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Restricted Weak Type Extrapolation of Multi-Variable Operators and
Related Topics

per Eduard ROURE PERDICES

En el camp de la Teoria de pesos, un resultat que ha atret l’atenció de
molts investigadors és l’anomenat Teorema d’extrapolació de Rubio de Fran-
cia. En la seva forma més simple, diu que si tenim un operador T que està
acotat a l’espai de Lebesgue Lp(v), per algun p ≥ 1 i cada pes v en Ap, llavors
T està acotat a l’espai de Lebesgue Lq(w), per cada q > 1 i cada pes w en Aq.

L’extrapolació de Rubio de Francia proporciona un potent conjunt d’eines
en l’Anàlisi Harmònica, però té un punt feble; no permet arribar a l’extrem
q = 1. Els treballs de M. J. Carro, L. Grafakos, i J. Soria [9], i M. J. Carro i
J. Soria [14] resolen aquest problema, obtenint esquemes d’extrapolació de
tipus dèbil (1, 1) amb pesos en A1.

En aquest projecte de tesi vam començar a estudiar aquests articles per
produir extensions multivariable dels resultats d’extrapolació que s’hi ex-
posen. Hem tingut èxit en aquesta tasca, i ara posseïm esquemes d’extrapola-
ció multivariable de tipus mixt i dèbil restringit que són de gran utilitat en
l’obtenció d’acotacions d’operadors en múltiples variables pels quals no es
coneixen resultats de dominació sparse, i també quan treballem en espais de
Lorentz pels quals la dualitat no està disponible. Com a cas particular, hem
estudiat operadors producte, commutadors en dos variables i multiplicadors
bilineals.

Les desigualtats de tipus Sawyer han jugat un paper fonamental en les
demostracions dels nostres teoremes d’extrapolació, així com en l’estudi del
producte puntual d’operadors maximals de Hardy-Littlewood. Hem sigut
capaços d’ampliar les desigualtats de Sawyer clàssiques de [27] al tipus dèbil
restringit amb pesos en ARp , i també hem demostrat les corresponents exten-
sions multivariable.

Durant una estada de tres mesos a la Universitat d’Alabama, vam iniciar
una col·laboració amb David V. Cruz-Uribe. El nostre objectiu era estudiar
els operadors fraccionaris i de Calderón-Zygmund en múltiples variables, i
obtenir-ne acotacions de tipus dèbil restringit amb pes. Combinant tècniques
de dominació sparse i propietats dels espais de Lorentz, vam demostrar di-
verses estimacions per aquests operadors, i també pels seus commutadors.
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Restricted Weak Type Extrapolation of Multi-Variable Operators and
Related Topics

by Eduard ROURE PERDICES

A remarkable result in Harmonic Analysis is the so-called Rubio de Fran-
cia’s extrapolation theorem. Roughly speaking, it says that if one has an
operator T that is bounded on Lp(v), for some p ≥ 1 and every weight v in
Ap, then T is bounded in Lq(w), for every q > 1 and every weight w in Aq.

Rubio de Francia’s extrapolation theory is very useful in practice, but
there is an issue: it does not allow to produce estimates for q = 1. The works
of M. J. Carro, L. Grafakos, and J. Soria [9], and M. J. Carro and J. Soria [14]
give a solution to this problem, allowing to extrapolate down to the endpoint
q = 1.

In this project, we started building upon these works to produce multi-
variable extensions of the extrapolation results that they presented. We have
succeeded in this endeavor, and now we possess extrapolation schemes in the
setting of weighted Lorentz spaces that are of great use when trying to bound
multi-variable operators for which no sparse domination is known, and also
when working with Lorentz spaces outside the Banach-range. As a particular
case, we have studied product-type operators, two-variable commutators,
averaging operators, and bi-linear multipliers.

Sawyer-type inequalities play a fundamental role in the proof of our mul-
ti-variable extrapolation schemes and are essential to complete the charac-
terization of the weighted restricted weak type bounds for the point-wise
product of Hardy-Littlewood maximal operators. In this work, we have ex-
tended the classical weak (1, 1) Sawyer-type inequalities proved in [27] to the
general restricted weak type case, even in the multi-variable setting.

In 2017, at the University of Alabama, we started a collaboration with
David V. Cruz-Uribe to produce restricted weak type bounds for fractional
operators, Calderón-Zygmund operators, and commutators of these opera-
tors. We managed to obtain satisfactory results on this matter, even two-
weight norm inequalities, applying a wide variety of techniques on sparse
domination, function spaces, and weighted theory.
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Chapter 1

Introduction

“ If my calculations are correct, when this baby hits 88 miles per hour,
you’re gonna see some serious shit. ”

Doc Brown, Back to the Future, 1985

This short chapter is intended to be a brief description of our project. In
Section 1.1, we include general notation and conventions. In Section 1.2, we
review existing works on Rubio de Francia’s extrapolation and introduce the
primary goal of our study. In Section 1.3, we present our results on multi-
variable mixed and restricted weak type Rubio de Francia’s extrapolation.
In Section 1.4, we discuss some of the results that we have obtained for the
operator M⊗. In Section 1.5, we summarize our results on Sawyer-type in-
equalities for Lorentz spaces. In Section 1.6, we expose restricted weak type
estimates for classical operators obtained via sparse domination techniques.
In Section 1.7, we propose possible projects to extend our research further.

1.1 Notation and Conventions

The following notation is standard:

N the set of all natural numbers, including 0
Z the set of all integers
Zn the n-fold product of Z

R the set of all real numbers
Rn the n-dimensional Euclidean space
B(x, R) the ball of radius R centered at x in Rn

χE the characteristic function of a set E
dt, dx, dy, dz the Lebesgue measure
|µ| the total variation of a finite Borel measure µ on Rn

log the logarithm with base e
log2 the logarithm with base 2
log+ the function max{0, log}
inf the infimum
sup the supremum
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supp the support
ess inf the essential infimum
ess sup the essential supremum
L∞

c (Rn) the space of bounded functions on Rn with compact support
L1

loc(R
n) the space of locally integrable functions on Rn

C ∞
c (Rn) the space of smooth functions on Rn with compact support

∆ the Laplacian
∇ the gradient

In general, we will work in Rn, with 1 ≤ n ∈ N. Unless otherwise spec-
ified, by a function f we mean a real or complex-valued function on Rn. If
we say that a function f is measurable, but we don’t specify any measure,
then it is with respect to the Lebesgue measure on Rn. The same applies to
measurable sets and also to the expression a.e.; that is, almost everywhere.

Given a measure ν, and a ν-measurable set E, we use the notation

ν(E) :=
ˆ

E
dν.

If ν is the Lebesgue measure, then we simply write |E|. Given a measurable
function f , and a measurable set E, with |E| 6= 0, we use the notation

 
E

f :=
1
|E|

ˆ
E

f (x)dx.

A cube Q is a subset of Rn that admits an expression as a Cartesian product
of n intervals of the same length, the side length of Q, denoted by `Q. If these
intervals are all open, then the cube is called open, and if they are all closed,
then the cube is called closed.

Given non-negative quantities A and B, we write A . B if there exists
a finite constant C > 0, independent of A and B, such that A ≤ CB. If
A . B . A , then we write A ≈ B. The constant C is called the implicit
constant. Usually, we will denote implicit constants by c, c̃, C, or C̃. In many
cases, they will depend on some parameters α1, . . . , α`, and if we want to
point out that dependence, we shall do it using subscripts, e.g. A .α1,...,α`
B, or A ≈α1,...,α` B, or A ≤ Cα1,...,α`B. We shall use numerical subscripts
to label different implicit constants appearing in the same argument. We
write A ≤ C(α1, . . . , α`)B when we want to interpret C as a function of the
parameters α1, . . . , α`. In these cases, we may replace C by other symbols,
like φ, ϕ, Φ, ψ, or Ψ, especially when the dependence on the parameters is
monotonically increasing.

Given real or complex vector spaces X1, . . . , Xm, and Y, endowed with
quasi-norms ‖ · ‖X1 , . . . , ‖ · ‖Xm , and ‖ · ‖Y, respectively, and an operator T
defined on X1 × · · · × Xm and taking values in Y, we use the notation

T : X1 × · · · × Xm −→ Y
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to indicate that T is a bounded operator from X1 × · · · × Xm to Y; that is, there
exists a finite constant C > 0 such that for all f1 ∈ X1, . . . , fm ∈ Xm,

‖T( f1, . . . , fm)‖Y ≤ C
m

∏
i=1
‖ fi‖Xi .

Among all such constants C, we shall denote by ‖T‖∏m
i=1 Xi→Y the smallest

one.
We adhere to the usual convention that the empty sum (the sum containing

no terms) is equal to zero, and the empty product is equal to one.

1.2 Background and Motivation

In the topic of weighted theory, a result that has attracted the attention of
many researchers in the field is the so-called Rubio de Francia’s extrapolation
theorem (see [42, 100, 101]), which provides a precious shortcut when trying
to prove weighted strong bounds. In its simplest form, it says that if a sub-
linear operator T satisfies that

T : Lp(v) −→ Lp(v),

for some p ≥ 1, and every Muckenhoupt weight v in Ap, then

T : Lq(w) −→ Lq(w),

for every q > 1, and every Muckenhoupt weight w in Aq (see Subsections
2.1.1 and 2.1.3 for definitions).

Many alternative proofs of this result are available in the literature (see
[28, 38]), also tracking the sharp dependence of ‖T‖Lq(w)→Lq(w) in terms of
[w]Aq (see [36]), and off-diagonal results where the domain and target Lebes-
gue spaces differ both in terms of exponents and weights (see [37, 50] for
strong type results, and [88] for weak type ones).

Also, it was discovered that the operator T plays no role in the extrapo-
lation arguments, and one can present all the results for families of pairs of
non-negative measurable functions (see [26, 32, 37]).

Around the beginning of the current millennium, the topic of multi-varia-
ble operators started gathering interest, with the resolution of Calderón’s
conjecture (see [60, 62]) and the presentation of a systematic treatment of
multi-linear Calderón-Zygmund operators (see [49]), and the first results on
multi-variable Rubio de Francia’s extrapolation appeared.

In [47], it was proved that if an m-variable operator T satisfies that

T : Lp1(v1)× · · · × Lpm(vm) −→ Lp(vp/p1
1 . . . vp/pm

m ),
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for some exponents 1 ≤ p1, . . . , pm < ∞, with 1
p = 1

p1
+ · · · + 1

pm
, and all

weights v1 ∈ Ap1 , . . . , vm ∈ Apm , then

T : Lq1(w1)× · · · × Lqm(wm) −→ Lq(wq/q1
1 . . . wq/qm

m ),

for all exponents 1 < q1, . . . , qm < ∞, with 1
q = 1

q1
+ · · ·+ 1

qm
, and all weights

w1 ∈ Aq1 , . . . , wm ∈ Aqm .
In [37], the sharp dependence of ‖T‖

Lq1 (w1)×···×Lqm (wm)→Lq(w
q/q1
1 ...wq/qm

m )
in

terms of [wi]Aqi
, i = 1, . . . , m, was established, and analogous multi-variable

weak type extrapolation results were studied in [15]. Once again, the opera-
tor T plays no role, and all the results can be presented for (m + 1)-tuples of
non-negative measurable functions.

It is worth mentioning that very recently, multi-variable strong type ex-
trapolation theorems for A~P weights have been obtained in [72, 73] (see also
[89]), solving in the affirmative a question that has been going around for
about a decade, since the publication of [69], where such weights were intro-
duced.

Rubio de Francia’s extrapolation theory provides a potent set of tools in
Harmonic Analysis, but it has a weak spot; namely, it does not allow to pro-
duce estimates in the endpoint q1 = · · · = qm = 1, which can be easily seen
by considering m-variable commutators (see [69]).

In the case of one-variable extrapolation, the works of M. J. Carro, L.
Grafakos, and J. Soria (see [9]), and M. J. Carro and J. Soria (see [14]), give a
solution to this problem, allowing to extrapolate down to the endpoint q1 = 1
assuming a slightly stronger extrapolation hypothesis. In general terms, they
proved that if a sub-linear operator T satisfies that

T : Lp,1(v) −→ Lp,∞(v),

for some p > 1, and every weight v in Âp, then

T : Lq,min{1, q
p}(w) −→ Lq,∞(w),

for every q ≥ 1, and every weight w in Âq.
Here, for r ≥ 1, the class Âr contains all the weights of the form (Mh)1−ru,

where h ∈ L1
loc(R

n), and u ∈ A1. If r = 1, then Â1 = A1, but for r > 1,
Ar ( Âr ⊆ ARr .

In general, the classical strong and weak type Rubio de Francia’s extrap-
olation theorems rely on three fundamental ingredients: factorization results
for Ar weights, construction of A1 weights via the Rubio de Francia’s itera-
tion algorithm, and sharp weighted bounds for the Hardy-Littlewood max-
imal operator M. However, in the setting of restricted weak type Rubio de
Francia’s extrapolation, many technical difficulties appear. For instance, no
factorization result is known for ARr weights, which justifies the need for
the class Âr. Also, in this setting, the Rubio de Francia’s iteration algorithm
can not be defined and has to be carefully replaced by the Hardy-Littlewood
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maximal operator M in the construction of weights. Fortunately, we do have
sharp weighted restricted weak type bounds for M.

The main purpose of this project is to build upon the work in [9, 14] and
extend to the multi-variable setting the restricted weak type Rubio de Fran-
cia’s extrapolation results presented there.

1.3 Our Extrapolation and its Applications

The first result that we were able to prove, presented in Theorem 3.2.1, allows
us to extrapolate down to the endpoint (1, 1, 1

2) from a diagonal estimate. In
general terms, if a two-variable operator T satisfies that

T : Lr,1(v1)× Lr,1(v2) −→ L
r
2 ,∞(v1/2

1 v1/2
2 ),

for some exponent 1 < r < ∞, and all weights v1, v2 ∈ Âr, then

T : L1, 1
r (w1)× L1, 1

r (w2) −→ L
1
2 ,∞(w1/2

1 w1/2
2 ),

for all weights w1, w2 ∈ A1. The crucial point in the proof of this theorem is
the endpoint estimate

M⊗ : L1(w1)× L1(w2) −→ L
1
2 ,∞(w1/2

1 w1/2
2 ), (1.3.1)

proved in [69], and refined in Theorem 2.4.1.
Here, the operator M⊗ is defined for locally integrable functions f1 and

f2 by
M⊗( f1, f2)(x) := M f1(x)M f2(x), x ∈ Rn,

where M is the Hardy-Littlewood maximal operator, defined for functions f ∈
L1

loc(R
n) by

M f (x) := sup
Q3x

1
|Q|

ˆ
Q
| f (y)|dy, x ∈ Rn,

where the supremum is taken over all cubes Q ⊆ Rn containing x.
The approach to establishing general downwards extrapolation results is

now evident: find some auxiliary operator Z for which we can prove mixed
and restricted weak type inequalities, and use the extrapolation hypotheses
to transfer such bounds to the generic operator T. The operator Z plays
the same role as the Hardy-Littlewood maximal operator plays in the one-
variable restricted weak type extrapolation theory of Rubio de Francia.

As it turns out, sometimes we can take M⊗ to be our auxiliary operator
(see Theorem 3.2.4, Lemma 3.2.6, Theorem 3.2.7, Theorem 3.3.1, and Theo-
rem 3.3.2). Therefore, the study of restricted weak type bounds for M⊗ be-
comes a fundamental and interesting question in this project. Moreover, our
preliminary mixed type inequalities for M⊗ in Theorem 2.2.10 encouraged
us to develop the multi-variable mixed type extrapolation theory of Rubio
de Francia presented in Section 3.3.
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After a detailed analysis of the proof of (1.3.1) in [69], and taking into ac-
count Lemma 3.2.6, we conclude that the complete solution to multi-variable
mixed and restricted weak type extrapolation, along with the correspond-
ing bounds for M⊗, relies on the development of weighted inequalities for
operators of the form

Z f =
M f
W

on Lorentz spaces, being W some nice weight. This discovery forced us into
developing our theory of Sawyer-type inequalities for Lorentz spaces, dis-
played in Sections 2.3 and 2.4.

As a consequence of such results, we can obtain our main mixed type
extrapolation schemes, discussed in Theorems 3.3.27, 3.3.31 and 3.3.35. Ig-
noring some technicalities, what we have is that if a two-variable operator T
satisfies that

T : Lp1(v1)× Lp2,1(v2) −→ Lp,∞(vp/p1
1 vp/p2

2 ),

for some exponents 1 < p1, p2 < ∞, with 1
p = 1

p1
+ 1

p2
, and all weights

v1 ∈ Ap1 and v2 ∈ ARp2
, then

T : Lq1,min{p1,q1}(w1)× Lq2,min{1, q2
p2
}
(w2) −→ Lq,∞(wq/q1

1 wq/q2
2 ),

for all exponents q1 > 1 and q2 ≥ 1, with 1
q = 1

q1
+ 1

q2
, and all weights

w1 ∈ Aq1 and w2 ∈ Âq2 .
Let us point out that in the mixed type setting, and when working with

Ar weights, we can either follow the classical approach, using the Rubio de
Francia’s iteration algorithm, or our new strategy, with Sawyer-type inequal-
ities, to run the extrapolation arguments, with the first option leading to bet-
ter constants than the second one, but in the restricted weak type setting, the
first option is not available, and we have no choice but to use Sawyer-type
inequalities.

Further exploiting the Sawyer-type inequality in Theorem 2.3.8, its dual
version in Theorem 2.4.12, and the ideas introduced in Section 3.2, in Chap-
ter 4 we manage to produce the general multi-variable restricted weak type
extrapolation scheme that we were seeking, fulfilling the original goal of our
project. In general terms, and combining Theorems 4.2.2 and 4.2.7, we get
that if an m-variable operator T satisfies that

T : Lp1,1(v1)× · · · × Lpm,1(vm) −→ Lp,∞(vp/p1
1 . . . vp/pm

m ),

for some exponents 1 < p1, . . . , pm < ∞, with 1
p = 1

p1
+ · · · + 1

pm
, and all

weights v1 ∈ Âp1,∞, . . . , vm ∈ Âpm,∞, then

T : Lq1,min{1, q1
p1
}
(w1)× · · · × Lqm,min{1, qm

pm }(wm) −→ Lq,∞(wq/q1
1 . . . wq/qm

m ),
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for all exponents 1 ≤ q1, . . . , qm < ∞, with 1
q = 1

q1
+ · · ·+ 1

qm
, and all weights

w1 ∈ Âq1,∞, . . . , wm ∈ Âqm,∞ satisfying certain technical hypotheses.
Here, for r ≥ 1, the class Âr,∞ is an extension of Âr, satisfying that Âr ⊆

Âr,∞ ⊆ ARr . In practice, its use allows us to apply our extrapolation schemes
iteratively under suitable conditions.

Inspired by [37], in Subsection 4.2.3 we also produce the corresponding
one-variable off-diagonal restricted weak type extrapolation results that can
be used to derive our multi-variable extrapolation theorems.

For simplicity, in Chapter 3 we decided to work on two-variable extrapo-
lation results. In the end, the extension from the two-variable setting to the
multi-variable one is just a matter of notation, as we see in Chapter 4.

As usual, the operator T plays no role, and we also present our extrapo-
lation schemes for tuples of measurable functions.

For technical reasons, in all our extrapolation theorems, we require the
constants in each bound to depend increasingly on the constants of the wei-
ghts involved. This hypothesis may seem restrictive at first, but as it was
pointed out in [36, Footnote 3], it turns out that it is not, since sharp constants
are this way.

Note that when studying mixed and restricted weak type bounds for
multi-variable operators, the Lorentz spaces that we consider have first ex-
ponents of the form 1 ≤ r1, . . . , rm < ∞, and r such that 1

r = 1
r1
+ · · ·+ 1

rm
.

Hence, we can identify each choice of exponents r1, . . . , rm with the point
( 1

r1
, . . . , 1

rm
) in the space of parameters (0, 1]m.

A relevant region inside this m-cube is the so-called Banach-range (see Fig-
ure 1.1),

Bm := {(x1, . . . , xm) ∈ (0, 1]m : x1 + · · ·+ xm < 1},
where the corresponding values of the exponent r are strictly bigger than one,
and hence, Lr,∞(v) is a Banach space, being v a weight. In particular, duality
is available (see Subsection 2.1.2).

Duality has proved to be a powerful tool in the study of weighted inequal-
ities for classical operators, especially when combined with sparse domina-
tion techniques, so working with Lorentz spaces where duality is not avail-
able is a problem in practice. This problem gets worse as we increase the
number of variables m, since the Banach-range shrinks fast. In fact, one can
check that

|Bm| =
1

m!
.

This lack of duality can sometimes be circumvented by wisely using Kol-
mogorov’s inequalities (see Chapter 5), but this is not always the case, and
that’s when our extrapolation techniques kick in. We can prove bounds in the
Banach-range by hand, and then effectively extend them outside this range
via a multi-variable mixed or restricted weak type extrapolation argument.

In particular, our extrapolation schemes are handy for overcoming two
fundamental problems of weak Lebesgue spaces Lr,∞(v) with 0 < r ≤ 1,
strongly related with the lack of duality: the lack of Hölder-type inequalities
with the change of measures, and the lack of Minkowski’s integral inequality.



8 Chapter 1. Introduction

0 1 (0, 0) (1, 0)

(0, 1)

(0, 0, 1)

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

FIGURE 1.1: Pictorial representation of the Banach-range for
one, two, and three variables.

The first problem becomes an obstacle when working with product-type
operators. Nevertheless, using our Hölder-type inequalities from Subsec-
tion 2.2.1, we can obtain bounds for such operators in the Banach-range, and
then apply an extrapolation argument to extend them past such range of ex-
ponents. For the exact details, see Proposition 3.4.1, Theorem 3.4.2, and The-
orem 4.3.1. These arguments also apply to some two-variable commutators,
as shown in Theorem 3.4.11.

The second problem is an impediment when trying to produce bounds
for averaging operators. In this case, the strategy is to prove bounds in
the Banach-range using Minkowski’s integral inequality and then extrapo-
late outside this range, as we see in Theorem 3.4.4 and Theorem 4.3.2.

As a particular case, we started working with bi-linear multipliers of the
form

Tm( f , g)(x) :=
ˆ

R

ˆ
R

m(ξ, η) f̂ (ξ)ĝ(η)e2πix(ξ+η)dξdη,
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initially defined for Schwartz functions f and g, and x ∈ R. The study of
such bi-linear multiplier operators was initiated by R. Coifman and Y. Meyer
(see [18, 19]). In recent years, the interest in this area has increased, following
the works by M. Lacey and C. Thiele on the bi-linear Hilbert transform and
Calderón’s conjecture (see [61, 62, 63]). For more information and results on
bi-linear multipliers and related topics, see [41, 45, 46, 49, 57, 78, 87].

We found that, for nice symbols m, it is possible to write Tm as an aver-
aging operator of products of modulated and translated Hilbert transforms,
and hence, we are able to deduce mixed type bounds for these operators us-
ing our multi-variable extrapolation tools, combined with bounds on weight-
ed Lorentz spaces for the point-wise product of two Hilbert transforms. See
Theorem 3.4.7 for the details.

We are currently preparing manuscripts to publish our extrapolation ma-
terial (see [11, 12]).

1.4 The Operator M⊗

Due to its close relation with multi-variable extrapolation, one of our goals
in this investigation is to study weighted estimates for the m-fold product of
Hardy-Littlewood maximal operators, defined for locally integrable functions
f1, . . . , fm by

M⊗( f1, . . . , fm)(x) := M f1(x) · · ·M fm(x), x ∈ Rn.

This operator is classical and has been of great use to obtain weighted
bounds for several types of multi-variable operators, like the bi-linear Hardy-
Littlewood maximal operator, which was introduced by A. Calderón in 1964,
and it is defined by

M( f , g)(x) := sup
r>0

1
|B(0, r)|

ˆ
B(0,r)

| f (x− y)g(x + y)|dy, x ∈ Rn.

In virtue of Hölder’s inequality, we have that

M( f , g) . M( f 1/θ)θ M(g
1

1−θ )1−θ,

for every 0 < θ < 1, and hence,

M : Lp1(Rn)× Lp2(Rn) −→ Lp(Rn), (1.4.1)

whenever p1 > 1
θ , p2 > 1

1−θ , and 1
p = 1

p1
+ 1

p2
, and A. Calderón conjectured

that for θ = 1
2 ,

M : L2(Rn)× L2(Rn) −→ L1(Rn).

This conjecture was proved by M. Lacey in [60], establishing the unexpected
fact that (1.4.1) also holds if p1, p2 > 1 are such that 2

3 < p ≤ 1.
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Similarly, weighted estimates for the operator M⊗ will imply weighted
estimates for M. Using Hölder’s inequality, one can obtain that

M⊗ : Lp1(w1)× Lp2(w2) −→ Lp(wp/p1
1 wp/p2

2 ), (1.4.2)

for p1, p2 > 1, 1
p = 1

p1
+ 1

p2
, w1 ∈ Ap1 , and w2 ∈ Ap2 . Moreover,

M : Lp1(w1)× Lp2(w2) −→ Lp(wp/p1
1 wp/p2

2 ),

whenever p1 > 1
θ , p2 > 1

1−θ , w1 ∈ Aθp1 , and w2 ∈ A(1−θ)p2
. It is worth men-

tioning that much more delicate weighted estimates for the bi-linear Hilbert
transform have been recently obtained in [34].

Consider now a multi-linear Calderón-Zygmund operator T (see Subsec-
tion 2.1.6), and let T∗ be its maximal truncated operator, defined by

T∗( f1, . . . , fm)(x)

= sup
δ>0

∣∣∣∣∣
ˆ
{|x−y1|2+···+|x−ym|2>δ2}

K(x, y1, . . . , ym) f1(y1) . . . fm(ym)dy1 . . . dym

∣∣∣∣∣ .

Then, L. Grafakos and R. H. Torres proved in [48] the following multi-
variable Cotlar’s inequality: for every η > 0, there exist constants Cη, CT >

0 such that for every ~f = ( f1, . . . , fm) in any product of Lebesgue spaces
Lqi(Rn), with 1 ≤ qi < ∞, the inequality

T∗( f1, . . . , fm)(x) ≤ Cη

(
M(|T( f1, . . . , fm)|η)(x)1/η + CT M⊗( f1, . . . , fm)(x)

)
holds for every x ∈ Rn. As a consequence, one can deduce weighted es-
timates for T∗ by proving weighted bounds for the easier operators T and
M⊗.

In this setting of multi-linear Carderón-Zygmund operators, many other
results have been proved where the role of the operator M⊗ is fundamental
(see, for example, [78, 94]).

Concerning weighted bounds for M⊗, the easy estimate in (1.4.2) becomes
much more difficult when we want to characterize the weights for which

M⊗ : Lp1,1(w1)× Lp2,1(w2) −→ Lp,∞(wp/p1
1 wp/p2

2 ). (1.4.3)

Obviously, if Hölder’s inequality for Lorentz spaces with the change of
measures holds; that is, if for 0 < p1, p2 < ∞, and 1

p = 1
p1

+ 1
p2

, and all
weights w1 and w2, there exists a constant C > 0 such that for all measurable
functions f and g,

‖ f g‖
Lp,∞(w

p/p1
1 wp/p2

2 )
≤ C‖ f ‖Lp1,∞(w1)

‖g‖Lp2,∞(w2), (1.4.4)
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as it happens with the Lebesgue spaces, then for all weights w1 ∈ ARp1
and

w2 ∈ ARp2
,

‖M⊗( f , g)‖
Lp,∞(w

p/p1
1 wp/p2

2 )
. ‖M f ‖Lp1,∞(w1)

‖Mg‖Lp2,∞(w2)

. ‖ f ‖Lp1,1(w1)
‖g‖Lp2,1(w2)

,

as we expect. This is what happens in the particular case when all the weights
are equal. Note that (1.4.4) is trivially true if p1 = ∞ > p2, or p2 = ∞ > p1.

However, we will see in Subsection 2.2.1 that (1.4.4) does not hold for
arbitrary weights. Nevertheless, we will be able to prove new Hölder-type
inequalities powerful enough to produce alternative characterizations of the
classes of weights Ap and ARp , adapted to the operator M⊗ (see Subsec-
tion 2.2.2), yielding necessary conditions to have strong, weak, mixed, and
restricted weak type bounds of M⊗ for A∞ weights (see Subsection 2.2.3). In
particular, given 1 ≤ p1, . . . , pm < ∞, and 1

p = 1
p1

+ · · · + 1
pm

, and weights

w1, . . . , wm ∈ A∞, and w = wp/p1
1 . . . wp/pm

m , if

M⊗ : Lp1(w1)× · · ·× Lp`(w`)× Lp`+1,1(w`+1)× · · ·× Lpm,1(wm) −→ Lp,∞(w),

with 0 ≤ ` ≤ m, then wi ∈ Api , for i = 1, . . . , `, and wi ∈ ARpi
, for i =

`+ 1, . . . , m, and if

M⊗ : Lp1(w1)× · · · × Lpm(wm) −→ Lp(w),

then wi ∈ Api , for i = 1, . . . , m.
Surprisingly, we couldn’t find in the literature any reference to these nat-

ural questions about necessary conditions to establish weighted bounds for
M⊗, apart from the case when m = 1, which corresponds to the Hardy-
Littlewood maximal operator M (see [17, 58, 85]). We published our work on
M⊗ in [13].

The study of the converse of such results for M⊗ relies on the develop-
ment of new Sawyer-type inequalities for Lorentz spaces and weights in ARp
(see Theorem 2.4.1).

1.5 Sawyer-Type Inequalities

“Sawyer-type inequalities” is a terminology coined in the paper [27], where
their authors prove that if u ∈ A1, and v ∈ A1 or uv ∈ A∞, then

uv
({

x ∈ Rn :
|T( f v)(x)|

v(x)
> t
})
≤ C

t

ˆ
Rn
| f (x)|u(x)v(x)dx, t > 0,

(1.5.1)
where T is either the Hardy-Littlewood maximal operator or a linear Calde-
rón-Zygmund operator. This result extends some questions previously con-
sidered by B. Muckenhoupt and R. Wheeden in [86], and solves in the affir-
mative a conjecture formulated by E. Sawyer in [103], concerning the Hilbert
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transform.
These problems were advertised by B. Muckenhoupt in [84], where the

terminology “mixed type norm inequalities” was introduced and was also
used since then in other papers like [2] or [80]. In general, this terminology
refers to certain weighted estimates for some classical operators T, where a
weight v is included in their level sets; that is,{

x ∈ Rn :
|T f (x)|

v(x)
> t
}

, t > 0. (1.5.2)

The structure of such sets makes impossible, or very difficult, to use classical
tools to measure them, such as the Vitali’s covering lemma or interpolation
theorems.

In Chapter 2, we consider mixed restricted weak type norm inequalities, or
Sawyer-type inequalities for Lorentz spaces; that is, we study estimates of the
form

w
({

x ∈ Rn :
|T f (x)|

v(x)
> t
})1/p

≤ C
t
‖ f ‖Lp,1(u), t > 0, (1.5.3)

where p ≥ 1, T is a classical operator, and u, v, w are weights. We also con-
sider extensions of such inequalities to the multi-variable setting. Our goal
is to prove estimates like (1.5.3) for sub-linear and multi-sub-linear maximal
operators, and multi-linear Calderón-Zygmund operators.

Observe that in the classical situation, namely when u = w, and v ≈ 1,
and T is either the Hardy-Littlewood maximal operator or a linear Calderón-
Zygmund operator, the inequality (1.5.3) holds if w ∈ ARp (some authors use
the notation Ap,1 for this class of weights, as in [17]). The case when v 6≈ 1 is
much more difficult, and in this work, we will study it in great detail.

Our primary motivation to consider Sawyer-type inequalities for Lorentz
spaces comes from the study of the m-fold product of Hardy-Littlewood max-
imal operators, M⊗. As we will see in Theorem 2.2.8, published in [13],
given exponents 1 ≤ p1, . . . , pm < ∞, and 1

p = 1
p1

+ · · · + 1
pm

, and weights

w1, . . . , wm in A∞, and w = ν~w = wp/p1
1 . . . wp/pm

m , a necessary condition to
have

M⊗ : Lp1,1(w1)× · · · × Lpm,1(wm) −→ Lp,∞(w) (1.5.4)

is that wi ∈ ARpi
, for i = 1, . . . , m. It is reasonable to think that this last

condition is also sufficient for (1.5.4) to hold, since the endpoint case was
proved in [69]; that is, for weights w1, . . . , wm ∈ A1, we have that

M⊗ : L1(w1)× · · · × L1(wm) −→ L
1
m ,∞(w1/m

1 . . . w1/m
m ). (1.5.5)

To prove this result, one has to control the following quantity for t > 0,
which is related to the level sets in (1.5.2):

w
({

M⊗(~f ) > t
})

= w

({
M fi >

t
∏j 6=i M f j

})
.
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This is achieved by applying the classical Sawyer-type inequality (1.5.1) for
the Hardy-Littlewood maximal operator M in combination with the obser-
vation that for locally integrable functions h1, . . . , hk, ∏k

j=1(Mhj)
−1 ∈ RH∞,

with constant depending only on k and the dimension n.
As we will show in Theorem 2.4.1, it turns out that the bound (1.5.4) holds

if wi ∈ ARpi
, for i = 1, . . . , m, solving in the affirmative the open question in

[13] and completing the characterization of the restricted weak type bounds
of M⊗ for A∞ weights. We also obtain the analogous characterizations of
strong, weak, and mixed type bounds of M⊗. The strategy that we follow is
similar to the one in [69] for the endpoint case (1.5.5), but we have to replace
the classical Sawyer-type inequality (1.5.1) by the estimate obtained in Theo-
rem 2.3.8, which is a new restricted weak Sawyer-type inequality involving
the class of weights ARp ; that is,∥∥∥∥M f

v

∥∥∥∥
Lp,∞(uvp)

≤ Cu,v‖ f ‖Lp,1(u), (1.5.6)

for p > 1, u ∈ ARp , and uvp ∈ A∞. The ARp condition on the weight u is a
natural assumption since it is necessary when v ≈ 1. In Lemma 2.3.10 we
also manage to track the dependence of the constant Cu,v on the weights u
and uvp, even in the endpoint case p = 1, refining the bound (1.5.1) in [27].

Quite recently, the bound (1.5.1) has been extended to the multi-variable
setting in [75]. More precisely, for weights w1, . . . , wm ∈ A1, and v ∈ A∞,∥∥∥∥∥M(~f )

v

∥∥∥∥∥
L

1
m ,∞(ν~wv1/m)

≤
∥∥∥∥∏m

i=1 M fi

v

∥∥∥∥
L

1
m ,∞(ν~wv1/m)

.
m

∏
i=1
‖ fi‖L1(wi)

. (1.5.7)

Inspired by this result, we follow a similar approach to extend our Sawyer-
type inequality (1.5.6) to the multi-variable setting, obtaining a generalization
of (1.5.7) in Theorem 2.4.6. That is, for weights w1, . . . , wm and v such that for
i = 1, . . . , m, wi ∈ ARpi

and wivpi ∈ A∞,∥∥∥∥∥M(~f )
v

∥∥∥∥∥
Lp,∞(ν~wvp)

≤
∥∥∥∥∏m

i=1 M fi

v

∥∥∥∥
Lp,∞(ν~wvp)

.
m

∏
i=1
‖ fi‖Lpi ,1(wi)

. (1.5.8)

Observe that this result is an extension of (1.5.4). To our knowledge, this
multi-variable mixed restricted weak type inequalities for maximal operators
involving the ARp condition on the weights have not been previously studied,
and we found no record of them being conjectured in the literature.

Motivated by the conjecture of E. Sawyer in [103], we can ask ourselves if
it is possible to obtain bounds like (1.5.8) for multi-linear Calderón-Zygmund
operators T. Once again, the endpoint case p1 = · · · = pm = 1 has already
been considered and extensively investigated in [75]. There, it was shown
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that for weights w1, . . . , wm ∈ A1, and ν~wv1/m ∈ A∞,∥∥∥∥∥T(~f )
v

∥∥∥∥∥
L

1
m ,∞(ν~wv1/m)

.
m

∏
i=1
‖ fi‖L1(wi)

, (1.5.9)

as a corollary of (1.5.7), combined with a result in [90], that allows replacing
M by T using an extrapolation type argument based on the A∞ extrapolation
theorem obtained in [32, 35].

We succeed in our goal and manage to obtain an extension of (1.5.9) to
the general restricted weak type setting. In Theorem 2.4.10 we prove, among
other things, that for weights w1, . . . , wm and v such that for i = 1, . . . , m, wi ∈
ARpi

and wivpi ∈ A∞, and some other technical hypotheses on the weights,∥∥∥∥∥T(~f )
v

∥∥∥∥∥
Lp,∞(ν~wvp)

.
m

∏
i=1
‖ fi‖Lpi ,1(wi)

. (1.5.10)

To achieve this, we build upon (1.5.8), but unlike in [75], we manage to avoid
the use of extrapolation arguments like the ones in [90]. Instead, we present
in Theorem 2.4.8 a novel technique that allows us to replace M by T ex-
ploiting the fine structure of the Lorentz space Lp,∞(ν~wvp), the ARp condi-
tion, and the recent advances in sparse domination. It is worth mentioning
that we couldn’t find in the literature any trace of results like (1.5.10), in-
volving multi-linear Calderón-Zygmund operators, ARp weights, and mixed
restricted weak type inequalities.

It is curious that we didn’t find much about Sawyer-type inequalities for
Lorentz spaces apart from the endpoint results studied in [27, 74, 75, 86, 90,
103], some results for commutators in [6, 7], and some endpoint estimates
for multi-variable fractional operators in [95]. As we have seen before, these
inequalities are fundamental to understand the behavior of the operator M⊗,
but they appear naturally in the study of other classical operators, even in the
one-variable case. Consider, for example, the case of the Hilbert transform H.
Indeed, if p > 1 and w ∈ ARp , it is well known that H : Lp,1(w) −→ Lp,∞(w).
Hence, duality, linearity and self-adjointness of H yield∥∥∥∥H( f w)

w

∥∥∥∥
Lp′ ,∞(w)

≤ Cw ‖ f ‖Lp′ ,1(w)
.

This is an example of an estimate like (1.5.3) involving the ARp condi-
tion on the weights and obtained almost without effort. The same inequality
holds for the Hardy-Littlewood maximal operator M, but we cannot use the
same argument, as shown in [14]. In Theorem 2.4.12 we will generalize such
result for M, obtaining as a particular case an alternative proof of the result
in [14]. In [54, 68], one can find similar endpoint estimates for Calderón-
Zygmund operators, with p′ = 1 and w ∈ A1.

As we will see in Chapters 3 and 4, Sawyer-type inequalities for Lorentz
spaces play a fundamental role in the proofs of our multi-variable extrapola-
tion schemes.
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For convenience, we made our work on Sawyer-type inequalities avail-
able online (see [93]).

1.6 Sparse Domination and Restricted Weak Type
Bounds

During a stay at the University of Alabama in 2017, we started a collaboration
with David V. Cruz-Uribe. Our goal was to produce bounds for fractional in-
tegral operators, Calderón-Zygmund singular integral operators, and com-
mutators of these operators in the context of Lorentz spaces with restricted
Muckenhoupt ARp weights, exploiting recent sparse domination techniques
presented in [21, 23, 65, 66, 70, 71].

We got satisfactory results on this matter, presented in Chapter 5. We
highlight the characterization of the tuples of weights (w1, . . . , wm, ν) for whi-
ch the multi-variable fractional operatorsMα and Iα satisfy the bounds

Mα, Iα : Lp1,1(w1)× · · · × Lpm,1(wm) −→ Lq,∞(ν),

with 0 ≤ α < nm, 1 ≤ p1, . . . , pm < ∞, 1
p = 1

p1
+ · · · + 1

pm
, and p ≤ q.

For more details, see Theorem 5.2.2, Theorem 5.2.6, and Corollary 5.2.10. For
more information about these operators, and bounds for them, see [59, 82].

In particular, in Theorem 5.2.7 we obtain a complete characterization of
the restricted weak type bounds for the multi-sub-linear maximal operator
M introduced in [69], along with the corresponding estimates for multi-
variable sparse operators and multi-linear Calderón-Zygmund operators.

In the case of linear commutators of fractional integrals Iα, and linear
Calderón-Zygmund operators T, we establish two-weight restricted weak
type bounds

[b, T], [b, Iα] : Lp,1(w) −→ Lq,∞(ν),

with 1 < q, 1 ≤ p ≤ q, 0 < α < n, and b ∈ BMO, working with pairs
of weights (w, ν) satisfying some logarithmic bump conditions, as shown in
Theorem 5.3.9 and Theorem 5.3.11. For strong and weak type bounds for
these commutators, see [21, 23].

From the bounds for the operator Iα, in Theorem 5.4.1 and Theorem 5.4.2,
we can obtain Poincaré and Sobolev-type inequalities for products of func-
tions, following the approach in [82].

Motivated by novel works of K. Moen [81], and C. Hoang and K. Moen
[53], recently we started extending our results for commutators to the multi-
variable setting, with very promising expectations (see [33]).

1.7 Further Research

In what follows, we briefly describe some potential future research projects
that one could investigate, apart from the various questions that we have left
open in the following chapters of this document.
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(a) Let T1, . . . , Tm be one-variable operators defined for measurable func-
tions. Fix exponents 1 ≤ p1, . . . , pm < ∞, with 1

p = 1
p1

+ · · · + 1
pm

,

and weights w1, . . . , wm, with w = wp/p1
1 . . . wp/pm

m , and suppose that
for i = 1, . . . , m,

Ti : Lpi,1(wi) −→ Lpi,∞(wi).

Study the existence of a non-trivial constant C = C(w1, . . . , wm) > 0
such that for all measurable functions f1, . . . , fm,

‖T1 f1 . . . Tm fm‖Lp,∞(w) ≤ C
m

∏
i=1
‖ fi‖Lpi ,1(wi)

.

A particular case of interest is when T1 = · · · = Tm = H, the Hilbert
transform on R.

(b) Fix m ≥ 1. Given measurable functions f1, . . . , fm, and g, suppose that
for all weights u1, . . . , um ∈ A1,

‖g‖
L

1
m ,∞(u1/m

1 ...u1/m
m )
≤ ϕ([u1]A1 , . . . , [um]A1)

m

∏
i=1
‖ fi‖L1(ui)

,

where ϕ : [1, ∞)m −→ [0, ∞) is a function increasing in each variable.
Given exponents 1 ≤ q1, . . . , qm < ∞, and 1

q = 1
q1

+ · · · + 1
qm

, and

weights wi ∈ Âqi,∞, i = 1, . . . , m, study the existence of a non-trivial
constant Cϕ = Cϕ(w1, . . . , wm) > 0 such that

‖g‖
Lq,∞(w

q/q1
1 ...wq/qm

m )
≤ Cϕ

m

∏
i=1
‖ fi‖Lqi ,1(wi)

.

(c) Prove multi-variable Sawyer-type inequalities for Lorentz spaces with
tuples of weights in AR~P , as it was done in [75] for weights in A~1.

(d) Establish multi-variable restricted weak type extrapolation results for
tuples of weights in AR~P , analogous to the results obtained in [72, 73,
89] for weights in A~P.



17

Chapter 2

Hardy, Littlewood, Lorentz, Hölder,
and Sawyer

“ No discovery of mine has made, or is likely to make, directly or
indirectly, for good or ill, the least difference to the amenity of the
world. ”

Godfrey Harold Hardy, A Mathematician’s Apology, 1941

We devote this chapter to the study of new Hölder-type and Sawyer-
type inequalities for Lorentz spaces with weights in ARp . In Section 2.1, we
provide general information about Lebesgue and Lorentz spaces, classical
Hölder’s inequalities, common classes of weights, types of bounds, dyadic
grids and sparse collections of cubes, multi-linear Calderón-Zygmund oper-
ators, and commutators. In Section 2.2, we present our Hölder-type inequal-
ities for Lorentz spaces, along with alternative characterizations of Ap and
ARp , and necessary conditions to obtain strong, weak, mixed, and restricted
weak type bounds of M⊗ for A∞ weights. In Section 2.3, we discuss our
Sawyer-type inequalities involving the Hardy-Littlewood maximal operator.
In Section 2.4, we give applications of our Sawyer-type results for M, includ-
ing weak, mixed, and restricted weak type bounds for M⊗, multi-variable
Sawyer-type inequalities for classical operators, and a dual Sawyer-type in-
equality for M.

2.1 General Preliminaries

In this section, we introduce some basic concepts that we will use throughout
this document. This introduction is not intended to be exhaustive.

2.1.1 Lebesgue and Lorentz spaces

We include a brief exposition about Lebesgue and Lorentz spaces, containing
definitions and well-known properties. For a detailed discussion, see [4, 44].
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Given 0 < p < ∞, and a σ-finite measure space (X, ν), Lp(X, ν) is the set
of ν-measurable functions f on X such that

‖ f ‖Lp(X,ν) :=
(ˆ

X
| f |pdν

)1/p
< ∞,

and L∞(X, ν) is the set of ν-measurable functions f on X such that

‖ f ‖L∞(X,ν) := ν- ess sup
x∈X

| f (x)| = inf{C > 0 : ν({x ∈ X : | f (x)| > C}) = 0}

< ∞.

If 1 ≤ p ≤ ∞, then we have Minkowski’s inequality, or triangle inequal-
ity; that is, for all ν-measurable functions f , g ∈ Lp(X, ν),

‖ f + g‖Lp(X,ν) ≤ ‖ f ‖Lp(X,ν) + ‖g‖Lp(X,ν).

In general, such inequality fails for 0 < p < 1, but one can fix this issue by

multiplying the right-hand side by a suitable constant, like 2
1−p

p .
The Lebesgue space Lp(X, ν) is a Banach space for 1 ≤ p ≤ ∞, and a quasi-

Banach space for 0 < p < 1.
Given 0 < p, q < ∞, and a ν-measurable function f on X, define

‖ f ‖Lp,q(X,ν) :=
(

p
ˆ ∞

0
yqλν

f (y)
q/p dy

y

)1/q
,

and for q = ∞, define

‖ f ‖Lp,∞(X,ν) := sup
y>0

yλν
f (y)

1/p,

where λν
f is the distribution function of f with respect to ν, defined on [0, ∞) by

λν
f (y) := ν({x ∈ X : | f (x)| > y}).

The set of all ν-measurable functions f on X with ‖ f ‖Lp,q(X,ν) < ∞ is
denoted by Lp,q(X, ν), and it is called the Lorentz space with indices p and q.
The space L∞,∞(X, ν) is L∞(X, ν) by definition.

For 0 < p ≤ ∞, Lp,p(X, ν) = Lp(X, ν), and hence, Lebesgue spaces are
particular examples of Lorentz spaces. The space Lp,∞(X, ν) is usually called
weak Lp(X, ν).

Some Lorentz spaces that will be of great interest for us are Lp,1(Rn, ν),
Lp,p(Rn, ν), and Lp,∞(Rn, ν), where dν(x) = w(x)dx, and 0 < w ∈ L1

loc(R
n).

For such measures on Rn, we shall use the notation Lp,q(w), or Lp,q(Rn) if
w = 1.

If 1 ≤ q ≤ p < ∞, or p = q = ∞, then we have the triangular inequality
for the functional ‖ · ‖Lp,q(X,ν), but for other choices of indices, such inequality
may fail. However, for all ν-measurable functions f , g ∈ Lp,q(X, ν), we have
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the estimate

‖ f + g‖Lp,q(X,ν) ≤ 21/p max{1, 2
1−q

q }(‖ f ‖Lp,q(X,ν) + ‖g‖Lp,q(X,ν)).

In general, Lp,q(X, ν) is a quasi-Banach space, but if 1 < p < ∞ and
1 ≤ q ≤ ∞, or if p = q = 1, or if p = q = ∞, then it can be normed to become
a Banach space.

Lorentz spaces are nested. More precisely, if 0 < p < ∞, and 0 < q < r ≤
∞, then

Lp,q(X, ν) ↪−→ Lp,r(X, ν),

and for every f ∈ Lp,q(X, ν),

‖ f ‖Lp,r(X,ν) ≤
(

q
p

) r−q
rq
‖ f ‖Lp,q(X,ν). (2.1.1)

Given parameters 0 < r < p < ∞, consider the quantity

||| f |||Lp,∞(X,ν) := sup
0<ν(E)<∞

ν(E)
1
p−

1
r

(ˆ
E
| f |rdν

)1/r
,

where the supremum is taken over all ν-measurable sets E ⊆ X such that
0 < ν(E) < ∞. We have that

‖ f ‖Lp,∞(X,ν) ≤ ||| f |||Lp,∞(X,ν) ≤
(

p
p− r

)1/r
‖ f ‖Lp,∞(X,ν).

This result is classical (see [43, Chapter V, Lemma 2.8] or [44, Exercise 1.1.12]),
and we will refer to these inequalities as Kolmogorov’s inequalities.

2.1.2 Classical Hölder’s Inequalities

Given 0 < p ≤ ∞, the conjugate exponent p′ is defined by the relation

1
p
+

1
p′

= 1.

Let (X, ν) be a σ-finite measure space. The classical Hölder’s inequality as-
serts that for 1 ≤ p ≤ ∞, and all functions f ∈ Lp(X, ν) and g ∈ Lp′(X, ν),

ˆ
X
| f g|dν ≤ ‖ f ‖Lp(X,ν)‖g‖Lp′ (X,ν).

This inequality is sharp in the sense that

‖g‖Lp′ (X,ν) = sup
{ˆ

X
| f g|dν : ‖ f ‖Lp(X,ν) ≤ 1

}
.
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We will refer to this as the duality between Lp(X, ν) and Lp′(X, ν), or just dual-
ity.

Similarly, for 1 ≤ p < ∞, and all functions f ∈ Lp,1(X, ν) and g ∈
Lp′,∞(X, ν), ˆ

X
| f g|dν ≤ ‖ f ‖Lp,1(X,ν)‖g‖Lp′ ,∞(X,ν).

Once again, this inequality is sharp in the sense that

1
p
‖g‖Lp′ ,∞(X,ν) ≤ sup

{ˆ
X
| f g|dν : ‖ f ‖Lp,1(X,ν) ≤ 1

}
≤ ‖g‖Lp′ ,∞(X,ν).

We will also refer to this as duality.
Given m ≥ 2, and exponents 0 < p1, . . . , pm ≤ ∞, with

1
p
=

1
p1

+ · · ·+ 1
pm

,

the classical multi-variable Hölder’s inequality asserts that for all functions f1 ∈
Lp1(X, ν), . . . , fm ∈ Lpm(X, ν),

‖ f1 . . . fm‖Lp(X,ν) ≤
m

∏
i=1
‖ fi‖Lpi (X,ν).

In the particular case when X = N, and ν is the counting measure on N,
we obtain the discrete Hölder’s inequality, which asserts that for sequences of
real or complex numbers {x1

j }j∈N, . . . , {xm
j }j∈N,

(
∞

∑
j=0
|x1

j . . . xm
j |p
)1/p

≤
m

∏
i=1

(
∞

∑
j=0
|xi

j|pi

)1/pi

,

provided that 0 < p1, . . . , pm < ∞.
We also have a version of Hölder’s inequality for weak Lp(X, ν) spaces, which

asserts that for all functions f1 ∈ Lp1,∞(X, ν), . . . , fm ∈ Lpm,∞(X, ν),

‖ f1 . . . fm‖Lp,∞(X,ν) ≤ p−
1
p

(
m

∏
i=1

p1/pi
i

)
m

∏
i=1
‖ fi‖Lpi ,∞(X,ν),

provided that 0 < p1, . . . , pm < ∞.
For more information about such inequalities, see [3, 4, 44, 52, 79].

2.1.3 Common Classes of Weights

A positive, and locally integrable function w on Rn is called weight.
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Given f ∈ L1
loc(R

n), the Hardy-Littlewood maximal operator M, introduced
in [51], is defined by

M f (x) := sup
Q3x

1
|Q|

ˆ
Q
| f (y)|dy, x ∈ Rn,

where the supremum is taken over all cubes Q ⊆ Rn containing x. Given
f1, . . . , fm ∈ L1

loc(R
n), we also define

M⊗( f1, . . . , fm)(x) := M f1(x) . . . M fm(x), x ∈ Rn.

In [85], Muckenhoupt studied the boundedness of M on Lebesgue spaces
Lp(w), obtaining that for 1 < p < ∞,

M : Lp(w) −→ Lp(w)

if, and only if w ∈ Ap; that is, if

[w]Ap := sup
Q

( 
Q

w
)( 

Q
w1−p′

)p−1

< ∞.

Moreover, if 1 ≤ p < ∞,

M : Lp(w) −→ Lp,∞(w)

if, and only if w ∈ Ap, where a weight w ∈ A1 if

[w]A1
:= sup

Q

( 
Q

w
)
‖χQw−1‖L∞(w) = sup

Q

( 
Q

w
)
(ess inf

x∈Q
w(x))−1 < ∞.

Buckley proved in [8] that for 1 ≤ p < ∞,

‖M‖Lp(w)→Lp,∞(w) .n [w]
1/p
Ap

,

and if p > 1, then

‖M‖Lp(w)→Lp(w) .n,p [w]
1

p−1
Ap

.

In [17, 58], Chung, Hunt, and Kurtz, and Kerman, and Torchinsky proved
that for 1 ≤ p < ∞,

M : Lp,1(w) −→ Lp,∞(w)

if, and only if w ∈ ARp , where a weight w is in ARp (also denoted by Ap,1) if

[w]ARp := sup
Q

w(Q)1/p
‖χQw−1‖Lp′ ,∞(w)

|Q| < ∞,
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or equivalently, if

‖w‖ARp
:= sup

Q
sup
E⊆Q

|E|
|Q|

(
w(Q)

w(E)

)1/p

< ∞.

Also,
‖M‖Lp,1(w)→Lp,∞(w) ≈n,p [w]ARp .

We have that [w]ARp ≤ ‖w‖ARp
≤ p[w]ARp . Moreover, A1 = AR1 , and in

virtue of [44, Exercise 1.1.11], for 1 < p < q, Ap ⊆ ARp ⊆ Aq, with

[w]ARp ≤ [w]
1/p
Ap

, and [w]Aq ≤
(

p′

p′ − q′

)q−1

[w]
q
ARp

. (2.1.2)

For a complete study of the boundedness of M on Lorentz spaces, see
[10].

A remarkable subclass of ARp is Âp, introduced in [9]. Given 1 ≤ p < ∞, a
weight w belongs to the class Âp if there exist a function f ∈ L1

loc(R
n), and a

weight u ∈ A1 such that w = (M f )1−pu. It is possible to associate a constant
to this class of weights, given by

‖w‖Âp
:= inf [u]1/p

A1
,

where the infimum is taken over all weights u ∈ A1 such that w = (M f )1−pu.
If w ∈ Âp, then ‖w‖ARp

.n,p ‖w‖Âp
, and Âp ⊆ ARp , but it is not known if such

inclusion is strict for p > 1. Note that Â1 = A1, and for p > 1, Ap ( Âp.
We now introduce some other classes of weights that will appear later.

For more information about them, see [27, 31, 39, 43].
Define the class of weights

A∞ :=
⋃
p≥1

Ap =
⋃
p≥1

ARp .

It is known that a weight w ∈ A∞ if, and only if

[w]A∞ := sup
Q

1
w(Q)

ˆ
Q

M(wχQ) < ∞.

This quantity is usually referred to as the Fujii-Wilson A∞ constant (see [40]).
More generally, given a weight u, and p > 1, we say that w ∈ Ap(u) if

[w]Ap(u) := sup
Q

(
1

u(Q)

ˆ
Q

wu
)(

1
u(Q)

ˆ
Q

w1−p′u
)p−1

< ∞,
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and w ∈ A1(u) if

[w]A1(u) := sup
Q

(
1

u(Q)

ˆ
Q

wu
)
‖χQw−1‖L∞(wu)

= sup
Q

(
1

u(Q)

ˆ
Q

wu
)
(ess inf

x∈Q
w(x))−1 < ∞,

and as before, we define

A∞(u) :=
⋃
p≥1

Ap(u).

A weight u is said to be doubling if there exists a constant Du > 0 such
that for every cube Q ⊆ Rn, u(2Q) ≤ Duu(Q), where 2Q denotes the cube
with the same center as Q but with twice its side length. If u ∈ A∞, then u is
doubling.

Given a doubling weight u, and w ∈ A∞(u), then

[w]A∞(u) := sup
Q

1
wu(Q)

ˆ
Q

Mu(wχQ)u < ∞,

where
Mu f (x) := sup

Q3x

1
u(Q)

ˆ
Q
| f (y)|u(y)dy, x ∈ Rn,

is the weighted Hardy-Littlewood maximal operator. Its centered version, defined
via a supremum over cubes centered at x, will be denoted by Mc

u. If p > 1,
then Mu is bounded on Lp(wu) if, and only if w ∈ Ap(u), provided that u is
doubling.

Given s > 1, we say that a weight w ∈ RHs if

[w]RHs := sup
Q

|Q|
w(Q)

( 
Q

ws
)1/s

< ∞,

and w ∈ RH∞ if

[w]RH∞ := sup
Q

|Q|
w(Q)

‖χQw‖L∞(Rn) = sup
Q

|Q|
w(Q)

ess sup
x∈Q

w(x) < ∞.

We have that
A∞ =

⋃
1<s≤∞

RHs.

In [69], the following multi-variable extension of the Hardy-Littlewood
maximal operator was introduced in connection with the theory of multi-
linear Calderón-Zygmund operators:

M(~f ) := sup
Q

(
m

∏
i=1

 
Q
| fi|
)

χQ,
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for ~f = ( f1, . . . , fm), with fi ∈ L1
loc(R

n), i = 1, . . . , m. Commonly, this opera-
tor is referred to as the curly operator.

For 1 ≤ p1, . . . , pm < ∞, ~P = (p1, . . . , pm), 1
p = 1

p1
+ · · ·+ 1

pm
, and weights

w1, . . . , wm, with ~w = (w1, . . . , wm), and ν~w := wp/p1
1 . . . wp/pm

m ,

M : Lp1(w1)× · · · × Lpm(wm) −→ Lp,∞(ν~w)

if, and only if ~w ∈ A~P; that is, if

[~w]A~P
:= sup

Q

( 
Q

ν~w

)1/p m

∏
i=1

( 
Q

w1−p′i
i

)1/p′i
< ∞,

where
(ffl

Q w1−p′i
i

)1/p′i
is replaced by (ess infx∈Q wi(x))−1 if pi = 1. Moreover,

if 1 < p1, . . . , pm < ∞, then

M : Lp1(w1)× · · · × Lpm(wm) −→ Lp(ν~w)

if, and only if ~w ∈ A~P.

2.1.4 Types of Operators

Let m ≥ 1, and let T be an m-variable operator defined for measurable func-
tions on Rn. Given exponents 0 < p1, q1, . . . , pm, qm, p, q < ∞, and weights
w1, . . . , wm, w, suppose that

T : Lp1,q1(w1)× · · · × Lpm,qm(wm) −→ Lp,q(w).

(a) We say that T is of strong type (p1, . . . , pm, p) if q1 = p1, . . . , qm = pm,
and q = p.

(b) We say that T is of weak type (p1, . . . , pm, p) if q1 = p1, . . . , qm = pm, and
q = ∞.

(c) We say that T is of restricted weak type (p1, . . . , pm, p) if q1 = · · · = qm =
1, and q = ∞. We may also use this terminology in the case when
0 < qi ≤ 1, i = 1, . . . , m.

(d) We say that T is of mixed type (p1, . . . , p`, p`+1, . . . , pm, p), with 1 ≤ ` <
m, if q1 = p1, . . . , q` = p`, and q`+1 ≤ 1, . . . , qm ≤ 1, and q = ∞. We
may also use this terminology if 1 ≤ p1, . . . , pm < ∞, and wi ∈ Api , for
i = 1, . . . , `, and wi ∈ ARpi

, for i = ` + 1, . . . , m, independently of the
choice of the other exponents.

Analogously, we will talk about strong, weak, mixed, and restricted weak
type inequalities.

The definitions of strong and weak types are standard (see [4]), but the
ones of mixed and restricted weak types may vary depending on the source.
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2.1.5 Dyadic Grids and Sparse Collections of Cubes

A general dyadic grid D is a collection of cubes in Rn with the following prop-
erties:

(a) For any Q ∈ D , its side length lQ is of the form 2k, for some k ∈ Z.

(b) For all Q, R ∈ D , Q ∩ R ∈ {∅, Q, R}.

(c) The cubes of a fixed side length 2k form a partition of Rn.

The standard dyadic grid in Rn consists of the cubes 2−k([0, 1)n + j), with k ∈ Z

and j ∈ Zn. It is well known (see [54]) that if one considers the perturbed
dyadic grids

Dα := {2−k([0, 1)n + j + α) : k ∈ Z, j ∈ Zn},

with α ∈ {0, 1
3}n, then for any cube Q ⊆ Rn, there exist α, and a cube Qα ∈ Dα

such that Q ⊆ Qα and lQα
≤ 6lQ.

A collection of cubes S is said to be η-sparse if there exists 0 < η < 1 such
that for every cube Q ∈ S , there exists a set EQ ⊆ Q with η|Q| ≤ |EQ|, and
for every Q 6= R ∈ S , ER ∩ EQ = ∅.

Given an η-sparse collection of dyadic cubes S , we define the sparse oper-
ator AS by

AS(~f ) := ∑
Q∈S

(
m

∏
i=1

 
Q

fi

)
χQ.

For more information about these topics, see [66].

2.1.6 Calderón-Zygmund Operators

We say that a function ω : [0, ∞) −→ [0, ∞) is a modulus of continuity if it is
continuous, increasing, sub-additive and such that ω(0) = 0. We say that ω
satisfies the Dini condition if

‖ω‖Dini :=
ˆ 1

0

ω(t)
t

dt < ∞.

We give the definition of the multi-linear ω-Calderón-Zygmund opera-
tors. We denote by S (Rn) the space of all Schwartz functions on Rn and by
S ′(Rn) its dual space, the set of all tempered distributions on Rn.

Definition 2.1.1. An m-linear ω-Calderón-Zygmund operator is an m-linear and
continuous operator T : S (Rn) × · · · ×S (Rn) −→ S ′(Rn) that extends
to a bounded m-linear operator from Lq1(Rn)× · · · × Lqm(Rn) to Lq(Rn), for
some 1 ≤ q1, . . . , qm < ∞, with 1

q = 1
q1
+ · · ·+ 1

qm
, and for which there exists a

locally integrable function K(y0, y1, . . . , ym), defined away from the diagonal
y0 = y1 = · · · = ym in (Rn)m+1, satisfying, for some constant CK > 0:
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(a) the size estimate

|K(y0, y1, . . . , ym)| ≤
CK

(|y0 − y1|+ · · ·+ |y0 − ym|)nm ,

for all (y0, y1, . . . , ym) ∈ (Rn)m+1 with y0 6= yj for some j ∈ {1, . . . , m},

(b) the smoothness estimate

|K(y0, y1, . . . , yi, . . . , ym)− K(y0, y1, . . . , y′i, . . . , ym)|

≤ CK

(|y0 − y1|+ · · ·+ |y0 − ym|)nm ω

( |yi − y′i|
(|y0 − y1|+ · · ·+ |y0 − ym|)nm

)
,

for i = 0, . . . , m, and whenever |yi − y′i| ≤
1
2 max0≤j≤m{|yi − yj|},

and such that

T( f1, . . . , fm)(x) =
ˆ

Rn
. . .

ˆ
Rn

K(x, y1, . . . , ym) f1(y1) . . . fm(ym)dy1 . . . dym,

whenever f1, . . . , fm ∈ C ∞
c (Rn) and x ∈ Rn \⋂m

j=1 supp f j.

If we take ω(t) = tε for some ε > 0, we recover the classical multi-linear
Calderón-Zygmund operators. In general, an m-linear ω-Calderón-Zygmund
operator with ω satisfying the Dini condition can be extended to a bounded
operator from L1(Rn)× · · · × L1(Rn) to L

1
m ,∞(Rn).

The theory of Calderon-Zygmund operators has been investigated by ma-
ny authors. For more information on this matter, see [49, 69, 77] and the
publications cited there.

2.1.7 BMO and Commutators

Given f ∈ L1
loc(R

n), the sharp maximal operator M# is defined by

M# f (x) := sup
Q3x

1
|Q|

ˆ
Q

∣∣∣∣ f −  
Q

f
∣∣∣∣ , x ∈ Rn.

If b ∈ L1
loc(R

n) is such that M#b ∈ L∞(Rn), we say that b is a function of
bounded mean oscillation, and we denote by BMO the set of all these functions.
For b ∈ BMO, we write

‖b‖BMO := ‖M#b‖L∞(Rn).

Note that L∞(Rn) ⊆ BMO, and for b ∈ L∞(Rn), ‖b‖BMO ≤ 2‖b‖L∞(Rn).
For further information about these concepts, see [38, 43].
Given a one-variable operator T defined for measurable functions on Rn,

and a measurable function b, the commutator [b, T] is formally defined for a
measurable function f by

[b, T] f (x) := b(x)T f (x)− T(b f )(x), x ∈ Rn.



2.2. Hölder-Type Inequalities for Lorentz Spaces 27

The first results on these commutators where obtained in [20], where it
was proved that if T is a classical singular integral operator with smooth ker-
nel, and b ∈ BMO, then [b, T] is bounded on Lp(Rn) for 1 < p < ∞. More-
over, if T is one of the Riesz transforms on Rn, then the condition b ∈ BMO
is necessary. Such results were further extended in [1], establishing bound-
edness properties of commutators of general linear operators on weighted
Lebesgue spaces. Endpoint estimates for commutators were studied in [91].
For further results on commutators, see [16, 70].

Similarly, given an m-variable operator T defined for measurable func-
tions on Rn, and measurable functions b1, . . . , bm, with~b = (b1, . . . , bm), the
m-variable commutators [~b, T]i, i = 1, . . . , m, are formally defined for measur-
able functions f1, . . . , fm by

[~b, T]i( f1, . . . , fm)(x) := bi(x)T( f1, . . . , fm)(x)
− T( f1, . . . , fi−1, bi fi, fi+1, . . . , fm)(x), x ∈ Rn.

Multi-variable commutators of multi-variable Calderón-Zygmund oper-
ators were considered and studied in [69, 92, 94].

2.2 Hölder-Type Inequalities for Lorentz Spaces

In this section, we present new Hölder-type inequalities for Lorentz spaces
Lp,∞(w), and we discuss their applications to the study of the classes of
weights Ap and ARp via the operator M⊗. The contents of this section are
partially available in [13].

2.2.1 Modern Hölder’s Inequalities

Let us start by giving a counterexample that shows that (1.4.4) does not hold
for arbitrary weights.

Fix a dimension n ≥ 1, and for m ≥ 2, take exponents 0 < p1, . . . , pm < ∞,
and 1

p = 1
p1
+ · · ·+ 1

pm
. For i = 1, . . . , m− 1, take functions on Rn

fi(x) =
1

|x|n/pi
χ{y∈Rn : |y|≥1}(x), fm(x) = |x|n(

1
p−

1
pm )

χ{y∈Rn : |y|≥1}(x),

and weights

wi(x) = 1, wm(x) =
1

|x|n
pm
p

χ{y∈Rn : |y|≥1}(x) + χ{y∈Rn : |y|<1}(x).

Then, f1 . . . fm = χ{y∈Rn : |y|≥1}, and

w(x) = w1(x)p/p1 . . . wm(x)p/pm =
1
|x|n χ{y∈Rn : |y|≥1}(x) + χ{y∈Rn : |y|<1}(x),
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so
‖ f1 . . . fm‖p

Lp,∞(w)
=

ˆ
{y∈Rn : |y|≥1}

1
|x|n dx = ∞,

but for t > 0, and i = 1, . . . , m− 1,

λ
wi
fi
(t) = νn(t−pi − 1)χ(0,1)(t), λwm

fm
(t) =

νn p
pm − p

max{1, t}−pm ,

and

‖ fi‖Lpi ,∞(wi)
= ν

1/pi
n , ‖ fm‖Lpm ,∞(wm) =

(
νn p

pm − p

)1/pm

,

where νn denotes the volume of the unit ball in Rn (see [44, Appendix A.3] for
its explicit expression in terms of n).

Due to this fact, and in order to prove estimates for product-type opera-
tors like M⊗, we need the following Hölder-type inequalities.

Lemma 2.2.1. Fix exponents 0 < p1, . . . , pm < ∞, and 1
p = 1

p1
+ · · ·+ 1

pm
, and

weights w1, . . . , wm, and w = wp/p1
1 . . . wp/pm

m . Given a measurable function g, and
measurable sets E1, . . . , Em−1 ⊆ Rn,

‖χE1 . . . χEm−1 g‖Lp,∞(w) ≤
(

m−1

∏
i=1
‖χEi‖Lpi ,∞(wi)

)
‖g‖Lpm ,∞(wm)

. (2.2.1)

Moreover, if p > 1, then for all measurable functions f1, . . . , fm−1,

‖ f1 . . . fm−1g‖Lp,∞(w) ≤ C

(
m−1

∏
i=1
‖ fi‖Lpi ,1(wi)

)
‖g‖Lpm ,∞(wm)

. (2.2.2)

Proof. Let us start by proving (2.2.1). If m = 1, then there is nothing to prove.
We discuss the case when m = 2. As usual, we may assume that w1(E1) < ∞,
and ‖g‖Lp2,∞(w2)

< ∞.
Now, for every t > 0, we have that {χE1 |g| > t} = E1 ∩ {|g| > t}, and

hence, by Hölder’s inequality,

tw({χE1 |g| > t})1/p ≤ tw1({χE1 |g| > t})1/p1w2({χE1 |g| > t})1/p2

≤ tw1(E1)
1/p1w2({|g| > t})1/p2 ,

from which (2.2.1) follows taking the supremum over all t > 0.
Finally, if m > 2, we use the previous computations to get that

‖χE1 . . . χEm−1 g‖Lp,∞(w) ≤ ‖χE1∩···∩Em−1‖Lq,∞(W)‖g‖Lpm ,∞(wm),
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with 1
q = 1

p1
+ · · · + 1

pm−1
, and W = wq/p1

1 . . . wq/pm−1
m−1 , and by Hölder’s in-

equality,

‖χE1∩···∩Em−1‖Lq,∞(W) = W(E1 ∩ · · · ∩ Em−1)
1/q

≤
m−1

∏
i=1

wi(E1 ∩ · · · ∩ Em−1)
1/pi ≤

m−1

∏
i=1
‖χEi‖Lpi ,∞(wi)

.

To prove (2.2.2), for i = 1, . . . , m − 1, take a function fi ∈ Lpi,1(wi), and
for every integer k, write Ei

k := {2k < | fi| ≤ 2k+1}. It is clear that | fi| ≤
2 ∑k∈Z 2kχEi

k
a.e., and since p > 1, Lp,∞(w) is a Banach space, so

‖ f1 . . . fm−1g‖Lp,∞(w)

≤ 2m−1p′ ∑
k1,...,km−1∈Z

2k1+···+km−1‖χE1
k1
∩···∩Em−1

km−1
g‖Lp,∞(w)

≤ 2m−1p′
(

m−1

∏
i=1

∑
ki∈Z

2ki wi(Ei
ki
)1/pi

)
‖g‖Lpm ,∞(wm)

≤ 2m−1p′
(

m−1

∏
i=1

∑
ki∈Z

2ki wi({| fi| > 2ki})1/pi

)
‖g‖Lpm ,∞(wm)

≤ 22m−2p′
(

m−1

∏
i=1

∑
ki∈Z

ˆ 2ki+1

2ki
wi({| fi| > t})1/pi dt

)
‖g‖Lpm ,∞(wm)

≤ 22m−2p′
(

m−1

∏
i=1

1
pi
‖ fi‖Lpi ,1(wi)

)
‖g‖Lpm ,∞(wm)

,

where in the second inequality we have used (2.2.1). Hence, (2.2.2) holds,
with C = 22m−2 p′

p1...pm−1
.

The next result is a weaker version of (1.4.4).

Lemma 2.2.2. Fix exponents 0 < p1, . . . , pm < ∞, and 1
p = 1

p1
+ · · ·+ 1

pm
, and

weights w1, . . . , wm, and w = wp/p1
1 . . . wp/pm

m . Given a measurable function g,
and measurable functions f1, . . . , fm−1, with ‖ fi‖L∞(Rn) ≤ 1, i = 1, . . . , m − 1,
and parameters 0 < δ1, . . . , δm−1 < 1, we have that

‖ f1 . . . fm−1g‖Lp,∞(w) ≤ C

(
m−1

∏
i=1
‖| fi|δi‖Lpi ,∞(wi)

)
‖g‖Lpm ,∞(wm)

. (2.2.3)

Proof. If m = 1, then there is nothing to prove. We first discuss the case when
m = 2.

Note that for every measurable function F, by Lemma 2.2.1, we have that

sup
t>0

t‖χ{|F|>t}g‖Lp,∞(w) ≤ sup
t>0

t‖χ{|F|>t}‖Lp1,∞(w1) ‖g‖Lp2,∞(w2)

= ‖F‖Lp1,∞(w1)
‖g‖Lp2,∞(w2)

.
(2.2.4)
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Fix 0 < q < p. By Kolmogorov’s inequality (see [44, Exercise 1.1.12]),

‖ f1g‖Lp,∞(w) ≤ sup
0<w(A)<∞

‖ f1gχA‖Lq(w) w(A)
1
p−

1
q ,

where the supremum is taken over all measurable sets A ⊆ Rn with 0 <
w(A) < ∞. For one of such sets A, we have that

‖ f1gχA‖
q
Lq(w)

= ∑
k<0

ˆ
A∩{2k<| f1|≤2k+1}

| f1g|qw ≤ 2q ∑
k<0

2kq‖χ{| f1|>2k}gχA‖
q
Lq(w)

= 2q ∑
k<0

2kq(1−δ1)
(

2kδ1‖χ{| f1|δ1>2kδ1}gχA‖Lq(w)

)q

≤ 2q

2q(1−δ1) − 1

(
sup

0<t<1
t‖χ{| f1|δ1>t}gχA‖Lq(w)

)q

,

and hence, applying Kolmogorov’s inequality again, and (2.2.4) with F =
| f1|δ1 , we get that

sup
0<w(A)<∞

‖ f1gχA‖Lq(w) w(A)
1
p−

1
q

≤ 2(2q(1−δ1) − 1)−
1
q sup

0<t<1
t sup

0<w(A)<∞
‖χ{| f1|δ1>t}gχA‖Lq(w)w(A)

1
p−

1
q

≤ 2(2q(1−δ1) − 1)−
1
q

(
p

p− q

)1/q
sup

0<t<1
t‖χ{| f1|δ1>t}g‖Lp,∞(w)

≤ 2(2q(1−δ1) − 1)−
1
q

(
p

p− q

)1/q
‖| f1|δ1‖Lp1,∞(w1) ‖g‖Lp2,∞(w2)

≤ 2
(

p
(log 2)q(1− δ1)(p− q)

)1/q
‖| f1|δ1‖Lp1,∞(w1) ‖g‖Lp2,∞(w2)

,

and (2.2.3) follows, with

C = Cδ1,p := inf
0<q<p

2
(

p
(log 2)q(1− δ1)(p− q)

)1/q

= 2
(

inf
0<θ<1

((log 2)(1− δ1)pθ(1− θ))−
1
θ

)1/p
.

Finally, if m > 2, we iterate the previous case m − 1 times. For i =

1, . . . , m, write 1
ri

:= 1
pi
+ · · · + 1

pm
, and Wi := wri/pi

i . . . wri/pm
m . Note that

Wi = wri/pi
i Wri/ri+1

i+1 . After the kth iteration, with 1 ≤ k ≤ m− 1, we obtain
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that

‖ f1 . . . fm−1g‖Lp,∞(w) ≤
(

k

∏
i=1

Cδi,ri‖| fi|δi‖Lpi ,∞(wi)

)
× ‖ fk+1 . . . fm−1g‖Lrk+1,∞(Wk+1)

,

so for k = m− 1, we conclude that (2.2.3) holds, with

C =
m−1

∏
i=1

Cδi,ri .

Remark 2.2.3. Observe that for 0 < δ < 1, if p > 1, then choosing θ = 1
p , we

get that

Cδ,p ≤
2p′

(log 2)
1

(1− δ)
,

and if p ≤ 1, then for every α > 1
p − 1, and choosing θ = 1

p(1+α)
, we get that

Cδ,p ≤
2

(log 2)1+α

(
p(α + 1)2

αp + p− 1

)1+α 1
(1− δ)1+α

.

Moreover, for 0 < p < ∞,

Cδ,p ≥ 2

(
inf

0<q<p

(
p

p− q

)1/q
)

inf
0<q<p

(
1

(log 2)(1− δ)q

)1/q

=

 2
(

e
(log 2)p(1−δ)

)1/p
, δ ≥ 1− e

p log 2 ,

2e
1
p−

1
e (log 2)(1−δ), δ < 1− e

p log 2 ,

and hence, limδ→1− Cδ,p = ∞, as expected, since Lemma 2.2.2 is false for
m = 2 and δ1 = 1.

Note also that we can’t remove the assumption that ‖ fi‖L∞(Rn) ≤ 1, i =
1, . . . , m − 1, as can be seen by a standard homogeneity argument, or by
choosing functions on Rn f1 = · · · = fm−2 = χ{y∈Rn : |y|≥1},

fm−1(x) = |x|βχ{y∈Rn : |y|≥1}(x), and g(x) = |x|−βχ{y∈Rn : |y|≥1}(x),

and weights

w1(x) = · · · = wm−2(x) = |x|−n−1+δm−1χ{y∈Rn : |y|≥1}(x) + χ{y∈Rn : |y|<1}(x),

wm−1(x) = |x|−n−βδm−1 pm−1χ{y∈Rn : |y|≥1}(x) + χ{y∈Rn : |y|<1}(x), and

wm(x) = |x|−n+βpm χ{y∈Rn : |y|≥1}(x) + χ{y∈Rn : |y|<1}(x),
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where for m > 2, we take β = 1
p1

+ · · ·+ 1
pm−2

, and for m = 2, we take any
β > 0.

2.2.2 New Characterizations of Ap and ARp
Let us start by proving a property of A∞ weights that will be essential to
produce our alternative characterizations of Ap and ARp .

Lemma 2.2.4. Fix exponents 0 < p1, . . . , pm < ∞, and 1
p = 1

p1
+ · · ·+ 1

pm
, and

weights w1, . . . , wm ∈ A∞, and write w = wp/p1
1 . . . wp/pm

m . Then, for every cube
Q ⊆ Rn,

w1(Q)p/p1 . . . wm(Q)p/pm ≈ w(Q). (2.2.5)

Proof. Note that if m = 1, then there is nothing to prove, so we may assume
that m ≥ 2. In virtue of Hölder’s inequality, we have that

w(Q) =

ˆ
Q

wp/p1
1 . . . wp/pm

m ≤ w1(Q)p/p1 . . . wm(Q)p/pm .

To establish the equivalence in (2.2.5), let us first assume that m = 2. Since
w1, w2 ∈ A∞, by Theorem 2.1 in [31], we have that wp/pi

i ∈ RH pi
p

, i = 1, 2, and

the desired result follows from Theorem 2.6 in [31], with an implicit constant
Cw1,w2 depending on w1 and w2.

Finally, if m > 2, we iterate the previous case m− 1 times. For i = 1, . . . , m,
write 1

ri
:= 1

pi
+ · · · + 1

pm
, and Wi := wri/pi

i . . . wri/pm
m ∈ A∞. After the kth

iteration, with 1 ≤ k ≤ m− 1, we obtain that

w1(Q)p/p1 . . . wm(Q)p/pm ≤ Cwm−k,...,wm

(
m−k−1

∏
i=1

wi(Q)p/pi

)
Wm−k(Q)p/rm−k ,

so for k = m − 1, we conclude that (2.2.5) holds, with an implicit constant
Cw1,...,wm depending on w1, . . . , wm.

Remark 2.2.5. A different proof of this result can be found in [29].

Now we present an alternative characterization of ARp .

Proposition 2.2.6. Given weights w1, . . . , wm ∈ A∞, and exponents 0 < p1, . . . ,
pm < ∞, with pm ≥ 1, and 1

p = 1
p1

+ · · · + 1
pm

, and w = wp/p1
1 . . . wp/pm

m , the
following statements are equivalent:

(a) wm ∈ ARpm .

(b) There exists a constant C > 0 such that for all measurable sets E1, . . . , Em−1,
and every measurable function g,

‖χE1 . . . χEm−1 Mg‖Lp,∞(w) ≤ C

(
m−1

∏
i=1

wi(Ei)
1/pi

)
‖g‖Lpm ,1(wm)

.
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(c) There exists a constant c > 0 such that for every cube Q, and every measurable
function g,

‖χQMg‖Lp,∞(w) ≤ c

(
m−1

∏
i=1

wi(Q)1/pi

)
‖g‖Lpm ,1(wm)

.

Proof. It is clear that (c) follows from (b), with c = C, taking E1 = · · · =
Em−1 = Q.

To see that (b) follows from (a), we apply Lemma 2.2.1 and Remark 5.2.3,
obtaining that

‖χE1 . . . χEm−1 Mg‖Lp,∞(w) ≤
(

m−1

∏
i=1

wi(Ei)
1/pi

)
‖Mg‖Lpm ,∞(wm)

≤ 2n24n/pm [wm]ARpm

(
m−1

∏
i=1

wi(Ei)
1/pi

)
‖g‖Lpm ,1(wm)

,

and we can take C = 2n24n/pm [wm]ARpm
.

Let us show that (a) follows from (c). Fix a cube Q, and using duality,
choose a non-negative function g such that ‖g‖Lpm ,1(wm)

≤ 1 and

ˆ
Q

g =

ˆ
Rn

g(χQw−1
m )wm ≥

1
pm
‖χQw−1

m ‖Lp′m ,∞(wm)
.

Since Mg ≥
(ffl

Q g
)

χQ, (c) implies that

w(Q)1/p

|Q| ‖χQw−1
m ‖Lp′m ,∞(wm)

≤ pmc

(
m−1

∏
i=1

wi(Q)1/pi

)
,

and applying Lemma 2.2.4, we get that

wm(Q)1/pm

|Q| ‖χQw−1
m ‖Lp′m ,∞(wm)

≤ pmcC1/p
w1,...,wm ,

and taking the supremum over all cubes Q, we obtain that wm ∈ ARpm , with

[wm]ARpm
≤ pmcC1/p

w1,...,wm .

Similarly, we can obtain new characterizations of Ap weights.

Proposition 2.2.7. Given weights w1, . . . , wm ∈ A∞, and exponents 0 < p1, . . . ,
pm < ∞, with pm ≥ 1, and 1

p = 1
p1

+ · · · + 1
pm

, and w = wp/p1
1 . . . wp/pm

m , the
following statements are equivalent:

(a) wm ∈ Apm .
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(b) There exists a constant C > 0 such that for all measurable sets E1, . . . , Em−1,
and every measurable function g,

‖χE1 . . . χEm−1 Mg‖Lp,∞(w) ≤ C

(
m−1

∏
i=1

wi(Ei)
1/pi

)
‖g‖Lpm (wm).

(c) There exists a constant c > 0 such that for every cube Q, and every measurable
function g,

‖χQMg‖Lp,∞(w) ≤ c

(
m−1

∏
i=1

wi(Q)1/pi

)
‖g‖Lpm (wm).

Moreover, if pm > 1, then the following statements are also equivalent to the previ-
ous ones:

(d) There exists a constant C̃ > 0 such that for all measurable sets E1, . . . , Em−1,
and every measurable function g,

‖χE1 . . . χEm−1 Mg‖Lp(w) ≤ C̃

(
m−1

∏
i=1

wi(Ei)
1/pi

)
‖g‖Lpm (wm).

(e) There exists a constant c̃ > 0 such that for every cube Q, and every measurable
function g,

‖χQMg‖Lp(w) ≤ c̃

(
m−1

∏
i=1

wi(Q)1/pi

)
‖g‖Lpm (wm).

Proof. Again, it is clear that (c) follows from (b), with c = C, taking E1 =

· · · = Em−1 = Q. Similarly, (e) follows from (d), with c̃ = C̃.
To see that (b) follows from (a), we apply Lemma 2.2.1 and the weak type

bound for M in [8, (2.6)], obtaining that

‖χE1 . . . χEm−1 Mg‖Lp,∞(w) ≤
(

m−1

∏
i=1

wi(Ei)
1/pi

)
‖Mg‖Lpm ,∞(wm)

≤ Cn,pm [wm]
1/pm
Apm

(
m−1

∏
i=1

wi(Ei)
1/pi

)
‖g‖Lpm (wm),

and we can take C = Cn,pm [wm]
1/pm
Apm

. Similarly, if pm > 1, then (d) follows
from (a) applying Hölder’s inequality and the strong type bound for M in [8,

Theorem 2.5], and we can take C̃ = C̃n,pm [wm]
1

pm−1
Apm

.



2.2. Hölder-Type Inequalities for Lorentz Spaces 35

Let us show that (a) follows from (c). Fix a cube Q, and using duality,
choose a non-negative function g such that ‖g‖Lpm (wm)

≤ 1 and

ˆ
Q

g =

ˆ
Rn

g(χQw−1
m )wm ≥ ‖χQw−1

m ‖Lp′m (wm)
.

Since Mg ≥
(ffl

Q g
)

χQ, (c) implies that

w(Q)1/p

|Q| ‖χQw−1
m ‖Lp′m (wm)

≤ c

(
m−1

∏
i=1

wi(Q)1/pi

)
,

and applying Lemma 2.2.4, we get that

wm(Q)1/pm

|Q| ‖χQw−1
m ‖Lp′m (wm)

≤ cC1/p
w1,...,wm ,

and taking the supremum over all cubes Q, we obtain that wm ∈ Apm , with

[wm]Apm
≤ cC1/p

w1,...,wm . The same argument shows that (a) follows from (e)

even if pm = 1, with [wm]Apm
≤ c̃C1/p

w1,...,wm , and the proof is complete.

2.2.3 First Results Involving M⊗

As a consequence of Proposition 2.2.6, we obtain necessary conditions on the
weights to produce weighted restricted weak type bounds for M⊗.

Theorem 2.2.8. Given exponents 1 ≤ p1, . . . , pm < ∞, and 1
p = 1

p1
+ · · ·+ 1

pm
,

and weights w1, . . . , wm ∈ A∞, and w = wp/p1
1 . . . wp/pm

m , if

M⊗ : Lp1,1(w1)× · · · × Lpm,1(wm) −→ Lp,∞(w),

then wi ∈ ARpi
, for i = 1, . . . , m.

Proof. Given a cube Q, we have that χQ ≤ M(χQ), so for j = 1, . . . , m, and
f j ∈ Lpj,1(wj), we get that

‖χQM f j‖Lp,∞(w) ≤
∥∥∥∥∥
(

∏
i 6=j

M(χQ)

)
M f j

∥∥∥∥∥
Lp,∞(w)

= ‖M⊗(
j−1︷ ︸︸ ︷

χQ, . . . , χQ, f j,
m−j︷ ︸︸ ︷

χQ, . . . , χQ)‖Lp,∞(w)

≤ C

(
∏
i 6=j

wi(Q)1/pi

)
‖ f j‖Lpj ,1(wj)

,

and the desired result follows from Proposition 2.2.6.

Remark 2.2.9. Observe that in virtue of Hölder’s inequality for weak Lebes-
gue spaces, and Remark 5.2.3, we have that if w1 = · · · = wm = w ∈
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⋂m
i=1 ARpi

, then for all measurable functions f1, . . . , fm,

‖M⊗( f1, . . . , fm)‖Lp,∞(w) ≤ Cn,p1,...,pm

(
m

∏
i=1

[w]ARpi

)
m

∏
i=1
‖ fi‖Lpi ,1(w),

which suggests that the converse of Theorem 2.2.8 may be true. As we will
show in Theorem 2.4.1, this is the case.

Just for fun, let us present here our first attempt at proving the converse
of Theorem 2.2.8, based on Lemma 2.2.2. Such result motivated our study
of mixed type inequalities and was a fundamental piece of our first mixed
type extrapolation schemes before we developed our theory of Sawyer-type
inequalities.

Theorem 2.2.10. Let 1 ≤ p1, . . . , pm < ∞, with pi > 1, i = 1, . . . , m − 1,
and let 1

p = 1
p1

+ · · · + 1
pm

. Let w1, . . . , wm be weights, with wi ∈ Api , i =

1, . . . , m − 1, and wm ∈ ARpm , and write w = wp/p1
1 . . . wp/pm

m . Then, for every
measurable function g, and all measurable sets E1, . . . , Em−1 ⊆ Rn,

‖M⊗(χE1 , . . . , χEm−1 , g)‖Lp,∞(w) .

(
m−1

∏
i=1
‖χEi‖Lpi ,1(wi)

)
‖g‖Lpm ,1(wm)

. (2.2.6)

Proof. For i = 1, . . . , m − 1, since pi > 1, and wi ∈ Api , then in virtue
of Lemma 3.1.7, there exists 0 < δi < 1 such that wi ∈ Aδi pi . Applying
Lemma 2.2.2, we obtain that

‖M⊗(χE1 , . . . , χEm−1 , g)‖Lp,∞(w) .

(
m−1

∏
i=1
‖M(χEi)‖

δi
Lδi pi ,∞(wi)

)
‖Mg‖Lpm ,∞(wm)

.

(
m−1

∏
i=1
‖χEi‖

δi
Lδi pi (wi)

)
‖g‖Lpm ,1(wm)

.

(
m−1

∏
i=1
‖χEi‖Lpi ,1(wi)

)
‖g‖Lpm ,1(wm)

.

Remark 2.2.11. If p > 1, then arguing as in the proof of Lemma 2.2.1, we can
extend (2.2.6) to arbitrary measurable functions f1, . . . , fm−1, and g.

As a consequence of Proposition 2.2.7, and arguing as in the proof of
Theorem 2.2.8, we obtain necessary conditions on the weights to produce
weighted strong, weak, and mixed type bounds for M⊗.

Theorem 2.2.12. Given exponents 1 ≤ p1, . . . , pm < ∞, and 1
p = 1

p1
+ · · ·+ 1

pm
,

and weights w1, . . . , wm ∈ A∞, and w = wp/p1
1 . . . wp/pm

m , if

M⊗ : Lp1(w1)× · · ·× Lp`(w`)× Lp`+1,1(w`+1)× · · ·× Lpm,1(wm) −→ Lp,∞(w),
(2.2.7)
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with 1 ≤ ` ≤ m, then wi ∈ Api , for i = 1, . . . , `, and wi ∈ ARpi
, for i = ` +

1, . . . , m. Similarly, if

M⊗ : Lp1(w1)× · · · × Lpm(wm) −→ Lp(w), (2.2.8)

then wi ∈ Api , for i = 1, . . . , m.

Remark 2.2.13. In virtue of Hölder’s inequality and [8, Theorem 2.5], we
have that, under the hypotheses of Theorem 2.2.12, if 1 < p1, . . . , pm < ∞,
then (2.2.8) holds if, and only if wi ∈ Api , for i = 1, . . . , m. Similarly, this
last condition is also equivalent to (2.2.7) when ` = m. In Remark 2.4.2,
we discuss an alternative proof of this fact for the full range of exponents
1 ≤ p1, . . . , pm < ∞. This alternative approach allows us to establish the
converse of Theorem 2.2.12 for 1 ≤ ` ≤ m.

2.3 Sawyer-Type Inequalities for Maximal Opera-
tors

We devote this section to the study of a novel restricted weak type inequality
that extends the classical Sawyer-type inequality (1.5.1) for the Hardy-Little-
wood maximal operator. To this end, we will need some previous results.

The following lemma contains well-known results on weights (see [27, 31,
43, 75]), but we will give most of their proofs since we need to keep track of
the constants of the weights involved.

Lemma 2.3.1. Let u and w be weights.

(a) If u ∈ A1, then u−1 ∈ RH∞, and [u−1]RH∞ ≤ [u]A1 .

(b) If u ∈ RH∞, and q > 0, then uq ∈ RH∞. If q ≥ 1, then [uq]RH∞ ≤ [u]qRH∞
.

(c) If u ∈ RH∞, and [u]RH∞ ≤ β, then there exists r > 1, depending only on
n, β, such that u ∈ Ar and [u]Ar ≤ cn,β. In particular, RH∞ ⊆ A∞.

(d) If u ∈ A∞, and w ∈ RH∞, then uw ∈ A∞.

(e) If u ∈ A1 ∩ RH∞, then u ≈ 1.

Fix p ≥ 1, and f1, . . . , fm ∈ L1
loc(R

n), and let v = ∏m
i=1(M fi)

−1.

(f) vp ∈ RH∞, and 1 ≤ [vp]RH∞ ≤ cm,n,p.

(g) If u ∈ A∞, then uvp ∈ A∞, with constant independent of ~f = ( f1, . . . , fm).

Proof. To prove (a), fix a cube Q ⊆ Rn. By Hölder’s inequality, we have that

|Q| =
ˆ

Q
u−

1
2 u1/2 ≤

(ˆ
Q

u−1
)1/2 (ˆ

Q
u
)1/2

,
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and hence,

ess sup
x∈Q

u(x)−1 = (ess inf
x∈Q

u(x))−1 ≤ [u]A1

|Q|
u(Q)

≤ [u]A1

 
Q

u−1,

and the desired result follows taking the supremum over all cubes Q.
The property (b) follows from [31, Theorem 4.2]. Let q ≥ 1, and fix a cube

Q ⊆ Rn. Then,

ess sup
x∈Q

u(x) ≤ [u]RH∞

 
Q

u ≤ [u]RH∞

( 
Q

uq
)1/q

,

from which the desired result follows, as before.
To prove (c), fix a cube Q ⊆ Rn, and a measurable set E ⊆ Q. Then,

u(E)
u(Q)

=
1

u(Q)

ˆ
Q

χEu ≤ |E|
u(Q)

ess sup
x∈Q

u(x) ≤ [u]RH∞

|E|
|Q| ≤ β

|E|
|Q| .

In particular, for every ε > 0, and δ := ε
β , if |E| < δ|Q|, then u(E) < εu(Q),

and the desired result follows from this fact applying the last theorem in [83].
To prove (d), take q, r > 1 such that u ∈ Aq and w ∈ Ar. We will show

that uw ∈ As, for s := q + r− 1. Fix a cube Q ⊆ Rn. Then,
 

Q
uw ≤ [w]RH∞

( 
Q

u
)( 

Q
w
)

,

and in virtue of Hölder’s inequality with exponent α := 1 + r−1
q−1 ,

( 
Q
(uw)1−s′

)s−1

≤
( 

Q
u(1−s′)α

) s−1
α
( 

Q
w(1−s′)α′

) s−1
α′

=

( 
Q

u1−q′
)q−1( 

Q
w1−r′

)r−1

,

so [uw]As ≤ [w]RH∞ [u]Aq [w]Ar < ∞.
The property (e) follows immediately from Corollary 4.6 in [31].
To prove (f), observe that in virtue of [44, Theorem 7.2.7], we have that for

0 < δ < 1, (M fi)
δ ∈ A1, and [(M fi)

δ]A1 ≤
cn

1−δ , i = 1, . . . , m. In particular,
w := ∏m

i=1(M fi)
δ/m ∈ A1, and [w]A1 ≤ ∏m

i=1[(M fi)
δ]1/m

A1
≤ cn

1−δ . Since vp =

w−
mp
δ , it follows from (a) and (b) that

[vp]RH∞ ≤ [w−1]
mp
δ

RH∞
≤ [w]

mp
δ

A1
≤
(

cn

1− δ

)mp
δ

,

so

1 ≤ [vp]RH∞ ≤ cm,n,p := inf
0<δ<1

(
cn

1− δ

)mp
δ

.



2.3. Sawyer-Type Inequalities for Maximal Operators 39

To prove (g), we already know by (f) that vp ∈ RH∞, with constant
bounded by cm,n,p, so by (c), there exists r > 1, depending only on m, n, p,
such that [vp]Ar ≤ Cm,n,p. By (d), for q > 1 such that u ∈ Aq, and s = q+ r− 1,
[uvp]As ≤ C̃m,n,p[u]Aq < ∞.

The next lemma gives a result on weights that will be handy later on.

Lemma 2.3.2. Let u and v be weights, and suppose that u ∈ A∞. Then, uv ∈ A∞
if, and only if v ∈ A∞(u).

Proof. Let us first assume that uv ∈ A∞. Since u ∈ A∞, there exists s > 1
such that u ∈ RHs, and since uv ∈ A∞, there exists r > 1 such that uv ∈ Ar.
Take q := rs

s−1 > 1. We will show that v ∈ Aq(u). Fix a cube Q. Then,

IQ :=
(

1
u(Q)

ˆ
Q

vu
)(

1
u(Q)

ˆ
Q

v1−q′u
)q−1

=

(
|Q|

u(Q)

)q ( 1
|Q|

ˆ
Q

vu
)(

1
|Q|

ˆ
Q
(vu)1−q′uq′

)q−1

.

Take α := q−1
r−1 = 1 + r

(r−1)(s−1) > 1 and observe that (1 − q′)α = 1 − r′,
q−1

α = r− 1, q′α′ = s, and q−1
α′ = q

s . Using Hölder’s inequality with exponent
α, we get that

(
1
|Q|

ˆ
Q
(vu)1−q′uq′

)q−1

≤
(

1
|Q|

ˆ
Q
(vu)(1−q′)α

) q−1
α
(

1
|Q|

ˆ
Q

uq′α′
) q−1

α′

=

(
1
|Q|

ˆ
Q
(vu)1−r′

)r−1( 1
|Q|

ˆ
Q

us
)q/s

≤ [u]qRHs

(
1
|Q|

ˆ
Q
(vu)1−r′

)r−1(u(Q)

|Q|

)q

.

Hence,

IQ ≤ [u]qRHs

(
1
|Q|

ˆ
Q

vu
)(

1
|Q|

ˆ
Q
(vu)1−r′

)r−1

≤ [u]qRHs
[uv]Ar ,

and [v]Aq(u) = supQ IQ ≤ [u]qRHs
[uv]Ar < ∞.

For the converse, let us assume that v ∈ A∞(u). It follows from Theorem
3.1 in [39] that there exist δ, C > 0 such that for every cube Q ⊆ Rn and every
measurable set E ⊆ Q,

u(E)
u(Q)

≤ C
(

uv(E)
uv(Q)

)δ

.



40 Chapter 2. Hardy, Littlewood, Lorentz, Hölder, and Sawyer

Similarly, since u ∈ A∞, there exist ε, c > 0 such that for every cube Q ⊆ Rn

and every measurable set E ⊆ Q,

|E|
|Q| ≤ c

(
u(E)
u(Q)

)ε

,

so for every cube Q ⊆ Rn and every measurable set E ⊆ Q,

|E|
|Q| ≤ cCε

(
uv(E)
uv(Q)

)εδ

,

and hence, uv ∈ A∞.

Remark 2.3.3. This result is an extension of Lemma 2.1 in [27], where it is
shown that if u ∈ A1 and v ∈ A∞(u), then uv ∈ A∞.

We introduce a weighted version of the dyadic Hardy-Littlewood maximal op-
erator.

Definition 2.3.4. Let D be a general dyadic grid in Rn, and let u be a weight.
For a measurable function f , we consider the function

MD
u ( f )(x) := sup

D3Q3x

1
u(Q)

ˆ
Q
| f (y)|u(y)dy, x ∈ Rn,

where the supremum is taken over all cubes Q ∈ D that contain x. If u = 1,
we simply write MD ( f ).

The following bound for the operator MD
u is essential.

Theorem 2.3.5. Let D be a general dyadic grid in Rn, and let u and v be weights.
If u ∈ A∞ and uv ∈ A∞, then there exists a constant Cu,v, independent of D , such
that for every t > 0, and every measurable function f ,∥∥∥∥MD

u ( f v)
v

∥∥∥∥
L1,∞(uv)

≤ Cu,v

ˆ
Rn
| f (x)|u(x)v(x)dx.

Proof. In virtue of Lemma 2.3.2, v ∈ A∞(u) and hence, this theorem follows
from the proof of Theorem 1.4 in [27].

Remark 2.3.6. If we examine the proof of Theorem 1.4 in [27], and we com-
bine it with Appendix A in [28], we can take

Cu,v = 2q(2nr[uv]ARr )
r(q−1) ‖Mu‖q

Lq(uv1−q)
,

where r, q > 1 are such that uv ∈ ARr and v ∈ Aq′(u).

Remark 2.3.7. The bound of Theorem 2.3.5 also holds for the weighted Har-
dy-Littlewood maximal operator Mu, with constant

C := 2n6np pp[u]p
ARp

Cu,v,
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where p ≥ 1 is such that u ∈ ARp .

We can now state and prove the main result of this section.

Theorem 2.3.8. Fix p ≥ 1, and let u and v be weights such that u ∈ ARp and
uvp ∈ A∞. Then, there exists a constant C > 0 such that for every measurable
function f , ∥∥∥∥M f

v

∥∥∥∥
Lp,∞(uvp)

≤ C‖ f ‖Lp,1(u).

Proof. It is known (see [54, 64]) that there exists a collection {Dα}α of 2n gen-
eral dyadic grids in Rn such that

M f ≤ 6n
2n

∑
α=1

MDα( f ).

Hence, ∥∥∥∥M f
v

∥∥∥∥
Lp,∞(uvp)

≤ 12n
2n

∑
α=1

∥∥∥∥MDα( f )
v

∥∥∥∥
Lp,∞(uvp)

,

and it suffices to establish the result for the operator MD , with D a general
dyadic grid in Rn.

We first discuss the case p = 1, which was proved in [27]. We reproduce
the proof here keeping track of the constants. Indeed, by the definition of the
A1 condition,

1
|Q|

ˆ
Q
| f | ≤ [u]A1

1
u(Q)

ˆ
Q
| f |u,

so we get that MD ( f ) ≤ [u]A1 MD
u ( f ). This estimate combined with Theo-

rem 2.3.5 gives that∥∥∥∥MD ( f )
v

∥∥∥∥
L1,∞(uv)

≤ [u]A1

∥∥∥∥MD
u (v f v−1)

v

∥∥∥∥
L1,∞(uv)

≤ [u]A1Cu,v

ˆ
Rn
| f |u,

and hence, the desired result follows, with C = 24n[u]A1Cu,v.
Now, we discuss the case p > 1. Let us take f = χE, with E a measurable

set in Rn, and fix a cube Q ∈ D . As before, by the definition of the ARp
condition,

1
|Q|

ˆ
Q

f ≤ ‖u‖ARp

(
u(E ∩Q)

u(Q)

)1/p

,

so we get that MD (χE) ≤ p[u]ARp (MD
u (χE))

1/p. In particular,

∥∥∥∥MD (χE)

v

∥∥∥∥
Lp,∞(uvp)

≤ p[u]ARp

∥∥∥∥MD
u (χE)

vp

∥∥∥∥1/p

L1,∞(uvp)

.

We can now apply Theorem 2.3.5 to conclude that∥∥∥∥MD
u (χE)

vp

∥∥∥∥
L1,∞(uvp)

=

∥∥∥∥MD
u (vpχEv−p)

vp

∥∥∥∥
L1,∞(uvp)

≤ Cu,vp u(E).
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Combining all the previous estimates, we have that∥∥∥∥M(χE)

v

∥∥∥∥
Lp,∞(uvp)

≤ 24n[u]ARp C1/p
u,vp‖χE‖Lp,1(u).

Since p > 1, Lp,∞(uvp) is a Banach space, and arguing as in the proof of
Lemma 2.2.1, we can extend the previous estimate to arbitrary measurable
functions f , gaining a factor of 4p′ in the constant. Hence, the desired result
follows, with C = 4 · 24n p′[u]ARp C1/p

u,vp .

Remark 2.3.9. For p = 1 and u ∈ A1, a more general version of Theorem 2.3.8
was established in [74], replacing the hypothesis that uv ∈ A∞ by the weaker
assumption that v ∈ A∞. It is unknown to us whether the hypothesis that
uvp ∈ A∞ can be replaced by v ∈ A∞ when p > 1.

In virtue of Lemma 2.3.1, if u ∈ A∞ and v ∈ RH∞, then for every p ≥ 1,
uvp ∈ A∞, and we have a whole class of non-trivial examples of weights that
satisfy the hypotheses of Theorem 2.3.8.

Observe that the conclusion of Theorem 2.3.8 is completely elementary if
p > 1 and u ∈ Ap, since∥∥∥∥M f

v

∥∥∥∥
Lp,∞(uvp)

≤
∥∥∥∥M f

v

∥∥∥∥
Lp(uvp)

= ‖M f ‖Lp(u)

≤ c1[u]
1

p−1
Ap
‖ f ‖Lp(u) ≤ c2[u]

1
p−1
Ap
‖ f ‖Lp,1(u).

(2.3.1)

However, this argument doesn’t work in the general case, because the in-
equality ∥∥∥∥h

v

∥∥∥∥
Lp,∞(uvp)

. ‖h‖Lp,∞(u)

may fail for some measurable functions h on Rn, and arbitrary weights u
and v, as can be seen by choosing h(x) = |x|−

n
p χ{y∈Rn : |y|≥1}(x), u = 1, and

v(x) = h(x) + χ{y∈Rn : |y|<1}(x), with 0 < p < ∞.
To provide applications of Theorem 2.3.8 we need to give a more precise

estimate of the constant C that appears there in terms of the corresponding
constants of the weights involved. We achieve this in the following lemma.

Lemma 2.3.10. In Theorem 2.3.8, if r ≥ 1 is such that uvp ∈ ARr , then one can
take

C = φn
r,p([u]ARp , [uvp]ARr ),

where φn
r,p : [1, ∞)2 −→ (0, ∞) is a function that increases in each variable, and it

depends only on r, p, and the dimension n.

Proof. We first discuss the case when r > 1. We already know that we can
take

C =

{
24n[u]A1Cu,v, p = 1,
4 · 24n p′[u]ARp C1/p

u,vp , p > 1,
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and in virtue of Remark 2.3.6,

Cu,vp = 2q(2nr[uvp]ARr )
r(q−1) ‖Mu‖q

Lq(uvp(1−q))
,

where r, q > 1 are such that uvp ∈ ARr and vp ∈ Aq′(u). For convenience,
we write V := vp. Let us first bound the factor ‖Mu‖q

Lq(uV1−q)
. For the space

of homogeneous type (Rn, d∞, u(x)dx), it follows from the proof of Theorem
1.3 in [55] that

‖Mu‖q
Lq(uV1−q)

≤ 2q−1q′40qDu(1 + 6 · 800Du)[V]A∞(u)[V]
q−1
Aq′ (u)

,

where Du := p log2(2
n p[u]ARp ). Now, given a cube Q ⊆ Rn, and applying

Hölder’s inequality with exponent q, we have that
ˆ

Q
Mu(VχQ)u =

ˆ
Q

Mu(VχQ)

V
uV ≤

∥∥∥∥Mu(VχQ)

V

∥∥∥∥
Lq(uV)

uV(Q)1/q′

=
∥∥Mu(VχQ)

∥∥
Lq(uV1−q) uV(Q)1/q′

≤ ‖Mu‖Lq(uV1−q)

∥∥VχQ
∥∥

Lq(uV1−q) uV(Q)1/q′

= ‖Mu‖Lq(uV1−q) uV(Q),

and taking the supremum over all cubes Q, we get that

[V]A∞(u) ≤ ‖Mu‖Lq(uV1−q) .

Combining the previous estimates, we obtain that

‖Mu‖q
Lq(uV1−q)

≤ (2q−1q′40qDu(1 + 6 · 800Du))q′ [V]
q
Aq′ (u)

.

Now, we will bound the factor [V]
q
Aq′ (u)

. In virtue of [54, Proposition 2.2],

and using the definitions of [u]A2p and [u]ARp , and Kolmogorov’s inequalities,
we can deduce that

[u]A∞ ≤ cn[u]A2p ≤ (2p− 1)2p−1cn[u]
2p
ARp

=: cp,n[u]
2p
ARp

,

and applying Theorem 2.3 in [55], u ∈ RHs for s = 1 + 1
2n+1cp,n[u]

2p
ARp
−1

, and

[u]RHs ≤ 2. Since uV ∈ A2r, Lemma 2.3.2 tells us that if we choose q′ = 2rs′,
then

[V]
q
Aq′ (u)

≤ [u]qq′
RHs

[uV]
q
A2r
≤ 2qq′(2r− 1)q(2r−1)[uV]

2rq
ARr

.
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Finally, observe that q′ = 2n+2rcp,n[u]
2p
ARp

, and 1 < q ≤ 2, so

Cu,V ≤ 22(2nr[uV]ARr )
r

× (2q′402Du(1 + 6 · 800Du))q′ × 22q′(2r− 1)4r−2[uV]4r
ARr

≤ 22+nr(2r− 1)4r−2rr[uvp]5r
ARr

×
(

2n+5rcp,n[u]
2p
ARp

40
5p log2(2

n p[u]ARp
)
)2n+2rcp,n[u]

2p
ARp

=: Cn
r,p([u]ARp , [uvp]ARr ),

and the desired result follows, with

φn
r,p([u]ARp , [uvp]ARr ) =

{
24n[u]A1Cn

r,1([u]A1 , [uv]ARr ), p = 1,
4 · 24n p′[u]ARp Cn

r,p([u]ARp , [uvp]ARr )
1/p, p > 1.

The case when r = 1 follows, for example, from the case when r = 2 and
the fact that if uvp ∈ A1, then [uvp]AR2

≤ [uvp]1/2
A2
≤ [uvp]1/2

A1
.

2.4 Applications

In this section, we will provide several applications of the Sawyer-type in-
equality established in Theorem 2.3.8, obtaining mixed restricted weak type
estimates for multi-variable maximal operators, sparse operators and Cal-
derón-Zygmund operators.

2.4.1 Restricted Weak Type Bounds for M⊗

The first result that we present is the converse of Theorem 2.2.8. Combin-
ing both theorems, we obtain the complete characterization of the restricted
weak type bounds of the operator M⊗ for A∞ weights.

Theorem 2.4.1. Let 1 ≤ p1, . . . , pm < ∞, and let 1
p = 1

p1
+ · · · + 1

pm
. Let

w1, . . . , wm be weights, with wi ∈ ARpi
, i = 1, . . . , m, and w = wp/p1

1 . . . wp/pm
m .

Then, for every vector of measurable functions ~f = ( f1, . . . , fm),

‖M⊗(~f )‖Lp,∞(w) ≤ φ([w1]ARp1
, . . . , [wm]ARpm

)
m

∏
i=1
‖ fi‖Lpi ,1(wi)

,

where φ : [1, ∞)m −→ (0, ∞) is a function increasing in each variable.

Proof. The case when p1 = · · · = pm = 1 was proved in [69], and we build
upon that proof to demonstrate the remaining cases.

We can assume, without loss of generality, that fi ∈ L∞
c (Rn), i = 1, . . . , m.

Fix t > 0 and define

Et := {x ∈ Rn : t < M⊗(~f )(x) ≤ 2t}.
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For i = 1, . . . , m, and taking ṽi := ∏j 6=i(M f j)
−1, we have that

Et = {x ∈ Rn : tṽi(x) < M fi(x) ≤ 2tṽi(x)}.

Using the fact that ṽi ∈ RH∞, with constant independent of ~f (see Lemma
2.3.1), Hölder’s inequality, and Theorem 2.3.8, we obtain that

λw
M⊗(~f )

(t)− λw
M⊗(~f )

(2t) =
ˆ

Et

w ≤
ˆ

Et

(
M⊗(~f )

t

)p

w

≤ 1
tp

m

∏
i=1

(ˆ
Et

(M fi)
pi wi

)p/pi

≤ 2mpt(m−1)p
m

∏
i=1

(ˆ
{

M fi
ṽi

>t
} ṽpi

i wi

)p/pi

≤ 2mpCp
1 . . . Cp

m
1
tp

m

∏
i=1
‖ fi‖

p
Lpi ,1(wi)

.

(2.4.1)

Iterating this result, we get that for each t > 0 and every natural number N,

λw
M⊗(~f )

(t) ≤ 2mpCp
1 . . . Cp

m

(
N

∑
j=0

1
2jp

)
1
tp

m

∏
i=1
‖ fi‖

p
Lpi ,1(wi)

+ λw
M⊗(~f )

(2N+1t),

and letting N tend to infinity, the last term vanishes, and we conclude that

λw
M⊗(~f )

(t) ≤ 2(m+1)p

2p − 1
Cp

1 . . . Cp
m

1
tp

m

∏
i=1
‖ fi‖

p
Lpi ,1(wi)

.

Observe that in virtue of Lemma 2.3.1, for i = 1, . . . , m, we have that
wiṽ

pi
i ∈ Asi , where si > 1 depends only on m, n, pi, and

[wiṽ
pi
i ]si

ARsi
≤ [wiṽ

pi
i ]Asi

.m,n,pi [wi]A2pi
.m,n,pi [wi]

2pi
ARpi

,

so by Lemma 2.3.10, we have that Ci ≤ φn
si,pi

([wi]ARpi
, Cm,n,pi [wi]

2pi
si

ARpi
), and

hence, the desired result follows, with

φ([w1]ARp1
, . . . , [wm]ARpm

) =
2m+1

(2p − 1)1/p

m

∏
i=1

φn
si,pi

([wi]ARpi
, Cm,n,pi [wi]

2pi
si

ARpi
),

which depends on the constants of the weights wi in an increasing way.

Remark 2.4.2. Concerning weak, and mixed type bounds, the proof of The-
orem 2.4.1 can be easily modified, applying (2.3.1) in (2.4.1), to show that for
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1 ≤ ` ≤ m, if wi ∈ Api , i = 1, . . . , `, and wi ∈ ARpi
, i = `+ 1, . . . , m, then

M⊗ : Lp1(w1)× · · ·× Lp`(w`)× Lp`+1,1(w`+1)× · · ·× Lpm,1(wm) −→ Lp,∞(w),

with constant depending in an increasing way on the constants of the weights
w1, . . . , wm. Combining this with Theorem 2.2.12, we obtain the complete
characterizations of the weak, and mixed type bounds of the operator M⊗

for A∞ weights.

As an immediate consequence of Theorem 2.4.1, we can produce restric-
ted weak type bounds for operators that are point-wise dominated by M⊗,
like the averages of products of convolutions that we now present.

Theorem 2.4.3. For every i = 1, . . . , m, let ψi : [0, ∞) −→ [0, ∞) be a decreasing
function that is continuous except at a finite number of points, and suppose that
Ψi(x) = ψi(|x|) is an integrable function on Rn. Given t > 0, write Ψi

t(x) =
t−nΨi(t−1x). For a measure µ on (0, ∞)m such that |µ|((0, ∞)m) < ∞, consider
the averaging operator

T~Ψ,µ( f1, . . . , fm)(x) :=
ˆ
(0,∞)m

(
m

∏
i=1

ˆ
Rn
| fi(x− y)|Ψi

ti
(y)dy

)
dµ(t1, . . . , tm)

=

ˆ
(0,∞)m

(| f1| ∗Ψ1
t1
)(x) . . . (| fm| ∗Ψm

tm)(x)dµ(t1, . . . , tm),

defined for locally integrable functions f1, . . . , fm on Rn. Take exponents 1 ≤
q1, . . . , qm, and 1

q = 1
q1
+ · · · + 1

qm
, and weights wi ∈ ARqi

, i = 1, . . . , m, and

w = wq/q1
1 . . . wq/qm

m . Then,

T~Ψ,µ : Lq1,1(w1)× · · · × Lqm,1(wm) −→ Lq,∞(w), (2.4.2)

with constant bounded by Φ([w1]ARq1
, . . . , [wm]ARqm

), where Φ : [1, ∞)m −→ [0, ∞)

is a function increasing in each variable.

Proof. In virtue of [44, Theorem 2.1.10], we have that for i = 1, . . . , m,

(| fi| ∗Ψi
ti
) ≤ ‖Ψi‖L1(Rn)M fi,

so

|T~Ψ,µ( f1, . . . , fm)| ≤ |µ|((0, ∞)m)

(
m

∏
i=1
‖Ψi‖L1(Rn)

)
M f1 . . . M fm,

and (2.4.2) follows from Theorem 2.4.1.

Remark 2.4.4. Note that from the argument in the proof of Theorem 2.4.3,
and taking into account Remark 2.2.13 and Remark 2.4.2, we can also deduce
strong, weak, and mixed type bounds for T~Ψ,µ.
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Remark 2.4.5. In virtue of [44, Remark 2.2.4], given a Schwartz function f on
Rn, we have that

| f (x)| ≤
C f ,n

(1 + |x|)n+1 ∈ L1(Rn),

and hence, we can use Theorem 2.4.3, Remark 2.2.13, and Remark 2.4.2 to
obtain strong, weak, mixed, and restricted weak type bounds for some bi-
linear constant coefficient paraproducts on Rn (see [99, Section 5]).

2.4.2 Sawyer-Type Inequalities for M⊗ andM
The next application that we provide is an extension of Theorem 2.3.8 to the
multi-variable setting, which in turn, extends Theorem 2.4.1. The proof is
based on the previous one, and is similar to that of Theorem 1.4 in [75].

Theorem 2.4.6. Let 1 ≤ p1, . . . , pm < ∞, and let 1
p = 1

p1
+ · · · + 1

pm
. Let

w1, . . . , wm be weights, with wi ∈ ARpi
, i = 1, . . . , m, and ν~w = wp/p1

1 . . . wp/pm
m .

Let v be a weight such that ν~wvp is a weight, and wivpi ∈ A∞, i = 1, . . . , m. Then,
there exists a constant C > 0 such that the inequalities∥∥∥∥∥M(~f )

v

∥∥∥∥∥
Lp,∞(ν~wvp)

≤
∥∥∥∥∥M⊗(~f )

v

∥∥∥∥∥
Lp,∞(ν~wvp)

≤ C
m

∏
i=1
‖ fi‖Lpi ,1(wi)

hold for every vector of measurable functions ~f = ( f1, . . . , fm).

Proof. The first inequality follows from the fact that M(~f ) ≤ M⊗(~f ). For
the second one, we can assume, without loss of generality, that fi ∈ L∞

c (Rn),
i = 1, . . . , m. Fix y, R > 0 and define

ER
y := {x ∈ Rn : |x| < R, yv(x) < M⊗(~f )(x) ≤ 2yv(x)}.

For i = 1, . . . , m, and taking ṽi := ∏j 6=i(M f j)
−1, and vi := ṽiv, we have that

ER
y = {x ∈ Rn : |x| < R, yvi(x) < M fi(x) ≤ 2yvi(x)}.

Since ṽi ∈ RH∞, and wivpi ∈ A∞, we know that wiv
pi
i ∈ A∞, with constant

independent of ~f (see Lemma 2.3.1). In virtue of Hölder’s inequality and
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Theorem 2.3.8, we get that

ν~wvp

({
x ∈ Rn : |x| < R,

M⊗(~f )(x)
v(x)

> y

})

− ν~wvp

({
x ∈ Rn : |x| < R,

M⊗(~f )(x)
v(x)

> 2y

})

=

ˆ
ER

y

ν~wvp ≤
ˆ

ER
y

(
M⊗(~f )

y

)p

ν~w ≤
1
yp

m

∏
i=1

(ˆ
ER

y

(M fi)
pi wi

)p/pi

≤ 2mpy(m−1)p
m

∏
i=1

(ˆ
{

M fi
vi

>y
} vpi

i wi

)p/pi

≤ 2mpCp
1 . . . Cp

m
1
yp

m

∏
i=1
‖ fi‖

p
Lpi ,1(wi)

.

Iterating this result, we deduce that for each y > 0 and every natural number
N,

ν~wvp

({
x ∈ Rn : |x| < R,

M⊗(~f )(x)
v(x)

> y

})

≤ 2mpCp
1 . . . Cp

m

(
N

∑
j=0

1
2jp

)
1
yp

m

∏
i=1
‖ fi‖

p
Lpi ,1(wi)

+ ν~wvp

({
x ∈ Rn : |x| < R,

M⊗(~f )(x)
v(x)

> 2N+1y

})
,

and letting first N tend to infinity, and then R, the last term vanishes, and we
conclude that

λ
ν~wvp

M⊗(~f )
v

(y) ≤ 2(m+1)p

2p − 1
Cp

1 . . . Cp
m

1
yp

m

∏
i=1
‖ fi‖

p
Lpi ,1(wi)

.

For i = 1, . . . , m, if we take qi > 1 such that wivpi ∈ ARqi
, in virtue of

Lemma 2.3.1, we have that wiv
pi
i ∈ Asi , where si > 1 depends only on

m, n, pi, qi, and [wiv
pi
i ]si

ARsi
≤ [wiv

pi
i ]Asi

.m,n,pi,qi [wivpi ]
2qi
ARqi

, so by Lemma 2.3.10,

we have that Ci ≤ φn
si,pi

([wi]ARpi
, Cm,n,pi,qi [wivpi ]

2qi
si

ARqi
), and hence, the desired re-

sult follows, with

C =
2m+1

(2p − 1)1/p

m

∏
i=1

φn
si,pi

([wi]ARpi
, Cm,n,pi,qi [wivpi ]

2qi
si

ARqi
)),

which depends on the constants of the weights wi and wivpi in an increasing
way.

Remark 2.4.7. In the case when p1 = · · · = pm = 1, the previous result is a
corollary of Theorem 1.4 in [75].
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Observe that if we take weights wi ∈ ARpi
, i = 1, . . . , m, and v ∈ RH∞,

then the hypotheses of Theorem 2.4.6 are satisfied.

2.4.3 Sawyer-Type Inequalities for AS and Whatnot

The next result will be crucial to work with Calderón-Zygmund operators in
the mixed restricted weak type setting.

Theorem 2.4.8. Let 0 < p < ∞, let S be an η-sparse collection of cubes, and let
v, w be weights. Suppose that there exists 0 < ε ≤ 1 such that ε < p, wv−ε ∈ A∞,
and

[v−ε]RH∞(w) := sup
Q

w(Q)

wv−ε(Q)
‖χQv−ε‖L∞(w) < ∞.

Then, there exists a constant C > 0, independent of S , such that the inequality∥∥∥∥∥AS(~f )v

∥∥∥∥∥
Lp,∞(w)

≤ C

∥∥∥∥∥M(~f )
v

∥∥∥∥∥
Lp,∞(w)

holds for every vector of measurable functions ~f = ( f1, . . . , fm).

Proof. In virtue of Kolmogorov’s inequalities, we obtain that∥∥∥∥∥AS(~f )v

∥∥∥∥∥
Lp,∞(w)

≤ sup
0<w(F)<∞

∥∥∥∥∥AS(~f )v
χF

∥∥∥∥∥
Lε(w)

w(F)
1
p−

1
ε ,

where the supremum is taken over all measurable sets F with 0 < w(F) < ∞.
For one of such sets F, and W := wv−ε, we have that∥∥∥∥∥AS(~f )v

χF

∥∥∥∥∥
ε

Lε(w)

≤
ˆ

Rn
∑

Q∈S
χQ

(
∏m

i=1
ffl

Q | fi|
v

)ε

χFw

= ∑
Q∈S

(
m

∏
i=1

 
Q
| fi|
)ε (

1
W(3Q)

ˆ
Q

χFW
)

W(3Q) =: I.

Since W ∈ A∞, there exists r ≥ 1 such that W ∈ ARr . Hence,

sup
Q

sup
E⊆Q

|E|
|Q|

(
W(Q)

W(E)

)1/r

= ‖W‖ARr
< ∞.

By hypothesis, S is η-sparse, so for each Q ∈ S ,

W(3Q) ≤
(

3n

η
‖W‖ARr

)r
W(EQ).
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Using this, we get that

I ≤
(

3n

η
‖W‖ARr

)r

∑
Q∈S

(
m

∏
i=1

 
Q
| fi|
)ε (

1
W(3Q)

ˆ
Q

χFW
)

W(EQ)

=

(
3n

η
‖W‖ARr

)r

∑
Q∈S

ˆ
EQ

(
m

∏
i=1

 
Q
| fi|
)ε (

1
W(3Q)

ˆ
Q

χFW
)

W =: I I.

The sides of an n-dimensional cube have Lebesgue measure 0 in Rn, so
we can assume that the cubes in S are open. For Q ∈ S and z ∈ EQ, we
define Qz := Q(z, lQ), the open cube of center z and side length twice the
side length of Q. We have that EQ ⊆ Q ⊆ Qz ⊆ 3Q, so(

m

∏
i=1

 
Q
| fi|
)

χEQ(z) ≤M(~f )(z),

and
1

W(3Q)

ˆ
Q

χFW ≤ 1
W(Qz)

ˆ
Qz

χFW ≤ Mc
W(χF)(z).

Since the sets {EQ}Q∈S are pairwise disjoint, and using Hölder’s inequal-
ity with parameter p

ε > 1,

I I ≤
(

3n

η
‖W‖ARr

)r ˆ
Rn

(
M(~f )

)ε
Mc

W(χF)W

≤
(

3n

η
‖W‖ARr

)r
∥∥∥∥∥
(
M(~f )

v

)ε∥∥∥∥∥
L

p
ε ,∞(w)

‖Mc
W(χF)‖L(

p
ε )
′ ,1(w)

≤ p
p− ε

(
3n

η
‖W‖ARr

)r

‖Mc
W‖L(

p
ε )
′ ,1(w)

w(F)1− ε
p

∥∥∥∥∥M(~f )
v

∥∥∥∥∥
ε

Lp,∞(w)

.

Observe that for every measurable function g, ‖Mc
W(g)‖L∞(w) ≤ ‖g‖L∞(w),

and arguing as in the proof of Theorem 5.2.2, it is easy to show that

‖Mc
W(g)‖L1,∞(w) ≤ 24n[v−ε]RH∞(w)‖g‖L1(w).

In particular, and applying Marcinkiewicz’s interpolation theorem (see [4,
Theorem 4.13]), we conclude that

‖Mc
W‖L(

p
ε )
′ ,1(w)

≤ cn,p,ε[v−ε]
1− ε

p
RH∞(w)

< ∞.
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Combining the previous estimates, we obtain that∥∥∥∥∥AS(~f )v
χF

∥∥∥∥∥
Lε(w)

w(F)
1
p−

1
ε

≤
(

p
p− ε

(
3n

η
‖W‖ARr

)r
cn,p,ε[v−ε]

1− ε
p

RH∞(w)

)1/ε
∥∥∥∥∥M(~f )

v

∥∥∥∥∥
Lp,∞(w)

,

and the desired result follows, with

C = inf
r≥1 : W∈ARr

(
p

p− ε

(
3n

η
‖W‖ARr

)r
cn,p,ε[v−ε]

1− ε
p

RH∞(w)

)1/ε

.

Remark 2.4.9. For 0 < p ≤ 1, if we take v such that vδ ∈ A∞ for some δ > 0,
and w = uvp, with u ∈ A1, the previous result can be established via an
extrapolation argument (see [90, Theorem 1.1]).

Under the conditions that 0 < p ≤ 1, and w = uvp, we can find weights
u and v that satisfy the hypotheses of Theorem 1.1 in [90] but not the ones
of Theorem 2.4.8, and vice versa. If we take a non-constant weight u ∈ A1,
and v = u−1/p, then v ∈ RH∞ ⊆ A∞, and uvp = 1, but for every 0 < ε ≤ 1
such that ε < p, we have that v−ε = uε/p ∈ A1, and since u is non-constant,
v−ε 6∈ RH∞. Similarly, if we take a non-constant weight v ∈ A1, and u = v−p,
then uvp = 1, and for every ε > 0, uvp−ε = v−ε ∈ RH∞ ⊆ A∞, but u ∈ RH∞
and is non-constant, so u 6∈ A1 (see Lemma 2.3.1).

The previous examples show that, sometimes, some of the hypotheses of
Theorem 2.4.8 may be redundant. Let us be more precise on this fact. If w ∈
A∞, and wv−ε is a weight, then [v−ε]RH∞(w) < ∞ implies that wv−ε ∈ A∞.
Indeed, given a cube Q ⊆ Rn, and a measurable set E ⊆ Q, we have that

wv−ε(E)
wv−ε(Q)

=
1

wv−ε(Q)

ˆ
Q

χEwv−ε

≤ w(E)
wv−ε(Q)

‖χQv−ε‖L∞(w) ≤ [v−ε]RH∞(w)
w(E)
w(Q)

,

and since w ∈ A∞, there exist δ, C > 0 such that

w(E)
w(Q)

≤ C
(
|E|
|Q|

)δ

,

so
wv−ε(E)
wv−ε(Q)

≤ C[v−ε]RH∞(w)

(
|E|
|Q|

)δ

, (2.4.3)

and hence, wv−ε ∈ A∞ (see [39]).
The next application of Theorem 2.3.8 follows from the combination of

Theorems 2.4.6 and 2.4.8, and gives us mixed restricted weak type bounds for



52 Chapter 2. Hardy, Littlewood, Lorentz, Hölder, and Sawyer

multi-variable sparse operators that can also be deduced for other operators,
such as multi-linear Calderón-Zygmund operators, using sparse domination
techniques (see [71]).

Theorem 2.4.10. Let 1 ≤ p1, . . . , pm < ∞, and let 1
p = 1

p1
+ · · · + 1

pm
. Let

w1, . . . , wm be weights, with wi ∈ ARpi
, i = 1, . . . , m, and ν~w = wp/p1

1 . . . wp/pm
m .

Let v be a weight such that ν~wvp is a weight, and wivpi ∈ A∞, i = 1, . . . , m.
Moreover, suppose that there exists 0 < ε ≤ 1 such that ε < p, ν~wvp−ε ∈ A∞, and
[v−ε]RH∞(ν~wvp) < ∞. Then, there exists a constant C > 0 such that the inequality∥∥∥∥∥T(~f )

v

∥∥∥∥∥
Lp,∞(ν~wvp)

≤ C
m

∏
i=1
‖ fi‖Lpi ,1(wi)

holds for every vector of measurable functions ~f = ( f1, . . . , fm), where T is either a
sparse operator of the form

AS(~f ) := ∑
Q∈S

(
m

∏
i=1

 
Q

fi

)
χQ,

where S is an η-sparse collection of dyadic cubes, or any operator that can be con-
veniently dominated by such sparse operators, like m-linear ω-Calderón-Zygmund
operators with ω satisfying the Dini condition.

Remark 2.4.11. In the case when p1 = · · · = pm = 1, and T is a multi-linear
Calderón-Zygmund operator, the previous result follows from Theorem 1.9
in [75].

In general, there are examples of weights that satisfy the hypotheses of
Theorem 2.4.10 apart from the constant weights. For instance, if 1 ≤ p1, . . . ,

pm ≤ m′, we can take wi = (Mhi)
1−pi

m , with hi ∈ L1
loc(R

n), i = 1, . . . , m, and

v = ν
− 1

p
~w . Indeed, in virtue of Theorem 2.7 in [9], we have that wi ∈ ARpi

,

i = 1, . . . , m, and wivpi =
(

∏j 6=i(Mhj)
1/p′j
)pi/m

∈ A1. Observe that ν~wvp = 1,

and v =
(

∏m
i=1(Mhi)

1/p′i
)1/m

∈ A1, so for every ε > 0, ν~wvp−ε = v−ε ∈
RH∞ ⊆ A∞.

2.4.4 A Dual Sawyer-Type Inequality for M

The last application that we provide of Theorem 2.3.8 can be interpreted as a
dual version of it, and generalizes [14, Proposition 2.10].

Theorem 2.4.12. Fix p > 1, and let u and v be weights such that u ∈ ARp , uvp ∈
A∞, and for some 0 < ε ≤ 1, uvp−ε is a weight, and [v−ε]RH∞(uvp) < ∞. Then,
there exists a constant C > 0 such that for every measurable function f ,∥∥∥∥M( f uvp−1)

u

∥∥∥∥
Lp′ ,∞(u)

≤ C‖ f ‖Lp′ ,1(uvp)
. (2.4.4)
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Proof. It is known (see [64]) that there exist a collection {Dα}α of 2n general
dyadic grids in Rn, and a collection {Sα}α of 1

2 -sparse families of cubes, with
Sα ⊆ Dα, such that for every measurable function F,

MF ≤ 2 · 12n
2n

∑
α=1
ASα

(|F|).

Hence,∥∥∥∥M( f uvp−1)

u

∥∥∥∥
Lp′ ,∞(u)

≤ 2 · 24n
2n

∑
α=1

∥∥∥∥∥ASα
(| f |uvp−1)

u

∥∥∥∥∥
Lp′ ,∞(u)

. (2.4.5)

By duality, and self-adjointness ofASα
, and in virtue of Hölder’s inequal-

ity, we have that∥∥∥∥∥ASα
(| f |uvp−1)

u

∥∥∥∥∥
Lp′ ,∞(u)

≤ p sup
‖g‖

Lp,1(u)
≤1

{ˆ
Rn
ASα

(| f |uvp−1)|g|
}

= p sup
‖g‖

Lp,1(u)
≤1

{ˆ
Rn
| f |uvp−1ASα

(|g|)
}

≤ p sup
‖g‖

Lp,1(u)
≤1

{∥∥∥∥ASα
(|g|)
v

∥∥∥∥
Lp,∞(uvp)

}
‖ f ‖Lp′ ,1(uvp)

.

(2.4.6)

Given a measurable function g such that ‖g‖Lp,1(u) ≤ 1, and in virtue of
Theorem 2.4.8, we get that∥∥∥∥ASα

(|g|)
v

∥∥∥∥
Lp,∞(uvp)

≤ ψε,u,v([v−ε]RH∞(uvp))

∥∥∥∥Mg
v

∥∥∥∥
Lp,∞(uvp)

, (2.4.7)

with

ψε,u,v([v−ε]RH∞(uvp)) :=
(

p
p− ε

(
2 · 3nr[uvp−ε]ARr

)r
cn,p,ε[v−ε]

1− ε
p

RH∞(uvp)

)1/ε

,

(2.4.8)
where r ≥ 1 is such that uvp−ε ∈ ARr (see (2.4.3)). Applying Theorem 2.3.8
and Lemma 2.3.10, we obtain that∥∥∥∥Mg

v

∥∥∥∥
Lp,∞(uvp)

≤ φn
s,p([u]ARp , [uvp]ARs )‖g‖Lp,1(u) ≤ φn

s,p([u]ARp , [uvp]ARs ),

(2.4.9)
where s ≥ 1 is such that uvp ∈ ARs .
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Combining the estimates (2.4.5), (2.4.6), (2.4.7), and (2.4.9), we conclude
that (2.4.4) holds, with

C = 2 · 48n pψε,u,v([v−ε]RH∞(uvp))φ
n
s,p([u]ARp , [uvp]ARs ).

Remark 2.4.13. Observe that if v = 1, then in Theorem 2.4.12 we can take
ε = 1, and C = Cn,p[u]

p+1
ARp

, and the dependence on u of the constant C is

explicit, yielding a refined version of [14, Proposition 2.10].

Note that for p > 1, if u ∈ Ap, and v is a weight, then for every measurable
function f ,∥∥∥∥M( f uvp−1)

u

∥∥∥∥
Lp′ ,∞(u)

≤
∥∥∥∥M( f uvp−1)

u

∥∥∥∥
Lp′ (u)

= ‖M( f uvp−1)‖Lp′ (u1−p′ )

≤ c1[u1−p′ ]
1

p′−1
Ap′
‖ f uvp−1‖Lp′ (u1−p′ ) = c1[u]Ap‖ f ‖Lp′ (uvp)

≤ c2[u]Ap‖ f ‖Lp′ ,1(uvp)
,

(2.4.10)

where in the second line we have used [8, Theorem 2.5] and [44, Proposition
7.1.5]. Hence, we obtain (2.4.4) without assuming that for some 0 < ε ≤ 1,
[v−ε]RH∞(uvp) < ∞. We would like to prove Theorem 2.4.12 without this
technical hypothesis, but unfortunately, at the time of writing, we don’t know
how to do it.
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Chapter 3

Two-Variable Mixed Type
Extrapolation

“ No, no, no, it’s all right. It’s supposed to be a little asymmetrical.
Apparently, a small flaw somehow improves it. ”

Sheldon Cooper, The Big Bang Theory, 2018

We devote this chapter to the study of mixed type Rubio de Francia’s ex-
trapolation and its applications. For simplicity, we write the two-variable
versions of our results; the extension of these to the multi-variable setting is
just a matter of notation. In Section 3.1, we expose technical results that we
will apply in our work. In Section 3.2, we present our first two-variable re-
stricted weak type extrapolation theorems, precursors of our work on mixed
type extrapolation. In Section 3.3, we discuss our main results on mixed
type extrapolation, including downwards, upwards, and combined schemes.
In Section 3.4, we apply our extrapolation results to produce bounds for
product-type operators, averaging operators, bi-linear Fourier multiplier op-
erators, and two-variable commutators.

3.1 Technical Results

In this section, we gather some technical results that we will use throughout
this chapter.

The next result will be handy for future computations.

Lemma 3.1.1. Given real numbers A, B ≥ 0, and 0 < ϑ < $,

inf
γ>0

{
Aγ−ϑ + Bγ$−ϑ

}
=

$

$− ϑ

(
$− ϑ

ϑ

)ϑ/$

A1− ϑ
$ Bϑ/$.

Proof. If AB = 0, then the result is clear. Otherwise, observe that the function
h(γ) := Aγ−ϑ + Bγ$−ϑ, defined for γ > 0, achieves its minimum at

γ0 :=
(

ϑ

$− ϑ

)1/$ (A
B

)1/$

,
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and hence,

inf
γ>0

{
Aγ−ϑ + Bγ$−ϑ

}
= h(γ0) =

(
1 +

ϑ

$− ϑ

)(
$− ϑ

ϑ

)ϑ/$

A1− ϑ
$ Bϑ/$.

The next result ensures that certain functions are locally integrable.

Lemma 3.1.2. Let p ≥ 1, and let w be a weight.

(a) If w ∈ Ap, and f ∈ Lp(w), then f ∈ L1
loc(R

n).

(b) If w ∈ ARp , and f ∈ Lp,1(w), then f ∈ L1
loc(R

n).

Proof. To prove (a), in virtue of Hölder’s inequality we have that for every
cube Q ⊆ Rn,

ˆ
Q
| f | =

ˆ
Rn
| f |χQw−1w ≤ ‖ f ‖Lp(w)‖χQw−1‖Lp′ (w)

≤ ‖ f ‖Lp(w)[w]
1/p
Ap

|Q|
w(Q)1/p < ∞.

To prove (b), in virtue of Hölder’s inequality we have that for every cube
Q ⊆ Rn,

ˆ
Q
| f | =

ˆ
Rn
| f |χQw−1w ≤ ‖ f ‖Lp,1(w)‖χQw−1‖Lp′ ,∞(w)

≤ ‖ f ‖Lp,1(w)[w]ARp
|Q|

w(Q)1/p < ∞.

The next result allows us to construct nice weights.

Lemma 3.1.3. Let 1 ≤ q ≤ p, and let w be a weight. For a measurable function
h ∈ L1

loc(R
n), let v = (Mh)q−pw.

(a) If 1 < q < p, and w ∈ Aq, then v ∈ Ap, and

[v]Ap ≤ C[w]
1+ p−1

q−1
Aq

,

with C independent of h.

(b) If w ∈ Âq, then v ∈ ARp , and

‖v‖ARp
≤ C‖w‖q/p

Âq
,

with C independent of h.
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Proof. To prove (a), since w ∈ Aq, we can find weights u1, u2 ∈ A1 such that

w = u1−q
1 u2, with [u1]A1 ≤ c1[w]

1
q−1
Aq

and [u2]A1 ≤ c2[w]Aq . The details on the
construction of such A1 weights are available in [22, Theorem 4.2]. Moreover,

v =

(
(Mh)

q−p
1−p u

1−q
1−p
1

)1−p

u2 =: ũ1−p
1 u2,

and in virtue of [14, Lemma 2.12], ũ1 ∈ A1, with [ũ1]A1 ≤ c3[u1]A1 , and c3
independent of h. Hence, v ∈ Ap, with

[v]Ap ≤ [ũ1]
p−1
A1

[u2]A1 ≤ cp−1
3 [u1]

p−1
A1

[u2]A1 ≤ cp−1
1 c2cp−1

3 [w]
1+ p−1

q−1
Aq

,

and the desired result follows, with C = cp−1
1 c2cp−1

3 .
To prove (b), since w ∈ Âq, we can find a measurable function h1 ∈

L1
loc(R

n) and a weight u ∈ A1 such that w = (Mh1)
1−qu, with [u]1/q

A1
≤

2‖w‖Âq
. Note that if p = 1, then q = 1, and v = w = u. If p > 1, then

v = ((Mh)1−pu)
q−p
1−p ((Mh1)

1−pu)
1−q
1−p ,

and it follows from [9, Lemma 3.8] that v ∈ ARp , with

‖v‖ARp
≤ c[u]1/p

A1
≤ 2q/pc ‖w‖q/p

Âq
,

and the desired result follows, with C = 2q/pc, independent of h.

The next result also allows us to construct nice weights.

Lemma 3.1.4. Let 1 < p < q, and let w be a weight. For a measurable function

h ∈ L1
loc(R

n), let v = w
p−1
q−1 (Mh)

q−p
q−1 .

(a) If w ∈ Aq, then v ∈ Ap, and

[v]Ap ≤ C[w]
1+ p−1

q−1
Aq

,

with C independent of h.

(b) If w ∈ Âq, then v ∈ Âp, and

‖v‖Âp
≤ C‖w‖q/p

Âq
,

with C independent of h.
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Proof. To prove (a), since w ∈ Aq, we can find weights u1, u2 ∈ A1 such that

w = u1−q
1 u2, with [u1]A1 ≤ c1[w]

1
q−1
Aq

and [u2]A1 ≤ c2[w]Aq . Moreover,

v = u1−p
1 u

p−1
q−1
2 (Mh)

q−p
q−1 =: u1−p

1 ũ2,

and in virtue of [14, Lemma 2.12], ũ2 ∈ A1, with [ũ2]A1 ≤ c3[u2]A1 , and c3
independent of h. Hence, v ∈ Ap, with

[v]Ap ≤ [u1]
p−1
A1

[ũ2]A1 ≤ c3[u1]
p−1
A1

[u2]A1 ≤ cp−1
1 c2c3[w]

1+ p−1
q−1

Aq
,

and the desired result follows, with C = cp−1
1 c2c3.

To prove (b), since w ∈ Âq, we can find a measurable function h1 ∈
L1

loc(R
n) and a weight u ∈ A1 such that w = (Mh1)

1−qu, with [u]1/q
A1
≤

2‖w‖Âq
. Note that

v = (Mh1)
1−pu

p−1
q−1 (Mh)

q−p
q−1 =: (Mh1)

1−pũ.

Applying [14, Lemma 2.12], we see that ũ ∈ A1, with [ũ]A1 ≤ c[u]A1 , and c
independent of h. Hence, v ∈ Âp, with

‖v‖Âp
≤ [ũ]1/p

A1
≤ c1/p[u]1/p

A1
≤ 2q/pc1/p‖w‖q/p

Âq
,

and the desired result follows, with C = 2q/pc1/p.

The following result also lets us construct nice weights.

Lemma 3.1.5. Let 1 ≤ p, q < ∞. Let u ∈ Aq, v ∈ Ap, and take W =
(u

v
)1/p.

Then, W ∈ A1+ q
p
, and

[W]A
1+ q

p
≤ [u]1/p

Aq
[v]1/p

Ap
.

Proof. Note that
(

1 + q
p

)′
= 1 + p

q , and 1
p

(
1−

(
1 + q

p

)′)
= −1

q , so

[W]A
1+ q

p
= sup

Q

( 
Q

(u
v

)1/p
)( 

Q

(u
v

)− 1
q
)q/p

. (3.1.1)

Fix a cube Q ⊆ Rn. To estimate the first factor in (3.1.1), in virtue of
Hölder’s inequality with exponent p ≥ 1, we get that

 
Q

(u
v

)1/p
≤
( 

Q
u
)1/p ( 

Q
v1−p′

) p−1
p

, (3.1.2)

where the last term is interpreted as ess supx∈Q v(x)−1 if p = 1.
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Similarly, to estimate the second factor in (3.1.1), in virtue of Hölder’s
inequality with exponent q ≥ 1, we have that

 
Q

(u
v

)− 1
q ≤

( 
Q

v
)1/q ( 

Q
u1−q′

) q−1
q

, (3.1.3)

where the last term is interpreted as ess supx∈Q u(x)−1 if q = 1.
Combining (3.1.1), (3.1.2) and (3.1.3), we obtain that

[W]A
1+ q

p
= sup

Q

( 
Q

(u
v

)1/p
)( 

Q

(u
v

)− 1
q
)q/p

≤ sup
Q

( 
Q

u
)1/p ( 

Q
u1−q′

) q−1
p
( 

Q
v
)1/p ( 

Q
v1−p′

) p−1
p

≤ [u]1/p
Aq

[v]1/p
Ap

.

The next result gives us information about a certain weight.

Lemma 3.1.6. Let 1 ≤ q1, q2 < ∞, and 1
q = 1

q1
+ 1

q2
. Let w1 ∈ Aq1 , w2 ∈ Âq2 ,

and take w = wq/q1
1 wq/q2

2 . Then, w ∈ AR2q, and

[w]AR2q
≤ ψ([w1]Aq1

)‖w2‖1/2
Âq2

,

where ψ : [1, ∞) −→ [0, ∞) is an increasing function.

Proof. If q2 = 1, then w2 ∈ A1, and in virtue of [44, Exercise 7.1.5], we get that

w ∈ A2q, with [w]AR2q
≤ [w]

1
2q
A2q

, and

[w]A2q ≤ [w1]
q/q1
Aq1

[w2]
q
A1

. (3.1.4)

If q2 > 1, we can find a measurable function h ∈ L1
loc(R

n) and a weight

u ∈ A1 such that w2 = (Mh)1−q2u, with [u]1/q2
A1
≤ 2‖w2‖Âq2

. If q1 > 1, we

can also find weights u1, u2 ∈ A1 such that w1 = u1−q1
1 u2, with [u1]A1 ≤

c1[w1]
1

q1−1

Aq1
and [u2]A1 ≤ c2[w1]Aq1

. Note that 2q > 1, and θ := q
q1

1−q1
1−2q ∈ (0, 1),

and by [14, Lemma 2.12], ũ1 := uθ
1(Mh2)

1−θ ∈ A1, with [ũ1]A1 ≤ c3[u1]A1 ,
and c3 independent of h. Now,

ũ1−2q
1 uq/q1

2 uq/q2 = u
q

q1
(1−q1)

1 (Mh)1−q− q
q1 uq/q1

2 uq/q2

=
(

u1−q1
1 u2

)q/q1
(
(Mh)1−q2u

)q/q2
= w,
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and w ∈ A2q, with

[w]A2q ≤ [ũ1]
2q−1
A1

[uq/q1
2 uq/q2 ]A1

≤ c2q−1
3 [u1]

2q−1
A1

[u2]
q/q1
A1

[u]q/q2
A1
≤ 2qc2q−1

1 cq/q1
2 c2q−1

3 [w1]
q

q1
+

2q−1
q1−1

Aq1
‖w2‖

q
Âq2

.

If q2 > 1 and q1 = 1, then w1 ∈ A1, and q
q2

1−q2
1−2q = 1, so

w = (Mh)1−2qwq
1uq/q2 ∈ Â2q,

with [w]AR2q
≤ c4‖w‖Â2q

, and

‖w‖Â2q
≤ [wq

1uq/q2 ]
1
2q
A1
≤ [w1]

1/2
A1

[u]
1

2q2
A1
≤ 21/2[w1]

1/2
A1
‖w2‖1/2

Âq2
.

In any case, w ∈ AR2q, and [w]AR2q
≤ ψ([w1]Aq1

)‖w2‖1/2
Âq2

, with

ψ([w1]Aq1
) =


[w1]

1
2q1
Aq1

, q1 ≥ 1, q2 = 1,

21/2c
1− 1

2q
1 c

1
2q1
2 c

1− 1
2q

3 [w1]
1

2q1
+ 1

2q
2q−1
q1−1

Aq1
, q1 > 1, q2 > 1,

21/2c4[w1]
1/2
A1

, q1 = 1, q2 > 1.

The following result is a precise open property for Ap weights, and it is a
particular case of [55, Theorem 1.2].

Lemma 3.1.7. Let 1 < p < ∞, and let w ∈ Ap and σ = w1−p′ . For

ε =
p− 1

1 + 6 · 800n[σ]A∞

,

we have that w ∈ Ap−ε, and

[w]Ap−ε
≤ 22np+p−1[w]Ap .

The next result is the classical weak type extrapolation theorem for one-
variable operators (see [42, Observation] and [101, Theorem 4]), but with ex-
plicit constants. It follows immediately from the classical Rubio de Francia’s
extrapolation theorem for one-variable operators with explicit constants pre-
sented in [36, Theorem 1], the bounds for the Hardy-Littlewood maximal
operator proved in [54, Corollary 1.10], and the argument in the proof of [28,
Corollary 3.10].

Theorem 3.1.8. Let T be a one-variable operator defined for measurable functions.
Suppose that for some 1 ≤ r < ∞, and every weight u ∈ Ar,

T : Lr(u) −→ Lr,∞(u),
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with constant bounded by φ([u]Ar), where φ : [1, ∞) −→ [0, ∞) is an increasing
function. Then, for every 1 < p < ∞, and every weight w ∈ Ap,

T : Lp(w) −→ Lp,∞(w),

with constant bounded by

ψ([w]Ap) =


21/rφ(2(cn p)

p−r
p−1 [w]Ap), p > r,

φ([w]Ap), p = r,

2
r−1

r φ(2r−1((cn p′)p−r[w]Ap)
r−1
p−1 ), p < r.

The next result shows the strength of a restricted weak type operator.

Theorem 3.1.9. Let T be a sub-linear operator defined for measurable functions.
Suppose that for some 1 < r < ∞, and every weight v ∈ ARr ,

T : Lr,1(v) −→ Lr,∞(v), (3.1.5)

with constant bounded by ϕ([v]ARr ), where ϕ : [1, ∞) −→ [0, ∞) is an increasing
function. Then, for every weight w ∈ Ar,

T : Lr,1(w) −→ Lr,1(w), (3.1.6)

with constant bounded by Φ([w]Ar), where Φ : [1, ∞) −→ [0, ∞) is an increasing
function.

Proof. To establish this result, we will perform two different extrapolation
procedures and an interpolation argument, keeping track of the constants at
each step. In virtue of (3.1.5), and Theorem 3.11 and Remark 3.12 in [9], there
exists an increasing function φ : [1, ∞) −→ [0, ∞), depending only on ϕ, r,
and the dimension n, such that for every weight u ∈ Ar,

T : Lr(u) −→ Lr,∞(u), (3.1.7)

with constant bounded by φ([u]Ar).
Take a weight w ∈ Ar, and let 0 < ε < r − 1 be as in Lemma 3.1.7.

Combining (3.1.7) and Theorem 3.1.8, we obtain that for every weight V ∈
Ar−ε,

T : Lr−ε(V) −→ Lr−ε,∞(V), (3.1.8)

with constant bounded by

ψ−([V]Ar−ε
) := 2

r−1
r φ(2r−1((cn(r− ε)′)−ε[V]Ar−ε

)
r−1

r−ε−1 )

≤ 2
r−1

r φ(2r−1[V]2Ar−ε
),

(3.1.9)

since φ is increasing, 0 < (cn(r− ε)′)−ε ≤ 1, and

1 <
r− 1

r− ε− 1
=

1
1− 1

1+6·800n[w1−r′ ]A∞

= 1 +
1

6 · 800n[w1−r′ ]A∞

< 2.
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Similarly, for every weight W ∈ Ar+ε,

T : Lr+ε(W) −→ Lr+ε,∞(W), (3.1.10)

with constant bounded by

ψ+([W]Ar+ε
) := 21/rφ(2(cn(r + ε))

ε
r+ε−1 [W]Ar+ε

)

≤ 21/rφ(2cn(2r− 1)[W]Ar+ε
),

(3.1.11)

since φ is increasing, 1 < cn(r + ε) < cn(2r− 1), and 0 < ε
r+ε−1 < 1.

By our choice of ε, we know that w ∈ Ar−ε, and [w]Ar−ε
≤ 22nr+r−1[w]Ar ,

so from (3.1.8) and (3.1.9), we get that

T : Lr−ε(w) −→ Lr−ε,∞(w), (3.1.12)

with constant bounded by

Ψ−([w]Ar) := 2
r−1

r φ(24nr+3r−3[w]2Ar
).

Similarly, w ∈ Ar+ε, and [w]Ar+ε
≤ [w]Ar , so from (3.1.10) and (3.1.11), we

have that
T : Lr+ε(w) −→ Lr+ε,∞(w), (3.1.13)

with constant bounded by

Ψ+([w]Ar) := 21/rφ(2cn(2r− 1)[w]Ar).

Applying Marcinkiewicz’s interpolation theorem with explicit constants
(see [44, Theorem 1.4.19]), we can interpolate between (3.1.12) and (3.1.13),
and deduce that (3.1.6) holds, with constant bounded by

C (Ψ−([w]Ar))
1−θ (Ψ+([w]Ar))

θ , (3.1.14)

where θ := r+ε
2r ∈ (0, 1), and

C := 8
21/r ( r+ε

r
)2θ C1−θ

− Cθ
+(

1
r−ε −

1
r

)2(1−θ) (
1
r −

1
r+ε

)2θ
, (3.1.15)

with

C± := 28+ 4
r±ε

(
r± ε

r± ε− 1
2

)4

c,

and c :=
(

1− 1√
2

)−2
(log 2)−2.
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Note that

(Ψ−([w]Ar))
1−θ (Ψ+([w]Ar))

θ ≤ max{Ψ−([w]Ar), Ψ+([w]Ar)}
≤ 2φ(max{24nr+3r−3, 2cn(2r− 1)}[w]2Ar

)

=: Ψ([w]Ar).
(3.1.16)

It remains to control (3.1.15) in terms of [w]Ar . Since 1 < r± ε, we have that
1 < r±ε

r±ε− 1
2
< 2, so C± ≤ 216c, and C1−θ

− Cθ
+ ≤ max{C−, C+} ≤ 216c. Hence,

C ≤ 8 · 216+ 1
r c
(r− ε)2(1−θ)r2(1−θ)(r + ε)4θ

ε2 ≤ 8 · 216+ 1
r c

r2r2(2r− 1)4

ε2 =:
cr

ε2 .

In virtue of [54, Proposition 2.2], we know that

1 ≤ [w1−r′ ]A∞ ≤ Cn[w1−r′ ]Ar′
= Cn[w]

1
r−1
Ar

,

so

1
ε
=

1 + 6 · 800n[w1−r′ ]A∞

r− 1
≤ 1 + 6 · 800n

r− 1
Cn[w]

1
r−1
Ar

=: Cn,r[w]
1

r−1
Ar

,

and we get that C ≤ crC2
n,r[w]

2
r−1
Ar

. Finally, with this estimate, (3.1.14), and
(3.1.16), we conclude that the desired result holds, with

Φ([w]Ar) = crC2
n,r[w]

2
r−1
Ar

Ψ([w]Ar).

3.2 First Steps Towards Restricted Weak Type Ex-
trapolation

In this section, we present the first results on two-variable restricted weak
type extrapolation that we have obtained. The ideas and techniques behind
their proofs will be crucial for our work on mixed type extrapolation, and we
will refine and extend most of them in the next chapter to produce general
multi-variable restricted weak type extrapolation schemes.

The following theorem is a two-variable extension of [9, Theorem 2.11].
The proofs of both results share various common points, although the two-
variable setting gives rise to non-trivial differences. In Figure 3.1 you can
find a pictorial representation of this scheme.

Theorem 3.2.1. Given measurable functions f1, f2, and g, suppose that for some
1 < r < ∞, and all weights v1, v2 ∈ Âr,

‖g‖
L

r
2 ,∞(v1/2

1 v1/2
2 )
≤ ϕ(‖v1‖Âr

, ‖v2‖Âr
) ‖ f1‖Lr,1(v1)

‖ f2‖Lr,1(v2)
, (3.2.1)
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where ϕ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable. Then, for all
weights w1, w2 ∈ A1,

‖g‖
L

1
2 ,∞(w1/2

1 w1/2
2 )
≤ Φ([w1]A1 , [w2]A1) ‖ f1‖L1, 1

r (w1)
‖ f2‖L1, 1

r (w2)
, (3.2.2)

where Φ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable.

Proof. Pick weights w1, w2 ∈ A1, and write w = w1/2
1 w1/2

2 . If for some i =
1, 2, ‖ fi‖L1, 1

r (wi)
= ∞, then there is nothing to prove, so we may assume that

‖ fi‖L1, 1
r (wi)

< ∞, for i = 1, 2. In particular, f1 and f2 are locally integrable (see

Lemma 3.1.2). Fix y > 0 and γ > 0. We have that

λw
g (y) =

ˆ
{|g|>y}

w =

ˆ
{|g|>y, M f1 M f2>γy}

w +

ˆ
{|g|>y, M f1 M f2≤γy}

w

≤ λw
M f1 M f2

(γy) +
ˆ
{|g|>y, M f1 M f2≤γy}

w

≤ λw
M f1 M f2

(γy) +
ˆ
{|g|>y}

(
γy

M f1M f2

) r−1
2

w =: I + I I.

(3.2.3)

To estimate the term I, we apply Theorem 2.4.1 to obtain that

I =
(γy)1/2

(γy)1/2 λw
M f1 M f2

(γy) ≤ 1
(γy)1/2‖M f1M f2‖1/2

L
1
2 ,∞(w)

≤
φ1/2

w1,w2

(γy)1/2‖ f1‖1/2
L1(w1)

‖ f2‖1/2
L1(w2)

≤ r1−r φ1/2
w1,w2

(γy)1/2‖ f1‖1/2

L1, 1
r (w1)
‖ f2‖1/2

L1, 1
r (w2)

,

(3.2.4)

with φw1,w2 := φ([w1]A1 , [w2]A1). The last inequality follows from the fact
that for i = 1, 2,

‖ fi‖L1(wi)
≤ r1−r‖ fi‖L1, 1

r (wi)
, (3.2.5)

as shown in (2.1.1) (see [44, Proposition 1.4.10]).
To estimate the term I I, observe that for i = 1, 2, vi := (M fi)

1−rwi ∈ Âr,
so by (3.2.1) we get that

I I =
(γy)r/2

(γy)1/2

ˆ
{|g|>y}

((M f1)
1−rw1)

1/2((M f2)
1−rw2)

1/2

≤ γr/2

(γy)1/2‖g‖
r/2
L

r
2 ,∞(v1/2

1 v1/2
2 )

≤ γr/2

(γy)1/2 ϕ(‖v1‖Âr
, ‖v2‖Âr

)r/2 ‖ f1‖r/2
Lr,1(v1)

‖ f2‖r/2
Lr,1(v2)

.

(3.2.6)
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Note that for i = 1, 2,

‖ fi‖Lr,1(vi)
= r

ˆ ∞

0

(ˆ
{| fi|>z}

vi

)1/r

dz

≤ r
ˆ ∞

0
z1/r

(ˆ
{| fi|>z}

wi

)1/r
dz
z

= r ‖ fi‖1/r

L1, 1
r (wi)

,

(3.2.7)

because if x ∈ {| fi| > z}, then M fi(x)1−r ≤ | fi(x)|1−r ≤ z1−r. Therefore,
from (3.2.6) we deduce that

I I ≤ rr γr/2

(γy)1/2 ϕ(‖v1‖Âr
, ‖v2‖Âr

)r/2 ‖ f1‖1/2

L1, 1
r (w1)

‖ f2‖1/2

L1, 1
r (w2)

. (3.2.8)

For i = 1, 2, ‖vi‖Âr
≤ [wi]

1/r
A1

, so by the monotonicity of ϕ and combining
the estimates (3.2.3), (3.2.4), and (3.2.8), we conclude that

λw
g (y) ≤

1
y1/2

(
r1−rγ−

1
2 φ1/2

w1,w2
+ rrγ

r−1
2 ϕ([w1]

1/r
A1

, [w2]
1/r
A1

)r/2
)

× ‖ f1‖1/2

L1, 1
r (w1)

‖ f2‖1/2

L1, 1
r (w2)

,

and taking the infimum over all γ > 0, it follows from Lemma 3.1.1 with
A := r1−rφ1/2

w1,w2 , B := rr ϕ([w1]
1/r
A1

, [w2]
1/r
A1

)r/2, $ := r
2 , and ϑ := 1

2 , that

λw
g (y) ≤ r3−r(r′)1/r′ φ

1
2r′
w1,w2

y1/2 ϕ([w1]
1/r
A1

, [w2]
1/r
A1

)1/2 ‖ f1‖1/2

L1, 1
r (w1)

‖ f2‖1/2

L1, 1
r (w2)

.

Finally, multiplying this last expression by y1/2, raising everything to the
power two, and taking the supremum over all y > 0, we see that (3.2.2) holds,
with

Φ([w1]A1 , [w2]A1) = r6−2r(r′)2/r′φ1/r′
w1,w2

ϕ([w1]
1/r
A1

, [w2]
1/r
A1

),

which depends on the constants [w1]A1 and [w2]A1 in an increasing way.

We have presented Theorem 3.2.1 in its general form, for triples of func-
tions ( f1, f2, g). In the next corollary, we deduce the corresponding extrap-
olation scheme for two-variable operators. For convenience, we provide a
pictorial representation of it in Figure 3.1.

Corollary 3.2.2. Let T be a two-variable operator defined for measurable functions
f1 and f2. Suppose that for some 1 < r < ∞, and all weights v1, v2 ∈ Âr,

T : Lr,1(v1)× Lr,1(v2) −→ L
r
2 ,∞(v1/2

1 v1/2
2 ), (3.2.9)

with constant bounded by ϕ(‖v1‖Âr
, ‖v2‖Âr

) as in (3.2.1). Then, for all weights
w1, w2 ∈ A1,

T : L1, 1
r (w1)× L1, 1

r (w2) −→ L
1
2 ,∞(w1/2

1 w1/2
2 ), (3.2.10)
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with constant bounded by Φ([w1]A1 , [w2]A1) as in (3.2.2).

Proof. Let g := |T( f1, f2)|, and for every natural number N ≥ 1, let gN :=
min{g, N}χB(0,N), where B(0, N) := {x ∈ Rn : |x| < N}. Note that for every
N ≥ 1, gN ≤ g, so from (3.2.9) we have that

‖gN‖L
r
2 ,∞(v1/2

1 v1/2
2 )
≤ ϕ(‖v1‖Âr

, ‖v2‖Âr
) ‖ f1‖Lr,1(v1)

‖ f2‖Lr,1(v2)
,

for all weights v1, v2 ∈ Âr, and by Theorem 3.2.1, we obtain that

‖gN‖
L

1
2 ,∞(w1/2

1 w1/2
2 )
≤ Φ([w1]A1 , [w2]A1) ‖ f1‖L1, 1

r (w1)
‖ f2‖L1, 1

r (w2)
,

for all weights w1, w2 ∈ A1, and we get (3.2.10) taking the supremum over all
N ≥ 1 in the previous expression, because

‖g‖
L

1
2 ,∞(w1/2

1 w1/2
2 )

= sup
N≥1
‖gN‖

L
1
2 ,∞(w1/2

1 w1/2
2 )

,

since gN ↑ g.

Remark 3.2.3. Observe that if the operator T is defined for characteristic func-
tions of measurable sets E1, E2 ⊆ Rn, then under the hypotheses of Corol-
lary 3.2.2, we deduce that∥∥T(χE1 , χE2)

∥∥
L

1
2 ,∞(w1/2

1 w1/2
2 )
≤ r2rΦ([w1]A1 , [w2]A1)w1(E1)w2(E2),

and hence, T is of weak type (1, 1, 1
2) at least for characteristic functions.

(1
r , 1

r )

(1, 1)

(0, 0) (1, 0)

(0, 1)

FIGURE 3.1: Pictorial representation of Theorem 3.2.1 and
Corollary 3.2.2.

It is clear that the crucial point of the proof of Theorem 3.2.1 is the end-
point bound of the 2-fold product of Hardy-Littlewood maximal operators,
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which we manage to transfer to the original triple of functions ( f1, f2, g). This
fact suggests that a general extrapolation scheme should allow us to transfer
bounds of a product-type maximal operator to a triple of functions ( f1, f2, g)
under suitable hypotheses. The following theorem quantifies this idea and
allows us to obtain extrapolation schemes based on the bounds of an explicit
operator.

Theorem 3.2.4. Given measurable functions f1, f2, and g, suppose that for some
exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and all weights v1 ∈ ARp1

and v2 ∈ ARp2
,

‖g‖
Lp,∞(v

p/p1
1 vp/p2

2 )
≤ ϕ([v1]ARp1

, [v2]ARp2
) ‖ f1‖Lp1,1(v1)

‖ f2‖Lp2,1(v2)
, (3.2.11)

where ϕ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable. Then, for all
exponents 1 ≤ q1 ≤ p1, 1 ≤ q2 ≤ p2, and 1

q = 1
q1
+ 1

q2
such that p 6= q, and all

weights w1 ∈ Âq1 and w2 ∈ Âq2 ,

‖g‖Lq,∞(w) ≤ Ψ(‖w1‖Âq1
, ‖w2‖Âq2

)‖Z ‖
1− q

p
Lq,∞(w) ‖ f1‖

q1/p1

L
q1,

q1
p1 (w1)

‖ f2‖
q2/p2

L
q2,

q2
p2 (w2)

,

(3.2.12)
where w = wq/q1

1 wq/q2
2 , and Z := (M f1)

δ1wβ1
1 (M f2)

δ2wβ2
2 , with

δi :=
p(pi − qi)

pi(p− q)
and βi :=

p
pi
− q

qi

q− p
, for i = 1, 2.

Moreover,

Ψ(‖w1‖Âq1
, ‖w2‖Âq2

) =
p1p2

q1q2
Cp,q ϕ(C1 ‖w1‖

q1/p1

Âq1
, C2 ‖w2‖

q2/p2

Âq2
), (3.2.13)

which depends on the constants ‖w1‖Âq1
and ‖w2‖Âq2

in an increasing way.

Proof. Pick weights w1 ∈ Âq1 and w2 ∈ Âq2 , and let w = wq/q1
1 wq/q2

2 . We may
assume that the quantity ‖ fi‖

L
qi ,

qi
pi (wi)

< ∞, for i = 1, 2. In particular, f1 and

f2 are locally integrable (see Lemma 3.1.2). Fix y > 0 and γ > 0. We have
that

λw
g (y) =

ˆ
{|g|>y}

w =

ˆ
{|g|>y, Z >γy}

w +

ˆ
{|g|>y, Z ≤γy}

w

≤ λw
Z (γy) +

ˆ
{|g|>y, Z ≤γy}

w

≤ λw
Z (γy) +

ˆ
{|g|>y}

(γy
Z

)p−q
w =: I + I I.

(3.2.14)

To estimate the term I in (3.2.14), we have that

I =
(γy)q

(γy)q λw
Z (γy) ≤ 1

(γy)q ‖Z ‖
q
Lq,∞(w)

. (3.2.15)
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We proceed to estimate the term I I in (3.2.14). For i = 1, 2, take

vi := (M fi)
δi(q−p) pi

p w
(βi(q−p)+ q

qi
)

pi
p

i

= (M fi)
p(pi−qi)
pi(p−q) (q−p) pi

p w
(

p
pi
− q

qi
q−p (q−p)+ q

qi
)

pi
p

i = (M fi)
qi−pi wi.

Since wi ∈ Âqi , it follows from Lemma 3.1.3 that vi ∈ ARpi
, with

[vi]ARpi
≤ ‖vi‖ARpi

≤ Ci ‖wi‖
qi/pi

Âqi
. (3.2.16)

Observe that

Z q−pw = (M f1)
δ1(q−p)wβ1(q−p)

1 (M f2)
δ2(q−p)wβ2(q−p)

2 wq/q1
1 wq/q2

2

= (M f1)
p(q1−p1)

p1 w
p

p1
− q

q1
1 (M f2)

p(q2−p2)
p2 w

p
p2
− q

q2
2 wq/q1

1 wq/q2
2

= ((M f1)
q1−p1w1)

p/p1((M f2)
q2−p2w2)

p/p2 = vp/p1
1 vp/p2

2 ,

so by (3.2.11), (3.2.16), and the monotonicity of ϕ, we get that

I I =
(γy)p

(γy)q

ˆ
{|g|>y}

vp/p1
1 vp/p2

2 ≤ γp

(γy)q ‖g‖
p

Lp,∞(v
p/p1
1 vp/p2

2 )

≤ γp

(γy)q ϕ(C1 ‖w1‖
q1/p1

Âq1
, C2 ‖w2‖

q2/p2

Âq2
)p ‖ f1‖

p
Lp1,1(v1)

‖ f2‖
p
Lp2,1(v2)

,
(3.2.17)

and arguing as we did in (3.2.7), we have that for i = 1, 2,

‖ fi‖Lpi ,1(vi)
≤ pi

qi
‖ fi‖

qi/pi

L
qi ,

qi
pi (wi)

. (3.2.18)

If ‖Z ‖Lq,∞(w) = ∞, then (3.2.12) holds, so we may assume that the quan-
tity ‖Z ‖Lq,∞(w) < ∞. Combining the estimates (3.2.14), (3.2.15), (3.2.17), and
(3.2.18), we conclude that

yqλw
g (y) ≤ γ−q‖Z ‖q

Lq,∞(w)

+

(
p1p2

q1q2

)p
γp−q ϕ(C1 ‖w1‖

q1/p1

Âq1
, C2 ‖w2‖

q2/p2

Âq2
)p ‖ f1‖

pq1
p1

L
q1,

q1
p1 (w1)

‖ f2‖
pq2
p2

L
q2,

q2
p2 (w2)

,

and taking the infimum over all γ > 0, it follows from Lemma 3.1.1 that

yqλw
g (y) ≤

p
p− q

(
p− q

q

)q/p ( p1p2

q1q2

)q
ϕ(C1 ‖w1‖

q1/p1

Âq1
, C2 ‖w2‖

q2/p2

Âq2
)q

× ‖Z ‖
q(1− q

p )

Lq,∞(w) ‖ f1‖
qq1
p1

L
q1,

q1
p1 (w1)

‖ f2‖
qq2
p2

L
q2,

q2
p2 (w2)

.
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Finally, raising everything to the power 1
q in this last expression, and tak-

ing the supremum over all y > 0, we see that (3.2.12) holds, with

Cp,q :=
(

p
p− q

)1/q ( p− q
q

)1/p
(3.2.19)

in (3.2.13).

Remark 3.2.5. Observe that the expression (3.2.12) is homogeneous in the
weights w1 and w2. Indeed, pick weights w1 ∈ Âq1 and w2 ∈ Âq2 . For
parameters α1, α2 > 0, we have that αiwi ∈ Âqi , with ‖αiwi‖Âqi

= ‖wi‖Âqi
, for

i = 1, 2, and under the hypotheses of Theorem 3.2.4, (3.2.12) gives us that

‖g‖
Lq,∞(α

q/q1
1 α

q/q2
2 w)

≤ Ψw1,w2‖α
β1
1 α

β2
2 Z ‖

1− q
p

Lq,∞(α
q/q1
1 α

q/q2
2 w)

× ‖ f1‖
q1/p1

L
q1,

q1
p1 (α1w1)

‖ f2‖
q2/p2

L
q2,

q2
p2 (α2w2)

,

with Ψw1,w2 := Ψ(‖w1‖Âq1
, ‖w2‖Âq2

). Since

‖g‖
Lq,∞(α

q/q1
1 α

q/q2
2 w)

= α
1/q1
1 α

1/q2
2 ‖g‖Lq,∞(w) ,

and

‖αβ1
1 α

β2
2 Z ‖

Lq,∞(α
q/q1
1 α

q/q2
2 w)

= α
β1+

1
q1

1 α
β2+

1
q2

2 ‖Z ‖Lq,∞(w),

and for i = 1, 2,
‖ fi‖

L
qi ,

qi
pi (αiwi)

= α
1/qi
i ‖ fi‖

L
qi ,

qi
pi (wi)

,

we conclude that

‖g‖Lq,∞(w) ≤ cα1,α2Ψw1,w2‖Z ‖
1− q

p
Lq,∞(w) ‖ f1‖

q1/p1

L
q1,

q1
p1 (w1)

‖ f2‖
q2/p2

L
q2,

q2
p2 (w2)

,

with

cα1,α2 := α
(β1+

1
q1
)(1− q

p )+
1

p1
− 1

q1
1 α

(β2+
1

q2
)(1− q

p )+
1

p2
− 1

q2
2

= α
β1(1−

q
p )+

1
p1
− q

pq1
1 α

β2(1−
q
p )+

1
p2
− q

pq2
2

= α
1
p (

q
q1
− p

p1
)+ 1

p1
− q

pq1
1 α

1
p (

q
q2
− p

p2
)+ 1

p2
− q

pq2
2 = 1,

and we recover (3.2.12).

Note that we can easily recover the conclusion of Theorem 3.2.1 from
Theorem 3.2.4. Indeed, for r > 1, choose p1 = p2 = r, with p = r

2 , and
q1 = q2 = 1, with q = 1

2 . For this choice of parameters, δ1 = δ2 = 1, and
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β1 = β2 = 0, so Z = M f1M f2, and Theorem 3.2.4 gives us that

‖g‖
L

1
2 ,∞(w)

≤ Ψ([w1]A1 , [w2]A1)‖M f1M f2‖1/r′

L
1
2 ,∞(w)

‖ f1‖1/r

L1, 1
r (w1)

‖ f2‖1/r

L1, 1
r (w2)

,

with Ψ([w1]A1 , [w2]A1) = r2+ 2
r (r′)2/r′ϕ(C1[w1]

1/r
A1

, C2[w2]
1/r
A1

). Applying The-
orem 2.4.1, and (3.2.5), (3.2.2) follows with a slightly different Φ due to the
constants C1 and C2.

It may seem that the term Z in Theorem 3.2.4 is a weird-looking object
in general, and it’s not at all clear what kind of bounds, if any, does it satisfy.
However, we have seen that under an appropriate choice of parameters, the
object Z becomes the classical operator M⊗, for which we have a plethora of
estimates available. For this reason, we are now interested in finding all the
possible combinations of parameters for which Z = M f1M f2. The following
lemma will help us in this matter. We will also use it later to find other useful
candidates for Z .

Lemma 3.2.6. In Theorem 3.2.4, the parameters involved satisfy the following rela-
tions:

(a) q1
p1

= q
p if, and only if q2

p2
= q

p if, and only if q1
p1

= q2
p2

.

(b) δ1 = 0 if, and only if δ2 = q2
q . Similarly, δ1 = q1

q if, and only if δ2 = 0.

(c) For i = 1, 2, δi = 0 if, and only if βi = − 1
pi

if, and only if βi = − 1
qi

.

(d) β1 + β2 = 0. In particular, β1 = 0 if, and only if β2 = 0.

(e) For i = 1, 2, δi = 1 if, and only if βi = 0 if, and only if δ1 = δ2 if, and only if
q1
p1

= q2
p2

.

Proof. To prove (a),

q1

p1
=

q
p
⇔ p

p1
=

q
q1
⇔ 1− p

p2
= 1− q

q2
⇔ q2

p2
=

q
p

⇔ q2

q
=

p2

p
⇔ 1 +

q2

q1
= 1 +

p2

p1
⇔ q1

p1
=

q2

p2
.

To prove the first part of (b),

δ1 = 0⇔ p1 = q1 ⇔
p
q1

+
p
p2

= 1⇔ p
q2
− p

p2
=

p
q1

+
p
q2
− 1

⇔ p
p2

(
p2

q2
− 1
)
=

p
q
− 1⇔ p(p2 − q2)

p2q2
=

p− q
q
⇔ δ2 =

q2

q
.

The proof of the second part of (b) is entirely analogous.
To prove (c), we have that for i = 1, 2,

δi = 0⇔ pi = qi ⇔
p
pi
− q

qi
=

p
pi
− q

pi
⇔ βi = −

1
pi

.
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Similarly,

βi = −
1
qi
⇔ pi = qi ⇔ δi = 0.

To prove (d),

β1 + β2 =

p
p1
− q

q1
+ p

p2
− q

q2

q− p
= 0.

To prove (e), we have that for i = 1, 2,

δi = 1⇔ pi − qi

pi
=

p− q
p

(a)⇐⇒ q1

p1
=

q2

p2
⇔ p1 − q1

p1
=

p2 − q2

p2
⇔ δ1 = δ2,

and
βi = 0⇔ p

pi
=

q
qi
⇔ pi − qi

pi
=

p− q
p
⇔ δi = 1.

We can see that the term Z in Theorem 3.2.4 becomes M f1M f2 if, and
only if δ1 = δ2 = 1 and β1 = β2 = 0, and Lemma 3.2.6 tells us that

δ1 = 1
(e)⇐⇒ β1 = 0

(d)⇐⇒ β2 = 0
(e)⇐⇒ δ2 = 1

(e)⇐⇒ q1

p1
=

q2

p2
.

In conclusion, Z = M f1M f2 if, and only if the points P = ( 1
p1

, 1
p2
) and Q =

( 1
q1

, 1
q2
) in R2 lay on a straight line passing through the origin point (0, 0).

We are now in the position to provide an extension of Theorem 3.2.1 that
works not only in the diagonal case but also in the more general case when
the exponents of the Lorentz spaces involved satisfy the alignment condition
q1
p1

= q2
p2

. In Figure 3.2 you can find a pictorial representation of it.

Theorem 3.2.7. Given measurable functions f1, f2, and g, suppose that for some
exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and all weights v1 ∈ ARp1

and v2 ∈ ARp2
,

(3.2.11) holds for a function ϕ : [1, ∞)2 −→ [0, ∞) that increases in each variable.
Then, for all exponents 1 ≤ q1 ≤ p1, 1 ≤ q2 ≤ p2, and 1

q = 1
q1
+ 1

q2
such that

p 6= q and q1
p1

= q2
p2

, and all weights w1 ∈ Âq1 and w2 ∈ Âq2 ,

‖g‖
Lq,∞(w

q/q1
1 wq/q2

2 )
≤ Φ(‖w1‖Âq1

, ‖w2‖Âq2
) ‖ f1‖

Lq1, q
p (w1)

‖ f2‖
Lq2, q

p (w2)
,

(3.2.20)
where Φ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable.

Proof. Pick weights w1 ∈ Âq1 and w2 ∈ Âq2 , and write w = wq/q1
1 wq/q2

2 . From
Lemma 3.2.6 we see that q1

p1
= q2

p2
= q

p , and in virtue Theorem 3.2.4, we have
that

‖g‖Lq,∞(w) ≤ Ψw1,w2‖M f1M f2‖
1− q

p
Lq,∞(w) ‖ f1‖

q/p

Lq1, q
p (w1)

‖ f2‖
q/p

Lq2, q
p (w2)

, (3.2.21)
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with

Ψw1,w2 := Ψ(‖w1‖Âq1
, ‖w2‖Âq2

) =

(
p
q

)2

Cp,q ϕ(C1 ‖w1‖
q/p
Âq1

, C2 ‖w2‖
q/p
Âq2

).

We apply Theorem 2.4.1 to obtain that

‖M f1M f2‖Lq,∞(w) ≤ φ([w1]ARq1
, [w2]ARq2

)‖ f1‖Lq1,1(w1)
‖ f2‖Lq2,1(w2)

≤ φ(c1 ‖w1‖Âq1
, c2 ‖w2‖Âq2

)‖ f1‖Lq1,1(w1)
‖ f2‖Lq2,1(w2)

.

(3.2.22)

We know from (2.1.1) that for i = 1, 2,

‖ fi‖Lqi ,1(wi)
≤
(

q
pqi

) p
q−1

‖ fi‖
Lqi ,

q
p (wi)

= p
1− p

q
i ‖ fi‖

Lqi ,
q
p (wi)

. (3.2.23)

Combining the estimates (3.2.21), (3.2.22), and (3.2.23), we get (3.2.20)
with

Φ(‖w1‖Âq1
, ‖w2‖Âq2

) = (p1p2)
2− q

p−
p
q φ(c1 ‖w1‖Âq1

, c2 ‖w2‖Âq2
)

1− q
p Ψw1,w2 .

Once again, we have presented Theorem 3.2.7 in its general form, for
triples of functions ( f1, f2, g). We can deduce the corresponding extrapo-
lation scheme for two-variable operators arguing as in the proof of Corol-
lary 3.2.2. For convenience, we also provide a pictorial representation of it in
Figure 3.2.

Corollary 3.2.8. Let T be a two-variable operator defined for measurable functions.
Suppose that for some exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1

+ 1
p2

, and all weights
v1 ∈ ARp1

and v2 ∈ ARp2
,

T : Lp1,1(v1)× Lp2,1(v2) −→ Lp,∞(vp/p1
1 vp/p2

2 ),

with constant bounded by ϕ([v1]ARp1
, [v2]ARp2

) as in (3.2.11). Then, for all exponents

1 ≤ q1 ≤ p1, 1 ≤ q2 ≤ p2, and 1
q = 1

q1
+ 1

q2
such that p 6= q and q1

p1
= q2

p2
, and all

weights w1 ∈ Âq1 and w2 ∈ Âq2 ,

T : Lq1, q
p (w1)× Lq2, q

p (w2) −→ Lq,∞(wq/q1
1 wq/q2

2 ),

with constant bounded by Φ(‖w1‖Âq1
, ‖w2‖Âq2

) as in (3.2.20).

Remark 3.2.9. Observe that if the operator T is defined for characteristic func-
tions of measurable sets E1, E2 ⊆ Rn, then under the hypotheses of Corol-
lary 3.2.8, we deduce that∥∥T(χE1 , χE2)

∥∥
Lq,∞(w

q/q1
1 wq/q2

2 )
≤ CΦ(‖w1‖Âq1

, ‖w2‖Âq2
)w1(E1)

1/q1w2(E2)
1/q2 ,
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with C =
(

q1q2
p2

q2

)p/q
, and hence, T is of weak type (q1, q2, q) at least for

characteristic functions.

(1, 1)

P

Q

P

Q

Q

Q
Q

P

(0, 0) (1, 0)

(0, 1)

FIGURE 3.2: Pictorial representation of Theorem 3.2.7 and
Corollary 3.2.8.

All the extrapolation results presented in this section produce bounds in-
volving Lorentz spaces with lower exponents than the ones in the hypothe-
ses. In the one-variable extrapolation setting, the distinction between increas-
ing and decreasing the exponents was necessary, because the techniques in-
volved were different (see [9, 14]). In the two-variable case, we observe the
same phenomenon.

Now we present a result in which we manage to increase the exponents
of the Lorentz spaces involved, provided that we equip them with the same
weight. The key ingredient is a bound of a perturbed version of the Hardy-
Littlewood maximal operator, namely M( f w)

w . We provide a pictorial repre-
sentation of this scheme in Figure 3.3.

Theorem 3.2.10. Given measurable functions f1, f2, and g, suppose that for some
exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and all weights v1 ∈ Âp1 and v2 ∈ Âp2 ,

‖g‖
Lp,∞(v

p/p1
1 vp/p2

2 )
≤ ϕ(‖v1‖Âp1

, ‖v2‖Âp2
) ‖ f1‖Lp1,1(v1)

‖ f2‖Lp2,1(v2)
, (3.2.24)

where ϕ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable. Then, for
all exponents q1 = p1 ≥ 1 or q1 > p1 > 1, q2 = p2 ≥ 1 or q2 > p2 > 1, and
1
q = 1

q1
+ 1

q2
, and every weight w ∈ Âq1 ∩ Âq2 ,

‖g‖Lq,∞(w) ≤ Φ(‖w‖Âq1
, ‖w‖Âq2

) ‖ f1‖Lq1,1(w) ‖ f2‖Lq2,1(w) , (3.2.25)

where Φ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable.
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Proof. Note that if q1 = p1 and q2 = p2, then there is nothing to prove. We
first discuss the case when 1 < p1 < q1 and 1 < p2 < q2. Pick a weight w ∈
Âq1 ∩ Âq2 . As usual, we may assume that ‖ f1‖Lq1,1(w) < ∞ and ‖ f2‖Lq2,1(w) <

∞. For every natural number N ≥ 1, let gN := |g|χB(0,N). Fix N ≥ 1. We will
prove (3.2.25) for the triple ( f1, f2, gN). Since gN ≤ |g|, we already know that
(3.2.24) holds for ( f1, f2, gN). Fix y > 0 such that λw

gN
(y) 6= 0. If no such y

exists, then ‖gN‖Lq,∞(w) = 0 and we are done.

In order to apply (3.2.24), we want to find weights v1 ∈ Âp1 and v2 ∈ Âp2

such that for v := vp/p1
1 vp/p2

2 , λw
gN
(y) ≤ λv

gN
(y). For i = 1, 2, take

vi := w
pi−1
qi−1

(
M(wχ{|gN |>y})

) qi−pi
qi−1 . (3.2.26)

Note that if qi = pi, then vi = w. Applying Lemma 3.1.4, we see that vi ∈ Âpi ,

with ‖vi‖Âpi
≤ Ci‖w‖

qi/pi

Âqi
, and Ci independent of w, N, and y. Observe that

vi ≥ wχ{|gN |>y}, so (3.2.24) implies that

λw
gN
(y) =

ˆ
{|gN |>y}

wp/p1wp/p2 ≤
ˆ
{|gN |>y}

vp/p1
1 vp/p2

2 = λv
gN
(y)

≤ 1
yp ϕ(C1‖w‖

q1/p1

Âq1
, C2‖w‖

q2/p2

Âq2
)p ‖ f1‖

p
Lp1,1(v1)

‖ f2‖
p
Lp2,1(v2)

.
(3.2.27)

For i = 1, 2, we want to replace ‖ fi‖Lpi ,1(vi)
by ‖ fi‖Lqi ,1(w) in (3.2.27). If

qi = pi, then ‖ fi‖Lpi ,1(vi)
= ‖ fi‖Lqi ,1(w). If qi > pi, then applying Hölder’s

inequality with exponent qi
pi
> 1, we obtain that for every t > 0,

vi({| fi| > t}) =
ˆ
{| fi|>t}

(
M(wχ{|gN |>y})

w

) qi−pi
qi−1

w

≤ ‖χ{| fi|>t}‖
L

qi
pi

,1
(w)

∥∥∥∥∥∥∥
(

M(wχ{|gN |>y})

w

) qi−pi
qi−1

∥∥∥∥∥∥∥
L

qi
qi−pi

,∞
(w)

=
qi

pi
w({| fi| > t})pi/qi

∥∥∥∥∥M(wχ{|gN |>y})

w

∥∥∥∥∥
qi−pi
qi−1

Lq′i ,∞
(w)

.

(3.2.28)

Now, Theorem 2.4.12, Remark 2.4.13, and [9, Corollary 2.8] give us that∥∥∥∥∥M(wχ{|gN |>y})

w

∥∥∥∥∥
Lq′i ,∞

(w)

≤ ci‖w‖
qi+1
Âqi

w({|gN| > y})1/q′i , (3.2.29)
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so

vi({| fi| > t}) ≤ qi

pi

(
ci‖w‖

qi+1
Âqi

) qi−pi
qi−1

w({|gN| > y})1− pi
qi w({| fi| > t})pi/qi ,

(3.2.30)
and hence,

‖ fi‖Lpi ,1(vi)
= pi

ˆ ∞

0
vi({| fi| > t})1/pi dt

≤ pi

(
qi

pi

)1/pi
(

ci‖w‖
qi+1
Âqi

) 1
pi

qi−pi
qi−1

× w({|gN| > y})
1
pi
− 1

qi

ˆ ∞

0
w({| fi| > t})1/qi dt

=

(
pi

qi

)1/p′i
(

ci‖w‖
qi+1
Âqi

) 1
pi

qi−pi
qi−1

w({|gN| > y})
1
pi
− 1

qi ‖ fi‖Lqi ,1(w).

(3.2.31)

Combining the estimates (3.2.27) and (3.2.31), we have that

λw
gN
(y) ≤ 1

yp Φ(‖w‖Âq1
, ‖w‖Âq2

)p ‖ f1‖
p
Lq1,1(w)

‖ f2‖
p
Lq2,1(w)

λw
gN
(y)1− p

q , (3.2.32)

with

Φ(‖w‖Âq1
, ‖w‖Âq2

) =

 2

∏
i=1

(
pi

qi

)1/p′i
(

ci‖w‖
qi+1
Âqi

) 1
pi

qi−pi
qi−1


× ϕ(C1‖w‖

q1/p1

Âq1
, C2‖w‖

q2/p2

Âq2
).

By our choice of y and gN, 0 < λw
gN
(y) ≤ w(B(0, N)) < ∞, so we can di-

vide by λw
gN
(y)1− p

q in (3.2.32) and raise everything to the power 1
p , obtaining

that

yλw
gN
(y)1/q ≤ Φ(‖w‖Âq1

, ‖w‖Âq2
) ‖ f1‖Lq1,1(w) ‖ f2‖Lq2,1(w) ,

and taking the supremum over all y > 0, we deduce (3.2.25) for the triple
( f1, f2, gN), and the result for the triple ( f1, f2, g) follows taking the supre-
mum over all N ≥ 1.

Finally, the case when for some i = 1, 2, but not both, 1 ≤ pi = qi, follows
from the previous argument, since vi = w in (3.2.26), and estimate (3.2.31) is
no longer necessary.

We have presented Theorem 3.2.10 in its general form, for triples of func-
tions ( f1, f2, g). We can deduce the corresponding extrapolation scheme for
two-variable operators arguing as in the proof of Corollary 3.2.2. For conve-
nience, we also provide a pictorial representation of it in Figure 3.3.
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Corollary 3.2.11. Let T be a two-variable operator defined for measurable functions.
Suppose that for some exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1

+ 1
p2

, and all weights

v1 ∈ Âp1 and v2 ∈ Âp2 ,

T : Lp1,1(v1)× Lp2,1(v2) −→ Lp,∞(vp/p1
1 vp/p2

2 ),

with constant bounded by ϕ(‖v1‖Âp1
, ‖v2‖Âp2

) as in (3.2.24). Then, for all expo-

nents q1 = p1 ≥ 1 or q1 > p1 > 1, q2 = p2 ≥ 1 or q2 > p2 > 1, and 1
q = 1

q1
+ 1

q2
,

and every weight w ∈ Âq1 ∩ Âq2 ,

T : Lq1,1(w)× Lq2,1(w) −→ Lq,∞(w),

with constant bounded by Φ(‖w‖Âq1
, ‖w‖Âq2

) as in (3.2.25).

Remark 3.2.12. Observe that if the operator T is defined for characteristic
functions of measurable sets E1, E2 ⊆ Rn, then under the hypotheses of
Corollary 3.2.11, we deduce that∥∥T(χE1 , χE2)

∥∥
Lq,∞(w) ≤ q1q2Φ(‖w‖Âq1

, ‖w‖Âq2
)w(E1)

1/q1w(E2)
1/q2 ,

and hence, T is of weak type (q1, q2, q) at least for characteristic functions.

P

P

Q

Q

Q

Q

Q

P

Q

Q

(1, 1)

(0, 0) (1, 0)

(0, 1)

FIGURE 3.3: Pictorial representation of Theorem 3.2.10 and
Corollary 3.2.11, and the results in Subsection 4.2.2.

Although Theorem 3.2.10 gives us a one-weight conclusion, we need to
assume a two-weight hypothesis to get it, because, in general, the weights
v1 and v2 that we chose in (3.2.26) are different. However, for q1 > p1 > 1
and q2 > p2 > 1 such that p1−1

q1−1 = p2−1
q2−1 , we have that v1 = v2. That is, these

weights coincide if the points (p1, p2) and (q1, q2) in R2 lay on a straight line
passing through the point (1, 1). Equivalently, for some τ > 0, the points
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P = ( 1
p1

, 1
p2
) and Q = ( 1

q1
, 1

q2
) in R2 belong to the graph of the function

Fτ(x) := x
(1−τ)x+τ

, defined for 0 < x ≤ 1. Adding this assumption in Theo-
rem 3.2.10 allows us to replace (3.2.24) by its one-weight analog (3.2.33), ob-
taining the following corollary, and the corresponding extrapolation scheme
for two-variable operators. See Figure 3.4 for a pictorial representation of
these results.

Corollary 3.2.13. Given measurable functions f1, f2, and g, suppose that for some
exponents 1 < p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and every weight v ∈ Âp1 ∩ Âp2 ,

‖g‖Lp,∞(v) ≤ ϕ(‖v‖Âp1
, ‖v‖Âp2

) ‖ f1‖Lp1,1(v) ‖ f2‖Lp2,1(v) , (3.2.33)

where ϕ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable. Then, for all
exponents q1 ≥ p1, q2 ≥ p2, and 1

q = 1
q1
+ 1

q2
such that p1−1

q1−1 = p2−1
q2−1 , and every

weight w ∈ Âq1 ∩ Âq2 ,

‖g‖Lq,∞(w) ≤ Φ(‖w‖Âq1
, ‖w‖Âq2

) ‖ f1‖Lq1,1(w) ‖ f2‖Lq2,1(w) , (3.2.34)

where Φ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable.

Corollary 3.2.14. Let T be a two-variable operator defined for measurable functions.
Suppose that for some exponents 1 < p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and every weight

v ∈ Âp1 ∩ Âp2 ,
T : Lp1,1(v)× Lp2,1(v) −→ Lp,∞(v),

with constant bounded by ϕ(‖v‖Âp1
, ‖v‖Âp2

) as in (3.2.33). Then, for all exponents

q1 ≥ p1, q2 ≥ p2, and 1
q = 1

q1
+ 1

q2
such that p1−1

q1−1 = p2−1
q2−1 , and every weight

w ∈ Âq1 ∩ Âq2 ,
T : Lq1,1(w)× Lq2,1(w) −→ Lq,∞(w),

with constant bounded by Φ(‖w‖Âq1
, ‖w‖Âq2

) as in (3.2.34).

3.3 Main Results on Mixed Type Extrapolation

In this section, we present our theorems on two-variable mixed type extrap-
olation. To prove them, we build upon ideas introduced in the previous sec-
tion.

3.3.1 Downwards Extrapolation Results

The first result that we prove is a mixed type version of Theorem 3.2.4. The
proof is more or less the same, except for some technical modifications in-
volving the Ap condition on the weights.
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P

Q

P

Q
P

Q

P

Q

P

Q

P

Q
P

Q

(0, 0) (1, 0)

(0, 1) (1, 1)

FIGURE 3.4: Pictorial representation of Corollaries 3.2.13 and
3.2.14.

Theorem 3.3.1. Given measurable functions f1, f2, and g, suppose that for some
exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and all weights v1 ∈ Ap1 and v2 ∈ ARp2

,

‖g‖
Lp,∞(v

p/p1
1 vp/p2

2 )
≤ ϕ([v1]Ap1

, [v2]ARp2
) ‖ f1‖Lp1 (v1)

‖ f2‖Lp2,1(v2)
, (3.3.1)

where ϕ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable. Then, for all
exponents 1 ≤ q1 = p1 or 1 < q1 < p1, 1 ≤ q2 ≤ p2, and 1

q = 1
q1
+ 1

q2
such that

p 6= q, and all weights w1 ∈ Aq1 and w2 ∈ Âq2 ,

‖g‖Lq,∞(w) ≤ Ψ([w1]Aq1
, ‖w2‖Âq2

)‖Z ‖
1− q

p
Lq,∞(w) ‖ f1‖

q1/p1
Lq1 (w1)

‖ f2‖
q2/p2

L
q2,

q2
p2 (w2)

,

(3.3.2)
where Ψ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable, w =

wq/q1
1 wq/q2

2 , and Z is as in Theorem 3.2.4.

Proof. We want to prove this result adapting the proof of Theorem 3.2.4. To
do so, we have to show that the weight v1 := (M f1)

q1−p1w1 ∈ Ap1 , apply
(3.3.1), find an appropriate replacement for estimate (3.2.18), and keep track
of the changes in the constants involved.

Let us see that v1 ∈ Ap1 . If q1 = p1, then v1 = w1 and we are done. If
p1 > q1 > 1, in virtue of Lemma 3.1.3, v1 ∈ Ap1 , with

[v1]Ap1
≤ C1[w1]

1+ p1−1
q1−1

Aq1
.
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Now, estimate (3.2.18) for i = 1 should be replaced by

‖ f1‖Lp1 (v1)
=

(ˆ
Rn
| f1|p1(M f1)

q1−p1w1

)1/p1

≤
(ˆ

Rn
| f1|p1 | f1|q1−p1w1

)1/p1

= ‖ f1‖
q1/p1
Lq1 (w1)

.

(3.3.3)

Finally, if we follow the proof of Theorem 3.2.4 performing the previous
changes and keeping track of the constants, we conclude that (3.3.2) holds,
with

Ψ([w1]Aq1
, ‖w2‖Âq2

) =
p2

q2
Cp,q ϕ(ψ1([w1]Aq1

), C2 ‖w2‖
q2/p2

Âq2
), (3.3.4)

where

ψ1([w1]Aq1
) :=


[w1]Aq1

, 1 ≤ q1 = p1,

C1[w1]
1+ p1−1

q1−1

Aq1
, 1 < q1 < p1,

and Ψ([w1]Aq1
, ‖w2‖Âq2

) depends on the constants [w1]Aq1
and ‖w2‖Âq2

in an
increasing way.

If we combine Theorem 3.3.1 with Remark 2.4.2, we can deduce the fol-
lowing mixed type version of Theorem 3.2.7. In Figure 3.5 you can find a
pictorial representation of it.

Theorem 3.3.2. Given measurable functions f1, f2, and g, suppose that for some
exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and all weights v1 ∈ Ap1 and v2 ∈ ARp2

,
(3.3.1) holds for a function ϕ : [1, ∞)2 −→ [0, ∞) that increases in each variable.
Then, for all exponents 1 ≤ q1 = p1 or 1 < q1 < p1, 1 ≤ q2 ≤ p2, and 1

q = 1
q1
+ 1

q2

such that p 6= q and q1
p1

= q2
p2

, and all weights w1 ∈ Aq1 and w2 ∈ Âq2 ,

‖g‖
Lq,∞(w

q/q1
1 wq/q2

2 )
≤ Φ([w1]Aq1

, ‖w2‖Âq2
) ‖ f1‖Lq1 (w1)

‖ f2‖
Lq2, q

p (w2)
, (3.3.5)

where Φ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable.

Proof. Pick weights w1 ∈ Aq1 and w2 ∈ Âq2 , and write w = wq/q1
1 wq/q2

2 . From
Lemma 3.2.6 we see that q1

p1
= q2

p2
= q

p , and in virtue of Theorem 3.3.1, we
have that

‖g‖Lq,∞(w) ≤ Ψw1,w2‖M f1M f2‖
1− q

p
Lq,∞(w) ‖ f1‖

q/p
Lq1 (w1)

‖ f2‖
q/p

Lq2, q
p (w2)

, (3.3.6)

with Ψw1,w2 := Ψ([w1]Aq1
, ‖w2‖Âq2

) as in (3.3.4).
We apply Remark 2.4.2 to obtain that

‖M f1M f2‖Lq,∞(w) ≤ φ([w1]Aq1
, c ‖w2‖Âq2

)‖ f1‖Lq1 (w1)
‖ f2‖Lq2,1(w2)

, (3.3.7)
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and as in (3.2.23),

‖ f2‖Lq2,1(w2)
≤ p

1− p
q

2 ‖ f2‖
Lq2, q

p (w2)
. (3.3.8)

Combining the estimates (3.3.6), (3.3.7), and (3.3.8), we get (3.3.5) with

Φ([w1]Aq1
, ‖w2‖Âq2

) = p
2− q

p−
p
q

2 φ([w1]Aq1
, c ‖w2‖Âq2

)
1− q

p Ψw1,w2 .

Remark 3.3.3. Observe that if in Theorem 3.3.2 we assume that 1 ≤ q2 = p2
or 1 < q2 < p2, change ARp2

by Ap2 and Âq2 by Aq2 , and replace (3.3.1) by

‖g‖
Lp,∞(v

p/p1
1 vp/p2

2 )
≤ ϕ([v1]Ap1

, [v2]Ap2
) ‖ f1‖Lp1 (v1)

‖ f2‖Lp2 (v2)
, (3.3.9)

then we can modify the proof of Theorem 3.2.4 as we did in the proof of
Theorem 3.3.1 to obtain that

‖g‖Lq,∞(w) ≤ Ψw1,w2‖M f1M f2‖
1− q

p
Lq,∞(w) ‖ f1‖

q/p
Lq1 (w1)

‖ f2‖
q/p
Lq2 (w2)

,

with

Ψw1,w2 := Ψ([w1]Aq1
, [w2]Aq2

) = Cp,q ϕ(ψ1([w1]Aq1
), ψ2([w2]Aq2

)),

where for i = 1, 2,

ψi([wi]Aqi
) :=


[wi]Aqi

, 1 ≤ qi = pi,

Ci[wi]
1+ pi−1

qi−1

Aqi
, 1 < qi < pi,

and using Remark 2.4.2, we conclude that

‖g‖
Lq,∞(w

q/q1
1 wq/q2

2 )
≤ φ([w1]Aq1

, [w2]Aq2
)Ψw1,w2 ‖ f1‖Lq1 (w1)

‖ f2‖Lq2 (w2)
.

This argument gives an alternative proof of [15, Theorem 3.12] in the partic-
ular case when 1 ≤ q1 = p1 or 1 < q1 < p1, 1 ≤ q2 = p2 or 1 < q2 < p2, and
q1
p1

= q2
p2

.

As always, we have presented Theorem 3.3.2 in its general form. We can
obtain the corresponding extrapolation scheme for two-variable operators
arguing as in the proof of Corollary 3.2.2. See Figure 3.5 for a pictorial repre-
sentation of such scheme.

Corollary 3.3.4. Let T be a two-variable operator defined for measurable functions.
Suppose that for some exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1

+ 1
p2

, and all weights
v1 ∈ Ap1 and v2 ∈ ARp2

,

T : Lp1(v1)× Lp2,1(v2) −→ Lp,∞(vp/p1
1 vp/p2

2 ),
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with constant bounded by ϕ([v1]Ap1
, [v2]ARp2

) as in (3.3.1). Then, for all exponents

1 ≤ q1 = p1 or 1 < q1 < p1, 1 ≤ q2 ≤ p2, and 1
q = 1

q1
+ 1

q2
such that p 6= q and

q1
p1

= q2
p2

, and all weights w1 ∈ Aq1 and w2 ∈ Âq2 ,

T : Lq1(w1)× Lq2, q
p (w2) −→ Lq,∞(wq/q1

1 wq/q2
2 ),

with constant bounded by Φ([w1]Aq1
, ‖w2‖Âq2

) as in (3.3.5).

Remark 3.3.5. Observe that if the operator T is defined for characteristic func-
tions of measurable sets E1, E2 ⊆ Rn, then under the hypotheses of Corol-
lary 3.3.4, we deduce that∥∥T(χE1 , χE2)

∥∥
Lq,∞(w

q/q1
1 wq/q2

2 )
≤ CΦ([w1]Aq1

, ‖w2‖Âq2
)w1(E1)

1/q1w2(E2)
1/q2 ,

with C =
(

q2
p
q

)p/q
, and hence, T is of weak type (q1, q2, q) at least for char-

acteristic functions.

P

Q

P

Q

Q

Q

P

(0, 0) (1, 0)

(0, 1) (1, 1)

FIGURE 3.5: Pictorial representation of Theorem 3.3.2 and
Corollary 3.3.4.

So far we have produced extrapolation schemes for the case when the
exponents involved satisfy the alignment condition q1

p1
= q2

p2
. Now, we are

interested in studying the case when we fix the value of the second exponent,
that is, when p2 = q2. To do so, we can use Theorem 3.3.1, but this time the
term Z differs from M f1M f2. Indeed, since p2 = q2, we have that δ2 = 0,
and in virtue of Lemma 3.2.6 (b), (c), and (d), we deduce that δ1 = q1

q , β1 = 1
p2

,

and β2 = − 1
p2

. Hence,

Z = (M f1)
q1/q

(
w1

w2

)1/p2

, (3.3.10)
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and a suitable bound of this operator allows us to produce the following
extrapolation scheme. In Figure 3.6 you can find a pictorial representation of
it.

Theorem 3.3.6. Given measurable functions f1, f2, and g, suppose that for some
exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and all weights v1 ∈ Ap1 and v2 ∈ ARp2

,
(3.3.1) holds for a function ϕ : [1, ∞)2 −→ [0, ∞) that increases in each variable.
Then, for every exponent 1 ≤ q1 = p1 or 1 < q1 < p1, and 1

q = 1
q1
+ 1

p2
, and all

weights w1 ∈ Aq1 and w2 ∈ ARp2
,

‖g‖
Lq,∞(w

q/q1
1 wq/p2

2 )
≤ Φ([w1]Aq1

, [w2]ARp2
) ‖ f1‖Lq1 (w1)

‖ f2‖Lp2,1(w2)
, (3.3.11)

where Φ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable.

Proof. Note that if q1 = p1, then there is nothing to prove, so we may assume
that 1 < q1 < p1. Pick weights w1 ∈ Aq1 and w2 ∈ ARp2

, and write w =

wq/q1
1 wq/p2

2 . Observe that in the proof of Theorem 3.2.4, the weight v2 that
we chose becomes w2 ∈ ARp2

, and estimate (3.2.16) is no longer necessary.
This fact allows us to work with ARp2

instead of Âp2 in Theorem 3.2.4 when
q2 = p2, and also in Theorem 3.3.1, and hence, in virtue of (3.3.10), we have
that

‖g‖Lq,∞(w) ≤ Ψw1,w2

∥∥∥∥∥(M f1)
q1/q

(
w1

w2

)1/p2
∥∥∥∥∥

1− q
p

Lq,∞(w)

‖ f1‖
q1/p1
Lq1 (w1)

‖ f2‖Lp2,1(w2)
,

(3.3.12)
with

Ψw1,w2 := Ψ([w1]Aq1
, [w2]ARp2

) = Cp,q ϕ(C1[w1]
1+ p1−1

q1−1

Aq1
, [w2]ARp2

).

Note that∥∥∥∥∥(M f1)
q1/q

(
w1

w2

)1/p2
∥∥∥∥∥

Lq,∞(w)

≤
∥∥∥∥∥(M f1)

q1/q
(

w1

w2

)1/p2
∥∥∥∥∥

Lq(w)

=

(ˆ
Rn

(M f1)
q1w

q
q1
+

q
p2

1

)1/q

= ‖M f1‖
q1/q
Lq1 (w1)

≤ c[w1]
q′1/q
Aq1
‖ f1‖

q1/q
Lq1 (w1)

,

(3.3.13)

where the first inequality follows from [44, Proposition 1.1.6], and the second
inequality follows from [8, Theorem 2.5].
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Combining the estimates (3.3.12) and (3.3.13), we get that

‖g‖Lq,∞(w) ≤ C[w1]
q′1
q (1− q

p )

Aq1
Ψw1,w2 ‖ f1‖

q1
p1
+

q1
q (1− q

p )

Lq1 (w1)
‖ f2‖Lp2,1(w2)

= C[w1]
1

p1

p1−q1
q1−1

Aq1
Ψw1,w2 ‖ f1‖Lq1 (w1)

‖ f2‖Lp2,1(w2)
,

and (3.3.11) holds, with

Φ([w1]Aq1
, [w2]ARp2

) = C[w1]
1

p1

p1−q1
q1−1

Aq1
Ψw1,w2 .

Remark 3.3.7. Note that given 0 < α ≤ p1, if in Theorem 3.3.6 we replace
(3.3.1) by

‖g‖
Lp,∞(v

p/p1
1 vp/p2

2 )
≤ ϕ([v1]Ap1

, [v2]ARp2
) ‖ f1‖Lp1,α(v1)

‖ f2‖Lp2,1(v2)
,

and also in Theorem 3.3.1, then we can replace estimate (3.3.3) by

‖ f1‖Lp1,α(v1)
≤ p1/α

1

(ˆ ∞

0
t

αq1
p1 λw1

f1
(t)α/p1

dt
t

)1/α

=

(
p1

q1

)1/α

‖ f1‖
q1/p1

L
q1,

αq1
p1 (w1)

,

and follow the proof of Theorem 3.3.6, using that

‖ f1‖Lq1 (w1)
≤
(

α

p1

) p1−α
αq1 ‖ f1‖

L
q1,

αq1
p1 (w1)

in (3.3.13), to conclude that

‖g‖
Lq,∞(w

q/q1
1 wq/p2

2 )
≤ Φα([w1]Aq1

, [w2]ARp2
) ‖ f1‖

L
q1,

αq1
p1 (w1)

‖ f2‖Lp2,1(w2)
,

with Φα :=
(

p1
q1

)1/α (
α
p1

)( p1
α −1)( 1

q1
− 1

p1
)

Φ.

Remark 3.3.8. Observe that if in Theorem 3.3.6 we change ARp2
by Ap2 , and

replace (3.3.1) by (3.3.9), then we can modify the proof of Theorem 3.3.1 ar-
guing as in the proof of Theorem 3.3.6 to obtain that for 1 < q1 < p1,

‖g‖Lq,∞(w) ≤ Ψw1,w2

∥∥∥∥∥(M f1)
q1/q

(
w1

w2

)1/p2
∥∥∥∥∥

1− q
p

Lq,∞(w)

‖ f1‖
q1/p1
Lq1 (w1)

‖ f2‖Lp2 (w2)
,

with

Ψw1,w2 := Ψ([w1]Aq1
, [w2]Ap2

) = Cp,q ϕ(C1[w1]
1+ p1−1

q1−1

Aq1
, [w2]Ap2

),
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and in virtue of (3.3.13), we conclude that

‖g‖
Lq,∞(w

q/q1
1 wq/p2

2 )
≤ Φ([w1]Aq1

, [w2]Ap2
) ‖ f1‖Lq1 (w1)

‖ f2‖Lp2 (w2)
, (3.3.14)

with

Φ([w1]Aq1
, [w2]Ap2

) = c[w1]
1

p1

p1−q1
q1−1

Aq1
Ψw1,w2 .

In the case when 1 ≤ q1 = p1, (3.3.14) is just (3.3.9). We can now use (3.3.14)
as a starting condition to extrapolate again, playing the role of (3.3.9) in the
previous argument, but this time we fix the value of q1, obtaining that for
1 < q2 < p2, 1

q = 1
q1
+ 1

q2
, and all weights w1 ∈ Aq1 and w2 ∈ Aq2 ,

‖g‖
Lq,∞(w

q/q1
1 wq/q2

2 )
≤ Φ([w1]Aq1

, [w2]Aq2
) ‖ f1‖Lq1 (w1)

‖ f2‖Lq2 (w2)
, (3.3.15)

with

Φ([w1]Aq1
, [w2]Aq2

) = C[w1]
1

p1

p1−q1
q1−1

Aq1
[w2]

1
p2

p2−q2
q2−1

Aq2
ϕ(C1[w1]

1+ p1−1
q1−1

Aq1
, C2[w2]

1+ p2−1
q2−1

Aq2
).

In the case when 1 ≤ q2 = p2, (3.3.15) is just (3.3.14). This argument gives
an alternative proof of [15, Theorem 3.12] in the case when 1 ≤ q1 = p1 or
1 < q1 < p1, and 1 ≤ q2 = p2 or 1 < q2 < p2.

Remark 3.3.9. We can use Rubio de Francia’s algorithm (see [101]) to im-
prove Theorem 3.3.6, producing a better function Φ. Indeed, for q1 > 1, in
Theorem 3.3.1 we can take

Z := (R f1)
q1/q

(
w1

w2

)1/p2

,

and in its proof, we can take

v1 := (R f1)
q1−p1w1,

where for a measurable function h ∈ Lq1(w1),

Rh :=
m

∑
k=0

Mkh(
2‖M‖Lq1 (w1)

)k

is the Rubio de Francia’s algorithm (see [37, 101]).
In virtue of [37, Lemma 2.2], we have that ‖Rh‖Lq1 (w1)

≤ 2‖h‖Lq1 (w1)
, h ≤

Rh, and Rh ∈ A1, with [Rh]A1 ≤ 2‖M‖Lq1 (w1)
≤ c̃1[w1]

1
q1−1

Aq1
(see [8, Theorem

2.5]). Moreover, applying [37, Lemma 2.1], we obtain that v1 ∈ Ap1 , with

[v1]Ap1
≤ C̃1[w1]

p1−1
q1−1

Aq1
. Hence, we can rewrite the proof of Theorem 3.3.6 to
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conclude that (3.3.11) holds, with

Φ([w1]Aq1
, [w2]ARp2

) = 21− q1
p1 Cp,q ϕ(C̃1[w1]

p1−1
q1−1

Aq1
, [w2]ARp2

). (3.3.16)

As usual, we have presented Theorem 3.3.6 in its general form. We can
obtain the corresponding extrapolation scheme for two-variable operators
arguing as in the proof of Corollary 3.2.2. See Figure 3.6 for a pictorial repre-
sentation of such scheme.

Corollary 3.3.10. Let T be a two-variable operator defined for measurable functions.
Suppose that for some exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1

+ 1
p2

, and all weights
v1 ∈ Ap1 and v2 ∈ ARp2

,

T : Lp1(v1)× Lp2,1(v2) −→ Lp,∞(vp/p1
1 vp/p2

2 ),

with constant bounded by ϕ([v1]Ap1
, [v2]ARp2

) as in (3.3.1). Then, for every exponent

1 ≤ q1 = p1 or 1 < q1 < p1, and 1
q = 1

q1
+ 1

p2
, and all weights w1 ∈ Aq1 and

w2 ∈ ARp2
,

T : Lq1(w1)× Lp2,1(w2) −→ Lq,∞(wq/q1
1 wq/p2

2 ),

with constant bounded by Φ([w1]Aq1
, [w2]ARp2

) as in (3.3.11).

Remark 3.3.11. Observe that if the operator T is defined for characteristic
functions of measurable sets E1, E2 ⊆ Rn, then under the hypotheses of
Corollary 3.3.10, we deduce that∥∥T(χE1 , χE2)

∥∥
Lq,∞(w

q/q1
1 wq/p2

2 )
≤ p2Φ([w1]Aq1

, [w2]ARp2
)w1(E1)

1/q1w2(E2)
1/p2 ,

and hence, T is of weak type (q1, p2, q) at least for characteristic functions.

In Theorem 3.3.6, we manage to fix the second exponent p2 and decrease
the first exponent p1 down to q1 exploiting the Aq1 condition on the weight
w1. We can also fix the value of p1 and decrease the second exponent p2

down to q2 exploiting the Âq2 condition on the weight w2, as we show in the
next result. The proof is similar to the one of Theorem 3.3.6, but we need to
use Theorem 2.3.8 to control the quantity ‖Z ‖Lq,∞(w). We include a pictorial
representation of this scheme in Figure 3.7.

Theorem 3.3.12. Given measurable functions f1, f2, and g, suppose that for some
exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and all weights v1 ∈ Ap1 and v2 ∈ ARp2

,
(3.3.1) holds for a function ϕ : [1, ∞)2 −→ [0, ∞) that increases in each variable.
Then, for every exponent 1 ≤ q2 ≤ p2, and 1

q = 1
p1
+ 1

q2
, and all weights w1 ∈ Ap1

and w2 ∈ Âq2 ,

‖g‖
Lq,∞(w

q/p1
1 wq/q2

2 )
≤ Φ([w1]Ap1

, ‖w2‖Âq2
) ‖ f1‖Lp1 (w1)

‖ f2‖
L

q2,
q2
p2 (w2)

, (3.3.17)

where Φ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable.
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P Q

P Q (1, 1)

(0, 0) (1, 0)

(0, 1)

FIGURE 3.6: Pictorial representation of Theorem 3.3.6 and
Corollary 3.3.10.

Proof. Note that if q2 = p2, then there is nothing to prove, so we may assume
that q2 < p2. Pick weights w1 ∈ Ap1 and w2 ∈ Âq2 , and write w = wq/p1

1 wq/q2
2 .

In virtue of Theorem 3.3.1, we have that

‖g‖Lq,∞(w) ≤ Ψw1,w2‖Z ‖
1− q

p
Lq,∞(w) ‖ f1‖Lp1 (w1)

‖ f2‖
q2/p2

L
q2,

q2
p2 (w2)

, (3.3.18)

with

Ψw1,w2 := Ψ([w1]Ap1
, ‖w2‖Âq2

) =
p2

q2
Cp,q ϕ([w1]Ap1

, C2 ‖w2‖
q2/p2

Âq2
).

We want to control the term ‖Z ‖Lq,∞(w) in (3.3.18). Observe that

Z = (M f2)
q2/q

(
w2

w1

)1/p1

,

since δ1 = 0, and from Lemma 3.2.6 (b), (c), and (d), we deduce that δ2 = q2
q ,

β1 = − 1
p1

, and β2 = 1
p1

. If we take W :=
(

w1
w2

) q
p1q2 , in virtue of Lemma 3.1.5,

W ∈ A∞, and w2Wq2 = wq/p1
1 w

1− q
p1

2 = w. Applying Lemma 3.1.6, we
see that w ∈ AR2q, with [w]AR2q

≤ ψ([w1]Ap1
)‖w2‖1/2

Âq2
, so by Theorem 2.3.8,
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Lemma 2.3.10, and (2.1.1), we obtain that

‖Z ‖Lq,∞(w) =

∥∥∥∥M f2

W

∥∥∥∥q2/q

Lq2,∞(w2Wq2 )

≤ φ([w2]ARq2
, [w]AR2q

)q2/q‖ f2‖
q2/q
Lq2,1(w2)

≤ p
1
q (q2−p2)

2 φ(c‖w2‖Âq2
, ψ([w1]Ap1

)‖w2‖1/2
Âq2

)q2/q‖ f2‖
q2/q

L
q2,

q2
p2 (w2)

= p
1
q (q2−p2)

2 φ
q2/q
w1,w2‖ f2‖

q2/q

L
q2,

q2
p2 (w2)

,

(3.3.19)

with
φw1,w2 := φ(c‖w2‖Âq2

, ψ([w1]Ap1
)‖w2‖1/2

Âq2
). (3.3.20)

Combining estimates (3.3.18) and (3.3.19), we get that

‖g‖Lq,∞(w) ≤ p
1
q (q2−p2)(1−

q
p )

2 φ
q2
q (1− q

p )
w1,w2 Ψw1,w2 ‖ f1‖Lp1 (w1)

‖ f2‖
q2
p2
+

q2
q (1− q

p )

L
q2,

q2
p2 (w2)

= p
2− q2

p2
− p2

q2
2 φ

1− q2
p2

w1,w2Ψw1,w2 ‖ f1‖Lp1 (w1)
‖ f2‖

L
q2,

q2
p2 (w2)

,

and (3.3.17) holds, with

Φ([w1]Ap1
, ‖w2‖Âq2

) = p
2− q2

p2
− p2

q2
2 φ

1− q2
p2

w1,w2Ψw1,w2 .

Remark 3.3.13. Note that given α > 0, if in Theorem 3.3.12 we replace (3.3.1)
by

‖g‖
Lp,∞(v

p/p1
1 vp/p2

2 )
≤ ϕ([v1]Ap1

, [v2]ARp2
) ‖ f1‖Lp1,α(v1)

‖ f2‖Lp2,1(v2)
,

then we can replace estimate (3.3.18) by

‖g‖Lq,∞(w) ≤ Ψw1,w2‖Z ‖
1− q

p
Lq,∞(w) ‖ f1‖Lp1,α(w1)

‖ f2‖
q2/p2

L
q2,

q2
p2 (w2)

,

and follow the proof of Theorem 3.3.12 to conclude that

‖g‖
Lq,∞(w

q/p1
1 wq/q2

2 )
≤ Φ([w1]Ap1

, ‖w2‖Âq2
) ‖ f1‖Lp1,α(w1)

‖ f2‖
L

q2,
q2
p2 (w2)

.

As before, from Theorem 3.3.12 we can obtain the corresponding extrap-
olation scheme for two-variable operators arguing as in the proof of Corol-
lary 3.2.2. See Figure 3.7 for a pictorial representation of such scheme.

Corollary 3.3.14. Let T be a two-variable operator defined for measurable functions.
Suppose that for some exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1

+ 1
p2

, and all weights
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v1 ∈ Ap1 and v2 ∈ ARp2
,

T : Lp1(v1)× Lp2,1(v2) −→ Lp,∞(vp/p1
1 vp/p2

2 ),

with constant bounded by ϕ([v1]Ap1
, [v2]ARp2

) as in (3.3.1). Then, for every exponent

1 ≤ q2 ≤ p2, and 1
q = 1

p1
+ 1

q2
, and all weights w1 ∈ Ap1 and w2 ∈ Âq2 ,

T : Lp1(w1)× Lq2, q2
p2 (w2) −→ Lq,∞(wq/p1

1 wq/q2
2 ),

with constant bounded by Φ([w1]Ap1
, [w2]ARq2

) as in (3.3.17).

Remark 3.3.15. Observe that if the operator T is defined for characteristic
functions of measurable sets E1, E2 ⊆ Rn, then under the hypotheses of
Corollary 3.3.14, we deduce that∥∥T(χE1 , χE2)

∥∥
Lq,∞(w

q/p1
1 wq/q2

2 )
≤ CΦ([w1]Ap1

, [w2]ARq2
)w1(E1)

1/p1w2(E2)
1/q2 ,

with C = pp2/q2
2 , and hence, T is of weak type (p1, q2, q) at least for character-

istic functions.

(1, 1)

P

Q

P

Q

Q

(0, 0) (1, 0)

(0, 1)

FIGURE 3.7: Pictorial representation of Theorem 3.3.12 and
Corollary 3.3.14.

We can combine Theorem 3.3.6 and Theorem 3.3.12 to produce a more
general extrapolation scheme that decreases both exponents p1 and p2 down
to q1 and q2, respectively. The monotonicity of the functions ϕ and Φ in both
theorems is crucial for the iteration process. For convenience, we include a
pictorial representation of this scheme in Figure 3.8.

Theorem 3.3.16. Given measurable functions f1, f2, and g, suppose that for some
exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and all weights v1 ∈ Ap1 and v2 ∈ ARp2

,
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(3.3.1) holds for a function ϕ : [1, ∞)2 −→ [0, ∞) that increases in each variable.
Then, for all exponents 1 ≤ q1 = p1 or 1 < q1 < p1, 1 ≤ q2 ≤ p2, and 1

q =
1
q1
+ 1

q2
, and all weights w1 ∈ Aq1 and w2 ∈ Âq2 ,

‖g‖
Lq,∞(w

q/q1
1 wq/q2

2 )
≤ Φ([w1]Aq1

, ‖w2‖Âq2
) ‖ f1‖Lq1 (w1)

‖ f2‖
L

q2,
q2
p2 (w2)

, (3.3.21)

where Φ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable.

Proof. Note that if q1 = p1 and q2 = p2, then there is nothing to prove. If
q1 < p1 and q2 = p2, then the result follows immediately from Theorem 3.3.6,
and if q1 = p1 and q2 < p2, then the result follows immediately from The-
orem 3.3.12. Let us assume that 1 < q1 < p1 and 1 ≤ q2 < p2. In virtue
of Theorem 3.3.6 and (3.3.16), we have that for 1

r := 1
q1
+ 1

p2
, and all weights

W1 ∈ Aq1 and W2 ∈ ARp2
,

‖g‖
Lr,∞(W

r/q1
1 Wr/p2

2 )
≤ Φ̃([W1]Aq1

, [W2]ARp2
) ‖ f1‖Lq1 (W1)

‖ f2‖Lp2,1(W2)
, (3.3.22)

with

Φ̃([W1]Aq1
, [W2]ARp2

) := 21− q1
p1 Cp,r ϕ(C̃1[W1]

p1−1
q1−1

Aq1
, [W2]ARp2

),

and applying Theorem 3.3.12 replacing (3.3.1) by (3.3.22), we conclude that
(3.3.21) holds, with

Φ([w1]Aq1
, ‖w2‖Âq2

) = p
3− q2

p2
− p2

q2
2

Cr,q

q2
φ

1− q2
p2

w1,w2Φ̃([w1]Aq1
, C2 ‖w2‖

q2/p2

Âq2
),

where φw1,w2 is as in (3.3.20) with the obvious modifications in the parame-
ters.

Remark 3.3.17. Observe that in the case when q1
p1

= q2
p2

, we can extrapolate
with either Theorem 3.3.2 or Theorem 3.3.16, but the function Φ that we ob-
tain with Theorem 3.3.16 is slightly better due to Remark 3.3.9.

As usual, from Theorem 3.3.16 we can obtain the corresponding extrap-
olation scheme for two-variable operators arguing as in the proof of Corol-
lary 3.2.2. See Figure 3.8 for a pictorial representation of such scheme.

Corollary 3.3.18. Let T be a two-variable operator defined for measurable functions.
Suppose that for some exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1

+ 1
p2

, and all weights
v1 ∈ Ap1 and v2 ∈ ARp2

,

T : Lp1(v1)× Lp2,1(v2) −→ Lp,∞(vp/p1
1 vp/p2

2 ),

with constant bounded by ϕ([v1]Ap1
, [v2]ARp2

) as in (3.3.1). Then, for all exponents

1 ≤ q1 = p1 or 1 < q1 < p1, 1 ≤ q2 ≤ p2, and 1
q = 1

q1
+ 1

q2
, and all weights

w1 ∈ Aq1 and w2 ∈ Âq2 ,

T : Lq1(w1)× Lq2, q2
p2 (w2) −→ Lq,∞(wq/q1

1 wq/q2
2 ),
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with constant bounded by Φ([w1]Aq1
, ‖w2‖Âq2

) as in (3.3.21).

Remark 3.3.19. Observe that if the operator T is defined for characteristic
functions of measurable sets E1, E2 ⊆ Rn, then under the hypotheses of
Corollary 3.3.18, we deduce that∥∥T(χE1 , χE2)

∥∥
Lq,∞(w

q/q1
1 wq/q2

2 )
≤ CΦ([w1]Aq1

, ‖w2‖Âq2
)w1(E1)

1/q1w2(E2)
1/q2 ,

with C = pp2/q2
2 , and hence, T is of weak type (q1, q2, q) at least for character-

istic functions.

P

P

QP Q

Q

Q

(1, 1)

Q

Q

(0, 0) (1, 0)

(0, 1)

Q

QQ

FIGURE 3.8: Pictorial representation of Theorem 3.3.16 and
Corollary 3.3.18.

3.3.2 Upwards and Combined Extrapolation Results

Now we want to produce extrapolation schemes that allow us to increase
the value of the exponents of the Lorentz spaces involved, like we did in
Theorem 3.2.10. The next result shows that we can increase the value of p1
while fixing p2. The proof is different from the one of Theorem 3.3.6, and
borrows some ideas from the proof of Theorem 3.2.10. See Figure 3.9 for a
pictorial representation of this new scheme.

Theorem 3.3.20. Given measurable functions f1, f2, and g, suppose that for some
exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and all weights v1 ∈ Ap1 and v2 ∈ ARp2

,
(3.3.1) holds for a function ϕ : [1, ∞)2 −→ [0, ∞) that increases in each variable.
Then, for every exponent q1 ≥ p1, and 1

q = 1
q1
+ 1

p2
, and all weights w1 ∈ Aq1 and

w2 ∈ ARp2
,

‖g‖
Lq,∞(w

q/q1
1 wq/p2

2 )
≤ Φ([w1]Aq1

, [w2]ARp2
) ‖ f1‖Lq1,p1 (w1)

‖ f2‖Lp2,1(w2)
, (3.3.23)
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where Φ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable.

Proof. Note that if q1 = p1, then there is nothing to prove, so we may assume
that q1 > p1. Pick weights w1 ∈ Aq1 and w2 ∈ ARp2

, and write w = wq/q1
1 wq/p2

2 .
We may also assume that ‖ f1‖Lq1,p1 (w1)

< ∞ and ‖ f2‖Lp2,1(w2)
< ∞. For every

natural number N ≥ 1, let gN := |g|χB(0,N). Fix N ≥ 1. We will prove (3.3.23)
for the triple ( f1, f2, gN). Since gN ≤ |g|, we already know that (3.3.1) holds
for ( f1, f2, gN). Fix y > 0 such that λw

gN
(y) 6= 0. If no such y exists, then

‖gN‖Lq,∞(w) = 0 and we are done.
In order to apply (3.3.1), we want to find weights v1 ∈ Ap1 and v2 ∈ ARp2

such that for v := vp/p1
1 vp/p2

2 , λw
gN
(y) ≤ λv

gN
(y). Since q1 > 1 and w1 ∈ Aq1 ,

we can find weights u1, u2 ∈ A1 such that w1 = u1−q1
1 u2, with [u1]A1 ≤

c1[w1]
1

q1−1

Aq1
and [u2]A1 ≤ c2[w1]Aq1

. Consider the function

W := u
− q

p2
(1+p2)

1 uq/q1
2 wq/p2

2 .

We have that W ∈ A∞, and in particular, it is locally integrable. Indeed, since

− q
p2
(1 + p2) < 0, u

− q
p2
(1+p2)

1 ∈ RH∞, and since q
q1
+ q

p2
= 1, uq/q1

2 wq/p2
2 ∈ A∞.

Hence, W ∈ A∞. Now take v2 := w2, and

v1 := u1−p1
1 up1/q1

2

(
M(Wχ{|gN |>y})

)1− p1
q1 =: u1−p1

1 ũ2.

Applying [14, Lemma 2.12], we see that ũ2 ∈ A1, with [ũ2]A1 ≤ c3[u2]A1 , and
c3 independent of W, N, and y. Hence, v1 ∈ Ap1 , with

[v1]Ap1
≤ [u1]

p1−1
A1

[ũ2]A1 ≤ c3[u1]
p1−1
A1

[u2]A1 ≤ C1[w1]
1+ p1−1

q1−1

Aq1
. (3.3.24)

Observe that

vp/p1
1 vp/p2

2 ≥ u
p

p1
(1−p1)

1 up/q1
2 W

p
p1
(1− p1

q1
)wp/p2

2 χ{|gN |>y} = uα1
1 uα2

2 wα3
2 χ{|gN |>y},

with

α1 :=
p
p1
(1− p1)−

pq
p1p2

(
1− p1

q1

)
(1 + p2)

=
p2

(p1 + p2)(q1 + p2)
((1− p1)(q1 + p2) + (p1 − q1)(1 + p2))

=
p2

(p1 + p2)(q1 + p2)
(p1 + p2)(1− q1) =

p2(1− q1)

q1 + p2
=

q
q1
(1− q1),

α2 :=
p
q1

+
pq

p1q1

(
1− p1

q1

)
=

p
q1

(
1 +

q
p1
− q

q1

)
=

p
q1

(
q
p1

+
q
p2

)
=

q
q1

,

α3 :=
p
p2

+
pq

p1p2

(
1− p1

q1

)
=

p
p2

(
1 +

q
p1
− q

q1

)
=

p
p2

(
q
p1

+
q
p2

)
=

q
p2

,
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so v ≥ wχ{|gN |>y}, and hence, (3.3.1) and (3.3.24) imply that

λw
gN
(y) ≤ λv

gN
(y) ≤ 1

yp ϕ(C1[w1]
1+ p1−1

q1−1

Aq1
, [w2]ARp2

)p ‖ f1‖
p
Lp1 (v1)

‖ f2‖
p
Lp2,1(w2)

.

(3.3.25)

Now we want to replace the term ‖ f1‖Lp1 (v1)
in (3.3.25) by ‖ f1‖Lq1,p1 (w1)

.
Applying Hölder’s inequality with exponent q1

p1
> 1, we obtain that for every

t > 0,

v1({| f1| > t}) =
ˆ
{| f1|>t}

(
M(Wχ{|gN |>y})

u−q1
1 u2

)1− p1
q1

w1

≤ ‖χ{| f1|>t}‖
L

q1
p1

,1
(w1)

∥∥∥∥∥∥
(

M(Wχ{|gN |>y})

u−q1
1 u2

)1− p1
q1

∥∥∥∥∥∥
L

q1
q1−p1

,∞
(w1)

=
q1

p1
w1({| f1| > t})p1/q1

∥∥∥∥∥M(Wχ{|gN |>y})

u−q1
1 u2

∥∥∥∥∥
1− p1

q1

L1,∞(w1)

.

Let FN := Wχ{|gN |>y}, U := u1 ∈ A1, and V := u−q1
1 u2 ∈ Aq1+1. Note that

UFN = u
1− q

p2
(1+p2)

1 uq/q1
2 wq/p2

2 χ{|gN |>y}

= u
q

q1
(1−q1)

1 uq/q1
2 wq/p2

2 χ{|gN |>y} = wχ{|gN |>y},

and since UV = w1 ∈ Aq1 ⊆ ARq1
, and [w1]ARq1

≤ [w1]
1/q1
Aq1

, it follows from
Theorem 2.3.8 and Lemma 2.3.10 that∥∥∥∥∥M(Wχ{|gN |>y})

u−q1
1 u2

∥∥∥∥∥
L1,∞(w1)

=

∥∥∥∥M(FN)

V

∥∥∥∥
L1,∞(UV)

≤ φ([U]A1 , [UV]ARq1
)

ˆ
Rn

UFN

≤ φ(c1[w1]
1

q1−1

Aq1
, [w1]

1/q1
Aq1

)w({|gN| > y})

=: ψ([w1]Aq1
)w({|gN| > y}).

(3.3.26)

Hence,

v1({| f1| > t}) ≤ q1

p1
ψ([w1]Aq1

)
1− p1

q1 w({|gN| > y})1− p1
q1 w1({| f1| > t})p1/q1 ,



3.3. Main Results on Mixed Type Extrapolation 93

so

‖ f1‖Lp1 (v1)
= p1/p1

1

(ˆ ∞

0
tp1v1({| f1| > t})dt

t

)1/p1

≤ ψ([w1]Aq1
)

1
p1
− 1

q1 w({|gN| > y})
1

p1
− 1

q1

× q1/p1
1

(ˆ ∞

0
tp1w1({| f1| > t})p1/q1

dt
t

)1/p1

= ψ([w1]Aq1
)

1
p1
− 1

q1 w({|gN| > y})
1

p1
− 1

q1 ‖ f1‖Lq1,p1 (w1)
.

(3.3.27)

Combining the estimates (3.3.25) and (3.3.27), we have that

λw
gN
(y) ≤ 1

yp Φ([w1]Aq1
, [w2]ARp2

)pλw
gN
(y)

p
p1
− p

q1 ‖ f1‖
p
Lq1,p1 (w1)

‖ f2‖
p
Lp2,1(w2)

,

(3.3.28)

with

Φ([w1]Aq1
, [w2]ARp2

) = ϕ(C1[w1]
1+ p1−1

q1−1

Aq1
, [w2]ARp2

)ψ([w1]Aq1
)

1
p1
− 1

q1 .

By our choice of y and gN, 0 < λw
gN
(y) ≤ w(B(0, N)) < ∞, so we can divide

by λw
gN
(y)

p
p1
− p

q1 in (3.3.28) and raise everything to the power 1
p , obtaining that

yλw
gN
(y)1/q ≤ Φ([w1]Aq1

, [w2]ARp2
) ‖ f1‖Lq1,p1 (w1)

‖ f2‖Lp2,1(w2)
,

and taking the supremum over all y > 0, we deduce (3.3.23) for the triple
( f1, f2, gN). Finally, (3.3.23) for the triple ( f1, f2, g) follows taking the supre-
mum over all N ≥ 1, because

‖g‖Lq,∞(w) = sup
N≥1
‖gN‖Lq,∞(w) ,

since gN ↑ |g|.

Remark 3.3.21. Note that given α > 0, if in Theorem 3.3.20 we replace (3.3.1)
by

‖g‖
Lp,∞(v

p/p1
1 vp/p2

2 )
≤ ϕ([v1]Ap1

, [v2]ARp2
) ‖ f1‖Lp1,α(v1)

‖ f2‖Lp2,1(v2)
,

then we can replace estimate (3.3.27) by

‖ f1‖Lp1,α(v1)
≤
(

q1

p1

) 1
p1
− 1

α

ψ([w1]Aq1
)

1
p1
− 1

q1 w({|gN| > y})
1

p1
− 1

q1 ‖ f1‖Lq1,α(w1)
,

and follow the proof of Theorem 3.3.20 to conclude that

‖g‖
Lq,∞(w

q/q1
1 wq/p2

2 )
≤
(

q1

p1

) 1
p1
− 1

α

Φ([w1]Aq1
, [w2]ARp2

) ‖ f1‖Lq1,α(w1)
‖ f2‖Lp2,1(w2)

.



94 Chapter 3. Two-Variable Mixed Type Extrapolation

Once again, we have presented Theorem 3.3.20 in its general form. We
can obtain the corresponding extrapolation scheme for two-variable opera-
tors arguing as in the proof of Corollary 3.2.2. See Figure 3.9 for a pictorial
representation of such scheme.

Corollary 3.3.22. Let T be a two-variable operator defined for measurable functions.
Suppose that for some exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1

+ 1
p2

, and all weights
v1 ∈ Ap1 and v2 ∈ ARp2

,

T : Lp1(v1)× Lp2,1(v2) −→ Lp,∞(vp/p1
1 vp/p2

2 ),

with constant bounded by ϕ([v1]Ap1
, [v2]ARp2

) as in (3.3.1). Then, for every exponent

q1 ≥ p1, and 1
q = 1

q1
+ 1

p2
, and all weights w1 ∈ Aq1 and w2 ∈ ARp2

,

T : Lq1,p1(w1)× Lp2,1(w2) −→ Lq,∞(wq/q1
1 wq/p2

2 ),

with constant bounded by Φ([w1]Aq1
, [w2]ARp2

) as in (3.3.23).

Remark 3.3.23. Observe that if the operator T is defined for characteristic
functions of measurable sets E1, E2 ⊆ Rn, then under the hypotheses of
Corollary 3.3.22, we deduce that∥∥T(χE1 , χE2)

∥∥
Lq,∞(w

q/q1
1 wq/p2

2 )
≤ CΦ([w1]Aq1

, [w2]ARp2
)w1(E1)

1/q1w2(E2)
1/p2 ,

with C = p2

(
q1
p1

)1/p1
, and hence, T is of weak type (q1, p2, q) at least for

characteristic functions.

(1, 1)

Q P P

Q P

(0, 0) (1, 0)

(0, 1)

FIGURE 3.9: Pictorial representation of Theorem 3.3.20 and
Corollary 3.3.22.

To extend Theorem 3.3.20 to the restricted weak type case, we have to
adapt the estimate (3.3.26), and we could do it with a version of Theorem 2.3.8
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in which the weight U ∈ A1 is replaced by Mh, for h ∈ L1
loc(R

n). More
precisely, we would have to prove that given q > 1, there exists an increasing
function φ : [1, ∞) −→ [0, ∞) such that for every measurable function f ,
every function h ∈ L1

loc(R
n), and every weight u ∈ A1, we have that∥∥∥∥ M f

(Mh)−qu

∥∥∥∥
L1,∞((Mh)1−qu)

≤ φ([u]A1)‖ f ‖L1(Mh).

At the time of writing, we don’t know if such a result is true. In Theo-
rem 3.3.35 and Theorem 4.2.7 we present an alternative approach, using The-
orem 2.4.12.

We can also use ideas from Theorem 2.4.12, and Rubio de Francia’s al-
gorithm (see [101]), to improve Theorem 3.3.20, producing a better function
Φ. We will adapt the proof of Theorem 3.2.10. To do so, we have to choose
appropriate weights v1 ∈ Ap1 and v2 ∈ ARp2

, and find suitable replacements
for estimates (3.2.28), (3.2.29), (3.2.30), and (3.2.31) to control ‖ f1‖Lp1 (v1)

by
‖ f1‖Lq1 (w1)

, and keep track of the changes in the constants involved.
First, assume that p1 > 1. Instead of (3.2.26), we take

v1 := w
p1−1
q1−1
1

(
M(w1/q1

1 w1/q′1χ{|gN |>y})
) q1−p1

q1−1 ,

and v2 := w2. Let us see that v1 ∈ Ap1 . If q1 = p1, then v1 = w1 and we are
done. If q1 > p1 > 1, in virtue of Lemma 3.1.4, v1 ∈ Ap1 , with

[v1]Ap1
≤ C1[w1]

1+ p1−1
q1−1

Aq1
.

Observe that vp/p1
1 vp/p2

2 ≥ w
p

q1−1 (1−
1

q1
)

1 wp/p2
2 w

p
p1
(1− p1

q1
)
χ{|gN |>y} = wχ{|gN |>y}.

Now, estimate (3.2.28) for i = 1 should be replaced by

v1({| f1| > t}) ≤ w1({| f1| > t})p1/q1

∥∥∥∥∥∥M(w1/q1
1 w1/q′1χ{|gN |>y})

w1

∥∥∥∥∥∥
q1−p1
q1−1

Lq′1 (w1)

,

and in virtue of (2.4.10), we can replace (3.2.29) by∥∥∥∥∥∥M(w1/q1
1 w1/q′1χ{|gN |>y})

w1

∥∥∥∥∥∥
Lq′1 (w1)

≤ c1[w1]Aq1
w({|gN| > y})1/q′1 .

Hence, we can replace (3.2.30) by

v1({| f1| > t}) ≤
(

c1[w1]Aq1

) q1−p1
q1−1 w({|gN| > y})1− p1

q1 w1({| f1| > t})p1/q1 ,
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and (3.2.31) by

‖ f1‖Lp1 (v1)
≤
(

p1

q1

)1/p1 (
c1[w1]Aq1

) 1
p1

q1−p1
q1−1 w({|gN| > y})

1
p1
− 1

q1 ‖ f1‖Lq1,p1 (w1)
.

Finally, if we follow the proof of Theorem 3.2.10 performing the previous
changes and keeping track of the constants, we conclude that (3.3.23) holds,
with

Φ([w1]Aq1
, [w2]ARp2

) =

(
p1

q1

)1/p1 (
c1[w1]Aq1

) 1
p1

q1−p1
q1−1

ϕ(C1[w1]
1+ p1−1

q1−1

Aq1
, [w2]ARp2

).

Alternatively, if p1 ≥ 1, and q1 > p1, then we can take

v1 := w
p1−1
q1−1
1

(
R′(w1/q1

1 w1/q′1χ{|gN |>y})
) q1−p1

q1−1 ,

where for a measurable function h ∈ Lq′1(w1−q′1
1 ),

R′h :=
m

∑
k=0

Mkh(
2‖M‖

Lq′1 (w
1−q′1
1 )

)k

is the Rubio de Francia’s algorithm (see [37, 101]).
In virtue of [37, Lemma 2.2], we have that h ≤ R′h, ‖R′h‖

Lq′1 (w
1−q′1
1 )

≤

2‖h‖
Lq′1 (w

1−q′1
1 )

, and R′h ∈ A1, with [R′h]A1 ≤ 2‖M‖
Lq′1 (w

1−q′1
1 )

≤ c̃1[w1]Aq1
(see

[8, Theorem 2.5] and [44, Proposition 7.1.5]). Moreover, applying [37, Lemma
2.1], we obtain that v1 ∈ Ap1 , with [v1]Ap1

≤ C̃1[w1]Aq1
. Hence, we can argue

as before to conclude that (3.3.23) holds, with

Φ([w1]Aq1
, [w2]ARp2

) =

(
p1

q1

)1/p1

2
1

p1

q1−p1
q1−1 ϕ(C̃1[w1]Aq1

, [w2]ARp2
). (3.3.29)

We can combine Theorem 3.3.20 and Theorem 3.3.12 to produce a more
general extrapolation scheme that increases the exponent p1 up to q1 and
decreases the exponent p2 down to q2. The monotonicity of the functions ϕ
and Φ in both theorems is crucial for the iteration process. For convenience,
we include a pictorial representation of this scheme in Figure 3.10.

Theorem 3.3.24. Given measurable functions f1, f2, and g, suppose that for some
exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and all weights v1 ∈ Ap1 and v2 ∈ ARp2

,
(3.3.1) holds for a function ϕ : [1, ∞)2 −→ [0, ∞) that increases in each variable.
Then, for all exponents q1 ≥ p1, 1 ≤ q2 ≤ p2, and 1

q = 1
q1
+ 1

q2
, and all weights
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w1 ∈ Aq1 and w2 ∈ Âq2 ,

‖g‖
Lq,∞(w

q/q1
1 wq/q2

2 )
≤ Φ([w1]Aq1

, ‖w2‖Âq2
) ‖ f1‖Lq1,p1 (w1)

‖ f2‖
L

q2,
q2
p2 (w2)

,

(3.3.30)
where Φ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable.

Proof. Note that if q1 = p1 and q2 = p2, then there is nothing to prove.
If q1 > p1 and q2 = p2, then the result follows immediately from Theo-
rem 3.3.20, and if q1 = p1 and q2 < p2, then the result follows immediately
from Theorem 3.3.12. Let us assume that q1 > p1 and 1 ≤ q2 < p2. In virtue
of Theorem 3.3.20 and (3.3.29), we have that for 1

r := 1
q1
+ 1

p2
, and all weights

W1 ∈ Aq1 and W2 ∈ ARp2
,

‖g‖
Lr,∞(W

r/q1
1 Wr/p2

2 )
≤ Φ̃([W1]Aq1

, [W2]ARp2
) ‖ f1‖Lq1,p1 (W1)

‖ f2‖Lp2,1(W2)
,

(3.3.31)
with

Φ̃([W1]Aq1
, [W2]ARp2

) :=
(

p1

q1

)1/p1

2
1

p1

q1−p1
q1−1 ϕ(C̃1[W1]Aq1

, [W2]ARp2
).

Applying Theorem 3.3.12 replacing (3.3.1) by (3.3.31), and in virtue of Re-
mark 3.3.13, we conclude that (3.3.30) holds, with

Φ([w1]Aq1
, ‖w2‖Âq2

) = p
3− q2

p2
− p2

q2
2

Cr,q

q2
φ

1− q2
p2

w1,w2Φ̃([w1]Aq1
, C2 ‖w2‖

q2/p2

Âq2
),

where φw1,w2 is as in (3.3.20) with the obvious modifications in the parame-
ters.

From Theorem 3.3.24 we can obtain the corresponding extrapolation re-
sult for two-variable operators arguing as in the proof of Corollary 3.2.2. See
Figure 3.10 for a pictorial representation of such scheme.

Corollary 3.3.25. Let T be a two-variable operator defined for measurable functions.
Suppose that for some exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1

+ 1
p2

, and all weights
v1 ∈ Ap1 and v2 ∈ ARp2

,

T : Lp1(v1)× Lp2,1(v2) −→ Lp,∞(vp/p1
1 vp/p2

2 ),

with constant bounded by ϕ([v1]Ap1
, [v2]ARp2

) as in (3.3.1). Then, for all exponents

q1 ≥ p1, 1 ≤ q2 ≤ p2, and 1
q = 1

q1
+ 1

q2
, and all weights w1 ∈ Aq1 and w2 ∈ Âq2 ,

T : Lq1,p1(w1)× Lq2, q2
p2 (w2) −→ Lq,∞(wq/q1

1 wq/q2
2 ),

with constant bounded by Φ([w1]Aq1
, ‖w2‖Âq2

) as in (3.3.30).

Remark 3.3.26. Observe that if the operator T is defined for characteristic
functions of measurable sets E1, E2 ⊆ Rn, then under the hypotheses of
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Corollary 3.3.25, we deduce that∥∥T(χE1 , χE2)
∥∥

Lq,∞(w
q/q1
1 wq/q2

2 )
≤ CΦ([w1]Aq1

, ‖w2‖Âq2
)w1(E1)

1/q1w2(E2)
1/q2 ,

with C =
(

q1
p1

)1/p1
pp2/q2

2 , and hence, T is of weak type (q1, q2, q) at least for
characteristic functions.

Q

P Q (1, 1)

P

Q

(0, 0) (1, 0)

(0, 1)

P

QQ

FIGURE 3.10: Pictorial representation of Theorem 3.3.24 and
Corollary 3.3.25.

For convenience, in the next result, we gather the principal extrapolation
schemes of this section, presented in Theorem 3.3.16 and Theorem 3.3.24. We
provide a pictorial representation of this result in Figure 3.11.

Theorem 3.3.27. Given measurable functions f1, f2, and g, suppose that for some
exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and all weights v1 ∈ Ap1 and v2 ∈ ARp2

,
(3.3.1) holds for a function ϕ : [1, ∞)2 −→ [0, ∞) that increases in each variable.
Then, for all exponents 1 ≤ q1 = p1 or 1 < q1 < p1 or q1 > p1, 1 ≤ q2 ≤ p2, and
1
q = 1

q1
+ 1

q2
, and all weights w1 ∈ Aq1 and w2 ∈ Âq2 ,

‖g‖
Lq,∞(w

q/q1
1 wq/q2

2 )
≤ Φ([w1]Aq1

, ‖w2‖Âq2
) ‖ f1‖Lq1,min{p1,q1}(w1)

‖ f2‖
L

q2,
q2
p2 (w2)

,

(3.3.32)
where Φ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable.

Remark 3.3.28. Note that given 0 < α ≤ p1, if in Theorem 3.3.27 we replace
(3.3.1) by

‖g‖
Lp,∞(v

p/p1
1 vp/p2

2 )
≤ ϕ([v1]Ap1

, [v2]ARp2
) ‖ f1‖Lp1,α(v1)

‖ f2‖Lp2,1(v2)
,

then taking into account Remarks 3.3.7, 3.3.13, and 3.3.21, we conclude that

‖g‖
Lq,∞(w

q/q1
1 wq/q2

2 )
≤ Φα([w1]Aq1

, ‖w2‖Âq2
) ‖ f1‖

L
q1,α min{1,

q1
p1
}
(w1)
‖ f2‖

L
q2,

q2
p2 (w2)

,
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with Φα := Cα,p1,q1Φ.

Arguing as in the proof of Corollary 3.2.2, we can obtain the correspond-
ing extrapolation scheme for two-variable operators from Theorem 3.3.27.
We provide a pictorial representation of this result in Figure 3.11.

Corollary 3.3.29. Let T be a two-variable operator defined for measurable functions.
Suppose that for some exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1

+ 1
p2

, and all weights
v1 ∈ Ap1 and v2 ∈ ARp2

,

T : Lp1(v1)× Lp2,1(v2) −→ Lp,∞(vp/p1
1 vp/p2

2 ),

with constant bounded by ϕ([v1]Ap1
, [v2]ARp2

) as in (3.3.1). Then, for all exponents

1 ≤ q1 = p1 or 1 < q1 < p1 or q1 > p1, 1 ≤ q2 ≤ p2, and 1
q = 1

q1
+ 1

q2
, and all

weights w1 ∈ Aq1 and w2 ∈ Âq2 ,

T : Lq1,min{p1,q1}(w1)× Lq2, q2
p2 (w2) −→ Lq,∞(wq/q1

1 wq/q2
2 ),

with constant bounded by Φ([w1]Aq1
, ‖w2‖Âq2

) as in (3.3.32).

Remark 3.3.30. Observe that if the operator T is defined for characteristic
functions of measurable sets E1, E2 ⊆ Rn, then under the hypotheses of
Corollary 3.3.29, we deduce that∥∥T(χE1 , χE2)

∥∥
Lq,∞(w

q/q1
1 wq/q2

2 )
≤ CΦ([w1]Aq1

, ‖w2‖Âq2
)w1(E1)

1/q1w2(E2)
1/q2 ,

with C =
(

q1
min{p1,q1}

) 1
min{p1,q1} pp2/q2

2 , and hence, T is of weak type (q1, q2, q)
at least for characteristic functions.

Observe that Theorem 3.3.27 doesn’t include the case when p2 is smaller
than q2. A way to obtain results in this direction is to rewrite Theorem 3.3.16
and Theorem 3.3.24 swapping the variables and to add the symmetric hy-
pothesis (3.3.33) to Theorem 3.3.27, as we show in the next theorem. For a
pictorial representation of it, see Figure 3.12.

Theorem 3.3.31. Given measurable functions f1, f2, and g, suppose that for some
exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and all weights v1 ∈ Ap1 and v2 ∈ ARp2

,
(3.3.1) holds for a function ϕ : [1, ∞)2 −→ [0, ∞) that increases in each variable.
Suppose also that for all weights ṽ1 ∈ ARp1

and ṽ2 ∈ Ap2 ,

‖g‖
Lp,∞(ṽ

p/p1
1 ṽp/p2

2 )
≤ ϕ̃([ṽ1]ARp1

, [ṽ2]Ap2
) ‖ f1‖Lp1,1(ṽ1)

‖ f2‖Lp2 (ṽ2)
, (3.3.33)

where ϕ̃ : [1, ∞)2 −→ [0, ∞) is a function that increases in each variable. Then,
for all exponents 1 ≤ q1 = p1 or 1 < q1 < p1 or q1 > p1, 1 ≤ q2 ≤ p2, and
1
q = 1

q1
+ 1

q2
, and all weights w1 ∈ Aq1 and w2 ∈ Âq2 , (3.3.32) holds for a function

Φ : [1, ∞)2 −→ [0, ∞) that increases in each variable. Moreover, for all exponents
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FIGURE 3.11: Pictorial representation of Theorem 3.3.27 and
Corollary 3.3.29.

1 ≤ q1 ≤ p1, and 1 ≤ q2 = p2 or 1 < q2 < p2 or q2 > p2, and all weights
w̃1 ∈ Âq1 and w̃2 ∈ Aq2 ,

‖g‖
Lq,∞(w̃

q/q1
1 w̃q/q2

2 )
≤ Φ̃(‖w̃1‖Âq1

, [w̃2]Aq2
) ‖ f1‖

L
q1,

q1
p1 (w̃1)

‖ f2‖Lq2,min{p2,q2}(w̃2)
,

(3.3.34)
where Φ̃ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable.

Remark 3.3.32. Observe that in Theorem 3.3.31, we can not decrease both
exponents p1 and p2 down to 1. To do so, we need to impose the restricted
weak type hypothesis (3.2.11), and we will study this case in full detail in the
next chapter. Note that this hypothesis implies both (3.3.1) and (3.3.33).

Arguing as in the proof of Corollary 3.2.2, we can obtain the correspond-
ing extrapolation scheme for two-variable operators from Theorem 3.3.31.
We provide a pictorial representation of this result in Figure 3.12.

Corollary 3.3.33. Let T be a two-variable operator defined for measurable functions.
Suppose that for some exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1

+ 1
p2

, and all weights
v1 ∈ Ap1 and v2 ∈ ARp2

,

T : Lp1(v1)× Lp2,1(v2) −→ Lp,∞(vp/p1
1 vp/p2

2 ),

with constant bounded by ϕ([v1]Ap1
, [v2]ARp2

) as in (3.3.1). Suppose also that for all

weights ṽ1 ∈ ARp1
and ṽ2 ∈ Ap2 ,

T : Lp1,1(ṽ1)× Lp2(ṽ2) −→ Lp,∞(ṽp/p1
1 ṽp/p2

2 ),

with constant bounded by ϕ̃([ṽ1]ARp1
, [ṽ2]Ap2

) as in (3.3.33). Then, for all exponents

1 ≤ q1 = p1 or 1 < q1 < p1 or q1 > p1, 1 ≤ q2 ≤ p2, and 1
q = 1

q1
+ 1

q2
, and all
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weights w1 ∈ Aq1 and w2 ∈ Âq2 ,

T : Lq1,min{p1,q1}(w1)× Lq2, q2
p2 (w2) −→ Lq,∞(wq/q1

1 wq/q2
2 ),

with constant bounded by Φ([w1]Aq1
, ‖w2‖Âq2

) as in (3.3.32). Moreover, for all
exponents 1 ≤ q1 ≤ p1, and 1 ≤ q2 = p2 or 1 < q2 < p2 or q2 > p2, and all
weights w̃1 ∈ Âq1 and w̃2 ∈ Aq2 ,

T : Lq1, q1
p1 (w̃1)× Lq2,min{p2,q2}(w̃2) −→ Lq,∞(w̃q/q1

1 w̃q/q2
2 ),

with constant bounded by Φ̃(‖w̃1‖Âq1
, [w̃2]Aq2

) as in (3.3.34).

Remark 3.3.34. Observe that if the operator T is defined for characteristic
functions of measurable sets E1, E2 ⊆ Rn, then under the hypotheses of
Corollary 3.3.33, we can extend Remark 3.3.30 and also deduce that∥∥T(χE1 , χE2)

∥∥
Lq,∞(w̃

q/q1
1 w̃q/q2

2 )
≤ C̃Φ̃(‖w̃1‖Âq1

, [w̃2]Aq2
)w̃1(E1)

1/q1w̃2(E2)
1/q2 ,

with C̃ = pp1/q1
1

(
q2

min{p2,q2}

) 1
min{p2,q2} .
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FIGURE 3.12: Pictorial representation of Theorem 3.3.31 and
Corollary 3.3.33.

In Theorem 3.3.31, we managed to increase the exponent p2 up to q2 ex-
ploiting the Aq2 condition on the weight w2. It remains to produce extrapo-
lation schemes that increase p2 up to q2 using the Âq2 condition on w2. We
can achieve this using Theorem 2.4.12, but we will need to add an extra tech-
nical hypothesis, as we show in the next result, depicted in Figure 3.13. Its
proof is essentially the same as the one of Theorem 4.2.7, taking into account
Lemma 3.1.4 in (4.2.18), and Lemma 3.1.6 in (4.2.20).
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Theorem 3.3.35. Given measurable functions f1, f2, and g, suppose that for some
exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1
+ 1

p2
, and all weights v1 ∈ Ap1 and v2 ∈ ARp2

,
(3.3.1) holds for a function ϕ : [1, ∞)2 −→ [0, ∞) that increases in each variable.
Take an exponent q2 = p2 ≥ 1 or q2 > p2 > 1, and 1

q = 1
p1

+ 1
q2

, and weights

w1 ∈ Ap1 and w2 ∈ Âq2 , and w = wq/p1
1 wq/q2

2 . If q2 > p2, suppose that there
exists 0 < ε ≤ 1 such that wW−ε is a weight, and [W−ε]RH∞(w) < ∞, with

W =
(

w
w2

)1/q2
. Then,

‖g‖Lq,∞(w) ≤ Φε,w1,w2([w1]Ap1
, ‖w2‖Âq2

) ‖ f1‖Lp1 (w1)
‖ f2‖Lq2,1(w2)

, (3.3.35)

where Φε,w1,w2 : [1, ∞)2 −→ [0, ∞) is a function that increases in each variable,
given by

Φε,w1,w2([w1]Ap1
, ‖w2‖Âq2

) =

(
p2

q2

)1/p′2 (
q′2φ
) 1

p2
q2−p2
q2−1 ϕ([w1]Ap1

, C‖w2‖
q2/p2

Âq2
),

where if q2 = p2, then φ = 1, and if q2 > p2, then

φ = 2 · 48nq2ψε,w2,W([W−ε]RH∞(w))φ
n
2q,q2

(c‖w2‖Âq2
, ψ([w1]Aq1

)‖w2‖1/2
Âq2

),

with ψε,w2,W as in (2.4.8), ψ as in Lemma 3.1.6, and φn
2q,q2

as in Lemma 2.3.10. If
W = 1, in virtue of Remark 2.4.13, one can take φ = Cn,q2(c‖w2‖Âq2

)q2+1.

From Theorem 3.3.35 we can obtain the corresponding extrapolation re-
sult for two-variable operators arguing as in the proof of Corollary 3.2.2. See
Figure 3.13 for a pictorial representation of such scheme.

Corollary 3.3.36. Let T be a two-variable operator defined for measurable functions.
Suppose that for some exponents 1 ≤ p1, p2 < ∞, 1

p = 1
p1

+ 1
p2

, and all weights
v1 ∈ Ap1 and v2 ∈ ARp2

,

T : Lp1(v1)× Lp2,1(v2) −→ Lp,∞(vp/p1
1 vp/p2

2 ),

with constant bounded by ϕ([v1]Ap1
, [v2]ARp2

) as in (3.3.1). Take an exponent q2 =

p2 ≥ 1 or q2 > p2 > 1, and 1
q = 1

p1
+ 1

q2
, and weights w1 ∈ Ap1 and w2 ∈ Âq2 ,

and w = wq/p1
1 wq/q2

2 . If q2 > p2, suppose that there exists 0 < ε ≤ 1 such that

wW−ε is a weight, and [W−ε]RH∞(w) < ∞, with W =
(

w
w2

)1/q2
. Then,

T : Lp1(w1)× Lq2,1(w2) −→ Lq,∞(w),

with constant bounded by Φε,w1,w2([w1]Ap1
, ‖w2‖Âq2

) as in (3.3.35).

Remark 3.3.37. In fact, in Theorem 3.3.35 and Corollary 3.3.36 we don’t need
to assume that v2 ∈ ARp2

, since the argument in their proofs works for v2 ∈
Âp2 .
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Remark 3.3.38. Observe that if the operator T is defined for characteristic
functions of measurable sets E1, E2 ⊆ Rn, then under the hypotheses of
Corollary 3.3.36, we deduce that∥∥T(χE1 , χE2)

∥∥
Lq,∞(w) ≤ q2Φ([w1]Ap1

, ‖w2‖Âq2
)w1(E1)

1/p1w2(E2)
1/q2 ,

and hence, T is of weak type (p1, q2, q) at least for characteristic functions.
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(0, 1) (1, 1)

FIGURE 3.13: Pictorial representation of Theorem 3.3.35 and
Corollary 3.3.36.

3.4 Applications

In this section, we present some applications for the extrapolation results
previously introduced.

3.4.1 Product-Type Operators, and Averages

We start with the following result, that gives us restricted weak type bounds
for products of one-variable operators.

Proposition 3.4.1. Let S and T be one-variable operators defined for measurable
functions. Suppose that S is sub-linear, and for some p1 > 1, and every weight
v1 ∈ ARp1

,
S : Lp1,1(v1) −→ Lp1,∞(v1), (3.4.1)

with constant bounded by ϕ1([v1]ARp1
), where ϕ1 : [1, ∞) −→ [0, ∞) is an increas-

ing function. Suppose also that for some p2 ≥ 1, and every weight v2 ∈ ARp2
,

T : Lp2,1(v2) −→ Lp2,∞(v2), (3.4.2)
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with constant bounded by ϕ2([v2]ARp2
), where ϕ2 : [1, ∞) −→ [0, ∞) is an increas-

ing function. If 1
p1

+ 1
p2

= 1
p < 1, then for all weights w1 ∈ Ap1 and w2 ∈ ARp2

,
and all measurable functions f and g,

‖(S f )(Tg)‖
Lp,∞(w

p/p1
1 wp/p2

2 )
≤ Φ([w1]Ap1

, [w2]ARp2
)‖ f ‖Lp1,1(w1)

‖g‖Lp2,1(w2)
,

where Φ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable.

Proof. We may assume that f ∈ Lp1,1(w1) and g ∈ Lp2,1(w2). In virtue of
Lemma 2.2.1, (3.4.1) and Theorem 3.1.9, and (3.4.2), we have that

‖(S f )(Tg)‖
Lp,∞(w

p/p1
1 wp/p2

2 )
≤ cp1,p2‖S f ‖Lp1,1(w1)

‖Tg‖Lp2,∞(w2)

≤ Φ([w1]Ap1
, [w2]ARp2

)‖ f ‖Lp1,1(w1)
‖g‖Lp2,1(w2)

,

with
Φ([w1]Ap1

, [w2]ARp2
) = cp1,p2φ1([w1]Ap1

)ϕ2([w2]ARp2
),

and φ1([w1]Ap1
) as in (3.1.6).

Ideally, we should be able to extend Proposition 3.4.1 to the more general
case when p1, p2 ≥ 1, without restrictions on p, and w1 ∈ ARp1

, but since
we don’t have a version of Hölder’s inequality for Lorentz spaces with the
change of measures, this question is still open, although we managed to do
the job for the particular case of the point-wise product of Hardy-Littlewood
maximal operators (see Theorem 2.4.1). Fortunately, we can use our mixed
type extrapolation theorems to improve the conclusion of Proposition 3.4.1.

Theorem 3.4.2. Let T1 and T2 be sub-linear operators defined for measurable func-
tions. For i = 1, 2, suppose that for some pi > 1, and every weight vi ∈ ARpi

,

Ti : Lpi,1(vi) −→ Lpi,∞(vi), (3.4.3)

with constant bounded by ϕi([vi]ARpi
), where ϕi : [1, ∞) −→ [0, ∞) is an increasing

function. Consider the operator

T⊗( f , g) := (T1 f )(T2g),

defined for measurable functions f and g. If 1
p1
+ 1

p2
= 1

p < 1, then for all exponents
1 < q1 < ∞, 1 ≤ q2 ≤ p2, and 1

q = 1
q1
+ 1

q2
, and all weights w1 ∈ Aq1 and

w2 ∈ Âq2 ,

T⊗ : Lq1,min{1, q1
p1
}
(w1)× Lq2, q2

p2 (w2) −→ Lq,∞(wq/q1
1 wq/q2

2 ), (3.4.4)

with constant bounded by Φ([w1]Aq1
, ‖w2‖Âq2

), where Φ : [1, ∞)2 −→ [0, ∞) is a
function increasing in each variable. Moreover, for all exponents 1 ≤ q1 ≤ p1, and
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1 < q2 < ∞, and all weights w̃1 ∈ Âq1 and w̃2 ∈ Aq2 ,

T⊗ : Lq1, q1
p1 (w̃1)× Lq2,min{1, q2

p2
}
(w̃2) −→ Lq,∞(w̃q/q1

1 w̃q/q2
2 ), (3.4.5)

with constant bounded by Φ̃(‖w̃1‖Âq1
, [w̃2]Aq2

), where Φ̃ : [1, ∞)2 −→ [0, ∞) is a
function increasing in each variable.

Proof. If we apply Proposition 3.4.1 to (S, T) = (T1, T2) and (S, T) = (T2, T1),
we obtain that the operator T⊗ satisfies that for all weights v1 ∈ Ap1 and
v2 ∈ ARp2

,

T⊗ : Lp1,1(v1)× Lp2,1(v2) −→ Lp,∞(vp/p1
1 vp/p2

2 ),

with constant bounded by ϕ([v1]Ap1
, [v2]ARp2

), where ϕ : [1, ∞)2 −→ [0, ∞) is

a function that increases in each variable. Also, for all weights ṽ1 ∈ ARp1
and

ṽ2 ∈ Ap2 ,

T⊗ : Lp1,1(ṽ1)× Lp2,1(ṽ2) −→ Lp,∞(ṽp/p1
1 ṽp/p2

2 ),

with constant bounded by ϕ̃([ṽ1]ARp1
, [ṽ2]Ap2

), where ϕ̃ : [1, ∞)2 −→ [0, ∞) is
a function that increases in each variable. Taking into account Remark 3.3.28,
the desired result follows from Corollary 3.3.33.

Remark 3.4.3. Observe that if for i = 1, 2, Ti satisfies (3.4.3) for every pi >
1, as it is the case of the Hardy-Littlewood maximal operator, then we can
deduce bounds like (3.4.4) for any exponents 1 < q1 < ∞ and 1 ≤ q2 < ∞
by choosing p1 = q1 and p2 > max{q2, q′1}, and applying Theorem 3.4.2.
Similarly, we can obtain bounds like (3.4.5) for any exponents 1 ≤ q1 < ∞
and 1 < q2 < ∞ by choosing p1 > max{q1, q′2} and p2 = q2.

We have seen in Theorem 3.4.2 that, sometimes, we can use extrapola-
tion techniques to avoid the application of some Hölder-type inequalities for
Lorentz spaces. In the next result, we will see that we can also use extrapo-
lation theorems to overcome the lack of Minkowski’s integral inequality for
the Lorentz quasi-norm ‖ · ‖Lq,∞(w) when q ≤ 1.

Theorem 3.4.4. Let {Tr
1}r∈R and {Ts

2}s∈R be families of sub-linear operators de-
fined for measurable functions. For i = 1, 2, suppose that for some pi > 1, every
t ∈ R, and every weight vi ∈ ARpi

,

Tt
i : Lpi,1(vi) −→ Lpi,∞(vi), (3.4.6)

with constant bounded by ϕi([vi]ARpi
), where ϕi : [1, ∞) −→ [0, ∞) is an increasing

function independent of t. For a measure µ on R2 such that |µ|(R2) < ∞, consider
the averaging operator

Tµ( f , g) :=
ˆ

R2
(Tr

1 f )(Ts
2 g)dµ(r, s),

defined for measurable functions f and g. If 1
p1
+ 1

p2
= 1

p < 1, then for all exponents
1 < q1 < ∞, 1 ≤ q2 ≤ p2, and 1

q = 1
q1
+ 1

q2
, and all weights w1 ∈ Aq1 and
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w2 ∈ Âq2 ,

Tµ : Lq1,min{1, q1
p1
}
(w1)× Lq2, q2

p2 (w2) −→ Lq,∞(wq/q1
1 wq/q2

2 ), (3.4.7)

with constant bounded by Φ([w1]Aq1
, ‖w2‖Âq2

), where Φ : [1, ∞)2 −→ [0, ∞) is a
function increasing in each variable. Moreover, for all exponents 1 ≤ q1 ≤ p1, and
1 < q2 < ∞, and all weights w̃1 ∈ Âq1 and w̃2 ∈ Aq2 ,

Tµ : Lq1, q1
p1 (w̃1)× Lq2,min{1, q2

p2
}
(w̃2) −→ Lq,∞(w̃q/q1

1 w̃q/q2
2 ), (3.4.8)

with constant bounded by Φ̃(‖w̃1‖Âq1
, [w̃2]Aq2

), where Φ̃ : [1, ∞)2 −→ [0, ∞) is a
function increasing in each variable.

Proof. Since p > 1, in virtue of Minkowski’s integral inequality (see [104,
Proposition 2.1] and [3, Theorem 4.4]), we have that for all weights v1 ∈ Ap1 ,

v2 ∈ ARp2
, and v := vp/p1

1 vp/p2
2 ,

‖Tµ( f , g)‖Lp,∞(v) ≤ p′
ˆ

R2
‖(Tr

1 f )(Ts
2 g)‖Lp,∞(v)d|µ|(r, s),

and applying Proposition 3.4.1 to (S, T) = (Tr
1 , Ts

2), we get that

‖Tµ( f , g)‖Lp,∞(v) ≤ p′|µ|(R2)ϕ([v1]Ap1
, [v2]ARp2

)‖ f ‖Lp1,1(v1)
‖g‖Lp2,1(v2)

,

where ϕ : [1, ∞)2 −→ [0, ∞) is a function that increases in each variable.
Similarly, we also have that for all weights ṽ1 ∈ ARp1

, ṽ2 ∈ Ap2 , and ṽ =

ṽp/p1
1 ṽp/p2

2 ,

‖Tµ( f , g)‖Lp,∞(ṽ) ≤ p′|µ|(R2)ϕ̃([ṽ1]ARp1
, [ṽ2]Ap2

)‖ f ‖Lp1,1(ṽ1)
‖g‖Lp2,1(ṽ2)

,

where ϕ̃ : [1, ∞)2 −→ [0, ∞) is a function that increases in each variable.
We can now apply Corollary 3.3.33 to deduce the desired result, taking into
account Remark 3.3.28.

Remark 3.4.5. Note that if for i = 1, 2, and every t ∈ R, Tt
i satisfies (3.4.6)

for every pi > 1, then we can deduce bounds like (3.4.7) for any exponents
1 < q1 < ∞ and 1 ≤ q2 < ∞ by choosing p1 = q1 and p2 > max{q2, q′1}, and
applying Theorem 3.4.4. Similarly, we can obtain bounds like (3.4.8) for any
exponents 1 ≤ q1 < ∞ and 1 < q2 < ∞ by choosing p1 > max{q1, q′2} and
p2 = q2.

3.4.2 Bi-Linear Fourier Multiplier Operators

Let us start with some classical definitions from [102, Chapter 8].
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Definition 3.4.6. Given a function f : R −→ R, we say that f is of bounded
variation if

V( f ) := sup
N

∑
j=1
| f (xj)− f (xj−1)| ∈ R,

where the supremum is taken over all N and over all choices of x0, . . . , xN
such that −∞ < x0 < x1 < · · · < xN < ∞. We call V( f ) the total variation
of f . The class of all functions f of bounded variation will be denoted by
BV(R).

We say that a function f ∈ BV(R) is normalized if f is left-continuous at
every point of R, and limx→−∞ f (x) = 0. The class of these functions will be
denoted by NBV(R).

We say that a function f is absolutely continuous if for every ε > 0, there
exists δ > 0 such that

N

∑
j=1

(bj − aj) < δ =⇒
N

∑
j=1
| f (bj)− f (aj)| < ε,

whenever (a1, b1), . . . , (aN, bN) are disjoint segments. The class of all such
functions will be denoted by AC(R).

Let us focus our attention to [38, Corollary 3.8]. This result tells us that
for a function m ∈ NBV(R), we can write

m(ξ) =

ˆ ξ

−∞
dm(t) =

ˆ
R

χ(−∞,ξ)(t)dm(t) =
ˆ

R

χ(t,∞)(ξ)dm(t), (3.4.9)

where dm denotes the Lebesgue-Stieltjes measure associated with m. There-
fore, the linear multiplier operator Tm given by

T̂m f (ξ) := m(ξ) f̂ (ξ) =
ˆ

R

χ(t,∞)(ξ) f̂ (ξ)dm(t) =:
ˆ

R

Ŝt,∞ f (ξ)dm(t), ξ ∈ R,

initially defined for Schwartz functions f on R, can be written as

Tm f (x) =
ˆ

R

St,∞ f (x)dm(t), x ∈ R,

where

St,∞ f (x) :=
1
2

f (x) +
i
2

e2πitxH(e−2πit· f )(x) =:
1
2

f (x) +
i
2

e2πitxHt f (x).

As usual, H denotes the Hilbert transform on R, defined as

H f (x) :=
1
π

lim
ε→0+

ˆ
{y∈R : |x−y|>ε}

f (y)
x− y

dy, x ∈ R,
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and for a Schwartz function f : R −→ R, we denote by f̂ its Fourier transform,
given by

f̂ (ξ) :=
ˆ

R

f (y)e−2πiyξdy, ξ ∈ R.

Since for 1 < p < ∞, H : Lp(R) −→ Lp(R) with constant bounded by Cp, in
virtue of Minkowski’s integral inequality we conclude that

‖Tm f ‖Lp(R) ≤
ˆ

R

‖St,∞ f ‖Lp(R)d|m|(t) ≤
1 + Cp

2
V(m)‖ f ‖Lp(R),

and m is an Lp Fourier multiplier for every 1 < p < ∞.
Inspired by this result, let us take a measure µ on R2 such that |µ|(R2) <

∞, and define the function

mµ(ξ, η) :=
ˆ
{(r,t)∈R2 : r≤ξ, t≤η}

dµ(r, t) =
ˆ

R2
χ(−∞,ξ)(r)χ(−∞,η)(t)dµ(r, t)

=

ˆ
R2

χ(r,∞)(ξ)χ(t,∞)(η)dµ(r, t),

(3.4.10)

for ξ, η ∈ R. It is clear that ‖mµ‖L∞(R2) ≤ |µ|(R2) < ∞, so it makes sense to
consider the bi-linear multiplier operator

Tmµ( f , g)(x) :=
ˆ

R

ˆ
R

mµ(ξ, η) f̂ (ξ)ĝ(η)e2πix(ξ+η)dξdη, (3.4.11)

initially defined for Schwartz functions f and g, and x ∈ R. Arguing as we
did in the linear case, and applying Fubini’s theorem, we have that

Tmµ( f , g)(x)

=

ˆ
R2

(ˆ
R

χ(r,∞)(ξ) f̂ (ξ)e2πixξdξ

)(ˆ
R

χ(t,∞)(η)ĝ(η)e2πixηdη

)
dµ(r, t)

=

ˆ
R2

Sr,∞ f (x)St,∞g(x)dµ(r, t),

so Tmµ is, in fact, a two-variable averaging operator, and we can follow the ap-
proach of Theorem 3.4.4 to prove weighted bounds for it, exploiting known
restricted weak type bounds for the Hilbert transform, as we show in the next
result.

Theorem 3.4.7. Given exponents 1 < q1 < ∞, 1 ≤ q2 < ∞, and 1
q = 1

q1
+ 1

q2
, if

q > 1, then for all weights w1 ∈ Aq1 , w2 ∈ ARq2
, and w = wq/q1

1 wq/q2
2 ,

Tmµ : Lq1,1(w1)× Lq2,1(w2) −→ Lq,∞(w), (3.4.12)

with constant bounded by Φ([w1]Aq1
, [w2]ARq2

), where Φ : [1, ∞)2 −→ [0, ∞) is a
function increasing in each variable. Moreover, if q ≤ 1, then for every exponent
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p2 > max{q2, q′1}, and all weights w1 ∈ Aq1 and w2 ∈ Âq2 ,

Tmµ : Lq1,1(w1)× Lq2, q2
p2 (w2) −→ Lq,∞(w), (3.4.13)

and if also q2 > 1, then for every exponent p1 > max{q1, q′2}, and all weights
w1 ∈ Aq1 and w2 ∈ ARq2

,

Tmµ : Lq1, q1
p1 (w1)× Lq2,1(w2) −→ Lq,∞(w), (3.4.14)

with constants bounded by Φ1([w1]Aq1
, ‖w2‖Âq2

) and Φ2([w1]Aq1
, [w2]ARq2

) respec-

tively, where for i = 1, 2, Φi : [1, ∞)2 −→ [0, ∞) is a function increasing in
each variable. Analogously, we also have the symmetric bounds for w1 ∈ ARq1

or
w1 ∈ Âq1 , and w2 ∈ Aq2 .

Proof. It follows from Theorem 5.2.7, and [67, Theorem 1.2], that for every
p ≥ 1, and every weight v ∈ ARp , H : Lp,1(v) −→ Lp,∞(v), with constant
bounded by

φ([v]ARp ) :=

{
Cn,p[v]

p+1
ARp

, p > 1,

Cn[v]A1(1 + log+[v]A1)(1 + log+ log+[v]A1), p = 1,

so for every σ ∈ R, and every h ∈ Lp,1(v),

‖Sσ,∞h‖Lp,∞(v) ≤ ‖h‖Lp,∞(v) + ‖Hσh‖Lp,∞(v) ≤
(

1
p
+ φ([v]ARp )

)
‖h‖Lp,1(v).

Hence, applying Proposition 3.4.1 to (S, T) = (Sr,∞, St,∞), we get that if q > 1,
then for all weights w1 ∈ Aq1 and w2 ∈ ARq2

, and all measurable functions
f ∈ Lq1,1(w1) and g ∈ Lq2,1(w2),

‖(Sr,∞ f )(St,∞g)‖
Lq,∞(w

q/q1
1 wq/q2

2 )
≤ ϕ([w1]Aq1

, [w2]ARq2
)‖ f ‖Lq1,1(w1)

‖g‖Lq2,1(w2)
,

where ϕ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable. There-
fore, in virtue of Minkowski’s integral inequality, we deduce that (3.4.12)
holds, with Φ = q′|µ|(R2)ϕ.

To discuss the case when q ≤ 1, we will use our extrapolation results.
Note that for every p2 > max{q2, q′1}, we have that 1

q1
+ 1

p2
=: 1

` < 1, and by

(3.4.12), we get that for all weights v1 ∈ Aq1 , v2 ∈ ARp2
, and v := v`/q1

1 v`/p2
2 ,

Tmµ : Lq1,1(v1)× Lp2,1(v2) −→ L`,∞(v),

with constant bounded by ϕ1([v1]Aq1
, [v2]ARp2

), where ϕ1 : [1, ∞)2 −→ [0, ∞)

is a function increasing in each variable. Hence, applying Corollary 3.3.14
and Remark 3.3.13, we can extrapolate downwards and obtain (3.4.13). Al-
ternatively, if q ≤ 1 and q2 > 1, then for every p1 > max{q1, q′2}, we have
that 1

p1
+ 1

q2
=: 1

` < 1, and by (3.4.12), we get that for all weights v1 ∈ Ap1 ,
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v2 ∈ ARq2
, and v := v`/p1

1 v`/q2
2 ,

Tmµ : Lp1,1(v1)× Lq2,1(v2) −→ L`,∞(v),

with constant bounded by ϕ2([v1]Ap1
, [v2]ARq2

), where ϕ2 : [1, ∞)2 −→ [0, ∞)

is a function increasing in each variable. Hence, applying Corollary 3.3.10
and Remark 3.3.7, we can extrapolate downwards and obtain (3.4.14).

Remark 3.4.8. Observe that for 1 ≤ p1, p2 < ∞, 1
p = 1

p1
+ 1

p2
, v1 ∈ ARp1

,

v2 ∈ ARp2
, and v = vp/p1

1 vp/p2
2 , and virtue of Lemma 2.2.1, we get that

‖(Sr,∞ f )(St,∞g)‖Lp,∞(v)

≤ ‖ f g‖Lp,∞(v) + ‖ f Htg‖Lp,∞(v) + ‖gHr f ‖Lp,∞(v) + ‖(Hr f )(Htg)‖Lp,∞(v)

≤ Cn,p1,p2 ϕ([v1]ARp1
, [v2]ARp2

)‖ f ‖Lp1,1(v1)
‖g‖Lp2,1(v2)

+ ‖(Hr f )(Htg)‖Lp,∞(v),

where ϕ : [1, ∞)2 −→ [0, ∞) is a function increasing in each variable. Hence,
if we could prove restricted weak type bounds for the point-wise product of
Hilbert transforms, we would be able to transfer them to the operator Tmµ

using our extrapolation results from Chapter 4, arguing as in the proof of
Theorem 3.4.7.

If we take functions m1, m2 ∈ NBV(R), we can easily construct a function
like (3.4.10) by merely considering their product, since by (3.4.9),

(m1 ⊗m2)(ξ, η) := m1(ξ)m2(η) =

ˆ
R

ˆ
R

χ(r,∞)(ξ)χ(t,∞)(η)dm1(r)dm2(t),

and

‖m1 ⊗m2‖L∞(R2) ≤
ˆ

R

ˆ
R

d|m1|(r)d|m2|(t) = V(m1)V(m2) < ∞.

The following result, which is a combination of Theorems 8.17 and 8.18 in
[102], will allow us to construct another simple yet more elaborate example of
a function like (3.4.10), along with many examples of functions in NBV(R).

Theorem 3.4.9. If ψ ∈ L1(R), and for every x ∈ R,

f (x) :=
ˆ x

−∞
ψ(r)dr,

then f ∈ NBV(R), f is absolutely continuous, and f ′ = ψ almost everywhere.
Conversely, if f ∈ NBV(R) ∩ AC(R), then f is differentiable almost every-

where, f ′ ∈ L1(R), and for every x ∈ R,

f (x) =
ˆ x

−∞
f ′(r)dr.

An immediate consequence of Theorem 3.4.9 is the next lemma.
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Lemma 3.4.10. Given a function m ∈ NBV(R) ∩ AC(R), for all ξ, η ∈ R,

m̃(ξ, η) := m(min{ξ, η}) =
ˆ

R

χ(r,∞)(ξ)χ(r,∞)(η)m
′(r)dr,

and ‖m̃‖L∞(R2) ≤ ‖m′‖L1(R) < ∞.

Proof. Observe that for r ∈ R, −∞ < r < min{ξ, η} if, and only if −∞ < r <
ξ and −∞ < r < η, so by Theorem 3.4.9, we have that

m(min{ξ, η}) =
ˆ min{ξ,η}

−∞
m′(r)dr =

ˆ
R

χ(−∞,ξ)(r)χ(−∞,η)(r)m
′(r)dr

=

ˆ
R

χ(r,∞)(ξ)χ(r,∞)(η)m
′(r)dr.

The function m̃ is an example of function like (3.4.10) where the measure
µ is restricted to R. More generally, we can take a subset E ⊆ R2, and a
measure ν on E such that |ν|(E) < ∞, and consider the function

mν,E(ξ, η) := ν(E ∩ Rξ,η),

with Rξ,η := {(r, t) ∈ R2 : r ≤ ξ, t ≤ η}, and ‖mν,E‖L∞(R2) ≤ |ν|(E) < ∞.
In the particular case when E = (0, 1)2, the unit square, and ν is the

Lebesgue measure on E, we obtain that

mν,E(ξ, η) = min{1, ξ}min{1, η}χ{r∈R : r>0}(ξ)χ{r∈R : r>0}(η). (3.4.15)

For a pictorial representation of such function, see Figure 3.14.
We obtain a more elaborate example if we consider the unit half-disk

E = {(x, y) ∈ R2 : x2 + y2 ≤ 1, y ≥ 0},

and ν the Lebesgue measure on E.
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In this case, we get that mν,E(ξ, η) is equal to

0, −∞ < η ≤ 0,
−∞ < ξ < ∞,

0, 0 < η < 1,
−∞ < ξ ≤ −1,

π
4 + 1

2

(
ξ
√

1− ξ2 + arcsin (ξ)
)

,
0 < η < 1,

−1 < ξ ≤ −
√

1− η2,

1
2

(
η
√

1− η2 + arcsin (η)
)
+ ηξ,

0 < η < 1,
−
√

1− η2 < ξ ≤
√

1− η2,

η
√

1− η2 + arcsin (η) + 1
2

(
ξ
√

1− ξ2 − arccos (ξ)
)

,
0 < η < 1,√

1− η2 < ξ ≤ 1,

η
√

1− η2 + arcsin (η), 0 < η < 1,
1 < ξ < ∞,

0, 1 ≤ η < ∞,
−∞ < ξ ≤ −1,

π
4 + 1

2

(
ξ
√

1− ξ2 + arcsin (ξ)
)

, 1 ≤ η < ∞,
−1 < ξ ≤ 1,

π
2 , 1 ≤ η < ∞,

1 < ξ < ∞.
(3.4.16)

For a three-dimensional plot of such function, see Figure 3.15.

3.4.3 Two-Variable Commutators

Given one-variable operators T1 and T2, defined for measurable functions on
Rn, and measurable functions b1 and b2, with~b = (b1, b2), let us consider the
two-variable commutators [~b, T⊗]1 and [~b, T⊗]2. Observe that for measurable
functions f1 and f2,

[~b, T⊗]1( f1, f2) := b1(T1 f1)(T2 f2)− T1(b1 f1)(T2 f2) = ([b1, T1] f1)(T2 f2),

and similarly,
[~b, T⊗]2( f1, f2) = (T1 f1)([b2, T2] f2).

Hence, these operators are, in fact, product-type operators, and we can fol-
low the approach of Theorem 3.4.2 to prove weighted bounds for them, using
known estimates for commutators of one-variable operators, as we show in
the next result.
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ξη η

ξ 1

0 0

0

(0, 0) (1, 0)

(0, 1)

(ξ, η)

FIGURE 3.14: Pictorial representation of the function in (3.4.15).

Theorem 3.4.11. Let T1 be a linear operator such that for every weight u ∈ A2,

T1 : L2(u) −→ L2(u),

with constant bounded by ϕ1([u]A2), and let T2 be a one-variable operator such that
for some p2 > 1, and every weight v2 ∈ ARp2

,

T2 : Lp2,1(v2) −→ Lp2,∞(v2), (3.4.17)

with constant bounded by ϕ2([v2]ARp2
), where for i = 1, 2, ϕi : [1, ∞) −→ [0, ∞)

is an increasing function. Let b1, b2 ∈ BMO. Given exponents 1 < q1 < ∞,
1 ≤ q2 ≤ p2, p1 ≥ q1 such that p1 > p′2, and 1

q = 1
q1
+ 1

q2
, and weights w1 ∈ Aq1 ,

w2 ∈ Âq2 , and w = wq/q1
1 wq/q2

2 ,

[~b, T⊗]1 : Lq1, q1
p1 (w1)× Lq2, q2

p2 (w2) −→ Lq,∞(w), (3.4.18)

with constant bounded by Φ~b([w1]Aq1
, ‖w2‖Âq2

), where Φ~b : [1, ∞)2 −→ [0, ∞)

is a function increasing in each variable. An analogous result can be produced for
[~b, T⊗]2.

Proof. In virtue of [16, Corollary 3.3], we have that for 1 < r < ∞, and every
weight v1 ∈ Ar,

[b1, T1] : Lr(v1) −→ Lr(v1),
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FIGURE 3.15: Mathematica’s 3D plot of the function in (3.4.16)
on [−1, 1]× [0, 1].

with constant bounded by

φ([v1]Ar) := cn,r ϕ1(Cn,r[v1]
max{1, 1

r−1}
Ar

)[v1]
max{1, 1

r−1}
Ar

‖b1‖BMO.

In particular,
[b1, T1] : Lr(v1) −→ Lr,∞(v1),

with constant also bounded by φ([v1]Ar), and arguing as in the proof of The-
orem 3.1.9, we deduce that for every weight v1 ∈ Ar,

[b1, T1] : Lr,1(v1) −→ Lr,1(v1),

with constant bounded by

ψ([v1]Ar) := c̃n,r[v1]
2

r−1
Ar

φ(C̃n,r[v1]
2
Ar
).

For r = p1, and applying Lemma 2.2.1, since 1
p := 1

p1
+ 1

p2
< 1, we get that

for all weights v1 ∈ Ap1 , v2 ∈ ARp2
, and v := vp/p1

1 vp/p2
2 , and all measurable
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functions f1 ∈ Lp1,1(v1) and f2 ∈ Lp2,1(v2),

‖[~b, T⊗]1( f1, f2)‖Lp,∞(v) = ‖([b1, T1] f1)(T2 f2)‖Lp,∞(v)

≤ cp1,p2‖[b1, T1] f1‖Lp1,1(v1)
‖T2 f2‖Lp2,∞(v2)

≤ cp1,p2ψ([v1]Ap1
)ϕ2([v2]ARp2

)
2

∏
i=1
‖ fi‖Lpi ,1(vi)

,

and (3.4.18) follows extrapolating downwards with Corollary 3.3.18, taking
into account Remark 3.3.7 and Remark 3.3.13.

It is worth mentioning that the function Φ~b that we obtain is of the form
Φ~b = ‖b1‖BMOΦ̃, where Φ̃ : [1, ∞)2 −→ [0, ∞) is a function increasing in
each variable and independent of~b.

Remark 3.4.12. Observe that if T2 satisfies (3.4.17) for every p2 > 1, as it is
the case of linear Calderón-Zygmund operators, then we can deduce bounds
like (3.4.18) for any exponents 1 < q1 < ∞ and 1 ≤ q2 < ∞ by choosing
p1 = q1 and p2 > max{q2, q′1}, and applying Theorem 3.4.11.
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Chapter 4

Multi-Variable Restricted Weak
Type Extrapolation

“ We choose to go to the Moon in this decade and do the other things,
not because they are easy, but because they are hard. ”

John Fitzgerald Kennedy, Address at Rice University, 1962

We devote this chapter to the study of multi-variable restricted weak type
Rubio de Francia’s extrapolation and its applications. In Section 4.1, we ex-
pose more technical results that we will use in our work. In Section 4.2,
we present our main results on restricted weak type extrapolation, includ-
ing downwards, upwards, and one-variable off-diagonal schemes. In Sec-
tion 4.3, we apply our extrapolation results to produce bounds for sums of
product-type operators, and the corresponding averaging operators.

4.1 More Technical Results

Let us start defining the following class of weights, which was introduced in
an unpublished version of [9].

Definition 4.1.1. Given 1 ≤ p < ∞, and 1 ≤ N ∈ N, we say that a weight
w belongs to the class Âp,N if there exist functions f1, . . . , fN ∈ L1

loc(R
n),

parameters θ1, . . . , θN ∈ (0, 1], with θ1 + · · ·+ θN = 1, and a weight u ∈ A1
such that

w =

(
N

∏
i=1

(M fi)
θi

)1−p

u. (4.1.1)

We can associate a constant to this class of weights, given by

‖w‖Âp,N
:= inf [u]1/p

A1
,
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where the infimum is taken over all weights u ∈ A1 such that w can be writ-
ten as (4.1.1). We also define

Âp,∞ :=
∞⋃

N=1

Âp,N,

with the corresponding associated constant, given by

‖w‖Âp,∞
:= inf

N≥1
‖w‖Âp,N

.

It is clear that Â1,∞ = A1, and Âp,1 = Âp. Also, observe that for every
N ≥ 1, Âp,N ⊆ Âp,N+1, and ‖w‖Âp,N+1

≤ ‖w‖Âp,N
, but we don’t know if these

inclusion relations are strict.
The following lemma will be helpful for future computations.

Lemma 4.1.2. Given real numbers A, B ≥ 0, and 0 < θ < 1,
ˆ ∞

0

min{A, tB}
tθ

dt
t
=

A1−θBθ

θ(1− θ)
.

Proof. If AB = 0, then the result is clear. Otherwise, the result follows from
the fact that

min{A, tB} =
{

A, t ≥ A
B ,

tB, t < A
B .

The next lemma gives us a restricted weak type interpolation result for
weights.

Lemma 4.1.3. Fix 0 < p < ∞, and 0 < θ < 1. Let u1, u2, v1, v2 be weights,
and write u = u1−θ

1 uθ
2, and v = v1−θ

1 vθ
2. Let T be a sub-linear operator defined for

characteristic functions. Suppose that for i = 1, 2, there exists a constant Ci > 0
such that for every measurable set E,

‖T(χE)‖Lp,∞(ui)
≤ Ci ‖χE‖Lp,1(vi)

. (4.1.2)

Then, for C = C1 + C2, and every measurable set E,

‖T(χE)‖Lp,∞(u) ≤ C ‖χE‖Lp,1(v) .

Proof. Fix t, y > 0, and 0 < γ < 1. Since T is sub-linear, we have that
ˆ
{|T(χE)|>y}

min{u1(x), tu2(x)}dx ≤
ˆ
{|T(χE1 )|>γy}

u1(x)dx

+ t
ˆ
{|T(χE2 )|>(1−γ)y}

u2(x)dx,
(4.1.3)
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where E1 := {x ∈ E : v1(x) ≤ tv2(x)}, and E2 := E \ E1. Applying (4.1.2),
and choosing γ = C1

C1+C2
, we can bound (4.1.3) by(

pC1

γy

)p
v1(E1) + t

(
pC2

(1− γ)y

)p
v2(E2) =

(
pC
y

)p
(v1(E1) + tv2(E2))

=

(
pC
y

)p ˆ
E

min{v1(x), tv2(x)}dx,

and in virtue of Lemma 4.1.2, we conclude that
ˆ
{|T(χE)|>y}

u(x)dx = θ(1− θ)

ˆ ∞

0

ˆ
{|T(χE)|>y}

min{u1(x), tu2(x)}
tθ

dx
dt
t

≤ θ(1− θ)

(
pC
y

)p ˆ ∞

0

ˆ
E

min{v1(x), tv2(x)}
tθ

dx
dt
t

=

(
pC
y

)p
v(E),

and the desired result follows.

Remark 4.1.4. At the time of writing, we don’t know if it is possible to prove
Lemma 4.1.3 with C = max{C1, C2}.

We will use Lemma 4.1.3 to show that for p ≥ 1, Âp,∞ ⊆ ARp , but due to
Remark 4.1.4, we can’t work with ‖ · ‖Âp,∞

, and we need to introduce a new

constant for weights in Âp,∞.

Definition 4.1.5. Given 1 ≤ p < ∞, and w ∈ Âp,∞, we define the constant

JwKÂp,∞
:= inf

N≥1
N‖w‖Âp,N

.

We can see that JwKÂ1,∞
= ‖w‖Â1,∞

= [w]A1 , and in general, ‖w‖Âp,∞
≤

JwKÂp,∞
. Moreover, JwKÂp,∞

< ∞ if, and only if ‖w‖Âp,∞
< ∞, but we don’t

know if there exists an increasing function ψ : [1, ∞) −→ [0, ∞) such that
JwKÂp,∞

≤ ψ(‖w‖Âp,∞
).

We can now prove that for p ≥ 1, Âp,∞ ⊆ ARp .

Theorem 4.1.6. Given 1 ≤ p < ∞, there exists a constant C > 0, depending only
on p and the dimension n, such that for every N ≥ 1, and every weight w ∈ Âp,N,

[w]ARp ≤ CN‖w‖Âp,N
. (4.1.4)

In particular, if w ∈ Âp,∞, then w ∈ ARp , and

[w]ARp ≤ CJwKÂp,∞
.

Proof. Observe that if p = 1, then the result is true for any C ≥ 1, so we will
assume that p > 1.
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For N = 1, if w ∈ Âp,1, then we can find a locally integrable function f ,
and a weight u ∈ A1 such that w = (M f )1−pu. It was proved in [9, Corollary
2.8] that [(M f )1−pu]ARp ≤ cn,p[u]

1/p
A1

, and taking the infimum over all such
weights u ∈ A1, we get that [w]ARp ≤ cn,p‖w‖Âp,1

.

For N ≥ 2, if w ∈ Âp,N, then we can find locally integrable functions
f1, . . . , fN, a weight u ∈ A1, and real values 0 < θ1, . . . , θN ≤ 1, with ∑N

i=1 θi =

1, such that w =
(

∏N
i=1(M fi)

θi
)1−p

u. We will proceed by applying Lemma
4.1.3 iteratively N − 1 times. Let us assume that we are performing the kth
iteration, with 1 ≤ k ≤ N − 1, and that all the previous iterations are already
done. We choose the weights

w(k)
1 :=

(
k

∏
i=1

(M fi)

θi
1−∑N

`=k+1 θ`

)1−p

u, w(k)
2 := (M fk+1)

1−pu,

and the exponent

θ(k) :=
θk+1

1−∑N
`=k+2 θ`

.

Observe that w(k)
2 ∈ Âp,1, and we already know that Âp,1 ⊆ ARp , so in

virtue of Remark 5.2.3 and the case N = 1, we have that for every measurable
set E,

‖M(χE)‖Lp,∞(w(k)
2 )
≤ 2n24n/p[w(k)

2 ]ARp ‖χE‖Lp,1(w(k)
2 )

≤ 2n24n/pcn,p‖w(k)
2 ‖Âp,1

‖χE‖Lp,1(w(k)
2 )

≤ 2n24n/pcn,p[u]
1/p
A1
‖χE‖Lp,1(w(k)

2 )
.

(4.1.5)

Similarly, if k = 1, then w(k)
1 = (M f1)

1−pu ∈ Âp,1, and we also have that for
every measurable set E,

‖M(χE)‖Lp,∞(w(k)
1 )
≤ 2n24n/pcn,p[u]

1/p
A1
‖χE‖Lp,1(w(k)

1 )
. (4.1.6)

If k > 1, we know from the previous iterations that for every measurable set
E,

‖M(χE)‖Lp,∞(w(k)
1 )
≤ 2n24n/pcn,pk[u]1/p

A1
‖χE‖Lp,1(w(k)

1 )
. (4.1.7)

In virtue of (4.1.5), (4.1.6), and (4.1.7), if we apply Lemma 4.1.3 for the kth
time, with exponent θ(k) and weights w(k)

1 and w(k)
2 , then we get that for every

measurable set E,

‖M(χE)‖Lp,∞(w(k+1)
1 )

≤ 2n24n/pcn,p(k + 1)[u]1/p
A1
‖χE‖Lp,1(w(k+1)

1 )
,



4.1. More Technical Results 121

because
(

w(k)
1

)1−θ(k) (
w(k)

2

)θ(k)

= w(k+1)
1 . At the end of the iteration process,

k = N − 1, and we have that for every measurable set E,

‖M(χE)‖Lp,∞(w) ≤ 2n24n/pcn,pN[u]1/p
A1
‖χE‖Lp,1(w) , (4.1.8)

since w(N)
1 = w.

Now, we apply Theorem 5.2.6 to deduce from (4.1.8) that

[w]ARp ≤ ‖w‖ARp
≤ 2n24n/p pcn,pN[u]1/p

A1
,

and taking the infimum over all suitable representations of w, we get that

[w]ARp ≤ 2n24n/p pcn,pN‖w‖Âp,N
,

and hence, (4.1.4) holds taking C = 2n24n/p pcn,p.
Finally, given w ∈ Âp,∞, we have that

[w]ARp ≤ C inf
N≥1 : w∈Âp,N

N‖w‖Âp,N
= CJwKÂp,∞

,

because if N ≥ 1 is such that w 6∈ Âp,N, then ‖w‖Âp,N
= inf ∅ = ∞.

The following result allows us to construct ARp weights.

Lemma 4.1.7. Given 1 ≤ p < ∞, 0 < θ1, . . . , θm ≤ 1, with θ1 + · · ·+ θm = 1,
and weights w1, . . . , wm ∈ ARp , the weight w = wθ1

1 . . . wθm
m is in ARp , and

[w]ARp ≤ C
m

∑
i=1

[wi]ARp .

Proof. If m = 1, there is nothing to prove, so we may assume that m > 1.
If p = 1, it follows from Hölder’s inequality that

[w]A1 ≤
m

∏
i=1

[wi]
θi
A1
≤ max

i=1,...,m
{[wi]A1} ≤

m

∑
i=1

[wi]A1 .

If p > 1, it follows from Remark 5.2.3 that for i = 1, . . . , m, and every
measurable set E,

‖M(χE)‖Lp,∞(wi)
≤ 2n24n/p[wi]ARp ‖χE‖Lp,1(wi)

. (4.1.9)

We now proceed by applying Lemma 4.1.3 iteratively m− 1 times. Let us
assume that we are performing the kth iteration, with 1 ≤ k ≤ m − 1, and
that all the previous iterations are already done. We choose the weights

w(k)
1 :=

k

∏
i=1

w
θi

1−∑m
`=k+1 θ`

i , w(k)
2 := wk+1,
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and the exponent

θ(k) :=
θk+1

1−∑m
`=k+2 θ`

.

In virtue of (4.1.9), if we apply Lemma 4.1.3 for the kth time, with exponent
θ(k) and weights w(k)

1 and w(k)
2 , then we get that for every measurable set E,

‖M(χE)‖Lp,∞(w(k+1)
1 )

≤ 2n24n/p

(
k+1

∑
i=1

[wi]ARp

)
‖χE‖Lp,1(w(k+1)

1 )
,

since w(1)
1 = w1, w(1)

2 = w2, and
(

w(k)
1

)1−θ(k) (
w(k)

2

)θ(k)

= w(k+1)
1 . In particu-

lar, for k = m− 1, w(m)
1 = w, and we conclude that

‖M(χE)‖Lp,∞(w) ≤ 2n24n/p

(
m

∑
i=1

[wi]ARp

)
‖χE‖Lp,1(w).

Finally, applying Theorem 5.2.6, we obtain that

[w]ARp ≤ 2n24n/p p
m

∑
i=1

[wi]ARp ,

and the desired result follows, with C = 2n24n/p p.

Remark 4.1.8. For p > 1, we don’t know if [w]ARp ≤ Cm,n,p,θ1,...,θm ∏m
i=1[wi]

θi
ARp

.

The next lemma allows us to construct nice weights.

Lemma 4.1.9. Let 1 ≤ q ≤ p, and let w be a weight. For a measurable function
h ∈ L1

loc(R
n), let v = (Mh)q−pw. If w ∈ Âq,N, then v ∈ Âp,N+1, and

‖v‖Âp,N+1
≤ C‖w‖q/p

Âq,N
, (4.1.10)

with C independent of h. In particular, if w ∈ Âq,∞, then v ∈ Âp,∞, and

JvKÂp,∞
≤ 2CJwKÂq,∞

. (4.1.11)

Proof. For a weight w ∈ Âq,N, we can find measurable functions h1, . . . , hN ∈
L1

loc(R
n), parameters θ1, . . . , θN ∈ (0, 1], with θ1 + · · ·+ θN = 1, and a weight

u ∈ A1 such that w =
(

∏N
i=1(Mhi)

θi
)1−q

u, with [u]1/q
A1
≤ 2‖w‖Âq,N

. Note
that if p = 1, then q = 1, and v = w = u, so (4.1.10) holds for every C ≥ 1. If
p > 1, then

v =

(
(Mh)

q−p
1−p (Mh1)

θ1
1−q
1−p . . . (MhN)

θN
1−q
1−p

)1−p
u,
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and since q−p
1−p + (θ1 + · · ·+ θN)

1−q
1−p = 1, we have that v ∈ Âp,N+1, with

‖v‖Âp,N+1
≤ [u]1/p

A1
≤ 2q/p ‖w‖q/p

Âq,N
,

and (4.1.10) follows, with C = 2q/p.
Finally, if w ∈ Âq,∞, we can find a natural number N ≥ 1 such that w ∈

Âq,N, and in virtue of (4.1.10), we get that

JvKÂp,∞
≤ (N + 1) ‖v‖Âp,N+1

≤ 2CN ‖w‖q/p
Âq,N
≤ 2CN ‖w‖Âq,N

,

and taking the infimum over all such N ≥ 1, we obtain (4.1.11).

The next result also allows us to construct nice weights. It is an extension
of Lemma 3.1.4, and the proof is similar.

Lemma 4.1.10. Let 1 < p < q, and 1 ≤ N ∈ N, and let w ∈ Âq,N. For a

measurable function h ∈ L1
loc(R

n), let v = w
p−1
q−1 (Mh)

q−p
q−1 . Then, v ∈ Âp,N, and

‖v‖Âp,N
≤ C‖w‖q/p

Âq,N
, (4.1.12)

with C independent of h. In particular, if w ∈ Âq,∞, then v ∈ Âp,∞, and

JvKÂp,∞
≤ CJwKq/p

Âq,∞
. (4.1.13)

Proof. For a weight w ∈ Âq,N, we can find measurable functions h1, . . . , hN ∈
L1

loc(R
n), parameters θ1, . . . , θN ∈ (0, 1], with θ1 + · · ·+ θN = 1, and a weight

u ∈ A1 such that w =
(

∏N
i=1(Mhi)

θi
)1−q

u, with [u]1/q
A1
≤ 2‖w‖Âq,N

. Note
that

v =

(
N

∏
i=1

(Mhi)
θi

)1−p

u
p−1
q−1 (Mh)

q−p
q−1 =:

(
N

∏
i=1

(Mhi)
θi

)1−p

ũ.

Applying [14, Lemma 2.12], we see that ũ ∈ A1, with [ũ]A1 ≤ c[u]A1 , and
c independent of h. Hence, v ∈ Âp,N, with

‖v‖Âp,N
≤ [ũ]1/p

A1
≤ c1/p[u]1/p

A1
≤ 2q/pc1/p‖w‖q/p

Âq,N
,

and (4.1.12) holds, with C = 2q/pc1/p.
Finally, if w ∈ Âq,∞, we can find a natural number N ≥ 1 such that w ∈

Âq,N, and in virtue of (4.1.12), we get that

JvKÂp,∞
≤ N ‖v‖Âp,N

≤ CN ‖w‖q/p
Âq,N
≤ C(N ‖w‖Âq,N

)q/p,

and taking the infimum over all such N ≥ 1, we obtain (4.1.13).
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The following lemma gives us information about certain weights.

Lemma 4.1.11. Let 1 ≤ q1, . . . , qm < ∞, and 1
q = 1

q1
+ · · · + 1

qm
. Let 1 ≤

N1, . . . , Nm ∈ N. Choose weights w1 ∈ Âq1,N1 , . . . , wm ∈ Âqm,Nm , and take w =

wq/q1
1 . . . wq/qm

m . Then, w ∈ ARmq, and

[w]ARmq
≤ C(N1 + · · ·+ Nm)

m

∏
i=1
‖wi‖1/m

Âqi ,Ni
. (4.1.14)

Alternatively, if w1 ∈ Âq1,∞, . . . , wm ∈ Âqm,∞, then w ∈ ARmax{q1,...,qm}, and

[w]ARmax{q1,...,qm}
≤ C̃

m

∑
i=1

JwiKÂqi ,∞
.

Proof. For i = 1, . . . , m, wi ∈ Âqi,Ni , and we can find functions hi
1, . . . , hi

Ni
∈

L1
loc(R

n), parameters θi
1, . . . , θi

Ni
∈ (0, 1], with θi

1 + · · ·+ θi
Ni

= 1, and a weight

ui ∈ A1 such that wi =
(

∏Ni
j=1(Mhi

j)
θi

j
)1−qi

ui, with [ui]
1/qi
A1
≤ 2‖wi‖Âqi ,Ni

.

If mq = 1, then q1 = · · · = qm = 1, so w = u1/m
1 . . . u1/m

m ∈ A1, and (4.1.14)
holds. If mq > 1, then

w =

 m

∏
i=1

(
Ni

∏
j=1

(Mhi
j)

θi
j

) q
qi

1−qi
1−mq


1−mq

u,

with u = uq/q1
1 . . . uq/qm

m ∈ A1, and since

m

∑
i=1

Ni

∑
j=1

θi
j

q
qi

1− qi

1−mq
=

m

∑
i=1

q
qi

1− qi

1−mq
= 1,

we have that w ∈ Âmq,N1+···+Nm , with

‖w‖Âmq,N1+···+Nm
≤ [u]

1
mq
A1
≤

m

∏
i=1

[ui]
1

mqi
A1
≤ 2

m

∏
i=1
‖wi‖1/m

Âqi ,Ni
,

and (4.1.14) follows from Theorem 4.1.6.
Finally, for i = 1, . . . , m, Âqi,∞ ⊆ ARqi

⊆ ARmax{q1,...,qm}, and in virtue of
Lemma 4.1.7, (2.1.2), and Theorem 4.1.6, we get that

[w]ARmax{q1,...,qm}
≤ C1

m

∑
i=1

[wi]ARmax{q1,...,qm}
≤ C2

m

∑
i=1

[wi]ARqi
≤ C̃

m

∑
i=1

JwiKÂqi ,∞
.
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4.2 Main Results on Restricted Weak Type Extrap-
olation

In this section, we present our theorems on multi-variable restricted weak
type extrapolation. To prove them, we build upon ideas introduced in the
previous chapter.

4.2.1 Downwards Extrapolation Theorems

The first result that we prove allows us to fix the exponents p2, . . . , pm and
decrease the first exponent p1 down to q1 exploiting the Âq1,∞ condition on
the weight w1. We include a pictorial representation of this scheme in Fig-
ure 4.1. Such scheme is a multi-variable restricted weak type version of both
Theorem 3.3.6 and Theorem 3.3.12.

Theorem 4.2.1. Given measurable functions f1, . . . , fm, and g, suppose that for
some exponents 1 ≤ p1, . . . , pm < ∞, 1

p = 1
p1

+ · · · + 1
pm

, and all weights vi ∈
Âpi,∞, i = 1, . . . , m,

‖g‖
Lp,∞(v

p/p1
1 ...vp/pm

m )
≤ ϕ(Jv1KÂp1,∞

, . . . , JvmKÂpm ,∞
)

m

∏
i=1
‖ fi‖Lpi ,1(vi)

, (4.2.1)

where ϕ : [1, ∞)m −→ [0, ∞) is a function increasing in each variable. Then,
for every exponent 1 ≤ q1 ≤ p1, and 1

q = 1
q1
+ 1

p2
+ · · · + 1

pm
, and all weights

w1 ∈ Âq1,∞ and wi ∈ Âpi,∞, i = 2, . . . , m,

‖g‖
Lq,∞(w

q/q1
1 wq/p2

2 ...wq/pm
m )

≤ Φ(Jw1KÂq1,∞
, Jw2KÂp2,∞

, . . . , JwmKÂpm ,∞
)

× ‖ f1‖
L

q1,
q1
p1 (w1)

m

∏
i=2
‖ fi‖Lpi ,1(wi)

,
(4.2.2)

where Φ : [1, ∞)m −→ [0, ∞) is a function increasing in each variable.

Proof. We will follow the steps of the proof of Theorem 3.2.4. Note that if
q1 = p1, then there is nothing to prove, so we may assume that q1 < p1.

Pick weights w1 ∈ Âq1,∞ and wi ∈ Âpi,∞, i = 2, . . . , m, and let w =

wq/q1
1 wq/p2

2 . . . wq/pm
m . We may assume that the quantity ‖ f1‖

L
q1,

q1
p1 (w1)

< ∞.

In particular, f1 is locally integrable (see Lemma 3.1.2). Fix y, γ > 0, and take

Z := (M f1)
q1/qw

1
p2
+···+ 1

pm
1 w

− 1
p2

2 . . . w
− 1

pm
m .
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We have that

λw
g (y) =

ˆ
{|g|>y, Z >γy}

w +

ˆ
{|g|>y, Z ≤γy}

w

≤ λw
Z (γy) +

ˆ
{|g|>y}

(γy
Z

)p−q
w =: I + I I.

(4.2.3)

To estimate the term I in (4.2.3), we have that

I =
(γy)q

(γy)q λw
Z (γy) ≤ 1

(γy)q ‖Z ‖
q
Lq,∞(w)

=
1

(γy)q

∥∥∥∥M f1

W

∥∥∥∥q1

Lq1,∞(w1Wq1 )

, (4.2.4)

with

W :=
(

w
− 1

p2
−···− 1

pm
1 w1/p2

2 . . . w1/pm
m

)q/q1

=

(
w
w1

)1/q1

. (4.2.5)

Note that W ∈ A∞. Indeed, if m = 1, then W = 1, and if m > 1, for
ε := q1q

q1−q > 0, Âq1,∞ ⊆ Aq1+ε, so in virtue of Lemma 3.1.5, for i = 2, . . . , m,

Wi :=
(

wi
w1

) 1
q1+ε ∈ A∞, and W = Wθ2

2 . . . Wθm
m , where θi := q

q1 pi
(q1 + ε) ∈ (0, 1],

and θ2 + · · ·+ θm = q
q1
(q1 + ε)

(
1
q −

1
q1

)
= 1.

Applying Lemma 4.1.11, we get that w ∈ ARmax{q1,p2,...,pm}, with

[w]ARmax{q1,p2,...,pm}
≤ C̃

(
Jw1KÂq1,∞

+
m

∑
i=2

JwiKÂpi ,∞

)
=: ψw1,...,wm , (4.2.6)

so in virtue of Theorem 2.3.8, Lemma 2.3.10, Theorem 4.1.6, and (2.1.1), we
deduce that∥∥∥∥M f1

W

∥∥∥∥
Lq1,∞(w1Wq1 )

≤ φ([w1]ARq1
, [w]ARmax{q1,p2,...,pm}

)‖ f1‖Lq1,1(w1)

≤ φ(cJw1KÂq1,∞
, ψw1,...,wm)‖ f1‖Lq1,1(w1)

≤ p
1− p1

q1
1 φ(cJw1KÂq1,∞

, ψw1,...,wm)‖ f1‖
L

q1,
q1
p1 (w1)

=: p
1− p1

q1
1 φw1,...,wm‖ f1‖

L
q1,

q1
p1 (w1)

,

(4.2.7)

and combining the estimates (4.2.4) and (4.2.7), we obtain that

I ≤ 1
(γy)q pq1−p1

1 φ
q1
w1,...,wm‖ f1‖

q1

L
q1,

q1
p1 (w1)

. (4.2.8)

We proceed to estimate the term I I in (4.2.3). Take v1 := (M f1)
q1−p1w1,

and for i = 2, . . . , m, take vi := wi. Since w1 ∈ Âq1,∞, it follows from
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Lemma 4.1.9 that v1 ∈ Âp1,∞, with

Jv1KÂp1,∞
≤ CJw1KÂq1,∞

. (4.2.9)

Observe that

Z q−pw = (M f1)
q1
q (q−p)w

( 1
p2
+···+ 1

pm )(q−p)+ q
q1

1 w
p−q
p2

+
q

p2
2 . . . w

p−q
pm +

q
pm

m

= (M f1)
p

p1
(q1−p1)wp/p1

1 wp/p2
2 . . . wp/pm

m = vp/p1
1 . . . vp/pm

m ,

so by (4.2.1), (4.2.9), and the monotonicity of ϕ, we get that

I I =
(γy)p

(γy)q

ˆ
{|g|>y}

vp/p1
1 . . . vp/pm

m ≤ γp

(γy)q ‖g‖
p

Lp,∞(v
p/p1
1 ...vp/pm

m )

≤ γp

(γy)q ϕ(CJw1KÂq1,∞
, Jw2KÂp2,∞

, . . . , JwmKÂpm ,∞
)p

× ‖ f1‖
p
Lp1,1(v1)

m

∏
i=2
‖ fi‖

p
Lpi ,1(wi)

=:
γp

(γy)q ϕ
p
w1,...,wm ‖ f1‖

p
Lp1,1(v1)

m

∏
i=2
‖ fi‖

p
Lpi ,1(wi)

,

(4.2.10)

and arguing as we did in (3.2.7), we have that

‖ f1‖Lp1,1(v1)
≤ p1

q1
‖ f1‖

q1/p1

L
q1,

q1
p1 (w1)

. (4.2.11)

Combining the estimates (4.2.3), (4.2.8), (4.2.10), and (4.2.11), we conclude
that

λw
g (y) ≤

1
(γy)q pq1−p1

1 φ
q1
w1,...,wm‖ f1‖

q1

L
q1,

q1
p1 (w1)

+
γp

(γy)q

(
p1

q1

)p
ϕ

p
w1,...,wm ‖ f1‖

pq1
p1

L
q1,

q1
p1 (w1)

m

∏
i=2
‖ fi‖

p
Lpi ,1(wi)

,

and taking the infimum over all γ > 0, it follows from Lemma 3.1.1 that

yqλw
g (y) ≤

p
p− q

(
p− q

q

)q/p ( p1

q1

)q
p

q(2− q1
p1
− p1

q1
)

1 φ
q(1− q1

p1
)

w1,...,wm ϕ
q
w1,...,wm

× ‖ f1‖
q

L
q1,

q1
p1 (w1)

m

∏
i=2
‖ fi‖

q
Lpi ,1(wi)

.

Finally, raising everything to the power 1
q in this last expression and tak-

ing the supremum over all y > 0, we see that (4.2.2) holds, with

Φ(Jw1KÂq1,∞
, Jw2KÂp2,∞

, . . . , JwmKÂpm ,∞
) = p

3− q1
p1
− p1

q1
1

Cp,q

q1
φ

1− q1
p1

w1,...,wm ϕw1,...,wm ,

(4.2.12)
and Cp,q as in (3.2.19).
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P Q

P Q (1, 1)

(0, 0) (1, 0)

(0, 1)

FIGURE 4.1: Pictorial representation of Theorem 4.2.1 and The-
orem 4.2.5 for m = 2.

Observe that in Theorem 4.2.1 and its proof, for i = 2, . . . , m, the quantity
‖ fi‖Lpi ,1(wi)

plays no role and can be replaced by ‖ fi‖Lpi ,αi (wi)
, with αi > 0.

This fact allows us to iterate m times the argument in the proof of Theo-
rem 4.2.1, one for each variable, to produce the following general downwards
extrapolation scheme, depicted in Figure 4.2. Note that the monotonicity of
the function Φ in (4.2.12) is of utmost importance for the iteration process.
Such scheme generalizes and extends to the multi-variable case both The-
orem 3.2.1 and Theorem 3.2.7, and produces multi-variable restricted weak
type versions of Theorem 3.3.2, Theorem 3.3.6, Theorem 3.3.12, and Theo-
rem 3.3.16.

Theorem 4.2.2. Given measurable functions f1, . . . , fm, and g, suppose that for
some exponents 1 ≤ p1, . . . , pm < ∞, 1

p = 1
p1

+ · · · + 1
pm

, and all weights vi ∈
Âpi,∞, i = 1, . . . , m,

‖g‖
Lp,∞(v

p/p1
1 ...vp/pm

m )
≤ ϕ(Jv1KÂp1,∞

, . . . , JvmKÂpm ,∞
)

m

∏
i=1
‖ fi‖Lpi ,1(vi)

, (4.2.13)

where ϕ : [1, ∞)m −→ [0, ∞) is a function increasing in each variable. Then, for
all exponents 1 ≤ q1 ≤ p1, . . . , 1 ≤ qm ≤ pm, 1

q = 1
q1
+ · · ·+ 1

qm
, and all weights

wi ∈ Âqi,∞, i = 1, . . . , m,

‖g‖
Lq,∞(w

q/q1
1 ...wq/qm

m )
≤ Φ(Jw1KÂq1,∞

, . . . , JwmKÂqm ,∞
)

m

∏
i=1
‖ fi‖

L
qi ,

qi
pi (wi)

, (4.2.14)
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where Φ : [1, ∞)m −→ [0, ∞) is a function increasing in each variable, given by

Φ(t1, . . . , tm) =

(
m

∏
i=1

p
3− qi

pi
− pi

qi
i

Cri−1,ri

qi
φi(citi, C̃i(t1 + · · ·+ tm))

1− qi
pi

)
× ϕ(C1t1, . . . , Cmtm),

with r0 = p, and for i = 1, . . . , m, 1
ri
= 1

q1
+ · · ·+ 1

qi
+ 1

pi+1
+ · · ·+ 1

pm
, Cri−1,ri as

in (3.2.19), and φi = φn
max{q1,...,qi,pi+1,...,pm},qi

as in Lemma 2.3.10. If qi = pi, then
we can take φi = 1.

We have presented Theorem 4.2.2 in its general form, for (m + 1)-tuples
of functions ( f1, . . . , fm, g). We can deduce the corresponding extrapolation
scheme for m-variable operators arguing as in the proof of Corollary 3.2.2.
For convenience, we also provide a pictorial representation of it in Figure 4.2.

Corollary 4.2.3. Let T be an m-variable operator defined for measurable functions.
Suppose that for some exponents 1 ≤ p1, . . . , pm < ∞, 1

p = 1
p1
+ · · ·+ 1

pm
, and all

weights vi ∈ Âpi,∞, i = 1, . . . , m,

T : Lp1,1(v1)× · · · × Lpm,1(vm) −→ Lp,∞(vp/p1
1 . . . vp/pm

m ),

with constant bounded by ϕ(Jv1KÂp1,∞
, . . . , JvmKÂpm ,∞

) as in (4.2.13). Then, for all

exponents 1 ≤ q1 ≤ p1, . . . , 1 ≤ qm ≤ pm, 1
q = 1

q1
+ · · ·+ 1

qm
, and all weights

wi ∈ Âqi,∞, i = 1, . . . , m,

T : Lq1, q1
p1 (w1)× · · · × Lqm, qm

pm (wm) −→ Lq,∞(wq/q1
1 . . . wq/qm

m ),

with constant bounded by Φ(Jw1KÂq1,∞
, . . . , JwmKÂqm ,∞

) as in (4.2.14).

Remark 4.2.4. Observe that if the operator T is defined for characteristic
functions of measurable sets E1, . . . , Em ⊆ Rn, then under the hypotheses
of Corollary 4.2.3, we deduce that∥∥T(χE1 , . . . , χEm)

∥∥
Lq,∞(w

q/q1
1 ...wq/qm

m )
≤ CΦ(Jw1KÂq1,∞

, . . . , JwmKÂqm ,∞
)

× w1(E1)
1/q1 . . . wm(Em)

1/qm ,

with C = pp1/q1
1 . . . ppm/qm

m , and hence, T is of weak type (q1, . . . , qm, q) at least
for characteristic functions.

Let us point out that if in Theorem 4.2.1 we replace Âp1,∞ by Âp1,N1+1,
and Âq1,∞ by Âq1,N1 , and for i = 2, . . . , m, we replace Âpi,∞ by Âpi,Ni , with
1 ≤ N1, . . . , Nm ∈N, then we can replace (4.2.6) by

[w]ARmq
≤ C̃(N1 + · · ·+ Nm)‖w1‖1/m

Âq1,N1

m

∏
i=2
‖wi‖1/m

Âpi ,Ni
,
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P

P
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Q
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(0, 0) (1, 0)

(0, 1)

Q

QQ

FIGURE 4.2: Pictorial representation of Theorem 4.2.2, Corol-
lary 4.2.3, and Theorem 4.2.6 for m = 2.

and (4.2.9) by
‖v1‖Âp1,N1+1

≤ C‖w1‖
q1/p1

Âq1,N1
,

and use that
[w1]ARq1

≤ cN1‖w1‖Âq1,N1

in (4.2.7), and obtain the following variant of Theorem 4.2.1, depicted in Fig-
ure 4.1.

Theorem 4.2.5. Given measurable functions f1, . . . , fm, and g, suppose that for
some exponents 1 ≤ p1, . . . , pm < ∞, 1

p = 1
p1
+ · · ·+ 1

pm
, and 1 ≤ N1, . . . , Nm ∈

N, and all weights v1 ∈ Âp1,N1+1, and vi ∈ Âpi,Ni , i = 2, . . . , m,

‖g‖
Lp,∞(v

p/p1
1 ...vp/pm

m )
≤ ϕ(‖v1‖Âp1,N1+1

, ‖v2‖Âp2,N2
, . . . , ‖vm‖Âpm ,Nm

)

×
m

∏
i=1
‖ fi‖Lpi ,1(vi)

,

where ϕ : [1, ∞)m −→ [0, ∞) is a function increasing in each variable. Then,
for every exponent 1 ≤ q1 ≤ p1, and 1

q = 1
q1
+ 1

p2
+ · · · + 1

pm
, and all weights

w1 ∈ Âq1,N1 , and wi ∈ Âpi,Ni , i = 2, . . . , m,

‖g‖
Lq,∞(w

q/q1
1 wq/p2

2 ...wq/pm
m )

≤ Φ(‖w1‖Âq1,N1
, ‖w2‖Âp2,N2

, . . . , ‖wm‖Âpm ,Nm
)

× ‖ f1‖
L

q1,
q1
p1 (w1)

m

∏
i=2
‖ fi‖Lpi ,1(wi)

,
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where Φ : [1, ∞)m −→ [0, ∞) is a function increasing in each variable, given by

Φ(t1, . . . , tm) = p
3− q1

p1
− p1

q1
1

Cp,q

q1
φ(cN1t1, C̃(N1 + · · ·+ Nm)t1/m

1 . . . t1/m
m )

1− q1
p1

× ϕ(Ctq1/p1
1 , t2, . . . , tm),

with Cp,q as in (3.2.19), and φ = φn
mq,q1

as in Lemma 2.3.10. If q1 = p1, then we
can take φ = 1.

Once again, in Theorem 4.2.5, for i = 2, . . . , m, the quantity ‖ fi‖Lpi ,1(wi)

plays no role and can be replaced by ‖ fi‖Lpi ,αi (wi)
, with αi > 0. Hence, we can

iterate m times Theorem 4.2.5, one for each variable, to produce the following
alternative version of Theorem 4.2.2, depicted in Figure 4.2.

Theorem 4.2.6. Given measurable functions f1, . . . , fm, and g, suppose that for
some exponents 1 ≤ p1, . . . , pm < ∞, 1

p = 1
p1
+ · · ·+ 1

pm
, and 1 ≤ N1, . . . , Nm ∈

N, and all weights vi ∈ Âpi,Ni+1, i = 1, . . . , m,

‖g‖
Lp,∞(v

p/p1
1 ...vp/pm

m )
≤ ϕ(‖v1‖Âp1,N1+1

, . . . , ‖vm‖Âpm ,Nm+1
)

m

∏
i=1
‖ fi‖Lpi ,1(vi)

,

where ϕ : [1, ∞)m −→ [0, ∞) is a function increasing in each variable. Then, for
all exponents 1 ≤ q1 ≤ p1, . . . , 1 ≤ qm ≤ pm, 1

q = 1
q1
+ · · ·+ 1

qm
, and all weights

wi ∈ Âqi,Ni , i = 1, . . . , m,

‖g‖
Lq,∞(w

q/q1
1 ...wq/qm

m )
≤ Φ(‖w1‖Âq1,N1

, . . . , ‖wm‖Âqm ,Nm
)

m

∏
i=1
‖ fi‖

L
qi ,

qi
pi (wi)

,

where Φ : [1, ∞)m −→ [0, ∞) is a function increasing in each variable, given by

Φ(t1, . . . , tm) =

(
m

∏
i=1

p
3− qi

pi
− pi

qi
i

Cri−1,ri

qi
ψi(t1, . . . , tm)

1− qi
pi

)
× ϕ(C1tq1/p1

1 , . . . , Cmtqm/pm
m ),

and

ψi(t1, . . . , tm) = φi(ciNiti, C̃i(N1 + · · ·+ Nm + m− i)t
1
m
1 . . . t

1
m
i t

qi+1
mpi+1
i+1 . . . t

qm
mpm
m ),

with r0 = p, and for i = 1, . . . , m, 1
ri
= 1

q1
+ · · ·+ 1

qi
+ 1

pi+1
+ · · ·+ 1

pm
, Cri−1,ri

as in (3.2.19), and φi = φn
mri,qi

as in Lemma 2.3.10. If qi = pi, then we can take
ψi = 1.

4.2.2 Upwards Extrapolation Theorems

The next result that we present allows us to increase all the exponents ex-
ploiting the Âp,∞ condition on the weights involved, but we need to assume
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some technical hypotheses coming from Theorem 2.4.12. See Figure 3.3 for
a pictorial representation of this extrapolation result when m = 2. Such re-
sult generalizes Theorem 3.2.10 and extends it to the multi-variable case, and
produces a multi-variable restricted weak type version of Theorem 3.3.20 and
Theorem 3.3.35.

Theorem 4.2.7. Given measurable functions f1, . . . , fm, and g, suppose that for
some exponents 1 ≤ p1, . . . , pm < ∞, 1

p = 1
p1

+ · · · + 1
pm

, and all weights vi ∈
Âpi,∞, i = 1, . . . , m,

‖g‖
Lp,∞(v

p/p1
1 ...vp/pm

m )
≤ ϕ(Jv1KÂp1,∞

, . . . , JvmKÂpm ,∞
)

m

∏
i=1
‖ fi‖Lpi ,1(vi)

, (4.2.15)

where ϕ : [1, ∞)m −→ [0, ∞) is a function increasing in each variable. Given
exponents q1 = p1 ≥ 1 or q1 > p1 > 1, . . . , qm = pm ≥ 1 or qm > pm >

1, and 1
q = 1

q1
+ · · · + 1

qm
, and weights wi ∈ Âqi,∞, i = 1, . . . , m, and w =

wq/q1
1 . . . wq/qm

m , if for every i = 1, . . . , m for which qi > pi, there exists 0 < εi ≤ 1

such that wW−εi
i is a weight, and [W−εi

i ]RH∞(w) < ∞, with Wi =
(

w
wi

)1/qi
, then

‖g‖Lq,∞(w) ≤ Φ~ε,~w(Jw1KÂq1,∞
, . . . , JwmKÂqm ,∞

)
m

∏
i=1
‖ fi‖Lqi ,1(wi)

, (4.2.16)

where Φ~ε,~w : [1, ∞)m −→ [0, ∞) is a function that increases in each variable and
depends on~ε = (ε1, . . . , εm), and ~w = (w1, . . . , wm).

Proof. We will follow the steps of the proof of Theorem 3.2.10. Note that
if q1 = p1, . . . , qm = pm, then there is nothing to prove. We first discuss
the case when 1 < pi < qi, i = 1, . . . , m. For i = 1, . . . , m, pick a weight
wi ∈ Âqi,∞, and write w = wq/q1

1 . . . wq/qm
m . As usual, we may assume that

‖ fi‖Lqi ,1(wi)
< ∞. For every natural number N ≥ 1, let gN := |g|χB(0,N). Fix

N ≥ 1. We will prove (4.2.16) for the tuple ( f1, . . . , fm, gN). Since gN ≤ |g|,
we already know that (4.2.15) holds for ( f1, . . . , fm, gN). Fix y > 0 such that
λw

gN
(y) 6= 0. If no such y exists, then ‖gN‖Lq,∞(w) = 0 and we are done.

In order to apply (4.2.15), we want to find weights v1 ∈ Âp1,∞, . . . , vm ∈
Âpm,∞ such that for v := vp/p1

1 . . . vp/pm
m , λw

gN
(y) ≤ λv

gN
(y). For i = 1, . . . , m,

take

vi := w
pi−1
qi−1

i

(
M(w1/qi

i w1/q′i χ{|gN |>y})
) qi−pi

qi−1 . (4.2.17)

Note that if qi = pi, then vi = wi. Applying Lemma 4.1.10, we see that
vi ∈ Âpi,∞, with

JviKÂpi ,∞
≤ CiJwiK

qi/pi

Âqi ,∞
, (4.2.18)
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and Ci independent of wi, w, N, and y. Observe that

vp/p1
1 . . . vp/pm

m ≥
(

m

∏
i=1

w
p
pi

pi−1
qi−1 +

p
piqi

qi−pi
qi−1

i w
p

piq′i

qi−pi
qi−1

)
χ{|gN |>y}

=

(
m

∏
i=1

w
p

pi(qi−1) (pi−
pi
qi
)

i

)
w∑m

i=1
p

piqi
(qi−pi)χ{|gN |>y}

=

(
m

∏
i=1

w
p

qi−1 (1−
1
qi
)

i

)
w∑m

i=1
p
pi
− p

qi χ{|gN |>y}

=

(
m

∏
i=1

wp/qi
i

)
w1− p

q χ{|gN |>y}

=

(
m

∏
i=1

w
p
qi
+

q
qi
(1− p

q )

i

)
χ{|gN |>y} = wq/q1

1 . . . wq/qm
m χ{|gN |>y},

so (4.2.15) and (4.2.18) imply that

λw
gN
(y) =

ˆ
{|gN |>y}

wq/q1
1 . . . wq/qm

m ≤
ˆ
{|gN |>y}

vp/p1
1 . . . vp/pm

m = λv
gN
(y)

≤ 1
yp ϕ(Jv1KÂp1,∞

, . . . , JvmKÂpm ,∞
)p

m

∏
i=1
‖ fi‖

p
Lpi ,1(vi)

≤ 1
yp ϕ(C1Jw1K

q1/p1

Âq1,∞
, . . . , CmJwmKqm/pm

Âqm ,∞
)p

m

∏
i=1
‖ fi‖

p
Lpi ,1(vi)

.

(4.2.19)

For i = 1, . . . , m, we want to replace ‖ fi‖Lpi ,1(vi)
by ‖ fi‖Lqi ,1(wi)

in (4.2.19).
If qi = pi, then ‖ fi‖Lpi ,1(vi)

= ‖ fi‖Lqi ,1(wi)
. If qi > pi, then applying Hölder’s

inequality with exponent qi
pi
> 1, we obtain that for every t > 0,

λ
vi
fi
(t) =

ˆ
{| fi|>t}

M(w1/qi
i w1/q′i χ{|gN |>y})

wi


qi−pi
qi−1

wi

≤ ‖χ{| fi|>t}‖
L

qi
pi

,1
(wi)

∥∥∥∥∥∥∥∥
M(w1/qi

i w1/q′i χ{|gN |>y})

wi


qi−pi
qi−1

∥∥∥∥∥∥∥∥
L

qi
qi−pi

,∞
(wi)

=
qi

pi
wi({| fi| > t})pi/qi

∥∥∥∥∥∥M(w1/qi
i w1/q′i χ{|gN |>y})

wi

∥∥∥∥∥∥
qi−pi
qi−1

Lq′i ,∞
(wi)

.

Now, for F := χ{|gN |>y}, Ui := wi ∈ ARqi
, and Wi =

(
w
wi

)1/qi ∈ A∞

(see (4.2.5)), we have that UiW
qi−1
i = w1/qi

i w1/q′i , and UiW
qi
i = w ∈ A∞, so
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Theorem 2.4.12, Theorem 4.1.6, and Lemma 4.1.11 give us that∥∥∥∥∥M(FUiW
qi−1
i )

Ui

∥∥∥∥∥
Lq′i ,∞

(Ui)

=

∥∥∥∥∥∥M(w1/qi
i w1/q′i χ{|gN |>y})

wi

∥∥∥∥∥∥
Lq′i ,∞

(wi)

≤ φi([wi]ARqi
, [w]ARmax{q1,...,qm}

)‖F‖
Lq′i ,1

(UiW
qi
i )

≤ q′iφi(ciJwiKÂqi ,∞
, C̃

m

∑
j=1

JwjKÂqj ,∞
)w({|gN| > y})1/q′i

=: q′iφiw({|gN| > y})1/q′i ,
(4.2.20)

so
λ

vi
fi
(t) ≤ qi

pi

(
q′iφi

) qi−pi
qi−1 w({|gN| > y})1− pi

qi wi({| fi| > t})pi/qi ,

and hence,

‖ fi‖Lpi ,1(vi)
= pi

ˆ ∞

0
λ

vi
fi
(t)1/pi dt ≤ pi

(
qi

pi

)1/pi (
q′iφi

) 1
pi

qi−pi
qi−1

× w({|gN| > y})
1
pi
− 1

qi

ˆ ∞

0
wi({| fi| > t})1/qi dt

=

(
pi

qi

)1/p′i (
q′iφi

) 1
pi

qi−pi
qi−1 w({|gN| > y})

1
pi
− 1

qi ‖ fi‖Lqi ,1(wi)
.

(4.2.21)

Combining the estimates (4.2.19) and (4.2.21), we have that

λw
gN
(y) ≤ 1

yp Φ~ε,~w(Jw1KÂq1,∞
, . . . , JwmKÂqm ,∞

)p

(
m

∏
i=1
‖ fi‖

p
Lqi ,1(wi)

)
λw

gN
(y)1− p

q ,

(4.2.22)
with

Φ~ε,~w(Jw1KÂq1,∞
, . . . , JwmKÂqm ,∞

) =

(
m

∏
i=1

(
pi

qi

)1/p′i (
q′iφi

) 1
pi

qi−pi
qi−1

)
× ϕ(C1Jw1K

q1/p1

Âq1,∞
, . . . , CmJwmKqm/pm

Âqm ,∞
).

By our choice of y and gN, 0 < λw
gN
(y) ≤ w(B(0, N)) < ∞, so we can di-

vide by λw
gN
(y)1− p

q in (4.2.22) and raise everything to the power 1
p , obtaining

that

yλw
gN
(y)1/q ≤ Φ~ε,~w(Jw1KÂq1,∞

, . . . , JwmKÂqm ,∞
)

m

∏
i=1
‖ fi‖Lqi ,1(wi)

,

and taking the supremum over all y > 0, we deduce (4.2.16) for the tuple
( f1, . . . , fm, gN), and the result for the tuple ( f1, . . . , fm, g) follows taking the
supremum over all N ≥ 1.
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Finally, the case when for some i = 1, . . . , m, but not all, 1 ≤ pi = qi,
follows from the previous argument, since vi = wi in (4.2.17), and estimate
(4.2.21) is no longer necessary.

Remark 4.2.8. Note that, in general, there are weights that satisfy the hy-
potheses of Theorem 4.2.7. For instance, take w1 = · · · = wm ∈

⋂m
i=1 Âqi,∞.

Remark 4.2.9. In practice, we may desire an extrapolation result that allows
us to increase some exponents and decrease others. We can achieve this by
merely applying first Theorem 4.2.2 to lower the corresponding exponents,
and then using Theorem 4.2.7 to raise the other ones, taking into account
that in Theorem 4.2.7, if qi = pi, then we can replace the space Lpi,1(vi) by
Lpi,αi(vi), with αi > 0.

From Theorem 4.2.7 we can obtain the corresponding extrapolation re-
sult for m-variable operators arguing as in the proof of Corollary 3.2.2. See
Figure 3.3 for a pictorial representation of such scheme when m = 2.

Corollary 4.2.10. Let T be an m-variable operator defined for measurable functions.
Suppose that for some exponents 1 ≤ p1, . . . , pm < ∞, 1

p = 1
p1
+ · · ·+ 1

pm
, and all

weights vi ∈ Âpi,∞, i = 1, . . . , m,

T : Lp1,1(v1)× · · · × Lpm,1(vm) −→ Lp,∞(vp/p1
1 . . . vp/pm

m ),

with constant bounded by ϕ(Jv1KÂp1,∞
, . . . , JvmKÂpm ,∞

) as in (4.2.15). Given expo-

nents q1 = p1 ≥ 1 or q1 > p1 > 1, . . . , qm = pm ≥ 1 or qm > pm > 1, and 1
q =

1
q1
+ · · ·+ 1

qm
, and weights wi ∈ Âqi,∞, i = 1, . . . , m, and w = wq/q1

1 . . . wq/qm
m , if

for every i = 1, . . . , m for which qi > pi, there exists 0 < εi ≤ 1 such that wW−εi
i

is a weight, and [W−εi
i ]RH∞(w) < ∞, with Wi =

(
w
wi

)1/qi
, then

T : Lq1,1(w1)× · · · × Lqm,1(wm) −→ Lq,∞(w),

with constant bounded by Φ~ε,~w(Jw1KÂq1,∞
, . . . , JwmKÂqm ,∞

) as in (4.2.16).

Remark 4.2.11. Observe that if the operator T is defined for characteristic
functions of measurable sets E1, . . . , Em ⊆ Rn, then under the hypotheses of
Corollary 4.2.10, we deduce that∥∥T(χE1 , . . . , χEm)

∥∥
Lq,∞(w) ≤ CΦ~ε,~w(Jw1KÂq1,∞

, . . . , JwmKÂqm ,∞
)

× w1(E1)
1/q1 . . . wm(Em)

1/qm ,

with C = q1 . . . qm, and hence, T is of weak type (q1, . . . , qm, q) at least for
characteristic functions.

Note that if in Theorem 4.2.7 we replace Âpi,∞ by Âpi,Ni , and Âqi,∞ by
Âqi,Ni , i = 1, . . . , m, with 1 ≤ N1, . . . , Nm ∈N, then in (4.2.20) we can use that

[w]ARmq
≤ C̃(N1 + · · ·+ Nm)

m

∏
i=1
‖wi‖1/m

Âqi ,Ni
,
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and
[wi]ARqi

≤ ciNi‖wi‖Âqi ,Ni
,

and replace (4.2.18) by

‖vi‖Âpi ,Ni
≤ Ci‖wi‖

qi/pi

Âqi ,Ni
,

and obtain the following variant of Theorem 4.2.7, depicted in Figure 3.3 for
m = 2.

Theorem 4.2.12. Given measurable functions f1, . . . , fm, and g, suppose that for
some exponents 1 ≤ p1, . . . , pm < ∞, 1

p = 1
p1
+ · · ·+ 1

pm
, and 1 ≤ N1, . . . , Nm ∈

N, and all weights vi ∈ Âpi,Ni , i = 1, . . . , m,

‖g‖
Lp,∞(v

p/p1
1 ...vp/pm

m )
≤ ϕ(‖v1‖Âp1,N1

, . . . , ‖vm‖Âpm ,Nm
)

m

∏
i=1
‖ fi‖Lpi ,1(vi)

,

where ϕ : [1, ∞)m −→ [0, ∞) is a function increasing in each variable. Given
exponents q1 = p1 ≥ 1 or q1 > p1 > 1, . . . , qm = pm ≥ 1 or qm > pm >

1, and 1
q = 1

q1
+ · · · + 1

qm
, and weights wi ∈ Âqi,Ni , i = 1, . . . , m, and w =

wq/q1
1 . . . wq/qm

m , if for every i = 1, . . . , m for which qi > pi, there exists 0 < εi ≤ 1

such that wW−εi
i is a weight, and [W−εi

i ]RH∞(w) < ∞, with Wi =
(

w
wi

)1/qi
, then

‖g‖Lq,∞(w) ≤ Φ~ε,~w(‖w1‖Âq1,N1
, . . . , ‖wm‖Âqm ,Nm

)
m

∏
i=1
‖ fi‖Lqi ,1(wi)

,

where Φ~ε,~w : [1, ∞)m −→ [0, ∞) is a function that increases in each variable, given
by

Φ~ε,~w(t1, . . . , tm) =

(
m

∏
i=1

(
pi

qi

)1/p′i (
q′iφi(t1, . . . , tm)

) 1
pi

qi−pi
qi−1

)
× ϕ(C1tq1/p1

1 , . . . , Cmtqm/pm
m ),

where for i = 1, . . . , m, if qi = pi, then φi(t1, . . . , tm) = 1, and if qi > pi, then

φi(t1, . . . , tm) = 2 · 48nqiψεi,wi,Wi([W
−εi
i ]RH∞(w))

× φn
mq,qi

(ciNiti, C̃(N1 + · · ·+ Nm)t1/m
1 . . . t1/m

m ),

with ψεi,wi,Wi as in (2.4.8), and φn
mq,qi

as in Lemma 2.3.10. If Wi = 1, in virtue of
Remark 2.4.13, one can take φi(t1, . . . , tm) = Cn,qi(ciNiti)

qi+1.

Remark 4.2.13. Observe that when we extrapolate the variable i downwards

with Theorem 4.2.6, the space Lpi,1(vi) becomes Lqi,
qi
pi (wi), and the class of
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weights Âpi,Ni+1 becomes Âqi,Ni . Something different happens when we ex-
trapolate such variable upwards with Theorem 4.2.12. In this case, the space
Lpi,1(vi) becomes Lqi,1(wi), and the class of weights Âpi,Ni becomes Âqi,Ni .

4.2.3 One-Variable Off-Diagonal Extrapolation Theorems

In [37], multi-variable strong type extrapolation theorems were obtained as
corollaries of one-variable off-diagonal strong type extrapolation theorems;
that is, results in which the target space is different from the domain, both
in terms of exponents and weights. In the case of multi-variable restricted
weak type extrapolation, we observe a similar phenomenon, and we can also
deduce our results from one-variable off-diagonal restricted weak type ex-
trapolation theorems.

Let us start with the downwards extrapolation. The following theorem
will allow us to obtain alternative proofs of Theorem 4.2.1 and Theorem 4.2.2.
It is no surprise that its proof is similar to the one of Theorem 4.2.1.

Theorem 4.2.14. Let 0 ≤ α < ∞, and let u ∈ A∞. Given measurable functions f
and g, suppose that for some exponent 1 ≤ p < ∞, and every weight v ∈ Âp,∞,

‖g‖Lpα ,∞(vα) ≤ ψ(JvKÂp,∞
)‖ f ‖Lp,1(v), (4.2.23)

where 1
pα

= 1
p + α, vα = vpα/puαpα , and ψ : [1, ∞) −→ [0, ∞) is an increasing

function. Then, for every exponent 1 ≤ q ≤ p, and every weight w ∈ Âq,∞,

‖g‖Lqα ,∞(wα) ≤ Ψ(JwKÂq,∞
)‖ f ‖

Lq, q
p (w)

, (4.2.24)

where 1
qα

= 1
q + α, wα = wqα/quαqα , and Ψ : [1, ∞) −→ [0, ∞) is an increasing

function.

Proof. Observe that if q = p, then there is nothing to prove, so we may
assume that q < p. Pick a weight w ∈ Âq,∞. We may also assume that
‖ f ‖

Lq, q
p (w)

< ∞. In particular, f is locally integrable. Fix y > 0 and γ > 0. We

have that

λwα
g (y) =

ˆ
{|g|>y}

wα ≤ λwα
Z (γy) +

ˆ
{|g|>y}

(γy
Z

)pα−qα

wα =: I + I I, (4.2.25)

where Z := (M f )q/qα
(w

u
)α.

To estimate the term I in (4.2.25), we have that

I =
(γy)qα

(γy)qα
λwα

Z (γy) ≤ 1
(γy)qα

‖Z ‖qα

Lqα ,∞(wα)
=

1
(γy)qα

∥∥∥∥M f
W

∥∥∥∥q

Lq,∞(wWq)

,

(4.2.26)
with W :=

( u
w
) αqα

q . Note that W ∈ A∞. Indeed, if α = 0, then W = 1, and if

α > 0, then Âq,∞ ⊆ Aq+ 1
α
, so in virtue of Lemma 3.1.5, W =

( u
w
) 1

q+ 1
α ∈ A∞.
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Moreover, since u ∈ A∞, and qα

q + αqα = 1, wα ∈ A∞, and there exists r ≥ 1
such that wα ∈ ARr . If s ≥ 1 is such that u ∈ ARs , then we can choose
r := max{q, s}, and applying Lemma 4.1.7 and (2.1.2), we get that [wα]ARr ≤
C̃([w]ARq + [u]ARs ).

In virtue of Theorem 2.3.8, Lemma 2.3.10, Theorem 4.1.6, and (2.1.1), we
deduce that∥∥∥∥M f

W

∥∥∥∥
Lq,∞(wWq)

≤ φ([w]ARq , [wα]ARr )‖ f ‖Lq,1(w)

≤ φ(cJwKÂq,∞
, C̃(cJwKÂq,∞

+ [u]ARs ))‖ f ‖Lq,1(w)

≤ p1− p
q φ(cJwKÂq,∞

, C̃(cJwKÂq,∞
+ [u]ARs ))‖ f ‖

Lq, q
p (w)

=: p1− p
q φu,w‖ f ‖

Lq, q
p (w)

,

(4.2.27)

and combining the estimates (4.2.26) and (4.2.27), we obtain that

I ≤ 1
(γy)qα

pq−pφ
q
u,w‖ f ‖q

Lq, q
p (w)

. (4.2.28)

We proceed to estimate the term I I in (4.2.25). Take v := (M f )q−pw.
Since w ∈ Âq,∞, it follows from Lemma 4.1.9 that v ∈ Âp,∞, with JvKÂp,∞

≤
CJwKÂq,∞

. Observe that

Z qα−pα wα = (M f )q(1− pα
qα
)wα(qα−pα )+

qα
q uα(pα−qα)+αqα

= (M f )
pα
p (q−p)wpα/puαpα = vpα/puαpα ,

so by (4.2.23) and the monotonicity of ψ, we get that

I I =
(γy)pα

(γy)qα

ˆ
{|g|>y}

vpα/puαpα ≤ γpα

(γy)qα
‖g‖pα

Lpα ,∞(vpα/puαpα )

≤ γpα

(γy)qα
ψ(CJwKÂq,∞

)pα ‖ f ‖pα

Lp,1(v) ,
(4.2.29)

and arguing as we did in (3.2.7), we have that

‖ f ‖Lp,1(v) ≤
p
q
‖ f ‖q/p

Lq, q
p (w)

. (4.2.30)

Combining the estimates (4.2.25), (4.2.28), (4.2.29), and (4.2.30), we con-
clude that

λwα
g (y) ≤ 1

(γy)qα
pq−pφ

q
u,w‖ f ‖q

Lq, q
p (w)

+
γpα

(γy)qα

(
p
q

)pα

ψ(CJwKÂq,∞
)pα ‖ f ‖

pαq
p

Lq, q
p (w)

,
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and taking the infimum over all γ > 0, it follows from Lemma 3.1.1 that

yqα λwα
g (y) ≤ pα

pα − qα

(
pα − qα

qα

)qα/pα
(

p
q

)qα

pqα(2− q
p−

p
q )

× φ
qα(1− q

p )
u,w ψ(CJwKÂq,∞

)qα ‖ f ‖qα

Lq, q
p (w)

.

Finally, raising everything to the power 1
qα

in this last expression, and
taking the supremum over all y > 0, we see that (4.2.24) holds, with

Ψ(JwKÂq,∞
) = p3− q

p−
p
q

Cpα,qα

q
φ

1− q
p

u,w ψ(CJwKÂq,∞
), (4.2.31)

and Cpα,qα as in (3.2.19).

From Theorem 4.2.14 we can obtain the corresponding extrapolation re-
sult for one-variable operators arguing as in the proof of Corollary 3.2.2.

Corollary 4.2.15. Let 0 ≤ α < ∞, and let u ∈ A∞. Let T be a one-variable operator
defined for measurable functions. Suppose that for some exponent 1 ≤ p < ∞, and
every weight v ∈ Âp,∞,

T : Lp,1(v) −→ Lpα,∞(vα),

with constant bounded by ψ(JvKÂp,∞
) as in (4.2.23), where 1

pα
= 1

p + α, and vα =

vpα/puαpα . Then, for every exponent 1 ≤ q ≤ p, and every weight w ∈ Âq,∞,

T : Lq, q
p (w) −→ Lqα,∞(wα),

with constant bounded by Ψ(JwKÂq,∞
) as in (4.2.24), where 1

qα
= 1

q + α, and wα =

wqα/quαqα .

Remark 4.2.16. Observe that if the operator T is defined for characteristic
functions of measurable sets E ⊆ Rn, then under the hypotheses of Corol-
lary 4.2.15, we deduce that

‖T(χE)‖Lqα ,∞(wα)
≤ pp/qΨ(JwKÂq,∞

)w(E)1/q,

and hence, T is of weak type (q, qα) at least for characteristic functions.

Remark 4.2.17. Note that in Theorem 4.2.14 and Corollary 4.2.15, we can re-
place the class of weights Âp,∞ by Âp,N+1, and the class of weights Âq,∞ by
Âq,N, with 1 ≤ N ∈ N, as we did in Theorem 4.2.5 and Theorem 4.2.6. If
N = 1, α = 0, and T is a sub-linear operator, one can work with the class
of weights Âp,1 instead of Âp,2 in Corollary 4.2.15, via an interpolation argu-
ment based on Lemma 4.1.3, as shown in [9, Theorem 2.13].

As we mentioned before, we can deduce Theorem 4.2.1 from Theorem
4.2.14. Indeed, under the hypotheses of Theorem 4.2.1, we apply Theorem
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4.2.14, where if m = 1, we take α = 0, and u = 1, and if m > 1, we take
α = 1

p2
+ · · ·+ 1

pm
, and

u =
(

vp/p2
2 . . . vp/pm

m

) p1
p1−p

=
(

vq/p2
2 . . . vq/pm

m

) q1
q1−q , (4.2.32)

which is an A∞ weight since ∑m
i=2

p
pi

p1
p1−p = ∑m

i=2
q
pi

q1
q1−q = 1. We also take

ψ(Jv1KÂp1,∞
) = ϕ(Jv1KÂp1,∞

, . . . , JvmKÂpm ,∞
)

m

∏
i=2
‖ fi‖Lpi ,1(vi)

. (4.2.33)

The estimate (4.2.2) follows immediately from (4.2.24). Moreover, we can
iterate the same argument m times, one for each variable, to deduce Theo-
rem 4.2.2.

Similarly, Theorem 3.3.12 follows at once from Theorem 4.2.14 and Theo-
rem 4.1.6, with a slightly worse function Φ. Indeed, under the hypotheses of
Theorem 3.3.12, we apply Theorem 4.2.14 with α = 1

p1
, u = v1, and

ψ(Jv2KÂp2,∞
) = ϕ([v1]Ap1

, CJv2KÂp2,∞
) ‖ f1‖Lp1 (v1)

, (4.2.34)

with C given by Theorem 4.1.6. The estimate (3.3.17) follows immediately
from (4.2.24) and the fact that Jw2KÂq2,∞

≤ ‖w2‖Âq2
, but we have lost a power

of q2
p2
≤ 1 in the dependence on ‖w2‖Âq2

of Φ. Such loss can be avoided using
Remark 4.2.17 and Lemma 4.1.9.

We now discuss the upwards extrapolation. The next result will give us
an alternative proof of Theorem 4.2.7. Once again, it is no surprise that both
proofs are similar.

Theorem 4.2.18. Let 0 ≤ α < ∞, and let u ∈ A∞. Given measurable functions f
and g, suppose that for some exponent 1 ≤ p < ∞, and every weight v ∈ Âp,∞,

‖g‖Lpα ,∞(vα) ≤ ψ(JvKÂp,∞
)‖ f ‖Lp,1(v), (4.2.35)

where 1
pα

= 1
p + α, vα = vpα/puαpα , and ψ : [1, ∞) −→ [0, ∞) is an increasing

function. Take an exponent q = p ≥ 1 or q > p > 1, and a weight w ∈ Âq,∞.
If q > p, suppose that there exists 0 < ε ≤ 1 such that wαW−ε is a weight, and

[W−ε]RH∞(wα) < ∞, with W =
( u

w
) αqα

q , and wα = wqα/quαqα , where 1
qα

= 1
q + α.

Then,
‖g‖Lqα ,∞(wα) ≤ Ψε,u,w(JwKÂq,∞

)‖ f ‖Lq,1(w), (4.2.36)

where Ψε,u,w : [1, ∞) −→ [0, ∞) is an increasing function that depends on ε, u, and
w.

Proof. Note that if q = p, then there is nothing to prove, so we may assume
that 1 < p < q. Pick a weight w ∈ Âq,∞. As usual, we may assume that
‖ f ‖Lq,1(w) < ∞. For every natural number N ≥ 1, let gN := |g|χB(0,N). Fix
N ≥ 1. We will prove (4.2.36) for the pair ( f , gN). Since gN ≤ |g|, we already
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know that (4.2.35) holds for ( f , gN). Fix y > 0 such that λwα
gN(y) 6= 0. If no

such y exists, then ‖gN‖Lqα ,∞(wα)
= 0 and we are done.

In order to apply (4.2.35), we want to find a weight v ∈ Âp,∞ such that
λwα

gN(y) ≤ λvα
gN(y). We take

v := w
p−1
q−1
(

M(w1/qw1/q′
α χ{|gN |>y})

) q−p
q−1 . (4.2.37)

Applying Lemma 4.1.10, we see that v ∈ Âp,∞, with JvKÂp,∞
≤ CJwKq/p

Âq,∞
, and

C independent of w, wα, N, and y. Observe that

vpα/puαpα ≥ w
pα
p

p−1
q−1 +

pα
pq

q−p
q−1 w

pα
pq′

q−p
q−1

α uαpα χ{|gN |>y}

= w
pα
q w

1− pα
qα

α uαpα χ{|gN |>y} = wαχ{|gN |>y},

so (4.2.35) implies that

λwα
gN
(y) ≤

ˆ
{|gN |>y}

vpα/puαpα = λvα
gN
(y) ≤ 1

ypα
ψ(CJwKq/p

Âq,∞
)pα ‖ f ‖pα

Lp,1(v) .

(4.2.38)

We want to replace ‖ f ‖Lp,1(v) by ‖ f ‖Lq,1(w) in (4.2.38). Applying Hölder’s
inequality with exponent q

p > 1, we obtain that for every t > 0,

λv
f (t) =

ˆ
{| f |>t}

M(w1/qw1/q′
α χ{|gN |>y})

w


q−p
q−1

w

=
q
p

w({| f | > t})p/q

∥∥∥∥∥∥M(w1/qw1/q′
α χ{|gN |>y})

w

∥∥∥∥∥∥
q−p
q−1

Lq′ ,∞(w)

.

Arguing as we did in the proof of Theorem 4.2.14, we know that the
weights wα, W ∈ A∞. Moreover, if s ≥ 1 is such that u ∈ ARs , then wα ∈ ARr ,
with r := max{q, s}, and applying Lemma 4.1.7 and (2.1.2), we get that
[wα]ARr ≤ C̃([w]ARq + [u]ARs ). Also, note that W =

(wα
w
)1/q, so wWq−1 =

w1/qw1/q′
α , and wWq = wα. Hence, Theorem 2.4.12 and Theorem 4.1.6 give us

that∥∥∥∥∥M(wWq−1χ{|gN |>y})

w

∥∥∥∥∥
Lq′ ,∞(w)

≤ q′φ([w]ARq , [wα]ARr )wα({|gN| > y})1/q′

≤ q′φε,u,wwα({|gN| > y})1/q′ ,
(4.2.39)
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with
φε,u,w := φ(cJwKÂq,∞

, C̃(cJwKÂq,∞
+ [u]ARs )),

so
λv

f (t) ≤
q
p
(q′φε,u,w)

q−p
q−1 wα({|gN| > y})1− p

q w({| f | > t})p/q,

and hence,

‖ f ‖Lp,1(v) = p
ˆ ∞

0
λv

f (t)
1/pdt ≤ p

(
q
p

)1/p
(q′φε,u,w)

1
p

q−p
q−1

× wα({|gN| > y})
1
p−

1
q

ˆ ∞

0
w({| f | > t})1/qdt

=

(
p
q

)1/p′

(q′φε,u,w)
1
p

q−p
q−1 wα({|gN| > y})

1
p−

1
q ‖ f ‖Lq,1(w).

(4.2.40)

Combining the estimates (4.2.38) and (4.2.40), we have that

λwα
gN
(y) ≤ 1

ypα
Ψε,u,w(JwKÂq,∞

)pα ‖ f ‖pα

Lq,1(w)
λwα

gN
(y)1− pα

qα , (4.2.41)

with

Ψε,u,w(JwKÂq,∞
) =

(
p
q

)1/p′

(q′φε,u,w)
1
p

q−p
q−1 ψ(CJwKq/p

Âq,∞
).

By our choice of y and gN, 0 < λwα
gN(y) ≤ wα(B(0, N)) < ∞, so we can di-

vide by λwα
gN(y)

1− pα
qα in (4.2.41) and raise everything to the power 1

pα
, obtaining

that

yλwα
gN
(y)1/qα ≤ Ψε,u,w(JwKÂq,∞

) ‖ f ‖Lq,1(w) ,

and taking the supremum over all y > 0, we deduce (4.2.36) for the pair
( f , gN), and the result for the pair ( f , g) follows taking the supremum over
all N ≥ 1.

As usual, from Theorem 4.2.18 we can obtain the corresponding extrap-
olation result for one-variable operators arguing as in the proof of Corol-
lary 3.2.2.

Corollary 4.2.19. Let 0 ≤ α < ∞, and let u ∈ A∞. Let T be a one-variable operator
defined for measurable functions. Suppose that for some exponent 1 ≤ p < ∞, and
every weight v ∈ Âp,∞,

T : Lp,1(v) −→ Lpα,∞(vα),

with constant bounded by ψ(JvKÂp,∞
) as in (4.2.35), where 1

pα
= 1

p + α, and vα =

vpα/puαpα . Take an exponent q = p ≥ 1 or q > p > 1, and a weight w ∈ Âq,∞.
If q > p, suppose that there exists 0 < ε ≤ 1 such that wαW−ε is a weight, and
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[W−ε]RH∞(wα) < ∞, with W =
( u

w
) αqα

q , and wα = wqα/quαqα , where 1
qα

= 1
q + α.

Then,
T : Lq,1(w) −→ Lqα,∞(wα),

with constant bounded by Ψε,u,w(JwKÂq,∞
) as in (4.2.36).

Remark 4.2.20. Observe that if the operator T is defined for characteristic
functions of measurable sets E ⊆ Rn, then under the hypotheses of Corol-
lary 4.2.19, we deduce that

‖T(χE)‖Lqα ,∞(wα)
≤ qΨε,u,w(JwKÂq,∞

)w(E)1/q,

and hence, T is of weak type (q, qα) at least for characteristic functions.

Remark 4.2.21. Note that in Theorem 4.2.18 and Corollary 4.2.19, we can re-
place the class of weights Âp,∞ by Âp,N, and the class of weights Âq,∞ by
Âq,N, with 1 ≤ N ∈ N, as we did in Theorem 4.2.12. If N = 1, and α = 0,
Theorem 4.2.18 gives us an alternative proof of [14, Theorem 3.1].

Observe that we can obtain Theorem 4.2.7 from Theorem 4.2.18 in the case
when q2 = p2, . . . , qm = pm by taking α = 1

p2
+ · · ·+ 1

pm
, u as in (4.2.32), and

ψ(Jv1KÂp1,∞
) as in (4.2.33). Similarly, we can recover Theorem 3.3.35 from The-

orem 4.2.18 and Theorem 4.1.6 by choosing α = 1
p1

, u = v1, and ψ(Jv2KÂp2,∞
)

as in (4.2.34).

4.3 Applications to Sums of Products, and Avera-
ges

In this section, we present some applications for our multi-variable extrapo-
lation theorems.

The following result gives us bounds for sums of products of functions.
Once again, thanks to our extrapolation techniques, we manage to produce
estimates in the case when q ≤ 1 that we don’t know how to obtain di-
rectly due to the lack of the corresponding Hölder-type inequality for Lorentz
spaces.

Theorem 4.3.1. Let T1, . . . , Tm be one-variable operators defined for measurable
functions. For i = 1, . . . , m, suppose that for some pi > 1, and every weight vi ∈
Âpi,∞,

Ti : Lpi,1(vi) −→ Lpi,∞(vi), (4.3.1)

with constant bounded by ϕi(JviKÂpi ,∞
), where ϕi : [1, ∞) −→ [0, ∞) is an increas-

ing function. Suppose also that 1
p1
+ · · ·+ 1

pm
= 1

p < 1. Consider the operator T�,
defined for measurable functions f1, . . . , fm by

T�( f1, . . . , fm) :=
m

∑
i=1

f1 . . . fi−1(Ti fi) fi+1 . . . fm.
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Take exponents 1 ≤ q1, . . . , qm, and 1
q = 1

q1
+ · · ·+ 1

qm
, and weights wi ∈ Âqi,∞,

i = 1, . . . , m, and w = wq/q1
1 . . . wq/qm

m . If qi > pi, assume that pi > 1, and that
there exists 0 < εi ≤ 1 such that wW−εi

i is a weight, and [W−εi
i ]RH∞(w) < ∞, with

Wi =
(

w
wi

)1/qi
. Then,

T� : Lq1,min{1, q1
p1
}
(w1)× · · · × Lqm,min{1, qm

pm }(wm) −→ Lq,∞(w), (4.3.2)

with constant bounded by Φ(Jw1KÂq1,∞
, . . . , JwmKÂqm ,∞

), where Φ : [1, ∞)m −→
[0, ∞) is a function increasing in each variable.

Proof. Given measurable functions f1, . . . , fm, and weights vi ∈ Âpi,∞, i =

1, . . . , m, and v := vp/p1
1 . . . vp/pm

m , in virtue of Lemma 2.2.1, and (4.3.1), we
have that

‖T�( f1, . . . , fm)‖Lp,∞(v) ≤ m
m

∑
i=1
‖ f1 . . . fi−1(Ti fi) fi+1 . . . fm‖Lp,∞(v)

≤ mC
m

∑
i=1

(
∏
j 6=i
‖ f j‖Lpj ,1(vj)

)
‖Ti fi‖Lpi ,∞(vi)

≤ mC

(
m

∑
i=1

ϕi(JviKÂpi ,∞
)

)
m

∏
i=1
‖ fi‖Lpi ,1(vi)

.

Hence, (4.3.2) follows from Corollary 4.2.3, Corollary 4.2.10, and Remark
4.2.9.

In Theorem 4.3.1, we used our multi-variable extrapolation results to o-
vercome the lack of some Hölder-type inequalities for Lorentz spaces. In the
next theorem, an extension of Theorem 3.4.4, we will use our multi-variable
extrapolation techniques to avoid the application of Minkowski’s integral in-
equality for ‖ · ‖Lq,∞(w) when q ≤ 1, which is not available, and we will pro-
duce bounds for averages of operators like T�.

Theorem 4.3.2. Let {Tt1
1 }t1∈R, . . . , {Ttm

m }tm∈R be families of sub-linear operators
defined for measurable functions. For i = 1, . . . , m, suppose that for some pi > 1,
every ti ∈ R, and every weight vi ∈ Âpi,∞,

Tti
i : Lpi,1(vi) −→ Lpi,∞(vi), (4.3.3)

with constant bounded by ϕi(JviKÂpi ,∞
), where ϕi : [1, ∞) −→ [0, ∞) is an increas-

ing function independent of ti. Suppose also that 1
p1

+ · · ·+ 1
pm

= 1
p < 1. For a

measure µ on Rm such that |µ|(Rm) < ∞, consider the averaging operator

T�,µ( f1, . . . , fm) :=
ˆ

Rm

(
m

∑
i=1

f1 . . . fi−1(T
ti
i fi) fi+1 . . . fm

)
dµ(t1, . . . , tm),
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defined for measurable functions f1, . . . , fm. Take exponents 1 ≤ q1, . . . , qm, and
1
q = 1

q1
+ · · · + 1

qm
, and weights wi ∈ Âqi,∞, i = 1, . . . , m, and write w =

wq/q1
1 . . . wq/qm

m . If qi > pi, assume that pi > 1, and that there exists 0 < εi ≤ 1

such that wW−εi
i is a weight, and [W−εi

i ]RH∞(w) < ∞, with Wi =
(

w
wi

)1/qi
. Then,

T�,µ : Lq1,min{1, q1
p1
}
(w1)× · · · × Lqm,min{1, qm

pm }(wm) −→ Lq,∞(w), (4.3.4)

with constant bounded by Φ(Jw1KÂq1,∞
, . . . , JwmKÂqm ,∞

), where Φ : [1, ∞)m −→
[0, ∞) is a function increasing in each variable.

Proof. Since p > 1, given measurable functions f1, . . . , fm, and weights vi ∈
Âpi,∞, i = 1, . . . , m, and v := vp/p1

1 . . . vp/pm
m , in virtue of Minkowski’s integral

inequality (see [104, Proposition 2.1] and [3, Theorem 4.4]), we have that

‖T�,µ( f1, . . . , fm)‖Lp,∞(v) ≤ p′
ˆ

Rm

∥∥∥∥∥ m

∑
i=1

(Tti
i fi)∏

j 6=i
f j

∥∥∥∥∥
Lp,∞(v)

d|µ|(t1, . . . , tm),

and arguing as we did in the proof of Theorem 4.3.1, we get that

‖T�,µ( f1, . . . , fm)‖Lp,∞(v) ≤ mCp′|µ|(Rm)

(
m

∑
i=1

ϕi(JviKÂpi ,∞
)

)
m

∏
i=1
‖ fi‖Lpi ,1(vi)

,

and hence, (4.3.4) follows from Corollary 4.2.3, Corollary 4.2.10, and Remark
4.2.9.
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Chapter 5

Fractional and Singular Integrals,
and Commutators

“ ‘I have thought of a nice ending for my book: and he lived happily
ever after to the end of his days.’ Gandalf laughed. ‘I hope he will.
But nobody will read the book, however it ends.’ ”

John Ronald Reuel Tolkien, The Lord of the Rings, 1954

We devote this chapter to the study of restricted weak type inequalities for
fractional operators, Calderón-Zygmund operators, and their commutators.
In Section 5.1, we provide general information about fractional operators,
and Orlicz and weak Orlicz spaces. In Section 5.2, we present our restricted
weak type bounds for multi-variable fractional operators and Calderón-Zyg-
mund operators. In Section 5.3, we discuss our restricted weak type bounds
for commutators of Calderón-Zygmund operators and fractional integrals.
In Section 5.4, we apply our bounds for the multi-linear fractional integral Iα

to produce Poincaré and Sobolev-type inequalities for products of functions.
The contents of this chapter are part of a joint work with David V. Cruz-Uribe
(see [33]).

5.1 Special Preliminaries

In this section, we present some technical results that we will use throughout
this chapter.

5.1.1 Fractional Operators

We define some of the operators that we will study, and prove some useful
relations between them.

Definition 5.1.1. Let 0 ≤ α < nm. Given ~f = ( f1, . . . , fm), with fi ∈ L1
loc(R

n),
i = 1, . . . , m, we define the centered fractional maximal operatorMc

α by

Mc
α(~f )(x) := sup

r>0

m

∏
i=1

1
|Q(x, r)|1− α

nm

ˆ
Q(x,r)

| fi|,
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where Q(x, r) := (x1− r, x1 + r)× · · · × (xn− r, xn + r) denotes an open cube
with side length 2r centered at x = (x1, . . . , xn) ∈ Rn. Similarly, we define
the fractional maximal operatorMα by

Mα(~f )(x) := sup
Q3x

m

∏
i=1

1
|Q|1− α

nm

ˆ
Q
| fi|,

where the supremum is taken over all cubes Q containing x and with sides
parallel to the coordinate axes. If α = 0, thenMα is justM.

The operatorsMc
α andMα are comparable, as the next lemma shows.

Lemma 5.1.2. Mc
α(~f ) ≤Mα(~f ) ≤ 2nm−αMc

α(~f ).

Proof. Clearly, Mc
α(~f ) ≤ Mα(~f ). Now, fix x ∈ Rn, and Q containing x. If

we denote by cQ and `Q the center and the side length of Q, respectively, we
have that

Q ⊆ Q(cQ, `Q/2) ⊆ Q(x, `Q).

The first inclusion is clear. For the second one, we use that

Q(cQ, `Q/2) = {y ∈ Rn :
∥∥cQ − y

∥∥
∞ ≤ `Q/2},

where for z = (z1, . . . , zn) ∈ Rn, ‖z‖∞ := max1≤j≤n{|zj|}. Since x ∈ Q, we
have that

∥∥cQ − x
∥∥

∞ ≤ `Q/2, so for any y ∈ Q(cQ, `Q/2), by the triangular
inequality we obtain that

‖x− y‖∞ ≤
∥∥cQ − y

∥∥
∞ +

∥∥cQ − x
∥∥

∞ ≤ `Q,

and y ∈ Q(x, `Q). The sides of an n-dimensional cube have Lebesgue mea-
sure 0 in Rn and 1− α

nm > 0, so we get that

|Q|1− α
nm ≤ |Q(x, `Q)|1−

α
nm = 2n− α

m |Q|1− α
nm .

Hence,

m

∏
i=1

1
|Q|1− α

nm

ˆ
Q
| fi| ≤

m

∏
i=1

2n− α
m

|Q(x, `Q)|1−
α

nm

ˆ
Q(x,`Q)

| fi| ≤ 2nm−αMc
α(~f )(x).

Definition 5.1.3. Let 0 < α < nm, and ~f = ( f1, . . . , fm), where each fi is a
measurable function on Rn. We define the multi-linear fractional integral as

Iα(~f )(x) :=
ˆ

Rn
. . .

ˆ
Rn

f1(y1) . . . fm(ym)

(|x− y1|+ · · ·+ |x− ym|)nm−α
dy1 . . . dym, x ∈ Rn,

where the integrals converge if ~f ∈ S (Rn)× · · · ×S (Rn). If m = 1, then
we will use the notation Iα( f ).

The next result shows that the fractional integral Iα is controlled by the
fractional maximal operatorMα.
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Theorem 5.1.4. Let 0 < α < nm, 0 < q < ∞, and ν ∈ A∞. Then,

‖Iα(~f )‖Lq,∞(ν) ≈ν ‖Mα(~f )‖Lq,∞(ν),

for every ~f = ( f1, . . . , fm) with 0 ≤ fi ∈ L∞
c (Rn), i = 1, . . . , m.

Proof. One inequality follows from the fact thatMα(~f ) . Iα(~f ) (see [82, Sec-
tion 3]), while the other one follows from Theorem 3.1 in [82] and Theorem
2.1 in [35].

Remark 5.1.5. The equivalence in Theorem 5.1.4 is true for many other quasi-
norms rather than ‖ · ‖Lq,∞(ν) since Theorem 2.1 in [35] works for a large class
of rearrangement invariant quasi-Banach function spaces.

5.1.2 Orlicz and Weak Orlicz Spaces

We recall some facts about Orlicz and weak Orlicz spaces. For more informa-
tion, see [76, 96, 97].

A function φ : [0, ∞) −→ [0, ∞) is a Young function if it is continuous,
convex, strictly increasing, φ(0) = 0, and φ(t)

t → ∞ as t → ∞. Note that
φ(t) = Id(t) := t is not properly a Young function, but in many cases, what
we say also applies to it. A particular case of interest in this chapter is the
Young function

φ(t) = B(t) := t log(e + t).

Given a Young function φ, a weight ν, and a cube Q, Lφ(Q, ν
ν(Q)

) is the
Orlicz space of measurable functions f on Rn such that for some λ > 0,

1
ν(Q)

ˆ
Q

φ(λ| f |)ν < ∞.

For f ∈ Lφ(Q, ν
ν(Q)

), define the Luxemburg norm with respect to φ and ν by

‖ f ‖Lφ(Q,ν/ν(Q)) := ‖ f ‖φ,Q,ν := inf
{

λ > 0 :
1

ν(Q)

ˆ
Q

φ(λ−1| f |)ν ≤ 1
}

.

Given a measurable set E ⊆ Rn with 0 < ν(E) < ∞,

‖χE‖φ,Q,ν =
1

φ−1( ν(Q)
ν(E∩Q)

)
.

If we consider the function φ(t) = tp, with 0 < p < ∞, which is a Young
function for p > 1, then

‖ f ‖φ,Q,ν =

(
1

ν(Q)

ˆ
Q
| f |pν

)1/p
= ‖ f χQ‖Lp(ν/ν(Q)) =: ‖ f ‖Lp(Q,ν/ν(Q)).
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For a Young function φ, one can define a complementary function

φ̄(s) := sup
t>0
{st− φ(t)}.

Such φ̄ is also a Young function, and satisfies that for all s, t ≥ 0,

st ≤ φ(t) + φ̄(s).

This is known as Young’s inequality (see [105]). The classical examples of com-

plementary Young functions are φ(t) = tp

p and φ̄(t) = tp′

p′ , with 1 < p < ∞.
One can also show that B̄(t) ≤ et − 1.

As an application of Young’s inequality, we can prove the following gen-
eralization of Hölder’s inequality.

Theorem 5.1.6. Let φ and φ̄ be complementary Young functions, and let ν be a
weight. Then, for every pair of measurable functions f and g, and every cube Q,

1
ν(Q)

ˆ
Q
| f g|ν ≤ 2‖ f ‖φ,Q,ν‖g‖φ̄,Q,ν. (5.1.1)

Proof. Without loss of generality, we may assume that ‖ f ‖φ,Q,ν and ‖g‖φ̄,Q,ν
are non-zero and finite, since otherwise the inequality (5.1.1) is immediate.
By homogeneity, we may further assume that ‖ f ‖φ,Q,ν = ‖g‖φ̄,Q,ν = 1. We
now have that

1
ν(Q)

ˆ
Q

φ(| f |)ν ≤ 1.

Indeed, it follows from the definition of the Orlicz norm that for every λ > 1,

1
ν(Q)

ˆ
Q

φ(λ−1| f |)ν ≤ 1.

Let {λk}k≥1 ⊆ [1, ∞) be a sequence decreasing to 1. Then, by Fatou’s lemma,

1
ν(Q)

ˆ
Q

φ(| f |)ν ≤ lim inf
k→∞

1
ν(Q)

ˆ
Q

φ(λ−1
k | f |)ν ≤ 1.

Similarly, we also have that

1
ν(Q)

ˆ
Q

φ̄(|g|)ν ≤ 1.

Finally, applying Young’s inequality, we conclude that

1
ν(Q)

ˆ
Q
| f g|ν ≤ 1

ν(Q)

ˆ
Q

φ(| f |)ν +
1

ν(Q)

ˆ
Q

φ̄(|g|)ν

≤ 2 = 2‖ f ‖φ,Q,ν‖g‖φ̄,Q,ν.
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Given a Young function φ, a weight ν, and a cube Q, Lφ,∞(Q, ν
ν(Q)

) is the
weak Orlicz space of measurable functions f on Rn such that for some λ > 0,

sup
t>0

φ(λt)ν(| f |χQ > t) < ∞.

For f ∈ Lφ,∞(Q, ν
ν(Q)

), define the quasi-norm

‖ f ‖Lφ,∞(Q,ν/ν(Q)) := inf

{
λ > 0 : sup

t>0
φ(λ−1t)ν(| f |χQ > t) ≤ ν(Q)

}
.

Given a measurable set E ⊆ Rn with 0 < ν(E) < ∞,

‖χE‖Lφ,∞(Q,ν/ν(Q)) = ‖χE‖Lφ(Q,ν/ν(Q)) =
1

φ−1( ν(Q)
ν(E∩Q)

)
,

and in general, ‖ f ‖Lφ,∞(Q,ν/ν(Q)) ≤ ‖ f ‖Lφ(Q,ν/ν(Q)). If we take φ(t) = tp, with
0 < p < ∞, then

‖ f ‖Lφ,∞(Q,ν/ν(Q)) = sup
t>0

t
(

ν(| f |χQ > t)
ν(Q)

)1/p

= ‖ f χQ‖Lp,∞(ν/ν(Q)) =: ‖ f ‖Lp,∞(Q,ν/ν(Q)).

5.2 Bounds for Fractional Operators

In this section we will prove weighted restricted weak type bounds for the
fractional maximal operators Mc

α and Mα and, as a consequence of Theo-
rem 5.1.4, we will be able to obtain the same type of bounds for the fractional
integral Iα.

Let us start by proving the following summation lemma. It is an extension
of [17, Lemma 2.5], and the proof is similar.

Lemma 5.2.1. Let 0 < p, q < ∞ and γ ≥ max{p, q}. Given a measurable function
f and a weight w, if {Ej}j≥1 is a collection of measurable sets such that ∑j≥1 χEj ≤
C, then

∑
j≥1
‖χEj f ‖γ

Lp,q(w)
≤ Cγ/p‖ f ‖γ

Lp,q(w)
.
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Proof. Since γ
q ≥ 1, applying Minkowski’s integral inequality we have that

I :=

(
∑
j≥1
‖χEj f ‖γ

Lp,q(w)

)q/γ

=

∥∥∥∥{‖χEj f ‖q
Lp,q(w)

}
j≥1

∥∥∥∥
`γ/q

=

∥∥∥∥∥
{

p
ˆ ∞

0
w({x ∈ Ej : | f (x)| > y})q/pyq−1dy

}
j≥1

∥∥∥∥∥
`γ/q

≤ p
ˆ ∞

0

∥∥∥∥{w({x ∈ Ej : | f (x)| > y})q/p
}

j≥1

∥∥∥∥
`γ/q

yq−1dy

= p
ˆ ∞

0

(
∑
j≥1

w({x ∈ Ej : | f (x)| > y})γ/p

)q/γ

yq−1dy =: I I.

Since γ
p ≥ 1, by [44, Exercise 1.1.4.(b)] and the hypotheses, we get that

∑
j≥1

w({x ∈ Ej : | f (x)| > y})γ/p ≤
(

∑
j≥1

w({x ∈ Ej : | f (x)| > y})
)γ/p

=

(ˆ
Rn

∑
j≥1

χEj χ{| f |>y}w

)γ/p

≤ Cγ/pw({| f | > y})γ/p.

Hence, I ≤ I I ≤ Cq/p‖ f ‖q
Lp,q(w)

, and the result follows.

We can now give the characterization of the weights for which the oper-
atorsMα andMc

α are bounded in the restricted weak type setting. We use
ideas from [17, Section 3] and [44, Theorem 7.1.9].

Theorem 5.2.2. Let 0 ≤ α < nm, 1 ≤ p1, . . . , pm < ∞, 1
p = 1

p1
+ · · ·+ 1

pm
, and

p ≤ q. Let w1, . . . , wm, and ν be weights. The inequality

‖Mα(~f )‖Lq,∞(ν) ≤ C
m

∏
i=1
‖ fi‖Lpi ,1(wi)

(5.2.1)

holds for every vector of measurable functions ~f if, and only if

[~w, ν]AR~P,q,α
:= sup

Q
ν(Q)1/q

m

∏
i=1

‖χQw−1
i ‖Lp′i ,∞

(wi)

|Q|1− α
nm

< ∞. (5.2.2)

Proof. First, recall that by [44, Theorem 1.4.16.(v)] (see also [3, Theorem 4.4]),
we have that

1
pi
‖g‖

Lp′i ,∞
(wi)
≤ sup

{ˆ
Rn
| f g|wi : ‖ f ‖Lpi ,1(wi)

≤ 1
}
≤ ‖g‖

Lp′i ,∞
(wi)

.
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Now, fix a cube Q, and ε > 1, and for i = 1, . . . , m, choose a non-negative
function fi such that ‖ fi‖Lpi ,1(wi)

≤ 1 and

ˆ
Q

fi =

ˆ
Rn

fi(χQw−1
i )wi ≥

1
εpi
‖χQw−1

i ‖Lp′i ,∞
(wi)

. (5.2.3)

Since (
m

∏
i=1

1
|Q|1− α

nm

ˆ
Q
| fi|
)

χQ ≤Mα(~f ),

the hypothesis (5.2.1) and (5.2.3) imply that

ν(Q)1/q
m

∏
i=1

‖χQw−1
i ‖Lp′i ,∞

(wi)

|Q|1− α
nm

≤ εm p1 . . . pmC,

and hence, [~w, ν]AR~P,q,α
≤ p1 . . . pmC < ∞.

For the converse, suppose that the quantity [~w, ν]AR~P,q,α
< ∞. Observe that

by Lemma 5.1.2, it suffices to establish the result for the operatorMc
α.

If for some i = 1, . . . , m, ‖ fi‖Lpi ,1(wi)
= ∞, then there is nothing to prove,

so we may assume that ‖ fi‖Lpi ,1(wi)
< ∞ for every i = 1, . . . , m. Fix λ > 0,

and let Eλ := {x ∈ Rn : Mc
α(~f )(x) > λ}. We first show that this set is open.

If for some i = 1, . . . , m, fi 6∈ L1
loc(R

n), then Eλ = Rn. Otherwise, observe
that for any r > 0, and x ∈ Rn, the function

x 7−→
m

∏
i=1

1
|Q(x, r)|1− α

nm

ˆ
Q(x,r)

| fi|

is continuous. Indeed, if xn → x0, then |Q(xn, r)|1− α
nm → |Q(x0, r)|1− α

nm ,
and also

´
Q(xn,r) | fi| →

´
Q(x0,r) | fi| by Lebesgue’s dominated convergence

theorem. Since |Q(x0, r)|1− α
nm 6= 0, the result follows. This implies that

Mc
α(~f ) is the supremum of continuous functions and hence, it is lower semi-

continuous, and the set Eλ is open.
Given K a compact subset of Eλ, for any x ∈ K, select an open cube Qx

centered at x such that

m

∏
i=1

1
|Qx|1−

α
nm

ˆ
Qx

| fi| > λ.

In virtue of [44, Lemma 7.1.10], we find a subset {Qj}N
j=1 of {Qx : x ∈ K} such

that K ⊆ ⋃N
j=1 Qj, and ∑N

j=1 χQj ≤ 24n. Then, by Hölder’s inequality, (5.2.2),
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discrete Hölder’s inequality with exponents qi
q := pi

p , and Lemma 5.2.1,

ν(K) ≤
N

∑
j=1

ν(Qj) ≤
1

λq

N

∑
j=1

ν(Qj)

(
m

∏
i=1

1
|Qj|1−

α
nm

ˆ
Qj

| fi|
)q

≤ 1
λq

N

∑
j=1

ν(Qj)
m

∏
i=1
|Qj|

qα
nm−q‖ fiχQj‖

q
Lpi ,1(wi)

‖χQj w
−1
i ‖

q

Lp′i ,∞
(wi)

≤
[~w, ν]

q
AR~P,q,α

λq

N

∑
j=1

m

∏
i=1
‖ fiχQj‖

q
Lpi ,1(wi)

≤
[~w, ν]

q
AR~P,q,α

λq

m

∏
i=1

(
N

∑
j=1
‖ fiχQj‖

qi

Lpi ,1(wi)

)q/qi

≤ 24
qn
p

[~w, ν]
q
AR~P,q,α

λq

m

∏
i=1
‖ fi‖

q
Lpi ,1(wi)

.

Taking the supremum over all compact subsets K of Eλ, using the inner reg-
ularity of ν(x)dx, and applying Lemma 5.1.2, we obtain (5.2.1) with constant

C = 2nm−α24n/p[~w, ν]AR~P,q,α
.

Remark 5.2.3. In fact, we have proved that

2α−nm

∏m
i=1 pi

[~w, ν]AR~P,q,α
≤ ‖Mc

α‖∏m
i=1 Lpi ,1(wi)→Lq,∞(ν) ≤ 24n/p[~w, ν]AR~P,q,α

,

and that

1
∏m

i=1 pi
[~w, ν]AR~P,q,α

≤ ‖Mα‖∏m
i=1 Lpi ,1(wi)→Lq,∞(ν) ≤ 2nm−α24n/p[~w, ν]AR~P,q,α

.

Remark 5.2.4. Observe that for w1 = · · · = wm = ν = 1, [~w, ν]AR~P,q,α
< ∞ if,

and only if 1
p −

1
q = α

n . In general, if Mα is bounded as in (5.2.1), then for
every cube Q, if we choose f1 = · · · = fm = χQ, we get that

|Q|
α
n+

1
q−

1
p

( 
Q

ν

)1/q
≤ p1 . . . pmC

m

∏
i=1

( 
Q

wi

)1/pi

,

and this condition implies that 1
p −

1
q ≤

α
n . Indeed, if this is not the case, then

Lebesgue’s differentiation theorem implies that ν = 0 a.e., which is not true.
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In virtue of Theorem 5.2.2, we define the following class of weights.

Definition 5.2.5. Let 0 ≤ α < nm, 1 ≤ p1, . . . , pm < ∞, 1
p = 1

p1
+ · · ·+ 1

pm
,

and p ≤ q. Let w1, . . . , wm, and ν be weights. We say that (w1, . . . , wm, ν)
belongs to the class AR~P,q,α

if [~w, ν]AR~P,q,α
< ∞. For α = 0 and q = p, we write

AR~P := AR~P,p,0
.

The condition that defines the class of AR~P,q,α
weights depends on their be-

havior on cubes, and has been obtained following the ideas of Chung, Hunt
and Kurtz (see [17]). One can ask if it is possible to obtain a different condi-
tion, resembling the one obtained by Kerman and Torchinsky (see [58]). Our
next theorem gives a positive answer to this question, recovering their results
in the case when m = 1, α = 0, p1 = p = q, and w1 = ν.

Theorem 5.2.6. Let 0 ≤ α < nm, 1 ≤ p1, . . . , pm < ∞, 1
p = 1

p1
+ · · ·+ 1

pm
, and

p ≤ q. Let w1, . . . , wm, and ν be weights. The following statements are equivalent:

(a) ‖Mα(~f )‖Lq,∞(ν) ≤ C ∏m
i=1 ‖ fi‖Lpi ,1(wi)

, for every ~f .

(b) ‖Mα(~χ)‖Lq,∞(ν) ≤ c ∏m
i=1 wi(Ei)

1/pi , for every ~χ = (χE1 , . . . , χEm).

(c)

‖~w, ν‖AR~P,q,α
:= sup

Q
ν(Q)1/q

m

∏
i=1

sup
0<wi(Ei)<∞

|Ei ∩Q|
|Q|1− α

nm
wi(Ei)

− 1
pi < ∞.

(d) (w1, . . . , wm, ν) ∈ AR~P,q,α
.

Proof. It is clear that (a) implies (b), and we have already proved in Theo-
rem 5.2.2 that (a) and (d) are equivalent. Let us show that (b) implies (c). Fix
a cube Q and measurable sets Ei, for i = 1, . . . , m, with 0 < wi(Ei) < ∞. Since(

m

∏
i=1

|Ei ∩Q|
|Q|1− α

nm

)
χQ ≤Mα(~χ),

we apply (b) to conclude that

ν(Q)1/q
m

∏
i=1

|Ei ∩Q|
|Q|1− α

nm
≤ c

m

∏
i=1

wi(Ei)
1/pi ,

and hence, ‖~w, ν‖AR~P,q,α
≤ c < ∞.

To finish the proof, we will prove that (c) is equivalent to (d). First, ob-
serve that for every i = 1, . . . , m,

sup
0<wi(Ei)<∞

|Ei ∩Q|
wi(Ei)1/pi

= sup
Ei⊆Q

|Ei|
wi(Ei)1/pi

,
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where the first supremum is taken over all measurable sets Ei such that 0 <
wi(Ei) < ∞, and the second one is taken over all non-empty measurable sets
Ei ⊆ Q. Now, in virtue of [17, Lemma 2.8] and Kolmogorov’s inequalities,
we have that

‖χQw−1
i ‖Lp′i ,∞

(wi)
≤ sup

Ei⊆Q

|Ei|
wi(Ei)1/pi

≤ pi‖χQw−1
i ‖Lp′i ,∞

(wi)
,

and hence, [~w, ν]AR~P,q,α
≤ ‖~w, ν‖AR~P,q,α

≤ p1 . . . pm[~w, ν]AR~P,q,α
.

The following theorem gives some properties of the class of AR~P weights.

Theorem 5.2.7. Let 1 ≤ p1, . . . , pm < ∞, with 1
p = 1

p1
+ · · ·+ 1

pm
. Let w1, . . . ,

wm, and ν be weights. The following statements are equivalent:

(a) ‖M(~f )‖Lp,∞(ν) ≤ C ∏m
i=1 ‖ fi‖Lpi ,1(wi)

, for every ~f .

(b) ‖M(~χ)‖Lp,∞(ν) ≤ c ∏m
i=1 wi(Ei)

1/pi , for every ~χ = (χE1 , . . . , χEm).

(c)

‖~w, ν‖AR~P
:= sup

Q
ν(Q)1/p

m

∏
i=1

sup
0<wi(Ei)<∞

|Ei ∩Q|
|Q| wi(Ei)

− 1
pi < ∞.

(d) (w1, . . . , wm, ν) ∈ AR~P .

Moreover, if (w1, . . . , wm, ν) ∈ AR~P , and ν ∈ A∞, then

T : Lp1,1(w1)× · · · × Lpm,1(wm) −→ Lp,∞(ν), (5.2.4)

where T is either a sparse operator of the form

AS(~f ) := ∑
Q∈S

(
m

∏
i=1

 
Q

fi

)
χQ,

where S is an η-sparse collection of dyadic cubes, or any operator that can be con-
veniently dominated by such sparse operators, like m-linear ω-Calderón-Zygmund
operators with ω satisfying the Dini condition.

Proof. The equivalences follow directly from Theorem 5.2.6 with α = 0.
A similar argument to the one in the proof of Theorem 2.4.8 shows that

for 0 < ε ≤ 1 such that ε < p, and r ≥ 1 such that ν ∈ ARr ,

‖MS(~f )‖Lp,∞(ν) ≤ ‖AS(|~f |)‖Lp,∞(ν) ≤ Cε,η,n,p,r[ν]
r/ε
ARr
‖MS(~f )‖Lp,∞(ν), (5.2.5)

where

MS(~f ) := sup
Q∈S

(
m

∏
i=1

 
Q
| fi|
)

χQ,
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and since S is a countable collection of dyadic cubes, the proof of Theorem
5.2.2 can be rewritten to show that

MS : Lp1,1(w1)× · · · × Lpm,1(wm) −→ Lp,∞(ν)

if, and only if

[w, ν]AR~P,S
:= sup

Q∈S
ν(Q)1/p

m

∏
i=1

‖χQw−1
i ‖Lp′i ,∞

(wi)

|Q| < ∞,

which is true, since [w, ν]AR~P,S
≤ [w, ν]AR~P

< ∞. Moreover,

1
∏m

i=1 pi
[w, ν]AR~P,S

≤ ‖MS‖∏m
i=1 Lpi ,1(wi)→Lp,∞(ν) ≤ [w, ν]AR~P,S

,

so (5.2.5) implies that

1
∏m

i=1 pi
[w, ν]AR~P,S

≤ ‖AS‖∏m
i=1 Lpi ,1(wi)→Lp,∞(ν) ≤ Cε,η,n,p,r[ν]

r/ε
ARr

[w, ν]AR~P,S
.

(5.2.6)
Finally, in virtue of Theorem 1.2 and Proposition 3.1 in [71] (see also [65,

Theorem 3.1]), if T is an m-linear ω-Calderón-Zygmund operator with ω sat-
isfying the Dini condition, then there exists a dimensional constant 0 < η < 1
such that given compactly supported functions fi ∈ L1(Rn), i = 1, . . . , m,
there exists an η-sparse collection of dyadic cubes S such that

|T( f1, . . . , fm)| ≤ cnCTAS(|~f |).

Hence, (5.2.4) follows from (5.2.6) and the standard density argument in [44,
Exercise 1.4.17]. Moreover,

‖T‖∏m
i=1 Lpi ,1(wi)→Lp,∞(ν) ≤ cnCTCε,η,n,p,r[ν]

r/ε
ARr

[w, ν]AR~P
.

Remark 5.2.8. Given weights w1, . . . , wm, and ν = ∏m
i=1 wp/pi

i , the equiva-
lence between (b) and (c) in Theorem 5.2.7 can be found in [5]. Moreover,
if p1 = · · · = pm = 1, then the equivalence between (a) and (d) can be
found in [69]. Observe that if ~w ∈ A~P, then (w1, . . . , wm, ν~w) ∈ AR~P . In
particular, A~P ⊆ AR~P . In [69], strong and weak type bounds for m-linear
Calderón-Zygmund operators were established for tuples of weights in A~P.
In [77], these results were extended to m-linear ω-Calderón-Zygmund oper-
ators with ‖ω‖Dini < ∞.

Remark 5.2.9. Concerning mixed type bounds, the proof of Theorem 5.2.2
can be easily modified to show that for 1 ≤ ` < m,

M : Lp1(w1)× · · · × Lp`(w`)× Lp`+1,1(w`+1)× · · · × Lpm,1(wm) −→ Lp,∞(ν)
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if, and only if

[~w, ν]AM
~P,`

:= sup
Q

ν(Q)1/p

 `

∏
i=1

‖χQw−1
i ‖Lp′i (wi)

|Q|

 m

∏
i=`+1

‖χQw−1
i ‖Lp′i ,∞

(wi)

|Q|


< ∞.

The case ` = m is the weak type bound forM proved in [69, Theorem 3.3].
Moreover, if [~w, ν]AM

~P,`
< ∞, and ν ∈ A∞, then we can adapt the proof of

Theorem 5.2.7 to obtain that

T : Lp1(w1)× · · · × Lp`(w`)× Lp`+1,1(w`+1)× · · · × Lpm,1(wm) −→ Lp,∞(ν),

where T is either AS or any operator that can be conveniently dominated by
such sparse operators.

To conclude this section, we give the restricted weak type bounds for the
fractional integral Iα, that follow immediately from Theorem 5.1.4, Theo-
rem 5.2.2, and the standard density argument in [44, Exercise 1.4.17].

Corollary 5.2.10. Let 0 < α < nm, 1 ≤ p1, . . . , pm < ∞, 1
p = 1

p1
+ · · ·+ 1

pm
, and

p ≤ q. Let w1, . . . , wm, and ν be weights, with ν ∈ A∞. The inequality

‖Iα(~f )‖Lq,∞(ν) ≤ C
m

∏
i=1
‖ fi‖Lpi ,1(wi)

holds for every vector of measurable functions ~f if, and only if (w1, . . . , wm, ν) ∈
AR~P,q,α

.

Note that in virtue of the embedding relations between Lorentz spaces,
the class AR~P,q,α

contains the tuples of weights for which

Iα :
m

∏
i=1

Lpi(wi) −→ Lq,∞(ν), or Iα :
m

∏
i=1

Lpi(wi) −→ Lq(ν).

This type of bounds were studied in [82].

5.3 Commutators of Linear Fractional and Singu-
lar Integrals

We will devote this section to the commutators of Calderón-Zygmund op-
erators and fractional integrals. Our proofs will exploit sparse domination
results that, to our knowledge, are only available in the literature for the one-
variable case (see [21, 23]). We do believe that our techniques can be adapted
and extended to cover the general case when combined with the right multi-
variable sparse domination results. We are currently working on these topics,
but we will not discuss our findings here.
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Let us start with the following definition.

Definition 5.3.1. Given 0 ≤ α < n, a Young function φ, a weight ν, a set of
cubes Q, and a measurable function f on Rn, define

MQα,φ,ν( f ) := sup
Q∈Q

ν(Q)α/n‖ f ‖φ,Q,νχQ.

If α = 0, we omit the subindex α, and if ν = 1, we omit the subindex ν. If Q
is the set of all cubes in Rn, we omit the symbol Q in the notation.

Now we state and prove some properties of the operator that we have just
defined.

Lemma 5.3.2. For 1 < p < ∞, B(t) = t log(e + t), and a dyadic grid D ,

MD
B,ν : Lp,1(ν) −→ Lp,1(ν),

with constant independent of ν and D .

Proof. We have that

‖ f ‖B,Q,ν ≤ Cp

(
1

ν(Q)

ˆ
Q
| f |pν

)1/p
≤ Cp‖ f ‖L∞(ν),

so MD
B,ν : L∞(ν) −→ L∞(ν), with constant independent of ν and D . In virtue

of [21, Lemma 2.6], for 1 < r < p, MD
B,ν : Lr(ν) −→ Lr(ν), with con-

stant independent of ν and D . Finally, the desired result follows applying
Marcinkiewicz’s interpolation theorem (see [4, Theorem 4.13]).

Theorem 5.3.3. Let 0 ≤ α < n, 1 < q, and 1 ≤ p ≤ q. Let w and ν be weights.
Let φ be a Young function. The inequality∥∥Mα,φ( f )

∥∥
Lq,∞(ν)

≤ C ‖ f ‖Lp,1(w)

holds for every measurable function f if, and only if

‖w, ν‖ARp,q,α,φ
:= sup

Q
sup
E⊆Q
|Q|α/n ‖χE‖φ,Q

ν(Q)1/q

w(E)1/p < ∞.

Proof. Fix a cube Q and a measurable set E ⊆ Q. We know that

|Q|α/n‖χE‖φ,QχQ ≤ Mα,φ(χE),

and by hypothesis, we obtain that

|Q|α/n‖χE‖φ,Qν(Q)1/q ≤ pCw(E)1/p,

so ‖w, ν‖ARp,q,α,φ
≤ pC < ∞.
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Conversely, assume that ‖w, ν‖ARp,q,α,φ
< ∞. This implies that for every

cube Q and every measurable set E,

|Q|α/n‖χE∩Q‖φ,Q ≤ ‖w, ν‖ARp,q,α,φ

w(E ∩Q)1/p

ν(Q)1/q .

Now, fix a cube Q and a measurable set E. For every x ∈ Q, Q ⊆ Qx :=
Q(x, `Q), and since `Qx = 2`Q, we deduce that ‖χE∩Q‖φ,Q ≤ 2n‖χE∩Qx‖φ,Qx .
In particular,

|Q|α/n‖χE‖φ,Q = |Q|α/n‖χE∩Q‖φ,Q ≤ 2n|Qx|α/n‖χE∩Qx‖φ,Qx

≤ 2n‖w, ν‖ARp,q,α,φ

w(E ∩Qx)1/p

ν(Qx)1/q ,

and hence, Mα,φ(χE)(x) ≤ 2n‖w, ν‖ARp,q,α,φ
Np,q(χE)(x)1/p, where

Np,q( f )(x) := sup
r>0

ν(Q(x, r))−
p
q

ˆ
Q(x,r)

| f |w.

Observe that the second part of the proof of Theorem 5.2.2 can be rewritten
to show that

‖Np,q( f )‖
L

q
p ,∞

(ν)
≤ 24n‖ f ‖L1(w),

and we can conclude that

‖Mα,φ(χE)‖Lq,∞(ν) ≤ 2n24n/p‖w, ν‖ARp,q,α,φ
w(E)1/p.

Up to this point, everything works for q = 1, but the following exten-
sion argument only works if Lq,∞(ν) is a Banach space, and that is why
we need q > 1. Take f ∈ Lp,1(w), and for every integer k, write Ek :=
{2k < | f | ≤ 2k+1}. It is clear that | f | ≤ 2 ∑k∈Z 2kχEk a.e., so Mα,φ( f ) ≤
2 ∑k∈Z 2k Mα,φ(χEk) and hence,

‖Mα,φ( f )‖Lq,∞(ν) ≤ 2q′ ∑
k∈Z

2k‖Mα,φ(χEk)‖Lq,∞(ν)

≤ 2q′2n24n/p‖w, ν‖ARp,q,α,φ
∑

k∈Z

2kw(Ek)
1/p

≤ 2q′2n24n/p‖w, ν‖ARp,q,α,φ
∑

k∈Z

2kw({| f | > 2k})1/p

≤ 4q′2n24n/p‖w, ν‖ARp,q,α,φ
∑

k∈Z

ˆ 2k+1

2k
w({| f | > t})1/pdt

≤ 4
q′

p
2n24n/p‖w, ν‖ARp,q,α,φ

‖ f ‖Lp,1(w).



162 Chapter 5. Fractional and Singular Integrals, and Commutators

Remark 5.3.4. In fact, we have proved that

1
p
‖w, ν‖ARp,q,α,φ

≤ ‖Mα,φ‖Lp,1(w)→Lq,∞(ν) ≤ 4
q′

p
2n24n/p‖w, ν‖ARp,q,α,φ

.

Observe that for φ(t) = t, ‖w, ν‖ARp,q,α,φ
= ‖w, ν‖ARp,q,α

, and we recover the

condition that we obtained in Theorem 5.2.6 for m = 1. Moreover, we can
characterize the weights such that ‖w, ν‖ARp,q,α

< ∞ in terms of their behavior
on cubes. At this point, one can ask if it is possible to do the same for a
general Young function φ, or at least for φ(t) = B(t) = t log(e+ t), which will
appear naturally in the study of commutators. The following result provides
a partial answer to this question.

Theorem 5.3.5. Let 0 ≤ α < n, and 1 < p ≤ q. Let w and ν be weights. Take
ψ(t) = B(t)p′ . Then,

[w, ν]ARp,q,α
. ‖w, ν‖ARp,q,α,B

. sup
Q
|Q|

α
n+

1
q−

1
p

( 
Q

ν

)1/q
‖w−

1
p ‖Lψ,∞(Q,1/|Q|).

Proof. To prove the first inequality, observe that for every cube Q and every
measurable set E ⊆ Q,

|E|
|Q| = ‖χE‖Id,Q ≤ ‖χE‖B,Q,

and applying Theorem 5.2.6, we have that

[w, ν]ARp,q,α
≈ ‖w, ν‖ARp,q,α

≤ ‖w, ν‖ARp,q,α,B
.

To prove the second inequality, it suffices to show that

sup
E⊆Q

‖χE‖B,Q

w(E)1/p . |Q|−
1
p ‖w−

1
p ‖Lψ,∞(Q,1/|Q|). (5.3.1)

For a non-empty measurable set E, and applying Hölder’s inequality twice,
we get that

1 =

 
E

w
1

pp′w
−1
pp′ ≤

( 
E

w1/p′
)1/p ( 

E
w−

1
p

)1/p′

≤
( 

E
w
) 1

pp′
( 

E
w−

1
p

)1/p′

and hence, (
|E|

w(E)

)1/p

≤
 

E
w−

1
p . (5.3.2)

It is easy to see that

qψ := inf
t>0

tψ′(t)
ψ(t)

= p′ inf
t>0

(
1 +

t
(e + t) log(e + t)

)
= p′ > 1,



5.3. Commutators of Linear Fractional and Singular Integrals 163

so in virtue of Kolmogorov’s inequality for weak Orlicz spaces (see [76, The-
orem 3.1]), and (5.3.2), we have that

sup
E⊆Q
‖χE‖ψ,Q

(
|E|

w(E)

)1/p

≤ sup
E⊆Q
‖χE‖ψ,Q

 
E

w−
1
p

= sup
0<|E|<∞

‖χE‖ψ,Q

|E|

ˆ
E∩Q

w−
1
p

≤ q′ψ‖w
− 1

p ‖Lψ,∞(Q,1/|Q|) = p‖w−
1
p ‖Lψ,∞(Q,1/|Q|).

(5.3.3)

Since ψ(t) = B(t)p′ , ψ−1(t) = B−1(t1/p′). For t ≥ 0, a straightforward
computation shows that

B−1(t) ≈ t
log(e + t)

≈ t1/p t1/p′

log(e + t1/p′)
≈ t1/pψ−1(t),

concluding that

‖χE‖ψ,Q = ψ−1 (|Q|/|E|)−1

≈ B−1 (|Q|/|E|)−1
(
|Q|
|E|

)1/p

= ‖χE‖B,Q

(
|Q|
|E|

)1/p

,

and hence, (5.3.1) follows from (5.3.3).

The case when p = 1 in Theorem 5.3.5 is open. For p > 1, our original
guess was that the contribution of the weak Orlicz space should be in terms
of ‖χQw−1‖Lψ,∞(Rn,w), since that is the case when we work with φ(t) = t
instead of φ(t) = B(t). But by the same type of argument,

‖χQw−1‖Lψ,∞(Rn,w) ≈ sup
E⊆Q

|E|

w(E)1+ 1
p

B−1(w(E)−1)−1,

and this doesn’t seem to work because there is no clear relation between
B−1(w(E)−1)−1 and ‖χE‖B,Q. Similarly, we have that

‖w−1‖Lψ,∞(Q,w/w(Q)) ≈ sup
E⊆Q

|E|
w(E)1/p

w(Q)1/p

w(E)
‖χE‖B,Q,w,

and again, there is no clear relation between ‖χE‖B,Q,w and ‖χE‖B,Q.
Now we define an operator that will play a significant role in the study of

commutators.

Definition 5.3.6. Given b ∈ BMO, 0 ≤ α < n, a set of cubes Q, and a mea-
surable function f on Rn, we define the operator CQb as

CQb ( f )(x) := ∑
Q∈Q
|Q|α/n

( 
Q
|b(x)− b(y)| f (y)dy

)
χQ(x), x ∈ Rn.
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We have the following bound for such operator.

Theorem 5.3.7. Let 0 ≤ α < n, 1 < q, and 1 ≤ p ≤ q. Let w and ν be weights,
with ν ∈ A∞ and [w, ν]ARp,q,α,B

< ∞. Let b ∈ BMO. Let D be a dyadic grid, and let

S ⊆ D be an η-sparse collection of cubes. Then,

CSb : Lp,1(w) −→ Lq,∞(ν).

Proof. Without loss of generality, we can assume that f ≥ 0. In virtue of
Kolmogorov’s inequality (see [44, Exercise 1.1.12]), and since q > 1, we have
that

‖CSb ( f )‖Lq,∞(ν) ≤ sup
0<ν(F)<∞

‖CSb ( f )χF‖L1(ν)ν(F)
− 1

q′ ,

where the supremum is taken over all measurable sets F with 0 < ν(F) < ∞.
For one of such sets F, we have that

‖CSb ( f )χF‖L1(ν)

=

ˆ
Rn

∑
Q∈S

χQ(x)|Q|α/n
( 

Q
|b(x)− b(y)| f (y)dy

)
χF(x)ν(x)dx

≤
ˆ

Rn
∑

Q∈S
χQ(x)|Q|α/n

( 
Q
|b(x)− bQ| f (y)dy

)
χF(x)ν(x)dx

+

ˆ
Rn

∑
Q∈S

χQ(x)|Q|α/n
( 

Q
|b(y)− bQ| f (y)dy

)
χF(x)ν(x)dx =: I + I I.

(5.3.4)

Since ν ∈ A∞, there exists s ≥ 1 such that ν ∈ ARs , and hence,

sup
Q

sup
E⊆Q

|E|
|Q|

(
ν(Q)

ν(E)

)1/s

= ‖ν‖ARs
< ∞.

In particular, for each Q ∈ S , ν(3Q) ≤
(

3n

η ‖ν‖ARs

)s
ν(EQ). Observe that the

sides of an n-dimensional cube have Lebesgue measure 0 in Rn, so we can
assume that the cubes in S are open. For Q ∈ S and z ∈ EQ, we define
Qz := Q(z, `Q), the open cube of center z and side length twice the side
length of Q. We have that EQ ⊆ Q ⊆ Qz ⊆ 3Q, so

|Q|α/n‖ f ‖B,QχQ(z) ≤ MD
α,B( f )(z),

and
1

ν(3Q)

ˆ
Q

χFν ≤ 1
ν(Qz)

ˆ
Qz

χFν ≤ Mc
ν(χF)(z).

Using these estimates, Theorem 5.1.6, and the fact that for B(t) = t log(e + t),

‖b− bQ‖B̄,Q ≤ Cn,B‖b‖BMO, (5.3.5)
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as shown in [21, Lemma 5.1], we can bound the term I I in (5.3.4) as follows:

I I ≤ 2 ∑
Q∈S
‖b− bQ‖B̄,Q|Q|α/n‖ f ‖B,Q

(
1

ν(3Q)

ˆ
Q

χFν

)
ν(3Q)

≤ 2Cn,B

(
3n

η
‖ν‖ARs

)s
‖b‖BMO ∑

Q∈S

ˆ
EQ

|Q|α/n‖ f ‖B,QχQMc
ν(χF)ν

≤ 2Cn,B

(
3n

η
‖ν‖ARs

)s
‖b‖BMO

ˆ
Rn

MD
α,B( f )Mc

ν(χF)ν

≤ 2Cn,B

(
3n

η
‖ν‖ARs

)s
‖b‖BMO‖MD

α,B( f )‖Lq,∞(ν)‖Mc
ν(χF)‖Lq′ ,1(ν)

≤ CI I
n,q,B

(
3n

η
‖ν‖ARs

)s
‖b‖BMO‖MD

α,B( f )‖Lq,∞(ν)ν(F)1/q′ ,

(5.3.6)

where CI I
n,q,B := 2q′Cn,B‖Mc

ν‖Lq′ ,1(ν), independent of ν (see [44, Theorem 7.1.9]
and [4, Theorem 4.13]).

Similarly, we can bound the term I in (5.3.4) using Theorem 5.1.6, Lemma
5.3.2, and the fact that

‖b− bQ‖B̄,Q,ν ≤ Cn,B[ν]A∞‖b‖BMO, (5.3.7)

proved in [21, Lemma 5.1], obtaining that

I ≤ 2
(

3n

η
‖ν‖ARs

)s

∑
Q∈S
|Q|α/n

( 
Q

f
)
‖b− bQ‖B̄,Q,ν‖χF‖B,Q,νν(EQ)

≤ 2Cn,B

(
3n

η
‖ν‖ARs

)s
[ν]A∞‖b‖BMO

ˆ
Rn

MD
α ( f )MD

B,ν(χF)ν

≤ 2Cn,B

(
3n

η
‖ν‖ARs

)s
[ν]A∞‖b‖BMO‖MD

α ( f )‖Lq,∞(ν)‖MD
B,ν(χF)‖Lq′ ,1(ν)

≤ CI
n,q,B

(
3n

η
‖ν‖ARs

)s
[ν]A∞‖b‖BMO‖MD

α ( f )‖Lq,∞(ν)ν(F)1/q′ ,

(5.3.8)

where CI
n,q,B := 2q′Cn,B‖MD

B,ν‖Lq′ ,1(ν), independent of ν and D . It is worth
mentioning that it follows immediately from Theorem 5.1.6 (taking g = 1)
that MD

α ( f ) ≤ cBMD
α,B( f ).

Combining all the previous estimates, we get that

‖CSb ( f )‖Lq,∞(ν) ≤ Cn,q,B

(
3n

η
‖ν‖ARs

)s
[ν]A∞‖b‖BMO‖MD

α,B( f )‖Lq,∞(ν),

with Cn,q,B := 2q′Cn,B max{cB‖MD
B,ν‖Lq′ ,1(ν), ‖Mc

ν‖Lq′ ,1(ν)}.
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Finally, the desired result follows from Theorem 5.3.3, and

‖CSb ‖Lp,1(w)→Lq,∞(ν)

≤ 4
q′

p
2n24n/pCn,q,B‖w, ν‖ARp,q,α,B

(
3n

η
‖ν‖ARs

)s
[ν]A∞‖b‖BMO.

Remark 5.3.8. If b ∈ L∞(Rn), in the previous argument one can apply Kol-
mogorov’s inequality with exponent 0 < r < 1 and control the terms I and
I I with the operator Mα. With these modifications, one can bound CSb for
weights w and ν such that [w, ν]ARp,q,α

< ∞ (no logarithmic bump is required),
and also for the case q = 1. Nevertheless, for α 6= 0, the classical exponent
q given by the relation 1

p −
1
q = α

n is strictly bigger than 1, so this case is also
covered by the previous theorem.

We can now derive restricted weak type bounds for commutators of Cal-
derón-Zygmund operators.

Theorem 5.3.9. Let T be a ω-Calderón-Zygmund operator with ω satisfying the
Dini condition, and let b ∈ BMO. Let 1 < q, and 1 ≤ p ≤ q. Let w and ν be
weights, with ν ∈ A∞. Moreover, suppose that

‖w, ν‖ARp,q,B
:= sup

Q
sup
E⊆Q
‖χE‖B,Q

ν(Q)1/q

w(E)1/p < ∞,

where B(t) = t log(e + t). Then,

[b, T] : Lp,1(w) −→ Lq,∞(ν).

Proof. Without loss of generality, let f be a bounded function with compact
support. In virtue of Theorem 1.1 in [70], there exist 3n dyadic grids Dj, and

1
2·9n -sparse families Sj ⊆ Dj such that for a.e. x ∈ Rn,

|[b, T] f (x)| ≤ cnCT

3n

∑
j=1

(
TSj,b(| f |)(x) + T ?

Sj,b(| f |)(x)
)

,

where

TSj,b(| f |)(x) := ∑
Q∈Sj

( 
Q
|b(x)− bQ|| f (y)|dy

)
χQ(x),

and

T ?
Sj,b(| f |)(x) := ∑

Q∈Sj

( 
Q
|b(y)− bQ|| f (y)|dy

)
χQ(x).

In particular,

‖[b, T] f ‖Lq,∞(ν) ≤ 2 · 3ncnCT

3n

∑
j=1

(
‖TSj,b(| f |)‖Lq,∞(ν) + ‖T ?

Sj,b(| f |)‖Lq,∞(ν)

)
.
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Applying Kolmogorov’s inequality, and since q > 1, we have that

‖TSj,b(| f |)‖Lq,∞(ν) ≤ sup
0<ν(F)<∞

‖TSj,b(| f |)χF‖L1(ν)ν(F)
− 1

q′ ,

where the supremum is taken over all measurable sets F with 0 < ν(F) < ∞.
For one of such sets F, we have that

‖TSj,b(| f |)χF‖L1(ν)

=

ˆ
Rn

∑
Q∈Sj

χQ(x)
( 

Q
|b(x)− bQ|| f (y)|dy

)
χF(x)ν(x)dx.

Observe that we have recovered the term I that appeared in (5.3.4), with
α = 0, and we can bound it as in (5.3.8), obtaining that

‖TSj,b(| f |)‖Lq,∞(ν) ≤ cBCI
n,q,B

(
2 · 27n‖ν‖ARs

)s
[ν]A∞‖b‖BMO‖MB( f )‖Lq,∞(ν).

Similarly, and following the computations in (5.3.6) to bound the term I I in
(5.3.4), we obtain that

‖T ?
Sj,b(| f |)‖Lq,∞(ν) ≤ CI I

n,q,B

(
2 · 27n‖ν‖ARs

)s
‖b‖BMO‖MB( f )‖Lq,∞(ν).

Since the constants involved don’t depend on j, combining all the previ-
ous estimates, we get that

‖[b, T] f ‖Lq,∞(ν)

≤ 4 · 9ncnCTCn,q,B

(
2 · 27n‖ν‖ARs

)s
[ν]A∞‖b‖BMO‖MB( f )‖Lq,∞(ν),

and the desired result follows from Theorem 5.3.3, with

‖[b, T]‖Lp,1(w)→Lq,∞(ν)

≤ 16
q′

p
18n24n/pcnCTCn,q,B‖w, ν‖ARp,q,B

(
2 · 27n‖ν‖ARs

)s
[ν]A∞‖b‖BMO.

Remark 5.3.10. Observe that for 1 < q = p, and w = ν, if ‖w, ν‖ARp,q,B
< ∞,

then it follows from Theorem 5.3.5 that w ∈ ARp , and it is not difficult to
check that if w ∈ Ap, then ‖w, w‖ARp,p,B

< ∞, using the open property of Ap.

In particular, the classical diagonal bounds are covered by this result.
However, it is well known that, in general, [b, T] : L1(Rn) 6−→ L1,∞(Rn).

For instance, following the ideas in [91, Section 5] and [69, Remark 7.7], one
can show that for b(x) = log |x + 1| ∈ BMO (see [98, Corollary 3]), T = H,



168 Chapter 5. Fractional and Singular Integrals, and Commutators

the Hilbert transform on R, and f = χ(0,1),

‖[b, H]χ(0,1)‖L1,∞(Rn) & sup
t>0

t
∣∣∣∣{x > e :

log(x)
x

> t
}∣∣∣∣ ≥ sup

1≤k∈N

k
ek (e

k− e) = ∞.

To finish this section, we present the restricted weak type bounds for the
commutators of the linear fractional integral Iα.

Theorem 5.3.11. Let 0 < α < n, 1 < q, and 1 ≤ p ≤ q. Let w and ν be weights,
with ν ∈ A∞ and [w, ν]ARp,q,α,B

< ∞. Let b ∈ BMO. Then,

[b, Iα] : Lp,1(w) −→ Lq,∞(ν).

Proof. Without loss of generality, let f be a non-negative and bounded func-
tion with compact support. In virtue of Proposition 3.4 in [23], there exist 3n

dyadic grids Dj such that for a.e. x ∈ Rn,

|[b, Iα] f (x)| ≤ Cn,α

3n

∑
j=1

C
Dj
b ( f )(x).

In particular,

‖[b, Iα] f ‖Lq,∞(ν) ≤ 3nCn,α

3n

∑
j=1
‖CDj

b ( f )‖Lq,∞(ν).

Observe that we can not apply Theorem 5.3.7 directly, because the grids
Dj are not sparse, so we will have to work a little bit more. Applying Kol-
mogorov’s inequality, and since q > 1, we have that

‖CDj
b ( f )‖Lq,∞(ν) ≤ sup

0<ν(F)<∞
‖CDj

b ( f )χF‖L1(ν)ν(F)
− 1

q′ ,

where the supremum is taken over all measurable sets F with 0 < ν(F) < ∞.
For one of such sets F, we have that

‖CDj
b ( f )χF‖L1(ν)

=

ˆ
Rn

∑
Q∈Dj

χQ(x)|Q|α/n
( 

Q
|b(x)− b(y)| f (y)dy

)
χF(x)ν(x)dx

≤
ˆ

Rn
∑

Q∈Dj

χQ(x)|Q|α/n
( 

Q
|b(x)− bQ| f (y)dy

)
χF(x)ν(x)dx

+

ˆ
Rn

∑
Q∈Dj

χQ(x)|Q|α/n
( 

Q
|b(y)− bQ| f (y)dy

)
χF(x)ν(x)dx =: I + I I.
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In virtue of Theorem 5.1.6 and (5.3.7), we have that

I ≤ 2Cn,B[ν]A∞‖b‖BMO ∑
Q∈Dj

|Q|α/nν(Q)‖χF‖B,Q,ν

( 
Q

f
)

.

We now want to replace the summation over cubes in Dj by a summation
over a sparse subset Sj of Dj. We achieve this using an argument from [21]
(see also [25], [28, Appendix A] and [30]). Fix a = 2n+1, and for each k ∈ Z,
consider the sets Ωj

k := {MDj( f ) > ak}. Each of these sets is the union of

a collection S j
k of maximal, disjoint cubes in Dj such that ak <

ffl
Q f ≤ 2nak.

Moreover, the set Sj :=
⋃

k S
j
k is 1

2 -sparse. Let C j
k := {Q ∈ Dj : ak <

ffl
Q f ≤

ak+1}. By the maximality of the cubes in S j
k, every P ∈ C j

k is contained in a

unique cube in S j
k. Therefore, applying Lemma 5.2 in [21] we get that

I ≤ 2Cn,B[ν]A∞‖b‖BMO ∑
k∈Z

∑
Q∈C j

k

|Q|α/nν(Q)‖χF‖B,Q,ν

( 
Q

f
)

≤ 2n+2Cn,B[ν]A∞‖b‖BMO ∑
k∈Z

ak ∑
P∈S j

k

∑
Q⊆P
|Q|α/nν(Q)‖χF‖B,Q,ν

≤ 2n+2cαCn,B[ν]A∞‖b‖BMO ∑
k∈Z

∑
P∈S j

k

|P|α/nν(P)‖χF‖B,P,ν

( 
P

f
)

= 2n+2cαCn,B[ν]A∞‖b‖BMO ∑
P∈Sj

|P|α/nν(P)‖χF‖B,P,ν

( 
P

f
)

.

Repeating the computations in (5.3.8), we conclude that

I ≤ 2n+1cαcBCI
n,q,B

(
2 · 3n‖ν‖ARs

)s
[ν]A∞‖b‖BMO‖Mα,B( f )‖Lq,∞(ν)ν(F)1/q′ .

The argument to bound the term I I is similar. In virtue of Theorem 5.1.6
and (5.3.5), we have that

I I ≤ 2Cn,B‖b‖BMO ∑
Q∈Dj

|Q|α/n|Q|‖ f ‖B,Q

( 
Q

χFν

)
.

Fix a = 2n+1, and for each k ∈ Z, consider the sets Ω̃j
k := {MDj(χFν) > ak}.

Since
ffl

Q χFν → 0 as |Q| → ∞, each of these sets is the union of a collection

S̃ j
k of maximal, disjoint cubes in Dj such that ak <

ffl
Q χFν ≤ 2nak. Moreover,

the set S̃j :=
⋃

k S̃
j
k is 1

2 -sparse. Let C̃ j
k := {Q ∈ Dj : ak <

ffl
Q χFν ≤ ak+1}. By

the maximality of the cubes in S̃ j
k, every P ∈ C̃ j

k is contained in a unique cube
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in S̃ j
k. Therefore, and applying Lemma 5.2 in [21], we get that

I I ≤ 2Cn,B‖b‖BMO ∑
k∈Z

∑
Q∈C̃ j

k

|Q|α/n|Q|‖ f ‖B,Q

( 
Q

χFν

)
≤ 2n+2Cn,B‖b‖BMO ∑

k∈Z

ak ∑
P∈S̃ j

k

∑
Q⊆P
|Q|α/n|Q|‖ f ‖B,Q

≤ 2n+2cαCn,B‖b‖BMO ∑
k∈Z

∑
P∈S̃ j

k

|P|α/n|P|‖ f ‖B,P

( 
P

χFν

)

= 2n+2cαCn,B‖b‖BMO ∑
P∈S̃j

|P|α/n|P|‖ f ‖B,P

( 
P

χFν

)
.

Repeating the arguments in (5.3.6), we conclude that

I I ≤ 2n+1cαCI I
n,q,B

(
2 · 3n‖ν‖ARs

)s
[ν]A∞‖b‖BMO‖Mα,B( f )‖Lq,∞(ν)ν(F)1/q′ .

Since the constants involved don’t depend on j, combining all the previ-
ous estimates, we get that

‖[b, Iα] f ‖Lq,∞(ν)

≤ 2 · 18ncαCn,αCn,q,B

(
2 · 3n‖ν‖ARs

)s
[ν]A∞‖b‖BMO‖Mα,B( f )‖Lq,∞(ν),

and the desired result follows from Theorem 5.3.3, with

‖[b, Iα]‖Lp,1(w)→Lq,∞(ν)

≤ 8
q′

p
36n24n/pcαCn,αCn,q,B‖w, ν‖ARp,q,α,B

(
2 · 3n‖ν‖ARs

)s
[ν]A∞‖b‖BMO.

Remark 5.3.12. One can prove the previous result following an alternative
approach. In virtue of Theorem 1.3 in [24], for every non-negative function
f ,

M#([b, Iα] f ) . ‖b‖BMO(Iα( f ) + Mα,B( f )),

and applying Corollary 5.2.10 and Theorem 5.3.3,

‖M#([b, Iα] f )‖Lq,∞(ν) . Cν‖b‖BMO([w, ν]ARp,q,α
+ ‖w, ν‖ARp,q,α,B

)‖ f ‖Lp,1(w)

. Cν‖b‖BMO‖w, ν‖ARp,q,α,B
‖ f ‖Lp,1(w).

Finally, by Lemma 7.1 in [24] (see also [38, Page 144] and [56]) and Theorem
2.1 in [35],

‖[b, Iα] f ‖Lq,∞(ν) ≤ ‖Md([b, Iα] f )‖Lq,∞(ν) . C̃ν‖M#([b, Iα] f )‖Lq,∞(ν),
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where Md is the dyadic Hardy-Littlewood maximal operator, defined for locally
integrable functions h by

Md(h) := sup
Q∈D0

( 
Q
|h|
)

χQ,

where D0 is the standard dyadic grid in Rn.

5.4 Applications to Poincaré and Sobolev-Type In-
equalities

Following ideas in [82], we can produce Poincaré and Sobolev-type inequal-
ities for products of functions from the bounds for the operator Iα.

Theorem 5.4.1. Let 1 ≤ p1, p2 < ∞, 1
p = 1

p1
+ 1

p2
, and p ≤ q. Let w1, w2, and

ν be weights, with ν ∈ A∞ and (w1, w2, ν) ∈ AR~P,q,1
. Then, there exists a constant

C > 0 such that the inequality

‖ f g‖Lq,∞(ν) ≤ C
(
‖∇ f ‖Lp1,1(w1)

‖g‖Lp2,1(w2)
+ ‖ f ‖Lp1,1(w1)

‖∇g‖Lp2,1(w2)

)
holds for all functions f , g ∈ C ∞

c (Rn).

Proof. The proof of Theorem 7.1 in [82] establishes that

| f g| . I1(|∇ f |, |g|) + I1(| f |, |∇g|),

and the desired inequality follows immediately from Corollary 5.2.10 with
α = 1.

Theorem 5.4.2. Let 1 < n, 1 ≤ p1, p2 < ∞, 1
p = 1

p1
+ 1

p2
, and p ≤ q. Let

w1, w2, and ν be weights, with ν ∈ A∞ and (w1, w2, ν) ∈ AR~P,q,2
. Then, there exists

a constant C > 0 such that the inequality

‖ f g‖Lq,∞(ν) ≤ C
(
‖∆ f ‖Lp1,1(w1)

‖g‖Lp2,1(w2)
+ ‖ f ‖Lp1,1(w1)

‖∆g‖Lp2,1(w2)

)
holds for all functions f , g ∈ C ∞

c (Rn).

Proof. The proof of Theorem 7.2 in [82] shows that

| f g| . I2(|∆ f |, |g|) + I2(| f |, |∆g|),

and again, the desired result follows immediately from Corollary 5.2.10 with
α = 2.
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