s bounding box and M is the
number of features. In addition, each feature keeps a
perspective corrected image patch used during feature
matching (as seen in Fig. 3).
In [8], we used PFs [31] since they model a non-linear

system, such as our text tracking problem, well. However,
in this work we choose the unscented Kalman filter (UKF)
[32] for tracking because it provides the uncertainty of the
system’s state estimation via a Gaussian probability
distribution, and it is also more efficient, that is, to achieve
the same accuracy as the PF, it needs to use substantially
fewer sampling points. The UKF is derivative free and
employs a deterministic sampling approach (the unscented
transform, UT) to propagate the density function across
non-linear state changes. The UT captures the
non-linearities better than alternatives such as the extended
Kalman filter and is easier to implement.
We represent the filter state by a homography

transformation H mapping the fronto-parallel view of the
tracked features in tracker coordinates to image coordinates
(Fig. 3). The homography can be characterised by a vector h

h = tx ty u sx sy s lx ly
[ ]T

(2)

where (tx, ty) defines a translation, θ is an in-plane rotation
angle, (sx, sy) is an anisotropic scale, σ is a shearing and (lx,
ly) is a foreshortening around both axes. Given the
homography, there is a closed form unique solution for all

Fig. 3 Tracker representation, which keeps a set of features zi and
the state of the UKF that produces the homography H
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the parameters [20] (refer to the Appendix for the formulation
of this solution) which we name, along with its inverse, the
homography (de)composition function H

H = H(h), h = H−1(H) (3)

Although both representations are mathematically equivalent,
with this decomposition the filter deals directly with the
underlying parameters that define the transformation,
enabling the direct estimation of the uncertainty in each
parameter via the covariance matrices. The dynamic model
also benefits from this representation as we can define
velocity vectors that affect only the translation or rotation
parameters of the transformation. For the rest of this
section, when we refer to the homography H, an implicit
conversion will be assumed from the parameters vector h to
the homography using H(h). The only moment in which
the inverse operation H−1(H) is needed is for tracker
creation, as explained in Section 4.1.
For the prediction stage of the filter, we use a constant

velocity model, where we only consider in-plane
translational and angular velocities. We define the velocity
vector v as

v = vx vy v
[ ]T

(4)

and the state vector of the filter at frame k as a stacking of the
homography parameters and velocity vectors

xk = h
v

[ ]
(5)

The new state prediction is then

x̂k+1 = h+ v
◦
Dt

v

[ ]
(6)

where v
◦ = vT 0T

[ ]T
is the velocity vector padded with

zeros to the length of h and Δt is the elapsed time since the
last frame.
The measurement function maps the tracked features to

observable characteristics in the image (called
measurements) using the filter state. However, as each
tracker represents a line of text, the centre points of all the
characters are roughly aligned. If the centre points were the
only points of our measurement function, there would be a
great deal of uncertainty for rotations around the horizontal
axis (i.e. elevation – see Fig. 4 as an example). Since we
have a good estimate of the text orientation, and we know
that all the points of a text line lie on a plane, our
observation model includes five points per tracked feature
zi: the centre point ĉ0 and the four corner points ĉj, j = 1,
…, 4 of the feature’s bounding box (as shown in Fig. 5)

ẑi = ĉT0 ĉT1 ĉT2 ĉT3 ĉT4
[ ]T

, i = 1, . . . , M (7)

These are converted from tracker coordinates using the
predicted state homography. For example, ĉ0 is computed
as the transformation of (x, y) to image coordinates, ĉ1 as
the transformation of (x −w/2, y − h/2), and likewise for c2
to c4.

The predicted observation is then a combination of all of
the individual feature mappings

ŷk = ẑT0 · · · ẑTM
[ ]T

(8)

Finally, as the last part of the observation model, the tracked
features need to be matched against the segmented text
regions or candidate measurements. To discriminate
between the candidates, each feature keeps an image patch,
normalised to 50 × 50 pixels. It is a perspective corrected
image patch, extracted using the four corner points of the
feature from the frame in which the tracker was created.
Matching is performed using normalised cross correlation
(NCC) and only on measurements within a certain search
radius around the predicted feature position. The search
radius is obtained from the filter’s state covariance matrix,
as it represents the uncertainty in the new state’s prediction.
After matching, each feature has one measurement
candidate. As with the observation function, each

Fig. 5 Observation model

First a new location for the tracker features is predicted
Here the five predicted observation points ĉi for the first feature are
represented in the upper part
Then, from the segmentation and perspective orientation stage, the actual
measurement points ci are obtained
These are represented in the lower part
Finally, the candidate measurements are matched using perspective corrected
image patches which are also shown

Fig. 4 Homography estimation ambiguity if only the centre points
of each character are considered
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measurement mi is defined by the centre point of the region
and its four corner points

mi = cT0 cT1 cT2 cT3 cT4
[ ]T

, i = 1, . . . , M (9)

where cj, j = 0,…, 4, are the mapped centre and corner points,
and are obtained from the orientation estimation stage. Hence,
the observation used by the UKF is

yk = mT
0 · · · mT

M

[ ]T
(10)

In Fig. 5, the observation model is illustrated: the predicted
observation, the actual observation and the feature matching.

4.1 Tracker maintenance

Tracker maintenance refers to the set of mechanisms in which
new trackers are created, new features are added to existing
trackers, and bad trackers are removed. This allows the
automatic continuous operation of the system.
At first we need to correlate the text entities produced in the

text association stage to the current set of trackers. The text
association stage groups measurements as belonging to the
same text entity and the tracking stage may associate
features to some of the measurements after matching.
By correlating tracked features to measurements and then

to text entities, several possibilities arise: (i) a tracker has
matched all the measurements belonging to a text entity –
this is the perfect tracking case and no further action is
needed (Fig. 6a); (ii) no tracker has matched any of the
measurements of a given text entity – the entity is then a
candidate for tracker creation (Fig. 6b); and (iii) a tracker
has matched some of the measurements inside an entity –
the remaining (unmatched) measurements are candidates for
feature addition to that tracker (Fig. 6c). In addition, when a
tracker matches most or all of its features it is considered a
good track. Likewise, if a tracker did not match any of its
features (or only matched a low fraction of them), it is
considered a bad track or a mistrack. After a certain number
of frames being a bad track, a tracker is removed. These
operations are further explained in the following.

4.1.1 Tracker creation: When a text entity does not have
any tracker matching any of its features, it is considered an
untracked entity, thus requiring a tracker to be created for it.
Tracker creation proceeds as follows: the perspective
estimation stage returns a homography transformation H′ of
the measurements in the group to a fronto-parallel
representation. All the measurements are converted into
features in the new tracker by applying this homography
transformation and then obtaining the centre point and
dimensions of each text region in the fronto-parallel view.

Then, the filter state is initialised as

x0 = hT0 0 0 0
[ ]T

(11)

with h0 = H−1(H0) and H0 = (H′)−1 being the initial
homography estimation of the transformation between the
fronto-parallel representation to image coordinates.
On creation, a tracker is marked as unstable. This means

that it will not be considered for feature addition, for
recognition or transformation to speech, and it will not be
shown as a segmented region. It is only considered stable
after it is tracked continuously for a number of frames – in
our case this was arbitrarily set to ten. As a text region is
consistently segmented in a sequence of frames, as opposed
to noisy regions, this process cleans most of the text
segmentation false positives.

4.1.2 Feature addition: When a stable tracker matches
some of the measurements inside a text entity, the
remaining unmatched measurements are assumed to belong
to the same entity. Hence, they are added to the tracker as
new features. The corner points of the created feature are
mapped to the tracker coordinates using the tracker’s state
homography, and the observation vector length is increased
accordingly.

4.1.3 Tracker removal: When a tracker has been regarded
a bad track for a few frames because none or too few of its
features are matched, the tracker is removed. There is no
long term registry of old trackers. If a tracker is removed
(e.g. because it is no longer in view, or due to a long
occlusion), and afterwards the text entity it was tracking is
detected again, it will be added again as a new tracker. We
find this to be an adequate compromise for efficient and
long periods of continuous operation.

4.1.4 Occlusions: These mechanisms allow our system to
deal with brief occlusions of the tracked text regions. A full
occlusion will produce bad tracks for the affected trackers.
If the occlusion is shorter than the number of frames
needed to delete a tracker, when the text region is in view
again it will be recovered. The system will also be able to
recover the track even with big translations or wide baseline
changes of orientation thanks to the use of high level
features. Partial occlusions of text regions will be also dealt
with in the same fashion, and even on tracker creation,
because of the feature addition mechanism.

4.2 OCR and speech synthesis

When a tracker is considered stable, it is then a candidate for
recognition. The image quadrilateral enclosing the tracked
text entity is rectified to a fronto-parallel view using the
state homography transformation and then sent to OCR, for

Fig. 6 Tracker maintenance

a Perfect tracking
b Tracker creation
c Feature addition
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which we use the Tesseract OCR engine [http://code.google.
com/p/tesseract-ocr/]. Recognition is performed in a parallel
processing task, so the tracking is maintained in real-time
while the recognition runs alongside (for implementation
details see Section 4.3). The decision on which tracker to
recognise is weighted by several factors: whether or not
there is already any recognition available for this tracker,
the OCR confidence value of previous recognitions, and the
elapsed time since the last recognition attempt. A tracker
might be sent to OCR for recognition several times, but if
the returned confidence value of a new recognition is lower
than a previous one, the recognition result with higher
confidence is kept.
Speech synthesis is the main user interface of the system,

and the main intended communication with the user. Those
text regions that have a high enough OCR confidence value
and have a stable text tracker are considered for being
synthesised into speech. The text is sent to an speech
synthesis engine (in our case we use Microsoft’s speech API)
so the recognised text is played back to the user. The
candidate texts are queued and prioritised according to the
distance to the centre of the image. Regions that stay in view
of the camera for long enough might be reproduced several
times, but as the region identity is maintained throughout the
sequence, this delay can be adjusted for the convenience of
the user, that is, by tracking the text we can avoid the system
continuously repeating the same text over and over.

4.3 Implementation

One of the design objectives of our prototype is real-time
operation. The system is carefully parallelised to make the best
possible use of available processors. We use Intel’s Threading
Building Blocks (TBB) [http://threadingbuildingblocks.org/],
which implements a task-based parallelisation paradigm. It
features a high level C++ API for defining parallel
constructions, supports nested parallelism and provides
automatic scalability. The algorithm steps in Fig. 1 are
implemented as separate stages of a processing pipeline. On
multiprocessor machines, TBB is able to schedule different
stages on different processors so several frames might be
simultaneously processed at any given moment. The system
maintains a global state and a transient state. The transient state
is carried forward across the stages of the pipeline. At the end
of a frame processing, the transient changes are atomically
combined in the global system state. This is easily
implemented as the library guarantees strict sequential ordering
of the pipeline stages of consecutive frames (i.e. the tracking
stage on frame n is guaranteed to run before the tracking stage
of frame n + 1). OCR is spawned as a task outside the main
processing pipeline and thus it is scheduled concurrently with
it. This allows to maintain real-time performance for the text
tracking while being able to perform longer running processes
at the same time and without under- or over-subscribing the
available parallelism. We find this to be a superior design in
terms of portability and scalability when compared with other
approaches (such as e.g. PTAM [33]) in which explicit threads
are defined with synchronisation mechanisms between them.

5 Results and discussion

To demonstrate and validate the proposed system, at first we
present a quantitative analysis of the text tracking mechanism
based on standardised metrics and annotated ground-truth
data that help establish a performance baseline for

comparative studies. Then, a qualitative evaluation of the
prototype’s operation in everyday scenarios is outlined to
provide an insight into the future improvements and
requirements of a text reading system. For our quantitative
experiments, three challenging video sequences are used:
HOSPITAL, MERCHANT and QUEEN. These contain
scene text in a city environment and suffer from hand-held
erratic camera motion, as well as blur and a great degree of
perspective distortion. The sequences were annotated to
obtain a (i) ground-truth labelling of text, (ii) 3D bounding
quadrilaterals and (iii) region identity between frames [The
video sequences and the ground-truth labelling are available
at http://nf.ull.es/q/texttrack]. To achieve these, tracking was
applied in the video sequences using a commercial
match-moving software, with each video requiring extensive
manual adjustment of the tracked features. After that, 3D
editing software was used to locate rectangles in the 3D
space around the projected positions of the text in the
scene. When the rectangles are projected back as
quadrilaterals into the image plane, they perfectly fit the
text as seen in the image. The total number of annotated
frames is 930. For the qualitative analysis, a variety of
example videos, showcasing different scenarios, were
experimented with as shown later.

5.1 Quantitative analysis of the tracking
mechanism

Two distinct tests were performed to evaluate the two desired
characteristics of a text tracking system: (i) increase in
segmentation accuracy and (ii) the ability to maintain
region identity. The first test is a frame-by-frame
comparison of the text detection accuracy between the text
segmentation stage alone against the segmented text
regions while tracking by our method. The second test
evaluates the tracking performance by measuring the
detection accuracy along with the region identity across the
sequence as a whole.

5.1.1 Frame-by-frame evaluation: For our text
segmentation evaluation, we use the precision and recall
measures as introduced in the ICDAR 2003 Robust
Reading Competition [5], slightly adapted to operate on
arbitrary quadrilaterals instead of rectangles. The degree of
match between two quadrilaterals q1 and q2 is defined as

match(q1, q2) =
area(q1 > q2)

area(q1 < q2)
(12)

When comparing a quadrilateral q against a set of
quadrilaterals Q, the best match is computed as

bestmatch(q, Q) = max
q′[Q

match(q, q′) (13)

Then, the precision p, recall r and f measures for a certain
frame are defined as

p =
∑

q[E bestmatch(q, G)

|E| (14)

r =
∑

q[G bestmatch(q, E)

|G| (15)

f = 2

1/p+ 1/r
(16)
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where G is the set of quadrilaterals in the ground-truth and E
is the set of quadrilaterals being evaluated.
These measures were computed for each one of the frames

in the sequences, comparing the quadrilaterals produced by
the text segmentation and orientation detection stages with
the quadrilaterals produced by the tracking stage. In our
evaluations, we are only considering text lines with four or
more characters from the ground-truth, as this is the
minimum length at which the perspective estimator works
reliably [7]. The results are shown in Figs. 7b, 8b and 9b,
where, for every frame in the sequences, the f measure for
the segmentation and tracking outputs are plotted.
In the HOSPITAL sequence (Fig. 7), the camera

approaches a road sign with strong perspective distortion
being introduced gradually, and featuring a very textured
tree background, which makes text segmentation
challenging, as can be seen in the performance of the text

segmenter. The accuracy of the tracked regions is very good
throughout the sequence even when the perspective
distortion is significant. The continuous change in
perspective occasionally causes the trackers to lose track as
the filters converge into the new orientation. This can be
seen in the dips around frames 5, 20 and especially between
frames 100 and 115 and at the end of the sequence.
Nevertheless, the region identity is never lost, and the
trackers recover the lock on the text shortly afterwards.
In the MERCHANT sequence (Fig. 8), a street sign is panned

laterally, with a wide baseline change of orientation and a
textured regular brick pattern in the background. Text region
tracking is accurate across most of the sequence, as shown in
the results. Extreme camera shake is the cause for some of
the individual trackers to momentarily lose track, from frame
125 to the end. The system does not produce a box for a text
region that is not tracked with enough confidence, thus the

Fig. 7 Video sequence HOSPITAL

a Video sequence with tracked text bounding quadrilaterals
b Frame-by-frame segmentation accuracy

Fig. 8 Video sequence MERCHANT

a Video sequence with tracked text bounding quadrilaterals
b Frame-by-frame segmentation accuracy
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alternating and temporary disappearances of some of the boxes
across the sequence. Those are promptly recovered without
losing the region identity. This is also the reason for the dip
in the graph around frame 40, where all the trackers are lost
for just one frame.
Finally, the QUEEN sequence (Fig. 9) features a

walkabout towards a building sign which is not visible
from the start of the sequence, finishing with a close
approach into the text. This very challenging sequence
also shows regular window and railing patterns. As can be
seen in the results, during the first part of the sequence –
until frame 120 – the accuracy is 0 as there is no text.
When the text is completely visible, the tracking quickly
locks on the text lines and this is clearly shown in the
graph between frames 120 and 280. Then, during a camera
movement towards the text, there are two brief camera blur
events between frames 280–300 and 330–350 that cause the
segmentation to produce very few regions, and thus making
the tracker to momentarily lose track as there are no regions
to track, especially at frame 345. The tracker promptly
recovers the track after these events. The ability to quickly
recover from failures demonstrates the versatility of the
proposed method. To illustrate the effect that text tracking
has on segmentation accuracy, Fig. 10 shows the output of
the text segmentation stage, with a considerable number of
false positives, compared to the output of the tracking stage,
where the spurious regions have been discarded.

5.1.2 Tracking evaluation: The characteristics of our
prototype system preclude making a comparative study
against any of the few other published text tracking
systems. For example, in the work in [12], the text regions
are manually selected prior to tracking or in the work in
[34] text tracking was performed on overlaid text.
Furthermore, we are tracking 3D text quadrilaterals, as
opposed to 2D rectangles, which is a fundamental
difference with any other published work (e.g. [16, 18]).
With this paper, we are also publishing our scene text
tracking dataset and its associated ground-truth data –

something that has not been done before – in the hope that
it will be useful to other researchers and to enable future
comparative studies.
However, we do present comparative results against our

own previous work in [8]. To evaluate the performance of
the text tracking we adopt the CLEAR object tracking
metrics as suggested by Bernardin and Stiefelhagen [35]
and Kasturi et al. [34]. The metrics are designed to evaluate
the detection and tracking performance across a sequence as
a whole, and thus penalise false positives and false
negatives as well as region identity changes or losses. For
every frame k, there is a mapping Mk between the elements
in the ground-truth and detected sets

Mk = {(g, e), with g [ Gk and e [ Ek} (17)

where Gk and Ek are the sets of ground-truth and detected
quadrilaterals at frame k. Mappings are unique for each
element on each set. Our criteria for considering a candidate
match between two quadrilaterals is that they have some
overlap (e.g. area(q ∩ q′) > 0). To select a unique match
between the candidates, we first consider the same match as
in the previous frame if they still overlap; otherwise the pair
with maximum overlap is chosen (refer to [35] for the full

Fig. 9 Video sequence QUEEN

a Video sequence with tracked text bounding quadrilaterals
b Frame-by-frame segmentation accuracy

Fig. 10 Comparison of the output of the

a Text segmentation
b Tracking stages, for one frame in the QUEEN sequence
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explanation and rationale of the matching strategy). Every
detected quadrilateral that is not mapped is a false positive;
likewise, every unmapped ground-truth quadrilateral is a
missed detection. If a quadrilateral g∈Gk is matched to
different quadrilaterals q, q′∈ Ek in consecutive frames, it is
considered an identity mismatch.

Two measures are defined, the multiple object tracking
precision (MOTP) and the multiple object tracking accuracy
(MOTA)

MOTP =
∑

k

∑
(g,e)[Mk

match(g, e)∑
k |Mk |

(18)

MOTA = 1−
∑

k dk + fk + log10(rk)
( )∑

k |Gk |
(19)

where δk, fk and ρk are the total number of missed detections,
false positives and id mismatches for frame k, respectively.
Table 1 summarises the results of our proposed method in

comparison to our previous text tracking technique using PFs
[8]. Our PF method had a simple 2D state model and did not

Table 1 Whole sequence tracking evaluation

Sequence Proposed method PF method [8]

MOTP MOTA MOTP MOTA

HOSPITAL 0.89 0.7 0.1 0.32
MERCHANT 0.78 0.82 0.16 0.24
QUEEN 0.8 0.65 0.1 0.13

Fig. 11 Video sequences from the qualitative evaluation experiment

a Sequence CLIFTON
b Sequence HANNOVER
c Sequence WOLFGANG
d Sequence BYRON PLACE
e Sequence UOB

www.ietdl.org

10
& The Institution of Engineering and Technology 2014

IET Comput. Vis., pp. 1–12
doi: 10.1049/iet-cvi.2013.0217

116



perform any perspective estimation and this is shown in the
MOTP values, where the proposed method consistently
achieves very high values (0.89, 0.80 and 0.78 for the
HOSPITAL, QUEEN and MERCHANT sequences,
respectively) thanks to the enhanced state model. It also
produces high MOTA values (0.82, 0.70 and 0.59 for the
MERCHANT, HOSPITAL and QUEEN sequences,
respectively) because of the low number of false positives
and id mismatches that the tracking produces. As previously
explained, the challenging sequences used in our
experiments feature very erratic camera motion, blur and
perspective distortion. Our MOTA evaluation is penalised
on those frames where the text is not tracked with enough
confidence, in which our system does not produce any box,
being counted as a missed detection.

5.2 Qualitative evaluation

We show more examples in Fig. 11 to further illustrate the
operation of the proposed method. In the CLIFTON
sequence (Fig. 11a), the text is never in a fronto-parallel,
horizontal orientation with respect to the camera and
undergoes a wide baseline change in orientation. This is
also true for the WOLFGANG sequence (Fig. 11c), which
also features a complex background and very blurred
frames because of camera vibrations. The HANNOVER
sequence (Fig. 11b) contains regular, very contrasted tiles
in the background which produce a great number of false
positives from the text segmentation stage. The BYRON
PLACE sequence (Fig. 11d ) features a change in
orientation around elevation. Note, the text is not visible at
the start of the sequence, but as soon as it appears, the
system is able to pick up the location of the various lines of
text and then track them continuously. As with previous
sequences (i.e. MERCHANT and QUEEN), camera shake
is responsible for the momentary disappearance of tracked
regions, after which the tracker recovers without region
identity loss. Finally, the UOB sequence (Fig. 11e) features
a moving partial occlusion across the tracked text. As there
are always enough visible features (i.e. characters) for each
one of the text lines, the proposed method is able to keep
the identity and location of all the text regions in the scene.
For all the sequences, the system is able to quickly spot the
text in its original orientation and maintain the region
identity throughout the duration of the video.

5.3 Performance

The system operates at video rate (average 25 fps) on the
video sequences used for our experiments. They were
measured on a standard PC with an Intel Core 2 Quad
Q6600 processor and 8 Gb of RAM. A breakdown of the
times spent by the algorithm on each of the stages is
presented in Table 2. The most expensive stage in terms of
computation time is the tracking observation, which
includes the feature matching. The text segmentation and
perspective estimation are also major contributors to the
time needed to process one frame. Those stages are split
into a pipeline and are automatically distributed between the
processor cores to achieve parallelism. The OCR task is
comparatively much slower than the rest of the stages
together. This demonstrates one of the benefits of text
tracking: OCR runs on an independent thread and thus does
not contest with the main processing pipeline to achieve the
desired frame rate. When the recognition results are ready,

the region identity maintained by the text tracking is used
to assign the recognised text to the correct text region.

6 Conclusions

We have presented a text reading system based on text
tracking. It operates autonomously and in real-time,
automatically detecting and recognising new text
regions and discarding the old ones. We have shown
quantitative and qualitative analysis of the performance and
capabilities and of our prototype. We are also releasing our
scene text tracking dataset and its associated ground-truth
data to enable future comparative studies.
The area of text tracking is very young and there is still a lot

to be accomplished. Although we feel we have presented a
novel step towards fast text segmentation and tracking,
there remain a number of shortcomings and newer goals
that are yet to be addressed. Our method is focused on
larger text and is not suited to deal with smaller document
texts. Also, as a matter of trading accuracy for speed, we do
not necessarily use state-of-the-art text segmentation. There
remain other avenues to explore, for example, (a) exploiting
the OCR results from multiple frames to combine and
obtain a more accurate global recognition (e.g. to bypass
reflections and occlusions), (b) combining rectified images
from several frames to help construct super-resolution and/
or larger (by mosaicking) images. Moreover, we still have
to study and understand how the tracking information can
help build a better user interface for assistive devices.
Observing the patterns of movement and context in the
surroundings is crucial for deciding when and how to read
text back to the user, enabling a more useful interaction
experience. We plan to develop these ideas as part of our
future work.
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9 Appendix: Homography decomposition

As noted by Hartley and Zisserman [20], a homography can
be decomposed into three partial transformations HS, HA

and HP, each of them representing a separate ‘similarity’,
‘affinity’ and ‘projectivity’, respectively

H = HSHAHP = R t

0` 1

[ ]
SK 0

0` 1

[ ]
I 0

l` 1

[ ]
= A t

l` 1

[ ]
(20)

where A is a non-singular matrix defined as A = RSK + tlT,
R is a rotation matrix, S is an anisotropic scaling matrix, K is a
shear matrix, hbft is a translation vector and l is a perpsective
foreshortening vector. They are further defined as

R = cos u −sin u

sin u cos u

[ ]
, S = sx 0

0 sy

[ ]

K = 1 s

0 1

[ ]
, t = tx

ty

[ ]
and l = lx

ly

[ ]
(21)

With (20) and (21) the function H = H(h) is completely
specified. When given the homography H, defined as

H =
h11 h12 h13
h21 h22 h23
h31 h32 h33

⎡
⎣

⎤
⎦

the four direct parameters are trivially obtained as

tx = h13, ty = h23, lx = h31, ly = h32 (22)

then we define four auxiliary variables

g1 = h11 − txvx, g3 = h12 − txvy (23)

g2 = h21 − tyvx, g4 = h22 − tyvy (24)

to be able to obtain the four remaining parameters as

u = arc tan
g2
g1

( )
, s = g1g3 + g2g4

g21 + g22
(25)

sx = +
���������
g21 + g22

√
, sy =

g1g4 − g2g3
+

���������
g21 + g22

√ (26)

that completely specify the inverse function h = H−1(H).
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