
 

 

 

 

 
 

TESIS DOCTORAL 
2020 

 

 

 

THE RISE OF THE LEARNING MACHINES 
 

EZEQUIEL LÓPEZ RUBIO 
 
 
 
 
 

PROGRAMA DE DOCTORADO EN FILOSOFÍA 
EMANUELE RATTI, NOTRE DAME UNIVERSITY 

DAVID TEIRA SERRANO, UNED 





Acknowledgments

To Rosa, for giving me her tender love and cheerful support, which go beyond my
wildest dreams.
To Ada, for illuminating my days from the very moment that I heard her heartbeat
for the first time.
To Meli, for keeping our friendship against all the odds.
To my parents, for giving me the affection and values that I will keep forever.
To my brothers, sisters-in-law, nephews, and nieces, for all the moments that we
have shared.
To my uncle Ezequiel and my aunt Paca, because they believed in me and helped
me when I needed it.
To Juanmi and Fanny, for their true friendship.
To Pepe Muñoz, for supporting me in every imaginable way.
To David and Emanuele, for sharing their wisdom and enthusiasm with me.
To my colleagues, because it is a privilege and a pleasure to work together.
To my students, who have taught me so much.

3





Contents

Introduction 7

1 Hypotheses and theoretical framework 11
1.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Methodology of data-driven science . . . . . . . . . . . . . . . . . . . 16
1.4 Conceptual and mechanistic aspects of scientific theories . . . . . . . 18
1.5 Two kinds of data science . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Conclusions 95

3 Publication report 97

References 99

i





Introduction
“S’il se trouvait un perroquet qui répondît à tout, je prononcerais sans balancer que

c’est un être pensant. . . ”
[If they find a parrot who could answer to everything, I would claim it to be an

intelligent being without hesitation]
– Denis Diderot (1746), Pensées Philosophiques, XX.

Œuvres complètes de Diderot, Texte établi par J. Assézat et M. Tourneux, Garnier,
1875-1877.

Since its inception in the mid-twentieth century, Artificial Intelligence (AI) has ex-
perienced fundamental changes in its core concepts and assumptions. After six
decades, it has found its place among the scientific disciplines which generate the
most significant public excitement and interest. It is routinely found in the lists of
fields that researchers would like to work on, along with molecular biology (Russell
& Norvig, 2009). It has also inspired an essential part of the science fiction genre.
This interplay between AI and fiction has driven some of the public attitudes and
expectations for it. In particular, this might be one of the causes that many people
assume that the capabilities of current intelligent systems match those seen in popu-
lar culture. In any case, there is some truth to it since AI has already changed some
aspects of our lives, and it is likely that it will continue to do so. There is a general
awareness about this, and even some fear about its potential adverse consequences
(Hawking, Russell, Tegmark, & Wilczek, 2014).
It is widely acknowledged that AI is a branch of Computer Science. However, its
foundations were laid on ideas that come from Antiquity and belong to almost all
fields of science. Its ultimate goal is to replicate human intellectual activity on a
machine, so any human experience is somehow related to it. AI is aimed to reproduce
all human knowledge. Hence the study of its nature poses a considerable challenge.
It is necessary to identify which scientific disciplines and traditions contribute to
each AI subfield or school of thought. This way, a good understanding of this broad
subject could be achieved.
At this point, it is essential to highlight that our focus is not on the question of
whether AI would attain its ultimate objectives, but how it struggles towards them.
In other words, we are interested in scientific methodologies and their interplay. This
way, we depart from the most common topics in the philosophy of AI. However, a
summary of them is outlined next, along with their connections to our purposes.
The primary debate is about the possibility of a strong AI, as started by Searle
(Searle, 1980). The strong AI hypothesis asserts that a computer can have a mind;
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such a machine would be called a general artificial intelligence. On the other hand,
the weak AI hypothesis states that it can only act like it had one (Russell & Norvig,
2009). The Chinese room argument says that we could put a human with no knowl-
edge of Chinese inside a room with an extensive supply of books that specify how
to produce appropriate answers in Chinese to questions in Chinese. The argument
continues by stating that such a room would have no real understanding of Chinese,
just like any computer acting as if it understood that language. Aside from the
question of whether the argument is correct, it is important to notice that it as-
sumes a specific model of the human mind. In that model, mental activity is seen as
a symbol manipulation process, where understanding and intention are defined with
respect to abstract concepts such as words and sentences. AI followed this model
for some decades. Later developments have led to the abandonment of this mental
model in AI research. Consequently, the most important philosophical questions
about AI are related to the reference model of the human mind that AI researchers
choose.
The concept of levels of abstraction in Computer Science is related to this choice
of the elementary pieces of information that AI should process. Computer systems
contain billions of information processing elements that interact in various ways.
Several levels of abstraction are defined to manage such complexity. For example,
we can describe a car at four different levels, at the very least. At a high level, a
car is a wheeled vehicle that carries people and cargo. At a middle level, a car is
a mechanical device that is made of four wheels, an engine to provide propulsion,
five seats for the driver and four passengers, etc. At a low level, we would have
to describe every single nut, bolt, and cable that the car contains, along with its
precise function. At a very low level, the mechanical and chemical interactions
among molecules and atoms, governed by the laws of physics, would come into play.
As seen, high level descriptions are short and easy to understand, but not specific.
On the other hand, low level descriptions are very long and precise since they in-
clude all the details, but they are somewhat difficult to grasp because one can not
see the forest for the trees. Computers have many more elements than any me-
chanical device, so several abstraction levels are necessary. At the lowest level, that
might be called the electronic level, there are logic gates which process binary bits
(0/1). Then, at the architectural level, there are functional units such as adders,
multipliers, or registers that store 32 or 64 bits. At the operating system level, there
are hard disks, printers, random access memories, and processes that use them. At
the application level, there are word processors, database managers, and Internet
browsers. At the network level, there are computers (hosts) that exchange informa-
tion. One of the biggest challenges of AI is that the abstraction levels of the human
brain are not so well understood, and choosing the correct level seems to be essential
to its success.
The most popular approach to AI is nowadays data driven AI, also called subsym-
bolic, since it processes data and not symbols (Goertzel, 2012). It is rooted in
connectionism, which holds the view that most of the information processing in the
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human brain is done without symbols (J. Anderson et al., 2004; Smolensky, 1988).
A good deal of data driven AI falls under the denomination of computational in-
telligence (van Eck, Waltman, den Berg, & Kaymak, 2006). Its reference model is
statistics. Under this paradigm, the starting point is to establish a practical and
concrete problem that admits an objective and quantitative performance measure.
The key concept is that of machine learning (Kaelbling, Littman, & Moore, 1996;
Schapire, 1990; Xu & Wunsch II, 2005). The machine learns from data to enhance
its performance progressively. The ultimate goal is that the machine can choose
the most suitable actions to maximize the performance, no matter if its internal
workings are not similar to the mental processes of humans.
Subsymbolic AI also called connectionist AI, appeared as an alternative to overcome
some of classic AI limitations such as brittleness concerning programming or data
errors, inability to learn from experience, and the lack of a plausible connection to
biological structures. Connectionism also avoids Searle’s Chinese room argument
against symbolic AI since no symbols are manipulated (Davenport, 2013).
Machine learning has achieved considerable success in solving specific problems.
Among the most popular applications, we can mention expert systems, bioinformat-
ics, machine translation, speech recognition, optical character recognition, computer
vision, and medical diagnosis (Cristianini, 2010). However, the learning process is
not easy to understand by a human (black boxes), and meanings and symbols are
absent from the process. Overall, its focus on specific applications is far away from
the general AI ideal, with cognitive abilities similar to those of human beings (Cass,
2011; Norvig, 2012). The main questions are whether there are limits to learning in
terms of performance and whether machines could perform better than humans in
some tasks. The present thesis focuses on the analysis of machine learning from the
perspective of the philosophy of science.
The structure of this thesis is as follows. The hypotheses and the theoretical frame-
work are detailed in chapter 1. In particular, the main hypothesis and the goals
to be attained are described in Section 1.1. Then the theoretical framework that is
considered for this work is outlined in Section 1.2. The methodology of data driven
science is explained in Section 1.3. This methodology leads us to the distinction of
two aspects in scientific theories, as seen in Section 1.4. Then, two kinds of data
science are described in Section 1.5. After that, the published papers which support
the thesis are included. General conclusions are extracted in chapter 2. Finally, a
report of the publications which support this thesis is given in chapter 3.
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1 Hypotheses and theoretical
framework

“For if every instrument could accomplish its own work, obeying or anticipating the will
of others, like the statues of Daedalus, or the tripods of Hephaestus [...] If, in like

manner, the shuttle would weave and the plectrum touch the lyre without a hand to
guide them, chief workmen would not want servants, nor masters slaves.”

– Aristotle, Politics, Book I, Part IV.
Translated by Benjamin Jowett, Batoche Books, 1999.

1.1 Hypotheses

In November 1970, a featured article in the National Geographic magazine reviewed
how deeply computers had transformed a myriad of human activities (White, 1970).
Significantly enough, scientific research was not among them. Computers had two
main advantages. The first one was that they made calculations very fast, and
the other one was that they could store large amounts of data and retrieve them
quickly. This did not mean much for the scientific method. Scientists had been using
calculators and libraries for centuries, so there was no indication that computers
could change the criteria that scientists followed in their activities.
At that time, AI was in the classic period. The sources of classic AI can be traced
to mathematical logic, which was already a mature field. AI soon developed its own
methodology, which departed largely from logic due to the applied science challenges
that AI had to face, which are not present in mathematical logic. It must be pointed
out that the classic approach became generally accepted by the AI community until
the 1980s. Therefore it provided the foundation for normal research activities during
the classic period, which comprises the 1960s and 1970s. The physical symbol system
hypothesis summarizes this approach (Newell & Simon, 1976, p. 116):

A physical symbol system has the necessary and sufficient means for
general intelligent action.

where a physical symbol system is to be understood as symbol manipulation soft-
ware.
Classic AI approaches processed non numerical, discrete symbols by inference rules
based on logic. This is why artificial neural networks are sometimes called ‘subsym-
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Chapter 1 Hypotheses and theoretical framework

bolic’, which means that numbers (data) are at a lower level than symbols (con-
cepts). An early split between both approaches is widely acknowledged (Nilsson,
2010, section 2.3):

With a firm belief in the symbol system hypothesis, some people be-
gan programming computers to attempt to get them to perform some
of the intellectual tasks that humans could perform. Around the same
time, other researchers began exploring approaches that did not depend
explicitly on symbol processing [...]. A split between symbol-processing
methods and what has come to be called “brain-style” and “nonsym-
bolic” methods still survives today.

Nilsson places a turning point in the 1980s when the Good Old Fashioned AI (GO-
FAI) lost the confidence of AI researchers. Interestingly, he thinks that the criticism
of outsiders was not essential to this change (Nilsson, 2010, chapter 25):

Frustrated with AI’s slowdown, people with different approaches to
AI eagerly stepped forward to claim that what AI needed was more of
this or that alternative to AI’s reigning paradigm – the paradigm John
Haugeland called “good-old-fashioned AI” or GOFAI. GOFAI, of course,
had as its primary rationale Newell and Simon’s belief that a “physical
symbol system has the necessary and sufficient means for intelligent ac-
tion.” But GOFAI seemed to be running out of steam during the 1980s,
making it vulnerable to challenges by AI researchers themselves – chal-
lenges that had to be taken more seriously than those of Searle, Dreyfus,
Penrose, and others outside of the field.

As pointed out by Nilsson, one of the most influential critiques of AI from philosophy
came from Herbert Dreyfus (Dreyfus, 1972, 1992). He argued that AI had failed
to produce an artificial general intelligence because researchers assumed that all
human knowledge could be reduced to symbolic formalizations and rules. An early
response to this attack was that of Buchanan (Buchanan, 1972), who conceded
that the richness of human experience might be difficult to formalize, but argued
that there was no way to find out which framework was better. However, neither
of them could foresee the new perspectives which ultimately replaced classic AI.
Consequently, it can be said that Dreyfus was able to spot the shortcomings of the
classic approach, but neither he nor his detractors set forth any practical solutions.

This state of things changed when computers were programmed to enhance their
performance when carrying out some task by learning from data. Then the digital
era put an exponentially growing amount of information at the disposal of those
programs. In a matter of decades, many scientific datasets have grown so large that
a human can no longer analyze them without the help of learning algorithms. But
most of those algorithms do not produce explanations that scientists can understand.
Even worse, they do not care much about causes when they are asked to make
predictions. Despite this violation of the established laws of scientific inquiry, some
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1.2 Theoretical framework

scientists have embraced them. There is a widespread perception that something
essentially novel has happened to science (National Science Board, 2005, p. 49):

It is exceedingly rare that fundamental new approaches to research
arise. Information technology has ushered in such a fundamental change.
Digital data collections are at the heart of this change.

A scientific discipline has emerged from these transformations, which has many
names. Through this thesis, it will be called machine learning, although other
denominations will also be discussed. There is an urgent need for an epistemological
study of its status since it is transforming the way that scientists create and validate
models. The data revolution was not evident until the very end of the 20th century,
so many established theories of science do not address its specific characteristics.
Algorithmic predictors are validated due to their adequate performance (Agarwal
and Dhar 2014, p. 446; Dhar, 2013, p. 66). However, in many cases, good machine
learning predictive models do not provide explanations.

The central hypothesis of this work is that machine learning has challenged some
fundamental concepts in the philosophy of science. The specific goals are the fol-
lowing:

• Introduce a new concept of model simplicity in machine learning, i.e., computa-
tional simplicity. It is further argued that such a concept is more encompassing
and closer to actual machine learning practices than the classic ones. This is
carried out in (López-Rubio, 2020).

• Investigate the tradeoff between prediction and explanation in the application
of machine learning to molecular biology. This is developed in (López-Rubio
& Ratti, 2019).

• Propose a novel kind of computational functionalism, called neural computa-
tional functionalism. Neural computational functionalism addresses the speci-
ficities of a new sort of machine learning, namely deep learning. This is done
in (López-Rubio, 2018).

1.2 Theoretical framework

Machine learning is a branch of the artificial intelligence subfield of computer science
that is devoted to the development of computer systems, which can improve their
performance progressively as more samples of the problem at hand are provided.
Performance is quantitatively measured. Data science is the discipline which studies
the acquisition, storage, manipulation, and exploitation of digital data. Machine
learning is employed in many engineering applications not directly related to data
science, such as computer vision, robotics, speech recognition, and automated system
control. Nevertheless, its techniques, i.e., the learning algorithms, are at the heart
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Chapter 1 Hypotheses and theoretical framework

of most data science procedures (Jordan & Mitchell, 2015, p. 255). This is because
learning algorithms typically enhance their performance as more data are available.
Machine learning spans a wide range of techniques, but most of them are black boxes
(Frické, 2015, p. 655). A machine learning algorithm is called a black box, or that it
is opaque when it does not yield an explanation of its output that can be understood
by a human. That is, the vast majority of machine learning algorithms do not
generate an understandable model of reality. The balance between explanation and
predictive accuracy will be later be explored in this thesis, as detailed in (López-
Rubio & Ratti, 2019).
Most machine learning algorithms fall into three categories: supervised, unsuper-
vised, and reinforcement learning. Supervised learning algorithms require a set of
input (independent) variables, a set of output (dependent) variables, and a dataset
comprised of examples of observed inputs and their corresponding outputs. They
build models of the relationships among those variables which predict the outputs
given the inputs as accurately as possible. Unsupervised learning does not distin-
guish between input and output variables but aims at finding out the structure of a
dataset. In some cases, this involves the automatic discovery of clusters in the data,
and in other cases, the algorithms find correlations or dependencies among variables.
Reinforcement learning intends to modify the behavior of a man made system which
receives rewards from its environment according to its behavior so that the rewards
are as high as possible.
Among these three kinds of machine learning, reinforcement learning is the least
relevant for this work, since it is associated with engineering applications. Its goal is
the enhancement of the system behavior and not the knowledge of the environment.
On the other hand, supervised learning can be directly associated with the scientific
quest of producing models of reality which yield correct predictions. Unsupervised
learning does not generate predictors, but it is used by scientists to examine the
structure of datasets, which would otherwise be too complex to be studied. My
main concern in this thesis will be the automated prediction by supervised learning,
although I will also discuss scientific applications of unsupervised learning. Many
machine learning algorithms are found under the name “statistical learning”, in
particular when mathematical proofs of their properties accompany them. This
highlights the location of data science at the crossroads between statistics and com-
puter science. Data science looks for algorithms that are both statistically sound
and computationally efficient.
The meaning of the term “data science” has changed over the decades (Press, 2013).
In the 1960s, it was seen as a branch of statistics which was aware of the capabilities
of computers. Nowadays, it aims to automatically discover complex relations among
variables, also called patterns, even if these patterns do not convey a deep compre-
hension of the process under study. Dhar offers the following definition (Dhar, 2013,
p. 64):

Data science is the study of the generalizable extraction of knowledge
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1.2 Theoretical framework

from data.
In this definition, “generalizable” means that the patterns which are automatically
extracted from the available data are expected to occur in other situations. At this
point, it must be highlighted that the discovered patterns can be employed to build
a predictor by supervised learning or reveal the structure of the dataset by unsuper-
vised learning. Given these considerations, data science helps scientists from other
disciplines in two distinct ways. Either computers are employed to automatically
generate models of phenomena, such that those models can yield accurate predic-
tions of their behavior; or computers automatically discover the dependencies among
the variables involved in a phenomenon, to enable scientists to study its structure.
From the standpoint of the philosophy of science, some further distinctions are rel-
evant. Data-driven and hypothesis-driven science are two distinct approaches to
the scientific method, which are frequently conceived as an opposing pair (Leonelli,
2012). The received hypothesis-driven approach starts with a scientific theory that
explains a certain phenomenon and makes testable predictions. Then experiments
are designed to evaluate whether the prediction is fulfilled in a controlled environ-
ment. On the other hand, the data-driven scheme starts with a dataset that might
have been collected under real world conditions with limited or no experimental
control. Then the data-driven scheme uses data science methods to analyze the
dataset. Consequently, data science must be distinguished from data-driven sci-
ence, since data-driven science is what scientists from other disciplines do when
they carry out their research activities under the data-driven methodology with the
help of data science methods. This means that data science methods can also be
used under the hypothesis-driven methodology, although they play a less important
role. The term “data analysis” is rather generic, since it is associated to both ap-
proaches (D. R. Anderson, Burnham, & Thompson, 2000, p. 913; D. R. Anderson,
Burnham, Gould, & Cherry, 2001, p. 311; Breiman, 2001, p. 210; Cleveland, 2001,
p. 21; Waller & Fawcett, 2013, p. 77; Sundararajan, Provost, Oestreicher-Singer, &
Aral, 2013; Van Horn & Toga, 2014, p. 328; Frické, 2015, p. 653), whereas “big data
analysis” is related to the novel one (Chiang, Goes, & Stohr, 2012, p. 2; Stephens
et al., 2015, p. 6; Dolinski & Troyanskaya, 2015, p. 2576).
Exploratory research is a third kind of research that has some resemblances to the
data-driven approach. Namely, exploratory research is not strongly guided by a
theory that must be put to the test (Haufe, 2013, p. 366). In other words, the
experiments are not always designed to test theories (Schickore, 2016, p. 21). In
some cases exploratory research can be seen as a hybrid of hypothesis- and data-
driven research which poses a wide range of possible hypotheses, then tries to rule
out as many of them as possible with the help of data science methods, and finally
designs experiments to evaluate the remaining ones (Ratti, 2015, p. 200). However,
exploratory research is not always related to data-driven science or data science. It
can be employed to search for regularities in the physical world when no established
theory exists, which has been done well before computers were available (Schickore,
2016, p. 21).
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Chapter 1 Hypotheses and theoretical framework

At this point, an critical remark must be made. It has been argued that data-driven
science dates back to the times of Linnaeus (Müller-Wille & Charmantier, 2012, p.
6) so that the main differences with current times are the size of the datasets, the
fact that they are analyzed by researchers from other disciplines, the change towards
quantitative judgment criteria, and the widespread sharing of data (Strasser, 2012,
p. 86-87). I contend that there is another fundamental difference in current data-
driven science. Computers are not only used as massive data storage devices or fast
calculating machines. They are also employed as learning machines that exploit the
data to automatically generate algorithmic models of phenomena with predictive
capabilities. This way of using computers is entirely new, and it was not possible in
the early stages of computer science until machine learning developed in the 1960s
and 1970s.

1.3 Methodology of data-driven science

Data are always collected within a theoretical framework, so predictive model gen-
eration is only a part of the overall task of theory construction and evaluation. Leo
Breiman has argued that there are two statistical cultures, the classic one which
emphasizes the explainability of the models, and a modern one which is more con-
cerned about the predictive accuracy (Breiman, 2001, p. 209). This theory leads
us to a fundamental methodological question that underlies data science and its
supporting role in other scientific disciplines: is it admissible, from the point of view
of the scientific method, that explanations of phenomena are not the main research
goal? In other words, what is more important, the accuracy of the predictions,
or the understanding of nature? There is no unique answer. It has been argued
that data science produces scientific theories since it generates models that make
good predictions (Dhar, 2013, p. 66; Agarwal & Dhar, 2014, p. 446). However,
hypothesis-driven science assumes that explanations of phenomena are a key ingre-
dient (Burian, 2007, p. 289; Karaca, 2013, p. 94; Schickore, 2016, p. 21). It has
also been said that the ultimate goal of science is the comprehension of nature,
so that black boxes are not allowed (Efron, 2001, p. 219). Nevertheless, the role
of hypotheses has decreased in importance in current science, which means that
hypothesis-driven science is not the only possible strategy (Krohs, 2012, p. 53).
Against those who argue that black boxes are inadmissible, the rejoinder would be
that the process under study is too complicated for a human to understand it, at
the current state of the scientific theory of the domain at hand. Otherwise, an
understandable model derived from the theory would fit the data equally well or
better than black boxes. The scientist must resist the temptation to oversimplify
the problems (Breiman, 2001, p. 204):

With data gathered from uncontrolled observations on complex sys-
tems involving unknown physical, chemical, or biological mechanisms,
the a priori assumption that nature would generate the data through a
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1.3 Methodology of data-driven science

parametric model selected by the statistician can result in questionable
conclusions that cannot be substantiated by appeal to goodness-of-fit
tests and residual analysis. Usually, simple parametric models imposed
on data generated by complex systems, for example, medical data, fi-
nancial data, result in a loss of accuracy and information as compared
to algorithmic models.

Some data sets are so large and complex that it would be almost impossible for a
human to find significant patterns without the help of algorithms which automati-
cally find models to fit the data (Dhar, 2013, p. 68). Moreover, experimental design
imposes that uncontrollable sources of variation are reduced as much as possible, but
this means that many experiments are conducted under oversimplified, unrealistic
conditions. On the other hand, data science can exploit real world observations to
generate predictors that work in practice (Dhar, 2013, p. 72-73; Agarwal & Dhar,
2014, p. 444), although the lack of experimental control means that the underlying
processes might not be adequately understood. Experimental data are preferable
when the goal is an explanation because causal relations can be ascertained without
interferences. At the same time, accurate prediction requires observational data free
of experimental control when those interferences significantly affect the outcome of
the process in real situations (Shmueli & Koppius, 2011, pp. 562-563). A middle
way is to employ the algorithms to discover interesting patterns in observational
data, then find a theory which explains them, and finally test it with specifically de-
signed experiments (Agarwal & Dhar, 2014, p. 446; Dolinski & Troyanskaya, 2015,
p. 2577; Peters et al., 2014, p. 3; Ratti, 2015, p. 200).

Therefore, my answer to the above questions is twofold:

• If there is a developed scientific theory from which interpretable models of
phenomena can be derived whose predictions match the data, then the problem
falls outside of the field of algorithmic models. Even if the predictions do not
match the data, but there is hope to solve this issue by a suitable modification
of the theory (Cox, 2001, p. 218), then interpretable models are preferable
because they can give the scientists the insights required to carry out such
modification successfully.

• If there is little hope to obtain a scientific theory with strong predictive power,
or there is a need to get accurate predictions without having to wait until
such a theory is found, then data science and its black boxes can help. This
case is more likely to happen in disciplines where the system under study
is complex or chaotic. For example, molecular biology, epidemiology, and
social sciences are amenable to black boxes because the underlying processes
involve a vast number of relevant variables with highly nonlinear dependencies
among them. Moreover, it is not feasible to measure all of these variables, i.e.,
many pertinent variables are hidden. This means that interpretable models
would likely be oversimplifications of limited predictive performance. Existing
understandable theories would still be employed whenever the focus is on the
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Chapter 1 Hypotheses and theoretical framework

general understanding of the processes, and not in the generation of accurate
predictions.

In other words, the role of machine learning in contemporary science crucially de-
pends on the complexity of the process under study, since this complexity is related
to the possibilities to obtain an interpretable model that captures the intricacies of
the problem at hand.

Another methodological problem is the multiplicity of models of very different struc-
ture which fit the data well (Tukey, 1977, p. viii; Breiman, 2001, p. 203-204). Which
one gives a faithful account of reality? In the traditional hypothesis-driven method-
ology, the model which best fits the data would be chosen as the one which yields
the best explanation of phenomena; the others would be rejected. But when the dif-
ferences among the fitting errors are not statistically significant, it can be said that
none of the models entirely reflect the underlying mechanism of the phenomenon
under study. Under these circumstances, we can no longer dismiss black box proce-
dures since one could have two or more white boxes that fit the data equally well,
each providing an alternative explanation corresponding to a partial perspective
(Callebaut, 2012, p. 76). Explanatory and predictive models can be regarded as
different perspectives of reality. The former focus on the causal relationships among
the variables of a problem and the laws behind those relationships, while the lat-
ter focus on the relation among the input and output variables. These perspectives
overlap to the degree that they employ the same variables to describe a phenomenon.
Let us consider a specific example. Decision trees are among the best known white
box algorithmic prediction methods. A person can easily interpret them with basic
knowledge about the problem domain at hand (Breiman, 2001, p. 207). Therefore,
they are suitable for a perspective from the explanatory point of view. However, if
our emphasis is in prediction, an ensemble of decision trees (a random forest) usually
delivers higher predictive performance at the expense of the interpretability of the
model, even though the variables are the same that a single decision tree employs.

1.4 Conceptual and mechanistic aspects of scientific
theories

It is widely acknowledged that observations and hence data are theory laden (Calle-
baut, 2012, p. 74; Frické, 2015, p. 652). This has sometimes led to downplay the
role of data (Leonelli, 2015, p. 814) or reject the possibility of data-driven science
(Pietsch, 2015, p. 908; Ratti, 2015, pp. 198-199). In what follows, I defend a way to
resolve this confrontation. Two parts can be distinguished in scientific theories. The
first one, which might be called the conceptual one, contains the abstract concepts
that are regarded as relevant to the phenomenon under study, their operationaliza-
tion into measurable variables, and the experimental and observational procedures
required to collect scientific data. This part is common to both data-driven and
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1.4 Conceptual and mechanistic aspects of scientific theories

hypothesis-driven science. Their differences only arise in the second part, which
I call “mechanistic”. This part establishes how the variables are related and how
predictions can be obtained from those relations. Here hypothesis-driven research
derives the mechanism from a set of hypotheses, while data-driven research learns
the mechanism from data. Some philosophers of science have already posed this
split of scientific theories into two parts. Wolfgang Pietsch argues that data-driven
science is theory-laden externally, but not internally, which means that it does not
make hypotheses about the internal structure of the phenomenon (Pietsch, 2015,
p. 913-914). On his part, Emanuele Ratti distinguishes background assumptions
that both kinds of research must follow (Ratti, 2015, p. 202). These assumptions
are the conceptual part of a theory, which guide the data collection process but
are not relevant to the mechanistic part in data-driven research. Laura Franklin
highlights that there is a theoretical background upon which particular hypotheses
or mechanisms are postulated by hypothesis-driven science, but not by exploratory
experimentation (Franklin, 2005, pp. 892-893).

Let us be more precise. I will focus on prediction tasks. For the purposes of this
discussion, a problem is a set of input variables (available at the time that the
prediction must be delivered), a set of output variables (to be predicted, not available
at prediction time), a set of samples (previously observed input-output pairs), and
a set of real world situations where the dependency among inputs and outputs can
be assumed to be the same. For example, predicting the price of a house in Los
Angeles is a problem. The set of input variables could be the population density,
the surface area of the house, the distance to the nearest hospital, the distance
to the beach, the criminality rate of the area, etc. The set of output variables
would only contain the price of the house. The samples would be collected all over
Los Angeles, and it would be assumed that the relation among the input variables
and the price of the house is the same across the city. The key difference between
data science and hypothesis-based science is that a machine learns data science
models for a single problem, and they can not be applied to any other problem.
For example, we can not apply a model for Los Angeles house prices to Miami,
because the relations among the variables are not the same. One could say that a
model could be learned that predicts the price of the houses for both cities by taking
samples from both of them. But this would lead to a reduction of the prediction
performance because it would increase the complexity of the relationship that has
to be learned. It would give better results to learn two models, one for each city.
However, one can not reduce the size of the problem indefinitely, because, at some
point, the number of available samples would be too small to learn. That is, one can
not reduce the scope of the housing problem to a tiny neighborhood in Los Angeles
because the sample would be too small to learn any significant relationship among
the variables. Here “significant” means that the relation is not a random coincidence
due to the small number of collected samples. Therefore, in machine learning, there
is a fundamental balance: the bigger the scope of the problem, the more samples
that can be collected (which increases the significance of the discovered relations),
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but the more complex the relations which must be found. If we were to apply a
general (hypothesis-driven) economic theory, we would say, for example, that all
other things being equal, larger houses are more expensive. This principle would
apply to any city. But the predictive performance of a model based on these general
principles would likely be lower than that of a data-driven one. Now we can see
the difference between data-driven and hypothesis-driven science: the former tries
to solve each problem separately without relying on theoretical considerations to
restrict the range of possible dependencies among the variables. On the other hand,
hypothesis-driven science aims to find general principles about the dependencies
among the variables that apply to many related problems, and it is the task of the
scientist to derive specific models for each problem from those general principles.
If the relations among variables for a certain set of problems are simple enough
that scientists can understand them, create a general theory that comprises those
relations, and derive models for specific problems, then hypothesis-based science
has the key advantage that its theories can be applied to many problems without
collecting so many data for each one. Only the data necessary for ascertaining
the boundary conditions and a few problem specific parameters would be needed.
Otherwise, data science is the only way to go, at the expense that a large amount
of data must be collected, and a model has to be learned for each problem. This is
the kind of balance that underlies the debate about the data-driven and hypothesis-
driven approaches to cancer research (Golub, 2010; Weinberg, 2010). If the goal of
this research were the understanding of the biological causes of cancer, then data-
driven methods would be less used because they do not lead to a general theory of
cell mechanisms associated with this disease. Here it must be remembered that some
deny that such a theory can be found (Burian, 2007, p. 305). Data science is used
because the real goal is to cure cancer, no matter if we fully understand its causes.
Therefore, it is enough if data science can find one or more suitable target proteins
to halt a specific cancer process. There are some disciplines such as metabolomics
where the extreme complexity of the systems under study is widely acknowledged by
the scientific community, so that oversimplified models which try to understand the
influence of every single variable are rejected by researchers (Levin, 2014, p. 565).
In those disciplines, scientific activity is focused on algorithmic models that capture
the overall relation among hundreds of variables and their relative importance. Still,
it can not give a detailed account of the role of each variable in the system (Levin,
2014, pp. 557, 561).

At this point, it is advantageous to clarify what is meant when it is said that
an algorithmic model is a black box. This does not mean that it is some sort of
magic crystal ball which gives the correct answers, but no one knows why. On the
contrary, algorithmic prediction models are rooted in a mathematical background,
which explains why they can generate good predictions from data. For example,
in the Bayesian classification framework, it is possible to mathematically prove the
convergence of a classifier to the maximum possible performance as the dataset size
grows to infinity (Dalton & Dougherty, 2013a, 2013b; Dalton & Yousefi, 2015). The
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issue here is that these models transform and combine the input variables of the
problem in complex ways. Hence the prediction mechanism can not be translated
in terms of the original variables to produce an understandable explanation. The
situation is similar in unsupervised learning: complex relations among variables can
be found, but their exact form can not be determined. As mentioned before, in some
disciplines this complexity in the models can be an inescapable consequence of the
complexity of the phenomena under study.
In general terms, data science is more important in those disciplines more oriented
to prediction, as opposed to explanation (Ratti, 2015, p. 211). Following Shmueli’s
notation (Shmueli, 2010, p. 293), for a given problem there is an abstract level of
reasoning where the existence of an abstract function F is postulated, which re-
lates some abstract concepts X to other abstract concepts Y , Y = F (X ). Then an
operationalization must be carried out to translate these abstract concepts into mea-
surable variables X, Y linked by the function f , which captures the exact relation
among them, Y = f (X). The abstract level of reasoning and its operationalization
belong to the conceptual part of the scientific theory. Therefore, they are required
by both the hypothesis-driven and the data-driven research approaches. The last
step is the construction of a model f̂ , which is an approximation of f because it
can not capture all the details of the phenomenon under study. Data science comes
into play whenever the abstract function F is too complex to be ascertained by a
human (Pietsch, 2015, p. 915; James, Witten, Hastie, & Tibshirani, 2013, p. 19),
or it can not be used to derive a suitable predictive model f̂ . Data science proceeds
by learning f̂ from examples of pairs X, Y (James et al., 2013, p. 17). Data-driven
research considers that f̂ is an acceptable model of reality until a better one is found,
even if f̂ does not provide an explanation about how f works. The criteria that data
science advocates to determine which model of reality is the best will be investigated
below. The traditional, hypothesis-driven approach works differently. First of all,
the abstract function F is inferred from a general theory. Then a predictive model f̂
with few adjustable parameters is built. This typically involves some simplifications
of f which preserve the explanatory value of f̂ , i.e., f̂ can be employed to explain
how f works. Finally, statistical parameter estimation or hypothesis testing is used
to evaluate how well the data fits the model f̂ . Point estimations or confidence inter-
vals can be obtained for the few adjustable parameters of the model. Alternatively,
if an interesting phenomenon should affect some model parameters, then statistical
hypothesis testing can assess whether the null hypothesis that there is no effect can
be rejected with some confidence.
Now it is time to consider how data science compares models f̂i to choose one.
Automatable criteria are preferred since it is common that the computer must make
this kind of choice many times during the learning process. Most model performance
criteria try to find a balance between the complexity of the model and how well it
fits the data (Bishop, 2006, pp. 32-33). At the heart of this issue is the bias-variance
tradeoff. A well known performance criterion is the expected error that is committed
when using a model f̂ for prediction. This error is the sum of three non negative
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quantities (James et al., 2013, pp. 33-35; Hastie, Tibshirani, & Friedman, 2009, pp.
223-228): the irreducible error, which stays the same no matter how accurate the
model is; the bias, which is caused by the difference between the true function f
and its approximation f̂ ; and the variance of the learning method, which is caused
by the oscillations of f̂ as the dataset is changed. Thus the model which yields
the best predictions is that which attains the minimal sum of bias and variance.
This is hard to achieve because, in most cases, models with low bias have high
variance and vice versa. Low complexity models suffer from high bias because they
are oversimplifications of the true function f ; this effect is called underfitting. On
the other hand, complex models exhibit a large variance because they focus on
irrelevant details of the data (overfitting). Before the advent of big data, there was
no way to escape this dilemma (Geman, Bienenstock, & Doursat, 1992, p. 51).
The availability of large datasets means that the variance can be diminished as the
dataset size increases, which helps in reducing the overall prediction error. The key
lies in the complexity of the true function f , which can be seen as a measure of
how abrupt and intricate the changes in the output variables Y are, with respect
to changes in the input variables X. Some functions f are simple enough that an
accurate and understandable model f̂ can be fitted to match f closely with few data.
This implies that both the bias and the variance are low, even for a small dataset size.
However, as science struggles to study more complex phenomena, simple functions
f are more scarce, and this brings opportunities for data science techniques that can
reduce the variance of highly complex predictive models by harnessing large data
volumes.

A formal argument in favor of using machine learning algorithms to approximate
complex f functions is that some algorithmic models such as neural networks (Hornik,
1991; Hornik, Stinchcombe, & White, 1989) and fuzzy systems (Kosko, 1994; Wang,
1992) have been proved to approximate any continuous function to within any degree
of accuracy, given enough data samples and computational resources. At this point,
it is worth noting that most continuous functions can not even be described, i.e.,
they do not have a finite definition because the infinite cardinal of continuous func-
tions is larger than the infinite cardinal of finite definitions. This suggests that there
could be some problems whose functions f can not be described in a comprehensible
way, but can be adequately approximated by an algorithmic predictor.

Explanation, as opposed to prediction, searches for an understandable model f̂ with
the minimum possible bias, while the minimization of the variance is not essential
(Shmueli, 2010, p. 293). Consequently, for simple f , there is no conflict between
explanation and prediction. Only for complex f , it is necessary to choose between
them because the variance is not negligible. This conflict is counter-intuitive for
many researchers because science has not been able to address this kind of complexity
until machine learning algorithms were available. A way to reconcile these results
with intuition is to think of explanation and prediction as two goals that coincide
at the ideal limit of infinite data, where the variance is reduced to zero. These
considerations suggest that the bias-variance tradeoff is a fundamental principle of
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data science.

One of the challenges which are frequently made against data science is related
to the overfitting problem that was mentioned above. Hypothesis-driven research
establishes that models must be proposed before experiments are done. Choosing a
model after the data have been collected is regarded as a bad practice, called data
dredging (Thompson & Higgins, 2002, p. 1559; D. R. Anderson et al., 2001, p. 314;
D. R. Anderson et al., 2000, p. 921). In statistical literature, data dredging is the
extraction of hypotheses from some datasets, which are then tested for statistical
significance on the same dataset. It is seen as a risky procedure because statistical
hypothesis testing is based on the assumption that the hypothesis to be tested is
determined prior to seeing the data. Data mining has been criticized as a form of
data dredging (Fayyad, Piatetsky-Shapiro, & Smyth, 1996, p. 39). Indeed data
science frequently chooses from alternative models after they have been fitted to
data, so this challenge must be seriously considered. The critical problem here is
that the model that best fits a given dataset is not necessarily the best performing
for other data. That is, a model can be adjusted to small details that are particular
to the dataset, and do not appear in different situations. As said before, this is
called overfitting, and it is the issue that has rightfully been denounced by critics of
data dredging (Frické, 2015, p. 657). However, data scientists are well aware of this
inconvenience. It can be considerably alleviated if the dataset is randomly split into
three prior to processing (Breiman, 2001, p. 204): the training set is used to fit the
candidate models, the validation set is used to evaluate the models in order to choose
one of them, and the test set is used to obtain an estimation of the performance
of the chosen model when used to predict unseen data. There are many variants
of this procedure, but they are collectively known as cross-validation (James et al.,
2013, p. 176; Hastie et al., 2009, p. 241). An alternative procedure is to choose
the model which conveys the maximum information about the phenomenon under
study, according to information theoretic criteria (Bishop, 2006, p. 33). The validity
of these approaches depends on two factors. First of all, the collected data must
be representative of the phenomenon under study, so that nothing fundamentally
new arises at prediction time (Frické, 2015, p. 655). Secondly, a large amount of
data is required to make an informed selection among many complex models, so
that the choice is not affected by random fluctuations (Shmueli & Koppius, 2011,
p. 563). Therefore big data techniques are required to learn complex models since
their future performance can not be adequately estimated unless the sample size is
large (Dhar, 2013, p. 72; Dolinski & Troyanskaya, 2015, p. 2576).

1.5 Two kinds of data science

Next, it is time to explore the specificities of data science according to the kind of
problem that it is applied. There are two kinds of datasets:
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• Unstructured datasets. In this context, only short or medium term predic-
tions are possible due to the time variability of the systems under study. The
data are highly unstructured, i.e., it comes in various formats and from dif-
ferent sources. Furthermore, in most cases, they come from observations and
not experiments. They are frequently qualitative, and in many cases, their
meaning is not clear or homogeneous over all the samples, for example, in the
responses to automated surveys, or the usage of a particular term in Twitter
messages. Under these circumstances, it is acknowledged that all models are
very far from reality. Therefore any model that generates good predictions is
seen as a working approximation among many other possible models. One of
the most pressing difficulties contributing to the complexity of modeling social
processes is that many important variables are not measured, as the systems
under study are open and include a large number of individuals, each with
their behavioral patterns. However, data science contributes to the under-
standing of these systems by taking advantage of the ever increasing amount
of data to build quantitative models that can be evaluated objectively. This
kind of datasets is prevalent in the social sciences.

• Structured datasets. Long (ideally infinite) term predictions are desired since
the aim is to find general laws of nature. That is, an interpretable model that
produces reliable predictions in all circumstances is the overall goal. The data
are typically more structured, and their meaning is prespecified by a precise
and widely acknowledged ontology. Substantial efforts are made to measure
all relevant variables. Here the problem of black box models is of paramount
importance since scientists wish to extrapolate the models to other situations,
and this can only be done by understanding how these situations differ from
the one that the original data were collected. The data are almost always
quantitative, and they come from measurements made under experimental
conditions or at least computer simulations where the sources of error are
identified and the size of the errors are controlled. These datasets are more
likely to be found in the natural sciences.

These two kinds of datasets call for different methodologies and requirements, which
defines a split between two types of data science. But the machine learning tech-
niques are the same for both of them, which can lead to confusion. We will call the
first one ‘soft data science’ and the second one ‘hard data science’, following the
traditional distinction between soft and hard sciences (Hedges, 1987; Hong, 2013;
Mryglod, Kenna, Holovatch, & Berche, 2013; Smith, Best, Stubbs, Johnston, &
Archibald, 2000). Of course, the boundaries between the two are not clear cut, but
this split may clarify the discussion because the role of data science in both contexts
is fundamentally different (Dhar, 2013, p. 71; Zhu & Xiong, 2015). Social sciences
and physics stand at the extremes (Dhar, 2013, p. 69), while biology and medicine
lie in the middle field. The complexity of biological systems can not be completely
reduced to the straightforward application of the underlying physical laws to their
subsystems (Green, 2015, pp. 81-82; Krohs, 2015, p. 101). This leaves the alter-
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native of looking for good predictors, even if the basic principles of those systems
are not well understood (Braun & Marom, 2015, p. 71). In other words, long term
predictions and general principles are sometimes attainable, but in many cases, the
systems are too complex to derive interpretable predictive models from abstract
concepts.
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Abstract
Deep learning is a kind of machine learning which happens in a certain type of arti-
ficial neural networks called deep networks. Artificial deep networks, which exhibit 
many similarities with biological ones, have consistently shown human-like perfor-
mance in many intelligent tasks. This poses the question whether this performance 
is caused by such similarities. After reviewing the structure and learning processes 
of artificial and biological neural networks, we outline two important reasons for 
the success of deep learning, namely the extraction of successively higher level fea-
tures and the multiple layer structure, which are closely related to each other. Then 
some indications about the framing of this heated debate are given. After that, an 
assessment of the value of artificial deep networks as models of the human brain is 
given from the similarity perspective of model representation. Finally, a new version 
of computational functionalism is proposed which addresses the specificity of deep 
neural computation better than classic, program based computational functionalism.

Keywords  Computational functionalism · Artificial intelligence · Machine learning · 
Neuroscience

1  Introduction

The question whether the functions of the human brain could be implemented on 
a computer has captured the imagination of philosophers of science and computer 
scientists alike over the decades. There are two lines of research in this respect. The 
neuroscience approach intends to simulate the biological structures of the brain as 
closely as possible. This is mainly aimed to gain biological knowledge about the 
fundamentals of information processing in the brain. It can help to understand and 
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eventually cure some diseases, and it is also relevant to understand human behavior. 
In contrast to this, the artificial intelligence approach focuses on the design of com-
puter systems which are able to replicate the abilities of human brains, even if the 
internal workings of the computer systems are fundamentally different from those 
of the brain. For artificial intelligence, the biology of the brain has been seen as an 
inspiration, rather than a prescription to be followed. In particular, machine learn-
ing is a subfield of artificial intelligence which deals with the design of algorithms 
whose performance improves over time by interacting with the environment. These 
algorithms share the ability to learn with animals, whereas they do not intend to rep-
licate the learning processes involved in biological systems.

This state of things has been shaken to the roots by the emergence of deep learn-
ing. It deals with some types of artificial neural networks, which are made of fun-
damental processing units called artificial neurons. Artificial neurons are arranged 
into layers, which are connected to form an artificial neural network. Deep learning 
is characterized by the development of networks with many layers. It has made a 
large impact in machine learning (Yu and Deng 2011, p. 145; Yamins and DiCarlo 
2016, p. 362; Silver et al. 2017) and artificial intelligence as a whole. It is seen as 
a revolution which will change these fields substantially (Voosen 2015). From the 
point of view of philosophy of science, deep learning artificial neural networks are 
unique among other machine learning algorithms. This is because artificial deep 
networks have a much closer similarity to biological neural networks than any pre-
viously considered machine learning models. Therefore, it is relevant to wonder if 
there is something essentially new in them, i.e. whether they are closer to human 
intelligence than previous machine learning models.

It has been recently argued that, while artificial neural networks are appealing 
because they have some analogies to biological networks, they do not exhibit any 
fundamental advantages with respect to other artificial intelligence models (Parnas 
2017, p. 30). It is further said that the use of words like ’intelligence’ or ’learning’ 
with blurry or changed meanings creates the illusion that artificial intelligence algo-
rithms are close to human intelligence (Parnas 2017, p. 31). This calls for precision 
in the evaluation of the merits of all artificial intelligence models, and in particular 
deep learning, which carries a positive aura due to its analogies to biological net-
works. This is challenging, since there is no agreed definition in psychology about 
human intelligence, nor a unique procedure to measure it (Legg and Hutter 2007, p. 
392). Intelligence has been informally defined as the ability of an agent to attain its 
goals in a wide range of situations (Legg and Hutter 2007, p. 402), but this leaves 
the unknown of the relevant situations and goals that should be tested in order to 
ascertain whether a machine achieves human-like performance.

Some part of this confusion about the nature of computer intelligence can be 
traced to the misinterpretation of the foundational Alan Turing’s paper about the 
possibility of building thinking machines (Turing 1950). Turing proposed that, in 
order to have an indication that a machine possessed intelligence, a test might be 
carried out to check whether humans could not distinguish the machine from another 
human in a conversation. But Turing did not mean that we should aim to build 
machines that could fool a human into believing that they are also human. Sadly, 
some researchers mistakenly assumed that any machine which passed Turing’s test 
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was to be declared intelligent (Parnas 2014). In particular the ELIZA conversation 
program (Weizenbaum 1966), which did not exhibit any kind of intelligence nor was 
it meant to do so, was erroneously seen as a significant step towards machine intelli-
gence. This misinterpretation was created by the illusion that such machines possess 
something close to human general knowledge and common sense. These lessons 
from the past teach us that the definition of general intelligence is too complex and 
disputable, so it will not lead us to any practical evaluation criteria. Consequently, 
in what follows the evaluation of deep learning will be based on its performance on 
specific tasks, so that performance measurement criteria are less disputed.

Deep learning has already demonstrated human-like or even higher performance 
in some vision tasks. It attains human level performance for handwritten digit rec-
ognition (Cireşan et al. 2012b). As seen in Cireşan et al. (2011, 2012a), Stallkamp 
et al. (2012), it recognizes traffic signs with an average classification error which is 
half of humans’. Moreover, deep learning based Go players clearly outperform the 
most skilled human masters (Silver et al. 2017). This level of success calls for an 
explanation. Some would say that deep learning networks have a much higher per-
formance than previous machine learning algorithms because they are more simi-
lar to the biological neural networks which carry out those tasks (Marblestone et al. 
2016, p. 4; Kruger et al. 2013, pp. 1865–1866). It can not be denied that deep learn-
ing is inspired by a biological analogy, but it is necessary to ascertain the extent and 
meaning of this analogy. In this work, we intend to study this problem. As a result 
of such study, it is found that artificial deep networks might work as computational 
models of the human brain which are more realistic than previous ones. Therefore 
we propose a new kind of computational functionalism which dwells on the suc-
cess of artificial deep learning. Such kind of computational functionalism advocates 
explanations based on the computational capabilities of artificial and biological 
neural structures and synaptic weights, rather than classic computation by Turing 
machines.

The structure of this paper is as follows. Section 2 outlines deep learning arti-
ficial neural networks. It specifies the learning mechanisms that they employ, in 
the context of general machine learning. Then Sect.  3 addresses the fundamental 
problem of the interpretation of the features used in artificial and biological neural 
networks. The relations among these sets of features may hold the key to under-
stand why artificial deep learning has such an impressive performance. However, the 
learning mechanisms in artificial and biological networks do not share many resem-
blances. That is, the relation of biological adaptation and machine learning is not 
clear, which might undermine the case for the similarity of both kinds of networks. 
This issue is investigated in Sect. 4. The possible novelty of artificial deep learning 
in terms of the modeling of the human mind resides in the role of the multiple lay-
ers in their deep structure. A possible account of this role is given in Sect. 5, which 
deals with the theories which state that deep structures of neural layers are success-
ful because they adequately approximate the hierarchical structure of physical real-
ity. Some indications about the most relevant aspects of the debate regarding the 
merits of artificial deep networks are given in Sect. 6. Then we advocate a similarity 
view of model representation in order to address the question whether artificial deep 
networks are good models of the human brain (Sect. 7). After that, it is recognized 
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that classic forms of computational functionalism can not capture the way that arti-
ficial deep networks compute, which leads us to propose a new version of compu-
tational functionalism which we call neural computational functionalism (Sect. 8). 
Finally, Sect. 9 concludes this paper.

2 � How Deep Networks Learn

Our investigation must start by putting artificial deep networks in their context, as a 
first step towards the assessment of their value as models of the human brain. Arti-
ficial deep networks belong to the machine learning branch of artificial intelligence, 
which is one of the main subfields of computer science. As such, artificial deep net-
works are computer models of data. They are aimed to solve a certain problem, and 
they improve their performance as they learn from data. Their learning is accom-
plished by executing learning algorithms which might not have a biological coun-
terpart. Moreover, the basic computing units of artificial networks, i.e. the artificial 
neurons, are much simpler than biological neurons. There are three main approaches 
to machine learning, which are associated to three kinds of problems (Trappenberg 
2014): supervised learning, unsupervised learning, and reinforcement learning. 
Deep networks have been employed for the three of them, but their role varies.

Supervised learning intends to approximate a function from a set of examples. 
That is, given some example patterns of possible inputs and their desired outputs, 
the task is to learn a model of the underlying function such that the difference 
between the desired and predicted outputs are as small as possible for previously 
unseen patterns. The supervisor is an entity which compares the desired and pre-
dicted outputs, and provides a measure of the differences. The supervisor plays a 
key role in supervised learning, since these error measures are required to adjust 
the model to the patterns. Typical supervised deep learning networks have several 
layers of neurons between the inputs and the outputs, so that the information flows 
from one layer to the next one. This is called a feed forward network architecture. 
Each layer computes a nonlinear transformation of the information provided by the 
previous layer, so that irrelevant details of the input are progressively removed (see 
Sect. 5). This way, supervised deep networks may capture highly complex relations 
among the input and output variables.

Unsupervised learning is characterized by the absence of a supervisor, i.e. there 
are no desired outputs. It is aimed to discover the structure of an input dataset. Deep 
networks can be trained in an unsupervised way to learn the probability distribution 
of the input. This is the case of Deep Belief Networks (Hinton et al. 2006). Further-
more, some layers of deep feed forward networks can also be trained in an unsu-
pervised way, so that these layers capture the relevant features (see Sect. 3). This is 
done by training an autoencoder, i.e. a network whose desired output coincides with 
the input so that the information must flow through an intermediate layer with few 
neurons. The presence of this narrow intermediate layer forces the network to learn 
a set of relevant features that it uses to reconstruct the input as faithfully as possible.

The third kind of machine learning problems is called reinforcement learn-
ing. It intends to enhance the behavior of an agent that must make decisions in 
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an environment that gives it rewards or penalties for its actions, where penal-
ties can be regarded as negative rewards. Again there is no supervisor, because 
the rewards are generated by the environment without human intervention. This 
means that reinforcement learning arises in many problems that living beings 
must solve to survive and thrive. In this sense it can be said that it is the most 
natural of the three kinds of learning that we have just discussed. On the con-
trary, supervised learning has no direct biological counterpart, since the supply 
of desired outputs and the existence of a supervisor have no correlates in nature. 
Interestingly enough, deep learning approaches to reinforcement learning do 
include a supervisor (Mnih et al. 2015, p. 529). There is a replay memory which 
stores all past experiences of the agent. This way it is possible to compute how 
good the available actions at a certain state of the problem are, based on recorded 
rewards in similar circumstances. Then the supervisor compares the actual output 
of the deep network with the output that it should generate according to past expe-
riences. This means that recollection of past memories could work as a supervisor 
for biological organisms, provided that the biological mechanism to compute the 
desired outputs is found. If no such mechanism is found, then supervised learning 
can only exist in an artificial environment where a supervisor intentionally pro-
vides adequate training patterns composed of inputs and their associated desired 
outputs. Therefore, although supervised deep learning networks have a clear con-
nection with the structure of the physical world, and they could be valid models 
of it (Lin and Tegmark 2016b), their learning procedure seems to be intrinsically 
distinct from anything which can be related to biological evolution or human cul-
ture (Yamins and DiCarlo 2016, p. 364). Unsupervised deep learning networks do 
not have this inconvenience, although the relation of their learning procedures to 
natural processes is yet to be determined.

Much of the success of deep learning comes from a two-stage approach to 
training (Yu and Deng 2011, p. 145). First a deep network is trained from a wide 
range of situations, often in an unsupervised way. Then the network is retrained 
for a more specific task. This is known as fine tuning, and it is often supervised. 
The first stage can be conceived as an adaptation to the features of the data that 
best summarize the general structure of the problem, while the second stage 
aims to maximize the predictive performance of the network. The success of this 
approach indicates that there are features whose significance is quite broad (Bon-
figlioli and Nanni 2016, p. 92), irrespective of specific classes or categories. In 
other words, the learned features comprise a good representation of the data and 
the underlying process that generated them. It has been argued that this means 
that the features are associated to the causal process behind the observed data 
(Hinton 2014, pp. 1091–1092). The learned features summarize nonlinear, high 
order correlations among the input and output variables. While some of these 
correlations might not be associated to the real causes of the phenomenon under 
study, there is a good chance that many of them are. This is enough since deep 
learning algorithms are able to find out which features are the most significant 
ones, so that spurious (non-causal) correlations are filtered out in the learning 
process.
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3 � Features in Artificial and Biological Networks

As seen in Sect. 2, the ability of deep networks to discover significant features is 
fundamental in their workings. This ability is so important because the discov-
ered features have two main advantages. First of all, features comprise relevant 
information so that noise, errors, and unimportant characteristics of the data are 
discarded. Therefore the networks focus on those aspects of the input which are 
related to the problems that they solve. This can be regarded as a procedure to 
extract a concise representation of reality made of valuable information from a 
large volume of raw data which is mostly made of unessential details. Secondly, 
the multiple layer architecture of these network implies that this feature extraction 
is carried out by steps, so that deeper layers encode more concise and relevant 
representations. In particular, deeper representations are increasingly invariant 
with respect to irrelevant transformations. For example, the position of an object 
in a scene is not relevant to determine which kind of object it is, so it is expected 
that deeper layers of a deep network trained for object recognition encode object 
representations which are invariant with respect to such positional information.

It is well known that the brain is able to learn and use significant features in 
order to extract from a given situation the information which is relevant to solve 
a problem. That is, the nervous system discards useless information from the 
senses, so that it can manage a myriad of different cases which differ in irrel-
evant details. Given the much larger information storage capacity of the brain 
compared to the genome, the remarkable flexibility of humans and other ani-
mals to adapt their behavior to new situations, and the huge number of features 
to be learned, we must accept that features can not be completely innate (Hin-
ton 2014, pp. 1078–1079). Biological evolution finds neural structures which are 
capable of discovering relevant features, but it can not hardwire into the genome 
all the features that a living being must extract and use to thrive successfully. In 
particular, it has been observed that low level features are mostly innate, while 
high level features are more dependent on learning from the environment (Kru-
ger et  al. 2013,  p. 1851). For example, complex features are learned which are 
specifically tailored to recognize particular objects (Quiroga et al. 2007, p. 2003). 
This poses the question of how the central nervous system adapts to the envi-
ronment in order to find out high level features which are significant to solve a 
problem. Moreover, some learned features are significant to solve a wide range 
of problems. For example, recognizing letters and other written symbols enables 
a person to carry out many different tasks. Hence there is the possibility that bio-
logical feature learning is decoupled to a certain degree from the specific problem 
that an individual is trying to solve when the feature learning is accomplished. In 
fact, such possibility could be favored by evolution, since finding features that can 
be applied to many problems saves some of the energy required to learn features 
for new problems (Kruger et  al. 2013,  p. 1864), and therefore makes the indi-
vidual more fitted.

Traditional machine learning approaches to feature management were based 
on the manual specification of a large set of candidate features. That is, the 
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machine learning researcher interviewed some experts in the domain of the prob-
lem to be addressed, so that she could get some understanding of its structure. 
Then the experts and the machine learning researcher carefully designed a set of 
potentially significant features, along with the procedures to compute them from 
the raw data. Finally, those tentative features were supplied to a feature selec-
tion algorithm which automatically chose the most useful ones in order to solve 
the specific problem at hand. Deep learning means a revolution in two ways. On 
one hand, it learns the features itself (for example by autoencoding, see Sect. 2), 
which is a giant advancement with respect to manually specifying them. This 
frees the computer scientist from the need to find sets of candidate features and 
select an optimal subset of them. On the other hand, if the deep learning network 
learns the features in an unsupervised fashion (which is the case of autoencod-
ers), then those features have the potential to be employed for several different 
problems. This is because each problem is associated with a set of desired outputs 
which is supplied by the supervisor in supervised learning, while unsupervised 
learning is not attached to any such set of desired outputs. Successes in deep rein-
forcement learning mean that deep learning might handle interaction with the 
physical world by finding salient features from the environmental rewards without 
the need of a supervisor, just like living beings (Mnih et al. 2015, p. 532).

At this point, given the architectural similarities between artificial and biolog-
ical networks, and their ability to learn without a supervisor, we must wonder 
whether the features employed by biological brains and the features discovered by 
deep learning are similar. It has been argued that, if biologically and artificially 
learned features are similar, then artificial deep networks could help to under-
stand the biological ones (Schmidhuber 2015, p. 100). This suggests that artifi-
cial deep networks could be appropriate models of their biological counterparts. 
An argument in favor of similarity is that deeper layers of both biological and 
artificial deep networks encode higher level features which are invariant to irrel-
evant transformations (Kruger et  al. 2013,  p. 1850). However, there are impor-
tant differences in other aspects such as color constancy for visual information, 
where current machine learning approaches use local low level operations, while 
the biological vision system employs several local and global procedures which 
belong to various complexity levels (Kruger et al. 2013, pp. 1854–1855, 1860). 
If they are not similar, then it is possible that artificially learned features perform 
better than biologically learned features. Moreover, it is also possible that biolog-
ically learned features can be read out by machine learning algorithms, i.e. these 
algorithms can accomplish tasks when provided with the biologically learned 
features, which has already been observed in some cases (Kiani et al. 2007). At 
least artificial deep learning features have become widely used in natural lan-
guage processing (Yu and Deng 2011, pp. 148–149). These features have proven 
themselves useful to discover highly complex relations among words in datasets 
spanning several centuries of literature (Bonfiglioli and Nanni 2016, p. 93). This 
abstract task is beyond the capabilities of any single human, since no one can 
read such a large amount of text and then find out the relations among all the 
words that occur. Furthermore, deep learning based machine translation systems 
have demonstrated a performance which is quite similar to that of humans (Wu 
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et  al. 2016). However, the limits of deep learning when applied to natural lan-
guage processing are not clear yet, since it seems that the parts of language where 
rules are more influential remain elusive to neural networks, while cognitive sci-
ence is still more successful (Manning 2015, p. 706). It has been demonstrated 
that the visual cortex has a hierarchical structure which has some similarities 
with convolutional neural networks (Hong et  al. 2016, p. 619), so that the neu-
rons in the highest layers of both hierarchies are associated with object categories 
that are recognized (Yamins et  al. 2014,  p. 8619). Moreover, it has been found 
that convolutional neural networks trained for one visual task also perform well 
for other tasks (Yamins and DiCarlo 2016, p. 363), which suggests that features 
have certain independence with respect to the task to be carried out. This agrees 
with the operation of the human visual cortex, where object categorization is car-
ried out at the higher levels of the neural layer hierarchy, whereas the information 
about category orthogonal properties also increases in those higher levels (Hong 
et al. 2016, pp. 613, 620).

The situation might be summarized as follows. Both biological and artificial 
deep networks manage the complexity of the tasks by finding relevant features 
of progressively higher level of abstraction. Biological networks do not possess 
such a regular structure as artificial ones. This can be explained by the fact that 
they have not been designed, but selected by evolution. In any case, their resem-
blances are remarkable with respect to features. On one hand, artificial networks 
have already been used as models of biological ones by neuroscience research-
ers, which means that artificially learned features can model biological ones. On 
the other hand, artificial networks can read out biologically learned features, i.e. 
biological features can be employed by artificial networks. Consequently there is 
a possibility for a two way flow of features between the biological and the arti-
ficial. Moreover, both artificial and biological features show a certain degree of 
independence with respect to the specific task that they were learned for. This 
further suggests that both kinds of features are compatible. Finally, there are tasks 
such as the discovery of relations among words in a large literary corpus that are 
beyond human capabilities due to our time and memory limitations, but can be 
addressed with machines. In Table 1 the similarities and differences among bio-
logical and artificial deep networks are listed.

Table 1   Similarities and differences among biological and artificial deep networks

Similarities Differences

Hierarchy of layers No supervisor in biological networks
Filtering irrelevant details Artificial neurons are too simple
Levels of abstraction Irregular structure of biological networks
Invariance to irrelevant transformations Learning mechanism differences
Features independent from the task Biological networks are evolved and not designed
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4 � Adaptation in Biological Networks

Both biological and artificial networks rely on learning in order to enhance their 
problem solving performance. However, the connection between the biological 
and artificial modes of learning is problematic, since artificial deep learning algo-
rithms are not designed to match biological processes, and at first sight they do 
not have many resemblances. This connection must be clarified, since the pos-
sibility of using artificial deep networks as realistic models of the human brain 
depends on how similar artificial and biological neural adaptation processes are. 
In this section possible ways to establish some links are investigated.

As mentioned in Sect.  2, among the three kinds of learning discussed there, 
reinforcement learning is the most biologically plausible one. This is because 
there is no need for a supervisor to provide the desired output. One of the most 
influential theories of learning in cognitive biology is the Rescorla–Wagner 
rule (Fitch 2014, pp. 338, 343; Bassett and Mattar 2017, pp. 258–259; Holland 
and Schiffino 2016,  p. 207). It assumes that organisms build predictive models 
of reality, i.e. models that yield predictions about the reward (unconditioned 
stimulus) which should follow a given observed event (conditioned stimulus). 
Those models are adjusted by evaluating the error of the predicted reward with 
respect to the actual reward from the environment. Here the environment acts 
like a supervisor, since it provides the desired outputs (the actual rewards) for 
the reward prediction model built by the organism. Hence, the Rescorla–Wagner 
model combines reinforcement with supervised learning. Fitch argues that error 
backpropagation, which is at the heart of deep learning algorithms, is biologically 
plausible at the neuron level, although not at the network level (Fitch 2014, pp. 
340–341). For example, dopamine flows might increase or decrease in response 
to positive or negative reward prediction errors, respectively (Fitch 2014, p. 345). 
However, recent developments on machine learning suggest that training algo-
rithms that only employ local information, which are thereby more biologically 
plausible, might be used to replace backpropagation in artificial deep networks 
(Hassabis et al. 2017, p. 254). On their part, Basset et al. argue that the reinforce-
ment mechanism can work at the network level (Bassett and Mattar 2017,  pp. 
259–260). In any case, the focus on prediction of rewards is common to both lines 
of thought. The Pearce-Hall theory varies in several ways from Rescorla–Wag-
ner, but it also considers that reward prediction errors drive learning (Bassett and 
Mattar 2017, p. 208). Therefore, supervised learning is biologically plausible in 
a global reinforcement learning context driven by rewards from the environment. 
The association of stimuli to rewards must be genetically determined, since they 
form the basis for this learning scheme (Fitch 2014, p. 336).

If biological learning is driven by the errors committed by a reward predic-
tion model, then the kind of models that can be built by biological neurons is 
of paramount importance. Models stored in the human brain would be more 
complex than those of other animals, since humans would have an innate pro-
clivity to discover tree structures (Fitch 2014, pp. 351–352), which are required 
for many typically human cognitive capabilities (Dehaene et  al. 2015,  p. 13). 



676	 E. López‑Rubio 

1 3

Human language is a paramount example of a tree structured problem. Linguis-
tic elements can have a strong correlation even if they are separated by many 
other elements in a text, and this can not be modeled by shallow networks (Lin 
and Tegmark 2016a,  pp. 8–10). In other words, while the overall reward pre-
diction mechanism might be the same, the range of possible reward prediction 
models that the organism can build influences the kind of cognitive abilities that 
can be learned. This is because complex reward patterns can not be adequately 
predicted by simple models.

Perhaps the most relevant example of the need for complex models is human 
vision. The adaptation of the human vision system can not be explained by rein-
forcement learning alone. Visual features are too complex to be learned by sim-
ple reward signals. Moreover, the genetic information stored in the DNA, which 
comprises the bulk of what is passed from one generation to the next, can not 
hold the complexity of the situations that humans must evaluate as explained in 
Sect. 3. There must be some unsupervised feature learning in place, just like in 
the deep learning case. The genetic information enables the unsupervised fea-
ture learning process, but the particular features to be learned are not geneti-
cally determined, at least at the highest levels of the visual pathway. Experi-
ments with ferrets suggest that genes are responsible for preparing the brain to 
extract useful features from the sensory signals, but the exact nature of those 
features and signals is not hard coded in the DNA (Merzenich 2000,  p. 821). 
In other words, each type of sensory inputs generates a different structure in 
the developing brain (Melchner et  al. 2000,  p. 872). The principles of predic-
tive model construction and reinforcement learning based on prediction error 
are common to many sensory modalities (Dehaene et  al. 2015,  p. 15), so that 
specific neural structures might arise in response to the particular features of 
each kind of sensory inputs. Therefore the division of the normal brain into 
regions can be changed, which means that biological neurons are not genetically 
programmed to recognize a specific kind of features. It is more likely that the 
genome drives a general tendency to hierarchical organization into layers. This 
hierarchical structure increases the efficiency of the learning process because 
the features to be extracted at each layer are only slightly more complex than the 
features of the previous layer, so that the adaptation can be accomplished with 
relatively few samples (Kruger et  al. 2013,  pp. 1864–1865). This mechanism 
would work equally well for different kinds of sensory inputs to the lowest layers 
of the structure.

As seen above, current theories of biological learning integrate the three 
kinds of learning that were introduced in Sect.  2. There is a global reinforce-
ment learning mechanism, where the distinction between positive and negative 
rewards is genetically determined. The maximization of the rewards is done by 
learning a predictive model of such rewards, so that the adjustment of the model 
is carried out by supervised learning, possibly including error backpropagation. 
Finally, complex predictive models are hierarchies made of several layers, and 
the discovery of relevant features at each layer is carried out by unsupervised 
learning.
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5 � Capturing the Hierarchical Structure of the Universe

Prior to deep learning, artificial neural networks typically had very few layers, i.e. 
they were shallow. Why deep and not shallow? This question deserves a careful 
consideration, since its answer will indicate whether deep learning represents a 
truly new step in the modelling of human mind, which can be recruited by com-
putational functionalism. The answer that is presented in this section is related to 
the modeling of physical reality by levels of description.

While shallow neural networks can approximate any function, they may 
require large amounts of neurons and training data (LeRoux and Bengio 2008, p. 
1631). It has been suggested that deep learning is better because deep networks 
have a hierarchical structure that mimics the structure of physical reality (Lin and 
Tegmark 2016b, p. 9; Patel et al. 2015, pp. 4–5). That is, at a lower (microscopic) 
level of description there are many nuisance variables which are not relevant at 
higher (macroscopic) levels, where a much smaller number of degrees of freedom 
are significant. Higher levels in the hierarchy filter out the nuisance information 
which abounds in the lower levels. In other words, deep networks are particularly 
efficient at approximating the kind of functions that occur in practice, while the 
set of all possible functions is much larger (Lin and Tegmark 2016b, p. 2). Real 
world functions are associated to sparse, low order polynomial Hamiltonians (Lin 
and Tegmark 2016b, pp. 3–5). That is, functions that describe real entities con-
form a set which is relatively small and easy to describe when compared to the set 
of all possible functions.

Shallow architectures can not adequately capture many natural processes 
which exhibit intricate correlations (Levine et al. 2017, pp. 25, 29), in particular 
long range correlations which obey a power law with respect to distance (Lin and 
Tegmark 2016a, pp. 1–2). On their part, deep architectures can generate context 
free grammars which exhibit the required power law correlation decay (Lin and 
Tegmark 2016a,  pp. 8–10). Here distances measured on the input to the neural 
system are considered. In vision this would be the distance in pixels between two 
visual features which are correlated. For example, in a picture of a face it could 
be the distance in pixels or centimetres between both eyes, which are correlated 
because they are likely to be similar in color and shape. In natural language pro-
cessing the distance could be the number of words between two words which are 
correlated. For example, the subject and the verb of a sentence are correlated 
because they must agree in number (singular or plural). The previously men-
tioned findings suggest that this kind of long range correlations can be learned 
more efficiently by deep architectures.

The successive layers in the network structure attain progressively higher lev-
els of invariance with respect to unimportant transformations in the input data, 
which can not be done efficiently by shallow architectures (Lin and Tegmark 
2016b, pp. 9, 12; Mehta and Schwab 2014, pp. 1, 7). The efficiency of deep net-
works is exponentially higher than that of shallow networks, i.e. an exponen-
tially larger shallow network is required as the complexity of the correlations to 
be learned grows (Levine et  al. 2017,  p. 26). These higher levels of invariance 
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can also be regarded as more compressed representations of the input data which 
retain the information with respect to the desired output (Tishby and Zaslavsky 
2015, pp. 1–3; Khadivi et al. 2016, pp. 3–4).

Another key factor is that deep networks can approximate compositional func-
tions (those that can be expressed as compositions of constituent functions of 
small numbers of variables) exponentially better than shallow ones, so that the 
former are not affected by the curse of dimensionality when approximating those 
functions (Poggio et al. 2017, p. 7). It turns out that many tasks in vision and lan-
guage understanding are compositional, and this explains the advantage of deep 
networks with respect to shallow ones in computer vision and natural language 
processing (Poggio et al. 2017, p. 13; Kruger et al. 2013, p. 1865). Invariance and 
compositionality together mean that deeper layers contain more abstract repre-
sentations of the input data (Schmidhuber 2015, p. 103), which are useful for new 
tasks (Hassabis et  al. 2017,  p. 250). While deep neural networks are universal 
approximators like shallow ones (Poggio et  al. 2017,  p. 3), there are functions 
that can not be implemented exactly by either of them (Khadivi et al. 2016, p. 5).

However, the primate visual processing system is not perfectly hierarchical nor 
the information always flows in the forward direction, since it contains shortcuts 
and feedback connections along with specialized layers which do not follow the 
hierarchical structure. Moreover, its architecture remains relatively plastic during 
the life of the individual (Kruger et al. 2013, pp. 1865–1866). This means that if 
the human brain is the pinnacle of intelligence, then present day artificial deep 
learning networks are far from that goal from the structural point of view. Never-
theless, receptive field overlapping is a characteristic of deep convolutional neu-
ral networks which partly explains their performance in vision tasks (Sharir and 
Shashua 2017, p. 2), while it has been recognized as one of the key ingredients of 
the endstopping characteristic of the human vision system (Fitch 2014, p. 344). 
Endstopping is the capability of some neurons to activate in response to a short 
bar of a certain orientation while they do not activate when the bar is too long, 
even if the orientation is still the same.

Weight sharing is a key characteristic of artificial deep networks (Hinton 
2014,  p. 1081), but it does not relate directly to any biological structure since 
biological neurons do not share their synapses. Weight sharing means that the 
same number is used as the synaptic weight for several synapses corresponding 
to different artificial neurons. Therefore there are aspects of deep learning which 
depart largely from biology. This is acknowledged by machine learning research-
ers (Hinton 2014,  pp. 1095–1096). However, it has been argued that synaptic 
weights at different locations of the brain which process the same kind of infor-
mation could converge, so that weight sharing could be a realistic approximation 
to biological synapses (Yamins and DiCarlo 2016, pp. 357–358). Weight sharing 
is more important in the lower layers of artificial networks, which are genetically 
determined and not learned in biological networks (Kruger et al. 2013, p. 1851), 
so maybe this difference among biology and machine learning is not as signifi-
cant as it seems. Michael Jordan thinks that neuroscience is far from finding the 
way that the brain learns, and deep learning methods are not related to biological 
learning in any significant way (Gomes 2014).
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Spiking neurons have not been successfully integrated into deep learning archi-
tectures to this date (Schmidhuber 2015,  p. 100). Moreover, physical constraints 
which exist in the human brain on the communications among neurons are not hon-
ored in artificial deep learning neural networks (Schmidhuber 2015, p. 103). How-
ever it has been argued that compositionality is the essential ingredient that ensures 
the success of deep networks, and not weight sharing (Poggio et al. 2017, p. 12). If 
this is true, then deep networks with a more biologically plausible structure could 
be developed. This would suggest that both artificial deep neural networks and bio-
logical neural networks are good at solving the same kind of problems, namely those 
that can be expressed as compositional functions (Poggio et al. 2017, p. 16).

6 � The Debate

The debate about the relation between deep learning and the human brain has seen 
the clash between the enthusiasts, who see artificial deep learning networks as a 
revolutionary model which has unprecedented similarities with biological neural 
networks (Sect.  4) or even the structure of the universe (Sect.  5); and detractors, 
who think that there is nothing essentially new in deep learning, as compared to 
other machine learning models. This debate can be regarded as an evaluation of the 
merits of artificial neural networks as computational models of the human mind, 
whether these networks can provide the foundation for a new kind of computational 
functionalism. The situation should be clarified by specifying what enthusiasts and 
detractors really mean. Next the most relevant problems which arise in the debate 
are considered.

It is important that argumentations clearly identify their scope, i.e. the range of 
brain functions that they consider. On one hand, enthusiasts should specify which 
high level brain functions they claim that deep learning is able to simulate properly. 
Aside from computer vision and natural language processing tasks, artificial deep 
learning networks have shown a standard performance when compared to earlier 
machine learning approaches. In other words, if deep architectures form the basis of 
the human brain, then we expect to see substantial performance improvements for 
a wide range of intelligent tasks. On the other hand, detractors should not use non 
perceptual human capabilities such as conscience or feelings as examples to try to 
undermine the possibility of deep learning simulating human perceptual functions. 
Maybe perceptual tasks are accomplished by deep neural networks, while other 
tasks are carried out by other architectures. Moreover, some non perceptual capabili-
ties such as conscience are poorly understood with respect to perceptual ones, so it 
is difficult to ascertain whether they might be carried out by deep learning.

The performance goals of brain models are fundamentally different for artifi-
cial intelligence and neuroscience. Neuroscience aims to obtain models which are 
as close as possible to biological reality, as it aims to explain the mechanisms that 
underlie the human brain. However, artificial intelligence usually has technological 
goals, i.e. its aim is the construction of machines which carry out intelligent tasks. 
Artificial intelligence scientists see the similarity between artificial and biological 
deep networks as an advantage because they know that the human brain performs 
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such intelligent tasks correctly, and they expect that artificial deep networks will 
inherit those abilities from their biological counterparts. In this sense, deep learning 
research is a form of reverse engineering because it tries to extract solutions from an 
already working system (the human brain). Consequently, the goals of artificial deep 
learning models depend on whether they are employed for neuroscience or artificial 
intelligence purposes.

Performance evaluation is another key aspect of the deep learning debate. Quan-
titative evaluation measures should be agreed so that the merits of deep learning are 
assessed. Qualitative assertions should be avoided, since their evaluation is more 
controversial. If qualitative evaluation is unavoidable, then it is advisable that the 
evaluation is blind, i.e. the evaluators do not know whether they are evaluating a 
human or a machine. This is particularly important for non perceptual capabilities, 
where quantitative evaluation is more difficult. Moreover, detractors should compare 
the performance of deep learning with respect to a competing theory. Saying that 
deep learning is not perfect is a truism. The real question is whether deep learning is 
a better model than earlier ones. This appeal to performance is fundamental because 
in most cases deep learning machines are built with a technological goal, rather than 
a purely scientific one.

Thirdly, discussions about the meaning and relevance of deep learning must 
address the hierarchical structure of the brain. As the human brain is organized by 
levels of architecture and function, the architectural and functional similarities and 
differences should be discussed level by level. From the functionalist perspective 
that is advocated in this work, it is irrelevant to say that deep learning is not similar 
to the brain because deep learning is implemented on silicon chips while biologi-
cal neurons are made of biomolecules. On the other hand, it is also meaningless to 
say that deep learning and the brain are similar because both of them can recog-
nize traffic signs. Furthermore, biological and artificial learning mechanisms must 
be compared. It must be ascertained whether deep reinforcement learning (based on 
computing the desired output from past memories) can be associated with biological 
mechanisms in the brain. Otherwise, the success of deep supervised learning net-
works does not directly translate to a model of biological learning.

These difficulties in the evaluation of the value of deep learning can be allevi-
ated by framing the entire debate in philosophy of science terms. Our proposal is to 
employ similarity terms to this end, as detailed next.

7 � Modeling with Artificial Deep Networks

The question whether deep learning is a good model of the human brain can be seen 
as an instance of the scientific representation problem. Here we advocate a similarity 
conception of model representation (Giere 2009; Mäki 2009, 2011; Weisberg 2013), as 
opposed to the structuralist view (Fraassen 2008; Bueno et al. 2002; Bueno and French 
2011; Bartels 2006). Artificial deep networks are computational models (Weisberg 
2013, pp. 13–15) of biological ones. This way, deep learning would be a good model of 
the target system, i.e. the human brain, if there are agents (computer scientists) who use 
deep learning to represent the brain by proposing the hypothesis that they are similar 
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in some architectural and functional respects for the purpose of performing intelligent 
tasks such as object recognition or natural language processing. In Michael Weisberg’s 
terms, it could be said that such architectural and functional respects are given by the 
modeler the highest weights in the weighted feature matching process between the tar-
get and the model (Weisberg 2015, pp. 299–301). The architectural similarity would 
include some straightforward mappings from the target system to the computational 
structures which form the model (Weisberg 2013, pp. 29–31): biological neuron to arti-
ficial neuron, synapse to connection between two artificial neurons, biological neural 
layer to artificial neural layer, and the like. The learning algorithm could represent the 
adaptation of the biological neural network to its environment, although the similarity 
among biological and artificial learning is less clear (Sect. 4).

Functional similarity between artificial and biological neural networks can be 
understood in two ways. A black box approach means that we compare the inputs 
and outputs of the overall networks, without having any interest in their internal 
workings. On the other hand, a white box approach means that the similarity must 
also extend to the kind of information which flows in their interior. The white box 
approach is more demanding, that is, one can have a black box similarity without a 
white box similarity. An example of white box similarity is the use of similar fea-
tures (see Sect. 3). Similarity among the features employed in biological and artifi-
cial networks is to be assessed irrespective of the coding of the features. Biological 
and computer coding of information are substantially different, but this is irrelevant 
to the functions that both kinds neural networks implement. A possible way to carry 
out such similarity assessment is to evaluate the mutual information between a bio-
logical and an artificial feature. There is a range of degrees between black and white 
box similarities. From the current state of research, it is likely that the similarities 
among biological and artificial features extends from the highest level of descrip-
tion, i.e. the overall inputs and outputs, to a certain intermediate level of descrip-
tion, while the lowest levels such as the electrical signals in the biological synapses 
do not match well with their artificial counterparts. Such lowest levels would be 
excluded from the modeling process, i.e. they would have zero weight in Michael 
Weisberg’s terms. In other words, artificial deep networks are not designed to match 
all biological details, but they are expected to extract intermediate and high level 
features which are similar to biological ones. If this is achieved, then it is further 
expected that artificial networks will be able to solve the same kinds of problems as 
biological ones. This would be enough for artificial intelligence researchers to say 
that artificial deep learning is a good model of the human brain. On their part, neu-
roscientists would not be satisfied unless the lowest levels of information processing 
in the brain are accurately modeled. Artificial intelligence and neuroscience mod-
eling goals should be seen as alternative, rather than conflicting, approaches.

8 � Neural Computational Functionalism

It could be argued that, even if artificial and biological networks build models which 
are somehow similar, they still differ in the way that the necessary computations 
are carried out. Classic computational functionalism (CCF) depicts the brain as a 
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Turing machine and the mind as the software running on the machine (Piccinini 
2010,  p. 276). Neither biological nor artificial neural networks run any software, 
if software is understood as a sequence of program instructions. Therefore, CCF is 
unable to provide similar models of the brain. This calls for a new form of compu-
tational functionalism which is more realistic. This way, a more credible account 
of the nature of mental states would be obtained. In this section such a proposal is 
detailed, that builds on the success of artificial deep networks.

The role of the program (software) of a digital computer is played in a deep learn-
ing network by the set of its synaptic weights. This is because the synaptic weights 
store the information that the network requires to perform its function. Therefore 
the synaptic weights provide a partial explanation of the capabilities of the network. 
While universal Turing machines and digital computers are amenable to explana-
tions by program execution (Piccinini 2010, p. 277), biological and artificial neural 
networks allow explanations by synaptic weights:

An explanation by synaptic weights of a capacity C possessed by a (biological 
or artificial) neural system S is a set of weights W for C such that S possesses 
C because S operates according to its stored weights W.

With the help of explanations by synaptic weights, it is possible to revive computa-
tional functionalism in spite of the criticism that the human brain does not execute 
any program (Piccinini 2010, p. 278). The versatility of the human mind is partly 
explained by its power to operate according to a set of stored weights. The procedure 
by which such weights are set up is not relevant to the concept of explanation by 
synaptic weights. This implies that both innate and learned weights are allowed for 
biological networks. There is another characteristic of neural networks which can 
partially explain their capabilities, namely their architecture, i.e. the arrangement 
of the neurons in layers and the connections among them. The innate structure of 
biological neural systems is regarded as a legitimate explanatory concept (Piccinini 
and Scarantino 2011, p. 16). Since the architecture of artificial neural networks is 
specified before their synaptic weights are determined, it is possible to compare the 
innate structure of biological networks to the prespecified architecture of artificial 
networks. Both of them can explain the capabilities of their respective networks, to 
a certain extent.

Since synaptic weights do not constitute a program, we do not need to assume 
that artificial deep learning networks are running a program in order to establish 
their similarity to the biological networks. But artificial networks are still comput-
ing devices, so that a version of computational functionalism which does not rely on 
an analogy among Turing machines and human brains is possible. In other words, 
artificial deep learning networks compute, but they do not execute programs (Pic-
cinini 2010, p. 291). Therefore, the success of artificial deep learning networks is an 
argument against the classic, program based version of computational functionalism 
(Piccinini 2010, p. 296). This leads us to propose a new version of computational 
functionalism:

Neural computational functionalism (NCF): the mind is the set of synaptic 
weights of the brain.
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This is to be interpreted in the sense that: (a) the brain stores synaptic weights in its 
neural structures, (b) some of those neural structures are organized in a hierarchy of 
layers, (c) those synaptic weights determine the computation of significant features 
of progressively higher level as we traverse the neural hierarchy, (d) those features 
ultimately determine behavior. Neural computational functionalism agrees with 
the classic computational functionalism in that minds are multiply realizable (Pic-
cinini 2010, p. 297), since deep networks can be implemented on different kinds of 
hardware. NCF would be a specific case of the generic computational functionalism 
advocated in Piccinini (2010), p. 300, which allows any kind of computing mecha-
nism. It must be noted that NCF does not require that all neural structures are hier-
archical, i.e. explanations by synaptic weights can be developed for single layered 
structures. However, deep networks exhibit computation of features of progressively 
higher level which account for key capabilities of neural systems such as vision.

Another fundamental difference between the classic version of computational 
functionalism and NCF is that the former relies on digital computation, which 
manipulates discrete variables which encode symbols, while the latter manipulates 
continuous variables which do not encode symbols. Analog and neural computa-
tion are different kinds of non digital computation, and they must be clearly dis-
tinguished. Analog computers are a kind of computing devices which are designed 
to solve differential equations, so the range of functions that they can implement 
is rather small (Piccinini and Scarantino 2011, p. 11; Piccinini and Bahar 2013, p. 
461).

In contrast to this, artificial deep networks can implement a much broader class 
of functions because they carry out compositions of functions (see Sect. 5) which 
typically include sharp nonlinearities. It has been shown that neural activity in the 
human ventral cortex can be modeled by artificial hierarchical deep neural networks 
(Hong et al. 2016, p. 619). Even shallow neural networks are universal in the sense 
that they can approximate any continuous function with a compact domain and 
range (Maass 1997, p. 1659), and deep networks inherit this capability.

Artificial neural networks can not be modeled by Turing machines because they 
do not manipulate symbols. The Blum–Shub–Smale model (BSS, Blum et al. 1989) 
is the reference model of general computation with continuous variables, and it is 
adequate to formalize the kind of computations that artificial neural networks carry 
out. This means that, even though artificial neural networks are implemented on dig-
ital computers, their reference model is different because neural networks are not 
designed to manipulate symbols. Therefore, digital computers are employed to carry 
out discrete variable approximations to continuous variable computations. It has 
been argued that biological neural networks manipulate variables which are not dis-
crete or analog, since the voltages are continuous variables but their most relevant 
features are the sharp spikes (Piccinini and Bahar 2013, pp. 466–467). In artificial 
neural networks, threshold-like nonlinearities are typically used in the activation 
functions, so both kinds of neural networks manipulate continuous variables which 
exhibit abrupt changes. The obtained values are then treated as instances of con-
tinuous variables, so there is no symbolic processing (Piccinini and Bahar 2013, pp. 
468, 471). Thus it can be said that both artificial and biological networks manipulate 
continuous variables with frequent abrupt changes whose meaning is not symbolic.



684	 E. López‑Rubio 

1 3

Computation with neural networks is resilient to small changes in the architecture 
and the weight vectors, so there is not a problem with margins of error associated 
to discrete digits (Piccinini and Bahar 2013, p. 473). Sharp nonlinearities (thresh-
old-like) in the activation functions of neural networks make the implemented func-
tions robust, because a wide range of inputs result in a narrow range of outputs, i.e. 
small errors in the inputs are mostly ignored by the neuron. But at the same time the 
implemented function is still continuous. Moreover, biologically-oriented spiking 
neural network models demonstrate that the shape of the of the response and thresh-
old functions do not significantly affect the class of functions that can be computed 
(Maass 1996, p. 4).

Artificial neural neurons use continuous output values to play the role of spike 
rates or inter-spike intervals of biological neurons (Piccinini and Scarantino 2011, p. 
12; Maass 1997, pp. 1660–1661). This suggests that biological and artificial neurons 
might have different response and threshold functions, and still compute the same 
functions. Overall it can be said that artificial neural networks are best viewed under 
the BSS model perspective, i.e. machines which manipulate continuous values with 
a frequent use of threshold-like functions which are not associated to any symbolic 
processing. Therefore, artificial deep networks could be good models of the human 
brain even if Turing machines and digital computation are not.

It could be argued that NCF is rather simplistic, since there are control parameters 
other than synaptic weights that affect the operation of neural systems. For example, 
in the Rescorla–Wagner model of biological networks (Fitch 2014, p. 338) there is 
a learning speed parameter, and there are also learning rate parameters in most arti-
ficial networks. NCF can be extended to accomodate these details, so that all those 
control parameters P are considered along with the synaptic weights W. Then an 
explanation is a tuple (W,P) rather than just the set of synaptic weights W. This way, 
(W,P) is a partial explanation of the capabilities of the network which has a higher 
explanatory power than the partial explanation W.

Furthermore, there are aspects of biological nervous systems such as the glial 
cells which are not considered by NCF. At this respect it must be emphasized that 
explanations provided by computational functionalism either in the CCF or NCF 
form are always partial. For NCF this means that there are capabilities of nerv-
ous systems that can only be explained by biological factors not related to synaptic 
weights (or control parameters).

Given the above considerations, it is possible to outline some common principles 
of biological and artificial neural computation:

•	 Computation on continuous variables. The BSS model of computation is ade-
quate for both biological and artificial neural networks, while Turing machines 
are not. There are no discrete or discretized variables, i.e. no alphabet of sym-
bols.

•	 Tolerance to noise. In biological networks this is provided by the stochasticity 
of neural trains (Piccinini and Bahar 2013,  p. 474). In artificial networks it is 
achieved by using threshold-like nonlinearities in activation functions of artifi-
cial neurons, so that a wide range of inputs result in a narrow range of outputs, 
i.e. small quantities of noise in the inputs are mostly ignored by the neurons.
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•	 Tolerance to faults/redundancy. Each input synapse has a small contribution to 
the result, so that if a synapse (or neuron) fails or a synaptic weight gets cor-
rupted, then the computed function degrades gracefully.

•	 Feature extraction. Meaningful features are extracted from large volumes of data 
(see Sect. 3). Such features are relevant for many problems. Biological features 
are compatible with artificial networks, as shown in Kiani et al. (2007).

•	 Hierarchy of representation levels. Successive layers of neurons extract features 
of progressively higher level (see Sect. 5).

Artificial deep networks have already been proposed as computational models of 
some parts of the brain, thereby yielding partial explanations of their function (Has-
sabis et al. 2017, p. 254). In the case of the ventral visual stream, a correspondence 
among the layers of the artificial networks and those of the biological networks has 
been done such that the response patterns in the artificial layers are predictive of 
those of the biological layers (Hong et al. 2016, p. 619). That is, functional layer-to-
layer correspondences have been found between artificial and biological deep net-
works. The computational capabilities of the neural networks is what matters, and 
not the details of the implementation of the computations.

The similarities between biological and artificial neural computation imply that 
NCF is much closer to biological reality than CCF. CCF is built on the Turing 
machine metaphor of the brain, which is not adequate because Turing machines are 
good models of computers which manipulate symbols by running programs, while 
they are not good models of brains. Moreover, NCF can be validated by evaluating 
the extent to which artificial and deep networks agree in their information process-
ing mechanisms. Therefore, the success of artificial deep learning suggests that CCF 
should be replaced by NCF.

9 � Conclusion

The debate about the meaning of deep learning is becoming more heated as deep 
learning networks attain human-like or even higher performance in more tasks. They 
stand among the machine learning models which are closest to the human brain 
(Sect. 2). It seems that their success is largely explained by their ability to learn sig-
nificant features whose utility goes well beyond the specific problem that they were 
learned from (Sect. 3), which is also the case of biological networks. Furthermore, 
biological networks exhibit the three main kinds of learning that exist in machine 
learning in general, and artificial deep networks in particular (Sect.  4). It is also 
plausible that deep architectures are required in order to capture the structures that 
naturally appear in physical reality (Sect. 5). This would suggest that deep networks 
may attain performance levels which are unattainable by shallow architectures. The 
scope and the evaluation of deep networks should stand at the core of the debate 
about them (Sect. 6). We have argued that a better understanding of the value and 
meaning of deep networks can be obtained by studying them both from the similar-
ity conception of model representation (Sect. 7). In particular, artificial deep learn-
ing can be regarded as a good model of the human brain if they are similar in the 
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features that they extract from the input information and the kind of problems that 
can be solved with the help of such features. Finally, we have criticized the limita-
tions of the classic, program execution version of computational functionalism. This 
has led us to propose a new version of computational functionalism, namely neural 
computational functionalism. It states that the mind is the set of synaptic weights in 
the brain, which determine the computation of significant features suitable for car-
rying out intelligent tasks. Neural computational functionalism is more realistic than 
the classic version, which means that the former is a more credible conception of the 
nature of mental states.
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Abstract
In the last few years, biologists and computer scientists have claimed that the introduc-
tion of data science techniques in molecular biology has changed the characteristics
and the aims of typical outputs (i.e. models) of such a discipline. In this paper we
will critically examine this claim. First, we identify the received view on models
and their aims in molecular biology. Models in molecular biology are mechanistic and
explanatory. Next, we identify the scope and aims of data science (machine learning in
particular). These lie mainly in the creation of predictive models which performances
increase as data set increases. Next, we will identify a tradeoff between predictive and
explanatory performances by comparing the features of mechanistic and predictive
models. Finally, we show how this a priori analysis of machine learning and mech-
anistic research applies to actual biological practice. This will be done by analyzing
the publications of a consortium—The Cancer Genome Atlas—which stands at the
forefront in integrating data science and molecular biology. The result will be that
biologists have to deal with the tradeoff between explaining and predicting that we
have identified, and hence the explanatory force of the ‘new’ biology is substantially
diminished if compared to the ‘old’ biology. However, this aspect also emphasizes
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the existence of other research goals which make predictive force independent from
explanation.

Keywords Biology · Data science · Machine learning · Explanation · Prediction

1 Introduction

In the last few years, the intersection of data-intensive science and biology have
attracted the interest of philosophers, historians and STS scholars (Leonelli 2011,
2016; Strasser 2011; Ratti 2015; Boem and Ratti 2016; Stevens 2013, 2015, 2017),1

in particular where cognitive strategies and modes of knowledge production are
concerned. However, how data science have shaped the desiderata and the aims of
bioscience has not received enough philosophical attention. The impression is that
data science changed something profound about the epistemic units of analyses, the
conceptual tools and the aims of biological science itself. This concern applies in par-
ticular to molecular biology (Alberts 2012; Golub 2010; Callebaut 2012), which is the
field investigated in this article. In particular, it is not clear which are the effects that
employing data science techniques have for the status of typical outputs—like models
and their aims—of molecular biology. In this paper, we will identify the changes that
data science has stimulated in molecular biology when the characteristics and goals
of models and modeling are concerned.

After having identified the received view on models in molecular biology as mech-
anistic and explanatory (Sect. 2), we will identify the aims and scope of data science,
and machine learning in particular (Sect. 3). From this we will be able to draw a com-
parison between the mechanistic and the machine learning perspective. We will show
the existence in machine learning of a tradeoff between prediction and (mechanistic)
explanation, such that when predictive performances increase, the possibility of elab-
orating a (mechanistic) explanation necessarily decreases (Sect. 3.3). This may help
to elucidate a common intuition according to which mechanistic models explain in
terms of cause-effect relations (represented via diagrams), while predictions may be
derived also from statistical correlations. Finally, we will see whether our philosophi-
cal analysis of machine learning, (mechanistic) explanation and prediction applies to
the practice of biology (Sect. 4). To achieve such an aim, we will analyze the pub-
lications of The Cancer Genome Atlas Consortium (n � 43). This consortium has
been one of the first big-science projects at the forefront of the integration between
machine learning and biology. The techniques it developed and the results it published
have been highly influential for anyone who wants to engage in data science and biol-
ogy. This means that the analysis of the publications of this consortium may have a
significant degree of applicability to the entire field of molecular biology. What this
analysis will show is that biologists have to deal with the tradeoff between explanation
and prediction that we have identified. This has two consequences. First, it limits the

1 It should be emphasized that the effects of the use of computers in biology have been studied well before
the studies we refer to. The use of computers and computational models has certainly boosted in the last
few decades (see for instance Keller 2002, Chapter 8), but these have been mostly used as ‘crutches’ and
instrumentally to achieve the aims that are traditionally ascribed to biology.
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explanatory force of the ‘new’ biology, such that models in data-intensive biology will
hardly be explanatory from a mechanistic point of view. Second, it emphasizes the
increasing importance of other non-explanatory aims related to this scientific field.

2 Mechanistic models and explanation inmolecular biology

In order to understand whether data science has changed the status of models in
molecular biology, we should first state clearly the received view on this ‘status’.

Molecular biology is a field that investigates the processes and dynamics of biolog-
ical phenomena at the level of complex organic molecules. Molecular biology aims
at making sense of biological phenomena conceived as the result of the activities of
those molecules. Complex and less complex organic molecules include nucleotides,
polypeptides, lipids, etc. while the activities include binding, releasing, or more com-
plex operations as phosphorylating among others.Whenwe say ‘make sense’ wemean
that molecular biologists aim at explaining a specific class of biological phenomena as
nothing but the activities, interactions and the organization of those macromolecules.
By ‘organization’, we rely on a basic meaning spelled out by Levy and Bechtel (2013),
namely organization as ‘causal connectivity’, in the sense of “an internal division of
causal labor whereby different components perform different causal roles” (p. 243).
In other words, molecular biology explains biological phenomena by describing how
these are produced by the way macromolecules interact. These descriptions are given
in form of mechanistic models. To sum up, it is common in the literature—espe-
cially the so-called ‘mechanistic philosophy’ (Machamer et al. 2000)—to state that
molecular biology aims at (a) explaining phenomena (b) in terms of mechanistic mod-
els. Therefore, models here are mechanistic models, which function as explanations.
The explanatory dimension is usually interpreted by practitioners as the main goal of
molecular biology (Alberts 2012; Weinberg 1985). However, one may say there are a
plenty of mechanistic models that are not necessarily explanatory, or they are not used
for their explanatory capacity, but in other ways. For instance, it is possible to use an
abstract schema in the form of a mechanism sketch as a starting point to investigate
a possible mechanism (Craver and Darden 2013, Ch 3 and 5). The schema itself is
not explanatory, but it is a very useful resource to uncover the nature of phenomena.
Therefore, a mechanistic model to be mechanistic does not need to be explanatory;
however, the emphasis on the need “to transform black boxes (…) into gray boxes
(…) into glass boxes” (Craver and Darden 2013, p. 31) often spelled out in term of
‘completeness’ of mechanistic description (relatively to the purpose at hand) is an
indication that biologists still see good mechanistic models as being explanatory.

Before we go further in the received view on molecular biology, three things need
to be specified.

First, appealing tomechanistic explanations in the form ofmechanistic descriptions
do not only have epistemicmotivations. In otherwords, it is not necessarily the case that
mechanistic explanations are superior epistemically to other forms of explanation.2

Actually, there are also pragmatic reasons for these explanatory standards. Among

2 We do not commit to any particular thesis on this aspect.
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the many, one prominent aspect is that mechanistic descriptions provide a useful way
for human beings to think about control. In molecular biology material manipulations
are important, and mechanistic descriptions provide easier ways to think about those
manipulations. There are also historical reasons for this preference towards mecha-
nistic models in biology. As Sloan (2000) has emphasized, mechanistic programs in
life sciences after the nineteenth century (and in molecular biology in the twentieth
century) have been a product “of the incursion of physical sciences into the work of
medical faculties” (p. 7). While entering into details of these pragmatic and historical
aspects is beyond the scope of this work, it is interesting to notice that acceptance of
epistemic standards do not have necessarily (or only) epistemic reasons.

Next, while molecular biologists commit to the idea of mechanism, they often have
in mind a notion of mechanism that may not be as precise as the one specified by
mechanistic philosophers. However, our impression is that the word ‘mechanism’ is
not merely a term which replaces the word ‘cause’. Biologists are not only interested
in identifying causes and causally relevant entities. Appealing to mechanisms means
that we also try to find out a more fine-grained causal connectivity between causally
relevant entities.

Finally, we must spend a few words on models. We will refer to models in two
ways throughout this work. On one hand, the level of abstraction of a model is the
degree of detail in the representation of the target (real) system. For example, one
may have a model of the circulatory system where the smallest elements are blood
vessels. This would be regarded as a high level model, as compared to a model of the
circulatory system where the smallest elements are the red and white cells. Therefore,
a model can be high or low level, also called coarse grained versus fine grained,
as compared to other models, depending on the smallest (atomic) elements that it
considers (Gerlee and Lundh 2016, pp. 32–33). On the other hand, the size of a model
is the number of elements that it contains (Gerlee and Lundh 2016, p. 48, simple vs.
complex models, also p. 73). For example, in a model of the nervous system where the
smallest elements are the neurons, the system size could be the number of neurons.
That is, a large model is one with many atomic elements, irrespective of its level of
abstraction (high or low). In this work, we are interested in comparing handcrafted,
mechanistic, small sizemodels versus automatically generated, machine learned, large
size models. We do not address the distinction between high level (systemic) versus
low level (local) models.

2.1 Mechanistic models and desiderata of biological explanations

A mechanism is usually understood as “entities and activities organized such that
they are productive of regular changes from start or set-up to finish or termination
conditions” (Machamer et al. 2000, p. 3). More succinctly, a mechanism “is a struc-
ture performing a function in virtue of its component parts, component operations,
and their organization” (Bechtel and Abrahamsen 2005, p. 423). Entities figuring in
a mechanistic model are those taken to be responsible for the production of the phe-
nomenon under scrutiny. Moreover, activities or operations may be organized simply
in terms of temporal sequence, even though “biological mechanisms tend to exhibit
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more complex forms of organization” (Bechtel and Abrahamsen 2005, p. 424). In
addition, mechanisms may involve more than one level of organization.

Outlining the dynamics and the organization of parts and activities of a mecha-
nism is, in molecular biology, providing an explanation of the phenomenon one is
investigating. There is a consensus according to which “to give a description3 of a
mechanism for a phenomenon is to explain that phenomenon, i.e., to explain how it
was produced” (Machamer et al. 2000, p. 3).

To simplify a bit,4 a mechanistic model is explanatory when it describes the causal
structure of the world, namely how a phenomenon is produced by constitutively
causally relevant entities (Craver 2007; Kaplan and Craver 2011). Entities that are
supposed to be causally relevant must be clearly identified (i.e. they must be real)
and their organization—in the sense of ‘causal connectivity’—must be clearly spelled
out.5 It is important to emphasize that being explanatory is not a yes/no issue, but
rather it is by degree; the depth of explanatory power of mechanistic models will vary
a lot, depending on the circumstances.

An important indication of the ‘depth’ of explanatory mechanistic models is their
being predictive, in the sense of “the ability to answers questions about how the mech-
anism would behave if different parts of the mechanism were to work differently, or
if they were to break” (Craver and Darden 2013, p. 91). If the model is explanatory,
then we must be able to anticipate what would happen if things were slightly different.
These predictions are usually qualitative, and they can be corroborated through inter-
ventionist strategies. Importantly, interventions must be concrete, not only possible;
the predictive force (in the qualitative sense) of a mechanistic model is to be measured
by material and concrete interventions—interventions that we can do right now. If
a mechanistic model affords predictions that hold in the real world, then clearly the
model itself is on the right track to more explanatory power. However, being predictive
is only a necessary condition for being explanatory—in fact, we can imagine plenty of
examples of very uninformative and general predictions holding true for very abstract
and general mechanistic models. But still being predictive is necessary—if predictions
do not hold, then it is likely that we just got the phenomenon wrong.

2.2 Understanding and explaining

While there are many accounts of mechanistic explanations and desiderata for mech-
anistic models, the remark we just did about organization and richness of details may
not apply to all of them. Here we specifically focus on Craver’s and similar accounts.

An important aspect of mechanistic explanations that needs to be flagged (espe-
cially for the present work) is the fact that mechanistic models must be intelligible in

3 ‘Description’ does notmean necessarily a linguistic description; actually, the preferredmeans for express-
ing mechanistic description are diagrams (see Bechtel and Abrahamsen 2005 for preliminary arguments on
this matter).
4 It is not necessary to recall in detail the complex structure of mechanistic explanations; for a full-fledged
account of this issue, see (Craver 2007).
5 There is an interesting debate on what ‘relevant’ might possibly mean and the difference between leaving
out relevant details from the model (i.e. incomplete models) and abstracting from irrelevant details (i.e.
abstraction). See in particular (Levy 2014; Levy and Bechtel 2014; Love and Nathan 2015).
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order to be explanatory. Biologists elaborate such descriptions, and how entities and
activities are organized should be clearly discerned by modelers, especially because
modelers are prior to the model. For a model to exist modelers have to build it, and
to elaborate it, modelers have to understand the model itself. This issue is raised here
and there in the literature, but it has been rarely tackled properly. A crucial example
here is Craver (2006). He mentions this problem when he talks about the notion of
‘complete description of a mechanism’. In particular, he says that “such descriptions
[i.e. complete descriptions of mechanisms] would include so many potential factors
that they would be unwieldy for the purpose of prediction and control and utterly
unilluminating to human beings” (p. 360, emphasis added). In other words, Craver is
saying that too complex mechanistic models would not explain, because such a com-
plex model would be non-intelligible (though he does not use this exact word). The
process of building a mechanistic model where too many details appeared would be
unsuccessful, because the modeler would be unable to find out the causal structure and
connectivity between components. Therefore, too many details are likely to prevent
the construction of mechanistic models. This is why Craver praises the ability of mod-
elers to understand which details should be taken into account. Hence, it seems there
is a connection between the ability to explain and the ability to understand models.

2.2.1 ‘Build-it’ test and intelligible models

Let’s explore Craver’s intuitions. What is the relation between (mechanistic) expla-
nation and understanding? The debate on scientific understanding has experienced a
significant growth in the last few years. Due to lack of space, it is not possible to
summarize the main themes of this debate. However, we can draw some distinctions
that are important for the topic at hand. First, we should distinguish between under-
standing of natural phenomena, and understanding of the models about phenomena
(Rice 2016). One can understand a model or a theory about x, but if the model/theory
for some reasons is not adequate, then one does not understand x, as in the case of
phlogiston theory and the phenomenon of combustion. While most of the debate on
understanding tries to flesh out the notion in the former sense, here we are interested
in the latter. In particular, we make use of De Regt’s framework (2009, 2015, 2017),
though modified according to the present context.

De Regt aims at deciphering the epistemic importance of what he calls pragmatic
understanding, i.e. the intelligibility of a theory, defined as being able to use the theory.6

Since he grounds his analysis in the framework of models as mediators between
theories and the world provided by Morgan and Morrison (1999), according to his
perspective a theory is being used especially for the construction of models. Here we
avoid any reference to theories, and we focus on models.

When it comes to ‘mechanistic models’, their intelligibility is related to the use we
make of them. Being able to use a model covers a plethora of things that a scientist
can do with a model, and in particular what Craver and Darden (2013) call the build-it
test. Mechanistic models have been understood, among the other things, as ‘recipes for

6 De Regt’s characterization of understanding is much more rich than this, but for the purpose at hand this
definition is sufficient.
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construction’. Recipes describe a set of operations performed on certain ingredients in
a way that they will produce a specific thing (e.g. a cake). Mechanistic models afford
something similar; they describe how specific entities, if interacting in a specific and
organized way, can result in a specific phenomenon. Therefore, Craver and Darden
point out that the successful ability to modify at will a specific experimental system on
the basis of the ‘instructions’ provided by mechanistic models can be interpreted as a
sign that the mechanistic model is somehow describing the phenomenon in a plausible
way, i.e. themodel explains. Therefore, by ‘building’ the phenomenon according to the
model, we understand if we have an adequate explanation. This is especially important
when it comes tomodels that only highlight that some entities are causally relevant, but
without specifying how the entities influence each other to produce the phenomenon; a
how-possibly model including only a catalogue of entities and activities is not enough,
becausewewould not have instructionswhatsoever as to how tomake them interacting.
Similarly, a how-possibly model depicting in the right way the organization of the
mechanism, but failing to identify the relevant entities and activities will be useless as
well, because we would not know which entities and activities need to be modified.

But the test is not useful only as a ‘confirmation tool’. Actually, it is very useful also
whenwe elaborate themodel itself. By doing the build-it test, we obtain useful hints as
to how we are on the right path—this is related to aspect about prediction highlighted
before, and the concrete and material interventions required. But in order to elaborate
such a test, the model needs to be intelligible. By developing Craver’s concerns (2006)
about models that are too detailed, if in the sketch of themechanism there are toomany
entities and activities, then it becomes really complex for the scientist to find out how
they are organized or, to use Levy and Bechtel’s jargon (2013), it is very difficult to
uncover causal connectivity. How do we start to stimulate or inhibit entities if we have
toomany of them?Which entity is to be ascribed causal relevance if we have a long list
of potential ones? Thismeans that if we do not strike the right balance between relevant
entities and activities and the number of variables that the human mind can deal with,
then it is unlikely that the elaboration of a mechanistic model will be successful. This
means that too complex (in terms of number of variables, i.e. entities) how-possibly
models are unlikely to be turned intomechanistic explanations. To use the terminology
introduced above, if the size of the mechanistic model is overwhelming, it is unlikely
to become explanatory—it will be remain a how-possibly model.7 This argument has
been spelled out in greater details in another work we have co-authored (Ratti and
López-Rubio 2018). In that article, we translate De Regt’s account of intelligibility
in the mechanistic context, and by relying on studies of cognitive psychology, we
make the argument that too complex models cannot be possibly intelligible because
of cognitive limits of human agents. They define complexity as a function of the
number of model components included in the actual model. Too complex models are

7 Please note that it does not mean that large models cannot be used to draw general predictions that can be
also verified experimentally. For instance, if you model protein–protein interactions with network science,
you will obtain a very large model that cannot be turned into an explanation—it is impossible to draw the
exact causal narrative connecting all the entities. However, network science tools identify central hub, and
one can draw the very general prediction that, if I knock-down a central hub, then the network—and hence
the biological phenomenon—will be disrupted. However, this prediction does not help any researcher in
elaborating a mechanistic explanation.
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not intelligible, and they cannot be turned into explanations. But one may rely onmore
liberal accounts of mechanistic models and explanations, thereby making the case that
very complex models can be somehow explanatory. However, if we are too liberal in
saying what mechanistic models are explanatory and what not—and even what counts
as a mechanistic model in the first place—, then we may lose the very reasons why
we needed a mechanistic account for models in the first place.

To sum up, mechanistic models have to intelligible to the modeler in order to be
explanatory, where by ‘intelligible’ we mean De Regt’s preliminary notion of prag-
matic understanding, but remodeled for the present context, i.e. understanding a model
is being able to successfully use it. Ifwe consider such a test as amodel-developing tool,
there are important consequences. In order to transform a how-possibly model into a
how-actually model (or at least a how-plausibly), we need to be able to experimentally
stimulate (e.g. inhibitory and excitatory strategies, see Bechtel and Richardson 2010)
the phenomenon under investigation, and we do this on the basis of the strategies sug-
gested by the model itself. Therefore, if the size of a how-possibly or how-plausibly
model is too big (e.g. too many components)—and hence it is unintelligible—then
there is no way to successfully turning it into an explanatory model which specifies
how the process occurs.

3 Data science, machine learning and the value of predictions

In the previous section we have identified the characteristics and aims of models and
modeling inmolecular biology.We have emphasized thatmolecular biologists look for
explanations of biological phenomena, where explanations have to be understood as
mechanistic models. Such descriptions stress the causal structure/connectivity holding
between components producing the phenomenon we want to explain. We have also
emphasized that in order to build explanatory models and to ‘test’ the adequacy of
models, these have to be intelligible to the user, where this is measured by the ability of
the user to use themodel in variousways.Thismeans that explaining andunderstanding
are strictly related, at least in mechanistic models. Therefore, the question about the
relation between data science and biology is exactly the question of whether data
science modifies the picture just sketched. In order to understand this, in this section
we introduce data science, its aims and what motivates them.

3.1 Data science, algorithmic models andmachine learning

Dhar defines data science as “the study of the generalizable extraction of knowledge
from data” (2013, p. 64). In this definition, data is a set of samples, such that each
sample is a realization of the variables whose joint probability distribution underlies
the observations. Also, generalizable means that the patterns automatically extracted
from the available samples are expected to occur in other samples of the same process
under study. Knowledge is not meant in any philosophical sense. Since the idea is to
extract patterns between variables, knowledge here simply refers to such patterns.
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In data science, patterns are understood in terms of predictions, and they are
extracted fromsamples starting fromaproblem. For the purpose of thiswork,a problem
is a set of input variables (available at the time that the prediction must be delivered), a
set of output variables (to be predicted, and hence not available at prediction time), a set
of samples (previously observed input–output pairs), and a set of real-world situations
where the dependency among inputs and outputs can be assumed to be the same.8 For
example, evaluating amortgage application fromapotential borrower is a problem.The
inputs could be the address, year built and price of the real estate property, whether the
applicant has previously succeeded in repaying a previous loan, her annual income, etc.
The outputs could bewhethermoney should be lent to the applicant, and if so, themax-
imum amount, for howmany years and the interest rate. Data science aims to discover
the quantitative relations between inputs and outputs that can possibly hold also in the
set of real-world situations assumed to be similar to the one depicted in the samples.
Such relations between inputs and outputs—in the form of a predictive model—are
obtained by elaborating and applying algorithms. For our purposes, an algorithm is
a sequence of actions such that, given a certain kind of input, calculates an output in
a finite time, after the execution of a finite number of steps using a finite amount of
memory.9 Prediction here is the computation of the values of the output variables for
an input whose associated output is unknown (though, as we will see, model construc-
tion by algorithms is based on cases where similar pairs of input–output are available).
In what follows, ‘prediction’ will have this meaning unless specified otherwise.

Data science may include several disciplines. Here we are interested in machine
learning (ML). This is the discipline that is central to the so-called ‘data revolution’
or ‘data deluge’ (Leonelli 2012, p. 3). ML enables the automated construction of
predictive models, which is the reason of its central role. Very broadly, ML is a branch
of data science devoted to the development of computer systems that can improve
their performance for a given task progressively as more samples are provided, where
performance is quantitatively measured. Usually this performance improvement
comes from the execution of an algorithm (a learning algorithm10) that builds and
refines a model. Since such models are built by applying algorithms, we will call
them algorithmic models. An algorithmic model is a model quantitatively depicting
the relation between variables, and it is built starting from a set of samples and an

8 There are similarities with the notion of problem representation in a problem space as famously indicated
by Newell and Simon (even though here we refer to the formulation made by Bechtel and Richardson).
Bechtel and Richardson’s concept of problem is an instantiation of the four elements of the problem
representation (initial state, goal, defining moves, path constraints). For machine learning, a problem is an
instantiation of an underlying input–output relation (a function) which has been sampled in order to obtain
the dataset to be supplied to the learning algorithm.
9 While there are algorithms that do not halt for some inputs ormay require an unlimited amount ofmemory,
they are not used in data science, so we will ignore them in what follows.
10 Algorithms in machine learning can be supervised, unsupervised and reinforcement learning. We will
refer to supervised and unsupervised algorithms because they are relevant to ‘discover’ quantitative relations
between inputs and outputs. On the other hand, reinforcement learning algorithm are the less relevant here,
which are used especially in engineering rather than natural or social sciences.
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algorithm.11 The idea is that we infer a quantitative relation between already available
pairs of inputs and outputs that will be used in similar cases to generate a predicted
output where only the input is available.

ML uses a learning algorithm to build an algorithmic model from a set of training
samples, called the training set. The time sequence is as follows: first a set of data is
collected, then an algorithm is chosen to be run on those data, and finally the algorithm
is run on the input data, so that the algorithm generates an algorithmic model. Several
learning algorithms can be run on the same training set to yield alternative algorithmic
models. Then, a set of validation samples which were not available at training time
is used to measure the performance of each model, so that the algorithmic model
which performs best on the validation set is selected. After that, a third test set, which
is disjoint with both the validation and test sets, can be employed to carry out a
final assessment of the selected model. These training, validation and test procedures
are usually repeated many times (replications) with different random splits of the
available data into training, validation and test sets. Through this process, the statistical
confidence on the performance of the selected model is improved, as measured by
suitable statistical tests.

3.2 What are algorithmic models of machine learning about?

Technically speaking,MLalgorithmicmodels are predictive models.12 Whenwe apply
a selected algorithmic model13 to an input that was not used to train the algorithm
in order to produce a predicted output, then we are generating a new prediction.
Predictions refer to the local context of a given problem. That is, a model which has
been learned by a learning algorithm to predict whether a mortgage borrower will
repay the loan is not expected to perform well if used to try to predict whether a
student will repay a student loan.

An algorithmic model is designed to predict the behavior of a single target system,
which is defined as an aspect of reality which is associated to a probability distribution
of possible cases from which data samples can be drawn at random, in order to
obtain the training and validation datasets, and from which the test cases also come.
In addition, the role of machine learning can be further extended by automatically
discovering classes14 which would be later predicted. In biomedicine this is pretty
common, and classes of (for instance) mutated genes and associated diseases might
be later used in order to predict prognoses for new patients (Akbani et al. 2015,
pp. 1687–1688).

11 Here we must remark that each learning algorithm builds a different kind of algorithmic model. Some
learning algorithms build complex models composed by many submodels which are combined by a con-
sensus subalgorithm. These are called ensemble algorithms and models.
12 “The generalization performance of a learning method relates to its prediction capability on independent
test data. Assessment of this performance is extremely important in practice, since it guides the choice of
learning method or model, and gives us a measure of the quality of the ultimately chosen model” (Hastie
et al. 2009, p. 219).
13 The algorithm produces the model, which in turn is applied to test new data.
14 Given a universe of objects, a class is a subset of the universe whose elements share some features which
makes the class relevant for some scientific or technological purpose.
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Algorithms used in ML build algorithmic models of problems whose predictive
accuracy typically enhances as more data are supplied.15 We have reported in another
work (Ratti and López-Rubio 2018) the example of the algorithm PARADIGM (Vaske
et al. 2010). This algorithm is used in biology to predict the state ofmolecular biological
entities that for some reasons cannot be measured directly. In particular, PARADIGM
is aimed at inferring how genetic changes in a patient influence genetic pathways.
Pathways are collections of molecular entities that are causally relevant to higher
cellular processes. Because of biological complexity, pathways are large and complex.
Therefore, it is impossible to keep in mind all the possible entities and their relations
into mind—there are databases that keep track of all the details. PARADIGM integrate
several genomic datasets andwill predict whether a patient will have specific pathways
disrupted given the status of somemeasured entities (e.g. specific genes mutated). The
model generated by PARADIGM will specify the expected state of several biological
entities which are not experimentally measured, by drawing the information from
databases. We have here the characterization of ML through the idea of a problem;
there is the input (i.e. the measurements on patients), the samples (i.e. the database),
and the output (i.e. the status of entities given inputs and samples). Intuitively, the
larger the inputs and samples, the more precise the algorithm performances will be,
because by addingmore information the algorithmwill be able to performmore precise
calculations on the expected status of unmeasured entities.

Models generated by ML are black boxes (Frické 2015, p. 655). ‘Black-box’ is a
central concept to understand ML’s focus on predictions. By ‘black-box’ model we
mean models that while being precise in associating inputs with outputs, they are
nonetheless unable to clearly depict the (causal) relations between them (Hastie et al.
2009, pp. 351–352).16 Consider an example. Let’s say that we have amodel elaborated
on the basis that anytime there is a specific set of customer characteristics, it is very
likely that the customer population with such characteristics will buy a specific type
of product. Let’s say that we can calculate quite precisely the ‘very likely’. This
model is said to be ‘black-box’ because even if it can clearly point out that there is a
quantitative relation between specific inputs (i.e. the set of customer characteristics)
and outputs (i.e. the probability of buying a specific product), still it is not at all able
to uncover the causal connectivity between the characteristics of the customers and
the mental processes which lead them to buy the product. In other words, we know
how to associate inputs and outputs, but we do not know what is in between. Machine
learning algorithms generate models that ‘black-box’ the relation between inputs and

15 Abundance of data facilitates a better model selection and assessment, because the estimations of the
performance of a model are more accurate (Hastie et al. 2009, p. 222). Infrequent but relevant cases can only
be observed in sufficient numbers if the number of samples is large enough (Junqué de Fortuny et al. 2013,
p. 216). For an important kind of algorithmic models such as maximum likelihood estimators, there are
formal proofs that under mild conditions they are both asymptotically unbiased, i.e. the bias reduces to zero
as the number of samples tends to infinity; and asymptotically efficient, i.e. the variance reduces to the lowest
possible for any model as the number of samples tends to infinity (Sugiyama 2015, pp. 140–143). In some
fields such as natural language processing, as the number of samples increases, a point is reached where all
relevant cases are sufficiently covered in the dataset, so that memorization of examples outperforms models
based on general patterns (Halevy et al. 2009, p. 9).
16 Please note that this concept of ‘black box’ differs from Latour’s, who refers to ready-made computer
systems which are assumed to perform their function correctly (Latour 1987, pp. 3–4).
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outputs, though they are very specific in saying that there is a relation. This association
between inputs and outputs without saying what’s in between may be interpreted in a
mechanistic framework as the fact that such black-boxedmodels are not explanatory.17

However, one may say that the algorithmic black-boxed models generated by ML
may be turned, in principle, into ‘white-box’ models, namely models where the causal
connectivity between components is uncovered. This is usually what we do with how-
possibly mechanistic models. Let’s imagine that we have a straightforward correlation
between themutations of certain genes and specific phenotypes. Let’s hypothesize that
we are workingwith a very well known human gene, such asPTEN orKRAS. Since we
already know the processes that one of these genes can possibly trigger, we can elab-
orate a causal narrative (see Ratti and López-Rubio 2018)—though idealized and/or
abstract, of course—connecting such genes with the phenotypes we are observing.
We can refine the causal history by instantiating well-known experimental strategies
for discovering mechanisms, such as the ones mentioned in (Bechtel and Richardson
2010; Craver and Darden 2013). By depicting the causal connectivity between com-
ponents, we try to make sense of why there is a relation between inputs and outputs
and hence we say what’s in between inputs and outputs. In other words, by connecting
inputs and outputs we usually obtain an explanation. However, an algorithm used in
the context ofML does not do anything like that; it does not yield an explanation, it just
points out a connection between two entities that must be explained by experimental
strategies for discovering mechanisms.

3.3 Predictivism inmachine learning

The appeal to predictive performances is motivated by specific epistemological rea-
sons. Even if ML is oriented towards predictions (a quantitative relation between an
input and an output), one may think that, at least in principle, this does not prevent this
discipline from being oriented towards mechanistic-like explanations as well. How-
ever, this is not the case;ML is only about predictions. This is not a sort of predictivism
(in the sense of Kaplan and Craver 2011); predictivism in ML is unavoidable. In other
words, a predictivist would say that a scientific model which conveys accurate predic-
tions counts as an explanation (Kaplan and Craver 2011, p. 605), while ML focuses on
producingmodels with a good predictive performancewithout addressing the question
of whether the obtained models have an explanatory value.18 In any case, ML models
are not required to be simulations of the real world processes that they are associated
to. In order to explain why ML focuses on prediction, first we will say when and how
we need machine learning. Next, we will say why the problems that ML tackles can
be approached just by appealing to predictions.

17 Any how-possiblymodel is in a sense a black-boxmodel, because it establishes that there are components
that are clearly involved in a phenomenon, but we do not know exactly how.
18 There are some machine learning methods like Bayesian networks (Spirtes et al. 1993) which can learn
causal connections among variables from data. They can ascertain that some variables are causes of other
variables, but they cannot say anything about the specific mechanism that is behind such causal connection.
In other words, Bayesian networks by themselves cannot produce any explanations, since the specific
mechanisms must be found by the scientist.
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3.3.1 When and howwe needmachine learning

We needMLwhen black-boxes are the best options to discover something about target
systems.19 This is more likely to happen in disciplines where the system under study
is complex or chaotic. For example, epidemiology and social sciences are amenable
to black boxes because the underlying processes involve a huge number of relevant
variables with highly nonlinear dependencies among them.20 Such complexity makes
it very difficult to organize variables in a coherent mechanistic-like model. Either we
simplify the model or we tackle complexity and settle for black-boxes. This is because
even if we could elaborate intelligible models of chaotic and complex systems, these
would likely be oversimplifications with limited predictive performance in practical
settings. For example, if you want to predict the probability that a person will develop
osteoporosis, you may consider a simple model which considers that such probability
is a linear function of the age of the person. This is certainly intelligible, and it could
provide a first approximation to the problem. But if you need better predictions and
a richer (in terms of details) model, you will have to opt for a more complex and
(necessarily) less intelligible model where all the risk factors such as age, gender,
family history, bone structure, bodyweight, broken bones, ethnicity, smoking, alcohol,
medications, and previous related diseases interact in nonlinear and non obvious ways.
Moreover, if the mechanism under investigation involves a complex relation among
variables, then an input–output relation cannot be written down in intelligible terms.
This can happen even if the number of variables is small, i.e. for small size models,
depending on the intrinsic complexity of the relation among the variables in the system.
Under these circumstances, only unintelligible algorithmic models can yield good
predictions.

3.3.2 Machine learning performances and the bias-variance tradeoff

We need ML when complex systems are our targets, and ML is oriented towards pre-
dictive models. What is the best predictive model in this context21? This is a pretty
technical matter; there are theoretical difficulties in obtaining a model with high pre-
dictive performances. This difficulty can be explained by appealing to the so-called
bias-variance tradeoff . Let us see what this is about.

Following Shmueli’s notation (Shmueli 2010), for a given problem there is an
abstract level of reasoning where the existence of an abstract function F is postulated,
which relates some abstract concepts X to other abstract concepts Y , where Y� F(X).
Then, an operationalizationmust be carried out to translate these abstract concepts into

19 The real-world process and the model are categorically different. For trained machine learning models,
they might not even be structurally similar, depending on the kind of algorithm that is used to learn the
model. There are algorithms that aim to learn the structure of the biological interactions, which can be
regarded as white box algorithms, while other algorithms do not try to yield a model which resembles the
target biological system.
20 Well known cases include stock market prediction, modeling the spread of communicable diseases on a
population, and recommendation systems for online marketing.
21 Please note once again that predictions here do not necessarily overlapwith predictions in themechanistic
context.
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measurable variables X, Y linked by the function f which captures the exact relation
among them, Y� f(X). The last step is the construction of a model f ′, which is an
approximation of f because it cannot capture all the details of the phenomenon under
study. Here the phenomenon must be associated to a single target system from which
samples (X, Y ) can be drawn at random. In other words, a phenomenon is associated
to a specific probability distribution p(X, Y ) which can be sampled by observing the
target system. Data science comes into play whenever the abstract function F is too
complex to be ascertained by a human22 (Pietsch 2015, p. 915; James et al. 2013,
p. 19), or it cannot be used to derive a suitable predictive model f ′. Data science
proceeds by learning f ′ from examples of pairs X, Y (James et al. 2013, p. 17) and
it considers f ′ as an acceptable model of reality until a better one is found, even if f ′
does not provide an explanation about how f works.23

How does data science compare models f i
′ to choose the best one? In this context,

most model performance criteria try to strike a balance between the complexity of
the model and how well it fits the data (Bishop 2006, pp. 32–33). At the heart of this
issue is the bias-variance tradeoff . A well-known performance criterion for predictive
models is the expected error which is committed when using a model f ′ for prediction.
This error is the sum of three non-negative quantities (James et al. 2013, pp. 33–35;
Hastie et al. 2009, pp. 223–228); the irreducible error, which stays the same no matter
how accurate the model is; the bias, which is caused by the difference between the true
function f and its approximation f ′; and the variance of the learning method, which
is caused by the oscillations of f ′ as the training dataset is changed. The best model
is the one for which the sum of bias and variance is very low. However, this is very
difficult to obtain.

Imagine that we wish to predict the ambient temperature tomorrow at 0:00 GMT
for all locations on the Earth surface, given the temperatures measured today at 0:00
GMT in all weather stations in the world, so that the problem has one input variable
for each weather station. We might use a model f 1

′ which considers that the average
temperature is the same on all points of the Earth surface, and it is computed as the
average of the recorded temperatures on all stations. This model would have a high
bias, since it is far from the real function f . For example, it would grossly overestimate
the temperature at the polar regions, and it would underestimate at the deserts.Wemay
also use another model f 2

′ which divides the Earth surface into 510 patches of about
1 million km2 (the surface of the Earth is about 510.1 million km2), and then predicts
the temperature at each patch to be the average of the recorded temperatures on all
stations within the patch. The model f 2

′ would have a smaller bias than f 1
′, since the

overestimations and the underestimations would be less severe. However, f 2
′ would

have a higher variance than f 1
′, because patches for f 2′ contain fewer stations, so

that any random changes in the temperature recorded at one station (training dataset

22 Some data sets are so large and complex that it would be almost impossible for a human to find significant
patterns without the help of algorithms which automatically elaborate models to fit the data (Dhar 2013,
p. 68).
23 A difference between the desiderata of models f ′ for explanation-based and data science approaches is
that for the former we want f ′ to have a causal structure that is similar (not understood in the philosophy of
science technical sense) as much as possible to the phenomenon we are investigating, while for data science
the predictive performances for new cases is the main goal.
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change) would cause a larger oscillation in the temperature prediction for the patch that
the station belongs to, since those random changes happen independently from one
station to the others. There could be a third model f 3

′ which divides the Earth surface
into 510,000 patches of about 1000 km2. Now f 3

′ would have an even smaller bias than
f 2

′, since it would represent even smaller details of the temperature distribution. But
f 3

′ would have a very high variance, since there would be very few weather stations
in each of these small patches, so that the computed average on each patch would be
even more sensitive to random changes in the temperature recorded at a station, i.e.
dataset changes. As we go from f 1

′ to f 2
′ and then to f 3

′ both the model complexity
and the variance increase, while the bias diminishes. This is the tradeoff. However,
data science techniques can reduce the variance of highly complex predictive models
(while keeping bias low as well) by harnessing large numbers of samples.24

The computational techniques that are used tomanage large numbers of samples are
also suitable for large numbers of input variables. Therefore, a typical way to enhance
the predictive accuracy of a model is to increase the number of input variables that are
supplied to the algorithms. The complexity of the learned models usually increase as
the number of input variables grows, but this is not a pressing concern for machine
learning because both the computer hardware and software are capable of managing
large numbers of input variables and samples at the same time.

3.3.3 Why we cannot obtain explanations when using machine learning

Let us summarize what has just been said:

1. ML generates algorithmic models which are predictive models in nature.
2. Algorithmic models are necessary to study very complex systems.25

3. The best (predictive) algorithmic model is (by definition) the model which yields
the best predictions, and this is that which attains the minimal sum of bias and
variance. Therefore, we want to keep both bias and variance low.

4. Keeping both bias and variance low is hard to achieve because of the bias-variance
tradeoff. However, throughML, the variance of complex models could be reduced
while keeping the bias low by supplying large amounts of training samples.

5. The same computational techniques that are used to manage large numbers of
samples are also employed to increase the number of input variables, with the aim
of further enhancing the predictive performance.

And here come the troubles; supplying larger and larger numbers of input variables
means also making the model even more complex (i.e. the size of the model increases).

24 Let’s consider a variation of the example of temperatures. We may say that the temperature tomorrow at
0:00 GMT in a particular weather station will be the average of the temperatures recorded on the same day
of the year at 0:00 GMT in the same weather station, computed over the available weather data. We can
diminish variance as follows. As the number of years with available data (the number of samples) increases,
the variance diminishes because the output that f’ produces for unseen test data will be less sensitive to
oscillations in the training dataset, i.e. extremely cold or extremely hot years in the historic record which is
used for training.
25 This makes sense only if we assume that complex systems must be approached by taking into account
the contribution of each of their components. There might be other approaches to complexity (e.g. systemic
or holistic approaches) which may not require the attitude we are describing here.
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The argument can be summarized as follows. If we want to generate reliable models
about complex systems we have to use algorithms (as defined above). In this context,
a model will be a predictive model, because algorithms of data science obtain exactly
that. We do not want just models; we want good models in terms of their predictive
performance (which, again, is not the same as predictive performances in the mech-
anistic context). If we want a better predictive model (i.e. one for which the sum of
variance and bias is low), we have no choice but to make the model more complex by
supplying larger and larger amounts of training data. Since this usually means more
variables, ML works better when the number of variables is overwhelming, but this
also means that in order to connect inputs and outputs we have to identify the causal
connectivity or causal structure between an increasing number of components.

This worry can be framed in terms of the relation between explanation and intel-
ligibility that we have delineated in Sect. 2.2 and argued in (Ratti and López-Rubio
2018). An algorithmic model is very unlikely to be ‘turned’ (or ‘upgraded’) into an
explanatory (mechanistic) model. This is because machine learning algorithms do not
generate intelligible models (in the sense delineated in Sect. 2.2); there are too many
variables, and we do not know how to use the model in order to instantiate a series
of ‘built-it’ tests (in case we are in a mechanistic context) or other procedures such
that we can elaborate clearly the causal connectivity (i.e. the organization) between
the components. Therefore, it seems that when we use machine learning because of
the magnitude of the data sets, at the same time we cannot even in principle obtain
explanatory (mechanistic) models, but only predictive models. Algorithmic models
obtain predictions, and predictions are all we can obtain from them.26

A consequence of this is that, under the circumstances where ML is employed,
prediction and explanation stand in a relation of tradeoff \ . The tradeoff27 consists
in the fact that the more we use machine learning because we have larger volumes
of data, the less our chances of elaborating (mechanistic) explanations will be. That
is, the underlying biological processes are so complex that intelligible mechanistic
models are oversimplifications of reality. Only more complex, less understandable
data-based models can capture the complexity of the underlying biology. Mechanistic
models in molecular biology are not very good at prediction (in the machine learning
sense) because their bias is very high, i.e. they are far from representing the real target
system due to the unavoidable oversimplification that they entail. As explained before,

26 It can be argued that there are algorithms which learn the structure of the biological system under
investigation, so that we can relate somehow the work of algorithms to mechanistic descriptions. For
example, the algorithm PARADIGM mentioned above does learn the structure of the interactions among
the entities. But it cannot ascertain the specific mechanisms which underlie behind the interactions. So the
lack of intelligibility comes from the inability of algorithms to learn those specific mechanisms rather than
a dissimilarity between the learned interaction structure and the real one. There are other algorithms such as
Prediction Analysis of Microarray (PAM, Tibshirani et al. 2002), which do not intend to learn the biological
structure in any way, since they are aimed to prediction only. When algorithms like PAM are used, it means
that scientists are not particularly interested in the structures, but in the predictions. In other words, when
the biological network under investigation is too complex to obtain an explanatory mechanistic model, then
the only option is to use a black box prediction algorithm which does not intend to learn the structure of
the analyzed network.
27 Let us clarify again: this tradeoff between explaining and predicting is a consequence of the waymachine
learning deals with the bias-variance tradeoff. In other words, this tradeoff and the bias-variance tradeoff
are different tradeoffs.
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any predictive model must keep both bias and variance low to yield good predictions.
Mechanistic models are expected to yield the best predictions when the complexity of
themodeled system is small, so that there are no significant oversimplifications in them.

Before proceeding, it is important to stress something important about the tradeoffs
(bias-variance, and explanatory abilities-predictive performances) we talked about.
In philosophy of science, there has been an interesting discussion on tradeoffs in
modeling for a few decades. The discussion originated from Levins’ influential paper
on model-building in population biology (1966), and it has been recently developed
byWeisberg in several papers (for instanceWeisberg 2006;Matthewson andWeisberg
2008). Even though Levins does not use the word ‘tradeoff’, it seems he identified a
sort of three-way tradeoff between three different features of models. These features
are precision, realism, and generality. By followingWeisberg’s careful analysis (2006),
generality can be defined as the number of target systems to which a model can apply
to. Next, realism is how well a model represents its target system. Finally, precision
is the “fineness of specification of parameters” (Weisberg 2006, p. 636). The type of
tradeoffs identified by Levins are

(1) you cannot increase both realism and precision without sacrificing generality,
(2) you cannot increase both generality and precision without sacrificing realism
(3) you cannot increase both realism and generality without sacrificing precision.

Are these tradeoffs similar to the tradeoffs developed here? We do not see any resem-
blance between the tradeoff we have identified between explanatory abilities and
predictive performances, and Levins’ tradeoffs. The tradeoff between bias and vari-
ance might deserve a little bit more of discussion. High precision can be interpreted as
low variance, since variance measures the variability of parameters as they are learned
from training data. High realism might mean low bias, since bias can be pretty much
defined in the same way Weisberg characterizes Levins’ notion of realism. However,
generality is much more difficult to interpret in the context of machine learning. In
fact, as it has been specified above, the scope of MLmodels is not that broad, since the
models are learned with specific datasets to solve specific problems. Hence, generality
will be usually low. Given the fact that Levins’ theory of tradeoff is a three-way trade-
off, and the tradeoff between bias and variance is a tradeoff between two features, we
find it difficult to find a straightforward correspondence between them.

4 Biology andmachine learning

Because ML masters complexity efficiently, it is likely to be used more and more in
the next decades in several scientific fields, including biology. How does molecular
biology deal with such a tradeoff? It is time to make explicit the comparison between
mechanistic models and machine learning predictive models, especially in light of the
tradeoff between explanation and prediction.

In the case of mechanistic models, explanation and understanding (in the sense of
‘intelligibility’ as specified above) are strictly related; one desideratum of explana-
tory mechanistic models is that they spell out the organization (understood as ‘causal
connectivity’) between the entities and processes producing the phenomenon of inter-
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est. Pinpointing the organization implies that we can ‘use’ (as specified above) the
model in many ways, in particular via ‘built-it’ tests. Therefore, in order to elaborate
an explanation in this context, the model must be intelligible to us, both in the phase
of construction and confirmation. Hence, explanation and understanding are strictly
related to the task of grasping how entities and activities are organized.

On the other hand, predictive models of machine learning are more efficient in
their performances when the number of variables increases, i.e. larger size models are
preferred.28 If we use the language of mechanistic models, this means that the number
of ‘entities’ and ‘activities’ (variables) included in themodel has to be high formachine
learning algorithms to generate efficient models. But since the number of variables
increases, the difficulty of finding out the organization between a high number of
variables increases aswell; themoremachine learning is efficient, the less thesemodels
are intelligible. In other words, the more predictive models of machine learning are
‘good’ models according to the standards of the discipline, the less intelligible they
are, and hence the less they can be turned into explanations. As soon as predictive
performance increases, explanatory abilities (and hence power as well) decrease.

This general analysis suggests that data science (in particular ML) has to impact
the aims and goals of any science where explanatory mechanistic models are central.
But is this really the case with molecular biology? In order to understand this, we
fully scrutinize an important ‘big science’ project of molecular biology that has been
at the forefront in applying machine learning to biological questions. This project is
The Cancer Genome Atlas29 (TCGA).

TCGA has started in 2005 and ended in 2016. The main goal of the project was
to study the biology of cancer through a massive use of sequencing technologies and
bioinformatics. The project background is rooted in the evolutionary view of cancer
as genomic instability, which in turn is grounded in the view that there are certain
genes (called cancer genes—be they oncogene or tumor suppressor (Morange 1998;
Weinberg 2014)) that play a prominent causal role in the development of tumors. The
framework of TCGA is the typical reductionist and mechanistic framework that has
been guiding molecular biology for at least 60 years (Weinberg 2014; Tabery et al.
2015). The structure of TCGA studies is centered around the use of sequencing tech-
nologies to accumulate big data sets (usually about genes, mutations or structural
variations both at the genetic and epigenetic levels) which are then analyzed by com-
puter scientists, who rely heavily on the use of data science (and machine learning in
particular). In most cases, such studies identify a certain number of genes, mutations
and/or structural variations that are then associated in various ways to specific pheno-
types30 (i.e. specific types of tumors). In what follows, we will provide an epistemic
analysis of all studies published by TCGA, in order to evaluate whether relying on
machine learning has, in at least this highly representative case, changed the goals and
priorities of molecular biologists.

28 For network modeling in molecular biology, the number of variables is fixed by the number of detected
compounds, so that there is no flexibility to choose the size of the model to be learned.
29 https://cancergenome.nih.gov.
30 For a more thorough exposition of the structure of TCGA studies, see Ratti (2015).
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The motivation to use TCGA is straightforward. TCGA is a pioneering project in
the development of sequencing technologies and bioinformatics tools to adapt biology
to the new big data trend, and its studies and its data portal are extensively used as
‘models’ (both in technical and non-technical senses!) for anyone in contemporary
biology who wants to deal with big data sets, especially in cancer biology research.

4.1 The screenings

The information about TCGA studies can be found in Supplementary Table 1. In
total, we scrutinize 43 publications. 31 out of 43 are official publications (1–31) of
TCGA.31 The rest of publications (32–43) are part of an initiative called TCGA Pan-
cancer Analysis,32 which is a meta-analysis of data sets accumulated by TCGA across
different types of cancer.We report different characteristics of the screenings analyzed.

First, we indicate themagnitude of the input analysis, which is usually the number of
cancer samples subjected to next-generation sequencing and computational analysis.
Numbers may vary considerably, especially in light of the availability of samples for
a given cancer. For instance, study 16 has a low number of samples (n � 66) because
of the nature of tumor analyzed (i.e. chromophobe renal cell carcinoma) for which
the availability is substantially low, especially if compared to more common cancers
such as breast cancer (see for instance study 21, where sample is n � 817). When we
report the number of samples, we usually specify the number of samples subjected to
specific analyses (e.g. whole-exome sequencing, whole-genome, etc.). Studies 32–43
have a high number of samples because they are meta-analyses of different data sets
of TCGA consortium.

Next, we indicate the magnitude of the output, namely the amount of mutations,
genes or structural variations that are strongly associatedwith the input. Inmost screen-
ings data sets are not limited to the genetic or epigenetic levels, and a focus on the
proteomic level is provided. This further level of biological analysis is evidence for the
data-intensive turn in biology, but our analysis focuses especially on whole-exome,
whole-genome and somatic copy-number alterations data.33 These are, respectively,
the mutational analysis of exons across genomes, the analysis of whole genomes, and
the analysis of structural variations. Therefore, each study from1 to 31 (with the excep-
tion of study 15) identifies a quantitative relation between a particular phenomenon
(i.e. a type of cancer) and specific molecular events/entities (e.g. mutations, structural
variations, epigenetic alterations, etc.).

Thirdly, we create a taxonomy of aims and goals for such screenings. In studies
from 1 to 32, some have the only aim of understanding in quantitative terms how
tumors are mutated, and which mutations are better associated to them (n � 6), while
others in addition to this provide what is called a ‘pathway analysis’, namely a study to

31 https://cancergenome.nih.gov/publications.
32 http://www.nature.com/tcga/.
33 The reason for doing this is that, when mechanistic sketches in this field are outlined, usually genes and
mutations at the genetic level are considered central, and hence we decided to focus only on this important
level because the epistemic processes applied to it are similar to the ones applied to other levels. Hence the
analysis of other levels may be redundant.
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contextualize mutated genes within already characterized biological pathways.34 (n�
10). Other studies provide also attempts to sketch mechanistic descriptions, though by
involving only few of the entities found to be associated to the phenomenon of interest,
and in this way they identify specific biological processes that may be important for the
development of specific types of cancer (n � 15). Studies from 32 to 43 have different
aims. They are mostly computational analyses of big data sets across different types of
cancer. The most minimal are focused just on ‘oncogenic signatures’ across cancers
(n � 4), while others try to identify possible high-level abstract mechanisms that
may be conserved across tumor types (n � 6). Finally, few studies are devoted to the
development of specific algorithms (n � 2).

Fourth, we report the number of machine learning algorithms used. We observe
that in general several algorithms are used within the same study, and this indicates
the fulfillment of different sub-goals within each screening. These sub-goals are iden-
tified in two sheets of Supplementary Table 1, named ‘Algorithms’ and ‘Taxonomy’.
‘Algorithms’ provides a list of the algorithms used and these are associated to the
sub-goals identified. On the other hand, ‘Taxonomy’ quantifies the number of times
such sub-goals have been achieved in the screenings analyzed.

4.2 Predictions, explanations and the aims of molecular biology

If our epistemological analysis about explanation and machine learning in the mech-
anistic context is correct, then we should observe specific things in analyzing the
outputs of a project like TCGA. In particular, we should observe that (a) there is no
fully-fledged mechanistic explanation of cancer in each and every paper of TCGA
and (b) predictive models serve goals that are different (and independent) from the
typical explanatory-based aims of molecular biology. Let us now see whether these
two claims that have been derived in principle hold in the actual practice of some
data-intensive biology.

First of all, we hasten to add that when we say ‘fully-fledged mechanistic expla-
nation of cancer’ we do not mean a ‘theory’ of cancer. There can be a general theory
of cancer in the sense of a family of models explaining how instances of cancer may
manifest one or more hallmarks that are usually produced in certain ways.35 What we
mean by ‘fully-fledged’ mechanistic explanation of cancer is that a biologist, starting
from the characterization of a phenomenon (a particular type of cancer in x samples),
tries to instantiate those discovery strategies identified by mechanistic philosophers
(Craver and Darden 2013; Bechtel and richardson 2010) in order to explain (i.e. elab-
orate a causal narrative) of how that particular phenomenon has been produced. For
example, onemay start to identify entities and activities that are likely to be involved in
the production of the phenomenon to explain, and then recompose these components
into a narrative of how these components produce exactly the explanandum (Glennan
2017).

34 On the difference between ‘pathways’ and ‘mechanisms’ see Ross (2018) and Boniolo and Campaner
(2018).
35 Consider for instance the so-called ‘hallmarks of cancer’ (Hanahan and Weinberg 2000, 2011).
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Let us now turn to the extent to which (a) applies to actual biological practice.
On the basis of the analysis of TCGA publications, we argue that, in each paper
analyzing a specific cohort of samples of a specific type of tumor, the data gathered
is not used to explain mechanistically how that particular cancer has been produced.
However, one may say that in the past it has been already observed that data-intensive
studies in molecular oncology follows a mechanistic recipe. For instance, Ratti (2015)
emphasizes that the structure of the discovery strategies of studies such as TCGA’s
is similar to the ones emerged in the mechanistic tradition (Bechtel and Richardson
2010). However, the study of Ratti (2015) is not very specific in spelling out the
explanatory dimension of data-intensive studies in molecular biology. For instance,
consider the phase of validation of computational analysis (Ratti 2015, pp. 206–209).
This is the phase when a few mutations/genes that are found associated to cancer
are ‘experimentally’ validated to see if they play a causal role in the phenomenon
of interest. Experimental validation—also known as the ‘functional test’ (Bertolaso
2016)—can be interpreted as being part of the discovery strategies of the mechanistic
tradition (Bechtel and Richardson 2010; Craver and Darden 2013).36 However, even
though discovery strategies of the mechanistic tradition aim at explanatory goals, a
mere experimental validation of the causal role of an entity is just one piece of a very
complex puzzle. Numerous studies of TCGA experimentally validate some cancer
genes, and they also mention the general processes these entities may be involved
into. For instance, in Supplementary Table 1 we emphasize that studies number 6, 8,
11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30, 31 investigate possible mechanisms of a
few genes/mutations. Instead of trying to explain through a mechanistic explanation
a phenomenon such as how from certain mutations a specific type of tumor will show
this and that phenotypes, these studies focus on a few entities that machine learning
analysis strongly associates with tumors. This means that there is not an attempt
to explain the phenomenon of interest (i.e. a specific type of tumor), but only an
exploration of the information about few entities that may play important causal roles
in one or more tumors. The attention shifts from the phenomenon to explain to some
entities that may be involved.37 In other studies, rather than explaining a phenomenon,
information about mutated genes is contextualised in so-called mechanistic schemas
(Levy 2014). This is when TCGA practitioners try to make sense of the causal role of
one or more genes by showing that what the genes are supposed to do is consistent (by
means of computational analysis) with it being part of an already known biological
pathway whose disruption in cancer has been observed in the past, even though the

36 Please note that experimental validation is different from the validation phase of machine learning
procedures, where an algorithmic model is chosen according to its performance on a validation set, which
is a subset of the available dataset.
37 One may also say that this is the point where ‘data-intensive’ studies meet mechanistic studies, in the
sense that studies such as the ones of TCGA are only one step towards the elaboration of mechanistic
explanations. However, this observation may miss the importance and the role of bioinformatics tools.
These are not just tools aimed at selecting a few entities by means of eliminative inductive strategies, but
tools that are used to characterize the complexity of biological systems. In fact, we may use these tools to
prioritize a few entities and elaborate a simple mechanistic models, but by doing this we would miss the
complexity of biological systems and the other analyses that can be done on biological complexity without
necessarily narrowing down just a small and local part of it, as we do when we just focus on a few cancer
genes as part of the complexity of a particular type of tumor.
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role of the genes in the pathway is not clarified at the level of detail that a mechanistic
explanationwould require (studies number 4, 5, 7, 9, 10, 12 14, 25, 27, 28 only focus on
pathway analysis, while the previously mentioned studies have both the focus on new
cancer genes and pathway analysis). Schemas are employed notably in some studies
of the Pan-cancer analysis of TCGA (studies number 33, 38, 39, 41, 42, 43), where
selected entities that are associated with several types of tumors are then investigated
with respect to their possible mechanistic contexts.

Therefore, while no study of TCGA does provide a fully-fledged mechanistic
description of the phenomenon of interest, some may provide either sketches or
schemas but limited to a few entities. This is consistent with the introduction of ML’s
methodology in molecular biology and our analysis of explanation, understanding and
prediction; when big data sets with an overwhelming number of variables are ana-
lyzed, no heavily vetted mechanistic explanation is attempted, but rather biologists
limit their analyses to a few entities.38 The fact that studies try to provide evidence for
new cancer genes is also related to the biomedical dimension of the project; its findings
can be used for later phases of drug discovery (Ratti 2016). However, our claim is that
if you domolecular biology with machine learning techniques, and if you want to have
the best machine learning performances, then you cannot even in principle elaborate
fully-fledged mechanistic explanation.39 It is important to notice that this is not due
technological limitations; the argument spelled out in Sect. 2 and in great detail in
(Ratti and López-Rubio 2018) is that the more the size of the model increases, the less
the human mind is able to organize the model’s components into a causal narrative,
which forms the backbone of any mechanistic description with explanatory force.
Moreover, we would also like to resist the objection that the explanation—even if it
cannot be elaborated right now by humans—is still there, present in the complexity
of the biological data sets. Our appeal to the capacity of the agents elaborating expla-
nations implies and advocates a sort of epistemic conception of explanations—the
explanations is not contained in the how-possibly model and has to be ‘discovered’,
but it is a product of the cognitive abilities of the agent. Therefore, if there are no
cognitive agents that can elaborate the explanation, then there is no explanation at all.

Let us turn to (b). By connecting molecular biology to the mechanistic tradition,
philosophers of biology have emphasized its explanatory goals. Even though predic-
tion, control and other aims are recognized, these have value only to the extent that
they increase the chances of elaborating explanations. However, it seems that TCGA
hardly fits this framework. While it is true that predictive models may function as
a way to select entities and activities that can be central in mechanistic descriptions
(Ratti 2015), this ignores the fact that predictive models play other important roles,
which are not necessarily related to explanation and cause-effect narratives. Among
the others, predictive models are useful for disease classification. For these purposes,
an unsupervised clustering algorithm is first employed in order to discover clusters of

38 This aspect may be interpreted as being related to the pathway concept, as Ross (2018) points out when
she says that “instead of identifying a particular explanatory target and ‘drilling down’, these maps [i.e.
pathways representation] involve identifying a set of entities in some domain and ‘expanding our by tracing
their causal connections” (p. 13).
39 One may argue that mechanistic philosophers’ requirements for a good explanation are in tension, but
this is beyond the scope of the present paper.
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tumors according to their genetic signature. This does not necessarily mean that the
members of a cluster share the same oncogenic mechanism, but only that the observed
mutations are similar, i.e. no detailed explanation of a common mechanism is pro-
posed for the members of a tumor cluster. After that, new tumors can be classified
by supervised learning algorithms into these previously discovered clusters. Again,
the classification is not dependent on any explanation of the oncogenic mechanisms,
since the algorithm classifies the tumors according to their genetic signatures. In turn,
this is related to the use of these studies as powerful tools for diagnosis. In order to
diagnose a specific disease, you do not need an explanation of the disease itself. In
the case of these screenings, we do not need to connect causally or mechanistically a
mutational signature to a specific type of tumor. We just need to know that anytime
there is a specific pattern of mutations, then there is a precise quantification of the
probability of having a specific type of tumor, even though plenty of associations will
turn out to be just spurious correlations (as the study number 34 seems to suggest)
or just indirectly related to difference makers. This is part of the aims of TCGA and
its focus on the so-called precision medicine. By creating more and more specific
subgroups of the same tumor by means of machine learning analyses, TCGA aim at
elaborating highly specific genome profiles that can be next further tailored around
the needs of individual patients or very small groups of patients.

Therefore, the analysis of the TCGA publications is consistent with what one could
have inferred from our in principle analysis of molecular biology and machine learn-
ing, namely that machine learning pushes molecular biology towards slightly different
epistemic aims and concerns. To say this more loud and clear, the introduction of
machine learning in molecular biology has introduced a change in the molecular biol-
ogy system of practice (Chang 2014),40 by shifting the field from purely explanatory
practices to a variety of predictive activities that may be even in a tradeoff relation
with explanations.

5 Conclusion

In this article, we have analyzed the claim according to which the introduction of data
science in molecular biology has somehow changed its epistemic aims.

First, we described the epistemic aims of molecular biology, and we have
identified explanatory goals achieved in terms of the elaboration of mechanistic mod-
els/descriptions (Sects. 2, 2.1).Wehave also connected the task of building explanatory
models to the intelligibility of such models, such that extremely complex mechanistic
sketches are unlikely to be turned in good explanatory models.

Next, we described the epistemic aims of data science, and machine learning in
particular. We have emphasized that machine learning points towards the elaboration
of predictive models (Sect. 3.2). Moreover, we have also added that machine learning
can produce more effective predictive models as the data volume it analyses grows,
both in terms of number of samples and number of input variables. This, together

40 This of course does not mean that more traditional forms of molecular biology cannot possibly coexist
with machine learning-driven molecular biology.
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with the remarks about intelligibility of models, led to the identification of a tradeoff
relation between the ability to elaborate mechanistic-like explanation and predictive
models.

We finally showed that in practice molecular biologists have to deal with such a
tradeoff; when they attempt to elaborate mechanistic explanations, they necessarily
have to narrow their focus to a few of the variables considered to investigate the
phenomenon under scrutiny (Sect. 4). However, the predictive force of such narrow
explanations will be very limited if compared to the predictive force of predictive (and
non-explanatory) models generated by taking fully into account the complexity of the
data sets about a phenomenon.
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Ezequiel López-Rubio1,2

Received: 29 July 2019 / Accepted: 24 March 2020 /
© Springer Nature B.V. 2020

Abstract
Classic conceptions of model simplicity for machine learning are mainly based on the
analysis of the structure of the model. Bayesian, Frequentist, information theoretic
and expressive power concepts are the best known of them, which are reviewed in this
work, along with their underlying assumptions and weaknesses. These approaches
were developed before the advent of the Big Data deluge, which has overturned
the importance of structural simplicity. The computational simplicity concept is pre-
sented, and it is argued that it is more encompassing and closer to actual machine
learning practices than the classic ones. In order to process the huge datasets which
are commonplace nowadays, the computational complexity of the learning algo-
rithm is the decisive factor to assess the viability of a machine learning strategy,
while the classic accounts of simplicity play a surrogate role. Some of the desir-
able features of computational simplicity derive from its reliance on the learning
system concept, which integrates key aspects of machine learning that are ignored
by the classic concepts. Moreover, computational simplicity is directly associated
with energy efficiency. In particular, the question of whether the maximum possibly
achievable predictive accuracy should be attained, no matter the economic cost of the
associated energy consumption pattern, is considered.

Keywords Model simplicity · Machine learning · Bayesianism ·
Information theory · Energy efficiency

1 Introduction

Automated model selection is one of the most relevant features of machine learn-
ing. It gives the scientist a powerful tool to quantitatively assess the merits of several
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possible models in the light of their predictive performance when fitted to large vol-
umes of data. In the current Big Data age, many scientific and engineering endeavors
involve the execution of machine learning software to obtain a fitted model, with
little or no human intervention. This calls for an analysis of the criteria which are
employed in such software to choose one model over another. Simplicity is often
employed to justify these selections, but the concept of simplicity has different mean-
ings depending on the school of thought that a machine learning practitioner adheres
to. Here we aim to explain such differences and their associated underlying assump-
tions about the goals of model selection. Furthermore, we describe and discuss the
computational concept of simplicity, which is frequently applied in practice but often
neglected in the literature. Finally, we claim that the computational concept of sim-
plicity is more appropriate to understand current practices in machine learning than
the classic ones. In this work, we focus on model selection for machine learning, and
not for general scientific inference.

In what follows we will use the following terminology. A model is a mathemati-
cal structure that aims to fit some experimental data. A model contains zero, one or
more adjustable (also called learnable) parameters, which are real numbers that must
be determined. Therefore, a model with one or more parameters has infinite possi-
ble realizations,1 which we call instantiations. A machine learning algorithm takes a
model and a set of training data as inputs and returns a set of values for the adjustable
parameters of the model, i.e. an instantiation of the model. We also say that the
algorithm fits the model to the data so that a fitted (instantiated) model is obtained.

We start by presenting four classic concepts of simplicity which have been applied
to machine learning models (Section 2). Then the relations among machine learning
models, the learnable parameters that they contain, and the learning algorithms which
are used to adjust the parameters are discussed, along with the concept of a learning
system, which contains them (Section 3). After that, the proposed concept of compu-
tational simplicity is detailed, and its epistemic advantages with respect to the classic
ones (Section 4). The relations among the classic and computational approaches of
simplicity are studied in Section 5. Next, some non epistemic justifications of the pro-
posed computational simplicity concept are outlined (Section 6). Finally, Section 7
concludes this work by highlighting the relevance of computational simplicity to state
of the art machine learning.

2 Four brands of simplicity for machine learningmodels

Ockham’s razor is invoked by machine learning theorists to prefer simpler models:

Entities should not be multiplied beyond necessity.

It must be understood as a search strategy to extract good models from data, and not
as a statement that Nature must actually be simple (de Rooij and Grünwald 2011, p.

1An uncountable infinity, since the parameters are real numbers. In the particular case that all adjustable
parameters are constrained to be integers, the number of possible realizations is a countable infinity.
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893). It has been argued that, even if it does not lead to the true model, it finds models
that yield reliable predictions (de Rooij and Grünwald 2011, p. 894).

As an example, let us consider a typical application of machine learning, namely
the modeling of customers of an e-commerce site. Given the complexity of human
behavior, it is almost impossible to build machine learning models that capture all
the details of this problem. Therefore, machine learning practitioners assume that the
true model is not attainable. Nevertheless, under the Ockam’s razor principle, it is
possible that a simple model can be obtained by learning from customer activity data
collected by the web site software. Such a model might be good enough to produce
accurate predictions of customer actions like buying a certain product or revisiting
the site.

For instance, it could be found in the collected data that 90% of the customers that
have already purchased items in the site for a total amount of more than 2,000$ actu-
ally revisit the site. On the basis of such an observation, a simple decision tree model
might be learned by a machine learning algorithm that contains a rule which states
that if a customer has purchased more than 2,000$ on the site, then she is predicted
to revisit. Here the amount 2,000$ is an adjustable parameter which is learned from
the data.

However, there are many possible ways to define simplicity in the machine learning
context (Domingos 1999, p. 409; Kelly 2007, p. 270). Next, we review four of them.

2.1 The Bayesian concept

The standard view in the Bayesian school understands probabilities as degrees of
belief in the truth of a statement (Sober 2015, p. 64; Forster 2001, p. 88). Bayesian
model selection chooses the model which has the highest probability given the data
(Wasserman 2000, p. 93). In order to compare two models, their Bayes factor can
be computed, which is the evidence of one of the models versus the other (Wasser-
man 2000, p. 98). This calculation requires the assumption of prior probability
distributions for the models and their parameters.

The Bayesian Information Criterion (BIC) is the criterion of choice according to
Bayesianism (Sober 2015, p. 135). It is an approximation to the log Bayes factor
(Wasserman 2000, p. 100) that has the advantage that no prior information must be
supplied since only the maximum likelihood instantiation of each model is necessary
(Claeskens and Hjort 2008, p. 81). The BIC is an unbiased estimator of the prob-
ability of observing the data given the model (Sober 2015, p. 139). After that, the
model associated with the highest posterior probability of observing the data is cho-
sen (Claeskens and Hjort 2008, p. 79). The maximization of this posterior probability
automatically leads to a balance between the goodness of fit of the model to the data
and the complexity of the model, which is known as the Bayesian Ockam’s razor
(Huang and Beck 2018, pp. 712-713; Murphy 2012, p. 157). The Bayesian frame-
work favors models with fewer adjustable parameters because they concentrate the
prior probability mass in a smaller range of options (Sober 2015, p. 125). In other
words, simpler models have a smaller number of possible instantiations, which means
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that more prior probability mass is allocated to each instantiation (Henderson et al.
2010, pp. 186-187).

It is sometimes interpreted that the Bayes factors or the BIC select the model
which is believed to be true with the highest probability (Grünwald 2007, p. 540).
However, this interpretation fails when a model is compared to a restriction of it (a
submodel). From the axioms of probability, it follows that the submodel cannot have
a higher probability than the model, but Bayesian model selection sometimes chooses
the submodel (Forster 2001, p. 95).

Bayesian model selection might be employed to predict whether a customer will
revisit our example e-commerce site, given her past activity on the site. Typically the
competing models have several learnable parameters that are adjusted from the data
collected by the web site software about many customers over time. Given the history
of a customer, each model will output the probability that the customer revisits the
site. Then the acquired data about the customers who actually revisited the site could
be used, so that the BIC applies the Bayesian Ockam’s razor to choose the model
which attains the best balance between the model accuracy, i.e. how the predicted
revisit probabilities match the actual revisit data, and the model complexity, i.e. the
amount of parameters to be adjusted from the customer activity data. This selection is
based on the maximization of the posterior probability of observing the revisit data.

2.2 The Frequentist concept

The Frequentist approach holds that probability only has a meaning when it refers
to a repeatable experiment (de Rooij and Grünwald 2011, p. 895). Therefore,
the Bayesian evaluation of a model, based on the probability of the model given
the observed data, does not make sense under this interpretation. Frequentism
conducts model assessment without considering subjectively assigned prior proba-
bilities, which enhances the perceived objectivity of its conclusions, as compared to
Bayesianism (Dawid 2017, pp. 378-381). The AIC is the best known Frequentist cri-
terion (Sober 2015, pp. 128-135). The AIC does not assign probabilities to models
since it is based on an unbiased estimation of the predictive accuracy of each model.

The AIC favors models with fewer adjustable parameters because it is based on an
unbiased estimate of the predictive accuracy of a model which contains the number
of adjustable parameters with a negative sign. This means that the lower the number
of adjustable parameters, the higher (better) the AIC. This mathematical fact reflects
the experience of scientists when they try to employ a model which fits the training
data very well but performs poorly on new test data (Sober 2015, pp. 130-131). In
machine learning terms, it is said that a model with too many adjustable parameters
overfits the data.

While both AIC and BIC favor models with fewer adjustable parameters, they
diverge in their interpretation of Ockam’s razor. The main difference between Fre-
quentist and Bayesian model selection is that the Bayesian approach intends to
maximize the probability of the model given the data so that it assigns probabilities
to models. In the Bayesian context, more adjustable parameters mean lower model
probability, and this is provided as the Bayesian foundation of Ockam’s razor (Sober
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2015, p. 141). The Frequentist approach refrains from model probability assign-
ments, which means that models with more adjustable parameters are penalized on
the grounds that they are estimated to have lower predictive accuracy, irrespective of
their probability. Therefore, the Frequentist justification of Ockam’s razor refers to
the estimated accuracy of the models. As mentioned in (Sober 2015, p. 149), model
parsimony is used as a surrogate for accuracy. Following our previous account of
Bayesian model selection for e-commerce customer revisit prediction, the AIC dif-
fers from the BIC in that the AIC chooses the model that is estimated to have the
highest predictive accuracy for future customer revisits, irrespective of any model
probabilities.

Accuracy is what really matters, and this explains why the AIC and the BIC
are less used than direct estimations of predictive accuracy obtained by cross val-
idation. The AIC is a parsimony based, indirect estimator of predictive accuracy
(Bandyopadhyay and Forster 2011, p. 3). The BIC does not even aim to maximize
predictive accuracy, but it evaluates the evidence for a model given the observed data
(Wasserman 2000, pp. 99-100). In contrast to these criteria, cross validation actually
measures the predictive accuracy over validation data sets. The predictive accuracy
measured by cross validation over validation data sets often turns out to be a better
estimator of the performance of a model on a test set than BIC or AIC (Hastie et al.
2009, p. 254). Moreover, cross validation can be used for non probabilistic models
(Murphy 2012, p. 370). All of this assumes that predictive accuracy is the primary
goal. Therefore, machine learning practitioners mostly adhere to an instrumentalist
conception of science (Sober 2015, pp. 143-144). Parsimony is seen as a secondary
goal so that if the predictive accuracy is similar among several candidate models, the
candidate with the smallest number of adjustable parameters is chosen (James et al.
2014, p. 214).

2.3 The information theoretic concept

Information coding is at the root of the Minimum Description Length (MDL) con-
cept of simplicity, see (Montanez 2017, pp. 73-75; Domingos 1999, pp. 412-413).
Under the MDL framework, probability distributions are equivalent to codes, so that
the truth or the belief in the truth of a model is not relevant (de Rooij and Grünwald
2011, p. 895). MDL aims to minimize the sum of the number of bits that are required
to represent the data plus those required to represent the model (Domingos 1999, p.
412; Pothos and Wolff 2006, p. 213; Grünwald 2007, p. 132). Hence MDL can be
decomposed into a model fit term plus a model simplicity term (Montanez 2017, p.
73). The MDL principle is based on the observation that any regularities on the data
enable efficient compression of such data. Models with fewer adjustable parameters
require fewer bits to be coded. This means that more parsimonious models are pre-
ferred, provided that the models adequately capture the underlying patterns in the
data so that the data are efficiently compressed.

Both MDL and BIC have been proved to behave suboptimally when the true model
does not belong to the set of models to choose from (Grünwald 2007, p. 530), a situ-
ation that occurs very frequently in practice (Grünwald and Langford 2007, p. 139).
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The main drawback of MDL is that, while models that are good at prediction implic-
itly compress the training data by identifying data patterns (Grünwald 2007, p. 595),
there are models which compress the training data adequately but do not perform
well at predicting new test data. In other words, implicit training data compression
is necessary, but not sufficient, to attain good predictive performance. For the cus-
tomer revisit example, this is a significant impediment to employ MDL since the true
model does not belong to the set of models under comparison. This means that MDL
could choose a model which summarizes the observed customer behavior data very
efficiently, but predicts future revisits poorly.

2.4 The expressive power concept

Perhaps the most typical task in machine learning is classification. It consists of pre-
dicting a class label given an input vector which lies in some input space comprising
several features. Classification problems greatly vary in their difficulty. The most
difficult problems are those where nearby vectors in the input space have different
class labels. This intricacy of the distribution of the labels must be matched by the
classification models which aim to solve the problem. That is, a classification model
must have enough expressive power to represent the intricate boundaries among the
classes in the input space. This observation has led to some measures of model sim-
plicity which are based on the richness of the kind of class boundaries that they can
represent.

The best known of such measures is the Vapnik-Chervonenkis (VC) dimension.
The VC dimension of a classification model is defined as the largest number of input
vectors which can be shattered by the model, where the set of points is shattered if the
model can learn a boundary which perfectly separates them no matter how the class
labels are assigned to the points (Hastie et al. 2009, p. 238). This way, a researcher
can evaluate the relative simplicity of two classification models by comparing their
VC dimensions. Models with excessive VC dimension should be avoided because
they might overfit (Vapnik 2000, pp. 297-298), i.e. they could focus on irrelevant
features of the input dataset.

A key shortcoming of the VC dimension is that it does not assume any form of
the distribution of the input vectors and their labels. This implies that it does not
consider any kind of regularity in such distribution, while real problems do exhibit
strong regularities. For example, e-commerce customer activity contains significant
patterns, such as daily and seasonal activity trends, which are ignored by the VC
dimension theory. Therefore the estimation by the VC dimension of the capability
of a model to solve a classification problem is often too conservative, which greatly
limits its applicability (Bishop 2006, pp. 344-345; Shalev-Shwartz and Ben-David
2014, p. 116).

Another quantitative measure of the flexibility of a classification model to learn an
input distribution is Rademacher complexity. It measures to which extent, in average
terms, a model can fit the random noise that may corrupt a given input distribution
(Mohri et al. 2014, pp. 34-35). A higher Rademacher complexity indicates that the
model is more rich and flexible so that it can accommodate more intricate input
distributions. It is defined with respect to a certain input distribution, so it takes into



European Journal for Philosophy of Science           (2020) 10:22 Page 7 of 20   22 

account the regularities of the input, unlike the VC dimension. However, Rademacher
complexity is known to be hard to compute (Oneto et al. 2018, p. 4660). In particular,
it is more difficult to bound or estimate than the VC dimension, and in some cases it
is NP-hard, i.e. it requires an exponential number of calculations (Mohri et al. 2014,
pp. 33, 38).

3 Models, learnable parameters and learning algorithms

In this section, I will argue that in machine learning the complexity of models is
inextricably linked to the complexity of the algorithms that learn them. Software is
made of algorithms plus data structures (Wirth 1985):

Programs, after all, are concrete formulations of abstract algorithms based on
particular representations and structures of data.

In prediction software, the data structures are the model. In this work I refer to the
computational complexity of a specific algorithm, also called algorithm efficiency
(Levitin 2011, p. 42), and not to the (more abstract and elusive) computational com-
plexity of a problem, also called intrinsic complexity of a problem (Moore and
Mertens 2011, p. 23). Computational efficiency is acknowledged as a criterion to
justify the suitability of software (Kelly 2007, pp. 271, 273). The mere fact that the
problem of learning a certain model can be solved, which is all that the simplicity
concepts considered in Section 2 care about in terms of computation, says very little
about the potential of the model to be applied in practice. There are many possi-
ble algorithms to learn a model, and for each learning algorithm, there is an infinity
of possible programs that implement it, each with its own computational complex-
ity. Therefore, in machine learning, the sole specification of a learnable model is not
enough to assess simplicity (Kelly 2007, p. 273). Model evaluation, model selection,
and algorithm selection are seen as different aspects of the same task (Raschka 2018,
p. 1). The number of parameters of the model and the speed with which those parame-
ters can be learned are seen as two equally important factors (Lin and Tegmark 2016,
p. 2). The object whose simplicity should be assessed is the overall learning system,
which is composed (at least) of:

1. The data acquisition process.
2. The hardware where the computations are performed.
3. The learnable model.
4. The learning algorithm (software) which is executed on the hardware, with the

acquired data as input, and outputs the learned instantiation of the model.
5. The prediction procedure (software), executed on the hardware, which accepts

the learned instantiation of the model and a query as inputs, and outputs a
prediction.

Hardware is also important to assess the simplicity of a learning system, because
models which are unfeasible to learn on a certain kind of hardware, become easy
to use on other kinds of hardware. The differences in the computational complexity
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among implementations of the same algorithm depending on hardware considera-
tions can be enormous (Parashar et al. 2019, p. 305). This is what happens with deep
learning neural networks, which are too complex to be learned on standard hardware,
but affordable on specific graphics hardware. However, in this work, I will focus on
the importance of learning algorithms to evaluate simplicity.

Let us consider an example of a learning system, namely a recommender system
for our example e-commerce site. The data acquisition consists of recording succes-
sive purchase transactions by the same customer so that a register of the purchase
history of many customers is collected. This data acquisition process requires ded-
icated software, databases, and computers. Some additional hardware and software
are necessary to run the machine learning methods themselves. Next, a data scientist
chooses a learnable model that might be adequate to predict, given the past behavior
of a customer, which items she would be interested to buy in the future. After that, the
learnable model is trained on the collected purchase histories by a suitable learning
algorithm. Finally, the trained model is employed to execute a prediction procedure
to show a visiting customer some items which she might like to purchase.

Inspired on the Inference to the Best Explanation (IBE) principle (Cabrera 2017,
p. 1248), we can define the Refinement to the Best Prediction (RBP) scheme:

1. D is a set of data.
2. Software S1 predicts D sufficiently well.
3. No competing software S2, ..., SN predicts D better than S1.
4. One is justified in using S1 to predict D.

Please note that truth does not have an explicit role here. It is not a logical inference
process, but a software refinement one. Maybe the model which exists in S1 is closest
to the underlying real process which D comes from, but this is not a goal. In other
words, machine learning allows that the models inside the Si are black boxes with
little or no resemblance to the physical process which generated the data D. Once
the data are generated in step 1, the underlying physical process is irrelevant to the
subsequent steps of the RBP scheme. In this context, the computational efficiency
of the prediction software becomes a key factor to choose a learning system over
another.

Learnable models contain a certain number of learnable parameters whose val-
ues must be estimated from the data. The first three classic approaches considered in
Section 2 (Bayesian, frequentist and information-theoretic) evaluate the simplicity of
the learned model with all their adjusted learnable parameters with respect to a space
of possible models, but they completely ignore the computational procedure by which
such learnable parameters have been determined. Furthermore, these three classic
approaches are designed to measure the complexity of what are known as parametric
models, as opposed to nonparametric models. On one hand, parametric models are
based on the assumption that the observed data can be explained and summarized by
a probability distribution of a specific mathematical form which is characterized by
a relatively small number of learnable parameters. On the other hand, nonparamet-
ric models do not make assumptions about the mathematical form of the probability
distribution which underlies the observed data nor they try to summarize the avail-
able dataset. This means that nonparametric models grow with the size of the dataset,
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while they have very few learnable parameters, often just one learnable parameter.
The neglection of nonparametric models causes the failure of classic simplicity con-
cepts to account for nonparametric model selection (Rochefort-Maranda 2016, p.
270; de Rooij and Grünwald 2011, p. 892). Moreover, these three classic concep-
tions of simplicity are useless to explain how scientists choose among a range of
parametric and nonparametric models. That is, parametric and nonparametric models
are incommensurable under these classic simplicity models. The situation only gets
worse for machine learning models which do not define any probability distribution.
Notably enough, this class of models includes many of the most celebrated machine
learning models.2 In these cases, the AIC and the BIC cannot even be defined.

The fourth kind of classic simplicity measures, namely the expressive power ones
(Section 2.4) also has important shortcomings. Like the previous ones, they do not
consider the computational procedure that is followed to learn a model. The VC
dimension completely ignores the strong regularities which often exist in real datasets
D, which leads to inaccurate assessments of the capability of the models to learn such
real datasets. Rademacher complexity is hard to compute, which hampers its practi-
cal applicability. Furthermore, both VC dimension and Rademacher complexity are
defined for supervised learning problems where the desired output is provided by a
supervisor, so that the simplicity of models for many fundamental tasks in machine
learning such as unsupervised clustering, dimensionality reduction, density estima-
tion, and reinforcement learning cannot be analyzed with them. In contrast to this,
computational efficiency can be employed to assess the simplicity of all kinds of
machine learning models.

4 Computational simplicity

As seen in Section 3, classic conceptions of simplicity are incomplete because they
do not address the computational burden of learning the adjustable parameters of a
model. Here we propose an alternative concept of simplicity which works for para-
metric, nonparametric, non probabilistic, unsupervised and reinforcement learning
models. It is founded on a new version of Ockham’s razor, that we may call the Big
Data razor:

Definition 1 Big Data razor. Computations should not be multiplied beyond
necessity.

Computational simplicity has already been recognized as one of several alterna-
tive concepts of simplicity (Rochefort-Maranda 2016, pp. 271-272). It has also been
pointed out that, while favoring simplicity does not necessarily lead to the true model,

2The class of non probabilistic machine learning models includes: Support Vector Machines, k-means,
decision trees, random forests, artificial neural networks (including deep learning neural networks) and
many others. Most of them can be adapted to output probabilities, but they are usually employed without
such adaptation, i.e. the model selection is carried out without any reference to probabilities.
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it speeds up the search process (Kelly 2011, p. 1000), which highlights the impor-
tance of the computational load associated with model selection. Here we aim to
argue that computational simplicity is a critical criterion for current machine learning.

Computational limitations have always played a role in machine learning. The
novelty is that before Big Data, the scalability of algorithms as the number of sam-
ples grows was not so important because most datasets were small. This implies that
the relative importance of computational complexity was moderate, as compared to
classic measures of model complexity. Nowadays sample sizes N of 109 to 1011 are
common (Cahsai et al. 2017, p. 1419, 1426; Hestness et al. 2017, pp. 5-10), and they
are becoming even more frequent. For example, more than 109 items are shipped
by the same e-commerce site per year (Carman 2018). This means that machine
learning models whose computational requirements scale badly to those sample sizes
are simply discarded, no matter how simple their structures may be, because only
computationally cheaper models can harness the incoming data deluge.

An example of the Big Data razor is the success of two deep learning neural
networks to detect objects in images: FasterRCNN (Ren et al. 2017) is more accu-
rate than Yolo (Redmon and Farhadi 2018), but Yolo is faster (Dhiraj 2019, p. 118).
FasterRCNN follows a two step approach (Ren et al. 2017, pp. 1138-1139). First, it
generates a relatively large number of region proposals, i.e. rectangles (also called
bounding boxes) which might enclose an object. After that, it analyzes the region pro-
posals to estimate how likely they are to actually contain an object. In contrast to this,
Yolo performs the object detection in a single step, since it directly generates regions
which are very likely to enclose an object. Furthermore, Yolo comes in several ver-
sions that accept images of different resolutions. The higher the resolution, the more
accurate the object detection, but the larger the network and its associated compu-
tational load. That is, Yolo versions are in a relation of computational load versus
accuracy tradeoff (Redmon and Farhadi 2018, p. 4). Due to its two step architecture,
FasterRCNN is slower than Yolo, but FasterRCNN is more accurate because its anal-
ysis of the input image is more detailed. Depending on the time requirements of the
application, one of them is chosen: FasterRCNN or some of the Yolo versions. Even
for the same network, some implementations are more or less accurate depending
on the object detection accuracy that you wish to attain (Kang et al. 2018; Ma et al.
2018). In general terms, it can be said that the more accuracy, the more calculations
are required (Huang et al. 2017, p. 7315). A linear relationship has been experimen-
tally found between the accuracy and the number of images that can be processed
per unit time (Canziani et al. 2016, p. 6). A similar tradeoff is found in classification.
The more calculations, the more accuracy which can be attained (Kpotufe and Verma
2017, pp. 1, 16; Jose et al. 2013, pp. 1, 8).

The above examples illustrate the fact that in machine learning often predictive
accuracy and computational simplicity are competing goals which stand in a relation
of tradeoff, while classic concepts of simplicity (Bayesian, Frequentist, information
theoretic and expressive power) are not considered.

There is a practical reason for this quest for computational simplicity. Computa-
tion has an economic cost in terms of hardware, software, and energy. In our example
recommender system for an e-commerce site, there is a need for machine learning
algorithms that can be executed with a small computational effort, so that cheaper
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web servers are required and less electrical power is employed to supply them. All of
this reduces the monetary cost of running the web site, i.e. the profits are increased.
Therefore less computation means the cheaper application of machine learning to an
ever growing range of tasks (Agrawal et al. 2018, ch. 3). In turn, this economic ratio-
nale directs researchers and practitioners towards computationally simple models.
This justification of simplicity departs from the epistemic justifications of the classic
concepts of simplicity. These classic justifications are problematic and suggest that
parsimony is a surrogate goal (Sober 2015, p. 149).

Since predictive accuracy comes at a computational (and hence economic) cost,
for the Big Data era the models which are obtained by a learning algorithm with a
computational complexity which is higher than linear are not practical (Hong et al.
2019, p. 1; Burkov 2019, ch. 8). It is not only that the space of possible models
is infinite (Korb 2004, p. 437), which was already known before the advent of Big
Data. It is also that many of the possible models cannot be learned (adjusted) within
practical computer resource limits.

The old (Bayesian, statistical) balance was between overfitting and underfitting,
i.e. between the simplicity of the model and its predictive accuracy. While the old
balance is still valid for parametric models, there is a new balance between the
predictive accuracy of the learned model and the computational complexity of the
associated learning algorithm, measured in terms of computation time and memory
usage (Jiang et al. 2019, p. 201). The new balance is not restricted to parametric
models since it applies to nonparametric and non probabilistic models too. The com-
putational complexity of the test phase, i.e. when the learned model is employed to
generate predictions, is also very important. This is because the test phase might be
more computationally demanding than the training phase if the learned model is to
be maintained for some time to yield many predictions. In other words, the relative
importance of the computational complexity of the training and test phases depends
on the expendability of the learned model.

The computational simplicity concept, considered in the context of the learning
system depicted in Section 3, can help to explain why Big Data calls for models
whose learning algorithms have linear complexity (or lower). To a first approxima-
tion, it can be assumed that the energy (and monetary cost) of acquiring N samples
of data is directly proportional to N , i.e. it is linear with N . If the learning algo-
rithm has linear complexity, this implies that the ratio between the energy required
to learn the model and the energy required to acquire the data is a constant indepen-
dent of N . However, if the learning algorithm has a complexity which is higher than
linear, then the ratio tends to infinity as N grows. Hence the learning phase absorbs
an unsustainable fraction of the energy devoted to run the entire learning system, as
the number of available data samples N increases. For our example recommender
system, this means that the energy employed to predict the future behavior of the cus-
tomers grows much larger than the energy devoted to processing their actual purchase
orders. This situation is characteristic of the Big Data era since the rate of growth of
the amount of computation required to learn state of the art machine learning models
has dramatically accelerated since 2012 (Amodei et al. 2019).

In the light of the above considerations, it can be inferred that a triple balance
must be attained among three variables: the cost of acquiring the data, the cost of
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learning the model, and the cost of using the model to make accurate predictions.
The computational simplicity concept can provide a unified framework to understand
the two last variables, while the first one (the data acquisition cost) depends on the
scientific or technological field that the models are applied to.

Parsimony in terms of the number of adjustable parameters is not a goal in itself,
although it affects the memory usage and indirectly the computation time. In other
words, each adjustable parameter occupies some memory space, so models with more
parameters have more memory usage. Besides, each adjustable parameter requires
some computational effort to learn it, so adding more parameters to a given model
usually results in higher computation time. Truth is not a goal either since it is
assumed that none of the competing black box models reflects the actual structure
of the problem. As mentioned before, the exact behavior of the customers of an e-
commerce site is too complex to be captured by a machine learning model. There
was a probabilistic turn (Sober 2015, p. 152) in the 20th century which meant that we
did not assume anymore that nature is simple or that it is probably simple. The Big
Data turn of the 21st century means that machine learning practitioners assume that
models whose computational complexity is small enough to manage large and ever
increasing volumes of data have the best chances to generate good predictions. Com-
putationally simple algorithms which performed poorly with small amounts of data
yield excellent results when supplied with large datasets, and it is believed that some
problems can be essentially solved as soon as enough data is provided (Pereira et al.
2009, p. 9; Sun et al. 2017, p. 8). It is acknowledged that these simple models are not
true. In other words, after the Big Data turn model selection is not driven by purely
theoretical motivations, because the cost of running the overall learning system has
become a fundamental factor to choose one model over another. It must be noted that
before the advent of massive data processing by machine learning methods, the com-
putational cost of adjusting the parameters of a model was not a pressing concern for
machine learning practitioners. Nowadays, a standard strategy to cope with a given
dataset is to try to learn a set of computationally cheap models, and then see which
one yields the best predictive accuracy. The cheaper the models, the more tries that
can be attempted for a fixed computational budget.

In this new context, the key questions are:

1. How accurate can we get within our current computational limits? Prediction is
seen as a process of progressive refinement, which advances at the pace of the
improvements in the computational resources. The discovery of the true model is
not a concern because predictive accuracy is all that matters for most application
fields of machine learning.

2. Is there a limit to the accuracy increase of these simple models as the number of
data samplesN grows? As seen above, the true model is not searched for, while it
is not clear how close we can get to the truth by approximate models. This ques-
tion can not be answered by theoretical reasoning. It can only be ascertained by
experimentation on ever growing datasets provided by Big Data techniques. This
strategy is driven by the observation that larger datasets lead to better results,
although it is also observed that the marginal performance decreases as the size
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of the dataset increases (Sun et al. 2017, p. 850). There is a subjective percep-
tion that for a given model, there is a maximum possible accuracy which can
not be surpassed no matter how big the training set is (Fernández-Delgado et al.
2014, pp. 3134-3135; Hestness et al. 2017, p. 11). For the e-commerce site exam-
ple, this means that customer behavior is not fully predictable by any particular
model, even if an unlimited amount of data is available. This leaves the ques-
tion of whether radically new models could outperform the current best models
to generate accurate predictions for a particular problem (Huang et al. 2017, p.
7315).

We may call this the computational turn. The state of affairs in machine learning is
that researchers no longer aim to obtain the true model, but an approximate one which
can be learned with a small computational load, while providing high accuracy.

The main reason behind this computational turn is the recent increase by several
orders of magnitude of the number of available data samples N , which has dramat-
ically emphasized the relevance of computational simplicity with respect to classic
measures of model simplicity. Often machine learning algorithms whose computa-
tional complexity is higher than linear cannot be applied to very large datasets (Witten
et al. 2017, p. 507), which did not happen before the Big Data deluge.

Let us consider the example of comparing a machine learning model Quad that
is associated to a quadratic complexity learning algorithm3 with a model Lin that is
associated to a linear complexity learning algorithm.4 The average execution times
of both algorithms can be written as follows:

TQuad = N2KQuadFQuad (1)

TLin = NKLinFLin (2)
where N is the number of training samples; FQuad and FLin are the numbers of free
parameters of Quad and Lin, respectively; and KQuad and KLin are constants that
depend on the models, the software implementations of the training algorithms, and
the hardware where the algorithms are executed on. It must be pointed out that for
parametric models, FQuad and FLin must not depend on N , i.e. the size of the model
must not depend on the number of available training samples (Russell and Norvig
2016, p. 737). Moreover, KQuad and KLin must not depend on N either since we
focus on a particular setup of software and hardware.

Now let us define the execution time ratio between Quad and Lin:

R = TQuad

TLin

= N2KQuadFQuad

NKLinFLin

= NKQuadFQuad

KLinFLin

(3)

which is the number of times that Lin is faster than Quad.

3This means that the execution time of the learning algorithm is proportional to N2. For example, kernel-
ized Support Vector Machines (Bishop 2006, p. 349), and decision tree induction by the C4.5 algorithm
with numeric attributes (Witten et al. 2017, pp. 219-220, 508).
4This means that the execution time of the learning algorithm is proportional to N . For example, Naive
Bayes classifiers (Bishop 2006, p. 380), and logistic regression (Hastie et al. 2009, p. 120).
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If the dataset has a moderate size N , then it makes sense to compare Quad and Lin
by means of classic model simplicity measures, which focus on the numbers of free
parameters FQuad and FLin. For example, it could be the case that FQuad < FLin so
that Quad is judged to be simpler than Lin, provided that the execution time ratio R is
not too large. In other words, the classic simplicity measures and the execution time
are complementary simplicity measures which can be collectively assessed by the
machine learning practitioner. However, the advent of Big Data means that N grows
by several orders of magnitude. Before Big Data, N was in the hundreds or thousands
of samples, while nowadays N can be in the millions or billions. This implies that the
execution time ratio R also grows by several orders of magnitude, as seen in Eq. 3.
As N grows to infinity, the execution time ratio R also tends to infinity. Here is where
the Big Data razor shaves off the Quad model since it does not matter how simple
Quad might be in terms of the classic simplicity measures, because the difference in
the execution times as measured by R is just too large. The situation becomes even
more dramatic for learning algorithms whose execution time is proportional to N3,
i.e. cubic complexity.5 That is, the relevance of model simplicity criteria that do not
consider the execution time decays as N grows in the Big Data era.

5 The interplay among the classic and computational notions
of simplicity

Here the relations among the classic and computational accounts of simplicity are
explored. The classic ones have not been abandoned in current machine learning
practices, although they play a secondary role:

Claim In the Big Data era, the classic notions of simplicity are surrogate goals of
computational simplicity.

That is, the classic notions which deal with the structural simplicity of the models
are considered by machine learning practitioners because they are indirect indicators
of the computational load required to train the model, and not by their intrinsic value.

Next, the above claim is justified. The classic notions outlined in Section 2 are
mainly devoted to assessing the simplicity of the machine learning models. As seen
in Section 3, a machine learning model is a mathematical structure with one or
more learnable parameters. The computational complexity of a learning algorithm is
related to the structural complexity of the model that the algorithm is applied to. For
example, we may take (1) and (2), and put the dependence with respect to the num-
ber of training samples N into a function F (N), so that the average execution time
of a generic learning algorithm reads as follows:

TGeneric = F (N) KGenericFGeneric (4)

5This means that the execution time of the learning algorithm is proportional to N3. For example, kernel
ridge regression (Witten et al. 2017, p. 508).
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where FGeneric is the number of free parameters of the model, and KGeneric is a
constant that depends on the model, the software implementation of the training algo-
rithm, and the hardware where the algorithm is executed on. Equation 4 means that
the average execution time is directly proportional to the number of free parameters,
which is associated with the structural complexity of the model. Now, depending on
the number of free parameters FGeneric of the chosen model, the average execution
time TGeneric varies. Consequently, structural complexity is often correlated with
computational complexity, so the former is an indirect indicator of the latter.

The preference for simple models of classic notions can be interpreted as a search
strategy in the space of the possible models (de Rooij and Grünwald 2011, p. 893).
However, a model must be instantiated in order to yield predictions, which are the
ultimate goal of machine learning activity. Therefore, it is mandatory to learn the
parameters of the model in order to instantiate it, prior to the extraction of predictions
and their evaluation to measure predictive performance. This means that the rele-
vant search space for machine learning is the space of possible model instantiations,
which comprises all instantiations of all the considered models. In order to carry out
a search in such space, classic notions of model complexity can play an auxiliary
role. Classic notions can direct the search to models whose structure is smaller. But
the key factor is the computational load of instantiating (training) the models, as seen
in Section 4. This is managed by the computational notion of complexity that speeds
up the process of instantiation of the models by choosing learning algorithms with
a small computational complexity. In other words, computational simplicity governs
the overall search process, while classic notions can help in the prioritization of some
search directions over others in the space of all model instantiations.

This framework where classic and computational notions of simplicity work
together is associated with scenarios where there are many possible models and many
learning algorithms to choose from. The same algorithm can be employed to train
several different models. This is the case of the Expectation Maximization (EM),
which can be employed to train probabilistic mixtures of Gaussian (Bishop 2006, p.
435) or Bernoulli distributions (Bishop 2006, p. 444), or Bayesian linear regression
models (Bishop 2006, p. 448). Conversely, a model can be trained by several differ-
ent algorithms. For example, Bayesian networks can be learned by a wide range of
algorithms (Acid et al. 2004, p. 219).

In order to avoid overfitting in current applications of machine learning to Big
Data, computational techniques such as cross validation, bootstrap, regularization
and early stopping are commonly employed (Hastie et al. 2009, p. 241, 253, 398;
Russell and Norvig 2016, p. 708, 713; Witten et al. 2017, p. 162, 169, 393, 419, 431).
This tendency is due to their lack of assumptions about the datasets, which widens
their applicability.

6 Non epistemic justifications of computational simplicity

In this section, we investigate how the previously explained computational simplic-
ity concept (Section 4) relates to the energy consumption and economic cost of the
application of machine learning to real problems.
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Some operations within the model learning stage of a learning system (Section 3)
spend a disproportionately high amount of energy. This is the case of the optimization
of the neural architecture for deep learning artificial neural networks since each step
in this optimization often requires training of a full neural network. Sometimes the
performance increment is small, so it must be evaluated whether it is worth the huge
amounts of extra computation and the associated energy cost. The manager of our
example e-commerce site may discover that it is not profitable to employ the most
accurate customer behavior prediction model if the monetary value of the additional
customer purchases is smaller than the extra cost of running the prediction software.
Energy efficiency is acknowledged as a design criterion for the proposal of new deep
neural network architectures, where a balance must be attained between energy con-
sumption and predictive accuracy (Yang et al. 2017, pp. 1916, 1920; Li et al. 2016,
p. 477), since the energy cost of deep learning is notoriously high (Ganguly et al.
2019, p. 335). This is directly connected to the computational simplicity criterion
since energy consumption is to be measured in terms of the number of computational
operations required to complete a learning task (Strubell et al. 2019). An optimiza-
tion with at least two independent goals is established, where one of the goals is
the minimization of the economic cost and the other goal is the maximization of the
predictive accuracy.

In the particular case of deep learning neural networks, substantial energy savings
can be attained by using the fine tuning technique. First, a neural network is trained
with a standard set of training samples. This is a computationally heavy task since
the entire network must be trained from scratch. Then the neural network is tuned to
accomplish a specific task, which involves retraining a small portion of the network.
This way, most of the initial training effort is reused, thereby drastically reducing
the overall energy expenditure. This technique departs from classic machine learning
approaches, which usually involved retraining the models for each new application.
In the case of deep learning, the computational requirements are so huge that the clas-
sic naive retraining approach is simply not feasible for many organizations because
they can not afford the costs. That is, typically our example e-commerce site software
is based on some readily available pre-trained neural network, which is then tuned to
learn the behavior of the customers of this specific web site so that the computational
effort and the associated energy budget devoted to learning the predictive model are
kept as low as possible.

There are reasons for the past neglection of computational simplicity and other
energy consumption criteria. Machine learning is seen as a rapidly expanding branch
of science with great potential to enable the automation of many tasks in the near
future. Therefore, advanced machine learning systems are not subject to the criticisms
that older technologies may have, because automation is recognized as a possible
way to save human time and effort. While it is true that many tasks might be more
efficiently executed by learning machines, optimal efficiency can only be attained
by constraining the energy consumption of these machines. Otherwise, it would
still be more energy efficient to employ humans for the task than replacing them
with machines. In other words, machine learning systems should not be granted an
unlimited amount of computational resources. In order to make informed economic
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decisions about this matter, the benefits and costs of different strategies to implement
machine learning methods must be elicited.

7 Conclusion

Classic concepts of simplicity aim to capture the parsimony of the machine learn-
ing model. The number of adjustable parameters is the most straightforward way to
measure model complexity, and it is considered both by the Bayesian and Frequen-
tist approaches. These two approaches differ mainly in their interpretation of the
concept of probability. Bayesian model selection intends to choose the model that is
estimated to have the highest probability of having generated the data, with the help
of suitable choices for the prior probabilities, while the Frequentist field does not
assign probabilities to models and focuses on estimating the predictive accuracy of
the models. Minimum Description Length measures model complexity as the num-
ber of bits that are required to encode the model, under a suitable coding system. On
their part, expressive power approaches measure the expressive power of a model, i.e.
its ability to fit the intrinsic structure of the problem at hand. As seen, the four classic
approaches to simplicity considered here only analyze the structure of the model, so
that they ignore other aspects that are essential to employ machine learning models in
practice. These additional aspects are covered by the learning system concept, which
integrates all the relevant conceptual and physical structures required to successfully
apply machine learning methods. The computational load necessary to train and test
a model is a reliable, end to end measure of the effort which is devoted to accom-
plishing a machine learning task. Moreover, it is more encompassing than any of the
classic concepts, since computational simplicity can directly be employed to com-
pare parametric, non parametric, non probabilistic, unsupervised and reinforcement
machine learning models.

Current practices in machine learning suggest that computational simplicity is
what practitioners really seek to minimize since the simplicity of the structure of
the model or its expressivity are not by themselves direct indicators of the real
effort required to learn and apply the model. Therefore, structural simplicity can be
regarded as a surrogate goal of computational simplicity. Computational resources
are always limited, and this implies that a tradeoff must be found between compu-
tational effort and predictive accuracy. This tradeoff can be seen as an economic
decision since computational load translates directly into energy and hardware costs.
Choices about computational effort are associated with various energy consumption
patterns. In most cases, there is a technological limit for the predictive accuracy that
machine learning can attain at the current state of the art so that the tradeoff between
effort and accuracy is bounded within the computational resource limits and the pre-
dictive accuracy limits. In other words, in many cases, it is not optimal to raise the
energy consumption levels without limits until the maximum technologically possi-
ble predictive accuracy is achieved. Therefore, purely theoretical criteria about the
structure of the models play a less important role for model selection in the Big
Data era, since the size of the datasets has grown by several orders of magnitude.



   22 Page 18 of 20 European Journal for Philosophy of Science           (2020) 10:22 

These aspects of machine learning activity are no longer overlooked by scientists and
practitioners.
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2 Conclusions

The debate about the role of machine learning in scientific research has mainly been
sterilized by a lack of understanding among philosophers of science, data scientists,
and the scientists who employ data science techniques. Many data scientists focus
on the novelty of the possibilities that the data revolution has brought, while they
overlook the fact that the scientific process can not be fully automated, no matter
how much effort is put on the computational branch of scientific disciplines. This
attitude raises all kinds of suspicions from the philosophical point of view, so that
data scientists are often seen as naive computer enthusiasts who do not understand
the principles of the scientific method. On their part, scientists of the other disci-
plines struggle to get their job done with the help of algorithmic models while they
try to justify that their practices still stick to the scientific method.
One of the most controversial claims of data scientists is that machine learning al-
gorithms generate theory free models. This apparently contradicts the conventional
wisdom that experiments and the data which comes from them are theory laden.
In my opinion, this puzzle can be solved by considering two parts within scientific
theories, a distinction which has been done earlier by Wolfgang Pietsch, Emanuele
Ratti, and Laura Franklin. The conceptual part is a prerequisite for any data col-
lection, no matter if experimental or observational, so that the mechanistic part is
built on top of the conceptual part. For the mechanistic part, automatically learned
models are alternatives to traditional ones, and the choice should be guided by the
characteristics of the problem to be solved.
I have proposed a new kind of model complexity that is suited for machine learning,
namely computational complexity, as detailed in (López-Rubio, 2020). The amount
of computations that are required to train a model is what really matters to present
day machine learning practitioners since their goal is to attain the best possible
predictive performance at the lowest possible computational cost. Older simplicity
measures based on the structure of the model are less popular since they only give
indirect indications of predictive performance.
In this thesis, I have argued that the role of machine learning critically depends on
the complexity of the phenomenon at hand, as seen in (López-Rubio & Ratti, 2019).
The kind of complexity that is relevant here is the difficulty of producing an under-
standable description in the mathematical language of the mechanism which relates
the variables so that the description generalizes to other situations and can be used
to infer testable predictions. The bias-variance tradeoff means that for complex
underlying relations among variables, explanation and prediction become two inde-
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pendent goals so that the best models according to one of them are suboptimal for
the other. This draws a distinction between the hard sciences, where understandable
descriptions are common, and the soft sciences, where they are scarce or inexistent.
The epistemic status of data science techniques essentially varies depending on this.
If those descriptions are not likely to be found, then explanation and prediction must
be considered as two separate dimensions of science. In this case, machine learning
models with appropriate predictive performance fulfill a role that hypothesis based
ones can not. On the other hand, the existence of suitable mathematical accounts
of the causal structure of a phenomenon reduces the task of data science to find in-
teresting patterns that must be explained. Under these conditions, explanation and
prediction can be achieved at the same time. Nevertheless, even for hard sciences,
data mining techniques are fundamentally different from other tools. Scientists are
no longer able to study the data directly, but they are forced by their volume to
see them through the lens of a particular set of machine learning algorithms. This
choice profoundly influences what can be seen, so there is a fundamental interplay
between data science models and the construction of models in the other disciplines.
The clash between the hypothesis-driven and the data-driven approaches to research
is most evident in life sciences. According to my complexity argument, this is because
biological systems lie between physical systems, at one extreme of the complexity
spectrum, and social systems, at the other extreme. This means that algorithmic
models are more useful for those biological systems which can not be adequately
studied by splitting them into simpler independent subsystems. Under these cir-
cumstances, mechanistic explanations can only be obtained for small subsystems.
Predictive machine learning models are better suited to cope with the complexity
of the overall systems, although they are not amenable to extract explanations from
them.
Long term predictions are risky in the social sciences, so it is hard to predict the
future importance of machine learning for scientists from other disciplines. However,
the above arguments suggest that, as science advances towards the study of more
complex systems based on an ever increasing volume of data, clear cut explanations
will be scarcer, and approximate prediction will become more acceptable.
The revolution of deep learning has completely changed the ways that machine
learning is applied to computer vision and natural language processing in just a
few years. I have investigated the possible similarities among deep learning artificial
neural networks and the human brain in (López-Rubio, 2018). Evidence collected so
far suggests that versions of computational functionalism that are based on symbolic
approaches to computation are outdated. In view of this, I have proposed neural
computational functionalism, which establishes deep learning artificial neural net-
works as the computational reference for the internal operation of the human brain.
Future research in neuroscience will determine to what extent this association is
valid.
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3 Publication report

The publications which support this thesis are the following:
1. The article Computational Functionalism for the Deep Learning Era (López-

Rubio, 2018), by Ezequiel López-Rubio, published in 2018 in the international
journal Minds and Machines, ISSN 0924-6495. The journal is in the first
quartile (Q1) of the Philosophy category of Scopus for 2018, with a CiteScore
of 1.24. It is also in the first quartile (Q1) of the Philosophy category of
SCImago for 2018, with impact factor 0.474. Finally, it is in the third quartile
(Q3) of the Computer Science, Artificial Intelligence category of the Journal
Citation Reports, Science Citation Index (JCR-SCI), for 2018, with impact
factor 1.400.

2. The article Data science and molecular biology: prediction and mechanis-
tic explanation (López-Rubio & Ratti, 2019), by Ezequiel López-Rubio and
Emanuele Ratti, published in 2019 in the international journal Synthese, ISSN
0039-7857. The journal is in the first quartile (Q1) of the Philosophy category
of Scopus for 2018, with a CiteScore of 1.17. It is also in the first quartile (Q1)
of the Philosophy category of SCImago for 2018, with impact factor 0.757.
Finally, it is in the second quartile (Q2) of the History & Philosophy of Sci-
ence category of the Journal Citation Reports, Social Science Citation Index
(JCR-SSCI), for 2018, with impact factor 1.262.

3. The article The Big Data razor (López-Rubio, 2020), by Ezequiel López-Rubio,
published in 2020 in the international journal European Journal for Philosophy
of Science, ISSN 1879-4912. The journal is in the first quartile (Q1) of the His-
tory and Philosophy of Science category of Scopus for 2018, with a CiteScore
of 1.01. It is also in the first quartile (Q1) of the History and Philosophy of
Science category of SCImago for 2018, with impact factor 0.458. Finally, it is
in the second quartile (Q2) of the History & Philosophy of Science category
of the Journal Citation Reports, Science Citation Index (JCR-SCI), for 2018,
with impact factor 0.627.
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