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Introduction

Singular integral operators are an important object of study in Harmonic Analysis,
with applications that range from Geometric Measure Theory to Partial Differential
Equations.

The aim of this doctoral thesis is to investigate few questions of different nature in
this very active field of research. The common interest of the problems we consider is
to extract information on the geometry of sets and measures in the euclidean space (the
regularity of a curve, the density of a measure, rectifiabily and uniform rectifiability)
from analytic properties of associated singular integrals. We mostly deal with the
Cauchy integral, the Riesz transform, and the gradient of the single layer potential.

The body of the thesis consists of four chapters, each one based on a different
article: [Pull8],[Pull9b],|[PPT18] and [Pull9a| respectively. We decided to make each
chapter accessible independently at the cost of the repetition of some statements.

In the present introduction we provide some historical background, we motivate the
research and we state our main results. This preliminary discussion is complemented
by a more accurate and complete one in the first section of each chapter, where the
reader can also find further bibliographic references.

The background

Singular integrals. Given K € LP(R) and f € LY(R), 1 < p,q < oo, the classical
Young’s inequality for their convolution

K+ f(e) = [ K@= i)y (0.0.1)

reads
1K * fllrwy < 1K eyl f | Lar)

where % = % + % — 1. Hence, in the presence of a kernel K that belongs to L!(R),
the integral (0.0.1) exists almost-everywhere and T': f — K x f is a bounded operator
from LP(R) to LP(R).

The situation is more delicate in the absence of integrability for K. Let us consider
the prototypical case K(x) = (2rz)~!, x # 0, and observe that K is an odd function.

Given € > 0 and a Schwartz function f, the integral
1
Hf@) = [ P4,
T J|zg—yl>e T~ Y

exists for all x and, moreover, one can prove that there exists almost everywhere the

limit
1 [ fy)
2r | x—vy

Hf(z) = lig%) H.f(z)=p.v dy.

The operator H is called Hilbert transform, H. is its truncation ot level € and ‘p.v’
stands for principal value. This operator was introduced by David Hilbert in 1905
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and one of its early applications was found by by Marcel Riesz, who investigated its
relation with conjugate harmonic functions. For a more in-depth treatment of the
Hilbert transform we refer, for example, to |Gra08, Chapter 4].

Among the properties of the Hilbert transform, we highlight that, using the Fourier
transform, one can prove that it defines an isometry on L%(R), i.e.

IH fll 2wy = 1 fll L2 (m)s (0.0.2)

and H2f = H(H f) = —Id. Moreover, H defines a bounded liner operator from LP(R)
to LP(R), 1 < p < oo and from L'(R) to the weak-L! space L (R).

A systematic study of singular integrals was started by Alberto Calderén and An-
toni Zygmund in their milestone article [CZ52|. They considered convolution operators
of the form o )

=Y
T:f(z) = / ——fydy, >0,
|lz—y[>e |SU - y|
Q: R"\ {0} — R being an homogeneous function of degree 0 with null integral average
on the unit sphere S*~! and having the regularity property

Q1) = Q(22)] < wllr — 22l),

for some increasing function w: [0,1] — R, w(¢) > ¢, with the Dini-type regularity

1
/ w(t)@ < 0.
0 t

They introduced a decomposition technique for L? functions, now commonly referred
to as Calderon-Zygmund decomposition, which they used to prove that T, defines
a bounded operator from LP(R™) to LP(R™), 1 < p < oo with operator norm not
depending on €. We remark that they also proved the existence of principal values
for this class of operators and they motivated their study presenting an application to
the first derivatives of the Newton potential of a single layer associated with a planar
mass distribution.
In this thesis we consider singular integral operators of the type

T, f(x) = / K(x,9) () d(y).

1 being a Radon measure on the Fuclidean space and where the previous writing
has to be understood in a proper sense. These operators will not necessarily be of
convolution type, but they have standard kernels: K is a (possibly vector-valued)
function on R™ x R™ \ {(z,y) : * = y} such that there exist 0 < a« <1 and C > 0 for
which

|K (7,y)] < ———
|z —y|"

and

1
for |x1—xo] < 5\x—y|

1 — x2|®
K (@19~ K z2,)| + K (y.21) ~ K (3. 22)| < 01222

|z — y[rte’

For some of the operators we consider, the previous relations hold just locally (see
Chapter 3, Section 2). We also say that a function K with the size and regularity
conditions above is a Calderdn-Zygmund kernel. These kernels are very general and
the existence of principal values is a delicate question in this framework. For this
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reason, the operator 7T}, is said to be bounded on LP(yu) if there exists a constant
C > 0 such that the truncates at level € > 0

ﬂmﬂmzj"l K (2,9) £ (4)du(y) (0.0.3)
T—yY|>€

are bounded on LP(u) with constant C not depending on ¢, i.e.

[T fllLey < ClFlLe (- (0.0.4)

Bounds of the type (0.0.4) first appeared in the work of Riesz on the Hilbert transform
[Rie27].

Calderon-Zygmund kernels constitute a wide class and the L2-boundedness of
the associated operators is in general not guaranteed, not even in the case p is the
Lebesgue measure. The study of criteria to determine their boundedness constitutes
an interesting field of research; we mention the T'1 and Tb-theorems, for which we
refer to the survey [Hof10].

In the presence of a doubling measure u, i.e. a measure such that

,u(B(ac, 2r)) < C,LL(B({E,T)), for some C > 0,
which satisfies the growth condition
w(B(z,r)) < Cr", zeR" r>0 (0.0.5)

for some positive constant C, the L?(u)-boundedness of T, implies that the operator is
also bounded on LP(u) for 1 < p < oo and from L'(p) to L1*°(p). Calderén-Zygmund
theory has also been investigated in the context of non-doubling measures, motivated
by the applications to analytic capacity and related topics. For more details we refer
to the book by Xavier Tolsa [Tol14]. The condition (0.0.5) is necessary for the L2-
boundedness of an ample class of singular integral operators (see [Dav91l, Proposition
1.4]). Another object which is interesting for applications and that is used in the
present manuscript is the mazimal singular integral

Ty« f(z) = sup T}, f()].
e>0

The study of the boundedness of this operator is closely related to that of the L?-
boundedness of T),: for T, bounded on L?(u), if (0.0.5) holds and T, f is defined in

a proper principal value or weak limit sense, Cotlar’s inequality provides the almost
everywhere pointwise bound

Tof(2) < CM(T,f) (@) + CM f (), (0.0.6)

M denoting the Hardy-Littlewood maximal function
Mf(2) [
) =sup —F——~ 1.
r>0 /L(B(l’,’l“)) B(z,r)
For more details, see [Tol14, Theorem 2.18].

Singular integrals and rectifiability The interest of singular integral operators
goes even beyond Harmonic Analysis. As in the case of the Hilbert transform and
of the operators in (0.0.2) considered by Calderén and Zygmund, the boundedness
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of singular integrals is naturally linked to a cancellation property of the positive and
negative parts of the kernel close to its singularities. To have this cancellation for
an (appropriate) operator 7),, some degree of flatness for the measure p is typically
necessary.

The pioneering result in the investigation of the geometry of measures via sin-
gular integrals was the proof by Calderén [Cal77] of the boundedness of the Cauchy
transform, which is a convolution operator with kernel K (z) = 2! for z € C, on Lip-
schitz graphs with small Lipschitz constant. Few years later, Ronald Coifmann, Alan
McIntosh and Yves Meyer [CMMS82] achieved the same result without the smallness
assumpion.

Lipschitz graphs constitute a particularly relevant case because they are the build-
ing blocks for the measure-theoretic analogue of differentiable manifolds. A set E C
R™ is called d-rectifiable if there exists a countable collection of possibly rotated Lip-
schitz d-graphs {I';}; such that

’Hd(EmUrj) = 0.

Again, a Radon measure p is d-rectifiable if it vanishes outside a d-rectifiable set F’
and it is absolutelly continuous with respect to H|.

Many characterizatization of rectifiable sets are available in the literature; see, for
example, the book by Pertti Mattila [Mat95].

Due to its qualitative nature, rectifiability is a too weak notion to develop a con-
sistent theory of singular integrals. For example, when E is a curve, the growth
condition (0.0.5) for u = H!|g is both necessary and sufficient for the boundedness of
the associated Cauchy transform (see [Dav84]). On the other side, the prototypical
example of a set with Hausdorff dimension 1 and whose respective Cauchy transform
is not bounded on L? can be found in John Garnett’s quarter Cantor set. This is
an example of a purely unrectifiable set: a set F is called purely d-unrectifiable if
HYF N E) =0 for every d-rectifiable set F.

A quantitative study of rectifiability in connection with singular integrals was
initiated by Guy David in [Dav84] and [Dav88| and further developed, among other
works, by David together with Stephen Semmes in [DS91] and [DS93].

A measure p in R? is called n-Ahlfors-David regular (also abbreviated n-AD-
regular or just AD-regular when n is clear from the context) if there exists some
constant C > 0 such that

Clr™ < u(B(z,r)) < Cr"  for all x € supp(p) and 0 < r < diam(supp(p)).

A set E C R? is n-AD-regular if the measure H"|g is n-AD-regular.

The set E is called uniformly n-rectifiable if it is n-AD-regular and there exist
6, M > 0 such that for all x € E and all r > 0 there is a Lipschitz mapping g from
the ball B,,(0,7) in R” to R? with Lip(g) < M such that

H" (E N B(z,r)N g(Bn(O,r))) > Gr™.

A measure p is called uniformly n-rectifiable if it is n-AD-regular and its support is
a uniformly n-rectifiable set. Roughly speaking, a set is uniformly rectifiable if it can
be covered in a significative amount by Lipschitz images (with controlled Lipschitz
constant) at all scales.
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David and Semmes (see [Dav84] and [DS91]) proved that, under the background
assumption of AD-regularity, a set E is uniformly rectifiable if and only if all its
associated singular integral operators of convolution type with odd kernel K(-) that
satisfies the regularity condition

IVIK(z)| < Clz|~¢7,  forall j=0,1,2,--- and = # 0 (0.0.7)

are bounded on L?(H"|g). Hence, a control on a wide enough class of singular integrals
detects rectifiability. It is legitimate to ask, at this point, if and up to which extent this
class is superabundant. For example, are the n components of the d-Riesz transform

Rof(z) = / e ), (0.08)

the latter expression to be interpreted formally, enough to control uniform d-rectifiability?
Weather the L?-boundedness of the Riesz transform implies uniform rectifiability is a
challenging problem that attracted the interest of the experts since the 90’s and it is
often referred to as the David and Semmes problem.

The solution to this question is known (and affirmative) in the cases d = 1, thanks
to the work of Pertti Mattila, Mark Melnikov and Joan Verdera [MMV96], and d =
n —1, by the work of Fedor Nazarov, Xavier Tolsa and Alexander Volberg [NTV14a].
The intermediate cases are still open. The one-dimensional case was solved via the
study of the so-called Menger curvature; this argument has the advantage of being
elegant and direct. However, it is not applicable to the higher dimensional case and
the proof in [NTV14a| required a study of the fine structure of the measure and a
variational argument inspired by potential theory, previously used in this context also
in [ENV14]. One of the main obstructions to the application of the codimension-one
methods to the general case is the absence of an adequate substitute of the maximum
principle, which plays a crucial role in the proof. Using their result and a covering
argument inspired by the work of Hervé Pajot [Paj02], Nazarov, Tolsa and Volberg
also proved what follows.

Theorem ([NTV14b]). Let E C R™ be a set with H"(E) < oo. If Ryn-1, is bounded
on L?>(H" Y g), then E is (n — 1)-rectifiable.

This theorem is the higher dimensional analogue of a previous result by David and
Jean-Christophe Léger for n = 2 (see [Lég99]).

On the plane, the boundedness of operators associated to other classes of kernels
is known to imply uniform rectifiability; for more details on this topic, we refer to
[CMT] and the references therein.

Harmonic measure. Considering a domain 2 C R" which is regular for the Dirich-
let problem, every function f € Cp(02) has an extension uy to 2 which is harmonic.
Moreover, fixing p € €2, which is called pole, an application of the Riesz representation
theorem ensures the existence of a Radon measure w? on the boundary of the domain
such that

up(p) = / f(y) dw?(y).

By the maximum principle, the choice f = 1 shows that wP is a probability measure.
Harmonic measure with pole at p can also be interpreted as the probability that a
particle, initially positioned at p and moving according to a Brownian motion, first
exits 2 through the prescribed part of the boundary. This probabilistic point of view
was proposed by Shizuo Kakutani in the 40’s.
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One of the earliest geometric results on harmonic measure dates back to the work
of F. and M. Riesz [RR20], who proved that harmonic measure is mutually absolutelly
continuous with respect to the arc-length if  C R? is simply connected and 02 has
finite length. Christopher Bishop and Peter Jones showed in [BJ90| that this results
can be localized to a portion of the boundary and, in addition, that the topology of
the domain is crucial for this result to hold: mutual absolute continuity may fail if
the domain is not simply connected. For other counterexamples see also [Wu86| and
[ZieT4].

A vast literature is available also on the investigation of the converse direction.
The recent article by Jonas Azzam, Steve Hofmann, José Maria Martell, Svitlana
Mayboroda, Mihalis Mourgoglou, Xavier Tolsa and Alexander Volberg [Azz+16b]
proves the conjecture of Bishop (see [Bis92|) that if the harmonic measure is mutually
absolutelly continuous with respect to the Hausdorfl measure on E C 012, then there
exists a rectifiable set ' C E such that wP(E \ F) = 0. This work is based on
the solution of the David-Semmes problem by Nazarov, Tolsa and Volberg in the
codimension 1 case. The link of the Riesz transform with the harmonic measure is
evident in the relation

cen Vi Ga(z,p) = VO(x — p) + Rorl(z), (0.0.9)

where ¢, is a dimensional constant, Gq is the Green function of the domain and ©
stands for the fundamental solution of the laplacian.

Related results can be found in [HMOI1] and [HMUI4|. Among the books on
harmonic measure, we highlight John Garnett and Donald Marshall’s monograph
[GMOS].

Bishop also proposed the following other problem on harmonic measure and recti-
fiability: if two domains are such that the respective harmonic measures (with poles in
each domain) are mutually absolutely continuous in some subset of a common portion
of their boundaries, can that region be covered by a rectifiable set, possibly leaving
out subsets which are negligible for the harmonic measure? This is a free boundary
problem. Bishop’s question was answered positively in its full generality by Azzam,
Mourgoglou, Tolsa and Volberg in [Azz+16d] where the authors, inspired by the tech-
niques in |[KPT09] studied the blowups at the points of mutual absolute continuity
of the harmonic measures. Their work is based on the previous results in [AMT17b],
where the problem is solved under a non-degeneracy assumption on the boundary of
the domain called capacity-density-condition.

A study of triple points for harmonic measure can be found in Boris Tsirelson’s
article [Ts197] (see also [T'V18al).

The organization of the manuscript

The first two chapters explore what geometric informations are nested into general
properties of Calderén-Zygmund operators which, in the case we consider, will mostly
be the Cauchy transform.

Chapter 1 focuses on Cotlar’s inequality (0.0.6) for the Cauchy integral. More
precisely, we chose to work in the framework of a remarkable variant that appeared
in the works [MOV11] and [Mat-+10].

In particular, the second article proves that if we have a kernel of the form K (x) =
P(z)/|z|"*¢, P being an odd homogeneous polynomial of degree d, and we consider
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the odd higher order Riesz transform

Tf(z) = / K(x — ) f(y)dy,

the summand M f on the right hand side of (0.0.6) is not necessary if we dominate
the maximal Riesz transform by the second order iteration of the Hardy-Littlewood
maximal function. Namely,

T.f(z) < CM*(Tf)(z), =€R™ (0.0.10)

The natural question at this point is, in the spirit of Calderén’s work, weather this
inequality generalizes to rectifiable curves. This would make it possible to try to use
it in relation with uniform rectifiability. Daniel Girela-Sarrion provided a negative
answer to this question also in the case of the Cauchy transform on a Lipschitz graph
(see |Girl3]): it suffices to be in the presence of a corner singuarity on the graph I'
for the pointwise bound

Cof(z) < CM?(CF)(z) (0.0.11)

to fail.

However, on the positive side, Girela-Sarrion proved that (0.0.10) holds if " is a
closed C' curve with the additional regularity hypothesis that the modulus of con-
tinuity w(z,d) of the unit tangent vector to the curve at z satisfies the logarithmic
condition

1
| log 4|

for z € T' and ¢ small enough and C' > 0. In particular, (0.0.11) is verified if T
is a Ob® curve, 0 < o < 1. The question we want to investigate, at this point, is
how to characterize Jordan curves which present this improved Cotlar’s inequality. In
particular, it was not clear if the inequality (0.0.10) for the Cauchy transform implies
the existence of tangents at every point of the curve.

To answer this question we first have to drop the C'' assumption for I' and to work
in the slightly more general framework of chord-arc curves, i.e. of rectifiable Jordan
curves such that for some constant C' > 0

w(z,0) <C (0.0.12)

6(21722) S C’ZI - 22’7 21,22 S F?

where ¢(z1, z2) indicates the shortest arc of I' joining the two points. This condition
corresponds to impose that the curve has bounded turning. We also find natural for
our problem to ask that I' does not present angles at small scales, since Girela-Sarrién
showed that corners prevent (0.0.6) to hold. For this reason we assume that the curves
under study are asymptotically conformal: for every § > 0 there exists € > 0 such
that whenever z1, z9 € I' are such that |z; — 29| < &, then

|21 — 2| + |22 — 2| < (1 4+ 6)|2z1 — 22 (0.0.13)

for z belonging to the shortest arc of I' connecting z; and z5. This condition serves
to our scope also because asymptotic conformality does not imply that the curve is
C'. The main result of the chapter is the following.

Theorem. Let I' be a closed asymptotically conformal chord-arc curve, let v: R — C
be a periodic bilipschitz parametrization of I' with period T and let C be the Cauchy
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Integral on T, i.e.

CF(2) = lim — / L
SO\ ({rs fr—tl<eh) W T2

f(w) dw, zel.

Then the estimate
C.f(z) SCM?*(Cf)(z), z€T, felL*T,p),

holds if and only if there exists C > 0 such that

£

vz +e)+(@—¢)—2v(x)| < C (0.0.14)

| loge|’
for each € satisfying 0 < e < T and for each x € R.

Observe that the previous statement includes the condition (0.0.14) on +, that can
be interpreted as a second order finite difference analogue of (0.0.12). Furthermore,
it may be thought as a control of the curvature of I'. The exposition would not be
complete without an example that shows the applicability of this result. We were
able to encounter an example of a curve for which (0.0.14) holds but which is not
differentiable at a point and which, in this way, provides a better understanding of
(0.0.6). In particular, this curve shows that logarithmic spiralings of the curve are
critical and that a faster winding does not agree with the improved Cotlar’s inequality.
The correct identification of the principal branch of the complex logarithm to use in
our setting requires a detailed discussion.

Many results have been produced about geometric conditions for the boundedness
of singular integrals. In Chapter 2 we analyze which are the properties of a meausure
1 on C that determine when the Cauchy transform, formally given by the expression

f(w)

Z—w

Cuf(z) = du(w), z€C,

defines a linear operator which is compact. First, we have to clarify what we mean by
compactness in our singular integral context. A reasonable request is that a Cauchy
transform which is compact on L?(u) should also be bounded on the same space.
Under this assumption it is known that the principal values of this operator exist
(see [Tol98]), so we understand that the Cauchy transform is compact on L?(u) if
it is bounded and the principal value operator is compact on L?(u). We start the
investigation from two toy models: the 1-dimensional Hausdorff measure on an interval
on the line and the Lebesgue measure on a planar disk. It is possible to give a direct
proof that the Cauchy transform of the disk is compact on L?, contrarily to what
happens in the case of an interval. Those proofs also suggest that the (upper) density

©7(2) :== limsup Q) (0.0.15)

a w@)—o Q)

@ ranging on the cubes centered at z, plays a central role in the determination of the
compactness of C,,. The next statement involves also the notion of Menger curvature

(1)
! 0 = [ g @dnman)

and R(z,y,z) indicates the radius of the circunference passing through the three



Contents 9

points. We were able to characterize the compactness of the Cauchy transform as
follows.

Theorem. Let p be a compactly supported positive Radon measure on C without
atoms. The following conditions are equivalent:
(a) C,, is compact from L?(p) to L*(p).
(b) the two following properties hold:
(1) ©;,(2) = 0 uniformly, which means that the limit in (0.0.15) is O uniformly
in z € C.
(2) A(plo)/mQ) — 0 as £(Q) — 0, where p|q stands for the restriction of p
to the cube Q.
(¢) the truncated operators C. ,, converge as € — 0 in the operator norm of the space
of bounded linear operators from L?(u) to L?(u).

We remark that few other researches (of different nature) on the compactness of
singular integrals have been recently conducted by Paco Villarroya (see e.g. [Vill5]).

The two remaining chapters deal with the investigation of elliptic equivalents of
the recent important results for the Riesz transform and rectifiability of harmonic
measure. Codimension 1 plays a central role, so we find it convenient to denote by
R"™*! the ambient space.

Both the David-Semmes problem and Bishop’s questions on harmonic measure
have a natural elliptic formulation. Let A(-) be an (n+1) x (n + 1) uniformly elliptic
matrix with essentially bounded real coefficients and let £4(z,y) be the fundamental
solution of the partial differential equation

Lau=div(A(-)Vu) =0

in R"*!. The fundamental solution can be constructed under this hypothesis (see
[HKO07], which extends the classical techniques of [GW82]). Let u be a compactly
supported n-AD-regular measure in R"*! and consider the associated operator for-
mally defined as

T, f(z) = / VaEa(r,y) F(y) duly).

The operator T}, is commonly referred to as a gradient of the single layer potential
and in the case A = Id coincides with the Riesz transform (modulo a multiplicative
dimensional constant). Imposing the further hypothesis of Holder continuity on the
coefficients of the matrix A, V,&(x,y) presents (locally) the properties of a Calder6n-
Zygmund kernel (see [CMT19, Section 2|). Under the Holder continuity assumption
for A, José Conde-Alonso, Mihalis Mourgoglou and Xavier Tolsa first proved that the
gradient of the single layer potential is bounded on uniformly rectifiable sets, then they
proved that T, is not bounded on L?(y) if the measure is totally lower irregular. This
is an elliptic extension of the main result in [ENV14], which inspired some techniques
used in [NTV14a]. Even though several other essential difficulties appear, the link
of this scenario with the Riesz transform one is evident: a crucial component of the
proof in [CMT19] is to compare the gradient of the fundamental solution at (x,y) to
the analogous object for the matrix with constant coefficients A(x), which behaves as
the Riesz transform under an affine transformation (depending on z).

In Chapter 3, which is the result of a joint work with Laura Prat and Xavier
Tolsa, we show that if A is Holder continuous and uniformly elliptic, p is an n-AD
regular measure on R"™! with compact support and T}, is bounded in L?(x), then
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w4 is uniformly n-rectifiable. This extends the solution of the codimension 1 David-
Semmes problem for the Riesz transform to the gradient of the single layer potential.
The compactness assumption for supp u is a direct consequence of the lack of scale
invariance for the Hélder space and it cannot be dropped in the statement without
asking for more properties for the matrix A.

The general scheme of the proof resembles that of [NTV14a| which in turns consists
of proving that the BAUP condition holds. This criterion asserts that an AD-regular
measure is uniformly rectifiability if and only if the (adapted) cubes of a dyadic-type
lattice D, built on the support of u, which is often called David and Semmes lattice,
that are not bilaterally approzimable by a union of planes satisfy the Carleson measure
condition

> u(P) < Cu(Q)

PCQ,P non-BAUP

for every Q € D,,.

However, new difficulties appear because of the different context: in general, the
gradient of the fundamental solution does not present the properties of the Riesz
transform of being symmetric and homogeneous. This makes an approximation argu-
ment for the measure significantly more delicate: we introduced a reflection argument
for the matrix A at the scale of a properly chosen flat portion of the measure.

Combining our result with that of Conde-Alonso, Mourgoglou and Tolsa and argu-
ing as in [NTV14b] we can prove that given E C R"*! with finite Hausdorff measure
H", if Tyn,,, is bounded in L?*(H"|g), then E is n-rectifiable.

Following the methods of [Azz+16b], this has a direct application to elliptic mea-
sure, which is the elliptic analogue of harmonic measure. The existence of the elliptic
measure for Wiener regular domains (i.e. regular for the Dirichlet problem) follows
from the Riesz representation theorem and the work of Littman, Stampacchia and
Weinberger [LSW63] on generalized solutions of the Dirichlet problem for equations
in divergence form with bounded measurable coefficients.

Definition (Elliptic measure). Let  C R"*! be a Wiener regular domain and let
Ly = div(AV:) be a uniformly elliptic operator with bounded measurable coefficients.
Given p € €, the elliptic measure associated with L, and with pole at p is the
probability measure wﬁA on 0f2 such that for every f € C(012)

up(p) = / F@)ds? (),

uy denoting the generalized solution of the Dirichlet problem with data f in the sense
of [LSW63].

The elliptic measure is linked to the gradient of the single layer potential by a
formula of the same type of (0.0.9), namely

V.Ga(z,p) = e, ViE(z,p) + Trl(z),

where ¢, is a dimensional constant and Ggq denotes the Green’s funtion associated
with L4 and €.

We show that, under the Hélder continuity assumption for A, if the elliptic measure
is absolutelly continuous with respect to surface measure, then it is rectifiable.

This is consistent with the rectifiability result for harmonic measure in [Azz+16b].
In this case the elliptic setting does not bring crucial difficulties to the proof, which is
a variation (once the rectifiability result in terms of T}, is known) of that in the case
of the harmonic measure.
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Chapter 4 may be regarded as a continuation of the program started in the pre-
vious chapter. The main result is a local quantitative uniform rectifiability criterion
for measures which are not AD-regular that is formulated in terms of the gradient of
the single layer potential operator. Broadly speaking the theorem asserts that given
a measure [, there is a scale with the following feature: if we know that the measure
is very flat at that scale and the L?(u)-mean oscillation of 7,1 is small, then a big
portion of p can be covered (at that level) by a uniformly n-rectifiable set. Both
the flatness, quantified via Jones’ S-numbers, and the oscillation of the gradient of
the layer potential depend on proper densities of u together with the L?(u)-operator
norm of T}, at the level of the scale. Due to its technicality, we prefer to postpone the
precise statement of our theorem to the first section of Chapter 4.

This result generalizes the previous study |[GT18] by Girela-Sarrion and Tolsa,
who worked with the Riesz transform. It can be interpreted as an higher-dimensional
analogue of the theorem of David and Léger (see [Lég99]), who formulated a recfiability
criterion which involves the Menger curvature of p. Here, the role of the curvature is
assumed by the oscillation of the potential.

This investigation is motivated also by the relevant applications of [GT18] to
harmonic measure. Indeed, their result was crucial to fully solve in [AMT17b] and
[Azz+16d] the two-phase problem proposed by Bishop. At the end of the manuscript
we outline the proof of the following analogue for the elliptic measure associated with
an operator in divergence form defined by a Hélder continuous matrix.

Theorem. Letn > 2 and let A be o Hélder continuous uniformly elliptic matriz. Let
1,Q9 C R be two Wiener-reqular domains and, for p; € Q;, i € {1,2}, let w! be
the respective elliptic measures in §; associated with L 4 and with pole p;. Suppose that
E is a Borel set such that W' |p < wh?|p < wi'|g. Then there ezists an n-rectifiable
set F C E with w{*(E\ F) = 0 such that W' |p and W?|p are mutually absolutely
continuous with respect to H"|p.

The proof is an adaptation of that of [Azz+16d|, which in turns uses a blow-up
method at the points of mutual absolute continuity of the two elliptic measures. A
detailed analysis of the blowup for elliptic measures which serves to our scopes was
conducted in [AM17].

For the proof of the quantitative rectifiability theorem we follow the same strategy
of that of [GT18]. However, as is Chapter 3, the nature of the gradient of the single
layer potential brings some difficulties which make the application of the variational
argument more delicate. This requires a change of variable arguments, together with
an elliptic homogenization technique to estimate the fundamental solution at large
scales.






Some notation and abbreviations

Snfl

dist(z, E)
distg (-, )
(Q)

En

[ f(z)dz
LP(p)
LP(R™), || - [
BMO

C’Oé

Lip

H

Cu

Cue

Ry Ry

Rue

Ty, Tye

Cp, Ry, T

7{d
e

“w
cu(+), c(p)
n-AD-regular
BAUP
6uaﬁuJ

there exists C' > 0 (possibly depending on

fixed parameters) such that A < CB

B<A

A< Band B< A

open ball of center x and radius r

radius of the ball B

open annulus centered at x with inner radius r
and outer radius R

unit sphere in R™

distance of the point x from the set

Hausdorff distance between two sets

side length of the cube @

Lebesgue measure on R

[ fa)dLn()

Lebesque spaces associated with the measure u on R
Lebesque spaces associated with £™ and its norm
space of functions with bounded mean oscillation
space of a-Holder continuous functions

space of Lipschitz functions

Hilbert transform

Cauchy transform associated with the measure p

¢ truncation of the Cauchy transform

(n-)Riesz transform associated with the measure p

€ truncation of the Riesz transform

gradient of the single layer potential and its truncation
maximal singular integrals

d-dimesional Hausdorff measure

restriction of the measure p on R™ to the set £ C R"
image measure of p via ¢

integral average [, fdu

Hardy-Littlewood maximal function

(n-)upper density of u at x

(n-)lower density of p at =

(n-)density of p at x

Menger curvature of

n-Ahlfors-David-regular

Bilateral Approximation by a Union of Planes
S-numbers of Jones

a-number of Tolsa

David-Semmes (Chapter 3) or David-Mattila (Chapter 4)
lattice associated with the measure p

center and side length of Q) € D,,
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Some notation and abbreviations

operator in divergence form associated with the matrix A
fundamental solution to L4,, Ao being an elliptic matrix

with constant coefficients

fundamental solution to L4, A being a uniformly elliptic matrix
with possibly variable coefficients

gradient of £ with respect to the first variable

gradient of £ with respect to the second variable
harmonic/elliptic measure with pole at p
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Chapter 1

Estimates for the maximal Cauchy
Integral on chord-arc curves

1.1 Introduction

Consider a homogeneous smooth Calderén-Zygmund operator in R"

Tf(a) =p.v. [ fo—9) K(g)dy = I Tf (@), « € B,

where T, is the truncation at level € defined by
L@ = [ S K@y e eR
y|>e

and f is in LP(R™), 1 < p < oo. Here the kernel K is of class C* off the origin,
homogeneous of order —n and with zero integral on the unit sphere

{zr e R": |z| =1}.
Let T, be the maximal singular integral

T.f(z) = sup |Tof(z)], « € R™
e>0
A classical fact relating Ty and the standard Hardy-Littlewood maximal operator
M is Cotlar’s inequality, which reads

T.f(z) < C (M(Tf)(z)+Mf(z)), ze€R" (1.1.1)

Combining this with the LP estimates ||T'f|l, < C|f|lp and |[M fll, < C||fllp, 1<
p < oo one gets || T fll, < C|fllp, 1 <p < 0.

It was discovered in [MOV11] that if 7" is an even higher order Riesz transform,
that is, if K(x) = P(x)/|z|**¢, with P an even homogeneous polynomial of degree d,
then one can get rid of the second term in the right hand side of (1.1.1), namely,

T.f(z) < C M(Tf)(z), «€R" (1.1.2)

Hence || Ty f|l, < C||Tf|lp, 1 < p < 00, in this case. However, if T' is an odd higher
order Riesz transform, then (1.1.2) may fail and the right substitute turns out to be
(see [Mat+10])

T.f(z) < CM*(Tf)(z), =€R" (1.1.3)

where M? stands for the iteration of M.
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Inequalities of the type (1.1.2) and (1.1.3) were first considered in relation to
the David-Semmes problem (see [MOV11],[Mat-+10] and [Verll]) and later on were
studied in the context of the Cauchy singular integral on Lipschitz graphs and C*
curves by Girela-Sarrion in [Girl3|. Let T' be either a Lipschitz graph or a closed
chord-arc curve in the plane, let T be the Cauchy Singular Integral and M the Hardy-
Littlewood maximal operator, both with respect to the arc-length measure, and let
T, be the maximal Cauchy Integral. Precise definitions will be given below. Girela-
Sarrion showed in [Girl3] that the presence at a point z of the curve of a non-zero
angle prevents (1.1.3), with x replaced by z, to hold. This agrees with the intuition
that (1.1.3) should help in finding tangent lines, but suggests that it is a condition
definetely stronger than the mere existence of tangents. It was also shown in [Girl3]
that if I" is a closed C! curve with the property that the modulus of continuity w(z, §)
of the unit tangent vector satisfies

1
log (%)’

then (1.1.3) holds with x € R" replaced by z € I'. Observe that condition (1.1.4)
quantifies the absence of corners in a curve for which (1.1.3) holds. In this chapter we
study the validity of inequality (1.1.3) in the context of chord-arc curves. A chord-arc
curve is a rectifiable Jordan curve I' in the plane with the property that there exists
a positive constant C such that, given any two points z1, zo € I' one has

w(z,0) <C zel, 6<1/2, (1.1.4)

0(21,29) < Clzg — 22/,

where £(z1, z2) is the length of the shortest arc in I" joining z; and z3. Equivalently
I is a bilipschitz image of the unit circle (see [Pom92|, Theorem 7.9). Then I' can be
parametrized by a periodic function v: R — I of period T satisfying the bilipschitz
condition

| N

Ty Sh@ @IS Lle—yl, yeR le-yl<g,  (115)
for some positive constant L. We say, by slightly abusing language, that ~ is a
bilipschitz parametrization of I". One can take, for instance, the T-periodic extension
of the arc-length parametrization of I' with 7" being the length of I'.

One can easily define the maximal Hardy-Littlewood operator and the Cauchy
Integral on a chord-arc curve. Given z € I' let t € R be such that z = y(t). Set

L.p=y{r: |7 —t| <r}).

One should look at I ;- as “balls” of radius r centered at z adapted to the parametriza-
tion v. Indeed, owing to the bilipschitz condition (1.1.5), each I';, contains and is
contained in a disc in I of radius comparable to r, for r < T It will be more convenient
to work with I',, than with the euclidean discs D(z,r) NT', where D(z,r) stands for
the planar disc of center z and radius r.

Denote by u the arc-length measure on I'. For f € LY(T, u) and z € ', we define
the Hardy-Littlewood maximal function on the curve I' as

1
M sy
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The Cauchy Integral is defined as

Cf(z):p.v.i !

Tt Jpw—=z

C-f(z) = 1/ S (w) dw

o\, W — 2

f(w)dw = li_I>I(l)CEf(Z), zel,

where

is the truncated Cauchy Integral at level . The maximal Cauchy Integral is

C.f(2) = sup|Ce£(2)].
e>0
We remark that this definition of Cauchy Integral is slightly different from that of
Cauchy transform used in the next chapter of the manuscript. In particular, in Chap-
ter 2 we truncate with respect to standard euclidean balls. We hope that, being the
other context more measure-theoretic, this will not cause confusion in the reader.
Our aim is to investigate under what conditions on I' one has the inequality

Cf(z) SCM?(Cf)(2), z€eT, fel*T,p),

where C is a positive constant. Since we know that angles prevent the above inequality
to hold, we need to require on I' a condition that excludes them. One such a condition
is asymptotic conformality. Given two points z1,29 € I' let A(z1,22) be the arc in T’
joining the two points and having smallest diameter (there is only one if the two points
are sufficiently close). The Jordan curve I' is said to be asymptotically conformal if,
given a positive number § there exists a positive €, so that for any two points 21,29 € I’
satisfying |21 — 22| < € one has

‘Z1—2‘+’22—Z|S(l-l-(s)’zl—Zg‘, ZEA(Zl,ZQ).
Our main result reads as follows.

Theorem. Let C be the Cauchy Integral on an asymptotically conformal chord-arc
curve I' and let v be a bilipschitz parametrization of I'. Then the estimate

Cof(2) SCM?(CF)(2), z€l, felL*T,p), (1.1.6)

holds if and only if there exists C > 0 such that

3

V(@ +e) +r(—e) = 2y(x)| < C

1.1.7
~  loge|’ ( )

for each € satisfying 0 < ¢ < T and for each x € R.

One should recall that condition (1.1.7) implies that ~ is differentiable almost
everywhere in the ordinary sense and the derivative is a function of vanishing mean
oscillation (see [WZ59]). Therefore, for chord arc curves satisfying the background
assumption of asymptotical conformality, inequality (1.1.6) is equivalent to the precise
form of differentiability described in terms of second order differences in (1.1.7). Also
notice that if 7 is the arc-length parametrization of a C'! curve, (1.1.4) implies (1.1.7),
so that the Theorem generalizes Girela-Sarrion’s result.

In Section 1.2 we prove a couple of Lemmas which allow to express condition (1.1.6)
in an equivalent form in terms of a function related to the geometry of I'. Section 1.3
is devoted to take care of a technical question, namely, that it is enough to estimate
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truncations at small enough levels. In Section 1.4 we prove the Theorem by means
of three lemmas, one on them making the connection between the function carrying
the geometrical information and the second difference condition (1.1.7). In Section
1.5 we present an example of a spiraling domain that enjoys the equivalent conditions
in the Theorem but whose boundary is not of class C'. This example justifies the
efforts made in order to extend the condition (1.1.4) to a less regular case since new
geometric behaviors can be detected.

Our terminology and notation are standard. We let C' denote a constant inde-
pendent of the relevant variables under consideration and which may vary at each
occurrence. The notation A < B means that there exists a constant C' > 0 such that
A< CB. We write A 2 B if B < A. The disc centered at z of radius r is denoted by
D(z,r).

1.2 Two preliminary Lemmas

The beginning of the proof follows the ideas of [Girl3|, so that we will be rather
concise. Given a function f € LY(T', ) we denote by mr__(f) = sz _J(w) dp(w) the
mean of f on I', . with respect to the arc length measure p. We let K, . denote the
Cauchy kernel truncated at the point z at level €, that is,
1 1
K, (w) =—

TIW —

o XF\FZ,E (UJ), wel.

Set g, = C(K,.) and let N > 1 be a big number to be chosen later. Following
[Girl3, p.673] we obtain the identity

—Cef(2) =L+ 1l + 111,

where

I. = / Cf(w) (gz78(w) — MU, Ne (9275)) dw,
. Ne

Il == mr,_ . (gz,s)/ Cf(w)dw,

1—‘z,Ns

I11. = / CF(w)g... (w)dw. (1.2.1)
M\l ne

Following closely the argument in |Girl3| one can prove that

1| < C M?(Cf)(2),
(I < CM(C)(2),

where the constant C' does not depend on the choice of N. Since clearly M (g) < M?(g)
for any g, we are left with the task of estimating I11.. The next lemma provides an
expression for 111, in terms of a function encoding the smoothness of I'. To state the
lemma first we need to clarify the definition of a branch of the logarithm of w — z, as
a function of w with z € I fixed, in an appropriate region.

Given z € T" let A, be a curve connecting z and oo in the unbounded component
of C\ T. Such curves exist and indeed we will construct a special one in Section 4
(under the additional assumption of asymptotic conformality). Hence C\ A, is a
simply connected domain containing I\ {2z} and so there exists in C\ A, a branch of
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log(w—z). In particular, if z = y(z) for some x € R, the expressions log(y(z+¢)—v(x))
and log(vy(x — €) — y(z)) make sense for 0 < e < T.

Lemma 1.2.1. Let I' be a chord-arc curve and ~ a bilipschitz parametrization of T'.
Let z € T and let x be a real number such that v(x) = z. Then for almost every
w € I'\I'; ne we have

C(Kz,e)(w) = 7T2<21— w) [F(x,g) + Gz,e(w)]a
where
F(z,e) =log(y(z + &) —v(x)) — log(v(z — &) — v(x)) + mi
and
|G2e(w)] < ‘Zciew. (1.2.2)
Proof. Take w € I'\I'; n. . Then
C(K..)(w) = ——31im &

72650 Jp\(1,, sur. ) (C = 2)(C —w)

1 1 1 1
=-= lim ( — ) dcg.
T w =z 620 Jp\(r,, sUT. .) (—w (—z
Let y € R with v(y) = w . Then the latest integral in the above formula is

log (v(y — 6) —(y)) —log (v(z +¢) —v(y)) + log (v(z — &) —¥(y))
—log (v(y +9) —(y)) — (10g (v(y —9) —~(x))

—log (v(z + ¢) — y(@)) +log (v(z — €) = 7(2)) — log ((y + ) —~(2)) )

Assume that v is differentiable at the point y and the derivative 7/(y) does not vanish.
Then we have that

lim (log (v(y = 6) =(y)) —log (v(y +0) —(y)) ) = mi,

because the curve A, lies in the unbounded component of C\I', and then to the right
hand side of I', oriented according to the parametrization . Taking the limit as J
goes to 0 we obtain

O o) (w) = —— —

~(log(v(z + ) = (y)) — log(v(x — ) — v(y))))-

——((log(1(x +2) = 7(x)) ~ log(y(x — &) = ¥(x)) + i)

Define
G e(w) =log (v(z — ) —(y)) — log (v(z + &) —v(y)).

It remains to show the decay inequality (1.2.2). According to the choice of A, we
have a well defined branch of log(vy(x +t) — w), —e <t < &. Thus

€

Gae(w) = — dlog(v(ﬂs-f—t)—w)dt:—/gw

dt. 1.2.3
, —€ dt —€ 7($+t)_w ( )
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Since w = v(y) € '\ I'; ne, we have y ¢ (x — Ne,z + Ne) and so

- N
w2l = () () 2 L > T
which gives , taking N > 2L?,

jw =~z +1)| > |w=2| = |y(z) = y(z + 1)
|lw—2| Ne

> R
=g top Tt
lw=z
— 2 .
Hence, by (1.2.3),
e (x4t AL
|Gz,a(w)\§/ e+l 4 4le 0
e (@ +t) —wl |w — 2|

Lemma 1.2.2. Let I' be a chord-arc curve and v a bilipschitz parametrization of T'.
Then the inequality

C(f)(2) S CMP(Cf)(2), z€T, feL*I,p) (1.2.4)

is equivalent to
|F(z,e)||log(e)] < C 0<e<T, zeR. (1.2.5)

Proof. Assume that (1.2.5) holds. Then by Lemma 1.2.1

IIIEZ/ Cf(w)C(K,c)(w)dw
Iz Ne

_F=e) (xz’ ) / CI) gy 4 x cr(w) Z=) gy,
d F\FZ,NE Z—w T I_‘\Fz,Ns Z—w

= F(z,e)IV. +V,

where the last identity is a definition of the terms IV, and V.. One can break the
domain of integration in the integrals in IV, and V; into a union of dyadic annuli

Aj=~v{yeR: Ne2 < |ly—a| < Ne2T1}, j=0,1,..

then perform standard estimates and apply (1.2.2) to get, thanks to the quadratic
decay of the integrand,
V| < CM(Cf)(2). (1.2.6)

For IV, one only has a first order decay, which gives
NL
1V < € f1og (=) [Mie)(z),

thus completing the proof of the sufficient condition.
Assume now (1.2.4). Recalling that IT1. = F(z,e) IV. 4V, and (1.2.6), we obtain

|F(z,e) IV.] < CM*(Cf)(2), z€T, felL*I,n). (1.2.7)

The Cauchy Singular Integral operator T is an isomorphism of L?(T', i) onto itself.
This is proved in Lemma 1 of [Girl3, p. 661] for Lipschitz graphs, and the same proof
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works in our context. Thus (1.2.7) can be rewritten as

(F(;c,e) /F\F 9(_“’) dw‘ <OM2(g)(2), »el, gelI2T,p).  (1.2.8)

To simplify the notation take z = 0 = ~(z). Assume first that 0 < ¢ < 1. Apply
(1.2.8) with ¢ the characteristic function of y((¢",¢)), where n is a large integer to be

C]l()Sell. l ]le
|‘ / ,(
(]:

7,((;) = |log(v(e)) — log(y("))|
> |log(|y(e)]) — log(|v(e™)])]
1
1o ( 7zt )

> 2log(1) + (n—2)1og (1) 10 (1)
> | log(e)|

and

3

en

provided n = n(e) is large enough so that —2log(L)+ (n —2)log(1/¢) > 0. Therefore
(1.2.5) follows in this case.

If 1 <e < T then we take as g the characteristic function of y((¢™",¢)). In this
case we get

| / ”7'((;; > —210g(L) + nlog(e) + log(z) > | log(e)|

provided n is chosen so that —2log(L) + nlog(e) > 0. O

1.3 Reduction to estimating truncations at small levels

In this section we reduce the proof of (1.1.6) to estimating the truncations C.f for
small €. In the previous section we showed that the estimate of C.f can be reduced
to that of the term II1 in (1.2.1).

Lemma 1.3.1. If ¢ is a given positive number, then there exists a large positive
number N = N(L) so that

[ cw)gewiin| <oMENE). seT. a<e
1—‘\FzNe:

for a positive constant C = C(gg, L).

The small number £y will be chosen in the next section.
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Proof. Recall that

gze(w) = C(K- ) (w)

where in the last identity we defined h(w) and k(w).
Applying the bilipschitz character of v we conclude that

2

1 L
‘k’(w>| < ﬁﬁlength(r), wel \ FZ,NE) eo<e. (131)
0

The estimate of h(w) is a little trickier. We have

1 1 1 1 1 1
h = —— v, [ ——d — V. —dC.
(w) WQM—ZPV/I‘C—U) C+7T2U)—va/1"z,€<—w ¢

A simple application of Cauchy’s Theorem gives that, if ' has a tangent at w,

pv/dg‘—m

As before, the bilipschitz character of v yields

N
lw — z| ZTE, wel\T; n:

and

)

N
w=¢l2hw—z—lz=¢2e(F ~L), wel\lone (€Tq
Choose N so that N/L — L > 1. Then
lw—C(|>e, wel\T,n. (€T,..

Gathering all the previous estimates we finally get

1 L 1 length(T")
h(w)| < = 1
| (w)|_7TN€0+7T2 €0

, weTl \ FZ,NEv g <e. (1.3.2)

Hence (1.3.1) and (1.3.2) yield
‘gz,a(w” <C, wel \ Fz,NEa €0 < ¢,

where C' = C(egg, N, L, length(T")) is a constant depending on ¢, N, L and length(T").
Therefore

[ o sstwin] <€ [ iesw)ldntw) < ClengbME ()

which completes the proof of the lemma. O
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1.4 The proof of the Theorem

For z # 0 let Arg(z) denote the principal argument of z, so that 0 < Arg(z) < 2.

Lemma 1.4.1. Given a > 0 there exists a positive number ¢og = eo(L) with the
following property. Assume that 0 < g1 < g9, €1 /2 < € < &1 and thatl for a fized
x € R we have y(z) = 0. If y(x — 1), 7 > 0, satisfies

€1

5 < |v(x —7)| < Ley,

then, for some 0 such that y(x — 7) = |y(x — 7)[e?, we have

|0 — (Arg(y(z +¢)) + )| < .

Proof. Consider the triangle with vertices 0,v(z — 7) and y(z + €) and side lengths
A=|y(x—71)|, B=|y(x+¢)| and C = |y(x+¢) —y(x — 7)|. By the cosine Theorem

C? = A® + B® — 2AB cos(¢),

where ¢ is the angle opposite to the side C. In other terms

(A+B—C)A+B+C)
2AB '

1+ cos(¢) =

By asymptotic conformality, given § > 0 there exists ng > 0 such that
C=|y(x+e)—v(x—7)] <noimplies A+ B < (14 0)C. The bilipschitz property of
v (1.1.5) yields g1 /2L% < 7 < L%¢; . Hence

(81 +T)2

14 cos(¢p) < 6L*
E1 T

< 20L°(1 + L)%
Taking 6 = Arg(y(z +¢)) + ¢ we see that |6 — (Arg(vy(z +¢)) + 7)| < a provided ¢ is
small enough. Since

(@ +e) =@ —7)| < L(e+7) < eo L1+ L?),

one has to choose £g so that g9 L(1 + L?) < 19, which shows the correct dependence
of €9 and completes the proof of the Lemma. O

Given a point z € I' we want now to construct a special Jordan arc A, connecting
z to 0o in the complement of . Assume, without loss of generality, that z = 0. Take
x € R with y(z) = 0. Let g9 be the number given in the preceding Lemma and define,
for 7 =0,1,2,..., a polar rectangle by

o B 0. €0 eo L o
RJ—{w—]w|e : 2j+1L<|w|<—2j and ‘9—Arg(’y(m+2j>>+w‘<a}.
Applying Lemma 1.4.1 with € = g1 = ¢ /2/ we conclude that
€0 eoL
{y(x —71): 0<T}ﬂ{w: 5L < lw| < 2—]} C R;.

We need to introduce another polar rectangle

EoL .
Sj:Rjﬂ{w: 2jﬁ<|w\}, j=0,1,2,...
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We define inductively A, = Ag on S; by just requiring that the Jordan arc AgNS;
lies in the unbounded component of the complement of I, E being the closure of 5.
We then connect Ag N Sy with oo by a Jordan arc in the complement of T', with the
only precaution of not reentering the disc D(0,e() once Ag has left it.

It is worth pointing out that the axis of two consecutive polar rectangles R; and
Rji1 make an angle less than «. This follows by the defining property of ¢ (see the
proof of Lemma 1.4.1).

Lemma 1.4.2.
log(y(z —¢)) —mi =log(—y(x —¢)), z€R, 0<e<egg.
Proof. We know that
log(vy(z —¢)) — mi = log(—y(z — €)) + 2wmi (1.4.1)
for some integer m. Our goal is to compute the difference

log(y(z — ¢)) — log(—v(z —¢))

1
/dz,
-

where ¢ is an appropriately chosen Jordan arc connecting —y(z — ¢) to y(z — €) in
the complement of Ag.

by the integral

V(z +¢)

—y(r —¢)

Fi1GURE 1.1: The curve ¢

Assume that g¢ /2711 < & < g9 /27, for some non-negative integer j. Define N as
the smallest integer satisfying
Lé‘() €0
2j+N — [9j+1°
This is equivalent to L2 < 2¥~! and so N depends only on L. Hence R;, C D(0,&q/L 27F1),
k > j+ N, and, in particular, Ry, k > j + N, does not intersect the circumference
D0, [y (x — 2)]).
The angle between the axis of the polar rectangle R;,; and that of R; is not greater
than la < Na, 1 =1,2,...,N — 1. Set B = Na, so that 8 can be as small as desired
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by taking o = (L) appropriately. We conclude that
Rjy C {w: w = \w|ew with !0—Arg (7(x+8) +7r)’ < B}, I=12,...,N—1.

We are now ready to define the Jordan arc <. Let z(z,e) be the point at the
intersection of the circumference 9D(0, |y(z — €)|) and the ray

{w: w:\w\ew with G:Arg( (x+¢e)+ ) 5}

Let A stand for the arc in 9D(0,|y(x — ¢)|) having —y(x — ¢) as initial point and
z(x,€) as end point (counterclockwise oriented).

There exists a rectifiable Jordan arc o joining the points z(z,e) and y(z — ¢) in
the bounded component of the complement of I' with the property that

length(o) < C'|z(x,e) —y(z — ¢)|.

This can be seen readily as follows. Set (e*®) = y(x), # € R. Then 7 is a bilipschitz
homeomorphism between T and I'" and thus can be extended to a global bilipschitz
homeomorphism of the plane onto itself (see [Tuk80],[Tuk81]). The existence of the
arc o is then easily proved by transferring the question via the extended bilipschitz
homeomorphism.

Define ¢ = AU o, oriented as already specified. Note that ¢ lies in the complement
of Ag, by the previous discussion, in particular, the definition of N and . Therefore

log(7( — £)) — log(—(z — £)) = / Lde

On one hand we have

/1dz:m'+0(ﬁ)
AR

and on the other hand

| [ 2as] < SERIEN <05 0ps)

If B is small enough so that O(3) < m, then, by (1.4.1), we get that m = 0, and the
lemma is proved. O

We need a final lemma, which concludes the proof of the Theorem.

Lemma 1.4.3. Let I' be an asymptotically conformal chord-arc curve and let v be a
bilipschitz parametrization of T' (in the sense of (1.1.5)). Then there exists a constant
C > 1 and a positive number ¢ such that

1hete)+ale—e) -2 _ Fz,6)| < C vz +e) +a(@—e) = 20(@)]

: : (1.4.2)

foreeRand0<e<egg.

Proof. Without loss of generality assume that vy(z) = 0. Let g9 be the small number
provided by Lemma 1.4.1. By the construction of the arc Ag described in the proof
of Lemma 1.4.1 we have that the segment joining —v(x — ¢) and y(z + ¢) lies in the



26 Chapter 1. Estimates for the maximal Cauchy Integral on chord-arc curves

complement of Ay. We have, by Lemma 1.4.2,

F(z,e) =log (y(z +¢)) —log (y(z —¢)) + i
=log (v(z +¢)) —log (—v(z —¢))

and so
F(z,¢) /log Yz —e)+t(y(z+e) +v(z—¢g)))dt
[ traseno
o VE—e)+itv(zt+e)+ylr—e)

Set, to simplify the notation, a = —y(x —¢), b = y(z + €) and let § denote the angle
between a and b. By Lemma 1.4.1 we know that 6 is as small as we wish. In particular
we can assume that cos > 1/2. Thus, using the cosine Theorem,

(1 —1)2|a® + 2|b]® + 2(1 — t)t|al|b| cos 6
1 2
> (=Dl 4 1b)* >

la+t(b—a)]® =

and Y
2L
[F(@, )l < ——h(@+e) +y(z—e)l,
which is the upper estimate in (1.4.2).

For the lower estimate we set zz = —y(x — ) + t(y(z + ¢) + v(z — €)). Since
Re(z¢) > |z|/2 and |z| < 2Le

1 1 1
(/ L sre [ Lar= [ Bl g
0 0 e

/1 1 1
> dt > ——.
o 2|zl 4L ¢

To complete the proof of the Theorem one only needs to combine Lemmas 1.2.2, 1.3.1
and 1.4.3. O

Remark. Let a = v(x) —vy(z —¢), b = v(z +¢€) — v(x) and let a(x,e) be the angle
spanned by a and b. For a bilipschitz parametrization v such that

T
cle—yl<h(@) —rI<Cle—yl, zyeR, |r-yl <3
we have the estimate

Iy(x + ) +y(z — ) — 2v(x)]* < 20%? — 2¢%% cos a(x, €).

So, in the general case, we can guarantee just a linear decay of the second finite
difference |y(z + €) + v(x — €) — 27y(x)| and the logarithmic condition (1.1.7) gives
informations about the local behavior of the best constants ¢ and C around z and
about the decay of a(x,¢e) for e small. This remark will be useful in the next section.
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1.5 An example

In this section we provide an example of curve v which is not C! but for which the
improved Cotlar’s inequality (1.1.6) holds. The curve will be constructed in a recursive
way and will be parametrized by arc-length. Without loss of generality, we will focus
on defining a curve which is not closed. Indeed, possibly by connecting the ends of
this curve in a smooth way, we can reduce to the same environment of the previous
sections. The idea in the construction of the example is that the curve should resemble
a suitable spiraling sequence of smoothened corners of decreasing aperture.

Let 0 < a < 7w/2. Let F,:[0,1] — R be the function with support in [1/4,3/4]
which is linear in [1/4,1/2] and [1/2,3/4] with slope tana in [1/4,1/2] and —tan o
in [1/2,3/4]. In other words

F,(t) = max {O, (i - ‘t - %D tana}.

Let £ > 0. For t € R we define the function

ne(t) = n(é)i

where 7 is a smooth, even and positive function such that suppn C [-1,1] and
[ n(t)dt = 1. For 0 < £ < 1/100 we define the regularized function

Aa = Fy *me.

We will call the curve A, = (t, )‘a(t))te[o 1

An a-patch has the following properti’es:

e A, is the graph of a function A, : [0, 1] — R which is symmetric around 1/2.

e if we denote by [a, b] the segment joining the points a,b € R?, then A, contains
the segments I, == [(0,0), (1/4—¢&,0)], I1, == [(1/4+¢&, {tana), (1/2—&, (1/4—
§tana)|, I11, = [(1/2 + &, (1/4 — &) tanw),(3/4 — &, Etana)] and [V, =
[(3/4 4+ €,0),(1,0)]. We denote by C%, i = 1,2, 3 the remaining three non-affine
parts of the graph. Precisely, C} joins the segments I,, and I1,, C? the segments
Il, and 111, and Cg; the segments I'11, and IV,.

e the function )\, is convex on the intervals below CL and C2 and concave on the
interval below C2.

The idea is that the a-patch is a smoothened corner, as shown in Figure 2.

] a-patch.

[N
—_

FIGURE 1.2: An a-patch

Remark 1. Let us denote by 7(«) the difference between the length of the (non-
smoothened) graph of F,, and the length of A,. For what follows, we need to estimate



28 Chapter 1. Estimates for the maximal Cauchy Integral on chord-arc curves

its behavior for small values of a. It suffices to observe that

T(a) = length(F,) — length(A,)

:/ (/1185 mel2) = (VI+17@) ) e

1
0

(1.5.1)
1 / 2 ) — | 2 t
o (VIFIeneP®) + (VI+1P0)
Definition of the curve I’
Let oj :=1/j for j = 1,2,... positive integer. For the sake of notational convenience
we replace the subscript «; by j; for instance, we write A; for Ay, I for Iy, ..., IV;

for IV, and C]’i for nyj. Moreover, 7; := 7(a;). Now we can define I' according to
the following recursive steps:
° Fl = Al.
e We would like to glue on I; an appropriate rescaled, translated and rotated
copy Ay of Ay. The angle of rotation is a. The scaling factor and the translation
are chosen so that the origin of Ay is (1/4,0) and the end is (1/2, (tana)/4).

Denote by I1, the image of I, via the same affinity which maps Ag to Ag; let
us use the tilde to denote the images of the other parts of the patch via the same
map, too. Delete the segment I} from A; and add Ay. Now the endings of Ay
should be deleted in order to make a connection with Aj. The precise expression
for the second step curve is

Ty = ((Al \111) U]\Q) \ ((jg Uﬁ/2> \Ifl)

e given I'),, which is a “gluing” of affine copies 1~\j of Aj for j € {1,...,n}, where
I1, is the image of II; under the same affinity which maps A; to Aj, we define

Tt = (A \ T1) U Rp) \ (T UTV 1) \ TT,),

where An-‘,—l is an re-scaled copy of A,41 rotated by an angle Z;‘;rll aj whose

vertices coincide with the images of (1/4,0) and (1/2,tan o/4) via the transfor-
mation of the plain that sends A, to Kn
Then, {I',,}, converges in the Hausdorff distance (a similar case is presented, for
example, in [Fal90]) and we can simply define I' := lim,, I',,. Let us now state an

[
—_

F1GURE 1.3: The second step in the construction of the curve I'

estimate that we will use in what follows.

Lemma 1.5.1. Given 0 < a < 7/2 and z1,22 € A, we have

U, 29) < L= 22 (1.5.2)

COS «x
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where €(z1, z2) denotes the length of the arc of A, joining z1 and z3.

Proof. Let t1 :== A\;'(21) and t3 := A\;'(22). We have |t; — t3| < |21 — 22]. Moreover,
because of the way we constructed A,, we have that [\, (t)| < tan « for every ¢ € [0, 1].
Collecting all these observations,

U(z1,29) = \/1 + AL ()]2dt < / V1+ |tan of?dt
t —_
—\tg—tl\\/l—i—]tana\Q f2 = < |z:2 Zl|. O

COos COS «x

Remark 2. Notice that the inequality (1.5.2) keeps holding for a scaling of A,, in
particular for the AJ, jeN.

Let us define L1 = 1/2 and, for n > 1,

n—1 1

L, = 2_2”+1( H cos og)i ,

i=1

which is half of the diameter of the rescaled patch A, in the construction of the curve
I'. Indeed, some trigonometry gives

1 1/1 1 1/1 1 1/1 1
lef,ngf(le >,L3:7(7L2 ),---,anf(an_li).
2\2 “cosoq 2\2 “cosay 2 COS (1

Observe that the definition of L,, does not depend on a, because the scaling of A,, is
determined just by the previous (n — 1) angles. We will use L,, as a quantifier of the
scale.

Lemma 1.5.2. For every 6 > 0 there exists k € N big enough such that for z1, 22 €
I'N (U2, Aj) we have
5(21,22) (1—|—5)|21 —ZQ| (1.5.3)

Proof. Let us start with some geometrical observation. .
Let k € N and (i, ¢ € . Suppose, moreover, that ¢; € I, and (s € IVy. Tt is useful
to define

Ry = £(C1,C2) — [C1 — Cal-

Observe that the definition of Ry does not depend on the choice of {; and (o in the
respective segments. In particular, by the construction of the curve I' and by the
definition of the error term 7; in (1.5.1), it is not difficult to check that we have

R = (3 i Lj— L) - i 2L;7;. (1.5.4)

The term between parentheses in the right hand side is the length of the gluing of the
‘non-regularized’ a-patches in the construction and the second sum is an error term
due to the smoothing in the definition of a-patch.

Because of how we chose L; and 7;, the quantity Ry represents the error we make in
estimating the length of the arch of the curve between ¢; € I}, and ¢, € f‘v/k compared
to [¢1 — C2|. The presence of factor 2L; in the last sum in the right hand side of (1.5.4)
is due to the fact that the diameter of Aj is equal to 2L; and, thus, the error term 7;



30 Chapter 1. Estimates for the maximal Cauchy Integral on chord-arc curves

has to be rescaled by that value. It turns out that

R
ZE 50 as k — oo, (1.5.5)
Ly

which justifies the interpretation of Ry as an error term. Indeed, recalling that cos o; >
cos a, for [ > k, we have

j—1

3 3 -1
o2 Li= 2 i (ITcosen)
j=k+1 j=k+1 I=k
3y ()T
- 4 cos ay 4dcosay — 1
j=k+1

and the last term tends to 1 as k — co. Moreover, using (1.5.1) and since L; < 2¥77 L,
for j > k, we have that

1 3] 3] _
—_— Z 2LjTj§Tk+1 Z 2k_]—>0 as k — oo,

k jmkt1 j=k+1

so that (1.5.5) follows.

Let us combine this observation with (1.5.2) to prove (1.5.3). Let 21,22 € T.
Observe that each point of I'" belongs to A; for at most two different j. Let ki be
the maximum index such that z; € ]\kl and let ko be the maximum index such that
Z9 € 1~\k2. The rest of the proof works with minor changes if we take the minimum
instead of the maximum in the definitions of k1 and ko. The use of this indices helps
to make the calculations more systematic.

Without loss of generality, suppose k1 < ko. If k1 = ko, the points belong to the image
of the same patch. We have two possible scenarios depending on the relative position
of these points. The definition of Ry and the estimate (1.5.2) allow us to write

|21 — 22

K(Zl,ZQ) S (156)

cosayg,

if the point are at a distance |21 — 22| < Ly, +1. For |21 — 22| > Li,+1/4, we have to
consider the additional error term Ry, 41, which comes from the ‘spiraling’ part of the
curve. In particular

|21 — 2o
V4 < —4+R
(21,22) < oS g, * 1
— R
< |z = =] BEL

T cosay, 4L, +1

so that, invoking (1.5.5), the lemma is proven in the case k1 = k.

Let us consider the other case, k1 < ko. If 29 € Ay, (1.5.6) easily applies because
the two points belong to the image of the same patch. So we can suppose z2 & Ay, .
In this case

L

(1.5.7)
Let 2 € ﬁkl be the orthogonal projection of zo on the segment ﬁkl. The idea now
is, by means of projections, to reduce to the case in which the points belong to the
image of the same patch. For this purpose it is also useful to use the length of the
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arcs of the m-th step curve I'), that we used to define I'. By the triangular inequality
and denoting by

hiy 41 = min{h: Ay, 11 C [0, h]ny + V for some affine line V with normal ny }

. (1.5.8)
the width of Ag, 41, we have
|21 — 25| < |21 — 22| + hiy a1 (1.5.9)
Let us remark that, by construction of T,
h
“REL 0 as k — oo. (1.5.10)
Lk1+1

Given m € N and u,v € T'y,, it is useful to denote by l,,,(u,v) the length of the arc of
I, joining u and v. Now we want to prove that

6(21, ZQ) < Ekl (Zl, Zé) + Rk1+1' (1511)

Let us just consider the case z; € fkl, since the other cases are analogous. If 2y, € jk;1+1
or z, € ﬁ/kl+1, (1.5.11) holds trivially because zo = zj. Otherwise, let ¢ be a point
on _ﬁ/kl_l'_l and let us consider the quantities ¢(z2,() and |z} — (|. Observe that the
consideration below does not depend on the auxiliary point ¢ of v k1 +1 we choose.
Clearly ¢(z2,() > |25 — (| and, because of the definition of Ry, 11, the equality

U(z1,22) + €(22,C) = Ry 1 + iy (21, 25) + |25 — (],
holds. So

K(ZhZQ) = Ekl(zlﬂzé) + Rk1+1 + (‘Zé - C‘ - e('szC)) < gk‘l(zl7zé) + Rk1+1'

o

The proof of the lemma is now over: indeed using (1.5.2), (1.
(1.5.10) we get

5.5), (1.5.7), (1.5.9) and

Uz1,22) _ Ly (21, 25) Ry 1

21— 22| 7 a1 — 2| |z -zl
|21 _Zé| Ry, 41
T |21 — zfcosay, |z — 22|

< 1 + 4hk1+1 + 4Rk1+1

< — 1 as k1 — oo. O
cosq,  C€OS g, Ly, 41 Ly, 11

A rectifiable curve T' is said asymptotically smooth if, denoting by ¢(wq,ws) the
length of the shortest arc of I' between w1, ws € T,

14
Mﬁlas lwy — we| — 0, wy,wg €T,
lw1 — wo

As shown in [Pom78|, an asymptotically smooth curve is also asymptotically confor-
mal.

Proposition 1.5.1. T is asymptotically smooth but not C'.

Proof. Let Z; € T' be the image of the point z’aj via the map which sends A; to Xj.
We have that the curve I is not C! at the point zg == lim; z;, where z; is an arbitrary
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point of 1~\j. Indeed, by our choice of the angles in the construction, Zj o = 400
and the curve spirals close to zg.

Let us now turn prove that the curve is asymptotically smooth.

Notice that we may write ' = 'y UT'9 U {20}, where I'y and I'y are smooth curves.
Then, for every couple of points {z1, 22} in one of those two smooth components we
can exploit the smoothness to state that for every § there exists £ such that for e < &
and |z1 — 22| = £ we have

U(z1,22) < (14 d)e.

This, together with the result of Lemma 1.5.2 concludes the proof. O
Let us consider the arc-length parametrization v of I'. Being I' asymptotically
smooth, v is bilipschitz. In particular,

1
5\56 —yl < |y(z) —y(y)| < |z -yl

for a constant C' > 1 and z,y € [0, L(I")]. As in Remark 1.4 we denote by a(x,¢)
the angle between the vectors y(z) — v(z — €) and y(z + ) — y(x). Because of the
geometrical considerations in Remark 1.4, we have that

iz +2) +1(e —e) ~ @) < (2~ % cosa(z,2)) (1.5.12)

for e > 0 and z € [0, L(T")]. Now we want to prove the estimate

13
[Toge|’

(@ +e) +y(@—e) = 2(@) S

Being I' smooth off the point zy and arguing as in [Girl3|, the logarithmic condition
(1.1.4) and the estimate (1.1.6) are satisfied off that point. Hence it suffices to prove
(1.1.6) for v(z) € Upsp, A, NT and ko big enough. To do that, we will study the
behavior of the angle a(z,e) and of the local value of the bilipschitz constant of -
close to the point zg.

Being the curve asymptotically smooth, as a corollary of Lemma 1.4.1 we know
that o(z,e) — 0 for € small. Then, the second factor in the right hand side of (1.5.12)
behaves as

2

Q—icosa(:v,e) = {2— o2

o2 } + éa(:&, e)? + O(a(z, 5)4)

for e — 0.
Let 2o := v !(20). For £ > 0, we denote by C. the smallest constant such that

1
roR lz =yl <|v(z) —vW)| <[z -yl
£

holds for z,y € [xg — €, + €], i.e. the local value of the lower bilipschitz constant
close to xg.
Using this notation, to our purposes it suffices to prove that

la(z,e)| < |loge| ™
and

1 )
[1 - a] < |loge| ™ (1.5.13)
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for € small and y(x) close enough to zp.
The following two lemmas respectively prove the estimate for the angle and the
estimate for C..

Lemma 1.5.3. For every g there exists an integer ko such that
(e, )] S [loge| ™
Jor e < eo, |v — x| < g9 and y(x — €) € Uy, ApNT.

Proof. Let € > 0 and z = y(x) € I'. Moreover, let us define z4 = y(z £ ¢). Let k be
the maximum index such that z € Ak and let k4 be the maximum index such that
ze € Ay .. Without loss of generality, we will prove the lemma for * < zg. Let us
proceed with some geometrical consideration.

F1GURE 1.4: A schematic representation of the setting of the proof of
Lemma 1.5.3.

Let L, denote the line passing through z and parallel to the segment ﬁk_. Due
to the definition of the angle a(z,¢), we can fix the line L, and bound |a(z,€)| by
the absolute value of the smallest angle Z([z_, z|, L,) that L, forms with the segment
[2_, z] plus the absolute value of the smallest angle Z([z, 24|, L,) that L, forms with
the segment [z, z¢].

If z belongs to Aj_, due to the properties of the ay_-patch, the arc y([z — ¢, 2])
is entirely contained in a cone of vertex z and aperture Z([z_, z], L). By elementary
geometric considerations, we can write

|£([2=, 2], L2)| < ay_. (1.5.14)

Again, due to few geometric observations (that are not substantial for the sequel and
we decide to omit in order to make the proof more concise) and to the way I is defined,
it is not difficult to see that

|Z([24, 2], Lz) | < 20y_. (1.5.15)

We are left to consider the case z ¢ Aj_. As we observed in Lemma 1.5.2, in this case
we have |2_ — 2| > Ly_41/4. Moreover, [J;2; ,; A; NT is contained in a rectangle

whose base lays on ﬁkf, whose length is smaller than, say, 5L;_11/3 and with height
hi_ 41 (for its definition we refer to (1.5.8) in Lemma 1.5.2). We recall that

hy

Lj—)Oforj—>oo.
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Now observe that z; € U]oik, /NXj NT'. For every point z in this rectangle, using that
|z — z4| 2 Lg_41, it holds that

|£([2=, 2], L2)| S cu_ (1.5.16)

and
1Z([2,24], L) S ae_. (1.5.17)

Joining (1.5.14),(1.5.15),(1.5.16) and (1.5.17), we get
la(z,e)| S .

Then, by the construction of I' and the definition of Ly,, Ly,+1/Lm < 1/2 for every
m, that by iteration leads to
L, <27™,

Now, if y(z —¢) € Ay, for k_ big enough, we have that ¢ < Lj_ so that
k- 2 |loge|

for £ small enough. So, gathering all the considerations and recalling that oy, = 1/k_,
we get the desired result. O

Lemma 1.5.4. There exists €1 > 0 such that the inequality (1.5.13) holds for e < e;.

Proof. Let us consider 21,29 € I'. Let k1 be the maximum index such that z; € JN\kl
and ko the maximum index such that z9 € ]sz. Without loss of generality, k1 < ko
and 771(21) <y 7Y(2). The idea is to prove that C-! is greater than a quantity which
approximates cos oy, . It is convenient to split the study into different cases.

If ki = ko and 7' (22) < T or kg =k; + 1 and 2z € fle, then (1.5.2) gives

|21 — 22| > cos ay, (21, 22).

If k1 = k9 and 'y*l(zg) >Torky=ki+1and z € ﬁ/k1+17 then we can write

Ry,
|21 — 22| > cosay, (£(21,22) — Riy41) = (cos Qg — COS O, 1t )E(zl,zg)
l(Zl,ZQ)

and we recall that

Rkl-‘rl < Rkl-l-l

—0 for k1 — oo.
6(2’1722) ~ Lk1+1 !

In the remaining cases, we know from the proof of Lemma 1.5.2 that
Pk, 1 Ry 1
21— % ><cosa — COS Q) ——— — CcOS ;yz,z ,
|21 — 22| > k1 K 0o, 22) ki ] (21, 22)

8o that, using the same argument as at the end of the proof of Lemma 1.5.3 together
with the Taylor expansion for the cosine, the proof is completed. O

The two previous lemmas show that the arc-length parametrization v of I' is such
that the estimate

C:f(2) S M*(Cf)(2)
holds for every z € I.
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Final remarks on the curve I

The curve I' that we studied in this section can be considered as an example of a critical
curve for which the main theorem holds. Indeed, another look at the estimates we
got tells that most of those concerning the geometry of the curve are close to being
sharp. Moreover, the finite second difference |y(x+¢)+7(z —e) —2y(x)| has the right
decay we need; the choice of a slower decay for the angles a; causes worse estimates
for |a(x, )| and, hence, the finite second difference estimate to fail. Let us notice that
the spiraling of I' close to the point 2y also gives an idea of how the critical curves
may look like.

Asymptotically smooth curves that are not C! may also be defined by means of
complex analysis (exploiting, for example, the results in [Pom78]) but we found a
constructive approach more convenient to our purposes.
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Chapter 2

Measures that define a compact
Cauchy transform

2.1 Introduction

In what follows we will identify the plane with the complex field C. Let p be a positive
Radon measure on C with compact support and without atoms. Fore > 0, f € L} ()

and z € C we set
Cuef(z :——/ dp(w).
a ( ) |z—w|>e < w ( )

We define the Cauchy transform operator C, in a principal value sense, i.e., as the
limit

Cuf(z) = ig% Cucf(2)

for every z such that the above limit exists. We say that the Cauchy transform is
bounded from L?(u) to L?*(p) if the truncated operators C,.: L*(u) — L*(u) are
bounded uniformly in €.

As a consequence of the work of Mattila and Verdera (see [MV09] or the book by
Tolsa [Tol14, Chapter 8]), the Cauchy transform is bounded from L?(u1) to L?(y) if and
only if the truncated operators {C, .} converge as € tends to 0 in the weak operator
topology of the space of bounded linear operators from L?(u) to L?(u). Moreover,
if we denote as C; the limit of the aforementioned net, for all f € L?(p) and for p-
almost every z, the principal value C, f(z) exists and it coincides with Cif (z). This is
a peculiarity of the Cauchy transform and it does not hold for every singular integral
operator. Now, it makes sense to introduce the following definition.

Definition 2.1.1. We say that the Cauchy transform is compact from L?(u) to L? ()
if it is bounded in L?(x) and C,/ is compact as an operator from L?(p) to L?(p).

As a consequence of the results we cited, one may replace C;; in Definition 2.1.1
with the principal value C,,. A useful tool to study the Cauchy transform of a measure
w is the so-called Menger curvature c(u), that was first related to the Cauchy transform
in [Mel95] and [MV95]. Denoting by R(z,w, () the radius of the circumference passing
though z,w and ¢, and defining

46 = || Frme e,

the Menger curvature of p is defined as

Ap) = /ci(z)d,u(z). (2.1.1)
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Let d,n € N with n < d. Given a cube Q in R?, we denote by £(Q) its side length and

by
n HQ)
0%(Q) = 2.1.2
HQ) =t (212)
its n-dimensional density. If z € R%, we define the upper density of i at z as
0,7 (2) = limsup ©,(Q), (2.1.3)

£(Q)—0

where () spans over the cubes centered at z. Replacing the superior limit with the
inferior limit we get the definition of the lower density ©7 ,(2). If ©,7(z) = 7 ,(2),
we denote that common value as ©}(z) and call it “density of x at the point 2". In
the case d = 2 and n = 1, for brevity we write ©,(Q) = @}L(Q) and we omit the
index n from the notation for the upper and lower densities at any point.

The aim of the present work is to characterize the measures p on the plane such
that its associated Cauchy transform defines a compact operator from L?(u) into
L?(p). Not much literature is available concerning compactness for singular integral
operators in the context of Euclidean spaces equipped with a measure different from
the Lebesgue measure. We point out that a 7'(1)-like criterion for the compactness
of Calderén-Zygmund operators in Euclidean spaces is available due to the work of
Villarroya |Vil15].

We denote by K (L?(u), L?(1)) the space of compact linear operators from L?(p)
to L%(n). We will see that a crucial condition to get a compact Cauchy transform is

to require that
©,(2) =0

for every z € C. Our main result is the following.

Theorem 2.1. Let p be a compactly supported positive Radon measure on C without
atoms. The following conditions are equivalent:
(a) C, is compact from L*(p) to L*(u).
(b) the two following properties hold:
(1) ©;,(2) = 0 uniformly, which means that the limit in (2.1.3) is O uniformly
i z € C.
(2) A(plo)/m(Q) — 0 as £(Q) — 0, where p|g stands for the restriction of p
to the cube Q.
(c) the truncated operators C, . converge as e — 0 in the operator norm of the space
of bounded linear operators from L?(u) to L?(p).

We remark that the proof of the theorem relies on the 7'(1)-theorem for the Cauchy
transform (see [Toll14]) and that one could replace the cubes with balls in condition
(b), as well as in (2.1.2).

Theorem 2.1 can be generalized to higher dimensions taking into consideration the
n-Riesz transform R}, on R? for n < d in place of the Cauchy transform. If x is a
compactly supported positive Radon measure on R? without atoms, € > 0, f € L} (w)
and z € R?, the truncated Riesz transform is defined as

r—y
Rﬁﬁf(z) = / ﬁf(y)dﬂ(y)'
|z—w|>e |'T - y|
As in the case of the Cauchy transform, thanks again to the result in [MV09]|, the
weak limit R of R}, . as € — 0 exists provided the R} . are uniformly bounded on
L?(p), and we can understand the compactness of the Riesz transform as in Definition
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2.1.1. The main difference with the Cauchy transform is that the only case in which
boundedness is known to imply that the principal value exists is for n = d — 1. This
is a consequence of [NTV14al.

In this more general context, Theorem 2.1 reads as follows.

Theorem 2.2. Let ju be a compactly supported positive Radon measure on R® without
atoms. The following conditions are equivalent:
(a) R}, is compact from L2(p) to L*(p).
(b) the two following properties hold:
(1) @Z_l’*(z) = 0 uniformly in z € R%.
() IRixQl 21100 /H(Q) = 0 a5 Q) — 0.

(c) the truncated operators R}, - converge as e — 0 in the operator norm of the space

of bounded linear operators from L?(u) to L?(u).

Theorem 2.2 can be proved with minor changes of the proof that we will discuss
for the case of the Cauchy transform. Combining condition (b) in Theorem 2.2 with
[MV09, Theorem 1.6], we can infer that if R}, is compact then the principal value
R} () exists for py-almost every .

The work is structured as follows. In Section 2.2 we deal with two toy models:
first we show a direct proof of the non-compactness of the Cauchy transform of the
one dimensional Lebesgue measure on a segment. Then, we prove that the Cauchy
transform of a disc endowed with the planar Lebesgue measure is compact. We remark
that these two cases may be seen as direct consequences of Theorem 2.1 and they do
not enter its proof, at least directly. However, we think that studying them separately
may serve as a further motivation of the main theorem and it may help the reader in
understanding the reason why we drove our attention to conditions on the density of
the measure. In Section 2.3 we prove Theorem 2.1. As an application of this result,
Section 2.4 is devoted to the discussion of the case of the general planar Cantor sets.
We conclude the exposition with a remark on the generalization of the main theorem
to other singular integral operators.

2.2 The Cauchy transform on a segment and on the disc

It may be worth recalling the following property of compact operators: if X and Y are
Banach spaces, T: X — Y is a compact operator and {uy}x is a sequence in X such
that ur — u for some u € X (weak convergence), then Tuy — T (strongly) in Y. We
will use this property both for the proof of the following proposition and for the proof
of the main theorem. Let us start by considering the Cauchy transform on a segment.
Given an interval I on the real line, we denote by H' the 1-dimensional Hausdorff
measure and use the notation L2(I) := L? (7—[1](“{0})). Without loss of generality, we
analyze the case I = [0, 1].

Proposition 2.2.1. Let = Hl\([071}x{0}). The Cauchy transform C,, is not a compact
operator from L?(p) into L?(p).

Proof. Let C,, be the Cauchy transform of the measure p = H1|([071]X{0}), acting on
functions belonging to L?([0, 1]).
For k € N, let us define the function fr: R — R as

fr(z) = 2(k=1)/2 (X[1/2—27k,1/2] (z) — X[1/2,1/2+27k](1‘))~
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Notice that kaHLz( 0,1)) = [Ifellz2ry = 1 and that {fy}x converges to 0 in the weak
topology of L?([0,1]). However, {fi}, does not converge in the strong topology of
L2([0,1]).

Let us denote by H fj, the Hilbert transform of f

fe(y) dy

Hfy(x) =p.v —

for x € R. We claim that H f; does not converge to 0 in the strong topology of
L%([0,1]). Hence C, = H is not compact in L?(u).
A well known fact regarding Hilbert transform (see e.g. [Ste70]) is that

||HfHL2(R) = 7T||f||L2(]R<)

for every f € L*(R).

The following argument proves that ||Cp fk |l z2(j0,1)) = [|1H fkll£2(j0,17) tends to m for
k — oo.

It is enough to show that

1H fiell3o gy =0 for k= o0 (2.2.1)

and
1H fill 2o o0y =0 for k= oo (2.2.2)

To prove (2.2.1), first notice that for y € supp fx and = > 1, it holds that |z — y| >
|z — 3/4|. Then

1Al 0y = | ) /. e Doy
1 1/2+2 k 9
< (/ Je()ldy ) dx
/1 ([, 1w )
+00 1
S 2—k‘+1/ 72(11, S 2—l€’
1 e =3

which gives (2.2.1). The proof of (2.2.2) is analogous. O

Now we turn to analyze the Cauchy transform on the disc. Let D := D(0,1) =
{z € C:|z| <1} and let € > 0. Let u = dA be the 2-dimensional Lebesgue measure
restricted to D.

Lemma 2.2.1. The operator C,,.: L*(dA) — L*(dA) is compact for every e > 0.

Proof. Let z,w € Cand let K.(z,w) = Xp(z,¢)c(w)/(2 — w). By the Hilbert-Schmidt’s
Theorem (see [Brell, Theorem 6.12]), to prove the lemma it is enough to show that
the integral

/ K. (2 w) PdA(2)
D

converges. This occurs because

v
/D K. (zw)PdA(z) < 22V _ T

so the proof is complete. O
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For f € L?(dA) let us define

CZf(Z) = uf(z) - Cu,af(z)'

By Lemma 2.2.1, to prove that C,, belongs to K(L?(dA), L?>(dA)) it suffices to prove
that [|C;|lr2(44)—r2(aa) — 0 as € — 0. Indeed, this implies that {Cyc}c>0 converges
in operator norm to the Cauchy transform, which proves that it is compact.

For f € L?(dA), a direct computation using polar coordinates gives

/|ce J2dA(= /M o dA( ) aA(2)

_ o —i0 i i 2
/D’/O /0 e f(z+re”)xp(z+re”)drdd| dA(z)
2r  pe
i0 i0y|2
<[] [ 1 et e Pardsaace

< 2me| fllZ2 ()

where in the last inequality we used Fubini’s Theorem. Hence

ICS f Il r2(aay—r2(aa) < (2me)'2,

so C, € K(L*(dA), L*(dA)).
Remark 3. The integral

/ —dA(z) (2.2.3)
B(0,1) 2|

plays a crucial role in the proof of the compactness of the Cauchy transform of a
disc. When focusing on the general case in which dA is replaced by a measure pu,
one may be tempted to guess that we need a density condition which gives that the
analogue of (2.2.3) converges. This drives our attention to measures with zero linear
density, which we will prove to be a necessary condition for the Cauchy transform to
be compact.

2.3 The proof of Theorem 2.1

2.3.1 Necessary conditions for the compactness.

In order to prove the necessity of the conditions in Theorem 2.1, we argue by contra-
diction: assuming that there exists a sequence of cubes {Q;}; such that £(Q;) — 0
but lim sup @}L(Qj) > 0, we will prove that the Cauchy transform does not define a
compact operator on L?(u).

We recall that a necessary condition to have the L?(u)-boundedness of C,, is that
p has linear growth (see [Dav91]). In particular we choose to denote by Cj a positive
constant such that

Q) < Col(Q) (2.3.1)

for every cube in R2.
Suppose that we can find © > 0 and a sequence of cubes {Q;}; with £(Q;) — 0
such that

lim sup @L(Qj) =
J



42 Chapter 2. Measures that define a compact Cauchy transform

In particular, for every § > 0 we can find a cube @ with ¢(Q) < § such that

0l(Q) > 2

> < (2.3.2)

This cube contains two disjoint cubes with the properties stated in the following
lemma. The proof of the lemma is a variant of the one in [L.ég99, Lemma 2.3].

Lemma 2.3.1. Let Q be a cube of side length £(Q) such that @i(Q) > ©/2. There
exist C1,C1 € N, both greater than 1 and depending on © and Cy, such that we can
find two cubes Q' and Q" with side lengths £(Q') = £(Q") = £(Q)/Cy and with the

following properties

1. 4(Q") < dist(Q', Q") < C1l(Q").

2. min(pu(Q'), n(Q")) = £(Q)/C1 .

For example, one can choose O and O] as C1 = 12C,0~! and C}] = 123C2073.
In particular we remark that C1 and C] are independent on ¢(Q).

Proof. Let us argue by contradiction. We split Q into a grid of C? equal cubes of side
length £(Q)/C1 whose sides are parallel to the sides of @); we denote this collection of
cubes as D. Let us assume that each couple of cubes Q', Q" € D, is such that either

they touch (so that dist(Q’, Q") = 0) or min(u(Q"), u(Q")) < 4(Q)/C4.
By construction we have that

> (@) = u(@Q) = 0(QNUQ). (2.3.3)
QeD

Now let us consider the family

Q) }

G={QeD:n@) > G

By hypothesis, all the cubes in G must be contained in a single cube of side length
30(Q)/Cy that we denote as P. The growth condition (2.3.1) gives

u(P) < Col(P) = 3Cot(Q)/Ch,

so that o
> ul@) <3224(Q). (2.3.4)

£ Ch
Qeg

For those cubes of D not belonging to G we can write

Y u@) < Q). (2.3.5)

QeD\G

By hypothesis we have that ©(Q) > ©/2. Then, gathering (2.3.3), (2.3.4) and (2.3.5)
we get the inequality

Z14320> 2 (2.3.6)

Choosing C;1 and C] big enough, (2.3.6) gives a contradiction. A possible choice is
the one reported below the statement of the lemma. O

Remark 4. Choose C; and C] as specified after Lemma 2.3.1. Using the linear growth
of the measure p, the condition (2) of Lemma 2.3.1 actually implies that Q" and Q"
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are such that

(130 ) 1@ < n(@) < (@) (23.7)

and O \3 12CH\ 3
n < " « ( 0> .
(1) M@ < @) < (75°) w@)
The same inequalities hold reversing the roles of Q" and @”, so that u(Q’), u(Q") and
w(Q) are all comparable with implicit constants depending on Cj and ©.

As we have already pointed out, the values of C and C] do not depend on 4(Q).
So, we can apply Lemma 2.3.1 to cubes @ with £(Q) < ¢ that verify (2.3.2) and, for
every > 0, we can find a couple of cubes as in the lemma. In particular, notice that
Q") =4(Q") — 0 for § — 0. This will lead to a contradiction

Given a cube P, we define the function ¢ p = xp/u(P)"/?. We have that lepllp2 =
1 for every cube P and that

pQ; — 0

weakly in L?(u) for every sequence of cubes {Q;}; such that ¢(Q;) — 0
Now, taking @, Q" and Q" as in Lemma 2.3.1, we can write

[(Crpqrs el < NICueq 2l lL2(wy = ICupqr Il L2 (- (2.3.8)

The proof of the necessity of the density condition of Theorem 2.1 follows from (2.3.8)
if we can prove that [(C.pq/,pqgr)| is bounded from below by a positive constant
which does not depend on £(Q'); indeed, this would imply that ||C.pq |2, does
not converge to 0 for £(Q’) — 0, which contradicts the compactness of the Cauchy
transform.

Lemma 2.3.2. Let Q, Q' and Q" be as in Lemma 2.3.1. There exists a constant
¢ > 0, which depends only on © and Cy, such that

Q)
0Q’)

Proof. Suppose without loss of generality that the centers of the cubes Q' and Q" are
aligned with the real axis. Since Q' and Q" are contained in (Q we have that

1
‘ Re<ctgleﬂ SOQ”H = ‘ Re<C XQ'» XQ//>
| (@) 10

1
>7R€CL ’ ).
_M(Q)‘ (;XQ XQ)

Suppose that Re(z — w) > 0 for every z € Q" and w € Q’. Then

| Re(Cuxqrs x@r)| = ‘Re / CMXQ/(Z)d:u(Z)‘

/u/, |z_w|2 dp(w)dpu(z).

Lemma 2.3.1 ensures that, if 2 € Q" and w € @', we have that Re(z — w) >

dist(Q', Q") = £(Q') and

(2.3.11)

2 — w| < 20Q") + 20(Q") + 2 dist(Q', Q") < 4(1 v %)E(Q )



44 Chapter 2. Measures that define a compact Cauchy transform

so that, using (2.3.10), (2.3.11) and (2.3.7) we have

1L (@)@
R '’ XQr

1(Q)?
0Q’)’

> ¢(©, Cp) (2.3.12)

where ¢ = ¢(0,Cy) = ©%(12C))~5(40 + 24Cy)~2. The Lemma follows from (2.3.12)
and (2.3.10). O

The inequality (2.3.9) together with the condition (2) in Lemma 2.3.1 implies

C@,CO
(Cuparpgn 2 L0,
1

which is the bound from below we are looking for.
The following lemma gives other necessary conditions for the Cauchy transform of
a measure to be compact.

Lemma 2.3.3. Let i be a compactly supported positive Radon measure on C without
atoms. Suppose that C,, defines a compact operator from L*(u) to L*(u). Then

||CMXQH%2(MQ)

Q) as 0Q)—0 (2.3.13)
and 2(410)
*(ulg

@) —0 as Q) — 0. (2.3.14)

Proof. Let us first prove (2.3.13). Consider a sequence of cubes {Q;}; such that
(Q;) — 0 as j — oo. As before, if we define ¢; = XQ],/M(Q]-)I/Q, we have that

@i —0

weakly in L?(u). Then, since we suppose the Cauchy transform to be compact, we
have that

1241172,y — O

for j — oo. The inequalities
2
HCMXQJ-H%%M\QJ,) < HCMXQ,-H%%M) < M(QJ)HCAL%HL%M),

conclude the proof of (2.3.13).
Let @ be an arbitrary cube in R%. From a formula due to Tolsa and Verdera (see
[TV18b], Theorem 2) applied to the measure p|g, we have that

2 sl PYECY L2 2.3.15
10Xl 1) = 5 w1 + 5 rka) 23.15)

Since we suppose C,, to be compact, we proved that 0,(z) = 0 for every z € R?, so
that the integral in the right hand side of (2.3.15) vanishes and, using (2.3.13), we get
(2.3.14). O

2.3.2 Sufficient conditions for the compactness.

The proof that we present now relies on the T'(1)-theorem of David and Journe. More
specifically, we prove that proper truncates of the Cauchy transform are compact
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operators and, then, we estimate the operator norm of the difference between C and
those truncates.

Let p be a positive Radon measure with compact support in C. Let z € suppp
and let @, be a square containing the support of p and centered at z. Let £(Q.)
denote its side length. For j € N we denote as Q;(z) the square centered at z and
with side-length 277¢(Q.). Moreover, we define

Aj(z) = Qj(2) \ Qjt+1(2).

Exploiting Hilbert-Schmidt’s Theorem, a proof analogous to the one of Lemma 2.2.1
shows that the truncated operator

1= [ )

jz) # W

is a compact operator from L?(u) to L?(u). Let us define

N-1

Ci' f(w) =) T;f(w)

J=0

and show that, under the hypothesis on the measure reported in the statement of
Theorem 2.1, it converges in the L? (1) —L?(p) operator norm to the Cauchy transform.
This will prove that C, € K(L?(u), L*(p)).

The kernel of C,, — Cévfl is localized, so in order to estimate the L?(u)-norm of
this operator it suffices to apply the T'(1)-Theorem (see [Toll4, Chapter 3|) to testing
cubes contained in Qu(z) with z € supp(u). More precisely, we can write

~ 1Cx5ll L2 (ul5)
ICy = CY  Mr2gy—sr2y S sup sup O(Q)+ sup  sup ~—1/2Q
ZESUDP 1 Gy (2) Esupp i Gy (x) Q)
=Iy+11y.
(2.3.16)

First, Iy — 0 as N — oo by the hypothesis (2) of Theorem 2.1 on the density of u.
To show that IIy — 0 as N — oo, it suffices to recall formula (2.3.15), which
yields
2 2
€22y < i)

The ratio cQ(MIQ)/u(Q) has the correct behavior due to the condition (2) of Theorem
2.1. This concludes the proof of the equivalence of the conditions (a) and (b). In

order to complete the proof of the theorem, it suffices to observe that the equivalence
of (b) and (c) follows from (2.3.16).

2.4 An example: a generalized planar Cantor set

As an application of Theorem 2.1 we analyze the particular case of the planar Cantor
sets (see e.g. [Gar72, p. 87]). Let Q¥ := [0, 1]? be the unit square and let \ :== {\,}°;
be a sequence of non-negative numbers such that 0 < \,, < 1/2 for every n = 1,2,.. ..
The Cantor set is defined by means of an inductive construction:
e define 4 squares {Q} }?:1 of side length A1 such that each one of them contains
a distinct vertex of Qg and call Eq := U?:1Q%-
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e iterate the first step for each of the 4 cubes but using A2 as a scaling factor.
As a result we get 2* = 16 squares of side length o9 = A;\2. We denote those
squares as {Q?}] Then, define the second-step approximation of the Cantor set
as Fy = UJZ;Q?.

e as a result of n analogous iterations, at the n-th step we get a collection of 4™
cubes {Q;‘}j whose side length is oy, := H?Zl Aj and a set Ey, = U;’filQ;L.

The planar Cantor set is defined as

E=EQ) = ﬁ E,.
n=1

We denote by p the canonical probability measure associated with E(\). In particular,
p is uniquely identified by imposing that p(Q)) = 4™ for every square that composes
E,. We denote by C, the Cauchy transform associated with the measure p.

Let 0y == 4"%,;1. It is known (see e.g. |Toll4|, Lemma 4.29) that for the proba-
bility measure on the Cantor set, it holds that

cz(a:) 2 Z 67
k=0

for every x € E()).

As a consequence of Theorem 2.1, C, is compact from L?(p) to L?(p) if and only
if >0, 02 converges. This condition holds if and only if C, is bounded from L?(p) to
L%(p) (see [MTV03]).

2.5 A counterexample to Theorem 2.1 for other kernels

A natural question is to ask if any analogue of Theorem 2.1 holds also for other
singular integral operators of the form

Tf(z) = /C K (2, w) f(w)dp(w),

where K is a kernel in a proper class and the singular integral operator has to be
understood in the usual sense. For a kernel good enough so that the T(1)-theorem
applies, similar considerations as the ones for the sufficiency in the proof of Theorem
2.1 apply. In particular, in order to have T is compact from L?(u) to L?(u) it suffices
to require

1. ©}(2) =0 for every z € C.

2. HTXQH%Q(M'Q)//L(Q) —0as ¢(Q) — 0.

3. HT*XQ”%z(MQ)/:U(Q) — 0 as E(Q) — 0.
However, these conditions turn out not to be necessary even in easy cases. An im-

mediate example that shows that the density condition (1) is not necessary is the

operator with kernel
Im(z — w)
K s
() = T
and the measure p = 7-[1\((071)”0}).

This operator (trivially) belongs to K (L?(u), L?(1)) even though p has positive
linear density at each point of (0,1) x {0}.



47

Chapter 3

L?-boundedness of Gradients of
Single Layer Potentials and
Uniform Rectifiability

3.1 Introduction

The purpose of this chapter is to extend the solution of the codimension 1 David-
Semmes problem for the Riesz transform to operators defined by gradients of single
layer potentials associated with elliptic PDE’s in divergence form with Hélder contin-
uous coefficients. The single layer potential and its gradient play an important role
in the solvability of this type of equations and also in the study of the corresponding
elliptic measure. Recall that the David-Semmes problem deals with the connection
between the Riesz transforms and rectifiability. This was solved in 1996 for the 1-
dimensional Riesz transform (or equivalently, for the Cauchy transform) by Mattila,
Melnikov and Verdera in [MMV96] by using the connection between Menger curva-
ture and the Cauchy kernel. The case of codimension 1 was solved more recentely by
Nazarov, Tolsa and Volberg in [NTV14a] by different methods, relying on the har-
monicity of the codimension 1 Riesz kernel. The David-Semmes problem is still open
in the remaining dimensions n € [2,d — 2] in R%.

Given a Borel measure z in R? (from now on we assume all measures to be Borel
in the present chapter), recall that its n-dimensional Riesz transform is defined by

n r—y
R'u(z) = / P du(y),

whenever the integral makes sense. Also, for a function f € Llloc(,u)7 we write
Rpf(x) =R™(fu)(x).

The n-dimensional Hausdorff measure is denoted by H". A set E C R? is called
n-rectifiable if there are Lipschitz maps f; : R* — R%, i =1,2,..., such that

W (E U fi(R")) —0.

A set F is called purely n-unrectifiable if H"(F N E) = 0 for every n-rectifiable set
E. As for sets, one can define a notion of rectifiabilty also for measures: a measure
1 is said to be n-rectifiable if it vanishes outside an n-rectifiable set £ C R? and,
moreover, it is absolutely continuous with respect to H"|g.

In most of this work we deal with measures that present a certain degree of regu-
larity. A measure y in R? is called n-AD-regular (or just AD-regular or Ahlfors-David
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regular) if there exists some constant Cy > 0 such that
Cytr™ < u(B(z,7)) < Cor™  for all z € supp(p) and 0 < r < diam(supp(p)).

A set E C R? is n-AD-regular if the measure H"|g is n-AD-regular.

The set E is called uniformly n-rectifiable if it is n-AD-regular and there exist
6, M > 0 such that for all x € E and all r > 0 there is a Lipschitz mapping g from
the ball B,(0,7) in R” to R? with Lip(g) < M such that

H"(E N B(x,r)Ng(Bn(0,7))) > 0r".

A measure p is called uniformly n-rectifiable if it is n-AD-regular and its support is
uniformly n-rectifiable.

It is easy to check that if a set (or a measure) is uniformly n-rectifiable, then it is
also n-rectifiable. The converse implication is false. In fact, uniform n-rectifiability is
a quantitative version of the notion of n-rectifiability introduced by David and Semmes
[DS93]. One of their motivations to introduce this notion was the desire to find a good
framework where one can study the L?(x) boundedness of singular integral operators.
Indeed, they showed that if p is n-AD-regular, the fact that p is uniformly n-rectifiable
is equivalent to the L?(u)-boundedness of a sufficiently big class of singular integral
operators with an odd and smooth enough Calderén-Zygmund kernel. In particular,
if p is uniformly n-rectifiable, then the n-dimensional Riesz transform R, is bounded
in L2(p).

The David-Semmes problem consists in proving that the converse statement holds.
That is, that under the background assumption of n-AD-regularity on the measure p,
the L?(11) boundedness of the Riesz transform R}, implies the uniform n-rectifiability
of p. As mentioned above, the answer is only known (and positive) in the cases n = 1
and n = d — 1 in R%, by [MMV96] and [NTV14a], respectively.

The solution of the David-Semmes problem has had important applications to the
solution of other relevant questions. In the dimension 1 case in the plane, this has
played an essential role in the geometric characterization of removable singularities for
bounded analytic functions, and in particular in the solution of Vitushkin’s conjecture
for sets with finite length by David [Dav98]. In the codimension 1 case, the analogous
result involving the removable singularities for Lipschitz harmonic functions has been
solved in [NTV14b]. Other remarkable applications of the solution of the David-
Semmes problem in codimension 1 deal with the metric and geometric properties of
harmonic measure. In particular, this is a key ingredient in the recent solution of two
problems about harmonic measure raised by Christopher Bishop in the early 1990’s
[Bis92]. The first one is the fact that the mutual absolute continuity of harmonic
measure for an open set 0 C R*T! with respect to the surface measure H" in a subset
of 0€) implies the rectifiability of that subset [Azz+16c|. The second one is the solution
of the so called two-phase problem in the works [AMT17b] and [Azz+16d].

The results just mentioned also make sense for solutions of elliptic equations and
for the elliptic measure. So in view of potential applications, it is natural to try
to extend the solution of the David-Semmes problem to gradients of singular layer
potentials, which are the analogues of the Riesz transform in the context of elliptic
PDFE’s.

Next we introduce the precise ellipic PDE’s in which we are interested. Let
A = (aij)1<ij<n+1 be an (n 4+ 1) x (n + 1) matrix whose entries a;;: R"™' — R
are measurable functions in L (R"*!). Assume also that there exists A > 0 such
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that

ATYEP < (A(x)€,€),  for all € € R"! and ae. 2 € R (3.1.1)
(A(x)€,m) < Al¢]ln|, for all &, n € R*! and a.e. x € R*HL.

We consider the elliptic equation
Lyu(x) = —div (A(-)Vu(+)) (z) =0, (3.1.3)

which should be understood in the distributional sense. We say that a function u €

VVJDCQ(Q) is a solution of (4.1.3) or L-harmonic in an open set  C R+ if

/AVU Ve =0, forall peC> Q).

We denote by E4(z,y), or just by £(x,y) when the matrix A is clear from the
context, the fundamental solution for Ly in R"™! so that La€a(-,y) = &, in the
distributional sense, where d, is the Dirac mass at the point y € R"*1. For a con-
struction of the fundamental solution under the assumption (4.1.1) and (4.1.2) on the
matrix A we refer to [HK07]. For a measure p, the function f(z) = [Ea(z,y) du(y)
is usually known as the single layer potential of pn. We consider the singular integral
operator 1" whose kernel is

K(l’,y) = vlgA(xay) (314)

(the subscript 1 means that we take the gradient with respect to the first variable),
so that

Tia) = [ K(a,) duty) (3.15)

when z is away from supp(p). That is, T'u is the gradient of the single layer potential
of u.

Given a function f € L}

loc(1t), We set also

T, f(x) = T(f p)(x) = / K (2, y) () d(y), (3.1.6)

and, for € > 0, we consider the e-truncated version
o) = [ K@w)daw).
|lz—y|>e

We also write T}, . f(z) = T-(fu)(x). We say that the operator T}, is bounded in L?(u)
if the operators 7}, . are bounded in L?(x) uniformly on & > 0.

In the special case when A is the identity matrix, —L 4 is the Laplacian and T
is the n-dimensional Riesz transform up to a constant factor depending only on the
dimension n.

Without any hypothesis on the smoothness of the coefficients of the matrix A,
one cannot expect the kernel K(-,-) in (4.1.4) to be of Calderén-Zygmund type, and
thus we need to impose some regularity condition on A. We say that the matrix A is
Holder continuous with exponent « (or briefly C* continuous), if there exists a > 0
and Cj, > 0 such that

laij(z) — aij(y)| < Cplz —y|* forall z,y e R"and 1 <i,j<n+1. (3.1.7)

Under this assumption on the coefficients, the kernel K(-,-) turns out to be locally
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of Calderon-Zygmund type (see Lemma 4.2.1 for more details). However, we remark
that in general K(-,-) is neither homogeneous (of degree —n) nor antisymmetric (even
locally).

Our main result is the following.

Theorem 3.1. Let i be a compactly supported n-AD-reqular measure in R, Let A
be an elliptic matriz satisfying (4.1.1), (4.1.2) and (4.1.5), and let T}, be the associated
operator given by (4.1). The operator T}, is bounded in L?(w) if and only if u is
uniformly n-rectifiable.

The assumption that p is compactly supported in the theorem above is necessary
and it is due to the fact that the C“ continuity of the matrix A is a property which
is not scale invariant. We also remark that it is already known that T}, is bounded in
L?(p) if p is uniformly n-rectifiable (see Theorem 2.5 from [CMT19]). Our contribu-
tion is the converse statement.

Theorem 3.1 should be compared to a recent result obtained by Conde-Alonso,
Mourgoglou and Tolsa in [CMT19], which in a sense complements our theorem. The
precise result is the following.

Theorem 3.2 ([CMT19]). Let uu be a non-zero Borel measure in R"1. Let A be
an elliptic matriz satisfying (4.1.1), (4.1.2) and (4.1.5), and let T, be the associated

operator. Suppose that the upper density lim sup,._, % is positive pi-a.e. in R"1,
and the lower density liminf, g % vanishes p-a.e. in R, Then 1), is not

bounded in L?(i).

Notice that, in the case p = H"|g, the assumptions on the upper and lower
densities in the theorem above imply that E is purely n-unrectifiable. This theorem
extends an analogous result proved previously by Eiderman, Nazarov and Volberg
[ENV14] for the n-dimensional Riesz transform.

Our proof of Theorem 3.1 follows the same scheme as the proof of the corresponding
result for the Riesz transform in [NTV14a]. In particular, it also relies on a variational
argument which uses the fact that L4-harmonic functions satisfy a maximum princi-
ple. It also uses the so-called BAUP criterion of David and Semmes [DS93, p. 139].
However, there are some important differences between our arguments and the ones
in [NTV14a]. An important one is that we use a martingale difference decomposition
in terms of the David-Semmes lattice, instead of the quasiorthogonality arguments in
[NTV14a]. We think that using a martingale decomposition makes the whole con-
struction much more transparent. Further, the quasiorthogonality arguments seem to
require the antisymmetry of the kernel, which does not hold in our case. On the other
hand, the fact that the matrix A is non-constant makes our arguments and estimates
more involved and technical. For example, the reflection trick required to apply later
the variational argument is more delicate, as well as the approximation techniques
used to transfer estimates among different measures (see Section 3.8 below). The
reader can find the scheme of the proof of Theorem 3.1 at the end of Section ?7.

By combining Theorem 3.1 and Theorem A from [CMT19], we are also able to
derive the following rectifiability result for general sets.

Theorem 3.3. Let E C R"™! be a compact set with H"(E) < co. Let A and T be as
in Theorem 3.1. If Tyn|,, is bounded in L*>(H"|g), then E is n-rectifiable.

The analogous result in case that A is the identity and 7' is the n-dimensional Riesz
transform (modulo some constant factor) has been proved in [NTV14b|. Theorem
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3.3 is proved almost in the same way as in [NTV14b|: by an argument inspired by
a covering theorem of Pajot, one decomposes p = H"|g into a measure ug with
vanishing lower density and a countable collection of measures pg such that each py
can be extended to another n-AD-regular measure fi;, such that T, is bounded in
L?(fiy). Theorem A implies that pp = 0, and Theorem 3.1 implies that each measure
i is uniformly n-rectifiable. The only specific feature of the Riesz kernel that is used
in [NTV14b] is its antisymmetry. As mentioned above, we cannot ensure that the
kernel K(-,-) is anti®symmetric. However, this is not a problem in our case because
by Lemma 3.2.5 below it turns out that, for any measure p with growth of degree
n (see (3.2.1) for the definition), 7}, is bounded in L?(x) if and only if the operator

Tﬁa) associated with the antisymmetric part of K(-,-) is bounded in L?(p). Then, in

order to prove Theorem 3.3 we just apply the same arguments as in [NTV14b] to T,Ea)

instead of the n-dimensional Riesz transform.

An important application of Theorem 3.3 deals with elliptic measure. Given a
Wiener regular open set 0 C R™"! the elliptic measure (or L 4-harmonic measure)
for Q with pole at p € Q is the probability measure wﬁA supported on 9 such
that, for every f € Co(09), [ fdw], equals the value at p of the L4-harmonic
extension of f to Q. For a basic reference on elliptic measure, see [HMT92], and for
some additional background see [Azz+ 16a, Section 2.4|, for example. Analogously to
harmonic measure, the connection between the metric properties of elliptic measure
and the geometric properties of Q (in particular, the rectifiability of 9€) has been a
subject of intense investigation in the last years. See for example the works [Akm+17],
[Azz+16a], [Hof+15], [HMT10], [HMT], [Ken+16]. Our result in connection with
elliptic measure is the following.

Theorem 3.4. Let n > 2 and let A be an elliptic matriz satisfying (4.1.1), (4.1.2)
and (4.1.5). Let Q C R™™! be a bounded open connected Wiener regular set, let p € Q,
and let wzzA be the elliptic measure in (0 associated with L 4, with pole p. Suppose that
there exists a set E C 0Q such that 0 < H"(E) < oo and that the elliptic measure
wy |k is absolutely continuous with respect to H"|g. Then wi |k is n-rectifiable.

Remark that wiA] £ being n-rectifiable means that it is concentrated on an n-
rectifiable set and it is absolutely continuous with respect to H"|g. In the case of
—L 4 being the Laplacian and wy,, the harmonic measure, the same result has been
proved in [Azz+16¢|, and it can be considered as a kind of converse of the famous
Riesz brothers theorem on harmonic measure in planar simply connected domains.
The preceding result follows from Theorem 3.3 by essentially the same arguments as
the ones for harmonic measure in [Azz+16¢|. Nevertheless, for the reader’s convenience
the arguments are sketched in the final Section 3.12.

3.2 Preliminaries

3.2.1 General notation

We use the standard notation a < b if there is a fixed constant C' > 0 (depending on
other fixed parameters, such as the ambient dimension) such that a < Cb. To make
the dependence of the constant on a parameter ¢ explicit, we will also write a <; b.
We will also write b 2 a if a < b and a =~ b if both a < band b < a.

We use the notation B(z,r) for the open ball in R**! centered at x of radius r.
For a ball B = B(x,r) and a > 0 we write aB = B(x, ar) for the centered rescaling
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of the ball. For 0 < r < R, we denote by
A(z,r,R) ={yeR"™ :r < |z —y| < R}

the open annulus centered at x with radii r and R. Also, given ¢t > 0 and a set E, we
write

U(E) = {z € R" . dist(z, E) < t}

for the closed t-neighborhood of E.

Given a measure p, we write (-, -), for the scalar product in L?(u) and my, g f =
u(E)~! fE fdu for the p-average of a measurable function f on a set E.

We denote by AD(Cp, R?) the set of n-AD-regular measures on RY with constant
Co. We say that p has growth of degree n (or n-growth) if

u(B(z,r)) < Cr™ for all z € R*F1L, (3.2.1)

We denote the Lebesgue measure in R™*! by £7*1. Quite often we will also use the
standard notations dx or dy when integrating against this measure.
Given a matrix A(-) with variable coefficients, we denote by A”(-) its transpose.

3.2.2 David-Semmes dyadic cubes

In this section we collect some standard definitions and results that we need through-
out the rest of the chapter. Let us start by introducing a dyadic system of (so-called)
cubes associated with an AD-regular measure p. They were introduced by David (see
[Dav88], [Dav9l, Appendix 1] and also the work of Christ [Chr90]). We remark that
in the general case they are not euclidean cubes, so that in case of ambiguity we also
refer to them as David-Semmes cubes or p-cubes.

Definition 3.2.1 (David-Semmes lattice D,,). Let u € AD(Cp,R"™!). The David
and Semmes’ lattice D, associated with p is a countable disjoint union of families of
Borel sets, that we denote as D{;. The elements of DfL are called dyadic p-cubes (or
just cubes) of the j-th generation and satisfy the following properties:

1. DfL is a partition of supp p. This means that supp u = UQGD{L Qand QNQ' =2

for every Q,Q’ € D{L with Q # Q.
2. If Q € D), and Q' € D} for k > j, then either Q' C Q or QN Q' = 2.
3. For every k and @Q € D/’j we have

27F < diamQ < 27F

and
w@) ~ 27k

4. The cubes have thin boundary, i.e. there exist two constants C, vy > 0 depending
on Cy and the dimension n such that for every e > 0 and Q € ’Dﬁ we have

p{z € Q: dist(z,suppp \ Q) < 27F}

_ . (3.2.2)
+ iz € suppp\ Q: dist(x, Q) < 2277} < COu(Q).

5. For Q € Dﬁ there exists a point zg € Q, also called center of @, such that

dist(zq, suppp\ Q) 2 27"
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We need to associate a typical side length to each cube. For @ € Dﬁ, the natural

temptation is to define £(Q) := 27%. However, we have to take into account that a
cube may belong to Dﬂ ﬂDﬁ for some j # k. A solution to this problem is to think
about a cube as a couple (Q, k), so that the side length is now well defined. Bearing
this in mind, in what follows we decide to omit this occurrence and simply indicate a
cube by Q. We also associate the ball Bg = B(zg,¢(Q)) with Q.

For QQ € DZ, we denote by

Ch(Q) ={PeDi": Pcq@}

the family of children of Q.

3.2.3 [ and a-numbers

Let us consider a ball B = B(x,r) C R""! and a Radon measure x. For a hyperplane
L in R™! we set

L —
B, (B):= sup ———, L 1(B) = o .

dist(x, L) 1 dist(x, L
: faB) = o [ B g,
xrEsupp pNB r B

and taking the infimum over all the hyperplanes L in R"*!, we define
Bu(B) = inf B(B),  Bu1(B) :=inf 3,(B).
Let 1, v be two Radon measures on R"*!. We define the distance

dp(p,v) = Sl}lcp/fd(u —v),

where the supremum is taken over all 1-Lipschitz functions whose support is contained
in B. Given a hyperplane L, we define

1 . n
Oéﬁ(B) = mggdB(MaCH L)

and

au(B) = irLlf a{;(B),

where the infimum is taken over all hyperplanes.

For an n-AD-regular measure g and a ball B such that %B N supp u # &, the
following inequalities are standard (see [DS93, p. 27| and [Tol09]):

BB S BL1(3B) S a(2B).
Given a hyperplane H through the origin, we also denote

B(B) =mf ;(B),  oV(B) = inf agi(B),

where in both cases the infimum is taken over all hyperplanes L which are parallel to
H.
3.2.4 Carleson packing condition and Riesz families

The following are standard definitions.
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Definition 3.2.2 (Carleson packing condition). We say that 7 C D, is a Carleson
family if there exists a constant C' > 0 such that for every P € D,, we have

> uQ) < Cu(P).

QEF,QCP

Definition 3.2.3 (Riesz families and Riesz systems). Let {1q}qep, be a family of
functions in L?(u). We say that {¢g}gep, forms a Riesz family with constant C' > 0

if
‘ Y aqual|  <C Y ag

QeD, L2(w) QeD,
for any sequence {ag}¢g of real numbers with finitely many non-zero terms. The family
{¥q}qep, of sets of functions is said to be a Riesz system with constant C' > 0 if
{¥q@}qep, is a Riesz family with constant C for every choice of 1 € Vq,.

2

A particular Riesz system that is useful for our purposes is the so-called Haar
system. Let N be a positive integer. Given Q € D, and C' > 0, we define \IIS“‘”"(N)
as the set of functions ¢ such that

1. suppvy C Q.
2. 1) is constant on every p-cube @’ which is N levels down from Q.

3. [¢dp=0and [¢?du < C.
The set of functions \I/g“‘”(N ) forms a Riesz family with constant C.
Let {Vq}qgep, be a Riesz system. For any Q € D,, and M > 1 we define

£7(Q) = inf  sup w(Q) VA TuxE V).
E:EDMBgq, 9€¥q
p(E)<4oo

Lemma 3.2.1. Let § >0 and M > 1. If T, is bounded in L*(u), then the family
Fs ={Q € D, : &(Q) > 6}

15 Carleson.

Proof. See [NTV14a, Section 14]. There the proof is presented in the case of the Riesz
transform, but it works without any difference in our framework. O

3.2.5 Partial Differential Equations

For any uniformly elliptic matrix A with Holder continuous coefficients, one can show
that K(x,y) = V1 E(z,y) is locally a Calderén-Zygmund kernel:

Lemma 3.2.2. Let A be an elliptic matriz with Hélder continuous coefficients sat-
isfying (4.1.1), (4.1.2) and (4.1.5). If K(-,-) is given by (4.1.4), then it is locally a
Calderon-Zygmund kernel. That is, for any given R > 0,

(a) |K(z,y)| < |o—y|™™ for all z,y € R*! with x # y and |x — y| < R.

(b) |K(z,y) — K(z,y)| + |K(y,2) = K, )| S |y —/|*fe —y|™"™* for all y,y" €

B(z, R) with 2|y — y'| < |z —y|.

(c) |K(z,y)| < |z —y|T72 for all x,y € R™ ! with |z —y| > 1.
All the implicit constants in (a), (b) and (¢) depend on A and C},, while the ones in
(a) and (b) depend also on R.

The statements above are rather standard. For more details, see Lemma 2.1 from
[CMT19].
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Let w, denote the surface measure of the unit sphere of R**!. For any elliptic
matrix Ag with constant coefficients, we have an explicit expression for the funda-
mental solution of L4,, which we denote by O(z,y; Ag). More precisely, ©(x, y; Ag) =
O(z — y; Ag) with

-1 1
(n — 1)wpy/det Ag,s (AgLz - z)n=1)/2 for n > 3,
@(Z;Ao) = @(Z;AQS) =
;lo (Ailz . z) for n =2
4my/det Ag s &0 ’
(3.2.3)
where Ay ¢ is the symmetric part of Ay, that is, Ag s = %(A + AT),
As a consequence of (4.2.3), we have
1 Aaiz
VO(z; Ag) = : (3.2.4)

wny/det Ag s (Ag 3z - 2) (D2

The next result is proven in Lemma 2.2 of [KKS11].

Lemma 3.2.3. Let A be an elliptic matriz with Hélder continuous coefficients satis-
fying (4.1.1), (4.1.2) and (4.1.5). Let also O(-,-;-) be given by (4.2.3). Then, for all
x,y € R with  # y and |z — y| < R,

1. 1€a(x,y) — Oz, y; A(2))| < & —yl* T,

2. ‘VlgA(x7y) - V1O(z,y; A(I’))| S ‘l’ - y‘afn’

3. [Vi€a(z,y) = ViO(z, y; AWw)| < lw —y|*™.
Simalar inequalities hold if we reverse the roles of x and y and we replace Vi by V.
All the implicit constants depend on A, Cy, and R.

The following lemma is an easy consequence of the preceding result.

Lemma 3.2.4. Let u be a compactly supported n-AD-reqular measure in R"1. Let A
be an elliptic matriz satisfying (4.1.1), (4.1.2) and (4.1.5), and let T, be the associated
operator given by (4.1). Let As = %(A + AT be the symmetric part of A. Consider
the operator

T f(z) = / Vi Ea,(2.y) F(y) duly).

Then, T, — T} is compact in LP(p), for 1 < p < oo. In particular, T, is bounded in
L?(u) if and only if T}; is bounded in L3(p).

Recall that £ 4, stands for the fundamental solution of L4 u = —div (AsVu).

Proof. For any function f € LP(u), we have

T, f(x) — T3 f(x) = / (Vi€ale,y) — ViEa, (@,9)) f(y) duly).

By (4.2.3) ©(z,y; A(x)) = O(x,y; As(x)) and thus, by Lemma 4.2.2, the kernel of
T, — Ty satisfies, for all z,y € R"™ with z # y and |z — y| < R,

(Vi€a(z,y) — Vi€a, (z,y)] < |Vi€a(z,y) — V1O(z,y; A(x))|
+|V1O(z,y; As(z)) — Vi€a, (z,y)]
1

Nz -y
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By standard arguments, using the AD-regularity of p, this implies that 7, — T} is
compact, and thus bounded in LP(u). O

Because of the preceding lemma, it is clear that to prove Theorem 3.1 we can
assume that the matrix A is symmetric. So in the rest of the chapter we will assume
A to be symmetric.

By almost the same arguments as above we derive that

1

}V1(€A(ﬂf,y)+V1gA(y7$)‘ 5 W for all z,y € Rn+17 L 7é y, and ’CC - y| <R.

(3.2.5)
So, modulo the regularizing kernel |z —y|~("=®) V1E4(x,y) behaves as if it were
antisymmetric. In particular, we have the following result.

Lemma 3.2.5. Let u be a compactly supported n-AD-reqular measure in R". Let A
be an elliptic matriz satisfying (4.1.1), (4.1.2) and (4.1.5), and let T}, be the associated
operator giwven by (4.1), with kernel K(x,y) = Vi€a(x,y). Consider the antisymmet-

ric operator T,Sa) and the symmetric operator T,SS) associated with the kernels

KO(,y) = 5(Ky) - K@2)  and  KO(wy) = 2 (K(e,y) + K(y,2)

respectively, so that T, = T,Ea) + T,SS). Then the operator T,Ss) is compact in LP(u),

for 1 < p < oo. In particular, T, is bounded in L?(p) if and only if T,Sa) 1s bounded
in L?(u).

Contrarily to the natural temptation at this point, in the rest of the chapter we
do not assume the kernel to be antisymmetic. This is because our proof heavily relies
on a maximum principle (see, for example, Lemma 3.11.2), which cannot be ensured
to hold if we work just with the antisymmetric part.

From Lemma 3.2.5 we derive the existence of a “weak limit operator”.

Proposition 3.2.1. Let p be a compactly supported n-AD-reqular measure in R*H1.
Let A be an elliptic matriz satisfying (4.1.1), (4.1.2) and (4.1.5), and let T), be the
associated operator given by (4.1). Suppose that T, is bounded in L*(pn). Then, for
all1 <p <ooand f € LP(n), Tucf has a weak limit in LP(u) as € — 0. Further,
denoting by T, f such a weak limit, the operator T} is bounded in LP(p) forl <p < oo
and, for all f € LP(p),

Tuf(z) =T5 f(x) for p-a.e. x € supp p \ supp f.
Recall that saying that T), . f has a weak limit 7))" f in LP(u) as € — 0 means that
for all g € L¥ (),
g%/Tu,afgdu = /Tﬁ”fgdu-
)

Proof. Consider the antisymmetric and symmetric operators Tff", TF(LS from Lemma

3.2.5, so that, for all € > 0,
Tuef = T2 f + TS,

Since T,Ea) is antisymmetric, for all f € LP(u), 1 < p < oo, the functions Tlstfg)f
converge weakly in LP(u) as € — 0. This was shown by Mattila and Verdera in
[MV95] and an alternative argument is provided in [NTV14a].
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Concerning the symmetric operator 7, ff), from the estimate (3.2.5) it easily follows
that Tﬁfg)f converges to Tlss)f = T/(fgf strongly in LP(p), and thus also weakly in LP ().
Hence, T), . f admits a weak limit in LP(pn) as e — 0.

The last statement in the lemma follows by standard arguments. O

From now on, for y and 7}, as above, when T}, is bounded in L?(u) we will identify
T}, with the weak limit operator T))’, so that for any function f € LP(p), T, f makes
sense as a function in LP(u).

3.3 The flattening lemmas and the alternating layers

From this section until the end of Section 3.11 we assume that p is an n-AD-regular
measure with compact support and that 7}, is bounded in L?(u). In order to prove
Theorem 3.1 we have to show that g is uniformly n-rectifiable.

3.3.1 Existence of balls with small S-number

We want to prove that in any ball centered at a point of supp p either we can find a
ball, which is not too small, in which the measure is very flat or we have a lower bound
for a regularized two-sided truncation of Ty at some point and at proper scales.

Let ¢o: [0, +00) — [0, 1] be a continuous function such that ¥g(z) =1 for z <1
and ¥g(z) = 0 for z > 2. For z € R""! and 0 < r; < ro, we define

R e T =

T2 1

We have that supp ¢ ,, r, C B(z,72)\ B(2,r1) and 0 < 4, ,, », < 1. The proof of the
following lemma relies on a touching point argument and it is based on the scheme
of the proof of |Toll5, Lemma 3.3]. We remark that this can also be proved via a
variation on the blow-up argument in [NTV14a, Lemma 5.

Lemma 3.3.1. Let u € AD(Co,R"1), R < 4 and let B = B(x, R) be a ball centered
at supp p. Let K, e > 0. There is p = p(K,e,Cy) small enough such that at least one
of the two following conditions is verified:
1. There exists a ball B(x',r) C B(x, R) centered at supp p with r € [pR, R] such
that
5M(B(x,a T‘)) Se.

2. There is a point z € supp u N B(x, R/4) and r € [pR, R], such that

T (V2 prrp)(2)] > K.

Before reporting the proof, we remark that the assumption R < 4 in the statement
of the lemma is justified by the fact that we are interested in applying this result to
the balls associated with David-Semmes cubes with small enough side length.

Proof. Suppose that the alternative (1) in the statement of the lemma does not hold.
Then
Bu(B(z',r)) > ¢ (3.3.1)

for every 2’ € supp N B and r € [pR, R] such that B(z/,r) C B.

Being the measure pu n-AD-regular, by standard arguments it follows that there
exists an open ball B’ contained in 1B such that B’ Nsuppy = @ and r(B’) > ¢ R
with ¢; = ¢1(n, Cp). Possibly by taking a dilation of this ball, we can suppose that
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B’ Nsuppp = & but there is at least a point z € 9B’ Nsupp . Without loss of
generality, let z = 0 and suppose that 7 := (0,...,0,1) is the outer normal vector to
OB’ at z. Since B’ C 1B, we also have that r(B’) < R/4.

We denote by L the hyperplane {z: z-77 = 0}, by U the upper half space {x: z-7 >
0} and by D the lower one D := R"*1\ (U U L). For 0 < p < 1 to be chosen later
and for j > 0, we denote by B; the ball centered at 0 and with radius

2\J
r(Bj) = (—) pR.
€
Let j be such that r(B;) < r(B'). Short geometric computations prove the inequality
1r(B;)?
dist(y, L) < 27;4((53/)) for every y € DN B\ B'. (3.3.2)

We denote @ := A(0)T7. Using the definition of ' and (4.2), we get that there
exists cg > 0 such that

7-A0)ly ity

>0 foreveryyeU. (3.3.3)

Choose now an integer N > 1 such that r := r(By) < r(B’). As a direct application
of Lemma 4.2.2 and the growth of x, we can find two constants c3, ¢ > 0 such that

[ 5 (1)~ V100,55 A0) e )dly)
DNB(0,r)

. (3.3.4)

< ¢ / —du(y) < c3R*.
* Js lyl"—e

Let x0,,,, be the characteristic function of the annulus centered at 0 with inner and
outer radius r; and 79 respectively. Then, choosing p small enough to get r > 2pR
and using (3.3.3), we have that

/ - V10(0,y; A(0))¥o pr.r (y)du(y)

UnB(O) (3.3.5)

> / 7-V10(0,y; A(0))x0,20R,r () dp(y).
UNB(0,r)

Since f,(Bj) > € by hypothesis (3.3.1), we have that there exists y € supp pu N B;
whose distance from L is greater than er(B;). As a consequence of (3.3.2), the point
y cannot belong to D if

L Lr(B))?

~—2r(B)’

which implies that y € U N B, for every r(B;) < 2er(B’). Since u € AD(n,Co, R" 1),
assuming ¢ small enough if necessary, it follows that

er(Bj)

#(U N Bjyr \ (Bj-1 Uller,)j2(L))) > Cq le(e)r(B;)",
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for some constant c(e) > 0, where U, (p;)/2(L) stands for the er(B;)/2-neighborhood
of L. Taking into account (3.3.3), for j > 0 we deduce that

/ 5 V100, y: A(0))duly)
UmB]‘Fl\B] 1

er(B;)

> 1(UN Bjy1 \ (Bj—1 ngT(Bj)/Q(L)))W

> Cyle(e).

for some constant c(e). Therefore

/ 7-V10(0,y; A0))x0,2pR,r (¥)dps(y)
UNB(0,r)
N-1

N
= JZ::/UQB - 7+ V10(0,5; A(0))du(y) = Gyt Y ele) = Cy te(e) (N~ 2).

j—1 j:2
(3.3.6)

Now we need to study the analogous integrals for the lower half-space. As in (3.3.4),
we have

‘ /UmB 0, (V1 €(0,y) = V16(0,4; A(0)))Yo,pm.r (y)dp(y)| < caR® (3.3.7)

for some ¢4 > 0. Moreover, by (3.3.2) and the growth of p,
N
> / 7+ V10(0, 4 A(0))du(y)|
j=1 Dr‘IB'\Bj,1

dist(y, L)
< Cy ‘ / 7du ‘ < C5C[)C
Z pnB\B;_, Y™ )

M =
5
A\,

j:l
Gathering (3.3.4), (3.3.5), (3.3.6), (3.3.7) and (3.3.8) we get
T(zprrit)(2) 2 Cq e(€)(N = 2) = (e3 + ca) R* — Cocs(e),

which gives the desired estimate for N big enough (which forces p to be small enough).
O

3.3.2 Existence of balls and cubes with small a-number

For a euclidean cube @ of side length ¢(Q) and given an hyperplane L, we define

aﬁ(Q) = inf do(p, cH[L),

1
0Qy 1 &
where dg is defined as in (3.2.3) and

0,(Q) = nf ok (Q),

where the infimum is taken over all hyperplanes.

Lemma 3.3.2 (Existence of a-flat euclidean cubes). Let u € AD(Co, R" ). For all
M’ > 10 and €’ > 0, there is € small enough such that the following holds. If the ball
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B = B(z,r) is such that Bﬁ(B) < ¢ for some affine hyperplane L passing through x,
then there exists a euclidean cube @QQ such that
e 3M'Q C B.
e there is a constant py = po(e’) such that por < (Q) < r/M’.
o there exists a positive constant C) = Ch(Co,n) such that u(Q) > C{H(Q)"™ and
Q has C{-thin boundary, i.e.

p({z € 2Q : dist(z,0Q) < M(Q)}) < Coru(2Q) forall  X>0.

o aL(BM'Q) <&

Proof. See [GT18, Lemma 3.2]. We remark that this lemma was originally stated in
a more general setting than the one of AD-regular measures. O

As a consequence of Lemma 3.3.2 we have the following.

Lemma 3.3.3 (Existence of a-flat balls). Let u € AD(Co, R" ™). Let B = B(x,7) be
a ball centered at x € supp p with ﬁﬁ(B) < g for some hyperplane L and some & small

enough. For every M > 10 and € > 0, if € is small enough there exists B = B(z,T)
with & € supp p such that:

1. MB C B(z,r).

2. 7 > or for some constant o depending on €.

3. ak(MB) <z

Proof. Let M" > max{M, 10} and let &’ > 0 to be chosen later. Let @, C{j and pg be as
in Lemma 3.3.2. Since @ has C{-thin boundary, the measure y cannot be concentrated
in a too small neighborhood of 0Q. Indeed, suppose that u(Q \ @) = 0. For A > 0,
using the AD-regularity and Lemma 3.3.2, we have

1(Q) < u(@x) < ACou(2Q) S ACoCol(Q)"

and
Co @)™ < @),

so that A 2 05106_2. This leads to a contradiction for A small enough, depending
just on Cp and Cj.

Thus, there exists a point z € supp u such that dist(z,0Q) > ¢'4(Q) for some
constant ¢’ > 0 depending on Cy and n.

Define 7 := dist(z,0Q) and B := B(z,7). The first point of the lemma is satisfied
with o = o/pg. The point (2) is also true by construction, since B(&, M7) C 3M'Q C
B(x,r).

We are left to prove that we can choose ¢/ and M’ such that (3) is verified, too.
This follows easily after observing that

L ~ _ 1 : n
oy, (B(Z, M7)) = WéggdB(ﬂ7crH|L)
3M'(Q)\nt1 1 . n 3M'\n+1
< ( M7 > (3M’€(Q))n+1 ég(f) d3M’Q(M7CH|L) < (m) €.

The proof is completed by choosing ¢’ and M’ such that (3M'/Mo) e’ <. O

Our proof of the existence of balls and cubes with small a-number relies on the
following result by Girela-Sarrion and Tolsa.

Note that the L?(u)-boundedness of any singular integral operator is not required
in the previous lemma, so the statement is purely geometric.
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The scheme of the proof of the next lemma resembles that of [NTV14a, Section
15].

Lemma 3.3.4. For every M > 1 and € > 0 there exist an integer N, a finite set H
of hyperplanes through the origin and a Carleson family F C D,, with the following
property. If P € D, \F, there exist H € H and a cube Q C P at most N levels down
from P for which

o) (MBg) <. (3.3.9)

Proof. The idea is to combine Lemma 3.3.1 and Lemma 3.3.3. We fix a cube and we
show that either the condition (1) in Lemma 3.3.1 is verified, so that we can find a
ball with small S-number and apply Lemma 3.3.3, or the cube belongs to a Carleson
family. We define the family F as the collection of cubes for which condition (1) in
Lemma 3.3.1 does not apply.

Let P € D, and let R := {(P). Let € and K be as in Lemma 3.3.1, to be chosen
later. We analyze the two different cases starting from the “flat" one.

Case (1).

Suppose that there is p > 0 such that r > pR and we can find a ball B(z,r) C B(xp, R)
with
L(B(z7) <e
for some hyperplane L. Let H be a hyperplane through the origin whose normal spans
an angle at most € with the normal to L. Elementary geometric considerations lead
to
BI(B(z,1)) < 2.

It is possible to suppose that H belongs to a finite family H of hyperplanes: it suffices
to define H as the family of hyperplanes whose normal vectors form an e-net on the
unit sphere S™.

By Lemma 3.3.3 for every € > 0 to be chosen later and ¢ small enough (depending
on £) there are o > 0 and a ball B(z,2(M + 2)r) such that ¥ > or and

o) (B(Z,2(M +2)F)) <& (3.3.10)

Take a point 2’ € supp p such that |z — 2’| < €7. We choose the cube Q € D,, as the
one such that 2/ € Q and 7 < £(Q) < 27. For £ < 1 we have

|2 —zg| < |2 —zgl + |2/ — 2| < Q) + &7 < 20(Q).

Now we use the stability of the a-number under small shifts and proper rescalings to
compare oz,(LH) (MBg) to QLH) (B(z,2(M + 2)r)) and, hence, to prove that it is small.

Being M > 1, we have (M + 2)/3 < M. So, using the inclusions

MBg C B(.%'Q,QM?) C B(z,2(M + 2)r),
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for some plane L parallel to H we can write

alff )(MBg) = ok (MBg)

1 , .
= @)y 2 e b )

2n+1 ) .
@ 1 deag.2nm (s ML)

oM +2)\nt1 1 . .
( i ) (M +2)7) 1 inf dp(z2(ar42)7) (1 cH" L)

c>0
< 6"l (B(Z,2(M +2)7)).

IN

IN

Then, recalling (3.3.10) we have
o (MBg) < 6"z

The proof of (3.3.9) is completed by choosing ¢ such that & = 6"T'&, where £ is as in
the statement of the lemma. The cube @ is at most N levels down from P for some
N that, being (Q) > {(P)op/2, satisfies

LopP
N <log, atid) <1 —log, p—logyo. (3.3.11)

(@Q)

Again, we remark that the estimate in the right hand side of (3.3.11) depends just on
M and €.

Case (2).
Let z be a point in supp N B(x, R/4), such that

Tz prrp)(2)] > K.

Let @ be the largest p-cube containing z with £(Q) < r/32 and let Q' be the largest
p-cube containing z with (Q’) < pR/32. Then Q' C Q C P.
The idea of this part of the proof is to apply Lemma 3.2.1 to prove that the family
F of p-cubes P for which case (2) applies is Carleson. To this purpose, consider the
set F = 10Bp, which contains B(z,2R). We claim that there is a constant C such
that N
|mu,Q(TuXE) — My (T}LXE)| > K —-C. (3.3.12)

To prove this, we consider two continuous functions fi and fo with |fi],|f2] < 1 and
such that

XE = fl + wz,pR,r + f27

supp f1 C B(z,2pr) and supp fo N B(z,r) = .
Using the L?(u)-boundedness of T),, the regularity of the measure and the fact
that Q' C @, we have

/ T fiPdp < / AiPdu < u(supp f1)
< 1(B(2.20R)) < (bR)" < Q)" < (@) < p(Q),

which yields that there exists a constant C7 > 0 such that

Imu,Q(Tuf1) — my, (T f1) < [mpo(Tufo)l + [my,q (T fi)| < Ch. (3.3.13)
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Using L?(p1)-boundedness again we have

2 < p(B(z,20) 2 S "2 S Q) S (@),

1Ttz pr el L2(u) S ¥z R0 ]
which implies that there exists a constant Cy > 0 such that
M@ (Tputz,prir)| < Co. (3.3.14)
By the choice of @', we have that Q' C B(z, pR/2). Indeed
Q' C B(?,80(Q")) C B(#,pR/4) C B(z,pR/2). (3.3.15)
Being B(z, pR) Nsupp pu = &, we have the following estimate for the Hélder norm:
1Tz pRirllco Bz or/2) S (PR)™, (3.3.16)

so there exists a constant C3 > 0 such that for every y € Q’

|mM,Q’ (T,uq/)z,pR,r)‘ > ’Tu(wz,pR,r)(y)’ - |mM7Q’ (T,uwz,pR,r) - T,u(wz,pR,r)(y)‘

. , o (3.3.17)
> K — HTuwz,pR,THC“(B(z,pR/2)) dlSt(Q , SUpp wz,pR,r) > K —Cs.
Gathering (3.3.14) and (3.3.17) we get
|mu,Q/ (Tuwz,pRJ’) - mu,Q(Tuwz,pR,T” > K -0y —Cs. (3.3.18)

Let us estimate the difference between the averages of T}, fs over the p-cubes Q
and @’. Arguing as in (3.3.15) and (3.3.16), we have that Q C B(z,r/2) and

1 TufellcoBezr/2)) S Q)™

so there exists a constant C4 > 0 such that

’m#,Q(T,qu) — My,Q’ (Tuf2)| < C4- (3.3.19)

Gathering (3.3.13), (3.3.18) and (3.3.19), we prove the claim (3.3.12). Now, if we
choose 6 > 0 and we define

vpi= (60P)" (18— 55):

as a consequence of (3.3.12) we get

w(P) 2 Tuxm, )l

= u(P)"V2(06(P))"* |y q(Tuxe) — myq (Tuxe)| > Cy /20"*(K - O).
(3.3.20)

We remark that 6 serves as a normalizing factor in order to get a bound on the L?(p)
norm of ¥p. In this way, we have that 1p belongs to the Haar system W (N) of
depth ~

N =logy(£(P)/4(Q)) <logy 0" +C

so that we can combine (3.3.20) and Lemma 3.2.1. Indeed, recalling the definition
of £+(P) provided in (3.2.4), (3.3.20) proves that &(P) > Cy '/*0"/2(K — C), which
implies that F is a Carleson family for K big enough. O
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As an immediate corollary of the preceding lemma we get the following.

Lemma 3.3.5. For every M > 1 and € > 0 there exist an integer N’ and a finite set
H of hyperplanes through the origin with the following property: for every P € D,,
there exist H € H and a cube Q C P at most N’ levels down from P for which
ol (MBg) < &.

Proof. Consider the family F in the preceding lemma. Since this is a Carleson family,
for any P € D, there exists some P’ € D, \F contained in P with ¢(P’") ~ ((P).
Then, by definition, there exists a cube Q C P, with 4(Q) ~ {(P’) ~ {(P) and such
that aLH) (MBQ) < & for some hyperplane H € H. O

3.3.3 The alternating layers

A general feature of non-Carleson families is that, for every positive integer K, it
is possible to find a u-cube and (Ko + 1) layers of finitely many cubes so that each
of them tiles up the initial cube up to a set of small measure (for the details see
[NTV14a, Lemma 7]). This result can be refined by finding intermediate layers of
very flat cubes using Lemma 3.3.5. For the proof of the following lemma we refer to
[NTV14a, Section 16].

Lemma 3.3.6. Let ¢ > 0, M > 1 and let H be a hyperplane through the origin in
R Let A C D, be a non-Carleson family such that each @ € A contains a cube
Q' € Dy at most N’ levels down from @Q such that QLH) (MBg) < e. Then, for every
positive integer K and every n > 0 there exist a cube Ry € A and (K + 1) alternating
pairs of finite layers N By, and FLy, in Dy, with k = 0,1,..., K such that the following
properties hold

1. NBy ={Rp}.

2. NB,C{QeD,:QCRy}NAforanyk=0,...,K.

3. foreveryk=0,...,K and Q € FLi we have

aLH)(MBQ) <e.

4. for everyk =0,...,K and Q € FL}, there exists a cube P € NBy, P D Q.
5. for everyk=1,..., K and P' € NBy, there exists a cube Q € FL,_1, P' C Q.

6. > gcrry Q) = (1 —n)u(Ro).

We will apply Lemma 3.3.6 to the study of non-BAUP cubes (see the next section
for the definition); this explains the choice of the notation ‘N By’ for some layers. The
other layers are denoted as ‘FL}’ to indicate that they consist of quite flat cubes (i.e.
with a small a-number).

Remark 5. The property 6 in the lemma says that FLg tiles up Rg up to a set of
negligible measure. If follows that the same holds for any FLj for every k =0,..., K.
Moreover, as a consequence of the inductive construction in [NTV14a], the lattice

FL=|JFLk
k

has only finitely many elements.! This is useful for technical purposes.

'Each of the so-called non-Carleson layers {Lm}2_, appearing in [NTV14a, Section 13] is finite.



3.4. The non-BAUP cubes and the martingale difference decomposition 65

3.4 The non-BAUP cubes and the martingale difference
decomposition

The acronym BAUP referred to a p-cube literally stands for Bilaterally Approzimable
by a Union of Planes. Being more suitable to our purposes, in what follows we prefer
to formulate the equivalent definition of non-BAUP cubes as in [NTV14a, Section 22|,
instead of the original definition of David and Semmes in [DS93].

Definition 3.4.1 (Non-BAUP cube). A cube Q € D, is said to be non-BAUP with
parameter § > 0 (or non-§-BAUP) if there exists a point z4 € QNsupp u such that for

every affine hyperplane L passing through z¢, we can find a point zg € LNB(z4,4(Q))
such that B(sz7 M(Q))Nsupp p = .

A geometric criterion for uniform rectifiability provided by David and Semmes (see
[DS93]) asserts that if, for any parameter 6 > 0, the cubes which are non--BAUP
form a Carleson family, then p is uniformly rectifiable.

To prove Theorem 3.1 we will use the BAUP criterion. We will assume that, for
some § > 0, the family of non-BAUP cubes with parameter § is non-Carleson and we
will get a contradiction. Our assumption implies that, for some H € H and all € > 0,
M > 1 (to be chosen below), the family A = A(M,e, H, N') of cubes Q € D,, which
are non-BAUP with parameter § and contain a cube Q" € D, at most N’ levels down
from ) such that aLH)(M Bg) < € is also non-Carleson. So we can apply Lemma
3.3.6 with this family A to construct the layers of cubes N'Bj and FL; with the
parameters n and K in the lemma to be chosen below.

We remark now a property that will be used later on: for R € FL; and Q C R

such that Q € N By for some k, we have
Q) < Ces U(R). (3.4.1)

In particular, for any A > 0, choosing 6! < A, one has £(Q) < AU(R).

Let Ry € D, be as in Lemma 3.3.6. We are interested in partitioning the collec-
tion of cubes contained in Ry and below a suitable subfamily of cubes that we denote
Top; (see (3.4.2) for its definition) into subfamilies (the so-called trees) with interme-
diate layers of non-0-BAUP cubes like in [NTV14a]. We proceed via a stopping time
argument.

A collection T C D, is a tree if the following properties hold:

e 7 has a maximal element (with respect to inclusion) Q(7) which contains all

the other elements of 7 as subsets of R"*!. The cube Q(T) is called the root of
T.
o If Q, Qo belong to T and @ C Qo, then any cube Q" € D), such that Q@ C Q" C Qo
also belongs to 7.
o If Q) € T, then either all the sons belong to 7 or none of them do.
Now we proceed to build the trees. For 1 < k < K — 1, we denote

Top, = {Q € Ch(Q') : Q' € FLx} (3.4.2)
and, for Q) € Topy,
NB(Q)={Q e NBry1: Q' CcQ} and Stop(Q) :={Q' € FLyi1:Q C Q}.

Note that NB(Q) and Stop(Q) are finite families because N'Bjy1 and FLgyq are
finite.
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We write Top = Uf;ll Topy, . Now, for every Q € Top we let Tree(@) be the
collection of p-cubes which are contained in ) and are not strictly contained in any
cube from Stop(Q). Clearly @ is the root of Tree(Q).

For f € L*(u) and Q € D, we denote

Agf= D> mus(fxs — muo(fxa (3.4.3)
SeCh(Q)

so that we have the orthogonal expansion

XRo (f - mu,Ro(f)) = Z Any

QEeDL:QCRy

in the L?(p)-sense. Then, taking f = Ty (recall that this function makes sense
because of Proposition 3.2.1) and using the notation Tru = ZQGTree(R) AT for
R € Top, we can write

/R T —mpr (TP dp = > IATulF20 > Y ITrul7z-
0 QEeD,:QCRy ReTop

Since T}, is bounded from L>(u) to BMO(p), the left hand side is bounded above by
w(Ryp), and thus we get

> I TRl 72 < C p(Ro)- (3.4.4)
ReTop

Let 0 < 7 < 1 (to be chosen later) be the parameter defining the lattice of
alternating layers from Lemma 3.3.6. Denote by Nice the subfamily of the cubes
R € Top such that

> @ =1 -n"?)uR).

QEeStop(R)

The following easy lemma concerns the abundance of Nice cubes.

Lemma 3.4.1. We have

> w(R) < (K = 1)n'?u(Ro).
ReTop \ Nice

Proof. By construction, the cubes R € Top \ Nice satisfy
1 1
M(R)SWM R\ U Q STQ,U R\ U Q
n QEStop(R) N QeFLK

Thus, recalling that > o7, #(Q) > (1 —n)u(Ro) and that there are K — 1 layers
of cubes in the family Top, we get

> /ub(l?)§7711/2 > M(R\ U Q)

ReTop \ Nice ReTop \ Nice QEFLK

K — K
QeEFLK
U
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The main ingredient for the proof of Theorem 3.1 is the following result.

Proposition 3.4.1. Assume that € and n are chosen small enough in the construction
of the alternating layers in Lemma 3.3.0, depending on §. Then there is ¢1 > 0
depending also on § such that for every R € Nice with ¢(R) small enough we have

ITrull72(,) > c1p(R). (3.4.5)

We remark that the smallness condition on the Nice cubes in the proposition
depends just on §, the Holder and elliptic conditions on the matrix A and the AD-
regularity of p.

Proof of Theorem 3.1 using Proposition 3.4.1. By Lemma 3.4.1 and the prop-
erty (6) in Lemma 3.3.6, assuming n < 1/4, we have

> B> > p(R)— (K —1)n'/u(Ro)

ReNice ReTop

K-1
>3 Y Q) — (K = 1)y u(Ro)

k=1 QEFLy

> (K~ 1)(1—n—1"/)u(Ro) > (K ~ 1) pu(Ro).

Denote by Nice’ the family of Nice cubes R which are small enough so that (3.4.5)
holds for them. Clearly

>R < > u(R)+C p(Ro),

ReNice ReNice!

with C” depending on the smallness condition for R and on diam(supp p). By (3.4.4),
we have

> uB<a®) Y [Tenlag < ald)C u(Ro).
RENice’ RENice’

Thus
i(K — 1) u(Ro) < C" u(Ro) + 1(8) ' C u(Ro).

So we get a contradiction if K is chosen big enough. Hence, the initial assumption
that the family of non-6-BAUP cubes is not Carleson cannot be true. O

Proposition 3.4.1 will be proved along the next Sections 3.5-3.11.

3.4.1 Scheme of the proof of Proposition 3.4.1

We argue by contradiction, assuming that
ITrple( < n(R). (346)

First, it is important to determine how L 4 and its associated objects transform under
a change of variable. For this reason, we include the relevant formulas in Section 3.5.

Then in Section 3.6 we show that it suffices to prove the proposition with the addi-
tional assumption A(zg) = Id and H equal to the horizontal hyperplane through the
origin; this puts us in a simpler geometric situation and makes the other technicalities
in the rest of the proof more transparent.
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A measure o supported on hyperplanes which approximate p at the level of the
children of cubes from Stop(R) is introduced in Section 3.7.

In Section 3.8 we construct the auxiliary matrix A, that we define via reflections
with respect to a suitable hyperplane, and we study the gradient of its associated
single layer potential IA”“. We assume the hyperplane to be horizontal. In particular,
we prove that the horizontal component of To(z) is very close, in some L%(c) sense,
to that of T'o(z*), x* denoting the reflection of x with respect to the horizontal plane.
This proof relies on R belonging to Nice, the properties of ﬁ, and the contradiction
hypothesis (3.4.6).

Section 3.9 and Section 3.10 contain the definitions and the properties of a new
approximating measure v, a vector field ¥, and other mathematical objects important
for the conclusion of the proof. In particular, we highlight that Section 3.10 uses the
intermediate non-BAUP layers.

Section 3.11 concludes the proof of Proposition 3.4.1 via a variational argument.
This method produces a pointwise inequality that, integrated against the vector field
¥ constructed in Lemma 3.10.2, gives the desired contradiction.

3.5 The change of variable

The fact that we are considering a matrix A which is uniformly elliptic and symmetric
allows to perform a particular change of variables. The following lemma and its
corollary are standard. For the proofs we refer to [AM17, Lemma 4.8].

Lemma 3.5.1. Let Q C R"! be an open set, and assume that A is a uniformly
elliptic matriz in Q with real entries and ¢ : R — R s a bi-Lipschitz map. If
we set

Ag = |det D(¢)| D(¢™")(Aop)D(¢ )T,

where D denotes the differential matriz, then Ay is a uniformly elliptic matriz in
¢ 1) and u : Q2 — R is a weak solution of Lau =0 in Q if and only if & = uo ¢ is
a weak solution of La,u =0 in d~HQ).

Corollary 3.5.1. Let Q C R"*! be an open set, and assume that A is a uniformly
elliptic symmetric matriz in Q with real entries. Let O : R™™1 — R™*1 be q rotation.

For a fized point yo € Q define S = \/A(yo) O. If
As(-) =8 (Ae8)()(s™HT,

then Ag is uniformly elliptic in S™1(Q) and As(z0) = Id for 2o = S~'yo. Further,
u is a weak solution of Lau = 0 in Q if and only if ©u = uwo S is a weak solution of
Lagu=01in S7HQ) .

In Corollary 3.5.1 we identified S with its associated linear map. The matrix S is
well defined because A is symmetric and uniformly elliptic, so that it admits a unique
square root with the property of being symmetric, uniformly elliptic and having real
entries. Further, we have

As(20) = (V/A(yo) O) M A(S(20)) (v/Alwo) 0) ™M) = Id.

Some standard linear algebra gives that S~! is a special bi-Lipschitz change of vari-
ables that takes balls to ellipsoids and its eigenvalues determine lengths of semi-axes.
Denoting by Apax and Apin respectively the maximal and the minimal eigenvalues of
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S _1, the maximum eccentricity of the image of a ball is \/Amax/Amin- The ellipticity

allows to bound it from below by \/K_l and above by VA.

It follows that A=1/2 < ||S~1|| < AY2, so that S~! distorts distances by at most
a constant depending on ellipticity. The collection 5# = {S‘l(Q)}QGDM forms a
dyadic grid on S~!(supp u) = supp(Sﬁ_lu) of cubes of David-Semmes type, where the
involved constants depend on the ones in D, and ellipticity.

The next easy lemma shows how the fundamental solution and the gradient of the
single layer potential transform after a change of variable.

Lemma 3.5.2. Let ¢ : R"™1 — R+ be a locally bilipschitz map and let € 4 be the fun-
damental solution of Ly = —div(AV-). Set Ay = |det D(¢)| D(¢p~1)(A o ¢)D(¢~1)T.
Then

Eny(x,y) = Ealo(x), o(y))

and

Vi€a,(z,y) = D(¢)" (2) Vi€ald(2), ¢(y)) forz, y € R™.

Proof. The proof is an application of the change of variable formula for the integral.
Let f € C°(R™1). For every x € R""!, the definition of fundamental solution gives

f(6(x) = / AW)V2E4(6(x),y) - V1 (y) dy

Set E(z,y) == Ea(d(x), ¢(y)). If we denote y' = ¢! (y) and use the standard change
of variable formula together with the chain rule, we get

f(o(x)) :/|detD(¢)(y')|A(¢(y/))V2 Eald(x),0(y)) - V(o)) dy'
=/IdetD(¢)(y’)IA(cb(y’))D(sb‘l)T(y’)VzE(x,y’)-D(¢‘1)T(y')v(f0¢)(y’)dy’
~ [ 4B wy) - V(T 0 0))

which proves the first identity in the lemma. The second identity follows from the
chain rule. 0

Define
Tyv(zx /V1 Ea,(m,y) dv(y). (3.5.1)

Analogously, define the operator Ty, as in (4.1). Then, by the previous lemma we
have:

Lemma 3.5.3. Let ¢ : R"™ — R"* be a bilipschitz map, v a Radon measure, and
¢yv its image measure. Then,

Tyv(z) = D(¢)" (z) Tyr(d(x)).

Proof. The proof is an immediate application of Lemma 3.5.2 and the change of
variable formula. Indeed

Tov(e) = [ Vi&a (o) dvly) = [ D) () Vi&a (6la),0(0)dv(y)
= D¢ (2) [ V1€a(().2) d(6)(2) = DO @) To(o(a)). O
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3.6 Reduction to the case A(zp) = Id and H horizontal

From now on, unless specified, we will denote by R a given cube in Nice. In this
section we will show that to prove Proposition 3.4.1 we may assume that A(zgr) = Id
and the hyperplane H in Lemma 3.3.6 to be horizontal. Indeed, let O : R*t1 — Rn+!
be a rotation which transforms the horizontal hyperplane (through the origin) H' into
(v/A(zg))"'H. Consider the linear map ¢: R"*! — R"! agsociated with the matrix
S = 4/A(zg) O and, as in Corollary 3.5.1, set

Ag() =5 HAog)()(sHT,

so that Ay is uniformly elliptic and Ay (yr) = Id for yr = S~*xg. Consider also the
measure v = (¢~ !)yu and the operator T}, defined in (3.5.1). By Lemma 3.5.3,

Tyule) = § - Tow(d() = S - Tu(d()). (3.6.1)
Also, for any function f,

Ty(fv)(@) = 8- T(¢x(f))(d(x)) = 8- T((f 0 ¢~ ")) (d(2))-

Therefore, by the L?(u)-boundedness of T},

[ 1@l ar) < [ 1705 0 mow)] do; o
= [ oo ) duty)
§C/|fo¢1|2dM=C/|f]2dV.

So Ty, is bounded in L?*(v).
Let D, be the lattice D, = {¢~1(Q) : Q € D,}. Momentarily, use the notation
Aé instead of Ag, which we used in (3.4.3), and define Af) analogously for Q €D,.

Write also
Toomv = D Ajaglev
QETree(R)
Assuming Proposition 3.4.1 to hold in the case Ay(yr) = Id (applied to v and Tp),
we deduce that
|1 Ts6-1 ()l F20) = cv(@H(R)) = cu(R), (3.6.2)

taking into account that the BAUP property is stable by homothecies, as well as the
smallness of the a-numbers for the stopping cubes and the root of the tree.
We claim that
| Ts.6-1 )V II72() = [ TRANZ 2, (3.6.3)
with the implicit constant in (3.6.3) independent of the cube R.
Together with (3.6.2) this implies that HTR,LLH%Q(M) 2 1(R) and proves Proposition
3.4.1 in full generality. The proof of (3.6.3) is a routine task which we show now for
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the reader’s convenience. Observe that for any cube @ € D,,, by (3.6.1),

1
my7¢71(Q) (T¢V) = W A_I(Q) Td)l/ dv

_ M<1@> /Q Tyv (67" (x)) dps(x)

1
= 0 /Q S Tu(r)du(x) =8 -muo(Tw).

Denote by Chstop(R) the family of all children of cubes from Stop(R). By the preceding
identity, we obtain

2 —
||T¢,¢*1(R)V||%2(V) = Z ‘ml/,d)fl(Q)(T(ﬁy) —my’¢71(R)(T¢V)} V(Qb I(Q))
QEChstop(R)
- Z ‘S ’ (m/in(T:u) - m/L,R(T,U)) }2 ,LL(Q)
QEChstop(R)

~ Z [mpQ(Th) — m,u,R(T,U)}Z 1n(Q)
Q€EChsop(R)

— | Trull .

as claimed.

Remark also that if u is well approximated in some cube @ € D, by some measure
of the form ¢H"|r, where L is some hyperplane parallel to H, then it follows that
v = (¢ 1)sp is well approximated in ¢~*(Q) by a measure of the form

¢ﬂ_1(CHn‘L) = C//Hn|¢71(L).

Observe that ¢~1(L) is a hyperplane parallel to the horizontal hyperplane H’, by the

definition of O. Using this fact, the reader can check that if aLH)(MBQ) < g, then

o (¢~{(MBg)) < .

3.7 The approximating measure

From now on, in order to prove Proposition 3.4.1 for a given R € Nice, we assume
that A(zr) = Id. Recall also that we assume A to be symmetric. In this section we
will construct a measure o which should be considered as an approximation of y, in
a sense.

For every @ € Chsop(R), R € Nice, let Lg be an n-plane parallel to H = {z €
R"*1: 2,11 = 0} such that aﬁQ(MBQ) < Ce. Let €,t > 0 be some parameters to be
chosen later, with ¢ < € < t < 1 and such that Bfo?u(MBQ) + ﬁfo(?“(BQ) < £/10 for
all @ € Chsyop(R), R € Nice.

Denote

Quy ={z € Q : dist(z,suppu \ Q) > t£(Q)}.
Now for @ € Chsiop(RR) with R € Nice, set fig = plg,, and fi = >, fig. Let
QEChsiop(R)
¢ be some C'* radial function supported on B(0,1) such that [ ¢p(z)dH"|g(z) =1
and, for 7 > 0, set ¢.(v) = r~"¢(x/r). Denote by I, the orthogonal projection on
Lq, define
6 =Hrgiulg, and o = (6 * Yaze@))H" Ly,
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and then set

g = Z 0Q-

QEChsiop(R)

Observe that |og| = [logll = [[nq, || for every @ € Chsiop(RR), s0

lofl = lldl-

Moreover, using the thin boundary condition and the abundance parameter 7,

-l <n(R\ U @)+ ¥ u@\Qu)

QEChsiop(R) QEChsiop(R) (3.7.1)
<n'2u(R) + C°u(R) < tOu(R),

taking n < t.
Note also that, for each @ € Chsiop(R), by the definition of oq,

supp 0 C Uszg(q) (supp Mgl Q) C Userq)(Usze@) (Qr)) = Usze) (Qery)- (3-7.2)

As a consequence, for P, Q € Chsop(R) with P # @, we have

dist(supp op, supp o) > dist (Uszepy (P ) Uszeo) (Qqr)))
> dist(Py), Qury) — 66 ({(P) + £(Q))
> t max(£(P), (Q)) — 62 ((P) + £(Q)) (3.7:3)
> 5 max(((P), (@)
We will need the following lemma:

Lemma 3.7.1. Let Q € Chsyop(R). If f € Lip,, (ulogg(Q) (Q(t))>, then

] [ wiitoq -~ iQ)e)| S M Lip, (D@ Q)

Proof. Write

’/fd(acz —/1@)’ < ‘/fd(UQ_&Q)‘ + ’/fd(&@ —ﬁQ)l =T+ T

By the definition of 6¢g and the fact that @ € Chsop(R) and therefore S (M Bg) <

&,

Ty — / (F(lpy (2)) — f(x))dfig(x)

For the other term, by Fubini

S M® Lipo (f)e*Q)* (@)

T = ‘/f )daq(y /f UQ*SOQé'z(Q))H"LQ(y)’
‘ [ 0w 7+ >H”|LQ><y>)da—Q<y>]

< / sup | F(y) — f(y+ 2)|ddoly) S M° Lip, (HE*(Q)P°u(Q). O
|2|<264(Q)

Next we show that o has n-growth.
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Lemma 3.7.2. The measure o has polynomial growth of degree n. That is,
o(B(z,r)) < Cr"™  forall x € R"! r>0.

Proof. First we will check that og has n-growth for each @ € Chsop(R). Denoting
9Q = 0Q * paz(@) and since o = gqQ H"\LQ, this is equivalent to showing that
l9glle < 1. To prove this, for = € Lg, using that Il (z) = =, we write

90(x) = / P2z0Q)(* — y) Al Lgpplq, () = / Poz0Q)(* — Ty (v) dulq,, (v)

1 ~
_ /Q (e o Tle) (2 = 0) ) S g p(@ng! (Br.26(@)) ).

Since Bfo?u(BQ) < £/10, there is some constant C' depending at most on n such that

p(QNIIL (B, 250(Q)) ) < u(B(x,CE0(Q))) 5 (BUQ))",

which ensures that ||gg|lc S 1, as wished.

Next, for a fixed ball B(x, ), let I be the family of cubes @ € Chsiop(R) such that
2Bo N B(x,r) # @. We split I = I U I, where I; is the subfamily of the cubes from
I with side length at most r and Iy = I \ I;. Then we have

o(B(z,r)) < Y llogll+ Y oq(B(z,7)).
Qel QEel>
For each @ € I, we have suppog C 2Bg C B(xz,4r), and thus
D ool £C ) Q) < Cu(B(x,4r)) < Cr™.
Qe Qe

On the other hand, it is immediate to check that there is a bounded number of cubes
Q) € I, with the bound depending on the parameters of the lattice D, and thus on
the AD-regularity constant of u. Hence, using also the n-growth of o,

Z oq(B(z,r)) <C Z r* < Cr",
QGIZ QEIQ

which completes the proof of the lemma. O

3.8 Approximation argument and reflection

3.8.1 The matrix A and its associated operators T and S

Recall that we assume that A is a symmetric matrix such that A(zg) = Id. Given a
parameter A € (0,1/10) to be chosen below, we set d = A/(R) and we assume that
a “good” approximating n-plane for suppu N Bg is Lg = {x € R*': 2,1 = 2d}.
That is, aﬁR(MBR) < e We also take H = {z € R""': 2,1 = 0}, so that Lg is
a translation of H along the (n + 1)-th direction. Further, we suppose that Br C

B(0,2¢(R)).
Given z € R™"! we denote by z* the reflection of z with respect to H, that is
x* = (z1,22,...,Tn, —Tpt1). Now we define a matrix A which satisfies some kind of

invariance under this reflection. First, we consider an auxiliary matrix B defined on
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{z:2n41 >0} by
B(x) =
Alz) 2t 4 [d (1 — 2 30 < qq < d.

Notice that B(0) = Id. For z,41 < 0 we set

bia(z*) - bia(aY) —b1 1 (x")

bai(z*) -+ ban(xY) —b2 1 (")

bn,l(@"*) bn,n(m*) _bn,n+1($*)
_bn—&-l,l(x*) tee _bn—&-l,n(x*) bn-i—l,n—‘rl(x*)

where b;j(2*) are the coefficients of B(z*). In this way, for ¢(x) = «*, it holds
B = |det D(¢)| D(¢")(Bog) D(¢~1)".

Observe that

10 00
0 1 00
D) =D(¢~ )" = : :
00 10
00 0-1
Next we define
B(z) if 2| < 100¢(R),
Alx) = (2 — %) B(z) + (10(?('3) _ 1) Id i 100¢(R) < |z| < 200¢(R)

Id if |z| > 2004(R)
Note that, for ¢(z) = 2*, we still have
A = |det D(¢)| D(¢™")(Aop)D(¢7")".
So, denoting D = D(¢~1) = D(¢~1)7, we have
A(z) = D A(z*) D. (3.8.1)

Lemma 3.8.1. For {(R) small enough, the matriz A\(x) Just defined s Holder con-
tinuous with exponent «/2 in R.

Proof. As a first step, we prove that the auxiliary matrix B defined above is C*/2
inside the ball B(0,200/(R)). Because of the definition of B, it suffices to check the
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Hélder regularity condition for 0 < 41, Ynt+1 < d. In this case

|B(aj) — B(y) } = ‘A x xnﬂ — Ay )yncz‘l —}—Id( xrgl) 14 (1 _ yngl)‘
— (4

_‘ — Id) Tn41 (y) — Id)yn+1‘

d

{L‘n n n
s'“dy*lhum—fd+y;1mu»—A@n

< ol =l o 4oy,

where we took into account that
|A(z) — Id| = |A(z) — A(zr)| < CUR)”.
Now we write

‘xn-i-l ;yn+l| E(R)a S ’xn-i-l ;ayn+1| E(R)a

1 U(R)/?
= Ra [0t = Yna|* < (A)a |1 — Ynsa |2,

Thus for £(R) small enough, we have £(R)*/2/A* < 1 and we get
|B(z) = B(y)| < Cla = y|*? + Cla —y|* < Cla —y|*?,

since |x —y| < ¢(R) < 1. This proves the («/2)-Holder regularity in the ball
B(0,200¢(R)).

The next step is to prove that the matrix A is C*/2 inside the ball B(0,200/(R)).
The regularity inside B(0, 100¢(R)) follows from the regularity of B. Consider z,y €
B(0,200¢(R))\ B(0,100¢(R)). Exploiting the definition of A together with the Holder
regularity of the matrix B inside B(0,2004(R)) we have

|A(z) — A(y)| = ’(2 - 10(‘]2]%))3(50) - (2 - 10(’)21%))3(9) * (’1J(;|02(‘Jg)|>ld’

smmm—B@Hﬂwu%J®w5@y4 @—‘ﬁmﬁ@ﬂ
gmmm—B@M+w@w4ﬂQ&agMHMM‘B@”m£@>
< Clz -y + |B(x) - 1d| 1’30;(2') + Cla —y|*? 10(%%)

so that, being x,y € B(0,200/(R)) and B(0) = Id, we can write

A\ o A\ < a/Q 04/2 ’1’ — ’ o |a/2 ’y‘

_ o le/2
/2 a/2 |$ y| a2 _ae/2
< Clz —y|** + CUR) R + Clz —y|** < Clz — y[**.

The matrix A is trivially C*/2 in R**1\ B(0,200¢(R)). To finish the proof, take z
with |z| < 2004(R), y with |y| > 200¢(R) and choose a point § with |g| = 200¢(R)
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and |z — g| < |z — y|. Then write

[A(w) — A(y)| = |A(2) - Id| = |A(z) = A(§)| < Cla = §1*/* < Cla —y|**. O

From now on we assume that /(R) < 1 so that the estimates in Lemma 4.2.1 hold
for all z,y € R. Also, the estimates in Lemma 4.2.1 and Lemma 4.2.2 hold for A with
a/2 replacing a. Further, we will take 0 < ¢ < A < 1, so that A(x) = A(z) for all z
in a neighborhood of R.

Let € 7 be the fundamental solution associated with L 3, set I?(.%, y) = Vi&€;(x,y),

and define
— [ Rwy)duty)

Note that, by (3.8.1) and Lemma 3.5.2, for z, y € R"*! we have
Eq(r,y) =E;(x",y") and IA((x,y) =V &5(z,y) =DV E3(z",y") = DK(z",y"
8

Define now the operator

Sp(z) = / Ks(z,y)du(y),

associated with the kernel

Ks(z,y) = K(z,y) — K(2",y),
so that R R
Su(x) = Tu(z) — Tp(z").

Remark 6. The operators fu and S, are bounded in L?(u|g). Indeed, the L?(u|r)
boundedness of T}, follows from the one of 7}, and the fact that the difference between
their kernels is bounded in modulus by 1/|z — y|["~%/2, by a freezing argument using
Lemma 4.2.2. Then to prove the L?(u|r) boundedness of S, it suffices to show that
the operator U, defined by

U[Lf(x) = ﬁtf(x*)
is bounded in L?(p|g). To show this, write

| Ut duta) = [ Tt @)Pduta) = [ ) doto)

where ¢y is the image measure of p|p by the reflection ¢: x +— z*. Since JA“# is

bounded in L*(u|g) and ¢yu has n-polynomial growth, it follows that fu is bounded
from L?(u|g) to L?(¢sp), which implies that U, is bounded in L?(u|g), as wished.

Recall that H = {z: x,+1 = 0}. We denote by Il the orthogonal projection on
H, we set

Tl () = My (Tp()), ST p(x) =T (Sp(x)),
and we define similarly TH7 SH, etc. The kernel of TH is KH (z,y) = Iy (K (z,y))
and the one of ST is K (ac y) =y (Ks(x,y)). Note that, from the second identity
n (3.8.2), we get

~

Kz, y) = K" (z*,y*) for all 2,y € R"! with z # y. (3.8.3)
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3.8.2 The approximation lemmas
This section is devoted to announce some technical approximation lemmas.

Lemma 3.8.2 (First Approximation Lemma). For every R € Nice we have
ITo|72) < Cu(R) (3.8.4)

and
18172y < Cn(R). (3:85)
For the horizontal operator S we have a much better estimate:

Lemma 3.8.3 (Second Approximation Lemma). Let R € Nice. Let 1,69 > 0 and
suppose that HTR,uHQLQ(M) <e;u(R). Then

157 o725y < €2 u(R), (3.8.6)

if e1, U(R), t, and A are small enough and M is big enough.

Essentially, the estimates in the above lemmas hold because o is a very good
approximation of the measure y at the scales and location of Tree(R). Further, in the
case of Lemma 3.8.3 the reflection involved in the definition of S plays an essential
role in the localization that allows to transfer the estimates from the measure p to
the compactly supported measure ¢ with a small error.

The proof of Lemmas 3.8.2 and 3.8.3 follows from the next three auxiliary lemmas.
Lemma 3.8.4. Let R € Nice and let
F= > mueSwxe and = > mue(S"u)xe
Q€Chsiop(R) QEChsiop (R)

Then,
| Trpt — 22 S H(R),

and, for any e3 > 0,
ITE 1= 71172 < €3 n(R), (3.8.7)

if €, €, and L(R) are small enough and M 1is big enough.
Lemma 3.8.5. Let R € Nice, denote

F=>Y mueSixe ad fT= > muo(S"R) xe
QEChsmp(R) QeChStop(R)

and let f, fH be as in Lemma 3.8./. Then, for any €4 > 0, if t and A are small
enough, B .
1F = P + 177 = F12,00 < 4 p(R).

Lemma 3.8.6. Let R € Nice and f, fH be as in Lemmas 3.8.4 and 3.8.5. Also, set

h= > mueTixe
QEChStop(R)

Then, for any 5 > 0 we have

1712 5) < ClIRIG2) + €5 u(R), (38.3)
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10122(0) < Cl1F 1320 + 5 1(R), (3.9

and
1571|720y < CNF M2y + €5 1(R) (3.8.10)

if e, €, t and ¢(R) are small enough.

Proof of the Approzimation Lemmas 3.8.2, 3.8.3 using Lemmas 3.8.4, 3.8.5, 3.8.6. The
estimates (3.8.5) and (3.8.6) follow just by an immediate application of the three
auxiliary lemmas and the triangle inequality. For example, to show (3.8.6), assume
HTRMH%Q(M) < &1 u(R) and then by (3.8.10), (3.8.7), and Lemma 3.8.5,

15501200y < CILFH |20 + eu(R)
= C||T1§MH%2(”) +C|ITE p — fHH%%L) +C| 1 - fHH%z(#) +esu(R)
< (e1+e3+eq+e5) u(R).

The proof of (3.8.5) is analogous. R
To show (3.8.4) we just apply (3.8.8) and use the fact that 7}, is bounded in

L?(p|r):

~ ~ ~ 2
17012205y < C 7|22, + €5 u(R) = C H S muedh) XQ‘ pog e R)
Q€Chsiop(R)
< C Tl ) + 5 1(R) S u(R). O

3.8.3 Proof of Lemma 3.8.4

First we set f‘i’,u@) = Tu(p(z)) = Tu(x*) and TPH pu(z) = TH p(p(z)) = TH p(z*),
so that Su(z) = Tpu(x) — T9u(x) and S pu(z) = TH ju(z) — TH u(x). In what follows
we write mq(f) = m,g(f) to simplify the notation. Denote by z/; the orthogonal
projection of zg on Lg. Notice that

o — 2l S " (2Br)Y"TVUR) S (M) /TVU(R) < U(R).

Consider a C'! function X M, R, radial with respect to @', and such that XB(xh, ME(R)/2) <
~ ~ < —1

R < Xy suuny) 9 [ Vsl S (MER) ™. For o € Q € Chsiop(R) and
M > 1, we split the difference Tru(xz) — f(x) as follows:

Trp(x) — f(x)

(Tp) = mr(Tp) —mq(Su)
mq(Tp) — me(Tu) — mo(Tu) + mq(T%n)
=mqQ(TuXm,r) +mQ(Tu(1 — Xn,r)) — mr(TuXn,R)

mQ

~ ~

—mp(Tu(1 = Xm,r)) — mQ(TuXm,r) — mq(Tu(1 — Xum,R))
+mq(TXa.r) +mq(T (1 — XaR)),



3.8. Approximation argument and reflection 79

so that we have

| Tru(z) — f(2)| < Imo(TpXm,R) — mq(TuXm.r)|
+ [mq(Tu(1 — Xar,r)) — mr(Tu(1 — Xar,r))|
+mo(T2(1 — Xarr)) — mo(Tu(l — Xarr))l (3.8.11)
+mr(TuXar)| + Imo(TEX )]
L4+ L+ I+ I, + I,

We perform the analogous splitting for !Tg,u(x) - fH(x)|, so that we have
T p(x) — @) < + 5+ 17 + 17 + 17,
with

= Imq(TH Xar,r) — mo(TH Xae,r)],
= [mq(T (1 = Xar,r)) — mr(T (1 — Xar,r))l,

= [mQ(T" (1 = Xurr) = mo(T, (1= X)),
= |mr(T, Xa,r)l:
= |Imq (T, Xr,r)].

Obviously, IiH < I; for each 1.
Estimate of I. Notice that for 2’ € Q,

ImQ(Tu(1 — Xa,r)) — mr(Tp(1 — Xa,r))|

< ,U(l)/Q T (1 = Xarr) (2) = Tu(1 — Xa,r) (2")| dpa(a)

+M&D/WTG Sn,R) (@) = Tu(1 = Xar.)(@)] du
<2 sup [Tp(1 —Xmr) (W) — Tp(l = Xa,r)(W)]
Yy ER

and to estimate this supremum, observe that for y,79’ € R, by Lemma 4.2.1,

Tu(l = T m) @) — Tu(l — Taer) (¥)] < /( gy 02 K2t
5MBRr

Sl ) s v
(3mBz) |z — 2|t

where the last inequality follows by standard estimates using the growth of the measure
. Therefore

= mq(Tu(1 = Xam,r)) — mr(Tp(1 — Xar,r))| S M ™.
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Estimate of Is. By Lemma 4.2.1 and standard arguments,

L ‘ / (Tl = o)) = Tl ~ Rar ) (@) )

< sug \T (1= Xar) (@) — Tu(1 — Xa,r) (@)
TE

<swp [ [R(wg) - R )lduty)
TEQ §MBR)

o2 /2 /2
</( APURSS A

Inpg)* |z — y|mer? P~ Jparz:

Estimate of I;. This term is estimated by a freezing argument. Indeed, recalling
that ¢ < A, we have A(x) = A(zx) for all x € @), and thus

IVi€a(z,y) — Vi€ 4z, y)| < [Vi€a(z,y) — V1O(z,y; A(7))|

~ 1
+ Vi€, y) = ViO(z, y; A(@)| S 75>
|z — gy

Integrating with respect to y € M Br we derive
o~ 7~ dp(y) /2
|TuxXmr(x) — TuXnm,r(7)] S /MBR [z — gz~ S (MU(R))™M=,

and so R
= [mQ(Txa,r) — m@(TuXarr)| S (MU(R))? < &3,
for /(R) small enough (depending on M).

Estimate of [,. We write

mr(Tuxmr,r) = mr(T,(Xm,r — XR)) + MRr(TLXR)-

Concerning the term mpg(T,xr), the antisymmetric part of the kernel of T}, does not
contribute to the average, hence we can write

ma(Toxr) = 2/;]%) //R () K (o) diw) ()

Using now the estimate (3.2.5) and the n-growth of the measure p, for any y € R we
get

/Ky, 2) + K(z,y)|du(z) / namﬁ(R)a7
ly — 2|

and so
|mR(TuXR)| 5 E(R)a'

To conclude with I it remains to estimate |mgr(T,(Xm,r — XxRr))|- Given some
small constant x € (0,1/10) to be chosen below, let X, g be a C! function which equals
1 on Uyy(g)(R), vanishes out of Uyop gy (R) and satisfies [|[VXx,rlloo S (£€(R))™!, and
denote ¢ = Xam,r — Xx,gr- In particular we have

XM,R — XR = ¥+ Xx,R — XR-
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Then we split as follows:

/TM@MFWRWJgk/zmd4+/1n@g3—mmdu:A+B.<wmm
R R R

The Cauchy-Schwarz inequality and the thin boundary condition (3.2.2) of R give us
the estimate

B < | Tpu(Xe.r = X £2(ul ) HR)Y? S 1Xnsr — XRI £2(0) 1(R)Y?

3.8.13
<t Uaeery (R) \ R)? u(R)V? S 10/ u(R). R

Now it remains to estimate the term A. We consider another auxiliary function @
supported on Uyp)/4(R) such that ¢ =1 on Uy r)s(R) and [|[V@|e S (k€(R)) .
Write

A= ‘/RTM dp| < ‘/@Tw du‘ + ’/(XR — )T du‘ (3.8.14)

For the second term above, notice that the definition of ¢ and the thin boundary
condition imply that [[Xr — @l 2(,) < £70/21(R)Y/2. Therefore,

‘/(XR — @) du‘ S lellze) Ixr = @l L2

S M(B(a:;b%Mg(R)))lﬂ ﬁwo/2N(R)1/2 (3.8.15)

< MY20/2 1 (R).

To treat the first term in (3.8.14), taking cg > 0, split it as follows

‘/ T du’ < '/@Tw A= enH"1)| + e [ T cxioty 0 AW

+ = A1+ Ay + As.

CR / @TCRHnlLRSO d%n’LR

(3.8.16)

To estimate A; we would like to use the a-numbers. However, we can only
guarantee that T}, is Hélder continuous on supp¢. So we convolve this function
with a non-negative, radial, C*° function 6 supported on B(0,4¢(R)), and such that
[60dLr T =0 and |Vl S (RE(R))™"2, with # € (0,£/20) to be chosen. Then we

write

A < ‘/95 [0+ Tug] d (i — crH"|Lp)

= A1+ A1

+ ‘/95 [TM‘P_ Q*Tugp} d(p—crH"|Ly)

We turn first our attention to Ay 1:
Ay < ||V(@ [0 % Tue)) || MM U(R)" ol (M Bg). (3.8.17)
Notice that
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82
Since dist(supp ¢, supp ¢) > «¢(R)/4 and supp 6 C B(0, k¢(R)/20), we derive
u(Blaly MUR)) _ M
0T, 00,Supp @ S < —
H * uSOH SUPP ¢ ~~ (KK(R))” ~en
and e Ao
< < -
Hv(e * TNSO) Hoo,suppcﬁ ~ o gn ||VQH1 N en I%E(R)
Hence, using also that |[V@|leo < (k€(R))7,
M" M" M"
+ < .
KMHU(R) ~ kM R(R)

Ve[0Tl = miamy

2n+1

Plugging this estimate into (3.8.17), we obtain
A <
L1~ S en

n(R).

UR)".

Concerning the term A; o, we have
00,supp ¢

Ay < /¢ T — 05 Tl dlps — crH|1n| < ||Too — % Tus

For each x € supp ¢, we write
Typ(x) — Tue(y)

sup
/ K(z,2) — K(y,2)| du(2).
supp ¢

[ Tup(z) — 0% Tup(x)| <
yeB(z,kl(R))

< sup
yEB(w,RU(R))

Using the fact that dist(z,supp ¢) > x¢(R) and the Holder continuity of K, for  and

y as above we get
BERD” gy < =
(R) |z — z| K

K(x,z) — K(y,z)| du(z) <
/| (2,2) — K(y,2)| du(z) /u-zw

and thus -
Az S UR)"

Together with the estimates for A; 1, choosing # = k2, this gives

M2n+l )

Ay <A+ A2 Sp(R) <5/-;n+2 + Kk

To deal with Ao, we write

Ay = e [ @) Ty-cxpny, #(0) AW (2)

~| [ T, o0 = a0,
where T™ denotes the transpose of the gradient of the single layer potential. Arguing

as for the term Aj, essentially reversing the roles of ¢ and ¢, we get
Mn+1
AQ SJ /L(R) <€W + M™ /{,04) .
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We leave the details for the reader.

Now we will estimate the term As in (3.8.16). To this end, first we take into
account that

‘/@THMLR@CZ%TL’LR ge(R)n+a

This follows by the same argument used to prove that |mg(T,xr)| S ¢(R)* in (3.8.3).
Then we have

Az~ ‘/@THMLR@ dH" |1,

SURP™ 4| [ 6T, o4 9) My

<U(R)"™T + '/ ¢ Tynj, Xoa,r AH" |1,

=((R)""™ + Az + A3

+ ’/@TH"LR@M,R —p— @) dH"|L,

The Cauchy-Schwarz inequality and the L?(H" |1, )-boundedness of Tyn| L, imply

n/2 n/2'

Az S IXar — ¢ = @llrzun), ) €R)™ S = Xe.r — Pll2un), ) €(R)

To estimate ||Xx r — ¢||L2(H7L|LR) we use the a-numbers and the thin boundary condi-
tion of R with respect to u:

et = D300 < [ 1R = 92 + \ [ R =l = 712,

S w(Uzwe(ry (R) \ R)
+ oy ®(MBg) (MUBR))" ™ |V (IXx.k — ) oo
S KO p(R) +eM™ ™ k™ H(R)™

where we took into account that ||V (|Xu.r — ??)[lec < (K€(R))™L. Thus,
Ass < (HWO/Q 4 /2 p(nt1)/2 H—1/2> w(R).
Next we deal with A3 ;. To this end, we write

A31 S sup T3y, Xoa,r(@)| ()
z€LRNB(z';,2¢(R))

3.8.18
< sup (3.8.18)

Ty s, otn(@) 1(R) + MPHU(R)(R),
z€LRNB(z'y,2¢(R))

where T, denotes the frozen operator. To simplify notation we denote by K,(-) =
V10(-,0; A(z)) its kernel. For any @ € Lr N B2z, 2¢(R)), by the change of variable
z =2 —y,

Tty at@) = [ Kol =) Ror.aly) 4| (0)
(3.8.19)
= /Kx(z —x)XMmr(2x — 2) dH" |1, (2).
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Hence,
2L, 0, ot () = [ Kol = 9) Rot.ly) 4| (0)
+ /Kx(y —z)Xm,r(2z —y) dH" |1, (y) (3.8.20)
= /Kz(x —y) (Xar,r(y) — X, (22 — y)) dH" |1, (y)-
To estimate the last integral, recall that X/ g is radial with respect to 2/, and hence
Xarr(22 —y) = Xm,r(22 — (22 — y)) = Xarr(y + 2(2R — @)
Thus, for all z € L N B(2', 2((R)),

supp(Xar,r — Xar,r(22 — +)) C A(2z, s MU(R),2M((R)).

Also, for all y € Lg, since X, g is Lipschitz with constant ¢/(M{(R)),

X Y 7 ~ p —x 1
Rat.ry) — orn 22— )| = |Ratly) — Tas.aly + 20 — 7)) $ LR <

~ MUR) ¥ M
So we get
Toanys, Xorel@)] S Kol — o) dH" |1 () S - (3.821)
R M Ja(2y, 2 M) 201e(R) ) M

Together with (3.8.18), this gives
Azy S (M UR)™ + M) u(R).
Now, gathering this estimate with the one of A32, we get
Az < (rﬂo/? + e 2p D2 712 preg(RY - M f(R)a) u(R),
and then, by (3.8.15),
A< M2 (R) + Ay + A + A3
< MY20021(R) + G% + ma> u(R) + G% + M" ma> u(R)
(0072 4 AMOED2 V2 MU(R) + M4 (R)®) u(R).

Note that if M is chosen big enough, then x and ¢(R) small enough, and finally
small enough (in this order), we get

A <e3u(R).

We can now conclude the estimate of the term Iy in (3.8.11). From (3.8.3), the
last estimate, and (3.8.13), we obtain

L < |mp(Tu(Xm,r — XR))| + Imr(TuXR)]

1
< UR)* + ——— (A+ B) S UR)® + x70/? <
< U(R) +M(R)( + B) SUR)* + k12 + g3 S e3,
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assuming again /(R) and & to be small enough.

Estimate of I5 and IZ/. Recall that I5 = |mQ(ff§M,R)| and that, for v € Q €
Chstop(R), by definition we have T\f)zMﬂ(x) = Tuxm,r(z*). We split it as follows

T (Xar,rm) (29)] < | T(Ranri)(z*) — T(Xar,rerH" |1y ()]

o . (3.8.22)

+ [erT(Xar,rH" 1) (2%)]-

We consider now the first term in the right hand side of inequality (3.8.22). Let T

be the frozen operator associated with the kernel K «(-) := V10(-,0; A(z*)). Notice
that by Lemma 3.8.1 and Lemma 4.2.2,

~

T am) @) = T, (Kar) ()]

~

ST epmny,, Xt R) (@) = Tepny, , (Rar,) (7))

+ [T (Rat, 1) (2%) = T (K ) (2]

+ }f *vﬂ 52]\/[ R)( *) - fw*,CRH"hR (%M,R)(ﬂf*)’ (3823)
‘/XMR (2" —y)d(p — crM"|Ly)(y)

+ MR )a/?

To estimate the remaining term in the last inequality, we will use the a-numbers.
To this end we consider an auxiliary smooth function ¢ which equals 1 on R**!\
B(xz*, Al(R)/2) and vanishes in B(z*, Al(R)/4), with ||[V¢|ls < 1/(A¢(R)). Then
taking into account that ¢ = 1 on M BrNsupp u, the remaining term in the inequality
above equals

‘/XMR y) Ko (2" — y)d(u — CRH"!LR)(y)‘
< al®(MBRg) (MUR)™ |V (Rarr v Ko (2 = ) ||,
It is easy to check that HV(XMR%bK )H < O(M,A)¢(R)™™ L. Thus, the

integral on the right hand side of (3.8. 23) does not exceed C(M A)e, and so

~ ~

Tu(Xarr)(@") = Teppny,, (X'M,R)(:r*)) SOM,A)e+ (MUR)*?. (3824)

To estimate the second term on the right hand side of inequality (3.8.22), we
denote by w the orthogonal projection of x on Lg (recall that z € Q), by w* the
reflection of w with respect to H, and we split

T (0w 1" | 1) (27)] < TR, H" |0 (2%) = Tor (Rare M 2g) (7))
Lo (ot " 1) (2) = Lo (Ran i) @] o
+ | Ty Rtk H" | 22) (@%) = Ty (Xar,RH" | 1) (W) |
+ | T (g, g1 | 1) (W)

where fm is the frozen operator associated with the kernel IA{xR(-) = V10(,,0; ;{(CUR))
Using Lemma 4.2.2, it is easy to check that the first term on the right hand side does
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not exceed C' (M/(R))®/2. For the third term, since
dist(z*, supp N 2M Bg) ~ Al(R) < |z* — w*| = |z — w| < e/ (R),

by standard arguments we derive
| Ton (Xt 87" 1) (%) = T (a0 H" | 1) (W)
2% — w|

~ W?—[”!LR (B(x}%,Mg(R))) < /() A—npn

Next we estimate the second term on the right hand side of (3.8.25). We have

| T (Xor e | 15) (@) = To g (Ror, gH" 1) ()]

< / R (2 — y) — Rn (" — )] dH" |1 (4).
2MBgr

By (4.2), we have

~ ~

wo A(z*) 1z wt

z* -
det A(z+) (Al@*) 1z - 2)02 ot A g) (A

(xr)"'2

Azg
aR)~lz - 2)+1D)/2

By standard estimates and the Holder continuity of A it follows that, for any z € R"*1,

< ‘J)* _mR‘a/Q < B(R)Q/Q

Since, for any x € R, dist(z*, Lr) = A¢(R), we deduce

7> =5 a/2
/QMBJKI*(QC* — ) = Rop(a® — )| dH" |1, (y) < (i(Z)R))an@MBROLR)

~ M"AT"U(R)*/?.
Therefore, plugging all these estimates in (3.8.25), we get
T (Rt 7 H" |1) ()| S MO2(R)Y /0D AT M
+ M ATUR)Y? 4 | Ty (Xnr M| 1) (w7)

To deal with the last term on the right hand side of (3.8.25), we distinguish between
the vertical and the horizontal components, so we set

~

| Ton (OnrrH | 22) ()] < [T, (Rar, 0" 1) (W) | 4 T (R, M| ) (") .

Being A(zg) = Id, T, zp coincides with the Riesz transform modulo some constant
factor. Hence its vertical component coincides with the Poisson transform modulo
some constant factor, so that

T2, (o, 1) (w)] S 1. (3.8.27)

The horizontal component is estimated like the term T2 (Y, rH" |1, )(2) in (3.8.19).
The reader can check that the same estimates hold just replacing x by either w* or
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xR appropriately, and T, by fw »- A key point is that, for the kernel K H of Tgflg, the
change of variable z = 2w — y gives us

T o Tot(w) = [ RE (0 = 9) Koty 41" (1)
/KH 2 — (2w — 2™)) Tar (2w — 2) dH 1 (2)
/KH z—w") Xm,r(2w — 2) dH" |1, (2),

which is analogous to (3.8.19). Notice that the last identity is only valid for the
horizontal component of the kernel Kx (taking into account that Kw is the kernel
of the Riesz transform modulo some constant factor, since A(zy) = Id). Then, as in
(3.8.20), we can write

2TzR,Hn|L X r(w / (w* —y) (Xor,r(Y) — Xar,r (2w — ) dH" | L, ().

Thus, as in (3.8.21), we get

1

T (Ram " L) (@) S o7

Together with (3.8.24), this yields
I; < supﬁ“\u)A{Mﬂ(x*)‘
TER
< C(M,A) e+ M*20(R)*/?
1
+ MOPUR)Z 4 eV OFDATIM® 14—+ MTAT(R),
For IH we get almost the same estimate. The only difference is that we do not have

to estimate the vertical term in (3.8.27), and thus the summand 1 does not appear in
the last inequality. So we have

I < O(M, A) e+ M2 0(R)* 2+ M2 0(R)*/?+£Y <"+1>A*"M”+%+M”A*ne(3)a/2.

Thus, for M big enough, ¢(R) small enough and e small enough, we get

Is <1 and Ig{ < es.

Recall that we showed that I < I; <egfori=1,...,4, by choosing the param-

~

eters M and k properly and assuming ¢ and ¢(R) small enough. Then, gathering the
estimates obtained for Iy, ..., I5 and Iéq, the lemma, follows.

3.8.4 Proof of Lemma 3.8.5

Recall that 3
F=F= > muek-n)xe
QEChsiop(R)
and
== mueS™(u—i) xe-

QEChStop (R)
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So we have

LA = 2wy < I = Fllzzgo < 1S (e — @)l r2 ()
< 1S(ulr = )l L2gu) ) + 1Sl R L2 (1)

To estimate the first term on the right hand side we use the L?(|z) boundedness of
S, and (3.7.1):
1S(ulr = W) L2 ) S = plrll S 00 0(R).
To deal with the second term we split R® in two regions:
Dy =Unijzyy(R)\ R, Dy =R\ Up1/2yy(R).

Then we have

IS (el re) |22 (i) < SO ) |22l ) + 1S (XDt £2 11 ) -

By the L?(u|g) boundedness of S, and the thin boundary property, we have

IS(XDu 72y S 1(D1) S A2 u(R).

To estimate ||S(XD, )| £2(u|5): recall that

S(xpy)() :/D (K(z,y) — K(z*,y)) du(y)

For x € R, y € Dy, we have

1 1
o — 2*| <208 4(R) < 5 AY2(R) < 5z =l
and thus /2 P
~ ~ A%/20(R)
_ * < N
’K(.’B,y) K(ﬂf )y)‘ ~ |$_y|n+a/2

Therefore, by standard estimates using the n-growth of u, for z € R,

a/2 a/2
Stcoa(a)| < [ AR 1)

le—y|>1A1/20(R) [T — y[rte/?

a/2 a/2
< A~/ £<R) / < Aa/4.
~ (Al/Qg(R))aﬂ ~

Hence,
HS(XDQILL)H%Q(N‘R) S AQ/QM(R)-
Together with the previous estimates, this yields

A = P 2 < W = Fllzeqey S (470 + Amn(e/200/2) )y (R),

which proves the lemma.

3.8.5 Proof of Lemma 3.8.6

We will just prove (3.8.10). The arguments for the other inequalities (3.8.8) and
(3.8.9) are totally analogous. Indeed, the reader can easily check that the operators
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T . S, and S are essentially interchangeable in the estimates below.

Recall that the measure o was defined in Section 3.7, and that € is such that
Boou(MBg) < € for all Q € Chsyop(R), R € Nice.

Let 7 be a small number to be chosen below, with ¢ < 7 < min(¢,A) < 1.
For a fixed Q € Chsiop(Q) and z € R™ let y1(z) be a smooth radial function
such that suppy; C B(0,74(Q)) and Yi(z) = 1 in B(0,37(Q)). Let also X2
be a smooth radial function supported on the annulus A(0, 37¢(Q), M ¢(Q)) and
such that Yo = 1 in AQO,TK(Q),%MK(Q)). Finally, set y3 a smooth radial func-
tion supported on B(O, ZMﬂ(Q))C, such that y3 = 1 in B(O, %ME(Q))C. We con-
struct the functions y; so that x1 + x2 + X3 = 1. Notice that they depend on the
cube Q. Now denote KSZHQ(ac,y) = Kgu(z,y)Xi(lx — y|) for i = 1,2,3, so that
Kgu(z,y) = Z?Zl KSZHQ (z,y), and denoting by SH the operator associated with the

truncated kernel Kgu , we also have S = ZZ | SH - Further, we can write
iQ

3
SHU:Z Z Xsuppog ° QO’— ZSH in L?(0)

i=1 QEChsiop(R)

and
3 3
=> > xo-Sfor=>Y_8n inL*(ulr)
i=1 QEChgeop(R) i=1

To shorten the notation, we will write Kgu(z,y) instead of KS_HQ (z,y) when @ is
clear from the context. We split ’

1570 20y < 1S ol r2(0) + 1957 0l 12(0) + 195 [l 22(0)- (3.8.28)

Estimate of HS:?O’HLQ(U). For Q € Chsiop(R) and z, 2" € Ujpzyq)(Qr)), we have

[S5iqo () — S3qA(a)|

< |5§{QU($) - SgQﬂ(fE)\ + \SfQﬂ(ﬁ) - Sf@ﬂ@’ﬂ = S31 + S32.
(3.8.29)

Notice that for x € Ujpzq)(Q)) and y, ¥ € Uipzp)(Py)), P € Chsiop(R), by

Lemma 4.2.1,

ly — |/

C()(U(Q) + £(P) + dist(P, Q))"+/2
((P)>/?

C(t)D(P,Q)+e/?’

|K55Q($7y) - Ksé{@@ y' ’ ~
(3.8.30)

where D(P,Q) = 4(Q) + ¢(P) + dist(P, Q) and the t-dependence of C(t) comes from
the comparability | — y| = |z — 4|, which depends on t (due to € < t being very
small). Applying now Lemma 3.7.1, with the Lip,-constant coming from (3.8.30),

Ss1 = |Stoo (@) — SEoi()| <

[ Espwnpdtor - i)
PEChStop(R)
0(P)*/2(P)

D(P, Q)2

(3.8.31)
SMePelow) Y
PEChStop(R)
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Concerning Ssz, by standard estimates, one gets

B |x /’a/2
S32§/KH x,y) — Kgu (', y)|diy g/ L T T8
‘ 5'3‘@( ) S3,Q( )’ ( ) |x_y|2%M£ ‘wQ y‘n+a/2 ( )
< 1 )
~ Me/2

(3.8.32)

As a consequence of (3.8.31) and (3.8.32),

(P2 (P C
Z () w(P)

e H ~ a2 za/2
S500(2) — muo(Ssh)| < M e Ol D(P,Q)r+e/? NN

PEChsop(R)
This implies that for € supp o, Q € Chsop(R),

UP)»u(P) C
Z D(P, Q)n+a/2 + Me/2”

(3.8.33)

1530 ()] < [mu(ST )| + Mo/2e/2C(t)
PGChstop(R)

Denote
((P)*/?u(P)

WXQ(Z’). (3.8.34)

glx) = > >

QGChStop(R) PEChStop(R)

Since p(Q) =~ o(Q) for each @, squaring and integrating (3.8.33) with respect to o,
we obtain

155701720y S D mua(S5 R Q)
QGChStop(R)

+ MO CW)lgllFo + M Y n(@)
QEChStop(R)

2

Y. mue(Siixe + MO C(1)|gl 72 + M n(R).

QEChStop (R)

~
~

L2(p|r)
(3.8.35)

We will estimate ||g||2(,,) by duality: for any non-negative funtion h € L?(p) write

0(P)*2 (P

QeChStop( )PEChStop

o(p)er?
= Z p(P) Z D(p(7 Q))n+a/2 /th'“'

PEChStop(R) QGChStop(R)

(3.8.36)
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Notice that for each z € P € Chsiop(R), integrating on annuli we get
(P /2
> A
D(P,Q)nta/2 0

QGChStop(R)
a/2
N / 4B h(yi a7z )
Q (U(P)+ ]z —yl)

((P)*/h(y)

/|Z—y§€(P) (U(P)+ |z — y‘)n+a/2 du(y)
3 ((P)*h(y)

" ; /2i_lf(P)<|Z—y<2i£(P) (U(P) + |z — y|)n+e/? du(y)

(24(P))" My, Bz 210(P)) (h)-
=0

<

(3.8.37)

Now let M, stand for the centered maximal Hardy-Littlewood operator with respect
to p. Since my, (. 2igpy)(h) S Myh(z) and

. 9-i0/2)(B(z, 214(P)))
(2i(P))" =

=0

by (3.8.36) and (3.8.37),

[ohdus 3wt M) a(P) < [ Myubdp S [Wlzagou(R)
PEChStop(R)

Therefore,
91l 2y S 1(B)'/2.
Plugging this into (3.8.35) we get
2
+ (M™% + M*2*C(t)) u(R)
L2(p|Rr)

> muo(Sfixe
QGChStop(R)

Y mue(Siixe
Q&Chsp(R)

Y mue(Siixe
Q&Chsup(R)

S 1710+

E

2

L2(u|r)
2

+ (M~ + M°e*C(t)) u(R).
L%(ulr)

:

Estimate of HS{{aHLz(U). Recall that, by (3.7.2), for each Q € Chsiop(R),

supp o C Uszy(q)(supp M osilq ) € Usenq) Q)
and, for P,Q € Chsiop(R) with P # @, by (3.7.3),

dist(supp op, suppog) > % max({(P),4(Q)).
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Therefore, recalling that 7 < ¢,
SHo(x) = Sfog(x) for all x € suppog. (3.8.38)
Let Jg be the convex hull of U;oz¢()(Q(37)) N Lg. Then the following hold:

1. By the thin boundary condition, we have
70((JQ)°) < 1@\ Unoze()(Qsn)) < MQ\ Quar) S 7 1(Q).

2. Let 13p, be a smooth function that equals 1 in 2B, vanishes in (3Bg)¢ and
such that [[Visp,[lee S £(Q)". Then, for each = € Lo NUri)(Jg),

XB(,3:0(Q) MLothQuy = XB(x360Q)) Mgt (¥3Bo 1)-

Notice now that

||S{{0||%2(0) = Z ||S{{U||%2(G’Q)7
QEChsiop(R)

and for each @ € Chsiop(R),

||S{{UH%2(UQ) = ||SfIUH%2( y T ||S{IUH%2( )y = S1 + St

oQlig 7@l

Write Sfo(x) = leU(x) — f{la(a:*) Since 74(Q) < Al(R), we have lea(:c*) =
0. Therefore, by (3.8.38), the Cauchy-Schwarz inequality, the property (1) of Jg, and
the n-growth of the measure o,

812 = |10l 2o o) = 1T 70 22

7Qlg)e 7Qlge)

= 2 e\ 1/2 =
< HTlHUQHLél(HﬂLQ)UQ((JQ) ) S HTIUQH%AL(HMLQ)TVO/?M(Q)U?

fA{ecall that 0 = gg H"|L, for some function gq such that 0 < go < X2BgnLg- Since
T EH"ILQ is bounded in L*(H"| Lo) (by the uniform rectifiability of L, for example),

we have HflO'QHL‘*(H”\LQ) < 0(Q)*, and thus

S1a < 72(Q).

We treat now Sii. To this end, notice that for x € Jg, by (3.8.38), a freezing
argument and the antisymmetry of the kernel V10(-,-; A(z)), we have

S8 0(@) = [SHoo(x)| < ' / v1®<x,y;fx<x>>da@<y>} L onQ)"

= M_ <) V10(z,y; A(@))(90(y) —gQ(x))dH”ILQ(y)‘ + CUQ)"

L
< / P <gQ‘LQ“MQ>“Q)) dH"|Lo (y) + Q)
|z—y|<T€(Q)

~ |z =yt
< i e
S TUQLP (901, ) ) + Q™

(3.8.39)
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To estimate Lip (ngLQmurZ(Q)(JQ>)

Then property (2) of Jg implies that
Vo (2)| = [V(Lghiqq, * e2:u@)(2)| = |(Veorzeq) * Trostsne i) (2)]

= /Vgow(@(z —y) dU L o338, 1(y)

= | [ s (e ~ Mg ) v ) dts)

= | [ Vs (M20() ~ o) a0 du(y)'

= | [ (Feusn 0 Mia)le = n)vang ) dls - cgMl1)(0)
< OéﬁQ(MBQ)Man(Q)nH Lip ((Vezer(q) 0 ry)(z — )sB,)
To estimate Lip ((Vga%g(Q) ollp,)(x — ')’QZJgBQ), we use the fact that

. . C 1
Lip(V(pae(q) © I, ) < Lip(Vposyq)) + HVSDZéZ(Q)HOOE(Q) S Q)

and then it follows easily also that

1

Lip (Vi@ ° o) (= = Wame) S Gzgpyere:

Therefore,

aﬁQ (M Bg)M™+!
En2U(Q)

Plugging this estimate in (3.8.39), we get that for z € Jg,

Vao(z)| S

L T ML o
1S{o(x)] < auQ(MBQ)W + Q)"

Thus,
Sll = HS{{UH%Q(UQUQ) SJ (M2n+2 7-2 &:727174 82 +€(Q)2a) N(Q)

Therefore, if £(Q) and € are small enough, we obtain

€5
S = ||S{{UH%2(UQUQ) < EM(Q%
and finally
9
IS0l = Do 1570l a0 < (5 +CT2)u(R) < &5 u(R),

QEChsiop(R)

for 7 small enough.

, observe that for z € Lo NU¢)(Jg), Ly (2) =

Z.
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Estimate of HS;IaHLa(J). First we will estimate HSQHoHLz(J) in terms of ||S§IUHL2(/Q)
Recall that, by definition, 6¢ = HLQﬁN\Q<t)- By Fubini

15§ ol = [ 15§ o(@)Pdota [ streine)
QGChStop
. / 1S5 0(2)? (35 * o) (2) dH" |1 ()
QEChsiop(R)
. / (et * 1S4 o 21" 1) () dog ()
QEChStop
. (3.8.40)

/ sup S5 o(y)Pdaq(a)
QEChStop v - a;\ e<[2,;é<Q

/ s I8fo)Pdug,, (2
QGChStop v L?E Lo

< Z / sup |52HU(?/)|2d:“|Q(t) (2),

—z| < 386(Q
QEChStop v Zy‘ € LZ( )

since |y — 2| < [y — I, (2)] + [T, (2) — 2| < 384(Q). For such y, z, we write
s8] <880 + [ [Key(y2) — Ksp (e10)|doa)
Taking into account that ’Kgg (y,) — Kgu(z, -)| is supported in

A, 370Q), 5MUQ) ) U A(2 370(Q), 3MH(Q))
and that € < 7, by Lemma 4.2.1, we deduce

ly — 2|2
Kou(y,x) — Kgu(z,2)|do(x) ,S/ ————do(x)
/’ 52 % | LrQ<le—yl<m@) | — y[" T/

5 ga/QMn T—n—a/Q.
Therefore, by (3.8.40),
1S5 01220 S 15820 + 2 M2 720 u(R).
Notice that arguing as in (3.8.31), for x € Uyoz(q)(Qr)), we get

|57 ()| < |83 o (x) — S5 ()| + |55 ()]
UP)*p(P)

S Melelo ) Y DP.O)H a2 + |SH ()|

PeChsop(R)

Define g as in (3.8.34). Arguing as in (3.8.35), (3.8.36) and (3.8.37), we get

||S§UH%2(;L) 5 5aMaC(tv7')HgH%2(,]) + ”S2Hﬂ||%2(ﬂ)
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Therefore, estimating || gH%Q(ﬁ) by duality as it was done in the estimate of SI we

have

HS;IO-”%P(U) 5 éaC(M7t7 T) ( )+ ”SQ IU’HL2 (3841)

M|R

Estimate of ||S5 |2, We write

(mRr)"
IS8 ) % [ 18 ) ) (o)

/ 1S5 (1) (@) Pl — fl( / 1S5 i — S () Pdp(),
(3.8.42)

Concerning the last term on the right hand side, by (3.7.1) and the fact that the
maximal operator SH is bounded in L?(u|g), we derive

/R 195" i — 85" (wp) Pdu(z) < ||i — nlrll S 0° u(R).

To deal with the second term on the right hand side of (3.8.42) we argue analogously,
using Cauchy-Schwarz and the L*(u|g) boundedness of Sfu' Then we get

/ 1S () (@) Pl — il () S 007 pu(R).

Finally we turn our attention to the first term. For x € Q € ChStop(R), we write

TQHx for the corresponding frozen operator related to the kernel KQx Taking into
account that M/{(Q) < Al(R), we write

1S5 () (@)| = [T (wg) ()| < |T4 (r) (@)| + | T3 (yr) (2) — THL (i) (z))
< | T8 (r) ()] + CLR)™/

< [T (cqM i) @)| + | [ Rio = )l = cqhlug) o) + CURY?
= S21 + S22 + CE(R)O‘/Q.

Notice that T\fx(cQH”uQ)(:ﬁ’) = 0 for 2’ = M, (z), € Q. Therefore, using the
standard estimates in Lemma 4.2.1 we get

Sa1 = | T (cQM" | 10)) () = T (cqH"|10)(@)]

< / R — ) — Rauls' — y)| dH" |1, (y) < C(M, )22,
00M Bg

To estimate the term Sa2, we will use the fact that a,L ?(MBg) < ¢, that is
Soy < C(M) Lip(KH) a);? (MBo)0(Q)™* < C(M, 7)e.

Hence,
/ 155" (mip) (@) Pdii(z) S C(M,7)(E* + €* + U(R)*)u(R).

Gathering the estimates above we get

1S5 Al S (8072 + COMLT)E + 8% + £(R))) i(R) < 22 (R),
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by choosing ¢, ¢(R), e, € small enough. Together with (3.8.41), this implies that

18801132, S E*MACO(R) + 2 w(RIu(R) < 2 u(R)

by appropriate choices of M, ¢t and & again.
End of the proof of Lemma 3.8.6. Taking into account that

from the splitting (3.8.28) and the estimates obtained for ||S¥ ollr2(o)s | SH ol r2(o)

2
Z mu,Q(Sfﬂ)XQ
QEChStop(R)

< 185" il

(mRr)
L2(u|r)

HSg ‘7HL2 (0)s and HSQ MHLQ(M we derive

2 z = 5
157020y S 17 By = 3 Ima(SERR M@ + D u(B). (5543
QGChStop(R)

Hence to conclude the proof of the lemma it just remains to estimate the second term
on the right hand side above.
For a fixed cube @ € Chsop(R), we write

Q) [myq(ST )| < ‘/QS{{(XQM) dﬂ‘ + ‘/QSf{(ﬂ — XQH) dp| - (3.8.44)

To estimate the first term on the right hand side, recall that by (3.2.5), the difference
between the kernel of S{IQ and its antisymmetric part satisfies

1

‘KSfQ(:c,y) — st(,g(a) (a:,y)‘ S iz — y[n—ar2’

and so
1
‘/ St (xan) d“’ < / e A S QT SUR)P (Q). (3.8.45)
Q Q |z =yl
Concerning the second term on the right hand side of (3.8.44), observe that

= XQM = XQeH — XQ\Q(py M-

Then, using the fact that supp KS{{Q (z,-) C B(z, M~'(Q)) and Cauchy-Schwarz we
deduce 7

' /Q SH (i — xon) du‘ — ‘ /Q [T (Xt 110 (@N\QE — XQ\Q(y 10) A
H ~ 2
<187 ety -1 @00 = X\@0 | 2 ) (@)

Notice that SfIQ(ﬂ) is bounded in L?(u|g). Indeed, one can easily check that for all
g € L*(u|g) and all z € R+,

5T (g 1)(@)| < SH (g p)(2),

where SH (- ) is the maximal operator associated with S (- ) and then the claim
follows from Cotlar’s inequality. This fact, together with the thin boundary condition
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for @ yields

1/2

(Uro0)(Q) \Q) +1(Q\ Qu)
(770/2 4 072y 1 (Q)V/2.

H -
HSl (XUA{71Z<Q)(Q)\QH_ XQ\Q(”:U‘)HLQ(I”Q) S
S
Therefore,
'/ ST (xqefi /:“ S (72 407 w(@).
Together with (3.8.44) and (3.8.45), the last estimate yields
Imu(ST )| S UR)/? + 70012 4 410/2,

Plugging this into (3.8.43), we get

18701720y S 177 132 + (ECR)™ + 770+ 170) u(R) + %5 u(R),

which proves the lemma by choosing 7, ¢, and ¢(R) small enough.

3.9 The continuous measure v

We consider R € Nice and ¢ as above. Because of technical reasons, it is convenient
to replace o by a continuous measure v (i.e., a measure absolutely continuous with
respect to Lebesgue measure). Let ¢ be a radial non-negative C'*° function supported
in B(0,1) such that [ pdC"! =1, and set

VZU*STil()O(;) , (3.9.1)

where s is small enough and will be fixed below. For the moment, let us say that

s K minQeChStop(R) Q).
Recall that, by Lemma 3.7.2, o has n-polynomial growth. It is immediate to check
that the same holds for v, that is

v(B(z,7)) < Cr" for all x € R* » > 0. (3.9.2)

The estimate in the following lemma is the analogue of (3.8.4) in Lemma 3.8.2
with v replacing o.

Lemma 3.9.1. Assume s > 0 small enough in the definition of v and ¢(R) < 1. We
have

/\@\2 dv < CU(R)".
We remark that the smallness requirement on s in this lemma may depend on the

number of cubes in Chsop(R), thus the value of the threshold is merely qualitative.

Proof. By Fubini, Lemma 4.2.2 and the n-growth of o,

/\fl/|2 dv = / |fyl2d(<ps *x0) = /(|T\y|2) * g do

< / sup [ Tw(y)[? do(x) < / sup [ T,v(y)? do(x) + C LR
lz—y|<s lz—y|<s
(3.9.3)
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For all € supp o and y such that |y — z| < s, we write
Tyv ()| = [(es * Tyo) ()| < [(ps * Too)(y)] + |@s * (Too = Tyo)(y)l,  (3.94)

where fy stands for the frozen operator with kernel V10(-,0; A(y)). To estimate the
last term on the right hand side, observe that one can estimate the kernel of T, — fy
as in (3.8.26). Recall that o is supported in a finite union of n-planes, and that it has
a smooth density with respect to H™ on each n-plane. Then one easily gets

To(y) ~ Tyo(y)| < Clo) |u— y|*, (3.9.5)

with C(0) depending on the precise form of o (like the number of cubes in Chsop(R),
for example).
Concerning the first term on the right hand side of (3.9.4), we claim that, if
‘.%' - y‘ <s, - -
|(ps * Teo)(y)| < |Trs0 ()] + C,

where fLS stands for the s-truncated version of fx The arguments to show this are
quite standard, but we show the details for the reader’s convenience. We write

(05 * Too) ()] < | (25 * To(xXB(y.29)9)) @)] + | (05 * To(XB(y.26):0)) (v)]-

We have
T 1
|05 To(XB(y,25)0) W] S / sy — w) / ————do(z) dL" (w)
B(y,2s) [w — 2|
N — A" Y w)do(z
s B(y,2s) J jw—z|<3s |w — 2[" (w) do(z)

.
< sdo(z) < 1.
" S y.2)

Also, by standard estimates,

[0s * To(XB(y,20):0) ()] < sup 1T (XB(y29:0) (2)]
y—z|<s

< |7A},sa(x)| + Csup U<B£:’T)) < ]fx,sa(:n)] +C,

r>s

which concludes the proof of our claim.
By (3.9.4), (3.9.5), and the claim above, we deduce

T,v(y)| < Co) o — y|*? + |Thso(x)| + C < C(o) s*/2 + | Ty so ()| + C,
since |z — y| < s. Plugging this estimate into (3.9.3), we get

/ Tvfdv < / | Ty.s0 () do(z) + C(o) s“4(R)" + CU(R)" + C L(R)"*.

Taking into account that ¢(R) < 1 and using the connection between the kernels of
T, and T stated in Lemma 4.2.2, we derive

/ Tvfdv < / |Tyo|? do + C(c) s ((R)"™ + CU(R)".
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Since T is bounded in L*(0) (with a qualitative bound on the norm, at least), by
standard Calderén-Zygmund theory we deduce that

/|ia\2 do — / |fa\2 do  ass—0.
Thus, using also (3.8.4),
/|:Fyy2dy < / To|?do + ¢(R)" < ((R)™.

which proves the lemma. O

Our next objective is to show that [ [S¥v|?dv is very small if [ [S7o|?do is also
small. That is, we have to transfer the estimate in Lemma 3.8.3 to the measure v.
The fact that we are considering just the horizontal component H will be essential in
this case. We need the following auxiliary result, proven in [NTV14a, Lemma 1].

Lemma 3.9.2. Suppose that f is a C?*-smooth compactly supported function on an
n-plane L parallel to H. Then the function R™(f H"™|1) is a Lipschitz function in
R harmonic outside supp(f H"|1), and it satisfies

sup [R¥(fH™|1)| < CD?sup |V f]
L

and

IR (f H"|2)lip < CD Sup it

where D is the diameter of supp(f H"|r) and Vg is the partial gradient involving only
the derivatives in the directions parallel to H.

Note that the second differential qu f and the corresponding supremum on the
right hand side are considered on L only (the function f in the lemma does not even
need to be defined outside L) while the H-restricted Riesz transform R (f H"|r) on
the left hand side is viewed as a function on the entire space R"*! and its supremum
and the Lipschitz norm are also taken in R™+!.

Remark 7. Below, we will apply Lemma 3.9.2 to the operator fx, by means of the
change of variable ¢(y) = A(z)'/?y. Note that then the matrix A, in Corollary

3.5.1 coincides with the identity, and thus the operator T in (3.5.1) equals the Riesz

transform, modulo a universal factor. Hence, by Lemma 3.5.3, denoting D, = g(w)l/ 2,

for any measure n we have

en R(y) = Dy To((Dy)5n) (Day), (3.9.6)

for all z,y.

Lemma 3.9.3. Assume s > 0 small enough in the definition of v and let ¢’ > 0. If
ITrullF2(, < €1 1(R), then

/|5Hy|2 dv < e U(R)™,

assuming that €, €1, {(R), t, and A are small enough and M is big enough (as in
Lemma 3.8.3).
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Proof. Recall that R R
SHy(z) = THv(z) — THu(z%).

Consider the matrix D, = A(z)"/2 and the n-plane H, = D;!(H). Then we write
/ 1SHy|? dv < / My, Dy Tov(z) — THu(z)? dv(x)

R R (3.9.7)
+ / [y, D, Tov(z) — THu(z*) | dv(z).

To estimate the first integral on the right hand side we claim that
Uy, Dy Tov(a) — MgTw(z)| < L(R)? (1 + |Tv(z)|) for all z € suppr, (3.9.8)
and also that the same estimate holds replacing v by . That is,
Uy, Dy Tpo(z) — UpTo(z)] S (R)? (14 |To(z)|) for all z € suppo. (3.9.9)
To prove (3.9.8), we fix z € supp v and we set

My, Dy Tyv(z) — MyTv(z)| < My, Dy (Tov(z) — Tv(z))| + |y, Dy — Oy) Tv(z)].
(3.9.10)
Now we estimate the first summand on the right hand side:

~ 1

My, Dy (Fov(a) — To(@))| < o) — Foa)] < / du(y) < (R)?,

o —ylrerz
(3.9.11)

using (3.9.2) in the last inequality.
Concerning the last summand on the right hand side of (3.9.10), we have

(g, Dy — ) Tw(@)| < (1T, Dy = T, || + |[Ta, — Warl]) [T ()],
By the Hoélder continuity of g, we have
ML, Do — gy, | < 1Dy — 1d| S |& — 2r|*/? < CU(R)*/2.
Also, taking into account that H, = D, '(H), we get
e, — || S D2 — 1d|| S €(R)*2.

Thus, R ~
(W, Dy = ) Tw(2))| S R)|Tv(2)],

which together with (3.9.11) concludes the proof of (3.9.8). The arguments for (3.9.9)
are analogous and are left for the reader.
From the claim (3.9.8) and applying Lemma 3.9.1, we derive

/ My, Dy Tov(z) — THo(z)? dv(z) < €(R)® <€(R)” + / |:Fu|2dy> < UR)™He.
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To deal with the second integral on the right hand side of (3.9.7), we write
/ My, Dy Tov(z) — THu(z")|? dv(z)
< / Ty, D, Too(x) — THo (o) do(x)

#| [, D, Fuota) — ot o — )

+ / THo(a*) — THu(a*)|? dv(x)
= I+ I+ I3+ I4.

To deal with the term I; we apply (3.9.9) and Lemmas 3.8.3 and 3.8.2, and then
we get

I g/\SHa]2d0+/HHm D, T () — THo(2)|2 do(z)
S/\SHUPdUM(R)a <£(R)”+/yfa|2da)
< (29 + U(R)™) (R)".

Next we consider the integral Is. To this end, observe that for any given x, since
T, is a convolution operator,

Iy, D, fzy(z) =1y, D, fx(gos x0)(T) = ps * (HHZ D, T\xa) ().
Therefore,

g, D, Too(x) — g, Dy Tov(x)| = |y, Dy Tho(x) — @s (g, Dy Tyo)(2)]

< sup ’HHI Da: T\IU(:C) - HHI D:c T\xa(y”
ly—=z|<s

(3.9.12)
Recall now that, by (3.9.6),
D, Ty0(z) = ¢aR(Dy-140)(D; ). (3.9.13)

Since o is supported on a finite union of planes parallel to H, it follows that the
measure D 130 is supported on a finite union of planes which are parallel to H, =
D;'H. Then, by Lemma 3.9.2 (applied with H, instead of H), it turns out that
Iy, Dy T,o(-) is a Lipschitz function (with the Lipschitz norm depending on the
precise construction of o, and in particular on the number of cubes in Chsip(R)).
Hence, the right hand side of (3.9.12) tends to 0 uniformly on x as s — 0, so

Uy, Dy Tyo () — g, Dy Tyv(z)] — 0 as s — 0,

uniformly on z too. This implies that

Iy = I3(s) = / Uy, D, Tyo(x) — Mg, Dy Tyv(z)]? dv(z) — 0 as s — 0.
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To estimate I, note that
Tv(at) = [ REG ) dvy) = [ (R @) 0.) () doy).

By the Holder continuity of KH (z*,-) with € supp o, it follows easily that TH v(z*) —
THo(x*) as s — 0 uniformly for € suppo, taking into account also that for
T € supp o Usuppv,

dist(z*,supp o Usuppv) 2 AU(R) > s,
for s small enough. Then we deduce that
I4:I4(S)—>0 as s — 0.

Finally we turn our attention to the term Is. Observe that
I, = '/ g, Dy fza(m) - fHU(a:*)IQ d(o — ps x0)(x)

< /“HHT D, Tyo(z) — THo(z*)]> — ¢, * (I0g, D, Tyo(z) — fHU(J:*)|2)‘ do(x)

SUR)™ sup |y, Dy Tyo(z) — THo(z*)? — [y, Dy Tyo(y) — THa(y") .
reESsupp o
ly—z|<s

We claim now that Iy, D, Tyo(z) — THo(x*) is a Holder continuous function of
for £ in a small neighborhood of supp o. Clearly, this implies that

sup ||, Dy Tpo(x)~THo(a)>~Un, Dy Tyo(y)-THo(y")?| =0  ass—0,
xrESUpp o
ly—z|<s

and thus
IQZIQ(S)—)O as s — 0.

By the same arguments used to estimate I, it is easy to check that fHJ(x*) is

a Hoélder continuous function of z, for = in a small neighborhood of supp o. Thus, to
prove our claim it suffices to show that Iz, D, Tyo(z) is a Holder continuous function
of z in that neighborhood. To this end, for z,y in a small neighborhood of supp o we
write
U, Dy Tyo(x) — g, Dy Tyo(y)| < |Uu, Dy Too(x) — g, Dy Tyo(y)]

+ g, Dy (Teo(y) — Tyo(y))]

+ |y, Dy — g, Dy) Tyo(y))| = Ji + Jo + J3.

By (3.9.13) and Lemma 3.9.2 (applied with H, replacing H) we have

J1 = cn |, R(Dy140) (D ') — T, R(Dy-140) (D y)|
< C(0)|D;'e — D'y < C(o)|x —yl.

Regarding Jo, we have R R
T2 S |Teo(y) — Tyo(y)]-
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Recall that fw — fy is an odd convolution operator whose kernel K = IA(I — IA(y is
given as in (3.8.3), and it satisfies
1
K(2)| < Cle—y|*” = and |VK(2)| < Clz—y|*”

2"

P (3.9.14)

From this fact and the smoothness of the density of o with respect to H™ on a finite
union of n-planes, one easily gets

| Tao(y) — Tyo(y)| < Co)]a —y|*2.
Next we turn to J3:

J3 < |y, Dy — Iy, Dy |Tyo(y)|
< (|, — g,) Dol + s, (Do — D)) |Tyo (v)]
< (Mg, — g, || + |1 Ds — Dy|) [Ty (y)].

Recall that D, = A(z)'/2 and H, = D;1(H). Then, by the Hélder continuity of A,
we derive
So |z — y’a/Z-

~

H]:[Hm - HHyH + HDw - DyH

Taking into account that |T\ya(y)| < C(o), we deduce that
J3 < C(o) & — y|*/2.

Thus Iy, D, Tyo(z) is a Holder continuous function of z with exponent o/2, as
claimed.
The lemma follows from the estimates obtained for Iy, Is, I3, and Iy. O

3.10 The function h and the vector field U

For each cube @ from the intermediate non-BAUP layer NB(R) with non-BAUPness
parameter ¢ > 0, we define a function hg as follows. First we consider a radial C'*°
function hg supported in B(0,1) such that g = 1 on B(0,1/2) and 0 < hg < 1. Then

we set
a b
rote) =10 ) =1 (am) |

where z4 and zg? are the points introduced in Definition 3.4.1 and such that the vector
a

24 — zé’g is parallel to H. This can be achieved by taking the n-plane L in Definition
3.4.1 parallel to H. Note that supphg C 3B, and the support of the negative part
of hg does not intersect supp . On the other hand, the support of the positive part
of hg includes a sufficiently big portion of the measure, so that [ hgdp 2 ¢(6) p(Q).

Next, by a Vitali type covering lemma, we extract a subfamily N'B'(R) C NB(R)
such that the balls 4Bg, Q € NB'(R), are pairwise disjoint and so that

Y w@) = cu(R),

QENB'(R)
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where ¢ depends at most on the AD-regularity constant of u. Then we define

h= > ho.

QeNB'(R)

Lemma 3.10.1. Assume € and the parameter s in the definition of v in (3.9.1) small
enough. Then the function h satisfies: supph C 3Bp, dist(supph, H) > A{(R)/2,
h >0 on suppv and

/hdu > c7(0) v(R™Y),
with ¢7(0) > 0.

The proof of this lemma is elementary and follows from the construction of hA.

Our next objective consists in constructing a vector field ¥ satisfying the properties
stated in the next lemma.

Lemma 3.10.2. There exists a compactly supported Lipschitz vector field ¥ : Rt —
R which satisfies the following:
(i) ¥ =23 gens'(r) Y@, supp ¥ C 3Bg AR and dist(supp ¥, H) > %E(R),
(i) For each Q € NB'(R), supp Vg C 3Bg and

1 1
Uollup < =

/qu AL =0, ol S
(iii) /yqudcnﬂ <5~ LU(R)".
(iv) For each Q € NB'(R),
T\H’*(\IJQ £n+1) = hg +eq,

with the “error term” eq satisfying

leg ()] < C(5) L(R)T £(Q)"+?

< — for all x € 10Bp,
(I — zql + £(@Q)**+°

where B and q are some fized positive constants depending on n and a.
(v) HSH(|\II|£"+1)||L2(,,) < C(8) W(R)'/2, assuming the parameter s in the definition
of v small enough.

We remark that in the statement (iv) above, fH*(\I/Q L£7+1) stands for the adjoint
of TH applied to the vectorial measure Yo L7+ That is,

TH (g L) (2) = / RH(y, ) - Wo(y) dL™(y),

where ‘-’ is the scalar product. Sometimes, abusing notation, we will write fH7*\IIQ
instead of TH*(Wg LT1). We will use analogous notations for other operators.

Proof. To construct each function ¥q for @ € NB'(R) we argue as in [NTV14a,
Section 24]. Let v be the unit vector in the direction zg, — 222. Consider the function

0
sole) = [ ho(o -+ tug)dt,

— 00
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so that Vy,9¢ = hq. Since the restriction of hg to any line parallel to vg consists of
two opposite bumps, the support of h¢ is contained in the convex hull of B(zgg, M(Q))
and B(zQ,M(Q)). Also, since |[V7hgl|r~ < C(5)[64(Q)]™? and since supp h¢ inter-
sects any line parallel to vg over two intervals of total length 46¢(Q) or less, we have

0 .
V7 gq(x)] S/ (V7 ho)(z + tvg)| dt < C()?)

- T (3.10.1)

for all j > 0.
We define the vector fields

Vo =-Agoug, VU= Y g,
QENB'(R)

so that the properties (i) and (ii) in the lemma hold, because of (3.10.1). Indeed, the
mean zero property holds because the integral of the Laplacian of a compactly sup-
ported C'*° function over the entire space is 0 and the support property holds because
the balls B(zg,3((Q)) lie deep inside 3Bg. The property (iii) is also immediate:

[rwac =y / Wolde S Y Q)T £ (Blag, 30Q))

QENB'(R QENB'(R)

(3.10.2)

Soh Y U Y wQ) ST u(R). (3.10.3)
QENB'(R) QENB'(R)

Next we turn our attention to the statement (iv). Since X(xR) = Id, the kernel of
Ty, is the gradient of the fundamental solution of the Laplacian (i.e., the Riesz kernel

times an absolute constant). Thus, T\xR(AgQ) = Vg and so fﬁ(AgQ) = Vugo.
Therefore, since vg € H,

T g = TH* (- Agoug) = T} (Agg) - vo = Tup(Ago) - v = Vuego = ho.

Hence, N R N
TH’*\I/Q = hQ + (TH’*\I’Q — Tg*\PQ) = hQ + eq.

We estimate eg as follows:
leq(@)] < |TH*Tg(x) — T Uo(2)| + |TH*Tg(x) - TH*Tg(x)|.  (3.104)

For the first summand on the right hand side we write
T Wo(a) - T Wo(a)| < [ 1R (4.2) ~ RE (0. )] [W(u)| 4L (1)

§/MW“I’Q(?/)dﬁn+l(y)

1 / 1
< Lty
06(Q) JB(gsuq@) v —yln—o/? )
1
< (@M S 6T (R).
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Concerning the last summand in (3.10.4), we write

T g (x) — TH* Vg (2)] < / \KH(y —x) — KE (y — 2)| [Tg(y)] dL™ (y).

Asin (3.9.14) we have

_ a/2
K K 7o = Tr—T
RY (=) = Rl = )] < 1Roly =) = Rogly = )] 5 280
/2
< {(R)
|z —y["

for all x € 10BR. Hence, for such points =z,

‘ff7*\llQ(x) - fg*\PQ({L')‘ S E(R)am/ ’\I’Q(y)’ d[,nJrl(y)

|z —y[
((R)*/? / 1 _
S d£n+1 y 56 lg R a/2'
6 UQ) JB@qsuq) It —yl" (@) B
Therefore,
leg(x)| < 6 H(R)*?  for all 2 € 10Bg. (3.10.5)

On the other hand, we also have
leq ()| < [T Wq ()| + | T Vg ().

For x € 6B¢, we have

. 1 1
TH* W (2 g/ e (y) <67t
| a(@)] 6 UQ) JBo30Q) lT —y (@)

Using that W has zero mean and standard estimates, for x € (6B8¢g)° we get
T Vg(a)| < [ IRy~ 2) ~ K (g ~ )] [¥o(s) 4™ 1)

1 / UQ)*"”
S dﬁnJrl y
56(@) (20:30Q)) |z — xQ‘n—l—a/Q (y)

K(Q)n—&-a/Z
~S |l‘ _ xQ|n+a/2 ’

So we infer that for all x € R**H1,

‘ 671£(Q)n+a/2
T Q) + |z — zg)mresr

| TH* W ()

The same estimate holds for ‘T\f*\I/Q(x)L and thus

571£(Q)n+a/2
Q) + |z — zg)n+e/?

leg(x)| S @ for all x € R*T1. (3.10.6)

Denote ¥ = «/(2(2n + «)). Notice that Ja/2 = o?/(4(2n + «)) < 1/4 and
(1 =3)(n+~v) =n+ a/4. So, by taking a suitable weighted geometric mean of
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(3.10.5) and (3.10.6), we obtain

. . 6—1£(R)a2/(4(2n+a))g(Q)n-ﬁ-a/éL
leq()] = leq(2)Teq()7 S e
(I — ol +£(@)"" "

for all z € 10Bg, which completes the proof of (iv) by choosing ¥ = a?/(4(2n + )
and = o/4.

Finally we turn our attention to the estimate (v). First we will show that

IS™ (R IL™ )12 ) < C ) 1(R). (3.10.7)

(ulr)
We consider the auxiliary measure
= Y L £ g
6(Q) ¢
QeNB' (R)
We claim that £ has n-polynomial growth. That is,

&(B(z,r)) <r™  forall z € R*M > 0. (3.10.8)

The arguments to prove this are standard, but we show the details for the reader’s con-
venience. It suffices to prove the preceding inequality for z € supp & C UQe NB'(R) 3Bg.
So fix a point z € 3By, for some Q € N'B'(R). Since the balls 4Bp, P € NB'(R), are
pairwise disjoint, it is clear that the condition (3.10.8) holds for » < ¢(Q). In the case
r > 0(Q),let I(z,r) denote the family of cubes P € N'B'(R) such that 3BpNB(z,7) #
@. Taking into account again that the balls 4Bg, S € NB'(R), are pairwise disjoint,
it follows that, for any P € I(x,r), r > ¢(P) and then Bp C B(x,7r). Therefore,

EB(z,r) < Y €EBBp)~ Y UP)"< Y w(P) < p(B(z,Tr)) S "

Pel(z,r) Pel(z,r) Pel(z,r)

Recall now that p|g is n-AD-regular and fMR is bounded in L?(u|r). As a conse-
quence, the maximal operator

Teof () = sup|Tecf @) =sup| [ Rlay) f0) dslo)

|lx—y|>e

is bounded from L*(€) to L*(p|r) (see Proposition 5 from [Dav84]).
Consider the vector field ¥ defined by

=) UQ) ¥,

QeNB'(R)
so that [¥| £ = [B|£. Observe that, by (ii),
19|y S 071
and thus

W72 S072 D> LQ"S6? > w(@Q S5 u(R).
QeNB'(R) QENB'(R)



108 Chapter 3. Gradients of Single Layer Potentials and Uniform Rectifiability

For each x € R, we split
ST (0| L") (@)] = (87 (9] €) ()] < |T(1W[€)(x)] + [T([E) ().
By standard estimates, it is also immediate to check that
T(T16) ()] < [T PIE) ()] + Ma(|T[6) (),

where M, is the maximal radial operator

M, 7(x) = sup M

r>0 "

, (3.10.9)

for any signed measure 7. So we deduce that
ISH (W L") 12y S N T NP DT 2001 ) + 1M (IO N2 )

Analogously to fgﬁ*, the operator M, (- &) is also bounded from L?(§) to L?(u|r) (see
[Dav84] again). Hence,

IS0 L) 2oy S 32 S 672 u(R). (3.10.10)

<
Blr) ~
Our next objective is to prove the analogous estimate in L?(o), that is,

IST(@IL D20 < C(0) u(R).

Recall that o = ZPeChSmp(R) op, where op = gp H"|1,, with gp < Xx2B,. So we have

ISR D Te ey = Do ISTARIL IR,
PeChsiop(R)

For each P € Chstop(R) we split

1T (WL 2, < 2 / 157 (x| WL dorp

(3.10.11)
+2 [ 187 oy [E1£7 ) dor.
Concerning the first summand on the right hand side, we have
/ |1S™ (xapp [WIL"H) P dop S / |57 (X3 WL )2 dH 1 (3.10.12)
Since j:'HnlLP is bounded in L?(H"|,), the same argument as in (3.10.10) shows that
15" (3 19 L") 230, ) S I Ulla) S 672 6P)", (3.10.13)

taking into account that H\TJHLoo(O < 67! and the polynomial growth of & for the last
inequality.

To estimate the last integral on the right hand side of (3.10.11) we will show first
that

1S (X3Bp)e [ IL" ) () = ST (X@aBp)e | VIL T (y)| S0 for all 2,y € 2Bp.
(3.10.14)
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To this end, note that the left hand side above equals

|7 (X8| 91€) (@) = ™ (X33 P 1E) ()]
< T (X3Bp)e [ PD (@) = T (x(3B,)c W) ()|
+ | T (XBpye ¥ (") = T (X380 YD (4]
Taking into account that both x and y are far from the supp(x(ggp)c|\ff|), more pre-

cisely, |z — y| < ¢(P) < min(dist(z, (3Bp)©), dist(y, (3Bp)¢)), by standard estimates
from Calderon-Zygmund theory it follows that

!ff(x(wp)c!@\)(w) - fg](X(3Bp)c|‘i|)(y)} < “X(gBP)C|\i|“Lw(£) S 51

By analogous reasons, the same estimate holds replacing « by «* and y by y*. Hence,
(3.10.14) is proven.
From (3.10.14) we infer that

15" Oy 1L | 2, < [P (ST Oxampe[ 1L )| + CO7F
< [y (ST (19]£7)]

+ |my,p (™ (xap | TIL™H))] + O

00,2Bg

Arguing again as in (3.10.10), we obtain
[P (S™ (s[RI <y p (157 (s, | 217 )
S 55 s Bl 5972
Therefore,
15" (X@38p)e P IL" Nl 2p < [ p (ST (WIL"T)[ + Co7

As a consequence,

[ 18™ (o L) P dop < [y (ST (WL ) 6P)" +526(P)"
Together with (3.10.12) and (3.10.13), this yields

/ [STCIL )2 dop < [my, (S (1RIL™)*U4P)" + 57 2(P)"
< [ 1S7quer R du 5Py

Summing on P € Chsiop(R) and using (3.10.7), we obtain

1S (1L )22y S ST (UL By + 5 2UR)™ < C(6) (R

ulr
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To prove the final estimate in (v) we just use the preceding inequality and take
into account that

/ S5 (L) P dy = / SH (L) 2 d(ipg * o)

= [UsmwIem )« pudo — [ 1S7(wI£7 P do

as s — 0, since |SH (|¥|£"*1)|? is a continuous function. O

3.11 The variational argument

In this section we will prove the following:

Proposition 3.11.1. Let R € Nice and v be as in Section 5.9. Suppose that € and
L(R) are small enough, depending on the non-BAUPness parameter §. Then we have

1850|220, = cs(6) u(R).

Together with Lemma 3.9.3 this shows that, for each R € Nice, HTR/LHQLQ(M) >

e1 p(R), assuming that e, £(R), ¢, and A are small enough and M is big enough. This
proves Proposition 3.4.1 and Theorem 3.1.

3.11.1 A pointwise inequality
The first step to prove Proposition 3.11.1 is the next one.

Lemma 3.11.1. Suppose that for some 0 < A < 1 the inequality
/|SHV|2dV < Av(R™H

holds. Let h be the function in Lemma 3.10.1 and c7(0) the constant in the same
lemma. Then, there is some function b € L>(v) such that
(1)) 0<b< 2

(i) /bhdu > c7(6) (R,

and such that the measure n = bv satisfies
/!SHnPdn < 2Ap(R™) (3.11.1)
and

|5y (x) 2 + 285+ ((SHn)n)(x) < 6¢7(8) "IN for n-a.e. x € R, (3.11.2)

Proof. In order to find such a function b, we consider the following class of admissible
functions

A= {a EL¥(W): a0, [ahdy > er(8) v(R™)} (3.11.3)

and we define a functional J on A by

J(a) = Alall =) V(R"+1)+/\SH(W)PMV.
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Observe that 1 € A and
J(1) = Av(R™) + / |SHY|? dv < 2\ v(R™H).

[hus
inf J < 2Ap (R,
;21 (a) < v( )

Since J(a) > Al|al|poc () v(R™1), it is clear that

inf J(a) =

( inf
acA a€A:llal| oo () <2

We claim that J attains a global minimum on A, i.e. there is a function b € A such
that J(b) < J(a) for all a € A. Indeed, by the Banach-Alaoglu theorem there exists a
sequence {ay}r C A, with J(ag) — infeea J(a), [[agllL=@) < 2, so that aj converges
weakly * in L*°(v) to some function b € A. It is clear that b satisfies (i) and (ii).
Recall that we denoted by K the kernel of S¥. Since y — KX (z,y) belongs to L'(v)
(recall that v has bounded density with respect to Lebesgue measure), it follows that
for all z € R" SH (apv)(z) — SH (bv)(z) as k — oo. Taking into account that, for
every k, .

|z — y|™

dv(y) < oo

15" (a0 ()] < /

by the dominated convergence theorem we infer that
/]SH(akl/)\de —>/5’H(by)\2du as k — oo.

Using also that [|b]|zec(,) < limsupy, [|ag||ge (), it follows that J(b) < limsupy, J(ax),
which proves the claim that J(-) attains a minimum at b.

The estimate (3.11.1) for n = bv follows from the fact that J(b) < J(1) <
2Av(R™H).

To prove (3.11.2) we will apply a variational argument taking advantage of the
fact that b is a minimizer for J. Let B be any ball centered in suppn. Now, for every
0 <t <1, define

(hn)(B)

() (R 1)

where we used the notation (hn)(A) = [, hdn. To make the writing easier, we will
also write below just (hn)(A). It is clear that by € A for all 0 < ¢ < 1 and by = b.
Therefore,

by=(1—txp)b+t b,

J(b) < J(be) = A||bg]| oo (R™T) + / |SH (byr) [bs dv

(hn)(B)

=4 (1 T @)

)HbHOOV(]R”“)+/]SH(btz/)\th dv = H(t).

Since H(0) = J(b), we have that H(0) < H(t) for 0 < ¢t < 1, thus H'(0+) > 0
(assuming that H'(0+) exists). Notice that

dby| (hn)(B)

D) yppy D),
dt o~ T ey
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Therefore,
0 < H'(0+) = AW bl (@) + G| [ 187 ) P
o s Il (B

—I—Z/SH (sz: . ) Sy bdy +/|SH77|QC§);L_OdZ/
hn n
o Il (B1)

+2/SH <(—x3b+ mb) ,,> Sy bdy
+ / |5Hp)? <—XBb+ m@ dv

:,\Mnbnm (R™+1) — /S (xBn) - S™ndn

o) R}
gy | 157 an— [ 15"+ el [ an,

The fact that the derivatives above commute with the integral sign and with the
operator S is guaranteed by the fact that b; is an affine function of ¢ and then
one can expand the integrand | S (b;v)|?b; and obtain a polynomial expression on t.
Rearranging terms and using also that A < 1 and that J(b) < 2 (hn)(R"*1), we get

/B|SH77|2d77+2/SH(XB"7)'SHndU

(hn)(B) (R H_ 12
< 3c7(8)71 I (b) (h)(B) < 6¢7(8) A (hny)(B).

Dividing by n(B), recalling that h < 1 and taking into account that

/SH(XBn)-SHndnz/BSH’*((SHn)n)dn,
we obtain
1 / H_|2 2 / Hyx/roH -1
— S dn + ——— SHE((S dn < 6c7(0) A

Then, letting n(B) — 0 and applying Lebesgue’s differentiation theorem, we deduce
that
1SHp(z) |2 + 25H*((SHn)n)(z) < 6¢7(8) 7 A for n-ae. z € R*L,

as desired. O

Lemma 3.11.2. Assume that [ |STv?dv < \(R™ 1) for some 0 < XA < 1, and let

b and n be as in Lemma 5.11.1. Then we have

|SHn(z)|? + 457> (SHn)n)(x) < 12¢7(0) 7N+ CUR)Y?  for all x € R
(3.11.4)
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Proof. Since 1) has a bounded density with respect to Lebesgue measure which is also
uniformly bounded, it is immediate to check that the expression on the left hand side
of (3.11.4) is a continuous function of z. Thus, by Lemma 3.11.1 and by continuity,
the inequality (3.11.4) holds for all = € supp 7.

For any = € 8RT‘1 = H, using (3.8.3) and that z = x*, we get

~

Ky z) = K (y,2*) = KM (y,2),

and thus, for any vectorial measure @,

) = [ Kl (g.0)- di(w)

/KHy, -da(y /Kny)dw() 0.

Now we claim that the definition of S¥ implies

sup |[SH*G(z)| < sup  [STr@(2), (3.11.5)

zeR zesupp(&)

for each vector valued measure & which is compactly supported in R”*! and absolutely
continuous with respect to Lebesgue measure with a bounded density function. To
show this, by the maximum principle, it is enough to show that SH7*J is A-harmonic
in R\ supp(@). In turn, to this end it suffices to show that for 1 < k < n and for
any signed measure dw = gdz, with g € L* and compactly supported in RTFI, the
function

1@) = [ Oua(u.2) = 08500 2) doty)

is A-harmonic in R\ supp(w). Given ¢ € CX(R!\ suppw), by Fubini’s theorem
we get

[39sveds= [A@¥. ([ onat) - €57 0) sy ) - Vita)d
— [[ A@)V.0,, (€400 0) ~ 55", 2)) - Veola) dglv) dy
~ [0 [ Aa)V.es.) - Vola) dagl)ay
/%/ z)ViE5(y", ) - V() dz g(y)dy
— [ @uet) - 005 9w dy = 0.

Therefore, f is A-harmonic RV \ supp(@) and thus (3.11.5) holds.
To prove (3.11.4) we use the elementary formula

1 1
*|Z|2 = sup Ble, z) — 752 for all z € R*HL,
2 B>0 2

e€R™ 1 Jle[|=1
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We apply it with z = SHn(z) and we get

1 1
Sl (@) = swp (e, S%n(x)) — 5B°. (3.11.6)
ecR™ 1 |le]|=1

Now, ife = (e1, ..., en+1) and we define the vector valued measure ne = (ney, ..., nep+1),
for all z € R we obtain

(e, Sn(z /szy e dn(y /szy d(ne)(y)
= 5™ (e)@) e [ [ (@0) + KL (0,0)] dnfo).

Taking into account K (y*, z) = K (y,2*) and (3.2.5) applied to A, we derive

(K (2,y) + KH (y,2)| = |K (2,y) — KH («*,y) + K¥ (y,2) — K (y*, 2)]
< |K™ (z,y) + K (y,2)| + |KH (y, %) + KH (2%, y)|
1 n 1 < 1
~ |x_y‘n—o¢/2 ‘.’IJ‘* _y|n—a/2 ~ |x_y‘n—o¢/2’

since |z —y| < |z* —y| for all z,y € RTFI. So the function

F(z) = / (K5 (2,9) + K (5, 2)] dny)

satisfies )
OIS [ oy dal) S (R
|z —y[re

if dist(z, R) < 1. In the case that dist(z,Q) > 1, we use the fact that \I?H(x,y)| +
|[KH (y,2)| <1 by Lemma 4.2.1 (c), and it also follows that

@] < [ K8 (@) + KE (,)| dnto) S Il  €CR)" < (R

So in both cases we get
(e, 8n(x)) = =S™*(ne)(x) + F(x) - e, (3.11.7)

with |F(x)| < (R)*/2.
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We insert the above calculation in (3.11.6) and by (3.11.5) we get, for z € R,

|55 (@) 2 + 455 (1S ) (x)
T o {—2857*(ne) () + 28F (z) - e — 8% + 4™+ ([SHnln) ()}
e€R™ 1 |le[|=1

= sup {SH’* (—2Bne + 4[S’Hn]n) (x) + 28F(x) - e — 52}

£>0

ecR™ 1 Jle[|=1

< s sup {S™F(~28ne +4[Snln) (2) +26F () e — )
B>0 z€supp(n)

e€R™ 1 Jlef=1

— s swp {S™(<2Bne+4[S7yly) (=) + 28F(2) - e — B}

z€supp(n) B8>0
e€R™ 1 |le||=1

Now we reverse the process using again (3.11.7) to obtain

19 (2)[? + 457 ([Snn) (=)
< sup sup  {—2857%(ne)(z) + 48T ([STn)n) (2) + 28F (x) - e — 57}

z€supp(n) B>0
e€R™ 11 Jlef|=1

= swp s { = 28(87n(2), ) ~ 28F(2) e
z€supp(n)  B>0

e€R™ 1 Jlef=1
+48H* ([SHn]n) (2) +2BF(x) - e — 62}
= sup sup  {—28(5"n(z) + (F(z) — F(2)), e) + 48™* ([Tnln) (2) — 67}
#Esupp(n) eERnéiﬂeH:l

= o {8%0(=) + (F(2) + G(2)[* + 48" (8™ n]n) (=)}
zesupp(n

< SUP( | {2|SH?7(,2)|2 + 48H> ([SHn]n) (z)} + C’E(R)O‘/z.
zesupp(n

Finally, we apply (3.11.2) to get
n(x)|“+45 n)n)(x) <12c7(0) A+ or all x € , (3.11.8
S (x) P45+ (ST ) 'IA+CUR)*?  for all 2 € R

as wished. 0

3.11.2 Proof of Proposition 3.11.1

Let R € Nice and v be as in Section 3.9. We have to show that
IS" |2 ) = es(0) ul(R),

with cg(d) > 0. We assume that this does not hold and we argue by contradiction. So
we suppose that [ |SHv|?dv < Av(R™1) for some small A € (0,1) to be fixed below
and then we will get a contradiction if A is chosen small enough (depending on §). By
Lemma 3.11.2; our assumption implies that the measure 7 defined in Lemma 3.11.1
satisfies

157 n(2) 2 4+ 457 ((SHn)n)(x) < 12¢7(8) "N+ CLR)*/?  for all z € R%H
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Consider the vector field ¥ from Lemma 3.10.1 in Section 3.10. Multiplying the
preceding inequality by |¥| and integrating with respect to Lebesgue measure, we
derive

(3.11.9)
+ (12¢7(8) "X + CL(R)?) / |T|dLmtt,
By Lemma 3.10.2 we have
(12¢7(8) " *X + CL(R)*/?) / (W] dLmHt < O(8) (A + L(R)*/?) ((R)".

Regarding the first integral on the right hand side of (3.11.9), we have

/SH,*((SH”)") W] dLrtt = /SHn CSHOW| £ dn
1/2 1/2
< </‘S’Hn|2dn> (2/|SH(|\I,|£n+1)|2 dy)
< A2 p(RMHY2 C(6) w(R) < C(8) A2 u(R),

by (3.11.1) and (v) from Lemma 3.10.2. So we derive

/ ST (U] dL™H < C(6) N2 u(R) + C(8) (A + £(R)*/?) pu(R) (3.11.10)
< C(6) A2 4 0(R)*?) w(R).

Next we will estimate from below the integral on the left hand side above. By
Cauchy-Schwarz, we have

—1
[ 1877 g > (/ ranrrwrdﬁ“) (/ \\mdm“)

> o </ St ‘PdﬁnH)Q - o (/ st L) d”)z'
(3.11.11)

By the definition of S¥ and the fact that K (y*, x) = IA(H(y, x*) (by (3.8.3)), we get
SHH(w L ( / K (y,z) - W(y)dCm(y / KH(y*,x) - O(y)dLm (y)
— TH*( £n+1)( ) TH*( £n+1

Thus, by Lemma 3.10.2 (iv),

/SH’*(\I’ EnJrl) d77 _ /j;H’*(\II £n+1 / \P£n+l )dT](.I)
= Z /hQ—i—eQ dn — / (LYY (2% d(x).
QeNB'(R

(3.11.12)
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By Lemma 3.10.1 and Lemma 3.10.2 (iv),

n+B

3 / ho +eq)dn > () u(R) — C(B) S / o )

QeNB'(R) QENB/(R (|l - xQ‘ + K

Using the polynomial growth of v (recall (3.9.2)) and standard estimates, for each
Q € NB'(R) we get

/ : ((R)TL(Q)™TF dn(z) < U(R)TU(Q)™. (3.11.13)

|z — 2| + £(Q))" P

Thus

> / o+ cq)dn > @) u(R) ~ CE)URY Y p(@Q)
QENB'(R QeNB'(R) (3.11.14)

> (c(8) = C'(9) UR)Y) u(R).

To estimate the last integral on the right hand side of (3.11.12) we take into
account that, if z € suppn, then z* € R™™, and thus

hg(z*) =0 for all Q € NB'(R),
since supp hg C 3Bg C R’}rﬂ because, recalling (3.4.1) and choosing A as in Section

3.8, 4(Q) < AU(R).
Therefore, for x € suppn, using again Lemma 3.10.2 (iv),

‘TH’*(\I/ £n+1)(x*)| _

U(R)T £(Q)"0
< C(5 _
- ()QGA% (Ja* — zg| + £(Q))"+P

URYTUQ™P
r— x| +£(Q))"P

Hence, from (3.11.13) we derive

<CO)UR)

[
~
2

3
IN

Q
=
~
=

o2
=8
=3

[T e anto

Plugging this estimate and (3.11.14) into (3.11.12), we obtain
/ SHA(W L) dy > (e(8) — C"(8) (R)Y) u(R).
Then, by (3.11.11),

/ ST (W] dLm > (e(6) — C"(6) €(R)YY)? u(R).
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Together with (3.11.10), this implies that
(c(6) — C"(6) (R))2u(R) < C(8) (N2 + U(R)/2) u(R).

So we get a contradiction if ¢(R) and A\ are small enough, depending on §. This
concludes the proof of Lemma 3.11.1, and thus of Theorem 3.1.

3.12 Proof of Theorem 3.4

The arguments are very similar to the ones in [Azz+16¢| and thus we only sketch
them.

To simplify notation, we will write w? instead of w’iA. Recall that the Green
function for the operator Lau = — div A(-)Vu satisfies, for every ¢ € C°(R"H1),

/ pdw” — p(x) = —/ AT (y)V,G(x,y) - Vo(y)dy, for ae. z€Q.
oN Q

See (2.6) in [Azz-+16al, for example. From this equation it easily follows that
G(p,x) =E(p,x) — /E(z,m) dwP(z) for all p,x € Q. (3.12.1)

We assume that G(p,z) = 0 if = € Q, so that the preceding identity also holds in this
case. The identity (3.12.1) provides the key connection between the gradient of the
single layer potential and elliptic measure. Indeed, differentiating with respect to =z,
we derive

VaGi(p,z) = Vallp, / Vol (2, ) du?(2).

Then, by Lemma 4.2.2, it follows that

|TwP (z)] < ’/Vgé’ z,x) dwP(z

'/Vlg x, z) dwP(z /V25 z,x) dw?(z)

< IVaGlpa)| + o+ [ s ()

< [VaG(p z)| + —— + C MpwP(z),

|z — pl
(3.12.2)

where M,, is the maximal radial operator defined in (3.10.9).
By almost the same arguments as in [Azz+16c¢, Lemma 3.3] one can prove the
following:

Lemma 3.12.1. Let n > 2 and Q c R"™ be a bounded open connected Wiener
regular set. Let B = B(xg,r) be a closed ball with xo € 022 and 0 < r < diam(0%2).
Then, for all a > 0,

w¥(aB) 2 zeé%fmﬂw (aB)r" ' G(x,y) forallz € Q\2B andy € BNQ,

with the implicit constant independent of a.
Analogously, as in [Azz+16¢c, Lemma 3.4], we have:

Lemma 3.12.2. There is dg > 0 depending only on n > 1 so that the following holds
for 6 € (0,80). Let Q C R" ! be a bounded Wiener regular domain, n—1 < s <n+1,
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€N, r>0, and B= B(,,r). Then

13 (092N 6B)

w(B) Zn,s 1)

forallx € 6BNQ.
In the statement above, H?3_ stands for the s-dimensional Hausdorf{f content.
The following can be proved as in [Azz+ 16¢, Lemma 3.1]:

Lemma 3.12.3. Let Q be as above and let p € Q. For L -almost all x € Q¢ we
have
E(p,x) — E(z,x)dwP(z) = 0.
o0
Then we get:

Lemma 3.12.4. Let Ly, 2 and E be as in Theorem 3.J. Then we have
M,wP(x) + ThwwP(x) < oo for wP-a.e. v € E.

Above, M, is the maximal radial operator defined in (3.10.9).

This result can be deduced from the preceding lemmas arguing as in [Azz+16¢].
For the convenience of the reader we show the detailed proof below. Remark that,
instead of the stopping time arguments from [Azz|16¢]|, we use a simpler approach
relying on the Lebesgue differentiation theorem.

Proof. For wP-a.e. x € F, we write

P D n
lim sup M S lim sup w (B(.Z', T.)) lim sup H (B(x, T) N E) '

r—0 rn r—0 H”(B(x, 7') N E) r—0 rn

The first limsup on the right hand side is finite wP-a.e. in E because of the absolute
continuity of wP with respect to H™ in F, while the last one is also finite by the
classical density bounds for Hausdorff measure. Hence the left hand side is also finite
wP-a.e. in E, or equivalently,

MpwP(z) < oo  for wP-ae. xz € E.

It remains to show that Ti.wP(z) < oo for wP-a.e. x € E. To this end, for k > 1 we
define
Ey={z € E: MwP(x) <k},

so that F = Uk21 Ej, up to a set of wP-measure zero. For a fixed k > 1, let x € Ej
be a density point of Fy, and let rg be small enough so that
wp(B(x, 7’) N Ek)

for 0 <rp.
w(B(z,1) R

1
>
-2
Observe that, since wP(B(z, p)NEy) < kp" for all z € E}, and all p > 0, by Frostman’s
Lemma we have

k
Ho (B(x,r)NoQY) > HL (B(x,r) N Ey) > C(k)wP(B(z,r)N Eg) > ;)wp(B(x,r)),
(3.12.3)
for 0 < r <.
Next we consider a radial C* function ¢ : R**! — [0, 1] which vanishes in B(0, 1)
and equals 1 on R"™\ B(0,2), and for r > 0 and z € R"™! we denote ¢, (2) = ¢ (£)
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and ¥, =1 — . We set
T,wP(z) = /ng(y,Z) or(z —y) dwP(y).
Note that, by Lemma 4.2.2,
12w < [ ot = 0)Va ) )
[ Wiemaior = ol = )] V26 (3. 2)| P ()
" /| (Vi) - Vet \ )| d(y) (3.12.4)
oo

< TrwP () + C Mpw?( / P ’n — dwP (y)

To estimate T,wP (), first we assume that
WP(B(z, 265 'r)) < 265 "TwP(B(x, 2r)), (3.12.5)

with dg as in Lemma 3.12.2. For a fixed z € Ej, and z € R"™!\ [supp(¢,(z — ) wP) U
{p}], consider the function

wr(2) = E(p, 2) - / E(y.2) or( — ) duP (y). (3.12.6)

so that, by (3.12.1) and Lemma 3.12.3,
G(p,z) = ur(2) — /E(y, 2) U (z —y)dwP(y) for LM ae. z ¢ R*TL (3.12.7)

Differentiating (3.12.6) with respect to z, we obtain

Vi (2) = V£ (p, 2) / Vol (4, 2) o0z — y) dP (y).

In the particular case z = x we get (using also the Holder continuity of u,.)
Vu,(z) = Vo&(p, ) — TP (),

and thus
1

dist(p, 0N2)

Since u, is L yr-harmonic in R" ™\ [supp(¢;(z — -) w?) U{p}| (and so in B(z,r))
and A is Hélder continuous, using Moser’s Harnack inequality, we have

1/2
[V, (z)] S 1 <][ ]ur(z)]2d2> < 1][ lur(2)| dz. (3.12.9)
r B(z,r/2) r B(z,r)

| TP (x + |V, (). (3.12.8)
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From the identity (3.12.7) we deduce that

1

Vu@ls e f e e s i

-
= [+ 1II.

To estimate the term 11 we use Fubini and the fact that supp v, C B(x,2r):

1 1
11 < / / ———dzdwP(y) (3.12.10)
rnt? yeB(x,2r) J zeB(x,r) ‘Z - y’n—l
< wP(B(x,2r))

S S Mpw® (). (3.12.11)

Tn

We want to show now that I <i 1. Clearly it is enough to show that
1
—|G(p,y)| Sk 1 for all y € B(x,r)NQ (3.12.12)
r

(still under the assumptions = € Eg, 0 < r < rg/2, and (3.12.5)). To prove this,
observe that by Lemma 3.12.1 (with B = B(x,r), a = 25, "), for all y € B(z,r) N Q,
we have

W(Blr.267" ) 2 int | w (Bl 207" ) " [G(p.y)]

On the other hand, by Lemma 3.12.2 and (3.12.3), for any z € B(z,2r) N Q and
0<r<ry/2,

> HE (B(z,2r) N o)

~

wP(B(z, 27“)).

W (B(e,25,™7) o

Z C(k)

Tn
Therefore we have

P(B(x,2r))

WP (B(x,26577)) = C(k)~ P G(p, ),

Tn

and thus, by (3.12.5),

wP(B(x, 2(50_17“))
wP(B(x,2r))

1

which proves (3.12.12). So we deduce that

1
—+1 (3.12.13)

L
(T (@)] S dist(p, 99)

for z € Ey, and 0 < r < ro/2 satisfying (3.12.5).

In the case where (3.12.5) does not hold, we consider the largest s > 0 of the form
5= 2667“, j > 0, such that (3.12.5) holds with s replacing r. By standard methods
from non-doubling Calderén-Zygmund theory, it follows that such s exists for wP-a.e.
x € Fj and moreover

TP (z)| < |TswP ()| + C MyuwP ().
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See, for example, Lemmas 2.8 and 2.20 from [Toll4]. Then, applying (3.12.13) with
r = s, we infer that

1

T,wP <, - -
T () ~k dist(p, 0Q)"

+ 14 Myw?(x) + 1.

1
| Sk =0
dist(p, 002)"
So in any case we deduce that |T,wP(z)| is bounded uniformly for wP-a.e. x € Ej and r

small enough. By (3.12.4), this implies that the same holds for |T,wP(x)|, and thus it
follows that ThwP(z) < oo for wP-a.e. © € Fy, and so for wP-a.e. x € E, as wished. [

From this lemma and (3.2.5) we deduce that the antisymmetric operator T(%)

satisfies
T*(a)wp(m) < MpwP(z) + ThwP(x) < oo.

Next we apply the following Tb type theorem due to Nazarov, Treil and Volberg
[NTV02], [Vol03] in combination with the methods in [Tol00]. For the detailed proof
in the case of the Cauchy transform, see [Tol14, Theorem 8.13]. The same arguments
with very minor modifications work for antisymmetric operators.

Theorem 3.5. Let o be a Radon measure with compact support on R" ! and consider
a o-measurable set G with o(G) > 0 such that

G c {z e R" : M,o(z) < 0o and T*(a)a(a:) < 00}

Then there exists a Borel subset Go C G with 0(Go) > 0 such that sup,cq, Mno|g, () <

oo and TO(,TLC); is bounded in L*(0|q,).
0

Applying this theorem to the measure ¢ = wP and the set G = E, we infer that
there exists a subset Gy C E with wP(E) > 0 such that T isbounded in L (WPay)-

wP|ag
Then, by Lemma 3.2.5 it turns out that T,p|, is also bounded in L*(wP|g,). Since
wP is absolutely continuous with respect to H™ on Gy, by applying Theorem 3.3 we
deduce that Gy is n-rectifiable. Now, by a standard exhausting argument we deduce

that wP is concentrated in an n-rectifiable set and thus wP is n-rectifiable.
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Chapter 4

Gradient of the single layer
potential and quantitative
rectifiability for general Radon
measures

4.1 Introduction

In the work [PPT18| reported in the previous chapter, Laura Prat, Xavier Tolsa and
the author dealt with the connection between rectifiability and the boundedness of the
gradient of the single layer potential. This operator plays a central role in the study
of partial differential equations. Our goal is to investigate the nature of the gradient
of the single layer potential for certain elliptic operators and apply the results to the
study of elliptic measure.

An elliptic equivalent of the so-called David-Semmes problem in codimension 1 was
considered in [PPT18|, under the assumption of Hélder continuity of the coefficients
of the matrix defining a differential operator in divergence form. The case of the
codimension 1 Riesz transform was studied in the deep works of Mattila, Melnikov
and Verdera in the plane and by Nazarov, Tolsa and Volberg for higher dimensions
(see [MMV96] and [NTV14a]). We remark that the David-Semmes problem for higher
codimensions is still unsolved.

In the same spirit of [PPT18], the aim of the present article is to establish an elliptic
equivalent of a quantitative rectifiability theorem that Girela-Sarrién and Tolsa proved
for the Riesz transfom in [GT18].

Let 1 be a Radon measure on R"*!. Its associated n-dimensional Riesz transform
is

Rif@) = [ b ) dn). S € L)

whenever the integral makes sense. Given x € R"*! and r > 0, we denote by B(z,r)
the open ball of center x and radius . A Radon measure p has growth of degree n if
there exists a constant C' > 0 such that

p(B(z,1)) < Cr" for all z € R"™, r > 0.

We call p n-Ahlfors-David regular (also abbreviated by n-AD-regular or just AD-
regular) if there exists some constant C' > 0, also referred to as an AD-regularity
constant, such that

C™hr" < p(B(a,r)) <Cr™ forall z € supppu, 0 < r < diam(supp p).
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A set E C R""! s said n-AD-regular if H"|g is a n-AD-regular measure, H" denoting
the n-dimensional Hausdorff measure in R™*!. Note that the support of an n-AD-
regular measure is n-AD-regular.

A set E C R""! is called n-rectifiable if there exists a countable family of Lipschitz
functions fj: R" — R"! such that

w(B\Us®Y) =0

A measure p is rectifiable if it vanishes outside a rectifiable set E and, moreover, it is
absolutely continuous with respect to H"|g.

David and Semmes introduced the quantitative version of the notion of rectifia-
bility, which is important because of its relations with singular integrals. A set F is
called n-uniformly rectifiable (or just uniformly rectifiable) if it is n-AD regular and
there exist 6, M > 0 such that for all x € E and all » > 0 there is a Lipschitz mapping
g from the ball B, (0,7) C R™ to R""! with Lip(g) < M such that

H"(EN B(z,r)Ng(By(0,1))) > 6r".

We say that a measure u is n-uniformly rectifiable if it is n-AD-regular and it vanishes
out of a n-uniformly rectifiable set.

Many characterizations of uniformly rectifiable measures are present in the litera-
ture. In particular, if the measure is n-AD-regular, then it is n-uniformly rectifiable if
and only if its associated n-Riesz transform is bounded on L? (see [DS91], [MMV96]
and [NTV14al).

This fact plays a crucial role in the study of the geometric properties of harmonic
measure. In particular, it was used in [Azz{16b| to prove that the mutual absolute
continuity of the the harmonic measure for an open set Q C R™! with respect to
surface measure H" in a subset of 92 implies the n-rectifiability of that subset. This
answered a problem raised by Bishop (see [Bis92]).

The analogous result for elliptic measure has been proved in [PPT18], following the
ideas of [Azz 1 16b], as an application of the characterization of uniform rectifiability
via the boundedness of the gradient of single layer potential.

Another question proposed by Bishop asks whether, given two disjoint domains
01,9 c R mutual absolute continuity of their respective harmonic measures
implies absolute continuity with respect to surface measure in 921 N Qs and rectifi-
ability.

This is a so-called two phase problem for harmonic measure and was eventually
solved in its full generality in [Azz+16d]. This work relies on three main tools: a blow-
up argument for harmonic measure (see also [KPT09] and [TV18b]), a monotonicity
formula (JACF84]) and a quantitative rectifiability criterion (see [GT18]).

In particular, we point out that the theorem by Girela-Sarriéon and Tolsa served to
overcome some intrinsic technical issue in the formulation of the problem and it can
be interpreted as an adapted version of previous results by David and Léger, which
were formulated in terms of the so-called Menger curvature of a measure (see [Dav98]
and [Lég99]). Their theorem is of fundamental importance also in other two-phase
problems examined in [AMT17a] and the very recent work [P1T19]. The goal of the
present chapter is to encounter an analogue criterion in the context of elliptic PDE’s
in divergence form with Holder coefficients.
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Let A = (a;j)1<ij<n+1 be an (n+1) x (n+1) matrix whose entries a;;: R"™! — R
are measurable functions in L>(R"*!). Assume also that there exists A > 0 such that

ATYEP? < (A(x)€,€),  for all € € R™! and a.e. z € R"H, (4.1.1)
(A(z)€,m) < A|€|n|, for all £,7 € R*™! and a.e. x € R*FL, (4.1.2)

We consider the elliptic equation
Lyu(zx) = —div (A()Vu(+)) (x) =0, (4.1.3)

which should be understood in the distributional sense. We say that a function u €
WL2(Q) is a solution of (4.1.3), or L 4-harmonic, in an open set Q C R*t1 if

loc
/AVU V=0, forall peCX Q).

We denote by £a(x,y), or just by £(x,y) when the matrix A is clear from the
context, the fundamental solution for L, in R"*1 so that L,E4(z,y) = , in the dis-
tributional sense, where J, is the Dirac mass at the point y € R™*!. For a construction
of the fundamental solution under the assumptions (4.1.1) and (4.1.2) on the matrix
A we refer to [HK07]. Given a measure p, the function f(z) = [Ea(z,y)du(y) is
usually known as the single layer potential of n. We define

K(z,y) = Vi€a(z,y), (4.1.4)

the subscript 1 indicating that we take the gradient with respect to the first variable,
and we consider (4.1.4) as the kernel of the singular integral operator

Tia) = [ Klavy) duty),

for x away from supp(u). Observe that Ty is the gradient of the single layer potential
of u.

Given a function f € L}

loc(1t), We set also

T, f(x) = T(f p)(x) = / K (2, y) () du(y),

and, for € > 0, we consider the e-truncated version

Top(x) = /| K@) duty)
T—yY|>€

We also write T}, f(x) = T.(fp)(x). We say that the operator 7, is bounded on
L?(u) if the operators T), . are bounded on L?(p) uniformly on € > 0.

In the specific case when A is the identity matrix, —L4 = A and T is the n-
dimensional Riesz transform up to a dimensional constant factor. We say that the
matrix A is Holder continuous with exponent o € (0,1) (or briefly C* continuous), if
there exists C}, > 0 such that

laij () — aij(y)] < Cplz —y|* forall z,y e R" M and 1 <i,j <n+1. (4.1.5)

Under this assumption on the coefficients, the kernel K(-,-) turns out to be locally
of Calderon-Zygmund type (see Lemma 4.2.1 for more details). However we remark
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that, contrarily to what happens in the case of the kernel of the Riesz transform, in
general K (-,-) is neither homogeneous nor antisymmetric (not even locally).

For our applications, it is useful to determine whether 7}, f converges pointwise
p-almost everywhere for ¢ — 0. In case it does, we denote the limit as

p.-vI,f(z)= eh—I}(l) Tyuef(x)

and we call it the principal value of the integral T), f(z). One can prove the existence
of the principal values for general Radon measures with compact support under the
additional assumption of L?(u)-boundedness of T,,. In particular, our first result is
the following.

Theorem 4.1. Let 1 be a Radon measure on R"T! with compact support and with
growth of degree n, i.e. suppose that there is C' > 0 such that

w(B(z,r)) < Cr"  for all x € R™

Let A be a matriz that satisfies (4.1.1), (4.1.2) and (4.1.5) and assume, moreover, that
the gradient of the single layer potential T}, associated with Ly is bounded on L3(p).
Then:

1. for 1 <p< oo and all f € LP(p), p.vT,f(x) exists for p-a.e. x € R"F1;

2. for allv € M(R™"M), p.vTv(z) exists for p-a.e. x € R"H1,

If A= Id, Theorem 4.1 reduces to its analogous for the Riesz transform (see for
example [Toll4, Chapter 8]). In light of this result, in the rest of the chapter we will
often denote the principal value operator simply as Tv with abuse of notation.

Given a ball B = B(z,r) C R*""! we denote by r(B) its radius and, for a > 0, by
aB its dilation B(z,ar). Multiple notions of density come into play in this chapter.
For a ball B, we denote

and, for v > 0, its smoothened version

P,,(B) =) _27770,(2'B). (4.1.6)
Jj=0

We remark that if v4 < 9, then

Puna(B) = 27720,(2'B) < ) 27710,(2B) = Fury (B).

>0 >0
Another notion of density that we need is the pointwise one. In particular, we denote

the upper and lower n-densities of v at = respectively as
(B(z,7))

e p(B(x,r)) B
O, (z) = llriljélp e and O, ,(x) = hgl_)lglf @

A way to quantify the flatness of a measure at the level of a ball B is in terms of the
(B-coeflicients. For an n-plane L we denote

BB = o [ ) and 5,08 = it 5 (B),
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the infimum being taken over all hyperplanes in R"*!. Using a standard notation,
given £ C R™! with u(E) > 0and f € L} () we write

loc

1
mpue(f) = M(E)/Efdu

for the mean of f with respect to the measure u on the set E. The main result of the
chapter is the following.

Theorem 4.2. Let n > 1, let ju be a Radon measure on R™ with compact support
and consider an open ball B C R"!. Let Cy,Cy > 0 and let A be a matriz satisfying
(4.1.1), (4.1.2) and (4.1.5). Denote by T}, the gradient of the single layer potential
associated with La and . Suppose that i and B are such that, for some positive A,
and € and some & € (0, 1), the following properties hold

1. r(B) < A

2. Cy''r(B)" < u(B) < Cor(B)™.

3. Pya(B) < Cy and for all v € B and 0 < r < r(B) we have p(B(z,r)) < Cor™.

4. Ty, 1s bounded on L*(ulp) with || Ty, [l 12(u ) —r2(u ) < C1 and T(x2pp) €
L2(ul5).
Bua(B) < 6.
6. We have

R

[ 1T(0) = (T) Pd(a) < ().

There exists a choice of \,0 and € small enough and a proper choice of & = &(a,n),
all possibly depending on Co and C1, such that if u satisfies (1)—---—(6), there exists
a n-uniformly rectifiable set I' that covers a big portion of the support of u inside B.
That is to say, there exists T > 0 such that

w(BNTL) > 7u(B).

Notice that Theorem 4.2 immediately implies that a big piece of u|p is mutually
absolutely continuous with a big piece of H"|p. This is a relevant feature in light of
possible applications, in particular to elliptic measure.

Our proof of the theorem shows that a good choice for & is & = /2" L. It is not
clear whether Theorem 4.2 holds with a condition on P, o(B), that would be a more
natural homogeneity to assume. We remark that the integral in the left hand side of
the assumption (6) makes sense because of the existence of principal values ensured
by Theorem 4.1 and the hypothesis P, o(B) < +oc0. For a sketch of the argument we
refer to the end of Section 4.3.

The main conceptual difference with respect to the analogous theorem for the Riesz
transform in [GT18] is that we need to require the ball B to be small enough. The
locality of our result reflects the non-scale invariant character of the Holder regularity
assumption for the coefficients of the matrix A. This issue is evident also in [PPT18]
and it is not clear how to overcome this difficulty without making further assumptions
on the matrix.

Another difference is that we could not formulate the theorem in terms of P, ;.
The proofs of the rectifiability results for the harmonic measure in [AMT17b| and
[Azz+416d| actually rely on the fact that the theorem of Girela-Sarrion and Tolsa
holds for & = 1. However, a slight variation on their arguments allows to overcome
this technical obstacle. We close the introduction by presenting an application of
Theorem 4.2, which is, in fact, its main motivation.



128 Chapter 4. Single layer potentials and rectifiability for general measures

Before stating it, recall that if 2 is a Wiener regular set, the elliptic measure wzzA

with pole at p associated with the elliptic operator L4 is the probability measure
supported on 9% such that, for f € Cy(0%),

[ it = o),

where f denotes the L 4-harmonic extension of f. A large literature is available on the
subject. For example, we refer to [HKMO06] and [Ken92] for its definition and basic
properties.

Theorem 4.3. Let n > 2 and let A be an elliptic matriz satisfying (4.1.1), (4.1.2)
and (4.1.5). Let Q1,09 C R pe two Wiener-reqular domains and, for p; € €,
i €{1,2}, let W%A,i be the respective elliptic measures in €; associated with L4 and
with pole p;. Suppose that E is a Borel set such that w§11471|E < wII;QA,2|E < W}EA,HE-
Then there exists an n-rectifiable set F' C E with WIL)ZJ(E \ F') =0 such that wilA71|F
and wlii;,ZlF are mutually absolutely continuous with respect to H"|p.

We remark that the generalization of the blow-up methods for the harmonic mea-
sure to our elliptic context is contained in the work [AMI18]. Also, the proof of The-
orem 4.3 follows closely the path of the work [Azz+16d]. However, some variations
are needed so that we decided to sketch the proof at the end of the chapter, where we
also provide precise references for the reader’s convenience.

We finally remark that recently several studies have appeared concerning the con-
nection between the geometry of a domain and the properties of its associated elliptic
measure, among which we list [Akm+17], [Azz+16a], [Hof+15], [HMT10], [HMT] and
[Ken+16].

The structure of the chapter

Section 4.2 is devoted to settle our notation and to make an overview of the results
in PDE’s relevant for our work. In particular, we need some estimate for the gradient
of the fundamental solution coming from homogenization theory.

In Section 4.3 we prove Theorem 4.1.

Section 4.4 contains the statement of the Main Lemma that we use to prove
Theorem 4.2. The biggest advantage of the formulation of this lemma with respect
to the one of the main theorem is that the flatness condition on the Si-number is
replaced by an hypothesis on the a-numbers. The latter are more powerful when
trying to transfer the flatness estimates to the integrals.

In Section 4.5 we discuss an equivalent formulation of the Main Lemma in terms
of an auxiliary elliptic operator which shares more symmetries than L 4. This is a
novelty of the elliptic case, this issue not being present in the work of Girela-Sarrion
and Tolsa.

The Sections 4.6, 4.7, 4.8 and 4.9 follow the path of the original work for the Riesz
transform, with some minor variations. They are necessary for expository reasons;
indeed, they present the core of the contradiction argument for the proof of the Main
Lemma and the construction of a periodic auxiliary measure.

Section 4.10 consists of the proof of two crucial results: the existence of the
limit of proper smooth truncates of the potential of bounded periodic functions and
a localization estimate for the potential close to a cube. We emphasize that these
proofs rely on the periodicity of the modification of the elliptic matrix.
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In Section 4.11 we complete the proof of the Main Lemma via a variational tech-
nique. We highlight that one of the most delicate point consists in finding an appro-
priate variant of a maximum principle in an infinite strip in our elliptic setting. Our
argument heavily exploits the additional symmetries provided by the modified matrix.

In the final Section 4.12, we present the application of the main rectifiability
theorem to the study of elliptic measure, sketching the proof of Theorem 4.3.

4.2 Preliminaries and notation

It is useful to write a < b to denote that there is a constant C' > 0 such that a < Cb.
To make the dependence of the constant on a parameter ¢t explicit, we will write a <; b.
Also, we say that b 2 aif a <band a =~ bif both a <band b < a.

All the cubes, unless specified, will be considered with their sides parallel to the
coordinate axes. Given a cube @), we denote its side length as ¢(Q) and, for a > 0, we
understand a@ as the cube with side length af(Q) and sharing the center with Q.

We say that a cube @ has ¢-thin boundary if

p{z € 2Q : dist(z,0Q) < M(Q)} < tAu(2Q)

for every A > 0. Analogously to (4.1.6), we define

P, Zg 0,(2/Q) = 22 7 M2JQ

j=0 7>0

Given a measure p and a measurable set E, we denote as p|p the restriction of
pto E and, for ¢: R™™ — R™ we use the notation ¢pu(E) = u(¢p~*(E)). An
important tool in the study of rectifiabilty is the so-called a-number introduced by
Tolsa in [Tol09]. Let us fix a cube Q C R™*! and consider two Radon measures i and
v on R""1. A natural way to define a distance between p and v is to consider the
supremurm

do(p,v) = Sl}p/fd(u —v), (42.1)

where f € Lip(R™™), ||f|lLip < 1 and supp f € Q. The distance dg offers a way
of quantifying the “flatness” of a measure alternative to that via Si-numbers. More
precisely, if we consider a n-plane L in R™*!, we can define

1 .
a(Q) = Jroyart i do(p, ¢H"|L). (4.2.2)

Given a matrix A(-), possibly with variable coefficients, we use the notation AT (")
to indicate its transpose. Also, we write £"T! for the Lebesgue measure on R™*1,

Partial Differential Equations. For any uniformly elliptic matrix A with Holder
continuous coefficients, one can show that K(z,y) = V1 &(x,y) is locally a Calderén-
Zygmund kernel.

Lemma 4.2.1. Let A be an elliptic matriz with Hélder continuous coefficients sat-
isfying (4.1.1), (4.1.2) and (4.1.5). If K(-,-) is given by (4.1.4), then it is locally a
Calderdn-Zygmund kernel. That is, for any given R > 0,
(a) |K(z,y)| < |z —y|™™ for all x,y € R* with x # y and |z — y| < R.
() |K (2,9) — K (0, )] + |K(y,2) — K5/, 2)| S |y — /|%& — y| " for all y,yf €
B(z, R) with 2|y —y'| < |z —yl.
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(¢) |K(z,y)| S lw—y|O=/2 for all w,y € R™ with |z —y| > 1.
All the implicit constants in (a), (b) and (c) depend on A and ||A|la, while the ones
in (a) and (b) depend also on R.

The statements above are rather standard. For more details, see Lemma 2.1 from
[CMT19].

Let w, denote the surface measure of the unit sphere of R"*1. For any elliptic
matrix Ay with constant coefficients, we have an explicit expression for the funda-
mental solution of L 4,, which we denote by ©(z,y; Ag). More precisely, O(x,y; Ag) =
O(z —y; Ap) with

-1 1

for n > 2,
(n — Dwny/det Ag s (A Lz - 2) =D/ orn =
O(z; Ag) = O(z; Aps) =
1
= log(Ailz-2) form=1,
I /et Ay s og( 0,57 z) orn
(4.2.3)

where Ay is the symmetric part of A, that is, Ag s = %(Ao + Ag).

The reason why only the symmetric part of Ag enters (4.2.3) it that, using Schwarz’s
theorem to exchange the order of partial derivatives writing Ag = {aj;}: j, for every
appropriate function u we have

LAOU = — Z 8¢(aij8ju)

Z7j
1 1
=5 Z a;;0;0;u — B Z a;j0;0;u (4.2.4)
ij &
=-y W&‘@ju = L, Ju.
2%

These formal considerations can be made rigorous by standard arguments.
Differentiating (4.2.3) we have

1 Aoiiz
wn+/det Ag s (Agéz - z)(n+1)/2°

The next result is proven in [KS11, Lemma 2.2].

V@(Z; Ao) =

Lemma 4.2.2. Let A be an elliptic matriz with Hélder continuous coefficients sat-
isfying (4.1.1), (4.1.2) and (4.1.5). Let also O(-,-;-) be given by (4.2.3). Then, for
z,y R 0 < |z —y| <R,

1. |Eala,y) — Oz, y; A(2))| S |z — y[* 7",

2. [V1Ea(2,) — V10(z, 3 A(@))| S |z — g™,

8. [Vi€a(z,y) — ViO(z,y; A(y))| < |z —y[*™.
Similar inequalities hold if we reverse the roles of x and y and we replace V1 by V.
All the implicit constants depend on A, ||Alla, and R.

The gradient of the fundamental solution in the periodic case. We denote as
A, the set of matrices such that (4.1.1), (4.1.2) hold and with a-Holder coefficients.
We say that the matrix A € A, is f-periodic, £ > 0, if

A(x + £2) = A(x) for every z € Z"T1,
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For periodic matrices the estimates in Lemma 4.2.1 turn out to be global.

Lemma 4.2.3 ([KS11]). Let A € A, be 1-periodic and let €4 be the fundamental
solution of La. Let K(-,-) is given by (4.1.4). Then
1. [Vi&€a(x,y)| < crlx —y|™" for every x,y € R with x # y.
2. [Vi€alz,y) = Vi€ald )|+ |Vi€aly,x) = Vi€aly,2')| < calx — 2/|%x —
Y|~ for every x, 2,y € R™ such that 2|z — /| < |z — y|.
The constants appearing in (1) and (2) are such that c1 =, A c2 =p A || Alla-

The period of the matrix plays an important role in our construction, so it is
useful to rephrase the previous lemma for matrices with a period different from 1. We
are interested in studying matrices with small period, so we only consider the case in
which it is strictly smaller than 1.

Lemma 4.2.4. Let0 < ¢ < 1. Let A € A, be £-periodic and let € A be the fundamental
solution associated with L 4. Then
1. |V1€alz,y)| < iz —y|™" for every x,y € R* with x # y.
2. |Vi€alx,y) = Vi€ald,y)| + | Vi€aly,x) = Vi€aly,2')| < dyle — /| —
Y| for every x, 2’y € R such that 2|z — 2'| < |z — y|.
The constants appearing in (1) and (2) are such that ¢} ~p p ¢ ~p A [|Ala-

Proof. For £ € (0,1) and all x € R"*! we define the rescaled matrix
Az) == A(lz)

and we denote by & the fundamental solution of L - By the definition of fundamental
solution, it is not difficult to see that

Vi&(x,y) ="V Ealz, by) for z,y € R, (4.2.5)
Moreover,
[A(z) = A(y)| = |A(tx) — A(ty)] < ]| Allalz = y|* < [|Aflalz =yl
so that ||Allq < ||Alle. Applying Lemma 4.2.3 together with (4.2.5) we get
| Vi€alz,y)l = £ ViEW e, )| S L0 e — 0y = o -y "
for any z,y and

|Vi€alm,y) = Vi€ala,y)| = VI EW w7 y) = Vi E(C 2 071y
N |€—1$ _ f_lx/|a _ |1, _ x/‘a
|£71$ _ gfly|n+a - |{L‘ _ y|n+a.

ST

for 2|z — 2'| < |x — y|. The same estimate holds for | V1 Ea(y,x) — V1 Ealy,2')|. O
The following is the (global) analogue of Lemma 4.2.2 in the 1-periodic setting.

Lemma 4.2.5. Let A € A, be 1-periodic. Then for every x,y € R"TL x £ y, we
have

‘ SA(x,y) - @(1’7 Y; A(fI,'))‘ S ‘.Z' - y‘a_n—i_l

‘vl SA(xvy) - V1@(337y714(33))‘ S ‘.%' - y‘a_n
Vi€alz,y) = ViO(z,y; A(y))| < |z —y[*7",
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the implicit constants depending on ||Al|o and A. Similar estimates hold if we replace

Vl by VQ.

Let us now recall some result from elliptic homogenization. For more details we
refer to the work by Avellaneda and Lin [AL91]. For this purpose, we need to recall
the definition of vector of correctors x and homogenized matrix Ag. Let £ > 0 and let
A € A, be a 1-periodic matrix. We will denote by x(z) = (x*(x)), fori € {1,...,n+1}
the vector of correctors, which is defined as the solution of the following cell problem

Ly =div A,
X is 1-periodic, (4.2.6)
j1[071]n+1 X(x)d'r = Oa

where the first condition in (4.2.6) has to be understood in coordinates as
Z 8:1:2 [aijé?xjxh] (x) = — Z 3xiaih(1’),
0J i

(aij)i,; being the coefficients of the matrix A. An important fact is that that
VXl < C,

the bound C depending only on n,a and ||A||ce. We remark that Vy denotes the
matrix with variable coefficients whose entries are 9;x? for 4,5 = 1,...,n + 1. Now, if
we consider the following family of elliptic operators

Le :=div (A(z/e)V - )

depending on the parameter ¢ > 0, it can be proved that for any f € L?(R"!), the
solutions u, € WL2(R"H1) of
Leue = div f

converge weakly in W12(R" 1) to a function ug as ¢ — 0. This function solves the
equation

Loug = div(AgVugp) = div f,

where Ag is an elliptic matrix with constant coefficients usually called homogenized
matriz (see, for example, [Shel8]).

Homogenization is a powerful tool to study the fundamental solution of an elliptic
equation in divergence form whose associated matrix is periodic and has C% coeffi-
cients. The main result that we will use is the following (see [AL91, Lemma 2| and
[KS11, Lemma 2.5]).

Lemma 4.2.6. Let A € A,. Let us assume that A is 1-periodic. Then there exists
v € (0,1) depending on «, ||A||ce and n such that

&
‘ Ealz,y) — (Id+ Vx(2))O(z, y; AO)‘ S W (4.2.7)

and c
‘Vl Ealz,y) — (Id+ Vx(a:))V1®(x,y;A0)‘ S Wa (4.2.8)

where Id denotes the identity matriz and the implicit constants in (4.2.7) and (4.2.8)
depend just on n,a and || A||q.
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The period of the coefficients of A plays a crucial role in these estimates. We
will be dealing with matrices with periodicity different from 1, so we need a suitably
adapted version of the previous lemma. Let A € A, be a f-periodic matrix. Let us
define the 1-periodic matrix

A(z) == A(lzx)

for € R™! and let ¢hi denote the vector of correctors associated with A defined
according to (4.2.6). For £ > 0 we define

xe(x) = f)?(%)

Lemma 4.2.7. Let 0 < £ < 1. Let A € A, be an L-periodic matriz. Then there exists
v € (0,1) and ¢ > 0, both depending just on n,a and ||Al|o such that

(Vi€a(z,y) — V1O(z,y; A(z))| < cl|z —y|* ™, (4.2.9)
|VaEa(z,y) — V2O(z,y; A(y))| < c |:1: -yl (4.2.10)
’Vl Ealz,y) — (Id+ Vx(x))V1O(x y,AO | < ez —y[" 7. (4.2.11)

for every x #£ .

Proof. Let € denote the fundamental solution of the operator L;. Asin (4.2.5), we
have

ViEa(z,y) ="V E(x/L,y /), (4.2.12)
so an application of Lemma 4.2.5 gives
}vl 5A<$, y) - Vl@(x7 Y; A(l’))‘
="V, SA(ﬁflx,Fly) — V10(z,y; A7) < el — y|* ™.
Using (4.2.8) and (4.2.12), we get

= 0MVAE(x /0,y /) — (Id+ VR(2/0))V1O(z/L,y/6; Ag)]
cln cl

S O

where ¢ depends on n,a and ||Ala, [|Alla < ||Alla- Inequality (4.2.10) follows as
(4.2.9). O

4.3 The existence of principal values

The purpose of the present section is to prove Theorem 4.1. The proof of the existence
of principal values can be divided into the study of two different cases: the case in
which p is a rectifiable measure and the one in which p has zero n-density, i.e.

NNVICERD)

r—0 rn

=0 for p-a.e. x € R™L (4.3.1)

Indeed, without providing the detailed argument, we recall that by means of [PPT18,
Theorem 2| we can decompose a measure  for which T}, is bounded on L?(u) into the
sum of a rectifiable measure and a measure with zero n-density almost everywhere.
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4.3.1 Principal values for rectifiable measures with compact support

This subsection follows the scheme of [CMT19, Section 2.2]. The proof of the existence
of principal values for T}, if the measure p is rectifiable and has compact support relies
on the following result.

Theorem 4.4. Let p be a rectifiable measure. Let K € C°(R™™\ {0}) be an odd
kernel and homogeneous of degree —n, i.e. K(x) = —K(—x) and K(Az) = \""K(z).
Assume, for some M = M (n), the further reqularity condition

VK (2)| S CG)|2|™™ 7 for all0< j < M and x € R™™\ {0}. (4.3.2)
Then the operator Tk, is bounded on L?(u) with operator norm

1 Ts ull 22 ()= 220) S 1 sl 1 ren)- (4.3.3)

Moreover, the principal value

Ty f(z) = lim K(z —y)f(y)du(y)

e20 Jo—y|>e
exists p-almost everywhere.

The proof of the boundedness of Tk ,, is due to David and Semmes. The result on
principal values was first proved imposing an analogous condition for all j =0,1,2,...
(for a more detailed exposition we refer, for example, to [Mat95, Chapter 20]). We
remark that it has been recently improved by Mas (see [Mas13, Corollary 1.6]).

The previous theorem together with a spherical harmonics expansion of the kernel
is the key tool to prove the following result.

Lemma 4.3.1. Let p be an n-rectifiable measure. There exists M = M(n) such
that the following holds. Let b(x,z) be odd in z and homogeneous of degree —n in z,
and assume Db(x,z) is continuous and bounded on R™ x S for any multi-index
|a| < M. Then for every f € L*(u), the limit

Bf(z) = lim b(x,x —y) f(y)du(y)

E—¢E |1,_y‘>0
exists for p-almost every x.

Proof. Let {pj;;}j>1,1<i<n,; be an orthonormal basis of L?(S™) consisting of surface
spherical harmonics of degree j. Recall that (see [AH12, (2.12)])

N; =0(" ), for j > 1. (4.3.4)

Using the homogeneity assumption for b(x, -) and the orthonormal expansion, we write

b(z, )_b( ) ZZ %zmsn)%z(‘ ‘)le! "

§>1 =1 (4.3.5)

= > b))l

j7l

where b (x l( = (b(z,-), @j1) L2(sn)- Since b(w, ) is an odd function and ¢ is even for
every j, bj;(x) = 0 for j even. Being b in LC’O(R”Jrl x S™) by hypothesis and Holder’s
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inequality, we have
[bj, ()| < C(n)l[b(x, )| Lo sm)ll @il L2sny < C(R)[bl o (rrtrxsny < C(n). (4.3.6)

Moreover, recalling that we can suppose j odd, the function K;;(2) = ¢;;(z/|2])[2|™
satisfies the hypothesis in Theorem 4.4: there exists an harmonic polynomial P;; of
odd degree j such that ¢;,(z/|z|) = Pji(2)/|z)?, so

‘V*"“(y y)‘ \iy

~ z 1 z 1
WK‘,Z(Z)‘ S ‘V(’Dj’l<|z)‘\z|” + ‘%‘J(M)‘ |zt N |z|n+1

Analogous estimates hold for higher order derivatives. So, Theorem 4.4 ensures that

and

Tg,, pf (x) = lim Kii(z —y) f(y)du(y) = lim T el (@) (4.3.7)

e—0 lz—y|>e

exists for p-a.e z. Recall also that by the Theorem 4.4 there exists M = M (n) such

that T is bounded on L?(u) with operator norm

1Tx,, ullz2g—r200) S 1K dlsm lomsny = llpjallon gny- (4.3.8)

Gathering (4.3.5), (4.3.6) and (4.3.7), to prove the lemma it is enough to show that
the dominated convergence theorem applies and, in particular, that

Z\b T, el (@)] < Clz) < o0, (4.3.9)

where C(x) does not depend on . By Lebesgue differentiation theorem, to prove
(4.3.9) it suffices to show that for every ball By C R"™! we have

Z/ bja(@) Tk, , e f (@)|dn(@) Spom > 1bjallsollsillom smy I Il 2

Jtm

< Ol fll2(w

for some C > 0, where the first inequality above uses the L2-boundedness (4.3.8).
The smoothness of b implies that (see [Ste70, p. 3.1.5])

1
Hbj,l”oo § W7

where the exponent on the right hand side is chosen accordingly to what we need
next. Now, recall that the Sobolev space H*(S"), s € R can be defined via spherical
harmonics expansion. In particular, it is the completion of C'*°(S™) with respect to

the norm Lo s
[0l s (smy = (Z (j + 2 3 ) \Uj,l|2> ; (4.3.10)
75l

where v;; = (v,cpﬂ)Lz(Sn). For the definition and the properties of this space, we
refer for example to [AH12, Section 3.8] and to [AH12, Section 6.3| for the relation of
(4.3.10) with that via the restriction of the gradient to the unit sphere. By Sobolev
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embedding theorem, H*(S™) continuously embeds into C'(S™) for s > n/2. So, choos-
ing s = n/2 and using (4.3.10) can estimate

2j +n— 1\ 5+m
1D™65llcn Sn o3 2T

e = (5

Hence, using (4.3.4)

M
3 1—-M .2 1
> Wsdlllesllonen S 32 3N iS50 5 < oc,

gl m=0 j>1 j>1

which concludes the proof. O

Theorem 4.5. Let pu be an n-rectifiable measure on R with compact support. Let A
be a matriz having the properties (4.1.1), (4.1.2) and (4.1.5). Then for every f € L*(p)
the principal value

T, f(z) = lim Vi E(z,y) f(y)du(y)

e—0 lz—y|>¢
exists for p-almost every x.

Proof. Let ¢ > 0 and denote b(z,z) := V1 0(z,0; A(x)). As a consequence of the
explicit formula (4.2.3), it is not difficult to see that each component of b verifies the
hypothesis of Lemma 4.3.1. So, split T}, . as

Tpef(a) = / b(z,x —y) f(y)du(y)
vl (4.3.11)
t (T = V00 ) )ity

The limit for € — 0 of the first integral in the right hand side of (4.3.11) exists p-a.e.
because of Lemma 4.3.1. On the other hand, V1 E(x,y) — V1 O(x, y; A(z)) defines an
operator which is compact on LP(u) because of Lemma 4.2.2) which guarantees that
the limit for € — 0 exists for p-a.e. x and concludes the proof. O

4.3.2 Principal values for measures with zero density

We argue as in [Toll4, Chapter 8], proving the existence of the principal values passing
through the existence of the weak limit and following the approach of Mattila and
Verdera [MV95]. Again, we suppose that p has compact support.

A combination of the proof of [MV95, Theorem 1.4] (see also [Toll4, Theorem
8.10]) and Lemma 4.2.2 makes possible to prove that if u is a Radon measure in R?*!
with growth of degree n, then for every 1 < p < oo and f € LP(u), {1y f}e admits a
weak limit 7))’ f in LP (1) as € — 0. Moreover, the representation formula

T f(z) = lim e Tu(FXB(ar)e) (¥)dp(y) (4.3.12)

holds for p-almost every x € R™ ! giving an explicit way of computing the weak
limit. We remark that, in general, we can only infer that formula (4.3.12) holds if 7},
has an antisymmetric kernel.

Let us recall the following theorem by Mattila and Verdera (see [MV95]), here
reported in the formulation of [Toll4, Theorem 8.11].
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Theorem 4.6. Let i be a Radon measure in R that has growth of degree n and zero
n-dimensional density p-a.e. Let T, be an n-dimensional antisymmetric Calderon-
Zygmund operator. Then, for all 1 < p < oo and f € LP(u), p.vT,f(x) exists for
p-a.e. x € R and coincides with T f(z). Also, for all v € M(C), p.vTv(z) exists
for p-a.e. x € R

This result can be transferred to the gradients of the single layer potential T),.

Theorem 4.7. Let pu be a Radon measure in R™"! that has growth of degree n, zero
n-dimensional density and compact support. Suppose that T}, is a bounded operator
from L?(p) to L*(u). Then, for all 1 < p < oo and f € LP(u), p.vT,f(x) exists for
p-a.e. x € R and coincides with T} f(x). Also, for allv € M(C), p.vTv(x) ewists
for p-a.e. x € R"H,

Proof. Let 1 < p < oo and f € LP(u). We decompose T}, f into its symmetric and
antisymmetric part. That is to say,

Tuf(x) =T\ f(x) + T f (=),

where T,Sa) is the integral operator with kernel (Vi E(z,y) — V1 E(y,x))/2 and T,SS)
whose kernel is (V1 E(x,y) + V1 E(y,x))/2. We can apply Theorem 4.6 to antisym-
metric part Tﬁ(ﬂ), obtaining that p. VT}(La)f(JZ) exists for u-a.e. x.

On the other hand, T,Ss) defines a compact operator on LP(u) since

/ V1 E(2,9) + V1 £(y, 2)|duly) < diam(supp )°,

so that the principal values exist.
The fact that T}’ f coincides with p.vT), f a.e. follows from the definition of weak
limit together with dominated convergence theorem:

/T;ffgd,u:lim/TMEfgdu:/p.vTufgdu for all gELp/(u),
e—0 ’
p’ being the Holder conjugate exponent of p. O

A remark on the well-posedness of the assumption (6) of Theorem 4.2. Let
T, and B be as in Theorem 4.2. Let z,y € B and € > 0 and write

Tep(x) — Teply) = Tpex2s () — Tpexen(Y) + [Tpexrn+nop (@) — Tyexreriop (v)]-

Now observe that, being the operator T, bounded on L*(u|p), Theorem 4.1 (2)
applies with v = yappu. So, the first two summands on the right hand side of (4.3.2)
admit a limit as € — 0 for almost every x,y € B. The limit for € — 0 of the last
summand exists, too. Indeed, since z,y do not belong to R"*!\ 2B, for e < 7(B),

Tu,eXRnH\QB(fE) - Tu,eXRn+1\2B(y) = / (Vl E(x,z) = V1&(y, z))d,u(y).

Rn+1\2B
(4.3.13)
If we assume & < « in the statement of the main theorem, an application of the
Calderon-Zygmund property of the kernel combined with a dyadic decomposition of
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the domain of integration gives

‘/ (Vi€(z,2) — Vi€(y,2))du(z)| S
Rn+1\2B

<o y\az / | 1|n+adﬂ(2)

2i+1B\2/ B |z — =z
< P,o(B) < P,a(B) < +o0.
(4.3.14)
In particular, this tells that Tu(xz) — Tu(y) exists in the principal value sense for
almost every x,y € B.

We also want to point out that T — my, 5(Th) defines an L?(u|p)-function. In-
deed, for € B and using (4.3.14),

Tu(x) — my p(Ti)| < M(lB) /B Tu(z) — Tu(y)ldu(y)

T (xam) ()| + (mp, BT (x2m1)[2) "/ + Pa(B).

IN

The right hand side of the previous majorization defines an L?(u|g) function because
of the assumptions T'(x2pp) € L*(u|p) and P, 5(B) < +oo in Theorem 4.2.

4.4 The Main Lemma

A careful read of [GT18] shows that the same arguments as the ones for the Riesz
transform give that, in order to prove Theorem 4.2, it suffices to prove the following
result.

Lemma 4.4.1 (Main Lemma). Let n > 1 and let Cy,C1 > 0 be some arbitrary
constants. There exist M = M(Cy, C1,n) > 0 big enough, \(Co,C1,n) >0 and € =
€(Co,C1, M,n) > 0 small enough such that if § = §(M,Co,C1,n) > 0 is sufficiently
small, then the following holds. Let p be a Radon measure in R with compact
support and Qo C R™™1 a cube centered at the origin satisfying the properties:

1. {(MQo) < A
1(Qo) = £(Qo)".
Pa(MQo) < Co.
For all x € 2Q¢ and 0 < r < 4(Qo), ©,4(B(z,r)) < Cp.
Qo has Cy-thin boundary.
ozﬁ(?)MQg) <9, for some hyperplane L through the origin.

1s bounded on LQ(/LIQQO) with HTM|2Q0HLZ(#\zQU)%LQ(HbQO) < Cl.

G N S: s Lo

TN|2Q0
We have

/Q () — o (T10) Pala(z) < €(Qo). (4.4.1)

Then there exists some constant T > 0 and a uniformly n-rectifiable set I' C R"*!
such that

Qo NT) > 7u(Qo),

where the constant T and the uniform rectifiability constants of I' depend on all the
constants above.

The matrix A may have a very general form. In particular, we need some addi-
tional argument to overcome the lack of “symmetries” of the matrix with respect to
reflections and to periodization (the exact meaning of this sentence will be clear after
the reading of Section 4.5, where we recall how second order PDE’s in divergence form
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are affected by a change of variable). Indeed, this is a crucial point for our proof to
work. A similar problem has been faced in [PPT18|. First, in order to be able to
argue via a change of variables, we have to show that we can assume the matrix A to
be symmetric.

We recall Schur’s lemma for integral operators with a reproducing kernel. The
proof is a standard application of Cauchy-Schwarz’s inequality.

Lemma 4.4.2. Let K: R"T! x R — R*™ 1 be a function such that, for a constant
C > 0, we have

[ 1K p)lduta) < € (142)

and

/ K (2, y)|du(y) < C. (4.4.3)

Then the operator Tf = K * f is a continuous operator from L?(u) to L*(u) and
1Tl 2 (= r2(n) < C- (4.4.4)

| = |K (2, 9)["/? (1K (,y)"%| f(y)]) and applying Holder’s

Proof. Splitting |K (x,y) f(y)
(4.4.3), we get

inequality together with

| [ Keaswinw)| < ([ 15 law) ([ 1K@l k)
(4.4.5)
<c( [ IK@nlf)Pdut)
So, applying (4.4.5), (4.4.2) and Fubini’s theorem, we get
[ [ it aute) < € [ 1KGI0Paut)nt)
(4.4.6)
< [ 17wPauty),
which gives (4.4.4). O

Let A be a matrix as before. We denote by A, = (A + AT)/2 its symmetric part
and by Tf“ its correspondent gradient of the single layer potential.

Recalling that, for any matrix Ag with constant coefficients we have ©(-,-; Ag) =
O(-,; Ao,s), we can formulate the following lemma.

Lemma 4.4.3. Let Q be a cube in R"" such that, for M > 1, P, o(MQ) < Cy. The

operator TP(LT;)Q is bounded on L*(ulaq) if and only if T, o 18 bounded on L%(ulag)- In

2

particular

H |2QHL2(M|2Q )= L2 (pl2q) — HTule ubQ)ﬁLZ(uIzQ)%_O(E(Q)a)' (4.47)
Moreover
[ 17 )0 Pt

SA Al /Q | Tp(x) — myq(Tw)| du(e) + (MQ)™ + M) 1(Q).
(4.4.8)
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Proof. Let us first prove (4.4.7). The identity (4.2.4) for matrices with constant
coeflicients leads to

T @ = [ V1 Ea @) )i
-/ (91 Ea,(0.0) = 1000 Au(a) 1))

+/ (Vl@(w,y;A(w))—Vlg(w,y))f(y)du(y)ﬂL/ Vi&(z,y)f(y)du(y)
2Q 2Q

=1+ 11+ Ty,,f(z)
(4.4.9)

To estimate I and I7 in (4.4.9) it suffices, then, to invoke Lemma 4.2.7 and Schur’s
Lemma. This finishes the proof of the first part of the lemma.
Let us now prove (4.4.8). We split

Tu(x) — muo(Th)
= (T @) = mua(TOxram) ) + (Txgem) (@) = mue(T(xarqrn) ).
(4.4.10)

Let us estimate the two terms in the right hand side separately. Again, as a conse-
quence of (4.4.9) and Lemma 4.2.2 we can write

T(xmom) — mu(T(xmom)) — (TAS (xmQu) + myq (T4 (XMQN))) ’ S MUQ)".
(4.4.11)

To bound the second term in the right hand side of (4.4.10), notice that for z,y € @
standard estimates together with Lemma 4.2.7 give

lz —y|*

| Tux @) (@) = Tux gy ()] < /( y dp(2)

S (rgy Fre(MQ) £ 35 Pua(MQ) £ 372

je o — z|mte

so that, averaging over y in ) we have

T (xuqye) () = muq (T (X (uqyen)) | S M~°

The same calculations lead to
‘TAS (X(u@yer) () — myq (T (X(MQ)c/J))‘ S M,

so the inequality (4.4.8) in the statement of the lemma follows by gathering all the
previous considerations. O

A gathering of Lemma 4.4.1 and Lemma 4.4.3 shows that it suffices to prove
Theorem 4.2 under the additional assumption that the matrix A is symmetric. Indeed,
proving Lemma 4.4.1 with A = A; gives it in the non-symmetric case with worse
assumptions on the parameters involved. We omit further details.
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Remark 8. Arguing as in Lemma 4.4.3, one could prove that

1Ttz 2oy~ 22uta0) = 1Ttz | 2(utag) > 22 1oy T OU@)Y);

where T is the operator corresponding to the antisymmetric part of the kernel K (-, -),
that is to say K%(x,y) = (K(z,y)— K(y,x))/2. However, as in [PPT18] and [CMT19],
we prefer not to make this reduction because it would create problems later on in the
proof. In particular, it would be an obstacle to the application of the maximum
principle, which is a crucial tool in Section 4.11.

4.5 The modification of the matrix

4.5.1 The change of variable

The following lemma deals with how the fundamental solution and its gradient are
affected by a change of variable.

Lemma 4.5.1 (see [PPT18], Lemma 13). Let ¢: R"1 — R e a locally bilipschitz
map and let A € A,. Let €4 be the fundamental solution of Ly = —div(AV-). Set
— | det | Do) (A0 6)D(6 )T Then

Ea,(@,y) = Eald(x), d(y)) for x,y € R™T

and
Vi€a,(z,y) = D(@) (x) ViEa(d(x),d(y)) for xe R

Let us state a lemma concerning how the gradient of the fundamental solution
transforms under a change of variable ¢ as in Lemma 4.5.1. We use the notation

Top(x /V1 Eay(z,y)du(y).

Lemma 4.5.2 (see [PPT18], Lemma 14). Let ¢: R**1 — R"*! be g bilipschitz change
of variables. For every v € R™! we have

Tyu(x) = D(@)" (2)Tdpu(9()).

A particularly useful change of variable is the one that turns the symmetric part
of the matrix at a given point into the identity. For the following statement we refer
to [Azz+16al.

Lemma 4.5.3. Let Q C R"! be an open set, and assume that A is a uniformly
elliptic matriz with real entries. Let Ay = (A+ AT)/2 be the symmetric part of A and

for a fized point yo € Q define S = \/As(yo). If

A() =5 (A08)()s7

then A is uniformly elliptic, /Is(zo) = Id if zo = S~ yy and u is a weak solution of
Lau=0in Q if and only if 4 = uo S is a weak solution of L ;u =0 in S=HQ).

As a remark, we want to point out that the change of variables defined in Lemma
4.5.3 is a linear map and, in particular, a bilipschitz map of R™! to itself. Its
bilipschitz constant depends on the ellipticity of the matrix A.

We need the notion of flatness for images of cubes via maps of the aforementioned
type. For a set E C R"!, we define the a-number in an analogous ways as for cubes.
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In particular, for any hyperplane L and any measure v, we denote

ol inng(V,c”H,"\L).

1
EF)=—-——
v (E) diam(E)"+1! >

This particular notation will be used only in this section.

Lemma 4.5.4. Let ¢ be an affine, bilipschitz change of variables of R"T'. Let L be a
hyperplane in R Let Jo > 0 be the Jacobian of . Then, for any Radon measure
v, for any cube Q C R™ 1 and any constant ¢ > 0 we have that

dQ(l/, cH" |L) ~n,C d@(Q) (cpﬁy, cH" |<P(L)) (4.5.1)
Hence,
a(Q) ~nc 052 (0(Q)). (4.5.2)
Proof. Formula (4.5.2) is an immediate consequence of (4.5.1) and the fact that
6(Q) ~c¢ diam(p(Q)).

Let us prove (4.5.1). For every ¢ > 0

@i (cH™ 1) = cles H™)|o(r)-

Indeed for any ¢y H" | -measurable set £ we have

pr(cH" [L)(E) = cH" (0 "H(E)N L) = cH" (¢7 (BN (L) = clps H") oz (B)-

Moreover, as a consequence of the Radon-Nikodym differentiation theorem (see [EG92,
Lemma 1, p. 92]), we have

W (o7 () = T H(E).
So,

do(v,cH™ 1) ~c dy(q) (psvs pre M 1) =n.c dyo) (avs cH™ |ory)

which proves the lemma. O

4.5.2 Reduction of the Main Lemma to the case A(0) = Id

Recall that by Lemma 4.4.3 we can assume A to be a symmetric matrix.

Let us begin with a preliminary observation. Let Qg C R"™*! be a cube as in
the Main Lemma and let us denote S = Ag(2g,)'/?, where zg, is the center of
Qo. We choose the map ¢ so that ¢(x) = Sz. By Lemma 4.5.3 we have that
As(¢7(2¢,)) = Id. Denoting v = go_lﬁu and arguing as in [PPT18, Section 6],
Lemma 4.5.2 gives

/ T () — mp.go (T) Pdu(z) ~ /

2
}Tg,l/(x) — mVV@_l(QO)(Twu)‘ dv(x)
0 »~1(Qo)

and
T,v ~ |T ,
1T, IILQ(%_l(QQO)) I8 1 (4 )
the implicit constants in the formulas above depending only on ¢ and, hence, on the

ellipticity of the matrix A.
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Using these facts and Lemma 4.5.4, in order to prove Lemma 4.4.1 it suffices to
study the variant stated below.

Lemma 4.5.5. Let n > 1 and let Cy,Cy > 0 be some arbitrary constants. There
exists M = M(Cy,C1,n) > 1 big enough, A(Co,C1,n) > 0 small enough and é =
€(Co, C1, M,n) > 0 small enough such that if 6 = §(M, Co, C1,n) > 0 is small enough,
then the following holds. Let i be a Radon measure in R, Qo C R a cube
centered at the origin and v = go‘lﬁ,u, @ being as in the comments preceding the
lemma, satisfying the following properties:

1. Ay (¢1(0)) = Id.
2. L(MQo) < A
3. V((p_l(Qo)) = E(Qo)n
4. Poa(e ' (MQo)) < Co.
5. Forallz €2Qq and 0 <r < E(@), O©u(B(z,r)) < Cp.
6. Qo has Cy-thin boundary.
7. awil(H)(np_l(BMQo)) <6, where H = {x € R"*1: 2,1 = 0}.
8. T“"?”'eo*@%) is bounded on L2(V|¥,_1(2Q0)) with
HTW\W@QO) HL2(V|¢,1(QQO))HL2(V|W1<2QO>) < Cr.
9. we have

/ |T¢I/($) — mu,w_1(QO)(T<py)‘2du(m) < Eu(go_l(Qo)).
©~1(Qo)

Then there exists some constant 7 > 0 and a uniformly n-rectifiable set T C R"H!
such that

w(QoNT) > 7u(Qo),

where the constant T and the UR constants of I depend on all the constants above.

The aim of most of the rest of the chapter is to provide the proof of this result.

In what follows, for the sake of simplicity of the notation, we will assume that
A(0) = A(zg,) = Id, which in particular gives that ¢ = Id, p = v and T, = T),.
Indeed, if this is not the case, we should carry the following proofs for the image of
cubes via ¢!, periodize with respect to the image of a lattice of standard cubes and
work with T, instead of T'. This would be a merely notational complication that we

prefer to avoid to make the arguments more accessible.

Reduction to a periodic matrix. The forthcoming lemma shows, roughly speaking,
that the local structure of the matrix A close to Qg is what matters to the purposes of
Lemma 4.4.1. An immediate consequence of this fact is that, without loss of generality,
we can replace A with a periodic matrix, provided that the new matrix coincides with
A in a suitable neighborhood of the cube Q.

In what follows, we assume the matrix A to have Holder continuous coefficients of
exponent a/2 for technical reasons that will result clearer later on.

Lemma 4.5.6. Let A € A, 5 be such that A(x) = A(x) for every x € 2Qo. Let T
denote the gradient of the single layer potential associated with A. The operator TM|2Q0

is bounded on L*(plaq,) if and only if T, s bounded on L*(ulaq,) and

|2Q0

T /2
1T sy |22y = L2(l20g) = 1 Tilaog 1122100 L2(la0g) + O (H(Q0)*?).



144 Chapter 4. Single layer potentials and rectifiability for general measures

Moreover we have

[ Tu) — 00T P(a)

0

5/\ﬂmeM%@mem+WM%w+Ma®%@@
(4.5.3)

where M is as in the statement of Lemma J.4.1 and the implicit constant in (4.5.3)

depends on diam(supp p).

The proof of Lemma 4.5.6 relies on the fact that O(-,-; A(x)) = O(-,-; A(z)) for
every x € 2Q)¢ and it is very similar to the one of Lemma 4.4.3, so that we omit it.

In the rest of the chapter, without additional specifications, we will deal with a
matrix A periodic with period £, 2/(Qo) < £ < £(Qo)-

The definition of the matrix A. The construction in the present subsection is
dictated by the necessity of having an auxiliary matrix which agrees with A on 2Q
and has the further properties of being periodic (which is crucial to use the estimates of
the theory of homogenization) and of presenting ‘additional simmetries’ with respect
to reflections (see the forthcoming Lemma 4.5.8). For a scheme of this construction
we also refer to Figure 1.

Let e; denote the j-th element of the canonical basis of Rl We denote by
Yj: R — R the map

1/@(:6) =+ (36(@0) — ij)ej, (4.5.4)

which corresponds to the reflection across the hyperplane P; orthogonal to e; and
which passes through the point 2£(Qo)e;. Let 0 < § < 1/10. Given a matrix B(z)

I
reflection!

P
reflection

3(Qo) (Lzz277 LA

P

FIGURE 4.1: A schematization of the construction of A at the level of
the periodic unit.

with variable coefficients, we define B; as

Bj = By, = D(;')(Bov;)D(4; )" (4.5.5)
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Moreover, we define the matrix B as

Bla) B(x) for dist (z,9(3Q0)) > 04(Qo),

r) = ist(z ist(z .
WB(.@) + (1 - W)I{i for dist (z,0(3Q0)) < 6(Qo).
(4.5.6)

It is also useful to introduce the notation

EJ(:C) _ {B(x) for x; <

3
2 (4.5.7)
Bj(z) for z; > 54(Qo).

Let us apply the previous constructions to the matrix A. First, observe that the matrix

—

A; is not necessarily continuous. However, (A), is continuous because Id; = Id

_ J J
and Alpzg,) = Id. Our aim, now, is to define the final auxiliary matrix A by an
iteration of the construction in (4.5.7) along every direction and which is followed by

a periodization. Before doing so, let us observe that for 7,7 € {1,...,n+ 1},
(A))j(x) = (A)i(x), = eR"™

This follows directly from (4.5.5) using the facts that ¢;(v;(2)) = v;(¢i(z)) and that
the matrices D(wi_l), D(wj_l) are diagonal. Thus by the linearity of the interpolation
in (4.5.6) we have that

—_—
— T~

((A)i)j = ((A)])z = (A)i,ja (4.5.8)
so the order of the modifications is not relevant.
Let us now construct the matrix A in two steps:
e For x belonging to the cube of side length 6£(Qo) centered at the point with
coordinates 3€(Qo)(1,...,1) we define

A(z) = (A>17...,n+1‘

e By (4.5.6), the matrix A defined in the first step coincide with Id for z be-
longing to the boundary of the cube with side length 6¢(Qo) and centered at
30(Qo)(1,...,1). Hence, A admits a continuous and 6¢(Qq)-periodic extension
to R"*! so that

A(z) = Az + 6k0(Qo))
for every k € Z"T1.

The following holds.

Lemma 4.5.7. The matriz A is well-defined, Hélder continuous with ezponent a/2" 1
and periodic with period 6¢(Qo).

The well-definition of A follows from (4.5.8). The proof of the Hélder regularity
is a minor variation of that of [PPT18, Lemma 8.1], where a similar modification
of the matrix was involved. In particular, the exponent «/2"*! is given by the fact
that every reflection of the matrix across a hyperplane halves the order of the Holder
regularity. We also point out that, being A periodic, there is no need to introduce a
radial cut-off for the matrix as in [PPT18].

For the rest of the paper we use the notation & = a/2" "1,
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Properties of £4. As a consequence of the definition of A and, more specifically, of
its periodicity and the fact that by construction

Aj(x) = A(z)
for every € R™*! and j = 1,...,n + 1, we have the following.
Lemma 4.5.8.
Ealw,y) =Ex(5(x), ¥5(y))  for  j=1,...,n+1 (4.5.9)
and
Exlz,y) = €1 (x + 6k6(Qo), y + 6KL(Qo)) for  keztt, (4.5.10)

By Lemma 4.2.3, the function K = V1 4(-,-) is (globally) a Calderén-Zygmund
kernel. In particular
(a) ]Ig(m,y)] Sler—y["forall z,y € R with 2 # y.
(b) 1K (2,) ~ K (2, 9)| + K (y,2) - K(,2)| S ly—y/|%]x —y| =" for 2y —y/| <
[z —yl.
Let Tu denote the singular integral operator associated with K,

T, (2) = / R (2.9) () dp(y).

Lemma 4.5.6 tells that we can prove the Main Lemma for T instead of T, possibly by
slightly worsening the parameters involved.

4.6 A first localization lemma

It is useful to provide a local analogue of the BMO-type estimate (4.4.1). This is
possible because of the smallness of the a-number and the bound for the P, 5-density.
Also, recall that because of the assumptions in Lemma 4.4.1, we have u(MQy) <
M™u(Qo). In what follows we sketch the proof of the localization of (4.4.1) for T},
highlighting the differences with respect to the case of the Riesz transform (see [GT18,
Lemma 4.2]).

In the rest of the chapter we omit to indicate the dependence of the implicit

constants in our estimates on Cy and Cj.

Lemma 4.6.1. For § small enough depending on M, the following inequality holds

_ 1 -
/Q Tyxarqo Py S (e g7z + M4 284 4 (MU(Qu) ) u(Qo). (46.1)

0

Proof. First, observe that

/Q |TM(XMQ0)‘2dM < 2/Q |TN(XMQ0)_mM7Q0 (TMXMQ0)|2d/L+2|mM7Q0 (TMXMQO)PM(QO)'
0 )
(4.6.2)
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Let us estimate the two summands on the right hand side of (4.6.2) separately. To
study the first one, we write

_ - 2
/Q }TMXMQO - mu,Qo(TuXMQo)‘ dp
0

—_ —_ 2 — —
<2 /Q | Tyux 1100y (@) — Mo (Tpx (o)) | di(z) + 2 /Q T — my, o (T)*dp.
0 0

(4.6.3)
Applying Lemma 4.2.1, it follows that for z,y € Qg
TuX(Qo) (%) = TuX(a1qo) (¥)] </ K (2, 2) = K(y, 2)|dp(z)
(MQo)®
~ 1
Sl [ ()
(MQo)e | — 2["*e
a 1 |z — y|® 1
z —yl* / ﬁdﬂzg g Pua(MQo giéﬂ
| ; 211 MQ\2 MQ, 1T — 2| =) ((MQo)a™ " ( ) M

being P, a(MQo) < 1. Then, averaging the previous inequality over the variable y,

we get
1

Moz

\ pX(MQo)® mu,Qo(TuX(MQo)C) S

and

L Tixcanr () = mu Tixonan )P an(a) £ 5pn@)

Recalling that by hypothesis we have

/ T — 00 (T1) [ dpt < ep(Qo),

Qo

we can estimate (4.6.3) as

. . 2
/QO I Tu(xr@0)e) = myco(Txarqa) Pdp 5 (e + MQQ) (Qo)- (4.6.4)

An application of Lemma 4.2.7 together with the antisimmetry of V1 O(-,; A(z)) also
gives

Mo (Tixao)| < QO / 0 / o3l (@) duty) S U@ (463)

Minor variations of the arguments which prove [GT18, (4.2)] show that that

B (4.6.5) ~ i
1m0 (Tux o)l S 1Mo (TuXnrgo\@o)| + £(Q0)™
5 M2n+151/8(n+1) + (ME(QO))Q +€(QO)& (466)

5 M2n+161/8(n+1) + (ME(Q()))&.
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For the sake of brevity we omit the details and we just point out that the presence of
the second summand on the right hand side comes from the estimate

! /Q T(oH" 1) d%"\H\ < (MU(Q0))“4(Qo)", (4.6.7)

where ¢ is a proper even C' function with 0 < ¢ < 1 and supported on M Qg \ Q.
To get the estimate (4.6.7), we just write

| [ Tene ) anel
0

oo, 2"
oo 2

+al ] : /MQO (V16(2,4: A(@)) + V1O, y: Aw)) dH" |11 («)dH" 1 (v)

R(e,) = 5 V1002, A2))| dH" 1 (2)aH" | ()

(,9) = 5 V100,43 A(w) | 4" (@) tH" 11 (v)

Then, the third summand is null because of the antisymmetry of its integrand and
the first two terms can be estimated via Lemma 4.2.2.

Gathering (4.6.2), (4.6.4) and (4.6.6) we are able to conclude the proof of the
lemma. O

4.7 The David and Mattila lattice associated with y and
its properties

The dyadic lattice constructed by David and Mattila [DMO00, Theorem 3.2] is a pow-
erful tool in the study of the geometry of Radon measures. Its main properties are
listed in the following lemma, that we state for a general Radon measure with compact
support.

Lemma 4.7.1 (David and Mattila). Let o be a compactly supported Radon measure
in R Consider two constants Ko > 1 and Ag > 5000K, and denote W = suppo.
Then there exists a sequence of partitions of W into Borel subsets Q, Q € Dy, which
we will refer to as cells, with the following properties:
o For each integer k > 0, W s the disjoint union of the cells Q, Q € Dyy. If
k<l,Q€Dyy, and R € Dy, , then either QN R =10 or Q@ C R.
e For each k > 0 and each cell Q € Dy, there is a ball B(Q) = B(zQ, T(Q)) such
that

zg € W, Ag¥ <r(Q) < KoAy”
WNB(Q) CQCWnN28B(Q) =W N B(zq,287(Q)),
and the balls 5B(Q), Q € Dy are disjoint.
o The cells Q € Dy have small boundaries. By this, we mean that for each
Q € Dy and each integer | > 0, if we set
Nt = ={z € Q:dist(z, W\ Q) < Aakil}
NP Q) = {z e W\ Q : dist(z,Q) < Aak_l}
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and .
Ni(Q) = N"™(Q) UNF™(Q),
we get
o(N(Q)) < (C7 K, 2" 40) o (90B(Q))

e Denote by Dg}’k the family of cells Q € Dy, for which

o(100B(Q)) < Koo (B(Q).

We have that r(Q) = Ao_k when Q € Dg,k\DSf’k and

o(100B(Q)) < K;'o (100" B(Q)) (4.7.1)
for all 1 > 1 with 100" < Ko and Q € Do\ DI, .

Let us denote D, := | J, Doy k. Let us choose Ag big enough so that
CE AT 4 > AV > 10, (4.7.2)

Here we list some useful quantities associated with each cell Q) € D, j:
e J(Q) =k, which may be interpreted as the generation of Q.
e /(Q) = 56K0A6k, that we also call side length. Notice that

1
28
and 7(Q) ~ diam(Q) ~ £(Q).

e calling 2z the center of ), we denote Bg = 28B(Q) = B(zq,28r(Q)), which in
particular gives

Ky'(Q) < diam(28B(Q)) < £(Q)

1
ﬁi
@ 28

We recall, now, some of the properties of the cells in the David and Mattila lattice.
The choice in (4.7.2) implies, for 0 < A < 1, the estimate

o({z € Q:dist(z, W\ Q) < M(Q)}) +0({z € 3.5Bg \ Q : dist(z, Q) < M(Q)})
< c)\1/20(3.5BQ).

BQCQCBQ.

We denote DI == [J;~ Dng and we say that it is the lattice of doubling cells. This
notation is justified by the fact that, for Q € ng, we have

7(3.5B0) < ¢(100B(Q)) < Koo(B(Q)) < Koo(Q).

An important feature of the David and Mattila lattice is that every cell Q € D, can
be covered by doubling cells up to a set of o-measure zero ([DM00, Lemma 5.28]).
Moreover, if we have two cells R, Q € D, with Q C R and such that every intermediate
cell Q € S € R belongs to D, \ DI, we have the control

o(100B(Q)) < Ay "V @=TH=D5100B(R)) (4.7.3)

on the decay of the measure. The estimate (4.7.3) is proved via an iterated application
of the inequality
a(100B(Q)) < A; ' (100B(Q)), (4.7.4)
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where Q is the cell from D, j(Q)—1 containing @ (also called parent of Q). We remark
that (4.7.4) follows by (4.7.1) and a proper choice of Ay and Ky (see [DMO00, Lemma
5.31)).

For @ € D,, we denote by D,(Q) the cells in D, which are contained in @ and
DI (Q) = Dy(Q) N D,

4.8 The Key Lemma, the stopping time condition and a
first modification of the measure

The hearth of the proof of Lemma 4.5.5 is to provide a control on the abundance of cells
with low density (in some sense that we clarify below). The whole construction that
we are about to discuss depends on some auxiliary parameter to be chosen properly
later in the proof.

Definition 4.8.1 (Low density cells). Let 0 < 0y < 1. A cell Q € D,, is said to be of
low density if
0,(3.5B0) < fo

and it has maximal side length. We denote by LD the family of low density cells.

Most of the rest of the chapter deals with the proof of the fact that the low density
cells fail to cover a significant portion of Qp.

Lemma 4.8.1 (Key Lemma). Let €,0 and M be as in Lemma 4.4.1. There exists
€0 > 0 such that if M is big enough and 0y, 6 and € are small enough, then

u(Qo\ U @) > €opt(Qo)- (4.8.1)

QeLD

To prove the main Lemma 4.5.5 using the results in the Key Lemma, it suffices
to refer to the construction in [GT18, Section 10|, which relies on a subtle covering
argument together with the connection between uniform rectifiability and the Riesz
transform, and invoke [PPT18, Theorem 1.1 and Theorem 1.2| in place of the results
of Nazarov, Tolsa and Volberg. So, the rest of the present article (a part from the last
section) is devoted to the proof of Lemma 4.8.1.

We argue by contradiction: assume that (4.8.1) does not hold, that is to say

M( U Q) > (1 —€0)p(Qo)- (4.82)

QeLD

More specifically, we want to show that a choice of ¢y small enough leads to an absurd.
The proof is based on a stopping time argument. Roughly speaking, for ) € LD, we
say that a cell R belongs to its associated stopping family if it is a descendant of
(i.e. R C @) and it is sufficiently small. The definition of stopping cells depends on
a parameter ¢, which has to be thought small and that will be appropriately chosen
later.

Definition 4.8.2 (Stopping cells). Let @ € LD. Let 0 < ¢t < 1. We say that R €
Stop(@Q) if the following conditions are verified and it has maximal side length

e ReD)", RCQ.

e /(R) <t(Q).
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We also denote Stop := [Jge p Stop(Q) the family of all the stopping cells.

Assuming that the stopping cells in Stop(Q) are doubling makes sense in light of
the fact that doubling cells cover @@ up to a set of py-measure zero. In particular, this
implies that (4.8.2) is equivalent to

u( U Q) > (1 e)u(Qo).

QEStop

The proof of the Key Lemma 4.8.1 involves a periodization of the measure p, which
is essentially carried out by replicating u|Qo on the horizontal plan according to the
periodicity of the matrix A.

The cells close to the boundary of Qg may give problems, so that our first temp-
tation would be to try not to incorporate them into the contruction. This is possible
just in the case their contribution to the measure of (g is negligible. So, we say that
P eBadif P € Stop and 1.1Bp N 9Qq # 0.

Another technical problem is that Stop may contain infinitely many cells. This
second difficulty can be easily overcome considering a finite family of cells, named
Stopy, which contains a big portion of the measure of Stop, e.g.

u( U Q)>(1—260)M(Qo)- (18.3)

QE&Stop,

The rest of the section is devoted to a justification of the last affirmations concerning
Bad and the first modification of the measure . It is essentially a rewriting of [GT18,
Lemma 6.2, Lemma 6.3, Lemma 6.4] in our context, in which we highlight the right
homogeneities coming from our elliptic setting.

The following lemma contains an estimate of the density P, 5 of the stopping cells
in terms of the low density parameter 6.

Lemma 4.8.2. Let (Q € Stop and let t = 95/(n+&). We have

@u(QBQ) < Pu,o?(QBQ) 5 Q(F'

Proof. The first inequality is an immediate consequence of the definition of P, 4.
To prove the second inequality, we consider the maximal cell R’ € D, such that
Q C R’ C R and ¢(R’) < t/(R) and write

P,a(2Bg) < Z @u(ZBp)@E%)d + Z 9;»(2BP)(€(P))Q

PED,:QCPCR’ PED,:R'CPCR
UQ)

+ Z @u(2Bp)<£(P)>d +Z2_kd@u(2kBP)
PeDs:RCPCQo k>1

=I+1I+1IT+1V.

Then, the estimates work as in the case of the Riesz transform. In particular, the
same arguments prove

and i
I+ 1V <9,
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which justifies the choice of ¢ in the statement of the lemma. O
For the rest of the chapter we assume t = 01/ (nt+a),
Using the estimates in Lemma 4.8.2, one can prove (see [GT18, Lemma 6.3] that

u( U Q) < 07 Qo). (18.4)
Bad

First modification of the measure. As already mentioned, for technical purposes

it is useful to modify the measure inside @)y by taking just finitely many stopping
cells and getting rid of the cells in Bad. To make the previous statement rigorous, we
choose a small parameter 0 < kg < 1 to be fixed later and, after denoting

L, (Q) = {z € Q : dist(z,suppo \ Q) > rol(Q)},

we define the modified measure

po = Qg + Z 11, (Q)-
QEStopg \ Bad

Using (4.8.3) and (4.8.4), it is not difficult to prove that pg differs from g, in the sense
of the total mass, possibly by a very small quantity. Indeed,

e — ol < (260+09 &/(n+3) +;@1/2) (Qo). (4.8.5)

For this modification to be useful to our purposes, we need the gradient of the single

Iayer potential associated with this measure to satisfy a localization estimate analogue
0 (4.6.1). This is easily proved by gathering the L?(|q,)-boundedness of T, ilo, the

estlmate (4.8.5) and the localization estimate (4.6.1) for u (see [GT18, Lemma 6. 4]).

Lemma 4.8.3. If § is chosen small enough (depending on M ), then

_ 1
/ ‘T(XMQOMO)FdNO S (€+ T + M4n+251/(4n+4)

Qo

+ (MUQ0)™ + e + 057" + k) 1u(Qo)-

4.9 Periodization and smoothing of the measure

The periodization. We want to get rid of the truncation at the level of M#(Qo)
present in Lemma 4.8.3. This can be done replicating the measure periodically by
means of horizontal translations. The localization of the gradient of the single layer
potential associated with this auxiliary measure will make us able to implement a
variational argument in Section 4.11.

We denote by

M = {Qo +zp:zp € 6€(Qo)Zn X {0}}
the family of disjoint cubes covering H and obtained translating (g along the coor-
dinate (horizontal) axes. The factor 6 is chosen in order for this periodization to be

coherent with the period of the matrix A. Given P € M we denote by zp its center
and by Tp: R*t! — R"+! the translation

Tp(x) =z + zp,
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so that the periodization of the measure reads

fi=>_ Tpyolg,-
PeM

Observe that 1o(0Qo) = 0, which implies xg,/t = fo.

As for the first modification of the measure, we have to prove the equivalent of the
localization Lemma 4.8.3. This can be done as for the Riesz transform (see [GT18,
Lemma 7.2]) because p is very flat at the level of 3M Q.

Lemma 4.9.1. Let kg, 0y and €y be as in Section 4.8 and 0 as in the Main Lemma.
Letting

5= M (e + 0/ gl 4 5172),

we have .
af (3MQo) S 6

Moreover, for

€= e g+ MG/t g 4 g/ ) g (B2 4 2k 251 An) 1 (M(Qo)) 2

M?2&
we have

/Q 1T (ar i) dii < E(Qo).

0

It is not difficult to see that the measure 1 has polynomial growth:
f(B(z,r)) <r™ for every € R and r > 0.

The following lemma contains a technical estimate for a suitably modified version of
the density Py 4(2Bq).

Lemma 4.9.2. For every () € Stop, \ Bad the inequality

/ / ————du(z)di(y) < 9<"+°‘>(”2">ﬁ(Q)
1.18o\Q Jq |z — y["

holds. Moreover, the function

Pra(r) = Z oPra(2Bg)

QE&Stopg \ Bad

satisfies

2
/Q P2 odfi < 07T Q). (49.1)
0

Remark on the proof. In order to prove (4.9.1) it suffices to follow the path of [GT18,
Lemma 7.4] taking into consideration the right homogeneity given by «, which leads

to
2&

) _ 0(n+a)
/Q Pradit S (fi + + 9”*“) (Qo), (4.9.2)
0

where 0 < £ < 1 is a small constant. Inequality (4.9.2) gives the desired estimate

after making the choice k = 92‘1/[(”+a)(1+2a)] -
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The smoothing. A priori, the measure py may not be absolutely continuous with
respect to the Lebesgue measure on R"!. This would constitute a problem when
trying to implement the variational techniques. For this reason, it it useful to consider
the following further modification of the measure

MO(Q) n+1
Mo = Z #H ‘lB(Q)
Q€Stop, \ Bad H H(ZB(Q)) !

and its periodization
ni= > Tpgmp.
PeM

We remark that, being Stop,, a finite family, the measures 1y and 1 both have bounded
density with respect to H"t1. A specific control on the density is not relevant to the
purposes of our proof. The following lemma contains a localization estimate for the
potential associated with 7.

Lemma 4.9.3. Denoting

2&

2&
6/ =4 E(QO)QQ + Mn/i62n—2aeén+a)(l+2a) + 067ﬂro¢)(1+2n)7

we have

/Q T (cargum)Pdn < ¢n(Qo)-
0

The presence of the summand ¢(Qo)?® in ¢ (already taken into account in €) to
point out that, as in (4.6.6), the lack of antisimmetry of K(-,-) gives the error term

Imz.o(Taxo)| S UQ)™ < £(Qo)*

for every @) € Stop, \ Bad. This contribution is not present in the case of an elliptic
matrix with constant coefficients. The rest of the proof is analogous to the one of
[GT18, Lemma 8.1] and all is needed is a careful check that Lemma 4.9.2 applies and
the new homogeneity does not affect the final result. We omit further details.

Remark 9. Observe that the expressions of S,E and ¢ all include a summand which
depends on €y. In particular, the quantities in question are small if ¢g is chosen small
enough. Then, the choice 9 < 1 (which is possible because we assumed (4.8.2) to
hold) gives the localization for the potentials associated with the auxiliary measures.

4.10 The localization of T1

Let L%, denote the set of functions f € L°°(n) such that

[l +zp) = f(2)

for every z € R"*! and P € M.

Let ¢ € C*(R"*1) be a non-negative function whose support is contained in B(0, 2)
and that equals 1 on B(0,1). For » > 0 and = € R let us set ¢,.(x) = o(z/r).
Observe that |[Vp|le < 1. For 2,y € R™™! we define the regularized kernel

K, (z,y) = K(z,y)er(z — y)
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and its associated operator

T(f) () = / B w)f)dn(y),  for f € L3y (),

where the integral above is absolutely convergent. We are interested in getting an
existence result for the limit

Dy T(fn)() = Tim To(f) (). (4.10.1)

For simplicity, we denote the principal value in (4.10.1) just as T(fn)(z).

Lemma 4.10.1. Let f € L%y. The principal value T(fn)(x) exists for every x € R"H1,
Moreover, given any compact set F C R there exist rg = ro(F) > 0 and a constant
cr depending on F such that for s > r > rg

7o) = T o S 51 e

where v € (0,1) is as in Lemma 4.2.7.

Remark 10. Lemma 4.10.1 implies that the limit in (4.10.1) converges uniformly on
compact sets and in supp 7.

Proof. Recall that we can assume ¢(Qo) < 1. Let s > r. Let us denote v = fn
and ¢, 5(z) = @r(x) — @s(x) for every x € R"! and K(x,y) = K(z,y)prs(z — ).
Because of the periodicity of f and the definition of 77, we have

v="> (Tr)i(xq,)
PeM
so that

() - Tl = | fcr,su,y)d( 3 <Tp>ﬁ<mou>) )

PeM

= Z /Qo Km(:n,y—l—zp)du(y),

PeM

(4.10.2)

the last equality being a consequence of f{r, s having compact support, which implies
that the sum has only finitely many non-zero terms.
Let Ap be the homogenized matrix associated with {L,}¢~o and ¢ be as in Section
4.2, with £ = 6£(Qo). Recall that
IVxelloo S 1.

~

The matrix Ag is an elliptic matrix whose coefficients are constant and can be ex-
pressed in terms of x and those of A. We denote by O(:,-; Ap) the fundamental
solution of the operator Ly = —div(AgV). We decompose the right hand side of
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(4.10.2) as

> / rs(T,y + 2)dv(y)

PeM

= / (z,y+ zp) — (Id+ Vxe(2))V1O(z,y + 2p; Ao) ) ors(x — y — 2p)dv(y)
PeM

+ Z / (Id+ Vx(z))V1O(z,y + zp; Ao)rs(z — y — zp)dv(y)
PeM

= I, s(x) + 11 5(x).

Let us observe that since F' is compact and y € (), there exists a compact set F such
that +(z — y) € F, so that if we choose ro > 2diam (F ) both ¢, s(x —y — zp) and
¢rs(v —y + zp) vanish for |2p| < . Moreover, |z — y| < diam (F) < r/2 < |zp| and

[(x —y) — zp| = [(x —y) + zp| = |2p|.

Let us now estimate I,. s(x). As stated in Lemma 4.2.7, there exist C > 0 and v € (0,1)
depending only on n and « such that

(V1 E4(z,y+ 2p) — (Id + Vxe(2)) V1O(2,y + 2p; Ao)| < CUQ0) |z —y — zp| ("t

for every .,y € R™*!. Then, exploiting the linear growth of  and the considerations
on the support of ¢, 5, we get

L@ S Y /Qé@owwy)

_ n+y
PEM,|2P|ZT Yy ZP|
E(P)"Jr'y
< 4.10.3
Sle 30 T (4.10.3)
PEMv‘ZP‘ZT
- [ ll0(Q0)"
~ r’y

In the last inequality of (4.10.3) we used the convergence of )\ €(P)"|zp|™".

We are left with the estimate of 11, ¢(x). Using the antisymmetry of V10(:, -; Ao)
and the properties of standard Calderén-Zygmund kernels, the same argument of
|GT18, Lemma 8.2 proves that there exists a constant ¢y > 0 such that

()] S 1A+ Vel 3 / V10(z,y + 2p; Ao)gr(x — y — 2p)du(y)

0

PeM
S Z V1O(z,y + zp; Ao)or(z —y — zp)dr(y) (4.10.4)
perm”’
< el
~ r

We conclude the proof of the lemma gathering (4.10.3), (4.10.4) and observing that,
being v € (0,1) and r > 1, 7=t < r77, O

The measure 7 is M-periodic and the matrix A, by construction, is 64(Qo)-
periodic. This implies that for every f € L3 (n) and r > 0, the function T,.(fn)
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is M-periodic, too. The same holds for p.vT'(fn). Using Lemma 4.10.1, the following
result is immediate.

Corollary 4.10.1. Tn is a bounded operator from L5 to LS. For r > 0 big enough
and for every f € L3 (n) we have

I ~ T 5 V=

Our next intent is to prove the final localization estimate
=12
/ |Tn|dn < n(Qo). (4.10.5)
Qo
We have already proved that for M big enough there exists ¢ < 1 such that

/ T (xarqom)|“dn < €n(Qo)- (4.10.6)

Qo

Then, in order to prove (4.10.5), it suffices to use the estimate in the following lemma.

Lemma 4.10.2. Let f € L, .(n) be a M-periodic function and let M = 6N, where
N > 3 is an odd number. For all x € 2Q)y we have

a 1
1T (X(rigoye 1) @) < J\MQoW/@O |f|dn. (4.10.7)

Proof. Being N odd, there exists a subfamily M C M such that

X(MQo)e Z Tpryn
PeM

and whose elements P € M satisfy lzp| 2 ME(QO). In particular
|z —y —zp| = |2p| for z,y € 2Qo. (4.10.8)

Let r > 0 and = € 2Q). Denote v := fn and observe that there are just finitely many
cubes P € M such that |zp| < r. Arguing as in the proof of Lemma 4.10.1,

T, (xqitgue /1) (0) = [ Klo)onta = y)iv(y
=Y | K(y+zp)pr(x—y—2zp)dv(y)
penr” @
= Z /Q ([_{(:c,y+zp) - (Id+VXg(l‘))vl@(l‘,y—l—ZP;AO))SQT(J:—y—ZP)dy(y)
pem ™
+ > | (Id+ Vxe(2))ViO(2,y + 2p; Ao)er(z — y — zp)dv(y)
PEM ()

= I.(x)+ I1.(x)
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Let us estimate I.(z). Using (4.10.8) together with Lemma 4.2.7 and the estimate
|zp| = MU(Q) for P € M, we can write

- UQo)™ o
CEP / e i)~ ¥ | )

1v|(Qo) Qo)™ 1
- Z - Tor W Q) % Mva@o)n( 2 Tl ) S TUQe) /Qo’f dn-

PeM
(4.10.9)
We claim that )
L) S oo [ Ifldn (410.10)
T Moy Jay
The calculations to prove (4.10.10) exploit the fact that |[Vx/|lo < 1 and the anti-

simmetry of V1 O(+,; Ap) and resemble those of [GT18, Lemma 8.4], so that we leave
the verification to the reader.

The estimates (4.10.9) and (4.10.10), together with the observation that M1 < M~7,
conclude the proof of the lemma after taking the limit for r — oo. O

Corollary 4.10.2 (Final localization estimate). We have
— 9 < 1
0 ‘TU‘ dn S (W +€> (Qo)-
0
Proof. Inequality (4.10.7) in the case f = 1 reads

_ 1
‘T(X]\/IQUTI)} S ek

so that applying it together with (4.10.6), we have

= 12 = 2 — 1 /
[ (FoPans [ Toaaun i+ [T ouayn Pin < (55 +)n(@),

which finishes the proof. O

4.11 A pointwise inequality and the conclusion of the proof

The following lemma implements a variational technique inspired by potential theory
that allows to obtain a pointwise inequality for the potential of a proper auxﬂlary
measure. We denote as T *5 the operator that, given a vector-valued measure §, is
defined by

7'¢(e) = [ ViE(w.2)- ddlw)
and which corresponds to the adjoint of T'.
Lemma 4.11.1. Suppose that for some 0 < A < 1 the inequality

IRELRTEPYICY

Qo

holds. Then there is a function b € L*°(n) such that
e 0<bHb<2.
e b is M-periodic.
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* Jo, bdn=1(Qo).
and such that the measure v = bn satisfies

/ |Tv|?dv < A\(Qo) (4.11.1)

0

and
|Tv|*(z) + 2T ((Tv)v)(z) < 6X for v-a.e. © € R+ (4.11.2)

Proof. The proof is a minor variation of the proof of [GT18, Lemma 9.1]. In partic-
ular, we recall that the way to prove (4.11.2) consists in defining an adapted energy
functional

J(a) = Ala =) 1(Qo) + / T (an) P,

Qo

where a ranges in

A= {a € L*°(n) : a > 0,a is M-periodic, and /

o adn = 77(@0)}-

Then, one proves that J admits a minimizer in A and gets (4.11.2) by taking proper
competitors. The proof does not use the antisymmetry of the kernel of T but just its
M-periodicity which follows by the construction of A. O

4.11.1 A maximum principle

Let A,b and v be as in Lemma 4.11.1. In order to perform the final argument to
get the contradiction, we need to extend the inequality (4.11.2) out of the support of
v. More precisely, the next step consists in proving that a inequality similar to that
provided by Lemma 4.11.1 holds in a suitable strip. To this purpose, some version
of the maximum principle is needed. The elliptic setting of the problem makes this
procedure slightly more technical than the one adopted by Girela-Sarrién and Tolsa
in the case of the Riesz transform.

Before presenting the main result of the section, we introduce some notation. We
denote by H the hyperplane

H:={z e R"™ 2,1 =30(Qov)/2},

which corresponds to the translate of H that contains the upper face of 3Qg. Let
Kg > 1 to be chosen later and let S denote the strip

S = {z e R" : dist(z, H) < Ksl(Qo)}.

Its boundary 05 is given by the union of two hyperplanes 05 and 9S_ which lay in
the upper and lower half spaces respectively. Let

- %E(Qo)(l, LD £ (0,0, Ks6(Qo)). (4.11.3)

For the proof of our next lemma we need to invoke a result on elliptic measure.
Suppose that Q C R™! is an open set with n-AD-regular boundary and consider a
point p € Q. Let w?, denote the elliptic measure on 92 associated with the operator
L ; with pole at p. For the proof of the following standard result we refer to [AM17,
Lemma 2.3].
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Lemma 4.11.2. Let Q C R be open with n-AD-regular boundary with constant
Cap. There exists ¥ = 9(n, A,Cap) € (0,1) such that for every x € 02 and 0 < r <
diam 2, we have

_ 9
wg (B(z,r)°) < C<M> fory e QN B(x,r). (4.11.4)
r
An application of (4.11.4) gives a boundary regularity result for L j-harmonic
functions, see e.g Lemma 2.10 in [Azz-+16a].

Lemma 4.11.3. Let Q C R"! be open with n-AD-regular boundary with constant
Cap. Letu >0 be L 5-harmonic function in B(x,4r)NQ and continuous in B(x,4r)N
Q. Suppose, moreover, that uw = 0 in 002 N B(x,4r). Then, extending u by zero in
B(z,4r)\ Q, there exists 9 = 9(n, A,Cap) € (0,1) such that u is 9-Hélder continuous
in B(xz,4r) and, in particular,

dist(y, 00Q) )79
r B

sup u for all y € B(x,r).

w(y) Sn,ACap ( D
x,2r

Lemma 4.11.4 (Maximum principle on the strip). Let S be the strip as before and
let f be a bounded continuous L z-harmonic function on S so that flaps = 0. Then
f=0o0nS.

Proof. Choose R > 100Ks and set Sg :== S N [—R, R|""!. For p € S, denote h, =
dist(p, 05) and let =, be a point that realizes the distance. We choose p far from
the “vertical" parts OSg \ (0S4 UOS_) of 0Sg, in particular such that B(z,, R/10) N
(0Sg \ 0S) = 0. Let wh, denote the elliptic measure with pole at p associated with
Lz on Sg. The family {Sr}r is a collection of AD-regular sets whose AD-regularity
constants do not depend on R. Then inequality (4.11.4) implies that there exit two
constants C' and ¢, both independent on R, such that

(0S5 \ S) < Wb (B(zy, R/10)°) < c(%)ﬁ.

By hypothesis we may assume f <1 on dSg \ 9S. Thus, we have

1)1 = | [ ah| < Iflaspaslhiosios) < (L)' @ins)

The results stated in the lemma follows by passing to the limit in (4.11.5) for R —
00. g

Now, we prove an existence result on the infinite strip S.

Lemma 4.11.5. There exists a function fg: S — R such that:
1. fs is L z-harmonic in the strip S and continuous in S.
2. fs is M-periodic.
3. fs(z) =41 on S+ and fs(z) =0 for x € H.

Proof. Let k € N, k > 100Kg and denote S, = S N [k, k]"*l. We define the
continuous functions fi on 0S5} as

_ Tn41 — %g(QO)
filz) = Ksl(Qo)
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In particular, observe that fx(z) = £1 for x € 9S4 and
f(ﬂj’) = _f<(1’.1a <oy Tpy —Tn41 + 36(@0)))7

i.e. it is antisymmetric with respect to H.

Define uy, be the L j-harmonic function such that uy|ss, = fi, whose existence is
guaranteed by the continuity of fr and the AD-regularity of Si. Our aim is to prove
that, a part from possibly considering a proper subsequence, u; converges uniformly
in the compact subsets of S, for every k to an L z-harmonic function in S.

We claim that there exist v € (0,1) and C, > 0 such that

luj(x) —uj(y)| < Crle —y|” for z,y €Sk, k42 (4.11.6)

Assume that (4.11.6) holds. As a consequence of Ascoli-Arzeld’s theorem together with
standard a diagonalization argument, there is a function fg so that uy converges to fg
uniformly on the compact subsets of S. The L ;-harmonicity of fg is a consequence
of Caccioppoli’s esimate (cfr. [HKMO06, Theorem 3.77]).

To prove (2), define @ = (6£(Qp),0,...,0) and observe that, being the matrix A
M-periodic and since fg is constant on 0S4, the function f(x) = fs(x) — fs(z + V)
satisfies the hypotesis of Lemma 4.11.4. So, f =0 and fg is M-periodic.

To prove (3), first observe that A(z) = Ad)((azl, ey Ty — Tl + 36(@@)), where

¢ is the function that maps a point to its reflected with respect to H and Ay is defined
as in (4.5.5). Then we can apply again Lemma 4.11.4 to

F(@) = fs(@)+ fs (@1, o0, —2011 +36(Q)) ),

which is L g-harmonic and vanishes on 05.

We are left with the proof of the claim (4.11.6). By Lemma 4.11.3, there exists
¥ € (0,1) depending only on n, A and the AD-regularity of Q (hence independent
both on j and k) such that u; is ¥-Hélder continuous in the set {z € Q : dist(z, 9Q) <
20(Qo)}. Being ||uj||co < 2 for every j, by De Giorgi-Nash interior estimates we can
infer that there exists -, independent on j such that, for every j > k 4 2, u; is ;-
Hoélder continuous in {z € Qg1 : dist(z,092) > ¢(Qo)}. Gathering the interior and
the boundary regularity of u; proves (4.11.6). O

By the previous lemma, Lemma 4.11.3 and the fact that fg = 0 on H, we have
the estimate

dist(y, H)\? . . 5
— for € S with dist(y, H) < 10¢ .
i) y (v, H) < 10((Qo)

Let us define the auxiliary function

sl 5 (

Fs(x) = fs(x)Tv(xsy).

Observe that Fg|ps, = £Tv(zg+). The rest of the present section is devoted to the
proof of the following, which is an approximated maximum principle on S.

Lemma 4.11.6 (Pointwise bound for the potential on the strip). For x € S we have

Tv(z) — Fs(z)|* + 4T (Tv)v)(z) S A2 4

1 < Kg\a@
=+ —5 +(Csl(Qu)* + (=) >
7+ g (Cst(Q) (e2)
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where Cg is a constant chosen so that Cg > Kg.
Before proving this lemma, we need some auxiliary result.
Lemma 4.11.7. Let xgy and vs— as in (4.11.3). Then:
1. For x € 054, dist(z,x54) S €(Qo) we have the estimate
|Tv(z) — Tv(rsy)| < —=. (4.11.7)
The analogous estimate holds for x € 0S_, replacing rss+ with xg_.
2. The difference of —Tv(xsy) and Tv(xs_) can be estimated as

_ _ 1

3. For x with dist(x, H) > 20(Qo) we have
T*((Tv)v)(z) S A2 (4.11.8)

Proof. Let us begin with the proof of (1). Because of the M-periodicity of Tv, we can
assume without loss of generality that xy € [—30(Qo),3¢(Qo)]™ x {0}, xx denoting
the projection of x on H. We claim that for P € M and y € Q9 we have

£(Qo)~
(Ks€(Qo))"te + [zp|nta

‘R(Hﬁ,y—i—ZP) _K<x5+7y+ZP)’ ,S

This follows from the (global) Calderén-Zygmund estimates for K (-, -) once we observe
that |z —xg4| S|z —y — zp| = Ksl(Qo) + |zp|. So, for r > 0, standard calculations
give

- (Q
[Tovw) = Tovtasi)| 5 Z / (Kst(Qo)) ”*0‘3+ ’ZP’"Jrady(y)

PeM
B Z QO)nJra < g(Q())ner _ i
Pe/\/( Sﬁ QO n+a + ’2p’n+a (KSB(Q()))TZ"‘O( Kg

Being this estimate independent on the choice of r, in the limit for » — 0 we have
(4.11.7). The proof of the analogous estimate for zg_ is identical, so we omit it and
go to the proof of (2).

Denote by z* the reflection of the point z across zg = 3£(Qo)(1,...,1), i.e.

¥ = 2x9 — x.

By the specific choice of xg, this transformation can be obtained via a composition
of the reflections v;’s with respect to the hyperplanes passing through xo which we
defined in (4.5.4):

¥ =Yoo othpi(x). (4.11.9)

Moreover,

(rs)" =30(Qo)(1,...,1)— gé(QO)(l, ., 1)=(0,...,0,Ksl(Qo)) = zs_. (4.11.10)



4.11. A pointwise inequality and the conclusion of the proof 163

Thus, an immediate application of Lemma 4.5.1 gives that, for y € Qo,
K(zs_,y+z2p)=—K(zs,,y" +2p), PeM. (4.11.11)
Observe that
ly+zp — (y" —2p)| < |2p = (=2p)| + |y = ¥*| S U(Qo),

which, combined with Lemma 4.2.1 and (4.11.11) (applied with —zp = z_p replacing
zp), gives

‘K(x5+ay+ZP) +K(1‘Sf7y_ZP)‘

IR & < 0(Qo)° (4.11.12)
_‘ $S+,y+ZP)— s,y —=zp ’ ~ (KSK(QO)) n+a ‘ZP’TL-’_O[.
Taking r > 0 and using (4.11.12), we have
~ ~ g n+a 1
‘Try(x5+) — Try(x57)| < Z (Q()? _<

PeM e KSE(QO)n—I—a + |ZP‘n+o¢ ~ ng
which, taking the limit for » — oo, proves (2).
We are left with the proof of (3). Set o = (Tv)v and observe that this measure is
M-periodic. So, without loss of generality, we can assume that zg € [—30(Qo), 3¢(Qo)]™ X
{0}. Let 7 > 0 and, denoting by Ag the homogenized matrix associated with A, by x

the vector of correctors and ¢ = 6£(Qy), write

Z (Y + zp,x)do(y)
PeM
=) <K y+zp,x) — (IdJFVXE(y+ZP))V1@(9+ZPa$§AO)>
PeM
X pr(x —y — zp)do(y)
Y / (Id+ Vxe(y + 2p)) V1O + 2p, 23 Ao)or(x — y — 2p)dor(y)
PeM
=1, +1I,.

Recalling that |V x¢|co
estimates

< 1 and using Lemma 4.2.7, we can proceed with the following

~

sy [ e _ZPWd\a\(y)

PeMm
Qo)”
S dlo|(y)
P%/:vt/ (dist(z, H + |zp|)n Y (4.11.13)
< £(Qo)" |71(Qo)

~ (dist(z, H) + |zp|)nt7 £(Qo)"
U(Qo)"™ |o|(Qo) _ |ol(Qo)
~ dist(z, H)7 £(Qo)™ ~ £(Qo)"’
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where the last inequality holds because we assumed dist(z, H) > 26(Qg). We claim

that
7](Qo)
((Qo)

It is possible to prove this estimate analogously to the case of the Riesz transform.
We omit its proof in order not to make the presentation too lengthy. We remark that
the calculations that lead to (4.11.14) solely relies on the Calderén-Zygmung property
of the kernel and some geometric considerations that are independent on its specific
expression. We refer to [GT18, (8.20)] for more details. Gathering (4.11.13), (4.11.14)
and passing to the limit on 7, we get

II,] < (4.11.14)

T ((TV)V) ()

1 / _
< Tv|dv.
£(Qo)™ Joo vl

Then, recalling (4.11.1), the growth of v and using Cauchy-Schwarz’s inequality,

. 1 _ 1/2
T ((Tv)v)(z) < Qo) (/0 ]TV‘Qdy) v(Qo) S AV/2,

which finishes the proof of (3). O
The following result is a direct consequence of Lemma 4.11.7.

Corollary 4.11.1. For z € 9S

_ 1
|Tv(z) — Fs(x)]* < e (4.11.15)

where the implicit constant does not depend on S.

Another result which is needed for the application of the maximum principle is
the estimate of |Fg(z)| for  close to the support of the measure v.

Lemma 4.11.8. For x € R with dist(x, H) < 10£(Qo) we have

1
Fs(2)] S —=-
KS v

Proof. Because of the Holder continuity of fg, we can write

dist(z, H)
Kst(Qo)

So, to prove the lemma, it suffices to show that

Fs(a)] 5 ( ) rvtes.) s el
Tv(zs)| < C

for some constant C' > 0 not depending on Kg. Recall now that v = bn. Applying
Lemma 4.10.2 with M = 6Kg and f = b to the point 0 € 2Q)y, we have the estimate

— 1
T ) (0)] < / bldn <1, 4.11.16
‘ (X(GKSQO) )( )’ (6K5)76(Qo)" Qo‘ | dn ( )

where the implicit constant in the last inequality does not depend on Kg. Now,
we observe that the (global) Calderén-Zygmund properties of K and the fact that
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254 | S Ksl(Qo) imply

1T (X(6K500)°7) (0) = T (X(6K5Q0)) (T5+)| S / |K(0,y) — K(zs4,y)|dv(y)
(6KsQo)°

a
< / |25+ —dv(y) < 1.
~ (6K5Qo)° (lyl + |zsy )t

(4.11.17)
Then, by (4.11.16), (4.11.17) and the triangle inequality, we have
T (X(sx 500 (@s+))|
< T (Xr5007) O] + |T (X6K500)7) (0) = T (X5 K 500)¥) (w54)| S 1.
(4.11.18)

Moreover, since dist(zg4,supp )" 2 Kgl(Qp) and estimating the kernel via Lemma
424,

‘T(XGKSQOV)(‘TS+)} S/ !K($s+,y)\dV(y) S/ 1 dv(y)

6KsQo 6KsQo |Ts+ — y["
< V(6KsQo) < KglQo)" <1
~ dist(zg,suppv)” ~ dist(xg4,suppv)® ™

(4.11.19)
Thus, gathering (4.11.18) and (4.11.19) we obtain
[Tv(zsy)| < |T(X6KSQ0V) ($S+)‘ + ‘T(X(GKSQO)CV(xS+))| S L
which proves the lemma. O

In order to be able to use the previous lemma, from now on we will assume without
loss of generality K¢ > 3 and we suppose it to be an odd number. Observe that for
x € suppv, Lemma 4.11.8 and (4.11.2) give

sup |Tw(z) — Fs(x)|* + 4T*(Tv)v) (@)

TESUpp v
< sup 2|Tw(x)]> +4T*((Tv)v)(z) + 2| Fs(z)[?
< s 2Tu(@)f + 4T (Tr))(a) + 2 Ps(o) w1120
1
< 12X+ 2[Fs(2)]* S A+ —5-
KS
Moreover, by (4.11.8) and (4.11.15),
s 2 Tk (P 1 1/2
sup |Tw(z) — Fs(@)|” + 4T (Tv)v)(2) $ —55 + A
z€0S KS
which, together with (4.11.20) brings us to
_ o 1
sup  |Tw(x) — Fs(a)|” + 4T (Tv)v)(z) S A2 + +—. (411.21)

% .
x€dSUsupp v Ksa Kg

Finally, we provide the proof of Lemma 4.11.6.
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Proof. We recall that A = AT, Let g € L>(S;R"™). We claim that T*(g£" ") is a
L zr-harmonic (vector valued) function. This would imply the maximum principle

supT*(GL" ™) (z) =  sup  T*(gL")(z). (4.11.22)
zes x€JSNsupp v

Observe that, because of Lemma 4.11.5, the same equality holds with Fs(z) in place
of T*(gL" ) (z). Let ¢ € C°(S \ suppg) be a test function. To prove the claim,
apply the definition of 7™ together with Fubini’s theorem together with the fact that

E(x,y) = Eqr(y,2):
/ATVT*(g£"+1) Vo= /ATVx(/VyE(y,m) ~§(y)dy> - Vep(r)dz
= [ V([ ATV.E ) - Vola)d) - qt)ay
= [V([ A2 Ear (e - Vo)) - gla)dy

:/Vw-ﬁzo.

Notice that for every z € R™™! we have the elementary relation

21> = sup 2(e,2) - 5%
£>0,ecS”

so that, choosing z = Tv(z) — Fs(z), it reads

’TV(Z‘) - Fs(x)’2 = sup 2(e,Tv(x)) — 2(e, Fs(z)) — B> (4.11.23)
£>0,ecS™
We want to show that the argument of the supremum in the right hand side of (4.11.23)
differs from a L z-harmonic function possibly by a small term. This will allow to apply
the maximum principle on the strip and to finish the proof.
For a fixed e € S™ and = € supp v, we split

(e, Tv(x)) = —T*(ve)(x) + (T*(Ve)(x) + <6,T1/(9:)>)

and consider that, claiming that the dominated convergence theorem applies,

T*(ve)(x) + (e, Tv(z)) = lim (R’,«(x, y) + K, (y,2)) - edv(y). (4.11.24)

T—00

To prove that the previous identity holds, set Cs > Kg to be chosen later. By the

triangle inequality, the antisimmetry of Vi ©(z,y; A(z)) and the linear growth of v,
we have

/ By (2,) + Koy, 2)|dv(y)
|z—y|<Cs(Qo)

< / |K(z,y) — V1O(z,y; A(z))|dv(y)
le—y|<Cs(Qo) (4.11.25)

+ / K (y,) = V1 Oy, 2; A(2)) | dv(y)
|z—y|<Cs(Qo)

< /| %d”(y) < (Cst(Qo))™

z—y|<C50(Qo) |z —y["e
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So, to bound (4.11.24) we have to estimate the integral on its rights hand side for
|z — y| > Csl(Qp). As before, by the periodicity of Mg we can assume that xpy €
[—30(Qo), 3¢(Qo)]™ x {0}. Using arguments analogous to the ones in Lemma 4.11.7, it
is possible to prove that for y € Qp and zp such that |z —y — zp| > Csl(Qy), we have

. . (Ksl(Qo))”
|K(«T7y + ZP) + K(xvy - ZP)| S; |Zp|n+& + |1:’n+d7

hence, calling Mg the subset of P € M such that |z —y — zp| > Cs(Qo), we have

- - Ko\ a
Z / | Ky (z,y + 2zp) — Ky (z,y — zp)|dv(y) S (—S) . (4.11.26)
Q Cs
PeMg 0
Analogously, one can prove
- - Kg\ &
> [ e - Ry -zl 5 (55)7 @
Qo Cs

so, gathering (4.11.25), (4.11.26) and (4.11.27) and letting » — 0o, we can estimate
(4.11.24) as

ﬁ)&. (4.11.28)

[T (ve)(w) + (e Tu@))| £ (Cst(Qo)* + (&

We are now ready to proceed with the calculations for the maximum principle. Indeed,
taking x € S, an application of (4.11.23) and (4.11.28) gives

|Tv(z) — Fs(x)|” +4T*(Tv)v) ()
= sup 2e,Tv(z)) —2(e, Fs(z)) — 5%+ T*((Tv)v)(z)

B>0,e€S™
S swp 9 (we)(r) - 2e, Fs(@)) — 5+ T () () + (Cst(Qo) + (&)
£>0,eeSn S
Thus, using the maximum principle (4.11.22) we have
Tv(x) = Fs(x)[? +4T*((Tv)v)(z)
S sup 2T (ve+ (Tv)w)(z) — 2e, Fs(x)) — 8 + (Cst(Qo)™ + (?)a
£>0,ecS” S
< sup sup  —2T"(ve + (Tv)v)(z) — 2(e, Fs(2)) — B2+ (Cst(Qo))™ + (?)a
2€0SUsupp v >0,eeS™ S
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So, another application of (4.11.23) and (4.11.28) concludes the proof of the lemma.
Indeed, recalling the estimate (4.11.21) on 9S U supp v,

Tv(x) = Fs(x)]” + AT ((Tv)v) (@)

< sup sup  2(e,Tv(x)) — 2(e, Fs(x)) — ﬁ2

~

z€0SUsupp v >0,eeS™

+ T ((Tv)v)(z) + (Cst(Qo))™ + (@)a

Cs
< osup |Tw(z) — Fs(2)> +4T*(Tv)v)(2) + (Csb(Qo))* + <?>a
z€0SUsupp v S
1/2 1 & ﬁ &
SN+ o+ 7 + (Cs(Qo))™ + (Cs) . .

4.11.2 The conclusion of the proof of the Key Lemma
To simplify the notation, set

Err(Ks, Cs, ((Qo)) = Kﬂwéﬂ +(Cst(Qo))" + (gj)a

N_otice that if x € 2@y, Lemma 4.11.6 together with Lemma 4.11.8 allows to majorize
|Tv(z)|? as

[Tv(@)|* S 1Tv(w) = Fs(@)® + |Fs (@) + 4T (Tv)v)(x) — 4T ((Tv)v) ()
S A2 4 Err(Ks, Cs, £(Qo)) + |Fs (= )|? = T ((Tv)v)(=)

S 4 Err(Ks, Cs, 6(Qo)) — T*((Tv)v)(x).
(4.11.29)

Let ¢ be a smooth function such that xq, < ¢ < x2q, and [[Velee S #(Qo)~". Set
1 = ATV and observe that it verifies

T[4 £ (2) = T ATV L7z / Vi E4(y,7) - AT (y)Vip(y)dy
- / A(y) Vi €4y, 2) - Vol)dy = (),

the last equality being a consequence of the definition of fundamental solution.
The choice of ¢ > xq,, together with Cauchy-Schwarz’s inequality, gives

v(Qo) < /sodv = /T*(wcnﬂ)du = /Ty-¢d5n+1

(4.11.30)
_ 1/2 1/2
< ([ mvpiotacrt) ([ wiac)
Now, observe that B
9]0 < 1A oo I VPlloo S €(Q0) ™ (4.11.31)
and
/yw\dc"“ < )mﬂ(on) £(Qo)™. (4.11.32)

We claim that
/ TuPpldem < 0(Qo)™
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Applying (4.11.29) and (4.11.32), we can write
N
S (N2 4 Brr(Ks, s 6Qu) [ Iolde™ + | [ T ((Twp)lwlacn|
S (V24 Brx(Ks, s Q) [ olac™?
+)/ X(30o) (TV)v )wum“h)/% xsoq, (Tw)v) [placn 1| (411:33)
S (N2 4 Brr (K, s £Qu)) Q)" + | [ T* (g (T)w) ol

+| / T (000 (TV)v) [ |dL™+!
= (A2 + Err(Kg, Cs, £(Q0))) U(Qo)" + I + I1,

where I and I1 are defined by the last equality. .
The estimate for I is an application of (4.10.7) with M = 30. In particular,

_ _ 1 _
17 (a7 )] £ g | 1Tl
V(Q0> 2 1/2 1/2 v(Qo)
< 1Qo)" (/ |Tv| dl/) <A Qo)™
which, together with (4.11.32), implies
I < MN20(Q). (4.11.34)

For the estimate of I, recall that |K(z,y)| < |z — y|™™. This and (4.11.31) imply

i ity - | [ 1 1 0(Qo) _
() @) = | / R )lélw)dy] S 555 / oY S iy =&

Then, by Cauchy-Schwarz’s inequality, the periodicity of Tv and the localization
(4.11.1),

< ’/30% T(JplC") - Todv| < V(QO)W(/ \TV\ZdV)I/Q < AY20(Qy).

30Qo
(4.11.35)
So, gathering (4.11.30), (4.11.33), (4.11.34) and (4.11.35), we have
v(Qo) S (Exr(Ks, Cs, £(Qo)) + A2)u(Qo). (4.11.36)

Choosing Kg big enough, Kg/Cg small enough, Csl(Qp) and A small enough, we
have
Err(Kg, Cs, £(Qo)) + A2 < 1,

0 (4.11.36) brings us to the contradiction

v(Qo) < v(Qo).

This proves the Key Lemma and, hence, completes the proof of Theorem 4.2.
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4.12 The two-phase problem for the elliptic measure

To the purpose of the application to the study of the elliptic measure, it is useful
to reformulate Theorem 4.2 under slightly different hypothesis. The proof of the
following closely resembles that of [AMT17b, Theorem 3.3].

Theorem 4.8. Let ju be a Radon measure in R" and let B C R"! be a ball with
w(B) > 0. Assume that, for some constants Cy,C1 > 0 and 0 < X\, 0,7 < 1 the
following conditions hold:

1. r(B) < A

2. Pya(B) < CoOu(B).

3. There is some n-plane L through the center of B such that 5,571(3) <0,(B).

4. There is Gg C B such that for all z € Gp

B(x,r
sup M + Ty (x2Bp)(x) < C10,4(B).
0<r<2r(B) r

5. Ja, 1Ti(x) —my,cp Pdp(z) < 76,(B)?u(B).
There exists ¥ > 0 such that, if §, 7 and X\ are small enough (depending on Cy and
C4), there is a n-uniformly rectifiable set T' such that

p(BNT) = du(B).

The proof in the case A = Id is based on a T'b theorem for suppressed kernels by
Nazarov, Treil and Volberg. To replicate the proof of Azzam, Mourgoglou and Tolsa
in the elliptic context, we define the suppressed kernel associated with K(-,-) as

~ v — oyl
Rola) = (o) K00

where x: [0, +00) — [0,1] is a smooth, vanishes identically in [0,1/2] and equals 1 in

[1,400) and @ is a 1-Lipschitz function to be chosen as in the proof of [AMT17b].
Then, one can split

K(z,y) = %(K(w,y) + K(y,z)) + %(K(%y) — K(y,2)) = K®(2,y) + K9(,y),
apply the T theorem for suppressed kernels (see also [Toll4, Section 5.12] and the
references therein) to the antisymmetric part of K and exploit the L?-boundedness of
the symmetric part guaranteed by the freezing technique of Lemma 4.2.2. We leave to
the interested reader to check that there is no further difficulty in the proof Theorem
4.8.

The rest of the present section is devoted to show how to apply Theorem 4.8 to
prove the two-phase problem for the elliptic measure.

After possibly splitting the set E, we can assume diam F < % min (diam Qq,diam Qg).
We choose the poles p;, i = 1,2 such that p; € ;N QB\B’, where B is a ball centered
at E with radius r(B) = 2diam E.

We are going to apply Theorem 4.8 to the measure w;: we are going to prove that
we can find an n-rectifiable set F' C E such that wi|p < H"|p < w1|p. In particular,
we can suppose that €7 is such that

H"TH (BN Q) = r(B). (4.12.1)
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By the so-called Bourgain’s estimates (see [PPT18, Lemma 32| for the statement in
the elliptic case and [Azz+16b] for a proof in the case A = Id) together with (4.12.1),
we can infer that there exists dp such that

wi(267'B) ~ 1, for 0<d < d.
Let a,7 > 0 and ¢ = 1,2. We say that a ball B is a-F,, 5-doubling if
P,,5(B) < aB,,(B).
The following lemma is important for the applicability of the doubling condition.

Lemma 4.12.1. Lety € (0,1). Let Q1,9 be Wiener regular domains in R"! and let
E C 091N 00 be a set on which wi|p < wa|p K wi|g. Then there exists a = a(y,n)
big enough such that for wi|g-almost every x € R"™! we can find a sequence of a-
P,,, 5-doubling balls B(x,r;) with r; — 0 as i — oo.

Proof. Let i =1,2. Let m € Z,m > 1 and denoting
Dy = {x € 09 : for all j > m, B(x, Z*j) is not a—Pwm—doubling}

it suffices to prove that w;|g(Z,,) = 0 for every m. Arguing as in [Azz+16d, Lemma
6.1] we have that, for z € Z,,, we can estimate the elliptic measure of B(z,r) as

wi(B(z,r)) < C(m)r"™ for r <27,
Then )
w|p(A4) <w(A4) < C(m)H" 7 (A) for any A C Z,,.
We recall that the dimension of w|g can be defined as
dimw|g :=inf {s: IF C 0Q s.t. H*(F) =0
and w|p(F N K) = w|g(02N K)VK C R™™! compact }

First let us bound dimw|g from below. Let F' C 9Q be such that H"™7(F) = 0. For
K C Z,, compact and such that w|g(K) > 0, we have w|g(FNK) < C(m)H" 7 (FnN

K) = 0. This in turn implies
dimw|g >n+7. (4.12.2)

Conversely, [AM17] gives that dimw|g = n, which gathered with (4.12.2) tells that
n>n-4+7y.

Being 4 > 0, this brings to a contradiction and, in particular, this proves that w(Z,,) =
0 for every m. O

Let i = 1,2. Denote by u;(-) = Gi(pi,-) the Green function associated with €;
with pole at p;. We understand that u; is extended by zero to €. As a corollary
of [Azz+16a, Theorem 1.5], which was formulated under weaker assumptions on the
regularity of the matrix A, we can state the following monotonicity formula.

Lemma 4.12.2 (Monotonicity formula). Let Q; and u; be as above and let R > 0.
Suppose that that As(§) = Id for £ € 001 N ONy. Then, setting

1 [V (y)|? 1 [Vua(y)|?
Ev r)= / dy : / dy )
&) <7"2 Bear) [y — &M ) <7"2 Be2r |y —&"1 )
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we have that, for some ¢ > 0,
v(&, ) < (€, s)ec(safra) <oo for0<r<s<R.

We remark that Azzam, Garnett, Mourgoglou and Tolsa proved their result under
the hypothesis A(¢) = Id. However, the same proof works under our assumption.’
The following lemma is crucial to prove the elliptic variant version of the blowups.
Lemma 4.12.3. Let Oy be a Wiener reqular domain and denote by wq = wi' its
associated elliptic measure with pole at p1 € Q. Let B be a ball centered at 0
and such that p; € 10B. Assuming that w1 (8B) < Cwi(6oB) and H" (B \ Q1) >
C~lr(B)™L, we have
H" T (Qy N 260B) = r(B)" . (4.12.3)

Moreover

H' L (260B \ Q1) =~ H" 1 (200B \ Q) ~ r(B)" . (4.12.4)

Proof. Denote r = r(B). Let us first prove (4.12.3). Consider a smooth function
@ > 0 such that ¢ = 1 on §pB and suppp C 26pB. In particular, suppose that
l¢lloe < (Gor)~'. Then, recalling that, by the properties of Green’s function and
being z1 outside of the support of ¢,

/godwl =— /ATVU1 -V,

we use the ellipticity of the matrix A and write

w1(26pB) < /godwl < /|Vu1-AVg0|

1
5/\VU1\V<P\ :/ Vup[[Vo| S / |V,
Q1M260 B dor Ja,n26,B

Then applying, in order, Hélder’s and Caccioppoli’s inequalities,

1 H Ly N 260 B)Y/? / 0\ 1/2
— Vuy| < Vu
dor /910260B| 1l < dor ( 2503| 1 )
HH(Q N 200B)Y? 1 1/2
SJ ( 1 0 ) (/ \U1|2> ’
dor dor \ Jus,B
SO /9
172 (6or) 1/

w1(260B) < H" (91 N 260B) sup |uq].

(Gor)?® 45,8
At this point, recalling that (see [PPT18, Lemma 32])
w1 (8B)

sup ui(y) S ——
Y460 B rr=l

we have

1/2 (6or)(n =)/
(6or)" !

which, since we suppose w(8B) < Cw;(doB), concludes the proof of (4.12.3).

w1 (503) S IHTH_I(Ql N 2503) w1 (8B)

Tt suffices to define the matrix D in [Azz+16a, Appendix A.1] as D = A(£) — A and observe that
Lag = La,e =1d.
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The second estimate in the statement of the lemma is a direct application of the
first one (see also [Azz+16d, Lemma 3.4]). O

The following lemma provides the connection between the function ~ in Lemma
4.12.2 and elliptic measure.

Lemma 4.12.4. Let i = 1,2 and Q;, p; be as above. Let 0 < R < min; dist(p;, 0€;).
Then, for 0 <r < R/4 and £ € Q1 NN we have

OJl(B(g,T‘)) WQ(B(ga’F)
rn ,,an
Moreover, if r < 5oR/8 and w;(B(&,8r)) < wi(B(&,dor)),
12 < wi(B(&,160; 1)) wa(B(&,165,1))

rn rn

< (&, 2r)Y2, (4.12.5)

Y& ) (4.12.6)

The proof of (4.12.5) is analogous to that for the harmonic measure in [KPT09].
The proof of (4.12.6) is an application of Caccioppoli’s inequality together with Lemma
4.12.3 (see also [Azz+16d, Lemma 3.5]).

The blowup technique for the elliptic measure developed in [AM17] is crucial to
prove the next lemma. We remark that the authors formulated this result under more
general assumptions on the matrix A then the ones of the present work.

Lemma 4.12.5. Let Q1,Q9 and E be as above. Let ¢ < 1/100 and, for m > 1, define
E,, as the set of £ € E such that for all{ € E, 0 <r < 1/m andi = 1,2 the following
properties hold:

(B1) wi(B(€,2r)) < muwi(B(E, 7).

(E2) HMTH(B(E,r) NQYy) > Lentl,

(B3) fuy 1 (B(E,1)) < er i (B(E,1)).

The sets Ep, cover E up to a set of wi-measure 0, i.e.
w1<E\ U Em> = 0.
m>1

The proof follows by known results in the literature. However, we think that it
may be useful to the reader to dispose of precise references.

Sketch of the proof. Set

% _ - lim wl(EmB(€7T)) — lim WQ(EQB(§7T)) _
pr={eer: nBEr) BT (BE ) }

One can see that w;(E\ E*) =0, i = 1,2. Now, for £ € E*, set h(£) = %1 (¢),

T dwo
A={{€eE*:0<h() <o}
and
I'={& € A:¢is a Lebesgue point for h with respect to wy }.

By Lebesgue differentiantion theorem, w;(E \T') = w;(E* \ T') for i« = 1,2. Then, in
order to prove the lemma it suffices to show that for wi-almost every £ € I':
(P1) wy is locally doubling, i.e.

lim su C1LPLs, A1) < 00
0T wi(B(E, ) '
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(P2) Fori=1,2
HHL(B(E,r) N Q)

ligglf S >0
(P3) We have the flatness estimate
g F 1 (B(6, ) = 0
=0 RS TG (BE ) T

The condition (P1) holds because of the flatness of the tangents Tan(w;, §), see [AM17,
Theorem 1.3], which is known to imply the locally doubling condition (|Pre87, Corol-

lary 2.7]).
The property (P2) follows by the arguments in [Azz+16d] together with (4.12.4).
To prove (P3), it suffices to argue as in the end of [Azz+16d, Section 5. O

Now consider m > 1 such that w;(Ey,).

Lemma 4.12.6. Let 6 > 0. For wi-almost every v € E,, there is r, > 0 such
that, given an a-Py,,, -doubling ball B(x,r) with r < 1y, there exits a set Gy, (z,1) C
E., N B(x,r) such that

wl(Bﬂ(f’t)) < wl(B(nm,r)) for every z € Gp(z,7r), 0 <t < 2r.
N
In particular,
wi(B(z,r) \ Gm(z,7)) < dwi(B(z,7)). (4.12.7)

and, if we denote by E,,s the set of points where (4.12.7) is verified, we have
w1 (Em \ Em,&) =0.

This lemma can be proved arguing as in [Azz+16d, Lemma 6.2] and more precisely
combining the locally doubling property of the elliptic measure ensured by the blowup
argument together with Lemma 4.12.4.

We also point out that their argument relies on the monotonicity formula of Alt,
Caffarelli and Friedman. So, to prove it in the elliptic case we have to invoke Lemma
4.12.2, whose hypothesis include the assumption Ag(x) = Id. This, of course, is not
true in general. However, one can argue via the change of variable in Lemma 4.5.3
to achieve this property. For a more detailed treatment of how the elliptic measure
varies under that transformation we refer to [Azz+16a, Corollary 2.5|. We omit further
details.

From now on fix ¥ = &. The following lemma contains an estimate of the potential
of wy which is needed to recollect the property (4) in Theorem 4.8.

Lemma 4.12.7 (cfr. [Azz+16d, Lemma 6.3]). Let 0 < ¢ < 1 to be chosen small

enough. For m > 1 and § > 0, let Em75 and ry, be as in the previous lemma.
Consider xo € Ep, 5 and take

0 < 7o < min (ra,, 1/m, dist(p1, 0Q1)).

Assume, moreover, that By = B(xo,r) is an a-P,, g-doubling ball. Then, for all
x € G(xo,10) we have
T (x2Byw1) () S Ouw, (Bo).

Proof. Suppose Ag(xg) = Id. Indeed, if this is not the case, one can argue via a change
of variable as mentioned before. Also, without loss of generality, we can consider only
the case r < r¢/4.
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Let € > 0. The proof relies on the estimates for the smoothened potential

Tron(2) = / K(z)ge(z — p)din(y), =€ R,

where : R"*1 — [0,1] is a smooth radial function whose support is contained in
R\ B(0,1), equals 1 on R*™1\ B(0,2) and ¢, denotes the dilate ¢.(2) = ¢(e~'2).
Now take = € Gy, (g, 10), consider r < r/4 and define

ur(2) = E(pr ) — / G por(E—y)dan(y), =€ RPN\ [supp(pr(@—Jwr) U{pi}]
(4.12.8)

Recall that As(xo) = Id and that O(+; A(zo)) = O(+; As(z0))- On the same range of z
of (4.12.8) we consider

5(2) = O(p1 — 2 Id) — / Oz — y: Id)pr(z — y)dun (y).

As in [Azz+16d, Lemma 6.3|, to prove the lemma it suffices to show the validity of
the estimate ) }
|Trwi(z) — T,y jawi ()] < Oy (Bo)-

To this purpose, observe that
|TTW1($) - Tro/4wl($)| = |VU7~(.I‘) - V’UTO/ZL(I'”

—| [ V18 (erlo = ) = oo~ 1) den(y)]

Now, using Lemma 4.2.2 and the Holder continuity of A, it is not difficult (recall that
ro < 1) to prove that

a
o 1

<
—y" T e -y

|Vi€(z,y) = V1O(z —y; 1d)| S z

which in turn implies
Ty (x) = Ty pacon ()]

S 00 (B) +| [ V100 = 3 1) (o1~ ) = vy sl = ) dir(v)
= [V (2) ~ Vo /a(2)] + O, (Bo).
(4.12.9)

We claim that [0,.(x) — 0,y /4(z)| S Ow, (Bo), which would conclude the proof. To show
this, notice that functions v, and v, /4 are harmonic outside supp(¢,( —-)w1) U{p1},
hence in particular in B(z,7). Then, an application of the mean value property gives

_ _ 1 _ _
Vo (2) = Vogsa()] S - 7{9 () = a2 (4.12.10)

Another application of the freezing argument together with the C%-continuity of A
proves

’777’(2/) - 177“0/4(2) - UT(Z) - Uro/4(z)‘ S TgT @wl (B()), ZAS B(l‘,?“)
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that, gathered with (4.12.9) and (4.12.10) gives

- - 1
Trwr(2) = Trjawi (2)] S Own (Bo) + ]é( | [0r(2) = g a(2)|dz

1 1
< O, (Bo) + ][ | (2)|dz + ][ |[Vpg /4 (2)|dz.
" JB(z,r) T JB(z,r)

)

From this point on, the proof is analogous to that in [Azz+16d]. O

The proof of the Theorem 4.3 follows the footprints of that of [AMT17b] and
[Azz+16d]. More precisely, taking zo € E,, 5 and 79 as in Lemma 4.12.7, we split the
set Gy (0, 70) as a union of

Gfg(l'o,ro) = {l‘ S Gm(SUQ,’I“o) : hil’(l) ®w1 (B(x’r)) = 0}

and
G2 (z0,70) = Gm(z0,10) \ Git(z0,70)-

Then, using Lemma 4.12.7, the elliptic analogue of [Azz+16d, Lemma 6.5] and the
rectifiability Theorem 4.8 that we proved in the present chapter, it is possible to infer
that

w1 (G4 (0, 70)) = 0.

On the other side, [PPT18, Theorem 3| ensures the existence of an n-rectifiable set
F(z0,7m0) C GE(x0,70) of mutual absolute continuity of the elliptic measure w; | F(w0,70)
and the Hausdorff measure Hn’F(:rzo,ro) that covers Gy, (2o, 70) up to a wi-null set. This
concludes the proof of Theorem 4.3.
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