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Abstract

In this thesis we used various methods based on Effective Quantum Field The-
ories to study the interaction of hadrons. In particular, we focused on problems
related to what is known as exotic hadrons, which are hadronic states that have
different configurations from the standard of baryons or mesons, which are made
of three quarks or a quark-antiquark pair, respectively. The meson-meson inter-
action, for example, can form hadronic molecules with four quarks, also known as
tetraquarks ; the same is true of the meson-baryon interaction, which can generate
states with five quarks, known as pentaquarks. Evidence of the existence of these
states has been accumulating in recent decades, due to new data from high-energy
particle accelerators such as the Large Hadron Collider, LHC, at CERN.

Here we show the results of various research works that we have produced in re-
cent years, contributing to the development of our understanding of hadronic states.
Our approach is based on the picture of the hadronic molecule, where these states
emerge from the dynamical interaction of meson-meson (or meson-baryon) coupled
channels, sometimes called dynamically generated. We also use this same framework
to study what is known as triangular singularities, which are kinematic effects that
arise from hadronic interactions that can be misinterpreted as real physical states.

By showing how experimental data can be explained with our theoretical models,
and making predictions that can then be compared with future experiments, we
add a little more to the bulk of knowledge of hadronic physics, contributing to our
understanding of the fundamental properties of matter.

This thesis is structured around three chapters: 1) Meson-meson interactions, 2)
Meson-baryon interactions and 3) Triangular singularities. Each chapter contains a
selection of published articles that share a similar framework.

First we briefly discuss the main characteristics of the method we use to de-
scribe meson-meson interactions, in particular the interaction that generates the
well-known scalar mesons f0(500), f0(980) and a0(980). These states appear in the
two articles discussed in the first chapter: that of the ηc → ηπ+π− decay, and that
of the a0(980) − f0(980) mixing in the reactions χc1 → π0 π0η and χc1 → π0 π+π−.
Both works share common characteristics of a method also used in an earlier study
on the χc1 → ηπ+π− decay.

The method we use is known as chiral unitary approach. In essence, these states
are described as meson-meson molecules, emerging from the interaction of pairs of
light pseudoscalar mesons. Its main ingredient comes from chiral perturbation the-
ory which is an effective field theory that uses chiral symmetry to describe the meson
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interaction. In this framework, pseudoscalar mesons are the degrees of freedom that
act as Goldstone bosons.

In our approach, the interaction of the mesons is described by the lowest order
chiral Lagrangian, from which we extract the interaction between channels, which in
this case are given by: 1) π+π−, 2) π0π0, 3) K+K−, 4) K0K̄0, 5) ηη, 6) π0η. Next, we
unitarize the amplitude using the Bethe-Salpeter equations for the coupled channels,
which implements the sum of loop diagrams in infinite order. Factorizing the V
(interactions) and T (amplitudes) matrices on-shell out of the internal integrals, the
solution of the Bethe-Salpeter equation is purely algebraic, and we can rearrange
the sum as follows: T = (1− V G)−1 V , where G is the matrix of the integral of the
propagators of meson pairs, which we regularize with a cutoff. The T matrix gives
us all the dispersion amplitudes, including the transitions between each coupled
channel, and the resonances appear as poles in the dispersion amplitudes of the
channels to which they are coupled. From the position of the pole in the complex
energy plane, the mass and width of each resonance can be obtained.

In chapter one we also presented an approach of using elements of SU(3) symme-
try to see the weight of different trios of pseudoscalars produced in the charmonium
decay cc̄ → 123. The pseudoscalars then can undergo the final state interaction
of pairs of mesons that generate the scalar mesons f0(500), f0(980) and a0(980).
The combination of three mesons that behaves like a scalar of SU(3) is given by
SU(3)[scalar] ≡ Trace(φφφ), where φ is the matrix of pseudoscalar mesons, as the
dominant term. We start discussing an example of using that method in the study
of the reaction χc1 → ηπ+π−. Using SU(3) symmetry we can obtain the initial pro-
portion of the pairs of mesons created at the moment that the χc1 decays. Next, we
can for example calculate the main contribution for the invariant mass distribution
of π+π−, which can be calculated assuming that η goes in P wave and then π+π−,
π0π0 or ηη that occur in the primary step, go through the final state interaction to
produce a π+π− pair, which gives rise to the resonances f0(500) and f0(980) that
are seen in the experimental measurement.

After that we present our first work on the ηc → ηπ+π− decay, where we have also
explored the contribution of other possible structures of SU(3), and complemented
the information for the case of χc1 → ηπ+π−, where only Trace(φφφ) was used.
We have concluded that this is the best way to describe these decays, based on
the symmetry of the structure and the conformity of the results in relation to the
experimental data. In our first work, we performed calculations for the decay ηc →
ηπ+π−. After finding the initial pseudoscalar trios using SU(3) symmetry, we used
the chiral unitary approach to describe the meson pair interaction leading to ηπ+π−

in the final state. We have evaluated the invariant mass distributions of π+π− and
πη and we have found large and clear signals for the resonances f0(500), f0(980)
and a0(980). The experimental implementation of this reaction and comparison
with our predictions is of great value in shedding light on the nature of the light
scalar mesons.

We also use the chiral unitary approach and SU(3) symmetry to study isospin
breaking in the reactions χc1 → π0π+π− and χc1 → π0π0η and its relation to the
a0(980)−f0(980) mixing. We have shown that the same theoretical model previously
developed could also be used successfully in this study. The isospin violation was
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introduced by using different masses for the charged and neutral kaons, either in the
meson pair propagators created in the decay of χc1, or in the propagators within
the matrix T . We have found that violating isospin inside the T matrix makes the
amplitude of the transition π0η → π+π− non-zero, which generates a significant
contribution, and it also increases the effect of the contribution of KK̄. We also
find that the most important effect on the total amplitude is the isospin breaking
within the T matrix, due to the constructive sum of π0η → π+π− and KK̄ → π+π−,
which is essential to achieve a good agreement with the experimental measurement
of the mixing.

In chapter two we saw a method for studying meson-baryon interactions and
looking for new states as poles in the scattering amplitude. In this chapter we
present three papers on meson-baryon interactions: the one on the five new Ωc

states recently discovered by the LHCb collaboration, the following article on how
to observe these states in the weak decay of Ωb baryons and a third article with
predictions for Ωb molecular states.

At the beginning of chapter two we discussed two frameworks that are useful for
describing meson-baryon states, either using the lowest-order chiral Lagrangian that
describes the meson-baryon interaction in the SU(3) sector (octet of pseudoscalar
mesons with octet of baryons 1/2+), and the local hidden gauge approach, describing
the interaction through the exchange of vector mesons. We briefly discuss the rela-
tionship of the two methods, with an emphasis on the particular case where certain
simplifications can be made and the interactions can be obtained at the quark level.

In particular, we discussed how to extend the local hidden gauge approach to the
charm sector, which is particularly complicated in the case of the chiral Lagrangians.
Using the local hidden gauge approach and singling out the heavy quark, we can
assume SU(3) symmetry and obtain the interaction in a very simple way through
the wave function of the baryons, looking at their quark content. We have shown
that the dominant terms come from the exchange of light vectors, where the heavy
quarks are spectators. This has the consequence that the heavy quark symmetry is
conserved for the dominant terms in the expansion in powers of (1/mQ), and also
that the interaction in this case is equivalent to what can be obtained from the chiral
Lagrangians in SU(3).

In the first work on this topic we have investigated the Ωc states, which can be
generated dynamically from the meson-baryon interaction, looking for poles in the
dispersion matrix that correspond to physical states. We show that for a standard
value for the cutoff, we get two states with JP = 1/2− and two more states with
JP = 3/2−, three of them in remarkable agreement with three experimental states,
Ωc(3050), Ωc(3090) and Ωc(3119), of the five recently measured by the LHCb collab-
oration, in mass and width. We also made predictions at higher energies for states
of vector-baryon nature, which could be further explored in future experiments.

After this work we have studied the weak decay Ω−b → (Ξ+
c K

−) π−, using our
method to describe how the Ωc states arise from the final state interaction. We ana-
lyze the particular case in which the states Ωc(3050) and Ωc(3090) can be generated
from the pseudoscalar-baryon(1/2) interaction. We investigated the invariant mass
distributions ΞD, ΞcK̄, and Ξ′cK̄, making predictions that could be confronted with
future experiments.
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Finally, we have extended our approach and made predictions for the meson-
baryon interaction in the Beauty sector, with bottom quarks instead of charm
quarks. We have found several Ωb states: two states with masses 6405 MeV
and 6465 MeV with JP = 1/2−; two more states with masses 6427 MeV and
6665 MeV with JP = 3/2−; and three states between 6500 and 6820 MeV, degen-
erate with JP = 1/2−, 3/2−, derived from the vector-baryon interaction, analogous
to what we had for the Ωc states. Future experiments could also search for these
states. Indeed, after the production of this work, a new article from the LHCb
collaboration appeared, announcing the discovery of new Ωb states. As discussed in
a recent article, at higher energies, between 6400 MeV and 6500 MeV, four peaks
appear in the experiment that are consistent with our predictions.

In chapter three we see how triangular singularities can be formed in the decay
A → 1 + R, followed by R → 2 + 3 and the rescattering 1 + 2 → 1′ + 2′. We
show our method of explicitly making the loop integral of the triangle to find the
amplitude and how, by studying its poles, we find the conditions and position of the
singularity. We have seen that especially in the case when there is a resonance from
the rescattering (1, 2), at the same energy corresponding to the singularity of the
triangle, its effect can be seen in the experiment and can even be misinterpreted by
a new state.

In our first work on triangular singularities we studied the production and decay
of f1(1285) in πa0(980) and K∗K̄ as a function of the resonance mass. In particular,
we found an enhancement in the mass distribution around 1400 MeV in the πa0(980)
decay mode tied to a triangular singularity, which explains the peak in the exper-
imental data, and we also found a peak around 1420 MeV with approximately 60
MeV of width for the K∗K̄ mode. Both characteristics are in agreement with the ex-
perimental information on which the resonance f1(1420) is based. Furthermore, we
find that if the f1(1420) is a genuine resonance, coupling primarily to K∗K̄ as seen
experimentally, a fraction of 20% is inevitably found for the decay mode πa0(980)
of this resonance, in drastic contradiction with all experiments. In total, we have
concluded that the f1(1420) is not a genuine resonance, but the manifestation of the
decay modes πa0(980) and K∗K̄ of f1(1285) at energies higher than the nominal
one.

Next, we have studied the reaction γp→ pπ0η paying attention to the two main
mechanisms at low energies, γp → ∆(1700) → η∆(1232) and γp → ∆(1700) →
πN(1535). Both are generated by the photoexcitation of the ∆(1700) and the sec-
ond involves a mechanism that leads to a triangular singularity. We can quantita-
tively evaluate the cross section of this process and show that it agrees with the
experimental determination. However, there are some differences from the standard
partial wave analysis that does not explicitly include the triangular singularity. The
exercise also shows the value of exploring possible triangular singularities in other
reactions and how a standard partial wave analysis can be extended to accommodate
them.

Finally, we have investigated the Schmid theorem that states that if one has a
tree-level mechanism with a particle A that decays into two particles 1 and R, with a
subsequent decay of R into particles 2 and 3, the possible singularity of the triangle
developed by the elastic reescattering mechanism of two of the three particles does
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not change the cross section provided by the tree level. We have investigated the
process in terms of the width of the unstable particle produced in the first decay
and determined the violation and the limits for validity of the theorem. One of
the conclusions is that the theorem remains valid at the strict limit of the zero
width of that resonance, in which case the weight of the triangular diagram becomes
insignificant compared to the tree level. Another conclusion, from a practical point
of view, is that for realistic width values, the triangular singularity can provide
a contribution comparable to or even bigger than the tree level, indicating that
invoking the Schmid theorem to omit the triangular diagram derived from the elastic
reescattering from the tree level should not be done. Furthermore, we note that
the realistic case keeps some memory of the Schmid theorem, which is visible in a
peculiar interference pattern with the tree level.

Overall we have seen many examples of the dynamical nature of states emerging
from the hadron-hadron interaction, either in the case of the light scalar mesons
emerging from meson-meson interactions, or new heavy baryon states from the
meson-baryon interaction, or even cases where peaks can be misunderstood as gen-
uine states due to the effects of triangle singularities. In the big picture we have
shown, through a series of examples and applications, the importance of the dynam-
ically generated states, and how this description should be part of our understanding
of the fundamental interactions of matter.





Part I

Introduction





A brief introduction

Hadron Physics is in the intersection of Nuclear and Particle Physics. Hadrons
are the bulk of all matter as we know it, and they are composed of smaller particles,
the quarks. Quantum Chromodynamics is the theory of the Standard Model that
describes the interactions of quarks due to the strong force, which are mediated
by the gluons, just like the photon is the mediator of the electromagnetic force.
In a simplified description, we can say that quarks are always bound together in
two main configurations: the baryons, which are composed of three quarks, and the
mesons, which are composed of a quark and an antiquark. These states composed by
quarks, such as baryons and mesons are what we call hadrons, which is the domain
of knowledge we focus on this thesis. Known examples of baryons are protons and
neutrons, which can bind together to form the nuclei of atoms; whereas a good
example of a meson is the meson π, which is responsible for the residual force that
binds protons and neutrons together and can also be found in cosmic rays entering
the atmosphere.

Quarks come with many different properties such as color, flavor and mass, and
can be combined in many different configurations, giving rise to a huge number of
composite states with many mechanisms of decay. Just as in atomic and molec-
ular physics one can study an infinity of different configurations and interactions,
or all the possible nuclei studied in nuclear physics, their binding and decays, in
hadron physics one can study all the possible hadron configurations, interactions
and decays. Most of them are unstable and live for just a tiny fraction of a second
after being created in experiments on particle accelerators. Through the effort of
huge collaborations of scientists, today we can study the complex world of these
subatomic particles and the fundamental structure of matter as we known it.

These subjects of study are very rich and complex. The state of the art of
these theories are based on a framework called Quantum Field Theory, which takes
into account the relativistic and quantum nature of the subatomic world. In this
framework particles are described as excitations of the field they generate. In the-
ories such as Quantum Chromodynamics, properties such as asymptotic freedom
and color confinement make the exact solution of the equations virtually unsolvable,
therefore creating the necessity of certain simplifications in order to extract informa-
tion about the physical objects the theory predicts. Approaches known as Effective
Quantum Field Theories use symmetries of the theory to extract information by
means of approximations valid in certain domains, such as at low energies, heavy
particles, and so on.
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In this thesis we will be using several methods based on Effective Quantum
Field Theories to study the interaction of hadrons. In particular, we will focus on
problems related to what is known as exotic hadrons, which are hadronic states that
have different configurations from the standard baryons and mesons. The meson-
meson interaction, for instance, can form hadronic molecules with four quarks, also
known as tetraquarks ; the same can be said about the meson-baryon interaction,
which can generate states with five quarks, known as pentaquarks. The existence of
these states were already a possibility in the past, since they could in principle fit
in the framework of Quantum Chromodynamics. In the past decades evidence of
their existence has been accumulating, due to new data from high energy particle
accelerators such as the Large Hadron Collider in CERN.

Specifically, we will show the results of several research papers we produced
during the past years contributing to the development of our understanding of these
states. Our approach is based on the hadronic molecule picture, where these states
emerge from the dynamical interaction of meson-meson (or meson-baryon) coupled
channels, sometimes referred to as dynamically generated. We also used this same
framework to study what is known as triangle singularities, which are kinematic
effects that emerge from hadronic interactions that can be misunderstood as real
physical states.

Our contribution to this field has the objective of increasing the knowledge on
the topic of hadron interactions. By showing how experimental data can be ex-
plained with our theoretical models, and by making predictions that can later be
confronted with future experiments, we add a bit more to the bulk of knowledge that
has been generated over the years, contributing towards a deeper understanding of
the fundamental properties of matter.

This thesis is structured around three core chapters: 1) Meson-Meson Interac-
tions, 2) Meson-Baryon Interactions and 3) Triangle Singularities. Each chapter
contains a selection of published articles which share some common features and
references, being somewhat complementary.

Therefore, we have combined the general features from the formalism of these
articles into an introductory section at the beginning of each chapter, leaving only
the specific framework of each article into its own section later on. The references
of each article have also been combined into one common bibliography per chapter.
Note that each chapter has its own bibliography, instead of one long bibliography
for the whole thesis. To avoid any misreading we have used the following notation
for reference numbering: [(chapter#) (dot) (reference#)]. This way, each chapter is
self-contained and can in principle be read in any order, although it is advisable to
read at least the first section Chiral Unitary Approach to start.

Next we present a summary of the whole thesis in Spanish.



Resumen en Español

A continuación presentamos un resumen de toda la tesis, con una pequeña in-
troducción acerca de la motivación y objetivos del trabajo, los puntos principales de
cada caṕıtulo (de la metodoloǵıa y de los resultados con sus respectivas conclusiones)
y la conclusión final.

Introducción y Objetivos

La F́ısica Hadrónica está en la intersección de la F́ısica Nuclear y de Part́ıculas.
Los hadrones son la mayor parte de toda la materia tal como la conocemos, y están
compuestos de part́ıculas más pequeñas, los quarks. La Cromodinámica Cuántica es
la teoŕıa del modelo estándar que describe las interacciones de los quarks debido a la
fuerza fuerte, que está mediada por los gluones, al igual que el fotón es el mediador
de la fuerza electromagnética. En una descripción simplificada, podemos decir que
los quarks siempre están unidos en dos configuraciones principales: bariones, que
están compuestos por tres quarks, y mesones, que están compuestos por un quark y
un antiquark. Los estados compuestos por quarks, como bariones y mesones, son lo
que llamamos hadrones, que es el dominio del conocimiento en el que nos centramos
en esta tesis. Ejemplos conocidos de bariones son los protones y los neutrones, que
pueden unirse para formar los núcleos de los átomos; mientras que un buen ejemplo
de un mesón es el mesón π, que es responsable de la fuerza residual que une protones
y neutrones y también se puede encontrar en los rayos cósmicos que ingresan en la
atmósfera.

Los quarks tienen muchas propiedades diferentes, como color, sabor y masa, y
se pueden combinar en muchas configuraciones diferentes, dando lugar a una gran
cantidad de estados diferentes con muchos mecanismos de desintegración. Al igual
que en f́ısica atómica y molecular se puede estudiar una infinidad de átomos y
moléculas diferentes y sus interacciones, o todos los núcleos posibles estudiados en
f́ısica nuclear, su ligadura y desintegraciones, en f́ısica de hadrones se pueden estudiar
todas las configuraciones, interacciones y desintegraciones posibles de hadrones. La
mayoŕıa de ellos son inestables y viven solo una pequeña fracción de segundo después
de haber sido creados en experimentos con aceleradores de part́ıculas. Gracias al
esfuerzo de grandes colaboraciones de cient́ıficos, hoy podemos estudiar el complejo
mundo de las part́ıculas subatómicas y la estructura fundamental de la materia tal
como la conocemos.
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Estos temas de estudio son muy ricos y complejos. El estado del arte de estas
teoŕıas se basa en un marco llamado Teoŕıa Cuántica de Campos, que tiene en
cuenta la naturaleza relativista y cuántica del mundo subatómico. En este marco, las
part́ıculas se describen como excitaciones del campo que generan. En teoŕıas como la
cromodinámica cuántica, propiedades como la libertad asintótica y el confinamiento
del color hacen que la solución exacta de las ecuaciones sea prácticamente imposible,
creando aśı la necesidad de ciertas simplificaciones para extraer información sobre
los objetos f́ısicos que la teoŕıa predice. Un enfoque conocido como teoŕıas de campo
cuántico efectivas utiliza simetŕıas de la teoŕıa para extraer información por medio
de aproximaciones válidas en ciertos dominios, como a bajas enerǵıas, part́ıculas
pesadas, etc.

En esta tesis usaremos varios métodos basados en teoŕıas de campo cuántico
efectivas para estudiar la interacción de los hadrones. En particular, nos centraremos
en los problemas relacionados con lo que se conoce como hadrones exóticos, que son
estados hadrónicos que tienen configuraciones diferentes de la configuración estándar
de los bariones o mesones. La interacción mesón-mesón, por ejemplo, puede formar
moléculas hadrónicas con cuatro quarks, también conocidas como tetraquarks ; lo
mismo puede decirse de la interacción mesón-barión, que puede generar estados
con cinco quarks, conocidos como pentaquarks. La existencia de estos estados ya
parećıa una posibilidad en el pasado, ya que podŕıan encajar en el marco de la
cromodinámica cuántica. En las últimas décadas, la evidencia de su existencia se
ha ido acumulando, debido a los nuevos datos de aceleradores de part́ıculas de alta
enerǵıa como el Gran Colisionador de Hadrones, LHC, en el CERN.

Espećıficamente, mostraremos los resultados de varios trabajos de investigación
que produjimos durante los últimos años contribuyendo al desarrollo de nuestra
comprensión de estos estados. Nuestro enfoque se basa en la imagen de la molécula
hadrónica, donde estos estados emergen de la interacción dinámica de los canales
acoplados mesón-mesón (o mesón-barión), a veces denominados como generados
dinámicamente. También usamos este mismo marco para estudiar lo que se conoce
como singularidades triangulares, que son efectos cinemáticos que surgen de las
interacciones hadrónicas que pueden malinterpretarse como estados f́ısicos reales.

Nuestra contribución a este campo tiene el objetivo de aumentar el conocimiento
sobre el tema de las interacciones de hadrones. Al mostrar cómo se pueden explicar
los datos experimentales con nuestros modelos teóricos, y al hacer predicciones que
luego se pueden confrontar con futuros experimentos, agregamos un poco más al
conjunto de conocimiento que se ha generado a lo largo de los años, contribuyendo
a una comprensión más profunda de las propiedades fundamentales de la materia.

Metodoloǵıa, Resultados y Conclusiones

Esta tesis está estructurada en torno a tres caṕıtulos: 1) Interacciones mesón-
mesón, 2) Interacciones mesón-barión y 3) Singularidades triangulares. Cada caṕıtu-
lo contiene una selección de art́ıculos publicados que comparten un marco similar.



7

Interacciones Mesón-Mesón

En esta sección discutimos brevemente las caracteŕısticas principales del método
que utilizamos para describir las interacciones mesón-mesón, en particular la inter-
acción de mesones que genera los conocidos mesones escalares f0(500), a0(980) y
f0(980). Estes estados aparecen en los dos art́ıculos discutidos en el primer caṕıtulo:
el de la desintegración ηc → ηπ+π− de la Ref. [1], y el de la mezcla a0(980)−f0(980)
en las reacciones χc1 → π0 π0η y χc1 → π0 π+π− de la Ref. [2]. Ambos trabajos
comparten caracteŕısticas comunes de un método también empleado en un estudio
anterior sobre la desintegración χc1 → ηπ+π− de la Ref. [3].

Nuestros dos trabajos, el de la desintegración ηc → ηπ+π− y el de la mezcla
a0(980) − f0(980), fueron citados en los art́ıculos de BESIII y en otros trabajos
posteriores relacionados.

Teoŕıa quiral unitaria

El método que empleamos para describir las resonancias escalares f0(500), a0(980)
y f0(980) es conocido como teoŕıa quiral unitaria. En esencia, estos estados se des-
criben como moléculas mesón-mesón, que emergen de la interacción de pares de
mesones pseudoescalares ligeros.

El ingrediente principal proviene de la teoŕıa de perturbación quiral que es una
teoŕıa de campo efectiva que utiliza la simetŕıa quiral para describir la interacción de
los mesones. En este marco, los mesones pseudoescalares son los grados de libertad
que actúan como bosones de Goldstone.

El marco que adoptamos en esta sección para describir las resonancias escalares
está en la misma ĺınea que la Ref. [4]. En nuestro enfoque, la interacción de los
mesones es descrita por el Lagrangiano quiral de orden más bajo, de donde extraemos
la interacción entre canales, que en este caso vienen dados por: 1) π+π−, 2) π0π0, 3)
K+K−, 4) K0K̄0, 5) ηη, 6) π0η. A continuación, unitarizamos la amplitud utilizando
las ecuaciones de Bethe-Salpeter para los canales acoplados que implementan la
suma de diagramas de bucle en orden infinito. Al factorizar sobre la capa máxima
las matrices V y T (de interacciones y amplitudes, respectivamente) la solución de
la ecuación de Bethe-Salpeter es puramente algebraica, y podemos reorganizar la
suma de la siguiente forma: T = (1− V G)−1 V , donde G es la matriz de la integral
de los propagadores de pares de mesones, que regularizamos con un cutoff.

Finalmente, la matriz T nos dará todas las amplitudes de dispersión, incluidas
las transiciones entre cada canal acoplado, y las resonancias aparecerán como polos
en las amplitudes de dispersión de los canales a que se acoplan. Desde la posición del
polo en el plano complejo se puede obtener la masa y la anchura de cada resonancia.

cc̄→ pseudoescalares ligeros

En el caṕıtulo uno también estudiamos cómo usar elementos de simetŕıa SU(3)
para ver el peso de diferentes tŕıos de pseudoescalares producidos en la desinte-
gración del charmonio cc̄ → 123. Los pseudoescalares experimentan luego la in-
teracción del estado final de pares de mesones que generan los mesones escalares
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f0(500), f0(980) y a0(980), para lo cual utilizamos la teoŕıa chiral unitaria. La com-
binación de tres mesones que se comporta como un escalar de SU(3) viene dada
por SU(3)[scalar] ≡ Trace(φφφ), donde φ es la matriz de mesones pseudoescalares,
como término dominante.

Un ejemplo del uso de ese método se discutió en la Ref. [3] acerca de la reacción
χc1 → ηπ+π−. Utilizando la simetŕıa SU(3) se puede obtener la proporción inicial
de los pares de mesones creados en el momento que χc1 se desintegra. En segui-
da, podemos por ejemplo, calcular la contribución principal para la distribución de
masa invariante π+π−, que se puede calcular asumiendo que η se va en onda P y
luego π+π−, π0π0 or ηη que se producen en el paso primario, pasan por la interac-
ción de estado final para producir un par π+π−, el que dá lugar a las resonancias
f0(500), f0(980) que se ve experimentalmente en la medida de la distribución de
masa invariante π+π−.

Se ha demostrado que este enfoque es muy fiable a bajas enerǵıas, y en el trabajo
de Ref. [3] los datos de estad́ısticas altas de BESIII [5] de la reacción χc1 → ηπ+π−

podŕıan reproducirse bien, explicando los picos de f0(500), f0(980) en la distribución
de masa invariante π+π−, y también en el pico de a0(980) en la distribución de masa
invariante πη.

En el trabajo de la desintegración de ηc de la Ref. [1] también hemos explorado
la contribución de otras posibles estructuras de SU(3), y complementamos la infor-
mación dada en la Ref. [3] para χc1 → ηπ+π−, donde solo se usó Trace(φφφ). Hemos
conclúıdo que esta es la mejor manera describir las desintegraciones investigadas,
basándonos en la simetŕıa de la estructura y la conformidad de los resultados en
relación a los datos experimentales.

En vista de estos resultados, las predicciones para la desintegración ηc → ηπ+π−

y el estudio de la mezcla a0(980) − f0(980) en las reacciones χc1 → π0f0(980) →
π0π+π− y χc1 → π0a0(980)→ π0π0η se realizaron solo con el término Trace(φφφ).

Predicciones para ηc → ηπ+π− produciendo f0(500), f0(980) y a0(980)

En nuestro primer trabajo, en la Ref. [1], realizamos cálculos para la desinte-
gración ηc → ηπ+π−. Después de encontrar los tŕıos de pseudoescalares utilizando
la simetŕıa SU(3), utilizamos la teoŕıa quiral unitaria para describir la interacción
de pares de mesones que conduce a ηπ+π− en el estado final. Hemos evaluado las
distribuciones de masa invariante de π+π− y πη y hemos encontrado señales grandes
y claras para las resonancias f0(500), f0(980) y a0(980). La implementación experi-
mental de esta reacción y comparación con nuestras predicciones tiene mucho valor
para arrojar luz sobre la naturaleza de los mesones escalares ligeros.

La mezcla a0(980) − f0(980) en χc1 → π0f0(980) → π0π+π− y χc1 →
π0a0(980)→ π0π0η

En la Ref. [2] también usamos la teoŕıa quiral unitaria y la simetŕıa SU(3) para
estudiar la ruptura de isospin en las reacciones χc1 → π0π+π− y χc1 → π0π0η y su
relación con la mezcla a0(980)−f0(980), que también fue medida por la colaboración
BESIII, antes y después de nuestro trabajo [6, 7]. Hemos demostrado que el mismo
modelo teórico desarrollado previamente para estudiar la reacción χc1 → ηπ+π−, y
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explorado más a fondo en las predicciones de ηc → ηπ+π−, podŕıa también emplearse
con éxito en este estudio. La violación de isospin se introdujo mediante el uso de
diferentes masas para los kaones cargados y neutros, ya sea en los propagadores de
pares de mesones creados en la desintegración de χc1, o en los propagadores dentro de
la matriz T , constrúıda a través de la unitarización de las amplitudes de dispersión
y transición de pares de mesones pseudoescalares. Hemos encontrado que violar
isospin dentro de la matriz T hace que la amplitud de la transición π0η → π+π−

sea no nula, lo que genera una contribución importante y también aumenta el efecto
de la contribución de KK̄. También encontramos que el efecto más importante en
la amplitud total es la ruptura de isospin dentro de la matriz T , debido a la suma
constructiva de π0η → π+π− y KK̄ → π+π−, que es esencial para lograr un buen
acuerdo con la medición experimental de la mezcla.

Interacciones Mesón-Barión

En el caṕıtulo dos vimos un método para estudiar las interacciones mesón-barión
y buscar nuevos estados como polos en la amplitud de dispersión.

En este caṕıtulo presentamos tres trabajos sobre las interacciones mesón-barión:
el de la Ref. [8] sobre los cinco nuevos estados Ωc recientemente descubiertos por la
colaboración LHCb [9], el siguiente art́ıculo de la Ref. [10] sobre cómo observar estos
estados en la desintegración de bariones Ωb y el de la Ref. [11] con predicciones para
estados moleculares Ωb.

1

Nuestro trabajo en los estados Ωc fue citado muchas veces, y la predicción sobre
los estados Ωb también ha sido citada en el informe del LHC para las perspectivas
futuras en la próxima ejecución después del upgrade actual.

Lagrangianos quirales y la teoŕıa de calibre local oculto

Al prinćıpio del caṕıtulo dos comentamos dos marcos que son útiles para describir
los estados meson-barión, ya sea utilizando el Lagrangiano quiral de orden más bajo
que describe la interacción mesón-barión en el sector SU(3) (octete de mesones
pseudoescalares con el octete de bariones 1/2+), y la teoŕıa de calibre local oculto,
basando la interacción en el cambio de mesones vectoriales. Discutimos brevemente
la relación de los dos métodos, con énfasis en el caso particular donde se pueden hacer
ciertas simplificaciones y las interacciones se pueden obtener a nivel de quarks.

En particular, discutimos cómo estender el método de la teoŕıa de calibre local
oculto para el sector de charm, que es particularmente complicado en el caso de
los Lagrangianos quirales. Utilizando la teoŕıa de calibre local oculto y destacando
el quark pesado, podemos asumir la simetŕıa SU(3) en la interacción, y obtener la
interacción de manera muy sencilla a través de la función de onda de los bariones
mirando su contenido de quarks. Hemos demostrado que los términos dominantes
provienen del intercambio de vectores ligeros, donde los quarks pesados son espec-
tadores. Esto tiene como consecuencia que la simetŕıa de quark pesados se conserva

1 Después de la producción de este trabajo, apareció un nuevo art́ıculo de la colaboración
LHCb [12], que anuncia el descubrimiento de nuevos estados Ωb. Tal como se discute en un reciente
art́ıculo [13], a energias más altas, entre 6400 MeV y 6500 MeV, aparecen en el experimento cuatro
picos que son compatibles con nuestras predicciones.
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para los términos dominantes en el desarrollo en potencias de (1/mQ), y también
que la interacción en este caso es equivalente a lo que se puede obtener de los La-
grangianos quirales en SU(3).

Estados Moleculares Ωc

En el primer trabajo [8] sobre este tema hemos investigado los estados Ωc, que se
generan dinámicamente a partir de la interacción mesón-barión, buscando polos en la
matriz de dispersión que corresponden a estados f́ısicos. Mostramos que para un valor
estándar para el cutoff, obtenemos dos estados con JP = 1/2− y dos más con JP =
3/2−, tres de ellos en notable acuerdo con tres estados experimentales, Ωc(3050),
Ωc(3090) y Ωc(3119) de los cinco recientemente medidos por la colaboración LHCb,
en masa y anchura. También hicimos predicciones a enerǵıas más altas para estados
de naturaleza vector-barión, que podŕıan explorarse más a fondo en experimentos
en el futuro.

La desintegración Ωb → Ωc y los estados moleculares Ωc

Después del trabajo sobre los estados Ωc hemos estudiado en la Ref. [10] la de-
sintegración débil Ω−b → (Ξ+

c K
−) π−, utilizando nuestro método para describir los

estados Ωc [8] que surgen de la interacción del estado final. Analizamos el caso par-
ticular en el que se pueden generar los estados Ωc(3050) y Ωc(3090) a partir de la
interacción pseudoscalar-barión(1/2). Investigamos las distribuciones de masa inva-
riantes ΞD, ΞcK̄ y Ξ′cK̄ haciendo predicciones que podŕıan confrontarse con futuros
experimentos, proporcionando información útil que podŕıa ayudar a determinar los
números cuánticos y naturaleza de estos estados.

Predicciones para estados moleculares Ωb

Finalmente, en la Ref. [11] hemos extendido nuestro enfoque sobre los estados
Ωc [8] e hicimos predicciones para la interacción de mesón-barión en el sector de
la Belleza (Beauty / bottom). Hemos encontrado varios estados Ωb: dos estados con
masas 6405 MeV y 6465 MeV con JP = 1/2−; dos estados más con masas 6427 MeV
y 6665 MeV con JP = 3/2−; y tres estados entre 6500 y 6820 MeV, degenerados
con JP = 1/2−, 3/2−, derivados de la interacción del vector-barión en el sector de
la Belleza, análogo a lo que teńıamos para los estados Ωc. Experimentos futuros
también podŕıan buscar estos estados.

Singularidades Triangulares

En el caṕıtulo tres vimos cómo se pueden formar singularidades triangulares en
la desintegración A→ 1+R, seguida por R→ 2+3 y por el rescattering (dispersión)
1+2→ 1′+2′. Vimos nuestro método de hacer expĺıcitamente la integral del bucle del
triángulo para encontrar la amplitud [14] y cómo, estudiando sus polos, encontramos
las condiciones y la posición de la singularidad. Hemos visto que especialmente en
el caso cuando hay una resonancia proveniente del rescattering (1, 2), a la misma
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enerǵıa correspondiente a la singularidad del triángulo, su efecto puede verse en el
experimento e incluso puede ser malinterpretado por un nuevo estado.

Revisando la f1(1420)

En nuestro primer trabajo sobre singularidades triangulares en la Ref. [15] es-
tudiamos la producción y la desintegración de la f1(1285) en πa0(980) y K∗K̄ en
función de la masa de la resonancia. En particular, encontramos un aumento en la
distribución de masa alrededor de 1400 MeV en el modo de desintegración πa0(980)
atado a una singularidad triangular, lo que explica los datos de la Ref. [16], y encon-
tramos también un pico alrededor de 1420 MeV con aproximadamente 60 MeV de
anchura para el modo K∗K̄. Ambas caracteŕısticas están de acuerdo con la informa-
ción experimental en la que se basa la resonancia f1(1420). Además, encontramos
que si la f1(1420) es una resonancia genuina, acoplándose principalmente a K∗K̄
como se ve experimentalmente, se encuentra inevitablemente una fracción de 20 %
para el modo de desintegración πa0(980) de esta resonancia, en contradicción drásti-
ca con todos los experimentos. En total, hemos concluido que la f1(1420) no es una
resonancia genuina, sino la manifestación de los modos de desintegración πa0(980)
y K∗K̄ de la f1(1285) a enerǵıas más altas que la nominal.

Rol de una singularidad triangular en la contribución πN(1535) a γp→
pπ0η

A continuación, hemos estudiado en la Ref. [17] la reacción γp→ pπ0η prestan-
do atención a los dos mecanismos principales a bajas enerǵıas, γp → ∆(1700) →
η∆(1232) y γp→ ∆(1700)→ πN(1535). Ambos son generados por la fotoexcitación
de la ∆(1700) y el segundo involucra un mecanismo que conduce a una singularidad
triangular. Podemos evaluar cuantitativamente la sección eficaz de este proceso y
demostrar que está de acuerdo con la determinación experimental [18]. Sin embar-
go, hay algunas diferencias con el análisis de onda parcial estándar que no incluye
expĺıcitamente la singularidad triangular. El ejercicio también muestra la convenien-
cia de explorar posibles singularidades triangulares en otras reacciones y cómo se
puede extender el análisis parcial estándar para acomodarlas.

Consideraciones sobre el teorema de Schmid

Finalmente, en la Ref. [19] hemos investigado el teorema de Schmid [20], que
establece que si uno tiene un mecanismo a nivel de árbol con una part́ıcula A que
se desintegra en dos part́ıculas 1 y R, con una desintegración posterior de R en
part́ıculas 2 y 3, la posible singularidad del triángulo desarrollada por el mecanismo
de reescattering elástico de dos de las tres part́ıculas no cambia la sección transversal
proporcionada por el nivel del árbol. Hemos investigado el proceso en términos de
la anchura de la part́ıcula inestable producida en la primera desintegración y deter-
minamos los ĺımites de validez y violación del teorema. Una de las conclusiones es
que el teorema se mantiene en el ĺımite estricto de la anchura cero de esa resonancia,
en cuyo caso el peso del diagrama triangular se vuelve insignificante en compara-
ción con el nivel del árbol. Otra conclusión, desde el punto de vista práctico, es que
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para valores realistas de la anchura, la singularidad triangular puede proporcionar
una contribución comparable o incluso mayor que el nivel del árbol, lo que indica
que invocar el teorema de Schmid para omitir el diagrama triangular derivado del
reescattering elástico del nivel del árbol no debe hacerse. Además, observamos que
el caso realista guarda algo de memoria del teorema de Schmid, que es visible en un
patrón de interferencia peculiar con el nivel del árbol.

Conclusiones Finales

En general, hemos visto muchos ejemplos de la naturaleza dinámica de los estados
que emergen de la interacción hadron-hadron, ya sea en el caso de los mesones
escalares ligeros que emergen de las interacciones mesón-mesón, o nuevos estados
bariónicos pesados de la interacción mesón-barión, o incluso casos en los que los
picos pueden malinterpretarse como estados genuinos debido a los efectos de las
singularidades triangulares. En el panorama general, hemos demostrado, a través
de una serie de ejemplos y aplicaciones, la importancia de los estados generados
dinámicamente y cómo esta descripción debeŕıa ser parte de nuestra comprensión
de las interacciones fundamentales de la materia.
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CHAPTER

1 Meson-Meson Interactions

1.1 Introduction

Throughout this thesis we will use a method known as the chiral unitary ap-
proach. In the following section 1.1.1 we will briefly discuss its main features in de-
scribing meson-meson interactions, in particular the light pseudoscalar-pseudoscalar
interaction that generates the well-known scalar mesons f0(500), a0(980) and f0(980),
which will appear in the two articles discussed in this chapter: the one about
the decay ηc → ηπ+π− of Ref. [1.1], which will be discussed in section 1.2, and
the one about the a0(980) − f0(980) mixing in the reactions χc1 → π0 π0η and
χc1 → π0 π+π− of Ref. [1.2], which will be discussed in section 1.3. Both works
share common features from an approach also employed in a previous study about
the decay χc1 → ηπ+π− of Ref. [1.3], on which we will also comment throughout
this chapter. The general aspects of this approach will be outlined in section 1.1.2.

1.1.1 Chiral Unitary Approach

In this section we will present the basic features of the method we employ to
describe the f0(500) (previously denoted as the σ meson), the a0(980) and f0(980)
resonances. In essence, these states are described as meson-meson molecules, which
emerge from the interaction of pairs of pseudoscalar mesons.

The main ingredient comes from chiral perturbation theory [1.4–1.6], which is
an effective field theory that uses chiral symmetry to describe the interaction of
mesons. In this framework the pseudoscalar mesons are the degrees of freedom
which act as Goldstone bosons, and a series expansion is made as a function of the
energy of the mesons. Since this is a perturbative approach, one can go to higher
orders at the expense of introducing new parameters, which later have to be adjusted
with experimental data, therefore increasing both accuracy and uncertainty. Due to
this compromise and the need of experimental data to fit the increasing number of
parameters, the predictive power of the theory may also decrease at higher orders.

The framework we adopt in this chapter to describe the scalar resonances is in
the same line as Ref. [1.7], where more details can be found. In our approach the
interaction of mesons will be described by the lowest order chiral Lagrangian

L2 =
1

12 f 2
π

Trace[ (∂µφφ− φ ∂µφ)2 +Mφ4 ] , (1.1)
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where fπ = 93 MeV is the pion decay constant and φ is the pseudoscalar matrix

φ8 ≡


1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8

 , (1.2)

whereas M is given by

M =

m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π

 . (1.3)

Next, we unitarize the amplitude using the Bethe-Salpeter equations in coupled
channels which implements the resummation of loop diagrams to infinite order, as
depicted in Fig. 1.1.

+ ++ . . .

Figure 1.1: Diagrams representing meson-meson loops.

As seen in the diagrams, the amplitude goes like

T = V + V GV + V GV G+ . . . (1.4)

which can be written as
Tij = Vij + VilGlTlj (1.5)

where Tij stands for the matrix elements of the scattering amplitude corresponding
to the transition between channel i to j. Analogously, V corresponds to the matrix
describing the tree level interaction in each vertex and Gl is the diagonal matrix of
the propagators describing the meson-meson loops of channel l.

The term V GT actually means

V GT =

∫
d4q

(2π)4
V (k, p; q) G(P, q) T (q; k′, p′). (1.6)

where P , q, k, p, k′, p′ are the energy-momentum quadrivectors of the center-of-mass,
the internal loop, and incoming and outgoing meson pairs.

Factorizing the V and T matrices on-shell out of the internal integrals, which
is justified in Refs. [1.7] and [1.8], the solution of the former equation is purely
algebraic, and we can rearrange the sum in the following form

T = (1− V G)−1 V , (1.7)

From the Lagrangian in Eq. (1.1) we extract the kernel of each channel, which
in charge basis are: 1) π+π−, 2) π0π0, 3) K+K−, 4) K0K̄0, 5) ηη, 6) π0η and can be
found in Refs. [1.7,1.9,1.10]. These kernels are used to build the V matrix which is
then inserted into the Bethe-Salpeter equation. Each kernel is projected in S-wave
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and a normalization factor is included when identical particles are present, which
later needs to be restored.

The individual amplitudes can be plugged into a specific case of study, as we will
do in the following sections 1.2 and 1.3, or be combined in isospin basis to obtain
each resonance. One could as well write the V and T matrix in isospin basis from
the beginning, as done in Ref. [1.7].

The functions Gl are given by

Gl = i

∫
d4q

(2π)4

1

q2 −m2
1 + iε

1

(P − q)2 −m2
2 + iε

, (1.8)

where m1 and m2 are the masses of the two mesons of the l-channel. This function
diverges and it must be regularized with a proper scheme. We will use a cutoff
regularization method, which consists in replacing the infinite upper limit of the
integral by a large enough cutoff qmax for the modulus of the three-momentum. We
will take qmax ∼ 600 MeV, the value used in Refs. [1.1–1.3] which we will discuss in
this chapter. After the integration in q0 and cos θ we have

G =

∫ qmax

0

q2dq

(2π)2

ω1 + ω2

ω1ω2[(P 0)2 − (ω1 + ω2)2 + iε]
, (1.9)

ωi =
√

q2 +m2
i , (P 0)2 = s.

Finally, the T matrix will give us all the scattering amplitudes, including transi-
tions between each coupled channel, and the resonances will appear as poles in the
scattering amplitudes of the channels that couple to them. From the pole position
in the complex plane the mass and width of the resonance can be obtained.

To illustrate this, we show in Figs. 1.2a and 1.2b the results from Ref. [1.3]
on the study of the χc1 → ηπ+π− where one can see the three scalar resonances:
the f0(500) which is dominated by ππ scattering in isospin 0, the f0(980) which is
dominated by KK̄ scattering in isospin 0 and also couples to ππ, and the a0(980)
which is dominated by KK̄ scattering in isospin 1 and also couples to πη.

1.1.2 cc̄→ light pseudoscalars

As mentioned at the beginning of this chapter, we will present two works that
share some general features, the first point being that both study the decay of
a charmonium state into a trio of pseudoscalar mesons. The first one will be a
particular ηc decay and the second one will be a particular χc1 decay. Both initial
states are composed of a cc̄ pair, the only difference being their quantum numbers.
The ηc has JPC = 0−+, and in quark models it can be described as an L = 0,
S = 0 ground state, whereas the χc1 has JPC = 1++ and can be described as an
orbitally-excited state with L = 1, S = 1 such that J = 1.

Since we will study the decay of these charmonium mesons into trios of light
pseudoscalars, it is reasonable to assume that they behave as an SU(3) scalar, that
is, we will assume that once the cc̄ pair annihilates, trios of light pseudoscalars
are created respecting SU(3) symmetry, then the final state interaction of these
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(b) ππ invariant mass distribution showing
the broad shape of the f0(500) and the sharp
f0(980) peak. The solid line adds an empirical
background (see Ref. [1.3] for details).

Figure 1.2: Results from Ref. [1.3] (before publication) using preliminary BESIII
data from Ref. [1.11] on the χc1 → ηπ+π− decay.

pseudoscalars will dynamically generate the scalars resonances f0(500), f0(980) and
a0(980), which will be observed in the decay channels measured in the experiment.

The assumption that cc̄ is an SU(3) singlet stems from the fact that it does not
contain any of the u, d, s quarks that are the elements of SU(3). This is in total
analogy to the case where ss̄ has isospin 0.

This is our starting point, then the first thing we need is to construct a structure
containing trios of pseudoscalar mesons which is an SU(3) scalar in terms of the
flavor content, that is, being symmetrical in the amount of u, d, s quarks it contains.

An intuitive argument can be draw based on the following qq̄ matrix:

M =

 uū ud̄ us̄
dū dd̄ ds̄
sū sd̄ ss̄

 =

 u
d
s

( ū d̄ s̄
)
. (1.10)

This matrix has the property

MMM

=

 u
d
s

( ū d̄ s̄
) u

d
s

( ū d̄ s̄
) u

d
s

( ū d̄ s̄
)

=

 u
d
s

( ū d̄ s̄
)

(ūu+ d̄d+ s̄s)2

= M(ūu+ d̄d+ s̄s)2. (1.11)

Since (ūu + d̄d + s̄s) is an SU(3) scalar, then the scalar that we form with the
combination of Eq. (1.11) is

Trace[M(ūu+ d̄d+ s̄s)2] = (ūu+ d̄d+ s̄s)3 = Trace[MMM ].
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This matrix M can be related to the φ matrix of the light pseudoscalars meson
octet we saw in Eq. (1.2). If we write the light pseudoscalar mesons in terms of their
quark content, we see that we need to include the η1 singlet to match the φ matrix
with the qq̄ matrix M . This can be done by simply making the approximation of
η = η8 and adding a diagonal term of η1/

√
3 diag(1, 1, 1), with η′ = η1.

Then, the combination of three mesons that behaves as an SU(3) scalar is given
by

SU(3)[scalar] ≡ Trace(φφφ). (1.12)

For better accuracy one can also consider the η− η′ mixing, in better agreement
with the actual physical meson states η and η′, which are defined as

η = cos θP η8 − sin θP η1 ,

η′ = sin θP η8 + cos θP η1 ,
(1.13)

where θP is the mixing angle. In terms of quarks we have

η8 = (uū+ dd̄− 2ss̄)/
√

6

η1 = (uū+ dd̄+ ss̄)/
√

3
(1.14)

We will take sin θP = −1/3, which is a standard choice [1.12]. Then

η ∼ 1√
3

(uū+ dd̄− ss̄)

η′ ∼ 1√
6

(uū+ dd̄+ 2ss̄)
(1.15)

A more recent determination of this mixing angle from fits to world data is done
in Ref. [1.13] with θP = −14.34 ◦. Since the dominant η component going with
cos θP only changes by 3% by taking θP = −14.34 ◦ or sin θP = −1/3, we choose
sin θP = −1/3 (cos θP = 2

√
2/3), which leads to the following convenient form of

the φ matrix

φ ≡


1√
2
π0 + 1√

3
η + 1√

6
η′ π+ K+

π− − 1√
2
π0 + 1√

3
η + 1√

6
η′ K0

K− K̄0 − 1√
3
η +

√
2
3
η′

 , (1.16)

which is the parametrization we will use throughout this thesis.

As we will discuss in detail in the following sections, using this SU(3) scalar
structure we can figure out the weights in which trios of pseudoscalars are created,
and then let them undergo final state interaction (using the method described in
the previous section 1.1.1) to obtain the final trio of pseudoscalars observed exper-
imentally. We also must take into account the mass and quantum numbers of the
initial charmonium state, to properly evaluate the relevant dynamics and resonances
that can be present. Since the use of the chiral unitary approach already takes into
account the dynamical generation of the scalar resonances in coupled channels, we
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can use the amplitudes obtained with such method to calculate the invariant mass
distributions of each reaction.

Let us show one example from the work of Ref. [1.3] on the decay χc1 → ηπ+π−,
when looking at the π+π− invariant mass distribution. By performing the algebra
involved in Eq. (1.12) and isolating the η term we find the combination

η

(
2
√

3π+π− +
3√
3
π0π0 +

1

3
√

3
ηη

)
. (1.17)

As discussed in Ref. [1.3], the leading contribution for the π+π− invariant mass
distribution can be calculated assuming the η leaves in P -wave and then, accord-
ing to Eq. (1.17), π+π−, π0π0 or ηη are produced in the primary step which will
undergo final state interaction to produce a π+π− pair, which will give rise to the
f0(500), f0(980) resonances. The main contribution comes from the diagrams shown
in Fig. 1.3.

+
χc1

η

π+

π−

χc1

η

π+

π−
(a) (b)

Figure 1.3: Main contribution for the π+π− invariant mass distribution in the χc1 →
ηπ+π− decay: tree level (a) or rescattering (b) of ππ or ηη pair, which generate the
scalar mesons f0(500) and f0(980).

This approach has been shown to be very reliable at low energies, and in the
work of Ref. [1.3] the high statistics data from BESIII [1.14] of the χc1 → ηπ+π−

reaction could be well reproduced, explaining the f0(500), f0(980) peaks in the π+π−

invariant mass distribution and the huge a0(980) peak in the πη invariant mass dis-
tribution, as seen in Figs. 1.2a and 1.2b of the previous section 1.1.1.

Before we dive into the details of the works we will present in this chapter, there
is yet another interesting point to discuss regarding the SU(3) structure Trace(φφφ).
Although the argumentation using the qq̄ matrix to create the SU(3) scalar structure
Trace(φφφ) is intuitive, we should note that there are other possibilities. Formally,
the quantity Trace(φφφ) is an SU(3) scalar by construction, since the light pseu-
doscalar matrix φ transforms as φ → UφU−1 under flavor transformations U in
SU(3). In fact, even using the qq̄ formulation one can get other structures changing
the order of rearrangement of the quarks.

That being said we should note that we can construct three independent SU(3)
scalars using the φ matrix: Trace(φφφ), Trace(φ)Trace(φφ) and [Trace(φ)]3. In
principle one could use any linear combination of these scalars, however, that would
result in a less symmetrical structure and would only introduce more arbitrary pa-
rameters and uncertainties. To see that, let us first show all the terms of each one.
Using the parametrization of the φ matrix with the η − η′ mixing of Eq. (1.16) we
obtain
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Trace(φφφ) =
ηηη

3
√

3
+ 2
√

3ηπ+π− + 3π+K0K− + 3π−K+K̄0

+
√

3ηπ0π0 +
3√
2
π0K+K− − 3√

2
π0K0K̄0

+ η′

(
2

√
2

3
ηη + 3

√
3

2
K+K− + 3

√
3

2
K0K̄0 +

√
3

2
π0π0 +

√
6π+π−

)

+
η′η′η√

3
+

5

3
√

6
η′η′η′, (1.18)

Trace(φ)Trace(φφ) =
η√
3

(ηη + π0π0 + 2π+π− + 2K+K− + 2K0K̄0)

+ 2

√
2

3
η′
(
ηη + π0π0 + 2π+π− + 2K+K− + 2K0K̄0

)
+
ηη′η′√

3
+ 2

√
2

3
η′η′η′, (1.19)

[Trace(φ)]3 =
ηηη

3
√

3
+ 2

√
2

3
ηηη′ + 8

ηη′η′√
3

+
16

3

√
2

3
η′η′η′ (1.20)

Here we show all the terms obtained for future reference, however, one should
be aware that depending on the final state of each reaction, not every term can
contribute since it must be possible that a transition to such final state can actually
occur using the coupled channels approach discussed in section 1.1.1. Also, since
we are interested in the scalar mesons f0(500), f0(980) and a0(980), we will neglect
the η′ terms, which play only a marginal role in the building of these resonances,
because of its large mass and small couplings.

Now let us discuss the different possible structures. First of all we should mention
that were the η1 not included, (which we do through the inclusion of the η − η′

mixing), but instead we had taken η → η8 and no η′, then Trace(φ) = 0, so the
terms [Trace(φ)]3 and Trace(φ)Trace(φφ) would vanish. We include the η−η′ mixing
to fine tune it to the physical η state, which then allow us to consider these other
structures.

However, as we can see in Eqs. (1.20) and (1.19), these terms are not very
symmetrical since the η (or η′) have a prominent role in all of them, as expected.
We will show in a moment that this asymmetry causes an unbalanced contribution
from the channels that have transitions to ππ with respect to the channels with
transitions to πη.

We have explored the contribution of these terms and in the work of the ηc
decay in Ref. [1.1] we complemented the information given in Ref. [1.3] for the
χc1 → ηπ+π− reaction, where only the Trace(φφφ) was used. We show in Figs.
1.4 and 1.5, the results of Ref. [1.3] using only Trace(φφφ) or Trace(φ)Trace(φφ),
presented in Ref. [1.1]. The results have been normalized in both cases to the peak
of the πη invariant mass distribution in Fig. 1.4.
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Figure 1.4: Results for the πη mass distribution in the χc1 → ηπ+π− reaction. Data
from Ref. [1.14]. Solid curve: results from Ref. [1.3] using Trace(φφφ). Dashed line:
results using Trace(φ)Trace(φφ) normalized to the peak of the distribution.
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Figure 1.5: Results for the π+π− distribution in the χc1 → ηπ+π− reaction. Data
from Ref. [1.14]. Dotted and solid lines: results from Ref. [1.3] using Trace(φφφ),
with and without background contribution. Dash-dotted and dashed lines: results
using Trace(φ)Trace(φφ), with and without background.

We observe that the shape for the case of Trace(φ)Trace(φφ) is completely off
from experiment [1.14]. Similarly, the strength of the π+π− distribution is also much
bigger than experiment and it produces a huge f0(980) peak, in total disagreement
with experiment. We have also tried different linear combinations of Trace(φφφ),
Trace(φ)Trace(φφ) and [Trace(φ)]3, concluding that the best reproduction of the
data is obtained with the term Trace(φφφ) alone, which is also more symmetrical
in the three mesons. The functional role of the term [Trace(φ)]3, involving only η
mesons, is negligible since it cannot alone contribute to the πη invariant mass.
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In view of these results, the predictions for the ηc → ηπ+π− decay that will
be presented in section 1.2 and the study of the a0(980)− f0(980) mixing in χc1 →
π0f0(980)→ π0π+π− and χc1 → π0a0(980)→ π0π0η reactions that will be presented
in section 1.3, were done with the term Trace(φφφ) alone.

1.2 Predictions for ηc → ηπ+π− producing f0(500),

f0(980) and a0(980)

In this section we will present the work of Ref. [1.1] with the predictions for the
ηc → ηπ+π− reaction.

1.2.1 Introduction

The sector of light scalar mesons has been a topic of intense discussions for
years [1.15–1.19]. Early discussions on their nature as qq̄ or more complex objects
have converged to accept that these states cannot be qq̄ objects. An extensive
updated discussion on the issue can be seen in the report [1.20]. The discussions
in Ref. [1.20] reveal the large amount of empirical information favoring a dynamical
picture in which the interaction of pseudoscalar mesons in coupled channels and
constraints of unitarity generate scalar mesons, which would qualify as multichannel
pseudoscalar-pseudoscalar molecular states. The successful picture incorporating
the constraints of unitarity in coupled channels and the dynamics of the chiral
Lagrangians [1.21–1.23] is known as the chiral unitary approach, and either using
the inverse amplitude method [1.24–1.26] or the coupled channels Bethe-Salpeter
equations [1.7, 1.27–1.29], the success in providing an accurate description in the
different reactions where these resonances are produced is remarkable. Detailed
reviews of such reactions can be seen in Ref. [1.30] and more recently in Ref. [1.31],
in relation to B, D, Λb and Λc decays involving these resonances as dynamically
generated. We note in passing that the chiral unitary approach does not implement
crossing symmetry, which means that it cannot be used to obtain πK → πK from
the ππ → KK̄ amplitudes. In practice what one does is to unitarize ππ → KK̄ and
πK → πK in the physical region as independent reactions. This procedure leads
to amplitudes in remarkable agreement with semiempirical studies using the Roy
equation, where crossing is also implemented [1.32,1.33].

Tetraquark pictures have also been invoked [1.18, 1.34], but the standard con-
figurations chosen to account for the masses run into one or another problem in
different reactions. A detailed discussion on this issue can be seen in section IV of
Ref. [1.35].

What ultimately sets the balance in favor of one or another theoretical picture
is the power to provide an accurate explanation of multiple reactions, and in this
sense there is nothing more convincing than making predictions for reactions not
yet measured and having the predictions realized a posteriori by experiment. This
is the aim of the present work where we make predictions for the decay ηc → ηπ+π−

looking into the invariant mass distributions of ππ and πη. In the distributions we
find a very clear and strong signal for the a0(980), and also clearly seen but weaker
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signals for f0(500) and f0(980) excitation. We are confident on the results up to
invariant masses of about 1200 MeV and propose the measurement of this reaction.

There is a precedent for the ηc → ηπ+π− reaction in the χc1 → ηπ+π− decay,
which has been measured at BESIII [1.14]. As discussed previously, in this reaction
one can see a neat a0(980) signal in the πη mass distribution with its typical cusp
shape and with very little background. On the other hand, in the π+π− mass
spectrum one sees a very clear peak for the f0(500) and a smaller, but visible peak
for the f0(980). The π+π− spectrum also shows a pronounced signal for the f2(1270)
excitation. A theoretical study for this reaction using the chiral unitary approach
was done in Ref. [1.3] and a good reproduction of the shapes and relative strengths
of the invariant mass distributions was obtained up to about 1200 MeV, the present
limit of applicability of the chiral unitary approach in the interaction of pseudoscalar
mesons.

The ηc → ηπ+π− reaction has many things in common to the χc1 → ηπ+π− one,
but also differences. The χc1 has quantum numbers IG(JPC) = 0+(1++), the ηc has
0+(0−+). In the χc1 → ηπ+π−, if the π+π− is in S-wave to create the f0(500) and
f0(980), the η must be in P -wave to conserve angular momentum and parity. In the
ηc decay the process can proceed in S-wave. Concerning the f2(1270) excitation, in
the χc1 → ηπ+π− reaction, the same process with η in P -wave, and the π+π− in D-
wave, can produce the resonance. In the ηc → ηπ+π− we will need a D-wave for η in
the production vertex, in addition to the internal D-wave of π+π−. This mechanism
should be suppressed versus the one of f0(500) or f0(980) production and then the
signals for the scalar mesons would be cleaner than those in the χc1 → ηπ+π−

reaction. With this perspective we perform the calculations and make predictions
for the reaction. In the absence of the f2(1270) excitation we also make predictions
for the background. Our limitations to the range below 1200 MeV for the energies
of the interacting meson pairs induce uncertainties on the background, but we can
show that these uncertainties are small in the region of π+π− or πη invariant masses
below 1200 MeV, thus making our predictions really solid. With these results and
clear predictions, we can only encourage the performance of the experiment which
is easily implementable at BESIII.

1.2.2 Formalism

As discussed in the previous section, we will assume that trios of light pseu-
doscalars are created after the cc̄ decay respecting SU(3) symmetry, which can be
described by the structure Trace(φφφ) that was shown to reproduce well the data
of the analogous reaction χc1 → ηπ+π−. So, the first step is to select the terms
from Eq. (1.18) that can go to the final state ηπ+π− through the coupled channels
interactions of pairs of pseudoscalar using the chiral unitary approach from section
1.1.1. As in the χc1 → ηπ+π− decay [1.3], these terms are:

Trace(φφφ) = 2
√

3ηπ+π− +
√

3ηπ0π0 +

√
3

9
ηηη

+ 3π+K0K− + 3π−K+K̄0. (1.21)
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We have eliminated the terms π0K+K− and π0K0K̄0 because upon final state in-
teraction of any pair, as we do here, we never have the ηπ+π− combination which
is measured experimentally. In order to have ηπ+π− at the end, at least one of the
mesons has to be the η, π+ or π−. The η′ terms were also removed because they
play a negligible role in the formation of the f0(500), f0(980) and a0(980) states.

This expression gives us the relative weights in which trios of pseudoscalars are
produced from ηc decay in a first step, prior to the final state interaction of these
mesons. The next step is to allow them to interact. By letting all possible pairs to
interact and make transitions, and isolating the final ηπ+π− channel, the diagrams
to be considered are given in Fig. 1.6.

ηc ηc

ηc ηc

η

π+

π−

η

π+

π−
π+

π+

π−

π−

η η

(a) (b)

(c) (d)

+

++

Figure 1.6: Diagrams involved in the ηc → ηπ+π− reaction including final state
interaction of pairs of mesons.

In the loops of Fig. 1.6 we show all pairs allowed by Eq. (1.21) that can give
rise to the considered final state. Then the amplitude that sums all terms is given
by

t = ttree + tη + tπ+ + tπ− , (1.22)

where the tree level amplitude is

ttree = Vphηπ+π− , (1.23)

and the first transition amplitude is

tη = Vp
∑
i

hiSiGi(Minv(π+π−))ti,π+π−(Minv(π+π−)), (1.24)

where Vp is a constant coefficient, common to all four terms, that accounts for the
matrix element of the tree level ηc → 3 mesons transition, up to hi coefficients,
which are the factors multiplying each combination of three mesons in Eq. (1.21):

hηπ+π− = 2
√

3, hηπ0π0 =
√

3,

hηηη =

√
3

9
, hπ+K0K− = hπ−K+K̄0 = 3.

(1.25)
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In Eq. (1.24) only hηπ+π− , hηπ0π0 and hηηη contribute. The function Gi is the
loop function of the two intermediate mesons and ti,π+π− is the transition matrix
element from the state i to π+π−. The Gi and ti,π+π− functions, depending on the
invariant masses of π+π−, Minv(π+π−), are taken from the chiral unitary approach,
and we follow Refs. [1.7, 1.9, 1.10, 1.37], as presented in section 1.1.1. The factor Si
is a symmetry factor to account for identical particles,

Sπ0π0 = 2!
1

2
(for π0π0), Sηη = 3!

1

2
(for ηη). (1.26)

Here we also need the charged components, which can easily be obtained using
isospin symmetry and we find [1.36]

tK0K−,π−η =
√

2tK+K−,π0η,

tK+K̄0,π+η =
√

2tK+K−,π0η, (1.27)

tπ+η,π+η = tπ−η,π−η = tπ0η,π0η.

Similarly, we have

tπ+ = Vp
∑
i

hiSiGi(Minv(π−η))ti,π−η(Minv(π−η)), (1.28)

where in the sum over i we have the states π−η and K0K−, and

tπ− = Vp
∑
i

hiSiGi(Minv(π+η))ti,π+η(Minv(π+η)), (1.29)

where now in i we have π+η and K+K̄0.
We take as reference the π+π− and π+η invariant masses and write the double

differential mass distribution for three-body decays [1.38]

d2Γ

dMinv(π+π−)dMinv(π+η)

=
1

(2π)3

1

8M3
ηc

Minv(π+π−)Minv(π+η)|t|2.
(1.30)

From this formula we obtain dΓ
dMinv(π+π−)

and dΓ
dMinv(π+η)

by integrating over the

other invariant mass. By labeling 1, 2, 3 to the η, π+, π− particles, respectively, if
we integrate over M23, the limits of integration are given in Ref. [1.38] (alternative,
equivalent, expressions can be obtained from Ref. [1.39]). These limits are

(M2
23)max = (E∗2 + E∗3)2

−
(√

E∗2
2 −m2

2 −
√
E∗3

2 −m2
3

)2

,

(M2
23)min = (E∗2 + E∗3)2

−
(√

E∗2
2 −m2

2 +

√
E∗3

2 −m2
3

)2

,

(1.31)
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Figure 1.7: Dalitz Plot for ηc → ηπ+π−, in the πη and ππ masses.

where

E∗2 = (M2
12 −m2

1 +m2
2)/2M12,

E∗3 = (M2
ηc −M2

12 −m2
3)/2M12.

(1.32)

If we integrate over M12, the limits of integration are

(M2
12)max = (E∗

′

2 + E∗
′

1 )2

−
(√

E∗
′

2
2 −m2

2 −
√
E∗
′

1
2 −m2

1

)2

,

(M2
12)min = (E∗

′

2 + E∗
′

1 )2

−
(√

E∗
′

2
2 −m2

2 +

√
E∗
′

1
2 −m2

1

)2

,

(1.33)

where

E∗
′

2 = (M2
23 −m2

3 +m2
2)/2M23,

E∗
′

1 = (M2
ηc −M2

23 −m2
1)/2M23.

(1.34)

Since we take the π+π− and π+η invariant masses as variables, we must note
that tπ+ depends on the π−η invariant mass, M13. However, this mass is given in
terms of the other two variables since one has [1.38]

M2
13 = M2

ηc + 2m2
π +m2

η −M2
12 −M2

23. (1.35)

1.2.3 Results

For simplicity, we will refer to Minv(π+π−) and Minv(π+η) as Mππ and Mπη

respectively. In Fig. 1.7 we show the Dalitz plot for Mππ and Mπη in the ηc → ηπ+π−
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decay. We are interested in dΓ
dMinv(π+π−)

and dΓ
dMinv(π+η)

in the region of f0(500), f0(980)

and a0(980). If we take Mπη ∼ 1000 MeV we see that Mππ goes from 500-2300
MeV, but the range is similar for values of Mπη up to 2200 MeV. This means that
the strength of the ππ distribution will be spread along a wide range of Mπη and
we expect roughly a background following phase space. At Mπη ∼ 750 MeV the
range of Mππ is reduced to 800-1700 MeV and we can expect to obtain contribution
from the Mππ ∼ 980 MeV region, which we have under control. Altogether we
might anticipate that the background below the a0(980) peak will be moderate and
controllable.

If we now fix Mππ in 500-1000 MeV, the range of Mπη is large and we should
expect a background evenly distributed according to phase space. However, for
Mππ ∼ 400 MeV the range of Mπη begins at 1200 MeV, thus for these energies we
will not have contribution from the large peak of the a0(980) and the background
will be small.

In order to evaluate the differential mass distributions we must bear in mind that
the chiral unitary approach that we use only makes reliable predictions up to 1100-
1200 MeV. One should not use the model for higher invariant masses. With this
perspective we will have to admit uncertainties in the mass distributions, particularly
at invariant masses higher than 1200 MeV which are a large part of the Dalitz plot.
Yet, we are only interested in the region of invariant masses below 1200 MeV both
in Mππ and Mπη and it is just there where we would like to know uncertainties of our
model. For that purpose we take the following prescription: we evaluate Gt(Minv)
combinations up to Minv = Mcut. From there on, we multiply Gt by a smooth factor
to make it gradually decrease at large Minv. Thus we take

Gt(Minv) = Gt(Mcut)e
−α(Minv−Mcut), for Minv > Mcut. (1.36)

We take the value Mcut = 1100 MeV, with α = 0.0037 MeV−1, 0.0054 MeV−1

and 0.0077 MeV−1, which reduce Gt by about a factor 3, 5 and 10, respectively, at
Mcut + 300 MeV. We show the results in Fig. 1.8 for dΓ

dMinv(π+η)
and Fig. 1.9 for

dΓ
dMinv(π+π−)

. The results taking Mcut = 1150 MeV are practically identical below
1200 MeV.

In Fig. 1.8 we show our results for dΓ
dMinv(π+η)

(the dΓ
dMinv(π−η)

is identical). We see

that below 1200 MeV, in the region of the a0(980), the uncertainties are very small,
what makes the predictions in that region rather reliable. Since the amplitude t
of Eq. (1.22) sums coherently all terms, it is interesting to see what is mostly
responsible for the peak. For this we keep in t only the tree level amplitude ttree
and tπ− , since tπ− is the term that contains the direct Minv(π+η) dependence in
ti,π+η(Minv(π+η)). The result obtained with these two terms are shown in Fig. 1.8
by the solid line. This is what we call in the figure, “no background”. We can see
that the “background” created in that region by the other two terms, tπ+ and tη is
rather small. Yet, in the region fromMπη = 700 MeV to 990 MeV, this “background”
reduces a bit the contribution obtained by ttree + tπ− only.

It is interesting to note that the “no background” prescription was taken in Ref.
[1.3], and a smooth background was added incoherently to the ππ mass distribution
in the χc1 → ηπ+π−, but not to the πη mass distribution. The a0(980) mass
distribution was in quite good agreement with experiment [1.14], but was a bit
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Figure 1.8: dΓ
dMπη

as a function of Mπη for Mcut = 1100 MeV and three different

values of α. See text for explanations.

higher in the Mπη = 700− 990 MeV region, by an amount similar to the difference
seen in Fig. 1.8 between the solid and other curves. The results obtained here could
be easily translated there, with the consequent improvement of the agreement with
the data. Similarly, at energies above 1000 MeV the “background” increases the
“no background” curve, and this could also help the results of Ref. [1.3], as seen in
Fig. 1.2a of section 1.1.1, to get in better agreement with the data of Ref. [1.14].

The strong cusp shape of the a0(980) and the small background, qualify this
reaction, together with the χc1 → ηπ+π−, as the reaction where a0(980) shows up
more strongly and more neatly.

In Fig. 1.9 we show the analogous results of Fig. 1.8 but for the dΓ
dMinv(π+π−)

mass
distribution. We see that taking Mcut = 1100 MeV, there are uncertainties in the
region of Mππ > 1200 MeV for the different values of α chosen, but the uncertainties
are much smaller in the region below 1200 MeV, what makes the predictions more
solid. It is more interesting to see that we observe a neat signal for the f0(500) and
a much smaller, but clearly visible, signal for the f0(980). We also show the results
with “no background” obtained taking for t the sum ttree+tη, since in tη we have the
terms ti,π+π−(Minv(π+π−)). We can see that the “background” does not affect the
mass distribution below 450 MeV, but gives a sizeable contribution from 550 MeV
to 1200 MeV. Once more, in the χc1 → ηπ+π− reaction studied in Ref. [1.3], where
only the “no background” terms were considered, it was found that an “empirical”
background of this size was needed to reproduce the data of Ref. [1.14], as seen
in Fig. 1.2b of section 1.1.1. Again, all these facts reinforce the reliability of the
predictions made here.

The results obtained are shown in arbitrary units (the calculations are done
taking a value of Vp = 100), however, the relative weights for the Mππ and Mπη

mass distributions of the figures are also predictions that can be tested in actual
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experiment. As we can see, the strength of the peak of the a0(980) is about three
times the strength of the f0(500) peak.

We should note that in the region of Mππ or Mπη above 1200 MeV one should
expect contribution from other resonances, not accounted for here. However, the
small uncertainties of the spectrum below 1200 MeV due to the uncertainties above
1200 MeV, indicate that the corrections below 1200 MeV due to the contribution of
higher energy resonances would still be small.

We can be more quantitative about this by looking at the amplitude analysis
done in Ref. [1.14]. In Fig. 6 of that work, one can see contributions of a0(980)π,
a2(1320)π, a2(1700)π, SKK̄→ππη, Sππ→ππη, f2(1270)η, f4(2050)η. What is seen there
is that all these terms (except for the a0(980)π itself) give a negligible background
in the a0(980)π peak below 1200 MeV. On the other hand, the ππ distribution is
dominated by the Sππ→ππη term (leading to the f0(500) peak) and the SKK̄→ππη
term (leading to the f0(980) peak). All the other terms, except for the replica of the
a0(980)π peak, give also negligible contribution in the ππ mass distribution below
1200 MeV. Only the f2(1270)η gives some small contribution around 1200 MeV, but
we argued that here it should be suppressed. The replica of the a0(980)π peak in the
ππ mass distribution we have here, and it is basically responsible for the differences
that we have in Fig. 1.9 between the “no background” and the total contributions,
similarly as to what is found in Ref. [1.3], as seen in Fig. 1.2b of section 1.1.1.

1.2.4 Conclusions

We have done a theoretical study of the ηc → ηπ+π− decay paying attention
to the final state interaction of the pairs of mesons. We evaluate dΓ

dMinv(π+π−)
and

dΓ
dMinv(π+η)

and make predictions that should be confronted by a future experiment.
The first step is to see the weight of the possible trios of mesons coming from the ηc
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decay, prior to any final state interaction, which is done assuming that the ηc is an
SU(3) singlet and then using SU(3) symmetry in the trios of pseudoscalar mesons.
We relied upon the results of the χc1 → ηπ+π− reaction to support the fact that
the Trace(φφφ), most symmetric in the three fields, is the appropriate invariant to
be used in the present reaction, as discussed in section 1.1.2. After that, all possible
pairs in the trios are allowed to interact (not only ηπ+π−) leading to the final ηπ+π−.
The calculations are done using the chiral unitary approach for the interaction of
mesons, which has a limit of applicability up to Minv = 1200 MeV. We observe a
large and clean signal for the a0(980) in the πη mass distribution, and a relatively
large signal for f0(500) and a smaller one for f0(980) in the π+π− mass distribution.

Given our ignorance above 1200 MeV, we gradually decrease the loop functions
and amplitudes beyond Mcut around 1200 MeV and, with different options, we
estimate uncertainties. What we observe is that, while uncertainties indeed appear
in the region of Minv > 1200 MeV, they are very small below that energy, rendering
our predictions rather solid. The shape and strength of the mass distributions, up to
a global factor (the same for all of them), are predictions of the theory which could
be confronted with experiment. The ultimate aim would be to provide support to
the picture in which the f0(500), f0(980) and a0(980) resonances are dynamically
generated from the pseudoscalar-pseudoscalar interaction. Since neat predictions,
more than reproduction of measured data, have a higher value to support one or
another picture for the scalar mesons, we encourage both, calculations of the reaction
in different models, as well as the performance of the reaction, which in analogy to
the χc1 → ηπ+π− already measured at BESIII, could be measured in this or other
facilities.

1.3 a0(980)−f0(980) mixing in χc1 → π0f0(980)→
π0π+π− and χc1 → π0a0(980)→ π0π0η

In this section we will present the work of Ref. [1.2], where the same framework
discussed in the previous sections was employed. In this case we also introduce
isospin violation in the reaction χc1 → π0f0(980) → π0π+π− and study its connec-
tion with χc1 → π0a0(980)→ π0π0η and the a0(980)− f0(980) mixing.

After this work was published new measurements from BES were published in
Ref. [1.40], confirming the previous measurements with higher statistics.

1.3.1 Introduction

The nature of the scalar mesons a0(980) and f0(980) has been a topic of much
discussion since their discovery decades ago. Several models have been proposed,
from regular qq̄ to more exotic configurations like tetraquarks qqq̄q̄, hybrids qq̄g
and meson molecules [1.7, 1.34, 1.41–1.45]. In this context, the isospin-violating
mixing of f0(980) and a0

0(980) presents an opportunity to filter different proposals
and constrain parameters in the models.

In Ref. [1.46], the possibility of observing these scalar mesons in the reaction
e+e− → γπ0π0(η) was already discussed along with their different interpretations
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as ss̄ states, tetraquarks or KK̄ molecules. Their mixing was first suggested in
Ref. [1.47] and its connection to the difference in the mass of the charged and neutral
kaons was already seen as the main source of the isospin symmetry violation. Also,
in Ref. [1.48] the scattering amplitudes of ππ and πη were studied with the Jülich
meson exchange model and it was found that the cross sections for ππ → πη would
be nonzero, indicating again the possibility of a0(980)− f0(980) mixing.

There are several reactions where this isospin-breaking mixing appears, for in-
stance, in the decay η(1405)→ π0f0(980) and η(1405)→ π0a0(980) [1.49], which was
studied in Ref. [1.50] using the chiral unitary approach. The same puzzle seemed
to be present in the decay of the η(1475) and both problems were discussed in
Refs. [1.51,1.52], where the interesting role of the triangular singularities in enhanc-
ing the isospin violation was shown. This reaction was also discussed in Ref. [1.53],
and in Refs. [1.54, 1.55] the reaction f1(1285) → π0f0(980) was studied along the
same lines.

Recently, another case where a triangular singularity reinforces the isospin break-
ing in the a0(980) − f0(980) mixing was studied in Ref. [1.56], indicating that the
reaction D+

s → π+π0a0(980)(f0(980)) could bring further information on this sub-
ject.

Also recently, the role of the a0(980) − f0(980) mixing was investigated in the
D0 → K0

S π
+π− and D0 → K0

S ηπ
0 decays [1.57]; and also in the D+

s → ηπ0π+

decay [1.58], showing new possible reactions to investigate this topic. In Ref. [1.59]
several possibilities of Ds and Bs decays have been proposed and it is argued that the
a0(980)− f0(980) mixing could be experimentally determined with high precision.

One of the first attempts to quantitatively relate the a0(980) − f0(980) mixing
with experimental data was made in Ref. [1.60], through the analysis of an enhance-
ment in the production rate of the a0(980) relative to the a2(1320) in pp→ ps(ηπ

0)pf .
However, questions about other secondary effects related to G-parity were raised in
Ref. [1.61], which could affect the assumptions made in Ref. [1.60].

The mixing of these scalar mesons in the radiative φ decay was discussed in
Refs. [1.62, 1.63], while the photoproduction of f0(980) and a0(980) was studied in
Ref. [1.64], with emphasis on the isospin-violating mixing due to the mass difference
of kaons and the role of polarized photons and protons.

The decay of η′ has also been a topic where this mixing was investigated. For
instance, in Ref. [1.65] the reaction η′ → ηπ0π0 was studied in the framework of
the isobar model, where the f0(500) was also included in the analysis. Similarly,
the decays η′ → 3π0 and η′ → π0π+π− were considered in Ref. [1.66], both recently
measured by the BESIII Collaboration [1.67]. After this measurement, the decay
η → 3π was studied in Ref. [1.68] with an extended chiral Khuri–Treiman formalism,
where the a0(980) and f0(980) are taken into account in the dispersive integrals.

Other reactions have been proposed to search for the f0(980) and a0(980) mixing,
like the p n→ d a0 in Ref. [1.69]. This reaction was also studied in Ref. [1.70], where
two more reactions were proposed: the p d → 3He / 3H a0 and the d d → 4He a0.
Also, in Ref. [1.71] it was suggested performing polarized target experiments on the
reaction π− p → ηπ0n, where the mixing would be detected through the presence
of a jump in the azimuthal asymmetry in the π0η S-wave production cross section
around the KK̄ threshold.
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Searching for a reaction where the isospin breaking could be measured unambigu-
ously, the decay J/ψ → φf0(980) → φa0(980) → φπ0η was proposed in Ref. [1.61],
where it was assumed that first there would be the formation of the f0(980), which
then would make a transition to a0(980) violating isospin conservation and finally
the latter would decay into π0η. The background of other reactions was analysed
and the conclusion was that one should expect a narrow peak in the π0η invariant
mass with a width of about 8 MeV in the region of the KK̄ threshold, which would
come from the difference in the mass of the charged and neutral kaons, and would
be clearly distinguishable from the broad structure of other background process.

The reaction J/ψ → φπ0η was also investigated in Ref. [1.72], where the chiral
unitary approach was used to study the a0(980) − f0(980) mixing, considering the
difference in quark masses and also one-photon exchange between charged mesons.
It was shown that this mixing was indeed the most important isospin-breaking effect
and could be extracted from experiment through that reaction.

Next, the question whether there would be a difference in the inverse isospin-
breaking process, where the a0(980) would make a transition to the f0(980), the
complementary reaction χc1 → π0a0(980) → π0f0(980) → π0π+π− was proposed
in Ref. [1.73], and it was found that one could indeed expect different rates of
mixing. The uncertainty of these calculations were attributed essentially to the
different parameters extracted from different theoretical models or experimental
measurements of these two scalar mesons.

Some time later, the two reactions proposed in Refs. [1.61, 1.72, 1.73] were mea-
sured by the BESIII Collaboration [1.74], the isospin-forbidden production of a0(980)
in the decay J/ψ → φπ0η and the isospin-forbidden production of f0(980) in the de-
cay χc1 → π0π+π−. The mixing in both reactions was determined through the frac-
tion of the branching ratios with their corresponding isospin-allowed process [1.74],
respectively the J/ψ → φπ+π− (where the f0(980) shows up) measured by the BES
Collaboration [1.75], and the χc1 → π0π0η (where the a0

0(980) shows up). As argued
in Ref. [1.73], the latter reaction could be compared to the χc1 → ηπ+π− (where
the a±0 (980) shows up clearly), since by isospin symmetry the same production rate
is expected for χc1 → π0a0

0(980) as in χc1 → π±a∓0 (980) (with a∓0 (980) → ηπ∓).
The χc1 → ηπ+π− was measured by the CLOE Collaboration [1.76] and recently by
BESIII [1.14] with high statistics.

After the BESIII experiment [1.74], the reaction J/ψ → φπ0η was studied in
Ref. [1.77] using the chiral unitary approach, where the importance of other mecha-
nisms was also shown, like the sequential exchange of vector and axial-vector mesons
to obtain a good agreement with the data. Also based on this experiment, a study
of the amount of KK̄ in the a0(980) and f0(980) was developed in Ref. [1.78] using
the chiral unitary approach and the Flatté parametrization, where the mixing of
these scalar mesons, formulated in a similar manner of Refs. [1.61, 1.73], was used
to constrain their parameters and compositeness.

Not much theoretical work has been done to describe the other isospin-breaking
reaction also measured by BESIII, the χc1 → π0π+π−, in which we focus. There is
one more reason to tackle this reaction at this stage, since the recent experiment
by BESIII [1.14] on the χc1 → ηπ+π− reaction has brought new light into this
problem. Indeed, the process was studied theoretically in Ref. [1.3] (see Figs. 1.2a
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and 1.2b) with the basic assumption that the χc1 is an SU(3) singlet due to its cc̄
structure. The different SU(3) scalar structures with three mesons were discussed
in Refs. [1.1, 1.79] in the study of the ηc → ηπ+π− reaction (see section 1.1.2)
supporting the structure used in Ref. [1.3] by means of which a good agreement
with the experimental data of χc1 → ηπ+π− [1.14] was found (see Figs. 1.4 and
1.5). This information is important for the χc1 → π0π+π− reaction since it provides
the weights of different trios of pseudoscalar mesons that can be formed, prior to
their final state interaction from where the f0(980) and a0(980) resonances emerge.
The use of this information and of the chiral unitary approach to deal with the
interaction of pairs of pseudoscalars allows a thorough investigation of this process,
clarifying the mechanisms that lead to isospin breaking, and providing for the first
time a quantitative description of the f0(980) and a0(980) production with a ratio
of strengths in agreement with the BESIII [1.74] experimental data.

1.3.2 Formalism

In this work we are interested in two reactions: χc1 → π0f0(980) → π0π+π−

and χc1 → π0a0(980)→ π0π0η, from which we wish to calculate the invariant mass
distribution of π+π− and π0η, respectively. We follow a similar approach to the one
of Refs. [1.1, 1.3], assuming that the χc1 behaves as a flavor SU(3) scalar since it is
a cc̄ state. Therefore, in the present work we also adopt Trace(φφφ) as the SU(3)
scalar. Since we are interested in observing the f0(980) in the π+π− channel when
the final state is π0π+π− and the a0(980) in the π0η channel when the final state is
π0π0η , we need trios of pseudoscalars that have at least one π0, and such that the
remaining pairs couple to these channels, directly or indirectly. Looking back to Eq.
(1.18) for the Trace(φφφ) we obtain the combinations π0π0η and π0KK̄, as follows

Trace(φφφ) =
√

3π0π0η +
π0

√
2

(3K+K− − 3K0K̄0), (1.37)

Then Eq. (1.37) tells us the weight by which trios of pseudoscalars are produced
in the first step of the χc1 decay. The next step consists of letting these mesons
interact in coupled channels such that the final state is π0π0η or π0π+π−. In this
case, the diagrams for a0(980) and f0(980) production are shown in Fig. 1.10 and
1.11, respectively.

Here we have a different situation from the ηc (J = 0) decay of the previous
section 1.2 and Ref. [1.1], where every main contribution would proceed in S-wave,
such that all diagrams could in principle interfere. In the present case, since the
χc1 (J = 1) has an orbital excitation, we need to take into account the different
combination of quantum numbers.

In the study of the χc1 → ηπ+π− reaction in Ref. [1.3], to conserve the JP

quantum numbers, we needed a P -wave in either any of the three mesons η, π+ or
π−, such that the remaining pair π+π− or ηπ± could interact in S-wave to generate
the f0(980) or a±0 (980), respectively.

In that case the possible structures were

V1 = A~εχc1 · ~pη,
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Figure 1.10: Diagrams involved in the a0(980) production in the χc1 → π0a0(980)→
π0π0η reaction: (a) tree level; and rescattering of (b) π0η, (c) K+K−, (d) K0K̄0.
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Figure 1.11: Diagrams involved in the f0(980) production in the χc1 → π0f0(980)→
π0π+π− reaction: rescattering of (a) π0η, (b) K+K−, (c) K0K̄0.

V2 = B~εχc1 · ~pπ+ , (1.38)

V3 = C~εχc1 · ~pπ− .

If, for instance, we take the first structure of V1, the ~pη coupling introduces L = 1
and forces the π+π− pair to also have positive parity. With these quantum numbers,
the π+π− pair can be in IG(JPC) = 0+(0++) and then produce the resonance f0(980).

Then we would have a combination of the three structures of Eq. (1.38) and
then the primary amplitude would be of the type

t = A ~εχc1 · ~pη +B ~εχc1 · ~pπ+ + C ~εχc1 · ~pπ− . (1.39)

However, as discussed in Ref. [1.3], there is no interference between these terms.
Indeed, the crossed terms in |t|2 after averaging over the polarization of the massive
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χc1 state go as ∑
2Re(AB∗)~εχc1 · ~pη ~εχc1 · ~pπ+

=2Re(AB∗)
1

3
δijpηipπ+j =

2

3
Re(AB∗)~pη · ~pπ+ , (1.40)

which vanish upon integration over angles in phase space. Thus, for |t|2 we have
the sum of the squares of each amplitude in Eq. (1.39), in which the tree level and
rescattering of a pair is contained in each one.

For symmetry reasons, the probability that the P -wave is in either of the mesons
should be the same, then A = B = C at tree level (up to the factor of the weight of
each trio under SU(3) symmetry), then we will use a common normalization factor
VP that stands for the dynamics of χc1 → three mesons, as in the case of the ηc
decay.

Also, as argued in Ref. [1.3], the interaction of the meson that comes in the
P -wave with any of the other two should proceed in P -wave, which is negligible for
πη and zero for ππ which have been created in I = 0. That made the interpretation
of the signals in Ref. [1.3] particularly easy, since they came from either the ππ
or ηπ interaction in S-wave. Under this condition, one can avoid using the double
differential mass distribution as in the ηc decay of section 1.2, which forced us
to introduce a cut in the amplitudes at high energies, and instead use directly a
simple invariant mass distribution with just the dominant contribution when one
meson leaves in P -wave and the remaining pair interact in S-wave. Since the same
argumentation is valid in the reactions we will present in this work, the χc1 →
π0a0(980) → π0π0η and the χc1 → π0f0(980) → π0π+π−, we will follow the same
approach.

That being said, let us analyse the specific case of the present work. The quantum
numbers of the χc1 are IG(JPC) = 0+(1++), while the quantum numbers of the
a0(980) and f0(980) are 1−(0++) and 0+(0++), respectively. If the π0η and π+π−

are in S-wave to create the a0(980) and f0(980), the remaining π0 must be in P -wave
to conserve angular momentum and parity. Then the structure of the amplitude at
tree level will be

t = Vp ~εχc1 · ~pπ0 , (1.41)

where, for comparison purposes, we will take the same value of Vp that was used in
Ref. [1.3].

The full amplitude for the isospin-allowed a0(980) production (with final state
π0 π0η) is obtained considering also the rescattering of the pairs of mesons as indi-
cated in Fig. 1.10, then

t = ~εχc1 · ~pπ0 t̃π0η, (1.42)

with

t̃π0η = Vp (hπ0η + hπ0η Gπ0η tπ0η→π0η

+ hK+K− GK+K− tK+K−→π0η

+ hK0K̄0 GK0K̄0 tK0K̄0→π0η) , (1.43)

where the weights hi are obtained from Eq. (1.37): hπ0η = 2
√

3, hK+K− = 3/
√

2
and hK0K̄0 = −3/

√
2. Note that hπ0η has an extra factor 2 with respect to the
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coefficient
√

3 for the π0π0η field in Eq. (1.37), since with the production of two π0

we will have the terms ∂iπ
0 π0 +π0 ∂iπ

0. The functions Gij are the same used in the
Bethe-Salpeter equation, from which we also obtain the rescattering amplitudes, as
we saw in section 1.1.1.

Now for the isospin-forbidden f0(980) production (with final state π0 π+π−) we
have no tree level, and we consider only the rescattering diagrams, as indicated in
Fig. 1.11, then

t = ~εχc1 · ~pπ0 t̃π+π− , (1.44)

where

t̃π+π− = Vp (hπ0η Gπ0η tπ0η→π+π−

+ hK+K− GK+K− tK+K−→π+π−

+ hK0K̄0 GK0K̄0 tK0K̄0→π+π−) . (1.45)

As we will discuss in a moment, the isospin symmetry breaking will be introduced
through the use of different masses for the charged and neutral kaons. We note that
the difference between the K+K− and K0K̄0 loops is convergent, and useful to
investigate the f0(980) production, but in order to deal with the a0(980) production
and study the whole problem quantitatively, one must face the divergent behaviour
of all the propagators. For that we have a simple solution of employing in Eqs. (1.43)
and (1.45) the same cutoff used to regularize the loops inside the T matrix, which
yields results in good agreement with the χc1 → ηπ+π− decay, as shown in Ref. [1.3].

We note that our approach is in the same line of Ref. [1.77], but it is different
from the approach of Ref. [1.73], where it was assumed that the isospin-forbidden
production of f0(980) comes from a transition a0(980) → f0(980), related to the
phase space available in the propagators of pairs of mesons. On the other hand,
we assume that the f0(980) emerges from the χc1 decay, stemming from the meson-
meson loops, without going first through the a0(980) production. As we will show
next, our method has some interesting features, providing an intuitive explanation
of the mechanism behind the isospin symmetry violation.

Note that if we consider isospin symmetry the amplitude in Eq. (1.45) would
be identically zero, because π0η → π+π− would not conserve isospin − since we
consider π+π− in I = 0 to create the f0(980) − and the terms with kaons would
cancel due to the minus sign in hK0K̄0 . Indeed, we can interpret the last two terms
as KK̄ in isospin 1 basis, which again, would not go to π+π− in I = 0.

Therefore, the only way to have f0(980) production is by introducing isospin
breaking, which we implement using different kaon masses. We introduce isospin
violation from two sources, one comes from GK+K− and GK0K̄0 , the first loops of
rescattering with K+K− and K0K̄0 pairs in Eqs. (1.43) and (1.45). In the case
of π0η production the K+K− and K0K̄0 terms add, but in the case of the π+π−

production they subtract, and would cancel if the masses of the kaons were equal.
The other source comes from the T matrix that we construct with different kaon

masses in the propagators inside the Bethe-Salpeter equation T = (1−V G)−1V [1.7],
which we use to obtain the scattering and transition amplitudes ti→π0η and ti→π+π− .
This way, the tπ0η→π+π− transition will also be nonzero − because of the coupled
channels interaction − when we introduce isospin breaking inside the T matrix.
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Finally, for the case of a0(980) production we can write the invariant mass dis-
tribution as

dΓ

dMinv(π0η)
=

1

(2π)3

1

4M2
χc1

1

3
p2
π0 pπ0 p̃η|t̃π0η|2, (1.46)

where

pπ0 =
λ1/2(M2

χc1
,m2

π0 ,M2
inv(π0η))

2Mχc1

, (1.47)

and

p̃η =
λ1/2(M2

inv(π0η),m2
π0 ,m2

η)

2Minv(π0η)
. (1.48)

On the other hand, for the case of f0(980) production, the invariant mass distri-
bution reads

dΓ

dMinv(π+π−)
=

1

(2π)3

1

4M2
χc1

1

3
p2
π0 pπ0 p̃π+ |t̃π+π−|2, (1.49)

with

pπ0 =
λ1/2(M2

χc1
,m2

π0 ,M2
inv(π+π−))

2Mχc1

, (1.50)

and

p̃π+ =
λ1/2(M2

inv(π+π−),m2
π+ ,m2

π−)

2Minv(π+π−)
. (1.51)

1.3.3 Results

The importance of the kaon mass difference in the a0(980) − f0(980) mixing
can be appreciated when we look at the KK̄ amplitudes obtained with the chiral
unitary approach in isospin 0 and 1, as shown in Figs. 1.12a and 1.12b, where isospin
symmetry was used. We can see that both resonances appear around the KK̄
threshold, and their dynamical nature emerging from coupled channels interactions
allows the mixing to occur when isospin symmetry is broken.

The fact that both resonances couple to KK̄ and have similar masses around
this threshold is what allows the mixing to occur, which takes place in the energy
range of about 8 MeV between the charged and neutral kaon pair thresholds, K+K−

and K0K̄0.
We should note that all our results are calculated using isospin-average pion

masses, but the effect of using different pion masses is completely negligible (as we
have checked) in comparison with using different masses for the charged and neutral
kaons.

We show in Figs. 1.13 and 1.14 the invariant mass distribution dΓ/dMπη from
Eq. (1.46), where the shape of the a0(980) is clear. The solid line represents the case
where different masses for the charged and neutral kaons are used in the propagators
inside the T matrix and also in the first rescattering loops GK+K− and GK0K̄0 , as
discussed in the formalism. The dashed line is the case where the different masses
are used only inside the T matrix and the dotted line only in the first rescattering
loops GK+K− and GK0K̄0 . As we can see in Fig. 1.13, there is only a small difference
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(a) KK̄ amplitude in I = 1; couples to a0(980),
which also couples to πη.

(b) KK̄ amplitude in I = 0; couples to f0(980),
which also couples to ππ.

Figure 1.12: Comparison between KK̄ → KK̄ amplitude squared in isospin 1 and
0 (S-wave).

around the KK̄ threshold. Looking closer into this region (Fig. 1.14) one can see
that in the three curves there is a small cusp effect at Mπη equal to 2mK+ and
2mK0 ; whereas in the dashed and dotted line (where the isospin-average kaon mass
〈mK〉 is also used) the a0(980) peak appears at 2 〈mK〉.

Notice that there is an interesting comparison to be made with the reaction χc1 →
ηπ+π−. In this case, the χc1 → π0π0η has the same isospin content, and we can see
for instance in Eq. (7) of Ref. [1.3] that when the π+ is in P -wave the π−η term has
the same weight as the π0η in Eq. (1.37) − after the inclusion of the statistical factor
− while the K0K− term has the same weight as the (K+K−−K0K̄0)/

√
2, and both

are KK̄ in isospin 1. The same is valid for Eq. (8) of Ref. [1.3], when the π− is in
P -wave. Indeed, if we look at Fig. 6 of Ref. [1.3] (see Fig. 1.2a of section 1.1.1) we
see that the intensity of the a0(980) peak is exactly twice as here (in Figs. 1.13 and
1.14) since there we had the sum of both contributions from π+η and π−η, and here
we have only π0η (notice the extra factor 2 in Eq. (24) of that reference).
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Figure 1.13: Invariant mass distribution of π0η in the χc1 → π0a0(980) → π0π0η
reaction. (See text for explanations).

Figure 1.14: Zoom around the a0(980) peak in the invariant mass distribution of
π0η in the χc1 → π0a0(980)→ π0π0η reaction. (See text for explanations).
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Figure 1.15: Invariant mass distribution of π+π− in the χc1 → π0f0(980)→ π0π+π−

reaction. (See text for explanations).

For the isospin-breaking production of f0(980), we show in Fig. 1.15 the invariant
mass distribution dΓ/dMππ from Eq. (1.49). We have a narrow peak around the
threshold of KK̄ similar to the results in the literature [1.73]. We can see clearly
the effect of the two different thresholds, at Mππ equal to 2mK+ and 2mK0 , and for
the case of the dashed and dotted lines, we also see the cusp effect at Mππ equal to
2 〈mK〉.

The bump around 980 MeV of dΓ/dMππ is a manifestation of the “good” f0(980),
that can be obtained if one considers the sum of the amplitudes tK+K−→π+π− and
tK0K̄0→π+π− , with a plus sign, which would be the scattering of KK̄ → ππ in isospin
0 (similar to the amplitude of Fig. 1.12b). In this work, as in Ref. [1.3], we use a cutoff
of 600 MeV to regularize the loops inside and outside the T matrix, which better fits
the data and yields the peak position of the f0(980) in KK̄ → ππ amplitude at 980
MeV, in agreement with the majority of experimental measurements. This bump
can be translated in the direction of the K+K− threshold by lowering the cutoff
to about 560 MeV, making it less bound and the curve more similar to results of
Ref. [1.73], for instance. However, the use of 600 MeV is more appropriate since it is
contrasted with the f0(980) production in isospin-allowed experiments. The shape
of Fig. 1.15 also tells us that a very precise measurement of the π+π− invariant mass
distribution in the χc1 → π0π+π− reaction could help to constrain the model and
determine the f0(980) and a0(980) parameters precisely.

Another important point to note is that, according to our findings, the isospin
breaking inside the T matrix turns out to be more important than from the external
kaon loops GK+K− and GK0K̄0 , as shown in Fig. 1.15. This seems to go against what
one would naturally expect: that regarding the KK̄ interaction, the contribution
from the external loops would be more significative than the one from the loops
inside the T matrix. Actually, this is implicitly assumed in Refs. [1.73, 1.78], since
isospin symmetry is assumed for the coupling of the f0(980) to the K+K− and K0K̄0

components.
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To investigate this interesting feature, we look back to Eq. (1.37), where we see
that the contribution coming from π0η → π+π− is:

√
3π0π0η ⇒ hπ0η Gπ0η tπ0η→π+π−

= 2
√

3 Gπ0η tπ0η→π+π− , (1.52)

while the contribution coming from KK̄ → π+π− is:

3π0 (K+K− − K0K̄0)√
2

⇒hK+K− GK+K− tK+K−→π+π−

+hK0K̄0 GK0K̄0 tK0K̄0→π+π−

=
3√
2
GK+K− tK+K−→π+π−

− 3√
2
GK0K̄0 tK0K̄0→π+π− . (1.53)

Then we compare in Fig. 1.16 the amplitude square of these two terms. We
can see that the KK̄ contribution coming from the isospin breaking in GK+K− and
GK0K̄0 (blue dotted curve), is indeed greater than the one coming from the isospin
breaking inside the T matrix (red dashed curve), and the effect is maximized when
isospin symmetry is broken in both (green dash-dotted curve). What happens is that
when we violate isospin inside the T matrix, the transition amplitude tπ0η→π+π−

becomes nonzero (black solid line), which is even bigger than the contribution of
KK̄ with isospin breaking only inside the T matrix (red dashed curve), and their
combined effect turns out to be greater than the isolated effect from GK+K− and
GK0K̄0 (blue dotted curve).

Therefore, we can conclude here that the KK̄ contribution is still the dominant
term when isospin symmetry is broken both in T and G. However, the effect of
isospin-breaking inside the T matrix is of great importance, not just because of
the enhancement in the KK̄ contribution, but mainly due to the coupled channels
interaction that allows the isospin-forbidden π0η → π+π− transition. This is a
novel result which is usually neglected in most of the approaches in the topic of the
a0(980)− f0(980) mixing.
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Figure 1.16: Comparison between isolated contribution of π0η → π+π− and KK̄ →
π+π−. (See text for explanations).

Finally, we show in Table 1.1 the results of the a0(980)− f0(980) mixing in the
χc1 → π0π+π− and χc1 → π0π0η reactions. We calculate it in analogy to Ref. [1.74]
(where it is taken as the ratio between the branching ratios of the former to the latter
reaction) by integrating the invariant mass distribution dΓ/dMππ and dividing it by
the integrated dΓ/dMπη, where the latter we calculate in two ways: 1) integrating in
the whole mass distribution of the Mπη, from mπ +mη up to 1200 MeV (around the
limit of validity the chiral unitary approach), 2) integrating in the more appropriate
range of the a0(980) resonance, from 885 MeV to 1085 MeV, as done by the BESIII
Collaboration in Ref. [1.80] (Section IV.C.2).

Table 1.1: Comparison between experiment and theoretical results for the a0(980)−
f0(980) mixing in the χc1 → π0π+π− and χc1 → π0π0η reactions.

Γ(χc1 → π0π+π−) /Γ(χc1 → π0π0η)
BESIII [1.74] (0.31± 0.16(stat)± 0.14(sys)± 0.03(para))%
mK+ 6= mK0 Mπη ∈ [885, 1085] MeV
in T and G 0.26 %
only in T 0.19 %
only in G 0.05 %
mK+ 6= mK0 Mπη ∈ [mπ +mη, 1200 MeV]
in T and G 0.17 %
only in T 0.12 %
only in G 0.03 %

We can see we get a good agreement with the experimental measurements of
BESIII [1.74] only when we introduce isospin breaking inside the T matrix and
also in the first external rescattering loops (GK+K− and GK0K̄0). The case where
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we use different kaon masses only inside the T matrix is still within the range of
the experimental errors, but the one where we consider them only in GK+K− and
GK0K̄0 is already outside the range of the experimental errors if they are summed in
quadrature, what shows the importance of considering both effects simultaneously.
Besides, when we integrate in the more appropriate range of the a0(980) resonance,
from 885 MeV to 1085 MeV as in Ref. [1.80], the results are closer to experiment.

1.3.4 Conclusions

We have shown in the present work that it is possible to use the same theoret-
ical model previously developed to study the χc1 → ηπ+π− reaction [1.3], recently
measured by the BESIII Collaboration [1.14], and further explored in the predic-
tions for the ηc → ηπ+π− reaction [1.1], to study the isospin breaking in the decays
χc1 → π0π+π− and χc1 → π0π0η and its relation to the a0(980) − f0(980) mixing,
which was also measured by the BESIII Collaboration [1.74].

We assumed that the χc1 behaves as an SU(3) scalar to find the weight in which
trios of pseudoscalars are created, followed by the final state interaction of pairs of
mesons to describe how the a0(980) and f0(980) are dynamically generated, using the
chiral unitary approach in coupled channels. The isospin violation was introduced
through the use of different masses for the charged and neutral kaons, either in the
propagators of the pairs of mesons created in the χc1 decay, as in the propagators
inside the T matrix constructed through the unitarization of the scattering and
transition amplitudes of pairs of pseudoscalar mesons.

We have analysed the contribution of each term and found that violating isospin
inside the T matrix makes the π0η → π+π− contribution nonzero, which gives an
important contribution to the total amplitude. We also investigated the importance
of the isospin breaking from the KK̄ term, and found that even though the most
important contribution comes from the first rescattering loops, violating isospin
inside the T matrix enhances this effect significantly. Also, in the total amplitude
the most important effect is the isospin breaking inside the T matrix, due to the
constructive sum of π0η → π+π− and KK̄ → π+π−, which is essential to get a good
agreement with the experimental measurement of the mixing [1.74].
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CHAPTER

2 Meson-Baryon Interactions

In this chapter we will present three works on meson-baryon interactions: the one
of Ref. [2.1] on the five new Ωc states recently discovered by the LHCb Collaboration
[2.2], the follow-up article of Ref. [2.3] on how to observe these states in the decay
of Ωb baryons and the one of Ref. [2.4] with predictions for molecular Ωb states.

2.1 Introduction

In this section we will comment on two approaches which are useful to describe
the meson-baryon states, either using the chiral Lagrangians or the local hidden
gauge, and briefly discuss their relation, with focus on the particular case where
certain simplifications can be made and the interactions can be obtained at quark
level. Also, in section 2.1.3 we will present how the mass, width and couplings of
each state are related to the pole position.

2.1.1 Chiral Lagrangians

The lowest order chiral Lagrangian describing the meson-baryon interaction in
the SU(3) sector (pseudoscalar meson octet with the 1/2+ baryon octet) is given
by [2.5–2.7]

LB = 〈B̄iγµ∇µB〉 −MB〈B̄B〉+
1

2
D〈B̄γµγ5{uµ, B}〉+

1

2
F 〈B̄γµγ5[uµ, B]〉 (2.1)

where 〈〉 stands form trace in SU(3) and

∇µB = ∂µB + [Γµ, B],

Γµ =
1

2
(u†∂µu+ u∂µu

†),

U = u2 = exp(i
√

2Φ/fπ),

uµ = iu†∂µUu
†.

(2.2)

Here fπ = 93 MeV is the pion decay constant, and Φ and B are the SU(3) matrices
for the mesons and baryons

Φ =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 , (2.3)
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B =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 . (2.4)

At lowest order in momentum the interaction comes from the Γµ term in the
covariant derivative, and the Lagrangian reads

LB1 =
1

4f 2
π

〈B̄iγµ
[
(Φ ∂µΦ− ∂µΦ Φ )B −B(Φ ∂µΦ− ∂µΦ Φ )

]
〉 , (2.5)

The lowest order amplitudes are of the form

Vij = −Cij
1

4f 2
π

ū(p′)γµu(p)(kµ + k′µ) , (2.6)

where p, p′ are the incoming and outgoing momentum of the baryons and k, k′ of
the mesons.

At energies close to threshold one can consider only the dominant contribution
coming from ∂0 and γ0 [2.8], such that the interaction is given by

Vij = −Cij
1

4f 2
π

(k0 + k′0) , (2.7)

where k0, k′0 are the energies of the incoming and outgoing mesons, respectively,

k0 =
s+m2

mi
−M2

Bi

2
√
s

, k′0 =
s+m2

mj
−M2

Bj

2
√
s

(2.8)

where mmi , MBi (mmj , MBj) are the masses of the initial (final) meson, baryon,
respectively, and Cij are the coefficients one has to calculate, which are tabulated
in Ref. [2.6] for the case of K−p and coupled channels (note that C is a symmetric
matrix where Cij corresponds to the transition (mi, Bi)→ (mj, Bj)). The extension
of Eq. (2.7) to the charm sector is complicated. Yet, using the local hidden gauge
approach [2.9–2.13] the task is notably simplified and clarified simultaneously.

2.1.2 Local Hidden Gauge approach

In the hidden gauge approach [2.9–2.13] the meson-baryon interaction in SU(3)
is obtained exchanging vector mesons as in Fig. 2.1.

The local hidden gauge approach works with pseudoscalar and vector mesons in
the light sector and chiral symmetry is one of its assets, showing up in the limit
of small mass of the pseudoscalar mesons (Goldstone bosons). In Refs. [2.9–2.14],
and particularly in Refs. [2.9, 2.14], one can see that the terms of the chiral La-
grangians can be obtained from the exchange of vector mesons in the local hidden
gauge. Ref. [2.14] also shows that the consideration of vector mesons is necessary
to implement vector meson dominance. Both in Ref. [2.14] and Ref. [2.9] it is also
shown that the formalisms using antisymmetric tensors for the vector mesons, and
the use of ordinary vector fields in the local hidden gauge are equivalent. If one
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Mi Mf

Bi Bf

V

Figure 2.1: Diagram representing the meson-baryon interaction through vector me-
son exchange. Mi(Mf ) and Bi(Bf ) are the initial (final) meson and baryon states
involved the interaction, while V stands for the vector meson exchanged.

specifies to the meson-baryon Lagrangians [2.5], it is easy to show that the exchange
of vector mesons gives rise exactly to the lowest order chiral Lagrangian in the limit
of small momentum transfer compared to the vector meson mass. All this occurs
within SU(3), involving u, d, s quarks. The local hidden gauge in the unitary gauge
in SU(3), can be found in Ref. [2.9] and with more detail in Ref. [2.10].

The ingredients needed are the vector(V)-pseudoscalar(P)-pseudoscalar(P) La-
grangian for the upper vertex on Fig. 2.1

LV PP = −ig 〈 [ Φ, ∂µΦ ]V µ 〉 , (2.9)

with

Vµ =

 1√
2
ρ0 + 1√

2
ω ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0

K∗− K̄∗0 φ


µ

, (2.10)

and the vector(V)-baryon(B)-baryon(B) Lagrangian for the lower vertex on Fig. 2.1

LV BB = g
(
〈B̄γµ[V µ, B] 〉+ 〈B̄γµB〉〈V µ〉

)
, (2.11)

with g = mV /2fπ and mV the mass of the vector mesons (we take an average of
about 800 MeV).

In Fig. 2.2 we can see three examples of diagrams representing vector meson
exchange in SU(3). Note that in diagrams of the type (a) we only exchange light
quarks u, d, through ρ and ω exchange while in diagrams of the type (b) a s quark is
transferred through K∗ exchange (in this case from the K meson to the Σ baryon)
and in diagrams of the type (c) u, d and s quarks are exchanged both ways through
ρ, ω and φ exchange.

It is easy to prove that the picture of the vector meson exchange with the La-
grangians from Eqs. (2.9) and (2.11) gives rise to the same interaction as Eq. (2.7)
taking q2/m2

V → 0 in the propagator of the exchanged vector, which is quite good at
low energies. One can even keep this term in the propagator, as done in Ref. [2.15],
since in the meson-meson sector this is shown to generate higher order terms of the
Lagrangian [2.9, 2.14]. Yet, if one takes a regulator of the loops integrating to a
value |~qmax| and fitting this to data, the consideration of the q2/m2

V terms in the
vector propagator is unnecessary.
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ρ, ω K∗ ρ, ω, φ

K− K− K+K−

p p p Σ+ Σ− Σ−

π− K+

(a) (b) (c)

Figure 2.2: Example of diagrams of vector exchange in the meson-baryon interac-
tion.

Extending Eqs. (2.9) and (2.11) to the charm sector is easy for the V PP La-
grangian, as we will discuss in section 2.2.2, but not for the V BB Lagrangian [2.16].
However, we introduce here a procedure that renders it very easy. For this, let us
look at the quark structure of the ρ0, ω and φ (which can be extended to K∗, ρ±)

ρ0 =
1√
2

(uū− dd̄) ,

ω =
1√
2

(uū+ dd̄) ,

φ = ss̄ . (2.12)

In the approximation of taking γµ → γ0 the spin dependence disappears, and we
can consider an operator at the quark level as in Eq. (2.12).

Let us analyse the vector(V)-baryon(B)-baryon(B) vertex for p ρ0 p at quark
level. First we write the proton wave function using SU(3) symmetry:

p =
1√
2
|φMSχMS + φMAχMA〉 , (2.13)

where φMS, φMA, χMS, χMA are the flavor and spin mixed symmetric and mixed
antisymmetric wave functions for the proton [2.17].

Then we take

〈p| g ρ0 |p〉 ≡ 1√
2

1√
2
〈φMS χMS + φMA χMA|g

1√
2

(uū− dd̄)|φMS χMS + φMA χMA〉 ,

(2.14)

where the vector meson ρ0 will act on the proton wave function as an operator
creating and destroying u and d quarks.

The spin 1/2 wave functions, with the symmetric/antisymmetric part on the first
two quarks, are given by

χMS = − 1√
6

(↑↓↑ + ↓↑↑ −2 ↑↑↓), for Sz = 1/2, (2.15)



2.1 Introduction 57

and

χMA =
1√
2

(↑↓ − ↓↑) ↑, for Sz = 1/2. (2.16)

We should note the fact that these wave functions are orthonormal, i. e., 〈χMS|χMS〉 =
〈χMA|χMA〉 = 1 and 〈χMA|χMS〉 = 0.

Now for the proton we have

ΦMS =
1√
6

[(ud+ du)u− 2uud], (2.17)

ΦMA =
1√
2

[(ud− du)u], (2.18)

Taking into account that the mixed-symmetric and mixed-antisymmetric flavor
wave functions are also orthonormal, we will get

〈p| ρ0 |p〉 =
1

2

{
〈ΦMS|ρ0|ΦMS〉+ 〈ΦMA|ρ0|ΦMA〉

}
(2.19)

where we have dropped the coupling g to simplify the notation.
Then

〈p| ρ0 |p〉 =
1

2

{〈(ud+ du)u− 2uud|√
6

(uū− dd̄)√
2

|(ud+ du)u− 2uud〉√
6

(2.20)

+
〈(ud− du)u|√

2

(uū− dd̄)√
2

|(ud− du)u〉√
2

}
We can think of the qq̄ of the vector mesons as the operator a†qaq that destroys

and creates a q quark. Then we get

〈p| ρ0 |p〉 =
1

2

{
〈ΦMS|

(2− 1)√
2
|ΦMS〉+ 〈ΦMA|

(2− 1)√
2
|ΦMA〉

}
=

1

2

1√
2

{
〈ΦMS|ΦMS〉+ 〈ΦMA|ΦMA〉

}
(2.21)

So this vertex will be proportional to

〈p| ρ0 |p〉 =
1√
2

(2.22)

Similarly, for the neutron we would get

ΦMS = − 1√
6

[(ud+ du)d− 2ddu], (2.23)

ΦMA =
1√
2

[(ud− du)d]. (2.24)

Then instead of (2−1) we would get (1−2), since now we have one u quark and
two d quarks, then we would have

〈n| ρ0 |n〉 = − 1√
2

(2.25)
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We can also have ω exchange. According to Eq. (2.12), we see that we would
get (2 + 1) for the p ω p vertex instead of (2− 1) that we got for the p ρ0 p vertex.

〈p|ω |p〉 =
3√
2

(2.26)

Since φ = ss̄ and there is no s quarks in the proton wave function, we immediately
see there is no contribution from φ exchange.

〈p|φ |p〉 = 0 (2.27)

Now let us calculate the same vertex 〈p| ρ0 |p〉 and 〈p|ω |p〉 using the Hidden
Gauge Lagrangian from Eq. (2.11).

Using the approximation of taking only the γ0 and δ0 contribution, and the ma-
trices B and V from Eqs. (2.4) and (2.10), the first term 〈B̄γµ[V µ, B]〉 will contribute
with (

1√
2
ρ0 +

1√
2
ω

)
− φ, (2.28)

whereas the term 〈B̄γµB〉〈V µ〉 will contribute with(
1√
2
ρ0 +

1√
2
ω

)
+

(
− 1√

2
ρ0 +

1√
2
ω

)
+ φ =

2√
2
ω + φ. (2.29)

So, the total contribution using the Hidden Gauge Lagrangian from Eq. (2.11)
will be

1√
2
ρ0 +

3√
2
ω (2.30)

As we had in Eqs. (2.22), (2.26) and (2.27) using the quark operator in the
baryon wave functions.

As we have illustrated with this example, one gets the same result using the
method at quark level as using the Hidden Gauge Lagrangian from Eq. (2.11), and
this is also the case for all transitions in coupled channels.

This artifact can be very useful, in fact, as we will discuss in detail in section
2.2.2, we can also use the operator at quark level to obtain the V BB vertex in the
charm sector.

Finally, let us mention that if we have vector mesons instead of pseudoscalars,
i.e., for V B → V B transitions the only difference is that now we have the V V V
vertex instead of V PP one, and it can be evaluated using the following Lagrangian

LV V V = ig〈 [V µ, ∂νVµ]V ν 〉 , (2.31)

with the coupling g the same as in Eq. (2.9). In the case where the three-momentum
of the vector meson is neglected versus the vector meson mass, as we also do here,
only ν = 0 contributes in Eq. (2.31) which forces V ν to be the exchanged vector,
and the structure of the vertex is identical to the one of Eq. (2.9) for pseudoscalars,
with the additional factor ~ε · ~ε ′, with ~ε, ~ε ′ the polarization vectors of the external
vector mesons [2.18]. Following this procedure we can calculate all the transition
amplitudes.
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2.1.3 Poles and couplings

Once we have a method to describe the meson-baryon interaction, which could
be of the form of Eq. (2.7) for instance, then we proceed to find the amplitude using
the on-shell factorized Bethe-Salpeter equation [2.19, 2.20], as we had in chapter 1
section 1.1.1,

T = [1− V G]−1 V , (2.32)

with G the meson-baryon loop function.
We choose to regularize it with the cutoff method to avoid potential pathologies

of the dimensional regularization in the charm sector, which we will investigate in
the next section 2.2, where G can become positive below threshold (and eventually
produce bound states with a repulsive potential) [2.21]. There is another reason,
because in order to respect rules of heavy quark symmetry in bound states, it was
shown in Refs. [2.15,2.22] that the same cutoff has to be used in all cases. Alterna-
tively one can use a special G function defined in Ref. [2.23].

The G function for meson-baryon with the cutoff method is given by

Gl = i

∫
d4q

(2π)4

Ml

El(q)

1

k0 + p0 − q0 − El(q) + iε

1

q2 −m2
l + iε

=

∫
|q|<qmax

d3q

(2π)3

1

2ωl(q)

Ml

El(q)

1

k0 + p0 − ωl(q)− El(q) + iε
, (2.33)

where k0 +p0 =
√
s and ωl, El, are the energies of the meson and baryon respectively

and ml, Ml the meson and baryon masses.

Molecular states can be associated with the poles in the scattering amplitudes
of Eq. (2.32) in the complex plane of

√
s. The poles appearing below the threshold

in the first Riemann sheet are categorized as bound states, and those found in the
second Riemann sheet are considered to be resonances. The loop function, Gl, of
a given channel l, will be calculated in the first Riemann sheet for Re(

√
s) smaller

than the threshold of that channel (
√
sth,l), and in the second Riemann sheet for

Re(
√
s) bigger than

√
sth,l. To take this into account, we define a new loop function

GII
l =

 Gl(s) for Re(
√
s) <

√
sth,l

Gl(s) + i
2Mlq

4π
√
s

for Re(
√
s) ≥ √sth,l

, (2.34)

where q is given by

q =
λ1/2(s,m2

l ,M
2
l )

2
√
s

with Im(q)>0, (2.35)

with λ(x, y, z) the ordinary Källén function.
After all the poles have been calculated, we can evaluate their coupling constants

to various channels. In the vicinity of the poles, the T -matrix can be expressed as

Tab(s) =
gagb√
s− zR

, (2.36)
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where zR = MR − iΓR/2, which stands for the position of the bound states or
resonances found in the complex plane of

√
s. Therefore, the couplings can be

evaluated as the residues at the pole of Tab, which can be written explicitly with the
formula

g2
a =

r

2π

∫ 2π

0

Taa(zR + reiθ)eiθdθ. (2.37)

However, to be consistent with the different complex phases of each coupling, we
choose to calculate the biggest coupling (call it j) for each resonance as in Eq. (2.37),
and then calculate the remaining couplings in relation to this one:

ga = gj lim√
s→zR

Tja(s)

Tjj(s)
. (2.38)

Meanwhile, with the couplings obtained, we can also evaluate giG
II
i which can

give us the strength of the wave function of the i-channel at the origin [2.24].

2.2 Molecular Ωc states
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Figure 2.3: New Ωc states reported by the LHCb collaboration in Ref. [2.2].
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2.2.1 Introduction

In Ref. [2.2] the LHCb collaboration reported five new narrow Ω0
c states studying

the Ξ+
c K

− mass spectrum produced in high energy pp collisions: Ωc(3000), Ωc(3050),
Ωc(3066), Ωc(3090) and Ωc(3119). Predictions for such states and related ones had
been done within quark model in Refs. [2.25–2.37]. Molecular states had also been
used to make predictions in Refs. [2.16, 2.38] studying the interaction of coupled
channels, one of them the Ξ+

c K
− where the recent LHCb states were found. A

more updated study along these lines was done in Ref. [2.39], where predictions for
charmed and strange baryons are done using an interaction based on SU(6) flavor-
spin symmetry in the light quark sector and SU(2) spin symmetry in the heavy quark
sector, extending the SU(3) Weinberg-Tomozawa interaction. All these works take
the coupled channels of meson-baryon that couple to the desired baryon quantum
numbers and use a unitary scheme to obtain the scattering matrix between the
channels, looking for poles of this matrix. The differences come from the input
interaction and the way that loops are regularized.

The experimental findings of Ref. [2.2] have brought a new wave of theoretical
activity with many suggestions to explain the new states. Different versions of quark
models have been proposed in Refs. [2.40–2.43]. Pentaquark options have been
suggested in Refs. [2.44–2.49]. QCD sum rules were used to describe these states in
Refs. [2.50–2.56]. Lattice QCD has also brought some light into the problem [2.57].
Some works have emphasized the value of decay properties to obtain information
on the nature of these states [2.58–2.60] and a discussion on the possible quantum
numbers was done in Ref. [2.61].

In the molecular picture, an update of the work of Ref. [2.38] was done in
Ref. [2.62] using some information from the experimental spectrum to regularize
the loops and then giving a description of the mass and width of two states of
Ref. [2.2] as JP = 1/2− meson-baryon molecular states.

In the present work we shall follow Refs. [2.39, 2.62] for the coupled channels
and the unitarization procedure. We differ in the input for the interaction, which
in our case is based on the local hidden gauge approach, exchanging vector mesons
[2.9–2.13] as we presented in section 2.1.2.

The extrapolation of the local hidden gauge approach to SU(4) to incorporate c
quarks, or even higher with b quarks, is not straightforward, as one cannot invoke the
Goldstone boson character for D or B mesons. Yet, what one does is the following:
think of the DN interaction for instance. In the D0 p→ D0 p transition we have cū
in the D0 and uud quarks in the p, then we can only exchange ρ0, ω vector mesons
and the c quark of the D0 is a spectator. In this case the situation is the same as in
K̄0 p → K̄0 p. The s quark of the K̄0 (sd̄ ) is also a spectator and only ρ, ω vector
mesons are exchanged. In as much as the c quark in D0 p → D0 p is a spectator,
the dynamics is the same as in the K̄0 p→ K̄0 p transition, and for this we can use
the local hidden gauge approach. We find thus a way to obtain the D0 p → D0 p
interaction using the dynamics of the light quark sector, since only these quarks are
also involved in this case. Hence, in the diagonal channels the interaction is well
controlled.

However, assume the coupled channel πΣc, then in the transition D0 p→ π0 Σ+
c ,

if we extrapolate the local hidden gauge approach to SU(4), we would be exchanging
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a D∗ and the c quarks are now involved. This is an extrapolation of the local hidden
gauge approach which is model dependent. Fortunately, the exchange of D∗ is pe-

nalized with respect to the exchange of light vector mesons by a factor of

(
mρ

mD∗

)2

,

which is a small factor and then one is only introducing uncertainties in some non-
diagonal terms which are very small. Formally one can use the SU(4) extrapolation
of the local hidden gauge approach and for the diagonal terms the framework auto-
matically filters the exchange of light vectors, providing the results that one obtains
from the mapping explained before. This is what is done in Ref. [2.62].

In the present work the diagonal terms that we evaluate coincide with those of
Ref. [2.62] where the model of Ref. [2.16] is used implementing also the exchange
of vector mesons and SU(4) symmetry for mesons and baryons. We, instead, use
explicit wave functions for the baryon states imposing flavor-spin symmetry on the
light quark sector and singling out the heavy quarks. Hence, in the baryon sector
we are not using SU(4) symmetry. For the diagonal terms we also show that one
is exchanging light vectors and the heavy quarks are spectators. In this case we
obtain the same matrix elements as in Ref. [2.62], but there are differences in the
non-diagonal ones. Since in the dominant terms we are exchanging only light vectors
and the heavy quarks are spectators, the interaction automatically respects heavy
quark symmetry [2.63–2.65]. The non-diagonal terms which exchange heavy vectors
do not fulfill heavy quark symmetry, but neither should they since these are terms
of order O(m−2

Q ) in the heavy quark mass counting. In addition to the work of

Ref. [2.62] we also include pseudoscalar-baryon(3/2+) components and we obtain
two more states. We can identify two states of JP = 1/2− and one of JP = 3/2−

with the states found in Ref. [2.2]. We also look for vector-baryon states and find
three states at higher energies.

2.2.2 Formalism

Following Ref. [2.39] we distinguish the cases with JP = 1/2− and JP = 3/2− and
write the coupled channels. In Ref. [2.39] 12 coupled channels are used ranging
from thresholds 2965 MeV to 3655 MeV. The experimental states of Ref. [2.2] range
from 3000 MeV to about 3120 MeV. Hence we restrict our space of meson-baryon
states up to the Ωc ω with mass 3478 MeV. Yet, the diagonal matrix element in this
channel is zero and we can also eliminate it. The energy ranged by the channels
chosen widely covers the range of energies of Ref. [2.2] and it is a sufficiently general
basis of states. We show in Tables 2.1 and 2.2 these states together with their
threshold masses.

Table 2.1: J = 1/2 states chosen and threshold mass in MeV.

States ΞcK̄ Ξ′cK̄ ΞD Ωcη ΞD∗ ΞcK̄
∗ Ξ′cK̄

∗

Threshold 2965 3074 3185 3243 3327 3363 3472

Now let us see how we can extend the approach presented in section 2.1.2 to the
charm sector. The extension of the V PP vertex to the charm sector is easy. We
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Table 2.2: J = 3/2 states chosen and threshold mass in MeV.

States Ξ∗cK̄ Ω∗cη ΞD∗ ΞcK̄
∗ Ξ∗D Ξ′cK̄

∗

Threshold 3142 3314 3327 3363 3401 3472

take the same structure as in Eq. (2.9) but now P and V are

P =


1√
2
π0 + 1√

3
η + 1√

6
η′ π+ K+ D̄0

π− − 1√
2
π0 + 1√

3
η + 1√

6
η′ K0 D−

K− K̄0 − 1√
3
η +

√
2
3
η′ D−s

D0 D+ D+
s ηc

 ,

(2.39)
where we also include the mixing between η and η′ [2.66], and

Vµ =


1√
2
ρ0 + 1√

2
ω ρ+ K∗+ D̄∗0

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0 D̄∗−

K∗− K̄∗0 φ D∗−s
D∗0 D∗+ D∗+s J/ψ


µ

. (2.40)

Now for the V BB vertex we will use a similar argument at quark level, as
presented in section 2.1.2. However, to extend it to the charm sector, we will leave
the heavy quark of the baryon as an spectator, and use SU(3) symmetry on the light
quarks. It has been shown in Ref. [2.67] (see section IIA of that reference), using
similar arguments at the quark level as in Eqs. (2.14) and (2.20), that in the heavy
sector the coupling of the light vectors to the charmed mesons leaves the heavy
quark as a spectator. Then one can map the matrix elements with light quarks to
the equivalent ones in SU(3), with the result that using Eq. (2.9) in SU(4), with the
matrices of Eqs. (2.39) and (2.40), the result obtained is the same as using this quark
model with the heavy quarks as spectators. In other words, one is making use of the
SU(3) content of SU(4). Furthermore, the fact that the heavy quarks are spectators
has immediately as a consequence that the interaction complies with the rules of
heavy quark spin symmetry (HQSS). However, if we have non-diagonal transitions
like ΞcK̄ → ΞD one must exchange a D∗s and the heavy quarks are involved. Here
SU(4) is used and the result is more model dependent, apart from not satisfying
the rules of HQSS. However, in this case HQSS should not be satisfied, because
the heavy quark propagator goes as (1/mD∗s )

2 and those terms are subleading in
the (1/mQ) counting (mQ is the mass of the heavy quarks). One should mention
that the use of SU(4) in this case is marginal, since the Lagrangian of Eq. (2.9) is
basically counting the quarks involved in the process.

That being said, the first step to calculate V BB is to build the proper wave
functions for the charmed baryons.

Baryon wave functions

As we saw in Eqs. (2.15) and (2.16) from section 2.1.2, the mixed symmetric and
mixed antisymmetric spin wave function for spin 1/2 baryons, now with the sym-



64 Chapter 2. Meson-Baryon Interactions

metric/antisymmetric part on the last two quarks, are

χMS =
1√
6

(↑↑↓ + ↑↓↑ −2 ↓↑↑), for Sz = 1/2, (2.41)

and

χMA =
1√
2
↑ (↑↓ − ↓↑), for Sz = 1/2. (2.42)

Now for the flavor part, we will follow Ref. [2.17] using SU(3) symmetry in
the light quarks u, d and s while singling out the charm quark as an spectator.
We should note that to be consistent with the chiral Lagrangians one has to use
a different phase convention with respect to Ref. [2.17], where the Σ+, Ξ0 and Λ
change sign with respect to Ref. [2.17]. The correct assignment for the φMA are
given in Table III of Ref. [2.68] (the same assignment is also used in Ref. [2.69]).

Below we list the flavor wave function of the baryons involved in the construction
of the Ωc states.

For the baryon states with JP = 1/2+:

Ξ ≡ 1√
2

(φMS χMS + φMA χMA), (2.43)

where for Ξ0

φMS =
1√
6

[s(us+ su)− 2uss] ,

φMA = − 1√
2

[s(us− su)] ,

and for Ξ−

φMS = − 1√
6

[s(ds+ sd)− 2dss] ,

φMA =
1√
2

[s(ds− sd)]

Note how we change u→ d to get the isospin partner.

Now for Ξc we have φMA χMA

Ξ+
c = c

1√
2

(us− su)χMA,

Ξ0
c = c

1√
2

(ds− sd)χMA,
(2.44)

and for Ξ′c we have φMS χMS

Ξ′+c = c
1√
2

(us+ su)χMS,

Ξ′ 0c = c
1√
2

(ds+ sd)χMS,
(2.45)



2.2 Molecular Ωc states 65

Also note how the spin wave functions in Eqs. (2.41) and (2.42) are symmetric
or antisymmetric in the last two quarks, corresponding to the flavor symmetry of
the last two quarks in Eqs. (2.44) (2.45).

Finally,

Ω0
c = css χMS. (2.46)

For the baryon states of spin JP = 3/2+ we have the fully symmetric spin wave
function χS

χS = ↑↑↑, for Sz = 3/2. (2.47)

For Ξ∗ we have ΦS χS, were the flavor part is also fully symmetric in SU(3)

Ξ∗0 =
1√
3

(sus+ ssu+ uss)χS,

Ξ∗− =
1√
3

(sds+ ssd+ dss)χS,
(2.48)

and for Ξ∗c we have the symmetric part for the light quarks, as we had for Ξ′c in
Eq. (2.45), but now the spin is 3/2

Ξ∗+c = c
1√
2

(us+ su)χS,

Ξ∗0c = c
1√
2

(ds+ sd)χS,
(2.49)

and finally,

Ω∗0c = css χS (2.50)

Once we got the wave functions, we have to construct the molecular states with
isospin I = 0, strangeness S = −2 and charm C = +1 to match the Ωc quantum
numbers. For that recall that our isospin multiplets are:

K̄ =

(
K̄0

−K−
)

; D =

(
D+

−D0

)
; Ξ =

(
Ξ0

−Ξ−

)
; Ξ∗ =

(
Ξ∗0

Ξ∗−

)
;

Ξc =

(
Ξ+
c

Ξ0
c

)
; Ξ′c =

(
Ξ′+c
Ξ′0c

)
; Ξ∗c =

(
Ξ∗+c
Ξ∗0c

)
; (2.51)

and thus

|ΞcK̄, I = 0〉 = − 1√
2

∣∣∣Ξ+
c K

− + Ξ0
cK̄

0
〉
,

|ΞD, I = 0〉 = − 1√
2

∣∣∣Ξ0D0 − Ξ−D+
〉
,

|Ξ∗cK̄, I = 0〉 = − 1√
2

∣∣∣Ξ∗+c K− + Ξ∗0c K̄
0
〉
,
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|Ξ∗D, I = 0〉 = − 1√
2

∣∣∣Ξ∗0D0 + Ξ∗−D+
〉
. (2.52)

And we also have the channels Ωcη and Ω∗0c η which already have the right quan-
tum numbers. With these wave functions and the prescription to calculate the V PP
and V BB vertices we can construct the matrix elements of the transition potential
between the states in Table 2.1 and in Table 2.2. Let us show an example evaluating
the first diagonal case ΞcK̄ → ΞcK̄.

Evaluation of the transition matrix elements of ΞcK̄ → ΞcK̄

Using the ΞcK̄ wave function from Eq. (2.52) we find four diagrams at lowest order,
as depicted in Fig. 2.4.

ρ0, ω, φ ρ− ρ+

K− K− K̄0K−

Ξ+
c Ξ+

c Ξ+
c Ξ0

c Ξ0
c Ξ+

c

K̄0 K−

+ +

Ξ0
c Ξ0

c

K̄0 K̄0

ρ0, ω, φ+
1
2

Figure 2.4: Diagrams in the ΞcK̄ → ΞcK̄ transition.

Let us analyse the upper vertices first. We have four cases: K− → K−(ρ0, ω, φ),
K− → K̄0ρ−, K̄0 → K−ρ+ and K̄0 → K̄0(ρ0, ω, φ). Using Eq. (2.9) for the V PP
vertex we find

K− → K−

ρ0

ω
φ

 : −itK−→K−(ρ0,ω,φ) = gVµ (−ipµ − ip′µ)

1/
√

2

1/
√

2
−1

 , (2.53)

K− → K̄0ρ− : −itK−→K̄0ρ− = gρ+µ (−ipµ − ip′µ) , (2.54)

K̄0 → K−ρ+ : −itK̄0→K−ρ+ = gρ−µ (−ipµ − ip′µ) , (2.55)

K̄0 → K̄0

ρ0

ω
φ

 : −itK̄0→K̄0(ρ0,ω,φ) = gVµ (−ipµ − ip′µ)

−1/
√

2

1/
√

2
−1

 , (2.56)

with p, p′ the momenta of the incoming and outgoing kaons.
The lower vertices are readily calculated using Eq. (2.12), as seen in Fig. 2.5.
For Fig. 2.5(a) we have the matrix elements

1√
2
〈(us− su)|

g 1√
2
(uū− dd̄)

g 1√
2
(uū+ dd̄)

gss̄

 | 1√
2

(us− su)〉 =

 1√
2
g

1√
2
g

g

 . (2.57)
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ρ0, ω, φ ρ0, ω, φ

Ξ+
c Ξ+

c Ξ0
c Ξ0

c Ξ+
c Ξ0

c(a) (b) (c)

ρ−

Figure 2.5: Vector-baryon vertex diagrams in the K̄Ξc → K̄Ξc transition.

For Fig. 2.5(b) we have

1√
2
〈(ds− sd)|

g 1√
2
(uū− dd̄)

g 1√
2
(uū+ dd̄)

gss̄

 | 1√
2

(ds− sd)〉 =

− 1√
2
g

1√
2
g

g

 . (2.58)

The vertex of Fig. 2.5(c) can be evaluated using the operator g dū for ρ−,

1√
2
〈(ds− sd)|g dū| 1√

2
(us− su)〉 = g

1√
2
〈(ds− sd)| 1√

2
(ds− sd)〉 = g. (2.59)

An alternative method to calculate or double check the result for this ver-
tex is to use Clebsch-Gordan coefficients to relate to another previously calcu-
lated one, for example ρ0Ξ+

c Ξ+
c from the diagram in Fig. 2.5(a). Let us anal-

yse its isospin content. We had incoming ρ0Ξ+
c , and outgoing Ξ+

c . Taking into
account that Ξc has isospin 1/2 and ρ has isospin 1, this vertex corresponds to
the Clebsh-Gordan coefficient 1 × 1/2 → 1/2, i.e., C(S1, S2, ST ; S1z, S2z, STz) =
C(1, 1/2, 1/2; 0, 1/2, 1/2) = −

√
1/3, where |S1, S1z〉 = ρ0, |S2, S2z〉 = Ξ+

c (in-
coming) and |ST , STz〉 = Ξ+

c (outgoing). On the other hand, for the diagram in
Fig. 2.5(c), we have C(1, 1/2, 1/2; −1, 1/2,−1/2) = −

√
2/3, which means that the

vertex ρ−Ξ+
c → Ξ0

c is a factor
√

2 greater than ρ0Ξ+
c → Ξ+

c . Since we had a con-
tribution of g/

√
2 for the first case with ρ0, we find that the contribution from

ρ−Ξ+
c → Ξ−c is g, as we had obtained looking at the quark content in Eq. (2.59).

The reverse case for Ξ0ρ+ → Ξ+
c also gives the same contribution, so we have 2g

coming from the ρ+ and ρ− exchange.
Altogether, the matrix element for Fig. 2.4 is given by

−itΞcK̄→ΞcK̄ =
1

2
g2

[
(−ipµ − ip′µ)(−gµ0)

i

−m2
V

1/
√

2

1/
√

2
−1

 i

1/
√

2

1/
√

2
1


+ 2(−ipµ − ip′µ)(−gµ0)

i

−m2
V

i

+ (−ipµ − ip′µ)(−gµ0)
i

−m2
V

−1/
√

2

1/
√

2
−1

 i

−1/
√

2

1/
√

2
1

]

= −1
1

4f 2
π

(p0 + p′ 0) ≡ D
1

4f 2
π

(p0 + p′ 0) , (2.60)
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with D = −1 (recall that g = mV /2fπ).
Following these steps it becomes easy and systematic to evaluate all the matrix

elements, which have the general form

Vij = Dij
1

4f 2
π

(p0 + p′0) . (2.61)

where Vij will be used as the kernel of the Bethe-Salpeter equation from Eq. (2.32).
Alternatively, we can use another expression which includes relativistic correction

in s-wave [2.70]

Vij = Dij

2
√
s−MBi −MBj

4f 2
π

√
MBi + EBi

2MBi

√
MBj + EBj

2MBj

, (2.62)

where MBi,Bj and EBi,Bj stand for the mass and the center-of-mass energy of the
baryons, respectively.

The matrix Dij for the channels from Table 2.1 are given in Table 2.3.

Table 2.3: Dij coefficients of Eq. (2.62) for the meson-baryon states coupling to
JP = 1/2− in s-wave.

J = 1/2 ΞcK̄ Ξ′cK̄ ΞD Ωcη ΞD∗ ΞcK̄
∗ Ξ′cK̄

∗

ΞcK̄ −1 0 − 1√
2
λ 0 0 0 0

Ξ′cK̄ −1 1√
6
λ − 4√

3
0 0 0

ΞD −2
√

2
3
λ 0 0 0

Ωcη 0 0 0 0
ΞD∗ −2 − 1√

2
λ 1√

6
λ

ΞcK̄
∗ −1 0

Ξ′cK̄
∗ −1

In Table 2.3 we have the parameter λ in some non-diagonal matrix elements,
which involve transitions from one meson without charm to one with charm, like
K̄ → D. In this case we have for the propagator of the exchanged vector

1

(q0)2 − |q |2 −m2
D∗s

≈ 1

(mD −mK)2 −m2
D∗s

, (2.63)

and the ratio to the propagator of the light vectors is

λ ≡ −m2
V

(mD −mK)2 −m2
D∗s

≈ 0.25 . (2.64)

We take λ = 1/4 in all these matrix elements, as it was done in Ref. [2.7].
The diagonal matrix elements of Table 2.3 coincide with those of Ref. [2.62],

but not all the non-diagonal. This is not surprising. SU(4) symmetry is used in
Ref. [2.62], but only SU(3) is effectively used in the diagonal terms, as we have
argued. Then we should note that the heavy baryons that we have constructed are
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not eigenstates of SU(4) since we have singled out the heavy quarks and used sym-
metrized wave functions for the light quarks. This induces a spin-flavor dependence
different from the one of pure SU(4) symmetry.

With respect to Ref. [2.39], we have some diagonal matrix elements equal but
not all of them, and there are also differences in the non-diagonal terms. These
matrix elements are also different from those of Ref. [2.62].

Table 2.4: Dij coefficients of Eq. (2.62) for the meson-baryon states coupling to
JP = 3/2−.

J = 3/2 Ξ∗cK̄ Ω∗cη ΞD∗ ΞcK̄
∗ Ξ∗D Ξ′cK̄

∗

Ξ∗cK̄ −1 − 4√
3

0 0 2√
6
λ 0

Ω∗cη 0 0 0 −
√

2
3
λ 0

ΞD∗ −2 − 1√
2
λ 0 1√

6
λ

ΞcK̄
∗ −1 0 0

Ξ∗D −2 0
Ξ′cK̄

∗ −1

To calculate the matrix elements for the states that couple to JP = 3/2− of
Table 2.2 we proceed in the same way. We must take into account that the V V Vex
are like those of PPVex under the approximation of neglecting (p/mV )2, where p
is the momentum of the external vector. In addition one has for the factor ~ε · ~ε ′
for the vector polarization, which makes these terms to contribute to J = 1/2 and
J = 3/2 with degeneracy. The terms connecting P and V like Ξ∗cK̄ → ΞD∗ require
exchange of pseudoscalars, which go with the momentum and are small compared to
the exchange of vectors [2.71]. In the Ξ∗cK̄ → ΞD∗ one would have to exchange a Ds

and it would be doubly suppressed. In the Ξ∗cK̄ → ΞcK̄
∗ one would exchange a pion,

but the K and K∗ states are quite separated in energy and the transition is also
not important. In the DΞ→ D∗Ξ transitions one has the πΞΞ Yukawa vertex that
goes like D−F compared to D+F for πPP , with F = 0.51, D = 0.75 [2.72], which
is highly suppressed. Therefore, we neglect all terms which involve transition of a
pseudoscalar to a vector and then the matrix elements are again given by Eq. (2.62)
with the Dij coefficients given in Table 2.4.

In order to see the relevance of the π exchange discussed above, we take the
DΞ → D∗ Ξ transition and we evaluate the effect in the DΞ → DΞ interaction
going through the intermediateD∗ Ξ state. For this we follow Ref. [2.73] and consider
the diagrams of Fig. 2.6.

As discussed in Ref. [2.73], in addition to the π exchange there is a contact
term called Kroll-Ruderman in the γ N → π N (or ρN → π N) transition, then
the four diagrams of Fig. 2.6 must be evaluated. They provide a δV potential for
DΞ → DΞ which can be evaluated by means of Eq. (40) of Ref. [2.73], simply
changing the masses of B, B∗ to D, D∗ and N to Ξ. We have performed the
calculation and, compared to the potential Vij from Eq. (2.62) and Table 2.3 we
find δV/V ≈ 0.012 for the ΞD channel calculated at the energy of the pole around
3090 MeV (which is dominated by this channel, as shown in Table 2.6 of the Results
section), a correction of order 1%, which we safely neglect.
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Figure 2.6: Box diagrams accounting for the DΞ→ D∗ Ξ→ DΞ.

2.2.3 Results

In Table 2.5 we show the poles that we obtain for the JP = 1/2− sector for different
values of the cutoff qmax. We only show the results with the pseudoscalar-baryon
interaction. This sector decouples from the vector-baryon one, where the states are
obtained degenerate in JP = 1/2−, 3/2− . We will come back to this sector later on.

Table 2.5: Poles in JP = 1/2− sector from pseudoscalar-baryon interaction. (Units:
MeV).

qmax 600 650 700 750 800
3065.4 + i0.1 3054.05 + i0.44 3038.13 + i1.78 3016.21 + i6.02 2989.69 + i16.24

3114.22 + i3.75 3091.28 + i5.12 3067.71 + i4.12 3046.24 + i3.83 3027.75 + i2.19

We can see that we always get two states in the range of the masses observed
experimentally. The strategy followed in these calculations is to fine tune the cutoff
to adjust the pole position to some experimental data. We see that if we take qmax =
650 MeV the results agree well with the second and fourth resonances reported in
Ref. [2.2], Ωc(3050) and Ωc(3090). It is interesting to note that cutoff values of this
order are used in Ref. [2.6] for K̄N or in Ref. [2.74] for DN . Fitting one resonance is
partly merit of fine tuning the cutoff, but then the second resonance and the widths
are genuine predictions of the theory. Note that the widths are respectively 0.88
MeV and 10.24 MeV, which agree remarkably well with the experiment, 0.8±0.2±0.1
MeV and 8.7± 1.0± 0.8 MeV, respectively. It is instructive to see the origin of the
widths. For this we look at Table 2.6 for the couplings to the different channels.
We can see that for the lower state at 3054 MeV only the ΞcK̄ state is open for
decay, precisely the channel where it has been observed, and the coupling of the
state to this channel is very small. However, for the state at 3091 MeV the Ξ′cK̄
channel is also open, and the coupling to this channel is considerable. Furthermore,
the coupling to ΞcK̄ is bigger than before and there is more phase space for decay.

Next we look for the states of JP = 3/2− from the pseudoscalar-baryon(3/2+) in-
teraction. In Table 2.4 we see that the pseudoscalar-baryon(3/2+) states do not cou-
ple to vector-baryon and we can separate two blocks, the channels Ξ∗c K̄, Ω∗c η, Ξ∗D
and ΞD∗, Ξc K̄

∗, Ξ′c K̄
∗. The first three channels in s-wave give rise to JP = 3/2−,

while the other three give rise to JP = 1/2−, 3/2−, degenerated in our approach.
We then separate these two sets of states.

In Table 2.7 we show the results for JP = 3/2− for different values of the cutoff.
We see that we get two poles. Yet, if we choose the same cutoff as in the JP = 1/2−
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Table 2.6: The coupling constants to various channels for the poles in the JP = 1/2−

sector, with qmax = 650 MeV, and giG
II
i in MeV.

3054.05 + i0.44 ΞcK̄ Ξ′cK̄ ΞD Ωcη ΞD∗ ΞcK̄
∗ Ξ′cK̄

∗

gi −0.06 + i0.14 1.94 + i0.01 −2.14 + i0.26 1.98 + i0.01 0 0 0
giG

II
i −1.40− i3.85 −34.41− i0.30 9.33− i1.10 −16.81− i0.11 0 0 0

3091.28 + i5.12 ΞcK̄ Ξ′cK̄ ΞD Ωcη ΞD∗ ΞcK̄
∗ Ξ′cK̄

∗

gi 0.18− i0.37 0.31 + i0.25 5.83− i0.20 0.38 + i0.23 0 0 0
giG

II
i 5.05 + i10.19 −9.97− i3.67 −29.82 + i0.31 −3.59− i2.23 0 0 0

sector we find a mass of 3125 MeV and zero width for the lowest state. As we
can see, the mass is smaller than all the thresholds in Table 2.2, hence it does not
decay into them. To decay into ΞcK̄, where it has been observed, we would need
the exchange of vector mesons in p-wave, which give rise to a small width. We can
clearly associate the state found with the Ωc(3119) observed experimentally, which
has a width of 1.1± 0.8± 0.4 MeV. The agreement is also remarkable.

Table 2.7: Poles in JP = 3/2− sector from pseudoscalar-baryon(3/2+) interaction.
(Units: MeV).

qmax 600 650 700 750 800
3134.39 3124.84 3112.83 3099.2 3084.52

3316.48 + i0.14 3290.31 + i0.03 3260.42 + i0.08 3227.34 + i0.15 3191.13 + i0.22

In Table 2.8 we show the couplings of the states to the coupled channels of
Table 2.2. We can see that the state at 3125 MeV couples strongly to Ξ∗c K̄ and
Ω∗c η, more strongly to Ξ∗c K̄. The upper state couples very strongly to Ξ∗D.

Table 2.8: The coupling constants to various channels for the poles in the JP = 3/2−

sector, with qmax = 650 MeV, and giG
II
i in MeV.

3124.84 Ξ∗cK̄ Ω∗cη ΞD∗ ΞcK̄
∗ Ξ∗D Ξ′cK̄

∗

gi 1.95 1.98 0 0 −0.65 0
giG

II
i −35.65 −16.83 0 0 1.93 0

3290.31 + i0.03 Ξ∗cK̄ Ω∗cη ΞD∗ ΞcK̄
∗ Ξ∗D Ξ′cK̄

∗

gi 0.01 + i0.02 0.31 + i0.01 0 0 6.22− i0.04 0
giG

II
i −0.62− i0.18 −5.25− i0.18 0 0 −31.08 + i0.20 0

For the vector-baryon states with JP = 1/2−, 3/2− we choose the same cutoff
qmax = 650 MeV that we have chosen in the former cases and find three states that
we show in Table 2.9 together with the couplings to each channel.

The first state obtained has zero width and couples mostly to ΞD∗ while the
second and third ones have very small widths and couple mostly to Ξc K̄

∗ and
Ξ′c K̄

∗, respectively. The widths could be bigger if we had considered vector-baryon
transitions to pseudoscalar-baryon but we argued that they were small in any case
and neglected them in our study.

It is interesting to compare our results with those of Ref. [2.62]. The main
feature is that the results obtained are remarkably similar. In Ref. [2.62] two states
of JP = 1/2− are also found that compare well with the Ωc(3050) and Ωc(3090),
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Table 2.9: The coupling constants to various channels for the poles in JP =
1/2−, 3/2− stemming from vector-baryon interaction with qmax = 650 MeV, and
giG

II
i in MeV.

3221.98 ΞD∗ Ξc K̄
∗ Ξ′c K̄

∗

gi 6.37 0.59 −0.28
giG

II
i −29.29 −4.66 1.62

3360.37 + i0.20 ΞD∗ Ξc K̄
∗ Ξ′c K̄

∗

gi −0.11− i0.12 1.31− i0.03 0.03 + i0.01
giG

II
i 2.12 + i0.48 −26.04 + i0.36 −0.26− i0.06

3465.17 + i0.09 ΞD∗ Ξc K̄
∗ Ξ′c K̄

∗

gi −0.01 + i0.06 0.01− i0.01 1.75 + i0.01
giG

II
i −0.84− i0.23 0.17 + i0.24 −32.29− i0.08

as we have found here. The width of the second state is about 17 MeV, while we
get 10 MeV, closer to the experimental value. In Ref. [2.62] two sets of subtraction
constants (cutoffs) are used and in one of them the width of this state is 12 MeV,
at the expense of using a somewhat small cutoff in the Ξc K̄ decay channel of 320
MeV. Even then, the main channels and the strengths of the couplings are similar
to ours.

In Ref. [2.62] the compositeness magnitude −g2 ∂G/∂
√
s is evaluated for all

channels. This magnitude provides the probability to find bound channels [2.24,
2.75,2.76] and for the case of open channels it gives the integral of the wave functions
squared with a given prescription of the phase [2.77]. The magnitude g G that we
calculate gives the wave function at the origin of each channel the resonance couple
to [2.24]. Yet, there is a correspondence in these two magnitudes, and we find that
when −g2 ∂G/∂

√
s is large for some channel in Ref. [2.62], so is g G in our case.

The pseudoscalar-baryon(3/2+) states are not considered in Ref. [2.62] and, thus,
the states that we get in Table 2.7 are new. As to the vector-baryon(1/2+) states
we obtain three new states, two of them in qualitative agreement with Ref. [2.62].
In Ref. [2.62] two states were found at 3231 MeV and 3419 MeV, that couple mostly
to ΞD∗ and Ξ′c K̄

∗, respectively. We also find two states, at 3222 MeV and 3465
MeV, which also couple mostly to ΞD∗ and Ξ′c K̄

∗, respectively, as in Ref. [2.62],
plus a new intermediate state at 3360 MeV that couples mostly to Ξc K̄

∗.
As to the results of Ref. [2.39], the bindings obtained there, in the absence of

any experimental data, gave rise to bound Ωc states with more binding than here.
It would be interesting to have a new look in that framework under the light of the
new experimental information 1.

The basic input of our calculations are the Vij transition potentials of Eq. (2.62),

and the terms are proportional to
1

f 2
π

. We estimate uncertainties in the following

way. We increase f 2
π by 10% and readjust the cutoff to obtain the same energy of

the first state (going from qmax = 650 MeV to 694 MeV), and then we get the results
of Table 2.10. As we can see, the changes in the masses and widths are small. The

1 After completion of this work, this calculation has been performed [2.82]. The results agree
qualitatively with experiment, but not as quantitatively as in our case.
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difference in the masses are always smaller than 5 MeV, and for the three states that
we compare with experiment the changes are even smaller. The widths also change
a bit, but the width of the widest state only changes from 10.24 MeV to 11.82 MeV,
and the others are still very small and compatible with experiment within errors.

Table 2.10: Dependence of the results on the value of fπ.

J = 1/2 fπ = 93 MeV and qmax = 650 MeV fπ = 97.6 MeV and qmax = 694 MeV
Pole 1 3054.05 + i0.44 3054.05 + i0.70
Pole 2 3091.28 + i5.12 3087.24 + i5.91

J = 3/2 fπ = 93 MeV and qmax = 650 MeV fπ = 97.6 MeV and qmax = 694 MeV
Pole 1 3124.84 3125.71
Pole 2 3290.31 + i0.03 3284.73.24 + i0.05

J = 1/2, 3/2 fπ = 93 MeV and qmax = 650 MeV fπ = 97.6 MeV and qmax = 694 MeV
Pole 1 3221.98 3216.98
Pole 2 3360.37 + i0.20 3361.28 + i0.18
Pole 3 3465.17 + i0.09 3469.04 + i0.07

2.2.4 Conclusions

We have studied Ωc states which are dynamically generated from the interaction of
meson-baryon in the charm sector. The interaction is obtained using an extension
of the local hidden gauge approach with the exchange of vector mesons. We show
that the dominant terms come from exchange of light vector mesons, leaving the
heavy quarks as spectators. This has two good consequences: first we can map the
interaction to what happens in SU(3) using chiral Lagrangians, and second, the fact
that the heavy quarks are spectators in the interaction guarantee that the dominant
terms in the (1/mQ) counting fulfill the rules of heavy quark symmetry.

We obtain two states with JP = 1/2− which are remarkably close in mass and
width to the experimental states Ωc(3050), Ωc(3090). In addition, we also obtain a
3/2− state with zero width at 3125 MeV, which can be associated to the experimental
Ωc(3119) that also has a width of the order or smaller than 1 MeV.

The agreement of the results with experiment is remarkable. It would be very
interesting to see the next experimental steps to determine the spin-parity of these
states, which could serve to discriminate between present models where there are
large discrepancies concerning the spin-parity assignment.

2.3 The Ωb → Ωc decay and the molecular Ωc

states

In this section we present the follow up article of Ref. [2.3], which is based on the
work presented in the previous section 2.2, from Ref. [2.1]. We discuss the reaction
Ωb → (Ξc K̄) π−, in which the new Ωc states [2.2] could be observed. The predictions
presented here could be confronted with future experiments from the LHCb and
other collaborations.
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2.3.1 Introduction

The recent discovery of five narrow Ωc states by the LHCb collaboration [2.2] in pp
collisions, also recently confirmed by the Belle collaboration [2.78] in e+e− collisions,
motivated an increasing amount of theoretical work with different proposals for their
structure. In particular, the correct assignment of quantum numbers JP remains an
open question and it could be the key to understand the nature of these states.

Predictions using quark models for such states and related ones were done in
Refs. [2.25–2.37, 2.40–2.42, 2.79, 2.80]. Mostly proposing a diquark-quark structure
(ss)c. Other methods have also been employed to study these states, as QCD Sum
Rules in Refs. [2.50–2.56] and Lattice QCD in Ref. [2.57]. Pentaquark options have
been suggested in Refs. [2.44–2.49]. Some works have emphasized the value of decay
properties to obtain information on the nature of these states [2.58–2.60] and a
discussion on the possible quantum numbers was done in Ref. [2.61].

On the other hand, some of these states could actually be pentaquark-like molecules,
dynamically generated from meson-baryon interactions in coupled channels with
charm C = 1, strangeness S = −2 and isospin I = 0. Predictions in the molec-
ular picture using coupled channels of meson-baryon interactions were done in
Refs. [2.16, 2.38, 2.39]. In this picture the interaction in S-wave of baryons with
spin-parity JP = 1/2+ or JP = 3/2+ with pseudoscalar mesons leads to meson-
baryon systems with JP = 1/2− and JP = 3/2−, respectively. Channels with vector
mesons instead of pseudoscalars can also be included resulting in JP = 1/2−, 3/2−

and 5/2−. However, most of the recent works adopting this picture manage to relate
two or three of the new Ωc states to meson-baryon systems with JP = 1/2− and
JP = 3/2−, dominated by the pseudoscalar-baryon channels.

In Ref. [2.39] an SU(6)lsf × HQSS model (HQSS stands for heavy quark spin
symmetry) extending the Weinberg-Tomozawa πN interaction was employed to
make a systematic study of many possible meson-baryon systems. In Ref. [2.82]
the renormalization scheme of Ref. [2.39] was reviewed, performing an update of the
results of the C = 1, S = −2 and I = 0 sector in view of the new experimental
data. The updated results indicate that one can relate the Ωc(3000) to a state with
JP = 1/2− and the Ωc(3050) to another state with JP = 3/2−, with hints that the
Ωc(3090) or Ωc(3119) could also have JP = 1/2−.

In Ref. [2.38] the molecular picture was developed using SU(4) symmetry to
extend the interaction described by vector meson exchange in the local hidden gauge
approach. This work was also reviewed under the light of the new experimental data
and an updated study was made in Ref. [2.62], where it was shown that the Ωc(3050)
and Ωc(3090) can be both related to meson-baryon resonances with JP = 1/2−,
stemming from pseudoscalar-baryon(1/2+) interaction.

A similar approach which also describes the meson-baryon interaction through
vector meson exchange was recently developed in Ref. [2.1], using an extension of the
local hidden gauge approach [2.9–2.13] and taking into account the spin-flavor wave
functions of the baryons, which was presented on the previous section 2.2. In the
present work we will follow this description of the Ωc states. In section 2.2.3 we saw
that a remarkable agreement of both masses and widths of the Ωc(3050) and Ωc(3090)
was obtained from the pseudoscalar-baryon(1/2+) interaction, in accordance with
results of Ref. [2.62]; also an extra state in the sector of pseudoscalar-baryon(3/2+)
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could be related to the Ωc(3119), therefore assigning to it the quantum numbers
JP = 3/2−.

Other works on the molecular picture followed [2.83–2.85]. In Ref. [2.83] the
authors propose that the broad structure found around 3188 MeV [2.2,2.78] could be
related with a molecular ΞD state due to the proximity of its threshold around 3185
MeV. As we saw in the previous section 2.2.3, in our approach [2.1] the molecular
state dominated by the ΞD channel corresponds to the Ωc(3090).

In the present work we propose the experimental study of these new states
through the decay of Ω−b baryons, as suggested in Ref. [2.86]. The mass and life-
time of the Ω−b were recently measured by the LHCb collaboration [2.87], obtaining
results compatible with the previous measurements of the same collaboration [2.88]
and also with the ones of the CDF collaboration [2.89], but not with the results of
the D0 collaboration [2.90]. We shall adopt the mass value listed by the Particle
Data Group [2.91], which is quite close to the most recent measurement of LHCb.

We will discuss the Ω−b → (Ξ+
c K

−)π− decay and how the coupled channels
approach naturally account for the dynamical generation of the Ωc states from the
hadronization that takes place after the conversion of the b quark into a c quark.
Then we show the results of how these two states would be seen in the Ω−b decay
if the molecular picture of Ref. [2.1] is correct, providing solid predictions for the
experimental measurements that could be performed by the LHCb collaboration
[2.86] in the future, which would provide useful information to distinguish states
with different structures and quantum numbers.

2.3.2 The Ωc(3050) and Ωc(3090) in the molecular picture

In the previous section 2.2 a thorough discussion of the work of Ref. [2.1] was
made about the meson-baryon interaction due to the exchange of vector mesons.

While vector-baryon contributions were also considered, it was shown there
that these states decouple to a good degree of approximation from pseudoscalar-
baryon(1/2) states, and using the channels ΞcK̄, Ξ′cK̄, ΞD, Ωcη the states Ωc(3050)
and Ωc(3090) could be reproduced, both the mass and width.

A third state, the Ωc(3119), could also be related with another pseudoscalar-
baryon(3/2) system. However, since in our approach this state does not mix with
the channels of J = 1/2, its decay into ΞcK̄ calls for additional mechanisms with
the exchange of pseudoscalars, which go beyond the scope of our approach here.

On the present work we will study the mechanism where these two states, the
Ωc(3050) and Ωc(3090), can be generated in the Ωb decay. In Table 2.11 we show
the main results we will need.

2.3.3 The Ω−b → (Ξc K̄ /Ξ′c K̄/ΞD)π− decays

Let us see how the Ωc(3050) and Ωc(3090) are produced in this reaction within
our picture. Since the resonances come from the interaction of pseudoscalar-baryon
states shown in Table 2.11, one has to hadronize the three quarks which come from
the b→ c transition and the spectator ss quarks (see Fig. 2.7). In the hadronization
we introduce q̄q with the quantum numbers of the vacuum, and two options are
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Table 2.11: Pole position [MeV], couplings gi [dimentionless] and wave functions at
the origin giG

II
i [MeV] from pseudoscalar(0−)-baryon(1/2+) interaction describing

the Ωc(3050) and Ωc(3090).

3054.05 + i0.44 ΞcK̄ Ξ′cK̄ ΞD Ωcη
gi −0.06 + i0.14 1.94 + i0.01 −2.14 + i0.26 1.98 + i0.01

giG
II
i −1.40− i3.85 −34.41− i0.30 9.33− i1.10 −16.81− i0.11

3091.28 + i5.12 ΞcK̄ Ξ′cK̄ ΞD Ωcη
gi 0.18− i0.37 0.31 + i0.25 5.83− i0.20 0.38 + i0.23

giG
II
i 5.05 + i10.19 −9.97− i3.67 −29.82 + i0.31 −3.59− i2.23

possible: insertion of q̄q between the c and one s-quark, as shown in the figure, or
insertion between the two s-quarks. In this latter case the three final quarks (leaving
the π− apart) have JP = 1/2+ and hence the state has positive parity. With one
pseudoscalar, JP = 0−, and a baryon of JP = 1/2+ in the final state, this requires
a P -wave, but the molecules are produced in S-wave and this mechanism is hence
inoperative to produce these resonances. In the case of hadronization between the
c- and s-quarks, the c quark can be produced in L = 1 after the weak vertex and
the negative parity is restored. Then, the L = 1 excited c-quark is deexcited via
hadronization, where the q̄q is produced in a 3P0 state [2.92–2.94].

b

π−

d
ū

s
s

c

s
s

ūu + d̄d + s̄s

Figure 2.7: Ω−b decay at quark level with emission of a π− and subsequent hadroniza-
tion.

Looking at the flavor of the quarks, the hadronization proceeds as follows:

css→ c (ūu+ d̄d+ s̄s) ss ≡ H, (2.65)

H =
∑
i

c q̄iqi ss ≡
∑
i

Φ4i qiss, (2.66)

where in the last step we have written the (qq̄) matrix

(qq̄) =


uū ud̄ us̄ uc̄
dū dd̄ ds̄ dc̄
sū sd̄ ss̄ sc̄
cū cd̄ cs̄ cc̄

 (2.67)
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in terms of their meson components by means of the matrix Φ in Eq. (2.39),
Then replacing the cq̄ meson terms we get

H = D0 uss+D+dss+ . . . (2.68)

where we have already neglected the heavy combination of D+
s sss which could

only contribute to states with JP = 3/2− since sss corresponds to the Ω−, and
furthermore its mass is far away from the range of energies studied here.

It is easy to see that, since ss has isospin zero, the combination D0 uss+D+dss
has isospin zero 2 , and uss, dss have only overlap with Ξ0 and Ξ−, respectively.
Hence the combination of Eq. (2.68) can be written up to a global factor by

H = |ΞD, I = 0〉 = − 1√
2

∣∣∣Ξ0D0 − Ξ−D+
〉
, (2.69)

where we have absorbed the global minus sign when we changed to the isospin zero
combination in the order baryon-meson.

Now we proceed to construct the amplitude of the process Ω−b → (Ξc K̄) π−. It
is instructive to first look at the process Ω−b → (ΞD) π−, as depicted in Fig. 2.8.
From Eq. (2.69) we see that after the emission of a pion, the hadronization involving
the css quarks generates a ΞD pair in isospin zero. Thus we can write this process
as the sum of a tree-level contribution and the final state interaction of ΞD going
through the molecular states of Table 2.11. This information is contained in the
diagonal t matrix element tI=0

ΞD→ΞD, the same t matrix from Ref. [2.1] used to search
for the poles, as we saw in section 2.1.3 and 2.2.

Ωb Ωb

π−

Ξ

D

π−

Ξ

D

+ Ξ

D

Figure 2.8: Ω−b → π−ΞD process. Tree-level (left) plus ΞD rescattering (right).

Then for the tree-level contribution (left diagram of Fig. 2.8) we simply write
ttree = VP , where VP contains all information related to the Ω−b weak decay and
dynamics of the hadronization, a common unknown factor in all process we will
investigate. On the other hand, for the ΞD rescattering (right diagram of Fig. 2.8)
we will have

tloop = VP GΞD

[
Minv(ΞD)

]
tI=0
ΞD→ΞD

[
Minv(ΞD)

]
, (2.70)

2 Recall the isospin doublets:

D =

(
D+

−D0

)
, Ξ =

(
Ξ0

−Ξ−

)
.
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where GΞD is the propagator of the baryon-meson loop used in the Bethe-Salpeter
equation, as in Eqs. (2.32) and (2.33), with V the transition potential from Eq. (2.62)
as we saw in section 2.2.2, calculated in Ref. [2.1]. Then the amplitude of the process
Ω−b → π−ΞD is given by

tΩ−b →π−ΞD = VP

[
1 +GΞD(MΞD) tI=0

ΞD→ΞD(MΞD)
]
, (2.71)

where we introduced the compact notation MΞD for Minv(ΞD). With this amplitude
we can write the ΞD invariant mass distribution

dΓ

dMinv(ΞD)
=

1

(2π)3

MΞ

MΩ−b

pπ− p̃D

∣∣∣tΩ−b →π−ΞD

∣∣∣2 , (2.72)

where we adopt the Mandl-Shaw normalization for fermion fields and pπ− is the pion
momentum in the Ω−b rest frame for the Ω−b → (ΞD) π− decay

pπ− =
λ1/2

(
M2

Ω−b
,m2

π,M
2
inv(ΞD)

)
2MΩ−b

, (2.73)

and p̃D is the D momentum in the ΞD rest frame

p̃D =
λ1/2

(
M2

inv(ΞD),m2
D,m

2
Ξ

)
2Minv(ΞD)

. (2.74)

For the Ω−b → (Ξc K̄) π− process there is no tree-level contribution, since the
hadronization only produces a ΞD pair, as in Eq. (2.69). Then the only contribution
comes from the diagram in Fig. 2.9.

Ωb

π−

Ξc

K̄

Ξ

D

Figure 2.9: Ω−b → π−ΞcK̄ process through ΞD rescattering.

Due to our coupled channels approach, the transition ΞD → ΞcK̄ is already
contained in the t matrix and the production of ΞcK̄ (also in isospin zero) appears
naturally. The corresponding amplitude will be

tΩ−b →π−ΞcK̄
= VP GΞD(MΞcK̄) tΞD→ΞcK̄(MΞcK̄), (2.75)
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where tΞD→ΞcK̄ is the transition amplitude of ΞD → ΞcK̄, from the same t matrix.
Then the ΞcK̄ invariant mass distribution is also analogous,

dΓ

dMinv(ΞcK̄)
=

1

(2π)3

MΞc

MΩ−b

pπ− p̃K̄

∣∣∣tΩ−b →π−ΞcK̄

∣∣∣2 , (2.76)

where pπ− is the pion momentum in the Ω−b rest frame (now for Ω−b → (Ξc K̄) π−)
and p̃K̄ is the kaon momentum in the Ξc K̄ rest frame, analogous to Eqs. (2.73) and
(2.74).

Analogously, we can also calculate the invariant mass distribution for the final
state Ξ′cK̄, replacing Ξc by Ξ′c in the previous equations and taking the matrix
element of the t matrix corresponding to the transition ΞD → Ξ′cK̄.

It is also interesting to look at the case of coalescence, where the ΞD pair merges
into the resonance regardless of the final decay channel, as depicted in Fig. 2.10.

Ωb

π−

Ri

Ξ

D

Figure 2.10: Resonance coalescence in the Ω−b → π−Ri process through ΞD rescat-
tering, where Ri is the Ωc(3050) or Ωc(3090).

The value of the amplitude in the process Ω−b → π−Ri, where Ri is one of the
molecular states of Table 2.11, is proportional to the coupling of that resonance to
the ΞD channel,

tΩ−b →π−Ri
= VP GΞD(MRi) gRi,ΞD , (2.77)

where the propagator is calculated at the resonance mass MRi . With this quantity
we can calculate the equivalent of the integrated mass distribution around the Ri

resonance, which does not depend on its decay mode,

ΓΩ−b →π−Ri
=

1

2π

MRi

MΩ−b

p′π−
∣∣∣tΩ−b →π−Ri(MRi)

∣∣∣2 , (2.78)

where p′π− is the pion momentum in the Ω−b rest frame for Ω−b → π−Ri.
Let us make some further remarks concerning the Ωb decay process. As we have

discussed, the mechanism of Figs. 2.8 or 2.9 produces the resonances Ωc(3050) and
Ωc(3090). These resonances are generated in Ref. [2.1], as discussed in section 2.2,
through the interaction of the coupled channels ΞcK̄, Ξ′cK̄, ΞD and Ωcη. This
approach takes into account the transition from one channel to another, and all of
them participate in the generation of the resonances. In principle one could create
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these resonances initiated by any of the channels. However, the discussion leading
to Eq. (2.69) tells us that the weak decay mechanism filters the primary production
of the ΞD channel and the resonances are only initiated by this channel. This does
not mean that the other channels do not play a role here. Their contribution is
implicit in the tΞD→final transition amplitudes which contain all channels through
the terms VΞD→iGi Vi→final, VΞD→iGi Vij Gj Vj→final, etc, that are summed up by the
Bethe-Salpeter equation.

One can, however, see if there is a way to produce, for instance, ΞcK̄ in the first
step of the decay. Topologically this is possible producing the hadronization between
the ss quarks in Fig. 2.7. Indeed, taking the ūu component of the hadronization
one obtains the cus baryon, corresponding to Ξc and ūs that corresponds to K−.
However, in the spectator picture of Fig. 2.7 this is not possible for other reasons,
as we pointed above. Indeed, since the c quark is not affected by the hadronization
and belongs to Ξc at the end, it is a state 1/2+ in its ground state. But the initial
ss component is a spectator in the weak decay and both quarks are in 1/2+ and
ground state. After the weak decay and prior to the hadronization we have c, s, s all
in 1/2+ and in their ground state, and have total positive parity. This state cannot
lead to the 1/2− Ωc(3050), Ωc(3090) resonances, or equivalently meson-baryon in
S-wave.

2.3.4 Results

It is interesting to see how these processes show the importance of the coupled
channels. The decay of the Ωc states into ΞD is kinematically forbidden below
the corresponding threshold at 3185 MeV, then we cannot see the corresponding
peaks in the ΞD invariant mass distribution, but we can see their indirect effect,
both from the meson-baryon loop in Eq. (2.71) and from the amplitude tI=0

ΞD→ΞD.
The corresponding invariant mass distribution, Eq. (2.72), is shown in Fig. 2.11 by
the solid line. To compare with the case where only the tree-level contributes, we
remove tloop and keep only ttree (keeping only the term 1 in the bracket of Eq. (2.71)),
normalizing the curve such that it has the same area as the solid curve in the energy
range shown, which is plotted as the dashed line in Fig. 2.11. We should note that,
should we have produced the ΞD in P -wave at tree-level, hadronizing with q̄q within
the two s-quarks, we would find a contribution to dΓ/dMinv(ΞD) in Eq. (2.72) with
an extra p̃2

D factor, which changes the shape of the dashed line in Fig. 2.11 drastically
and is easily distinguishable from an S-wave.

If we look at π−ΞcK̄ in the final state, the ΞcK̄ threshold is at 2965 MeV,
and then we can see clearly the peaks of the Ωc states in the ΞcK̄ invariant mass
distribution. According to Eq. (2.69), we expect only ΞD production from the
hadronization that occurs right after the Ω−b decay, which means we have no tree-
level contribution for ΞcK̄ production. However, the transition to ΞcK̄ through
off-shell ΞD loops arises naturally from the coupled channels approach. In fact,
both the Ωc(3050) and Ωc(3090) couple strongly to ΞD (see Table 2.11), and their
formation from the ΞD state formed in the first step of the Ω−b decay with subsequent
transition to ΞcK̄ (going through the ΞD virtual state) is not only possible, but
expected.
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Figure 2.11: ΞD invariant mass distribution from Eq. (2.72). Solid line: using the
complete amplitude of Eq. (2.71). Dashed line: removing the GΞD t

I=0
ΞD→ΞD term

(only tree-level contribution) and normalizing such that both curves have the same
area.

In Fig. 2.12 we show the ΞcK̄ invariant mass distribution. The only unknown
quantity is the global factor VP , common to all amplitudes we investigate here. The
ratio between the intensity of each peak does not depend on VP , so all ratios are
predictions that could be confronted with future experiments. We can see that the
intensity of the Ωc(3050) peak is about 65% higher than for the Ωc(3090) peak.

The width of the states in Fig. 2.12 is an output of the coupled channels dynamics
in Ref. [2.1] to generate the Ωc states. However, as seen in Fig. 2.9, the strength
of these peaks is related to the product of the couplings of the resonances to ΞD
and ΞcK̄ and hence a direct consequence of the way in which the reaction proceeds
according to our picture.

Note that we are using the same normalization for all the reactions, hence the
ratio of the strength at the peaks in Fig. 2.12 to the strength of the ΞD mass
distribution (solid line) in Fig. 2.11 is also a prediction. In arbitrary units, the ΞD
distribution has a maximum of about 125 around 3240 MeV, whereas in the ΞcK̄
distribution the Ωc(3050) and Ωc(3090) peaks have an intensity of about 15.50×103

and 9.45 × 103, respectively, therefore we predict that the ΞcK̄ distribution in the
vicinity of the resonances peaks is roughly two orders of magnitude higher than that
of the ΞD distribution.

Cusp effects in the ΞcK̄ distribution also appear at the Ξ′cK̄ and ΞD thresholds at
3074 MeV and 3185 MeV, respectively, but their intensity is very small compared to
the peaks of the resonances and cannot be seen clearly in Fig. 2.12. Then, according
to our predictions they should not be seen in experiment.

We also notice that apparently no significant interference pattern is seen between
the two states in Fig. 2.12, even though they have the same quantum numbers, a
feature that also agrees with the fit performed by the LHCb collaboration [2.2,2.40].
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Figure 2.12: ΞcK̄ invariant mass distribution from Eq. (2.76).

As for the Ξ′cK̄ invariant mass distribution, only the Ωc(3090) can be seen, as
shown in Fig. 2.13, since this channel is also open for the decay of this state, whereas
the Ωc(3050) is below the threshold of Ξ′cK̄.

Figure 2.13: Ξ′cK̄ invariant mass distribution from Eq. (2.76), replacing Ξc by Ξ′c
and taking tΞD→Ξ′cK̄

.

Again we can compare the intensity of the peaks. In the Ξ′cK̄ distribution the
Ωc(3090) peak has an intensity of 3.86× 103, which is about 40% of the intensity it
has in the ΞcK̄.

Finally, it is interesting to compare the results of ΓΩ−b →π−Ri
, given by Eq. (2.78),

with the integrated invariant mass distribution of Eq. (2.76) around the peak of each
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resonance, ∫
Ri

dΓ

dMinv(ΞcK̄)
dMinv(ΞcK̄). (2.79)

In Table 2.12 we show the results of Eqs. (2.78) and (2.79) for the Ωc(3050) and
Ωc(3090), and for the latter we also show the integrated Ξ′cK̄ distribution.

Table 2.12: Comparison between integrated invariant mass distributions around
each resonance and the corresponding coalescence (arbitrary units).

State Ωc(3050) Ωc(3090)
Pole [MeV] 3054.05 + i0.44 3091.28 + i5.12

Coalescence Eq. (2.78) 21289 215237
Channel ΞcK̄ ΞcK̄ Ξ′cK̄

Interval [MeV] [3049, 3057] [3057, 3120] [3074, 3120]
Integral Eq. (2.79) 21344 133482 51074

From these results we can draw some interesting conclusions. Let us look first
at the Ωc(3050). In Table 2.11 we can see that this state is dominated by the Ξ′cK̄
channel, and also has sizable contributions from the higher channels ΞD and Ωcη.
However, the pole is at 3054 MeV, which is 20 MeV below the Ξ′cK̄ threshold, so
the only open channel is ΞcK̄, to which the resonance couples very weakly and the
phase space available is only about 90 MeV. This feature explains two points: 1)
The narrowness of the state, whose upper limit of the width reported by the LHCb
collaboration is 0.8± 0.2± 0.1 MeV [2.2], in excellent agreement with the result of
Ref. [2.1] with Γ = 2 × Im(Ri) = 0.88 MeV; 2) The good agreement of ΓΩ−b →π−Ri

,

21289, given by Eq. (2.78), with the integrated invariant mass distribution around
the resonance peak, 21344, given by Eq. (2.79) (the small difference is irrelevant
and comes essentially from the choice of the interval of integration). This happens
because the state is very narrow and the only channel open for decay is the ΞcK̄,
so the value we obtain from the coalescence, which is independent of the decay
channel, matches the value obtained from the integration over the only channel
available (ΞcK̄), as it should be.

On the other hand, the Ωc(3090) is dominated by the ΞD channel, with some
contribution from the other channels. Even though this state couples very strongly
to ΞD, it is almost 100 MeV below the respective threshold. It can only decay to
ΞcK̄ and Ξ′cK̄. In both cases the coupling is small, and in the latter channel the
phase space available is less than 20 MeV (see Table 2.11). This again, explains two
main features: 1) The narrowness, with a width not so small as in the case of the
Ωc(3050), but still very narrow, since the decay into ΞcK̄ is reasonable, with more
than 120 MeV of phase space available, although the coupling to that channel is
weak. The LHCb reports a width of 8.7±1.0±0.8 MeV [2.2], in fair agreement with
the result of Ref. [2.1] of 10.24 MeV; 2) The fact that the integrated invariant mass
distribution around the peak, 133482 in the ΞcK̄ distribution, is about 2/3 of the
total given by the coalescence, 215237, which is also expected, since in Eq. (2.79) we
are integrating only in the ΞcK̄ channel, whereas this state can also decay into Ξ′cK̄.
The sum of both integrals, in ΞcK̄ and Ξ′cK̄, is 184556, close to the total given by
the coalescence, but still below. This is also expected since Eq. (2.78) is actually an
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approximation that is valid in the limit of zero width, which works pretty well for
the Ωc(3050) but is not so good for the Ωc(3090), with already 10 MeV of width.

As a prediction we can also state, based on the coalescence results, that the ratio
of the Ωc(3050) over the Ωc(3090) production is about 10% in the Ω−b decay:

ΓΩ−b →π−Ωc(3050)

ΓΩ−b →π−Ωc(3090)

≈ 10%. (2.80)

Another point worth discussing is the possibility to have some component of
these resonances of the 3q type and not molecular. We have considered Ωc states
of pure molecular nature. In the real world, if allowed by quantum numbers, the
mixing with 3q components with the same quantum numbers is unavoidable. The
question is how large these components are. In our work we are implicitly assuming
that they are negligible. The issue of the mixing of 3q and molecular components has
received some attention [2.95–2.97], and present lattice results [2.98] are helping in
these studies through proper analysis, as done in Ref. [2.97]. These studies show that
in cases where the dynamical coupled channels unitary approach leads to molecular
states, the 3q components are indeed small. Yet, the question here is whether we can
show how the present results are stable under the assumption of small 3q components
for the Ωc states. An answer for this problem is already available in the thorough
study carried out in Ref. [2.99].

In that work a study similar to the present one is carried out for the B0
s →

J/Ψf1(1285) decay. The J/Ψ plays the role of the pion here and the f1(1285)
state, assumed to be a K∗K̄ molecule, plays the role of the Ωc resonances here. In
Ref. [2.99] a study was done taking into account the f1(1285) as a pure molecule
or heaving a probability z to be a qq̄ state. The details of the issue are shown in
section IX of Ref. [2.99] where one can see that for values of z ≈ 0.2 the changes in
ratios of magnitudes are smaller than 20% and they are also moderate for values of
z ≈ 0.4. These results tell us that the results obtained here are solid in this respect,
since changes of 20% in the results obtained are not relevant for the prospective
work carried out here.

2.3.5 Conclusions

We have studied the weak decay Ω−b → (Ξ+
c K

−) π−, in view of the narrow Ωc

states recently measured by the LHCb collaboration and later confirmed by the Belle
collaboration. Based on the previous work where the Ωc(3050) and Ωc(3090) are de-
scribed as meson-baryon molecular states, using an extension of the local hidden
gauge approach in coupled channels, with results in remarkable agreement with ex-
periment, we have investigated the ΞD, ΞcK̄ and Ξ′cK̄ invariant mass distributions,
and discussed the role of coupled channels in the process. Predictions that could be
confronted with future experiments are presented, providing useful information that
could help to determine the quantum numbers and nature of these states. Since Ω−b
baryons have already been observed in several experiments, two of them performed
by the LHCb collaboration, the present work should encourage such study in the
near future, which would certainly bring novel key information for the understanding
of these new states.
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2.4 Predictions for molecular Ωb states

In this section we present the work of Ref. [2.4] with predictions for molecular
Ωb states using the same approach of Ref. [2.1] in section 2.2 for the Ωc states.

2.4.1 Introduction

The study of baryon states with charm or beauty is capturing much attention in
hadron physics recently [2.48, 2.100–2.104]. The finding of baryon states of hidden
charm (pentaquarks) in Refs. [2.105, 2.106] certainly stimulated this field, but this
was followed by another relevant discovery, with the observation of five new Ωc

states [2.2]. This discovery stimulated much theoretical work trying to describe
these states, as we saw in section 2.2 and Ref. [2.1]. From these we specially refer
to Ref. [2.62] which uses a dynamics closely related to ours.

The Ωb states have not been the subject of much study. Experimentally the
PDG [2.91] quotes the ground state JP = 1

2

+
and no more states. The JP = 3

2

+

excited state has not yet been observed. Theoretical work is also scarce, but there
are predictions for 1

2

−
, 3

2

−
, 5

2

−
, 1

2

+
, 3

2

+
, 5

2

+
, 7

2

+
states in different quark models,

relativistic quark model [2.29], non-relativistic quark model [2.26] and QCD sum
rules [2.35, 2.107–2.109]. In this latter line, some recent works make predictions for
the Ωb ground state and the first orbitally and radially excited states, with spin
J = 1/2 and 3/2 [2.50,2.110].

Unlike in the charm sector, no work on Ωb molecular states has been done. The
recent finding of the Ωc states by the LHCb collaboration [2.2], and the steady
work in the search of new states, makes the study of Ωb molecular states relevant
and opportune. The opportunity is even more apparent after the realization in the
works of Refs. [2.1, 2.62] that several of the observed states can be well described
in the molecular picture. In Ref. [2.62] the local hidden gauge formalism is used
to obtain the interaction between mesons and baryons in the charm sector, with
the quantum number of Ωc. The channels considered are ΞcK̄, Ξ′cK̄, ΞD, Ωcη, Ωcη

′

and the interaction proceeds via the exchange of vector mesons, extending the local
hidden gauge Lagrangian [2.11–2.13] to SU(4). Two states of 1

2

−
could be associated

to the Ωc(3050) and Ωc(3090) states of Ref. [2.2], both in energy and approximately
width.

As presented in section 2.2, the work of Ref. [2.1] continues with this line but
does not assume SU(4) for the interaction. Instead, the wave functions of the
charmed baryons in the coupled channels isolate the charm quark and symmetrize
the spin-flavor wave function of the light quarks. The diagonal terms in the transition
potentials between the coupled channels coincide in Ref. [2.62] and Ref. [2.1], but
there are differences in the non-diagonal ones. In addition in Ref. [2.1] the states

Ξ∗cK̄, Ω∗cη, Ξ∗D are considered from where another state of 3
2

−
emerges that can

also be associated to a third state of Ref. [2.2].
In Ref. [2.1] one obtains three states, which can be associated to three states

of Ref. [2.2], and the agreement of masses and widths is good. The success of this
approach to get some of the observed Ωc states stimulates us to use the same idea
and make predictions for Ωb states. The work is simple because all one must do is
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to change a c quark by a b quark, and the matrix elements of the interaction are
formally the same, although some differences appear in the non-diagonal terms due
to the different masses of the hadrons. On the other hand, we can also benefit from
the works of Refs. [2.15, 2.22] which show that to preserve heavy quark symmetry
in the molecular states one should use a common cutoff in the regularization of the
meson-baryon loop functions in the heavy quark sector. An alterative method to
preserve this symmetry is provided in Ref. [2.23]. Given these two ingredients, we feel

confident that the two 1
2

−
states and the 3

2

−
state that come from our approach for

the Ωb should be realistic. We also predict other states at higher masses, analogous
to some states predicted for Ωc which lie in a region of large background and are
more difficult to identify. Ωb states are produced with smaller statistics in LHCb
but they are subject of investigation. With increased luminosity in the next LHCb
runs, the observation of Ωb states will become a state of the art and the comparison
with the predictions done here will shed light on hadron dynamics and the nature
of some hadronic states.

2.4.2 Formalism

We follow closely the formalism of section 2.2.2 by changing a c quark by a b quark.
For the case of Ωc we took the coupled channels from Ref. [2.39] up to an energy
of 3470 MeV, far above the energy of the states seen in Ref. [2.2]. In the present
case we take the corresponding states changing the quark c by the b quark. We take
into account the S-wave interaction of these coupled channels and hence we can
have states with JP = 1

2

−
, 3

2

−
. In Tables 2.13, 2.14 and 2.15 we show these coupled

channels and the corresponding threshold masses 3.

Table 2.13: The pseudoscalar-baryon states with JP = 1
2

−
and their threshold

masses in MeV.

States ΞbK̄ Ξ′bK̄ Ωbη ΞB̄
Threshold 6289 6431 6594 6598

Table 2.14: The pseudoscalar-baryon states with JP = 3
2

−
and their threshold

masses in MeV.

States Ξ∗bK̄ Ω∗bη Ξ∗B̄
Threshold 6451 6619 6813

3The Ω∗b state has not yet been observed. We estimate its mass as follows. In the charm sector,
we have mD∗ −mD = 142 MeV, mΩ∗

c
−mΩc = 71 MeV. Hence the difference of masses between Ω∗c

and Ωc is about one half the one between D∗ and D. We apply the same rule in the b sector and
take mΩ∗

b
−mΩb

' 1
2 (mB∗ −mB) ' 23 MeV. If we assume, following the rules of heavy quark spin

symmetry, that mΩ∗
b
−mΩb

goes as 1
mb

and mΩ∗
c
−mΩc ∼ 1

mc
, then we get mΩ∗

b
−mΩb

' 28 MeV.
We take the average value 25 MeV, hence mΩ∗

b
= 6071 MeV.
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Table 2.15: The vector-baryon states with JP = 1
2

−
, 3

2

−
and their threshold masses

in MeV.

States ΞB̄∗ ΞbK̄
∗ Ξ′bK̄

∗

Threshold 6643 6687 6829

The interaction between these channels at tree level is obtained using the local
hidden gauge (LHG) approach [2.11–2.13] extended to the beauty sector. The in-
teraction is mediated by the exchange of vector mesons, as shown in Fig. 2.14 for
two cases.

The upper vertex in Fig. 2.14 for vector(V)-pseudoscalar(P)-pseudoscalar(P) is
given in terms of the V PP Lagrangian of Eq. (2.9) we saw in section 2.1.2, with
Φ, V the SU(4) matrices for pseudoscalar mesons and the vector mesons with the
quarks u, d, s, b.

P =


1√
2
π0 + 1√

3
η + 1√

6
η′ π+ K+ B+

π− − 1√
2
π0 + 1√

3
η + 1√

6
η′ K0 B0

K− K̄0 − 1√
3
η +

√
2
3
η′ B0

s

B− B̄0 B̄0
s ηb

 ,

(2.81)
where we also include the mixing between η and η′ [2.66], and

V =


1√
2
ρ0 + 1√

2
ω ρ+ K∗+ B∗+

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0 B∗0

K∗− K̄∗0 φ B∗0s
B∗− B̄∗0 B̄∗0s Υ

 . (2.82)

The change of the c quark by the b quark, with the same structure of the wave
functions, has as a consequence that the matrix elements of the transitions are
formally the same up to some small change in the non-diagonal terms that we
discuss below.

As we had for the Ωc states, in the diagonal terms one exchanges light vectors
and the heavy quark (b quark here) is a spectator. In the non-diagonal transitions,
sometimes a B∗s vector is exchanged, instead of ρ, ω, φ in the diagonal terms. Then
these terms are very much suppressed by the mass of the B∗s . In Ref. [2.1], a D∗s was

K−

Ξ0
b (a)

Ξ0
b

K−

ρ, ω, φ

K−

Ξ0
b (b) Ξ0

B−

B∗0
s

Figure 2.14: Vector mesons exchanged in the diagonal transition of K−Ξ0
b → K−Ξ0

b

(a) and non-diagonal one of K−Ξ0
b → B−Ξ0 (b).
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exchanged, and both in Ref. [2.62] and Ref. [2.1] it was found that this was penalized
by a factor about 1/4, as we saw in Eq. (2.64). We follow the same argumentation
and write for the heavy propagator compared with the diagonal case

λ =
−M2

V

q02 − |~q |2 −m2
B∗s

' −M2
V

(mK −mB)2 −m2
B∗s

≈ 0.1 . (2.83)

The lower vertices in Fig. 2.14 for the vector(V)-baryon(B)-baryon(B) couplings
are obtained by writing explicitly the vector mesons and the baryons in terms of
quarks, as it is done in Ref. [2.1]. The wave functions for the baryons are identical
to those used in section 2.2.2 changing the c quark by a b quark. As to the isospin
states (we need only I = 0 to construct Ωb state), we have the isospin multiplets

K̄ =

(
K̄0

−K−
)

; B̄ =

(
B̄0

−B−
)

; Ξ =

(
Ξ0

−Ξ−

)
; Ξ∗ =

(
Ξ∗0

Ξ∗−

)
;

Ξb =

(
Ξ0
b

Ξ−b

)
; Ξ′b =

(
Ξ′ 0b
Ξ′ −b

)
; Ξ∗b =

(
Ξ∗0b
Ξ∗−b

)
;

and the isospin I = 0 states are easily obtained from those and have the same
relative signs as in the charm sector in Eq. (2.52).

Then the transition potentials are given by Eq. (2.62) with the Dij coefficients
given in Tables 2.16, 2.17 and 2.18.

Table 2.16: Dij coefficients for the PB channels with JP = 1
2

−
.

JP = 1/2− ΞbK̄ Ξ′bK̄ ΞB̄ Ωbη

ΞbK̄ −1 0 − 1√
2
λ 0

Ξ′bK̄ −1 1√
6
λ − 4√

3

ΞB̄ −2
√

2
3
λ

Ωbη 0

Table 2.17: Dij coefficients for the PB channels with JP = 3
2

−
.

JP = 3/2− Ξ∗bK̄ Ω∗bη Ξ∗B̄

Ξ∗bK̄ −1 − 4√
3

2√
6
λ

Ω∗bη 0 −
√

2
3
λ

Ξ∗B̄ −2

From the potential we construct the t-matrix using the Bethe-Salpeter equation
in coupled channels in the on-shell factorized form of Eq. (2.32). As in section 2.2.3
we take the cutoff regularization and use here the same cutoff for every channel, in
order to respect rules of heavy quark symmetry, as discussed in Refs. [2.15, 2.22].
We take qmax = 650 MeV, which was the cutoff providing good agreement with the
experimental states in Ref. [2.1]. The poles of the amplitudes provide the states
and they are searched in the second Riemann sheet of the complex energy plane as
discussed in section 2.1.3.
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Table 2.18: Dij coefficients for the VB channels with JP = 1
2

−
, 3

2

−
.

JP = 1/2−, 3/2− ΞB̄∗ ΞbK̄
∗ Ξ′bK̄

∗

ΞB̄∗ −2 − 1√
2
λ 1√

6
λ

ΞbK̄
∗ −1 0

Ξ′bK̄
∗ −1

It should be noted that in the case of vector-baryon interaction, Vij of Eq. (2.62)
has the extra factor ~ε·~ε ′, where ~ε and ~ε ′ are the polarization vectors of the initial and
final vector mesons, stemming from the V(~ε)-V(~ε ′)-V(virtual) vertex in the limit of
small three momenta compared to the vector meson masses [2.1, 2.18]. This factor

induces degeneracy in JP = 1
2

−
, 3

2

−
vector-baryon(1

2

+
) states in S-wave. This factor

does not appear for pseudoscalar mesons and, hence, for pseudoscalar-baryon(1
2

+
)

we only obtain JP = 1
2

−
states and for the pseudoscalar-baryon(3

2

+
) we only obtain

JP = 3
2

−
states. For the case of vector-baryon we predict states both in 1

2

−
and

3
2

−
, which in our approach have the same energy. The degeneracy can be broken by

mixing the pseudoscalar-baryon and vector-baryon channels, which is done through
pion exchange [2.111], but in our case pion exchange is found to be small.

2.4.3 Results

In Tables 2.19, 2.20 and 2.21, we show the results. In Table 2.19 we see that we
obtain two states with JP = 1

2

−
at 6405 MeV and 6465 MeV. The widths are given

by twice the imaginary part of the pole position, and they are small in all cases. We
also show the couplings of the states obtained to the different coupled channels, as
well as the product giG

II
i (GII

i is the G function calculated at the pole in the second
Riemann sheet), which as shown in Ref. [2.24] is proportional to the wave function
at the origin. By looking at the couplings and the wave function at the origin we
can see that the first state, at 6405 MeV, couples strongly to Ξ′bK̄ and next to Ωbη.
The second state, at 6465 MeV, couples most strongly to ΞB̄ and little to the other
channels, and hence it qualifies as mostly a ΞB̄ bound state.

Table 2.19: The poles, and coupling constants of the poles to various channels in
the PB sector with JP = 1/2−, taking qmax = 650 MeV. gi has no dimension and
giG

II
i has dimension of MeV.

6405.2 ΞbK̄ Ξ′bK̄ ΞB̄ Ωbη
gi −0.01 + i0.02 2.04 + i0.01 −1.62 + i0.02 2.08 + i0.01

giG
II
i −0.34− i0.47 −37.31− i0.18 2.27− i0.02 −18.28− i0.09

6465.3 + i1.2 ΞbK̄ Ξ′bK̄ ΞB̄ Ωbη
gi 0.07− i0.15 0.11 + i0.125 10.70− i0.10 0.15 + i0.11

giG
II
i 3.92 + i3.91 −4.53− i1.66 −18.89 + i0.08 −1.55− i1.14

In Table 2.20, we show the states that appear exclusively in JP = 3
2

−
. They are

obtained from a pseudoscalar meson (η, K̄ or B̄) and a baryon of spin-parity 3
2

+
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Table 2.20: The poles, and coupling constants of the poles to various channels in
the PB sector with JP = 3/2−, taking qmax = 650 MeV. gi has no dimension and
giG

II
i has dimension of MeV.

6427.1 Ξ∗bK̄ Ω∗bη Ξ∗B̄
gi 2.01 2.05 −0.60

giG
II
i −37.17 −17.86 0.53

6664.8 + i0.2 Ξ∗bK̄ Ω∗bη Ξ∗B̄
gi −0.02− i0.01 0.10 + i0.05 11.06 + i0.01

giG
II
i 0.59− i0.53 −3.07 + i0.41 −19.31− i0.02

Table 2.21: The poles, and coupling constants of the poles to various channels in
the VB sector with JP = 1/2−, 3/2−, taking qmax = 650 MeV. gi has no dimension
and giG

II
i has dimension of MeV.

6508.0 ΞB̄∗ ΞbK̄
∗ Ξ′bK̄

∗

gi 10.88 0.32 −0.15
giG

II
i −18.86 −2.37 0.77

6676.1 + i0.1 ΞB̄∗ ΞbK̄
∗ Ξ′bK̄

∗

gi −0.05− i0.09 1.78− i0.10 0.01 + i0.01
giG

II
i 0.68 + i0.27 −35.16 + i1.90 −0.07− i0.01

6817.5 ΞB̄∗ ΞbK̄
∗ Ξ′bK̄

∗

gi −0.01 + i0.02 0.01− i0.01 1.77 + i0.01
giG

II
i −0.26− i0.01 0.05 + i0.03 −34.71− i0.18

(Ξ∗b , Ω∗b or Ξ∗). We also find two states, one at 6427 MeV and the other one at 6665
MeV. The first one couples mostly to Ξ∗bK̄ but also to Ω∗bη, while the second one
couples mostly to Ξ∗B̄ and little to the other channels and would qualify as mostly a
Ξ∗B̄ bound state. We can see here a qualitative difference with the results obtained
for the Ωc states. There the first 3

2

−
state had bigger energy than the two 1

2

−
states.

Here it is in the middle. The reason is simple because the difference between Ξ∗b and
Ξb, Ω∗b and Ωb are now smaller than between Ξ∗c and Ξc, Ω∗c and Ωc. Confirmation of
this feature by future experiments would already provide support to the molecular
picture that we discuss here.

Finally we also show in Table 2.21 the three states that we obtain from the vector-
baryon channels. Here the spin-parity can be 1

2

−
, 3

2

−
, since in our approach these

spin states are degenerate. One can break the degeneracy allowing pion exchange
between the pseudoscalar-baryon and vector-baryon states as done in Refs. [2.73,
2.74], but as shown in the end of section 2.2.2 for the Ωc states, the pion exchange
was very small in this case. We obtain three states at 6508 MeV, 6676 MeV and
6818 MeV with very small width. The first state couples mostly to ΞB̄∗, the second
one to ΞbK̄

∗ and the third one to Ξ′bK̄
∗ with small coupling to the other channels,

which make them qualify as bound states of these channels. The last state would
correspond to a bound Ξ′bK̄

∗ state, with a binding of barely 11 MeV.
In Ref. [2.1] we had also found three states of vector-baryon nature, but they

appear in a region where the experimental background is large. In any case our
approach does not tell the strength at which the states are produced in the partic-
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ular LHCb reaction. Yet, other more selective methods to produce the states like
Ωb → (Ξ+

c K
−)π− suggested in Refs. [2.3, 2.86] and section 2.3, in the case of Ωc

states, would allow theoretical approaches to predict the relative strength at which
every state is produced. In the present case we cannot rely on the weak decay of
heavier resonances, but it would be convenient to search for the Ωb states in differ-
ent reactions where the strength for the production of the different states would be
different, and one would have more chances to find them. The analogy of the Ωb

states with the Ωc ones, suggest that three of the states predicted by us could be
easily seen using a similar reaction.

2.4.4 Conclusions

Motivated by the recent experimental finding of five Ωc states and the successful
reproduction of three of these states in the molecular model for Ωc states, we have
used the same formalism used to obtain the Ωc states to make predictions for Ωb

states, just changing one c quark by a b quark. The only freedom in the approach
is the regulator in the loop function of the meson-baryon states, but for this we
used a cutoff regularization with the same cutoff as in the charm sector, which has
been shown in different approaches to respect the rules of heavy quark symmetry.
In this way, the predictions of the model should be very accurate. Since we study
only the interaction of meson-baryon in S-wave, we predict states of pseudoscalar-
baryon nature with JP = 1

2

−
and 3

2

−
, and we find two states of 1

2

−
, two states of 3

2

−

and three more states, degenerate in our approach in 1
2

−
, 3

2

−
, that stem from the

interaction of vector mesons with baryons.
Although the production of Ωb states is done with less statistics than the Ωc

states in LHCb, with increased luminosity in future runs the access to these states
will become a state of the art. Predictions done before the experiment are very
useful, and comparison of the results obtained here with experimental measurements
in the future will help us understand better hadron dynamics and the nature of some
of the states found. 4

4 After the production of this work a new article from the LHCb collaboration appeared [2.112],
announcing the discovery of new Ωb states. In a recent article [2.113] it is shown that some narrow
peaks seen in the experiment, between 6400 MeV and 6500 MeV, are in fair agreement with our
predictions.
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CHAPTER

3 Triangle Singularities

In this chapter we will present three works on triangle singularities.
First we introduce basic concepts of triangle singularities and the general features

of our framework in section 3.1.
Next, in section 3.2, we present the work of Ref. [3.1] where we discuss how

the f1(1420) can be explained as a manifestation of the K∗K̄ and πa0(980) decay
modes of the f1(1285). In particular, we show that the shoulder on the πa0(980)
decay mode in the data of Ref. [3.2] is related to a triangle singularity.

After that, we present in section 3.3 the work of Ref. [3.3], where we have studied
the γp→ pπ0η reaction paying attention to the two main mechanisms at low ener-
gies, the γp→ ∆(1700)→ η∆(1232) and the γp→ ∆(1700)→ πN(1535), showing
that the second one involves a mechanism that leads to a triangle singularity. We
are able to evaluate quantitatively the cross section for this process and show that
it agrees with the experimental determination from Ref. [3.4].

Finally, in section 3.4 we present the work of Ref. [3.5] where we study the relative
contributions and singularities of the tree level and triangle diagrams, discussing
the Schmid theorem 1 [3.6]. We investigate the process in terms of the width of the
unstable particle produced in the first decay and determine the limits of validity
and violation of the Schmid theorem, with the particular interest in the case where
a resonance is formed from the rescattering on the triangle diagram.

3.1 Introduction

The systematic study of triangle singularities was done by Landau [3.7]. Later
S. Coleman and R. E. Norton showed the conditions for the singularity to be phys-
ically observable, into what is known as the Coleman-Norton theorem [3.8].

Let us look at a process proceeding at tree level, depicted in Fig. 3.1, in which
particle A decays into R and 1, and R further decays into particles 2 and 3. Triangle
singularities stem from the related reaction mechanism, which is depicted in Fig. 3.2,
where the particle A decays into R and 1, posteriorly R decays into 2 and 3, and
then 1 and 2 fuse to give a new particle or simply rescatter to give the same state
(or another one if there are inelasticities).

1 The Schmid theorem states that if one has a tree level mechanism with a particle A decaying
into two particles 1 and R, with a posterior decay of R into particles 2 and 3, the possible triangle
singularity developed by the mechanism of elastic rescattering of two of the three decay particles
does not change the cross section provided by the tree level.
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3 (p3)

2 (P − q − p3)1

(P − q) RA (P )

(q)

Figure 3.1: Tree level diagram for the process A→ 1+2+3 mediated by a resonance
R that decays into particles 2 and 3. In brackets the momenta of the particles.

3 (p3)

2 (P − q − p3)

(P − q) RA (P )

(q)
1

2
1

Figure 3.2: Triangle mechanism emerging from the mechanism of Fig. 3.1, with final
state interaction of particles 1 and 2. The vertex with particles 1 and 2 symbolizes
the 1 + 2→ 1 + 2 scattering matrix. In brackets the momenta of the particles.

The loop function containing particles 1, 2 and R as intermediate states can
lead to some singularities (in the limit of zero width of the R particle) when all
the particles inside the loop in Fig. 3.2 are placed on shell in the integration and
the particles R and 3 go parallel in the A rest frame (then particle 1 and 3 are
antiparallel). It is interesting to note that if particles R and 3 go in the same
direction, then both particles 1 and 2 go in the opposite direction to them in the
A and R rest frames, respectively. According to the Coleman-Norton theorem [3.8]
the singularity appears when the classical process of particle 2, moving in the same
direction as particle 1, but produced later, catches up with particle 1 and scatters
(or fuses to produce another particle).

One should note that in the situation where the R resonance is placed on shell
in the triangle loop, as well as particles 1 and 2, the tree level mechanism of Fig. 3.1
will also have a singularity in the limit of zero width for the resonance R, since the
amplitude goes as (Minv(R)−MR + iΓR/2)−1. However, the tree diagram does not
have the restriction that particles R and 3 should be parallel and hence the region
where R can be placed on shell is much wider than for the triangle singularity. In
section 3.4 we will study the relation of the tree level and triangle diagrams regarding
their singularity when we discuss the Schmid theorem [3.6].

First, let us study the generic case depicted in Fig. 3.2. The conditions for the
triangle singularity to occur, relating the invariant mass of particles 1, 2 with the
mass of A, can be seen in a pedagogical description of the process in Ref. [3.9], which
we will follow closely in this section since it will be the framework we will adopt
throughout this chapter.
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The Coleman-Norton theorem [3.8] we have mentioned will determine the con-
ditions for the solutions to be located on the physical boundary, i.e., whether they
can produce a prominent effect on the amplitude in the physically allowed region.
Note that the intermediate R particle has a finite width, it has to decay into particle
2 and 3, and 2 also must be able to catch up with particle 1. If we fix the masses
of the particles 1 and 2, only when the R mass is located in a small range there is
a triangle singularity on the physical boundary. Since the mass region is small, the
singularity is also close to the R–1 threshold (see, e.g., Refs. [3.10–3.13]).

The position of the singularities in the amplitude of the triangle diagram can be
obtained by solving the Landau equation [3.7], as done in Ref. [3.10], for example.
However, it can be very instructive to perform the loop integration of the three
propagators explicitly. Let us consider the scalar three-point loop integral

I1 = i

∫
d4q

(2π)4

1

(q2 −m2
1 + i ε) [(P − q)2 −m2

R + i ε] [(P − q − k)2 −m2
2 + i ε]

. (3.1)

A simpler expression can be obtained if we neglect the negative energy part of the
particle 1 propagator. This is

1

q2 −m2
1 + iε

=
1

2ω1(q)

(
1

q0 − ω1(q) + iε
− 1

q0 + ω1(q) + iε

)
→ 1

2ω1(q)

1

q0 − ω1(q) + iε
. (3.2)

Since we are interested in the region where the R may be treated nonrelativis-
tically, we can safely neglect the negative energy pole from the R propagator. The
integral over q0 can be done analytically using the residue theorem and we are left
with the integral in the 3-momentum ~q. Taking particle A at rest we obtain

I1 =

∫
d3q

(2π)3

1

8 ω1(~q) ωR(~q) ω2(~k + ~q )

× 1

k0 − ω2(~k + ~q )− ωR(~q )

1

P 0 + ω1(~q ) + ω2(~k + ~q )− k0
(3.3)

×
2P 0ω1(~q ) + 2 k0ω2(~k + ~q )− 2

[
ω1(~q ) + ω2(~k + ~q )

] [
ω1(~q ) + ω2(~k + ~q ) + ωR(~q )

]
[
P 0 − ω1(~q )− ω2(~k + ~q )− k0 + i ε

]
[P 0 − ωR(~q )− ω1(~q ) + i ε]

,

where ω1(~q ) =
√
m2

1 + ~q 2, ωR(~q ) =
√
m2
R + ~q 2, ω2(~k + ~q ) =

√
m2

2 + (~k + ~q )2,

P 0 = MA, and k0 =

√
m2

3 + ~k 2.
We immediately observe that the poles of the propagators correspond to having

pairs of intermediate particles on shell. The conditions for all the three intermediate
particles to be on shell are

P 0 − ωR(~q )− ω1(~q ) = 0 , (3.4)

P 0 − k0 − ω1(~q )− ω2(~k + ~q ) = 0 . (3.5)
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The other propagators do not lead to singularities, since particle 3 cannot decay into
2 +R and P 0 +ω1 +ω2 is always larger than k0, we have dropped the corresponding
i ε.

From Eqs. (3.4) and (3.5) we have

qon =
λ1/2(M2

A,m
2
R,m

2
1)

2MA

, (3.6)

ω1(qon) =
M2

A +m2
1 −m2

R

2MA

, (3.7)

ωR(qon) =
M2

A +m2
R −m2

1

2MA

, (3.8)

where we have defined the Källén function λ(x, y, z) = x2 +y2 +z2−2xy−2yz−2xz.
In addition, from energy conservation in the process A→ 123, we have

k0 =
M2

A +m2
3 −m2

12

2MA

, k =
λ1/2(M2

A,m
2
3,m

2
12)

2MA

, (3.9)

with m12 the invariant mass of the (1, 2) system.
Then Eq. (3.5) leads immediately to

m2
12 +m2

R −m2
3 −m2

1

2MA

−
√
m2

2 + (~q + ~k)2 = 0 , (3.10)

which is the equation providing the singularities of the integrand of the loop integral
in Eq. (3.4). However, a singularity of the integrand is not necessarily the singularity
of the integral. If we can deform the integration contour in the complex plane to
avoid the singularity, the integral would be regular. In the following two cases we
cannot deform the contour and a singularity develops: 1) when the singularity of the
integrand is located at the endpoint of the integration, 2) two or more singularities
of the integrand pinch the contour. They correspond to the cases of endpoint and
pinch singularities, respectively.

With that in mind, we notice that, in order to analyze the singularity structure,
it is sufficient to focus on the following integral:

I(m12) =

∫
d3q

1

[P 0 − ωR(~q )− ω1(~q ) + i ε]
[
E12 − ω1(~q )− ω2(~k + ~q ) + i ε

]
= 2 π

∫ ∞
0

dq
q2

P 0 − ωR(q)− ω1(q) + i ε
f(q) , (3.11)

where, in the rest frame of the decaying particle and with the more general notation
as labelled in Fig. 3.3 (note that ~pR2 = ~k) ωR(q) =

√
m2
R + q2, ω1(q) =

√
m2

1 + q2,

ω2(~q + ~pR2) =
√
m2

2 + (~q + ~pR2)2, E12 = P 0 − p0
R2, and

f(q) =

∫ 1

−1

dz
1

E12 − ω1(q)−
√
m2

2 + q2 + k2 + 2 q k z + i ε
, (3.12)

where

k = |~pR2| =
λ1/2(M2

A,m
2
R2,m

2
12)

2MA

, (3.13)
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with MA =
√
P 2 and mR2 =

√
p2
R2, m12 =

√
p2

12 and q = |~q |. The integral I(m12)
is in fact a function of all involved masses and external momenta, and here we only
show m12 since we will discuss the singularities in this variable.

pR2

m2

mR
PA

(q)
m1 p12

Figure 3.3: A triangle diagram showing the notations used in the general discussion
of triangle singularities, where mi’s denote the masses of the intermediate particles,
and P , pR2, p12 correspond to the four-momenta of the external particles. Note that
~pR2 = ~k. The two dashed vertical lines correspond to the two relevant cuts.

It becomes clear that we need to analyze the singularity structure of a double
integration: one over q and one angular integration over z. The two factors in
the denominator of the integrand of I(m12) correspond to the two cuts depicted in
Fig. 3.3. The cut crossing particles 1 and R provides a pole of the integrand of
I(m12) given by

P 0 − ωR(~q )− ω1(~q ) + i ε = 0 , (3.14)

which is like Eq. (3.4). However, we have kept the i ε here explicitly, which is impor-
tant to determine the singularity locations in the complex-q plane. The pertinent
solution is

qon+ = qon + i ε with qon =
1

2MA

√
λ(M2

A,m
2
R,m

2
1) . (3.15)

The function f(q) has endpoint singularities, which are logarithmic branch points,
given when the denominator of the integrand vanishes for z taking the endpoint val-
ues ±1, i.e., the solutions of

E12 − ω1(q)−
√
m2

2 + q2 + k2 ± 2 q k + i ε = 0 , (3.16)

which is like Eq. (3.5). The + and − signs correspond to z = +1 and −1, i.e.,
the situations for the momentum of particle 1 to be anti-parallel and parallel to
the momentum of the (1, 2) system in the frame with ~P = 0, respectively. These
endpoint singularities of f(q) provide logarithmic branch point singularities to the
integrand of I(m12), in addition to the pole given by the first cut. Intuitively, we can
envisage that when z = +1, −1 the principal part of the integration does not cancel
the infinities of the denominators because one branch is outside the integration
interval z ∈ [−1, 1]. To see if the end points induce singularities in I(m12) we need
to analyze each possibility.

For z = −1, Eq. (3.16) has two solutions:

qa+ = γ (v E∗1 + p∗1) + i ε , qa− = γ (v E∗1 − p∗1)− i ε , (3.17)
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where we have defined

v =
k

E12

, γ =
1√

1− v2
=
E12

m12

,

E∗1 =
1

2m12

(
m2

12 +m2
1 −m2

2

)
, p∗1 =

1

2m12

√
λ(m2

12,m
2
1,m

2
2) . (3.18)

Note that E∗1 and p∗1 are the energy and the magnitude of the 3-momentum of
particle 1 in the center-of-mass frame of the (1,2) system, v is the magnitude of
the velocity of the (1, 2) system in the rest frame of the decaying particle and γ is
the Lorentz boost factor. Therefore, the two solutions given above correspond to
the momentum of particle 1 in the rest frame of the decaying particle in different
kinematic regions, which will be discussed later.

For z = 1, the two solutions of Eq. (3.16) are:

qb+ = γ (−v E∗1 + p∗1) + i ε , qb− = −γ (v E∗1 + p∗1)− i ε . (3.19)

The second one, qb− is irrelevant since it is always negative when ε = 0, and is
never realized in the integral on the momentum modulus in Eq. (3.11). It might be
worthwhile to emphasize that all of qa± and qb± are singularities of the integrand of
I(m12) simultaneously. However, depending on the value of m12 (for real m12), either
limε→0(qa−) or limε→0(qb+), but not both, is positive and appears in the relevant
integration range of q from 0 to +∞. These two cases are shown in Fig. 3.4 and
Fig. 3.5, respectively.

Im q

Re q
qa−

qon+ qa+

0

(a) (c)(b)

Im q

Re q
qa−

qon+ qa+

0

Im q

Re q

qon+

0

qa+

qa−

Figure 3.4: Pertinent singularities of the integrand of I(m12) when limε→0(qa−)
is positive. (a) is for the case without any pinching, (b) shows the case when the
integration path is pinched between qa+ and qa−, which gives the two-body threshold
singularity, and (c) is for the case when the pinching happens between qon+ and
qa−, which gives the triangle singularity. The dashed lines correspond to possible
integration paths. (Figure from Ref. [3.9]).

Let us discuss Fig. 3.4 first. In the integration range of q, the integrand has
three relevant singularities: a pole qon+ and two logarithmic branch points qa±.
Their locations are determined by kinematics. It can happen that all of them are
located at different positions, and one can deform the integration path freely as
long as it does not hit any singularity of the integrand. One such path is shown
as the dashed line segments in Fig. 3.4 (a). In such a kinematic region, I(m12) is
analytic. Since qa− is in the lower half of the complex-q plane while qon+ and qa+
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are in the upper half plane, it could happen that the integration path is pinched
between qa− and one of qon+ and qa+ or even both of them. Then one cannot deform
the integration path away from the singularities of the integrand and I(m12) will
be nonanalytic as well. If the integration path is pinched between qa− and qa+, as
shown in Fig. 3.4 (b), which happens when m12 = m1 +m2 or p∗1 = 0, one gets the
normal two-body threshold singularity which is a square-root branch point. If the
integration path is pinched between qa− and qon+, as shown in Fig. 3.4 (c), one gets
the triangle singularity or anomalous threshold which is a logarithmic branch point.
Therefore, the condition for a triangle singularity to emerge is given mathematically
by

lim
ε→0

(qon+ − qa−) = 0 . (3.20)

It could also happen that both qon+ and qa+ pinch the integration path with qa− at
the same time, and then the triangle singularity coincides with the normal threshold
at m12 = m1 + m2. The location of the triangle singularity in the variable m12 is
found by solving Eq. (3.20), which is the main result we later use when searching
for possible triangle singularities in experimental data.

It is important to understand the kinematic region where the triangle singu-
larity can occur. Since qa− is the singularity of f(q) at the endpoint z = −1,
the momentum of particle 2 in the rest frame of the decaying particle is thus
~p2 = −~q − ~pR2 = (k − q)q̂, where q̂ stands for the unit vector along the direc-
tion of ~q. From Eqs. (3.17) and (3.18), it is easy to see that k > limε→0(qa−) for
m12 ≥ m1 + m2. Thus, particles 1 and 2 move in the same direction in this ref-
erence frame. Another condition for qa− to be relevant becomes clear by checking
the expression of qa− in Eq. (3.17), which is the Lorentz boost of the momentum
of particle 1 from the center-of-mass frame of the (1,2) system to the rest frame of
the decaying particle. The negative sign in front of p∗1 in Eq. (3.17) means that the
direction of motion of particle 1 in the center-of-mass frame of the (1, 2) system is
opposite to the one in the rest frame of the decaying particle, while the direction of
motion of particle 2 is the same in both reference frames. This implies that particle
2 moves faster than particle 1 in the latter reference frame. Therefore, the triangle
singularity happens only when particle 2 moves along the same direction as particle
1, and has a larger velocity in the rest frame of the decaying particle. This, together
with having all intermediate particles on their mass shells, gives the condition for
having a triangle singularity. One can realize that this is in fact the Coleman-Norton
theorem [3.8]: the singularity is on the physical boundary if and only if the diagram
can be interpreted as a classical process in space-time.

For given m1, m2 and invariant masses for external particles, one can also work
out the range of mR where the triangle singularity shows up, as well as the range of
the triangle singularity in m12. For qon and qa− (taking ε = 0) taking values in their
physical regions, one needs to have mR ≤ MA − m1 and m12 ≥ m1 + m2. Using
Eq. (3.20), we find that when

m2
R ∈

[
M2

Am2 +m2
R2m1

m1 +m2

−m1m2 , (MA −m1)2

]
, (3.21)
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I(m12) has a triangle singularity, and it is within the range

m2
12 ∈

[
(m1 +m2)2,

MAm
2
2 −m2

R2m1

MA −m1

+MAm1

]
. (3.22)

These are in fact the ranges discussed in Refs. [3.10,3.13] derived from the point of
view of the Coleman-Norton theorem.

The kinematic region where particle 1 moves faster than particle 2 but in the
same direction corresponds to the case that the three-momentum of the on shell
particle 1 takes the value of qa+. One then has limε→0(qa+ − qa−) > 0 (it would
be equal to 0 if the two particles move with the same speed in the rest frame of
the decaying particle), and I(m12) has no singularity. From the point of view of
the Coleman-Norton theorem [3.8], particle 2 emitted from the decay of particle
R cannot catch up with particle 1 so that the rescattering between them in the
triangle diagram cannot be interpreted as a classical process. This case corresponds
to Fig. 3.4 (a).

Im q

Re q

qon+

0

qb+ qa+

Figure 3.5: Pertinent singularities of the integrand of I(m12) when limε→0(qb+) is
positive. (Figure from Ref. [3.9]).

There is the possibility that qa− < 0 (here and in the following when we talk
about the sign or relative size of qa± and qb±, ε takes the value of 0) and, thus,
this solution is unphysical for on-shell intermediate particles. In this case, solving
numerically Eq. (3.10) with ~q and ~k in opposite directions will give only one positive
q solution, which, by necessity, is qa+. Note that qa− < 0 means qb+ = −qa− > 0,
so that qb+ is in the physical range of q. We show this case in Fig. 3.5, where only
the positive singularities of the integrand, which are the ones in the physical range
of q for on-shell intermediate particles, are depicted. Since qa− < 0 in this case, and
qb− < 0, and furthermore qon+, qa+ and qb+ are on the same side of the Re q axis,
no pinching can occur and, hence, none of these singularities of the integrand turns
into a singularity of the integral I(m12). The condition for qa− < 0 is p∗1 > v E∗1 ,
i.e., the magnitude of velocity of particle 1 in the (1,2) center-of-mass frame (which
is equal to the one for particle 2) is larger than the velocity of the (1, 2) system
in the rest frame of the initial particle. It implies that particle 1 and particle 2
move in opposite directions in the latter frame and thus particle 2, emitted from
the decay of particle R, which moves also opposite to particle 1 in the rest frame
of the initial particle, cannot rescatter with particle 1 in a classical picture with
energy-momentum conservation, in accordance with the conclusion of Ref. [3.8].
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In section 3.4 we will bring back this topic of the singularities of the triangle
diagram, and also in the tree level, when we discuss the Schmid theorem [3.6].
In the following sections 3.2 and 3.3 we will see two cases where we applied this
framework to study the triangle singularities in experimental data.

3.2 Revising the f1(1420)

In this section we present the work of Ref. [3.1], where we have studied the
production and decay of the f1(1285) into πa0(980) and K∗K̄ as a function of the
mass of the resonance and find a shoulder around 1400 MeV, tied to a triangle
singularity, for the πa0(980) mode, and a peak around 1420 MeV with about 60
MeV width for the K∗K̄ mode. Both these features agree with the experimental
information on which the f1(1420) resonance is based. In addition, we find that if the
f1(1420) is a genuine resonance, coupling mostly to K∗K̄ as seen experimentally,
one should expect about a 20% fraction for πa0(980) decay of this resonance, in
contradiction with all experiments. Altogether, we conclude that the f1(1420) is
not a genuine resonance, but the manifestation of the πa0(980) and K∗K̄ decay
modes of the f1(1285) at higher energies than the nominal one. We also compare
our results with the experimental data from Ref. [3.2].

3.2.1 Introduction

The f1(1420) resonance is catalogued in the Particle data book [3.14] as an
IG(JPC) = 0+(1++) state and has been observed in over 20 experiments. Its mass is
M = 1426.4±0.9 MeV and its width Γ = 54.9±2.6 MeV. Its dominant decay mode
is KK̄∗. In Ref. [3.15] 100% of the width is associated to the KK̄∗ + c.c. mode. In
Ref. [3.16] other modes are also searched for, with negative results, concluding again
that the KK̄∗ + c.c. channel exhausts the decay width. In Ref. [3.17] the authors
also conclude that the f1(1420) decays into KK̄∗+c.c. 100%. In Ref. [3.2] the decay
mode πa0(980) is reported with Γ(πa0(980))/Γ(KK̄∗ + c.c.) = 0.04 ± 0.01 ± 0.01.
In this latter paper a clean peak is seen for the f1(1285) in the πa0(980) mode,
followed by a broader structure around 1400 MeV with much smaller strength, that
is tentatively associated to the f1(1420), with the comment “The shoulder at 1.4
GeV can be interpreted as an a0(980)π decay mode of the f1(1420)” with no devoted
work to support this assertion. A discussion on mesons in the 1400 MeV region can
be seen in the PDG review [3.18].

In the present work we shall provide a different explanation of the experimental
findings, showing that the K∗K̄ peak associated to the f1(1420) is the manifestation
of the KK̄∗ + c.c. decay mode of the f1(1285). On the other hand, the broad peak
for πa0(980) decay in the region of 1400 MeV will be explained as a consequence of a
triangle singularity, due to f1(1285)→ K∗K̄, K∗ → πK, KK̄ → a0(980). TheK∗K̄
decay mode of the f1(1285) appears as “not seen” in the PDG [3.14]. Indeed the
f1(1285) is 100 MeV below the K∗K̄ threshold. However, the KK̄π mode is reported
with a branching fraction of 9%. These features found an adequate answer in several
works [3.19, 3.20], where the f1(1285) was considered as a dynamically generated
resonance. This state, together with all the low-lying axial vector resonances, were
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obtained in Refs. [3.21,3.22] as dynamically generated states from the interaction of
pseudoscalar mesons with vector mesons, using a coupled channels unitary scheme
with chiral dynamics for the meson interaction [3.23]. In the particular case of the
f1(1285), the KK̄∗+c.c. is the single channel in the coupled channel approach [3.22].
The work in Refs. [3.21, 3.22], using the lowest order chiral Lagrangian, has been
extended in Ref. [3.24] including higher order terms, but in the case of the f1(1285)
the higher order terms were found essentially negligible.

In this picture for the f1(1285), a good description of πa0(980) and the isospin
forbidden πf0(980) decay modes were well reproduced [3.20]. Actually the πf0(980)
decay mode was first predicted in Ref. [3.20] and corroborated later experimentally
by a BESIII experiment [3.25]. Similarly, in Ref. [3.19] the KK̄π decay mode was
studied and also found consistent with experiment [3.2, 3.26]. In the present work,
we shall see that, as a consequence of the K∗K̄ nature of the f1(1285), if we excite
that state and go to higher energies where the K∗K̄ can be produced, the tail
of the f1(1285) propagator, together with the phase space for K∗K̄ production,
produce a peak around 1420 MeV with a width of about 60 MeV, that explains the
experimental features observed for the f1(1420) resonance.

One may wonder how much our results are tied to the assumed nature of the
f1(1285) as a dynamically generated resonance. Before we discuss this issue further,
let us clarify that for the sake of the present work it is not necessary to assume
that this is the nature of the f1(1285). We only need that it couples to KK̄∗ + c.c.
whatever its origin. The fact that with the strength of the coupling to this channel
provided by the approach of Ref. [3.22] one obtains a good reproduction of the
important partial decay width to πa0(980) [3.20] and the KK̄π decay mode [3.19],
indicates that the coupling of the f1(1285) to KK̄∗ + c.c. used here is realistic. In
any case, it is interesting to discuss the issue to the light of what a quark structure
provides for the axial vector states. The detailed work on relativistic quark models
of Ref. [3.27] indicates that masses of the right order of magnitude can be obtained
for the axial vector meson states within the scheme of Ref. [3.27], which is very
successful to describe the bulk of the meson properties.

Yet, most of the axial vector mesons have large decay widths and couple to
pseudoscalar-vector components. Some, as the f1(1285) have a relatively small
width, but can equally couple to pseudoscalar-vector bound components, like KK̄∗.
The need to consider these meson-meson components for the structure of some
mesons became apparent and studies were done in Refs. [3.28–3.31] starting with
a seed of qq̄ and unitarizing the model with the meson-meson components. For
the case of the low lying scalar mesons the result is that, as a consequence of the
unitarization, the original qq̄ seed is dressed with meson-meson components to the
point that the latter become the most important ingredient in low energy reactions.
Even in the work of Ref. [3.27] the f0(980) was hinted as a KK̄ bound state, which
was more substantiated in Ref. [3.32], and more recently by the framework of the
chiral unitary approach [3.33–3.36]. This latter approach is the one used to de-
scribe also the low lying axial vectors, with energies below 1.4 GeV, as being largely
made of pseudoscalar-vector components in Refs. [3.21,3.22] and much present phe-
nomenology supports this picture as discussed above. From this perspective, it
is then not surprising that other works concentrate on the nature of these states



3.2 Revising the f1(1420) 111

as tetraquarks [3.37, 3.38]. In the real world a mixture of qq̄ and molecular com-
ponents (or tetraquarks, for this purpose) would appear [3.39], but the molecular
components are very important and play a dominant role in low energy reactions
as phenomenology is telling us (see Refs. [3.40–3.43] in addition to the works cited
above).

On the other hand, the triangle diagram with K∗K̄K intermediate states, with
π and f0(980) or a0(980) external products, develops a singularity at 1420 MeV,
which is seen as a peak for πf0(980) or πa0(980) production. This was already
suggested in Ref. [3.12] and shown explicitly in Refs. [3.44, 3.45], and provided a
natural explanation of the COMPASS observation [3.46] of a peak in the πf0(980)
mode around 1420 MeV, which was interpreted as a new resonance, the “a1(1420)”
in Ref. [3.46]. In Refs. [3.44, 3.45] the peak was interpreted as a consequence of a
triangle singularity associated to the decay mode of the a1(1260) into K∗K̄, followed
by K∗ → Kπ and fusion of the KK̄ to give the f0(980). The mechanism to produce
the πa0(980) from the decay of the f1(1285) is identical to the one used in Ref.
[3.45] to produce the πf0(980) from the decay of the a1(1260). Only the isospin
combinations are different, but the singularity is tied to the masses of the particles
and is independent of the internal degrees of freedom like the isospin. We shall
see that, also in this case, a peak is produced around 1420 MeV in the πa0(980)
decay mode of the f1(1285) which explains the features of the experiment of Ref.
[3.2]. The conclusion of all these observations is that the f1(1420) is not a genuine
resonance, but the manifestation of the K∗K̄ and πa0(980) decay modes of the
f1(1285) resonance. This would go in line with the conclusions of Refs. [3.44, 3.45]
that the “a1(1420)” is not a genuine resonance, but the manifestation of the πf0(980)
decay mode of the a1(1260) resonance.

3.2.2 Formalism

The resonance f1(1420) is observed in very high energy collisions, which we depict
in Fig. 3.6, and the resonance is observed in the invariant mass of particles 2 and 3.

a

b

1

2

3R

Figure 3.6: Diagrammatic representation of the process producing the resonance,
observed in the decay channel 2 + 3.

In the Mandl and Shaw normalization of fermion fields [3.47] we have for this
process with three particles in the final state

d2σ

dt dM23

=
1

32 p2
a s

∏
(2mF )

1

(2π)3
p̃2

∑∑
|T |2, (3.23)
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where mF refers to the masses of the fermions, and the sum and average of |T |2
is done over the polarizations of all particles involved. In Eq. (3.23) p̃2 is the
momentum of particle 2 in the rest frame of the 2 + 3 system,

p̃2 =
λ1/2(M2

23,m
2
2,m

2
3)

2M23

, (3.24)

and M23 is the invariant mass of the 2 + 3 system. Fixing the Mandelstam variables
s and t, s = (pa + pb)

2, t = (pa− p1)2, the T matrix in Eq. (3.23) will be of the type
(Minv ≡M23):

T ≡ C
1

M2
inv −M2

R + iMRΓR
gR,23 , (3.25)

where we have put a coupling gR,23 for the resonance R to the 2 + 3 system. The
width for the resonance going to 2 + 3 is given in this case by

ΓR,23 =
1

8π

1

M2
inv

p̃2 g
2
R,23 , (3.26)

which allows one to write Eq. (3.23) as

d2σ

dt dMinv

=

∏
(2mF )

32 p2
a s

1

(2π)3
C2 8πM2

invΓR,23

|M2
inv −M2

R + iMRΓR|2
. (3.27)

This equation is also good when we sum and average over polarizations of the
particles in a more general case of |T |2. The sum over polarizations of 2 and 3 will
go into ΓR,23 and the sum and average over polarizations of the other particles can
be absorbed in the constant C (for fixed s and t). Eq. (3.27) can also be used for
any decay channel of the resonance, substituting ΓR,23 by Γi of the particular decay
channel. Since

∑
Γi = ΓR, the total width of the resonance, the sum of Eq. (3.27)

over all decay channels, can be cast in terms of Im[1/(M2
inv−M2

R + iMRΓR)], which
is a variant of the optical theorem.

3.2.3 The K∗K̄ channel

Let us look at the process depicted in Fig. 3.6 with 2, 3 being K∗K̄. We shall
investigate what happens when the resonance R is the f1(1285). We can use directly
Eq. (3.27) replacing the coupling gR,23 in Eq. (3.26) by the f1, K

∗K̄ coupling

gR,23 → gf1,K∗K̄ ~εf1 · ~εK∗ , (3.28)

and summing and averaging over polarizations, and we use gf1,K∗K̄ = 7555 MeV,
from Ref. [3.22], ignoring for the moment the isospin and C-parity structure. The
Γf1,K∗K̄ width is then given by

Γf1,K∗K̄ =
1

8π

1

M2
inv

g2
f1,K∗K̄

p̃K̄ θ(Minv −mK∗ −mK). (3.29)

The K∗K̄ production will begin at a threshold of 1383 MeV, 100 MeV above the
nominal mass of the f1(1285). The results of Eq. (3.27) are depicted in Fig. 3.7,
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where in addition we plot also the result using in the numerator the nominal width
of the f1(1285), Γf1 = 24.1 MeV, which will account for the decays of the f1(1285)
into other channels. In the denominator of Eq. (3.27) we use

ΓR = Γf1 + Γf1,K∗K̄ . (3.30)
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Figure 3.7: Production of K∗K̄ induced by the excitation of the f1(1285) resonance.
Dashed line: production of f1(1285) through the decay of f1(1285) into K∗K̄. Solid
line: through the decay of the f1(1285) into other channels.

We observe in Fig. 3.7 the typical threshold production of a channel. However,
since the production is driven by the excitation of the f1(1285), one has two factors
competing, a decreasing strength of the resonance as the energy increases, and an
increasing phase space for the K∗K̄ production, and the product of these two factors
confers the cross section a particular shape. Yet, we want to be more accurate here
by taking into account that the K∗ will decay into Kπ and the experimentalist will
observe KπK̄ at the end. This will also allow us to go below the threshold of K∗K̄
production.

To account for the decay, we look into the diagram of Fig. 3.8.

f1(1285)

K̄

K∗
K

π

Figure 3.8: Decay diagram for f1(1285)→ K∗K̄ considering the Kπ decay channel
of the K∗.
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The decay width of the f1(1285) for Fig. 3.8 is given by

Γf1,K∗K̄→KπK̄ ≡
∫

dΓf1,KπK̄
dminv

dminv, (3.31)

where minv stands for the Kπ invariant mass, and

dΓf1,KπK̄
dminv

=
1

(2π)3

1

4M2
inv

pK̄ p̃π
∑∑

|t′|2, (3.32)

where pK̄ is the K̄ momentum in the f1(1285) rest frame and p̃π the π momentum
in the Kπ rest frame, and t′ contains now the K∗ propagator, the f1(1285)→ K∗K
and K∗ → Kπ couplings. There is no need to evaluate t′ explicitly since we can use
the same step that led us from Eq. (3.23) to Eq. (3.27) and we can write

dΓf1,KπK̄
dminv

=
1

(2π)3

1

4M2
inv

g2
f1,K∗K̄

pK̄

× 8πm2
invΓK∗(minv)

|m2
inv −m2

K∗ + imK∗ΓK∗(minv)|2 , (3.33)

where

ΓK∗(minv) =
m2
K∗

m2
inv

p̃ 3
π

p̃ 3
π |on

ΓK∗ |on , (3.34)

with ΓK∗|on = 49.1 MeV the nominal width for the K∗, and p̃π, p̃π|on the pion
momenta in the K∗ rest frame with K∗ mass minv or mK∗ respectively,

p̃π =
λ1/2(m2

inv,m
2
K ,m

2
π)

2minv

. (3.35)

In Eq. (3.34) we have taken into account that the K∗ → Kπ proceeds in P -wave.
In Fig. 3.9 we plot the results for Eq. (3.27) with ΓR,23 replaced by Eqs. (3.31)

and (3.33), and also when ΓR,23 is replaced by Γf1 . Fig. 3.9 is very intuitive, we see a
double peak structure. The first peak accounts for the standard f1(1285) decay into
KπK̄ observed with the shape of the f1(1285). The ratio of strengths at the peak
of the dashed and solid lines provides the branching ratio of the f1(1285) into KπK̄
channel. As we see, it is of the order of 8%, the same value obtained in Ref. [3.19]
with a more elaborate model that we shall discuss below, and in agreement with
experiment [3.14].

Yet, what concerns us here is that the same mechanism produces a second peak
around 1420 MeV as a consequence of the influence of the tail of the f1(1285)
resonance and the increasing phase space for K∗K̄ production. In Fig. 3.10 we can
see in more detail the two peaks corresponding to KπK̄ production. By assuming a
smooth background below the second peak, as an experimental analysis would do,
we induce that there is a resonant-like structure peaking around 1420 MeV with a
width of about 60 MeV, the features observed in experiment when talking about
the f1(1420) resonance. Yet, we did not have to invoke a new resonance for this
structure, which appears naturally and unavoidably from the decay of f1(1285) into
K∗K̄ → KπK̄. This also explains why the f1(1420) resonance is seen in the K∗K̄
(or KπK̄) channel alone. In the next section we address the production of the
πa0(980) channel.
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Figure 3.9: Production of KπK̄ coming from K∗K̄ decay of the f1(1285) considering
the decay of K∗ into Kπ. The dashed line accounts for KπK̄ production and the
solid line accounts for the decay of the f1(1285) into other channels.
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Figure 3.10: The KπK̄ production cross section from Eq. (3.27) showing detail of
the dashed line in Fig. 3.9.

3.2.4 The πa0(980) decay mode of the f1(1285)

This problem was also addressed in Ref. [3.20] but at the peak of the f1(1285).
Now we extend it to higher energies according to Eq. (3.27), but replacing the width
ΓR,23 by Γf1(1285),πa0(980). Following Ref. [3.20] and sticking to the simplified K∗K̄
decay of the former section, we have to look at the diagram of Fig. 3.11, where we
consider the a0(980) decay into the π0η channel.
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f1(1285)

(P − q)

(q)

K(P − q − k)

π0

π0

η

K∗

K̄

(k)

(P )

a0(980)

Figure 3.11: Triangle diagram leading to the production of πa0(980), the latter is
observed in π0η. In brackets the momenta of the particles.

The amplitude for the diagram of Fig. 3.11 for the f1(1285) at rest (~P = 0) is
given by

tf1,ππ0η = gf1,K∗K̄ gK∗,Kπ tT tKK̄→π0η(m̃inv), (3.36)

with m̃inv the π0η invariant mass, and where tT stands for the triangle loop integral
with three propagators,

tT = i

∫
d4q

(2π)4
~εf1 · ~εK∗ ~εK∗ · (2~k + ~q)

1

q2 −m2
K + iε

1

(P − q)2 −m2
K∗ + imK∗ΓK∗

× 1

(P − q − k)2 −m2
K + iε

, (3.37)

and tKK̄→π0η is evaluated using the chiral unitary approach of Ref. [3.33], with the
input used in the study of weak decays of B and D mesons in Refs. [3.48,3.49].

The integral of q0 in Eq. (3.37) can be done analytically and it is done in
Ref. [3.20] with the result

tT = t̃T ~εf1 · ~k, (3.38)

and

t̃T =

∫
d3q

(2π)3

(
2 +

~k · ~q
~k2

)
× 1

8ω(q)ω′(q)ω∗(q)

1

k0 − ω′(q)− ω∗(q) + iε

1

P 0 − ω∗(q)− ω(q) + iε

× 2P 0ω(q) + 2k0ω′(q)− 2(ω(q) + ω′(q))(ω(q) + ω′(q) + ω∗(q))

(P 0 − ω(q)− ω′(q)− k0 + iε)(P 0 + ω(q) + ω′(q)− k0 − iε) , (3.39)

with ω(q) =
√
~q 2 +m2

K , ω′(q) =

√
(~q + ~k)2 +m2

K , ω∗(q) =
√
~q 2 +m2

K∗ , (or√
~q 2 +m2

K∗ − iΓK∗/2 if the K∗ width is considered as in Eq. (3.37)).
The width Γf1(1285),ππ0η is given by

Γf1,ππ0η =

∫
dΓf1,ππ0η

dm̃inv

dm̃inv , (3.40)
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with dΓf1,ππ0η/dm̃inv obtained using Eq. (3.32) with minv → m̃inv (of π0η), pK̄ → pπ,
p̃π → p̃η and ∑∑

|tf1,ππ0η|2 =
1

3
~k 2|t̃T |2 g2

f1,K∗K̄
g2
K∗,Kπ |tKK̄,π0η|2 . (3.41)

The value of gK∗,Kπ is taken such that

ΓK∗ =
4

3

1

8π

1

m2
K∗
p̃2
πg

2
K∗,Kπ (3.42)

gives the width of the K∗, ΓK∗ = 49.1 MeV (gK∗,Kπ = 5.5 MeV).
We should note a small modification in the integral with respect to Ref. [3.20].

In this latter work a cutoff θ(qmax − q) originated in the chiral unitary approach
in the study of the KK̄ → πη amplitude was implemented, with qmax = 600 MeV
[3.48, 3.49]. Since in those works the cutoff is implemented in the center of mass
(CM) frame, we make a boost of q to the rest frame of the πη system and implement
the cutoff θ(qmax − qCM). We show the results obtained in Fig. 3.12.
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Figure 3.12: Differential cross section for πa0(980) → ππ0η production induced
by f1(1285) excitation. Solid line: considering the triangle diagram of Fig. 3.11.
Dashed line: using Eq. (3.27) with ΓR = Γf1(1285) = 24.1 MeV, ΓR,23 a constant and
normalizing the curves to the peak of the f1(1285) (this reflects the shape of the
modulus square of the f1(1285) propagator). The dotted curve is what we would
expect for πa0(980)→ ππ0η production from f1(1420) excitation assuming that the
production rate of the f1(1285) and f1(1420) are the same.

As we can see in Fig. 3.12, there is a large strength in the cross section built
around 1400 MeV induced by the f1(1285) excitation, which makes it very distinct
from the usual shape of the Breit-Wigner distribution for the f1(1285). It is interest-
ing to see that this cross section is remarkably similar to the one found in Ref. [3.2]
(we shall come back to it in the next section to do a comparison with the data). In
Ref. [3.2] no explanation was found for this extra strength and it was suggested that
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it should be the πa0(980) decay mode of the f1(1420). What we see here is that
the peculiar shape of the cross section for this particular channel is a consequence
of the triangle diagram of Fig. 3.11, the mechanism for πa0(980) production from a
resonance (the f1(1285)) that is a bound state of K∗K̄, or that couples strongly to
K∗K̄ for the purpose (the f1(1285)). The unexpected large strength around 1400
MeV comes from a singularity in the triangle diagram as we discuss in the next
section. From that we can conclude that the strength found in this channel around
1400 MeV is not tied to the f1(1420) resonance but to the f1(1285).

There is one more argument that we can bring in favour of the former interpre-
tation. Indeed, let us assume that the f1(1420) is a genuine resonance. If it decays
into K∗K̄ and this channel exhausts the width as found experimentally, we can get
the coupling gf1(1420),K∗K̄ by means of Eq. (3.26) and we find

gf1(1420),K∗K̄ = 4256 MeV . (3.43)

With this coupling we can reevaluate the triangle diagram of Fig. 3.11, simply
replacing the coupling gf1(1285),K∗K̄ with the new one. Then we would use Eq. (3.27)
to get the cross section for f1(1420)→ πa0(980), replacing the f1(1285) propagator
by the one of the f1(1420). The other change might be the constant C, but this
constant, appearing in the a + b → 1 + R vertex (see Fig. 3.6) is related to the
resonance production (irrespective of the decay channels). Since one is dealing with
high energies of the order of hundreds of GeV in these reactions, and the masses
of the f1(1285) and f1(1420) are similar, on statistical grounds we should expect
similar production rates for both resonances, and hence C should be similar in the
two cases. Assuming C is the same for both resonances, what we see in Fig. 3.12
is a shape for f1(1420) → πa0(980) production very different from the one coming
from the f1(1285) decay, which reflects a f1(1420) Breit-Wigner structure, and most
importantly, with a very large strength, which is not seen in any experiment. Even
this signal reduced by a factor five should be clearly seen experimentally, and on
statistical grounds it is not easy to justify that the production of the f1(1420) should
be reduced by a factor five with respect to that of the f1(1285).

There is yet another factor to note. When performing the previous calculation
that involves the f1(1420) propagator, we had to calculate the width of the f1(1420)
into πa0(980). We find that (see next section for a more detailed evaluation)

BR(f1(1420)→ πa0(980))

BR(f1(1420)→ K∗K̄)
' 0.17 . (3.44)

This is a fraction that could not be missed and has not been found in any experiment
where this decay mode has been searched for. Only in Ref. [3.2] a 5% ratio was
invoked by guessing that the shoulder seen in that decay mode around 1400 MeV
was due to this resonance, but we have given a different interpretation for this
feature.

It is interesting to recall here that the triangle singularity of Fig. 3.11 also shows
up in the decay of the η(1405) → πa0(980) which was studied in Refs. [3.50, 3.51],
together with the isospin violating η(1405) → πf0(980) decay. This latter decay
was abnormally enhanced due to the triangle singularity. In a follow up of Ref.
[3.50] in Ref. [3.52] the idea is retaken and applied to study the BESIII decay of



3.2 Revising the f1(1420) 119

J/ψ → γη(1405)(η(1475)) with η(1405) → KK̄π, ηππ and 3π. In this work the
possible contribution of the f1(1420) in addition to the η(1405) was discussed. The
f1(1420) was assumed to be a regular resonance and the triangle singularity enhanced
some decay modes, in spite of which its contribution relative to that of the η(1405)
was found small in the radiative J/ψ decay. Although we find that the f1(1420) is
not a genuine resonance, we have seen that there is indeed strength in the KπK̄
and πa0(980) channels in the 1420 MeV region from the decay of the f1(1285). A
reanalysis of the BESIII experimental data [3.53] from this new perspective would
be most interesting.

It is interesting to evaluate uncertainties of the results obtained. We have used
a coupling of f1(1285) to K∗K̄, gf1,K∗K̄ = 7555 MeV. In Ref. [3.22] the value is 7230
MeV, but the binding appeared at 1288 MeV. Imposing the binding at 1282 MeV,
as in the PDG [3.14], leads to this small change in the coupling. We can take this
difference in the couplings as a measure of uncertainties in this magnitude. This will
affect the rate for K∗K̄ production (KπK̄ in our approach) of Fig. 3.10, related to
the diagram of Fig. 3.8. This means we have a 10% difference between the results
with these couplings, or the centroid ±5%. We should note that this process is
related to the tree-level amplitude of Fig. 3.10 and, thus, it is not tied to the cutoff
used, which appears only in the loops.

Similarly, we can estimate the uncertainty in the ratio of Eq. (3.44). Let us
recall that here the coupling of f1(1285) to K∗K̄ does not enter, because we took
the coupling of f1(1420) to K∗K̄ from the width of that state, Eq. (3.43). Hence, the
uncertainties here come from the cutoff used in the loop of Fig. 3.11, replacing the
f1(1285) by f1(1420). The cutoff affects both the loop function and the KK̄ → π0η
amplitude (via a0(980)), since as argued before, one has the same cutoff in the loop
of Fig. 3.11 and in the loops of the t-matrix that generates the a0(980). In order
to estimate the uncertainties in the cutoff we have taken a recent experiment where
the rate of a0(980) production is large and the signal is very clean [3.54], and a
theoretical calculation that agrees well with the data is available [3.55, 3.56]. We
have looked at the data in Fig. 6 of Ref. [3.55], which is calculated with qmax = 600
MeV, 580 MeV and 630 MeV. We have redone the calculations and found that
by using 550 MeV and 650 MeV, the differences with experiment become already
obvious. Then, we redo our calculation of the loop of Fig. 3.11 and then the ratio
of Eq. (3.44) becomes (17.0± 1.5)%.

3.2.5 The singularity of the triangle diagram

The shoulder for the f1(1285) decay to ππ0η around 1400 MeV has its origin
in the singularity that the triangle diagram of Fig. 3.11 develops at 1420 MeV. As
discussed in section 3.1, triangular singularities stem from triangle diagrams when
the intermediate particles are all placed on-shell and the momenta are parallel (−~q
and ~k of Fig. 3.11 go in the same direction). There is also a further constraint which
is that the mechanism can lead to a classical process with R → K∗K̄; K∗ → Kπ;
KK̄ → a0(980), which is stated by the Coleman-Norton theorem [3.8]. A practical
way to see where the singularity appears is to use Eq. (3.20) from section 3.1.
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In the present case we can see the origin of the singularities by looking at the ex-
pression of Eq. (3.39). The two factors in the denominator that develop singularities
are

D1 = P 0 − ω∗(~q )− ω(~q ) + iε (3.45)

and
D2 = P 0 − k0 − ω(~q )− ω′(~q + ~k ) + iε . (3.46)

When they are zero with ~q and ~k in opposite directions, one gets a pole when
D1 = 0 at qon + iε and two poles when D2 = 0, at qa+ + iε and qa− − iε. Then,
when qon = qa− two poles appear in opposite sides of the real axis at the same
energy and the integral path cannot be deformed to avoid the singularity, which
thus shows up in the result of the integral. If the width of the K∗ is considered, then
qon + iε→ qon + iΓK∗/2 and the singularity turns into a peak. If we apply qon = qa− ,
as in Eq. (3.20) from section 3.1, we find the singularity when the incoming energy
in the triangle diagram is 1420 MeV. To show it, we plot in Fig. 3.13 the result for
|t̃T |2 of Eq. (3.39). In Fig. 3.13 we see how an original singularity becomes a broad
peak when ΓK∗ 6= 0. This softened singularity, together with the propagator of the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1200  1250  1300  1350  1400  1450  1500

t~ T
 [
a
.u

.]

Minv [MeV]

Figure 3.13: Results for the singular diagram, |t̃T |2, of Eq. (3.39).

f1(1285), is what gives rise to the broad shoulder of the f1(1285)→ πa0(980) in Fig.
3.12.

3.2.6 Detailed evaluation with the I = 0 and C = + parity
of the f1(1285)

So far we did not pay attention to the isospin and C-parity structure of the
f1(1285) and f1(1420), but the shapes and relative weights of the cross sections are
well evaluated with the previous formalism. The wave function for the f1(1285) is
given by

|f1(1285)〉 = −1

2
(K∗+K− +K∗0K̄0 −K∗−K+ − K̄∗0K0) (3.47)
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and then everything is identical to what has been done so far, except that one
has four diagrams. The evaluation of the widths for f1(1285) → πa0(980) and
f1(1285) → πKK̄ at the peak of the f1(1285) are done in Refs. [3.20] and [3.19],
respectively. All that must be done is to perform the same evaluation as a function
of Minv (for the f1(1285) at higher energies), and implement the f1(1285) propagator
in Eq. (3.27). The results are shown in Figs. 3.14, 3.15 and 3.16, which should be
compared with Figs. 3.12, 3.9 and 3.10, respectively. As we can see, not only the
shapes but the absolute numbers are about the same as with the simplified wave
function. Moreover, in Fig. 3.15 a peak develops for the f1(1285) → πKK̄ decay
around 1400 MeV (see Fig. 3.16 for more details). The peak and width of the
distribution around this energy are in fair agreement with the mass of 1420 MeV
and width of about 55 MeV quoted in the PDG [3.14].

We have taken advantage to make a more refined evaluation. Indeed, in Eq.
(3.27) we have ΓR ≡ Γf1(1285) in the denominator. Since we are evaluating the
partial decay width into KπK̄ and πa0(980) we write

ΓR = Γf1(1285) − Γf1(1285)→KπK̄ |on − Γf1(1285)→πa0(980)|on

+Γf1(1285)→KπK̄(Minv) + Γf1(1285)→πa0(980)(Minv) , (3.48)

which guarantees that on shell, Minv = 1285 MeV, ΓR = 24.1 MeV. The values
that we obtain are Γf1(1285)→KπK̄ |on/Γf1(1285) = 0.095, Γf1(1285)→πa0(980)|on/Γf1(1285) =
0.275.
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Figure 3.14: The differential cross section for the decay f1(1285) → πa0(980) as in
Fig. 3.12, here with the full wave function of Eq. (3.47).

We also make a more detailed comparison with the results of Ref. [3.2]. In Fig.
3.17 we show our results folded with a resolution of 20 MeV to facilitate comparison
with the experimental numbers. We normalize the results approximately to the peak
of the experimental distribution. We can see that the agreement with experiment is
fair.
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Figure 3.15: The differential cross section for the decay f1(1285) → KπK̄ as in
Fig. 3.9, here with the full wave function of Eq. (3.47).
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Figure 3.16: Same as Fig. 3.10, here with the complete wave function of Eq. (3.47).

3.2.7 Conclusions

We have carried out a study of the production of the f1(1285) and decay into
πa0(980) and K∗K̄ modes. We have studied the cross sections as functions of the
f1(1285) mass, Minv, up to 1500 MeV and we have observed two relevant features:

1) The K∗K̄ mode (allowing the K∗ → Kπ decay) has two peaks as a function
of Minv, one at the f1(1285) mass and the other one at about 1420 MeV, this
latter one with a width of about 60 MeV.

2) The πa0(980) mode has a peak at 1285 MeV and a broad shoulder around 1400
MeV, which comes from a triangle singularity involving K∗KK̄ as intermediate
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Figure 3.17: Comparison of the results of Fig. 3.14, convoluted with a resolution of
20 MeV, with the experimental results of [3.2].

states, and tied to the nature of the f1(1285) as a K∗K̄ molecule, a sufficient
although not necessary condition, since what matters is that the f1(1285)
couples to K∗K̄ and this is known experimentally from the KπK̄ decay mode.
The combination of the tail of the f1(1285) with the increased phase space for
the K∗K̄ production is the reason for this second peak.

The two features described above are the experimental facts in which the f1(1420)
was accepted as a resonance, but we have shown that they are consequence of the
decay modes of the f1(1285) and one does not have to introduce any new resonance
to account for these facts. The absence of the πa0(980) decay mode of the f1(1420)
in all but one experiment [3.2], is a fact that we have exploited here, because if it
were a resonance which decays mostly into K∗K̄, it would unavoidably have a width
into πa0(980) of the order of (17.0 ± 1.5)%, which has not been observed. The 5%
πa0(980) decay mode attributed to the f1(1420) in Ref. [3.2] was a guess based on
the lack of any other interpretation of the shoulder found for this mode around 1400
MeV in the study of the decay of the f1(1285). We found a natural explanation for
this broad peak which then does not require the existence of the f1(1420).

Altogether, our study leads us to the unavoidable conclusion that the f1(1420)
is not a resonance but simply the manifestation of the K∗K̄ and πa0(980) decay
modes of the f1(1285) around 1420 MeV.
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3.3 Role of a triangle singularity in the πN(1535)

contribution to γp→ pπ0η

In this section we present the work of Ref. [3.3] where we have studied the
γp → pπ0η reaction paying attention to the two main mechanisms at low energies,
the γp→ ∆(1700)→ η∆(1232) and the γp→ ∆(1700)→ πN(1535). Both of them
are driven by the photoexcitation of the ∆(1700) and the second one involves a
mechanism that leads to a triangle singularity. We are able to evaluate quantitatively
the cross section for this process and show that it agrees with the experimental
determination from Ref. [3.4]. Yet, there are some differences with the standard
partial wave analysis which does not include explicitly the triangle singularity. The
exercise also shows the convenience to explore possible triangle singularities in other
reactions and how a standard partial analysis can be extended to accommodate
them.

3.3.1 Introduction

The γp → pπ0η reaction was measured first in Ref. [3.57] up to energies of the
photon of Eγ = 1150 MeV. Early theoretical determinations of the threshold be-
haviour, with large uncertainties were done in Ref. [3.58]. Some accurate predictions
in the range up to Eγ = 1700 MeV, were done in Ref. [3.59] prior to the measure-
ments done at GRAAL [3.60], CB-ELSA [3.61, 3.62] and MAMI [3.63]. The basic
idea of Ref. [3.59] was that the process is dominated by the photoproduction of
the ∆(1700)(3/2−), which later decays into η∆(1232) followed by ∆(1232) → π0p.
The dominance of this resonance at low energies was also established experimen-
tally [3.60, 3.62, 3.63]. In Ref. [3.63] it is quoted “it is possible to get a reasonable
agreement with the data by taking into account only the D33(1700) resonance”.
Further support for this idea comes from the correlation of many reactions based
upon the dominance of the ∆(1700). Indeed, in Ref. [3.64] the π−p → K0π0Λ,
π+p → K+π+Λ, K+K̄0p, K+π+Σ0, K+π0Σ+, ηπ+p reactions were described suc-
cessfully based upon the mechanism of ∆(1700) excitation with subsequent decays
into KΣ∗(1385) or η∆(1232). The pπ0, pη and ηπ0 mass distributions measured in
Ref. [3.60] also give support to this idea, which is further reinforced by the agree-
ment shown in Ref. [3.65] for the polarization observables IS and IC , Iθ measured
in Refs. [3.66,3.67].

A high statistics measurement of different observables is done in Ref. [3.4]. In this
work a separation of the cross section is made in three main channels, η∆, πN(1535)
and a0(980)p, and up to Eγ around 1500 MeV the first two channels saturate the
cross section. The η∆ channel is dominant, but the πN(1535) is also sizable in this
region. The experimental results are shown in Fig. 3.18 (the model curves will be
explained later). The purpose of the present work is to find a theoretical description
of these two channels.

The η∆ channel finds a natural interpretation in the dominance of the ∆(1700)
excitation and provides support for the dynamical generation of this resonance from
the interaction of the octet of pseudoscalar mesons with the decuplet of baryons
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Figure 3.18: Cross section for γp → π0ηp. |a|2 stands for the mechanism of Fig.
3.19. |b|2 stands for the triangle mechanism of Fig. 3.20. |a + b|2 stands for the
coherent sum of the two former mechanisms and |a|2 + |b|2 stands for the incoherent
sum.

[3.68, 3.69]. Indeed, as shown in Ref. [3.69], the ∆(1700) is generated from the
coupled channels ∆π, Σ∗K and ∆η, and the scattering matrix leads to a sizable
coupling of that resonance to ∆η. Hence, the main channel assumed in Ref. [3.59]
is photoproduction of the ∆(1700) followed by the decay of the ∆(1700) into ∆η
and posterior ∆ → πN decay. In this mechanism there is no direct room for the
πN(1535) channel, although some terms, with final state interaction of πη, partly
incorporated this channel in Ref. [3.59]. In the present work we are going to show
that the relatively large weight of the πN(1535) channel is tied to a triangular
singularity for the process γp → ∆(1700) → η∆+ followed by ∆+ → π0p and
posterior fusion of the pη to produce the N(1535).

Other examples of triangle singularities can be seen in Refs. [3.11, 3.70–3.73].
More closely related to the present problem is the case of the η(1405)→ πa0(980),
πf0(980) [3.50–3.52], where in particular, the latter channel violating isospin is en-
hanced due to a triangle singularity. Another recent example can be seen in the
“a1(1420)” peak, originally advocated as a new resonance by the COMPASS collab-
oration, which hinted in Ref. [3.12] and shown explicitly in Refs. [3.44, 3.45], comes
naturally from the πf0(980) decay of the a1(1260), via a triangular mechanism that
develops a singularity when the a1(1260) decays into K∗K̄, the K∗ → πK and the
KK̄ merge to produce the f0(980). A case similar to this is the recent reanalysis
of the f1(1420), which is shown in Ref. [3.1] and in the former section 3.2 to corre-
spond to two mechanisms: the decay of the f1(1285) into πa0(980) via a triangular
singularity, f1(1285) → K∗K̄, K∗ → πK, KK̄ → a0(980); and decay into K∗K̄,
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that shows as a pronounced peak above the K∗K̄ threshold. Adding to this list of
reinterpretation of some accepted resonances is the case of the f2(1810), also ex-
plained in Ref. [3.74] as the production of the f2(1650) followed by the decay into
K∗K̄∗, K∗ → πK, KK̄∗ → a1(1260).

In some cases the singularity helps to explain enhancements in cross sections not
attributed to any resonance. This is the case of the γp→ KΛ(1405) reaction, where
a triangular singularity stemming from the production of a N∗ resonance at 1930
MeV, with N∗ → K∗Σ, K∗ → Kπ and πΣ merging to give the Λ(1405), produces
a peak in the cross section around

√
s = 2120 MeV [3.75], that solves a problem in

the interpretation of the data [3.76].
Recent interest in triangle singularities was stirred by the suggestion in Refs.

[3.10,3.13] that the peak seen in the LHCb collaboration attributed to a pentaquark
in Refs. [3.77, 3.78] should be due to a triangle singularity stemming from A →
Λ(1890)χc1, Λ(1890) → K− p, χc1 p → J/ψ p. However, the χc1 p system is at
threshold for the energy of the peak at 4450 MeV, and if this peak has quantum
numbers 3/2− or 5/2+ as suggested by the experiment, the χc1 p system must be in P -
or D-wave, which at threshold kills the χc1 p→ J/ψ p amplitude. This observation
was made in Ref. [3.9] where it was concluded that this mechanism could not be the
explanation of the experimental peak if these quantum numbers are confirmed.

In the present work we will show another case of a triangle singularity via γp→
∆(1700) → η∆ → ηπ0p, with η p merging into the N(1535), which gives rise to a
πN(1535) production cross section similar in strength and shape to the experimental
one. We will also show that the energy dependence of this cross section is quite
different to a standard one proceeding thorough γp → πN(1535) directly, and it
is tied to the structure of the triangle singularity. As we shall see, the N(1535)
plays a special role among other possible N∗ states, which do not lead to a triangle
singularity, or couple weakly to the ηN state.

3.3.2 Formalism

The tree level γp→ ∆(1700)→ ∆η

In Fig. 3.19 we depict the mechanism for direct production of the ∆(1700) fol-
lowed by the decay into ∆(1232)η and ∆(1232)→ π0p.

γ

p
η

∆(1232)∆*(1700)
π0

pm’m M M’

Figure 3.19: Mechanism for γp → ∆(1700) → η∆(1232) → ηπ0p driven by
∆(1700)(3/2−) photoproduction.
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The first ingredient needed in the evaluation is the ∆(1700)γp coupling. This
proceeds in S-wave and can be taken into account with the amplitude

−it∆∗,γp = −ig∆∗,γp
~S · ~ε (3.49)

where ~ε is the polarization of the photon in the Coulomb gauge representation (ε0 =

0) and ~S the spin transition operator from 3/2 to 1/2. The width of ∆∗ into this
channel is given by

Γ∆∗,γp =
1

2π

MN

M∆∗
pγ
∑∑

|t∆∗,γp|2, (3.50)

where

∑∑
|t∆∗,γp|2 = |g∆∗,γp|2

1

4

∑
M

∑
m

∑
γ pol

〈
m
∣∣∣ ~S · ~ε ∣∣∣M〉〈M ∣∣∣ ~S† · ~ε ∣∣∣m〉

= |g∆∗,γp|2
1

4

∑
m

∑
γ pol

〈
m

∣∣∣∣23 δij − i

3
εijkσk

∣∣∣∣m〉 εiεj
=

1

3
|g∆∗,γp|2

∑
γ pol

~ε · ~ε =
2

3
|g∆∗,γp|2. (3.51)

Experimentally, the branching fraction is 0.22−0.60% from a Breit-Wigner width
Γ∆∗ = 200 − 400 MeV and mass M∆∗ = 1670 − 1750 MeV [3.14]. We shall play
with the uncertainties for a more accurate fit to the γp→ pπ0η data. By taking the
central value of the branching fraction, 0.41%, Γ∆∗ = 300 MeV and M∆∗ = 1700
MeV, we obtain from Eq. (3.50)

g∆∗,γp = 0.188. (3.52)

The PDG has also data for the helicity amplitudes. It is easy to construct the
helicity amplitudes from the coupling of Eq. (3.49), following the steps of Ref. [3.79],
and show that both, helicity 1/2 and 3/2, are compatible with the structure of
Eq. (3.49) and the coupling of Eq. (3.52). On the other hand, the coupling of ∆∗

to the channel η∆ is one of the outputs of the chiral unitary approach of Ref. [3.69]
where we find

g∆∗,η∆ = 1.7− i 1.4 , (3.53)

and the amplitude −it∆∗,η∆ is just −ig∆∗,η∆ since the process proceeds via S-wave
and has no spin dependence.

The ∆(1232) decaying to π0N has a standard coupling as

−it∆,πN =
fπN∆

mπ

~S · ~k C(1, 1/2, 3/2 ; iπ, iN , i∆), (3.54)

with C(1, 1/2, 3/2 ; iπ, iN , i∆) the Clebsch-Gordan coefficient,
√

2/3 for π0p, and ~k
the pion momentum. From the ∆ width, we find

f 2
πN∆

4π
= 0.36 ; fπN∆ = 2.13. (3.55)
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The amplitude of Fig. 3.19 can now be constructed with the former ingredients
and we have

−itγp,ηπ0p =
∑
M

∑
M ′

fπN∆

mπ

〈
m′
∣∣∣~S · ~k∣∣∣M ′

〉√2

3

i

Minv(π0p)−M∆ + iΓ∆/2

× (−i ) g∆∗,η∆ δMM ′
i√

s−M∆∗ + iΓ∆∗/2
(−i ) g∆∗,γp

〈
M
∣∣∣ ~S† · ~ε ∣∣∣m〉

= g∆∗,γp g∆∗,η∆
fπN∆

mπ

√
2

3

1

Minv(π0p)−M∆ + iΓ∆/2

× 1√
s−M∆∗ + iΓ∆∗/2

∑
M

〈
m′
∣∣∣ ~S · ~k ∣∣∣M〉〈M ∣∣∣ ~S† · ~ε ∣∣∣m〉 , (3.56)

where Minv(π0p) is the invariant mass of the π0p system and s the ordinary Man-
delstam variable for the center-of-mass (CM) energy of the γp initial system.

The triangle singularity in γp→ π0N(1535)

The mechanism that we shall study is depicted in Fig. 3.20. The ∆∗ decays
into ∆η, the ∆ decays into π0p and the η p merge to produce the N(1535) that
subsequently decays into η p. It is easy to see, by taking Eq. (3.20) from section 3.1,
that the diagram of Fig. 3.20 develops a singularity around

√
s = 1782 MeV, which

corresponds to Eγ in the laboratory frame at 1220 MeV. One can see in Ref. [3.4]
that there is some kind of broad structure around Eγ = 1200 MeV for the πN(1535)
part of the cross section in the analysis done there.

γ

p
η

∆∆* π0

pN*(1535)
η

p

(P) (P-q)

(q)

(k)

(P-q-k)

Figure 3.20: Triangle diagram leading to the production of πN(1535) (η p). In
parenthesis, the momenta of the particles.

The amplitude for the mechanism of Fig. 3.20 is given by

−it =− itηp,ηp
fπN∆

mπ

√
2

3
~S · ~k (−i ) g∆∗,η∆ (−i ) g∆∗,γp

~S† · ~ε i√
s−M∆∗ + iΓ∆∗/2

×
∫

d4q

(2π)4
2M∆

i

(P − q)2 −M2
∆ + i ε

2MN
i

(P − q − k)−M2
N + iε

i

q2 −m2
η + iε

= tηp,ηp g∆∗,η∆ g∆∗,γp
fπN∆

mπ

√
2

3
~S · ~k ~S† · ~ε 2MN 2M∆

1√
s−M∆∗ + iΓ∆∗/2

tT ,

(3.57)
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which defines tT , the triangle amplitude, as i
∫
d4q of the product of the three propa-

gators, ∆, η, p. The Mandl-Shaw normalization for fermion fields [3.47], responsible
for the factors 2MN , 2M∆ in Eq. (3.57), is used. The q0 integration in Eq. (3.57) is
done analytically and then the tT amplitude is written as we saw in section 3.1,

tT =

∫
d3q

(2π)3

1

8ω(q)ω′(q)ω∗(q)

1

k0 − ω′(q)− ω∗(q) + iε

1

P 0 − ω∗(q)− ω(q) + iε

2P 0ω(q) + 2k0ω′(q)− 2[ω(q) + ω′(q)][ω(q) + ω′(q) + ω∗(q)]

(P 0 − ω(q)− ω′(q)− k0 + iε)(P 0 + ω(q) + ω′(q)− k0 − iε) , (3.58)

where ω(q) =
√
mη

2 + ~q 2 , ω′(q) =

√
MN

2 + (~q + ~k)2 , ω∗(q) =
√
M∆

2 + ~q 2 .

To account for the width of the ∆ in the loop function we replace ω∗(q) →
ω∗(q)− iΓ∆/2, where we use an energy-dependent width

Γ∆(Minv(q)) =
M∆

Minv(q)

pπ
3(Minv(q))

pπ3|on

Γ∆|on, (3.59)

with Minv(q) the ∆(1232) invariant mass inside the triangular loop, calculated from
the second denominator of Eq. (3.58)

Minv(q) =
√

(P 0)2 +mη
2 − 2P 0 ω(q), (3.60)

and Γ∆|on = 117 MeV, while pπ(Minv(q)) is the pion momentum in the ∆(1232) rest
frame

pπ(Minv(q)) =
λ1/2(Minv(q)2, MN

2, mπ
2)

2Minv(q)
, (3.61)

pπ|on = pπ(Minv(q) = M∆), (3.62)

where λ is the Källen function, and we set Γ∆ to zero if Minv(q) < MN + mπ. We
have also used the analytical extrapolation of Eq. (3.59) below threshold, but since
then the ∆ is so far off shell it has a minor relevance in the triangle singularity with
changes at the level of less than 2%.

The ηp → ηp amplitude tηp,ηp is driven by the N(1535), which also shows up
as a dynamically generated resonance in Ref. [3.80]. The integral in Eq. (3.58) is
convergent. Yet, one must take into account that the chiral unitary approach of
Ref. [3.69] can be formally obtained using a Quantum Mechanical formulation with
a potential of the type V (~q , ~q ′) = V θ(qmax − |~q |)θ(qmax − |~q ′ |) [3.81] and this leads
to a T -matrix where the two θ functions are also factorized, leading to a qmax in
the d3q integration of Eq. (3.58). A value of qmax suited for the ∆∗ → ∆η as well
as for the tηp,ηp that we take from the work of Ref. [3.80] done along similar lines,
is qmax = 800 MeV in the N(1535) rest frame, that we shall use in our study. We
can see that the amplitude of the triangle diagram, Eq. (3.57) and the tree level

γp→ ∆∗ → ∆η of Eq. (3.56) have exactly the same spin structure ~S · ~k ~S† · ~ε, and
we expect some kind of interference, although the amplitudes are complex and one
has to see explicitly how the interference occurs.



130 Chapter 3. Triangle Singularities

The cross section for γp → ηπ0p is given by the standard a + b → 1 + 2 + 3
formalism, as

σ =
(2MN)2

4pγ
√
s

∫
d3p1

(2π)3

1

2E1

1

16π2

×
∫
dΩ̃2 p̃2

1

Minv(23)

∑∑
|T |2, (3.63)

where p̃2 is the momentum of particle 2 in the rest frame of 2 + 3 and Ω̃2 its solid
angle in that frame. Proceeding like in Eq. (3.51), summing over transverse photons∑

γ pol

εi εj = δij −
pγi pγj
~pγ 2

, (3.64)

we find that ∑∑
|~S · ~k ~S† · ~ε|2 ≡ 1

2

{
5

9
~k2 − 1

3
~k2 cos2 θ1

}
(3.65)

where θ1 is the angle between the photon and the π0. The variables p̃2, p̃3, defined
in the 2 + 3 rest frame, are conveniently boosted to the γp rest frame in order to
evaluate the invariant masses entering the evaluation of T . Summing the tree level
amplitude and the triangle diagram, T in Eq. (3.63) is given by

−i T =(a+ b) ~S · ~k ~S† · ~ε, (3.66)

where

a =C
1

Minv(12)−M∆ + iΓ∆/2
(3.67)

b =C 2MN 2M∆ tT tηp,ηp (3.68)

C = g∆∗,η∆ g∆∗,γN
fπN∆

mπ

√
2

3

1√
s−M∆∗ + iΓ∆∗/2

. (3.69)

Thus, ∑∑
|T |2 = |a+ b|2 1

2

{
5

9
~k2 − 1

3
~k2 cos2 θ1

}
. (3.70)

In Eq. (3.67) we also employ the energy-dependent width of Eq. (3.59), but now as
a function of the invariant mass Minv(12).

We shall also see the contribution of the ∆∗ → η∆ alone, just taking |a|2 in
Eq. (3.70), and of πN(1535), taking |b|2 in Eq. (3.70), instead of |a + b|2, which
corresponds to the coherent sum of the two processes.

The singularity that comes out from tT in Eq. (3.58) leads to a peculiar energy
dependence of the cross section for πN(1535) production. In order to show it, we
also evaluate the γp → πN(1535) cross section with a standard mechanism that
does not involve the triangle singularity, and which we show in Fig. 3.21.
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γ

p

ηπ0

p
N*(1535)

Figure 3.21: Standard mechanism for γp→ πN(1535) production.

The transition from angular momentum 1−+1/2+ → 0−+1/2− requires P -wave,
L = 1, to restore the parity. Two structures are possible,

~ε · ~k, (~σ × ~k) · ~ε . (3.71)

Both of them, after squaring and summing over polarizations, taking into account
the transversality of the photons, Eq. (3.64), lead to a combination∑∑

|t|2 ∝ c~k2 + d~k2 cos2 θ1 ∼ (c+
1

3
d )~k2 (3.72)

where in the last step we have substituted cos2 θ1 by 1/3 as it would come by
integration over the phase space. Then, the cross section from this mechanism can
be obtained from Eq. (3.63) substituting |T |2 by a constant times ~k2|tηp,ηp|2

|T |2 → D~k2|tηp,ηp|2. (3.73)

At this point we would like to discuss the possibility of having some relevant
contribution from other N∗ states instead of the N(1535). The N(1440) does not
have the η p channel open for decay and does not develop a triangle singularity. In
principle the N(1520)(3/2−), given the proximity in mass to the N(1535) could also
develop a triangle singularity with the same mechanism of Fig. 3.20. However, in
Ref. [3.14] we see that the coupling of this resonance to η p is very small, BR(η p) <
1%, while for the N(1535) this mode gives BR(η p) ≈ 32 − 52%. If we take the
N(1650), and other resonances of higher mass, we see that the condition qon−qa− = 0
from Eq. (3.20) in section 3.1 is far from being fulfilled, and as the mass of the
resonance increases qon− qa− is even larger, indicating that one never gets a triangle
singularity for these resonances. The excitation of the N(1535) has a privileged role
as we see.

3.3.3 Results

In Fig. 3.22, we show the result for the amplitude tT of Eq. (3.58). We can see
that Re(tT ) and Im(tT ) have the Breit-Wigner shape like −BW ≡ −(

√
s −mR +

iΓR/2)−1. However, the real part does not go through zero, so the shape resembles
D − BW (s), with D a constant real background. We can see in |tT |2 a clear peak
around

√
s = 1770 MeV, as anticipated by the simple application of the rule of

Eq. (3.20).
In Fig. 3.18 we show the results for the cross section. The tηp,ηp amplitude is

taken from Ref. [3.80] as a Breit-Wigner amplitude

tηp,ηp =
g2
N∗,ηp

Minv(ηp)−MN∗ + iΓN∗/2
, (3.74)



132 Chapter 3. Triangle Singularities

Figure 3.22: |tT |2, Re(tT ), Im(tT ) and |tT | as a function of the γp energy,
√
s.

The mass of the η p system is taken at the N(1535) mass of 1543 MeV determined
in [3.80].

and we take the values for MN∗ , ΓN∗ and gN∗,ηp from that work, which provides a
fair reproduction of the scattering data,

gN∗,ηp = 1.77 ,

MN∗ = 1543 MeV,

ΓN∗ = 92 MeV.

The width seems a bit smaller compared to the PDG average 150 MeV, but in
agreement with BES data 95 ± 25 MeV [3.82] and not far from the most recent
determination of 120± 10 MeV in Ref. [3.83].

As shown in the former section, there are uncertainties in the mass, width and
radiative decay of the ∆(1700). Playing with these uncertainties, one obtains a
band of allowed cross sections from the dominant γp → ∆(1700) → η∆ → ηπ0p
mechanism, which is shown in Fig. 2 of Ref. [3.60]. Since we want to see the relative
weight of the πN(1535) production versus η∆(1232), we fine tune the values of M∆∗ ,
Γ∆∗ and g∆∗,γp to get a fair agreement with the data for low energies. We find that
the values that better fit the curve |a+ b|2 to the MAMI data [3.63] up to 1300 MeV
are M∆∗ = 1663.6 MeV, Γ∆∗ = 114.1 MeV and g∆∗,γp = 0.142, which corresponds
to the branching fraction of 0.60%.

We obtain a fair reproduction of the cross section up to about pγ = 1300 MeV.
From there on one would be relatively far away from the ∆(1700) mass and other
mechanisms discussed in Ref. [3.4] should come into play. The important finding
concerning the triangle singularity is that we obtain a πN(1535) contribution in
fair agreement with the experimental determination. One should not overstate the
agreement, since the methods to obtain it in Ref. [3.4] and here are different. In any
case, the approximate agreement is welcome.

It is instructive to see that the cross section for πN(1535) production is much
wider than one could anticipate from the shape of |tT |2 in Fig. 3.22. This is because
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the π0ηp production amplitude has an extra factor |~k| plus phase space factors and
the weight of the ∆(1700) propagator.

In order to see the differences between the approaches followed here and in
Ref. [3.4] we show in Fig. 3.18 the contributions of Eq. (3.63) and Eq. (3.70), taking
|a|2 (only η∆), |b|2 (only πN(1535)) and |a+ b|2 in the equations. We can see that
there is actually not much interference between the two amplitudes. Actually we
find a small destructive interference, but this can become slightly constructive with
small change of the parameters. The message is small interference, which happens
in spite of the same spin structure of the two amplitudes as we have shown in
Eqs. (3.56) and (3.57). The reason is that the N(1535) structure provided by the
tηp,ηp amplitude is multiplied by tT , which as seen in Fig. 3.22 has by itself a rich
complex structure. This can explain the differences with the analysis of Ref. [3.4],
where a more constructive interference between the two mechanisms occurs, as can
be seen in Fig. 19 of that paper. In Ref. [3.4] a partial wave analysis is done using
a K-matrix approach in which the t-matrix is given Aab = Kac(1− ρK)−1

cb , where ρ
is a diagonal matrix that takes into account phase space of the intermediate states,
and the kernel Kac is written as background plus a sum of Breit-Wigner amplitudes,

Kab =
∑
α

gαa g
α
b

M2
α − s

+ fab. It is clear that in this analysis there is no room for the

analytically rich multiplicative structure of the triangle singular mechanism that we
have studied here. The reason for the small interference of the tree level and the
triangle singularity finds its most clear explanation through the Schmid theorem
which we discuss in the following section 3.4.

As commented at the end of the former section, we would like to show the effect
of having the πN(1535) production from the triangle mechanism. For that purpose,
we compare in Fig. 3.23 the results of our approach with the results that we would
obtain using the mechanism of Fig. 3.21, for a standard production mechanism.
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Figure 3.23: Cross section for the γp→ πN(1535) with the triangle mechanism and
the standard mechanism of Fig. 3.21.

To facilitate the comparison we have normalized the cross sections at Eγ = 1200
MeV. We can see that the shape of the cross section with the standard mechanism
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is quite different, and produces a cross section that keeps rising and has a concave
shape. The mechanism that we have produces a different structure and gradually
decreases around Eγ = 1300 MeV, producing a better agreement with the experi-
mental extraction in the range up to about Eγ = 1400 MeV.

In Ref. [3.4] the data are given up to Eγ = 2500 MeV, but these are energies too
big to be contrasted with our model where only the ∆(1700) resonance excitation
is included, together with a ∆(1700) induced triangle singularity to account for
the πN(1535) production. Other resonances and other mechanisms are at play at
these energies [3.4]: the πN(1535) channel at higher energies would also receive
contribution from another triangle singularity involving Σ∗0K+ in the intermediate
state with Σ∗0 → π0Λ and K+Λ fusing to give the N(1535). Using the method of
Eq. (3.20) from section 3.1 the singularity peaks around Eγ = 1410 MeV, about 200
MeV higher than the one we studied here. We have also evaluated the contribution of
this singularity using the couplings from Refs. [3.69,3.80] and we find also a sizeable
contribution above Eγ = 1400 MeV, but for the purpose of the present work, its
contribution is very small compared to the one we have calculated up to Eγ = 1300
MeV, where with the limited information used here we give a fair description of the
experimental data.

As we have noted, the dominant mechanism of Fig. 3.19 and the triangle mech-
anism of Fig. 3.20 have the same spin and angular structure, given by the operator
~S ·~k ~S† ·~ε of Eq. (3.66). Hence, the angular dependence is given by Eq. (3.65), both
in the case of each individual mechanism or the coherent sum of the two. Angular
distributions with the dominant mechanism were discussed in Ref. [3.65] and we do
not discuss them further here.

3.3.4 Conclusions

We have evaluated the γp → ηπ0p cross section at low energies, up to about
500 MeV above threshold for Eγ, taking into account two mechanisms: the γp →
∆(1700) → η∆(1232) → ηπ0p and the γp → ∆(1700) → πN(1535). The first
mechanism is the one shown to be dominant in the productions of Ref. [3.59] and
subsequent papers. The second one is new and involves a triangle singularity in
which ∆(1700) → η∆(1232), ∆(1232) → π0p and then η p fuse to produce the
N(1535). The latter mechanism gave rise to a peak (broadened by the effect of the
∆(1232) width) around Eγ = 1220 MeV (

√
s = 1782 MeV). We have shown that this

latter mechanism, which we can evaluate with elements borrowed from the proper-
ties of the ∆(1700) and N(1535) as being dynamically generated resonances, gives
rise to a contribution to the cross section in fair agreement with the experimental
determination. We showed that the shape produced by the triangle mechanism is
quite different from the one we would have assuming a standard P -wave πN(1535)
production mechanism, and the experimental determination is in better agreement
with the triangle mechanism. We also showed that there is some discrepancy in the
interference pattern between the two mechanisms with respect to the one obtained
in Ref. [3.4], but we argued that this was a consequence of the fact that the analysis
of Ref. [3.4] does not include explicitly a triangle singularity in the approach. The
triangle amplitude created by itself a kind of a resonance structure which multiplies
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(not sums) an amplitude like the one assumed in Ref. [3.63]. As a consequence of
this factor we find very small interference between the two mechanisms, while a
more constructive interference is seen in the analysis of Ref. [3.4]. This also means
that the amount of γp → η∆(1232) in the cross section is somewhat bigger in our
approach at energies around Eγ = 1100− 1400 MeV.

The exercise made here also has repercussion for other reactions. It has shown
that in cases like the present one, where there is an unavoidable triangular singular-
ity, the standard partial wave analyses should be extended to accommodate such a
structure. It is not clear a priori that a triangle singularity is going to have a rele-
vance in a given reaction, but, given the simplicity of the rule developed in section
3.1 to find out whether a singularity appears within a certain mechanism, it would
be wise to make a general survey of a given reaction to see if such mechanisms can
develop. One could easily derive the structure for this singularity, which up to a
global factor only depends on the intermediate states of the triangle diagram, and
use it as a multiplicative factor on top of the standard amplitude of present partial
wave analyses. Future analyses of data along these lines would be most welcome.

3.4 Considerations on the Schmid theorem

In this section we present the work of Ref. [3.5] where we investigate the Schmid
theorem [3.6], which states that if one has a tree level mechanism with a particle
decaying to two particles and one of them decaying posteriorly to two other particles,
the possible triangle singularity developed by the mechanism of elastic rescattering
of two of the three decay particles does not change the cross section provided by the
tree level. We investigate the process in terms of the width of the unstable particle
produced in the first decay and determine the limits of validity and violation of the
theorem. One of the conclusions is that the theorem holds in the strict limit of zero
width of that resonance, in which case the strength of the triangle diagram becomes
negligible compared to the tree level. Another conclusion, on the practical side, is
that for realistic values of the width, the triangle singularity can provide a strength
comparable or even bigger than the tree level, which indicates that invoking the
Schmid theorem to neglect the triangle diagram stemming from elastic rescattering
of the tree level should not be done. Even then, we observe that the realistic case
keeps some memory of the Schmid theorem, which is visible in a peculiar interference
pattern with the tree level.

3.4.1 Introduction

Early studies of triangle singularities were done in Ref. [3.84] but the system-
atic study was done by Landau [3.7]. Work followed in Refs. [3.85–3.88] and some
peaks observed in nuclear reactions [3.89] were suggested as indicative of a triangle
singularity [3.90]. A thorough discussion of this early work was done by Schmid
in a clarifying article [3.6]. There a surprise appeared, known nowadays as Schmid
theorem that states that if the rescattering of particles 1 and 2 occurs, going to
the same state 1 + 2, the triangle singularity does not lead to any observable effect
in magnitudes like cross sections or differential widths. It is simply reabsorbed by
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the S-wave of the tree level amplitude (the same mechanism without rescattering,
see Figs. 3.24 and 3.25) modifying only the phase of this partial amplitude. In
angle-integrated cross sections the effect of the triangle singularity disappears.

Some debate originated on the limits to the Schmid theorem and its range of
validity [3.73, 3.91–3.93]. In Ref. [3.91], for example, it was shown that if the scat-
tering amplitude of 1 + 2 → 1 + 2 contains inelasticities then the Schmid theorem
does not hold.

Recently there has been a renewed interest in triangle singularities because
the present wealth of experimental work offers multiple possibilities to study such
mechanisms. A topic that stimulated the present interest on the subject was the
one of isospin violation in the η(1405) decay into π0f0(980) versus the isospin al-
lowed decay into π0a0(980) [3.50–3.52,3.94,3.95]. One interesting work was done in
Ref. [3.12], with many suggestions of places and reactions where triangle singulari-
ties could be found. One of the most striking examples of this rebirth is the work
of Refs. [3.44, 3.96] where a peak observed by the COMPASS collaboration [3.46],
and branded as a new resonance a1(1420), was shown to be actually produced by a
triangle singularity. The renewed interest in the issue was also spurred by the work
of Ref. [3.10], suggesting that a peak observed by the LHCb collaboration, which has
been accepted as a signal of a pentaquark of hidden charm [3.97], was actually due
to a triangle singularity. The hypothesis was ruled out in Ref. [3.9] if the present
quantum numbers of this peak hold. Yet, given the fact that some uncertainties
concerning these quantum numbers still remain, the issue could be reopened in the
future.

The work of Ref. [3.9] develops a different formalism than the one usually em-
ployed, which is very practical and intuitive, as presented in section 3.1, and we
shall also follow these lines in the present work, which offers a quite different formal
derivation of the Schmid theorem and allows to see its validity and limitations.

The former recent works on triangle singularities have stimulated many works
on the issue [3.1, 3.3, 3.13, 3.98–3.114]. Further information can be found in the
report [3.115].

Along the literature on this topic it is customary to find the statement that due
to the Schmid theorem, whenever one has rescattering in the loop to go to the same
states as inside the loop, there is no need to evaluate the triangle diagram because its
contribution is reabsorbed by the tree level. The purpose of the present paper is to
get an insight on the theorem and see where it holds exactly, when it fails and when
it is just an approximation and how good or bad can it be. For that, a new derivation
is carried out, and a study in terms of the width of the intermediate state R is done.
The failure of the theorem when the t12,12 scattering matrix has inelasticities is also
shown in detail, providing the quantitative amount of the breaking of the theorem.
Apart from the limit of small ΓR, where the theorem strictly holds, we study in
a particular case what happens for a realistic width, and a typical 1 + 2 → 1 + 2
scattering amplitude, which serves as a guide on how much to trust the theorem to
eventually neglect the contribution of the triangle loop.
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3.4.2 Formulation

Let us study the decay process of a particle A into two particles 1 and R, with
a posterior decay of R into particles 2 and 3, as we saw in Fig. 3.1 in section 3.1,
which we repeat here in Fig. 3.24. We shall also assume for simplicity that all

3 (p3)

2 (P − q − p3)1

(P − q) RA (P )

(q)

Figure 3.24: Tree level diagram for the process A→ 1+2+3 mediated by a resonance
R that decays into particles 2 and 3. In brackets the momenta of the particles.

vertices are scalar, and can be represented by just one coupling in each vertex. The
conclusions that we will reach are the same for more elaborate couplings, with spin
or momentum dependence.

The next step is to allow particles 1 and 2 to undergo final state interaction, as
depicted in Fig. 3.25, which we also saw in Fig. 3.2 in section 3.1.

3 (p3)

2 (P − q − p3)

(P − q) RA (P )

(q)
1

2
1

Figure 3.25: Triangle mechanism emerging from the mechanism of Fig. 3.24, with
final state interaction of particles 1 and 2. The vertex with particles 1 and 2 symbol-
izes the 1 + 2→ 1 + 2 scattering matrix. In brackets the momenta of the particles.

Let us make a quick recap: we have seen that triangle diagrams can develop a
singularity when all the particles inside the loop in Fig. 3.25 are placed on shell and
the particles R and 3 go parallel in the A rest frame. In section 3.1 we studied the
conditions for this to occur, relating the invariant mass of particles 1, 2 with the
mass of A. Also recall that if particles R and 3 go in the same direction, then both
particles 1 and 2 go in the opposite direction to them in the A and R rest frames,
respectively. The last condition for a singularity was given by the Coleman-Norton
theorem [3.8], which stated that the classical process of particle 2 catching up with
particle 1 should be possible.

We also mentioned that in the situation where the R resonance is placed on
shell in the triangle loop, as well as particles 1 and 2, the tree level mechanism
of Fig. 3.24 also has a singularity in the limit of zero width for the resonance R,
since the amplitude goes as (Minv(R) − MR + iΓR/2)−1. Note however, that the
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tree diagram does not have the restriction that particles R and 3 should be parallel
(as is the case for the triangle singularity) and hence the region where R can be
placed on shell is much wider than for the triangle singularity. This relation of the
singularities of the tree level and triangle diagram will be the subject of our present
study.

Let us come back to the tree level mechanism of Fig. 3.24. Assume for the
moment that the decay into 2 + 3 is the only decay channel of the resonance R. In
the limit of ΓR → 0 one has the decay of A into two elementary particles 1 and
R. The width of A can be calculated with the standard formula for decay of two
particles or three particles and the results are identical. Intuitively one can say
that, once the particle decays into 1 and R, if particle R decays later this does not
modify the A width, since this was determined at the moment that A decayed into
1 and R. The same could be said about the triangle mechanism of Fig. 3.25. Once
the A particle decays into 1 and R, and R decays into 2 and 3, the probability
for this process is established and the posterior interaction of 1 and 2 should not
modify this probability. This argument is the intuitive statement of the Schmid
theorem, which technically reads as follow: Let t

(0)
t be the S-wave projection of the

tree level amplitude, tt, of the diagram of Fig. 3.24, evaluated in the rest frame of
1 + 2, referred to the angle between the particles 1 and 3. Let tL be the amplitude
corresponding to the triangle loop of Fig. 3.25. The Schmid theorem states that

t
(0)
t + tL = t

(0)
t e2iδ (3.75)

where δ is the S-wave phase shift of the scattering amplitude 1 + 2→ 1 + 2 (assume
also for simplicity that this is the only partial wave in 1 + 2→ 1 + 2). The formula
holds for the case that there is only elastic scattering 1+2→ 1+2. In the case that
there can be inelastic channels the formula is modified, as we shall see later on, and
the Schmid theorem does not strictly hold.

The interesting thing about Eq. (3.75) is that∣∣∣t(0)
t + tL

∣∣∣2 =
∣∣∣t(0)
t e2iδ

∣∣∣2 =
∣∣∣t(0)
t

∣∣∣2 (3.76)

and consequently, since t
( 6̀=0)
t and t

(0)
t do not interfere in the angle integration, then∫ 1

−1

d cos θ |tt + tL|2 =

∫ 1

−1

d cos θ
∣∣∣t(`6=0)
t + t

(0)
t + tL

∣∣∣2
=

∫ 1

−1

d cos θ
∣∣∣t(`6=0)
t + t

(0)
t e2iδ

∣∣∣2
=

∫ 1

−1

d cos θ
(
|t(`6=0)
t |2 + |t(0)

t |2
)

=

∫ 1

−1

d cos θ|tt|2 (3.77)

and as a consequence the contribution of the triangle diagram does not change
the width that one obtains just with the tree level diagram. Note that if we had
1 + 2 → 1′ + 2′ or 1 + 2 → R′, where R′ is some resonance, the theorem does not
hold because there is no contribution of the tree level to these reactions.
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Kinematics of A→ 1 + 2 + 3

We assume that all particles are mesons to avoid using different normalization for
meson or baryon fields. The width of particle A for this process is given by

ΓA =
1

2MA

∫
d3p3

(2π)3

1

2ω3

∫
d3p2

(2π)3

1

2ω2

∫
d3p1

(2π)3

1

2ω1

× (2π)4δ4(PA − p1 − p2 − p3) |t|2 (3.78)

where PA is the four-momentum of A and ωi the on shell energies ωi =
√
m2
i + ~pi

2.

We perform the integration over particles 1 and 2 in the frame of reference where
~PA−~p3 = 0, where the system of 1+2 is at rest and the integration over p3 in the A
rest frame. We perform the d3p2 integration using the δ function and have in that
frame (~p2 = −~p1)

ΓA =
1

2MA

∫
d3p3

(2π)3

1

2ω3

∫
d3p̃1

(2π)3

1

2ω̃1

1

2ω̃2

× 2πδ
(
ẼA − ω̃3 − ω̃1(p̃1)− ω̃2(p̃1)

)
|t|2 (3.79)

where the tilde refers to variables in the 1 + 2 rest frame, and t is the scattering
matrix for the process.

Note that
ẼA − ω̃3 = ω̃1(p̃1) + ω̃2(p̃1) = Minv(12). (3.80)

There is no φ dependence in that frame if we chose ~̃p3 in the z direction and the
d3p̃1 integration is done with the result

ΓA =
1

2MA

∫
d3p3

(2π)3

1

2ω3

1

8π

∫ 1

−1

d cos θ p̃1
1

Minv(12)
|t|2 (3.81)

with p̃1 the momentum of particle 1 in the 1 + 2 rest frame and θ the angle between
~̃p1 and ~̃p3.

Note also that

M2
inv(23) = (PA − p1)2 = M2

A +m2
1 − 2ẼAẼ1 + 2p̃1p̃3 cos θ. (3.82)

Hence, the integration over cos θ is equivalent to an integration over Minv(23). Sim-
ilarly we can write

M2
inv(12) = (PA − p3)2 = M2

A +m2
3 − 2MAω3 , (3.83)

where the evaluation has been done in the A rest frame. It is also easy to derive

ẼA =
1

2Minv(12)

(
M2

A +M2
inv(12)−m2

3

)
Ẽ3 =

1

2Minv(12)

(
M2

A −M2
inv(12)−m2

3

)
Ẽ1 =

1

2Minv(12)

(
M2

inv(12) +m2
1 −m2

2

)
p̃1 =

λ1/2 (M2
inv(12),m2

1,m
2
2)

2Minv(12)

p̃3 =
λ1/2 (M2

A,m
2
3,M

2
inv(12))

2Minv(12)
.

(3.84)
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The d3p3 integration is done in the A rest frame∫
d3p3

(2π)3

1

2ω3

=
1

4π2

∫
p3 dω3 (3.85)

and using Eqs. (3.82) and (3.83), the ω3 and cos θ integration can be substituted
by integrations over Minv(12) and Minv(23) and one has the formula given in the
PDG [3.14]

d2ΓA
dMinv(12)dMinv(23)

=
1

64π3

1

M3
A

Minv(12)Minv(23) |t|2 (3.86)

Yet, for the explanation of the Schmid theorem it is better to use Eq. (3.81).

tt and tL amplitudes

Since we are concerned only with the situation when the particles are close to on
shell we will use

1

q2 −m2 + iε
=

1

(q0)2 − ~q 2 −m2 + iε

=
1

2ω(q)

{
1

q0 − ω(q) + iε
− 1

q0 + ω(q) + iε

}
(3.87)

and keep only the term [2ω(q) (q0 − ω(q) + iε)]
−1

since this is the term that can be
placed on shell.

The amplitude of Fig. 3.24 is given in the 1 + 2 rest frame by (~PA = ~p3, and we
omit the tilde in the momenta)

tt = gA gR
1

2ωR(~p3 − ~q )

1

ẼA − ω1(q)− ωR(~p3 − ~q ) + iε
(3.88)

where gA, gR are the couplings for the decay of A and R. From Eq. (3.88) we get

t
(0)
t projecting into S-wave

t
(0)
t =

1

2

∫ 1

−1

d cos θ
1

2ωR(~p3 − ~q )

× gA gR

ẼA − ω1(q)− ωR(~p3 − ~q ) + iε
(3.89)

Note that in the realistic situation the iε in Eqs. (3.88) and (3.89) will be sub-

stituted by i
ΓR
2

.

On the other hand, the amplitude of the triangle diagram can be written in the
1 + 2 rest frame as

tL = i

∫
d4q

(2π)4

1

2ωR(~p3 − ~q )

1

ẼA − q0 − ωR(~p3 − ~q ) + iε

× 1

2ω1(q)

1

q0 − ω1(q) + iε

1

2ω2(q)
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× 1

ẼA − q0 − Ẽ3 − ω2(q) + iε
gA gR t12,12 , (3.90)

where t12,12 is the scattering amplitude for 1 + 2→ 1 + 2. The q0 integration is done
immediately using Cauchy’s theorem and we obtain

tL =

∫
d3q

(2π)3

1

2ωR(~p3 − ~q )

1

ẼA − ω1(q)− ωR(~p3 − ~q ) + iε

× 1

2ω1(q)

1

2ω2(q)

gA gR t12,12

ẼA − ω1(q)− Ẽ3 − ω2(q) + iε
. (3.91)

We can see that theR propagator term
[
2ωR(~p3 − ~q )

(
ẼA − ω1(q)− ωR(~p3 − ~q ) + iε

)]−1

is common in tt and tL of Eqs. (3.88) and (3.91). There is, however, a difference
since in the loop function tL the momentum ~q is an integration variable while, in
tt, ~q is the momentum of the external particle 1. In the loop, after rescattering of
particles 1 and 2 the momentum ~p1 is different than ~q, and only for the situation
where all particles in the loop are placed on shell, the moduli of the momenta are
equal.

The φ integral in Eq. (3.91) is trivially done and we have

tL =
1

(2π)2

∫ ∞
0

q2 dq
1

2ω1(q)

1

2ω2(q)

× 1

ẼA − Ẽ3 − ω1(q)− ω2(q) + iε

× 2
1

2

∫ 1

−1

d cos θ
1

2ωR(~p3 − ~q )

× 1

ẼA − ω1(q)− ωR(~p3 − ~q ) + iε
gA gR t12,12 . (3.92)

We can see now that the integral over cos θ is the same in t
(0)
t (Eq. (3.89)) and tL

(Eq. (3.92)).
To find the singularity in tL let us look for the poles of the two propagators. On

the one hand from
ẼA − Ẽ3 − ω1(q)− ω2(q) + iε = 0 (3.93)

we obtain

qon± = ±λ
1/2 (M2

inv(12),m2
1,m

2
2)

2Minv(12)
± iε (3.94)

On the other hand from

ẼA − ω1(q)− ωR(~p3 − ~q ) + iε = 0 (3.95)

we get two solutions which depend on cos θ. Yet, we are only interested in cos θ = ±1
because it is there that we will not have cancellations in the principal value of∫ 1

−1

d cos θ because we cannot go beyond | cos θ | = 1 in the integration. In this case
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one finds immediately 2

q = p3 cos θ
E ′1
MA

± ẼA
MA

p′1 ± iε, (cos θ = ±1) (3.96)

where E ′1, p
′
1 are the energy and momentum of particle 1 in the A rest frame, while

p3 is the momentum of particle 3 (or A) in the 1 + 2 rest frame that we have used
before. For cos θ = ±1 this is just a boost from the frame where A is at rest (q = p′1)

to the one where it has a velocity vA =
p̃A

ẼA
=

p3

ẼA
, but the position in the complex

plane is given by the ±iε.
Take now:

a) cos θ = −1

The (−) solution in Eq. (3.96),

Q− = −p3
E ′1
MA

− ẼA
MA

p′1 − iε, (3.97)

gives q negative and does not contribute in Eq. (3.92) since q runs from 0 to ∞. If
we take the (+) sign,

Q+ = −p3
E ′1
MA

+
ẼA
MA

p′1 + iε, (3.98)

the pole is in the upper side of the complex plane. This situation corresponds to
the one in Fig. 3.26. We can see that in that case one can deform the contour path
in the q integration to avoid the poles and one does not have a singularity.

qon+ q

Im(q)

Re(q)

Figure 3.26: Pole positions for the case of cos θ = −1 when q can be positive. The
line shows the contour path that one can take to avoid the poles.

b) cos θ = 1

2 Note that Eqs. (3.94) and (3.96) do not coincide with those in section 3.1 because there these
momenta are obtained in the A rest frame and here in the 1 + 2 rest frame. They can be reached
by a boost to the frame where A is at rest.
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qon+

qa−

qon+

qa−
(a) (b)

Im(q) Im(q)

Re(q) Re(q)

Figure 3.27: Pole positions for qon and qa− for cos θ = 1. The case (b) leads to the
triangle singularity.

The (+) solution,

qa+ = p3
E ′1
MA

+
ẼA
MA

p′1 + iε (3.99)

corresponds to a pole in the upper part of the complex plane and does not lead to
a singularity. The (−) solution, let us call it qa−,

qa− = p3
E ′1
MA

− ẼA
MA

p′1 − iε (3.100)

lies in the lower side of the complex plane. In this case if qa− is different from qon of
Eq. (3.94) we have the situation as in Fig. 3.27(a). In this case we can also deform
the contour path to avoid the poles in the q integration of tL. However in the case
that

qon+ = qa− (ε→ 0), (3.101)

corresponding to Fig. 3.27(b), the path of the integral has to go through the poles
qon+ and qa− and we cannot deform the contour path to avoid the poles. This is the
situation of the triangle singularity 3. Note for further discussions that Q− = −qa+

and Q+ = −qa−.
It might be curious to see that we find the singularity for cos θ = 1, while in

section 3.1 it was found for cos θ = −1. This is a consequence of the different frame
of reference. Indeed, we are in the situation of Fig. 3.28. We can make a boost with
velocity vA to bring particle A at rest

vA =
p̃A

ẼA
=

p3

ẼA
. (3.102)

The velocity of particle 3 in the 1 + 2 rest frame is

v3 =
p3

Ẽ3

> vA (3.103)

but since the mass of particle 3 is smaller than MA then v3 is bigger than vA and
in the boost particle 3 still goes in the same direction as before. However p′1 in that

3Another possibility to have singularities is that qa+ = qa− (ε→ 0). This leads to a threshold
singularity, discussed in section 3.1 and Ref. [3.9], but which plays no role on the present discussion.
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vA

p1

pA ≡ p3

Figure 3.28: Situation of momenta in the 1 + 2 rest frame when cos θ = 1.

frame has a velocity

v1 =
p′1
E ′1

(3.104)

and since we are taking the qa− solution positive

qa− = p3
E ′1
MA

− ẼA
MA

p′1 > 0 ,

p3E
′
1 > p′1ẼA ;

p3

ẼA
>

p′1
E ′1
⇒ vA > v1 .

(3.105)

Hence particle 1 changes direction under the boost of velocity vA and in the rest
frame ~p3

′ and ~p1
′ have opposite directions, cos θ′ = −1, as it was found in section 3.1.

Formulation of Schmid theorem

Let us perform the cos θ integration in tL of Eq. (3.92).

I(q) =

∫ 1

−1

d cos θ
1

2ωR(~p3 − ~q)

× 1

ẼA − ω1(q)− ωR(~p3 − ~q) + iε
. (3.106)

We can introduce the variable x

x = ωR(~p3 − ~q) =
√
m2
R + p2

3 + q2 − 2p3q cos θ

d cos θ = − ωR
p3q

dx (3.107)

I(q) = −
∫ ωR(p3−q)

ωR(p3+q)

d x
1

2ωR

ωR
p3q

1

ẼA − ω1(q)− x+ iε
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Figure 3.29: Integration path followed to evaluate tL of Eq. (3.109).

=

∫ ωR(p3+q)

ωR(p3−q)
d x

1

2p3q

1

ẼA − ω1(q)− x+ iε

=
1

2p3q
ln

(
ẼA − ω1(q)− ωR(p3 − q) + iε

ẼA − ω1(q)− ωR(p3 + q) + iε

)
. (3.108)

It is interesting to see that I(q) = I(−q) is an even function of q. Then, since
the rest of the integrand of tL in Eq. (3.92) is also even in q we can write

tL =
1

(2π)2

1

2

∫ ∞
−∞

q2 dq
1

2ω1(q)

1

2ω2(q)

× gA gR I(q) t12,12

ẼA − Ẽ3 − ω1(q)− ω2(q) + iε
. (3.109)

We should note that the singularity that we are evaluating corresponds to the nu-
merator in Eq. (3.108) becoming zero.

Since we have extended the integration to q negative, we must also consider the
poles of Q− and Q+ of Eqs. (3.97) and (3.98). The situation of the poles is shown
in Fig. 3.29. In this figure we also show the contour path followed to perform the
integral over q using Cauchy’s theorem. We have∫ ∞

−∞
dq · · ·+

∫ −i∞
i∞

dq · · ·+
∫

circle

dq . . .

= 2πiRes(qon+) + 2πiRes(qa+) (3.110)

− 2πiRes(qon−)− 2πiRes(Q−) (3.111)

The relevant point now is the fact that the integral over the circle of infinity vanishes

and

∫ −i∞
i∞

dq, Res(qa+) and Res(Q−) do not produce any singularity, and thus∫ ∞
−∞

dq · · · = 2πiRes(qon+)− 2πiRes(qon−) (3.112)
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is the part of the integral that leads to the singularity. We go back to Eq. (3.92)
and perform the q integration before cos θ is integrated. Since the denominator(
ẼA − Ẽ3 − ω1(q)− ω2(q)

)
vanishes for qon+ and qon−, we can apply L’Hôpital rule

to calculate the residues (ẼA − Ẽ3 = Minv(12), with qon standing for qon+ or qon−)

Res(qon) ∝ lim
q→qon

q − qon

Minv(12)− ω1(q)− ω2(q)

=
1(

−q
ω1

)
+
(
−q
ω2

)∣∣∣∣∣
qon

= − ω1 ω2

qon Minv(12)
. (3.113)

Thus, the singular part of tL is contained in

tL =
1

(2π)2

1

4
|qon|

1

Minv(12)
gA gR t12,12 (−)4πi

× 1

2

∫ 1

−1

d cos θ
1

2ωR(~p3 − ~q )

× 1

ẼA − ω1(q)− ωR(~p3 − ~q ) + iε
. (3.114)

Comparing with Eq. (3.89) we find

tL = −i 1

4π
|qon|

1

Minv(12)
t12,12 t

(0)
t . (3.115)

We must now recall the relationship of our t matrix in the field theory formulation
with the f matrix of Quantum Mechanics

f = − 1

8π

1

Minv

t (3.116)

which allows us to reformulate Eq. (3.115) as

tL = 2 i |qon| f t(0)
t (3.117)

and since

f =
η e2iδ − 1

2 i |qon|
(3.118)

we find that
t
(0)
t + tL = t

(0)
t (1 + 2 i |qon| f) = η e2iδ t

(0)
t , (3.119)

also derived in Ref. [3.73]. Eq. (3.119) for the case when there is only the 1, 2 elastic
channel (η = 1) is the expression of the Schmid theorem [3.6]. It was already men-
tioned in Ref. [3.91] that the Schmid theorem does not hold if t12,12 has inelasticities
and we can be more quantitative here. Indeed, recalling Eq. (3.77) we have now∫ 1

−1

d cos θ |tt + tL|2 =

∫ 1

−1

d cos θ

{∣∣∣t(`6=0)
t

∣∣∣2 + η2
∣∣∣t(0)
t

∣∣∣2}
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=

∫ 1

−1

d cos θ

{∣∣∣t(` 6=0)
t

∣∣∣2 +
∣∣∣t(0)
t

∣∣∣2 − (1− η2)
∣∣∣t(0)
t

∣∣∣2}
=

∫ 1

−1

d cos θ |tt|2 − (1− η2)

∫ 1

−1

d cos θ
∣∣∣t(0)
t

∣∣∣2 (3.120)

and since t
(0)
t contains the same singularity as tL, the singularity of the triangle

diagram will show up with a strength of 1− η2.
It is interesting to recall at this point that Watson’s theorem [3.116] does not

hold in this case. We might expect that the sum of the tree level and rescattering
would introduce a phase eiδ in the final state for elastic rescattering, while we see
that in the present case one introduces the phase ei2δ on top of t

(0)
t , which is itself

complex from the structure of the R propagator. A detailed discussion of this issue
can be found in Ref. [3.92].

It is also interesting to mention the effects of further rescattering beyond our
triangle diagram. Final state interaction with three particles in the final state has
been addressed repeatedly. One of the early works on this issue concerns rescatter-
ing in the K → 3π decay [3.117] (for a modern reformulation of this problem one
can see the work of Ref. [3.118]). What is relevant for our problem is that further
rescattering of particles 1, 2 in Fig. 3.25 is already accounted for by the t12,12 scatter-
ing matrix that sums all the rescattering loops implicit in the Lippmann-Schwinger
equation that generates t12,12. However, after the mechanism of Fig. 3.25 one can
have for instance, rescattering of particles 2 and 3 which would lead to a new loop
with the former external 2 and 3 particles now being intermediate particles. Note
that then particles 2 and 3 in the new loop could be off shell, in which case the trian-
gle singularity of the 1R2 triangle would be destroyed. Even if one concentrates on
the contribution of 2 and 3 on shell in the loop, there is an angle integration for p3,
and p3 of the new loop and q would no longer be parallel in the whole range of the p3

integration, which was a necessary condition for the triangle singularity. Hence, this
new rescattering term would not have the triangle singularity structure and would
be a smooth background term. Nevertheless, the modern techniques [3.118] allow to
calculate such terms if precision is desired in a physical process. Yet, these issues go
beyond the problem at hand, which is the investigation of the triangle mechanism,
to which we come back.

3.4.3 Study of the singular behavior

Let us look at the behavior of tL around the triangle singularity. For this it is easier
to look at t

(0)
t which has this same singularity. Let us look at Eq. (3.89). The integral

there is
1

2
I(q)gAgR, with I(q) from Eq. (3.108). Hence

t
(0)
t =

gA gR
4p3 q

ln

(
ẼA − ω1(q)− ωR(p3 − q) + iε

ẼA − ω1(q)− ωR(p3 + q) + iε

)
(3.121)

and since for the q of the singularity (q positive from now on)

ẼA − ω1(q)− ωR(p3 − q) = 0 (3.122)
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then
ẼA − ω1(q) = ωR(p3 − q) (3.123)

and we can write

t
(0)
t =

gA gR
4p3 q

ln

(
iΓR/2

ωR(p3 − q)− ωR(p3 + q)

)
∼ gA gR

4p3 q
ln

(
ΓR

ωR(p3 − q)− ωR(p3 + q)

)
(3.124)

where we have substituted iε by i
ΓR
2

and kept the singular part when ΓR → 0. In

the A decay width we shall have

dΓ
(L)
A

dMinv(12)
∝
∫ 1

−1

d cos θ
∣∣∣t(0)
t

∣∣∣2
∼ 2

(
gA gR
4p3 q

)2 ∣∣∣∣ln( ΓR
ωR(p3 − q)− ωR(p3 + q)

)∣∣∣∣2 . (3.125)

On the other hand, we can look at the whole tt amplitude, and the equivalent part
to Eq. (3.125) going into the evaluation of the A width is, using Eq. (3.88),

dΓ
(t)
A

dMinv(12)
∝
∫ 1

−1

d cos θ
g2
A g

2
R

4ωR2(~p3 − ~q )

×

∣∣∣∣∣∣∣
1

ẼA − ω1(q)− ωR(~p3 − ~q ) + i
ΓR
2

∣∣∣∣∣∣∣
2

. (3.126)

Performing the same change of variable to the variable x of Eq. (3.107) we obtain

dΓ
(t)
A

dMinv(12)
∝ g

2
A g

2
R

4p3 q

∫ ωR(p3+q)

ωR(p3−q)
dx

1

x

× 1(
ẼA − ω1(q)− x

)2

+

(
ΓR
2

)2 . (3.127)

By making the change ẼA − ω1(q) − x = y and substituting
1

x
by its value in the

singularity,
[
ẼA − ω1(q)

]−1

, we get 4

dΓ
(t)
A

dMinv(12)
∝− 1

4p3 q

g2
A g

2
R

ẼA − ω1(q)

2

ΓR

× arctan
2y

ΓR

∣∣∣∣∣
ẼA−ω1(q)−ωR(p3+q)

ẼA−ω1(q)−ωR(p3−q)

(3.128)

4The integral can also be performed analytically, and the most singular term corresponds to
the choice made.
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where the lower limit in y vanishes. Hence, we get

dΓ
(t)
A

dMinv(12)
∝ − 1

4p3 q

g2
A g

2
R

ẼA − ω1(q)

2

ΓR

×
{

arctan
2 (ωR(p3 − q)− ωR(p3 + q))

ΓR
− arctan

0

ΓR

}
(3.129)

and since ωR(p3 − q) < ωR(p3 + q)

lim
ΓR→0

arctan
2 (ωR(p3 − q)− ωR(p3 + q))

ΓR
= −π

2
(3.130)

and we get

dΓ
(t)
A

dMinv(12)
∝ 1

4p3 q

g2
A g

2
R

ẼA − ω1(q)

π

ΓR
. (3.131)

It is interesting to see that when ΓR → 0, where the Schmid theorem holds, ΓA from
the tree level, Eq. (3.131), grows much faster than ΓA from the triangle singularity
from Eq. (3.125). This means, in a certain sense, that the Schmid theorem, even
if true, becomes irrelevant, because in the limit where it holds, the contribution to
the A width from the tree level is infinitely much larger than that from the triangle
singularity.

Actually, ΓA from Eqs. (3.125) and (3.131) do not diverge because gR is related
to the width. In fact, assuming 2 + 3 the only decay channel of R, for the S-wave
coupling that we are considering we have

ΓR =
1

8π

g2
R

M2
R

q (3.132)

with q the on shell momentum of particle 2 or 3 in R→ 2 + 3 with R at rest. Then
ΓA from Eq. (3.131) goes to a constant, as it should be. If 2 + 3 is not the only
decay channel then

g2
R

8π

1

M2
R

q = BF(2 + 3)ΓR (3.133)

where BF(2+3) is the branching fraction of R to the 2+3 channel, and the conclusion
is the same. In fact, in the limit ΓR → 0, ΓA calculated with the three body decay
is exactly equal to ΓA calculated from A → R + 1 times the branching fraction
BF(2 + 3). This means that the contribution of the triangular singularity becomes
negligibly small compared to the contribution of the whole tree level. However, if
the width ΓR is different from zero the ratio of contributions of the tree level to the
triangle loop becomes finite, and many of the terms that we have been neglecting
in the derivation of the Schmid theorem become relevant. Thus, one has to check
numerically the contribution of the tree level and the triangle loop, summing them
coherently, to see what comes out. This is particularly true when t12,12 sits on
top of a resonance where the triangle singularity could be very important, or even
dominant.

Yet, it is still interesting to note that in the realistic case the reaction studied
still has a memory of Schmid theorem, in the sense that the coherent sum of ampli-
tudes gives rise to a width, or cross section, that is even smaller than the incoherent
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sum of both contributions. One case where one can already check this is in the
study of the γ p → π0η p reaction in Ref. [3.3], discussed in the former section 3.3.
The γ p couples to ∆(1700) which decays to η∆(1232). The ∆ decays into π0p and
η p fuse to produce the N∗(1535) that subsequently decays into η p. The contribu-
tion of this mechanism is sizable and has been observed experimentally [3.4]. In
the study of Ref. [3.3] one compares the loop contribution with the tree level from
γ p→ ∆(1700)→ η∆(1232)→ ηπ0p and they are of the same order of magnitude.
A remarkable feature is that the coherent sum of tree level and loop does not change
much the contribution of the tree level, even if the loop contribution is sizable, and is
smaller than the incoherent sum of both processes (see Fig. 1 of Ref. [3.3] or Fig. 3.18
in section 3.3). Yet, even then, the N∗(1535) contribution to the γp → π0η p gives
a distinctive signature, both theoretically and experimentally. The message is clear:
one must evaluate both the tree level and the loop contribution for each individual
case to assert the relevance of the triangle singularity. Obviously, in the case that
the final channel is different from the internal one of the loop there is no tree level
contribution and then the triangle singularity shows up clearly.

3.4.4 Considerations on the Dalitz plot

In Fig. 3.30 we show the Dalitz plot for a typical A→ 1+2+3 process, where 1, 2, 3
are final states on shell. Recalling Eq. (3.82) that we reproduce again here

M2
inv(23) = M2

A +m2
1 − 2ẼAẼ1 + 2p̃1p̃3 cos θ (3.134)

and that ẼA, Ẽ1, p̃1, p̃3 all depend on Minv(12), by fixing Minv(12) Eq. (3.134) gives
the limits of the Dalitz plot. For cos θ = −1 we have the lower limit and for cos θ = 1
we have the upper limit of the boundary of the Dalitz region. Let us cut the Dalitz
boundary with a line of Minv(23) = MR. This line cuts the boundary in points A
and D. In these points we have all final particles on shell and Minv(23) = MR. This
is the situation of a triangle singularity provided that Eq. (3.101) is fulfilled (note
that there are two solutions of q for cos θ = 1, but only one produces the triangle
singularity, where in addition Eq. (3.101) is fulfilled). On the other hand, from
point A to D, Minv(23) = MR is allowed for some valid cos θ and we should expect
a singularity (up to the factor g2

R) of the tree level mechanism. Let us study this in
detail.

In Eq. (3.131) we already saw the contribution of tt to the A width evaluating∫ 1

−1

d cos θ |tt|2 at the point of the triangle singularity (point D in Fig. 3.30). Let

us now evaluate it for an invariant mass Minv(12) between points A and D in the
figure. Close to point A to the left we shall have now∫ 1

−1

d cos θ |tt|2 = −g
2
A g

2
R

4p3 q

1

ẼA − ω1(q)

2

ΓR
arctan

2y

ΓR

∣∣∣∣∣
y1

y2

(3.135)

with y1 < 0 and y2 > 0, and hence

lim
ΓR→0

∫ 1

−1

d cos θ |tt|2 = −g
2
A g

2
R

4p3 q

1

ẼA − ω1(q)

2

ΓR
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×
(
−π

2
− π

2

)
(3.136)

which is twice the result of Eq. (3.131). This value stabilizes as we move from A
to D, and the interesting thing is that it goes like (ΓR)−1 (apart from the factor

g2
R). In addition we can evaluate

∫ 1

−1

d cos θ |tt|2 for Minv(12) bigger than the one

corresponding to point A. In this case R is never on shell and in the limit of small
ΓR we get zero contribution relative to the on shell one. Technically one would find
it from Eq. (3.135) since now both y1 and y2 would be negative and the upper and

lower limits of arctan
2y

ΓR
cancel.

3.4.5 Results

We are going to perform calculations with a particular case with the following con-
figuration:

MA = 2154 MeV

MR = 1600 MeV, ΓR = 30 MeV

M1 = 500 MeV

M2 = 200 MeV

M3 = 900 MeV.

(3.137)

In addition we shall take an amplitude 1 + 2 → 1 + 2 parameterized in terms of a
Breit-Wigner form

t12,12 =
g2

M2
inv(12)−M2

BW + iΓBW (Minv(12))Minv(12)
(3.138)

with MBW = 800 MeV, ΓBW = 20 MeV. We shall use Eq. (3.94) and choose g2 such
that the width is given by Eq. (3.132). In this case we have purely elastic scattering
and g = 1338.7 MeV. We will also consider the case where we take the same value
of g and a width double the elastic one to account for inelasticities, to test what
happens in the case of inelastic channels.

We will use Eqs. (3.88) and (3.92) and integrate Eq. (3.86) over Minv(23) to
obtain dΓA/dMinv(12). Note that according to Eq. (3.82) the integral over cos θ
that we have done is simply 2Minv(23)dMinv(23)/2p̃1p̃3. The limits of integration
are obtained from Eq. (3.82) for cos θ = ±1, and explicit formulas can be obtained
from the PDG [3.14]. In Eq. (3.92) we have used a cutoff in the q integration of 600
MeV, a common value in many of these problems.

The choice of variables in Eqs. (3.137) and (3.138) is done such that Eq. (3.101)
is satisfied and we have a triangle singularity for this configuration.

In Fig. 3.30 we show the Dalitz plot for the reaction A → 1 + 2 + 3. We can
indeed see that the triangle singularity point corresponds to point D of Fig. 3.30.

In the first place we evaluate dΓA/dMinv(12) for MA = 2200 MeV, about 50 MeV
above the mass that leads to a triangle singularity at Minv(12) = 800 MeV. With
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Figure 3.30: Dalitz plot for A→ 1 + 2 + 3 with the parameters of Eqs. (3.137) and
(3.138). Point D corresponds to the triangle singularity.

this value of MA, the triangle singularity appears at Minv(12) = 769 MeV, about
30 MeV below the Breit-Wigner mass. We can expect that the loop function will
give a small contribution, since t12,12 at this invariant mass is significantly reduced
compared to its peak. Yet, this serves us to investigate the points discussed in the
former section.

In Fig. 3.31 we show dΓA/dMinv(12)/g2
A g

2
R as a function of Minv(12). We show

the results for the triangle diagram alone, the tree level alone, and the coherent sum
for ΓR = 30 MeV. As we have discussed previously, we have proved the Schmid
theorem in the limit of ΓR → 0. Fig. 3.31 gives us the answer of what happens
when we look at a realistic case with ΓR of the order of tens of MeV. As we can see,
the triangle loop gives a sizable contribution of the order of the tree level, and the
coherent sum of the triangle diagram and the tree level diagram gives rise to a very
distinct structure, as a consequence of the resonance in the 1, 2 channel enhanced by
the triangle diagram. This already tell us that in a realistic calculation we should not
rely on the Schmid theorem to neglect the triangle diagram with elastic rescattering
of the internal particles of the loop.

In Fig. 3.32 we show the same results but calculated with ΓR = 0.5 MeV. As
we can see, the triangle singularity gives a small contribution compared to the tree
level, and the coherent sum of the two does not change the contribution of the tree
level, as expected from the Schmid theorem. In Fig. 3.33 we show the same results
but calculated with ΓR = 0.1 MeV. Comparing these results with those of Fig. 3.32,
we can see that as ΓR is made smaller the tree level contribution grows more or less
like 1/ΓR, as expected from Eq. (3.131), while the triangle contribution grows much
less.

In Fig. 3.34 we show again the results for the same MA mass and ΓR = 0.1 MeV,
but this time we take in Eq. (3.138) ΓBW → 2ΓBW to account for the inelasticities.
The contribution of the triangle loop is reduced with respect to the one in the elastic
case of Fig. 3.33. Curiously, the relative strength of the singularity (narrow peak
in the dotted line) with respect to the resonance peak increases now, as a reminder
that according to Eq. (3.120) the Schmid theorem does not hold. Yet, the main
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Figure 3.31:
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as a function of Minv(12) with MA = 2200 MeV and

ΓR = 30 MeV.
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Figure 3.32:
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as a function of Minv(12) with MA = 2200 MeV and

ΓR = 0.5 MeV. The dashed and solid lines are indistinguishable in the figure.
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Figure 3.33:
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as a function of Minv(12) with MA = 2200 MeV and

ΓR = 0.1 MeV. The dashed and solid lines are indistinguishable in the figure.
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Figure 3.34:
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as a function of Minv(12) with MA = 2200 MeV and

ΓR = 0.1 MeV. Here ΓBW → 2ΓBW to account for the inelasticities. The dashed
and solid lines are indistinguishable in the figure.
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Figure 3.35:
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dMinv(12)

1

g2
A g

2
R

as a function of Minv(12) with MA = 2154 MeV and

ΓR = 0.1 MeV. The dashed and solid lines are indistinguishable in the figure.

message from Figs. 3.32, 3.33 and 3.34 is that in the limit of ΓR → 0, where the
Schmid theorem holds, the relative strength of the triangle diagram versus the tree
level becomes negligible.

Next we perform the calculations for MA = 2154 MeV, first for ΓR = 0.1 MeV,
and show the results in Fig. 3.35. The novelty in this case is that, since the triangle
singularity occurs for Minv(12) = 800 MeV, equal to MBW, now the contribution of
the triangle mechanism is much bigger than in the former cases. Yet, relative to the
tree level its strength is very small and in the coherent sum one does not appreciate
its contribution, as was the case of Figs. 3.32 and 3.33, in agreement with the
Schmid theorem. Actually this is a good case to show the effects of the Schmid
theorem, since the strength of the peak is about 10−2 that of the tree level. This
implies a factor 10−1 in the amplitude, and in an ordinary coherent sum of these two
amplitudes one might expect a contribution of about 20% in the differential width,
which is not the case in Fig. 3.35. Yet we should stress once more that the triangle
mechanism becomes negligible on its own, independently of the Schmid theorem,
when ΓR → 0.

In Fig. 3.36 we show the same results now for ΓR = 30 MeV. We can see now that

the effect of the triangle singularity shows in
dΓA

dMinv(12)
. However, it is interesting

to see that the coherent sum of the tree level and the triangle singularity is smaller
than their incoherent sum, indicating that, although one is in a region where the
Schmid theorem does not strictly hold, the process still has some memory of the
the absorption of the triangle mechanism by the tree level amplitude that occurs in
the limit of small ΓR. We should also note that if we make ΓR bigger the relative
strength of the loop contribution to the tree level grows and can become dominant
at the invariant mass of the triangle singularity.
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Figure 3.36:
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as a function of Minv(12) with MA = 2154 MeV and

ΓR = 30 MeV.

3.4.6 Conclusions

We have done a new derivation of the Schmid theorem and have studied the results
as a function of ΓR, the width of the intermediate state in the triangle loop that
decays into an external particle and an internal one. The Schmid theorem holds
strictly in the limit when ΓR → 0. We show this again and illustrate it with a
numerical example.

The first thing that we find is that when ΓR → 0 the relative weight of the
triangle singularity versus the tree level contribution goes to zero. This means that,
in a strict sense, the Schmid theorem would be irrelevant because where it holds
and shows that the singularity changes only the phase of the S-wave part of the
tree level amplitude, t

(0)
t , the strength of the triangle diagram or of t

(0)
t is very small

compared with the whole contribution of the full tree level amplitude.
We conducted some tests to see what happens when we have ΓR finite and also

when the scattering amplitude of the two particles that interact in the loop sit on
top of a resonance.

In general lines we see that for finite ΓR widths the Schmid theorem does not
strictly hold but the A → 1 + 2 + 3 process still has some memory of the theorem
in the sense that the coherent sum of tree level and triangle singularity gives rise
to a differential width where the interference is much smaller than usual, with final
results even smaller than the incoherent sum of the two mechanisms.

We also saw that in the case of a 1 + 2 → 1 + 2 scattering amplitude with
inelasticities the Schmid theorem does not hold and we could quantify the contri-
bution of the triangle singularity, both analytically and numerically in the example
we discussed.

The biggest contribution of the triangle singularity appears when the 1+2→ 1+2
scattering amplitude sits on top of a resonance. In this case, and for finite ΓR, the
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contribution of the triangle singularity shows up clearly and can be even dominant
over the tree level in some cases.

The message in general is that for each particular case one has to calculate both
the tree level and the triangle mechanism and sum them coherently to see what
comes out. Invoking the Schmid theorem to rule out the triangle mechanism in the
case that the rescattering of particles 1, 2 goes to the same channel should not be
done.
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CHAPTER

4 Final Remarks

Throughout this thesis we saw three main branches of hadron interactions:
meson-meson and meson-baryon molecules in chapters one and two, respectively,
and triangle singularities in chapter three. Each chapter was based in a selection of
published articles sharing a similar framework. Let us go through the main ideas of
each work.

In chapter one we first saw how to use elements of SU(3) symmetry to see
the weight of different trios of pseudoscalars produced in the charmonium decay
cc̄→ 123. The pseudoscalars then would go through final state interaction of pairs
of mesons generating the scalar mesons f0(500), f0(980) and a0(980), for which we
used the chiral unitary approach.

In our first work we performed calculations for the ηc → ηπ+π− decay using
this approach. After finding the trios of pseudoscalars using SU(3) symmetry, the
interaction of pairs of mesons lead to ηπ+π− in the final state. We have evaluated
the π+π− and πη mass distributions and found large and clear signals for f0(500),
f0(980) and a0(980) excitation. This reaction is similar to the χc1 → ηπ+π−, which
has been recently measured at BESIII and its implementation and comparison with
our predictions will be very valuable to shed light on the nature of the low mass
scalar mesons.

We also used this approach to study the isospin breaking in the reactions χc1 →
π0π+π− and χc1 → π0π0η and its relation to the a0(980) − f0(980) mixing, which
was also measured by the BESIII Collaboration, before and after our work. We
have shown that the same theoretical model previously developed to study the
χc1 → ηπ+π− reaction, and further explored in the predictions to the ηc → ηπ+π−,
could be successfully employed in this study. The isospin violation was introduced
through the use of different masses for the charged and neutral kaons, either in the
propagators of pairs of mesons created in the χc1 decay, or in the propagators inside
the T matrix, constructed through the unitarization of the scattering and transition
amplitudes of pairs of pseudoscalar mesons. We have found that violating isospin
inside the T matrix makes the π0η → π+π− amplitude nonzero, which gives an im-
portant contribution and also enhances the effect of the KK̄ term. We also find that
the most important effect in the total amplitude is the isospin breaking inside the
T matrix, due to the constructive sum of π0η → π+π− and KK̄ → π+π−, which is
essential to get a good agreement with the experimental measurement of the mixing.
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Both of our works, the one about the ηc → ηπ+π− and the one about the
a0(980) − f0(980) mixing, were cited in the BESIII articles and in other related
subsequent works.

In chapter two we saw a method to study meson-baryon interactions and look for
new states as poles in the scattering amplitude. In particular, we saw how we can
extend the local hidden gauge approach to the heavy quark sector, singling out the
heavy quark and assuming SU(3) symmetry in the interaction. We have shown that
the dominant terms come from the exchange of light vectors, where the heavy quarks
are spectators. This has as a consequence that heavy quark symmetry is preserved
for the dominant terms in the (1/mQ) counting, and also that the interaction in this
case can be obtained from the SU(3) chiral Lagrangians.

In the first work on this topic we have investigated Ωc states, that are dynamically
generated from the meson-baryon interaction. We show that for a standard value for
the cutoff regulating the loop, we obtain two states with JP = 1/2− and two more
with JP = 3/2−, three of them in remarkable agreement with three experimental
states, Ωc(3050), Ωc(3090) and Ωc(3119) from the five recently measured by the
LHCb collaboration, in mass and width. We also made predictions at higher energies
for states of vector-baryon nature, which could be further explored in experiments
in the future.

Next, we have studied the weak decay Ω−b → (Ξ+
c K

−) π−, using our approach
to describe the Ωc states. We looked into the particular case where the Ωc(3050)
and Ωc(3090) can be generated from the pseudoscalar-baryon(1/2) interaction. We
investigated the ΞD, ΞcK̄ and Ξ′cK̄ invariant mass distributions making predictions
that could be confronted with future experiments, providing useful information that
could help determine the quantum numbers and nature of these states.

Finally, we have extended our approach on the Ωc states and made predictions
for the interaction of meson-baryon in the beauty sector, searching for poles in the
scattering matrix that correspond to physical states. We have found several Ωb

states: two states with masses 6405 MeV and 6465 MeV for JP = 1
2

−
; two more

states with masses 6427 MeV and 6665 MeV for 3
2

−
; and three states between 6500

and 6820 MeV, degenerate with JP = 1
2

−
, 3

2

−
, stemming from the interaction of

vector-baryon in the beauty sector, analogous to what we had for the Ωc states.
Future experiment could also search for these states.

Our work on the Ωc states received many citations, and the predictions about
the Ωb states has also being noted in the report of the LHC for future prospects on
the next run after the undergoing upgrade.

In chapter three we showed how triangular singularities can be formed in the
decay A→ 1 +R, with subsequent R→ 2 + 3 and rescattering 1 + 2→ 1′ + 2′. We
showed our approach explicitly doing the loop integral to find the amplitude, and
how, studying its poles, we find the conditions for and the position of the singularity.
We have seen that specially in the case when there is a resonance from the (1, 2)
rescattering at the same energy corresponding to the triangle singularity, its effect
can be seen in experiment and even be misunderstood by a new state.

On this topic, we first studied the production and decay of the f1(1285) into
πa0(980) and K∗K̄ as a function of the mass of the resonance and found a shoulder
around 1400 MeV, tied to a triangle singularity, for the πa0(980) mode, and a
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peak around 1420 MeV with about 60 MeV width for the K∗K̄ mode. Both these
features agree with the experimental information on which the f1(1420) resonance
is based. In addition, we find that if the f1(1420) is a genuine resonance, coupling
mostly to K∗K̄ as seen experimentally, one finds unavoidably about a 20% fraction
for πa0(980) decay of this resonance, in drastic contradiction with all experiments.
Altogether, we have concluded that the f1(1420) is not a genuine resonance, but
the manifestation of the πa0(980) and K∗K̄ decay modes of the f1(1285) at higher
energies than the nominal one.

Next, we have studied the γp → pπ0η reaction paying attention to the two
main mechanisms at low energies, the γp → ∆(1700) → η∆(1232) and the γp →
∆(1700) → πN(1535). Both of them are driven by the photoexcitation of the
∆(1700) and the second one involves a mechanism that leads to a triangle singularity.
We are able to evaluate quantitatively the cross section for this process and show that
it agrees with the experimental determination. Yet, there are some differences with
the standard partial wave analysis which does not include explicitly the triangle
singularity. The exercise also shows the convenience to explore possible triangle
singularities in other reactions and how a standard partial analysis can be extended
to accommodate them.

Finally, we have investigated the Schmid theorem, which states that the possible
triangle singularity in a three particle decay developed by the mechanism of elastic
rescattering of two of the particles does not change the cross section provided by
the tree level. We have investigated the process in terms of the width of the un-
stable particle produced in the first decay and determined the limits of validity and
violation of the theorem. One of the conclusions is that the theorem holds in the
strict limit of zero width of that resonance, in which case the strength of the triangle
diagram becomes negligible compared to the tree level. Another conclusion, on the
practical side, is that for realistic values of the width, the triangle singularity can
provide a strength comparable or even bigger than the tree level, which indicates
that invoking the Schmid theorem to neglect the triangle diagram stemming from
elastic rescattering of the tree level should not be done. Even then, we observe that
the realistic case keeps some memory of the Schmid theorem, which is visible in a
peculiar interference pattern with the tree level.

Overall, we have seen many examples of the dynamical nature of states emerging
from the hadron-hadron interaction, either in the case of the light scalar mesons
emerging from meson-meson interactions, or new heavy baryon states from the
meson-baryon interaction, or even cases where peaks can be misunderstood as gen-
uine states due to the effects of triangle singularities. In the big picture we have
shown, through a series of examples and applications, the importance of the dynam-
ically generated states, and how this description should be part of our understanding
of the fundamental interactions of matter.
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